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At a time when U.S. high school students are producing low scores in
mathematics and science on international examinations, a thorough grounding
in physical chemistry should not be considered optional for science under-
graduates. Based on the author’s thirty years of teaching, Essentials of Physical
Chemistry merges coverage of calculus with chemistry and molecular physics
in a friendly yet thorough manner. Reflecting the latest ACS guidelines, the
book can be used as a one or two semester course, and includes special topics
suitable for senior projects.

The book begins with a math and physics review to ensure all students start
on the same level, and then discusses the basics of thermodynamics and
kinetics with mathematics tuned to a level that stretches students’ abilities.
It then provides material for an optional second semester course that
shows students how to apply their enhanced mathematical skills in a brief
historical development of the quantum mechanics of molecules. Emphasizing
spectroscopy, the text is built on a foundation of quantum chemistry and more
mathematical detail and examples. It contains sample classroom-tested exams
to gauge how well students know how to use relevant formulas and to display
successful understanding of key concepts.

•  Coupling the development of mathematical skills with chemistry concepts
encourages students to learn mathematical derivations

• Mini-biographies of famous scientists make the presentation more
interesting from a “people” point of view

•  Stating the basic concepts of quantum chemistry  in terms of analogies
provides a pedagogically useful technique

Covering key topics such as the critical point of a van der Waals gas, the
Michaelis–Menten equation, and the entropy of mixing, this classroom-tested
text highlights applications across the range of chemistry, forensic science,
pre-medical science and chemical engineering. In a presentation of fundamental
topics held together by clearly established mathematical models, the book
supplies a quantitative discussion of the merged science of physical chemistry.
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Preface
This text is really two books in one, perhaps three. The first 9 chapters are intended to meet the new
American Chemical Society requirement of one semester of physical chemistry. By good fortune,
I have taught such a course five times at Virginia Commonwealth University with special emphasis
on ways to make important material understandable to students who may only have had one
semester of calculus. This sequence has also been taught once as an experiment at Randolph
Macon College using McQuarrie’s Quantum Chemistry, Second Edition, with a smaller class as a
second semester elective. Key topics are included in thermodynamics and kinetics with mathematics
that has been tuned to a level that just slightly stretches the student’s math ability. These students are
used to memorizing vast amounts of material in biology and organic chemistry so we ‘‘prime the
pump’’ of their intellect by encouraging memorization of key topics such as the critical point of a
van der Waals gas, the Michaelis–Menten equation, and the entropy of mixing. Along the way, we
introduce problems related to forensic chemistry as well as a mixture of practical units likely to be
encountered in health sciences. Sample tests are included in the text so students can see what is
expected of them. The tests are intended to measure knowledge of the formulas and how to use
them, as well as to display successful memorization=learning of key concepts.

Spectroscopy is limited in a one semester course; we have tried to use the relatively simple Bohr
atom for examples of orbital screening and x-ray emission analysis to get as much meaning from the
simple formula as possible. The treatment of chemical kinetics is split into a fundamental Chapter 7
and a more advanced Chapter 8 so that if time is running out in a one semester course, Chapter 8 can
be skipped and delayed until the beginning of an elective second semester. A one semester sequence
might be ‘‘Introduction: Mathematics and Physics Review,’’ Chapters 1 through 7 and 9 with an
elective second semester as Chapters 8, 10 through 15 with parts of 16, 17, 18, or 19.

I think it is important to keep the material of an optional second semester visible in the same text
with many pictures of successful scientists to coax students into further study. Actually, taking just
one semester of physical chemistry really limits a student for further study. I certainly do not agree
with the ACS Committee on Professional Training in this matter. Physical chemistry is the axis of
science where all the sciences come together along with mathematical models that have been
developed over the past 200 years. If perchance my colleagues in physical chemistry have devel-
oped a reputation for being difficult, I call on them to make physical chemistry ‘‘fun’’ to train
students in this central science. I know from teaching two semesters of physical chemistry in an
intensive nine-week ‘‘Summer P. Chem.’’ course for over 30 years that by selecting key topics,
explaining them well, and teaching the necessary mathematics leads to great morale in a class while
serious learning is going on! I often receive messages from students who complete this course
saying they are using P. Chem. notes in upper level courses in biochemistry and inorganic
chemistry. Topic selection is also a result of my teaching physical chemistry laboratory for many
years using successive editions of the Shoemaker, Garland, and Nibler text; thus, material here
should form a foundation for that course as well.

This text is being completed just a week before the beginning of another nine-week ‘‘Summer P.
Chem.’’ course, and it must be considered in view of a series of fast, intense lectures. As usual, there
will be students in this class with only one semester of calculus (having never dealt with an integral)
and biology majors who are pre-medical students as well as forensic science majors who are taking
almost as much chemistry as the formally designated chemistry majors. They all will have recently
passed organic chemistry, but probably not have used much mathematics since a prior year in
freshman chemistry. We have put the Introduction chapter first because that is the way we have
found we can get the students to review whatever math skills they previously used. Putting this
chapter first is debatable, but I have received a number of testimonials from past students who
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comment that the ‘‘Math Review’’ was really important for them. Note that equations in the text are
not numbered so as to encourage linking verbal ideas with logic and develop the ability to ‘‘read
mathematics,’’ a skill this author considers very helpful in science.

I have read the reviews of many other texts in physical chemistry and found that they are
seldom positive, although I think a number of those texts are really good. Thus, I anticipate
criticism that I should have done more of this or that, but I know from developing this course over
30 years that you don’t have time to do everything even in two semesters; thus, the one semester
limit requires selection of only a few topics. There should perhaps be more problems, but I know
that most teachers are fiercely independent and prefer their own emphasis; thus, the strategy here
is to focus on the basics and let the teachers provide their own preferred special topics. In truth,
there are already more problems presented here than there is time for in a nine-week summer
course. The strategy here is (1) tell the students what you want them to know, (2) tell them what
you will test them on, (3) give them a large number of past tests to practice on, and then (4) test
them using slightly different questions with at least one new question to separate thinkers from
memorizers. This will allow the memorizers to hopefully learn some of what they memorized! We
know this process can be successful in bringing a group of students to the national average and
above as measured by standardized tests of the American Chemical Society. I will of course be
attentive to any outright error in the text, but this material is basically the notes developed over a
30-year period for the students mentioned earlier using many different texts and with many
successful outcomes. This material has been taught as a one semester course, where usually the
course extended only to Chapter 9, with or without Chapter 8, and in the summer a few students
only take the ‘‘Introduction: Mathematics and Physics Review’’ and Chapters 1 through 9.

The ‘‘second book’’ (Chapters 10 through 16) builds on the math skills developed in the first
semester, Introduction and Chapters 1 through 9. The emphasis in the second semester is on various
forms of spectroscopy built on a foundation of quantum chemistry, and more mathematical details
are given as well as some detailed examples that might be useful in Physical Chemistry Laboratory
courses. Note that the detailed mathematics is there for interested students in several appendices, but
the emphasis on the tests is to learn the bottom line conclusions. Chapter 13 is clearly the most
difficult chapter, but hopefully using the ‘‘m¼ 0 shortcut’’ will make it easier. There is use of a small
quantum chemistry program (PCLOBE) in Chapters 11 and 16 as explained in Chapter 17. We have
found that you can use molecular orbitals in lecture with PCLOBE shown on a video screen often in
the second semester. There usually will be three or four students (in a class of 40) who really want to
learn this material. Probably not all of the later chapters can be treated in a two semester course, and
it is admitted that the nine-week summer course usually stops at Chapter 16 or 18. Chapter 19 is a
daring venture into what is usually treated in organic chemistry, but modern pulse-NMR is really an
exercise in how to use physical principles of magnetism to make NMR spectroscopy easier to
interpret with the COSY technique as a gateway to more advanced methods. While the variational
treatment of the H1s orbital in Chapter 16 is always treated in this course, the second semester
usually ends after Chapter 15. Thus, the ‘‘third book’’ consists of Chapters 17 through 19, which are
special topics suitable for senior projects or for prospective graduate students.

Other teachers may want more problems to select from but in the fast nine-week course it seems
better to give 5 or 10 problems of good quality a week than a lot of busy work. Some students want
more problems rather than derivations while others prefer memorization. Thus, the sample exam-
inations in the text show a balance of some memorization of derivations and other tough numerical
problems. After the first few weeks in a fast course, students are motivated to prepare for a looming
final examination, and we have found an unorthodox way of coupling their desire to prepare with
presentation of ‘‘essential’’ topics. The latter part of the Summer P. Chem. course semester is
studying and assimilating old examinations including a number of derivations to memorize=learn.
On the last class day of each semester, students go to the board and ‘‘explain’’ a problem from an old
test to the class. Teaching to tests? Yes. Does it work as shown by results on standardized tests?
Yes! In some universities there are fraternity=sorority files of old tests given by various faculty
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members. Why not give the whole class the same advantage, particularly if they actually learn
from the old tests!

It is not unusual now for a student to bring a laptop to lectures; we have thus included many
references to Internet sites with interesting educational supplements. In particular, I owe a debt of
gratitude to several authors of interesting Web sites who have given permission to include some of
their educational material in this text. Their contributions are noted by name and web address in the
captions to their work. Of course, it is still a good idea to have a textbook to lug around, but there are
treasures of knowledge on Internet sites. By using the Internet as a supplement, we can combine the
results of many excellent tutorial sites to form a richer set of examples. Thus, in the ‘‘second book’’
(Chapters 10 through 16), we gradually extend quantum chemistry concepts to spectroscopic
applications. Some other spectroscopic topics are in Chapters 17 through 19 where teachers can
choose to emphasize their specialty, and we regret not having time=space for subjects like electro-
chemistry or discussion of nuclear power. However, we are sure that if the second semester
establishes some basic quantum chemistry, a teacher can use the time in a second semester to
choose special topics. We have included SCF calculations, Raman spectroscopy, electrospray mass
spectrometry, and nuclear magnetic resonance as advanced topics that can be mixed according to the
wishes of a given teacher and class, but the main idea is to present more quantitative discussion of
the merged science of physical chemistry.

Finally, it is important to acknowledge two colleagues who have brought constructive criticism
to bear on my research as well as this text. Professor James F. Harrison of the Michigan State
University Chemistry Department has long been a friend and classmate as an undergraduate and in
graduate school. His keen intellect has kept me on the right path for a long time and his
contributions to Chapters 16 and 17 should be noted. Also, my ‘‘style mentor’’ has been Professor
Carl Trindle at the University of Virginia. I cannot match his graceful style in prose and have lapsed
back into the conversational style that works for me in lectures. However, Carl has inspired me to
use shorter sentences. In addition, my wife Nancy says this is my ‘‘last book’’ and I thank her for her
patience in my putting my entire focus on this text for over 9 months and the 30 years before that
when most of the notes presented here were developed. My son Douglas has been a valuable
computer consultant during my conversion to Word 2007 and Windows 7; he has been of
considerable help in preparing and formatting the manuscript. Additional thanks are due to the
staff at the Quantum Theory Project at the University of Florida at Gainesville for providing selected
photographs from past Sanibel meetings. Special mention should also be made of the cooperation
from both the Chemical Heritage Foundation and the Segrè Collection of the American Institute of
Physics for assistance with research and selection of photographs. The suggestions and support of
my editor, Lance Wobus, is gratefully acknowledged as well. Thanks to the team of project manager
Vinithan Sethumadhavan of SPi Technologies, and project editor Richard Tressider and production
coordinator David Fausel of CRC Press, who were extremely helpful in what turned out to be a task
more complex than expected. Special thanks are also due to the 2010 class of ‘‘Summer P. Chem.,’’
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VCU. A graduate of Drexel University with an MS from Princeton University and industrial
experience in electrochemistry, he has been interested in optical activity and magnetically induced
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List of Constants
Since it is unlikely students will learn all the significant figures in the CRC tables, we offer
pragmatic values rounded to four significant figures.

90th CRC Value � Student Value

Speed of light : 2.99792458� 108 m=s � 2.998� 108 m=s
Planck’s h : 6.62606896� 10�34 J s � 6.626� 10�34 J s
Planck’s h-bar : 1.054571628� 10�34 J s � 1.055� 10�34 J s
Electron mass : 9.10938215� 10�31 kg � 9.11� 10�31 kg
Electron charge : 1.602176487� 10�19 C � 1.602� 10�19 C
Proton mass : 1.672621637� 10�27 kg � 1.673� 10�27 kg
Avogadro’s no. : 6.02214179� 1023=mol � 6.022� 1023=mol
1 cal : 4.184 J � 4.184 J
1 Volt : 1 Joule=Coulomb
1 eV : 1.602177� 10�19 J � 1.602� 10�19 J
1 J : 1 kg m2=s2

1 erg : 1 g cm2=s2

1 J : 107 erg
1 N : 1 kg m=s2

1 dyne : 1 g cm=s2

1 N : 105 dyne
1 gal (U.S.) : 3.785412 L � 3.785 L
1 quart (U.S.) : 946.3529 cm3 � 946 cm3

1 in. : 2.54 cm (exact)
R (gas constant) : 8.314472 Pa m2=(8K mol) � 8.314 Pa m2=(8K mol)
R (gas constant) : 0.08314472 L bar=(8K mol) � 0.08314 L bar=(8K mol)
R (gas constant) : 0.08205746 L atm=(8K mol) � 0.0821 L atm=(8K mol)
R (gas constant) : � 1.987 cal=(8K mol) (PV¼Energy!)
1 atm (Earth) : 1.01325� 105 Pa¼ 1.01325� 106 dyne=cm2

1 atm (Earth) : 1.01325 bar¼ 101325 Pa
1 Rydberg : 10973731.568527=m � 10973732=m
1 Rydberg : 13.60569193 eV � 13.606 eV
1 Hartree¼ 2 Rydberg¼ 27.21138386 eV � 27.21 eV
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Periodic Table of the Elements
In the table on the next page, the new IUPAC format numbers the groups from 1 to 18. The previous
IUPAC numbering system and the system used by Chemical Abstracts Service (CAS) are also shown.
For radioactive elements that do not occur in nature, the mass number of the most stable isotope is
given in parentheses. Elements 113–116 and 118 have been reported but not yet confirmed.

REFERENCES

G. J. Leigh, Ed, Nomenclature of Inorganic Chemistry, Blackwell Scientific Publications, Oxford, U.K., 1990.
Chemical and Engineering News, 63(5), 27, 1985.
Atomic weights of the elements, 2007, Pure and Appl. Chem., 81, 2131, 2009.
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Introduction: Mathematics
and Physics Review
Welcome to ‘‘Essentials of Physical Chemistry’’! We really have a challenge here! According to the
new requirements of the American Chemical Society, only one semester of physical chemistry is
required for the BS in chemistry, although a second semester is an acceptable elective. Within
chemistry education there has long been a division between students who shy away from mathemat-
ics and those who appreciate the quantitative nature of the bridge between chemistry and physics.
This is not only unfortunate in closing doors to students who might go further in research but is an
unnecessary result of a long tradition of physical chemists reveling in esoteric difficulties. Our
position here is that physical chemistry faculty should strive more to popularize the field of physical
chemistry without degrading the level of treatment by using enthusiastic joyful teaching methods!
There are many applications of physical chemistry where the mathematical modeling has been
developed to a point where clean solutions are available and can be compared to experimental results
with a sense of wonder at the level of understanding they give to the molecular world that is truly
amazing! Here we attempt to provide mnemonics and other analogies to bring chemical principles in
focus with calculus-level treatment for the ‘‘essential’’ topics in physical chemistry in one semester,
along with enough material to continue further treatment of other topics in an elective semester. It is a
‘‘Mission Impossible’’ to present essential topics in physical chemistry in one semester, so our
attitude is ‘‘Just the facts, Jack!’’ If there are four ways to explain something, we will use only one
way that we think makes the point, but we will fill in most of the mathematical steps to make that one
way as clear as possible. This leads to abbreviated treatments but with sufficient mathematical depth
that interested students will still be able to advance to further topics with a good foundation.

Although we need to treat a broader range of topics today, we aim to reach the level of clarity for
undergraduates as given in what we consider a pedagogical masterpiece by G. S. Rushbrooke as
Introduction to Statistical Mechanics, Oxford Press, London, 1962; just the necessary facts, key
equations, and only a few problems at the end of each chapter. Our hope is that any student who
follows the text with pencil and paper will do well on the Graduate Record Examination or other
advanced courses. We cannot cover every topic in one semester but we can give a good foundation
with active student participation. After the absolutely essential topics in the first semester, we
include further topics for an elective second semester that fill in what should be normally included in
a two-semester treatment of physical chemistry, in greater detail at a more leisurely pace. However,
we still have to pack some spectroscopy into the first semester because a student may not elect the
second semester and yet modern topics are heavily dependent on spectroscopy! Did I say we have a
challenge? By the way, some sensitive souls have told me that I should not use capital letters to
emphasize words since in this age of texting that denotes shouting, BUT in my lectures I routinely
emphasize some words more loudly than others to wake up the back row of the class! Thus no
offense is intended, it is just a style mechanism to maintain class attention!

REVIEW OF NECESSARY MATHEMATICS AND PHYSICS

If you have flipped through some pages of this text you may be concerned about the amount and level
of mathematics herein. You need to give the text a chance since it is based on over 30 years of
teaching students just like yourself who may have sold your calculus text and wondered why you had
to take any calculus at all. There is a high probability that you have recently passed a course or two in
organic chemistry, which involved little mathematics but massive amounts of learning. The approach
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of this text is to use your mental synthesis skills learning massive amounts of chemistry to ‘‘prime the
pump’’ of your mind using a few examples at a level of two semesters of calculus even though you
may have only had one semester!We are going to show the mathematical details (calculus nuggets) of
selected cases to provide depth in a few areas but you have to do your part! The author earned a grade
of D- in the first quarter of organic chemistry taken in summer school by lounging in a hammock and
just moving his eyes over class notes. The second and third quarters of organic chemistry led to grades
of A because the present author wrote each reaction over 20 times! Thus it is very important that you
use a pencil and paper and copy over the examples and proofs given in this text. Would you expect to
learn to swim by reading a book or learn to shoot basketball foul shots by reading about it? This author
firmly believes that hand-eye activity in writing equations is a valid way to study physical chemistry
as well as organic chemistry. If you expect to just read this text or highlight key passages as if it were a
history book, you are already in trouble. However, if you follow along with pencil and paper you will
be amazed that priming your mental pump with detailed equations will lead to increased confidence at
what you can do with a minimum of mathematics! This approach has worked with timid young ladies
as well as overconfident male athletes and the result has always been great morale in the class to the
point of actually having ‘‘fun’’ in physical chemistry!

The overwhelming obstacle to the study of physical chemistry is a lack of skill in mathematics
whether in calculus or just basic competence in careful addition. Overall, the language of all the
physical sciences is mathematics! It is amazing that if you check on journal articles in Chinese,
Russian, Turkish, French, German, or English, the equations and tables of numbers are the same! In
fact, we will start slowly with calculus examples but the real language of this course is ‘‘Calculus’’!
The author has taught this material to hundreds of students from all over the world whose use of
English is a second or third language. This is not a course on the history of science; we seek to form
mathematical relationships in your mind. The common language really is Calculus at a level of two
semesters of that topic. The prerequisite for this text is at least one semester of calculus and presumably
some exposure to trigonometry. That means you know the basic ideas of calculus and have some
experience with derivatives but perhaps have not worked with integrals or certainly not integrals over
more than one variable. That can be a problem for this course so this ‘‘Introduction’’ should be studied
or presented in class before the first ‘‘real’’ chapter. Hopefully your teacher will spend a lecture or two
in the first week on this material, but if not it will be in your best interest to study this chapter on your
own. We just have to get over the initial barrier to review derivatives and then explore analytical
integration (the reverse of taking a derivative) in a brief way that will get students into the gamewith at
least a fighting chance of winning that A grade in physical chemistry! Along the way wemight as well
review some key topics from sophomore physics, which is another basic prerequisite, and introduce
the use of partial derivatives, which we will use a LOT in thermodynamics!

Let us start with a review of derivatives. It is important to understand for future use that both dx
and dy are individually small quantities that may be manipulated using algebra and the derivative is
the limiting case of the ratio of the two quantities in the limit of infinitesimal size!

dy

dx
� lim

Dx!0

Dy

Dx

� �
¼ lim

h!0

y(xþ h)� y(x)

h

� �
:

Note the use of the ‘‘super equal’’ sign with three lines, which indicates a definition of a term rather
than equal values of two expressions.

Example: Let y¼ x2, then we find (as expected)

dy

dx
¼ lim

h!0

(xþ h)2 � x2

h

� �
¼ lim

h!0

x2 þ 2xhþ h2 � x2

h

� �
¼ lim

h!0

2xhþ h2

h

� �
¼ 2x:

This can be generalized using the binomial expansion of (xþ h)n.
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(xþ h)n¼ xnþ nhx(n�1)þ � � � þ hn so that all the terms of h2 or higher will go to zero and in the
derivative of any variable to an integer power n, THE n FALLS OFF THE ROOF, LEAVING
(n� 1) as the exponent! That is all we need to know for derivatives of simple polynomials! So we
have a simple but powerfully general formula: given y¼ xn, we can immediately write an easily
remembered formula as

dx n

dx

� �
¼ nx(n�1):

This may seem a very informal way to remember this process but in the interest of mental efficiency,
it will get the job done and we will seek other correct shortcuts for mathematical operations. (Life is
short and we have many equations yet to learn!)

The next special derivative we will use many times involves the derivatives of exponential
functions of base ‘‘e.’’ The number ‘‘e’’ was implied by the mathematician Napier in 1618,
developed further by Bernoulli, and called ‘‘e’’ by Euler in 1727. It is an irrational number like
p, but for our purposes we can use a good approximation on our calculator as

e ffi 2:7 1828 1828 45 90 45 23536 . . .

For those interested in science facts, e can be remembered as roughly 2.7 followed by the digits
1828, 1828 again, and then 45, 90, and 45 but usually you can just enter e1 on your calculator to
verify the approximation. Bernoulli attempted to evaluate the constant using the formula

e ¼ lim
n!1 1þ 1

n

� �n

,

and you can easily check the first few digits with your calculator. Napier determined that only one
base leads to an exponential function whose functional graph has the property that ALL the
derivatives of that function (especially the first derivative) have the same value at any point on
the graph as the value of the function itself!

de x

dx

� �
¼ e x,

d

dx

de x

dx

� �
¼ e x,

d

dx

d

dx

de x

dx

� �� �
¼ e x, and

d

dx

� �n

e x ¼ e x for any n:

That in itself is merely a profound fact but most importantly for us is the similarity to the polynomial
formula above when the exponent ‘‘falls off the roof.’’

d

dx
(eax) ¼ aeax:

The proof of this derivative is slightly complicated but for our purposes we can memorize it. It is
instructive here to introduce the concept of the CHAIN RULE for derivatives of functions, which
are in turn functions of variables as for instance when u¼ ax in eu¼ eax. Then we have to take the
derivative with respect to u and the chain derivative of u with respect to x so we have:

deu

dx
¼ deax

dx
¼ deu

du

du

dx
¼ aeax:

Note that the use of the chain rule leads to the ratio
d

du

� �
du

dx

� �
¼ d

dx
.

Now consider the case where we can introduce another formula that you may or may not have
seen in one semester of calculus for the Taylor expansion of any function of (x) in terms of all its
derivatives as applied in this case to ex. It is worth mentioning the Taylor expansion in this
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beginning chapter since at a later time we may use it for an approximation when x is small. The
general formula for the Taylor expansion is

f (x) ¼ f (0)þ
X1
n¼1

x n

n!

d

dx

� �n

f (x)

� �
x¼0

, so e x ffi 1þ xþ x2

2

� �
þ x3

3!

� �
þ x4

4!

� �
þ � � �

Note for future reference, in any limiting case involving ex compared to any single function of xn, the
behavior of ex will dominate since ex contains every power of x and more higher powers besides; ex

will always ‘‘beat’’ any single power of x in a limiting case. That is an example of a tedious proof of
something you can safely memorize in that when x is small it can be seen from the series expansion
that only the first two terms are needed so that we can often use: ex ffi 1þ x, when (x	 1).

Along the way we used n! which we will also find very useful later on; it is called ‘‘n-factorial’’ and
is defined as n!� 1 � 2 � 3 � 4 � 5 � 6, . . . n, that is, the product of successive integers up to n. The use of
factorial notation will be common later in the text and it should be clear that it is a convenient form to
represent what may be a very large product string of integers. Many of the inexpensive calculators
have a special key for n! so try to find out the limit of your calculator and probably you will get an
overflowmessage at about 69! Be prepared to stretch your imagination later on to use the factorial of a
number as large as Avogadro’s number! We will see later there is a good approximation for factorials
of large numbers and Stirling’s approximation will be discussed in later chapters.

The next thing to review is that we will often have to take a derivative of a function, which is the
product of several functions so we need to review the derivative of a product.

Given: y¼U(x) V(x), then
dy

dx
¼ d

dx
(UV) ¼ U

dV

dx

� �
þ V

dU

dx

� �
.

This principle can be extended to multiple products as well.
Next, we need to consider the case of a quotient. I prefer to use the ‘‘fall off the roof’’ idea as

applied to a negative power.

Given: y ¼ U(x)

V(x)

� �
, then

d

dx

U(x)

V(x)

� �
¼ d

dx
(UV�1) ¼ (V�1)

dU

dx

� �
þ U(�1)(V�2) dV

dx

� �
.

This is equivalent to the form usually given in calculus books if the last term is multiplied by

V V= Þð to obtain the form as
d

dx

U

V

� �
¼ V(dU=dx)� U(dV=dx)

V2

� �
.

This exercise is shown to illustrate another example:

d

dx

1
xn

� �
¼ d

dx
[x�n] ¼ (�n) x�(nþ1)� �

so that
d

dx
1 x3
� � ¼ (�3)(x�4) ¼ �3 x4:

��
Now we need to venture into what may be new to you in the form of integration. Basically,
integration is the reverse of taking a derivative so that when you do the step mentally, you say to
yourself, what is the function whose first derivative is the function in the integrand, the function
under the integral sign? There are two basic types of integrals, a definite integral, which is evaluated
between two certain limit values of the argument and results in a definite numerical value. A more
general type of integral is an indefinite integral, which produces a function whose derivative is the
integrand function in the integration formula, but (!) since the derivative of a constant is zero, there
might have been some constant number associated with the integrated function, which might need
some sort of additional information such as a boundary condition to evaluate.

Definite integral:
ðb
a
f (x)dx ¼ g(b)� g(a), where

dg(x)

dx
¼ f (x) and we note the order of the limits

implies g(upper)� g(lower). Also note that in one variable, the integral is an area which is the
product of a sliding value of the function with a tiny slice dx. In some cases, a definite integral can
be approximated by plotting the integrand function versus x, cutting out and weighing the paper area
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under the curve between the limits and comparing to the weight of a known rectangle area of graph
paper. Since chemists have access to very accurate balances, it is relatively easy to achieve 1%
accuracy by this graphical-weighing method.

Indefinite integral:
ð
f (x)dx ¼ g(x)þ C, where

dg(x)

dx
¼ f (x) and C is an unknown constant. For

homework problems, an indefinite integral is incorrect unless the þC term is given.

Examples:
ð
x ndx ¼ x(nþ1)

(nþ 1)
þ C and

ð
eaxdx ¼ eax

a
þ C.

We can treat an important but more complicated case that we will use to justify formulas we merely
memorize later but we need to be aware of a process called integration by parts, which makes use of
definite integration. Consider the integral that is the reverse process of the product derivative rule.
Simply put, we wrap a definite integration process around the product rule formula, that is, we
perform the definite integration term by term on both sides of the product equation and use the same
limits on all the terms. Note that d(UV)¼U dVþV dU does not have the dx denominator. This form
of a derivative of just the numerator is called the ‘‘differential’’ and is valid for whatever variable is
in the denominator. This concept is often used in thermodynamics.

ðb
a

d(UV) ¼
ðb
a

U dV þ
ðb
a

V dU, then

ðb
a

U dV ¼
ðb
a

d(UV)�
ðb
a

V dU

This simple formal trick can be used in a tedious way to evaluate definite integrals, which cannot be
integrated in a single step. This process can seem confusing at first but can be learned. However,
there is a problem in that if you arbitrarily choose U and V by separating the UV product in a correct
but not efficient way, the process will actually make the integration step more complicated. The
strategy is to choose U and V in such a way that the next step is simpler so that multiple applications
will lead to a form that is easy to integrate; usually that direction is one that reduces a power in the
integrand of the original integral to a lower form.

Example:

ð1
0

xe�axdx ¼ �xe�ax
a

� �1
0

�
ð1
0

�e�ax
a

� �
dx ¼ (0� 0)þ 1

a

� � ð1
0

e�axdx

¼ �1
a2

� �
[e�ax]10 ¼

1
a2

� �

Now that is a very tedious process (however, it is used in research if necessary) so we only show
this once and then generalize to a key formula we can memorize. This is a well-established
procedure where tables of ‘‘integral formulas’’ fill several volumes. Fortunately for us we can get
around this in this first chapter and simply memorize the final formula.

Key formula:
ð1
0
xne�axdx ¼ n!

anþ1
Although we are packing a lot of information into this first chapter, students have absorbed this in my
class for many years and I usually spend two or three of the first classes on this material. In my
experience, this review is essential for mental comfort in all the later chapter topics. So far all the
material mentioned earliermay have been treated in one or two semesters of calculus but to go ahead in
thermodynamics we have to understand how to treat more than one variable in the presence of the
others. A simple example is the set of basic physical variables (P, V, T, n). While this topic would
normally be treated in a course in multivariant calculus, it is unlikely that biology majors will have
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taken such a course, so we have to introduce the basics here. It really is very simple in that partial
derivatives use the same rules as one-dimensional derivatives except that the other variables are
held constant!

Consider the ideal gas law, which should be familiar from freshman chemistry:

PV ¼ nRT , P ¼ nRT

V
, V ¼ nRT

P
, T ¼ PV

nR
, and n ¼ PV

RT
:

Although we know R is a constant, there are four variables that have an effect on the overall state of
an ideal gas.

There are actually 12 possible partial derivatives for the state of a sample of gas but we will only
show 3 here, the others are easy to understand considering each variable in turn. Let us treat the
possible partial derivatives of P.

qP
qT

� �
n,V

¼ nR

V
,

qP
qV

� �
n,T

¼ � nRT

V2
, and

qP
qn

� �
V ,T

¼ RT

V

Thus we see the pressure of an ideal gas depends separately on three other variables and the
partial derivatives could be rendered into a numerical value by using the values of the other
variables. Strictly speaking, the lower right subscripts should be included to indicate all the
other variables are being held constant during the derivative evaluations, but if the moles are
understood to be constant in a given problem, n is often neglected. Even so any lower subscript
can be used to remind us what conditions are held constant. It is important to learn to verbalize

the partial derivatives to give them physical meaning. For instance
qP
qn

� �
V ,T

could be read as

‘‘the change in P with a change in moles while holding volume and temperature constant.’’
A student should find more meaning if the partial derivatives are verbalized but the strategy is to
use quantities that are measurable and then use mathematics to manipulate them in ways that
lead to new information.

There are two physical quantities that can be measured in the laboratory, which can be tabulated
in various handbooks and used in a number of ways to simplify other equations.

Isobaric thermal expansion coefficient: a � 1
V

� �
qV
qT

� �
P

. Note ‘‘isobaric’’ means P is constant.

Here we note this represents how the volume changes as the temperature changes while holding
the pressure constant. To make the measurement independent of the amount we divide by the total
volume, and this is a positive number. For solids and liquids, this is usually a small numerical value
(with units), but it can be large for gases. For an ideal gas we have

a ¼ 1
V

� �
nR

P

� �
¼ 1

T

� �
:

Isothermal compressibility coefficient: b � �1
V

� �
qV
qP

� �
T

. Note ‘‘isothermal’’ means constant T.

The b value needs some thought because most substances are compressed when the pressure is
increased so the amount bywhich the volume changes when the pressure increases is negative. Thus the
definition includes a minus sign so that the tabulated values will be positive. Nevertheless, the physical
phenomenon is that most materials will be compressed to smaller volume as the pressure increases.

Recall that in nature (P, V, T) variables are (seemingly) independent of each other for a given
quantity of gas n. Thus we could plot the three variables on an (x, y, z) grid. A useful cyclic rule can be
derived with some thought and a trick using the differential quantities. Although we
can plot independent variables on a grid, there may actually be some state function that relates
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them in some dependent way. In the case of a given amount of ideal gas (P,V,T), the ideal gas equation
relates the variables, butwe canbemore general using just verbal description of the (x, y, z) coordinates.

dz ¼ qz
qx

� �
y

dxþ qz
qy

� �
x

dy:

This is a very general differential that can be read as ‘‘the change in z equals how much z changes
when x changes, holding y constant, multiplied by the amount of change in x plus how much z
changes when y changes, holding x constant, multiplied by the amount of change in y.’’ A student
should try to read the meaning of the partial derivatives and the total differential before blindly
performing correct algebraic manipulations, although that manipulation may be desirable to lead to
a new result. Now consider that z is held constant so that dz¼ 0. That leads to a new result that may
be useful later and is given here to illustrate how partial derivatives can be manipulated; after all, the
derivatives are really ratios of small numbers.

0 ¼ qz
qx

� �
y

dxþ qz
qy

� �
x

dy

" #
z

holding z constant:

Next we can use algebra to form
qx
qy

� �
z

from the individual differentials and noting the condition

that z is constant. Then
qz
qx

� �
y

dx

dy

� �
z

¼ � qz
qy

� �
x

dy

dy

� �
z

by dividing through by dy. Note that at this

point d becomes q so
dx

dy

� �
z

¼ qx
qy

� �
z

and of course
dy

dy

� �
z

¼ 1.

Now multiply both sides by
qy
qz

� �
x

and rearranging into alphabetical order (x, y, z) (the order in

the product can be permuted) to find
qx
qy

� �
z

qy
qz

� �
x

qz
qx

� �
y

¼ �1.
If we plot the independent variables (P, V, T ) on the (x, y, z) axis and assume there really is some

sort of state function that connects them somehow, then we can generalize the discussion earlier to a
similar cyclic relationship in terms of (P, V, T) as

qP
qT

� �
V

qT
qV

� �
P

qV
qP

� �
T

¼ �1:

This expression can also be rearranged to use a and b. Thus we can rearrange the cyclic rule and

multiply by the factor of
�1=V
�1=V
� �

, which completes the definitions of a and b to obtain

qP
qT

� �
V

¼ �
qV
qT

	 

P

qV
qP

	 

T

�1
V

	 

�1
V

	 
 ¼ a

b
:

This illustrates the sort of algebraic manipulations that are common in thermodynamics. Note that in
this case, we have assumed there is some overarching connection in the form of a state function that
relates P, V, and T (for a fixed value of moles), but formally it is not necessary to specify the state
function as long as the various partial derivatives exist.

While we are stretching your mind with the basics of mathematics that you will need for the
remainder of the text, these examples should rapidly introduce you to what we will need without
spending two or three more semesters in mathematics courses. All that can be said here is that
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this method of initial rapid introduction to necessary mathematics has worked in classes for over
30 years. Actually, we have no choice if you are limited to only one semester of calculus and we
need to do a thorough treatment of physical chemistry in one basic semester course. By showing the
applications of the mathematics in the laboratory topics we want to treat, it has been found that
students accept the mathematics, and this is an adequate method of learning, although taking the
mathematics in separate courses would be desirable.

Now there is another mathematics topic we need to demonstrate, that of spherical polar
coordinates, which occur frequently in physical chemistry. We will often need to reason in three
dimensions and use spherical polar coordinates.

Suppose we want to calculate the volume of a rectangular box with dimensions (L�W�H), we
could set up an integral for the volume as

V ¼
ðL
0

dx

ðW
0

dy

ðH
0

dz ¼ x½ 
L0 y½ 
W0 z½ 
H0 ¼ (L� 0)(W � 0)(H � 0) ¼ LWH, as expected:

However, when we need to treat a spherical system, we have to convert (x, y, z) to (r,u,f) coordinates. It
is easily seen that z¼ r cos(u), x¼ r sin(u) cos(f), and y¼ r sin(u) sin(f) if you draw the projections of
the vector r on the (x, y, z) axis system. That is easy but it is more difficult to convert the volume element
to polar coordinates (Figure I.1). This is difficult to visualize but you should be able to see a quasi-cube
with dimension (r du) as a short arc caused by a small change in uwith fixed r as if the vector acts like a
crane arm moving up or down with the base of the crane at the origin. Then another small arc can be
generated if the crane arm swings in the f angle but the effective length of the crane arm in the (x, y)
plane (the dotted line) is r sin(u) and when there is a small change in f, the arc length is the product
(radius)(arc) or r sin(u)df. Finally, the thickness of this small quasi-cube is dr and so in the limit of
infinitesimals we obtain r2 sin(u)drdudf in place of dxdydz. Note that the range of thef angle is 0 to 2p,
so the crane arm can spin all the way around the z-axis, but the u angle only needs to vary between 0 and
p when coordinated with the f angle to reach any coordinate in the original (x, y, z) coordinate system.

Consider the volumeof a sphere of radius a in the spherical polar coordinate systemas a key example.

V ¼
ða
0

r2dr

ð2p
0

df

ðp
0

sin(u)du ¼ r3=3
� �a

0[f]
2p
0

ðp
0

sin(u)du ¼ 2pa3=3
	 
 ðp

0

sin(u)du:

x

O y

dφ
φ

dρ

ρ sin θ dφ

θ

ρ sin θ

z

ρ dθ

FIGURE I.1 Volume element in spherical polar coordinates. (Adapted from Thomas, G.B., Calculus and
Analytic Geometry, Addison-Wesley Publishing Co., Reading, MA, 1953, p. 549.)
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Now consider the somewhat tricky integral over u. We see that
ðp
0
sin(u)du ¼ � cos(u)½ 
p0 ¼

�(�1)� (�1)½ 
 ¼ 2 so we obtain V ¼ 4p
a3

3

� �
, which is the familiar formula for the volume of

a sphere of radius a. The key point here is the product of integrals over u and f. Please note for
future reference the integral over the angles is 4p. For the remainder of this text, we do not want to
repeat this derivation and when we say ‘‘sphere’’ you should automatically think ‘‘4p’’ over angles.
For students who have not encountered three-dimensional integrals, we appeal to a picture for the
volume element and a shortcut for future treatment of spherical systems.

[Three friends, a biologist, a statistician and a physical chemist, went to a horse race and wanted
to bet on the winner. The biologist said he wanted to know what the horses ate for breakfast and the
statistician wanted to know how the various horses finished in previous races but the physical
chemist said nothing and was in deep thought for a long while. Finally the biologist asked what he
was thinking and the physical chemist said, ‘‘First you assume a spherical horse . . . ’’!]

By now you may need more humor beyond the ‘‘spherical horse joke’’ so there is one more
integral that we will need which is related to the Napier–Bernoulli–Euler constant e. Assuming you
have found your calculus book by now you should look up the natural logarithm formulas and find a

key integral as:
ð
dx

x
¼ ln (x)þ C.

The mnemonic to remember this integral is to set up the variable as x¼ cabin so that we can
obtain an easily remembered formula:ð

d(cabin)

cabin
¼ ln(cabin)þ ‘‘sea’’ ¼ A boat? ¼ Noah’s Ark?

Maybe that sort of humorous memory device will help you later on when we encounter this integral
many times?

SHORT REVIEW OF VECTOR ALGEBRA=CALCULUS

It may be important to review some basic facts about vectors since this topic comes up in the ‘‘dot
product’’ of a velocity vector. The unit vectors (̂i, ĵ, k̂) point in the (x, y, z) directions and have a
length of 1. Then according to the definition~a �~b¼ jajjbj cos (uab), we have î � î¼ ĵ � ĵ¼ k̂ � k̂¼ 1
(normalized) as well as î � ĵ¼ î � k̂¼ ĵ � k̂¼ 0 (mutually orthogonal). The (̂i, ĵ, k̂) are the building
blocks for vectors in three-dimensional space and form an orthonomal basis set for (x, y, z) space.
We will need the idea of a ‘‘basis set’’ later on as a way to use components to build a linear
combination and ‘‘orthonormality’’ can lead to several time-saving steps later. We especially need
the idea of projecting a component out of a linear combination. Suppose we have~v¼ âiþ b̂jþ ck̂
and we want to know what part or how much of that vector is the ĵ part. We can take the dot product
of the component we want with the linear combination to find

ĵ �~v ¼ ĵ � (âiþ b̂jþ ck̂) ¼ 0þ bþ 0

using the orthonormality of (̂i, ĵ, k̂).
That concept is extremely important in several applications later in this text to greatly simplify

tedious spectroscopic concepts involving the Fourier transform. That step allows us to use the idea
of projection of an orthonormal component without doing a complicated integral! There are also
derivatives of vectors. A vector is a length with an associated direction. The speedometer reading of
an automobile gives a scalar speed (40 mph), but you need a dashboard compass to use that speed as
a directional vector as (40 mph, west). We can also define a directional ‘‘gradient vector’’ as

~rv � î
qv
qx
þ ĵ

qv
qy
þ k̂

qv
qz

� �
:
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Then we can define a second derivative as a dot product of the gradient with itself as

~r �~rv � î
q
qx
þ ĵ

q
qy
þ k̂

q
qz

� �
� î

q
qx
þ ĵ

q
qy
þ k̂

q
qz

� �
v̂ ¼ q2v

qx2
þ q2v
qy2
þ q2v

qz2

� �
:

Note the result is a scalar second derivative in three variables. There is also another type of vector
product one may encounter when dealing with magnetic fields called a cross product.

~a�~b �
î ĵ k̂
ax ay az
bx by bz

������
������ ¼ î(aybz � byaz)� ĵ(axbz � bxaz)þ k̂(axby � bxay):

A similar directional cross product called the ‘‘curl’’ exists as ~r�~v but we will not need it for
this course.

REVIEW OF CLASSICAL PHYSICS

Although our review of calculus should be adequate for the remainder of the text, we still need to
review physics for that part of physical chemistry. Newton’s second law is used heavily in the form:
F¼ma, but we need to remind ourselves that this is a vector equation.

F
*¼ma*, where Fx¼max, Fy¼may, and a*¼ d v*

dt
¼ d2 r*

dt2

In units: Force¼Newtons in mks; dynes in cgs.
1 Newton � 1 kg m=s2, 1 dyne � 1 g cm=s2

In units: Energy � 1 joule¼ 1 Newton meter, 1 erg � 1 dyne cm (Figure I.2).
Simple conversions: 1 Newton¼ 105 dynes, 1 joule¼ 107 ergs

Recall that mass (kg or g) is an intrinsic property of matter but weight is a force on planet Earth
(Anyone here planning a vacation on another planet?) using the acceleration of gravity measured on
Earth (which is an average value since Earth is not exactly spherical) so instead of F¼ma we use
w¼mg (small w for weight and capital W for work) with the average value of g usually given as

g ¼ 980 cm=s2 ¼ 9:80 m=s2

An important concept is Work � (Force)(distance) or W¼Fd. In mks units work is given in joules
and in cgs units in ergs.

1 joule � 107 ergs
[‘‘Erg!’’ is the last word of a ‘‘dying centipede,’’ that is, a dyne-cm]
Chemists often define heat energy in calories.
1 calorie � the heat required to raise the temperature of 1 cm3 of water (1 c.c.) 18C (from 48C

to 58C). Later, we will discuss an experiment by Joule to convert heat energy to mechanical
energy; he found

1 calorie¼ 4.184 joules

*

Erg !

Dyne – cm

FIGURE I.2 Humorous cartoon to remember the units of energy in the cgs system.
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Here we introduce another silly but useful mnemonic. The number 4.184 is easy to remember but
which unit is larger? ‘‘A calorie is worth many jewels!’’ Using the rhyming word ‘‘jewels’’ in place
of ‘‘joules’’ conveys greater numerical value on the calorie unit so we can remember that in some
absolute amount of energy a single calorie is ‘‘worth’’ (larger than) many (4.184) joules. This silly
process is important for a student to develop a feeling for a physical quantity, for instance that 1 cm3

is about the size of a boullion cube of condensed soup and 18C is one hundredth of the temperature
difference between ice water and boiling water (at 1 atmosphere). It is important to reason out the
physical units in a calculation rather than to use numbers blindly on a calculator.

dW¼Fx dxþFy dyþFz dz so we can integrate this to
ð
dW ¼

ð
F(x)dx

A related concept is ‘‘Power’’: Power � (Work=time) but that unit is more useful for electrical
measurements than in physical chemistry.

Energy can be ‘‘kinetic’’ or ‘‘potential.’’ Note that work is energy:

W ¼
ð
Fxdx ¼

ð
maxdx ¼

ð
m

dvx
dt

� �
dx ¼

ð
m(dvx)

dx

dt

� �
¼
ðvx
0

mvxdvx ¼ m
v2x
2

� �
� Tx

so that work can be in the form of T, which is the usual symbol for kinetic energy (although you may
have used ‘‘K’’ in sophomore physics)

Another useful concept in much of physical chemistry is the conservation of energy. The main
associated concept is that a force is the negative derivative of some potential. () means ‘‘implies’’)

V(x, y, z)) Fx ¼ �qVqx
, Fy ¼ �qVqy

, and Fz ¼ �qVqz .

For simplicity, let us just consider the x-component of the energy.

Wx ¼
ð
mvxdvx ¼ m

ðv2
v1

vxdvx ¼ mv2x
2

� �v2
v1

¼ T2 � T1:

But we also know that Wx ¼ �
ð

qV
qx

� �
dx ¼ �

ðV2

V1

dV ¼ �(V2 � V1) ¼ (V1 � V2).

Then since we have computed Wx two different ways, we can equate the kinetic and potential
forms of work Wx¼ T2� T1¼V1�V2.

And so as long as there are potentials whose negative derivatives in space form forces (energy
goes down hill!) we have the equality: T2þV2¼ T1þV1.

This important result tells us that energy can change form but the total value remains the same,
that is, conservation of energy!

Some important units we will need as well seem random but they are necessary:

1 hour¼ 60 minutes¼ 3600 seconds
1 mile¼ 5,280 feet¼ 1.6093 kilometers¼ 1.6093� 105 cm
1 inch¼ 2.54 cm
1 pound¼ 453.6 grams (only on Earth, a pound is a force while a gram is a mass)
1 pound (Avoirdupois)¼ 16 ounces
F (degrees)¼ (9=5)C (degrees)þ 32 (degrees)
1 calorie¼ 4.184 joules

Another important point for fractions or units is that
1

1=3

� �
¼ 3; that is the denominator of the

denominator can ‘‘flip up’’ to the numerator and that can be very useful.
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NEWTON–RAPHSON ROOT FINDER

A numerical technique that sometimes is useful is the Newton–Raphson root finding method
(Figure I.3). The basic idea is that if the slope of a line=curve y¼ f (x) is the first derivative
dy dx= Þð , maybe one can extrapolate the slope back to where the function crossed y¼ 0. In order
to use this idea, you have to rearrange your equation so that y(x)¼ 0. Then the key equation is

xnþ1 ¼ xn � y(xn)
dy(xn)

dx

� �

Let us try it on a quadratic for which we know the roots: y(x)¼ x2� x� 6¼ (xþ 2)(x� 3)¼ 0
Here we can see the roots are x¼�2 and x¼þ3. Let us try an initial guess of x¼ 3.5.

y(x)¼ x2� x� 6¼ 0 so
dy

dx
¼ 2x� 1 and we have x1 ¼ 3:5� (3:5)2 � 3:5� 6

2(3:5)� 1
¼

3:5� 2:65
6
¼ 3:0583 and then x2 ¼ 3:0583� (3:0583)2 � 3:0583� 6

2(3:0583)� 1
¼ 3:0583� 0:29489889

5:1166
¼

3:000664287 leading to

x3 ¼ 3:00066 � (3:00066)2 � 3:00066� 6
2(3:00066)� 1

¼ 3:00066� 3:3004356� 10�3

5:00132
¼ 3:000059287:

Is that close enough? Well what if we make an initial guess of x¼ 2.5?

x1 ¼ 2:5� (2:5)2 � 2:5� 6
2(2:5)� 1

¼ 2:5� (�2:25)
4

¼ 3:0635,

which we know will converge to 3.0.
How about a guess of x¼�1?
x1 ¼ �1:� (�1:0)2 � (�1:0)� 6

2(�1:)�1 ¼ �1:� (�4)
(�3) ¼ �2:333333 so we continue to iterate as

x1 ¼ �2:333333� (�2:333333)2 � (�2:333333)� 6
2(�2:333333)� 1

¼ �2:333333� (1:777776)
(�5:666666) ¼�2:019608

and it would seem that the process will converge to �2.0.
The message here is that the Newton–Raphson method will converge but probably to the nearest

root if there is more than one root. Even so, this method is quite valuable for finding roots of
complicated functions. Of course with a programmable calculator, the iteration can be automated
and will converge rapidly!

y

(r, 0)

(x2, 0)

y = f (x)

[x1,  f (x1)]

O
x

FIGURE I.3 A graphical illustration of the Newton root-finding method, the root is r. (Adapted from Thomas,
G.B., Calculus and Analytic Geometry, Addison-Wesley Publishing Co., Reading, MA, 1953, p. 226.)
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PREVIEW OF COMING ATTRACTIONS WITH REASSURANCE!

That concludes our brief but intensive review of the mathematics and physics needed for the
remainder of the text, although we may need some special formulas from time to time. In our
experience, this initial review is the secret to being able to make a full treatment of selected topics
without diluting the coverage, although we will still make use of the simplest correct derivation of
other relationships. The student should realize we are attempting to do a ‘‘university level’’
treatment of physical chemistry while being helpful to students with only one semester of calculus.
A concurrent second semester of calculus or other mathematics elective is encouraged in the second
semester. The student should be aware that even with this helpful approach, the use of scratch paper
and working examples is highly encouraged! What follows is a set of homework problems and our
experience has shown that a flurry of activity to review and extend calculus skill at the beginning of
the course really pays off in student confidence for later topics.

While it is difficult to give broad treatment of many topics in one semester, we can do selected
topics at a university level to form a foundation for other science fields such as physics, forensic
science, biochemistry, inorganic chemistry, and a possible second semester with some quantum
chemistry. Students should be reassured that this text is based on a course that has been presented to
a group where on average about one-third of the class only has one semester of calculus and yet the
success rate is very high! The secret is that we give examples in the text of specific problems and the
homework problems are like the examples. The organization of this text in the mind of the author is
to link each chapter topic to a ‘‘calculus nugget’’ as a way to master details of that topic. A hint to
understanding each chapter is to look for the ‘‘calculus nugget.’’ It is hoped that we can develop
calculus skill as we go along so that the reader=student will be able to treat new topics as they may
be encountered. We have avoided the encyclopedic coverage of every possible topic and selected a
lesser group of ‘‘essential’’ topics. Old tests are provided to show what is expected and a few key
topics are treated in detail.

In a possible second semester, more modern material is covered from the twentieth century. Our
strategy in the second semester is to instruct students to assimilate as much of the difficult
derivations, but pay special attention to the conclusions, the final formulas! Yes, we cover some
very complicated details for the few who might be interested but a wise student will focus on the
conclusions! Again a few key topics are treated in detail but old tests are provided to indicate what is
expected. The second semester may end at Chapter 15 or 16 but additional material is provided for
special projects or by the preference of the teacher. If this material is studied with a positive attitude
and use of pencil and paper, a very high rate of success can be expected in terms of real learning by
students. Now let’s get going!

CALCULUS REVIEW PROBLEMS

1.
d

dx
4x3 þ 2xþ 3

x2

� �� �
¼ ?

2.
d

dx
2e�4x þ e2x

2 þ x2e�3x
� 

¼ ?

3.
d

dx

x4

(x3 þ 2x)

� �
¼ ?

4.
d

dx
x2e�ax

2
� 

¼ ?

5.
d2

dx2
sin

npx

l

� � 
¼ ?

6. PV ¼ nRT ,
qP
qT

� �
V , n

¼ ?
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7. PV ¼ nRT ,
qV
qP

� �
T ,n

¼ ?

8.
ð
(x4 þ 2x3 þ 3x)dx ¼ ?

9.
ð1
0
2xe�x

2
dx ¼ ?

10.
ð1
0
x3e�axdx ¼ ?

11.
ð1
0
r2dr

ð2p
0

df

ðp
0
du

ffiffiffiffiffi
a3

p

r !
e�ar

" # ffiffiffiffiffi
a3

p

r !
e�ar

" #
sin(u) ¼ ?

12. Calculate the kinetic energy of a 5 ounce sphere (baseball) traveling at 100 mi=h in joules,
ergs, and calories.

13. Calculate the square of the vector~r¼ 3̂iþ 2̂jþ 4k̂ as~r �~r.
14. Use the vector in Problem 13 to calculate~r�~r.
15. Project the ĵ component from the vector in Problem 13.
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1 Ideal and Real Gas Behavior

INTRODUCTION TO THE ‘‘FIRST ENCOUNTER WITH PHYSICAL CHEMISTRY’’

Welcome to ‘‘essential physical chemistry’’! We will explore parts of this field that work out cleanly
in a beautiful way to provide a sense of confidence in your understanding of this interdisciplinary
science. At the end you will hopefully learn to appreciate the beauty of concepts that have been
discovered since the 1600s by intellectual giants and gain a sense of amazement for the far-reaching
effects of those discoveries into all aspects of molecular science. Students who have completed this
course often send this author messages telling how this material has helped them later in biochem-
istry, inorganic chemistry, and physical chemistry laboratory courses. To get the most from this
course it is highly recommended that you personally study the material in Introduction: Mathemat-
ics and Physics Review even if the course lectures start in Chapter 1. It provides a good preparation
for the mathematics and physics concepts we will encounter in the rest of the book. We could
have put review at the end of the book, but many students have reinforced the view of this author
that it needs to be right up front at the beginning and it really makes the understanding of the later
material easier.

Historically, the modern age of science and technology begins roughly in the 1600s and scientific
knowledge has bloomed exponentially since then, although some concepts originated in ancient
Greece and much of clever Roman engineering was lost between 500 and 1600. Thus, we start with
the studies of gases by Sir Robert Boyle (Figure 1.1). We arbitarily assume that applied mathematics
is what distinguishes modern science from medieval engineering so you should be aware that in
every case we will attempt to unify a concept with some equation, often involving calculus. Thus,
you need to pay attention to the worked examples in the chapters, do the assigned problems, and
then try the tests at the end of chapters about where a midterm or final examination usually occurs.
You should pay attention to the time limits given for those tests and practice those problems until
you have that material down cold within the time allowed! Of course, your teacher will give
different questions on the tests in your course but if you can do the sample tests you should be
ready for almost any variation of that type question: What equipment is needed here? You need a
calculator with special functions but a simple $9 solar-powered calculator is adequate if it has
exp(x), sin(x), cos(x), log(x), and ln(x) with at least eight significant figures and scientific exponen-
tial notation. The next requirement is a human brain and an attitude that you can do this (!) provided
you put some time and effort into the work. So let us get started!

PHENOMENOLOGICAL DERIVATION OF THE IDEAL GAS EQUATION

While mathematical theory often runs roughly parallel to physical science, sometimes faster and
other times slower, a key strategy is a process called the ‘‘phenomenological approach.’’ In this
method a process is studied to determine the variables on which it depends and then an equation is
developed, which matches the results of the problem. Often it requires a number of data points to
determine whether the result is linear, quadratic, or some higher order in a given variable but the
case of the ideal gas law is an excellent starting point to illustrate this method and at the same time
enter the important domain of thermodynamics.

Although we could digress to mention early concepts of science by ancient Greek philosophers,
we will begin with the first attempts at quantitative studies that can be related with mathematical
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equations. In 1660, Sir Robert Boyle studied gases in Ireland. Much of early scientific research was
conducted only by wealthy individuals who had time and funds to conduct special experiments,
many of which seem simple today but were of considerable innovation at the time. Consider that
today we can routinely purchase glass tubing of uniform bore from several chemical supply
companies. However, Boyle’s experiments depended on using the height difference of mercury in
a glass ‘‘J-tube’’ so that the volume ‘‘V ’’ he wanted to study was related to the height of the mercury
column ‘‘h’’ by the equation

V ¼ pr2h

Here we see in Figure 1.2 that by measuring ‘‘h’’ and assuming a uniform radius for the tubing, the
data can be related to the volume ‘‘V ’’ of the trapped gas sample. Note that the essential r2 part of
the formula would provide cm2 while ‘‘h’’ provides ‘‘cm’’ to produce a volume unit of cm3. Thus,
measuring the one-dimensional height difference can give a volume only if there is a proportionality
with a uniform bore of the tubing whether the units are in cubic inches or cubic centimeters. In
Figure 1.2, the same ruler can be used to measure the volume of the trapped gas (assuming a flat top
of the gas chamber) and the difference in height of the mercury levels. While this is only a schematic
diagram of Boyle’s apparatus, we have captured the key features.

To properly appreciate this seemingly simple device can you imagine how you would melt sand
to make glass and draw it into a piece of tubing with uniform bore? By adding more and more liquid
mercury to the open end of the right side of the J-tube, the air trapped on the closed left side of the
apparatus was gradually compressed. Because of the uniform bore of the tubing, the volume V of
the air in the closed end can be calculated by the height of the air bubble space while the difference
in the height of the mercury in the left and right sides gives the pressure P applied to the gas
expressed in inches of mercury.

FIGURE 1.1 Sir Robert Boyle (1627–1691). An English natural philosopher and chemist, known mainly
for careful experiments on gases. He is recognized as the first modern chemist. He was the 14th child of Richard
of Cork, an Englishman, but Robert was sent to live with an Irish family at an early age and learned the
separate Irish language as a child. He later owned land in Ireland but came to Oxford University for his
research. He was a founding member of the Royal Society of London. (Courtesy of the Chemical Heritage
Foundation. The Shannon Portrait of the Hon. Robert Boyle, F. R. S. oil on canvas by Johann Kerseboom,
British, 1689. Photograph by Will Brown.)
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Boyle’s ‘‘J-tube’’ is a very ingenious device, which is simple and accurate. Today this would be
called a manometer, which is a device to measure pressures in a laboratory. In Figure 1.2, the
difference between the two heights of mercury is given in ‘‘inches of mercury’’ but modern
measurements including blood pressure measurements from an arm cuff are usually given in
‘‘mm of mercury’’ and 1 atm of air pressure on planet Earth is standardized as 760 mm of mercury
at sea level (since the pressure varies with height above sea level). Please note that 1 in. is exactly
2.54 cm. (If you ever work on a car or machine with metric dimensions you will find the 13 mm
wrench works great on a ½ in. bolt but few others are interchangeable. A Ford Pinto 2000 engine
has SAE (Society of Automotive Engineers) bolts externally but internal metric dimensions as built
in Germany. This modern example shows that we need to be prepared to convert data in inches as
evident in Boyle’s data to scientific centimeter units. If we standardize on 760 mmHg as 1 atm
(earth) we can also relate the height of 29 11=16 in. of Hg to yet another set of units as

29
11
16

in: (25:4mm=in:) ¼ 754:0625mm

so

754:0625mmHg=(760mmHg=atm) ¼ 0:9921875 atm:

This brings up a problem having to dowith experimentalmeasurements in terms of how accuratewe can
carry out calculations with data that are only good within 1=16 in. or at best�1=32 in. (�0.079375 cm)
according to Boyle’s (subjective) eyes. In fact all experimental data will have some uncertainty.Wewill
postpone the treatment of experimental uncertainty for a few pages so that we do not lose sight of the
problem at hand, butwewill say here that quoting the value in atmospheres to seven significantfigures is
artificially precise when the data are good to only the nearest 1=16 in. (0.156875 cm). Here we show
some of the actual data fromBoyle’s 1662 book ‘‘New Experiments Physico-Mechanical, Touching the
Spring of Air, and its Effects . . . .’’ The data in Table 1.1 lead to an important phenomenological
observation in that the product of the pressure (P) and volume (V ) is essentially constant! Although
there is some variation in thePV product, a wise observer can see the values are nearly constant allowing

Bent glass
tube

L Hg

Mercury

L air

FIGURE 1.2 A schematic of the J-tube Sir Robert Boyle used to study the PV relationship.
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for the uncertainty of the data to the nearest 1=16 in., so Boyle assumed that the product is constant.
This leads to the simplest form of ‘‘Boyle’s law’’:

PV ¼ C1 ¼ P1V1 ¼ C1 ¼ P2V2 ) P1V1 ¼ P2V2

so we have

P1

P2
¼ V2

V1
:

Here C1 is the first constant in this study. We should note that Boyle’s experiments were carried out
at essentially constant room temperature but do we know that temperature has an effect? Not from
this data.

Historically, there was a competition between England and France, which had the effect in
science of development of English units still used in the United States and the metric system
developed in France and preferred in modern science. Thus, it is interesting that early work by
Charles on the temperature dependence was extended by Gay Lussac several years later and is now
known as the Charles–Gay Lussac law.

CHARLES’ (JACQUES-ALEXANDRE-CÉSAR CHARLES) LAW

While hot air balloons are familiar today, the first documented demonstration occurred on June 5,
1783, when Joseph Montgolfier used a fire to inflate a spherical ‘‘hot air’’ balloon about 30 ft in
diameter that traveled about a mile and one-half before it returned to earth. The news of this caused

TABLE 1.1
Boyle’s Data on the Dependence of the Volume
of a Gas on the Pressure of the Gas

Volume Pressure P�V

48 29 2=16 1398

46 30 9=16 1406

44 31 15=16 1405

42 33 8=16 1407

40 35 5=16 1413

38 37 1406

36 39 4=16 1413

34 41 10=16 1415

32 44 3=16 1414

30 47 1=16 1412

28 50 5=16 1409

26 54 5=16 1412

24 58 13=16 1412

22 64 1=16 1409

20 70 11=16 1414

18 77 14=16 1402

16 87 14=16 1406

14 100 7=16 1406

12 117 9=16 1411
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Jacques-Alexandre-César Charles to try to duplicate this phenomenon. As a result Charles observed
that the volume of a gas is directly proportional to its temperature.

V / T or
V

T
¼ C2

Here, C2 is a different constant than the C1 used in Boyle’s data. The principle behind the hot air
balloon is that hot air expands so the density of the air is lighter in the balloon than the outside air to
the extent that the whole ‘‘air ship’’ is lighter than the surrounding air and it rises.

A simple experiment capable of precise date is given on the Purdue ‘‘History of Chemistry’’
Internet site using a 30 mL syringe to give a precise measurement of the total volume of the gas
sample as the temperature is raised and measured with the thermometer in the gas. The volume of a
100 mL erlenmeyer flask with a one-hole rubber stopper and thermometer can be measured by
weighing the flask, stopper, and thermometer ‘‘empty’’ and then reweighing when filled with water
with the stopper and thermometer in place. The difference in mass divided by the density of the
water at room temperature gives the volume of the interior of the flask. When the flask has been
emptied and dried, a hypodermic needle attached to a 30 mL precision syringe is pushed through the
rubber stopper with the syringe set near zero. Then the flask is placed deep into an ice bath,
thermally equilibrated, and the stopper is placed in the neck of the flask to the same position as
before. The flask is removed from the ice bath and the total volume (flask plus syringe) is noted as
the apparatus warms up. A hair dryer can be used to provide heat for a reading at 408C. The use of
the precise syringe is a clever way to improve an experiment with simple equipment. The data
obtained are given on the Purdue site as in Table 1.2.

If we plot this and use a modern mathematical way of fitting the ‘‘best’’ line to the data that
minimize the square of the deviations between the actual position of n data points and the fitted line,

we can use R2 � 1�
Pn

i (yi � fi)
2Pn

i (yi � �y)2
and �y �

Pn
i yi
n

to evaluate the ‘‘goodness of fit’’ to the line of the

function f (x) (Figure 1.3). The numerical value of R2 is routinely available using the Excel
program for personal computers and R2 ! 1 for a perfect fit to the line. Using Excel for a least-
squares fit of a line to the nine data points we obtain an equation V ¼ 0:3843(T�C)þ 108:85 with

TABLE 1.2
Charles’ Law Data

Temperature, 8C Gas Volume, mL

0 107.9

5 109.7

10 111.7

15 113.6

20 115.5

25 117.5

30 119.4

35 121.3

40 123.2

Source: Purdue University, History of Chemistry,

http:==chemed.chem.purdue.edu=genchem=
history=boyle.html
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an R2 value of 0.9999, which indicates a very good fit to a straight line. Supposing the volume
could go to zero we find that V¼ 0 at �280.68C.

V ¼ 0:3843(T�C)þ 107:85 ¼ �107:85
0:3843

¼ �280:6�C

Extrapolation across such a long distance magnifies slight errors in the room temperature data and
later careful measurements result in a value of �273.158C. To check this we insert a new point into
the data set as (�273.0) and replot the data. This time we get a slightly better R2 value of exactly 1.
Thus, we have experimental evidence that the volume of a gas is directly proportional to the Kelvin
temperature, that is, Charles’ law (Figure 1.4). An associated result is a new ‘‘absolute temperature
scale’’ in Kelvin degrees:

�K ¼ �Cþ 273:15�

For purists, the symbol for Kelvin degrees should be just K without a degree symbol, but later this
will be in conflict with the symbol for equilibrium constants and reaction rate constants so we take
the liberty here to designate Kelvin temperatures with a degree symbol as �K. Frequent questions on
this topic indicate that it is important to state here that differences in centigrade temperature have the
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Charles’ law data

Degrees centigrade
30 40 50

y = 0.3843x + 107.85
R2 = 0.9999

FIGURE 1.3 A plot of the raw data from the ‘‘volume-of-gas-flask’’ experiment. The R2 value is quite good.
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y = 0.3941x + 107.65

FIGURE 1.4 Charles’ law plot of volume versus temperature from the same data but with the added point of
zero volume at �2738C. This enlightened guess improves R2 to 0.99999. (Data from http:==chemed.chem.
purdue.edu=genchem=history=charleslaw.html)
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same units as differences in Kelvin temperature. If a chain rule derivative should occur involving
temperature differences, D�K ¼ D�C; they are the same size unit! While we are establishing simple
facts, we note that 18C is defined as 1=100th of the temperature between that of ice water and boiling
water (at 1 atm) as established on the metric (French) scale while the British standardized the
Fahrenheit degree as 1=180th of the same temperature gap but then embellished it with the notion
that colder temperatures are possible below ice water. Using concentrated salt solutions (as in
making homemade ice cream) the original Fahrenheit scale was set to the lowest temperature of
water saturated with salt some 328 lower even though we now know far lower temperatures are
possible. Thus, we have

�F ¼ 180
100

� �
�Cþ 32� ¼ 9

5

� �
�Cþ 32�

It is easy to show that the two temperature scales give the same value at�40� by substituting one for
the other either way. In Fahrenheit we see that absolute zero is

�F ¼ 9
5

� �
(�273:15�)þ 32� ¼ �459:67 �F:

The Fahrenheit scale is still used in engineering but in chemistry and physics the centigrade scale is
used along with the absolute temperature �K.

Now let us combine Boyle’s law with Charles’ law to improve the overall phenomenological
description (for a fixed mass of gas). Consider a two-step process that first changes the pressure of
the gas followed by a change in the temperature.

P1T1V1 ! P2T1Vx ! P2T2V2

Then by Boyle’s law at constant temperature Vx ¼ P1

P2

� �
V1 and then use Charles’ law at constant

pressure as

V2 ¼ Vx
T2
T1

� �
¼ P1

P2

� �
V1

T2
T1

� �
) V2

V1
¼ P1

P2

� �
T2
T1

� �
:

This leads to a very useful equation for a fixed mass of gas as

P1V1

T1
¼ P2V2

T2

This equation implies the existence of another constant C3.

PV

T
¼ C3 ¼ nR

Now we are close to a general phenomenological equation that takes into account P, V, T, and the
moles (n) of the gas, which fixes the mass of the gas sample. Usually this equation is given (in high
school chemistry!) as

PV ¼ nRT

So what is R? And now we come to a key development in 1876.
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Avogadro’s hypothesis: Equal volumes of different gases at the same temperature and pressure have
the same number of molecules.

Amedeo Avogadro (1776–1856) was an Italian physicist who published a basic argument in
1811 that related atomic and molecular weights to definite proportions in compounds but that era
was a period of intellectual groping by chemists regarding the meaning of the concepts of atoms and
molecules. In 1856 Stanislao Cannizzaro (1826–1910) published a unifying set of course notes that
clarified Avogadro’s hypothesis and led to the general acceptance of the idea that became the mole
concept chemists use today. It is interesting that Avogadro did not know the number that is named
for him but by expressing his hypothesis in terms of the number of atoms=molecules he avoided the
problem that different gases have different molecular weights. Thus, if we convert the mass of a gas
to its mole quantity by dividing by the gram molecular weight M to obtain n ¼ w=M for what is
called the mole quantity today and based on the standard of 12.000 g of 12C we now know
Avogadro’s number¼ 6.02214179� 1023 as given by a least-squares refinement of modern values
of physical constants tabulated in the 90th edn. of the Chemical Rubber handbook. For our purposes
we will often use the shorter form as 6.022� 1023. This number is a pure number and can refer to
one ‘‘mole’’ of anything, ping-pong balls, H atoms, N2 molecules, etc.

Now we are ready to determine R with the added fact that 1 g molecular weight of many gases
has (nearly) the same volume. Actually there are some very slight differences in the molar volume of
different gases but the average value at 1 atm and 08C is 22.414 liters (L). Then

R ¼ PV

nT
¼ (1 atm)(22:414L)

(1mol)(273:15�K)
¼ 0:082057 (L atm=�Kmol)

Based on the values in the formula the least number of significant figures is five so we need to round
off R to five significant figures as 0.082057 (L atm=8K mol). We note that 22.414 L is about the size
of a 5 gal solvent can and we need to tabulate some key unit facts in this first chapter. At this point it
is easy to introduce the SI equivalent of the gas constant since the only difference is that the pressure
is measured in bars where 1 atm¼ 1.01325 bar. (Note that a ‘‘barometer’’ measures bars.) However,
at the lower pressure the molar volume will be larger at about 22.711 L:

R ¼ PV

nT
¼ (1 bar)(22:711L)

(1mol)(273:15�K)
¼ 0:08314 (L bar=�Kmol)

We will attempt to use the SI units throughout this text and a new generation of students may
have only seen SI units in previous texts and hopefully they can ‘‘think’’ in SI units. However, the
conversion of the older pressure units in atmospheres or mm of mercury will persist in older literature
and some equipment so each student needs to work in their own personal way of dealing with
these conversions. In bygone days when slide rules were used instead of calculators, three significant
figures were the norm and often answers were only good to two. Under those circumstances we would
say R ¼ 0:082 (L atm=�Kmol) or R ¼ 0:083 (L bar=�Kmol), easily remembered numbers.

USEFUL UNITS

The density of water is defined to be 1.000000 g=cm3 at 48C.
1 pound (avoirdupois)¼ 453.6 g¼ 0.4536 kg (on earth)
1 in.¼ 2.54 cm (exact)
1 mile¼ 5280 ft¼ 1.609344� 103 m¼ 1.609344 km
1 quart (U.S.)¼ 946 cc¼ 0.946 L (check a quart oil can)
1 gallon (U.S.)¼ 4 quarts (U.S.)¼ 3.784 L
1 erg¼ 1 g cm2=s2
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1 pascal¼ 1 N=m2¼ 1 J=m3¼ 107 erg=106 cm3

1 pascal¼ 107 erg=106 cm3¼ 10 dyne=cm2¼ 1 Pa¼ 1 pascal
1 newton¼ 1 kg m=s2¼ 105 g cm=s2¼ 105 dyne

1 joule¼ 1 N m¼ 1 kg m2=s2¼ 107 dyne cm¼ 107 erg

We need to convert the standard pressure of 1 atm to other units. Imagine freezing metallic
mercury and machining 76 nice shiny cubes exactly (1 cm)� (1 cm)� (1 cm)¼ 1 cm3 with the
density of 13.596 g=cm3 and then stacking 76 them in a column to evaluate the force on a 1 cm2 area
to yield a pressure as (pressure¼ force=area).

1 atm ¼ rgh=cm2 ¼ (13:6 g=cm3
)(980 cm=s2)(76 cm) ffi 1:013� 106 dyne=cm2

This is approximate to help visualize the unit but when more accurate values are used the standard
conversion is

1 atm ¼ 1:01325� 106 dyne=cm2 ¼ 1:01325� 105 Pa ¼ 1:01325 bar:

Note also that

1 dm¼ 10 cm¼ 0.1 m
1 L¼ 1 dm3¼ 1� 10�3 m3¼ 1 L
1 cm3¼ 1 (1� 10�2 m)3¼ 1� 10�6 m3

1 atm¼ 1.01325� 105 pascal where 1 pascal¼ 1 Pa¼ 1 N=m2

1 atm¼ 1.01325� 106 dyne=cm2

1 bar¼ 1.00000� 105 Pa
1 Pa¼ 10 dyne=cm2

It will be convenient for some applications to use cgs units so we need to remember what a
dyne is.

1 dyne¼ 1 g cm=s2

1 erg¼ 1 dyne cm¼ 1 g cm2=s2

Then

R ¼ (1 atm)(1:01325 � 105 N=m2
atm)(22:414� 10�3 m3=mol)

(1mol)(273:15�K)
ffi 8:314 J=�Kmol

1 cal¼ 4.184 J.
So we have several alternative values for R in different units:

R ¼ 0:08206L atm=�Kmol

R ¼ 0:08314L bar=�Kmol

R ¼ 82:06 cm3 atm=�Kmol

R ¼ 8:314 J=�Kmol

R ¼ 1:987 cal=�Kmol

One of the most common errors students make is to use the incorrect value of R because they forget
to check the units. We could standardized the book on SI units, but in the real world there is a lot of
equipment out there using all kinds of units and you will be better prepared if you learn to cope with
different unit systems including the SI units.
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It is very important at this point to note that the product of pressure and volume is always energy:
PV¼ (force=area)� (volume)¼ force� distance¼ energy. One way to remember this is to chant
the rhyme ‘‘PV¼ energy! PV¼ energy! PV¼ energy! etc.’’.

The most common practical unit of pressure is (pounds=inch2) abbreviated as psi (pounds per
square inch). In these units we get

1:01325� 106 dyne=cm2

453:6 g=lb

(2:54)2 cm2=in2

� �
(980 cm=s2)

¼ 14:70 lb=in:2 ¼ 14:7 psi

Note here that the unit lb (pound) is in the denominator of the denominator and so flips up to the
numerator in the answer.

Finally, a unit that occurs when reading the instructions for inflating the tires of a British or
European racing bicycle is that of a ‘‘bar.’’ Apparently someone noticed that the 1.01325 constant is
close to 1.0 so why not define a ‘‘bar’’ as a clean unit.

1 bar ¼ 1:0� 106 dyne=cm2 ¼ (1:0=1:01325)(760mmHg) ¼ 750:06mmHg

To a good approximation 1 bar is 750 mmHg while 1 atm¼ 760 mmHg. The name ‘‘bar’’ is
appropriate because pressure is what a ‘‘barometer’’ measures. To use a common service station air

pump to inflate tires in bars just use the simple conversion 1 bar ¼ 750
760

� �
14:7 psi ¼ 14:5 psi since

a bar is a smaller unit than an atm.

MOLECULAR WEIGHT FROM GAS DENSITY (THE DUMAS BULB METHOD)

In bygone days chemists used a simple method of first weighing an empty container and weighing
that known volume again with gas inside at a known temperature and pressure. The internal volume
could be obtained by the difference in mass of the container empty and filled with water using the
density of water. However, when it came time to weigh the container with the unknown gas in it the
weight of the empty container (often a glass bulb of about 400 mL volume) the difference in weight
(mass) was usually very small compared to the weight (mass) of the empty container. Thus, this
method has a very large uncertainty but it can be used with rounded estimates from assumed
molecular structures. The method works fairly well for high-molecular weight gases but would be
very uncertain for He or H2. The key idea is to use the mole concept with the ideal gas law.

PV ¼ nRT ¼ w

M

� 
RT

so

M ¼ wRT

PV
¼ w

V

� RT
P
¼ r

RT

P

Here
‘‘w’’ is the weight of the gas
r the density
M is the unknown molecular weight

This method is not very accurate and really only works well for a few gases that are of high
molecular weight (CCl4, CHCl3, etc.).
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DALTON’S LAW OF PARTIAL PRESSURES

One curious physical phenomenon associated with gases is the fact that when there is a mixture of
gases in a given volume they behave independently so that their pressures are additive. In fact this
raises the issue of what we mean by ‘‘pressure.’’ Common sense may lead us to expect that volumes
are additive as indeed they are for macroscopic objects such as bricks. Thus, it is somewhat thought
provoking that several gases can be easily confined in the same volume. This same sort of question
also arises for mixtures of liquids to a much less extent as discussed later in Chapter 6. These
considerations go to the very heart of the concept of the size of atoms and molecules and how much
space is between them in a liquid or gas. As we will soon see, the space between gas molecules is
about 100 times their size at 1 atm so there is plenty of space for other molecules. In addition, it will
soon become evident that pressure is (force=area) caused by many collisions of gas molecules with
the wall of the container. Cavendish in 1781 and Dalton in 1810 contributed to the concept now
known as ‘‘Dalton’s law.’’

The total pressure exerted by a mixture of gases is equal to the sum of the pressures that each
component would exert if placed separately into the container.

Thus, Ptot ¼ P1 þ P2 þ P3 þ � � � ¼
X

i
Pi but if the gases act as ideal gases, we have

Ptot ¼ n1
RT

V

� �
þ n2

RT

V

� �
þ n3

RT

V

� �
þ � � � ¼ RT

V

� �X
i
ni ¼ ntot

RT

V

� �
. Now consider the

mole fractions (ni=ntot) � xi. We see that the ratios of the partial pressures to the total pressure

are equal to the mole fractions
Pi

Ptot

� �
¼ ni RT

V

	 

ntot RT

V

	 
 ¼ ni
ntot
¼ xi ¼

Pi

Ptot

� �
. As a corollary we note

additional conclusions as

n1
ntot
þ n2
ntot
þ n3
ntot
þ � � � ¼ 1,

P1

Ptot

þ P2

Ptot

þ P3

Ptot

þ � � � ¼ 1, and x1 þ x2 þ x3 þ � � � ¼ 1:

The most common use of Dalton’s law is when gases are measured ‘‘over water,’’ that is, when a
pressure is measured in the presence of moisture, which produces a partial pressure of water vapor
as a gas, which in turn contributes a small pressure to the total pressure. This can occur when a
reaction produces a gas and the gas is trapped in a container inverted over water. Tables of the vapor
pressure of water are readily available in handbooks. Water is often in natural settings where gas
pressure is measured in the presence of dew or a layer of water as may occur in ‘‘wet’’ forensic
samples. In the distant past chemists often isolated gases as the product of a reaction and allowed the
gas to bubble through a water trap, thereby introducing water vapor pressure into the total pressure.

Example: Given a small amount of benzenediazonium chloride that is warmed gently in a closed
container to form chlorobenzene and N2. A tube is attached to the top of the container and inserted
under an inverted flask initially filled with water. As the reaction proceeds, most of the N2 flows
through the tube and bubbles up under the water in the flask. After a while an estimated 450 mL of
the gas is trapped in the bubble and the pressure at the surface of the water is 750 mmHg and the
water temperature is 238C. Assuming we trapped most of the released N2 (some is left in the original
flask and the tube) and there is a 1:1 stoichiometry of the moles of gas produced to the moles of
chlorobenzene, we can estimate the moles of chlorobenzene formed to be equal or greater than the
moles of N2. In a handbook we find that the vapor pressure of water is 2.8104 kPa at 238C because
all modern handbooks report data in SI units but if we have a manometer attached to the reaction
flask we can read the pressure in mmHg.

PH2O ¼
2:8104� 103 Pa

1:01325� 105 Pa=atm

� �
(760mm=atm) ffi 21:08mmHg
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By Dalton’s law of partial pressures the total pressure of 750 mmHg of the gas trapped over the
water is the sum of the pressure of the water vapor and that of the N2 so we have

PN2 ¼ 750mmHg� PH2O ¼ (750� 21:06) mmHg ¼ 728:92mmHg:

Then we can calculate the moles of N2 from the ideal gas equation.

n ¼ PV

RT

� �
¼

728:92mmHg

760mmHg=atm

� �
(0:450L)

0:08206L atm=�Kmol (273:15þ 23)�K

2
664

3
775 ffi 0:0178molN2:

This hypothetical problem is given here to illustrate the use of Dalton’s law of partial pressures and to
discuss the process of uncertainty analysis, whichmay be important if a forensic laboratory technician
has to testify in a court case or a chemistry student has to write a report for a laboratory course.

There are more elaborate methods of uncertainty analysis but what we show here [2] is
remarkably general and useful not only to give an overall measure of uncertainty in a given result
but also permits determination of the cause of most of the uncertainty (Figure 1.5). First we should
ask how we are going to merge data in several different units. The answer is to convert the
uncertainties to percentages. First, the volume of the gas is 450 mL but uncertain due to the volume
of the tube between the water trap and the reaction flask. Let us estimate that the volume is uncertain
by 10 mL so in percentage the various units cancel and we have

l% (V) ¼ 10 cm3

450 cm3

� �
� 100 ffi 2:2222%

l% (P) ¼ 1mmHg

750mmHg

� �
� 100 ffi 0:1333%

l% (T) ¼ 1�K
296:15�K

� �
� 100 ffi 0:3376%:

δT
δV

δP

V

T

P

FIGURE 1.5 Uncertainty analysis in terms of percent components.
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We use the total pressure of the two gases in the pressure uncertainty since that is what the
manometer is measuring with an uncertainty of 1 mmHg (according to our subjective eye) and
even though we measure the temperature to the nearest degree (low-precision thermometer) we need
to remember we are using the Kelvin temperature in the calculation. Now all the variables are in the
same units of percent. In this case we have three variables so we can plot them on a (P, V, T ) axis
and display the value calculated for the moles as a vector. The relative uncertainties can be displayed
as þ=� deviations about the tip of the calculated vector result.

Then we use the 3D Pythagoras’ theorem to estimate the worst case vector displacement of the tip
of the calculated vector result. The result will be in percentage units as

L% ffi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(0:1333)2 þ (2:2222)2 þ (0:3376)2

q
ffi 2:2515%

Finally, we can quote the final answer with an estimated uncertainty using the ‘‘square root of the
sum of the squares of the percent uncertainties in the contributing variables’’ [2] to find

mol N2 ¼ 0:0178� 2:2515% ¼ 0:0178 � 4:0076� 10�4 mol

This method is subjective relative to how precise a given observer can measure each variable but
standard precision glassware should be estimated to be good to about 0.1% and included in the sum of
squares for each item of glassware used so this approximate method can be extended to many
variables. We see that according to the uncertainty analysis the calculated result is only good to the
fourth decimal place as given. Some texts express error analysis=uncertainty in terms of partial
derivatives but it is not easy or clear to assign a partial derivative to a response from a given device
in terms of a calculus formula in some cases. For that reason, this author favors the simple formula in
terms of percent uncertainties, which can be (subjectively) estimated numerically.

NONIDEAL GAS BEHAVIOR

While the ideal gas law works well for pressures up to about 10 atm and higher temperatures above
258C, many common processes (air conditioning, refrigeration) involve higher pressures and lower
temperatures. If the ideal gas law is truly universal we could define the ‘‘compressibility factor’’ as

Z ¼ PV

nRT

� �
¼ 1

and expect that if we plot Z against the pressure we should get a flat line (Figure 1.6). When such
graphs are plotted for real data, there are large deviations, particularly at low temperatures and=or
high pressures.

There are other ways to plot these data to exaggerate the deviations from Z¼ 1, but on the other
hand we can see that over a fairly large range of temperatures and pressures the ideal gas law is
approximately correct. What are the reasons for the deviations from the ideal? Let us try to patch the
ideal gas law for a more detailed treatment. We start by setting up the basic PV behavior and allow
for corrections.

(Pþ ?1)(V þ ?2) ¼ nRT

Consider a correction to the pressure, P. If indeed the pressure we measure is due to molecular
impacts with a surface in a manometer or a diaphragm in a pressure gauge, is that the actual pressure
within the gas? We are creeping up on a new concept that models a gas as a collection of small
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molecules flying around with a lot of space between them (recall Dalton’s law). That idea should
include collisions of molecules within the volume. Consider a collision of an auto with a fixed wall
compared to a head-on collision with another similar auto. There will be a change of momentum
force in the collision with the wall but the force of the head-on collision will be double that with a
fixed wall! Thus, the real pressure within the gas volume is actually higher than the pressure we
measure, although the collisions are relatively infrequent due to the large space between molecules
of the gas. An additional consideration is that there may be some weak short-range attractive forces
(now known as van der Waals interactions) between the gas molecules that causes them to approach
each other more forcefully at short range; thus, leading us to expect a plus sign for this small
correction. In fact we can use the idea of concentrations as (moles=volume) for the number of gas
molecules in the volume. The pressure correction is small but proportional to the square of the
concentration. Of course this idea includes collisions of some molecules with themselves but
N molecules can only collide with (N� 1) other molecules. However, when N is of the order of
1023 then (N� 1) is essentially the same as N. We are reminded that when a proportionality is
observed phenomenologically we can use a ‘‘proportionality constant’’ to create an equation with
a constant as in

?1 / n

V

�  n

V

� 
¼ a

n2

V2
:

Another factor included in this term is any bimolecular electronic interactions. Thus, the ‘‘a’’
parameter absorbs a number of interaction terms as well as an amount of the bimolecular
collision pressure.

Next we need to consider that while the molecules are very small, their volume is not really zero;
they have a finite volume and when you have a mole of molecules at very low temperatures tending

200 400 600
T (oK)

800 1000 12000
0

0.2

0.4

0.6

Z
=P

V/
RT

0.8

1

1.2

Series 1
Series 2
Series 3

FIGURE 1.6 Compressibility factor of air (a mixture of N2, O2, CO2, Ar, etc.) at different pressures. Series 1
(diamonds)¼ 1 bar pressure, Series 2 (rectangles)¼ 10 bar pressure, and Series 3 (triangles)¼ 250 bar pressure.
(Data from Perry’s Chemical Engineers’ Handbook, 6th Edn., McGraw-Hill, 1984. table 3-162. Z-values are
calculated from values of pressure, volume (or density), and temperature in Vassernan, Kazavchinskii, and
Rabinovich, Thermophysical properties of air and air components, Moscow, Nauka, 1966, and NBS-NSF Trans.
TT 70-50095, 1971 and Vassernan and Rabinovich, Thermophysical properties of liquid air and its component,
Moscow, 1968, and NBS-NSF Trans. 69-55092, 1970. Courtesy of Mr. Ian C. Roman of Air Liquide, Delaware
Research and Technology Center, Newark, DE.)
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to condense into a liquid or even a solid, the volume reduces to a smaller but finite volume. This
small volume will be proportional to the number of moles of gas as in

?2 / n ¼ bn:

Thus, a modified gas law was proposed by a Dutch physicist Johannes Diderik van der Waals
(1837–1923) in 1873 in his doctoral thesis as a way to simulate the condensation of gases to liquids.
He received the Nobel Prize for this work in 1910.

Pþ a
n2

V2

� �� �
(V � nb) ¼ nRT

Chemical engineering students in this class will be aware of more accurate and complicated
equations of state, but for this text we will be content to use the van der Waals equation as a useful
treatment of real gases. Thus, parameters are available in terms of values of ‘‘a’’ and ‘‘b’’ for a
number of gases and each gas has separate parameters, see Table 1.3. We may find some tables of
these parameters in older units but lists are available in SI units as well.

In the original 1873 doctoral thesis of van der Waals, the goal was to explain the process of
condensation of gases to liquids in a smooth way. The ideal gas equation that predicts the PV product
at any fixed temperature should be one branch of a hyperbola. Such ‘‘isotherm’’ curves are indeed
found on a plot of pressure versus volume of a fixed amount of gas at constant temperature, for low
pressures above the boiling point of a given material. However, as one lowers the temperature a small
bump in the isotherm will be observed, which is at first an ‘‘inflection point’’ and then at still lower
temperatures enters a region where there is a fog or mist of liquid condensate droplets. It is easy to
show that the van der Waals equation is cubic in V by multiplying through by V2.

V2 Pþ a
n2

V2

� �� �
(V � nb) ¼ nRTV2 or PV3 � n(bPþ RT)V2 þ n2aV � n3ab ¼ 0:

TABLE 1.3
van der Waals Constants for Common Gases

Gas a (L2 bar=mol2) b (L=mol)

He 0.0346 0.0238

Ne 0.208 0.0167

H2 0.2452 0.0265

Ar 1.355 0.0320

O2 1.382 0.0319

N2 1.370 0.0387

CO 1.472 0.0395

CH4 2.303 0.0431

CO2 3.658 0.0429

NH3 4.225 0.0371

Source: Lide, D.R. Ed., CRC Handbook of Chemistry

and Physics, 87th Edn., CRC Press, Boca Raton,
FL, 2006–2007, p. 6–34.
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Although the van der Waals gas equation is generally more accurate than the ideal gas law it has a
problem in that it is not easy to solve a cubic equation to obtain the volume. It is easy to get the
pressure:

P ¼ nRT

(V � nb)
� n2a

V2

but we need a trick to get the volume. By rearranging the equation to a polynomial in V set to zero,
we can use the Newton–Raphson root finding method. Thomas [3] shows this method will converge
to the nearest root from some initial guess using an iterative process as

xnew ¼ xguess � f (xguess)

df (xguess)=dx

� �
:

This method requires that the function of the polynomial be set to zero and a good initial guess for
the root. Ultimately you may have to sketch the curve to see where the nearest root is but if the
temperature is relatively high and the pressure is relatively low (with respect to the critical point) we
can make an estimate using the ideal gas equation. First we need the derivative with respect to V.

3PV2 � 2n(bPþ RT)V þ n2a ¼ 0:

Thus, we have a method to obtain V from the van der Waals equation provided we can make a good
initial guess, possibly from the ideal gas equation or from a sketch of the polynomial in V as to
where the curve crosses the horizontal axis. That is why we set the equation to zero so that the curve
will go through zero at the roots of the equation:

Vnew ¼ Vguess �
PV3

g � n(bPþ RT)V2
g þ n2aVg � n3ab

3PV2
g � 2n(bPþ RT)Vg þ n2a

" #
Vguess

:

Obviously this is a very complicated procedure but it could be coded as an equation in BASIC on a
PC to run in a millisecond. You need to set up an iterative loop so that each new value is used for the
next guess and stop iterating when the desired number of decimal places in the answer is reached.
Because this method is so tedious it is very satisfying to see the answer converge and usually five or
less iterations are adequate if the initial guess is good. One of the homework problems will suffice to
carry out this procedure to see that it can converge and that an automated way is needed to make it
practical.

In Figure 1.7 the schematic diagram plots V¼ (V=V-critical) and P¼ (P=P-critical) to yield an
equation independent of the (a, b) parameters as we will soon show. The main point is that the
isotherms at higher temperature appear as one branch of a hyperbola as expected but at the point
marked as the ‘‘critical point’’ the curve has an inflection point and then at still lower temperatures
the curve shows its behavior as a cubic curve in V. Careful measurements within the conditions at
temperatures lower than the critical point actually confirm the presence of liquid droplets. This leads
to a definition of the critical temperature as that temperature above which a gas cannot be
compressed into a liquid phase at any pressure. At temperatures lower than the critical temperature
of a material the gas can be compressed (squeezed) into the liquid form by applying higher pressure.

The inflection point of the van der Waals equation at the critical point is very helpful in a
mathematical sense since not only is the first-derivative zero at that point but the first-derivative
(slope) changes sign on either side of the critical point so the second derivative (curvature) must also
go through zero. We now embark on a series of mathematical manipulations to determine the (a, b)
parameters of a given gas from the experimental critical point parameters (Pc, Vc, Tc).
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First solve the van der Waals equation for P and assume n¼ 1, then take the first and second
derivatives of the pressure with respect to the volume at constant T ¼ Tc.

1: P ¼ RT

(V � b)
� a

V2

2:
qP
qV

� �
T

¼ �RTc
(Vc � b)2

þ 2a
V3
c

¼ 0

3:
q2P
qV2

� �
T

¼ 2RTc
(Vc � b)3

� 6a
V4
c

¼ 0

Note we have added ‘‘c’’ subscripts in the derivative equations because they are only true (¼0) at the
critical point. Rearrange Equation (2) and substitute it into Equation (3).

RTc
(Vc � b)2

¼ 2a
V3
c

which ) 2
(Vc � b)

2a
V3
c

� �
¼ 6a

V4
c

so

4aVc

(Vc � b)
¼ 6a and 4Vc ¼ 6(Vc � b):

Then 4Vc ¼ 6Vc � 6b and 6Vc � 4Vc ¼ 6b ¼ 2Vc so finally Vc ¼ 3b and b ¼ Vc=3. This important
result means that the ‘‘b’’ parameter of the van der Waals equation can be obtained as (1=3) of the
volume V on the V-axis directly under the critical point. Now let us look for ‘‘a.’’ So far we have
used Equation (3) so now go back to (2) and use the ‘‘b’’ value.

0
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4
(P

/P
C

)
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(V/Vc)

2.5 3 3.5

PL

PC

PH

0 0.5

FIGURE 1.7 Selected isotherms of a van der Waals gas. PC¼ the isotherm at the critical pressure, PH¼ the
isotherm above the critical pressure, and PL¼ the isotherm below the critical pressure. (Courtesy of Prof. Carl
Trindle, Chemistry Department of the University of Virginia.)
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RTc
(3b� b)2

¼ 2a
27b3

so
RTc
4b2
¼ 2a

27b3
which means that Tc ¼ 8a

27Rb
. For those who like Arbie roast

beef sandwiches, there is a silly way to remember this result as ‘‘If you ate (8a) over (=) 27Rb
(Arbie) sandwiches you will reach a critical temperature (Tc) fever.’’ While it is unlikely you
could eat 27 sandwiches, the mnemonic helps you remember the formula. Next we go back to
Equation (1) to find ‘‘a.’’

Pc ¼
R

8a
27Rb

� �
(3b� b)

� a

9b2
¼ 8a

54b2
� a

9b2
� 6
6
¼ 2a

54b2
¼ 2a

6V2
c

¼ a

3V2
c

so that a ¼ 3V2
c Pc.

Let us also see what R looks like for the van der Waals gas:

R ¼ 8a
27Tcb

¼ 8 3PcV2
c

	 

27Tc

Vc

3

� � ¼ 8
3

PcVc

Tc

� �
:

In summary, b ¼ Vc=3, a ¼ 3V2
cPc, Tc ¼ 8a

27Rb
, and R ¼ 8

3
PcVc

Tc

� �
. In Figure 1.7 the parameters

are the ‘‘reduced variables’’ which can be defined as

Pr ¼ P

Pc

� �
, Vr ¼ V

Vc

� �
, and Tr ¼ T

Tc

� �
:

Therefore, we can insert the definitions of (Pr,Vr, Tr) and obtain

Pr þ 3
V2
r

� �
Vr � 1

3

� �
¼ 8

3
Tr:

That is a demonstration of the ‘‘law of corresponding states’’ for the van der Waals equation in terms
of the reduced variables. Other equations of state should also pass the test of freedom from
parameters when expressed in terms of the reduced variables. Learning and=or memorization of
the derivation of the van der Waals critical point parameters will simultaneously improve your math
skills as well as emphasize the importance of the critical point. The formulas for the critical
temperature and critical pressure will be used in later discussion. How fast can you do this
derivation?

SUPERCRITICAL FLUID CHROMATOGRAPHY

What good is the critical point? Recently a new form of chromatography has been developed that
may be of considerable use in forensic applications in that it does not destroy the sample (depending
on the detector) and is capable of resolving some very sticky, gummy materials that normally would
be useless goo! Further the equipment is relatively simple and occupies about the space of a normal
desk. The technique of supercritical fluid (SCF) chromatography is an analytical method for
treatment of materials that are normally difficult to resolve into separate components. While other
materials can be used as a mobile phase, the main idea is to use carbon dioxide at a pressure and
temperature range that is slightly above the critical temperature as an excellent solvent for high-
molecular weight organic materials (Figure 1.8). While detection and identification of various
materials are of main interest, the sample can be recovered after passing though the column as
long as the detector does not use flame ionization.
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FLUIDS

The term ‘‘fluid’’ includes not only liquids but also anything that ‘‘flows’’ such as powdered coal or
sand slurries in water and of course airflow. Experimentally, the critical temperature for carbon
dioxide is 30.988C, the critical pressure is 73.75 bar, and the critical volume is 94 cm3=mol [1].
Above the critical temperature, the fluid is called supercritical fluid. We can compare that to the
value estimated from the van der Waals equation using data from Table 1.3. The result is within
0.258 of the experimental value.

Tc ¼ 8a
27Rb

¼ 8(3:658L2 bar=mol
2
)

27(0:08314L bar=�Kmol)(0:0429L=mol)
¼ 303:88 �K ¼ 30:73 �C

However, we can see that the van der Waals equation is less accurate for the critical volume and the
critical pressure

Vc ¼ 3b ¼ 3(0:0429L=mol) ¼ 128:7 cm3=mol

instead of 94 cm3=mol and

Pc ¼ a=3V2
c ¼

3:658L2 bar=mol
2

3(128:7 cm3=mol)2
1000 cm3

L

� �2

¼ 73:61 bar

which is close to experiment.
Apparently the van der Waals equation gives good estimates of the critical temperature and

critical pressure that are of practical interest but does poorly for the critical volume so there are other
equations of state chemical engineers use when more accuracy is required!

This critical temperature of CO2 is only a few degrees above room temperature, which makes it
safe to treat organic compounds with little danger of thermal degradation. Although carbon dioxide
is an excellent solvent for nonpolar compounds it is less good for polar compounds.

It has been found that for nonpolar materials CO2 is a very good solvent but to keep the mobile
phase (gas) flowing, a column temperature slightly above the critical temperature is used so that the
temperature is ‘‘super’’ critical and the pressure is regulated near the critical pressure to keep the
mobile phase nearly a liquid (Figure 1.9). Under these conditions SCF chromatography has

1

2 5

4
7

63

FIGURE 1.8 Schematic diagram of a table top supercritical fluid chromatograph. The numbers in the figure
are explained in the Internet site listed where this is an animated GIF picture which simulates the passage of a
sample through the instrument. (Karey O’Leary and Advisor Prof. Andrea Detrich of Virginia Tech University at
http:==www.cee.vt.edu=ewr=environmental=teach=smprimer=sfc=sfc.html)
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characteristics of both gas chromatography (GC) and liquid chromatography since the mobile phase
is gas almost ready to condense to a liquid so that it has both good solvating power and high
diffusivity. The proof of these claims can be seen in the examples of the chromatograms of high-
molecular weight materials and similar compounds discussed in the following.

A further advantage of SCF chromatography is that the solvating power can be ‘‘tuned’’ by
adjusting the pressure and temperature of the mobile phase (usually carbon dioxide) so the density
of the mobile phase more nearly matches the density of the sample. These changes can be
programmed to enhance and control the elution of various sample components and provide both
the temperature programming of GC and the use of a solvent gradient in high-pressure liquid
chromatography (HPLC). If separation is more important than detection, SCF can also be used for
bulk preparative separations and has been used in industry to remove caffeine from coffee and
nicotine from tobacco. Thus, we see that the critical point of a gas is an important topic of
considerable practical value.

SUPERCRITICAL FLUID INSTRUMENTATION

From the schematic in Figure 1.7 we see that a SCF chromatograph has great similarity to the type
of HPLC where a tank of compressed gas is used as the pressure source but a reciprocating pump is
also present to maintain control of the pressure. Similar detectors can be used, although a flame-
ionization detector will destroy the eluted materials. There are a number of optical=spectroscopic
detectors that are nondestructive and they can be used to monitor the elution process in the case of
preparative elution or where a sample is forensic evidence not to be destroyed. Even the columns are
similar, although SCF, GC, and HPLC columns are designed as optimum for the intended purpose.
Considering the high pressures involved, the SCF columns are more likely to be similar to HPLC
columns in cross section but in a longer coil as with GC applications rather than the short (about 1 m)
HPLC columns and built to withstand high pressure as for HPLC. One key difference in SCF
chromatography is that the mobile-phase temperature and pressure must be adjusted in the flow line
to reach the desired supercritical (T, P) condition before the sample is injected and the oven
temperature needs to maintain the temperature while the pump maintains the pressure. A restrictor
is necessary at the end of the column or after the detector to maintain the pressure in the column. As
a practical matter the restrictor may need to be cleaned frequently, but this is similar to routine
maintenance of a HPLC apparatus. Variable restrictors are available.
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FIGURE 1.9 Diagram of the supercritical phase.
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SUPERCRITICAL MOBILE PHASE

While it is possible to use a number of volatile solvents as the mobile phase for SCF chromatog-
raphy, the most commonly used mobile phase is carbon dioxide. However, carbon dioxide is not a
good solvent for polar compounds so it is common to add a small amount of some additional polar
organic liquid such as an alcohol or even water as a ‘‘modifier.’’ However, the modifier needs to be
miscible with carbon dioxide. Much of the other technology associated with either GC or HPLC in
terms of sample inlets and types of pumps are adapted to specific applications but the key attribute
of the SCF-type chromatography is the maintenance of (T, P) conditions near the critical point of the
mobile phase. A selection of columns is available just as for GC or HPLC.

SAMPLE SCF SEPARATIONS

The output results of an SCF chromatogram are presented on a strip chart recorder showing the
detector response on the vertical axis and the elution time on the horizontal axis. We show two
examples as presented by Karey O’Leary at Virginia Tech University in 1995 (results shown are by
permission from http:==www.cee.vt.edu=ewr=environmental=teach=smprimer=sfc=sfc.html).

It is evident from these two examples that the resolving power of these SCF chromatograms is
excellent under the definition of resolving power as the ability to separate peaks at half height. To be
able to resolve different components of pump oil is suggestive that forensic analysis of oils is
entirely feasible using SCF chromatography and analysis of environmental samples of pesticides
(Figure 1.10) can be carried out at temperatures that are less harsh on compounds that might
decompose under destructive gas chromatography-mass spectrometry (GC-MS) testing. Overall
SCF chromatography for both detection and preparation is a practical example of the importance of
the critical point properties of real gases (Figure 1.11).
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FIGURE 1.10 Example of supercritical fluid chromatography of pesticides.
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SUMMARY

This chapter helps us to understand that while the ideal gas law (PV ¼ nRT) is generally useful in
the range of temperatures above 08C and pressures up to about 100 atm, extreme conditions can
require corrections. Dalton’s law leads us to begin to wonder about the behavior of individual gas
molecules and the space between them. We also saw that the density of a gas can be related to the
molecular weight of the gas. A calculation of the moles of gas based on the Avogadro hypothesis led
us to a simple way to consider uncertainties in experimental methods according to a formula based
on percent uncertainties in the variable measurements as

L(%)total ffi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i
[li(%)2]

q
While the PV curve for an ideal gas should be the positive branch of a hyperbola at a given
temperature (isotherm), experimental data reveal the critical point phenomenon where a gas can
condense into a liquid. The work by van der Waals corrects the ideal gas law with small terms and
two parameters to formulate

Pþ n2a

V2

� �
(V � nb) ¼ nRT

which is more accurate than the ideal gas law. Analysis of the van der Waals critical point was based
on setting both (qP=qV)n,T ¼ 0 and (q2P=qV2)n,T ¼ 0 at the critical temperature because the PV
isotherm curve goes through an inflection point there. Using this calculus condition, the values
of the van der Waals (a, b) parameters can be found for a number of real gases. Insertion of the
critical parameters into the van der Waals equation leads to an equation that is independent of
the parameters and obeys a law of corresponding states in which the equation is expressed in
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FIGURE 1.11 Resolution of silicone polymers using supercritical fluid chromatography.
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terms of the reduced parameters: PR ¼ (P=PC), VR ¼ (V=VC), and TR ¼ (T=TC), which yields a
universal van der Waals equation

PR þ 3

V2
R

� �
VR � 1

3

� �
¼ 8

3
TR:

Although the van der Waals gas equation is generally more accurate than the ideal gas law, the
equation is cubic in V which leads to a practical difficulty in solving for V. An iterative Newton–
Raphson technique is suggested for use with some sort of computer-aided way to evaluate V. The
idea of the critical point is applied to introduce an analytical technique termed supercritical fluid
chromatography, which is shown to be able to separate and clearly resolve high-molecular weight
materials. Discussion followed as to potential applications of SCF chromatography for nondestruc-
tive analysis of forensic evidence. The SCF behavior of carbon dioxide was described as a good
‘‘solvent’’ near its critical point. The exercise in calculus to find the van der Waals parameters offers
a chance to motivate improvement in mathematical skills when it is seen that the formulas can be
used to find the (a, b) parameters for a number of real gases.

PROBLEMS

1.1 Calculate the volume in liters of 2 mol of He gas at 658F and 740 mmHg pressure.
1.2 Calculate the pressure in a tire inflated to 30 psi in winter at a temperature of 108F if the tire

has the same volume in July when the temperature is 908F.
1.3 Calculate the pressure of 2 mol of H2 contained in a 10 L container at 308C using the van der

Waals equation.
1.4 Calculate the volume of 1 mol of CO2 gas at 308C when the pressure is 20 bars using the van

der Waals equation. (Hint: Estimate V from the ideal gas equation and use the Newton–
Raphson method for the van der Waals gas starting from that value.)

1.5 Calculate Pc, Vc, and Tc for NH3 gas using the van der Waals parameters (a, b) and compare to
the values in a handbook or the Internet.

1.6 A glass light bulb shell is sealed by a glassblower and one small tip is pulled out into a long
narrow point with an entrance hole of about 1=8 in. diameter. The open bulb is weighed and
found to weigh 46.345 g. Then the bulb is completely filled with water using an eye dropper
with a thin tip and the filled bulb is found to have a mass of 237.93 g. Use the density of water
at 208C of 0.99821 g=cm3 to find the internal volume of the bulb. The bulb is then aspirated to
remove the water and dried in an oven. When dry and cool the bulb is reweighed and found to
still be 46.345 g prior to filling it with about 5 mL of a volatile liquid. The bulb with this small
amount of liquid is placed carefully into a 250 mL beaker of water, which is heated to a boil at
exactly 1008C. After reaching equilibrium at this temperature and all evidence of liquid is
gone the glass tip is sealed with a tiny drop of glue, the bulb is removed from the boiling
water, carefully dried, and found to weigh 47.309 g. Assuming the pressure was 1 atm when
the bulb was sealed, what is the estimated molecular weight and a possible compound that has
a volatile liquid close to this molecular weight?

1.7 Calculate the moles of gas collected over water in a 600 mL container at 756 mmHg pressure
at 208C given that the vapor pressure of water is 2.3388 kPa at 208C.

1.8 Calculate the uncertainty in the mole answer in Problem 1.7 if the uncertainty is 5 mL in
volume, 1 mmHg in pressure, and 0.38C in temperature. Give the value in % and in moles.

1.9 Calculate the volume of a 9.39 in. diameter basketball in liters. (See Introduction: Math and
Physics Review.)

1.10 Using PV ¼ nRT , n¼ 1, calculate a ¼ 1
V

� �
qV
qT

� �
p

and b ¼ �1
V

� �
qV
qP

� �
T

. (Introduction:

Math and Physics Review.)
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2 Viscosity of Laminar Flow

INTRODUCTION

Continuing our appeal to phenomenological derivations, we come to an experimental technique that
is very simple to use and has a clean calculus derivation. Despite the simplicity of the measurement
of viscosity, it is very useful in several areas of chemistry (polymers), aerodynamics (airplane wing
design), hydrodynamics (boat hull design), pharmaceutical delivery (oral delivery in syrups),
biophysics (blood flow), and material science (polymers). We are mainly motivated by a need to
support the revolutionary Boltzmann’s kinetic molecular theory of gases (KMTG; in Chapter 3)
with some experimental method. The Boltzmann KMTG can be treated in a cyclical set of self-
fulfilling equations (perhaps because it is true!), but a skeptic would require some sort of measure-
ment, mainly because it assumes the existence of very small atoms=molecules never seen individu-
ally. Even today there are only a few ‘‘pictures’’ of fat Au atoms on surfaces and x-ray diffraction
structures of molecules in crystals. The preponderance of evidence for the size and structure of
molecules is firm but indirect. Here, we want to discuss Poiseuille’s (Pwaz-e-ay’s) law of viscosity
for laminar flow [1,2] because it offers several useful applications, but primarily it will be a way to
verify Boltzmann’s KMTG.

Another modern application is an extension of Einstein’s thesis work [1,3,4] on viscous flow of
sugar-water solutions applied to the determination of the molecular weight of giant molecules now
called polymers. Polymers are typically the result of organic compounds which have both ‘‘head’’
and ‘‘tail’’ reactive groups that can react repeatedly to form large chains, sheets, or bulk materials,
which are really a single large molecule. Following WWII, there was a worldwide surge of research
in how to make, characterize, and develop application of polymers. This effort continues today in a
now mature branch of chemical research, and some amazing properties of specialized polymers
have been developed such as high-temperature stability approaching that of metals (polyimides),
polymers that change color with temperature, and dry lubricants such as perfluorocarbons. Let us
not forget the ubiquitous polystyrene coffee cup. When new polymeric materials are developed, one
of the foremost characteristics is the intrinsic viscosity of the polymer, and this is measured in a
simple way with a pipette, a viscometer, and a stopwatch!

A third motivation is that physical chemistry enters into some aspects of biomedical science, and
blood viscosity is a minor diagnostic parameter related to blood-thinning treatment of stroke
prevention. Poiseuille’s law for laminar flow is a beautiful example of the clean application of
calculus to a phenomenological equation which supports Boltzmann’s KMTG and is an important
method used in polymer science, but we have searched out some biological applications as well.
Here, we want to give a foundation to the experimental ideal of laminar flow of fluids, which can be
modeled using calculus incremental layers sliding over one another (Figure 2.1). We will see that
once we can relate gas viscosity to KMTG, we gain a number of important concepts related to gas-
phase chemical reactions, such as binary collision number and the mean free path. We just need
some physical data to tie the theory to laboratory reality!

Consider a model of two parallel sheets with one sliding over the other. Common sense tells us
that there is some sort of ‘‘friction’’ opposing the sliding motion. Viscosity is a drag, literally!

We can develop the idea of a laminar ‘‘coefficient of viscosity’’ from common experience. First,
the force required to move one sheet over the other is proportional to the area A of contact between
the sheets. Second, more force will be required to move the upper sheet faster. Third, the actual
contact between the sheets depends inversely on the contact distance between the sheets since all
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materials will have some sort of rough hills and valleys on the surfaces. We can also expect that
adding weight to the upper sheet will increase the friction, but really that only makes the surfaces
squeeze together more tightly and we have already included the inverse dependence on mean
distance d between the layers. We can anticipate that the friction will depend on the applied load
on the top sheet, but that will not affect the unit analysis of the friction:

f ¼ ma ¼ g cm=s2 ¼ h
Av

d

� �
¼ h

cm2 cm

s

� 
cm

¼ h
cm2

s
:

This leads to the phenomenological units of the coefficient of viscosity in the cgs system as

h ¼ g=cm s � 1 poise:

While this unit is easy to derive using reasoning from everyday experience, the poise (pwaz) is
an ancient unit and viscosity is now measured in (pascal seconds), so that 1 poise¼ 0.1 Pa s in SI
units:

0:1 Pa s ¼ [(10 dyne=cm2
)=10] s ¼ 1

g cm=s2

cm2

 !
s ¼ 1

g

cm s

� 
¼ 1 P:

More properly called the Hagen–Poiseuille law, it was developed independently by Gotthilf
Heinrich Ludwig Hagen (1797–1884) and Jean Louis Marie Poiseuille. Poiseuille’s law was
experimentally derived in 1838 and formulated and published in 1840 and 1846 by Jean Louis
Marie Poiseuille (1797–1869). Hagen also carried out experiments in 1839. While there are a
number of derivations, we follow a simple one here from Physical Chemistry by Castellan [5].

Consider a pipe with some fluid forced through it by a pressure difference (P1 � P2) where
P1 > P2. Although we will eventually consider the phenomenon from a molecular view, we stress
the power of calculus here to represent a macroscopic effect in terms of infinitesimals. Assume the
fluid (gas, liquid, or slurry) is flowing down, but there is some sort of friction between thin layers as
cylinders sliding within each other like concentric rings of pipe or tree rings (Figure 2.2). We can
see that in the limit as one goes out to the outer wall, the velocity of the layers must be zero while the
velocity is greatest in the center of the tube. Note the total area of the friction is the surface of the
outer shell of a cylinder whose radius varies from zero at the center to R at the wall of the pipe, and
the variation of the velocity can be described as a derivative (dv=dr), so we can write the frictional
force on any given cylinder as

f ¼ hA
dv

dr

� �
:

A

A

d

v

FIGURE 2.1 Sliding layers to derive Poiseuille’s law.
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Note this maintains the units described above for the sliding layers since derivative (dv=dr) has units
of velocity=length and the total expression is a drag force. However, we need a sign reversal to
account for the fact that the velocity decreases as the radius increases. (Let us use d¼ l to avoid
conflict with d=dr.):

f ¼ hA
�dv
dr

� �
¼ h(2prl)

�dv
dr

� �
:

What is the force driving the fluid? We know from above that it is a difference in pressure but for the
time being let us just call P ¼ (P1 � P2) and note that a pressure is a (force=area), so we need to
multiply the pressure by the cross-sectional area of the tube:

f ¼ h(2prl)
�dv
dr

� �
¼ P(pr2):

By canceling pr and splitting the derivative into separate differentials, we obtain the variation of
velocity in terms of the radius as

dv ¼ �P
2hl

� �
r dr,

which can be integrated as
ðv
0
dv ¼

ðr
R

�P
2hl

� �
r dr ¼ �P

2hl

� �ðr
R
r dr.

Here, we use v¼ 0 at r¼R because the velocity is zero at the outer wall of the pipe. With these
limits, the integrals are easy to do and we get

v(r) ¼ �P
2hl

� �
r2 � R2

2

� �
¼ P

4hl

� �
(R2 � r2):

P P
r

P

R

drP

d

FIGURE 2.2 Calculus diagram of ‘‘sliding sleeves’’ of fluid flowing in a cylinder.
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In itself this is only a formula that tells us the velocity of the fluid at a specific radius r in terms of the
pressure P, the viscosity coefficient h, the length of the tube l, and the outer radius R of the pipe. In
order to obtain a formula that can be used to measure something, we ask how much volume flows
through the tube in a given time, the bulk flow rate as (volume=time) by integrating the function of
r from zero to the outer radius R:

V

t

� �
¼
ðR
0

(v)(2pr dr) ¼
ðR
0

P(R2 � r2)

4hl
(2pr dr) ¼

ðR
0

PpR2r

2hl
� Ppr3

2hl

� �
dr:

So, we have

V

t

� �
¼ pPR2

2hl
r2

2
� r4

4R2

� �R
0

¼ pPR2

2hl
R2

2
� R2

4

� �
¼ pPR4

8lh
:

While this derivation is in two parts and requires some careful thinking, we have shown the power
of using differential calculus to obtain a relatively simple final formula. The method illustrates the
ideas of using small differential quantities with physical reasoning and then integrating to obtain the
macroscopic formula. Note especially that the bulk rate of flow depends on the fourth power of
the radius of the tube! Doubling the radius of the tube will increase the flow by a factor of 16!
Finally, we obtain a way to measure the viscosity coefficient of a fluid by measuring the time it takes
for a fixed volume to flow through a pipe of known dimensions:

h ¼ pPR4t

8lV
:

We are supposed to be learning an essential form of physical chemistry, and once you are aware of
laminar viscosity you may notice it in a number of applications. Note that this leads to a simple
relationship if we have a standard fluid=liquid with a standardized viscosity such as water. Then, the
time for a standard liquid can be compared with the flow time for the same amount of an unknown

fluid in the same device to obtain the viscosity of the unknown liquid:
hx

hstd

¼
pPR 4

8lV

� 
tx

pPR 4

8lV

	 

tstd

2
4

3
5 ¼ tx

tstd
, so

that hx ¼ hstd

tx
tstd

� �
.

Pure water can be used as a standard for viscosity measurements, although a correction should be
applied for changes in density with the temperature:

hx ¼ hstd

rxtx
rstdtstd

� �
.

For H2O, r ffi 1 g=cm3.

MEASUREMENT OF VISCOSITY

There are several types of devices which measure viscosity but we will only show the most common
type here, the Ostwald viscometer (Figure 2.3).

The Ostwald type can be purchased from a variety of supply houses with different diameter
bores. Small bores are used for a low-viscosity range near that of water and larger bores for more
viscous liquids. In order to measure the viscosity coefficient of liquids such as motor oil or molasses,
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larger bore viscometers are necessary in order to obtain convenient run times (private communica-
tion from Prof. MacKnight, Figure 2.4). One merely uses a pipette to standardize the amount of the
liquid used and it is drained into a clean viscometer. Then a suction bulb is used to pull the liquid
into the reservoir bulb at the top of one arm of the tube and the time it takes for the reservoir to drain
past the lower mark on that arm is recorded. Multiple runs can be averaged to improve precision for
liquids of low viscosity but for very viscous liquids it is not unusual for run times over 150 s to be
reproducible to within 0.1 s, so precision is very good for liquids of higher viscosity (Table 2.1) [6].

Lower
mark

Upper
mark

FIGURE 2.3 A typical Ostwald viscometer. (From Gohel, M., Parikh, R., Popat, A., Mohapatra, A., Barot, B.,
Patel, C., Joshi, H., Sarvaiya, K., Baldaniya, L., Mistry, P., Parejiya, P., Parmar, R., Nagori, S., and Patel, T.,
Pharmaceutical suspensions: A review, Pharmainfo.net, http:==www.pharmainfo.net/free-books=pharmaceutical-
suspensionsa-review).

FIGURE 2.4 William J. MacKnight is an American polymer scientist at the University of Massachusetts at
Amherst. He is a member of the National Academy of Engineering and has received the Ford Prize in High
Polymer Physics, the American Chemical Society Award in Polymer Chemistry (Mobil Award), the Distin-
guished Service Award in Advancement of Polymer Science from the Society of Polymer Science, Japan, and
the Herman F. Mark Award from the Division of Polymer Chemistry of the American Chemical Society.
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VISCOSITY OF BLOOD

Viscosity can be measured for blood as an auxiliary diagnostic test for diseases in which there are
abnormally high levels of proteins or to monitor the effect of blood-thinning agents as a treatment
for stroke prevention. The normal range of viscosity of human blood is from 0.99 to 1.55
centipoise and the units are in poise. Blood with viscosity higher than 4.0 centipoise (1 poise¼ 0.1
Pa s so 0.04 poise¼ 0.004 Pa s) is considered abnormal and may signal potential circulatory
problems. Now for health science students, it may be of interest to consider the average blood flow
in an adult human or for forensic students to know possible blood flow in a given time. One
complication is that it is known that arteries have elastic walls and flex (bulge) during the high
pressure pulse of blood flow, but we will approximate an aorta as a pipe with a fixed diameter.
Another substantial problem is that with a pulsating heartbeat, the pressure is not constant; part of
the time, there is a higher pressure pulse (beat) while between beats the pressure can be much
lower. We can solve this problem with an adjustable factor we can call a ‘‘duty factor,’’ which
represents the fraction of the time the pressure of the heartbeat pulse is high. Another interesting
consideration is that medical measurements still use the high and low pressures measured for
blood pressure with an arm cuff in the units of mmHg! Suppose we assume the duty factor is 0.1
as representing the pressure spike of the human heartbeat and then correct the duty factor to a
measured value.

Given h¼ 0.013 poise, an aorta 6 in. long with an inner diameter of 1=4 in. and blood pressure of
140=80 using a duty cycle of 0.1, calculate the volume of blood flow in gallons=minute:

V

t

� �
¼

p
140� 80

760

� �
atm 1:01325� 106

dyne

cm2 atm

� �
2:54 cm

8

� �4

(0:1)

8(6 in:)(2:54 cm=in:)(0:013 g=cm s)

� 1 gal
4 qt

� �
1 qt

946 cm3

� �
60 s
1 min

� �
:

TABLE 2.1
Viscosity of Water at Varied Temperatures

Temperature, 8C Viscosity Coefficient, mPa s r, kg=m3

0.01 1791.1 999.84

10 1305.9 999.70

20 1001.6 998.21

25 890.02 997.05

30 797.22 995.65

40 653.73 992.22

50 547.52 988.03

60 466.03 983.20

70 403.55 977.76

80 354.05 971.79

90 314.17 965.31

99.606 282.75 958.63

100 12.234 0.58967

Source: Lide, D.R., CRC Handbook of Chemistry and Physics, 90th Edn.,
CRC Press, Boca Raton, FL, 2009–2010. pp. 6-1.
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So, we find
V

t

� �
¼ 2:5548 gal=min. This is too high even with the duty factor of 0.1, so let us

standardize the effective duty factor for an average adult human of about 4900mL=min. Thenwe have

4900mL

(4 qt=gal)(946mL=qt)
ffi 1:29493 gal=min:

Thus, if we wish to use the formula from a rigid pipe for a flexible aortic wall we need to adjust the
duty factor:

Duty

Cycle

� �
¼ (2:5548 gal=min )

x

0:1

� 
¼ 1:29493 gal=min,

so, x ffi 0:0507 and we have an effective formula which takes into account the elastic wall of a large
artery like an aorta and the pulse nature of the heartbeat as

V

t

� �
¼

p
Ph � Pl

760

� �
(1:01325� 106 dyne=cm2

atm)
2:54 cm
R in:

� �4

(0:0507)
1 gal

3784 cm3

� �
60 s
min

� �
8(L in:)(2:54 cm=in:)(h g=cm s)

:

We note that in some cases, we could rearrange the equation to calculate the effective radius of the
pipe and use the fourth root (square root of the square root) of the rearranged formula if we know the
(V=t) bulk flow rate. This formula also teaches us a lot about using different units.

STAUDINGER’S RULE FOR POLYMER MOLECULAR WEIGHT

Although Albert Einstein is most well known for his work in the theory of relativity and for his
analysis of the photoelectron effect, he also developed a foundation [3,4] for the theory of solution
viscosity. His initial work was on solutions of colloidal spheres and sugar solutions and that work
was limited in application. However, as a result of plastics and synthetic rubber being developed
during WWII, the field of Polymer Science emerged with great significance to chemical industry.

While chemists developed new synthetic methods for formation of polymers, the inevitable
question arose as to the values of molecular weights. The question is complicated by the fact that
often the products of polymerizations are ‘‘polydisperse,’’ that is, there is a mixture of various
molecular weights (n-mers) of similar compounds after the reaction. We can only give a glimpse of
polymer science here, but the measurement of viscosity is now a standard technique in determining
average molecular weight of large polymer molecules.

Initially, the application of viscosity measurements to polymer solutions extended the relation-
ships derived by Einstein for colloid solutions. While colloids might be assumed to be roughly
spherical, polymer molecules can be flexible, rod-like, or plate-like, so adjustments had to be made.
Einstein [4] defined some useful terms. Let h0 be the viscosity of the solvent alone and h be the
viscosity of the solution in question. As the solution is diluted, the viscosity will approach the h0

value, but at other concentrations we can define the relative viscosity as hr �
h

h0

� �
. A further

quantity was defined as the ‘‘specific viscosity’’ as the amount by which the viscosity of a given
solution differed from that of the solvent as hsp � hr � 1. Finally, yet another quantity was defined
as the ‘‘intrinsic viscosity,’’ which has an interesting graphic property and is believed to be an
intrinsic property of the polymer solute. In Einstein’s original work [3,4], the intrinsic viscosity for
hard spheres is 2.5, but we expect lower values for quasi-linear polymers. Theoretically, the intrinsic
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viscosity is a pure number but it is sometimes reported as a reciprocal concentration such as
deciliters=gram due to the denominator of the definition:

[h] ¼ hsp

c

h i
c!0

and [h] ¼ ln hr

c

� �
c!0

:

In 1930 Staudinger [8] proposed to adapt Einstein’s formalism to solutes of polymers, which may or
may not be spherical, even rod-like, or plate-like in a simple formula known as Staudinger’s rule:

[h] ¼ KM:

The interesting thing about this technique of relating viscosity to molecular weight is that if one can
measure the viscosity of various concentrations of polymer in the solvent and plot, both the

values of [h] ¼ hsp

c

h i
and [h] ¼ ln hr

c

� �
c!0

on the y-axis of a graph and the concentration

c ¼ grams=100ml on the x-axis (100 mL¼ 1 dL¼ 0.1 L) the two lines should=will meet at
the same value of the intrinsic viscosity [h]. Thus, both the methods of plotting the graph
yield the same intrinsic viscosity value. Sometimes other units are reported such as
g

dL

�  10
10

� �
¼ 10 g

L

� �
1000
1000

� �
¼ 10 kg

m3

� �
.

This type of work requires careful laboratory technique, but it is very satisfying to see both lines
have the same intercept. Often other types of viscometers are used for this work but the Ostwald
viscometer can be used for dilute solutions. Further work by Staudinger and his associates was
carried out to find the value of K for various types of polymers, and the relationship was later refined
to use two parameters (K, a) as in

[h] ¼ KMa:

In each case, there had to be calibrations of the molecular weight using other techniques for absolute
molecular weights such as melting point methods, osmotic pressure, and light scattering, but the
ease of using the viscosity measurements then allows the determination of the molecular weight of
an unknown. Today, this is a standard laboratory procedure in industries where polymer properties
are measured. Thus, while ‘‘viscosity is a drag,’’ its measurement is of great practical importance in
industry and of some use as a diagnosis technique in hematology, the study and science of blood.

Example
Castellan [5] gives three data points for polystyrene dissolved in benzene at 258C as
[C(kg=m3

),h(mPa s)]: (21.4, 1.35), (10.7, 0.932), and (5.35, 0.757). Plot these data using both
definitions of the intrinsic viscosity and extrapolate to zero concentration. h0 for benzene is 0.606
mPa s (Figure 2.5). The two intercepts should be close but take the average of the two intercepts as
the best value of the intrinsic viscosity. Castellan suggests using the expression [h] ¼ KMa with
K ¼ 1:71� 10�3 m3=kg and a ¼ 0:74 (slightly different from the 308C data in Table 2.2) along
with the viscosity to calculate M, the effective molecular weight of this sample:

[h] ¼ KMa, ln ([h]) ¼ lnK þ a lnM, lnM ¼ ln ([h])� lnK

a
¼ 1

a

� �
ln

[h]

K

� �
¼ ln

[h]

K

� � 1
að Þ
,

so that M ¼ [h]

K

� � 1
að Þ
, now set up tables of [h] ¼

�
hsp

c

�
and [h] ¼ lnhr

c

� �
c!0

for

[C(kg=m3
),h (mPa s)]: (21.4, 1.35), (10.7, 0.932), and (5.35, 0.757).
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Use hr �
h

h0

� �
and hsp � hr � 1 to set up tables versus the concentration. Use h0 ¼ 0:606:

m¼ slope for (hsp=c)¼ (0.05737� 0.04657)=(21.4� 5.35)¼ 6.7290E�4,
m¼ slope for¼ (ln hr=c)¼ (0.03743� 0.04156)=(21.4� 5.35)¼�2.5732E�4.

Without doing the graph, we can ask ‘‘what is y when x¼ 21.4,’’ within the significant figure of
the data (Figure 2.6).
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FIGURE 2.5 Raw data of viscosity measurement of polystyrene in benzene with the viscosity of the pure
benzene solvent as 0.606 mPa s. Note slight nonlinearity.

TABLE 2.2
Staudinger Constants for Selected Polymer Molecular Weights from Intrinsic Viscosity

Polymer Solvent 8C Molecular Weight Range K � 104 a Reference

Cellulose acetate Acetone 25 11,000–130,000 0.19 1.03 [7]

Nylon 90% Formic acid 25 5,000–25,000 11.0 0.72 [7]

Polystyrene Benzene 30 10,000–600,000 1.71 0.72 [7]

Neoprene Toluene 25 40,000–1,500,000 5.0 0.615 [7]

Note that the K values are in (g=dm) here.
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FIGURE 2.6 Plot of (hsp=c) (small diamond points) and ( ln hr=c) (large square points) for polystyrene in
benzene. This is not the raw data but is recalculated from the measured viscosity in mPa s.
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For (hsp=c), we have 0.05737¼ (21.4)(6.7290E�4)þ b, so b¼ 0.04297.
For ( ln hr=c), we have 0.03743¼ (21.4)(�2.5732E�4)þ b, so b¼ 0.04294.

The average of these two intercepts is 0.042955 or 0.04296 with four significant figures:
[h] ffi 0:04296. On the graph, one line slopes up and the other line slopes down, but both have
the same limiting intercept (Table 2.3). Then, we can calculate the limiting molecular weight:

M ¼ [h]

K

� � 1
að Þ
¼ 0:04296

1:71� 10�3 m3=kg

� �(1:351)

¼ 77:8919 ffi 78 kg=m3:

This seemingly strange molecular weight tells us that the limiting case represents a tangled web of
polymer that may be hopelessly knotted with itself and=or actually cross-linked chemically. In the
case of synthetic rubber tires, cross-linking may be so great that one can say the whole tire is one
molecule! Even so, the intrinsic viscosity is used by polymer scientists to compare different
polymers as a measurable property. Although this is but one example, this method is a mainstay
procedure in polymer chemistry. The discussion here should prepare you for a very instructive
experiment in the text by Shoemaker, Garland, and Nibler [9] where a similar treatment is applied to
polyvinyl alcohol (experiment no. 28). While the units of (78 kg=m3) are unfamiliar to us as a type
of molecular weight, it may be useful to compare the same units for the familiar substance of water.
The density of pure water is 997.05 (kg=m3).

SUMMARY

This short chapter has been a further exercise in the merger of various practical units from several
fields to gain experience in unit conversions and at the same time form a foundation for the notion of
the viscosity of laminar flow. We should emphasize that the equations we have derived only apply
to laminar flow, the kind of flow that occurs when ‘‘still waters run deep’’ over a deep place in a
river rather than shallow turbulent flow over rocks. Turbulent flow is difficult to treat mathematic-
ally but as we have seen, laminar flow can be treated using the calculus idea of thin layers. The
science of laminar flow extends to aerodynamics and is important in the study of airflow over the
surface of an airplane wing as well as the entire surface of the aircraft. In addition, the same
equations can be applied at lower speed and higher density for the design of boat hulls to maintain
laminar flow of water over the hull. Thus, a basic understanding of laminar flow at the macroscopic
level has wide applications and we are now prepared to see how gas viscosity can provide
experimental verification of the Boltzmann KMTG in the next chapter. The example of a worked
problem for the intrinsic viscosity of polystyrene is included because someday viscosity measure-
ment may be a routine task in your job as a chemical scientist. Of course, the ‘‘calculus nugget’’ in
this chapter is the derivation of Poiseuille’s law, and while most teachers would not expect a student
to reproduce that derivation on a test, it has been done by a few students seeking extra credit, so the

TABLE 2.3
Raw Viscosity Data for Polystyrene in Benzene
with Calculated Limiting Intercept

C h hr hsp (hsp=c) (lnhr=c)

21.4 1.35 2.228 1.228 0.05737 0.03743

10.7 0.932 1.538 0.538 0.05028 0.04023

5.35 0.757 1.249 0.249 0.04657 0.04156
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sequence of steps in the derivation can be ‘‘learned.’’ For a few occasional chemical engineering
students in the class, the main message of Poiseuille’s law is that the flow rate through a pipe is
proportional to the fourth power of the internal radius of the pipe, a principle well worth knowing
when dealing with ‘‘plumbing.’’

PROBLEMS

2.1 Calculate the bulk volume flow of blood with viscosity 0.02 poise through a 6 inch long aorta
of inner diameter 3=8 in. due to a blood pressure of 125=80 mmHg in gallons=min assuming
that the pressure is constant (duty factor¼ 1). Then, multiply the answer by a duty factor of
0.05 to correct for the duration of the heartbeat pulse (and the fact that we are treating the aorta
wall as rigid).

2.2 Water can be used as a standard to measure the viscosity coefficient h of an unknown liquid if
the temperature is held constant, the same volume of liquid and the same apparatus is used.
Given that h ¼ 0:010038 poise for water at 208C, calculate the viscosity of an unknown liquid
at 208C if 10 mL of distilled water took 17 s for 10 mL to flow between two marks in an
Ostwald (J-tube) viscometer and the unknown liquid took 19 s for 10 mL to flow under the
same conditions.

2.3 To show how the R4 dependence of the Poiseuille law affects flow rate, calculate the bulk flow
through a 12 in. long fire hose nozzle with an inner diameter of 2 in. delivering water with
h ¼ 0:01 ¼ 0:01 poise from a pressure of 100 psi and exiting to a pressure of 14.7 psi. Assume
there is a pump which can provide the necessary volume and give the answer in gallons=min.

2.4 Calculate the viscosity coefficient h in poise and in Pa s, if 5 gal=min flow (laminar) through a
6 in. long tube 1 in. inner diameter due to a pressure of 18 psi and exit at 14.7 psi.

2.5 Estimate the inner diameter of Lance Armstrong’s aorta assuming it is 7 in. long, his blood
pressure is 140=60 mmHg and that his heart pumps (as rumored) 9 gal=min. Use
h ¼ 0:02 ¼ 0:02 poise and integrated pulse factor¼ 0.05.
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3 The Kinetic Molecular
Theory of Gases

INTRODUCTION

We remind ourselves we are trying to present the essential aspects of physical chemistry and we
consider this one of the most essential topics. In our treatment of the van der Waals gas, we have
already mentioned the ideas of the collisions of small atoms, which have a lot of space between
them as in Dalton’s law. Here, we go into further detail regarding the behavior of gas molecules
using the ideas of Ludwig Boltzmann (1844–1906), who was one of the intellectual giants of the late
nineteenth century and whose ‘‘Boltzmann principle’’ of energy distribution is one of the pillars of
modern science. The breakthrough here was due mainly to Boltzmann’s PhD thesis on the theory of
gases. Here, we will first review the freshman chemistry derivation of part of kinetic molecular
theory of gases (KMTG) and then introduce Boltzmann’s amazing energy principle.

KINETIC ASSUMPTIONS OF THE THEORY OF GASES

1. A gas is made up of a large number of particles (molecules or atoms) that are small in
comparison with both the distance between them and the size of the container.

2. The molecules=atoms are in continuous random motion.
3. Collisions between the molecules=atoms themselves and between the molecules=atoms and

the walls of the container are perfectly elastic.

Let us consider the idea that gas pressure is caused by impacts of atoms=molecules with the wall of a
container (or the diaphragm of a pressure gauge). We know a gas will fill any shaped container, but to
make the derivation simpler, we assume a cubical container of dimension L� L� Lwhere each side is
of length L (Figure 3.1). Thus, each inner face of the container has area A¼ L� L. Looking ahead to
the idea that pressure is force=area, we put just one atom in an empty cubical box and analyze the force
on one face of the box. Since force is a change in momentum, let us consider the left face of the box in
the y–z plane and assume the atom is moving only in the negative x-direction. This simplifies the
elastic bounce back into the positive x-coordinate, although in general, the assumed random direction
of a molecule would produce a series of random paths throughout the 3D volume of the box. Our
thinking is also constrained by a convention in thermodynamics that ‘‘change¼ after� before,’’ so
we arbitrarily choose the molecule initially traveling in the negative x-direction so that (~vafter �~vbefore)
is positive in the derivation. Similarly, the box is cubical tomakeV ¼ L3, but the container could be of
any shape. Since we assumed the atom is in continuous motion and all collisions are elastic, it will
bounce off the wall and go in the reverse direction until it reaches the other wall and bounces back
again and so on. Since a change in momentum is a force, the collision with the wall causes the
(force=area) pressure. Since the collisions are perfectly elastic, the atom will bounce back and forth
rapidly. ‘‘Perfectly elastic’’ means that no momentum is lost in the collision, which is an approxima-
tion since a hot gaswill cool and lose energy, but it is a good approximation over a short period of time.
Thus, for convenience, we show the particle moving in the negative x-direction and then reversing:

dp

dt

����
A

¼ (mvx)after � (�mvx)before ¼ 2mvx:
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Even though collisions will occur on more than one face, we can calculate how long it takes before
another collision will occur at this face in terms of the velocity and the distance. This is based on the
familiar equation (distance)¼ (rate)(time), so that the time is the distance=rate in the denominator,

which flips up as the inverse,
#collisions

time
¼ vx

2L
. Then, the total number of collisions per unit time

on area A yields force=area¼ pressure. So far, so good. The next step

dp=dt

A

� �
¼ vx

2L

�  2mvx
L2

� �
¼ mv2x

L3
¼ mv2x

V
¼ force

area

is to multiply by the number of atoms to obtain the pressure as

N
fx
L2

� �
¼ P ¼ Nmv2x

V
:

The following step is an approximation usually used in a freshman presentation in that we note that
the motion of the atom is random and the velocity is a vector with three components in general. The
motion is random so all three components are favored equally, but at the moment we only need v2x .
If we use the dot product, we can get the square of the velocity containing all three equally weighted
components as

v2 ¼ (vxîþ vy ĵþ vzk̂) � (vxîþ vy ĵþ vzk̂) ¼ v2x þ v2y þ v2z :

Then, we say that if the motion is really random v2x ¼ v2y ¼ v2z and implies that v2 ¼ 3v2x and then,

we finally have the pressure as P ¼ Nm(v2=3)
V

or interestingly PV ¼ (1=3)Nmv2.

This is a lot like the ideal gas law except for the right side of the equation. Next, we recall from
physics that the average kinetic energy of an atom=molecule can be written as ke ¼ mv2=2, so we

can write PV ¼ 2
3

� �
N

mv2

2

� �
¼ 2

3
N (ke). We can also let N ¼ nNAv, so the arbitrary number of

atoms=molecules, N, can be rewritten as a number of moles n times Avogadro’s number NAv. Then,
if we define a molar kinetic energy as NAv (ke) ¼ (KE), we have the molar expression as

PV ¼ 2
3

� �
n(KE) ¼ 2

3

� �
n

NAvm�v2

2

� �
¼ 2

3

� �
n

M�v2

2

� �
. Note, we have introduced an average

square of the velocity as �v2 and the molar mass as M. At this point, we make an assumption

L

L

Y

L

X

Z

FIGURE 3.1 A single particle in a cubical box undergoing elastic collision with a wall.
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using the phenomenological ideal gas law, PV ¼ 2
3

� �
n(KE) ¼ nRT . Thus, equating some experi-

mental data to physical reasoning will be true if KE ¼ 3RT
2
¼ M�v2

2
. So, we have carried out a path

of reasoning ‘‘that is probably true’’ based on the ideal gas law, which we know is only true at low
pressure and high temperature, but let us see where this assumption takes us. First, solving this
equation for the velocity gives the result

v ¼
ffiffiffiffiffiffiffiffiffi
3RT
M

r
¼

ffiffiffiffiffi
�v2
p

:

This derivation is not very satisfying because we used a velocity that was not really averaged over
all orientations and the result depends on the phenomenological ideal gas law. We also note that the
resulting form of ‘‘v’’ is a scalar as the square root of a vector squared using the dot product and we
call it ‘‘vrms.’’ It is good that we obtain a scalar, but what does it mean to have a ‘‘root-mean-square’’
speed? However, we can use it to estimate the speed as for N2 gas at 258C to get some idea of
the KMTG velocities. Why not calculate this apparent speed in miles per hour (mph)? Note this is
a diatomic molecule and also the formula has no dependence on pressure, just temperature
dependence. We better check the units for R in this calculation.

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3(8:314� 107 g cm2=s2=�K mol)(298:15�K)

2� 14:007 g=mol

s !
3600 s=h

1:6093� 105 cm=mile

� �
¼ 1152:6mph:

Some things to note are that we need to use either the cgs or mks value of R, remember to double the
atomic weight of nitrogen, add 273.15 to the 8C, and recall that 1 mile¼ 1.6093 km. Let us do it
again in mks.

v ¼
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3(8:314 kg m2=s2=�K mol)(298:15�K)
2(0:014007� 10�3) kg=mol

s !
3600 s=h

1:6093� 103 m=mile

� �
¼ 1152:6mph:

That is a very high speed, v ¼ (1153miles=h)
5280 ft=mile

3600 s=h

� �
¼ 1691 ft=s, which is faster than a

small bore rifle bullet. The .22 LR Stinger is rated at 1435 ft=s. Two obvious questions arise. First, if
the molecules are that fast, why is the speed of sound much less at about 1125 ft=s or 768 mph? The
answer is that there are a lot of collisions between the gas atoms=molecules and some of the recoil
trajectories have backward components, thus slowing the average speed. The second has to do with
possible injury from ‘‘bullet molecules.’’ Fortunately, the actual mass of the ‘‘atomic bullets’’ is less
than 10�20 g, so it takes a lot of collisions to make the pressure variations we call ‘‘sound’’ that we
sense with our ears.

WEIGHTED AVERAGING: A VERY IMPORTANT CONCEPT

At this point, we would like to proceed to apply the KMTG to experimentally measurable quantities,
but we need a firmer foundation for the velocities and speeds of atoms=molecules in the gas phase.
The velocity based on the phenomenological ideal gas law is suspect because we know it may
not apply to high pressure and=or low temperature, so we need a more rigorous method. The
concept=principle of weighted averaging occurs in kinetics, statistical thermodynamics, and in
quantum mechanics, so we think this is more than just a ‘‘math interlude’’; it is a unifying principle.
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In this author’s experience, this concept needs to be identified in every place it occurs to help
students understand what is being averaged. First, let us consider a simple example of weighted
averaging. Suppose, we administer a midterm examination to a class of 15 students and record the
grades on a graph from the data (Figure 3.2). Although the example is a discrete distribution, we
have plotted the data so you can see a ‘‘distribution function’’ line, and we anticipate that if we had
grades in increments of 1 point and a class of 250 freshmen, the graph would be a smoother ‘‘curve’’
but still based on a discrete set of points.

We now come to a key idea, which the student should make sure he or she understands since we
will use it over and over in later applications. We introduce the symbol h i to denote an averaging
process, in this case a ‘‘weighted average’’ as shown in Table 3.1.

hGi ¼ 1(100)þ 2(90)þ 3(80)þ 4(70)þ 3(60)þ 1(50)þ 1(40)
1þ 2þ 3þ 4þ 3þ 1þ 1

¼
P

i niGiP
i ni
¼ 71:33:

Note that the symbol
P

i indicates a discrete summation over specific values. Also make sure you
note that we are weighting the Gi value by the number of times it occurs or is ‘‘weighted’’ in the
summation. To gain perspective, we could look at the graph distribution and use the weighting of a
given grade, say ni=15 to estimate the probability that a student would get a certain grade Gi. So far
that is sort of obvious, but the interesting point is that we have to divide ‘‘by the number of students
in the class’’ and in effect this ‘‘normalizes’’ the process to the average grade for just ‘‘one average’’
grade of a hypothetical single student. This ‘‘normalizing’’ process will be a key idea in several
applications in quantum chemistry as well as here for Boltzmann averaging. Next, we need to take
a side trip to the amazing discovery of Boltzmann weighted averaging and ask the question
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FIGURE 3.2 Hypothetical grade distribution in a class of 15 students.

TABLE 3.1
Weighted Average Grade of Class

No. of Students Grade

1 100

2 90

3 80

4 70

3 60

1 50

1 40

Weighted average (1070=15)¼ 71.33
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‘‘What would the weighting factor be if we are averaging a sample of a mole (6.022� 1023) values
for molecules and the range of values of some molecular property is (nearly) continuous?’’

We believe that Boltzmann probability weighting is one of the most ‘‘essential’’ concepts in this
whole text. We saw above that we can itemize the values of the thing we want to average, but we
also need to weight that value and the weighting can be considered as a probability. Boltzmann may
have considered a number of mathematical relationships before he ‘‘discovered’’ the formula, now
given his name. The basic consideration is that for 3D quantities such as kinetic energy, one needs to
merge the contributions in the various (x, y, z) directions in a way that will represent the total
probability. This follows the common sense understanding of probabilities in that if an event is
1=3 in x, 1=3 in y, and 1=3 in z, then the probability of the event simultaneously in x, y, and z is 1=27.
The idea that a probability product must also add energies leads to putting the energy expression in
an exponent where a product will add exponents. The properties of the natural logarithm base ‘‘e’’
were known for over 100 years when Boltzmann wrote his PhD thesis, so he chose that base,
realizing that separate probabilities in different coordinates would add in the exponent of a common
base. We should emphasize that the weighting number ni above is really the probability of the value
being weighted when you divide by the number of values. Boltzmann knew that ‘‘energy runs down
hill’’ so that higher energies are less probable. On the other hand, he also knew that higher
temperatures favor higher energies. Add those factors to your thinking and perhaps you will
come up with the same result as he did:

Boltzmann probability ¼ e�e=kT ¼ exp
�e
kT

� 
:

This amazing relationship came from Boltzmann’s consideration of all the above factors. We do not
actually know how Boltzmann thought of this relationship, and it was sheer genius at the time, but
we need to appreciate the several aspects of this very important mathematical expression. If the
temperature is constant, then a given probability is favored less as the energy e increases and makes
the exponential more negative. If the energy is constant, then a higher temperature makes it more
probable, while a lower temperature makes it less probable. Finally, if we have different forms of
energy such as (ex, ey, ez), the probabilities will add in the exponent to a common base, namely, e.
We should also appreciate that e is a microscopic energy on the atomic scale and that k ¼ R=NAv

is the ideal gas constant divided by Avogadro’s number NAv so k ¼ R=NAv ¼ 1:38� 10�16

erg=�K ¼ 1:38� 10�23 J=�K.
Our goal here is to simplify some topics but still treat the full details of the difficult material.

Instead of a cubical box, we can shift our attention to a spherical system and consider the motion of
atoms=molecules in any direction with a scalar speed v. Velocity is a vector quantity, which requires
both a scalar value and a direction. An automobile speedometer indicates only scalar speed and
needs to be accompanied by a compass reading to determine the direction needed to specify the
velocity of the automobile. Here, we can integrate over all angles (u,f) with the factor of (4p)
shown in the Mathematics Review and only consider the scalar speed v. We can follow the example
above of the average grade to set up the average kinetic energy of atoms=molecules in a spherical
system. Here, we clearly see that the thing we are averaging is (mv2=2) and the weighting
probability factor is the Boltzmann factor with e ¼ (mv2=2), assuming the only form of energy
the particles have is kinetic energy with essentially no potential energy. Actually, there should be an
expression of some form of potential energy when the atoms=molecules get very close, but we will
see that most of the time they are very far apart. This is called the ‘‘hard sphere’’ approximation.
Note that the denominator is needed to divide by all the possible values of the probability just as we
divided the weighted grades by the number of students in the class. Later, we will see that the
denominator is always the same in Boltzmann averaging these quantities over a spherical volume
and can be inverted (flipped) as a factor in the numerator. Here, we want to emphasize the idea of the
weighted average compared to the example of the class average grade.
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mv2

2

� �
¼

4p
ð1
0
e�

mv2
2kT

mv2

2

� �
v2 dv

4p
ð1
0
e�

mv2
2kT v2 dv

¼
4p

m

2

�  ð1
0
e�

mv2
2kT v4 dv

4p
ð1
0
e�

mv2
2kT v2 dv

:

At this point, we have to remind the reader of our agreement; the text will explain difficult topics in
simple ways, but the student still has to use scratch paper and write the notes over. Thus, we come to
two new integral forms, which need to be learned and used. These two formulas can be derived
using integration by parts but that is very time consuming in some cases, so it is acceptable to look
up various forms of integrals and use the results in tables. Some tables of integrals have thousands of
cases, but in this text, we really only need to learn three definite integrals, the two below and

ð1
0

x2p e�a
2x2 dx ¼ 1 . 3 . 5 . . . (2p� 1)

ffiffiffiffi
p
p

2pþ1a(2pþ1)
,
ð1
0

x(2pþ1) e�a
2x2 dx ¼ p!

2a(2pþ2)

one other, which will be useful in quantum chemistry, namely, the integral
ð1
0
xn e�ax dx ¼ n!

a(nþ1)
.

We will use these formulas many times in this text so that you will become accustomed to using
them. In the case at hand, we first note that the integrands have squared exponents to the base ‘‘e,’’
but the power of x in the integrand can be odd or even. Note also that in the exponent of the
Boltzmann factor, the value of a is squared relative to the value in the final answer. The formula for
the ‘‘odd case’’ (2pþ 1) can be checked if desired using integration-by-parts for a low value of the
exponent, but the ‘‘even case’’ (2p) is more difficult and one can wonder, where the factor of

ffiffiffiffi
p
p

comes from. Consider the basic integral I ¼
ð1
0
e�x

2
dx. Then, we have for the square

I2 ¼
ð1
0
e�x

2
dx

� � ð1
0
e�y

2
dy

� �
¼
ð1
0

ð1
0
e�(x

2þy2) dx dy ¼
ð1
0

ðp=2
0

e�r
2
r du dr, so that we can

integrate over the first quadrant in polar coordinates to obtain

I2 ¼ p

2

�  ð1
0

e�r
2
r dr ¼ p

2

�  �e�r2
2

" #1
0

¼ p

2

�  0� (�1)
2

� �
¼ p

4

and then I ¼ ffiffiffiffi
p
p

=2. When the even case is reduced to simpler form using integration-by-parts, the
final step will lead to the (

ffiffiffiffi
p
p

=2) factor. There will be problems at the end of this chapter to build
your skill in applying these formulas, but now we can apply the formulas to obtain the average
kinetic energy in the spherical system. Note that the 3D form of this integral will have
v2 sin (u)dv du df and after integrating over (u,f), there will still be v2 dv as the differential over v.

Then, we have noting
m

2kT

� �5
2¼ 2kT

m

� �5=2

etc:

 !

mv2

2

� �
¼ m

2

�  1 . 3 .

ffiffiffiffi
p
p
23

2kT
m

� �5=2
 !

1 .

ffiffiffiffi
p
p
22

2kT
m

� �3=2
 ! ¼ 3m

4

� �
2kT
m

� �
¼ 3kT

2
:

This result is comforting in that the direct application of Boltzmann averaging process produces the
same result as our previous phenomenological derivation from the ideal gas law. Further, we could
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perform the same sort of averaging to find the average value of hv2i, but we can obtain the same
value by rearranging the average of the kinetic energy to obtain the ‘‘root-mean-square’’ speed,ffiffiffiffiffiffiffiffihv2ip ¼ vrms. A more useful form is obtained by multiplying both numerator and denominator by
Avogadro’s number, so as to use the molar values of R and the gram molecular weight M.

mv2

2

� �
¼ 3kT

2
¼ m

2
hv2i so then

ffiffiffiffiffiffiffiffi
hv2i

p
¼ vrms ¼

ffiffiffiffiffiffiffiffi
3kT
m

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3kT(NAv)

m(NAv)

s
¼

ffiffiffiffiffiffiffiffiffi
3RT
M

r
:

An observant student should also note that if the average kinetic energy of particles in three
dimensions is (3kT=2), then one might expect that the kinetic energy is (kT=2) per dimensional
degree of freedom. This is called the law of equipartition of energy and postulates that each degree
of freedom in a given system will lead to an average energy of (kT=2). However, we will eventually
learn that it requires extra explanation in the case of vibrational energy at low temperature.

With that exercise in hand, we proceed to the main goal of finding the average speed v instead of
‘‘the square-root of the square.’’ Again, we can use Avogadro’s number to obtain a formula in terms
of mole quantities.

hvi ¼
4p
ð1
0
e�

mv2
2kT (v)v2 dv

4p
ð1
0
e�

mv2
2kT (v) dv

¼
4p

1
2

2kT
m

� �4=2
" #

4p 1 .

ffiffiffiffi
p
p
22

2kT
m

� �3=2
" # ¼ 2ffiffiffiffi

p
p

ffiffiffiffiffiffiffiffi
2kT
m

r
¼

ffiffiffiffiffiffiffiffi
8kT
pm

r
:

Thus, we obtain hvi ¼
ffiffiffiffiffiffiffiffi
8kT
pm

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8kTNAv

pmNAv

r
¼

ffiffiffiffiffiffiffiffiffi
8RT
pM

r
as the true average speed of the gas particles,

which is similar to the root-mean-square speed but not exactly the same, so we can compare

hvi ¼
ffiffiffiffiffiffiffiffiffi
8RT
pM

r
to

ffiffiffiffiffiffiffiffi
hv2i

p
¼ vrms ¼

ffiffiffiffiffiffiffiffiffi
3RT
M

r
:

By now, you should realize that the denominator of the averaging process used above is the same in
each case and refers to the number of particles being averaged. Consider the number N:

N ¼ 4p
ð1
0

e�
mv2
2kT v2 dv ¼ 4p

ffiffiffiffi
p
p

22
m

2kT

� 3=2 ¼ 2pkT
m

� �3=2

:

Here, 4p will disappear into the factor, but the average numerator will also require a 4p factor.
Thus, we can consider this Maxwell–Boltzmann ‘‘distribution function,’’ which can be written as

f (v) ¼ 4p
m

2pkT

� 3=2
e�

mv2
2kT v2.

You can sketch this function and note that at small values of v, the curve goes up rapidly as a
parabola in v, but at some point, the negative exponent starts to decline asymptotically back down
to zero. Thus, there must be a maximum in the distribution curve, which refers to the ‘‘most
probable’’ speed. In agreement with other texts, we will call this speed a. We can determine this

speed by setting the first derivative of f (v) ¼ 4p
m

2pkT

� 3=2
e�

mv2
2kT v2 to zero to find the maximum

where the slope must be zero. Note here that this will be a derivative of a triple product, but the
derivative of the constants will do nothing since they are indeed constants, and the derivative of a
constant is zero.
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df (v)

dv
¼ 0þ 4p

m

2pkT

� 3=2 �2mv
2kT

� �
e�

mv2
2kT v2 þ 2ve�

mv2
2kT

� �
¼ 0:

The first zero on the right side is due to the derivative of the constants and the other terms are due to

the product of v2e�
mv2
2kT . Strictly speaking, we see that this derivative can indeed be zero when v is

zero and again when v becomes very large in the negative exponent, but we are interested in the flat

spot at the top of the peak. Thus, we cancel out ve�
mv2
2kT to leave only

�m
kT

v2 þ 2
� 

¼ 0, and so we

find the most probable speed as a ¼
ffiffiffiffiffiffiffiffi
2kT
m

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kTNAv

mNAv

r
¼

ffiffiffiffiffiffiffiffiffi
2RT
M

r
.

It is difficult to graph f (v) ¼ 4p
m

2pkT

� 3=2
e�

mv2
2kT v2 when you insert the tiny mass ‘‘m’’ and

use the high velocities that occur. However, we can consider a simpler function that has the

same variable dependence by using f (x) ¼ e�x
2
x2 as shown in Figure 3.3. The derivative

df

dx
¼ �2x3 e�x2 þ 2x e�x

2 ¼ 0) xmax ¼ 1. We see on the graph that the maximum does indeed

occur at x ¼ 1, but the shape of the curve is asymmetrical and any weighted average using this
distribution will favor higher values of x. By analogy, Figure 3.4 shows that the shape of the
Boltzmann distribution is not symmetric and extends out to the higher speeds. However, the most
important result from the Boltzmann analysis is that now we know the true average speed:

Vmax ¼
ffiffiffiffiffiffiffiffiffi
2RT
M

r
ffi 1:414

ffiffiffiffiffiffi
RT

M

r
, hVi ¼ Vave ¼

ffiffiffiffiffiffiffiffiffi
8RT
pM

r
ffi 1:596

ffiffiffiffiffiffi
RT

M

r
, and

Vrms ¼
ffiffiffiffiffiffiffiffiffi
3RT
M

r
ffi 1:732

ffiffiffiffiffiffi
RT

M

r
:

FIGURE 3.3 Ludwig Eduard Boltzmann (1844–1906) was an Austrian physicist, who founded the fields of
statistical mechanics and statistical thermodynamics. (Image courtesy of Chemical Heritage Foundation
Collections.)
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We can graph the distribution if we define F(v) � f (v)= 4p
m

2pkT

� 3=2� �
¼ v2e�

mv2
kT

	 
� �
. For N2

at 258C, F(v) ¼ [v (m=s)]2 exp � (0:028014 kg=mol)(m=s)2v2

2(8:314 J=mol�K)(298:15 �K)

� �� �
and we calculate (Figure 3.5)

a ¼
ffiffiffiffiffiffiffiffiffi
2RT
M

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(8:314 J=mol �K)(298:15�K)

0:028014 kg=mol

s
¼ 1:327319� 106 cm=s ¼ 13:2732 km=s:

0
0.00E+00
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FIGURE 3.4 An asymmetric function with the same functional dependence as the Maxwell–Boltzmann
molecular speed distribution. With this simple function, we can see that the maximum is exactly at 1 and the
overall distribution is asymmetric to the high values.
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FIGURE 3.5 It is more difficult to identify the maximum using real data, but 13.273 km=s appears to be

correct for N2 at 258C. This is the distribution function without the factor of 4p
m

2pT

� 3=2
.

The Kinetic Molecular Theory of Gases 45



Now that we have the Boltzmann average speed, we can use it for applications that can be measured
experimentally to test the theory. Let us consider, gas atoms=molecules as hard spheres of diameter
‘‘d.’’ Let us imagine we could ride on an atom in the gas phase as one young lady in my class offered
to do based on her enjoyment of ‘‘bumper cars’’ at an amusement park. We can see trouble ahead for
her traveling at over 1000 mph.

At first, there is a lot of empty space to travel in, but eventually, there will be a collision with
another atom, even if the other atoms are motionless. In Figure 3.6, we imagine a cylinder swept out
by an atom=molecule of diameter ‘‘d’’ such that if there is another atom=molecule within that tube,
there will be at least a glancing collision or maybe a more direct collision. In 1 s, the number of
collisions in the zigzag ‘‘collision tube’’ will be

Z1 ¼ pd2vn*:

Let us define Z1 as the number of collisions a single sphere will encounter and n* (number of
spheres=cm3) as a unit of concentration. The effective swept area is pd2 because the minimum radius

for contact of two spheres is Rcontact ¼ d

2
þ d

2

� �
¼ d. However, the other spheres are not standing

still, they are also moving. We might try to find a way to average over all possible angles but there is
a simpler way. We should recall some previous physics experiment or demonstration that any vector
can be resolved into Cartesian components so that in principle each approach of two spheres can be
resolved into six possibilities: up, down, right, left, forward, and backward. Assuming all the
particles have the same average speed (the meaning of ‘‘average’’), a collision from the rear will
be as probable as a head-on collision, so these type of collisions roughly cancel out in terms of their
probability. By far, the most common type of collision will be a result of a right-angle collision
between two particles with the average speed. Thus, most of the approach speeds will be along the
hypotenuse of a triangle with two sides equal to the average speed or

ffiffiffi
2
p hvi instead of hvi.

This crude correction produces an improved approximate formula for the collision number Z1:

Z1 ¼
	 ffiffiffi

2
p
hvi
pd2n*:

The next question is to wonder how far our young friend can ride a gas particle before a collision
occurs. The quantity is called the ‘‘mean-free-path’’ or l here. If we know the average speed and the
number of collisions, then we can calculate l (Figure 3.7)

l ¼ hVi
Z1
¼ hViffiffiffi

2
p hVipd2n* ¼

1ffiffiffi
2
p

pd2n*
:

Perhaps, we realize that the idea of collisions is related to the rate of chemical reactions? It turns out
that the reaction mechanisms are more complicated than collisions between spheres, but it is certainly
true that molecules need to collide in some way in order to react as the necessary first step. If all the

d

λ

v

FIGURE 3.6 Swept cylinder during the mean-free-path.
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spheres are in motion with the average speed, to get the number of binary collisions, we should
multiply the Z1 collisions by the concentration of targets n*, but since it takes two spheres to cause one
collision, we should divide by 2. This ignores the fact that each sphere should not count a collision
with itself but that is a small number, which can be neglected compared with the total number of
binary collisions. We also note for future discussion of gas kinetics that the possibility of a three-body
collision is so improbable that it can be neglected. Thus, we have for the binary collisions

Z11 ffi Z1n*
2

� �
:

This is still theoretical, so we need some sort of measurement to confirm these assumptions.
Surprisingly, it is possible to construct a gas viscometer similar to the Ostwald viscometer for
liquids. If a sufficiently small diameter capillary tube is used, the time to force a given volume of
gas through that tiny cylinder will vary with the type of gas and gas viscosity can be measured
(Table 3.2). Such viscometers can be standardized using dry air with a relationship derived by the
former U.S. National Bureau of Standards [1].

h ¼ (145:8� 10�7)T3=2

T þ 110:4
poise:

Although, the type of viscometer in Figure 3.8 [2] has been used for years in teaching laboratories,
concern regarding the accompanying vapor pressure of mercury has eliminated this apparatus from
many laboratories. The main point of interest here is the tiny capillary tube through which the gas
sample is forced to flow by the weight of the mercury. The volume between marks ‘‘a’’ and ‘‘b’’ is
designed to be exactly 100 mL.

Although, it is interesting to consider the collision properties of gases, the reason we have
emphasized the Boltzmann average speed is to get to the measurable quantity of gas viscosity.
Consider a rectangular box as in Figure 3.9 that has two slits on the side for inlets from a gas source,
which has a temperature gradient in the vertical z-direction, so that the gas entering the upper slit is
warmer (faster average speed) than the gas entering the lower slit. Let us assume that the two
entrance slits are only two mean free path lengths apart and the temperature gradient along the left
side produces a velocity gradient as you increase the z-coordinate (dv=dz).

Assume the right side of the box is open to exhaust the gas. Now, consider the plane between two
(1 cm� 1 cm) sheets of gas coming through the slits. With apologies to the IUPAC Committee, we

V
√ 2

V

V

FIGURE 3.7 Assuming two particles (atoms or molecules) are traveling at an average speed of hVi and
approach each other at right angles, their effective speed of approach is

ffiffiffi
2
p hVi. Random angles of approach can

be resolved into right-angle components, so a reasonable approximation of the average rate of approach isffiffiffi
2
p hVi in all directions.
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TABLE 3.2
Viscosities of Selected Gases
at 1 atm and 3008K

Gas mPa s Micropoise

Air 18.6 186

Ar 32.9 329

HCl 14.6 146

H2 9.0 90

D2 12.6 126

H2O 10.0 100

D2O 11.1 111

He 20.0 200

Kr 25.6 256

N2 17.9 179

O2 20.8 208

Xe 23.2 232

CO 17.8 178

CO2 15.0 150

CH4 11.2 112

HCCH 10.4 104

H2CCH2 10.4 104

C4H10 7.5 75

Capillary

Dust cover

Splash bulb

Final mercury
level

R

B

T

b

a

Y

XTo gas supply
(with needle valve)

Q

Mercury

FIGURE 3.8 Gas viscometer. (From Shoemaker, D.P. et al., Experiments in Physical Chemistry, 6th Edn.,
McGraw-Hill Co., New York, 1996, p. 129. With permission.)
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use cgs units here because viscosity was derived historically in poise, which is a cgs unit and
because we want to emphasize the small domain of the process we are considering. The question is
how much vertical interaction is there between the two postage-stamp size sheets of gas as they
move to the right? We are only concerned with the few molecules in the upper layer that have
components toward the lower layer and the few molecules in the lower layer that have vertical
components moving up to the upper layer. The diagram shows that only 1=4 of the possible
directions will result in a transfer of molecules with differing velocities from one layer to the
other. Since the atoms=molecules have the same mass, the difference in speeds leads to a transfer of
momentum and that is a force, which leads to a small viscous drag fz.

We can itemize this momentum transfer between the two layers, which are separated by 2l using
the formal definition of the speeds due to the vertical gradient as vz ¼ (dv=dz)(zþ l) at the upper slit
and vz ¼ (dv=dz)(z� l) at the lower slit. By assuming 1 cm� 1 cm layers, we can write the
momentum transfer though a (1 cm� 1 cm) window between the layers. For the moment, ignore
the fact that we do not know the speed gradient (dv=dz) and write out the two momenta in the upper
and lower layers:

mv #¼ 1
4

� �
n*hvi dv

dz

� �
(zþ l),

� mv "¼ 1
4

� �
n*hvi dv

dz

� �
(z� l)

� �
,

________________________

m(Dv) ¼ 2
4

� �
n*hvi dv

dz

� �
(l) ¼ fz ¼ hviscx

dv

dz

� �
(1 cm2):

Thus, using our hypothetical ‘‘box with slits’’ we see that we can cancel the unknown gradient
(dv=dz) to obtain an expression for the viscosity of the gas as

hvisc ¼
1
2

� �
n*mhvil ¼ 1

2

� �
n*mhvi 1ffiffiffi

2
p

pd2n*

� �
¼ mhvi

2
ffiffiffi
2
p

pd2
¼ hvisc:

X

λ

λ

Gas at T– δ

Gas at T

Y

Z

2λ

1 cm

1 cm

FIGURE 3.9 Schematic showing momentum transfer between layers of gas under a thermal gradient.
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Example
Given the viscosity of CH4 is 11.2 mPa s (112 micropoise), calculate the effective diameter d, the
mean free path l, and the collision numbers Z1 and Z11 at 1 atm and 278C.

hvi ¼
ffiffiffiffiffiffiffiffiffi
8RT
pM

r
; h¼ 1

2

� �
mhviffiffiffi
2
p

pd2
; d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mhvi

2
ffiffiffi
2
p

ph

s
; M ¼ 12:0108þ 4(1:00785)¼ 16:0422g=mol,

n* ¼ 6:022� 1023=mol

22414 cm3=mol 300�K
273:15�K

	 
 ¼ 2:4463� 1019 molecules=cm3,

hvi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8(8:314� 107 erg=�K mol)(300�K)

p(16:0422 g=mol)

s
¼ 6:2922� 104 cm=s,

d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16:0422 g=mol

6:022�1023=mol

� 
(6:2922� 104 cm=s)

2
ffiffiffi
2
p

p(1:12� 10�4 g=cm s)

vuut ¼ 4:104� 10�8 cm ¼ 4:104A8 ,

l ¼ 1ffiffiffi
2
p

pd2n*
¼ 1ffiffiffi

2
p

p(4:104� 10�8 cm)2(2:4463� 1019=cm3)
¼ 5:463� 10�6 cm ¼ 546:3A8 ,

Z1 ¼ hvi
l
¼ 6:2922� 104 cm=s

5:463� 10�6 cm
¼ 1:1518� 1010 collisions=s,

Z11 ¼ Z1n*
2
¼ (1:1518� 1010 collisions=s)(2:4463� 1019=cm3)

2
¼ 1:4089� 1029 collisions=cm3 s:

We have rounded the numbers to four significant figures because 8.314 J=K mol is only given to
four places. Several results are especially worth emphasizing. First, the mean free path is more than
100 times the effective size of the molecule at 1 atm pressure; there is a lot of empty space in a gas at
1 atm. This is typical of conditions at 1 atm. Second, the effective diameter of a little more than
4.1 Å is an effective sphere equivalent shape of the methane molecule. Third, while the Z1 is high,
the Z11 value of over 1029 collisions=cm3 s is truly amazing. Is it any wonder that gas-phase
reactions are fast? One question, students often ask is how do you calculate n*? Here, we have
used the molar volume of 22.414 L¼ 22,414 mL at 0�C and 1 atm and corrected it with Charles law
for the temperature ratio of 300:273.15.

Finally, a comment is in order regarding the factor of 1=2 in the formula for h. A more complete
treatment by Pease [3] integrates over a hemispherical region of the upper and lower layers that
produces a factor of (5p=32) ¼ 0:49087, which is very close to the factor of 1=2 ¼ 0:5 used here.
Thus, we see that we are using a very good approximation.

SUMMARY

This chapter has involved a lot of numerical work as well as some new integral formulas to burrow
into the details of KMTG and the use of the Boltzmann principle. Now, we have a more detailed
understanding of gases somewhere between the idea of a flowing macroscopic fluid and the inner
electronic structure of molecules assuming the atoms=molecules are approximately small spheres.
We have learned that there is a lot of action going on inside a gas but there is still a lot of empty space.
Perhaps, the most important result of this consideration of the Boltzmann KMTG and gas viscosity is
a rough approximate determination of the size of atoms and molecules. In fact, the cgs angstrom unit
of 10�8 cm is well suited to the size of atoms and molecules and it is common in older texts, but the
modern SI unit is the nanometer, easily remembered as ‘‘ten-to-the-minus-nine-meter’’ unit. Since
the nanometer is in meters and angstroms are in centimeters, 1 nm¼ 10 Å. Therefore, a useful
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outcome of KMTG is a revelation about the actual size of atoms and molecules. Some may question
why we needed such an intellectual investment in the derivation of laminar viscosity, but the
application to polymer molecular weights is a valuable spin-off and some occasional chemical
engineers in the class should find the r4 dependence of flow rate important. However, that foundation
in the theory of laminar viscosity yielded a window into the whole Boltzmann KMTG and that alone
justifies the time spent in the derivation of Poiseuille’s law.

PROBLEMS

3.1 Compute hvi, vrms, and the most probable speed a for Ar gas at 258C and 1 atm pressure in mph.
3.2 Given the viscosity of N2 is 17.9 mPa s at 278C and 1 atm pressure, calculate d, l, Z1, and Z11

for this gas.
3.3 Given the viscosity of He is 20.0 mPa s at 278C and 1 atm pressure, calculate d, l, Z1, and Z11

for this gas.

3.4 Evaluate
ð1
0
x e�2x dx.

3.5 Evaluate
ð1
0
x5 e�3x dx.

3.6 Evaluate
ð1
0
x6 e�4x

2
dx.

3.7 Evaluate
ð1
0
x5 e�9x

2
dx.

3.8 Evaluate
ð1
�1

x5 e�9x
2
dx.

3.9 Evaluate
ð2p
0

df

ðp
0
sin (u)du.

3.10 Evaluate
ða
0
r2 dr

ð2p
0

df

ðp
0
sin (u) du.

3.11 Evaluate
ðþ1
�1

e�9x
2
x4 dx (note limits of integration).

3.12 Evaluate
ðþ1
0

e�9x
2
x5 dx (note limits of integration).

3.13 Evaluate
ðþ1
�1

e�4x
2
x3 dx (note limits of integration).

3.14 Evaluate
ðþ1
�1

e�4x
2
x6 dx (note limits of integration).

3.15 Evaluate
ðþ1
0

e�4xx6 dx.
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4 The First Law
of Thermodynamics

INTRODUCTION

In the previous chapter, we sharpened our computational skills and gained an appreciation for the
particle model of gases. We now turn our attention to matters of energy and energy flow according
to the laws of thermodynamics. In the Math Review chapter, we showed that energy can flow
between various forms of kinetic and potential energy but that overall energy is conserved and only
the form is changed. Many things can be said about thermodynamics. Mainly, thermodynamics
owes more to the steam engine than the steam engine owes to thermodynamics. That means that
Watt [1] and other inventors built steam engines and got them to work using raw mechanical
reasoning and then thermodynamics was developed=discovered to understand the principles of the
engine. We will try to help you gain a foundation of understanding if you will follow along and use
pencil and paper to write out some derivations rather than just read the text. It should be understood
that while physics majors develop expertise in electromagnetic theory far more than chemistry
majors, it is generally true that chemistry majors gain a better understanding of thermodynamics.
Chemical engineers use thermodynamics as their main expertise, although augmented by kinetics
and transport theory, so the chemistry professionals should take pride that thermodynamics is ‘‘their
thing,’’ their chance to shine in terms of the scientific method.

Thermodynamics is necessarily more abstract than the study of mechanical devices because it is
not always easy to see ‘‘heat.’’ You will soon see that thermodynamics is wonderful for providing
information about ‘‘after-minus-before’’ processes, but often it tells us little about the mechanism of
the process being considered. The good news is that we do not need to know the details of the
mechanism of a process, but the bad news is that often thermodynamics does not provide any means
to determine the mechanism. This adds to the mystery of thermodynamics since often one can
substitute an imaginary process with the same beginning and ending to obtain results without
knowing the real mechanism but you will not learn the mechanism. Overall, thermodynamics offers
sweeping principles that are important in all the sciences: chemistry, physics, astronomy, and even
biology. We will see that there is an ongoing dynamic between the tendency of energy to decrease
and a tendency of randomness to increase. Living systems are caught in this dynamic, so basic
metabolism is subject to thermodynamics.

HISTORICAL DEVELOPMENT OF THERMODYNAMICS

Although we want to treat thermodynamics from the beginning of quantitative relationships, it may
be worth mentioning more primitive ideas. Prior to 1798, one explanation of heat produced by
friction was that heat is the release of a substance trapped within materials. The substance was called
‘‘caloric.’’ Actually at a very shallow grade school level this idea has some merit but just what is
caloric, a liquid, a vapor, some sort of ‘‘igneous fluid?’’ The breakthrough came from an American
named Benjamin Thompson (1753–1814) (Figure 4.1) who was born in Woburn, Massachusetts. He
became a Major in the British Army at the age of 19 and he left with the British in 1776, after the
surrender of Boston. He later entered into the employ of the Bavarian Government and was given
the title of Count Rumford. His key experiment was performed in Munich where he was involved in
the manufacture of cannon [2]. In the 1700s, cannon were large solid pieces of cast brass or iron
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with no moving parts. The manufacture merely required boring a cylindrical hole with a large
cutting tool. Thompson showed that during the boring with a dull cutting tool, cold water in contact
with the cannon could be brought to a boil due to the heat generated by the boring process. He noted
that the heat released was proportional to the amount of work done on the cannon rather than the
amount of material removed, which would limit the amount of caloric released and there was no
mass change due to the release of ‘‘caloric.’’ A key aspect of his analysis was when he used a very
dull cutting tool to continually rub inside an unfinished bore hole for hours without further cutting.
It became clear that the work against the resistive friction caused the heat since no cutting was
releasing any possible ‘‘caloric.’’ On a personal basis Thompson was a person curious about
astronomy and other natural philosophy, so he used logic to formulate the connection between
heat and work. This change in interpretation brought about a connection between the mysterious
nature of heat and the more easily quantified concept of work. Count Rumford was a scientist of his
times remaining interested in astronomy, inventing an improved fireplace, and writing further
regarding the nature of flames and heat. His work is generally considered a breakthrough in the
formulation of thermodynamics because while heat certainly flows like a fluid you cannot capture
it in a bottle. Perhaps the mystery of the nature of heat is what still makes thermodynamics
challenging for students?

We need to define some terms so pay attention to the verbal meanings and the algebraic sign
conventions. While thermodynamics requires thoughtful reasoning, the level of required mathemat-
ics is relatively low and the computations are usually easy. Thermodynamics requires a type of
reasoning that is light in terms of mathematics but requires considerable use of logic.

DEFINITIONS

‘‘The system’’ is a region around some mechanical or biological device surrounded by an imaginary
boundary, mainly as an attention focusing region or bookkeeping device to define ‘‘inner’’ and
‘‘outer.’’ Ultimately, the ‘‘system’’ is the entire universe but thermodynamics can be used to focus
on a machine or localized region relative to some thermal boundary, which defines a region of
interest. An example would be a thermos bottle or a Dewar flask. The intention of a thermos bottle is
to provide a boundary wall against heat flow and experiments could be done within the thermos as
isolated from the ‘‘outside world,’’ but eventually heat will leak across that boundary relative to
conditions in the universe so time is involved to a degree. Again, we will analyze the events in an
internal combustion engine where the chemistry of the combustion is much faster than heat can flow

FIGURE 4.1 Count Rumford, Benjamin Thompson (1753–1814). (Courtesy of the Chemical Heritage
Foundation.)
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through metal walls of a cylinder, so we can model the events within the cylinder as a system
thermally isolated from the outside world for a short time interval. Then we can enlarge the domain
of the system and consider the energy and heat flow in a region around the engine to consider
the whole engine as a unit but isolated from the environment. Lastly, we might want to consider the
effect of various thermal devices on the whole planet Earth as an isolated system in space. Thus,
the concept of the ‘‘system’’ is largely a matter of choosing a region and a time interval on the part of
the person doing the analysis.

q> 0, heat energy is absorbed (by the system)
q< 0, heat energy is given off (to the environment)
w> 0, work done on the system by the environment, especially on a gas
w< 0, work done by the system on the environment; especially by a gas

U, internal energy of the system, contains molecular translational, rotational, and vibrational
energy relative to a preexisting energy scale of elemental formation in chemistry. Chemistry is
‘‘post-creation,’’ the elements are already here with their characteristic electronic energy levels and
chemistry studies interactions between elements. Chemical thermodynamics functions at a level of
ground state electronic energy levels of the elements. Nuclear chemistry involves a scale of internal
energy units relegated to physics.

D � (after – before), this is an order-specific convention definition in all of thermodynamics
DT ¼ 0 means ‘‘isothermal,’’ same temperature, constant temperature
Dq ¼ 0 means ‘‘adiabatic,’’ constant heat, no heat flow
DP ¼ 0 means ‘‘isobaric,’’ constant pressure, no change in pressure

Laboratory variables: P, V, T, n, SI units are bars, L, 8K, mol but other units do exist.

FIRST LAW OF THERMODYNAMICS

With the definitions and sign conventions above, we can state a simple form of the first law.

dU ¼ d=qþ d=w

In words, this means that the change in internal energy occurs as a change in heat and a change in
work. The question in applications is how much change there is in heat and work for a given change
in internal energy. Much of the credit for the first law is due to James P. Joule (1818–1889) [3] who
was an English physicist who carried out a number of important experiments relating heat and work.
An interested student should look up short biographies of Joule on the Internet to appreciate the
controversy surrounding his experiments. His several measurements of the relationship between
heat in calories and mechanical work (1 cal¼ 4.184 J) eventually triumphed over the ‘‘caloric’’
theory. A warning is needed here regarding the sign of the work term. Many older texts formulate
the work term as�dw because almost all the applications involve gases, which expand to push some
sort of a piston to do work. In the last 20 years or so almost all texts give the first law with þdw but
it all works out fine since compressing a gas is positive work while expanding gas is negative work
on the gas but positive work on the environment. This first example shows us that we need to think
about the way in which the system and environment act during a given process and worry over using
the correct sign of the variables.

Now it is the time to remind ourselves that energy is conserved and that U represents some
amount of energy involved in a given process. As such we can represent the change in energy as:

DU ¼ Uafter � Ubefore:
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Conservation of energy is a general principle and U is a state variable, which allows us to quantify
the amount of an energy change in a given process. This brings up the question as to how the
process is carried out. The conservation of energy means that it does not matter how the process is
carried out; all that matters is the difference between the end and the beginning of the process. We
say that U is a state variable and the change in U is independent of the path. However, we must be
careful regarding dq and dw since we know by common sense that surely dw is dependent on the
path in terms of what we call ‘‘efficiency.’’ A general definition of efficiency used in this text is

Efficiency � work done

energy change used
:

The concept of efficiency can be subjective since it usually implies ‘‘useful work’’ while work done
against resistive friction is still work but not ‘‘useful’’ and it generates heat as well. However, the
first law says there is a nonsubjective state variable called the internal energy, U, which obeys the
conservation principle even if dq and dw vary according to the process used.

Again the notion of efficiency involves the amount of heat energy dq, which might be just
sufficient for a given process or wasteful. Thus, dU is an ‘‘exact differential’’ and is independent of
path while dq and dw are not exact differentials. Some texts write d=q and d=w with a slash ‘‘=’’
through the ‘‘d’’ and the ‘‘w’’ but we only need the student to realize that dU is path independent
while dq and dw are not. This is important later because we will discover and use other state
variables that have the property of path independence nicely explained by Denbigh [4]. Suppose a
process involves two steps from (I)! (II)! (III), we can calculate the energy change for
(I)! (III) as:

ðII
I

dU þ
ðIII
II

dU ¼ (UII � UI)þ (UIII � UII) ¼ (UIII � UI):

Now suppose (III) is really just a return to (I), then we obtain a special condition for which we have
a special symbol indicating integration over a cyclic path with the result of zero,

þ
dU ¼ 0:

Other cyclic integrals might not be zero but a state variable will sum to zero; that is the main
characteristic of a state variable. The circle on the integral sign means that the process is carried out
over a cyclic process. We can offer a simple insight in that state variables are universal variables and
characteristics of the universe while q and w are subjective variables, which depend on how a
process is carried out.

A simple example is the idea of gravitational potential energy. If Jack goes up a hill and later
tumbles down, we can say two things from common sense. First, if he ended up where he started
there is no net change in gravitational potential energy. Second, we cannot tell how much Jack
wandered side to side or how much energy he may have expended in other forms, which may not
have been recovered in his descent since as far as gravity goes, the only change is between the
‘‘after-minus-before’’ height change. A third observation is that for this process the cycle of
gravitational energy satisfies the gravitational cyclic process whose ‘‘path integral’’ (the integrated
path) is zero. The path Jack took is typical of a thermodynamic process where we can evaluate the
beginning and end of the process but have no information on what happened along the path. If we

write the differential of U in terms of T and P we obtain dU ¼ qU
qT

� �
P

dT þ qU
qP

� �
T

dP:
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We will often write differentials in terms of only two laboratory variables assuming a constant
sample size in terms of moles n and that there is some unspecified ‘‘equation of state,’’ which links
P, V, T, n. However, another very important mathematical property is obtained if we use a different
path but remember that U does not depend on the path, so that we can realize another relationship,

q
qP

� �
T

qU
qT

� �
P

¼ q
qT

� �
P

qU
qP

� �
T

or
q2U
qPqT

� �
¼ q2U

qTqP

� �
:

This means that we are measuring the change inU by changing the temperature T and then changing the
pressure P, but this will be the same as changing the pressure P first and then changing the
temperature T. Check Introduction:Mathematics and Physics Review for a review of partial derivatives.

Suppose f (x, y) ¼ 2x e3y then
d2f

dxdy

� �
¼ d

dx
(6x e3y) ¼ d2f

dydx

� �
¼ d

dy
(2 e3y) ¼ 6 e3y because this

is a continuous function of both x and y. Most beginning calculus texts teach from a subset of
continuous functions so students might expect all second derivatives to have this property but we
will find examples in later chapters on quantum mechanics where the order of differentiation does
matter in some cases. This property is shared by state variables but within the possibilities of all
functions that property is not shared by all cross derivatives. That also means, and is dependent on
the fact, that state variables are continuous functions. This relationship between the second
derivatives will be very important in later discussions of thermodynamics. We again offer the
insight in that state variables are universal variables and characteristics of the universe while q and w
are subjective variables that depend on how a process is carried out. In summary, we observe two
important characteristics of state variables, the cyclic path integrals are zero and the mixed
derivatives are equal because the state variables are continuous functions.

ISOTHERMAL PROCESSES

Example
Calculate q, w, and DU for the reversible, isothermal expansion of 10 mol of ideal gas from 1 to 0.1
atm at a constant temperature of 08C.

For the purpose of problem solving in thermodynamics the word ‘‘reversible’’ holds special
meaning. It means that PV work is carried out in a way that the internal pressure of the gas is
opposed by an external pressure that is only infinitesimally different from the internal pressure by
such a small amount that the process could easily be reversed at any time by some small fluctuation.
Later we will see that by opposing the internal pressure with the maximum (minus just a tiny
amount) external pressure the process will carry out the maximum amount of work. However, for
students facing a problem ‘‘reversible work’’ means we can equate the internal and external
pressures (Pint ¼ Pext). In addition, we encounter here the other key word ‘‘isothermal,’’ which
means DT ¼ 0. Recall previous work on gas energy where the Boltzmann average energy of a
monatomic gas is (3RT=2), which only depends on temperature. Note a monoatomic gas will have
only three degrees of freedom implying (RT=2) energy each for (vx, vy, vz) degrees of freedom. Then
for a diatomic gas like N2 or O2 (air) there can also be two rotational degrees of freedom, each with
(RT=2) energy implying an energy of (5RT=2). A linear molecule can only rotate two ways but this
idea could be extended to polyatomic gases (CH4), which would lead to (3RT=2) for rotational
energy and a total of (3RT )=mol. We will see later that this idea of (RT=2) energy per degree of
freedom called the law of energy equipartition is an ideal that is good for translation and rotation but
is only realized for vibration at high temperatures. Thus, if the temperature does not change, the
energy does not change either. Therefore, we have a simple realization that DT ¼ 0 and DU ¼ 0
when the temperature is constant. Thus, for this problem we see that DU ¼ 0 ¼ dqþ dw so that we
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also have q ¼ �w. Now we come to the only (easy) mathematics in the problem. Note that we have
to think about the gas expanding so the work on the gas is negative,

w¼�
ðV2

V1

PextdV ¼�
ðV2

V1

nRT

V

� �
int

dV ¼�nRT ln
V2

V1

� �
¼�nRT ln

P1

P2

� �
, note use of Pext ¼ Pint:

Note we have used the inverse relationship between V and P for an ideal gas, which is appropriate
because the pressures in the problem are low. Now we can put numbers in the formula.

w ¼ �(10mol)(1:987 cal=K mol)(273:15�K) ln
1 atm
0:1 atm

� �
¼ �12,497 cal ¼ �52, 289 J:

Here we have used 1 cal¼ 4.184 J (a calorie is worth many jewels!) due to some amazing work by
James Prescott Joule. Joule [3] performed a careful experiment measuring the increase in tempera-
ture of water caused by a rotating a paddle wheel driven by falling weights in a measurable way.
Modern recreations of the experiment produce the value of 4.184 J=cal. Note the work on the gas is
negative. Then we use the first law equation to find the heat change.

DU ¼ qþ w ¼ 0 ¼ q� 12, 497 cal ¼ q� 52, 289J:

Thus we have DT ¼ 0,DU ¼ 0, q ¼ 12, 497 cal ¼ 52, 289 J ¼ �w. From this example, we see that
thermodynamics has some key words that have special mathematical implications and that we have
to watch the sign conventions carefully. Now let us consider another example where we change one
of the key words from ‘‘reversible’’ to ‘‘irreversible.’’

Example
Calculate q, w, and DU for the irreversible, isothermal expansion of 10 mol of ideal gas from 1 to
0.1 atm at a constant temperature of 08C.

Once again we have DT ¼ 0 and DU ¼ 0 for the same reasons as in the previous example.
However, there is a big change in the work because now we have to assume that if the final pressure
is only 0.1 atm then the complete expansion was against only that pressure of 0.1 atm. Thus, we set
up the first law as before

DU ¼ 0 ¼ qþ w ¼ qþ �
ðV2

V1

PextdV

2
4

3
5 ¼ q� (0:1 atm)

ðV2

V1

dV ¼ q� (0:1 atm)(V2 � V1):

Careful reading of the question reveals another key set of words as ‘‘ideal gas,’’ so PV ¼ nRT .

Thus, DU ¼ 0 ¼ qþ w ¼ q� (0:1 atm)
nRT

P2
� nRT

P1

� �
¼ q� (0:1 atm)(10RT)

P1 � P2

P2P1

� �
and

so we have a simple expression (easy mathematics!):

0 ¼ q� (0:1 atm)(10mol)(1:987 cal=�K mol)(273:15�K)
0:9 atm

(0:1 atm)(1 atm)

� �
¼ q� 4885 cal:

Thus, we have q ¼ 4885 cal ¼ 20, 438 J and w¼�q with 0 ¼ DU.
Note in particular that while the work is still negative due to the expansion of the gas (negative

work on the gas, positive work on the environment), the absolute magnitude is much less than the
reversible case and it is generally true that jwrev ¼ wmaxj as far as the work is calculated. The
maximum work will be obtained by a reversible process. The sign of the work is determined by
whether the system or environment is worked on. So as promised above, the mathematics of
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thermodynamics is not complicated but more thinking is required as to the sign of the quantities.
Thermodynamics encourages thinking more with less automatic use of formulas.

We have mentioned the relationship U ¼ (3RT=2) and DU ¼ (3R=2)DT . For a Boltzmann
atomic gas, we can take the derivative with respect to temperature while holding the volume
constant, recognizing that the laboratory relationships would involve P, V, T, n so maybe at least
one other variable is involved assuming that knowledge of two of the three variables would
determine the third under some equation of state for a fixed amount (moles) of gas:

dU ¼ qU
qT

� �
V

dT þ qU
qV

� �
T

dV ¼ CvdT þ qU
qV

� �
T

dV ,

assuming constant moles.
Thus, we introduce the new quantity CV � qU

qT

� �
V

. This also brings up the realization that for

an ideal gas we have
qU
qV

� �
T

¼ qU
qP

� �
T

¼ 0, since the energy of the ideal gas only depends on

temperature. In fact we can enlarge the definition of an ideal (monoatomic) gas to mean:

Ideal Gas

1. PV¼ nRT

2.
qU
qV

� �
T

¼ qU
qP

� �
T

¼ 0

We note that these conditions of energy independence from T and Pmay not be true for real gases or
even for the van der Waals gas but they are a reasonable approximation at low pressure and high
temperature where the ideal gas equation is good.

ENTHALPY AND HEAT CAPACITIES

Nextwe come to a practical problem:What happens even in household kitchenswhen a sealed container
is opened? Soft drinks are under some pressure in their containers, so pressure is released when the
container is opened. Old fashioned glass milk bottles brought in from the cold would often pop out their
cardboard top plugs when warmed in a kitchen environment due to the Charles–Gay-Lussac relation-
ship. Thus, we see opening storage containers involves a small but nonzero pressure push from the
interior of a container against the nominal one atmosphere pressure in the environment. This relatively
small pressure change occurs in the laboratory as well for every process that is open to the atmosphere
and we know that any PV product is energy, even if it is small. Thus, it has proven practical to define
another energy quantity called the ‘‘enthalpy,’’which is defined so that the atmospheric pressure and any
volume change due to ambient conditions is added to the internal energy as a definition:

H � U þ PV :

Note that H is also a state variable because the PV product is energy and U is already a state
variable. This does make some things more complicated even though the new terms may be small in
magnitude so that we now have:

dH ¼ dU þ PdV þ VdP:

Again we appeal to practical conditions in that the external atmospheric pressure is essentially
constant depending only on the weather variations. The atmosphere of the planet is so huge that
opening a pressurize vessel or a vacuum chamber will not change the pressure of the atmosphere.
Thus, we see that to a good approximation:

dH ¼ dU þ PdV þ 0:
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But according to the first law dU ¼ dq� PdV allowing for the sign convention of work done by=on
gases. Thus, we see that under atmospheric conditions we have

dH ¼ dq� PdV þ PdV ¼ dq,

and we can define a heat capacity under constant pressure conditions as:

CP ¼ qH
qT

� �
P

:

In your physics text, there was probably no mention of a difference in the heat capacity whether
volume or pressure is held constant and for solids and liquids there is little difference but we will see
here that it does make a difference for gases. Students are encouraged to learn this difference and be
able to prove it on a test because it is an excellent exercise in the meaning of partial derivatives in
thermodynamics. What follows is an example of being able to perform correct algebra but not
necessarily reaching the desired simplicity. We need to pay attention to the path through the partial
derivatives and gain facility in their manipulation.

(CP � CV ) ¼ qH
qT

� �
P

� qU
qT

� �
V

¼ qU
qT

� �
P

þP
qV
qT

� �
P

þV
qP
qT

� �
P

� qU
qT

� �
V

:

Please note that
qU
qT

� �
P

6¼ qU
qT

� �
V

, they are not the same. In addition, we can recognize that

qP
qT

� �
P

¼ 0 by definition (there is no variation in pressure if the pressure is constant). Next we need

to remember that P, V, T are all related by some state function so we need to write

dU ¼ qU
qV

� �
T

dV þ qU
qT

� �
V

dT

and that

qU
qT

� �
P

¼ qU
qV

� �
T

qV
qT

� �
P

þ qU
qT

� �
V

qT
qT

� �
P

:

With our goal of trying to make things simple we could ask why we expanded dU in terms of
T and V, leaving P to be determined by some unspecified state function. The reason is that we want

to eliminate
qU
qT

� �
P

, which is the strange quantity we cannot see any easy way to measure in the

laboratory. Thus, we expand dU in terms of the other variables and then impose constant P
conditions. While this statement seems abstract here, it is helpful when writing this derivation to
understand why we choose to expand dU in terms of T and V.

Of course
qT
qT

� �
P

¼ 1 and we can substitute
qU
qT

� �
P

into the (CP � CV ) equation. That leads

directly to the new equation as

(CP � CV ) ¼ qU
qV

� �
T

þP

� �
qV
qT

� �
P

þ qU
qT

� �
V

� qU
qT

� �
V

:
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So far this is a general equation and we will use it more later, but at this point let us take a short cut
and specify that we are using an ideal gas with the extended definition given above.

Then we can use the relationship that
qU
qV

� �
T

¼ 0 and cancel the last two terms we are left with

(CP � CV )Ideal ¼ [0þ P]
qV
qT

� �
P

and V ¼ RT

P

� �
n¼1

so
qV
qT

� �
p

¼ R

P

� �
.

And thus for an ideal gas we have (CP � CV )Ideal ¼ P
qV
qT

� �
p

¼ P
R

P

� �
¼ R. This is only

for an ideal gas but it means that if U ¼ 3
2

� �
RT then CV ¼ qU

qT

� �
V

¼ 3
2

� �
R so that

CP ¼ 3
2

� �
Rþ R ¼ 5

2

� �
R. Now we can add to the properties of an ideal gas.

1. PV ¼ nRT

2.
qU
qV

� �
T

¼ qU
qP

� �
T

¼ 0

3. CP � CV ¼ R

ADIABATIC PROCESSES

Next we come to another key word in thermodynamics, ‘‘adiabatic.’’ Under some circumstances
q ¼ 0. One way to achieve this condition is to surround the ‘‘system’’ by a nonconductive layer of
insulation such as a vacuum layer (Dewar flask, thermos bottle) or use some sort of glass wool or
fiberglass mat around the system as is done with modern refrigerators. Another method is to carry
out the process quickly because heat flow tends to be relatively slow. For instance you can put a
metal poker into the hottest part of a fireplace for a few moments because the heat will not be
conducted up the metal shaft to your hand in the short time it is in the heat. Another more dramatic
process is in the combustion chamber of an internal combustion engine. Although such engines
appear to be moving rapidly, the explosion of fuel in such an engine is much quicker than the
motion of the mechanical parts. For instance an internal combustion engine (ICE) of the four-cycle
type (intake, compression, power, exhaust) requires two full revolutions per explosion. Thus, an
ICE engine running at a typical 3000 revolutions=minute (rpm) experiences a power stroke duration
of about 1=2 of the second revolution of the full four steps, two revolution cycles, so the mechanical

time for the explosion is about
(60 s=min )

(3000 rpm)
¼ 0:020s=rev and only about half of every other cycle is

the power stroke so the mechanical time for the explosion is about 0.01 s. That is a very long time
compared to chemical reactions in the gas phase. We know from the previous discussion of the
Boltzmann KMTG that the binary collision number can be of the order of (1028=cm3 s) at 1 atm
pressure so in a compressed gas the collision rate will be even higher. Thus, chemical considerations
are needed to find a fuel whose burn time more nearly matches the mechanical timing of the engine.
A combustion reaction that is too fast for the mechanical parts of the internal combustion engine
causes a noticeable sound described as a ‘‘ping’’ or ‘‘knock’’ in the engine and can damage the
internal parts of the engine.

For the sake of thermodynamics let us consider a diesel engine. The diesel engine was developed
by Rudolf Diesel (1853–1913) who received an initial patent in Europe in 1893 and a U.S. patent in
1898 for an internal combustion engine, which used high compression of air to ignite almost any
combustible fuel including crude oil. While he was involved in patent disputes, it certainly seems he
was the prime inventor of the documented engines. However, there is evidence that a similar
principle has been in use for unrecorded ages by Fiji natives as a fire starter illustrated by a wooden
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device using rapid compression of air to ignite tinder shown as a modern version in Figure 4.2. We
calculate a typical temperature for such a compression later.

In Figure 4.3 [5] we can see some details of a diesel engine illustrating the heavy design and the
lack of a spark plug. It is common for diesel engines to use compression ratio of 22:1 or more and
some of the technical design is in the inverted hemispherical combustion chamber shape in the top
of the piston. The compression ratio (CR) is the total volume swept out by the movement of the
piston from the lowest position to the top position plus the volume of the small combustion volume
(in the top of the piston here) divided by the volume of the combustion chamber,

CR ¼ Vswept þ Vcomb

Vcomb

:

Some of the early diesel engines destroyed themselves due to the high compression stresses, which
led to stronger, heavier designs. Although there is no electrical spark apparatus it should be pointed
out that the small rotating bump labeled ‘‘camshaft’’ is the effective brain of the device in that it
regulates the timing of the opening and closing of the spring-loaded valves (there are separate lobes
for intake and exhaust valves). In a modern engine, there would also be some mechanical
synchronization of the fuel spray some time after the closing of the intake valve. It is likely both
valves would be closed when the piston is traveling up in the cylinder to compress the air rapidly
and then the fuel will be sprayed into the combustion chamber when the air is at the highest
temperature. In modern internal combustion engines, including diesel engines, much of the high
technology would be optimized to tight tolerances in the shape of the camshaft lobe (bump). The
opening of the exhaust valve by the camshaft also has to be timed to allow exit of exhaust gases after
completion of the power stroke of the explosive expansion but then close about the time the intake
valve opens to admit a new charge of air. Since the engine may typically be operating at 3000 rpm or
faster up to 5000 rpm, considerable engineering research has gone into machining=grinding the
shape of the camshaft ‘‘bump’’ to optimize the timing of valve operation in the four-cycle sequence.

The ideal fuel for a diesel engine is cetane (n-hexadecane, C16H34) with a linear chain structure,
which is essentially double the molecular weight of octane (C8H18) used in gasoline. Other related
fuels can be burned in diesel engines but there is an interesting contrast with gasoline engines.
Gasoline engines (with spark plugs) need a highly branched octane (2,2,4-trimethyl pentane,

FIGURE 4.2 A modern ‘‘fire piston’’ based on an ancient device used by natives of the South Pacific to start
fires. It is said that Rudolf Diesel was inspired to invent the diesel engine after learning of this device. (The
picture is from Wilderness Solutions at http:==www.wildersol.com=. With permission of Mr. Jeff Wagner,
proprietor of that company.) This picture shows the small hollow in the tip of the piston shaft where tinder is
inserted prior to one quick thrust of the plunger into the wooden cylinder. This model shows the original wound
string design but other models use a modern rubber O-ring. Mr. Wagner estimates temperatures of about 8008F
are achieved in this wooden device.
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isooctane) to burn slower than the linear n-octane while the heavier diesel fuel needs to use n-cetane
or similar faster burning fuels. This is an interesting problem in combustion chemistry to match the
rate of the combustion to the mechanical timing of the engine. Early diesel engines characteristically
produced a sooty exhaust of incompletely burned fuel but in the last 5 years design modifications
have produced diesel engines that have much cleaner exhaust.

The diesel engine is a very good example of a quasi-adiabatic process. Yes, the engine does get
hot and requires a system of cooling water, but it is the air that enters the engine on each cycle that
we will consider. We only need the first law here to start the analysis:

DU ¼ 0þ w:

Main
bearing

Crankpin

Cylinder
liner

Valve spring
Exhaust valve

Exhaust
manifold

Cylinder
head

Frame

Water
jackets

Piston
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Bearing cap
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Crankshaft

Crankpin bolt

Connecting rod

Camshaft drive

Camshaft

Fuel pump

Fuel nozzle

Push rods

Inlet manifold

Inlet valve
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FIGURE 4.3 Detail of diesel engine design. (From Kates, E. J., Diesel and High-Compression Gas Engines,
Fundamentals, 2nd Edn., American Technical Society, Chicago, IL, 1965, 8th printing 1966, p. 41. With the
permission of Power Magazine.)
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Next we use what we have learned about heat capacities and the sign convention for work
done on=by a gas to write

dU ¼ nCV dT and dw ¼ �PdV ¼ � nRT

V
dV :

Next we use a trick due to the nature of U as a state variable. While heat and work depend on the
way the process is carried out, we should recall that DU ¼ Uafter � Ubefore, so we can imagine a
process that is idealized and as long as it has the same ‘‘before’’ and ‘‘after,’’ we can calculate
DU ¼ Uafter � Ubefore for that process and get the same answer as the real process that has the same
beginning and ending. We can only do this for state variables as for U and H but we will soon learn
there are several state variables that satisfy this ‘‘after-minus-before’’ property. With that informa-
tion we assume that the compression of the air is carried out reversibly so that we can use the idea
that Pint ¼ Pext. Then using the first law we can write

nCV dT ¼ �nRT dV

V
,

which is a differential equation but we can get rid of the differentials by integrating over the (T,V )
changes in the process. (Drag T from the right numerator to the left denominator, cancel n and then
integrate.)

ðT2
T1

CV
dT

T
¼ �R

ðV2

V1

dV

V

2
4

3
5
n¼1

:

Now recall the integral (which we will use often)
ðx2
x

dx

x
¼ ln

x2
x1

� �
and integrate both sides of our

equation to obtain
CV

R

� �
ln

T2
T1

� �
¼ � ln

V2

V1

� �
¼ ln

V1

V2

� �
. Now take the anti-ln of the whole

equation and raise the T-ratio to the
CV

R

� �
power to find

T2
T1

� � CV
Rð Þ
¼ V1

V2

� �
or perhaps as

V1T
CV
Rð Þ

1 ¼ V2T
CV
Rð Þ

2 . Some texts stop here but this is not our favorite form of analysis for a diesel
engine. We can show an example as an aside to illustrate the important application of adiabatic
nozzle expansion for low-temperature spectroscopy. Much of the history of this technique is
included in the Nobel Address of J. B. Fenn [6].

ADIABATIC NOZZLE EXPANSION SPECTROSCOPY [7]

A recently discovered way to simplify complex electromagnetic spectra of molecules is to sweep a
high-pressure stream of He gas across the sample and carry it to exit into the sample chamber of a
spectrometer at a much lower pressure (nominally 1 atm) whereupon the He and the sample will
drastically cool and this innovation in spectroscopy has resulted in some remarkably sharp spectral
details being resolved in otherwise broad spectral blurs at room temperature. However, the He must
be precooled to below 518K, which is its Joule–Thomson inversion temperature. For simplicity we
can consider N2 gas to illustrate the same point.
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Example
Consider the expansion of 100 mL of N2 gas at 100 atm in a gas bottle at 308C to 1 atm of pressure
through a nozzle so rapidly as to achieve an adiabatic process. What is the temperature of the
expanded N2 if the final volume is 10 L?

N2 is very close to a diatomic ideal gas, so we use CV ¼ 5
2

� �
R,

3R
2

translation plus
2R
2

rotation

� �
and raise the whole equation to the

R

CV

� �
power to find the

ratio of the temperatures as
T2
T1

� � CV
Rð Þ
¼ V1

V2

� �" #	 R
CV



to solve for the ratio of temperatures as

T2
T1

� �
¼ V1

V2

� �	 R
CV



, so we find that T2 ¼ T1

V1

V2

� �	 R
CV



¼ (303:15�K)

0:100
10:0

� � 1R
2:5Rð Þ
¼ 48:046�K.

This rapid adiabatic expansion is sufficient to cool the nitrogen to below its boiling point of 778K,
so this is a way to make liquid nitrogen. There is a temperature for each gas called the Joule–
Thomson inversion temperature and cooling occurs if the initial temperature is below that tempera-
ture but the gas heats upon expansion if the initial temperature is above the inversion temperature.
At room temperature He is above its inversion temperature and will actually heat up upon
expansion. Although there is also a pressure effect, there are absolute temperatures for this effect.
For He the temperature is 518K, for H2 2028K, for N2 6218K, and for O2 it is 7648K (see discussion
at http:==en.citizendium.org=wiki=Joule-Thomson_effect). Thus, air (N2þO2) can be liquefied by
adiabatic expansion starting from room temperature and 1 atm, but He and H2 must be precooled to
below their Joule–Thomson inversion temperatures.

DIESEL ENGINE COMPRESSION

Now back to the diesel engine. We start from V1T
CV
Rð Þ

1 ¼ V2T
CV
Rð Þ

2 and assume air is close to an ideal
gas, at least initially, and allow for experimental measurement of CV and CP. Although we will see
that CV and CP have to be measured experimentally since it is a mixture of gases (mostly N2 and O2),

air does behave like an ideal gas up to about 100 atm. Thus, we can substitute T ¼ PV

nR
to obtain

V1
P1V1

nR

� � CV
Rð Þ
¼ V2

P2V2

nR

� � CV
Rð Þ
:

This equation can be rearranged and raised to the
R

CV

� �
power to obtain an equation useful

to understand the main principle of the diesel engine. Please note that we will define a new

number as g ¼ CP

CV

� �
and use the ideal gas relationship that CP ¼ CV þ R and

CV

R
þ 1 ¼ CV

R
þ R

R
¼ CV þ R

R
¼ CP

R
.

Thus,

V
CV
R þ1ð Þ

1 P
CV
Rð Þ

1 ¼ V
CV
R þ1ð Þ

2 P
CV
Rð Þ

2 ,

so raise the whole equation to the
R

CV

� �
power. Finally we reach V

CP
Rð Þ

1 P
CV
Rð Þ

1 ¼ V
CP
Rð Þ

2 P
CV
Rð Þ

2

� �	 R
CV




and P1V

	
CP
CV



1 ¼ P2V

	
CP
CV



2 or P1V

g
1 ¼ P2V

g
2 .
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This formula is the preferred formula to calculate=estimate the temperature of a gas under
adiabatic compression and we will become familiar with it after working out some problems.
Suffice it to say that when you hear the word ‘‘diesel’’ you should think of P1V

g
1 ¼ P2V

g
2 .

Yes, we have made some approximations and will need to make a few more, mainly in the
assumption that air remains an ideal gas up to about 100 atm, but this method is sufficiently accurate
to show that the diesel compression can raise the temperature above the flash point (FP) of most
fuels. The FP of a liquid is the minimum temperature at which the vapor of the liquid will form an
ignitable mixture with air and for cetane=hexadecane, the CRC Handbook [8] reports this as 1368C,
well below a temperature easily reached in diesel engines.

Example
Calculate the temperature of air compressed adiabatically in a one-cylinder diesel engine from 1040
cc at 258C to 40 cc. Given that CV ¼ (5=2)R, compute Q. W, DH, and DU for this compression.

‘‘Adiabaticþ diesel’’ means P1V
g
1 ¼ P2V

g
2 . g ¼

CP

CV
¼ CV þ R

CV
¼

5
2

� �
Rþ R

5
2

� �
R
¼ 7

5
¼ 1:40.

Assume air is an ideal gas.

P1 ¼ 1 atm P2 ¼ ?

V1 ¼ 1040 cc Q ¼ 0! V2 ¼ 40 cc

T1 ¼ 298:15 �K T2 ¼ ?

P2 ¼ P1
V1

V2

� �g

¼ (1 atm)
1040 cc
40 cc

� �1:4

¼ 95:71 atm, then
P1V1

T1
¼ P2V2

T2
and T2 ¼ T1

P2V2

P1V1
¼

(298:15�K)
(95:71 atm)(40 cc)
(1 atm)(1040 cc)

¼ 1097:54�K, which is very hot, DT ¼ 799:39�K.

Then, even though we assumed an imaginary ‘‘reversible’’ path, the
DU ¼ Uafter � Ubefore ¼ nCV (DT), so we need to calculate n, the number of moles.

n ¼ 1040 cc

(22, 414 cc=mol)
298:15�K
273:15�K

� � ffi 0:04251mol, so then

DU ¼ nCVDT ¼ (0:04251mol)(2:5)(1:987 cal=�Kmol)(799:39�K) ¼ þ168:81 cal:

Similar reasoning can be used for DH ¼ nCPDT , which would be the same as for DU except

for
CP

CV

� �
¼ g so we use the same reasoning with (after–before) and this implies that

DH ¼ g(DU) ¼ (1:4)(168:81) cal ¼ þ236:33 cal. This calculation of DH is mysterious because
we have not used any detailed information about the process, but we get the answer from DU using
the powerful (after–before) principle since H is a state variable. Now what about W? We assumed
Q ¼ 0, so by the first law we have DU ¼ 0þW , so that means that W ¼ þ168:81 cal. Note that
W is positive since we certainly did work ON the air. An added comment is that the effective

compression ratio of this engine is
1040 cc
40 cc

� �
¼ 26. This is a bit higher than most diesel engines,

which tend to have compression ratios near 22:1, but the temperature will certainly be high enough
to ignite most fuels for any compression ratio greater than about 16:1.
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CALORIMETRY AND THERMOCHEMISTRY

Now that we have analyzed some hypothetical applications of the first law of thermodynamics we
should ask how these principles apply to chemistry and chemical reactions. The key concept is that
elements react to form compounds, presumably to form lower energy situations, but that is not
always the case as we will see in the next chapter. Even so, most reactions do result in a lower
energy. Since energy is involved, we may think that DU is the key to thermochemistry, but we have
already mentioned that often pressure and=or volume changes occur during a reaction. Even though
these may be small effects, we know that we should work with DH. Thus, a question for an
experimental science like chemistry is ‘‘How can we measure DH?’’ Calorimetry involves mostly
simple mathematics but is really the main part of thermochemistry. Careful measurements of
DHcomb are the backbone of thermochemistry.

Chemistry is the science of reactions between elements to form compounds. Physicists can
ponder over the creation of the universe and the big bang theory but chemists start with the
assumption of the existence of elements. Actually heavy elements are formed from lighter elements
such as H and He in the interior of stars and then are distributed throughout space when such stars
explode. Every atom (with the possible exception of hydrogen) in your body was once inside a star.
The convention assumed in thermochemistry is that ‘‘the elements are here and chemistry is the
rearrangements of these elements to form compounds so the energy changes are relative to existing
elements.’’ In the larger picture of science, we know that nuclear chemistry does occur but for the
purpose of chemistry on planet Earth we assume that the energy of formation of elements in their
most abundant form is zero! (For some elements we use the most abundant form such as graphite
for carbon.) We further specify a ‘‘standard state’’ for the element at 1 bar pressure and
DH0

f (1 bar, 298:15
�K) � 0; older texts used the slightly different value as DH0

f (1 atm,
298:15�K) � 0. Older texts standardize on 1 atm pressure but the newer units specify 1 bar,
which is very close to 1 atm (1 atm¼ 1.01325 bar). The standard state is a very important
convenience so that we can tabulate the energy changes of reactions of elements to form compounds.

Another convenience on planet Earth is that our atmosphere has a lot of oxygen that is second
only to fluorine in electronegativity; it is very reactive as firemen know all too well. Thus, almost
any material will react with oxygen and give off a measurable amount of heat. This type of
measurement is called combustion calorimetry and requires a special piece of equipment based on
a high-pressure reaction container. One minor consideration in the use of a closed container is that
the energy change is measured as DU ¼ CVDT but we want DH. In Figure 4.4 [9], we see the cross
section of the total calorimeter device.

The smaller container in the center of the diagram is a heavy stainless steel reaction chamber
(Figure 4.5) [9] with thick walls and a screw-type lid with a rubber gasket so that it can be
pressurized to about 30 atm of pure O2 along with a small sample of about 0.5 g (carefully weighed).
There is also a simple direct current electrical connection to provide ignition of the sample in the
oxygen and many materials will ignite in pure O2. A carefully measured amount of water (usually
2000 mL) surrounds the combustion vessel and is continuously stirred with a small propeller. In
addition, the ‘‘water bucket’’ containing the reaction vessel is within a double-walled fiberglass
container providing about 1 in. of insulating air space to further isolate the combustion reaction in a
thermal sense. The main data are obtained from a very precise thermometer in the water as to the DT
for the increase in temperature from the heat of the reaction in the sealed pressure container.
Usually, this special thermometer covers the range of about 208C–358C in small increments of
0.028. Note the heat given off by the reaction chamber is absorbed by the 2000 mL of water, so there
is a sign change in the heat flow. Next we address the small correction to convert a DU value to a
DH value using the definition DH ¼ DU þ D(PV) and D(PV) � (Dngas)RTave, noting that we want
to use the apparatus for a small amount of n moles.

nDHcomb ¼ �CVDT þ (DngasRTave)n:
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We want to obtain a DH value for 1 mol so we have to multiply the equation by the number of
moles in the sample, n. The term shown as �CVDT is the temperature change multiplying the heat
capacity CV of the reaction chamber at constant volume (since we do not want it to actually
explode we make the container strong and the sample small to avoid making a hand grenade). The
minus sign indicates the heat given out of the reaction chamber is taken in by the 2000 mL of
water whose temperature we measure. The whole chamber can be calibrated initially by sending a
known current through a metal wire of known resistance inside an empty container and using the
formula DU ¼ i2R for an electrical heating element. Then an easily purified, stable crystalline
material such as benzoic acid can be measured to establish a chemical secondary standard for later
routine use.

Example
After calibration with a timed amount of electrical current using DU ¼ i2R, it is found that a given
calorimeter has a heat capacity of CV ¼ 2569 cal=8C¼ 10748.7 J=8K (the size of 18C is exactly the
same as 18K). Then using this CV value exactly 0.600 g of benzene, C6H6, is burned in the same
calorimeter with an observed temperature rise of 2.3328C at an average temperature of 258C.
Calculate the DHcomb(25�C) for benzene.

0°C–30°C jacket
thermometer

(optional)

Stirrer

Bomb
(see Figure 4.2)

2 L water

Water
flow for
jacket

(optional)

Lead

Pail

Precision
thermometer
(graduated to

0.01°C or 0.02°C)

Motor
Ignition

lead

Belt

FIGURE 4.4 Heat of combustion calorimeter. (From Shoemaker, D.P. et al., Experiments in Physical
Chemistry, 6th Edn., McGraw-Hill Companies, Inc. New York, 1996, p. 153, With permission.)
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M¼ 6(12.0107)þ 6(1.00794)¼ 78.11184 g=mol, but we do not have a whole mole.
moles benzene¼ (0.600 g=78.11184 g=mol)¼ 0.00 7681294 mol

We need to make an approximation that even though the temperature changes by 2.3328C on the
centigrade scale the energy must be measured in absolute Kelvin degrees so if the initial temperature
of the water is carefully started below 258C at say 248C and the final temperature is 26.3328C, the
average temperature would be ((24þ 26.332)=2)¼ 25.1668C or 298.3168K or essentially 258C for
the average temperature outside the reaction container. So if the initial temperature of the water is
about 248C the average temperature will be close to 258C. While this seems like a crude approxi-
mation, the uncertainty is really about (1=298.15)¼ 0.00335. Next we recall the thermodynamic
idea that even though the reaction in the combustion temperature may reach some high temperature
briefly, the water surrounding the container cools down the gases in the chamber to just 2.3518C
above the initial temperature, so the change in energy depends on the change in temperature and not
the highest temperature reached. Next we need to correct the DU value for the D(PV) term. First we
balance the combustion reaction.

C6H6(liq) þ 15
2

� �
O2(gas) ! 6CO2(gas) þ 3H2Oliq; DHcomb ¼ ?

Recall that the approximate volume of 1 mol of liquid water is slightly more than 18 mL and the
molar volume of benzene is about 90 mL but their sum is far less than the 22,414 mL value of

Close-fitting head (which
rests on a narrow

shoulder in the body)

Insulating liner of calorimeter

Knurled venting nut

Spring-loaded  check valve

Screw cap

Pan

Sample pellet

Rubber sealing ring

Fuse wire

Bottom of calorimeter pail

Spring-loaded ignition lead

Body of bomb

Insulated ignition lead

FIGURE 4.5 Cross section of the combustion chamber of heat of combustion calorimeter. (From Shoemaker,
D.P. et al., Experiments in Physical Chemistry, 6th Edn., McGraw-Hill Companies, Inc. New York, 1996,
p. 153. With permission.)
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a mole of gas so we neglect the volumes of any liquids or solids and estimate the D(PV) term using
only the change in the moles of gas, Dngas. Here we have the net of (6 – 7.5 mol)¼�1.5 mol of gas
during the reaction for 1 mol of benzene. Thus, we can compute DHcomb(25�C) after dividing
through by the number of moles.

DHcomb ¼ �CVDT

n

� �
þ (Dngas)(RTave)n

n

� �

So inserting the numbers, we obtain

DHcomb ¼ (�2569 cal=deg)(2:332�)
0:600 g

78:11184 g=mol

� � þ (�1:5mol)(1:987 cal=�Kmol)(298�K),

and so we find that

DHcomb ¼ �779, 934:7 cal� 888:2 cal ¼ �780, 822:9 cal ¼ �3266:9 kJ:

We can extract additional meaning from this result. First, the reaction is very exothermic, a lot of
heat is given off since the number is large and the sign is negative. We easily convert calories to
joules using 1 cal¼ 4.184 J and we have rounded the value of Tave to 2988K since the actual
knowledge about Tave is only that it is near 258C and we see that the whole D(PV) term is much
smaller than the main DU term. Throughout this text we follow the policy of keeping all the digits
on our calculator until rounding to the least number of significant figures at the final answer. The
CRC Handbook [8] lists the experimental value as �3267.6 kJ.

This method for obtaining heats of combustion has been extended to many thousands of
compounds and lists of the values are tabulated (see Table 4.1) in several sources including the
CRC Handbook [8].

A hint of the usefulness of heats of combustion can be seen in that the heat of combustion for
H2 is the same as the heat of formation of water.

H2 þ 1
2
O2 ! H2O

Reactions other than combustion can be treated using a definition for the heat of a reaction:

DH0
rxn(298:15

�K) �
X

product�i
niH

0
f,i �

X
reactant�j

njH
0
f, j

Now we can see the usefulness of the definition of the heat of formation of elements being zero.

) DH0
rxn ¼ H0

f (H2O)� H0
f (H2)� 1

2
H0

f (O2) ¼ �285:8 kJ� 0� 0 ¼ �285:8 kJ:

Note that we have to use the stoichiometric coefficients from the balanced reaction along with the
molarH0

f values. It turns out that many of the heats of combustion and use of the definition of the heats
of formation of elements as zero lead to a whole series of heats of formation of compounds, which
have also been tabulated (see Table 4.2) at length in places like the CRC Handbook [8] for thousands
of compounds. This is possible due to the algebraic summation of enthalpy values. Notice that at this
point all reactions are considered to be at 258C. To summarize, heats of combustion can be used to
calculate heats of reactions which lead to standard heats of formation at 258C.
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HESS’S LAW OF HEAT SUMMATION

Now we come to a simple principle that is very important in thermochemistry, Hess’s law. Since
energy (enthalpy) can be treated quantitatively we can balance the energy of a reaction as well as the
mass. Not only that, we can add and subtract the enthalpies of several reactions. Suppose we want to
find out the energy change for the hydrogenation of acetylene to form ethane, we can use the heats
of combustion to find the enthalpy change for the hydrogenation step.

HCCHþ 5
2
O2 ! 2CO2 þ H2O; DH0

comb ¼ �1301:1 kJ
� �

� (þ1)

H2 þ 1
2
O2 ! H2O; DH0

comb ¼ �285:8 kJ
� �

� (þ2)

H3CCH3 þ 7
2
O2 ! 2CO2 þ 3H2O; DH0

comb ¼ �1560:7 kJ
� �

� (�1)
_______________________________________________________________________________

HCCHþ 2H2 ! H3CCH3; DH0
rxn ¼ [(�1301:1)þ 2(�285:8)� (�1560:7)]kJ ¼ �312:0 kJ

TABLE 4.1
Selected Values of Heats of Combustion,
DH0

comb (1 atm, 298)a

Compound DH0
comb (kJ=mol)

C (graphite) �393.5
CO �283.0
H2 �285.8
NH3 �382.8
H2NNH2 �667.1
N2O �82.1
CH4 �890.8
HCCH �1301.1
H2CCH2 �1411.2
H3CCH3 �1560.7
C6H6 �3267.6
CH3OH �726.1
CH3CH2OH �1366.8
CH3OCH3 �1460.4
CH2O �570.7
HCOOH �254.6
H3CCOOH �874.2
HCN �671.5
H3CNO2 �709.2
H3CNH2 �1085.6
Hg(liq) 0

HgO(red) �90.79

Source: Lide, D.R.,CRCHandbook of Chemistry and Physics, 90th Edn.,
CRC Press, Boca Raton, FL, 2009–2010, pp. 5–68.

a Note these values are at 1 atm not 1 bar (1 atm¼ 1.01325 bar).
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This result is actually pretty amazing in that we can use tabulated values of heats of combustion
to gain quantitative information on the energy of a hydrogenation reaction. To save space
we will not give as many examples of Hess’s rule as it deserves but it should be noted that
this is a very powerful technique in using tabulated values of a relatively easy measurement of
combustion reactions so that many different reactions can be treated. How do we do this?
Basically, you first write the reaction you want to treat and balance it. Then you write the
combustion reactions for all the species in the reaction of interest and finally multiply the
combustion reactions and their energies by factors which produce the mass balance when you
add up the reactant and product species. The only new idea here is that you can multiply a
combustion reaction by a negative factor to place the combustion reactant on the product side of
the mass and energy balance. In effect the chemical ‘‘yield arrow !’’ is treated like a
mathematical equal sign because enthalpy is balanced as well as mass. Notice that in the
example above the moles of CO2, H2O, and O2 all cancel out. That is the way to check your
calculation by making sure all species other than those in the reaction of interest cancel out.
Then all you have to do is treat the combustion energies algebraically using the factors you use
to balance the reaction of interest.

STANDARD HEATS OF FORMATION AT 298.158K AND 1 BAR PRESSURE

We have introduced this concept above and the concept is straightforward in the sense that chemists
work with elements that already exist and then consider the energy requirements to make com-
pounds. We show below only a few typical values relative to the elements and we expect the
energies to be negative but acetylene and ethylene curiously have positive heats of formation.
Acetylene and ethylene are stable compounds under most conditions near room temperature and
1 bar pressure but the thermochemistry tells us they are unstable relative to the free elements and we
say they are metastable with a hint that maybe they are quite reactive under some conditions. Note
that for carbon, graphite is the standard form.

TABLE 4.2
Selected Values of Heats of Formation H0

f in kJ
at 1 bar and 298.158K

Compound
H0

f (298:158K, 1 bar)
kJ=mol

S0f (298:158K, 1 bar)
J=8Kmol

H2 0 42.55

O2 0 205.152

CO �110.53 197.660

CO2 �393.51 213.785

Cgraphite 0 5.74

HCCH þ227.4 200.9

H2CCH2 þ52.40 219.3

H3CCH3 �84.0 229.2

CH4 �74.6 186.3

NH3 �45.94 192.77

HCl �92.31 186.902

Cl2 0 233.081

H2O �285.830 69.95

H2CO �108.6 218.8
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TEMPERATURE DEPENDENCE OF REACTION ENTHALPIES

Do all reactions occur at 258C? Of course not! Thus, we need a way to use H0
f values for reactions at

other temperatures. The hint of an approach is to note that CP ¼ qH
qT

� �
P

, that is, CP is the amount

by which H changes with temperature at constant pressure. In fact we can integrate CP over a range
of temperatures to correct H0

f for temperatures other than 298.158K.

ðT
298:15

CP dT ¼
ðT

298:15

qH
qT

� �
P

dt ¼
ðT

298:15

dH ¼ HT � H298:15:

Thus, HT ¼ H298:15 þ
ðT
298:15

CP dT . However, CP may depend on the temperature such as CP(T).

H0
T ¼ H0

298:15 þ
ðT

298:15

CP(T)dT :

Since we may want to use a CP value not at one of the tabulated temperatures we can fit a
polynomial to discrete values of CP in terms of T. Here ‘‘e’’ is simply the fifth numerical coefficient.

CP ffi aþ bT þ cT2 þ dT3 þ eT4

While it is possible to get a pretty good fit to most heat capacities with just a polynomial up to T3,
there are some heat capacities for which this is inadequate so we will report data here to T4 and we
will use recent data from the CRC Handbook [8] for the data points. As a justification for using the
T4 term we also show the polynomial fit to the CRC data for H2 (Figure 4.6) where we see that even

30.5

30

29.5

29
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Poly. (series 1)

Series 1

28.5

31

31.5

32
y = –5.261E–12x4 + 1.940E–08x3 – 2.299E–05x2 

      + 1.224E–02x + 2.678E+01

32.5

R2 = 9.992E–01

FIGURE 4.6 A fourth-order polynomial fit to heat capacity data for H2; data points from the CRC Handbook
in J=8K mol. Here x is the Kelvin temperature and we can see that even with a T4 term the fit is not perfect near
4008K and that R2 is very good but less than 1.000. However, the fit near 12008K is quite good.
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with the T4 term the fit is not perfect. We need that higher term to improve the smooth interpolation
of the heat capacity for any temperature from 3008K to 15008K. In bygone days, the T4 term would
have caused an extra hardship in the calculation we are about to do if one were limited to a slide rule
but today students use calculators and personal computers. In fact we are going to do one example,
which could easily be programmed to use a small data library of heat capacity polynomials and H0

298
values to automate the calculation of DHrxn(T) values in a few milliseconds on a personal computer.
This calculation is the sort of thing that is tedious to do by hand but easy with a computer. However,
a general practice in computer programming is to carry out a check of the method using at least one
pencil-and-paper calculation.

POLYNOMIAL CURVE FITTING

Most students have heard that ‘‘with enough parameters you can draw an elephant,’’ referring to a
danger in curve fitting. Parameterization is useful but can lead to nonsense unless applied with care.
The numerical value of the ‘‘coefficient of determination, R2’’ is quoted with the ‘‘trend line’’ fit in

Excel as a measure of how good the fit is to the data points. Here R2 � 1�
Pn

i (yi � fi)
2Pn

i (yi � �y)2
, where

�y �
Pn

i yi
n

, fi are the values of the trend line function at the respective xi values, and the yi values are

the actual data points from the set of (xi, yi) input. We see that the denominator of the second term is
a positive number as the square of the deviation of the yi points from the average value of (�y) and
represents the range of the yi values, but if the computed fi values of the trend line are all equal to the
yi values, the R2 value will be 1. Note there is a danger here in that a high-order polynomial can
exist, which will pass through every yi point but oscillate wildly between the points. A second
danger is that a tight fit for a set of data points can produce a polynomial, which will diverge greatly
from the data set when a value of x is used outside the range of the data set. The polynomial fit
should only be used for x values within the range of the data set used for the polynomial. Probably
the order of a polynomial fit should not be greater than (n=2) and the best way to fit a curve with a
polynomial is to ‘‘creep up’’ on the best fit by slowly increasing the order of the polynomial as R2

approaches 1 but make sure the order of the polynomial is less than the number of data points. Here
we fit a fourth-order polynomial (Figure 4.7) to 13 points.

The specific values of the heat capacities are tabulated in several places but the values used here
are from the CRC Handbook [8] presented as values for temperatures from 298.158K to 15008K.

35
y = 1.087E–12x4 – 8.024E–09x3 + 1.756E–05x2 – 9.687E–03x + 3.068E+0134

33
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Poly. (series 1)
Series 1

R2 = 9.999E–01

FIGURE 4.7 CP heat capacity of HCl from 298.158K to 15008K with a fourth-order polynomial fit to specific
data points in J=8K mol). The ‘‘coefficient of determination, R2’’ is very good here with a value of 0.9999,
which indicates a near-perfect fit of the polynomial. Here the x value is Kelvin T and T 4 is needed to achieve a
near-perfect polynomial fit.
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Few texts show how the polynomials are obtained but today it is easy to use a program such as
Microsoft Office Excel to fit a ‘‘trend line’’ polynomial (Figure 4.8) to the modern data given in the
CRC Handbook [8]. Options within the trend line permit scientific notation extended to four
significant figures (tap on the polynomial and then right click) to obtain results shown here.

APPLICATION TO DH0
rxn (T >298.15�K)

Next we show a ‘‘once-in-your-life’’ calculation using the heat capacity polynomials to correct the
heat of a reaction for a temperature other than 298.158K. Obviously this sort of calculation should be
programmed for a computer to carry out the detailed steps in future applications but it is educational
to do the calculations at least once using just a calculator.

Example
Calculate the DHrxn(1200�K) value for the reaction 1=2H2þ 1=2Cl2 ! HCl using H0

f values and
heat capacity polynomials.

The important concept here is that heat capacities are algebraically subject to the same rules as
the H0

f values because they are energy quantities. Thus, we have as a formal equation

DHrxn ¼
Xprod
i

niH
0
f,i �

Xreact
j

njH
0
f, j þ

ðT
298:15

Xprod
i

niCp,i(T)�
Xreact
j

njCp, j(T)

" #
dT :

When we use the polynomial heat capacities this leads to

DHrxn(T) ¼ DH0
f,298:15 þ

ðT
298:15

(Da)dT þ
ðT

298:15

(Db)TdT þ
ðT

298:15

(Dc)T2 dT þ
ðT

298:15

(Dd)T3 dT

þ
ðT

298:15

(De)T4 dT :

38.5
y = –7.137E–12x4 + 3.109E–08x3 – 5.035E–05x2 + 3.722E–02x + 2.658E+0138
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FIGURE 4.8 The polynomial fit to the heat capacity for Cl2 gas where x in the polynomial is T in 8K, the
Y-axis is in J=8K mol. The R2 value of 0.9994 is close to the perfect fit value of 1.0000, which indicates a very
good fit.
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This is surely a formidable expression but we can simplify it by doing the integrals term by term.

DHrxn(T) ¼ DH0
f,298:15 þ (Da)(T � 298:15)þ (Db)

T2 � (298:15)2

2

� �
þ (Dc)

T3 � (298:15)3

3

� �

þ (Dd)
T4 � (298:15)4

4

� �
þ (De)

T5 � (298:15)5

5

� �
:

A common error students make is to use (T� 298.15)n instead of the correct form as [T n� (298.15)n].
This sort of problem often appeared on final examinations in the days when students had only slide
rules so it should be easier with a calculator. The easy (?) way to set up this problem is to first calculate
the D terms in the heat capacity polynomial.

Keep in mind the coefficients in the balanced equation 1=2H2þ 1=2Cl2 ! HCl.

The key formula is DHrxn(T) ¼ DH0
298:15 þ

ðT
298:15

(Daþ DbT þ DcT2 þ DdT3 þ DeT4)dt.

Use data from Table 4.3

Compound a b (E�2) c (E�5) d (E�9) e (E�12) R2

HCl 30.68 �0.9687 1.756 �8.024 1.087 0.9999

H2 26.78 1.224 �2.299 19.40 �5.261 0.9992

Cl2 26.58 3.722 �5.035 31.09 �7.137 0.9994

TABLE 4.3
Polynomial Fits to Selected Heat Capacities, Temperature Range 298.158K–15008K

Compound a b (E–2) c (E–5) d (E–9) e (E–12) R2

H2 26.78 1.224 �2.299 19.40 �5.261 0.9992

O2 28.28 �2.347 2.647 �24.15 6.679 0.9997

CO 31.30 �1.699 4.053 �28.34 6.686 1.0000

CO2 19.29 7.756 �6.818 31.75 �6.123 1.0000

C2gas 53.24 �3.795 1.887 7.421 �5.209 0.9896

Cgraphite 6.227 6.520 �6.046 2.908 �5.881 1.0000

Cdiamond 12.16 8.158 �7.889 40.09 �8.537 0.9999

HCCH 14.29 14.09 �16.54 102.2 �24.20 0.9999

H2CCH2 4.279 15.04 �7.623 14.87 0 1.0000

H3CCH3 4.084 18.34 �7.623 11.31 0 1.0000

CH4 26.86 2.817 11.50 �94.51 23.74 1.0000

N2 31.41 �1.653 3.643 �24.00 5.383 1.0000

NH3 27.38 2.210 2.487 �24.26 6.197 1.0000

HCl 30.68 �0.9687 1.756 �8.024 1.087 0.9999

Cl2 26.58 3.722 �5.035 31.09 �7.137 0.9994

H2O 32.20 �0.4494 2.286 �12.43 2.252 1.0000

H2CO 27.11 1.052 7.635 �70.77 18.84 0.9999
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Da ¼ aHCl � aH2

2

� 
� aCl2

2

� 
¼ 30:68� (26:78þ 26:58)

2

� �
¼ 4:00

Db ¼ bHCl � bH2

2

� �
� bCl2

2

� �
¼ �0:9687� (1:224þ 3:722)

2

� �
(10�2) ¼ �0:034417

Dc ¼ cHCl � cH2

2

� 
� cCl2

2

� 
¼ 1:756� (�2:299� 5:035)

2

� �
(10�5) ¼ 5:423� 10�5

Dd ¼ dHCl � dH2

2

� �
� dCl2

2

� �
¼ �8:024� (19:40þ 31:09)

2

� �
(10�9) ¼ �33:269� 10�9

De ¼ eHCl � eH2

2

� 
� eCl2

2

� 
¼ 1:087� (�5:261� 7:137)

2

� �
(10�12) ¼ 7:286� 10�12

Next we need to compute the main term

DH0
rxn ¼ H0

f (HCl)�
1
2

� �
H0

f (H2)� 1
2

� �
H0

f (Cl2) ¼ �92:31� (0þ 0)=2 ¼ �92:31 kJ

Da) (4:00)(1200� 298:15) ¼ 3607:4 J=mol

Db) (�0:034417) [(1200)
2 � (298:15)2]

2
¼ �23,250:51754 J=mol

Dc) (5:423� 10�5)
[(1200)3 � (298:15)3]

3
¼ 30,757:8373 J=mol

Dd ) (�33:269� 10�9)
[(1200)4 � (298:15)4]

4
¼ �17,180:92635 J=mol

De) (7:286� 10�12)
[(1200)5 � (298:15)5]

5
¼ 3622:54675 J=mol

Sum of terms¼�2443.65984 J=mol¼�2.44365984 kJ=mol ffi �2.44 kJ=mol.
Thus, DH0

rxn(1200
�K) ¼ �92:31� 2:44 ¼ �94:75 kJ=mol.

Other texts use more convenient shorter polynomial expansions for this reaction based on older data
from 1934–1948 [6] but this result comes from the use of the more recent heat capacity data in the
CRC Handbook [8] and the R2 values for the polynomials used here indicate excellent numerical
fitting to the experimental data points. As such we believe this result is more accurate than the result
using polynomials only up to T 3. This text also shows how the polynomials were determined and
provides the R2 values to evaluate goodness of the fitting procedure. While that is a lot of work for a
correction of less than 3%, we admit to a tendency of physical chemists to make extra effort to gain
accuracy. Note the interesting alternating signs of the various correction terms that result in the net
correction. We carried all the places on a ten place calculator to allow students to follow the
computation, but in the end the answer was rounded to only four significant figures. The educational
value of this exercise is that we do have a way to correct DH0

rxn for temperatures other than 298.158K.
The example also teaches us that when faced with a complicated calculation it is useful to organize
the overall process into separate steps. It is tempting to think this problem could be programmed for
automation in Basic, f 77, or Java to make the whole process less of a chore for humans. Even so the
whole process needs to be worked out at least once to check out any automatic program.

The First Law of Thermodynamics 77



OTHER TYPES OF THERMOCHEMISTRY

Here we face the problem of showing the mainstream applications of thermodynamics in one
semester, so we neglect other uses of the algebraic additivity of enthalpy values. We only mention
here that carefully weighed amounts of minerals can be dissolved in HCl=HF solvents in special
solution calorimeters to make accurate estimates of heats of formation of minerals that occur
over a period of thousands of years with use of Hess’s rule. Other special calorimeters can be
used to measure the heat of the process of denaturing (unfolding) proteins in a strong base. Still
other calorimeters can be used to measure the heats of sublimation (solid-to-gas), heats of fusion of
solids (solid-to-liquid), and heats of vaporization (liquid-to-gas) transitions phase changes but the
key idea is the algebraic summation of enthalpy values, which we have treated above mainly for gas
phase reactions.

PERSPECTIVE

The student needs to understand that instead of skimming the surface of thermodynamics in a short
one-semester treatment we have plowed more deeply into just a few examples of the first law in this
chapter. The idea is that we have selected what we think are important illustrations with sufficient
detail to prepare an interested student to elect a second semester and yet provide a good foundation
for students who stop at just one semester of study and need to apply principles of thermodynamics
to other disciplines. We have shown details for partial derivatives and ways to find heats of
reactions, but as chemical engineers and chemistry graduate students will tell you, there is a lot
more to thermodynamics, except now you have a good preparation for further study.

KEY FORMULAS AND EQUATIONS

For reversible ideal gas processes:

w ¼ �
ðV2

V1

P dV ¼ �
ðV2

V1

nRT

V

� �
dV ¼ �nRT ln

V2

V1

� �
¼ �nRT ln

P1

P2

� �
:

For adiabatic (Q¼ 0) temperature changes:

V1T
CV
Rð Þ

1 ¼ V2T
CV
Rð Þ

2 :

For adiabatic (Q¼ 0) pressure changes:

P1V

	
CP
CV



1 ¼ P2V

	
CP
CV



2 :

For constant volume heats of combustion:

nDHcomb ¼ �CVDT þ (DngasRTave)n:

For heats of reaction at standard conditions:

DH0
rxn(298:15

�K) �
X

product�i
H0

f,i �
X

reactant�j
H0

f, j:
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For heats of reaction for T> 298.158K:

DH0
rxn(T) ¼ DH0

rxn(298:15)þ
ðT

298:15

(Daþ DbT þ DcT2 þ DdT3 þ DeT4)dT :

PROBLEMS

4.1 Calculate q, w, and DU for the reversible, isothermal compression of 10 mol of ideal gas from
1 to 10 atm at a constant temperature of 08C.

4.2 Calculate the temperature of air compressed adiabatically in a one-cylinder diesel engine from
1060 cc at 258C to 60 cc. Given that CV ¼ (5=2)R, compute Q, W, DH, and DU for this
compression.

4.3 Use heats of combustion to calculate the DH0
298:15 for 3HC � CH! C6H6. Although this

reaction seems like an improbable stereospecific termolecular collision is required in the gas
phase, it does occur on surfaces so much so that high-pressure tanks of acetylene have added
impurities to inhibit the formation of benzene.

4.4 Given that 0.500 g of n-heptane (C7H16) burned in a constant volume combustion calorimeter
with CV¼ 1954 cal=8C causes DT ¼ 2:934�C at Tave¼ 258C, calculate the molar DH0

comb for
n¼ heptane.

4.5 A little known fact is that most gasoline engines will run on ‘‘wood smoke’’ from a smoldering
fire of burning wood, paper, mulch, almost any cellulose material in a limited amount of O2.
Although there is an added safety concern regarding having a stove on the same vehicle as an
alternate tank of liquid fuel, and the overall power is less than with gasoline, the main reaction
is the further combustion of CO. Thus, calculate the heat of the reaction COþ1=2O2! CO2 at
10008K to estimate the molar heat of the reaction in the combustion chamber, DH0

rxn(1000
�K).

TESTING, GRADING, AND LEARNING?

Throughout this text we will include actual tests that have been given by the author either in a one
semester course (CHEM 305) for forensic majors, CHEM 303–304 for chemistry majors at Virginia
Commonwealth University, or CHEM 311–312 at Randolph Macon College. Copies of these tests
are provided to all the students along with the answer keys and they are encouraged to add material
to their quiz answers that may not be asked (at lower point value). In some courses, only a few
students have access to old tests but here we provide old tests to the whole class to give them an
‘‘equal study opportunity.’’ Why not, if they actually learn from these old tests?

Physical chemistry 305 Fall 2005 Midterm examination D. Shillady, Professor, VCU
(Points) (Attempt all problems) 90 min*

(10) 1. Compute DH0
298 for the reaction: C6H6þ 3H2(g)! C6H12, given DHcomb(C6H6) ¼ �782:3

kcal=mol, DHcomb(C6H12) ¼ �937:8 kcal=mol, and DHcomb(H2) ¼ �68:3 kcal=mol.
(Ans. DH0

298 ¼ 49:4 kcal)

(15) 2. Given CP(CO2)¼ 8.87, CP(CO)¼ 6.97, and CP(O2)¼ 7.02 cal=mol 8K and DH�298 ¼
�67:700 kcal for CO(g)þ 1=2O2(g)! CO29(g), estimate the DH0

350 value at 3508K assuming
the CP values remain constant. (Ans. DH0

350 ¼ �67:784 kcal)

* Note DS finished this in 61 min. Some of these questions require ideas treated in Chapters 5 and 6. We put this test here
because most of it relates to thermochemistry as given in this chapter. The time limit was supposed to be 55 min but since
the room was empty after this class, the time limit was extended to 90 min for the students.
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(10) 3. Calculate the laminar bulk flow rate in gallons=min for blood with h ¼ 0:014 poise through
an aorta 4 in. long and 1=4 in. inner diameter due to a pressure difference of 130–70 mmHg,
and a pulse duty cycle of 0.10. (Ans. 3.558 gallons=min)

(15) 4. The vapor pressure of ethanol is 135.3 mmHg at 408C and 542.5 mmHg at 708C. Calculate
DHvap and the boiling point of ethanol at 760 mmHg.

(Ans.DHvap ¼ 9883:7 cal=mol, 78:1�C)

(10) 5. Given a¼ 3.610 atm L2=mol2 and b¼ 0.0429 L=mol for the van der Waals equation of CO2,
calculate the pressure (P) of 3 mol of CO2 in a 5 L container at 508C. (15.03137 atm)

(15) 6. A 0.500 g sample of n-heptane (C7H16) burned in a constant volume calorimeter causes
DT ¼ 2:934�C. If CV of the calorimeter is 1954 cal=8C and Tave ¼ 258C, calculate DHcomb

of n-heptane at 2988K. (Ans. DHcomb ¼ �1151:3 kcal=mol)

(15) 7. Using the value of DH0
298 ¼ þ17:06 kcal and DG0

298 ¼ þ9:72 kcal for the reaction
2NOCl(g)  ��! 2NO(g) þ Cl2(g), determine the temperature at which KP¼ 0.600, assuming
DH and DG remain constant. (Ans. T¼ 665.58K)

(10) 8. Given DHvap(H2O) ¼ 40:71 kJ=mol, calculate DSvap at 1008C. (Ans. DSvap ¼ 109:1 J=�K)
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5 The Second and Third Laws
of Thermodynamics

INTRODUCTION

While the first law of thermodynamics has some interesting mysteries, which are overcome using
the powerful ‘‘after-minus-before’’ principle, energy concepts are familiar to us in science. The next
important topic is all around us and taken for granted as a part of life, but most of us do not know it
can be made quantitative. It is the principle we sometimes call ‘‘Murphy’s law’’ related to the natural
tendency of disorder to increase. If you open a brand new deck of cards and drop them from waist
height, do you expect they will remain in order? Stack 10 coins heads up and drop them again from
waist height; do you expect them to land all heads up? The answer is ‘‘no’’ to both questions, so
what is going here? We are hinting strongly that while there is a natural tendency for energy to run
‘‘down hill,’’ there is another tendency in nature that tends to increase.

One of the major discoveries of thermodynamics, primarily by Boltzmann, is the way to quantify
the phenomenon of disorder beginning with his 1866 PhD thesis. Shortly before that Clausius
proposed a second law of thermodynamics in words in 1862. But first, maybe the basic concept was
discovered by Sadi Carnot in 1824 (Figure 5.1) [1].

CARNOT CYCLE=ENGINE

The second law of thermodynamics has historically been a mysterious concept, and the basic idea
has been verbalized by Clausius, Kelvin, Planck, and others for those who ‘‘think in words.’’ One
simple statement by Rudolph Clausius (1822–1888) was

Heat generally cannot flow spontaneously from a material at lower temperature to a material at higher
temperature.

The key word here is ‘‘spontaneously’’ because we know that refrigeration can move heat from cold
to hot regions, but the natural trend is for heat energy to flow from a hot environment to a cold
environment. There are many verbal variations of the second law, and a student can find a great deal
of further discussion in other texts but in keeping with the idea of Essential Physical Chemistry we
choose to pin our explanation on algebraic results from the idealized Carnot cycle (Figure 5.2).
Carnot defined a cyclic process in four steps as a process for a hypothetical engine to convert heat to
work. The process is usually described with a P, V graph. According to the ideal gas law, the
equation for ‘‘PV¼ constant’’ leads to the positive branch of a hyperbola called an ‘‘isotherm.’’ In
the previous chapter, we carried out a model analysis of the adiabatic response of a gas to
compression and expansion. The shape of the PV curve for an adiabatic step is not an isotherm
because we know the temperature changes. Consider an adiabatic expansion of a gas. If q¼ 0 and no
heat flows into the gas, the temperature drops, so what would have been an isotherm on the PV
graph ‘‘sags’’ to a lower temperature. Similarly, we know from the diesel engine example that
adiabatic compression with no heat flow, q¼ 0, leads to a higher temperature, which crosses over
isotherms in the upward direction. Thus, we expect isotherms for constant temperature processes but
deviations from the perfect hyperbolic shape for adiabatic steps on a P, V graph. There is a dynamic
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FIGURE 5.1 Nicholas L�eonard Sadi Carnot (1796–1832) was a French physicist and military engineer who
published the ‘‘Carnot cycle’’ in 1824. At an early age he attended the Ecole Polytechnique in Paris where there
was a very distinguished faculty, the list reads like the very foundations of modern science (Claude-Louis
Navier, Gaspard-Gustave Coriolis, Joseph Louis Gay-Lussac, Sim�eon Denis Poisson, and Andre-Marie
Ampere). Carnot died in a cholera epidemic when he was only 36. (Boilly lith., Photographische Gesellschaft,
Berlin, courtesy AIP Emilio Segr�e Visual Archives, Harvard University Collection.)
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P1V1

P2V2

P3V3

P4V4

P

V

FIGURE 5.2 A qualitative sketch of the Carnot cycle. The actual shape is more of a narrow crescent
shape than is often depicted in other sources. Photographs of Carnot’s notes show the graph narrow as
shown here. An excellent simulation can be found on the Internet at http:==demonstrations.wolfram.com=
CarnotCycleOnIdealGas=
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simulation=demonstration of this at an Internet site by Jacquie Hui Wan Ching, Department of
Physics, University of Virginia to be found at http:==www.corrosion-doctors.org=Biographies=
carnotcycle.htm

Before we give the mathematical details of the Carnot cycle, we should say that there is a good=bad
news situation regarding ‘‘reality.’’ First, it would appear that there is no technical way to actually
construct an exact ‘‘Carnot engine’’; it is an idealized process that is simplified for mathematical
analysis. Second, the good news is that when the P, V graph of any real engine cycle is plotted on a
graph paper using a grid of isotherms and adiabats, the idealized Carnot cycle can be used to flesh out
the interior of the real graph in the same way that dx, dy are used in evaluating an area in calculus, and
the outer part of the cycle of the real engine graph will still satisfy the Carnot cycle principles. Thus,
this idealized analysis really can be applied to a real heat engine (Figure 5.3).

CARNOT CYCLE

We could specify a theoretical engine of 1 mol gas displacement, 22.414 L, which is huge compared
to an automobile V8 engine in the 6 L displacement range, perhaps in the range of size of a steam
locomotive engine, but really we only need to specify n ¼ 1 in the following discussion. We start at
the ‘‘hot point’’ in Figure 5.2 of the cycle with (P, V) values of a nominal fuel explosion or injection

of hot gas into some sort of piston arrangement. We know DU ¼ qþ w and for gases w ¼ �
ð
P dv,

so keep track of the signs.

I Isothermal expansion from (P1, V1) to (P2, V2)
Isothermal) DT ¼ 0 so DU ¼ nCVDT ¼ 0 and qI ¼ �wI ¼ þ

ðV2

V1

PdV ¼ RTh ln
V2

V1

� �
(DU ¼ 0 ¼ qþ w), n ¼ 1

II Adiabatic expansion from (P2, V2) to (P3, V3)
Adiabatic) qII ¼ 0 so DU ¼ wII ¼ CV (Tl � Th) and so �wII ¼ CV (Th � Tl).

Pr
es

su
re

, P

Volume, V

Survive

Cancel

FIGURE 5.3 Many Carnot cycles superimposed on an arbitrary PV cycle for some other heat engine. Using
the calculus idea of breaking up a macroscopic function into small increments, we see that the PV energy
product will sum up around the edge for the real engine but cancel within the center of the graph. The diagram
grid is necessarily coarse here to illustrate the central Carnot cycles but a finer grid could be used to match the
real cycle exactly in the limit of very tiny Carnot cycles. The main conclusion is that the Carnot efficiency
formula can be applied to any real heat engine.
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III Isothermal compression from (P3, V3) to (P4, V4)
Isothermal) DT ¼ 0 so DU ¼ nCVDT ¼ 0 and qIII ¼ �wIII ¼ þ

ðV4

V3

P dV ¼ RTl ln
V4

V3

� �
(DU ¼ 0 ¼ qþ w), n ¼ 1.

IV Adiabatic compression from (P4, V4) to (P1, V1)
Adiabatic) qIV ¼ 0 so DU ¼ wIV ¼ CV (Th � Tl) and so �wIV ¼ CV (Tl � Th).

Now, we need an important side calculation relating the two adiabatic steps for 1 mol of ideal gas
when q¼ 0. (the key step.)

DU ¼
ð
CV dT ¼ 0�

ð
P dV ¼ �RT

ð
dV

V
, which can be rearranged to collect the temperature

dependence as
ð
CV

dT

T
¼ �R

ð
dV

V
. This is easily done algebraically by removing the integration

symbols, dragging T under the left side and then reapplying the integral signs. This step is similar to
the previous treatment of adiabatic nozzle jet cooling. Here, our goal is to merely derive a key
relationship between the volumes and temperatures of the adiabatic steps and note that we kept the
minus sign on the work term because we are considering the general case of either an expansion or
a compression. Thus, we have

CV

ðT2
T1

dT

T
¼ CV ln

T2
T1

� �
¼ �R

ðV2

V1

dV

V
¼ �R ln

V2

V1

� �
¼ þR ln

V1

V2

� �
:

Step II: CV ln
Tl
Th

� �
¼ �R ln

V3

V2

� �
and Step IV: CV ln

Th
Tl

� �
¼ �R ln

V1

V4

� �
. We can invert the

ratio from Step IV (multiply both sides by �1) to obtain

CV ln
Tl
Th

� �
¼ �R ln

V4

V1

� �
¼ �R ln

V3

V2

� �

and we find
V4

V1

� �
¼ V3

V2

� �
and so

V4

V3

� �
¼ V1

V2

� �
.

We do not know how Carnot thought about the equations, but when he decided to sum the quantity,
q=T, over all four steps, he found a profound result.

X qrev
T

� 
¼

RTh ln V2
V1

� 
Th

þ 0þ
RTl ln

V4
V3

� 
Tl

þ 0 but
V4

V3

� �
¼ V1

V2

� �
so the ln terms cancel out.

Note that we used the reversible equation for the adiabatic steps of the PV work, so we must specify

that the heat term be noted as qrev. What does this mean? Concisely for the cycle

X qrev
T

� 
¼
þ
dqrev
T
¼ 0:

The importance of this is that a variable that satisfies this matches the same condition as forÞ
dU ¼ 0 and

Þ
dH ¼ 0, which are what we have called ‘‘state variables.’’ Thus, the Carnot cycle

is very useful to show the existence of another state variable, which is now called ‘‘entropy’’ with
the symbol ‘‘S’’ such that we have

þ
dqrev
T

� �
¼
þ
dS ¼ 0:
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Later Boltzmann related entropy to statistical disorder, which we treat later in this chapter. For now,
we can see that in the case of a boiling liquid there would be a very large change in disorder when a
liquid such as water with a volume of under 19 mL=mol vaporizes to a volume of over 30 L at

373.158K, since (22:414L)
373:15�K
273:15�K

� �
ffi 30:62L by Charles’ law.

For the case of a boiling liquid, the heat change is called the heat of vaporization, DHvap, the
temperature is constant at the boiling point Tbp and the process is reversible, so we can compute the
entropy change as

DS ¼ qrev
T
¼ DHvap

Tbp
:

We can also anticipate that if dH ¼ CP dT and DS ¼
ð
dH

T
¼
ð
CP dT

T
ffi CP ln

T2
T1

� �
, so we see that

we will also be able to calculate DS for a lot of situations without a phase change but with changing
temperature using DH and CP data. Thus, we can add S to U and H in our list (so far) of state
variables (Figure 5.4).

CARNOT EFFICIENCY

Now, let us return to the Carnot cycle and consider how much work results for a given amount of
heat input qI, the overall efficiency of the cycle. Engineers would use DU ¼ q� weng where
‘‘engineering work, weng’’ is positive when it is done on the environment, while we use the
‘‘IUPAC work, wIUPAC,’’ which is positive when work is done on the system (gas). In the IUPAC
interpretation, this difference can be reconciled by using dwIUPAC ¼ �P dV for a gas since an
expanding gas affects the environment opposite to work done on the gas. This unfortunate mind-
bending difference in the sign of the work seems more sensible under the engineering definition,
but mathematically dwIUPAC ¼ �P dV satisfies the IUPAC definition of the first law as
dU ¼ dqþ dwIUPAC. The sign of the work term is a matter of perspective relative to the system
or the environment, but let us try one more explanation. When we write dwIUPAC ¼ �P dV , the
problem is solved because if the gas is compressed (work done on the gas), then dv will be negative
and (�P)(�dv) ¼ þdw. A student should be warned that there are textbooks with these differing
conventions and so we recommend dwIUPAC ¼ �P dV as the solution to the problem. Having said

Thot

Tcold

|q| – |q |́

+|q |́

–|q|

Engine
Work out

FIGURE 5.4 A schematic showing the entropy changes and efficiency of a heat engine.
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that, we want to evaluate the efficiency, Eeff , of a Carnot heat engine in terms of how much work
is done on the environment relative to how much energy is input in the first step, so we need to
use �Sw and in the previous analysis of the Carnot steps, we have given �w for each step:

Eeff � (�Sw)
qI

¼
RTh ln

V2

V1

� �
� CV (Tl � Th)þ RTl ln

V4

V3

� �
� CV (Th � Tl)

� �

RTh ln
V2

V1

� � :

Once again, we use the key relationship from the adiabatic steps as
V4

V3

� �
¼ V1

V2

� �
¼ V2

V1

� ��1
and

substituting that relationship into the ln ( ) terms reverses the sign of one, which allows a lot of
cancelation. This results in a very useful and simple formula for the efficiency of a Carnot engine:

Eeff ¼ Th � Tl
Th

:

This tells us that the efficiency of the hypothetical Carnot engine only depends on the high
temperature of the input energy and the low temperature. Let us think about this as (Th � Tl)
representing the heat actually used in the conversion to work, but that the heat released at Tl is
wasted. The most important result is that if the (P, V) graph is drawn for any real heat engine, the
cycle can be overlaid with a grid of isotherms and adiabats to show that within each tiny calculus
differential Carnot cycle all the

Þ
ds ¼ 0 terms cancel internally, and the sum around the outer real

engine PV graph also satisfies the same conditions and leads to the same formula.

EFFICIENCY OF REAL HEAT ENGINES

It is important to note that the efficiency formula uses absolute temperatures in 8K. On planet earth,
ambient temperatures limit the exit temperature Tl of most heat engines to roughly 2738K or higher
temperatures. Thus, most heat engines can harness heat energy from hot sources to do work but
waste a lot of that heat. A little thought shows that it ought to be possible to select a gas that could
operate as a cyclic heat-transport medium between the common temperatures of ice water and steam
as in a ‘‘steam engine,’’ noting that the gas need not be steam but could be some gas trapped in a
cyclic system operating between 273.158K and 373.158K. For that semirealistic situation, the
efficiency would be

Eeff ¼ 373:15� 273:15
373:15

ffi 0:268 ’ 27%:

Early in the development of the steam engine, it was realized that if actual water steam is super-
heated as a gas well above the boiling point of water to say 8008K and regular liquid is used as a
coolant, the engine could be operated between about 8008K and 3738K to improve the efficiency to
roughly

Eeff ¼ 800� 373
800

¼ 0:534 ffi 53:4%:

This is actually very good for a heat engine or any engine for that matter. Compare that to an internal
combustion engine at the extreme operating temperatures. Thus, if we assume ideal conditions of
about 23008K for combustion of gasoline and a maximum temperature of the exhaust manifold and
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valve parts of an iron engine as just below the melting point of iron at about 9258K, we can estimate
a maximum efficiency of about 60%:

Eeff ¼ 2300� 925
2300

¼ 0:598 ffi 60%:

In practice this is rarely attainable, but even this idealized efficiency shows us that practical heat
engines waste a lot of heat energy on the Tl part of the cycle. Due to internal friction of the moving
parts and other design considerations, an actual efficiency of 30% is good. These examples illustrate
the power of using the Carnot efficiency formula for any heat engine. All we need to know is the
operating range of temperatures in absolute K degrees, but we should realize this is usually an upper
limit to the efficiency of a real engine.

ENTROPY AND SPONTANEITY

From life experience, we know that heat tends to flow from hot to cold unless some sort of
refrigeration device is used. Although the Carnot cycle established the existence of entropy, let us
give some consideration to the sort of simple analysis Clausius would give for a heat engine.
Consider a ‘‘heat source’’ at Thot that supplies heat energy to an ‘‘engine’’ so that the heat source
provides jqj to the engine, which then discards jq0j heat to the ‘‘environment’’ at Tcold. We choose to
use the absolute values jqj and jq0j as positive numbers with the algebraic signs to indicate which
way the heat flows. The work the engine does is thus the difference in the energy (jqj � jq0j).
A simple analysis gives

Hot source loses heat jqj, so DS1 ¼ �jqjThot
,

Cold source gains heat jq0j, so DS2 ¼ þjq
0j

Tcold
,

Total DS ¼ DS1 þ DS2 ¼ �jqjThot
þ jq

0j
Tcold

:

Next, we use the idea that ‘‘spontaneous heat flow’’ occurs as long as DS > 0. We have to think
about this, but we know heat flows from hot to cold and the absolute temperature in the denominator
is always positive so the sign of DS depends on the heat flow. When the heat flow stops, the DS

value will be zero. Thus, the heat flow will just stop (DS ¼ 0) when
�jqj
Thot
þ jq

0j
Tcold

¼ 0, which can be

rearranged to jq0j ¼ jqj Tcold
Thot

� �
and
jq0j
jqj ¼

Tcold
Thot

. If we have to discard jq0j heat energy into the cold

sink (exhaust), the maximum energy that can be extracted as work is jqj � jq0j. Now define the
efficiency of the engine as how much work can be obtained for the input heat absorbed:

Efficiency ¼ work produced

heat absorbed
¼ jqj � jq

0j
jqj ¼ 1� jq

0j
jqj ¼ 1� Tcold

Thot
¼ Thot � Tcold

Thot
:

Thus, we obtain the same formula for the efficiency of a heat engine as from the Carnot cycle. Along
the way, we realized that when heat flows from hot to cold, the environment will gain the exhaust
heat jq0j so that the environment gains entropy. A profound result of this sort of analysis is that
entropy tends to increase in the environment unless there is some other condition and the overall
entropy in the universe tends to increase. Especially for biology majors and generally for all of us,
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note that living systems have to expend energy to constantly combat the increase of the randomness
in ‘‘biological errors.’’ While very clever repair enzymes do amazing things to reduce randomness,
the process of aging is a manifestation of increasing entropy.

SUMMARY OF THE SECOND LAW OF THERMODYNAMICS

We have discovered there is a state variable ‘‘S’’ that represents an amount of randomness as in a
phase change and is related to the reversible heat change and the temperature at which it occurs as

DS ¼
þ
dqrev
T
¼ DH

T
¼
ðT2
T1

CP

T
dT ¼ CP ln

T2
T1

� �
:

We also know that S tends to increase spontaneously; it is a measure of spontaneity in a closed
system. However, an important motivation for the Carnot cycle proof is to show the very important
relationship: dS ¼ dqrev=T . This leads to a cascade of important relationships that we present
rapidly here because we are eager to get to some ‘‘essential’’ equations in our condensed course.
Perhaps you have not realized that our process of discovery of S will open a door to more helpful
thermodynamic relationships.

EIGHT BASIC EQUATIONS OF THERMODYNAMICS

Now that we know that dqrev ¼ T dS we, can cut a huge time-saving swath through all of
thermodynamics and concentrate on the ‘‘essentials.’’

1. The following assumes all work is reversible PV (gas) work so that dw ¼ �P dV .
2. The following assumes all heat changes are computed reversibly so that dq ¼ T dS.

With these two conditions, we can leap forward over 100 years of developments in thermodynamics
and that is why it was ‘‘essential’’ to do the Carnot cycle proof.

From the first law: dU ¼ dqþ dw ¼ dq� P dv so we have dU ¼ T dS� PdV . We have already
noted that the energy tends to go down while entropy tends to go up, so in nature there is really a
constant trade-off occurring between these two tendencies and what really matters is the difference
between the two tendencies. The first treatment of this trade-off was given by H. L. F. von
Helmholtz (1821–1894), who defined a new function ‘‘A’’ so that A � U � TS where we have to
multiply S by a temperature to get an energy unit. Now, consider the first law again with addition
and subtraction of S dT to find what is now known as the ‘‘Helmholtz free energy, A.’’

dU ¼ T dS� P dV þ S dT � S dT ¼ T dSþ S dT � P dV � S dT ¼ d(TS)� P dV � S dT

and we find

dU � d(TS) ¼ �S dT � P dV ¼ d(U � TS) ¼ �S dT � P dV ¼ dA or dA ¼ �S dT � PdV :

We see from this that if both T and V are held constant dT ¼ 0 and dV ¼ 0, dA ¼ 0 so that under
those conditions (U � TS) ¼ 0 and so the Helmholtz energy A indicates an equilibrium; a balanced
trade-off between increasing entropy and decreasing energy. That is very interesting and a math-
ematical truth under reversible heat and work conditions. However, it turns out that it is not very
useful in the laboratory, since it implies that pressures must be the only variable if T and V are held
constant. Certain experiments can be designed to meet these conditions, but more likely the pressure
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is constant (at atmospheric pressure) in a laboratory setting unless the system is sealed. Thus,
J.W. Gibbs (1839–1903) defined what is now known as the ‘‘Gibbs free energy, G,’’ which has
proved to be very useful. Gibbs defined G � H � TS and once again all the terms are in terms of
energy units. This time we add and subtract V dP as well as S dT to the first law:

dU ¼ T dS� PdV þ S dT � S dt þ V dP� V dP ¼ d(TS)� S dT � d(PV)þ V dP

so that we find

dU þ d(PV)� d(TS) ¼ �S dT þ V dP ¼ d(U þ PV � TS) ¼ d(H � TS) ¼ dG

and so we obtain

dG ¼ �S dT þ V dP:

The equation of G ¼ H � TS is a better indicator of an equilibrium so that when dT and, especially,
when dP are zero, then dG ¼ 0 indicating an equal trade-off between increasing entropy and
decreasing energy. Next, consider the definition of H � U þ PV and use the two conditions
above to find that that there is a fourth equation for dH as found from

dH ¼ dU þ P dV þ V dP ¼ (T dS� P dV)þ P dV þ V dP ¼ T dSþ V dP:

We have just rushed over more than 100 years of developments in thermodynamics by focusing on
key equations, and we can consolidate the ‘‘essential’’ knowledge for this text as

dH ¼ T dSþ V dP and
qT
qP

� �
S

¼ qV
qS

� �
P

,

dU ¼ T dS� P dV and
qT
qV

� �
S

¼ � qP
qS

� �
V

,

dG ¼ �S dT þ V dP and � qS
qP

� �
T

¼ qV
qT

� �
P

,

dA ¼ �S dT � PdV and
qS
qV

� �
T

¼ qP
qT

� �
V

:

This is pretty much the jackpot of equations for thermodynamics and now reveals why we chose to
prove the Carnot cycle relationship so that we could get to dqrev ¼ T dS. Note the alternating pattern
of signs and the variables when assembled in the order ‘‘HUGA,’’ which may help organize the
equations in your mind. We could spend a lot more time on the history of the Helmholtz and Gibbs
free energy derivations, but in this course on ‘‘essentials,’’ we swam through a narrow intellectual
cave (Carnot cycle) to reach a beautiful expansive blue grotto of valuable knowledge with these
eight equations. The four auxiliary partial derivative equations are called the ‘‘Maxwell relation-
ships.’’ They result from the fact that H, U, G, and A are all state variables with ‘‘exact differentials.’’
Since it does not matter, which of the two variables change in either order for the basic four
‘‘HUGA’’ equations, we can do the second derivatives in either order.

dH ¼ T dSþ V dP so
qH
qS

� �
P

¼ T and then
q2H
qP qS

� �
¼ qT

qP

� �
S

where we have used the

convention that the most recent derivative is with respect to the lower left variable in the second

derivative.
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However, we could take the second derivative in the reverse order by taking the first derivative
with respect to P first and then with respect to S as shown here:

qH
qP

� �
S

¼ V

so that

q2H
qS qP

� �
¼ qV

qS

� �
P

:

But a state variable has the property that it does not matter which variable is changed first, so the
two second derivatives must be the same.

Thus, we obtain the Maxwell relationship for H as
qT
qP

� �
S

¼ qV
qS

� �
P

. You can prove the other

three equations easily in the homework problem set.
What is the meaning of these eight equations? They are mathematical truisms, which we can use

for problem solving. For instance, while the basic equation for the Helmholtz free energy, A, is not
often useful, the fourth Maxwell equation proves to be very useful. For instance, while we see that
qS
qV

� �
T

¼ qP
qT

� �
V

it is very difficult to imagine what
qS
qV

� �
T

could possibly mean in terms of

something we can measure in the laboratory, but it is very convenient to realize it is equal to the
pressure change with respect to temperature when the volume is constant, which is easily measured.
Thus, the Maxwell relationships are very valuable in resolving strange dependencies among the four
state variables H, U, G, and A as related to laboratory variables (P, V, T). Perhaps we have violated
the formal presentation of the historical development of thermodynamics, but for the students we
have just saved you countless hours of frustrating reading, and NOW we are ready to do some real
thermodynamics (after we get past the third law). It might be a good idea to write the eight equations
over a few times till you master the patterns therein. Knowing those eight equations is the key to
thermodynamics.

THIRD LAW OF THERMODYNAMICS

So far, we are confident that entropy exists and can be described quantitatively. On the other hand,
we have only talked about DS so far. The mention of increasing disorder as a liquid vaporizes into a
gas or even as a solid melts into a liquid helps us to realize that entropy is related to disorder
somehow. This leads up to the idea that there is an absolute value for the entropy of a substance at a
given temperature. Once again, the history of the third law is shared by several scientists where
credit is given for later consolidation of ideas developed earlier by others. W. Nernst (1864–1941) is
generally given the main credit for his work in 1905 called the Nernst heat theorem for which he
received the Nobel Prize in 1920. Although Nernst can be said to have founded the field of physical
chemistry, his work translated into what is now analytical chemistry. Many students associate his
name with the ‘‘Nernst equation’’ of electrochemistry. Much of what is now analytical chemistry
was formerly the field of research in physical chemistry, especially in electrochemistry, but a split
occurred later in the 1930s when physical chemists were lured into the fields of spectroscopy opened
up by the development of quantum mechanics. However, the mathematical basis for the third law
was already put in place by Boltzmann in the 1880s and we will mainly use the Boltzmann statistical
approach to entropy. In words, we favor a simple statement of the law:

The entropy of a pure, perfectly crystalline substance is zero at 08K.
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Once again, the verbal law is full of hidden meaning. Let us go back to Boltzmann’s basic equation
(carved into his tombstone) to see the physical implications:

S ¼ k lnW or S ¼ k lnV:

(Perhaps, we can now see how the letter ‘‘W ’’ evolved from the Greek letter ‘‘V’’?)
We know that the natural logarithm of the number 1 is zero. A perfectly crystalline pure

substance has a lattice structure that extends in all three dimensions as a perfectly repetitive pattern
of atoms or molecules such that one cannot distinguish an imperfection that would aid in defining
any list of alternate structures. A perfect crystal only has ‘‘one structure,’’ not a list of possibilities
where there might be some imperfection here or there. As far as the constant ‘‘k’’ is concerned,
Boltzmann applied his statistics at the atom=molecular level and was interested in the gas constant
per particle rather than the gas constant per mole so that basically kB is the gas constant for
1 atom=molecule. It is a precise number based on the gas constant and the best known value of
the Avogadro number:

kB ¼ R

NAv

¼ 8:314472 J=�K mol

6:0221415� 1023 mol�1
¼ 1:3806505� 10�23 J=�K ffi 1:38� 10�16 erg=�K:

So, now maybe we can combine your understanding of the third law. It says that entropy, S, is
basically statistical where ‘‘W ’’ in Boltzmann’s equation refers to ‘‘the number of ways the system
can exist.’’ In the case of a perfectly crystalline system,Wmight evolve into a number more than 1 if
the atoms swing and sway during vibration, but at 08K, the vibrations will be minimized, although
maybe not completely. There are more pitfalls as we consider this further, but first let us look at the
simple interpretation of absolute entropy:

Stot ¼
ðTmp

0

CP(sol) dT

T
þ DHfus

Tmp

� �
þ
ðTbp
Tmp

CP(liq) dT

T
þ DHvap

Tbp

� �
þ
ðT
Tbp

CP(gas) dT

T
:

The simple interpretation is that a perfectly crystalline solid increases in randomness with heat at
low temperatures until the lattice structure collapses at the melting point temperature where there is
a large change in disorder since the liquid is more random than the crystal lattice. Then the liquid
warms and becomes more random until the boiling point is reached. Then there is a much larger
increase in randomness as the vaporization occurs. After the gas phase is reached, it can still increase
its disorder at higher temperatures, so the last term represents the increase in gas entropy with further
heating. This is the overall picture, but there has been a lot of research at what happens at very low
temperatures near or below 18K. For practical room temperature thermodynamics, the above
equations suffice very well to describe solids, liquids, and gases.

As expected, there are always problems in the details. Let us think about trying to reach absolute
08K temperature. If we consider highly pure materials, a problem crops up in that many elements
have several nuclear isotopes. A really bad case would be to try to crystallize HCl. We would have
to somehow isolate either the 35

17Cl or the
37
17Cl isotope as well as sort out the isotopes of

0
1H,

1
1D, and

2
1T.

Then we would worry over whether the molecules were vibrating in a net symmetric or asymmetric
way (what physicists call quantized ‘‘phonon’’ lattice vibrations). We would also have to worry
about whether the nuclear spins are aligned. Experiments have actually been done where a cold
sample is put into a strong electromagnet to align the nuclear spins (should we worry about electron
spins?) and when the magnetic field is turned off, the spins randomize but absorb heat as they do so;
this so-called ‘‘adiabatic demagnetization’’ can be used to obtain very low temperatures of the order
of 0.0018K, but the remaining randomness prevents attainment of true 08K. Thus, for several
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reasons, it turns out to be impossible to reach absolute 08K. Another problem is an isotope effect in
molecular structure. Suppose, we somehow freeze DCH3 to a very low temperature near 18K. The
basic structure of methane is tetrahedral, but the orientation of the deuterium atom in the molecule
could be in any of four positions. Thus, even if we purify the substance and use something like
adiabatic nozzle expansion of He followed by the adiabatic demagnetization trick, we will still have
a matrix in which there is a randomness of the orientation of the C–D bond that leads to an
approximate entropy using Boltzmann’s equation of S � kB ln (4) per molecular unit or on a molar
basis S � R ln (4). Similar statistics are easy to see for molecules such as monodeuterobenzene,
where we would have something like S(1�K) � R ln (6), S(1�K) � R ln (3) for NDH2, and so forth
just to show the possibilities with deuterium (D) substitution for hydrogen.

The problem of behavior of the heat capacity of solids near 18K has been treated by Einstein
and by Debye to include the effects of vibration. For undergraduate treatment, it is sufficient to say
that near 18K heat capacities of lattices vary roughly as T3 [2] so the heat capacity curve increases
after 18K. Other texts and monographs should be consulted for studies of materials at very low
temperatures, but here the ‘‘essential’’ facts are that S¼R ln (W) gives an approximate value for
low-temperature entropy due to isotope impurities and that the heat capacity varies as roughly T3 in
the 18K range. There would be a constant ‘‘A’’ characteristic of the material and then CP � AT3. As
usual there are alternate verbal descriptions of the third law of thermodynamics but our summary
would be

The entropy of a pure crystalline substance should be zero at 08K, but you really cannot get to 08K.

We will see in later chapters of this text that there are some strange quantum phenomena, which
occur at very low temperatures. In this chapter for what is known as ‘‘classical thermodynamics,’’ it
is sufficient to say that S¼R ln (W) is a valid formula that predicts an idealized value of zero for the
entropy of a substance at 08, but there are several reasons why you will not be able to reach absolute
zero in a practical way.

ENTROPY OF REACTIONS

Since entropy is a state variable, we can compute the change in entropy in a reaction just as we did
for enthalpy:

DS 0
rxn(298

�K) ¼
Xprod
i

niS
0
i �

Xreact
j

njS
0
j :

Example

Hg(liq) þ 1=2O2(gas) ! HgO(red),

DS 0
rxn(298

�K) ¼ 70:25� 75:90� (205:152=2) ¼ �108:226 J=�K mol:

The entropy change is negative and quite large mainly due to the fact that the random O2 gas
becomes localized in the red solid HgO, which is a drastic reduction in spatial randomness. We note
that if DS 0

rxn is negative, the process is going toward a more ordered state. That is quite against the
natural tendency of entropy to increase, but if we compute the heat of the reaction, we see that the
reaction is also very exothermic, so we could say in this case the energy released in the reaction
makes it possible for the reaction to proceed to a more ordered state (Table 5.1):

DH0
rxn(298) ¼ �90:79� 0� (0=2) ¼ �90:79 kJ=mol:
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ENTROPY CHANGES AT T> 298.158K

Once again, we need to correct a state variable for temperatures other than the standard state:

qDS 0

qT
¼
Xprod
i

qS 0
i

qT
�
Xreac
j

qS 0
j

qT
,

but we know that

ðT
298

d(DS 0) ¼
ðT
298

DCP dT

T

so we can write

DS 0
rxn(T) ¼ DS 0

rxn(298)þ
ðT
298

DCP

T

� �
dT :

We know from the previous chapter that we may have to integrate over the various terms of a
polynomial heat capacity, but there is a slight difference in the first term in this case. Once again, we
can calculate the difference in the CP polynomial coefficients according to the ni coefficients in the
balanced reaction.

Da ¼Pprod
i niai �

Preact
j njaj and similar expressions for Db, Dc, Dd, and De are obtained using

CP polynomials from Table 4.3. Thus, we need to integrate a slightly different formula for DS 0
rxn(T).

TABLE 5.1
Selected Values of H0

f in kJ at 1 bar and 298.158K
and DS0298 in J=8K

Compound
H0

f (298.15, 1.000 bar)
kJ=mol

S0f (298.15, 1.000 bar)
J=�Kmol

H2 0 42.55

O2 0 205.152

CO �110.53 197.660

CO2 �393.51 213.785

Cgraphite 0 5.74

HCCH þ227.4 200.9

H2CCH2 þ52.40 219.3

H3CCH3 �84.0 229.2

CH4 �74.6 186.3

NH3 �45.94 192.77

HCl �92.31 186.902

Cl2 0 233.081

H2O �285.830 69.95

H2CO �108.6 218.8

Hg(liq) 0 75.90

HgO(red) �90.79 70.25
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DS 0
rxn(T) ¼ DS 0

rxn(298)þ
ðT
298

Daþ DbT þ DcT2 þ DdT3 þ DeT4

T

� �
dT

which is easily integrated:

DS 0
rxn(T) ¼ DS 0

rxn(298)þ Da ln
T

298

� �
þ Db(T � 298)þ Dc

2
(T2 � (298)2)þ Dd

3
(T3 � (298)3)

þ De

4
(T4 � (298)4):

The main difference in the entropy integration is in the first natural logarithm term.

TROUTON’S RULE=OBSERVATION

One curiosity of entropy is a relationship between boiling points and heats of vaporization. At an early
age, F.T. Trouton (1863–1922) observed a pattern in boiling points and published two papers on a
trend now known as ‘‘Trouton’s rule.’’ This rule falls within the realm of familiar rules in organic
chemistry, which often have exceptions but are still useful. Basically Trouton’s rule states that

DHvap

Tbp
� 10:5R � 88 J=�K:

In use, this rule requires the boiling point in 8K, and it actually works quite well for covalent organic
compounds where there is no H-bonding, so that covers many cases in organic chemistry. It is poor
for water, carboxylic acids, and alcohols due to the complication of H-bonding but overall,
Trouton’s rule is useful to estimate the heat of vaporization if the boiling point is known or to
estimate the boiling point temperature if the heat of vaporization is known.

We can see in Table 5.2 that there is no trend in the entropies of fusion for melting points of a
range of elements or compounds. On the other hand, Table 5.3 shows a near constancy of the
entropy of vaporization with notable exceptions for water and acetic acid, which clearly have strong
internal H-bonding in the liquid phase. Trouton’s rule is more of an ‘‘observation’’ than a derivable
equation but still useful for ‘‘back-of-the-envelope’’ estimation of boiling points or heats of
vaporization.

TABLE 5.2
Entropy of Fusion for Selected Materials

Element=Compound Tmp (8C) DHfus (kJ=mol) (DHfus=Tmp) (J=
�K)calc

H2O 0.000 6.01 22.002

Smonoclinic 115.21 1.721 4.431

Na 97.794 2.60 7.009

K 63.5 2.335 6.936

Mg 650 8.48 9.186

Pb 327.462 4.774 7.949

I2 113.7 15.52 40.119

C6H6 5.49 9.87 35.422

Acetic acid 16.64 11.73 40.478

Naphthalene 80.26 19.01 53.790
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SIMPLE STATISTICAL TREATMENT OF LIQUIDS AND GASES

Let us apply the Boltzmann equation for absolute entropy to the problem of mixing materials. The
main point here is to illustrate how entropy tends to lead a process toward randomization even if no
energy is involved. The process we are going to show can apply to gases or liquids as an example
that merges the third law using the Boltzmann statistical form of entropy with a simple lattice model.
We should mention that while the theoretical treatment of gases and solids is worked out in detail,
the theory of liquids is still a research frontier, so this simple model is of more interest applied to
liquids. Liquids are more ordered than gases but less ordered than crystalline solids. Modern
research in computer modeling of liquids can become quite sophisticated, but here we will use a
very simple model of an egg carton with positions for 12 eggs. With our understanding of the
Boltzmann KMTG and Dalton’s law it is easy to imagine how gases mix, so our main interest here is
for liquids. We can illustrate the mixing of two liquids (or gases) denoted by red and white poker
chips to model and understand what happens when two liquids mix. To maximize meaning in a
compact example, we want to show that even when there is no energy component driving the
mixing, there is an effect due solely to entropy. Thus, we include the derivation of DSmix for binary
solutions in this chapter.

In Figure 5.5, we show an egg carton with 12 numbered poker chips placed sequentially. Even
with this simple example, we can see that the first poker chip could have been placed in any of the
12 egg wells, but the second chip would only have 11 possibilities, the third chip would only have
10 possible positions, etc. In fact there are 12!¼ 479,001,600 ways we could have put the 12 chips
into the 12 egg wells, quite a few possibilities!

We could keep track of all those possibilities because there is an implicit order in the orientation
of the egg wells and we have placed numbers on the chips to identify each one.

Now, if we flip the numbered chips over so we cannot see the numbers as in Figure 5.6, there is
no way to tell which chip was put into what well first, second, third, etc. In fact, we do not even
know which chip we picked up first to put in any egg well, so there are 12! possibilities for the order
of picking the chips and 12! ways to put them in the egg wells but by just looking at the picture we
can see that if the chips are ‘‘indistinguishable’’ there is only one way they can be in the carton, so in
the Boltzmann equation, the ‘‘W ’’ number comes out to be just 1, the hard way.

W ¼ 12!
12!
¼ 1 so that S ¼ R ln (1) ¼ 0 and as far as the white poker chips are concerned they are

‘‘perfectly ordered,’’ so the entropy of this model is zero.

TABLE 5.3
Entropy of Vaporization for Selected Materials

Element=Compound Tbp (8C) DHvap (kJ=mol) (DHvap=Tbp) (J=
�K)calc

H2O 100.0 40.657 108.956

S 1367 154 93.894

Pb 1749 179.5 88.767

I2 184.4 41.57 90.853

C6H6 80.09 30.72 86.966

Acetic acid 117.9 23.70 60.606

Naphthalene 217.9 43.2 87.975

CCl4 76.8 29.82 85.212

CH3CH3 �88.6 14.69 79.599

C9H20 150.82 37.18 87.695

C10H7Br 259 52.1 97.905

Average¼ 88.039
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The concept of ‘‘indistinguishability’’ is important in molecular science because in many cases
there is no way to tell one H atom from another as well as many other indistinguishable cases.

Now suppose we want a mixture of red and white chips in the egg carton such that the sum of
poker chips is still 12. We could put some red chips in the empty carton in some order as shown in
Figure 5.7. Then we could put some numbered white chips into the empty egg wells. Finally, we
could turn over the red and white chips to hide the numbering.

Suppose we fill in just six red chips in some random order and hide the labels and then fill the
other egg wells with white chips that also have hidden labels, as in Figure 5.6. Now the question is,
what is W for this mixture of red and white chips?

W ¼ 12!
(6!)(6!)

¼ 479, 001, 600
518, 400

¼ 924:

The 12! in the numerator comes from the fact that there are a total of 6þ 6¼ 12 chips and we could
have picked any of the 12 as the first, second, third, etc. to place in the egg carton without noting
their color. However, the possible order within the red set of chips could have only been chosen
in 6! ways and only 6! ways would have been possible for the order of choosing the white chips.

FIGURE 5.5 Twelve numbered white poker chips in a one dozen egg carton.

FIGURE 5.6 Twelve ‘‘indistinguishable’’ white chips in 12 egg wells are perfectly ordered.
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Thus, even though there are still 924 possible ways the (six red, six white) arrangement could have
been achieved, we now have a way to take care of the fact that all the chips are the same. So, for a
binary system of (a, b) species, we have a formula for W(a, b) as

W(a, b) ¼ (Na þ Nb)!

(Na!)(Nb!)
and so S ¼ k ln

(Na þ Nb)!

(Na!)(Nb!)
:

Now, we have to worry over the fact that we have to treat a number of particles of the order
of Avogadro’s number in the 1023 range. Fortunately, two mathematical tricks are available at this
point. First, we should realize that we can use the logarithm of the number of particles, which will
be a much smaller number while still following the same trends as the number itself. Second, we
have available Stirling’s approximation for large values of ln (n!) as found in several handbooks
(Table 5.4).

Stirling0s approximation: n! ffi (
ffiffiffiffiffiffiffiffiffi
2pn
p

)nn e�n:

We can take the natural logarithm of this expression to find a simpler formula:

ln (n!) ¼ n ln (n)� nþ ln (
ffiffiffiffiffiffiffiffiffi
2pn
p

):

TABLE 5.4
Selected Values of Stirling’s Approximation for ln (n!)

n n! ln (n!) n ln (n)�n Error Error (%)

10 3.6288E6 15.1044 13.0258 2.0786 13.7616

20 2.4329E18 42.3356 39.9146 2.4210 5.7186

30 2.6525E32 74.6582 72.0359 2.6223 3.5124

40 8.1592E47 110.3206 107.5552 2.7654 2.4428

50 3.0414E64 148.4777 145.6012 2.8765 1.9373

60 8.3210E81 188.6282 185.6607 2.9675 1.5732

FIGURE 5.7 Placing only six labeled red chips in the carton shows the many possibilities. Here that
corresponds to hiding the labels but the principle should be clear.

The Second and Third Laws of Thermodynamics 97



The last term of this expression becomes negligible for very large values of ‘‘n,’’ so we arrive at a
very useful approximation for the natural logarithm of n! as

ln (n!) ffi n ln (n)� n:

We can see that n! soon exceeds the range of even a 10-place calculator, but we can also see that the
percent error decreases as the number gets larger and that when n¼ 1023, the approximation will be
very good.

Now consider an egg carton with only red poker chips and another with only white chips. Let red
chips be the ‘‘A’’ chips and ‘‘B’’ the white chips. Then in each perfectly ordered carton box we
would have (the numbers need not be six and six but could be eight and four etc.)

SA ¼ k ln
NA!

NA!

� �
¼ 0 for the red chips and SB ¼ k ln

NB!

NB!

� �
¼ 0 for the white chips:

Then after mixing the red and white chips in a larger ‘‘two dozen’’ crate as a simulation of pouring
two liquids together, we suppose that A and B are something like n-heptane and n-octane, which are
so similar in structure and nonpolar that there is very little energy interaction between them so we
make the approximation that DHmix ¼ 0. Thus, whatever happens in this mixing is a result of only
an entropy effect. Now let us calculate DSmix ¼ Safter � Sbefore using the Boltzmann formula:

DSmix ¼ kB ln
N!

(NA!)(NB!)

� �
� kB ln

NA!

NA!

� �
� kB ln

NB!

NB!

� �

and then apply Stirling’s approximation:

DSmix ¼ kB[N ln N � N � NA ln NA þ NA � NB ln NB þ NB]� 0� 0,

where

N ¼ NA þ NB:

So,

DSmix ¼ �k[NA ln NA þ NB ln NB � N ln N]:

Since NA þ NB cancels N inside the bracket

DSmix ¼ �kB[NA ln NA þ NB ln NB � (NA þ NB) ln N]:

DSmix ¼ �kB NA ln
NA

N

� �
þ NB ln

NB

N

� �� �
N

N

� �
¼ �NkB NA

N
ln

NA

N

� �
þ NB

N
ln

NB

N

� �� �
, where

we have multiplied the bracket by (N=N) and dragged N under both terms. What if N is equal to
Avogadro’s number? That will convert the expression to a molar basis. Note that NA=N is a mole
fraction.

xA ¼
NA

N
and xB ¼

NB

N
are the respective mole fractions of the A and B species, and we obtain

the final expression in terms of mole fractions and if NkB ¼ ntotR the final result is

DSmix ¼ �nR[xA ln xA þ xB ln xB],
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which can be simplified further since for a binary mixture we know that xB ¼ 1� xA, so finally for
a binary liquid:

DSmix ¼ �nR[xA ln xA þ xB ln xB] ¼ �nR[x ln xþ (1� x) ln (1� x)]:

We can ask what mole fraction will produce the maximum entropy of mixing? We can do this by
taking the derivative of DSmix with respect to mole fraction, set the derivative to zero, and then solve
for the mole fraction at the maximum. Note that the minus prefix is made positive by the fact that the
mole fractions are less than 1, so their logarithms are minus, which leads to a maximum:

qDSmix

qx
¼ �nR x

1
x

� �
þ ln xþ (1� x)

�1
1� x

� �
þ (�1) ln (1� x)

� �
¼ �nR ln

x

1� x

� �
¼ 0:

The only way this derivative can be zero is if
x

1� x

� �
¼ 1 so, we have x ¼ 1� x or 2x ¼ 1 and

finally, the maximum DSmix will occur when x ¼ 1=2 and xA ¼ xB. Well of course, it is also
interesting to insert this condition into the Gibbs free energy expression, DGmix ¼ DHmix � T DSmix

(Figure 5.8).
We see that DGmix ¼ 0þ nRT[x lnxþ (1� x) ln (1� x)] is a minimum because the mole

fractions are numbers less than 1 so their logarithms are negative and so we can find DGmix even
when DHmix ¼ 0. One last thought is that we can imagine looking at Figure 5.6 when there are more
than half red chips and they are indistinguishable. There is less opportunity for variations when the
box is nearly all red. Conversely, there is the maximum chance for randomness when the number of
red and white chips is equal.

SUMMARY

This chapter has been a survey of the second and third laws of thermodynamics. We have used the
Carnot cycle to introduce the concepts of entropy and efficiency, but the most important relationship
we found was that dqrev ¼ T dS. Together with the first law that led to eight very important
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FIGURE 5.8 The entropy of mixing multiplied by 100 (upper line) and the Gibbs free energy (lower line) of
mixing at 298.158K plotted on the same graph. Here DGmix ¼ 0� (298:15)(DSmix) but DSmix determines the
DGmix value at whatever temperature T happens to be. Note ln (0) is undefined, so we plot the edge values as
mole fractions of 0.01 and 0.99.
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equations and helped define A and G, two new state variables. The third law was defined and
connected to the Boltzmann equation for absolute entropy, S ¼ kB ln W . Using that equation, we
derived the equation for the entropy of mixing in binary solutions. We also discussed the empirical
observation of Trouton’s rule. Now we can proceed, armed with a basic understanding of the first,
second, and third laws of thermodynamics and in possession of eight equations, which are more
powerful than we have yet realized.

TESTING, GRADING, AND LEARNING?

We now provide some midterm examinations to assist students in preparing for such a test at about
this point in the course. It may be helpful to the students to give this test a bit past the actual
midpoint of the course and to give them time to assimilate the material. This author routinely offers
the students the option to take their final grade based on the cumulative final examination alone or
their cumulative average over the semester, whichever is higher. That policy tends to make the
midterm a ‘‘practice run’’ for the final examination, which will include some new questions related
to lecture material between the midterm and the final examinations. Providing old tests to the
students does focus their study, but they should expect the questions to be modified for the actual
examinations. We note here that no student who cut many classes and took only the final
examination has ever passed this course.

Now we present an actual examination that was a midterm examination in 2007 for a one-
semester presentation in CHEM 305 at Virginia Commonwealth University. After that we show a
slightly more difficult midterm examination from the 2009 Summer course. The time allowed for
CHEM 303 is longer when a 2 h lecture period is available, but the CHEM 305 time period was only
1 h in the one-semester course.

CHEM 305 Midterm examination, Fall 2007 D. Shillady, Professor
(Points) (Attempt all problems) 55 min

(15) 1. Calculate the laminar bulk flow rate in gallons=min for blood with h¼ 0.015 poise through
an aorta 5 in. long and 1=4 in. inner diameter due to a pressure difference of 135–80 mmHg,
use a duty cycle factor of 0.05 due to pulsation. (1.218 gallons=min)

(15) 2. Calculate the temperature of air compressed adiabatically in a one-cylinder diesel engine
from 1030 cm3 at 228C and 1 atm pressure to 30 cm3, given CV¼ (5=2)R. Compute the
moles of air assuming 22.414 L=mol of air, Q, W, DH, and DU for this compression.

(T¼ 1213.78K, Q¼ 0, n¼ 0.0425, DU¼W¼þ193.95 cal, DH ¼ þ271:54 cal)

(10) 3. Calculate �v ¼
ffiffiffiffiffiffiffiffiffi
8RT
pM

r
for He gas molecules in mph at 208C (He¼ 4.0026 g=mol).

(2795.3 mph)

(15) 4. Derive the expression for �v of a gas molecule using the Boltzmann principle.
(See chapter notes)

(15) 5. A 0.500 g sample of n-heptane (C7H16) burned in a constant volume calorimeter causes
DT ¼ 2:934�C. If CV of the calorimeter is 1954 cal=8C, calculate DHcomb of n-heptane at
2988K (use C¼ 12.011 g=mol and H¼ 1.008 g=mol).

(�1,151,505 cal=mol)

(10) 6. Compute DH0
298 for the reaction C6H6 þ 3H2(g) ! C6H12 given the data DHcomb (C6H6) ¼

�782:3kcal=mol,DHcomb (C6H12)¼�937:8kcal=mol, andDHcomb (H2)¼�68:3kcal=mol:
(DHrxn ¼ �49:4 kcal=mol)
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(10) 7. Given a¼ 3.610 atm L2=mol2 and b¼ 0,0429 L=mol for the van der Waals equation of CO2,
calculate the pressure P in atm of 5 mol of CO2 in a 5 L container at 708C.

(P¼ 25.81 atm)
(10) 8. Show that (CP�CV)¼R for an ideal gas.

(See chapter notes)

Physical chemistry 303 Summer 2009 D. Shillady, Professor
(Points) Midterm examination (Attempt all problems) 120 min

(15) 1. Using hvisc ¼ (1=2)n*m�vl ¼ 2:08� 10�4 poise at 258C and 1 atm pressure for O2, compute
d, l, Z1, and Z11. (Atomic weight for O¼ 15.9994 g=mol) (d¼ 3.573� 10�8 cm,
l ¼ 716� 10�8 cm, Z1¼ 6.203� 109 s�1, Z11¼ 7.634� 1028 binary=cm3 s)

(15) 2. Using the Boltzmann distribution, set up the distribution function for the speed of a gas
molecule in any direction; derive formulas for �v, vrms, and the most probable speed a.

(See chapter notes)

(10) 3. Calculate �v for He (atomic weight 4.002503) gas molecules at 258C in mph.
(2809.22 mph)

(10) 4. Show (CP�CV)¼R for an ideal gas. (See chapter notes)

(10) 5. Compute DH0
298 for the reaction 3(HC � CH! C6H6(l) given the data DH0

comb

(HC � CH) ¼ �1301:1 kJ=mol and DH0
comb (C6H6) ¼ �3267:6 kJ=mol.

(DH0
298 ¼ �635:7 kJ)

(15) 6. Find Pc, Vc, and Tc for a van der Waals gas and show the law of corresponding states.
(See chapter notes)

(15) 7. Calculate the temperature of air compressed adiabatically in a one-cylinder diesel
engine from 1050 cm3 at 228C and 1 atm pressure to 50 cm3. Given CV¼ (5=2)R, compute
moles air, Q, W, DH, and DU for this compression.

(Q¼ 0, W¼DU, DU¼ 151.78 cal¼ 636. 0 J, DH ¼ 212:5 cal ¼ 889:1, n¼ 0.0434)

(10) 8. Calculate the entropy of fusion (DSfus) of a compound at 08C given that its DHfus is 39 kJ=mol
at 1568C (mp) and the molar CP values are 28.0 J=8C for the liquid and 20.0 J=8C for the
solid. (DSfus ¼ 87:263 J=�K at 08C)

DS took 80 min

PROBLEMS

5.1 Estimate the absolute entropy of 1-deutero-naphthalene at 18K using S ¼ kB ln W .
5.2 Calculate the efficiency of a internal combustion heat engine operating with a heat source at

10008C and discarding exhaust heat at 7008C.
5.3 Calculate the entropy of mixing for a mixture of n-heptane and n-octane versus mole fraction

and sketch a graph showing DSmix for mole fractions of n-heptane as 0.01, 0.25, 0.4, 0.5, 0.6,
0.75, and 0.99 on the same graph using a different scale on the Y-axis plot
DGmix ¼ DHmix � T DSmix assuming DHmix ¼ 0 and T¼ 258C. Scale DSmix � 100.

5.4 Derive all eight of the basic thermodynamic equations starting from the first law, the definition
of H and dS ¼ dqrev=T . Derive the four Maxwell relationships using the idea of reversing the
order of differentiation.

5.5 Calculate DS298 for the reaction H2 (g)þ 1
2
O2(g)! H2O (liq) at 298.158K using the data in

Table 5.1. Then use that value to correct the value of DS298 to DS1000 at 10008K using the

polynomials in Table 4.4.
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6 Gibbs’ Free Energy
and Equilibria

INTRODUCTION

In previous chapters, we have stressed that in nature energy tends to decrease while entropy tends to
increase. A naive first consideration of any machine or process is that energy is needed to continue
operation and we often overlook energy expended on various repair activities that are a form of
entropy management. It becomes more obvious that entropy is a factor when one studies chemical
processes that ‘‘should’’ occur based on energy considerations but nevertheless require some sort of
a catalyst or other special conditions, which imply geometric constraints that overcome the natural
tendency of randomness to increase. The value of DS is a change in a state variable but the path can
be modified by special conditions such as the introduction of a catalytic surface, which allows
reactants to meet side-by-side compared to random collisions in the gas phase. Josiah Willard Gibbs
(1839–1903) was a foremost U.S. scientist (Figure 6.1) who made important advances in thermo-
dynamics applying the new idea of ‘‘chemical potential’’ (DG=n) as a free energy per mole of a
substance in phase diagrams and applied to equilibria. At the time of his work, few people
understood it but it was later developed into the idea of free energy and greatly affected thinking,
teaching, and problem solving in chemical engineering. Gibbs’ research used what was advanced
mathematics in his time but remained at what we call ‘‘classical physics’’ today since he predated
quantum mechanics. Gibbs is especially noteworthy in that he carried out research in the United
States at a time when the turmoil of the U.S. Civil War and settling in the West were not as
conducive to research as was the case in Europe in the late 1800s. However, Gibbs had spent a year
each in Paris, Berlin, and Heidelberg and had written contact with foremost scientists in Europe.
Gibbs also held the very first PhD in chemical engineering in the United States, awarded in 1863
from Yale University. Other scientists including Albert Einstein regarded Gibbs as a foremost
founder of thermodynamics and a true genius. It is indeed humbling to realize that such pure thought
by Gibbs, Boltzmann, and others was carried out for the first time without the same sort of support
we have now in ‘‘the information age,’’ although scientists did study each other’s work. Truly we
stand on the shoulders of intellectual giants!

For our list of essential topics, we will focus on the main result from Gibbs:

DG ¼ DH � TDS

Large lists of G0
298 are available [1] as assembled from H0

298 and S
0
298 values, so that one can calculate

values for chemical reactions as DG0
rxn (298) using balanced reactions and thermodynamic tables.

The main usefulness of this process is that one can obtain an equilibrium constant for gas reactions
and the concepts for gases can be extended to other phase concentrations. Following Gibbs, we
define a concept called the ‘‘chemical potential.’’ From the HUGA equations, we have

dG ¼ �S dT þ V dP and we specify a new symbol (mu, m) as dm ¼ dG

n

� �
¼ �S dT þ V dp

where we specify the equation is for 1 mol and the bar over the entropy and volume indicate values
per mole. We look ahead to consideration of an equilibrium at a specific temperature, so when T is

constant we have dm ¼ dG

n

� �
¼ �S dT þ V dp ¼ 0þ RT

P

� �
dP ¼ RTd ln P and we can calculate
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a change in m as
ð2
1
dm ¼ RT

ðP2

P1

dP

P
, so that we find m2(T ,P2)� m1(T ,P1) ¼ RT ln

P2

P1

� �
. We can

use this general formula to reference the chemical potential to standard conditions, such as 2988K
and 1 bar.

m(T ,P) ¼ m0 þ RT ln
P

1

� �
or using G0

298 values G(T ,P) ¼ G0
298(1 bar)þ RT ln P. Many old

texts standardized on 1 atm but the new handbook values are relative to 1 bar (1 atm¼ 1.01325 bar),
so there is not much difference in the numbers and the equation is the same.

Now let us consider a typical equilibrium for gases where we can use pressures according to
Dalton’s law.

aAþ bB  ��! cCþ dD

DG ¼ cmC þ dmD � amA � bmB

DG ¼ cm0
C þ dm0

D � am0
A � bm0

B þ RT[c lnPC þ d lnPD � a lnPA � b lnPB]

but c lnPC ¼ ln Pc
C, etc.

DG ¼ DG0
298 þ RT ln

Pc
CP

d
D

Pa
AP

b
B

� �
¼ DG0

298 þ RT lnKP where
Pc
CP

d
D

Pa
AP

b
B

� �
¼ KP. Note DG ¼ 0 at

equilibrium by the very definition of the meaning of equilibrium as a balance of decreasing energy
and increasing entropy. Therefore as a result of the equilibrium condition, we have

DG0
298 ¼ �RT lnKP and ln KP ¼ �DG0

298

RT
and that leads to KP ¼ e�

DG0
RT ¼ exp

�DG0
298

RT

� �
.

FIGURE 6.1 Portrait of Josiah Willard Gibbs (Jr.) (1839–1903) from the Williams Haynes Portrait Collec-
tion, Chemical Heritage Foundation Collection. He earned his PhD from Yale (one of the first in the United
States) and spent his career there as a professor of mathematical physics.
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We need to make a point here about equilibrium reactions, they are dynamic. A naive idea of an
equilibrium is that it oozes in one direction, sets up concentrations, and then coagulates into a sort of
semistable pudding. That is far from the truth; the double arrow ( ��!) is a very active process in a
never ceasing reaction in both directions. Modern spectroscopy has shown that even the H atoms in
organic compounds can exchange with other H atoms, so a lot of activity is going on in seemingly
stable compounds and if there is some sort of reaction it can often reverse itself. Equilibrium
reactions are constantly going in both directions even though one direction may be favored.
Of course, temperature can affect the extent of the equilibrium in either direction.

Example 1
Suppose we place 0.300 mol of H2 and 0.100 mol of D2 in a 2.00 L vessel at 258C.

H2(g) þ D2(g)  ��! 2HD; DG ¼ �0:700 kcal ¼ �2:929 kJ ½2

(0:300�x) (0:100�x) (2x)

DG0
298 ¼ �RT ln KP, so

þ2929 J=mol

(8:314 J=�Kmol)(298:15�K)
¼ ln KP ffi 1:1816. Note that the logarithm

comes out to be a pure number after all the units cancel as it must, which is a good way to check the
units. The 1 mol value for DG0

298 is based on the balanced reaction for 1 mol H2. This reaction is
chosen in our idea of essential physical chemistry to illustrate several points at once, but let us not
miss the points. This is an exchange reaction of H and D where only gas phase collisions occur and
this implies there is some sort of microscopic mechanism in operation, although as usual the
thermodynamics does not give any information on the mechanism. Second, the KP value is a
constant meaning that there is a fixed relationship between the concentrations. Third, the gases
are in the same container so we can convert pressures directly to concentrations. Fourth, note that, as
written, the DG0

298 value is negative. The main idea of DG0
298 is that it is negative for a reaction

which ‘‘tends’’ to the right as written based on standard state values, but that does not mean it will go
to completion. A positive value for DG0

298 would mean that the reaction ‘‘tends’’ to go to the left, but
not that it would not occur at all. Generally, all reactions that have a negative DG0

298 will occur to
some extent, but here we are dealing with the case of DG0

298 ¼ 0, the condition for an equilibrium.
This example also introduces the idea of ‘‘x’’ as a ‘‘molar reaction coordinate, the extent of the

reaction’’; it is the molar amount of the reaction that occurs on the left side and shows up as moles of
product on the right side of the reaction. We will use this same idea when we treat reaction kinetics.
Keeping in mind our emphasis on the idea of an equilibrium as a dynamic process, we are actually
treating this in a similar way to a kinetics problem but without any mention of time. Let us solve
for ‘‘x.’’

KP ¼ e1:1816 ¼ 3:2596 ¼ P2
HD

� �
PH2½ 
 PD2½ 
 ¼

nHD
RT

V

� �� �2
nH2

RT

V

� �� �
nD2

RT

V

� �� � ¼ (2x)2

(0:3� x)(0:1� x)

Note that the pressures are low enough that the ideal gas law is accurate and the factors of
RT

V

� �
all cancel in the equilibrium expression. It is easy to see that (3:2596)(0:03� 0:4xþ x2) ¼ 4x2,
which leads to 0:2271x2 þ 0:400x� 0:030 ¼ 0 and can be solved using the quadratic

Gibbs’ Free Energy and Equilibria 105



formula: x ¼ �b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac
p

2a
. This leads to x ¼ �0:400�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(0:400)2 � 4(0:2271)(�0:03)

p
2(0:2271)

; the

positive root is x ffi 0:072. Thus, we find at equilibrium: [H2] ¼ 0:300� x ¼ 0:228,
[D2] ¼ 0:100� x ¼ 0:028, [HD] ¼ 2x ¼ 0:144. According to the calculations, almost all of the
D2 has reacted and been converted to HD noting that H2 can provide two H atoms.

TEMPERATURE DEPENDENCE OF EQUILIBRIUM CONSTANTS

Sometimes it is possible to shift an equilibrium to increase the yield of a desired product. The key
equation was given above, which shows temperature dependence through the logarithm.

DG0
298 ¼ �RT ln KP and in the example here we have a specific formula:

�ln KP ¼ DG0
298

R

� �
1

T(K)

� �
, so that we can show a plot of ln (KP) versus (1=T) (Figure 6.2).

We will encounter a number of these sorts of plots where the x-axis is a reciprocal temperature, so it
is a good idea to carefully consider this graph. If you think about it, the lowest temperature will give
the largest value of the x-coordinate, so the right side of the graph refers to the lowest temperature.
In the plot shown the y-axis is the negative logarithm of the KP at that temperature, so the KP value
does indeed change with the inverse temperature in a very linear way. It is perhaps worth noting that
this expression is compatible with the Boltzmann principle since

KP ¼ e�
DG0
RT ¼ exp

�DG0
298

RT

� �
¼ e�

E
RTð Þ:

van’t HOFF EQUATION

An alternative way to study the effect of temperature on an equilibrium is due to further manipu-
lations by van’t Hoff (1852–1911) who was a Dutch physical-organic chemist and the winner of the
very first Nobel Prize in 1901 for his research on dilute solutions. Although we have shown a
method above, which might be sufficient when DG0

298 is available, we show this additional

0
Hydrogen exchange equilibrium
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FIGURE 6.2 The plot of � ln (KP) versus (1=T) for the H2 þ D2  ��! 2HD equilibrium.

106 Essentials of Physical Chemistry



more complicated method because it produces graphical results similar to the treatment of rate
constants in Chapters 7 and 8, and only depends on DH0

298. The point of this exercise is to
reinforce the idea that equilibria are dynamic and are the result of a dynamic trade-off of a
forward reaction and a reverse reaction. We start with the same equation as above,
DG0

298 ¼ �RT ln KP ) ln KP ¼ � DG0
298=RT

	 

. Then the temperature derivative is

d ln KP

dT
¼ �(�DG

0)

RT2
� 1

RT

� �
d(DG0)

dT
¼ þDG

0

RT2
� 1
RT

d(DG0)

dT
. But dG ¼ �S dT þ V dP, so that

at constant P in a reactor
qG0

qT

� �
P

¼ �S0. Then at 1 atm
d DG0ð Þ
dT

¼ �DS0, so that

d ln K0
P

dT
¼ DG0

RT2
� (�DS0)

RT
¼ (DH0 � TDS0)

RT2
þ DS0

RT
¼ DH0

RT2
¼ d ln K0

P

dT
.

This equation
d ln K0

P

dT
¼ DH0

RT2

� �
requires only the DH0 value, although a way is still needed to

obtain K0
P for some initial condition. This equation can be developed further for graphical analysis

by integrating the derivative over a range of temperature.

ðT2
T1

d ln K0
P ¼

ðT2
T1

DH0(T)dT

(RT2)
ffi DH0

R

ðT2
T1

dT

T2
¼ �DH

0

R

1
T2
� 1
T1

� �
¼ ln

K0
P(T2)

K0
P(T1)

� �
:

Thus, ln K0
P(T2) ¼ ln K0

P(T1)�
DH0

R

1
T2
� 1
T1

� �
, although this equation assumes that DH0 is con-

stant over a small temperature range.

Example 2
One of the most significant and most highly studied equilibria in the early twentieth century was the
Haber ammonia synthesis for which Fritz Haber was awarded the Nobel Prize in 1918. In spite of
the fact that the atmosphere of Earth is over 70% nitrogen, it is chemically difficult to use that
enormous source of N2 to produce nitrogen fertilizers because N2 is quite unreactive. Because of the
Haber synthesis, as much as one-third of the world food supply is a result of increased agricultural
yield due to nitrogen fertilizers, such as NH4NO3, which can be synthesized from NH3 on a
commercial scale. Haber might be considered one of the greatest benefactors to humankind but
the original motivation for developing the process was that Germany needed a way to make nitrates
for munitions in WWI. In the early 1900s, nitrates were manufactured by acidifying ‘‘guano’’ (bird
droppings rich in nitrogen compounds) as found in hundred foot layers on islands off the coast of
Chile to obtain nitric acid and then on to nitrates. However, due to various blockades, Germany was
cutoff from obtaining guano. Thus, ammonia synthesis was a strategic process, which lengthened
WWI but later became very beneficial to agricultural yield. Another consideration is that the Nobel
Prize money itself comes from the earnings of the original patent granted to Alfred Nobel for the
invention of stabilized tri-nitro-toluene (TNT), so converting atmospheric N2 to nitrates has great
significance to humankind whether for war or peace.

The 90th Edn. of the CRC Handbook lists values for NH3 of DH0
298 ¼ �45:9 kJ=mol and

DG0
298 ¼ �16:4 kJ=mol. Thus, for the equilibrium N2 þ 3H2  ��! 2NH3 we can calculate

DG0
298 � RT ln K0

P ¼ 2(�16:4 kJ=mol)� 0� 0 ¼ �32:8 kJ and so we can find the value of K0
298.

ln K0
298 ¼

�32, 000 J=mol

(8:314 J=mol�K)(298:15�K)
¼ 13:2321; K0

298 ¼ 5:58� 105 ¼ P2
NH3

PN2P
3
H2

:
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Now since we may want to produce NH3, we can ask what temperature would shift the equilibrium
so that the pressure of the desired product NH3 is doubled (assuming DH0

298 remains approximately
constant).

ln
K0
P(Tx)

K0
P(298:15)

� �
¼ ln

2
1

� �
ffi �DH

0
298

R

1
Tx
� 1
298:15

� �
:

Thus,
R ln(2)

�DH0
298

þ 1
298:15

¼ 1
Tx

and so we find that only a modest 118 increase is needed.

(8:314 J=mol �K) ln(2)
(�45,900 J=mol)

þ (3:354016435� 10�3) ¼ 1
Tx
) Tx ¼ 309:74�K.

Actually this process required reaction vessels capable of holding very high pressures and a
catalyst is also required. Eventually, a temperature of over 6008K was found to work best but we can
see from this limited example that increasing the temperature shifts the equilibrium toward more
NH3. Here we can also see the first case to comment on the need for care in treating reciprocal
temperatures. We recommend carrying all digits available in this sort of calculation and then
rounding to the least number of significant figures only at the end of the calculation.

VAPOR PRESSURE OF LIQUIDS

The Gibbs free energy concept can also be used in some cases where DG does not appear in the final
formula but is still important to analyze the process. An important case is the vapor pressure of
liquids. A strange concept that is important in forensic applications is that in principle all solids and
liquids have some small vapor pressure. In everyday experience, we can hold items close to our nose
and detect faint odors. In some cases like polished granite or other stoneware this slight vapor
pressure is negligible to human smell detection but we know dogs and other animals can detect
odors perhaps to a sensitivity more than 1000 times that of the human nose. Even then you say
granite has no vapor pressure and effectively that is so for the solid but at temperatures where stone
becomes molten as in lava there will be a vapor pressure. The point is that when a solid changes into
a gas (sublimation) or a liquid changes into a gas (boiling, vaporization) the atoms=molecules of the
gas literally ‘‘jump’’ away from the solid or liquid. To motivate this discussion, imagine that when
water boils some molecules at the surface of the liquid jump out of the container. However, if we
boil water to make tea and turn off the heat and let the water cool, the gas molecules immediately
above the surface of the liquid can ‘‘crash’’ into the liquid since their random motion allows some to
move toward the liquid. We have already used the idea that phase changes can be considered
reversible in our discussion of entropy when we noted dS ¼ dqrev=T and that DSvap ¼ DHvap=Tmp.
Here we extend that idea to treat an equilibrium condition at the surface of a liquid in boiling or at
the surface of a subliming solid like CO2 (dry ice).

Consider the most common case of boiling. At equilibrium Gliq ¼ Gvap so dGliq ¼ dGvap. For the
boiling process the most appropriate variables to use are P, T with the assumption that there is some
equation of state that will relate P, V, T, and n. Thus, we can relate the general differential of G to
one of the HUGA equations.

dG ¼ qG
qP

� �
T

dPþ qG
qT

� �
P

dT ¼ V dP� S dT so we can match the liquid and vapor dG values.

Vliq dP� Sliq dT ¼ Vvap dP� Svap dT , which leads to
dP

dT
¼ (Svap � Sliq)

(Vvap � Vliq)
. Recall (Svap � Sliq) ¼

DHvap

Tbp
. Thus,

dP

dT
¼ DHvap

Tbp(DVvap)
. We make a (good) approximation here due to Vliq << Vvap

as for water where the liquid volume is less than 19 mL=mol at 1008C while the vapor (steam)
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volume is approximately (373.15=273.15) (22,414 mL=mol)¼ 30620 mL=mol using Charles’ law.
Thus, we arrive at what is known as the Clapeyron equation, which can be used as is to study
transitions in fusion of minerals but

dP

dT
¼ DHvap

Tbp(DVvap)
ffi DHvap

TbpVvap

is not quite what we need here for liquids. We pause here to note that B. P. E. Clapeyron (1799–
1864) was a French engineer who made several contributions to thermodynamics and was actually
the person who plotted the Carnot cycle as a PV diagram shown in a previous chapter. Interestingly,
Carnot himself actually used the concept of ‘‘caloric’’ in his derivation but Clapeyron put the Carnot
cycle into the form we have shown it in this text.

The Clapeyron equation was extended to a more usable form by a German physicist R. G.

Clausius (1822–1888) by splitting the
dP

dT
differential and integrating the new form using the ideal

gas law for the vapor at low pressure (a very good approximation) to obtain
dP

dT
¼ DHvap

T RT
P

	 
,
which can be rearranged to

dP
P

	 

dT
¼ d ln P

dT
¼ DHvap

RT2
and then further to d ln P ¼ DHvap

R

dT

T2

� �
¼

�DHvap

R
d

1
T

� �
since d

1
T

� �
¼ d(T�1) ¼ �T�2 dT (a clever step indeed!).

Graphically, this leads to a plot similar to the case of the temperature dependent equilibrium
constant shown above in the section on equilibrium. We see that we can plot a logarithm of the
pressure against reciprocal Kelvin temperature and expect to find a straight line with a negative
slope.

This can be integrated as
ðP2

P1

d ln P ¼ ln
P2

P1

� �
¼
ðT2
T1

DHvap

R

dT

T2

� �
¼ �DHvap

R

1
T2
� 1
T1

� �
, so

the final working equation becomes the very useful Clausius–Clapeyron equation

ln
P2

P1

� �
¼ �DHvap

R

1
T2
� 1
T1

� �
:

Note this so-called Clausius–Clapeyron equation has five variables, so that a number of possible
problems can be formulated for quiz questions and in a practical sense it is a very useful equation to
find DHvap from P, T data or a boiling point if one knows DHvap.

In Table 6.1, we see values of temperature at which the vapor pressure is at certain values.
The final values at 100 kPa are not quite the normal boiling points because 1 atm¼ 101.325 kPa.
This table shows the modern way to represent these types of data, which reveals the vapor
pressures of solids at low temperature, but often only provides two data points for P, T in
the range of room temperature. Further, the use of only two points can only yield a perfect line
when one plots the ln (P) versus (1=T). In order to show that the approximations made
in deriving the Clausius–Clapeyron equation are good but not perfect, we also present in
Figure 6.3, the older style data for the vapor pressure of liquid water (H2O) in mmHg and
1 atm boiling point (see Table 6.2 [2])

ln(P) ¼ ln(760)� DHvap

R

� �
1

T(K)

� �
þ DHvap

R

� �
1

373:15

� �
,
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TABLE 6.1
Vapor Pressures of Selected Liquids at Various Temperatures (8C)

Vapor Pressure CCl4 C2H5OH CH3COOH H2O C6H6

1 Pa �79.4(s) �73e �42.8(s) �60.7(s) —

10 Pa �70.8(s) �56e �26.7(s) �42.2(s) —

100 Pa �53.5(s) �34e �8(s) �20.3(s) �40(s)
1 kPa �24.4(s) �7e 14.2(s) 7.0 �15.1(s)
10 kPa 15.8 29.2 55.9 45.8 20.0

100 kPa (1 bar) 76.2 78.0 117.5 99.6 79.7

Source: Lide, D.R., CRC Handbook of Chemistry and Physics, 90th Edn., CRC Press, Boca

Raton, FL, 2009–2010, pp. 6–72. With permission.
(s)¼ solid, e¼ extrapolated estimate.
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FIGURE 6.3 A plot of ln (Pvap) versus (1=T(K)) using pressure in mmHg.

TABLE 6.2
Vapor Pressure of Liquids at Various Temperatures in mmHg

Temperature (8C) CCl4 C2H5OH CH3COOH H2O C6H6

0 32.9 12.7 3.5 4.6 25.3

10 56.0 24.2 6.4 9.2 45.2

20 91.0 44.5 11.8 17.5 75.6

30 142.3 78.5 20.1 31.8 120.2

40 214.8 133.7 34.2 55.3 183.6

50 314.4 219.9 56.3 92.5 271.4

60 447.4 350.2 88.3 149.4 390.1

70 621.1 541.1 137.9 233.7 547.4

80 843.3 812.9 202.3 355.1 753.6

90 1122.0 1187.0 292.7 525.8 1016.1

100 1463.0 1693.0 417.0 760.0 1344.3

Source: Maron, S.H. and Prutton, C.F., Principles of Physical Chemistry, The
Macmillan Co., New York, 1958, p. 91. With permission.
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ln(P) ¼ � DHvap

R

� �
1

T(K)

� �
þ DHvap

R

� �
1

373:15

� �
þ ln (760)

� �
,

or

y ¼ mxþ b:

Table 6.2 tells us nothing about the vapor pressure of these five liquids below 08C but provides a
more detailed view of the vapor pressures in the easily accessible laboratory range between ice water
and boiling water. The data for water also give more detail relative to the vapor pressure of water
that might be needed for Dalton’s law when a gas is collected over water and also give us an
appreciation for the relationship between water vapor in the air and a dew point temperature.

A direct plot of ln (Pvap) versus (1=T(K)) yields a slope of � DHvap

R

� �
¼ �5202:9 and we find

DHvap ¼ (5202:9)(8:314 J=mol) ¼ 43256:9 J=mol. The value given in the 90th Edn. of the CRC
Handbook is 43990 J=mol at 258C. This handbook clearly shows that DHvap is not constant but
varies slightly with temperature. Let us check that value using two values from Table 6.2

ln
P2

P1

� �
¼ �DHvap

R

1
T2
� 1
T1

� �
¼ þDHvap

R

� �
T2 � T1
T2T1

� �
or R

T2T1
T2 � T1

� �
ln

P2

P1

� �
¼ þDHvap. Note

we have used the �C temperature difference in the denominator to remind ourselves that it is a
difference of two temperatures and most importantly that the size of 18K is exactly the same as that
of 18C.

We see from the plot in Figure 6.3 that a least-squares line produces a R2 value of 0.9999, which
indicates a near perfect line. We need to comment on the slope that was found to be �5202.9 from
the best line fit. In the Clausius–Clapeyron equation, the log ratio of the pressures would cancel
whatever units the pressures are expressed in but the units get mixed up when we separate the
pressures and move the ln (760 mm) to the right side of the equation. This is a case where you
should cancel the units in the original equation before putting it into the linear form. In addition, you
could always use the ratio of the pressure in whatever units to the standard pressure in the same
units. The question of units occurs here because we used 760 mmHg=atm. The argument of a
logarithm has to be a unitless number.

This value is within the uncertainty of the other values because the pressures in Table 6.1 are
only given to three significant figures. It will be found that if you pick any two values for the vapor
pressure of water from Table 6.2, you may get slightly different numbers for each pair of vapor
pressures that is consistent with the temperature dependent DHvap value.

TABLE 6.3
The Vapor Pressure of Solid (Rhombic) I2 at 8C Temperatures
for Known Pressure

P 1 Pa 10 Pa 100 Pa 1 kPa 10 kPa 100 kPa

T, 8C �12.8(solid) 9.3(solid) 35.9(solid) 68.7(solid) 108(solid) 184.0(liquid)

Source: Lide, D.R., CRC Handbook of Chemistry and Physics, 90th Edn., CRC Press, Boca Raton, FL,

2009–2010, pp. 6–72. With permission.
I2(solid)mp ¼ 113:7�C ¼ 386:9�K,DH0

fus ¼ 15:52 kJ=mol ¼ 3:709 kcal=mol.
I2(liquid)bp ¼ 184:4 ¼ 457:6�K,DH0

vap ¼ 41:57 kJ=mol ¼ 9:936 kcal=mol.

DH0
sub ¼ DH0

fus þ DH0
vap ¼ 15:52 kJ=molþ 41:57 kJ=mol ¼ 57:09 kJ=mol ¼ 13:64 kcal=mol.
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It is worth memorizing some of the numbers related to water because water is so important to our
bodies and covers about 70% of the surface of the Earth. A rough estimate would be that
DHvap (H2O) ffi 44 kJ=mol � 10:52 kcal=mol. Recently, the author met a student from a past class
who won a bet for a steak dinner from his boss when he correctly quoted the property of water under
discussion in an industrial project; now that is a benefit of education! The property in question was
(DHvap=g) for water and we see that to a good approximation it is

43990 J=mol

18:01528 g=mol

� �
1 cal
4:184 J

� �
¼ 583:6 ffi 584 cal=g:

A related fact is the value of the heat of fusion to melt ice per gram as
6010 J=mol

18:01528 g=mol

� �
1 cal
4:184 J

� �
¼ 79:73 ffi 80 cal=g. Since you only need to multiply by 1000 to

get calories=kilogram (a mixed set of units) and then multiply by 0.4536 kg=lb (453.6 g=lb) you can
convert to calories=pound. While this seems like trivia, chemical engineers worry over such unit
conversions all the time and do not have the luxury of having all SI units. Several years ago, a Mars
Lander project crashed because part of a computer program was in feet while another part was in
meters. We need to know the SI units and other units, which occur in everyday life as well. Consider
the British thermal unit, the btu.

1 btu � the heat energy required to raise the temperature of 1 lb (Av.) of water 18F while
1 cal � the heat energy required to raise the temperature of 1 g of water 18C.

In calories this would be (453:6 g)
100�C
180�F

� �
(1�F) ¼ 252 cal.

Verbally ‘‘1 btu¼ 252’’ (cal), should be easy to remember. Using another memory device
(a calorie is worth many jewels!) we can convert a btu to joules as well:

1 btu ¼ 252 cal ¼ (252 cal)(4:184 J=cal) ¼ 1054:368 J:

PHASE EQUILIBRIA

One of Gibbs’ most enduring contributions was the study of phases. This is very important in
metallurgical engineering where complicated phase diagrams are common in the study and formu-
lation of alloys. Other examples occur in the study of as many as eight slightly different phases of
ice, all solids but not exactly the same. Other solids have been studied intensively, such as copper–
lithium–aluminum alloys for aircraft construction and solid state electronic devices formed from
doped silicon. It should be stated here that while a gas phase can only be a gas and liquids easily
become homogeneous solution mixtures, solid phases often have more than one crystal structure,
which vary with temperatures below the melting point. We leave those complicated cases of alloys
to advanced courses and here we want to just discuss the overview of a diagram of three state
phases: solid, liquid, and gas. We see in Figure 6.4, a generic phase diagram with boundary lines
between the phases and on the left an unusual diagram for water. Water is a very unusual substance
in many ways. For most materials the generic shape diagram on the right prevails in which the
boundary line between solid and liquid ‘‘leans’’ to the higher temperature side and most materials
generally follow this rule. Most materials can be ‘‘squeezed’’ from a liquid into a solid at a given
constant temperature by the application of pressure. In the phase diagram for water, we see a very
unusual situation where application of pressure to ice at a temperature below the melting point
allows the solid to melt into a liquid. Thus, glaciers can ‘‘flow’’ like rivers since their heavy mass
provides great pressure on any obstacle in the path of the glacier, pressure melts the ice to a liquid,
which runs around the object and then the water refreezes.
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HOW ICE SKATES WORK

While ice skating has been practiced in cold climates for centuries, we can ask how it works. In
particular, other slick surfaces would be quickly scratched and scarred if one tries to skate with the
usual concave-ground surface on the bottom of the blade with sharp edges. We know that the
surface in an ice rink does indeed get scarred but can be easily refinished. However, the key question
is how can the skater glide so easily on the surface? In Figure 6.4, we see that at a constant
temperature, presumably below the melting point, an increase in pressure will melt the ice. Consider
a petite female skater of only 80 lb. Let us assume her skate blade is 1=8 in. wide and 8 in. long to
provide 1 in.2 of surface. When she places her weight on one foot, that is a considerable applied
pressure measured in atmospheres. Evidently, that is enough pressure to melt the ice directly under
the blade and provide lubrication for a smooth glide!

(80 lb)

(8 in:)
1
8
in:

� �
(14:7 psi=atmÞ

ffi 5:44 atm ¼ 5:51 bar

The schematic is Figure 6.4 is only qualitative and there have been more sophisticated studies of
the optimum temperature for ice rinks, the shape of concave-ground skate blades and a more
complete phase diagram for water, but in the final analysis skates do glide and glaciers do flow.
Thus, we have probably oversimplified pressure-melting but it does happen. Figure 6.5 shows
a more detailed phase diagram for ice and it is clear that the short line segment of the phase boundary
between liquid, water, and Ice I extends downward until at least 200 MPa, although the axes are
reversed from Figure 6.4. We note that 200 MPa is equal to 2000 bar so for all practical purposes
raising the pressure will ‘‘melt’’ Ice I at a given temperature. How can this be? You need to remember
that the water clusters that become a solid are held together mainly byH-bonds, which are weaker than
covalent bonds so the pressure is evidently able to disrupt at least some of the H-bonds.

GIBBS PHASE RULE

The Gibbs phase rule is very important in chemical and metallurgical engineering where there can
be many phases in the solid state but seldom comes into play in synthetic chemistry. In fact, it is not
easy to find a simple example in chemistry. Even so this topic is in our list of essential topics in
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FIGURE 6.4 Schematic illustration of the phase diagram of (a) water compared to (b) most other substances
indicating the way in which ice melts under pressure. The scale is exaggerated.
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physical chemistry because a basic idea of phase diagrams and phase equilibria is fundamental to
understanding the properties of matter. The idea is that there is an overall equation of state that
relates (P, V, T, n) for a given system and laboratory constraints fix most of the variables so the
question is what flexibility remains within a system in equilibrium. The rule states that when there
are ‘‘P’’ phases in a system of ‘‘C’’ components, that results in ‘‘F ’’ degrees of freedom to regulate
the equilibrium and the equation is

F ¼ C � Pþ 2:

Let there be C chemical species in each of P phases, then there will be P�Cmol fractions needed to
specify concentrations in each phase. To this we need to add temperature and pressure values so the
sum of variables seems to be PCþ 2, but these variables are not all independent.

In each phase (a,b, g, d, . . . ), the sum of the mole fractions is 1, so that reduces the degrees of
freedom by one for each phase or (�P) degrees of freedom.

xa1 þ xa2 þ xa3 þ � � � þ xaC ¼ 1

xb1 þ xb2 þ xb3 þ � � � þ xbC ¼ 1
____________________

xP1 þ xP2 þ xP3 þ � � � þ xPC ¼ 1
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FIGURE 6.5 A more complete phase diagram for water from the 90th Edn. of CRC Handbook (by
permission). Here temperature (T ) is on the vertical axis and pressure (P) is on the horizontal axis. The region
of interest is 0–300 MPa which shows the melting temperature decreasing with increasing pressure. Since
1 atm¼ 1.01325 bar¼ 1.01325� 105 Pa, 1 bar¼ 1.0� 105 Pa. Thus, 1 MPa¼ 10 bar and 200 MPa¼ 2000 bar
so a pressure of 5 bar=in.2 under an ice skate blade would be on the negative slope of this line. It should be clear
that one should consider Ice I and liquid water as the dominant phases up to 200 MPa and down to �208C.
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Then we note that the chemical potential of each component is equal within each phase P by virtue
of the implicit equilibrium of the C components, so there is also one less degree of freedom relating
the chemical potentials within each phase for a reduction of C(P� 1) degrees of freedom.

ma
1 ¼ mb

1 ¼ mg
1 ¼ md

1 ¼ � � � ¼ mP
1

ma
2 ¼ mb

2 ¼ mg
2 ¼ md

2 ¼ � � � ¼ mP
2

______________________

ma
C ¼ mb

C ¼ mg
C ¼ md

C ¼ � � � ¼ mP
C

Thus, we can calculate the total number of degrees of freedom in the system as

F ¼ (PC)þ 2� P� C(P� 1) ¼ C � Pþ 2:

One laboratory experiment that illustrates the Gibbs phase rule is the equilibrium between SO2 and
aniline.

SO2(gas) þ C6H5NH2(liquid)  ��! C6H5NH2: SO2(solid)

The SO2 is a noxious gas injurious to mucous membranes, aniline is a slightly tan organic liquid and
the complex is a bright orange solid. Thus, P¼ 3 andC¼ 2 so F¼ 2� 3þ 2¼ 1. The author has done
this experiment many times. The reaction flask must be tightly sealed because of the noxious SO2 gas.
In preparing the equilibrium, one bubbles the SO2 gas into about 100 mL of aniline from a small
lecture bottle and the orange solid will begin to appear. This must be done in a closed hood. When all
three phases are apparent in the reaction flask it is sealed with a fitting for a hose connected to a
barometer and the flask is placed into a heating mantle. The equilibrium reaction flask needs to also
have a thermometer fitting so that the temperature can be measured. Then there is only one degree of
freedom and if the heating mantle determines the temperature of the equilibrium it is only necessary to
record the pressure of the system as the remaining degree of freedom to characterize the equilibrium.
This experiment also illustrates another convention relating to the ‘‘activity’’ of pure substances. In the
case of a solid or a pure liquid, we use the concept of ‘‘unit activity’’ for a pure substance since one can
ponder over the question as to what is the ‘‘concentration’’ of a pure liquid or solid? It is not in
solution, so no matter how much of a pure solid or liquid is there its concentration is ‘‘one.’’ On the
other hand the pressure of the gas phase can be measured in moles=liter to relate it to a concentration.

Once the orange complex is formed, it is more convenient to write the equilibrium as the
dissociation of the complex.

C6H5NH2: SO2  ��! C6H5NH2 þ SO2, so KP ¼ PSO2 1C6H5NH2½ 

1C6H5NH2:SO2½ 
 ¼ PSO2 :

Since DG0
rxn ¼ �RT ln KP ¼ �RT ln PSO2 , a plot of the natural log of PSO2 versus

1
T(K)

� �
should

be linear with a slope of
�DG0

rxn

R
. This is a real, but tricky, experiment due to the noxious SO2 and

poses the added problem of disposal of the contents of the reaction flask.

IODINE TRIPLE POINT

One of the oldest forensic techniques is fingerprint analysis. This technique is based on the fact that
relatively clean fingertips exude small amounts of fatty acids and other slight secretions from the skin
of the fingers. In the case of fresh, sweaty fingerprints on a clean surface, it is sufficient to apply carbon
black with a soft brush and then pick up the image of the fingerprint using transparent tape on the
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sticky side. That is a fortuitous situation but often forensic analysis is faced with smudged partial
prints on rough surfaces like cloth or even porous ceramic surfaces. In those cases, any enhancement
of the fingerprint image can be helpful in solving a criminal case. The application of iodine vapor is a
very old technique where an investigator breaths out through a tube containing calcium carbonate
drying agent to remove breath moisture and then the dry breath air flows over iodine crystals as a
vapor on to the fingerprint surface. There it is preferentially absorbed into the fingerprint and shows as
a dark purple image. This is a very old technique, which fell into disfavor because the image tends to
fade away after a few hours. However, recently the use of digital photography has brought this
technique back to active use [3]. In particular, the fading aspect is actually an advantage because a
fresh iodine image on a rough surface like cloth may be only recognizable as a smudge. The trick is to
make a digital photograph of the original image, wait until the iodine fades, and then make another
digital photograph without moving the sample. Then simple digital subtraction of the background
image leaves only the iodine image. Thus, iodine treatment of fingerprints has undergone renewed
interest and use for prints on rough surfaces including cloth with a background pattern.

How does the iodine fingerprint technique work? The basic principle is that solid iodine is one of
the few substances that has a significant vapor pressure from the solid and actually sublimes directly
from the solid into the gas phase. Although it is common in organic laboratory procedures to purify
volatile compounds by sublimation in a vacuum pistol at very low pressure, carbon dioxide and
iodine are among only a very few substances that sublime easily at room temperature and pressure.
Thus, the technique of sweeping iodine vapor over a surface is a ‘‘dry’’ procedure without any liquid
and yet some data is available for the liquid [4].

Now we come to the most interesting type of equilibrium that occurs in the qualitative phase
diagrams of Figure 6.4, the place where all three state phase boundaries come together in what is
called the ‘‘triple point.’’ The triple point is the (P, T) point in the phase diagram where there are
three simultaneous equilibria: solid–liquid, solid–gas, and liquid–gas. While it looks like the triple
point is the melting point (it is close), it is slightly different. The triple point for water is 273.168K
but the melting point is 0.00988 lower, which leads to the standard value of 273.158K. Let us use the
data from Ref. [5], as shown in Table 6.3. The values of DH0

fus and DH0
vap are given so we can add

them to obtain a value for the hypothetical DH0
sub value for the energy required for a whole mole to

flash from the solid directly to the vapor, a pure sublimation process without going through the
liquid phase. We have all probably seen ‘‘dry ice’’ sublime as solid carbon dioxide goes directly
from the solid to the gas and the process here might be called ‘‘dry iodine,’’ which is why it is so
useful in developing fingerprints without any liquid mess. We should note for future forensic
investigators that pure iodine is corrosive and poisonous so one should avoid inhaling it and the
use of a squeeze bulb is better than mouth-on-tubing when applying the vapor. We can add the
numbers using the ‘‘after-minus-before’’ principle of thermodynamics even though it might be
difficult to actually measure this DH0

sub value. With the DH0
sub value we can calculate the hypothet-

ical temperature at which the total sublimation would occur using the Clausius–Clapeyron equation.
A word of caution is needed here in that there are a number of 1=T values in the calculation and one
should not round off the calculation until the end because these reciprocal values are very small and
rounding them too soon can lead to large errors. Another problem with the data in Table 6.3 is that
the temperatures at which the pressures are very low are probably more uncertain due to the
difficulty in measuring such low pressures while the highest vapor pressure of the solid might be
contaminated experimentally with interference with some slight melting, so we choose the data
point at 68.78C at a pressure of 1 kPa. Then we can solve for the hypothetical Tsub temperature.

(8:314 J=mol�K) ln 101,325 Pa
1000 Pa

	 

(�57, 090 J=mol)

þ 1
(68:7þ 273:15)�K

� �
¼ 1

Tsub

� �
, so Tsub ¼ 443:913�K, the

hypothetical number at which the process of only sublimation would produce 1.01325 bar pressure
(1 atm). At the triple point Psolid ¼ Pliquid, so we can write
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ln
Ptp

101, 325

� �
¼ �41570 J=mol

8:314 J=mol �K

� �
1
Ttp
� 1
457:6�K

� �
¼ �57090 J=mol

8:314 J=mol �K

� �
1
Ttp
� 1
443:913�K

� �

After canceling the R value, this can be rearranged to isolate the value of Ttp.

Ttp ¼ (57, 090� 41, 570)
57, 090
443:9

	 
� 41, 570
457:6

	 
 ¼ 410:95�K. Then we use the liquid equation for the calculation of the

vapor pressure as ln
Ptp

101, 325

� �
¼ �41, 570

8:314

� �
1

410:9

� �
� 1

457:6

� �� �
¼ �1:2322778.

This leads to 29549.16 Pa for Ptp, which converts to 221.6 mmHg. As calculated, we find the
triple point as 4118K, 222 mmHg, 4118K, 0.2916 atm, or 137.88C, 0.2955 bar. Both the
temperature and the vapor pressure we have calculated for the triple point are perhaps higher
than expected but the vapor pressure is certainly consistent with the idea that it is easy to obtain
a substantial vapor pressure for fingerprint enhancement at room temperature. In research
applications, it would be necessary to use 64 bit precision of about 14 significant figures in a
computer program to obtain more precise values due to the use of 1=T values numerous times
and we doubt that the calculated values are within 5% of experimental values because even
though the Clausius–Clapeyron equation is accurate, we are cautious rounding reciprocals. The
90th Edn. of the CRC Handbook does not give the temperature of the I2 triple point but this
calculation has taught us about the existence of a triple point and provides information about the
vapor pressure of I2 sublimation relative to the renewed use of iodine vapor fingerprint enhance-
ment (see Figure 6.6.)

(CP–CV) FOR LIQUIDS AND SOLIDS

While we are discussing solids, liquids, and gases we can consider the difference in heat capacities
for solids and liquids. We will now need to use some of the information from the HUGA set of
equations. Along the way we will repeat the case for an ideal gas and show where the derivation
changes for the general case. We start from the definitions of CP and CV.

CP � CV ¼ qH
qT

� �
P

� qU
qT

� �
V

¼ qU
qT

� �
P

þP
qV
qT

� �
P

þV
qP
qT

� �
P

� qU
qT

� �
V

, but
qP
qT

� �
P

¼ 0:

TABLE 6.4
Selected Values of Alpha and Beta for Liquids at Temperatures in 8C

Compound Temperature (8C) Alpha (103=8C) Beta (104=MPa) Density (g=mL)

H2O 20 0.206 4.591 0.9982

CH3OH 20 1.49 12.14 0.7915

CS2 20 1.12 9.38 1.2632

CH3CH2OH 20 1.40 11.19 0.7892

CCl4 20 1.14 10.50 1.5844 (at 258C)

C6H6 25 1.14 9.66 0.8783

C8H18 25 1.16 12.82 0.7028
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Recall

dU ¼ qU
qT

� �
V

dT þ qU
qV

� �
T

dV

� �
1
dT

� �� �
P

) qU
qT

� �
P

¼ qU
qT

� �
V

þ qU
qV

� �
T

qV
qT

� �
P

:

Then

(CP � CV ) ¼ qU
qT

� �
V

þ qU
qV

� �
T

qV
qT

� �
P

þP
qV
qT

� �
P

� qU
qT

� �
V

¼ qV
qT

� �
P

qU
qV

� �
T

þP

� �
:

Recall that for the ideal gas
qU
qV

� �
T

¼ 0 and
qV
qT

� �
P

¼ R

P

� �
n¼1

, which lead to CP � CV ¼ R.

However, this time we use one of the HUGA equations:

dU ¼ T dS� PdV and
qU
qV

� �
T

¼ T
qS
qV

� �
� P:

(CP � CV ) ¼ qV
qT

� �
P

T
qS
qV

� �
T

�Pþ P

� �
¼ qV

qT

� �
P

T
qS
qV

� �
T

� �
:

That was pretty easy, but now we need another equation from the HUGA set dA ¼ �SdT � PdV

and
qS
qV

� �
T

¼ qP
qT

� �
V

, so (CP � CV ) ¼ qV
qT

� �
P

T
qP
qT

� �
V

.

We recognize these quantities as things we can measure in a laboratory but not the most convenient
expression for routine use. Next, we need a general expression of the volume differential (and set it
to zero for a new relationship): dV ¼ 0

dV ¼ qV
qT

� �
P

dT þ qV
qP

� �
T

dP ¼ 0,
qP
qT

� �
V

¼ �
qV
qT

� �
P

qV
qP

� �
T

:

FIGURE 6.6 An iodine enhanced fingerprint. (Photo provided courtesy of Forensics Source 2010.) Thanks to
Eric Schellhorn, director of marketing, and Floyd Wilson who developed a print on an outside rough surface as
a severe demonstration as requested. Close examination reveals clear print lines suitable for computer analysis.
See Ref. [3] for additional examples.
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Thus, multiplying by (V2=V2) we can cast this into easily measurable quantities and we find

(CP � CV ) ¼
� qV

qT

� �
P

T
qV
qT

� �
P

qV
qP

� �
T

V2

V2

� �
¼ TVa2

b
; a �

qV
qT

� �
P

V
, b �

� qV
qP

� �
T

V
:

(CP � CV ) ¼ TVa2

b
:

This general expression is most useful for liquids since (CP�CV) is usually very small for solids.

Example 3
Let us calculate CP�CV for water at 208C. The challenge is to sort out the units. First, we need the
molar volume of water at 208C using the density at 208C of 0.9982063 g=cm3 and the molecular
weight of 18.01528g=mol, which yields (18.01528 g=mol=0.9982063 g=cm3)¼ 18.04765 cm3=mol¼
18.04765� 10�6 m3=mol. Use a and b from Table 6.4.

Note that 1 cm3¼ (0.01 m)3¼ 1� 10�6 m3 and we need to recall that 1 Pa¼ 1 N=m2.

(CP � CV ) ¼ TVa2

b
¼ (293:15�K)(18:04765� 10�6 m3=mol)(0:206� 10�3=�C)2

(4:591� 10�4=106 Pa)

Note a common problem in data tables is that the power of 10 is shifted, so here [103 (�C)�1] means
that the number in the table has been multiplied by 1000 and the units are reciprocal degrees
centigrade. Similarly [104(MPa)�1] means that the number in the table has been multiplied by 104

and the units are reciprocal megapascals. We also flipped reciprocal pascals into m2=N in the
denominator of the expression. Thus, we find that

(CP � CV ) ¼ TVa2

b
¼ 0:489032Nm=mol �K ¼ 0:489032 J=mol �K ¼ 0:116882 cal=mol �K:

While this is a small value compared to R ¼ 8:314 J=mol �K ¼ 1:987 cal=mol �K, it is not a small
number meaning that CP and CV are noticeably different for liquid water. We did this as an exercise
showing the use of two of the HUGA equations and an interesting application of units. This is one of
the topics usually shown in a graduate course in thermodynamics but in our approach of only
covering a few topics well we have shown an application of some of the HUGA equations and there
will be others. Knowing the HUGA equations and how to use them is roughly half of all
thermodynamics.

OPEN SYSTEMS: GIBBS–DUHEM EQUATION FOR PARTIAL MOLAL VOLUMES

The relationship we are about to describe is due to the work of Pierre Duhem (1861–1916) a French
physicist who translated Gibbs’ work into French and was in his own rights a prolific author of
thermodynamic studies. So far the applications of thermodynamic (except for the on-stream
ammonia synthesis discussed above) have been for what are ‘‘closed systems’’ where it is possible
to enclose the ‘‘system’’ with a boundary and separate it from the ‘‘environment.’’ Many of the
synthetic applications in chemical engineering are carried out with on-stream processing rather than
in a batch reactor, a system in which a continuous flow of reactants is processed and continuous
product flows out of some sort of reaction chamber. While most laboratory synthesis is carried out in
batch fashion, there are also static phenomena, which depend on adding an arbitrary amount of one
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reagent which then affects another reagent. In the spirit of our emphasis on essentials, we limit our
treatment here to binary solutions (again). We should pause to appreciate that solutions are
wondrously homogeneous. Once dissolving occurs, a true solution is essentially immune from
settling of the solute due to gravity. If molecules were just like wooden blocks, we could imagine
that the total volume of a solution would be the simple sum of the volumes of the two components,
the solvent and the solute. In Figure 6.7a [6], we see such a situation where ammonia molecules are
dissolved in water. In this case, the total volume is the simple sum of the water molecules and the
ammonia molecules. Note that in this case both water and ammonia molecules are electrically
neutral, so the volume effect is relatively free of electrical interactions even though there is
a chemical interaction in the form of an equilibrium,

NH3 þ H2O  �! NH4OH  �! (NH4)
þ þ (OH)�:

We know from other courses in chemistry that

Ki ¼ NH4
þ½ 
 OH�½ 


[NH4OH]
ffi 1:8� 10�5,

so in fact there are only small amounts of charged ions in this weakly basic solution. Although both
water and ammonia molecules are polar, even the dipole moments are similar with mH2O

ffi 1:85D
and mNH3

ffi 1:47D, so the sum-of-blocks works very well. A dipole of 1 Debye unit (1 d) is defined
to be an electrical vector due to a charge separation of (þ1) (�1) electron units by a distance of 1 Å.
Thus 1 d¼ 10�18 statcoul cm or 10�10 esu angstroms, a non-SI unit. We will discuss dipole
moments further in a later chapter but you may have encountered dipole moments in organic
chemistry? In Figure 6.7b [6], we see a slightly different and mysterious situation when MgSO4

is dissolved in water. The solution volume actually contracts for dilute solutions. This is believed to
be due to the attraction of the water dipole moments to the charged species Mg2þ and [SO4]

2�,
which causes attractive packing of the ions, at least in the primary solvent shell. Eventually the
volume increases as more and more MgSO4 is added to the fixed amount of water (1000 g H2O).

In Figure 6.8 [6], we see an amazing situation where the ethanol molecules dissolved in water
have an aliphatic, hydrophobic alkane portion of the molecule as well as the polar –OH end of the
molecule. Thus, ethanol can simultaneously repel water molecules from the aliphatic part of
the molecule while at the same time participating in the H-bonding interactions with the water
molecules. Thus, we see that in an ‘‘open system’’ where various amounts of solute are added to a
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FIGURE 6.7 (a) The total volume of an ammonia–water solution. (b) Volume of a solution of MgSO4 in
water. (From Lewis, G.N. and Randall, M., Thermodynamics, McGraw-Hill, New York; Barrow, G.A.,
Physical Chemistry, 5th Edn., McGraw-Hill, New York, 1988. With permission.)
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fixed amount of water some complicated interactions can and do occur. The study of these
concentration effects defines a slightly new term ‘‘molal (m)’’ where the concentration of moles
of solute are dissolved in exactly 1000 g of solvent (often water). In practice, we usually want to
know how much solute is in a liter of a solution, ignoring the overall large amount of solvent
(water), so molar (M) concentrations are very useful. When we are studying solvent interactions the
total volume of the solution can vary with the amount of solute, so the molal (m) concentration is
relative to a fixed amount of solvent (1000 g). 1 M � mol solute in 1 L of solution but 1 m � mol
solute in 1000 g of solvent.

Let us examine the naive assumption that the total volume of a solution is the sum of the volumes
of the solvent and the solute. In terms of what we expect on the basis of common sense addition of

wooden blocks we expect that Vtot ¼ V1n1 þ V2n2 ¼ qV1

qn1

� �
n1 þ qV2

qn2

� �
n2. This means that we

assume that dV ¼ qV1

qn1

� �
dn1 þ qV2

qn2

� �
dn2, but dV ¼ V1dn1 þ n1dV1 þ V2dn2 þ n2dV2. Accord-

ing to the Gibbs–Duhem relationship, this can only be true if n1 dV1 þ n2 dV2 ¼ 0. Although this is
only a limited example of a volume effect for open systems, the Gibbs–Duhem idea can be applied
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FIGURE 6.8 Partial molal volumes of water and ethanol. (From Lewis, G.N. and Randall, M., Thermo-
dynamics, McGraw-Hill, New York; Barrow, G.A., Physical Chemistry, 5th Edn., McGraw-Hill, New York,
1988. With permission.)
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to other properties such as the chemical potential. What does it mean? As a student, the author did
not understand this but gradually came to appreciate it in the following sense.

If you want to believe that a chemical property is the simple sum of its parts you have to allow that
property to adjust to the presence of the other components!

This seemingly strange departure from ordinary experience is due to the microscopic nature of the
molecular world just as Dalton’s law of partial pressures needs to be interpreted in terms of very
small atoms=molecules, which can intermingle and seem to occupy the same volume. By the way,
just what is the molarity (M) of water when we have 1 L of just water? In most laboratory situations,
the concentration of the solute is in the range of 0.01 M or even less so we tend to ignore the solvent.
However, by definition of molarity (M) we can write:

(1000 g H2O=L)=(18:01528 g=mol) ¼ 55:508M:

This is usually ignored when dealing with water solutions of inorganic ions but if you think about it
even simple salt solutions involve at least one solvent shell around each ion as an ‘‘aqueous ion’’ but
this is a small amount of the water, which still leaves a large concentration of water capable of
dissolving more=other solutes.

NaCl þ H2O  ��! Naþaqueous þ Cl�aqueous

Example 4
Although the ammonia solution has a volume we expect from common sense, let us consider the next
more complicated case of NaCl dissolved in water. Starting with 1000 g of water we can dissolve
varying amounts of NaCl in the solvent and now we have to be aware of the fact that water is quite
‘‘polar’’ with a dipole moment of 1.8546 debyes [5] so the negative (O lone pairs) end of the water
molecules will be attracted to the Naþ ions and the positive end of the water dipoles (H-atoms) will be
attracted to the Cl� ions. There may also be an effect that short range order is induced in the H-bonding
of the second layer of water molecules around a solvated ion. In addition, there may be some long range
repulsion between ionswith the same charge, but thiswill be a very small effect in dilute solutions. Thus,
we come to realize that there are electrical effects within the solution aswell as the usual consideration of
H-bonding in aqueous solutions. Suppose careful laboratory measurements of the total volume of 1000
g of water and various moles (m) of NaCl solute can be fitted to a polynomial in m of NaCl [7].

Vtot ¼ 1003:00þ 16:62mþ 1:77m
3
2 þ 0:12m2:

Then it is easy to calculate the ‘‘partial molal volume’’ of NaCl in terms of the molal
concentration as:

VNaCl � qVtot

qm

� �
¼ 16:62þ 3

2

� �
(1:77)m

1
2 þ 2(0:12)m

� �
(mL=mol):

Then we can obtain the differential of the NaCl concentration as:

dVNaCl ¼ 1
2

� �
3
2

� �
(1:77)m

�1
2 þ 2(0:12)

� �
dm:

But what about the partial molal volume of the water as affected by the charged ions?
The Gibbs–Duhem equation gives us another relationship to allow the partial molal volume of

the water to actually vary with the concentration of the NaCl using nH2O dVH2O þ nNaCl dVNaCl ¼ 0.
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We can use the density of water at 258C of 0.9970480 g=cm3 and the molecular weight of
18.01528 g=mol to calculate the molar volume of water at 258C as:

(18:01528 g=mol)=(0:9970480 g=cm3
) ¼ 18:06862 cm3=mol ¼ V

0
H2O

:

Then we can integrate the Gibbs–Duhem equations to find the partial molal volume of water.

ðV1

V
0

dV1 ¼ �1
n1

� �ðm
0

n2 dV2, so
ðVH2O

18:06862

dVH2O ¼
�1
nH2O

� �ðm
0

m
3
4

� �
(1:77)m

�1
2 þ 2(0:12)

� �
dm:

This looks complicated but just do the integral term by term and insert the numbers.

VH2O � 18:06862mL=mol ¼
3
4

	 

(1:77) 2

3

	 

m

3
2 þ 2(0:12)m2 1

2

	 
� 
� 1000 g

18:01528 g=mol

� 
�����
m

0

, that is the right side of the

equation is to be evaluated between the limits of 0 and m for the general treatment of any molal
concentration of NaCl. Moving the volume of pure water to the right side and carefully evaluating
the other formula at the upper limit of m and the lower limit of 0 leads to

VH2O ¼ 18:06862�
1:77
2

	 

m

3
2 þ 0:12m2

55:50844

" #
(as cm3=mol). Note that the partial molal volume of the

water actually contracts with increasing amounts of NaCl. Combining these results and rounding the
numbers to fewer places considering the limited significant figures in the original polynomial we
find (finally):

VH2O ¼ 18:069� 0:0159m
3
2 � 0:00216m2 and VNaCl ¼ 16:62þ 2:66m

1
2 þ 0:24m2:

Aside from some esoteric calculation, what does this mean? First, it means that electrical inter-
actions within the solution cause departures from the usual sum-of-blocks total volume of the
solution. This is a warning that on the molecular scale electric effects become important in liquids.
Second, notice that the partial molal volume of the NaCl solute gets larger as ‘‘m’’ increases since
that brings in the charged particles to the solution. On the other hand, the partial molal volume of the
water decreases as more charged ions are in solution; the water ‘‘shrinks’’ on a molar basis as the
NaCl is added. Third, we can calculate the total volume of the solution using the moles of water and
the moles of NaCl by multiplying the moles by the formulas we have obtained for a given value of
‘‘m.’’ Use of the Gibbs–Duhem equation now allows us to maintain our naive idea of just
multiplying the molar volume formulas by the number of moles and adding to get the total. This
sort of study of solution behavior is currently an area of considerable research, although the
approach uses large and complicated computer simulations rather than the relatively simple example
we have shown for a binary solution.

CHEMICAL POTENTIAL FOR OPEN SYSTEMS

Historically, one of the main contributions of J. W. Gibbs to the development of thermodynamics
was his extension of G ¼ H � TS to open systems. This is an important consideration for on-
stream processes encountered by chemical engineers. We have already introduced the concept of
the chemical potential, mi ¼ (Gi=ni), in two previous applications in this chapter; first in the
treatment of gas species m(T ,P) ¼ m0 þ RT ln P and then again in the discussion of the
Gibbs phase rule. So far the treatments referred to closed systems and it seemed that mi is just
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another way to express the Gi value per mole. However, in an open system we can include the
change in the moles of a given substance in the change in Gi in a partial molal sense using a more
general formula.

dG ¼ �S dT þ V dPþ qG
qn1

� �
T ,P, ni6¼1

dn1 þ qG
qn2

� �
T ,P, ni 6¼2

dn2 þ qG
qn3

� �
T ,P, ni 6¼3

dn3 þ � � �

This shows that the change in G depends on the changing amount of moles of each component.

Thus, we have dG ¼ �S dT þ V dPþPi

qG
qni

� �
T ,P, nj 6¼i

dni for an open system.

This can have far reaching effects in the analysis of an on-stream process but we will just
show the implications here and leave further treatment to engineering texts. Recall that

A � U � TS ¼ U þ (PV � PV)� TS ¼ H � TS� PV ¼ G� PV

Thus dA ¼ dG � PdV � V dP ¼ �SdT þV dP þ
X

i

qG
qni

� �
T ,P,nj 6¼i

dni

" #
� PdV � V dP

Then dA¼�SdT �PdVþ P
i

qG
qni

� �
T ,P,nj 6¼i

dni. Also using H ¼GþTS we find that

dH ¼ T dSþV dPþ P
i

qG
qni

� �
T ,P,nj6¼i

dni and along with the use of U ¼H�PV we find that

dU ¼ T dS�PdV þPi

qG
qni

� �
T ,P,nj 6¼i

dni. In each case, the
P

i

qG
qni

� �
T ,P,nj6¼i

dni

" #
terms accom-

pany the state variables in an open system. This can be reinterpreted to realize that these terms are
part of the differentials of each of the state variables. However, the amazing thing is that

mi ¼
qG
qni

� �
T ,P,nj 6¼i

in each case! We can also write the general case of the total differential in

each case for H, U, G and A as follows:

dH ¼ T dSþ V dP þ
X
i

qH
qni

� �
S,P, nj 6¼i

dni dU ¼ T dS� P dV þ
X
i

qU
qni

� �
S,V , nj 6¼i

dni

dG ¼ �S dT þ V dP þ
X
i

qG
qni

� �
T ,P, nj 6¼i

dni and dA ¼ �S dT � PdV þ
X
i

qA
qni

� �
T ,V , nj 6¼i

dni:

Comparing the total differentials to the derived equations in terms of
P

i mi dni we find that

mi ¼
qG
qni

� �
T ,P, nj6¼i

¼ qA
qni

� �
T ,V , nj 6¼i

¼ qH
qni

� �
S,P, nj 6¼i

¼ qU
qni

� �
S,V , nj6¼i

. Now the basic equations for

open systems are modified to allow for the change in moles of species involved as

dH ¼ T dSþ V dPþ
X
i

midni,

dU ¼ T dS� PdV þ
X
i

midni,

dG ¼ �S dT þ V dPþ
X
i

midni,

dA ¼ �S dT � PdV þ
X
i

midni:
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To reinforce the idea, we say again that in every case we have mi ¼
qG
qni

� �
T ,P, nj 6¼i

, which shows how

important the chemical potential is to analysis of open systems and the significance of Gibbs’
contribution. However, we leave further applications of the chemical potential to engineering texts.
We restrict the ‘‘essential’’ applications to closed batch processes bench chemists use.

This concludes our survey of just about everything with Gibbs’ name on it and includes an
introduction to some concepts of what goes on ‘‘inside a solution.’’More modern treatments require
extensive quantum calculations [8] and the use of statistical thermodynamics that we will introduce
in a later chapter. However, in the hands of a gifted scientist [9] the simpler cellular automaton
method also provides valuable insights.

MODELING LIQUIDS

While there are some recent [10] characterizations of liquid water resulting from intensive quantum
mechanical calculations, we can briefly look at a simple but powerful application of the cellular
automata approach. In principle, one should treat the quantum mechanics of the interior of nuclei,
the electronic structure and long range interactions on a statistical scale averaging over mole
quantities but there are several intermediate treatments. One method is called molecular dynamics,
which uses rigid ‘‘tinker toy’’ models of molecules and classical dynamics ( f¼ma) with a pseudo-
random number generator to move the molecular models. This approach has been successful in
simulating some aspects of complicated biochemical reactions and is widely used in biological
simulations [11]. An even simpler method is called the method of cellular automata (CA), which
uses a flat grid of cells wound onto the surface of a large torus (donut) to simulate a quasi-infinite
region of liquid. The method then uses simple probability rules to make decisions about molecular
movement with a pseudo-random number generator providing the direction. The science of how to
make a truly random sequence of numbers is a problem in itself. A seemingly foolproof method
(which is not truly random and actually repeats eventually) is to pick an arbitrary eight digit integer,
square it and pick the middle digits from the answer (digits 4, 5, 6, 7, 8, 9, 10, and 11). Then divide
that by 100,000,000 to find a decimal value between 0 and 1 to use as a probability between
‘‘0¼ no’’ and ‘‘1¼ yes.’’ There is actually a specialty field of mathematics for ways to generate a
truly random sequence of numbers. You can see the fallacy in the simple example we have given in
that the answer depends on the initial ‘‘seed’’ number we start with and if we start two sequences
with the same seed we will get the same sequence, but it is approximately random.

In the model developed by Kier and Chang [5,12–14], a square grid is wrapped on to a donut
form and probabilities are considered for only two parameters (Figure 6.9). First, there is the
‘‘Joining Parameter,’’ J(A,B), which defines the tendency of movement of species A toward or
away from species B when the two are separated by a vacant cell. J> 1 simulates an attraction and
J< 1 simulates a repulsion. For J¼ 0 A cannot move at all. Second, there is the Breaking
Probability, PAB, which assigns a probability that a species A next to species B will break apart
from B; it is a measure of the ‘‘stickiness’’ of the two species. If PAB¼ 0 the species will not separate
while if PAB¼ 1 there is no tendency for A to stay next to B. When species A, B, C, and D can
potentially be next to each other the ‘‘stickiness probability’’ is given by the product of the
pair probabilities as PAB, PAC, and PAD. If A is surrounded by four species there is no movement.
While these rules seem simple and arbitrary they incorporate chemical knowledge gained from other
sources and are actually the result of careful considerations. Kier and Chang [5] have developed a
combined rule for simulating water molecules and the square grid with four possible neighbors
seems to represent in a probabilistic way the possibility of four bonds of water to neighbor atoms in
a flickering, quasi-diamond lattice that can be formed using H-bonding. The combined rule is

log J ¼ �1:5PB þ 0:6 with T ¼ 100PB
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The final clever approximation is to define the temperature as an energy analog related to the
make=break probability. It takes scientific creativity to postulate these relationships but they are
based on experience and physical reasoning in an analog way. What are the results?

In Figure 6.10, we see a set of sensible results for what we know about water. At low temperature
the water molecules aggregate to form large clusters, presumably to solidify into a solid mass at 08C
and at higher temperatures there are a few water molecules that have no nearest neighbors,
anticipating the gaseous state of steam. The value of this study is whether it gives a good
representation of what we know about water and that is where some amazing correlations can be
drawn from this simple model. First, f0 and f1 are essentially linear in temperature so it is not
surprising that they correlate with the temperature with a good fit as:

T (�C) ¼ (�490:28)f0 þ (622:60)f1 þ 4:46; R2 ¼ 0:996

That is just a matter of fitting linear data to the temperature. The background of Professor Kier is
research in chemical pharmacology where it is a valid strategy to look through large amounts of
biological data and search for correlations and the main goal is to find relationships. This strategy is
more phenomenological than deriving an equation from Newton’s laws of mechanics and the first
order of business is to find relationships through correlations. This is similar to major component
analysis in certain analytical chemistry methods. However, the relationships may not be linearly
independent and further experiments may need to be carried out to determine physical constants for
equations describing those correlations. There is such a theoretical framework in thework of Jhon et al.
[15] called the significant structure theory of liquids. Perhaps the most important meaning of the work
shown here is that a number of properties of water have been shown to have strong correlations to the

FIGURE 6.9 Prof. Lemont Kier, senior fellow of the Center for the Study of Biological Complexity at
Virginia Commonwealth University, speaking to the Hanover Master Gardener Association, which he founded
in 1988. Medicinal chemists have great respect for and interest in natural compounds from plants. Professor
Kier has been the author of seven books and 278 scientific papers to date and was an early pioneer in the use of
molecular orbital theory in pharmaceutical chemistry. (See Molecular Orbital Theory in Drug Research,
Academic Press, New York, 1971.)
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fractional amounts of the various clusters. Thus, these results offer rough estimates of the fractional
amounts of the various clusters and could be used as information for a more elaborate statistical
thermodynamic analysis in terms of fractional amounts of clusters, but it should be understood that
these clusters are not static species but rather average structures.

A more complex phenomenon is the heat capacity of liquid water and this can be fitted with small
amounts of three of the fractions as (Table 6.5):

CP (cal=g) ¼ 1:0478� 0:0488f2 � 0:0620f3 � 0:0446f4; R2 ¼ 0:995:

Next, Kier [12] matched the liquid surface tension to f1 as the pair interaction most likely important
in holding the surface together in the reduced dimensionality compared to the bulk and found

s (dyne=cm) ¼ �93:72f1 þ 75:33; R2 ¼ 0:996:
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FIGURE 6.10 Results of simulating the populations of clusters of water molecules using the Kier–Chang
cellular automata model as a function of temperature with the rules given in the text. Series f4 starting at 81%
for low temperature (108C) is the fraction of clusters of molecules with four neighbors, Series f3 is the fraction
with three neighbors, Series f2 the fraction with two neighbors, Series f1 the fraction with one neighbor
and finally Series f0 is the fraction of molecules with no nearest neighbors. (Redrawn from the data given in
Kier, L.B., Chem. Biodivers., 4, 2540, 2007. With permission.)

TABLE 6.5
Calculated and Observed Heat
Capacity of Water in (cal=g) at 8C

CP (Obs.) CP (Calc.)

1.0013 1.0011

0.9999 1.0002

0.9988 0.9988

0.9983 0.9981

0.9980 0.9978

0.9980 0.9978

0.9980 0.9982

0.9983 0.9983

0.9985 0.9985
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Then the vapor pressure is most likely related to the fraction of molecules with no nearest neighbors
(gas-like) and perhaps related to the fraction of dimers and free molecules; Kier [12] found

log P (mmHg) ¼ �24:30f0 þ 15:64f1; R2 ¼ 0:997:

Again, for the isothermal compressibility they found a relationship in terms of the cluster fractions.

b ¼ k ¼ �1
V

qV
qP

� �
T

(10�6=bar) ¼ 79:60� 43:61f2 � 39:57f3 � 30:32f4; R2 ¼ 0:991:

The dielectric constant of water can also be fitted to

e ¼ �178:88f1 þ 55:84; R2 ¼ 0:994,

and finally it is also possible to fit the viscosity of water using only the f4 fraction as with

h(cP) ¼ 1:439f4 þ 0:202; R2 ¼ 0:965:

On one hand it should be clear that the coefficients of these excellent correlations offer little
interpretation in terms of fundamental constants but on the other hand the sum of these several
correlations offers credibility to the overall CA parameters used here. We can see that some
properties depend strongly on f1, which suggests dependence on dimer structure dominance while
the vapor pressure does sensibly depend on molecules with no neighbors, which is this model’s way
of indicating a gas. At the very least, this body of fitted parameters forms a calibrated basis to study
dilute aqueous solutions. There have been other treatments of liquid water [8,15,16], which also
depend on the assumption of hydrogen-bonded clusters of larger size and 3D structure which are
successful in predicting properties, so the concept of molecular clusters in liquids has support from
other research. As pointed out by Kier [12], this model fulfills the hypothesis of Haggis [16]
regarding the properties of water being due to fractional amounts of clusters of various size. A
conclusion for undergraduate students is that relatively simple models of liquids can lead to results
which correlate with physical properties. However, the dynamic nature of molecules in the liquid
state does not lead to simple formulas. Dynamic models can provide a better understanding of the
nature of liquid structures.

SUMMARY

In this chapter, we have briefly treated chemical equilibria in a quantitative way using Gibbs’ free
energy concept G ¼ H � TS and the concept of chemical potential for closed systems as
m(T ,P) ¼ m0 þ RT ln P. Probably the most important aspect of the chapter was the derivation

and use of the Clausius–Clapeyron equation ln
P2

P1

� �
¼ �DHvap

R

1
T2
� 1
T1

� �
applied to the boiling of

liquids and to the triple point of a phase diagram for iodine relative to fingerprint enhancement. We

then developed the general case of (Cp � CV ) ¼ TVa2

b
showing it is small but nonzero and less than

R for liquids. Open systems were encountered in which partial molal volumes of materials adjust
their volumes in the presence of one another. Open systems also need added terms for the chemical

potential mi ¼
qG
qni

� �
T ,P, nj 6¼i

but we consider only the ‘‘essential’’ closed systems. An example of

the use of the method of Cellular Automata (CA) modeling to simulate liquids was given to show
that the behavior of liquids is still an area of research.
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PROBLEMS

6.1 Calculate the moles of H2, D2, and HD for the equilibrium in Example 1 at 08C and again at
508C and predict whether the yield of HD is increased or decreased at higher temperatures.

6.2 Calculate DSvap for ethanol using the vapor pressures of 24.2 mmHg at 108C and 541.1 mmHg
at 708C. Report the values you find for DHvap and the normal boiling point.

6.3 Calculate the boiling point of benzene using the data in Table 6.2 and the vapor pressure at 208C.
6.4 Calculate DH0

vap for CCl4 using two well spaced temperatures from Table 6.1 or 6.2 and then
find the ‘‘normal boiling point’’ (at 1 atm pressure) of CCl4.

6.5 Calculate the pressure on a single ice skate blade 10 in. long by (0.125 in.) wide supporting the
weight of an adult male skater weighing 180 lb. Give the answer in atm, bar, psi and pascals.

6.6 Calculate the vapor pressure of I2 crystals using the DH0
sub value due to the temperature of

988F from the breath of a forensic investigator.
6.7 Calculate CP�CV for CS2 at 208C.
6.8 Suppose you are employed by a laboratory that has synthesized and patented a new liquid

detergent called ‘‘Brand X’’ and they want to know its partial molal volume in water, so they
can calculate how much to mix with water to achieve a given bottle volume at a given
concentration of the detergent. By performing a number of total volume measurements you
obtain points related to the moles of the detergent and fit a polynomial to the data using a
computer program. Your supervisor wants to know the partial molal volume formulas as a
function of ‘‘m’’ moles of detergent from the polynomial you have fitted to the total volume
data which is Vtot (cm

3) ¼ 1002:83þ 12:4635mþ 0:9834m2 where ‘‘m’’ is the moles of the
detergent. Calculate VH2O and Vdetergent for this solution.

6.9 Derive the expression (CP � CV ) ¼ TVa2

b
. If this question occurred on an examination, how

long would it take for you to do the derivation: 5 min, 3 min? This exercise is an excellent
review of the manipulation of partial derivatives.

6.10 Given the value of DH0
298 ¼ þ17:06 kcal and DG0

298 ¼ þ9:72 kcal for the equilibrium
2NOCl(g)  ��! 2NO(g) þ Cl2(g), estimate the temperature at which KP¼ 0.500 assuming the
values of DH and DG remain constant.

TESTING, GRADING, AND LEARNING?

Here we provide another actual midterm examination from the intense Summer P. Chem. course at
VCU in 2008. If students are told they are responsible for derivations like the van der Waals critical
point and the Carnot cycle theywill have a chance to learn them, but it is unlikely students will ‘‘learn’’
such derivations without fair warning. Since students can learn massive amounts of encyclopedic
information in organic chemistry and biochemistry, there is no reason not to expect them to learn key
multistep derivations. Learning these key derivations improves the level of the math skill in the class.

Physical chemistry 303 Midterm, Summer 2008 D. Shillady, Professor
(Points) (120 min. Attempt all problems.)

(15) 1. Show that
P qrev

T

� 
¼ 0 for a Carnot cycle; derive the efficiency formula.

(Answer in Chapter 4, how fast can you do the derivation?)

(10) 2. Calculate the laminar bulk flow rate in gallons=min for blood with h¼ 0.015 poise through
an aorta 5 in. long and (1=4 in.) inner diameter due to a pressure difference of (120–60)
mmHg. Multiply by a ‘‘duty factor’’ of 0.05 to compensate for pulsation.

[(V=t)¼ 1.3285 gallons=min]

(15) 3. Find Pc, Vc, and Tc for a van der Waals gas and show the law of corresponding states.
(Answer in Chapter 1, how fast can you do the derivation?)
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(10) 4. Derive the expressions for V and

ffiffiffiffiffiffi
V
2

q
of a gas molecule using the Boltzmann principle.

(Answer in Chapter 3, how fast can you do the derivation?)

(10) 5. Compute DH0
298 for the reaction: C6H6 þ 3H2(g) ! C6H12 given the data

DHcomb(C6H6)¼�782:3kcal=mol,DHcomb(C6H12)¼�937:8kcal=mol, andDHcomb(H2)¼
�68:3kcal=mol. (DH0

298¼�49.4 kcal, use Hess’s rule of summation)

(15) 6. Calculate the temperature of air compressed adiabatically in a one-cylinder diesel engine
from 1035 cm3 at 258C to 35 cm3. Given CV¼ (5=2)R, compute moles of air, Q,W, DU, and
DH for this compression if the initial pressure is 1 atm.

(T2¼ 11558K, P2¼ 114.61 atm, mol¼ 0.0423, Q¼ 0, W¼DU¼þ180 cal, DH¼þ252 cal)

(15) 7. Derive the expression for
qU
qT

� �
T

of a van der Waals gas and use it to compute DU for the

isothermal expansion of 7 mol of Ne gas from 50 to 500 L at constant 258C given

‘‘a’’¼ 0.21 L2 atm=mol2. (Hint: Use dU ¼ T
qP
qT

� �
V

�P)

DU ¼ n2a

ð500L
50L

dV

V2
¼ n2a

�1
V

� �500L
50L

¼ þ4:485 cal ¼ þ18:765 J, note sign

 !

(5) 8. Show that (CP�CV)¼R for an ideal gas. (Answer in Chapter 4, how fast can you do it?)

(5) 9. Calculate V for He gas in mph at 258C (He) 4:002602 g=mol)

V ¼
ffiffiffiffiffiffiffiffiffi
8RT
pM

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8(8:314� 107 erg=K mol)(298�K)

p(4:002602)

s
3600 s=h

1:6093� 105 cm=mile

� �
¼ 2809:4mph

 !
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7 Basic Chemical Kinetics

INTRODUCTION

We have taken a quick trip through what we consider essential thermodynamics and for those
students who are only going to take one semester of physical chemistry we have to make sure we
treat the basics of chemical kinetics. A glance at the table of contents’ chapter headings will reveal that
we can continue to do more with kinetics in an additional chapter or skip to some basic spectroscopy
and then return to more kinetics in the second semester with an emphasis on the molecular level. Here,
we want to make sure we establish the mathematical basis for the time dependence of chemical
reactions at a macroscopic level. Once again we are giving what we believe are the essential aspects of
kinetics here and then visit more advanced kinetics in the second semester.

The main concept we need to develop is the ‘‘Extent of Reaction.’’ The extent of the reaction is
related to the mole quantity change during the reaction and is based on 1 mol so that we can relate
to whatever the coefficients are in the balanced reaction. On a macroscopic scale as used in kinetics
we consider the extent of the reaction related to the process of ‘‘moles in and moles out.’’ So, even if
there is a detailed treatment of a reaction mechanism, the extent of reaction is a mole quantity related
to progress of the reaction toward the product. Consider the reaction

Aþ 2B! Cþ 3D

Let ‘‘x’’ be the extent of reaction. We are interested in the rate of the overall reaction but what do we
mean by ‘‘rate’’? We can measure the rate by the appearance of species C or D or we can measure
the rate of disappearance of A or B.

Rate ¼ þ d[C]

dt
¼ þ 1

3

� �
d[D]

dt
¼ � d[A]

dt
¼ � 1

2

� �
d[B]

dt
:

When it comes to measuring a rate, we can use a variety of techniques but they must be quantitative.
Note that we can measure the rate as an appearance of a product or as a disappearance of a reactant
relative to the 1 mol extent of reaction. A rate can be measured by a count of events per unit time as
appearance=disappearance of individual molecules or converted to moles using Avogadro’s number.
As a practical matter, a student should be alert to any physical variable which changes in time during
a reaction and can be related quantitatively to moles of the reacting species. Another clue to how
to proceed is the fact that we show the rate as a derivative which will lead to the need to solve
differential equations by integrating the rate equation.

FIRST-ORDER REACTIONS

The most basic type of rate equation is the first-order decay and we will give complete details of the
mathematics here. There are a number of spontaneous reactions in nuclear chemistry and organic
chemistry. A basic characteristic of any reaction is that the more reactant there is, the more the
reaction will proceed but as the amount of reactant decreases the reaction will be slower. Thus, the
rate of the reaction is proportional to the concentration of the reactant.

A! B,
�d[A]
dt

¼ k1[A]
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The method we want to teach here is to identify the extent of reaction ‘‘x’’ relative to the initial
concentrations. An increase of B corresponds to the appearance of ‘‘x.’’ Let ‘‘a’’ be [A] at time t¼ 0
and for simplicity, let [B]¼ 0 at t¼ 0. Then, k1 has units of (1=t) and where ‘‘x’’ is now the
concentration of [B] for times greater than zero (zero is whenever you start your clock!).

þdx
dt
¼ k1(a� x) and x ¼ 0 at t ¼ 0:

Perhaps it is a good idea to write the variables under the chemical reaction as follows:

A ! B

(a� x) x; t > 0

Here, we use the key concept that if there is a ‘‘proportionality’’ such as C/D we can immediately
write C ¼ kD using the basic idea that a proportionality symbol ‘‘/’’ can be replaced by ‘‘¼ k,’’
where k is called the proportionality constant. In kinetics, the proportionality constant is called the
rate constant. Here we add a subscript to the rate constant to indicate the order of the reaction as k1
for a first-order reaction. We will try to do this for higher orders but eventually in complicated cases
we may abandon this simpler convention. Next, we can rearrange the kinetic equation to separate x
and t variables.

dx

(a� x)
¼ k1 dt,

so we can integrate this to

ð
dx

(a� x)
¼
ð
k1 dt:

If we recall our joke in the math review chapter
ð
d(cabin)

cabin
¼ ln (cabin)þ C, we can integrate the

rate equation and apply the boundary conditions to the indefinite expression. If we use cabin¼
(a� x), then d(cabin)¼�dx so we need a minus sign in the answer. We find

�ln (a� x) ¼ k1t þ C,

then at t ¼ 0, x ¼ 0, so we have �ln (a) ¼ C.
Note that both sides of the indefinite equation would have a constant of integration but since we

do not know either of them we combine the constants into one value, C. Then we have

�ln (a� x) ¼ k1t � ln (a) which can be rearranged to ln
a

a� x

� 
¼ kt and then we take the anti-

ln of the whole equation to find the final result in what should be a familiar form
a

a� x

� 
¼ ek1t.

A first-order reaction is usually treated as a decay of the original concentration (invert the
equation), so, finally, we have

(a� x) ¼ a e�k1t or a(t) ¼ a0 e
�k1t:

Although that is the solution, in nuclear chemistry it is common to refer to the ‘‘half-life’’ of
an original amount. Let us see what the equation looks like when (a� x) ¼ a=2, which occurs at a
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time t1=2:
a

2

� 
¼ a e�k1t1=2 so, canceling ‘‘a’’ we find (1=2) ¼ e�k1t1=2 and when we take the natural

log of the reciprocal of the whole equation we find that ln (2) ¼ k1t1=2 ¼ 0:69314718. Most of the

time this is rounded to (k1)(t1=2) ¼ 0:693, so we also have k1 ¼ 0:693
t1=2

as well as t1=2 ¼
0:693
k1

. The

rounding to only 0.693 is left over from the days when that was sufficiently accurate for use with a
slide rule but you can use the more accurate value if you wish.

PROMETHIUM: AN INTRODUCTION TO NUCLEAR CHEMISTRY

We consider that one of the ‘‘essential’’ parts of physical chemistry is some awareness of nuclear
chemistry. While the periodic chart poses as a list of stable elements, there are hints of irregularity
by the absence of elements no. 43 (technetium, Tc) and no. 61 (promethium, Pm). Modern students
are also aware of unstable elements beyond no. 92 (uranium, U). Since nuclear reactions seem to
follow a sequence of first-order reactions, we take some time to mention a few of the mechanisms
that are occurring in the first-order processes.

Pm was long searched for, but not discovered until nuclear chemistry became a laboratory
science and small samples can now be prepared. Pm is elusive for several reasons. Although it
has some 44 known isotopes, not one of them is stable. However, it illustrates several aspects of
nuclear decay, even though all the processes are first order. The isotopes range from 128

61 Pm to 163
61 Pm

and the three most stable isotopes are 145
61 Pm (t1=2¼ 17.7 years), 14661 Pm (t1=2¼ 5.53 years), and 147

61 Pm

(t1=2¼ 2.623 years; data from Ref. [1]). We have ventured into this topic because of the simplicity of
first-order kinetics, which is so typical of the several forms of nuclear decay and because historically
the research of the Curies (Marie, Pierre, and their daughter, Irene) goes across the modern
boundaries of chemistry and physics and deserves mention in a ‘‘physical chemistry’’ text. How-
ever, even basic nuclear physics is beyond the scope of this text except to refer to Ref. [2], which
gives an overview of the main principles. The isotopes of Pm, all have sufficiently short half-lives so
that any that was present in primordial Earth has long since decayed but small amounts are present
due to decay of any one of several isotopes of Nd, which undergo beta decay (a neutron decays to a
proton and ejects an electron, thus increasing the atomic number by 1).

147
60 Nd! 147

61 Pmþ b�; t1=2 ¼ 10:98 days:

The main point here is that the case of Pm shows that while nuclear decay is usually thought of as
decreasing to a lower atomic number, some reactions (beta decay, a form of electron emission)
actually increase the atomic number of the elemental species. Note that in either case, we can use
first-order kinetics for a given single step.

In the 1800s, there were several other gaps in the known periodic chart such as for promethium
and technetium but while Pm is radioactive it is so scarce that it was not detected until 1944 at the
Oak Ridge National Laboratory by Jacob A. Marinsky, Lawrence E. Glendenin, and Charles D.
Coryell. Other radioactive elements are more plentiful in the crust of the Earth and Marie Curie was
interested in isolating such elements perhaps more because of their radioactivity than to describe a
new element. Thus, Madame Curie’s work went far beyond isolating two new elements. This
research opened up a new realization that a number of heavier elements have radioactive isotopes.
Marie Curie and her husband Pierre carried out a (laborious) chemical separation of two new
elements (polonium and radium) that are radioactive and you cannot separate the chemical signifi-
cance from the physical significance. Since the work of the Curies, we now know that there are
many possible isotopes, particularly of the heavier elements. The purpose of this short section is to
make undergraduates aware that natural nuclear chemistry is going on all the time. Nuclear reactions
are probably the source of heat within the core of the Earth and stars form heavier elements by
fusion reactions starting with hydrogen.
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Let us consider the decay of Pm by two mechanisms: (1) electron capture where a 1s electron is
pulled into the nucleus to make a neutron from one of the protons and (2) beta emission where an
electron is ejected and a neutron decays into a proton. Neutrons are not stable and when they are out
of a nucleus they have a half-life of 10.3 min but what determines whether a proton becomes a
neutron or a neutron becomes a proton depends on the other protons and neutrons in a given
nucleus.

n �! � pþ þ e�:

145
61 Pmþ e�1s ! 145

60 Nd; t1=2 ¼ 17:7 years:

146
61 Pmþ e�1s ! 146

60 Nd

146
61 Pm! 146

62 Smþ e�b

" #
; t1=2 ¼ 5:52 years:

147
61 Pm! 147

62 Smþ e�b ; t1=2 ¼ 2:623 years:

With that very brief exposure to the complexity of nuclear chemistry and perhaps a better
appreciation of the significance of the research of the Curies, let us consider the simplest case:

147
61 Pm! 147

62 Sm with t1=2 ¼ 2:623 years:

How much of a 10 g sample will remain after 5 years (Figure 7.1)? We simply insert the data into
the equation,

a ¼ (10 g)e�k1(5 years) ¼ (10 g) exp � 0:693
2:623 years

� �
(5 years)

� �
¼ 2:669 g:

Thus, we see that the first-order kinetic equation is much simpler than the consideration of the decay
mechanism. From a geological point of view, this shows that any primal amount of Pm would have
rapidly decayed in the lifetime of the Earth of over 4 billion years. In fact the age of the Earth has
been estimated by the presence or absence of radioactive isotopes in the crust of the Earth related to
their isotopes, although the original amounts have to be estimated. Nuclear decay is a prime example
of first-order kinetics and as with the case of any kinetic problem, the decay is totally dependent on
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FIGURE 7.1 The radioactive decay of 147
61 Pm! 147

62 Sm based on an initial 10 g sample.
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the amount of the material which can decay. In many cases, the half-life is known more accurately
than here but Pm decays so fast that the small amounts that have been made limit the precision.

If the amounts of (a, t) are known for a number of points k1 can be determined by plotting

ln
a(t)

a0

� �
¼ �k1t or ln [a(t)] ¼ �k1t þ ln (a0) where the slope is (�k1). Here, the R2 value is a

value of 1 indicating a perfect fit. The slope is �0.2642 and we know that k1 ¼ 0:693
t1=2

so we find

from the plot that t1=2 ¼ 0:693
0:3013

¼ 2:623 years, which was the value we were given. Thus, if you

know data in the form of {a(t), t} values, you can find the value for k1 and t1=2 for a first-order rate
process. For those who are careful about units, we see that when concentration units of [x] are in

mol=L, and then
d[x]

dt
¼ kt[a� x] means that kt has units of reciprocal time (Figure 7.2).

MADAME CURIE AND RADIOACTIVITY

While Pm was never found in nature, it has been made in modern nuclear reactors. However, there
were other holes in the periodic chart in the 1800s and Marie Sklodowska was a bright young
woman who came from Warsaw to study in Paris with Henri Becherel at the University of Paris.
There she met and married Pierre Curie who was studying magnetism. However, during isolation of
radioactive uranium from pitchblende ore, Marie was sure she had discovered another element in the
ore, which was much more radioactive than the uranium. Pierre was intrigued and joined Marie in
the laborious separation and isolation of polonium (Z¼ 84) and then a second element, radium
(Z¼ 88). Students of physical chemistry should note the combination of chemistry and physics in
this discovery. Radium was relatively easy to isolate but polonium is similar to bismuth in its
properties and there was also bismuth in the pitchblende ore, so a lengthy process of fractional
crystallization was carried out to separate polonium salts from bismuth salts.

The world press was initially captivated by the beautiful young Polish woman who shared the
1903 Nobel Prize in physics with Henri Becherel and Pierre Curie and she distributed the prize
money to acquaintances and students. She and Pierre did not realize the effect that the radioactivity
had on their health and in 1906 a weakened Pierre walked in front of a horse carriage and was killed.
The Curies had two daughters before Pierre died and one daughter, Irene Joliot-Curie, was also
awarded a Nobel Prize in chemistry in 1935 for discovering that aluminum became radioactive
when bombarded with alpha particles. Note that the decay of radium can provide energetic
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FIGURE 7.2 A plot of ln (value of remaining Pm sample) vs. time in years.
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alpha particles. Prior to Marie’s second Nobel Prize in 1911 there was a controversy in the press
about her private life and only a few close friends stood by her but she was awarded the 1911 Prize
in chemistry. The entire story of her career and up-and-down relationship with the French press is
detailed in a balanced way in Ref. [3]. In Figure 7.3, we see her without eye protection which may
be due to a photographic setting (although eye protection for laboratory chemists was optional until
recently). However, the old style wash bottle in her hand is the type where you put your mouth on
the input pipe to blow out wash water and that is hardly what one would use in a laboratory today
when working with almost any chemicals let alone radioactive materials. Thus, it is likely she was
not only exposed to radiation but also ingested small amounts of radioactive material. Many of these
early discoveries in physics and chemistry were considered wondrous but later proved to be
hazardous. Some personal anecdotes are that she hired a Polish-speaking nurse for her daughters
so they would learn Polish as well as French and her (radioactive) laboratory notebooks when last
examined showed patterns to make diapers. Because she was the first woman to win a Nobel Prize
and was beautiful, many people adored her, so a student will find many Internet sites with her
history. Perhaps because the discoveries were made in France and her daughter continued research
in radioactivity, France has a long history of using nuclear power for generation of electricity and
has one of the highest dependencies on nuclear power generation in the world (>70%). In 1995,
Francois Mitterrand, President of France, officiated as Marie and Pierre were reburied in the
Pantheon, the mausoleum of France’s most illustrious citizens.

FIGURE 7.3 Marie (Sklodowska) Curie (1867–1934) was a Polish-French scientist who shared a Nobel Prize
in Physics in 1903 for the discovery of radium and polonium and received another Nobel Prize in chemistry in
1911 for isolating and characterizing radium. She was the first woman to win a Nobel Prize and the only one of
two to win in two different fields (Pauling won in chemistry and peace). She also pioneered use of portable
x-ray units for battle wounds in WWI.
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RADIUM

There are many isotopes of Radium from 201
88 Ra to 234

88 Ra but the one with the longest half-life is
226
88 Ra with a half-life of 1599 years and decays by emitting an alpha particle (He2þ) with an energy
of 4.870 million electron volts (MeV).

Example 1
In their original fractional crystallization separation method, the Curies eventually obtained about
0.1 g of radium chloride. How much of a 0.1 g sample of 226

88 RaCl2 isolated in 1911 would remain
today (2011)? Thinking like a chemist, if you assume that radium decays to Rn by emitting 4

2He
2þ to

form 222
86 Rn, the Rn would escape as a gas. Then the Cl2 originally associated with the radium cation

might leave as a gas along with the radon but what matters is that the radium is gone.

a(t) ¼ a(0) e�
0:693

1599 yearsð Þ(2011�1911) years ¼ (100mg)(0:958) ¼ 95:8mg:

So, we see as a laboratory source of alpha particles the supply would be pretty constant over a long
period of time. Another consideration is that radium is in the same column of the periodic chart as
Ca and so biologically it might have similar chemistry to Ca and become trapped in bone tissue
where it would be radioactive for a long time. Thus, this interlude regarding the fact that first-order
decay is a useful model for nuclear processes has provided an opportunity to discuss some aspects of
nuclear chemistry. Considering the crossover of physics and chemistry in the work of the Curies
(Marie, Pierre, and Irene) and information in the popular domain regarding nuclear chemistry, we
think this brief discussion is justified as an essential part of physical chemistry.

SECOND-ORDER RATE PROCESSES: [A]¼ [B]

In some texts, the [A]¼ [B] case is the only one shown for second-order rate processes because it is
easy to derive, but actually it is not very general and applies only to cases of reagents which dimerize
or to cases where the concentrations have been carefully prepared so that in fact [A] ¼ [B] by initial
preparation. We will see below that the general case of [A] 6¼ [B] is not very difficult and much more
general. Nevertheless, let us derive this case and see how we could treat the data graphically.

Aþ A! B with [B] ¼ x and initially we have [A] ¼ a and [B] ¼ 0 at t ¼ 0 so, we can write

þ dx

dt
¼ k2(a� x)(a� x) ¼ k2(a� x)2. We now see why the rate is second order because the sum of

the exponents of the concentration terms is two. Once again we separate the variables and integrate
the two sides of the equation separately but with a combined integration constant.ð

dx

(a� x)2
¼
ð
k2 dt so, we find

1
(a� x)

¼ k2t þ C. At t ¼ 0,
1
a
¼ 0þ C so we can write

1
(a� x)

� 1
a
¼ k2t or

a� (a� x)

a(a� x)
¼ k2t which is the same as

x

a(a� x)
¼ k2t. Note that for the

second-order case we see that here that
d[x]

dt
¼ k2[a� x]2 so k2 has (1=time concentration) units

and if the concentrations are in (mol=L) the units of k2¼ (L=mol time). The value of the rate constant

can be obtained by plotting y ¼ mxþ b using
1

a� x

� �
¼ k2t þ 1

a

� �
, the slope¼ k2.

SECOND-ORDER RATE PROCESSES: [A] 6¼ [B]

This is the more general case of a second-order rate process where the concentrations of the two
species are not the same. In some texts, this is avoided because of the problem with integrating the
rate expression but we show here a special theorem [4] that permits solution of this problem
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‘‘by inspection.’’ Here the reaction is Aþ B! C where [C] ¼ x with [A] ¼ (a� x) and
[B] ¼ (b� x) for t > 0 but at t ¼ 0 we initially have [A] ¼ a, [B] ¼ b and [C] ¼ 0. We can set
this up as before for the first-order case to keep track of the concentrations as

A
(a�x)
þ B

(b�x)
! C

x

Then þ dx

dt
¼ k2(a� x)(b� x) which leads to

ð
dx

(a� x)(b� x)
¼
ð
k2 dt. At first glance this looks

like a difficult integral on the left side and maybe some of you will dig out your calculus text to look
up ‘‘the method of partial fractions’’ which is a tedious way to split the integral into two simpler
integrals, but there is an easy way!

Theorem:

Let p(x) and q(x) denote polynomials in the variable ‘‘x’’ with no factor common (cancel all such
beforehand) and let the degree of p(x) be less than q(x). Consider the case in which q(x) has a linear
factor (x� a), not repeated. Then, provided p(x), q(x), f(x), and g(x) are all continuous, we can
determine the partial fraction coefficient c ¼ c(a) for the term c=(x� a).

Proof: Let g(x) ¼ (x� a)f (x) so that we have f (x) ¼ p(x)

q(x)
¼ g(x)

(x� a)
¼ c

(x� a)
þ h(x). Here h(x)

is the left over part of f (x) after we separate the
c

(x� a)
part and c is the number we seek. Then we

can rearrange
g(x)

(x� a)
¼ c

(x� a)
þ h(x) to g(x) ¼ cþ (x� a)h(x). Now take the limit as

x! a: lim
x!a

[(x� a)f (x)] ¼ lim
x!a

g(x) ¼ lim
x!a

[cþ (x� a)h(x)] ¼ g(a) ¼ c, Q.E.D.

We hope this little proof has not made the process more mysterious than it is in an actual

application. The point is that mentally we can separate a factor of
c

(x� a)
from a function with

(x� a) in the denominator and determine the coefficient ‘‘c’’ simply by letting x ¼ a everywhere in
the remainder of the function. We need a simple example. Consider

1
(x� a)(x� b)

¼ c1
(x� a)

þ c2
(x� b)

¼ 1
(x� a)(a� b)

þ 1
(x� b)(b� a)

¼ (x� b)� (x� a)

(x� a)(x� b)(a� b)
:

So, using the theorem above we have shown that
1

(x� a)(x� b)
¼ 1

(x� a)(x� b)
. You will see that

when we use this theorem what we do mentally is factor out the (x� a) part of the denominator and
just substitute x ¼ a in the remainder of the expression and then move on to the next factor of
(x� b) in the denominator and substitute x ¼ b in the rest of the function, including the (x� a) part.
With practice on a few examples this can be performed mentally by inspection and can even be used
in some other forms of kinetic reactions [4] including the rarely used third-order case. Thus, we can
proceed to solve the Aþ B! C case posed above.

ð
dx

(a� x)(b� x)
¼
ð

dx

(a� x)(b� a)
þ
ð

dx

(b� x)(a� b)
¼
ð
k2dt, which is much easier to integrate:
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At t ¼ 0, x ¼ 0, so we can solve for the value of C, the combined constant of integration.

ð
dx

(a� x)(b� a)
þ
ð

dx

(b� x)(a� b)
¼ � ln (a� x)

(b� a)
þ� ln (b� x)

(a� b)
¼

ln
(a� x)

(b� x)

� �
(a� b)

¼ k2t þ C:

ln
(a)

(b)

� �
(a� b)

¼ 0þ C, so we have

ln
(a� x)

(b� x)

� �
(a� b)

¼ k2t þ
ln

a

b

h i
(a� b)

or rearranged to

ln
b(a� x)

a(b� x)

� �
(a� b)

¼ k2t:

This is not the most general form because the coefficients of A and B are both 1 but we are ready for
an example. Students could look up such integrals in tables or use a computer program to solve such
problems but here we offer a way to use a simple calculus trick which is general to many other cases

and only requires knowing
ð
d(cabin)

cabin
¼ ln (cabin)þ C followed by algebra.

Example 2
Data is given in a paper by W. J. Svirbely and J. F. Roth [5] for the kinetics of the reaction between
propionaldehyde and hydrocyanic acid in aqueous solution at 258C. This is excellent data for
teaching second-order kinetics because the concentrations of both reactants are given at different
times as follows:

Time, min 2.78 5.33 8.17 15.23 19.80 1
[HCN] 0.0990 0.0906 0.0830 0.0706 0.0653 0.0424

[C3H6O] 0.0566 0.0482 0.0406 0.0282 0.0229 0.0000

First, we notice that at t ¼ 1 there is still some HCN remaining (0.0424 mol=L) and it does no harm
to remind the reader that HCN is extremely poisonous. Perhaps you have encountered this type of
reaction before and recognize that the propionaldehyde is the ‘‘limiting reagent’’ but here we mainly
need to observe that in our model system [A] 6¼ [B]. Let us ‘‘reset our clock,’’ so that time zero is
measured from the first time when we know the concentrations of both reactants, namely at 2.78
min. Another good practice is to select data points which are far apart in time to get the best overall
picture of the rate process, namely at 19.80 min to reduce short term fluctuations in the data. The
next question is whether the process is really second order? The simple answer is that it is a good
guess that when two species react, the rate process is second order. Nevertheless, we will test this
assumption and if the rate constant (k2) is not constant over the span of time in the data then our
assumption is incorrect. Here, we are only giving the essentials of the most common type of kinetics
but an excellent book on this subject is available in the text by Moore and Pearson [6]. Thus, we
assume second-order kinetics and see if the data fits that assumption. Let [A]¼ a¼ [HCN] and
[B]¼ b ¼ [Pr] at t ¼ 2:78 min. Then, we can use the formula we derived above and insert the data
values relative to the concentrations at 19.80 min.

ln
b(a� x)

a(b� x)

� �
(a� b)t

¼ k2 ¼
ln

0:0566(0:0653)
0:0990(0:0229)

� �
(0:0424mol=L)(19:80� 2:78min)

¼ 0:677261L=mol min:

Note that the concentrations [a� x] and [b� x] are the actual values in the table of data, while the
values for [a] and [b] are the values of the data at 2.78 min. In the denominator, the difference in the
two concentrations will always be 0.0424 mol=L, but the time is measured starting at 2.78 min,
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so we have to subtract that from the 19.80 min. Now let us check to see if the data supports the idea
of a second-order process using the data at 8.17 min.

ln
(0:0566)(0:0830)
(0:0990)(0:0406)

� �
(0:0424mol=L)(8:17� 2:78 min)

¼ 0:682438L=mol min:

That is close enough to the previous value to declare this process is second order and we would
ordinarily expect that the earlier data would be less precise than the later data since the reaction is
occurring faster in the beginning leading to more uncertainty in the data. Thus we can round the two
values (or even compute an average of all four values possible from the given data) and report that
the reaction is indeed second order with a rate constant of k2 ¼ 0:68L=mol min.

Example 3
In some cases, a reaction may seem to be first order even though we know two species are involved.
These rates are called pseudo-first-order reactions and can occur when the concentration of one of
the reactants is in great excess. Consider the following data from Ref. [7] (with permission).
A reaction flask is set up containing methyl acetate and 1 M HCl at 258C. The almost unspoken
second reactant is the water in the HCl solution which is of the order of 55 M in H2O. Actually the
HCl is a catalyst and is not consumed during the reaction but aids the hydrolysis.

CH3COOCH3
(a�x)

þH2O
(b�x)
þHCl! CH3OH

x
þCH3COOH

x
þHCl

It should be obvious that a ‘‘hydrolysis’’ reaction involves water and in fact some water is used up
during the reaction. However, if the concentration of the methyl acetate is less than 1M the loss of
1 mol of water out of a concentration of 55 M will hardly be missed and further 1 mol of water is
only about 18 mL. Thus, on the basis of moles and volume, the amount of water in the 1 M HCl
solution seems almost constant. The rate constant really should be

þ dx

dt
¼ k2[H2O] [CH3COOCH3] ¼ k2[55] [CH3COOCH3] ¼ k0[CH3COOCH3]

but since the water concentration changes very little during the reaction we can just absorb the water
concentration into an effective pseudo-first-order constant k0 ¼ (k1[55]). Consider the data carefully.

Time, s 339 1242 2745 4546 1
Volume, mL 26.34 27.80 29.70 31.81 39.81

You need to understand the way the experiment is set up. Suppose a 2 L flask is set up about half full
with a solution of 1 M HCl and a clock is started when an unknown amount of methyl acetate is
added to the solution. Then at times which are noted by the clock reading, a pipette of unknown size
(but the same quantitative volume for each aliquot) is used to draw out an aliquot which is drained
into a 250 Erlenmeyer flask containing about 50 mL of ice and water to ‘‘quench’’ (i.e., slow down)
the hydrolysis reaction at a lower temperature. Then the acid in the flask is titrated with carefully
standardized 0.100 M NaOH to a phenolphthalein pink end point and the volume of the titration is
recorded in the table above. There is uncertainty in the titrations caused by the ‘‘creeping end point’’
which makes it important to obtain a lot of titration points in the hope that the error will average out.
Usually it will be helpful to have many more points than given here. First, we are getting a ‘‘handle’’
on this reaction rate using a titration of the acid in this solution as a function of time but it was
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already 1 M in HCl before the additional amount of acetic acid is produced by the hydrolysis. Thus,
the titration volumes in the table are mainly a titration of the 1 M HCl with a slowly increasing
amount of acetic acid. Note the final titration, which is usually done by using the same pipette for an
aliquot from the reaction solution several days after the start of the reaction, reaches a limiting value
at t ¼ 1. How can we get a quantitative rate constant, even if it is a pseudo-first-order rate constant,
from such ill-defined data? The key in this case and in many other reaction rates is to ignore a lot of
unnecessary information and focus on the ‘‘handle’’ of the data which connects the extent of the
reaction to time. In this case, the ‘‘handle’’ is the ‘‘amount yet to go’’ in the reaction. Reset your
clock to t ¼ 0 with the data at 339 s, then the ‘‘amount yet to react’’ is

(VHAc þ VHCl)t¼1 � (VHAc þ VHCl)t¼339 s½ 
 ¼ a0 ¼ V1 � V339:

Then we can use the usual first-order equation a(t) ¼ a0 e
�k0t and

ln
a(t)

a0

� �
¼ �k0t a(t) ¼ V1 � Vt�339 so we write

�1
t

� �
ln

(V1 � Vt�339)
(V1 � V339

� �
¼ k0 and we can

make a table of k0 values:

�1
(1242 � 339) s

� �
ln

39:81� 27:80
39:81� 26:34

� �
¼ �1

903 s

� �
ln

(12:01)
(13:47)

� �
¼ 1:270491� 10�4 s�1,

�1
(2745� 339) s

� �
ln

39:81� 29:70
39:81� 26:34

� �
¼ �1

2406 s

� �
ln

(10:11)
(13:47)

� �
¼ 1:192602� 10�4 s�1,

�1
(4546� 339) s

� �
ln

39:81� 31:81
39:81� 26:34

� �
¼ �1

4207 s

� �
ln

(8:00)
(13:47)

� �
¼ 1:238468� 10�4 s�1:

____________________________

Average k0 ¼ 1.2325� 10�4 s�1

We see that the calculated value of k0 fluctuates. The main reason for this is that the titrations
are subject to a large uncertainty due to the fact that even in the cold ice water of the titration flask
the reaction is still proceeding. Ideally, the end point of the titration should be the first visual
pink of the titration, but since the reaction is still proceeding at the lower temperature, the pink
will fade as more acetic acid is produced and then the titrator will add more base and then that will
fade, etc., so the end point of the titration is subject to considerable uncertainty. Even so this
experiment has been performed by hundreds of students and the results are remarkably reprodu-
cible, although with a large uncertainty.

Time, s 1242 2745 4546

(k0=s)� 10�4 1.270491 1.192602 1.238468

Example 4
Now we come to a more general treatment of a second-order reaction in which the coefficients in the
balanced reaction are not 1:1. This is a set of data which is reported in Ref. [7] (with permission).
This is the sort of quantitative data one needs for precise work and should be familiar from the use of
oxidation–reduction titrations in quantitative analysis. Although only the [(S2O3)

2�] needs be
reported, we assume that the sodium salt is used for aqueous solubility.

H2O2 þ 2Na2(S2O3)þ 2HCl! 2H2Oþ Na2(S4O6)þ 2NaCl:
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As usual, the oxidizing agent [H2O2] is reduced and the reducing agent [(S2O3)
2�] is oxidized. The

important part of this reaction for the kinetic study is that the coefficients on the peroxide and the
thiosulfate are in 1:2 ratio. Thus, the reaction is of the type Aþ 2B! C. The data is given as

Time, min 16 36 43 52

[(S2O3)
2�] 0.01030 0.00518 0.00416 0.00313

At t ¼ 0, [H2O2]¼ 0.03680 and [(S2O3)
2�]¼ 0.02040 at pH 5.0.

This time, we are given the initial concentrations and the intermediate concentrations of only
one reactant. We do not know the order of the reactions but we will guess it is second order
because there are two reacting species and if the rate constant checks out to be a constant that will
confirm the process is second order. Let [H2O2]¼ a and [(S2O3)

2�]¼ b, then we can write
þdx
dt
¼ k2(a� x)(b� 2x) and that leads to an integrated expression as

ð
dx

(a� x)(b� 2x)
¼
ð
k2 dt ¼

ð
dx

(a� x)(b� 2a)
þ
ð

dx

(b� 2x) a� b

2

� � using the theorem above.

Then we find
� ln (a� x)

(b� 2a)
þ� ln (b� 2x)

2 a� b

2

� � ¼
ln

(a� x)

(b� 2x)

� �
(2a� b)

¼ k2t þ C and if x ¼ 0 when t ¼ 0 we

have
ln

(a)

(b)

� �
(2a� b)

¼ 0þ C so we find
ln

(a� x)

(b� 2x)

� �
(2a� b)

¼ k2t þ
ln

a

b

h i
(2a� b)

and
ln

b(a� x)

a(b� 2x)

� �
(2a� b)t

¼ k2.

This can be generalized for any reaction of the type Aþ nB! C with the value of ‘‘n’’ as

ln
b(a� x)

a(b� nx)

� �
(na� b)t

¼ k2 but here n¼ 2 so we can use the data for a second-order rate process.

This problem is made more difficult than the previous example by the fact that we need to use
quantitative reasoning to obtain the concentrations. We have concentrations for what we are
calling ‘‘b’’ here and according to the coefficients in the balanced equation ‘‘a’’ will disappear only
half as fast as ‘‘b’’ is being used up. Once again we choose the longest time period at t¼ 52 min to get
the best overall view of the process. At t¼ 52 min, the concentration of the [H2O2] will be given by

[H2O2] ¼ 0:03680� {0:02040� [(S2O3)
2�]}=2

That is the key to the whole problem. We can now fill in the table of values for the [H2O2].

Time, min 16 36 43 52

[H2O2] 0.03175 0.02910 0.02868 0.028165

ln
b(a� x)

a(b� 2x)

� �
(2a� b)t

¼ k2 ¼
ln

(0:02040)(0:028165)
(0:03680)(0:00313)

� �
[2(0:03680)� 0:02040mol=L](52 min )

¼ 0:580929L=mol min:
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Let us check this with the data at 36 min.

ln
b(a� x)

a(b� 2x)

� �
(2a� b)t

¼ k2 ¼
ln

(0:02040)(0:02910)
(0:03680)(0:00518)

� �
[2(0:03680)� 0:02040mol=L](36 min)

¼ 0:593134L=mol min

The average of these two values is 0.587 L=mol min and once again there perhaps should be more
confidence in the value from the longer time period of 52 min but the two values are close enough to
support the assignment of a second-order rate process.

There is still a caution in assigning the order of a rate equation. Although, we have taken the
precaution of calculating the rate constant using the assumed order over several data points in the
examples above, it will be necessary in general to test that assumption over a wide range of time
intervals if the rate equation is not a ‘‘tight fit’’ with variability in the calculated rate constant. The
key comparison will be to compare the error range for alternate models to determine the ‘‘best’’
order. In the examples above, we did see variation in the values of the calculated rate constant but in
some cases it may be due to experimental error. The examples we have shown are fairly clear cut
determinations of the order but the case of the pseudo-first order hydrolysis was included to show
how a true second-order reaction can seem like a first-order reaction and in that case the drift in the
order is also complicated by the problem that the ice quenching of the reaction samples is not
complete, so there is an added analytical problem in the data.

ARRHENIUS ACTIVATION ENERGY

In the example above with the pseudo-first order hydrolysis reaction, the procedure tried to ‘‘quench’’
the reaction by adding the aliquot sample to ice water. This implies there is a temperature effect on the
reaction rate. The simplest treatment of this effect was bySvanteA.Arrhenius (1859–1927), a Swedish
physicist who formulated the first explanation of the temperature dependence of reaction rate con-
stants.Most organic chemistry texts showa single potential energy barrier to a reaction along a reaction
coordinate. Note that a ‘‘reaction coordinate’’ is a distance along a path of progressive geometrical
distortionof the reacting specieswhich results in the formationof product. The ‘‘extent of reaction’’ is a
quantitative mole concept while the ‘‘reaction coordinate’’ is a geometrical concept. A little thought
leads one to the realization that there must be more than one reaction coordinate since most organic
reactions lead to more than one product molecule, but each reaction coordinate will have a barrier that
needs to be overcome before the overall DH0

rxn is realized. Although we do not know how Arrhenius
thought of this, the formula incorporates aspects of the Boltzmann principle. In order for a molecule to
reach the energy to go over the barrier there would be a Boltzmann probability of having that energy.

k ¼ A e�
E*
RT

	 

Since the exponent is a unitless number, the value of A has the units of the rate constant k. Here, A is
the ‘‘Arrhenius constant’’ and is believed to be related to the number of binary collisions Z11 we
encountered in the kinetic theory of gases. In the experience of this author, a few calculations for
reactions of small molecules using collisions augmented with a ‘‘steric factor’’ do give qualitative
agreement with experiment for gas phase reactions. However, A becomes merely a large number
when fitted to data for reactions in solution. Even so, we can take the natural log of the equation and
gain an appreciation for how the rate constants change with temperature and that leads to an
experimental value for what is called the ‘‘activation energy, E*.’’ The activation energy is related
to the amount of energy required to pass over the barrier in the reaction coordinate. Because of the
simplicity of the Arrhenius formula and the ability to fit experimental data with only two parameters
(A, E*), the Arrhenius formula is extensively used in computer programs which model gas phase
reactions that turn out to be far more complicated than one might think. For instance, it takes well
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over 100 reactions with Arrhenius factors to model the details of all the free radicals and inter-
mediate species in the simple combustion of the methane flame [8].

CH4 þ 2O2 ! CO2 þ 2H2O

The details of such complex mechanisms require a simple model capable of parameter fitting, so the
Arrhenius model is still used for studies of combustion of jet fuel and various rocket engine fuels.
A later chapter will explore more detailed treatments but here we can use the equation in natural

logarithm form. If Krate ¼ A e�
E*
RT

	 

, we have ln (K(T)) ¼ ln A� E*

R

� �
1
T

� �
and this leads to

another graph with (1=T) along the x-axis. A side issue in notation is that we will have to use
Krate for the rate constant to distinguish it from the Boltzmann constant ‘‘k’’ and of course we will
use ‘‘K’’ for Kelvin temperature so this author favors using 8K for the temperature when all three
variations of (k, Krate, 8K) are used in the same equation.

Example 5
An example from Ref. [7] will be treated here with the simpler Arrhenius equation and will be used
again later to compare this method to more sophisticated treatments. The data consists of measure-
ment of the solvolysis of an alkyl halide (1-chloro, 1-methyl cycloheptane) in a solution of 80%
ethanol for what is nominally an SN1 replacement of the chloride ion. In a later chapter, we will
examine this reaction in more detail as a model of a steric hindrance in a carbocation substitution
reaction but here we are just interested in the measured reaction rates at various temperatures.

CH3

Cl

Temp, 8C 0 25 35 45

Krate, s
�1 1.06� 10�5 3.19� 10�4 9.86� 10�4 2.92� 10�3

1=T (8K) 3.660992� 10�3 3.354016� 10�3 3.245173� 10�3 3.143172� 10�3

ln Krate �11.454656 �8.050319 �6.921854 �5.836172

Clearly the reaction speeds up as the temperature increases, so the question is whether the data
agrees with the equation proposed by Arrhenius. Thus, we plot the data versus (1=T) as

ln (Krate) ¼ � E*
R

� �
1
T

� �
þ ln Að Þ in linear y ¼ mxþ b form.

The best-fit line yields a value of R2 which indicates a very good linear fit. The variable ‘‘x’’ on
the graph refers to the x-axis which is 1=T (8K) here and the slope has a value of �10872. Using
m¼� E*

R

� �
we can calculate the activation energy according to Arrhenius as � E*

R

� �
¼ �10,872

and we have to recognize that the (1=T) cancels the temperature units in R.

(10, 872)R ¼ E* ¼ (10872)(8:314 J=mol) ¼ 90:3898 kJ=mol ¼ 21:604 kcal=mol:

Next, we can ask what value is predicted for the A parameter of the Arrhenius plot. Since ‘‘y’’ on the
best-fit line refers to ln (Krate), the ‘‘b’’ term is really ln (A) ¼ 28:365, so we can find A by taking
the anti-ln to obtain A ¼ exp (28:365)=s ¼ 2:08335� 1012 s�1, which is a very large number. In the
rate equation, the actual rate could be 2.08335� 1012 s�1 (L=mol). Rough calculations with actual
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concentrations yield numbers slightly higher than KMTG Z11 binary collision numbers which are
typically (1028=cm3 s) in the gas phase.

which is slightly larger than the KMTG Z11 binary collision numbers which are typically
(1028=cm3 s) in the gas phase. However, we are dealing with a reaction in the liquid state here
where the molecules are closer together than in the gas phase. Unfortunately, the lack of precise
descriptions of most liquids makes the comparison difficult. More importantly, the steric require-
ments for solution reactions can vary widely. Thus, it seems best to describe A as ‘‘related’’ to the
number of effective collisions of the reactants. We can say that for gas phase reactions, which are

dependent on thermal velocities for the collision number, we might expect A /
ffiffiffiffi
T
p

, since

�v ¼
ffiffiffiffiffiffiffiffiffi
8RT
pM

r
, but the Arrhenius A value is not a function of the temperature, it is just a large constant.

The plot of the data in Figure 7.4 yields a value for E* which is typical of a number of organic
reactions which often have an activation energy of about 20 kcal=mol. It may be of general use to
ask what is the effect of a 108C increase of temperature on a typical reaction rate and we can use this
reaction to give an answer for a change from 258C to 358C.

k308
k298
¼ A e�

E*
R(308)

A e�
E*

R(298)

¼ eþ
E*
R

	 

308:15�298:15
(298:15)(308:15)½ 
 ¼ e

20000 kcal=mol

1:987 cal=mol 8

	 

10�

(298:15)(308:15) 82

h i
¼ e1:0955574 ffi 2:99085:

So as a rule of thumb, a reaction with an activation energy (E*) of about 20 kcal=mol or 83.68
kJ=mol will speed up by a factor of 3 for an increase of 108C. In fact, we see from the data that we
have values for the rate at 258C and 358C which give the ratio as 3.09. Note in that calculation the
value of A did not matter since it cancels in the ratio and for that reason the Arrhenius formula was
useful even if the value of A was not known.

THE CLASSIC A ! B! C CONSECUTIVE FIRST-ORDER REACTION

The next example is a classic problem in both nuclear chemistry as well as chemical engineering. (By
the way, a student who complained that he would never see this problem in ‘‘real life’’was sitting in a
seminar the very next daywhen another studentwas presenting the results of his PhD research showing
a time-dependent series of NMRpeaks. In the data, a certain peak (A) decreased to form a second peak
(B) and that peak reached a maximum but then decreased to form a final peak (C). The PhD candidate
then proceeded to use this solution to analyze the kinetics of his data!) The idea is obvious for nuclear
processes because nuclear decay follows successive step-by-step transformations from one isotope to

Arrhenius rate plot
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FIGURE 7.4 Plot of ln (Krate) versus [1=T (8K)] for an alkyl chloride solvolysis.
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another. Although nuclear reactions often pass through many steps, we have emphasized that all are
spontaneous first-order processes. This example can easily be adapted to successive nuclear decay
steps by substituting theword ‘‘atoms’’ for ‘‘gallons’’ in what follows. Engineering students will likely
find this example more familiar if we use the analogy of flowing liquid, so, let us consider three large
tanks for liquids, tankA, tank B, and tank C situated on a hill with A highest and C lowest (Figure 7.5).
All three tanks can hold up to 1100 gal of solution but the pipe connecting tanks A andB allows tankA
to drain with a t1=2 of 3 days, while the pipe connecting tanks B and C is smaller allowing tank B to
drain with t1=2 of 8 days. For the sake of the boundary conditions, assume exactly 1000 gal of water is
stored in tank A at time t¼ 0 and the valve between tanks A and B is closed with tanks B and C empty.
Let us suppose that tank A is just for water storage while tank B is used to add NH4NO3 to the water to
make a liquid fertilizer and tankC is just a holding tank for slowdistribution of the fertilizer liquid from
the last valve out of tank C to an irrigation system. Assume that the NH4NO3 solution is dilute and
ignore any volume change of the water. The question is if both valves (A! B) and (B! C) are
opened at the same time (t¼ 0) and the outlet of tank C is closed, at what time will the maximum
volume be in tank B? Just to be complete, what will the maximum volume of tank B be at that time?

Let N0 represent the initial gallons of water in tank A, which is 1000 gal here but might be a
different number in another situation. Let NA be the amount of solution (gallons) in tank A at any
later time with the similar meaning for NB and NC. We can save effort since we know tank A will
drain in a first-order way with t1=2 ¼ 3 days, so we can immediately write NA ¼ N0 e

�kat.
The next step is the tricky part because as soon as some water drains into tank B from tank A,

some of it will start to drain into tank C, although at a slower rate. Thus, we write

dNB

dt
¼ þkaNA � kbNB ¼ þkaN0 e

�kat � kbNB

where we have used ka and kb for the two first-order rate constants and we emphasize water coming
into tank B with a ‘‘þ’’ sign and water=solution leaving tank B with a ‘‘�’’ sign. Please take a
minute to understand what is happening here because the next step is tricky and we want to make
sure you have the overall picture of water coming into tank B from tank A but immediately starting
to drain into tank C. Next, we come to what is usually a whole chapter in a textbook on differential
equations. Collect the two terms involving NB and multiply the whole equation by an exponential
‘‘integrating factor.’’ Write the operation and then we will explain it.

dNB

dt
þ kbNB ¼ kaN0 e

�kat
� �

ekbt ) ekbt
dNB

dt

� �
þ kb e

kbtNB ¼ d

dt
ekbtNB

	 
 ¼ kaN0 e
(kb�ka)t:

0
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FIGURE 7.5 Contents of tanks A, B, and C in the A! B! C example.
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This is really an amazing mathematical trick because we should see that the two terms in NB would
be part of a derivative of a product if only there was a factor of ekbt, so why not multiply the whole
equation by that factor? Now we can integrate both sides of the equation:ð

d(ekbtNB) ¼
ð
kaN0 e

(kb�ka)t dt ) ekbtNB ¼ (kaN0)
e(kb�ka)t

(kb � ka)
þ C but NB ¼ 0 at t ¼ 0, so we

have C ¼ �kaN0

(kb � ka)
and ekbtNB ¼ kaN0 e

(ka� kb)t

(kb � ka)
� kaN0

(kb � ka)
. Then collecting common factors we

have ekbtNB ¼ kaN0 e
(ka� kb)t

(kb � ka)
� kaN0

(kb � ka)
¼ kaN0

(kb � ka)
e(kb� ka)t � 1
� �

and after we divide both sides

by ekbt, we finally reach

NB ¼ kaN0

(kb � ka)
e�kat � e�kbt
� �

:

That gives us a formula for NB at any time t > 0. When will the contents of tank B reach a

maximum? We need to set
dNB

dt

� �
¼ 0 and solve for tmax NB

. Thus,
dNB

dt

� �
¼

kaN0

(kb � ka)

� �
�ka e�kat þ kb e

�kbt	 
 ¼ 0. Therefore ka e
�kat ¼ kb e

�kbt; now take the natural log of

the whole equation, so ln ka � kat ¼ ln kb � kbt or ln
ka
kb

� �
¼ (ka � kb)t. Thus, tmax NB

¼

ln ka
kb

� 
(ka � kb)

. Now find tmax NB
using the numerical values,

tmax NB
¼

ln
ka
kb

� �
(ka � kb)

¼

ln

0:693
3 days
0:693
8 days

0
BB@

1
CCA

0:693
3 days

� �
� 0:693

8 days

� � ¼ ln
8
3

� �

0:693
8� 3
24 days

� � ¼ 6:7936 days:

With this information we can find out how much water=solution is in tank B at that time:

NB ¼ kaN0

(kb � ka)
e�kat � e�kbt
� � ¼

0:693
3 days

� �
(1000 gal)

0:693
8 days

� �
� 0:693

3 days

� � e�
0:693
3ð Þ(6:7936) � e�

0:693
8ð Þ(6:7936)h i

,

and so NB(max) ¼ (�1600 gal) (�0:346975) ¼ 555:16 gal. We might as well calculate the con-
tents of tank A and tank C at this time, assuming the outlet valve of tank C is closed.

NA ¼ (1000 gal)e�
0:693
3 daysð Þ(6:7936 days) ¼ 208:19 gal, so assuming conservation of the initial 1000 gal

(neglecting evaporation) we can calculate the volume in tank C as whatever is not in tank A or
tank B. The volume in tank C¼ (1000�208.19�555.16)¼ 236.65 gal at t¼ 6.7936 days. We also
realize that eventually all the solution will end up in tank C with tanks A and B completely empty.
If this was a problem in nuclear decay, we might have so few individual atoms starting from a
number like 1000 atoms that we would have to round the values of NA, NB, and NC to integer values
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but if mole quantities are involved in a chemical reaction we might have to use more significant
figures in the half-life values than just 0.693. Even so we have solved the problem and you can
judge whether more or less significant figures are warranted for a particular case. Note that we have
solved the numerical example for the case where ka > kb and the temporary maximum in tank B will
occur under that situation. If ka < kb, the temporary buildup in tank B will not occur.

A! B! C Water Tank Summary:

N0 ¼ 1000 gal; t1=2(A) ¼ 3 days; t1=2(B) ¼ 8 days; tmax NB
¼ 6:7936 days

NA ¼ 208:19 gal at tmax NB
; NB ¼ 555:16 gal at tmax NB

; NC ¼ 236:65 gal at tmax NB

Now that we have some understanding of the way in which the decay scheme works, we can look
back and understand some of the difficulty Marie Curie had in isolating radioactive polonium
(named for her home country of Poland). Using modern data from Ref. [1], we find t1=2 ¼ 3:53 h for
the electron capture of 204

84 Po! 204
83 Bi followed by another electron capture by 204

83 Bi! 204
82 Pb with

t1=2 ¼ 11:2 h to form stable 204
82 Pb. Although other isotopes are involved, this scheme shows the

difficulty in isolating Po from Bi while the decay process is going on. Note that the time scale in
Figure 7.6 is in hours.

Considering the many applications of this type of problem such as nuclear decay and various
forms of time-dependent spectroscopy (NMR, UV–VIS, etc.) there is sufficient detail to the solution
presented above to allow it to be used in a number of situations and it is certainly one of the
‘‘essential’’ aspects of basic kinetics in physical chemistry.

SPLITTING THE ATOM

After the work by Marie Curie and her daughter Irene established a new field of research in the
radioactivity of elements, others carried out similar experiments to begin to understand the internal
structure of the nucleus and a period of increased research occurred in the 1930s. At the Kaiser
Wilhelm Institute in Berlin and the Niels Bohr Institute in Stockholm, a drama unfolded in 1938 that
ushered in the atomic age. Lise Meitner was a petite, shy Austrian girl who made friends with a
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FIGURE 7.6 A plot of the successive decay of 204
84 Po! 204

83 Bi with t1=2 ¼ 3:53 h followed by 204
83 Bi! 204

82 Pb

with t1=2 ¼ 11:2 h based on an initial 1000 atoms of 204
84 Po. Thanks to Prof. Steven Yates of the University of

Kentucky for suggesting this example.

150 Essentials of Physical Chemistry



charming young German named Otto Hahn when they met in college and at first she worked for him
and later he worked for her (Figure 7.7). She was much better at theory but he was a very good
chemist and they were working on trying to make a new element by aiming a beam of slow neutrons
at uranium hoping to make a new isotope but the uranium kept disappearing and quantities of
barium showed up in the beam target.

When Germany annexed Austria in 1938, Meitner who was formerly an Austrian citizen became
a German citizen. Then she could not remain at the Kaiser Wilhelm Institute because her parents
were Jewish (although she was baptized as a Christian in 1908). As a result, she went to the Niels
Bohr Institute in Stockholm, although she could not speak Swedish. She continued to correspond
with Hahn about their experiments and he apparently admitted he did not understand what was
happening to the uranium. This event and all the human drama is described by David Bodanis [9] in
the historical novel ‘‘E¼mc2.’’ While walking in the snow on a Christmas eve in 1938, in Sweden,
Lise Meitner and her nephew Robert Frisch added up the apparent atomic masses of the residual
elements found by Hahn and came to the astounding conclusion that about 1=4 of a proton mass was
missing and possibly converted into 200 MeV of energy in the form of flying particle debris. Hahn
had split the atom but Meitner interpreted the experiment. Hahn quickly published the results
ignoring her contribution and he was awarded the Nobel Prize in Physics in 1944. The oversight
of her slightly later paper, published in Nature (February 11, 1939) using the Bohr ‘‘Liquid Drop’’

FIGURE 7.7 Lise Meitner (1878–1968) was an Austrian physicist who first described the splitting of a
uranium nucleus as ‘‘fission’’ and Otto Hahn (1879–1968) who was awarded the 1944 Nobel Prize in
chemistry for analyzing the elemental fragments of uranium fission. He missed the Nobel ceremony because
at the time he was a prisoner of war in a British camp. Meitner was later recognized for her key role in the
interpretation of Hahn’s data when the United States awarded her the Fermi Award jointly with Hahn and his
assistant Fritz Strassmann. Judging by her youthful appearance this was probably taken at the Kaiser Wilhelm
Institute in Berlin in 1913. Details are given by David Bodanis in the historical novel ‘‘E¼mc2.’’
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model of the nucleus, was partially rectified when the United States awarded her the U.S. Fermi
Prize in 1966 jointly with Hahn and his assistant Fritz Strassmann. Meitner and her nephew coined
the term ‘‘fission’’ to describe the splitting of the uranium nucleus and today she is known as the
‘‘Mother of Fission.’’ Meitner refused to participate in the Manhattan Project because she did not
want to work on a bomb. Since that time the kinetic scheme we have described as A! B! C has
been extended to many cases of successive first-order decay by radioactive isotopes. Many of the
heavier elements are in fact radioactive but with long half-lives and they eventually decay to some
stable isotope of Pb in many cases. In retrospect, what Hahn was observing was probably a small
amount of a nuclear reaction:

235
92 Uþ 1

0n! 141
56 Baþ 92

36Krþ 310n:

Since Kr is a gas, only Ba would show up in the analysis of the solids in the U target. It is important
to note that this reaction produces more neutrons than are needed to start the reaction so a chain
reaction is definitely possible in the presence of more 235

92 U.
In the late 1950s and early 1960s, undergraduate science education in the United States often

included a course in ‘‘radiochemistry.’’ This author took such a course which included a set of
laboratory experiments using radioactivity counters and careful chemistry experiments with radio-
active isotopes. Today such courses seldom occur in chemistry curricula due to the dangers of
radioactivity. However, this author believes physical chemistry is possibly the last opportunity for
some undergraduate science majors to gain a minimal understanding of nuclear chemistry which is
still important in the present age. In the absence of a potentially dangerous laboratory course, we can
at least include some paper-and-pencil examples here. In a wonderful general chemistry text by
G. Sasin and R. Sasin [10] (reprinted as a soft cover course-pack later by this author [11]), there is a
very short chapter on ‘‘nuclear chemistry.’’ This material was of great interest in the 1950s.
Although Irene Joliot-Curie (daughter of Marie Curie) had won a Nobel Prize in 1935 (in chemistry)
for making aluminum radioactive due to bombardment with alpha particles, public interest peaked
following WWII. The text by Sasin and Sasin is usefully succinct, so we include some of their
material to give a sense of the way in which the alchemist dream of changing one element to another
can occur with modern facilities in nuclear reactors and particle accelerators.

In the examples of nuclear reactions which follow we will focus on conservation of particles
even though we know from Einstein’s formula E ¼ mc2 that small amounts of mass can be
converted into enormous amounts of energy and we will use integers for particle numbers. In this
way, we have to balance the isotope superscripts as well as the subscripts. Note in the fission of
235
92 U, the number of (protonsþ neutrons) in the superscript adds up to 236 on both sides of the
reaction and the number of protons in the subscripts adds up to 92 on both sides of the reaction. Here
are a few nuclear reactions given in the Sasin and Sasin text [10,11] (by permission):

A. a-Particle bombardment
1. Emission of a proton, a process common to many elements from C to K

27
13Alþ 4

2He! 30
14Siþ 1

1H:

2. Emission of a neutron

11
5 Bþ 4

2He! 14
7 Nþ 1

0n:

B. Proton bombardment

7
3Liþ 1

1H! 242He:
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C. Deuteron bombardment

7
3Liþ 2

1D! 8
4Beþ 1

0n:

D. Neutron bombardment

28
14Siþ 1

0n! 28
13Alþ 1

1H:

E. Electron bombardment

9
4Bþ 0

�1e! 8
3Liþ 1

0n followed by 8
3Li! 8

4Beþ 0
�1e:

We can see that an a-particle is a nucleus of He as the dication He2þ. When electrons are given off
from a nuclear reaction they are called ‘‘b-particles’’ and electrons can be absorbed or emitted. In
some heavy elements, 1s electrons can sometimes be captured into a nucleus and combine with a
proton to form an additional neutron in the nucleus which reduces the number of protons and
changes the elements atomic number (Z) to (Z� 1) as 0

�1eþ 1
1H! 1

0 n. Thus, for the purpose of
chemistry we can regard a neutron as the combination of an electron and a proton. While this has
been controversial in the past it is known that neutrons are unstable outside a nucleus and they decay
into an electron and a proton as 1

0n! 0
�1eþ 1

1H with t1=2¼ 10.3 min.
Of course we have not balanced the energy by this sort of analysis and in actual nuclear reactions

gamma rays are often emitted (particularly in neutron bombardment) to balance the energy and the
energy of fast emitted particles is part of the energy balance. Finally, as deduced by Lise Meitner,
the sum of the masses may not add up and missing mass has been converted into tremendous
amounts of energy often measured in ‘‘millions of electron volts’’ as MeV. The missing amounts of
mass are usually small enough that we can count the particles as integers in our simple ‘‘particle
balance.’’ Today nuclear physics is a maturing science but there are still some subatomic particles to
be detected experimentally. Even so, Lise Meitner is the ‘‘Mother of Fission’’ and the research
discoveries by the Curies (Marie, Pierre, and Irene) led to modern nuclear chemistry. An astute
student should note the connections between physics and chemistry in these discoveries.

PROBLEMS

7.1 An unstable isotope that can occur in fallout from a nuclear blast is 90
38Sr, which has a half-life of

29.1 years and has similar chemistry to Ca, so that when it falls on vegetation (grass),
herbivores (cows) can ingest it and it can enter the human food chain through milk. Since it
is radioactive and children need the nutrition and Ca in milk, 9038Sr is considered a long duration
health hazard from nuclear fallout and was one of the main reasons for an international ban on
above-ground testing of nuclear weapons. Calculate how much of a 1 g sample of 90

38Sr will
remain after 50 years.

7.2 If a 500 gal tank has a valve which allows it to drain from 500 to 250 gal in 2 h, how much of
300 gal in the same tank will drain in 1 h?

7.3 Using the data in Example 2, determine the time when the concentration of propionaldehyde
will be exactly 0.020 M.

7.4 Using the data of Example 3, determine the time when the volume of the aliquot titration will be
35.00 mL using the same pipette and the same NaOH titration concentration.

7.5 Using the data of Example 4, determine the time at which the thiosulfate ion concentration will
be 0.0035.
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7.6 It is sometimes said that many organic reactions double their rate for an increase of only 108C.
Assuming that is true, use the Arrhenius dependence of reaction rates on temperature to
determine the approximate value of E* that would lead to a doubling of an organic reaction
rate when heated from 258C to 358C.

7.7 Consider the decay of free neutrons 1
0n! 0

�1eþ 1
1H with t1=2¼ 10.3 min. How long will it take

for 1% of 1 mol of free neutrons to decay?
7.8 To make sure you understand the mathematical steps, repeat the derivation of the formula for

NB in the A! B! C reaction sequence and calculate the time of the maximum number of
204
83 Bi atoms if 204

84 Po¼ 1000 atoms at t¼ 0 given the half-life of 204
84 Po is 3.53 h and the half-life

of 204
83 Bi is 11.2 h. Calculate the maximum number of 204

83 Bi atoms and the number of 204
84 Po and

204
82 Pb atoms, when 204

83 Bi is at a maximum. Check your results against Figure 7.6.
7.9 Predict the products of the following nuclear reactions based only on integer mass units, ignore

energy balance, DE ¼ (Dm)c2 and emission of gamma rays. Some possibilities are 1
0n,

1
1p,

4
2a ¼ 4

2He
þ, and 0

�1e ¼ 0
�1b.

(a) 24
12Mgþ 1

0n! 24
11Naþ ? (b) 14

7 Nþ 4
2He! 17

8 Oþ ?

(c) 9
4Beþ 4

2He! 12
6 Cþ ? (d) 27

13Alþ 4
2He! 30

15Pþ ?

(e) 14
7 Nþ 1

0n! 11
5 Bþ ? (f) 31

15Pþ 1
0n! 28

13Alþ ?

(g) 24
11Na! 24

12Mgþ ?

REFERENCES

1. Lide, D. R., CRC Handbook of Chemistry and Physics, 2009–2010, 90th Edn., CRC Press, Boca Raton,
FL, p. 11–155.

2. Anonymous physicist, http:==universe-review.ca=F14-nucleus.htm#shell
3. Fromen, N., Marie and Pierre Curie and the discovery of polonium and radium, Nobelprize.org, The

official web site of the Nobel Prize, http:==nobelprize.org=nobel_prizes=physics=articles=curie=
4. Shillady, D. D., A theorem to simplify the derivation of certain rate equations, J. Chem. Educ., 49, 347

(1972).
5. Svirbely, S. J. and J. F. Roth, Carbonyl reactions. I. The kinetics of cyanohydrin formation in aqueous

solution, J. Am. Chem. Soc., 75, 3106 (1953).
6. Moore, J. W. and R. G. Pearson, Kinetics and Mechanism, 3rd Edn., John Wiley and Sons, New York,

1981.
7. Daniels, F. and R. A. Alberty, Physical Chemistry, 3rd Edn., John Wiley and Sons, New York, 1967,

pp. 371–372.
8. Markatou, P., L. Pfefferle, and M. D. Smooke, A computational study of methane-air combustion over

heated catalytic and non-catalytic surfaces, Comb. and Flame, 93, 185 (1993).
9. Bodanis, D., E¼mc2, Berkley Books, New York, 2000, Chap. 9.

10. Sasin, G. and R. Sasin, Theory and Problems in General Chemistry, Drexel Institute of Technology,
1952. Private Communication from R. Sasin, Emeritus Dean, Franklin and Marshall College.

11. Shillady, D., R. Sasin, and M. Hobbs, Chemistry in the news (coursepack for CHEM 112 at Virginia
Commonwealth University) 1998. Available from UpTown Copying Service, Richmond Va.

154 Essentials of Physical Chemistry



8 More Kinetics and Some
Mechanisms

INTRODUCTION

In Chapter 7, we tried to form a good foundation for the study of reaction rates using quantitative
measurements. The topic of kinetics deserves a full-semester course, and the classic text is Kinetics
and Mechanism [1] initially by Frost and Pearson with an updated third edition by Moore and
Pearson. Here, we go beyond the straightforward first- or second-order reactions to a few complicated
multistep reactions. The main theme of this chapter is the use of the ‘‘steady-state approximation,’’
which is a pencil-and-paper method to treat reactions, which include transient intermediate species in
the overall reaction. Today, complex reactions are studied using computer modeling, but the pencil-
and-paper steady-state treatment still has educational value in explaining the principles of transition-
state intermediates (Eyringmodel), chain reactions, and enzyme kinetics. One goal of this chapter is to
learn how to treat reactions according to the Eyring transition-state model to report entropy changes as
well as energy changes in the transition state. Another goal is to appreciate how complicated chain
reactions can be by studying the solvable scheme for the reaction between H2 and Br2. Finally, the
important case of enzyme kinetics is treated by deriving the Michaelis–Menten equation with and
without a competitive inhibitor. These cases and a few others all depend on some form of the steady-
state concept. This admittedly short list of applications was selected as the ‘‘essential’’ topics needed
by students in prehealth science, forensic science, and chemistry. Informal interviews of students
from this course now in industry or graduate studies have helped form this small list over a number
of years. This author always asks graduates of this course, ‘‘Did you use the topics we learned in
physical chemistry?’’ and the list of topics has been adjusted several times. Thus, the topics here are
the result of that selection process.

BEYOND ARRHENIUS TO THE EYRING TRANSITION STATE

Before the invention of copying machines, scientists distributed their work through journal articles
as they do today. But there was no easy way to copy an article then; so when an article appeared, the
author would order a hundred or so ‘‘reprints’’ to be mailed to interested parties upon written
request. There were even special postcards issued by departments to be used by faculty to request
reprints. The reprints themselves were often stapled into very nice covers. As a graduate student
assigned to an inventory task, the author discovered boxes and boxes of nicely bound reprints from
the 15 years of Prof. Henry Eyring’s tenure at Princeton University before he moved to the
University of Utah. Henry Eyring’s name was eventually on over 685 publications, and many
books covering a wide variety of topics in physical chemistry but he is best known for his work on
absolute rate theory. We might add that his lectures were usually very enthusiastic and highly
animated, entertaining as well as full of special insight (Figure 8.1).

Here, we can show Eyring’s genius in reinterpreting the Arrhenius formula. According to
Eyring’s theory, there is in almost every reaction a key ‘‘transition state.’’ Rather than just use the
‘‘extent of reaction’’ in moles to treat the overall reaction turnover, the Eyring treatment imagines
some molecular distortion of the internal coordinates of the combined ‘‘activated complex,’’ which
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then leads to a dissociation to form product(s). It required Eyring’s genius to provide a mathematical
treatment to modify the Arrhenius concept to describe the transition-state process. In what follows,
we may not use exactly the reasoning that Eyring used but still attempt to impart the same clever
process. Schematically, we have

Krate ¼ A e�
E
RTð Þ fromArrhenius

Aþ B �! � [AB]z ! Cþ D

where we have used the ‘‘z’’ symbol to indicate the activated complex. Eyring generated this new
symbol in chemistry to indicate this transient species, which is the key to the rate-determining step
of a reaction. As such, the decay of the activated complex is essentially a first-order process no
matter how it came to be.

Let us carefully consider the ‘‘�! �’’ part of this process. It means that many times, the activated
complex may be formed but then fall apart to go back to the starting materials or sometimes proceed
to the product. This leads to a concept called ‘‘the steady-state approximation,’’ which is a key idea
in several of the examples which follow. The idea is that the reactants (perhaps assisted by solvent
molecules) collide or get near one another long enough to form the activated complex but it may be
an unstable bottleneck in the process. Like any truly dynamic equilibrium, the process rapidly
proceeds in both directions while setting up a steady-state concentration of the activated complex.
Here is a statement of the steady-state idea:

[AB]z 	 1 but [AB]z 6¼ 0, and since it is so small then
d

dt
[AB]z ffi 0 or [AB]z ffi constant.

Eyring’s transition-state theory was developed in the 1930s and strained every computational
capability at that time. Now it is possible to use modern computer programs to study the rearrange-
ment of the reactants along a ‘‘reaction coordinate,’’ which is different from the ‘‘extent of reaction’’

Henry Eyring

February 20, 1901–December 26,  1981

FIGURE 8.1 Henry Eyring developed the theory of the kinetic transition state. Prof. Eyring published more
than 680 research papers and was an enthusiastic lecturer. Perhaps, his most important contribution to
physical chemistry was the formulation of the ‘‘transition-state’’ concept in chemical reactions. (Courtesy of
the University of Utah, see also http:==www.nap.edu=html=biomems=heyring.html).
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used in Chapter 7. Early calculations by Eyring, Gershinowitz, and Sun [2] as well as by
Hirschfelder, Eyring, and Topley [3] explored the simplest reaction of

Hþ H2 ! H2 þ H:

Their results and others were reviewed later in 1976 by D. G. Truhlar [4] who also investigated that
reaction with more modern computer programs only to find that the early work by Eyring et al. was
mainly qualitative. Even so, Eyring had an understanding of the basic concepts but not the means to
do accurate calculations.

The ‘‘reaction coordinate’’ is often a tortuous rearrangement of the atoms into a contorted shape
of the activated complex, but the path to the complex can be ‘‘stepped’’ using computer simulations.
Such a path can be shown for reactions such at H3 mentioned above or the rearrangement of

HOCNþ H! Hþ OCNH or OCNH! HOCN:

Such reactions may have relatively simple ‘‘reaction coordinates’’ in a line (H3) or on some
relatively simple arc of one H in a plane relative to a fixed linear group like (OCN�). However,
in general, reactions of larger polyatomic molecules involve many simultaneous adjustments in the
atom coordinates to reach the transition-state geometry. We choose to apply the Eyring analysis to
the solvolysis data that we have previously treated using the Arrhenius method. That will allow us to
make a comparison of the Arrhenius results with the Eyring results and we want to apply the method
to a typical organic chemistry reaction. We want to incorporate physical chemistry principles into
organic chemistry.

Usually, it takes some increase in energy to rearrange the atoms into the geometry of the
activated complex, and in particular, the shape requires a change in entropy to go from separate
reactant molecules to a (temporarily) more ordered shape as the activated complex. Thus, Eyring’s
first daring step was to propose that the Arrhenius activation energy is really DGz. It may seem that
we should use E* ¼ U ¼ H � PV but Eyring proposed E* ¼ DGz:

E*) DGz ¼ DHz � TDSz:

The first modification Eyring made was to rewrite the Arrhenius equation in terms of DGy as,

k ¼ ( f )e�
DGz
RT ¼ ( f )e�

(DHz�TDSz)
RT

� �
¼ ( f )eþ

DSz
R

	 
� �
e�

DHz
RT

	 

¼ A e�

E
RTð Þ,

So, Eyring implies

( f )eþ
DSz
R

	 
� �
¼ A:

Since the exponential has no units, ‘‘f ’’ has units of inverse time.
As we will see, that yields much more information about the activated complex as well as

satisfies the need to interpret the meaning of the Arrhenius A value. The value and meaning of the
new factor f is some yet-to-be-determined function with inverse time units as befitting a first-order
rate constant. In addition, the usual values of E* and DHz are not very different, so the general idea
of the activation energy remains the same.

The next step is daring genius on the part of Eyring, the comments here can only speculate at how
he arrived at his final formula. He addressed the question of how the activated complex evolved into
the product. We will study molecular vibrations in a later chapter but we can imagine that the
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activated complex is a group of atoms with rubber bands for bonds. In the process which leads to the
product molecule(s), Eyring supposed that the weakest bond in the activated complex would break
and lead to the product(s). There is a point of controversy here. The Eyring transition-state model
assumes that the transition state exists briefly but for a finite time as a unit. More detailed
calculations show that the reaction pathway usually travels through a molecular cluster that has at
least one unstable vibration with an imaginary vibrational frequency due to a ‘‘saddle point’’ in the
energy surface. Other experimental evidence shows that the reaction rate is quantized in steps
according to the positive part of the saddle point with the inverted potential providing the ‘‘pass over
the mountain,’’ so it may be that the Eyring vibrational frequency refers to the quantized energy of
the usual positive potential at the saddle point and not the imaginary frequency part of the saddle
point in the energy surface (Figure 8.2).

Recall that the average energy in the Boltzmann treatment of gases led to the average kinetic
energy of (3=2)RT per mole or (3=2)kBT per molecule, implying (1=2)kBT energy per degree of
freedom in each molecule. Then, consider a vibrating harmonic oscillator as a model for a molecular
vibration. The unusual thing about such an oscillator is that when the vibrational coordinate passes
over the minimum, it has all kinetic energy and no potential energy but when it is at either limit
(turning point) it stops momentarily with no kinetic energy and all potential energy before reversing
direction. Thus, a vibration has both kinetic and potential energy characteristics, and it will be
shown in a later chapter that the energy is proportional to (2=2)kBT since two forms of energy are
present. So, Eyring used the energy of the vibration as Evib ¼ hn ¼ 2kBT=2 ¼ kBT , which is
equivalent to saying

n ¼ kBT h= ,

which has inverse time units.

Saddle point sketch
Z = aX 2 – bY 2

Z
=a

X
2 –

bY
2

X–6

–4

–2

0

2

4

6

8

1.510.50–0.5–1–1.5

FIGURE 8.2 A simple sketch of a saddle point potential in the X–Z plane. In the Y–Z plane as viewed ‘‘from
the side,’’ there is an inverted parabola. As viewed in the plane of the paper here the lower, most shallow,
parabola is in the foreground and as you proceed ‘‘up’’ to the (0, 0, 0) point, the positive parabola becomes more
narrow. The formula for this surface is Z ¼ aX2 � bY2. The Eyring reaction coordinate would proceed up over
the activation energy hill in the Y–Z plane but still be in a parabolic vibrational potential in the X–Z plane.
Assuming the positive parabolic potential leads to vibrational levels (Chapter 12), the frequency of the positive
parabola perpendicular to the reaction coordinate is the ‘‘gate keeper’’ condition to allow passage over the
saddle point. Thus, a vibrational frequency is involved but the analogy of the words ‘‘frequently’’ and
‘‘frequency’’ is mathematical and semantic. Once we substitute hn ¼ kT , only the energy is specified and no
direct information about the key vibrational mode is needed.
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Now, are you ready for the clever step? In your mind mull over the idea that however
‘‘frequently’’ an event occurs that can be described as its ‘‘frequency.’’ Thus, the Eyring method
uses a frequency factor for the occurrence of the reaction event:

f ¼ n ¼ kBT

h
,

which leads to the combined expression for the Eyring rate constant as

Krate ¼ kBT

h

� �
eþ

DSz
R

	 
� �
e�

DHz
RT

	 

:

Now we can apply Eyring’s equation for the rate constant to the solvolysis reaction we are
considering. There are at least two slightly different ways to solve this problem for the values of
DHz and DSz. We expect that DHz will be close in value to the Arrhenius value of E* but we might
not know what to expect for DSz, although it might be negative since the separate reactant species
are combined to form a more ordered transition state. Thus, this system can be solved as a problem
with two equations in two unknowns if we use two values of the experimental rate constant. Let us
try the simplest method first using the method of substitution.

EXAMPLE

Given K¼ 3.19� 10�4=s at 258C and K¼ 2.92� 10�3=s at 458C, we choose data points reasonably
far apart to avoid small irregularities in closely spaced points yet avoid the data at 08C because we
want to use one of the equations to get results for 258C. We then rearrange the natural logarithm of
the equation, so we can cast it into two equations in two unknowns:

R ln
Krateh

kBT

� �
¼ DSz � DHz

T
,

so, we find for the two temperatures:

(8:314) ln
(3:19� 10�4)(6:6260693� 10�34)

(1:3806505� 10�23)(298:15)

� �
¼ �311:8406407 ¼ DSz � DHz

298:15

(8:314) ln
(2:92� 10�3)(6:6260693 � 10�34)

(1:3806505� 10�23)(318:15)

� �
¼ �293:4322159 ¼ DSz � DHz

318:15

� �
(�1)

_______________________________________________________________________________

�18:40842479 ¼ DHz
1

318:15
� 1
298:15

� �

We subtracted the second equation from the first equation to eliminate DSz temporarily and
find DHz.

So, we find that

DHz ¼ �18:40842478
(298:15� 318:15)
(318:15)(298:15)

¼ 87:30786592 kJ=mol ¼ 20:86708077 kcal=mol:

More Kinetics and Some Mechanisms 159



Mathematical note: A common student error can occur at this point if the differences of the
reciprocals are rounded, subtracted, and then the final reciprocal is rounded again:

1
1

308:15

� �
� 1

298:15

� � ffi 1
(3:25� 10�3)� (3:35� 10�3)

ffi 1
�0:10� 10�3

ffi �10, 000

vs.

1
1

308:15

� �
� 1

298:15

� � ¼ (308:15)(298:15)
�10 ¼ �9187:49225,

which is easier and more accurate.
Recall that the E* value from the Arrhenius fit as

E* ¼ 90:390 kJ=mol ¼ 21:604 kcal=mol:

Next, we come to a questionable step with this substitution method. What temperature should we
use to calculate DSz? We choose 258C but only because that is a standard for other values.

Then at 258C we find DSz ¼ �19:00862353 J=deg ¼ �4:543170059 cal=deg.
We have shown the ten significant figures because the numbers vary over many powers of ten

and we want to be careful in finding DSz, which is a small number. This is also one of those tricky
calculations where you separate units when you take the natural logarithm, so that you need to make
sure your units are correct before you rearrange the logarithmic equation. Now let us check the DSz

value at 458C:

�293:4322159 ¼ DSz � 87, 307:86592
318:15

¼ DSz � 274:4235924

so then we find that DSz ¼ �19:00862351 J=deg ¼ �4:54317006 cal=deg:
While it is very comforting to find the same value for DSz at both temperatures as a result of

solving two equations in two unknowns, you might expect that if you do not keep all the places on
your eight or ten significant figure calculator you might get a different answer at different
temperatures. You may have noted with annoyance that we have been using the full number of
significant figure values for the physical constants and this is one time that you do have to be
precise. Having said that, the main thing is that DSz negative. This means that in this reaction, the
change in entropy probably is caused by some sort of solvent ordering around the immanent cation
site. Let us think about that for a moment. The cycloheptane ring is not flat or in a chair form, so
the presence of the added methyl group prevents easy attack by the solvent on the chloro
substituent from one side. The only plausible way the SN1 departure of the Cl� can be encouraged
to leave the ring is by some fairly ordered arrangement of solvent molecules, so the negative DSz

value comes from local ordering of solvent near the chloride ion. Essentially, all reactions have a
negative DSz value in the Eyring model due to the need for a fairly specific geometry in the
activated complex.
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GRAPHICAL–ANALYTICAL METHOD FOR DHz AND DSz

The method above is useful for estimating the Eyring parameters using only two data points in a test
situation (hint), but for research we would want to use all the available data. In Figure 8.3, we plot
the natural logarithms of the rate constants versus [1=T(K)] and get a very good fit to a straight line
just as we did for the Arrhenius plot but here we will analyze the data in a different way (it is the
same plot).

Here, we can develop some useful relationships using the slope of the graph and the fact that
DGz ¼ DHz � TDSz. Let us start with the definition of the Eyring rate constant:

Krate ¼ kBT

h

� �
eþ

DSz
R

� 
e�

DHz
RT

� 
¼ kBT

h

� �
e�

DGz
RT ,

so then

ln (Krate) ¼ ln
kBT

h

� �
þ DSz

R

� �
� DHz

RT

� �
:

To compare with the slope of the graph, we need

d ln (Krate)

d
1
T

� � ¼
kB
h

� �
dT

d 1
T

	 

kBT

h

� � þ 0� DHz

R

� �
:

Aside we also need

dT

d
1
T

� � ¼ d

d
1
T

� � (T) ¼ d

d
1
T

� � 1
1
T

� �
2
664

3
775 ¼ d

d
1
T

� � 1
T

� ��1
¼ (�1) 1

T

� ��2
¼ �T2:

SN1 solvolysis kinetics
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FIGURE 8.3 Plot of ln(K) versus (1=T) for the solvolysis reaction.
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So

d ln (Krate)

d
1
T

� � ¼ �T2

T

� �
þ 0� DHz

R

� �

and

d ln (Krate)

d
1
T

� �
2
664

3
775þ T

8>><
>>:

9>>=
>>;(�R) ¼ DHz:

Next, we see that

DGz ¼ �RT ln
Krateh

kBT

� �
¼ DHz � TDSz and DSz ¼ �(DG

z � DHz)
T

¼ DHz � DGz

T
:

Thus,

DSz ¼ DHz

T

� �
� DGz

T

� �
and

DGz

T
¼ �R ln

Krateh

kBT

� �
:

So finally we have,

DSz(T) ¼ R ln
Krateh

kBT

� �
�

d ln (K(rate))

d 1
Tð Þ

� �
T

� 1

2
664

3
775 ¼ R ln

Krateh

kBT

� �
� slope

T

� �
� 1

� �
,

DHz(T) ¼ (�R) d ln (Krate)

d
1
T

� �
0
BB@

1
CCAþ T

2
664

3
775 ¼ (�R)[(slope)þ T],

and

DGz(T) ¼ �RT ln
Krateh

kBT

� �
:

Now, we see that all three activation values depend on the temperature. Let us evaluate them and
compare with the two-point values obtained above. From the graph, we see the slope of
d ln (Krate)

d 1
T

	 
 ¼ �10, 864 ¼ slope, so we can insert this number into the formulas. The slope can

also be obtained from two known rate values if careful arithmetic is used for
D ln K

D(1=T)
, as here

ln (9:86� 10�4)� ln (3:19� 10�4)
1

308:15

� �
� 1

298:15

� � ¼ ln
9:86� 10�4

3:19� 10�4

� �
(308:15)(298:15)

�10
� �

¼ �10,367:77,
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but it is better to use the slope from a graph fitted to several points as shown above (�10,864) or use
two rates far apart in temperature. The best two-point slope would be over the full range of the data
that spans from 08C to 458C here, and we would obtain a slope from those two points as

ln (2:92� 10�3)� ln (1:06� 10�5)
1

318:15

� �
� 1

273:15

� � ¼ ln
2:93� 10�3

1:06� 10�5

� �
(318:15)(273:15)

�45
� �

¼ �10,856:85:

We will use the slope of the graph here (�10,864) since it is available from a least-squares fit:

DHz (25�C) ¼ (�R)[(slope)þ T] ¼ (�8:314 J=mol
�
K)[�10,864þ 298:15],

so we find

DHz ¼ þ87:844 kJ=mol ¼ þ20:995 kcal=mol,

DSz (T) ¼ R ln
Krateh

kBT

� �
� slope

T

� �
� 1

� �
,

DSz (25�C) ¼ (8:314 J=mol
�
K) ln

(3:19� 10�4)(6:6260693� 10�34)
(1:3806505 � 10�23)(298:15)

� �
� �10,864

298:15

� �
� 1

� �
,

DSz (25�C) ¼ �17:208822 J=degmol ¼ �4:1130072 cal=degmol:

We can calculate DGy in two ways. First,

DGz (25�C) ¼ �(8:314 J=mol
�
K)(298:15�K) ln

(3:19� 10�4)(6:6260693� 10�34)
(1:3806505� 10�23)(298:15)

� �

or

DGz (25�C) ¼ þ92:975 kJ=mol:

And so finally, DGz ¼ DHz � TDSz ¼ þ87, 844� (298:15)(�17:208822) ¼ þ92:975 kJ=mol.
While it is comforting that we get the same answer for DGz in two different ways and that is a

check on the calculations for DHz and DSz, the opportunities for error in these calculations are
many. Assuming you might be tested on these equations (hint), it would be best to ‘‘practice’’ doing
these calculations several times when you are rested with a clear head.

SUMMARY OF GRAPHICAL METHOD RESULTS AT T¼ 258C

DHz (25�C) ¼ þ87:844 kJ=mol ¼ þ20:995 kcal=mol,

DSz (25�C) ¼ �17:208822 J=8mol ¼ �4:1130072 cal=8mol, and

DGz (25�C) ¼ þ92:975 kJ=mol ¼ þ22:222 kcal=mol:

One conclusion from this study of the simple form of Eyring’s absolute reaction rate theory is that
we can obtain DHz and DSz using two equations in two unknowns over a limited temperature range.
However, the more general analytical formulas show that the values are definitely dependent on the
temperature. Considering the many ways to make errors in these calculations, it might occur to a
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person using these equations for research that the appropriate constants could be stored in a simple
computer program in BASIC or JAVA and all that needs to be given to the program as input data is
the desired temperature and the slope of the ln (K) plot.

FURTHER CONSIDERATION OF SN1 SOLVOLYSIS

The problem from Brown and Borkowski [5] we have been considering above is rich in possible
details for further study. At this point, we only want to make two comments. First, we want to
expand your understanding of the activation barrier. In Freshman texts and even some organic
chemistry texts, the activation energy is usually presented in the Arrhenius form with a single
energy barrier and an exothermal release of DHrxn.

In Figure 8.4, we show at least three possible reactions as a result of the initial (rate-determining
step) formation of the SN1 carbocation. The point is that beginning students often talk about ‘‘the’’
reaction product as if there is only one product. Particularly, in organic chemistry and to a lesser
extent in general, there are often several product paths away from the activated complex. However,
it may well be that the same activation energy barrier applies to initial transition-state complex.
It should be noted that in organic chemistry, the yields of desired products are usually less than
100% due to ‘‘side reactions.’’ Here, the solvent is 80% ethanol and 20% water, perhaps to aid in
solubility of the aliphatic precursor, so we expect the major product will be a result of the polar
water molecules reacting with the carbocation but there is a lot of ethanol, so we should expect some
formation of the ethyl ether product as well. Then, a third product is possible from elimination of a
H from the cation to form an internal double bond. That serves to remind us that while the overall
rate-determining step is formation of the cation, there are several optional reaction pathways for the
cation in such a mixed solvent. Now that we know about the importance of DSz, we should have a
more sophisticated idea of what happens on the molecular scale. In later work, Eyring extended the
details of the simple scheme we have shown here to multiple pathways and detailed treatment of the
energy levels of the transition state, but we have only shown the key concepts here.

The second point is that there is a secondary time dependence built into a lot of kinetic pathways.
This leads to the very useful concept of the ‘‘rate-determining step’’ (RDS) in which the slowest step
in a complicated sequence of many steps controls the overall rate of a sequence. Although we have
only shown a few detailed examples in Chapter 7, the good news is that we usually only need to
examine the kinetics of the slowest time-bottleneck in a complicated sequence and then that step can
usually be treated with a first or second order analysis. In the case considered above, nothing
happens until the carbocation is formed and then what happens later is fast so the Eyring transition-
state analysis is appropriate to the overall rate.

OEt

OH

CH3

CH3

CH3

80% EtOH:H2O

CH3

CI

CH3

FIGURE 8.4 Side reactions in solvolysis. (Drawings courtesy of Prof. Suzanne Ruder, Virginia Common-
wealth University.)
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CHAIN REACTIONS AND THE STEADY STATE

So far here and in Chapter 7, we have considered straightforward analysis of reaction rates measured
by ‘‘the extent of the reaction’’ based on mole turnover rate, but there are many reactions which
follow more complicated rate equations. The classic problem of this more complicated type was first
treated by Bodenstein and Lind [6] and later by Christiansen [7], Herzfeld [8], and Polanyi [9]. The
first experimental data for the reaction of hydrogen and bromine were fitted accurately to an
expression, which is far from what might be expected:

H2 þ Br2 ! 2HBr;
d[HBr]

dt
¼ k[H2] [Br2]

1
2

1þ k0[HBr]
[Br2]

� � :

The value of k0 was 0.10, and the overall rate constant was fitted to an Arrhenius plot with a value
for E* of 175 kJ=mol. This mystery was successfully explained later by Herzfeld and by Polanyi as
due to a series of intermediate reactions. While this overall reaction is largely due to the ease with
which H2 and Br2 can be broken apart to free radical atomic species, it is now known that there are
many similar reactions which can be treated by the same mathematical approximation called ‘‘the
steady-state approximation’’:

1. Specifically, write down the postulated intermediate reactions with their rate constants
and assign an identifying label to each reaction.

2. Identify transient, short-lived species, typically free radicals.
3. Write the equations for creation and annihilation of the transient species and set the time

derivative to zero to approximate the idea that the concentration of these transient species
reaches some steady value, but it is constant so the time derivative is zero.

4. Use the steady-state equations to solve for the expressions of the transient species.
5. Perform ‘‘clever algebra’’ to consolidate and simplify the steady-state equations in terms of

the concentrations of the reactants and products. In some cases, one or more of the steady-
state equations may lead nowhere, which probably means that you postulated a nonexistent
reaction or wrote an incomplete description of the creation and annihilation of that
transient.

6. Substitute the steady-state concentrations into the basic rate reaction either for disappear-
ance of reactants or for appearance of product(s).

Before we show examples of this procedure, it may be worth mentioning that this approach is a very
good ‘‘pencil-and-paper’’ way to test postulated mechanisms. Even today, with sophisticated spec-
troscopic equipment and the latest quantum chemistry computer programs, one should try to test a
mechanism for a research problem with pencil, paper, and the steady-state method; it is that useful.

STEADY-STATE EXAMPLE NO. 1: H2þBr2! 2HBr

Now we are ready to treat the Bodenstein–Lind rate equation with the steady-state method. We write
the individual steps with roman numbers for better manipulation:

(I) Br2 ����!k1 2Br.

(II) Br.þ H2 ����!k2
HBrþ H.

(III) H.þ Br2 ����!k3
HBrþ Br.

(IV) H.þ HBr ����!k4
H2 þ Br.

(V) Br.þ Br. ����!k5
Br2
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(Add the equations.)

0 ffi d[Br.]

dt
¼ k1[Br2]� k2[Br.] [H2]þ k3[H.] [Br2]þ k4[H.] [HBr]� k5[Br.]

2

0 ffi d[H.]

dt
¼ k2[Br.] [H2]� k3[H.] [Br2]� k4[H.] [HBr]

_______________________________________________________________________________

0 ffi k1[Br2]� k5[Br.]
2

This example is very good for teaching because it illustrates the method but has an easy solution
because of a fortuitous substitution. So, substitute the steady-state equation for [H.] into the
equation for the [Br.] and note the cancelation due to k2[Br.][H2]¼ k3[H.][Br2]þ k4[H.][HBr].
Thus we find 0 ffi k1[Br2]� k5[Br.]

2, which can be solved for

[Br.]ss ffi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1
k5

� �
[Br2]

s
:

Now substitute the expression for [Br.]ss into the [H.] equation to find

k2[H2]
k1
k5

� �1
2

[Br2]
1
2 ¼ (k3[Br2]þ k4[HBr])[H.]ss,

and we can solve for [H.]ss as follows:

[H.]ss ¼
k1
k5

� �1
2

k2[H2] [Br2]
1
2

(k3[Br2]þ k4[HBr])
:

Now we are ready to write the overall rate equation as the appearance of HBr, and we substitute the
steady-state concentrations we have found.

d[HBr]

dt
¼ k2[Br.]ss[H2]þ k3[H.]ss[Br2]� k4[H.]ss[HBr]:

(The next step is amazing!)

d[HBr]

dt
¼ k2[H2]

k1
k5

� �1
2

[Br2]
1
2

 !
þ

k1
k5

� �1
2

k2[H2] [Br2]
1
2(k3[Br2]� k4[HBr])

(k3[Br2]þ k4[HBr])

2
6664

3
7775:

Put this expression over a common denominator and the numerator terms in k4 cancel:

d[HBr]

dt
¼

2k2k3
k1
k5

� �1
2

[Br2]
3
2[H2]

(k3[Br2]þ k4[HBr])
:
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Now divide the numerator and denominator by (k3[Br2]), and we obtain Bodenstein–Lind formula:

d[HBr]

dt
¼

2k2
k1
k5

� �1
2

[H2] [Br2]
1
2

1þ k4
k3

� �
[HBr]

[Br2]

� �� � :

While this is an amazing explanation of the Bodenstein–Lind rate equation, it is not an isolated
incident. There are many other complex reactions, which can be solved with this method.

STEADY-STATE EXAMPLE NO. 2: THERMAL CRACKING OF ACETALDEHYDE [10]

This next example is not quite perfect because it gives a solution with a leftover radical unaccounted
for. However, it is shown here as an example of what to expect in research. Suppose we want to
understand the thermal decomposition of acetaldehyde. Rice and Herzfeld [10] studied the thermal
‘‘cracking’’ of hydrocarbons as part of a very important study related to petroleum processing. Here,
we present the thermal cracking of acetaldehyde. Consider the following scheme for the thermal
decomposition reaction [11]:

CH3CHO ����!D
CH4 þ COþ CH3CH3:

(I) CH3CHO ����!k1
CH3.þ .CHO E* ¼ 76:0 kcal=mol

(II) CH3.þ CH3CHO ����!k2
CH4 þ .CH2CHO E* ¼ 10:0 kcal=mol

(III) .CH2CHO ����!k3
COþ .CH3 E* ¼ 18:0 kcal=mol

(IV) .CH3 þ .CH3 ����!k4
CH3CH3 E* ¼ 0 kcal=mol

0 ffi d[CH3
.]

dt
¼ k1[CH3CHO]� k2[.CH3] [CH3CHO]þ k3[.CH2CHO]� k4[.CH3]

2

0 ffi d[.CH2CHO]

dt
¼ k2[.CH3] [CH3CHO]� k3[.CH2CHO]

0 ffi d[.CHO]

dt
¼ k1[CH3CHO]

The third steady-state species (.CHO) is apparently constant and only depends on the amount of
acetaldehyde, so that is a dead end as far as the steady-state substitution process goes. There may be
some other steps leading to H2CO but here .CHO does not contribute to the production of CH4.
However, from the second equation, we find that

[.CH2CHO]ss ¼ k2
k3

� �
[.CH3] [CH3CHO]:

Then from the first steady-state equation, we have by substitution of the [.CH2CHO]ss expression:

k1[CH3CHO]� k2[.CH3] [CH3CHO]þ k3k2
k3

� �
[.CH3] [CH3CHO]� k4[.CH3]

2 ffi 0,

More Kinetics and Some Mechanisms 167



and the middle terms cancel leaving

[.CH3]ss ¼ k1
k4

� �1
2

[CH3CHO]
1
2

for the steady-state concentration of the methyl radical. As usual we have to choose something
which we can measure to follow the ‘‘extent of the reaction’’ and so, we choose the appearance of
methane, CH4. Then the rate is

d[CH4]

dt
¼ k2[.CH3] [CH3CHO] ¼ k1

k4

� �1
2

k2[CH3CHO]
3
2,

with perhaps unexpected dependence on the acetaldehyde concentration to the (3=2) power. The
original paper by Rice and Herzfeld gives approximate E* values for the various reactions in the
overall scheme (in kcal of course, since the paper was written in 1934). We can estimate the overall
activation energy from the final rate expression by combining the Arrhenius forms of the several rate
constants:

k2
k1
k4

� �1
2

¼ A2
A1

A4

� �1
2

e�
10:0þ(76:0þ0)2½ 
kcal

RT ¼ A2
A1

A4

� �1
2

e�
48, 000 cal

RTð Þ ¼ A0 e�
48, 000 cal

RTð Þ:

Thus, even though we are not given the values of the A constants, we can estimate the E* energy.
There are many other such free radical mechanisms in thermal cracking of hydrocarbons and these
have been in use in designing petroleum refining operations for many years.

STEADY-STATE EXAMPLE NO. 3: THE LINDEMANN MECHANISM

An important use of the steady-state concept is the application to nominal unimolecular reactions
that have high activation energies. This was first formulated by Frederick A. Lindemann (1886–
1957), an English physicist. Some examples are isomerizations, such as CH3NC ! CH3CN or
decompositions like CH3CH2Cl ! CH2¼CH2þHCl. For simplicity, let us consider a unimole-
cular isomerization, such as what seems to be A! B in the gas phase. Having specified that this is a
gas-phase reaction, we need to remember what we learned about the kinetic theory of gases and also
Dalton’s law of partial pressures. From Dalton’s law, consider that there might be another gas
present, M, but at the end of this discussion we will be free to let M¼A as well. Then, we have

activation by collisions. Remember that �v ¼
ffiffiffiffiffiffiffiffiffi
8RT
pM

r
, but that is only the average velocity. The

Boltzmann distribution shows there are some molecules with much higher velocities. Collisions
with other higher energy molecules can transfer energy to the A molecules and raise their energy
above the activation energy to react to form A*.

AþM
k1Ð
k�1

A*þM and then A* ����!k2
B but we can consider A* as a transient steady-state

intermediate, so

d[A*]
dt
¼ k1[A] [M]� k�1[A*] [M]� k2[A*] ffi 0:
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Wecan solve this for [A*] as [A*] ¼ k1[M] [A]

k2 þ k�1[M]
and then

d[B]

dt
¼ k2[A*] ¼ k2k1[M] [A]

k2 þ k�1[M]
¼ rate.

Now suppose that [M]!1 meaning that there is some other gas present that is at a much greater

concentration than [A]. In that case, we see that
d[B]

dt
! k2k1

k2

� �
[A] ¼ k1[A], which is what we

thought initially. This can happen whether M is some other gas in great abundance or whether
M¼A at a high concentration (pressure) of A itself. Now consider that the whole system is a low

pressure. Then we have
d[B]

dt
¼ k1k2[M]

k2 þ k�1[M]

� �
[A] ¼ kobs[A] as the general solution, but what if

there is no [M] and the only other gas for collisions is when [M] ¼ [A]? Thus, at relatively low
pressure and only A present we have:

d[B]

dt
¼ k1k2[A]2

k2 þ k�1[A]
’ k1[A]

2,

assuming k�1 	 k2. Thus, the reaction will appear to be first order at high pressure and second order
at low pressure. We also can see that adding an inert gas such as He or Ar (not totally inert) could be
used to change the order of such a reaction depending on the pressure of the inert gas. The mathematics
of the steady-state treatment is easy here but the thought process of this type of problem involves
careful reading of the gas pressures and numerical values of the individual rate constants.

ENZYME KINETICS

Although enzymology is a specialty field in biochemical=pharmaceutical chemistry, it is so important
to all health sciences that we need to include a basic part of it in our list of ‘‘essential’’ topics in physical
chemistry. Enzymes are very special in many ways. First, they are usually large linear polypeptides
with specific sequences of amino acid ‘‘residues’’ which have the amazing ability to coil up in solution
from a single strand into a globular shapewith a special ‘‘active site’’ and remain water soluble. Think
back to experiments in an organic chemistry laboratory course, how many organic reactions were
carried out in water? Then again consider that the human body is approximately 70% water and that
planet Earth is about 70% covered by water. Water is a polar solvent and most organic compounds are
not very soluble in water.We should ponder how nature enables complicated organic reactions in an
aqueous medium. The answer is that enzymes are little floating organic laboratories which can carry
out highly specific (often stereospecific) organic reactions while in an aqueous medium. This situation
is accomplished by wrapping a special catalytic arrangement of the side chains inside the polypeptide
with a hydrophobic shell, a concept formulated by Prof. Walter Kauzmann in Figure 8.5. A crude
analogy would be an oil drop in water where the oil drop includes a special active site in the interior.
Considering that enzymes have to carry around their laboratory building in water, they turn out to be
amazingly efficient and often the turnover rate for an enzymatic reaction is many thousand times faster
than the reaction would be if the reactants were refluxed in an organic chemistry pot. Finally, enzymes
can often do organic reactions in a single step which would require many, many steps using organic
synthesis techniques. One of the reasons for successful specificity and efficiency of enzymes is that
often the pocket of the active site gently assists the ‘‘substrate’’ molecule into the conformation of the
activated complex for that reaction. Enzymatic oxidation–reduction reactions often have metal atoms
in the active site, although not all enzymes have metal atoms. The fact that Copper can be eitherþ1 or
þ2 and the small difference in the energy of Cu as (Ar)3d94s2 or Cu as (Ar)4s13d10 makes it ideal for
oxidation–reduction reactions. The Cu–O–Cu active site in catechol oxidase is special in an electro-
chemical sense as well as having some geometric specificity (Figure 8.6).

Previous examples have introduced the very useful concept of the ‘‘steady state’’ and that applies
here as well. In addition, the rapid forward and backward reactions in an equilibrium still apply for
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enzyme reactions in the sense that a substrate molecule may enter an active site but wander out
before a reaction occurs. Since enzymes are very efficient, the in-out part of the equilibrium may
favor fewer unreacted exits, but the treatment includes that possibility.

Enzymes can be very difficult to isolate and purify but they are usually so efficient that one can
purchase milligram quantities of purified enzyme from biochemical companies for several hundred
dollars per milligram but then only use microgram quantities for a given experiment. It is important
to know that only a small amount of enzyme is necessary to carry out reactions. This leads to a quite
different type of laboratory requiring refrigerator storage and even a large walk-in room, which is
refrigerated to isolate enzymes and carry out reaction studies.

We have left this discussion until after description of the Eyring transition-state theory because
there are many similarities. The main difference is that usually the active site pocket of an enzyme
has two main geometrical attributes. First, there is the ‘‘lock and key’’ analogy, which notes that
usually the entrance to the active site is stereospecific to a particular substrate molecule or a class
of molecules. We see that in Figure 8.6 with catechol oxidase for substituted phenols. Much has
been made of the lock-and-key concept in pharmaceutical research since that is how substrate
specificity is achieved and many medicinal drug molecules are designed with a specific shape and

FIGURE 8.5 Prof. Walter J. Kauzmann (1916–2009) was an American physical chemist whose research
spanned thermodynamics (Kauzmann’s paradox of supercooled liquids), quantum chemistry (1957 text), and
biochemistry (the hydrophobic effect in enzymes). He was the Chair of Chemistry at Princeton University from
1964 to 1968 and the Chair of the Department of Biochemistry from 1980 to 1981. He is probably best known
for his work on the thermodynamics and optical activity of proteins. (From Princeton University Department of
Chemistry. With permission.)
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with charged ion sites in specific regions. However, getting the key into the lock is only the first
step, it is necessary to turn the key. Thus, a second geometrical feature of the active site is that it
often encourages the conformation of the substrate molecule to assume the geometry of the
transition state. No wonder enzyme reactions can be both stereospecific and efficient. We see that
with catechol oxidase, although the specificity is lower than with some other enzymes but it is tuned
to oxidize an o-diphenol. This particular enzyme was isolated from grapes but catechol oxidase is
common in many fruits and vegetables. It is apparently part of a protective mechanism in that
whenever there is a physical injury to an apple, banana, or potato, catechol is released and the
enzyme converts it to benzoquinone, which is an antiseptic to bacteria and fungal infections. Later
the benzoquinone reacts further with oxygen to produce black spots. One the one hand, the plant is
protecting itself but on the other hand most people consider blackened fruit as spoiled, so two
strategies are used to keep the fruit from blackening: cooling to slow the reaction and packing in
a nitrogen atmosphere to keep oxygen away from the produce.

BASIC MICHAELIS–MENTEN EQUATION

The treatment of enzyme kinetics was given by Leonor Michaelis (1875–1940), a German bio-
chemist and physician, and Maud Menten (1879–1960), a Canadian biochemist and physician, and
is called the Michaelis–Menten [12] equation today.

The model for the reaction is Eþ S
k1Ð
k�1

(E � S) ����!k2
Pþ E (E¼ enzyme, S¼ substrate, and

P¼ product), but a special consideration is given to the concentration of the free enzyme [Efree]

compared to the total amount of the enzyme in the solution [Etot], so that we have
[Efree] ¼ [Etot]� (E � S). We proceed to the rate step, which is susceptible to the steady-state
analysis:

d[E � S]
dt

¼ k1[Efree] [S]� k�1[E � S]� k2[E � S] ffi 0,

balancing creation=loss of the (E � S) species.

FIGURE 8.6 A drawing of o-diphenol oxidase where the polypeptide chain is shown as a heavy strand. The
active site of the enzyme is shielded but accessible in the center with a Cu–O–Cu moiety shown as large
spheres. (From the Brookhaven Protein Data Bank as 2P3X.pdb. Thanks to Prof. Glen E. Kellogg of the
Virginia Commonwealth University, Medical College of Virginia.)
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So k1([Etot]� [E � S])[S] ¼ [E � S](k�1 þ k2) and so k1[Etot] [S] ¼ [E � S]{(k�1 þ k2)þ k1[S]}.
Now we can solve for the steady-state concentration:

[E � S]ss ¼ k1[Etot] [S]

(k�1 þ k2)þ k1[S]
:

Rate ¼ d[P]

dt
¼ V ¼ k2[E � S]ss ¼ k2k1[Etot] [S]

(k�1 þ k2)þ k1[S]
:

This expression can be simplified by dividing the numerator and denominator by k1 to obtain a new
combined constant:

k�1 þ k2
k1

� �
� KM,

V ¼ k2k1[Etot] [S]

(k�1 þ k2)þ k1[S]
¼ k2[Etot] [S]

k�1 þ k2
k1

� �
þ [S]

¼ k2[Etot] [S]

KM þ [S]
¼ Vmax[S]

KM þ [S]
¼ V :

Next, we have the clever step of inverting the equation
1
V
¼ KM

Vmax

� �
1
[S]

� �
þ 1

Vmax

� �
. Inverting

the whole equation puts it in the form of y ¼ mxþ b to fit a straight line. Without inverting the
equation, you can see that when [S] is low the rate increases rapidly with substrate but as [S]

increases in the denominator as well as the numerator, the rate will reach a plateau at some value we
can call Vmax. This plateau can be reached by adding a very large amount of substrate:

Vmax ¼ lim
[S]!1

V ¼ k2[Etot]:

We can use this to provide meaning for KM. Consider the rate when V is (Vmax=2).
1

(Vmax=2)
¼ 2

Vmax

¼ KM

Vmax

� �
1

[S1=2]

� �
þ 1

Vmax

� �
or 2 ¼ KM

[S1=2]

� �
þ 1 by canceling Vmax.

Thus, we can finally say that KM ¼ [S1=2], that is the substrate concentration when V ¼ Vmax=2.
In words, ‘‘KM is the substrate concentration when the rate is half the maximum rate.’’

EXAMPLE: A HYPOTHETICAL ENZYME

Let us consider synthetic data for ‘‘Enzyme-X’’ which is similar to the actual data for pancreatic
carboxypeptidase [13,14] (note the name of an enzyme ends in ‘‘-ase’’). We use synthetic data, so
we can insert key points into an Excel plot. It should be clear that at low substrate concentration, the
rate increases rapidly as more substrate is added. However, in spite of the efficiency of an enzyme,
there is only a small amount in solution. Thus, the rate approaches a limit as more and more
substrate saturates the active sites of the enzymes in solution and eventually reaches a limit, Vmax as
shown in Figure 8.7. Special points have been inserted into the data so that you can see the limiting
rate of 0.090 mM=s and see that at half that rate, 0.045 mM=s, the substrate concentration is 0.0065mM
which is the value of KM. The value of KM is not easily seen on the first plot but when we show the
double reciprocal plot in Figure 8.8 we get a more precise value of KM value in two ways. There are
really two intercepts in the double-reciprocal plot, which apparently was the innovation of Lineweaver
and Burk [15] in 1934.We can use the third and fourth columns of Table 8.1 to make such a plot for our
‘‘Enzyme-X’’ data in Figure 8.8.
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We have added two calculated points after the best line was fitted to the data, so that the x- and
y-intercepts show up as points on the graph using the Michaelis–Menten equation:

1
V
¼ KM

Vmax

� �
1
[S]

� �
þ 1

Vmax

� �
,

so, from the graph we see that

KM

Vmax

� �
¼ 0:0722

and

1
Vmax

� �
¼ 11:11,

[S], mol/L

Ra
te

, m
M

/s

0.120.10.080.060.040.020
0
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0.09

0.1

FIGURE 8.7 Typical data for enzyme kinetics, similar to data for pancreatic carboxypeptidase (see Ref. [13])
using synthetic values to show Vmax¼ 0.090 mM=s and KM¼ 6.50 mM at [S]¼ 0.045 mM.
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FIGURE 8.8 Double reciprocal plot for Enzyme-X data similar to pancreatic carboxypeptidase (see Ref. [13]).
The x¼ 0 and y¼ 0 points have been inserted into the data to show the intercepts (0,1=Vmax) and (�1=KM,0).
The slope¼ (KM=Vmax)¼ 0.0722mol=s and the y-intercept¼ 1=11.11 s=mM ¼ (1=Vmax), soVmax¼ 0.090mM=s
and KM¼ 6.5 mM.
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so KM ¼ (0:0722)=(11:11) ¼ 0:00649865 ffi 0:0065mM and Vmax ¼ 1=11:11 ¼ 0:090009 ffi
0:090mM=s. So, with the Lineweaver–Burk plot, we see that when y¼ 0, we have
x¼�153.85¼�1=KM, which checks the value of KM as 0.0065 mM. Then, when x¼ 0,
y ¼ 1=Vmax and Vmax¼ 0.090 mM=s again.

Thus, we see that enzyme kinetics uses the steady-state approximation and the double-reciprocal
plot to provide a robust approach to study the reaction and KM is a useful concept that tells us what
concentration of the substrate will give one half of the maximum rate.

MICHAELIS–MENTEN WITH COMPETITIVE INHIBITOR

There are actually several other cases of enzyme reactions, but keeping to our list of ‘‘essential’’
physical chemistry we will only treat the important case of a competitive inhibitor of the normal
substrate since this is at the heart of much pharmaceutical research. At the simplest level, one can
use the ‘‘lock-and-key’’ concept to imagine that there are other molecules slightly different from the
natural substrate molecule. Suppose the natural substrate has a methyl group exposed in a certain
place. There could be a similar molecule that is the same but without the methyl group and it can
probably fit into the same active site cavity but might not do the same reaction. Another molecule
might be the same as the natural substrate but have an ammonium ion instead of the natural methyl
group. The ammonium group will probably fit in the same space as the methyl group but the charge
on the ammonium ion may severely change the chemistry in the active site. Other possibilities exist
but the point is that there are other molecules, which can compete with the natural substrate but
which do not do the same chemistry.

The concept of the active site in a floating, mobile, water-soluble enzyme can be extended to
biological ‘‘receptors’’ that are fixed in cell membranes and a similar analysis can be applied to
competitors to natural substrates. This means that it is important to have an analysis procedure for
competitive inhibition. Consider the Michaelis–Menten equations with an inhibitor ‘‘I’’:

Eþ S
k1! 
k�1

(E � S) ����!k2
Eþ P

TABLE 8.1
Typical Data for ‘‘Enzyme-X’’

S, mM=L Rate, V, mM=s 1=[S], L=mol (1=V), s=mM

0.5 0.0064 2000.0 155.56

1.0 0.0136 1000.0 73.33

2.0 0.0212 500.0 47.22

5.0 0.0391 200.0 25.56

6.5a 0.0450a 153.85a 22.22a

10.0 0.0546 100.0 18.33

15.0 0.0628 66.7 15.93

20.0 0.0679 50.0 14.72

25.0 0.0714 40.0 14.00

35.0 0.0759 28.57 13.17

50.0 0.0797 20.0 12.55

100.0a 0.0900a 10.0a 11.11a

a Points added by calculation to show the Vmax limit and
KM¼ 0.0065 mM.
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and

Eþ I

KI

! (E � I); KI ¼ [E � I]
[Efree] [I]

[Efree] ¼ [Etot]� [E � S]� [E � I] ¼ [Etot]� [E � S]� KI[Efree] [I],

so we rearrange to find [Efree]:

[Efree] ¼ ([Etot]� [E � S])
(1þ KI[I])

:

Now we proceed with the familiar Michaelis–Menten derivation for the usual steady-state
approximation:

d[E � S]
dt

¼ k1[Efree] [S]� k�1[E � S]� k2[E � S] ffi 0:

Insert the formula for [Efree] into the steady state, so

k1[S]([Etot]� [E � S])
(1þ KI[I])

¼ (k�1 þ k2)[E � S]:
But we need to isolate [E � S] and you should follow this step with pencil and paper:

k1[S] [Etot]

(1þ KI[I])
¼ [E � S]k1[S]

(1þ KI[I])
þ (k�1 þ k2)[E � S] ¼ [E � S] k1[S]þ (1þ KI[I])(k�1 þ k2)

(1þ KI[I])

� �
:

Cancel the (1þ KI[I]) denominator on both sides of the equation and we obtain

[E � S]ss ¼ k1[S] [Etot]

(1þ KI[I])(k�1 þ k2)þ k1[S]
:

As before V ¼ k2[E � S]ss and Vmax ¼ k2[Etot], and these values would be measured using the
Michaelis–Menten measurements without I. Thus, we have

V ¼ k2k1[S] [Etot]

(1þ KI[I])(k�1 þ k2)þ k1[S]
,

now use k1 ¼ 1
(1 k1)=

and we see KM ¼ (k�1 þ k2)

k1
appear.

V ¼ k2[S] [Etot]

(1þ KI[I])KM þ [S]
¼ Vmax[S]

(1þ KI[I])KM þ [S]
,
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so,

1
V

� �
¼ (1þ KI[I])KM

Vmax

� �
1
[S]

� �
þ 1

Vmax

� �
:

This is just like the Michaelis–Menten equation with a modified slope but the same y-intercept.

Note that when
1
[S]

� �
¼ 0, we have the same y-intercept as before,

1
V

� �
¼ 1

Vmax

� �
. However,

when
1
V

� �
¼ 0, the x-intercept changes if KI[I] > 0. Therefore, one can add a suspected inhibitor

molecule to the enzyme solution and carry out the rate measurement and do the Michaelis–Menten
analysis. If the slope of the Lineweaver–Burk line changes, that is proof of competitive inhibition by

species ‘‘I’’ since
(1þ KI[I])KM

Vmax

� �
¼ slope.

An excellent example of the effect of inhibition is given on the Internet [16] at http:==users.rcn.
com=jkimball.ma.ultranet=BiologyPages=E=EnzymeKinetics.html with data for o-diphenol oxidase
shown in Figures 8.9–8.11. The enzyme is prepared from the supernatant liquid of homogenized
apples. This enzyme is responsible for the fact that apples turn brown when the skin is removed.
A Lineweaver–Burk plot is easily obtained using a spectrometer to measure the reaction as an
increase in optical density at 540 nm with time. A similar set of data can be obtained with the
presence of para-hydroxybenzoic acid which is shown to be an inhibitor and a third set of data is
obtained showing the effect of phenylthiourea as a noncompetitive inhibitor. There are many other
useful descriptions of enzyme kinetics on the Internet. Our function here is to provide the algebraic
derivation which is not often given.

MICHAELIS–MENTEN SUMMARY

Enzymes are very efficient with high reaction rates when the substrate concentration is low but they
can become saturated when the substrate concentration is high [16]. Competitive inhibition results

No inhibitor

Competitive
inhibition

Noncompetitive
inhibition

[S]

VI

1/2 Vmax

1/2 Vmax

KM KM

Vmax

Vmax

FIGURE 8.9 Types of inhibition in terms of substrate concentration. (From Kimball, J., Enzyme kinetics,
http:==users.rcn.com=jkimball.ma.ultranet=BiologyPages=E=EnzymeKinetics.html. With permission.)
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in blockage of the limited enzyme sites, so it takes a higher substrate concentration to reach Vmax

and so KM is higher in the presence of a competitive inhibitor. A non-competitive inhibitor may bind
to the enzyme at some other place than directly in the active site but still cause a loss of efficiency by
the enzyme. The analysis of a noncompetitive inhibitor requires more knowledge of the actual
binding mechanism and is less amenable to easy algebraic treatment. A noncompetitive inhibitor
may actually change the enzyme in some small way that reduces the efficiency of the enzyme.
A third type of inhibitor is a ‘‘suicide substrate’’ that enters the active site and reacts chemically with
the interior of the active site. This has use in some medical research where the effect of blocking an
enzyme is being studied. In the case of a suicide enzyme, the animal host may die or sometimes
reach a dormant state while new enzyme is biosynthesized and the animal recovers when new
enzyme is available.

1

1
[S]–1

Vmax

VI

1

KM

Slope =
Vmax

KM

Competitive
inhibition

Noncompetitive
inhibition

FIGURE 8.10 Lineweaver–Burk plots of inhibition.
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(b)

OH
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OH

OH
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O
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o-quinone

Para-hydroxybenzoic acid
(PHBA) –1

KM

1

1
[S]

Vmax

1
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With
phenythiourea
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No inhibitor

100

20

1 2 3

VI

FIGURE 8.11 A study of o-diphenol oxidase with catechol substrate including competitive (PHBA)
and noncompetitive (phenylthiourea) inhibitors. (From Kimball, J., Enzyme kinetics, http:==users.rcn.com=
jkimball.ma.ultranet=BiologyPages=E=EnzymeKinetics.html. With permission.)
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KINETICS CONCLUSIONS

While we are still self-constrained to limit our treatment to what we believe is essential to physical
chemistry, we have added further examples to the Chapter 7 treatment of reaction kinetics, which
include some aspects of multistep mechanisms and introduced the steady-state approximation. The
steady-state concept was then extended to the Eyring transition-state concept and used again for the
critical step in the Michaelis–Menten treatment of enzyme kinetics. This has been a fast tour of some
complicated algebra but in our experience students who ‘‘learn’’ the derivations have a deeper
appreciation for the concepts. Casual interviews of students from past classes have revealed that the
Michaelis–Menten derivations have been the most useful aspect of this chapter.

PROBLEMS

8.1 Use the data in Example 5 of Chapter 7 at 08C and 458C to compute the Arrhenius ‘‘A’’ and E*
values.

8.2 Use your answers from problem 8.1 above to calculate the temperature at which the reaction
rate would be twice the rate at 08C.

8.3 Use the data in Example 5 of Chapter 7 with the ‘‘two-point’’ method on page 159 to calculate
DHy and DSy at 358C using data from 358C to 458C. This is likely the method of choice in a test
situation, so you need to practice this ‘‘two-point method.’’ This method is less reliable when
the points are close together.

8.4 Use the data in Table 8.1 with the ‘‘graphical method’’ on pages 162–163 to calculate DHy and
DSy at 358C instead of 258C.

8.5 Rederive the Bodenstein–Lind rate law for the reaction of H2þBr2 and review what you were
taught in organic chemistry about the reactivity of free radicals. Look up the dissociation
energy of Br2 ! 2Br in the chemical rubber handbook and compare it with the energy of
dissociation of H2 ! 2H.

8.6 Given the table of data below for the reaction of o-diphenol oxidase with catechol, draw the
Lineweaver–Burk plot and find the slope of the graph and use the value of the y-intercept
(1=Vmax) to obtain the KM value. Compare that value to the reciprocal of the x-intercept where
(1=V)¼ 0. Submit your graph along with your calculations. We will need three significant
figures to compare with the data in the next problem to see the effect of an inhibitor.

[S] 4.8 mM 1.2 mM 0.6 mM 0.3 mM

1=[S] 0.21 0.83 1.67 3.33

DOD540 (Vi) 0.081 0.048 0.035 0.020

1=Vi 12.3 20.8 28.6 50.0

The values for (1=Vi) have been rounded to three significant figures for a smoother fit to the Vi

values, which are only given to two significant figures. However, Prof. Kimball rounds (1=V1)

further to only two significant figures. In either event, biological data are often more scattered
than physical data but some of the (1=S) data are rounded to three significant figures; so we
carry three significant figures in (1=V1). When using biological data, it is essential to use least-
squares fits.

8.7 Given the table of data below for the reaction of o-diphenol oxidase with catechol in the
presence of parahydroxy benzoic acid (a competitive inhibitor), draw the Lineweaver–Burk
plot and find the slope of the graph and use the value of the y-intercept (1=Vmax) to obtain the
modified KM value. Calculate the value of KM from the slope and compare it with the reciprocal
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of the x-intercept where (1=V)¼ 0. Compare the value of the new KM value with the KM from
the problem. Submit your graph along with your calculations.

[S] 4.8 mM 1.2 mM 0.6 mM 0.3 mM

1=[S] 0.21 0.83 1.67 3.33

DOD540 (Vi) 0.060 0.032 0.019 0.011

1=Vi 16.7 31.3 52.6 90.9

TESTING, GRADING, AND LEARNING?

Next, we present a final examination from the 2008 Summer course in CHEM 303. The time limit was
3 h including 110 min. for an ACS standardized test and the students knew that the grade on this test
would be their final grade if the score was higher than their average including the score on the final.

Physical chemistry 303 Final examination Summer 2008 D. Shillady, Professor
(points) (Attempt all problems)

(20) 1. Using hvisc ¼
1
2

� �
n*m�vl ¼ 2:08� 10�4 g=cm s at 258C and 1 atm for O2, compute s, l, Z1,

and Z11. (atomic weight O¼ 15.9994 g=mol, s ¼ 3:57Å, l ¼ 716Å, Z11¼ 7.63� 1028)

(20) 2. Show that
X qrev

T

� 
¼ 0 for a Carnot cycle, derive the Carnot efficiency formula.

(20) 3. Calculate the temperature of air compressed adiabatically in a one-cylinder diesel engine from
1040 cm3 at 258C and 1 atm to 40 cm3. Given CV¼ (5=2)R compute Q, moles of air, W, DU,
and DH for this compression.

(Q¼ 0, n¼ 0.0425, T¼ 10978K,W ¼ DU ¼ 168:8 cal, DH ¼ 236:3 cal, P¼ 95.71 atm)

(20) 4. Derive the expressions for �v,
ffiffiffiffiffi
�v2
p

, and
ffiffiffiffiffi
�v33
p

of a gas using the Boltzmann principle.

(20) 5. Given the normal boiling point of CH3CH2OH is 78.458C and the vapor pressure is 78.5
mmHg at 308C, compute DHvap for CH3CH2OH and compute the vapor pressure at 708C.

(DHvap ¼ 9924 cal=mol, P¼ 535.7 mmHg at 708C)

(20) 6. Find Pc, Vc, and Tc for a van der Waals gas and show the law of corresponding states.

(20) 7. Derive the expression for
qU
qV

� �
T

of a van der Waals gas and use it to compute DU for the

isothermal compression of 10 mol of Ne gas from 500 to 50 L at 258C

�
‘‘a’’¼ 0.21

L2 atm=mol2; use dU ¼ T
qP
qT

� �
V

�P
�

(DU ¼ �9:15 cal, note the sign)

(20) 8. If A� k1 ! B� k2 ! C with t1=2(A) ¼ 3 h and t1=2(B) ¼ 8 h, calculate the time when [B]
is a maximum given [A]¼ 100 and [B]¼ [C]¼ 0 at t¼ 0. (Answer: 6.794 h)

(10) 9. 19879 Au is radioactive with t1=2 ¼ 2:70 days. How long will it take for 69% of 250 g to decay?
(Answer: 4.563 days)

(20) 10. Derive the formula for DSmix of a binary liquid, assuming DHmix ¼ 0. Show that DGmix is a
minimum and DSmix is a maximum when the mole fractions are 0.5.
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(20) 11. Consider data for the reaction: H2O2þNa2S2O3� [Hþ] ) 2H2OþNa2S4O6

Time (min) 16 36 43 52 at T¼ 0, [H2O2]¼ 0.0368

[(S2O3)
2�] 0.01030 0.00518 0.00416 0.00313 and [(S2O3)

2�]¼ 0.0204

How long will it take until [(S2O3)
2�]¼ 0.0030? (Answer: 53.3 min)
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9 Basic Spectroscopy

INTRODUCTION

An essential concept for physical chemistry in the twenty-first century is spectroscopy that inter-
twines developments in astronomy, physics, and technical innovations in instrumentation as now
applied to chemistry. While we focus on chemical applications, we can briefly mention historical
highlights in physics because the key concept is the quantization of energy. Energy quantization is a
revolutionary concept that took most of the early twentieth century to discover, prove, and describe
but it is now the backbone of spectroscopy. Spectroscopy measures various forms of light energy
that are absorbed or emitted only at specific wavelengths. That is due to the fundamental concept
that at the level of atoms and molecules, energy occurs in ‘‘quantum chunks’’ that are so small that
in everyday life, we think energy is continuous but it is not. The analogy we offer to students is the
difference between smooth peanut butter and chunky style peanut butter, because if you examine
smooth peanut butter with a simple lens you can see tiny chunks. Thus, smooth or chunky is a
matter of size in peanut butter and also in energy.

In this chapter, we will attempt to provide an overview of several forms of spectroscopy to set the
scene for more detailed descriptions in Chapter 10. Thus, we will have to compress the historical
development to focus on the important case of the hydrogen spectrum and the Bohr model of the
quantized levels within the H atom. We will revisit the details of the early twentieth century
discoveries in chemistry and physics in Chapter 10. Since this may be the end of a one-semester
course, we will stretch the Bohr model to treat x-rays but then show the need for more modern
methods. We do this to introduce several spectroscopic techniques within a simple mathematical
model and to create interest for a second semester of physical chemistry with the question ‘‘If energy
is quantized, what does this mean?’’

PLANCK’S DISCOVERY

The father of quantization was really Max Planck who received the Nobel Prize in 1918 for his work
on blackbody radiation in 1901. However, there were earlier signs of a strange new concept
regarding energy in the work of others. For instance, science historians might go all the way back
to 1814 when German optician Josef von Fraunhofer observed individual lines in the spectra of stars
and the sun. Later Gustav Kirchhoff, a German physicist, made known his work with Robert Bunsen
on observation of dark (and light) lines in the spectrum of the sun, and this work was developed
further by several amateur astronomers, most notably by William Huggins (1824–1910) who sold
his silk exchange business and set up a private observatory just outside of London. Thus, even in the
late 1800s, scientific research was still carried out by individuals at their own expense as in our
discussion of Sir Robert Boyle in the 1600s. In the late 1800s, a breakthrough in astronomy was to
attach a spectroscope (a prism) to a telescope and separate the image of stars and the sun into
separate lines=images of different color. As the science progressed, it became possible to measure
the wavelengths of the various colors of light. Measurements by Huggins and later by H. C. Vogel
(1841–1907) were then studied by Johann Balmer (1825–1898) who published an analysis of a few
visible lines from the spectrum of hydrogen, which is abundant in space and in the spectra of stars.
An excellent modern history of these developments is given by Becker [1], which gives a glimpse of
the importance of astronomy to the development of physics and chemistry.
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Other discoveries were being made in Physics in the late 1800s which seemed unrelated to
spectra at first. James Clerk Maxwell (1831–1879), a Scottish physicist and mathematician, pub-
lished several revolutionary papers uniting the theory of electric and magnetic fields in 1861–1862.
Maxwell noted that light might be an electromagnetic wave (Figure 9.1). Soon thereafter, Heinrich
Rudolf Hertz (1847–1894) was the first investigator to send and receive radio waves over a short
distance at Karlsruhe Polytechnic in Germany in 1865. Hertz demonstrated that radio waves could
be diffracted just as can light waves and generally confirmed Maxwell’s prediction that light is an
electromagnetic wave. For our purpose, we need to understand that the visible range of light is only
a narrow range of wavelengths and that other forms of radiation differ only in their wavelength.
Maxwell’s equations and Hertz’s experiments led to a wave explanation with a very fast, but finite,
propagation speed of close to 3� 1010 cm=s. Today this speed, ‘‘c,’’ is known more accurately than
many of the other physical constants. In fact, the other constants are measured in terms of ‘‘c’’ that is
now defined as 299,792,458 m=s¼ 2.99792458� 1010 cm=s. The wavelength of a wave is the
length of the wave for one full cycle and the frequency of light is related to the wavelength by the
constant speed of their product.

c ¼ ln

So,

n ¼ c

l

and

l ¼ c

n

or

1
l
¼ n ¼ n

c

Electric field
λ

x

y, ε

z, B
Magnetic field

FIGURE 9.1 The classical understanding of light as an electromagnetic wave. Make special note of an
oscillating magnetic field as well as an oscillating electric field. In this representation, the fields are restricted to
a single plane and would be said to be ‘‘plane polarized.’’
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Maxwell’s electromagnetic theory predicted that the energy of a light wave was proportional to the
sumof the squares of thefield components (E2 þ B2). However, in 1901,MaxPlanck solved amystery
in fitting the shape of the spectrum from a hot object, the so-called blackbody radiation curve, by
assuming that light energy occurs in quantum chunks. In his derivation, he assumed the energy of the
lightwas proportional to the frequency and he had tofit an empirical parameter ‘‘h’’ to e ¼ hn. Planck’s
derivationwas not accepted at first, but in 1905, Albert Einstein interpreted another experiment, called
the photoelectric effect, in which he used e ¼ hn. In the photoelectric effect, light is used to eject an
electron from the surface of a metal (in a vacuum) and an opposing voltage is used to ‘‘stop’’ the flight
of the electron so that the ‘‘stopping voltage’’ is a measure of the energy of the ejected electron. When
stopping voltage data from this experiment is plotted against the frequency of the exciting light, the
graph is a straight line and the slope is the same value Planck had assumed tofit the blackbody radiation
curve. Not only that but Planck’s formula fits the blackbody radiation curve with essentially an exact
fit. There was a competing theory from the British group of Rayleigh and Jeans which only fit the
experimental curve at long wavelengths (Figure 9.2). The failure of the Rayleigh–Jeans treatment at
short wavelengths was called the ‘‘Ultraviolet Catastrophe’’ but while Planck solved the problem, his
solution was not accepted immediately because of the empirical parameter ‘‘h.’’Thus, it took over five
years for the scientific community to digest the idea that energy occurs in quantum chunks but the two
experiments put the concept of quantization on afirm foundation. Themodern proportionality constant
is called Planck’s Constant ‘‘h,’’ where h¼ 6.6260693� 10�34 J s¼ 6.6260693� 10�27 erg s. Both
M. Planck and A. Einstein received a separate Nobel Prize for their work.

RADIO WAVES

At present, amplitude modulation (AM) radio stations in the United States are limited to 50,000 W
transmitters. The watt is a unit of power: 1 W¼ 1 J=s. The older radio AM technology uses a carrier
wave of constant frequency but varies the amplitude of the wave. Newer FM (frequency
modulation) stations maintain a constant amplitude but vary the frequency over a narrow range.

The “ultraviolet
catastrophe”

Rayleigh–Jeans law

Planck
radiation
formula

Ra
di

at
io

n

Vi
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5000°K

2000
Wavelength of radiation (nm)

30001000

FIGURE 9.2 The blackbody curve in wavelength representation showing the failure of the Rayleigh–Jeans law
for short wavelengths and the tantalizing agreement at long wavelengths. The Planck equation is essentially an
exactfit to theexperimental data. (FromNave,C.R.,Blackbody radiation,GeorgiaStateUniv.http:==hyperphysics.
phyastr.gsu.edu=hbase=mod6.htmlWith permission. See also other parts of the Hyper-Physics site.)
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The AM frequencies are generally in the kilohertz (kHz) range while the FM frequencies are in the
megahertz (MHz) range, where 1 Hz¼ 1 cycle=s. Thus, an AM station emitting waves with a
frequency of 1140 kHz (WRVA, Richmond, USA) is using a carrier wave frequency of 1.140� 106

cycles=s so we can calculate the wavelength:

l ¼ c

n
¼ 2:99792458� 108 m=s

1:140� 106s�1
¼ 26:2976m:

That is a long wavelength but it is still a form of light.
Why cannot we see the top of a radio transmitter at night if it is sending out the energy of a

50,000 W light bulb? The answer is that the human eye is only sensitive to a narrow range of
wavelengths roughly between 3600 Å (deep violet) and 8200 Å (red) or in the range 3.6� 10�5 cm
to 8.2� 10�5 cm since 1 Å is 1� 10�8 cm. The actual range where the average human eye can
perceive a scale of brightness is less and the average spectral luminous efficiency curve is given in
Figure 9.3. The maximum sensitivity is at about 555 nm (green). Visual sensitivity to green in a
forest or jungle environment may be a survival attribute. Another thing to remember is that the
energy of the electromagnetic wave is proportional to the frequency according to Planck’s discovery
of e ¼ hn, so blue light has more energy than red light. Since c ¼ ln, shorter wavelength means a
higher frequency and vice versa. In spectroscopy, it is common to refer to the high-energy end of the
frequency scale as the ‘‘blue edge’’ while the low-energy end of the scale is the ‘‘red edge.’’ The
verbal history is compressed here but we will give mathematical details in Chapter 10.

BALMER’S INTEGER FORMULA

Our story regarding atomic and molecular spectra really starts with the work of a Swiss mathem-
atician Johann Balmer (1825–1898), in 1885, when he was successful in fitting a formula to the
available wavelengths of the H spectrum [2]. The main point of Balmer’s formula is that it involves

Spectral luminous efficiency function (human eye)
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FIGURE 9.3 The average response of the human eye defines the term ‘‘visible.’’ Note that the red laser light
visible with bar code cash registers has a wavelength of 633 nm while a ‘‘black light’’ Hg bulb has most of its
intensity at 365 nm. The maximum sensitivity is at 555 nm (green) which is useful if survival depends on visual
acuity in a jungle or forest. (From Lide, D.R., CRC Handbook of Chemistry and Physics, 90th Edn., CRC Press,
Boca Raton, FL, 2009. With permission. Data sources: (a) The basis for physical photometry, CIE Publication
18.2, 1983; (b)CIE standard colorimetric observers, ISO=CIENo. 10527, 1991; (c)Kaye,G.W.C. andLaby, T.H.,
Kaye and Laby Tables of Physical Constants, 16th Edn., Longman Group Ltd., Harlow, Essex, 1995.)
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small integers; ponder that for a moment, integers. There are some excellent demonstrations of the
use of prisms to separate the wavelengths of light and examples of the H lines on the Internet (http:==
csep10.phys.utk.edu=astr162=lect=light=absorption.html) where you can see the colors of the lines as
well as the fact that the lines occur at specific wavelengths. At that time, the most accurate
wavelengths for the H spectrum were available from A. J. Angström (1814–1874), a Swedish
physicist for whom the wavelength unit is named (1.0� 10�10 m¼ 1.0� 10�8 cm¼ 1 Å). Balmer
was a mathematician who spent most of his career teaching at a school for girls, but at the age of
sixty in 1885, he succeeded in fitting the wavelengths of the H spectrum to the formula:

l ¼ hm2

m2 � n2
,

where he referred to his symbol ‘‘h’’ as the ‘‘hydrogen constant’’ but ‘‘m’’ and ‘‘n’’ as integers
(Balmer’s ‘‘h’’ is not the same as Planck’s ‘‘h’’). Using n¼ 2 and m¼ 3, 4, 5, 6, . . ., he fitted the
H spectral lines and even predicted the wavelength of a new line for m¼ 7, which was later
observed at 397 nm by Angström. Later other series of lines, not in the visible part of the
electromagnetic spectrum, were discovered when n¼ 3, 4, . . .. While we should appreciate the
intellectual accomplishments of these early scientists and the role of amateur astronomy in
the development of physics and chemistry, we leave further study of such history to interested
students with Ref. [1]. Instead, we have offered this discussion to emphasize the role of integers in
Balmer’s formula.

A significant extension of Balmer’s work occurred in 1888 when the Swedish physicist Johannes
Rydberg (1854–1919) developed a similar formula using the reciprocal of the wavelength:

n ¼ 1
l
¼ RZ2 1

n21
� 1

n22

� �
; n1 < n2:

This formula applies only to atoms=ions with just one electron such as H, He1þ, Li2þ, Be3þ, etc.,
where Z is the number of protons in the nucleus. Although the constant ‘‘c’’ has been standardized,
the value of R is the most accurately measured number in physical science with an relative
uncertainty of only 6.6� 10�12 in the 90th Edn. of the CRC Handbook. The modern value of the
Rydberg constant ‘‘R’’ is 109737.31568527 cm�1 and early measurements could be made to at least
109737 cm�1 before Bohr derived his formula in 1913. Looking back at Rydberg’s work, it is clear
that the specific value of his constant is dependent on his choice of (1=l) units, and we will see that
this unit is still used in infrared spectroscopy. The use of the reciprocal square of integers is an
extension of Balmer’s formula.

In a later chapter, we will explore the events in physics between 1885 and 1913, which were
tumultuous in the wonder of the discoveries, but we want to focus here on the spectrum of the
H atom. Although the work by Planck in 1901 and the interpretation of the photoelectric effect by
Einstein in 1905 are very important to the overall development of modern spectroscopy, the next
breakthrough for understanding the spectrum of the H atom occurred in 1913 with the theoretical
model of Niels H. Bohr (1885–1962), a Danish physicist who received the Nobel Prize for this
work in 1922 (Figure 9.4). Bohr was a ‘‘pencil-and-paper’’ theorist who made a major discovery
by postulating the quantization of angular momentum. Note that earlier work by Planck in 1901
had postulated that energy exists as small chunks of size e ¼ hn, which was an earth-shaking
concept that few people really believed. However, Planck’s treatment led to a model of the
broad spectrum emitted from a hot body with a fit of his theoretical data points to the experimental
data that was essentially ‘‘exact’’ and thus hard to refute. We do not know how Bohr arrived at the
idea that angular momentum is quantized but we can note that momentum is embedded in
some energy formulas. We can see that if momentum is quantized that will also quantize the
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energy as well. While this is reasonable after the fact, it took the genius of Bohr to extend this
to angular momentum as mvr ¼ n�h:

E ¼ mv2

2
¼ (mv)2

2m
¼ p2

2m

and momentum p ¼ mv.
Thus, if energy is quantized (Planck 1901), momentum is even more fundamental than energy,

because energy can be expressed in terms of momentum. The discovery of quantized energy and the
fact that energy can be expressed in terms of momentum implies that momentum is probably
quantized as well. Then angular momentum in a rotating system should also be quantized and only
exist as specific chunks, according to Bohr’s hypothesis. By 1913, only a few people really believed
that energy is ‘‘chunkified,’’ but the combination of Planck’s blackbody spectrum in 1901 and
Einstein’s 1905 explanation of the photoelectric effect had convinced a few scientists that quant-
ization of both energy and momentum does exist. Whereas Planck had used ‘‘h’’ as his proportion-
ality constant for quantized energy, Bohr chose ‘‘�h’’ (h-bar) as the basic unit of angular momentum

in a rotating system where h-bar¼ Planck’s
h

2p
. We are now going to show Bohr’s derivation that is

FIGURE 9.4 Niels Henrik David Bohr (1885–1962) was a Danish physicist who unified spectral data from
atoms (mainly H) with a theory of quantized energy in 1913 for which he was awarded the Nobel Prize in
Physics in 1922. He earned his doctorate in 1911 from the University of Copenhagen and then studied further
under Ernest Rutherford in Manchester England who was studying the nature of atomic structure. He
hypothesized the multielectron shells which were useful in organizing chemical concepts. Bohr became a
professor of physics at the University of Copenhagen in 1916. In 1920, he was named director of the Institute of
Theoretical Physics at the University of Copenhagen. He was named a Fellow of the Royal Society of London
in 1926 and received the Royal Society Copley Medal in 1938. He fled Denmark during WWII and assisted
scientists in the Manhattan project at Los Alamos in the United States but returned to Copenhagen after the war
and promoted the peaceful uses of atomic energy.

186 Essentials of Physical Chemistry



very clever but it is one of those treatments where you can do correct algebra without getting the
right answer unless you take a certain path.

Here, we come to another problem in that we will be dealing with electrical units, a field that has
developed over time in various laboratories and over several hundred years resulting in as many as
five different systems [3]. The modern SI units have tried to unify this situation but at the cost of
introducing a new annoyance in the form of a factor of 4pe0 that pops up all over the equations. For
the simplicity of explaining this derivation, we will use a system of units that goes forward with the
energy in units of ‘‘electron volts’’ that is used by most physicists and nuclear physicists. Let us set
out the Bohr hypotheses and develop the formula before we analyze the meaning of the results. Bohr
assumed that the electron in the H atom moved in a (flat) circular orbital around a positive ion (Zeþ)
in one of the ‘‘allowed orbitals’’ determined by the momentum quantization. For the H atom, Z¼ 1,
but the derivation can be applied to Heþ ion as Z¼ 2, Li2þ ion as Z¼ 3, Ne9þ as Z¼ 10, or even
U91þ as Z¼ 92; for any system with just one electron in orbit around a positive nucleus. The model
does not apply to more than one electron. The electrical interactions are a result of the e� charge on
the electron and a positive charge of Zeþ on the positive nucleus. Note that at the time Bohr worked
on his theory, the Rydberg formula cited above was well known to scientists as providing a very
accurate fit to the measured spectral lines of atoms or ions with only one electron. There is a lesson
here in how theorists function in using some fragmentary experimental evidence to check a
pencil-and-paper theory but we must admit that no one else had an explanation of why=how the
Rydberg formula worked or the physical principles behind it.

1. mvr ¼ n
h

2p

� �
¼ n�h, for n¼ 1, 2, 3, . . ., that is, quantize the angular momentum of the

electron (mvr ¼ n�h).

2.
mv2

r
¼ Ze2

r2
, this balances the centripetal force of the electron with the electrostatic attrac-

tion. In fact, the electrostatic attraction of the electron by the positive ion continually pulls
(accelerates) the path of the electron into a curve just as a rock on a string is pulled into a
circular path.

The key step occurs right here, in that Bohr solved for the velocity in terms of the velocity
instead of taking the square root to find ‘‘v.’’ Thus, he used an unusual algebra step so that
he could insert the quantization of the angular momentum:

v ¼ Ze2

mvr
¼ Ze2

n�h
:

3. Etot ¼ T þ V ¼ mv2

2
� Ze2

r
, the total energy is the sum of kinetic (T) and potential (V)

parts.
4. From 2, we see

mv2 ¼ Ze2

r
¼ m

Ze2

n�h

� �2

¼ mZ2e4

n2�h2
¼ Ze2

r

so

r ¼ n2�h2

mZe2
¼ n2

Z

� �
�h2

me2

� �
¼ r(n, Z):

5. Etot ¼ m

2
Ze2

n�h

� �2

� Ze2

n2
Z

	 

�h2

me2

�  ¼ mZ2e4

n2�h2

� �
1
2
� 1

� �
¼ � Z

n

� �2 me4

2�h2

� �
¼ E(n,Z)
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Note that we now have not only a formula for the quantized energy E(n, Z) but a formula for the
radius of each quantized orbit. It is quite desirable to investigate the formulas to obtain meaningful
units for the energy and radius. At this point, we need to grapple with a few non-SI units. First, the
definition of an ‘‘electron volt’’ is the energy gained by an electron when accelerated through a
potential of 1 V.

1 V¼ 1 J=C (1 Volt¼ 1 joule per coulomb)

1 C¼ 1 A s (1 Coulomb¼ 1 Ampere second)

1 F¼ 96,485.3383 C ffi 96,485 C¼ 1 mol of electrons¼ 1 Faraday¼ 1 F

1 F is the amount of A s that will electroplate 1 g atom of Agþ þ e� ! Ag0

1 electron charge¼ (96,485.3383 C=6.0221415� 1023)¼ 1.60217653� 10�19 C
ffi 1.602� 10�19 C

1 eV¼ 1 (J=C)(1.60217653� 10�19 C)¼ 1.60217653� 10�19 J¼ 1.60217653� 10�12 erg
ffi 1.602� 10�19 J

The mass of an electron¼me¼ 9.1093826� 10�31 kg¼ 9.1093826� 10�28 g ffi 9.11� 10�28 g

The mass of a proton¼mp¼ 1.67262171� 10�27 kg¼ 1.67262171� 10�24 g ffi 1.67� 10�24 g

1 mol of electron volts¼ (6.0221415� 1023=mol)(1.60217653� 10�19 J)
¼ 96.485 kJ=mol¼ 23.061 kcal=mol

In the 1930s, electrochemistry was a major part of physical chemistry and laboratory measure-
ments were related to easily reproducible experiments. Thus plating out 1 mole of silver metal
from a solution of AgNO3 was an easy way to measure coulombs with an ammeter to measure
current and a clock measuring seconds. The Faraday constant then requires further definitions of
an ampere etc., but those constants can be obtained through measurements and calculations from
electroplating silver. Today, the modern values are all subjected to a least squares fit of all the
known constants with the best experimental data except, as mentioned above, the value of ‘‘c’’ is
now fixed and not subject to further measurement. The value of ‘‘c’’ is the kingpin of most of all
the other constants.

The units mentioned so far are either SI or accepted for use with SI units but we need
an additional value from the electrostatic unit system. In that system, charge is measured in
‘‘statcoulombs’’ as related to the cgs system where Coulomb’s law can be written as a force between
two charged particles separated by a distance.

Force ¼ ma ¼ qq

r2

so the charge

q /
ffiffiffiffiffiffiffiffiffiffi
mar2
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(g cm)(cm2)

s2

r
� g1=2 cm3=2

s
� statcoulomb

The numerical conversion from statcoulombs to coulombs is 3.335641� 10�10, so we can convert
the electrochemical coulombs to statcoulombs in cgs units.

qe ¼ (1:60217653� 10�19 C)
(3:335641� 10�10)

¼ 4:803204� 10�10 statcoulomb
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Let us consolidate the key values to make formulas that are easy to remember.

a0 ¼ �h2

me2

� �
¼ (6:6260693� 10�27 erg s)2

4p2(9:1093826� 10�28 g)(4:803204� 10�10 g1=2 cm3=2=s)2

¼ 0:5291772� 10�8 cm

me4

2�h2

� �
¼ 4p2(9:1093826� 10�28 g)(4:803204� 10�10 g1=2 cm3=2=s)4

2(6:6260693� 10�27 erg s)2(1:60217653� 10�12 erg=eV)
¼ 13:6057 eV

In the second step, we have used the conversion from erg to eV in the denominator. Since
1 eV¼ 1.60217653� 10�19 J, we just multiply by 1.0� 10�7 to put the constant into ergs.

Although we have already delved into several unit conversions, we need just one more formula to
be on our way to understanding spectroscopy. The next formula is by far and away the most useful
formula in spectroscopy. If you attend a research seminar and the speaker gives energies in
kilocalories=mole he=she is probably an older chemist, if the speaker uses kilojoule=mole energies
he=she is probably a younger chemist, but if the speaker is a physicist you will probably hear all the
energy values in electron volts. Thus, even though the CRC Handbook and other texts strive to use
only SI units, our recommendation is to get used to electron volt energies. In x-ray analysis later in
this chapter the units are usually in kiloelectron volt (thousands of electron volts), so there is a large
part of the scientific community using electron volts.

With a warning to the students, we have selected electron volts as the most useful energy unit to
relate spectroscopy experiments to theory in the sense that a student can imagine the physical units.
However, the physical constants are revaluated every three years or so which makes past research
papers subject to drift in the values of the constants. Around 1960, quantum chemists addressed this
problem and chose yet another set of units in which c ¼ �h ¼ me ¼ qe ¼ 1 to simplify theoretical
equations in ‘‘atomic units,’’ so that the equations were expressed totally in the basic mathematical
units. In these units (used by quantum chemistry computer programs), a person only needs to know
the latest value of an energy unit called the hartree and the latest value of the Bohr radius (a0) to
convert computer results back to laboratory results. At present (2010), 1 hartree¼ 27.2113845 eV
and a0¼ 0.52917720859� 10�8 cm. We will not use these units until Chapter 17 but you can see
that the Bohr formulas simplify further in these units:

E(n,Z) ¼ � Z

n

� �2 me4

2�h2

� �
¼ � Z

n

� �2

(0:5 hartree); r(n,Z) ¼ n2

Z

� �
�h2

me2

� �
¼ n2

Z

� �
a0:

A VERY USEFUL FORMULA

Here, we present a very simple but powerful formula. This formula is so useful that you can sit in a
research seminar or lecture and do mental arithmetic on the spot and then make a very intelligent
comment such as ‘‘Yes, Professor, but the wavelength for that transition should be . . . ’’ Recall that
Planck realized that the energy of a light wave is proportional to the frequency of the wave and
evaluated the proportionality constant to be ‘‘h.’’As mentioned above, the same number occurs in the
slope of the data for the photoelectric effect as analyzed by A. Einstein in 1905. The modern value is
6.6260693� 10�27 erg s. Assume there are two energy levels in a molecular system such that the

difference between the two levels is a quantumwith energy DE ¼ hn ¼ hc

l
. This situation happens so

often in spectroscopy that we can develop a useful shortcut formula if we assume the l value is in
angstroms (1.0� 10�8 cm) and we always want the energy value in electron volts. Then we have

DE (eV) ¼ hc

l (Å)
¼ (6:6260693� 10�34 J s)(2:99792458� 108 m=s)(1010 Å=m)

(1:60217653� 10�19 J=eV)(l (Å))
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or

DE (eV) ¼ 12398:41906

l (Å)

and more generally useful as

DE (eV) ffi 12,398

l (Å)
:

This was first brought to our attention many years ago [4] and has proved to be very useful for quick
estimates of wavelength or energies in electron volts doing mental arithmetic while sipping coffee in
a seminar.

PRELIMINARY SUMMARY OF THE BOHR ATOM

r(n,Z) ¼ n2

Z

� �
(0:5291772 Å); DE (eV) ffi 12,398

l (Å)
; E(n,Z) ¼ � Z

n

� �2

(13:6057 eV)

These three formulas can be used for quite a few applications which will be our introduction to
spectroscopy. The most obvious application is to compare the energy formula to the experimental
wavelengths of the H atom spectrum (Z¼ 1):

DE (eV) ¼ E2 � E1 ¼ (�1) 1

n22
� 1

n21

� �
(13:6057 eV) ¼ hc

l

This has the same type denominator as the Balmer formula and when the other numbers are
compared, it is found that the Bohr equation is essentially the same as the Balmer equation.
There is only a slight difference due to the fact that the nucleus in the Bohr model is fixed at the
center of the atom while the real spectra include the fact that the electron and proton both orbit
around the center-of-mass (the see-saw balance point) of the two particles. That is really very close
to the position of the proton because it is much more massive than the electron. When this correction
is made to the Bohr formula, the agreement with the experimental spectra is essentially exact.

One other unit we may encounter in spectroscopy, particularly in infrared spectroscopy, is the
‘‘wave number.’’ Basically, the wave number is just the reciprocal of the wavelength:

c ¼ ln

so

n ¼ c

l

and

n � 1
l

� �
¼ n

c

� 
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This unit may have come about due to the way some early experiments were done to measure
wavelengths and was important in the derivation of Rydberg’s formula but it is now established in
infrared spectroscopy. In particular, the combined Balmer–Rydberg formula in wave numbers is

nH ¼ �109,737:31568525 1
cm

� �
1
22
� 1
n2

� �
; n ¼ 3, 4, 5, . . .:

We show the modern value that was initially known only to about six significant figures. However,
through the work of Johannes Rydberg (1854–1919), a Swedish physicist, this number is probably
the most refined constant in spectroscopy. Since H is a common element in space and much of early
spectroscopic data came from astronomy measurements, the Rydberg became a unit of energy. In
1913, Bohr compared his theoretical equation to experiment using the value of the Rydberg:

E(n,Z) ¼ � me4

2n2�h2

for Z¼ 1, so,

E2 � En ¼ � me4

2n2�h2
1
22
� 1
n2

� �
¼ hn ¼ hc

l

and then

(E2 � En)

hc
¼ � me4

2n2�h2(hc)

1
22
� 1
n2

� �
¼ 1

l
¼ n:

We can see that the Bohr’s factor of constants should agree with the experimental value of the
Rydberg. We have already noted there needs to be a small correction to the value of ‘‘m’’ since a tiny
center-of-mass correction should be applied (the electron and proton actually rotate about their
mutual center of mass which is very close to the position of the more massive proton).

me4

2n2�h2(hc)
¼ me4(4p2)

2h3c
¼ (4p2)(9:1093826 � 10�28 g)(4:803204� 10�10 g1=2 cm3=2=s)4

2(6:6260693� 10�27 erg s)3(2:99792458� 1010 cm=s)
¼ RH

Thus, we calculate RH ¼ 109,737:2794
1
cm

� �
, and we see that using modern values of the

constants without the center-of-mass correction to ‘‘m’’ we get six figure agreement with the
experimental value. This was a major triumph for Bohr and the amazing agreement with the rydberg
constant made believers in the idea that angular momentum is quantized.

Following the triumph of the Bohr theory, let us consider some limitations of the Bohr model of
the atom. First, there are only flat circular orbitals and you have probably seen orbitals in organic
chemistry textbooks that have different 3D shapes due to further research since 1913. However,
because the DE (eV) ¼ E2 � E1 values are correct, at least for (n ! nþ 1) transitions, the Bohr
model was a breakthrough in understanding the energy levels of atoms. Note also that these flat
orbitals do not give insight as to how atoms combine into molecules.

A second philosophical dilemma with the model is that the electrons in orbitals have angular
momentum, so they must be moving in some sense of the word and in fact we calculated the formula
for their velocity. However, in the theory of radio transmitters, the radiated signal is caused by
sending electrons moving back and forth in some sort of antenna. Thus, it is known that moving
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electrons radiate energy so why=how is it possible that electrons can find stable orbitals that do not
radiate energy? Today, we would say that radio antennas radiate because the electronic excitation is
causing the electrons in the metal to change energy levels rapidly but the non-excited energy levels
are stable and do not radiate. These sort of questions were raised about the Bohr model but until
1926 there was no better model. There is no further accurate agreement with experiment except for
spectra of light element ions like Heþ, Li2þ, etc., one-electron ions of light elements.

SIGNIFICANCE OF THE BOHR QUANTUM NUMBER n

Today, students in this class will have been exposed to a form of the periodic chart that incorporates
many discoveries since 1913. However, in the early twentieth century the periodic chart was
organized mainly by atomic weights with less organization than we enjoy today. At that time, the
rare gases were believed to be totally inert but their atomic numbers allowed Bohr to postulate an
‘‘electron shell model’’ of atoms heavier than H with occupancies of 2, 8, 8, 18, 18, . . . based largely
on the atomic numbers of the rare gases and the differences between them. For instance, Ne (Z¼ 10)
has 8 more electrons than He (Z¼ 2) and Ar (Z¼ 18) has 8 more electrons than Ne. Then Kr
(Z¼ 36) has 18 more electrons than Ar, and so on. The Bohr orbits were assigned labels as the K, L,
M, N, . . . shells. Strictly speaking, the Bohr model only has one quantum number, ‘‘n.’’ Later,
Arnold Sommerfeld (1868–1951) postulated elliptical orbitals to introduce additional angular
momentum rules into the shell model. Sommerfeld introduced the l-quantum number, the
m-quantum number, and even the fourth quantum number for spin based on later developments.
For the time being, we will push the Bohr model to its extremes using just the n-quantum number.
In spite of several more recent descriptions of atoms since 1913, the Bohr model survives in some
terminology related to the inner K, L, and M shells as we will soon see, because x-rays come from
transitions between these shells. Although the Bohr model does little to explain chemical bonding in
molecules, it remains a concept related to atoms. Even today, the emblem of the International
Atomic Energy Agency (IAEA) still shows an atom with the Bohr–Sommerfeld elliptical orbits as a
representation of atomic orbitals.

ORBITAL SCREENING

Consider the limitation we have already mentioned in that the Bohr model only applies to
atoms=ions with just one electron. Please note that when there is more than one electron, repulsion
between the electrons alters the energy situation. However, it is possible to adjust the model for
more than one electron, assuming we understand that we are leaving the realm of high accuracy and
merely modeling trends. Probably, every student has done the sodium flame test in freshman
chemistry laboratory. In more sophisticated models, the fluffy yellow flame is believed to be due
to a transition from a 4p orbital back down to a 3s orbital, and the strong yellow ‘‘D’’ line at 589 nm
is in fact two separate lines (a doublet) believed due to two possible spin states of the 4p orbital. The
Bohr model has none of this detail but if we assume that the 4p orbital has nearly the same energy as
the 4s orbital (same shell in the Bohr model), we can treat the Z value as a parameter and fit the
model to a system of an ‘‘ion core’’ of charge (Zeþ) with an outer electron in a 4s orbital (assuming it
has the same energy as a 4p orbital; not really true but close). Note 589 nm¼ 5890 Å. Thus,

DE ¼ E4 � E3 ¼ �Z2
eff

	 
 1
42
� 1
32

� �
(13:6057 eV) ¼ Z2

eff(0:661388 eV) ¼
12,398
5890

¼ 2:104923 eV:

We can solve this for Zeff . Thus, Zeff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:104923 eV
0:661388 eV

r
ffi þ1:784; what does this mean? The

effective nuclear charge might have been expected to be þ1 assuming that the inner 10 electrons
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‘‘covered up’’ (10=11) of the nuclear charge of the Na nucleus. However, the effective nuclear
charge is greater than þ1 by a considerable amount. This can be interpreted as ‘‘imperfect
screening’’ of the nuclear charge by the first 10 electrons (the Ne core). We can see from the
formula for the Bohr radius that the radius increases as the square of the quantum number ‘‘n,’’ and
so, as the orbits of the n¼ 2 shell get larger than the n¼ 1 shell, their ability to be between the outer
electron and the nuclear charge of the core is reduced so the outer electron experiences more of the
uncovered nuclear charge. Thus, the Bohr model can give a qualitative explanation for the concept
of electron screening. We emphasize that this result departs from the precision of six-figure accuracy
of the spectroscopic measurements but provides a valuable concept.

X-RAY EMISSION

Here is another way in which the simple Bohr model can be used to give qualitative ideas about
electronic structure that is tantalizingly semiquantitative. X-rays were discovered byW. C. Roentgen
(1845–1923), a German physicist who carried out the first experiments in 1895 and was awarded the
very first Nobel Prize in Physics in 1901. A process called Auger x-ray emission spectroscopy is due
to the use of an electron beam to knock electrons out of inner orbitals of atoms whereupon the outer
electrons of the formerly neutral atoms ‘‘fall’’ down in a cascade of steps to again fill the lowest
orbitals. When this happens, electromagnetic radiation is given off just as the yellow flame emission
occurs due to an outer electron of Na. This process was studied by Pierre Victor Auger (1899–
1993), a French physicist who found that electrons are emitted (and scattered) as well as x-rays.
Since the n¼ 1 level is the lowest level, the energy gap between the n¼ 2 and n¼ 1 levels is large
enough to produce the emitted radiation in the x-ray range. X-rays from the (n¼ 2 ! n¼ 1)
transition are called Ka and those from (n¼ 3 ! n¼ 1) Kb.

As one proceeds to heavier elements, the number of electrons increases but the increasing nuclear
charge pulls the inner orbitals closer to the nucleus as the Bohr radius decreases. According to the
Bohr model of circular shells, the extension to more electrons went as K, L, M, N, . . . shells
containing 2, 8, 8, 18, 18, . . . electrons respectively. The point is that for elements beyond Cd
(Z¼ 48), the L shell as well as the innermost K shell are pulled in tightly, so that x-rays can be easily
observed from electrons falling into a partially empty L shell from the M and N shells. The Bohr
model advocates justified the 2, 8, 8, 18, . . . sequence using just the one ‘‘n’’ Bohr quantum number
from the atomic numbers of the rare gas atoms and we can use the 2, 8, 8 sequence for the innermost
shells. You can also see that for high values of Z, the inner L shell might be partly empty and
electrons could cascade from the M and N shells. Thus, transitions from (n¼ 3! n¼ 2) are called
La and those from (n¼ 4 ! n¼ 2) are called Lb. While Ka transitions can still be created for
Z> 48, a higher energy electron beam is needed, so it has been found that reducing the excitation
beam energy to 20,000 V or even just 10,000 V allows use of the same dispersive system and
detectors for the La of Z> 48 as for the Ka transitions of elements with Z< 49.

We are emphasizing x-ray wavelengths to make the connection to the Bohr theory that originated
from wavelength data. However, most modern x-ray fluorescence (XRF) data is reported in kilo-
electron volt energies from a detector under a high voltage potential (Figure 9.5). Of course, we

know l (Å) ¼ 12,398
DE(eV)

will give us an accurate conversion between electron volts and wavelength

in angstroms, so we can convert from one representation to the other. However, the table of x-ray
data was last reported as wavelengths in the CRC Handbook in the 1976 edition. Another recent
consideration is that in order to keep the range of x-rays within a given order of diffraction and
detector limits the longer wavelength Ma and Mb, x-rays can be used for heavier elements.
However, the Ma,b transitions are less easily assigned in terms of clean integers. We will see that
even the La,b transitions are subject to non-integer screening of the nuclear charge so the Ma,b

transitions are identified and cataloged as empirical data and we will not attempt an analysis of the
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internal screening of the M shell here. Software that accompanies a specific x-ray spectrometer will
include these kiloelectron volt energies, characteristic of elements within the range of the detector
and the diffraction plate used within the instrument.

X-rays have been important in medical science for many decades, and x-ray machines usually
use a Cu target and the x-rays from the wavelength of the Ka line. The Cu Ka x-ray is near optimum
for biological tissue, since its wavelength of 1.541 Å (Table 9.1) is close to the average organic
bond length. Consider typical bond lengths between carbon atoms in biological molecules such as
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FIGURE 9.5 Schematic cartoon of an electron microscope with an XRF attachment.
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1.54 Å, single; 1.39 Å, double; and 1.31 Å, triple. If the x-ray wavelength is much larger than the
space between the atoms, the material will be opaque to the electromagnetic waves. If the
wavelength is much smaller than the spacing between the atoms, the electromagnetic wave will
pass through the material. Thus, a wavelength is needed in the range of about 1.5 Å to produce a
semitransparent image from exposure of the material to these x-rays. For Cu, we have a qualitative
estimate for the wavelength of

DE ¼ E1 � E2 ¼ (29)2
1
12
� 1
22

� �
(13:6058 eV) ¼ 8581:85835 eV

and

lKa
¼ 12, 398

8581:8 eV
¼ 1:445 Å:

TABLE 9.1
X-Ray Auger=Fluorescence Wavelengths of Selected Elements

Element l (nm) Element l (nm) Element l (nm) Element l (nm)

3 Li Ka 22.8 28 Ni Ka 0.1658 53 I La 0.3149 78 Pt La 0.1313

4 Be Ka 11.4 29 Cu Ka 0.1541 54 Xe La 0.3016 79 Au La 0.1276

5 B Ka 6.76 30 Zn Ka 0.1435 55 Cs La 0.2892 80 Hg La 0.1241

6 C Ka 4.47 31 Ga Ka 0.1340 56 Ba La 0.2776 81 Tl La 0.1207

7 N Ka 3.16 32 Ge Ka 0.1254 57 La La 0.2666 82 Pb La 0.1175

8 O Ka 2.362 33 As Ka 0.1176 58 Ce La 0.2562 83 Bi La 0.1144

9 F Ka 1.832 34 Se Ka 0.1105 59 Pr La 0.2463 84 Po La 0.1114

10 Ne Ka 1.445 35 Br Ka 0.1040 60 Nd La 0.2370 85 At La 0.1085

11 Na Ka 1.191 36 Kr Ka 0.09081 61 Pm La 0.2282 86 Rn La 0.1057

12 Mg Ka 0.989 37 Rb Ka 0.09256 62 Sm La 0.2200 87 Fr La 0.1030

13 Al Ka 0.834 38 Sr Ka 0.08753 63 Eu La 0.2121 88 Ra La 0.1005

14 Si Ka 0.7125 39 Y Ka 0.08288 64 Gd La 0.2047 89 Ac La 0.0980

15 P Ka 0.6157 40 Zr Ka 0.07859 65 Tb La 0.1977 90 Th La 0.0956

16 S Ka 0.5372 41 Nb Ka 0.07462 66 Dy La 0.1909 91 Pa La 0.0933

17 Cl Ka 0.4728 42 Mo Ka 0.07093 67 Ho La 0.1845 92 U La 0.0911

18 Ar Ka 0.4192 43 Tc Ka 0.06750 68 Er La 0.1784 93 Np La 0.0889

19 K Ka 0.3741 44 Ru Ka 0.06431 69 Tm La 0.1727 94 Pu La 0.0868

20 Ca Ka 0.3358 45 Rh Ka 0.06133 70 Yb La 0.1672 95 Am La 0.0847a

21 Sc Ka 0.3031 46 Pd Ka 0.05854 71 Lu La 0.1620 96 Cm La 0.0828a

22 Ti Ka 0.2749 47 Ag Ka 0.05594 72 Hf La 0.1570 97 Bk La 0.0809a

23 V Ka 0.2504 48 Cd Ka 0.05350 73 Ta La 0.1522 98 Cf La 0.0791a

24 Cr Ka 0.2290 49 In La 0.3772 74 W La 0.1476 99 Es La 0.0773a

25 Mn Ka 0.2102 50 Sn La 0.3600 75 Re La 0.1433 100 Fm La 0.0756a

26 Fe Ka 0.1936 51 Sb La 0.3439 76 Os La 0.1391 101Md La 0.0740a

27 Co Ka 0.1789 52 Te La 0.3289 77 Ir La 0.1351 102No La 0.0724a

Sources: Weast, R.C., CRC Handbook of Chemistry and Physics, 53rd Edn., CRC Press, Cleveland, OH, 1971, p. E-131;
http:== en.wikipedia.org=wiki=X-ray_fluorescence

a The values are rounded to four significant figures.
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So we see that the Ka x-ray emission of a Cu target can be calculated from the simple Bohr
model but there is an error of about 6.2% compared to the experimental value of 1.541 Å; not
exactly the six figure accuracy of the Rydberg value but close. Note, we have reversed the sign of
the energy difference for an emission. The answer is sufficiently close to the experimental value
that we are confident that our simple model has captured the main principle of the phenomenon.
For further use later, let us ask what the effective nuclear charge is that would produce the correct
wavelength:

Zeff ffi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12, 398 eV Å

(1:541 Å)(0:75)(13:6057 eV)

s
¼ 28:0791,

not the bare nuclear charge of 29.
That is quite revealing and suggests that the n¼ 1 shell is not completely empty. Using modern

information about electron spin and the idea that orbitals can contain two electrons with opposite
spin, it appears that there is still one electron in the n¼ 1 orbital and only one is missing. The Bohr
theory postulates that the orbital occupancy should be 2, 8, 8, 18, . . . with no reason given except
that the periodic chart implies that occupancy, so the n¼ 1 orbital should have two electrons and the
Ka data implies there is still one electron in the n¼ 1 orbital.

Today, most computer monitors and TV screens are some variant of a flat screen but not so long
ago all TV screens and computer monitors were a picture tube in which a beam of electrons moved
across the screen and excited phosphors on the inside of an evacuated ‘‘cathode ray tube.’’ That
meant that you were facing an electron beam hitting the inside of a glass tube with energy of 20,000 V
or so. What about Ka x-rays from cathode ray screens? While the heaviest (highest Z) element in
glass (SiOx) would be Si (Z¼ 14), the early green phosphors were a form of ZnO, so Zn was present
(Z¼ 30). Later, color TV tubes had lanthanide salts for various colors such as Eu2O3 for the red
color and so some Eu was present (Z¼ 63). While the impact of the electron beam with Si atoms
produced only ‘‘soft x-rays,’’ the heavier elements could produce x-rays with shorter wavelengths
capable of breaking bonds in biological compounds. Thus, there was a safety issue with cathode ray
tubes, especially for young developing children sitting close to the picture tube. Now, flat screen
picture screens are not only more convenient but they also have eliminated an x-ray hazard that
accompanied the use of cathode ray tubes.

This author is old enough to have purchased new shoes at a time when department stores had
‘‘fluoroscopes,’’ which were real-time x-ray machines with inlets for your feet, and you could ‘‘show
your mother’’ on a small TV-like screen that the shoes were big enough by wiggling your toes to
show the space inside the new shoes. It is now known that high exposure to x-rays can cause
sterility, so by now those old fluoroscopes are long gone. Fortunately, shoes tend to last a year or
more so children’s exposure to x-rays was infrequent. Modern radiology technicians work behind a
lead–glass wall and wear a film badge to monitor the extent of exposure on any given day.

FORENSIC=ANALYTICAL USE OF AUGER X-RAYS

One of the most interesting recent forensic developments is alloy analysis applied to bullets and
metal shell casings. It has been found that with the sensitivity of modern instrumentation it is
possible to analyze the alloys in forensic samples to match bullets to a particular box of cartridges
due to slight variations in the alloy composition. A variety of techniques are available for alloy
analysis such as various forms of optical emission spectra and mass spectroscopy but to continue
our survey of applications of the Bohr equation, we want to discuss XRF [5]. The overall
Auger process of aiming a beam of high energy electrons to knock inner electrons out of atoms
produces scattered ‘‘Auger electrons’’ as well as x-ray emission due to outer electrons ‘‘falling’’ into
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inner orbits. We have shown above that certain metal targets (Cu) can be selected to generate a
preponderance of Ka x-rays for use in medical imaging although the Bohr model is too simple and
results in an error of about 6.2%. That implies that various elements have characteristic Ka and La

wavelengths that can be used for elemental analysis within our understanding that the model does
not include the effect of the repulsion between electrons. Our schematic in Figure 9.5 is oversim-
plified but shows some features that should be part of the science education of undergraduates.
The diagram shows how a beam of electrons can be accelerated to high velocity to form what is
called an ‘‘electron microscope’’ to form an image on film or on a fluorescent screen by transmission
of the electron beam accelerated through a potential of 75,000 V or even higher. An electron beam
can be focused using electrostatic lenses (not shown on the schematic) and the development of
electron microscopes has reached a high level of sophistication to visualize bacteria and viruses in
biological samples.

The abbreviation SEM indicates a ‘‘scanning electron microscope’’ that can use an x–y scan to
form a pixel image due to changes in transmitted intensity of the beam. However, in the last few
years it has been realized that the same device can be used with a lower voltage of the electron beam
of typically 20,000 V. The lower voltage is still sufficient to cause Ka x-rays for elements up to
Z¼ 48 (Cd) but the same LiF diffraction monochrometer and detector can then be used to measure
La and Lb XRF (x-ray fluorescence) since for elements with Z> 48, the L shell is much deeper in
energy. We can use the Bohr formula to estimate the La wavelength also:

DELa
¼ E2 � E3 ¼ (Z2)

1
22
� 1
32

� �
(13:6057 eV) ¼ Z2 5

36

� �
(13:6057 eV) ¼ Z2(1:88968) eV

We can use the experimental wavelengths of the La transitions to probe the interior of the heavier
elements. We saw above that we could use the integer Z value of the nucleus for the Ka wavelengths
of the (n¼ 2) ! (n¼ 1) transition of the Bohr atom and obtain reasonable results.

However, for the case of the effective nuclear charge Zeff for the excited outer electron in the
sodium flame test, we found a noninteger value due to incomplete screening of the nuclear charge by
the shell of electrons between the (n¼ 3, n¼ 4) shells of the atom and what we can call the
Neon-core of the inner part of the Na atom. In the case of the La energy, the transition is from
the (n¼ 3) ! (n¼ 2) level, so the K shell is between the L shell and the bare nucleus for sure.
Further, the L shell may still be mostly occupied with perhaps one vacancy so the Ne core may be
mostly intact.

For elements heavier than Cd, we expect that the Bohr radius of the (n¼ 1) is quite small so that
the screening (covering up) of the nuclear charge by the K shell should be close to 2 for the two
electrons in the K shell. However, the next eight electrons in the L shell may still be mostly there
with perhaps only one or two vacancies. Thus, the effective nuclear charge for the heavier elements
should be close to Zeff ¼ Z � 8. Consider In where Z¼ 49. From Table 9.1, we see that the
wavelength of the La transition is 0.3772 nm¼ 3.772 Å. From the formula above for the La

transition energy, we can solve for the value of Zeff for the charge that is seen by the electron
falling into the L shell as

DELa
¼ E2 � E3 ¼ 12,398 eV Å

3:772 Å
¼ Z2

eff(1:88968) eV:

Thus, for In (Z¼ 49), we find

Zeff ffi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12,398 eV Å

(3:772 Å)(1:88968 eV)

s
¼ 41:7057:
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This can be interpreted as the effective charge out of the bare nuclear charge of 49 that is not
covered by the K shell and what there is of the L shell. Thus, (49� 41.7057)¼ 7.2943 so the clean
formula of the one-electron Bohr atom is now muddled up with internal electron–electron repulsion
and the idea that as the shell radius gets large the electrons get spread out more and cannot
completely cover up the nuclear charge on a 1:1 basis. The same effect is almost constant across
the periodic chart for the La transitions from atomic number 49 (In) to the data for Pu (Z¼ 94) as
seen for selected elements in Table 9.2. This result also indicates that the electron giving off the
x-ray energy is not falling into an empty L shell and that may be a function of how hard the atom
was hit with the incoming electron, because this effective charge number indicates there are
definitely some other electrons in the L shell. Assuming the number of electrons is an integer, the
noninteger effective charge means that as the electrons move they cannot be everywhere at once.
Thus, even if the electrons are very fast, both the K shell and what there is of the L shell cannot
completely cover an integer amount of the nuclear charge. These considerations are useful to
increase our appreciation of what is going on inside an atom. Historically, this is probably as far
as one can push the Bohr model without including electron–electron repulsion and a better
description of the orbitals but it is interesting to see that the K- and L-Auger transitions behave
almost like the one-electron Bohr model when the model is adjusted for an effective nuclear charge.

Although our short list implies that the average value of the screening might be 7.3, previous
work by Moseley soon after 1913 preferred a value of 7.4 [6]. Mosely was a brilliant British chemist
who was tragically killed in action in WWI at the Battle of Gallipoli at the age of 27. Some writers
have said that Bohr’s shell model was not believed until the work of Mosely; note concurrent dates
of discovery.

X-RAY FLUORESCENCE

While Auger processes do lead to x-ray emission, there is a variation in the technique that offers
more sensitivity and generality. Overall, x-ray emission techniques are not as sensitive as some
other analytical methods but offer simple sample preparation and simultaneous imaging of very
small samples and elemental analysis. An application combining these advantages is the ability to
check the elemental composition of doped microelectronic devices. Forensic samples such as shot or
bullets offer an abundant sample size, so the element ratios within a strong signal is the desired
information. These examples can use the Auger emission of the SEM beam or reduce the voltage to
measure La transitions. With the standard SEM method, scattered Auger electrons require a
grounding connection to the sample in some cases to bleed off the secondary scattered electrons

TABLE 9.2
Nuclear Screening of the K Shell and a Partial
L Shell in Selected Elements

Element Z La (eV) lLa (Å) Zeff KLscreen

Sn 50 3.444 3.600 42.6904 7.3096

Cs 55 4.286 2.892 47.6302 7.3698

Nd 60 5.230 2.370 52.6147 7.3853

Tb 65 6.2728 1.977 57.6074 7.3926

Yb 70 7.4140 1.672 62.6417 7.3538

Re 75 8.6150 1.433 67.6641 7.3359

Hg 80 9.987 1.241 72.7103 7.2897

Rn 86 11.724 1.057 78.7851 7.3149

Th 90 12.966 0.956 82.8424 7.1576

Pu 94 14.279 0.868 86.9404 7.0560

198 Essentials of Physical Chemistry



but the x-rays tend to be generated in a region of space near the sample stage. Some x-rays can be
collimated using a slit or hole that faces a crystal-lattice grid such as a plate of LiF to cause
diffraction of the x-rays into a sort of ‘‘x-ray rainbow.’’ The dispersed spectrum can then be detected
using photographic film blackening or with modern electronic detectors. One possible detector is a
small block of pure Si with a core region of Li immersed in liquid N2 and under a voltage potential.
When an x-ray hits the Li in the detector, a cascade of ionized electrons results in a ‘‘pulse-count.’’
The Li core is the active electrode and the Si provides a nonconducting shell around the Li. The low
temperature is to provide a low ‘‘dark current thermal ionization’’ until an energetic x-ray hits the
detector and causes a big signal due to ionized electrons. The detector can be moved along a
wavelength track or a number of the detectors can be used in fixed positions corresponding to
different wavelengths. Students have asked why the device used for the spectrum in Figure 9.9
required liquid N2. The answer is that the detector needs to be at a low temperature (778K) to reduce
spurious thermal signals. A very good description of x-ray detection is given in Ref. [7].

X-RAY DIFFRACTION

At this point, we need to explain an important aspect of almost any form of spectroscopy, which is
the need to disperse a spectral rainbow into individual components. For optical spectra in the visible
or even the infrared range, one can employ a wedge (prism) of a transparent material such as glass,
quartz, or even potassium bromide. Different refractive indices for different colors will fan out
(disperse) the rainbow of a beam of light. There is another method of dispersing light. Light can be
‘‘diffracted’’ from a grid of grooved lines on a reflecting surface (a grating) so that light is reflected
differently from the crests and troughs of the grooves. Then the electric fields of the light cancel out
except at certain angles of reflection based on the basic law of diffraction that we illustrate in
Figure 9.6. This phenomena can also be used to diffract light from regular crystal lattice features if
we have a sufficiently robust crystal to withstand the energy of x-rays. Here that implies an ionic
substance with strong electrostatic lattice forces. Thus, the lattice of LiF can act as a diffraction
device. Figure 9.6 shows that the electric field waves will tend to cancel out from adjacent scattering
sites except at a certain angle defined by the Bragg scattering angle discovered in 1913 by William
Lawrence Bragg (son, 1890–1971) and William Henry Bragg (father, 1862–1942), a father–son
team who shared the Nobel Prize in Physics for this work in 1915.

nl ¼ 2d sin (u); n ¼ 1, 2, 3, . . .

Diffraction of waves by a crystal

nλ = 2d sin θ

d sin θ
d sin θ

d

90°–θ

θ

θ θ

FIGURE 9.6 Bragg diffraction mechanism of an electromagnetic wave by a crystal lattice.
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The main reinforcement of the waves will occur for the n¼ 1 angle, but the intensity of the second
order (n¼ 2) angle can be large and often one must use filters or even a tandem second mono-
chromator to purify the first-order wavelength. In the case of x-rays, one can use a lattice of purified
LiF to disperse a source of x-rays [7]. In the highly oversimplified schematic of Figure 9.5, we see a
naive dispersal of the Ka bands of x-rays from various elements. Actual electron microscopes with
XRF attachments are more complicated than Figure 9.5, but students need to know about the
basic principles based on the schematic in Figure 9.7 and greatly developed by Dr. Ron Jenkins
(Figure 9.8) and others. For instance, the schematic shows the principle of using the ratio of

K

+Z

Kα

Lα

L
M
N

Kβ

Lβ

FIGURE 9.7 Bohr orbits K, L, M, and N showing x-ray Auger=fluorescence transitions.

FIGURE 9.8 Ron Jenkins (1932–2002) was an English scientist who lived in the United States. He wrote four
books on the analytical use of x-ray spectroscopy and published about 230 scientific papers and 11 book
chapters. He taught these topics at the Denver x-ray conference for some 30 years. He was the first recipient of
the Ron Jenkins Award given every two years by the organizers of the Denver x-ray conference and was
executive director of the International Center for Diffraction Data. He founded the X-ray Spectrometry—An
International Journal and he is the only person to have received both the Birks Award for x-ray spectrometry
and the Barrett Award for x-ray diffraction. (By permission from the International Center for Diffraction Data.)
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windings in a transformer to create a higher voltage because you need alternating current to increase
voltage with a transformer. We also show the use of a simple diode to allow a half-wave rectification
of the high voltage alternating current to create a pulsed direct current beam. That is only for an
educational schematic, in an actual device there would be full-wave rectification with capacitors
in parallel to damp ripples in the direct current to a high degree so as to allow a continuous electron
beam to approach the optical properties of a microscope using visible light. The idea of an electron
microscope is to use a beam of electrons in place of a light beam. Thus, an electron microscope uses
very sophisticated electrostatic lenses to simulate optical lenses so the diagram is very crude but
emphasizes the Auger process and the dispersal of Ka or La x-rays into a range of characteristic
bands for the various elements.

Let us develop a formula from the Bohr model, which shows the way to calculate the Ka for each
element. We know the Ka transition is from n¼ 2 to n¼ 1, so we will have the same quantum
numbers for the Ka wavelength of all elements (in this simple model), only Z changes.

DE ¼ (Z2)
1
12
� 1
22

� �
(13:6057 eV) ¼ 12398

lKa

¼ Z2 3
4

� �
(13:6057)

so we rearrange for lKa
as

lKa
(Å) ¼ 12, 398

13:6057

� �
4

3Z2

� �
¼ 1214:981

Z2

and we see the wavelength is inversely proportional to the square of the atomic number of the
element. Thus, if we want to calculate the wavelength of the Ka wavelength for cadmium we would
find for Cd, Z¼ 48, so that the wavelength would be estimated as 0.527335 Å for the x-ray.
However, we saw the Bohr model led to a 6.2% error for Cu and Cd has a larger atomic number.
The experimental value for the Ka fluorescence wavelength of Cd is 0.5357 Å with only a 1.6%
error, so we see our simple Bohr model is good for the heavier elements. In order to eliminate this
error it would be necessary to run experimental Auger fluorescence on known samples and create a
correction table or graph. If we want to compute just the Ka voltage we can use the expression
reduced to a constant times Z2

DE ¼ (Z2)
1
12
� 1
22

� �
(13:6057 eV) ¼ (Z2)(10:204275 eV):

In the opinion of this author, it is important for students to learn the basic principles of instrumen-
tation but we need an application for motivation so an actual spectrum is shown in Figure 9.9 as
output obtained for a sample of lead shot. It is evident that the lead is in abundance but is not pure
and several other elements are present. Perhaps the most interesting feature of the scan is that there
are really two peaks for lead, Ma (2.343 keV, 5.076 Å) and Mb (2.442 keV, 5.299 Å) that are the
energies emitted when the first and second electrons fall down into the partially empty n¼ 3 orbital.
The less intense peak at higher energy is theMb transition. Note that the entire spectrum falls with a
range of (0–10 keV), so the K and L transitions are not reported but M transitions are within the
parameters of the instrument. The detection of small peaks for other elements is treated with the aid
of a software program that accompanies the instrument. For forensic applications, the relative
amounts of the impurities could vary from sample to sample and might be matched uniquely to
some unfired shot in a box of cartridges=shells obtained from a suspect in a crime. Thus, this sample
XRF spectrum illustrates Ma,b transitions for a heavy metal of interest to forensic problems along
with illustration of elemental impurities in the lead.
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ELECTRONIC ABSORPTION SPECTROSCOPY=SPECTROPHOTOMETRY

One of the most useful applications of spectroscopy in forensic science and in many biochemical
analyses is colorimetric spectrophotometry. We have exhausted the application of the simple Bohr
equation but if this is the end of your one semester in physical chemistry, we need to mention the
spectroscopy of electronic excitations of molecules. Quite a few relatively simple analyses depend
on the absorbance of a ‘‘color’’ at a specific wavelength in the range of 700–200 nm. This range is
called the ultraviolet–visible range (UV–Vis). Most UV–Vis spectrometers are not able to record
spectra below 210 nm due to solvent absorption and=or oxygen absorption at 180 nm. Gas samples
in special gas cells can be studied by flowing N2 gas though the spectrometer to displace O2 and
reach 175 nm or by evacuating the entire instrument to reach 130 nm. The cuvette sample container
will also limit the wavelength range. Glass or plastic cuvettes are opaque below 380 nm while more
expensive quartz glass cuvettes will transmit down to 220 nm. Below 200 nm, special CaF2
lenses are necessary, so in practical reality the spectral range effectively stops at about 380 nm
for single wavelength spectrophotometers or 220 nm using quartz cuvettes in an expensive scanning
spectrometer.

There are also reagents with colors at longer visible wavelengths as well as useful chemical
properties. Aqueous KMnO4 solutions transmit an intense purple color (due to absorbance of
yellow) and the compound is a strong oxidizing agent. Thus, KMnO4 is used for a variety of
spectrophotometric analyses. We introduce it here because of the general use in various analyses but
especially because it illustrates the concept of electronic absorbance. There are also characteristic
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FIGURE 9.9 XRF of nominal lead shot measured at Virginia Commonwealth University using a Kevex
Quantex ISI-130 SEM-EDX electron microscope with XRF attachment and a 20 keV excitation beam. The
y-axis is in counts because the intensity was measured with an internal pulse counter and the x-axis is given
directly in kiloelectron volt as reported with the software associated with the instrument. The spectrum was run
by James Spivey at VCU. The XRF spectrum of the lead shot reveals it is mainly lead but contains other metals
as well. Note the presence of poisonous As and Pb. Thanks are due to Rhonda Stroud of the Naval Research
Laboratory for interpretation of the spectrum and the assignment of the peak between As and Pb at 1.740 keV
as due to a K line from Si.
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groups in organic compounds that tend to absorb light in specific color ranges; they are called
chromophores. In organic compounds, chromophores tend to have double bonds with delocalized
electrons. Some inorganic compounds also have chromophore qualities, often in the visible range of
the spectrum. The Bohr model would say that the KMnO4 transitions are within the n¼ 3 shell
of Mn but we are beginning to see the limitations of the Bohr model here. By following the
historical development of spectroscopy and using only the simple mathematics of the Bohr model,
we cannot invoke a modern explanation of electronic spectroscopy for molecules. Here, we want to
mention this important technique that is simple in use and has wide application in this survey of
spectroscopy.

Spectrophotometry is usually carried out at a single, optimum, wavelength that is established
during calibration with solutions of known concentrations. The procedure is to use a simple 1 cm
path glass cuvette of solution to measure an unknown concentration. KMnO4 is a strong oxidizing
agent, so a great number of schemes can be used to measure its concentration following some test
reaction. An Internet search on the use of KMnO4 in various tests=assays should result in finding
many applications of this very useful reagent.

In order to define the type of absorbance we are discussing, we need to define the Beer–Lambert
law:

T ¼ I

I0
¼ e�el[C](l) ¼ exp �el[Cmol=L] [path length (cm)]f g; A � el[C](l):

The IUPAC recommended term for e(l) is the ‘‘molar absorption coefficient’’ and a student should
note the spelling with a ‘‘p’’; A is ‘‘absorbance’’ spelled with a ‘‘b.’’ ‘‘T ’’ is the ratio of light
‘‘transmitted through the sample compared to a blank, not the kinetic energy T ’’ and the absorbance
‘‘A’’ is the logarithm (specify the base) of T as A ¼ � ln T ¼ el[C]l. Here, ‘‘[C]’’ is the concentra-
tion in moles=liter, ‘‘l’’ is the sample cell path length in cm, and el is the ‘‘molar absorption
coefficient’’ at a given wavelength l. The intensity ‘‘I ’’ is the amount of light transmitted through
cell, solvent, and sample while ‘‘I0’’ is the ‘‘blank’’ signal of light intensity measured for only the
cell and solvent. This is a simple formula that is exploited in a large number of forensic=analytical
‘‘color tests,’’ often at a single wavelength selected for maximum sensitivity.

Example
We can use the absorbance scale on the spectrum marked ‘‘curve 1’’ in Figure 9.10 to deduce the
concentration of the KMnO4 solution. We estimate the 525 nm peak is at A¼ 0.85, and we assume a
1 cm path so we can solve for [C] as

A ¼ e525[C](l ) ¼ 2455
Mcm

� �
[C](1 cm) ffi 0:85:

and then we find

[C] ffi 0:85
2455
Mcm

� �
(1 cm)

ffi 3:46� 10�4 M:

In the simple example above, we note that the molar absorption coefficient for KMnO4 [8] is quite
large at 525 nm and that the Beer–Lambert law can be used for very dilute solutions.

Low-cost spectrophotometers are available for single wavelength measurements but a scanning
spectrometer is a more substantial piece of instrumentation that can produce a spectral curve.
The scanning option is a decided luxury compared to hand-plotting data for single-point readings.
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Most spectrometers offer the option of plotting the spectrum in terms of absorbance ‘‘A,’’ ‘‘%T ’’,
or ‘‘e(l).’’ Thus a spectral scan can be recorded with a constant concentration and path
length but the e(l) will vary with wavelength and a scanned spectrum can be obtained as
A(l)

[C](l)
¼ e(l). UV–Vis spectra can then be related to the energies at which electronic transitions

absorb energy in terms of e(l). For KMnO4, the 525 nm absorbance corresponds to

DE (eV) ¼ 12,398

5250 Å
ffi 2:36 eV.

INTERPRETING ELECTRONIC SPECTRA

It should be clear that the Bohr model cannot easily explain the electronic spectrum of the
permanganate ion, (MnO4)

�. We had to provide a foundation in thermodynamics and kinetics in
the early chapters. Much of that material is what this author would call ‘‘old but essential’’ science
from before 1913. However, a huge modern area of science is still relatively untouched here so far in
the form of molecular quantum mechanics (Chapters 11 through 14). Consider the spectrum of
KMnO4. Historically, Bohr orbitals were followed by Erwin Schrödinger’s improved solution of the
H atom orbitals in 1926 and that was extended to specifically include the effect of electron spins by
Paul Dirac in 1928. With these orbitals, a team under D. R. Hartree set up a process called the ‘‘self-
consistent field’’ (SCF) method in the 1930s. The Hartree SCF method was improved by V. A. Fock
and J. C. Slater in 1930. An oversimplified description of the SCF method is to use 3D-orbital
functions (‘‘probability clouds’’ instead of Bohr rings) to describe electron positions, calculate how
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FIGURE 9.10 The visible spectrum of aqueous KMnO4. The wavelength usually chosen for maximum
sensitivity and stability is 525 nm. The molar absorption coefficient of aqueous KMnO4 is e525 ¼ 2455=Mcm

[8]. Note this is an absorbance of green-yellow-orange light and the transmitted light is the remaining redþ
blue¼ purple color of whatever white light source is behind the sample. The sample absorbs light but the human
eye ‘‘sees’’ transmitted or reflected light. (Spectrum contributed by James Holler of the University of Kentucky.)
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the interactions between the electrons change the weighting of the orbital functions to lower the
energy, then recalculate the electron interactions. This was done iteratively until convergence was
achieved. From thermodynamics, we know ‘‘energy goes down-hill’’ while ‘‘entropy tends to
increase.’’ For the SCF process, there is a powerful theorem shown in Chapter 16 called the
Variation Theorem that proves that lower energy approaches the true energy from above as long
as the numerical calculations are correct; even for a function which is a guess. All of this activity in
the 1930s was applied to one-center cases of atoms. Molecules larger than H2 were beyond
treatment. In 1951, a breakthrough by C. C. J. Roothaan (Chapter 17) was made when a procedure
was derived as the linear combination of atomic orbitals to treat molecules. Even so, the applications
were limited to molecules of light elements, mostly organic compounds.

Rapid improvement in computers played a large role in the development of ‘‘quantum chemis-
try’’ in the 1960s but still there was a computational barrier against treating metal complexes
including all the electrons. However, the early computer programs for the atomic Hartree SCF
method were refined and very fast for one-center atomic problems. Thus, the emerging field of
quantum chemistry was ripe for an explosive development by K. H. Johnson [9] and his colleagues
in 1972. He used the one-center computer programs in what was called the multiple-scattering
X-alpha (MS-Xa) method with a ‘‘muffin-tin’’ treatment of molecules. Each atom was treated as a
spherical system set in an outer spherical field where electrons could roam and ‘‘exchange’’ with
each other as well as be scattered in the space between the atoms. Since electrons are indistinguish-
able, accurate calculations need a way to express the possibility of the interchange (exchange) of
electrons. A major innovation was to use an approximation invented=derived by J. C. Slater called
the ‘‘Xa’’ exchange formula, an empirical way to calculate the exchange energy that lowers the
calculated energy.

VXa(~r ) ffi �6a 3
8p

� �
r(~r )

� �1
3

,

where r(~r ) ¼ c *c(~r ). With that approximation to allow indistinguishable electrons to exchange
positions, the rest of the calculation could use Coulomb’s law for electron–electron repulsion,

V ¼ þ eq1eq2

r12
, and electron attraction to nuclei, V ¼ � (Zeq)eq

r12
. It was found necessary to represent

the kinetic energy of the electrons as proportional to the second derivative of the electron cloud
wave functions but this was all worked out from Schrödinger’s 1926 derivation. The Coulomb
interactions could be evaluated using numerical integration over a grid of points in a way similar to
the trapezoid rule for 1D integration and so we see Johnson’s scheme in Figure 9.11. The state-of-
the-art at that time was that the method was well established as long as the problem was for only one
atom at the center of the coordinate system. Johnson’s innovation was to merge these spherical
atoms into molecules. Although you will have to read later chapters to fully appreciate the Johnson
‘‘muffin-tin potential’’ and J. C. Slater’s contributions to quantum chemistry, we show you the
results here to offer a more modern treatment of electrons than the flat Bohr orbitals and to try to
explain the electronic spectrum of KMnO4.

In 1972, Johnson used Schrödinger’s orbital notation first derived in 1926 and that is probably
familiar to you from your freshman chemistry text. In Figure 9.12, we see the energy level scheme
for MnO4

� with the Mn valence shell orbital levels on the left and orbital levels for O on the right.
In the middle, we see the calculated levels for the complete MnO4

� tetrahedral complex (valence
shell). Here, we see the use of symmetry labels for a Td point group, the condensed spatial
description of a tetrahedral object. Point group theory is discussed in Chapter 18. This author was
at a conference where these results were presented (The Quantum Chemistry Symposium No. 6,
1972, held at Sanibel Island, Florida) and in spite of many experts in attendance, there was a hush
over the audience when Figures 9.13 and 9.14 were shown of the contours of electron orbital clouds
in the O–Mn–O bonds. At the time, this was truly amazing.
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FIGURE 9.11 The Xa ‘‘muffin-tin’’ potential for the tetrahedral MnO4
� ion showing the values of a used in

each (spherical) cup of the muffin-tin. Within each spherical region a numerical Hartree one-center SCF
calculation was carried out with Xa exchange and the entire complex was contained in an outer region of
exchange. The wave functions were matched at each boundary to maintain single-valued, finite, and continuous
functions. Matching the boundaries used mathematics developed for particle-scattering, hence the name
‘‘multiple scattering.’’ Although this method certainly depends on using a computer, it is simpler than methods
used today (2010) but more sophisticated than the Bohr theory. (With permission from Johnson, K.H. and
Smith, F.S., Phys. Rev. B, 5, 831, 1972. Copyright 1972 by the American Physical Society.)
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Rydberg energy units championed by the MIT group under J. C. Slater. Today we would use 1 rydberg¼ 0.5
hartrees. (With permission from Johnson, K.H. and Smith, F.S., Phys. Rev. B, 5, 831, 1972. Copyright 1972 by
the American Physical Society.)
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One of the main changes in interpretation of electron orbits going from the Bohr rings to
Schrödinger ‘‘c clouds’’ is that the Schrödinger interpretation is more delocalized. A second key
difference is that the wave function has to be squared to obtain the actual probability as c *c ¼ r.
Rather than picturing electrons circling nuclei as in the Bohr model, the more recent interpretation is
that the electrons are very light and moving very fast so all we can say about their position is that
they are described by a function that is the square root of the probability, a wave function ‘‘cloud’’
rather than a ring. In Figures 9.13 and 9.14, we introduce pictures drawn of such wave functions in
the form of contour maps. Contour maps are 2D representations with a third dimension represented
as a closed line to show the outline of a ‘‘slice.’’ Contour maps are often used to show height in land
maps. It was not until the late 1960s and 1970s that computers were capable of easily calculating
such functions and making the drawings. The simple conclusion from Figures 9.13 and 9.14 is that
MnO4

� is a tetrahedral anion complex and each of the four O atoms is connected to the Mn atom by
two bonds (sþ p) for a total of eight bonds. Developments in chemistry and physics between
1913 and 1972 and on to 2010 are outlined in later chapters. Please note that while the derivations
in the later chapters are difficult, the emphasis is on learning the conclusions from those derivations,
so just ‘‘read’’ the derivations and pay attention to the results and it will not be difficult at all
(note the experimental facts in Table 9.3) if we learn to look for the conclusions, the ‘‘take home
message’’ of tedious calculations.

We have jumped ahead rapidly in the historical sequence of this chapter, because the Bohr atom
model cannot provide an explanation of the KMnO4 spectrum and to encourage you to take the
second semester of physical chemistry to learn about more modern developments. But now what
does this mean relative to the purple color of KMnO4? One of the limitations of this MS-Xamethod
was that the only way you can get reasonable values for the transition energies between the
calculated orbitals is to use what became known as the ‘‘half-electron method.’’ In that method, it
was realized that if you excite an electron from the ground state to an upper orbital, there should be
some reorganization of the ground state orbital clouds. Thus, 0.5 of an electron was placed into the
occupied orbital and 0.5 of an electron was placed in the higher orbital to represent a ‘‘transition’’ for
an electronic excitation. At the time, this was accepted because it was an easy calculation and gives
reasonable results, but it was clearly the weakest part of the theoretical treatment. Today, there are
much more sophisticated ways to find the transition energies that account for the reorganization of
the other electrons when one is excited to a higher level. But here is the payoff. Using the calculated
HOMO ! LUMO energy as the 1t1! 2e transition we find that

lHOMO!LUMO ¼ 12, 398
2:3 eV

¼ 5390 Å ¼ 539 nm:

Look back at Figure 9.10. While 525 nm is usually chosen as the most stable wavelength for
spectrophotometry, it is clear that overall, the peak of the absorbance spectrum is very close to 539 nm.
In fact, 539 nm is probably closer to the true transition energy of DE(1t1 ! 2e) than 525 nm since

TABLE 9.3
Electronic Transition Energies for MnO4

�

Transition Unrelaxed SCF Half-Electron Experiment

1t1 ! 2e 2.1 2.3 2.3

6t2 ! 2e 3.2 3.3 3.5

1t1 ! 7t2 4.5 4.7 4.0

5t2 ! 2e 5.3 5.3 5.5

Source: Johnson, K.H. and Smith, F.C., Phys. Rev. B, 5, 831, 1972.
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the lowest energy part of a broad electronic transition starts at the red edge. At the time this
calculation was presented, it was sensational and it eventually led many researchers to continue to
improve the Xa idea to what is now modern density functional theory (DFT). This type of
calculation, although an approximation, encouraged further development of the idea that the
electron–electron exchange can be parameterized with more refined functions. Today, the majority
of modern quantum chemistry invokes some form of a parametric calculation for electron–electron
exchange within a DFT program, although there are competing models that try to avoid any
parameters. In Chapter 17, we discuss the fact that even the best DFT exchange potentials still
use some form of analytical ‘‘Hartree–Fock exchange.’’ The problem of how to represent electron–
electron exchange between indistinguishable particles is not fully solved as of 2010 and research
continues to search for exact formulas.

GENERAL PRINCIPLES OF SPECTROSCOPY

We hope a few points were made regarding spectroscopy in this brief treatment. This has been a
‘‘broad brush’’ view of spectroscopy using mostly the simple mathematics of the Bohr H atom, so
that we can consider several types of spectroscopy in what may be the only opportunity if this is a
one-semester treatment. Spectroscopic topics in the latter chapters of this text will be more precise
but require a foundation of more detailed mathematics.

1. Spectroscopy involves measurement of electromagnetic radiation as absorbed or emitted
from atoms and molecules between definite energy levels and can be characterized by
wavelength or frequency. Light energy is proportional to frequency, e ¼ hn, and angular
momentum is quantized as well (mvr ¼ n�h).

2. The Bohr model of the H atom was derived to obtain two key formulas:

E(n,Z) ¼ � Z

n

� �2

(13:6057 eV)

and

r(n,Z) ¼ n2

Z

� �
(0:5291772 Å)

3. The electron volt unit of energy and the wave number quantity were encountered in this
brief introduction to spectroscopy. A survey of units used in spectroscopy was presented as

a preparation for further studies. The valuable formula DE (eV) ¼ 12,398

l (Å)
was derived.

4. We noted some details of basic electronic circuits and diffraction of electromagnetic
radiation. LiF was mentioned as a crystal for use as an x-ray diffraction device.

5. Examples were shown here based mainly on applications of the Bohr model of the atom for
the H-atom spectrum and XRF. The Bohr model only applies to systems with a single
electron orbiting a single positive ion. The model can be used for systems with more than
one electron to treat an outer electron shell as orbiting a spherical inner ion with a
noninteger effective nuclear charge. It was necessary to define the molar absorption
coefficient e(l) to understand molecular electronic spectra and the Beer–Lambert law
was illustrated for aqueous KMnO4.

6. Concepts like excitation, emission, quantum numbers, and electron volts have all been
introduced in a framework of simple algebra, so in later chapters we can focus on the
quantum phenomena with familiarity of concepts and units already in hand.
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7. The example of the very useful spectrophotometric reagent KMnO4 is analyzed using ideas
that will be presented in the later chapters of this text to illustrate the concept of electron
orbitals as ‘‘clouds’’ instead of Bohr rings and an illustration is given for an excellent early
calculation of the electronic absorbance of KMnO4.

PROBLEMS

9.1 Given the ionization potential of the Li atom is 5.391719 eV, compute the effective nuclear
charge (Zeff) experienced by the outer 2s electron using the Bohr model. Use the value of Zeff
to calculate the Bohr radius of the 2s orbital.

9.2 Given the ionization potential of the Na atom is 5.139076 eV, compute the effective nuclear
charge (Zeff) experienced by the outer 3s electron using the Bohr model. Use the value of Zeff
to calculate the Bohr radius of the 3s orbital.

9.3 Given the ionization potential of the K atom is 4.3406633 eV, compute the effective nuclear
charge (Zeff) experienced by the outer 4s electron using the Bohr model. Use the value of Zeff
to calculate the Bohr radius of the 4s orbital.

9.4 Given the ionization potential of the Rb atom is 4.177128 eV, compute the effective nuclear
charge (Zeff) experienced by the outer 5s electron using the Bohr model. Use the value of Zeff
to calculate the Bohr radius of the 5s orbital.

9.5 Compute the Bohr radius and the energy of the H atom for n¼ 1, 2, 3, 4.
9.6 Calculate the energy and radius of the n¼ 1 orbit for H, Heþ, Li2þ, Fe25þ, and U91þ.
9.7 Calculate the energy of the (n¼ 1) to (n¼ 2) transition of the H atom in electron volts, wave

numbers, wavelength, and frequency.
9.8 Make a small table of the Ka values from Table 9.1, the Ka(calc) value and the corrected

value Ka* (calc) along with the lKa
value from the experimental value and the value calculated

from Ka* (calc) energy for the following elements: B, Na, Cl, Fe, and Ag.
9.9 Estimate the absorbance (A) of KMnO4 at 525 nm in curve 2 of Figure 9.5 to calculate the

concentration of the solution.
9.10 Assume that LiF exhibits a first-order Bragg diffraction at an angle of 29.68 for 6.23 keV

x-rays. Use the Bragg’s law to compute the ‘‘d’’ value from this data. Keep in mind that
although LiF has a cubic crystal structure, there are quite a few possible distances that line up
in the crystal when viewed from various angles but what is the ‘‘d’’ for this Bragg reflection?
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10 Early Experiments
in Quantum Physics

INTRODUCTION

We tried to introduce the idea of quantization in Chapter 9 as a completion of a one semester course.
However, we skipped over some really interesting events in the history of Science between 1900
and 1913 when Bohr derived the quantized energy of the H atom. First we want to carry out the
1901 Planck derivation of the formula for blackbody radiation [1]. Many texts just show the curve,
write e¼ hn, and move on. As a student, this author found that limited explanation very frustrating
since energy quantization is a fundamental concept. Even among graduate texts in quantum
mechanics, we are aware of only one that does the complete treatment which we will draw upon
for the mathematics [2] but supplement with a narrative that we have found helpful to students over
the years. Then in 1905, Albert Einstein (1879–1955), one of the most influential scientists of all
time, gave an explanation of the photoelectric effect [3] for which he received the Nobel Prize in
1921. Even reducing our list to essential topics, we need to discuss the Davisson–Germer
experiment [4]. The photoelectric effect introduces the idea that light waves can act as particles
while the Davisson–Germer experiment showed that particles can act like waves and confirmed the
De Broglie equation [5]. However, you can be assured that it will not be as difficult as you might
have anticipated and if you can absorb the meaning of just these three key experiments you should
be able to begin thinking in terms of quantum mechanics! Despite our slow historical development,
this is 2010 and we have to get to the twenty-first century somehow!

STEFAN–BOLTZMANN LAW: RELATING HEAT AND LIGHT—PART I

We do not want you to forget the thermodynamics you learned in earlier chapters but historically
there was a shift in science with the idea of energy quantization in 1900. There was awareness of the
connection between heat and light before the late 1800s but one of the first quantitative treatments
was by Boltzmann and his doctoral mentor Jozef Stefan (1835–1893), an Austrian physicist and
Ludwig Boltzmann’s PhD thesis advisor. Prior to the concept of quantization, the arguments were
thermodynamic in nature. Recall the HUGA equations of thermodynamics and the form of the first
law for a closed system as dU¼ TdS�PdV and the equation for the Helmholtz free energy

dA¼�Sdt�PdV. Equating the second derivatives
q2A
qTqV

¼ q2A
qVqT

) � qS
qV

� �
T

¼ � qP
qT

� �
V

which will be useful here and leads to
qU
qV

� �
T

¼ T
qP
qT

� �
V

�P. Another fact needed is beyond the

level of this text as a relationship that comes from Maxwell’s electromagnetic theory in that there is

a weak ‘‘electromagnetic pressure’’ P ¼ r

3
, often discussed in Astronomy relative to intense light

from stars. This feeble pressure is predicted by Maxwell’s equations for electromagnetic waves but
its measurement is made difficult by thermal gas heating even in a partial vacuum. The common
Crookes radiometer (http:==www.strangeapparatus.com=Crooke_s_Radiometer.html) actually works
via thermal heating of air around small paddle wheel vanes exposed to intense light in a partial
vacuum. However, in 1933, Bell and Green [6] improved on earlier experiments and succeeded in
measuring this small pressure to rotate some small vanes (glass plates) suspended by delicate quartz
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fibers in a vacuum of 10�6 mmHg. Chemistry students should be pleased that the HUGA equations
we learned earlier are also important in astronomy. Suffice it to say there is such pressure as related
to the density of the radiation r(T ), which is a function of the absolute temperature. Then we have

r(T) ¼ U

V
so that U¼ r(T )V so the energy is the energy density per unit volume times the volume

and
qU
qV

� �
T

¼ r. Then, when we express the pressure in just one of three dimensions, P ¼ r

3
, we

find
qP
qT

� �
V

¼ 1
3
dr

dT
. Now the energy expression becomes

qU
qV

� �
T

¼ T
qP
qT

� �
V

�P so that

) r(T) ¼ T

3
dr(T)

dT

� �
� r(T)

3
. Rearranging we find

4r(T)
T
¼ dr(T)

dT
and furtherð

4dT
T
¼
ð
dr(T)

r(T)
) 4 ln T þ C ¼ ln r(T). This can be put in final form using experimental meas-

urements of the constant to find that a ¼ anti ln (C) ffi 7:5657� 10�16 (J=m3 K4) and that

r(T) ¼ aT4:

This expression is used by astronomers to estimate the temperature of stars, and later in this chapter
we will ask if the Planck theory agrees with this macroscopic relationship.

We have shown the Stefan–Boltzmann Law to indicate a boundary between macroscopic
thermodynamics and a revolutionary new way of thinking about energy in terms of quantization.

BLACKBODY RADIATION: RELATING HEAT AND LIGHT—PART II

We are now going to show the details of one of the most important advances in science in the early
twentieth century and we are going to give all the details so you appreciate there is no philosophical
‘‘wiggle-room’’ around the inescapable conclusion of energy quantization. The derivation is in two
parts. The first part has to do with counting how many waves can fit into a cubical volume and is
tricky, but correct. The wave-counting part of the problem is just a necessary exercise to compare
the final equation to experimental data. The second part of the derivation is the revolutionary
concept but the mathematics is much simpler and only involves summing a geometric series. While
the ‘‘mode counting’’ part of the derivation is necessary, a student should ponder deeply over the
summation of a discrete series to get the average energy per mode! The second step is easily learned
and it really is an important part of science education!

One of the unsolved mysteries of the late 1800s was an understanding of the blackbody radiation
spectrum. Ideally, a black body is one which is in thermal equilibrium between absorbing and
emitting radiation, as such it would appear ‘‘black.’’ A real blackbody can be approximated by a box
with a pinhole since light going in the hole would be absorbed but what light comes out would be
characteristic of the temperature of the interior and the spectrum does not depend on the material
used for the box. We offer a very crude schematic in Figure 10.1 to convey the sense of the problem.
Common experience teaches us that hot objects can give off a color that changes from red to orange
to yellow to white as the temperature increases. In principle, careful measurements can be made of
the spectrum of an object using a dispersing element such as a prism or a grating and recording the
dispersed light on film or more modern electronic devices (Figure 10.2). Due to the success of the
Maxwell equations and the experiments of Hertz, there was an air of confidence among physicists
that all the equations were available to explain the blackbody spectrum. If you read some of the
histories of this period in Science on the Internet, you will better appreciate the mental groping
regarding the nature of light. The Rayleigh–Jeans treatment of this problem was carried out from
1900 to 1905 by British scientists and perhaps overlooked the 1901 work by Max Planck (1858–
1947), a German scientist who later received the Nobel Prize for his work in 1918 (Figure 10.3).
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In relation to the introductory thermodynamic equations of the Stefan–Boltzmann law we note
that Max Planck had been a professor of physics since 1889 specializing in thermodynamics. There
is a very interesting history of Planck’s discovery on the Internet at http:==www.daviddarling.
info=encyclopedia=Q=quantum_theory_origins.html. In fact Planck’s interest was initially related
to an equation he had tried to find relating Boltzmann’s entropy to Wein’s law. Wein’s law was
simply that the color of a hot object shifts with temperature and Planck developed the quantized
equation to explain Wein’s law. Wein’s ‘‘law’’ is just an empirical observation that Planck tried to
put on a firm foundation, although Planck approached the problem from a thermodynamic approach.
Wien’s Law relates the wavelength of the spectral maximum to temperature as [7]

lmaxT ¼ 2:90� 10�3 m � K

0.25

0.20

1000°K

100°K
200°K

300°K

500°K

0.15

0.05

Fr
ac

tio
n 

of
 ra

di
an

t p
ow

er

0
0 5

(a)
15 20 25 30 35 40

Wavelength, μm
10

0.10

Blackbody lambda (max) vs. T (°K)

T (°K)
12,00010,0008,0006,0004,0002,0000

(b)

0

20

40

60

80

100

120
y = 0.0103x + 0.0014
R2 = 1

FIGURE 10.1 (a) The radiative power emitted by a blackbody at various temperatures illustrates Wein’s Law.
(b) The blackbody curve maximum wavelength in mm (10�6 m) at different temperatures (dash) clearly
showing the shift of the intensity maximum toward the blue (shorter wavelength) as the temperature increases.
The shift in wavelength maxima is shown in (b). The straight solid line is the frequency in 1013=s of the
maximum of the blackbody radiation. While the smooth curves in (a) show a trend, the straight line of
the frequency maxima with temperature is extremely good with R2¼ 1, and the dashed line is the relative
height of the maxima. (Data from Lide, D.R., CRC Handbook of Chemistry and Physics, 90th Edn., CRC Press,
Boca Raton, FL, 2010, pp. 10–243. With permission.)
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The Rayleigh–Jeans formula for the blackbody radiation curve failed disastrously for short wave-
lengths and high frequencies but Planck was perhaps motivated mostly by his interest in Wien’s
empirical ‘‘law.’’ At that time it was believed that there would be many tiny discrete oscillators in
the cube of metal shown in Figure 10.1 and these oscillators emitted light as a function of
temperature so we will follow the classical Rayleigh–Jeans derivation up to a point. Assume the

Film

Heat source

Prism
Lens

Slit
Fe

Thermometer

FIGURE 10.2 A schematic of measurement of blackbody radiation from a heated source.

FIGURE 10.3 Max Planck (1858–1947) was a German physicist who solved the problem of the blackbody
radiation curve by assuming energy is quantized which is the foundation of quantum theory. He is considered
one of the foremost scientists of the twentieth century and a number of research institutes in Germany are
named after him. He received the 1918 Nobel Prize in physics for his work. We have mentioned that Albert
Einstein encouraged Planck’s interpretation of quantization and here Planck is presenting the Planck gold medal
to Albert Einstein in 1929.
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dimensions of the block are L� L� L¼V. While we are interested mainly in the internal waves in
the block, we do need to have an ‘‘observation hole’’ and we might discuss the light waves in the
cavity only but here we assume the waves are part of what is going on inside the whole block and
just continue across the interior hole. That is a key point because Planck assumed the oscillators in
the wall of the observation cavity set up the waves. We will see that Planck derived an exact fit to
the blackbody radiation spectrum but he did not believe it himself for several years and others
regarded it as a sort of parameterized fit due to the use of h as an adjustable constant.

An important point occurs here in that in 1905, Einstein [2] called attention to the idea of
quantized radiation waves ‘‘in the cavity,’’ which are now called ‘‘photons.’’ This is a very difficult
concept but perhaps we can say that if the walls of the cavity are emitting light then the light
observed in the hole will be that emitted light. Then if waves are involved, assume that only an
integer number of wavelengths can fit into each dimension and that the waves continue throughout
the block and across the observation hole (a thinking person will note that automatically

introduces integers into the derivation!) we have
L

l

� �
¼ n. Multiplying by 2p we obtain

2p
L

l

� �
¼ n2p ¼ 2p

l

� �
L. We can define another characteristic of a wave called the ‘‘wave

number’’ as kl ¼ 2p
l

� �
and so we get klL¼ n2p and this will apply in each of the (x, y, z)

directions. Thus we have three values for the three dimensions klxLx¼ nx2p, klyLy¼ ny2p, and
klzLz¼ nz2p. However, we know from polarizing sunglasses that light can be polarized in two
planes orthogonal to the direction of propagation so any arbitrary polarization has to be some
combination of two possible polarizations and we will have to multiply our count of possible waves
by 2 later on. For now we see that our scheme for counting the number of waves in (Lx, Ly, Lz)
depends on a triad of values as (nx, ny, nz) including degeneracies (for a cube) such as (1, 2, 3), (2, 1, 3),
(3, 1, 2), etc. Thus we need a counting scheme that will be able to treat these degeneracies as well as
high values of the indices (nx, ny, nz). Since we know the n values will be very high for a large
number of possible waves, we need a ‘‘scoreboard’’ representation and a very clever method is given
in [2] (Figure 10.4). The relationship of this scoreboard is similar to the scoreboard in a stadium.
The scoreboard is not the game but it is related to the game! Here we see that as the n values get
larger and larger we can define another variable n2 ¼ n2x þ n2y þ n2x as the square of a radius vector in

nx

nz

ny

FIGURE 10.4 A ‘‘scoreboard’’ to count the energy modes in a radiating blackbody.
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‘‘n-space’’ and we note that the n values can be negative so the possible values of this degenerate
n-space forms a surface that tends to be like the surface of a sphere.

Thus the number of modes can be written as (# modes)¼ 2(4p)n2dn. Then we use k ¼ 2pn
L

to

find dn ¼ Ldk

2p
and so we find that the number of nodes per unit volume is

n

V

� 
¼ 8p

kL

2p

� �2 L

2p

� �
dk

L3
¼ k2dk

p2
. Finally we convert back to use c¼ ln and dk ¼ 2p

c
dn to

find
n

V

� 
¼ k2dk

p2
¼ 1

p2

� �
2pn
c

� �2 2p
c

� �
dn ¼ 8pn2dn

c3
.

Although this is a rather complicated way to count all the nodes in a given volume, it has been
checked over and over and we are telling you the ‘‘right way’’ rather than just making a statement.
This difficult task has a reward however. In the late 1800s, the Boltzmann influence would predict
an average energy per mode of (kBT) for each ‘‘mode’’ since they were due to some sort of oscillator.

An oscillator intrinsically has 2
kBT

2

� �
¼ kBT for the combined kinetic and potential degrees of

freedom that cannot be separated, so the number of modes per volume should be multiplied by kBT!
So that is simple, after the tedious but correct counting scheme we get the Rayleigh–Jeans formula

as
n

V

� 
¼ r(n)dn (Figure 10.5). Thus we have

Rayleigh�Jeans) r(n)dn ¼ 8pkBTn2dn
c3

:
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FIGURE 10.5 The Planck radiation curve at three temperatures showing the increase in intensity with
temperature. One can also see a slight shift of the peak toward the blue at the temperature increases as is
familiar when heated objects glow red, orange, yellow, then white as the temperature increases. (From Prof.
Mike Guidry of the University of Tennessee Knoxville Department of Physics as used in their Astronomy 162
course. http:==csep10.phys.utk.edu=astr162=lect=light=radiation.html With permission.)
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It is easy to see that as the frequency increases as n2 in the ultraviolet and the x-ray range, the

‘‘density of states’’
n

V

� 
¼ r will increase to1 contrary to experimental data! We also need to alert

the reader to an interesting dilemma here. Note that since c¼ ln, dn ¼ �cdl
l2

. Since the convention

in plotting graphs is to show the x-axis increasing to the right we will have to agree to suppress the

sign of one or the other if we plot the graph in terms of n or l and we have r(n)dn ¼ 8pkBTn2dn
c3

using frequency or r(l)dl ¼ 8pkBT
c3

c

l

� 2 �c
l2

� �
dl ¼ � 8pkBTdl

l4
when using wavelength. How-

ever, as one goes to shorter wavelengths (l ! 0) the density of states still diverges to 1 so the
Rayleigh–Jeans formula diverges in either frequency or wavelength form! We did the tricky
counting scheme in detail so that you know it is correct and that is not the problem. Rayleigh

and Jeans depended on the average energy per mode as �e ¼

ð1
0
ee�

e
kBTdeð1

0
e�

e
kBTde

¼ (kBT)
2

(kBT)
¼ kBT where

we have used 0!¼ 1 and our old friend from Introduction as
ð1
0
xne�axdx ¼ n!

anþ1
. Surely we do not

think Boltzmann was incorrect?
In 1901, Max Planck pondered this dilemma and tried a revolutionary assumption. Maybe the

problem is in using
ð1
0
de that assumes the energy is a smooth continuous variable? That is, maybe

the energy is not a smooth continuous variable? Thus Planck tried using S instead of

ð
de. An

integral sign is a form of continuous addition but if energy exists as small chunks, quanta, then
maybe you have to use a discrete summation over the states. One can pose the question as to
whether smooth peanut butter is really an oil or just some finer version of chunky peanut butter.
Close examination shows that smooth peanut butter is just smaller chunks of peanut in an oil base!
Thus Planck considered the average energy of discrete ‘‘quantum’’ chunks (Figure 10.6).

�e ¼
P1

n¼0 (ne)e
� ne

kBTP1
n¼0 e

� e
kBT

¼
P1

n¼0 (ne)x
nP1

n¼0 xn
where we have used the previous analogy of the average
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FIGURE 10.6 Normalized blackbody radiation for three stars using the Stefan–Boltzman equation to estimate
the temperature of the stars. (From Prof. Mike Guidry of the University of Tennessee Knoxville Department of
Physics as used in their Astronomy 162 course. http:==csep10.phys.utk.edu=astr162=lect=light=radiation.html
With permission.)
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grade of students in a class to make sure we divide the thing we are averaging by the number of
students in the class, ‘‘normalizing’’ the weighted-average. It helps to simplify the summation if we

define x � e�
e

kBT

� 
and note that Planck defined the discrete energy as E¼ e, 2e, 3e, 4e . . . You may

recall a geometric series from calculus? Let f (x)¼ 1þ xþ x2þ x3þ x4þ � � � for x< 1.

f (x) ¼ 1þ xþ x2 þ x3 þ x4 þ � � �
� [xf (x) ¼ xþ x2 þ x3 þ x4 þ x5 � � � ]
_______________________________

(1� x)f (x) ¼ 1

As long as x< 1 we can do this trick to find the sum of f (x) ¼ 1
(1� x)

. Further, we can take the

derivative of f(x) as
df (x)

dx
¼ d

dx

1
1� x

� �
¼ �(�1)

(1� x)2
¼ 1þ 2xþ 3x2 þ 4x3 þ 5x4 þ � � �, but recallP1

n¼0 (ne)x
n ¼ exþ 2ex2 þ 3ex3 þ 4ex4 þ � � � ¼ (ex)(1þ 2xþ 3x2 þ 4x3 þ � � � ) and this means

that �e ¼ [ex=(1� x)2]

[1=(1� x)]
¼ (ex)

(1� x)
¼ ee�

e
kBT

1� e�
�e
kBT

�  ¼ e

eþ
e

kBT � 1
�  in a closed form! Next, Planck

made a very famous assumption based on Maxwell’s 1865 hypothesis that light is an electromag-
netic wave and Hertz’ 1886 experiments that radio waves can be transmitted and diffracted. Planck
proposed that the energy of light is proportional to frequency, e¼ hn. Note that at this point Planck
did not know h and in fact his idea was so revolutionary (energy chunks indeed!) that one of the
criticisms of his calculation was that he had to adjust the value of h by choosing a value that fit the
data. In fact if you check the dates, Jeans published additional work in 1905 using the Rayleigh–
Jeans formulation after Planck’s 1901 work! So now we are ready for the amazing result of Planck’s
assumption of quantized energy.

Planck) r(n)dn ¼ 8pn2

c3
hn

e
hn
kBT � 1

� �
dn ¼ 8phn3gn

c3 e
þhn
kBT � 1

� 

Skeptics criticized h as an adjustable parameter, but when Planck chose h¼ 6.626� 10�34 J � s he
was able to fit the experimental to the experimental data for essentially an exact fit! One of the main
critics was Wilhelm Ostwald (1853–1932), a German physical chemist, who did not accept the
atomistic theory and believed energy is continuous. While Planck also was skeptical about the
existence of atoms, he had to adjust his thinking when his equation produced an exact fit to
experiment based on quantization. In 1909, Ostwald was awarded the Nobel Prize for his work
with catalysis. From this brief discussion, you can see that even at this late date Boltzmann’s 1866
KMTG prediction of tiny gas atoms was not widely accepted. The term ‘‘ultraviolet catastrophe’’
was only used later by Paul Ehrenfest in 1911 and Planck was motivated mostly by the shift in
wavelength peak with temperature due to his background in thermodynamics.

Note the long wavelength agreement of the Rayleigh–Jeans function with experiment, does
Planck’s formula satisfy this condition?

lim
n!0

hn

e
hn
kBT � 1

� �
¼ lim

n!0

h
h

kBT

� 
e
þhn
kBT

2
4

3
5 ¼ kBT where we have used L’Hopital’s rule for the limit. That

is amazing for the low frequency limit but what about the high-frequency limit? Recall fromChapter 0
that ex¼ 1þ xþ x2þ x3þ x4þ � � � and that ex will dominate any integer power of xn because
ex contains in its series every power of x and one higher power for any given single power of x!
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Thus we have lim
n!1

hn

e
hn
kBT � 1

� �
¼ 1

e1
� 

¼ 0. So the amazing thing about Planck’s average energy

expression is that it goes to zero at the high frequency end and is asymptotic to the experimental curve
at the low frequency end!We have indulged in your patience with the tedium of the derivation because
it is exact! Energy is quantized!

One additional amazing confirmation is that we can integrate Planck’s formula over all frequen-
cies to obtain the total emissive power to compare to the Stefan–Boltzmann lawð1
0
r(n)dn ¼ 8ph

c3

ð1
0

n3dn

e
hn
kBT � 1

�  ¼ 8ph
c3

� �
kBT

h

� �4 ð1
0

x3dx

(ex � 1)
by substituting x ¼ hn

kBT
. How-

ever, this involves a very difficult integral, which can be solved by an expansion technique

and term-by-term integration but it is readily found in a table of integrals as
ð1
0

x3dx

(ex � 1)
¼ p4

15
.

Thus we can derive
ð1
0
r(n)dn ¼ 8ph

c3

� �
kBT

h

� �4
p4

15

� �
¼ 8p5k4B

15h3c3

� �
T4 ¼ aT4, which agrees

with experiment!

PHOTOELECTRIC EFFECT

Once again we invoke our strategy of not discussing all of the amazing discoveries in the early
1900s but focusing on the ‘‘essential’’ facts. Some biographies of Albert Einstein reveal that perhaps
he was the foremost advocate of the idea of tiny atoms in nature, agreeing with Boltzmann.
Throughout the 1800s, there were a number of experiments that showed that light could knock
electrons out of a metal surface. The strange thing about the effect was that it seemed to depend on
thewavelength=color of the light and did not depend on the intensity of the incident light. In Figure 10.7,
we show a schematic of an evacuated chamber and a simple direct current circuit used to measure
the current of electrons flowing through the vacuum from a metal surface to a collection electrode.

Prism
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– +

Volts

Amps

Vacuum
e–

FIGURE 10.7 Schematic of the measurement of the photoelectric effect. Note the opposite polarity of the
stopping potential part of the circuit.
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The circuit also includes a battery for a voltage source and a variable resistor to adjust the voltage of
the battery output, but note especially that the polarity of the battery is opposite to the polarity of the
phototube! This arrangement is called a ‘‘bucking potential’’ and it opposes the current flow from
the phototube due to a voltage controlled by the variable resistor (the small slash of the battery
symbol is the negative plate, the larger slash is the positive plate). Assuming a white light source, a
slit and a prism can be used to select the color of the light. It was found the photocurrent ceased as
the color reached a limit in the red direction. The experiment was designed to use the adjustable
bucking potential to find the voltage on the voltmeter at the bottom of the circuit that would stop
the current flow reading on the ammeter. A series of stopping voltages could be measured and
related to the wavelength or frequency of the light but that is not the main effect. In 1905,
Einstein [3] published a very important paper explaining the main meaning of the experimental
data by pointing attention to the red-most cutoff frequency after which the experiment no
longer worked.

Einstein postulated that energy from the light was being used to knock electrons out of the
surface of the metal and that energy was converted into kinetic energy of the ejected electron. Note
this experiment depended on the ability to generate a vacuum inside the tube or else the electron
would simple collide with a gas molecule and probably form an anion. Einstein’s brilliant conclu-
sion was that the frequency of the red-most color where the photocurrent became zero no matter
what the bucking potential was represented the energy required to remove the electron from the
metal and he called it the Work Function (Wf) (Figure 10.8). Although it is not used in the basic
equation to follow, it is important to know that Einstein postulated that the energy chunks of the
light were discrete particles called ‘‘photons.’’ This started a long discussion in Science over what is
called the ‘‘wave-particle duality’’ as to how Maxwell’s classical electromagnetic waves could be
quantized. The best answer is that there are ‘‘wave packet pulses’’ centered at a given frequency by
very slight differences in the main frequency but more mathematics (Fourier analysis) would be
needed to show this. First we can plot the ‘‘stopping potential’’ of the bucking voltage that stops the
photoelectron flow at a series of wavelengths converted to frequencies as shown in Figure 10.9 for
sodium metal. It is clear from the graph that there will be zero photocurrent at n0 which is at 2.3591
eV and the slope is 0.4134 eV=1014 Hz, but the line stops to the left of 2.3591 eV at 5.7043 1014 Hz
or l¼ 5256 Å. Plotted against frequency this is means we can equate the kinetic energy of the flying
electron to (Table 10.1)

mV2

2
¼ C(n� n0):

One might ask what is the constant C? Einstein then used Planck’s proportionality constant and
equated the total energy of the incoming light photon to the kinetic energy and the energy to knock
the electron out of the metal, the ‘‘work function’’ Wf.

E ¼ hn ¼ Wf þ mV2

2
or

mV2

2
¼ hn�Wf ¼ h(n� n0) ¼ C(n� n0) and so C ¼ h!

Given the data is only reliable to the nearest millivolt (0.001 eV), we can convert the slope to joules
as h ffi (0.4134 eV=1014 Hz) (1.60217653� 10�19 J=eV)¼ 6.6234� 10�34 J � s That is very
interesting but maybe we ought to also plot the limiting stopping potentials versus the n0 frequencies
for a number of metals to see if that has a linear dependence. We use the Wf values from the CRC
Handbook [8], which only gives three significant figures for the values in eV so we have used the
most precise formulas to convert to n0 in attempt to get a more precise value for h. It is again clear
that the linear fit is very good but the slope is slightly different at 0.4136 (eV=1014 Hz) that leads to
h¼ 6.626602128� 10�34 J � s, which should be rounded to h¼ 6.627� 10�34 J � s. A thinking
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student will realize there is a factor of h included in the formula used as l (angstroms) ¼ 12398:4
DE (eV)

so Figure 10.10 is not a surprise, but the slope in Figure 10.9 is amazing! That is a direct
measurement of e¼ hn! The modern value of h is 6.6260693� 10�34 J � s so the photoelectric
effect gives the value of h graphically within the number of significant figures (3) of the eV data!
Wait a minute, isn’t that the value Planck had to use to ‘‘fudge’’ his blackbody spectrum? A lot of
credit should be given to Einstein for his interpretation of the photoelectric effect and reinforcing
Planck’s work. In fact, Albert Einstein received a Nobel Prize for this work in 1921 (in reserve),
actually in 1922, but delivered his Nobel Address in 1923. Although the concept of photons can be
mixed with classical electromagnetic waves, we should recognize that Einstein thought of the
photoelectric effect in terms of quantized chunks of light energy. We have chosen this experiment
as one of our ‘‘essential’’ topics because it confirms Planck’s hypothesis and gives a direct way to
measure the value of h.

FIGURE 10.8 Albert Einstein (1879–1955) was a German physicist whose work affected scientific thought
more than any scientist since Isaac Newton. His flurry of papers in 1905 on the photoelectric effect, Brownian
motion, special relativity and mass–energy equivalence (E¼mc2; m¼E=c2) established him as a foremost
scientist of his time. In 1911, his calculations using relativity predicted that light from a distant star would be
bent by the gravity of the Sun, which was confirmed by Sir Arthur Eddington in 1919 using an eclipse of the
Sun. Other strange effects related to time dilation have more recently been confirmed during experiments in
space flight. Einstein received the 1921 Nobel Prize in Physics for his work interpreting the photoelectric effect
because his theory of special relativity was not well understood. He also received the Copley Medal from the
Royal Society in 1925, the Royal Astronomical Society Gold Medal in 1926, and the Benjamin Franklin Medal
from the Franklin Institute in 1936, as well as the Max Planck Gold Medal from the German Physical Society in
1929 shown in Figure 10.3. Einstein immigrated to the United States in 1933 when Adolf Hitler became
Chancellor in Germany and took a position at the Institute for Advance Study in Princeton where he remained
until his death at age 76 in 1955. In 1939, he sent a letter to President Franklin Roosevelt of the United States
warning of the danger of Germany developing an atomic bomb, and the U.S. Manhattan Project won the race to
build an atomic weapon under the leadership of Robert Oppenheimer while the German effort under Werner
Heisenberg suffered constant setbacks due to Partisan raids in Norway and Allied bombing of German Industry.
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FIGURE 10.9 The stopping potential for photoelectrons from sodium versus frequency of the exciting light
(photons). The modern value of the work function of sodium is 2.36 eV. (From Lide, D.R. Ed., CRC Handbook
of Chemistry and Physics, 90th Edn., CRC Press, Boca Raton, FL, 2009–2010, pp. 12–121.)

TABLE 10.1
Work Function for Selected Metals
versus Photoelectric n0 Values

Element Wf (eV) l0 (Å) n0 (10
14 Hz)

Cs 1.95 6358.15 4.715087

K 2.29 5414.15 5.537204

Na 2.36 5253.56 5.706464

Li 2.93 4231.54 7.084720

Mg 3.66 3387.54 8.849855

Be 4.98 2489.64 12.041606
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FIGURE 10.10 Work function versus stopping frequency for selected Group I and II metals.
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DE BROGLIE MATTER WAVES

We now come to a mysterious concept first put forth by Prince Louis De Broglie in 1923.
Roughly, here is the reasoning due to De Broglie.

c ¼ ln,Hertz 1888, E ¼ hn, Planck 1901, E ¼ mc2,Einstein 1905 [9]

E ¼ hn ¼ hc

l
¼ mc2 ) llight ¼ h

mc

� �
light

) lmatter? ¼ h

mv

� �
matter?

, De Broglie 1923 [6]

The problem with interpretation of this idea of ‘‘matter waves’’ is that waves should exhibit
diffraction which is not commonly observed macroscopically. Consider a typical rifle bullet of
4.2 g traveling at a speed of 965 m=sec. The De Broglie matter wavelength for that bullet would be

l ¼ h

mv
¼ 6:62609� 10�34 J � s

(0:0042 kg)(965m=s)
ffi 1:635� 10�34

kg(m=s)2s

kg �m=s

� �
¼ 1:635� 10�34 m which is smal-

ler than any available technique can measure! On the other hand, consider the De Broglie
wavelength of an electron with 5 eV of energy as a typical circumstance within a molecule
(Figure 10.11).

FIGURE 10.11 Louis-Victor Pierre Raymond De Broglie (1892–1987) was a French scientist who wrote a
revolutionary PhD thesis in 1924 that formed the basis for Schrödinger’s wave mechanics in 1926. De Broglie
was awarded the Nobel Prize in physics in 1929. He also received the Henri Poincare Medal in 1929 and the
Albert I of Monaco prize in 1932. De Broglie had been an officer in the French Army during World War I
stationed at radio facilities at the Eiffel Tower and had read about radio waves and some of Einstein’s relativity
papers. After the war, he enrolled in a doctoral program at the University of Paris and wrote a revolutionary
paper in 1923 [6], which was the basis for his PhD thesis in 1924. However, none of his professors understood
the idea, and his thesis was rejected until the Chair of the Department of Physics, Prof. Pierre Langevin, sent the
thesis to Einstein who approved it and De Broglie was awarded the PhD for his work. Actually, the work was
based on Einstein’s special relativity and we remind the reader that what is often called ‘‘nonrelativistic wave
mechanics’’ is already based on a relativistic principle.
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E ¼ mV2

2
) V )

ffiffiffiffiffiffi
2E
m

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(5:0 eV)(1:60217653� 10�19 J=eV)

9:1093826� 10�31 kg

s
¼ 1:36205154� 106 m=s

l ¼ h

mV
¼ 6:62609� 10�34 J � s

(9:1093826� 10�31 kg)(1:36205154� 106 m=s)
¼ 5:4847606� 10�10 m or about

l ffi 5.485� 10�8 cm¼ 5.485 Å, which is comparable in size to a molecule. Thus, wave mechanics
is useless for macroscopic calculations but essential for molecular calculations!

DAVISSON–GERMER EXPERIMENT

Following the 1923 paper by De Broglie [5], a number of experimental specialists tried to verify the
wave properties of particles. A group at Bell Laboratories designed an experiment to test the
De Broglie idea using low energy electrons. Several papers were published but the most detailed
appeared in 1927 by Davisson and Germer [10]. Clinton Davisson (1881–1958) was awarded the
Nobel Prize for this work in 1937. The initial experiments consisted of scattering a beam of
electrons with a uniform low energy at various angles off of small blocks of platinum and nickel.
These experiments gave just broad angular patterns and did not follow De Broglie’s equation.

In 1925, there was an accident at the Bell Laboratories site in which a liquid air container
exploded and broke the glass enclosure of the experiment while a small block of nickel was being
bombarded by an electron beam in a vacuum. When air rushed into the experimental chamber, a
layer of oxide formed on the surface of the nickel block, which was very hot from the electron
impacts. That was a serendipitous accident because after repairs were made, the block had to be
heated for a long time under vacuum to vaporize the oxide layer. An electric heater under the block
brought the temperature of the block close to the melting point of the nickel under vacuum for
perhaps a month or more. At the end of that time the polycrystalline nickel had large areas of
annealed crystalline nickel clearly visible. When the electron beam experiment was restarted, the
angular pattern of the scattered electrons showed sharp peaks and eventually some 30 peaks were
assigned to scattering off various planes of the face-centered cubic (fcc) nickel crystal surface. If you
draw an fcc structure as in Figure 10.10 you can see that you could slice through the lattice in a
number of ways, and the {1, 1, 1} plane is formed through the corners (a, a, a) opposite to (0, 0, 0)
where a is the unit cell dimension. Many planes can be defined in terms of the unit cell dimension
such as {1, 1, 1}, {1, 1, 0}, and {1, 0, 0} where the indices refer to the (x, y, z) dimensions. In their
paper, Davisson and Germer say they oriented the surface of the Ni crystals perpendicular to the
{1, 1, 1} planes as in Figure 10.12 and apparently used a spacing between the planes of 2.18 Å.
A modern value of the fcc structure of nickel shows the a parameter to be 3.5238 Å [11], and the
formula for the spacing between {1, 1, 1} planes is

dlmn ¼ affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l 2 þ m2 þ n2
p ¼ 3:5238 Åffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1þ 1
p ¼ 2:03447 Å

The modern value of the Ni (fcc) unit cell makes the angle of the diffracted wave slightly higher
than their 508 conclusion but there are uncertainties associated with the angle of the surface to the
electron beam and whether the whole surface was pure {1, 1, 1} (Figure 10.13). Still the calculated
angle agrees with the overall pattern of the scattering peaks shown in their paper. Most of the
scattering peaks corresponded to the well-known x-ray scattering patterns that strengthen the wave
analogy! Note they specifically state that they used nl¼ 1d sin(u), which makes sense according to
the diagram shown in Figure 10.14 for a perpendicular beam compared to the grazing incidence
equation of nl¼ 2d sin(u).
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The most pronounced scattering peak occurred for 54 eV electrons and was observed at an angle
of about 508–558 from the incoming beam, which was perpendicular to the metal surface. This is a
different orientation from the usual Bragg angle with the angle of incidence equal to the angle of
reflection but when the phase of the waves is right for reinforcement such diffraction can occur
using the equation of nl¼ 1d sin(u) instead of nl¼ 2d sin(u).

E ¼ mV2

2
¼ 54 eV so V ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(54 eV)(1:60217653� 10�19 J=eV)

9:1093826� 10�31 kg

s
¼ 4:358354871� 106 m=s:

l ¼ h

mV
¼ 6:6260693 � 10�34 J � s

(9:1093826� 10�31 kg)(4:358354871� 106 m=s)
¼ 1:668954288� 10�10 m

Scattering of 75 V electrons from
several large nickel crystals

Scattering of 75 V electrons from
a block of nickel (many small crystals)

FIGURE 10.12 The Davisson–Germer discovery after annealing Ni crystals. (Reprinted with permission
from Davisson, C. and Germer, L.H., Phys. Rev, 30, 705, 1927. Copyright 1927 by the American Physical
Society.)

(3.5238 Å)
d

FIGURE 10.13 The Ni (fcc) unit cell showing the {1, 1, 1} planes.
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so u ¼ sin�1
l

1d

� �
. Then u¼ sin�1(0.820338608)¼ 55.11878 roughly in agreement with the experi-

mental result using nl¼ 1d sin(u)! Some of the curves shown in the original paper can be interpreted
as peaks at angles slightly larger than 508 while others show the peaks at almost exactly 508. Since
modern technology uses such scattering to characterize surfaces, the wave diffraction of electrons has
been established beyond any uncertainties in the original experiment (Figure 10.15). Because the raw
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Ѳ
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2.034 Å

~––

{1, 1, 1} plane

{1, 1, 1} plane

nλ = d sin Ѳ

E = 54 eV
λ = 1.67 Å

55°

FIGURE 10.14 ‘‘Half-Bragg’’ nl ¼ d sin (u) diffraction of 54 eV electrons in a beam perpendicular to the
{1, 1, 1} plane of Ni observed by Davisson and Germer [10]. It is clear that Davisson and Germer used
nl ¼ 1d sin (u) on page 723 of their paper.

F
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C

FIGURE 10.15 A cross section view of the original Davisson–Germer apparatus. The Ni crystal is the target
‘‘T,’’ ‘‘G’’ is the electron gun and ‘‘C’’ is the collector, which can travel on a curved track to measure the angle
of scattered electrons entering the collector. ‘‘F’’ is a heated tungsten filament, which emits thermal electrons as
the source. ‘‘P’’ is the electrical potential wire. Note the width of the entrance to the detector cup seems to be at
least 28 of arc leading to some uncertainty of the angle by a small amount. (Reprinted with permission from
Davisson, C. and Germer, L.H., Phys. Rev., 30, 705, 1927. Copyright 1927 by the American Physical Society.)

228 Essentials of Physical Chemistry



data was presented in an unusual way, we also show the diagram of the original equipment with the
sliding arc track for the detector cup relative to the electron beam from the ‘‘gun.’’

The surface of the nickel block was oriented so that the {1, 1, 1} surface was exposed and a very
strong peak was observed using a collector cup with a galvanometer to measure the diffracted
electrons and many careful checks were made to test the energy of the scattered electrons compared
to random background scattering, and the 1927 paper [10] is an amazing example of thorough
scientific work. In Figure 10.14 we sketch the path of electrons incident perpendicular to the surface
of the target block with the spacing of 2.034 Å between the Ni atoms arrayed in the {1, 1, 1} plane.
Although Davisson and Germer used a {1, 1, 1} spacing of 2.18 Å to arrive at a 508 angle for the
54 V beam compared to a modern value of 558 using a spacing of 2.034 Å (Figure 10.16), the
observation of the second large diffraction at 65 V is a very convincing demonstration of diffraction
(Figure 10.17). The most interesting thing about the experiment is that the beam is directly at the
surface of the block perpendicular to the surface and the fact that the diffraction follows what might
be called a ‘‘half-Bragg’’ rule of nl¼ 1d sin(u).

There are two important results from the Davisson–Germer experiment. Foremost is the agree-
ment with the De Broglie equation and that is the overwhelming immediate payoff of the result. In
fact, L. De Broglie was awarded the Nobel Prize not long after in 1929! Clinton Davisson (1881–
1958) was awarded the Nobel Prize for this work later in 1937. For our later chapters, this is also the
foundation of ‘‘wave mechanics,’’ the Schrödinger equation, quantum chemistry, molecular orbital
theory, and modern spectroscopy. It really is that important to prove particles have wave properties
or at least behave as if there is some sort of common wave behavior in the mathematics. Having said
that, one might think the experiment is over and done with, but reading the full 1927 paper shows
that a number of additional diffraction peaks were assigned to gas molecules absorbed on the Ni
surface. Thus a second more recent use of this effect is the study of surface chemistry with improved
methods of simultaneous detection of multiple diffraction spots similar to x-ray diffraction.

50°

55°

35°

40°

45°

Co
lle

ct
or

 cu
rr

en
t

65°

70°

V
35 45 50 55 60 65 70 7540

Bombarding potential

60°

FIGURE 10.16 Raw data from the Davisson–Germer experiment showing detection of scattered electrons at
various angles of the collector versus the energy of the electron beam. A 558 angle calculated in the text is very
close to the simple protractor measurement compared to the 508 peak shown here for a beam of 54 V. Note the
acceptance width of the detector cup surely is wider than 18 and no uncertainty is given for how close the {1, 1, 1}
plane was oriented to be perpendicular to the incident beam so the calculation with the modern cell constant
for Ni changes the angle slightly but it is still within the variation of the data shown. (Reprinted with permission
from Davisson, C. and Germer, L.H., Phys. Rev., 30, 705, 1927. Copyright 1927 by the American Physical
Society.)
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SUMMARY

This chapter is intended to be the beginning of a second semester with emphasis on molecular
quantum mechanics. Here we have emphasized three essential experiments which form the foun-
dation for quantum mechanics and quantum chemistry by actual laboratory experiments and theory,
which knit the results together. The conclusions are that energy is indeed quantized (exists as very
tiny chunks) and particles can have wave properties as well as light waves behaving like particles!
Although this chapter has straightforward formulas, the next few chapters will provide mind-
bending details on the differential equations solved by Erwin Schrödinger in 1926 and so we
begin here to provide the key facts in this chapter and will provide similar summaries in the more
difficult chapters.

1. The radiated light energy from a light source is proportional to T4. Light waves have a very
small, but measureable pressure.

2. r(n)dn ¼ 8pn2

c3
hn

e
hn
kBT � 1

� �
dn ¼ 8phn3dn

c3 e
þhn
kBT � 1

�  is the formula for the light energy radiated

from a blackbody source. It depends on energy occurring in discrete chunks or ‘‘quanta’’
where e¼ hn, and while Planck derived this in 1901 the equation was not seriously
accepted at first because the value of h was considered an adjustable parameter even
though the formula fits the data exactly.

3. In 1905, Einstein interpreted the photoelectric effect and showed that a graph of stopping
potential versus light frequency had a slope given by the same value of the h Planck used
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FIGURE 10.17 Schematic of the primary ‘‘54 V,’’ first order (n¼ 1) diffraction of electrons at approximately
558 from {1, 1, 1} spacing of 2.034 Å between planes of Ni atoms. This unusual way of graphing the raw data
shows the angular variation for two different sets of results of different voltages relative to diffraction from a {1,
0, 0} lattice plane at 66 V on the left and from a {1, 1, 1} lattice plane on the right at 54 V. (Reprinted with
permission from Davisson, C. and Germer, L.H., Phys. Rev., 30, 705, 1927. Copyright 1927 by the American
Physical Society.)
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in the blackbody derivation. This added tremendous credibility to Planck’s blackbody

equation. Once again, the formula l (A�) ¼ 12, 398
DE (eV)

proved to be useful.

4. In 1923, De Broglie proposed the seemingly strange concept that there is some sort of
mathematical pilot wave that can be used to describe the behavior of particles as given by

the formula l ¼ h

p
¼ h

mv
. The matter wavelength of electrons was found to be similar in

size to chemical bonds leading to the idea that we need to learn ‘‘wave mechanics’’ to
understand the behavior of small particles such as electrons and nuclei.

5. In 1927, a key experiment by Davisson and Germer at Bell Laboratories in the United
States showed that a beam of electrons (particles) were diffracted from an annealed crystal
lattice of Ni atoms. The property of diffraction is a key characteristic of waves. This set the
stage to use ‘‘wave mechanics’’ to describe phenomena at the small scale of atoms and
molecules. In addition, a new technique of ‘‘low-energy electron diffraction’’ (LEED) was
developed to study material surfaces at the atomic level.

PROBLEMS

10.1 Insert the values of the constants into the formula for a ¼ 8p5k4

15h3c3
and compare the result to the

numerical value given in the text.
10.2 To show how the maximum of the Planck formula shifts with temperature set the first

derivative of r(l) with respect to l to zero and rearrange it to y(x) ¼ e�x þ x

5

� 
� 1 ¼ 0

where
hc

lmkT

� �
¼ x. Then

dy

dx
¼ �e�x þ 1

5
, which can be used in a Newton–Raphson iteration

to find x from guessed values. xbetter ¼ xguess �
e�xg þ 0:2xg � 1
� �

0:2� e�xg½ 
 . Start with a good guess of

x¼ 5.0 and in a few iterations you will obtain Wein’s constant for lmaxT ¼ hc

WkB
where W is

the converged constant from the iteration. This problem ‘‘explains’’ why the color of a hot
object changes with the temperature as the maximum of the blackbody shifts with tempera-
ture. This effect and the constant value were known before Planck solved the problem so it is
important to show that Planck’s law agrees with previously known data.

10.3 On an Internet site called the ‘‘Physics Forum’’ at http:==www.physicsforums.com, a student
with the identification of ‘‘georgeh’’ and the topic title of ‘‘Stopping Voltage’’ says he has a
problem to find Planck’s constant and the work function, Wf, from two data points for sodium
metal. He cites two points: a stopping potential of 1.85 V at 300 nm and another stopping
potential of 0.82 V at 400 nm. Convert the wavelengths to frequencies and plot the stopping
potential on the vertical axis and the frequencies on the horizontal axis. Extrapolate the line
between the two points to 0.0 Stopping Potential and calculate the Wf value for sodium in
electron volts. Calculate the effective value of the slope of the two points and convert the units
to J � s=frequency to compare the value to Planck’s constant.

10.4 Calculate the De Broglie wavelength of a baseball with a mass equal to 5.25 oz avoirdupois
traveling at 90 mph. compare that to the De Broglie wavelength of an electron traveling at
10% of the speed of light in vacuum which is comparable to the speed of a 1s electron in a
heavy atom.

10.5 Davisson and Germer also reported a strong diffraction intensity peak for 65 eV electrons
at an angle of 448 from the incident beam striking the face of their Ni crystal perpendicular
to the surface, which they assigned to the {1, 0, 0} plane of the Ni crystal structure.
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Calculate the ‘‘d’’ distance this implies between Ni atoms in this plane. Compare your answer
to the value of 2.18 Å used by Davisson and Germer for crystalline Ni.

10.6 Look up the Davisson–Germer paper in Physical Review, vol. 30, p. 705, (1927) and look at
the picture of the Ni crystal in their Figure 5. Then look up the word ‘‘anneal’’ in a dictionary
and give your own brief description of what annealing metal means.
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11 The Schrödinger Wave
Equation

INTRODUCTION

This chapter is primarily about ‘‘wave mechanics’’ since that is the most convenient way to
introduce undergraduates to quantum mechanics using calculus. An equivalent form called ‘‘matrix
mechanics’’ will be discussed briefly in a later chapter. Consider again the 1923 paper by De Broglie
and the experiments that validated the particle-wave duality in Chapter 10. One might well ask that
if there really is some ‘‘wave’’ that describes the behavior of particles, then is there an equation that
the wave obeys? Even today it is difficult to say what the ‘‘wave’’ is, but it may help to find an
equation it obeys. Step back a moment to some basic calculus:

d2

dx2

� �
sin (ax) ¼ d

dx

� �
[a cos (ax)] ¼ (�a2) sin (ax):

Perhaps you did not notice the pattern before but we can put this into a general form as

(Operator)(Eigenfunction) ¼ (Eigenvalue)(Eigenfunction):

The word ‘‘eigen’’ in German means ‘‘characteristic, unique, peculiar, special . . . ’’ and only certain
functions satisfy this condition called an eigenfunction equation. An analogy that has been suc-
cessful in explaining this to undergraduates is to consider an apple tree with ripe apples on it. If you
hit the branches with a stout stick some apples will fall off the tree but the tree will still be there. The
operator is the act or operation of hitting the tree with the stick, the tree is the eigenfunction and the
apples are the eigenvalue(s). The eigen word comes from German because this relationship was first
linked to the De Broglie wave idea by Erwin Schrödinger in 1926 in a series of papers that are
among the most important in modern science [1]. Schrödinger (1887–1961) was an Austrian
physicist who received the Nobel Prize for his work in 1933 (Figure 11.1).

We will now present a derivation of the Schrödinger equation that may not be the way he thought
of it but that follows from limited use of calculus and simple algebra. Since De Broglie implied there
is some sort of invisible, untouchable, mathematical pilot wave accompanying the motion of
particles, we assume the general form of such a wave and relate it to its own second derivative.
We will use c since it is universally used for the wave function.

Let c ¼ A sin
2px
l

� �
. Then

d2c

dx2
¼ d2

dx2

� �
A sin

2px
l

� �
¼ �4p2

l2

� �
A sin

2px
l

� �
. That would be

true for any wave but we want to apply it to a ‘‘matter wave’’ using l ¼ h

mv
, so we substitute lDB.

d2

dx2

� �
A sin

2px
l

� �
¼ �4p2

h
mv

	 
2
" #

A sin
2px
l

� �
¼ �(mv)2

�h2

� �
A sin

2px
l

� �
. Note that

h2

4p2

� �
¼ �h2.

One more step is needed. Recall Etot ¼ mv2

2
þ V ¼ (mv)2

2m
þ V ¼ T þ V ¼ Hop where Hop¼ TþV

is the total energy operator with T as the conventional symbol for the kinetic energy (often K in
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sophomore physics texts) and V as the conventional symbol for whatever potential energy there may

be. With that understanding, we have T ¼ mv2

2
¼ (mv)2

2m
¼ (Etot � V)) (mv)2 ¼ 2m(Etot � V) so

that now
d2

dx2

� �
A sin

2px
l

� �
¼ �(mv)2

�h2

� �
A sin

2px
l

� �
¼ �2m(Etot � V)

�h2

� �
A sin

2px
l

� �
or

d2

dx2

� �
c ¼ �2m(Etot � V)

�h2

� �
c. This is where it gets interesting in that Schrödinger identified the

energy with a mathematical operator! Thus
��h2
2m

� �
d2

dx2

� �
c ¼ (Etot � V)c and further we have

��h2
2m

� �
d2

dx2

� �
cþ Vc ¼ Etotc and finally

��h2
2m

� �
d2

dx2

� �
þ V

� �
c ¼ Etotc or Hopc¼Etotc.

This has major implications in that there is a mathematical (calculus) operator Hop, which
represents the total energy of a particle (in only one dimension so far) and a function c, which
incorporates the De Broglie condition and is an eigenfunction of the total energy operator. Note the
left side of the equation must be in energy units since the right side is in terms of Etot.

FIGURE 11.1 Erwin Rudolf Josef Alexander Schrödinger (1887–1961) was an Austrian theoretical physicist
who is famous for his wave equation treatment of quantum mechanics. He was awarded the Nobel Prize in
physics in 1933. He became a full professor at the University of Zurich in 1921 and in 1926 wrote four
extremely important papers establishing wave mechanics. He left Germany in 1933, although his parents were
Christian, and moved to various lecturing positions for several years until in 1940 he was invited to set up an
Institute for Advanced Study in Dublin. There he continued to write many papers and a small bookWhat is Life,
with conjecture that genes are molecular, which inspired Francis Crick (of Watson and Crick) and Max
Delbruck among others to study DNA.
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We can carry the analysis of the energy units further. Classically (sophomore physics), the

kinetic energy would be
mv2

2

� �
¼ m2v2

2m

� �
¼ p2

2m

� �
� ��h2

2m
d2

dx2

� �
op

so maybe, just maybe (?)

p2op � ��h2
d2

dx2
and there is also a momentum operator pop � �h

i

� �
d

dx
where i ¼ ffiffiffiffiffiffiffi�1p

? In this case

the spatial variable is x but it is known from the physics subfield called mechanics that for every
momentum in a given coordinate system there is a corresponding coordinate; for every (p, q) pair
there is a q for each momentum in that coordinate as pq. Not every coordinate system will be (x, y, z)

so the general condition is pq ¼ h

i

d

dq

� �
. Note that there is no special need to rewrite the potential

energy V as anything other than a multiplicative ‘‘operator.’’ The main action of the energy operator
is in the momentum operator. Maybe it is too soon to oversimplify wave mechanics, but the main
principle is indeed simple, just follow a few direct steps.

1. Write the total energy expression in terms of classical momenta and coordinates.

2. Insert the equivalent operator
�h

i

d

dq

� �
wherever momentum occurs.

3. Consider any function of the coordinates such as the potential energy to be a simple
multiplicative operator.

4. Form the total energy operator, Hop¼ TþV and write the Schrödinger equation as

Hopc ¼ Etotc where Hop ¼
p2op
2m
þ V(q) ¼ ��h2

2m
d2

dq2

� �
þ V(q):

5. Solve the differential equation by whatever means to find c and Etot, noting that there may
be a set of functions {cn} with corresponding eigenvalues {En}.

It would all be so simple if step 5 really is easy to do. We need to simultaneously introduce you to
some simple techniques in solving certain types of differential equations while at the same time
solving an easy problem that has sufficient application to laboratory measurements to be realistic.
It is traditional to use the ‘‘particle-in-a-box’’ (PIB) problem for this purpose. To provide motivation,
let us consider the ultraviolet spectrum of all-trans polyenes, trans-butadiene will suffice. We
should know from organic chemistry that there is a principle of ‘‘sigma-pi-separability,’’ which
alerts us to the idea that the four electrons in 2P p orbitals are oriented in a plane perpendicular to
the plane of the atoms H2C¼CH–CH¼CH2, which contains all the 2P s bonds and the C1s
orbitals (Figure 11.2). Sigma-Pi separability is a good approximation because the 2P p orbitals are
odd functions with a node (sign change) in the plane of the atoms while the 2P s orbitals are even
functions with respect to reflection in the molecular plane and the product of an even and odd
function integrates over all space to zero. The sigma and pi orbitals are ‘‘orthogonal’’ in a first
approximation, although certainly there is some coulomb repulsion between the electrons and even a
strange phenomenon called ‘‘exchange’’ due to the fact that electrons are indistinguishable and can
occasionally trade places! Further, the 2P s orbitals are spatially more compact than the larger,
diffuse 2P p orbitals. Thus for several reasons, we consider the sigma bond skeleton of the molecule
to be ‘‘frozen’’ and screening all but þ4 nuclear charges with the electronically soft 2P p orbitals
forming linear combinations to hold the four pi electrons. Thus we consider a path along the trans
structure as a square box in which there are four electrons.

Another simplifying assumption is that these electrons suffer no mutual repulsion but do tend to
pair into two spin pairs (a, b)p1 and (a, b)p2. We rely on previous explanations of spin pairing in
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other chemistry courses. The proper treatment of electron spin requires inclusion of a discussion of
relativity beyond the level of this course. Two comments can be made however. It can be shown
using the Dirac model of the H atom that the spin-up a electron has intrinsic angular momentum

of þ �h

2
and the spin-down b electron has � �h

2
angular momentum and they are not quite exactly in

the same orbital, but it is sufficient at this level to imagine that there are two electrons with opposite
magnetic orientation paired up in the same spatial orbital. Of course we also assume you have been
shown in organic chemistry that pi-orbitals are highly delocalized so that the center bond of
butadiene has considerable double bond character.

Now we are ready to define the mathematics of the (quantized) PIB. Assume there is a potential V,
which is zero along the box but that keeps the electrons in the box by rising straight up at the ends of
the box to þ1.

V¼ 0, 0< x< L but V¼1, x � 0 and V¼1, x � L where the box is defined by 0 � x � L.
Since the potential is zero in the box, the particle(s) can only have kinetic energy so we form Hop.

Hop ¼
p2op
2m
þ 0 ¼

�h
i

d
dx

	 
2
2m

þ 0 ¼ ��h
2

2m
d2

dx2
þ 0, so H c¼E c and

��h2
2m

d2c

dx2
¼ Ec. The next step is

to solve the differential equation (after rearrangement)
d2c

dx2
þ 2mE

�h2

� �
c ¼ 0. This is a second-

order differential equation (involves a second derivative) but is a type that is easy to solve by

factoring the operator. Define D � d

dx

� �
, then Dþ i

ffiffiffiffiffiffiffiffiffi
2mE

�h2

r !
D� i

ffiffiffiffiffiffiffiffiffi
2mE

�h2

r !
c ¼ 0. This is

the simplest type of a second-order differential equation which is usually taught in the early
part of a text on differential equations but not all second-order differential equations can be
factored in this way. Now we need to think. The equation says to apply two first-order operations
in succession so we have cracked apart a second-order equation into the product of two first-
order equations that are easier to solve. In particular, we see that if we find c that solves the
rightmost first-order equation, the result will be zero so it will not matter what the left parenthesis
is and we can interchange the order of the two operator parentheses. That means that we can=will
get two solutions, and the general solution will be some linear combination of the two. Let us

solve the rightmost part of the equation as D� i

ffiffiffiffiffiffiffiffiffi
2mE

�h2

r !
c ¼ 0. We have solved this type

equation for the case of first-order kinetics. For simplicity consider (D� a)c¼ 0 where a is
a constant.

V(x)box

Vπ(x)
C

O

C

X

C

C

L

FIGURE 11.2 Schematic one-dimensional potential for the pi-electrons of trans-butadiene with the structure
of the molecule tilted up in the plane of the figure. With near perfect screening by the C1S electrons and the
C2SP sigma core electrons the pi-electrons ‘‘see’’ only smooth minima in the potential over the C atom
positions. We neglect H atoms as part of the electronic ‘‘core.’’
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d

dx
� a

� �
c ¼ 0) dc

dx
¼ ac) dc

c
¼ adx and then

ð
dc

c
¼ a

ð
dx and so ln(c)¼ axþC. Now

take the antiln of the equation to find c¼Aeax where C¼ ln A. Before we go further, please note
that (�a) in the equation became (þa) in the solution so when we encounter this type of differential
equation, we can simply write the solution as the constant with opposite sign as a power of base-e!
Using that idea we can write down the two solutions of our PIB problem.

c(x) ¼ C1e
�i

ffiffiffiffiffi
2mE
�h2

p� 
x þ C2e

þi
ffiffiffiffiffi
2mE
�h2

p� 
x
and that is the solution except we do not know C1 or C2

and we need to use boundary conditions to find these constants.
Now recall Euler’s rule that eiu¼ cos(u)þ i sin(u) and apply it to both terms. We do not know

C1 or C2 but there would be a cos( ) part from both terms and a sin( ) part from each term. Let
the coefficients of these two parts be new unknown constants so we have

c(x) ¼ A cos

ffiffiffiffiffiffiffiffiffi
2mE

�h2

r !
x

" #
þ iB sin

ffiffiffiffiffiffiffiffiffi
2mE

�h2

r !
x

" #
. However, at x¼ 0 the potential energy

goes up to þ1 so physically no particle can be there and the wave function must be zero there;
so c(0)¼ 0. Since cos(0)¼ 1, the only way we can have c(0)¼ 0 is if A¼ 0. The other constant B is

still unknown but it can be nonzero. Now we have c(x) ¼ iB sin

ffiffiffiffiffiffiffiffiffi
2mE

�h2

r !
x

" #
. The fact that

i appears as a factor may seem strange but we will find a way around that soon.
Next we need to apply the boundary condition to the right side of the box at x¼ L and again we

see that the wave function must go to zero at that wall. This is easily seen by considering

c ¼
d2c
dx2

� 
2m
�h2

� 
[V � E]

. As long as
d2c

dx2

� �
is finite, an infinite denominator makes c¼ 0.

Up to this point the value of the energy E could be any value but we are about to see it become

quantized! At x¼ L we have c(L) ¼ iB sin

ffiffiffiffiffiffiffiffiffi
2mE

�h2

r !
L

" #
¼ 0. We could set B to zero but then

there is no wave function at all! That is called the trivial solution and corresponds to no particle in
the box! Is there any other way this can be zero? Yes, the sin(u) is zero every time u¼p, 2p,

3p, . . ., np. Thus we find the quantization condition for the energy as

ffiffiffiffiffiffiffiffiffi
2mE

�h2

r !
L ¼ np, which

means that

ffiffiffiffiffiffiffiffiffi
2mE

�h2

r !
¼ np

L
and En ¼ n2p2�h2

2mL2
¼ n2p2h2

2m(2p)2L2
¼ n2h2

8mL2
¼ En. Now the energy can

have only certain values!
We still need to find the value of B. There was a lot of philosophical groping in the 1920s as

scientists tried to interpret the meaning of the De Broglie wave but the physicists were well educated
in electromagnetic theory. It was known that while the oscillating electric field of a light wave could
be written as E¼Ae2pint, with the complex number i ¼ ffiffiffiffiffiffiffi�1p

embedded in the formula, only an
intensity I¼ (Aeþ2pint)* (Aeþ2pint)¼A2 could be measured in the laboratory as a real number.
Further, the intensity is the square of the amplitude of the wave. We have already seen that the
complex number i ¼ ffiffiffiffiffiffiffi�1p

has occurred in our c(x) wave function. Thus it was realized that c*c /
probability. We can only measure real numbers in the laboratory but c(x) can be complex so we need
to measure the probability as the product of the wave function and its complex conjugate where if any
part of the formula has i ¼ ffiffiffiffiffiffiffi�1p

it must be changed to �i in the complex conjugate. Note if
c¼ aþ ib, then c*¼ a� ib and c*c¼ (a� ib)(aþ ib)¼ a2þ b2 which is a totally real number!

The next question is how to assign probability based on c*c? ‘‘Certainty’’ might have been
assigned 100% but instead c*c¼ 1 was chosen as certainty with lesser values for other lower
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probability events. Therefore if we integrate our probability function over all possible values of the

variable, the result should be set to 1. Thus we have 1 ¼
ð
c*cdx. Here c* ¼ �iB sin

npx

L

� 
and

(�iB)(iB)¼þB2, so the ‘‘*’’ makes the result a real number.
ðL
0
B2 sin2

npx

L

� 
dx ¼ 1. This condi-

tion will allow us to evaluate B! It is common practice to neglect the ‘‘i’’ if it is a direct factor since
we have seen that it will disappear whenever an integral for a probability is carried out but it has
served here to illustrate the need for the complex conjugate. Thus we have to do the integral and

solve for the B coefficient.
ðL
0
B2 sin2

npx

L

� 
dx ¼ 1 ¼ B2

ðL
0

1� cos 2npx
L

	 

2

� �
dx using the half-angle

formula from trigonometry. We will have to split this into two integrals.

1 ¼ B2 1
2

� � ðL
0

dx�
ðL
0

cos
2npx
L

� �
dx

8<
:

9=
; ¼ B2

2

� �
L�

sin
2npx
L

� �
2np
L

� �
2
664

3
775
L

0

8>>><
>>>:

9>>>=
>>>; ¼

B2

2

� �
[L� 0] ¼ B2L

2

If
B2L

2
¼ 1, then we have found B ¼

ffiffiffi
2
L

r
so in conclusion we have the full solution (neglecting i)

cn(x) ¼
ffiffiffi
2
L

r !
sin

npx

L

� 
and En ¼ n2h2

8mL2
, n ¼ 1, 2, 3, 4, 5, . . ., n

Note also that the n¼ 0 case is the ‘‘no-particle’’ case and the energy is quadratic in n for n> 0.
Let us consider the ultraviolet spectrum of butadiene (Table 11.1). Assuming two electrons

loosely spin-paired in each orbital and neglecting the interaction between the electrons, we can fill
two energy levels with four electrons. Then the lowest energy excitation will be from the highest
occupied molecular orbital (HOMO) n¼ 2 to the lowest unoccupied molecular orbital (LUMO)
n¼ 3. We can estimate the wavelength of this transition as a one-electron jump from n¼ 2

to n¼ 3. DE ¼ E3 � E2 ¼ hn ¼ h
c

l

� 
¼ (9� 4)h2

8mL2
) l ¼ 8mL2c

5h
, but what shall we use for L?

We can estimate L as three times the length of the aromatic bond in benzene since the middle
bond is part of the pi-electron system as 3 (1.4 Å)¼ 4.2 Å. Then we can find l

as l ¼ 8mL2c
5h

¼ 8(9:10938215 � 10�31 kg)(4:2� 10�10 m)2(2:99792458� 108 m=s)

5(6:62606896� 10�34 J � s) and so

l ffi 1:1632� 10�7 m ¼ 1:1632� 10�5 cm ¼ 1163:2� 10�8 cm ¼ 1163:2 Å. This is too far
into the vacuum ultraviolet so let us treat L as a variable parameter and find what value of L will
fit the experimental wavelength of 2170 Å [2, p. 103].

TABLE 11.1
Absorption Bands of Selected trans-Polyenes

Compound # p Electrons l (Å)

Ethylene 2 1625

Butadiene 4 2170

Hexatriene 6 2510

Octatetraene 8 3040

Source: Davis, J.C., Advanced Physical Chemistry, The
Ronald Press Co., New York, 1965, p. 103.
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L ¼
ffiffiffiffiffiffiffiffi
5hl
8mc

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5(6:62606896� 10�34 J � s)(2:170� 10�7 m)

8(9:10938215� 10�31 kg)(2:99792458� 108 m=s)

s
ffi 5:736� 10�10 m so a

better estimate of the effective length of the box is L¼ 5.736 Å. While we probably did not need
to carry so many significant figures in the constants and our estimated length is off by over 1.5 Å,
the fitted value is reasonable. The extent of the diffuse 2P p orbitals surely extends out over the
H atom region on the ends of the molecule. Thus the model is actually quite good considering the
approximations made along the way.

In Figure 11.3, we see the first four solutions of the model and for butadiene the first two waves

would be the occupied orbitals with orbital c3 ¼
ffiffiffi
2
L

r
sin

3px
L

� �
as the LUMO. Note that

c2 ¼
ffiffiffi
2
L

r
sin

2px
L

� �
is the HOMO. We can see that the number of nodes in the wave function

increases with the value of n, the quantum number. In Chapters 16 and 17, methods will be
developed to express molecular orbitals as linear combinations of atomic orbitals (LCAO) with
weighting coefficients for each atomic orbital. Table 11.2 shows that the same sinusoidal pattern and
number of nodes occurs for butadiene when higher-level approximations are used and the molecular
orbitals are expressed as columns of weighting coefficients.

In Figure 11.4 we see the same box with the probability functions c*c and the positive peaks
indicate where the particle is most likely to be found. At low energy, the particle is most likely to be
found in the middle of the box while at higher energy the particle will be rattling rapidly back and
forth so its position will be more likely to be spread out.

Since this simple model is solvable, let us try to learn as much as we can about the solutions. First
of all, there are many solutions and they form an ‘‘orthonormal set,’’ {cn}. We have normalized the

various cn ¼
ffiffiffi
2
L

r
sin

npx

L

� 
functions and they can be shown to be orthogonal in the sense thatðL

0
cn
*cmdt ¼ 0 so they form an orthonormal set. In the familiar Cartesian three-space, we know that

a vector can be represented in terms of the (̂i, ĵ, k̂) unit vectors as~r ¼ x̂iþ ŷjþ zk̂ where î � ĵ¼ 0,

î � k̂¼ 0 and ĵ � k̂¼ 0 so that all the unit vectors are mutually at right-angles and hence orthogonal in
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FIGURE 11.3 The PIB wave functions for butadiene spaced vertically approximately according to energy
(/n2). Note the number of nodes is (n� 1). (From Trindle, C. and Shillady, D., Electronic Structure Modeling:
Connections between Theory and Software, CRC Press, Boca Raton, FL, 2008. With permission.)

The Schrödinger Wave Equation 239



the dot-product sense. The extension to multidimensional ‘‘Hilbert space’’ algebra is necessary in
quantum mechanics because there are many possible eigenfunctions but they are mutually orthog-
onal in the sense that there is an integral over the product instead of î � ĵ¼ jijjjj cos(p=2)¼ 0.
Students should be aware that there are really only about five or six problems that have known exact
solutions and although there is no proof that all the solutions form complete sets, there is no known
exception. As far as is known, a quantum mechanical solution to the Schrödinger equation
should=will have a set of solutions that form a complete set for any problem with the same boundary
conditions and there will be a set of corresponding eigenvalues. The set of orthogonal functions may
need to be normalized to the arbitrary certainty of 1 to reach the full condition of orthonormality.
This concept of a complete set of eigenfunctions and eigenvalues will be very useful for estimating
solutions to problems not yet solved.

Let us use this exactly solvable model to learn more about quantum mechanics. Note that we
could apply the Hamiltonian operator more than once and generate the value of the energy raised to
a power Hop(Hopcn) ¼ Hop(Encn) ¼ En(Hncn) ¼ E2

ncn, in fact Hm
opcn ¼ Em

n cn. This is so because
cn is an exact eigenfunction of Hop and we say En is a ‘‘good quantum number.’’ However there are
other quantities we would like to extract from the wave function. Return to the question of the most

TABLE 11.2
Molecular Orbitals for trans-Butadiene,
2Pz Coefficients by Column

p1 p2 p3* p4*

2Pz(1) 0.376 �0.525 0.618 �0.502
2Pz(2) 0.488 �0.403 �0.462 0.682

2Pz(3) 0.488 0.403 �0.462 �0.682
2Pz(4) 0.376 0.525 0.618 0.502

Note: Weighting coefficients of an STO-3G SCF-MO
calculation, see Chapter 17.
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FIGURE 11.4 c*c Probabilities for the PIB butadiene wave functions. (From Trindle, C. and Shillady, D.,
Electronic Structure Modeling: Connections between Theory and Software, CRC Press, Boca Raton, FL, 2008.
With permission.)
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probable position ‘‘x’’ the particle will have in the lowest energy state. Although we can treat the
coordinate as an operator, x! xop, the function is not an eigenfunction of this operator! We can see

that xc1 ¼
ffiffiffi
2
L

r
x sin

1px
L

� �
is just another function of x, not an eigenfunction. However, there is

an alternate way to obtain the average value of the coordinate x or the expectation of the average

value of x as < O >�

ð
c*Ocdtð
c*cdt

where O is any operator, so < x >¼< njxjn >�

ðL
0

ffiffiffi
2
L

r
sin

npx

L

� 
(x)

ffiffiffi
2
L

r
sin

npx

L

� 
dx. When we use previously normalized functions we do not

need the denominator since it will be 1, but we should recall the analogy to the average grade of a
class where we have to divide by the number of students in the class. Thus there is a way to do a
weighted average of a quantum mechanical operator with the slight difference of inserting the operator
between c* and c. In undergraduate slang, we sometimes call this the ‘‘sandwich integral’’ where the
operator is sandwiched between c* and c, but really it is the ‘‘expectation value of the operator’’.

Now let us evaluate < x >¼
ðL
0

ffiffiffi
2
L

r
sin

px

L

� 
(x)

ffiffiffi
2
L

r
sin

px

L

� 
dx ¼ 2

L

� �ðL
0
x sin2

px

L

� 
dx:

<x> ¼ 2
L

� �ðL
0
x sin2

px

L

� 
dx ¼ 2

L

� �ðL
0
x
1� cos 2px

L

	 

2

� �
dx and again do two integrals. <x> ¼

1
L

� � ðL
0
xdx �

ðL
0
x cos

2px
L

� �� �
¼ 1

L

� �
x2

2

� �����L
0

� x sin 2px
L

	 

2p
L

	 

" #L

0

þ
ðL
0

sin 2px
L

	 

dx

2p
L

	 

( )

where we

have used integration by parts for the second integral. To be complete we show details.

< x > ¼ 1
L

� �
L2 � 0

2

� �
� (0� 0)� cos 2px

L

	 

2p
L

	 
2
" #L

0

( )
¼ 1

L

� �
L2

2

� �
� 0� 1� 1

2p
L

	 
2
" #( )

¼ L

2
and

so we find by calculation that the average value of the x coordinate is <x> ¼ L=2. In fact this
is true for any level n. Now in case you think you can just use common sense to guess properties
all of the time let us ask what is the average value of <x2>. Again we can set up the
sandwich integral and carry out the integration by parts (twice) and we find that

<x2>¼
ðL
0

ffiffiffi
2
L

r
sin

npx

L

� 
(x2)

ffiffiffi
2
L

r
sin

npx

L

� 
dx ¼ L2

3

� �
1� 3

2n2p2

� �� �
, leaving the proof to the

homework. Recall that in classical mechanics (sophomore physics) there is a coordinate for every
momentum so let us consider <Px> as the average value of the x-momentum.

<Px> ¼
ðL
0

ffiffiffi
2
L

r
sin

npx

L

�  �h

i

d

dx

� � ffiffiffi
2
L

r
sin

npx

L

� 
dx ¼ �hnp

iL

� �ðL
0

sin
npx

L

� 
cos

npx

L

� 
dx

<Px> ¼ �hnp

iL

� �ðL
0

sin
npx

L

� 
cos

npx

L

� 
dx ¼ �hnp

iL

� �
sin2 npx

L

	 

np
L

	 

" #L

0

¼ 0, so <Px>¼ 0.

That makes sense because momentum is a vector and the average direction of the momentum
averages out to be exactly zero as the particle moves back and forth, but, what is <P2

x>¼ 0?

<P2
x >¼

ðL
0

ffiffiffi
2
L

r
sin

npx

L

�  h�

i

d

dx

� �2
ffiffiffi
2
L

r
sin

npx

L

� 
dx¼ nph�

L

� �2

¼ n2h2

4L2
, so (<Px> )2 6¼<P2

x>.

This checks with the quantized energy as En ¼ P2
x

2m
) P2

x ¼ 2mEn ¼ (2m)
n2h2

8mL2

� �
¼ n2h2

4L2

� �
.
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Heisenberg [3] is widely credited with pointing out this problem from a statistical point of view
and we can define the ‘‘variance’’ as s2(x)¼<x2>�<x>2 and also s2(Px) ¼<P2

x> � <Px>
2.

Then we can consider the fact that x is the corresponding coordinate to Px and wonder about their
mutual effect on each other. Thus consider the product sxsPx . Here we come to some intricate
algebra but it will be worth it to find what is called the Uncertainty Principle [2, p. 96].

s2
x ¼

L2

3

� �
1� 3

2n2p2

� �
� L2

4

� �
¼ L2

4� 3
12

� �
� L2

2n2p2
¼ L2

12
1� 6

n2p2

� �
¼ L2

12
n2p2 � 6
n2p2

� �
:

Then
ffiffiffiffiffi
s2
x

q
¼ L

2
ffiffiffi
3
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2p2 � 6
p

np
and

ffiffiffiffiffiffiffi
s2
Px

q
¼ nh

2L
so using a trick [2, p. 96] of (�2¼�3þ 1) we find

sxsPx ¼
L

2
ffiffiffi
3
p

� �
nh

2L

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2p2 � 6
p

np
¼ �h

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2p2 � 6

3

r

¼ �h

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2p2

3
� 3þ 1

r
¼ �h

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2p2 � 9

3

� �s
>

�h

2
:

We see that even for n¼ 1 the quantity in the square root will be greater than 1 and the uncertainty

will increase as the quantum number n increases but the minimum value will be about
�h

2

� �
.

This is the Heisenberg Uncertainity Principle: (DPx)(Dx) � �h

2

� �
:

What does this mean physically? The conclusion is that if we reduce the uncertainty in a coordinate,
the momentum uncertainty will increase and vice versa. Further, the limit of uncertainty in both
momentum and position cannot be made simultaneously any smaller such that their product of
uncertainties is less than �h=2. While this is very small, it does indicate there is a tiny amount of
‘‘slop’’ in (DPx)(Dx) and hints that unless we are dealing with an exact eigenvalue we will need to
use some sort of statistical interpretation of quantum mechanics.

DEFINITION OF A COMMUTATOR

What is the cause of this uncertainty?We noted earlier that x and Px are related and have a mutual effect.
Another way to quantify the effect of position and momentum is by using a ‘‘commutator.’’ In real
arithmetic and algebra with real numbers, we are used to interchanging the order of factors as in
2� 3¼ 3� 2¼ 6, that is the commutator [3, 2]¼ 0, but when we use calculus operators that inter-
change of ordermay notwork. Let us define a quantity called the commutator as a bracket that represents
the amount by which interchanging the order of two successive operators makes a difference (on some

arbitrary function f(x)). Thus [Px, x] f (x) � Pxxf (x)� xPx f (x) ¼ �h

i

d

dx

� �
xf (x)� x

�h

i

d

dx

� �
f (x). Note

the first term involves a derivative of a product while the second term does not. Thus we find that

[Px, x] f (x) � �h

i

d

dx

� �
xf (x)� x

�h

i

d

dx

� �
f (x) ¼ �h

i

� �
f (x)þ x

df

dx
� x

df

dx

� �
¼ �h

i

� �
f (x)

and so [Px, x] ¼ �h=i for whatever f(x) the operators are applied to and the order does matter! Thus
the uncertainty principle is related to the fact that you really cannot know both the position and
momentum exactly in a simultaneous way. Physically this can be put in very simple terms in
that when you try to measure the momentum exactly the position becomes uncertain and if you
pin down the momentum to a definite value, then the position is blurred. Fortunately for

macroscopic measurements �h=2

� 
is very small but for atoms and molecules this becomes a
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problem in precision measurements. Note we can sometimes use ‘‘Dirac notation’’ for the sandwich
integral ‘‘expectation value’’ expressed as a ‘‘bra-ket’’ where the complex part on the left is the

‘‘bra’’ and the real part on the right is the ‘‘ket’’ for operator ‘‘O’’ in
ð
c*mOcndt ¼ hmjOjni:

POSTULATES OF QUANTUM MECHANICS

Having solved only one problem in quantum mechanics we allow for the fact that there are only a
very few known solved problems and try to write down the postulated rules and then we will apply
the rules to another problem to reinforce the concepts.

Postulate I The state of a quantum-mechanical system is completely specified by a functionC(r, t)
that depends on the coordinates of the particle and on time. This function, called the wave function or
the state function, has the important property that the product of C*(r, t) C(r, t) dxdydz is the
probability that the particle lies in the volume dxdydz located at r(x, y, z) at time t.

(Note that ‘‘completely specified’’ means that the wave function contains all the information that
can be obtained about the system using quantum mechanics! That provides tremendous motivation
to solve the Schrödinger equation and find the explicit wave function!)

Corollary In order for the wave function to be used in the Schrödinger equation, it must have
several mathematical properties:

1. It must be finite.
2. It must be continuous and single valued.
3. It must be defined for at least first and second derivatives.

Postulate II To every observable laboratory measurement in classical mechanics there
corresponds an operator in quantum mechanics.

Corollary Cartesian coordinates (x, y, z), spherical polar coordinates (r, u, f), or in general any set
of coordinates, q, merely become multiplicative operators, while the corresponding momentum

operators, Pq, become differential operators such as
�h

i

q
qq

� �
.

Postulate III In any measurement of the observable associated with the operator A, the only exact
values that will ever be observed are the eigenvalues aj which satisfy the eigenvalue equation

Acj ¼ ajcj:

Corollary If the state function is not an eigenfunction of the operator A, then only an average
value can be obtained as from many measurements; see Postulate IV.

Postulate IV If a system is in a state described by a normalized wave functionC, then the average
value of the observable corresponding to the operator A is given by

<a> ¼
ðþ1
�1

C*ACdt:
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Corollary If the wave function is not normalized, then the average value of the observable
corresponding to the operator A is given by

<a> ¼

ðþ1
�1

C*ACdtðþ1
�1

C*Cdt

:

Postulate V The wave function or state function of a system evolves in time according to the time-
dependent Schrödinger equation

HC(r, t) ¼ i�h
qC
qt

:

While time-dependent processes can be treated, our emphasis will be on time-independent wave
functions at the undergraduate level.

PARTICLE ON A RING

There is another problem in quantum mechanics that is exactly solvable and can be applied to
chemistry. Let us assume there is a particle constrained to move only on a ring of fixed radius, a. We
could consider this to be a tiny glass bead with a hole riding on a lubricated ring of thin wire, but
anyone who has recently taken a course in organic chemistry should immediately see the analogy to
that delocalized ring drawn on aromatic compounds such as benzene. This is an important problem
because it is solvable and because it illustrates the general rules of quantum mechanics we have
outlined earlier. First we write the classical momentum and assume the potential energy on the ring
is zero, but here we have to use polar coordinates with a fixed radius and only allow the angle u to
vary so the coordinate of interest is dc¼ a d u for a circumference c and a radius a. This problem is
solvable and is especially important because it is another illustration of the proper way to treat the
complex arithmetic involving i ¼ ffiffiffiffiffiffiffi�1p

. For the sake of simplicity, we assume that the potential
energy of the particle on the ring is zero so we only consider the kinetic energy in polar coordinates

and form the Hamiltonian operator. H ¼ T þ V ¼ T þ 0 ¼
�h
i

d
adu

	 
2
2m

þ 0 ¼ ��h
2

2ma2
d2

du2
and

then set up Hc¼Ec to be solved. Thus
��h2
2ma2

d2c

du2
¼ Ec) d2c

du2
þ 2ma2Ec

�h2
¼ 0)

Dþ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ma2E

�h2

r" #
D� i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ma2E

�h2

r" #
c ¼ 0. This is very similar to the PIB problem but there are

some important differences. First the differential circumference dc¼ adu has a constant in it and as
we will soon see, the boundary conditions are different because the wave function must be
continuous and connect smoothly as we go around the ring. However, we do know how to solve

this kind of second-order differential equation as c ¼ C1e
�i

ffiffiffiffiffiffiffiffi
2ma2E
�h2

p
u þ C2e

þi
ffiffiffiffiffiffiffiffi
2ma2E
�h2

p
u. We do not

know either C1 or C2 but we do know that we must enforce c(2p)¼c(0) to join the beginning and
end of the wave function smoothly as it goes around the ring (in a standing wave). If there is a
sudden jump in the wave function at c(2p), the second derivative will be undefined at the
break point and the whole equation will be meaningless! Since the two solutions only differ
in the sign of the exponent, that sign can be absorbed into the value of �u and there is only

one form of the wave function as c ¼ Ce�i
ffiffiffiffiffiffiffiffi
2ma2E
�h2

p
u ) c(0) ¼ Ce0 ¼ c(2p) ¼ Ce�i2p

ffiffiffiffiffiffiffiffi
2ma2E
�h2

p
,

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ma2E

�h2

r
¼ 0, 2p, 4p, . . ., n(2p) so we find that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ma2E

�h2

r
¼ �n and then we have
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ma2E

�h2

r
¼ �n) En ¼ n2�h2

2ma2
, n¼ 0, �1, �2, . . .. Then we also find that cn¼Ce�inu, n¼ 0, �1,

�2, . . .. Note there is a solution for n¼ 0 in this case! Also we have what are called degenerate
solutions for n¼�1, �2, . . ., that is for a given n-level there are two states with the same energy.
States with the same energy but different wave functions are said to be degenerate.

The last thing to do is to normalize the wave functions so once again we set the integrated
probability to 1.

1¼
ð2p
0

(Ceinu)*(Ceinu)du¼C2
ð2p
0

ei(n�n)udu¼C2
ð2p
0

du¼C2(2p�0)¼ 2pC2¼ 1 so C¼ 1ffiffiffiffiffiffi
2p
p .

Let us take this opportunity to show the wave functions are orthogonal for any m 6¼ n.

ð2p
0

einuffiffiffiffiffiffi
2p
p
� �* eimuffiffiffiffiffiffi

2p
p
� �

du ¼ 1
2p

� � ð2p
0

ei(m�n)udu ¼ ei(m�n)u

2pi(m� n)

� �2p
0

¼ 0, m 6¼ n:

Since any integer multiple of the full 2p range will be the same at the upper and lower limits, they

cancel. Thus we have a lowest level of n¼ 0 with zero energy whose wave function is c0 ¼
1ffiffiffiffiffiffi
2p
p ,

not 0. Above that energy there are degenerate energy pairs. Finally we have the complete solution

cn ¼
einuffiffiffiffiffiffi
2p
p and En ¼ n2�h2

2ma2
, n¼ 0, �1, �2, . . .. We also have another interesting relationship here in

that the wave functions are also eigenfunctions of the angular momentum.

�h

i

d

adu

� �
e�inuffiffiffiffiffiffi
2p
p ¼ �n�h

a

� �
e�inuffiffiffiffiffiffi
2p
p :

The equal value with opposite sign for the n quantum number implies a pair of degenerate energy
orbitals but with the particle traveling in opposite directions.

While any exact solution should be appreciated in a mathematical sense, there really is a major
conclusion here. Note the pattern of the energy levels in Table 11.3 from a self-consistent-field
calculation including ‘‘core orbitals’’ as well as 2Pz p-electrons. The numbers in parentheses are the
orbital numbers in the presence of many lower energy core orbitals and the negative energies are for
occupied orbitals with positive energies for empty orbitals. There is one non-degenerate level
followed by two sets of double degenerate levels. The pattern returns to a non-degenerate level for
the benzene molecule because there are only six pi orbitals. The point is that the particle-on-a-ring
(POR) model predicts and explains the (4nþ2) rule of aromaticity in organic chemistry!

Let us use the POR model to estimate the HOMO ! LUMO transition in benzene.

DE ¼ E2 � E1 ¼ hn ¼ hc

l
¼ (22 � 12)�h2

2ma2
¼ 3h2

2ma2(2p)2
) lp!p* ¼

8p2ma2c

3h
:

Let us ignore the H atoms of benzene and note that a hexagon can be made into six isosceles
triangles with approximately 1.4 Å sides (actually 1.395), which is a good approximate value for a,
and let us assume that the six pi electrons are three spin-pairs in levels n¼ 0, n¼ 1, and n¼�1.
Then the HOMO ! LUMO transition can be computed using the formula derived earlier.

lp!p* ¼
8p2ma2c

3h
¼ 8p2(9:10938215� 10�31 kg)(1:4� 10�10 m)2(2:99792458 � 108 m=s)

3(6:62606896� 10�34 J � s) ,
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lp!p* ffi 2:12607� 10�7 m ¼ 2126:07� 10�10 m ffi 2126 Å but the experimental transition for
benzene is at 262 nm¼ 2620 Å. Let us consider what value of the radius would produce the
experimental wavelength.

lp!p* ¼
8p2ma2c

3h
) a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3lh

8p2mc

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3(2620� 10�10 m)(6:62606896� 10�34 J � s)

8p2(9:10938215� 10�31 kg)(2:99792458 � 108 m=s)

s
,

lp!p* ¼
8p2ma2c

3h
) a ffi 1:554� 10�10 m ¼ 1:554 Å. Noting that the C–H bonds are about 1 Å

the width across the benzene molecule from H to H would be about 4.8 Å for a radius of 2.4 Å. Thus
we have had to adjust the effective radius to be slightly larger than directly over the C atoms but not
by much and one might imagine that the pi electrons are somewhat attracted to the H atoms.
Actually, we have only adjusted the radius to fit the experimental wavelength. However, it is
pleasing that such a simple model comes so close to the experimental value! Figure 11.5 shows the
coefficients (�1000) of the pi-orbitals of benzene from an all-electron self-consistent field calcula-
tion where it is evident that the lowest energy orbital is totally symmetric with all the coefficients the
same, while the next orbitals have nodal patterns in a way that corresponds to the POR wave
solutions if we use eiu¼ cos(u)þisin(u).

Can this model be extended further? With one additional, fairly severe, assumption, the POR
model can be extended to other aromatic hydrocarbons [4–6]. The main assumption is that
the interior bonds of a poly-aromatic hydrocarbon such as naphthalene are less important than the
delocalized pathway on the outer circumference of the ring structure. A crude demonstration can
be made using a wire coat hanger that has a specific shape but that can be easily bent into a circle
(with a handle). If we break the middle bond in naphthalene and bend the outer bonds into a circular
polygon, we can apply the POR model to the ring. There are ten bonds in the outer edge of
naphthalene and we can use the approximation that their length is about 1.4 Å which is roughly
the bond length in benzene. Thus we can set the circumference of our model ring equal to (10)
(1.4 Å)¼ 14 Å ¼C¼ 2pa. That gives us a radius for our POR ring.

a ¼ 14 Å

2p
¼ 2:228 Å. Then we note there are 10 pi-electrons in naphthalene so we expect the

POR model to include 5 pairs of electrons. That means the HOMO ! LUMO transition will be
from n¼ 2 to n¼ 3. Then we can calculate the p ! p* wavelength as

DE ¼ E3 � E2 ¼ hn ¼ hc

l
¼ (32 � 22)�h2

2ma2
¼ 3h2

2ma2(2p)2
) lp!p* ¼

8p2ma2c

5h
:

TABLE 11.3
STO-3G One-Electron Energies for Pi-Molecular
Orbitals of Benzene (Hartrees)

E(24)¼ 0.4940

E(23)¼ 0.2664

E(22)¼ 0.2664

E(21)¼�0.2699
E(20)¼�0.2699
E(17)¼�0.4354

Note: STO-3G) Slater-type-orbitals fitted with a linear
combination of three Gaussian orbitals. See Chapter 17.
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lp!p* ¼
8p2(9:10938215� 10�31 kg)(2:22816 � 10�10 m)2(2:99792458� 108 m=s)

5(6:62606896� 10�34 J � s)
lp!p* ¼ 3:231217� 10�7 m ffi 3231:217� 10�10 m ¼ 3231 Å:

Experimentally the leading edge of the ultraviolet spectrum of naphthalene occurs at about 3150 Å
but electronic spectra of large molecules are broadened by vibrational interactions as we will see in a
later chapter. Thus we will take the calculated p ! p* wavelength as qualitatively correct; quite
good considering the simplicity of the model. Overall as the aromatic molecules become larger, the
POR model is useful for qualitative reasoning. The POR model was first discussed by Platt [4] in
1949, expanded by Moffit [5] in 1954 and used for interpretation of magnetic circular dichroism
spectra by Michl [6] in 1978.

COMPARISON OF PIB AND POR APPLICATIONS

An instructive comparison of the PIB and PORmodels is given by the diagram in Figure 11.5. Themain
point for students is toknowwhether touse the degenerate levels in thePORmodel or thenon-degenerate
levels in the PIB model. The next important approximation is to estimate length or circumference using
an average of the –C¼C– bond length as 1.4 Å. From then on we have to realize these models mainly
apply to conjugated hydrocarbons.We should remember that the PORmodel provides understanding of
aromaticity. We have used these simple, but solvable, model systems to illustrate the postulates of
quantum mechanics and now we are ready to proceed to more realistic problems.

ADDITIONAL THEOREMS IN QUANTUM MECHANICS

We now have seen two problems with exact solutions in quantum mechanics. Actually there are
only a few such exact solutions remaining such as the harmonic oscillator, the rigid rotor, the
hydrogen atom, and the forced harmonic oscillator, and we need to know some general principles
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FIGURE 11.5 The 2Pz coefficients of benzene multiplied by 1000, obtained from a STO-3G SCF-MO
calculation using the program PCLOBE, see Chapter 17. Only the lowest five orbitals are shown. (From
Trindle, C. and Shillady, D., Electronic Structure Modeling: Connections between Theory and Software, CRC
Press, Boca Raton, FL, 2008. With permission.)
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which may help with approximate solutions to unsolved problems. The first useful concept is really
a self-fulfilling definition that helps enforce quantum mechanics agree with laboratory measure-
ments in spite of the complications due to complex arithmetic.

Definition: Define the adjoint of an operator as <c|A|c>¼ <c|Ay|c>*

This can also be stated in words that an operator A usually operates to the right on a function but it
can also operate to the left on the complex adjoint c*¼<cj and the definition above means that if
the operator acts to the left it must be the adjoint form of the operator. This is the characteristic of a
‘‘Hermitian’’ operator. This also means that in the matrix mechanics form of quantum mechanics a
given ‘‘matrix-element’’ of a Hermitian matrix is related to another element on the other side of the
(upper left to lower right) diagonal of the matrix by the relationship Amn ¼ Anm* . The following
theorem shows why this definition is useful.

Theorem 1 The eigenvalues of a Hermitian operator are real numbers.

Proof: Given Ac¼ ac, form the expectation value
ð
c*Acdt, then operate to the left and the right.

a*
ð
c*cdt ¼

ð
c*A
$

cdt ¼ a

ð
c*cdt:

Start in the middle and operate inside the integral to the right and to the left using the adjoint rule.
Now subtract the right side of the equation from the left to obtain a new condition

a*
ð
c*cdt� a

ð
c*cdt ¼ (a*� a)

ð
c*cdt ¼ 0:

Think about that. Assuming
ð
c*cdt 6¼ 0, that means that (a*� a)¼ 0 and that can only be true if

a¼ bþ ic¼ a*¼ b� ic and that can only be true if c¼ 0. Thus a is a real number! Q.E.D. This can
be generalized to expectation values of Hermitian operators as given elsewhere [7] but here it is
sufficient to define an adjoint operator and that the definition guarantees real eigenvalues of
Hermitian operators. The next theorem is very useful but is built on the previous theorem.

Theorem 2 Two different eigenfunctions of a Hermitian operator are orthogonal if their
eigenvalues are not equal.

Proof: Given Ac1¼ ac1 and Ac2¼ bc2 with a 6¼ b, consider an integral between <c1jAjc2>.

a*
ð
c1
*c2dt ¼

ð
c1
*A
$

c2dt ¼ b

ð
c1
*c2dt:

Once again subtract the right side of the equation from the left side to obtain

(a*� b)

ð
c1
*c2dt ¼ 0:

We know that a*¼ a because it is a real eigenvalue and since a 6¼ b we see that (a� b) 6¼ 0. Then

the only conclusion is that
ð
c1
*c2dt ¼ 0, which means c1 and c2 are orthogonal, Q.E.D.
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Theorem 3 A single set of eigenfunctions can exist for two different Hermitian operators if
the operators commute.

Proof: Assume there really are two operators, A and B, which have the same eigenfunction c so
that Ac¼ ac and Bc¼ bc and that [A, B]¼ 0. Again we set up the integral <cj[A,B]jc>.

0 ¼
ð
c*(0)cdt ¼

ð
c*[A,B]cdt ¼

ð
c*(AB� BA)cdt ¼ (a*b*� ba)

ð
c*cdt ¼ 0, Q.E.D.

This is an ‘‘existence’’ theorem, it means that there can be such a c or {cn} but even if we show the
two operators commute it does not help find the set {cn}. However, the most important result of this
theorem is that if two operators commute (not all do!) then we can ‘‘know’’ their eigenvalues or
expectation values simultaneously. For two operators that do not commute we may be able to find
the observable for one, while the other is not completely defined or vice versa. We can mention
that the angular momentum operators (Lx, Ly, Lz) do not commute and a given set of eigenfunctions
for the Lz operator may not give a clear interpretation of the eigenvalues for (Lx, Ly) using the
eigenfunctions of Lz. We delay further discussion of this problem until the chapter on the H atom.
The main use of this third theorem is to use the eigenfunctions of some particular operator, which
commutes with the operator we are interested in to evaluate the expectation value in the known set
of eigenfunctions. We will see that there are some blind alleys in quantum mechanics and we often
have to use any trick we can think of to evaluate what we want to know, even if it is a roundabout
approach and for those cases this third theorem can be useful.

SUMMARY

In this chapter we explored the question of how to use the De Broglie matter waves to describe
molecular phenomena.

1. The (time-independent) Schrödinger wave equation Hc¼Ec was derived from the second

derivative of an arbitrary wave function by incorporating l ¼ h

mv
¼ h

p
into the second

derivative expression of the wave function. The characteristics of an eigenvalue equation
were noted.

2. It was noted that there is a total energy operator, H, called the Hamiltonian operator, which
can be set up by writing the kinetic energy operator in terms of momentum and the
potential energy without change except to regard it as a multiplicative operator. The key
to converting classical physics formulas into quantum mechanical operators is merely to

use pop ¼ �h

i

d

dq

� �
where q is the coordinate corresponding to the momentum and �h ¼ h

2p
.

Then all one has to do is to solve the differential equation Hc¼Ec to find the wave
function c and the energy E. In principle, the wave function c contains all the available
information about a given system and c*c can be interpreted as a probability. Physical
quantities are described by ‘‘operators’’ as calculus functions, which can be applied to the
wave function to obtain the quantized values of physical observables.

3. The problem of noninteracting particles trapped in a one-dimensional ‘‘box’’ with infinitely

high walls was solved to find the results En ¼ n2h2

8mL2
and cn ¼

ffiffiffi
2
L

r
sin

npx

L

� 
. The n¼ 0

level is a trivial solution for ‘‘no particle’’ because sin(0)¼ 0 and the energy levels are non-
degenerate with quadratically increasing spacing in n. However, the actual spacing
between the levels can be quite small as for the quantized translational energy of a gas
molecule.
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4. The PIB model can be used to estimate the electronic transition wavelengths of linear
polyenes by using 1.4 Å per bond in the conjugated chain, although slightly longer values
of the total length L give better answers. The simple model with V¼ 0 in the box gives
qualitatively useful interpretation of p! p* transitions in organic compounds assuming no
electron–electron repulsion or exchange and simple spin pairing of two electrons per orbital.

5. A similar pi-electron model can be solved for the POR where En ¼ n2�h2

2ma2
and

cn ¼
e�inuffiffiffiffiffiffi
2p
p , n ¼ 0, �1, �2, �3, . . .. In this case, the n¼ 0 level is not zero and the levels

above n¼ 0 are doubly degenerate; this leads to a correspondence with the 4nþ 2 rule for
aromatic character in organic chemistry.

6. The POR model can be extended to other aromatic pi-electron ring systems by ignoring the
inner cross-ring bonds and using a ring defined by the radius ‘‘a’’ of a circle whose
circumference is obtained as 1.4 Å times the number of bonds in the outer circumference
of the pi-electron ring system. This provides a qualitative model for aromatic ring systems
assuming perfect spin pairing of two electrons per orbital and neglect of any repulsion or
exchange between electrons.

7. A number of theorems are introduced related to the properties of solutions of the Schrö-
dinger equation. It is especially noted that valid wave functions must be (a) finite,
(b) continuous, and (c) single-valued.

PROBLEMS

11.1 Estimate the wavelength of the HOMO ! LUMO p ! p* of all-trans octatetraene.
11.2 Calculate the value of the box length to bring the PIB HOMO ! LUMO p ! p*

wavelength of octatetraene into agreement with the experimental wavelength of 3040 Å.
11.3 Use integration by parts twice to derive the expression for the average value of <x2>

<x2> ¼
ðL
0

ffiffiffi
2
L

r
sin

px

L

� 
(x2)

ffiffiffi
2
L

r
sin

px

L

� 
dx ¼ L2

3

� �
1� 3

2n2p2

� �� �
:

11.4 Show that [Px, x]¼� [x,Px], hint apply the operators to a dummy function f(x).
11.5 Use the uncertainty relationship to estimate the uncertainty in the product (Dx)(DPx) for the

n¼ 1, 2, 3, 4, and 5 levels of the PIB problem. Use factors of
�h

2

� �
.

11.6 Estimate the HOMO! LUMO p! p* wavelength for anthracene (C14H10) using the Platt
Perimeter extension of the POR model.

11.7 Compare (calculate) the HOMO ! LUMO p! p* wavelength for azulene (C10H8) using
the Platt Perimeter extension of the POR model; compare your result for the example
calculation for naphthalene in the text. What does this say about the Perimeter model?

11.8 Evaluate the energy of the n¼ 1and n¼ 2 levels of an electron-in-a-box for L¼ 10 Å in

joules and show the wave functions are orthogonal by direct integration of
ð
c1
*c2dt. Use

trigonometry relationships as needed. (sin(2u)¼ 2 sin(u) cos(u) might help).
11.9 Evaluate the angular momentum of the n¼ 0, n¼ 1 and n¼ 2 levels for a POR where the

radius is 1 Å, in h-bar units. Note the PIR wave functions are eigenfunctions of the angular
momentum as well as the energy!

11.10 Prove the wave functions of the n¼ 1 and n¼ 2 levels of the POR model are orthogonal by
direct integration of the product of the normalized functions.
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STUDY, TEST, AND LEARN?

Realistically, Chapters 10 and 11 contain some important material that is perhaps the last really
‘‘must learn’’ material in the second semester. There is a considerable amount of basic physics in
Chapter 10, and Chapter 11 has the basic concepts of quantum chemistry. From now on, the material
will emphasize learning the main conclusions but only using the mathematics as a reference.
However, this is a good point to have a quiz over Chapters 10 and 11. On another page we will
show some tests from a nearby four year Liberal Arts College, Randolph Macon College where the
physical chemistry courses are CHEM 311 and 312 with 312 as an elective.

Once again, the students were encouraged to memorize derivations and to try to answer every
question with the additional knowledge that their grade would be based on the grade they
achieve on the final examination or their average including the final examination grade, whichever
is higher.

Chemistry 312 Randolph Macon College Spring 2009 D. Shillady, Professor
(Points) Quiz #1 (Attempt all problems) 55 min

(20) 1. Compute the De Broglie matter wavelength of an electron ejected from Cu (Wf¼ 4.45 eV) by
a two-photon absorption of 4880 Å from an intense Arþ laser (lDB¼ 15.42 Å).

(20) 2. Derive the quantized energy levels of a ‘‘POR’’ and use the perimeter model to estimate the
first p ! p* wavelength of anthracene (C14H10) and normalize the wave function. Use
(�C�C� of 1.4 Å) (lp!p* ffi 4533 Å).

(10) 3. Estimate the Auger wavelength of x-rays emitted when Cu (Z¼ 29) is used as an electron
beam target and an n¼ 2 electron ‘‘falls’’ to a 1s Bohr orbital (lx-ray ffi 1.445 Å).

(10) 4. If two eigenfunctions of the same Hermitian operator have different eigenvalues, prove the
eigenfunctions are orthogonal, after first proving the eigenvalues are real (see notes).

(20) 5. Crystalline NaCl has a simple cubic unit cell with a Na–Cl distance of 2.76 Å. Calculate
the angle of the n¼ 2 LEED pattern for the full-Bragg diffraction of 150 eV electrons.
(nl¼ 2d sin (u), u¼ 21.2538, angle of incidence¼ angle of reflection).

(20) 6. Adjust the ‘‘length, L’’ of the PIB model to fit the first p ! p* transition for all-trans-
hexatriene (C6H8) to the experimentally observed wavelength of 2510 Å (L ffi 7.3 Å).
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12 The Quantized Harmonic
Oscillator: Vibrational
Spectroscopy

INTRODUCTION

Now that we have learned some of the principles which apply in quantum mechanics, we move on
to the next more difficult problem of a quantized harmonic oscillator. The goal here is to provide a
rigorous application of the polynomial method of solving differential equations on a relatively
simple case and to provide some insight into how the Schrödinger equation was first solved [1].
Then we proceed to application in the form of worked examples. We have tried to give sufficient
details of this solution to allow a student to follow the derivation with pencil and paper but do not
forget to ponder over the spectroscopic applications! This author would agree that it is more
important to absorb the main conclusions of this material than to master the derivations. In fact,
the highest recommendation of this author is to always ask ‘‘What does this mean?’’ and absorb the
conclusions for a future activity called ‘‘thinking’’ rather than just memorizing facts.

The previous particle-in-a-box (PIB) and particle-on-a-ring (POR) problems both had V¼ 0 and
only dealt with the kinetic energy operator. The essence of the harmonic oscillator is a parabolic

potential energy V ¼ kx2

2
where k is the ‘‘spring constant’’ or ‘‘restoring force constant.’’ According

to the idea that a force is the negative derivative of a potential, we have

f (x) ¼ � dV

dx
¼ � 2kx

2
¼ �kx so k is the proportionality factor of the force of a spring stretched

or compressed away from x¼ 0. The classical case can be solved easily by equating two

forces f ¼ ma ¼ m
d2x

dt2
¼ �kx. The solution from sophomore physics is x ¼ A sin

ffiffiffiffi
k

m

r !
t

" #

and this can be shown by direct substitution.
dx

dt
¼ A

ffiffiffiffi
k

m

r
cos

ffiffiffiffi
k

m

r !
t

" #
and

d2x

dt2
¼ �A k

m

� �
sin

ffiffiffiffi
k

m

r !
t

" #
¼ � k

m

� �
x. So m

d2x

dt2
¼ �kx, Q.E.D.

This could have been solved to obtain the same result in more complicated ways but we want to
build on your experience from problems in physics and we note that ‘‘A¼ amplitude.’’

Here we are faced with the quantum mechanical treatment of the harmonic oscillator. This
potential does not take into account the fact that a chemical bond will eventually break when
stretched more than about 10 Å but it does provide a very good approximation to the small
vibrations of a bond in low energy states. An interesting fact plays a role here in that on planet
Earth at average temperatures around 258C, almost all molecules are in very low vibrational states.
This is fortuitous for the use of a potential which is most accurate at low energies. We see in
Figure 12.1 a sketch of a parabolic potential superimposed on a model of a dissociative bond
potential. Here the value of the potential is a minimum at r ¼ r0 and the energy is negative for a
‘‘bound’’ state but we will measure the energy as positive above the minimum of the parabolic
potential. We see that the parabolic potential makes a good fit to a real potential for a considerable
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portion of the bound region but eventually the parabola extends to þ1 while the real potential is
asymptotic to a zero energy dissociation limit as the bond is stretched. The region where the real
potential departs from the harmonic parabola is called the ‘‘anharmonic’’ region but most of the
applications deal with the harmonic region down low in the parabolic well.

In Figure 12.1, we have an opportunity to introduce an approximate function due to Morse [2].

V(r) ¼ De 1� e�a(r�r0)
� �2

:

This so-called Morse potential has three parameters, De, a, and r0, which can be fitted to experi-
mental data for a variety of diatomic molecules and even some vibrations of polyatomic molecules.
The Morse potential has two shortcomings. It starts from zero and remains positive while the real
potential is below the axis as a negative number and the short range part of the potential actually
crosses the vertical axis (as does the parabolic potential as well) while the real potential would not.
However, the lower part of the well is a good approximation to a harmonic well and the Morse
potential does dissociate to a limit. An exact solution to the Morse potential exists [3] as one of the
few exact solutions in quantum mechanics, but the solution is best left to specialized courses. Other
discussions are available on the Internet [4]. To apply this to the H2 molecule we use data from the
90th Edn. of the CRC Handbook [5] noting a similar very accurate quantum mechanical calculation
of the energy and bond length [6] (Table 12.1).
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FIGURE 12.1 A parabolic potential superimposed on a Morse potential using actual data for the H2 molecule.
An exact but more complicated solution also exists for the Morse potential. (See Ref. [3])

TABLE 12.1
Spectroscopic Parameters for H2

Bond length: r0¼ 0.74144 Å

Energy at minimum: De¼ 1.17445 hartrees¼ 31.95840977 eV

Force constant: k¼ 5.75 N=cm¼ 5.75� 105 dyne=cm¼ 5.75� 10�3 dynes=Å
a ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

k 2De=
p ¼ 0.74932661=Å
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It can be shown by matching the second derivative of the Morse potential to the second
derivative of the parabolic potential that a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k=2De

p
[3,4], so we can plot both the harmonic

and Morse potential on the same graph. With De in electron volts and r0 in Å along with the
calculated value of a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k=2De

p
we obtain data points to plot in Figure 12.1.

The graph shows that the harmonic and Morse potential wells superimpose fairly well at low
energy and probably the first few energy levels correspond for both models. That may be all we
need for ground states most of the time on planet Earth. The exact potential well can also be
constructed from spectroscopic data but it is adequate to introduce the Morse potential to provide a
useful model. Both the parabolic and Morse potentials are incorrect in that the short range part
crosses the vertical axis which is meaningless so the potentials are only shown for x> 0 but the fit
for low energy levels is still useful.

Just as with the PIB model, the particle (effective mass of the vibrating parts of the molecule) will
have kinetic energy and rattle back and forth in the parabolic well. The commutator idea in the
previous chapter could be used to completely solve this problem. However, our goal here is to show
how the ‘‘essential’’ quantized energy condition occurs. While the calculus here is usually found in a
further course in differential equations (recommended), we think it is better to use functions and
derivatives instead of formal operators. If we follow a derivation based on operator commutators, it
would add another unfamiliar aspect to the problem so we will present the polynomial method in the
assumption that a teacher can put the steps on the board or that a student can follow it on scratch
paper. There is just no way around using some form of detailed mathematics to show how this
problem was solved! However, here we take the time-honored path used first by Schrödinger [1] and
beautifully detailed by Pauling and Wilson in 1935 [7] to solve this problem with a polynomial
expansion technique, which uses standard calculus methods. We do this partly so that we can allude
to the polynomial expansion method when we solve the H-atom using Schrödinger’s method. Note
the Schrödinger H-atom treatment is a problem in three dimensions (compared to the flat Bohr
model) while the harmonic oscillator is our best chance to give a complete solution in only one
dimension. At this point, a student easily frustrated by mathematical details is advised to go to the
section marked Harmonic Oscillator Results to obtain the key results and then return to check out
the rigorous details of the mathematical basis of the facts related to the quantized harmonic
oscillator.

HARMONIC OSCILLATOR DETAILS

As is now usual, we start by writing the Hamiltonian operator and attempt to solve the differential
equation. The basic strategy is that we recall the idea of a Taylor power series expansion, which can
represent any function as a (potentially infinite) power series. Thus we hope we can write
c(x) ¼P1n¼0 anxn and find some way to evaluate the values of an. However, we have to first suffer
through a few changes in variable to achieve a ‘‘simple’’ equation! We give more details than most
texts at this point so that you can follow the derivation with pencil and paper or the teacher can put

these steps on the board for slow appreciation. H ¼ ��h2
2m

d2

dx2

� �
þ kx2

2
where x � (r � r0) and we

will define the meaning of the mass later. Thus
��h2
2m

d2c

dx2
þ kx2

2
c ¼ Ec. Now let x ¼ bj and absorb

all the physical units into b so that j is without units. Then
��h2
2mb2

d2c

dj2
þ k

2
b2j2c ¼ Ec and this is

useful for unit analysis related to energy. In units E � �h2

2mb2 �
k

2
b2 ) b2 ¼ �hffiffiffiffi

m
p

k
. What follows is

a mind-bending sequence of variable changes so we seek as much meaning as possible from the
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initial unit analysis. We will also find a curiosity in that the harmonic oscillator is the only known
case where the classical result for the frequency will be the same as the quantum formula. You may

recall from sophomore physics that a periodic frequency is given by n ¼ 1
2p

ffiffiffiffi
k

m

r
so then we

substitute that formula into
k

2
b2 ¼ k

2
�hffiffiffiffiffiffi
mk
p ¼ �h

2

ffiffiffiffi
k

m

r
¼ h

2
1
2p

ffiffiffiffi
k

m

r !
¼ hn

2
and a really shrewd

guess might lead us to suspect that the quantized levels will involve something like En / hn

2
? Let

us now get past the messy algebraic substitutions. First, multiply the equation by 2m and divide

by ��h2. That produces
d2c

dx2
� 2mkx2

2�h2
c ¼ �2mE

�h2
c, so then

d2c

dx2
þ 2mE

�h2
c� mkx2

�h2
c ¼ 0. Next

define a � 2mpn
�h

so that a � 2mp
�h

1
2p

ffiffiffiffi
k

m

r !
¼

ffiffiffiffiffiffi
mk
p

�h
and then a2 ¼ mk

�h2
. Thus if we also define

l � 2mE

�h2
we find that

d2c

dx2
þ (l� a2x2)c ¼ 0. This looks simpler but still has a term proportional

to x2, which prevents use of the factoring technique so helpful in solving the PIB and POR
problems. Since l is a constant we might ask if there is an asymptotic solution when x� l so

we could neglect l. Then
d2c

dx2
ffi a2x2c but that still has no clean solution, although it suggests

c ¼ [e�(
ax2
2 )]f (x) because a solution with eþ(

ax2
2 ) would not be finite for x!1. Then we have for

finite range in x,
dc

dx
¼ � 2ax

2
e�

ax2
2

	 

f (x)þ e�

ax2
2

	 

df

dx
and the second derivative is

d2c

dx2
¼

�ae� ax2
2

	 

f (x) þ (a2x2)e�

ax2
2

	 

f (x) � (ax)e�

ax2
2

	 

df

dx

� �
� (ax)e�

ax2
2

	 

df

dx

� �
þ e�

ax2
2

	 

d2f

dx2

� ���
.

After the derivatives are combined, we divide through by e�
ax2
2

	 

to obtain the short range equation

as
d2c
dx2 þ (l � ax2)c

e�
ax2
2ð Þ

" #
¼ d2f (x)

dx2
� 2ax

df (x)

dx
þ (l � a)f (x) ¼ 0. Next we can relate to a

known equation solved by a French mathematician Charles Hermite [8,9] (1822–1901) with one
more change of variable as f (x) ¼ H(

ffiffiffi
a
p

x) ¼ H(z). Here we see the mathematics of Schrödinger
as filtered through the Pauling and Wilson text so we do not know exactly how Schrödinger thought
of this solution. A sensible student will realize that we are really only interested in the final result
while giving Schrödinger credit for solving a difficult problem! Now for our final variable change

we substitute B ¼ x
ffiffiffi
a
p

or x ¼ Bffiffiffi
a
p . We will need the chain rule here, dB ¼ ffiffiffi

a
p

dx so that

d

dx
¼ d

dBffiffiffi
a
p
�  ¼ ffiffiffi

a
p

d

dB
. Then we come to the final working equation. Make a note of this coordinate

scaling by
ffiffiffi
a
p

for later interpretation because a contains information about the frequency and mass
of the oscillator so that x will be scaled differently for different molecules!

d2H(B)
dB2
.
a

� 2a
Bffiffiffi
a
p
� �

dH(B)
dB
. ffiffiffi

a
p þ (l� a)H(B) ¼ 0 using the chain rule that simplifies if we

‘‘swing up’’
ffiffiffi
a
p

in the derivative terms to find
d2H(B)
dB2

� 2B
dH(B)
dB
þ l

a
� 1

� �
H(B) ¼ 0. Schrödinger

would have been aware of mathematical research in polynomials during 1860–1900 and he would
have recognized an equation studied by Hermite [8, 9]. Now we are ready for the main polynomial
strategy by expanding H(B) ¼ a0 þ a1Bþ a2B2 þ a3B3 þ a4B4 þ � � � ¼

P1
n¼0 anB

n. Thus we insert
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the series into the equation. We use
d

dB

P1
n¼0 anB

n ¼P1n¼1 nanB(n�1) and
d2

dB2
P1

n¼0 anB
n ¼P1

n¼2 n(n� 1)anB(n�2) to obtain specifically

1 � 2a2 þ 2 � 3a3Bþ 3 � 4a4B2 þ 4 � 5a5B3 þ � � �

�2a1B� 2 � 2a2B2 � 2 � 3a3B3 þ � � �

þ l

a
� 1

� �
a0 þ l

a
� 1

� �
a1Bþ l

a
� 1

� �
a2B2 þ l

a
� 1

� �
a3B3 þ � � � ¼ 0:

Since each power of B must be zero separately we obtain a lot of equations!

1 � 2a2 þ l

a
� 1

� �
a0 ¼ 0

2 � 3a3 þ l

a
� 1� 2

� �
a1 ¼ 0

3 � 4a4 þ l

a
� 1� 2 � 2

� �
a2 ¼ 0

4 � 5a5 þ l

a
� 1� 2 � 3

� �
a3 ¼ 0 and so forth as n!1. For the moment, it looks like we

have a solution but there is still one more problem. When we deal with infinite power
series, we have to ask whether they converge or just increase to 1. Consider a similar

power series eB
2 ¼ 1þ B2 þ B4

2
þ B6

3!
þ B8

4!
þ � � � þ Bn

n
2

	 

!
þ Bnþ2

n
2þ 1
	 


!
þ � � � There is a test for

convergence called the ‘‘ratio test’’ to see if the terms are gradually getting smaller.
Cnþ1
Cn

< 1? Here we find
Cnþ1
Cn
¼ (n=2)!

n
2þ 1
	 


!
! 1

n
and although the terms get smaller, the

cumulative sum is not limited so we have a divergent series for eB
2
. Yes, the series

converges to eB
2
, but that function goes to 1 as B increases. Now consider the ratio of

successive terms we see in the preceding text for the Hermite polynomials.
anþ2
an
¼ �

l
a� 2n� 1
	 

(nþ 1)(nþ 2)

! 1
n
, so we see that whether we consider the series based on

even or odd values of n, the series will diverge! We have already been through a lot of
mathematics, which you might not see until a course in differential equations but you
should recognize this as a roadblock Schrödinger must have faced. The power series must
be truncated to obtain a set of finite polynomials! Note the negative sign in the coefficient

ratio. Thus we let the energy embedded in the l parameter be such that l=a

� 
� 1 ¼ 2n

h i
.

Then after a certain number of terms, the energy condition will be reached and the series

will terminate and prevent divergence! Amazing! Thus we have

2mE
�h2

� 
2mpn
�h

	 
� 1 ¼ 2n and then

we solve for the energy. En ¼ (2nþ 1)
phn

2p

� �
¼ (2nþ 1)

hn

2
¼ nþ 1

2

� �
hn ¼ En

In the experience of this author, an interested undergraduate student can carry out the variable
changes we have indicated on scratch paper but it is better if the class teacher can put the steps on
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a board to slowly appreciate the process. Although we follow roughly similar steps as the very clear
treatment in the classic text by Pauling and Wilson [7] we wanted to at least show how the equation
can be solved with some added comments. This is a key derivation in just one dimension, which
pales in difficulty to the problem solved by Adrien-Marie Legendre (1752–1833), another
French mathematician whose derivation of the Legendre polynomials in 1785 opened the way for
Schrödinger. If you think this derivation was mind-bending, we want to assure you it is very easy
compared to the derivation for the key equation of the rigid rotor (solved mainly by Legendre). We
are going to spare the students the very difficult steps for the rigid rotor and the H atom solution,
which are much more complicated but that involves a similar polynomial analysis.

HARMONIC OSCILLATOR RESULTS

What about the actual form of the wave function? The mathematics requires us to backtrack through
all the variable changes that were made. Here we present the final results, which are normalized.
Other more advanced texts in quantum mechanics will give further details, and if a student is
interested in further work, it would be a good idea to purchase the text by Pauling and Wilson [7] in
its original form or the reprinted version from Dover Press.

cn ¼ Nne
�B2

2 Hn(B),

where Nn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

p

� 1=2 1
2nn!

r
and En ¼ nþ 1

2

� �
hn with n ¼ 1

2p

� � ffiffiffiffi
k

m

r

Hn(B) ¼ (�1)neB2 d
n(e�B

2
)

(dB)n
¼
X
k¼0

(�1)kn!(2B)(n�2k)
(n� 2k)!k!

:

Note there are odd and even solutions (Table 12.2).

Note that the normalization constant Nn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

p

� 1=2 1
2nn!

r
is a function of a ¼ 4p2mn

h
, which in

turn depends on m and n for a particular molecule so we present the functional form of a few low-
energy wave functions with the normalization constant and a ¼ 1 just to see their shapes. The
graphs we show are the usual presentations that show a number of zero-crossing ‘‘nodes’’ and a
special effect that as the energy levels increase, the amplitude of the waves increase near the sides
of the parabolic potential well. This is evident in the wave functions we show in the following text,
most noticeably in c4

*c4. This means that the velocity of the particle is greatest when moving over
x ¼ 0 but since it has to slow to reverse direction at the sides (turning points) of the potential well it
is slightly more probable to be near the sides of the well. It is important for undergraduates to

TABLE 12.2
Selected Hermite Polynomials

Even Odd

H0(B) ¼ 1 H1(B) ¼ 2B

H2(B) ¼ 4B2 � 2 H3(B) ¼ 8B3 � 12B

H4(B) ¼ 16B4 � 48B2 þ 12 H5(B) ¼ 32B5 � 160B3 þ 120B

H6(B) ¼ 64B6 � 480B4 þ 720B2 � 120 H7(B) ¼ 128B7 � 1344B5 þ 3360B3 � 1680B

Note: B ¼ ffiffiffi
a
p

x.
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understand that quantum mechanics does indeed scale-up to macroscopic behavior but when we
deal with atoms and molecules, quantum effects occur in the microscopic domain.

Most textbooks illustrate the lowest wave functions of the harmonic oscillator by plotting the

normalized functions as cn ¼ Nne
� B2

2

	 

Hn(B) as we have done. However, the a variable will stretch

the x-coordinate by the amount
ffiffiffi
a
p

and a ¼ 2mpn
�h

(Figure 12.2). This means the x-coordinate will be

distorted by the mass and frequency for a given case. Here we show the normalized shapes of the first
four wave functions and their square, which is the probability according to c*c. We should not be
surprised that the shapes may be totally dominated by the leading terms [10] of theHn(B) polynomials
depending on a particular set of values for m and n of a certain molecule (Figures 12.3 through
12.11). Here we could have used numerical values for H2 which is a light molecule in terms of mass
but the force constant is by no means the lowest in diatomic molecules as shown in Table 12.3.

Evib=hc ¼ ve nþ 1
2

� �
� vexe nþ 1

2

� �2

þ � � �

and

Erot=hc ¼ BJ(J þ 1)� Dn[J(J þ 1)]2 þ � � �

where Bn ¼ Be � ae nþ 1
2

� �
þ � � � and De ¼ Dn þ � � �

Note that N2 and CO have very high force constants and N2 has the highest in Table 12.3. Consider
that N�N clearly has a triple bond and so does C�O when you draw the Lewis electron structure!
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REDUCED MASS

Consider two masses connected by a rigid bar as a model of a diatomic molecule. The two masses
need not be equal as m1 and m2 with the length of the bar as r. Now balance the model on a seesaw
pivot point as in Figure 12.12 such that the distance from the pivot point to m1 is r1 and the distance
from the pivot point to m2 is r2 such that r ¼ r1 þ r2. By the lever principle, we have at balance

m1r1 ¼ m2r2. Thus r1 ¼ m2r2
m1

and r2 ¼ m1r1
m2

. Then r ¼ r1 þ m1r1
m2
¼ 1þ m1

m2

� �
r1 ¼ m2 þ m1

m2

� �
r1

so that r1 ¼ m2

m1 þ m2

� �
r. By analogy, r2 ¼ m1

m1 þ m2

� �
r as well. In a rotating system, the role of

mass is replaced by the moment of inertia I ¼
X

i
mir

2
i ¼ mar

2
1 þ mbr

2
2 ¼

mam2
br

2

(ma þ mb)
2 þ

mbm2
ar

2

(ma þ mb)
2 ¼

(mb þ ma)mamb

(ma þ mb)
2 r2 ¼ mamb

(ma þ mb)
r2.
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This is an important simplification! It says that in a system that rotates around a center-of-mass
pivot point the individual masses can be represented by an equivalent single mass with a value of

I ¼ mamb

(ma þ mb)
r2 and so we can substitute m ¼ mamb

(ma þ mb)
for the mass in a harmonic oscillator.

This implies that a real diatomic molecule can rotate around its center of mass while it vibrates

with an equivalent one-body mass, m. That is why we used m ¼ mHmH

(mH þ mH)
¼ mH

2
in the calculation

of a earlier.

TABLE 12.3
Force Constants and Spectroscopic Constants for Selected Diatomic Molecules

Molecule k (N=cm) ve (cm�1) vexe (cm�1) Be (cm�1) ae (cm�1) De (10�6 cm�1) re (Å)

H–H 5.75 4401.21 121.34 60.853 3.062 47100 0.74144

BeH 2.27 1247.36 36.31 10.3164 0.3030 1022.1 1.3426

BeD � same 1530.32 20.71 5.6872 0.1225 313.8 1.3419

BH 3.05 2366.9 49.40 12.021 0.412 1242 1.2324

BD � same 1703.3 28 6.54 0.17 400 1.2324

HF 9.66 4138.32 89.88 20.9557 0.798 2151 0.91681

HD � same 2998.19 45.76 11.0102 0.3017 59 0.91694

H-35Cl 5.16 2990.95 52.82 10.5934 0.30718 531.94 1.27455

D-35Cl � same 2145.16 27.18 5.448796 0.113292 140 1.27458

HBr 4.12 2648.97 45.22 8.46488 0.23328 345.8 1.41444

DBr � same 1884.75 22.72 4.245596 0.084 88.32 1.4145

HI 3.14 2309.01 39.64 6.426365 0.1689 206.9 1.60916

LiH 1.03 1405.65 23.20 7.51373 0.21665 862 1.59490

LiD � same 1054.80 12.94 4.23310 0.09155 276 1.5941

NaH 0.78 1172.2 19.72 4.9033634 0.1370919 343.40 1.88654

NaD � same 826.1 ? 2.557089 0.051600 93.46 1.88654

KH 0.56 983.6 14.3 3.416400 0.085313 163.55 2.243

KD � same 707 7.7 1.754 0.0318 50 2.240

RbH 0.52 936.9 14.21 3.020 0.072 123 2.367

CsH 0.47 891.0 12.9 2.7099 0.0579 113 2.4938

CsD � same 619.1 ? 1.354 ? 20 2.505

C�O 19.02 2169.81 13.29 1.93128075 0.01750390 6.1216 1.12823

CS 8.49 1285.15 6.50 0.8200434 0.0059182 1.336 1.53482

N�N 22.95 2358.57 14.32 1.99824 0.017318 5.76 1.09769

Li–Li 0.26 351.43 2.61 0.67264 0.00704 9.87 2.6729

Na–Na 0.17 159.13 0.72 0.154707 0.008736 0.581 3.0789

BeO 7.51 1487.32 11.83 1.6510 0.0190 8.20 1.3309

MgO 3.48 784.78 5.26 0.57470436 0.00532377 1.2328 1.74838

CaO 3.61 723.03 4.83 0.444441 0.003282 0.6541 1.8221

Source: Lide, D. R., CRC Handbook of Chemistry and Physics, 90th Edn., CRC Press, Boca Raton, FL, 2009, 9-108–9-112.
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FIGURE 12.12 Two different masses balanced on a see-saw center-of-mass pivot.
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ISOTOPE SHIFT IN THE VIBRATIONAL FUNDAMENTAL FREQUENCY

FromTable 12.3, we can see a number of interesting trends. The most obvious is the shift in frequency
between deuterated hydrides such asHCl andDCl and anumber of others.Although the atomicmass of
H is given as 1.00794 g=mol that is only an average value for the natural abundance of H on planet
Earth, which includes small amounts of deuterium and tritium, so the actual atomic mass of
1H¼ 1.007825032 and the actual mass of 2D¼ 2.014101778 g=mol (0.0115% abundance on Earth).
This difference in mass of about 2:1 can have a large effect on the vibrational frequency and is called
an isotope shift. There can be other isotope shifts such as for 35Cl and 37Cl, which are smaller but
the largest isotope shifts due to differences in mass can be observed for substitution of D for H and
hydrides are a good place to look for such an effect. Consider the ratio of the fundamental
frequencies of the H compound and the D compound. Based on electrostatics of the charges on the
nuclei, there is no reason to believe that the electronic bonding is any different inDCl than inHCl so the
shape of the potential well should be the same and so kHCl ¼ kDCl. The bond length might shorten a
slight amount in DCl since the D part of the molecule is ‘‘heavier’’ and less likely to vibrate out to
larger bond lengths (examine Table 12.3 to see if deuterated hydrides have shorter average
bond lengths than the corresponding hydride) but the bond strength should be the same based
on the nuclear charges and the number of electrons. Let us use rough approximations to
the molecular weights as 35 for 35Cl, 1 for H, and 2 for D just to show the effect of the

masses on the vibrational frequencies using the reduced masses.
nHCl
nDCl
¼

1
2p

	 
 ffiffiffiffiffiffiffi
kHCl
mHCl

q
1
2p

	 
 ffiffiffiffiffiffiffi
kHCl
mDCl

q ¼
ffiffiffiffiffiffiffiffiffiffi
mDCl

mHCl

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2 � 35=37)
(1 � 35=36)

s
ffi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(36=37)

p
¼ 1:39497 ffi 1:4. We have used approximate atomic weights because

of the slight factor of the ratio of the inverse totalmolecular weights but roughlywe expect replacement

of H by D to reduce the vibrational frequency by a factor of (1=
ffiffiffi
2
p

) ¼ 0:707 or for the H-compound
to have a frequency higher than the D-compound by roughly 1.4 From data

nHCl
nDCl
¼

1
l

	 

HCl

1
l

	 

DCl

¼ (n=c)HCl
(n=c)DCl

¼ 2990:95=cm
2145:16=cm

ffi 1:3942.

The same sort of isotope shift is observed in polyatomic molecules as well and we show in Figures
12.13 and 12.14 [13] the corresponding redshifts in the spectrum of water due to substitution
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FIGURE 12.13 A low resolution infrared spectrum of liquid water, H2O. (From NIST Chemistry WebBook,
http:==webbook.nist.gov=chemistry)
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of deuterium for proton-hydrogen. The effect is blurred due to the spectra of liquids but the
hydrogen=deuterium isotope shift is the largest observed in vibrational spectroscopy and is easily
seen when comparing the infrared spectra of H2O and D2O.

HERMITE RECURSION RULE

Next we should note a useful recurrence relationship between the Hermite polynomials.

BHn(B) ¼ nHn�1(B)þ 1
2

� �
Hnþ1(B), which relates a given n-level to the levels above and below.

For instance BH2(B) ¼ 2H1(B)þ (1=2)H3(B) ¼ 2(2B)þ 1
.
2

� 
(8B3 � 12B) ¼ 4B3 þ 4B� 6B, so

indeed we find that BH2(B) ¼ B(4B2 � 2). We also check the wave function normalization.

Consider whether c0 ¼
a

p

� 1=4
e�

B2

2

	 

¼ a

p

� 1=4
e�

ax2
2

	 

, the n¼ 0 wave function, is normalized.

ð
c0c0dt ¼

ðþ1
�1

a

p

� 1=4
e�

ax2
2

	 
� �*
a

p

� 1=4
e�

ax2
2

	 
� �
dx ¼ 2

ð1
0

a

p

� 1=2
e�ax

2
dx

¼ 2
a

p

� 1=2 ffiffiffiffi
p

a

r
1
2

� �
¼ 1:

Note we have used
ðþ1
�1

(even)dx ¼ 2
ð1
0
(even) dx along with

ð1
0
e�ax

2
dx ¼ 1

2

ffiffiffiffi
p

a

r
.

The wave functions are also orthogonal because the product of an odd and even function
integrated over all space is zero and the (even� even) or (odd� odd) products cancel due to the

nodal patterns. In summary,
ð
cmcndt ¼ dmn where dmn ¼ 1,m ¼ n or dmn ¼ 0,m 6¼ n. Note dmn is

the so-called Kroneker delta, which is a compact way to indicate an orthonormal set {cn}.

INFRARED DIPOLE SELECTION RULE

The most important reason we need to study the harmonic oscillator wave functions is to determine
how a given molecule will react to the sinusoidal electric field of an impinging light wave. Most
molecules have an electric dipole moment due to some displaced electronic charge caused by
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FIGURE 12.14 A low resolution liquid phase spectrum of D2O showing the H=D isotope shift of the 3200
cm�1 of water to a much lower energy around 2750 cm�1. (From NIST Chemistry WebBook, http:==webbook.
nist.gov=chemistry)
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electronegativity differences between atoms. Much of the original work on measuring dipole
moments and defining the concept was carried out by Peter Debye (1884–1966), a Dutch physical
chemist and Nobel Laureate who later moved to Cornell University in the United States. Originally,
the unit of the Debye was defined as a separation of two opposite sign charges of magnitude qe
separated by 1 Å. This could be related to ionic compounds with bond lengths typically measured
in Å. The SI conversion is 1 Debye¼ 3.33564� 10�30 C m as measured in Coulombs and meters.
Hydrogen chloride (HCl) has a typical value of 1.1086 D [11] and monomeric gas phase formal-
dehyde (H2CO) a value of 2.332 D [11]. A dipole moment is usually shown in diagrams as an
arrow with the point at the negative end and a plus sign as the tail of the arrow. Dipole moments are
vectors and the direction of the dipole moment in ortho-dichlorobenzene is not the same as for meta-
dichlorobenzene.

We will use a dipole interaction explanation for infrared absorption. Although the classical
description of a light wave shows an oscillating field, let us consider the wavelength of infrared
light, which is typically absorbed by a carbonyl group near 1700 cm�1. Note that the typical
wavelength of infrared light is much larger than the size of the molecules as for the example of
monomeric formaldehyde which is the prototypical carbonyl compound.

1
l

� �
¼ n ¼ 1700=cm) l ¼ 1 cm

1700

� �
ffi 5:882� 10�4 cm ¼ 58,820 Å, which is much longer

than the size of small molecules typically less than 10 Å. Thus the actual situation is that during the
absorption process, the dipole of the molecule is in an electric field ~E, which is approximately
constant. If the molecular dipole couples with the electric field, the bond may be lengthened or
compressed slightly by the light wave leading to more or less vibrational amplitude according the
interaction ~E �~m. Here ~m ¼ q~r for some internal charge separation q along a distance~r. Thus we
ask for the expectation value (average) of the interaction of the dipole moment with a given bond
length and factor out the approximately constant charge separation e along a bond that is causing the

dipole moment as e <m (r � re)j jn>¼ e <m
Bffiffiffi
a
p
����

����n> between any two states. Although it looks

like e and
ffiffiffi
a
p

are complications, they can be factored out of the integral and we are only interested
in what states can be connected by this transition mechanism and not the absolute value of the
interaction.

Using cn ¼ NnHn(B)e�
B2

2 , we can evaluate the transition dipole interaction between states mj i and
nj i as m

Bffiffiffi
a
p
����

����n
� �

¼
ðþ1
�1

NmHme
�B2

2
Bffiffiffi
a
p
� �

NnHn(B)e�
B2

2 dB where B ¼ ffiffiffi
a
p

x ¼ ffiffiffi
a
p

(r � re). Then

invoke the recursion relation so BHn(B) ¼ nHn�1(B)þ (1=2)Hnþ1(B) inside the integral to find that

m
Bffiffiffi
a
p
����

����n
� �

¼ NmNn
1ffiffiffi
a
p
� �ðþ1

�1
e�B

2
Hm(B) nHn�1(B)þ 1=2

� 
Hnþ1(B)

h i
dB. Now the Nn coefficient

is not correct for the (n� 1) and (nþ 1) states but we can multiply and divide by the needed value in
each case to complete the formula and use the Kroneker delta function.

m
Bffiffiffi
a
p
����

����n
� �

¼ NmNn
1ffiffiffi
a
p
� �ðþ1

�1
e�B

2
Hm(B)

Nn�1
Nn�1

� �
nHn�1(B)þ 1

.
2

�  Nnþ1
Nnþ1

� �
Hnþ1(B)

� �
dB

which leads to m
1ffiffiffi
a
p
����

����n
� �

¼ NmNnffiffiffi
a
p

Nn�1

� �
ndm:n�1 þ NmNnffiffiffi

a
p

Nnþ1

� �
dm:nþ1
2

.

This means that the dipole transition can only be nonzero if m ¼ n� 1! Thus if the oscillator is in
state n >j the transition will only occur to a state m >j , which is one level above or one level below
n >j . That was a lot of complicated reasoning but it was necessary to get a very useful result! It
should be noted that the dipole mechanism depends on the fact that there is a permanent nonzero
dipole moment in the molecule. In the case of a homonuclear diatomic molecule, such as O2, N2, or
Li2, there is no dipole moment and stretching the bond will not produce a dipole so another
technique (the Raman effect) must be used to detect transitions that depend on a change in
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polarizability, which is a second-order effect caused by induced dipole moments. We give a detailed
discussion of Raman spectroscopy in Chapter 18.

What does this ‘‘selection rule’’ of Dn ¼ �1 mean for us? Think about it. We have

En ¼ nþ 1
2

� �
hn so we have DE ¼ �hn. That means that since the spacing of the harmonic

oscillator energy levels are equal, it does not matter whether the transition is 0! 1, 4! 5, 2! 3,
or 1! 2, the energy should be the same if the potential is a perfect parabola! Thus, we expect that
infrared spectral bands should be unique narrow peaks, well almost. We should be aware that in
Figure 12.1 we have discussed the energy levels that are in the parabolic potential well. The way in
which the Morse potential (and the true potential) broadens to the dissociation limit has a result that
is documented in the solutions to the exact solution of the Morse potential, which shows the energy
levels gradually get closer together. However, those upper states will be less likely to be populated

according to the Boltzmann energy principle of e�
nhn
kTð Þ. Transitions involving the higher n-states are

called ‘‘hot bands’’ because they cannot occur unless the temperature is high enough to populate
those upper states. Since the hot bands are less probable and the energy gap between states
decreases, the infrared bands tend to be sharp on the blue edge but broaden and taper off on the
red edge of the bands. Even so, because on planet Earth most molecules are in the n¼ 0 state at
room temperature, most infrared bands are narrow and unique for fixed molecules in solid lattices or
with some broadening for liquid samples. In polyatomic molecules, there is a complication in that
there are sometimes ‘‘combination bands’’ in which two infrared bands are excited simultaneously.
Fortunately, these combinations can usually be separated from the fundamental bands using
algebraic addition=subtraction of the band energies.

3N�6 OR 3N� 5 VIBRATIONS?

When we discussed the energy equipartition law in Boltzmann’s KMTG discussion, we needed to
count the number of vibrations. A polyatomic molecule with N atoms would have 3N degrees of
freedom if the atoms were separated. As a unit, a polyatomic molecule has 3 degrees of freedom for
translation. However, there is a special case for the rotation of a linear molecule. There is no
physical way to observe or measure rotation about the linear axis of a linear molecule so in effect
there is no rotation about that axis. Thus a nonlinear molecule will have 3 degrees of rotation but
a linear molecule will only have 2. Then the remaining degrees of freedom for internal vibration is
either (3N� 3� 3)¼ (3N� 6) for nonlinear molecules or (3N� 3� 2)¼ (3N� 5) for a linear
molecule! We have discussed diatomic molecules here with only one fundamental frequency but
in polyatomic molecules there are 3N� 6 (nonlinear) or 3N� 5 (linear) fundamental vibrations and
they are linearly independent as a result of the way in which the polyatomic multi-vibrational
problem is solved. In solids or liquids, our reasoning that there should be one (blurred) main band
for each fundamental vibration is observed. However, we should realize that molecules in the gas
phase can rotate freely so we can expect more details related to rotational energy levels of molecules
in the gas phase.

Characteristic IR bands have been thoroughly documented and used as a sort of ‘‘fingerprint’’
analysis of solids and liquids [11]. In Figure 12.15, we see an idealized vibrational spectrum of
formaldehyde with (3N� 6)¼ 6 sharp bands predicted for fingerprint identification. Note the strong
band at 1750 cm�1, which is characteristic of many other carbonyl compounds. In Figure 12.16
[13], we see an actual spectrum of formaldehyde where it is clear that the bands are broader and
more complicated than the ideal spectrum. However, the 1750 cm�1 band is still strong. For a gas-
phase spectrum there are additional effects due to molecular rotation and anharmonic deviation from
the strict Dn ¼ �1 rule, but the finger print idea is still approximately valid. In Figure 12.17 [13],
we see a characteristic fingerprint infrared spectrum of benzene. Before nuclear magnetic resonance
(NMR) became highly developed, infrared bands were used for structural analysis of compounds
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FIGURE 12.16 Low resolution spectrum of formaldehyde, note 1750 cm�1 C¼O stretch. (From NIST
Chemistry WebBook, http:==webbook.nist.gov=chemistry)
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FIGURE 12.17 Low resolution infrared spectrum of benzene vapor showing characteristic fingerprint bands
of an aromatic ring. (From NIST Chemistry WebBook, http:==webbook.nist.gov=chemistry)
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and the strong band at 3030 cm�1 due to a –C–H stretch attached to an aromatic ring was a telltale
characteristic of an aromatic ring.

In the next chapter, we will see more details of infrared spectra of gases where it will be evident
that the dipole selection rule correctly predicts the Dn ¼ �1 rule. However, modern instrumentation
with higher sensitivity reveals lower intensity transitions for Dn ¼ 2, 3, 4, . . .. Before NMR spec-
troscopy became available, IR spectroscopy of solids was a mainstay of structural assignments and
identification of chemical compounds. Today, NMR is the first choice for structural analysis of
organic compounds but infrared spectroscopy is still useful for studies of gases in the atmosphere.
Consider the spectrum of carbon monoxide in Figure 12.18 [13] at low resolution. It would seem
there is one main band, but even this low resolution spectrum has a ‘‘notch’’ in the middle which
will be explained in the next chapter as a ‘‘Q-branch’’. Clearly, there is more detail to be obtained
with higher resolution, but from the dipole selection rule we only expect this one main band.
Historically, the infrared spectra of solids and liquids would seem to obey the dipole selection rule
very well and we would have to work very hard with the scanning spectrometers of the 1970s to see
much more, although in some cases higher resolution was possible.

In recent years, new technology in the form of Fourier transform spectrometers has revolution-
ized infrared spectroscopy in both higher resolution and much greater sensitivity. A composite of
several isotopic species of CO is shown in Figure 12.19 from the HITRAN data base [12]. There are
several important points here. First, the possible combination of isotopes is surprising, although
these are laboratory data sets where high concentrations of rare isotopes have been prepared. With
natural abundance it is likely you would only see the 12C16O species. Second, the main point of this
figure is that the dipole selection rule is almost useless in this case! We know from the low-
resolution spectrum given earlier that the CO fundamental vibration is near 2150 cm�1 and yet in
the broad spectra in Figure 12.20, we see bands near 4000, 6000 cm�1 and even a faint band near
8000 cm�1, in other words we see Dn ¼ 1, 2, 3, 4! If we go back to the parabola fitted to a Morse
curve earlier in this chapter for H2, we see that we can fit the parabola exactly to the curve at the
minimum, but the overall fit of the parabola is not perfect. The point is that the dipole selection
rule is for a perfect parabola but the true potential is anharmonic and is not a perfect parabola!
While some real potentials will be more shallow or deeper than what is shown there for H2, it should
be clear from Table 12.3 that H2 has a typical force constant. Thus the spectra of the various isotopic
species of CO shows not only the (0->1) vibrational transition but (0->2), (0->3), and (faintly)
(0->4) as well! Finally, we need to look at the units of the y-axis where it becomes evident that the
arbitrary intensity scale varies from about 10�19 (cm�1=(molecule cm�2)) for the (0->1) transition
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FIGURE 12.18 Low resolution spectrum of the fundamental vibration of CO gas. (From NIST Chemistry
WebBook, http:==webbook.nist.gov=chemistry)
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to about 10�25 for the (0->4) overtone transition. That means that the (0->4) overtone is observed
but it is about one million times less intense! In a liquid sample, it is unlikely such weak transitions
would be observed due to solvent interactions, so for liquid samples the dipole selection rule is
useful. However, we now know that modern instrumentation is able to detect deviations from the
dipole selection rule of the perfect parabolic potential for gas samples.

Just to show that CO is not the only gas that shows the violation of the dipole selection rule, we
present similar spectra for HCl isotopic species from the same HITRAN data source [12]. Here we
can again see what are apparently vibrational transitions all the way to (0->4) called overtones, and
again the intensity decreases from about 10�19 to about 10�25 for a reduction of about 1 million in
the same units. We emphasize again that the leftmost spectrum is a series of lines due to pure
rotational transitions (see Chapter 13) while the second set of spectra near 3000 cm�1 are rotational–
vibrational transitions showing a notch in the middle for a missing ‘‘Q-branch.’’ We will treat these
spectra in detail and explain the ‘‘Q-branch’’ in the next chapter, but it is useful to note here that the
HITRAN spectra show both the low-energy pure rotational lines and the rotation–vibration lines.
This author is used to seeing only the (n¼ 0)->(n¼ 1) vibrational transition spectra recorded using
relatively insensitive scanning spectrometers. Thus seeing the effects of the anharmonic transitions
from (n¼ 0)->(n¼ 4) is truly amazing and not likely shown in earlier texts!

We do not expect to see such details of anharmonicity at lower resolution. For forensic analysis, one
would probably be using infrared bands for chemical identification inwhat is called the ‘‘IR-fingerprint’’
bands. Often the samples are solids or liquids and only the positions of the fundamental bands are of
interest. Of course small samples or low concentrations will only be observable in terms of the most
intense bands which are determined by the dipole selection rule. Through documentation, a number of
tables of the main infrared bands have been developed and for some small molecules such as
formaldehyde, it is possible to actually work out the frequencies and the atom motions in the various
vibrations using computer programs. Each vibrational motion in a polyatomic molecule is a linearly
independent motion called a ‘‘vibrational mode.’’ If a movie were made of a vibrating molecule you
would see a blur of complicated jiggling motions but mathematically the normal modes are orthogonal
linearly independent motions, each with a specific eigenvalue frequency.

RAMAN SPECTROSCOPY

So farwehavediscussed infrared absorption of electromagnetic radiation (light),which depends on the
sample molecules having a dipole moment. There is another useful form of vibrational spectroscopy
which depends on reemission of light. It involves a mechanism in which the electromagnetic wave
distorts the electronic structure and induces temporary dipole moments in the sample molecules.
Homonuclear molecules such as H2, N2, O2, etc., and certain symmetric vibrational modes of
polyatomic molecules do not have dipole moments. However, their infrared spectra can be observed
using a second-order effect which depends on ‘‘induced dipole moments.’’ We briefly discussed
electronic levels of molecules in Chapter 9 so we know transitions between them are usually in the
UV-Vis energy range. The PIB and POR problems also discussed electronic energy levels. Raman
spectroscopy is a form of vibrational spectroscopy but it uses intense light in the visible range of the
spectrum to excite molecules from the ground electronic state to an excited electronic state. When the
exciting light is reemitted (scattered) the wavelength of the reemitted light can differ by vibrational
quanta as shown inFigure 12.21. This ‘‘effect’’was discovered in 1928 byC.V.Raman (Figure 12.22).

Depending on the orientation of the light wave and the molecule, an intense light wave can
polarize the electron shells of a molecule and create a temporary dipole moment. Let there be a 3� 3
polarizability tensor [a], which satisfies a relation with the components of the electric field of the
light as [Ex,Ey,Ez] to induce dipole components [mind�x,mind�y,mind�z], which can then couple with
one or more vibrations. Here it is sufficient to note that the electric field of a light wave can actually
induce temporary dipole components in a molecule with a zero dipole moment and that can lead to
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FIGURE 12.21 A diagram of the Raman mechanism. The upper state labeled ‘‘X’’ may not be known but is
an electronically excited state which presumably has vibrational levels available for an allowed transition.
Most of the light absorbed at the exciting wavelength/frequency is reemitted at the same wavelength but due to
the vibrational (or rotational) selection rule some of the ‘‘scattered light’’ is at a wavelength=frequency higher or
lower than the exciting light by a vibrational (or rotational) quantum.

FIGURE 12.22 Sir Chandrasekhara Venkata Raman (1888–1970) was an Indian physicist who discovered
the inelastic scattering phenomenon which bears his name in 1928 and for it he was awarded the Nobel Prize for
physics in 1930. Raman scattering produces scattered photons which differ in frequency from the radiation
source which causes it, and the difference is related to vibrational and=or rotational properties of the molecules
from which the scattering occurs. It has become more prominent in the years since powerful monochromatic
laser sources can provide the scattering power. (Photograph by A. Bortzells Tryckeri, AIP Emilio Segre Visual
Archives, W. F. Meggers Gallery of Nobel Laureates.)
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vibrational transitions. This mechanism emphasizes the nonzero aspects of the polarizability tensor
[a] instead of the dipole moment.

~m ¼ a~E ¼
axx axy axz

ayx ayy ayz

azx azy azz

2
4

3
5 Ex

Ey

Ez

2
4

3
5 ¼ mx

my

mz

2
4

3
5
induced

:

You can tell from the double index on the elements of [a] such as axy that this is a second-order
effect and generally depends on a more intense light source.

A simple mechanical analogy requiring the concept of a tensor is asking how a force applied at an
arbitrary angle to a corner of a rectangular box would be transmitted throughout the box. The force
of an arbitrary blow would be transmitted in all three (x, y, z) directions but to different extents
depending on the angle of the impact. One set of (x, y, z) vectors would be required to describe the
impact while a second set of vectors (x0, y0, z0) would describe the response of the box. A 3� 3
tensor could then be used to describe how the arbitrary force would be transmitted.

The Raman spectrum is observed by using an intense monochromatic source applied to a sample
and the scattered light is gathered at 908 from the incident beam. There is considerable intensity
from the incident beam and the scattered light at the wavelengths of interest on either side of the
monochromatic source are much less intense. Thus the exciting wavelength may obscure the Raman
wavelengths and care is required to design the optical system. A monochrometer is used to disperse
the emitted light and display both the Stokes and the anti-Stokes lines. Further analysis of the
spectra involves the use of the polarizability tensor mentioned earlier. Principles of symmetry can
also be applied to interpret the spectra as shown in Chapter 18.

In Figure 12.23, we see a Raman spectrum of CCl4 [14] that shows the weak anti-Stokes bands as
well as the more intense Stokes lines. The intensity of the anti-Stokes lines is less because the
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FIGURE 12.23 CCl4 Raman spectrum excited by 4358 Angstrom light from a Hg arc. (From Tobias, R. S.,
J. Chem. Ed., 44, 2, 1967. With permission of The Journal of Chemical Education.)
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Boltzmann probability of the sample molecule being in a higher energy state is less prior to the
electronic excitation. If the corresponding Stokes line is already weak, it may be very difficult to
observe the anti-Stokes lines. The spectrum here is from older technology, which used a Hg arc
lamp for excitation before powerful lasers were available.

SUMMARY

This chapter introduces the student to the method of seeking a solution to a differential equation in
the form of a polynomial, which was probably the method used by Schrödinger in 1926 to solve this
problem in terms of Hermite polynomials. An undergraduate with two semesters of calculus should
be able to follow this key derivation with pencil and paper, assuming enough time and patience are
available, but we still provide most of the detailed calculus steps here. For students with only one
semester of calculus, it would be better for the teacher to show the steps on the board in lecture.

1. A series of clever changes in variable enable one to convert the one-dimensional

Schrödinger equation with a potential of V ¼ kx2

2
into the differential equation previously

solved by Hermite for truncated short polynomials multiplied by an exponential factor. The
constant k is the force constant of a given bond potential as if it were a ‘‘spring.’’ The most

important fact emerging from the solution is that En ¼ nþ 1
2

� �
hn, which means that even

at the n¼ 0 level, there is E0 ¼ hn

2
, the so-called ‘‘zero-point energy.’’ The successive

levels of the oscillator are equally spaced and a dipole selection rule predicts that Dn ¼ �1.
Thus all transitions should result in the same transition frequency in the infrared region for
one characteristic band of each vibration of a molecule. This idealized concept is spoiled
for higher n values by the fact that the upper part of the potential for a real molecule is not a
harmonic parabola, it is more like a Morse potential. A diatomic bond needs to have a
nonzero electric dipole moment in order to absorb infrared radiation according the dipole
selection rule of Dn ¼ �1; a homonuclear diatomic like N2 or O2 is thus without vibra-
tional absorption by the electric dipole mechanism. With very sensitive measurements, it
can be shown that the Dn ¼ �1 rule can be violated and observed via weak ‘‘overtone’’
vibrations where Dn ¼ þ2, þ3, þ4, � � �.

2. For diatomic molecules, the two masses can be combined into a single ‘‘reduced mass’’ as

calculated relative to the center of mass balance point given by m ¼ m1m2

(m1 þ m2)
using actual

masses. If atomic weights are used, the formula must be divided by Avogadro’s number.
Once m is available, it is surprising to find the oscillator frequency is given by the classical

oscillator formula n ¼ 1
2p

ffiffiffiffi
k

m

s
. Isotope shifts can be estimated by the ratio of frequencies

given by
n1
n2
¼

1
2p

ffiffiffiffi
k
m1

q
1
2p

ffiffiffiffi
k
m2

q ¼
ffiffiffiffiffiffi
m2

m1

r
so that substituting a deuteron (D) for a proton (H) in a

compound X will shift the former X-H vibration by about 1.4 to the red (nXD ¼ nXH=1:4).
3. For structural assignments and forensic applications, the main molecular Dn) 0! 1

transitions in the infrared are characteristic of various functional groups in chemical
structure. On planet Earth, the average temperature is such that most molecules are in
the n¼ 0 level at room temperature so that Dn) 0! 1 is most easily observed with low
resolution spectrometers. For molecules, there are 3N� 5 (linear) or 3N� 6 (nonlinear)
fundamental vibrations. Actual infrared spectra exhibit broadening and fine structure
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including a mysterious notch called a ‘‘Q-branch,’’ which stimulates our interest in further
analysis in the next chapter.

4. Intense monochromatic light sources (lasers) can be used to induce temporary dipole
moments in symmetric molecules or symmetric vibrational modes in polyatomic molecules
to observe the Raman effect. Raman spectra record vibrational (and rotational) transitions
in scattered visible light wavelengths from molecules without dipole moments. Raman
spectroscopy has enjoyed renewed interest due to the availability of modern lasers.

PROBLEMS

12.1 Given the harmonic potential V(x) ¼ kx2

2
and the Morse potential V(x) ¼ De[1� e�ax]2,

where x ¼ (r � r0), take the second derivative of each potential and substitute x ¼ 0 to equate

the curvature of the two potentials at the minimum energy and show that a ¼
ffiffiffiffiffiffiffiffi
k

2De

r
.

12.2 Write out the details of the product
ðþ1
�1

c0*c1dx and show why the result is zero.

12.3 Use the force constant given in Table 12.3 for N2 with n ¼ 1
2p

ffiffiffiffi
k

m

s
to calculate the vibrational

frequency. Note here m is just half the atomic mass of one N atom (14.007 g=mol)=2.
12.4 Assuming the bond force constant k¼ 4.84� 105 dyne=cm is the same for H-35Cl and H-37Cl,

calculate as the isotope shift difference in their vibrational frequencies and Dn ¼ (Dn=c) for
the splitting in cm�1. Use M(H)¼ 1.00794 g=mol, M(35Cl)¼ 34.96885269 g=mol, and
M(37Cl)¼ 36.96590259 g=mol.

12.5 Predict the number of normal-mode vibrations for the following molecules: CH4,
O¼C¼C¼C¼O (linear), benzene (C6H6), cyclohexane (C6H12), and formaldehyde (CH2O).
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13 The Quantized Rigid Rotor
and the Vib-Rotor

INTRODUCTION

In this chapter, we continue our effort to treat topics in physical chemistry in a way that does not
skip over the main details but still tries to simplify the presentation. We need to present the
derivation for at least a partial answer if a few students ask, ‘‘Where did that come from?’’ However,
let us be clear at the outset of this chapter that the desired goal is for students to understand pure
rotational and vib-rotational spectra of molecules and know where the H atom orbital shapes come
from. If you follow the derivation with pencil and paper that may help you understand the

derivation, but if not at least learn El ¼ l(lþ 1)�h2

2mr2
and the selection rule Dl¼�1. Here we find a

shortcut that makes this problem simpler than the harmonic oscillator. The classic text by Pauling
and Wilson [1] is one of the best sources of the full derivation but they still gloss over a few details
requiring additional steps from a text on differential equations (Figure 13.1). Even the excellent text
by Eyring, Walter, and Kimball [2] does not give the full derivation. Perhaps this is due to the fact
that the key equation was worked out by Legendre in 1785 (!) and many previous mathematics texts
expand on the Legendre equation. If you follow the derivation in this chapter, it will really pay off in
making the next chapter on the H atom easier. Since the H atom solution is the model for the entire
periodic chart, it really is essential! In this chapter, quantum chemistry [3–5] is only part of the list of
essential topics but we need to solve the rigid rotor problem prior to the H atom solution because the
angular wave functions are the same for both problems. We have struggled to make this chapter
understandable using only basic calculus but in a correct way [6]. However, a wise student will look
beyond the derivation to study the applications to spectroscopy, which probe the quantized behavior
of molecules.

In the previous chapter, we solved the problem of the quantized harmonic oscillator and derived
key concepts such as the reduced mass and the isotope shift. We were on the verge of treating
rotation but you will soon see it is a two-dimensional problem, which needs to be split into two one-
dimensional problems. Basically the motion of a gas-phase molecule is translation and free rotation
and it takes two coordinates (u, f) to describe such rotational motion even when we assume constant
bond lengths within the molecule. We know from the previous chapter that molecules do vibrate but
the motion of the vibrations is much smaller than rotations described by (u, f). Therefore it is a good
approximation to assume constant bond lengths. Thus, we have to solve the Schrödinger equation
for a problem in more than one dimension.

THREE-DIMENSIONAL PARTICLE-IN-A-BOX

As we venture into problems with more than one dimension we need to see an overview and so we
revert back to the particle-in-a-box (PIB) model in a rectangular container with dimensions (Lx¼ a,
Wy¼ b, Hz¼ c). Let V¼ 0 inside the box but the walls are impenetrable as in the one-dimensional
case. Thus V¼ 0 for 0< x< a, 0< y< b and 0< z< c but V¼1 at all the wall surfaces.
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Then we have
��h2
2m

q2

qx2
þ q2

qy2
þ q2

qz2

� �
þ 0

� �
c ¼ Ec. This example is to teach a method we need

very soon for other problems. The trick here is to assume that we can write c(x, y, z)¼X(x)Y(y)Z(z).
While this may seem like a bold assumption, the strategy is to try it and maybe it will work? Here
that assumption is trivial because (x, y, z) coordinates are clearly independent, but in other systems,
the coordinates may mix as we convert from (x, y, z) to say (r, u, f). Then we can write
��h2
2m

q2

qx2
þ q2

qy2
þ q2

qz2

� �
þ 0

� �
XYZ ¼ [E]XYZ and we note that

q
qx

only operates on X,
q
qy

only on Y, and
q
qz

only on Z, and we can also assume that the unknown energy can be broken up

into separate values as Ex, Ey, and Ez. When we take the derivatives we find

� �h2

2m
YZ

q2X
qx2

� �
� �h2

2m
XZ

q2Y
qy2

� �
� �h2

2m
XY

q2Z
qz2

� �
¼ (Ex þ Ey þ Ez)XYZ:

The next step is amazing! If we divide the whole equation by XYZ the three-dimensional problem
separates into three one-dimensional problems since the variables (x, y, z) are linearly independent

and we obtain
��h2
2m

q2X
qx2

X
þ
��h2
2m

q2Y
qY2

Y
þ
��h2
2m

q2Z
qz2

Z
¼ (Ex þ Ey þ Ez), which is really three separate

equations that are identical to the one-dimensional PIB except that a, b, and c are different.

FIGURE 13.1 Linus Carl Pauling (1901–1994) was an American chemist who made substantial contributions
to quantum chemistry and molecular biology. He was one of the most influential scientists in the twentieth
century and his textbooks remain classics. He is only the second person to have won two Nobel Prizes in two
different fields (the Chemistry and the Peace Prize) without sharing the prize with another. Marie Curie won
Nobel Prizes in chemistry and physics.
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Then
��h2
2m

q2X
qx2
� ExX ¼ 0 and similarly for Y and Z. We have solved this before so we can write

XYZ ¼
ffiffiffi
2
a

r
sin

nxpx

a

�  ffiffiffi
2
b

r
sin

nypy

b

�  ffiffiffi
2
c

r
sin

nzpz

c

� 
and Etot ¼ h2

8m
n2x
a2
þ n2y
b2
þ n2z

c2

 !
, Q.E.D.

Note this could be the solution for a freely flying particle in the universe if we knew the
dimensions of the universe. Because a, b, and c would be billions of light years squared in the
denominator while the triad (nx, ny, nz) are integers, the difference between any two energy levels
would be (are) so tiny that translational energy does approach a continuous variable. However, the
point of this exercise is to show that often we can assume a multivariable wave function can be
factored into parts, which only depend on one variable at a time. For future reference, note two
parts of the procedure. First, we assumed the wave function could be factored and second, we
assumed that the unknown energy could be made up of separate energy values for each coordinate
and it worked!

RIGID ROTOR

Here we seek to solve the Schrödinger equation for a rotating molecule. We have seen earlier that
the energy levels of a particle in a three-dimensional box are separated by an infinitesimal amount
when the size of the box increases to be measured in light years. We also saw in the previous chapter
that the quantized harmonic oscillator has specific energy levels that are equally spaced (for low
energy) with a sufficient size gap to give rise to absorption bands in the infrared range. We might
expect rotational energy-level gaps somewhere between the translation and vibrational ranges since
only rotational kinetic energy is involved. We assume there is no potential energy interaction so the
usual Schrödinger equation is simply Hrot crot¼Erot crot and we can use I¼mr2 to write

��h2r2

2I

� �
crot ¼ Erotcrot,

where usuallyr2 ¼ q2

qx2
þ q2

qy2
þ q2

qz2

� �
but here we need to represent rotation in polar coordinates.

We can use the reduced mass m for diatomic molecules and this can be generalized for polyatomic
cases but we will use diatomic examples here for simplicity. So far in this text we have tried to
show only examples that can be worked out cleanly with calculus (and perseverance) but now we
come to a situation where it is questionable whether it is worth the time and frustration to get past a big
hurdle with full details. The problem is that we have to convert r2 (x, y, z) to r2 (r, u, f). We will
sketch out the strategy but this is the sort of thing that a graduate student in physical chemistry
or physics needs to check once in their life but here we only need to know the result.

Basically we have to use the Cartesian axes to show the relationships between the Cartesian and
polar coordinates and we can write down some facts as formulas based on Figure 13.2.
x¼ r sin u cosf, y¼ r sin u sinf and z¼ r cos u for (x, y, z) ! (r, u,f) as well as r2¼ x2þ y2þ z2,

cos u ¼ zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p and tanf ¼ y

x
for (r, u, f) ! (x, y, z).

With these relationships, we can set up chain rule derivatives and use trigonometry identities to
simplify the results. We note for instance that, in general, the x derivative actually depends on all

three polar coordinates as
qf
qx

� �
y,z

¼ qf
qr

� �
u,f

qr
qx

� �
y,z

þ qf
qu

� �
r,f

qu
qx

� �
y,z

þ qf
qf

� �
r,u

qf
qx

� �
y,z

. That

seems reasonable, so we can work out the partial derivatives and generate the first derivative. That
would need to be repeated to obtain the three terms of the gradient of the function as
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~rf ¼ qf
qx

� �̂
iþ qf

qy

� �̂
jþ qf

qz

� �
k̂. This is a vector quantity but if we take the dot product for the

second derivative, we will get the desired second derivative as a scalar, that is, ~r �~rf¼r2 f. That is
good news because the dot product eliminates any cross derivatives between the Cartesian com-
ponents. The next step is to find the second derivatives in terms of the chain rules and that is

straightforward but tedious! To maintain bookkeeping let us call ~rf¼ gx îþ gy ĵþ gz k̂. In principle,
we just repeat the derivative process with the chain rule again for gx, gy, and gz. Then
qgx
qx

� �
y, z

¼ qgx
qr

� �
u,f

qr
qx

� �
y, z

þ qgx
qu

� �
r,f

qu
qx

� �
y, z

þ qgx
qf

� �
r, u

qf
qx

� �
y, z

and likewise for gy and gz.

Then some identities from trigonometry simplify the nine possible terms to yield

r2(r, u,f) ¼ 1
r2

q
qr

r2
q
qr

� �
þ 1
r2 sin u

q
qu

sin u
q
qu

� �
þ 1

r2 sin2 u

q2

qf2 :

To ease remembrance we have ordered the terms so that the denominators go as r2, r2 sin u, and
r2 sin2 u and we see that the third term in f is the simplest in form. We will use this often!

Nowwe are ready to set up and solve the Schrödinger equation for the rigid rotor problem. First, as
with the three-dimensional particle-in-a-box (3D-PIB), we assume the total wave function can be
written as a product of three functions with each in only one variable asC(r, u,f)¼R(r)Q(u)F(f).

Then we have HC(r, u,f)¼HR(r)Q(u)F(f)¼EtotR(r)Q(u)F(f)¼EtotC(r, u,f) where

H ¼ ��h
2r2

2m
þ V(r) and we expect that Etot can be separated into radial and angular energies.

Thus the Schrödinger equation in polar coordinates can be written as

1
r2

q
qr

r2
qC
qr

� �
þ 1
r2 sin u

q
qu

sin u
qC
qu

� �
þ 1

r2 sin2 u

q2C

qf2 þ
2m

�h2
E � V(r)½ 
C ¼ 0:

e

e

r

E φ

FIGURE 13.2 Spherical coordinate system, E the equatorial x-y plane, f measured from the x-axis in the
equatorial plane and u measured from the vertical z-axis. (Reprinted with permission from White, H.E., Phys.
Rev., 37, 1416, 1931. Copyright 1931 by the American Physical Society.)
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Now divide by C(r, u,f)¼R(r)Q(u)F(f) just as for the 3D-PIB problem to obtain

1
R(r)r2

d

dr
r2
dR

dr

� �
þ 1
Q(u)r2 sin u

d

du
sin u

dQ

du

� �
þ 1

F(f)r2 sin2 u

q2F

df2 þ
2m

�h2
E � V(r)½ 
 ¼ 0:

KEY STEP!

Next multiply through by r2 sin2 u and set
1
F

q2F

df2 ¼ �m2 since that term only depends on f.

sin2 u

R(r)

d

dr
r2
dR

dr

� �
þ sin u

Q(u)

d

du
sin u

dQ

du

� �
þ 1
F(f)

q2F

df2 þ
2m

�h2
E � V(r)½ 
r2 sin2 u ¼ 0

sin2 u

R(r)

d

dr
r2
dR

dr

� �
þ sin u

Q(u)

d

du
sin u

dQ

du

� �
� m2 þ 2m

�h2
E � V(r)½ 
r2 sin2 u ¼ 0:

Now divide by sin2 u. Note this leaves r2 on the last term and I¼mr2.

1
R(r)

d

dr
r2
dR

dr

� �
þ 1
Q(u) sin u

d

du
sin u

dQ

du

� �
� m2

sin2 u
þ 2mr2

�h2
E � V(r)½ 
 ¼ 0:

Just as we separated the energy terms in the 3D-PIB, we can split the terms in R(r) from the terms in
Q(u) by setting the separate parts to �b so as to obtain two separate equations.

1
R(r)

d

dr
r2
dR

dr

� �
þ 2mr2

�h2
E � V(r)½ 
 ¼ þb and

1
Q(u) sin u

d

du
sin u

dQ

du

� �
� m2

sin2 u
¼ �b

so that we still have b�b¼ 0. Then we can rearrange the separate equations. In particular, we

multiply the R(r) equation by
R

r2

� �
and multiply the Q(u) equation by (Q) to obtain

1
r2

d

dr
r2
dR

dr

� �
� b

r2
Rþ 2m

�h2
E � V(r)½ 
R ¼ 0 and

1
sin u

d

du
sin u

dQ

du

� �
� m2

sin2 u
Qþ bQ ¼ 0:

We can pause to solve the easy equation for F(f) by inspection.
1
F

q2F

df2 ¼ �m2, and with a little

thought we see that
d2F

df2 ¼ �m2F and
d2F

df2 þ m2F ¼ 0 so (Dþ im)(D� im)F¼ 0. This is the now

familiar POR problem, which has a normalized solution of Fm(f) ¼ 1ffiffiffiffiffiffi
2p
p e�imf. Note that m is an

integer and m¼ 0 is a valid solution!
It will be important to remember the R(r) equation in the next chapter for the solution to the H

atom and the discussion here is very efficient because when we solve the Q(u) and F(f) equations
here, we will also have the angular solutions for the H atom. However, here we invoke the
conditions of a rigid rotor that has a fixed unchanging bond length between two atoms (temporarily
ignoring the fact that we know from the previous chapter that the bond length vibrates!). That

condition immediately makes
dR

dr
¼ 0 and if we add the condition that V(r)¼ 0 for free rotation, it
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greatly simplifies the R(r) equation to � b

r2
Rþ 2m

�h2
[E]R ¼ 0. Multiplying through by r2 again

produces the moment of inertia I¼mr2 so that
2IE

�h2
� b

� �
R(r) ¼ 0. Once we find b we will know E!

Let us consider the Q(u) equation
1

sin u

d

du
sin u

dQ

du

� �
� m2

sin2 u
Qþ bQ ¼ 0. First use the

substitution z¼ cos u and change the name of the variable P(z)¼Q(u) and note that sin2 u¼ 1� z2.

That leads to
dQ

du
¼ dP

dz

dz

du
¼ dP

dz

d cos u

du

� �
¼ � dP

dz
sin u, which transforms our Q(u) equation to

d

dz
(1� z2)

dP(z)

dz

� �
þ b� m2

1� z2

� �
P(z) ¼ 0. Here we have used a clever trick in that

1
sin u

d

du
¼ �d

d cos u
¼ �d

dz
so that we have the first term as a function of z as well as the second.

�d
dz

sin u � sin u
dP

dz

� �� �
¼ �d

dz
� sin2 u

dP

dz

� �
¼ þ d

dz
(1� cos2 u)

dP

dz

� �
¼ d

dz
(1� z2)

dP

dz

� �
:

Thus we have

d

dz
(1� z2)

dP(z)

dz

� �
þ b� m2

1� z2

� �
P(z) ¼ 0

or an alternate form by applying the derivative to the first bracket as

(1� z2)
d2P(z)

dz2
� 2z

dP(z)

dz
þ b� m2

1� z2

� �
P(z) ¼ 0:

The m¼ 0 Shortcut
At this point we would have to use a difficult ‘‘incidial equation’’ to find b in the general case

because the quantity
m2

1� z2

� �
is undefined (blows up) when z¼�1. However, when m¼ 0 it leads

to an equation easily solved using a polynomial. That is a special case of an equation solved by
a brilliant French mathematician, A. M. Legendre (1753–1833), who published the work in 1785!
Now we can solve a simpler equation

(1� z2)
d2P(z)

dz
� 2z

dP(z)

dz
þ bP(z) ¼ 0:

Let us assume P(z) ¼
X

l¼0 alz
l so that

dP(z)

dz
¼
X

l¼0 lalz
l�1 and

d2P(z)

dz2
¼
X

l¼0 l(l� 1)alz
l�2.

Then

(1� z2)
X
l¼0

l(l� 1)alz
l�2 � 2z

X
l¼0

lalz
l�1 þ b

X
l¼0

alz
l ¼ 0

or

X
l¼0

l(l� 1)alz
l�2 �

X
l¼0

l(l� 1)alz
l � 2z

X
l¼0

lalz
l�1 þ b

X
l¼0

alz
l ¼ 0:
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Collecting the same powers of z this can be rearranged to

X
l¼0

l(l� 1)alz
l�2 �

X
l¼0

l(l� 1)þ 2l� b½ 
alzl ¼
X
l¼0

l(l� 1)alz
l�2 �

X
l¼0

l(lþ 1)� b½ 
alzl ¼ 0:

The l-index of the first sum must advance to lþ 2 before the power of z is equal to that in the second
sum. The l-index steps separately in the two sums and we can set up a recursion ratio as

alþ2 ¼ l(lþ 1)� b½ 

(lþ 2)(lþ 1)

al and so lim
l!1

alþ2
al

� �
¼ lim

l!1
l(lþ 1)� b½ 

(lþ 2)(lþ 1)

! l2

l2
! 1:

Of course there will be separate even and odd solutions with arbitrary a0 and a1 but in the series
P(z) ¼Pl¼0 alz

l the ratio test shows that far out in the later terms the coefficients do not get
smaller so the series will still diverge at z¼�1! Thus we see that just as we had to terminate the
series in the harmonic oscillator solution, we also have to terminate this series to keep it finite.
Fortunately we have [l(lþ 1)�b] in the numerator of the ratio test so we can cut off the series when

b¼ l(lþ 1), l¼ 0, 1, 2, 3 . . .! Further, we now know that
2IE

�h2
� b

� �
R(r) ¼ 0 means that

El ¼ l(lþ 1)�h2

2I
(at least for m¼ 0)!

Once again the imposition of a relationship to an integer expression leads to a quantized energy! It
is not known at what point Schrödinger realized he was dealing with the previously studied Legendre
polynomials [7], but the real genius of what Schrödinger did was to recognize the connection
between quantization and orthogonal sets of eigenfunctions! Mathematicians had known about
Legendre’s work since 1785 but it was Schrödinger who made the connection to wave mechanics.
While the use of the chain rule to convert the problem to polar coordinates was a necessary chore, this
polynomial solution was actually easier than that of the harmonic oscillator due to using the m¼ 0

shortcut! Once we find b¼ l(lþ 1) and El ¼ l(lþ 1)�h2

2I
, we have what we need for most of the

applications in the rest of this chapter. However, we must remember that we are also interested in the
angular shapes of the wave functions as used in the solution of the H atom in the next chapter.

RIGID ROTOR WAVE FUNCTIONS

Perhaps Schrödinger recognized this problem as having been thoroughly studied in 1785 by
Legendre. A very similar equation was solved by Legendre who knew about the singular points
at�1 in the general equation and also studied the polynomial solutions on the interval �1 � x � 1

for the equation (1� x2)
d2P(x)

dx2
� 2x

dP(x)

dx
þ l(lþ 1)P(x) ¼ 0. We can immediately see the ana-

logy to the equation we reached above if m¼ 0. In fact Gatz [8] points this out in an excellent
concise appendix. The solutions to Legendre’s equation are now known to be

Pl(x) ¼ 1
2ll!

dl

dxl
(x2 � 1)l and there are also associated Legendre functions that are known to be

related to the derivatives as Pjmjl (x) ¼ (1� x2)jmj=2
djmj

dxjmj
Pl(x). The Legendre polynomials have

been extensively studied by mathematicians over many years, and Anderson [9] gives a useful
overview. Some of the first few Legendre polynomials are given in Table 13.1 from [10]. Then
some of the associated Legendre polynomials are given in Table 13.2 where x¼ cos(u) [11]. Note
that cos(u) has the perfect range of �1 � x � 1, so almost all the applications of Legendre
polynomials use x¼ cos(u).
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We can test to show that the Legendre polynomials are solutions to the m¼ 0 equation. Consider

P2(x) ¼ 1
2
(3x2 � 1) in the equation (1� x2)

d2P(x)

dx2
� 2x

dP(x)

dx
þ l(lþ 1)P(x) ¼ 0.

dP2(z)

dz
¼ 3x and

d2P2(z)

dz2
¼ 3 so (1� x2)(3)� 2x(3x)þ 2(3)

1
2
(3x2 � 1)

� �
¼ 0?

Then we find that 3� 3x2 �6x2þ 9x2� 3¼ 0, Q.E.D.!
In order to make our shortcut with m¼ 0 pay off, we need to show that the associated Legendre

polynomials satisfy the general Legendre equation. Consider P2
2(x) ¼ 3(1� x2).

TABLE 13.1
A Short List of Pl(x) Legendre Polynomials

P0(x)¼ 1

P1(x)¼ x

P2(x) ¼ 1
2
(3x2 � 1)

P3(x) ¼ 1
2
(5x3 � 3x)

P4(x) ¼ 1
8
(35x4 � 30x2 þ 3)

P5(x) ¼ 1
8
(63x5 � 70x3 þ 15x)

Source: Lesk, A.M., Introduction to Physical Chemistry,

Prentice-Hall, Inc., Englewood Cliffs, NJ, 1982,
pp. 312 and 732; see also Park, D., Introduction
to Quantum Theory, 2nd Edn., McGraw-Hill
Book Co., New York, 1974, p. 648.

TABLE 13.2
Selected Associated Legendre Polynomials Pjmjl (cos u)

P0
0(x) ¼ 1

P0
1(x) ¼ x ¼ cos(u)

P1
1(x) ¼ (1� x2)1=2 ¼ sin u

P0
2(x) ¼

1
2
(3x2 � 1) ¼ 1

2
(3cos2 u� 1)

P1
2(x) ¼ 3x(1� x2)1=2 ¼ 3cos u sin u

P2
2(x) ¼ 3(1� x2) ¼ 3sin2 u

P0
3(x) ¼

1
2
(5x2 � 3x)

P1
3(x) ¼

3
2
(5x2 � 1)(1� x2)1=2

P2
3(x) ¼ 15x(1� x2)

P3
3(x) ¼ 15(1� x2)3=2

Source: McQuarrie, D.A., Quantum Chemistry, 2nd Edn., University
Science Books, Sausalito, CA, 2008, p. 293.
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(1� z2)
d2Pjmjl (z)

dz2
� 2z

dPjmjl (z)

dz
þ l(lþ 1)� m2

1� z2

� �
Pjmjl (z) ¼ 0

dP2
2(x)

dx
¼ �6x and d2P2

2(x)

dx2
¼ �6 along with l¼ 2 and m¼ 2 in the general Legendre equation.

Thus (1� x2)(�6)� 2z(�6x)þ 6� 22

1� x2

� �
(3)(1� x2)¼ 0? or �6þ 6x2þ 12x2þ 18(1� x2)�

12(1� x2)

(1� x2)
¼ 0? So �6þ 6x2þ 12x2þ 18� 18x2� 12¼0 Q.E.D.! The proof due to Anderson [9]

is given in Appendix A of this book using just basic calculus. Then considering the odd and even
cases of the basic Legendre polynomials, we have in general

Pm
l (x) ¼ (�1)m(1� x2)

m
2
dmPl(x)

dxm
:

Here we consider it sufficient to have shown that the Pjmjl (x) are related to the derivatives of Pl(x)
but in either case b¼ l(lþ 1). Thus the Pjmjl (x) are the solution to the general Legendre equation as
shown in Appendix A and our m¼ 0 shortcut leads to a general solution.

RIGID ROTOR RESULTS

Finally, we recall that the wave function of the rigid rotor is a product of F(f) and Q(u). The

normalized product is Ym
l (u, f) ¼ (�1)mþjmj2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2lþ 1) lþ jmjð Þ!
4p l� jmjð Þ!

s
Pjmjl ( cos u)eimf [10]. This is the total

wave function for the rigid rotor and the energy is given as

El ¼ l(lþ 1)�h2

2I
¼ l(lþ 1)�h2

2mr2
, l ¼ 0, 1, 2, 3, 4, . . .:

We also note thatmmust be an integer and jmj � l for a degeneracy of (2lþ 1) different m values. We
show this form here to achieve a combined single eigenfunction, but you can see that the factor of

(�1)mþjmj2 causes some tricky sign changes for the various members of the set. This can be avoided by
using separate functions for F(f) and Q(u) and we will do that for the H atom. It is worth alerting

students that there is a so-called phase problemwith wave functions. Note that
ð
c*c dt is real because

of the use of the complex conjugate c*, but we could have also used
ð
(�c*)(�c)dt ¼

ð
c*c dt so

there is an ambiguity of sign and that shows up in the (�1)mþjmj2 factor. This is a well known annoyance
and an interested student can check [10] for a discussion of the various options but the thing to

remember is that
ð
c*c dt is a real number by whatever phase convention one uses.

ANGULAR WAVE FUNCTIONS

Although we have solved the problem in principle, the most important result is for students to be
able to envision the shape of the functions. In Table 13.3, we provide a few of the normalized
functions with shape labels relating to the orbitals that will be found for the H atom in the next
chapter, but the energy levels of the rigid rotor are much closer together than the electronic energies
of the H atom and we should be aware that the rigid rotor levels can have much higher l values at
room temperature. We may see l values of 20 or more in rotational spectra, while for the H atom we
will usually deal with l values of 4 or less.
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Another point worth noting is that the Fm(f) function is complex (involves
ffiffiffiffiffiffiffi�1p � i) and the

normalization coefficient sometimes has a sign change according to (�1)mþjmj2 . If one studies the form
of the Legendre function in Q(u), it can be determined that the m can take on values from �l to þl
for a total of (2lþ 1) values and m can be negative but jmj is always positive. That is probably more
interesting for electronic orbitals but here we want to examine what it means in terms of rotation!
We want to work toward a picture or diagram that tells us how a linear molecule behaving as a rigid
rotor can actually rotate. After all, the wave function tells us that only certain shapes are allowed
depending on the state function jl, mi ¼ Ym

l (u, f) where we start to think of the state of the rigid
rotor specified in terms of two integer quantum numbers. Quantum mechanics tells us that if rotation
is quantized then angular momentum is quantized as well, and we should consider what values are
allowed for the angular momentum. Reminding ourselves that this is an undergraduate text, we will
just sketch the following treatment of quantized angular momentum.

ANGULAR MOMENTUM

We now return to one of the most difficult aspects of quantum mechanics, the ability to treat angular
variables. We had a taste of the problem with the particle-on-a-ring but it referred to a flat ring while
we need to describe (u, f) space. We also recall that momentum can be more fundamental than
energy and here we encounter quantized angular momentum. First we define what we mean by
angular momentum. In a rotating system, the moment of inertia (I¼mr2) takes the place of a mass
and linear velocity is replaced by angular velocity (v). Then angular momentum is defined as ‘‘L,’’

TABLE 13.3
Selected Normalized Ym

l (u, f)

Ym
l (u, f) ‘‘Shape-Type’’

Y0
0 ¼

1ffiffiffiffiffiffi
4p
p s

Y0
1 ¼

ffiffiffiffiffiffi
3
4p

r
cos u p

Yþ11 ¼ �
ffiffiffiffiffiffi
3
8p

r
eþif sin u p

Y�11 ¼
ffiffiffiffiffiffi
3
8p

r
e�if sin u p

Y0
2 ¼

ffiffiffiffiffiffiffiffi
5

16p

r
(3cos2 u� 1) d

Y1
2 ¼ �

ffiffiffiffiffiffi
15
8p

r
eþif sin u cos u d

Y�12 ¼
ffiffiffiffiffiffi
15
8p

r
e�if sin u cos u d

Y2
2 ¼

ffiffiffiffiffiffiffiffi
15
32p

r
e2if sin2 u d

Y�22 ¼
ffiffiffiffiffiffiffiffi
15
32p

r
e�2if sin2 u d

Source: Lesk, A.M., Introduction to Physical Chemistry,
Prentice-Hall, Inc., Englewood Cliffs, NJ, 1982,

pp. 312 and 732; see also Park, D., Introduction to

Quantum Theory, 2nd Edn., McGraw-Hill Book Co.,
New York, 1974, p. 648.

286 Essentials of Physical Chemistry



although some texts use ‘‘M,’’ Angular momentum involves a twisting motion and is usually
represented as a 3� 3 determinant as

~L ¼ Iv ¼~r �~p ¼
î ĵ k̂
x y z
px py pz

������
������ ¼ î(ypz � pyz)þ ĵ(zpx � pzx)þ k̂(xpy � pxy):

Thus,~L is a vector as the result of a cross product and~L¼ îLxþ ĵLyþ k̂Lz. Then to form a quantum
mechanical operator, one just thinks of the (x, y, z) coordinates as operators and substitutes

px ¼ h

i

q
qx

, py ¼ h

i

q
qy

and pz ¼ h

i

q
qz

(Figure 13.3). That leads to three, relatively simple, operators

in the Cartesian representation (note cyclic permutation in alphabetic order, x, y, z, then y, z, x, and
finally z, x, y). We want to show the effect of quantized angular momentum in the rigid rotor. There
are three operators for the Cartesian components of the angular momentum

Lx ¼ �h

i
y
q
qx
� x

q
qy

� �
, Ly ¼ �h

i
x
q
qz
� z

q
qx

� �
, and Lz ¼ �h

i
x
q
qy
� y

q
qx

� �
:

Since we know that H ¼ ��h
2r2

2I
for the rigid rotor and El ¼ l(lþ 1)�h2

2I
, we deduce from

��h2r2

2I
Ym
l (u, f) ¼

�h2l(lþ 1)
2I

Ym
l (u, f) ¼ ElY

m
l (u, f) that

��h2r2

2I
! E but in a rotating system

E ¼ L2

2I
so L2¼ 2IE and we find an important relationship the easy way as

L2opY
m
l (u, f) ¼ l(lþ 1)�h2Ym

l (u, f):

Z

l = 2 √√ 6 ћl(l+1)ћ

m = –2ћ

m = 2ћ

m = –ћ

m = ћ

m = 0 

=

FIGURE 13.3 Cones of definite Lz angular momentum but indeterminant Lx and Ly for l¼ 2.
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We would have needed nine partial derivatives for r2(r, u, f) but we only need six to convert Lz to
polar coordinates:

qr
qx
¼ x

r
¼ sin(u) cos(f),

qr
qy
¼ y

r
¼ sin(u) sin(f),

qr
qz
¼ cos(u),

qu
qx
¼ cos(u) cos(f)

r
,

qu
qy
¼ cos(u) sin(f)

r
,

qu
qz
¼ �sin(u)

r
,

qf
qx
¼ �sin(f)

r sin(u)
,

qf
qy
¼ cos(f)

r sin(u)
,

qf
qz
¼ 0:

Then we can use the chain rule to convert Lz as Lz ¼ �h

i
x
q
qy
� y

q
qx

� �
to

Lz ¼ �h

i
r sin(u) cos(f)

qr
qy

� �
q
qr
þ qu

qy

� �
q
qu
þ qf

qy

� �
q
qf

� �� �

� �h

i
r sin(u) sin(f)

qr
qx

� �
q
qr
þ qu

qx

� �
q
qu
þ qf

qx

� �
q
qf

� �� �
:

Amazingly much of this expression cancels out and leaves only Lz ¼ �h

i

q
qf

. We leave that proof to

the homework problems. We will see that Lz is chosen to be the component of the angular
momentum, which commutes with L2 as in [L2, Lz]¼ 0 because its polar coordinate form is the
simplest of the three components. Then we have a way to ‘‘know’’ the m quantum number of a
Ym
l (u, f) wave function whether it is for a rigid rotor or an electronic atomic orbital. Since the f

dependence of the Ym
l (u, f) wave function is just eimf,

q
qf

eimf ¼ im so that

LzY
m
l (u, f) ¼ m�hYm

l (u, f):

Thus, we can define our wave function with just two quantum numbers as jl, mi.
Maybe you thought it is obvious that you can interchange the order of quantum mechanical

operators since in real arithmetic 2� 3¼ 3� 2, but let us try it on the Cartesian forms for Lx, Ly,
and Lz. Consider [Lx, Ly] applied to an arbitrary test function ‘‘f ’’ where the square brackets refer to
a commutator, the amount by which interchanging the order of the operators makes a difference as
in [Lx, Ly] f¼ Lx Ly f� Ly Lx f.

LxLyf ¼ (��h2) y
q
qz
� z

q
qy

� �
z
q
qx
� x

q
qz

� �� �
f

¼ (��h2) y
qf
qx

� �
þ yz

q2f
qzqx

� �
� yx

q2f
qz2

� �
� z2

q2f
qyqx

� �
þ zx

q2f
qyqz

� �� �
,

then in reverse

LyLxf ¼ (��h2) z
q
qx
� x

q
qz

� �
y
q
qz
� z

q
qy

� �� �
f

¼ (��h2) zy
q2f
qxqz

� �
� z2

q2f
qxqy

� �
� xy

q2f
qz2

� �
þ x

qf
qy

� �
þ xz

q2f
qzqy

� �� �
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and so
[Lx, Ly] f ¼ LxLyf � LyLxf ¼ (��h2) y

q
qx
� x

q
qy

� �
f ¼ (i�h)(Lz). We could repeat this for the other

cases and find

[Lx, Ly] ¼ i�hLz, [Ly, Lz] ¼ i�hLx and [Lz, Lx] ¼ i�hLy:

Thus, the angular momentum components DO NOT commute among themselves! What does that
mean? Basically it means that if we somehow make a measurement of hLxi followed by a
measurement of hLyi we will not get the same answer as if we reversed the order of the measure-
ment! What about the relationship between the individual components of the angular momentum
and L2?

[L2, Lz] f ¼ L2xLz � LzL
2
x þ L2yLz � LzL

2
y þ L3z � L3z

� 
f

Clearly LzL2z � L2z Lz
	 


f ¼ 0 and we can use [Lx, Lz]¼� i�hLy as well as [Ly,Lz]¼ i�hLx to

find L2x , Lz
� �

f ¼ Lx(LxLz)� (LzLx)Lxf gf which becomes L2x , Lz
� �

f ¼ Lx(LzLx � i�hLy)�
�

(LxLz þ i�hLy)Lxgf and then L2x , Lz
� �

f ¼ �i�h(LxLy þ LyLx)
� �

f . Similarly
�
L2y , Lz

�
f ¼

Ly(LyLz)� (LzLy)Ly
� �

f which becomes
�
L2y , Lz

�
f ¼ Ly(LzLy þ i�hLx)� (LyLz � i�hLy)Ly

� �
f

and then
�
L2y , Lz

�
f ¼ þi�h(LyLx þ LxLy)

� �
f . Finally [L2, Lz]f ¼ �i�h(LxLy þ LyLx)f þ

�
i�h(LyLx þ LxLy)f þ 0g ¼ 0 or [L2, Lz] f¼ 0. (Write it out!)

We could also go through the same exercise above to show that [L2, Lx]¼ 0 and [L2, Ly]¼ 0, so
all the angular momentum components DO commute with L2. While this discussion may seem very
abstract, we are leading up to an important result that can be used for both the rigid rotor and the
H atom. Recall the proof that operators that commute can have the same set of eigenfunctions
(Theorem 3, Chapter 11). Here the situation is that each of the angular momentum operators does
commute with L2 ¼ L2x þ L2y þ L2z but the individual components do not commute among them-
selves. Because we will see that the Lz operator has the simplest form in polar coordinates, it has
become a standard convention to use Ym

l (u, f) as the eigenfunctions of L2 and Lz. Thus we can
‘‘know’’ (measure) the eigenvalues of these two operators. However, if we use the Ym

l (u, f)
functions as the eigenfunctions we cannot simultaneously ‘‘know’’ (measure) the eigenvalues of
Lx or Ly! The usual way to interpret this situation is to represent the l and m values as a vector with
components on an (x, z) plane with m�h for the z projection and �h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l(lþ 1)
p

for the length of the

hypotenuse of a triangle with an angle of u ¼ cos�1
mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l(lþ 1)
p
� �

[12] measured from the z-axis.

Since we cannot ‘‘know’’ hLxi or hLyi by direct measurement or by calculation using the Ym
l (u, f)

eigenfunctions, we can only say that the x- and y-components are somewhere on a circle around the
z-axis forming a cone about the z-axis. If we assume there is an arbitrary direction such as a
gravitational or magnetic field (‘‘up’’=‘‘down’’) we now realize that only certain angles of rotation
will occur. For high values of l the angles of rotations will sweep out the volume of a sphere but for
low values of l not all angles will occur for a given molecule (assuming a reference direction). The
bottom line for the two important operators can now be stated as eigenfunction equations.

LzY
m
l (u, f) ¼ m�hYm

l (u, f) and L2Ym
l (u, f) ¼ l(lþ 1)�h2Ym

l (u, f):

ROTATIONAL SPECTRUM OF CO

This example takes advantage of the fact that the lines in a pure rotation spectrum are equally
spaced. Precise data is available for CO and it is a convention to use ‘‘j’’ for rotational energy levels
but retain ‘‘l’’ for electronic orbitals (Figure 13.4). The space between rotational (inverted) peaks is
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3.8626 cm�1 averaged over 16 peaks [13]. For perspective, note that the main absorption peaks are

around 50 cm�1 and that E ¼ hn ¼ h
c

l
¼ hc�n. Then given the Rydberg constant for the H atom as

energy¼ (109737.31568527 cm�1)hc¼ 13.60569193 eV, we see 1 eV¼ (8065.544639 cm�1)hc so
that (50 cm�1=8065.544 cm�1=eV)¼ 6.1992� 10�3 eV or roughly 6.2 meV. Just remember that
1 cm�1¼ 1.15534� 10�4 eV, which is a very small amount of energy on a macroscopic scale. One
wavenumber is a small amount of energy!

Given Ej ¼ j(jþ 1)�h2

2I
, we can study the pattern of peaks due to DE¼Ejþ1�Ej¼ hn.

DE ¼ ( jþ 1)( jþ 2)� j( jþ 1)½ 
 �h2

2I

� �
¼ (2jþ 2)

�h2

2I

� �
¼ hc

l
¼ hc�n ¼ 2( jþ 1)

�h2

2I

� �
, but this

depends on knowing the value of j, which may not be easy to assign. However, the spacing between
the peaks is very nearly constant so we can use the spacing to find the bond length of the molecule!

D(DE) ¼ 2( jþ 1þ 1)� 2( jþ 1)½ 
 �h2

mr2

� �
¼ 2

�h2

2mr2

� �
¼ h(njþ1 � nj):

Using [D(DE)] eliminates the need to know the actual j value and we only need to know the

difference between the corresponding frequencies (njþ1 � nj) ¼ h2

4p2mr2h
¼ h

4p2mr2
and so

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h

(njþ1 � nj)4p2m

s
but we need the reduced mass m.

m ¼ 12:000000 g=molð Þ 15:9949146196 g=molð Þ
27:99491461 g=molð Þ 6:02214179� 1023=molð Þ ¼ 1:138500035� 10�23 g:

D�n ¼ njþ1 � nj ¼ c
1

ljþ1
� 1
lj

� �
¼ c(D�n) ¼ 2:99792458� 1010 cm=s

	 

3:8626=cmð Þ

¼ 1:15797834� 1011=s:
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FIGURE 13.4 The pure rotational spectrum for 12C16O synthesized from data at the HITRAN site using
Spectralcalc software at http:==www.spectralcalc.com=calc=spectralcalc.php (From Dr. Keeyoon Sung of the
CalTech=Jet Propulsion Laboratory.)
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Then we can find the bond length for 12
6 C � 16

8 O as

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6:62606896� 10�27 g � cm2=s

1:157978348� 1011=sð Þ4p2 1:138500035� 10�23 gð Þ

s
¼ 1:128318� 10�8 cm ffi 1:1283 Å:

The experimental value from the 90th Edn. of the CRC Handbook [14] is 1.1283 Å!
Consultation with several molecular spectroscopists reveals that modern Fourier transform infra-

red spectrometers are so precise that they usually measure only one or two rotational lines at a time
with very high resolution and save the data in a computer file in a data bank such as the HITRAN site
[15]. Then at a later time they use a computer program to splice together the various files to make
a complete spectrum. The above-mentioned spectrum for CO was constructed in such a manner.

FOURIER TRANSFORM SPECTROMETRY

A major innovation in several forms of spectrometry has occurred in the last 30 years due to the
availability of a computer algorithm developed by Cooley of IBM and Tukey of Princeton in
1965 [16]. Although the algorithm was first used by Carl Friedrich Gauss to study the orbits of
asteroids in 1805, an efficient application of the method had to await the development of modern
programmable computers. The algorithm is known as the Cooley–Tukey fast Fourier transform (FFT)
and has found wide applications, especially IR and NMR spectroscopy. For infrared, a modified
interferometer design is used in which a plate of 50% transmission and 50% reflection is placed
between two mirrors, a bright light source, and some sort of detector. One (or both, see the National
Institute of Standards and Technology FT spectrometer at http:==physics.nist.gov=Divisions=
Div842=Gp1=fts_intro.html) of the reflecting mirrors is methodically moved on a track and the
interference transmitted to the detector is a time-dependent series of light and dark waves. A sample
can be placed in one of the beams and the detector signal is recorded digitally. FT-IR is in principle a
single-beam experiment in which a ‘‘spectrum’’ is recorded for the sample and another spectrum of the
‘‘background’’ is measured and subtracted digitally from the sample spectrum.

This method has several advantages compared to older dispersive spectrometers in which a range
of frequencies is sent through a dispersing prism or reflected from a grating through various slits
with slow scans of the frequency range. Compared to simple scanning dispersive IR spectrometers
of only 30 years ago, the FT-IR spectrometers are a true breakthrough in advanced technology.
Specific advantages can be cited [17]:

1. Multiplex (Fellgett) advantage, all frequencies are scanned simultaneously and the signal-
to-noise ratio S n= Þ / ffiffiffiffi

N
p	

where N is the number of scans. Also scans are faster so many
scans can improve the S n= Þð .

2. Throughput (Jacquinot) advantage, about 150 times greater throughput than a dispersive
instrument that has several slits.

3. Registration (Connes) advantage with internal wavelength reference (He-Ne laser).

Note that in the schematic a He-Ne laser beam can be used for calibration at an exact wavelength
(6328 Å) and the monochromatic wave comes through the interferometer at a single frequency while
at the same time the broad range of frequencies is represented in the interferogram, which requires
use of the Cooley–Tukey FFT to untangle the full spectrum. The raw signal from the detector is the
complicated interferogram resulting from the interference of many frequencies all passing through
the sample at once. At the ‘‘zero position,’’ there are many wave signals present but as the mirror is
moved, the phase of the many waves in the light beam with different frequencies is represented in
the signal. Once the signal is accumulated and averaged over many repetitive traverses of the
moving mirror, a computer is necessary to decompose the signal into the amounts of the various
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frequencies and this is done using the Cooley–Tukey FFT routine. The fractional amounts of many
thousands of waves of different frequencies can then be plotted as a continuous ‘‘spectrum’’ of their
wave frequencies.

Although the FFT is done using complex arithmetic recall that cos (x) ¼ eix þ e�ix

2

� �
, what is

needed is to integrate the product of each desired resolvable frequency from the total by what is
essentially a ‘‘projection’’ operation in which the amount (fractional coefficient) of a given frequency
is present in the total. Consider a very simple, non-trigonometric, example of the projection of the

y-component in the ĵ direction from a vector~r¼ 2̂iþ 4̂jþ 3k̂. If we take the dot product of the desired

componentwith the total vector as ĵ �~r¼ 2̂j � îþ 4̂j � ĵþ 3̂j � k̂¼ 0þ 4þ 0¼ 4. That is the basic principle
of the FFT in which a set of specific frequency cos npcx lk= Þð functions are integrated as a product
with the detector signal and the coefficient of each cos npcx lk= Þð is extracted from the total signal.
The general form of the finite Fourier cosine transform of F(x) (the interferogram) is given as [18]

fc(n) ¼
ðp
0

F(x) cos (nx) dx, n ¼ 0, 1, 2, 3, . . .

Thus you can see the analogy to a projection of a specific cosine component from the interferogram,
although the details of the Cooley–Tukey algorithm are much more complicated. If we apply the
projection idea to many (thousands) cos(nx) waves, we can find a fine-grained bar graph that

becomes the IR spectrum fc(n)f g ¼
ðp
0
F(x) cos (nx) dx

� �
, n ¼ 0, 1, 2, 3, . . .

FT-IR IMAGING AND MICROSCOPY

In addition to basic research on molecular species, FT-IR applications have recently been developed
for FT imaging of paint [19] and fiber analysis [20] in forensic applications. The main innovation is
due to the development of focal plane array detectors, which permit thousands of images to be
examined in a microscope with FT-IR analysis of each individual pixel. Further information can
be found related to the Varian 610-IR FTIR spectrochemical imaging microscope at http:==
www.varianinc.com=cgi-bin=nav?products=spectr=ftir=ftir_microscopy=index&cid¼LLHQQHINFM
(Figures 13.5 through 13.8).

IR source

Laser

Laser reference signal

detector

detector

Fixed mirror

Sample cell
IR

Moving
mirror

Reference
laser

Detected infrared
signal (interferogram)

FIGURE 13.5 Diagram from a Varian training presentation by Dr. Ellen Miseo, senior FTIR scientist of the
Varian Analytical Division. This shows a typical interferogram from the detector and the use of a secondary
signal from a He–Ne laser (6328 Å, red) for internal calibration.
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FIGURE 13.6 Three examples of how the Fourier transform converts a wave signal to a representation of the
frequencies present in the wave signal. A single frequency produces only one line, a superposition of two waves
produces two frequencies and a complicated interferogram produces a frequency spectrum. (From Dr. Ellen
Miseo, senior FT-IR scientist, Varian Analytical Division. With permission.)

FIGURE 13.7 Up to 4096 pixels (picture elements) with 5.5 micron (1 micron¼ 10�4 cm) resolution can
be processed simultaneously in 10 min with a patented Varian Focal Plane Array Detector, U.S. Patent
No. 6,141,100. (From John C. Hahn, senior spectroscopy specialist, Varian, Inc. With permission.)
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DIPOLE REQUIREMENT

In this treatment the molecule must have a dipole moment that couples with the electric field of the
light wave as ~E � ~m¼Em cos u. As an aside, there was a controversy regarding the sign of the small
dipole moment of CO, which was finally resolved in 1958 by Rosenblum, Nethercot and
Townes [21]. The electric dipole of 0.1098 D [14] is attributed to the charges as C� Oþ. This
somewhat surprising result can be explained qualitatively as due to the greater electronegativity of
the O atom pulling the electron density in closer while the electrons near the less electronegative C
atom extend further from that end of the molecule. Thus even with more electrons around the O end,
the spatially weighted dipole moment hcjeq~rj ci turns out to be C� Oþ by a small amount! Here we
can use the properties of the Ym

l (u, f) wave functions to understand how the electric field of a light

wave interacts with the dipole of a molecule. Recall that Ym
l (u, f) ¼ (�1)mþjmj2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2lþ 1) lþ jmjð Þ!
4p l� jmjð Þ!

s

Pjmjl (cos u)eimf so that the u part consists of an associated Legendre function. Legendre functions
have been studied for hundreds of years and it is known that they satisfy a recursion relationship

linking Pm
l to Pm

lþ1 and Pm
l�1 as in the formula (2lþ 1)xPjmjl (x) ¼ l� jmj þ 1ð ÞPjmjlþ1(x)þ

lþ jmjð ÞPjmjl�1(x) [9]. Let us demonstrate this for one case. P0
0(x) ¼ 1, P0

1(x) ¼ x ¼ cos (u)

and P0
2(x) ¼

1
2
(3x2 � 1) ¼ 1

2
(3 cos2 u� 1) from Table 13.2 so (3)(x)P0

1(x) ¼ (2)P0
2(x)þ (1)P0

0(x)

and we find for this simple case that indeed (3)(x)(x) ¼ (2) (1=2)(3x2 � 1)½ 
 þ (1)(1) ¼
3x2 � 1þ 1 ¼ 3x2, Q:E:D: This is a very useful formula. We can use this in the

dipole transition matrix element l0, m0jm cos ujl,mh i ¼ m l0, m0jxjl, mh i � (x)Pjmjl (x) ¼
l� jmj þ 1ð ÞPjmjlþ1(x)þ lþ jmjð ÞPjmjl�1(x)

(2lþ 1)
where x¼ cos u, so we substitute this into the matrix elem-

ent, factor out the integration over f, and use the orthogonality of the

Pm
l

� �
: l0m0jxjl, mh i ¼ l� jmj þ 1ð Þ l0jlþ 1h i

(2lþ 1)
þ lþ jmjð Þ l0jl� 1h i

(2lþ 1)

� �ð2p
0

ei jmj�m
0ð Þdf. More simply

this is l0m0jxjl, mh i ¼ l� jmj þ 1ð Þdl0 , lþ1
(2lþ 1)

þ lþ jmjð Þdl0 , l�1
(2lþ 1)

� �
dm0 , jmj
	 


. So the selection rule is

Plot intensity at one
frequency for all

pixels

Plot all intensities at
one pixel position Spectrum—chemical information

Image—distribution of
components

Low

High

FIGURE 13.8 Schematic of multi-pixel focal plane FT-IR analysis applied to forensic or material science study
of surfaces. (From Dr. Ellen Miseo, senior FT-IR scientist, Varian Analytical Division. With permission.)
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Dl¼�1 with Dm¼ 0 in order to have a nonzero interaction. This is the main rule we will use to
interpret vib-rotor spectra. However, Kauzmann [22] shows a difficult derivation beyond the scope
of this text, which proves that Dm¼ 0, �1 when one includes the possibility of coupling with the mx

and my components as well as the simpler derivation for only the mz component. This leads to a
nonzero Q-branch in nonlinear polyatomic molecules (Figure 13.9). We will define ‘‘Q-branch’’ in
the next section and use it for a linear molecule.

VIB-ROTOR INFRARED SPECTROSCOPY

Strictly speaking, we would have to treat the combined wave function for vibration and rotation as
C¼ctrans(x, y, z) cvib(r) crot(u, f), but at this point we know the center of mass is flying about as a
3D-PIB and the molecules are vibrating while they rotate. This is so complicated that we resort to
just showing an energy diagram in which a diatomic molecule has one vibrational mode with
En ¼ nþ 1 2= Þhnð levels equally spaced in a harmonic potential well with each n-level having a

X

j΄ = 3
j΄ = 2
j΄ = 1
j΄ = 0, n = 1

j = 0, n = 0

Δj = 1Δj = –1

j = 1
j = 2
j = 3

Q

X

P

En
er

gy

Q
V

R

X

FIGURE 13.9 A schematic diagram showing the way in which the P, Q, and R features of the vib-rotor
spectrum occur due to the selection rules for vibrational and rotational transitions. The symbol marked as �V
refers to the wavenumber scale as �v in cm�1. The Q-branch is missing because the rotational selection rule is
that Dj¼�1 but Dj¼ 0 for the Q-branch.
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progression of Ej ¼ j( jþ 1)
�h2

2I
j-levels more closely spaced than the vibrational levels. Now that we

know the vibrational selection rule Dn¼�1 and the main rotational selection rule Dj¼�1 (j¼ l),
we can try to interpret some fine details of molecules that vibrate and rotate. We will temporarily
ignore the Dm¼ 0, �1 rule because the changes in energy due to Dm¼�1 are much smaller
than what can be easily resolved in near-infrared spectra so we will assume Dm¼ 0 for simplicity
at this level.

We previously considered a low-resolution pure rotational spectrum of HCl to make it clear
that there are transitions in the far infrared and microwave spectral region for changes in rotation.
Now we want to examine the main vibrational bands that have added detail due to rotation
(Figure 13.10) [23]. In Figure 13.11, we see a high-resolution spectrum of HCl in the vibrational
region. The bond in HCl is sufficiently strong that at room temperature the molecule will be in the
lower n¼ 0, 1, 2, 3, . . ., levels, which are equally spaced so that we only expect a single band,
mainly from n¼ 0 to n¼ 1. However, we see a lot of additional details. In addition to mostly
Dn¼ 1 in absorption, we also have Dn¼ 1þDj; Dj¼�1. Since the j levels are closely spaced, the
possible j values are much higher at room temperature. First we notice that there is no transition
from jn¼ 0, j¼ 0i ! jn¼ 1, j¼ 0i.

This is a characteristic of diatomic molecules and is called the ‘‘Q’’ branch at the frequency for
jn¼ 0i ! jn¼ 1i, which is not there due to the fact that j must change. On the low-energy side of
the Q-branch, we have the so-called P-branch of the spectrum for jn¼ 0, ji ! jn¼ 1, j� 1i
absorptions and on the high-energy side of the Q-branch we have the so-called R-branch for
jn¼ 0, ji ! jn¼ 1, jþ 1i absorptions. (Note a memory device: The R-branch raises j!) The
intensity of the absorptions decreases as one examines higher j values because the Boltzmann
principle makes it less probable that the higher energy j values will be occupied at a given
temperature. Thus the envelope of the rotational lines is roughly symmetrical on either side of
the Q-branch. At low resolution, the overall band shape resembles a slightly distorted ‘‘W’’ due to the
Q-branch.

We have chosen a very clean spectrum of HCl, which also shows splitting of the rotational
lines due to the presence of two isotopes of chlorine, 3517Cl and

37
17Cl (Figures 13.12 and 13.13). The

moments of inertia of the two isotopic forms of HCl will be slightly different so the rotational
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FIGURE 13.10 Low-resolution spectrum of HCl showing some rotational fine structure and the missing
Q-branch. (From NIST Chemistry WebBook, http:==webbook.nist.gov=chemistry).
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FIGURE 13.11 High-resolution vib-rotor spectrum of HCl showing Cl isotopic splitting. (From Barrow,
G.A., Physical Chemistry, 5th Edn., McGraw-Hill, New York, 1988, p. 569. With permission.)
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HCl vib-rotor analysis, Cl-35
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FIGURE 13.12 Combined (P-R, mj -Index) plot of vib-rotor transitions for �nmj H-3517Cl
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HCl vib-rotor analysis, Cl-37
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lines in the P- and R-branches will be at slightly different energies. The Cl isotope splitting is
shown here:

m35¼
mHm35Cl

mHþm35Clð ÞNA
¼ 1:007825032 g=molð Þ 34:96885268 g=molð Þ

35:97667771 g=molð Þ 6:02214179�1023=molð Þ¼ 1:626651403�10�24 g,

m37¼
mHm37Cl

mHþm37Clð ÞNA
¼ 1:007825032 g=molð Þ 36:96590259 g=molð Þ

37:97372762 g=molð Þ 6:02214179�1023=molð Þ¼ 1:629116897�10�24 g:

Let us use the experimental bond length of 1.2746 Å [14] with the calculated reduced masses to find
the isotope split based on an arbitrary j value

(njþ1�nj)35¼
h

4p2mr2
¼ 6:62606896�10�27 g�cm2=s

4p2(1:626651403�10�24 g)(1:2746�10�8 cm)2
¼6:351172293�1011=s,

(njþ1�nj)37¼
h

4p2mr2
¼ 6:62606896�10�27 g�cm2=s

4p2(1:629116897�10�24 g)(1:2746�10�8 cm)2
¼6:341560474�1011=s,

D(njþ1� nj)¼ 9:61181927� 108=s; so D�n¼Dn

c
¼ 9:61181927� 108=s
2:99792458� 1010 cm=s

¼ 0:032062 cm�1:

That is a very small number for the isotope splitting, which means that we are looking at a
very high-quality spectrum! The last observation is that the 37

17Cl absorptions are smaller
(less intense) than the 35

17Cl absorptions and this is due to the natural abundance of chlorine on

planet Earth (75.76% 35
17Cl, 24.24%

37
17Cl).

With a wealth of precise data from this excellent spectrum, we can see that the spacing in the
P and R branches is not quite the same. Further, we expect that the bond length will be slightly
different in the n¼ 0 vibrational state than in the n¼ 1 state. In Table 12.3, we reported some
complicated parameters for a number of gas-phase molecules. We can now show the meaning of
those parameters and carry out the analysis given in the laboratory text by Shoemaker, Garland, and
Nibler [24] using the excellent data we have for HCl. This analysis has been used in an excellent
teaching experiment for many years [24] and is included here to show how the various corrections
are applied to the fine details of the spectrum of a diatomic molecule [25]. The numbers we obtain
using lower precision in a spectrum from a dispersive spectrometer will lead to some slight
discrepancies compared to the most recent FT-IR values [14] but the method is instructive for
understanding anharmonicity and vibrational-rotational coupling.

It should be understood that we start from an exact solution to the rigid rotor and the exact
solution to the harmonic oscillator for a perfect parabola and then apply common sense corrections
to the idealized solutions by fitting a polynomial to experimental data so the corrections are
empirical rather than quantum mechanical. We use a formula based on quantum mechanics plus
some empirical terms (with Shoemaker–Garland–Nibler notation).

e(n, J)¼E(n, J)
hc

¼ �n0(nþ1=2)� �n0xe(nþ1=2)2þBcJ(Jþ 1)þDe J(Jþ 1)½ 
2�ae(nþ1=2)J(Jþ1):

Consider the philosophy of this model. The first and third terms are just the idealized quantum
mechanical formulas that give the main idea of the solution. The energy of each transition is
expressed using the quantity e(n, J) directly in wavenumbers. Here I¼mr2 and we can define

Bc ¼ h

8p2Ic
for wavenumbers. The second and fourth terms are corrections in the spirit of a Taylor

series expansion. Since what we know about the quantum mechanical solutions is in terms of the
E(n, J) quantum numbers, it is natural to express higher-order corrections in terms of the only
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information we have in terms of the quantum numbers. We use ‘‘n’’ for the vibrational quantum
number even though spectroscopists use a script ‘‘v’’ because in our character set, the symbol for
frequency is the same, and besides, the quantum number for the pure parabolic case was ‘‘n’’. Thus
we have ad hoc second-order (quadratic) corrections as if we were carrying out a Taylor expansion.
It is possible to write out a Taylor expansion in two variables, which would involve a term in which
the two variables occur as a mixed product of the variables, so the last term has a ‘‘to-be-fitted’’
parameter ae multiplied by a product of the vibrational and rotational quantum numbers. It is
important for your education going forward to understand how such intelligent empirical reasoning
is carried out. Now the question is how to fit this model to the data.

The model formula in the preceding text incorporates the ideas of bond stretching and interaction
between rotation and vibration so simple treatments trying to relate transitions between two levels
either beginning or ending in a common rotational level are shown to be flawed by the observation
that the space between the transition lines is not constant! First consider the R-branch energies.

e(1, J þ 1) ¼ �n0(3=2)� �n0xe(9=4)þ Bc(J þ 1)(J þ 2)� ae(3=2)(J þ 1)(J þ 2)þDe(J þ 1)2(J þ 2)2

e(0, J) ¼ �n0(1=2)� �n0xe(1=4)þ Bc(J)(J þ 1)� ae(1=2)(J)(J þ 1)þ De(J)
2(J þ 1)2

Then �nR(Dn¼þ1, DJ¼þ1)¼ e(n¼ 1, J0 ¼ Jþ 1)� e(n¼ 0, J)

�nR(J) ¼ �n0(1=2)� 2�n0xe þ (2Bc � 3ae)þ (2Bc � 4ae)J � aeJ
2

þ De (J þ 1)2(J þ 2)2 � (J)2(J þ 1)2
� �

The last term in De will not lead to simple analysis in this model [24]. Next consider the P-branch.

e(1, J � 1) ¼ �n0(3=2)� �n0xe(9=4)þ Bc(J � 1)(J)� ae(3=2)(J � 1)(J)þ De(J � 1)2(J)2

e(0, J) ¼ �n0(1=2)� �n0xe(1=4)þ Bc(J)(J þ 1)� ae(1=2)(J)(J þ 1)þ De(J)
2(J þ 1)2

�nP(Dn ¼ þ1, DJ ¼ �1) ¼ e(n ¼ 1, J 0 ¼ J � 1)� e(n ¼ 0, J)

�nP ¼ �n0 � 2�n0xe � 2BcJ � aeJ
2 þ ae(3=2þ 1=2)J þ De (J � 1)2J2 � J2(J þ 1)2

� �
�nP ¼ �n0 � 2�n0xe � (2Bc � 2ae)J � aeJ

2 þ 4DeJ
3:

In this case, the terms inDe lead to a simple form but actually refer to the lower n¼ 0 vibrational state.
Then thismodel [24] assumes theDe value is the same for both the n¼ 0 and n¼ 1 states, whichmakes
the formulas simpler and is a good approximation since we expect the De correction is very small
(it is). The real problem is that we do not actually have a value for the Q-branch (�ne). The irregular
spacing in the P and R branches is noticeably different from the equal spacing of the pure rotational
spectra and implies the gap where the Q-branch should be is not the midpoint of the gap, but now we
come to the most amazing aspect of this model. We have two formulas for the P- and R-branches:

�nP ¼ �n0 � 2�n0xe � (2Bc � 2ae)J � aeJ
2 þ 4DeJ

3

and

�nR(J)¼ �n0 1=2ð Þ�2�n0xeþ (2Bc�3ae)þ (2Bc�4ae)J�aeJ
2þDe (Jþ1)2(Jþ2)2� (J)2(Jþ1)2

� �
:

The amazing thing is that we can define mj¼�J for the P-branch so that JP¼�mj and then for the
R-branch we define mj¼ Jþ 1 or JR¼mj� 1 and get a unified formula for both branches as
�n(mj)¼ �neþ (2Bc� 2ae) mj�aemj

2� 4Demj
3. (Here mj is a counting index used for compatibility
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with Ref. [24] but different from the m-rotational quantum number.) Amazing! Note that we have
simply ignored the intractable expression for the De part of the R-branch equation and use the
simpler De formula of the P-branch, which assumes the two are approximately the same! The next
thing we might notice about the two (mj, �n) plots is that the mj¼ 0 intercept is not the same,
2885.966 cm�1 for �nmj H-

35
17Cl

	 

and 2883.860 cm�1 for �nmj H-

37
17Cl

	 

(Table 13.4).

The analysis that led to the mj -index considered the value of �n0¼ �ne� 2�ne xe where xe is a
parameter expressing the anharmonicity of the actual potential well compared to the idealized
parabolic well. Assuming the electronic bond strength is the same in the two isomeric forms, we
can expect the more massive isotope to be more anharmonic than the lighter isotope as can be

proven by a complicated argument given by Herzberg [25] according to the relationship
�ne*xe*

�nexe
¼ m

m*
,

and of course we know that the ratio of the ne frequencies by themselves satisfy the isotope shift
�ne*

�ne
¼

ffiffiffiffiffiffi
m

m*

r
so we make the only reasonable assumption [26] to solve two equations in two

unknowns using m35 ¼
mHm35Cl

mH þ m35Clð ÞNA
¼ 1:626651403� 10�24 g and m37 ¼

mHm37Cl

mH þ m37Clð ÞNA
¼

1:629116897� 10�24 g so
m35

m37

� �
¼ 1:626651403� 10�24 g

1:629116897� 10�24 g
¼ 0:998486607 and

m35

m37

� �1 2=

¼ 0:999243017. Thus we have

�n0 H-3517Cl
	 
 ¼ 2885:966172 ¼ �ne � 2xe�ne and so 2885.966172� �ne¼�2xe�ne.

TABLE 13.4
Wavenumber Peaks from Figure 13.11
Using the mj -Index

�nmj (H-3517Cl) mj �nmj (H-3717Cl)

3059.32 10 3056.97

3045.06 9 3042.73

3030.09 8 3027.78

3014.41 7 3012.12

2998.04 6 2995.78

2981.00 5 2978.75

2963.29 4 2961.07

2844.90 3 2942.72

2925.90 2 2923.72

2906.24 1 2904.11

2865.10 �1 2863.02

2843.62 �2 2841.58

2821.56 �3 2819.56

2798.94 �4 2796.97

2775.76 �5 2773.82

2752.04 �6 2750.13

2727.78 �7 2725.92

2703.01 �8 2701.08

2677.73 �9 2675.94

2651.96 �10 2650.22

Source: Barrow, G.A., Physical Chemistry, 5th Edn.,
McGraw-Hill, New York, 1988, page 569.
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We also have

�n0* H-3717Cl
	 
 ¼ 2883:860388 ¼ �ne

m

m*

� �1=2

� 2xe�ne
m

m*

� �
.

Then substituting �2�nexe¼ �n0� �ne we have

�n0* ¼ �ne

ffiffiffiffiffiffiffi
m35

m37

r
þ (�n0 � �ne)

m35

m37

� �
and �n0

m35

m37

� �
� �n0* ¼ �ne

m35

m37

� �
�

ffiffiffiffiffiffiffi
m35

m37

r� �
,

and finally we have

�ne ¼
�n0

m35
m37

� 
� n0*

m35
m37

� 
�

ffiffiffiffiffi
m35
m37

q� �
8>><
>>:

9>>=
>>; ¼

(2885:96617216)(0:998486607)� 2883:86038828
[0:998486607� 0:999243017]

� �
so we find

�ne ¼ �2:26181701�0:00075641 ¼ 2990:199773, but we have to round to six significant figures because the

data is only given to six figures and then we obtain �ne¼ 2990.20 cm�1, which applies to both
isotopic species. We had to do this tedious process because we observed that the rotational transitions
are not equally spaced, which led to this use of anharmonicity to find the common �ne for both
isotopic species.

Next we can solve for xe ¼ �(�n0 � �ne)=2ne ¼ (2990:199� 2885:966)
2(2990:199)

and we find

xe¼ 0.017429 rounded to six significant figures and �ne xe¼ 52.1165 cm�1.

BOND LENGTH OF H-3517Cl

From the Excel polynomial fit for H-3517Cl, the coefficient of the fourth term (first term on the graph,
the x3 term) is �0.00207849 so �4Dem

4¼�0.00207849m4 ) De¼ 519.623� 10�6 cm�1.
The coefficient of the third term (second term on the graph) is �0.30334213 so we have
ae¼ 0.30334213 cm�1 and we can use that in the second term (third term on the graph) where
(2Be� 2ae)¼ 20.57564769 ) Be¼ [20.57564769þ 2(0.30334213)]=2¼ 10.59116598 cm�1.

Then we can use Be ¼ h

8p2mr2e c
¼ 10:59116598) re ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h

8p2mc(10:59116598 cm�1)

s
and so

re ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6:62606896� 10�27 erg s

8p2(1:626651403� 10�24 g)(2:99792459� 1010 cm=s) 10:59116598=cmð Þ

s

¼ 1:27468� 10�8cm:

Thus we find the bond length for H-3517Cl ¼ 1:27468 Å to six significant figures. Finally we can

calculate the force constant from �ne ¼ 1
2pc

ffiffiffiffi
k

m

s
) k ¼ 4p2c2�n2em and we find that

k ¼ 4p2c2�n2em ¼ (4p2) 2:99792458� 1010 cm=s
	 
2

2990:20=cmð Þ2(1:626651403� 10�24 g)

k ¼ 5:16055� 105 g cm=sð Þ2=cm2 ¼ 5:16055� 105 g cm=s2
	 


=cm ¼ 5:16055 N=cm:
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Now, we can compare our computed values to the values from the 90th Edn. of the CRC Handbook
as given in Chapter 12.

We see that the agreement is good but not exact. Since we have used a 10-place calculator and
carried the Excel polynomial fit to eight places after the decimal, our arithmetic should be within the
uncertainty of the six significant figure wavenumbers in the data. It is probable that the discrepancy
lies with the use of a more precise vib-rotor spectrum [14].While the spectrumwe used is excellent for
a dispersive IR spectrometer, it is probable that a more recent FT-IR spectrum would provide the
precision needed to yield the values in the 90th Edn. of the Chemical Rubber Handbook. Neverthe-
less, we have carried out an exercise that youmight do in a physical chemistry laboratory course using
the text by Shoemaker, Garland, and Nibler [24], and we have benefitted from communication with
Prof. Nibler [26] regarding the anharmonicity calculation! For this author, the most interesting aspect
of this example is the evaluation of the parameter ae, which is a measure of the coupling between the
vibrational and the rotational quantization. Since ae is about 0.303 cm

�1 (roughly ten times the size of
the isotope splitting) and ae indicates that there is some mixing between the vibration and rotation
quantization, our idea of a clean separation of vibration and rotation is not quite true. Even so, the
coupling is still very small compared to �ne¼ 2990.20 cm�1.

SUMMARY

1. Well, this really is a mind bending chapter in terms of the mathematics! There is a difficult
derivation of the associated Legendre polynomials as solutions to the quantized rigid rotor
problem, although the m¼ 0 shortcut made it easier than it might have been. These angular
functions also apply to the H atom in the next chapter. A qualitative explanation of recent
breakthroughs in Fourier transform technology was given for applications to forensic
problems and material science as well as a very precise FT-IR pure rotation spectrum
of CO. We also discussed a treatment of the vib-rotor spectrum of HCl to obtain the bond
length and to calculate coupling between vibration and rotation in a detailed empirical
model. Angular momentum operators were discussed and it was shown that one can only
‘‘know’’ one component of the angular momentum (Lz) with L2 while the other compon-
ents (Lx, Ly) are indeterminant. The first main problem is to grapple with the polar
coordinate form of the second derivative as

r2(r, u,f) ¼ 1
r2

q
qr

r2
q
qr

� �
þ 1
r2 sin u

q
qu

sin u
q
qu

� �
þ 1

r2 sin2 u

q2

qf2 :

In this chapter, we held the r-coordinate fixed as for a rigid bond to obtain the pure rotational
energy levels in terms of (u, f) coordinates only and found a rotating rigid diatomic has

energy levels given by Ej ¼ j(jþ 1)
�h2

2I
, j ¼ 0, �1, �2, �3, . . ., and I¼mr2 is the

moment of inertia. Note that this system has degeneracies of gj¼ (2jþ 1) as 1, 3, 5, 7,
9, . . . and the very same angular solutions as the more familiar s, p, d, f, . . . orbitals of the H

TABLE 13.5
Comparison of Vib-Rotor Parameters for H-3517Cl

Source k (N=cm) ve (cm
�1) ve xe (cm

�1) Be (cm
�1) ae (cm

�1) De (10
�6 cm�1) re (Å)

90th CRC 5.16 2990.95 52.82 10.5934 0.30718 531.94 1.27455

Example 5.16055 2990.20 52.17 10.5912 0.30334 519.62 1.27468

Source: Lide,D.R.,CRCHandbookofChemistry andPhysics, 90thEdn., 2009–2010,CRCPress,BocaRaton, FL, pp. 9–105.
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atom except that for rotations, the j-quantum number can easily go to much higher values
since there is essentially no barrier to the rotation of a molecule in the gas phase. The only
condition is that the rotational energy exists in discrete ‘‘chunks’’ or quanta.

2. Two important additional eigenvalue equations were found for the Ym
l (u, f) wave func-

tions: LzYm
l (u, f) ¼ m�hYm

l (u, f) and L2Ym
l (u, f) ¼ l(lþ 1)�h2Ym

l (u, f).
3. A dipole selection rule exists here as well and is found to be Dj¼�1. This leads to

discrete absorption lines in the far infrared (low energy) range of the electromagnetic

spectrum. The formula for the transitions is DE ¼ Ejþ1 � Ej ¼ hn ¼ hc

l
¼ hc�n ¼ ( jþ 1)½

( jþ 2)� ( j)( jþ 1)
 �h
2

2I
. This leads to hc�n¼ ( jþ 1)( jþ 2)� ( j)( jþ 1)½ 
�h

2

2I
¼ 2(jþ 1)

�h2

2I
.

This is inconvenient to use since it requires a guess as to a value of ‘‘j.’’ However, the
spacing between lines can be used in D(DE)¼ DEjþ1�DEj ¼ 2(jþ 2)�½
2(jþ 1)
�h

2

2I
¼ 2

�h2

2I
¼ �h2

mr2e
and this can lead to a value for re, the bond length! So pure

rotational spectrum is at very low energy in the far infrared region but gives valuable
information regarding bond lengths. The lines are equally spaced and there are no gaps in
the progression. The heights of the lines are determined by the temperature of the sample
according to Boltzmann populations of the individual levels.

4. The vib-rotor spectrum can also be recorded for molecules that are vibrating while they are
rotating. Here we have Dn¼�1 for vibration and Dj¼�1 for rotation in the same
spectrum. Here the energy levels are not equally spaced, although an indexing scheme
(mj) can be used to unify the sequence of lines around what is a gap due to the forbidden
Dj¼ 0 transition, which results in the missing line=gap of the Q-branch in the lines of a
diatomic molecule. The higher-energy (higher wavenumber) lines form the R-branch and
the lower-energy lines form the P-branch sequence. Using a model Hamiltonian, which
allows some mixing between rotation and vibration, the lines can be fitted to the spectra
and it is found that the coupling between rotation and vibration is very small but not zero,
only to the extent of a few wavenumbers compared to several thousand wavenumbers for
the vibrational transition. The detailed analysis of the mj -index model Hamiltonian pro-
vides a better understanding of the energetics of gas-phase diatomic molecules and offers a
comforting understanding of the vib-rotor interactions including anharmonicity of the
vibrations.

5. Two contributions from FT-IR training slide shows from Varian, Inc. provide the basic
idea of how FT-IR spectra are obtained and the need for an associated computer to carry
out the Cooley–Tukey FFT.

6. The complicated solution to the rigid rotor problem in terms of Legendre polynomials
should be read with awe relative to the fact that Legendre derived the main aspects of this
set of polynomials in 1785!

PROBLEMS

13.1 Compute the moment of inertia of one CO molecule using the atomic weights of 12.000 for C
and 15.9997 for O with a bond length of 1.1283 Å.

13.2 Calculate the reduced mass for 12
6 C18

8 O and 12
6 C16

8 O using the mass of 18
8 O as 17.999161 g=mol

and 16
8 O ¼ 15:9949146196 g=mol with the standard that 126 C ¼ 12:0000000 and then calculate

the isotope splitting due to the oxygen isotopes in the infrared rotational spectrum. 188 O has a
natural abundance of 0.205% on planet Earth. Use a bond length of 1.1283 Å. The isotope
splitting calculated here was not seen in Figure 13.3 because the spectrum was of only the
12C 16O isotopic species. However would the isotope splitting be observable considering
the scale of the wavenumber scale?
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13.3 Test the equation (2lþ 1)xPjmjl (x) ¼ l� jmj þ 1ð ÞPjmjlþ1(x)þ lþ jmjð ÞPjmjl�1(x) using
(P0

1, P
0
2, P

0
3) and again using (P1

1, P
1
2, P

1
3).

13.4 Calculate the eigenvalues of the following operations:

(a) LzY2
3 ¼ ? (b) L2Y2

3 ¼ ? (c) LzY1
2 ¼ ? (d) L2Y�13 ¼ ? (e) LzY�12 ¼ ?

13.5 Hollenberg reported [27] a low-resolution pure rotational spectrum for HCl with six lines
spaced at an average of 19.8 cm�1. Use this very rough data to compute the bond length of
H-3517Cl and compare your value to the modern value of 1.2746 Å given in the 90th Edn. of the
CRC Handbook. Use the major isotope 35

17Cl ¼ 34:96885269.
13.6 Use the ‘‘mj -polynomial’’ coefficients for H-3717Cl to calculate all the values in Table 13.5

for H-3717Cl.

13.7 Calculate the partial derivatives
qr
qx

,
qr
qy

,
qr
qz

,
qu
qx

,
qu
qy

,
qu
qz

,
qf
qx

,
qf
qy

, and
qf
qz

. You will

need to recall that
d

dx
arccos (u)½ 
 ¼ �1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� u2
p du

dx
and

d

dx
arctan (u)½ 
 ¼ 1

1þ u2
du

dx
.

13.8 Prove Lz ¼ �h

i

q
qf

in spherical polar coordinates.
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14 The Schrödinger
Hydrogen Atom

INTRODUCTION

In this chapter we hope that the previous rigid rotor derivation will pay off. Here we only have to
solve the radial equation since we already know the Ql(u)Fm(f) ¼ Ym

l (u, f) solutions. We now
have to relax the rigid potential to permit the Coulomb attraction between the electron and the
nucleus.

1
r2

d

dr
r2
dR

dr

� �
� b

r2
Rþ 2m

�h2
E � V(r)½ 
R ¼ 0, where V(r) ¼ �Ze

2

r
is no longer constant:

As a student, your task is to read the method of the solution of this very important problem and be
able to sketch=draw functions and work simple problems related to the result. The task of the
author is to present a correct description of the derivation with tables that can be referred to later
and to present some meaningful applications. That means you can read the highlights now and go
to the problems. There are excellent modern treatments by McQuarrie [1] and by Atkins and
Friedman [2], but the most complete treatment is still to be found in the 1935 text by Pauling and
Wilson [3] (P&W). In our experience, those sources would require working some examples from
the later chapters of the differential equations text by Rainville [4]. However, we will attempt to
add sufficient verbal description so that you can get the main ideas just using basic calculus.
Details may also be found in the text by Kauzmann [5] and the earlier work by Eyring, Walter,
and Kimble [6]. We should appreciate the patient brilliance of Schrödinger [7] but we will only
sketch the solution. In this author’s opinion, this sketch is better than just presenting the results
without explanation but it would take almost a semester of mathematics to appreciate all the
details of the derivation. However, the wave mechanical solution of the H atom is the foundation
for a comprehensive model of the whole periodic chart and much can be gained by just studying
the results.

STRATEGY TO SOLVE THE PROBLEM

By now you should be familiar with the polynomial method of solving a differential equation.

1. Rearrange the equation using one or more changes in variable to absorb physical constants
into an equation with only pure numbers and the new variable(s).

2. Check the equation to see if it ‘‘blows up’’ for some value of the variable. Try to solve a
simpler version of the equation, which avoids the undefined behavior. If possible, change
the variable to shift the solution function away from the undefined conditions. Factor out
the well-behaved form of a partial solution.

3. Attempt to substitute a polynomial with unknown coefficients into the equation hoping
boundary conditions will determine the coefficients. Here L(r) ¼Pm¼0 amr

m.
4. Check to see if there is a part of the problem that cannot be represented by any combination

of integer powers of the variable? In the rigid rotor case, we avoided this problem
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using the m¼ 0 equation but here we may (will) have to allow something like
L(r) ¼ rs

P
m¼0 amr

m where rs is some function related to a0 before the progression
of the rm terms in the power series.

5. Check the series for the quantum mechanical requirements that the function be single
valued, finite, and continuous. We may need to truncate (cut off) the series to keep the
solution finite!

After solving the harmonic oscillator and rigid rotor problems, we should be prepared to carry out the
necessary steps. We are aided considerably by following the path laid out by Pauling and Wilson [3]
but we will fill in a few details for you.

We return to the R(r) equation we left unsolved in the rigid rotor problem.

1
r2

d

dr
r2
dR

dr

� �
� l(lþ 1)

r2
Rþ 2m

�h2
E þ Ze2

r

� �
R ¼ 0, using V(r) ¼ �Ze

2

r
and b ¼ l(lþ 1)

This can be simplified somewhat by defining some constants and changing the variable. We show
this step because the definitions of a and l are crucial at the final step while many of the later steps

can be described in words that hide a great deal of intermediate work. Let a2 � �2m
�h2

E, l � mZe2

�h2a

and r ¼ 2ar ) r ¼ r

2a
) dr ¼ dr

2a
. Define a new function S(r) where

dR

dr
¼ dS

dr

dr

dr
¼ (2a)

dS

dr
.

There is a subtle trick here in defining a2 as a negative number, which leads to
�1
4

� �
in the

transformed equation and that leads to a factor of e�
r
2ð Þ later.

4a2

r2
2ad
dr

r2

4a2

2ad
dr

S(r)

� �
� l(lþ 1)4a2S(r)

r2
þ 2m

�h2

� �
E þ Ze2q(2a)

r

" #
S(r) ¼ 0

�4a2 ) 1
r2

d

dr
r2

d

dr
S(r)

� �
� l(lþ 1)S(r)

r2
þ 2m

4a2�h2

� �
E þ Ze2q(2a)

r

" #
S(r) ¼ 0

so

1
r2

d

dr
r2

d

dr
S(r)

� �
� l(lþ 1)S(r)

r2
� S(r)

4a2
��h2
2mE

� �þ mZe2q
a�h2r

S(r) ¼ 0:

Then we have the transformed equation as
1
r2

d

dr
r2

dS(r)

dr

� �
þ �1

4
� l(lþ 1)

r2
þ l

r

� �
S(r) ¼ 0 but

since 0 � r � 1 we have a problem with
1
r
and

1
r2

when r¼ 0. As with the harmonic oscillator

solution, we see an asymptotic function when r is very large as the solution to the limiting form of

the equation
d2S

dr2
¼ 1

4

� �
S or as Dþ 1

2

� �
D� 1

2

� �
S(r) ¼ 0 where D � d

dr
. This has solutions

S ¼ e�
r
2 but only S ¼ e�

r
2ð Þ satisfies the requirement to remain finite. Thus we consider another

function S ¼ e�
r
2ð ÞF(r), apply the derivative (a bit of work) and then divide by e�

r
2ð Þ to obtain an

equation in F(r) as
d2F

dr2
þ 2

r
� 1

� �
dF

dr
þ l

r
� l(lþ 1)

r2
� 1
r

� �
F ¼ 0, but still 0 � r � 1! Thus we

have factored out the long range part of the function but still have a strong singularity at r¼ 0;
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the equation ‘‘blows up’’ when r¼ 0! Let us try to guess a solution that has a factor of rs in
the numerator, which might cancel out the problematic r�2 and r�1. Thus we try this as a
factor with a further substitution F(r)¼ rsL(r) and then use a power series expansion
as L(r) ¼Pm¼0 amr

m; a0 6¼ 0. We can evaluate the derivatives of F(r)¼ rsL(r) as
dF

dr
¼ srs�1L(r)þ rs

dL

dr
and for the second derivative

d2F

dr2
¼ s(s� 1)rs�2Lþ 2srs�1

dL

dr
þ rs

d2L

dr2

so we can substitute these into the equation, multiply through by r2 and collect terms to find a lot of
terms (another chore). This is quite an exercise in algebra but we want to find out the value of s for
the a0 term to determine the rs part of the function, which cannot be represented by an integer power
of rm in the series expansion. After collecting terms, Pauling and Wilson [3] isolate the a0 term so as
to factor F(r)¼ rsL, which will only have the terms in (rsa0) as

rsþ2
d2L

dr2
þ 2srsþ1

dL

dr
þ s(s� 1)rsLþ 2rsþ1

dL

dr
þ 2srsL� rsþ2

dL

dr

�srsþ1Lþ (l� 1)rsþ1L� l(lþ 1)rsL ¼ 0:

Looking at the terms that have rsL ¼ rs
P

m¼0 amr
m, we can collect only those terms that have

(rsa0) for the m¼ 0 terms of the series that have no r in the expression. This leads to
s(s� 1)þ 2s� l(lþ 1)½ 
a0 ¼ 0. Since each of the am terms has to be equal to zero independently
and yet a0 6¼ 0, we have [s(s� 1)þ 2s� l(lþ 1)]¼ [s(sþ 1)� l(lþ 1)]¼ 0. By inspection we see
that there are two solutions: one is s¼þl that leads to rs¼ rl, which is not singular at r¼ 0 and so is
acceptable. On the other hand, the solution of s¼�(lþ 1) leads to r�(lþ1), which is unacceptable
since it is still singular (blows up) at r¼ 0. Therefore, we use F(r) ¼ rlL(r) ¼ rl

P
m¼0 amr

m.
Next we examine the terms in the equation that did not vanish for s¼ l with an for n> 0
and divide them all by rlþ1 to find that we can combine several terms as

r
d2L

dr2

� �
þ 2(lþ 1)� r½ 
 dL

dr

� �
þ (l� l� 1)L ¼ 0,

where all the a0 terms are now zero due to the value of s¼þl so the power series begins with a1 but
we can still equate each rm coefficient to zero. Thus we have

(l� l� 1)a0 þ 2(lþ 1)a1 ¼ 0

(l� l� 1� 1)a1 þ 2 � 2(lþ 1)þ 1 � 2½ 
a2 ¼ 0

(l� l� 1� 2)a2 þ 3 � 2(lþ 1)þ 2 � 3½ 
a3 ¼ 0

and in general we find that

(l� l� 1� m)am þ (mþ 1) � 2(lþ 1)þ m(mþ 1)½ 
amþ1 ¼ 0:

The ratio test for this series is lim
m!1

amþ1
am
¼ lim

m!1
�(l� l� 1� m)

2(lþ 1)(mþ 1)þ m(mþ 1)

� �
! 1

m

� �
, which

looks like it converges to some limit. However, let us consider the Taylor series for er expanded
about the point r¼ 0

er ¼
X1
m¼0

rm
dmer

drm

� �
r¼0

m!
¼ 1þ rþ r2

2
þ r3

3!
þ � � � þ rm

m!
þ rmþ1

(mþ 1)!
þ � � �

The Schrödinger Hydrogen Atom 309



The ratio test for this series is also lim
m!1

amþ1
am
! 1

m
, so both series converge to something, but in

the case of the series for er, the function will behave as er, which is not finite over the full range of
0 � r � 1. So yes, the F(p) ¼ rL(r) ¼ rl

P1
m¼0 amr

m series converges, but by comparing it to er

we see that it will not remain finite as r ! 1! So once again after all that work we have a
polynomial that does not remain finite! However, we know what to do this time. We see that the
variable l contains the E value and that there is a minus sign in the recursion relationship so we set
(l� l� 1�m)¼ 0. That can only be true if l is an integer n since the other values are integers!

Recall l ¼ mZe2

�h2a
and a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2mEn

�h2

r
so l ¼ n ¼ mZe2

�h2
ffiffiffiffiffiffiffiffiffiffi
�2mEn

�h2

q and we can square that to find

En ¼ �mZ2e4

2n2�h2
, n ¼ 1, 2, 3 . . .. From (l� l� 1�m)¼ 0 we see that n> 0 even if (lþm)¼ 0.

Wait a minute, that looks like the same formula as for the Bohr atom! Yes, the s-orbital energies
(l¼ 0) have the same formula as the Bohr pancake orbitals but now the Schrödinger wave solution
introduces the Ym

l (u, f) shapes and generalizes the s-orbitals with l¼ 0 to spheres in three
dimensions. Note that for the special case of only one electron, all the orbitals in a given shell
have the same energy (degenerate levels). In multi-electron atoms the m-sub-shells will have
different energies due to electron–electron interactions but the orbitals are energy degenerate within
the m-sub-shell. Note the energy formula has only an n-quantum number, l or m do not occur in the
one-electron H atom energy formula.

ASSOCIATED LAGUERRE POLYNOMIALS

As before with the Ql(u) functions, Schrödinger probably recognized the radial polynomials
as associated Laguerre polynomials [7] after he had gone through the tedious process earlier. The
associated Laguerre polynomials had been developed earlier by a French mathematician, Edmond
Laguerre (1834–1886), so they were available to Schrödinger in 1926. The Laguerre polynomials

are defined in several ways but one is by Lr(r) ¼ er
dr

drr
(rre�r), and the associated Laguerre

polynomials are the sth derivatives Lsr(r) ¼
ds

srs
Lr(r). Maybe now you understand why we used

the symbol L in the derivation! To a large extent Schrödinger’s discovery was the application of
families of orthogonal polynomials to quantized systems as is evident from the title of his 1926
paper ‘‘Quantisierung als Eigenvertproblem’’ (Quantization as an Eigenvalue Problem). To make
connection to the Laguerre Polynomials, we note that they satisfy the equation [3]

r
d2Lr(r)

dr2
þ (1� r)

dLr(r)

dr
þ rLr(r) ¼ 0, and the sth derivative of the rth Laguerre polynomial

Lsr(r) ¼
dsLr(r)

drs
satisfies r

d2Lsr
dr2
þ (sþ 1� r)

dLsr
dr
þ (r � s)Lsr ¼ 0. It is pointed out in the Pauling

and Wilson [3] text that if you replace the integer r by (nþ l) and s by (2lþ 1), you find the
generalized equation for the associated Laguerre polynomials as

r
d2L2lþ1nþl (r)

dr2
þ 2(lþ 1)� r½ 
 dL

2lþ1
nþl (r)
dr

þ (n� l� 1)L2lþ1nþl (r) ¼ 0:

Very few texts list the associated Laguerre polynomials but Pauling and Wilson [3] give the general
expression as

L2lþ1nþl (r) ¼
Xn�l�1
k¼0

(�1)kþ1 (nþ l)!½ 
2
(n� l� 1� k)!(2lþ 1þ k)!k!

( )
rk:

310 Essentials of Physical Chemistry



We can use this to find the associated Laguerre polynomial for n¼ 4 and l¼ 1 (4p orbital).

L35(r) ¼
�(5!)2r0

(4� 1� 1� 0)!(3þ 0)!(0)!
þ (5!)2r1

(4� 1� 1� 1)!(3þ 1)!(1)
� (5!)2r2

(4� 1� 1� 2)!(3þ 2)!(2)

or L35(r) ¼ �1200þ 600r� 60r2. Then
dL35(r)

dr
¼ 600� 120r and

d2L35(r)

dr2
¼ �120. Inserting

these expressions into the general equation produces

r(�120)þ 2(2)� r½ 
(600� 120r)þ (4� 2)[�1200þ 600r� 60r2]

¼ �120rþ 2400� 480r� 600rþ 120r2 � 2400þ 1200r� 120r2 ¼ 0, Q:E:D:!

Thus we have demonstrated how the L2lþ1nþl (r) polynomials can be generated and that they do satisfy
the general associated Laguerre polynomial equation. Schrödinger worked out the Hydrogen
orbitals from these functions in his third revolutionary paper [7] and perhaps we can appreciate
the patience required to carry the derivation to useful results!

This sketched derivation is difficult but we want to introduce these ideas to you so that at some
later time you will have a starting point for serious study. In the opinion of this author, there is no
better place to turn to than the P&W text [3], which is still available as a Dover reprint for a very
reasonable price. There are two reasons why P&W is so good. First, it was written in English in
1935 at a time when many scientists were struggling with the original concepts in Schrödinger’s
papers that were in German and, second, those authors must have proofread the manuscript very
thoroughly because it is exceptionally clean as text books go!

By comparing known properties and the equation for the associated Laguerre polynomials, it is
likely that Schrödinger was pleased to find that the Lr(r) he derived from the radial equation for the H
atom satisfies the equation for the previously studied associated Laguerre polynomials. However,
there was still a tedious normalization integral that needed to be worked out asð1
0
e�rr2l L2lþ1nþl (r)

� �2
r2dr ¼ 2n (nþ l)!½ 
3

(n� l� 1)!
where the r2 in the integrand is the radial coordinate part

of the volume element. With that normalization factor we can write

Rnl(r) ¼ � 2Z
na0

� �3
(n� l� 1)!

2n (nþ l)!½ 
3
" #1=2

e�
r
2ð ÞrlL2lþ1nþl (r) in terms of the original r coordinate using

r ¼ 2ar ¼ 2mZe2q
n�h2

r ¼ 2Z
na0

r and a0 ¼ �h2

me2q
is the Bohr radius. Although the P&W text uses a minus

sign for Rnl, we know from previous discussion that the sign is arbitrary due to the phase problem.

INTERPRETATION

Despite the tricky polynomial analysis, we need to make some key observations here. First, it is

important to notice that the r coordinate is scaled according to Z and n as
Z

n

� �
, so even though the

functions are given in terms of r, the effective size of the model will contract as Z increases and

swells as n increases mainly due to the factor of e�
r
2 ¼ e�

Zr
na0 . Larger Z causes the exponential to

decrease more rapidly and so ‘‘shrinks’’ the radial scale while the inverse n in the exponent causes
the radial orbital to decrease less rapidly for larger values and expand for outer shells. Both
considerations are relative to a0, the Bohr radius (0.52917720859 Å)! Note we have used eq
to denote the charge on an electron while e¼ 2.718281828459045 . . . is the base of natural
logarithms. Due to the concept of Z being the atomic number, the H atom model proves to be a
major rationale for the arrangement of atoms in the periodic chart!
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The quantum number n is called the ‘‘principal quantum number’’ or shell number.Within each shell
there are different orbital shapes according to the l quantum number with a nomenclature that is left
over from lines of atomic emission spectra, 0) s, 1) p, 2) d, 3) f, . . . from ‘‘sharp,’’ ‘‘principal,’’
‘‘diffuse,’’ ‘‘fine,’’ etc. There is no true correspondence between appearance of spectral lines and the
Schrödinger quantum numbers. The labels are just historical vestiges of a former technology. Note that
each radial function has the strongest rl dependence as rn�1 while the lesser powers of rmerely serve
to provide shapes to maintain orthogonality among the various eigenfunctions so that the 2s function
has a little part like 1s in it along with an outer part of opposite sign, the 3s function has a little part like
2s and another little part like 1s with appropriate signs so that the integrated product will sum to zero,
that is, be orthogonal! However, the main meaning of the radial functions comes from Rnl � rn�1e�

r
2;

this observation will be important in constructing electronic orbitals for molecules.
Another simple observation is that the number of nodes in the radial function is given by #

nodes¼ n� l� 1. If we assume the derivation given earlier is merely to explain where the energy
and wave functions come from, a student only needs to be able to qualitatively sketch the radial
functions with the proper number of nodes and to understand the radial orthogonality. An
observant student should also remember that the e�

r
2ð Þ part of the wave function means that the

long-range ‘‘tail’’ of the radial function tapers asymptotically to zero.
An important question often asked by students is, ‘‘How can orbitals of an atom be orthogonal to

each other if they exist in roughly the same volume of space?’’We are used to thinking in Cartesian
(x, y, z) space where the coordinates are clearly in linearly independent directions. Quantum
mechanics uses a ‘‘linear vector space’’ in which the components are orthogonal polynomials
(as Schrödinger found and developed) instead of functions that ‘‘point’’ in different directions.
The polynomials achieve orthogonality by virtue of sign changes so that the idea of a dot product
in Cartesian space is generalized to an integrated ‘‘inner product’’ as in the case of

[ a!� b!] ¼ jabj cos uab !
ð
ca
*cbdt ¼ ajbh i. Thus ca and cb can occupy the same general volume

but if the integral product
ð
ca
*cbdt ¼ ajbh i ¼ 0, the functions are said to be orthogonal. This is

most easily seen in Figure 14.1 where the total (normalized) 1s, 2s, and 3s wave functions are shown
on the same scale. Clearly, the 1s function inhabits the space in close to the nucleus but the 2s and 3s

wave functions achieve orthogonality in the sense that the
ð
c1s
* c2sdt ¼ 1sj2sh i ¼ 0 by including

an amount of the positive portion that will overlap with the 1s function but have an equal minus
amount where the 1s function is essentially zero. The 3s wave function then includes a portion like
both the 1s and 2s functions with two sign changes in such a way that the integrated products are
again zero h1sj2si¼ h2sj3si¼ h1sj3si¼ 0. However, the separate functions do emphasize separate
regions. This same effect occurs when the angular integration is included but is more complicated so
we only show the simple case of the radial distributions for the s-orbitals in Figure 14.2. However,
note the physical meaning is due to jc*cj, the electron density, which forms ‘‘rings’’ since the
square of the function is always positive.

Next we come to the angular eigenfunctions to provide the three-dimensional shapes of the
H atom orbitals as well as model the orbitals for the entire periodic chart! We have previously
solved the rigid rotor problem to obtain the Ym

l (u, f) ¼ Ql(u)Fm(f) solution as a normalized
product [8] (Table 14.1). However, we have noted there are some annoying sign changes with
those functions, although they are correct. To try and make the topic simpler, we present here
mathematically equivalent forms in terms of trigonometric functions. A student should be aware
that many problems can be treated in the Ym

l (u, f) set of functions but perhaps it is also good
to know that there are other ways to represent the angular functions. Then in Table 14.2 we
show the equivalent real trigonometric forms only for the problematical Fm(f) part of the total
wave function.
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FIGURE 14.1 Normalized 1s, 2s, and 3s total wave functions for the H atom showing how outer orbitals are
orthogonal to inner orbitals by means of sign changes. (n� l� 1)¼ # nodes.
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FIGURE 14.2 The solid curve beginning at (0, 0) is the product of 4pc1s c2s r
2 showing both positive

and negative values, which would be summed in the inner product integral
ð
c1sc2sr

2dr ¼ 0 showing the

orthogonality over the radial space.
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The shapes are difficult to visualize because the Fm(f) function is complex (involves
ffiffiffiffiffiffiffi�1p � i).

Most chemistry texts get around this problem by using the so-called real spherical harmonics with

Rm
l (u, f) �

Ym
l þ (�1)mY�mlffiffiffi

2
p for m> 0 and R�m

l (u, f) �
Ym
l � (�1)mY�ml

i
ffiffiffi
2
p , for m< 0 using �m and

R0
l (u, f) ¼ Y0

l . This uses the identities of cos u ¼
eiu þ e�iu

2
and sin u ¼ eiu � e�iu

2i
to produce real

functions in terms of (u, f). However, Slater [9] has made these even simpler using the Cartesian
equivalent formulas.

The functions in Table 14.3 are still subject to the normalization over the 4p solid angle of (u, f)
and radial dependence but it is comforting to see the shape dependence in more familiar Cartesian
coordinates.

Another important observation is that for each principal shell number n there are l¼ n orbital
shape types and for each l-shell there are (2lþ 1) m sublevels. The Ym

l (u, f) eigenfunctions are the
same for the H atom as for the rigid rotor. The l-values in the H atom correspond to j-values in the

TABLE 14.1
Selected Normalized Ym

l (u, f)

l m Ym
l (u, f) ‘‘Shape-Type’’

0 0 Y0
0 ¼

1ffiffiffiffiffiffi
4p
p s

1 0 Y0
1 ¼

3
4p

� �1 2=

cos u p

1 �1 Y�11 ¼ �
3
8p

� �1 2=

e�if sin u p

2 0 Y0
2 ¼

5
16p

� �1 2=

(3 cos2 u� 1) d

2 �1 Y�12 ¼ �
15
8p

� �1 2=

e�if sin u cos u d

2 �2 Y�22 ¼
15
32p

� �1 2=

e�2if sin2 u d

3 0 Y0
3 (u,f) ¼

7
16p

� �1 2=

(5 cos3 u� 3 cos u) f

3 �1 Y�13 (u,f) ¼ � 21
64p

� �1 2=

e�if sin u(5 cos2 u� 1) f

3 �2 Y�23 (u,f) ¼ 105
32p

� �1 2=

e�2if sin2 u cos u f

3 �3 Y�33 (u,f) ¼ � 35
64p

� �1 2=

e�3if sin3 u cos u f

etc.

Source: Lesk, A.M., Introduction to Physical Chemistry, Prentice-Hall, Inc.,
Englewood Cliffs, NJ, 1982, pp. 312 and 732.
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rigid rotor but the m-values have the same meaning in both cases. Most atoms can be treated with
l � 5, even allowing for excited states. However, the j-values of the rigid rotor often reach much
higher values in rotation than the l-values reach in electronic states. You can visualize the H atom as
a two-particle rotor with the electron end much less massive than the proton end but the mathematics
for the Ym

l (u, f) part of the problem is identical in both cases!
Fortunately for us the Pauling and Wilson text [3] has saved us a lot of trouble and combined the

three solutions into the total wave function for most of the lower states of the H atom as

cnlm(r, u, f) ¼ Rnl(r)Qlm(u)Fm(f) with

Fm(f) ¼ 1ffiffiffiffiffiffi
2p
p eimf (but in the trigonometric form),

TABLE 14.2
Fm(f) Eigenfunctions of the H Atom [1]
in Trigonometric Form

m eimf sin(mu) or cos(mu)

0
1ffiffiffiffiffiffi
2p
p 1ffiffiffiffiffiffi

2p
p

1
eifffiffiffiffiffiffi
2p
p cosfffiffiffiffi

p
p

�1 eifffiffiffiffiffiffi
2p
p sinfffiffiffiffi

p
p

2
e2ifffiffiffiffiffiffi
2p
p cos 2fffiffiffiffi

p
p

�2 e�2ifffiffiffiffiffiffi
2p
p sin 2fffiffiffiffi

p
p

etc.

Note: sinf ¼ eif � e�if

2i
and cosf ¼ eif þ e�if

2
.

TABLE 14.3
Real Angular Wave Functions for s, p, and d Orbitals

Type: m Formula Common Name

s:m¼ 0 1 s

p:jmj ¼ 0
ffiffiffi
3
p z

r

� 
pz

p:jmj ¼ 1
ffiffiffi
3
p x

r

� 
,
ffiffiffi
3
p y

r

� 
px, py

d:jmj ¼ 0
ffiffiffi
5
p z2 � 1=2(x2 þ y2)

r2

� �
dz2

d:jmj ¼ 1
ffiffiffiffiffi
15
p xz

r2

� 
,
ffiffiffiffiffi
15
p yz

r2

� 
dxz, dyz

d:jmj ¼ 2

ffiffiffiffiffi
15
4

r
x2 � y2

r2

� �
,
ffiffiffiffiffi
15
p xy

r2

� 
dx2�y2 , dxy

Source: Slater, J.C., Quantum Theory of Matter, 2nd Edn., McGraw-Hill
Book Co., New York, 1968, p. 127.

x¼ r sin u cosf, y¼ r sin u sinf, z¼ r cos u.
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Qlm(u) ¼ (2lþ 1) l� jmjð Þ!
2 lþ jmj!ð Þ

� �1=2
Pjmjl (cos u)

and

Rnl(r) ¼ � 2Z
na0

� �3
(n� l� 1)!

2n (nþ 1)!j j3
" #1=2

e�
r
2rlL2lþ1nþl (r):

It is important to note that r ¼ 2Z
na0

� �
r so the ‘‘scale’’ of the coordinate r depends on

Z

n

� �
; later

this is clarified using s ¼ Z

a0

� �
so that we can see the effect of the n-shell number making the

exponential factor more diffuse for higher n values and canceling the 2 from the r=2 exponent.
The best news for students is that the P&W text has simplified all these problems (particularly the
conversion to real functions) and we present their final orbital formulas here. The only hint of
the conversion from complex to real functions is the �m quantum number (Figures 14.3 and 14.4).

PICTURES OF ANGULAR ORBITALS

A student who is eager for a picture instead of polynomial equations should find Figure 14.5 a
delight. The illustration is from a 1932 paper by H. E. White [11] written at a time when scientists
were also curious as to what the Schrödinger wave equation for the H atom looked like. Not only is
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ψ3dzz along the +z-axis

FIGURE 14.4 The positive lobe of the tall 3d2z H orbital along the z-axis showing there is no node in the radial
part of thewave function and that themain ‘‘fat’’ region of the orbital is in the same region as the 3pz orbital but the
p-orbital is an ‘‘odd’’ function with a sign change above and below the x–y plane while the 3d2z wave function is an
‘‘even’’ function with the same sign above and below the x–y plane. Thus the orthogonality is achieved by the
(3cos2 u� 1) angular part of the 3d2z orbital compared to the cos u angular part of the 2pz and 3pz orbitals.
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FIGURE 14.3 The positive lobe of the normalized 2p (solid) and 3p (dashed) H orbitals along the x-axis
showing how 3px is orthogonal to 2px and (n� l� 1)¼ 1 node.
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this an excellent illustration of the orbital shapes but it shows the corresponding interpretation of the
Bohr atom. In 1931, there were still advocates of the Bohr H atom solution and it is interesting to see
the three p-orbitals represented by three circular orbits relative to three different axes. Similarly the
d-orbitals are represented by circular orbits canted at various angles for the (2lþ 1) m-sublevels.
That would have made sense at the time relative to the structure of atoms, but today we realize that
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FIGURE 14.5 Angular shapes of the H orbitals according to both Schrödinger and Bohr. (Reprinted with
permission from White, H.E., Phys. Rev., 37, 1416, 1931. Copyright 1931 by the American Physical Society.)
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canted circular orbits do not give a good picture of how chemical bonds are formed in molecules.
Even so, it is interesting to see that by canting the sublevel orbits relative to the z-axis, the Bohr
model was capable of extension to higher orbits.

Figure 14.6 is also very complete in that it shows the square of the radial functions [Rnl(r)]
2

represented as a dark curve and the radial probability of the wave function 4pr2 [Rnl(r)]
2 with a

shaded area. The functions used by White are essentially identical to the functional forms found in
Pauling and Wilson [3] except that White uses a factor of (sinm u) in place of what we have shown as

(�1)mþjmj2 . Of more interest is the shaded area showing [Rnl(r)]
2 (4pr2), which is the probability

density over the surface of a sphere and gives higher weight to values at larger radius. Once again
the corresponding size of the Bohr orbit is given and the dark vertical line shows the value of the
Bohr radius.

The most important conclusion from the appearance of the radial orbitals is a rationale for how
valence shell effects can have an effect on ‘‘chemical shifts’’ in nuclear magnetic resonance (NMR),
which is after all a measurement of a nuclear spin state (to be discussed later). We can see from
Figure 14.6 that while the main probability of an outer 3s orbital could be involved in a valence
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FIGURE 14.6 Radial probability density of the H atom from both Schrödinger and Bohr. Note that the scale
of the x-axis changes so that the size of the figures is compressed horizontally as the n-quantum number
increases. The dark line is the square of the radial function (Rnl(r))

2. The shaded area is the radial probability
density as 4pr2 (Rnl(r))

2. The radial nodes in the orbitals show up here as probability ring separations because
the square of the wave functions is always positive compared to the sign changes in the orbitals themselves.
(Reprinted with permission from White, H.E., Phys. Rev., 37, 1416, 1931. Copyright 1931 by the American
Physical Society.)
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bonding situation, there are also inner portions of that same orbital near the nucleus to cause
transmission of valence effects to the electronic environment close to the nucleus. While more
modern pictures have been developed for molecular orbitals, these pictures of atomic orbitals are as
good today as they were in 1931!

An added explanation for the d-orbitals in Figure 14.6 is that the m¼ 2 and m¼�2 views are
from the side of the dxy and dx2�y2 orbitals that lie in the x–y plane. They actually have the same
‘‘four-leaf-clover’’ shape with alternating lobe signs as the dxz and dyz m¼þ1 and m¼�1 orbitals.
The dx2�y2 orbital has lobes along the x–y axes while the dxy orbital has lobes ‘‘between’’ the x–y
axes rotated at a 458 angle relative to the dx2�y2 orbital. In Figure 14.6, the m¼ 0 d-orbital is the so-
called d2z orbital, which looks like it just has two small ‘‘ears’’ at the midpoint, but a three-
dimensional rendering would show that feature as a ‘‘tire’’ ring around the middle with both large
lobes positive and the tire negative since the orbital really should be labeled as d2z2�x2�y2 and can
actually be synthesized from a renormalized combination of (dxzþ dyz). Perhaps a better way to
describe the d2z orbital might be as d22z � (x2 þ y2), which emphasizes the circular nature of the
(x2þ y2) ‘‘tire’’ as we recall the equation for a circle is r2¼ x2þ y2.

POWELL EQUIVALENT d-Orbitals

Once a student becomes accustomed to realizing that what counts is the probability density of
orbitals as positive numbers, it should be possible to make simple freehand drawings of at least
1s, 2s, 2px, 2py, 2pz, 3s, 3px, 3py, 3pz, 3d

2
z , 3dxz, 3dyz, 3dxy, and 3dx2�y2 orbitals. That is what a

student could do after skipping over the tedious polynomial derivations! After doing those sketches,
students may wonder why there are three equivalent shapes for the p-orbitals but the d-orbitals
require a different shape for the d2z orbital. This is due to the fact that there are actually six ways to
draw the four-leaf-clover shape of the d-orbitals in Cartesian representation but only (2lþ 1)¼ 5
orbitals for the l¼ 2 shell in the (u, f) representation. However, one can form a d2z orbital by
combining two four-leaf clovers as dz2 ¼ N(dxz þ dyz) and renormalizing to find N. Thus the usual
Cartesian d-orbitals given by Slater in Table 14.4 can all be made from the basic four-leaf-clover
shape. You can visualize that the double counting of the z-part of the d2z makes the orbital taller
along the z-axis and the presence of both x and y parts leads to a circular ‘‘tire’’ around the middle of
the orbital in the x–y plane. Thus the basic building block of the d-shell is the use of the six Cartesian
orbitals as five linear combinations. Basically, nature (or at least the mathematics of nature) is telling
us that while we may want to think in (x, y, z) space, the natural orbital shapes are better represented
in polar coordinates! (Figures 14.7 through 14.9)

Now that you have pondered over how six four-leaf clovers can be made into five orbitals, we
can ask you to wonder how we are going to describe the bonding in ferrocene. Ferrocene is an
organometallic ‘‘sandwich’’ compound with an iron atom (Feþ2) between two planar cyclopenta-
diene anions (C5H5)

� and it is possible to take linear combinations of (3d, 4s, 4p) orbitals on the
iron atom to make hybrid linear combinations that rationalize the bonding between the Feþ2 and the
(staggered) cyclopentadienide rings. However, that exercise is very challenging for the human mind
while nature does it easily! In 1968, Powell [10] showed that it is possible to take linear combin-
ations of the usual (canonical, standard) d-orbital shapes and form five equivalent d-orbitals that
are tilted from the z-axis by about 488, which form a set of five equivalent orbitals rotated about the

z-axis by
2p
5

� �
¼ 72� in what is called a C5 rotation. In a later chapter, we will use this idea of

rotation by a Cn operation as rotation around a principal axis by
2p
n

� �
. Here n¼ 5 and the principal

axis is the z-axis, a convention as for polar coordinates.
We need to start using matrix algebra so we introduce the idea of a matrix as an array of numbers

in a table surrounded by [ ] or in some cases by ( ) and the dimension of the matrix will be
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(n-rows)� (m-columns). Linear algebra defines matrix multiplication as an operation where each
element of an (n-row) is sequentially multiplied across by the sequential elements downward in the
(m-column) of a matrix or column to the right and then the sum of the multiplications is placed in the
(n, m) entry of a product matrix or column. For example, Powell’s matrix is given as a 5� 5 array in

the following and the element for d0 ¼
ffiffiffi
1
5

r !
dz2 þ

ffiffiffi
2
5

r !
dxz þ (0)dyz þ

ffiffiffi
2
5

r !
dx2�y2 þ (0)dxy,

multiplying and summing across the (5� 5) for the first element in the (1� 5) column. In linear
algebra, multiplication is only defined for [(n� k)� (k�m)]¼ (n�m) dimensions when the inner
dimension ‘‘k’’ is the same. Here we see (5� 1)¼ [(5� 5)� (5� 1)]. While we reserve the symbol j j

TABLE 14.4
Final Combined Forms of the H Atom Wave Functions

n l m Type cnlm (r, u, f)

1 0 0 1s
1ffiffiffiffi
p
p Z

a0

� �3 2=

e�s

2 0 0 2s
1

4
ffiffiffiffiffiffi
2p
p Z

a0

� �3 2=

(2� s)e�
s
2

2 1 0 2pz
1

4
ffiffiffiffiffiffi
2p
p Z

a0

� �3 2=

se�
s
2 cos u

2 1 �1 2px
1

4
ffiffiffiffiffiffi
2p
p Z

a0

� �3 2=

se�
s
2 sin u cosf

2 1 �1 2py
1

4
ffiffiffiffiffiffi
2p
p Z

a0

� �3 2=

se�
s
2 sin u sinf

3 0 0 3s
1

81
ffiffiffiffiffiffi
3p
p Z

a0

� �3 2=

(27� 18sþ 2s2)se�
s
3

3 1 0 3pz

ffiffiffi
2
p

81
ffiffiffiffi
p
p Z

a0

� �3 2=

(6� s)se�
s
3 cos u

3 1 �1 3px

ffiffiffi
2
p

81
ffiffiffiffi
p
p Z

a0

� �3 2=

(6� s)se�
s
3 sin u cosf

3 1 �1 3py

ffiffiffi
2
p

81
ffiffiffiffi
p
p Z

a0

� �3 2=

(6� s)se�
s
3 sin u sinf

3 2 0 3d2z
1

81
ffiffiffiffiffiffi
6p
p Z

a0

� �3 2=

s2e�
s
3(3 cos2 u� 1)

3 2 �1 3dxz

ffiffiffi
2
p

81
ffiffiffiffi
p
p Z

a0

� �3 2=

s2e�
s
3 sin u cos u cosf

3 2 �1 3dyz

ffiffiffi
2
p

81
ffiffiffiffi
p
p Z

a0

� �3 2=

s2e�
s
3 sin u cos u sinf

3 2 �2 3dxy
1

81
ffiffiffiffiffiffi
2p
p Z

a0

� �3 2=

s2e�
s
3 sin2 u cos 2f

3 2 �2 3dx2�y2
1

81
ffiffiffiffiffiffi
2p
p Z

a0

� �3=2

s2e�
s
3 sin2 u sin 2f

Source: Pauling, L. and Wilson, E.B. Introduction to Quantum Mechanics, with

Applications to Chemistry, McGraw-Hill Book Inc., New York, 1935,
Chaps III–V. The copyright is now owned by Dover Press, New York,
and is published as an unabridged reprint.

Note: s ¼ Zr

a0
.
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for a determinant (a determinant is a single number) and for absolute values, matrices are arrays of
values in rows and columns subject to the rules of multiplication shown earlier. There really is no
matrix division defined in linear algebra but it is possible to find the inverse of a matrix M�1 and
then use that in multiplication. Addition or subtraction of two matrices is carried out by simple
addition or subtraction of each element of one matrix with the corresponding element of another.
Addition or subtraction of matrices is only defined for matrices of the same dimensions. You may or
may not have had formal coursework in linear algebra but this author learned operational use of
linear algebra (which is essential for computer applications of quantum mechanics) from some
informal notes. One benefit of this latter part of the book is that you should end up with an
operational understanding of linear algebra!

Numerically, the elements in Powell’s (5� 5) matrix form what is called a unitary transform-
ation matrix. The main property of a unitary matrix is that it can scramble the relative amounts of the
components but it does not change the overall ‘‘length’’ (magnitude) of the vector result. This can be
shown by evaluating the determinant of the matrix, which is exactly 1.0, but in this case evaluating
a (5� 5) determinant is a tedious process!

Side view Top view

FIGURE 14.7 Stick models of the staggered arrangement of five-equivalent d-orbital bond directions.
The application to the bonding in ferrocene seems obvious! (From Powell, R.E., J. Chem. Educ., 45, 45,
1968. With permission.)
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FIGURE 14.8 The angular shape of one of the Powell equivalent d-orbitals. The overall shape is not
cylindrical but somewhat flattened and the major axis of the orbital is tipped up from the x–y plane by about
48.28. (From Powell, R.E., J. Chem. Educ., 45, 45, 1968. With permission.)
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Powell’s equivalent d-orbitals point their maximum electron density lobes directly at the pi-orbitals
in the cyclopentadienide rings providing an easy explanation of the bonding in ferrocene based on
orbital overlap. No doubt hybridization in the 2sp shell of the carbon atom is familiar from courses
in organic chemistry where linear sp1, trigonal sp2 and tetrahedral sp3 orbitals were discussed and
here we see a form of hybridization within the 3d shell. It is probably worth mentioning that the
canted Bohr orbits would not have provided any easy model for the bonding in ferrocene. Thus we
see that once bonding geometry is in question, the Bohr orbitals are of little interpretive value.
A pancake orbital canted at an angle is still a pancake and the Bohr orbits fail to provide a
mechanism for rationalizing directional bonding. One further development was that while it might
be assumed from Powell’s pictures that the equivalent d-orbitals are cylindrical, a paper by Pauling
and McClure in 1970 [12] examined the cross section of the main lobes of the d-orbitals and found
them to be more nearly oval than circular.
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FIGURE 14.9 The probability contours of the jc* cj of one of the Powell equivalent d-orbital. (From Powell,
R.E., J. Chem. Educ., 45, 45, 1968. With permission.)
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UNSÖLD’S THEOREM

Students may wonder whether atoms are truly spherical as monatomic gases. There is an answer
according to work by Unsöld. Pauling and Wilson [3] mention the theorem, and the paper by White
[11] for the orbital diagrams also gives results for Unsöld’s theorem with values for various shells.
The idea is that if one sums over all the m-sublevels of a given l-shell, the result is a constant
independent of (u, f). This implies that a completely filled l-shell is spherical. The calculation is forPþl

m¼�l Qlm
* (u)Fm

* (f)Qlm(u)Fm(f) ¼ C where C is a constant. White [11] gives the values of the
constant for several shells shown in Table 14.5.

White quotes only
Pþl

m¼�l Qlm(u)½ 
2¼ C because the exponents cancel when Fm(f) ¼ eimfffiffiffiffiffiffi
2p
p is

multiplied by its complex conjugate leaving only the normalization constant. The value of the
constant is not important, the significance is that there is a constant independent of (u, f) so that
means that the filled shell rare gas atoms are surely spherical and other atoms will spin freely unless
there is some strong reference direction to a magnetic field.

AUFBAU PRINCIPLE AND THE SCALED H ATOM

Now that we have the H atom orbitals, we want to emphasize the role played by
Z

n

� �
in their

formula. Extending Z to higher atomic numbers allows us to ‘‘build up’’ (‘‘aufbau’’ translates as
‘‘build’’) other atoms by adding electrons to more and more orbitals. The trends in the periodic chart
can be seen to be related to the number of electrons filling the orbitals of an H atom model whose
inner shells contract drastically as Z increases, but when the inner electrons shield some of the
nuclear charge, the outer electrons still behave as if they are in hydrogenic orbitals. Shielding of part
of the nuclear charge allows the outer ‘‘valence shell’’ electrons to behave as if they were in the
electrostatic field of a lesser Z value charge, although the effective value of Z may no longer be an
integer! However, as more and more electrons are added to this model, the small amount of
electron–electron repulsion accumulates until the combination of a non-integer, effective nuclear
charge, and the mutual electron interaction distorts the order of the energy levels of the H atom
formula even using an effective nuclear charge. As the number of electrons increases, another effect
becomes more important. Coupling of the small magnetic fields generated by swirling electron
orbits with the spin magnetic moments distorts the simple single electron model of the H atom. This
effect becomes dominant somewhere near Z¼ 29 (Cu) or Z¼ 30 (Zn) using the (L,S) coupling
scheme discussed in the following but the shape of the orbitals remains roughly hydrogen-like well
past Z¼ 92 (U). The order of the energy levels can be further explained using a revised way of
counting the angular momentum with jJ, Jzi coupling where J ¼ Lþ S so the H atom model is a
very good way to explain the shell filling of 2, 8, 8, 18, 18, etc., observed in the earlier Bohr model.

TABLE 14.5
Unsöld’s Constant for Selected l-Shells
of the H Atom

Type l �m Pþl
m¼�l [Qlm(u)]

2

s 0 �0 1=2

p 1 �1 3=2

d 2 �2 5=2

f 3 �3 7=2

Source: White, H.E., Phys. Rev., 37, 1416, 1931.
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The H atom model provides a particularly satisfying interpretation of the relative unreactivity of the
rare gases as having completely filled shells. Unsöld’s theorem together with the known near
inertness of the rare gases calls attention to their completely filled spherical shells. This observation
can be combined with known valence tendencies of Group I metals to donate an outer electron to
Halogen atoms to postulate that the rare gas structures are so stable electronically that there is a
chemical principal at work relative to electronic structure. The main principle of chemistry is that
atoms in molecules trade or share electrons in such a way as to approach filled shells! The electron
donor–acceptor concept can be extended to the whole periodic chart to designate ‘‘metals’’ as
donors, ‘‘nonmetals’’ as acceptors and the relatively inert rare gases.

TERM SYMBOLS AND SPIN ANGULAR MOMENTUM

During the Aufbau building-up principle, the first 30 elements can be described pretty well by a
labeling scheme that could be described by the notation shown for Zn (Z¼ 30) in terms of H orbitals
as (1s2)(2s2 2p6)(3s2 3p6 d10)(4s2) and it is easily rationalized to explain the common charge of Znþ2

when the outer two electrons are lost. The H atom model ‘‘explains’’ the stability of He as (1s2),
Ne as (1s2)(2s2 2p6), Ar as (1s2)(2s2 2p6)(3s2 3p6), etc. This can be augmented by the observation
that ‘‘the state of maximum multiplicity lies lowest!’’ according to Hund’s rule to understand the
magnetism of the half-filled 3d5 shell of Mn and even the half-filled 4f7 shell of Gd. All of these
freshman chemistry concepts hang comfortably on the shoulders of the H atom model so we see
why we have spent time on the details of the derivation!

We have avoided the topic of ‘‘spin’’ for quite a while in this text but now we have to consider
what it means. The easiest explanation is the most mysterious. We can say that electrons are
particles that have an intrinsic amount of angular momentum. We know energy comes in quantum
chunks and that kinetic energy is made from momentum so we can extend that idea to say that

electrons just have a ¼ þ �h

2
or b ¼ � �h

2
as small amounts of angular momentum. In effect, they

cannot stop rotating although the amount of rotation is tiny. Even a tiny amount of rotation of a
charged particle generates a tiny magnetic field so that relative to some reference field (magnetic
field of the Earth) one can observe jai as a ‘‘spin up’’ state and jbi as a ‘‘spin down’’ state. It is not
so much that the electrons are spinning wildly, but rather that they have a certain (small) amount of
angular momentum and really just cannot stop; the spin is an intrinsic property of the particle. We
know that other particles can have spin and that is used in NMR just as electron spin can be
observed using electron spin resonance (ESR). Actually, there is a higher-order treatment of the
H atom due to P. Dirac, which treats electron spin within the Hamiltonian of the H atom but it is too
difficult for an undergraduate treatment. In the Dirac H atom, the jai and jbi electron orbitals are
slightly different spatially. In the usual ‘‘nonrelativistic’’ Schrödinger treatment, we blithely assign
two electrons to each cnlm spatial orbital and make the reasonable assumption that somehow the
opposite magnetic moments of the two electrons in each spatial orbital tend to form a stable
‘‘electron pair.’’ In fact, we know from chemical principles that a great deal of chemical
bonding can be explained on the basis of electron pairs so there is something to that idea. However,
the idea of intrinsic angular momentum is very profound and requires delving into the theory of
elementary particles.

The most famous experiment related to spin was the ‘‘Stern-Gerlach’’ experiment [13] in 1922. In
that experiment, silver was vaporized in an oven and allowed to exit as a beam, which traveled
between a long pair of magnet poles each machined to a knife edge. From chemistry, we know Ag
has one outer electron and the Schrödinger model would describe the electron orbital occupancy as
(1s2)(2s2 2p6)(3s2 3p6 3d10)(4s2 4p6 4d10)(5s1). As the Ag atoms traveled through the long path, the
interaction of the outer electron with the magnetic field caused the Ag beam to separate into two
beams that were deposited on a glass plate at the end of the apparatus. At first, they thought the
experiment was inconclusive but Professor Stern examined the glass plate while smoking a cigar
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and the cigar smoke had enough H2S to precipitate dark brown Ag2S on the glass plate and two
images were ‘‘developed’’ by the cigar smoke! Analysis of the beam conditions and the separation

of the two images led to the conclusion that neutral Ag atoms have a tiny magnetic moment of � �h

2
due to the outer electron. Note that also implies that the spin angular momentum magnetic moments
of the other 46 electrons in the Ag atom cancel to zero!

HUND’S RULE

Friedrich Hund (1896–1997) was a German physicist who was an assistant to N. Bohr and studied
many atomic spectra so as to conclude his famous ‘‘Hund’s rule’’ for the electronic structure of the
lowest energy of atoms (ground state): the ground state is the state of maximum spin multiplicity.
Using the Aufbau principle, Hund observed that the electrons successively fill sub-shells of the
H atom model in a certain way. In succession, every orbital in a sub-shell is filled with just one
electron before any is doubly occupied and all singly occupied orbitals have the same spin. Hund’s
rule is a conclusion based on observation. Further, the ground state of

ab a a 2p4 a a 2p2

m¼þ1 0 �1 m¼þ1 0 �1

ab2s2 ab2s2

m¼ 0 m¼ 0

ab1s2 ab1s2

m¼ 0 Oxygen¼ 3P m¼ 0 Carbon¼ 3P

an atom can be described by a ‘‘term symbol’’ such as (2sþ1)T
P

i mi

	 

. Here T is a generic symbol

for the total sum of the m-quantum numbers of the occupied orbitals: S(0), P(1), D(2), F(3), G(4),
H(5), etc. Consider the example of the ground state of an oxygen atom 1s2 2s2 2p4 compared to the
carbon atom 1s22s22p2. Both atoms have two unpaired electrons. We show the 1s orbital energy as
the lowest with an implied vertical energy scale and it is found in atoms that the 2s energy is slightly
lower than the 2p set of three energy- degenerate 2p orbitals. According to the Aufbau principle we
fill the orbitals as a, b, a, b, a,. . . . until we come to a degenerate shell as the 2p orbitals. Then we
fill all the degenerate levels first with alpha electrons starting with the highest m value and then
come back and add beta electrons until all are assigned, and here that is a, a, a, b in the 2p shell.
Now we have the sum of mi for O as

P
i mi ¼ (0þ 0)1s þ (0þ 0)2s þ (1þ 0� 1þ 1)2p ¼ 1) P.

Then we add up the spins in �h units as S ¼
X

i
si ¼ 1

2
� 1
2

� �
1s

þ 1
2
� 1
2

� �
2s

þ
1
2
� 1
2
þ 1
2
þ 1
2

� �
2p

¼ 1) (2Sþ 1) ¼ 3, so the term symbol is 3P, pronounced ‘‘triplet P.’’ Why

is the state a ‘‘triplet’’? In a magnetic field (of the Earth or a laboratory magnet), the possible spin
states [5] for two electrons can be as follows (quantized along a reference z-axis):

jaai, Sz ¼ 1

jabi þ jbaið Þffiffiffi
2
p , Sz ¼ 0 implies three states in a magnetic field, that is, a ‘‘triplet:’’

jbbi, Sz ¼ �1
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The Sz¼ 0 state is somewhat unexpected but we must realize that electrons are indistinguishable so
we have to consider both ways we can have one spin up and the other spin down. In fact, just as you
may have learned in counting NMR peaks the total number of spin states for N unpaired electrons is
(Nþ 1). The most complicated case in the first row of elements is for nitrogen as for the electron
configuration 1s2 2s2 2p3.

a a a 2p3

m¼þ1 0 �1

ab2s2

m¼ 0

ab1s2

m¼ 0 Nitrogen¼ 4S

X
i
mi ¼ 0, ) S and

X
i
si ¼ 3

2
, ) 2

3
2

� �
þ 1

� �
¼ 4, so the term symbol is 4S, quartet S.

Why do we care about the term symbols? First, it tells us about the magnetic properties of atoms
due to unpaired spins. In addition, you will need to know the term symbols in upper level courses
in inorganic chemistry because the overall value of the

P
i mi as S, P, D, etc., gives spatial

information as to what orbitals form molecular orbitals in octahedral metal complexes. A large
part of physical chemistry is preparation for other aspects of chemistry! For now just use the term
symbol to relate to magnetic aspects of atoms such as Mn (1s2 2s2 2p6 3s6 3p6 3d5 4s2) )6S with
five unpaired electrons! For Mn, Hund’s rule confirms the stability of the half-filled 3d shell. In fact,
planar pentagonal Mn5 has been reported to have 25 unpaired electrons [14] when trapped in a
frozen Argon matrix!

jL, Szi VERSUS jJ, Jzi COUPLING

We mentioned earlier that the Aufbau Principle can be used along with Hund’s rule to simply lay out
a diagram of the H atom energy levels and populate them with electrons starting with the lowest
energy 1s orbital. That works pretty well up to about Z¼ 30 (Zn) and we know that angular
momentum is quantized so the momentum of each orbital can be described by the quantized vector
of ~Lþ~Sz. For light elements up to Z¼ 30 the small coupling between the two forms of angular
momentum allows them to be considered separately. However, due to spin–orbit coupling, there is
an energy effect given by j~L �~S as the interaction of the two types of angular momentum and j is a
measureable quantity that increases with Z. As the number of electrons increases with atomic
number, there is more of both~L and~S and their coupling becomes comparable to electron repulsion
effects. Then the basic H atom energy level scheme is distorted to the point that another way has to
be used to explain the quantization of the angular momentum past Z¼ 30 with the so-called jJ, Jzi
scheme where ~J ¼~Lþ~Sz. Past Z¼ 30, the order of the levels is modified due to spin–orbit
interactions so it is better to use the jJ, Jzi scheme.

Up to this point, we have simply placed electron pairs into hydrogenic orbitals but the electrons

do have a small amount of angular momentum measured in units of � �h

2
. As such the spins also obey

momentum quantization, which gives rise to another set of equations.

S2cs ¼ s(sþ 1)�h2cs and Szcs ¼ sz�hcs:

At this point, we are flirting with the more difficult relativistic Dirac equation for the H atom. That
method involves representing the spin function, cs, as 2� 2 Pauli matrices. Not only is that method
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more complicated, it is so correct that it predicts the existence of antimatter electrons called
positrons. At the level we are using here, we just designate the spin functions as a (spin ‘‘up’’) or
b (spin ‘‘down’’) for electrons but students should be aware that spin can be treated in a more
detailed way in advanced texts.

S2a¼1
2

1
2
þ1

� �
a and S2b¼1

2
1
2
þ1

� �
b with Sza¼1

2
a and Szb¼�12b (in units of �h).

In this ‘‘semiclassical’’ (not quite full Dirac treatment) formalism, we still need to useð
a*adt ¼ 1,

ð
b*bdt ¼ 1, and

ð
a*bdt ¼ 0:

Continuing with this approximation, we limit the discussion to the H atom. It would seem that we
need to add a term to the Hamiltonian to account for the interaction of the magnetic moment of the
electron spin and the orbital angular momentum. That extra term in the Hamiltonian is of the form

Hso ¼
X
i

ji~Li �~Si:

For the single electron in the H atom or a hydrogenic ion, the value was worked out by Thomas [15]
using the first-order terms of a relativistic expansion [15–19].

j ¼ 1
2m2c2

1
r

dV

dr

� �
:

The dot product of the two forms of angular momentum can be found by squaring the total
momentum as

~J
2 ¼ (~Lþ~S)2 ¼~L

2 þ 2~L �~Sþ~S
2 )~L �~S ¼ (1=2)(~J

2 �~L
2 �~S

2
):

Then, since we know the Ym
l (u, f) functions are simultaneously the eigenfunctions of all the angular

momentum operators and we know the rules for the spin eigenfunctions, we find

~L �~S ¼ (1=2)½ j( jþ 1)� l(lþ 1)� s(sþ 1)
�h2:

The details are given in Appendix D but the final formula can be derived cleanly to within first order
of a relativistic formula for the electron velocity as

jnl ¼
e2�h2

2m2c2a30

Z4

n3l(lþ 1=2)(lþ 1)
:

Thus very good approximations can be made for the exact energy levels of the hydrogen and
hydrogenic ions using Hso ¼

P
i ji

~Li �~Si. While this is a mathematically clean process for one
electron, the process gets very complicated for many-electron systems. We can write

~L �~S ¼
X
i

X
j

Li � Sj

but this introduces a great deal of complexity into the calculation of energy levels. However, it is
worth observing the dependence on the fourth power of the atomic number (Z 4) in the numerator.
Even if it is difficult to calculate the spin–orbit splitting exactly, we can now understand why the
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simple idea of just putting (a, b) spin pairs into orbitals starts to fail for heavier (higher Z values)
elements. Students interested in a more detailed explanation can consult Appendix D but the main
message is that as the atomic number (Z) increases, the effect of spin–orbit coupling rapidly
increases. At about Z¼ 30 (Zn) the simple idea of keeping ~L and ~S separate as if they do not
interact fails. Then one must use~J¼ (~Lþ~S) in a new scheme called j~J, Jzi coupling. This explains
the need for a more sophisticated approach with heavier elements. Even so, the simpler j~L, Szi
scheme will be sufficient to treat compounds formed from light elements up to Zn. A lot of
Chemistry can be explained using the jL, Szi scheme including most of organic chemistry, but the
inorganic chemistry of heavier elements is necessarily described in terms of the jJ, Jzi coupling
scheme. However, even for higher Z values the shape of the orbitals remains basically as described
by the Schrödinger model. Spin–orbit coupling mainly affects the order of the energy levels, not the
shape of the orbitals. We leave jJ, Jzi coupling and relativistic effects in heavier elements to more
advanced texts.

SUMMARY

Chapters 12 through 14 have been the most challenging so far in terms of mathematical analysis and
perhaps now you understand why only a very few problems have an exact solution for the
Schrödinger equation. Although we only sketched the tedious polynomial analysis, we found the
Schrödinger H atom yields exactly the same energy for the 1s level as the earlier Bohr theory, but
the orbital solutions are more spatially detailed than the flat Bohr orbitals. Schrödinger orbitals can
hybridize to form directional bonds as in the case of the Powell d-orbitals as well as the familiar sp
hybrid orbitals of carbon. The Aufbau principle and the H atom model along with Hund’s rule and a
simplified treatment of electron spin help us organize the periodic chart. This provides a strong
framework for understanding how elements trade electrons in compounds so as to more nearly
approach the rare gas electronic structures. Metals release electrons to nonmetals and covalent
compounds share electrons generally in a way that leads to electronic structures more like rare gas–
filled shells, a fundamental principle of chemistry all ‘‘explained’’ on the basis of the H atom model!

1. There is a polynomial solution for the radial part of the H atom solution of the Schrödinger
equation. The functions are related to previously studied Laguerre polynomials. The total
solution for the H atom is the product of the rigid rotor (Q, F) wave functions with the
Laguerre radial functions. The eigenvalues for the orbitals are exactly the same as for the

Bohr model, En ¼ �mZ2e4

2�h2n2
, n ¼ 1, 2, 3, . . . but the shapes of the Schrödinger orbitals are

three dimensional. The actual probability density of electrons is given by c*c.
2. The H atom solutions have a principal shell number ‘‘n,’’ and each shell has n different

l shapes. Within each l shape there are (2lþ 1) sublevels with ‘‘m’’ quantum numbers as for
4f-orbitals (n¼ 4, l¼ 3) with m¼�3, �2, �1, 0, þ1, þ2, þ3. While some orbital shapes
have been standardized as ‘‘canonical’’ Cartesian (x, y, z) shapes in textbooks, later work
by Powell shows that in any l-shell an equivalent shape can be found for all (2lþ 1)
members of the shell. In practice this is obvious for p-orbitals and occasionally useful for
five equivalent d-orbitals or even seven equivalent f-orbitals.

3. Although a proper description of electron spin requires the higher-order Dirac equation, the
Schrödinger orbitals of the H atom are useful to rationalize the orbital occupancy of atoms
in the entire periodic chart! The simple Aufbau (building) principle works well with simple
spin pairing up to Z¼ 30 (Zn) but the orbitals can still be used in a modified (J, Jz) spin
coupling scheme to explain spectra of all known elements.

4. The Laguerre radial solutions form an orthonormal set of functions and the orthogonality
of the various members of the set is accomplished using a system of (n� l� 1) radial
nodes (zero crossings in the r-coordinate). The 2s orbital has a small part like the 1s in it
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with a new part which is negative, the 3s orbital has parts like the 1s and 2s shapes with
alternating sign, and so forth so that when any hRn j Rmi¼ dnm orbital product is integrated
over 0,1 the result is zero and they are orthogonal as well as normalized (orthonormal).

5. A simple description of the magnetic state can be given by term symbols, which provide a
compact way to summarize the spin and angular momentum of a given orbital
occupancy of an atom; this also forms the foundation for similar descriptors of molecular
electronic states.

6. The simple jL, Szi model falls victim to the Z 4 increase of the ~L � ~S coupling between
electron spin (~S) and the angular momentum (~L) of the orbitals in many-electron atoms at
about Z¼ 30. Heavier elements need to be described by the jJ, Jzi scheme where~J¼~Lþ~S.

PROBLEMS

14.1 Sketch the shapes of the 1s, 2s, 3s, 4s, 2p, 3p, 4p, 3d, and 4d orbitals both as the radial
dependence with the correct number of nodes with outer tails that taper asymptotically to
zero and the angular shapes. Sketch the radial and angular functions separately. Sketch all the
m-suborbitals for the s, p, and d shapes. Compare a sketch of the Powel equivalent 3d
orbitals to the canonical shapes.

14.2 Show that lim
m!1

amþ1
am
¼ lim

m!1
�(l� l� 1� m)

2(mþ 1)(lþ 1)þ m(mþ 1)

� �
! 1

m

� �
14.3 Work out the term symbol for Cu (Z¼ 29), consider both possibilities remembering that a

filled shell tends to be more stable than a partially filled shell.
14.4 Work out the term symbol for manganese, Z¼ 25.
14.5 Look up the structure of ferrocene and sketch the organic representation of the 2pz orbitals of

the cyclopentadienide (C5H5
�) anion. Then sketch a picture of how the Powell 3d orbitals on

Feþ2 would overlap the 2px orbitals on both anions when the rings are staggered. Would five
canted Bohr orbitals explain the bonding?

14.6 Work out the term symbols for the ground state of H, He, Li, Be, B, C, N, O, F, and Ne.
14.7 Work out the associated Laguerre polynomial for the 3s orbital (n¼ 3, l¼ 0).
14.8 Show that your polynomial from Problem 14.7 is a solution to the associated Laguerre

equation.
14.9 On graph paper draw energy-level lines for the 1s, 2s, 2p, 3s, 3p, 3d, and 4s orbitals of the H

atom on a vertical scale to show the gap between levels decreases as n increases.
14.10 Look up the history of the discovery of ferrocene and write a chemical reaction for its

synthesis.
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15 Quantum Thermodynamics

INTRODUCTION

In terms of ‘‘essentials’’ we only have a few more topics. Here we will give an introduction to a field
called ‘‘statistical thermodynamics,’’ which depends on an understanding of quantized energy but
then extends the statistical approach pioneered by Boltzmann to macroscopic Thermodynamics. Our
intention here is to just show the ‘‘tip-of-an-iceberg’’ view of statistical thermodynamics, enough to
‘‘explain’’ the Boltzmann energy averaging and show that the statistical approach gives high-
temperature limiting forms of the energy partition concept. There are large and complete texts on
statistical thermodynamics available for graduate study but here we only attempt to justify the
Boltzmann principle used in earlier chapters. The brevity of this chapter is based on our experience
of what can be treated in a two-semester course along with other essential topics. This might be the
last chapter in a two-semester sequence. The direct calculation of A and G from spectroscopic data is
left to more advanced texts but a student should be aware that those calculations are possible, at least
for small molecules in the gas phase. What we are calling ‘‘quantum thermodynamics’’ to emphasize
the connection between the quantized energies and thermodynamic quantities would be called a
‘‘microcanonical ensemble’’ in statistical thermodynamics, A microcanonical ensemble assumes
there are many (mole quantities) identical systems (molecules) that can be treated statistically, each
with exactly the same energy, volume, and number of particles. There are whole texts [1,2] suitable
for undergraduates and graduate courses in statistical thermodynamics but here we only give the
‘‘essential’’ ideas. We worked hard to derive the energy levels of several molecular systems and now
we can apply them to thermodynamic ideas.

Particle-in-a-box translation: En ¼ n2h2

8mL2
, n ¼ 1, 2, 3, . . .

Free rotation (diatomic): EJ ¼ j ( jþ 1)
�h2

2mr2
, j ¼ 0, 1, 2, 3, . . .

Harmonic vibration: En ¼ nþ 1 2= Þhv, n ¼ 0, 1, 2, 3, . . .ð

Now recall the simple but important example of averaging student grades as G ¼
P

i
niGiP
i
ni

. We went

over Boltzmann averaging in an earlier chapter as one of the most profound principles in science so
we want to use it for the quantized forms of energy. Here we use Gi to mean the individual ‘‘grade’’
value because Boltzmann averaging can be generalized using the letter ‘‘g’’ to mean the degeneracy
of a given level. In Boltzmann averaging we can write the number of atoms or molecules in a given

quantized level as ni ¼ gie
� En

kTð Þ, which corresponds to the number of students in the weighted
average that have a certain grade. From now on in this chapter, gi means the degeneracy of the ith
energy level.

The next derivation is the link between Boltzmann’s famous equation S¼ k lnV and the
macroscopic world. Think back to the statistics we did for the entropy of mixing derivation. The
following steps have always been amazing to this author in the sense that we can relate tedious
quantities to enormous numbers of tiny molecular species and get macroscopic thermodynamic
quantities. Consider N distinguishable particles (N is on the order of Avagadro’s mole number)
where small groups of the total are in specific energy states that may be degenerate. Then we have
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V ¼ (Ntot!)
Q

i g
Ni
i

(N1!)(N2!) . . . (Nn!)
¼ (Ntot!)Q

i (Ni!)

Y
i
gNi
i

	 
n o
. While this looks complicated, it uses the same

reasoning we encountered with the egg crate and poker chips except that now we have to include the
possible degeneracies as well

Q
i (Ni!) � (N1!)(N2!)(N3!) . . . introduces the product symbol

Q
i ni.

We first consider the very large number of molecules as N as if they were distinguishable and then
divide out the partial distinguishability due to the fact that Ni molecules are in a given energy level.
In each of the i possible levels there are gi degenerate levels so the possible ways for Ni to be in one
of a possible gi levels is g

Ni
i but when there are i levels, we end up with the factor

Q
i gNi

i

	 
� �
in the

numerator. Well, that is complicated but we can think it through till we see that it is correct.
Next we consider that S is entropy, which always tends to a maximum, so ‘‘all we have to do’’ is

take the derivative of S and maximize it! That is a real problem but we can just as well maximize

ln(V) noting the logarithmic dependence, V ¼ e
S
kð Þ. Fortunately, we know Stirling’s approximation

works very well for large numbers and we recall ln N ! ffi N ln N�N. Next we come to the clever
trick of using Lagrangian multipliers. This sometimes mysterious process is really very simple if we
briefly consider its principle. We want to let S maximize and so maximize ln V. The simplest way to
do this is to merely set V¼1 but maybe that is not what we really want to do. We want to
maximize S but at the same time keep the number of particles constant and the total energy constant.

Thus, what we really want to maximize is f ¼ lnV� a
X

i
Ni � b

X
i
(Niei)

h i
where we main-

tain Ntot¼N0þN1þN2¼N3þ � � � and also Etot¼N0e0þN1e1þN2e2þ � � �. That is, we want to
maximize ln V but remove=subtract from the variation anything that would change either the total
number of particles or the total energy. Perhaps you can think of this as specifically sorting through
a list of all possible Ni occupation numbers but discarding any of those that might alter the total
energy or the total number of particles, this is what the Lagrangian multipliers do. Some texts use a
plus sign for the Lagrangian multipliers leaving the determination of the sign until the final step but
we offer the idea that the Lagrangian multipliers should initially be thought of as minus to remove
any changes that violate the desired constraints. Thanks to Stirling’s approximation, the derivative
process is greatly simplified. When we use the Lagrangian multipliers a and b, they allow
the process of maximization to be carried out in a way that ‘‘removes’’ any variation that would
change the total number of particles or the total energy, hence the minus signs. Now we set

qf (Ni)

qNi
¼ 0, ) q

qNi
lnV� a

X
i

Ni � b
X
i

(Niei)

" #
¼ 0:

The first step is easy and we obtain
q lnV
qNi

� a� bei ¼ 0 where ei is the energy of the arbitrary ith

level with an occupation of Ni. Now consider the first term alone
q lnV
qNi

using Stirling’s approxi-

mation carefully and often!
q lnV
qNi

¼ q
qNi

ln (Ntot!) þ N1 ln g1 þ N2 ln g2 þ � � � � N1 ln N1 þ N1 � N2 ln N2 þ N2 þ � � �f g

and further
q lnV
qNi

¼ q
qNi

N1 1þ ln
g1
N1

� �
þ N2 1þ ln

g2
N2

� �
þ � � � þ ln (Ntot!)

� �
; there will

only be one Ni term and Ntot is constant so
q lnV
qNi

¼ q
qNi

Ni 1þ ln
gi
Ni

� �� �
¼

1þ ln
gi
Ni

� �
þ Ni

1
gi
Ni

�  �gi
N2
i

� �2
4

3
5 ¼ ln

gi
Ni

� �
. Thus we find that what seemed so complicated
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turns out to be ln
gi
Ni

� �
� a� bei ¼ 0, i ¼ 1, 2, 3, . . . or

gi
Ni
¼ eaþbei . We can rearrange this to

obtain the population in the ith level as Ni ¼ gie�a�bei . It turns out that it is not necessary to evaluate
a except to say it is there and it maintains the number of particles as a constant. We can eliminate a

by taking the ratio of two populations as
Ni

N0
¼ gi

g0

� �
e�b(ei�e0) where the usual convention is to

relate the energy to the population in the lowest energy level. While e0¼ 0 in most cases, the case of
molecular (harmonic) vibrations will have e0 ¼ hv 2= Þð . What is b? Recall our four thermodynamic
equations, in particular where U is the internal energy E. We have for an open system with chemical
potential m, dU¼ TdS�PdVþmdN (Note restricting N to Ntot makes the problem a closed system).

Thus relating U to the internal energy E we have dS ¼ dU

T
þ PdV

T
� mdN

T
or

dS ¼ d(E � E0)

T
þ PdV

T
� mdN

T
so that

qS
qE

� �
V ,N

¼ 1
T
.

Now recall V ¼ (Ntot!)Q
i (Ni!)

Y
i
gNi
i

	 
n o
and S¼ k lnV where we can use Ni ¼ gie�a�bei and

gi
Ni
¼ eþaþbei in S ¼ k Ntot lnNtot � Ntot �

X
i
Ni lnNi þ

X
i
Ni

n o
þ k

X
i
Ni ln gi to find that

S ¼ k Ntot lnNtot þ
X

i
Ni ln

gi
Ni

� �� �
¼ k Ntot lnNtot þ

X
i
Ni ln eþaþbei

	 
n o
. Then further

S ¼ k Ntot lnNtot þ a
X

i
Ni þ b

X
i
Niei

n o
. Noting that

X
i
Niei ¼ E and the first two terms are

constants, we find that
qS
qE

� �
V ,N

¼ kb ¼ 1
T
) b ¼ 1

kT
. Wow, we just derived the ‘‘Boltzmann

principle’’! Finally the working equation is

Ni ¼ N0gie
� ei�e0

kTð Þ

Here we assume the ground state has g0¼ 1, which is usually the case, but the exponential term in

(ei� e0) will cause a problem with the harmonic oscillator e0 ¼ hn

2
zero point energy. However, it

turns out that you really cannot physically get rid of the zero point energy even at absolute zero
Kelvin so in this text we will define our statistical energies as U � (E�E0), relative to the lowest
physically attainable energy.

(ENERGY) PARTITION FUNCTION

Now we come to a major shortcut in obtaining the average values of various forms of quantized

energy. We define a quantity called the partition function Q �Pi gie
� ei�e0

kTð Þ where we remind
ourselves that (ei� e0) is the quantized energy above the lowest state e0 of the quantized system
with energy levels. This will only be important for the harmonic oscillator. We stand on the
shoulders of intellectual giants after they used much scratch paper but we can see from calculus
that there is a relationship between the partition function and the way we do Boltzmann averaging.

Suppose we did not know b ¼ 1
kT

, then Q ¼
X1

i¼0 gie
�bei and

dQ

db
¼ �

X1
i¼0 eigie

�bei , which

resembles the numerator of our Boltzmann average formula. If we divide that by Q we will have

dQ=db

Q
¼ �

P1
i¼0 eigie

�beiP1
i¼0 gie�bei

¼ �hEi or � d lnQ

db
¼ hEi. Since b ¼ 1

kT
) db ¼ �1

kT2
dT , we find
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hEi ¼ �(�1)kT2 d lnQ

dT
¼ þkT2 d lnQ

dT
:

So all we have to do to get an average energy is set up the formula for Q, take the derivative of the
ln Q with respect to T and multiply by kT2!

AVERAGE TRANSLATION ENERGY IN ONE DIMENSION

We know the particle-in-a-box energy levels are very close together when the dimension ‘‘L’’ of the

box is large compared to the size of the particle. Thus we use
X1

n¼0 !
ð1
0
( )dn with calculus

integration. Thus, we form Qtrans ¼
ð1
0
e�

n2h2

8mL2kT

	 

dn ¼

ffiffiffiffi
p
p

2
ffiffiffiffiffiffiffiffiffiffiffi

h2
8mL2kT

q�  ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pmkT

h2

r
L where we have

used
ð1
0
x2pe�a

2x2dx ¼ 1 � 3 � 5 � � (2p� 1)
ffiffiffiffi
p
p

2pþ1a2pþ1
)
ð1
0
e�a

2x2dx ¼ 1
2

ffiffiffiffi
p

a

r
, p ¼ 0. So then we use our

Q formula as hetransi ¼ kT2 d lnQ

dT
¼ kT2 dQ=dT

Q
¼ kT2

1
2
ffiffiffi
T
p

�  ffiffiffiffiffiffiffiffi
2pmk
h2

q
Lffiffiffiffiffiffiffiffiffiffi

2pmkT
h2

q
L
¼ kT2 1

2T

� �
¼ kT

2
. An

observant student will notice that we integrated over the variable n as a continuous variable while
we know it came from the quantized formula where n was definitely an integer. This approximation
works here because the energy levels are so close together that the energy is approaching the limit
of a continuous function even though we know its quantization would be more noticeable in a
length L, which is small compared to the size of the particle. The next step is to extrapolate this
to three dimensions and for Avagadro’s number of particles where Qtrans(x, y, z) ¼
2pmkT

h2

� �3=2

LxLyLz ¼ 2pmkT
h2

� �3=2

V so that in three dimensions we obtain

Etrans(x, y, z)h i ¼ 3kT
2

(NAvagadro) ¼ 3RT
2

as before from the Boltzmann averaging process, except

that this time we used quantum mechanics and simple statistics! It should be obvious that it is also

easy to calculate the constant volume heat capacity as CV ¼ qU
qT

� �
V

¼ qE
qT

� �
V

¼ 3R
2
.

AVERAGE ROTATIONAL ENERGY OF A DIATOMIC MOLECULE

Since we have a large intellectual investment in the quantized rigid rotor, let us apply our quantized
energy formula with our new partition function formula using Q. Perhaps we should ask, ‘‘What
does Q mean?’’ It is a mathematical description of how the energy is ‘‘partitioned’’ among the
quantized levels allowing for the Boltzmann factor. Once again the rotational levels are close
together, although not as close as those for the translational case. Even so it is still a good

approximation to use
X1

j¼0 !
ð1
0
( )dj so Qrot ¼

ð1
0
(2jþ 1)e�

j(jþ1)h2
8p2 IkT

	 

dj. Let x¼ j( jþ 1) so that

dx¼ (2jþ 1)dj, then we have an easy integral of the form
ð1
0
e�axdx ¼ e�axj10

�a ¼ 0� 1
�a ¼

1
a
so

Qrot ¼
ð1
0
(2jþ 1)e�

j(jþ1)h2
8p2IkT

	 

dj ¼

ð1
0
e�

h2

8p2 IkT

	 

xdx ¼

e
� h2x

8p2 IkT

� ����1
0

�h2
8p2IkT

	 
 ¼ 8p2IkT

h2

� �
. Then we use

the formula for energy as heroti ¼ kT2 d lnQ

dT
¼ kT2

8p2Ik
h2

8p2IkT
h2

" #
¼ kT or with R¼ kNAvogadro,
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E¼ RT=mole. Going back to the law of equipartition of energy we see that a diatomic molecule can

only rotate in two ways in (u, w) space to produce Erot ¼ 2
RT

2

� �
¼ RT . Interestingly, there is no

way to mark a diatomic molecule on one end with a dot of green paint to detect rotation about the
bond axis, so physically, the rule of ‘‘what you see is what you get’’ (WYSIWYG) really works
since there is no rotational degree of freedom about the bond line. Without doing a proof we can

extrapolate the rule of E ¼ RT

2
for each degree of freedom to three dimensions for a nonlinear

polyatomic molecule to E ¼ 3RT
2

for rotation. Once again the heat capacity is easy to find as

qU
qT

� �
V

¼ qE
qT

� �
V

¼ R ¼ CV for diatomic rotation,
3R
2

for polyatomic molecules.

AVERAGE VIBRATIONAL ENERGY

Next we come to the case of vibrational energy. At this point the size of the vibrational quanta is
too large to use the continuous integration method and we must use a discrete summation.

In addition, we remind ourselves that we are counting the energy starting above e0 ¼ hn

2
. The

discrete summation of the terms in Q is essentially the same as Planck used for the treatment of

blackbody radiation. Qvib ¼
P1

i¼0 e
� nhv

kTð Þ ¼ 1þ e�
hv
kTð Þ þ e�

2hv
kTð Þ þ e�

3hv
kTð Þ þ � � � Let y ¼ e�

hn
kTð Þ

so that Q¼ 1þ yþ y2þ y3þ y4þ � � �, where y < 1) lim
n!1 yn ¼ 0

Then (�1)[yQ ¼ yþ y2 þ y3 þ y4 þ � � � ]
______________________________

Since y< 1, (Q� yQ)¼Q(1� y)¼ 1 and we find that Qvib ¼ 1
(1� y)

¼ 1�
1� e�

hv
kTð Þ
.

Then he� e0i ¼ kT2 d lnQ

dt
¼ kT2

� 1� e�
hv
kT

� �2
�e�hv

kT

� 
þhn
kT2

	 

1� e�

hn
kT

� �1
2
64

3
75¼ hne�

hn
kT

1� e�hn
kT

� 
2
4

3
5¼ hn

e
hn
kT � 1

� .
Make note that this is the average energy above the zero-point energy. In this case, CV is not easy

to calculate. Define x � hn

kT

� �
¼ hcn

kT

� �
and assume one mole of oscillators so that (NAva)k¼R.

Then U ¼ hE � E0i ¼ (NAva)
(hn)

(ex � 1)

� �
kT

kT

� �
¼ (NAvak)T hn

kT

	 

(ex � 1)

� �
¼ RTx

(ex � 1)
so we can

calculate
qU
qT

�
V

as CV ¼ q
qT

�
V

RTx

(ex � 1)

� �
¼ Rx

(ex � 1)
þ RT dx

dT

	 

(ex � 1)

þ RTx(�1)ex dx
dT

	 

(ex � 1)2

and

dx

dT

� �
¼ � hn

kT2
¼ � x

T
.

Then CV ¼ q
qT

�
V

RTx

(ex � 1)

� �
¼ Rx

(ex � 1)
þ RT �x

T

	 

(ex � 1)

þ RTx(�1)ex �xT
	 


(ex � 1)2
¼ Rx2ex

(ex � 1)2
. According

to the law of equipartition of energy there should be
2
2

� �
RT energy per vibration and the heat

capacity should be
2
2

� �
R but instead we find CV ¼ Rx2ex

(ex � 1)2
. Let us take a look at the vibrational

heat capacity, CV, for the HCl molecule, which we found has a fundamental frequency of
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2990.2 cm�1 (Figures 15.1 and 15.2). Here we first plot the heat capacity for any quantized
harmonic oscillator against x. This graph is difficult to understand because T is in the denominator

of x, but we see that at very high temperatures, lim
T!1

hn

kT

� �
¼ 0 so the left edge of the graph is the

high-temperature limit, which is seen to be 8.314 J=K mol¼R. So the quantized formula gives the
expected answer only at very high temperature. On the other hand, we see that for very low
temperature, large x, the heat capacity is asymptotic to zero, meaning that a quantized oscillator
can be ‘‘frozen’’ down to only the zero-point energy hn 2= .

If we plot the heat capacity of HCl, which we found to have a fundamental frequency of

2990.2 cm�1, we can use x ¼ hcn

kT

� �
to plot the heat capacity against temperature, T.

Vibrational heat capacity, CV 
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FIGURE 15.1 The vibrational heat capacity of a quantized oscillator as a function of x ¼ hn

kT
. Note that the

high temperature limit will occur at x¼ 0.
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FIGURE 15.2 A graph of the heat capacity, CV, for HCl using a fundamental of 2990.2 cm�1.
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The vibrational heat capacity for the HCl molecule does taper off asymptotically to 8.314 J=8K
mol, but only at quite high temperatures. Near room temperature the vibrational heat capacity is very
small.

Let us evaluate CV for HCl at 258C.

x ¼ hcn

kT

� �
¼ (6:62606896� 10�27 erg s)(2:99792458� 1010 cm=s)(2990:2 cm�1)

(1:3806504 � 10�16 erg=8)(298:15 �K)
or

x¼ 14.42973498 (unitless). Then we can insert the numbers into the formula to find

CV ¼ (8:314J=8Kmol)x2ex

(ex � 1)2
¼ (8:314J=8Kmol)(14:42973498)2 e14:42973498

(e14:42973498 � 1)2
ffi 9:366405� 10�4 J=8K

mol. This is negligible at room temperature for this molecule due to the strong H–Cl bond.
As an atmospheric contaminant, HCl cannot hold much heat in vibrations and so should not be

considered a green house gas. Conversely, molecules that have many vibrational modes or some
modes that have low vibrational frequencies can get higher up on the CV curve at room temperature
and those molecules are the green house gasses. For instance CO2 has four (3N� 5) vibrational
modes of which two are low-frequency bending modes, so it is one of the main green house gases.
Methane is a gas molecule that has 15� 6¼ 9 vibrational modes, although they are not particularly
low frequencies, so CH4 is a green house gas by virtue of having many ways to absorb and hold heat
in the form of vibrational energy.

HIGH-TEMPERATURE LIMIT FOR VIBRATIONAL HEAT CAPACITY

We can see the vibrational heat capacity approaches R asymptotically but the example for HCl
shows that at room temperature, the actual heat capacity can be quite low. What does the formula

tell us? Consider again that lim
T!1

x ¼ lim
T!1

hn

kT

� �
! 0 and apply L’Hopital’s rule twice!

lim
T!1

CV ¼ lim
x!0

Rx2ex

(ex � 1)2
¼ lim

x!0
R

2xex þ x2ex

2(ex � 1)ex

� �
¼ lim

x!0
R

2þ 2x
2ex

� �
¼ R:

Thus we see that mathematically the vibrational heat capacity does tend toward R at high temper-
atures but if the bond is very stiff the value can be considerably smaller than R at room temperature.

HEAT CAPACITY OF A POLYATOMIC SPECIES: WATER

Next, let us evaluate the heat capacity of a polyatomic molecule, H2O. From the 3N� 6 rule for a
nonlinear molecule there are three normal modes of vibration (Figure 15.3). However, a gas
molecule will be rapidly rotating and a ‘‘movie’’ of one molecule would show a blur to the

BendAsymmetric stretchSymmetric stretch
3657.05 cm–1

ν1 ν3 ν2

3755.93 cm–1 1594.75 cm–1

FIGURE 15.3 The three (3N� 6¼ 3) normal mode motions of H2O with the frequencies for the 16
8 O isotopic

species. By permission from Prof. Martin Chaplin of the London South Bank University as shown at http:==
www1.lsbu.ac.uk=water=vibrat.html which includes real time animation of the motion of the atoms in these
modes. Interested students are encouraged to visit Prof. Chaplin’s site and gain appreciation of the dynamic
action of the normal mode motions.
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human eye. The normal modes are those linearly independent motions which are the fundamental
components of the vibrations. Prof. Martin Chaplin has set up an Internet site where the normal
modes are simulated. Since this chapter is about quantum thermodynamics, let us calculate the heat
capacity of steam at 5008K (226.858C) so we can be sure we are treating a gas. We will use Prof.
Chaplin’s six significant figure vibrational frequencies. Then we can calculate the CV heat capacity
for a mole of water molecules in the gas phase at 5008K.

CV ¼ 3R
2

� �
trans

þ 3R
2

� �
rot

þ Rx21e
x1

ex1 � 1ð Þ2 þ
Rx22e

x2

ex2 � 1ð Þ2 þ
Rx23e

x3

ex3 � 1ð Þ2 :

First we calculate x1, x2 and x3.

x1 ¼ hcn

kT

� �
¼ (6:62606896� 10�27 erg s)(2:99792458� 1010 cm=s)(3657:05 cm�1)

(1:3806504� 10�16 erg=8)(500�K)

or

x1 ¼ hcn

kT

� �
¼ (2:87755032� 10�3 cm)(3657:05 cm�1) ¼ 10:52334540,

x2¼ (2.87755032� 10�3) (1594.75)¼ 4.588973373,

and

x3¼ (2.87755032� 10�3) (3755.93)¼ 10.80787757.

Then we can calculate the CV terms.

CV (x1)¼ Rx21e
x1

ex1 � 1ð Þ2 ¼ 8:314472 J=mol �Kð Þ 10:52334540
e10:52334540� 1

� �2
e10:52334540 ¼ 0:0244770504 J=mol �K:

CV (x2)¼ Rx22e
x2

ex2 � 1ð Þ2 ¼ 8:314472 J=mol �Kð Þ 4:588973373
e4:588973373� 1

� �2
e4:588973373 ¼ 1:816238266 J=mol �K:

CV (x3)¼ Rx23e
x3

ex3 � 1ð Þ2 ¼ 8:314472 J=mol �Kð Þ 10:80787757
e10:80787757 � 1

� �2
e10:80787757 ¼ 0:019657645 J=mol �K:

We will round to five sig. figs. at the end since the experimental data is only given to five sig. fig.
Then we add R to get CP using CP¼CVþR, so with the translational and rotational terms we obtain

CP ¼ CV þ R ¼ 3R
2

� �
trans

þ 3R
2

� �
rot

þ Rx21e
x1

ex1 � 1ð Þ2 þ
Rx22e

x2

ex2 � 1ð Þ2 þ
Rx23e

x3

ex3 � 1ð Þ2 þ R. Numerically we

find

CP ¼ 4:0(8:314472)þ 0:0244770504þ 1:816238266þ 0:019657645½ 
 J=mol �K

CP ¼ 35:11826096 J=mol �K ffi 8:393 cal=�K mol using “quantum thermodynamics:”

The 90th CRC Handbook gives a value [3] directly for CP of steam at 1 bar and 5008K as 35.259
J=mol 8K.
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Quantum thermodynamics: CP (1 bar, 5008K)¼ 35.118 J=mol 8K
Experimental (CRC, 90th Edn.): CP (1 bar, 5008K) = 35.259 J=mol 8K

These values are sufficiently close together (within 0.4%) to give us confidence in the result from
the statistical thermodynamic formula. Today there are computer programs that can routinely
compute such thermodynamic quantities using the quantum formulas for molecules up to the size
of benzene but for larger molecules polynomial fits to heat capacity data are still very useful.
Another recent innovation is the ability to calculate theoretical vibrational frequencies from
quantum chemistry programs for large polyatomic molecules. These calculated frequencies are
often too high by 10% or so but their values can be corrected and used to obtain qualitative
thermodynamic quantities. This offers future improvement using more accurate vibrational frequen-
cies within known statistical thermodynamic formulas.

COMBINING PARTITION FUNCTIONS

We saw in Chapter 13 that the energy levels of the vib-rotor result from both vibrational and
rotational levels. There we ignored the fact that the gas molecules also have translational energies
and that within the structure of the molecule there are electronic and even nuclear energy levels. It is
possible to combine the separate partition functions into one total partition function. We can
illustrate this by considering only the combined levels of the vib-rotor in a single partition function

Qvib�rot ¼
X1
n¼0

X1
j¼0

(2jþ 1) e� nh(n�n0)þj(jþ1)�h2=2I½ 
=kT

¼
X1
n¼0

e�nh(n�n0)=kT
 ! X1

j¼0
(2jþ 1) e�j(jþ1)�h

2=2IkT

 !
¼ QvibQrot:

Thus we see that we can easily write a total partition function as a product of each separate
quantized subsystem of energy levels as

Qtot ¼ QnucQelecQvibQrotQtrans ffi 1 � 1 � QvibQrotQtrans:

For most cases in the range of macroscopic interest, the ambient energy is too small to consider
higher energy levels of electronic or nuclear states, although in the case of photochemical reactions
Qelec might have to be specified to include low-lying electronic excited states. That is also the case
for molecules such as NO and O2, which have unpaired electrons in the ground state that are easily
excited. There might also be some cases involving nuclear spin systems that require a specific
summation for Qnuc. However, for most cases, we can consider Qnuc Qelec¼ 1. The product form is
also convenient when using

lnQtot ¼ lnQnuc þ lnQelec þ lnQvib þ lnQrot þ lnQtrans and ln (1) ¼ 0:

Now that we see that we can combine partition functions for all the quantized energy systems
into a total partition function, we can think of other ways to use the quantized energy formulas.
There is a curious history for this approach. We can see above that Qvib is an important part of the
total partition function and yet for many years low-resolution infrared spectra blurred many of
the 3N� 6 vibrational modes of molecules typically larger than benzene. Thus the equations for
‘‘quantum thermodynamics’’ were known before 1940 but could only be applied to cases of small
molecules in the gas phase using experimental vibrational frequencies. Since about 1985, quantum
chemistry programs have included the calculation of vibrational frequencies with some correction
factors that now make it possible to write down the full partition function by including theoretical
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vibrational frequencies. Today, it is routine for large quantum chemistry programs to end a
calculation of vibrational frequencies with the full set of thermodynamic quantities.

STATISTICAL FORMULAS FOR OTHER THERMODYNAMIC FUNCTIONS

Now that we can calculate hEi¼ (U�U0) using quantum statistics, it is a simple matter to use
(H�E0)¼ (U�U0)þRT for an ideal gases or for real gases at least up to about 10 atmospheres and
perhaps 10008K. As when we discovered S from the Carnot Cycle, the key to extending these
thermodynamic concepts is to find the entropy expression for S(T). Although other texts show
explicit formulas for the Helmholtz free energy, A, and the Gibbs free energy, G, it is sufficient here
to recall that A¼U� TS and G¼H� TS. In principle, once we can calculate a value for (U�U0)
and S(T), we can find A and=or G using a calculator. We leave analytical calculations of A and G to
specialized texts with just a comment that (U�U0) and S(T) are the key quantities for the other
quantities linking quantum statistics and thermodynamics.

There is a small trick at this point, which eliminates pages of discussion. Barrow [4] shows this
method and expands it over three chapters. We form the ratio of the population in one given
quantum level, Ni, to the total number of molecules in the sample to obtain a useful formula.

Ni

Ntot

� �
¼ gie�(ei�e0)=kTP1

i gie�(ei�e0)=kT

� �
¼ gie�(ei�e0)=kT

Q
which we rearrange to

Ni

gi
¼ Ntot

Q

� �
e�(ei�e0)=kT .

The main trick is to invert this equation as
gi
Ni
¼ Q

Ntot

eþ(ei�e0)=kT and take the natural logarithm of

the whole equation, which produces ln
gi
Ni

� �
¼ (ei � e0)

kT
þ ln

Q

Ntot

� �
.

STATISTICAL FORMULA FOR S(T)

Now consider Boltzmann’s definition of entropy as S¼ k ln V and then enumerate V as before but
for indistinguishable particles, which removes the factor of Ntot! from V. Then

V¼ gN1
1 gN2

2 gN3
3 � � �

N1!N2!N3! � � �¼
Q

i g
Ni
iQ

i Ni!
so that lnV¼

X
i
Ni lngi�

X
i
ln Ni!¼

X
i
Ni ln gi�

X
i
(Ni lnNi�Ni)

which leads to lnV ¼
X

i
Ni 1þ ln

gi
Ni

� �
and then to insertion into S¼ k ln V. We find that

S ¼ k
X

i
Ni 1þ ei � e0

kT

� 
þ ln

Q

NA

� �� �� �
¼ 1

T

� � X
i
Ni(ei � e0)

h i
þ kNA 1þ ln

Q

NA

� �
where

X
i
Ni ¼ NA is Avogadro’s number for 1 mol. This shortcut step depends on the fact that

k
X

i
Ni ln

Q

NA

� �� �
¼ k ln

Q

NA

� �� � X
i
Ni

� 
¼ k ln

Q

NA

� �� �
NA ¼ R ln

Q

NA

� �
. Thus, for 1 mol we

find the formula

S ¼ U � U0

T

� �
þ R ln

Q

NA

� �
þ R

since (U�U0)¼hEi is the internal energy for one mole and kNA¼R. We can also represent this in
another way using the statistical formula for hEi¼ (U�U0) as

S ¼ RT
d lnQ

dT

� �
þ R ln

Q

NA

� �
þ R:
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This can be expanded to S ¼ RT
d lnQtrans Qrot Qvib

dT

� �
þ R ln

Qtrans Qrot Qvib

NA

� �
þ R and usually

the last term of R is calculated along with NA in the translational entropy for a gas so that we can
itemize the total as the famous Sackur–Tetrode Equation

Stot ¼ Strans þ Srot þ Svib:

Strans ¼ RT
d lnQrans

dT

� �
þ R ln

Qtrans

NA

� �
þ R or Strans ¼ (U � U0)trans

T
þ R ln

Qtrans

NA

� �
þ R:

Srot ¼ RT
d lnQrot

dT

� �
þ R ln (Qrot) or Srot ¼ (U � U0)rot

T
þ R ln (Qrot),

Svib ¼ RT
d lnQvib

dT

� �
þ R ln (Qvib) or Svib ¼ (U � U0)vib

T
þ R ln (Qvib):

SAKUR–TETRODE FORMULA FOR ABSOLUTE ENTROPY OF A GAS

The Sackur–Tetrode equation was derived independently by Otto Sackur (1880–1914), a German
physical chemist, and Hugo Martin Tetrode (1895–1931), a Dutch physicist, in 1912. While it is
possible to calculate the absolute entropy of molecules including polyatomic gases with their
multiple vibrations, we will only give a brief illustration for diatomic CO gas that uses the energy
formulas we have previously derived. Consider 12C � 16O gas at 298.158K. First we consider the
translational entropy as

Strans(298:15
�K) ¼ 3R

2
þ R ln

2pmkT
h2

� �3
2 V

NA

" #
þ R ¼ 5R

2
þ R ln

2pmkT
h2

� �3
2 V

NA

" #
:

At 258C and 1 bar pressure V ¼ nRT

P

� �
¼ 1mol(0:08314Lbar=K8mol)(298:15K8)

(1:0bar)
¼ 24:789L ¼

24789 cm3. Here we have mCO ¼ 27:9994 g=molð Þ
6:02214179� 1023=molð Þ ¼ 4:649408961� 10�23 g

2p(4:649408961�10�23 g) 1:3806504�10�16 erg=�K
	 


(298:15 �K)
(6:62606896�10�27 erg s)2

� �3
2

¼1:433429624�1026=cm3

Strans ¼ (2:5)(8:314472)þ (8:314472) ln
1:433429624� 1026=cm3
	 


24789 cm3=molð Þ
6:02214179� 1023=mol

� �

Strans(298:15
�K) ¼ 20:78618þ 129:6270875 ¼ 150:4132675 J=mol �Kð Þ

Next the rotational entropy is Srot(298:15
�K) ¼ Rþ R ln

8p2IkT

h2

� �
¼ R 1þ ln

2IkT

�h2

� �� �

m ¼ 12:000000 g=molð Þ 15:99491462 g=molð Þ
27:99491462 g=molð Þ 6:02214179 � 1023=molð Þ ¼ 1:138500035� 10�23 g

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6:62606896� 10�27 g � cm2=s

1:157978348� 1011=sð Þ4p2(1:138500031� 10�23 g)

s
¼ 1:128317603� 10�8 cm

ffi 1:1283 Å
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I ¼ mr2 ¼ (1:138500035� 10�23 g)(1:128317603� 10�8 cm)2 ¼ 1:449425093� 10�39 g cm2

2(1:449426113� 10�39 g cm2) 1:3806504� 10�16 erg=�K
	 


(298:15�K)
(1:054571628� 10�27 erg s)2

� �
¼ 107:2981273

Srot(298:15
�K) ¼ 8:314472 1:0þ ln (107:2981273)½ 
 ¼ 47:18971037 J=mol �Kð Þ

and then the vibrational entropy is

Svib(298:15
�K) ¼ Rx

(ex � 1)
þ R ln

1
(1� e�x)

� �
¼ R

x

(ex � 1)
� ln (1� e�x)

� �

�n¼ 2169.81=cm for CO (see Chapter 12) and so

x ¼ hcn

kT
¼ (6:62606896� 10�27 erg s) 2:99792458� 1010 cm=sð Þ 2169:81=cmð Þ

1:3806504� 10�16 erg=�Kð Þ(298:15 �K) ¼ 10:47079903

Svib(298:15
�K) ¼ (8:314472)

10:47079903
35269:38821

� �
� ln (0:999971647)

� �

Svib(298:15
�K) ¼ (8:314472)[2:968806538� 10�4 þ 2:835279694� 10�5]

Svib(298:15
�K) ¼ 2:70414442� 10�3 J=mol �Kð Þ:

Thus we have the total entropy as

Stot(298:15
�K) ¼ Strans þ Srot þ Svib ¼ 197:605682 ffi 197:61 J=mol �Kð Þ:

The entropy value given in the 90th Edn. of the CRC Handbook for the standard state of 1 bar
pressure and 298.158K is S(298.158K)¼ 197.7 J=mol 8K [5] so the theoretical calculations are
within (0.1=197.7)� 100¼ 0.05% of the standard value. We have used the latest values of the
constants from the 90th Edn. of the CRC Handbook [5] to be as accurate as is possible with just a
10 place calculator and then rounded the answer to 5 places at the end since the temperature is only
given to five significant figures.

There is reason for some discussion of this entropy calculation. First we see that most of the
entropy comes from the translation component, which is understandable considering the ‘‘random’’

stipulation in the Boltzmann kinetic theory of gases and the actual motion of gas molecules. Next we
see that the rotational entropy is surprisingly large for such a simple molecule. Of course there is no
potential hindering rotation and we expect that rather high l-values occur in gas rotation so there are
plenty of low-lying energy states to populate in a Boltzmann distribution and the energy levels are
close together. We previously saw the actual rotational spectrum of CO in Chapter 12 so we know
many rotational states are populated even at only 258C. Next we come to the entropy due to
populating vibrational states but we have previously noted that the CO molecule has a strong bond
with a high vibrational frequency. Thus the spacing between vibrational levels is larger than for
most molecules and we see that there is little Boltzmann population of the upper vibrational levels.
This is a good example of what we have said before in that on planet Earth the temperature is such
that most molecules are in their n¼ 0 vibrational level. This is certainly true here for CO and we see
that there is almost no contribution to the entropy from vibration at 258C. Other molecules with
lower vibrational frequencies will have larger entropy contributions from vibration.
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SUMMARY

The mathematical foundation for statistical thermodynamics was set by Ludwig Boltzmann in the
late 1800s and has been developed to a useful technology for small molecules. Other aspects of
thermodynamics still need use of empirically fitted polynomials, but as computers continue to
improve, statistical thermodynamics offers a detailed treatment to connect quantized energy levels
of molecules to macroscopic thermal properties. There are extensive treatises on statistical
thermodynamics but here we have tried to give just the basic ‘‘essentials’’ as a way to use some
of the quantized energy-level formulas we have obtained from quantum mechanics.

1. Boltzmann’s S¼ k ln V can be used by maximizing S subject to maintaining constant
energy and the number of particles in order to ‘‘derive’’ the e�

e
kT part of the Boltzmann

probability with the help of Stirling’s approximation ln N ! ffi N ln N�N. This ‘‘proves’’
the 1 kT= Þð part of the Boltzmann principle.

2. A special generalized ‘‘partition function,’’ Q �Pi gi e
� ei

kTð Þ was derived=discovered so
that one can find the Boltzmann-weighted energy of a quantized system from the partition

function as hEi ¼ þkT2 d lnQ

dT
. When this is applied to the particle-in-a-box problem with

En ¼ n2h2

8mL2
, the usual average translational energy of

kT

2

� �
is obtained for each direction

and for the rotational energy of a diatomic molecule with Ej ¼ j ( jþ 1)
�h2

2I
the expected

value of kT is found. The translation and rotation energy levels are close together allowing
a classical interpretation and indicating a high temperature limit of the quantized system is
reached easily at room temperature. However, with more widely spaced vibrational

quantum levels, the partition function approach leads to U ¼ hE � E0i ¼ RTx

(ex � 1)
where

x ¼ hn

kT
and the thermodynamic U is measured above the zero-point energy. The heat

capacity for a given vibrational mode is the derivative of the energy with respect to

temperature, which turns out to be CV ¼ Rx2ex

(ex � 1)2
. This is the main departure from the

classical thermodynamic result of R=mode. However, is it shown that at very high
temperature lim

T!1
CV (T) ¼ R. We can form a table that shows that the classical results

from the kinetic theory of gases are realized at high temperature. The vibrational formulas
can be applied to each individual vibrational mode in a molecule (Table 15.1).

TABLE 15.1
Selected Statistical Thermodynamic Formulas

Degree of Freedom U(T) CV High Temp. CV

Translation
3RT
2

3R
2

3R
2

Rotation (diatomic)
2RT
2

2R
2

2R
2

Rotation (polyatomic)
3RT
2

3R
2

3R
2

Vibration=mode
RTx

(ex � 1)
Rx2ex

(ex � 1)2
R

where x ¼ hn

kT

� �
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3. It was shown that by using some data for the bond length and vibrational frequency the
absolute entropy can be calculated with the Sakur–Tetrode equation. While this was only
demonstrated for a diatomic molecule (CO), the method can be applied to polyatomic
molecules if the molecular formula, vibrational frequencies, and molecular geometry are
known.

PROBLEMS

15.1 Using ej¼ j ( jþ 1) �h2=2I, derive the average rotational energy per mole for a diatomic
molecule using a partition function. How fast can you do this derivation if it is a test question?

15.2 Use en ¼ n2h2

8mL2
with a partition function to derive the average translational energy of a particle

in one dimension using a partition function. How fast can you do this if it is a test question?
Have you memorized the odd and even cases of a Gaussian integral?

15.3 Using the vibrational frequency of HCl as 2990.2 cm�1 calculate the energy (E�E0) of 1 mol
of HCl at 10008K including translational, rotational, and vibrational energy.

15.4 Using the vibrational frequency of HCl as 2990.2 cm�1 calculate the total heat capacity as CV

and as CP at 15008K including translational, rotational, and vibrational terms.
15.5 Sometimes the variable of interest in the formulas derived with Boltzmann statistics is

expressed as a ‘‘characteristic temperature’’ u where u ¼ hn

k

� �
since the exponent should

be unitless and the expressions have a Boltzmann exponent of
hn

kT

� �
¼ u

T
. Given the

characteristic temperature for Cl2 is 8108K, calculate CP and CV for Cl2 at 1008C including
translation, rotation, and vibration.

15.6 Using u¼ 8108K for Cl2, calculate (E�E0) at 5008C including translation, rotation, and
vibration.

15.7 Given the vibrational fundamental of O2 is at 1556 cm�1, calculate the heat capacities CP and
CV for O2 at 8008K including translation, rotation, and vibration.

15.8 Using the same data that the fundamental for O2 is at 1556 cm�1, calculate (E�E0) for 1 mol
of O2 at 10008K, include the translation, rotational, and vibrational energy.

15.9 Use the Sackur–Tetrode equation to calculate the absolute entropy of gas phase BH at
298.158K and 1 bar pressure using a vibrational frequency of 2366.9=cm, the atomic weights
of 1.00794 g=mol for H g=mol and 10.811 g=mol for B with a bond length of 1.2324 Å.
Compare your answer to the CRC value of 171.8 (J=mol 8K) [6].
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16 Approximate Methods
and Linear Algebra

INTRODUCTION

In terms of ‘‘essentials’’ we only have a few more topics. Specifically we have four goals:

1. To describe and illustrate the simplest form of first-order perturbation theory
2. To describe and illustrate the variation principle (H 1s orbital)
3. To explain the secular equation which results from the LCAO approximation
4. To describe and illustrate the technique of matrix diagonalization

While this may seem to be intense ad hoc mathematics, it represents what took this author at least
5 years to locate and assemble into the necessary tools to function using the linear combination of
atomic orbitals and a sense of how to approach seemingly impossible problems in quantum
chemistry. We offer it here as a shortcut for interested undergraduates and auxiliary mathematics
as an abbreviated course in linear algebra, which can be useful in a number of areas of chemistry.
We will mention that this chapter is usually the end of a nine week (six credit, two semester) course
and example 2 is almost always treated and tested.

Now that we have some better understanding of where the H atom orbitals come from, the
next topic should be the electronic structure of molecules and ways to treat problems for which
we are unable to solve the Schrödinger equation exactly. Recall the difficulty of solving the
Schrödinger equation for just one electron in the H atom. Then perhaps you may faint when you
consider the notion of how one might treat the electronic structure of benzene with 12 atoms and
42 electrons! Well, there is no known exact solution for even the He atom with only two
electrons so do not faint but continue to wonder about how we are going to treat the multi-
electron case for molecules. There are two main methods: the variation method and perturbation
theory. In this chapter, we will emphasize the variation method, which is the most powerful
mathematical approach, and give a few key examples. However, we will first mention the
basic approach of perturbation theory but without much elaboration since it is the weaker of
the two methods.

SIMPLE FIRST-ORDER PERTURBATION THEORY

Undergraduates should be aware that the concept of perturbation theory can be carried to very high
order, up to eighth order in some cases, but the Variation Principle is much more powerful as a first
resort so we will only show perturbation theory to first order to illustrate the principle. Imagine we
have a problem for which we seek the solution to the Schrödinger equation but we cannot solve the
equation. Then suppose we could solve it except for one annoying part of the problem (usually some
detail in the potential energy term). Since we know that the true solutions of the Schrödinger
equation have eigenfunctions that form complete sets (usually polynomials), maybe we could
express the part of the problem we cannot treat in terms of the complete set of solutions for the
problem which is nearly like the one we want to solve [1].
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Let H ¼ H þ lV ¼ H(0)
0 þ lH(1) where lim

l!0
H ¼ H(0) and we know H(0)c(0)

n ¼ E(0)
n c(0)

n so we

assume c(0)
n

� �
is a complete set under the boundary conditions of the original problem. Then we use

expansions

cn ¼ c(0)
n þ lc(1)

n þ l2c(2)
n þ l3c(3)

n þ � � �where lim
l!0

cn ¼ c(0)
n and

En ¼ E(0)
n þ lE(1)

n þ l2E(2)
n þ l3E(3)

n þ � � �where again lim
l!0

En ¼ E(0)
n :

Now we set up the equation we want to solve as Hcn¼HnEn We can multiply out the terms and
separate them according to the powers of l as

H(0)c(0)
n � E(0)

n c(0)
n

	 

l0 þ H(0)c(1)

n þ Vc(0)
n � E(0)

n c(1)
n � E(1)

n c(0)
n

	 

l

þ H(0)c(2)
n þ Vc(1)

n � E(0)
n c(2)

n � E(1)
n c(1)

n � E(2)
n c(0)

n

	 

l2 þ � � � ¼ 0

The first term with l0 is the zeroth-order term from the exactly solvable problem. For the equation to
be true, each power of ln must be zero individually and we can see how higher-order treatments
might be possible using the terms with higher powers of l. Thus we obtain several equations as

H(0)c(0)
n � E(0)

n c(0)
n

	 
 ¼ 0 zeroth order, must be solved for c(0)
n , E(0)

n

� �
:

	 

H(0)c(1)

n þ Vc(0)
n � E(0)

n c(1)
n � E(1)

n c(0)
n

	 
 ¼ 0 (first-order terms)

H(0)c(2)
n þ Vc(1)

n � E(0)
n c(2)

n � E(1)
n c(1)

n � E(2)
n c(0)

n

	 
 ¼ 0, etc:

Then we use the complete set c(0)
n

� �
to expand the unknown first-order wave function with as-yet-

unknown coefficients ank as
c(1)
n ¼

P
k 6¼n ankc

(0)
k so that H(0) � E(0)

n

	 
P
k 6¼n ankc

(0)
k ¼ E(1)

n � V
	 


c(0)
n , but H0c(0)

k ¼ E(0)
k c(0)

k

in the terms on the left so we obtain
P

k 6¼n E(0)
k � E(0)

n

	 

ankc

(0)
k ¼ E(1)

n � V
	 


c(0)
n . Next we multiply

the equation from the left by c(0)
n and integrate both sides of the equation and recall that the members

of the set c(0)
n

� �
are all orthogonal to each other so that we find that

X
k 6¼n

E(0)
k � E(0)

n

	 

ank c(0)

n c(0)
k

�� � ¼ 0, n 6¼ k ) 0 ¼ E(1)
n c(0)

n

��c(0)
n

� �� c(0)
n

��V��c(0)
n

� �
:

�

Thus we find a simple result E(1)
n ¼ c(0)

n jV jc(0)
n

� �
. In other words, the first-order correction to the

energy due to the perturbation is simply the expectation value of the perturbation! What about the
wave function? We can multiply the first-order terms by c(0)

k from the left and integrate to obtain

ank E(0)
k � E(0)

n

	 
 ¼ � c(0)
k jV jc(0)

n

� �
and so ank ¼

� c(0)
k jV jc(0)

n

� �
E(0)
k � E(0)

n
, k 6¼ n. In summary

E(1)
n ¼ c(0)

n jV jc(0)
n

� �
and c(1)

n ¼ c(0)
n �

X
k 6¼n

c(0)
k jV jc(0)

n

� �
E(0)
k � E(0)

n
c(0)
k

�� �( )
:

Note that all the information needed to calculate the first-order energy and wave function is
available from the zeroth order problem. For each higher order, the corrections to the energy and
wave function only depend on the (n� 1)th order information so, although tedious, each order of
corrections can be obtained by a sort of ‘‘mathematical bootstrap’’ process. Perhaps perturbation
theory is conceptually useful in that we now know that we can look at an unsolved problem and by
mental modeling see that the answer is like a solvable problem with some modification.
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Example of Anharmonicity in a Harmonic Oscillator

Given c(0)
0 ¼

k

hnp

� �1=4

e�
kx2
2hn

	 

, check the normalization of this function for the n¼ 0 level of the

harmonic oscillator and then calculate the total energy in the presence of a perturbation given by
H(1)¼ ax3þ bx4. First we integrate the square of the function since it is not complex.

ðþ1
�1

k

hnp

� �1=2

e�
2kx2
2hn

	 

dx ¼ k

hnp

� �1=2

2
ðþ1
0

e�
kx2
hn

	 

dx ¼ k

hnp

� �1=2 2
2

ffiffiffiffiffiffiffiffiffiffiffiffi
p

k

hn

� �vuuut ¼ 1 Q:E:D:

Next we evaluate the first-order correction E(1)
n ¼ c(0)

n jV jc(0)
n

� �
.

E(1)
0

ðþ1
�1

k

hnp

� �1=4

e�
kx2
2hn

	 
" #
(ax3 þ bx4)

k

hnp

� �1=4

e�
kx2
2hn

	 
" #
dx

¼ k

hnp

� �1=2 ðþ1
�1

e�
kx2
hn

	 

(ax3 þ bx4) dx:

This is a very interesting problem when you notice the limits on the integral are (�1, þ1). The

part of the integrand that is ax3 is an odd function, which changes sign at x¼ 0 while the e�
kx2
2hn

	 

part

of the integrand is an even function, which does not change sign! Over the full range of the
integration, the ax3 term will integrate to zero. Thus we only have to evaluate the bx4 term usingð1
0
e�a

2x2x(2p)dx ¼ 1 � 3 � � � (2p� 1)
ffiffiffiffi
p
p

2pþ1a2pþ1
and multiply the integral by 2 for the full (�1,þ1) range.

E(1)
0 ¼

k

hnp

� �1=2 ðþ1
�1

e�
kx2
hn

	 

(bx4)dx¼ k

hnp

� �1=2

2b
ðþ1
0

e�
kx2
hn

	 

x4dx¼ k

hnp

� �1=2 2b
ffiffiffiffi
p
p

(1 � 3)
23 k

hn

	 
5=2 , so

we find E0 ¼ hn

2
þ 3b

4
hn

k

� �2

and the ax3 term contributes nothing to the first-order perturbation!

However, ‘‘a’’ might be important in a higher-order treatment. In practice, additional data would be
needed to fit the value of ‘‘b’’ to a given spectrum. We now have a way to approximately correct the
harmonic potential for anharmonicity.

PRINCIPLES OF PERTURBATION THEORY

One major flaw in perturbation theory is that there is no bound. The correction may be too large, too
small, or even alternate as high, low, high, low in successive orders. At one time, it was hoped that
perturbation theory could be used to higher order with the corrections forming a converging
oscillation as is sometimes observed with successive orders. The fact that the wave function of a
given order is used for the next higher-order energy correction implies a sort of progressive
bootstrap procedure that might lead to the correct answer at some higher order; however, tests of
this idea have shown it is not valid. All that can be said about a given level of perturbation is that
‘‘you get what you get’’! Another principle worth noting is that the success of perturbation theory
depends a lot on the size of the perturbation relative to the original zeroth order problem E(0)

0 . One
good example is where ligand effects in lanthanide compounds are applied to the relatively shielded
inner 4f shell of electrons [2]. There the effect is small and first-order perturbation works very well
for ‘‘Crystal Field Theory.’’ If the same approach is used for transition metal complexes and applied
to the d-orbital valence shell where the ligand orbitals overlap directly with the metal orbitals,
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the success of a ‘‘Ligand Field theory’’ [3] is good but less precise and hints strongly that the zeroth-
order Hamiltonian needs to be expanded to include delocalized electrons on the metal and the
ligands. Obviously, if the perturbation ‘‘V’’ approaches 50% of the original E(0)

0 , first-order
perturbation will be inconclusive, but if ‘‘V’’ is only 1% of E(0)

0 there is a good chance for
semiquantitative accuracy!

The expression for the first-order perturbed wave function is often useful in organic chemistry
(especiallyp-orbitals) to predictwhich excited statesmay affect the ground state themost in a reaction.

c(1)
n ¼ c(0)

n �
X
k 6¼n

c(0)
k jV jc(0)

n

� �
E(0)
k � E(0)

n
c(0)
k

�� �( )
:

We can see two effects in the expression for the perturbed orbital. First, the effect will be greatest
when E(0)

k � E(0)
n

	 

is small in the denominator as for the HOMO–LUMO energy difference. Effects

from higher excited states will decrease rapidly as the energy difference increases. Second, even if the

energy gap is small, the c(0)
k jV jc(0)

n

� �
integral needs to be large. Usually V ¼ e2

r12
is the perturbation

linking the ground state orbitals with unoccupied orbitals, but other perturbations can be used.

VARIATION METHOD

Once again, much of what we show here is given in the text by Pauling and Wilson [4]. The variation
method depends on principles we have shown now for the particle-in-a-box, the particle-on-a-ring, the
harmonic oscillator, the rigid rotor and the H atom. Think back and recall that in each case we found
there are a number of eigenvalues for the energies and a corresponding orthonormal set of wave
eigenfunctions. Now suppose we want to solve a new problem and find the energy as

hEi ¼
ð
c*Hcdt. We need to be able to write a correct Hamiltonian operator, H, which includes all

the interactions we want to use in the problem. Then we want to solve the Schrödinger equation
Hc¼Ec. (The time-independent equation; we probably already have enough difficulty without
worrying over time dependence!) After a period of frustration, we might do what many students do,
wewill guess a functional formwhich seems to have some properties we need (finite, single-valued, and
continuous plus whatever other features you think are important). Let our guess function be fg, chosen

so that using calculus or a computer programwe can evaluateEg ¼
ð
fg*Hfgdt. Now it is time to recall

the characteristics of the problems that have exact solutions. They each had a set of eigenvalues {En}.
Although there might have been degeneracies in the energy values (all p-orbitals, all d-orbitals have the
same energy, etc.), we recall that there was one lowest energy, which we can call E0. The other energy
values followed En � Enþ1 (allowing for degeneracies). Further, the set of eigenfunctions {cn} had

several properties such as Hcn¼Encn and
ð
cn*cmdt ¼ dnm. Then depending on the work of math-

ematicians such as Hermite, Legendre, and Laguerre the eigenfunctions can be shown to form a
complete set. That means that within the same boundary conditions, there is no other function that
cannot be described by some linear combination of the orthonormal set of eigenfunctions, the set is
complete! Thus in principle, our guess-function can be represented by a linear combination of the true
eigenfunctions {cn} (whichwe do not know) usingweighting coefficients cn (whichwe do not know) as
fg ¼

P
n cncn. So thenwe try to evaluate the energywith our guessed function and the Hamiltonian, as

long as we can do the integral correctly, and operate inside the integral using Hcm¼Emcm to find

Eg ¼
ð
fg*Hfgdt ¼

X
n

X
m

cn*cm

ð
cn*Hcndt ¼

X
n

X
m

cn*cmEm

ð
cn*cmdt ¼

X
n

X
m

cn*cmEmdnm:
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Because the true (but unknown) eigenfunctions are orthonormal, the Kronecker delta dnm eliminates
all the terms except when n¼m, so we obtain Eg ¼

P
n c2n
�� ��En although we do not really know the

set of eigenvalues {En} or the coefficients, cn! How does this help us? Well, we know that one of the
true (unknown) eigenvalues is the lowest energy and we have seen in the problems we have solved
that En � Enþ1 so let us subtract that lowest (unknown) eigenvalue from both sides of our equation
as Eg � E0 ¼

P
n c2n
�� ��En � (1)E0. We emphasize the factor of (1) because we are only subtracting

E0 ‘‘once’’ and because we need to normalize our guess function as follows

1 ¼
ð
f*fdt ¼Pn

P
m cn*cm

ð
cn*cmdt ¼

P
n

P
m cn*cmdnm ¼

P
n c2n
�� �� ¼ 1. Then we can write

Eg � E0 ¼
P

n c2n
�� ��En � (1)E0 ¼

P
n c2n
�� ��En �

P
n c2n
�� ��E0 ¼

P
n c2n
�� ��(En � E0) and now we are

ready for the main conclusion. If En � Enþ1 then
P

n c2n
�� ��(En � E0) � 0 on the right side of the

equation so Eg�E0 � 0 or in conclusion we find that

Eg � E0!

What does that mean? Well it means that we can guess whatever we want (intelligently) for fg and

as long as we evaluate the integral Eg ¼
ð
fg*Hfgdt, either analytically or by using a computer, the

answer will either be correct (E0) or higher than the true value. How can we use this? We can put a
lot of parameters in the guess function, take the derivative with respect to each parameter, set it to
zero, and then use the value of that parameter at the minimum to find the minimum energy for that
function (which may still be higher than the true minimum energy). The key point is that we know Eg

cannot go below the true energy as long as we do the integral correctly! Pauling and Wilson credit
this method to Eckart [5] and it is indeed a powerful concept!

Example
Starting with a variational trial function fg � e�ar for the 1s H atom solution, show in detail that
amin yields the exact nonrelativistic Schrödinger–Bohr energy. (A frequent examination question
worth learning thoroughly!) First we need to normalize the trial-guess. Our function fg is finite,
single-valued, continuous, and physically models the electron wave function near the nucleus with
less probability for large r. You need to recall an integral formula we derived in an earlier chapter asð1
0
xne�axdx ¼ n!

anþ1
.

1 ¼ 4p
ð1
0

(Ne�ar)*(Ne�ar)r2dr ¼ 4pN2
ð1
0

e�2arr2dr ¼ 4pN2 2!

(2a)3
) N ¼

ffiffiffiffiffi
a3

p

r

so

fg ¼
ffiffiffiffiffi
a3

p

r
e�ar:

The Hamiltonian is H ¼ �h2

2m
r2 � Ze2q

r
. This looks like a very difficult problem but the trial

wave function has no dependence on (u,f) so we have a great simplification here.
1
r2

q
qr

r2
q
qr

� �
þ 1
r2 sin u

q
qu

sin u
q
qu

� �
þ 1

r2 sin2 u

q2

qf2 ¼ r2(r, u, f) becomes much simpler.

r2(r, u, f)! 1
r2

q
qr

r2
q
qr

� �
¼ r2(r) because there is no part of fg depending on (u, f)!

Approximate Methods and Linear Algebra 349



So
1
r2

q
qr

r2
q
qr

� �
e�ar ¼ 1

r2
q
qr

[�ar2e�ar] ¼ 1
r2
[�2ar þ a2r2]e�ar. We then insert this into the

averaging integral to find the expectation value of the Hamiltonian.

Eg

ð
fg*Hfgdt ¼ 4p

a3

p

� �2
2
ð1
0

e�ar
��h2
2m

� � �2ar þ a2r2

r2

� �
e�arr2dr � Ze2q

ð1
0

e�2ar
1
r

� �
r2dr

8<
:

9=
;

Eg

ð
fg*Hfgdt ¼ 4a3 ��h2

2m

� � �2a
(2a)2

þ 2a2

(2a)3

� �
� Ze2q
(2a)2

( )
¼ ��h2

2m

� �
[�2a2 þ a2]� Ze2qa, and so

Eg

ð
fg*Hfgdt ¼ þ

�h2a2

2m
� Ze2qa ¼ Eg(a). Now we have the energy of the guessed function as a

function of the parameter a and we could insert numerical values into the constants, write a small
computer program and print out the energy for various values of a from a¼ 0.001 to a ¼ 1000 in
increments of 0.001 and look for the lowest value of the energy from the guessed function. That would
work but be very tedious! It is worth noting that the kinetic energy term is positive and the potential
energy term is negative so there must be some value of a at which a minimum occurs. How do we
know there is aminimum? The variation theoremwe proved earlier tells us thatEg�E0. As long as we
computed the energy correctly from the guessed trial function, the answer cannot go lower than E0!

Why not use calculus to find the minimum?
dEg(a)

da
¼ 2

�h2a

2m
� Ze2q ¼ 0) amin ¼

Ze2qm

�h2
so we know

amin! Then the minimum energy is Eg(amin) ¼ �h2

2m

� �
Ze2qm

�h2

 !2

� Ze2q
Ze2qm

�h2

 !
¼ � Z2me4q

2�h2
. Hey,

wait a minute, that is the Schrödinger–Bohr H 1s energy! This is a fortuitous case where the value of
the energy from the guessed trial function is exactly the minimum energy. This occurred because we
made an excellent guess which is of course the correct functional form for a H 1s orbital, but we did
not know the value of amin. This example shows us that an energy from a guessed trial function
approaches the true energy from above and that if you have the correct functional form, the guess will
give the correct energy. This is very rare and most of the time the calculated energy will not be the
exact energy but will be above the true value. In the 1950–1970 era, computer programs were being
written and tested to compute the energy of molecules and research papers were published with ever
lower energies tending to the exact ground state energy as a measure of the accuracy of the
calculations. Note that this process only works for the lowest energy of a given symmetry and so is
usually only applied to the ground state of atoms and molecules.

MOLECULAR ORBITALS AND THE SECULAR EQUATION

One of themain problems in the extension of the H atomorbital ideas tomolecules is the fact that atomic
functions are centered on a nuclear position as a centro-symmetric coordinate system but a molecule
involvesmore than one center. As soon as a second nucleus is introduced aswithH2, HCl, H2O,NH3, or
CH4, we have a problem relating atomic orbitals centered on one nucleus to that of a neighbor. Not only
that but we have good reason to believe on chemical grounds that in covalent compounds there will be
considerable electron sharing. Practice using Lewis electron-dot structures in freshman chemistry
reveals many cases of covalent sharing. In fact the simplest ideas of bonding imply that there needs
to be orbital overlap for bonding to occur except in the most extreme ionic electron-transfer bonding.
Thus the simplest ideas of molecular orbitals recognize the concept of overlap between two orbitals on

different centers. Traditionally Sij ¼ ij jh i ¼
ð
fia*fjbdtwhere the two orbitals are on different atoms or

maybe in orbitals on the same center that are not mutually orthogonal because they are trial functions.
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From the example above we now know that we could put a lot of parameters into a trial wave
function and then minimize the energy of the molecule with respect to the parameters. We also
appreciate the fact that a good guess will produce a good result. This thought process has led to the
linear combination of atomic orbitals (LCAO) approximation. The idea is that when an atom is in a
molecule, electrons close to an atomwill likely be in orbitals close to what they would be for that atom
by itself. However, if=when the (indistinguishable) electrons move from the neighborhood of one
atom and wander to another nearby atom (and so on throughout the whole molecule) they may be in
orbitals, which are partly like both atoms. Thus, the LCAO orbital is taken to be a linear combination
of orbitals that have been obtained from variationally optimized orbitals for individual atoms.

Using c ¼Pi cifi, the fi basis functions are assumed to be fixed functions and only the
coefficients ci are treated as variational parameters. Thus, we need a way to simultaneously vary
many ci values to reach an energy minimum. Since we will be interested in the interaction between
electrons in orbitals fi and fj, we can see that we will have a set of equations in an (i, j)
representation. Thus we set up the Schrödinger equation in terms of the LCAO function within a
basis set of atomic orbitals as a matrix equation [H][C]¼ [S][C][E]. Here, [H] is a square matrix

with matrix elements Hi,j ¼
ð
fi
*Hfjdt, [S] is a square matrix with matrix elements Sij ¼

ð
fi
*fjdt,

and [C] is a square matrix whose columns are the molecular orbital coefficients, ci. If there are N fi

functions in the linear combination, there will also be N molecular orbitals, but maybe only a few of
the lowest energy orbitals will be occupied by an extension of the Aufbau principle idea. This model
also incorporates what is called a ‘‘single electron model’’ in the sense that we seek linear
combinations of atomic orbitals to be normalized descriptions of single electrons, but of course
we fill them with two electrons as an ab spin-pair.

In order to evaluate the energy as a function of the unknown coefficients ci we set up the
expectation process for the energy, but actually we will find N different energies, ei, which are
the one-electron orbital energies. In this simple model the total energy will be the simple sum of the
orbital energies but in more sophisticated treatments this is not exactly true. For this modelP

i

P
j cicj

ð
fi HfjdtP

i

P
j cicj

ð
fi fjdt

¼ hEi where we have to make sure the linear combinations are normalized.

Then
P

i

P
j cicj

ð
fi Hfjdt ¼ (E)

P
i

P
j cicj

ð
fi
*fjdt and next we take the derivative with respect

to any specific cj coefficient. This derivative will be made easier with an example aside.
Suppose we seek the derivative of an expression of weighted elements of a Hermitian matrix,

where Aij ¼ Aji (all real) with respect to one coefficient, say c2, where Aij could be Hij or Sij.

q
qc2

X3
i¼1

X3
j¼1

cicjAij ¼ q
qc2

c21A11 þ c1c2A12 þ c1c3A13 þ c2c1A21 þ c22A22 þ c2c3A23 þ c3c1A31
�
þ c3c2A32 þ c23A33

�
so we find

q
qc2

P3
i¼1
P3

j¼1 cicjAij ¼ c1A12 þ c1A21 þ 2c2A22 þ c3A23 þ c3A32 ¼ 2
P3

i¼1 ciA2i

or the derivative of the double sum is just twice the single sum:
q
qc2

P3
i¼1
P3

j¼1 cicjAij ¼ 2
P3

i¼1 ciA2i ¼ 2
P3

i ciAi2.

Now we can take the derivative as

2
X

i
ciHij ¼ qE

qcj

� �X
i

X
j
cicj

ð
fi
*fjdtþ 2E

X
i
ciSij.
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Then we can use the idea that at the minimum
qE
qcj

� �
¼ 0. Finally, we can cancel the factor of 2 on

each side of the equation to produce
P

i ciHij ¼ E
P

i ciSij or
P

i (Hij � ESij)ci ¼ 0. However, there
are ‘‘n’’ such equations for n basis orbitals in the LCAO, one for each cj, which leads to a system of
equations all¼ 0.

(H11 � ES11)c1 þ (H12 � ES12)c2 þ (H13 � ES13)c3 þ � � � (H1n � ES1n)cn ¼ 0

(H21 � ES21)c1 þ (H22 � ES22)c2 þ (H23 � ES23)c3 þ � � � (H2n � ES2n)cn ¼ 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ¼ 0

(Hn1 � ESn1)c1 þ (Hn2 � ESn2)c2 þ (Hn3 � ESn3)c3 þ � � � (Hnn � ESnn)cn ¼ 0

This is a linear system of equations in n variables where the unknown variables are the ci coefficients.
Formally, this calls into effect the Cayley–Hamilton theorem [6] because the right-hand sides of the
equations are all zero. The Cayley–Hamilton theorem [6] states that a square matrix, A, satisfies its
characteristic equation and if we have a characteristic polynomial of the eigenvalues of the matrix
{li}, which are the roots of the polynomial lnþ cn�1l

n�1þ � � � þ c0¼ 0, then the matrix also satisfies
Anþ cn�1A

n�1þ � � � þ c0¼ 0. Later, we will see that if a square matrix can be transformed to
‘‘diagonal form,’’ the Cayley–Hamilton theorem becomes obvious. This can be explained using an
example of two equations in two unknowns solved by Cramer’s rule using determinants.

Given two equations in two unknowns as:

3xþ 2y ¼ 4

2xþ 4y ¼ 7

we would normally solve this by setting up a denominator determinant with the coefficients of
the unknowns. Then we would set up the numerator determinant using the constants in place of the
unknown coefficients. The answer is then the quotient of the two determinants!

x ¼
4 2

7 4

����
����

3 2

2 4

����
����
¼ 16� 14

12� 4
¼ 2

8
¼ 1

4
and y ¼

3 4

2 7

����
����

3 2

2 4

����
����
¼ 21� 8

12� 8
¼ 13

8

Check: 3
1
4

� �
þ 2

13
8

� �
¼ 3þ 13

4
¼ 4 and 2

1
4

� �
þ 4

13
8

� �
¼ 1þ 13

2
¼ 7 Q:E:D:

That works fine and can be extended to N unknowns as long as the right sides of the equation are
nonzero. In the variational molecular orbital problem, all the right sides of the equation are zero and
if we use Cramer’s rule we only get the trivial solution with all values equal to zero. The Cayley–
Hamilton theorem implies that if all the equations equal zero, you can still get a nonzero solution by
forcing the denominator determinant to be zero, that is, by solving for the roots of the corresponding

polynomial. In effect, this forces the equations to
0
0

� �
, which is not zero; it is undefined! This leads

to the so-called secular determinant as jH�E . Sj ¼ 0.

CHEMICAL BONDS OF ETHYLENE

In the 1930s there were no computers and severe approximations were often made to facilitate
paper-and-pencil calculations. A simple method due to Hückel [7] formed a foundation for the
notion of molecular orbitals which stretched out across the whole molecule, but the method was
limited mostly to the 2pzp orbitals of aromatic hydrocarbons and other 2pzp heteroaromatic
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hydrocarbons (Figure 16.1). Historically, this method was brought to the forefront of organic
chemistry by Roberts [7] in a small book that went through 14 printings in the 1960s through
1978 (Figure 16.2). Today, these methods have been totally eclipsed by very accurate all-electron
computer calculations, but the Hückel orbitals are still useful for an introduction to the molecular
orbital concept. The main assumptions are that we base all parameters on 2pzp� sp2 carbon

FIGURE 16.2 JohnD. Roberts (born 1918) is anAmerican chemist who has contributed greatly to the integration
of organic chemistry, physical chemistry, and spectroscopy. Roberts received the Priestly Medal in 1987, the
NationalMedal of Science in 1990, theGlenn T. SeaborgMedal in 1991, and theNASAward inChemical Sciences
in 1999. He is credited with bringing the first female graduate student into the Caltech Chemistry department when
he moved from MIT. (Gift of John D. Roberts, Chemical Heritage Foundation Collections.)

120°

H

HH

H

σ

π

FIGURE 16.1 Diagram of p-bonding in ethylene. (From Roberts, J.D., Notes on Molecular Orbital Calcu-
lations Benjamin Press, New York, 1961. With permission.) The whole text can be downloaded from http:==
caltechbook.library.caltech.edu=23=. This sort of diagram was a very exciting connection between Organic
Chemistry and Quantum Chemistry in the 1960s. Prof. Roberts notes in his text that the HCH angle is closer to
1178 than the 1208 shown here but only the 2pzp orbitals enter into the calculation.
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compounds and it is found that even with that restriction a surprising number of electronic properties
can be parameterized with Hii¼a, Hij¼b (nearest neighbors only), Sii¼ 1 and Sii¼ 0. Consider the
ethylene molecule using this scheme. The parameters a and b are in units of electronic energy in the
one-electron sense but two spins per orbital will be used. There is a conflict in standard notation in
that Hückel and Roberts use a and b for electronic energy and then use " and # for the spins. We
consider only the two 2pzp orbitals as our basis set and set up a 2� 2 secular determinant from a

matrix equation as
a b
b a

� �
c1
c2

� �
¼ E 0

0 E

� �
c1
c2

� �
to

a� E b
b a� E

� �
c1
c2

� �
¼ 0 and a system of

equations as a determinant
(a� E) b

b (a� E)

����
���� ¼ 0.

We introduced the basic ideas of matrix arithmetic in Chapter 14 relative to the Powell d-orbitals
and we expand on matrix use here. The determinant j f(E)j is a single number as a function of E in
this case and this can be solved for E as (a�E)2�b2¼ 0. It will be important for later discussion to
see that this equation came from the matrix equation [H][C]¼ [S][C][E] as Hc(ci) Ec(ci). A matrix
is an array which contains many relationships as coefficients placed in a [ ] or
a b
b a

� �
c1
c2

� �
¼ 1 0

0 1

� �
c1
c2

� �
E 0
0 E

� �
using [S] ¼ 1 0

0 1

� �
but the whole process can be stream-

lined by dividing the Cayley–Hamilton determinant by b and defining x � (a� E)

b
. Then

(a� E)=b b=b
b=b (a� E)=b

����
���� ¼ 0 leads to

x 1
1 x

����
���� ¼ 0 and so x2� 1¼ 0 and the solutions x¼ 1 and

x¼�1.
The determinant uses straight vertical bars and is a single number while a matrix has little right-

angle extensions on the vertical bars and represents values in a linear system of equations. Note that
a Cayley–Hamilton matrix led to a determinant due to the zeros on the right side of the secular
equations. We can use these roots to find the coefficients of the 2pzp molecular orbital coefficients.
When x¼�1 we can go back to the original system of equations but still use the determinant with x
so we have xc1þ 1c2¼ 0 or�c1þ c2¼ 0 and c1¼ c2. Note that we could use either equation and we
will get the same result! However, we need to normalize the molecular orbitals so we set up the

integral 1 ¼
ð
(c1f1 þ c2f2)*(c1f1 þ c2f2)dt ¼ c21 þ 0þ 0þ c22 ¼ 2c21 ¼ 1 so for the solution of

a� E

b

� �
¼ �1, we have E¼aþb and cp ¼

f1 þ f2ffiffiffi
2
p . When x¼þ1 we see xc1þ 1c2¼ 0 so

c1¼�c2 but normalization still produces 2c21 ¼ 1 or c2 ¼ �1ffiffiffi
2
p ¼ �c1. Then a� E

b

� �
¼ þ1 or

E¼a�b.

In summary: E¼a�b when cp* ¼
f1 � f2ffiffiffi

2
p (antibonding orbital)

E¼aþb when cp ¼
f1 � f2ffiffiffi

2
p (bonding orbital)

We see that the bonding orbital has the lower energy since both a and b are apparently negative by
nature of their definitions as matrix elements of the Hamiltonian for ‘‘bound orbitals.’’ If a and b
were not negative (bound), the electrons in those orbitals would fly away! The excited orbital has
a node (sign change) that makes it antibonding while the bonding orbital has a plus sign for both
2pzp components. The transition between the two levels is 2b and calibration of electronic
excitations for many compounds leads to a value of �2.71 eV. This predicts an excitation of

about lp!p* ¼
12398

2(2:71 eV)
¼ 2287 Å ffi 229 nm, which is to the red of the main experimental
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absorption at about 160 nm, but the value of the calculation is mainly in providing a model that is
qualitatively accurate.

It is possible to extend the simple Hückel method to hetero-atom cases in organic pi-electron
systems by adjusting the a and b values in terms of the basic carbon parameters. Two additional
parameters are introduced as aX¼aCþ hXbC�C and bC�X¼ kC�XbC�C (Table 16.1).

A second example for the pi-orbitals of formaldehyde will suffice to illustrate the hetero-pi
method. Once again we only have two orbitals, 2pzC and a 2pzO. Note this method ignores the
nonbonded orbitals on oxygen and the C–H sigma bonds as well as the two inner shell 1s orbitals;
we are only treating the pi-orbitals. This time the Hückel determinant becomes
(aþ b� E) b

b (a� E)

� �
cO
cC

� �
¼ 0, ) (xþ 1) 1

1 x

����
���� ¼ 0 so we get x(xþ 1)� 1¼ 0 and we

need to use the quadratic equation to find x
�1� ffiffiffiffiffiffiffiffiffiffiffi

1þ 4
p

2
¼ �1�

ffiffiffi
5
p

2
so x¼ 0.618 and

x¼�1.618. When x ¼ 0:618 ¼ (a� E)

b
, E¼a� 0.618b, then 1.618cOþ 1cC¼ 0 and

1.618cO¼�1cC. Now 12c2O þ (�1:618)2c2O ¼ 3:618c2O ¼ 1 so cp* ¼ 0:526fO � 0:851fC (anti-

bonding). When x ¼ �1:618 a� E

b

� �
, E¼aþ 1.618b then �0.618cOþ 1cC¼ 0 and

0.618cO¼ cC. Now 12c2O þ (0:618)2c2O ¼ 1:382c2O ¼ 1 so cp¼ 0.851fOþ 0.526fC (bonding).
Once again the excited state has a node but the weighting is unsymmetrical.

The Hückel pi-electron method has been applied to numerous compounds and Lowe [9] has
documented two general solutions for pi-hydrocarbons using a graphical argument.

1. Linear polyene molecules

x ¼ �2 cos kp=(nþ 1)½ 
, k ¼ 1, 2, . . ., n and clk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=(nþ 1)

p
sin klp=(nþ 1)½ 


where l¼ atom index and k¼MO index

2. Cyclic 2pp molecules

xk ¼ �2 cos 2pk=nð Þ, k ¼ 0, 1, 2, . . . , (n� 1) with clk ¼ 1=
ffiffiffi
n
p	 


exp 2pik(l� 1)=n½ 
; i ¼
ffiffiffiffiffiffiffi
�1
p

The Hückel–Roberts p-electron model at least brings with it (1) the use of hydrogenic orbitals, (2)
the ‘‘overlap-bonding’’ relationship, and (3) the application of the secular equation. Such orbitals
follow the amplitude of the particle-in-a-box in Chapter 12, and now one can even sketch a simple

TABLE 16.1
Hückel Heteroatom Parameters

hO–¼ 2.0 kC–O¼ 0.8

hO¼ ¼ 1.0 kC¼O¼ 1.0

hN–¼ 0.5 kC–N¼ 0.8

hN¼ ¼ 1.5 hN¼ ¼ 1.5

Sources: Streitwieser, A., Molecular Orbital Theory for

Organic Chemists, John Wiley & Sons LTD.,

London, U.K., 1961, Chap. 4; Murrell, J.N.
et al., Valence Theory, 2nd Edn., John Wiley &
Sons, LTD., London, U.K., 1970, p. 296.
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representation of the molecular orbitals since they are linear combinations of all the 2pz atomic
orbitals. However, to critique this model, one can ask what the inner 1s orbitals and the valence
sigma orbitals are doing. Further, the model only applies to delocalized pi systems. Still this is a
credible result for the orbital model of molecules.

This type of calculation is very approximate and its only present value is to illustrate the basic
concepts, although historically it stimulated great interest in molecular orbital theory [9,10]. It is
especially noteworthy to mention the effect Roberts’ text [8] had on physical organic chemistry in
the early 1960s. That text went through 14 printings and convinced many young chemistry students,
including this author, that orbital theory and even some point group theory was useful in organic
chemistry. Ironically, Roberts’ treatment used many of the ideas from the 1944 text ‘‘Quantum
Chemistry’’ by Eyring, Walter, and Kimble [11] which was considered too difficult by many
chemists. Roberts has coined a term in his memoirs as the abbreviation ATRPATRT, and his
enthusiastic ‘‘Notes . . . ’’ text proves the principle of being ‘‘at the right place at the right time’’! A
very interesting history by Roberts is available at http:==www.quantum-chemistry-history.
com=Roberts1.htm.

ELEMENTARY LINEAR ALGEBRA

It is debatable whether we should have presented this section before we talked about the Hückel–
Roberts pi-electron method. Nevertheless, it is the opinion of this author that you would not have
read this section as a topic presented without an application. Perhaps you now want to know what
this matrix business is all about. If we want to proceed with a few modern computational
applications, we need a major concept that may not be on your transcript. This author never took
a course in linear algebra but a working understanding of the principles of linear algebra has proved
to be indispensible in research, easily in the list of ‘‘essentials.’’ Further, if you have taken a course
in linear algebra but never developed the skill to diagonalize or invert a small matrix on scratch
paper, you still need to learn these skills. Actually the author’s understanding is based mainly on a
short six-page set of notes from Prof. Walter Kauzmann at Princeton. So here is a short course in
linear algebra.

A matrix can be an operator or result of an operation in terms of basis set coordinates.
3 1
1 2

� �
x
y

� �
¼ (3xþ 1y)

(1xþ 2y)

� �
. This matrix operation changed a vector~r¼ x̂iþ ŷj to another vector

~r¼ x0̂iþ y0̂j where the new coordinate is x0 ¼ 3xþ 1y and y0 ¼ 1xþ 2y. That changed the direction
of the vector and its length which is a general and severe thing to do, but possible under matrix
multiplication. Operationally matrix multiplication is carried out using the ‘‘row� column’’ multi-
plication across a row and down a column, summing the individual products. Here

[A] [B] ¼ [C]) cij ¼
X
k

(aikbkj):

A more gentle matrix operation is to just change the direction of the (column) vector by rotating
it through an angle u as shown by the operation

cos u sin u

� sin u cos u

� �
x

y

� �
¼ (x cos uþ y sin u)

(�x sin uþ y cos u)

� �
¼ x0

y0

� �
:

This operation is ambiguous as to whether the vector rotated by u or the axis system
rotated but generally we assume the vector was rotated by the matrix ‘‘operator’’ (using the
‘‘row� column’’ multiplication). This matrix operation is unitary because it maintained the
length of the vector as constant during the rotation. The Pythagorean sum of squares of
the components remains the same. Matrices can do other ‘‘symmetry operations’’ such as inversion
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via
�1 0 0
0 �1 0
0 0 �1

2
4

3
5 x

y
z

2
4
3
5 ¼ �x

�y
�z

2
4

3
5, again using the multiplication element by element (row�

column). You can see that this matrix ‘‘inverts’’ all the coordinates to their negative values. Next

consider
1 0 0
0 1 0
0 0 �1

2
4

3
5 x

y
z

2
4
3
5 ¼ x

y
�z

2
4

3
5. This operation causes a ‘‘reflection’’ in the x�y plane and

is called a Cs symmetry operation. Again,
0 �1 0
1 0 0
0 0 1

2
4

3
5 x

y
z

2
4
3
5 ¼ �y

x
z

2
4

3
5 is a 908 or C4 rotation

about the z-axis. That matrix is one example of a more general case of a Cn rotation matrix for

a rotation about the z-axis by an angle of
2p
n

� �
as Cn ¼

cos 2p
n

	 

sin 2p

n

	 

0

� sin 2p
n

	 

cos 2p

n

	 

0

0 0 1

2
64

3
75. We previ-

ously used a C5 operation to generate the members of the Powell 5-equivalent d-orbitals for the
H atom. Those are a few symmetry operations that have the effect of moving a given Cartesian point
to another place without changing the length of the position vector, they are unitary operations. We
have seen how analytical functions can satisfy eigenvalue equations and now we will show that
matrices can satisfy the same condition. In quantum mechanics, we know c*c¼cc* so it has been
found that when matrix operators are used in quantum mechanics they are of a slightly restricted
type called Hermitian matrices, which means the operators are square (n� n) matrices in which
aji* ¼ aij. This only matters when the operator being represented by the matrix has some imaginary
part (such as angular momentum) but usually aji¼ aij in most cases. However, not all matrices are
square and a single row or column can be a matrix. Note for matrix multiplication to be defined, the
inner dimension of the two matrices in the product must be the same. For instance, when we
multiply (m� n)� (n� k)¼ (m� k) the important thing is that the n-dimension matches. For

example [c1 c2]
c1
c2

� �
¼ c21 þ c22 is a scalar, a single number, because a (1� 2)� (2� 1)¼

(1� 1)¼ a number.
Now we come to the main useful mystery of linear algebra, the diagonalization process. We have

shown earlier that matrices can change the directions of vectors so it is possible to do generalized
rotations that result in zeros everywhere in the matrix except on the diagonal from the upper left
corner to the lower right corner.

Example
Find the eigenvalues and eigenvectors of the matrix equation given and show the matrix of the
column eigenvectors diagonalizes the original matrix.

Given:
3 1
1 3

� �
¼ [M] where [M][C]¼ [l][C] as

3 1
1 3

� �
c1
c2

� �
¼ l 0

0 l

� �
c1
c2

� �
, we can see

that this is an eigenvalue equation where the unknown coefficients are the eigenvector coefficients
and there will be two values of l that are the eigenvalues in this (2� 2) space. It is important to
note for future reference that while we are used to writing Hc¼Ec with the eigenvalue first that
will lead to problems if the overlap matrix is other than a unit matrix. We should realize we could
as well write [M][C]¼ [C][l], which turns out to be correct if the overlap is not a unit matrix but
here it does not matter because the overlap is a unit matrix. We can learn a lot about linear algebra
from just this simple case, which is similar to the Hückel pi-electron problem for ethylene. Note
that this is a symmetric (Hermitian) matrix because aji¼ aij. Further if the off-diagonal values of
1 were 0 we would have a system where both eigenvalues would obviously be 3 and 3, which
would be a case of degenerate eigenvalues. However, we will see that the off-diagonal values
of 1 will split the degeneracy and that is a lesson for cases where the matrix is an energy matrix.
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Off-diagonal interactions will split degenerate energy levels. Last, for future comparison note that
the sum of the diagonal elements is (3þ 3)¼ 6. The sum of the diagonal elements is called the
‘‘trace’’ in English but in German papers it is the ‘‘spur,’’ which relates to the English word for
the trail of an animal as a ‘‘spoor’’ and that helps understand the translation as a trace or trail.
Many of the early scientific papers on quantum mechanics were formulated in ‘‘matrix mechanics’’
and published in German.

Next, we combine both sides of the equation element by element to set up the Cayley–Hamilton
condition. In matrix addition or subtraction [A]þ [B]¼ [C]) cij¼ aijþ bij, so
(3� l) 1

1 (3� l)

� �
c1
c2

� �
¼ 0, which corresponds to a linear system of (two) equations as

(3� l)c1 þ c2 ¼ 0,

c1 þ (3� l)c2 ¼ 0:

Since the right side constants are 0, we have to invoke the Cayley–Hamilton theorem just as we did
with the pi-electron treatment of ethylene. We force the determinant of the coefficients to be zero!
Then the eigenvalues of the matrix will be the roots of the polynomial in l, which fulfills the
Cayley–Hamilton Theorem!

(3� l) 1
1 (3� l)

����
���� ¼ 0) (3� l)2 � 1 ¼ l2 � 6lþ 8 ¼ (l� 4)(l� 2) ¼ 0:

Thus l¼ 4 and 2 which are the roots of the Cayley–Hamilton polynomial as well as the eigenvalues
of the matrix! When l¼ 4 we can insert this root back into either equation to find the corresponding
eigenvector.

Arbitrarily choose (either equation works!) (3� 4)c1þ 1c2¼ 0 ) �c1þ c2¼ 0 ) c1¼ c2.
Now just as with the ethylene pi-electron problem, we need to find eigenvectors that are normalized
to 1 because we are going to perform a generalized coordinate rotation to a new orientation but we
want to do it in a unitary way; do not change the length of the vector, just rotate it. So we set

[c1 c1]
c1
c1

� �
¼ c21 þ c21 ¼ 2c21 ¼ 1, c1 ¼ 1ffiffiffi

2
p ¼ c2. Let us check to see if this forms an eigenvec-

tor.
3 1
1 3

� �
1=

ffiffiffi
2
p

1=
ffiffiffi
2
p

� �
¼ 3=

ffiffiffi
2
p þ 1=

ffiffiffi
2
p	 


1=
ffiffiffi
2
p þ 3=

ffiffiffi
2
p	 


" #
¼ 4 1=

ffiffiffi
2
p

1=
ffiffiffi
2
p

� �
, Q.E.D. it is an eigenvector with l¼ 4.

Next find the eigenvector for l¼ 2. Again (3� 2) c1þ 1c2¼ 0 ) c1¼�c2 and again we require

[c1 � c1]
c1
�c1

� �
¼ c21 þ c21 ¼ 2c21 ¼ 1, c1 ¼ 1ffiffiffi

2
p ¼ �c2. Let us check this eigenvector also.

3 1
1 3

� �
1=

ffiffiffi
2
p

�1= ffiffiffi
2
p

� �
¼ 3=

ffiffiffi
2
p � 1=

ffiffiffi
2
p	 


1=
ffiffiffi
2
p � 3=

ffiffiffi
2
p	 


" #
¼ 2 1=

ffiffiffi
2
p

�1= ffiffiffi
2
p

� �
, Q.E.D. it is an eigenvector with l¼ 2.

The next steps are almost magical and well worth the preceding effort. Form a matrix called T (for

Transformation) by lining up the eigenvectors as columns. [T] ¼ 1=
ffiffiffi
2
p

1=
ffiffiffi
2
p

1=
ffiffiffi
2
p �1= ffiffiffi

2
p

� �
. It turns out you

can put the eigenvector columns into T in any order as long as they are columns and are normalized.
It is easy to show that the eigenvectors are orthogonal as well as normalized to 1,

1=
ffiffiffi
2
p

1=
ffiffiffi
2
p� � 1=

ffiffiffi
2
p

�1= ffiffiffi
2
p

� �
¼ 1

2
� 1
2
¼ 0, so they are orthonormal!

Students who have not taken any linear algebra often ask, ‘‘What is going on here, how does this
work?’’ A very elegant proof=demonstration is given by Williams in his text [12]. Actually the
theorem Williams gives is more general than what we need for symmetric Hermitian matrices but it
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illustrates another very important truth that with diagonal representations, you can perform ordinary
arithmetic on the diagonal elements and in this case diagonal matrices commute since real numbers
commute. The whole proof=principle of diagonalization depends on the key step of commuting the
diagonal matrix of eigenvalues to the right side of the eigenvector matrix. We have paraphrased
Williams’ theorem in the conversational style of this text but this author greatly appreciates
Williams’ formal description.

UNITARY SIMILARITY DIAGONALIZATION OF A SQUARE
HERMITIAN MATRIX [12]

Let [A] be an n� n matrix (and Hermitian symmetric for quantum mechanics) with eigenvectors

V1, V2, V3, . . ., Vn and corresponding eigenvalues l1, l2, l3, . . ., ln. Let [T] ¼
V1 V2 . . . Vn

. . . . . . . . .

. . . . . . . . .

2
4

3
5,

a matrix with the eigenvectors of [A] as columns in any order. Then

[A] [T] ¼
AV1 AV2 . . . AVn

. . . . . . . . .

. . . . . . . . .

2
4

3
5 ¼ l1V1 l2V2 . . . lnVn

. . . . . . . . .

. . . . . . . . .

2
4

3
5 ¼ [T]

l1 0 0
0 . . . 0
0 0 ln

2
4

3
5. That is a

key step because real numbers commute and we have factored out the eigenvalue matrix to the right
of [T]. Then it is a simple matter to multiply from the left by [T]�1 to prove that a unitary similarity
transformation can produce a diagonal form of the original matrix [A] since [T]�1[T]¼ 1n, a unit
matrix of dimension n.

[T]�1[A] [T] ¼ [T]�1[T]
l1 0 0

0 . . . 0

0 0 ln

2
4

3
5 ¼ l1 0 0

0 . . . 0

0 0 ln

2
4

3
5 ¼ [A]diag, Q:E:D:

From this demonstration, you can see that we need to find a way to ‘‘divide’’ matrices as in ‘‘[T] 7
[T]’’¼ [T]�1[T]¼ [T][T]�1. Well, there is no such thing as matrix division although there is a way to
get an inverse as T�1. A student should know=learn that there is a tedious way to find the inverse of

a matrix as a�1ij ¼
(�1)(iþj)jajij
jAj where this means that each a�1ij element of the matrix is the sub-

determinant of the original matrix of the aji element divided by the determinant of the whole matrix
and multiplied by a minus sign alternating across a row or column. For this (2� 2) case this is easy,
but for larger matrices, the sub-determinant is actually a small determinant of dimension only one
less than the original matrix, which produces a very lengthy process! We will see that this method is
seldom used but you ought to know it exists.

Example

Find the inverse of [A]¼ 3 1
1 2

� �
. The determinant of [A] is

3 1
1 2

����
���� ¼ (3� 2)� (1� 1) ¼ 5. Thus

[A]�1 ¼ 2=5 �1=5
�1=5 3=5

� �
. So this tedious formula can be used to form the inverse of [A] and then

[A] [A]�1 ¼ 3 1
1 1

� �
2=5 �1=5
�1=5 3=5

� �
¼ 6=5� 1=5ð Þ �3=5þ 3=5ð Þ

2=5� 2=5ð Þ �1=5þ 6=5ð Þ
� �

¼ 1 0
0 1

� �
, Q.E.D.!

Fortunately there is a short cut we can use most of the time when [T] is unitary (formed from

orthonormal columns) as here [T] ¼ 1=
ffiffiffi
2
p

1=
ffiffiffi
2
p

1=
ffiffiffi
2
p �1= ffiffiffi

2
p

� �
and we see that jTj ¼ �1

2
� 1
2
¼ �1, of

magnitude 1 with a negative phase, but we know the phase of a wave function is arbitrary.
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Then according to the formula [T]�1 ¼
�1= ffiffi2pð Þ
�1

� �
�1= ffiffi2pð Þ
�1

� �
�1= ffiffi2pð Þ
�1

� �
þ1= ffiffi2pð Þ
�1

� �
2
664

3
775 ¼ 1=

ffiffiffi
2
p

1=
ffiffiffi
2
p

1=
ffiffiffi
2
p �1= ffiffiffi

2
p

� �
¼ [T],

so [T]�1¼ [T]y, i.e., tji¼ tij as long as [T] is unitary as here for this special case, which is used every
time we do this unitary transformation [T]�1[M][T]¼ [M]diag. Thus when [T] is formed from
columns of orthonormal eigenvectors, you can just ‘‘flip’’ the elements around the diagonal to get
the inverse with tij¼ tji. In our example, the minus sign was in the (2, 2) position so flipping it leaves

it unchanged. If we had arbitrarily set up the transformation as [T] ¼ 1=
ffiffiffi
2
p

1=
ffiffiffi
2
p

�1= ffiffiffi
2
p

1=
ffiffiffi
2
p

� �
, then the

inverse is [T]�1 ¼ 1=
ffiffiffi
2
p �1= ffiffiffi

2
p

1=
ffiffiffi
2
p

1=
ffiffiffi
2
p

� �
.

We are taking a lot of space here to illustrate the very important technique of diagonalizing a
matrix with a simple (2� 2) example but there should be no doubt that this is one of the ‘‘essentials’’
of modern physical chemistry. Modern quantum chemistry programs use this concept hundreds of
times in every calculation, often for matrices of dimension (100� 100) or more! Well then let us
see it! We need to multiply out [T]�1[M][T]¼ [M]diag. Note that if we were to multiply in the order
[M][T][T]�1 with [T]�1 on the right side, [M][T][T]�1¼ [M] and nothing happens to [M] since it
is just multiplying a unit matrix. Now perform [T]�1[M][T] as

1=
ffiffiffi
2
p

1=
ffiffiffi
2
p

1=
ffiffiffi
2
p �1= ffiffiffi

2
p

� �
3 1
1 3

� �
1=

ffiffiffi
2
p

1=
ffiffiffi
2
p

1=
ffiffiffi
2
p �1= ffiffiffi

2
p

� �
¼ 1=

ffiffiffi
2
p

1=
ffiffiffi
2
p

1=
ffiffiffi
2
p �1= ffiffiffi

2
p

� �
4=

ffiffiffi
2
p	 


2=
ffiffiffi
2
p	 


4=
ffiffiffi
2
p	 
 �2= ffiffiffi

2
p	 


" #
. Note

that the intermediate matrix on the right clearly demonstrates Williams’ proof showing
each eigenvector is multiplied by its eigenvalue! Using Williams’ proof [12], we could factor

out the eigenvalues to the right as 1=
ffiffiffi
2
p

1=
ffiffiffi
2
p

1=
ffiffiffi
2
p �1= ffiffiffi

2
p

� �
4=

ffiffiffi
2
p	 


2=
ffiffiffi
2
p	 


4=
ffiffiffi
2
p	 
 �2= ffiffiffi

2
p	 


" #
¼

1=
ffiffiffi
2
p

1=
ffiffiffi
2
p

1=
ffiffiffi
2
p �1= ffiffiffi

2
p

� �
1=

ffiffiffi
2
p

1=
ffiffiffi
2
p

1=
ffiffiffi
2
p �1= ffiffiffi

2
p

� �
4 0
0 2

� �
¼ 4 0

0 2

� �
or we can do it the hard way and

just complete the second multiplication. 1=
ffiffiffi
2
p

1=
ffiffiffi
2
p

1=
ffiffiffi
2
p �1= ffiffiffi

2
p

� �
4=

ffiffiffi
2
p	 


2=
ffiffiffi
2
p	 


4=
ffiffiffi
2
p	 
 �2= ffiffiffi

2
p	 


" #
¼

4=2þ 4=2ð Þ 2=2� 2=2ð Þ
4=2� 4=2ð Þ 2=2þ 2=2ð Þ

� �
¼ 4 0

0 2

� �
, wow! While this is not very impressive for the (2� 2)

case, if we did this for a (100� 100) matrix (operator) and it went from a bewildering array of
10,000 numbers to just 100 numbers along the diagonal, we would really appreciate the greater
simplicity of the diagonal form where we can just read the eigenvalues off the diagonal list. But
wait! The trace of the original matrix was 6 and the trace of the new diagonal matrix is still 6! The
trace of a Hermitian matrix remains invariant under a unitary transformation! So not only is the
diagonal matrix simpler, its effect is still the same and besides we now know the pure orthonormal
eigenvectors that satisfy the eigenvalue equation [A][c]¼ l[c] for each individual column vector!
Was this example worth the effort? You better believe it! Without the technique of diagonalization
the matrix form of quantum mechanics would be a hopeless set of arrays sprinkled densely with off-
diagonal numbers that could not be separated!

One final word is to look back at how the off-diagonal ‘‘1’’ elements split the degenerate set of
‘‘3’’ values on the diagonal of the original matrix. The interaction with the off-diagonal elements
changed (3, 3) to (4, 2) so one diagonal element increased while the other decreased and the amount
of the increase=decrease is the off-diagonal amount! When this happens with degenerate energy
levels in a matrix like the Hamiltonian energy matrix, it is said to be the ‘‘non-crossing rule’’ where
two energy levels (of the same symmetry) interact, one is pushed up and the other is pushed down
by the interaction, a very general principle.
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JACOBI ALGORITHM FOR DIAGONALIZATION USING A COMPUTER

What we have shown earlier for a simple (2� 2) case is solvable with paper-and-pencil work and we
believe we have packed a lot of principles in that one example so it is worth reading several times.
Nevertheless, modern computation has developed several computer code methods to diagonalize
Hermitian matrices since it is such a key step. Some of these algorithms are optimized for speed in
use of very large matrices, but are complicated gems of computer science. The simplest computer
code is called the Jacobi method originally written by F. J. Corbato and M. Merwin at the
Massachusetts Institute of Technology and graciously documented by Offenhartz [13]. In the Jacobi
method, we seek a solution to [H][C]¼ [E][C]. Given that [H] is a square, Hermitian (n� n) matrix,
we expect to find ‘‘n’’ eigenvectors in [C] with the normalized eigenvectors in either rows or,
preferably, the columns of [C]. Initially, [C] is set up as an (n� n) unit matrix with all zeros except
for 1 along the diagonal. Then an initial array is also set up as a unit matrix for [T0] and examination
of the upper triangle values of [H] is carried out since Hij¼Hji. Then the key equation is

tan(2u) ¼ 2Hij

Hjj � H22
with u restricted to the first and fourth quadrants and if Hii¼Hjj then

u ¼ p=4ð Þ ¼ 45�. With this angle, a new [T1] matrix is generated with 1 along the diagonal except

for the (i, j) subspace, which contains the (2� 2) rotation matrix
cos u sin u
� sin u cos u

� �
; the [T1]

�1

matrix is just ‘‘flipped’’ about the diagonal and a new [H1]¼ [T1][H0][T1] is computed, which is
only partially diagonalized. Next another Hij is selected for use of a different [T2] and a new [H2]¼
[T2]

�1[T1]
�1[H0][T1][T2] is computed. Each time a new [Tn] is formed, it is cumulatively applied to

the initial unit matrix for [C]. Thus the computer program sweeps over a double loop of i and j with
j> i since we are only interested in making the off-diagonal elements zero and Hij¼Hji. On each
step, it computes a new [Tn] and uses that for [Hn]¼ [Tn]

�1[Hn�1][Tn] and [Cn]¼ [Tn][Cn�1]. The
Corbato–Merwin routine scans through the off-diagonal elements and chooses the largest off-
diagonal element to treat because the diagonalization of one (2� 2) subspace may make another
subspace less diagonal. Even so a simple-minded routine could just treat every (i, j) pair in the list
and run through the list maybe ten times or until the largest Hij is less than some desired threshold.
While such a procedure is unthinkable for pencil-and-paper work, the miracle of computers
makes this task take less than a second for matrices up to about (35� 35). One warning is that
the Jacobi method does sag under the computational burden somewhere around (35� 35) and other
methods are faster for larger matrices, although (100� 100) matrices can be diagonalized on
modern PCs in a few seconds. A typical transformation matrix for the H(2, 5) element in a
(6� 6) space would look like

[Tn] ¼

1 0 0 0 0 0

0 cos u 0 0 sin u 0

0 0 1 0 0 0

0 0 0 1 0 0

0 �sin u 0 0 cos u 0

0 0 0 0 0 1

2
66666666664

3
77777777775
:

ORDER MATTERS!

In order to warn undergraduates of a pitfall in linear algebra, let us consider the important case of a
matrix eigenvalue case where the basis set is not orthogonal as in

HC ¼ SCE ¼ (?)ESC:
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While we have become accustomed to writing Hc¼Ec, we need to be very careful about the
meaning of the indices of the matrices we use and we actually have to ‘‘think’’ about what we are
doing rather than just rearranging matrices. What follows is edited from a set of notes by Prof. James
Harrison of the Chemistry Department of Michigan State University. Let us define a basis expansion
for ci in terms of a (probably incomplete) set of basis functions {xm} so that we have

ci-orbital ¼
X

m-basis
cm-basis,i-orbital(xm-basis) ¼

X
mb

cmb,io(xmb) ¼ cio:

Here we have used abbreviations io for the orbital index and mb for the basis member index. Let us
assume we can write our problem as HC¼ESC and focus on just one typical matrix element using
inner-index sums for the multiplication steps using ‘‘row-column’’ multiplication.

(HC)mb,io ¼
X
s

Hmb,sCs,io ¼ (ESC)mb,io ¼
X
s

X
l

Emb,sSs,lCl,io ¼
X
s

X
l

embdmb,sSs,lCl,io:

We seek an answer where E is a diagonal matrix with all off-diagonal elements equal to zero, which
is accomplished by the use of the Kroneker delta dmb,s¼ 1(mb¼s);¼ 0(mb 6¼ s). Then

(HC)mb,io ¼
X
s

Hmb,sCs,io ¼ (ESC)mb,io ¼
X
s

X
l

Emb,sSs,lCl,io ¼ emb
X
l

Smb,lCl,io:

That results in (HC)mb,io ¼ emb
P

l Smb,lCl,io and this does not make any useful sense because the
energy is emb and would refer to some energy of a basis function, not an orbital. Thus we see that
using the order HC¼ESC does not lead to a useful result. Now consider HC¼ SCE.

(HC)mb,io ¼
X
s

Hmb,sCs,io ¼ (SCE)mb,io ¼
X
s

X
l

Smb,sCs,lEl,io ¼
X
s

X
l

Smb,sCs,ldl,ioeio:

That results in (HC)mb,io ¼ eio
P

s Smb,sCs,io. Now we have ‘‘orbital energy’’ eio and we can see that
the summation over s runs across Smb,s and down a column (second index of Cs,io) so the orbital
energy refers to the eigenvalue of an eigenvector column in the Cmb,io matrix, which is what we
want. Sometimes we have to be very careful about the meaning of the indices of the matrices we use.
The simple Roberts–Hückel case gives us some basic concepts but its simplicity disguises the pitfall
we see in the preceding text for the case of a nonorthogonal basis set.

SUMMARY

There are two main ways to approximate the Schrödinger equation solution for ‘‘unsolvable prob-
lems’’: perturbation theory and the variation principle. Perturbation theory is not bounded but can be
useful when the perturbation is small. The variation principle is much more powerful and can be used
to approach accurate energy values for the lowest state of a given symmetry from above with a
guaranteed lower bound. The variation principle inspires the linear combination of atomic orbitals
(LCAO) approximation with fixed atomic orbitals and parametric coefficients. We found a way to
represent the pi-orbitals of ethylene in terms of specific 2pz atomic orbitals. Hückel pi-electron theory
was implemented in a particularly effective way by J.D. Roberts and we can use pi-electron equations
to learn a working knowledge of linear algebra, including the Cayley–Hamilton theorem, matrix
inversion, and especially the very valuable technique of matrix diagonalization. Modern computer
programs routinely diagonalize very large matrices which simplifies quantum chemistry problems
from ‘‘unimaginable’’ to merely ‘‘difficult.’’ A demonstration was given that the order of the
nonorthogonal eigenvalue problem must be HC¼ SCE. While this material looks difficult, you can
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teach yourself enough linear algebra to understand the essentials of modern quantum chemistry in a
few hours! The linear algebra section was presented after the Hückel–Roberts pi-electron method
challenged us to learn some key concepts needed in quantum chemistry=mechanics.

PROBLEMS

16.1 Show that c(0)
0 ¼

k

hnp

� �1=4

e�
kx2
2hn

	 

is an eigenfunction of the harmonic oscillator Hamiltonian

operator H ¼ ��h
2

2m
d2

dx2
þ kx2

2
. What is the eigenvalue? Hint: use n ¼ 1

2p

ffiffiffiffi
k

m

r
.

16.2 Find the inverse to the matrix [M] ¼
1 2 3
2 4 5
3 5 6

2
4

3
5 and prove that [M] [M]�1 ¼

1 0 0
0 1 0
0 0 1

2
4

3
5.

16.3 Diagonalize the matrix [M] ¼
2 0 1
0 3 0
1 0 2

2
4

3
5 by noting the M22 element is already a diagonal

value of 3 and so the eigenvector can be obtained by inspection as
0
1
0

2
4
3
5. Then take the matrix

apart and diagonalize the (1, 3) subspace, which is now only
2 1
1 2

� �
. When you find the

eigenvalues and eigenvectors of this (2� 2) subspace, reassemble the transformation matrix

[T] ¼
? 0 ?
0 1 0
? 0 ?

2
4

3
5 and flip it to find [T]�1. Then show explicitly that [T]�1[M][T]¼ [M]diag.

Hint, this question frequently appears on final examinations.
16.4 Use the Jacobi algorithm to find the eigenvalues and eigenvectors of the matrix [M] in

Problem 16.3.

TESTING, GRADING, AND LEARNING?

Realistically, this may be the end of the course although sometimes the lectures can be extended
to introductory group theory given in Chapter 18 with applications to Raman spectroscopy. Thus
we offer here a final examination given in 2008 at Virginia Commonwealth University as a
continuation of the 2008 examinations from the first semester. This written examination was
only part of the final examination and the first 110 min consisted of a standardized test in
physical chemistry from the American Chemical Society. There was a break after the ACS
examination and another 90 min allowed for this written ‘‘Part II’’ examination. These questions
are easy and designed only to determine whether the students read Chapters 10 through 16 with
comprehension. The ACS test grade must be made a part of the final average so that the students
will actually try their best and not just fill in the bubble sheets randomly. They are encouraged to
write more derivations after answering the eight questions and can score more than the total of
100 points on Part II.

CHEM 304 Final Exam (Part II) Summer 2008 D. Shillady, Professor
(points) (Attempt all problems!) (90 min)

(15) 1. Given c0 ¼
k

hnp

� �1=4

e�
kx2
2hn

	 

for the n¼ 0 level of a harmonic oscillator, calculate the total

energy in the presence of a perturbationH0 ¼ ax3þ bx4. Answer:Etot¼ hn

2

� �
þ3b

4
hn

k

� �2
 !
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(15) 2. Given the vibrational fundamental of O2 is 1556 cm
�1, calculate (E�E0) for 1 mol of O2 gas

in calories and joules at 1000 K (23.0 kJ=mol¼ 5.498 kcal=mol).

(10) 3. Draw a schematic of a 20 keV electron microscope with component labels. Show how Auger
spectra could be used to detect Sn (Z¼ 50) and calculate the (2S->1S) Bohr wavelength
(l ffi 0.486 Å according to the Bohr Model).

(10) 4. Compute the De Broglie wavelength of an electron ejected from Pt, whose work function is
5.0 eV, by the combined energy of a two photon absorption from an intense N2 laser pulse
with a wavelength of 3371 Å (lmatter ffi 7.98 Å).

(10) 5. Sketch the 1S, 2S, 3S, 2P, 3P, and 3D angular and radial functions for the H atom. show the
‘‘standard’’ 3D orbitals and Powell=s five-equivalent-D orbitals (see Chapter 14).

(15) 6. Given the vibrational fundamental of O2 (again) is 1556 cm�1; this time calculate the total
heat capacities CP and CV for O2 at 800 K including translation and rotation (CV¼ 6.042
cal=mol 8K; CP¼ 8.029 cal=mol 8K).

(15) 7. Using ej ¼ j( jþ 1)
�h2

2I

� �
, calculate the average rotational energy per mole for a diatomic

molecule using a partition function qrot ¼ 2IkT

�h2

� �
, Erot ¼ RT

� �
.

(10) 8. Calculate the x-ray wavelength of the (2S->1S) Auger wavelength emission from O (Z¼ 8)
in the (SiO2)x glass of a TV screen using 30 keV electrons (cathode ray tube).
Estimate using the Bohr model (l ffi 18.985 Å; soft x-ray).

What follows is a more difficult final examination from Summer 2009; it still followed an ACS
Standardized Examination of 110 min and there were some very high percentile scores. Students
were allowed to start this part if they finished the ACS test early.

CHEM 304 Final Exam (Part II) Summer 2009 D. Shillady, Professor
(points) (Attempt all problems!) (90 min)

(10) 1. Derive the Michaelis–Menten equation for enzyme kinetics in the case of competitive
inhibition by species ‘‘I’’; define Km and show a graph (see Chapter 8).

(10) 2. Crystalline NaCl has a simple cubic structure with an NaCl distance of 2.76 Å. Calculate the
Bragg angle of the n¼ 2 LEED pattern for diffraction of 150 eV electrons by this NaCl

distance (sin (u) ¼ nh

mv2d
¼ 0:3625 (ans u ¼ 21:25�).

(10) 3. Adjust the length ‘‘L’’ of the Particle-in-a-Box’’ model to fit the first p! p* transition of
all-trans-hexatriene to the experimentally observed wavelength of 2510 Å (L ffi 7.29 Å).

(20) 4. Normalize the variational trial function F¼Ne�ar for the 1S state of the H atom and
show hEi is exact (non-relativistic) compared to the Bohr energy.

F ¼
ffiffiffiffiffi
a3

p

r
e�ar, r2 ¼ 1

r2
q
qr

r2
q
qr

� �
þ 0þ 0, hEiguess ¼

�Z2me4

2�h2
¼ E(Z, n ¼ 1)Bohr

 !

(10) 5. Use the Eyring Transition State theory to compute DS� and DH� at 258C for N2O5

decomposition if k(258C)¼ 3.46� 10�5=min and k(358C)¼ 13.5� 10�5=min
(DH�¼ 24.246 kcal=mol, DS�¼�5.76 cal=mole 8, note sign).
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(10) 6. In the far IR region the pure rotation spectrum of HCl shows adjacent lines=peaks at
286.1 and 306.1 cm�1. Use the rigid rotor model to estimate the bond length of
HCl; use MH¼ 1.008 g=mol and MCl¼ 35.00 for the 35

17Cl isotope (m¼ 1.629�10�24 g,
re¼ 1.31 Å).

(20) 7. The invariance of symmetry matrices under unitary transformation is the main principle
of point group theory. Show T�1MT¼Mdiag, T�1T¼ [1] and trace invariance of

M ¼
2 0 0
0 2 1
0 1 2

2
4

3
5 T ¼

1 0 0
0 1=

ffiffiffi
2
p

1=
ffiffiffi
2
p

0 1=
ffiffiffi
2
p �1= ffiffiffi

2
p

2
4

3
5, Mdiag ¼

2 0 0
0 3 0
0 0 1

2
4

3
5, Trace M ¼ 6

0
@

1
A

(10) 8. Qualitatively sketch the radial orbitals and angular shapes of the H atom 1S, 2S, 3S, 2P, 3P
and 3D orbitals. Compare the canonical 3D shapes to the Powell equivalent 3D orbitals.

STUDY, TEST, AND LEARN?

Next, we give the final examination for the CHEM 312 course at RandolphMacon College, which we
previously showed as RMC-Quiz #1. Again the final examination was cumulative but there was also a
special project to use PCLOBE to calculate the vibrational modes of a water molecule H-bonded with
a molecule of formic acid. This was of interest to the class because of ongoing research in the
Department regarding organic molecules trapped in ice and experimental IR spectra was available.
The final grade in this course was again dependent on a student’s average with the final examination or
the score on the final examination alone (scaled to 100), whichever is higher. There was no ACS test
on this occasion and the time limit was 180 min. The grades ranged from Aþ to Cþ so the test was a
challenge to some students, although the Aþ student had a perfect score. The Randolph Macon
College CHEM 311–312 courses are analogous to the VCU CHEM 303–304 but only chemistry
majors took the 312 course while other majors took only the 311 course so this is similar to what will
happen under the new ACS requirements with a smaller class taking the second semester.

Chemistry 312 Randolph Macon College Spring 2009 D. Shillady, Professor
(points) Final Examination (Attempt all problems!) (180 min)

(30) 1. Normalize the variational wave function c¼Ne�ar for the 1s state of the H atom and show
hEimin is exact! (See Chapter 16)

(30) 2. In the far IR region the pure rotation spectrum of HCl shows lines=peaks at 206.2 and
226.7 cm�1 (among others). Use the rigid rotor approximation to estimate the bond length
of HCl using MH¼ 1.0079 and MH¼ 35.0 g=mol. Assume the lines=peaks are adjacent
(re¼ 1.295 Å).

(25) 3. Compute the De Broglie matter wavelength of an electron ejected from Zn (Wf¼ 3.60 eV)
by a two-photon absorption of 4880 Å light from an Arþ laser (lDB ffi 10.07 Å).

(30) 4. Derive the formula for the energy of a ‘‘particle-on-a-ring,’’ normalize the wave function
and apply the ‘‘Perimeter Model’’ to anthracene (C14H10) to estimate the wavelength l of
the first p ! p* transition (453 nm).

(25) 5. Assuming the bond force constant k¼ 4.8� 105 dynes=cm is the same for H35Cl and H37Cl,
calculate D�n¼ (Dn=c) for the splitting in cm�1 of their vibrational frequencies IR spectra.
Use MH¼ 1.0079, MCl-35¼ 35.0 and MCl-37¼ 37.0 g=mol (D�n¼ 2.1915 cm�1).

(25) 6. Qualitatively sketch the radial orbitals and orbital shapes of the H atom 1s, 2s, 3s, 2p, 3p,
and 3d orbitals. Compare canonical and Powell equivalent 3d orbitals.
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(25) 7. Use the Bohr model to estimate the Auger x-ray wavelength from Si (Z¼ 14) on the inside
of a TV-cathode-ray-tube due to a 10,000 V electron beam (lx-ray ffi 6.2 Å).

(10) 8. If two eigenfunctions of the same Hermitian operator have different eigenvalues, prove the
eigenvalues are real numbers and the eigenfunctions are orthogonal (See Chapter 11).
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17 Electronic Structure
of Molecules

INTRODUCTION

In terms of ‘‘essentials’’ this topic may seem advanced but with the availability of fast personal
computers and some 50 years of development, quantum chemistry is now a standard aspect of
chemistry. As such, undergraduates should have some awareness of the standard methods and we
will use a program set up for personal computers (PCLOBE). There are a number of excellent
modern large scale quantum chemistry programs that will run on personal computers but they are
expensive and=or complicated to install. The main advantage of PCLOBE is that, while much of it is
obsolete for research, it is easy to install on Microsoft systems and very easy to use. Now that we
have a better understanding of where the H-atom orbitals come from, the next topic should be the
electronic structure of molecules. From Chapter 16, you should now have a better understanding of
the use of linear algebra for orbital calculations. This might have been an advanced topic 10 years
ago but today Hartree–Fock–Roothaan calculations are the foundation of more exotic methods; so
undergraduates need to be aware of what is now a basic method.

It is traditional to spend a lot of time on the H2 molecule, but it is our experience that class time
is limited and students want to understand how orbital calculations are used for molecules with
more structure than H2. On the other hand, we need to choose a small example to be able to fit the
program details into this text. Thus, we are going to briefly mention the Li atom and proceed
directly to the BH molecule which permits full printout of the results. We are going to take what
would have been the high road of ‘‘ab initio’’ methods 30 years ago. However, students may come
across vestiges of the ‘‘semiempirical’’ struggle to make progress in molecular quantum mechanics
when only limited computer resources were available (Figure 17.1). Today, personal computers
are more powerful than mainframe computers of the 1970s but a niche still lingers for the
application of approximate methods to very large molecules. Actually, a great deal of modern
research was guided and supplemented by semiempirical quantum chemistry prior to the avail-
ability of computers fast enough to make ‘‘ab initio’’ methods feasible. This was particularly true
in the use of pharmaceutical drug design. So let’s jump in to the deep water and grab hold of some
of the invaluable writings by Slater [1] as intellectual life savers. While Roberts molecular orbital
book [2] lured us to the surf, we hope that we can navigate deeper explanations with help from
Slater and Pople [3] when we try to understand the amazing derivation of the Roothaan-self-
consistent-field calculations (SCF) orbitals.

HARTREE–FOCK–ROOTHAN LCAO CALCULATIONS

Looking back at the pi-electron calculations, we motivated the linear combination of atomic orbitals
(LCAO) concept for electron orbitals, which spread over a whole molecule. We also have in hand
the polynomial functions for the radial functions of the H-atom. In the previous example for pi-
electrons, we used the variational principle to optimize the coefficients of the atomic orbitals in the
linear combinations. We have also observed that the H-atom model can be modified by varying
the value of the effective nuclear charge, Z, to model heavier elements. In 1930, Slater [4]
proposed deleting the radial nodes and small parts of the H atom orbitals to use functions of the
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form Rnl(r)¼Nrl e�zrYlm(u, f), which is only the largest part of the radial polynomial. In molecules,
the smaller parts of the H-atom radial orbitals are modified by the need to be orthogonal among
themselves in the presence of other atoms, so only the largest component of the H-atom orbitals
retain the main nature of the atomic environment. Slater proposed his own values for z which were
based on atomic scattering of x-rays; but they were only approximate. After computers became
available, a valuable paper by Clementi and Raimondi [5] used Slater’s functional form and revised
the z values by carrying out self-consistent-field calculations (SCF) on atoms in which they
optimized the z values. The main idea here is that if you are going to use the LCAO method for
molecules, the functions describing the atoms should be optimized first and then you build
molecular orbitals from the linear combinations of the ‘‘best’’ atomic functions. More recently,
the idea of atom-optimized basis sets has been extended to other functional forms and we will
consider examples using Gaussian orbitals in PCLOBE.

CHEMICAL EFFECTS IN ORBITAL SCREENING

A variational calculation can be done for H2 using a small computer program and it produces one
very interesting result in that the best value of z (the parametric form of the s exponent in the
hydrogenic radial function) is greater than the nuclear charge of H which is 1.0! The 1s exponent on
H can vary from 1.17 in H2 to more than 1.4 in highly acidic compounds. H is the only element in
which the 1s exponent is greater than the nuclear charge and the orbital acts as if it has been robbed

FIGURE 17.1 While semiempiricists struggled to catch up using spectroscopic data in approximate calcula-
tions, they were chasing these ‘‘ab initio’’ leaders in 1970. Here is Prof. Hugh Kelly (on the left), Dr. Enrico
Clementi (then at IBM) at the board and Prof. Per O. Lowdin (on the right) of Uppsala University and
Organizer of the Quantum Theory Project at the University of Florida in a 1970 Sanibel Meeting at a spartan,
but tropical, meeting place called Casa Ybel. Prof. Kelly is still known for one of the most accurate treatments
of the Be atom (four electrons). Dr. Clementi was the main author of IBMOL which was the first widely
distributed ab initio computer program for molecular quantum mechanics. Prof. Lowdin is famous for his
Lowdin Orthogonalization procedure but more so for organizing the annual Sanibel Meetings and Summer
Schools at which more than 5000 Physicists and Chemists have been trained in Quantum Chemistry. Prof.
Lowdin was awarded the Lavoisier Medal in Gold by the French Academy of Sciences in 1981, Chevalier of
the Legion of Honor in 1982, Niels Bohr Medal in 1987, and the Oscar Carlson Medal in Gold of the Swedish
Chemical Society in 1993. (By permission from the Quantum Theory Project of the University of Florida at
Gainesville, FL.)
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of electron density leaving only a core-spike of what had been the H1s orbital. While it might seem
that the H atom has more attraction for a shared electron, the situation is actually that the
neighboring atom in the bond pair has pulled electron density away from the H atom and so what
is left is described by a tight spike for the 1s orbital. In the case of acid compounds, you might
interpret the high screening constant for H as a ‘‘skinny’’ remainder of the 1s orbital after the anion
part of the compound has drained away a lot of the electron density from the H atom. That is why
the compound is acidic since there is less electron density shared by the H atom and so it leaves the
compound easily as a separate proton. If the Hz1s value is say 1.3 or 1.4 in a compound, it really
means that H atom has lost a lot of its electron density. In Slater’s early rules for such exponents,
every other element has the 1s screening constant of z1s¼ Z� 0.3 while in the Clementi–Raimondi
[5] values in Table 16.1 we see that z1s varies from 1.6875 in He to 17.5075 in Ar (Z¼ 18). Thus
Slater’s rule of a constant screening value of 0.3 does not hold exactly but the z1s value is less than
the Z value for all elements other than H (Table 17.1).

The 1s screening effect is caused by one of the electrons hiding or screening the full electrostatic
view of the positive nucleus by the other 1s electron. As the nuclear charge Z increases in heavier
elements the 1s orbitals are pulled in closer to the nucleus and the ability of one electron to screen
out the other electron is greater in a smaller confined space of the 1s orbital region. Thus we see the
screening increases in the Clementi–Raimondi 1s values as Z increases and the z1s value decreases.

Since there is a lot of interest in the C atom for organic molecules we should note that the best
single z value for the 2s orbital (1.6083) is higher than the value for the 2p orbitals (1.5679). This
means that the energies of the 2s and 2p orbitals are not degenerate in the C atom (the 2p set is still
degenerate) and in particular the lower exponent of the 2p orbitals means the 2p orbitals extend
a little further out from the nucleus compared to the 2s orbital which is slightly more compact.

TABLE 17.1
Selected Clementi–Raimondi Best-Single Zeta (z) Values
for Atomic Orbitals

Atom Z z1s z2s z2p z3s z3p

H 1 1.24a

He 2 1.6875

Li 3 2.6906 0.6396

Be 4 3.6848 0.9560

B 5 4.6795 1.2881 1.2107

C 6 5.6722 1.6083 1.5679

N 7 6.6651 1.9237 1.9170

O 8 7.6579 2.2458 2.2266

F 9 8.6501 2.5638 2.5500

Ne 10 9.6421 2.8792 2.8792

Na 11 10.6259 3.2857 3.4009 0.8358

Mg 12 11.6089 3.6960 3.9129 1.1025

Al 13 12.5910 4.1068 4.4817 1.3724 1.3552

Si 14 13.5745 4.5100 4.9725 1.6344 1.4284

P 15 14.5578 4.9125 5.4806 1.8806 1.6288

S 16 15.5409 5.3144 5.9885 2.1223 1.8273

Cl 17 16.5239 5.7152 6.4966 2.3561 2.0387

Ar 18 17.5075 6.1152 7.0041 2.5856 2.2547

Source: Clementi, E. and Raimondi, D. L., J. Chem. Phys., 38, 2686, 1963.
a The z value for H is an optimized average for the H2 molecule and other hydrides.
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This lends added credibility to the concept that 2p pi-orbitals are held less tightly than sigma orbitals
and that the pi-electrons can delocalize more easily.

MANY-ELECTRON WAVE FUNCTIONS

During the 1930s, a great deal of effort was put into what was called ‘‘Atomic Physics,’’ culminating
in the nuclear age of the 1940s. Along the way there was a lot of analysis of the emission spectra of
atoms. A typical (and very valuable) text of that era was by Condon and Shortley [6] which
tabulated and explained ways to carry out calculations on atoms to assign the spectral lines. The
equations developed in that text provide an excellent description of how complicated matrix
elements over large determinants can be reduced to specific integrals (see Appendix B). Slater
made another very important contribution in the 1930s when it was noted that wave functions
describing electrons in atoms needed to be ‘‘antisymmetric’’ with respect to interchanging any two
electrons. It was found that correct assignments for atomic spectral calculations had to involve
antisymmetric wave functions. Slater invented a compact way to write such a wave function as a
determinant of spin-orbital functions. In the LCAO formalism, one writes spatial orbitals as one of a
set of atomic orbitals multiplied by either an a or a b spin function and then places these ‘‘spin-
orbitals’’ into a determinant which has been multiplied by a normalization constant. You need to
remember that a determinant is a single number as different from a matrix which is an array of
numbers. When such a Slater-determinant is built up from functions that depend on coordinates like
(x, y, z) the whole determinant still has only one value for whatever (x, y, z) coordinates are used.

DETERMINANTAL WAVE FUNCTIONS FOR MANY-ELECTRON SYSTEMS

You can see that as the number of electrons increases the determinantal wave function will become
difficult to actually write on a page. However there is a simple pattern there.

C(1, 2, 3, . . ., n) ¼ N

c1(1)a(1) c1(1)b(1) c2(1)a(1) . . . cn(1)b(1)

c1(2)a(2) c1(2)b(2) c2(2)a(2) . . . cn(2)b(2)

. . . . . . . . . . . .

c1(n)a(n) c1(n)b(n) c2(n)a(n) . . . cn(n)b(n)

����������

����������
Note that you just write all the functions (spin-orbitals) in the wave function across a row with the
same electron but repeat the same orbital down a column with the different electrons. The rows and
columns can be interchanged but your choice must continue through the calculation. If any two rows
or columns are interchanged the determinant changes sign which satisfies the antisymmetry
requirement. The form of the determinant above is seldom shown in other texts or even research
papers because it is too big to write but you need to see it here to understand what follows. That big
determinant is too difficult to write for 42 electrons in benzene or 10 electrons in the water molecule
and just barely imaginable for the six electrons in BH which we are going to consider! Instead, most
texts write the condensed form recognizing that every term in the expanded determinant will consist
of a product of all the functions in the basis set used.

C(1, 2, 3, . . . n) ¼ N
X
P

(�1)PP c1(1)a(1)c1(2)b(2) . . .cn(n)b(nj Þj:

Again N is the normalization constant. On first encounter, one may ask, just what is ‘‘P’’?
The operation denoted by P is a ‘‘permutation’’ of the order of the orbitals in the basis set performed
in the mind of the reader. There is no ‘‘calculus operator P’’—it is just the operation you use in
your mind when you write down all the possible permutations that evolve from expanding
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the determinant. With this form of the wave function one can proceed to set up the expectation
integral for the energy and it usually takes a whole lecture to slowly write the matrix elements on
a (large) black=white board. The details are given by Condon and Shortley [6], by Pople and
Beveridge [3], by Trindle and Shillady [7] and here in Appendix B.

Example
Suppose we expand the determinant for three electrons in a Li atom using a basis of only 1sa, 1sb,
and 2sa.

C(1, 2, 3) ¼ 1ffiffiffiffi
3!
p

1sa(1) 1sb(1) 2sa(1)

1sa(2) 1sb(2) 2sa(2)

1sa(3) 1sb(3) 2sa(3)

�������
�������,

C(1, 2, 3) ¼ 1ffiffiffiffi
3!
p 1sa(1)1sb(2)2sa(3)½ 
 � 1sa(1)2sa(2)1sb(3)½ 
f

� 1sb(1)1sa(2)2sa(3)½ 
 þ 1sb(1)2sa(2)1sa(3)½ 

þ 2sa(1)1sa(2)1sb(3)½ 
 � 2sa(1)1sb(2)1sa(3)½ 
g:

Here the (1, 2, 3) order has been maintained and the alternating order of determinant expansion has
been used.

a b c
d e f
g h i

������
������ ¼ a

e f
h i

����
����� b

d f
g i

����
����þ c

d e
g h

����
���� ¼ a(ei� hf )� b(di� gf )þ c(dh� ge):

ATOMIC UNITS

We noted in Chapter 9 that when computer programs were first being written for electronic structure
problems in the 1960s, the physical constants were being updated rapidly. The Bohr radius was
believed to be 0.529167 Å in the 1960s, then 0.529172 Å in the 1970s, and more recently
0.529177 Å in the 1980s; so those changes effected published results in the scientific literature.
The latest value [8] is 0.52917720859 Å. A new system of units called ‘‘atomic units’’ was adopted
to avoid this problem. In atomic units c¼ eq¼ �h¼me¼ 1; so in these units the energy of a H atom is

E(n ¼ 1, Z ¼ 1) ¼ � Z2mee4q
2n2�h2

! � 1
2
¼ �0:5 units and the energy units were called hartrees in

honor of a team [9] that carried out many of the early SCF calculations on atoms in the 1930s. Today
we use 1 hartree¼ 27.21138386 eV [8]. Thus the Hamiltonian in atomic units (au) emphasizes the
mathematics, is independent of the latest values of the physical constants, and Rab is now measured
in bohrs. To make further progress we note

H ¼
Xn
i

�r2
i

2

� �
�
Xn
i

XN
K

ZK
riK

� �
þ
Xn
i>

Xn
j

1
rij
þ
XN
K>

XN
L

ZKZL
RKL

¼
Xn
i

fi þ
Xn
i>

Xn
j

gij þ
XN
K>

XN
L

ZKZL
RKL

that the kinetic energy terms and the nuclear attraction terms are called ‘‘one-electron operators’’ as
denoted by

Pn
i fi in the Hamiltonian for ‘‘n’’ electrons and ‘‘N’’ nuclei; these interactions turn out to
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be easy to compute (see Appendix C). On the other hand, all the interactions (and there are many!)
between two electrons,

P
i>

P
j gij, are called ‘‘two-electron operators’’ and they are difficult to

compute (see Appendix C) as well as being very numerous! Thus in atomic units and noting the
types of operators, we have

H ¼
Xn
i

fi þ
Xn
i>

Xn
j

gij þ
XN
K>

XN
L

ZKZL
RKL

:

For a water molecule we have 10 electrons and 3 nuclei but the number of two-electron interactions
is (n)(n� 1)=2¼ (10)(9)=2¼ 45 since each of the 10 electrons can interact with 9 other electrons but
each interaction is only counted as one interaction! Similarly, the repulsions between a nucleus with
charge ZN and another nucleus with charge ZM separated by distance RKL are only counted once since
two interacting nuclei only have one interaction but those terms are very easy to compute!

ROOTHAAN’S LCAO HARTREE–FOCK EQUATION

In the late 1920s and early 1930s, a team led by Hartree [9] formulated a ‘‘self-consistent-field’’
iterative numerical process to treat atoms. In 1930, Fock [10] noted that the Hartree-SCF method
needed a correction due to electron ‘‘exchange’’ and the combined method was known as the
Hartree–Fock SCF method. It was not until 1951 that a molecular form of the LCAO-SCF method
was derived by Roothaan [11] as given in Appendix B but we can give a brief outline here. The
Roothaan method allows the LCAO to be used for more than one atomic center and so the path was
open to treat molecules! Now, ‘‘all we have to do’’ is to carry out the integral for the expectation
value of the energy as

hEi ¼
ð
. . .

ð
C*(1, 2, 3, . . ., n)HC(1, 2, 3, . . ., n) dt1dt2 . . . dtnds1ds2 . . . dsn:

This turns out to be a tremendous problem keeping track of all the terms but it has been done [1,3] in
many texts which we will only summarize here. Note in particular that we have to integrate over the
spin functions as well as the spatial coordinates using simple rules.ð

a*ads ¼
ð
b*b ds ¼ 1 and

ð
a*b ds ¼

ð
b*a ds ¼ 0

Among the many permutations of theC*(1, 2, 3, . . ., n) and theC(1, 2, 3, . . ., n) there will be many
integrals in the long summation (there may be thousands of terms) of the general formð

ds1

ð
ds2

ð
dt1

ð
dt2 c1(1)a(1)c1(2)b(2) . . .½ 
* H c1(1)a(1)c1(2)b(2) . . .½ 


In many of these integrals there will be some misalignment of the order of the orbitals between
C*(1, 2, 3, . . ., n) andC(1, 2, 3, . . ., n) for that particular term of the two determinants; so the integral
will be zero by orthogonality, assuming the {ci} are orthogonal. However, if the order in the left and
right part of the integral match exactly or differ by only one orbital and the spins match, the result will

be
ð
fm fifndti ¼ mj fijnh i. Again when the order matches for all but two orbitals inC*(1, 2, 3, . . ., n)

andC(1, 2, 3, . . ., n) for a particular set of cross terms there can be four possible integrals which are

coupled by the gij two-electron operators resulting from the form of the
1
r12

� �
operator.

Much of the mathematics for the SCF process was derived for atoms using texts like Condon and
Shortly [6] but in 1951 Roothaan [11] solved the problem for molecules using the LCAO
philosophy. Instead of using just single orbitals such as 1sa in our example above for the
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Li atom, the LCAO concept says that C(1, 2, . . ., n) is built from many spin orbitals ci which are

linear combinations of basis functions fm. Thus ci ¼
PM

m cmifm. The original paper by Roothaan

[11] is a masterpiece but not easy reading, as is often the case with descriptions of new advances.
However, there is a succinct explanation given by Slater in a later text [1]. This is a difficult topic
but we will follow Slater’s description in the faint hope that it is understandable with the calculus we
have used so far. Since we will discuss the final equation in Poples [3] notation we will write Slater’s
derivation using Greek letters for basis functions and charge-density ‘‘(1� 1=2� 2)’’ rounded
parenthesis notation for the two electron integrals to merge with that notation as

(mn=ls) �
ðð

fm(1)fv(1)
1
r12

fl(2)fs(2)dt1dt2:

After collecting all the non-zero terms in the calculation of hEi ¼
ð
CHCdt, we find for just the

electrons (fixed nuclei)

hEi ¼
Xn
i

XM
m

XM
n

cmicni mj fijnh i þ
Xn
i>

Xn
j

XM
m

XM
n

XM
l

XM
s

cmicnic

ljcsj mn=lsð Þ � ml=nsð Þf g,

where we now have the energy in terms of the ci ¼
PM

m cimfm LCAO expansion of the LCAO basis
{fm}. Here we are using (11=22) notation for the g12 operator for N electrons and M basis functions.
The alternative h12j12i notation would mean

nkjpqh i ¼
ð ð

fn(1)f

k(2)

1
r12

fp(1)fq(2)dt1ds1dt2ds2,

where the complex conjugate orbitals are together on the left and the real function on the right. Since
some research papers use a h12j12i notation you always need to look at the definition a given author
uses! We also have to remind ourselves to integrate over the spins. The effect of the permutations in
the g12 two-electron terms is to produce a ‘‘coulomb term’’ (mn=ls) as well as the ‘‘exchange term’’

from the permutation as (ml=ns). These integrals have not yet been integrated over the spins which
will lead to the four cases treated in Ref. [3].

ELECTRON EXCHANGE ENERGY

Pople and Beveridge [3] give a beautiful analysis of exchange, seldom written anywhere else, but
we show the details in Appendix B. In the grand scheme of the detailed derivation you will be
looking at energy terms likeð ð

C*(1, 2, 3, . . . )
1
rij

� �
C(1, 2, 3, . . . ) dt1dt2ds1ds2:

Remember that C(1, 2, 3, . . . ) is a big determinant on both sides of the operator. All the terms for a
minimum basis treatment of the Li atom with only three electrons will fill some nine pages for the
open-shell (one unpaired electron) case. The smallest closed shell general case would be for the four
electron ground state of the Be atom. If this is taught in a classroom it might be possible to write out
just a few terms of the general case for something like the six electrons in the BH molecule on a
wide black=white board. You can easily write out all the terms for the two electrons in He but
unfortunately that is not the general case. With more than four electrons you could see the four
exchange terms shown in Appendix B as well as orbital products which do=do not match for the
other electrons. Assuming all the {ci} can be made orthonormal (they can by choice of the
expansion coefficients in ci ¼

PM
m cmifm) all the parts of the wave functions for electrons which

are not i or j will just integrate to factors of 1 when the gij part is nonzero, but you will be left with
the four possibilities shown in Appendix B that occur due to the permutations of the determinants
subject to the spin integration.
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As a result of spin orthogonality, only 1 2= Þð of the exchange terms are nonzero but they are
there! This was first pointed out by Fock [10] and was added as a correction to the method then
developed by Hartree [9]. Today this method is almost obsolete and modern methods tend to be
some form of ‘‘density functional theory, DFT’’ where the whole program is made much faster by
using numerical tricks and replacing the two-electron operators by carefully designed functions of
the electron density. However, after more than 20 years of research on DFT methods, the most
accurate calculations have been found to require at least some fractional amount of this so-called
‘‘Hartree–Fock Exchange’’ [12,13]; it is still a part of modern research! Further, the exchange
terms enter into the energy with a negative sign, so the phenomenon of exchange lowers the energy
and is necessary for the most accurate energy calculations.

THE HARTREE–FOCK–ROOTHAAN EQUATIONS FOR 2n ELECTRONS

As with the pi-electron model we want to treat the orbital coefficients as variation variables and use
something like the Clementi–Raimondi–Slater atomic orbitals for the basis functions, or at least
something like them which are easy to integrate. We want to minimize the energy by varying the
values of the cni but we also want to maintain the orthonormality of the linear combination of basis
functions as orthonormal one-electron orbitals. They are formed from linear combinations of basis

functions {fi} which may have nonzero overlap
ð
fmfndt ¼ Smn.

ð
ci cjdt ¼

XM
m

XM
n

cmicnj

ð
fmfndt ¼

XM
m

XM
n

cmicnjSmn ¼ dij:

Thus we use the idea of Lagrangian multipliers to remove from the minimization procedure that part
which might change the orthonormal nature of the one-electron orbitals {ci}. We therefore need the

derivative of
q

qcri
hEi �

X
i

X
j
lij
XM

m

XM

n
cmicnjSmn

h i
¼ 0 where lij are the Lagrangian multi-

pliers that prevent loss of orthonomality of the one-electron orbitals. We might as well take the
derivative with respect to cri to get rid of one of the potentially complex numbers. Remember, as for
the pi-orbital coefficients in Roberts treatment [2], the cri coefficients are the variational variables,
so we can take derivatives with respect to their value. Thus the constrained derivative of the energy

expression
q

qcri
hEi �

X
i

X
j
lij
XM

m

XM

n
cmicnjSmn

h i
¼ 0 uses

hEi ¼
Xn
i

XM
m

XM
n

cmicni m=f1=nð Þ þ
Xn
i>

Xn
j

XM
m

XM
n

XM
l

XM
s

cmicnic

ljcsj mn=lsð Þ � ml=nsð Þf g

to find

XM
n

cnj m=f1=nð Þ þ
Xn
j

XM
l

XM
s

cljcsj mn=lsð Þ � ml=nsð Þ½ 

( )

�
Xn
j

XM
k

cnjlijSmn ¼ 0:

Although the process is for an arbitrary cri, in effect it removes the summation over m and
summations associated with the index for electron i. As with the Hückel pi-electron derivation,
this is the minimization requirement for just one (cri) coefficient for the orbital of just one electron
(i) and just one equation in the rows of equations that form the system that leads to the Cayley–
Hamilton situation. From the pi-electron case we can see that this can be put into a matrix equation
where we will need to use diagonalization.
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There remains one very mysterious step. Note the subscripts on lij which implies that each
orbital ci (which we do not know yet) is dependent somehow on all the other cj to maintain
orthogonality to them as well as normalization. Recall that the big wave function C(1, 2, 3, . . . ) is a
determinant which is a single number at each (x, y, z) point in space and we know some sort of
unitary transformation [T]�1[lij][T ]¼ [lii]diag could be applied to the orbitals ci (if we knew them!)
which would not change the value of the overall wave function, but only make the lij interactions
diagonal. If we assume this has been done and solve the equation subject to that constraint we will
make it true! Thus we end up with an equation for all the electrons in a given basis set as a Cayley–
Hamilton problem to find the coefficients cni and from them find the energy once the coefficients are
known. A diagonal lii eliminates the

Pn
j lij for the overlap term and leads to

XM
n

cni m=f1=nð Þþ
Xn
j

XM
l

XM
s

cljcsj mn=lsð Þ� ml=nsð Þ½ 

( )

�
XM
n

cviliiSmn ¼ 0, for basis fm,

but the summation over j remains on the two-electron terms. Note that here we use (enforce mathe-
matically) lii¼ ei as the now diagonal Lagrangian multiplier in an energy equation so that these will
be assumed to be the one-electron orbital energies! So far we have not integrated over the spins.

Before we go further, note that the secular equation to solve for the cmi coefficients involves the
cmi coefficients; the answer depends on the answer! We will need to make a good guess at the orbital
coefficients and then iterate the calculation in some way to find convergence!

After integrating over the spins we need to vary the energy with respect to cni (and cni*) and define
a population matrix, Pls � 2

Pocc:
j cljcsj using the Aufbau Principle of filling the lowest energy

orbitals with spin-pairs up to the highest occupied orbital. As shown in Appendix B, we find the
working equations

P
n (Fmn � eiSmn)cni ¼ 0 for each cni leading to the Cayley-Hamilton secular

equation where Fmn ¼ Hmn þ
P

l

P
s Pls[(mn=ls)� 1=2(ml=ns)]. We can interpret this as a

one-electron equation for each electron where Hmn is the kinetic energy of that electron and the
attractive potential energy due to the positive nuclei and then Pls tells us how that electron is
repelled by and exchanges with other electrons.

PRACTICAL IMPLEMENTATION AND EXAMPLES

Quantum chemistry calculations are currently quite common and we recall the excitement this
author experienced when first reading Roberts ‘‘Notes on Molecular Orbital Theory’’[2] in the early
1960s. Therefore, we include some modern but simple examples here in the hope that the
amazement factor is still possible for undergraduates eager to learn up-to-date material. First we
can write down the main Hartree–Fock–Roothaan energy operator and at least interpret the various
terms. We have used Slater’s derivation [1] of the Roothaan LCAO form of the Hartree–Fock
equations but prefer Pople’s implementation [3] for computer code. First, the one-electron operator

in Pople’s notation is Hmn ¼ hmj � r
2

2
�PNuc

k

Zk
rk

� �
jni is called the core-Hamiltonian, as a one-

electron matrix. This part of the calculation is relatively simple and results in about 80% or more of
the total electronic energy. It is easy to compute and is a fixed matrix for a given framework of
frozen positions of the nuclei. The other 20% of the electronic energy comes from the wild scramble
of electrons trying to get into orbitals as attracted by the terms of the core-Hamiltonian but repelling
each other and exchanging with each other! Note that Pople [3] uses (11=22) notation as mn=lsð Þ �ð ð

fm(1)fn(1)
1
r12

fl(2)fs(2)dt1dt2. To some people this makes sense as a charge density (f*f)1

is interacting with another charge density (f*f)2 via Coulomb’s Law as

	
fmfn



1

	
flfs



2

r12
.

We noted above that the answer depends on the answer; so Pople defines a ‘‘population matrix’’
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(related to the first-order density matrix) as Pmn ¼
Pocc

i 2cmicni based on the Aufbau Principle where
the orbitals are ordered by lowest energy first and all the integrals are integrated over the spins so
that the spinless form of the Hartree–Fock–Roothaan equation is

FC ¼ SCE where Fmn ¼ Hmn þ
X
l

X
s

Pls mn=lsð Þ � 0:5 ml=nsð Þ½ 
 and Smn ¼
ð
fmfndt:

This adds meaning to the concept that we stand on the shoulders of intellectual giants! We have tried
to present an understandable derivation of Roothaan’s equation in Appendix B leaning on Slater’s
short form [1], and there is the final SCF equation (in Pople’s notation [3])!

Let us pause and discuss the meaning of the equation. We see a matrix form of the Schrödinger
equation in the nonorthogonal representation. The Hmn matrix is actually about 80% of the problem
and contains the kinetic energy of each electron and the attraction of each electron to all of the
nuclear charges. This is a one-electron model in terms of the weighting coefficients to be found in
the eigenvector columns of the C matrix. This problem can be solved easily by ignoring the two
electron terms for an initial guess of the final solution to begin iteration; usually on the values of the
calculated energy of each iteration. Now the main focus should be on what is happening in the two-
electron terms of the equation. The population matrix shown here as Pl,s is restricted to an even
number of electrons populating the lowest energy orbitals two at a time, assuming integration over
the spin integrals; so this equation is spinless at this point. This is the so-called ‘‘restricted Hartree–
Fock’’ (RHF) method (used in about 95% of all ground state calculations!). The matrix element for
the charge density (mn] is then integrated with charge density [ls) as weighted by Pl,s in a standard
Coulomb interaction. That would be all that is needed for a Hartree-SCF [9] calculation, but when
we add Fock’s [10] exchange term we have to include the second ‘‘exchange integral’’ which is
shown in Appendix B to be negative and only half as large as the coulomb term. In a computer
program most of the details are centered on the data processing of how to form this two-electron part
of the Fmn matrix. Then we only have to worry about how to solve the overall FC¼ SCE equation!

We know how to diagonalize a matrix now but the nonzero S matrix makes this more difficult.

FC ¼ SCE

Note that C is not symmetric and E must be last here when we have S as a nonunit matrix.
The solution to this is to find a matrix S�1=2 and then define a new C0 ¼ S1=2C matrix so that

C ¼ S�1=2C0. Then FS�1=2C0 ¼ SS�1=2C0E. Next multiply by S�1=2 from the left to obtain

S�1=2FS�1=2C0 ¼ S�1=2SS�1=2C0E ) F0C0 ¼ C0E where F0 ¼ S�1=2FS�1=2:

It should be noted that this leaves F0 symmetric and eligible for diagonalization. The strategy here is
to set up the product S�1=2SS�1=2 ¼ 1 and once S is simplified we just use some computer program
like the Jacobi algorithm to solve F0C0 ¼C0E to find the eigenvalues and the eigenvectors in C0. The
desired eigenvectors are found from C ¼ S�1 2= C 0. How do we get S�1 2= ? Recall that scalar
arithmetic applies to a diagonal matrix, so diagonalize the overlap matrix as [T]�1[S][T]¼ [S]diag.

Change each sii ! 1ffiffi
s
p

ii

and then reverse the transformation to go back to the original basis as

[T]
1ffiffi
s
p

ii

� �
diag

[T]�1 ¼ [S]�1 2= . We anticipate iteration but this operation only needs to be done once

and the [S]�1 2= matrix can be saved in computer memory for frequent use.
The traditional way to treat the long list of (mn=ls) integrals is to compute them once and save

them in a (large) file. There are a number of techniques to store and retrieve these integrals which
has a maximum number of almost M4 for M basis functions but usually the number is approximately
M3 depending on the shape of the molecule and the number of basis functions, if there is a threshold

376 Essentials of Physical Chemistry



for neglecting small integrals. PCLOBE neglects two-electron integrals less than 10�6 hartrees for
minimum basis sets but has a tighter threshold of 10�12 hartrees for the more accurate split basis sets
such as 6-31G**.

SCF ITERATION

For the first iteration we use Hmn ¼ hmj � r
2

2
�
XNuc

k

Zk
rk

� �
jni and choose an initial guess for the

orbitals by solving HC¼ SCE. Then we form Pmn ¼ 2
Pocc

i cmicni for the ‘‘population matrix’’
where integration over the spins leaves identical spatial orbital with two electrons and only the
lowest energy orbitals are ‘‘occupied.’’ The solution to the HC¼ SCE leaves the orbitals sorted with
the lowest energy first. Next we form the first Fock matrix using the formula
Fmn ¼ Hmn þ

P
l

P
s Pls mn=lsð Þ � 0:5 mn=lsð Þ½ 
. This usually requires some complicated com-

puter science algorithm to read the (mn=ls) values from the large file and fill them in to the Fock
matrix along with the proper population Pls value. When the Fock matrix (Fmn) is completed we
solve FC¼ SCE for a new C matrix and compute the electronic energy according to the spin
integrated energy formula where 1 2= Þð is used to only count the i� j interaction once.

hEielectronic ¼
X
m

X
n

PmnHmn þ 1=2ð Þ
X
m

X
n

X
l

X
s

PmnPls mn=lsð Þ � 1 2= Þ ml=nsð Þð 
½

Fortunately this can also be computed as hEielectronic ¼ (1=2)
P

m

P
n Pmn[Hmn þ Fmn]:

Thus an iterative scheme is set up as H ! C ! P ! F ! E1! C ! P ! F ! E2 ! C . . .
The iteration may require a number of special techniques to achieve convergence and may take

anywhere from 10 to 100 iterations depending on the convergence technique and the initial guess.
Upon electronic convergence the nuclear repulsion energy is added to the total.

GAUSSIAN BASIS SETS

Although many very talented people attempted to develop formulas for (mn=ls) using Slater type
orbitals (STO) optimized by Clementi and Raimondi [5], the results were discouraging and many
investigators turned their attention to a now famous paper by Boys [14] in 1950 (Figures 17.2
through 17.4). The formulas Boys derived can be written on a 300 � 500 card but require one special
function as we see in Appendix C. They have been tabulated by Shavitt [15] and take up less than a
page to write. The basic idea is to use simple Gaussian functions Ne�a(r�R)

2
where~R¼ (x, y, z) is the

center of the Gaussian orbital. We can see from Figure 17.5 that a single Gaussian is very poor near
the nucleus (r¼ 0), matches well near 1 bohr which is near a typical bond length and then is poor
again at larger values of r. Thus Gaussian orbitals are very poor representatives of the true
exponential close to a nucleus or far away but the integrals are easy to do for polyatomic molecules
and the description of electron density at nominal bond lengths is good.

The next improvement is to use a linear combination of Gaussians fitted to the STO shape, the so-
called STO-NG orbitals [16] where N is the number of Gaussian terms in the fitted linear
combination. Since 1951 there have been hundreds of research papers investigating various ways
to optimize linear combinations of Gaussians to atomic orbitals. Figure 17.6 shows an early
variational fit of three Gaussians to a H1s orbital and we can see that the fit is greatly improved
over just one Gaussian. Later orbitals were fit in a least-squares sense to the Clementi–Raimondi
orbitals or optimized variationally and today there is a whole technology for basis sets of s, p, d, f, g,
and even higher angular momentum orbitals in some cases.

Variationally (Chapter 16) it has been found that lower (better) energies are obtained if so-called
‘‘split basis sets’’ are used in which the outer component of the linear combination is allowed to be
optimized separately from the inner components which remain in fixed ratios as fitted to atoms.
The outer components can adjust variationally to a molecular environment. In PCLOBE one of the
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best basis sets stored in the program is the 6-31G** basis set. The inner 1s orbital is composed of six
Gaussians while the 2sp shell is made from four Gaussian components in which the inner three are
held fixed but the outer component adjusts to the molecular environment. One ‘‘*’’ indicates an
additional ‘‘polarization’’ basis that consists of an optimized set of 3d orbitals on the first row atoms.
The second ‘‘*’’ indicates that for H atoms there will be an optimized set of 2p polarization functions.
For very fast runs there is a very robust STO-3=2G basis which is the smallest Gaussian basis that
gives reliable molecular geometries although the energies it produces are poor (high).

One peculiarity of PCLOBE is that it uses an old technique which makes the evaluation of the
integrals simple (Appendix C). In PCLOBE the p-orbitals are made by putting Gaussian spheres on
opposite sides of the origin with opposite signs and d-orbitals are made by putting off-center
Gaussian spheres in cloverleaf-patterns. This greatly simplifies the integral evaluation but the orbital
shapes are not quite perfect fits to the spherical harmonic shapes. However, in a variational sense the
orbitals adjust quite well to molecular environments and the energies with these orbitals are
essentially equal to energies with spherical harmonic functions to within 10�6 hartrees. At one
time these orbitals were criticized as being the incorrect shape but we have refined the fits and
PCLOBE is probably the most refined program of its type relative to the basis functions.

FIGURE 17.2 Prof. John Clarke Slater (1900–1976) was a noted American physicist and theoretical chemist.
He is known for his definition of Slater-type-orbitals which led to the STO-NG Gaussian basis sets and the use
of determinants to guarantee antisymmetric wave functions for electrons. His writing is especially lucid and
among his many books are Quantum Theory of Matter (2nd Edn.) and Quantum Theory of Molecules and
Solids, Vols. 1, 2, 3, 4 published by McGraw-Hill. Here he is giving a lecture at an early Sanibel Meeting. Note
his famous r4 3= formula on the board, a formula which encouraged development of modern density functional
theory. (Photo by Prof. Sam Trickey of the Quantum Theory Project at the University of Florida in Gainesville.)
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In Figure 17.6, we see an improved linear combination of three Gaussian orbitals fitted var-
iationally to the H atom. A linear combination of Gaussians will always have difficulty representing
a 1s orbital at (r¼ 0) because the bell-shape of a Gaussian is flat at the top. Sambe [17] and others
have investigated the accuracy of up to 10 Gaussians in the linear combination and the Gaussian
exponents have been more thoroughly optimized. Here we show graphs of
c1s ¼ (0:15583039)e�(4:45)r

2 þ (0:21749787)e�(0:676)r
2
(0:11140671)e�(0:151)r

2
, with z¼ 1.0 and

cB2s ¼ (0:19822186)e�(0:180)r
2 þ (0:19822186)e�(8:99760584)r

2
as scaled to z¼ 1.5 for boron.

The energy of this three-Gaussian 1s mimic in Figure 17.6 is E¼ 0.496979 hartrees [17]. In the
related graph in Figure 17.7 we show a nodeless 2s-orbital from the BH calculation developed to
make PCLOBE faster. It uses the largest component of Sambe’s [17] 2s orbital (a¼ 0.020 for
zH2s¼ 0.5), which had a node in it due to the variational optimization. It is canceled at (r¼ 0) by a
second Gaussian with equal weight and the exponent optimized (a¼ 0.997339820289 for
zH2s¼ 0.5) to provide the same maxima as a STO 2s-orbital. Using this 2G-2S function reaps the
benefit of a good fit to the Sambe hydrogenic 2S in the important outer tail of the function. Also, the
SCF process and the S�1 2= orthogonalization will use the 1S function in the calculation to improve
the inner part of the 2S function while at the same time we can use known optimized scaling for
STO-2S orbitals. Finally, using fewer Gaussians for the 2S orbital really speeds up the calculation!

Scaling the Gaussians from the variational fit to the H atom is easy in the lobe basis. Once the
exponent is modified, the function is renormalized by dividing the coefficients by the square root of
the overlap of the total orbital with itself.

FIGURE 17.3 This a photograph of the 1962 participants in one of the first Sanibel Meetings. Front (left to
right): Arthur Frost, Roy McWeeny, Donald S. McClure, Art Freeman, Eli Burstein and Per O. Lowdin (the
Organizer). Back (left to right): Stig Flodmark,Gilda Loew, FrankHarris, Reuben Pauncz, Joop deHeer, Harrison
Shull, Inga Fischer-Hjalmars and John Pople. At the time of this picture John Poplemay have been best known for
hiswork elucidating the theory of nuclearmagnetic resonance in a now classic 1959 textwithW.G. Schneider and
H. J. Bernstein but he later became Sir John Anthony Pople, KBE, FRS (1925–2004), an English mathematician
who came to the United States in 1964. Although he regarded himself as a mathematician, theoretical chemists
considered him a leader among them and he received the Nobel Prize in chemistry in 1998 for his contributions to
theoretical chemistry. Probably because he was British, his scientific papers were written in excellent English and
this author found his papers far and away the most easily understandable. This author’s advice to a graduate
student is to read Pople’s papers on a given topic and if you do not understand that, other papers will be more
difficult! (By permission of the Quantum Theory Project at the University of Florida in Gainesville, FL.)
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FIGURE 17.5 The best single Gaussian (solid line) fit to the H1s wave function (dashed line).

FIGURE 17.4 Prof. Henry F. Schaefer III, Director of the Center for Computational Chemistry at the
University of Georgia. Professor Schaefer’s major awards include the American Chemical Society Award in
Pure Chemistry (1979), the American Chemical Society Leo Hendrik Baekeland Award (1983); the Schrödinger
Medal (1990); the Centenary Medal of the Royal Society of Chemistry (London, 1992); the American Chemical
Society Award in Theoretical Chemistry (2003). In 2003, he also received the annual American Chemical Society
Ira RemsenAward. The Journal of Physical Chemistry published a special issue in honor of Dr. Schaefer onApril
15, 2004. In 2009, the journal Molecular Physics published five consecutive issues in honor of Professor
Schaefer. He was elected a Fellow of the American Academy of Arts and Sciences in 2004. He was the recipient
of the prestigious Joseph O. Hirschfelder Prize of the University of Wisconsin for the academic year 2005–2006.
He became a Fellow of the Royal Society of Chemistry (London) in 2005. He was also among the inaugural class
of Fellows of the American Chemical Society, chosen in 2009. (With the permission of Prof. Schaefer.)
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Example
For the first term of the B2s orbital we assume that the Sambe exponent of 0.02 is for the H atom
orbital with an exponent of 0.5. Since the variable r is squared in the Gaussian exponent we ‘‘scale

the r-coordinate’’ by
1:5
0:5

� �2

(0:02) ¼ 0:180 and for the special exponent fitted to guarantee the

same radial maximum as a STO-2S function
1:5
0:5

� �2

(0:997339820) ¼ 8:97605838.

In a molecular environment the orbitals will orthogonalize due to S1 2= and the diagonalization in
FC¼ SCE. Nodes will form in the molecular orbitals as needed and each orbital is normalized
within PCLOBE.
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FIGURE 17.6 Variational fit of three Gaussians (solid line) to the H1s wave function (dashed line), from the
parameters given by [17].
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FIGURE 17.7 Special 2G-2s orbital optimized using the outer tail of the Sambe 4G-2s with just one
additional inner Gaussian optimized to produce the same radial maximum as a Slater-Type 2s function. Here
the orbital is scaled to z2s¼ 1.5 for the B2s orbital. Note vertical scale is much smaller for the 2s than the 1s in
Figure 17.6.
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Example, BH
Let us set up a calculation for a molecule slightly larger than H2. We select BH because it is more
covalent than LiH, may involve p-orbitals and, most importantly, the resulting matrices fit the page
size here! Experts will recognize this calculation as a very low level example by present standards and
yet it illustrates the full application of the Hartree–Fock–Roothaan equation we described above. As
complicated as this technology is, such a calculation is trivial in modern quantum chemistry; so we
have included it in the list of ‘‘Essential Physical Chemistry’’! Although BH is not a household item, it
is a real molecule; so we start with a small STO-3=2G basis and the geometry that is stored within the
standard library accompanying the program. A ‘‘minimum basis set’’ only uses the orbitals required to
accommodate all the electrons. In this case we need B1s, B2s, B2px, B2py, B2pz, and H1s so that our
matrices will be (6� 6) and we use orbital z values suggested for this basis by Pople’s group [16].
We only use a 2-Gaussian B2s and a 2G (four sphere) B2p set so that this is really a tiny basis set
requiring only 20 Gaussian spheres at carefully selected positions. The output has been edited and
spaced for this text but we can see how the 20 spheres are ‘‘contracted’’ into six linear combinations
that mimic STO orbital shapes. We see the program report on blocks of two-electron integrals having
been completed and the eigenvectors with eigenvalues of the initial guess H-core matrix.

We have deleted many of the SCF iterations because this was not an easy path to convergence. In
the initial guess orbitals, we see that orbital columns No. 3 and 4 are a degenerate pair of 2p-pi orbitals
on the boron atom while what would=should be the H1s hydride orbital is not filled because it is No. 5
in the initial guess order. Fortunately, the SCF process wandered slowly to a situation where the sigma
orbital (column) with a large H1s coefficient is lower than the degenerate pi-orbitals and the process
converges to place six electrons in the first three sigma orbitals with the empty 2p-pi orbitals left over
as ‘‘virtual orbitals’’. The virtual orbitals are not true excited states, they are left over ‘‘junk’’ since the
optimization focused only on the occupied orbitals. However, the virtual orbitals have to be orthog-
onal to the occupied orbitals by virtue of the diagonalization process so in fact they do resemble
excited orbitals, at least in symmetry.Wewill see later that calculating excited states accurately is even
more complicated and involves more determinants than just the one optimized in the SCF equations
but qualitatively the virtual orbitals look like excited states. As a result of the diagonal lii in the SCF
derivation, the one-electron energies are approximately the energy required to remove an electron
from its orbital (Koopman’s Theorem, see Ref. [1]). Even then this is only a one-determinant result and
better values for the ionization potential of a molecule require more elaborate calculations. However,
this one-electron SCF model is of higher credibility than the simpler Hückel pi-electron model [2].

In the calculation shown the bond length is optimized and the final geometry is treated to a
numerical estimate of the second derivative with respect to nuclear displacements (hessian), then the
hessian is mass-weighted according to the atomic weight of the atoms to obtain the multidimensional
force constant matrix using the method of E. B. Wilson shown in Figure 17.8 with other now-famous
chemists. The eigenvalues of the diagonalized force constant matrix are the vibrational frequencies
[18] along with small or imaginary frequencies. The imaginary frequencies are due to the square root
of a negative force constant. Usually this is due to small numerical errors in the hessian but it is
possible for a saddle-point potential to occur which produces imaginary frequencies. For N atoms
there are (3N� 6 or 3N� 5) vibrationalmotions (1 for BH) but the force constant matrix will beN�N
so the remaining eigenvalues and eigenvectors represent impure vibrations mixed with translation and
rotation. Possible errors are due to the numerical second derivatives in the force constant matrix and
the fact that the calculation is done at not quite the true minimum in the energy surface.

In PCLOBE an optimization threshold of ‘‘3’’ or an energy gradient of 10�3 hartrees=bohr only
optimizes the geometry, a ‘‘4’’ for a 10�4 gradient does the IR calculation but ‘‘5’’ for 10�5

hartrees=bohr is usually better. There is only one vibrational mode here.
The eigenvectors of the force constant matrix are themotions of the atoms in the normal mode [18].

Due to the diagonalization process, the normal modes are linearly independent normalized motions.
Here we separate the (x, y, z) motions of each atom in the eigenvector column. If this were a larger
molecule we could examine the (x, y, z) motions of each atom in the various modes, all we see here is
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that the atomsmove back and forth along the bond line, but themotion is greater for the less massive H
atom. The numerical evaluation of the second derivative is of low quality here and larger programs
have complicated analytical formulas for the second derivative but it was expedient to add the
numerical derivatives as a way to obtain qualitative vibrational frequencies for their educational
value. It is well known that a small basis set makes the energy potential wells too narrow [19] (there
are insufficient basis functions to describe small features of the overall wave function) and that makes
the calculated frequencies too high. A set of correction factors is available for various basis sets and
here we use the value of 0.89 which is an average value for the STO-3G basis.

The dipole moment is computed along with estimated charges using a formula developed by
Mulliken [20] for what is called ‘‘Mulliken population analysis’’ for bond orders and partial charges
on atoms. The dipole moment is a bona fide quantum mechanical expectation value as calculated
from this wave function, although SCF dipoles tend to be about 10% higher from a single
determinant wave function, and can be improved using a multideterminant wave function. If the
calculated partial atomic charges are placed at the positions of the atoms, the dipole moment
calculated from these point charges is usually much higher than the quantum mechanical expect-
ation value. The Mulliken analysis [20] is an ad hoc formula based on the orbital overlap and
usually gives a noninteger number qualitatively proportional to the bond strength. Because the
Mulliken analysis is based on dividing the overlap exactly in half it works well for covalent bonds,
but strains credibility for ionic situations. The Wiberg–Mayer [21,22] bond order is usually a
number much closer to what might be expected for a single or multiple bonds and the value of
0.9909 here is very close to the expected value of integer 1 for a single bond. A similar calculation
for the H2 molecule produces a Wiberg–Mayer bond order of 1.000 and a calculation for N2

produces a bond order of 3.000 so we favor the Wiberg–Mayer bond orders over the Mulliken
values (Table 17.2).

FIGURE 17.8 A relatively rare photograph of E. Bright Wilson attending the opening of the new Technion
Chemistry Building in Israel in 1962, from left to right: Sir Alexander Todd (1957 Nobel Prize in chemistry for
research on nucleotides, coenzymes, and vitamins), Robert Burns Woodward (reaching for his lighter) (1965
Nobel Prize in chemistry for many complex organic syntheses including cephalosporin and vitamin B12),
E. Bright Wilson (Harvard coauthor with L. Pauling of Introduction to Quantum Mechanics and coauthor of
Molecular Vibrations with J. C. Decius and P.C. Cross. This scholarly text contains the Wilson FG-matrix
method), and Sir Christopher Kelk Ingold, FRS (noted for introduction of modern electronic structure rules into
organic chemistry including mechanisms and is known for terms such as nucleophile, electrophile, inductive
and resonance effects, and such symbols as SN1, SN2, E1, and E2. He is regarded as one of chief pioneers of
physical organic chemistry). (Gift of John D. Roberts, Chemical Heritage Foundation Collections.)
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TABLE 17.2
Edited Output from PCLOBE for the BH Molecule

PCLOBE PCLOBE PCLOBE PCLOBE PCLOBE PCLOBE PCLOBE PCLOBE PCLOBE

Gaussian-Lobe Program for Organic Molecules
Adapted to Personal Computers by Don Shillady

Virginia Commonwealth University

Richmond, Virginia

1978, 30 May, 2003

Historical Foundations of Gaussian-Lobe Basis Sets

1. S. F. Boys, Proc. Roy. Soc. A200, 542 (1950).

2. H. Preuss, Z. Naturf. A, 11, 823 (1956).

3. J. L. Whitten, J. Chem. Phys., 39, 349 (1963).

4. I. Shavitt, Methods Comp. Phys., 2, 1 (1963).

5. H. Preuss, Mol. Phys., 8, 157 (1964).

6. H. Sambe, J. Chem. Phys., 42, 1732 (1965).

7. H. Preuss and G. Diercksen, Int. J. Quantum Chem., I, 605 (1967).

8. J. F. Harrison and L.C. Allen, Mol. Spectrosc., 29, 432 (1969).

9. F. Dreisler and R. Ahlrichs, Chem. Phys. Lett., 23, 571 (1973).

10. H. Le Rouzo and B. Silvi, Int. J. Quantum Chem., XIII, 297 (1978).

11. S. Y. Leu and C.Y. Mou, J. Chem. Phys., 101, 5910 (1994).

12. P. Otto, H. Reif, and A. Hernandez-Laguna, J. Mol. Struct. (Theochem), 340, 51 (1995).

BH.XYZ

THE AVAILABLE BASIS SETS ARE:

ibs¼0, STO-3=22G with Sambe 2P for H-Ne; STO-3=33* for Na-Ar

Nuclear Coordinates (Angstroms) from Input

Atomic Core X Y Z Basis

5. 0.000000 0.000000 0.000000 0

Z1s¼ 4.680 Z2s¼ 1.500 Z2p¼ 1.500

1. 1.225554 0.000000 0.000000 0

Z1s¼ 1.240 Z2s¼ 0.000 Z2p¼ 0.000

Basis Size¼6 and Number of Spheres¼20 for 6 Electrons

Distance Matrix in Angstroms

B H

B 0.0000 1.2256

H 1.2256 0.0000
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TABLE 17.2 (continued)
Edited Output from PCLOBE for the BH Molecule

Spherical Gaussian Basis Set

No. 1 alpha¼0.10445304Eþ03 at X¼ 0.000000 Y¼ 0.000000 Z¼ 0.000000 a.u.

No. 2 alpha¼0.15696662Eþ02 at X¼ 0.000000 Y¼ 0.000000 Z¼ 0.000000 a.u.

No. 3 alpha¼0.33783755Eþ01 at X¼ 0.000000 Y¼ 0.000000 Z¼ 0.000000 a.u.

No. 4 alpha¼0.18000000Eþ00 at X¼ 0.000000 Y¼ 0.000000 Z¼ 0.000000 a.u.

No. 5 alpha¼0.89760584Eþ01 at X¼ 0.000000 Y¼ 0.000000 Z¼ 0.000000 a.u.

No. 6 alpha¼0.29430000Eþ00 at X¼ 0.110667 Y¼ 0.000000 Z¼ 0.000000 a.u.

No. 7 alpha¼0.12690000Eþ01 at X¼ 0.110667 Y¼ 0.000000 Z¼ 0.000000 a.u.

No. 8 alpha¼0.29430000Eþ00 at X¼�0.110667 Y¼ 0.000000 Z¼ 0.000000 a.u.

No. 9 alpha¼0.12690000Eþ01 at X¼�0.110667 Y¼ 0.000000 Z¼ 0.000000 a.u.

No. 10 alpha¼0.29430000Eþ00 at X¼ 0.000000 Y¼ 0.110667 Z¼ 0.000000 a.u.

No. 11 alpha¼0.12690000Eþ01 at X¼ 0.000000 Y¼ 0.110667 Z¼ 0.000000 a.u.

No. 12 alpha¼0.29430000Eþ00 at X¼ 0.000000 Y¼�0.110667 Z¼ 0.000000 a.u.

No. 13 alpha¼0.12690000Eþ01 at X¼ 0.000000 Y¼�0.110667 Z¼ 0.000000 a.u.

No. 14 alpha¼0.29430000Eþ00 at X¼ 0.000000 Y¼ 0.000000 Z¼ 0.110667 a.u.

No. 15 alpha¼0.12690000Eþ01 at X¼ 0.000000 Y¼ 0.000000 Z¼ 0.110667 a.u.

No. 16 alpha¼0.29430000Eþ00 at X¼ 0.000000 Y¼ 0.000000 Z¼�0.110667 a.u.

No. 17 alpha¼0.12690000Eþ01 at X¼ 0.000000 Y¼ 0.000000 Z¼�0.110667 a.u.

No. 18 alpha¼0.73328489Eþ01 at X¼ 2.315961 Y¼ 0.000000 Z¼ 0.000000 a.u.

No. 19 alpha¼0.11019426Eþ01 at X¼ 2.315961 Y¼ 0.000000 Z¼ 0.000000 a.u.

No. 20 alpha¼0.23716991Eþ00 at X¼ 2.315961 Y¼ 0.000000 Z¼ 0.000000 a.u.

Contracted Orbital No. 1

1.60447595*(1) 2.20815846*(2) 1.18220933*(3)

Contracted Orbital No. 2

0.19822186*(4) �0.19822186*(5)

Contracted Orbital No. 3

1.87064030*(6) 1.11225426*(7) �1.87064030*(8) �1.11225426*(9)

Contracted Orbital No. 4

1.87064030*(10) 1.11225426*(11) �1.87064030*(12) �1.11225426*(13)

Contracted Orbital No. 5

1.87064030*(14) 1.11225426*(15) �1.87064030*(16) �1.11225426*(17)

Contracted Orbital No. 6

0.21882501*(18) 0.30115771*(19) 0.16123456*(20)

***** Nuclear Repulsion Energy in au¼ 2.15893061757377 *****

(continued)
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TABLE 17.2 (continued)
Edited Output from PCLOBE for the BH Molecule

Initial-Guess-Eigenvectors by Column

The solution to the secular equations is a modified form

of the routines HDIAG and EIGEN given in the text by

P.O. Offenhartz in ‘‘Atomic and Molecular Orbital Theory’’,

1970, originally written by F. J. Corbato and M. Merwin at

M.I.T. We have modified the routines to use less memory

via the symmetric nature of the H-matrix.

#At-Orb 1 2 3 4 5 6

1 B 1s 0.970 �0.011 0.000 0.000 �0.254 �0.174
2 B 2s 0.142 �0.028 0.000 0.000 0.754 0.944

3 B 2px 0.027 0.861 0.000 0.000 �0.339 0.752

4 B 2py 0.000 0.000 �0.981 �0.196 0.000 0.000

5 B 2pz 0.000 0.000 0.196 �0.981 0.000 0.000

6 H 1s �0.060 0.247 0.000 0.000 0.409 �1.276

One-Electron Energy Levels

E(1)¼ �9.722037579344
E(2)¼ �2.354649254845
E(3)¼ �2.229474929327
E(4)¼ �2.229474929327
E(5)¼ �1.910839316872
E(6)¼ �1.048994859272

(1, 6= 6, 6) are done.

(2, 6= 6, 6) are done.

(3, 6= 6, 6) are done.

(4, 6= 6, 6) are done.

(5, 6= 6, 6) are done.

(6, 6= 6, 6) are done.

Block No. 1 Transferred to Disk=Memory

The Two-Electron Integrals Have Been Computed

The construction of the Fock matrix will use the

algorithm of Preuss and Diercksen, Int. J. Quant. Chem.

I, p605, 1967 as modified here to merge with the other

routines of the PCLOBE program.

Electronic Energy¼ �25.5720869058 a.u., Dif.¼ 25.572086905840

Electronic Energy¼ �25.5777791182 a.u., Dif.¼ 0.005692212328

Electronic Energy¼ �26.0140297726 a.u., Dif.¼ 0.436250654482

Electronic Energy¼ �26.0164143999 a.u., Dif.¼ 0.002384627271

Electronic Energy¼ �27.0336901449 a.u., Dif.¼ 0.000000000001

Iteration No.145 Energy Second Derivative ¼�0.00000000000036
alpha¼0.900000

Electronic Energy¼ �27.0336901449 a.u., Dif.¼ 0.000000000000
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TABLE 17.2 (continued)
Edited Output from PCLOBE for the BH Molecule

Iteration No.146 Energy Second Derivative ¼�0.00000000000016
alpha¼0.900000

Electronic Energy¼ �27.0336901449 a.u., Dif.¼ 0.000000000000

Iteration No.147 Energy Second Derivative ¼�0.00000000000009
alpha¼0.900000

Electronic Energy¼ �27.0336901449 a.u., Dif.¼ 0.000000000000

Iteration No.148 Energy Second Derivative ¼�0.00000000000005
alpha¼0.900000

Electronic Energy¼ �27.0336901449 a.u., Dif.¼ 0.000000000000

##### Total Energy¼ �24.8747595273 hartrees #####

Virial Ratio¼�<E>=<T>¼0.985615

One-Electron Energy Levels

E(1)¼ �7.530946193339
E(2)¼ �0.597487711549
E(3)¼ �0.281512715999
E(4)¼ 0.243234519411

E(5)¼ 0.243234519411

E(6)¼ 0.666414452060

SCF spin-Orbitals for 3 Filled Orbitals by Column

#At-Orb 1 2 3 4 5 6

1 B 1s 0.993 0.164 0.136 0.000 0.000 �0.070
2 B 2s 0.037 �0.603 �0.780 0.000 0.000 0.713

3 B 2px 0.007 �0.231 0.561 0.000 0.000 1.027

4 B 2py 0.000 0.000 0.000 �0.977 �0.213 0.000

5 B 2pz 0.000 0.000 0.000 0.213 �0.977 0.000

6 H 1s �0.009 �0.471 0.431 0.000 0.000 �1.205

Using Schlegel-Gradient Equations, see:

Pople, Krishnan, Schlegel and Binkley,

I.J.Q.C. Symp. 13, p225 (1979); equation (21).

Varying six coordinates by 0.000100 until RMS-norm¼0.0001000 hartrees=bohr

The construction of the Fock matrix will use the

algorithm of Preuss and Diercksen, Int. J. Quant. Chem.

I, p605, 1967 as modified here to merge with the other

routines of the PCLOBE program.

(continued)
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TABLE 17.2 (continued)
Edited Output from PCLOBE for the BH Molecule

##### Total Energy¼ �24.8747595273 hartrees #####

Virial Ratio¼�<E>=<T>¼0.985615

Atom X(Ang.) Y(Ang.) Z(Ang.) dE=Dx dE=dY dE=dZ

1 0.000000 0.000000 0.000000 �0.004641 0.000002 0.000002

2 1.225554 0.000000 0.000000 0.004646 0.000002 0.000002

Minimization No. 1 RMS Gradient¼0.0124093 hartrees=bohr

�
�
�

##### Total Energy¼ �24.8748901469 hartrees #####

Virial Ratio¼�<E>=<T>¼ 0.985374

Atom X(Ang.) Y(Ang.) Z(Ang.) dE=dX dE=dY dE=dZ

1 0.007725 �0.000004 �0.000013 �0.000029 0.000002 0.000001

2 1.217794 �0.000016 �0.000007 0.000035 0.000001 0.000002

Minimization No. 12 RMS Gradient¼0.0000855 hartrees=bohr

##### Total Energy¼ �24.8748901504 hartrees #####

Virial Ratio¼�<E>=<T>¼ 0.985374

GEOMETRY CONVERGED

CHEMSITE RESTART COORDINATES, COPY AND PASTE INTO INPUT FILE *.CTA

B 0.00774 �0.00001 �0.00001
H 1.21777 �0.00002 �0.00001

MOLUCAD RESTART COORDINATES, COPY AND PASTE INTO INPUT FILE *.XYZ

B 0.007742 �0.000006 �0.000014
H 1.217773 �0.000016 �0.000008

Distance Matrix in Angstroms

B H

B 0.0000 1.2100

H 1.2100 0.0000
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TABLE 17.2 (continued)
Edited Output from PCLOBE for the BH Molecule
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VIBRATIONAL ANALYSIS
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����������������������������������������������������������������
����������������������������������������������������������������

Approximate Energy Second-Derivative Matrix

1 2 3 4 5 6

1 0.307Eþ00 0.638E-04 0.682E-04 �0.308Eþ00 0.692E-04 0.650E-04

2 0.638E-04 0.851E-03 0.711E-08 0.693E-04 0.897E-03 0.266E-06

3 0.682E-04 0.711E-08 0.864E-03 0.651E-04 0.238E-06 0.846E-03

4 �0.308Eþ00 0.693E-04 0.651E-04 0.307Eþ00 �0.690E-04 �0.644E-04
5 0.692E-04 0.897E-03 0.238E-06 �0.690E-04 0.851E-03 0.149E-06

6 0.650E-04 0.266E-06 0.846E-03 �0.644E-04 0.149E-06 0.864E-03

Mass-Weighted Force Constant Matrix

1 2 3 4 5 6

1 0.284E-01 0.591E-05 0.631E-05 �0.933E-01 0.210E-04 0.197E-04

2 0.591E-05 0.787E-04 0.657E-09 0.210E-04 0.272E-03 0.807E-07

3 0.631E-05 0.657E-09 0.799E-04 0.197E-04 0.721E-07 0.256E-03

4 �0.933E-01 0.210E-04 0.197E-04 0.305Eþ00 �0.685E-04 �0.639E-04
5 0.210E-04 0.272E-03 0.721E-07 �0.685E-04 0.844E-03 0.148E-06

6 0.197E-04 0.807E-07 0.256E-03 �0.639E-04 0.148E-06 0.857E-03

Normal Modes Relative to Optimized Geometry

Ordered Atom-1(x,y,z),Atom-2(x,y,z),... ...

Including Rotational and Translational False Modes

1 2 3 4 5 6

1 0.293 0.003 �0.003 0.100 �0.090 0.947

2 0.000 0.021 �0.303 0.090 �0.943 �0.100
3 0.000 0.287 0.019 0.948 0.100 �0.092
4 �0.956 0.001 �0.001 0.030 �0.027 0.290

5 0.000 0.064 �0.951 �0.029 0.301 0.028

6 0.000 0.956 0.065 �0.285 �0.030 0.024

(continued)
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TABLE 17.2 (continued)
Edited Output from PCLOBE for the BH Molecule

Normal Mode Eigenvalues (hartrees=(amu*bohr

<

2))

0.333573 0.000934 0.000931 0.000004 �0.000007 �0.000115

Harmonic Vibrational Frequencies and Corrections

J.A. Pople et. al. Int. J. Quantum Chem. S15, 269 (1981)

We apply 3–21G factor of 0.89 to any basis set initially.

(K Newtons=cm; frequency 1=cm ; 0.89�1=cm)

(5.193368 ; 2968.93 ; 2642.34)

(0.014537 ; 157.08 ; 139.80)

(0.014496 ; 156.85 ; 139.60)

(0.000066 ; 10.57 ; 9.41)

(�0.000106 ; Imag 13.39 ;Imag 11.92)

(�0.001788 ; Imag 55.10 ;Imag 49.04)

Imaginary frequencies (Imag) indicate either an

insufficient optimization or a less complete basis set.

Try further optimization and=or a larger basis set.

##### Total Energy¼ �24.8748901504 hartrees #####

Virial Ratio¼�<E>=<T>¼ 0.985374

Reference State Orbitals for 3 Filled Orbitals by Column

# At-Orb 1 2 3 4 5 6

1 B 1s 0.993 0.163 �0.136 0.000 0.000 �0.070
2 B 2s 0.038 �0.595 0.785 0.000 0.000 0.730

3 B 2px 0.007 �0.234 �0.561 0.000 0.000 1.036

4 B 2py 0.000 0.000 0.000 0.775 0.632 0.000

5 B 2pz 0.000 0.000 0.000 0.632 �0.775 0.000

6 H 1s �0.009 �0.474 �0.426 0.000 0.000 �1.224

Dipole Moment Components in Debyes

Dx¼1.247953 Dy¼�0.000005 Dz¼�0.000002

Resultant Dipole Moment in Debyes¼1.247953

Computed Atom Charges

Q(1)¼ 0.096 Q(2)¼ �0.096
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TABLE 17.2 (continued)
Edited Output from PCLOBE for the BH Molecule

Orbital Charges

1.998510 1.830296 1.075670 0.000000 0.000000 1.095525

Mulliken Overlap Populations

#At-Orb 1 2 3 4 5 6

1 B 1s 2.063 �0.061 0.000 0.000 0.000 �0.003
2 B 2s �0.061 1.943 0.000 0.000 0.000 �0.052
3 B 2px 0.000 0.000 0.738 0.000 0.000 0.337

4 B 2py 0.000 0.000 0.000 0.000 0.000 0.000

5 B 2pz 0.000 0.000 0.000 0.000 0.000 0.000

6 H 1s �0.003 �0.052 0.337 0.000 0.000 0.813

Total Overlap Populations by Atoms

B H

B 4.6222 0.2823

H 0.2823 0.8133

Wiberg-Mayer W-matrix

#At-Orb 1 2 3 4 5 6

1 B 1s 1.999 0.016 0.062 0.000 0.000 �0.052
2 B 2s 0.016 1.830 �0.652 0.000 0.000 0.540

3 B 2px 0.022 �0.241 1.076 0.000 0.000 0.766

4 B 2py 0.000 0.000 0.000 0.000 0.000 0.000

5 B 2pz 0.000 0.000 0.000 0.000 0.000 0.000

6 H 1s �0.026 0.284 1.092 0.000 0.000 1.096

Wiberg-Mayer Bond Orders Between Atoms

(See Chem. Phys. Letters, v97, p270 (1983))

B H

B 8.8181 0.9909

H 0.9909 1.2002

********* NORMAL FINISH OF PCLOBE *********

(Use file lobe.xyz for RasMol or Viewerlite display.)
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At present PCLOBE only has limited graphical output for RASMOL [23] so we present some
results from the SPARTAN program [24] which provides excellent graphical output. The results
shown are from a calculation using a slightly bigger basis set, the so-called 3-21G basis and a
much bigger basis called 6-31G(d,p). The 6-31G(d,p) basis is very interesting in that it includes
a set of 3d orbitals on the B atom and a set of 2p orbitals on the H atom! These are called
‘‘polarization functions’’ which allow the SCF process to refine the shape of the wave function
by incorporating small amounts of the additional shapes into the ground state description. These
basis uses functions of the form Nxlymzne�ar

2
, the so-called Cartesian Gaussian type orbitals

(GTO). There is similarity in that both the Gaussian lobe orbital (GLO) basis and the GTO basis
only use a single 3G-1s Gaussian expansion for the H atom as well as for the B1s orbital in the
3-21 set but a 6G 1s representation in the 6-31G(d,p) representation. While the GLO basis uses
four off-axis Gaussian spheres for the 2p orbitals, the GTO basis uses a 2sp shell of a fixed set
of 2 Gaussians with a third outer tail Gaussian free to be optimized for both the 2s and 2p
orbitals on the Boron atom. In principle, the 3-21G basis should produce better results than the
PCLOBE 3=2G basis because the 2-1G part of the 3-21G basis has more functions and more
variational flexibility. In Figures 17.9 (a–h) we show graphical results only for the better
6-31G**¼ 6-31G(d,p) basis set.

DIPOLE MOMENT OF BH

One comment can be made regarding the dipole moment we have calculated here as 1.247953 Debye
using the tiny 3=2G basis in PCLOBE. We do not expect the calculated properties to be very accurate
in this tiny basis and the energy is lower (better) with the 3-21G basis. The 3-21G and 6-31(d,p)
dipoles are higher as well. The 3G1s orbitals are essentially the same in the PCLOBE 3=2G basis and
the 3-21G basis, so the lower energy of the 3-21G calculation is due to more Gaussians in the 2s
orbital and the variational flexibility of the 2-1 split. While there is no known experimental value for
the dipole moment of BH, a thorough calculation by Halkier, Klopper, Helgaker, and Jorgensen
found a dipole moment of 1.27� 0.21 D [25]. This sort of comparison of results should converge to
what is called the Hartree–Fock limit when very large basis sets are used. However, the ‘‘SCFmodel’’
assumes each electron moves in the ‘‘frozen average field’’ of all the electrons and there is an energy
error of about 1% due to the fact that the motion of the electrons is dynamic and more complicated,
that is, ‘‘correlated.’’Dipole moments are also higher by about 10% in the Hartree–Fock limit of very
large basis sets. This is what has led to other improved methods and the modern use of the DFT which
tries to correct these small errors. Although qualitative trends from SCF calculations are very useful,
absolute thermodynamic energies are difficult to obtain due to the correlation error and research
continues to try to solve this problem. We note a severe numerical condition here

1 hartree ¼ 27:21138386 eV(1:602176487� 10�19C)(6:0221417023=mol)=(4:184 J=cal)

so 1 hartree¼ 627.509 kcal=mol and the reciprocal produces 1 kcal=mol ffi 1.5936� 10�3

hartrees¼ 0.0015936 hartrees � 0.002 hartrees. As most thermochemical measurements can be
measured to within 1 kcal=mol, this means that in order to reach ‘‘chemical accuracy’’ we need to be
sure of the calculated energy to within 0.001 hartrees!

This level of accuracy is the desired goal in quantum chemistry but you can now realize it is a
very demanding goal which is seldom reached! (Table 17.3).

EXCITED STATES OF BH

The vast majority of quantum mechanical calculations are on the ground state of molecules. Calcula-
tions of excited states of molecules are still a research frontier but for small molecules very complicated
multideterminantal wave functions can be used to obtain accurate calculations of the energies of
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excited states as a function of bond stretching to dissociation into atoms. Early ab initio calculations
by Harrison and Allen on BH [27], triplet-CH2 [28] and the spin resonance of triplet-CH2 [29]
added credibility to quantum chemistry calculations and recently Harrison has updated the BH
calculation with improved MCSCF results using MOLPRO [30]. The method is described as a
multi-configurational-self-consistent-field (MCSCF) in a complete-active-space (CASSCF) which
means that the orbitals have been optimized for all of the determinants simultaneously. The ‘‘complete
active space’’ means that all possible permutations of orbital occupancy have been included from a
selected few low-lying excited configurations. Another awesome possibility of a ‘‘complete configur-
ation interaction’’ is inclusion of all possible orbital occupancies in all orbitals which is seldom carried
out due to the size and difficulty of the problem. When you say ‘‘Complete CI’’ it should be in an echo
chamber! (Figure 17.9).

We cannot give the details here but wemention this to indicate that in spite of the tedious derivation
for optimizing just one determinant, it should be clear that even more sophisticated methods are
needed for excited states. Since the virtual (empty) orbitals from the SCF process are orthogonal to the
occupied orbitals, other determinants can be built by deleting one or more orbitals from the SCF
determinant and replacing them by virtual orbitals to make new determinants. Then a further
variational Cayley–Hamilton calculation is carried out for HC¼ SCE where now H is the Hamilto-
nian expressed in a linear combination of determinants and the eigenvector coefficients in C are the
weights of the added determinants. PCLOBE can do this ‘‘Configuration Interaction’’ if the bubble
marked Boys–Reeves Configuration Interaction is clicked to use up to 200 spin-projected configur-
ations for arbitrary spin multiplets. However, the next question is whether the orbitals are optimum for
the excited determinants and PCLOBE only does a limited optimization. Some minor improvements
can be obtained if the ‘‘Natural Orbitals’’ are iterated 2 or 3 times but that is not a true MCSCF
optimization. Natural orbitals are those orbitals which make the one-electron population matrix (in
the molecular orbital basis) diagonal but this does not include the important two electron terms. The
MCSCF results from Harrison using the MOLPRO [30] program include full optimization of the
orbitals as well as the weighting of the added determinants (Figures 17.10 and 17.11).

MESOIONIC BOND ORDERS

One of the most interesting conjectures posed in Coulson’s ‘‘Valence’’ [31] concerned the dilemma
of how to describe the bonding in 3-methyl sydnone and related mesoionic compounds. Often,
synthetic chemists bypass this dilemma and simply draw a ring in the heterocyclic structure with a
plus sign and then indicate a negative carbonyl oxygen atom. Some valence bond diagrams can be
drawn but they also use separated charges (Figure 17.12). That rationalizes the high dipole moment
of these compounds but is an oversimplification of the bonding. This question has been
addressed [32] using methods more sophisticated than the single determinantal method used here
but without the benefit of the Wiberg–Mayer Bond Order analysis. We can now do a single
determinantal treatment using PCLOBE as a homework problem with PCLOBE.

We will see a larger-than-usual C–N bond across the ring indicating a latent three-membered ring.
Coulson considered this bond but rejected it as unlikely due to its length but later experiments added

TABLE 17.3
Electronic Energy and Dipole Moment of BH for Selected Basis Sets

Basis Set Energy (Hartrees) Dipole (Debyes) Bond Length (Å)

PCLOBE 3=2G �24.874890 1.248 1.2100

GAUSSIAN09 3-21G [26] �24.976803 1.595 1.2287

GAUSSIAN09 6-31G(d,p) �25.119238 1.495 1.2271
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(a)

(b)

(c)

FIGURE 17.9 (a) A wireframe surface for the LUMO orbitals using the GTO 6-31G(d,p) basis in the
SPARTAN program for the surface of the wave function of 0.032. There are actually two of these p-orbitals
perpendicular to the B–H bond and they are identical but in different planes. Note there are 2p orbitals on the
H atom in this basis set so the LUMO extends slightly toward the H atom but the orbital is mainly represented
by 2p orbitals on the boron atom. What looks like a plus sign to the right of the H atom is the positive end of a
dipole moment arrow depicted by the SPARTAN program. All the 17-9 plots were graciously provided by Prof.
Carl Trindle of the Chemistry Department of the University of Virginia. (b) Both the degenerate unoccupied
LUMO 1p orbitals are identical except one is in the xz plane and the other is in the yz plane with the BH bond
along the x-axis. This is the contour diagram from a higher quality 6-31G(d,p) basis set using SPARTAN which
includes 3d orbitals on the B atom and 2p orbitals on the H atom. We might expect to see some small
contribution of the H2p orbitals but the contours seem to indicate almost total B2p orbitals. (c) This is the
wireframe surface at 0.032 total wave function for the HOMO 3s.
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(d)

(e)

(f)

FIGURE 17.9 (continued) (d) This is the contour diagram for the 3s HOMO orbital using the better 6-31G
(d,p) basis set with the SPARTAN PROGRAM. The tendency for the H atom to be like a hydride ion is more
noticeable here. (e) This is the wireframe surface of the 2s orbital at a value of 0.032 using the 6-31G(d,p) basis
set with the SPARTAN program. Here we see the wave function shifted more to the H atom. This is mainly a
linear combination of the B2s and H1s orbitals. (f) This is the contour diagram for the 2s orbital which shows a
shift of the wave function toward a higher contribution of the H 1s orbital but there is no node between B and
H; so this is a covalent sharing situation.

(continued )
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(g)

(h)

FIGURE 17.9 (continued) (g) Here we see a very tight orbital which is almost 100% 1s on the boron atom.
The wireframe surface value is 0.032 and the results are from the 6-31G(d,p) calculation using the SPARTAN
program. A slight distortion toward the H atom is barely noticeable and once again the plus tail of the dipole
moment arrow definitely shows that most of the electron is associated with the B atom. (h) This is the contour
diagram for the 1s orbital which is almost entirely B1s with no evidence of any participation by the H1s orbital.
This is from the 6-31G(d,p) calculation using the SPARTAN program and the B1s orbital is made up of six
Gaussian components for a better representation of an exponential 1s function. The H1s function is a linear
combination of only three Gaussians and the nuclear charge of þ5 on B compared to only þ1 on H results in
this lower energy orbital being essentially the atomic B1s orbital. (All the 17-9 plots were graciously provided
by Prof. Carl Trindle of the Chemistry Department of the University of Virginia.)
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FIGURE 17.10 Excited states of BH calculated using a multi-configurational-self-consistent-field (MCSCF)
complete-active-space method using the MOLPRO program, the state-of-the-art!
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credibility to the idea. We also see the expected weakening of the carbonyl bond to less than 2 but at
about 1.84 it is still essentially a double bond. Thus we can draw the structure as a single covalent
compound if we include the C–N bond across the ring and achieve ‘‘normal’’ valence rules for all the
atoms in the molecule (4 for C, 3 for N, 2 for O, and 1 for H) with an explanation of the large dipole
moment as due to the lone-pair of the ring N and the lone pairs of the furan-like O for the negative end
and the opposite side of the molecule as the positive end of the dipole (Table 17.4).

While we might claim that the Wiberg–Mayer bond orders allow a single structure to be drawn
with ‘‘normal’’ valence values, it is clear that there are many contributing ionic structures which can
be drawn if one allows formal charges to be drawn on some atoms. This is a very interesting
molecule from the point of view of bonding. One important piece of experimental evidence for
a bond across the ring is that there is a patent on a photochemical device [33] which produces
the three-membered ring as the end product of a photochemical reaction and another paper in
which the three-membered ring has actually been trapped [34] and a crystal structure established.
That information was not available to Coulson when he wrote Valence (Figures 17.13 and 17.14).

If your copy of PCLOBE that came from a CD in your book does not have the coordinates for this
molecule in the file PCLOBE.DATA you can copy the file below and paste it or type it into a new file

FIGURE 17.11 Prof. James F. Harrison of the Michigan State University Chemistry Department carried out
early calculations on the excited states ofmolecules using accurate configuration interactionmethods, particularly
BH [27] under the direction of his advisor Prof. Leland C. Allen at Princeton University. He was one of the first to
use accurate computational methods to study the triplet methylene molecule � CH2 � which is very important in
synthetic organic chemistry. In particular, his calculation of the electron spin resonance parameters of CH2 was a
rare case of computational theory guiding experimental spectroscopy at a time in the history of quantum chemistry
that established the credibility of such calculations. He is also a contributor to Chapters 16 and 17.
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FIGURE 17.12 Proposed structures for bonding in sydnone.
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in PCLOBE.DATA. If you are using WINDOWS-VISTA or WINDOWS-7 you will have to run the
program in ‘‘Administrator’’ mode but PCLOBE will run ‘‘as-is’’ with WINDOWS-XP or earlier
versions of WINDOWS. The data file must end immediately after the last character of the last atom
card-image, in this case a ‘‘0’’. If you press ‘‘ENTER’’ after the last digit while editing the input file,
the program will look for another line of data but it will not be there and the program will stop. The

FIGURE 17.13 Prof. Robert Sanderson Mulliken (1896–1986), on the left, was an American physicist and
chemist who received the Nobel Prize in 1966 for developing molecular orbital theory and the Priestly Medal in
1983. Dr. C. C. J. Roothaan was his student. On the right is Prof. Charles Alfred Coulson, FRS (1910–1974)
who was a prominent English theoretical chemist and the author of the classic text Valence which contains
many chemical insights. The meeting was in Prof. Coulson’s office at Oxford University in 1953. (Gift of
John D. Roberts, Chemical Heritage Foundation Collections.)

TABLE 17.4
Selected SCF Results for Bonding in 3-Methyl Sydnone Using PCLOBE

Basis Set C–N Wiberg-Mayer Bond C¼O Wiberg-Mayer Bond Dipole Moment (D)

STO-3=2G 0.3129 1.8366 6.94700

STO-4G 0.2984 1.8448 6.8812
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O

FIGURE 17.14 The prototype structure for the bond across the ring satisfies ‘‘normal’’ valence rules and does
not require structures with charge separation. However, the bond across the ring is weak and the carbonyl
stretching is redshifted in the infrared spectrum indicating less than a strong double bond, so this ‘‘normal’’
structure does not tell the whole story either. It is however more amenable to a description using only one
determinant. There should be no doubt the mesoionic compounds provide challenges to bonding theory and
Coulson called attention to this interesting case in ‘‘Valence’’. References [33,34] give experimental support for
the cross-ring bond.
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data set of coordinates given below has already been extensively optimized in the STO-3=2G basis to
save you the time for the preliminary molecular geometry. Note that on the BH output there is a place
after convergence is obtained to copy the last coordinates for input back into the PCLOBE program
file PCLOBE.DATA or use as input to either the MOLUCAD or CHEMSITE modeling programs.

PCLOBE also provides an output data file ‘‘lobe.xyz’’which can be used to visualize the molecule
with either RASMOL or Viewerlite modeling programs. Once you achieve a result for 3-methyl
sydnone you should be able to do calculations easily formolecules up to the size of substituted benzene
compounds in a few minutes using the fast STO-3=2 basis and experiment using other basis sets.

At this time PCLOBE can be downloaded from http:==www.crcpress.com=product=
isbn9780849384066 by clicking on the ‘‘updates’’ tab if the CD from your book is lost.

N 0.000000 0.000000 0.000000

N �0.443824 �1.282047 0.000000

O �1.820544 �1.165865 0.000000

C �0.948648 0.952358 0.000000

H �0.737145 2.028028 0.000000

C �2.222417 0.185178 0.000000

O �3.390925 0.503277 0.000000

C 1.480578 0.228700 0.000000

H 1.901626 �0.238412 0.907403

H 1.901626 �0.238412 �0.907403
H 1.650401 1.317754 0.000000

SUMMARY

This is a long chapter, but really a short introduction to quantum chemistry. The length of the
chapter was increased due to the nearly complete output of an SCF calculation for the BH molecule.
The difficult derivation of the Roothaan equation is given in Appendix B for those who are
interested and the lobe basis integrals are given in Appendix C. It would be good to try and use
PCLOBE to see what it does, particularly for the interesting sydnone molecule. Perhaps your teacher
will not include this chapter in your course or you will run out of time in the second semester, but
this material is here for a few interested students. In every class there will be a few who really want
to know what is going on in modern physical chemistry, and this is the area of research most
familiar to this author. It is almost a certainty that there will be one or two students out of a class of
40 who will be interested in this chapter, and for those students it is here if you want it!

PROBLEMS

17.1 Following the procedure used for the variational treatment of the H1s orbital in the previous

chapter, assume another trial function of the form fguess ¼ Ne�ar
2
. Normalize this function to

find N and evaluate the energy, noting that once again there is no angular dependence in the

function. Use H ¼ ��h
2

2m
r2(r, u, f)� e2q

r
. Minimize the energy to find amin and insert amin in

the energy expression to find the minimum energy. Compare this ‘‘best single Gaussian’’
energy to �0.5 au for the Schrödinger–Bohr H1s orbital. This would be a difficult question in
a final exam (where it has often appeared) unless you prepare for it by doing it over several
times until you ‘‘know’’ it. Hundreds of other students have ‘‘learned=memorized’’ this
problem in the past and it should provide a fundamental understanding of the use of Gaussian
orbitals in modern calculations.
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17.2 Run PCLOBE for H2 and N2 confirm the Mayer–Wiberg bond orders and then run PCLOBE
for CO and BF to compare to the ideal bond orders. You might want to look up the Lewis
Electron models for complete octets in CO and BF in your freshman chemistry text.

17.3 Run PCLOBE for the water molecule using the input file H2OSYM along with the constraint of
C2V and set the optimization to ‘‘4’’ for a gradient of 0.0001 hartrees=bohr. Make a table of the
vibrational frequencies (using the scaling factor) for STO-3G, STO-4G, ‘‘Slater-Transform-
Preuss’’ STP-544* and 6-311G** basis sets along with the values of the frequencies given in
Chapter 15. Compare the total energies of the STP-544* basis calculation with that of the
6-31G**. The STP-544* basis is built from a finite set of Gaussians fitted to orbital shapes
which represent ‘‘infinite-zeta’’ basis sets [35–37] rather than single-zeta or double-zeta func-
tions. If you only had access to PCLOBE would you use STP-544* or 6-31G** basis sets for
calculation of vibrational frequencies? What about the run times? This problem is intended to
show a need to use ‘‘Occams Razor,’’ that is, only use what is needed to obtain the results you
need. In addition we see that modern calculations need to use huge basis sets and exotic methods
to approach thermodynamic or spectroscopic accuracy in quantum chemistry calculations.

17.4 Optimize the geometry of ethylene using PCLOBE to a gradient of 0.001 hartrees=bohr in the
STO-4G basis set with CS symmetry. Identify the p and p* orbitals as the molecular orbitals
which only have nonzero coefficients for the 2Pz orbitals. Compare the signs of the orbital
coefficients to the Roberts–Hückel diagram in the previous chapter and make a sketch of the
2Pz-p and 2Pz-p* orbitals as Roberts has drawn them and superimpose a bar graph of the
coefficients from the SCF orbitals.

Note, it might be a good idea to look at the symmetry chart in the next chapter for the
following problems. We are trying to motivate you to pay attention to symmetry while you
play around with PCLOBE!

17.5 Optimize the geometry of trans-1,4 butadiene in CS symmetry using PCLOBE and sketch the
coefficients of the 2Pz atomic orbital coefficients on a line and compare the pattern to the first
four levels of the Particle-in-a-Box.

17.6 Use the C6H6 data file in PCLOBE.DATA to run (without optimization) PCLOBE for
benzene in either CS or D6h symmetry with the STO-3G basis to identify the six pi-orbitals
of benzene within the SCF C-matrix. Why does the SCF solution only have two degenerate
orbital pairs compared to the infinite number of degenerate orbital pairs in the Particle-on-a-
Ring? Hint: how many 2Pz orbitals are included in the basis set? Note that the D6h point group
symmetry includes the single mirror plane of the CS point group.

17.7 Use the coordinates provided for 3-methyl sydnone to calculate the Mulliken atom charges and
the Mayer–Wiberg bond orders with PCLOBE using the STO-4G or STO-3G basis. Draw a
large picture of the molecule on a sheet of paper and write the bond orders on each bond and the
atom charges near each atom. Include a dashed line across the ring where the C–N bond occurs.

17.8 Optimize the bond length of BH in the 6-31G** basis to a gradient of 0.001 hartrees bohr
(type a ‘‘3’’ in the optimization panel) and then use the Configuration Interaction (CI) option
in PCLOBE for more than one determinant by clicking on the Boys–Reeves bubble in the
Post-Hartree–Fock panel for BH. Compare the energies of the excited states to Harrison’s
Multi-reference CI diagram at the minimum energy bond length. Identify the excited states by
State number to Harrison’s symmetry labels for the three lowest states.

17.9 Optimize the geometry of the NH3 molecule to a gradient of 0.001 hartrees=bohr using
PCLOBE and C1 (i.e., no symmetry) by putting N on the z-axis. Make a rough note of the
time and examine the symmetry of the final geometry, is it truly C3V? Then run PCLOBE
using the input file NH3SYM using enforced C3V. Does the final structure have an exact
threefold symmetry about the z-axis? What does this say about odd-fold rotational axes
compared to symmetry features which are easily represented in right-angle (x, y, z) coordin-
ates? Hypothesis: Odd-fold axes do not easily resolve components cleanly in (x, y, z) Cartesian
coordinates?!
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17.10 Using Windows-VISTA or Windows-7 CLOSE ALL FILES and right-click on the PCLOBE
icon to select ‘‘Run as Administrator’’. Click on the ‘‘browse’’ button at the top of the panel
and select ‘‘C6H6SYM’’ as the input file. Then select the point group D6h in the lower left
corner of the input panel, set the gradient tolerance to ‘‘3’’ before clicking ‘‘Launch’’. Use the
simple STO-3G basis option. Make a rough note of the run time. Next, rerun the calculation
for the same input file ‘‘C6H6SYM’’ but use the C1 point group in the lower left corner of the
input panel with a gradient tolerance of ‘‘3’’ and set the number of iterations to ‘‘99’’ (which
will really allow 300 iterations). Let it run overnight if necessary or just note that the run
without use of symmetry takes a long time. Note the input file includes the coordinates for all
12 atoms in benzene but when D6h symmetry is used the program only uses the coordinates
of the unique C-H pair of atoms first in the list. When using the symmetry option the unique
atoms must start with the repeating unit along the x-axis relative to the central z-axis. See the
documentation for the program. Are you a believer in the importance of symmetry yet?
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18 Point Group Theory
and Electrospray Mass
Spectrometry

INTRODUCTION

One of the homework problems (17.10) in the previous chapter should have convinced you that
symmetry considerations can be quite useful in reducing computation and simplifying spectroscopic
analysis. Undergraduates should have some introduction to the use of symmetry and how the
techniques are applied in spectroscopy because the principles offer shortcuts in interpreting spectra.
Texts by Eyring, Walter, and Kimble [1] (EWK), Cotton [2] and Harris and Bertolucci [3] are
recommended. The Harris–Bertolucci text has the most complete collection of character tables. Here
we will study the water molecule as a simple example, which still uses all the features of symmetry
analysis for a brief introduction to this topic. At the end of this chapter, we will switch gears to show
how a new method to study high molecular weight biological samples has recently been developed.
This is an exercise to introduce forensic and pre-health science students to a new technique that is
sure to become more important in the future. At the very least, spectroscopic applications of point
group theory, resonance Raman spectroscopy and developments in electrospray mass spectrometry
are introductions to future research and can serve as the beginning point for a special project=term
paper by an upper-level undergraduate.

BASIC POINT GROUP THEORY

Let us be clear that we are trying to give a basic introduction to the use point group theory rather
than a mathematical seminar. This is a low level ‘‘how to do it’’ introduction!

First, we introduce the flowchart that is used to select the point group to apply to a given
molecule, as shown in Figure 18.1. All of the symmetry operations refer to a common ‘‘point’’
origin within the molecule, usually an obvious ‘‘center’’ point as the origin. The symmetry oper-
ations are those that can be performed on a given molecule, which leave the molecule unchanged!
For the water molecule shown in Figure 18.1, the oxygen atom is placed on the z-axis with the O–H
bonds in the xz plane. Let us introduce what is called the C2V character table, which contains the
‘‘characters’’ of the simplest possible matrices that satisfies the four symmetry operations in the
collection of possible matrices in the C2V point group. The characters are actually the ‘‘trace’’ or
‘‘spur’’ (spoor) sum-of-diagonal-elements of the symmetry operation matrices. These characters are
invariant under a unitary transformation as was demonstrated in Chapter 16. As long as the
symmetry operation leaves the molecule unchanged, the traces are invariant.

In the study of crystals there is a similar system of mathematics for what is called ‘‘space group
theory,’’ but here we are concerned with the symmetry properties of individual molecules relative to
some point within the molecule. This body of mathematics is called ‘‘point group theory.’’

Using the diagram in Figure 18.2 or a model of the water molecule you can ascertain that you can
rotate the model by 1808 twice about an axis through the O atom bisecting the HOH angle and each
time the model will look the same so that is a ((2p=p)¼ 2) C2 rotation. Next you can actually check
with a small handheld mirror that there are two mirror planes that will leave the molecule
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FIGURE 18.1 Flowchart for selection of the ‘‘character table’’ appropriate for a molecule. (From Harris, D.C.
and Bertolucci, M.D., Symmetry and Spectroscopy, An Introduction to Vibrational and Electronic Spectroscopy,
Oxford University Press, New York, 1978. With permission.)
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FIGURE 18.2 The Cartesian ‘‘arrow’’ representation of the atoms in the water molecule. Note that we have
maintained a right-handed coordinate system with the positive y-axis pointing to the back, but what really
counts is that the y-coordinate changes sign when the image is reflected in the plane of the drawing.
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unchanged, one in the HOH plane and the other perpendicular to that. The symbol for a mirror plane
in point group theory is s, and when the reflection contains a rotation axis (as here) it is called sV, if
the mirror plane is perpendicular to the principle axis it is sh, and finally if the mirror plan bisects
the angle of two lesser rotation axes it is called a sd plane. Another symmetry operation that is not
present here is the inversion operation, i, which inverts all points through the origin. There is some
ambiguity in this particular (low symmetry) point group as to which is the sV plane and which is the
s0V plane so we will designate them with a further ‘‘xz’’ or ‘‘yz’’ label. A further convention in point
group theory is that the highest order rotation axis (here C2) is chosen to be the z-axis. Finally, there
is one trivial operation that results in the molecule looking the same: If we do nothing and just leave
the molecule unchanged it will appear unchanged! That operation is called the identity operation
and is labeled as ‘‘I’’ here but some other texts use the symbol ‘‘E’’ for the identity operation.

Once you can identify the specific symmetry operations a given molecule possesses you can then
follow the flowchart to identify the proper name of the point group, here it is C2V. For this point
group, there are four symmetry operations and we can state the mathematical definition of a point
group while you visualize the operations in your mind. Chemists usually have developed ‘‘minds-
eye’’ visualization due to studying organic chemistry and point group symmetry operations should
be easy for chemists.

What is a ‘‘group’’? A point group is a collection of symmetry operations (four in the water
example), which satisfy certain mathematical properties, but before we go on let us appreciate the
main principle operating here. We emphasize again that all of these symmetry operations that result
in a molecule looking exactly alike are automatically unitary transformations! As such we know a
matrix describing the operation will have an invariant (unchanging) trace (sum of diagonal elem-
ents) which we call the ‘‘character’’ in point group theory. Thus ‘‘trace,’’ ‘‘spur’’ (German, spoor),
and ‘‘character’’ all mean the same thing in the applied linear algebra we will use. The wonderful
thing about a matrix trace is that it is independent of any arbitrary orientation of a molecule. In fact,
in some more difficult cases of point group theory (the Td or tetrahedral point group for CH4 or
CCl4), one can visualize the molecule in one orientation to see a reflection plane but choose another
orientation to see a C3 axis because we know all the operations are unitary transformations and
their trace=character is independent of orientation! A further implication from our previous
excursions into linear algebra is that the transformations are formed from normalized orthogonal
eigenvectors, which we will see implies a higher order orthogonality on the transformation matrices
as well.

Loosely paraphrasing the Cotton text [2] we can define the properties of a point group:

1. The product of any two (symmetry) elements in the group and the square of each element
must result in an element of the group. This is easily demonstrated using the four elements
of the C2V symmetry of the water molecule, since the successive application of any two
symmetry operations results in leaving the molecule look the same, all the symmetry
elements share the results of the identity element I.

2. One element of the group must commute with all the members and leave them unchanged.
Obviously, the identity (I) element satisfies this requirement since a unit matrix will
commute with any other matrix of the same dimension from either the right or left.

3. The simple associative law of multiplication must hold, A(BC )¼ (AB)C. Although this is a
formal requirement, we have already used this idea when we demonstrated matrix diag-
onalization in a previous chapter. We could remind the reader that diagonal matrices obey
ordinary scalar arithmetic, so we could prove this requirement by transforming the
representation to the diagonal form of the particular matrix we want to commute to the
right or left using scalar arithmetic as in 2� 3¼ 3� 2¼ 6.

4. Every (symmetry) element must have a reciprocal, which is also a member of the set.
Again, this is almost obvious since every symmetry operation can be applied in reverse to
achieve the identity (I) result, but it does guarantee that rotations about an axis are
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continuous across a total of 2p rotation. This condition can be demonstrated using linear
algebra equations, but that is not necessary if one pictures the symmetry operations
mentally and then considers the inverse operation as a reversal of that operation. Because
the symmetry matrices are unitary, their inverse is equal to their transpose as we have seen
in the diagonalization process. The transpose matrix reverses the operation. For instance, a
rotation in a plane can be reversed by rotating back using the transpose of the original
operations as shown by a (2� 2).

cos u sin u
�sin u cos u

� ��1
¼ cos u �sin u

sin u cos u

� �

Next we come to a mysterious aspect of point group theory, which is in the realm of PhD theses in
mathematics. The question is how does one determine the ‘‘irreducible representations’’? While
there are formal ways in mathematics to determine the very simplest matrices, which obey the same
rules as the set of operations in the group, we will accept the character tables as a given. Often the
smallest matrix will be ‘‘1’’ with the property that it can also be ‘‘�1’’ but for applications we are
dependent on ‘‘character tables’’ that are tabulated in books. Let us not forget that the numbers in
the character tables are the traces of the smallest irreducible representations in the smallest possible
matrix dimension.

But wait! We are humans who tend to think in Cartesian (x, y, z) coordinates so the procedure is
to mock up the symmetry operations in Cartesian representations and then try to ‘‘reduce’’ them. In
the following text, we see the (9� 9) Cartesian representations for what might be called the
‘‘Cartesian arrow representation,’’ which is obtained by placing the Cartesian axes on each atom
as small arrows and analyzing how the (̂i, ĵ, k̂) ‘‘arrows’’ transform under the symmetry operations.
These four matrices will carry out the symmetry operations of the C2V point group as seen by a
human who wants to think in Cartesian (x, y, z) space. We have placed ‘‘0’’ in the subblocks where
all nine entries in that subblock are zero. If you multiply a Cartesian column vector by one of the
matrices from the left, the result will be the new positions of the coordinate ‘‘arrows’’ after the
operation! However, these matrices are ‘‘reducible,’’ that is, they have (9� 9) dimensionality that is
greater than the collection of the smallest possible matrices, which can also satisfy the definitions of
the C2V point group. Although we may not be able to visualize the irreducible matrices, mathemat-
icians assure us the ‘‘characters’’ of the irreducible representations are given by the numbers in the
character tables! In C2V, they are all þ1 or �1. By convention, the A representations are those that
are ‘‘even’’ with respect to the highest order rotation axis (C2 here) and the B representations are
‘‘odd.’’ Note that there are four rows for the four ‘‘representations’’ or ways of using the small
matrices as A1, A2, B1, or B2 and by convention we use ‘‘h’’ as the order of the group. Here h¼ 4
for four symmetry operations.
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After you use this type of table it becomes familiar, but we only have space to use it once here so we
need to pay attention to the details (Table 18.1). It is easily shown that the dot product of the various
representations is zero so the representations are orthogonal and linearly independent. This super
hierarchy of orthogonality of the matrices themselves as well as the orthogonality of the eigenvector
columns in the matrices is due to ‘‘the great orthogonality theorem.’’ The proof is given on p. 371 of
EWK [1] and it is difficult, so following Cotton [2] we will just state the theorem and in our opinion
you will believe it after we do some demonstrations of its use.

X
R

Gi(R)mn½ 
 Gj(R)m0n0
� � ¼ hffiffiffiffiffi

lilj
p dijdmm0dnn0

Here (R)mn is a symmetry matrix of the representation Gi for the symmetry operation ‘‘R.’’ This
implies the ‘‘dot-product’’ of two one-dimensional representations is zero when m¼m0 ¼ n¼ n0 ¼ 1,
they are orthogonal! However, the theorem also applies to individual (m, n) and (m0, n0) elements of
(2� 2) representations of odd-fold rotations such as C3V or C5V.

Example
For the C2V representation all the irreducible matrices are (1� 1) so m¼m0 ¼ n¼ n0 ¼ 1. Thus

X
R

[GA1] [GB1] ¼ (1 � 1)þ 1 � (�1)ð Þ þ (1 � 1)þ 1 � (�1)ð Þ ¼ 0:

Similarly,
X

R
[GB1] [GB1] ¼ (1 � 1)þ (�1) � (�1)ð Þ þ (1 � 1)þ (�1) � (�1)ð Þ ¼ 4 ¼ h.

TABLE 18.1
C2V Point Group Character Table

C2V I C2 sV (xz) sV 0 (yz) (1) (2) (3)

A1 1 1 1 1 Z x2, y2, z2 z3, z(x2� y2)

A2 1 1 �1 �1 Rz xy xyz

B1 1 �1 1 �1 x, Ry xz xz2, x(x2 – 3y2)

B2 1 �1 �1 1 y, Rx yz yz2, y(3x2� y2)

Gxyz 9 �1 3 1

Source: Harris, D.C. and Bertolucci, M.D., Symmetry and Spectroscopy, an Introduction to

Vibrational and Electronic Spectroscopy, Oxford University Press, New York, 1978.
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This is relatively easy to see when the characters are one-dimensional (as many are) but the
theorem holds even for odd-fold rotations that reduce to two-dimensional irreducible matrices
because the characters are invariant to orientation transformations. In summary, the orthogonality
of the symmetry operations extends to their representations in what is a fortuitous relationship that is
very useful.

Now go back to the idea of a ‘‘projection operation’’ we have used before. Suppose we want to

know how much of a vector~r¼ 3̂iþ 2̂jþ 5k̂ is in the ĵ direction. We can find out by ‘‘projecting’’

the ĵ component using a dot product with ĵ itself as ĵ �~r where we have ĵ �~r ¼ ĵ � (3̂iþ 2̂jþ 5k̂)¼
0þ 2þ 0¼ 2. That worked because of the mutual orthogonality of the unit vectors (î, ĵ, k̂) so we can
use the orthogonality of the symmetry representations to project the amounts of the various
irreducible representations that are in our human Cartesian matrices. First we have to determine
the characters (traces) of our (9� 9) Cartesian arrow matrices. We have written a row of numbers as
Gxyz along the bottom of the character table as the trace of the Cartesian symmetry matrices. This is
the part you have to do yourself. You have to look at the picture of the water molecule with the
Cartesian arrows and imagine how those arrows will change under the symmetry matrices.
Fortunately one observation is very helpful: if an atom moves during the symmetry operation, the
symmetry matrix will have the block of its coordinates in an off-diagonal position and so the arrows
of that atom cannot contribute to the trace! For atoms that stay in place, we merely have to add up
the sum of the diagonal elements. In the case of an odd-fold axis such as C3 in the NH3 case with a

C3V point group, the C3 matrix would contain

cos 2p
3

	 
 �sin 2p
3

	 

0

sin 2p
3

	 

cos 2p

3

	 

0

0 0 1

2
64

3
75 ¼

� 1
2
� ffiffi3p
2 0ffip

2 � 1
2 0

0 0 1

2
664

3
775 so

the trace (character)¼ 0.
This type of symmetry operation, which is intrinsically two-dimensional in the x–y subblock, is

called an E representation (some texts also use E for the identity operation). The A and B
representations are always one-dimensional. Otherwise, if an atom moves during a symmetry
operation it contributes nothing to the character of that matrix. In the case of the I operation, the
trace is the same as the dimension of the space, which is 9 here. Thus we can find out how much of
each representation is in our human Cartesian matrices but to normalize to 1 we have to divide

by ‘‘h.’’ We use the formula (# irreducible representations)¼ 1
h

� �X
i
xi(irred:) � xGxyz

(red:)
h i

where x are the characters.

(#A1) ¼ 1
4

� �
(1 � 9)þ 1 � (�1)ð Þ þ (1 � 3)þ (1 � 1)½ 
 ¼ 12

4
¼ 3A1

(#A2) ¼ 1
4

� �
(1 � 9)þ 1 � (�1)ð Þ þ (�1 � 3)þ (�1 � 1)½ 
 ¼ 4

4
¼ 1A2

(#B1) ¼ 1
4

� �
(1 � 9)þ �1 � (�1)ð Þ þ (1 � 3)þ (�1 � 1)½ 
 ¼ 12

4
¼ 3B1

(#B1) ¼ 1
4

� �
(1 � 9)þ �1 � (�1)ð Þ þ (�1 � 3)þ (1 � 1)½ 
 ¼ 8

4
¼ 2B2

Thus we find that Gxyz¼ 3A1þ 1A2þ 3B1þ 2B2¼ (9� 9) and the individual dimensions of the
irreducible representations add up to 9, which is the dimension of our human Cartesian matrices.
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We are about to reap great benefit from other considerations provided by the character tables. On the
right side of the character table is a list of Cartesian coordinates in first, second, and third order
combinations (only Harris and Bertolucci [3] show the third order). The (x, y, z) entries there serve
several purposes. They show how atomic orbitals (using the l-quantum number: 1 for p-orbitals,
2 for d-orbitals, 3 for f-orbitals, etc.) transform under the symmetry operations of the group and which
representations they belong to. In addition, we are interested here in how the dipole and polariz-
ability transitions transform under the symmetry of the point group. The entries marked Rx, Ry, and
Rz are the row representations in which rotations would belong, along with the first order properties
that depend on x, y, or z such as (x, y, z) translations and including properties like the dipole moment
and the dipole selection rule for absorption spectra. The second order set of Cartesian products refer

to what might occur in an electron polarizability tensor such as a ¼
axx axy axz

ayx ayy ayz

azx azy azz

2
4

3
5.

The Raman effect is a secondary vibrational-electronic effect in which a molecule is excited from
a given vibrational state in the electronic ground state up to some higher electronic state and then
falls down with emission of light in the visible range but containing infrared information, as shown
in Chapter 12. There (Chapter 12) we stressed how the transition selection rule requires a dipole
moment in the molecule to provide a mechanism for absorption of light energy. In the case of
homonuclear diatomics or other symmetric molecules such as CO2, the dipole moment is zero
leading to a blank IR spectrum. However, the polarizability tensor tells us how the electron
distribution changes as a molecular geometry changes shape during a vibrational mode. The
polarizability tensor also tells us that small components of an ‘‘induced dipole moment’’ can be
caused by the electric field ~E of a light wave.

~m ¼ a~E ¼
axx axy axz

ayx ayy ayz

azx azy azz

2
4

3
5 Ex

Ey

Ez

2
4

3
5 ¼ mx

my

mz

2
4

3
5:

Thus light of a particular frequency can simultaneously induce a dipole moment in a molecule and
then couple with the dipole components to result in light absorption! Raman spectra are observed
within the spectrum of light scattered from an intense source. Induced vibrational transitions are
observed with a dispersive device (monochrometer) and some sort of electronic detection (in the
visible range) at 908 from the light source (laser) beam. Remarkably, C. V. Raman first observed
this effect with a handheld spectroscope in 1928 for which he received the Nobel Prize in 1930.
Thus we can examine the symmetry properties of second-order combinations of the Cartesian
coordinates (in column ‘‘2’’) and use them to indicate a yes=no answer as to whether a given
molecular vibration will occur in Raman spectroscopy.

First let us sort out the Gxyz components using columns ‘‘1’’ and ‘‘2.’’

Gxyz ¼ 3A1þ 1A2þ 3B1þ 2B2

Rotation¼A2þB1þB2
Translation¼A1þB1þB2
Vibration¼Gxyz�A1�A2� 2B1� 2B2¼ 2A1þB1¼ 3 vibrations, 3N� 6¼ 3, Q.E.D.

Thus using symmetry analysis we find the expected three vibrations but now we know their
symmetry as well! We can assign the symmetric O–H stretch mode to A1 (�3700=cm) and the
symmetric V-shape wagging motion also as A1 (�1600=cm) so the B1 mode must be the asym-
metric out-of-phase O–H stretch (�3800=cm).
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CALCULATION OF MOLECULAR VIBRATIONS

This analysis can also be carried out using the PCLOBE program using the file ‘‘H2OSYM’’ with
selection of C2V in the lower left corner of the setup panel and a gradient tolerance of ‘‘n¼ 4’’ for
10�4 hartrees=bohr. You will have to run PCLOBE in ‘‘Administrator Mode’’ if your PC is running
WINDOWS VISTA or WINDOWS-7. We can see from the PCLOBE results that although the
frequencies are high due to the use of a small basis set, the largest ‘‘false frequency’’ is only about
86 cm�1. That is small compared to the smallest true frequency (Mode No. 3). The main cause of the
false frequencies is that the geometry may not be at the true energy minimum and the numerical
second derivatives are then evaluated ‘‘on the side of the energy bowl’’ instead of at the minimum.
The imaginary frequencies result from ‘‘saddle-points’’ in the energy hypersurface and are also
much smaller than lowest real vibrational frequencies. By comparison to the Roberts–Hückel
pi-electron treatment in Chapter 16, we see that the all-electron PCLOBE treatment of the water
molecule offers far more details even if there are still some numerical limitations.

Mode No. 3 is the easiest mode eigenvector to visualize. It shows the O atom moving up in the
z direction with the two H atoms moving down and moving closer together if you note the signs of the
x-coordinate and the original positions. This is a symmetric ‘‘wagging’’ motion. Mode No. 2 is more
difficult to visualize but we see the displacements are slightly larger and still symmetrical when you
take into account that one of the H atoms has a negative x-coordinate at the minimum. Mode No. 1 is
easier to understand since the x-coordinate of the O atom moves to þx so we see that the motion is
asymmetric, a sort of ‘‘rocking’’motion. You can also see from the table of force constants that Mode.
No. 3 is a ‘‘soft, mushymotion’’while the higher-frequencymodes have much higher force constants.
Although the PCLOBE results are only qualitative, there is enough information there to show you
what to look for in a more sophisticated quantum chemistry program (Table 18.2).

We have already given a phenomenological discussion of Raman spectroscopy in Chapter 12.
Here we can compare the experimental frequencies of the Raman bands of the water molecule to the
calculated frequencies from PCLOBE. As expected, a small basis set of the minimum number of
orbitals can only produce results for limited volumes of electron density in the calculations. There
are no diffuse functions in the basis set to allow electrons to roam in regions of low probability. The
electrons are tightly restricted to the valence orbital regions, which is good enough for perhaps 90%
of the true wave function but is not a complete description of the electron density. In effect, the
small basis set constrains the electron density to narrow potential wells and pushes the vibrational
levels higher. The net result is that the frequencies are too high. This is a common characteristic of
limited basis sets in quantum chemistry calculations. The problem can be partially solved by adding
more functions to the orbital basis set but even the most accurate calculations are seldom within
10 cm�1 of the experimental values. Exact vibrational frequencies are not easy to compute! In the
PCLOBE example, we apply a reduction factor of 0.89 to the frequencies. Extensive research has
found that there is no single value that will correct all the frequencies, so 0.89 is an average
correction. However, the corrected pattern of (2057, 3856, and 4007 cm�1) should enable us to
match the bands to the experimental pattern. Modeling the molecular orbitals with PCLOBE or
some other quantum chemistry program is useful for interpretation of the experimental spectra. Thus
the main use of the PCLOBE results is to match the motions of the atoms with symmetry labels for
each vibrational mode.

The Raman spectrum is observed by using an intense monochromatic source applied to a sample
and the scattered light is gathered at 908 from the incident beam. There is considerable intensity
from the incident beam and the scattered light at the wavelengths of interest on either side of the
monochromatic source are much less intense. Thus the exciting wavelength may obscure the Raman
wavelengths and care is required to design the optical system. Here we show in Figure 18.3 a
custom spectrometer constructed by Prof. James Terner at Virginia Commonwealth University.
This spectrometer is optimized to gather very-low-intensity emissions in the Stokes region of
light scattered from laser excitation. The main object in Raman spectroscopy is to record
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TABLE 18.2
Selected Vibrational Output from PCLOBE for H2O Using a STO-3G Basis Set

Molucad Restart Coordinates, Copy and Paste into Input File *.XYZ

O 0.000000 0.000000 0.000000
H 0.740353 0.000000 0.654266
H �0.740353 0.000000 0.654266

Distance matrix in Å
O H H

O 0.0000 0.9880 0.9880
H 0.9880 0.0000 1.4807
H 0.9880 1.4807 0.0000

A-B-C arcs in degrees for three atoms

arc(1, 2, 3)¼ 41.47
arc(1, 3, 2)¼ 41.47
arc(2, 1, 3)¼ 97.06
arc(2, 3, 1)¼ 41.47
arc(3, 1, 2)¼ 97.06
arc(3, 2, 1)¼ 41.47

Normal modes relative to optimized geometry

Ordered atom-1 (x, y, z), atom-2 (x, y, z), . . . by column
Including rotational and translational false modes

Mode 1 2 3
Atom
1 0.257 0.001 0.000
2 0.000 0.000 0.000
3 �0.001 0.221 0.252

4 �0.510 �0.533 0.467
5 0.000 0.000 �0.001
6 �0.451 �0.441 �0.501
7 �0.514 0.529 �0.466
8 0.000 0.000 �0.001
9 0.454 �0.438 �0.500
Harmonic vibrational frequencies and corrections [4]
We apply 3-21G factor of 0.89 to any basis set initially

(K N=cm; Frequency 1=cm; 0.89� 1=cm)
(11.943648; 4502.39; 4007.13)
(11.058170; 4332.28; 3855.73)
(3.147630; 2311.36; 2057.11)
The following are translationþ rotation frequencies
(0.004361; 86.04; 76.57)
(0.002026; 58.64; 52.19)
(0.000713; 34.79; 30.96)
(�0.000940; Imag 39.95; Imag 35.55)
(�0.003225; Imag 73.99; Imag 65.85)
(�0.024098; Imag 202.24; Imag 179.99)

Imaginary frequencies (Imag) indicate either an insufficient optimization or a less complete basis set
Try further optimization and=or a larger basis set
Fortunately, imaginary frequencies are usually in the range where they are not easily measured below 400 cm�1

C2v symmetry w.r.t. atom-1 at (0, 0, 0)
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very-low-intensity spectra in the presence of a very intense exciting light source so the emphasis is
on the Stokes lines to the neglect of the lower intensity anti-Stokes lines. That emphasis permits the
use of an optical ‘‘cutoff filter,’’ which is a plate of absorbing material that is selected to block the
light from the exciting line but permit the light of the Stokes lines to proceed to the monochrometer.
More advanced applications also involve analysis of the polarization of the emitted light, so this
spectrometer has been constructed with careful attention to the plane of the electric field polarization
of the emitted light.

The spectrometer in Figure 18.3 is optimized to gather intensity of the Stokes lines for ‘‘reson-
ance Raman’’ [5] spectra of heme, porphyrin, and other large compounds in which exciting light is
used with a wavelength close to or within the electronic transition band of the main compound to
observe very-low-intensity Raman wavelengths close to the wavelength of the exciting light source.
Thus in recent years, there have been two main advances in Raman spectroscopy. First, the intensity
of a monochromatic (single-wavelength) polarized laser beam is ideal for Raman excitation.
Second, the development of the resonance Raman application to sites involving a chromophore
offers increased sensitivity for localized mechanistic studies of catalytic sites as for instance metal
ions in porphyrin=heme compounds. You can appreciate the difficulty in observing a weak emission
in the presence of a very intensive light source. In such cases, a specific Raman spectrometer will be
optimized to gather light from weak signals and yet use a dispersing device (grating monochrom-
eter) capable of high resolution. This is shown in Figure 18.4 with the Raman spectra of H2O
and D2O where the optical strategy pays off with observation of the very-low-intensity band near
1600 cm�1, which others have found difficult to see. Thus, great care is used to employ optical
cutoff filters and use of a high-resolution monochrometer to shut out all light from the excitation
wavelength and to the blue of that line.

FUTURE DEVELOPMENT OF ELECTROSPRAY MASS SPECTROMETRY?

In our attempt to treat the ‘‘essential’’ topics of physical chemistry, we take this opportunity to look
at a new development, which may soon become essential. We consider it ‘‘essential’’ for students to
understand the discovery and innovation process. The invention of polaroid sunglasses and instant
photography by Edwin Land in the 1950s and the early formation of the Microsoft Corporation by
William Gates and Paul Allen from 1975–1980 are amazing stories that may not be fully appreciated
by students of today, so we highlight a more recent innovation. The 2002 Nobel Prize awarded to
Prof. John Fenn at Virginia Commonwealth University generated interest in the field of electrospray

Sample

Spectrograph

Laser head

– Direction of electric field oscillation

FIGURE 18.3 The custom Raman spectrometer designed by Prof. Jim Terner at Virginia Commonwealth
University with emphasis on orientation of the polarization of the excitation beam which is important in some
cases. Note the right angle between excitation and emission and the square cutoff filter between the sample and
the spectrograph.
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mass spectrometry and students often ask questions about this new field. Since the applications are
important to large biological molecules, there are potential uses to be developed in medical research
and forensic science.

Mass spectrometry is a very old technique going back to J. J. Thompson in 1897 to measure the
(m=e) ratio for the electron. Early mass spectrometers used the ‘‘magnetic sector’’ design based on
the behavior of charged particles in a magnetic field using the familiar ~F¼ q(~V �~B)¼m~a response
(Figure 18.5). This led to the use of large magnets to deflect a beam of charged particles by mass
using slow scans of either the ion-accelerating voltage or the field of an electromagnet.

Most modern mass spectrometers use a quadrupole field device that is smaller and more
sophisticated [6]. The quadrupole electrical field is time dependent and charged particles travel in
a beam between the cylindrical poles (Figure 18.6). When the time-dependent field is tuned to a
certain radio frequency, most of the charged particles are deflected away from whatever electrical
detector is at the end of the quadrupole rods, while a few particles arrive at the detector according to
their (mass=charge) ratio. Other particles spiral away from the detector and are swept out by
powerful pumps, which maintain a high vacuum in the analyzer chamber. Ideally, the cross section
of the metal rods should be hyperbolic facing each other, but cylindrical rods are often used for ease
of fabrication. This design has been so successful that in 1978, it was extended to three such
quadrupoles in succession for ultimate mass resolution by Yost and Enke at Michigan State
University [7]. While the quadrupole design is much more compact than the magnetic sector design,
the range of its effectiveness is between 1< (m=zþ) < 5000 at most, even though much effort was
made to extend the range to higher masses.

Recent advances in biological science bring chemical questions about enzymes, DNA, RNA, cell
membrane structures, etc., all of which are high-molecular-weight materials. In addition, future
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FIGURE 18.4 Raman spectra of H2O (lower) and D2O (upper) contributed by Prof. Jim Terner of the
Chemistry Department of Virginia Commonwealth University. The optical path included a 600 lines=mm
grating in a single 0.5 m Spex monochrometer with a 60 micron slit width; a configuration optimized for light
gathering ability to record low intensity spectra. While the smaller band near 1620 cm�1 has been reported as
too weak to observe in some of the literature, Prof. Terner has no difficulty recording that band with this optical
configuration and a Krþ laser. The inset shows amplification of the very small bands in the main spectra. Here
we also see the isotope shift in the redshifted D2O spectrum, the 1620 cm�1 A1 vibration and more intense, but
barely resolved, A1 and B1 bands of H2O near 3600 cm�1.
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forensic applications may include identification of biological samples of high molecular weight.
Nature keeps challenging chemistry with more macroscopic structures whose function depends on
coarse-grain structure beyond that of atoms and small molecules and yet has the specificity of
organic reactions. Clearly, there was motivation to develop a technique that offered separation and
identification of these large biomolecular species—but how?

‘‘MAKING ELEPHANTS FLY’’

This is a quote from John Fenn’s presentations explaining his 2002 Nobel Prize in chemistry, which
he shared with Koichi Tanaka and Kurt Wuthrich. Electrospray ionization is a new way to produce
intact ions in a vacuum from large and often fragile biological=chemical species in solution (Figure
18.7). While solution methods of collection and separation of large biological molecules has been in
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FIGURE 18.6 The principle of the quadrupole mass analyzer. The voltage applied to the pairs of conducting
metal rods alternates rapidly using a radio frequency matched to the velocity of charged ions and only ions with
a specific (m=zþ) ratio stay in the center of the rods and find their way to the detector. His web site gives an
excellent overview of mass spectrometry. (From Prof. Scott E. Van Bramer, Widener University, http:==science.
widener.edu=�svanbram= With permission.)
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FIGURE 18.5 Schematic of a magnetic sector mass spectrometer. Here the magnetic field lines are perpen-
dicular to the plane of the image going into the image so that for positive particles the right-hand-rule applies
but the deflection depends on the mass of the article; here the Bþ ion has less mass than the Aþ ion. (From Prof.
Scott E. Van Bramer, Widener University, http:==science.widener.edu=�svanbram= With permission.)
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use for a long time, the ability to transfer these species to a vacuum is a valuable new development.
Proteins up to a molecular weight of 130,000 have been observed as mass spectra but there does not
seem to be an upper limit in molecular weight for applications of this technique. The main
characteristic of this method is that some ions are multiply charged and mass peaks are observed
for ions differing by one charge in a series of peaks.

To give a short overview, this research is sufficiently recent to show how such developments are
brought to a practical reality. There were actually a number of people who realized that there was a
need to use mass spectrometry for high-molecular-weight materials but the way research unfolds is
still through applied experimentation. Prof. Fenn acknowledged that his early interest in what
became electrospray ionization was largely due to a paper by Dole et al. [8] in 1968 (Figure 18.8).
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FIGURE 18.7 An enlarged schematic of the basic idea of ‘‘electrospray’’ generation of charged droplets
containing dissolved high molecular weight materials. Item (1) is a hypodermic needle or a thin metal tube,
(2) is a high voltage source capable of several thousand volts DC relative to the ground (3) with (4) as the target
ground for positive ions and (5 through 10) is a sequence of droplet formation that spreads out in a conical
beam on its way toward the final ground. Considerable discussion in the literature ensued regarding solvent
evaporation since this apparatus is in a high vacuum, although dry nitrogen can be infused at the needle. The
hypothesis is that the solvent droplets evaporate until the accumulated positive charges (Hþ) on the sample are
concentrated to the point where their mutual repulsion exceeds the surface tension of the drop and the droplet
disintegrates to release individual molecules which are still highly charged. In samples such as large peptides
(enzymes) there are many places where Hþ ions can bind temporarily, long enough to travel through the
quadrupole mass analyzer system to a sensitive galvanometer detector. (Reproduced from Fenn, J.B., J. Biomol.
Tech., 13, 101, 2002. With permission of the Association of Biomolecular Resource Facilities.)
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FIGURE 18.8 A schematic of Dole’s original electrospray nozzle. (Reproduced from Fenn, J.B., J. Biomol.
Tech., 13, 101, 2002. With permission of the Association of Biomolecular Resource Facilities.)
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Then improvements in tandem quadrupole mass analyzers occurred in 1978 due to the work of
Yost and Enke [7], and others realized there was a challenge to extend applications of mass
spectrometry to fragile biological compounds of high molecular weight. There were papers on
polyethylene glycol [9] by Fenn and his associates to prove the method, but great interest was not
aroused until a key paper appeared in Science in 1989 [10] showing applications to biological
samples. The sequence of developments was later reviewed in 2002 by Prof. Fenn [11] (Figure 18.9).

In this introductory presentation, there are two main points. First, an astute student should
readjust his=her value judgments to note that interest in technological advances is heightened in
the case of biomedical applications. However, the foremost lesson here is that if there is a device
that can accurately ‘‘weigh molecules’’ up to a value of (m=zþ) of 4000 or 5000 atomic mass units
(amu) for charges of z¼þ1, then increasing the value of the total charge to higher zþ numbers will
allow the (m=zþ) ratio to remain in the useable range of the mass analyzer! Suppose a given
biological molecule travels through the mass analyzer associated with 50 Hþ, then the upper limit
of the molecular weight the quadrupole analyzer can handle is about (50)(4,000)¼ 200,000!
In actual practice, even higher molecular weights have been reported up to 5 million [10] due to
the number of positive ions (Hþ) that can associate with a large polymeric molecule.

The initial ‘‘nozzle’’ design of Dole was improved in Prof. Fenn’s laboratory and the lesson
here is that careful work can often succeed where an initial idea can be greatly improved by a few
key technical features (Figure 18.10). Fenn’s nozzle design went through several stages of
improvement with the end goal of obtaining clean mass spectra of high-molecular-weight mater-
ials. A particular concern was the safety=danger associated with the high voltage of the source
needle and the use of wet chemicals in a laboratory environment. This problem was solved in a
clever way by using a capillary that is metalized on the ends to attach leads to create an electrical
potential well entirely within the cylindrical volume of the capillary while the electrospray needle

FIGURE 18.9 John Bennet Fenn (1917–2010) was an American scientist who shared the 2002 Nobel Prize in
chemistry for his work in developing electrospray mass spectrometry. A professor of chemistry at Virginia
Commonwealth University at the time of his Nobel award, he has been on the faculty at Yale University and
Princeton University.
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remains at ground and only serves to create the liquid droplets. Another innovation was to provide
a countercurrent flow of dry nitrogen within the electrospray chamber to sweep away solvent
vapor before the droplets entered the capillary.

So what are the results? Well the results are just short of fantastic! We show only a few of the
amazing spectra of biological molecules obtained by Prof. Fenn and his students. The first spectra in
Figure 18.11 show examples of molecular weights that are higher than the nominal capability of a
quadrupole mass analyzer because the (m=zþ) ratio has been reduced by the presence of many Hþ

ions associated with the large molecules. The individual peaks differ by only one Hþ but there are
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FIGURE 18.10 The most recent nozzle design from Prof. Fenn’s laboratory showing several refinements in
design including a safer electrode using a metalized capillary (4) as a restrictive skimmer to select only those
ions moving in a very straight path toward the quadrupole analyzer with a set of staged-potential plates to serve
as ion lenses focusing the beam toward the entrance to the quadrupole analyzer. This design is safer because
the needle is at ground and the high voltage potential well is between the metalized ends of the capillary.
The ionization process is entirely in the capillary and the needle is only used to form the initial stream of
droplets. The drying gas is a stream of nitrogen which carries away solvent vapor before it can enter into the
ionizing chamber in the capillary. This design is a careful tradeoff between sweeping away solvent vapor but
allowing a short distance for the heavier droplets to make their way into the ionizing capillary. It is important to
have multiple vacuum pumps to ‘‘pull’’ the ion stream through the apparatus unimpeded by collisions in the gas
phase. (Reproduced from Fenn, J.B., J. Biomol. Tech., 13, 101, 2002. With permission of the Association of
Biomolecular Resource Facilities.)
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FIGURE 18.11 Electrospray ionization mass spectra (ESI-MS) of low molecular weight samples. (Repro-
duced from Fenn, J.B., J. Biomol. Tech., 13, 101, 2002. With permission of the Association of Biomolecular
Resource Facilities.)

Point Group Theory and Electrospray Mass Spectrometry 417



many different species. The difference in mass between two peaks gives the molecular weight of the
molecule (plus 1 amu for the added Hþ). In Figure 18.12, we see more nice clean spectra of what
might be termed ‘‘medium molecular weight’’ peptide samples. Then in Figure 18.13 we can clearly
see mass spectra resolved for higher-molecular-weight enzymes. Note that as the sample molecule
gets larger, the number of Hþ ions that accompany it can be larger. We can see 45 Hþ associated
with the alcohol dehydrogenase enzyme and a molecular weight of about 40,000 amu. This new
technique provides a fast way to determine the molecular weight of biological materials, which
would ordinarily be much more complicated. Interested students will find a tutorial on electrospray
mass spectrometry at http:==www.ionsource.com=tutorial=spectut=spec1.htm

When faced with the raw data of this type of spectra, one only knows that the peaks represent
ions with progressively increasing numbers of Hþ ions attached. You do need to know the amu
values for certain peaks. The equation that must be fitted to the data is of the form

X(amu) ¼ (Mþ nHþ)
nHþ

¼ (Mþ n)

n
, M ¼ molecular weight

400

Lysozyme MW = ~14,300

0

0

2

4

6

8

10

800

15H+

10H+

1200 1600 800400

10

8

6

4 25H+
15H+

Myoglobin
MW = ~17,000

2

0

1200

FIGURE 18.12 ESI-MS spectra for medium molecular weight peptides but well beyond the nominal
capability of a quadrupole mass analyzer if zþ¼ 1. This is made possible by the careful design of the
electrospray nozzle and the attached Hþ ions which brings the (m=zþ) ration into range of the quadrupole
mass analyzer. (Reproduced from Fenn, J.B., J. Biomol. Tech., 13, 101, 2002. With permission of the
Association of Biomolecular Resource Facilities.)
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FIGURE 18.13 Examples of ESI-MS spectra of enzymes that would be entirely out of range for the
quadrupole mass analyzer for z¼þ1. (Reproduced from Fenn, J.B., J. Biomol. Tech., 13, 101, 2002. With
permission of the Association of Biomolecular Resource Facilities.)
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It helps to know an approximate molecular weight to begin the fitting but basically you just have to
keep assigning the value of n to a given peak until it agrees with a calculated value of another peak
with a different value of n. In Figures 18.12 and 18.13, this has already been done but when you
obtain the raw data you need to carry out the fitting process.

SUMMARY

This chapter has been added to introduce more sophisticated spectroscopic techniques with a
minimum of numerical problems. We make no apology for discussing instrumentation in this text
because physical chemistry is an experimental science as well as a collection of mathematical
descriptions of physical phenomena. Students in physical chemistry should be interested in how
instrumentation is used as well as adept in themathematical description of an experiment. This may be
the end of a long semester but this material is intended to inspire students to develop new applications
of spectroscopic methods to forensic analysis and characterization of molecules. Raman spectroscopy
brings with it demonstrations of the use of point group theory for a few applications and students
should anticipate further encounters with group theory as a normal part of physical chemistry. The
main advances in Raman spectroscopy will likely be in the use of ‘‘resonance Raman’’ spectra where
the excitation wavelength is chosen to electronically excite a chromophore near the site of interest
within the molecular application. Finally, the amazing story of electrospray mass spectrometry is
probably in the early chapters of development for use in aspects of biomolecular science [12]. There
are calls fromwithin the American Chemical Society for education in the discovery process. Thus it is
valuable to show students the development of a recent innovation in the form of electrospray mass
spectrometry [10]. The topics of resonance Raman spectra and electrospray mass spectrometry offer a
high probability of becoming ‘‘essential physical chemistry’’ applications in the very near future, and
at the very least it is an essential part of science education to illustrate the process of discovery and
development of new applications of basic principles.

PROBLEMS

18.1 Given the C3V character table work out the symmetry types of the vibrations of NH3. Which
vibrations will be ‘‘allowed’’ in infrared absorption and which in Raman spectroscopy?

C3V I 2C3 3sV (1) (2)

A1 1 1 1 Z x2þ y2, z2

A2 1 1 �1 Rz

E 2 �1 0 (x, y), (Rx, Ry) (x2� y2, xy)(xz, yz)

Gxyz 3 0 1

GNH3 ? ? ?

Note that there are two C3 rotations and three sV operations when you do the projection
decomposition. You only have to ‘‘see’’ one of each to get the character and then
multiply by the number of equivalent operations. For instance, when you can visualize

one of the sV operations and get the character of its ‘‘arrow’’ representation, just
multiply that by 3 for all of the sV operations. The E representation is two
dimensional and will require a rotation matrix for the C3 operation. Harris and

Bertolucci also give a big hint with the Gxyz numbers; just multiply those numbers by
the number of atoms that do not move under the symmetry operation to obtain the
Cartesian ‘‘arrow’’ characters. To check your work you could run PCLOBE using the

NH3SYM file and the C3V point group in the lower left corner of the PCLOBE input
panel; use the STO-3G basis set with a gradient setting of ‘‘4.’’
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18.2 Given the Td character table work out the symmetry types of the vibrations of CCl4. Which
vibrations will be ‘‘allowed’’ in infrared absorption and which in Raman spectroscopy?
Compare the number and type of your vibrations to the Raman Stokes lines in Figure 12.23.

Td I 8C3 3C2 6S4 6sd (1) (2)

A1 1 1 1 1 1 (x2þ y2þ z2)

A2 1 1 1 �1 �1
E 2 �1 2 0 0 (2z2� x2� y2, x2� y2)

T1 3 0 �1 1 �1 (Rx, Ry, Rz)

T2 3 0 �1 �1 1 (x, y, z) (xy, xz, yz)

Gxyz 3 0 �1 �1 1

GCH4 ? ? ? ? ?

This is one of the more difficult examples for small molecules like CH4 and CCl4. Perhaps this should be a group
project with the teacher assisting. Make a molecular model out of Tinker Toys or Dreiding models and
remember that under unitary transformations you can change the way you hold the model to look for the
symmetry elements. Harris and Bertolucci [3] also give a great help with the Gxyz characters, just multiply those

numbers by the number of atoms that are stationary for each symmetry element and that gives you the Cartesian
characters. Also if you can see one of the multiple symmetry elements of a given type that is all you need
because the characters will all be the same for all members even if you cannot ‘‘see’’ all of them in your mind’s

eye. So hold the model anyway you need to and find just one operation of each type and then multiply the
number of stationary atoms under that symmetry operation by the number in the Gxyz row and that is the
character for your molecule! Once you have the Cartesian characters you can use the projection operation as we

did for C2V. The T representations are intrinsically three-dimensional and the S4 operations are rotations by
2p 4= Þð followed by a mirror reflection in a plane perpendicular to the rotations axis (allene has an S4 axis along
the C¼¼C¼¼C bond line). The E representation is two-dimensional and may lead to a degenerate=near
degenerate band. While you are there you should run PCLOBE using the coordinates in the file CH4SYM

using the STO-3G basis and the Td point group in the lower left corner of the PCLOBE panel and a gradient
setting of ‘‘4.’’ The type and number of bands should be the same for any Td molecule. With some thought and
help from a teacher in a group project you should be able to assign each of the STO-3G PCLOBE modes a

symmetry label according to which representation each belongs after you decompose the reducible
representation. You should be able to make the CCl4 band assignments in Figure 12.23 using the analogy to
the calculated CH4 bands.

18.3 In Figure 18.13, it appears that the ‘‘36Hþ’’ peak is very close to the x-axis marker of 800 amu
and the peak for 24Hþ is very close to the x-axis marker for 1200 amu. Using those two
estimates, calculate the average molecular weight of carbonic anhydrase and compare to the
value of the inset in the figure.

18.4 In Figure 18.13, it appears that the ‘‘44Hþ’’ peak is very close to the x-axis marker of 900 amu
and the peak for 33Hþ is very close to the x-axis marker for 1200 amu. Using those two
estimates, calculate the average molecular weight of alcohol dehydrogenase and compare to
the value of the inset in the figure.
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19 Essentials of Nuclear Magnetic
Resonance

INTRODUCTION

This topic is beyond what is normally covered in a 9 week summer course but is certainly an
‘‘essential topic.’’ The development of magnetic resonance imaging (MRI) in health science
continues and is an outgrowth of nuclear magnetic resonance, which has had its own modern
developments. In fact, NMR research has grown into a sophisticated specialty field and we will only
attempt to show the basics here but in such a way as to form a foundation for further study. In
modern chemistry curricula, applications of NMR are usually given in organic chemistry but
without much of the underlying mathematics. We will attempt to fill in some of the mathematics
here as well as give specific examples from several Internet tutorials. Evaluation of the available
technology related to pulsed NMR spectroscopy indicates it has become a very complex technology
requiring continued study including advanced quantum mechanics, electrical engineering and a lot
of advanced physics best acquired in graduate study. However, for pre-medical students and
forensic majors we present a few examples which should be considered introductory material
designed to whet the appetite for further study.

EARLY NMR SPECTROMETERS

The earliest experiments in NMR go back to 1945 with work by Bloch [1] at Stanford University and
his contemporary Purcell at Harvard University for which they shared a Nobel Prize in Physics in
1952. In 1959, a very important text was published by Pople, Schneider, and Bernstein (PSB) [2] with
the title ‘‘High resolution nuclear magnetic resonance.’’ At that time many NMR spectrometers used
permanent magnets of only 10,000 gauss (1 Tesla, 1 T) with a proton resonance of 42.5775MHz. That
seems like a very low frequency by today’s standards although some of Purcell’s work used a
magnetic field of only 7000 gauss. Even so, the PSB text is still amazingly up to date for the
phenomenolgical mathematics it contains and it is still a desirable book to have on your shelf if you
are a person using NMR. Jumping to the present, if you can afford only one other text for NMR it
should be ‘‘NMR: The Toolkit’’ [3] by Hore, Jones, andWimperis. Usually themanual accompanying
the spectrometer at your site will have extensive information and, for instance, the Bruker manual is
very complete. There are many tutorials on the Internet and other excellent texts but ‘‘The Toolkit’’
says it better with fewer words than most other texts; it is to ‘‘Pulsed-NMR’’ what Roberts’MO book
was to organic chemistry in the 1960s.

A student may wonder what a gauss or Tesla really is. Probably all students have ‘‘felt’’ the
magnetic force from a small magnet as an attraction or repulsion relative to motion of a magnetic
material like iron or another magnet. The definition of a magnetic field is intimately tied to the
connection between moving electrical charges and a magnetic field. A charged particle will
experience a force moving in a magnetic field and a moving charged particle will generate a
magnetic field! The definition in the SI unit system is given by
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This is a difficult unit to visualize, but we can see that it relates force and a moving charge. The
recent development of superconductivity allows large currents to move in a circle in what is called
‘‘persistent mode’’ with zero resistance as long as the temperature is kept below some temperature
threshold. Modern superconducting magnets typically operate below the boiling point of liquid He
at 4.28K and are further insulated with an outer shell of liquid N2 at 778K. Such coils of
superconductors in persistent mode can generate very high magnetic fields to allow NMR spectro-
meters to use fields of 18 T or more for routine use, as long as the magnet coils are kept below the
superconducting threshold temperature. A superconducting magnet can be severely damaged if the
temperature rises above the threshold temperature while the magnet is operating in persistent mode.

NMR SPIN HAMILTONIAN

If for no other reason, the exercise shown in the following is the only chance we have in this
undergraduate text to show use of the Pauli spin operators, which apply to spin-1=2 nuclei as well
as electrons. While it has been sufficient to describe electron spins as either a or b, we now need to
consider nuclear spin in more detail in a quantized ‘‘spin space’’ based on angular momentum. There
is a corresponding form of spectroscopy for electrons called ‘‘electron spin resonance’’ (ESR) but
here we are emphasizing NMR because it yields information about geometrical molecular structure
while ESR only gives information about electronic structure. Because most nuclear spins of interest
are spin-1=2, the mathematics for spin-1=2 electrons is similar in NMR and ESR, but NMR is more
general and extends to nuclei of other spin types. In the 1960s, NMR spectrometers used a large
magnet with a sample in a region of high field homogeneity and scanned the sample with a radio
frequency (RF) to record frequencies where energy absorption occurred due to ‘‘spin flips.’’ At first,
analog recording was used only for proton resonance but it was known that many other nuclei could
be studied at other frequencies.

In the 1980s, two main advances occurred in NMR spectroscopy. First, superconducting magnets
became available with much higher magnetic fields so resolution increased dramatically. Second,
RF pulse technology made use of the Cooley–Tukey fast Fourier transform (FFT) algorithm
possible on readily available minicomputers, which could be dedicated to a specific spectrometer.
Let us go back to the early form of the phenomological ‘‘spin Hamiltonian’’ to show the quantum
mechanics involved for a simple case of two spin-1=2 nuclei before we move on to the Bloch
equations and pulsed-NMR with FFT.

Let us take a look at what is the simplest AB NMR pattern of proton NMR in terms of a spin
Hamiltonian and a wave function built from a linear combination of spin eigenfunctions as given by
PSB [3]. For two nonequivalent nuclei, the possible spin states would be jspinA spinBi in four ways
jaai, jabi, jbai, and jbbi. This same model can be used in our later discussion of coherent
spectroscopy (COSY) so it is worth understanding. In principle, we could use the HF molecule as
our example since 19F is a spin-1=2 nucleus as is 1H, but we will use a more familiar organic
example, not to mention difficulty in handling HF to get a spectrum! A better example is the case of
2-bromo-5-chloro thiophene, which has one proton on the 3-carbon and another on the 4-carbon that
are not equivalent due to the halide substituents (Figure 19.1). This will be basically a matrix
perturbation treatment like the LCAO formulation for electrons. We will set up a (4� 4) Hamilto-
nian matrix and solve the matrix form of the eigenvalue problem HC¼EC in a (4� 4) space, which
leads to the usual secular determinant jHmn�Edmnj ¼ 0. The normal resonance of the two
protons will be modified by chemical shift values as HA¼H0(1�sA) and HB¼H0(1�sB) and
the relative chemical shift is given by (sB�sA). The Hamiltonian matrix is a (4� 4) [3,4] as
HC¼CE where

H ¼
n0 1� 1=2sA � 1=2sBð Þ þ 1=4J 0 0 0

0 n0 �1=2sA þ 1=2sBð Þ � 1=4J 1=2J 0
0 1=2J n0 1=2sA � 1=2sBð Þ � 1=4J 0
0 0 0 n0 �1þ 1=2sA þ 1=2sBð Þ þ 1=4J

2
664

3
775
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Here we have used n0 ¼ gH0

2p
where g is the gyromagnetic ratio for the nucleus in question (1H here)

and H0 is the external magnetic field in the notation of PSB [3]. The gyromagnetic ratio is
characteristic of each nucleus and is the ratio of its magnetic moment to its angular momentum.
The Hamiltonian is given by spin operators I made up of

H ¼ 1
2p

X
i

giHiIz(i)þ
X
i

X
<j

JijI(i) � I(j)

with (2� 2) Pauli spin operators. Ix ¼ 1=2
0 1
1 0

� �
, Iy ¼ 1=2

0 i
�i 0

� �
, and Iz ¼ 1=2

1 0
0 �1
� �

.

The problem is reduced from a (4� 4) diagonalization to only a (2� 2) problem since we can use
the theorem that if two eigenfunctions have different eigenvalues for the same operator they are
orthogonal. Thus jaai has an eigenvalue of þ1 and jbbi and eigenvalue of �1 so they will not mix
with each other or jabi and jbai, which have an eigenvalue of 0. However jabi and jbai will
mix and do have an off-diagonal element. Let us define how the Pauli spin operators operate on the

spin vectors represented as (2� 1) columns where a ¼ 1
0

� �
and b ¼ 0

1

� �
in ‘‘spin space’’ (energy

in �h units). For the diagonal elements we have J12 coupling which can be worked out using

ajIxjah i ¼ [1 0]1=2
0 1

1 0

" #
1

0

" #
¼ [1 0]1=2

0

1

" #
¼ 0,

ajIyja
� � ¼ [1 0]1=2

0 i

�i 0

" #
1

0

" #
¼ [1 0]1=2

0

�i

" #
¼ 0,

ajIzjah i ¼ [1 0]1=2
1 0

0 �1

" #
1

0

" #
¼ [1 0]1=2

1

0

" #
¼ 1

2
,

ω34 ω12 ω24 ω13

10 cps

FIGURE 19.1 The early proton NMR spectrum of 2-bromo-5-chlorothiophene. The stick figure spectrum was
fitted using n0(sB�sA) ffi 4.7 cps and jJj ffi 3.9 cps. (Reprinted with permission from Anderson, W., Phys.
Rev., 102, 151, 1956. Copyright 1956, America Institute of Physics.)
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ajIxjbh i ¼ [1 0]1=2
0 1

1 0

" #
0

1

" #
¼ [1 0]1=2

1

0

" #
¼ 1

2
,

ajIyjb
� � ¼ [1 0]1=2

0 i

�i 0

" #
0

1

" #
¼ [1 0]1=2

i

0

" #
¼ i

2
, bjIyja
� � ¼ �i

2
,

ajIzjbh i ¼ [1 0]1=2
1 0

0 �1

" #
0

1

" #
¼ [1 0]1=2

0

�1

" #
¼ 0,

bjIxjbh i ¼ 0 1½ 
1=2 0 1

1 0

" #
0

1

" #
¼ 0 1½ 
1=2 1

0

" #
¼ 0,

bjIyjb
� � ¼ [0 1]1=2

0 i

�i 0

" #
0

1

" #
¼ [0 1]1=2

i

0

" #
¼ 0,

and finally

bjIzjbh i ¼ [0 1]1=2
1 0
0 �1
� �

0
1

� �
¼ [0 1]1=2

0
�1
� �

¼ �1
2

,

all in units of �h. Note bjIyja
� � ¼ �i

2
has an opposite sign to ajIyjb

� � ¼ i

2
as a Hermitian

requirement! Then we can use these matrix elements for haajJ12 I(1) � I(2)jaai and habjJ12 I(1) �
I(2)jabi in the diagonal elements.

aa J12I(1) � I(2)j jaah i ¼ J12 ajIxjah i2þ ajIyja
� �2þ ajIzjah i2

h i
¼ 1 4J12=

and

ab J12I(1) � I(2)j jabh i ¼ J12 ajIxjah i bjIxjbh i þ ajIyja
� �

bjIyjb
� �þ ajIzjah i bjIzjbh i� �

¼ J12 0þ 0þ (1=2)(�1=2)½ 


¼ �J12
4

:

Similar expressions are found for bb J12I(1) � I(2)j jbbh i ¼ 1 4J12= and ba J12I(1) � I(2)j jbah i ¼
�J12
4

. Next we need

ab J12I(1) � I(2)j jbah i ¼ J12 ajIxjbh i bjIxjah i þ ajIyjb
� �

bjIyja
� �þ ajIzjbh i bjIzjah i� �

¼ J12
1
2

� �
1
2

� �
þ i

2

� � �i
2

� �
þ (0)(0)

� �
¼ J12

2
:

The rest of the diagonal elements can be evaluated by assuming the field strength H0 is constant
even though some early spectrometers did sweep over a small range of field strength. Next we can
evaluate the unperturbed resonant frequencies in terms of the relative chemical shift difference and
the diagonal angular momentum with þ1=2 for a and �1=2 for b as
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aajH0jaa� � ¼ n0 1=2þ 1=2� sA=2� sB=2ð Þ,
bbjH0jbb� � ¼ n0 �1=2þ�1=2þ sA=2þ sB=2ð Þ,
abjH0jab� � ¼ n0 þ1=2� 1=2� sA=2þ sB=2ð Þ ¼ n0 �sA=2þ sB=2ð Þ
bajH0jba� � ¼ n0 �1 2þ 1 2þ sA 2� sB 2= Þ ¼ n0 þsA 2� sB 2= Þ:=ð===ð

Although this is a set of phenomenological equations only good to first order, it has been found to
work very well. Depending on the value of J12, simulated spectra can be drawn using the idea that
there will only be transitions in the spectrum for states that differ by a spin on a given nucleus. That
condition is worth remembering because even though we are treating more than one nucleus, the
implication is that we are exciting=flipping each one individually and that may not be the case later if
we are concerned with spectra from a special sequence of RF pulses. Here we have transitions
between states for which there is only a difference for a certain nucleus and for the resonant frequency
to cause a change ofþ1 or�1. For instance, suppose the value of J12 is such that after diagonalization
we have four states for two nuclei where states 2 and 3 have mixed due to the off-diagonal term. The
normalized mixing coefficients (a, b) come from solving the (2, 3) subspace of the Hamiltonian. Only
transitions (1->2), (1->3), (4->2) and (4->3) will occur for a total of four lines and their relative peak
intensities will be determined by the numerical coefficients (a, b) (Table 19.1).

But wait! What is J12? Therein lies a dilemma in that a lot of effort was required to fit the value of
J12 to measured spectra and that is only for two nuclei. It turns out that a least squares fitting
procedure can be used easily up to about seven nuclei (protons) [5] but larger molecules present a
challenge. At first, increasing the field strength offered a way to spread out a given spectrum but for
things like DNA fragments and enzymes this approach is hopeless!

FORENSIC APPLICATION OF 1D-NMR

Benzoylecgonine (BEG) is one of the main metabolites of cocaine as formed by hydrolysis of
cocaine in the liver and is mainly excreted in urine. Therefore BEG in a urine sample is a telltale
sign of cocaine and ‘‘crack’’ use (Figure 19.2). Although there are other methods of detection such
as gas chromatography=mass spectrometry, two-dimensional NMR (2D-NMR) [6] has recently
been developed as a screening technique since sample size is not critical in this case. While
detection of cocaine use is important in criminal cases, NMR detection is relatively expensive
and unlikely to become a routine method for this analysis. However, we will see that the simplest
form of such analysis might be proton NMR using an inexpensive low-field spectrometer. The
crack=rock form of cocaine can rapidly lead to addiction with a single use followed by devastating

TABLE 19.1
Basis Spin States for Two Protons
with (a, b) as Normalized Mixing
Coefficients

1. jaai
2. ajabiþ bjbai
3. ajabi� bjbai
4. jbbi
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personal and social consequences; death has occurred from use of crack (do an Internet search on
‘‘Len Bias,’’ a tragic story). The key point here is that Pedersoli et al. [6] made an all-out study of the
NMR spectra of BEG using 2D techniques and while we might find simple proton NMR to be
sufficient for forensic use, physical chemists should have a working understanding of 2D-NMR,
possibly from graduate courses.

Pedersoli et al. [6] started from a sample of ‘‘crack’’ cocaine and hydrolyzed the methyl ester
using hot water. The metabolite was synthesized and characterized by 2D-NMR using three
advanced techniques for a very thorough study of BEG by NMR (Figure 19.3). Details of the
study were kindly supplied by Prof. Roberto Rittner of The Physical Organic Chemistry Laboratory,
Chemistry Institute, State University of Campinas, Campinas, SP, Brazil.

Spectra: 1H and 13C NMR spectra run in a VARIAN INOVA 500 (499.88 MHz for 1H and 125.70
MHz for 13C), temperature 3008K, in CD3CN and TMS (Figure 19.4).

Structure: It was optimized at B3LYP=cc-pVDZ level of theory.

The modeling program is a modern density functional theory (DFT) [7] molecular orbital method,
which uses an empirically adjusted exchange potential and a ‘‘valence double zeta’’ (VDZ) basis set
of orbitals (a more refined form of the Slater X a exchange discussed in Chapter 9, and additional
orbitals are included in a calculation beyond what would be needed for the minimum description),
which is modeling including electronic structure effects and this method is regarded as capable
of producing reasonable bond lengths and angles by minimizing the conformational energy
(Table 19.2).

After this analysis of the overall NMR spectra of BEG, the forensic application depends on the
resonance of the protons (No. 14 on the structural formula) at 2.54 ppm due to the N-methyl
substituent. That peak is strong enough and in a sufficiently unique region to be observable from a
urine extract sample or a suitable bowel sample from a newborn infant. One interesting structural
observation from the paper is that the carboxyl H is attracted to the N lone pair forming an internal
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FIGURE 19.2 Research preparation of BEG by mild hydrolysis of ‘‘crack’’ cocaine.

FIGURE 19.3 DFT-optimized model of the cocaine metabolite benzoylecgonine.
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8 7 6 5 4 3 2 1 0 ppm

FIGURE 19.4 The 500 MHz proton NMR spectrum of the benzoylecgonine (BEG) metabolite. (From
Pedersoli, S. et al., Spectrosc. Lett., 41, 101, 2008. With permission; Spectrum courtesy of Prof. Rittner of
The Physical Organic Chemistry Laboratory, Chemistry Institute, State University of Campinas, Campinas, SP,
Brazil.)

TABLE 19.2
Summary of the BEG Cocaine Metabolite NMR Data

C
dC

(ppm) H
dH

(ppm) Multiplicity
Coupling

Constants (Hz) gHMBC gCOSY gHSQC

1 65.3 1 3.71(1H) Dd J1,2¼ 3.1; J1,7a¼ 6.1 C-2, 3, 5, 6, 14 H2, H7a, H7b H1

2 49.3 2 2.99(1H) Dd J2,3¼ 6.5; J2,1¼ 3.1 C-3, 4, 8 H1, H3 H2

3 66.3 3 5.32(1H) Dt J3,4a¼ 11.3;
J3,4b¼ J3,2¼ 6.5

C-2, 4, 8, 9 H2, H4a, H4b H3

4 34.6 4a 2.33(1H) Ddd J4a,4b¼ 13.5; J4a,3¼ 11.3;
J4a,5¼ 3.1

C-3, 5, 6 H3, H4b, H5 H4a, H4b

4 4b 2.14(1H) Ddd J4b,4a¼ 13.5; J4b,3¼ 6.5;
J4b,5¼ 3.1

C-2, 3 H3, H4a, H5

5 61.9 5 3.64(1H) Dt J5,6a¼ 6.4;

J5,4a¼ J5,4b¼ 3.1

C-3, 7 H6a, H4a, H4b H5

6 25.7 6a 2.26(1H) Dd J6a,6b� 9.8; J6a,5¼ 6.4 C-1, 4, 5, 7 H5, H6a, H7b H6a, H6b

6 6b 1.96(1H) T J6b,7b¼ J6b,6a¼ 9.8 C-1, 4, 5, 7 H5, H6b, H7a

7 24.6 7a 2.26(1H) Dd J7a,7b¼ 9.8; J7a,1¼ 6.1 C-1, 2, 5, 6 H1, H6b, H7b H7a, H7b

7 7b 1.89(1H) T J7b,7a¼ J7b,6b¼ 9.8 C-1, 2, 5, 6 H1, H6a, H6b, H7a

8 174.0 8 — — — — — —

9 166.4 9 — — — — — —

10 131.2 10 — — — — — —

11 130.4 11 7.96(2H) Dd J11,12¼ 8.5; J11,3¼ 1.4 C-9, 10, 12, 13 H12, H13 H11

12 129.6 12 7.48(2H) Dd J12,11¼ 8.5; J12,13¼ 7.3 C-9, 10, 11, 13 H11, H13 H12

13 134.2 13 7.61(1H) Tt J13,12¼ 7.3; J13,11¼ 1.4 C-11 H11, H12 H13

14 38.5 14 2.54(3H) S — C-1, 5 — H14

Source: Pedersoli, S. et al., Spectrosc. Lett., 41, 101, 2008. With permission.
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H-bond which makes the structure more rigid but this may not persist in solution. It is likely that the
main forensic application will depend on the large methyl-proton resonance at 2.54 ppm, which can
be observed using less expensive spectrometers. In the research of the NMR spectra of the BEG
metabolite, all the assignments had to be made and the 2D spectra was extremely helpful in
assigning the resonance peaks. However, one should appreciate the excellent resolution provided
by the high field in the 1D spectrum.

NUCLEAR MAGNETIC RESONANCE: PULSE ANALYSIS

It is interesting that the key paper by Bloch [1] was published in 1946 and even the 1959 printing
of the PSB text includes the description of the Bloch equations in the early chapters, but it was not
until about the 1980s that it was applied to a sophisticated sequence of RF pulses. Early scanning
NMR spectrometers used 10,000 gauss or 10 kilogauss. Today, superconducting magnets are rated
in Tesla¼ 1 W=m2¼ 10 kilogauss¼ 10,000 gauss and typical superconducting magnets are
rated at 6 T or much more. A 4 T magnet can pull a loose (steel) screwdriver off a nearby
table and cause a lot of damage in a laboratory. A typical laboratory Alnico magnet can reach
about 1 T in a 1 mm gap. Today, spectrometers are available with 18.7 T fields to measure 800
MHz proton spectra, and ‘‘whole body’’ magnetic resonance imaging (MRI) solenoids typically
operate at 1.5 T! There is even one NMR spectrometer in Lyon, which can measure 1.1
GHz¼ 1100 MHz proton spectra! The point here is that the magnetic fields are so strong that
precise control and analysis of spin alignment is now possible with brief intense pulses of RF
energy perpendicular to the main field.

One of the main innovations in NMR spectroscopy became a practical reality around 1980 when
spectrometers changed from scanning spectrometers to ‘‘pulse-analyzing spectrometers.’’

Going back to the idea of representing a function by a Fourier series [8] as

f (x) ¼ a0
2
þ
X1
n¼1

an cos (nx)þ bn sin (nx)½ 


one can find the coefficients from an ¼ 1
p

ðþp
�p

f (x) cos (nx)dx and bn ¼ 1
p

ðþp
�p

f (x) sin (nx)dx using

the idea of component projection we discussed for FT-IR. However, if f (x) is a rectangular ‘‘pulse’’
such as [ f (x)¼ 0, x< 0; f (x)¼ 1, 0 � x � a; f (x)¼ 0, x> a], it will be found that the fit requires
essentially n!1 to get a good fit, especially at the corners of the pulse (Figure 19.5). On the one
hand that means that it takes an infinite number of waves with a Fourier series to fit a square wave
pulse, but on the other hand it implies that if you do apply a brief square-wave pulse of a RF
centered near where the absorptions of a nuclear resonance occurs, the pulse will approximate a
simultaneous irradiation by an infinite number of frequencies! In practice, a pulse of 10–200 W with
a fixed frequency in the range of the desired resonance is applied for a short time of about 1–10 ms.
Although the actual short pulses may not be perfectly rectangular they still represent a wide range of
frequencies in the Fourier sense.

In Chapter 9, we emphasized the use of electromagnetic radiation to characterize quantized
energy levels. Figure 9.1 shows that a light (radio) wave has a magnetic field as well as an electric
field. Thus there is a mechanism by which a magnetic field can be set up by a brief but intense RF
wave across the main field direction and cause a tendency for the magnetic moments to precess
about the direction of the RF beam and tip=rotate many of the spin moments toward the opposite
quantized position. Basically, the NMR probe measures magnetization so a model has been
developed called ‘‘the vector model’’ which represents the total sum of the magnetic moments in
the sample. For a two-state spin system (proton spin ‘‘up’’ and spin ‘‘down’’) relative to the field
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direction, there will be a state where the magnetic field of a proton will be ‘‘parallel’’ (p) with the

field which is a favored orientation [magnet-N (N-spin-S) S-magnet] with energy � g�h

2
B0. There

will also be a less stable orientation of the spin ‘‘antiparallel’’ (ap) to the field [magnet-N (S-spin-N)

S-magnet] with energy þ g�h

2
B0 [4]. Thus DE¼ g�hB0. The two-state model also applies to 13C and

15N nuclei although the resonant frequencies are different.
At thermal equilibrium in a strong magnetic field, the energy difference between the two

orientations is large at a magnetic field of 18.7 T (800 MHz for protons) but even then at 3008K
the population in the upper energy level is quite large. This is the main reason that NMR is less
sensitive than other spectroscopic methods and requires a fairly large sample. Here g is the
gyromagnetic ratio which is the ratio of the magnetic dipole moment to its angular momentum
with SI units of radian per second per tesla (s�1 � T�1). For nuclei the ratio is expressed relative

to the nuclear magnetron g ¼ þe
2mp

g ¼ g
mN

�h
. The gyromagnetic ratio for a proton is measured to

be gp¼ 2.675222099� 108=T s. Thus we have
Nap

Np
¼ e�

DE
kT

	 

¼ exp � þg�hB0

kT

� �� �
according to

the Boltzmann Principle. Numerically that is
Nap

Np
¼ 1:273715856� 10�4. Assume the sample is

about 0.001 M in protons or about 6� 1020 total protons. Then Nap ffi 1:273716� 10�4Np and
Np þ Nap ¼ (1þ 1:273716� 10�4)Nap ¼ 6� 1020 so we find Np ¼ 5:999236� 1020 and Nap ¼
7:641323� 1016. It might seem from the powers that there are only about ten thousand more
parallel than antiparallel spins but Np is so large that there are plenty of spins to flip from the low
level. Staying with the two-state model for spin (1=2) nuclei, we note that the difference in energy
þ�h 2=ð Þ � ��h 2=ð Þ ¼ �h so the resonant frequency is due to DE ¼ �hn ¼ hn 2p=ð Þ for spin 1=2 nuclei.
All of this is complicated by the fact that different nuclei can have þ=� gyromagnetic ratios
(Table 19.3), but for undergraduates the main fact is that the parallel orientation is the lower
energy [4]. We also note the spins will be precessing at the Larmor frequency v0¼� gB0 (note
the minus sign, see Figure 19.9) about the field z-direction. The precession is the same phenomenon
we saw with the angular momentum of the d-orbital states in the H atom where the z-direction is
defined but the x- and y-angular momentum is undefined. The Larmor frequency is a real frequency
given by the product of the gyromagnetic ratio and the field strength v0¼ gB0. For protons, this is
(2.675222099� 108=T s)(18.7 T)=(2p) ffi 796.2� 106=s in the assumed 800 MHz spectrometer.
Thus you need to visualize a milli-mole sample with at least 6� 1020 protons precessing in the field
multiplied by the number of protons in each molecule and the precession cones are either spin-up or
spin-down (Table 19.3).

X
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Y

FIGURE 19.5 A schematic of how the tip of the magnetic moment of the spin-1=2 nucleus is ‘‘flipped’’ from
one quantized state to the other by a 1808 side magnetic field. The þ1, 0, �1 refer to energy in energy units of
�h 2= . (Drawing by Dr. Walter Scott, University of British Columbia.)
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ROTATING COORDINATE SYSTEM

Now we come to the most important consideration of this discussion, the rotating coordinate
system. A simple analogy is to imagine you observe children playing on a ‘‘foot-scooter-driven’’
merry-go-round at a playground. Standing away from the rotating platform you see it rotate just as
you would see a precessing magnetic moment in the laboratory frame. However, if you step onto the
rotating platform, the objects on the platform appear to be still while the outside ‘‘world’’ appears to
rotate! If the rotation frequency is the same as the precession frequency, the precession will appear
to be at a standstill! Thus it is easier to analyze the effects of the RF magnetic pulse in a rotating
coordinate system. If the rotating frequency ( f ) is not quite the same as the precessing frequency
(V) the precession will appear to proceed slowly with an angular ‘‘offset frequency’’ which is the
difference between the RF frequency and the precession frequency as (V� f ). Usually, the main
magnetic field direction is assumed to be in the z-direction with x- and y-directions perpendicular to
the main field in what is called the (x, y, z) laboratory framework. Since the RF pulses are controlled
by any one of several programs in the control computer, the signal is analyzed as to when a major
magnetization signal such as the tetramethysilane (TMS) decreases to zero, goes negative, and
comes back to zero as establishing the net magnetization cycle of 3608. That time can then be
divided by 2 and 4 to obtain the times for so-called 908, 1808, and 2708 pulse durations. It is
important to understand that these degree angles refer to the net magnetization of the whole sample
(at one particular frequency) and not the precession phase of any given nucleus. We see in the
following a simulation of the magnetization vector undergoing a change in direction due to an
‘‘1808’’ RF pulse.

The use of the vector model can be illustrated by an early technique used to intensify or
‘‘refocus’’ weak signals. The technique was first documented by Hahn [10] but the results were of
marginal use. Carr and Purcell [11] published an improvement later that showed stronger signal
enhancement. Today this ‘‘Spin Echo’’ technique is less important than other pulse techniques but it
is a good educational exercise (Figure 19.6). The diagram uses rotating coordinate axes of (x0, y0, z0)
with z0 ¼ z of the laboratory frame.

In Figure 19.6A we see the net magnetization pointing along the main field z-axis. In Figure
19.6B there is a 908 pulse, that is a pulse long enough to nullify the z-magnetization to zero as
shown in Figure 19.6C with the net vector in the x–y plane of the rotating system and a time of t per
rotation. Then a suitable time delay passes in which the individual spins start to fan out in the x–y
plane due to their different chemical shift effective fields. In Figure 19.6E, an RF field is applied for
a time that is twice as long as the original 908 pulse resulting in a 1808 pulse and full inversion of the
magnetization in Figure 19.6F. However, the individual chemical shifts now tend to coalesce in

TABLE 19.3
Selected Two-State Nuclear Spin (1=2) Properties

Z Isotope Abundance% I n=1 T ¼ gp 2p= m mN=

1 1H 99.9885 1 2= 42.5775 þ2.792847337
6 13C 1.07 1 2= 10.7084 þ0.7024118
7 15N 0.364 1 2= 4.3173 �0.2831888
9 19F 100 1 2= 40.0776 þ6.628868

14 29Si 4.685 1 2= 8.4655 �0.55529
15 31P 100 1 2= 17.2515 þ1.13160

Source: Lide, D.R., CRC Handbook of Chemistry and Physics, 90th Edn., CRC Press,

Taylor & Francis, Boca Raton, FL, 2009–2010, pp. 1–5.

The nuclear magnetron mN ¼
e�h

2mp

� �
¼ 5:05078324� 10�27 J=T [9].
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Figure 19.6G to form an ‘‘echo’’ of the original signal at a time of 2t and finally the differences in
chemical shifts leads to a fan out of the individual magnetization vectors again. This effect was an
important milestone in the development of pulse-NMR but now it serves mainly to illustrate the
ideas of the vector model. Unfortunately, the vector model is only an introduction to pulse analysis
and is insufficient to explain ‘‘COSY.’’ Coherent analysis is very important for direct measurement
of coupling constants but at the very least involves a higher description of ‘‘product operators’’ in
which the basis represents coherent excitation of two nuclei at once. We will give examples in the
following text to motivate students for further study, but the topic requires a separate course for
proper understanding.

DETECTION OF MAGNETIC FIELDS

Before we go on with more sophisticated pulse sequences, we need to take a long pause and find out
how the Fourier transform is used and what signal is analyzed. Thus we need to take a look at the
Bloch equations and we summarize the Internet tutorial of Prof. Suzana Straus of the University of
British Columbia available at http:==www.chem.ubc.ca=faculty=straus=Nlecture1.pdf. Basically, an
NMR spectrometer measures a time-dependent magnetization (Figure 19.7). An electrical coil in the
x–y plane can detect changes in the magnetic field passing through the coil, which induce electrical
currents. According to work by Pierre Curie with magnetism prior to the work on isolating radium,
magnetization is the sum of the magnetic moments per unit volume as ~M ¼ 	Pi mi=V



. At

relatively high temperature (room temperature) and assuming the z is the field direction, Curie’s

Law reduces to M0 ¼ Mz ¼ N(g�h)2I(I þ 1)B0

3kT
¼ N(g�h)2B0

4kT
; I ¼ 1 2= . The Curie Law is the appro-

priate expression at 3008K, but the derivation is not trivial. However this is what an NMR
spectrometer measures at 3008K. Note that due to thermal equilibrium, the magnetization is only
along the z-axis direction of the field since the x and y components of the field average to zero by
virtue of the precession.
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ź ź ź ź
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FIGURE 19.6 The classic ‘‘spin echo’’ pulse sequence in the rotating coordinate system from an early paper
by Carr and Purcell. (Reprinted with permission from Carr, H.Y. and Purcell, E.M., Phys. Rev., 94, 630, 1954.
Copyright 1954 by the American Physical Society.)
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BLOCH EQUATIONS

The 1952 Nobel Prize in Physics was awarded to Felix Bloch for results that were published in
1946 [1]. The implementation of what are now the famous ‘‘Bloch Equations’’ led to a major
advance in NMR spectroscopy and ‘‘magnetic resonance imaging’’ (MRI) which is now in common

use in hospitals. Magnetically, ~m¼ g~L but the Larmor frequency is given by v0 ¼ �mB0

L
with a

minus sign. The absolute sign is determined by the magnetic moment of a given nucleus, which can
be either sign. Prof. Straus goes all the way back to defining the gyromagnetic ratio but we have

already defined that as ~m¼ g~L or g ¼ ~m

~L
. Our interpretation depends on following the precession of

the spin moments, although we remind ourselves that due to chemical shifts, not all the spin-1=2
particles are precessing at exactly the same frequency.

The first step, which is unfamiliar to chemists, is that
d~L

dt
¼ ~T but we should recall Newton’s

second law in words as ‘‘a change in momentum is a force’’ and torque is a force. Then a precession
is caused by a torque (T) on ~m as ~T ¼~m�~B0. That is a hard thing to understand but it is common
experience when we recall the way in which a toy top precesses while spinning in a gravitational

field. Multiply the equation by
g

V

� 
on both sides to obtain the time dependence of the magnetiza-

tion, the key equation
d~M

dt
¼ g~M �~B0, which is a vector equation with a cross-product. Here is

where we see the key steps in the derivation of the Bloch equations when we expand the cross-
product:

dMx

dt
¼ g(MyBz �MzBy)

dMy

dt
¼ g(MzBx �MxBz)

dMz

dt
¼ g(MxBy �MyBx)

Now we assume Bx¼By¼ 0 (field in the z-direction) and Bz¼B0 with My(t¼ 0)¼ 0 as a future
condition. Those conditions knock out parts of the cross-product as we see in

dMx

dt
¼ g(MyB0)

L

T

FIGURE 19.7 An illustration of how quantized angular momentum of a magnetic dipole will precess around
a magnetic field. (Drawing by permission of Prof. Suzana Straus, of the Chemistry Dept. at the University of
Vancouver, British Columbia, http:==www.chem.ubc.ca=faculty=straus=Nlecture1.pdf)
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dMy

dt
¼ �g(MxB0)

dMz

dt
¼ 0

So simply using the conditions of the magnet geometry leads us to the key step of the derivation.
Next, take the second derivative of the My component, this is the key step!

d2My

dt2
¼ �gB0

dMx

dt

� �
¼ �(gB0)

2My

and this can be factored as

d

dt
þ igB0

� �
d

dt
� igB0

� �
My ¼ 0:

So My¼C1 cos(gB0t)þC2 sin(gB0t)¼ 0 at t¼ 0 , C1¼ 0 and so My¼C2 sin(gB0t).
Here we have used the sin and cos solution form with as-yet-unknown coefficients.

Then
dMy

dt
¼ C2

d

dt
sin (gB0t)½ 
 ¼ C2gB0 cos (gB0t) ¼ �gB0Mx ) Mx ¼ Mx(0) cos (gB0t) where

we have chosen to call Mx(0)¼�C2 since it is arbitrary, as from a RF pulse, but with that choice
C2¼�Mx(0). Then My¼C2 sin(gB0t)¼�Mx(0) sin(gB0t). Further, we use gB0¼v0 to find

Mx(t) ¼ Mx(0) cos (v0t),

My(t) ¼ �Mx(0) sin (v0t),

Mz(t) ¼ Mz(0):

However, we come to a convention here that requires thought. The sign of the gyromagnetic ratio
determines the sense of rotation and, therefore, whether or not the right-hand rule applies. A positive
ratio implies the right-hand rule and a negative ratio (15N, e.g.) the opposite. You can see this in the
torque equation: ~T ¼~m�~B0¼ g(~L�~B0). The direction of the torque (and therefore the direction of
precession) depends on the sign of gamma. Thus, if the RF pulse is along the x-axis from þx to �x
the magnetization will tend to rotate clockwise rather than the usual calculus counterclockwise
positive angle. Actually, the Bloch equations are telling us that the My component wants to go
opposite, to the minus direction. Thus in the diagrams that follow, we will use the right-hand rule for
rotation of the magnetization and maintain the usual right-handed coordinate axes system (Figures
19.8 and 19.9). Several NMR books emphasize this convention, which we illustrate in Figure 19.9.
We say again, an RF pulse along the x-axis from þx to �x rotates the magnetization vector
clockwise for nuclei with a positive gyromagnetic ratio.

According to this, the rotation coordinate system would rotate indefinitely about a constant
Mz(0) component. However, two effects intervene. First the Mz(t) loses coherence due to physical
effects in the sample such as wall collisions and Brownian motion in the sample so Bloch modeled

this empirically as
dMz

dt
¼ � (Mz �M0)

T1
so that as T1 (the spin-lattice relaxation time) increases

Mz ! M0 from below. Mz changes dramatically when so many spins are flipped but gradually
thermal equilibrium is restored and Mz ! M0. Second, the sin(v0t) and cos(v0t) waves will
gradually decrease in amplitude as the spin–spin interactions of nuclei in slightly different chemical
shift frequencies interfere with each other in what is called the spin–spin relaxation time, T2.
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This damping effect is applied as a simple exponential factor e�
	

t
T2



. Thus we come to the final

(empirical) Bloch equations (Figure 19.10).

Mx(t) ¼ Mx(0) cos (v0t)e
�
	

t
T2



dMx

dt
¼ gB0My �Mx

T2

My(t) ¼ Mx(0) sin (v0t)e
�
	

t
T2



dMy

dt
¼ �gB0Mx �My

T2

dMz

dt
¼ �(Mz �M0)

T1

Thus the wave signals will fade away in time T2 and the whole effect can be written in a general

equation as
d~M

dt
¼ g~M �~B0 � R[~M � ~M0] with R ¼

1
T2

0 0

0 1
T2

0

0 0 1
T1

2
664

3
775.

yy My

Mz

Mz

M
M sin β

M cos β
β

xx

zz

FIGURE 19.8 Definition of a right-hand-rule rotation of the magnetization by an angle þb due to a magnetic
pulse from the þx direction toward the negative (�x) direction. (From Dr. Keith Brown of the Chemistry
Department of the University of Saskatchewan, Canada, at http:==chem4823.usask.ca=nmr=practical_nmr.html)
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BIL
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FIGURE 19.9 Resolution of a RF pulse plane wave into two� circular waves. The circular wave opposite to
precession can be neglected as ‘‘off-resonance,’’ and when the resonant wave is tuned to the precession it
becomes motionless in the rotating system. (From Dr. Keith Brown of the Chemistry Department of the
University of Saskatchewan, Canada, at http:==chem4823.usask.ca=nmr=practical_nmr.html)
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The Bloch equations are like a mixture of classical electricity and magnetism with some quantum
mechanics to determine the energy levels. Note there are two time intervals here. T1 is the so-called
spin-lattice time constant, which is a characteristic time for the loss of the magnetization for a given
cycle due to bumping and jostling of the sample molecules in the solvent, the container, etc., the
mechanical conditions of the sample. On the other hand, the T2 time interval is due to the loss of
magnetization coherence due to spin–spin interactions (de-phasing) in the sample. The fact that
different nuclei are in differing chemical shift environments leads to what is called ‘‘free induction
decay’’ (FID) and the coherence decays.

In MRI the signal is primarily due to 1H resonances from H2O and –CH2–, which are about
220 cps apart in a typical 1.5 T ‘‘body magnet.’’ Different organs and tissue vary in proportions
of water and fat content but in general T2< T1 with T1 on the order of 1 s and T2 on the order of
50–100 ms. For imaging, so-called contrast agents can be infused as water-soluble salts of Mnþ2

with five unpaired electrons or Gdþ3 with seven unpaired electrons to shorten T2 due to
paramagnetic interaction with protons. If the salts go preferentially to one site, the part of the
image due to T2 can be changed. Usually, T1 and T2 are longer in MRI than in chemical NMR
because O2 is also paramagnetic with two unpaired electrons so dissolved O2 in chemical
preparations usually causes a shorter T2 for organic chemistry samples. However, the chemical
shift information is in the FID signal, and the Cooley–Tukey FFT process projects the spectrum
out of the FID signal and then another cycle proceeds, and again for many cycles to improve the
average signal (Figure 19.11).
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FIGURE 19.10 Simulated free induction decay of a pure cosineMx component of the field after the 908 pulse
from the side. The My component is 908 different as a sine wave while the magnetization rotates in the X–Y
plane. For a real sample these would not be clean waves but would contain the information from many different
chemical shift environments. The time scale could also be as much as 10 times longer in MRI. The two
components are available for Fourier transformation withMx as the real part andMy as the imaginary part of the
complex transform integral.
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COMPLEX FOURIER TRANSFORM

In the previous use of a Fourier transform for infrared spectra, we only needed the real part but the
complex form of the Fourier transform is ideally suited for two dimensions that are orthogonal by
using Mx as the real part and plotting My as the imaginary part just to indicate the orthogonality of
Mx and My vector components.

f (v) ¼
ðþ1
�1

f (t)eivtdt ¼
ðþ1
�1

f (t) cos (vt)� i sin (vt)½ 
dt

With very fast computer control, the complex FID can be sampled and the transform calculated in
real time for several reasons using the trick of sampling the FID at time delays that correspond to a
phase shift to obtain the sin(vt) sample as sin(vt) ¼ cos vt þ p 2= Þð . Another feature of the pulse
acquisition is that it is repeated many times to average the results. Thus we have a situation where a
computer controls the timing of RF pulses perpendicular to the z-axis of the main magnet and many
programs are available to carry out a number of experiments with the same spectrometer. As such
modern NMR spectrometers are ‘‘programmable experiments.’’

2D-NMR COSY

Now we come to the part we have been working toward ever since we noted the spin-Hamiltonian
approach needed a way to find the coupling constants. COSY has revolutionized the use of NMR
because it is no longer necessary to worry about the values of the coupling constants and there is

FIGURE 19.11 Felix Bloch (1905–1983) was a Swiss-born physicist who emigrated to the United States
in1933 after education in Zurich where he studied under Schrodinger, Heisenberg, Pauli and others who
developed quantum mechanics. His early research was on measuring the magnetic moment of the neutron but
after WWII he published work on measurement of proton magnetic moments. This work formed the foundation
for modern nuclear magnetic resonance and even magnetic resonance imaging. He was awarded the Nobel
Prize in Physics in 1952. Here he is speaking at a banquet as President of the AIP in 1965. (Photograph by
Robert M. St. John, courtesy AIP Emilio Segre Visual Archives, Physics Today Collection.)
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a way to use product operators to directly measure and plot the coupling constants! First we need to
set out a carefully prepared table of the product operators where the operators that only operate on
one nucleus only have one letter but the operators with two letters operate successively on two
nuclei. It is a historical convention to treat the system of two nuclei with the symbols I for the
‘‘insensitive’’ nucleus and S for the ‘‘sensitive’’ nucleus, but modern convention usually assigns
I¼ 1H and S¼ 13C or 15N. However, this notation corresponds to the labels of A and B in our spin-
Hamiltonian example at the beginning of this chapter and the analysis is based on the same four
energy levels we found for the AB case (Table 19.4).

Note especially in what follows that certain operations are not observable because only oper-
ations that cause a change in magnetization flux through the x–y plane receiver will be recorded in
the detector. This helps simplify the operator analysis by neglecting the unobservable changes.

COHERENT SPECTROSCOPY

Now we come to an interesting consideration. The main magnetic field is so strong and so
homogeneous all in one very well-defined direction that projection of vectors into sine and cosine
components is very precise. The text by Hore, Jones, and Wimperis [3] gives geometric diagrams to
show the effects of the product operators, but a tutorial by Dr. Keith Brown at the University of
Saskatchewan in Canada has carefully worked out the product string for four repeated events in the
COSY pulse sequence (http:==chem4823.usask.ca=nmr=practical_nmr.html) in a direct use of
repeated application of trigonometric resolution of the vector components (Figure 19.12).

TABLE 19.4
Product Operators of RF Pulses in the Rotating Coordinate System

IS 1 2E= Sx Sy Sz

1 2E= 1 2E= Sx Sy Sz
Ix Ix 2IxSx 2IxSy 2IxSz

2x

Iy Iy 2IySx 2IySy 2IySz
Iz Iz 2IzSx 2IzSy 2IzSz

Source: Hore, P.J. et al., NMR: The Tookit, Oxford University Press, Oxford, U.K., 2000.

For two spins there are 16 possible product operators:
Iz, Sz: z component of magnetization (unobservable).
Ix, Iy, Sx, Sy: x and y components of magnetization (observable).

2IzSz: longitudinal two-spin order (unobservable).
2IxSz, 2IySz, 2IzSx, 2IzSy: antiphase magnetization (observable).
2IxSx, 2IxSy, 2IySx, 2IySy: two-spin coherence (unobservable).
E=2: unity operator.

The factors of 2 are for normalization.

Acquire τ2τ1

‘(π/2)x ‘(π/2)x

FIGURE 19.12 The COSY pulse sequence.
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Note in particular that the two time variables between pulses are variable, which is critical to
the final process. The two 908 pulses are bursts of RF energy perpendicular to the main field for
a time equal to (1=4) of the time it takes the total magnetization signal to go from zero to a
maximum, to zero again, to a minimum, and then back to zero magnetization signal again. That
is the way in which the spectrometer is calibrated to establish (90=360) degrees of the magnet-
ization signal. The final equations obtained by Dr. Brown are complicated but can still be
deciphered.

First, we need to define some experimental parameters relative to phase angles, times, and
chemical shifts in both Greek symbols and the abbreviations used in Dr. Brown’s program

VI is the chemical shift of nucleus I (could be nucleus A)¼wI
VS is the chemical shift of nucleus S (could be nucleus B)¼wS
t1¼ t1 is the variable time delay between the two 908 pulses (computer controlled)
t2¼ t2 is the variable time delay after the second pulse (computer controlled)
J is the coupling constant between the two nuclei (what we seek!)
p¼ 1808¼ p

PRODUCT OPERATOR COSY ANALYSIS USING DR. BROWN’S
AUTOMATED SOFTWARE

‘‘For two spins, we start with equilibrium I magnetization and follow the evolution of things as
pulses and time delays are applied. Spins I and S are, in this case, homonuclear in opposition to
the general literature convention of using them as heteronuclear spin symbols. One could
perhaps use I1 and I2 but I find that with all of the terms generated it makes things clearer to
use I and S.’’

þ Iz

j
p=2 pulse on I,þx phase

j
\=

� Iy

j
chemical shift time: t1

j
\=

� Iy*cos(wIt1)þIx*sin(wIt1)

j
coupling evolution time: t1

j
\=

� Iy*cos(pJt1)*cos(wit1)þ2IxSz*sin(pJt1)*cos(wit1)

þ Ix*cos(pJt1)*sin(wit1)þ2IySz*sin(pJt1)*sin(wit1)
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j
p=2 pulse on I,þx phase

j
\=

� Iz*cos(pJt1)*cos(wIt1)þ2IxSz*sin(pJt1)*cos(wIt1)

þIx*cos(pJt1)*sin(wIt1)þ2IzSz*sin(pJt1)*sin(wIt1)

j
p=2 pulse on S,þx phase

j
\=

� Iz*cos(pJt1)*cos(wIt1) � 2IxSy*sin(pJt1)*cos(wIt1)

þIx*cos(pJt1)*sin(wIt1) � 2IzSy*sin(pJt1)*sin(wIt1)

j
Removing Unobservables

j
\=

þIx*cos(pJt1)*sin(wIt1) � 2IzSy*sin(pJt1)*sin(wIt1)

j
chemical shift time: t2

j
\=

þIx*cos(wIt2)*cos(pJt1)*sin(wIt1)
þIy*sin(wIt2)*cos(pJt1)*sin(wIt1)
�2IzSy*cos(wIt2)*sin(pJt1)*sin(wIt1)
þ2IzSx*sin(wIt2)*sin(pJt1)*sin(wIt1)

j
coupling evolution time: t2

j
\=

þIx*cos(pJt2)*cos(wIt2)*cos(pJt1)*sin(wIt1)
þ2IySz*sin(pJt2)*cos(wIt2)*cos(pJt1)*sin(wIt1)
þIy*cos(pJt2)*sin(wIt2)*cos(pJt1)*sin(wIt1)
�2IxSz*sin(pJt2)*sin(wIt2)*cos(pJt1)*sin(wIt1)
�2IzSy*cos(pJt2)*cos(wSt2)*sin(pJt1)*sin(wIt1)
þSx*sin(pJt2)*cos(wSt2)*sin(PiJt1)*sin(wIt1)
þ2IzSx*cos(pJt2)*sin(wSt2)*sin(pJt1)*sin(wIt1)
þSy*sin(pJt2)*sin(wSt2)*sin(pJt1)*sin(wIt1)
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The analysis of the (complicated) final expression is fairly straightforward. First, looking at the
chemical shift modulation terms for Ix, Iy, Sx, and Sy, we see that the I terms are modulated only by
wI during both the t1 and t2 delay times but the S terms are modulated by both wI in t1 and wS in t2. In
other words, the I terms correspond to on-diagonal peaks in the spectrum and the S terms to off-
diagonal peaks or cross-peaks in NMR speak. The 2IxSz and 2IySz terms are modulated by wI and
the 2IzSx and 2IzSy terms are modulated by wS and correspond to antiphase peaks close to the
diagonal. If we were to start with Sx equilibrium magnetization instead, the result would be similar
except that I and S would be exchanged. The actual result of the pulse sequence using Greek
symbols is

þ IX cos (pJt2) cos (VI t2) cos (pJt1) sin (VI t1)þ 2IYSZ sin (pJt2) cos (VI t2) cos (pJt1) sin (VI t1)

þ IY cos (pJt2) sin (VI t2) cos (pJt1) sin (VI t1)� 2IXSZ sin (pJt2) sin (VI t2) cos (pJt) sin (VI t1)

� 2IZSY cos (pJt2) cos (VSt2) sin (pJt1) sin (VI t1)þ SX sin (pJt2) cos (VSt2) sin (pJt1) sin (VI t1)

þ 2IZSX cos (pJt2) sin (VSt2) sin (pJt1) sin (VI t1)þ SY sin (pJt2) sin (VSt2) sin (pJt1) sin (VI t1)

The last four terms have the property that (VIt1) occur together and (VSt2) occur together so that a
grid of values can be computed under computer control to vary t1 in small increments while holding
t2 constant and then varying them in reverse order.

We should have gained an appreciation for the way in which the magnetic moments are snapped
into new orientations in a rapid crisp manner in such a high field that the RF pulses perform sudden
precise operations. Thus the various sine and cosine terms are also very precise even though they

FIGURE 19.13 Dr. Keith Brown of the Chemistry Department at the University of Saskatchewan in Canada
has coded a program for automatic generation of results for the product operators of various RF pulse sequences
in NMR which solves a problem of tremendous tedium and allows a creative level of higher order planning and
creating unique pulse sequences as well as understanding standard manufacturer pulse sequences. As research
in extending pulsed-NMR to ever more detailed understanding of molecular structure is pursued, this automatic
pulse-design software offers a key to creative applications without the tedium of mental imagery. His web site
is at http:==chem4823.usask.ca=nmr=practical_nmr.html
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occur in such a complicated formula. Finally, we can see how varying (t1, t2) over a grid of values
solves the problem of determining the chemical shift coupling constant J directly! We will see in the
following that manufacturers have installed even more complicated pulse sequences in the data
acquisition part of the cycle for the purposes of creating gradients that sharpen the image of the
various 2D plots. But we are indebted to Dr. Brown for his analysis of the COSY pulse sequence to
explain the main feature of the 2D plots. Both Dr. Brown at the University of Saskatchewan and
Prof. Hoffman use a Bruker spectrometer similar to the one at Virginia Commonwealth University
but other manufacturers (Varian and Jeol) may use slightly different sequences in the data acqui-
sition portion of the pulse train. Here we should look again at Figure 19.12 and understand that the
(t1, t2) grid is the basis of the 2D COSY plot (Figure 19.13).

ANATOMY OF A 2D EXPERIMENT

The construction of a 2D experiment is simple: In addition to preparation and detection, which
are already known from 1D experiments, the 2D experiment has an indirect evolution time t1 and
a mixing sequence. This scheme, documented below by Prof. Roy Hoffman, can be seen in
Figure 19.14.

Let us look at a few examples of the COSY-NMR technique as given on the Internet site at
the Hebrew University. First we can see from the COSY spectrum of ethyl benzene that when the
1H 1D spectrum is displayed with a right angle display against itself there is a graphical way to
display the spin–spin interactions on the plot and where the off-diagonal resonances occur we
can immediately read off the coupling constants in a group when the cross-peak is resolved
(Figure 19.15). We can immediately obtain the value of the coupling constants between the viscinal
protons on carbons 1 and 2 by reading the scale in ppm where the horizontal and vertical lines
connect the resonances for protons on the 1 and 2 carbon atoms and obtain the coupling constants
from the fine details of the cross-peak.

This seems too easy! It really is easy for small organic molecules but we will show a few more
complicated examples. However, the COSY plot totally eliminates the need for a computer program
to calculate=simulate the spectrum to obtain the coupling constants! Further, the main interest in the
coupling constants was to determine the molecular structure or at least the connection diagram for
the molecule. All we really want to know is what atoms are connected and this graph tells us which
atoms are close enough to show significant coupling.

But wait! We are not quite finished. The desired payoff of all this complicated analysis is to make
the answer simple, right? Early in this chapter we pointed out the difficulty in fitting the coupling
constant between neighboring spins, Jab. In the spectrum mentioned earlier from Prof. Hoffman’s
COSY spectrum of ethyl benzene, we realize the peaks along the diagonal are just what we would

Pulse sequence for gradient DQF-COSY

Evolution time t1

1 2

90° ±x 90°x 90°x180°x 180°x fid acquisition ±x

Relaxation
time

Gradient
channel

Observation 1Hchannel

FIGURE 19.14 Typical pulse sequence for coherent detection of NMR showing the points at which
additional sensitivity is gained through use of gradient detection. (From Prof. Roy Hoffman, Chemistry
Department, Hebrew University. http:==chem.ch.huji.ac.il=nmr=techniques=newassignment.htm With permission.
Site contains an excellent NMR tutorial.)
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see in a 1D NMR spectrum. It is the off-diagonal cross-peaks that give us the coupling information.
In Prof. Hoffman’s spectrum the cross-peaks due to the interaction between the –CH3 protons and
the –CH2– protons are not resolved as shown. However, it is possible to enlarge the region of the
cross-peaks to finally achieve the desired Jab coupling constants directly in a graphical way without
any computation! In Figure 19.16, we present a schematic of the resolved peaks within the single
dot shown on Prof. Hoffman’s COSY spectrum. In the completely resolved cross-peak, we can
directly measure the Jab value graphically!

Prof. Hofmann’s tutorial shows that even more can be done if all we want is to understand which
atoms are coupled in a molecular structure. We can do more by remembering the square wave pulse
can include a wide range of frequencies including the resonances of other nuclei. Thus it is possible
to configure the pulse sequence to obtain another type of 2D plot, the so-called HMBC (hetero-
nuclear multiple bond correlation) plot in which we can determine which 1H resonances are coupled
to 13C resonances (both are spin-1=2 nuclei) even though the relative abundance of 13C is only about
1.08%! In the next panel we see the HMBC plot (Figure 19.17) for ethyl benzene where more
wonderful information is easily obtained from plotting the 13C 1D spectrum against the 1H 1D
spectrum along with the spin–spin coupling in the off-diagonal space. It is possible to reduce the
sensitivity by an alternate pulse sequence to only show correlations one bond apart, but to save
space we show the full correlation pattern here. This is amazing! It is now possible to fill in the
complete connection table shown in Figure 19.17!

Next, with a sense of overconfidence, we can look at a more complex molecule and illustrate the
power of the HSQC (heteronuclear single quantum correlation) 2D-NMR plot. This is perhaps the
most useful type of NMR experiment because it enables direct deduction of the nearest neighbor
connection table of the molecular structure and it can be used for N–H as well as C–H coupling. The
1D NMR plot for the 1H resonances is plotted horizontally at the top of the display with the 13C 1D
resonance spectrum displayed along the left edge but the experiment has measured the coupling
between the nearest neighbors so we can identify the bonding connection table even though
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FIGURE 19.15 COSY spectrum plot for ethyl benzene from the NMR tutorial maintained at http:==chem.ch.
huji.ac.il=nmr=techniques=newassignment.htm. (From Prof. Roy Hoffman, Hebrew University Chemistry
Department. With permission.)
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indicate J-coupling, constant~7.6 Hz 1.10

FIGURE 19.16 A schematic of the fully resolved cross peak for the alkyl protons in ethyl benzene. (Special
thanks are due to Dr. Yun Qu, director of the NMR Center of the Virginia Commonwealth University
Chemistry Department for this drawing.)
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FIGURE 19.17 Generation of the complete bond-connection table of ethyl benzene using the full HMBC
diagram. Usually this would be preceded by a less sensitive HMBC plot in which only the immediate closest
neighbor correlations would be displayed. This plot is rather sparse for a simple molecule but such diagrams
can be more densely populated for larger molecules. (From Prof. Roy Hoffman, Hebrew University Chemistry
Department. With permission.)
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camphor has an unusual bridgehead structure! Note a characteristic of the 13C spectrum is that there
is essentially no splitting due to spin coupling between the various C atoms so we only see unique
single lines for each C atom. In the 1H spectrum, we see the usual complications due to spin–spin
coupling but the off-diagonal cross-peak resonances tell us right away which protons are connected
to a C atom! Fine details of the spin–spin coupling can be examined by zooming in on specific off-
diagonal cross-peak resonances and the structure can be deduced from the bond-connection diagram
(Figure 19.18).

In these 2D-NMR plots, the diagonal signals are due to spins that have not changed during the
side pulses while those spins that interact and exchange magnetization during the mixing time of the
pulse sequence show up in the off-diagonal cross-peaks of the plot. These cross-peak signals contain
the really important information about the near-neighbor nuclei. This is why the pulse excitation and
use of FFT detection with the Bloch equations simplifies NMR analysis—COSY NMR directly
displays the JAB values! When you consider the difficulty in least-squares fitting the many coupling
constants in the 1970 treatment of 1D-NMR spectra, the use of the 2D-NMR analysis is an amazing
simplification! The use of these sophisticated features makes 2D-NMR a powerful tool for structural
elucidation in chemistry including inorganic chemistry [4] using other NMR-active nuclei. None of
these conveniences would be possible without careful design by electrical engineers and physicists,
but chemists have learned to use the power of modern NMR spectroscopy for structural elucidation
so that it is the predominant form of spectroscopy in chemistry. While organic chemists are the main
beneficiaries of this capability, the physics content in NMR spectroscopy makes pulse-NMR one of
the ‘‘essential’’ parts of education in physical chemistry!

There are some complications of course, as in the seven-membered ring of the BEG metabolite
where the vicinal coupling of the protons on the 3-4-5 portion of the ring led to very similar
off-diagonal coupling in the 2D map, but the simple Karplus equations [12] helped sort that out.
There are several other types of 2D-NMR techniques that have been developed, which can even
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FIGURE 19.18 HSQC NMR chart showing the one-bond connection pattern of C–H links. (From Prof.
Roy Hoffman, Chemistry Department, Hebrew University. http:==chem.ch.huji.ac.il=nmr=techniques=
newassignment.htm With permission.)
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elucidate the structure of polypeptide conformations, and the NMR field is so highly specialized that
some fields of organic chemistry and biochemistry depend almost entirely on just a laboratory for
wet chemistry preparations and a modern NMR spectrometer! Probably physicists will continue to
develop more sophisticated NMR spectrometers and organic=biochemists will be the main users but
today it is ‘‘essential’’ that physical chemists are aware of these amazing new developments in NMR
spectroscopy! One definite conclusion is that modern NMR spectrometers are really devices capable
of many different experiments. There probably remain a lot of new experiments that can be carried
out with more complicated pulse sequences. In particular, a Web site maintained by Prof. Malcolm
Levitt of the chemistry department of Southampton, UK at http:==www.mhl.soton.ac.
uk=public=Main=index.html, documents many other pulse simulations.

SUMMARY

This is an optional, difficult chapter that might be the basis of a special topic project for an upper-
level student with an interest in NMR or perhaps a way to discuss the dangers of cocaine with
undergraduates. Premedical students need some basic introduction to the mechanisms in MRI, and
perhaps forensic students will be interested in the possible use of NMR spectroscopy in drug
analysis. In some drug crime cases, it is necessary to prove the structure of an evidentiary sample
is indeed the isomer specified in a law so there may be occasions to use NMR spectroscopy for a
complete structural analysis of a compound.

PROBLEMS

19.1 Given the data: [11] in n=MHz at 1 T for 1H¼ 42.5775, 13C¼ 10.7084, 15N¼ 4.3173,
19F¼ 40.0776, 29Si¼ 8.4655 and 31P¼ 17.2515 calculate the magnetic field needed for 1H
resonance at 600 MHz and then recalculate the resonant frequencies of the other spin-1=2
nuclei at that field strength.

19.2 Given the Pauli spin matrices Ix ¼ 1=2
0 1
1 0

� �
, Iy ¼ 1=2

0 i
�i 0

� �
, and Iz ¼ 1=2

1 0
0 �1
� �

,

work out the commutators [Ix, Iy]¼ ?, [Ix, Iz]¼ ? and [Iy, Iz]¼ ? Are those results compatible
with the z-axis as the primary axis of quantization with the x-axis and y-axis undergoing
precession?

19.3 The most educational thing a student can do with this coupling of chemical reasoning and
graphical interpretation of 2D plots, is to work through the excellent online tutorial by Prof.
Roy Hoffman at http:==chem.ch.huji.ac.il=nmr=techniques=newassignment.htm

19.4 Work out the details of the H(2, 2) and H(2, 3) matrix elements of the AB spin-Hamiltonian.
19.5 Use Figures 19.14 through 19.16 to estimate the coupling constant between the protons on the

–CH3 and –CH2– groups of ethyl benzene.

REFERENCES

1. Bloch, F., Nuclear induction, Phys. Rev. 70, 460–474 (1946).
2. Pople, J. A., W. G. Schneider, and H. J. Bernstein, High-Resolution Nuclear Magnetic Resonance,

McGraw-Hill Book Company, New York, 1959.
3. Hore, P. J., J. A. Jones, and S.Wimperis,NMR: The Toolkit, Oxford University Press, Oxford, U.K., 2000.
4. Drago, R. S., Physical Methods in Chemistry, W. B. Saunders Company, Philadelphia, PA, 1977, Chap. 9.
5. Wiberg, K. B., Computer Programming for Chemists, W. A. Benjamin, Inc., New York, 1965, p. 196.
6. Pedersoli, S., L. Lombardi, N. F. Ho, and R. Rittner, Assignments of 1H and 13C NMR spectral data for

benzoylecgonine, a cocaine metabolite, Spectrosc. Lett., 41, 101 (2008).

Essentials of Nuclear Magnetic Resonance 447



7. Trindle, C. and D. Shillady, Electronic Structure Modeling, Connections between Theory and Software,
CRC Press, Boca Raton, FL, 2008, Chap. 11.

8. Churchill, R. V., Fourier Series and Boundary Value Problems, McGraw-Hill Book Company, Inc.,
New York, 1941, Chap. IV.

9. Lide, D. R., CRC Handbook of Chemistry and Physics, 90th Edn., CRC Press, Taylor & Francis, Boca
Raton, FL, 2009–2010, pp. 1–5.

10. Hahn, E. L., Phys. Rev., 80, 580 (1950).
11. Carr, H. Y. and E. M. Purcell, Phys. Rev. 94, 630 (1954).
12. Karplus, M. J., J. Am. Chem. Soc., 85, 2870 (1963).

448 Essentials of Physical Chemistry



Appendix A: Relation between
Legendre and Associated Legendre
Polynomials
The purpose of this exercise is to show that the relatively simple solution of the m¼ 0 case of the
Legendre equation can be extended to the general case for nonzero m values. The proof is given by
Anderson [1] in two steps. First, define a function f (x) � (1� x2)

m
2g(x)

� �
and substitute it into the

associated equation for nonzero values of m.

d

dx
(1� x2)

df

dx

� �
þ n(nþ 1)� m2

(1� x2)

� �
f ¼ 0,

d

dx
(1� x2)

d

dx
(1� x2)

m
2g

� �
þ n(nþ 1)� m2

1� x2

� �
(1� x2)

m
2g ¼ 0:

Then

df

dx
¼ m

2
(1� x2)

m
2�1ð Þ(�2x)gþ (1� x2)

m
2
dg

dx

and

(1� x2)
df

dx
¼ �m(1� x2)

m
2ð Þ(x)gþ (1� x2)

m
2þ1ð Þ dg

dx
,

so then we can calculate the first part of the general equation as
d

dx
(1� x2)

df

dx

� �

¼ �m2

2
(1� x2)

m
2�1ð Þ(�2x)(x)g� m(1� x2)

m
2g� m(1� x2)

m
2 (x)

dg

dx

þ m

2
þ 1

� 
(1� x2)

m
2 (�2x) dg

dx
þ (1� x2)

m
2þ1ð Þ d2g

dx2
:

Then we insert this expression into the general equation as

(1� x2)
m
2þ1ð Þ d2g

dx2
þ (1� x2)

m
2
m

2
þ 1

� 
(�2x)� m(x)(1� x2)

m
2

h i dg
dx

þ �m2

2

� �
(1� x2)

m
2�1ð Þ(�2x2)� m(1� x2)

m
2

� �
g

þ n(nþ 1)� m2

1� x2

� �
(1� x2)

m
2g ¼ 0
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Now divide the whole equation by (1� x2)
m
2g to obtain

(1� x2)
d2g

dx2
þ m

2
þ 1

� 
(�2x)� mx

h i dg
dx
þ �m2(�2x2)

2(1� x2)
� mþ n(nþ 1)� m2

1� x2

� �
g ¼ 0. Then

(1� x2)
d2g

dx2
þ [�mx� 2x� mx]

dg

dx
þ m2x2 � m2

(1� x2)
� mþ n(nþ 1)

� �
g ¼ 0 and further to

(1� x2)
d2g

dx2
� 2(mþ 1)x

dg

dx
þ �m2(1� x2)

(1� x2)
� mþ n(nþ 1)

� �
g ¼ 0. Canceling (1� x2) we finally

obtain (1� x2)
d2g

dx2
� 2(mþ 1)x

dg

dx
þ n(nþ 1)� m(mþ 1)½ 
g ¼ 0. The general form is

(1� x2)
dmþ2f
dxmþ2

� 2(mþ 1)x
dmþ1f
dxmþ1

þ n(nþ 1)� m(mþ 1)½ 
 d
mf

dxm
¼ 0:

For comparison, we differentiate the entire m¼ 0 equation for m¼ 1 to obtain the derivative of

(1� x2)
d2P(x)

dx2
� 2x

dP(x)

dx
þ l(lþ 1)P(x) ¼ 0 as

(1� x2)
d3Pl

dx3
� 2x

d2Pl

dx2
� 2

dPl

dx
� 2x

d2Pl

dx2
þ l(lþ 1)

dPl

dx
¼ 0 using the product rule several times.

Collecting terms we get

(1� x2)
d3Pl

dx3
� 4x

d2Pl

dx2
þ l(lþ 1)� 2½ 
 dPl

dx
¼ 0:

Anderson [1] notes that the result of successive differentiation is to produce an additional

(�2x) d
mþ1f

dxmþ1
and �m(mþ 1)

dmf

dxm
. As shown for m¼ 1, this is compatible with

(1� x2)
djmjþ2Pl

dxjmjþ2
� 2 jmj þ 1ð Þx d

jmjþ1Pl

dxjmjþ1
þ l(lþ 1)� jmj jmj þ 1ð Þ½ 
 d

jmjPl

dxjmj
¼ 0:

Compare to

(1� x2)
d2g

dx2
� 2(mþ 1)x

dg

dx
þ n(nþ 1)� m(mþ 1)½ 
g ¼ 0) g ¼ dmf

dxm
: Q:E:D:!

Thus, we have in general Pm
l (x) ¼ (�1)m(1� x2)

m
2
dmPl(x)

dxm
considering the odd and even cases of the

basic Legendre polynomials.
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Appendix B: The Hartree–Fock–
Roothaan SCF Equation
ROOTHAAN’S LCAO HARTREE–FOCK EQUATION

At this point, we are about to follow a derivation of the LCAO-SCF equation first derived by
Roothaan [1], streamlined in Slater’s text [2], and presented finally in Pople’s [3] clear notation.
Here is our version of Roothaan’s breakthrough derivation (Figure B.1).

‘‘All we have to do’’ is to carry out the integral for the expectation value of the energy as

hEi ¼
ð
. . .

ð
C*(1, 2, 3, . . . n)HC(1, 2, 3, . . . n) dt1dt2 . . . dtnds1ds2 . . . dsn . . .

Note in particular that we have to integrate over the spin functions as well as the spatial coordinates
using simple rules:

ð
a*a ds ¼

ð
b*b ds ¼ 1 and a*b ds ¼

ð
b*a ds ¼ 0:

Among the many permutations of theC* (1, 2, 3, . . ., n) and theC (1, 2, 3, . . ., n) there will be many
integrals in the long summation, which may have thousands of terms of the general form

ð
ds1

ð
ds2

ð
dt1

ð
dt2 c1(1)a(1)c1(2)b(2) . . .½ 
* H c1(1)a(1)c1(2)b(2) . . .½ 


due to the fact that there are many terms in the determinants [4] and the Hamiltonian

H ¼
Xn
i

�r2
i

2

� �
�
Xn
i

XN
K

ZK
riK

� �
þ
Xn
i>

Xn
j

1
rij
þ
XN
K>

XN
L

ZKZL
RKL

¼
Xn
i

fi þ
Xn
i>

Xn
j

gij þ
XN
K>

XN
L

ZKZL
RKL

:

In many of these integrals, there will be some misalignment of the order of the orbitals between
C*(1, 2, 3, . . ., n) and C(1, 2, 3, . . ., n) for that particular term of the two determinants; so the
integral will be zero by orthogonality, assuming the {ci} are orthogonal. However, if the order in
the left and right parts of the integral match exactly or differ by only one orbital and the spins match,

the result will be
ð
fm* fifndti ¼ mjfijnh i. Again when the order matches for all but two orbitals in

C*(1, 2, 3, . . ., n) and C(1, 2, 3, . . ., n) for a particular set of cross terms, there can be four possible

integrals that are coupled by the gij two-electron operators resulting from the form of the
1
r12

� �
operator.
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Much of the mathematics for the SCF process was derived for atoms using texts like Condon and
Shortly [5], but in 1951, Roothaan [1] solved the problem for molecules using the LCAO
philosophy. Instead of using just single orbitals such as 1sa in our example above for the Li atom,
the LCAO concept says that C(1, 2, . . ., n) is built from many spin orbitals ci that are linear

combinations of basis functions fm. Thus, ci ¼
PM

m cmifm. The original paper by Roothaan [1] is

a masterpiece but not easy reading, as is often the case with descriptions of new advances. However,
there is a succinct explanation given by J.C. Slater in a later text [2]. This is a difficult topic for an
undergraduate text but we will follow Slater’s description in the faint hope that it is understandable
with the calculus we have used so far. Since we will discuss the final equation in Pople’s [3]
notation, we will write Slater’s derivation using Greek letters for basis functions and charge-density
‘‘(1*1=2*2)’’ rounded parenthesis notation for the two electron integrals to merge with that notation

as (mn=lsÞ �
ð ð

fm*(1)fn(1)
1
r12

fl*(2)fs(2)dt1dt2.

After collecting all the nonzero terms in the calculation of hEi ¼
ð
C*HCdt, we find for just the

electrons (fixed nuclei)

hEi ¼
Xn
i

XM
m

XM
n

cmi* cni mjfijnh i þ
Xn
i>

Xn
j

XM
m

XM
n

XM
l

XM
s

cmi* cniclj* csj mn=lsð Þ � ml=nsð Þf g,

FIGURE B.1 Prof. Clemens Roothaan (1918) was born in the Netherlands but came to the University of
Chicago in the United States in 1949. His 1951 paper in Rev. Mod. Phys. 23, 69–89 (1951) deriving the self-
consistent-field equations in a LCAO basis set was the most highly cited paper between 1945 and 1954. He was
director of the Computation Center of the University of Chicago from 1962 to 1968; this photo was taken in
October of 1962. In the 1970s, he remained far ahead of others in writing an efficient MCSCF (multi-
configurational-SCF; simultaneously optimizing more than one determinant) program with his student John
Detrich and other students so that his group was at least 10 years ahead of other developments. Prof.
Roothaans’s many honors include a Guggenheim Fellowship in Physics (Cambridge University, 1957); election
to The International Academy of Quantum Molecular Science in 1967; named the Louis Block Professor of
Physics and Chemistry, the University of Chicago (still Emeritus Title); and honored by a special session in
honor of Clemens’ 70th birthday in 1988 at the International Symposium on the Electronic Structures and
Properties of Molecules and Crystals, Rudor Boskovic Institute Zagreb, Cavtat, Yugoslavia. Today he
continues to serve as a consultant to IBM in the development of the Itanium processor. See also http:==pubs.
acs.org=cen=science=science2001.html for an interview.
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where we now have the energy in terms of the ci ¼
PM

m cimfm LCAO expansion of the LCAO basis
{fm}. Here we are using (11=22) notation for the g12 operator for N electrons and M basis functions.
The alternative h12=12i notation would mean

nk=pqh i ¼
ð ð

fn*(1)fk*(2)
1
r12

fp(1)fq(2)dt1ds1dt2ds2,

where the complex conjugate orbitals are together on the left and the real function on the right. Since
some research papers use a h12=12i notation, you always need to look at the definition a given
author uses! We also have to remind ourselves to integrate over the spins. The effect of the
permutations in the g12 two-electron terms is to produce a ‘‘coulomb term’’ (mn=ls) as well as
the ‘‘exchange term’’ from the permutation as (ml=ns). These integrals have not yet been integrated
over the spins, which will lead to the four cases treated in Ref. [3].

ELECTRON EXCHANGE ENERGY

Pople and Beveridge [3] give a beautiful analysis of exchange, seldom written anywhere else, but
we take the liberty of rewriting their example in (1*, 1/2*, 2) charge density notation. Here we see
the effect of the permutations on the order of the basis orbitals in a given term in the product of C*
(1, 2, . . . ) andC (1, 2, . . . ) and the spin alternations. Let us examine the possible integrals that occur
for the exchange term:

ð ð
fm*(1)a*(1)fn(1)a(1)

1
r12

fn*(2)a*(2)fm(2)a(2)dt1dt2ds1ds2 6¼ 0,

ð ð
fm*(1)a*(1)fn(1)b(1)

1
r12

fn*(2)b*(2)fm(2)a(2)dt1dt2ds1ds2 ¼ 0,

ð ð
fm*(1)b*(1)fn(1)a(1)

1
r12

fn*(2)a*(2)fm(2)b(2)dt1dt2ds1ds2 ¼ 0,

ð ð
fm*(1)b*(1)fn(1)b(1)

1
r12

fn*(2)b*(2)fs(2)b(2)dt1dt2ds1ds2 6¼ 0:

Note that
ð
a*a ds ¼

ð
b*b ds ¼ 1 and

ð
a*b ds ¼

ð
b*a ds ¼ 0:

In the grand scheme of the detailed derivation, you will be looking at energy terms likeðð
C*(1, 2, 3, . . . )

1
rij

� �
C(1, 2, 3, . . . )dt1dt2ds1ds2. Remember that C(1, 2, 3, . . . ) is a big deter-

minant on both sides of the operator. We can see from the four integrals above that the second and
third are zero by spin-orthogonality. You can easily write out all the terms for the two electrons in
He but unfortunately that is not the general case. With more than four-electrons you could see the
four exchange terms above as well as orbital products that do=do not match for the other electrons.
Assuming all the {ci} can be made orthonormal (they can by choice of the expansion coefficients in

ci ¼
PM

m cmifm), all the parts of the wave functions for electrons which are not i or j will just

integrate to factors of 1 when the gij part is nonzero, but you will be left with the four possibilities
shown above that occur due to the permutations of the determinants subject to the spin integration.

As a result of spin orthogonality, only 1 2= Þð of the exchange terms are nonzero but they are there!
This was first pointed out by Fock [6] and was added as a correction to the method then developed by
Hartree [7]. The combined method is now called the Hartree–Fock method if tabulated numerical
orbitals are used, but the Hartree–Fock–Roothaan method in an LCAO basis. Today this method is
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almost obsolete and modern methods tend to be some form of ‘‘density functional theory (DFT)’’
where the whole program is made much faster by using numerical tricks and replacing the two-
electron operators by carefully designed functions of the electron density. However, the discussion
above is as important today as it was in 1930 because after more than 20 years of research on DFT
methods, the most accurate calculations have been found to require at least some fractional amount of
this so-called ‘‘Hartree–Fock Exchange’’ [8]; it is still a part of modern research! Further, the
exchange terms enter into the energy with a negative sign so the phenomenon of exchange lowers
the energy and is necessary for the most accurate energy calculations.

THE HARTREE–FOCK–ROOTHAAN EQUATIONS FOR 2N ELECTRONS

As with the pi-electron model, we want to treat the orbital coefficients as variation variables and use
something like the Clementi–Raimondi–Slater [9] atomic orbitals for the basis functions, or at least
something like them that are easy to integrate. We want to minimize the energy by varying the
values of the cm but we also want to maintain the orthonormality of the linear combination of
basis functions as orthonormal one-electron orbitals. They are formed from linear combinations

of basis functions {fi} that may have nonzero overlap
ð
fm*fndt ¼ Smn.

ð
ci*cjdt ¼

XM
m

XM
n

cmicnj

ð
fm*fndt ¼

XM
m

XM
n

cmicnjSmn ¼ dij:

Thus, we use the idea of Lagrangian multipliers to remove from the minimization procedure that
part which might change the orthonormal nature of the one-electron orbitals ci. We therefore need

the derivative of
q
qcri*

hEi �
X

i

X
j
lij
XM

m

XM

n
cmi* cnjSmn

h i
¼ 0 where lij are the Lagrangian

multipliers that prevent loss of orthonormality of the one-electron orbitals. We might as well take the
derivative with respect to cri* to get rid of one of the potentially complex numbers. Slater shows [2] that
if you take the derivative with respect to cri, you will also get the alternate derivative in terms of cri*.
When you set the derivatives to zero, you find that since one is real and the other is complex you can
set either one separately to zero and end upwith an equivalent equation for either one.Wewill take the
derivative with respect to cri* so that we end up with an equation for cri. Remember, as for the pi-orbital
coefficients in Roberts’ treatment in Chapter 16, the cri coefficients are the variational variables so we
can take derivatives with respect to their value. Thus, the constrained derivative of the energy

expression
q
qcri*

hEi �
X

i

X
j
lij
XM

m

XM

n
cmi* cnjSmn

h i
¼ 0 uses

hEi ¼
Xn
i

XM
m

XM
n

cmi* cni m=f1=nð Þ þ
Xn
i>

Xn
j

XM
m

XM
n

XM
l

XM
s

cmi* cnicljcsj mn=lsð Þ � ml=nsð Þf g

to find

XM
n

cnj m=f1=nð Þ þ
Xn
j

XM
l

XM
s

clj* csj mn=lsð Þ � ml=nsð Þ½ 

( )

�
Xn
j

XM
v

cnjlijSmn ¼ 0:

Although the process is for an arbitrary cri* , in effect it removes the summation over m and
summations associated with the index for electron i. As with the Hückel pi-electron derivation,
this is the minimization requirement for just one (cri) coefficient for the orbital of just one
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electron (i) and just one equation in the rows of equations that form the system that leads to
the Cayley–Hamilton situation. From the pi-electron case, we can see that this can be put into a
matrix equation where we will need to use diagonalization.

This is a difficult derivation, but, to summarize, we now have just one of the equations that will
be part of our secular equation for the Cayley–Hamilton solution to find the molecular orbital
coefficients. There remains one very mysterious step. Note the subscripts on lij, which implies that
each orbital ci (which we do not know yet) is dependent somehow on all the other cj to maintain
orthogonality to them as well as normalization. Recall the big wave function C(1, 2, 3, . . . ) is a
determinant that is a single number at each (x, y, z) point in space, and we know some sort of unitary
transformation [T]�1[lij][T]¼ [lij]diag could be applied to the orbitals ci (if we knew them!), which
would not change the value of the overall wave function, just make the lij interactions diagonal. If
we assume this has been done and solve the equation subject to that constraint we will make it true!
Thus, we end up with an equation for all the electrons in a given basis set as a Cayley–Hamilton
problem to find the coefficients cni and from them find the energy once the coefficients are known.
A diagonal lij eliminates the

Pn
j lij for the overlap term and leads toPM

n cni m=f1=nð Þ þPn
j

PM
l

PM
s clj* csj mn=lsð Þ � ml=nsð Þ½ 


n o
�PM

n cniliiSmn ¼ 0, for basis fm,

but it remains on the two-electron terms. Note that here we use (enforce mathematically) lii¼ ei as
the now diagonal Lagrangian multiplier in an energy equation so these will be assumed to be the
one-electron orbital energies! So far we have not integrated over the spins.

Integrating over spins and using the Aufbau Principle to put two electrons as spin pairs in the
lowest energy orbitals, we find that from the four coulomb (not shown) and two exchange integrals
above we will obtain 2[2(mn=ls)� (ml=ns)] with 2Hmn and 2Smn from the one-electron operators.
Within the two-electron integrals the four exchange integrals above are the result of a 2�2
determinant space for two orbitals which do not match in the big determinant terms. That leads to
a minus sign for the exchange terms. Recall the factor of (�1)P in the determinantal wavefunction
due to the way in which the determinants are filled with electrons as ababab . . .. Pair occupation
produces a factor of 2 which is there on all the terms but which then cancels.

XM
n

cmi 2(m=f1=n)þ
Xn
j

XM
l

XM
s

clj* csj[4(mn=ls)� 2(ml=ns)]

( )
� 2

XM
n

liiSmn ¼ 0

Now we understand that the coefficients cmi refer to doubly-occupied orbitals. After cancelling the
factor of 2 we have

XM
n

cmi (m=f1=n)þ
Xn
j

XM
l

XM
s

clj* csj[2(mn=ls)� (ml=ns)]

( )
�
XM
n

liiSmn ¼ 0:

Then we can define Pls � 2
Pocc:

j cljcsj which is the ‘‘population matrix’’ due to summing
over the lowest energy orbitals which are occupied by (ab) spin-pairs. This leads to the final
equations suitable for computer code as

FC ¼ SCe where Fmn ¼ Hmn þ
X
l

X
s

Pls[(mn=ls)� 0:5(ml=ns)]:

Despite our attempt at a verbal description here, none of the three best references given [1–3]
actually show the explicit details. In the final analysis a skeptical student will have to work out the
full problem for the Be atom with four electrons to see the explicit details. Nevertheless, our final
formula has been verified many times and we should be in awe of Prof. Roothaan for establishing
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that formula! Note that the secular equation to solve for the cmi coefficients involves the cmi
coefficients; so the answer depends on the answer! We will need to make a good guess at the
orbital coefficients and then iterate the calculation in some way to find convergence!
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Appendix C: Gaussian Lobe
Basis Integrals
INTEGRALS: THE INEVITABLE DETAILS

Ultimately, the practical reality of using the Roothaan equation for an actual calculation comes
down to evaluating some integrals. Eventually, devotees of Slater-type orbitals (STO) gave in to
using linear combinations of Gaussian-type orbitals (GTO) based on formulas derived by Boys [1].
The first time this author saw these formulas was when Prof. Jerry Whitten, then a post-doc at
Princeton, gave a seminar and passed around a single 3� 5 in. card with the formulas! That was an
amazing breakthrough to the way in which to actually carry out the Roothaan equations. To save
space but provide information for the interested student, we present a very short list of the integral
formulas as given by Shavitt [2]. These formulas are for individual un-normalized Gaussian spheres
and, in the case of off-axis Gaussian lobe orbitals (GLO) used in PCLOBE, orbital mimics require
many of these integrals nested inside linear expansions. These are the fundamental formulas that are
implemented in PCLOBE [3].

G(a,rA) � exp �ar2A
	 
 ¼ e�a (x�Ax)

2þ(y�Ay)
2þ(z�Ax)

2½ 
; rA ¼ R(Ax,Ay,Az)

aA=bBð Þ ¼ p

aþ b

� �3=2

exp � ab

aþ b
(AB)2

� �
,

aA �r
2

2

����
����bB

� �
¼ ab

aþ b
3� 2ab(AB)2

aþ b

� �
aA=bBð Þ,

aA
1
rc

����
����bB

� �
¼ 2p

aþ b
F0 (aþ b)(C P)2
� �

exp � ab

aþ b
(AB)2

� �

and then for (1*, 1=2*, 2) we have

aA, bB
1
r12

����
����cC, dD

� �
¼ 2p5=2

(aþ b)(cþ d)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(aþ bþ cþ d)
p

� F0
(aþ b)(cþ d)

(aþ bþ cþ d)
PQ

2
� �

exp � ab

aþ b

� �
(AB)2 � cd

cþ d

� �
(CD)2

� �
:

One special function is required but most computer language compilers have an intrinsic function
for the error function ‘‘erf(x),’’ which can be used directly or a table can be generated within a
program with a fine grid and interpolation methods used to speed up the process [4].

F0(t) ¼ 1ffiffi
t
p

ðffiffitp
0

e�v
2
dv ¼ 1

2

ffiffiffiffi
p

t

r� �
erf

ffiffi
t
p	 


or Fmþ1(t) ¼ � d

dt
Fm(t)

457



and

Fm(t) ¼ 1
2mþ 1

[2tfmþ1 þ e�t]:

The key relationship is that the product of two Gaussians is still a third Gaussian. Thus, if

G(a, rA) � exp �ar2A
	 


, then G(a1, rA)G(a2, rB) ¼ exp � a1a2

(a1 þ a2)
(AB)2

� �
G (a1 þ a2), rcð Þ

where Cx ¼ a1Ax þ a2Bx

a1 þ a2
, Cy ¼ a1Ay þ a2By

a1 þ a2
, and Cz ¼ a1Az þ a2Bz

a1 þ a2
and that process can be

used still further to define the points that are on a line between the (aA=bB) Gaussian product and
the (cC=dD) Gaussian product to form yet another Gaussian for the two-electron integral. Thus, we

can calculate Px ¼ aAx þ bBx

aþ b
and Qx ¼ cCx þ dDx

cþ d
, etc., to obtain (PQ)2, which is just the square of

the distance between the Gaussian centroids of the (aA=bB) and (cC=dD) Gaussian products. While
this may look complicated at first encounter, it is far simpler than integrals required in a GTO basis
which uses xl ym zn exp(�ar2). The mere fact that we can write these formulas in a page or so is
amazing after one has delved into formulas for other basis sets, and the GLO basis is a good starting
point to learn these ideas. Of course, it takes many spheres with optimized weighting coefficients to
form accurate mimics of H-atom-like orbitals, but it can be done if a sufficient number of optimized
spheres are used.

Thus, we have ci ¼
P

m Cmifm where each molecular orbital is expanded in a basis {fm} and we

also have an expansion of each basis function in terms of Gaussian spheres f ¼Pj cjmg(aj, ~Aj).
Finally, in PCLOBE we can form integrals over mimics of atomic orbitals, which form basis
functions for the Roothaan molecular orbitals. For the one-electron integrals (overlap, kinetic
energy, and nuclear attraction, f1), we have (using Cmi for orbitals and cjm for Gaussians)
fmj f1jfv

	 
 ¼Pj

P
k cjmckn gjjf1jgk

	 

and for the two-electron integrals, we have	

fm, fv

��1 r12= jfl*, fs


 ¼Pj

P
k

P
m

P
n cjmckncmlcns gj, gk 1 r12= jgmgnj Þ	

. The cjm, aj and ~A are
printed out at the beginning of each PCLOBE run for documentation.

Other integrals for dipole moment, quadrupole moment, and even spin-orbital coupling have also
been worked out and are available in closed form as given in a recent monograph [3].
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Appendix D: Spin-Orbit Coupling
in the H Atom
The inclusion of spin-orbit coupling [1] can be worked out cleanly for the one-electron case of the
H atom. It provides a model for an effect that becomes more important in heavy elements [1].
This has been developed and implemented by Prof. Balasubramanian (Figure D.1), Prof. Bloor
(Figure D.2), and their students. The extra term in the Hamiltonian is of the form

Hso ¼
X
i

ji~Li �~Si:

For the single electron in the H atom or a hydrogenic ion the value was worked out by Thomas [2]
using the first order terms of a relativistic expansion. According to the Dirac theory of electrons, the
magnetic moment of the electron is given by

~m ¼ e

mc
~S

and the energy of interaction of the magnetic moment with a magnetic field ~H is

Eso ¼ �~H �~m:

The magnetic field generated by an electron moving around a nucleus is then

~H ¼ 1
c

� �
~E �~v ¼ 1

mc

� �
~E �~p:

where ~E is the electric field of the charged nucleus. The electron moves in the centrosymmetric
electric field~E of the nucleus, which is due to the gradient of the electrostatic potential of the nucleus.

~E ¼ � ~r

r

� �
dV

dr

� �
:

Thus, the magnetic field ~H generated by the electron is given by the motion of the electron in the
electric field gradient of the nucleus

~H ¼ � 1
mcr

dV

dr
(~r �~p) ¼ � 1

mcr

dV

dr
~L:

The electric potential of the nuclear charge is V ¼ Ze2

r
so that

dV

dr
¼ � Ze2

r2
and

~H ¼ Ze2

mcr3
~L:

In 1926, Thomas [2] carried out the relativistic derivation of this interaction and found the factor of
1

2mc

� �
using the leading term of a relativistic expansion of the velocity.
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j ¼ 1
2m2c2

�1
r

dV(r)

dr

� �
where

dV

dr
¼ d

dr

Ze2

r

� �
¼ �Ze

2

r2
so j ¼ Ze2

2m2c2
1
r3

� �
:

Then the interaction with the spin of the electron is

Eso ¼ hn, l, mj Ze2

2m2c2

� �
~L �~S
r3

 !
jn, l, mi:

You can anticipate an additional factor of Z3 from the normalization constant of the radial
polynomial and the angular parts over (u, f) will integrate to 1 since the matrix element only

involves radial dependence as
1
r3

� �

Rnl(r) ¼ � 2Z
na0

� �3
(n� l� 1)!

2n (nþ l)!j j3
" #1

2

e�
r
2rlL2lþ1nþl (r):

The radial integration is over the product of two polynomials but selected powers of r are given
in the text by Lesk [3] along with a recursion relationship due to Kramer for other powers of r
(Table D.1).

However, we need
1
r3

� �
so we can use that recursion relationship found by Kramer as given in

Lesk’s text [3].

FIGURE D.1 Professor Krishnan Balasubramanian, emeritus professor at Arizona State University (presently
at Lawrence Livermore, Berkeley Labs, and California State University, Eastbay) and recipient of the 2003
Robert S. Mulliken Award presented at the University Georgia, a Fullbright Scholarship, the Lawrence
Livermore Distinguished Service Award, the Camille and Henry Dreyfus Teacher-Scholar Award, and many
other awards. Professor Balasubramanian has published over 600 scientific papers to date and is recognized as a
pioneer in extending quantum chemistry to relativistic treatment of molecules containing heavy elements [1].
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TABLE D.1
Expectation Values of Powers
of r with Hydrogenic Orbitals
for Nuclear Charge Ze

hrinlm ¼
a0
2Z

3n2 � l(lþ 1)
� �

hr2inlm ¼
n2a20
2Z2

5n2 þ 1� 3l(lþ 1)
� �

hr�1inlm ¼
Z

a0n2

hr�2inlm ¼
Z2

a20n
3 lþ 1 2= 
½

Source: Lesk, A.M., Introduction to Physical

Chemistry, Prentice-Hall, Inc.,
Englewood Cliffs, NJ, 1982, p. 320.

FIGURE D.2 Prof. John E. Bloor, wrote his PhD thesis in organic chemistry at the University of Manchester
on the synthesis and UV spectra of disubstituted benzenes and aza-merocyanine dyes but Prof. Coulson was
appointed as chair of his Thesis Committee when his advisor, Prof. Burawoy, passed away suddenly. Although
Dr. Bloor’s thesis was approved as a PhD in organic chemistry, he responded with a career in theoretical=
quantum chemistry due to his contact with Prof. Coulson. He used the Pariser-Parr-Pople Pi-electron SCF
method to study UV spectra of conjugated hydrocarbons and their derivatives containing oxygen, nitrogen, and
sulfur, and was one of the first to apply the all valence CNDO=2 method to organic molecules. Later in his
career at the University of Tennessee, he used relativistic ab initio computer programs, especially the one
developed by Balasubramanian [4–7], which included spin-orbit coupling in the valence shell to interpret the
photoelectron and electronic spectra of molecules containing heavy transition metals, rare earth metals, and
transuranium elements.
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Z2 k þ 1
n2

� �
r

a0

� �k
* +

� (2k þ 1)Z
r

a0

� �k�1* +
þ k lþ 1

2
þ k

2

� �
lþ 1

2
� k

2

� �
r

a0

� �k�2* +
¼ 0

If we choose k¼�1, we find 0� (�1)Z r

a0

� ��2* +
� lþ 1

2
� 1
2

� �
lþ 1

2
þ 1
2

� �
r

a0

� ��3* +
¼ 0.

Using hr�2inlm ¼
Z2

a20n
3 lþ 1

2

� � we find r

a0

� ��2* +
¼ a20r

�2� � ¼ a20Z
2

a20n
3 lþ 1

2

	 
 ¼ Z2

n3 lþ 1
2

	 
. Then

�(�1)Z Z2

n3 lþ 1
2

	 

" #

¼ (lþ 0)(lþ 1)
r

a0

� ��3* +
¼ l(lþ 1)

a30
r3

� �

and so we have

1
r3

� �
¼ Z3

n3a30l lþ 1
2

	 

(lþ 1)

:

Finally, we can use this in the spin-orbit expression to find

Eso ¼ hn, l, mj Ze2

2m2c2

� �
~L �~S
r3

 !
jn, l, mi ¼ Ze2

2m2c2

� �
Z3 j(jþ 1)� l(lþ 1)� s(sþ 1)½ 
�h2

n3a30(l) lþ 1
2

� �
(lþ 1)

8>><
>>:

9>>=
>>;

and we see that

jnl ¼
e2�h2

2m2c2a30

� �
Z4

n3l lþ 1
2

	 

(lþ 1)

:

Note the dependence on the fourth power of Z which indicates the importance of this effect for
heavier elements!

Although we used non-SI units we have reached agreement with the formula for jnl given in a
revered text on Quantum Mechanics by Schiff [8] which predates SI units. The excellent text by
McGlynn, Azumi and Kinoshita [9] also gives the same expression related to the spin-orbit coupling
in triplet states. The important thing for undergraduates to learn from this is the fourth power
dependence on the nuclear charge Z. It is also an interesting opportunity to use what we have
learned about the eigenvalues of the J ¼ Lþ S total angular momentum operator. Modern treat-
ments by McQuarrie [10] and by Townsend [11] derive the shift of the energy levels of the H atom

due to spin-orbit coupling as DEso ¼ mec2Z4a4

4n3l lþ 1 2=ð Þ(lþ 1)
l, j ¼ lþ 1=2

�(lþ 1), j ¼ l� 1=2

� �
where

a ¼ e2

4pe0�hc
in SI units. That predicts the splitting between j ¼ l� 1=2 is only

D(DEso) ¼ 5:8437Z4 cm�1

n3l(lþ 1)
. The same wave number value is obtained using cgs constants with

the a0 value [9,12]. While this is important in astronomy due to the abundance of H in space, this
difference is tiny relative to most chemical reactions. However past Z¼ 30 for Zn, heavier elements
have values of jnl in thousands of cm�1.
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Use of PCLOBE
I. Copying files

1. Insert the PCLOBE compact disk into your CD drive and locate its three files. One is a
zipped file of illustrative examples and another is the ‘‘setup.exe’’ file.

2. Transfer the zipped file to your computer and extract the compressed files into a new
folder, which you could name ‘‘PCLOBEXAMPLES.’’

3. Double click on ‘‘setup.exe’’ on the CD—this will install PCLOBE on your own drive.
You will find the program in your programs list; you may construct a shortcut so to start
PCLOBE from your desktop.

II. Running PCLOBE

1. Start (click on) PCLOBE either from the shortcut or from the programs list. If all goes well,
you will see a Visual Basic display with selection buttons to define PCLOBE calculations.

2. Define a job, using structures supplied in PCLOBEXAMPLES:
a. Click the Browse button at the top left of the display panel.
b. Find and click the ‘‘name.XYZ’’ file of your choice (open it).
c. Select the desired basis from the list at center left.
d. Enter an integer to define the gradient threshold (‘‘3’’¼ 10�3). Selecting the default ‘‘0’’

defines a single-point energy calculation. This is required for certain tasks, and enforced
by the interface. A gradient threshold of 4 or 5 will invoke calculation of vibrational
frequencies. The default of 30 steepest descent iterations is best reset to ‘‘99’’ for
geometry optimization.

3. Click on ‘‘Launch PCLOBE’’ to start the program. You should immediately see a black
foreground output window showing progress through the task.

4. When the run finishes, click on the ‘‘View Output’’ button at the lower right part of the
Visual Basic panel to look at the total output. If you wish to retain the output, save it with a
unique file name.

The WINDOWS-VISTA or WINDOWS-7 operating systems can be used to run PCLOBE in
Administrator Mode by right-clicking on the PCLOBE icon, but all other files and applications
should be closed before running in Administrator mode.

SPECIAL REQUIREMENTS FOR INPUT FILES

Some options require special care that input files be prepared in accord with certain conventions. For
instance, the point group symmetry option requires that the input structure possess the specified
symmetry, and requires that the high order symmetry axis coincide with the ‘‘z’’ Cartesian direction.
The examples for this input with names xxxsym.XYZ obey these requirements. Consult the
‘‘READpclobe.txt’’ file for more detail and an exception with the nonconventional Cnvx symmetry.

Use of the Rydberg basis requires that the file ‘‘rydberg.dat’’ contain a nonzero value of scaling
for each atom to which a 3sp shell is to be added; remember to reset the value to ‘‘0.0’’ for the next
run if the Rydberg orbitals are not desired (applies only to CIS in a STO-4G basis).
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PRESERVING DATA WRITTEN TO PLACEHOLDER FILES

From some tasks, PCLOBE produces data files labeled ‘‘uvspectra.txt,’’ cdspectra.txt,’’
‘‘mcdspectra.txt,’’ and ‘‘ordspectra.txt.’’ These are intended for use by graphics programs. The file
labeled ‘‘lobe.xyz’’ is intended to provide input data to an external molecular modeler such as
RASMOL. The file ‘‘lobe.draw’’ is intended for the external plotting program MOLEKEL. If
information in these files is to be retained, they should be saved with more informative names.
The original READpclobe file included in the CD of the text Electronic Structure Modeling,
Connections between Theory and Modeling, CRC Press (2008) by C. Trindle and D. Shillady is
on the present CD along with a revised file READPCLOBEV2 which has been contributed by a user
(Dr. Charles Castevens). The revised file includes the perspective of a user of the PCLOBE program
and gives additional information related to using PCLOBE in Windows-7 which was not available
in the 2008 text.
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