
Computational Methods in Engineering

Computational Methods in Engineering
S.P.Venkateshan

Professor Emeritus
Mechanical Engineering

Indian Institute of Technology Madras

Prasanna Swaminathan
Postdoctoral researcher

EM2C Laboratory
Ecole Centrale Paris, France

June 2013

To

IIT Madras

for providing unlimited opportunities

The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK

First edition 2014

Copyright © 2014. Ane Books Pvt. Ltd. Published by Elsevier Inc. All rights reserved

No part of this publication may be reproduced, stored in a retrieval system
or transmitted in any form or by any means electronic, mechanical, photocopying,
recording or otherwise without the prior written permission of the publisher

Permissions may be sought directly from Elsevier's Science & Technology Rights
Department in Oxford, UK: phone (+44) (0) 1865 843830; fax (+44) (0) 1865 853333;
email: permissions@elsevier.com. Alternatively you can submit your request online by
visiting the Elsevier web site at http://elsevier.com/locate/permissions, and selecting
Obtaining permission to use Elsevier material

Notice
No responsibility is assumed by the publisher for any injury and/or damage to persons
or property as a matter of products liability, negligence or otherwise, or from any use
or operation of any methods, products, instructions or ideas contained in the material
herein. Because of rapid advances in the medical sciences, in particular, independent
verification of diagnoses and drug dosages should be made

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data
A catalog record for this book is availabe from the Library of Congress

For information on all Academic Press publications
visit our web site at store.elsevier.com

Printed and bound in the US

ISBN–13: 978-0-12-416702-5

Academic Press is an imprint of Elsevier

225 Wyman Street, Waltham, MA 02451, USA

14 15 16 17 18 10 9 8 7 6 5 4 3 2 1

v

Preface

Researchers and engineers use commercial computing software in their day to day
professional activities. User friendly commercial software is a black box for many of them
with input being given by clicking appropriate boxes and expecting great results to come
out. Generally it is helpful if the user of such software has a background in numerical
methods so that he/she will avoid some pitfalls.

The emphasis of the book is the application of numerical methods for the solution of
equation(s) - linear, non-linear (algebraic), differential equations (ordinary and partial) -
that occur in most engineering disciplines. There is a common theme running through all
these topics and hence the book has been arranged in a particular way, the chapters being
grouped into four Modules. The authors recommend that the reader go through Modules I
and II serially and then take up Modules III and IV in any order. The reader is encouraged
to do the worked examples on his/her own using any accessible computer resource so as
to get a feel for the numerical methods discussed in the text. The reader may also go
beyond the book and perform grid sensitivity, parametric study, stability analysis using
the worked examples given in the book. The reader may also try different algorithms and
study their relative merits and demerits. Spreadsheet programs such as EXCEL (part
of Microsoft Office suite) operating under Windows or free software LibreOfficeCalc
working on Linux platform, may be used for simple problems. More complex problems
may be approached better by MATLAB about which an introduction has been provided in
the book. Several MATLAB programs have also been given in the book. The reader may
use these and also develop his/her own MATLAB codes.

This book is definitely not for the mathematician but targets the users of mathematics,
specifically from engineering disciplines. The emphasis is not on mathematical rigor
(even though it is very important) but utility in the context of engineering (applied
mathematics). Important principles of computational methods are brought out via worked
examples with obvious connection to real life engineering applications.

The junior author (PS) has assisted the senior author, as a teaching assistant for a
few years while pursuing his doctoral research. He brings a student’s point of view

vi

to the book. His contribution has been substantial. He has written and debugged all
the MATLAB codes presented in the book. He has also contributed material relating
to interpolation in more than one dimension, finite element and finite volume methods,
conjugate gradient methods. He has also contributed by working out many example
problems using MATLAB that are included in the book. Format of the book and creation
of class file called “bookSpvPras.cls” is his other important contribution.

It may be difficult to cover the entire book in a one semester course. Some advanced
topics - such as interpolation in two and three dimensions, multiple integral, FEM,FVM,
collocation method, solution of stiff equations, parts of PDE - may be dropped in a first
level course.

Exercise problems of varying levels of difficulty are given at the end of each module.
The reader will benefit most from the book if he/she puts in effort to solve them.

Chennai S.P.VENKATESHAN
3 June 2013 PRASANNA SWAMINATHAN

vii

Acknowledgements

The writing of a book requires the help and support of many people. Ambiance provided
by Indian Institute of Technology Madras (IIT Madras) has made the writing of the book
a pleasant activity. Feedback has come in plenty from students who have taken my
(SPV) course in Computational Methods in Engineering through the years. The authors
acknowledge the comments from research scholars of the Heat Transfer and Thermal
Power Laboratory of IIT Madras, on earlier versions of some chapters of the book, which
helped in improving the text significantly. Comments from reviewers of one chapter of
the book has led to many desirable changes in the book. The senior author owes a debt of
gratitude to excellent teachers (specifically Late Prof. Y.G. Krishnaswamy), who created
an abiding interest in mathematics in him, when he was an undergraduate student in
Bangalore University in the 1960’s.

The authors particularly thank Ane Books, New Delhi for bringing out this text in an
expeditious manner. This book is co-published by Elsevier, Inc., as an Academic Press
title, based on additional market feedback provided by the Publisher.

Chennai S.P.VENKATESHAN
3 June 2013 PRASANNA SWAMINATHAN

Chapter 1

Preliminaries

This chapter is a stand alone that deals with numerical preliminaries. Specifically this
chapter talks about precision in numerical calculations made using a digital computer
and its effect on numerical calculations. This is followed by a brief introduction to
MATLAB programming. The rest of the book is arranged in four modules as follows:

• Module I: System of equations and eigenvalues
• Module II: Interpolation, differentiation and integration
• Module III: Ordinary differential equations
• Module IV: Partial differential equations

1

2 Chapter.1 Preliminaries

1.1 Introduction
We discuss in brief some general issues which will bear on the material presented in the

rest of the book. Computational methods require the use of a computing machine such as
a calculator, if the calculations are not too many, or a digital computer, if calculations are
many and possibly repetitive and hence dull. While studying the behavior of physical
systems we may want to study the effect of many parameters that describe or model the
physical system. This may require simulation involving the same set of calculations to be
repeated, but with different parameter values, each time. The calculations should have
adequate precision to show the smallest effect the parameters may have on the result(s).

We also introduce MATLAB so that the reader will appreciate many short programs
written in MATLAB that are found throughout the book. We do not recommend a
particular program or programming language to be used by the reader. This is left to
the choice of the reader. Interested reader may use a spreadsheet program for many
simulations and avoid writing a computer program. The authors have, in fact, used
spreadsheet to work out many of the worked examples presented in the book. When
necessary MATLAB programs were written. Specially useful are MATLAB programs
when large number of iterations are involved. MATLAB also provides easy access to
graphics without leaving the MATLAB environment.

1.1.1 Floating point numbers in binary form

Calculators and computers work with binary representation of numbers. In binary
system, the numbers are represented by digits 0 and 1. Hence, binary system is also
referred to as base-2 number system. The commonly used decimal representation is base-
10 system. A number p in a system using base b is represented by pb and is given by

pb =
N∑
i

dibi = d0b0 +d1b1 +·· ·dibi · · ·+dN bN (1.1)

where di is the ith digit and N = 1 is the number of digits. In case the number involves
a fraction i can take negative values. One can easily convert from decimal to binary and
binary to decimal representation. For example

101012 = 101012 = 1×24 +0×23 +1×22 +0×21 +1×20 = 2110 = 21

11.012 = 11.01= 1×21 +1×20 +0×22−1+×2−2 = 3.2510 = 3.25

The decimal number is familiar to us and hence the subscript 10 is normally not indicated.
Similarly binary form is common and hence the subscript 2 would not normally be
indicated. We commonly use the scientific notation to represent a number i.e 21= 2.1×101

(1 is the exponent) and 3.25 = 3.25×100 (0 is the exponent). The computer also uses a
similar representation in binary notation.

Sometimes we use a number system based on base 8 (octal) and base 16 (hexadecimal)
also. In the case of the former the numerals are 1 to 7 while in the case of the latter we

1.1. Introduction 3

have 1 to 9 followed by A to F representing decimal numbers 10 through 15. For example
34078 = 3×83 +4×82 +0×81 +7×80 = 1799 and 3F16 = 3×161 +15×160 = 63.

Precision with which a number is represented in binary is determined by the number of
bits used. IEEE6541 defines the format for numbers as well as the precision.

A floating point number in single precision is represented by 32 bits as indicated below:

1 8 23
s e f

(sign) (biased exponent) (f raction)
msb lsb msb lsb

msb−most significant bit, lsb− least significant bit

(1.2)

The above format has three fields - a 23-bit fraction, f ; an 8-bit biased exponent, e; and
a 1-bit sign, s. These fields are stored in one 32-bit word, as shown in 1.2. Bits 0:22
contain the 23-bit fraction f , with bit 0 being the lsb of the fraction and bit 22 being
the msb; bits 23:30 contain the 8-bit biased exponent, e, the bias being 127, with bit 23
being the lsb of the biased exponent and bit 30 being the msb; and the highest-order bit
31 contains the sign bit, s. The number is then given by (−1)s2e−127(1. f) where f is the
fraction represented by the bits from 0 to 22 (total number of bits is 23).

Consider, as an example, a floating point number in single precision given by

1 10000001 010 1000 0000 0000 0000 0001

Here we have s = 1 and hence (−1)s = (−1)1 =−. Hence the number is a negative number.
The exponent is given by e = 27 +20 = 129. Hence the biased exponent is e−127 = 129−
127= 2. f is given by 2−2+2−4+2−23 = 0.3125001. Hence 1. f = 1+0.3125001= 1.3125001.
Finally we have the number as −22 ×1.312500119=−5.2500005.

A floating point number in double precision is represented by 64 bits as indicated below:

1 11 52
s e f

(sign) (biased exponent) (f raction)
msb lsb msb lsb

msb−most significant bit, lsb− least significant bit

(1.3)

The above format has three fields - a 52-bit fraction, f ; an 11-bit biased exponent, e; and a
1-bit sign, s. These fields are stored in one 64-bit word, as shown in 1.3. Bits 0:51 contain
the 52-bit fraction f , with bit 0 being the lsb of the fraction and bit 51 being the msb; bits

1IEEE standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std 754-1985, Published by the
Institute of Electrical and Electronics Engineers, N.Y., U.S.A.

4 Chapter.1 Preliminaries

52:62 contain the 11-bit biased exponent, e, the bias being 1023, with bit 52 being the lsb
of the biased exponent and bit 62 being the msb; and the highest-order bit 63 contains the
sign bit, s. The number is then given by (−1)s2e−1023(1. f). The portion (1. f) represents
the fraction in the form of 1 followed by the decimal point and the fraction to the right of
the decimal point.

Apart from the above extended formats are also included in IEEE654. Table below
summarizes the precision possible with these formats.

Machine Number Maximum Minimum
IEEE format precision decimal digit e−bias e−bias
Single 2−23 ∼ 1.2×10−7 7 128 -127
Double 2−52 ∼ 2×10−16 16 1024 -1023
Double Extended 2−64 ∼ 1.1×10−19 19 16383 -16382

Underflow or overflow is decided by the largest and the smallest values of the exponent
given in the table. Precision of the number is limited by the values shown in the table. In
the case of single the precision is limited by 2−23 ∼ 1.2×10−7. One may possibly assume
that six digit accuracy is realizable with single precision arithmetic. Similarly double
precision guarantees precision up to 16 digits after decimals if machine is allowed to round
the numbers as calculations proceed.

It is thus clear that digital computers represent a number (a variable) by a single or double
representation in digital form. The continuous variable is thus represented by a digital variable
that is discrete, in the sense that two neighboring values of the function have at least a
difference of one lsb, with a difference of one precision unit. Since precision is finite the digital
representation of data is inherently an approximate or discrete representation of the variable.

1.1.2 Rounding errors and loss of precision

To demonstrate the effect of rounding we take a simple example. Assume that it is
desired to calculate y = e

p
2. Calculator gives

p
2 = 1.414213562 with nine digits after

decimals. Presumably the number is uncertain in the 10th place after decimals. We
then calculate the exponential of this number using the calculator to get y= e1.414213562 =
4.113250379. In case the number were to be rounded while determining the square root
to six digits, we would have

p
2= 1.414214. Exponential of this would then be given by the

calculator as 4.113252179 which differs from the more accurate calculation by 0.000002
when rounded to six digits after decimals. We may imagine a chain of such calculations
that involve rounding after each calculation to see that the error will surely propagate
towards more significant digits i.e. from right to left.

A spreadsheet program that uses a better precision (double precision arithmetic) yields
the result y = e

p
2 = 4.1132503787829300 which on rounding to nine digits would yield

4.113250379 in agreement with that obtained using the calculator. The error between the
calculator value and the spreadsheet value is −2.1707258213155×10−10 or roughly digit
2 in the 10th place after decimals.

1.1. Introduction 5

Example 1.1
It is desired to calculate f (x) = cosh(1− x)

cosh(1)
at x = 0.5. Study the effect of rounding. This

function is required in calculating a second function z given by z = 1
1+ y2.5 . How does the

rounding of y affect the value of z?
Solution :

We make use of a spreadsheet program to perform the calculations. A built in func-
tion will round the calculated number to user specified precision. The function is
ROUND(number, integer). For example ROUND(number,3) will round the number to 3
digits after decimals. Rounding follows the normal practice of rounding up if the digit is ≥ 5
in the specified (fourth) place.

Round to Error due Round to Error due
x = 0.5 3 digits to rounding 7 digits to rounding
cosh(1) = 1.543080635 1.543 −8.1×10−5 1.5430806 −3.5×10−8

cosh(0.5) = 1.127625965 1.128 3.7×10−4 1.1276260 3.5×10−8

f (x = 0.5) = 0.730762826 0.731 2.4×10−4 0.7307628 −2.6×10−8

Now we shall see how the calculation of z is affected by the rounding in the calculation of y.
The calculations are again shown as a table below.

Round to Error due Round to Error due
f (x) = 0.730762826 3 digits to rounding 7 digits to rounding
z = 0.686577246 0.686 -5.8E-004 0.6865773 5.4E-008

At once we see that the errors have increased while calculating z. Hence error due to
rounding accumulates and increases as the number of arithmetic manipulations increase.

1.1.3 Effect of rounding on numerical computation

We have seen that rounding errors propagate and may make results of numerical
calculations unreliable. Rounding errors are like perturbations or errors that affect all
calculations that follow. In case of differential equations rounding errors may grow and
throw the calculation method out of gear by making the solution diverge. The numerical
scheme may become unstable. Such a behavior imposes restrictions as we shall see later.

Sometimes we use an iterative method to calculate the roots of a set of equations.
Iterations are expected to stop when some stopping criterion is satisfied. For example,
if iterations stop when change in a quantity is less than 10−6, it is necessary that the
numerical scheme and the precision in the calculation makes it possible to achieve this
condition. If rounding of numbers takes place at every iteration we may never achieve
this condition and hence the solution may never converge!

We conclude that we will be able to use adequate precision in the calculations such that
the above type of situation does not arise.

6 Chapter.1 Preliminaries

1.1.4 Taylor series and truncation

Very often numerical methods make use of Taylor2 series representation of functions.
A function is then numerically evaluated by summing terms in the Taylor series - an
infinite series - truncating it to a manageable number of terms. Sometimes only a small
number of terms such as 2 or 3 may be made use of to represent the function. This is
referred to as truncation. The accompanying error, the difference between the Taylor
series calculated value and the exact value (if known) is referred to as truncation error. In
practice the truncation error may be estimated by calculating the leading order term that
was dropped. An example will clarify these issues.

Example 1.2
Taylor expansion around x = 0 of the function y= e−x is written down as y(x)= 1−x+ x2

2
− x3

6
+

−·· ·+ (−1)i xi

i!
· · · . Evaluate the function at x = 0.1 and study the consequences of truncation

if arithmetic is performed with 9 digit precision.
Solution :

To 9 significant digits (for example, a typical calculator3 will display this precision) the
function may be calculated as e−0.1 = 0.904837418. This value will be used for comparison
purposes in discussing truncation and rounding errors. First we use nine digit precision to
obtain the following results:

No. of Truncation
terms y= -0.1 Error
2 0.900000000 -0.004837418
3 0.905000000 0.000162582
4 0.904833333 -0.000004085
5 0.904837500 0.000000082
6 0.904837417 -0.000000001
7 0.904837418 0.000000000
Exact 0.904837418 0.000000000

It is apparent that the truncation error i.e. yTruncated Taylor − yExact differs by less than 1
digit in the ninth place after decimals for number of terms in Taylor expansion greater than
6. Hence if 9 digit precision is what is available there is no point in including more than
6 terms in the Taylor series. Hence we may truncate the Taylor series to the first 6 terms.
It is also seen that the truncation error is as much as 5 digits in the fourth place if Taylor
series is truncated to just 2 terms.
We shall now consider the effect of rounding. Let us assume that we perform arithmetic
that has five digit precision. The state of affairs will change as given below.

2Brook Taylor, 1685-1731, English mathematician
3Texas Instruments TI-30X calculator has option to display functions with number of digits ranging from

0 to 9 after decimals

1.1. Introduction 7

No. of Truncation
terms y= -0.1 Error
2 0.90000 -0.00484
3 0.90500 0.00016
4 0.90483 -0.00001
5 0.90483 -0.00001
6 0.90483 -0.00001
7 0.90483 -0.00001
Exact 0.904837418 0.00000

It is clear this time that the rounding has made its effect felt! The 5th term in the Taylor
series has no effect on the result. This simply means that truncation errors are resolved
only when rounding errors are not severe.

1.1.5 Effect of digital calculations on iteration

We have mentioned earlier that many numerical schemes involve iteration i.e. repeated
use of a formula till the result converges according to a stopping criterion. The stopping
criterion usually involves observation of change in a quantity from iteration to iteration
and stopping when the difference is smaller than a prescribed value. It is clear
that rounding will have an effect on such calculations. We take a simple example to
demonstrate this.

Example 1.3
Perform iteration given by the formula xi+1 = xi

2
+ 1

xi
starting with x0 = 1. Discuss the effect

of rounding and specified stopping criterion on the result.
Solution :

We first use arithmetic with 9 digit (decimal) precision. The starting value is specified as
x0 = 1.000000000 to obtain x1 = 1.500000000 after one iteration. The difference these two
values is x1 − x0 = 0.500000000. We continue the iterations as shown in the table below.

xi Difference
1.000000000
1.500000000 0.500000000
1.416666667 -0.083333333
1.414215686 -0.002450981
1.414213562 -0.000002124
1.414213562 0.000000000

In this case iterations perforce stop after i = 5 since the difference between two consecutive
iterations has reached machine precision.

If we round the calculations to 5 digits during the calculations we get the following
tabulation.

8 Chapter.1 Preliminaries

Difference with
respect to 9 digit

xi Change final value
1.00000 -4.1E-001
1.50000 0.50000 8.6E-2
1.41667 -0.08333 2.5E-3
1.41422 -0.00245 6.4E-6
1.41421 -0.00001 -3.6E-6
1.41421 0.00000 -3.6E-6

We are forced to stop iterations with i = 5 since rounding has now limited the precision.
If we were to calculate using double precision we would get a converged value for
1.4142135623731000.4

1.2 Mathematical and computational modeling

Mathematical models are used extensively in science and engineering. A model
may be composed of simple or complex operations which approximates an application.
A mathematical model could be a set of linear equations or algebraic equations or
differential equations. The model is constructed based on practical observations. For
example, Joseph Fourier surmised that the heat flux q is proportional to temperature
gradient and hence proposed that (in one space dimension)

q =−k
dT
dx

where k is known as the thermal conductivity of the medium and T is the temperature
that varies with one independent space variable x. The above equation is known as the
Fourier law of conduction. Other examples are Newton’s laws of motion, seepage flow
across porous media (Darcy law), Faraday’s law of electromagnetic induction, Maxwell
equations in electromagnetism etc. Mathematical models may also be constructed by
correlating cause and effect, based on experimental observations. For example, the
population growth rate of a country or the ups and downs of financial markets.

Mathematical models may be of any of the types given below.

1. Linear or nonlinear: A model is said to be linear if cause and effect are linearly
related. Otherwise the model is nonlinear.

2. Static or dynamic: A model in which the dependent variable is a function of time
is known as dynamic. Otherwise the system is static.

4This is an approximation of
p

2. Value of
p

2 to one million digits is available at the NASA web site
http://apod.nasa.gov/htmltest/gifcity/sqrt2.1mil

1.3. A brief introduction to MATLAB 9

3. Lumped or distributed: A model which describes the average quantity in a spatial
domain is said to be lumped. If the model describes the quantity at every location in
the spatial domain, we have a distributed model. The pressure drop characteristics
of a pump is a lumped representation. On the other hand, modeling the fluid flow
through the pump represents a distributed system. A lumped system is often used
in the simulation of complex systems.

Invariably one has to use computational tools to solve the mathematical models. Compu-
tational modeling approximates the mathematical model suitably. As the computational
methods are discrete in nature, the continuous mathematical models are approximated
by discrete computational representations.

Basically we have divided the book into four modules:

• Module I: System of equations and eigenvalues
• Module II: Interpolation, differentiation and integration
• Module III: Ordinary differential equations
• Module IV: Partial differential equations

1.3 A brief introduction to MATLAB

A program is a set of instructions to be executed by the computer written in a language
that the machine can understand. Popular high-level programming languages are C, C++
and Fortran. These programming languages form an interface between the user and the
machine.

MATLAB is a popular software package for performing numerical computations. It
provides interactive user interface with several built in functions as well as programming
capabilities. The libraries in MATLAB cover a wide range of areas including linear
algebra, computation of eigenvalues, interpolation, data fit, signal analysis, optimization,
solving ODEs and PDEs, numerical quadrature and many more computational algo-
rithms. MATLAB has incorporated several popular libraries such as LAPACK. It also
provides graphical and plotting tools.

We have adopted MATLAB to demonstrate the computational methods discussed in
this textbook. This is because of its relatively simple and easy programming capabilities.
However, we expect the reader to have some basic experience in high-level programming
such as C, Fortran or MATLAB. We will briefly introduce MATLAB to the readers.

1.3.1 Programming in MATLAB

When MATLAB is launched, we get a command window. The command window
forms the main interface for the user. Command window can be used to execute simple
commands or call functions. For example

10 Chapter.1 Preliminaries

>> u= sqrt (2) Command

u = Output

1.4142

u is the name of the variable and sqrt is an inbuilt MATLAB function to calculate square
root. The names of the variables should always start with an alphabet. In MATLAB, by
default, variable names are case sensitive (a and A are different). Unlike C or Fortran,
we need not declare the data type of variable (integer, real, double , character, complex).
MATLAB automatically assigns the appropriate type of variable. MATLAB also offers
inbuilt commands to convert from one data type to another.

MATLAB offers a range of inbuilt MATLAB functions. Some of the common functions
have been listed below

abs sin cos tan exp log acos asin atan cosh sinh

Scripts

When a large number of commands have to be used, which may require frequent editing,
one can write the set of commands as a file called M-files (extension .m). MATLAB
provides an editor of its own which can be used to write these programs. Such programs
are also known as scripts. An example of a script file named “quadraticroots.m” has been
provided below to determine the roots of a quadratic equation.

a = 1; % c o n s t a n t s o f q u a d r a t i c e q u a t i o n
b = 2; % a command e n d i n g w i t h s e m i − c o l o n ; w o u l d n o t
c = 1; % p r i n t t h e o u t p u t i n t h e command w i n d o w
root1 = (-b+sqrt(b^2-4*a*c))/(2*a); % r o o t 1
root2 = (-b-sqrt(b^2-4*a*c))/(2*a); % r o o t 2

The above program can be executed from the command prompt as follows
>> quadraticroots

or by clicking on the execute button provided in the MATLAB editor window. The
character % is used for commenting. Anything written after % will not be executed by
MATLAB. To execute the program successfully, one has to ensure the desired file is in
the current directory. The current directory window provided by MATLAB lists all the
files in the current directory. All the variables that have been generated since opening
MATLAB are listed in the workspace window. In addition to this MATLAB has a command
history window which lists all the commands that have been executed using the Command
window. There are several more features offered by the MATLAB interface and the reader
is encouraged to explore them.

1.3. A brief introduction to MATLAB 11

Functions

In some applications, we require a piece of code has to be executed more than once.
Then the same piece of code can be written as a “function” and saved as a M-file (the name
of the function is same as the M-file).

Program : A sample program

1 function [root1 ,root2] = quadraticroots(a,b,c)

2 % I n p u t : a , b , c
3 % O u t p u t : r o o t 1 , r o o t 2
4 root1 = (-b+sqrt(b^2-4*a*c))/(2*a); % r o o t 1
5 root2 = (-b-sqrt(b^2-4*a*c))/(2*a); % r o o t 2

The user defined function, just like inbuilt MATLAB functions, can be called either from
command window or another function. Calling quadraticroots from command window

[root1 ,root2] = quadraticroots (1,2,1);

Again one has to ensure that the function file is present in the current directory. To make
a function available universally to all directories, the user can set the path of the folder
containing the function.

MATLAB offers two other ways of creating customized user defined functions. These
functions can be written in command prompt or can be part of a M-file. For example

% name o f f u n c t i o n i s ‘ ‘ a ’ ’ w i t h i n p u t v a r i a b l e x
>> a = @(x) x.^3;

>> a(4)

ans =

64

% t h e d o t p r e c e d i n g ^ i s an a r r a y o p e r a t i o n
>> a([4 5]) % o p e r a t i n g on an a r r a y
ans =

64 125

>> b = @(x,y) x.^3 + y.^2 % m u l t i p l e i n p u t v a r i a b l e s
>> b(4,5)

ans =

89

inline operator in MATLAB also serves the same purpose
>> a = inline('x.^3','x');

>> b = inline('x.^3+y.^2','x','y')

1.3.2 Array and matrices

Array and matrices form the basis of computational methods and MATLAB offers an
extensive range of tools to carry out array operations. An array is a one dimensional set
of data where as matrix is a multidimensional data set. MATLAB treats every variable as
an array or matrix. Then a scalar is an array of dimension 1×1. Arrays can be declared
in the following ways

12 Chapter.1 Preliminaries

>> a = [1 1 1] % c r e a t e s a r o w v e c t o r o f s i z e 1×3
a = 1 1 1

>> a = [1; 1; 1] % c r e a t e s a c o l u m n v e c t o r o f s i z e 3×1
a =

1

1

1

While dealing with arrays, one has to make sure that the dimensions of array are properly
defined. This becomes important for performing array operations such as addition,
multiplication or division. A column vector can be converted into a row vector and vice
versa using transpose

>> a = [1 1 1]; % c r e a t e s a r o w v e c t o r o f s i z e 1×3
>> b = a' % t r a n s p o s e o f v e c t o r a
b =

1

1

1

The following command
>> a = 0:0.2:1

produces an array with 6 equi-spaced elements between 0 and 1
a = 0 0.2 0.4 0.6 0.8 1

Similar to arrays, matrices can be declared as follows
>> a = [1 2 3 4; 5 6 7 8]; % a m a t r i x o f s i z e 2×4

One can access or declare individual or group of elements of a matrix in the following way
a(1,2) = 2 % e l e m e n t a t f i r s t r o w and s e c o n d c o l u m n
% f i r s t i n d e x r e f e r s t o r o w and s e c o n d t o c o l u m n
a(2 ,2:4) = 6 7 8 % e l e m e n t s i n s e c o n d r o w and
% c o l u m n s b e t w e e n 2 and 4
a(2,:) = 5 6 7 8 % e l e m e n t s i n s e c o n d r o w
a(:,2) = 2

6 % e l e m e n t s i n s e c o n d c o l u m n

Matrices can also be generated using built in functions such as
a = zeros (4); % c r e a t e s a m a t r i x o f s i z e 4×4 f i l l e d w i t h z e r o s
a = ones (3,2); % c r e a t e s a m a t r i x o f s i z e 3×2 f i l l e d w i t h o n e s
a = eye (4); % c r e a t e s an i d e n t i t y m a t r i x o f s i z e 4×4

MATLAB offers the following scalar arithmetic operations

1.3. A brief introduction to MATLAB 13

operator operation function

+ addition adds two matrices/arrays of same
size

− subtraction subtracts two matrices/arrays of
same size

∗ multiplication
A ∗ B provided number of
columns of A is equal to number
of rows of B

/ right division A/B is equivalent to AB−1

\ left division A \ B is equivalent to A−1B
∧ power A∧2 is equivalent to AA

The above operations are valid even when A or B is a scalar as indicated below
>> a = [1 2 3 4; 5 6 7 8] % a m a t r i x o f s i z e 2×4
>> b = 2*a + 1

b = % o u t p u t
3 5 7 9

11 13 15 17

The operator left division \ can be used to solve a system of linear equation of the form
Ax=b

x = A\b;

More details on this operation is given in Chapter 2.

Array operations

Sometimes, it is required to perform element by element operations between two
matrices. A good example is a dot product between two vectors. Such operations can be
performed by just adding a dot before the corresponding arithmetic operator. For example,
a dot product between two vectors can be achieved by

>> a = [1 1 1]; b = [0.2 1 0.5];

>> c = a.*b

c = 0.2 1 0.5

Similarly
>> d = a./b

d = 5 1 2

>> e = b.^2

e = 0.04 1 0.25

For the operations to be valid, the dimensions of the two arrays/ matrices should be equal.
The above operations are still valid if any one of the arrays is a scalar.

14 Chapter.1 Preliminaries

1.3.3 Loops and conditional operations

Conditional statements and loop statements are similar to other programming lan-
guages. There are two ways of defining a loop

for i = starting point:increment:last point

% s o m e e x e c u t a b l e s t a t e m e n t s
end

and
while (condition for loop)

% s o m e e x e c u t a b l e s t a t e m e n t s
end

break command can be used within a loop to exit the loop. The conditional statements
can be defined as

if condition

% s o m e e x e c u t a b l e s t a t e m e n t s
elseif condition

% s o m e e x e c u t a b l e s t a t e m e n t s
else

% s o m e e x e c u t a b l e s t a t e m e n t s
end

Relational and logical operators are useful for such operations. They are as follows

Relational operators
< less than
<= less than or equal to
> greater than
>= greater than or equal to
== equal to
∼= not equal to

Logical operators
& logical and
| logical or
∼ logical not

The relation and logical operators can also be used outside the conditional and loop
statements. Please refer to MATLAB reference for more details.

1.3.4 Graphics

MATLAB can be used for plotting and graphical purpose. plot command can be used
to produce a simple two dimensional plot. An example follows

x = 0:0.1:1; y = sin(x);z = cos(x);

plot(x,y); % p l o t s x , y
hold on % command t o o v e r l a p p l o t s
plot(x,z,'r'); % p l o t s x , z a s a r e d l i n e

1.3. A brief introduction to MATLAB 15

The plots can also be customized by defining labels, line width, line color, fonts etc. The
customization can be done either using the command prompt or the figure window itself.
One can also make two dimensional plots such as contour plot as well as three dimensional
plots such as surface plots.

The reader may study several MATLAB codes presented at various places in this book. We
have provided suitable comments in these codes so that the reader will be able to learn writing
MATLAB scripts and functions by studying these.

Suggested reading

There are several books, references and on line material available on MATLAB
programming. The following references are suitable for getting started with MATLAB.

1. MATLAB help - resource available with MATLAB
2. Rudra Pratap, Getting started with MATLAB. Oxford university press, 2010
3. More books available in the following link

http://www.mathworks.in/support/books/

module I

System of equations and eigenvalues

Calculation of roots of equations, both linear and nonlinear, are at the heart of
all computational methods used in solving algebraic as well as differential equations.
Essentially all equations- algebraic, ordinary differential equations(ODE), partial differential
equations(PDE) - are converted to yield a set of linear equations which are solved by the
various methods given in Chapter 2 of this module. Methods such as Newton Raphson
(introduced in Chapter 4) essentially converts nonlinear equation(s) to the linear form and
facilitates the solution using methods applicable to a set of linear equations. These are also
useful in optimization and system simulation.
Eigenvalues form the basic quantities which characterize many different types of differential
equations. Particularly periodic systems are governed by parameters referred to as
eigenvalues, which are associated with matrices. The evaluation of eigenvalues is of
considerable importance and hence is dealt with in detail in Chapter 3 of this module.
In the case ODE as well as PDE the governing equations are converted to a set of linear
or nonlinear equations which are essentially solved using the methods dealt in this module.
Therefore this module forms the most important part of the book.

Chapter 2

Solution of linear equations

Linear equations are encountered in all branches of engineering and hence have received
much attention. Geometric applications include the determination of the equation of a
plane that passes through three non-collinear points, determination of the point of
intersection of three non-parallel planes. Engineering applications are to be found in
diverse areas such as analysis of electrical networks, conduction of heat in solids,
solution of partial differential equations by finite difference and finite element methods.
When the number of equations are small solution may be obtained by elementary
methods. For example, two or three equations may be solved easily by the use of Cramer’s
rulea. When the number of equations become larger Cramer’s rule is cumbersome and
one of several alternate methods may be used. The present chapter considers some
elementary cases amenable to traditional methods followed by more complex
applications that require advanced techniques.

aafter Gabriel Cramer (French, 1704-1752, a Swiss mathematician

19

20 Chapter.2 Solution of linear equations

2.1 Analytical methods of solving a set of linear equations

In this section we consider analytical methods of solving a set of linear equations in real
three dimensional space R(3).1 We discuss Cramer’s rule and calculation of inverse of the
coefficient matrix.

2.1.1 Cramer’s rule

Cramer’s rule gives solution for a system of linear equations having unique solutions,
through calculation of determinants of square matrices. Consider a system of linear
equations having 3 unknowns.

a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

x1
x2
x3

=

b1
b2
b3

 (2.1)

The root may now be obtained by the use of Cramer’s rule as

x1 =

∣∣∣∣∣∣
b1 a1,2 a1,3
b2 a2,2 a2,3
b3 a3,2 a3,3

∣∣∣∣∣∣∣∣∣∣∣∣
a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

∣∣∣∣∣∣
, x2 =

∣∣∣∣∣∣
a1,1 b1 a1,3
a2,1 b2 a2,3
a3,1 b3 a3,3

∣∣∣∣∣∣∣∣∣∣∣∣
a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

∣∣∣∣∣∣
, x3 =

∣∣∣∣∣∣
a1,1 a1,2 b1
a2,1 a2,2 b2
a3,1 a3,2 b3

∣∣∣∣∣∣∣∣∣∣∣∣
a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

∣∣∣∣∣∣
(2.2)

Obviously, the solution exists only if the denominator in Equation 2.2 is non zero. A matrix
whose determinant is non zero is referred to as a non-singular matrix. Such a matrix also
has an inverse A−1 such that AA−1 = In where In is an identity matrix of rank n. All the
diagonal elements of an identity matrix are 1 while all its non-diagonal elements are 0.

In =

1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

(2.3)

Rank of a matrix is defined as the number of independent equations in the given set of
equations. It is also the dimension of the largest non-zero determinant obtained by removing
equal number of rows and columns from the given matrix. If the rank of the matrix is equal
to the dimension of the square matrix (i.e. the coefficient matrix is non-singular), a unique
solution exists. If the rank of the coefficient matrix is less than the dimension of the coefficient
matrix (determinant of the coefficient matrix is zero), there exist an infinite number of solutions
satisfying the set of linear equations.

1We assume that the reader has had an exposure to elementary matrix algebra and vector analysis

2.1. Analytical methods of solving a set of linear equations 21

Plane passing through non-collinear points

(x1, y1, z1)

(x2, y2, z2)

(x3, y3, z3)
x

y

z

Figure 2.1: Plane passing
through three non-collinear points

Consider three non-collinear points A(x1, y1, z1), B(x2, y2, z2) and C(x3, y3, z3) lying on
a plane whose equation is sought in the form a′x+ b′y+ c′z = d. When d is a non-zero
constant we may divide the equation of the plane through by d to get the standard form
ax+by+ cz = 1. Since the given three points lie on the plane we should have

x1a+ y1b+ z1c = 1

x2a+ y2b+ z2c = 1

x3a+ y3b+ z3c = 1 (2.4)

The above three equations may be written in matrix form
x1 y1 z1
x2 y2 z2
x3 y3 z3

︸ ︷︷ ︸
Coefficient matrix

a
b
c

︸ ︷︷ ︸
Vector of unknowns

=

1
1
1

 (2.5)

We use Cramer’s rule to write down the solution as

a =

∣∣∣∣∣∣
1 y1 z1
1 y2 z2
1 y3 z3

∣∣∣∣∣∣∣∣∣∣∣∣
x1 y1 z1
x2 y2 z2
x3 y3 z3

∣∣∣∣∣∣
,b =

∣∣∣∣∣∣
x1 1 z1
x2 1 z2
x3 1 z3

∣∣∣∣∣∣∣∣∣∣∣∣
x1 y1 z1
x2 y2 z2
x3 y3 z3

∣∣∣∣∣∣
, c =

∣∣∣∣∣∣
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣∣∣∣∣∣∣
x1 y1 z1
x2 y2 z2
x3 y3 z3

∣∣∣∣∣∣
(2.6)

Example 2.1
Obtain the equation of a plane that passes through the three points A(2,1,3), B(4,6,9) and
C(2,4,6)
Solution :

22 Chapter.2 Solution of linear equations

We use the procedure given above to solve for the constants a, b and c. Cramer’s rule
requires the evaluation of the determinants indicated in Equation 2.6. The determinant of
the coefficient matrix is obtained as∣∣∣∣∣∣

2 1 3
4 6 9
2 4 6

∣∣∣∣∣∣= 2(6×6−4×9)−1(4×6−2×9)+3(4×4−2×6)= 6

The other three determinants required to complete the solution are obtained below:∣∣∣∣∣∣
1 1 3
1 6 9
1 4 6

∣∣∣∣∣∣= 1(6×6−4×9)−1(1×6−1×9)+3(1×4−1×6)=−3

∣∣∣∣∣∣
2 1 3
4 1 9
2 1 6

∣∣∣∣∣∣= 2(1×6−1×9)−1(4×6−2×9)+3(4×1−2×1)=−6

∣∣∣∣∣∣
2 1 1
4 6 1
2 4 1

∣∣∣∣∣∣= 2(6×1−4×1)−1(4×1−2×1)+1(4×4−2×6)= 6

The constants are then obtained as a = −3
6

=−0.5, b = −6
6

=−1 and c = 6
6
= 1. The equation

of the plane is thus given by −0.5x− y+ z = 1 or −x−2y+2z = 2.

Intersection of three non-parallel planes

1

2
3

Figure 2.2: Intersection of three non-
parallel planes

Three non-parallel planes will intersect at a point. The three planes are specified as
follows.

a1,1x1 +a1,2x2 +a1,3x3 = b1

a2,1x1 +a2,2x2 +a2,3x3 = b2

a3,1x1 +a3,2x2 +a3,3x3 = b3 (2.7)

If the coefficient matrix is non-singular, i.e. the rank of the coefficient matrix is 3 the
three planes will intersect at a point. This condition requires that the column vectors of

2.1. Analytical methods of solving a set of linear equations 23

the coefficient matrix be linearly independent. We have to solve for the root x1, x2, x3 such
that the following matrix equation is satisfied.

a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

x1
x2
x3

=

b1
b2
b3

 (2.8)

Basically we have to solve three simultaneous linear equations. Hence the problem is no
different from the previous case where we were finding a plane passing through three
non-collinear points in R(3).The point of intersection of the three non parallel planes may
now be obtained by the use of Cramer’s rule as

x1 =

∣∣∣∣∣∣
b1 a1,2 a1,3
b2 a2,2 a2,3
b3 a3,2 a3,3

∣∣∣∣∣∣∣∣∣∣∣∣
a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

∣∣∣∣∣∣
, x2 =

∣∣∣∣∣∣
a1,1 b1 a1,3
a2,1 b2 a2,3
a3,1 b3 a3,3

∣∣∣∣∣∣∣∣∣∣∣∣
a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

∣∣∣∣∣∣
, x3 =

∣∣∣∣∣∣
a1,1 a1,2 b1
a2,1 a2,2 b2
a3,1 a3,2 b3

∣∣∣∣∣∣∣∣∣∣∣∣
a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

∣∣∣∣∣∣
(2.9)

2.1.2 Inverse of a square matrix

Solution of Equation 2.5 or 2.1 may also be accomplished by using the inverse of the
coefficient matrix. Consider the general case of n linear equations in n unknowns. The
coefficient matrix A is an n×n square matrix2 that is assumed to be non-singular. This
requires that the determinant of the coefficient matrix be non-zero and hence the matrix
rank be n. The inverse of the coefficient matrix is defined as an n× n matrix A−1 such
that AA−1 = In where In is the n×n identity matrix.

Inverse of a matrix may be found by the following method. We take a 3×3 matrix as an
example. The given matrix is written down as

A=

a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

 (2.10)

We form the matrix of the minors where the minor is the determinant of 2× 2 matrix
obtained by deleting the elements in the ith row and jth column. For example, minor M2,1
is given by

a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

=⇒ M2,1 =
∣∣∣∣ a1,2 a1,3

a3,2 a3,3

∣∣∣∣
2Matrices (upper case) and vectors (lower case) are indicated by bold roman symbols

24 Chapter.2 Solution of linear equations

The minor is then multiplied by −1i+ j. Thus the above minor element will be multiplied
by −12+1 = −13 = −1. We then form the transpose of the matrix of minors to get the
adjoint matrix Adj A. Transpose operation requires interchange of the rows by columns.
For example, in the present case the adjoint will be given by

Adj A=

M1,1 −M2,1 M3,1
−M1,2 M2,2 −M3,2

M1,3 −M2,3 M3,3

 (2.11)

Finally the inverse is obtained by dividing each element of the adjoint matrix by the
determinant of A represented as |A|. Thus we get

A−1 = 1
|A|

M1,1 −M2,1 M3,1

−M1,2 M2,2 −M3,2
M1,3 −M2,3 M3,3

 (2.12)

The solution to the given equation Ax=b may then be written down as x=A−1b.

Example 2.2
Equations of three non-parallel planes are given as

x1 +3x2 +0.5x3 = 3

2x1 +5x2 +3x3 = 5

0.4x1 + x2 −0.5x3 = 2.3

Determine the intersection point by matrix inversion.
Solution :

The coefficient matrix is seen to be

A=

1 3 0.5
2 5 3

0.4 1 −0.5

Step 1 The minors are all calculated to get the matrix of the minors as

M=

−5.5 −2.2 0
−2 −0.7 −0.2
6.5 2 −1

Step 2 We multiply each term by −1i+ j and transpose the matrix to get the adjoint matrix.

Adj A=

−5.5 2 6.5
2.2 −0.7 −2

0 0.2 −1

Step 3 The determinant of the coefficient matrix |A| is easily evaluated as 1.1.

2.2. Preliminaries 25

Step 4 Dividing term by term the Adj A by this value we then get the inverse matrix given
by

A−1 =

−5 1.8182 5.9091
2 −0.6364 −1.8182
0 0.1818 −0.9091

In the above we have truncated all the elements to 4 digits after the decimal point.
Step 5 The solution is then obtained as

x1
x2
x3

=

−5 1.8182 5.9091
2 −0.6364 −1.8182
0 0.1818 −0.9091

3
5

2.3

=

7.6818
−1.3636
−1.1818

Both Cramer’s rule as well as finding the inverse by the method given above require too many
arithmetic operations (addition, subtraction, multiplication and division).

Cost of calculations of Cramer’s rule:

1. Cost of calculating determinant of rank n ∼O(n!)
2. Number of determinants to be calculated for Cramer’s rule = n+1
3. Total number of operations ∼O(n+1)!

Cost of calculations of inverse:

1. Cost of calculating minor determinants ∼O((n−1)!)
2. Number of minors to be calculated n2

3. Number of operations to calculate the Adjoint matrix ∼O(n2(n−1)!)
4. Number of operations to calculate determinant of matrix ∼O(n!)
5. Total number of operations required to calculate the inverse ∼O(n+1)!

n No. of operations
2 6
3 24
5 720
8 362880

It would be worth while looking for alternate methods that require less computational effort.

2.2 Preliminaries

Before we proceed onto the solution of matrix equations using numerical methods, we
shall look into some preliminaries concerning matrix operations and properties which will
aid us in understanding the numerical procedures better.

26 Chapter.2 Solution of linear equations

2.2.1 Row operations

Basically elementary row operations are at the heart of most numerical methods.
Consider any one of the equations in a set of linear equations such as ai,1x1 + ai,2x2 +
·· ·+ai, jx j +·· ·+ai,nxn = bi. This equation may be written as

 ai,1 ai,2 · · · ai,n

︸ ︷︷ ︸
1×n

x1
x2
· · ·
xn

︸ ︷︷ ︸
n×1

= bi︸︷︷︸
1×1

(2.13)

• If we multiply or divide the coefficients and the right hand term by a non-zero
number the equation remains unchanged. Multiplication or division of a row
with a non-zero number as above is an elementary row operation.

• The solution of a system of linear equations is independent of the order in which the
equations are arranged. We may therefore interchange any two rows without
affecting the solution, giving thus another elementary row operation.

• We may add or subtract two rows after multiplying each by a chosen number.
This constitutes another elementary row operation.

Elementary row operations may also be explained as follows. Consider, as an example,
a 3×3 matrix given by

A=

a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

 (2.14)

Consider also the identity matrix I3 given by

I3 =

1 0 0
0 1 0
0 0 1

 (2.15)

To swap two rows, say, rows 1 and 3
a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

a3,1 a3,2 a3,3
a2,1 a2,2 a2,3
a1,1 a1,2 a1,3

we pre-multiply the given matrix by the permutation matrix P1,3 obtained by swapping
the corresponding rows of I3, i.e. by using the matrix

P1,3 =

0 0 1
0 1 0
1 0 0

 (2.16)

2.2. Preliminaries 27

We may verify that the following holds.

P1,3 A=

0 0 1
0 1 0
1 0 0

a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

=

a3,1 a3,2 a3,3
a2,1 a2,2 a2,3
a1,1 a1,2 a1,3

 (2.17)

If we intend to replace a row by an elementary row operation involving elements in two
rows we may use a suitable matrix to pre-multiply A. Suppose we want to replace the
second row by subtracting 2 times element in the second row with 3 times the element in
the first row, the matrix required is

E=

1 0 0
−3 2 0
0 0 1

 (2.18)

Thus we will have

E A =

1 0 0
−3 2 0
0 0 1

a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

=

a1,1 a1,2 a1,3

−3a1,1 +2a2,1 −3a1,2 +2a2,2 −3a1,3 +2a2,3
a3,1 a3,2 a3,3

 (2.19)

Elementary row operations are useful in transforming the coefficient matrix to a desirable
form that will help in obtaining the solution. For example, the coefficient matrix may be
brought to upper triangle form (or row echelon form)3 by elementary row operations. In
the upper triangle form all the elements along the diagonal and above it are non-zero
while all the elements below the diagonal elements are zero. The coefficient matrix may
be brought to diagonal form (or reduced echelon form) by elementary row operations. In
this case only diagonal elements are non-zero with zero off diagonal elements.

Example 2.3
Show the steps involved in transforming the following matrix to upper triangle form.

A=

5 4 3
3 2 2
2 1 −2

Solution :

The goal is to make the elements below the leading diagonal zero.

3Matrix in row echelon form, in general, may look like the following:
∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗
0 0 0 0 ∗

where ∗ is a non zero entry

28 Chapter.2 Solution of linear equations

Step 1 If we subtract 3/5 of elements in the first row from the elements in the second row
we will obtain a zero in the position 2,1. This is equivalent to pre-multiplication of A by the
matrix

E1 =

1 0 0

−3
5

1 0

0 0 1

We may easily verify that

E1A=

1 0 0

−3
5

1 0

0 0 1

5 4 3
3 2 2
2 1 −2

=

5 4 3

0 −2
5

1
5

2 1 −2

Step 2 Similarly we may make the element in position 3,1 of A zero by pre-multiplication

by the matrix

E2 =

1 0 0
0 1 0

−2
5

0 1

Thus we have

E2E1A=

1 0 0
0 1 0

−2
5

0 1

5 4 3

0 −2
5

1
5

2 1 −2

=

5 4 3

0 −2
5

1
5

0 −3
5

−3
1
5

Step 3 It is easily seen that the final step that puts a zero in the position 3,2 is obtained

by the following elementary row operation.

E3E2E1A=

1 0 0
0 1 0

0 −3
2

1

5 4 3

0 −2
5

1
5

0 −3
5

−3
1
5

=

5 4 3

0 −2
5

1
5

0 0 −3
1
2

=U

The matrix A has now been brought to the upper triangle form U.
Pre-multiplication of A by E3E2E1 converts it to upper triangle form U.

2.2.2 Some useful results

Consider a diagonal matrix, such as, for example

D=

d1,1 0 0
0 d2,2 0
0 0 d3,3

2.2. Preliminaries 29

One may easily verify that the inverse of this matrix is given by

D−1 =

d−1
1,1 0 0
0 d−1

2,2 0
0 0 d−1

3,3

Consider now a typical E matrix such as

E=

1 0 0
0 1 0

e3,1 0 1

It is easily verified that the inverse of this matrix is given by

E−1 =

1 0 0
0 1 0

−e3,1 0 1

2.2.3 Condition number of a matrix

The matrix equation Ax = b may be interpreted as an operation that transforms a
column vector x to a column vector b that involves a change in its magnitude and
direction. For quantifying the transformation we introduce the norm of a vector and norm
of a matrix. The former is defined as the absolute value of the largest element in the
vector. Thus the norm of a vector is defined as

‖x‖︸︷︷︸
Norm

= n
max
k=1

|xk| (2.20)

The vector norm satisfies the following properties.

‖x‖ > 0 for xk 6= 0 for all k

‖x‖ = 0 for xk = 0 for all k

‖αx‖ = |α|‖x‖; α a scalar

‖x+y‖ ≤ ‖x‖+‖y‖ (2.21)

In the case of a matrix the norm is defined as given below.

‖A‖ = n
max
i=1

n∑
j=1

|ai j| (2.22)

In addition to satisfying all the properties of the vector norm, matrix norm satisfies also
the condition

‖Ax‖ ≤ ‖A‖‖x‖ (2.23)

30 Chapter.2 Solution of linear equations

Using the concept of norm defined above we may look at the linear transformation alluded
to above. Consider a perturbation in the solution vector because of a small change in the
right hand side (i.e. vector b) such that

A(x+δx)= (b+δb) (2.24)

Since Ax=b we have
Aδx= δb (2.25)

This may be recast, assuming A to be non-singular, in the form

δx=A−1δb (2.26)

Using the property 2.23 we then have

‖δx‖ ≤ ‖A−1‖‖δb‖ (2.27)

Noting that ‖b‖ ≤ ‖A‖‖x‖ we may then obtain

‖δx‖
‖x‖ ≤ ‖A‖‖A−1‖‖δb‖

‖b‖ (2.28)

The fractional change in x is seen to be ≤ κ(A) = ‖A‖‖A−1‖ times the fractional change in
b. κ(A) is known as the condition number of the matrix A. In general κ(A) ≥ 1. If the
condition number is large the relative change in the solution vector is a magnified version
of the change in the vector b. A matrix whose condition number is very large compared to
unity is referred to as an ill-conditioned matrix.

The reader may note that the above arguments leading to the condition number may
also be obtained when we are looking for the fractional change in the solution vector
when there is a perturbation of elements of the coefficient matrix. We can show that the
following holds:

‖δx‖
‖x+δx‖ ≤ κ(A)

‖δA‖
‖A‖ (2.29)

In numerical calculations inevitably rounding of numbers takes place. Rounding itself
may be looked upon as leading to a perturbation of the elements in the coefficient matrix
or the right hand vector. This will immediately affect the solution vector through a
magnification factor equal to the condition number. Solution to an ill conditioned system is
thus prone to errors due to rounding. Partial pivoting or pivoting may be used to mitigate
this effect to some extent.

Example 2.4
Determine the condition number of the following matrix and comment on it.

A=

0.63 0.68 0.42
0.65 0.72 0.44

2.2 0.44 0.32

2.2. Preliminaries 31

Solution :
In order to calculate the condition number of the matrix we first obtain the inverse by the
analytical method discussed above. The inverse thus obtained is given by

A−1 =

−7.1097 6.3369 0.6182
−146.8315 139.5672 0.8114

250.7728 −235.4714 −2.2411

The row sums required for calculating the norm are given by 1.73,1.81,2.96 for matrix A
while those for A−1 are given by 14.0649,287.2102,488.4853. The maximum values are
identified as 2.96 and 488.4853. The condition number for matrix A is then given by

κ(A)= 2.96×488.4853≈ 1446

Since the condition number is very large compared to unity A is an ill conditioned matrix.

Intersection of two lines
Consider two lines sinθ1 x− cosθ1 y = c1 and sinθ2 x− cosθ2 y = c2 in R(2). Equation of
lines are essentially in slope intercept form if it is noted that θ is the angle made by the
line with the x axis. The point of intersection of these two lines has to be determined.
Expressing in matrix form sinθ1 −cosθ1

sinθ2 −cosθ2

 x
y

=
 c1

c2

the inverse of coefficient matrix is given by

A−1 = 1
(sinθ2 cosθ1 −cosθ2 sinθ1)

 −cosθ2 −sinθ2
cosθ1 sinθ1

The condition number of the matrix A is mainly determined by sinθ2 cosθ1 − cosθ2 sinθ1
or sin(θ2 −θ1) in the denominator. (Both ‖A‖ and ‖Ad j A‖ are of order unity).

• For θ2 −θ1 ≈ 0, sin(θ2 −θ1) ≈ 0 and therefore condition number is very large. The
point of intersection corresponds to the location where both the equations are
satisfied.
When computed using a digital computer, the precision (i.e. number of digits
after decimal point) is limited and therefore this would limit the accuracy. When
the angle between two lines is very small, the error in the coefficient matrix can
change the point of intersection by a large value. This is represented by the ellipse
around the point of intersection in Figure 2.3(a). Although, the system of equations
has a unique solution, due to round off, there would be large number of points
satisfying the equations within the specified tolerance and this means the matrix
is ill conditioned.

• In the special case, θ2−θ1 = 0, the two lines become parallel and no unique solution
exists. The condition number becomes ∞.

32 Chapter.2 Solution of linear equations

• As the angle between the two lines become larger, the condition number decreases.
The region where the points satisfy the equations within the precision/tolerance also
decreases as shown in Figures 2.3 (b) and (c)

x

y

(a)

x

y

(b)

x

y

(c)
Figure 2.3: E�ect of condition number on the uncertainty in the location of the intersection point
between two lines

2.2.4 Pivoting

If the coefficient matrix A is ill conditioned, pivoting would be required to get accurate
solution. In general it is good if the absolute magnitude of the pivot element is ≥ to the
sum of absolute values of all other elements in the row, leading to diagonal dominance.
The idea of pivoting is to improve the magnitudes of the diagonal elements by performing
elementary row operations.

• If any diagonal element of the coefficient matrix ai,i (also called pivot element) is
zero we interchange rows such that each diagonal element is non-zero.

• We also make sure that the pivot element in a particular row is larger than any
other element in the same column but in rows below it by choosing to swap rows
that satisfy this. Note that interchanging rows is an elementary row operation. This
is called as partial pivoting

• The coefficient matrix can be further improved by performing Complete pivoting
where both rows and columns are interchanged. When we interchange columns the
solution vector should also be rearranged accordingly. For most applications partial
pivoting would be sufficient to achieve good accuracy.

• Alternatively, we may apply scaled partial pivoting. The procedure is similar to
partial pivoting but here the pivot element is chosen such that the pivot element
has the largest magnitude relative to other entries in its row.

2.2.5 Triangular matrices

A triangular matrix is a special type of square matrix where all the values above or
below the diagonal are zero.

2.2. Preliminaries 33

L=

l1,1

l2,1 l2,2

· · · · · · . . .

ln,1 ln,2 · · · ln,n

0

U=

u1,1 u1,2 · · · u1,n

u2,2 · · · u2,n

. . . · · ·
un,n

0

L is called a lower triangular matrix and U is called an upper triangular matrix. Matrix
equations of above form can be easily solved using backward substitution or forward
substitution.

Example 2.5
Solve the following sets of equations

x1 = 2
2x1 + 3x2 = −2

4x1 + 2x2 + 5x3 = 10

Solution :
The above set of equations can be written with the coefficient matrix in Lower triangular
form L as

1 0 0
2 3 0
4 2 5

x1
x2
x3

=

2
−2
10

Step 1 The first row of L contains coefficient pertaining to x1, hence we get x1 = 2.
Step 2 The second row contains coefficients related to x1 and x2 of which as x1 is already

known from previous step, we can determine x2 as

x2 = −2−2x1

3
=−2

Step 3 In the third row, only x3 is unknown and can hence be determined as

x3 = 10−4x1 −2x2

5
= 1.2

The above set of operations is referred to as Forward substitution i.e. determining the
unknowns starting from the first row and marching towards the last row.

The system of equations can also be represented with the coefficient matrix in Upper
triangular form U . For a system in Upper triangular form, one has to perform the same
steps as that for Lower triangular matrix, except that the unknowns are determined at the
bottom first and we march back towards first row. This operation is called as Backward
substitution.

34 Chapter.2 Solution of linear equations

Consider a Upper Triangular matrix U of dimension n, Ux=b

u1,1 u1,2 · · · u1,n
0 u2,2 · · · u2,n
...

...
. . .

...
0 0 · · · ui,n
...

...
. . .

...
0 0 · · · un,n

x1
x2
...
xi
...

xn

=

b1
b2
...

bi
...

bn

(2.30)

Step 1 The last row contains only one coefficient related to xn. Therefore

xn = bn

un,n

Step 2 Moving to n−1th row, there are two coefficients related to xn (already known) and
xn−1 (unknown).

un−1,n−1xn−1 +un−1,nxn = bn−1

Step 3 Solving for unknown xn−1 we have

xn−1 =
bn−1 −un−1,nxn

un−1,n−1

Step 4 Similarly for xn−2 we have

xn−2 =
bn−2 −un−2,n−1xn−1 −un−2,nxn

un−2,n−2

Generalizing for ith row

xi = 1
ui,i

(
bi −

n∑
j=i+1

ui, j x j

)

A MATLAB function to solve a Upper Triangular matrix U of dimension n, Ux = b has
been provided.

Program 2.1: Backward Substitution

1 function X = backwardsubstitution(U,B)

2 % I n p u t U = u p p e r t r i a n g u l a r m a t r i x
3 % B = r i g h t ha nd v e c t o r (f o r c e v e c t o r)
4 % O u t p u t X = s o l u t i o n v e c t o r (o u t p u t v e c t o r)
5 n = size(U,1); % n = r a n k o f m a t r i x U
6 for i=n:-1:1 % l o o p t o move f r o m l a s t r o w
7 % t o w a r d s f i r s t r o w
8 sum = 0; % i n i t i a l i z e sum
9 for j = i+1:n

10 sum = sum + U(i,j)*X(j)/U(i,i);

11 end

12 X(i) = B(i)/U(i,i)-sum; % c a l c u l a t e s o l u t i o n v e c t o r
13 end

14 X = X';

15 %e n d o f f u n c t i o n b a c k s u b s t i t u t i o n

2.2. Preliminaries 35

Use Program 2.1 and solve Example 2.5.
A = [5 2 4;0 3 2; 0 0 1];

B = [10; -2; -2];

x = backwardsubstitution (A,B)

The output is
x = [3.3333; 0.6667; -2.0000]

Note: Rearranging the rows and columns the same matrix can be represented either in
upper triangular or lower triangular form.

Number of operations for performing back/ forward substitution:
Number of operations performed for ith row :
Multiplication ‘×’ = (i−1) operations
Addition ‘+’ = (i−2) operations
Subtraction ‘−’ = 1 operation
Division ‘/ ’ = 1 operation
Total no of operations for ith row : 2i−1

Total no of operations for substitution =
n∑

i=1
(2i−1) = 2

n(n+1)
2

−n = n2

For a Lower Triangular matrix L of dimension n, L.x=b

l1,1 0 · · · 0
l2,1 l2,2 · · · 0

· · · · · · . . . · · ·
l i,1 l i,2 · · · 0

· · · · · · . . . · · ·
ln,1 ln,2 · · · ln,n

x1
x2
...
xi
...

xn

=

b1
b2
...

bi
...

bn

(2.31)

the procedure for Forward Substitution can be summed up as

xi = 1
l i,i

(
bi −

i−1∑
j=1

l i, jx j

)

Philosophy of solving the linear system of equations using methods such as Gauss
elimination, LU decomposition and QR decomposition (all to be presented later)
When we have a system of equations of the form Ux = b (Back substitution) or Lx = b (Forward
substitution), the unknown quantities are estimated by substituting the known quantities
already determined and marching along one direction. If the system of equations is converted
to a Lower triangular form or an Upper triangular form using simple row operations already
discussed, we can determine the solution of the system. This would be much simpler compared
to the analytical methods already discussed such as Cramers rule and the determination of
inverse matrix using minors. The idea behind numerical methods such as Gauss elimination
and LU decomposition is to convert the original matrix into a triangular matrix and solve for the
variables. Steps involved can be summarized as

36 Chapter.2 Solution of linear equations

1. Perform pivoting
2. Reduce coefficient matrix to row echelon form
3. Backward substitution or forward substitution

2.3 Gauss elimination method

Gauss elimination method4,5 performs elementary row operations on the augmented
matrix where the n×n coefficient matrix is augmented by a column containing the right
hand vector. Thus we consider n×n+1 augmented matrix given by

a1,1 a1,2 · · · a1,n b1
a2,1 a2,2 · · · a2,n b2
a3,1 a3,2 · · · a3,n b3
· · · · · · · · · · · · · · ·
ai,1 ai,2 · · · ai,n bi
· · · · · · · · · · · · · · ·

an−1,1 an−1,2 · · · an−1,n bn−1
an,1 an,2 · · · an,n bn

(2.32)

Elementary row operations are performed so as to put the augmented matrix in the row
echelon form. Thus we expect to have a′

i, j = 0 for j < i, a′
i,i 6= 0 and in general, a′

i, j 6= 0 for
j ≥ i. The process of putting the augmented matrix in to upper triangle form has been
shown to be equivalent to the pre-multiplication of the coefficient matrix by appropriate
E′s. In case partial pivoting is used the process will yield PEA = U where P is the
permutation matrix that keeps track of all the row swaps that have been made during
the process of bringing the coefficient matrix to upper triangle form. Note that Gauss
elimination with/without partial pivoting yields Ux = b′. Once the augmented matrix is
reduced to row echelon form, the solution to the system of equations is determined using
Back substitution.

Example 2.6
Solve the system of equations given below using Gauss Elimination method

5 4 3
3 2 2
2 1 −2

x1
x2
x3

=

50
25
30

Solution :

The coefficient matrix is the same as in Example 2.3.

4after Johann Carl Friedrich Gauss, 1777-1855, a German mathematician and physical scientist
5The historical development of Gauss elimination has been given by J. Grcar, “Mathematicians of

Gaussian Elimination” Notices of the AMS, 2011, 58, 782-792

2.3. Gauss elimination method 37

Step 1 Performing row operations we obtain the coefficient matrix in the Upper triangular
form as

U=

5 4 3

0 −2
5

1
5

0 0 −3
1
2

Step 2 The row operation is also performed on the right hand column vector, which is

obtained by multiplying column vector by the chain of E matrices.

E3E2E1b=b′ =

1 0 0
0 1 0

0 −3
2

1

1 0 0
0 1 0

−2
5

0 1

1 0 0

−3
5

1 0

0 0 1

 50

25
30

=

50
−5

17
1
2

The modified set of equations are

5 4 3

0 −2
5

1
5

0 0 −3
1
2

x1
x2
x3

=

50
−5

17
1
2

Step 3 Performing back-substitution we obtain the solution as

xT =
 5 10 −5

Algorithm for Gauss elimination without pivoting

Consider the system of equations, written in augmented matrix form (Equation 2.32)
We have to reduce the augmented matrix to an upper triangular matrix U.

• Let us start with the first column. All the elements below a1,1 have to be reduced to
zero. Here a1,1 is the Pivot element. This is to be done by performing elementary
row operation by subtracting first row, multiplied by a factor, from other rows.
Operating on the second row of the augmented matrix.

R′
2 = R2 −

a2,1

a1,1
R1

• Similarly, for jth row, the multiplication factor is
a j,1

a1,1
and the row operation would

be
R′

j = R j −
a j,1

a1,1
R1

Now, all the elements below a1,1 are zero. Similar procedure has to be followed for
other columns as well. This procedure is called as Forward elimination.

38 Chapter.2 Solution of linear equations

For ith column the pivot element would be ai,i. The row operations can be generalized as

R′
j = R j −

a j,i

ai,i
Ri : 1≤ i < n and i < j ≤ n (2.33)

Program 2.2: Gauss elimination (without pivoting)

1 function X = gausselimination(A,B)

2 % I n p u t : A : c o e f f i e i e n t m a t r i x
3 % B : r i g h t han d v e c t o r
4 % O u t p u t : X : o u t p u t v e c t o r
5 n = size(A,1); % r a n k o f m a t r i x A
6 Aug = [A B]; % a u g m e n t e d m a t r i x
7 for i=1:n-1 % l o o p t o p e r f o r m f o r w a r d e l i m i n a t i o n
8 for j=i+1:n

9 r = Aug(j,i)/Aug(i,i); % f a c t o r
10 Aug(j,:) = Aug(j,:) - r*Aug(i,:); % e l i m i n a t i o n
11 end

12 end

13 % c a l l f u n c t i o n b a c k w a r d s u b s t i t u t i o n t o c a l c u l a t e X
14 X = backwardsubstitution (Aug (1:n,1:n),Aug (1:n,n+1));

The above program has been applied to Example 2.6.
A = [5 4 3;

3 2 2;

2 1 -2;];

B = [50; 25; 30];

x = gausselimination(A,B);

The output of the program is
x = [5; 10; -5;]

Number of operations involved in Gauss Elimination method
Consider ith column. All elements below ai,i have to become zero.
Number of rows undergoing transformation : n− i
Number of operations for each row:
Division ‘/’ : 1 computation
Multiplication × : n− i+1 computations
addition ‘+’ : n− i+1 computations
Total number of computations for each row: 2n+1−2i
Total number of computations for ith column: (n− i)(2(n− i+1)+1)
Total number of computations for elimination:
n−1∑
i=1

(n− i)(2(n− i+1)+1)= 2n3

3
+ n2

2
− 7n

6
Number of operations for back substitution: n2

Total number of operations for Gauss elimination:
2n3

3
+ 3n2

2
− 7n

6
.

For large values of n, the total number of computations for performing Gauss elimination would

be ∼ 2n3

3
.

2.3. Gauss elimination method 39

In the following table we compare the operation counts of Gauss elimination with the
analytical methods discussed previously.

n No. of operations
Gauss Elimination Analytical methods

3 28 24
10 805 39916800
25 11325 4.0329×1026

50 87025 1.5511×1066

100 681550 9.4259×10159

1000 6.6817×108 Too large!!!

We see that the analytical methods are completely ruled out even for a matrix of size
25×25.

Example 2.7
Solve the following set of equations by Gauss elimination method.

x1 −4x2 +4x3 +7x4 = 4

2x2 − x3 = 5

2x1 + x2 + x3 +4x4 = 2

2x1 −3x2 +2x3 −5x4 = 9

Solution :
The augmented matrix is written down as

R1 →
R2 →
R3 →
R4 →

1 −4 4 7 4
0 2 −1 0 5
2 1 1 4 2
2 −3 2 −5 9

where the rows of the augmented matrix are identified as R1 −R4.
Step 1 We use partial pivoting6, and hence rearrange the augmented matrix by swapping

rows 3 and 1 to get
R′

1 = R3 →
R′

2 = R2 →
R′

3 = R1 →
R′

4 = R4 →

2 1 1 4 2
0 2 −1 0 5
1 −4 4 7 4
2 −3 2 −5 9

(There is another possibility in this step. We could have, instead, swapped the fourth
and first rows to put a 2 in the pivot position of the first row.) This is equivalent to pre-
multiplication of the augmented matrix by the permutation matrix

P=

0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

6The reader is encouraged to redo the steps without employing partial pivoting.

40 Chapter.2 Solution of linear equations

We have managed to make the diagonal element in the first row the largest i.e. 2 (shown in
bold face).
Step 2 We now perform elementary row operations on this rearranged augmented matrix.

We make column elements in rows 2 - 4 zero by suitable elementary row operations as given
below.

R′
1 →

R′
2 →

R′′
3 = 2R′

3 −R′
1 →

R′′
4 = R′

4 −R′
1 →

2 1 1 4 2
0 2 −1 0 5
0 -9 7 10 6
0 −4 1 −9 7

The above step is equivalent to pre-multiplication by the following matrix.

E1 =

1 0 0 0
0 1 0 0

−1 0 2 0
−1 0 0 1

Step 3 We move on to second column of the augmented matrix. Another partial pivoting

step is required now. We note that -9 is the largest element in the second column and we
swap rows such that this element is the diagonal element in row 2.

R′
1 →

R′′
2 = R′′

3 →
R′′′

3 = R′
2 →

R′′
4 →

2 1 1 4 2
0 -9 7 10 6
0 2 −1 0 5
0 −4 1 −9 7

At this stage the permutation matrix is given by

P=

0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

Step 4 Now we make second column elements in the third and fourth rows zero by

suitable elementary row operations.

R′
1 →

R′′
2 →

R iv
3 =−9R′′′

3 −2R′′
2 →

R′′′
4 =−9R′

4 − (−4)R′′
2 →

2 1 1 4 2
0 −9 7 10 6
0 0 −5 −20 −57
0 0 19 121 −39

The above step is equivalent to pre-multiplication by the following matrix.

E2 =

1 0 0 0
0 1 0 0
0 −2 −9 0
0 4 0 −9

Step 5 Moving to the third column, partial pivoting requires another row swap as below.

The largest element 19 is now made to take the position 3,3.

R′
1 →

R′′
2 →

Rv
3 = R′′′

4 →
R iv

4 = R iv
3 →

2 1 1 4 2
0 −9 7 10 6
0 0 19 121 −39
0 0 −5 −20 −57

2.3. Gauss elimination method 41

At this stage the permutation matrix is given by

P=

0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0

Step 6 Now we make third column element in the fourth row zero by suitable elementary

row operation.

R′
1 →

R′′
2 →

Rv
3 →

Rv
4 = 19R iv

4 − (−5)Rv
3 →

2 1 1 4 2
0 −4 1 −9 7
0 0 2 18 −34
0 0 0 225 −1278

The above step is equivalent to pre-multiplication by the following matrix.

E3 =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 5 19

Step 7 The augmented matrix has been brought to the row echelon form. The set of given

equations is written in the equivalent form
2 1 1 4
0 −4 1 −9
0 0 2 18
0 0 0 225

x1
x2
x3
x4

=

2
7

−34
−1278

Back substitution will now yield the solution vector. From the last row of the augmented
matrix in row echelon form, we get

x4 = −1278
225

=−5.68

From the third row of the augmented matrix in row echelon form, we get

x3 = −34−18× (−5.68)
2

= 34.12

From the second row of the augmented matrix in row echelon form, we get

x2 = 7−34.12− (−9)× (−5.68)
−4

= 19.56

From the first row of the augmented matrix in row echelon form, we get

x1 = 2−19.56−34.12−4× (−5.68)
2

=−14.48

Thus the solution vector is given by

x=

−14.48
19.56
34.12
−5.68

42 Chapter.2 Solution of linear equations

Example 2.8
Solve the following system of equations by Gauss elimination method.

0.63 0.68 0.42
0.65 0.72 0.44

2.2 0.44 0.32

x1
x2
x3

=

2
1.6
3.2

Use partial pivoting and obtain the solution vector by finally rounding to three digits.
Compare with the solution set obtained by no pivoting but with rounding to three digits
during the Gauss elimination process.
Solution :

The coefficient matrix in this problem is the one that was shown to be an ill conditioned
matrix in Example 2.4.
Case 1: Solution obtained by the use of partial pivoting and subsequent rounding
Step 1

R1 →
R2 →
R3 →

0.63 0.68 0.42 2
0.65 0.72 0.44 1.6
2.2 0.44 0.32 3.2

Noting that element 3,1 is the largest one in the first column, we swap the first row with
the third row to get

R′
1 = R3 →

R′
2 = R2 →

R′
3 = R1 →

2.2 0.44 0.32 3.2

0.65 0.72 0.44 1.6
0.63 0.68 0.42 2

Step 2 We now perform elementary row operations to obtain zero elements in 2,1 and 3,1.

R′
1 →

R′′
2 = 2.2×R′

2 −0.65×R′
1 →

R′′
3 = 2.2×R′

3 −0.63×R′
1 →

2.2 0.44 0.32 3.2

0 1.2188 0.7224 2.384
0 1.298 0.76 1.44

Step 3 Note that element 3,2 is now the largest element in the second column. We swap

the second and third rows to introduce partial pivoting now.

R′
1 →

R′′′
2 = R′′

3 →
R′′′

3 = R′′
2 →

2.2 0.44 0.32 3.2

0 1.298 0.76 1.44
0 1.2188 0.7224 2.384

Step 4 Now we perform a final elementary row operation to bring the augmented matrix

to row echelon form.

R′
1 →

R′′′
2 →

R′v
3 = 1.298×R′′′

3 −1.219×R′′′
2 →

2.2 0.44 0.32 3.2

0 1.298 0.76 1.44
0 0 0.0113872 1.33936

Step 5 The solution vector is obtained by back substitution and rounded to three digits to

get the following:

x1 =−2.102 x2 =−67.759 x3 = 117.62

2.4. Gauss Jordan method of determining the inverse matrix 43

Case 2: Solution with no pivoting and rounding
The Gauss elimination process uses elementary row operations with no rearrangement of
the three equations. Rounding to three digits is employed at every stage. The augmented
matrix is given by

R1 →
R2 →
R3 →

0.63 0.68 0.42 2
0.65 0.72 0.44 1.6

2.2 0.44 0.32 3.2

Step 1 Elementary row operations are used now to get zeros at 2,1 and 3,1.

R1 →
R′

2 = 0.63×R2 −0.65×R1 →
R′

3 = 0.63×R3 −2.2×R1 →

0.63 0.68 0.42 2

0 0.012 0.004 −0.292
0 −1.219 −0.722 −2.384

Step 2 An elementary row operation is used now to get zero at 3,2 and the matrix is

reduced to row echelon form.

R1 →
R′

2 →
R′′

3 = 0.012×R′
3 − (−1.219)×R′

2 →

0.63 0.68 0.42 2

0 0.012 0.004 −0.292
0 0 −0.004 −0.385

Step 3 The solution vector is obtained by back substitution and rounded to three digits to

get the following:

x1 =−0.098 x2 =−56.417 x3 = 96.25
The solution is grossly in error! We may also calculate the residual (difference between the
left hand side and right hand side of an equation) to get the following:

Equation No. Residual Residual
pivoting no pivoting

- final rounding - rounding
1 0.000 0.000
2 0.000 0.066
3 0.000 2.561

The above example demonstrates how partial pivoting is desirable while dealing with an ill
conditioned coefficient matrix.

2.4 Gauss Jordan method of determining the inverse
matrix

We have presented earlier analytical method involving minors for inverting a non-
singular square matrix. The method involves too many steps and is certainly not used
in practice, especially when the matrix is very large. An alternate and computationally

44 Chapter.2 Solution of linear equations

more economical method is the Gauss Jordan method that will be presented now. We write
the given matrix A and augment it by writing In along side to get a n×2n matrix.

a1,1 a1,2 · · · a1,i · · · a1,n 1 0 · · · 0 · · · 0
a2,1 a2,2 · · · a2,i · · · a2,n 0 1 · · · 0 · · · 0

...
...

. . .
...

. . .
...

...
...

. . .
...

. . .
...

ai,1 ai,2 · · · ai,i · · · ai,n 0 0 · · · 1 · · · 0
...

...
. . .

...
. . .

...
...

...
. . .

...
. . .

...
an,1 an,2 · · · an,i · · · an,n 0 0 · · · 0 · · · 1

(2.34)

The process of Gauss elimination is to be applied to the augmented matrix such that the
first half of the augmented matrix is reduced to an identity matrix. Eliminating all the
elements below a1,1, we obtain

1 a1,2 · · · a1,i · · · a1,n a1
1,1 0 · · · 0 · · · 0

0 a2,2 · · · a2i · · · a2,n a1
2,1 1 · · · 0 · · · 0

...
...

. . .
...

. . .
...

...
...

. . .
...

. . .
...

0 ai,2 · · · ai,i · · · ai,n a1
i,1 0 · · · 1 · · · 0

...
...

. . .
...

. . .
...

...
...

. . .
...

. . .
...

0 an,2 · · · an,i · · · an,n a1
n,1 0 · · · 0 · · · 1

(2.35)

We perform elementary row operations and eventually transform the matrix A to In. Thus
we will have

EkEk−1 . . .E2E1A= In (2.36)

The resultant augmented matrix (Equation 2.34) would become

1 0 · · · 0 · · · 0 a1
1,1 a1

1,2 · · · a1
1,i · · · a1

1,n
0 1 · · · 0 · · · 0 a1

2,1 a1
2,2 · · · a1

2,i · · · a1
2,n

...
...

. . .
...

. . .
...

...
...

. . .
...

. . .
...

0 0 · · · 1 · · · 0 a1
i,1 a1

i,2 · · · a1
i,i · · · a1

i,n
...

...
. . .

...
. . .

...
...

...
. . .

...
. . .

...
0 0 · · · 0 · · · 1 a1

n,1 a1
n,2 · · · a1

n,i · · · a1
n,n

(2.37)

Since A−1A= In we conclude that

A−1 =EkEk−1 . . .E2E1 (2.38)

Thus elementary row operations transform the identity matrix to the inverse of matrix A.

The solution for the system of linear equations is found as x=A−1b. We use the matrix
of Example 2.2 to demonstrate this procedure.

2.4. Gauss Jordan method of determining the inverse matrix 45

Example 2.9
Invert the coefficient matrix of Example 2.2 by the Gauss Jordan method.
Solution :

Step 1 We form the augmented matrix as

R1 →
R2 →
R3 →

1 3 0.5 1 0 0
2 5 3 0 1 0

0.4 1 −0.5 0 0 1

Rows of the augmented matrix are indicated as R1-R3. Elementary row operations consist
in multiplication or division of elements in any row by a number and subtraction or addition
with corresponding elements in another row. In the present case we would like to make
element 2,1 zero. This may be accomplished by subtracting elements in the first row after
multiplication by 2 from the corresponding elements in the second row. Thus the second
row will become

R′
2 = (R2 −2×R1)→ [0 −1 2 −2 1 0]

Similarly we make element 3,1 zero by multiplying each element of first row by 0.4 and
subtracting from the corresponding element in the third row. Thus the third row becomes

R′
3 = (R3 −0.4×R1)→ [0 −0.2 −0.7 −0.4 0 1]

At this stage the augmented matrix appears as

R′
1 = R1 →

R′
2 →

R′
3 →

1 3 0.5 1 0 0
0 −1 2 −2 1 0
0 −0.2 −0.7 −0.4 0 1

The elementary matrix that accomplishes this is given by

E1 =

1 0 0
−2 1 0

−0.4 0 1

Step 2 The next operation is intended to make the element 2,2 equal to unity. This is

accomplished by dividing each term of the second row in the above matrix by −1. The
augmented matrix appears now as shown below.

R′
1 →

R′′
2 = R′

2 ÷ (−1)→
R′

3 →

1 3 0.5 1 0 0
0 1 −2 2 −1 0
0 −0.2 −0.7 −0.4 0 1

The elementary matrix that accomplishes this is given by

E2 =

1 0 0
0 −1 0
0 0 1

46 Chapter.2 Solution of linear equations

Step 3 We can make the element 3,2 equal to zero by multiplying each term in row 2 by
-0.2 and subtracting from the corresponding term in row 3. Similarly element 1,2 may be
made equal to zero by multiplying each term in the second row by 3 and subtracting from
the corresponding term in the first row. At this stage we have

R′′
1 = R′

1 −3×R′′
2 →

R′′
2 →

R′′
3 = R′

3 −0.2×R′′
2 →

1 0 6.5 −5 3 0
0 1 −2 2 −1 0
0 0 −1.1 0 −0.2 1

The elementary matrix that accomplishes this is given by

E3 =

1 −3 0
0 1 0
0 0.2 1

Step 4 We now divide each term in the third row by -1.1 to get

R′′
1 →

R′′
2 →

R′′′
3 = R′′

3 ÷ (−1.1)→

1 0 6.5 −5 3 0
0 1 −2 2 −1 0
0 0 1 0 0.1818 −0.9091

The elementary matrix that accomplishes this is given by

E4 =

1 0 0
0 1 0
0 0 −0.9091

Step 5 Now we make the term 1,3 take on the value of zero by multiplying the third row

by 6.5 and subtracting from the corresponding elements in the first row. Also we make the
term 2,3 take on the value of zero by multiplying the third row by -2 and subtracting from
the corresponding elements in the second row.

R′′′
1 = R′′

1 −R′′′
3 ×6.5→

R′′′
2 = R′′

2 − (−2)×R′′′
3 →

R′′′
3 →

1 0 0 −5 1.8182 5.9091
0 1 0 2 −0.6364 −1.8182
0 0 1 0 0.1818 −0.9091

The elementary matrix that accomplishes this is given by

E5 =

1 0 −6.5
0 1 2
0 0 1

The coefficient matrix has thus been reduced to I3. The inverse of the matrix A is then given
by

A−1 =

−5 1.8182 5.9091
2 −0.6364 −1.8182
0 0.1818 −0.9091

This agrees with the inverse found earlier in Example 2.2. The reader may easily verify
that E5E4E3E2E1 =A−1.

2.5. LU decomposition or LU factorization 47

MATLAB function to determine the inverse of a matrix
Ainv = inv(A);

Solving Example 2.4 using MATLAB
A = [0.63 0.68 0.42; 0.65 0.72 0.44;2.2 0.44 0.32];

B = [2; 1.6; 3.2];

x = inv(A)*B

The output of the program is
x = [-2.1020; -67.7589; 117.6198]

Number of operations involved in Gauss Jordan method for determining inverse of a
matrix
Consider ith column. All elements except ai,i have to become zero and ai,i has to become 1.
Number of rows undergoing transformation : n−1
Number of operations for each row:
Division ‘/’ : 1 computations
Multiplication × : n computations
addition ‘+’ : n computations
Total number of computations for each row: 2n+1
Number of operations to normalize the pivot element: n−1 divisions
Total number of computations for ith column: (n−1)(2n+1)+n−1
Total number of computations for elimination:
n∑

i=1
(n−1)(2n+1)+ (n−1)= 2n3 −2n

Cost of multiplying the inverse matrix with right hand vector: (2n−1)2 = 4n2−4n+1 Total number
of computations for determining the solution: 2n3 +4n2 −6n+1
For large values of n, the total number of computations for performing Gauss Jordan method for
inverse would be ∼O(2n3)
The method of inverse is slower than Gauss elimination method

Alternatively, MATLAB defines a operator “\” which can directly solve system of linear
equations

x = A\B;

x = [-2.1020; -67.7589; 117.6198]

The above operation is much faster than inverse operation. MATLAB automatically
chooses an appropriate algorithm based on the type of coefficient matrix A. The reader
is encouraged to read through the MATLAB help menu for more information on the
algorithms used by MATLAB.

2.5 LU decomposition or LU factorization

Gauss elimination requires that all the elementary row operations that are performed
operate both on the coefficient matrix and the right hand side vector. The solution
obtained is specific to the right hand side vector that is used. However it will be
advantageous if one can obtain the solution for any right hand vector. This is possible

48 Chapter.2 Solution of linear equations

if the coefficient matrix is decomposed into A = LU form. There are three ways of doing
this:

1. L is unit lower triangular (diagonal elements are 1) and U is upper triangular - the
procedure is called Doolittle LU decomposition

2. L is lower triangular and U is unit upper triangular (diagonal elements are 1) - the
procedure is called Crout LU decomposition

3. In the case of Cholesky decomposition (applicable under some conditions) we choose
l i,i = ui,i.

2.5.1 Doolittle decomposition

In Example 2.3 we have seen how a matrix may be transformed to upper triangle form
by elementary row operations. We thus had E3E2E1 ·A = U. Taking inverse, we have
A=E−1

1 E−1
2 E−1

3 U. Using the numerics in that example, we have

E−1
1 E−1

2 E−1
3 =

1 0 0
3
5

1 0

0 0 1

1 0 0
0 1 0
2
5

0 1

1 0 0
0 1 0

0
3
2

1

=

1 0 0
3
5

1 0

2
5

3
2

1

=L

The above shows that the product of the three elementary matrices gives a single unit
lower diagonal matrix L. Thus we have managed to write the square matrix A as the
product of a unit lower triangle matrix L and an upper triangle matrix U i.e. A = LU,
basically constituting the Doolittle decomposition.

Doolittle decomposition is no different from Gauss elimination. Doolittle decomposition is
advantageous when the same coefficient matrix is used for several systems of linear equations.

We may deduce the elements of L and U as follows. Consider the general case of an
n×n coefficient matrix A. We then write it as

A=

a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

· · · · · · . . . · · ·
ai,1 ai,2 · · · ai,n

· · · · · · . . . · · ·
an,1 an,2 · · · an,n

2.5. LU decomposition or LU factorization 49

=

1 0 · · · 0
l2,1 1 · · · 0

· · · · · · . . . · · ·
l i,1 l i,2 · · · 0

· · · · · · . . . · · ·
ln,1 ln,2 · · · 1

u1,1 u1,2 · · · u1,n
0 u2,2 · · · u2,n

· · · · · · . . . · · ·
0 0 · · · ui,n

· · · · · · . . . · · ·
0 0 · · · unn

=

u1,1 u1,2 · · · u1,n
l2,1u1,1 l2,1u1,2 +u2,2 · · · l2,1u1,n +u2,n

· · · · · · . . . · · ·
l i,1u1,1 l i,1u1,2 + l i,2u2,2 · · ·

i−1∑
p=1

l i,pup,n +ui,n

· · · · · · . . . · · ·
ln,1u1,1 ln,1u1,2 + ln,2u2,2 · · ·

n−1∑
p=1

ln,pup,n +un,n

(2.39)

Equate term by term the elements in A and the product of matrices L and U to determine
the two triangular matrices.

Step 1 Comparing first row of matrix A and LU, elements of first row of U can be
determined

u1, j = a1, j, 1≤ j ≤ n

Step 2 Comparing first column of matrix A and LU, u1,1 is already known and hence the
elements in the first column of L (l i,1) can be determined

l i,1 =
ai,1

u1,1
, 2≤ i ≤ n

Step 3 Elements of first row of U and first column of L are known. Comparing elements
of second row of matrix A and LU, elements of second row of U can be determined.

u2, j = a2, j − l2,1u1, j, 2≤ j ≤ n

Step 4 Now, second column of matrix L can be determined by comparing second column
of matrix A and LU

l i,2 =
ai,2 − l i,1u1,2

u2,2
, 3≤ i ≤ n

Step 5 The other elements of the matrix L and U may similarly be determined.

Generalized formula to determine the two matrices can be written as

ui, j = ai, j −
i−1∑
p=1

l i,pup, j, i ≤ j

50 Chapter.2 Solution of linear equations

l i j =
ai, j −∑ j−1

p=1 l i,pup, j

u j, j
, i > j (2.40)

These expressions are useful in writing a code.

In case pivoting is employed, LU decomposition will lead to LUx = Pb as mentioned
earlier. In either case the final form of equation to be solved is

LUx=b (2.41)

This equation is solved in two steps. The first step involves forward substitution during
which we solve

Ly=b (2.42)

for the vector y where y=Ux.
In the second back substitution step we solve

Ux= y (2.43)

for the vector x, thus obtaining the desired solution.

The general algorithmic structure of Doolittle decomposition is as follows

• Start with pivot element a1,1, check if pivoting is necessary
• Determine all the elements of first row of U
• Determine all the elements of first column of L
• Move on to the next pivot element a2,2 and check if pivoting is necessary. Determine

the elements of second row of U and second column of L.
• Continue the process for other pivot elements ai,i for 1 ≤ i ≤ n and determine the

matrices L and U
• Using forward substitution, determine y
• Using backward substitution, determine x

Example 2.10
Solve the following set of equations by LU (Doolittle) decomposition. Show the chain of
elementary matrices that will bring the coefficient matrix to LU form. Do not use pivoting.

5x1 +4x2 +3x3 = 12

3x1 +2x2 +2x3 = 7

2x1 + x2 −2x3 = 1

Solution :
The coefficient matrix is given by

A=

5 4 3
3 2 2
2 1 −2

2.5. LU decomposition or LU factorization 51

Step 1 Determine matrices L and U
Three elementary matrices are required to bring the coefficient matrix to LU form. They
may easily be shown to be given by

E1 =

1 0 0
−0.6 1 0

0 0 1

 E2 =

1 0 0
0 1 0

−0.4 0 1

 E3 =

1 0 0
0 1 0
0 −1.5 1

The Lower unit triangle matrix is then given by

L=E−1
1 E−1

2 E−1
3 =

1 0 0

0.6 1 0
0.4 1.5 1

The reader may then show that the Upper triangle matrix is

U=

5 4 3
0 −0.4 0.2
0 0 −3.5

Step 2 Forward substitution: We have

1 0 0
0.6 1 0
0.4 1.5 1

y1
y2
y3

=

12
7
1

From the first equation y1 = 12. From the second equation, forward substitution gives

y2 = 7−0.6×12=−0.2

Using the last equation, forward substitution yields

y3 = 1−0.4×12−1.5× (−0.2)=−3.5

We thus have
5 4 3
0 −0.4 0.2
0 0 −3.5

x1
x2
x3

=

12
−0.2
−3.5

Step 3 Backward substitution: From the last equation we get

x3 = −3.5
−3.5

= 1

From the second equation we then get

x2 = −0.2−0.2×1
−0.4

= 1

Lastly, the first equation gives

x1 = 12−4×1−3×1
5

= 1

Thus the solution vector is
xT =

1 1 1

52 Chapter.2 Solution of linear equations

Cost of solution of equations using LU factorization
Consider ith row/column (pivot element = ai,i).
Number of operations for determining ith row of U
Additions ‘+’ = i−1 computations
Multiplications ‘×’ = i−1 computations
Total number of elements in ith row of U = n− i+1
Total number of operations for ith row of U = (n− i+1)(2i−2)
Number of operations for determining ith column of L
Additions ‘+’ = i−1 computations
Multiplications ‘×’ = i−1 computations
Divisions ‘/’ = 1 computation
Total number of elements in ith row of L = n− i
Total number of operations for ith row of L = (n− i)(2i−1)
Total number of operations to determine L and U =
n∑

i=1
(2i−1)(n− i)+ (2i−2)(n− i+1)= 2

3
n3 + 1

2
n2 − 1

6
n

Number of operations for forward and backward substitution = 2n2

Total number of operations for LU decomposition method =
2
3

n3 + 5
2

n2 − 1
6

n

For large values of n, the number of computations involved in LU decomposition method is ∼ 2
3

n3

Example 2.11
Perform Doolittle decomposition with partial pivoting on the following set of equations and
obtain the solution vector.

2x1 + x2 −2x3 = 1

3x1 +2x2 +2x3 = 7

5x1 +4x2 +3x3 = 12

Solution :

Step 1 Determination of matrices L and U with partial pivoting.
We swap rows and 1 and 3 by using a permutation matrix

P=

0 0 1
0 1 0
1 0 0

The coefficient matrix is then written as

5 4 3
3 2 2
2 1 −2

We use the following E1 to convert the first column elements in the rows 2 and 3 to zero.

E1 =

1 0 0

−3
5

1 0

−2
5

0 1

2.5. LU decomposition or LU factorization 53

The coefficient matrix is then given by
5 4 3

0 −2
5

1
5

0 −3
5

−3
1
5

Pivoting is now accomplished by swapping rows 2 and 3. The permutation matrix becomes

P=

0 0 1
1 0 0
0 1 0

and the coefficient matrix becomes

5 4 3

0 −3
5

−3
1
5

0 −2
5

1
5

Also we then have

E1 =

1 0 0

−2
5

1 0

−3
5

0 1

We now use the following E2 to convert the second column element in row 3 to zero.

E2 =

1 0 0
0 1 0

0 −2
3

1

The coefficient matrix then becomes

5 4 3

0 −3
5

−3
1
5

0 0 2
1
3

This is identified as U. Also we then have

L=E−1
1 E−1

2 =

1 0 0
2
5

1 0

3
5

0 1

1 0 0
0 1 0

0
2
3

1

=

1 0 0
2
5

1 0

3
5

2
3

1

We finally have

LUx=Pb

54 Chapter.2 Solution of linear equations

LUx=

1 0 0
2
5

1 0

3
5

2
3

1

5 4 3

0 −3
5

−3
1
5

0 0 2
1
3

 x1

x2
x3

=
 0 0 1

1 0 0
0 1 0

 1

7
12

=
 12

1
7

Step 2 The solution vector may now be obtained by forward substitution using L and

backward substitution using U as

xT =
1 1 1

MATLAB function for performing LU decomposition is
[L,U,P] = lu(A)

% L = l o w e r t r i a n g u l a r m a t r i x
% U = u p p e r t r i a n g u l a r m a t r i x
% P = p e r m u t a t i o n m a t r i x

Applying the function to the above example
A = [2 1 -2; 3 2 2; 5 4 3];

B = [1; 7 ; 12];

[L,U,P] = lu(A)

y = L\P*B;

x = U\y;

The output of the program is
L =

1.0000 0 0

0.4000 1.0000 0

0.6000 0.6667 1.0000

U =

5.0000 4.0000 3.0000

0 -0.6000 -3.2000

0 0 2.3333

P =

0 0 1

1 0 0

0 1 0

y = [12.0000; -3.8000; 2.3333]

x = [1.0000; 1.0000; 1.0000]

Example 2.12
Solve the following set of equations by LU (Doolittle) decomposition using Expressions 2.40

4x1 + x2 + x3 + x4 = 15.9

x1 +4x2 + x3 + x4 = 17.7

x1 + x2 +4x3 + x4 = 13.2

2.5. LU decomposition or LU factorization 55

x1 + x2 + x3 +4x4 = 9.9

Solution :
The coefficient matrix is written down as

a1,1 = 4 a1,2 = 1 a1,3 = 1 a1,4 = 1
a2,1 = 1 a2,2 = 4 a2,3 = 1 a2,4 = 1
a3,1 = 1 a3,2 = 1 a3,3 = 4 a3,4 = 1
a4,1 = 1 a4,2 = 1 a4,3 = 1 a4,4 = 4

Using expressions based on Equation 2.40 the elements in the LU matrix may be written
down as under.

u1,1 = a1,1 u1,2 = a1,2 u1,3 = a1,3 u1,4 = a1,4

l2,1 =
a2,1

u1,1
u2,2 = a2,2 − l2,1u1,2 u2,3 = a2,3 − l2,1u1,3 u2,4 = a2,4 − l2,1u1,4

l3,1 =
a3,1

u1,1
l3,2 =

a3,2 − l3,1u1,2

u2,2
u3,3 = a3,3 − l3,1u1,3 u3,4 = a3,4 − l3,1u1,4

−l3,2u23 −l3,2u2,4

l4,1 =
a4,1

u1,1
l4,2 =

a4,2 − l4,1u1,2

u2,2
l4,3 = 1

u3,3

(
a4,3 − l4,1u1,3 u4,4 = a4,4 − l4,1u1,4

−l4,2u2,3
) −l4,2u2,4 − l4,3u3,4

Note that l1,1 = l2,2 = l3,3 = l4,4 = 1. Calculations are performed row-wise, from left to right.
The resulting tabulation is given below.

u1,1 = 4 u1,2 = 1 u1,3 = 1 u1,4 = 1

l2,1 = 1
4

u2,2 = 4−0.25×1 u2,3 = 1−0.25×1 u2,4 = 1−0.25×1

= 0.25 = 3.75 = 0.75 = 0.75

l3,1 = 1
4

=
0.25

l3,2 =
1−0.25×1

3.75
= 0.2

u3,3 = 4 − 0.25 × 1 −
0.2×0.75= 3.6

u3,4 = 1 − 0.25 × 1 −
0.2×0.75= 0.6

l4,1 = 1
4

l4,2 =
1−0.25×1

3.75

l4,3 =
1−0.25×1−0.15

3.6

u4,4 = 4 − 0.25 × 1 −
0.2×0.75−0.166667×
0.6

= 0.25 = 0.2 = 0.166667 = 3.5

Thus we have

L=

1 0 0 0

0.25 1 0 0
0.25 0.2 1 0
0.25 0.2 0.166667 1

 and U=

4 1 1 1
0 3.75 0.75 0.75
0 0 3.6 0.6
0 0 0 3.5

The solution vector may now be obtained by forward substitution using L and backward
substitution using U as

xT =
2.6 3.2 1.7 0.6

56 Chapter.2 Solution of linear equations

2.5.2 Crout decomposition

Crout decomposition is an alternate method of LU decomposition where L is a lower
triangle matrix and U is a unit upper triangle matrix.

A=

a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

· · · · · · . . . · · ·
ai,1 ai,2 · · · ai,n

· · · · · · . . . · · ·
an,1 an,2 · · · an,n

=

l1,1 0 · · · 0
l2,1 l2,2 · · · 0

· · · · · · . . . · · ·
l i,1 l i,2 · · · 0

· · · · · · . . . · · ·
ln,1 ln,2 · · · ln,n

1 u1,2 · · · u1,n
0 1 · · · u2,n

· · · · · · . . . · · ·
0 0 · · · ui,n

· · · · · · . . . · · ·
0 0 · · · 1

=

l1,1 l1,1u1,2 · · · l1,1u1,n
l2,1 l2,1u1,2 + l2,2 · · · l2,1u1,n + l2,2u2,n

· · · · · · . . . · · ·
l i,1 l i,1u1,2 + l i,2 · · ·

i−1∑
p=1

l i,pup,n + l i,iui,n

· · · · · · . . . · · ·
ln,1 ln,1u1,2 + ln,2 · · ·

n−1∑
p=1

ln,pup,n + ln,n

(2.44)

The elements of L and U are obtained by the following relations.

l i, j = ai, j −
j−1∑
p=1

l i,pup, j, i ≥ j

ui, j =
ai, j −∑i−1

p=1 l i,pup, j

ai,i
, i < j (2.45)

It may easily be verified that the LCrout =UT
Doolittle and UCrout =LT

Doolittle. The reader is
encouraged to solve Example 2.12 by using Crout decomposition.

2.5.3 Cholesky decomposition

When the coefficient matrix is positive definite and symmetric it is possible to use
Cholesky decomposition. A positive definite symmetric matrix is a matrix that satisfies

2.5. LU decomposition or LU factorization 57

the condition xTAx > 0 and the elements of L and U are such that l i, j = u j,i i.e. U = LT

and hence A = LLT . A symmetric matrix is positive definite if all its diagonal elements
are positive and the diagonal element is larger than the sum of all the other elements in
that row (diagonal dominant).

Consider as an example, a 4×4 symmetric positive definite matrix

A=

a1,1 a2,1 a3,1 a4,1
a2,1 a2,2 a3,2 a4,2
a3,1 a3,2 a3,3 a4,3
a4,1 a4,2 a4,3 a4,4

 (2.46)

This will be written as a product of L and U given by

A=

l1,1 0 0 0
l2,1 l2,2 0 0
l3,1 l3,2 l3,3 0
l4,1 l4,2 l4,3 l4,4

l1,1 l2,1 l3,1 l4,1
0 l2,2 l3,2 l4,2
0 0 l3,3 l4,3
0 0 0 l4,4

 (2.47)

Performing the indicated multiplication we then have A=
l2
1,1 l1,1l2,1 l1,1l3,1 l1,1l4,1

l1,1l2,1 l2
2,1 + l2

2,2 l3,1l2,1 + l3,2l2,2 l4,1l2,1 + l4,2l2,2
l1,1l3,1 l3,1l2,1 + l3,2l2,2 l2

3,1 + l2
3,2 + l2

3,3 l4,1l3,1 + l4,2l3,2 + l4,3l3,3
l1,1l4,1 l4,1l2,1 + l4,2l2,2 l4,1l3,1 + l4,2l3,2 + l4,3l3,3 l2

4,1 + l2
4,2 + l2

4,3 + l2
4,4

 (2.48)

Using Equations 2.46 and 2.48, equating element by element and rearranging we get the
following:

l1,1 = √
a1,1 l2,1 =

a2,1

l1,1
l3,1 =

a3,1

l11
l4,1 =

a4,1

l1,1

l2,2 =
√

a2,2 − l2
2,1 l3,2 =

a3,2 − l3,1l2,1

l2,2
l3,3 =

√
a3,3 − l2

3,1 − l2
3,2

l4,2 = a4,2 − l4,1l2,1

l2,2
l4,3 =

a4,3 − l4,1l3,1 − l4,2l3,2

l3,3

l4,4 =
√

a4,4 − l2
4,1 − l2

4,2 − l2
4,3 (2.49)

Note that the entries in Equation 2.48 are in the order in which calculations are performed
(row-wise from left to right). We may generalize and write the following expressions for
the case of a positive definite symmetric n×n matrix (1≤ i ≤ n, 1≤ j ≤ n).

l1,1 = √
a1,1

l i,1 = ai,1

l1,1

l i, j =
ai, j −∑ j−1

p=1 l i,pl j,p

l j, j
, 1< j < i

58 Chapter.2 Solution of linear equations

l i,i =
√√√√ai,i −

i−1∑
p=1

l2
i,p , i 6= 1 (2.50)

Cholesky decomposition needs to determine only one triangular matrix. For large values of n, the

cost of computation of solution using Cholesky decomposition is ∼ 1
3

n3.

Example 2.13
Solve the problem in Example 2.12 using Cholesky decomposition.
Solution :

Step 1 Determine L
We note that the elements of the coefficient matrix are given by

ai,i = 4; ai, j = 1 for 1≤ i ≤ 4, 1≤ j ≤ 4

We shall verify first that the coefficient matrix is positive definite. We have

xTAx =
 x1 x2 x3 x4

4 1 1 1
1 4 1 1
1 1 4 1
1 1 1 4

x1
x2
x3
x4

= 4(x2

1 + x2
2 + x2

3 + x2
4)+2(x1x2 + x1x3 + x1x4 + x2x4 + x2x3 + x3x4)

= 3(x2
1 + x2

2 + x2
3 + x2

4)+ (x1 + x2 + x3 + x4)2

This is positive for all x. The matrix is seen to be diagonal dominant. Hence the matrix is
positive definite. From Expressions 2.49 we get the elements of L.

l1,1 =
p

4= 2, l2,1 = l3,1 = l4,1 = 1
2
= 0.5, l2,2 =

√
4−0.52 = 1.936492

l3,2 = 1−0.5×0.5
1.937942

= 0.387298, l33 =
√

4−0.52 −0.3892782 = 1.897367

l4,2 = 1−0.5×0.5
1.937942

= 0.387298,

l4,3 = 1−0.5×0.5−0.387298×0.387298
1.897367

= 0.316228

l4,4 =
√

4−0.52 −0.3872982 −0.3162282 = 1.870829

Thus we have (entries are shown rounded to four significant digits after decimals)

A=

2 0 0 0

0.5 1.9365 0 0
0.5 0.3873 1.8974 0
0.5 0.3873 0.3163 1.8708

︸ ︷︷ ︸
L

2 0.5 0.5 0.5
0 1.9365 0.3873 0.3873
0 0 1.8974 0.3162
0 0 0 1.8708

︸ ︷︷ ︸
U=LT

Calculations are however made including enough number of significant digits after deci-
mals.

2.5. LU decomposition or LU factorization 59

Step 2 Forward substitution
First part of the problem consists of solving for vector y where

2 0 0 0
0.5 1.9365 0 0
0.5 0.3873 1.8974 0
0.5 0.3873 0.3163 1.8708

y1
y2
y3
y4

=

15.9
17.7
13.2

9.9

Forward substitution is used to obtain the y′s. From the first equation we have

y1 = 15.9
2

= 7.95

From the second equation we get

y2 = 17.7−0.5×7.95
1.9365

= 7.0876

From the third equation we obtain

y3 = 13.2−0.5×7.95−0.3873×7.0876
1.8974

= 3.4153

From the fourth equation we obtain

y3 = 9.9−0.5×7.95−0.3873×7.0876−0.3163×3.4153
1.8708

= 1.1225

Step 3 Backward substitution
The second part now consists in solving for vector x where

2 0.5 0.5 0.5
0 1.9365 0.3873 0.3873
0 0 1.8974 0.3162
0 0 0 1.8708

 ·

x1
x2
x3
x4

=

7.95

7.0876
3.4153
1.1225

Backward substitution is used to obtain the x′s. From the fourth equation we have

x4 = 1.1225
1.8708

= 0.6

From the third equation we get

x3 = 3.4153−0.3162×0.6
1.8974

= 1.7

From the second equation we obtain

x2 = 7.0876−0.3873×1.7−0.3873×0.6
1.9365

= 3.2

From the fourth equation we obtain

x1 = 7.95−0.5×3.2−0.5×1.7−0.5×0.6
2

= 2.6

Thus the solution vector is given by

60 Chapter.2 Solution of linear equations

x=

2.6
3.2
1.7
0.6

Program 2.3: Cholesky decomposition

1 function [X,C] = choleskydecomposition(A,B)

2 % I n p u t :
3 % A : c o e f f i e i e n t m a t r i x
4 % B : r i g h t han d V e c t o r
5 % O u t p u t :
6 % X : s o l u t i o n v e c t o r
7 % C : u p p e r t r i a n g u l a r m a t r i x
8 n = size(A,1); % r a n k o f m a t r i x A
9 C = zeros(n,n); % i n i t i a l i z i n g C

10 for i = 1:n % D e t e r m i n i n g e l e m e n t o f C
11 for j = i:n

12 C(i,j) = A(i,j);

13 for k = 1:i-1

14 C(i,j) = C(i,j) - C(k,i)*C(k,j);

15 end

16 if(j==i)

17 C(i,j) = sqrt(C(i,j)) ;

18 else

19 C(i,j) = C(i,j)/C(i,i);

20 end

21 end

22 end

23 Y = C'\B; % f o r w a r d s u b s t i t u t i o n
24 X = C\Y; % b a c k w a r d s u b s t i t u t i o n

Program 2.3 has been applied to Example 2.13
A = [4 1 1 1;

1 4 1 1;

1 1 4 1;

1 1 1 4];

B = [15.9; 17.7; 13.2; 9.9];

[x,C] = choleskydecomposition(A,B)

The output of the above program is
x = [2.6000; 3.2000; 1.7000; 0.6000]

C =

2.0000 0.5000 0.5000 0.5000

0 1.9365 0.3873 0.3873

0 0 1.8974 0.3162

0 0 0 1.8708

2.6. Tridiagonal matrix algorithm 61

Sparse matrix is a matrix where majority of the elements are zeros. Such matrices
occur frequently in engineering practice. Instead of storing the entire matrix only the
nonzero entries can be stored. A simple scheme is to store the row index, column index
and the nonzero entry. For example the following matrix

3 1 0
0 2 0
0 1 2

 can be rewritten as
i 1 1 2 3 3
j 1 2 2 2 3

ai, j 3 1 2 1 2

The computational effort for treating sparse matrices can be reduced largely by
employing special techniques, especially for large matrices.
We shall consider a special form of sparse matrix, tridiagonal matrix and discuss
methods to solve the same.

2.6 Tridiagonal matrix algorithm

2.6.1 Cholesky decomposition of a symmetric tri-diagonal matrix

A symmetric tridiagonal matrix is a special case that is very easy to handle using the
Cholesky decomposition. The coefficient matrix is of form

A=

a1 a′
2 0 0 · · · · · · · · · 0

a′
2 a2 a′

3 0 · · · · · · · · · 0
0 a′

3 a3 a′
4 · · · · · · · · · 0

· ·
· · · · · · · · · · · · · · · a′

n−1 an−1 a′
n

0 0 0 · · · · · · 0 a′
n an

(2.51)

The elements that are zero remain so and hence it is necessary to store only single
subscripted a and a′. After decomposition we again have only single subscripted d (along
the diagonal) and l along either the lower or upper diagonal. Thus the matrix L is of form

L=

d1 0 0 0 · · · · · · · · · 0
l2 d2 0 0 · · · · · · · · · 0
0 l3 d3 0 · · · · · · · · · 0
· ·
· · · · · · · · · · · · · · · ln−1 dn−1 0
0 0 0 · · · · · · 0 ln dn

(2.52)

Expressions 2.50 reduce to the following.

d1 =p
a1 ; l i =

a′
i

di−1
, di =

√
ai − l2

i , i > 1 (2.53)

Example 2.14
Solve the following set of equations by Cholesky decomposition.

4x1 + x2 = 15.9

62 Chapter.2 Solution of linear equations

x1 +4x2 + x3 = 17.7

x2 +4x3 + x4 = 13.2

x3 +4x4 = 9.9

Solution :

Step 1 The coefficient matrix is a symmetric tridiagonal matrix with ai = 4, 1≤ i ≤ 4, bi =
1, 2≤ i ≤ 4. The elements required are calculated using Expressions 2.53.

d1 =
p

4= 2 l2 = 1
2
= 0.5

d2 =
√

4−0.52 = 1.9365 l3 = 1
1.9365

= 0.5164

d3 =
√

4−0.51642 = 1.9322 l4 = 1
1.9322

= 0.5175

d4 =
√

4−0.51752 = 1.9319

Thus we have
2 0 0 0

0.5 1.9365 0 0
0 0.5164 1.9322 0
0 0 0.5175 1.9319

 ·

y1
y2
y3
y4

=

15.9
17.7
13.2
9.9

Step 2 Forward substitution yields the vector y as

yT =
 7.9500 7.0876 4.9374 3.8018

Now we have

2 0.5 0 0
0 1.9365 0.5164 0
0 0 1.9322 05175
0 0 0 1.9319

 ·

x1
x2
x3
x4

=

7.9500
7.0876
4.9374
3.8018

Note that L is a bidiagonal matrix.
Step 3 Backward substitution now leads to the solution vector

xT =
 3.1952 3.1191 2.0282 1.9679

2.6.2 General case of a tri-diagonal matrix and the TDMA

In this case the coefficient matrix is of form

A=

a1 −a′
1 0 0 · · · · · · · · · 0

−a′′
2 a2 −a′

2 0 · · · · · · · · · 0
0 −a′′

3 a3 −a′
3 · · · · · · · · · 0

· ·
· · · · · · · · · · · · · · · −a′′

n−1 an−1 −a′
n−1

0 0 0 · · · · · · 0 −a′′
n an

(2.54)

2.6. Tridiagonal matrix algorithm 63

TDMA or Tridiagonal Matrix Algorithm (also known as Thomas algorithm) aims to
convert the coefficient matrix into a bidiagonal matrix with nonzero elements only along
the main and upper diagonals. All other elements are zero. Obviously the reduction
of coefficient matrix to bidiagonal form requires us to manipulate b also by considering
the n×n+1 augmented matrix where the last column contains the elements of vector b.
Consider hence the augmented matrix given by

A′ =

a1 −a′
1 0 0 · · · · · · · · · 0 b1

−a′′
2 a2 −a′

2 0 · · · · · · · · · 0 b2
0 −a′′

3 a3 −a′
3 · · · · · · · · · 0

· ·
· · · · · · · · · · · · · · · −a′

n−1 an−1 −a′
n−1 bn−1

0 0 0 · · · · · · 0 −a′′
n an bn

(2.55)

Eventually the coefficient matrix has to become bidiagonal and hence we should have

A′ =

d1 u1 0 0 · · · · · · · · · 0 b′
1

0 d2 u2 0 · · · · · · · · · 0 b′
2

0 0 d3 u3 · · · · · · · · · 0
· ·
· · · · · · · · · · · · · · · 0 dn−1 un−1 b′

n−1
0 0 0 · · · · · · 0 0 dn b′

n

(2.56)

Further we may divide each row by the corresponding diagonal element di to get

A′ =

1 p1 0 0 · · · · · · · · · 0 q1
0 1 p2 0 · · · · · · · · · 0 q2
0 0 1 p3 · · · · · · · · · 0
· ·
· · · · · · · · · · · · · · · 0 1 pn−1 qn−1
0 0 0 · · · · · · 0 0 1 qn

(2.57)

Here pi = ui

di
and qi =

b′
i

di
. The equations are now in a form suitable for solution by back

substitution. We have xn = qn and in general

xi = pixi+1 + qi (2.58)

The corresponding equation in the original set would have been

aixi = a′
ixi+1 +a′′

i xi−1 +bi (2.59)

Using Equation 2.58 we also have

xi−1 = pi−1xi + qi−1 (2.60)

64 Chapter.2 Solution of linear equations

Substitute this in Equation 2.59 to get

aixi = a′
ixi+1 +a′′

i (pi−1xi + qi−1)+bi

or on rearrangement

xi =
a′

i

ai −a′′
i pi−1

xi+1 + bi + qi−1

ai −a′′
i pi−1

(2.61)

Comparing this with Equation 2.58 we get the following recurrence relations:

pi = a′
i

ai −a′′
i pi−1

qi = bi + qi−1

ai −a′′
i pi−1

(2.62)

Note also that p1 = u1

d1
= a′

1

a1
and q1 =

b′
1

d1
= b1

a1
. Calculation of the p′s and q′s proceed from

i = 1 to i = n using the above recurrence relations.

Example 2.15
Solve the tridiagonal system of equations given by

1 0 0 0 0 0
−0.83 2.04 −1.08 0 0 0

0 −0.86 2.04 −1.07 0 0
0 0 −0.88 2.04 −1.06 0
0 0 0 −0.89 2.04 −1.06
0 0 0 0 0 1

x1
x2
x3
x4
x5
x6

=

100
0
0
0
0
60

using TDMA
Solution :

A spreadsheet was used to solve the problem. Following table shows the results of the
calculation. The first five columns are based on the given data. Since zero elements in the
coefficient matrix do not change during TDMA it is necessary to only use 3 single subscript
arrays as shown in the table. p′s and q′s are calculated using recurrence relations 2.62.
The solution set is obtained by back substitution and hence the calculations in this column
proceed upwards starting from the last row. We have rounded the p′s and q′s to 4 digits
after decimals and the solution set is given with only one digit after the decimal point.

i a a′ a′′ b p q x
1 1 0 0 100 0 100 100
2 2.04 1.08 0.83 0 0.5294 40.6863 71.5
3 2.04 1.07 0.86 0 0.6752 22.0799 58.1
4 2.04 1.06 0.88 0 0.7331 13.4390 53.4
5 2.04 1.06 0.89 0 0.7640 8.6203 54.5
6 1 0 0 60 0 60 60

2.6. Tridiagonal matrix algorithm 65

Alternate solution: Since x1 = 100 and x6 = 60 are easily obtained from the given
equations we may solve for x2 to x4 only. Again TDMA may be made use of. The
corresponding spreadsheet is shown below.

i a a′ a′′ b p q x
2 2.04 1.08 0 83 0.5294 40.6863 71.5
3 2.04 1.07 0.86 0 0.6752 22.0799 58.1
4 2.04 1.06 0.88 0 0.7331 13.4390 53.4
5 2.04 0 0.89 63.6 0 54.4582 54.5

Cost of computation of matrix using TDMA
Number of computations for determining p1 and q1 = 2
Total number of operations for determining pi = 3
Total number of operations for determining qi = 4
Number of pairs of pi and qi to be determined = n−1
Total number of operations for determining p and q vectors = 7(n−1)+2
Total number of operations for performing back substitution = 2(n−1)
Total number of computations for performing TDMA = 9n−7
For large matrices, the number of computations for TDMA (∼ O(n)) is much smaller than Gauss
elimination and LU decomposition methods (∼O(n3)).
TDMA is Gauss Elimination method applied to a tridiagonal matrix.

MATLAB program for TDMA is given below

Program 2.4: TDMA

1 function x = tdma(C,A,B,D)

2 % I n p u t C = a′′
3 % A = a
4 % B = a′
5 % D = b
6 %O u t p u t x = o u t p u t v e c t o r
7 N = length(A); %number o f u n k n o w n s
8 p(1) = B(1)/A(1);

9 q(1) = D(1)/A(1);

10 x = zeros(N,1); % i n i t i a l i z i n g o u t p u t v e c t o r
11 for I=2:N % c a l c u l a t i n g p and q
12 p(I)=B(I)/(A(I)-C(I)*p(I-1));

13 p(I)=(D(I)+C(I)*q(I-1))/ (A(I)-C(I)*p(I-1));

14 end

15
16 x(N)= q(N);

17
18 for I=N-1: -1:1 % c a l c u l a t i n g o u t p u t v e c t o r
19 x(I)=p(I)*x(I+1)+q(I);

20 end

The above program has been applied to tri diagonal matrix given in Example 2.15

66 Chapter.2 Solution of linear equations

a = [1 ; 2.04; 2.04 ; 2.04 ; 2.04 ; 1];

a1 = [0 ; 1.08 ; 1.07 ; 1.06 ; 1.06 ; 0];

a2 = [0 ; 0.83 ; 0.86 ; 0.88 ; 0.89 ; 0];

B = [100;0;0;0;0;60];

x = tdma(a2 ,a,a1 ,B)

The output of the above program is
x = [100.0000; 71.4515; 58.1121; 53.3649;

54.4582; 60.0000]

2.7 QR Factorization

QR Factorization is a very useful method especially when the coefficient matrix is ill-
conditioned. This factorization is also useful in evaluating eigenvalues as we shall see
later. It is possible to represent the coefficient matrix as

A=QR

where R is an upper triangular matrix and Q is an orthogonal matrix that has the
important property that QTQ = In i.e. Q−1 = QT . Using the orthogonality property of
Q, we easily see that by pre-multiplying matrix A with QT we get

QTA=QTQR=R (2.63)

The given equation set Ax=b may hence be written in the form

Ax=QRx=b

Pre-multiplying by QT we then get

QTQRx=Rx=QTb

which may be solved for x by back substitution.

QR factorization method differs from LU decomposition in that the Q matrix is orthogonal where
as L matrix, in general, is not an orthogonal matrix.

QR factorization may be accomplished by using Gram-Schmidt method, Householder
transformation or Givens rotations. These methods are presented below.

2.7.1 Gram-Schmidt Method

Consider the n×n coefficient matrix A. It may be represented as a set of 1×n column
vectors.

A=
 a1 a2 a3 · · · ai · · · an−1 an

 (2.64)

2.7. QR Factorization 67

Note that the element ai stands for the column vector such that

ai
T =

 a1,i a2,i a3,i · · · ai,i · · · an−1,i an,i

 (2.65)

In general the column vectors are not orthogonal and hence the dot product of any two
column vectors is nonzero. We would like to convert the column vectors to an orthogonal
set of column vectors to obtain a matrix v1 v2 v3 · · · vi · · · vn−1 vn

 (2.66)

Step 1 We will retain the column vector a1 without any modification and label it as
v1. Consider now the column vector a2. We would like to modify this vector to v2 such
that v1 and v2 are orthogonal to each other. This may be accomplished by the following
manipulation.

v2 = a2 − c1v1 (2.67)

where c1 is a constant that is to be found by requiring that the vectors v1 and v2 be
orthogonal. Thus we have

vT
1 v2 = vT

1 (a2 − c1v1)= 0

Thus we have

c1 =
vT

1 a2

vT
1 v1

(2.68)

Step 2 Next we consider the column vector a3. v3 has to be determined such that vT
1 v3 =

0 and vT
2 v3 = 0. The required manipulation is given by

v3 = a3 − c1v1 − c2v2

where c1 and c2 are two constants determined by requiring that vT
1 v3 = 0 and vT

2 v3 = 0.
It is easily verified then that

c1 =
vT

1 a3

vT
1 v1

and c2 =
vT

2 a3

vT
2 v2

Step 3 We are now ready to generalize the above to the kth column vector. We have

vk = ak −
k−1∑
j=1

c jv j (2.69)

where

c j =
vT

j ak

vT
j v j

, 1≤ j ≤ k−1 (2.70)

68 Chapter.2 Solution of linear equations

Step 4 We may finally normalize the column vectors by dividing each column vector by
its own magnitude (

√
vT

j v j) to get the matrix Q.

Q=
 q1 q2 q3 · · · qi · · · qn−1 qn

 (2.71)

where
q j =

v j√
vT

j v j

(2.72)

Example 2.16
Solve the following set of equations by QR factorization.

1 2 1
0 1 −1
1 0 1

x1
x2
x3

=

2
1.6
3.4

Solution :

Step 1 Determining v2
The column vector v1 = a1 and hence

vT
1 =

 1 0 1

We have

vT
1 v1 =

 1 0 1

1
0
1

= 12 +02 +12 = 2

We also have

vT
1 a2 =

 1 0 1

2
1
0

= 1×2+0×1+1×0= 2

Hence

c1 =
vT

1 a2

vT
1 v1

= 2
2
= 1

Column vector v2 is then given by

v2 = a2 − c1v1 =

2
1
0

−

1
0
1

=

1
1

−1

Step 2 Now we look at column 3. We have the following (the reader may verify):

vT
1 a3 = 2; vT

2 a3 =−1; vT
2 v2 = 3

With these we then have

c1 =
vT

1 a3

vT
1 v1

= 2
2
= 1; c2 =

vT
2 a3

vT
2 v2

= −1
3

2.7. QR Factorization 69

With these we get

v3 = a3 − c1v1 − c2v2 =

1
−1

1

−

1
0
1

+ 1
3

1
1

−1

=

1
3

−2
3

−1
3

Step 3 Normalizing the column vectors by dividing elements in each column by the

magnitude of the corresponding column vector we obtain Q.

Q=

0.7071 0.5774 0.4082
0.0000 0.5774 −0.8165
0.7071 −0.5774 −0.4082

We have rounded all the entries to 4 digits after decimals even though the calculations are
made using available machine precision. Upper triangle matrix R may now be obtained as

R=QTA =

0.7071 0.0000 0.7071
0.5774 0.5774 −0.5774
0.4082 −0.8165 −0.4082

1 2 1
0 1 −1
1 0 1

=

1.4142 1.4142 1.4142
0.0000 1.7321 −0.5774
0.0000 0.0000 0.8165

Step 4 The right hand matrix b is to be replaced by b′ given by

b′ =QTb=

0.7071 0.0000 0.7071
0.5774 0.5774 −0.5774
0.4082 −0.8165 −0.4082

2
1.6
3.4

=

3.8184
0.1155

−1.8779

Step 5 The solution to the given set of equations is obtained by solving the system Rx=b′

by back substitution.
1.4142 1.4142 1.4142
0.0000 1.7321 −0.5774
0.0000 0.0000 0.8165

x1
x2
x3

=

3.8184
0.1155

−1.8779

From the last equation we get

x3 = −1.8779
0.8165

=−2.3

From the second equation we have

x2 = 0.1155− (−0.5774)× (−2.3)
1.7321

=−0.7

Finally from the first equation we have

x1 = 3.8184−1.4142× (−0.7)−1.4142× (−2.3)
1.4142

= 5.7

The solution vector is then written down as

xT =
 5.7 −0.7 −2.3

70 Chapter.2 Solution of linear equations

2.7.2 Householder transformation and QR factorization

Householder method of QR factorization7 uses a sequence of orthogonal matrices known
as Householder matrices to transform the given matrix A to QR form. The idea of the
method is to reduce the coefficient matrix to upper triangular form by multiplying the
matrix by a series of Householder matrices.

HnHn−1 . . .H1A=U

As Householder matrices are orthogonal, the matrix HnHn−1 . . .H1 is also orthogonal. The
upper triangular matrix U thus obtained is R and thus

(HnHn−1 . . .H1)−1 =Q=HT
1 HT

2 . . .HT
n

Consider a Householder matrix H1 defined as

H1 = I−2uuT (2.73)

where I is the n×n identity matrix and u is a n×1 unit vector which will be determined
below. H1 is an orthogonal matrix such that HT

1 =H−1
1 . We verify this below.

H1HT
1 = (I−2uuT)(I−2uuT)T

= (IT −2(uuT)T)(I−2uuT)

= (I−2uuT)(I−2uuT)

= I−4uuT +4uuTuuT

= I−4uuT +4u(uTu)uT

= I−4uuT +4uuT

= I (2.74)

In arriving at the above we have made use of the following:

(uuT)T = (uT)TuT =uuT (2.75)

uTu= 1 (2.76)

Let us understand how the Householder transformation achieves QR decomposition.
Step 1 Consider now an n×n coefficient matrix A.

a1,1 a1,2 a1,3 · · · · · · a1,n
a2,1 a2,2 a2,3 · · · · · · a2,n
a3,1 a3,2 a3,3 · · · · · · a3,n
· · · · · · · · · · · · · · · · · ·
ai,1 ai,2 ai,3 · · · · · · ai,n
· · · · · · · · · · · · · · · · · ·

an,1 an,2 an,3 · · · · · · an,n

7After Alston S. Householder (1904-1993)- American mathematician

2.7. QR Factorization 71

To convert the coefficient matrix to an upper triangular matrix, all the elements below
the diagonal elements have to be zero. Let us consider the first column. All the elements
below a1,1 have to become zero. Let vector x represent the first column of the coefficient
matrix.

xT =
a1,1 a2,1 · · · ai,1 · · ·an,1

 (2.77)

We desire that this vector be transformed, on pre-multiplication by H1, to x̂1e1 where e1
is the unit vector defined as

eT
1 =

1 0 0 · · · 0
 (2.78)

and x̂1 is a non-zero number i.e. all the elements below the pivot element are zero. Thus
we should have

H1x= x̂1e1 (2.79)

On pre-multiplication by (H1x)T Equation 2.79 gives

(H1x)TH1x= xTHT
1 H1x= xTx= (x̂1e1)T x̂1e1 = x̂2

1 (2.80)

The above follows by the fact that H1 satisfies Equation 2.74 and that eT
1 e1 = 1. Thus the

factor x̂1 is given by
x̂1 =

√
xTx (2.81)

Pre-multiplication of Equation 2.79 by HT
1 gives

HT
1 H1x= x=HT

1 x̂1e1 = x̂1HT
1 e1 = x̂1(I−2uuT)Te1 = x̂1(e1 −2uuTe1) (2.82)

Expanding the last term on the right side of above equation we get the following:

x1 = x̂1(1−2u2
1); xi = x̂1(0−2u1ui) for i 6= 1 (2.83)

Hence we get

u1 =
√

x̂1 − x1

2x̂1
(2.84)

In order that u1 has the largest value possible, we make the difference x̂1− x1 take on the
largest value by choosing x̂1 as −sign{x1}

√
xTx. We also have

ui = xi

−2u1 x̂1
(2.85)

Pre-multiplication of the coefficient matrix by H1 will achieve the following when n×1
column vector a1 is used to evaluate the u’s:

a1,1 a1,2 a1,3 · · · · · · a1,n
a2,1 a2,2 a2,3 · · · · · · a2,n
a3,1 a3,2 a3,3 · · · · · · a3,n
· · · · · · · · · · · · · · · · · ·
ai,1 ai,2 ai,3 · · · · · · ai,n
· · · · · · · · · · · · · · · · · ·

an,1 an,2 an,3 · · · · · · an,n

⇒

â1,1 â1,2 â1,3 · · · · · · â1,n
0 ai

2,2 ai
2,3 · · · · · · ai

2,n
0 ai

3,2 ai
3,3 · · · · · · ai

3,n
· · · · · · · · · · · · · · · · · ·
0 ai

i,2 ai
i,3 · · · · · · ai

i,n
· · · · · · · · · · · · · · · · · ·
0 ai

n,2 ai
n,3 · · · · · · ai

n,n

(2.86)

72 Chapter.2 Solution of linear equations

Thus all the elements in the first column except the pivot have become zero. We are
already making our progress towards an upper triangular form. The elements shown
with a - ˆ - will remain unchanged as we proceed further.

Step 2 A second Householder transformation is used to put zeros in all the elements in
the second column below the pivot. For this consider the n−1×n−1 matrix obtained by
removing the first row and column of the matrix shown on the right in Equation 2.86. We
use the n−1×1 vector given by

xT =
ai

2,2 ai
3,2 · · · ai

i,2 · · ·ai
n,2

 (2.87)

We construct a Householder matrix given by H′
2 = I−2uuT where the elements of u are

obtained such that the vector x is transformed to a unit vector x̂2e2 where e2 is n−1×1
unit vector. Note that I in the above is the n−1×n−1 identity matrix. It is clear that the
analysis presented earlier can be used directly now to get the vector u. By adding the row
and column that were removed earlier, we construct a matrix H2 = I−2u′u′T where I is
the n×n identity matrix and u′ is n×1 vector given by

u′T =
0 u1 u2 · · · un−1

 (2.88)

Premultiplication of H1A by H2 should lead to

â1,1 â1,2 â1,3 · · · · · · â1,n
0 â2,2 â2,3 · · · · · · â2,n
0 0 aii

3,3 · · · · · · aii
3,n

· · · · · · · · · · · · · · · · · ·
0 0 aii

i,3 · · · · · · aii
i,n

· · · · · · · · · · · · · · · · · ·
0 0 aii

n,3 · · · · · · aii
n,n

(2.89)

Step 3 The process above may be repeated with matrices obtained by removing two rows
and two columns, three rows and three columns and so on till we are able to transform
the coefficient matrix to upper triangle form R.

R=

â1,1 â1,2 â1,3 · · · · · · â1,n
0 â2,2 â2,3 · · · · · · â2,n
0 0 â3,3 · · · · · · â3,n
· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 0 ân,n

(2.90)

It is also clear that Hn−1Hn−2 . . .H2H1A=R and hence Q should be given by

Q = (Hn−1Hn−2 . . .H2H1)−1 =HT
1 HT

2 . . .HT
n−1 (2.91)

2.7. QR Factorization 73

In summary the sequence of operations of householder transformation are:

• Start with pivot element a1,1. Determine H1 such that all elements below a1,1 are zero.
• Move to the next pivot element a2,2, consider the (n−1)×(n−1) matrix obtained by deleting

the first row and first column and determine the second Householder matrix.
• Repeat the process to reduce the coefficient matrix into the product of an upper triangular

matrix R and the orthogonal matrix Q.
• Obtain the solution by back substitution.

Example 2.17
Solve the following set of linear equations

2 1 1 4
0 2 −1 0
1 −4 4 7
2 −3 2 −5

x1
x2
x3
x4

=

2
5
4
9

by QR factorization using Householder transformations followed by back substitution.
Solution :

Step 1 We show in detail the use of Householder transformation for putting zeros in the
first column below the pivot. For this consider the column vector a1 given by

aT
1 =

2 0 1 2

We then have

aT
1 a1 = 22 +02 +12 +22 = 9

â1 = −sign(a1,1)
√

a1Ta1 =−sign(2)
p

9=−3

The unit vector u may now be constructed using Equations 2.84 and 2.85.

u1 =
√

â1 −a1

2â1
=

√
−3−2

2× (−3)
= 0.912871

u2 = a21

(−2â1u1)
= 0

(−2× (−3)×0.912871)
= 0

u3 = a31

(−2â1u1)
= 1

(−2× (−3)×0.912871)
= 0.182574

u4 = a41

(−2â1u1)
= 2

(−2× (−3)×0.912871)
= 0.365148

The Householder matrix may now be written down as

H1 = I−2uuT

74 Chapter.2 Solution of linear equations

=

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

−2

0.912871

0
0.182574
0.365148

0.912871
0

0.182574
0.365148

T

=

−0.666667 0 −0.333333 −0.666667

0 1 0 0
−0.333333 0 0.933333 −0.133333
−0.666667 0 −0.133333 0.733333

Pre-multiplying A by H1 we get the following:

H1A=

−3 2.666667 −3.333333 −1.666667

0 2 −1 0
0 −3.666667 3.133333 5.866667
0 −2.3333337 0.266667 −7.266667

At this stage the first column has been brought to the desired form.
Step 2 The next step involves the second column of H1A consisting of the vector

a′
2 =

2 −3.666667 −2.3333337
T

The calculations follow a procedure similar to that used above to lead to H2 given by

H2 =

1 0 0 0
0 −0.418040 0.766406 0.487713
0 0.766406 0.585781 −0.263594
0 0.487713 −0.263594 0.832259

At this stage we also have

H2H1A=

−3 2.666667 −3.333333 −1.666667

0 −4.784233 2.949503 0.952202
0 0 0.998750 5.352031
0 0 −1.091705 −7.594162

Step 3 Lastly we manipulate the column vector given by

a′
3 =

0.998750 −1.091705
T

We obtain H3 as

H3 =

1 0 0 0
0 1 0 0
0 0 −0.674997 0.737820
0 0 0.737820 0.674997

At this stage we have

H3H2H1A=R=

−3 2.666667 −3.333333 −1.666667

0 −4.784233 2.949503 0.952202
0 0 −1.479635 −9.215732
0 0 0 −1.177204

2.7. QR Factorization 75

which is the upper triangle matrix we have been seeking to obtain. The given equations will
then be replaced by Rx=H3H2H1b. Thus we get

−3 2.666667 −3.333333 −1.666667
0 −4.784233 2.949503 0.952202
0 0 −1.479635 −9.215732
0 0 0 −1.177204

x1
x2
x3
x4

=

−8.666667

1.648935
1.860207
6.686519

Step 4 The above set is solved easily by back substitution to get

xT =
−14.48 19.56 34.12 −5.68

Note that all the intermediate calculations show numbers rounded to six digits after the

decimal point. However, the final solution vector is not rounded.

Cost of computation of QR factorization using Householder algorithm
Cost of determining the Householder matrix of rank i: ∼O(i2)
Cost of determining all the Householder matrices would be : ∼O(n3)

Cost of QR factorization using Householder method: ∼O(
4
3

n3)

MATLAB program for determining Q and R matrices using Householder algorithm is
given below

Program 2.5: Householder Algorithm for QR factorization

1 function [Q,R] = qrhouseholder(A)

2 % I n p u t A = c o e f f i c i e n t m a t r i x
3 % O u t p u t Q = o r t h o g o n a l m a t r i x
4 % R = u p p e r t r i a n g u l a r m a t r i x
5 n = size(A,1); %r a n k o f m a t r i x A
6 QT = eye(n); % i n i t i a l i z i n g t r a n s p o s e o f Q
7 %a s i d e n t i t y m a t r i x o f Rank n
8 R = A; % i n i t i a l i z i n g R m a t r i x
9 for i = 1:n-1 % c o m p u t i n g H o u s e h o l d e r m a t r i c e s

10 % Hi to Hn−1
11 x = A(i:n,i);

12 x1 = -sign(A(i,i))*sqrt(x'*x);

13 u = zeros(n-i+1,1); % i n i t i a l i z i n g v e c t o r u
14 u(1) = sqrt ((x1 -x(1))/(2* x1)); % c o m p u t i n g v e c t o r u
15 for j=2:n-i+1

16 u(j) = x(j)/(-2*u(1)*x1);

17 end

18 % D e t e r m i n e h o u s e h o l d e r m a t r i x Hi
19 u2 = 2*u*u';

20 H = eye(n);

21 H(i:n,i:n) = H(i:n,i:n) - u2; % Hi
22 QT(i:n,:) = H(i:n,i:n)*QT(i:n,:); % u p d a t i n g t r a n s p o s e o f Q
23 A(i:n,:) = H(i:n,i:n)*A(i:n,:); % u p d a t i n g A
24 end

25 Q = QT '; %Q = Q′
26 R = A;

76 Chapter.2 Solution of linear equations

Use the program to solve the system of equations in Example 2.17.
A = [2 1 1 4;0 2 -1 0; 1 -4 4 7; 2 -3 2 -5];

B = [2; 5; 4; 9];

[Q,R] = qrhouseholder(A);

B1 = Q'*B;

x = R\B1;

The output of the program is
Q =

-0.6667 -0.5806 -0.3314 -0.3296

0 -0.4180 -0.1575 0.8947

-0.3333 0.6503 -0.6562 0.1884

-0.6667 0.2555 0.6594 0.2354

R =

-3.0000 2.6667 -3.3333 -1.6667

0.0000 -4.7842 2.9495 0.9522

0.0000 0.0000 -1.4796 -9.2157

0.0000 -0.0000 0 -1.1772

x = [-14.4800; 19.5600; 34.1200; -5.6800]

Alternatively, MATLAB provides several intrinsic functions to perform QR factoriza-
tion. One such function is

[Q,R] = qr(A)

2.7.3 Givens rotation and QR factorization

Givens rotation method is similar to Householder algorithm where a number of
orthogonal matrices known as the Givens matrices8 multiply the coefficient matrix to
reduce it to upper triangular form R. The product of the Givens matrices are related to
the orthogonal matrix Q.

Givens matrix is a 2×2 matrix given by

G=
 cosθ sinθ

−sinθ cosθ

 (2.92)

where θ is any angle. Givens matrix is orthogonal since GTG= I2.
A vector xT =

x1 x2

 will then be rotated by an angle equal to θ and transformed to x′T =(x1 cosθ+ x2 sinθ) (−x1 sinθ+ x2 cosθ)
. However there is no change in the magnitude of the

vector i.e. ||x|| = ||x′||. Consider now a matrix of the form (example given here is a 6×6 matrix)

G(3,5,θ)=

1 0 0 0 0 0
0 1 0 0 0 0
0 0 cosθ 0 sinθ 0
0 0 0 1 0 0
0 0 −sinθ 0 cosθ 0
0 0 0 0 0 1

(2.93)

8Named after James Wallace Givens (1910-1993)- American mathematician

2.7. QR Factorization 77

Note that this matrix has been obtained by modifying I6 by replacing suitable diagonal elements
by cosθ and correspondingly the suitable non-diagonal elements by sinθ or −sinθ. In the present
case i = 3 and j = 5 represent the two rows that are involved. If we premultiply a vector x by
G(i, j,θ) only the components xi and x j will be affected and effectively xT =

x1 x2 x3 x4 x5 x6

 is

transformed to x′T =
x1 x2 (x3 cosθ+ x5 sinθ) x4 (−x3 sinθ+ x5 cosθ) x6

, in the present case. We
note that there is no change in the magnitude of the vector since G(3,5,θ) or in general G(i, j,θ)
is orthogonal.

With this background we are ready to look at Givens rotation and QR factorization.
Consider a simple 2×2 matrix given by

A=
 a1,1 a1,2

a2,1 a2,2

 (2.94)

If we premultiply A by the Givens matrix G (Equation 2.92) we get cosθ sinθ
−sinθ cosθ

 a1,1 a1,2
a2,1 a2,2

= a1,1 cosθ+a2,1 sinθ a1,2 cosθ+a2,2 sinθ
−a1,1 sinθ+a2,1 cosθ −a1,2 sinθ+a2,2 cosθ

 (2.95)

We at once see that the resultant matrix becomes upper triangular if θ is chosen such that
−a1,1 sinθ+a2,1 cosθ = 0 or tanθ = a2,1

a1,1
.

Step 1 Consider now a n×n matrix A which needs to be brought to QR form. Assume
that all matrix elements are nonzero and hence we would like to make an,1 zero by pre-
multiplying A by a suitable Givens matrix G1. We need to manipulate only the rows n−1
and n and hence G1 =G(n−1,n,θ1) where we choose θ1 such that tanθ1 =

an,1

an−1,1
. To make

matters simple let us again consider n = 6. We thus need G(5,6,θ1) with tanθ1 = a6,1

a5,1
to

put a zero in place of a6,1. Thus we have

G(5,6,θ1)=

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 cosθ1 sinθ1
0 0 0 0 −sinθ1 cosθ1

This operation will put a zero in place of a61 and also modify all the elements on the 5th

and 6th rows. All other elements of A remain the same. Hence we would expect to see the
following.

G(5,6,θ1)A=

a1,1 a1,2 a1,3 a1,4 a1,5 a1,6
a2,1 a2,2 a2,3 a2,4 a2,5 a2,6
a3,1 a3,2 a3,3 a3,4 a3,5 a3,6
a4,1 a4,2 a4,3 a4,4 a4,5 a4,6
a1

5,1 a1
5,2 a1

5,3 a1
5,4 a1

5,5 a1
5,6

0 a1
6,2 a1

6,3 a1
6,4 a1

6,5 a1
6,6

78 Chapter.2 Solution of linear equations

In the above superscript 1 indicates that the element has changed because of Givens
rotation.

Step 2 In the next step we would like to put a zero in place of a1
5,1 and this may be

accomplished by pre-multiplying the above by G(4,5,θ2) where tanθ2 =
a1

5,1

a4,1
. Then we

should have

G(4,5,θ)=

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 cosθ2 sinθ2 0
0 0 0 −sinθ2 cosθ2 0
0 0 0 0 0 1

and

G(4,5,θ2)G(5,6,θ)A=

a1,1 a1,2 a1,3 a1,4 a1,5 a1,6
a2,1 a2,2 a2,3 a2,4 a2,5 a2,6
a3,1 a3,2 a3,3 a3,4 a3,5 a3,6
a1

4,1 a1
4,2 a1

4,3 a1
4,4 a1

4,5 a1
4,6

0 a2
5,2 a2

5,3 a2
5,4 a2

5,5 a2
5,6

0 a1
6,2 a1

6,3 a1
6,4 a1

6,5 a1
6,6

In the above entries with subscript 2 have undergone a “second” change. We see that
eventually we should have

G(1,2,θ5)G(2,3,θ4)G(3,4,θ3)
G(4,5,θ2)G(5,6,θ1)A =

a1
1,1 a1

1,2 a1
1,3 a1

1,4 a1
1,5 a1

1,6
0 a2

2,2 a2
2,3 a2

2,4 a2
2,5 a2

2,6
0 a2

3,2 a2
3,3 a2

3,4 a2
3,5 a2

3,6
0 a2

4,2 a2
4,3 a2

4,4 a2
4,5 a2

4,6
0 a2

5,2 a2
5,3 a2

5,4 a2
5,5 a2

5,6
0 a1

6,2 a1
6,3 a1

6,4 a1
6,5 a1

6,6

(2.96)

Step 3 Now we may consider the n−1×n−1 matrix obtained by removing the first row
and first column of the transformed matrix and repeat a similar process to put zeroes
below the element in the first column and first row of this matrix. In the above example
of 6×6 matrix we would be considering the 5×5 matrix given by

A1 =

a2
2,2 a2

2,3 a2
2,4 a2

2,5 a2
2,6

a2
3,2 a2

3,3 a2
3,4 a2

3,5 a2
3,6

a2
4,2 a2

4,3 a2
4,4 a2

4,5 a2
4,6

a2
5,2 a2

5,3 a2
5,4 a2

5,5 a2
5,6

a1
6,2 a1

6,3 a1
6,4 a1

6,5 a1
6,6

2.7. QR Factorization 79

which would eventually take the form

G(1,2,θ5)G(2,3,θ4)
G(3,4,θ2)G(4,5,θ1)A1 =

a3
2,2 a3

2,3 a3
2,4 a3

2,5 a3
2,6

0 a4
3,3 a4

3,4 a4
3,5 a4

3,6
0 a4

4,3 a4
4,4 a4

4,5 a4
4,6

0 a4
5,3 a4

5,4 a4
5,5 a4

5,6
0 a2

6,3 a2
6,4 a2

6,5 a2
6,6

(2.97)

Step 4 We proceed sequentially with n−2× n−2,. . .,2×2 matrices to put zeroes below
the diagonal of matrix A to finally arrive at an upper triangular matrix R given by (in the
present case of 6×6 matrix)

R=

a1
1,1 a1

1,2 a1
1,3 a1

1,4 a1
1,5 a1

1,6
0 a3

2,2 a3
2,3 a3

2,4 a3
2,5 a3

2,6
0 0 a5

3,3 a5
3,4 a5

3,5 a5
3,6

0 0 0 a7
4,4 a7

4,5 a7
4,6

0 0 0 0 a9
5,5 a9

5,6
0 0 0 0 0 a5

6,6

(2.98)

where the superscript indicates the number of changes undergone by an element of A.
A MATLAB program to perform one Givens rotation is given below

Program 2.6: Givens rotation

1 function [G,R] = givensrotation(A,i,j1 ,j2)

2 % I n p u t A : c o e f f i c i e n t m a t r i x
3 % Q : o r t h o g o n a l m a t r i x
4 % i : c o l u m n number o f e l e m e n t s
5 % j 1 : r o w number o f f i r s t e l e m e n t
6 % j 2 : r o w number o f s e c o n d e l e m e n t
7 % O u t p u t G : G i v e n s m a t r i x (2 x 2 m a t r i x)
8 % R : t r a n s f o r m e d m a t r i x
9 n = size(A,1); % r a n k o f m a t r i x A

10 G = zeros (2); % i n i t i a l i z e G i v e n s m a t r i x
11 A1= zeros(2,n); % e x t r a c t t w o r o w s o f A
12 A1(1,:) = A(j1 ,:); % i n v o l v e d i n m a t r i x o p e r a t i o n
13 A1(2,:) = A(j2 ,:);

14 R = A; % i n i t i a l i z e R m a t r i x
15 theta = atan(A(j2 ,i)/A(j1 ,i)); % c o m p u t e θ

16 G(1,1) = cos(theta); % e l e m e n t s o f G i v e n s m a t r i x
17 G(1,2) = sin(theta); % e l e m e n t s o f G i v e n s m a t r i x
18 G(2,1) = -sin(theta); % e l e m e n t s o f G i v e n s m a t r i x
19 G(2,2) = cos(theta); % e l e m e n t s o f G i v e n s m a t r i x
20 A1 = G*A1; % p e r f o r m m a t r i x m u l t i p l i c a t i o n
21 R(j1 ,:) = A1(1,:); % u p d a t e R m a t r i x
22 R(j2 ,:) = A1(2,:);

An example is worked out in detail to demonstrate the above.

80 Chapter.2 Solution of linear equations

Example 2.18
Obtain the upper triangle form of 4×4 matrix shown below by using Givens rotations.

A =

2 1 1 4
0 2 −1 0
1 −4 4 7
2 −3 2 −5

Solution :

Step 1 Element 4,1 is zeroed first. We choose tanθ1 = 2
1

= 2 to get θ1 = tan−1(2) =
1.107149 rad, cosθ1 = 0.447214, sinθ1 = 0.894427 and hence the Givens matrix is

G(3,4,1.107149) =

1 0 0 0
0 1 0 0
0 0 0.447214 0.894427
0 0 −0.894427 0.447214

We then get

A1 =G(3,4,1.107149)A =

2 1 1 4
0 2 −1 0

2.236068 −4.472136 3.577709 −1.341641
0 2.236068 −2.683282 −8.497058

Thus we have managed to put a zero in position 4,1.
Step 2 Next we would like to put a zero in position 3,1. Since element 2,1 is already zero

we would like not to affect it. Hence we consider a second Givens matrix G(1,3,θ2) where

tanθ2 = 2.236068
2

= 1.118034, cosθ2 = 0.666667, sinθ2 = 0.745356 to get

G(1,3,1.118034) =

0.666667 0 0.745356 0

0 1 0 0
0.745356 0 0.666667 0

0 0 0 1

Pre-multiplying A1 by the above matrix we get

A2 =G(1,3,1.118034)A1 =

3 −2.666667 3.333333 1.666667
0 2 −1 0
0 −3.726780 1.639783 −3.875851
0 2.236068 −2.683282 −8.497058

Thus we have put zeros below the diagonal element in the first column.
Step 3 For further processing we drop the first row and first column and consider the 3×3

matrix

B= =

2 −1 0
−3.726780 1.639783 −3.875851

2.236068 −2.683282 −8.497058

2.7. QR Factorization 81

We put a zero in the position 3,1 of this matrix by using the following Givens matrix with

tanθ1 = 2.236068
−3.726780

=−0.540420, cosθ1 = 0.857493, sinθ1 =−0.514496.

G(2,3,−0.540420) =

1 0 0
0 0.857493 −0.514496
0 0.514496 0.857493

Then we have

B1 =G(2,3,−0.540420)B =

2 −1 0
−4.346135 2.786639 1.048185

0 −1.457233 −9.280276

Step 4 Now we would like to put a zero in position 2,1 of above matrix. This is

accomplished by constructing a Givens matrix G(1,2,θ2) where θ2 = tan−1 −4.346135
2

=
tan−1(−2.173067)=−1.139510 rad. Thus we have

G(1,2,−1.139510) =

4.784233 −2.949503 −0.952202
0 0.173352 −0.984860
0 0.984860 0.173352

We then get

B2 =G(1,2,−1.139510)B1 =

4.784233 −2.949503 −0.952202
0 0.256498 0.438183
0 −1.457233 −9.280276

Step 5 Now that the second column has zeroes below the diagonal we consider lastly the

2×2 matrix given by

C= =
 0.256498 0.438183

−1.457233 −9.280276

This is easily handled by the following Givens matrix with θ1 = tan−1 −1.457233

0.256498
=

tan−1(−5.681277)=−1.396564. cosθ1 = 0.173352, sinθ1 =−0.984860

G(1,2,−1.396564) =
 0.173352 −0.984860

0.984860 0.173352

We then get

C1 =G(1,2,−1.396564)C =
 1.479635 9.215732

0 −1.177204

We see that the desired upper triangle matrix is obtained as

R =

3 −2.666667 3.333333 1.666667
0 4.784233 −2.949503 −0.952202
0 0 1.479635 9.215732
0 0 0 −1.177204

Apply Program 2.6 to obtain the upper triangular matrix.

82 Chapter.2 Solution of linear equations

A = [2 1 1 4

0 2 -1 0

1 -4 4 7

2 -3 2 -5];

[G,R] = givensmatrix(A,1,3,4)

[G,R] = givensmatrix(R,1,1,3)

[G,R] = givensmatrix(R,2,3,4)

[G,R] = givensmatrix(R,2,2,3)

[G,R] = givensmatrix(R,3,3,4)

The output is given below
R =

3.0000 -2.6667 3.3333 1.6667

-0.0000 4.7842 -2.9495 -0.9522

-0.0000 0.0000 1.4796 9.2157

0.0000 -0.0000 -0.0000 -1.1772

It is noted that the Q and R obtained here is not identical to those obtained by Householder
transformation. It is possible to have sign changes, with identical magnitude, in the
matrices. However, the product of Q and R remains equal to A in both the cases.

We have obtained the upper triangle factor in the above example by the use of a sequence
of Givens rotations. We would like to determine the factor Q now. The required
information is easily obtained by using the Givens matrices that were computed above.
We see that the following holds in the specific example considered above.

G(1,2,−1.396564)︸ ︷︷ ︸
2×2

G(1,2,−1.139510)G(2,3,−0.540420)︸ ︷︷ ︸
3×3

G(1,3,0.666667)G(3,4,1.107149)︸ ︷︷ ︸
4×4

A=R

We may recast this as

A=

G(1,2,−1.396564)︸ ︷︷ ︸

2×2

G(1,2,−1.139510)G(2,3,−0.540420)︸ ︷︷ ︸
3×3

G(1,3,1.118034)G(3,4,1.107149)︸ ︷︷ ︸
4×4

T

R=QR

Note that all the G′s are orthogonal and hence the inverse and transpose are identical.
We thus recognize the term inside the bracket as Q. The reader should note then that

Q=
GT (3,4,1.107149)GT (1,3,1.118034)︸ ︷︷ ︸

4×4
GT (2,3,−0.540420)GT (1,2,−1.139510)︸ ︷︷ ︸

3×3

GT (1,2,−1.396564)︸ ︷︷ ︸
2×2

Note that all matrices are made 4×4 by adding rows and columns, to the left and above,
as necessary, those of an identity matrix. The following shows how it is to be done.

2.7. QR Factorization 83

Example 2.19
Obtain the Q matrix in Example 2.18.
Solution :

Transposes of all Givens matrices in the above example are written down first.
4×4 Matrices:

GT (3,4,1.107149) = GT
1 =

1 0 0 0
0 1 0 0
0 0 0.447214 −0.894427
0 0 0.894427 0.447214

GT (1,3,1.118034) = GT
2 =

0.666667 0 −0.745356 0

0 1 0 0
0.745356 0 0.666667 0

0 0 0 1

3×3 Matrices:

GT (1,2,−0.540420) = GT
3 =

1 0 0
0 0.857493 0.514496
0 −0.514496 0.857493

GT (1,2,−1.139510) = GT

4 =

0.418040 0.908429 0
−0.908429 0.418040 0

0 0 1

2×2 matrix: Finally we have

GT (1,2,−1.396564)=GT
5 = =

 0.173352 0.984860
−0.984860 0.173352

Conversion to 4×4: By adding columns to the left and rows above, we get:

GT
3 =

1 0 0 0
0 1 0 0
0 0 0.857493 0.514496
0 0 −0.514496 0.857493

GT
4 =

1 0 0 0
0 0.418040 0.908429 0
0 −0.908429 0.418040 0
0 0 0 1

GT

5 =

1 0 0 0
0 1 0 0
0 0 0.173352 0.984860
0 0 −0.984860 0.173352

In the above the added entries are shown bold. We finally have

GT
1 GT

2 GT
3 GT

4 GT
5 =Q=

0.666667 0.580611 0.331360 −0.329617
0.000000 0.418040 0.157478 0.894675
0.333333 −0.650284 0.656158 0.188353
0.666667 −0.255469 −0.659438 0.235441

84 Chapter.2 Solution of linear equations

MATLAB program has been provided below to determine Q, R matrices using Givens
rotation.

Program 2.7: QR using Givens rotation

1 function [Q,R] = qrgivens(A)

2 n = size(A,1); % r a n k o f m a t r i x A
3 QT = eye(n); % i n i t i a l i z i n g t r a n s p o s e o f Q m a t r i x
4 R = A; % i n i t i a l i z i n g R
5 A1 = zeros(2,n); % m a t r i x A1 w i l l b e u s e d f o r m a t r i x

% m u l t i p l i c a t i o n
6 for i=1:n-1

7 for j=n-1: -1:i

8 A1(1,:) = QT(i,:); % i n v o l v e d i n m a t r i x o p e r a t i o n
9 A1(2,:) = QT(j+1,:);

10 [G,R] = givensmatrix(R,i,i,j+1); % G i v e n s r o t a t i o n
11 A1 = G*A1; % p e r f o r m m a t r i x m u l t i p l i c a t i o n
12 QT(i,:) = A1(1,:); % u p d a t e QT
13 QT(j+1,:) = A1(2,:); % u p d a t e QT
14 end

15 end

16 Q=QT ';

Cost of computation of QR factorization using Givens rotation
Consider ith column. Matrix multiplication is the most expensive operation involved
Number of computations to be performed for matrix multiplication with Givens matrix for ith

column: 6(n− i+1)
Number of rows for which Givens rotation has to be performed = n− i

Total number of operations for determining R and Q = 2
n−1∑
i=1

6(n− i+1)(n− i)∼ 4
3

n3

It is apparent that if A is a dense matrix a large number of Givens rotations are needed to
obtain its QR factorization. A large number of matrix multiplications are involved. Hence
the Householder method is advantageous in such situations. However the Givens method
is useful if the coefficient matrix is sparse, as for example, when it is tridiagonal. The
following example will demonstrate this.

Example 2.20
Solve the follow tridiagonal system of equations by QR factorization using Givens rotations.

−2.0625 1 0 0
1 −2.0625 1 0
0 1 −2.0625 1
0 0 1 −1.03125

x1
x2
x3
x4

=

−1

0
0
0

Solution :

2.7. QR Factorization 85

Step 1 The coefficient matrix is a 4× 4 square matrix. Because it is sparse only three
Givens rotations are required for QR factorization. We make element 2,1 zero by choosing

θ1 = tan−1 1
−2.0625

= tan−1(−0.484848)=−0.451453 rad. The Givens matrix is given by

G1 =G(1,2,−0.451453)=

0.899814 −0.436274 0 0
0.436274 0.899814 0 0

0 0 1 0
0 0 0 1

This transforms the coefficient matrix to

A1 =G1A=

−2.292140 1.799628 −0.436274 0

0 −1.419593 0.899814 0
0 1 −2.0625 1
0 0 1 −1.03125

Step 2 We make element 3,2 of A1 zero by choosing θ2 = tan−1 1

−1.419593
= tan−1(−0.704427)=

−0.613691 rad. The Givens matrix is given by

G2 =G(3,2,−0.613691)=

1 0 0 0
0 0.817528 −0.575889 0
0 0.575889 0.817528 0
0 0 0 1

This transforms the coefficient matrix to

A2 =G2A1 =

−2.292140 1.799628 −0.436274 0

0 −1.736446 1.923394 −0.575889
0 0 −1.167958 0.817528
0 0 1 −1.03125

Step 3 We make element 4,3 of A2 zero by choosing θ3 = tan−1 1

−1.167958
= tan−1(−0.856195)=

−0.708080 rad. The Givens matrix is given by

G3 =G(4,3,−0.708080)=

1 0 0 0
0 1 0 0
0 0 0.759612 −0.650376
0 0 0.650376 0.759612

This transforms the coefficient matrix to

A3 =G3A2 =R=

−2.292140 1.799628 −0.436274 0

0 −1.736446 1.923394 −0.575889
0 0 −1.537572 1.291705
0 0 0 −0.251650

Step 4 The transpose of the Q is then obtained directly as QT =G3G2G1 as

QT =G3G2G1 =

0.899814 −0.436274 0 0
0.356666 0.735623 −0.575889 0
0.190849 0.393626 0.621004 −0.650376
0.163404 0.337020 0.531701 0.759612

86 Chapter.2 Solution of linear equations

Step 5 The b matrix is transformed to

(QTb)T =bT
1 =

−0.899814 −0.356666 −0.190849 −0.163404

and finally we get the following system of equations.
−2.292140 1.799628 −0.436274 0

0 −1.736446 1.923394 −0.575889
0 0 −1.537572 1.291705
0 0 0 −0.251650

x1
x2
x3
x4

=

−0.899814
−0.356666
−0.190849
−0.163404

Step 6 We solve these by back substitution to get

xT =
0.839644 0.731766 0.669623 0.649331

2.8 Iterative methods of solution
The methods discussed so far have considered reorganizing the coefficient matrix

such that simple backward or forward substitutions are performed to obtain the desired
solution. These methods directly give the solution. There are another class of solvers
where the solution is determined iteratively. A solution vector is initially assumed and
through a series of operations the solution vector is systematically corrected towards the
solution. Once the error is within acceptable limits, the iterations are stopped. To make
the iterative process stable, a preconditioner step (similar to pivoting) can be applied to
the system of equations.

Start with
initial

guess x0

Precondition

Correct solution vector xi+1

Check for residuals, ε

Converged ?

Stop

no

xi

Yes, ε≤ tolerance

2.8. Iterative methods of solution 87

2.8.1 Jacobi and Gauss Seidel methods

Consider the linear system Ax=b. We may write the coefficient matrix as A=L+D+U
where L is strict lower triangular9, D is diagonal and U is strict upper triangular 10. These
are respectively given by the following, for a 7×7 matrix (as an example):

L=

0 0 0 0 0 0 0
a2,1 0 0 0 0 0 0
a3,1 a3,2 0 0 0 0 0
a4,1 a4,2 a4,3 0 0 0 0
a5,1 a5,2 a5,3 a5,4 0 0 0
a6,1 a6,2 a6,3 a6,4 a6,5 0 0
a7,1 a7,2 a7,3 a7,4 a7,5 a7,6 0

D=

a1,1 0 0 0 0 0 0
0 a2,2 0 0 0 0 0
0 0 a3,3 0 0 0 0
0 0 0 a4,4 0 0 0
0 0 0 0 a5,5 0 0
0 0 0 0 0 a6,6 0
0 0 0 0 0 0 a7,7

and

U=

0 a1,2 a1,3 a1,4 a1,5 a1,6 a1,7
0 0 a2,3 a2,4 a2,5 a2,6 a2,7
0 0 0 a3,4 a3,5 a3,6 a3,7
0 0 0 0 a4,5 a4,6 a4,7
0 0 0 0 0 a5,6 a5,7
0 0 0 0 0 0 a6,7
0 0 0 0 0 0 0

We then rewrite the given equation set as

Dx=b− (L+U)x

We then write the solution in the form

x=D−1[b− (L+U)x] (2.99)

This way of writing the equation makes it possible to obtain the solution by an iterative
process where a guess value xk is used on the right hand side to obtain an improved value
xk+1 as

xk+1 =D−1[b− (L+U)xk] (2.100)

9Strict lower triangular matrix has non-zero elements for j < i, zero elements for i ≥ j
10Strict upper triangular matrix has non-zero elements for j > i, zero elements for i ≤ j

88 Chapter.2 Solution of linear equations

Noting that D−1 is also diagonal (Section 2.2.2) with elements represented by
1

ai,i
the

above may be rewritten in the more familiar form

xk+1
i =

bi −∑i−1
j=1 ai, jxk

j −
∑n

j=i+1 ai, jxk
j

ai,i
(2.101)

This constitutes what is known as the Jacobi iteration scheme.11 Iteration stops when the
change |xk+1

i − xk
i | ≤ ε for 1≤ i ≤ n where ε is a prescribed small number.

A variant of the above is the Gauss Seidel12 scheme which recognizes that xk+1
j for i < j

are available during the iteration process and writes the equation set as

xk+1 =D−1[b−Lxk+1 −Uxk] (2.102)

The above may be rewritten in the more familiar form

xk+1
i =

bi −∑i−1
j=1 ai, jxk+1

j −∑n
j=i+1 ai, jxk

j

ai,i
(2.103)

Another variant is the method of successive under/over-relaxation that is constructed by
writing the update as a weighted sum of the old and new values. Thus we would replace
Equation 2.103 by

xk+1 = (1−ω)xk +ωD−1[Lxk+1 −Uxk] (2.104)

where ω is known as the relaxation parameter. ω < 1 indicates underrelaxation, ω =
1 represents Gauss Seidel iteration and ω > 1 represents overrelaxation. This may be
written in the more convenient form

xk+1
i = (1−ω)xk

i +ω
bi −∑i−1

j=1 ai, jxk+1
j −∑n

j=i+1 ai, jxk
j

ai,i
(2.105)

If the coefficient matrix is diagonal dominant, the above methods will converge. In the
case of successive over-relaxation method ω < 2. For determining the optimum value for
ω see reference13.

Program 2.8: Gauss Seidel for system of linear equations

1 function X = gaussSeidel(A,B,Xg ,relax ,tolerance)

2 % I n p u t :
3 % A : c o e f f i e i e n t m a t r i x
4 % B : r i g h t hand V e c t o r
5 % Xg : g u e s s f o r o u t p u t v e c t o r
6 % r e l a x : r e l a x a t i o n f a c t o r

11after Carl Gustav Jacob Jacobi, 1804-1851, a German mathematician,
12after Philipp Ludwig von Seidel, 1821-1896, a German mathematician
13Reid, J. K. “A method for finding the optimum successive over-relaxation parameter.” The Computer

Journal 9.2 (1966): 200-204.

2.8. Iterative methods of solution 89

7 % t o l e r a n c e
8 % O u t p u t :
9 % X : o u t p u t V e c t o r

10 n = size(A,1); % r a n k o f m a t r i x A
11 r = B-A*Xg; % r e s i d u a l
12 X = Xg; % i n i t i a l i z e o u t p u t v e c t o r
13 s = r'*r; % i n i t i a l e r r o r
14 count = 0; % i n i t i a l i z e i t e r a t i o n c o u n t
15 while(s > tolerance) % l o o p u n t i l e r r o r < t o l e r a n c e
16 for i=1:n % l o o p f o r e a c h v a r i a b l e
17 sum = B(i);

18 for j=1:n % i n n e r l o o p
19 if(i~=j)

20 sum = sum - A(i,j)*X(j); % f o r G a u s s S e i d e l
21 %sum = sum − A (i , j) * Xg (j) ; % f o r J a c o b i
22 end

23 end

24 X(i) = (1-relax)*Xg(i)+relax*sum/A(i,i);

25 % u p d a t e o u t p u t v e c t o r
26 end

27 r = B-A*X; % u p d a t e r e s i d u a l
28 s = r'*r; % u p d a t e e r r o r
29 Xg = X;

30 count = count + 1; % u p d a t e i t e r a t i o n c o u n t
31 end

Example 2.21
Figure 2.4 shows a resistance network connected to a battery that supplies 9 V across its
terminals. It is desired to determine the voltages with respect to ground at the nodes labeled
2 -5 using Gauss Seidel iteration.

100 200 100

200 100 200

50 50

+9 V 0 V

1 4 5 6

2 3

Figure 2.4: Resistance network for
Example 2.21 (All resistances are in Ω)

Solution :
Step 1 Determining nodal equations Nodal equations are obtained by applying Kir-

choff ’s current law to the respective nodes. The current law states that the sum of all the
currents entering a node must be zero. Ohms law is used to calculate the currents. Consider
node 2 as an example. We take v1 = 9 V and get

9−v2

100
+ v3 −v2

200
+ v4 −v2

50
= 0

This may be rewritten as

−0.035v2 +0.005v3 +0.02v4 =−0.09

90 Chapter.2 Solution of linear equations

Similarly all the other nodal equations may be derived to get the following set of equations.
−0.035 0.005 0.02 0

0.005 −0.035 0 0.02
0.02 0 −0.035 0.01

0 0.02 0.01 −0.035

v2
v3
v4
v5

=

−0.09

0
−0.045

0

Note that the set of equations are diagonal dominant. These equations may be recast in a
form suitable for Gauss Seidel iteration. Thus

vk+1
2 = −0.09−0.005vk

3 −0.02vk
4

−0.035

vk+1
3 = −0.005vk+1

2 −0.02vk
5

−0.035

vk+1
4 = −0.045−0.02vk+1

2 −0.01vk
5

−0.035

vk+1
5 = −0.02vk+1

3 −0.01vk+1
4

−0.035

Step 2 We start Gauss Seidel iteration with the initial set given by

vT =
6 3 6 3

where all nodal voltages are in V . The calculations have been done using a spreadsheet
and the results are shown in the following table. We track the change in each nodal voltage
between iterations and stop the calculations when the change is less than a mV .

Iteration No. 0 1 2 3 4
v2 6 6.429 6.271 6.257 6.260
v3 3 2.633 2.705 2.720 2.725
v4 6 5.816 5.774 5.774 5.778
v5 3 3.166 3.195 3.204 3.208

Change
∆v2 0.429 -0.157 -0.014 0.002
∆v3 -0.367 0.072 0.015 0.005
∆v4 -0.184 -0.042 0.000 0.004
∆v5 0.166 0.029 0.009 0.004

Iteration No. 5 6 7 8
v2 6.262 6.264 6.266 6.267
v3 2.728 2.729 2.730 2.731
v4 5.781 5.783 5.784 5.785
v5 3.210 3.212 3.213 3.213

Change
∆v2 0.003 0.002 0.001 0.000
∆v3 0.003 0.002 0.001 0.000
∆v4 0.003 0.002 0.001 0.000
∆v5 0.002 0.001 0.001 0.000

2.8. Iterative methods of solution 91

The solution set is thus given by

vT =
6.267 2.731 5.785 3.213

Cost of computation of one iteration of Gauss Seidel/Jacobi method
Number of operations for one unknown variable = addition ‘+’ = n
multiplication ‘×’ = n-1
division ‘/’ = 1
Total number of operations for one unknown variables = 2n
Total number of operations for n unknown variables = 2n2

Example 2.22
The following sparse but not tridiagonal set of equations need to be solved by iterative
methods.

4 −1 0 0 −1 0 0 0
−1 4 −1 0 0 −1 0 0

0 −1 4 −1 0 0 −1 0
0 0 −2 4 0 0 0 −1

−1 0 0 0 4 −1 0 0
0 −1 0 0 −1 4 −1 0
0 0 −1 0 0 −1 4 −1
0 0 0 −1 0 0 −2 4

x1
x2
x3
x4
x5
x6
x7
x8

=

150
100
100
100
100
50
50
50

Compare the convergence rates of Jacobi, Gauss Seidel and SOR techniques in this case.
Solution :

Case 1: Jacobi iterations
We write below the equations for performing Jacobi iterations. Values before performing
an iteration are identified as ‘old’ and those after performing an iteration are identified as
‘new’.

xnew
1 = xold

2 + xold
5 +150
4

xnew
2 = xold

1 + xold
3 + xold

6 +100
4

xnew
3 = xold

2 + xold
4 + xold

7 +100
4

xnew
4 = 2xold

3 + xold
8 +150
4

xnew
5 = xold

1 + xold
6 +100
4

xnew
6 = xold

2 + xold
5 + xold

7 +50
4

xnew
7 = xold

3 + xold
6 + xold

8 +50
4

xnew
8 = xold

4 +2xold
7 +150
4

We initialize the vector as xT,old =
80 80 80 80 60 60 60 60

. Tolerance is set as ε =
0.001. Convergence is achieved after 21 iterations to the solution vector given by xT,new =72.019 79.246 81.658 82.237 58.831 63.307 65.149 65.634

.

92 Chapter.2 Solution of linear equations

Case 2: Gauss Seidel iterations
We write below the equations used for performing Gauss Seidel iterations.

xnew
1 = xold

2 + xold
5 +150
4

xnew
2 = xnew

1 + xold
3 + xold

6 +100
4

xnew
3 = xnew

2 + xold
4 + xold

7 +100
4

xnew
4 = 2xnew

3 + xold
8 +150

4

xnew
5 = xnew

1 + xold
6 +100
4

xnew
6 = xnew

2 + xnew
5 + xold

7 +50
4

xnew
7 = xnew

3 + xnew
6 + xold

8 +50
4

xnew
8 = xnew

4 +2xnew
7 +150
4

We initialize the vector as in Case 1. Tolerance is again set as ε = 0.001. Convergence is
achieved after 14 iterations to the solution vector given earlier in Case 1.
Case 3: Iteration with overrelaxation
We choose a relaxation parameter of ω = 1.2 and perform iterations to obtain the solution.
The initial vector is the same as that used in the above two cases. Tolerance is again set as
ε= 0.001. Convergence is achieved after 11 iterations to the solution vector given earlier in
Case 1. Figure 2.5 compares the rate of change of x1 with iterations for the three schemes.

10-6

10-4

10-2

100

Iteration number
0 10 20 30 40

 Jacobi
 Gauss Seidel
 SOR

Figure 2.5: Convergence of
Jacobi, Gauss Seidel and SOR
methods∣ ∣ ∣xn

ew
1

−x
ol

d
1

∣ ∣ ∣

2.8.2 Conjugate Gradient method

In many engineering applications we need to solve a large set of equations where the
coefficient matrix is symmetric, sparse, diagonally dominant and hence positive definite.
The given equations are equivalent to the determination of the optimum of a quadratic
form14 as will be shown below.

14Quadratic form is a polynomial of degree 2. For example, in two dimensions, f (x1, x2) = 2x2
1 +2x1x2 +

3x2
2−3x1+9x2 is a quadratic form. This may be written in matrix notation indicated by Equation 2.106 where

xT = [x1 x2], A=
 4 2

2 6

, bT = [3 −9] and c is the null vector.

2.8. Iterative methods of solution 93

Consider a quadratic form given by

f (x)= 1
2

xTAx−bTx+c (2.106)

where A is an n× n symmetric matrix, b is a vector, x is the vector that needs to be
determined and c is a constant vector. If we differentiate the first term on the right hand
side with respect to x we get

d
dx

(
1
2

xTAx
)
= 1

2
(Ax+ATx)=Ax

since AT =A for a symmetric matrix. Differentiate Equation 2.106 with respect to x to get

d f (x)
dx

= f ′(x)=Ax−b (2.107)

If the derivative given by Equation 2.107 vanishes the given set of linear equations are
satisfied and the quadratic form given by Equation 2.106 has an optimum. Since we
assumed the coefficient matrix to be positive definite the optimum will be a minimum
of the quadratic form. Hence the solution represents a critical point15 of the quadratic
form. Therefore it is possible to solve such systems by the optimization algorithms such
as Steepest Descent or the Conjugate Gradient (CG) method.

Prelude to the CG method: Steepest Descent method (SD) Before moving on to the
CG we will introduce the SD that is easy to understand.
Step 1 Determine direction of descent
We start from a guess point xi and slide down to the bottom of the paraboloid that is
represented by the quadratic form. It certainly is not possible to move to the bottom in
a single step since the direction of slide has to be the right one. All we can do once we
have chosen a starting point is to move in a direction along which the quadratic form
decreases most rapidly. Obviously the direction of choice is opposite the direction of f ′(xi)
i.e. − f ′(xi)=b−Axi. Of course if f ′(xi)= 0 we are already at the critical point x∗. However
it may not be so and hence we represent the error as ei = xi −x∗.
The residual ri is defined as

ri =b−Axi =b−Ax∗−Aei =−Aei =− f ′(xi) (2.108)

Hence ri is the direction of steepest descent.

Step 2 Determine the new point The direction of descent is known, but what should
be the step by which we should move? Let the new point be xi+1 = xi +αiri. αi is the
‘step size’, a scalar which has to be selected such that the error is minimum. Hence, the
derivative of the function with respect to αi must be zero which gives

d f (xi+1)
dαi

= f ′(xi+1)
dxi+1

dαi
=−rT

i+1ri = 0 (2.109)

15Critical point represents the location of an optimum. More on this later.

94 Chapter.2 Solution of linear equations

The above has used the defining equations for ri, xi+1, and rules of matrix multiplication
to indicate that ri and ri+1 are orthogonal. The above may further be rewritten as

rT
i+1ri = [b−Axi+1]Tri = [b−A(xi +αiri)]Tri = rT

i ri −αi(Ari)Tri = 0

and solved for αi to get

αi =
rT

i ri

(Ari)Tri
= rT

i ri

rT
i Ari

(2.110)

We check if the solution has converged. We terminate the iterations if yes otherwise we
continue the iterations.

In practice we reduce the number of arithmetical operations by writing xi+1 = xi +αiri
after pre-multiplication by A as

Axi+1 =Axi +αiAri or ri+1 = ri −αiAri (2.111)

We present an example below on the use of SD method before moving on to the CG method.

Example 2.23
Solve the following linear system of equations by the Steepest Descent method.

0.00425 −0.00100 −0.00125
−0.00100 0.00467 −0.00200
−0.00125 −0.00200 0.00425

x1
x2
x3

=

0.018
0
0

Solution :

Step 1 Determine the direction of descent
We start from an arbitrarily chosen point given by xT

0 = [1 1 1]. We calculate the residual
at this point as

r10 = 0.018−0.00425+0.00100+0.00125= 0.01600

r20 = 0.00100−0.00467+0.00200=−0.00167

r30 = 0.00125+0.00200−0.00425=−0.00100

rT
0 =

0.01600 −0.00167 −0.00100

Step 2 Determine step size and update to a new point
Then we have

rT
0 r0 = [0.01600 −0.00167 −0.001]

0.01600

−0.00167
−0.00100

= 2.59778×10−4

We also have

Ar0 =

0.00425 −0.00100 −0.00125
−0.00100 0.00467 −0.00200
−0.00125 −0.00200 0.00425

0.01600
−0.00167
−0.00100

=

0.00007
−0.00002
−0.00002

2.8. Iterative methods of solution 95

Hence

rT
0 Ar0 ==

0.01600 −0.00167 −0.001

0.00007
−0.00002
−0.00002

= 1.11919×10−6

With these the step size parameter is obtained as

α0 = 2.59778×10−4

1.11919×10−6 = 217.95639

The next point for search is then given by

x1 =

1
1
1

+217.95369

0.00007

−0.00002
−0.00002

=

4.48730
0.63674
0.78204

Step 3 Calculate new residuals

We may now calculate the new residuals as

r11 = 0.018−0.00425×4.48730+0.00100×0.63674+0.00125×0.78204

= 0.00054

r21 = 0.00100×4.48730−0.00467×0.63674+0.00200×0.78204= 0.00038

r31 = 0.00125×4.48730+0.00200×0.63674−0.00425×0.78204= 0.00356

Hence

rT
1 r1 =

0.00054 0.00038 0.00356

0.00054
0.00038
0.00356

= 2.24471×10−5

We thus see that the magnitude of the residual vector is smaller than that with which we
started.

We have completed one iteration now. We may continue this process till the residuals
converge to zero with desired tolerance or we may look at the change in the vector x i.e.
xi+1−xi to decide when to stop. After 13 iterations we see that the change in each component
of the vector is smaller than 10−3 and we may stop the iteration process. Thus the solution
may be written down as

xT = [5.615 2.393 2.777]

Progressive convergence to the desired solution is shown graphically in Figure 2.6. Though
the first few iterations show quick approach towards the solution convergence is slow after
that.

The reason for slow convergence of the SD method may be explained by looking at a simple
case of a quadratic form in two dimensions. Consider the solution of two equations in two
unknowns given by 4 2

2 6

 x1
x2

=
 3

−9

 (2.112)

96 Chapter.2 Solution of linear equations

x 1
 o

r x
2 o

r x
3

0

1

2

3

4

5

6

Iteration Number
0 1 2 3 4 5 6 7 8 9 10 11 12 13

x1

x2

x3

Figure 2.6: Convergence of
solution in Example 2.23

The corresponding quadratic form is seen to be

f (x1, x2)= 2x2
1 +2x1x2 +3x2

2 −3x1 +9x2 (2.113)

We start the Steepest Descent procedure for minimizing the above quadratic form
and obtain the minimum after a large number of iterations, as shown in Figure 2.7.
Convergence is seen to involve a staircase pattern with 90◦ turns. The steps become

x 2

-2.5

-2

-1.5

-1

-0.5

0

x1

0 0.5 1 1.5 2 2.5

(0) 0

(1) -9.7826
(4) -12.1325

(3) -12.0611

(2) -11.6887

(10) f(x1,x2)
 = -12.15

Figure 2.7: Convergence of the
Steepest Descent method for the
quadratic form given in Equation
2.113

smaller and smaller as we progress and hence we need a large number of iterations. In
the present case we have stopped the calculations after 10 iterations to get a minimum
value of fmin =−12.15. Corresponding to this the root is given by x1 = 1.8, x2 =−2.1. It is
seen that the minimum could have been easily reached by taking a step along direction 1
- 10 after the first iteration. The CG method does exactly this and reaches the minimum
in just 2 steps as will be shown later. We develop the CG method now.

CG Method

The CG method chooses the new search direction after each iteration by requiring it
to be A-conjugate with respect the initial search direction. Two directions di and d j are
A-conjugate if dT

i Ad j = 0.

2.8. Iterative methods of solution 97

Let us assume that we have reached xi after i iteration steps. We choose the next point
using the expression

xi+1 = xi +αidi (2.114)

The value of αi is chosen so as to make the derivative
d f (xi+1)

dαi
= 0. Thus we have

d f (xi+1)
dαi

= f ′(xi+1)
dxi+1

dαi
=−rT

i+1di = 0

With ri+1 =b−Axi+1 =b−Axi −αiAdi = ri −αiAdi we have

rT
i+1di = rT

i di −αidT
i Adi = 0

or solving for αi we have

αi =
rT

i di

dT
i Adi

(2.115)

Let us now seek for the next direction of search

di+1 = ri+1 +βidi (2.116)

where βi is to be determined using the condition that di and di+1 are A conjugate. We
then have

dT
i+1Adi =

(
ri+1 +βidi

)T Adi = 0

Solving for βi we get

βi =−rT
i+1Adi

dT
i Adi

(2.117)

It is obvious that the Conjugate Gradient method may be applied only after the first step.
It is usual to choose the first step as a steepest descent step.

Summary of Conjugate gradient method
Step 1 Make an initial guess, x0. Perform steepest descent to find the first direction of descent
(d0). In the first iteration, the direction of descent and the residual r0 are same.

r0 =d0 =b−Ax0

Step 2 Determine the optimum step size α1

α1 =
rT

0 d0

dT
0 Ad0

= rT
0 r0

dT
0 Ar0

Step 3 Update the point to x1.
x1 = x0 +α1d0

Step 4 Evaluate new residual
r1 = r0 −α1Ad0

If residual rT
1 r1 is less than tolerance stop iteration. Otherwise go to step 5.

98 Chapter.2 Solution of linear equations

Step 5 Determining new direction for descent
Determine β1

β1 =− rT
1 Ad0

dT
0 Ad0

Update the direction of descent
d1 = r1 +β1d0

Step 6 Repeat steps 2-5 until convergence is reached

Consider again the quadratic form represented by Equation 2.113. The starting values
are taken as xT

0 = [0 0] as we did earlier by the SD method.

The matrix elements for the present case are shown below.

A b
4 2 3
2 6 -9

The steepest descent method uses the residuals to calculate the step size and the next
point x1 as shown below.

x0 r0 Ar0 rT
0 Ar0 α0 x1

0 3 -6 414 0.2174 0.6522
0 -9 -48 -1.9565

We set d0 = r0 and seek the next trial direction d1 using the CG method.

d0 dT
0 Ad0 x1 r1 rT

1 Ad0 β0 d1
3 414 0.6522 4.3043 -94.6957 0.2287 4.9905
-9 -1.9565 1.4348 -0.6238

Using the above values the next point may be calculated.

x1 r1 Ar1 rT
1 Ar1 α1 x2

0.6522 4.3043 20.0870 111.1645 0.2300 1.8
-1.9565 1.4348 17.2174 -2.1

The residuals are zero at x2 and hence we terminate the calculations. The solution has
been obtained after just two iterations! The convergence to the minimum is shown in
Figure 2.8 as a 3D plot. The vector is a point on the surface and we see that the point
moves to the minimum value in two iterations. The SD method converges slowly as
indicated in the same figure. A MATLAB code for CG method is given below.

Program 2.9: Conjugate gradient method for system of linear equations

1 function [x] = cg(A,b,xguess ,tolerance)

2 % I n p u t A : c o e f f i e i e n t m a t r i x
3 % b : r i g h t hand v e c t o r

2.8. Iterative methods of solution 99

0
0.5

1
1.5

2
2.5 −2.5

−2
−1.5

−1
−0.5

0−14

−10

−6

−2

0

x
2

x
1

f(
x 1
,x
2)

Steepest descent Conjugate gradient

Figure 2.8: Convergence of the
Conjugate Gradient and Steepest
descent methods for the quadratic
form given in Equation 2.113

4 % x g u e s s : i n i t i a l g u e s s
5 % t o l e r a n c e : t o l e r a n c e f o r c o n v e r g e n c e
6 % O u t p u t x : f i n a l o u t p u t v e c t o r
7
8 r = b-A*xguess; % c a l c u l a t e i n i t i a l r e s i d u a l
9 d = r; % i n i t i a l d i r e c t i o n o f d e s c e n t

10 s = r'*r; % c a l c u l a t e i n i t i a l e r r o r
11 count = 0; % i n i t i a l i z e i t e r a t i o n c o u n t
12 while (s >= tolerance) % l o o p u n t i l e r r o r ≤ t o l e r a n c e
13 alpha = r'*d/(d'*A*d); % c a l c u l a t e s t e p s i z e a l p h a
14 xguess = xguess + alpha*d; % u p d a t e x
15 r = r - alpha*A*d; % c a l c u l a t e new r e s i d u a l
16 beta = -r'*A*d/(d'*A*d); % c a l c u l a t e b e t a
17 d = r+ beta*d; % u p d a t e new d i r e c t i o n CG s t e p
18 % d = r ; % SD s t e p
19 % u n c o m m e n t SD s t e p i f SD i s d e s i r e d
20
21 s = r'*r; % c a l c u l a t e e r r o r
22 count = count + 1; % u p d a t e i t e r a t i o n
23 end

24 x = xguess; % u p d a t e f i n a l v e c t o r

Computation cost of Conjugate Gradient method for one iteration
Conjugate gradient method involves:
Matrix multiplication : 1 (Ad0) :∼O(n2)
Dot products : 3 :∼O(n)
Hence, for large values of n, the cost of computation of CG method is ∼O(n2).

100 Chapter.2 Solution of linear equations

Example 2.24
Consider Example 2.21 again but solve using the Conjugate Gradient method. Use the same
starting values.
Solution :

Step 1: Steepest Descent method. We start with the initial guess x0 = [6 3 6 3] and the
calculations as shown below in tabular form leads to the next point x1. Note that we set
d0 = r0 in this step.

x0 r0 d0 α0 x1 β0 d1
6 0.015 0.015 16 6.24000 0.00160 0.00062
3 -0.015 -0.015 2.76000 -0.00062
6 -0.015 -0.015 5.76000 0.00058
3 0.015 0.015 3.24000 -0.00058

Step 2: The next step is the first Conjugate Gradient Step which takes us from x1 to x2 as
shown in the tabulation below. Note that d1 differs from r1.

x1 r1 d1 α1 x2 β1 d2
6.24 0.00060 0.00062 44.64286 6.26786 0.00446 0.00007
2.76 -0.00060 -0.00062 2.73214 -0.00007
5.76 0.00060 0.00058 5.78571 -0.00007
3.24 -0.00060 -0.00058 3.21429 0.00007

Step 3: We take a second CG step now. We at once see that r2 = 0 and hence there is no
change in the solution i.e. x2 = x3 and hence the method has converged to the solution,
essentially in two iteration steps.

x2 r2 d2 α2 x3 β2 d3
6.26786 0 0.00007 0 6.26786 0 0
2.73214 0 -0.00007 2.73214 0
5.78571 0 -0.00007 5.78571 0
3.21429 0 0.00007 3.21429 0

The procedure has converged after one SD and one CG iterations. The convergence can be
followed by looking at the magnitude of the square of the residual given by rTr. We have
rT

0 r0 = 0.0009, rT
1 r1 = 0.00000144 and rT

2 r2 = 0.

Use Program 2.9 to solve the Example.

A = [-0.035 0.005 0.02 0;

0.005 -0.035 0 0 02;

0.02 0 -0.035 0.01;

0 0.02 0.01 -0.035];

B = [-0.09; 0; -0.045; 0];

xguess = [6; 3; 6; 3];

x = cg(A,B,xguess ,1e-6)

2.8. Iterative methods of solution 101

The output of the program is given below.
x = [6.2679; 2.7321; 5.7857; 3.2143]

Example 2.25
Compare the convergence rates of Gauss Seidel, SOR and CG method for solving the system
of equations

4 −1 −3/4 −1/2 −1/4 −1/8 −1/16 −1/32
−1 4 −1 −1/2 −1/4 −1/8 −1/16 −1/32

−3/4 −1 4 −1 −1/4 −1/8 −1/16 −1/32
−1/2 −1/2 −1 4 −1 −1/8 −1/16 −1/32
−1/4 −1/4 −1/4 −1 4 −1 −1/16 −1/32
−1/8 −1/8 −1/8 −1/8 −1 4 −1 0

−1/16 −1/16 −1/16 −1/16 −1/16 −1 4 −1
−1/32 −1/32 −1/32 −1/32 −1/32 0 −1 4

x1
x2
x3
x4
x5
x6
x7
x8

=

150
100
100
100
100

50
50
50

Also compare the solutions obtained using Gauss elimination and Cholesky decomposition.
Solution :

MATLAB Programs 2.9 and 2.8 have been used to solve the system of linear equations
A= [4.0000 -1.0000 -0.7500 -0.5000 -0.2500 ...

-0.1250 -0.0625 -0.03125

-1.0000 4.0000 -1.0000 -0.5000 -0.2500 ...

-0.1250 -0.0625 -0.03125

-0.7500 -1.0000 4.0000 -1.0000 -0.2500 ...

-0.1250 -0.0625 -0.03125

-0.5000 -0.5000 -1.0000 4.0000 -1.0000 ...

-0.1250 -0.0625 -0.03125

-0.2500 -0.2500 -0.2500 -1.0000 4.0000 ...

-1.0000 -0.0625 -0.03125

-0.1250 -0.1250 -0.1250 -0.1250 -1.0000 ...

4.0000 -1.0000 0.0000

-0.0625 -0.0625 -0.0625 -0.0625 -0.0625 ...

-1.0000 4.0000 -1.0000

-0.03125 -0.03125 -0.03125 -0.03125 -0.03125 ...

0.0000 -1.0000 4.0000];

B = [150; 100; 100; 100; 100; 50; 50; 50];

xguess = [80; 80; 80; 80; 60; 60; 60; 60];

xcg = cg(A,B,xguess ,1e-6); % C o n j u g a t e G r a d i e n t
xgs = gaussSeidel(A,B,xguess ,1.0 ,1e-6); % G a u s s S e i d e l
xgsr = gaussSeidel(A,B,xguess ,1.2 ,1e-6); %SOR
[xcholesky ,C] = choleskydecomposition(A,B); % C h o l e s k y
xgausselim = gausselimination(A,B); % G a u s s e l i m i n a t i o n

All the three iterative methods produce the same output vector

102 Chapter.2 Solution of linear equations

xcg = [99.6684; 94.6375; 99.3832; 97.2898;

82.3596; 55.3859; 40.3113 26.2758]

However, the rate of convergence of Conjugate Gradient method was highest followed by
SOR and Gauss Seidel. Figure 2.9 indicates the rate of convergence of the three methods.
There is a good agreement between the direct methods and the iterative methods for the

R
es

id
ua

l

10-6

10-4

10-2

100

102

Iteration count
5 10 15

 CG
 Gauss Seidel
 SOR

Figure 2.9: Convergence of
di�erent iteration schemes

example considered.

The above example clearly indicates that the CG method converges faster than all the other
methods. When the number of equations to be solved is very large, this will be a great advantage,
which may not be apparent from the present 8×8 case where the number of iterations has come
down by a factor of 2 with respect to the Gauss Seidel scheme. Also note that the SOR method
needs to be used with caution so that it does not diverge. In some cases encountered in solving
large systems in engineering, it is actually necessary to use under-relaxation to see that the
solution converges.

The MATLAB codes presented in the chapter have not been optimized for computational
time. However, subroutines available in libraries such as LAPACK and routines available
in MATLAB are optimized so that they are efficient in terms of computational time
requirements. When solving large scale finite difference and finite element programs
such as in structural analysis, computational fluid dynamics it is necessary to optimize
the codes.

Concluding remarks

In the present chapter we have considered several techniques for the solution of a set of linear
equations. The emphasis has been on the application of these methods and this has been done
via several examples. Many a time the same example has been considered by different methods
to bring out the relative performance of the methods. It is expected that the reader would himself
come to the conclusions regarding which method to use in a particular application.

2.A. MATLAB routines related to Chapter 2 103

On the whole iterative methods score over other methods in the solution of a set of large
number of equations especially when the coefficient matrix is sparse and diagonal dominant.
In engineering practice many important field problems do lead such sparse equations.

However, when the matrix is dense non iterative methods such as Gauss elimination, LU and
QR factorizations may be more useful. QR factorization is more computationally expensive
than Gauss elimination. However, QR factorization is more suitable for ill conditioned
matrices.

In view of all this MATLAB uses the most suitable method for solution of the equation.

2.A MATLAB routines related to Chapter 2

MATLAB routine Function

rank(A) rank of matrix A

rref(A) returns the reduced row echelon form of
matrix A

zeros returns a matrix whose elements are zeros
eye(n) returns an n×n identity matrix
ones returns a matrix whose elements are one
norm(A) returns norm of matrix A
triu(A) returns upper triangular part of matrix A
tril(A) returns lower triangular part of matrix A

diag(A) returns a vector containing the diagonal
elements of matrix A

inv(A) returns inverse of matrix A
cond(A) returns condition number of matrix A
lu(A) returns L and U matrices of A
chol(A) returns Cholesky matrix of A
qr(A) returns Q and R matrices of A
mldivide(A,b) equivalent to A\b
linsolve(A,b) solves a system of linear equations Ax=b

2.B Suggested reading
1. E. Kreyszig Advanced engineering mathematics Wiley-India, 2007
2. S. Lipschutz and Lipson, M. Schaum’s outline of theory and problems of linear

algebra Schaum’s Outline Series, 2001
3. G. Strang Introduction to linear algebra Wellesley Cambridge Press, 2000
4. C. Meyer Matrix analysis and applied linear algebra Society for Industrial and

Applied Mathematics, 2000
5. G. Golub and Van Loan, C. Matrix computations Johns Hopkins Univ Pr, 1996
6. E. Anderson and others LAPACK Users’ guide Society for Industrial and Applied

Mathematics, 1999

Chapter 3

Computation of eigenvalues

This chapter deals with eigenvalues and eigenvectors of matrices. The material here is a
sequel to Chapter 2 dealing with the solution of linear equations. Eigenvalues are very
important since many engineering problems naturally lead to eigenvalue problems.
When the size of a matrix is large special numerical methods are necessary for obtaining
eigenvalues and eigenvectors.

105

106 Chapter.3 Computation of eigenvalues

3.1 Examples of eigenvalues

Vector x is an eigenvector of a matrix A if the following equation is satisfied

Ax=λx (3.1)

Scalar λ is known as eigenvalue of the eigenvector. System of equations which can be
reduced to the above form are classified as eigenvalue problems.

One might wonder about the importance of eigenvalues in practical engineering prob-
lems. Actually there are several practical examples which reduce to eigenvalue problems.
Eigenvalues form an important foundation for quantum mechanics. Eigenvalues are
employed in data analysis tools such as “principal component analysis” (reader may refer
to advanced books on linear algebra for this topic). The most remarkable example of
eigenvalue use for data analysis is the algorithm behind GOOGLE’s search engine. Before
treating eigenvalue problems mathematically, we try to understand what eigenvalues
represent in physical systems by presenting a number of examples taken from different
disciplines.

3.1.1 Eigenvalue problem in geometry

Consider a non-singular n×n square matrix A. The product Ax where x is a n×1 vector
yields a n×1 vector x′ whose magnitude and direction are, in general, different. Vector x
is said to be transformed to vector x′ by the linear transformation Ax= x′.

Consider a simple 2×2 matrix A given by

A=
 1 2

−1 3

A vector xT =

1 1
 is transformed to x′T =

3 2
 by the transformation. Vector x

makes an angle of 45◦ with the horizontal axis while vector x′ makes an angle of 33.7◦

with the horizontal axis. The magnitude of x is 1.4142 while the magnitude of x′ is 3.6056.
Thus the transformation magnifies the vector by a factor of 2.5495 and rotates it clockwise
by 11.31◦(see Figure 3.1).

The relation between x and x′ may, in general, be written in the form a1 a2 · · · · · · an

︸ ︷︷ ︸
Matrix of column vectors

 x
︸ ︷︷ ︸

Given column vector

=
 x′

︸ ︷︷ ︸
Transformed column vector

(3.2)

Column vectors a1 a2 · · · · · · an, assumed to be linearly independent, define the column
space i.e. any arbitrary vector in the column space may be represented as a linear
combination of the column vectors that define the column space. The column vector x′

is hence obtained as a linear combination of vectors in this column space. However there

3.1. Examples of eigenvalues 107

x 2

0

0.5

1

1.5

2

x1

0 1 2 3

x

x'

45◦
33.7◦

Figure 3.1: Vector x and trans-
formed vector x′ due to linear
transformation x′ =Ax

are certain vectors, known as eigenvectors that show only a change of magnitude but no
change in direction i.e. x and x′ are parallel to each other. This may be expressed by the
matrix equation

Ax=λx (3.3)

where λ is a scalar known as the eigenvalue. Obviously we are looking for a non trivial
solution to this equation. We may rewrite the above equation as

(A−λI)x= 0 (3.4)

The nontrivial solutions (vectors) define the null space. Non-trivial solution is possible
if the matrix A−λI is singular. This requires that the determinant of the above matrix
vanish. Thus we have to solve the equation∣∣∣∣∣∣∣∣∣∣∣∣∣

(a1,1 −λ) a1,2 a1,3 · · · · · · a1,n
a2,1 (a2,2 −λ) a23 · · · · · · a2,n
a3,1 a3,2 (a3,3 −λ) · · · · · · a3,n
· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·

an,1 an,2 an,3 · · · · · · (an,n −λ)

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (3.5)

to obtain the eigenvalues. When expanded the above determinant leads to a polynomial
(known as the characteristic polynomial) of degree n in λ. The roots of the characteristic
polynomial represent the eigenvalues of A. In principle all eigenvalues may be obtained
by obtaining all the roots of this polynomial. Since root finding is very difficult alternate
methods of obtaining eigenvalues are more or less universally employed in practice.
However, in this introductory part we shall demonstrate many important underlying
principles and concepts by working with square matrices of small n (for example,
n = 2) and obtaining the eigenvalues by actually solving for the roots of characteristic
polynomials.

108 Chapter.3 Computation of eigenvalues

3.1.2 Solution of a set of ordinary differential equations (ODE)

We consider a set of ordinary differential equations, such as, the set of two equations
given below.

d y1

dx
= ay1 +by2

d y2

dx
= cy1 +d y2 (3.6)

Using matrix notation it is possible to recast the above set as

dy
dx

=Ay (3.7)

where
yT =

y1 y2

 (3.8)

and

A=
 a b

c d

 (3.9)

where the elements a− d are assumed to be real numbers. The reader may recall that
the solution of an ODE with constant coefficients is of exponential form. Thus we may
look for a solution to the set of ODE above in the form y = y0eλx where y0 is determined

using the specified initial values. We then see that
dy
dx

= y0λeλx = λy. This in Equation
3.7 immediately leads to the eigenvalue problem

λy=Ay (3.10)

It is obvious that the above may be extended to the case where there are n ODEs in the
given set.

We consider now a second order ODE with constant coefficients such as

d2 y
dx2 +a

d y
dx

+by= 0 (3.11)

where a and b are constants. The problem statement is complete once the initial values

are specified. Let
d y
dx

= z. The above equation may then be written down as the following
set of two equations.

dy
dx

= z

dz
dx

= −by−az (3.12)

or in the matrix form
dy
dx

=
 0 1

−b −a

y (3.13)

where yT =
y z

. We see that the above is again in the form
dy
dx

= Ay. This case will
also lead, as before, to an eigenvalue problem.

3.1. Examples of eigenvalues 109

3.1.3 Standing waves on a string

Consider a thin wire of length L suspended between two rigid supports under tension.
The wire is disturbed slightly from its equilibrium position (no change in the tension
because of small displacement) to create standing waves in the string. It is intended to
study the shape of the string as a function of time. The governing equation of motion of
the string is easily shown to be1

a2 ∂
2u
∂x2 = ∂2 y

∂t2 (3.14)

where y is the displacement of the string from position of equilibrium and a is the speed
of propagation of wave in the string. The equation is valid for small amplitudes. If we
apply separation of variables to the above governing equation where displacement u(x, t)=
v(x)w(t), we obtain a set of ordinary differential equations such as

d2v
dx2 = −λ

2

a2 v (3.15)

d2w
dt2 = −λ2w (3.16)

where λ is a constant. The first equation is related to the shape of the string and the
second equation gives the temporal response of the displacement. Solution to these
equations describe the vibrations of the string.

What are the possible shapes the string can assume? As the two ends of the string are
fixed, there would be no deflection at the two ends and the deflection can occur in the rest
of the string. It can be realized that the solution to first of Equation 3.15 would take up

the form sin
(
λx
a

)
. Similarly, Equation 3.16 is a sinusoidal function of time, sin(λt). It

is surprising that there can be an infinite number of λ values that can satisfy both the
governing equations and boundary conditions. The general solution to the equation would
thus become

u(x)=
∞∑

n=1
An sin

λnx
a

sinλnt (3.17)

where λn = naπ
L

, n is an integer and An is the weightage for the nth harmonic. This means
the shape of the string can be represented by a weighted sum of sinusoidal waves. Let us
understand the significance of the above deduction using Figure 3.2. The figure shows
the fundamental waveform and the first three overtones which satisfy the governing
equations and boundary conditions. The deflection in the string is a weighted sum of the
fundamental mode and the overtones. The weights for each waveform An are determined
by the governing equations, initial conditions and boundary conditions. It is to be noted
that, each waveform is independent of all others i.e. a waveform cannot be represented
as a weighted sum of other waveforms. Also, it can be shown that each waveform is
orthogonal to all other waveforms. The waveforms represent a system of eigenvectors and
λn are the eigenvalues of the corresponding eigenvectors.

1See Chapter 15

110 Chapter.3 Computation of eigenvalues

x
0 0.2 0.4 0.6 0.8 1

Fundamental

First Overtone

Second Overtone

Third Overtone

Figure 3.2: Vibration in a string
showing the fundamental and �rst
three overtones

3.1.4 Resonance

The physics of musical instruments lies in the resonance properties of the instrument
and can be explained completely by eigenvalues. The principle discussed in the previous
section becomes central to the design of several musical instruments such as guitar, cello,
piano and flute. When a vibrating tuning fork is brought in the vicinity of the wire, the
wire would also vibrate, if the characteristic frequency of the tuning fork and the wire
are the same and this is known as resonance. The characteristic frequency of a string
depends on the tension and density of the string. By changing the tension in the string
one can change the fundamental frequency of vibration. Musicians tune their instruments
by changing the tension in the strings.
Knowledge of characteristic frequency would be important for design of structures such as
beams, trusses and bridges. Eigenvalues represent the fundamental modes of vibration
of structures such as beam, truss and bridges. They are indicators of when the structures
might experience destructive vibrations due to forces of wind, water, earthquake etc.

3.1.5 Natural frequency of a spring mass system
Equilibrium

position
Disturbed
position

x

k
k

kx m
am

m

Figure 3.3: An undamped spring
mass system

3.1. Examples of eigenvalues 111

Consider an undamped spring mass system as shown in Figure 3.3. The mass is
displaced by a small amount from the equilibrium position. The spring would tend to
restore the mass to its original position and the mass moves towards the equilibrium
position. However, the mass approaches the equilibrium position with certain velocity
and would pass the equilibrium position. If the spring mass system is assumed to be
ideal, the mass would oscillate about the equilibrium position. Such a motion is known as
simple harmonic motion. Another common example of a simple harmonic motion is that
executed by a pendulum.

Let us determine the frequency of the oscillations of an undamped spring mass system.
Force balance applied to the spring mass system is as follows:

m a=−k x−→ m
d2x
dt2 =−k x (3.18)

Observing the equations carefully, it can be deduced that the displacement is sinusoidal
i.e. x∼ sin(ωt), where ω is the natural frequency of oscillations of the spring mass system.
The frequency of the oscillations is determined by substituting sin(ωt) in Equation 3.18
which would yield

ω2 sin(ωt)= k
m

sin(ωt)−→ω=
√

k
m

(3.19)

For a simple spring mass system considered, there is only one natural frequency. Let us
Equilibrium

position
Disturbed
position

k2

k2

k 2
(x

2
−x

1)

m
2
a 2

m2

m2

x1

x2

k1
k1

m1

m1

k 1
x 1

m
1
a 1

k
1 (x

1 −
x

2)

Figure 3.4: Two Spring mass system

consider the system shown in Figure 3.4 where two masses are connected by a spring
and the system is fixed to a rigid support via another spring. There are two degrees of
freedom i.e. the dynamic state of the system requires two coordinates x1(t) and x2(t),
both functions of time t, to describe. When the spring mass system is displaced from the

112 Chapter.3 Computation of eigenvalues

equilibrium position, the system performs a simple harmonic motion with displacement
being sinusoidal with respect to time. Assembling the force equations for the two spring

mass systems (with ẍ = d2x
dt2)

m1 ẍ1 = −(k1 +k2)x1 + k2x2

m2 ẍ2 = k2x1 − k2x2 (3.20)

Representing the two equations in matrix form, we have m1 0
0 m2

 ẍ1
ẍ2

=
 −(k1 +k2) k2

k2 −k2

 x1
x2

 (3.21)

As the displacement is sinusoidal, it can be written as x= ye jωt and the matrix equations
become

−ω2
 m1 0

0 m2

 y1
y2

=
 −(k1 +k2) k2

k2 −k2

 y1
y2

 (3.22)

The equations can be further simplified to the following form2

−ω2
 y1

y2

=

−k1 +k2

m1

k2

m1
k2

m2
− k2

m2

 y1

y2

 (3.23)

which assumes the eigenvalue form introduced in Equation 3.1. From the above equation
it is evident that the problem of determining natural frequencies reduces to that of an
eigenvalue problem where ω2 is the eigenvalue.

Equation 3.22 represents a generalized eigenvalue problem. Generalized eigenvalue problem
is of the form

Ax=λBx (3.24)

where A and B are matrices. Generalized eigenvalue problem can be simplified by pre-multiplying
by B−1 on both the sides to get

B−1Ax=λB−1Bx=λx (3.25)

However, this simplification is ruled out when matrix B is singular and special treatment would
be required. Such cases will not be covered in the present book.

When there are n spring masses, there would be n fundamental frequencies for the
system which are nothing but eigenvalues of the system. Several complex systems can be
represented by equivalent spring mass systems.

3.2 Preliminaries on eigenvalues
Having seen how eigenvalue problems originate, we are now ready to discuss the

mathematics behind them.

2This uses the inverse of the diagonal matrix
 m1 0

0 m2

 given by
 1/m1 0

0 1/m2

3.2. Preliminaries on eigenvalues 113

3.2.1 Some important points

• The eigenvalues of a diagonal matrix and a triangular matrix are the diagonal
elements of the matrix.

Λ=

d1,1 0 0
0 d2,2 0
0 0 d3,3

d1,1, d2,2 and d3,3 are the eigenvalues of the above diagonal matrix.

• Trace of a matrix is defined as the sum of the diagonal elements of the matrix. The
trace of a matrix is also equal to sum of all the eigenvalues of the matrix.

Tr =
n∑

i=1
di,i =

n∑
i=1

λi (3.26)

3.2.2 Similarity transformation

Matrices A and B are similar if there exists a nonsingular matrix P such that the
following condition is satisfied.

B=P−1AP (3.27)

Let y be another vector such that y=P−1x. Then

By=P−1AP P−1x=P−1Ax (3.28)

If λ is the eigenvalue of A, Equation 3.28 becomes

By=P−1Ax=P−1λx=λP−1x=λy (3.29)

Therefore, similar matrices have the same eigenvalues, characteristic polynomial and
trace. However, the eigenvectors of similar matrices would not be same. If P is orthogonal,
P−1 =PT and the similarity transformation becomes B=PTAP.

Determining eigenvalues using analytical methods become difficult as the rank of the
matrix increases. However, if it is possible to determine either diagonal or triangular
similar matrices, the evaluation of eigenvalues could become easier. The operation of
converting a matrix into a similar triangular matrix is known as Schur decomposition3.

U=Q−1AQ (3.30)

A is a real4 matrix, Q is an orthogonal matrix and U is an upper triangular matrix, which
is called as Schur form of A. QR iteration method is based on converting the matrix
into a similar upper triangular matrix of Schur form. Householder and Givens matrices,
discussed in Chapter 2, are orthogonal matrices and can be used to transform the matrix
into an upper triangular form i.e. Schur form. Under certain conditions, the Schur form
is a diagonal matrix Λ.

3After Issai Schur, 1875-1941, German mathematician
4If A is a complex matrix, Q will be a unitary complex matrix which is analogous to orthogonal real

matrices.

114 Chapter.3 Computation of eigenvalues

3.2.3 More about the 2×2 case

Consider the 2×2 real matrix given by the following equation.

A=
 a b

c d

 (3.31)

The characteristic polynomial may be written as

λ2 − (a+d)λ+ (ad−bc)= 0 (3.32)

Note that the coefficient of λ is the negative of Trace of the matrix given by the sum of the
diagonal elements and the constant term in the characteristic equation is the determinant
of A. The two roots of the quadratic may be written down as

λ= (a+d)±
√

(a+d)2 −4(ad−bc)
2

(3.33)

The discriminant, the term under the square root determines the nature of the roots. If
the discriminant is positive the roots are real and distinct. If the discriminant is zero we
have the case of two repeated roots. If the discriminant is negative we have two complex
roots which are complex conjugates of each other.

In the special case of b = c, the matrix is symmetric and the discriminant reduces to

Dis= (a+d)2 −4(ad−b2)= (a−d)2 +4b2

which is positive. In this case the roots are real and distinct.

Example of symmetric matrix

Consider a symmetric coefficient matrix given by

A=
 1 1

1 3

This corresponds to the case where a = b = c = 1 and d = 3 in Equation 3.31. Thus all the
elements of the matrix are real. The characteristic polynomial for this case is

(1−λ)(3−λ)−1=λ2 −4λ+2= 0

This has roots given by λ = 2 ±
p

2 and hence the eigenvalues are λ1 = 3.4142 and
λ2 = 0.5858.

We pursue this case further to bring out some facts which will then be generalized.
Choose a unit vector given by xT =

0.7071 0.7071
. This is a vector that makes 45◦

with the horizontal axis. The product Ax yields the vector x′T =
1.4142 2.8284

. This

3.2. Preliminaries on eigenvalues 115

x 2

-4

-2

0

2

4

x1

-4 -2 0 2 4

x
x'=Ax

e1

e2 Figure 3.5: Transformation of
unit circle to an ellipse by the
transformation x′ =Ax

vector makes an angle with the horizontal axis of θ′ = tan−1 2.8284
1.4142

= 63.4◦. The vector

has thus undergone a net rotation of 63.4−45 = 18.4◦ in the counterclockwise direction.
The magnitude of the vector x′ is given by

√
1.41422 +2.82842 = 3.1623.

Consider now a vector given by xT =
0.3827 0.9239

 which makes an angle of 67.5◦

with the horizontal axis. This is transformed to the vector x′T =
1.3066 3.1543

 which
makes exactly the same angle with the horizontal axis. Hence in this case the net
rotation is zero. However the vector has been magnified by a factor equal to 3.4142.
Thus we identify xT =

0.3827 0.9239
 as one of the eigenvectors and the corresponding

eigenvalue as λ1 = 3.4142. This is in agreement with the earlier derivations. As the
vector x sweeps a unit circle the vector x′ sweeps an ellipse with semi-major axis equal
to λ1 = 3.4142 and semi-minor axis equal to λ2 = 0.5858 (see Figure 3.5). In this figure
the eigenvectors shown as e1 and e2 are oriented along the major and minor axes of the
ellipse and are orthogonal.

Consider now the matrix that consists of eigenvectors as its columns. In the present
case the matrix is denoted as Q and is given by

Q=
 0.3827 −0.9239

0.9239 0.3827

First column is the first eigenvector while the second column is the second eigenvector of
A (the two eigenvectors are orthogonal). The transpose of this vector is given by

QT =
 0.3827 0.9239

−0.9239 0.3827

116 Chapter.3 Computation of eigenvalues

If we construct a diagonal matrix Λ given by

Λ=
 3.4142 0

0 0.5858

it may be verified that

QΛQT =A

The matrix A is said to be diagonalizable. The diagonal elements of Λ represent the
eigenvalues of the symmetric matrix A. Note that for a symmetric matrix QT = Q−1.
Hence, in general, for a symmetric square matrix we may write

A=QΛQ−1 or AQ=QΛ (3.34)

as long as A has n independent eigenvectors. In the present case the two eigenvalues are
distinct and hence the eigenvectors are linearly independent. Matrix Λ represents the
Schur form of A.

Asymmetric matrix: real and distinct eigenvalues

Consider now an asymmetric 2×2 matrix.

A=
 2 2

1 2

The eigenvalues may easily be deduced as λ1 = 3.4142 and λ2 = 0.5858. The eigenvector
e1 corresponding to the first eigenvalue is obtained by requiring (A−λI)x1 = O where O
is the null vector. This is written in expanded form as (2−3.4142) 2

1 (2−3.4142)

 x1
y1

=
 0

0

Choosing y1 = 1 we get x1 = 1.4142 or in the normalized form eT

1 =
0.8165 0.5774

. We

can easily find a unit vector orthogonal to this as v2 =
−0.5774 0.8165

. We form a
matrix Q with these two vectors for columns as

Q=
 0.8165 −0.5774

0.5774 0.8165

The reader may easily verify then that

Q−1AQ=
 0.5858 1

0 3.4142

The Schur form is thus seen to be upper triangular. The two eigenvalues appear along
the diagonal. Note that only one column of Q is an eigenvector in this case. The second
eigenvector turns out to be eT

2 =
−0.8165 0.5774

 which certainly is not orthogonal to
e1. Figure 3.6 clearly shows that the two eigenvectors are not along the major and minor
axes of the ellipse. Also the angle between the two eigenvectors is not equal to 90◦.

3.2. Preliminaries on eigenvalues 117

x 2

-4

-2

0

2

4

x1

-4 -2 0 2 4

x
x'=Ax

e1e2

6= 90◦

Figure 3.6: Eigenvectors in the
case of an asymmetric matrix

Asymmetric matrix: real repeated eigenvalues

Consider another 2×2 asymmetric matrix given by

A=
 2 1

−0.25 3

Tr= 2+3= 5 and Det= 2×3+1×0.25= 6.25 for this matrix. Then Dis= 52−4×6.25= 0 and
hence matrix A has eigenvalue λ= 2.5 with algebraic multiplicity of 2 (i.e. the eigenvalue
of 2.5 repeats itself). Now we can calculate one eigenvector by solving the following.

A−2.5I=
 (2−2.5) 1

−0.25 (3−2.5)

 x1
x2

=
 0

0

The solution is such that x1 = 2, x2 = 1 or eT

1 =
2 1

. It is clear that there is only one
eigenvector that is possible in this case. We say that geometric multiplicity is one (it is
the same as the number of independent eigenvectors that are possible). In view of this the
matrix is referred to as being defective. We look for a second independent eigenvector by
seeking what is known as a generalized eigenvector.

Aside

Consider a set of two ordinary differential equations y′ = Ay that have repeated
eigenvalues, say λ with algebraic multiplicity 2 and geometric multiplicity 1. We know
that one solution to the set of equations is given by y = e1eλt. In order to get a second
independent solution we seek a solution in the form y = e2eλt +e1teλt. We now have, by
substituting these in the given set of ordinary differential equations, the relation

e2λeλt +e1eλt +e1tλeλt =A(e2eλt +e1teλt)

118 Chapter.3 Computation of eigenvalues

The above requires that the following two relations hold:

Ae1 = λe1

Ae2 −λe2 = e1

Here e2 is the generalized eigenvector that is being sought. The above may be generalized
to the case where the algebraic multiplicity of an eigenvalue is k. The generalized
eigenvectors are such that we have

y= ekeλt + tek−1eλt + t2

2!
ek−2eλt +·· · · · ·+ tk

k!
e1eλt

Substitute this in the set of ODE and observe that the following will hold:

Ae1 = λe1

Ae2 = e1 +λe2

· · · · · · · · ·
Aei = ei−1 +λei

· · · · · · · · ·
Aek = ek−1 +λek

We thus obtain a chain of vectors that may be used to populate the columns of X to proceed
with the Schur form.

Back to example

Substituting for e1, we have to solve the system of equations given by (2−2.5) 1
−0.25 (3−2.5)

 x1
x2

=
 2

1

The reader may verify that this system has a solution given by x2 = 2+ x1

2
or choosing

x1 = 0 we get x2 = 2 or eT
2 =

0 2
.

Using e1 and e2 as the two columns of a square matrix, we have

X=
 2 0

1 2

We may then show that

X−1AX=
 2.50 1

0 2.50

The repeated eigenvalues appear along the diagonal. The above Schur form that is non-
diagonal is referred to as the Jordan form. More about this form later.

3.2. Preliminaries on eigenvalues 119

Asymmetric matrix: complex eigenvalues

The last possibility is that the matrix has complex eigenvalues, the discriminant being
negative. In this case the eigenvalues appear in pairs with the two being complex
conjugates of each other. Before proceeding further we introduce some definitions which
are required while dealing with complex matrices.

Let A be a matrix whose elements may be complex. A complex number consists of a
real part and an imaginary part and is represented by z = x+ j y where j =

p
−1 is a pure

imaginary number. The complex conjugates is represented as z̄ and is given by z̄ = x− j y.
Square of the magnitude of a complex number is given by r2 = zz̄ = x2 + y2. The angle
made by the complex number with the real axis (x axis) is known as the argument of z
and is given by θ = arg(z) = tan−1 y

x
. A complex number may also be represented in the

following forms:
z = re jθ or z = r(cosθ+ j sinθ)

Since A has complex elements, we define a complex conjugate Ā as a matrix whose
elements are the complex conjugate of elements of A. The transpose of Ā is obtained
by transposing the elements of Ā and is represented by the symbol A∗. Matrix A is said
to be unitary if AA∗ = I. Thus A∗ plays the role of A−1 for a unitary matrix.

With this background consider a 2×2 matrix given by

A=
 0 1

−1 0

The characteristic polynomial of this matrix is easily seen to be λ2 +1 = 0 which leads
to the two eigenvalues given by λ1 = j and λ2 = − j. We see that the two eigenvalues
are complex conjugates of each other. The eigenvector corresponding to first of these
eigenvalues (i.e. λ1 = j) requires that − j 1

−1 − j

 x
y

=
 0

0

These equations are satisfied if y = jx. Normalized eigenvector is thus seen to be

eT
1 =

 1p
2

jp
2

. We may now compute a second vector perpendicular to this as

vT
2 =

−1p
2

jp
2

.5 With these as the columns we may write a unitary matrix X as

X=

1p
2

− 1p
2

jp
2

jp
2

5Note that two complex numbers are perpendicular if zz̄ = 0 Hence two vectors are perpendicular to each

other if eT
1 v̄2 = 0

120 Chapter.3 Computation of eigenvalues

We see at once that

X∗ =

1p
2

− jp
2

− 1p
2

− jp
2

We then have

X∗AX=
 j 0

0 − j

which is diagonal and has the eigenvalues along the diagonal. This is the Schur form of
the matrix.

3.3 Analytical evaluation of eigenvalues and eigenvectors
in simple cases

Having looked at simple 2 × 2 cases we now look at cases with n > 2. Analytical
evaluation is on the same lines as done above in the case of 2×2 matrices. The goal of the
analysis is to obtain all the eigenvalue-eigenvector pairs by analysis. The first example
considers a symmetric matrix that has distinct eigenvalues.

Example 3.1
Obtain all the eigenpairs (eigenvalues and the corresponding eigenvectors) of the 3 × 3
symmetric square matrix

A=

1 0 1
0 2 2
1 2 3

Also obtain the Schur form of this matrix.
Solution :

Step 1 The characteristic polynomial of A is obtained by setting the determinant of A−
λI= 0 as

(1−λ)[(2−λ)(3−λ)−4]− (2−λ)=−6λ+6λ2 −λ3 = 0

The eigenvalues are given by λ1 = 0,λ2 = 3+
p

3= 4.7321 and λ3 = 3−
p

3= 1.2679. The three
eigenvectors are obtained by solving the homogeneous equations that result on substituting
the respective eigenvalues in the equation defining the eigenvectors (Equation 3.3).
Step 2 Eigenvector corresponding to λ1 = 0:

The eigenvector is a solution of Ax1 = 0. The components of the eigenvector satisfy the
following three equations:

x1 +0y1 + z1 = 0

0x1 +2y1 +2z1 = 0

x1 +2y1 +3z1 = 0

Setting z1 = 1 we see that x1 = y1 =−1 satisfy all the equations. A unit vector may now be
constructed as e1. In fact we can make the eigenvector a unit vector by dividing each of the
components by the magnitude of the vector. Thus the eigenvector corresponding to λ1 = 0 is
eT

1 =
−0.5774 −0.5774 0.5774

.

3.3. Analytical evaluation of eigenvalues and eigenvectors 121

Step 3 Eigenvector corresponding to λ2 = 4.7321:
The eigenvector is a solution of (A− 4.7321I)x2 = 0. The components of the eigenvector
satisfy the following three equations:

(1−4.7321)x2 +0y2 + z2 = 0

0x2 + (2−4.7321)y2 +2z2 = 0

x2 +2y2 + (3−4.7321)z2 = 0

Setting z2 = 1 we see that x2 = 0.2679 and y2 = 0.7321 satisfy the equations. A unit vector
may now be constructed as e2. Thus the eigenvector corresponding to λ2 = 4.7321 is eT

2 =0.2113 0.5774 0.7887
.

Step 4 Eigenvector corresponding to λ3 = 1.2679:
The eigenvector is a solution of (A− 1.2679I)x3 = 0. The components of the eigenvector
satisfy the following three equations:

(1−1.2679)x3 + z3 = 0

(2−1.2679)y3 +2z3 = 0

x3 +2y3 + (3−1.2679)z3 = 0

Setting z3 = 1 we see that x3 = 3.7321 and y3 =−2.7321 satisfy the equations. A unit vector
may now be constructed as e3. Thus the eigenvector corresponding to λ3 = 1.2679 is eT

3 =0.7887 −0.5774 0.2113
.

Step 5 The reader may verify that the three eigenvectors are mutually orthogonal. Hence
we may use these as the columns of a square matrix to derive the Schur form of A. Thus

U=

−0.5774 0.2113 0.7887
−0.5774 0.5774 −0.5774

0.5774 0.7887 0.2113

We at once obtain the Schur form of A as

UTAU=

0 0 0
0 4.7321 0
0 0 1.2679

The eigenvalues appear along the diagonal.

The next example considers the case of a matrix with repeated eigenvalues. However all
the eigenvalues are real.

Example 3.2
Determine all the eigenpairs pairs of the matrix

A=

1 1 −1
0 0 2
0 −1 3

Obtain also the Schur form of the matrix.
Solution :

122 Chapter.3 Computation of eigenvalues

Step 1 The characteristic polynomial is obtained as (1−λ)[−λ(3−λ)+ 2] = (1−λ)2(2−
λ) = 0 with λ = 1 (algebraic multiplicity =2) and λ = 2 (algebraic multiplicity =1) as the
eigenvalues.
Step 2 Let us first obtain one of the eigenvectors corresponding to λ = 1. We have

(A−I)x= x which yields the following three equations.

0x+ y− z = 0

0x−1y+2z = 0

0x−1y+2z = 0

Only one possible solution for these three equations is given by x = 1, y = z = 0. Hence
eT

1 =
1 0 0

.

Step 3 A second generalized eigenvector is obtained by the method that was earlier
presented in a previous section. For this we use the equations given below.

0x+ y− z = 1

0x−1y+2z = 0

0x−1y+2z = 0

The second and third of the above require y = 2z. This in the first gives z = 1. Hence a
second eigenvector corresponding to λ= 1 is given by eT

2 =
0 2 1

.

Step 4 Lastly the eigenvector corresponding to λ= 2 requires the following to hold.

−x+ y− z = 0

0x−2y+2z = 0

0x−1y+ z = 0

These are satisfied if y= z and x = 0. Thus the required eigenvector is eT
3 =

0 1 1
.

Step 5 We choose to construct a matrix X with the above three vectors as its columns.
Thus

X=

0 1 0
1 0 2
1 0 1

The inverse of this matrix is easily shown to be

X−1 =

0 −1 2
1 0 0
0 1 −1

The Schur form of the given matrix is then obtained as

X−1AX=

2 0 0
0 1 1
0 0 1

The Schur form has turned out with an extra 1 appearing in the third column leading to a
bi-diagonal structure. This matrix is said to be in Jordan6 form. The 3×3 matrix is said to
be in block diagonal form with one 1×1 block and a second 2×2 block.

6Named after Marie Ennemond Camille Jordan 1838-1922, French mathematician

3.3. Analytical evaluation of eigenvalues and eigenvectors 123

The 1×1 block contains a single element 2 while the 2×2 block is in the bidiagonal form

given by
 1 1

0 1

.

Jordan matrix
In general, the Jordan form of a matrix will appear as below:

J=

J1
J2

. . .
. . .

Jk

The diagonal entries are Jordan blocks while all other entries are zero (left blank in the above).
The ith Jordan block is of the form

Ji =

λi 1
λi 1

. . .
. . .
. . . 1

λi

ni, the size of the Jordan block Ji, represents the algebraic multiplicity of the eigenvalue λi.
Jordan form may be obtained by evaluating the chain of generalized eigenvectors as indicated
earlier, to populate the matrix X.

Example 3.3
Obtain the Jordan form of the following matrix.

A=

0 1 0
0 0 1
1 −3 3

Solution :

Step 1 The characteristic polynomial of this matrix is obtained as

−λ[−λ(3−λ)+3]+1=−λ3 +3λ2 −3λ+1=−(1−λ)3 = 0

The matrix has eigenvalue of λ= 1 with algebraic multiplicity of 3.
Step 2 One eigenvector is certainly obtainable and satisfies the following equations:

−x1 + x2 +0x3 = 0

0x1 − x2 + x3 = 0

x1 −3x2 +2x3 = 0

We see that x1 = x2 = x3 is the desired solution. We may choose each one of these to be 1 to
get vT

1 =
1 1 1

. This is the only possible eigenvector and hence geometric multiplicity is
1.

124 Chapter.3 Computation of eigenvalues

Step 3 We need to determine two generalized eigenvectors in order to construct the Schur
form of the matrix. The first generalized eigenvector is obtained by using the condition
Av2 −λv2 = v1. Thus we should have

−x1 + x2 +0x3 = 1

0x1 − x2 + x3 = 1

x1 −3x2 +2x3 = 1

One may verify that x1 = x2−1 and x3 = x2+1 satisfy these three equations. Choosing x2 = 0
we get x1 =−1 and x3 = 1. Thus the first generalized eigenvector is vT

2 =
−1 0 1

.

Step 4 The second generalized eigenvector has to satisfy the condition Av3 −λv3 = v2.
Thus we have

−x1 + x2 +0x3 = −1

0x1 − x2 + x3 = 0

x1 −3x2 +2x3 = 1

These equations are satisfied by x1 = x2+1 and x3 = x2. Thus x1 = 1, x2 = 0 and x3 = 0 satisfy
this. Thus the second generalized eigenvector is vT

3 =
1 0 0

.

Step 5 Matrix X uses these three vectors as columns and hence we have

X=

1 −1 1
1 0 0
1 1 0

This matrix is easily inverted to get

X−1 =

0 1 0
0 −1 1
1 −2 1

The Schur form is obtained as

X−1AX=

1 1 0
0 1 1
0 0 1

The Schur form, in this case, is in the Jordan block form. The diagonal elements are all
equal to 1 corresponding to the multiplicity of eigenvalues. The super diagonal has two 1’s
thus leading to Jordan block form.

Next example considers a matrix which has repeated eigenvalues but with all independent
eigenvectors. The Schur form turns out to be diagonal.

Example 3.4
Determine all the eigenpairs pairs of the matrix

A=

−3 0 0 0

0 −3 0 0
12 6 2 0

0 0 0 2

3.3. Analytical evaluation of eigenvalues and eigenvectors 125

Obtain also the Schur form of the matrix.
Solution :

Step 1 It is easily seen that the eigenvalues are given by λ1 = 2 and λ2 = −3 both with
algebraic multiplicity of 2. The eigenvectors are now evaluated.
Step 2 Eigenvectors for λ1 = 2:

Forming A−2I we get the following three7 equations:

−5x1 = 0

−5x2 = 0

2x1 +6x2 = 0

Both x1 and x2 have to be zero and x3 and x4 may have arbitrary values. The obvious choices
lead to independent eigen vectors given by eT

1 =
0 0 0 1

 and eT
2 =

0 0 1 0
.

Step 3 Eigenvectors for λ2 =−3:
Forming A+3I we get the following two equations:

12x1 +6x2 +5x3 = 0

5x4 = 0

x4 has to be zero. If we set x3 = 0 we have x2 = −2x1. We may conveniently choose x1 = 1
to get x2 = −2. Thus we have eT

3 =
1 −2 0 0

. Alternately we may choose x1 = 0 to

get x3 = −6
5

x2. Choosing x2 = 1 we get x3 = −1.2. Hence we have another independent

eigenvector given by eT
4 =

0 1 −1.2 0
.

Step 4 Using these vectors as the basis we may construct a matrix X as

X=

0 0 1 0
0 0 −2 1
0 1 0 −1.2
1 0 0 0

Inverse of this matrix may be computed and shown to be

X−1 =

0 0 0 1

−2.4 1.2 1 0
1 0 0 0

−2 1 0 0

The Schur form of A is then obtained as

X−1AX=

2 0 0 0
0 2 0 0
0 0 −3 0
0 0 0 −3

which is a diagonal matrix. This example shows that the matrix is diagonalizable as long
as all the eigenvectors are linearly independent i.e. geometric multiplicity is the same as
the algebraic multiplicity.

7The fourth equation will be an identity 0= 0

126 Chapter.3 Computation of eigenvalues

Computation of eigenvalues and eigenvectors
Analytical methods presented in the previous section are useful only for small matrices, possibly
n ≤ 4. Obtaining the characteristic polynomial is itself a major problem for a large system.
Solution of the characteristic polynomial is difficult for large n (say n ≥ 5) and hence we take
recourse to iterative methods of computing the eigenvectors. If our goal is to obtain only the
dominant eigenvalue it may be done by the Power method or the Rayleigh quotient iteration. If
all the eigenvalues are desired we use the QR iteration. Acceleration of convergence of these
methods requires some variants such as the shift method. These will be considered in the
following sections.

3.4 Power method

Assume that a n× n matrix A has n independent eigenvectors ei, i = 1,2,3. . .n. Any
normalized vector x(0) (for a normalized vector xTx = ||x|| = 1) may be represented as a

linear combination of the n eigenvectors as x =
n∑

i=1
ciei where ci are n scalar constants.

We shall assume that all the eigenvectors are also normalized. If we premultiply x(0) by
A we get

Ax(0) =
n∑

i=1
ciAei =

n∑
i=1

ciλiei

The above result follows from the fact that Aei = λiei since ei is an eigenvector of matrix

A. We represent Ax(0) as y(0) and define a second normalized vector x(1) = y(0)

||y(0)|| . Hence

we have
x(1) = λ1

||y(0)||
(
c1e1 + c2

(
λ2

λ1

)
e2 + . . .+ cn

(
λn

λ1

)
en

)
(3.35)

If we multiply x(1) by A again8 we get

Ax(1) = λ2
1

||y(0)||
(
c1e1 + c2

(
λ2

λ1

)2
e2 + . . .+ cn

(
λn

λ1

)2
en

)
We set Ax(1) as y(1) and normalize it to obtain

x(2) = λ2
1

||y(0)||||y(1)||
(
c1e1 + c2

(
λ2

λ1

)2
e2 + . . .+ cn

(
λn

λ1

)2
en

)
(3.36)

The above may be generalized by repeating the process of multiplication by A and
normalization as

x(k) = λk
1

||y(0)||||y(1)|| . . . ||y(k−1)||

(
c1e1 + c2

(
λ2

λ1

)k
e2 + . . .+ cn

(
λn

λ1

)k
en

)
(3.37)

8Repeated multiplication of x(0) by A is like multiplying x(0) by different powers of A and hence the name
of the method

3.4. Power method 127

Let us assume that the eigenvalues are such that |λ1| > |λ2| . . . > |λn|. As k →∞ the ratio(
λ j

λ1

)k
→ 0 for j 6= 1 and hence we have

lim
k→∞

x(k) = lim
k→∞

c1λ
k
1

||y(0)||||y(1)|| . . . ||y(k−1)||e1 (3.38)

We also have

lim
k→∞

x(k+1) = lim
k→∞

c1λ
k+1
1

||y(0)||||y(1)|| . . . ||y(k)||e1 (3.39)

Since both x(k) and e1 are normalized vectors it is obvious that the former tends to the
latter as k → ∞. Thus the coefficients of e1 are equal in the above two expressions as
k →∞ and hence we see that ||yk|| → λ1 as k →∞. General procedure for Power method
is given below:

• Start with a guess for eigenvector
• Evaluate yi+1 = Axi. The norm of xi is equal to the magnitude of the eigenvalue
λi+1.

• Normalize yi+1 to determine the new eigenvector, xi+1.
• Continue iterations until the eigenvalue and eigenvector converge.

MATLAB program for determining the dominant eigenvalue using power method is given
below.

Program 3.1: Power method

1 function [e,x] = powermethod(A,xguess ,tolerance)

2 % I n p u t A : c o e f f i c i e n t m a t r i x
3 % x g u e s s : g u e s s f o r e i g e n v e c t o r
4 % t o l e r a n c e : t o l e r a n c e f o r c o n v e r g e n c e
5 % O u t p u t e : e i g e n v a l u e
6 % x : e i g e n v e c t o r
7 x = xguess; % i n i t i a l i z e e i g e n v e c t o r
8 e = 0; % i n i t i a l i z e e i g e n v a l u e
9 count = 0; % i n i t i a l i z e i t e r a t i o n c o u n t

10 res = 100; % i n i t i a l i z e r e s i d u a l
11 while (res > tolerance) % l o o p u n t i l c o n v e r g e n c e
12 x = A*x; % u p d a t e λx
13 x = x/sqrt(x'*x); % n o r m a l i z e e i g e n v e c t o r
14 e = x'*A*x; % c a l c u l a t e e i g e n v a l u e
15 res = abs(A*x-e*x); % c a l c u l a t e r e s i d u a l
16 end

Example 3.5
Obtain the dominant eigenvalue of the symmetric square matrix given below by the Power
Method.

A=

1 1 1
1 2 2
1 2 3

128 Chapter.3 Computation of eigenvalues

Solution :

Step 1 We start the Power method with x(0)T =
 1p

3

1p
3

1p
3

. Ax(0) is then obtained as

Ax(0) =

1 1 1
1 2 2
1 2 3

1p
3

1p
3

1p
3

=

1.732051
2.886751
3.464102

On normalizing this vector we get x(1)T =
0.358569 0.597614 0.717137

 We also have

||y(0)|| = 4.830459.
Step 2 We need to proceed at least one more iteration step before we can check for

convergence of the Power method. This is done by using x(1) in place of x(0)and repeating
the above calculations. We get

Ax(1) =

1.673320
2.988072
3.705209

and ||y(1)|| = 5.045507. Since the change is large it is necessary to continue the iteration
process.
Step 3 Further calculations are presented below in tabular form.

Iteration No. 1 2 3 4 5
||y|| 4.830459 5.045508 5.048864 5.048917 5.048917

Change 0.215048 0.003356 5.309959E-5 8.562776E-7

The dominant eigenvalue value is thus given by λ1 = 5.048917 which is accurate to six digits
after decimals. The convergence of the eigenvector is shown in the following table.

x(0) x(1) x(2) x(3) x(4) x(5)

0.577350 0.358569 0.331646 0.328436 0.328042 0.327992
0.577350 0.597614 0.592224 0.591185 0.591033 0.591012
0.577350 0.717137 0.734358 0.736635 0.736932 0.736971

We use Program 3.1 to Example 3.5 and get the following:
A =[1 1 1

1 2 2

1 2 3];

xguess = 0.5774*[1; 1; 1];

[e,x] = powermethod(A,xguess ,1e-6)

3.4. Power method 129

Output of the program:
e = 5.0489

x = [0.3280; 0.5910; 0.7370]

3.4.1 Inverse Power Method

The Power method yields only the dominant eigenvalue. The smallest eigenvalue may
be obtained by the inverse Power Method. Premultiply Equation 3.3 by A−1 to get

A−1Ax= x=λA−1x

Rearrange this as

A−1x= 1
λ

x=λ′x (3.40)

We thus see that λ′ = 1
λ

is the eigenvalue of A−1. Hence the reciprocal of the smallest

eigenvalue of A will be the dominant eigenvalue of A−1. The latter may be obtained by

using the Power method and the least eigenvalue of A may then be obtained as λ= 1
λ′ .

Example 3.6
Obtain the smallest eigenvalue of the symmetric square matrix given below

A=

1 1 1
1 2 2
1 2 3

by the Inverse Power Method.
Solution :

Step 1 A−1 may be obtained by any of the methods previously dealt with. We can show
that

A−1 =

2 −1 0
−1 2 −1

0 −1 1

Step 2 The Power Method is used now to get λ′ of the inverse matrix by following the

steps indicated in Example3.5. Table below shows the convergence of the eigenvalue.

Iteration
no. ||y|| Change

Iteration
no. ||y|| Change

0.57735 6 3.24531 0.00370
1 2.23607 1.65872 7 3.24670 0.00139
2 2.89828 0.66221 8 3.24692 0.00022
3 3.15096 0.25269 9 3.24697 5E-05
4 3.22386 0.07290 10 3.24698 1E-05
5 3.24162 0.01775

130 Chapter.3 Computation of eigenvalues

Step 3 We have stopped with an error of 1 unit in the 5th digit after decimals. The desired

least eigenvalue of A is than given by λ3 = 1
3.24698

= 0.30798. The convergence of the
eigenvector is shown in the following table.

x(0) x(1) x(2) x(3) x(4) x(5)

0.57735 1.00000 0.89443 0.77152 0.68558 0.63798
0.57735 0.00000 -0.44721 -0.61721 -0.68558 -0.71393
0.57735 0.00000 0.00000 0.15430 0.24485 0.28861

x(6) x(7) x(8) x(9) x(10)

0.61385 0.60203 0.59630 0.59355 0.59223
-0.72632 -0.73196 -0.73459 -0.73584 -0.73643
0.30927 0.31906 0.32372 0.32594 0.32701

We use Program 3.1 to determine the smallest eigenvalue.
A1 = inv(A);

[e,x] = powermethod(A1 ,xguess ,1e-6)

e = 1/e;

The output of the program is given below.
e = 0.3080

x = [0.5911; -0.7369; 0.3279]

Note that a finer tolerance has yielded a better value.

3.4.2 Inverse Power Method with Shift

The Power method yields the dominant eigenvalue of a matrix. If one is interested in
another eigenvalue it is possible to obtain it by using the Inverse Power method with shift.
Subtract cI from A to get matrix B=A− cI. Here c is a non-zero scalar and we expect one
of the eigenvalues to be close to this. Consider now the eigenvalues of B. We have

Bx=λ′x

or
(A− cI)x= (λ− c)x=λ′x

Hence we have λ′ = λ− c i.e. the eigenvalue of B is shifted by c from the eigenvalue
of A. If we use the Inverse Power method now it is clear that the reciprocal of the above
eigenvalue will be the dominant eigenvalue which is obtained easily by the Power Method.
We have obtained the biggest and the smallest eigenvalues of the same 3×3 square matrix
in Examples 3.5 and 3.6. We now obtain the third eigenvalue by use of Inverse Power
Method with Shift.

Example 3.7
Obtain the second eigenvalue of the symmetric square matrix given below by the Inverse
Power Method with Shift.

A=

1 1 1
1 2 2
1 2 3

3.4. Power method 131

Solution :

Step 1 From the previous two examples we know that λ1 = 5.04892 and λ3 = 0.30798. Let
us use a shift of c = 0.6 hoping that the second eigenvalue is close to this value. We thus
consider B = A−0.6I as the matrix whose smallest eigenvalue we shall determine by the
Inverse Power Method. We thus have

B=

0.4 1 1
1 1.4 2
1 2 2.4

Step 2 B−1 may be obtained by any of the methods previously dealt with. We can show

that

B−1 =

11.42857 7.14286 −10.71429
7.14286 0.71429 −3.57143

−10.71429 −3.57143 7.85714

Step 3 The Power Method is used now to get λ′ of the inverse matrix by following the steps

indicated in Example 3.5. The following table shows the convergence of the eigenvalue.

||y|| Change

6.36209
23.15004 16.78795
23.19884 0.04880
23.19961 0.00078
23.19963 0.00002
23.19963 0.00000

Step 4 We have stopped with an error of 1 unit in the 6th digit after decimals. The desired

least eigenvalue of A is than given by λ3 = 1
23.19963

+0.6 = 0.64310. Convergence of the
eigenvector is shown in the table below.

x(0) x(1) x(2) x(3) x(4) x(5)

0.57735 0.71302 0.74200 0.73625 0.73708 0.73696
0.57735 0.38892 0.32200 0.32890 0.32785 0.32801
0.57735 -0.58338 -0.58800 -0.59141 -0.59095 -0.59102

We may also use Program 3.1 to determine the eigenvalue with a shift.
A = [1 1 1;

1 2 2;

1 2 3];

xguess = 0.5774*[1;1;1];

A1 = A - 0.6* eye (3); % s h i f t = 0 . 6
A1 = inv(A1); % A1 i s t h e i n v e r s e o f t h e g i v e n m a t r i x a f t e r

% s h i f t
[e,x] = powermethod(A1 ,xguess ,1e-6);

e = 1/e+0.6;

132 Chapter.3 Computation of eigenvalues

The output of the program is
e = 0.6431

To summarize, it is possible to obtain all the eigenvalues of a square matrix by the Power
Method and its variants viz. Inverse Power Method and the Inverse Power Method with
Shift.

Convergence of the Power Method depends on the ratio
|λ2|
|λ1|

being less than 1. Of course

the smaller it is compared to one the faster the convergence. After each iteration the
convergence is linear with this ratio. We shall look at a variant of the Power Method that
converges faster. It is known as the Rayleigh Quotient Method.

3.5 Rayleigh Quotient Iteration

Premultiply Equation 3.3 by xT and rearrange to get λ= xTAx
xTx

. Assume that we have

an approximate normalized eigenvector given by x(i). We see then that R i = x(i)TAx(i)

x(i)Tx(i) =
x(i)TAx(i), known as the Rayleigh Quotient is an approximation to the eigenvalue of
the matrix A. The Rayleigh Quotient Iteration method of determining the eigenvalue
of a matrix is based on looking for convergence of the Rayleigh Quotient as iterations
proceed. We start or continue the iteration with an assumed starting approximation to
the eigenvector x(i) and then calculate the Rayleigh Quotient. We now form a new matrix
by introducing a shift equal to R i as B = A−R iI. Now calculate a vector y(i) = B(−1)xi

and normalize it to get x(i+1) = y(i)
||y(i)|| . Calculate the new value of Rayleigh Quotient given

by R i+1 = x(i+1)TAx(i+1). Continue the iteration with x(i+1). Since the Rayleigh Quotient
tends to the eigenvalue as i →∞ matrix A with shift R i should become singular as i →∞.
Iterations stop when indeed this happens.

General procedure for Rayleigh quotient method

• Start with a guess for normalized eigenvector xi.
• Evaluate Rayleigh quotient Ri = xT

i Axi.
• Evaluate new eigenvector. yi+1 = (A−IRi)−1xi.
• Normalize yi+1 to determine eigenvector xi+1
• Continue iterations until (A− IRi) becomes singular. This can be done by checking

the condition number of the matrix.

Rayleigh Quotient Iteration converges fast and does so to different eigenvalues depending
on the starting value of the eigenvector.

3.5. Rayleigh Quotient Iteration 133

Example 3.8
Obtain the first eigenvalue of the symmetric square matrix given below by Rayleigh Quotient
Iteration.

A=

1 1 1
1 2 2
1 2 3

Solution :

Step 1 Note that the matrix being considered here is the same as that considered in
previous three examples. We already know what the eigenvalues are. We start with

normalized vector x(0)T =
(

1p
3

1p
3

1p
3

)
= (0.577350 0.577350 0.577350) to start

the iteration process. We calculate the Rayleigh Quotient as

R0 = (0.577350 0.577350 0.577350)

1 1 1
1 2 2
1 2 3

0.577350
0.577350
0.577350

= 4.666667

Now impose a shift of R0 on A to get

A−4.666667I=

−3.666667 1.000000 1.000000
1.000000 −2.666667 2.000000
1.000000 2.000000 −1.666667

Invert this matrix using any method described earlier and premultiply x(0) with it to get

y(1)T =
0.755978 1.473679 1.875591

Normalize this to get

x(1)T =
0.302124 0.588950 0.749573

Step 2 We now replace x(0) with x(1) and run through the calculation to get R1 = 5.045222

and the next approximation to the eigenvector as

x(2)T =
0.328007 0.591011 0.736965

The convergence is seen to be rapid and is summarized below as a table.

Iteration No. 1 2 3 4
R 4.666667 5.045223 5.048917 5.048917

Change ... 0.378556 0.003695 0.000000

Essentially the R value converges to the first eigenvalue in just two iterations. The
eigenvector converges to

x=

0.327985
0.591009
0.736976

134 Chapter.3 Computation of eigenvalues

Program 3.2: Rayleigh quotient

1 function [R,x] = rayleighcoefficient(A,xguess ,tolerance)

2 % I n p u t A : c o e f f i c i e n t m a t r i x
3 % x g u e s s : g u e s s f o r e i g e n v e c t o r
4 % t o l e r a n c e : t o l e r a n c e f o r c o n v e r g e n c e
5 % O u t p u t e : e i g e n v a l u e
6 % x : e i g e n v e c t o r
7 n = size(A,1);

8 x = xguess; % i n i t i a l i z e e i g e n v e c t o r
9 count = 0; % i n i t i a l i z e i t e r a t i o n c o u n t

10 R = x'*A*x; % i n i t i a l i z e R a y l e i g h c o e f f i c i e n t
11 I = eye(n); % i d e n d i t y m a t r i x o f r a n k n
12 B = A-R*I; % i n i t i a l i z e m a t r i x B
13 res = abs(B*x); % i n i t i a l i z e r e s i d u a l
14 while (res > tolerance) % l o o p u n t i l c o n v e r g e n c e
15 x = B\x; % u p d a t e new e i g e n v e c t o r
16 x = x/sqrt(x'*x); % n o r m a l i z e e i g e n v e c t o r
17 R = x'*A*x; % u p d a t e e i g e n v a l u e
18 B = A-R*I;

19 res = abs(B*x); % c a l c u l a t e r e s i d u a l
20 count = count + 1; % u p d a t e i t e r a t i o n c o u n t
21 end

3.5.1 Deflation of a Matrix

Consider a square matrix A whose dominant eigenvalue λ1 has been determined, as for
example, by the power method. Let the corresponding normalized eigenvector be e1. We
form a matrix given by λ1e1eT

1 . It may be verified easily that the matrix B = A−λ1e1eT
1

has one of the eigenvalues equal to zero, the one that corresponded to the dominant
eigenvalue of the matrix A. The next lower eigenvalue of matrix A becomes the dominant
eigenvalue of B and may be determined by the application of the power method or the
much faster Rayleigh quotient iteration.

Example 3.9
The dominant eigenvalue and eigenvector of matrix in Example 3.8 may be assumed
known. Determine a second eigenvalue eigenvector pair by deflation using Rayleigh quotient
iteration.
Solution :

Step 1 From earlier result in Example 3.8 the dominant eigenvalue eigenvector pair are
given by λ1 = 5.048917 and eT

1 =
0.327985 0.591009 0.736976

. We modify the matrix A
of Example 3.8 by subtracting λ1e1eT

1 from it to get

B=

0.456866 0.021306 −0.220411
0.021306 0.236455 −0.199105

−0.220411 −0.199105 0.257762

3.6. Eigenvalue eigenvector pair by QR iteration 135

Step 2 We now use Rayleigh quotient iteration to obtain a second eigenvalue eigenvector
pair. We start the iteration with unit vector

xT
0 =

0.577350 0.577350 −0.577350

The Rayleigh quotient will then be obtained as xT
0 Bx0 = 0.610909. We now form the vector

y1 =B−1x0 and normalize it to get

x1 =
0.752693 0.302000 −0.585021

Step 3 A new value of Rayleigh quotient is evaluated as xT

1 Bx1 = 0.642773. The iterative
process is continued till B becomes singular. In the present case convergence is obtained in
three iterations to get

λ2 = 0.643104
eT

2 =
0.736976 0.327985 −0.591009

The following program demonstrates estimation of eigenvalues for matrix in Example 3.8
using power method combined with deflation.

A = [1 1 1;

1 2 2;

1 2 3];

xguess = 0.5774*[1;1;1];

[e1 ,x1] = powermethod(A,xguess ,1e-6);

A1 = A-e1*x1*x1 ';

[e2 ,x2] = powermethod(A1 ,xguess ,1e-6);

A2 = A1 -e2*x2*x2 ';

[e3 ,x3] = powermethod(A2 ,xguess ,1e-6);

The output of the program
e1 = 5.0489

e2 = 0.6431

e3 = 0.3080

Thus all three eigenvalues have been obtained by the use of power method with deflation.
MATLAB provides several built in functions to estimate eigenvalues. One such function
has been shown below. The output of the same applied to matrix in Example 3.8 is given
below.

e = eig(A)

e = [0.3080; 0.6431; 5.0489]

3.6 Eigenvalue eigenvector pair by QR iteration

In Chapter 2 we have presented a method for performing QR factorization of a matrix
A. Here we shall show that such a factorization may be used to obtain all the eigenvalue

136 Chapter.3 Computation of eigenvalues

eigenvector pairs. Recall that a square matrix A is brought to the form A=QR by the use
of either Householder transformations or Givens rotations. Let us consider the following.

A=Q1R1

Premultiply by QT
1 the above to get

QT
1 A=QT

1 Q1R1 =R1

Now consider A1 = R1Q1 and recast it as A1 = QT
1 AQ1. Matrix A1 is similar to matrix A.

Similar matrices have the same eigenvalues as shown earlier.

We may now generalize the above by defining an iteration process given by

Ak−1 =QkRk; Ak =RkQk =QT
k Ak−1Qk (3.41)

Thus we have a set of similar matrices given by A,A1, · · · · · · ,Ak. As k →∞ Ak tends to a
diagonal matrix, in case the matrix A is real symmetric. Because the diagonal matrix is
similar to A the diagonal elements of Ak represent the eigenvalues of A. We also see that

Ak = QT
k Ak−1Qk =QT

k QT
k−1Ak−2Qk−1Qk

= . . .=QT
kQT

1 AQ1 . . .Qk

The above may be rewritten after setting Ak =Λ, a diagonal matrix containing eigenval-
ues along the diagonal, as

AQ1 . . .Qk =ΛQ1 . . .Qk (3.42)

At once it is clear that the eigenvectors are the columns of the matrix product Q1 . . .Qk.

The general procedure for QR iteration is

• Perform QR factorization of the matrix Ai to determine matrices Qi and Ri
• Determine new matrix Ai+1 =RiQi
• Continue the process until Ai+1 becomes a diagonal matrix or in general an upper

triangular matrix.

Example 3.10
Determine all the eigenpairs pairs of the symmetric matrix

A=

2.5 3 4
3 3.5 5
4 5 5.5

by QR iteration.
Solution :

3.6. Eigenvalue eigenvector pair by QR iteration 137

Step 1 We show one iteration in detail to indicate how the method works. Using Givens
rotations we may bring the coefficient matrix to upper triangular form

R0 =

5.59017 6.79765 8.40762
0 0.20494 −0.74168
0 0 0.10911

Correspondingly we also have

Q0 =

0.44721 -0.19518 0.87287
0.53666 -0.72217 -0.43644
0.71554 0.66361 -0.21822

The reader may verify that we get back A by multiplication of matrices Q0 and R0.
Step 2 We now calculate

A1 =R0Q0 =

12.16400 -0.42072 0.07807
-0.42072 -0.64019 0.07241
0.07807 0.07241 -0.02381

This completes one iteration. We see that the off diagonal elements have already become
smaller. Also notice that the transformed matrix preserves symmetry.
Step 3 The convergence of the iteration process is slow since it takes 6 iterations to get

the following to 5 significant digits after decimals.

A6 =R5Q5 =

12.17828 0 0
0 -0.66279 0
0 0 -0.01549

=Λ

We also obtain the three eigenvectors as the columns of the matrix given below. The matrix
has been obtained by multiplying the six Q’s.

E=

0.45877 -0.28059 0.84309
0.55732 -0.64812 -0.51897
0.69205 0.70796 -0.14096

It may be verified that the columns of the E matrix are mutually orthogonal.

Program 3.3: QR iteration for eigenvalues

1 function B = eigenqr(A)

2 % I n p u t A : c o e f f i c i e n t m a t r i x
3 % O u t p u t B : M a t r i x w i t h e i g e n v a l u e s a l o n g t h e d i a g o n a l
4 res = norm(tril(A,-1)); % i n i t i a l i z e r e s i d u a l
5 % t r i l : MATLAB f u n c t i o n t o e x t r a c t l o w e r t r i a n g u l a r m a t r i x
6 % norm : MATLAB f u n c t i o n t o d e t e r m i n e norm o f a m a t r i x
7 count = 0; % i n i t i a l i z e i t e r a t i o n c o u n t
8 while(res > 1e-6) % l o o p u n t i l c o n v e r g e n c e
9 [Q,R] = householder(A); % e s t i m a t e Q and R m a t r i c e s

10 A = R*Q; % u p d a t e A ;
11 res = norm(tril(A,-1)); % u p d a t e r e s i d u a l
12 count = count + 1; % u p d a t e i t e r a t i o n c o u n t
13 end

14 B = A;

138 Chapter.3 Computation of eigenvalues

The program has been applied to matrix in Example 3.10
A = [2.5 3 4

3 3.5 5

4 5 5.5];

e = eigenqr(A);

The output of the program is as follows
e =

12.1783 -0.0000 0.0000

-0.0000 -0.6628 0.0000

0.0000 0.0000 -0.0155

3.7 Modification of QR iteration for faster convergence

Since the basic QR iteration is slow and involves excessive calculations, especially when
the matrix is dense, we explore the possibility of improving QR iteration for practical
applications. The first trick that is employed is to reduce the given matrix to Upper
Hessenberg form.9 The Hessenberg matrix is similar to the given matrix and has zero
elements for i > j +1. This means that the matrix has only one non zero sub-diagonal.
Hessenberg matrices have the important property that they remain Hessenberg under
transformations that are used to convert the matrix to the Schur form. The second
technique that is used is to introduce shift to accelerate convergence. Both these will
be dealt with in what follows.

3.7.1 Upper Hessenberg form

Consider a given square matrix A of size n× n. Schematic of the matrix is as shown
below.

A=

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

where ∗ represents, in general, a non-zero entry. Were it to be converted to the Hessenberg
form (AH) we should have the following schematic for the matrix.

AH =

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗
0 0 0 ∗ ∗ ∗
0 0 0 0 ∗ ∗

9Named after Karl Adolf Hessenberg, 1904-1959, German mathematician and engineer

3.7. Modification of QR iteration for faster convergence 139

The entries are zero for row numbers greater than column number +1. We convert A to
the Hessenberg form (AH) by a succession of similarity transformations of form GAGT ,
using Givens rotations or Householder transformations. These transformations preserve
the eigenvalues and hence the eigenvalues of AH are the same as the eigenvalues of A.
QR of AH involves much smaller number of calculations and hence there is a gain in the
speed of obtaining the eigenvalues. Note that the zero entries in AH do not change during
QR iterations and hence this advantage. In case the given matrix is symmetric, the AH
matrix will turn out to be also symmetric and hence tri-diagonal.

AH =

∗ ∗ 0 0 0 0
∗ ∗ ∗ 0 0 0
0 ∗ ∗ ∗ 0 0
0 0 ∗ ∗ ∗ 0
0 0 0 ∗ ∗ ∗
0 0 0 0 ∗ ∗

It is seen that the QR factorization of AH requires just n − 1 Givens rotations. The
following MATLAB program demonstrates the use of Householder matrix to covert the
matrix into Hessenberg form.

Program 3.4: Hessenberg matrix using Householder transformation

1 function H = hessenberg(A)

2 n = size(A,1); % r a n k o f m a t r i x A
3 for i = 1:n-2

4 x = A(i+1:n,i);

5 x1 = -sign(A(i+1,i))*sqrt(x'*x);

6 u = zeros(n-i,1); % i n i t i a l i z i n g v e c t o r u
7 u(1) = sqrt ((x1 -x(1))/(2* x1)); % c o m p u t i n g v e c t o r u
8 for j=2:n-i

9 u(j) = x(j)/(-2*u(1)*x1);

10 end

11 % d e t e r m i n e h o u s e h o l d e r m a t r i x f o r c u r r e n t c o l u m n
12 H = eye(n);

13 H(i+1:n,i+1:n) = H(i+1:n,i+1:n) - 2*u*u';

14 A = H'*A*H; % s i m i l a r i t y t r a n s f o r m a t i o n
15 end

16 H = A; % H e s s e n b e r g m a t r i x

Example 3.11
Transform the following symmetric matrix to Upper Hessenberg form.

A=

1 2 3 4
2 1 2 2
3 2 1 3
4 2 3 1

Solution :

140 Chapter.3 Computation of eigenvalues

Step 1 Since the given matrix is a 4×4 matrix Upper Hessenberg form will involve three
(n = 4, n − 1 = 3) similarity transformations to put three zeroes in appropriate places
in matrix A. The first transformation uses the Givens rotation G1 = G(3,4,θ) where

θ = tan−1
(

4
3

)
= 0.9273 rad. We thus have

G1 =

1 0 0 0
0 1 0 0
0 0 0.6 0.8
0 0 −0.8 0.6

The first similarity transformation G1AGT

1 then gives matrix B as

B=G1AGT
1 =

1 2 5 0
2 1 2.8 −0.4
5 2.8 3.88 −0.84
0 −0.4 −0.84 −1.88

Step 2 The second transformation uses the Givens rotation G2 = G(2,3,θ) where θ =

tan−1
(

5
2

)
= 1.1903 rad. We thus have

G2 =

1 0 0 0
0 0.3714 0.9285 0
0 −0.9285 0.3714 0
0 0 0 1

The second similarity transformation G2BGT

2 then gives matrix C as

C=G2BGT
2 =

1 5.3852 0 0

5.3852 5.4138 −1.0345 −0.9285
0 −1.0345 −0.5338 0.0594
0 −0.9285 0.0594 −1.88

The first column of A has the desired form now.
Step 3 We now take care of the second column. The third transformation uses the Givens

rotation G3 =G(3,4,θ) where θ = tan−1
(−0.9285
−1.0345

)
= 0.7314 rad. We thus have

G3 =

1 0 0 0
0 1 0 0
0 0 0.7442 0.6679
0 0 −0.6679 0.7442

The third similarity transformation G3CGT

3 then gives matrix AH as

AH =G3BGT
3 =

1 5.3852 0 0

5.3852 5.4138 −1.3900 0
0 −1.3900 −1.0753 −0.6628
0 0 −0.6628 −1.3385

AH is in Upper Hessenberg form and is similar to A. Since A is symmetric AH is also
symmetric and hence is in tri-diagonal form.

3.7. Modification of QR iteration for faster convergence 141

We use Program 3.4 to determine the Hessenberg matrix.
A = [1 2 3 4

2 1 2 2

3 2 1 3

4 2 3 1];

H = hessenberg(A);

The output of the program is given below
H =

1.0000 -5.3852 0.0000 -0.0000

-5.3852 5.4138 1.3900 -0.0000

0.0000 1.3900 -1.0753 0.6628

-0.0000 -0.0000 0.6628 -1.3385

Checking if the eigenvalues of the Hessenberg matrix and the original matrix are same.
e1 = eig(A); e2 = eig(H);

e1 = [-3.0000; -1.7115; -0.4466; 9.1581]

e2 = [9.1581; -3.0000; -0.4466; -1.7115]

Number of operations required for QR factorization
Operations QR factorization

complete matrix Hessenberg matrix
Number of Givens rotation re-
quired

n2

2
− n

2
n

Number of operations required
for one matrix multiplication in
i th column

6(n− i+1)

Total number of operations

n−1∑
i

6(n− i)(n− i+1)

∼O(n3)

n−1∑
i

6(n − i + 1)

∼O(n2)

Number of operations for one QR iteration on n×n matrix ∼O(n3)
Number of operations for converting matrix to Hessenberg form: ∼O(n3)
Number of operations for one QR iteration on Hessenberg matrix ∼O(n2)

The number of operations required for converting to Hessenberg is of the same order as that
of one QR iteration of complete matrix. But the number of computations for QR iteration of
Hessenberg matrix is one order of magnitude smaller than QR iteration of complete matrix.

A MATLAB program has been provided to determine Q and R matrices of a Hessenberg
matrix using Givens rotations

Program 3.5: QR factorization for a Hessenberg matrix using Givens rotation

1 function [Q,R] = qrhessenberg(A)

2 % I n p u t A : H e s s e n b e r g m a t r i x
3 % O u t p u t Q : o r t h o g o n a l m a t r i x
4 % R : u p p e r T r i a n g u l a r m a t r i x
5 n = size(A,1); % r a n k o f m a t r i x A

142 Chapter.3 Computation of eigenvalues

6 QT = eye(n); % i n i t i a l i z i n g t r a n s p o s e o f Q
7 R = A;

8 for i=1:n-1

9 [G,R] = givensmatrix(R,i,i,i+1);

10 QT(i:i+1,:) = G*QT(i:i+1,:); % m a t r i x m u l t i p l i c a t i o n
11 end

12 Q=QT '

Example 3.12
Obtain all the eigenvalues of matrix in Example 3.11 starting with the Upper Hessenberg
matrix derived there.
Solution :

Since the Upper Hessenberg form is preserved during Givens rotations, we need to apply
only three Givens rotations to convert the Upper Hessenberg form obtained in the previous
example to QR form. Matrix A being a 4×4 square matrix would have required 6 Givens
rotations to complete QR factorization and hence we have saved the labor of applying 3
Givens rotations in each QR iteration. Again we shall show one QR iteration and then the
final result.
Step 1 First Givens rotation will put a zero at position (2,1) of AH. We see that the

required Givens matrix is G1 =G(1,2,−1.3872 rad) and is given by

G1 =

0.1826 −0.9832 0 0
0.9832 0.1826 0 0

0 0 1 0
0 0 0 1

Premultiply AH by G1 to get

B=G1AH =

5.4772 −6.3060 −1.3667 0

0 −4.3062 0.2538 0
0 1.3900 −1.0753 0.6628
0 0 0.6628 −1.3385

Step 2 Second Givens rotation will put a zero at position (3,2) of B. We see that the

required Givens matrix is G2 =G(2,3,−0.3122 rad) and is given by

G2 =

1 0 0 0
0 0.9516 −0.3072 0
0 0.3072 0.9516 0
0 0 0 1

Premultiply B by G2 to get

C=G2B=

5.4772 −6.3060 −1.3667 0

0 −4.5250 0.5718 −0.2036
0 0 −0.9454 0.6307
0 0 0.6628 −1.3385

3.7. Modification of QR iteration for faster convergence 143

Step 3 The third Givens rotation will put a zero at position (4,3) of C. We see that the
required Givens matrix is G3 =G(3,4,−0.6115 rad) and is given by

G3 =

1 0 0 0
0 1 0 0
0 0 0.8188 −0.5741
0 0 0.5741 0.8188

Premultiply C by G3 to get

R=G3C=

5.4772 -6.3060 -1.3667 0

0 -4.5250 0.5718 -0.2036
0 0 -1.1546 1.2848
0 0 0 -0.7339

The matrix Q is obtained as

Q=GT
1 GT

2 GT
3 =

0.1826 0.9357 0.2473 0.1734

−0.9832 0.1737 0.0459 0.0322
0 −0.3072 0.7792 0.5463
0 0 −0.5741 0.8188

Step 4 Finally we form the product RQ to get

RQ=

7.2 4.4490 0 0

4.4490 −0.9619 0.3547 0
0 0.3547 −1.6372 0.4213
0 0 0.4213 −0.6009

which again is in Upper Hessenberg form. Off diagonal terms are already smaller after
one iteration. We replace the matrix AH by RQ and repeat the process till all off diagonal
terms are zero to the desired number of digits after the decimal point. Even though we have
shown only 4 significant digits in the above, calculations have been done using the available
precision of the computer. The converged matrix is in diagonal form and is given by

Λ=

9.158122 0 0 0

0 −3.000000 0 0
0 0 −1.711536 0
0 0 0 −0.446587

where we have shown 6 digits after decimals. The eigenvalues are the entries along the
diagonal now. They are seen to be real and distinct.

3.7.2 QR iteration with shift

Wilkinson shift

Consider a Hessenberg matrix A and assume that all its eigenvalues are real. We can
accelerate convergence of the QR iteration method if we introduce a shift σ (a real scalar)
before performing QR factorization such that

Ak−1 −σI=QkRk (3.43)

144 Chapter.3 Computation of eigenvalues

Then we obtain
Ak =RkQk +σI (3.44)

The shift itself may be selected as the element an,n, or alternatively, as Wilkinson shift
that is obtained as follows. Consider the eigenvalues of the trailing 2×2 matrix given by
the elements within the box in Equation 3.45.

∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗ ∗
0 0 0 ∗ ∗ ∗ ∗
0 0 0 0 ∗ ∗ ∗
0 0 0 0 0 ∗ ∗

an−1,n−1 an−1,n
an,n−1 an,n

 (3.45)

The two eigenvalues of this matrix may be easily obtained as the roots of a quadratic
equation. We choose the eigenvalue that is closer to an,n as the shift. As the iteration
proceeds the sub diagonal element (an,n−1) next to an,n becomes almost zero. This means
that an,n has converged to an eigenvalue.

∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗ ∗
0 0 0 ∗ ∗ ∗ ∗
0 0 0 0 ∗ ∗ ∗
0 0 0 0 0 0 ∗

Now the last row and last column are removed and the eigenvalues are calculated for the
resultant n−1× n−1 matrix. The above procedure of eliminating rows and columns is
known as deflation.

Deflation
Another strategy in speeding up the QR iteration is to deflate the matrix when possible. Consider
the following Hessenberg matrix.

AH =

∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗ ∗
0 0 0 0 ∗ ∗ ∗
0 0 0 0 ∗ ∗ ∗
0 0 0 0 0 ∗ ∗

When one of the lower sub diagonal elements is smaller than a specified tolerance, the eigenvalue
problem can be simplified further. The large matrix can be broken into two smaller matrices. The
eigenvalues of these smaller matrices are the eigenvalue of the large matrix. The computation
time for smaller matrices would be much smaller than that for a single large matrix.

3.7. Modification of QR iteration for faster convergence 145

Summary of QR iteration with Wilkinson shift:

• Determine eigenvalues of the 2×2 matrix at the right bottom of the original matrix.
The eigenvalue which is closer to the diagonal element of the last row an,n is chosen
as the shift parameter (σ).

• Perform QR factorization of matrix A−σI.
thus QkRk =Ak −σkI

• Update matrix Ak+1 =QkRk +σkI
• If an,n−1 ≈ 0, an,n is an eigenvalue of matrix A. Deflate the matrix i.e. remove last

row and last column. Continue the procedure for n−1×n−1 matrix.

Next example considers a real symmetric 3×3 square matrix to demonstrate the above
method.

Example 3.13
Use Wilkinson shift to obtain the eigenvalues of the following symmetric matrix.

A=

1 1 1
1 2 2
1 2 3

Solution :

Step 1 We may easily convert the given matrix to Hessenberg form (reader may do this
part) to get

A=

1 1.4142 0
1.4142 4.5 0.5

0 0.5 0.5

Now consider the trailing 2×2 matrix (elements shown boldface). The eigenvalues of this
matrix are the solution of the quadratic λ2−Trλ+Det= 0 where Tr and Det are the trace and
determinant respectively. In the present case Tr= 4.5+0.5= 5 and Det= 4.5×0.5−0.52 = 2.

The discriminant is 52−4×2=
p

17. The two eigenvalues are then given by
5+p

17
2

= 4.5616

and
5−p

17
2

= 0.4384. The latter is close to a3,3 and hence the shift is chosen as σ1 = 0.4384.

Step 2 With this shift the matrix we would like to work with becomes

A−σ1I=B=

0.5616 1.4142 0
1.4142 4.0616 0.5

0 0.5 0.0616

This matrix is converted to upper triangular form by the use of Givens rotations. The reader
may verify that the Givens rotations are such that

G1 =

0.3690 0.9294 0
−0.9294 0.3690 0

0 0 1

146 Chapter.3 Computation of eigenvalues

and

G2 =

1 1 0
0 0.3462 0.9382
0 −0.9382 0.3462

With these we also have

R1 =G2G1B=

1.5216 4.2968 0.4647
0 0.5330 0.1216
0 0.0000 −0.1518

and

Q1 =GT
1 GT

2 =

0.3690 −0.3218 0.8719
0.9294 0.1278 −0.3462

0 0.9382 0.3462

Step 3 Now we calculate the next iterate as

R1Q1 +σI=

4.9935 0.4953 0
0.4953 0.6207 −0.1424

0 −0.1424 0.3859

Step 4 We note two things. 1) The Hessenberg form is retained 2) The off diagonal terms

show a big reduction after just one iteration. In fact the process converges, after just three
more iterations to the following:10

R4Q4 +σ3I=

5.048917E+00 1.505822E−04 6.989134E−16
1.505822E−04 6.431041E−01 4.231264E−16

−5.313714E−17 2.387616E−20 3.079785E−01

Assuming that element (3,2) is close enough to zero, the bold entry gives one of the
eigenvalues of A i.e. λ1 = 0.307979. The matrix has been brought to reduced Hessenberg
form.11 Now we may deflate the matrix by removing the third row and third column to get
the following 2×2 matrix. 5.048916E+00 1.505822E−04

1.505822E−04 6.431041E−01

Step 5 The other two eigenvalues are then obtained by solving the characteristic equation

of this matrix which is a quadratic equation. This calculation is similar to that used in
obtaining the Wilkinson shift and hence will not be repeated. We thus have the other two
eigenvalues as λ2 = 0.643104 and λ3 = 5.048917. Thus we have managed to obtain all the
three eigenvalues of the given matrix.

10As and when required results are given with available precision even though numbers are generally
shown rounded to four or six digits

11Unreduced Hessenberg form has all nonzero elements for i > j+1 while the reduced Hessenberg form
has one zero element for i > j+1 i.e. n,n−1

3.7. Modification of QR iteration for faster convergence 147

Complex eigenvalues and double shift (Francis shift)

Now we consider a real square asymmetric matrix that may have complex eigenvalues.
Above method that uses Wilkinson shift does not work in this case. Of course one does
not know whether the matrix has complex eigenvalues by simply looking at the matrix.
We convert the given matrix to Hessenberg form and hence what follows will concern a
matrix in Hessenberg form. We may start the iteration process by using Wilkinson shift.
It is possible that after a few iterations the 2×2 matrix at the right bottom of the matrix
has eigenvalues that are complex. This is when the double shift strategy also known as
Francis QR step comes in.

Let the matrix at this stage be identified by A0. Let σ and σ̄ be the eigenvalues of the
trailing 2×2 matrix. These are the roots of the quadratic equation that represents the
characteristic equation of this matrix. Apply shift σ and obtain the Q1R1 factorization of
A0. Thus we have, at this stage the following.

A0 −σI = Q1R1 (a)

A1 = R1Q1 +σI . . . (b) (3.46)

Now introduce a second shift σ̄ and again perform QR factorization of A1. Thus we have

A1 − σ̄I = Q2R2 (a)

A2 = R2Q2 + σ̄I . . . (b) (3.47)

Since the shifts are complex numbers it appears we have to work with complex arithmetic
if we want to perform the above steps. However, as shown in what follows, the above
two shift process may be replaced by an implicit double shift process that uses only real
arithmetic. Substitute Equation 3.46(b) in Equation 3.47(a) to get

R1Q1 +σI− σ̄I=Q2R2

which may be rearranged as
R1Q1 + (σ− σ̄)I=Q2R2 (3.48)

Premultiply the above by Q1 and postmultiply by R1 to obtain

Q1(R1Q1)R1 + (σ− σ̄)Q1R1 = (Q1Q2)(R2R1)

The left hand side of the above equation may be rewritten as

Q1R1[Q1R1 + (σ− σ̄)I]= (A0 −σI)(A0 − σ̄I) (3.49)

where we have made use of Equation 3.46(a). Thus we have the important result

(A0 −σI)(A0 − σ̄I)= (Q1Q2)(R2R1)=ZR (3.50)

148 Chapter.3 Computation of eigenvalues

where we have introduced the notation Z = Q1Q2 and R = R2R1. We may easily see that
the left hand side is given by

(A0 −σI)(A0 − σ̄I)=A2
0 − (σ+ σ̄)A0 +σσ̄I

Note that σ+ σ̄= Tr and σσ̄= Det are the trace and determinant respectively of the 2×2
matrix. Both of these are real quantities. Thus we may write the above as

(A0 −σI)(A0 − σ̄I)=A2
0 −TrA0 +DetI=M (3.51)

Thus the left hand side turns out be real and hence we conclude that Z and A are real.
Thus the factorization M=ZR yields the factorization of A0 directly and does not involve
complex arithmetic. The shifts are implicit and hence the method is referred to implicit
double shift method. As the last step we compute

A2 =ZTA0Z (3.52)

to complete one iteration cycle using implicit double shift. As the iteration proceeds the
sub diagonal element (an−1,n−2) next to an−1,n−1 becomes almost zero. This means that
the eigenvalues of the 2×2 trailing submatrix are also eigenvalues of matrix A.

∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗ ∗
0 0 0 ∗ ∗ ∗ ∗
0 0 0 0 0 ∗ ∗
0 0 0 0 0 ∗ ∗

an−1,n−1 an−1,n
an,n−1 an,n

 (3.53)

Now the last two rows and last two columns are removed and the procedure is performed
on resultant n−2×n−2 matrix.
Summary of QR iteration with shifts (Francis or Wilkinson):

• Calculate the eigenvalues (σk, σ̄k of 2 × 2 submatrix at the right bottom of the
original matrix Ak. If the eigenvalues are complex use Francis shift else use
Wilkinson shift (discussed earlier).

• Determine matrix Mk =A2
k − (σk + σ̄k)Ak +σkσ̄kI

• Perform QR factorization of Mk
ZkRk =Mk

• Update matrix Ak+1 =ZT
k AkZk

• If an−1,n−2 ≈ 0, the eigenvalues of the 2×2 submatrix at the right bottom are also
the eigenvalues of A. Deflate the matrix to n−2×n−2 matrix i.e. remove last two
rows and two columns. Continue the iterations for the deflated matrix.

We work out an example in full detail to bring out all the important aspects involved in
the above procedure.

3.7. Modification of QR iteration for faster convergence 149

Example 3.14
Obtain all the eigenvalues of the following Hessenberg matrix.

A=

2 −1 1 0.5

−1 2 1 0.4
0 −1 2 0.3
0 0 −0.5 1

You may expect complex eigenvalues in this case.
Solution :

Consider the trailing 2×2 matrix of A given by 2 0.3
−0.5 1

The eigenvalues of this matrix are obtained (both are real) by solving characteristic

polynomial (quadratic) as σ1 = 3+p
0.4

2
= 1.8162 and σ2 = 3−p

0.4
2

= 1.1838. The latter
being the one closer to a4,4 = 1 is used as the Wilkinson shift to obtain the first QR
factorization of A, viz.

A1 =

2.9797 −0.0877 −0.2083 0.0968
0.8002 2.1264 1.0218 0.0497
0.0000 −1.2211 0.6667 −0.4009
0.0000 0.0000 0.0187 1.2272

The eigenvalues of the trailing 2×2 matrix of A1 are also real and the one that is closer
to 1.2272 i.e. σ = 1.2134 is used as the Wilkinson shift. The following is obtained after a
second iteration.

A2 =

3.1022 −0.4959 −0.2933 0.1195
0.6182 1.1606 1.7225 0.2671
0.0000 −0.4177 1.5017 −0.2379
0.0000 0.0000 0.0008 1.2355

After third iteration, the matrix becomes

A3 =

2.9467 −0.4729 1.0141 0.1979
0.1340 1.2367 0.4126 0.2757
0.0000 −1.7113 1.5812 0.1645
0.0000 0.0000 0.0000 1.2354

The element at (4,3) has become zero and hence λ1 = 1.235393 and we may deflate the
matrix by dropping the last row and column. The other three eigenvalues will use the
following 3×3 matrix.

B=

2.9467 −0.4729 −1.0141
0.1340 1.2367 0.4126
0.0000 −1.7113 1.5812

At this stage we see that the eigenvalues of the trailing 2×2 matrix are complex and

hence we initiate the implicit double shift now. We calculate the trace and determinant
as Tr = 1.2367+ 1.5812 = 2.8179 and Det = 1.12367× 1.5812+ 0.4126× 1.7113 = 2.6616.

150 Chapter.3 Computation of eigenvalues

The discriminant Tr2 −4Det = 2.81792 −4×2.6616 = −2.7057 is negative showing that the
eigenvalues are complex. We construct matrix M as

M=

2.9778 1.0897 −1.9292
0.1830 −0.0634 −0.1359

−0.2293 0.0000 0.0000

Note that M has non-zero elements along two sub-diagonals and hence is not in Hessenberg
form. We now obtain the ZR using Givens rotations as required. At the end of one iteration
we get the following.

R=

2.9922 1.0806 −1.9282
0 −0.1543 0.0652
0 0 −0.1342

and

Z=

0.9952 −0.0928 0.0315
0.0611 0.8387 0.5411

−0.0766 −0.5366 0.8404

Finally we also have

ZTAZ=

2.9951 0.0986 −0.9790
−0.0069 1.9110 0.7338

0.0000 −1.4884 0.8585

This completes one implicit double shift iteration. Two more iterations are required to get
the following transformed A:

A′ =

2.9917 0.9898 −0.0867
0.0000 1.0364 1.6542
0.0000 −0.5640 1.7365

The second real eigenvalue is thus given by λ2 = 2.9917. The two complex eigenvalues are
those of the deflated matrix

C=
 1.0364 1.6542

−0.5640 1.7365

The two complex eigenvalues are easily obtained as the roots of the quadratic characteristic
polynomial of C. These may be shown to be given by λ3 = 1.38645+ j0.9003 and λ4 =
1.3865− j0.9003.

The following MATLAB program incorporates QR iteration with shifts.

Program 3.6: QR iteration with shifts

1 function eigen = eigenqrshift(A)

2 % I n p u t A : c o e f f i c i e n t m a t r i x
3 % O u t p u t B : M a t r i x w i t h e i g e n v a l u e s a t d i a g o n a l
4 n = size(A,1);

5 B = hess(A); % B = h e s s e n b e r g m a t r i x o f A
6 n1 = n; % i n i t i a l i z e s i z e o f m a t r i x B
7 count = 0; % i n i t i a l i z e i t e r a t i o n c o u n t
8 eigen (1:n,1) = 0; % i n i t i a l i z e e i g e n v a l u e s

3.7. Modification of QR iteration for faster convergence 151

9 while 1 % l o o p u n t i l c o n v e r g e n c e
10 A1 = B(n1 -1:n1 ,n1 -1:n1); % 2 x 2 s u b m a t r i x
11 Tr = trace(A1); % t r a c e
12 D = det(A1); % d e t e r m i n a n t
13 count = count + 1; % u p d a t e i t e r a t i o n c o u n t
14 if(Tr^2-4*D < 0) % F r a n c i s d o u b l e s h i f t
15 M = B*B - Tr*B + D*eye(n1); % d e t e r m i n e M
16 [Z,R] = qrgivens(M); % e s t i m a t e Q and R m a t r i c e s
17 B = Z'*B*Z; % u p d a t e B ;
18 else % W i l k i n s o n s h i f t
19 e = eig(A1); % e i g e n v a l u e o f 2 x 2 s u b m a t r i x
20 if(abs(e(1)-A1(2,2)) <= abs(e(2)-A1(2,2)))

21 mu = e(1); % s e l e c t W i l k i n s o n s h i f t
22 else

23 mu = e(2);

24 end

25 [Q,R] = qrhessenberg(B-mu*eye(n1)); % QR f a c t o r i z a t i o n
26 B = R*Q+mu*eye(n1); % u p d a t e B
27 end

28 if(abs(B(n1 -1,n1 -2)) < 1e-6) % c h e c k f o r d e f l a t i o n
29 e = eig(B(n1 -1:n1 ,n1 -1:n1)); % (F r a n c i s s t e p)
30 eigen(n-n1+1) = e(1); % U p d a t e e i g e n v a l u e s
31 eigen(n-n1+2) = e(2);

32 B1 = B(1:n1 -2,1:n1 -2); % d e f l a t e m a t r i x B
33 B = B1;

34 n1 = n1 -2; % u p d a t e r a n k o f B
35 elseif(abs(B(n1 ,n1 -1)) < 1e-6) % c h e c k f o r d e f l a t i o n
36 eigen(n-n1+1) = B(n1 ,n1); % (W i l k i n s o n s t e p)
37 B1 = B(1:n1 -1,1:n1 -1); % d e f l a t e B
38 B = B1;

39 n1 = n1 -1; % u p d a t e r a n k o f B
40 end

41 if(n1 == 1) % i f r a n k o f B i s 1 o r 2
42 eigen(n)= B(1,1); % u p d a t e e i g e n v a l u e s
43 break % b r e a k t h e l o o p
44 elseif(n1 == 2)

45 e = eig(B);

46 eigen(n-1) = e(1);

47 eigen(n) = e(2);

48 break % b r e a k t h e l o o p
49 end

50 end

Example 3.15
Determine the eigenvalues of the matrix

A=

2 1 1 4 2
0 2 −1 0 5
1 −4 4 7 3
2 −3 2 −5 4
2 1 1 3 6

152 Chapter.3 Computation of eigenvalues

Compare different methods in terms of convergence.
Solution :

MATLAB Programs 3.3 and 3.6 have been used to compare different methods. The following
table lists the performance of different methods. It has to be noted that same convergence
criteria (sub diagonal element less than 10−6) has been adopted for all the methods.

Method Number of iterations
Simple QR 157
QR + Hessenberg 137
QR + shift 9
QR + Hessenberg + shift 8

The detailed output of the Program 3.6 after every iteration is given now.
% H e s e n b e r g m a t r i x
2 -4.3333 0.7633 1.4223 -0.7853

-3 6.8889 2.4394 3.9965 -2.9361

0 8.1027 -3.1078 -1.1834 2.283

0 0 -2.4375 0.914 5.3054

0 0 0 4.5649 2.3049

% M a t r i x a f t e r i t e r a t i o n 1
0.1066 1.9124 2.0455 3.4806 0.7168

4.6687 0.4972 -8.5003 1.4168 4.2339

0 -4.8981 2.7393 -6.1354 0.0715

0 0 -2.7703 -0.9211 -0.5916

0 0 0 0.0019 6.5781

% M a t r i x a f t e r i t e r a t i o n 2
-2.8823 4.9107 1.1637 4.7719 -1.8949

3.6315 -1.6656 2.2611 -1.7928 2.4227

0 2.7613 6.2293 2.9841 -1.3618

0 0 7.5645 0.7411 -2.7349

0 0 0 0 6.5775 %λ1 = 6 . 5 7 7 5
% M a t r i x a f t e r i t e r a t i o n 3
-3.69 -3.9371 2.2168 1.8185

-5.425 1.8714 6.6009 0.1199

0 4.8792 5.3634 -5.015

0 0 1.0507 -1.1222

% M a t r i x a f t e r i t e r a t i o n 6
-0.7835 10.1254 0.1236 -0.6807

6.6472 2.8967 -2.751 -4.8846

0 0.0057 0.3833 -2.4842

0 0 0 -0.0741 %λ2 = − 0 . 0 7 4 1
% M a t r i x a f t e r i t e r a t i o n 8
1.4169 10.3173 -0.2321

6.8376 0.6961 -2.7477

0 0 0.3835 %λ3 = 0 . 3 8 3 5
% t h e e i g e n v a l u e s
eigen = [6.5775; -0.0741; 0.3835; 9.4634; -7.3504]

3.7. Modification of QR iteration for faster convergence 153

Example 3.16
Determine the eigenvalues of the matrix

2 1 1 5 3
0 2 −1 0 8
1 −4 4 7 1
2 −3 2 −5 4
5 1 1 3 6

Solution :

MATLAB Program 3.6 has been used to determine the eigenvalues. All the eigenvalues are
determined in 6 iterations. The detailed output of the program has been given below.

% H e s s e n b e r g m a t r i x
2.0000 -4.746 -0.759 -1.725 -3.148

-5.477 7.733 -0.447 0.705 -1.210

0 7.678 0.162 -1.071 0.640

0 0 -3.648 6.164 -0.993

0 0 0 -5.229 -7.060

% M a t r i x a f t e r 3 i t e r a t i o n s
11.401 3.698 -0.659 3.689 -0.2229

-2.11 4.797 1.986 -2.16 -2.9475

0 5.027 2.598 1.908 -1.3652

0 0 -1.435 -2.852 4.8469

0 0 0 0 -6.9449 % λ1 =−6.9449
% M a t r i x a f t e r 6 i t e r a t i o n s
10.294 3.206 -1.5710 4.721

-0.461 7.877 -2.6835 3.697

0 0 0.4810 1.136 % λ2 =−1.1135+0.6249i
0 0 -2.5821 -2.708 % λ3 =−1.1135−0.6249i

eigen =

-6.9449

-1.1135 + 0.6249i % ’ i ’ r e f e r s t o p u r e i m a g i n a r y
-1.1135 - 0.6249i % number i n MATLAB
9.0860 + 0.1396i

9.0860 - 0.1396i

Concluding remarks

In this chapter we have discussed different types of problems that lead to eigenvalues. We have
also given physical as well as geometric interpretation of eigenpairs. Since analytical methods
are not always feasible numerical determination of eigenvalues are necessary. When the largest
(smallest) eigenvalue alone is required, it is possible to use the power method or its variants.

However, if all eigenvalues are required it is advisable to convert the matrix to Hessenberg
form and use QR factorization method with Francis or Wilkinson shift.

154 Chapter.3 Computation of eigenvalues

3.A MATLAB routines related to Chapter 3

MATLAB routine Function

poly(A) returns characteristic polynomial of matrix A
eig(A) returns eigenvalues of matrix A
eig(A,B) returns eigenvalues of generalized matrix A,B

eigs(A) returns dominant eigenvalues (first 6) of
matrix A

eigs(A,B) returns dominant eigenvalues (first 6) of
generalized matrix A,B

hess(A) reduces matrix A to Hessenberg form
schur(A) determines Schur form of matrix A

qz(A,B) performs QZ decomposition of generalized
matrix system A,B

3.B Suggested reading
1. E. Kreyszig Advanced engineering mathematics Wiley-India, 2007
2. S. Lipschutz and M. Lipson Schaum’s outline of theory and problems of linear

algebra Schaum’s Outline Series, 2001
3. G. Strang Introduction to linear algebra Wellesley Cambridge Press, 2000
4. C. Meyer Matrix analysis and applied linear algebra Society for Industrial and

Applied Mathematics, 2000
5. G. Golub and C. Van Loan Matrix computations Johns Hopkins Univ Pr, 1996
6. E. Anderson and others LAPACK Users’ guide Society for Industrial and Applied

Mathematics, 1999

Chapter 4

Solution of algebraic equations

Algebraic equations are routinely encountered while modeling problems in various areas
of engineering. Finding the solution of such equations is also referred to as “root" finding
or finding the “zeroes" of the equation. Sometimes equations occur as simultaneous
equations and the solution of such equations is extremely important in engineering
applications. Such solutions represent operating point(s) of an engineering system, as
will be made clear later on. Several methods of root finding listed below will be
considered here.

• Bisection method
• Fixed point iteration method
• Gauss Seidel iteration method for a set of nonlinear equations
• Newton Raphsona method
• Secant method
• Regula falsi method

We also consider optimization problems since they are essentially root finding problems.

aafter Isaac Newton, 1642-1727, an English physicist and mathematician and Joseph
Raphson, 1648-1715, an English mathematician known best for the Newton Raphson method

155

156 Chapter.4 Solution of algebraic equations

4.1 Univariate nonlinear equation

Non-linear equation of a single variable is referred to as univariate non-linear equation.
Many interesting physical problems lead to such equations. Roots or zeroes of such
equations represent interesting features of the functions. These are useful in graphing
the function as well as in understanding the behavior of physical systems. Hence root
finding is an important problem from numerical analysis point of view since analytical
methods are not always adequate.

4.1.1 Plotting graph: the simplest method

The simplest way to localize the roots of a given function is to make a plot. We
demonstrate a simple method for locating the approximate position of the root by an
example.

Example 4.1
Locate the zeroes of the polynomial y(x)= 1

8
(35x4 −30x2 +3) defined in the interval −1≤ x ≤

1.
Background :
The function y(x) defined in Example 4.5 is fourth order Legendre polynomial P4(x).
Legendre polynomials are solutions to Legendre differential equation and are associated
with the solution of Laplace equation1 in spherical coordinates. Legendre polynomials
form an orthogonal set and are used frequently in analysis. Similar to Fourier series
(based on circular functions) used for approximating functions in problems involving
Cartesian coordinate system, Legendre polynomials are used as Fourier Legendre series for
approximating functions in spherical coordinates. The roots of the Legendre polynomials
also represent the nodes in Gauss Quadrature (considered in a later chapter).

Solution :
We locate the root by plotting the function in MATLAB

y

-0.5

0

0.5

1

x
-1 -0.5 0 0.5 1

Figure 4.1: Plot of y= f (x)

1after Pierre-Simon, marquis de Laplace, 1749-1827, French mathematician and astronomer

4.1. Univariate nonlinear equation 157

%MATLAB P r o g r a m f o r p l o t t i n g a f u n c t i o n
x = [-1:0.1:1]; % C r e a t i n g a r r a y o f x

% w i t h 0 . 1 s p a c i n g
y = (35*x.^4 - 30*x.^2 + 3)/8; % D e f i n i n g y
plot(x,y); % p l o t t i n g x and y

By plotting, it is seen that y(x) has four real roots between the points (−0.9,−0.8),
(−0.4,−0.3) , (0.3,0.4) and (0.8,0.9).
The location of root can be further improved by refining the grid near the location of roots.
Once the root has been located approximately, methods such as bisection method, fixed
point iteration and Newton Raphson can be applied to obtain a more accurate estimates
for the root.

4.1.2 Bracketing methods

By plotting, we can easily find the points on either side of a root. The bounds enclosing
the roots can be further reduced by applying the bracketing methods. The simplest of
these method is the bisection method.

Bisection method

In the bisection method the interval is halved after every iteration. The method may be
explained with reference to Figure 4.2.

x

y

xc = xr + xl

2
f (x)

xl xc

xr

Figure 4.2: Bisection method for determin-
ing the root of an equation

Step 1 Calculation begins with the choice of two points, one to the left of the root (xl) and
the second to the right of the root (xr). Thus the function changes sign between the two
chosen points, i.e. the function crosses the x axis at some location between the two chosen
points. Hence f (xl)× f (xr)< 0.

Step 2 As a better choice for the root we try a point mid way between xl and xr i.e xc =
xl + xr

2
.

Step 3

(a) If f (xc)= 0, xc is the root.
(b) If f (xc)× f (xr) is positive the mid point is on the same side of the root as xr and we

replace xr by xc and continue the process.

158 Chapter.4 Solution of algebraic equations

(c) Otherwise we replace xl by xc and continue the process. At any stage of the iteration
process the root is somewhere between the current values of xl and xr.

Example 4.2
Determine one of the roots of the quadratic equation x2 −3x−2= 0 by the bisection method.
Solution :

The quadratic equation may easily be solved leading to a closed form solution. This
procedure is familiar to the reader and leads to the following two roots:

x1 = 3.561553 ; x2 =−0.561553

First root We note that the first root is between 3 and 4. We may start with these two
values as the starting values for the use of the bisection method. The calculation proceeds
as indicated in the following table.

Spreadsheet for the bisection method of Example 4.2
xl xc xr f l fc fr S1 S2
3 3.5 4 -2 -0.25 2 + -

3.5 3.75 4 -0.25 0.8125 2 - +
3.5 3.625 3.75 -0.25 0.2656 0.8125 - +
3.5 3.5625 3.625 -0.25 0.0039 0.2656 - +
3.5 3.5313 3.5625 -0.25 -0.1240 0.0039 + -

3.5313 3.5469 3.5625 -0.1240 -0.0603 0.0039 + -
3.5469 3.5547 3.5625 -0.0603 -0.0283 0.0039 + -

...
fr = f (xr) etc., S1 =SIGN(f l × fc) and S2 =SIGN(fc × fr)

The calculation may be continued till we get a value acceptable to us. The best value, at any
stage is given by the value in the second column labeled xc.
Second root lies between −1 and 0. A MATLAB code has been written to perform the
iterations.

xr = 0; % I n p u t : f i r s t b o u n d
xl = -1; % I n p u t : s e c o n d b o u n d
tolerance = 1e-4; % t o l e r a n c e f o r s t o p p i n g i t e r a t i o n
f = inline('x^2-3*x-2'); % d e f i n i t i o n o f f u n c t i o n " i n l i n e "
fr = f(xr); % e v a l u a t e f u n c t i o n a t f i r s t b o u n d
fl = f(xl); % e v a l u a t e f u n c t i o n a t s e c o n d b o u n d
xc = (xr+xl)/2; % c a l c u l a t e mid p o i n t
residual = abs(xr -xl)/2; % r e s i d u a l (h a l f o f t h e r a n g e)
count = 1; % i n i t i a l i z e i t e r a t i o n number
while (residual >= tolerance) % l o o p f o r c a l c u l a t i n g r o o t

fc = f(xc); % e v a l u a t e f u n c t i o n a t mid p o i n t
if(abs(fc) <= tolerance) % i f f c ≈ 0

break; % b r e a k l o o p
elseif(f(xc)*f(xr) >= 0) % c h e c k f o r p o s i t i o n o f r o o t

xr = xc; % u p d a t e x r
fr = fc; % u p d a t e f r

else

xl = xc; % u p d a t e x l

4.1. Univariate nonlinear equation 159

fl = fc; % u p d a t e f l
end

xc = (xr+xl)/2; % u p d a t e c e n t e r p o i n t
residual = residual /2; % u p d a t e r e s i d u a l
count = count + 1; % i n c r e m e n t i t e r a t i o n c o u n t

end % e n d o f l o o p
% t h e r o o t o f t h e a l g e b r a i c e q u a t i o n i s x c

The second root of the quadratic equation obtained after 14 iterations is
xc = -0.5616

Notes on bracketing methods

1. Bracketing methods always converge to a root for a unimodal function that has only one
root in the initial range.

2. Other bracketing methods such as Golden search and Fibonacci search method may be
used to improve the speed of convergence.

3. Bracketing methods can be followed up with fixed point iteration methods to obtain
more accurate roots.

4.1.3 Fixed point iteration method

The method is so named after the fact that it converges towards the root, also referred to
as the fixed point, by an iterative process, starting from an initial guess value, possibly
in the close vicinity of the fixed point.

Consider the solution of a non-linear equation f (x) = 0. We recast, by a suitable
manipulation, this equation in the form

x = g(x) (4.1)

We may interpret the above as equivalent to finding the point of intersection of line y1 = x
and the curve y2 = g(x). The determination of the fixed point itself is by an iteration
process.

Step 1 We start the iteration with a guess value x = xg.
Step 2 Equation 4.1 is used to get a better value (closer to the intersection point and

hence the root of the equation) as xb = g(xg).
Step 3

a If the difference |xb − xg| ≤ ε where ε is a specified tolerance, the iteration stops.
b Otherwise set xg = xb and continue the iteration process.

160 Chapter.4 Solution of algebraic equations

x

y y1 = x

y2 = g(x)

xg1 xg2 xg3

xb1

xb2

Intersection point

Figure 4.3: Approach towards the
root by the �xed point iteration
method

Geometrical interpretation of the fixed point iteration method is presented using Figure
4.3 as an illustration. The figure shows the line y1 = x passing through the origin and
the curve y2 = g(x). The line will make 45◦ with the x axis if the the y and x axes use
identical scales. We start the iteration by choosing xg = xg1 as shown. The better value
xb1 is obtained as the corresponding ordinate on the curve. We see that we have already
moved closer to the intersection point. We now set xg2 = xb1 and move to point xb2. This
process is continued till we approach the intersection point within the specified tolerance.

Example 4.3
Determine cube root of 2 using the fixed point iteration method.
Solution :

The problem is equivalent to obtaining the real root of equation

f (x)= x3 −2= 0

We may recast the equation in the form

f (x)= x3 −2= x3 + x3 − x3 −2= 2x3 − x3 −2= 0

or

2x3 = x3 +2 or x = x3 +2
2x2 = x

2
+ 1

x2

The last part is interpreted as being in the form x = g(x) where g(x)= x
2
+ 1

x2 , useful for the

application of the fixed point iteration method.

Table below shows the spreadsheet that is used for obtaining the root by fixed point
iteration method. The root has converged to 5 significant digits after the decimal point
in 16 iterations. The convergence of the method is also shown graphically in Figure 4.4.

4.1. Univariate nonlinear equation 161

A
pp

ro
xi

m
at

e
ro

ot

1.2

1.22

1.24

1.26

1.28

1.3

Iteration number
0 5 10 15 20

Figure 4.4: Convergence
of the �xed point iteration
method for Example 4.3

Spreadsheet for the fixed point iteration method of Example 4.3
Trial xg xb xb − xg Trial xg xb xb − xg

No. No.
1 1.2 1.2944 0.0944 7 1.2589 1.2604 0.0015
2 1.2944 1.244 -0.0504 8 1.2604 1.2597 -0.0008
3 1.244 1.2682 0.0242 9 1.2597 1.2601 0.0004
4 1.2682 1.2559 -0.0123 10 1.2601 1.2599 -0.0002
5 1.2559 1.262 0.0061 11 1.2599 1.26 0.0001
6 1.262 1.2589 -0.0031 12 1.26 1.2599 -0.0001

Example 4.4
Find the roots of the transcendental equation f (x) = 1− 3x+ 0.5xex = 0 by the fixed point
iteration method.
Solution :

The above transcendental equation can be rewritten in the form x = g(x) in the following
three possible ways

x = g1(x) = 1
3
+ xex

6
; x = g2(x) = ln

[
3x−1
0.5x

]
; x = g3(x) = (6x−2)e−x

On plotting the above three functions (Figure 4.5), we can see that these curves intersect
the straight line y= x at two points A (near x = 0.5) and B (near x = 1.5).

Let us apply fixed point iteration method to each of the above forms of equations and
obtain the two roots. g1(x) : Let us start the calculation with a guess value of xg = 1. We
obtain the root as x= 0.4516 correct to four places after the decimal point. Spreadsheet 1
presented below shows convergence details.

In order to obtain the root at B, we take the guess value as xg = 1.6. However, the fixed
point iteration diverges away from the solution. No matter what the guess value we take
for this form of equation, we either end up at root A or solution diverges.

162 Chapter.4 Solution of algebraic equations

Spreadsheet-1 for the fixed point iteration method in Example 4.4
Trial xg xb xb − xg Trial xg xb xb − xg

No. No.
1 1 0.7864 -0.2136 7 0.4560 0.4533 -0.0028
2 0.7864 0.6211 -0.1653 8 0.4533 0.4522 -0.0011
3 0.6211 0.5260 -0.0951 9 0.4522 0.4518 -0.0004
4 0.5260 0.4817 -0.0443 10 0.4518 0.4516 -0.0002
5 0.4817 0.4633 -0.0184 11 0.4516 0.4516 -0.0001
6 0.4633 0.4560 -0.0072 12 0.4516 0.4516 0.0000

y

0

0.5

1

1.5

2

x
0 0.5 1 1.5 2

A

Bg3(x)

g2(x)

y=x

g1(x)
Figure 4.5: Plot of the transcen-
dental function in di�erent ways

Why are we not able to obtain the other root with g1(x)?
g2(x) : Let us try to obtain the roots with second form of equation. We start the calculation
with a guess value of xg = 3. MATLAB program has been provided below for determining
the root of the above equation. Readers are encouraged to change the function and initial
guess values and observe the convergence/divergence of fixed point iteration.

% I n p u t s
xg = 3; % i n i t i a l g u e s s o f r o o t reader may change the value

tolerance = 1e-4; % t o l e r a n c e f o r s t o p p i n g i t e r a t i o n
% d e f i n e f u n c t i o n x = g (x) reader may change function

g = inline('log ((3*xg -1) /(0.5* xg))'); % the function

count = 1; % i n i t i a l i z e i t e r a t i o n number
while 1 % l o o p f o r c a l c u l a t i n g r o o t

xb = g(xg); % new v a l u e o f r o o t
residual = abs(xb -xg); % c a l c u l a t e r e s i d u a l
count = count + 1; % i n c r e m e n t i t e r a t i o n c o u n t
xg = xb; % u p d a t e v a l u e o f r o o t
if (residual < tolerance) % c h e c k f o r c o n v e r g e n c e

break

end

end

% t h e r o o t o f t h e e q u a t i o n i s x b

The second point converges to x= 1.5495 correct to four places after the decimal point. The
spreadsheet is presented in tabular form below.

4.1. Univariate nonlinear equation 163

Spreadsheet-2 for the fixed point iteration method in Example 4.4
Trial xg xb xb − xg Trial xg xb xb − xg

No. No.
1 3 1.6740 1.3260 5 1.5502 1.5496 0.0005
2 1.6740 1.5697 0.1043 6 1.5496 1.5496 0.0001
3 1.5697 1.5531 0.0167 7 1.5496 1.5495 0.0000
4 1.5531 1.5502 0.0029 8 1.5495 1.5495 0.0000

However, we fail to obtain root at A using g2(x) with any guess values.
It is left to the reader to probe the convergence/divergence of x= g3(x).

Convergence of fixed point iteration How do we know whether a solution converges or
diverges, and which of the roots is obtained by a given formulation?
An iterative scheme is said to converge when the ratio of errors of successive iterations is less
than 1.

En+1

En
=

∣∣∣∣ xn+1 − xn

xn − xn−1

∣∣∣∣≤ 1

It is easy to see that the iteration will converge to the root if
∣∣∣∣ dg
dx

∣∣∣∣
xb

≤ 1, i.e. if the improved value

moves closer to the straight line y = x. However the process sometimes converges even if the
initial guess value does not satisfy this condition.
The speed of convergence of a given method can be determined from the relationship between two
successive errors |xn+1 − xn| =C|xn − xn−1|k for large n, where C is a proportionality constant
and k is known as the order of convergence.
The rate of convergence of fixed point iteration is first order i.e. |xn+1 − xn| = C|xn − xn−1|.
In general, the order of convergence of any numerical scheme can be found by plotting En and
En+1 on a Log-Log graph and finding the slope of the resultant curve. Such a plot is presented in
Example 4.7.

4.1.4 Newton Raphson method

Newton Raphson method is also a fixed point iteration method. However, the
formulation of the alternate form given by Equation 4.1 is based on the use of Taylor
expansion around the guess point, that includes the first derivative term. We write the
value of function at xb as

f (xb)= f (xg)+ d f
dx

∣∣∣∣
xg

(xb − xg)+Higher order terms (4.2)

If we ignore the higher order terms, set the left side to zero, we get, on rearrangement

xb = xg −
f (xg)

f (1)(xg)︸ ︷︷ ︸
g(xg)

(4.3)

where we have also introduced the notation f (1) = d f
dx

. We notice that Equation 4.3 is in

the form of Equation 4.1 with g(x) = x− f (x)
f (1)(x)

. A geometric derivation of the Newton

164 Chapter.4 Solution of algebraic equations

x

y

f (x)

Tangent line

Root

A

BC

Figure 4.6: Geometric derivation
of the Newton Raphson method

Raphson method is also possible. Referring to Figure 4.6 we choose the point C to be the
point at which tangent drawn to the curve at A cuts the x axis. From the triangle ABC
we than have

Slope of tangent= f (1)(xg)= AB
BC

= f (xg)−0
xg − xb

(4.4)

On rearrangement the above reduces to the expression given by Equation 4.3. The
iterative procedure followed for Newton Raphson method is similar to that for the fixed
point iteration method.

Example 4.5
Solve for one of the roots of the cubic x3 −6x2 +8x+0.8= 0 by the Newton Raphson method.
Solution :

By making a plot of the function it is seen that all the three roots are real (see Figure 4.1).2

y

-50

-40

-30

-20

-10

0

10

20

x
-2 -1 0 1 2 3 4

Figure 4.7: Plot of the cubic in
Example 4.5

The derivative required for the Newton Raphson method is given by f (1)(x)= 3x2−12x+8
and the Newton Raphson uses the algorithm

xb = xg −
x3

g −6x2
g +8xg +0.8

3x2
g −12xg +8

(4.5)

2See "Solving Cubic Equations" by John Kennedy, available for download at
http :// homepage.smc.edu/kennedy_john/PAPERS.HTM, that explains how one can determine the nature of
the roots of the cubic.

4.1. Univariate nonlinear equation 165

Depending on the starting guess value the Newton Raphson method yields one of the three
roots. For example, if we start with value xg =−0.5 the method yields the root x =−0.093361
after just 5 iterations. A MATLAB code has been presented below for this choice of the
starting value. The reader is encouraged to change the values of initial guess in the
MATLAB program and check for convergence/divergence of the iteration scheme.

xg = -0.5; % i n i t i a l g u e s s
tolerance = 1e-4; % s p e c i f i e d t o l e r a n c e f o r c o n v e r g e n c e
f = inline('x^3-6*x^2+8*x+0.8 '); % d e f i n e f u n c t i o n
f1 = inline('3*x^2 -12*x+8'); % d e f i n e f i r s t d e r i v a t i v e
count = 0; % i n i t i a l i z e i t e r a t i v e c o u n t
while 1 % l o o p f o r c a l c u l a t i n g r o o t

xb = xg - f(xg)/f1(xg); % u p d a t e r o o t
residual = abs(xb -xg); % c a l c u l a t e r e s i d u a l
count = count + 1; % i n c r e m e n t i t e r a t i o n c o u n t
xg = xb; % u p d a t e o l d v a l u e o f r o o t
if (residual < tolerance) % c h e c k f o r c o n v e r g e n c e

break % i f c o n v e r g e d b r e a k l o o p
end

end

Spreadsheet for Newton Raphson method in Example 4.5
Trial No. xg xb f (xb) % Change

1 -0.5 -0.172881 -0.767546 -65.423729
2 -0.172881 -0.097367 -0.036741 -43.679852
3 -0.097367 -0.093372 -0.000100 -4.103030
4 -0.093372 -0.093361 -0.000000 -0.011751
5 -0.093361 -0.093361 0 -0.000000

Convergence of Newton Raphson method Convergence of Newton Raphson method to the
root is assured when

1
2

∣∣∣∣ f (2)(x)
f (1)(x)

(xn − xroot)
∣∣∣∣≤ 1

where xn is the nth iterate and xroot is the exact root. The above condition is based on the second
derivative term that was neglected in the Taylor expansion of the function around the guess value
for the root. The following points are important to ensure convergence of NR method

• The initial guess for NR method must be sufficiently close to the root. Otherwise, the
solution may diverge away from exact solution.

• NR may fail when the first derivative is very small. As f (1)(x) → 0, we may have division
by zero error.

Under certain conditions, the speed of convergence of NR method is quadratic i.e. |xn+1 − xn| =
C|xn − xn−1|2.

Newton Raphson and multiple roots

Consider the function f (x) = x3 − 2x2 + x. The roots of the equation are 0, 1 and 1
i.e. the root at x = 1 has multiplicity of 2. the first derivative at x = 1 is equal to zero,

166 Chapter.4 Solution of algebraic equations

which means f (x)/ f (1)(x) is not defined at x = 1. As the first derivative is zero at the
root, the convergence is poor. Starting the iteration from x = 2, it takes 20 iterations to
converge within six decimal accuracy. In general, when a root displays multiplicity as
in the function considered, NR method reduces to a first order method. However, the
convergence of NR method can be accelerated by modifying Equation 4.3

xb = xg −M
f (xg)

f (1)(xg)
(4.6)

where M is the multiplicity of the root. Applying above equation to f (x)= x3 −2x2 + x, we
achieve convergence within six decimals accuracy in only 5 iterations!

4.1.5 Secant method

Newton Raphson method requires calculation of function and its derivative at the guess
value. But, there can be instances where calculation of derivatives are not as simple as
in the examples discussed earlier. The secant method uses only function calculations,
avoiding the calculation of derivatives. The procedure starts with two points on the curve
say xi−1 and xi as shown in Figure 4.8.

x

y

f (x)

secant line

Root

A

B

xi−1xi

C, xi+1

Figure 4.8: Geometry for the
Secant method

The secant line is a straight line that passes through these two points. It is extended
to cut the x axis at point xi+1. This point is expected to be closer to the root than the two
points we started with. From geometry, we have

f (xi−1)− f (xi)
xi−1 − xi

= f (xi)−0
xi − xi+1

This may be rearranged as

xi+1 = xi − f (xi)(xi−1 − xi)
f (xi−1)− f (xi)

(4.7)

The above equation can be interpreted as Newton Raphson method with derivative f (1)(x)
evaluated using forward differences (to be described in a later chapter). Iteration proceeds
by replacing xi by xi+1 and xi−1 by xi. Iteration stops when a stopping condition is
satisfied.

4.1. Univariate nonlinear equation 167

Example 4.6
Solve the cubic x3 −6x2 +8x+0.8= 0 of Example 4.5 by the Secant method.
Solution :

We start the application of the secant method by using x1 = 2.5 and x2=2. Using the secant
method x3 is obtained as 2.213333. We now replace x1 by x2 and x2 by x3 and continue the
process as indicated in table below. The converged value of the root is 2.202063, accurate to
6 significant digits after the decimal point.

The MATLAB code and the spreadsheet for secant method have been provided below.
% I n p u t
x1 = 2.5; % f i r s t g u e s s v a l u e
x2 = 2.0; % s e c o n d g u e s s v a l u e
tolerance = 1e-4; % t o l e r a n c e f o r c o n v e r g e n c e
f = inline('x^3-6*x^2+8*x+0.8 '); % d e f i n e f u n c t i o n
f1 = f(x1); % e v a l u a t e f u n c t i o n a t f i r s t p o i n t
f2 = f(x2); % e v a l u a t e f u n c t i o n a t s e c o n d p o i n t
count = 0; % i n i t i a l i z e i t e r a t i o n c o u n t
residual = abs(x1 -x2) % i n i t i a l i z e r e s i d u a l
while (residual > tolerance)

xb = x1 - f1*(x2 -x1)/(f2 -f1); % e v a l u a t e new p o i n t
residual = abs(xb -x1); % e v a l u a t e r e s i d u a l
count = count + 1; % u p d a t e i t e r a t i o n c o u n t
x2 = x1; % u p d a t e x 2
f2 = f1;

x1 = xb; % u p d a t e x 1
f1 = f(x1); % f u n c t i o n a t f i r s t p o i n t

end

Spreadsheet for secant method in Example 4.6
Trial No. xn−1 xn f (xn−1) f (xn) xn+1

1 2.5 2 -1.075 0.8 2.213333
2 2 2.213333 0.8 -0.043624 2.202302
3 2.213333 2.202302 -0.043624 -0.000927 2.202062
4 2.202302 2.202062 -0.000928 0.000002 2.202063
5 2.202062 2.202063 0.000002 -0.000000 2.202063
6 2.202063 2.202063 -0.000000 0.000000 2.202063

Convergence of Secant method: The order of convergence of the Secant method, under special
circumstances is around 1.618 (known as the golden ratio). Convergence of secant method will
be slower for functions with multiple roots. All points discussed for convergence of NR method
are also applicable for convergence of secant method. Convergence of secant method will be poor
when the slope of the secant near the root is very small. In case of multiple roots, one can apply
the same acceleration technique as prescribed for NR method.

Example 4.7
Obtain a root of equation x2.1 − 0.5x− 3 = 0 by the fixed point iteration method, Newton

168 Chapter.4 Solution of algebraic equations

Raphson method and secant method. Compare the three methods from the view point of
convergence. Use a starting value of xg = 2 in each case.

Solution :

The fixed point iteration scheme uses the following for carrying out the iterations.

xb = (0.5xg +3)
1

2.1 (4.8)

Table below shows the spreadsheet for this case.

Spreadsheet for fixed point iteration method in Example 4.7
Trial No. xb xg En En/En−1

1 2.000000 1.935064 0.064936
2 1.935064 1.927568 0.007495 0.115428
3 1.927568 1.926701 0.000867 0.115704
4 1.926701 1.926600 0.000100 0.115736
5 1.926600 1.926589 0.000012 0.115739
6 1.926589 1.926587 0.000001 0.115740
7 1.926587 1.926587 0.000000 0.115740

The last column of the table indicates first order convergence of the fixed point iteration
method.

We set up the Newton Raphson iteration scheme by noting that f (1)(x)= 2.1x1.1 −0.5 and
hence

xb = xg −
x2.1

g −0.5xg −3

2.1x1.1 −0.5
(4.9)

Table below shows the spreadsheet for this case.

Spreadsheet for fixed point iteration method in Example 4.7

Trial No. xb xg En En/E2
n−1

1 2.000000 1.928253 0.071747
2 1.928253 1.926588 0.001664 0.323316
3 1.926588 1.926587 0.000001 0.322863
4 1.926587 1.926587 0.000000 0.322586

The last column of the table indicates second order convergence of the Newton Raphson
method.

The root of the equation has also been found by the Secant method with initial values of
2 and 2.5 and the results have been tabulated in the spreadsheet below.

Spreadsheet for Secant method in Example 4.7
Trial No. xn−1 xn f (xn−1) f (xn) xn+1 En

1 2.500000 2.000000 2.599739 0.287094 1.937930 0.062070
2 2.000000 1.937930 0.287094 0.043486 1.926849 0.011080
3 1.937930 1.926849 0.043486 0.001001 1.926588 0.000261
4 1.926849 1.926588 0.001001 0.000004 1.926587 0.000001
5 1.926588 1.926587 0.000004 0.000000 1.926587 0.000000

4.1. Univariate nonlinear equation 169

We have compared the convergence characteristics of all the three methods in Figure 4.9.
The slope of the convergence curve for Secant method is 1.530, which is between that for
fixed point iteration method and Newton Raphson method. The Secant method is faster
than fixed point iteration method but slower than the Newton Raphson method.

E n
+1

1e-12

1e-10

1e-08

1e-06

1e-04

1e-02

En

1e-12 1e-10 1e-08 1e-06 1e-04 1e-02

 Fixed Point
 Newton Raphson
 Secant

Figure 4.9: Convergence char-
acteristics of Fixed point itera-
tion, Newton Raphson and Secant
methods

4.1.6 Regula Falsi method

x

y

f (x)

secant line

Root

a

b
xa

xb

c, xc

Figure 4.10: Regula Falsi method

Regula Falsi method or false position method is a cross between bracketing method
and secant method. The main advantage of this method is that convergence is always
guaranteed. The calculation starts similar to bisection method, where two guess points xa
and xb are chosen such that the root is bracketed by the points. The new guess point xc is
where the secant line joining the two points intersects the x axis as shown in Figure 4.10.
The new set of points for next iteration are chosen as in the case of the bisection method.

(a) If f (xc)= 0, xc is the root.
(b) If f (xa)× f (xc) is positive, the new guess point is on the same side of the root as xa.

Hence the points for the next iteration are xc and xb.
(c) Otherwise the new set of points are xc and xa. At any stage of the iteration process

the root is bracketed by the two points. The iteration is continued until |xa − xb| ≤
tolerance.

170 Chapter.4 Solution of algebraic equations

Being a bracketing method, convergence is guaranteed. However, the rate of convergence
would depend on the nature of the function. The method is generally slower than the
secant method. For certain functions, regula falsi converges faster than the bisection
method. For the function f (x)= x2 −3x−2 (Example 4.2), regula falsi requires 6 iteration
steps for convergence where as bisection method takes 14 iterations.
However, there are certain types of functions for which the method converges rather very
slowly. Now let us consider the function x5−2= 0 whose root is equal to 1.1487. Taking the
initial interval as x = 1 and 2, the results from bisection method and regula falsi method
have been summarized in the table on next page.

Bisection method converges in 14 iterations where as regula falsi method takes 34
iterations for convergence. NR method takes 4 iterations where as secant method takes
6 iterations for converged solution. Notice that for regula falsi method, one of the guess
points is anchored at 2 for all the iterations and the step size does not go to zero when
converged. (in fact the size of the interval is significant). Unlike the bisection method, the
reduction in interval for regula falsi is not consistent. The reason for poor convergence of
regula falsi method when applied to above example is that the function is concave around
the root. In general convergence of regula falsi method would be poor when the order of
the nonlinear equation is large.

Bisection method Regula falsi method
Iteration xa xb |xb − xa| Iteration xa xb |xb − xa|

1 1 2 1 1 1 2 1
2 1 1.5 0.5 2 1.03226 2 0.96774
3 1 1.25 0.25 3 1.05825 2 0.94175
4 1.125 1.25 0.125 4 1.07891 2 0.92109
· ·
13 1.14868 1.14892 0.00024 33 1.14867 2 0.85132
14 1.14868 1.14880 0.00012 34 1.14868 2 0.85132

The methods that have been discussed to determine roots of univariate functions have to be
applied with caution. The application of these methods depends on the nature of the function.
It is difficult to define a well defined function as each method is bound by its own limitations. For
iterative methods such as fixed point iteration, NR and secant method, convergence is guaranteed
under certain conditions. In such a case, initial guess is important for ensuing convergence. On
the other hand, bracketing methods guarantee convergence.
A strategy for ensuring converged solutions is to use bracketing methods to reduce the bound of
the solution followed by iterative methods. In practice, it would be better to use a combination
of different methods (hybrid methods) to determine the roots. The hybrid method automatically
decides the best method to determine the solution and hence guarantees convergence of solution
to the root. Regula Falsi method is one such method, where secant method and bisection method
were combined together (However, regula falsi has its share of limitations).
MATLAB has an inbuilt function fzero to determine the roots of a univariate nonlinear equation.
The algorithm behind this function is Brent’s method to determine roots. Brent’s method is
a hybrid algorithm which uses bisection method, secant method and quadratic search method
(discussed in optimization) to determine the root.

4.2. Multivariate non linear equations 171

4.2 Multivariate non linear equations

4.2.1 Gauss Seidel iteration

Fixed point iterative method discussed above may be extended to solve a set of nonlinear
equations involving more than one variable. This is possible by the use of the Gauss Seidel
iteration method, also called ‘simulation’ in engineering literature. Recall that the Gauss
Seidel method has earlier been used for the solution of a set of linear equations in Section
2.8.1. As an example consider a set of two nonlinear equations given by f1(x1, x2) = 0 and
f2(x1, x2)= 0. We rewrite these equations in the following form:

x1 = g1(x1, x2)

x2 = g2(x1, x2) (4.10)

The solution starts with guess values for the two unknowns. We substitute these in the
first equation to get an update for x1. This updated value and the initial guess value for
x2 are used in the second equation to get an update for x2. This process is repeated till
convergence.

Example 4.8
Find the point of intersection between the curve x2− y2 = 2 and the curve xy= 2. Confine your
solution to the first quadrant only. Use the Gauss Seidel method and start with the guess set
x0 = 1,y0 = 1.
Solution :

Step 1 Equation of the first curve is used to solve for x to get

xi+1 =
√

2+ y2
i

where subscript i stands for iteration count.
Step 2 Equation for the second curve is solved for y to get

yi+1 = 2
xi+1

For example, the very first iteration would yield

x1 =
√

2+ y2
0 =

√
2+12 = 1.732051

y1 = 2
x1

= 2
1.732051

= 1.1547005

When this process is continued we obtain the values shown in the following table. It is seen
that the root converges to 6 digits after decimals in 15 iterations.

172 Chapter.4 Solution of algebraic equations

Spreadsheet for the Gauss Seidel iteration method in Example 4.8
Iteration xg yg Iteration xg yg
Number Number

0 1 1 8 1.798990 1.111735
1 1.732051 1.154701 9 1.798876 1.111805
2 1.825742 1.095445 10 1.798919 1.111779
3 1.788854 1.118034 11 1.798903 1.111789
4 1.802776 1.109400 12 1.798909 1.111785
5 1.797434 1.112697 13 1.798907 1.111786
6 1.799471 1.111438 14 1.798908 1.111786
7 1.798692 1.111919 15 1.798908 1.111786

Convergence is also shown graphically by plotting the x, y pairs as in Figure 4.11.

1

2

3
15

y

0.95

1

1.05

1.1

1.15

1.2

x
1 1.2 1.4 1.6 1.8 2

x2 - y2 = 2
 xy = 2

Figure 4.11: Con-
vergence of root in
Example 4.8. Num-
bers indicate the po-
sition of root after
that many iterations

A Matlab program is presented below to do the calculations.
% I n p u t s
x = 1.0; % g u e s s v a l u e o f x
y = 1.0; % g u e s s v a l u e o f y
tolerance = 1e-4; % s p e c i f i e d t o l e r a n c e f o r c o n v e r g e n c e
count = 0; % i n i t i a l i z e i t e r a t i o n c o u n t
while 1

xnew = sqrt (2+y^2); % c a l c u l a t e new v a l u e f o r x
ynew = 2/ xnew; % c a l c u l a t e new v a l u e f o r y
residualx = abs(x-xnew); % c a l c u l a t e c h a n g e i n x
residualy = abs(y-ynew); % c a l c u l a t e c h a n g e i n y
x = xnew; % u p d a t e v a l u e s o f x
y = ynew; % u p d a t e v a l u e s o f y
count = count + 1; % i n c r e m e n t i t e r a t i o n c o u n t
if(max([residualx; residualy]) < tolerance)

break % i f c o n v e r g e d , b r e a k l o o p
end

end

4.2. Multivariate non linear equations 173

4.2.2 Newton Raphson method

The Newton Raphson method is easily extended to the solution of set of nonlinear
equations. We shall illustrate the procedure for a set of two non-linear equations and
then generalize to a larger system of equations.

Let it be required to determine the solution of the two equations given by

f1(x1, x2)= 0; f2(x1, x2)= 0 (4.11)

These two equations represent curves in x1, x2 plane and the root required represents the
point of intersection between the two curves. We start with a guess point x1g, x2g and
Taylor expand the two functions around the guess point to get

f1(x1b, x2b) = f1(x1g, x2g)+ ∂ f1

∂x1

∣∣∣
x1g ,x2g

(x1b − x1g)+ ∂ f1

∂x2

∣∣∣
x1g ,x2g

(x2b − x2g)+O(xTx)

f2(x1b, x2b) = f2(x1g, x2g)+ ∂ f2

∂x1

∣∣∣
x1g ,x2g

(x1b − x1g)+ ∂ f2

∂x2

∣∣∣
x1g ,x2g

(x2b − x2g)+O(xTx)

(4.12)

Introduce the notation f1g = f1(x1g, x2g), f2g = f2(x1g, x2g),
∂ f1

∂x1

∣∣∣
g
= ∂ f1

∂x1

∣∣∣
x1g,x2g

,
∂ f1

∂x2

∣∣∣
g
=

∂ f1

∂x1

∣∣∣
x1g,x2g

,
∂ f2

∂x1

∣∣∣
g
= ∂ f2

∂x1

∣∣∣
x1g,x2g

,
∂ f2

∂x2

∣∣∣
g
= ∂ f2

∂x2

∣∣∣
x1g,x2g

, ∆x1 = x1b − x1g and ∆x2 = x2b − x2g.

Ignoring higher order terms, we set both f1(x1b, x2b) and f2(x1b, x2b) to zero, to rewrite
Equation 4.12 as

∂ f1

∂x1

∣∣∣
g
∆x1 + ∂ f1

∂x2

∣∣∣
g
∆x2 = − f1g

∂ f2

∂x1

∣∣∣
g
∆x1 + ∂ f2

∂x2

∣∣∣
g
∆x2 = − f2g (4.13)

which may also be recast in the matrix form as
∂ f1

∂x1

∣∣∣
g

∂ f1

∂x2

∣∣∣
g

∂ f2

∂x1

∣∣∣
g

∂ f2

∂x2

∣∣∣
g

︸ ︷︷ ︸
Jacobian matrix

 ∆x1
∆x2

︸ ︷︷ ︸
step vector

=
 − f1g

− f2g

 (4.14)

As indicated above, the square matrix involving the first derivatives is known as the
Jacobian matrix. The NR method has replaced the original set of non-linear equations
by a set of linear equations. Newton Raphson method is hence a linearization scheme
which gives a set of linear equations for the step size.

We solve for ∆x1 and ∆x2 starting from an initial guess value and use an iterative
solution till each of ∆x1 and ∆x2 is less than or equal to a specified tolerance.

174 Chapter.4 Solution of algebraic equations

The above procedure may be extended easily to n equations where n > 2. We would
obtain a system of simultaneous equations of the form

J∆x=−f

where J is the Jacobian matrix, ∆x denotes the change in the value of the vector of roots
(step size). The above system of equations can be solved by methods already familiar to
us.

Example 4.9
Find an intersection point between the circle x2 + y2 = 4 and the curve e

x + y = 1 using the
Newton Raphson method.
Solution :

There are two points of intersection between the circle and the curve as indicated in Figure
4.12. The first one is in the second quadrant while the second is in the fourth quadrant.

x

y

1

2

circle

curve

Figure 4.12: Intersection points
between circle and curve of Exam-
ple 4.9

The two equations given in the example are written as

f1(x, y)= x2 + y2 −4= 0; f2(x, y)= ex + y−1= 0

The partial derivatives required in the Newton Raphson method are given by

∂ f1

∂x
= 2x ;

∂ f1

∂y
= 2y

∂ f2

∂x
= ex ;

∂ f2

∂y
= 1

We start with guess values of xg = −1,yg = 0.5 (a point in the second quadrant) and show
below the calculations involved in one iteration. The Jacobian matrix is given by

J=
 −2 1

0.367879 1

The function values at the guess point are

f1(−1,0.5)=−2.75; f2(−1,0.5)=−0.132120

4.3. Root finding and optimization 175

Using Kramer’s rule the increments in x and y are obtained as

∆x = 2.75×1−0.132120×1
−2−0.367879

= −1.105580

∆y = 0.132120×−2−2.75×0.367879
−2−0.367879

= 0.538840

The new point is obtained as

xb =−1−1.105580=−2.105580; yb = 0.5+0.538840= 1.038840

The process converges after two more iterations to the point −1.816260,0.837368. We
present below the MATLAB code to obtain the other root.

% I n p u t s
xg = 1; % i n i t i a l g u e s s v a l u e o f x
yg = -0.5; % i n i t i a l g u e s s v a l u e o f y
tolerance = 1e-4; % s p e c i f i e d t o l e r a n c e f o r c o n v e r g e n c e
count = 0; % i n i t i a l i z e i t e r a t i o n c o u n t
residual = 100; % i n i t i a l i z e r e s i d u a l
while (residual > tolerance)

f1 = xg^2+yg^2-4; % e v a l u a t e f i r s t f u n c t i o n
f2 = exp(xg)+yg -1; % e v a l u a t e s e c o n d f u n c t i o n
f1x= 2*xg; % e v a l u a t e f i r s t d e r i v a t i v e s
f1y= 2*yg; % e v a l u a t e f i r s t d e r i v a t i v e s
f2x= exp(xg); % e v a l u a t e f i r s t d e r i v a t i v e s
f2y= 1; % e v a l u a t e f i r s t d e r i v a t i v e s
% c a l c u l a t e dx and dy u s i n g C r a m e r s r u l e
dx = -(f1*f2y -f2*f1y)/(f1x*f2y -f2x*f1y);

dy = -(f1x*f2 -f2x*f1)/(f1x*f2y -f2x*f1y);

residual = max(abs(dx),abs(dy)); % e v a l u a t e r e s i d u a l
count = count + 1; % i n c r e m e n t i t e r a t i o n c o u n t
xg = xg+dx; % u p d a t e x
yg = yg+dy; % u p d a t e y

end

The second root obtained in 6 iterations converges to the point 1.0042,−1.7296.

4.3 Root finding and optimization

Root finding of an equation may also happen naturally when we want to determine the
maximum or minimum of a function. From calculus we know that the maximum of a
function of one variable occurs at a point where f (1)(x)= 0 and f (2)(x)< 0. Similarly,
minimum of a function would occur where f (1)(x)= 0 and f (2)(x)> 0. Naturally the
methods discussed so far can be adapted for optimization. Let us consider a simple
example to demonstrate this.

Example 4.10
Obtain the maximum of the function f (x)= x5

ex −1
.

176 Chapter.4 Solution of algebraic equations

Background :
A note on Planck’s distribution: Function given in this example is related to the Planck dis-
tribution function describing the variation of black body emissive power with wavelength.
x is equivalent to the reciprocal of product of wavelength of emission λ and temperature of
black body T. The solution to the exercise is related to the Wein’s displacement law which
states that the wavelength at which emission from a black body is maximum is inversely
proportional to the temperature of the black body. The appropriate relationship is given by

λmax = 2897.8
T

µm K.

Solution :
The derivative of the function is given by

f (1)(x)= 5x4

ex −1
− x5ex

(ex −1)2
(4.15)

It is evident that the corresponding root finding problem may be written as

g(x)= 5(ex −1)− xex = 0 (4.16)

The Newton Raphson method requires the derivative given by

g(1)(x)= 5ex −ex − xex = 4ex − xex (4.17)

Newton Raphson method then uses the following for iteration:

xb = xg −
5(exg −1)− xge

xg

4exg − xge
xg

(4.18)

We start the iteration process with a guess value of xg = 5 and obtain the converged value
of xb = 4.965114, correct to 6 significant digits after the decimal point, after just 4 iterations
(see table below).

Spreadsheet for Newton Raphson method in Example 4.10
Trial No. xg xb g(xb) |% Change|

1 5 4.966310 -0.165643 0.673795
2 4.966310 4.965116 -0.0002013 0.024054
3 4.965116 4.965114 -0.0000003 0.000029
4 4.965114 4.965114 0 0.000000

We now calculate the second derivative g(2)(4.965114) as

g(2)(4.965114)= (3−4.965114)e4.965114 =−281.649843

The second derivative is negative and hence the root determined above represents the
point of maximum for the original function. The maximum value of the function may be
determined as

f (4.965114)= 4.9651145

e4.965114 −1
= 21.201436

4.3. Root finding and optimization 177

4.3.1 Search methods of optimization: Univariate case

Even though Newton Raphson method is useful, as shown above, for optimizing a
function of a single variable, the procedure may not yield a global optimum. There may
be several optima that may be obtained by using the Newton Raphson method, starting
with different initial guess values. The one that yields a global optimum may be obtained
by sorting these.

Many search methods are available3 that need only function calculation and not the
calculation of the derivative. We have already discussed Bisection method for root finding.
The same can be used for finding the maxima and minima. One technique which is very
useful and that is based on interpolation, known as the quadratic interpolation method,
will be described here.

Quadratic interpolation method

The idea of quadratic interpolation or quadratic search method is to assume the function
to be quadratic and determine the minimum/maximum of the quadratic function. We
start the search initially with three points x1, x2 and x3 which are hopefully close to
the optimum. We calculate three function values at these three points, say f (x1) = f1,
f (x2) = f2 and f (x3) = f3. We may easily fit a quadratic through these three function
values.

x

f (x) Quadratic
curve

xmin

x1

x2

x3

y

xnew

Figure 4.13: Functions values for
quadratic interpolation

A typical example of a fictitious function passing through three points is shown in
Figure 4.13. A quadratic function of the form q(x) = a+ bx+ cx2 defined in the interval
x1 < x < x3 that passes through the three points satisfies the following equations.

f1 = a+bx1 + cx2
1; f2 = a+bx2 + cx2

2; f3 = a+bx3 + cx2
3 (4.19)

The coefficients of the quadratic equation are determined by solving the following matrix
equation

1 x1 x2
1

1 x2 x2
2

1 x3 x2
3

a

b

c

=

f1

f2

f3

 (4.20)

3See, for example, S.S. Rao, Optimization-Theory and Applications (Second Edition), Wiley Eastern
Ltd.,New Delhi, 1984

178 Chapter.4 Solution of algebraic equations

The minimum of the quadratic is at the point where the first derivative of the function

becomes zero which is nothing but b+2cx∗ = 0 or x∗ =− b
2c

. The procedure may be deemed

to have converged if | f (x∗)− f (x1)| ≤ ε where ε is a chosen tolerance. Otherwise we shift x1
to x∗, x2 to x1 and x3 to x2 and repeat the process till convergence.

The general procedure of a quadratic interpolation scheme is

• Start with three guess points x1, x2 and x3. The initial points may be equi-spaced
say x2 = x1 +h and x3 = x1 +2h

• Determine b and c and determine the root x∗ =− b
2c

• Check if the iteration has converged i.e. |x∗− x1| < ε
• Update x3 = x2, x2 = x1 and x1 = x∗

The procedure is similar in character to the secant method where a straight line is used
to determine the roots of the equation instead of a quadratic curve. A simple example is
considered below.

Example 4.11
Find the minimum value of the function f (x)= x6 −5x4 −20x+5 by univariate search based
on quadratic interpolation. Start from x = 1 and a suitable h.
Solution :

MATLAB program for Example has been given below.
% I n i t i a l i z e p o i n t s
x3 = 1; x2 = 1 + 0.75; x1 = 1 + 2*0.75;

% d e f i n e o b j e c t i v e f u n c t i o n f (x)
f = inline('x^6-5*x^4 -20*x+5');

% e v a l u a t e f u n c t i o n a t p o i n t s
f3 = f(x3); f2 = f(x2); f1 = f(x1);

tol = 1e-6; % i n i t i a l i z e t o l e r a n c e
res = 0.75; % i n i t i a l i z e r e s i d u a l
count = 0; % i n i t i a l i z e i t e r a t i o n number
while(res > tol) % i t e r a t e u n t i l c o n v e r g e n c e

% e v a l u a t e b and c
b = -(x1+x2)*f3/((x3 -x1)*(x3 -x2)) - ...

(x3+x2)*f1/((x1 -x3)*(x1 -x2)) - ...

(x3+x1)*f2/((x2 -x1)*(x2 -x3));

% I n MATLAB , when a command i s t o o l o n g t o f i t i n a l i n e ,
% we c a n u s e . . . t o b r e a k t h e command o v e r s e v e r a l l i n e s

c = f3/((x3 -x1)*(x3 -x2)) + f1/((x1 -x3)*(x1 -x2)) ...

+ f2/((x2 -x1)*(x2 -x3));

xnew = -0.5*b/c; % e v a l u a t e new o p t i m u m p o i n t
res = abs(xnew -x1); % u p d a t e r e s i d u a l

% u p d a t e p o i n t s and f u n c t i o n s
x3 = x2; x2 = x1; f3 = f2; f2 = f1;

x1 = xnew; f1 = f(x1);

count = count + 1; % u p d a t e i t e r a t i o n c o u n t
end

4.4. Multidimensional unconstrained optimization 179

As indicated we start the iteration process from x = 1. A few trials indicate that the step
size may be chosen as h = 0.75 to commence the quadratic interpolation process. The state
of affairs at the end of one iteration is as indicated in the following extract of a spreadsheet.
Note that the first derivative calculated as f ′(x) = 6x5 −20x3 −20 is also indicated in the
spreadsheet.

Start iteration Step size = 0.75
from x = 1
x f (x) Quadratic

interpolation:
1 -19.0000 b = -237.3145
1.75 -48.1716 c = 72.1523
2.5 3.8281 x∗= 1.6445
f ′(x∗) = -36.7809 |x∗− x1| = 0.8555

The points are updated with x1 = 1.6445 and retaining the other two points. The second
iteration is as follows

Iteration 2
x1 =
x f (x) Quadratic

interpolation:
1.75 -48.1716 b = -439.5631
2.5 3.8281 c = 119.7403
1.6445 -44.6808 x∗ = 1.8355
f ′(x∗) = -18.6764 |x∗− x1|= 0.1909

We see that the derivative has already decreased substantially and it appears that we are
close to the minimum of the function. The next iteration has been summarized as follows

Iteration 3
from x1 = 1.8355
x f (x) Quadratic

interpolation:
2.5 3.8281 b = -477.9471
1.6445 -44.6808 c = 129.0016
1.8355 -50.2218 x∗ = 1.8525
f ′(x∗) = -16.2480 |x∗− x1|= 0.0170

The solution converges to minimum of −51.3165 at x1 = 1.9457 in 10 iterations.

4.4 Multidimensional unconstrained optimization
Above we have considered maxima/minima of a function in one variable as a problem

in root finding (see Example 4.10). Optimization of a function of more than one variable
should also be possible using root finding but in more than one dimension. Optimization
is a topic of many books and hence only a few simple cases will be considered here, as
an introduction to the topic. Calculus methods are appropriate in simple cases while
computational schemes become important in more difficult cases.

180 Chapter.4 Solution of algebraic equations

4.4.1 Calculus based Newton method

Consider, as an example, the optimization (finding minimum/maximum) of a function
f (x1, x2) in two variables. In an unconstrained optimization case we just have to find the
coordinates x∗1 , x∗2 (critical point) such that f (x∗1 , x∗2) has a maximum/minimum value.

The condition that is to be satisfied by the function at the optimum point is that the

gradient be zero. Thus both derivatives
∂ f
∂x1

and
∂ f
∂x2

should be zero at the critical point

x∗1 , x∗2 . The second condition that has to be satisfied, if the function has a minimum at this
point, is that the Hessian matrix be positive definite. Hessian matrix is the matrix that is
defined, in the case of a function of two variables, as

H=

∂2 f
∂x2

1

∂2 f
∂x1∂x2

∂2 f
∂x1∂x2

∂2 f
∂x2

2

 (4.21)

The Hessian matrix is positive definite if both its eigenvalues are positive at the optimum
(or critical) point. In the above case of a function of two variables it may be shown that this

condition is satisfied if
∂2 f
∂x2

1
· ∂

2 f
∂x2

2
−

(
∂2 f

∂x1∂x2

)2

> 0 (Determinant of the Hessian - also the

discriminant of the characteristic equation - a quadratic, in this case) and
∂2 f
∂x2

1
> 0. If the

critical point is a maximum the Hessian matrix should be negative definite at the critical

point. The condition to be satisfied is that
∂2 f
∂x2

1
< 0 and the discriminant be positive.

The Newton method is simply the application of Newton Raphson to determine the
optimum point by iteration. For this purpose the gradient vector with its two components
have to be set to zero and hence is equivalent to solving a set of two simultaneous

equations
∂ f
∂x1

= 0 and
∂ f
∂x2

= 0. The equations to be solved are

∆x=−H−1∇ f (x) (4.22)

We will show this by a simple example.

Example 4.12
Obtain the minimum of the function f (x1, x2)= 3x2

1 +4x2
2 −5x1x2 −8x1 and its location.

Solution :
Note that the function f (x1, x2) is a quadratic form. Following expressions may be derived
for the function f (x1, x2) specified in the problem.

∂ f
∂x1

= 6x1 −5x2 −8;
∂ f
∂x2

= 8x2 −5x1

4.4. Multidimensional unconstrained optimization 181

∂2 f
∂x2

1
= 6;

∂2 f
∂x2

2
= 8; and

∂2 f
∂x1∂x2

=−5

We may now verify that the determinant of the Hessian (∆) is given by ∆= 6×8−5×5= 23>
0. Also

∂2 f
∂x2

1
= 6 > 0. Both are independent of x1, x2. The two components of the gradient

vanish when

6x1 −5x2 −8 = 0

8x2 −5x1 = 0

These two equations are easily solved to get x∗1 = 2.7826 and x∗2 = 1.7391. This point must
be a point of minimum. The minimum value of the function is then given by

f (2.7826,1.7391)=−11.1304

We consider now a slightly more difficult problem that requires the use of Newton method.

Example 4.13
Obtain the minimum of the function f (x1, x2)= (x2

1 − x2)2 + (1− x1)2 + x1ex2 and its location.

Solution :
We introduce the following notation for the sake of simplicity.

∂ f
∂x1

= f1;
∂ f
∂x2

= f2

∂2 f
∂x2

1
= f11;

∂2 f
∂x2

2
= f22;

∂2 f
∂x1∂x2

= f12

For the given function we have the following:

f1 = 4(x2
1 − x2)x1 −2(1− x1)+ ex2 ; f2 =−2(x2

1 − x2)+ x1ex2

f11 = 12x2
1 −4x2 +2; f22 = 2+ x1ex2 ; f12 =−4x1 + ex2

The Newton Raphson procedure requires that we start from a guess point (x1g, x2g) and
take steps ∆x1 and ∆x2 that are solutions of the following linear equations. f11 f12

f12 f22

 ∆x1
∆x2

+
 f1

f2

=
 0

0

where all the functions and derivatives are evaluated at the guess point. We shall start
with the guess point (0.5,0.5). Function and derivative values are evaluated at this point.
Function f (0.5,0.5) is evaluated as 1.1369. The set of equations to be solved turn out to be 3.0000 −0.3513

−0.3513 2.8244

 ∆x1
∆x2

+
 0.1487

1.3244

=
 0

0

The solution is obtained by Cramer’s rule as ∆x1 =−0.1060 and ∆x2 =−0.4821 and a point
closer to the optimum is obtained as 0.3940,0.0179. At the end of the above iteration the
function value has reduced to 0.7872. Two more iterations are required for convergence
to the critical point (0.3799,−0.0384) where the function value is 0.7835. Convergence of
the method is brought home through the following table. We note that the optimum is a
minimum since all the conditions for a minimum are satisfied.

182 Chapter.4 Solution of algebraic equations

Iteration No. 1 2 3 4
x1 0.500000 0.393977 0.379831 0.379946
x2 0.500000 0.017907 -0.038053 −0.038449

f11 3.000000 3.790982 3.883468 3.886100
f12 -0.351279 -0.557838 -0.556661 -0.557502
f22 2.824361 2.401095 2.365649 2.365615
f1 0.148721 0.022410 0.000667 3.18E-07
f2 1.324361 0.126474 0.001000 -4.17E-08

∆x1 -0.106023 -0.014146 0.000115 -8.20E-08
∆x2 -0.482093 -0.055960 -0.000396 -1.72E-09

f (x1, x2) 1.136861 0.787214 0.783501 0.783500
Bold entries - converged solution

The procedure involved in Newton’s method for optimization is simple. However, the method
requires determination of the inverse of the Hessian matrix. As the number of variables increases,
evaluation of inverse of Hessian matrix may become computationally intensive as has already
been discussed earlier. Alternatively, there are methods known as Quasi Newton methods
where the inverse of the Hessian matrix is approximated using the information about derivatives.
This also reduces the number of computations required.

The method is bound to fail when the Hessian matrix is poorly conditioned i.e. |H| ≈ 0. The
solution under such conditions would diverge. There are some methods such as Levenberg
Marquadt method where an extra term is added to the inverse of the Hessian matrix. Levenberg
Marquadt method is a widely used algorithm in many optimization packages. The method can be
considered to be weighted sum of Newton methods and Gradient descent methods. Examples of
Gradient descent methods are steepest descent and conjugate gradient which will be discussed in
the following section.

4.4.2 Gradient descent search methods

Search methods avoid the calculation and evaluation of the Hessian. We have already
presented in Chapter 2 the method of steepest descent and the conjugate gradient method
for solving a set of linear equations, by minimizing the residuals. In the present case the
equations are non-linear and require some modification of the methods. These will be
considered here.

Steepest descent method

As we have seen earlier, in the steepest descent method (for locating a minimum) or the
steepest ascent method (for locating a maximum) the search direction from a specified
starting point is either opposite the gradient vector (minimum) or along the gradient
vector (maximum). When the direction of search is known we determine the optimum
step along the search direction such that the given function takes on its minimum (or
maximum) value, by univariate search using a method such as the quadratic interpolation
method discussed earlier. This method uses only the function calculations and not the
Hessian which would necessarily require the evaluation of second derivatives of the

4.4. Multidimensional unconstrained optimization 183

function. Also no matrix inversion is required. If the minimum (or maximum) thus
determined satisfies the conditions for a minimum (or maximum) we stop the calculation.
Otherwise we switch the starting point to the new point and search again in a descent
(or ascent) direction as may be. The general algorithm of steepest descent for nonlinear
equations is given below.

Operation Nonlinear SD Linear SD

1 Direction of descent rk =−∇ f (xk) f (xk)= xT
k Axk−bTx−c

Hence rk =b−Axk

2 Determine αk :
d f (xk)

dαk
= 0

αk estimated using
line search methods αk = rT

k rk

rT
k Ark

3 Update xk+1 xk+1 = xk +αkrk

Example 4.14
Obtain a maximum of the function f (x, y)= xy(10− xy)

(x+2y)
by the steepest ascent method. Start

the iteration with (x0, y0)= (1,1).
Solution :

The first partial derivatives required to determine the gradient vector are obtained by
differentiation of f (x, y) as

fx = (10y−2xy2)
(x+2y)

− (10xy− x2 y2)
(x+2y)2

f y = (10x−2x2 y)
(x+2y)

− 2(10xy− x2 y2)
(x+2y)2

We start with x0 = 1 and y0 = 1 and calculate various quantities of interest as below:

x0 y0 f (x0, y0)= f (0) fx(x0, y0) f y(x0, y0) |r|(x0, y0)
1 1 3 1.66667 0.66667 1.79505

The last column shows the magnitude of the gradient vector which is represented by r. We
know now the direction of ascent and hence are in a position to perform a univariate search
using quadratic interpolation that is familiar to us from an earlier section. After a few trials
we hit upon a step size of h = 0.6 for which the appropriate calculations are displayed below.

h f (x0 +hfx, y0 +hf y) f (x0 +2hfx, y0 +2hf y) b c hopt
= f (h) = f (2h)

0.6 4.2 3.76364 3.36364 -2.27273 0.74

Having thus obtained the optimum step size (hopt) the candidate point for the maximum
is given by x1 = x0 +hopt fx(x0, y0) = 2.12105 and y1 = y0 +hopt f y(x0, y0) = 1.48947. We now
give the state of affairs at this point below.

184 Chapter.4 Solution of algebraic equations

x1 y1 f (x1, y1)= f (0) fx(x1, y1) f y(x1, y1) |r|(x1, y1)
2.12105 1.48947 4.23758 0.24430 -0.13069 0.27706

After one iteration we see a substantial increase in the value of the function and also a
substantial decrease in the magnitude of the gradient vector. More iterations are required
for an acceptable solution to the problem. The following table summarizes the result of such
an iteration process.

x y f (x, y) fx f y hopt |r|
1 1 3 1.66667 0.66667 0.74 1.79505

2.12105 1.48947 4.23758 0.24430 -0.13069 1.64372 0.27706
2.52261 1.27466 4.30121 0.04892 0.07905 0.38876 0.09296
2.54163 1.30539 4.30289 0.01726 -0.01064 1.64289 0.02027
2.56998 1.28791 4.30323 0.00974 0.01565 0.38331 0.01843
2.57372 1.29391 4.30330 0.00348 -0.00217 1.63957 0.00410
2.57942 1.29035 4.30331 0.00207 0.00332 0.38235 0.00391
2.58021 1.29162 4.30331 0.00074 -0.00047 1.63911 0.00088
2.58143 1.29086 4.30331 0.00045 0.00072 0.38210 0.00085
2.58160 1.29113 4.30331 0.00016 -0.00010 1.63961 0.00019
2.58187 1.29096 4.30331 0.00010 0.00016 0.38204 0.00018
2.58191 1.29102 4.30331 0.00003 -0.00002 1.63972 0.00004

Conjugate gradient method

The conjugate gradient method is similar to that presented for the solution of linear equations
that involved the optimization of a quadratic form. Since the optimization problem is nonlinear
in nature involving non-quadratic form the method presented earlier is modified by working with
the gradient rather than the residual. First step is as usual the steepest descent (or ascent) step.

Iteration 1 Let the steepest descent step be given by d0 = −∇ f (x0) = r0 where x0 is the initial
vector from where we start the iteration. Univariate search is now made using a method such
as the quadratic interpolation method to determine the step size α0 = hopt such that error is

minimum i.e.
d f (x0 +α0d0)

dα0
= 0. The next trial vector will be x1 = x0 +α0d0 or d0 = x1 −x0

α0
.

Now calculate the gradient using vector x1 as ∇ f (x1) =−r1. Let the conjugate direction we are
looking for be given by d1 such that d1 = −∇ f (x1)+β0d0 = r1 +β0d0. Also let the Hessian be
approximated by finite differences such that H1(x1 −x0) = ∇ f (x1)−∇ f (x0) = −r1 −r0

α0
. Directions

d1 and d0 are H1 conjugate and hence we should have

dT
1 H1d0 =−[r1 +β0d0]T

[
r1 −r0

α0

]
= 0

Solving for β0 we get

β0 =− rT
1 [r1 −r0]

dT
0 [r1 −r0]

4.4. Multidimensional unconstrained optimization 185

Iteration 2 We now determine an optimum step size α1 along direction d1 that gives a minimum
for the function. The next point is then reached as x2 = x1+α1d1 or d1 = x2 −x1

α1
. Let the direction

of search now be taken as d2 = r2 +β1d1 such that d2 is H2 conjugate to d1. Here H2d1 is again
approximated as H2d1 = −r2 −r1

α1
. Directions d2 and d1 are H2 conjugate and hence we should

have
dT

2 H2d1 =−[r2 +β1d1]T
[

r2 −r1

α1

]
= 0

Solving for β1 we get

β1 =− rT
2 [r2 −r1]

dT
1 [r2 −r1]

With this we are in a position to generalize the iteration process. Assume that we have to take a
step starting from xk along the direction dk that gives a minimum. The step size is given by αk
such that

xk+1 = xk +αkdk or dk = xk+1 −xk

αk
(4.23)

Direction of search is then given by

dk+1 = rk+1 +βkdk (4.24)

where

βk =−rT
k+1[rk+1 −rk]

dT
k [rk+1 −rk]

(4.25)

The above represents the Hestenes-Stiefel formula. In practice two alternate formulae are used.
The first one known as the Fletcher-Reeve formula is given by

βk = rT
k+1rk+1

rT
k rk

(4.26)

The second one known as Polak-Rebiere formula is given by

βk = rT
k+1[rk+1 −rk]

rT
k rk

(4.27)

At the end of every n iterations (n is the size of vector) a steepest descent step is introduced.
The general algorithm of nonlinear CG has been given below.

Operation Nonlinear CG Linear CG

1 Determine residual r rk =−∇ f (xk)
f (xk)= xT

k Axk−bTx−c
Hence rk =b−Axk

2 Determine αk :
d f (xk)

dαk
= 0

αk estimated using
line search methods

αk = rT
k rk

rT
k Ark

3 Update xk+1 xk+1 = xk +αkdk
· · · Continued on next page

186 Chapter.4 Solution of algebraic equations

continued from previous page· · ·
Operation Nonlinear CG Linear CG

4 Update r rk+1 =−∇ f (xk+1) rk+1 =b−Axk+1

5 Determine βk

Fletcher Reeve

βk = rT
k+1rk+1

rT
k rk

βk =−rT
k+1Adk

dT
k Adk

6
Update direction of
descent dk+1

dk+1 = rk+1 +βkdk
For first iteration (k = 0): d0 =−r0

A MATLAB program has been provided which calculates the optimum point using CG method.

Program 4.1: Nonlinear Conjugate gradient method

1 function x = conjugategradient(xguess ,tol ,yfunction ,grady)

2 % I n p u t s y f u n c t i o n : name o f f u n c t i o n w h o s e m i n i m a i s d e s i r e d
3 % g r a d y : name o f f u n c t i o n w h i c h c a l c u l a t e s ∇ f
4 % B o t h y f u n c t i o n and g r a d y h a v e t o b e p r o v i d e d b y t h e u s e r
5 % x g u e s s : g u e s s v e c t o r
6 % t o l : t o l e r a n c e f o r c o n v e r g e n c e
7 % O u t p u t s x : o p t i m u m v e c t o r
8 x = xguess; % i n i t i a l i z e x
9 sp = grady(x); % i n i t i a l i z e ∇ f

10 s = sp '*sp; % i n i t i a l i z e r e s i d u a l
11 count = 0; % i n i t i a l i z e i t e r a t i o n c o u n t
12 dp = -sp; % i n i t i a l i z e d i r e c t i o n o f d e s c e n t
13 a = 1; % i n i t i a l i z e α

14 while (abs(s) > tol) % i t e r a t i o n l o o p
15 % d e t e r m i n e o p t i m u m α and u p d a t e x u s i n g Q u a d r a t i c s e a r c h
16 [x,a]= cgquadsearch(x,dp/sqrt(dp '*dp),a ,0.1*a,tol ,yfunction);

17 spnew = grady(x); % u p d a t e ∇ f
18 dp1 = dp*(spnew '* spnew)/(sp '*sp); % F l e t c h e r − R e e v e s t e p
19 dp = -spnew; % SD s t e p
20 dp = dp + dp1; % CG s t e p
21 % c o m m e n t i n g CG s t e p w i l l r e s u l t i n SD
22 sp = spnew;

23 s = sp '*sp; % u p d a t e r e s i d u a l
24 count = count +1; % u p d a t e i t e r a t i o n c o u n t
25 end

Function cgquadsearch is called by Function conjugategradient to determine α. cgquadsearch

incorporates quadratic interpolation algorithm.

Program 4.2: Quadratic interpolation search method called by conjugate gradient

1 function [x1 ,a1] = cgquadsearch(x,dp ,a,h,tol ,yfunction)

2 % I n p u t s x : v e c t o r
3 % dp : d i r e c t i o n o f d e s c e n t
4 % a : i n i t i a l α

5 % h : i n i t i a l s t e p s i z e
6 % t o l : t o l e r a n c e f o r c o n v e r g e n c e

4.4. Multidimensional unconstrained optimization 187

7 % y f u n c t i o n : f u n c t i o n name o f o b j e c t i v e f u n c t i o n
8 % O u t p u t s x 1 : u p d a t e d v e c t o r
9 % a1 : o p t i m u m α

10 a3 = a; a2 = a + h; a1 = a + 2*h; % I n i t i a l i z e p o i n t s
11 f3 = yfunction(x+a3*dp); % e v a l u a t e f u n c t i o n a t p o i n t s
12 f2 = yfunction(x+a2*dp); f1 = yfunction(x+a1*dp);

13 res = abs(h); % i n i t i a l i z e r e s i d u a l
14 count = 0; % i n i t i a l i z e i t e r a t i o n c o u n t
15 while(res > tol) % i t e r a t e u n t i l c o n v e r g e n c e
16 % e v a l u a t e b and c
17 b = -(a1+a2)*f3/((a3 -a1)*(a3 -a2)) ...

18 - (a3+a2)*f1/((a1 -a3)*(a1 -a2)) ...

19 - (a3+a1)*f2/((a2 -a1)*(a2 -a3));

20 c = f3/((a3 -a1)*(a3 -a2)) + f1/((a1 -a3)*(a1 -a2)) ...

21 + f2/((a2 -a1)*(a2 -a3));

22 anew = -0.5*b/c; % e v a l u a t e new o p t i m u m p o i n t
23 res = abs(anew -a1); % u p d a t e r e s i d u a l
24 a3 = a2; % u p d a t e p o i n t s and f u n c t i o n s
25 a2 = a1; f3 = f2; f2 = f1; a1 = anew;

26 f1 = yfunction(x+a1*dp); % u p d a t e f u n c t i o n a t new p o i n t
27 count = count + 1; % u p d a t e i t e r a t i o n c o u n t
28 end

29 x1 = x+a1*dp; % u p d a t e p o i n t

Example 4.15
Determine the minimum of the function f (x, y) = (x2 − y)2 + (1− x)2 + xy using the method of
Fletcher Reeves. Use the origin to start the iteration.
Solution :

The first step is the steepest descent step that moves in a direction that is opposite the
gradient of the function. The components of the gradient vector are given by

fx(x, y)= 4x(x2 − y)−2(1− x)+ y; f y(x, y)=−2(x2 − y)+ x

The starting point is given as the origin and hence x0 = 0, y0 = 0 is the starting point at
which the components of the gradient are fx(0,0) = −2 and f y(0,0) = 0. The magnitude of
the gradient vector is seen to be ||r0|| =

√
(−2)2 +02 = 2. The direction of descent is thus

given by dT
0 =

2 0
. We now look for a step size that makes the function a minimum, as

we move in this direction. Quadratic interpolation method is made use of. After a few trials
we find that h = 0.2 will be suitable for conducting the quadratic interpolation. We tabulate
the results of quadratic interpolation below.

Guess x0 = 0 h = 0.2
Point : y0= 0

Quadratic interpolation:
f (x0, y0) 1 b = -4.768
f (x0 +d01h, y0 +d02h) 0.3856 c = 8.48
f (x0 +2d01h, y0 +2d02h) 0.4496 hopt 0.2811
d01 = 2 and d02 = 0 are components of direction vector d0

188 Chapter.4 Solution of algebraic equations

Thus the optimum step size is taken as α0 = 0.2811 to reach the point x1 = 0+2×0.2811 =
0.5623 and y1 = 0+0×0.2811= 0. The components of the gradient vector at x1 are calculated
as fx(0.5623,0) =−0.1645 and f y(0.5623,0) =−0.0700. Magnitude of the gradient vector is
given by ||r1|| =

√
(−0.1645)2 + (−0.0700)2 = 0.1787. There is thus a significant reduction in

the gradient after just one iteration step. The direction of search now uses the Fletcher-
Reeve formula.

d11 = 0.1645+
(

0.1787
2

)2
× (2)= 0.1804

d12 = 0.0700+
(

0.1787
2

)2
× (0)= 0.0700

A univariate search using quadratic interpolation is again used now to determine the
optimum step size. This step is summarized as a table below.

Point x1 = 0.5623 h = 0.2
y1 = 0

Quadratic interpolation:
f (x1, y1) 0.2916 b = -0.0353
f (x1 +d11h, y0 +d12h) 0.2881 c = 0.0889
f (x1 +2d11h, y0 +2d12h) 0.2917 hopt 0.1986
d11 = 01804 and d12 = 0.0700 are components of direction vector d1

Thus the optimum step is taken as α1 = 0.1986 to reach the point x2 = 0.5623+0.1804×
0.1986 = 0.5981 and y2 = 0+ 0.0700× 0.1986 = 0.0139. The components of the gradient
vector at x2 are calculated as fx(0.5981,0.0139) =−0.0326 and f y(0.5981,0.0139) = 0.0895.
Magnitude of the gradient vector is given by ||r2|| =

√
(−0.0316)2 + (0.0895)2 = 0.0953. The

calculations proceed with a few more iterations using the Fletcher-Reeve formula. The
results are summarized as a table.

i xi yi di1 di2 hopt ||ri||
0 0.00000 0.00000 2.00000 0.00000 0.28113 2.00000
1 0.56226 0.00000 0.18043 0.07002 0.19860 0.17874
2 0.59810 0.01391 0.01865 0.10944 0.45188 0.09530
3 0.60652 0.06336 -0.01470 0.00536 0.14710 0.01539
4 0.60436 0.06415 -0.00110 -0.00203 0.55770 0.00228
5 0.60375 0.06301 0.00086 -0.00173 0.17007 0.00158
6 0.60389 0.06272 0.00008 0.00003 0.22103 0.00009
7 0.60391 0.06273 0.00001 0.00006 0.43575 0.00005
8 0.60391 0.06275 -0.00001 0.00000 0.14765 0.00001

Depending on the required precision we may stop the iteration by observing the last column
that gives the magnitude of the gradient vector. Convergence is initially very rapid and
at i = 4 we have reached close to the optimum point. However, we have continued the
iterations till the gradient has reduced to 0.00001. Convergence to the minimum is also
shown graphically by the surface plot shown in Figure 4.14. Points, as search progresses

4.4. Multidimensional unconstrained optimization 189

Figure 4.14: Convergence of Fletcher Reeves to the minimum in Example 4.15

are numbered in ascending order and are joined by lines. Iterates beyond i = 3 do not resolve
in this figure.

We perform appropriate test to see that the solution obtained above corresponds to a
minimum. For this purpose the second derivatives of f (x, y) are calculated at the critical
point as follows:

fxx(0.6039,0.0628) = 12×0.60392 −4×0.0628+2= 6.1255

f yy(0.6039,0.0628) = 2

fxy(0.6039,0.0628) = −4×0.6039+1=−1.4157

We note that fxx > 0 and fxx f yy − f 2
xy = 6.1255×2− (−1.4157)2 = 10.2470 > 0 and hence the

point (0.6039,0.0628) represents a minimum of the function.

Program 4.1 has been used to determine the optimum point. Two functions defining the
objective function and its gradient, EX319 and EX319quad respectively, have been provided.

function y = EX319(x)

y = (x(1)^2-x(2))^2 + (1-x(1))^2 + x(1)*x(2); % x (1) = x
% x (2) = y

function sp = EX319grad(x)

sp(1,1) = 4*x(1)*(x(1)^2-x(2)) -2*(1-x(1))+x(2);

sp(2,1) = -2*(x(1)^2-x(2))+x(1);

The output of the program is given below

190 Chapter.4 Solution of algebraic equations

x = conjugategradient ([0;0] ,1e-6,@EX319 ,@EX319grad)

% E x t e r n a l f u n c t i o n s EX319 and E X 3 1 9 q u a d h a v e
% t o b e p r e f i x e d w i t h ’ @ ’
x =

0.6039

0.0625

The conjugate gradient method converges in 5 iterations where as the steepest descent
method converges in 8 iterations.

4.5 Examples from engineering applications
In this section we consider typical engineering applications of the methods that have been

presented earlier. We give a brief description of the genesis of the problem, the necessary
background information needed to formulate the problem. The solution is presented by one of
the many methods that have been presented before.

4.5.1 Operating point of a fan-duct system

In air handling applications we come across problems that require the choice of a fan to sustain
a flow through a duct system. The fan is characterized by its own characteristics that is obtained
either theoretically or experimentally. A relation between the pressure developed p and the volume
flow rate of air Q is obtained to represent the fan characteristic. The air handling system uses a
fan coupled to the duct system. The duct system produces a pressure drop when we drive air
through it. The pressure drop may be due to losses at entry, exit, bends and also due to friction
in the duct system. The pressure drop is represented as a function of the volume flow rate to
characterize the behavior of the duct. When coupled to each other the fan and duct system will
perform satisfactorily if the fan is able to sustain the desired flow rate in the duct system. This
requires that the pressure developed by the fan be just equal to the pressure loss in the duct
system for a given or specified air volume flow rate.

Example 4.16
Flow rate Q (m3/h) and head developed ∆p (Pa) by a fan are related by the equation
Q = 20− 0.0001∆p2 m3/h. Head loss in a duct is related to the flow rate by the equation
∆p = 100+8Q2. Determine the operating point if the fan and duct are coupled.
Solution :

The operating point is determined by Q and ∆p values that satisfy both the fan and duct
characteristics. Thus we have to solve simultaneously the two equations given below.

f1(∆p,Q) = ∆p−100−8Q2 = 0

f2(∆p,Q) = 0.0001∆p2 +Q−20= 0

The Jacobian matrix is given by

∂ f1

∂∆p
= 1 ;

∂ f1

∂Q
=−16Q

∂ f2

∂∆p
= 0.0002∆p ;

∂ f2

∂Q
= 1

4.5. Examples from engineering applications 191

We start the calculation with guess values of ∆pg = 400 and Qg = 4 and use the Newton
Raphson method to obtain converged values of ∆pb = 375.87 and Qb = 5.87 after just 3
iterations as shown in the spreadsheet shown below. Even though the calculations have
been performed with a larger number of digits the table shows values rounded to 2 digits
after the decimal point.

Spreadsheet for Newton Raphson
method in Example 4.16

∆pg 400.00 376.50 375.87
Qg 6.00 5.88 5.87
f1(∆pg,Qg) 12.00 -0.11 0.00
f2(∆pg,Qg) 2.00 0.06 0.00
f1∆p 1.00 1.00 1.00
f1Q -96.00 -94.08 -93.96
f2∆p 0.08 0.08 0.08
f2Q 1.00 1.00 1.00
∆pb 376.50 375.87 375.87
Qb 5.88 5.87 5.87

From the point of view of the application it is reasonable to retain only 2 digits after
decimals. The operating point of the fan-duct system is ∆p = 375.87 Pa and Q = 5.87 m3/h.

4.5.2 Pumps operating in parallel

Water pumping stations use pumps in parallel to cater for varying mass flow rates. When two
pumps run in parallel they have to produce the same head but will provide different flow rates (see
Figure 4.15). The example uses simulation or Gauss Seidel method for determining the operating
point. Three equations are to be simultaneously satisfied in order to define the operating point for

m
1
+m

2

m
1

m
2

∆p

Pump 1

Upper water tank

Lower water
tank

Pump 2
Figure 4.15: Schematic of two pumps
connected in parallel

two pumps operating in parallel. The first equation represents the pressure difference (or head)
required to maintain total flow in the pipe connecting the two tanks. The pressure difference (or
head) mass flow rate characteristics of the two individual pumps provide the other two equations.
When the two pumps are connected in parallel the head developed by the two pumps must be
equal to the head required to maintain the mass flow rate through the connecting pipe line. In
Example 4.17 these three equations correspond respectively to Equations 4.28(a) through 4.28(c).

192 Chapter.4 Solution of algebraic equations

Example 4.17
A water pumping system consists of two parallel pumps drawing water from a lower tank
and delivering it to another tank that is at an elevation 40 m (i.e. 392.3 kPa) above the
pumps. In addition to overcoming the pressure difference due to the elevation, friction in
the pipe is to be overcome by the flow. We are given the pump and friction characteristics
in terms of pressure drop, mass flow rates. Consistent units are used and the following
equations result:

Head losses in piping and
due to elevation:

p−8(m1 +m2)2 = 392.3 (a)

Characteristic of Pump 1: p+20m1 +3.5m2
1 = 810 (b)

Characteristic of Pump 2: p+60m2 +20m2
2 = 900 (c)

(4.28)

where p represents the head developed (in kPa) by either pump when connected in parallel,
m1 and m2 are the mass flow rates in kg/s through the two pumps respectively. Determine
the operating point for the system.
Solution :

Iteration is started with guess value for one of the unknowns, say m1 = m1,0. From Equation
4.28(b) we then have p = p0 = 810−20m1,0 −3.5m2

1,0. We use Equation 4.28(c) to solve for
m2.

m2 = m2,0 =
−60+

√
(602 −4×20× (m1,0 −900))

2×20
Now we use Equation 4.28(a) to get a new value for m1 as

m1,1 =
√

p0 −392.3
8

−m2,0

We use m1,1 and repeat the process to get p1,1 and m2,1. The procedure is continued until
desired convergence has been achieved.
For example, starting with m1,0 = 5, we get

p0 = 810−20×5−3.5×52 = 622.5

m2,1 =
−60+

√[
602 −4×20× (622.5−900)

]
2×20

= 2.516

We now update m1,0 as

m1,1 =
√

622.5−392.3
8

−2.516= 2.849

Gauss Seidel scheme for the current problem shows oscillations that die down slowly and
the converged solution (3 digits after decimals) is available at the end of 48 iterations.
Convergence of m1 is shown graphically in Figure 4.16.

4.5. Examples from engineering applications 193

m
1

2.5

3

3.5

4

4.5

5

Iteration Number
0 10 20 30 40 50

Figure 4.16: Conver-
gence of m1 in Example
4.17

Spreadsheet for the Gauss Seidel
iteration method in Example 4.17

Iteration m1 p m2
Number kg/s kPa kg/s

0 5.000 622.500 2.516
1 2.849 724.616 1.820
2 4.626 642.591 2.389
3 3.205 709.942 1.928
24 3.873 680.043 2.140
48 3.865 680.434 2.137

Alternately we may solve this problem by the Newton Raphson method. We pose the
problem in terms of solving simultaneously three equations given by

f1(p,m1,m2) = p−8(m1 +m2)2 −392.3= 0 (a)

f2(p,m1,m2) = p+20m1 +3.5m2
1 −810 (b)

f3(p,m1,m2) = p+60m2 +20m2
2 −900 (c) (4.29)

The Jacobian matrix is a 3×3 matrix given by the following:

J=

f1p f1m1 f1m2

f2p f2m1 f2m2

f3p f3m1 f3m2

=

1 −16(m1 +m2) −16(m1 +m2)
1 20+7m1 0
1 0 60+40m2

 (4.30)

Newton Raphson method consists in the use of the following iteration scheme.
∆p
∆m1
∆m2

=−

1 −16(m1 +m2) −16(m1 +m2)
1 20+7m1 0
1 0 60+40m2

−1

f1
f2
f3

where the left hand side represents the change in each of the variables from iteration to
iteration and the right hand side is calculated based on the previous values of the variables.
Iterative solution stops when the left hand side vector becomes smaller or equal to a preset

194 Chapter.4 Solution of algebraic equations

tolerance. In the present case we have used a tolerance on fractional change of 10−5 as the
stopping criterion.

We start with the initial set m1 = 5.000, p = 622.500 and m2 = 2.516. With these the
function values are calculated as

f1 = 622.5−8(5+2.516)2 −392.3=−221.722

f2 = 622.5+20×5+3.5×52 −810= 0

f3 = 622.5+60×2.516+20×2.5162 −900= 0.065119

The Jacobian matrix is evaluated as

J=

1 −120.256 −120.256
1 55 0
1 0 160.64

The augmented matrix is obtained by combining the Jacobian with the column matrix
representing negative function vector. Thus the augmented matrix is written down as

1 −120.256 −120.256 221.722
1 55 0 0
1 0 160.64 0.065119

Using elementary row operations the above may be transformed to the upper triangular
form

1 −120.256 −120.256 221.722
0 1 0.686173 −1.265132
0 0 1.649644 −0.579159

The solution may be obtained by back substitution. We thus have

∆m2 = −0.579159
1.649644

=−0.351082

∆m1 = −1.265132−0.686173× (−0.351082)=−1.024230

∆p = 221.722− [−120.256× (−1.024230−0.351082)]= 56.332627

The new values of the variables are then obtained as

m1 = 5−1.024230= 3.975770

m2 = 2.516−0.351082= 2.164918

p = 622.5+56.332627= 678.833

Fractional change in the values of the variables are given by

∆p
p

= 56.332627
622.5

= 0.090494

∆m1

m1
= −1.024230

5
=−0.204846

∆m2

m2
= −0.351082

2.516
= 0.13954

However the convergence is very fast and only three more iterations are required to obtain
the solution as seen from the following table.

4.5. Examples from engineering applications 195

Convergence of the Newton Raphson solution

Iteration p m1 m2
∆p
p

∆m1

m1

∆m2

m2
No. kPa kg/s kg/s · · · · · · · · ·
2 680.427 3.866 2.137 2.35×10−3 -2.77×10−2 -1.28×10−2

3 680.442 3.864 2.137 2.5×10−5 -3.09×10−4 -9.7×10−5

4 680.442 3.864 2.137 3×10−7 -6×10−6 -6×10−7

4.5.3 Operating point of a heat exchanger

The next example we consider is an oil to water heat exchanger operating with a controller that
selects the flow rate of coolant (water) based on the outlet temperature of oil.4 The schematic of
the oil to water heat exchanger is shown in Figure 4.17. The oil flow rate and inlet temperature

Water

Oil

Valve

Sensor
Figure 4.17: Oil to water heat exchanger
with coolant �ow control

are given as mh and Thi. The specific heat of oil is specified as ch. The inlet temperature of water
is specified as Tci. Controller action is specified as a relation between oil outlet temperature Th0
and the mass flow rate of coolant water mc.

f (mc,Tho)= 0 (4.31)

Specific heat of water is known and given as cc. The goal of the simulation is to determine the
outlet temperature of oil Tho, the mass flow rate of coolant mc and the outlet temperature of water
Tco. Three equations are needed for performing the simulation. Equation 4.31 is the first equation.
We equate the rate at which heat is given up by oil to that acquired by water to get the second
equation.

mc cc(Tco −Tci)= mhch(Thi −Tho) (4.32)

The third equation is obtained by equating any one of the above to the heat transferred in the heat
exchanger based on the specified overall heat transfer area product for the heat exchanger U · A
and the logarithmic mean temperature difference LMTD. Thus

mhch(Thi −Tho)=U · A LMTD (4.33)

Since the heat exchanger is of the counter current type LMTD is given by

LMTD = (Thi −Tco)− (Tho −Tci)

ln
[

Thi −Tco

Tho −Tci

] (4.34)

We consider a specific case to perform the simulation and obtain the operating point for the heat
exchanger.

4Reader may consult a book on heat transfer dealing with analysis of heat exchangers such as S.P.
Venkateshan, Heat Transfer 2nd edition, 2011, Ane Publishers

196 Chapter.4 Solution of algebraic equations

Example 4.18
Oil flowing at the rate of 2.5 kg/s enters the heat exchanger at 90◦C. Water enters the heat
exchanger at 25◦C. Specific heat of oil is known to be 3 kJ/kg◦C while the specific heat
of water is known to be 4.19 kJ/kg◦C. Control action of the sensor valve combination is
given by the relation mc = 0.4(Tho −65). Obtain the operating point of the heat exchanger by
performing a simulation if U · A = 6 kW/◦C.
Solution :

Using the nomenclature introduced earlier the governing equations may be written down
as under:

f1 = mc −0.4(Tho −65) = 0

f2 = 4.19mc(Tco −25)−7.5(90−Tho) = 0

f3 = 7.5(90−Tho)− 6[(90−Tco)− (Tho −25)]

ln
[

90−Tco

Tho −25

] = 0 (4.35)

The control equation is solved for oil outlet temperature as

Tho = 65+ mc

0.4

Equation relating the heat transfers to the two fluids are solved for the coolant mass flow
rate as

mc = 7.5
4.19

· 90−Tho

Tco −25

Finally the rate equation is solved for coolant outlet temperature as

Tco = 90− (Tho −25)exp
[

115−Tho −Tco

1.25× (90−Tho)

]
The above three equations are used in performing the simulation. Gauss Seidel iteration
scheme is employed. With the starting set Tho =,60 Tco = 75 and mc = 1 a single iteration
gives the following:

State of affairs after one iteration
Old New Change Residuals

mc 1.0000 1.0740 0.0740 3.0000
Tho 60.0000 67.6850 7.6850 -15.5000
Tco 75.0000 74.1791 -0.8209 4.9627

After 20 iterations the results converge to four digits after the decimal point as shown below.

State of affairs after 20 iterations
Old New Change Residuals

mc 0.8726 0.8726 0.0000 0.0000
Tho 67.1814 67.1814 0.0000 0.0000
Tco 71.8106 71.8105 0.0000 0.0000

4.5. Examples from engineering applications 197

The operating point for the heat exchanger is thus given by mc = 0.873 kg/s, Tho = 67.2◦C
and Tco = 71.8◦C. Heat transfer taking place in the heat exchanger between the fluids is
given by

Q = 7.5(90−67.2)= 171.1 kW

The solution can be obtained using Newton Raphson method also. Newton Raphson
method involves determining the Jacobian matrix. Equations 4.35 will be used to determine
the operation point of the heat exchanger. The Jacobian matrix would be

J =

∂ f1

∂mc

∂ f1

∂Tho

∂ f1

∂Tco

∂ f2

∂mc

∂ f2

∂Tho

∂ f2

∂mc

∂ f3

∂mc

∂ f3

∂Tho

∂ f3

∂Tco

=

1 −0.4 0

4.19(Tco −25) 7.5 4.19mc

0 −7.5
(
ln

(
90−Tco

Tho −25

)
+ 90−Tho

Tho −25

)
+6 −7.5

90−Tho

90−Tco
+6

The solution is determined by

∆mc
∆Tho
∆Tco

=J−1

f1
f2
f3

This has been programmed in MATLAB as given below

x(1,1) = 1; % mc
x(2,1) = 60; % Tho
x(3,1) = 75; % Tco
delx = x; % i n i t i a l i z e ∆x
count = 0; % i n i t i a l i z e i t e r a t i o n c o u n t
while(abs(delx) > 1e-6) % l o o p u n t i l c o n v e r g e n c e
f(1,1) = x(1) -0.4*(x(2) -65); % f1
f(2,1) = 4.19*x(1)*(x(3) -25) -7.5*(90 -x(2)); % f2
f(3,1) = 7.5*(90 -x(2))*log ((90-x(3))/(x(2) -25)) ...

- 6*(90 -x(3))+6*(x(2) -25); % f3
H(1,1) = 1; % c a l c u l a t e J a c o b i a n m a t r i x
H(1,2) = -0.4;

H(1,3) = 0;

H(2,1) = 4.19*(x(3) -25);

H(2,2) = 7.5;

H(2,3) = 4.19*x(1);

H(3,1) = 0;

H(3,2) = -7.5* log ((90-x(3))/(x(2) -25)) + 6 ...

-7.5*(90 -x(2))/(x(2) -25);

H(3,3) = -7.5*(90 -x(2))/(90-x(3)) + 6;

delx = -inv(H)*f; % c a l c u l a t e ∆x

198 Chapter.4 Solution of algebraic equations

x = x+ delx; % u p d a t e x
count = count + 1; % u p d a t e i t e r a t i o n c o u n t
end

The solution converges with sixth decimal accuracy in 5 iterations. The output of the
program is given below

x = [0.8726; 67.1814; 71.8105]

4.5.4 Automobile problem

An automobile has an on board engine that develops the required power to haul it. Automobile
experiences resistance to motion due to three reasons as shown in Figure 4.18. They are:

Wind + rolling
resistance

Motion

M g

angle, α

Figure 4.18: Forces against an
automobile climbing a grade

1. Component of weight in a direction opposite to the direction of motion given by M gsinα
where M is the mass of the vehicle, g is the acceleration due to gravity and α is the angle of
the grade.

2. Wind resistance proportional to square of the velocity of the automobile. It is expressed as

Fd = Cd AρV 2

2
where Fd is the drag force, ρ is air density, Cd is the drag coefficient, V is

the speed of the vehicle and A is the frontal area of the vehicle.
3. Traction force Ft required to move the vehicle against rolling resistance given by Fr = µFN

where µ is the coefficient of rolling friction and FN is the normal reaction at the tyres.

The engine develops torque Te which varies quadratically with the engine speed, usually
represented in revolutions per minute Ne.

Te = A+BN +CN2

where A, B and C are constants specific to an engine. The engine torque is modified at the wheels
by the gearbox as well as the differential that turns the wheels. The torque required to propel the

vehicle Tw is given by the sum of the opposing forces multiplied by the tyre radius Rt or
Dt

2
where

Dt is the tyre diameter.
Tw = Rt(Ft +Fd +Fr)

This torque is presented usually as a smaller torque T ′
e at the engine shaft because of the overall

gear ratio Ng which is the product of gear ratio of the gear box and the gear ratio of the differential.

T ′
e =

Rt(Ft +Fd +Fr)
Ng

4.5. Examples from engineering applications 199

The speed of the car is related to the engine RPM by the relation

V = 2πRtNe

Ng

Operating point is determined by the condition Te = T ′
e. Following example shows such a

calculation.

Example 4.19
The torque speed characteristic of an automobile engine is well represented by the relation
Te =−104.8+0.0664Ne −4.78×10−6N2

e where Te represents the torque in N m. The engine
RPM is limited to the range 2700 < Ne < 6500. The automobile has a mass of 1500 kg and
coefficient of rolling friction of 0.03. The drag coefficient for the automobile is 0.26 based on a
frontal area of 1.9 m2. The automobile runs on 155/70R14 tyres that have an outer diameter
of 0.573 m. The automobile has a 5 speed gearbox with the gear ratios specified below.

Gear Identifier Gear Ratio
First Gear 3.25

Second Gear 1.8
Third Gear 1.4
Fourth Gear 1
Fifth Gear 0.9
Differential 3.64

The automobile is climbing a steady incline of 5◦ in 2nd gear. Determine the speed of the
automobile.
Solution :

We derive the torque equations based on the data supplied in the problem. Forces on the
automobile are calculated first.

1. Force due to grade: Fr = M gsinα= 1500×9.8×sin
[

5π
180

]
= 1281.19 N

2. Force against rolling friction: Ft = µ FN = µ M gcosα= 0.03×1500×9.8× cos
[

5π
180

]
=

439.32 N
3. Wind resistance is calculated assuming density of air to be ρ = 1.293 kg/m3. Thus

Fd = 0.26×1.9×1.293V 2

2
= 0.3194V 2.

It is convenient to represent the vehicle speed in terms of the engine RPM. For this

purpose we note that one revolution of the engine shaft corresponds to
1

Ng
= 1

1.8×3.64
=

0.153 revolution of the wheel. Ne RPM of the engine shaft thus corresponds to V =
0.153×πDtNe

60
= 0.153×π×0.573Ne

60
= 4.58×10−3Ne m/s. With this the torque presented

by the wheels of the automobile at the engine shaft may be written as

T ′
e = Rt

Ng
(Ft +Fr +Fd)

200 Chapter.4 Solution of algebraic equations

= 0.573
2×1.8×3.64

(1281.19+439.32+6.7×10−6N2
e)

= 75.23+2.93×10−7N2
e

The operating point is thus obtained by simultaneous solution of the following two
equations:

f1(T, Ne) = T +104.8−0.0664Ne +4.78×10−6N2
e = 0

f2(T, Ne) = T −75.23−2.93×10−7N2
e = 0

Even though it is possible to eliminate T between these two equations and solve for N we
use the Newton Raphson method to solve the problem. The components of the Jacobian are
written down as

J=
 f1T f1Ne

f2T f2Ne

=
 1 −0.0664+9.56×10−6Ne

1 −5.86×10−7Ne

We start with the initial guess values T = 50 N m and Ne = 3000 RPM and run through the
calculations to obtain the following table of values.

Iteration 0 1 2 3
T 50 79.2 79.5 79.5
N 3000 3737 3833 3835
f1T 1 1 1 1
f1Ne -0.038 -0.031 -0.030 -0.030
f2T 1 1 1 1
f2Ne -0.002 -0.002 -0.002 -0.002
− f1 1.380 -2.593 -0.045 0.000
− f2 27.867 0.159 0.003 0.000
∆T 29.162 0.370 0.007 0.000
∆Ne 736.527 96.597 1.721 0.001

The speed of the vehicle corresponding to the engine RPM obtained above is V = 63.2 km/h.

The above example has looked at the steady state solution to the automobile speed problem.
However, if the automobile were to start from rest, a dynamic analysis would be required, taking
into account the initial accelerating part of the motion. This would require the solution of a
differential equation based on Newton’s laws of motion.

Concluding remarks

Nonlinear equations occur in various engineering applications and hence are dealt with in
books dealing with simulation, optimization, design etc. In the present chapter we have
provided an introduction to some of the methods that may be used for solving either one or
a set of nonlinear equations. Relative merits of different methods have also been discussed. In
general it is necessary to explore different methods and use the best suited one for a particular
application. The reader may consult advanced texts to move beyond what has been presented
here.

4.A. MATLAB routines related to Chapter 4 201

4.A MATLAB routines related to Chapter 4

MATLAB routine Function

roots(c) roots of a polynomial function c

fzero(fun) determines roots of a continuous function ‘fun’
of one variable

fsolve solves system of nonlinear equations

fminbnd determines minimum of single-variable func-
tion on fixed interval

fminunc determines minimum of unconstrained objec-
tive function

fminsearch determines minimum of unconstrained objec-
tive function using derivative free method

simulink a standalone tool for designing and simulating
systems

optimtool optimization toolbox with graphical user inter-
face

4.B Suggested reading
1. S.S. Rao Optimization-Theory and Applications (Second Edition) Wiley Eastern Ltd.,New

Delhi, 1984
2. Dennis, J. and Schnabel, R. Numerical methods for unconstrained optimization and

nonlinear equations Society for Industrial and Applied Mathematics, 1996
3. Fletcher, R. Practical methods of optimization, Wiley, 2000
4. Nocedal, J. and Wright, S. Numerical optimization Springer verlag, 1999
5. Arora, J. Introduction to optimum design Academic Press, 2004

Exercise I

I.1 Solution of linear equations
Ex I.1: After verifying that the matrix given below is non singular invert it by use of minors and

cofactors as explained in the text.
0.4 0.9 1.2
0.6 0.7 2

2 0.4 0.3

Round all matrix elements of the inverse matrix to 3 significant digits after decimals.
Calculate the inverse of this matrix and compare with the given matrix. Comment based on
your observations.
Obtain, using the above, the solution to the matrix equations.

0.4 0.9 1.2
0.6 0.7 2

2 0.4 0.3

x1
x2
x3

=

1.4
2.3
4.4

What is the condition number of the coefficient matrix?

Ex I.2: Solve the set of three equations in Exercise I.1 using Kramer’s rule. Compare the solution
thus obtained with that obtained there.

Ex I.3: Solve the following system of equations by reducing it to upper triangle form using
appropriate elementary row operations.

1 0 −1 2
0 2 0 1
2 1 3 0
0 2 1 4

x1
x2
x3
x4

=

2
3
4
1

Ex I.4: Solve the system of equations in Exercise I.3 by LU factorization.

Ex I.5: Determine the inverse of the following matrix by Gauss Jordan method. Also determine
the condition number of the matrix.

0.6 0.9 1.2
0.8 0.7 1.9
2.2 0.4 0.3

203

204 Exercise I

Ex I.6: Determine the inverse of the following tri-diagonal matrix by any method.
2.04 −1 0 0 0
−1 2.04 −1 0 0
0 −1 2.04 −1 0
0 0 −1 2.04 −1
0 0 0 −1 1.02

What is the condition number of the above tri-diagonal matrix?

Ex I.7: Solve the system of equations in Exercise I.6 with bT =
100 0 0 0 0

 by Cholesky
decomposition. Solve the equations also by TDMA. Which decomposition is superior and
why?

Ex I.8: Figure I.1 shows an electrical circuit consisting of 8 equal resistances of 100 Ω each.
Voltages at three nodes are as indicated in the figure. Voltages at nodes 1 through 4 are
required. Represent the nodal equations in matrix form. Determine the condition number
of the coefficient matrix.
Determine the voltages at nodes 1 through 4 with a precision of two digits after decimals.
Use LU decomposition.

4

2

3

1 9 V

6 V

0 V

Figure I.1: Resistance network for
Exercise I.8

All resistances are equal and 100Ω each.

Ex I.9: Solve the following set of linear equations by Gauss elimination. Attempt the solution
with and without pivoting. Comment on the results. Look for precision to 2 digits after
decimals.

1 2 4 3
6 5 8 7

10 12 11 9
15 13 14 16

x1
x2
x3
x4

=

5
4
9
6

Ex I.10: Solve the set of equations in Exercise I.9 by QR factorization. Make use of Gram Schmidt

method.

Ex I.11: Solve the following set of equations by QR transformation of the coefficient matrix using
Householder transformations.

1 2 4 1
2 −5 3 −5
1 −4 4 7
2 −3 2 −5

x1
x2
x3
x4

=

2
4
4
9

I.1. Solution of linear equations 205

Ex I.12: Reduce the following matrix to QR form by using Givens transformations.

A=

1 −0.286 −0.116 −0.598

−0.06 1 −0.02 −0.12
−0.05 −0.05 1 −0.1
−0.24 −0.24 −0.1 0.59

If bT =

1 0.029 0.59 0
 determine the solution to equation Ax=b.

Ex I.13: Solve the system of equations in Exercise I.12 by Gauss Seidel iteration technique. Set
tolerance as 10−3. Start iteration with x(0)T =

1 1 1
 and find the number of iterations

required to obtain the solution with 3 digit accuracy.

Ex I.14: Solve for all the nodal voltages in the triangular resistance network shown in Figure
I.2.

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

0 V

100 V 1 2 3

4 5 6

7 8

Figure I.2: Triangle resistance
network in Exercise I.14

R = 100Ω

Ex I.15: Heat transfer problems in steady conduction may sometimes be represented by an
electrical analog using a resistance network. Heat transfer from an extended surface5 may
be represented by a resistance network such as that shown in Figure I.3. Voltages replace
temperatures and electrical resistances replace thermal resistances in the electrical analog.
Formulate the problem as a set of linear equations for the nodal voltages. Solve the set of
equations by (a) TDMA and (b) Gauss Seidel iteration. Voltages so determined should have
a precision of a mV.

9 V

0 V

Resistors in Ω

10

100

1 10

100

2 10

100

3 10

100

4 10

100

5 10

100

6

Figure I.3: Resistance network for Exercise I.15

5Refer to a text on heat transfer such as S.P. Venkateshan, “Heat Transfer” 2nd Edition, Ane Books Pvt.
Ltd., 2011

206 Exercise I

Ex I.16: Solve the set of linear equations in Exercise I.15 by the conjugate gradient method.

Ex I.17: Show that the following 3×3 symmetric matrix is positive definite.

A=

9 −1 2
−1 7 −3

2 −3 7

Solve the set of three linear equations Ax = b where bT =

4 8 12
 by Steepest Descent

and Conjugate Gradient methods. Compare the solution with that obtained by Cholesky
decomposition.

I.2 Evaluation of eigenvalues
Ex I.18: Consider the set of two coupled first order ordinary differential equations given by

d y1

dt

d y2

dt

=

− 74

1113
1

21

1
65

− 1
65

y1

y2

Determine the eigenvalues and thence write down the solution to the problem if y1 = y2 = 1
at t = 0. Note that the above coupled equations model a second order thermal system.

Ex I.19: An example involving two springs and masses arranged in series was given as an
example leading to an eigenvalue problem with the eigenvalues representing the natural
frequencies of the system. Using the notation introduced in Figure 3.4, the following table
gives the masses and spring constants.

m1 = 1 kg
m2 = 0.5 kg
k1 = 100 N/m
k2 = 50 N/m

Determine both the eigenvalues and the corresponding frequencies for the system. What
are the modes that correspond to these two frequencies?

Ex I.20: Consider a system of coupled first order equations given by

 d y1

dt
d y2

dt
d y3

dt

T
=

1 −1 −1

−1 1 −1
1 1 −1

y1 y2 y3

T

What are the three eigenvalues of the coefficient matrix? Write the Jordan form of the
coefficient matrix. Obtain the general solution to the equations.

Ex I.21: Determine the eigenvalues of the following matrix by solving the characteristic equa-
tion.

A=

3 −1 1
−1 2 1

1 −1 3

What are the eigenvectors? Verify whether the eigenvectors are orthogonal to one another.
Write down the Schur form of the matrix.

I.3. Solution of algebraic equations 207

Ex I.22: Determine the largest and smallest eigenvalues, respectively, of the coefficient matrix
in Exercise I.17 by the power and inverse power method. What is the third eigenvalue? Are
the eigenvectors orthogonal to one another? Is the matrix diagonalizable?

Ex I.23: Determine one eigenpair of the matrix in Exercise I.21 by Rayleigh quotient iteration.
How many iterations are required to get convergence to 4 digits after decimals? Determine
a second eigenpair by deflation of the matrix followed by Rayleigh quotient iteration.

Ex I.24: Consider the 4×4 matrix

A=

3 0 1 0
2 4 0 1
1 0 2 0
2 1 0 2

Write down the matrix after swapping rows 1 and 3 and call it B. Premultiplication of A
by what matrix will accomplish this? Will the eigenvalues of matrix A and B be the same?
Explain.

Reduce A to Hessenberg form. Then obtain all the eigenvalues of A by QR iteration.

Ex I.25: Obtain all the eigenvalues of the matrix

A=

2 1 0.5 1
0 3 0 2
0 0 2 0
0 0 0.75 1.5

What is the Schur form of this matrix?

Ex I.26: Obtain all the eigenpairs of the following matrix by QR iteration with shifts, as
necessary. If the matrix has complex eigenvalues obtain them using Francis shift, as
necessary.

A=

4 2 1 3
1 5 7 4
4 6 1 3
2 5 6 7

I.3 Solution of algebraic equations

Ex I.27: Find a positive root of the function f (x) = e−x2 −1.5− 1
x+0.2

by the bisection method.
Minimum four digit accuracy is required in the root.

Ex I.28: Solve Exercise I.27 by fixed point iteration. Comment on the convergence of fixed point
iteration as compared to the bisection method. Root is required with 4 figure accuracy.

Ex I.29: Solve Exercise I.27 by Newton Raphson method. Study the effect of varying the initial
guess.

Ex I.30: Obtain the root lying between 2π and 4π of the function f (x)= sin x− 1
x+0.5

.

Ex I.31: Solve the equation e2x−e−2x = 12x by (a) Newton Raphson method, (b) secant method. In
the case of Newton Raphson method start iteration with x > 1 and x < 1 and make comments
based on the outcome.

208 Exercise I

Ex I.32: Solve for one of the roots of the cubic equation f (x) = x3 − 2x− 4 = 0 by any method.
Comment on the nature of the other two roots of this cubic equation.

Ex I.33: Obtain first three positive roots of equation f (x) = xsin(x)− cos(x) using the Newton
Raphson method. Such an equation is encountered in determining the eigenvalues of one
dimensional heat equation.

Ex I.34: Solve for all the roots of the cubic x3 −8.5x2 +23.75x−21.875 = 0 by Newton Raphson
method.

Ex I.35: Roots of a polynomial can be determined based on eigenvalue determination. Consider
the polynomial equation of the form

a0 +a1x+a2x2 +·· ·+an−1xn−1 +anxn = 0

with an = 1. Then the roots of the polynomial are the eigenvalues of the following matrix

A=

0 1 0 · · · 0
0 0 1 · · · 0
· · · · · · · · · · · · · · ·
0 0 0 · · · 1

−a0 −a1 −a2 · · · −an−1

Write a program to determine the roots of the polynomial using the above method.6

Determine the roots of a 4th degree Legendre polynomial y(x)= 1
8

(
35x4 −30x2 +3

)
.

Ex I.36: Bessel function represented by Jν(x) (Bessel functions appear in the analytical solution
of Laplace equation, a partial differential equation that governs many physical problems,
in cylindrical coordinates) where ν is a parameter is a function available in spreadsheet
programs. Using a spreadsheet program obtain the first positive root of the equation f (x)=
xJ1(x)− J0(x) using the secant method. What should you do if you want to use the Newton
Raphson method instead of the secant method?

Ex I.37: Find the points of intersection of line y = 1+ x with the ellipse
x2

4
+ y2

9
= 1. Reduce the

problem to finding the root of a single equation in one variable by eliminating one of the
variables between the two equations.

Ex I.38: Solve Exercise I.37 by treating the two equations simultaneously. Use Newton Raphson
method.

Ex I.39: Solve f (x) = 1
(x−2)2 +0.2

− 1
(x−1)2 +0.5

= 0. How many real roots does this equation

have? Use different methods such as the bisection method, fixed point iteration method,
Newton Raphson method, secant method to solve the equation and comment on their
relative performance.
(Hint: Make a plot to study the nature of the function)

Ex I.40: Solve the following set of equations by Gauss Seidel iteration technique. Obtain all the
roots.

x2 + y2 = 4

6MATLAB function roots(p) uses the above algorithm for determining the roots of a polynomial.

I.3. Solution of algebraic equations 209

ex + y = 1

Note that this example was solved using Newton Raphson method in the text. Would it be
advisable to use SOR in this case?

Ex I.41: Solve the following two non-linear equations:

x2 + y2 = 4

x2 − y2 = 3

Use the Gauss Seidel method.

Ex I.42: Solve the following two non-linear equations:

x2 − y2 = 3

xy = 0.5

Use SOR method.

Ex I.43: Solve the following two non-linear equations:

x2 − y2 − y = 0

x2 + y2 − x− 1
8

= 0

Use x =−0.1, y= 0.1 to start the Newton Raphson iteration.

Ex I.44: A set of nonlinear equations are represented in matrix form as Ay+0.05Iy′ =b where I
is the identity matrix. In a specific case the following data has been specified.

A=

2 −1 0 0 0 0
−1 2 −1 0 0 0

0 −1 2 −1 0 0
0 0 −1 2 −1 0
0 0 0 −1 2 −1
0 0 0 1 −4 3

y=

y1
y2
y3
y4
y5
y6

b=

1
0.0648
0.0648
0.0648
0.0648

0

y′ =

y4
1

y4
2

y4
3

y4
4

y4
5
0

Solve these equations by Gauss Seidel iteration and the SOR method. Comment on
convergence rates of the two methods. Is TDMA a better option?

module II

Interpolation, di�erentiation and integration

Function approximations assume an important space in computational methods. The utility
of approximations would arise in two important class of problems. The first deals with
representation of an exact known function by a good alternate approximating function which
can be easily evaluated. The approximating function would behave the same way as the exact
function. Some examples where such function approximation can be used are given below

1. The approximating function values are close to the exact value (within acceptable
limits). Examples are polynomials and orthogonal functions such as circular functions,
Bessel functions etc.

2. Derivatives and integrals of the exact function.
Consider the integral ∫ b

a
ex2

dx

The above integral cannot be evaluated analytically. There are several other functions
which do not have analytical closed form integrals. We will have to use function
approximations for such functions to evaluate the integrals as well as derivatives.

The second class of problems where function approximations are important is when the exact
function is not known but a set of discrete data representing the exact function are available.
Examples of the same include experimental data, tabulations of properties in a handbook such
as steam tables. It is often desirable to determine the function value at an intermediate point
where the function value is not available. Then one must use methods such as interpolation
or regression.
Chapter 5 would consider concepts of interpolation using polynomials and splines in one
dimensions. Interpolation in multi-dimensions will be discussed in Chapter 6. Chapter 7 will
introduce principles of curve fitting which is used when the discrete data contains inherent
noise. Concepts of numerical differentiation would be introduced in Chapter 8. Chapter 9
would consider numerical integration.

Chapter 5

Interpolation

In many applications that use tabulated data it is necessary to evaluate the value of a
function for a value of the independent variable(s) that is not one of the tabulated values.
It is then necessary to use interpolation to evaluate the function at the desired value of
the independent variable(s). Interpolated value is generally an approximation to the
actual value of the function that is represented by the tabulated data. Interpolating
function is used within the range of the tabulated values in constructing the
approximating function. Extrapolation involves the use of the approximating function
outside the range of tabulated values in constructing the approximating function.
Extrapolation is fraught with errors and hence not generally recommended. Normal
practice is to use a polynomial of suitable degree to represent the data and use the
polynomial to evaluate the function at the desired location.

213

214 Chapter.5 Interpolation

5.1 Polynomial interpolation
We look at a table of data wherein a function f (x) is available at discrete set of values of x i.e.

pairs xi, f i are available for 0≤ i ≤ n as shown in Table 5.1 below.

Table 5.1: Data in tabular form

x x0 x1 x2 · · · · · · · · · xn−1 xn
f (x) f0 f1 f2 · · · · · · · · · fn−1 fn

We would like to interpolate between the tabulated values using a polynomial of suitable degree.
It can be shown that there is a unique polynomial passing through these points which is of the form

f (x)= a0 +a1x+a2x2 +·· ·+anxn (5.1)

where ai are coefficients of the interpolating polynomial and are determined by solving the
following system of linear equations.

1 x0 x2
0 · · · xn

0
1 x1 x2

1 · · · xn
1

...
...

...
. . .

...
1 xn x2

n · · · xn
n

︸ ︷︷ ︸
Vandermonde matrix

a0
a1
...

an

︸ ︷︷ ︸
Vector of coefficients

=

f0
f1
...
fn

 (5.2)

Vandermonde matrices are generally ill-conditioned. Hence solving the above system of linear
equations may lead to errors. The same polynomial can also be represented in alternate ways such
as Lagrange1 and Newton polynomials.

Lagrange polynomial representation is useful when the degree of the interpolation polynomial
is fixed. Lagrange polynomial representations are commonly used in numerical methods like finite
element method (FEM) and finite volume method (FVM) for solving partial differential equations.
It is a general practice in numerical methods to discretize the domain into a large number of small
sub domains known as elements in FEM and volumes in FVM. These methods assume a functional
form for the variable in each sub domain and solve for the variables at the nodes (Modules III and
IV).
However, when the degree of the polynomial is not fixed, then it would be advantageous to use
Newton polynomial representation. The degree of the Newton polynomial can be increased with
very little computational effort. Newton polynomials are advantageous when we have equispaced
tabulated data.

The following sections would introduce these polynomial representations.

5.2 Lagrange interpolating (or interpolation) polynomial
The interpolating function can be expressed as weighted sum of the function at each node.

f (x)= w0 f0 +w1 f1 +·· ·+wn fn (5.3)

where wi are weight functions each of which is a polynomial of form given in Equation 5.1. The
interpolating polynomial is to be such that the values obtained by it are the same as the tabulated
values for each xi, the range of xi depending on the degree of the polynomial. Hence, wi = 1 at ith

node and wi = 0 at all other nodes. We shall take a simple example and then generalize.
1Joseph Louis Lagrange, 1736 - 1813, Italian mathematician

5.2. Lagrange interpolating (or interpolation) polynomial 215

5.2.1 Linear interpolation

Consider data shown in Table 5.1. Linear interpolation is possible between any two entries in
the table such as between xi and xi+1. Let us consider the following interpolating function:

f (x)≈ L1(x)= (x− xi+1)
(xi − xi+1)

f i + (x− xi)
(xi+1 − xi)

f i+1 (5.4)

in the interval xi ≤ x ≤ xi+1. The chosen polynomial is of first degree since each term is linear in x.
The interpolating polynomial (Equation 5.4) agrees with the function at both the nodes xi and xi+1.
The symbol L1(x) means that the interpolating function is a polynomial of degree 1, referred to as
a Lagrange polynomial of degree 1. Excepting at the nodes the Lagrange polynomial represents
the function f (x) with some error. Hence we refer to L1(x) as an approximation to the function
f (x). Interpolating function given by Equation 5.4 may also be written as a weighted sum as

f (x)≈ L1(x)= wi(x) f i +wi+1(x) f i+1 (5.5)

where the two weights are linear in x. We note that a Lagrange polynomial of degree 1 passes
through two neighboring data points. It is easily seen that a Lagrange polynomial of degree 2
would pass through three consecutive data points and a Lagrange polynomial of degree k would
pass through k+1 consecutive data points.

5.2.2 Quadratic interpolation

We may easily write a quadratic interpolating polynomial by requiring it to pass through three
consecutive data points as

f (x)≈ L2(x)= wi(x) f i +wi+1(x) f i+1 +wi+2(x) f i+2 (5.6)

where each weight is a second degree polynomial in x given by

wi(x)= (x− xi+1)(x− xi+2)
(xi − xi+1)(xi − xi+2)

wi+1(x)= (x− xi)(x− xi+2)
(xi+1 − xi)(xi+1 − xi+2)

wi+2(x)= (x− xi)(x− xi+1)
(xi+2 − xi)(xi+2 − xi+1)

(5.7)

Expression 5.6 is restricted to the range xi ≤ x ≤ xi+2. Weight wi is equal to 1 at xi but vanishes
for both xi+1 and xi+2. Weight wi+1 is equal to 1 at xi+1 but vanishes for both xi and xi+2. Weight
wi+2 is equal to 1 at xi+2 but vanishes for both xi and xi+1. Thus L2(x) passes through the three
data points (xi, f i); (xi+1, f i+1) and (xi+2, f i+2). Hence it is the required interpolating polynomial of
degree 2.

5.2.3 Generalization

It is possible to generalize the above to a kth degree Lagrange polynomial where k ≤ n− 1.
We note that the weight of each term in the Lagrange polynomial of degree k is a kth degree
polynomial. General term in the Lagrange polynomial is then given by

(x− xi)(x− xi+1)...(x− xi+k)
(xi+l − xi)(xi+l − xi+1)...(xi+l − xi+k)

f i+l (5.8)

216 Chapter.5 Interpolation

where factor (x−xi+l) does not appear in the numerator and correspondingly the factor (xi+l−xi+l)
does not appear in the denominator. Thus no division by zero! Note also that 0≤ l ≤ k. Expression
5.8 may be recast in the form ∏k

p=0,p 6=l(x− xi+p)∏k
p=0,p 6=l(xi+l − xi+p)

(5.9)

where
Πk

p=0,p 6=l(x− xi+p)= (x− xi)(x− xi+1) · · · (x− xi+l−1)(x− xi+l+1) · · · (x− xi+k)

Finally the interpolating polynomial of degree k may be written as

Lk(x)=
k∑

l=0

[∏k
p=0,p 6=l(x− xi+p)∏k

p=0,p 6=l(xi+l − xi+p)

]
f i+l (5.10)

The polynomial Lk(x) passes through the k+1 points given by (xi, f i); (xi+1, f i+1) · · · (xk, f i+k) and
Expression 5.10 is valid for xi ≤ x ≤ xi+k.

MATLAB program has been provided below to evaluate Lagrange polynomials at desired points.

Program 5.1: Evaluate Lagrange polynomials at given points

1 function y = lagrange(xp ,yp ,x)

2 % I n p u t xp : n o d e s
3 % yp : f u n c t i o n v a l u e s a t p o i n t s
4 % x : p o i n t s w h e r e p o l y n o m i a l i s t o e v a l u a t e d
5 % O u t p u t y : p o l y n o m i a l i n t e r p o l a t e d a t x
6 n = length(xp); % number o f i n t e r p o l a t i n g p o i n t s
7 m = length(x); % number o f p o i n t s i n x
8 w = ones(n,m); % i n i t i a l i z e L a g r a n g e w e i g h t s
9 for i=1:n % l o o p t o c a l c u l a t e w e i g h t s

10 for j=1:n

11 if(i~=j) % i 6= j
12 w(i,:) = w(i,:) .*(x-xp(j))/(xp(i)-xp(j));

13 end

14 end

15 end

16 y = zeros(m,1); % i n i t i a l i z e y
17 for i=1:n % e v a l u a t e y
18 y = y + w(i,:) '* yp(i);

19 end

Example 5.1
Function vs location data is tabulated below. Obtain the value of the function at x = 0.07 and
x = 0.35 using Lagrange polynomials of various degrees and comment on the results.

i 0 1 2 3 4 5 6 7
xi 0 0.08 0.15 0.21 0.31 0.38 0.47 0.57

f (xi) 1 0.9057 0.8327 0.7767 0.6956 0.6472 0.5942 0.5466

5.2. Lagrange interpolating (or interpolation) polynomial 217

Solution :
We note that the tabulated data is available with unequal spacing and hence we use
Lagrange polynomials based on Equation 5.10. As an example, we show how the
quadratically interpolated value is calculated. The weights at x = 0.07 are obtained first.

w0 = (x− x1)(x− x2)
(x0 − x1)(x0 − x2)

= (0.07−0.08)(0.07−0.15)
(0−0.08)(0−0.15)

= 0.0667

w1 = (x− x0)(x− x2)
(x1 − x0)(x1 − x2)

= (0.07−0)(0.07−0.15)
(0.08−0)(0.08−0.15)

= 1

w2 = (x− x0)(x− x1)
(x2 − x0)(x2 − x1)

= (0.07−0)(0.07−0.08)
(0.15−0)(0.15−0.08)

=−0.0667

Note that the sum of the weights equals one. We then have

f (0.07)= 0.0667×1+1×0.9057−0.0667×0.8327= 0.9168

Linear, quadratic and cubic interpolated values are obtained for x = 0.07 and presented in
the following table.

i xi f (xi) Linear Quadratic Cubic
0 0 1

0.07 0.9174 0.9168 0.9167
1 0.08 0.9057
2 0.15 0.8327
3 0.21 0.7766

Program 5.1 has been used to obtain the cubic interpolated value for x = 0.35.
x = [0.31; 0.38; 0.47; 0.57];

y = [0.6955; 0.6471; 0.5942; 0.5466];

y1 = lagrange(x,y ,0.35);

The output of the program is
y1 = 0.6670

Linear, quadratic and cubic interpolated values are obtained for x = 0.35 and presented in
table below.

i xi f (xi) Linear Quadratic Cubic
4 0.31 0.6955

0.35 0.6678 0.6670 0.6670
5 0.38 0.6471
6 0.47 0.5942
7 0.57 0.5466

An alternate way of interpolating for the function value x = 0.35 is to choose the four points
shown in table below.

218 Chapter.5 Interpolation

i xi f (xi) Linear Quadratic Cubic
2 0.15 0.8327
3 0.21 0.7766
4 0.31 0.6955

0.35 0.6678 0.6669 0.6670
5 0.38 0.6471

It is seen that the quadratically interpolated value is sufficient for practical purposes. Also
alternate ways of interpolation using the tabulated values yield consistent interpolated
values.

Sometimes it would be desirable to store the weight functions of Lagrange polynomials, in order
to perform differentiation and integration. MATLAB program 5.2 evaluates the weight functions
of Lagrange polynomial and stores the same in the polynomial representation of form

wi(x)= ai,0 +ai,1x+ai,2x2 +·· ·+ai,nxn (5.11)

The output is a matrix p that contains the coefficients of the weight function polynomial for each
node.

w0
w1
...

wn

=

a0,0 a0,1 · · · a0,n
a1,0 a1,1 · · · a1,n

...
...

. . .
...

an,0 an,1 · · · an,n

1
x
...

xn

Program 5.2: Evaluate weight functions of Lagrange polynomials

1 function p = lagrangeweightfunction(x)

2 % I n p u t x : n o d e s
3 % O u t p u t p : m a t r i x o f c o e f f i c i e n t s o f w e i g h t f u n c t i o n
4 n = length(x); % number o f n o d e s
5 p = zeros(n); % i n i t i a l i z e p
6 for i = 1:n

7 w = zeros(n,1);

8 w(1) = 1;

9 w1 = zeros(n,1);

10 den = 1; % i n i t i a l i z e d e n o m i n a t o r
11 for j = 1:n % l o o p f o r c a l c u l a t i n g c o e f f i c i e n t s
12 if(i~=j)

13 w1(2:n) = w(1:n-1);

14 w = w1 -x(j)*w; % u p d a t i n g c o e f f i c i e n t s
15 den = den*(x(i)-x(j)); % u p d a t i n g d e n o m i n a t o r
16 end

17 end

18 p(i,:) = w/den; % u p d a t e c o e f f i c i e n t s o f n o d e i
19 end

The coefficients of the nth degree polynomial (Equation 5.1) passing through the points can be
easily estimated from the weight function matrix.

f (x) = w0 f0 +w1 f1 +·· ·+wn fn

5.2. Lagrange interpolating (or interpolation) polynomial 219

=
n∑

i=0
ai,0 f i︸ ︷︷ ︸
a0

+
n∑

i=0
ai,1 f i︸ ︷︷ ︸
a1

x+
n∑

i=0
ai,2 f i︸ ︷︷ ︸
a2

x2 +·· ·+
n∑

i=0
ai,n f i︸ ︷︷ ︸
an

xn

The following MATLAB program evaluates the weights at the desired points.

Program 5.3: Evaluate weights at speci�ed points

1 function w = lagrangeweight(p,x)

2 % I n p u t p : m a t r i x o f c o e f f i c i e n t s o f w e i g h t f u n c t i o n
3 % x : p o i n t s w h e r e w e i g h t s h a v e t o b e e v a l u a t e d
4 % O u t p u t w : L a g r a n g e p o l y n o m i a l w e i g h t s a t x
5 m = length(x); % number o f n o d e s
6 n = size(p,1); % n−1 = d e g r e e o f L a g r a n g e p o l y n o m i a l
7 v = ones(m,n); % i n i t i a l i z e V a n d e r m o n d e m a t r i x
8 for i=2:n % c o n s t r u c t V a n d e r m o n d e m a t r i x
9 v(:,i) = x.*v(:,i-1);

10 end

11 w =v*p'; % L a g r a n g e p o l y n o m i a l w e i g h t s

5.2.4 Lagrange polynomials with equi-spaced data

If the tabulated values of the function are available as equi-spaced data Lagrange polynomial
take on a simpler form. For equi-spaced data, we have xi+1 − xi = h for 0 ≤ i ≤ n where h is the
constant spacing. We shall also use the definition x− xi = rh where r is a number such that the
point x is within the range of applicability of the Lagrange polynomial. Equation 5.10 may be
recast as

Lk(r)=
k∑

l=0

[∏k
p=0,p 6=l(r− p)∏k
p=0,p 6=l(l− p)

]
f i+l (5.12)

As a particular case consider k = 2. Then we have

L2(r) = (r−1)(r−2)
(−1)(−2)

f i + r(r−2)
(1)(−1)

f i+1 + r(r−1)
(2)(1)

f i+2 (5.13)

= (r−1)(r−2)
2

f i − r(r−2) f i+1 + r(r−1)
2

f i+2 (5.14)

We notice that the three weights, in this case of equi-spaced data, given by

wi = w0 = (r−1)(r−2)
2

= r2 −3r+2
2

wi+1 = w1 =−r(r−2)= 2r− r2

wi+2 = w2 = r(r−1)
2

= r2 − r
2

are all quadratic in r. These functions are valid in the range 0 ≤ r ≤ 2 and are shown plotted in
Figure 5.1.

220 Chapter.5 Interpolation

La
gr

an
ge

 w
ei

gh
t

-0.2

0

0.2

0.4

0.6

0.8

1

r
0 0.5 1 1.5 2

w0
w1
w2 Figure 5.1: Quadratic

weights for Lagrange poly-
nomials of degree 2

Example 5.2
Function vs location data is given in the following table with equal spacing of h = 0.1. Obtain
the value of the function at x = 0.37 using Lagrange polynomials of various degrees and
comment on the results.

i 0 1 2 3 4 5
xi 0 0.1 0.2 0.3 0.4 0.5
f i 0.09091 0.14023 0.18887 0.23659 0.28380 0.32851

Solution :
We use linear, quadratic and cubic interpolations using the data points 2 through 5. The

interpolated function value is desired at x = 0.37 that corresponds to r = 0.37
0.1

= 3.7, where
x− x0 = rh and h = 0.1. In the case of linear interpolation the weights are assigned to the
data points i = 3 and i = 4 (these points straddle the point r = 3.7) as given below.

w3 = 3.7−4
−1

= 0.3; w4 = 3.7−3
1

= 0.7

The linearly interpolated value is then given by

f0.37 = w3 f3 +w4 f4 = 0.3×0.23659+0.7×0.28380= 0.26922

Data points corresponding to i = 2, i = 3 and i = 4 are used to construct the quadratically
interpolated value. The weights are calculated as

w2 = (3.7−3)(3.7−4)
2

=−0.1050

w3 = (3.7−2)(3.7−4)
−1

= 0.5100

w4 = (3.7−2)(3.7−3)
2

= 0.5950

The quadratically interpolated value is then given by

f0.37 = w2 f2 +w3 f3 +w4 f4

5.3. Newton Polynomials 221

= −0.1050×0.18887+0.5100×0.23659+0.5950×0.28380

= 0.26934

Data points corresponding to i = 2, i = 3, i = 4 and i = 5 are used to construct the cubically
interpolated value. The weights are calculated as

w2 = (3.7−3)(3.7−4)(3.7−5)
−6

=−0.0455 w3 = (3.7−2)(3.7−4)(3.7−5)
2

= 0.3315

w4 = (3.7−2)(3.7−3)(3.7−5)
−2

= 0.7735 w5 = (3.7−2)(3.7−3)(3.7−4)
6

=−0.0595

The cubically interpolated value is then given by

f0.37 = w2 f2 +w3 f3 +w4 f4 +w5 f5

= −0.0455×0.18887+0.3315×0.23659+0.7735×0.28380

−0.0595×0.32851= 0.26935

Representation using local coordinates
It is useful in some applications such as numerical integration, to transform the set of points to
local coordinates −1 < ξ< 1. If x1 and x2 are the boundaries of the domain, the relation between
original coordinates and the transformed coordinates can be written as

x = x1 + x2

2
+ x2 − x1

2
ξ (5.15)

Linear interpolation weights in local coordinates would then be

−1
ξ

1 w−1 = 1−ξ
2

w1 = 1+ξ
2

(5.16)

Quadratic interpolation weights for equi-spaced points in local coordinates would be

−1
ξ

10
w−1 = ξ(1−ξ)

2

w0 = 1−ξ2

w1 = ξ(1+ξ)
2

(5.17)

5.3 Newton Polynomials
Alternate way of expressing an interpolating polynomial is to define it in terms of a Newton

polynomial. Newton polynomials use tabulated data and express the polynomials in terms of
divided/forward/backward differences generated using the tabulated data. A Newton polynomial
may be upgraded to a higher degree by simply adding extra terms without modifying the terms
already written down.

222 Chapter.5 Interpolation

5.3.1 Divided differences
Table 5.2: Data in tabular form

x x0 x1 x2 · · · · · · · · · xn−1 xn
f (x) f0 f1 f2 · · · · · · · · · fn−1 fn

Consider data shown in Table5.2. We define the first divided difference f [x0, x1] at x0 as follows2:

f [x0, x1]= f1 − f0

x1 − x0
(5.18)

Second divided difference f [x0, x1, x2] at x0 is defined as3

f [x0, x1, x2]= f [x1, x2]− f [x0, x1]
x2 − x0

(5.19)

This may be rewritten using Equation 5.18 as

f [x0, x1, x2]=
f2− f1
x2−x1

− f1− f0
x1−x0

x2 − x0
(5.20)

Similarly the kth divided difference is defined as4

f [x0, x1, x2, ..., xk]= f [x1, x2, ..., xk]− f [x0, x1, ..., xk−1]
xk − x0

(5.21)

Above definitions are quite general and valid for data with equal or unequal spacing. However,
with equi-spaced data such that xi+1 − xi = h for 0≤ i ≤ n the above may be simplified as

f [x0, x1, x2, ..., xk]= f [x1, x2, ..., xk]− f [x0, x1, ..., xk−1]
kh

(5.22)

Based on the above we write down the first three divided differences for equi-spaced data.

f [x0, x1]= f1 − f0

x1 − x0
= f1 − f0

h
(5.23)

f [x0, x1, x2] = f [x1, x2]− f [x0, x1]
x2 − x0

=
f2− f1

h − f1− f0
h

2h
= f2 −2 f1 + f0

2!h2 (5.24)

f [x0, x1, x2, x3] = f [x1, x2, x3]− f [x0, x1, x2]
x3 − x0

=
f3−2 f2+ f1

2!h2 − f2−2 f1+ f0
2!h2

3h
= f3 −3 f2 +3 f1 − f0

3!h3 (5.25)

2In general, the first divided difference at data point xi is defined as f [xi , xi+1]= f i+1 − f i
xi+1 − xi

3In general, the second divided difference at xi is defined as f [xi , xi+1, xi+2]= f [xi+1, xi+2]− f [xi , xi+1]
xi+2 − xi

4In general, the kth divided difference at data point xi is defined as f [xi , xi+1, ..., xi+k] =
f [xi+1, xi+2, ..., xi+k]− f [xi , xi+1, ...xi+k−1]

xi+k − xi

5.3. Newton Polynomials 223

5.3.2 Forward and backward differences

We see that, for equi-spaced data, divided differences are related to forward differences since
the numerators in each of Equations 5.23-5.25 are respectively the first, second and third forward
differences given by

∆ f i = f i+1 − f i; ∆2 f i = f i+2 −2 f i+1 + f i; ∆3 f i = f i+3 −3 f i+2 +3 f i+1 − f i (5.26)

Note that forward difference is defined, in general as,

∆k f i =∆k−1 f i+1 −∆k−1 f i (5.27)

Backward differences may be defined, analogous to the forward differences through the following
relations.

∇ f i = f i − f i−1; ∇2 f i = f i −2 f i−1 + f i−2; ∇3 f i = f i −3 f i−1 +3 f i−2 − f i−3 (5.28)

In general we also have
∇k f i =∇k−1 f i −∇k−1 f i−1 (5.29)

5.3.3 Newton polynomial using divided, forward or backward
differences

We would like to derive a polynomial - the Newton polynomial - that is useful for interpolation,
based on the divided differences presented above. We define a Newton polynomial pk−1(x) such
that it passes through the k points x0, x1,, xk−1. Thus we have

pk−1(x0)= f0; pk−1(x1)= f1;; pk−1(xk−1)= fk−1 (5.30)

and, in addition, we define pk(x) such that

pk(x)= pk−1(x)+ gk(x) (5.31)

satisfies the additional condition pk(xk)= fk. Equation 5.31 may be recast as

gk(x)= pk(x)− pk−1(x) (5.32)

We note that gk(x) must be zero at x0, x1, ..., xk−1. Hence it must be of form

gk(x)= ak(x− x0)(x− x1)....(x− xk−1) (5.33)

We also notice that the highest power of x that occurs in g(x) is xk. Using Equation 5.33 in
Equation 5.31 we have

pk(xk)= pk−1(xk)+ak(xk − x0)(xk − x1)....(xk − xk−1)= fk (5.34)

We solve the above for ak to get

ak = fk − pk−1(xk)
(xk − x0)(xk − x1)....(xk − xk−1)

(5.35)

This is in the nature of a recurrence relation for determining the a’s as we shall see below.

224 Chapter.5 Interpolation

With p0(x)= f0, using Equation 5.35 we have

a1 = f1 − p0(x1)
x1 − x0

= f1 − f0

x1 − x0
= f [x0, x1] (5.36)

The divided difference has made its appearance now! At this stage we have

p1(x)= p0(x)+ (x− x0)a1 = f0 + (x− x0) f [x0, x1] (5.37)

Consider the coefficient a2 now. This may be written using the previous expressions as

a2 = f2 − p1(x2)
(x2 − x0)(x2 − x1)

= f2 − { f0 + (x2 − x0) f [x0, x1]}
(x2 − x0)(x2 − x1)

= f2 − f1 + f1 − f0 − (x2 − x0) f [x0, x1]
(x2 − x0)(x2 − x1)

= f2 − f1 + (x1 − x0) f [x0, x1]− (x2 − x0) f [x0, x1]
(x2 − x0)(x2 − x1)

= f2 − f1

(x2 − x0)(x2 − x1)
+ (x1 − x2) f [x0, x1]

(x2 − x0)(x2 − x1)

= f [x1, x2]− f [x0, x1]
x2 − x0

= f [x0, x1, x2] (5.38)

Thus (by mathematical induction) the coefficients in the Newton’s polynomial are the divided
differences of various orders, calculated at the point x0. We may thus generalize the above and get

f (x)≈ pk(x) = f0 + (x− x0) f [x0, x1]+ (x− x0)(x− x1) f [x0, x1, x2]+

+ (x− x0)(x− x1) · · · (x− xk−1) f [x0, x1, ..., xk] (5.39)

MATLAB program to calculate the divided difference table and coefficients of Newton polynomial
is given below.

Program 5.4: Coe�cients of Newton polynomial using divided di�erences

1 function pp = newtonpoly(x,f)

2 % I n p u t x : i n t e r p o l a t i o n p o i n t s
3 % f : f u n c t i o n v a l u e s a t i n t e r p o l a t i o n p o i n t s
4 % O u t p u t pp : s t r u c t u r e r e l a t e d t o Ne w t o n p o l y n o m i a l
5 % pp . c o e f : s t o r e s N e wt o n p o l y n o m i a l w e i g h t s
6 % pp . x : s t o r e s i n t e r p o l a t i o n p o i n t s
7 n = size(x,1); % number o f i n t e p o l a t i o n p o i n t s
8 dd = zeros(n,n); % i n i t i a l i z e d i v i d e d d i f f e r e n c e m a t r i x
9 dd(:,1) = f;

10 for i=2:n % g e n e r a t e d i v i d e d d i f f e r e n c e t a b l e
11 for j=1:n-i+1

12 dd(j,i) = (dd(j+1,i-1)-dd(j,i-1))/(x(j+i-1)-x(j));

13 end

14 end

15 % c o e f f i c i e n t s = f i r s t r o w o f d i v i d e d d i f f e r e n c e t a b l e
16 % (d o w n w a r d d i a g o n a l)
17 pp.coef = dd(1,:) ';

18 pp.x = x;

5.3. Newton Polynomials 225

The output of Program 5.4 is a MATLAB structure storing coefficients of Newton polynomial
and corresponding interpolation points. The following MATLAB program evaluates Newton
polynomials at desired points.

Program 5.5: Evaluate Newton polynomial at points input

1 function y = newtonpolyeval(pp ,x)

2 % I n p u t pp : s t r u c t u r e r e l a t e d t o N ew t o n p o l y n o m i a l
3 % pp . c o e f : s t o r e s N e wt o n p o l y n o m i a l w e i g h t s
4 % pp . x : s t o r e s i n t e r p o l a t i o n p o i n t s
5 % x : p o i n t s w h e r e p o l y n o m i a l i s t o b e e v a l u a t e d
6 % O u t p u t y : N e w t on p o l y n o m i a l e v a l u a t e d a t x
7 n = size(pp.coef ,1); % number o f i n t e r p o l a t i o n p o i n t s
8 m = size(x,1); % number o f p o i n t s i n x
9 x1 = ones(m,1); % i n i t i a l i z e x 1 x1=Πn

i=1(x− xi−1)
10 y = pp.coef (1)*x1; % i n i t i a l i z e y
11 for i=2:n % l o o p t o c a l c u l a t e y
12 x1 = x1.*(x-pp.x(i-1)); % u p d a t e x 1
13 y = y + pp.coef(i)*x1; % u p d a t e y
14 end

5.3.4 Newton Gregory formulas with equi-spaced data
Newton polynomials may be simplified further in the case of equi-spaced data. For this purpose

let us assume that r = x− x0

h
. We notice that

x1 − x0

h
= 1,

x2 − x0

h
= 2,......,

xk − x0

h
= k. Using results

from Equations 5.23 - 5.25 in Equation 5.39 we have the following.

f (x)≈ pk(x)= f0 + r∆ f0 + r(r−1)
2!

∆2 f0 ++ r(r−1)(r−2)....(r−k+1)
k!

∆k f0 (5.40)

The above is referred to as the Newton-Gregory series with forward differences. The forward
differences required in Equation 5.40 may be calculated as shown in Table 5.3.

Table 5.3: Forward di�erence table for equi-spaced data

x f (x) ∆ f ∆2 f ∆3 f ∆4 f
0 f0

f1 − f0︸ ︷︷ ︸
∆ f0

h f1 f2 −2 f1 + f0︸ ︷︷ ︸
∆2 f0

f2 − f1 f3 −3 f2 +3 f1 − f0︸ ︷︷ ︸
∆3 f0

2h f2 f3 −2 f2 + f1 f4 −4 f3 +6 f2 −4 f1 + f0︸ ︷︷ ︸
∆4 f0 or∇4 f4

f3 − f2 f4 −3 f3 +3 f2 − f1︸ ︷︷ ︸
∇3 f4

3h f3 f4 −2 f3 + f2︸ ︷︷ ︸
∇2 f4

f4 − f3︸ ︷︷ ︸
∇ f4

4h f4
x f (x) ∇ f ∇2 f ∇3 f ∇4 f

226 Chapter.5 Interpolation

The forward differences associated with the point x0 are the quantities lying on the downward
going diagonal, as indicated in the table. It is also possible to associate backward differences with
the entries lying on the upward going diagonal. For example, as indicated in the table, the terms
along the upward going diagonal represent backward differences associated with point x4.

Newton Gregory series may also be written down using backward differences, based on an
analysis similar to that presented above. The appropriate formula is given below.

f (x)≈ pk(x)= f0 + r∇ f0 + r(r+1)
2!

∇2 f0 ++ r(r+1)(r+2)....(r+k−1)
k!

∇k f0 (5.41)

Example 5.3
Construct a table of forward, backward and divided differences using the following data.

i 1 2 3 4 5 6 7
x 0 0.2 0.4 0.6 0.8 1 1.2
f 0 0.0016 0.0256 0.1296 0.4096 1 2.0736

Comment on the nature of the function based on the various differences.
Solution :

Forward and backward differences are easily calculated using a spreadsheet program. An
extract from such a spreadsheet is given below. It is observed that 5th forward and backward
differences are zero. Hence the data specified in the example is at most a polynomial
of degree 4. The reader may note the function is actually f (x) = x4 and hence the above
observation is correct.

x f ∆ f ∆2 f ∆3 f ∆4 f ∆5 f ∆6 f
0 0 0.0016 0.0224 0.0576 0.0384 0.0000 0.0000
0.2 0.0016 0.024 0.08 0.096 0.0384 0.0000
0.4 0.0256 0.104 0.176 0.1344 0.0384
0.6 0.1296 0.28 0.3104 0.1728
0.8 0.4096 0.5904 0.4832
1 1 1.0736
1.2 2.0736
x f ∇ f ∇2 f ∇3 f ∇4 f ∇5 f ∇6 f

Divided differences may be calculated by noting that the data is equi-spaced with a spacing
of h = 0.2. Again the calculations are performed using a spreadsheet and given below

x f DD1 DD2 DD3 DD4 DD5 DD6
0 0 0.008 0.28 1.2 1 0 0
0.2 0.0016 0.12 1 2 1 0
0.4 0.0256 0.52 2.2 2.8 1
0.6 0.1296 1.4 3.88 3.6
0.8 0.4096 2.952 6.04
1 1 5.368
1.2 2.0736
DD stands for divide difference.
Entries shown in bold are the divided differences
associated with x = 0.

5.3. Newton Polynomials 227

We see again that 5th and higher divided differences are zero. This is as it should be for a
polynomial degree 4.

The next example we consider is one where the function form is assumed to be not known. The
data is available purely as a table and we would like to use it for interpolation.

Example 5.4
Use the following tabulated data to make a divided differences table. Obtain the value of the
function at x = 0.33.

i 1 2 3 4 5 6 7
x 0 0.14 0.22 0.28 0.34 0.42 0.51
f 1.2 1.2663 1.3141 1.3551 1.401 1.47 1.5593

Solution :
Note that the data given in this example is not equi-spaced and hence only divided
differences make sense. Calculation of divided differences is best done by the use of a
spreadsheet, as indicated already in Example 5.3. Such a tabulation is given below.

x f DD1 DD2 DD3 DD4 DD5 DD6
0 1.2000 0.4736 0.5633 0.1778 0.4691 -3.3103 15.2172
0.14 1.2663 0.5975 0.6131 0.3373 -0.9212 4.4505
0.22 1.3141 0.6833 0.6806 0.0794 0.7255
0.28 1.3551 0.7650 0.6964 0.2898
0.34 1.4010 0.8625 0.7631
0.42 1.4700 0.9922
0.51 1.5593
Entries shown in bold are the divided differences associated with x = 0.

By looking at the entries in the table it is not possible to come to any conclusion regarding
how well the data is approximated by a polynomial of some degree, say 3 or 4. This can be
done only by comparing the interpolated value, for a specified x, by comparing successive
approximations to the function value. In the present case we require the interpolated value
of the function at x = 0.33. Newton polynomials based on the tabulated values of divided
differences may be used for this purpose. Approximations may be written down as below:

1 term: f (x)≈ f0 2 terms: f (x)≈ f0 + (x− x0)DD1

3 terms: f (x) ≈ f0 + (x− x0)(DD1 + (x− x1)DD2)

4 terms: f (x) ≈ f0 + (x− x0)(DD1 + (x− x1)(DD2 + (x− x2)DD3)

and so on, where x0 is identified with the first data point viz. x0 = 0. The following table
indicates the various approximations to the value of f (0.33).

No. of terms 1 2 3 4 5 6 7
f (0.33) 1.2 1.3563 1.3916 1.3928 1.3930 1.3930 1.3930

228 Chapter.5 Interpolation

It appears that 5 terms are required for getting an acceptable interpolate for the function
at x = 0.33.

The last example to be presented involves equi-spaced data of an unknown function. We use
Newton-Gregory formula using forward differences to get an interpolated value of the function.

Example 5.5
Obtain an acceptable interpolated value of the function tabulated below at x = 1.35
using Newton-Gregory series. Also obtain a quadratic interpolated value using Lagrange
polynomial and compare the two.

i 1 2 3 4 5
x 1 1.2 1.4 1.6 1.8
f -1.0214 -0.7645 -0.4601 -0.1131 0.2727

Solution :
Forward differences are calculated as usual and are tabulated below.

x f ∆ f ∆2 f ∆3 f ∆4 f ∆5 f
1 -1.0214 0.2569 0.0475 -0.0049 0.0012 -0.0004
1.2 -0.7645 0.3044 0.0426 -0.0037 0.0008
1.4 -0.4601 0.3469 0.0389 -0.0029
1.6 -0.1131 0.3858 0.0360
1.8 0.2727 0.4218
2 0.6945

The required forward differences are shown in italics. Newton Gregory series (Equation

5.40) may now be used with r = 1.35−1
1.2−1

= 1.75 and different number of terms to obtain the
following:

No. of terms 1 2 3 4 5 6
f (1.35) -1.0214 -0.5718 -0.5407 -0.5404 -0.5404 -0.5404

It is observed that 4 terms are adequate to get an acceptable value for the interpolate. We
now calculate the interpolate at x = 1.35 by using a second degree Lagrange polynomial.
This may be done in two alternate ways, by using the data at x values of 1,1.2 and 1.4 or
alternately by using the data at x values of 1.2,1.4 and 1.6. We will show the calculation in
the latter case, conveniently arranged in tabular form.

Use data below h = 0.2
x f (x) L2(x = 1.35)= -0.5406
1 -1.0214
1.2 -0.7645
1.4 -0.4601

5.3. Newton Polynomials 229

It is seen that L2(1.35) agrees closely with the three term Newton Gregory value, as it
should.

Approximating known functions: We consider another example where the function form is
known. We would like to look at the error distribution within the entire range of data when a
Newton polynomial of various possible degrees is used for interpolation.

Example 5.6
The following table gives equi-spaced data of f (x)= e0.8x−1. Discuss the error in computation
of the function using p4 that represents Newton polynomial of the largest possible degree.

x 1 1.5 2 2.5 3
f (x) 1.225541 2.320117 3.953032 6.389056 10.023176

Comment on what happens when we use a polynomial of lower degree than the maximum
possible. What happens to the error when higher degree polynomials are used (such as p8
and p16).
Solution :

Since the data is equi-spaced we may develop the Newton polynomial using forward
differences. The required forward differences are given in the following table.

x f (x) ∇ f ∇2 f ∇3 f ∇4 f
1 1.225541

1.094576
1.5 2.320117 0.538340

1.632916 0.264769
2 3.953032 0.803108 0.130220

2.436024 0.394988
2.5 6.389056 1.198097

3.634120
3 10.023176

The required Newton polynomial is given by

f (x) ≈ p4(x)= 1.225541+1.094576r+ 0.538340r(r−1)
2

+
0.264769r(r−1)(r−2)

6
+ 0.130220r(r−1)(r−2)(r−3)

24

where r = x−1
1.5−1

= 2(x−1). The error is calculated as the difference p4(x)− f (x). Table 5.4
gives an extract from a spreadsheet that is used to calculate the functions and the errors
with a step size of ∆x = 0.04 or ∆r = 0.08. A plot of the error as a function of x is given in
Figure 5.2. Surprisingly the largest errors occur close to the end points i.e. x = 1 and x = 3.
This is referred to as “Runge’s” phenomenon5.

230 Chapter.5 Interpolation

Table 5.4: Error in Example 5.6

x r f (x) p4(x) p4(x)− f (x)
1 0 1.2255 1.2255 0.0000

1.04 0.08 1.2979 1.2973 -0.0006
1.08 0.16 1.3726 1.3716 -0.0010
· · · · · · · · · · · · · · ·
2.2 2.4 4.8124 4.8119 -0.0006

2.24 2.48 5.0014 5.0008 -0.0006
2.28 2.56 5.1966 5.1960 -0.0006
· · · · · · · · · · · · · · ·

2.48 2.96 6.2718 6.2717 -0.0001
2.52 3.04 6.5082 6.5083 0.0001
2.56 3.12 6.7524 6.7527 0.0004
· · · · · · · · · · · · · · ·

2.92 3.84 9.3398 9.3411 0.0013
2.96 3.92 9.6760 9.6768 0.0008

3 4 10.0232 10.0232 0.0000

E
rr

or
 p

4(
x)

-f(
x)

-0.0015

-0.001

-0.0005

0

0.0005

0.001

0.0015

0.002

x
1 1.5 2 2.5 3

Figure 5.2: Variation of error
in the case of p4(x) in Example
5.6

Extrapolation: Now consider what happens when we use p2(x) or p3(x) instead of p4(x)
for evaluating the function in the range 1 ≤ x ≤ 3. Note that use of p2(x) will amount to
extrapolation for x > 2 and use of p3(x) will amount to extrapolation for x > 2.5. Error
between the respective interpolating polynomials and the actual function are plotted as
shown in Figure 5.3.

This figure shows that large errors may occur if we use the interpolating polynomial to
extrapolate the function beyond the range of its applicability. Hence, in general, it is unwise
to use an approximating interpolating function to extrapolate the function.
Let us see what happens to the maximum error as the degree of the interpolating polynomial
is increased. We use programs 5.4 and 5.5 to estimate the maximum error incurred in
interpolation. The following code determines the maximum error for p8.

5Named after Carle David Tolmé Runge 1856-1927, German mathematician and physicist. His name is
well known for the Runge Kutta method used for numerical solution of ordinary differential equations.

5.3. Newton Polynomials 231

n = 8; % d e g r e e o f N e w t on p o l y n o m i a l
% r e a d e r c a n c h a n g e n

h = 2/n; % s t e p s i z e
x = [1:h:3]'; % i n t e r p o l a t i o n n o d e s
y = exp (0.8*x) -1; % f u n c t i o n v a l u e a t n o d e s
ppl = newtonpoly(x,y); % c o e f f i c i e n t s f o r pn
x1 = [1:0.01:3] '; % n o d e s w i t h e r r o r
y1 = exp (0.8* x1) -1; % E x a c t f u n c t i o n a t x 1
yl = newtonpolyeval(ppl ,x1); % pn e v a l u a t i o n a t
el = max(abs(yl -y1)); % E v a l u a t e maximum e r r o r p4

E
rr

or
 p

(x
)-f

(x
)

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

x
1 1.5 2 2.5 3

p4(x)-f(x)
p3(x)-f(x)
p2(x)-f(x)

Figure 5.3: Comparison of errors
in using Newton polynomials of
di�erent degrees in Example 5.6

|ε
m

ax
|

10-15

10-10

10-5

n
5 10 15 20 25

Figure 5.4: Maximum error
of polynomial approximation of
di�erent degrees

Figure 5.4 shows the maximum error in polynomial approximation of different degrees. It
is seen that the error in approximation decreases up to n = 13 following which the error
increases. This is because of roundoff errors. Round off errors become important while
using higher degree polynomial approximations. In general, it would be advisable to avoid

232 Chapter.5 Interpolation

higher degree polynomials.

In the previous example, the approximation converges to the function. However, we may not be
fortunate every time. There are certain cases where the polynomials never converge to the exact
solution. The following example will show the limitation of polynomial interpolation.

Example 5.7
Determine the approximate Newton polynomials for function6 f (x)= 1

1+25x2 in the interval
[−1,1]. Discuss the error in computation of the function using p4, p8 and p16.
Solution :

MATLAB programs have been used to estimate the Newton’s polynomials of degree 4, 8 and
16. Figure 5.5 shows the comparison of Newton’s polynomial with the exact function. Figure
5.6 shows the error of approximation with different approximating polynomials.

From the figures it is evident that the errors are large for the higher degree polynomials.
Moreover, these errors are concentrated close to the end points. This is due to Runge
phenomenon already introduced in the previous example. In the previous example, the
Runge phenomenon was less serious and hence convergence was achieved. In the present
example Runge phenomenon causes divergence of the polynomial approximation.

y

-0.5

0

0.5

1

x
-1 -0.5 0 0.5 1

 f(x)
p4(x)
p8(x)
p16(x)

Figure 5.5: Comparison of di�er-
ent Lagrange polynomial approxi-
mations with exact function

5.4 Error estimates of polynomial approximations
The polynomial interpolation is analogous to the Taylor’ series of a function. In fact, the

structure of Newton’s polynomial (Equation 5.39) resembles a Taylor’s series. The Taylor’s series
of a function is given as follows

f (x)= f0 + f (1)
0 ∆x+ f (2)

0

2!
∆x2 +·· ·+ f (n)

0

n!
∆xn +O(∆xn+1) (5.42)

6This function is of the same form as used by Runge to demonstrate Runge phenomenon.

5.4. Error estimates of polynomial approximations 233

ε

0

0.2

0.4

5

10

15

20

x
0 0.2 0.4 0.6 0.8 1

p4(x)
p8(x)
p16(x)

Figure 5.6: Error of approxima-
tion of di�erent Lagrange polyno-
mials

A polynomial approximation of degree n will also satisfy Taylor series of degree n and the
truncation error of the approximation is of order n+1. The magnitude of error of the polynomial
approximation in the interpolation range would be

ε= | f (x)− p(x)| ≈
∣∣∣∣ f (n+1)

(n+1)!
(x− x0)(x− x1)(x− x2) · · · (x− xn)

∣∣∣∣ (5.43)

where f (n+1) is maximum value of (n+1)th derivative of the function in the interpolation range.
As the derivative used is the maximum value somewhere in the interval, the above estimate
represents the upper bound for error. Practically, it may be difficult to determine the derivatives
of the function. In such a case, if function value is known at xn+1, one can estimate the error in
the polynomial approximation as

ε≈ | f [x0, x1, x2, · · · , xn, xn+1](x− x0)(x− x1)(x− x2) · · · (x− xn)| (5.44)

It is evident from the above two estimates for error, that the error is zero at all nodes (property
of polynomial interpolation). But what is of interest to us is to minimize the maximum error of
the approximation in the interval. Ideally, as n →∞, εmax should → 0. In such a case, we say the
approximation converges to the exact solution. The above requirement has been violated in both
the previous examples.

The magnitude of the error depends on two terms namely the f (n+1) and distribution of nodes
n∏

i=0
|x− xi|. Let us consider the two factors independently to clearly state the importance of each

factor. If the bounds of the interpolation domain and the degree of the polynomial is fixed, the
error depends on the distribution of nodes within the domain. Let us consider the nodes to be
equi-spaced. Then, the truncation error can be written as

ε= | f (x)− p(x)| ≈
∣∣∣∣r(r−1)(r−2) · · · (r−n)hn+1 f (n+1)

(n+1)!

∣∣∣∣ (5.45)

where r = x− x0

h
. Let us scrutinize the factor R = |r(r−1)(r−2) · · · (r−n)| more closely. Figure

5.7 indicates the distribution of R as a function of r for n = 6. It is seen that the factor assumes
large values very close to the end of the interpolation domain. Hence, it can be concluded that
interpolation from equi-spaced nodes would promote amplification of round off errors close to the
ends of the domain.

234 Chapter.5 Interpolation

R

0

20

40

60

80

100

r
0 1 2 3 4 5 6

Figure 5.7: Distribution of factor
R with r for n = 6

However, the nature of approximation of Examples 5.6 and 5.7 have different characteristics.
The polynomial approximation in Example 5.6 converges to the exact solution for n = 13 and
starts diverging for higher degree polynomial approximation. Whereas polynomial approximation
for Example 5.7 is poor for small degrees of approximation. Here one has to understand the
contribution of f (n+1) also to the error.

Let us approximate ex by polynomial function. ex can be represented as an infinite series

ex = 1+ x+ x2

2
+ x3

3!
+·· ·+ xi

i!
+·· · (5.46)

nth degree polynomial curve would satisfy first n terms of the infinite series. The truncation error
because of nth degree polynomial approximation would be

|ε| =
∣∣∣∣ (x− x0)(x− x1)(x− x2) · · · (x− xn)

(n+1)!

∣∣∣∣< ∣∣∣∣ (xn − x0)n+1

n+1!

∣∣∣∣ (5.47)

As n −→ ∞,
∣∣∣∣ (xn − x0)n+1

n+1!

∣∣∣∣ −→ 0. This means infinite series is convergent for all values of x in

the interpolation range. Such a function is also called as analytic. Therefore, theoretically as
n −→ ∞, the polynomial should approximate the function exactly. However, the accuracy of the
approximation is limited by round off errors. The point of divergence is where the round-off error
becomes larger than the truncation error.

However, the divergence of polynomial approximation applied to Example 5.7 i.e. to function(
1

1+25x2

)
is due to Runge phenomenon. We briefly explain the cause of the phenomenon. f (x) =

1
1+25x2 can also be represented as an infinite series

1
1+25x2 = 1−25x2 +54x4 +·· ·+ (−1)i52ix2i +·· · (5.48)

5.5. Polynomial approximation using Chebyshev nodes 235

The above equation is nothing but the Taylor series expansion of the function about x = 0.
Therefore, ∣∣∣∣ f (n)

n!

∣∣∣∣= {
5n n is even
0 n is odd (5.49)

The magnitude of truncation error of nth (n is even) degree polynomial approximation would be

|ε| = 5n+2 |(x− x0)(x− x1)(x− x2) · · · (x− xn)| < 5n+2 ∣∣(xn − x0)n+2∣∣ (5.50)

Therefore

n −→∞
{ |xn − x0| < 0.2 5n+2|(xn − x0)n+2| −→ 0

|xn − x0| > 0.2 5n+2|(xn − x0)n+2| −→∞ (5.51)

This means the function is convergent only for certain values of x and hence is not analytic. The
implication of the above deduction is that the upper bound of error of approximation depends
on the interval of interpolation. If the domain of interpolation is less than 0.2(−0.2 < x < 0.2)
then polynomial approximation would converge towards the exact solution. However, when the
size of the interpolation interval is greater than x = 0.2, the convergence may be poor. When the
nodes are equi-spaced, both the derivative and

∏ |x− xi| are significant and hence the polynomial
approximation would produce large errors.

|ε
m

ax
|

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

n
5 10 15 20 25

0.05

0.15

0.2

0.1

0.4

Figure 5.8: Error in polynomial
approximations of various degrees
for di�erent range of interpolation.

Figure 5.8 indicates the effect of domain size on maximum error in polynomial approximation.
Polynomial approximation is excellent when the step size is small and deteriorates as the domain
size increases. However, the limitations of Runge phenomenon can be overcome by using the
following strategies:

1. Chebyshev nodes
2. Piecewise polynomials

5.5 Polynomial approximation using Chebyshev nodes
When equi-spaced nodes are used, the errors are high close to the edges of the interpolation

domain. Although it is easy to analyze equi-spaced data, it is computationally inefficient. If we

236 Chapter.5 Interpolation

|∏
(x

-x
i)|

0

0.01

0.02

0.03

0.04

0.05

x
-1 -0.5 0 0.5 1

 Equi-spaced nodes
 Chebyshev nodes

Figure 5.9: Distribution of∏
(x− xi) for equi-spaced and

Chebyshev nodes (n = 6)

have the freedom to choose n+1 points in the interpolation domain, the nodes have to be chosen

such that the maximum of
n∏

i=0
(x− xi) in the interpolation range is minimum. As the oscillations

occur close to the end points, the errors can be suppressed by having denser distribution of points
close to the ends. It can be shown that polynomial function through Chebyshev 7 nodes produces
minimum error. For a function defined in the interval [−1,1], Chebyshev nodes are given by the

formula x(i)= cos
(

2i−1
2(n+1)

π

)
, where n is the degree of the polynomial and i varies from 1 to n+1.

Observe that the end points of the interpolation domain are not included when Chebyshev nodes
are made use of.

Figure 5.9 indicating the magnitude of
n=6∏
i=0

(x− xi) for equi-spaced and Chebyshev nodes clearly

shows the superiority of Chebyshev nodes over equi-spaced nodes. For intervals other that [−1,1],
the interval has to be transformed to [−1,1]. Figure 5.10 shows the maximum error when different
degrees of polynomial approximation are applied to Example 5.6 using equi-spaced and Chebyshev
nodes. It is evident that both equi-spaced and Chebyshev nodes are equally good for such problems.
But the significance of Chebyshev nodes over equi-spaced nodes will become clear when the
function is not analytic.

Example 5.8
Revisit function f (x) = 1

1+25x2 in the interval [−1,1]. Estimate the errors for Newton
polynomial of degree 4,8 and 16 passing through the Chebyshev nodes. Also estimate the
errors for equi-spaced piecewise quadratic interpolation over 2, 4 and 8 segments.
Solution :

Chebyshev nodes:
The Chebyshev nodes are determined using the formula

x(i)= cos
(

(2i−1)
2(n+1)

π

)
7Pafnuty Lvovich Chebyshev 1821-1894, Russian mathematician

5.5. Polynomial approximation using Chebyshev nodes 237

|ε
m

ax
|

10-15

10-10

10-5

n
5 10 15 20 25

 Equi-spaced nodes
 Chebyshev nodes

Figure 5.10: Maximum error
of polynomial approximation
using equi-spaced nodes and
Chebyshev nodes.

The Chebyshev nodes and the corresponding function evaluations for the polynomial degree
of 4, 8 and 16 have been listed in the table below.

L4 L8 L16
x y x y x y

±0.9511 0.0424 ± 0.9848 0.0396 ± 0.9957 0.0388
±0.5878 0.1038 ± 0.8660 0.0506 ± 0.9618 0.0414

0 1 ± 0.6428 0.0883 ± 0.8952 0.0475
± 0.3420 0.2548 ± 0.7980 0.0591

0 1 ± 0.6737 0.0810
± 0.5264 0.1261
± 0.3612 0.2346
± 0.1837 0.5423

0 1
Note that, the end points are not part of Chebyshev nodes.

Programs 5.4 and 5.5 have been used to perform the interpolation. Figure 5.11 indicates
the error for Newton polynomial that uses Chebyshev nodes.

ε

0

0.1

0.2

0.3

0.4

x
0 0.2 0.4 0.6 0.8 1

L4(x)
L8(x)
L16(x)

Figure 5.11: Error of approxima-
tion of Newton Polynomials using
Chebyshev nodes

The maximum error between different polynomials is given below.

Polynomial degree Maximum error
Equi-spaced nodes Chebyshev nodes

L4 0.4381 0.4018
L8 1.04264 0.1705
L16 13.8294 0.0325

The improvement in using the Chebyshev nodes for polynomial interpolation is clearly
evident.

238 Chapter.5 Interpolation

5.6 Piecewise polynomial interpolation
Instead of considering the entire domain at once, the domain can be divided into several

smaller segments and a local polynomial can be defined within each of the segments. Reducing
the interval suppresses the oscillatory phenomenon. Examples include piecewise interpolation
segments, Hermite interpolating polynomials and splines. Piecewise interpolating segments have
zero order continuity i.e. function values alone are continuous at the nodes. Hermite interpolating
polynomials and splines have higher order continuity at the nodes.

Example 5.9
Revisit function f (x) = 1

1+25x2 in the interval [−1,1]. Estimate the errors for equi-spaced
piecewise quadratic interpolation over 2, 4 and 8 segments.
Solution :

The number of segments over which quadratic interpolation is to be applied is 2, 4 and
8. Each segment for a quadratic contains 3 nodes, with one node shared between two
consecutive segments as shown in the following figure.

Segment 1

Segment 2

Segment (i+1)/2

Segment (n−2)/2

Segment n/2

0 1 2 3 4 i−1 i i+1 n−4 n−3 n−2 n−1 n

The total number of nodes in n segments would be 2n+1. The nodes and the corresponding
function evaluations for piecewise quadratic interpolation have been listed in the following
table.

x
y

2 segments 4 segments
-1.00 0.0385 0.0385
-0.75 0.0664
-0.50 0.1379 0.1379
-0.25 0.3902
0.00 1.0000 1.0000
0.25 0.3902
0.50 0.1379 0.1379
0.75 0.0664
1.00 0.0385 0.0385

2

1

4

2

1

3

Quadratic interpolation has been applied within each segment using Programs 5.4 and 5.5.
Figure 5.12 shows the comparison of the interpolation polynomials with exact function. It
is evident from the figure that the Runge phenomenon has indeed been suppressed. As the
number of segments is increased the approximation polynomial comes closer to the exact
function. This can be confirmed from Figure 5.13. However, it is interesting to note that
the error in the region close to x = 0 is quite high. This is because the approximation
is only continuous in function and not in the derivative. Notice the first derivative of the
approximation function is not continuous at x = 0. The maximum error in the approximation
function has been provided below.

5.6. Piecewise polynomial interpolation 239

y

0

0.2

0.4

0.6

0.8

1

x
-1 -0.5 0 0.5 1

 f(x)
 2 segments
 4 segments
 8 segments

Figure 5.12: Comparison of
piecewise quadratic polynomi-
als with exact function

ε

0

0.02

0.04

0.06

0.08

0.1

x
0 0.2 0.4 0.6 0.8 1

 2 segments
 4 segments
 8 segments

Figure 5.13: Error of approxi-
mation of piecewise quadratic
polynomials of di�erent step
size

Segments Maximum error
2 0.0855
4 0.0972
8 0.0478

The reader is encouraged to apply higher degree interpolating piecewise polynomials and
see how they affect the errors.

Application in numerical integration Composite quadrature rules for integration use piece-
wise interpolating polynomial functions. Composite Simpson’s 1/3rd integration formula uses
piecewise quadratic interpolating polynomial where as Composite Simpson’s 3/8th rule uses
piecewise cubic interpolating polynomial(Chapter 9).

Piecewise polynomials considered earlier have zero order continuity (function alone is continu-
ous) at each segment. Sometimes, it may be required or desirable to have higher order continuity
i.e. functions as well as derivatives up to some order are continuous across each segment. This
can be achieved by using Hermite and cubic spline approximations.

240 Chapter.5 Interpolation

5.7 Hermite interpolation
Hermite8 interpolation is closely related to Newton polynomials and serves as a precursor to the

spline interpolation that will be presented later. We consider a table of data consisting of a function
and possibly its derivatives. Hermite interpolation aims to find an interpolating polynomial that
agrees with the function as well as its derivatives up to some order, at the nodal points, referred
to as knots.

5.7.1 Cubic Hermite interpolating polynomial

We shall consider first the case where the function and the first derivatives alone are to be
matched at the knots. The given data is represented by the following table.

x f (x) f (1)(x)
x0 f0 f (1)

0
x1 f1 f (1)

1

where superscript f (1) represents the first derivative
d f
dx

. The polynomial that is being sought has
four conditions to satisfy (number of degrees of freedom is four) and hence it can be a polynomial of
up to degree 3 i.e. it is a cubic polynomial. Let the polynomial be given by H(x)= a0 +a1x+a2x2 +
a3x3 such that its first derivative is H(1)(x)= a1 +2a2x+3a3x2. Here a0 through a3 are constants
to be determined by requiring that H(x) and H(1)(x) agree with the tabulated values at the two end
points x0 and x1. Since the interpolating polynomial passes through (x0, f0) and (x1, f1) we have

a0 +a1x0 +a2x2
0 +a3x3

0 = f0

a0 +a1x1 +a2x2
1 +a3x3

1 = f1

Since the interpolating polynomial also satisfies the given first derivatives at these two points, we
have

a1 +2a2x0 +3a3x2
0 = f (1)

0

a1 +2a2x1 +3a3x2
1 = f (1)

1

The four equations may be written in the matrix form as
1 x0 x2

0 x3
0

1 x1 x2
1 x3

1
0 1 2x0 3x2

0
0 1 2x1 3x2

1

a0
a1
a2
a3

=

f0
f1

f (1)
0

f (1)
1

 (5.52)

We may solve these easily to get the column vector a. Consider a simple case where x0 = 0 and
x1 = 1 (this is always possible by a suitable transformation). The above equation set takes the
simpler form given below.

1 0 0 0
1 1 1 1
0 1 0 0
0 1 2 3

a0
a1
a2
a3

=

f0
f1

f (1)
0

f (1)
1

 (5.53)

8named after Charles Hermite 1822-1901, French mathematician

5.7. Hermite interpolation 241

H
er

m
ite

 In
te

rp
ol

at
io

n
w

ei
gh

ts

-0.2

0

0.2

0.4

0.6

0.8

1

x
0 0.2 0.4 0.6 0.8 1

w0(x)
w1(x)
w1

0(x)
w1

0(x)

Figure 5.14: Hermite interpola-
tion weights

We immediately see that a0 = f0 and a1 = f (1)
0 . Equations governing the other two coefficients are

then given by 1 1
2 3

 a2
a3

=
 f1 − f0 − f (1)

0
f (1)
1 − f (1)

0

 (5.54)

By Gauss elimination we then have a2 = 3(f1− f0)−(f (1)
1 +2 f (1)

0) and a3 =−2 f1+2 f0+ f (1)
1 + f (1)

0 . We
may then rearrange the Hermite interpolating polynomial as shown below.

H(x) = f0 (2x3 −3x2 +1)︸ ︷︷ ︸
w0(x)

+ f1 (−2x3 +3x2)︸ ︷︷ ︸
w1(x)

+ f (1)
0 (x3 −2x2 + x)︸ ︷︷ ︸

w1
0(x)

+ f (1)
1 (x3 − x2)︸ ︷︷ ︸

w1
1(x)

H(1)(x) = f0 (6x2 −6x)︸ ︷︷ ︸
w0(x)

+ f1 (−6x2 +6x)︸ ︷︷ ︸
w1(x)

+ f (1)
0 (3x2 −4x+1)︸ ︷︷ ︸

w1
0(x)

+ f (1)
1 (3x2 −2x)︸ ︷︷ ︸

w1
1(x)

(5.55)

We notice that H(x) may be interpreted as a weighted sum of nodal values with the weights given
by the cubic polynomials (weights are shown as the w’s) shown within braces. Similarly H(1)(x)
may be interpreted as a weighted sum of nodal values with the weights given by the second degree
(quadratic) polynomials shown within braces. The weighting polynomials are shown plotted in
Figure 5.14. MATLAB program to calculate coefficients of the cubic Hermite polynomial is given
below

Program 5.6: Coe�cients of cubic Hermite polynomial

1 function pp = hermitepoly(x,y,z)

2 % I n p u t s x : i n t e r p o l a t i o n p o i n t s
3 % y : f u n c t i o n v a l u e a t i n t e r p o l a t i n g p o i n t s
4 % z : d e r i v a t i v e s a t i n t e r p o l a t i n g p o i n t s
5 % O u t p u t s pp : s t r u c t u r e r e l a t e d t o H e r m i t e p o l y n o m i a l
6 % pp . c o e f : s t o r e s H e r m i t e p o l y n o m i a l w e i g h t s
7 % pp . x : s t o r e s i n t e r p o l a t i o n p o i n t s
8 n = size(x,1); % number o f i n t e r p o l a t i n g p o i n t s

242 Chapter.5 Interpolation

9 B = zeros (4,1); % i n i t i a l i z e f o r c e v e c t o r
10 pp.x = x; % s t o r e i n t e r p o l a t i o n p o i n t s
11 pp.coef= zeros(n-1,4); % i n i t i a l i z e c o e f f i c i e n t s
12 for i=1:n-1 % l o o p f o r c a l c u l a t i n g c o e f f i c i e n t s
13 A = hermitemat(x(i:i+1)); % e v a l u a t e c o e f f i c i e n t m a t r i x
14 B(1:2) = y(i:i+1); % f u n c t i o n v a l u e s
15 B(3:4) = z(i:i+1); % d e r i v a t i v e s
16 pp.coef(i,:) = A\B; % e v a l u a t e c o e f f i c i e n t s
17 end

18 %
19 % s u b f u n c t i o n h e r m i t e m a t t o e v a l u a t e c o e f i c i e n t m a t r i x
20 % c a l l e d f r o m t h e main f u n c t i o n h e r m i t e p o l y
21 function A = hermitemat(x)

22 A = zeros (4,4);

23 A(1:2 ,1) = 1;

24 for i=2:4

25 A(1:2,i) = x.^(i-1); % f u n c t i o n v a l u e s
26 A(3:4,i) = x.^(i-2)*(i-1); % d e r i v a t i v e s
27 end

The output of the program is a structure containing the coefficients and the interpolation points.
The following MATLAB program is to be used for evaluating Hermite polynomials at given points.

Program 5.7: Evaluation Hermite polynomial at input points

1 function y = hermitepolyeval(pp ,x)

2 % I n p u t s pp : s t r u c t u r e r e l a t e d t o H e r m i t e p o l y n o m i a l
3 % pp . c o e f : s t o r e s H e r m i t e p o l y n o m i a l w e i g h t s
4 % pp . x : s t o r e s i n t e r p o l a t i o n p o i n t s
5 % x : p o i n t s w h e r e f u n c t i o n i s t o b e e v a l u a t e d
6 % O u t p u t y : e v a l u a t e d H e r m i t e p o l y n o m i a l
7 m = length(x); % number o f p o i n t s i n x
8 n = length(pp.x); % number o f i n t e r p o l a t i o n p o i n t s
9 y = zeros(m,1); % i n i t i a l i z e y

10 for i=1:m % l o o p f o r e v a l u a t i n g p o l y n o m i a l
11 if (x(i) < pp.x(1)) % c h e c k f o r l o c a t i o n o f x (i)
12 j1 = 1;

13 elseif (x(i) > pp.x(n))

14 j1 = n-1;

15 else

16 j=1;

17 while(j < n)

18 if (x(i) >= pp.x(j) && x(i) <= pp.x(j+1))

19 j1 = j; break; % x (i) l o c a t e d b r e a k l o o p
20 else

21 j = j + 1;

22 end

23 end

24 end % j 1 i n d i c a t e s i n d i c e s o f l o c a t i o n o f x (i)
25 % e v a l u a t e h e r m i t e p o l y n o m i a l a t x (i)
26 y(i) = pp.coef(j1 ,1) + pp.coef(j1 ,2)*x(i) ...

27 +pp.coef(j1 ,3)*x(i)^2 + pp.coef(j1 ,4)*x(i)^3;

28 end

5.7. Hermite interpolation 243

5.7.2 Hermite interpolating polynomial as Newton polynomial

It is possible to interpret Hermite interpolating polynomials in terms of Newton polynomials
considered earlier. For this purpose we need to recognize that the derivative is related to divided
difference in the limit of step size tending to zero. Consider the cubic case again. The function
and first derivatives are specified at two points x0 = 0 and x1 = 1. Divided difference table may be
constructed as under, keeping in mind the comment made above about the first divided difference.
Point x0 = 0 is written twice and point x1 = 1 is also written twice to complete the divided difference
Table 5.6. The boxed quantities use the derivative data. Other entries in the table are made using

Table 5.6: Divided di�erence table for cubic Hermite interpolating polynomial

x f (x) DD1 DD2 DD3
x0 = 0 f0

f (1)
0

x0 = 0 f0 f1 − f0 − f (1)
0

f1 − f0 (f (1)
1 − f1 + f0)− (f1 − f0 − f (1)

0)
x1 = 1 f1 f (1)

1 − f1 + f0

f (1)
1

x1 = 1 f1

the formulae for divided differences.

We are now able to write a Newton polynomial (cubic) as

H(x) = p3(x)

= f0 + (x−0) f 1
0 + (x−0)(x−0)(f1 − f0 − f (1)

0)+
(x−0)(x−0)(x−1)[(f (1)

1 − f1 + f0)− (f1 − f0 − f (1)
0)]

= f0 + xf (1)
0 + x2(f1 − f0 − f (1)

0)

+(x3 − x2)(f (1)
1 + f (1)

0 −2 f1 −2 f0) (5.56)

Reader may verify that this reduces, after rearrangement, to the first of Equations 5.55.

Example 5.10
Following table gives a function and its first derivative at four points.

x 0 1 2 3
f (x) 0 0.587785 0.951057 0.951057

f (1)(x) 0.628319 0.50832 0.194161 -0.194161

Use cubic Hermite interpolating polynomials between successive points and tabulate the
results with a constant spacing of 0.2. Compute the error by noting that the function being
approximated is f (x)= sin

(πx
5

)
. Make a suitable plot. Construct a cubic Newton polynomial

with the given data and evaluate the errors.
Solution :

Between two consecutive entries in the tabulated data we may use a Hermite interpolation

244 Chapter.5 Interpolation

polynomial of degree 3. Hermite interpolating polynomial uses the consecutive points to be
x′ = 0 and x′ = 1. Programs 5.6 and 5.7 have been used to evaluate the interpolated values
using Hermite polynomial. The following program lists the sequence of operations.

x = [0:3] '; % i n t e r p o l a t i o n p o i n t s
y = sin(pi*x/5); % f u n c t i o n v a l u e s
z = pi*cos(pi*x/5) /5; % d e r i v a t i v e v a l u e s
pp = hermitepoly(x,y,z); % e s t i m a t e H e r m i t e

% c o e f f i c i e n t s
x1 = [0:0.2:3] ';

y1 = hermitepolyeval(pp ,x1);

The coefficients of the Hermite polynomial obtained are given in table below:

x0 x1 a0 a1 a2 a3
0 1 0 0.6283 -0.0016 -0.0389
1 2 -0.0175 0.6781 -0.0488 -0.0241
2 3 -0.2139 0.9708 -0.1942 -0.0000

We make use of first of Equations 5.55 replacing x by x′ to obtain the interpolated values
shown in the last column of the spreadsheet.

x x′ f (x) f (1)(x) H(x)
0 0 0 0.628319 0

0.2 0.2 0.125288
0.4 0.4 0.248580
0.6 0.6 0.368005
0.8 0.8 0.481697

1 1 0.587785 0.508320 0.587785
1 0 0.587785 0.508320 0.587785

1.2 0.2 0.684417
1.4 0.4 0.770215
1.6 0.6 0.844025
1.8 0.8 0.904690

2 1 0.951057 0.194161 0.951057
2 0 0.951057 0.194161 0.951057

2.2 0.2 0.982122
2.4 0.4 0.997655
2.6 0.6 0.997655
2.8 0.8 0.982122

3 1 0.951057 -0.194161 0.951057

A plot of the interpolating function and its derivative is shown in Figure 5.15. Error
between the function and the interpolating polynomial may be calculated since the function
is known. The calculations are made using a spreadsheet program and presented in table
below.

5.7. Hermite interpolation 245

f(
x)

 o
r

f(1
) (x

)

-0.2

0

0.2

0.4

0.6

0.8

1

x
0 0.5 1 1.5 2 2.5 3 3.5

 f(x)
f(1)(x)
 H(x)
H(1)(x)

Figure 5.15: Hermite interpo-
lation of data in Example 5.10

x f (x) H(x)
Error
H− f x f (x) H(x)

Error
H− f

0 0 0 0.0000 1.6 0.8443 0.844 -0.0003
0.2 0.1253 0.1253 0.0000 1.8 0.9048 0.9047 -0.0001
0.4 0.2487 0.2486 -0.0001 2 0.9511 0.9511 0.0000
0.6 0.3681 0.368 -0.0001 2.2 0.9823 0.9821 -0.0002
0.8 0.4818 0.4817 -0.0001 2.4 0.998 0.9977 -0.0004

1 0.5878 0.5878 0.0000 2.6 0.998 0.9977 -0.0004
1.2 0.6845 0.6844 -0.0001 2.8 0.9823 0.9821 -0.0002
1.4 0.7705 0.7702 -0.0003 3 0.9511 0.9511 0.0000

We thus see that the maximum error in using the cubic interpolating polynomial is 0.0004.
The approximation is very good.

In order now to obtain the cubic Newton polynomial passing through the four data points
we construct a divided difference table.

x f (x) DD1 DD2 DD3
0 0

0.5878
1 0.5878 -0.2245

0.3633 -0.1388
2 0.9511 -0.3633

0
3 0.9511

The cubic Newton polynomial is then given by

p3(x)= 0+0.5878x− 0.2245x(x−1)
2

− 0.1388x(x−1)(x−2)
6

246 Chapter.5 Interpolation

x f (x) p3(x)
Error
p3 − f x f (x) p3(x)

Error
p3 − f

0 0 0 0.0000 1.6 0.8443 0.8416 -0.0028
0.2 0.1253 0.1289 0.0035 1.8 0.9048 0.903 -0.0018
0.4 0.2487 0.2532 0.0045 2 0.9511 0.9511 0.0000
0.6 0.3681 0.3718 0.0037 2.2 0.9823 0.9846 0.0023
0.8 0.4818 0.4837 0.0020 2.4 0.998 1.0024 0.0044

1 0.5878 0.5878 0.0000 2.6 0.998 1.0035 0.0055
1.2 0.6845 0.6828 -0.0017 2.8 0.9823 0.9868 0.0045
1.4 0.7705 0.7678 -0.0027 3 0.9511 0.9511 0.0000

Cubic Newton polynomial interpolation has a much higher error (maximum in the range is
0.0055) than the Hermite interpolating polynomial (maximum in the range is 0.0004) .

5.7.3 Generalization

Now consider the case where the interpolating polynomial passes through N + 1 points and
satisfies derivatives up to order p. We then require the polynomial to satisfy the following:

H(xi) = f i, i = 0 to N
H(1)(xi) = f (1)

i , i = 0 to N
· · · = · · ·

H(p)(xi) = f (p)
i , i = 0 to N (5.57)

where superscript (p) represents pth derivative
dpH
dxp . There are p+1 equations in the above set.

Each equation in the set has N +1 conditions or constraints to be satisfied. The total number of
constraints is thus equal to (p+1)× (N +1). The number of coefficients in the polynomial is the
same as this number. The degree of the polynomial is hence given by d = (p+1)× (N +1)−1 with
the -1 accounting for a constant in the polynomial. The following table indicates a few possibilities.

No. p N d
1 1 1 3
2 1 2 5
3 2 1 5
4 2 2 8

Case 1 was considered earlier and the equations to be solved was obtained as Equation 5.52. We
may write by inspection the equations for case 3 as

1 x0 x2
0 x3

0 x4
0 x5

0

1 x1 x2
1 x3

1 x4
1 x5

1

0 1 2x0 3x2
0 4x3

0 5x4
0

0 1 2x1 3x2
1 4x3

1 5x4
1

0 0 2 6x0 12x2
0 20x3

0

0 0 2 6x1 12x2
1 20x3

1

a0

a1

a2

a3

a4

a5

=

f0

f1

f (1)
0

f (1)
1

f (2)
0

f (2)
1

(5.58)

5.8. Spline interpolation and the cubic spline 247

In case we take x0 = 0 and x1 = 1 as we did earlier the above equations will simplify to

1 0 0 0 0 0
1 1 1 1 1 1
0 1 0 0 0 0
0 1 2 3 4 5
0 0 2 0 0 0
0 0 2 6 12 20

a0

a1

a2

a3

a4

a5

=

f0

f1

f (1)
0

f (1)
1

f (2)
0

f (2)
1

(5.59)

these equations may be solved easily to get all the constants. It is also possible to construct the
Hermite interpolating polynomial by using divided differences as indicated earlier.

5.8 Spline interpolation and the cubic spline
In section 5.7 we have seen how adjacent points in a table of function and its derivative values

may be used to fit a Hermite interpolating polynomial. We considered specifically the case of
a cubic Hermite interpolating polynomial there. Spline interpolation is a method of passing
a polynomial of desired degree, usually cubic, when only the function data is available in the
form of a table i.e. pairs (xi, f i) are available for 0 ≤ i ≤ n. As opposed to Hermite interpolating
polynomial in which function and derivative values agreed with those at the knots, the cubic spline
is continuous and has continuous first and second derivatives at the knots. This means that the
cubic spline does not need the derivatives to be known at the knots but only that the spline yield
the same first and second derivatives when approached from either side of the knot. Figure 5.16

f(x
)

1

2

3

4

5

6

7

x
0.2 0.4 0.6 0.8 1

 Data
 Spline

Figure 5.16: Cubic spline passing
through data points having contin-
uous �rst and second derivatives

shows an example of a cubic spline that passes through the data points (shown by filled circles)
and has continuous first and second derivatives at these points.

5.8.1 General case with non-uniformly spaced data
Consider data shown in the Table 5.7 below.

Table 5.7: Data in tabular form

x x0 x1 x2 · · · · · · · · · xn−1 xn
f (x) f0 f1 f2 · · · · · · · · · fn−1 fn

248 Chapter.5 Interpolation

Consider a third degree polynomial to be used to approximate the function between two
consecutive points in the table (say between xi and xi+1). In view of the fact that we are passing
a cubic through these two points, the second derivative of the cubic spline should be a linear
function of x in the region xi ≤ x ≤ xi+1. We may thus write the second derivative, using Lagrange
polynomial, as

f (2)(x)= x− xi+1

xi − xi+1
· f (2)(xi)+ x− xi

xi+1 − xi
· f (2)(xi+1) (5.60)

Let us treat the second derivatives at the nodes as unknowns and use the notation f 2(xi) = ci.
Then we may write Equation 5.60 as

f (2)(x)= c(x)= x− xi+1

xi − xi+1
· ci + x− xi

xi+1 − xi
· ci+1 (5.61)

We integrate Equation 5.61 once with respect to x to obtain the first derivative given by

f (1)(x)= (x− xi+1)2

2(xi − xi+1)
· ci + (x− xi)2

2(xi+1 − xi)
· ci+1 +bi (5.62)

where bi is a constant of integration. Integrate Equation 5.62 once again with respect to x to get

f (x)= (x− xi+1)3

6(xi − xi+1)
· ci + (x− xi)3

6(xi+1 − xi)
· ci+1 +bix+ai (5.63)

where ai is a second constant of integration. The constants ai and bi are determined by requiring
that the spline pass through xi, f i and xi+1, f i+1. Introduce the notation xi+1 − xi = hi. Then we
have

f i =
h2

i
6

· ci +bixi +ai (5.64)

and

f i+1 =
h2

i
6

· ci+1 +bixi+1 +ai (5.65)

Subtracting Equation 5.64 from Equation 5.65 we get for bi the relation

bi = f i+1 − f i

hi
− hi

6
(ci+1 − ci) (5.66)

Multiply Equation 5.65 by xi and Equation 5.64 by xi+1 and subtract the latter from the former to
get

ai = hi

6
(xi ci+1 − xi+1ci)− xi f i+1 − xi+1 f i

hi
(5.67)

We may insert these in Equation 5.63 to get

f (x)= (xi+1 − x)3 · ci + (x− xi)3 · ci+1

6hi
+ 6 f i −h2

i ci

6hi
· (xi+1 − x)+ 6 f i+1 −h2

i ci+1

6hi
· (x− xi) (5.68)

valid for xi ≤ x ≤ xi+1. From Equation 5.62 we also have

f (1)(x)= 1
6hi

[
{3(x− xi)2 −h2

i }ci+1 − {3(xi+1 − x)2 −h2
i }ci

]+ f i+1 − f i

hi
(5.69)

Inserting x = xi in Equation 5.69 the first derivative at x = xi is obtained.

f (1)(xi)=−hi

3
· ci − hi

6
· ci+1 + f i+1 − f i

hi
(5.70)

5.8. Spline interpolation and the cubic spline 249

In order to satisfy the requirement that the first derivative be continuous at the nodes we should
equate the first derivative at node xi given by Equation 5.70 with that evaluated at the same point
by using the spline between xi−1 and xi. Letting xi − xi−1 = hi−1, we may easily write for f (1)(xi)
the relation

f (1)(xi)= hi−1

3
· ci + hi−1

6
· ci−1 + f i − f i−1

hi−1
(5.71)

Equating the above two expressions we obtain a relationship between ci−1, ci and ci+1 given by

hi−1ci−1 +2(hi +hi−1)ci +hi ci+1 = 6
[

f i−1 − f i

hi−1
− f i − f i+1

hi

]
(5.72)

Such equations may be written for each of the interior nodes. However at either boundary we need
to specify a suitable condition. Usually we use the natural spline boundary condition by setting
the second derivative as zero at the two boundaries. Other boundary conditions are possible at the
boundary nodes. For example, if the first derivative is known at a boundary, it may be imposed in
lieu of the natural boundary condition. For example, if the data represents temperature data with
adiabatic condition at one of the boundaries, we may specify the first derivative of temperature to
be zero there.

The set of equations to be solved may then be written as follows:

c0 = 0

2(h1 +h0)c1 +h1c2 = 6
[

f0 − f1

h0
− f1 − f2

h1

]
h1c1 +2(h2 +h1)c2 +h2c3 = 6

[
f1 − f2

h1
− f2 − f3

h2

]
(5.73)

· · · · · · = · · · · · ·
hn−2cn−2 +2(hn−1 +hn−2)cn−1 = 6

[
fn−2 − fn−1 hn−2 − fn−1 − fn

hn−1

]
cn = 0

5.8.2 Special case with equi-spaced data

In this special case all we have to do is to set hi = h, a constant for all i in Equation 5.72 to get

ci−1 +4ci + ci+1 = 6(f i−1 −2 f i + f i+1)
h2 (5.74)

The set of equations to be solved may then be written as follows:

c0 = 0

4c1 + c2 = 6(f0 −2 f1 + f2)
h2

c1 +4c2 + c3 = 6(f1 −2 f2 + f3)
h2 (5.75)

· · · · · · = · · · · · ·
cn−2 +4cn−1 = 6(fn−2 −2 fn−1 + fn)

h2

cn = 0

250 Chapter.5 Interpolation

Both set of Equations 5.73 and 5.75 are tri-diagonal in nature and may easily be solved by the
tri-diagonal matrix algorithm (TDMA, see Chapter 2).

Once the c’s have been determined the spline fit may be calculated using Equation 5.68.

MATLAB program to determine the coefficients of a natural cubic spline is given below.

Program 5.8: Coe�cients of natural cubic spline

1 function pp = cubicspline(x,y)

2 % I n p u t s x : i n t e r p o l a t i o n p o i n t s
3 % y : f u n c t i o n v a l u e a t i n t e r p o l a t i o n p o i n t s
4 % O u t p u t pp : s t r u c t u r e r e l a t e d t o c u b i c s p l i n e
5 % pp . c o e f : s t o r e s c u b i c s p l i n e w e i g h t s
6 % pp . x : s t o r e s i n t e r p o l a t i o n p o i n t s
7 % pp . y : s t o r e s f u c t i o n v a l u e a t pp . x
8 n = length(y); % number o f i n t e r p o l a t i n g p o i n t s
9 pp.x = x; % s t o r e i n t e r p o l a t i n g p o i n t s

10 pp.y = y; % s t o r e f u n c t i o n v a l u e s
11 a = ones(n,1); % TDMA c o e f f i c i e n t a
12 a1 = zeros(n,1); % TDMA c o e f f i c i e n t a′
13 a2 = zeros(n,1); % TDMA c o e f f i c i e n t a′′
14 b = zeros(n,1);

15 for i = 2:n-1 % e v a l u a t e c o e f f i c i e n t s o f TDMA
16 a(i) = 2*(x(i+1)-x(i-1));

17 a1(i) = -(x(i+1)-x(i));

18 a2(i) = -(x(i)-x(i-1));

19 b(i) = -6*(y(i+1)/b(i)-y(i)*(1/b(i)+1/c(i))+y(i-1)/c(i));

20 end

21 pp.coef = tdma(a2 ,a,a1 ,b); % e v a l u a t e c o e f f i c i e n t s

The output of the above program is a structure containing necessary information to evaluate cubic
splines. The program below is used to evaluate cubic splines at input points.

Program 5.9: Evaluation of cubic spline at input points

1 function y = cubicsplineval(pp ,x)

2 % I n p u t s pp : s t r u c t u r e r e l a t e d t o c u b i c s p l i n e
3 % pp . c o e f : s t o r e s c u b i c s p l i n e w e i g h t s
4 % pp . x : s t o r e s i n t e r p o l a t i o n p o i n t s
5 % pp . y : s t o r e s f u c t i o n v a l u e a t pp . x
6 % x : p o i n t s w h e r e f u n c t i o n i s t o b e e v a l u a t e d
7 % O u t p u t y : e v a l u a t e d f u n c t i o n u s i n g c u b i c s p l i n e
8 m = length(x); % number o f p o i n t s i n x
9 n = length(pp.x); % number o f i n t e r p o l a t i n g p o i n t s

10 y = zeros(m,1); % i n i t i a l i z e y
11 for i=1:m % l o o p f o r e v a l u a t i n g y
12 if (x(i) < pp.x(1)) % c h e c k f o r l o c a t i o n o f x (i)
13 j1 = 1;

14 elseif (x(i) > pp.x(n))

15 j1 = n-1;

16 else

17 j=1;

18 while(j < n)

19 if (x(i) >= pp.x(j) && x(i) <= pp.x(j+1))

5.8. Spline interpolation and the cubic spline 251

20 j1 = j; break; % x (i) l o c a t e d b r e a k l o o p
21 else

22 j = j + 1;

23 end

24 end

25 end % j 1 i n d c a t e s i n d i c e s o f l o c a t i o n o f x (i)
26 h = pp.x(j1+1)-pp.x(j1); % s t e p s i z e
27 % e v a l u a t e c u b i c s p l i n e a t x (i)
28 y(i) = (pp.coef(j1+1)*(x(i)-pp.x(j1))^3 ...

29 +pp.coef(j1)*(pp.x(j1+1)-x(i))^3 ...

30 +(6* pp.y(j1)-pp.coef(j1)*h^2)*(pp.x(j1+1)-x(i)) ...

31 +(6* pp.y(j1+1)-pp.coef(j1+1)*h^2)*(x(i)-pp.x(j1)))/(6*h);

32 end

Example 5.11
Pass a cubic spline between all the points given in the following table.

x 1.00 1.20 1.40 1.60 1.80 2.00
f (x) 1.9000 2.4380 3.2237 4.3668 6.0374 8.5000
x 2.20 2.40 2.60 2.80 3.00
f (x) 12.1667 17.6858 26.0848 39.0066 59.1

Solution :
We use Programs 5.8 and 5.9 to perform the cubic spline interpolation.

x = [1:0.2:3] ';

y = [1.9; 2.438; 3.2237; 4.3668; 6.0374; 8.5; ...

12.1667; 17.6858; 26.0848; 39.0066; 59.1];

c = cubicspline(x,y);

Detailed procedure involved in cubic spline interpolation is given below.
We note that the data is equi-spaced with spacing of h = 0.2. We assume that the spline
satisfies the natural boundary conditions at the two end points. Thus c0 = c10 = 0. It is
necessary to determine only c1 - c9 in order to get the cubic spline. Equations governing
these are obtained by the use of Equations 5.75. The required data may be generated using
a spreadsheet program and expressed as an augmented matrix.

Augmented matrix TDMA
i ai a′

i a′′
i bi pi qi ci

1 4 -1 0 37.1459 -0.2500 9.2865 7.1938
2 4 -1 -1 53.6017 -0.2667 11.8174 8.3708
3 4 -1 -1 79.1478 -0.2679 18.0349 12.9246
4 4 -1 -1 118.7836 -0.2679 26.9949 19.0784
5 4 -1 -1 180.6241 -0.2679 41.1648 29.5453
6 4 -1 -1 277.8502 -0.2679 63.4197 43.3647
7 4 -1 -1 431.9870 -0.2679 98.7573 74.8462
8 4 -1 -1 678.4228 -0.2679 155.3209 89.2375
9 4 0 -1 1075.7446 0 246.6268 246.6268

5th column is based on right side of Equations 5.75

252 Chapter.5 Interpolation

Note that a,a′and a′′ are the coefficients of the c’s and b is the non-homogeneous term in
Equations 5.75. The augmented matrix may be used to apply the TDMA to solve for the c’s.
Result of TDMA is given by the last three columns of the table.

With all the c’s available now the spline fit may be calculated using Equation (5.68) at a
sufficiently large number of intermediate points so that a plot may be made.

x1 = [1:0.04:3] ';

y1 = cubicsplineval(c,x1);

Data generated for 1 ≤ x ≤ 1.2, with a spacing of ∆x = 0.04 is shown in tabular form below.
This data is generated using c0 and c1.

x 1 1.04 1.08 1.12 1.16 1.2
f (x) (Spline) 1.9 1.9984 2.0991 2.2044 2.3166 2.438
f (x) (Data) 1.9 2.438

Similarly data may be generated for other intervals also (the reader is encouraged do this).
Figure 5.17 shows a plot of the given data points with a smooth curve joining them, based
on the spline fit developed here.

y
(D

at
a

or
 S

pl
in

e
fit

)

0

10

20

30

40

50

60

x
1 1.5 2 2.5 3

Cubic spline
Data

Figure 5.17: Cubic spline passing
through data points of Example 5.11

Now let us see how the spline and Hermite polynomial approximate a known non-analytic function.

Example 5.12
Consider the function f (x)= 1

1+25x2 in the interval [−1,1] from Example 5.7. Estimate the
errors for Hermite polynomial and cubic spline with the interval divided into 4, 8 and 16
segments.
Solution :

The nodes for Hermite and cubic spline are the same as those used for piecewise quadratic
interpolation scheme (Example 5.8). However, the number of points in a segment of a
quadratic polynomial is 3 while a Hermite polynomial and cubic spline is estimated between

5.8. Spline interpolation and the cubic spline 253

two nodes.
Cubic Hermite polynomial
Hermite polynomials require function and derivatives at the nodes. The first derivative of
the function is given by

f (1)(x)=− 50x
(1+25x2)2

Programs 5.6 and 5.7 have been used to evaluate the approximate functions. Figure 5.18
compares the Hermite polynomial approximations with exact function. Figure 5.19 shows
the error distribution for the Hermite polynomial approximations. Programs 5.8 and 5.9

y

0

0.2

0.4

0.6

0.8

1

x
-1 -0.5 0 0.5 1

 f(x)
 4 segments
 8 segments
 16 segments

Figure 5.18: Comparison be-
tween cubic Hermite polynomial
approximation and exact function

ε

0

0.05

0.1

0.15

0.2

0.25

x
0 0.2 0.4 0.6 0.8 1

 4 segments
 8 segments
 16 segments

Figure 5.19: Error distribution for
cubic Hermite polynomial approx-
imations

have been used to evaluate cubic spline polynomials. Natural boundary conditions have
been used. The nature of cubic spline interpolation is not very different from a Hermite
polynomial. A cubic spline ensures higher order continuity at the nodes using only function
values where as Cubic Hermite polynomial requires the derivatives at the node in addition
to function values at nodes. Figure 5.20 indicates the distribution of error for cubic spline
interpolation scheme.

Cubic spline polynomial The following table lists the maximum error for different
piecewise approximation schemes for the function considered in the example.

Nodes Piecewise quadratic Cubic Hermite Cubic spline
5 0.0855 0.2194 0.2791
9 0.0972 0.0355 0.0554

17 0.0478 0.0016 0.0036

254 Chapter.5 Interpolation

ε

0

0.05

0.1

0.15

0.2

0.25

x
0 0.2 0.4 0.6 0.8 1

 4 segments
 8 segments
 16 segments

Figure 5.20: Error distribution for
cubic spline approximations

Concluding remarks

In this chapter we have looked at in great detail the various ways of interpolating a function
of a single variable, available as tabulated data. Lagrange and Newton polynomials of low
degree are suitable for this purpose. Hermite interpolating polynomials and cubic splines have
some advantages in that they guarantee higher order continuity at the knots. In general they
are useful in smoothing functions available in tabular form, as for example, in making a plot.

For function approximation high degree polynomials are not suitable since they may suffer
from Runge phenomenon accentuated by round off during the calculations. The effect of Runge
phenomenon may be mitigated by using Chebyshev nodes.

Interpolation will be seen to play a major role in later chapters.

5.A MATLAB routines related to Chapter 5

MATLAB routine Function

interp1 performs linear or cubic spline or cubic
Hermite polynomial interpolation

spline cubic spline interpolation

In addition curve fitting tool box provides additional tools for interpolation and splines.

5.B Suggested reading
1. C. De Boor A Practical guide to splines (rev. Ed) Applied Mathematical Sciences, Vol. 27,

2001

Chapter 6

Interpolation in two and three
dimensions

Multidimensional interpolation is commonly encountered in numerical methods such as
the Finite Element Method (FEM) and the Finite Volume Method (FVM) used for solving
partial differential equations. It is a general practice in numerical methods to discretize
a two (three) dimensional domain into large number of small areas (volumes) known as
elements in FEM and volumes in FVM. These methods assume a functional form for
variable within each sub domain based on the nodal values and solve for the variables at
the nodes. Development of multidimensional interpolation has also applications in
computer graphics where surfaces are represented by Bezier curves and NURBS
(Non-uniform rational B-splines). The present chapter intends to introduce the readers
to multi-dimensional interpolation, with simple examples, to be made use of in later
chapters.

255

256 Chapter.6 Interpolation in two and three dimensions

6.1 Interpolation over a rectangle

6.1.1 Linear interpolation

The simplest interpolation technique is to use a linear variation along the two directions, say
x and y for a function f (x, y). An engineering application will be in using table of properties of a
pure substance such as water (referred to as Steam Tables). A part of such a table would look like
this:

y1 y2
x1 f1 f3
x2 f2 f4

where the columns correspond to constant y’s, rows correspond to constant x’s and the entries
correspond to the function f (x, y). We assume that the function varies linearly with both x and y.
This means that, for a fixed y, the function varies linearly with x (along a column in the table).
Suppose we desire to have the interpolated value of the tabulated function at (xi, yi) within the
range x1 < xi < x2, y1 < yi < y2 defining a rectangular region (Figure 6.1) in the x, y plane.

x=
x 1

x=
x i

x=
x 2

y= y1

y= yi

y= y2

f1

f4

f3

f2

f i

We hold y fixed at y1 and obtain the interpolated value of the function at xi, y1 by linear
interpolation as

f (xi, y1)= (xi − x2)
(x1 − x2)

f1 + (xi − x1)
(x2 − x1)

f2 = w1x f1 +w2x f2

based on L1, Lagrange polynomial of degree 1. The weights have been identified with suitable
subscripts. Similarly we hold y fixed at y2 and obtain the interpolated value of the function at
xi, y2 by linear interpolation as

f (xi, y2)= (xi − x2)
(x1 − x2)

f3 + (xi − x1)
(x2 − x1)

f4 = w1x f3 +w2x f4

Now we hold x fixed at xi and obtain the interpolated value of function at xi, yi as

f (xi, yi) = (yi − y2)
(y1 − y2)

f (xi, y1)+ (yi − y1)
(y2 − y1)

f (xi, y2)

= w1y f (xi, y1)+w2y f (xi, y2) (6.1)

6.1. Interpolation over a rectangle 257

where again the weights have been identified by suitable subscripts. Specifically, x in the subscript
means the weight is a function of x while y in the subscript means the weight is a function of y.
Substituting Equations 6.1 and 6.1 in Equations 6.1 we get

f (xi, yi) = w1xw1y f1 +w2xw1y f2 +w1xw2y f3 +w2xw2y f4

= w1 f1 +w2 f2 +w3 f3 +w4 f4 (6.2)

where the final weights w1 - w4 are functions of both x and y. For example, we have

w1 = w1xw1y = (xi − x2)
(x1 − x2)

(yi − y2)
(y1 − y2)

(6.3)

0

1

w2xw1x

w1y

w2y

0 1

0 1

0

1

x
=

x 2

y= y2

x
=

x 1

y= y1

4

21

3

(xi, yi)

Figure 6.2: Graphical representa-
tion of weight functions

The reader may similarly write down the other weights also. Thus the interpolated value is a
weighted sum of the function at the 4 nodes. We see that the weights are products of Lagrange
weights in one dimension. We also see that the weight is unity at (x1, y1) and vanishes for xi = x2
or yi = y2 which means that this weight vanishes at the three nodes given by (x2, y1), (x1, y2) and
(x2, y2). The reader may verify, in a similar fashion, the properties of the other three weights also.
Figure 6.2 illustrates the construction of weight or shape functions over a rectangular domain.

Example 6.1
Following data has been taken from a table of property values of a substance, after
suppressing information on the units.

x ↓ y→ 500 600
15 1286 1334.2
25 1285 1333.6

Obtain the value of the function at x = 20, y= 530 using linear interpolation.
Solution :

The weights are calculated with xi = 20, yi = 530 as given below.

w1 = (20−25)(530−600)
(15−25)(500−600

= 0.35 w2 = (20−15)(530−600)
(25−20)(500−600

= 0.35

258 Chapter.6 Interpolation in two and three dimensions

w3 = (20−25)(530−500)
(15−25)(600−500

= 0.15 w4 = (20−15)(530−500)
(25−15)(600−500

= 0.15

The interpolated value of the function is then obtained as

f (20,530)= 0.35×1286+0.35×1285+0.15×1334.2+0.15×1333.6= 1300.02

Linear interpolation; alternate way of representation

Consider the weight w1 given in Equation 6.3. We may rewrite it in full as

w1 = xi yi − x2 yi − y2xi + x2 y2

x1 y1 − x2 y1 − y2x1 + x2 y2
= a10 +a11xi +a12 yi +a13xi yi

where

a10 = x2 y2

x1 y1 − x2 y1 − y2x1 + x2 y2
a11 =− y2

x1 y1 − x2 y1 − y2x1 + x2 y2

a12 =− x2

x1 y1 − x2 y1 − y2x1 + x2 y2
a13 = 1

x1 y1 − x2 y1 − y2x1 + x2 y2
(6.4)

It is easily shown all the other weights have the same form but with different coefficients (the a’s).
It is thus seen that the interpolating function may be written in the alternate form

f (xi, yi)= c0 + c1xi + c2 yi + c3xi yi (6.5)

where the c’s are constants determined in terms of the four function values. In fact, we have the
following equation set to obtain the c’s.

1 x1 y1 x1 y1
1 x2 y1 x2 y1
1 x1 y2 x1 y2
1 x2 y2 x2 y2

c0
c1
c2
c3

=

f1
f2
f3
f4

 (6.6)

These equations may easily be solved to get the vector c of coefficients in terms of the function
values at the corners of the rectangle.
6.1.2 Local coordinate system for a rectangular element

A simple linear transformation may be used to transform the rectangular domain in x, y to a
square of sides =2 in ξ,η such that −1 < ξ,η < 1 with the origin at the center of the square (see
Figure 6.3). The required transformation may easily shown to be

x = x1 + x2

2
+ x2 − x1

2
ξ; y= y1 + y2

2
+ y2 − y1

2
η (6.7)

Instead of interpolating in (x, y) we may interpolate in (ξ,η).

4(x2, y2)

2(x2, y1)1(x1, y1)

3(x1, y2)

(xi, yi) ξ

η
4′(1,1)

2′(1,−1)1′(−1,−1)

3′(−1,1)

(ξ,η)

=⇒

Figure 6.3: Coordinate transformation

6.1. Interpolation over a rectangle 259

Such a transformation is useful in engineering applications such as the finite element method.
The given data may now be recast as follows:

η=−1 η= 1
ξ=−1 f1 f3
ξ= 1 f2 f4

Equation set 6.6 is recast as
1 −1 −1 1
1 1 −1 −1
1 −1 1 −1
1 1 1 1

c0
c1
c2
c3

=

f1
f2
f3
f4

 (6.8)

These equations may be solved easily (eg. Gauss elimination method) to get

c0 = f1 + f2 + f3 + f4

4
c1 = − f1 + f2 − f3 + f4

4

c2 = − f1 − f2 + f3 + f4

4
c3 = f1 − f2 − f3 + f4

4
(6.9)

We would now like to write the interpolating function in terms of weighted sum as given earlier.

We easily see that w1(ξ,η) will be given by
1−ξ−η+ξη

4
which may be recast in the form

w1(ξ,η)= (1−ξ)
2

(1−η)
2

(6.10)

It is deliberately written in the form of a product of two Lagrange polynomials of first degree. We
may show similarly that the following hold:

w2(ξ,η)= (1+ξ)
2

(1−η)
2

w3(ξ,η)= (1−ξ)
2

(1+η)
2

w4(ξ,η)= (1+ξ)
2

(1+η)
2

(6.11)

Of course we may revert to (x, y) once the interpolation has been worked out in (ξ,η).

Coordinate transformation The advantage of coordinate transformations is that opera-
tions such as differentiation, integration and transforms can be applied on a local coordinate
system rather than the actual coordinates. The mapping of any arbitrary quadrilateral to the local
coordinate system can be achieved in a number of ways such as affine, projective transformations.
The discussion on these methods are beyond the scope of the book and the interested reader should
look into books on computational graphics for the same.

Isoparametric transformations are most commonly employed in numerical methods such as
FEM and FVM. The transformation maps line to line such that both variables (f) and the real
coordinates (x, y) are evaluated using the same shape functions. For an arbitrary quadrilateral
considered below, the coordinate transformation can be simply written as

l1

l2

l3

l4

4

2

1

3 (x, y)

η

l1

l2

l3

l4

ξ
4′(1,1)

2′(1,−1)1′(−1,−1)

3′(−1,1)

(η,ξ)

=⇒

260 Chapter.6 Interpolation in two and three dimensions

x = w1x1 +w2x2 +w3x3 +w4x4; y= w1 y1 +w2 y2 +w3 y3 +w4 y4

where w’s are the weight functions (evaluated in (ξ,η) coordinates) we are familiar with. If we
closely observe, the coordinate transformation equation is of the form

x = a0 +a1ξ+a2η+a3ξη y= b0 +b1ξ+b2η+b3ξη (6.12)

The two dimensional domain need not be represented by straight lines but could be any four
arbitrary curves in which case coordinate transformation becomes murkier.

Example 6.2
Redo example 6.1 by transforming the coordinates and using the formulation given above
Solution :

The transformations are easily obtained as follows. With x2 = 25 and x1 = 15, we have
x1 + x2

2
= 15+25

2
= 20;

x2 − x1

2
= 25−15

2
= 5. Hence x = 5ξ+20 or ξ = x−20

5
. Similarly we

may write the second transformation as y= 50η+550 or η= y−550
50

. Thus the interpolation

point corresponds to ξ = 20−20
2

= 0 and η = 530−550
50

= −0.4. The weights are then
calculated using Equations 6.10 and 6.11.

w1 = (1−0)[1− (−0.4)]
4

= 0.35

w2 = (1+0)[1− (−0.4)]
4

= 0.35

w3 = (1−0)[1+ (−0.4)]
4

= 0.15

w4 = (1+0)[1+ (−0.4)]
4

= 0.15

The interpolated value is the same as f (0,0.4)= 1300.02 obtained earlier in Example 6.1.

Program 6.1: Program to calculate weights of a linear quadrilateral element

1 function w = weightquadlin(x,y)

2 % I n p u t x , y : l o c a l c o o r d i n a t e s o f t h e p o i n t (s)
3 % O u t p u t w : w e i g h t s a t p o i n t x , y
4 n = size(x); % no o f p o i n t s
5 w = zeros(n,4); % i n i t i a l i z e w e i g h t
6 w(:,1) = (1-x).*(1-y)/4; % c a l c u l a t e w e i g h t a t (− 1 , − 1)
7 w(:,2) = (1+x).*(1-y)/4; % c a l c u l a t e w e i g h t a t (1 , − 1)
8 w(:,3) = (1-x).*(1+y)/4; % c a l c u l a t e w e i g h t a t (− 1 , 1)
9 w(:,4) = (1+x).*(1+y)/4; % c a l c u l a t e w e i g h t a t (1 , 1)

6.1.3 Interpolating polynomials as products of ‘lines’

Now we are ready for another interpretation of the interpolating function we have obtained
above. Consider Equation 6.10 as an example. It contains two factors, the first one containing

the equation of a line l1(ξ) = 1−ξ
2

which is a line lying in a plane that is normal to the ξ,η plane

6.1. Interpolation over a rectangle 261

that contains the ξ axis. This line passes through the points l1(−1) = 1 and l1(1) = 0. Similarly

the second factor represents the equation of a line given by l2(η) = 1−η
2

which is a line lying in a
plane that is normal to the ξ,η plane that contains the η axis. This line passes through the points
l2(−1) = 1 and l2(1) = 0. Thus the weight is the product of equations of lines l1 and l2. Similar
interpretation is possible for the other weights also. What is important to notice is that the weight
is a product of two lines. These lines represent Lagrange polynomials of first degree (see Figure
6.4).

1

ξ or η

l1 or l2 l3 or l4

dh
=

d
/2

0−1 −1

wi

Figure 6.4: Four `lines' used in linear
interpolation over a standard square

Using the ‘lines’ defined above we may recast the weights as

w1 = l1l2; w2 = l2l3; w3 = l1l4 and w4 = l3l4 (6.13)

As indicated in the figure the height of the ‘line’ is equal to half the distance from the farthest point.
Hence we may use the side of the square as a proxy for the corresponding line by simply halving d
itself (i.e. by dividing the distance by the total distance, which is 2). This is shown schematically
in Figure 6.5. The nodes are numbered as indicated and the lines are identified with the sides of
the square domain. The weights are shown at the corresponding nodes as product of ‘lines’. This
way of visualizing the weights in terms of lines is particularly useful in dealing with higher order
interpolation and also interpolation over a triangular domain.

l 1
=

1
−ξ 2

l2 = 1−η
2

l 3
=

1
+ξ 2

l4 = 1+η
2

w4 = l3l4

w2 = l2l3w1 = l1l2

w3 = l1l4

(ξ,η)
Figure 6.5: Rectangular element
in local coordinates showing the
lines

6.1.4 Lagrange Quadratic rectangular element
Figure 6.6 shows a 9 noded quadratic rectangular element also known as Lagrange quadratic

element. The interpolating function for the element will be of the form

f (ξ,η)= a0 +a1ξ+a2η+a3ξη+a4ξ
2 +a5η

2 +a6ξη
2 +a7ξ

2η+a8ξ
2η2 (6.14)

262 Chapter.6 Interpolation in two and three dimensions

ξ

η
(1,1)(0,1)

(0,−1) (1,−1)(−1,−1)

(−1,1)

(1,0)(0,0)(−1,0)

98

2 31

7

654

l2

l4

l6

l1

l5

l3 (ξ,η)

Figure 6.6: Lagrange quadratic
rectangular element

The constants ai have to be determined such that f (ξ,η) is the same as the given data at all the
nine nodes. Alternatively, the interpolation function can be estimated using Lagrange approach
such that

f (ξ,η)=
9∑

i=1
wi(ξ,η) f i

We can define two independent quadratic Lagrange polynomial functions along η and ξ directions.
The total weight functions, following the procedure used in the case of linear interpolation, is the
product of the two quadratic polynomial functions. The weight functions are of the form

w(ξ,η)= (a0 +a1ξ+a2ξ
2)(b0 +b1η+b2η

2)= F(ξ)G(η)

Let us decompose the weight function and determine the weights of two separate functions F(ξ)
and G(η). Then the weight functions at the nine points would be

w1 = F−1G−1 w2 = F0G−1 w3 = F1G−1
w4 = F−1G0 w5 = F0G0 w6 = F1G0
w7 = F−1G1 w8 = F0G1 w9 = F1G1

Based on Equation 5.17, the Lagrange weights L2(ξ) and L2(η) are written in vector form as

FT (ξ) =
ξ(ξ−1)

2
− (ξ−1)(ξ+1)

ξ(ξ+1)
2

=
ξ(ξ−1)

2
(1−ξ2)

ξ(ξ+1)
2

GT (η) =

η(η−1)
2

− (η−1)(η+1)
η(η+1)

2

=
η(η−1)

2
(1−η2)

η(η+1)
2

The nodal weights may then be written down as products GFT and are given as

w1 w2 w3
w4 w5 w6
w7 w8 w9

=GFT

=

ξη(ξ−1)(η−1)
4

(1−ξ2)η(η−1)
2

ξη(ξ+1)(η−1)
4

ξ(ξ−1)(1−η2)
2

(1−ξ2)(1−η2)
ξ(ξ+1)(1−η2)

2
ξη(ξ−1)(η+1)

4
(1−ξ2)η(η+1)

2
ξη(ξ+1)(η+1)

4

(6.15)

6.1. Interpolation over a rectangle 263

Alternate approach: product of lines
The intersection points of the lines l1 to l6 are the nodes of the square domain. The nodes can be
represented in terms of these lines. The equation of these lines are

l1 =⇒ 1−ξ= 0; l2 =⇒ 1−η= 0; l3 =⇒ 1+ξ= 0;

l4 =⇒ 1+η= 0; l5 =⇒ η= 0; l6 =⇒ ξ= 0

Node 1: The lines passing through node 1 are l3 and l4. At node 1, all the weights except w1
are zero. In order to achieve this, all the weight functions except w1 should have either l3 or l4
as factors. Similarly, node 1 would be a factor of remaining lines l1, l2, l5 and l6. Therefore the
weight function for node 1 can be written down as

w1 = l1l2l5l6

l1(−1,−1)l2(−1,−1)l5(−1,−1)l6(−1,−1)
= ξη(ξ−1)(η−1)

4

which is the same as that obtained earlier. Similar approach can be adopted to derive weight
functions for the other nodes.

Example 6.3
Obtain value of the tabulated function at x = 0.14, y= 0.07 by quadratic interpolation.

x ↓ y→ 0 0.1 0.2
0 1.000000 1.010050 1.040811
0.1 1.010050 1.020201 1.051271
0.2 1.040811 1.051271 1.083287

Use a nine noded element to solve the problem.
Solution :

We transform the domain to the standard square domain by the transformation ξ = 10(x−
0.1), η = 10(y−0.1). The elements are numbered as shown in Figure 6.6. In the present
example, the function is required at x = 0.14 which corresponds to ξ = 10(0.14−0.1) = 0.4
and y= 0.07 which corresponds to η= 10(0.07−0.1)=−0.3. Substituting these in the matrix
of weights (Equation 6.15) we get

w=

−0.0234 0.1638 0.0546
−0.1092 0.7644 0.2548

0.0126 −0.0882 −0.0294

The interpolated value of the function is then obtained as sum of product of weights and the
function values. We thus obtain

f (ξ= 0.4,η=−0.3)= f (x = 0.14, y= 0.07)=
9∑

i=1
wi f i = 1.024826

The reader may verify that linear interpolation using only the corner nodes would give a
value for this as 1.043259. The function used for generating the data was f (x, y) = e(x2+y2)

which has a value of f (0.14,0.07) = 1.024803. The quadratic interpolated value has an
error of 0.000024 while the linear interpolated value has an error of 0.018457 ≈ 0.019,
with respect to the exact value. There is a considerable improvement in using quadratic
interpolation over linear interpolation in the present case.

264 Chapter.6 Interpolation in two and three dimensions

8(1,1)7(0,1)

2(0,−1) 3(1,−1)1(−1,−1)

6(−1,1)

5(1,0)(−1,0)4 ξ

η

l2

l4

l1l3 l6

l7 l8

l5

(ξ,η)

Figure 6.7: Eight noded rectan-
gular element

6.1.5 Quadratic eight noded rectangular element

The above element is also known as ‘serendipity’ quadratic element.1 The interpolation function
in the domain is of the form

f (ξ,η)= a0 +a1ξ+a2η+a3ξη+a4ξ
2 +a5η

2 +a6ξη
2 +a7ξ

2η (6.16)

The present domain does not have a point at the origin. Therefore the present interpolation
formula does not support the term involving ξ2η2. Unlike the previous example, the weight
function of the present interpolation formula cannot be simplified as product of two univariate
functions in ξ and η. Let us adopt the Lagrange interpolation approach based on product of lines.
The nodes of the domain are the points of intersection of lines l1 to l8. Hence these lines can be
used to represent the nodes. Equations of lines indicated in Figure 6.7 are given as a table below.

Equations of lines:

Line Formula Line Formula
l1 1−ξ l5 ξ+η−1
l2 1−η l6 −ξ+η−1
l3 1+ξ l7 −ξ−η−1
l4 1+η l8 ξ−η−1

Calculation of nodal weights as product of lines:
For node 1 the procedure is as follows:
l1 and l2 must be factors of w1 as these will be zero at nodes 3,5,6,7 and 8. The function should
be equal to zero at nodes 2 and 4 as well. This means l7 is also a factor of the weight function.
Therefore the weight function can be written as

w1 = l1l2l7

l1(−1,−1)l2(−1,−1)l7(−1,−1)
= (1−ξ)(1−η)(−ξ−η−1)

4

Similarly we treat other nodes to arrive at weight functions as given below.

1For a serendipity element function values are specified only at points on the boundary.

6.1. Interpolation over a rectangle 265

Node Weight formula in Weight
Number terms of product of lines expressions

1 (l1 × l2 × l7)/4 (1−ξ)(1−η)(−ξ−η−1)/4
2 (l1 × l2 × l3)/2 (1−ξ)(1−η)(1+ξ)/2
3 (l2 × l3 × l8)/4 (1−η)(1+ξ)(ξ−η−1)/4
4 (l1 × l2 × l4)/2 (1−ξ)(1−η)(1+η)/2
5 (l2 × l3 × l4)/2 (1−η)(1+ξ)(1+η)/2
6 (l1 × l4 × l6)/4 (1−ξ)(1+η)(−ξ+η−1)/4
7 (l1 × l3 × l4)/2 (1−ξ)(1+ξ)(1+η)/2
8 (l3 × l4 × l5)/2 (1+ξ)(1+η)(ξ+η−1)4

Note: One may be tempted to use lines η = 0 and ξ = 0 instead of l5 to l8. However, such an
interpolation polynomial would not be consistent with Equation 6.16.

Example 6.4
A certain function is available at eight points as given in the following table. Obtain value
of the function at x = 0.14, y= 0.07 by quadratic interpolation.

x ↓ y→ 0 0.1 0.2
0 1.000000 1.010050 1.040811
0.1 1.010050 · · · 1.051271
0.2 1.040811 1.051271 1.083287

Solution :
Note that this set of data is the same as that used in Example 6.3 obtained by removing the
data at the origin (removing data at point 5 in Figure 6.6). Nodes are numbered as shown
in Figure 6.7. In the present example interpolated value is desired at ξ= 0.4, η=−0.3. We
obtain all the weights using the weight functions and tabulate the results.

Node No. f (x, y) Weight Weight× f (x, y)
1 1.000000 -0.2145 -0.214500
2 1.010050 0.546 0.551487
3 1.040811 -0.1365 -0.142071
4 1.010050 0.273 0.275744
5 1.051271 0.637 0.669660
6 1.040811 -0.1785 -0.185785
7 1.051271 0.294 0.309074
8 1.083287 -0.2205 -0.238865

Sum = · · · 1 1.024744

Bold entry in the table is the required value of the function at the interpolation point.

266 Chapter.6 Interpolation in two and three dimensions

6.2 Interpolation over a triangle
Interpolation over a triangle is an important exercise since most numerical methods for solving

partial differential equations use triangular elements. Consider a triangular element shown in
Figure 6.8.

1 (x1, y1) 2 (x2, y2)

3 (x3, y3)

(x, y) l1l2

l3

Figure 6.8: Linear triangular element

l1, l2 and l3 are the equations of the lines forming the edges of the triangle. As there are three
points, the interpolating function is of the form2

f (x, y)= a0 +a1x+a2 y (6.17)

The constants a0, a1 and a2 can be determined by solving the system of equations at the three
nodes of the triangle. Alternatively, we can apply the Lagrange interpolation scheme for the

triangle such that f (x, y)=
3∑

i=1
wi f i.

Consider node 1. The weight w1 should be equal to 1 at node 1 and should be equal to zero at other
two nodes. l2 and l3 are equal to zero at node 1. Therefore the weight function w1 is proportional
to l1 and is of the form given by Equation 6.17. Meeting all the required conditions, w1 can be
written as

w1 = l1(x, y)
l1(x1, y1)

In general, the weight function at node i can be written as

wi = l i(x, y)
l i(xi, yi)

(6.18)

Local coordinate system for a triangular element

Let the fraction
l i(x, y)

l i(xi, yi)
= ηi. ηi is nothing but the ratio of normal distance of point (x, y) from

line l i to the normal distance of node i from the line. When the point lies on l i, ηi = 0 and when
the point is at node i, ηi = 1. Hence, the following representation also serves as an alternative
coordinate system for the triangular element with ηi as the basis. Any point in (x, y) coordinates
can be represented in terms of (η1,η2,η3) as indicated in the following figure.

2Number of nodes less than four would mean that there can be only three terms in the interpolating
function. The xy term would be missing.

6.2. Interpolation over a triangle 267

1 (x1, y1) 2 (x2, y2)

3 (x3, y3)

(x, y)

1 (1,0,0) 2 (0,1,0)

3 (0,0,1)

(η1,η2,η3)

η1η2

η3

Figure 6.9: Transformation of coordinates

Hence the equation of the three lines l1, l2 and l3 in local coordinate system would be η1 = 0,
η2 = 0 and η3 = 0.

For a linear triangular element, wi = ηi

The area of a triangle is proportional to product of height and base. Hence ηi is also the ratio of
the area of the triangles made by points (x, y) and (xi, yi) with line l i. This can be understood from
Figure 6.10.

1 (x1, y1) 2 (x2, y2)

3 (x3, y3)

(x, y)

l1l2

l3

Figure 6.10: Calculation of
weight functions for a triangular
element

η3 is the ratio of the area of the shaded triangle to the area of the triangle itself. The weight

function for a linear triangular element can be generalized as wi = ηi = A i/A. Since
n∑

i=1
A i = A,

sum of weights at any point is equal to 1 i.e.
3∑

i=1
wi(x, y) = 1. The area of the shaded triangle is

given by the following determinant

A3 = 1
2

∣∣∣∣∣∣
1 x1 y1
1 x2 y2
1 x y

∣∣∣∣∣∣= 1
2

{x(y1 − y2)+ (x2 − x1)y+ (x1 y2 − x2 y1)}

When (x, y) lies on the line l3, A3 = 0 and when (x, y) = (x3, y3), A3 = A, where A is the area of the
triangular element given by

A = 1
2

∣∣∣∣∣∣
1 x1 y1
1 x2 y2
1 x3 y3

∣∣∣∣∣∣

268 Chapter.6 Interpolation in two and three dimensions

ηi is of the form (ai +bix+ ci y) where ai,bi and ci are constants and are evaluated as follows

a1 = (x2 y3 − y2x3)
2A

b1 = (y2 − y3)
2A

c1 = (x3 − x2)
2A

a2 = (x3 y1 − y3x1)
2A

b2 = (y3 − y1)
2A

c1 = (x1 − x3)
2A

a3 = (x1 y2 − y1x2)
2A

b3 = (y1 − y2)
2A

c1 = (x2 − x1)
2A

(6.19)

Interpretation using local coordinates: Any local coordinate can be represented by other two
local coordinates i.e. η3 = 1− η1 − η2. The right angled triangle on η1,η2 plane in Figure 6.11
represents the map of the actual triangle. In a sense, the transformation exercise can be looked
upon as mapping triangle onto a right angled isosceles triangle. MATLAB program has been given

η2

η1

η2 = 1−η1

2(0,1)

1(1,0)3(0,0)

Figure 6.11: Representation of local
coordinates of a triangle

below to calculate the coefficients for a triangular element

Program 6.2: Calculate coe�cients for local coordinates of a triangular element

1 function [a,b,c,A] = trlocalcoeff(p1 ,p2 ,p3)

2 % I n p u t p1 , p2 , p3 : c o o r d i n a t e s o f t h e v e r t i c e s p1 (1) = x 1 ; p1 (2)
% = y 1

3 % p2 (1) = x 2 ; p2 (2) = y 2 ; p3 (1) = x 3 ; p3 (2) = y 3
4 % O u t p u t a , b , c : c o e f f i c i e n t s η= a+bx+ cy
5 % A : a r e a o f t r i a n g l e
6 a(1) = p2(1)*p3(2)-p3(1)*p2(2); % c a l c u l a t e a
7 a(2) = p3(1)*p1(2)-p1(1)*p3(2);

8 a(3) = p1(1)*p2(2)-p2(1)*p1(2);

9 A = (a(1)+a(2)+a(3))/2; % A = 2 * a r e a o f t r i a n g l e
10 a = a/(2*A); % n o r m a i l z e a
11 b(1) = (p2(2)-p3(2))/(2*A); % c a l c u l a t e b
12 b(2) = (p3(2)-p1(2))/(2*A);

13 b(3) = (p1(2)-p2(2))/(2*A);

14 c(1) = (p3(1)-p2(1))/(2*A); % c a l c u l a t e c
15 c(2) = (p1(1)-p3(1))/(2*A);

16 c(3) = (p2(1)-p1(1))/(2*A);

The following Matlab function can be used to convert from actual coordinates to local coordinates.

Program 6.3: Convert from (x, y) to local coordinates (η1,η2,η3) of a triangle

1 function eta = trianglelocalcord(a,b,c,x,y)

2 % I n p u t a , b , c : c o e f f i c i e n t s η= a+bx+ cy
3 % x , y : c o o r d i n a t e s o f p o i n t s

6.2. Interpolation over a triangle 269

4 % O u t p u t e t a : l o c a l c o o r d i n a t e s o f p o i n t s x , y
5 n = size(x,1);

6 eta = zeros(n,3);

7 for i=1:3

8 eta(:,i) = a(i) + b(i)*x + c(i)*y;

9 end

Quadratic triangular element

Now we derive expressions for weight functions for a quadratic triangular element.

1 2

3

(x, y) 45

6

Figure 6.12: Quadratic triangular ele-
ment

There are six points. Three nodes occupy the vertices of the triangle and three points are located
at the midpoints of the three edges of the triangular element. The interpolation function would be
of the form3

f (x, y)= a0 +a1x+a2 y+a3xy+a4x2 +a5 y2 (6.20)

l1, l2 and l3 are the equations of the lines forming the edges of the triangle. l4, l5 and l6 are the

1 2

3

56

4

l1l2

l3

l4 l5

l6 Figure 6.13: Lines representing
quadratic triangular element

equation of the lines joining the midpoints of the edges of the triangle. Let us represent the nodes
in terms of the triangular coordinate system introduced earlier.

1=⇒ (1,0,0) 2=⇒ (0,1,0) 3=⇒ (0,0,1)

4=⇒ (0.5,0.5,0) 5=⇒ (0,0.5,0.5) 6=⇒ (0.5,0,0.5) (6.21)

From Equation 6.21, the equation of the lines can be written down as

l1 =⇒ η1 = 0 l2 =⇒ η2 = 0 l3 =⇒ η3 = 0

3With only six points available the quadratic is constrained to the form shown here. Recall that nine
points gave the more general expression (Equation 6.14)

270 Chapter.6 Interpolation in two and three dimensions

l4 =⇒ η1 −0.5= 0 l5 =⇒ η2 −0.5= 0 l6 =⇒ η3 −0.5= 0

Now, we derive the weight function for all the nodes.
Consider node 1: The weight w1 should be equal to 1 at node 1 and should be equal to zero at
the other nodes. Lines l2 and l3 are zero where as l1 = 1 at node 1. Therefore, w1 should be
proportional to l1. This means w1 = 0 at nodes 2, 3 and 5. As w1 should be zero at nodes 4 and 6,
w1 should be proportional to l4 also. Hence, meeting all the required conditions w1 can be written
as

w1 = l1(η1,η2,η3)l4(η1,η2,η3)
l1(1,0,0)l4(1,0,0)

= 2η1(η1 −0.5)

Consider Node 4: As node 4 is a point on l3, η3 = 0. However, lines l1 and l2 are not equal to zero
at node 4. This means w4 is proportional to l1l2. Therefore w4 = 0 at other nodes except node 4.
Meeting all the required conditions w4 can be written as

w4 = l1(η1,η2,η3)l2(η1,η2,η3)
l1(0.5,0.5,0)l2(0.5,0.5,0)

= 4η1η2

The weights for all other points may be similarly determined and are summarized below

w1 = 2η1(η1 −0.5); w2 = 2η2(η2 −0.5); w3 = 2η3(η3 −0.5);
w4 = 4η1η2; w5 = 4η2η3; w6 = 4η3η1

Example 6.5
Function value is available at six points as shown in the table below.

Point No. x y f (x, y)
1 0.2 0.6 2.2255
4 0.25 0.35 1.8221
2 0.3 0.1 1.4918
5 0.325 0.4 2.0647
3 0.35 0.7 2.8577
6 0.275 0.65 2.5219

Obtain the value of the function at x = 0.28, y= 0.5 using linear and quadratic interpolation.
Solution :

Figure 6.14 shows the node numbering system used in the analysis.
Linear interpolation
Nodes at the apex of triangle are used for linear interpolation. We evaluate all the

weights using the determinants presented in the text. Factor
1
2

is dropped in all the area
calculations since the weights are normalized with the area of the triangle. The area of the
triangle is proportional to A given by

A =
∣∣∣∣∣∣

1 0.2 0.6
1 0.3 0.1
1 0.35 0.7

∣∣∣∣∣∣= 0.085

Weights are now calculated as given below. Weight are given by the following.

η1 = w1 = 1
0.085

∣∣∣∣∣∣
1 0.3 0.1
1 0.35 0.7
1 0.28 0.5

∣∣∣∣∣∣= 0.3765

6.2. Interpolation over a triangle 271

1

2

3

4
5

6
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x
0.15 0.2 0.25 0.3 0.35 0.4

(0.28,0.5)

Figure 6.14: Numbering
of nodes for linear and
quadratic interpolation over
a triangle showing the inter-
polation point

η2 = w2 = 1
0.085

∣∣∣∣∣∣
1 0.35 0.7
1 0.2 0.6
1 0.28 0.5

∣∣∣∣∣∣= 0.2706

η3 = w3 = 1
0.085

∣∣∣∣∣∣
1 0.2 0.6
1 0.3 0.1
1 0.28 0.5

∣∣∣∣∣∣= 0.3529

Note that the weights add up to 1. Using function values given in the table, the interpolated
value of the function at x = 0.28, y= 0.5 is obtained as

f (0.28,0.5)= 0.3765×2.2255+0.2706×1.4918+0.3529×2.8577= 2.2501

Quadratic interpolation
For quadratic interpolation, the data at the midpoints of the sides of the triangle element
are also used. The weights already calculated for linear interpolation may be used to obtain
the solution in the present case. We interpret the weights calculated there in terms of
local coordinate system introduced in the text. Hence the coordinates of the given point x =
0.28, y = 0.5 may be identified in terms of the local coordinates as η1 = 0.3765, η2 = 0.2706,
and η3 = 0.3529. The following program has been written to perform quadratic interpolation

p1 = [0.2 0.6]; % v e r t i c e s o f t h e t r i a n g l e (x , y)
p2 = [0.3 0.1];

p3 = [0.35 0.7];

f = [2.2255 1.4918 2.8577 1.8221 2.0647 2.5219]; % f (x , y)
x = 0.28; y = 0.5;

[a,b,c] = trlocalcoeff(p1 ,p2 ,p3); % c a l c u l a t e c o e f f i c i e n t s
eta = trianglelocalcord(a,b,c,x,y); % c a l c u l a t e η

w(1) = 2*eta (1)*(eta (1) -0.5); % c a l c u l a t e w e i g h t s
w(2) = 2*eta (2)*(eta (2) -0.5);

w(3) = 2*eta (3)*(eta (3) -0.5);

w(4) = 4*eta (1)*eta (2);

w(5) = 4*eta (2)*eta (3);

w(6) = 4*eta (3)*eta (1);

flin = sum(eta*f(1:3)); % l i n e a r i n t e r p o l a t i o n
fquad = sum(w.*f); % q u a d r a t i c i n t e r p o l a t i o n

272 Chapter.6 Interpolation in two and three dimensions

The weights for all the points for quadratic interpolation are tabulated below.

η Weight
Point No. formula Weight

1 0.3765 = 2η1(η1 −0.5) -0.0930
4 · · · = 4η1η2 -0.1242
2 0.2706 = 2η2(η2 −0.5) -0.1038
5 · · · = 4η2η3 0.4075
3 0.3529 = 2η3(η3 −0.5) 0.3820
6 · · · = 4η3η1 0.5315

Using the weights and the corresponding function values, we get

Point No. w f w× f
1 -0.0930 2.2255 -0.2070
4 -0.1242 1.4918 -0.1852
2 -0.1038 2.8577 -0.2966
5 0.4075 1.8221 0.7425
3 0.3820 2.0647 0.7887
6 0.5315 2.5219 1.3403

Sum: 1 · · · 2.1827

Bold entry in the last column is the desired value of the function at x = 0.28, y = 0.5. This
is an improved value as compared to that obtained by linear interpolation. The function is
known to be f (x, y) = e(x+y) and has an exact value of 2.1815 at x = 0.28, y = 0.5. The error
for linear interpolation is 0.0686 while it is only 0.0012 in the case of quadratic. There is a
huge improvement!

We have discussed interpolation polynomials for two dimensional geometries commonly used in
FEM and FVM. However, there are many more interpolation techniques like Shepard interpola-
tion, Wachspress interpolation of irregular polynomials, Bsplines and NURBS. Interested readers
are advised to read the cited literature.

6.3 Interpolation in three dimensions
The concepts from two dimensional interpolation can be easily extended to three and higher

dimensions. The most common three dimensional shapes are tetrahedral (extension of triangle)
and hexahedral (extension of quadrilateral). Interpolation formulas can be represented as product
of ‘planes’ in place of lines used in the two dimensional cases.

6.3.1 Hexahedral element

Hexahedral element is a solid volume with six faces making it analogous to a quadrilateral in
two dimensions. The method of deriving the weight functions is the same, but with product of lines
in two dimensions becoming product of planes in the case of three dimensions. Consider the cube
in Figure 6.154.

4The cube is the local coordinate representation of an arbitrary hexahedral.

6.3. Interpolation in three dimensions 273

η

ξ

ζ

5(−1,−1,1)

8(1,1,1)
7(−1,1,1)

6(1,−1,1)

1(−1,−1,−1)

3(−1,1,−1)

2(1,−1,−1)

4(1,1,−1)

Figure 6.15: Hexahedral element

The weight functions for all the points have been given below

w1 = (1−ξ)(1−η)(1−ζ)
8

w2 = (1+ξ)(1−η)(1−ζ)
8

w3 = (1−ξ)(1+η)(1−ζ)
8

w4 = (1+ξ)(1+η)(1−ζ)
8

w5 = (1−ξ)(1−η)(1+ζ)
8

w6 = (1+ξ)(1−η)(1+ζ)
8

w7 = (1−ξ)(1+η)(1+ζ)
8

w8 = (1+ξ)(1+η)(1+ζ)
8

(6.22)

6.3.2 Tetrahedral element

(x, y, z)

2(x2, y2, z2)

1(x1, y1, z1)

4(x4, y4, z4)3(x3, y3, z3)

=⇒

η2

η1

η3

(0,1,0)

(1,0,0)

(0,0,1)

Figure 6.16: Tetrahedral element and its transformation to local coordinates

A tetrahedral element is a volume with four faces and is analogous to a triangle in two
dimensions. The derivation of weight functions for the volume element is similar to the one for
triangles. Planes forming the volume are analogous to the lines forming the triangle. Similar to
the case of a triangle, the tetrahedron can be transformed to local coordinates (η1,η2,η3,η4). The
transformation maps the actual tetrahedral unto right angled tetrahedral as shown in Figure 6.16
(similar to transformation of triangular coordinates) η1 is the ratio of the distance of the point and
distance of node 1 from plane opposite to the node i.e. plane containing nodes 2, 3 and 4. It is also
the ratio of the volume of the tetrahedron made by the point with the plane containing nodes 2,
3 and 4 (shaded volume in Figure 6.17) to the volume of the tetrahedral element. It can be easily
inferred that for a linear tetrahedral element wi = ηi.

274 Chapter.6 Interpolation in two and three dimensions

2(0,1,0,0)

1(1,0,0,0)

4(0,0,0,1)3(0,0,1,0)

Concluding remarks

In this chapter, we have introduced, interpolation in two and three dimensions. These are
very important since they are applied in all programs written for solving field problems
in engineering. In fact the developments in interpolation techniques have paralleled the
developments in FVM, FEM and other commercial software.

Figure 6.17: Transformation
to local coordinates: ratio of
volume of the shaded tetrahedral
to volume of tetrahedral element

Chapter 7

Regression or curve �tting

Regression analysis consists of expressing data, usually experimental data, in a succinct
form as a formula thus giving a global interpolating formula. Experimental data is
usually error ridden and hence analysis has to identify a possible regression law or
model that best fits the data. The regression formula does not attempt to pass through
all data points as a piecewise interpolating function is expected to do. Invariably the
regression formula does not agree with the tabulated values exactly, but only in an
average sense. The regression model is expected to pass close to all the data points and
yield the smallest overall error, defined in a suitable fashion.

275

276 Chapter.7 Regression or curve fitting

7.1 Introduction
Data collected in an experiment that involves a cause and an effect gives information in the

form of an ordered pairs such as (x1, y1), (x2, y2),· · · · · · ,(xi, yi), · · · · · · ,(xn, yn). Here x is the cause and
y is the effect. For example, the cause may be the temperature to which a sensor is exposed to
and the effect may be the resistance of the sensor. Both x and y are measured and are prone to
measurement error. Figure 7.1 shows a plot between x and y with spline interpolation.

y

0.5

1

1.5

2

2.5

x
0 0.2 0.4 0.6 0.8 1 1.2 1.4

 Cubic spline
 Linear fit

Figure 7.1: Cubic spline is not
appropriate for a set of data with
errors

Interpolation curves such as Lagrange polynomial, Hermite and Cubic spline pass through all
the available data points. From the plot we can see that the spline or Lagrange polynomial curves
(though being higher degree curves) are not suitable for data laden with errors. The approximation
may be worse when derivatives of the curve are desired. In fact, from the plot we can ascertain
that the thin curve in the figure is a more proper representation of the relationship between y
and x. The approximation curve to the data points should be such that the error is uniformly
distributed around the curve.

In practice one looks at such a plot and decides what type of relationship exists between the two
variates. The relationship may be of two types.

1. Essentially a linear relationship such as yi = axi+b, yi = ax2
i +bxi+c or any other polynomial

of suitable degree; it may involve other elementary functions such as sin(x),cos(x),ex etc. For
example yi = aebxi or yi = a ln(xi)+ b. In these a,b... etc. are constants that are referred to
as parameters. Linear refers to the fact that these relations are linear in the parameters
that are used to represent the relationship while the relationship between the dependent
and independent variables may be nonlinear.

2. A non-linear relationship such as yi = aebxi + cxd
i + sin(exi). The relationship is non-linear

in the parameters that characterize the fit.

In either case our job is to determine the best possible values for the parameters that represent
the given data to our satisfaction. The degree of satisfaction or the goodness of fit as it is referred
to, is based on tests which will be described later on.

Sometimes there may be more than one cause which leads to an effect. For example, if humidity
of air also affects the resistance of the sensor described previously, we have to look for a relation
between the sensor resistance as a function of temperature and humidity. This relation may either
be linear or non-linear, in the sense used above. If, for example, this relationship is linear, we refer
to it as multiple linear regression. In what follows we will discuss the methods useful for both
types of regression models.

7.2. Method of least squares for linear regression 277

7.2 Method of least squares for linear regression
Consider an example of data with one cause and one effect. The data is error prone because of

measurement errors and hence appears distributed around a line as shown in Figure 7.2. Note
that the line does not pass through any data point. Presumably the line parameters are adjusted
such that the line is close to the data in a statistical sense.

y
- D

at
a

or
 F

it

0.5

1

1.5

2

2.5

x
0 0.2 0.4 0.6 0.8 1 1.2 1.4

yData
yFit

Figure 7.2: Data showing a linear
trend

Corresponding to each data point - yi - the equation of the line gives a point - yl
i - and the

difference between these two may be treated as an error e i i.e. e i = yi − yl
i . Sum of squares of

these errors (it will always be positive) is a quantity that certainly tells us how good the line
represents the data. A possible way of explaining this is to consider the data and fit as vectors
in Rn. The error itself is another vector in Rn. The sum of squares alluded to above will be the
square of the distance between the two vectors - the data vector and the fit vector. This is also
referred to as the `2 norm of the error vector. Hence it is natural to look for the line parameters
that minimize this sum (and thus the variance) and hence we have what is known as the method
of least squares (also referred to as ‘ordinary least squares’) for estimating the parameters that
describe the line.1 The method of least squares is justified if the errors are distributed according
to the normal distribution.2

7.2.1 Linear regression by least squares
Consider the sum of squares of error with respect to regression line given by

S =
n∑

i=1
e2

i =
n∑

i=1

[
yi − yl

i

]2 =
n∑

i=1
[yi −mxi − c]2 (7.1)

Here n represents the number of data points and m and c are the parameters that characterize the

regression line. Minimization of S requires that
∂S
∂a

= 0 and
∂S
∂b

= 0. Hence we have the following
two equations.

∂S
∂m

= 2
n∑

i=1
[yi −mxi − c] (−xi)= 0

1Alternately one may also use the “method of total least squares”. See, for example, P. de Groen, An
Introduction to Total Least Squares, Nieuw Archief voor Wiskunde, Vierde serie, deel 14, 1996, pp. 237-253.

2See, for example, John E. Freund, Mathematical Statistics with Applications (7th Edition), Prentice
Hall 2003. Also this reference is useful for understanding the statistical terms used in the present chapter.

278 Chapter.7 Regression or curve fitting

∂S
∂c

= 2
n∑

i=1
[yi −mxi − c] (−1)= 0 (7.2)

These may be recast as

n∑
i=1

x2
i m+

n∑
i=1

xi c =
n∑

i=1
xi yi (i)

n∑
i=1

xi m+n c =
n∑

i=1
yi (ii) (7.3)

These equations are known as normal equations. Noting that
n∑

i=1
xi = nx̄ and

n∑
i=1

yi = nȳ, where

x̄ and ȳ are the mean respectively of the x’s and the y’s, Equation 7.3(ii) may be rewritten as
mx̄+ c = ȳ. This may be rearranged to get

c = ȳ−mx̄ (7.4)

Introduce this in Equation 7.3(i) to get m
∑

x2
i +

∑
xi[ȳ−mx̄]= m

∑
x2

i +nx̄[ȳ−mx̄]= m
(∑

x2
i −nx̄2)+

nx̄ ȳ=∑
xi yi. This may be solved for m to get

m =

∑n
i=1 xi yi

n
− x̄ ȳ∑n

i=1 x2
i

n
− x̄2

(7.5)

The numerator of Equation 7.5 is recognized as covariance represented by σxy while the
denominator of Equation 7.5 is recognized as the variance of x represented by σ2

x. Hence the
above equation may be rewritten as

m = σxy

σ2
x

(7.6)

parameter m represents the slope of the regression line while c represents the intercept of the
regression line.

7.2.2 Coefficient of correlation and goodness of fit

We have given above the method of estimating the fit parameters of a linear relationship by
least squares. y was treated as the effect while x was treated as the cause. It is also possible to
treat x as the effect and y as the cause and look for a straight line fit in the form x = m′ yd + c′. If
we run through the analysis in the previous section, interchanging the roles of x and y we should
get the following:

c′ = x̄−m′ ȳ

m′ = σxy

σ2
y

(7.7)

Slope of this regression line is given by
1

m′ , which, in general, is not the same as m, the slope of
the first regression line. The ratio of the two slopes is given by

m
1

m′
= mm′ =

σ2
xy

σ2
xσ

2
y
= ρ2 (7.8)

7.2. Method of least squares for linear regression 279

where ρ represents the square root of the ratio of the slopes of the two regression lines. It is also
known as the correlation coefficient and hence

ρ =± σxy

σxσy
(7.9)

The sign of ρ is the same as the sign of σxy. If it is positive, x and y vary alike i.e. y increase when
x increases. If it is negative y decreases when x increases.

If ρ =±1 the fit and data are in extremely good agreement and we have noise free data! |ρ| ≈ 0
means the linear relationship sought for is extremely unlikely. However, it has to be noted that the
correlation coefficient does not indicate if the variables share a non-linear relationship. In practice
the linear fit is said to be good if |ρ| is close to one.

Example 7.1
The following data is expected to be represented by a linear relationship. Obtain such a fit by
least squares and comment on the goodness of fit.

x 0.6 0.9 1.3 2.1 2.9 3.4 3.7 4.6 5.2
y 1.08 1.11 1.31 2.27 2.9 3 3.35 4.14 4.35

Solution :
Fit parameters are obtained by first calculating all the required statistical parameters. This
is best done by the use of a spreadsheet as given below.

Data No. x y x2 y2 xy
1 0.6 1.08 0.360 1.166 0.648
2 0.9 1.11 0.810 1.229 0.998
3 1.3 1.31 1.690 1.726 1.708
4 2.1 2.27 4.410 5.172 4.776
5 2.9 2.90 8.410 8.437 8.424
6 3.4 3.00 11.560 8.977 10.187
7 3.7 3.35 13.690 11.190 12.377
8 4.6 4.14 21.160 17.155 19.052
9 5.2 4.35 27.040 18.919 22.618
Column Sum 24.70 23.51 89.130 73.972 80.788
Column Mean 2.74444 2.61268 9.90333 8.21908 8.97640

The column means required for calculating the fit parameters are shown in the last row.
The statistical parameters are now calculated:

σ2
x = 9.90333−2.744442 = 2.37136

σ2
y = 8.21908−2.612682 = 1.39299

σxy = 8.97640−2.74444×2.61268= 1.80605

Using Equation 7.6 the slope of the fit line is given by

m = 1.80605
2.37136

= 0.76161≈ 0.762

280 Chapter.7 Regression or curve fitting

D
at

a
or

 F
it

1

2

3

4

5

x
0 1 2 3 4 5 6

Data
Fit

Figure 7.3: Data and �t line in
Example 7.1

Using Equation 7.4 the intercept is given by

c = 2.61268−0.76161×2.74444= 0.52248≈ 0.522

The goodness of fit is indicated by the coefficient of correlation given by (Equation 7.9)

ρ = 1.80605p
2.37136×1.39299

= 0.994

The fit is thus seen to be an excellent representation of the data provided in the problem.
A plot of the data and the fit line (also referred to as trend line) is shown in Figure 7.3.

7.2.3 Index of correlation and goodness of fit

Alternately we may use the more general ‘index of correlation’ to comment on the goodness of fit.
Index of correlation compares the spread in the y values with respect to ȳ with the spread in the
error with respect to the regression line or in the more general case with the regression relation
which may be non-linear. The index of correlation is defined as

ρ =
√√√√1−

∑n
i=1 e2

i∑n
i=1(y− ȳ)2

(7.10)

Note the use of the same symbol ρ to represent the index of correlation. Most software programs
use the symbol R2 to represent the square of the coefficient of correlation or the index of
correlation. Unlike correlation coefficient (Equation 7.9), index of correlation (Equation 7.10) can
be applied also to nonlinear relationships. Thus we write

R2 = 1−
∑n

i=1 e2
i∑n

i=1(y− ȳ)2
(7.11)

It may easily be shown (the reader is encouraged to prove this) that in the linear regression case
the coefficient of correlation and index of correlation are identical.

7.2. Method of least squares for linear regression 281

Adjusted index of correlation
In practice it is usual to use the “adjusted” index of correlation or the “adjusted R2” i.e. R2

ad j
to account for the loss of information in arriving at a fit.3 Consider as an example the linear
regression case presented earlier. We use the least squares method to obtain two parameters -
the slope parameter and the intercept parameter - to obtain the regression line. Hence there is
a reduction in the number of degrees of freedom given by the number of parameters p. Thus
the number of degrees of freedom becomes n− p = n− 2 in the linear regression case. Also, in
calculating the variance of the y’s we lose one degree of freedom in calculating ȳ. Hence we modify
Equation 7.10 as

R2
ad j = 1− (n−1)

(n− p)

∑n
i=1 e2

i∑n
i=1(y− ȳ)2

(7.12)

Note that R2
ad j → R2 when n is very large.

7.2.4 Error estimate

Having obtained a fit it is possible to get an estimate of the error in the data. Since we are using
the fit as a proxy for the data the error is related to the sum of squares of errors with respect to
the fit. We make use of the number of degrees of freedom and define a standard estimate for the
error as

σe =±
√∑n

i=1 e2
i

n− p
(7.13)

The fit parameters (the slope and intercept) are themselves subject to uncertainties since they are
calculated based on error prone data. It is possible to estimate the error in both these parameters
but the analysis involves material which is outside the scope of this book. However we present
below formulae which may be used to estimate the errors in the slope and intercept parameters.

σ2
m =

σ2
yi

nσ2
x

; σ2
c =

σ2
yi

n
+
σ2

yi
x̄2

nσ2
x

(7.14)

Example 7.2
Use the data of Example 7.1 to calculate R2

ad j and comment on the goodness of fit. Also
estimate the error in using the fit to represent the data. What are the uncertainties in the
slope and intercept parameters?
Solution :

The fit parameters determined in Example 7.1 may be made use of to calculate the ‘fit
line’ and then use the data generated thus to calculate both R2

ad j and σe. Extract of a
spreadsheet shown below helps in arriving at the results.

3Analysis shows that the adjustment to account for degrees of freedom is related to estimate of the
statistical parameters of data drawn from a population. Thus ‘adjusted’ accounts for the data used being a
sample from a large population.

282 Chapter.7 Regression or curve fitting

x y yl (y− yl)2 (y− ȳ)2

0.6 1.0798 0.9794 0.010071 2.349714
0.9 1.1087 1.2079 0.009847 2.261949
1.3 1.3139 1.5126 0.039472 1.686824
2.1 2.2743 2.1219 0.023237 0.114500
2.9 2.9047 2.7312 0.030119 0.085277
3.4 2.9962 3.1120 0.013399 0.147089
3.7 3.3451 3.3404 0.000022 0.536442
4.6 4.1418 4.0259 0.013436 2.338215
5.2 4.3496 4.4829 0.017756 3.016899

Sum= 23.5141 23.5141 0.157359 12.536909

With n = 9, p = 2, R2
ad j may be calculated using defining Equation 7.12 as

R2
ad j = 1− (9−1)

(9−2)
×

(
0.157359

12.536909

)
= 0.985655≈ 0.986

The value of R2
ad j = 0.986 represents a good fit. An estimate of the standard error is

calculated using defining Equation 7.13 as

σe =±
√

0.157359
(9−2)

=±0.149933≈±0.150

Thus the data is represented by the regression line as

yl = (0.762x+0.522)±0.150 (7.15)

i.e. the line represents the data within an error band of ±0.150. We shall use this as
an estimate for σ in estimating the errors in the parameters. Using Equation 7.14 and
σ2 = 0.1499332 = 0.0224798 we get

σm = ±
√

0.0224798
9×2.37136

=±
p

0.0070253117=±0.0324546273≈±0.033

σc =
√

0.0224798
9

+ 0.0224798×2.7442

9×2.37136
=
p

0.0695740031= 0.102133≈±0.102

Thus the slope and intercept parameters are given by

m = 0.762±0.033; c = 0.522±0.102

More often in practice, the dependent and independent variables may share a non-linear
relationship. However, the fit itself can be transformed into the linear form Y = A + BX so
that the linear regression may be used. Note that the equation of the fit is linear with respect
to the coefficients. The following table lists some of non-linear regression equations which may be
linearized

7.2. Method of least squares for linear regression 283

Table 7.1: Non-linear regression �t and its corresponding linearized form

S.no Fit equation Linearized form, Y = A+BX

Y A B X

1 y= aebx ln y lna b x

2 xy= ax+b y a b 1/x

3 y= axb log10 y log10 a b log10 x

4 y= a+bx2 y a b x2

5 y= a+bex y a b ex

6 y= aebx + cx+d cannot be linearized

Not all non-linear relations can be linearized as shown by case 6 above. We will discuss such
cases later. First, let us consider an example which can fit a non-linear curve to the data using
linear regression.

Example 7.3
It is intended to determine the relation between Nusselt number Nu and Rayleigh number
Ra for a vertical heated wall losing heat by natural convection. Heat transfer experiments
have been conducted on a heated vertical flat plate and the data has been tabulated below.

Ra Nu Ra Nu
1 33740 4.550 9 261300 8.144
2 57440 5.174 10 397200 9.119
3 73070 5.606 11 450300 8.994
4 90770 6.027 12 509500 9.639
5 134300 6.524 13 571900 9.740
6 161300 6.935 14 715700 10.196
7 190800 7.334 15 795900 10.874
8 224700 7.745

The relationship between Nusselt number and Rayleigh number is of the form Nu = aRab.
Fit a least squares curve to the above experimental data and comment on the goodness of the
fit.
Background :
Nusselt number and Rayleigh number are non-dimensional numbers used in heat transfer.
These represent respectively the non-dimensional convective heat transfer rate and the
non-dimensional buoyancy parameter.

Solution :
Nusselt number and Rayleigh number share a non-linear relationship. The equation can be
linearized by taking log10 on both the sides. Therefore, we have

log10 Nu = log10 a+b log10 Ra

which is of the form
Y = bX + c

284 Chapter.7 Regression or curve fitting

where Y = log10 Nu, X = log10 Ra and c = log10a and the above equation is linear with
respect to the coefficients b and c. We can now apply linear regression to the data as
summarized in the following spreadsheet.

X Y XY X2

1 4.5281 0.6580 2.9796 20.5041
2 4.7592 0.7138 3.3973 22.6501
3 4.8637 0.7487 3.6413 23.6560
4 4.9579 0.7801 3.8677 24.5812
5 5.1281 0.8145 4.1769 26.2972
6 5.2076 0.8410 4.3799 27.1195
7 5.2806 0.8653 4.5695 27.8845
8 5.3516 0.8890 4.7577 28.6397
9 5.4171 0.9108 4.9341 29.3454

10 5.5990 0.9599 5.3748 31.3489
11 5.6535 0.9540 5.3932 31.9621
12 5.7071 0.9840 5.6160 32.5715
13 5.7573 0.9886 5.6915 33.1467
14 5.8547 1.0084 5.9041 34.2779
15 5.9009 1.0364 6.1156 34.8201

Sum 79.9666 13.1527 70.7989 428.8048

The fit parameters are obtained as b = 0.2729 and c = −0.5781. Then a = 10c = 0.2642.
Therefore the regression fit is given by

Nu = 0.2642Ra0.2729 ≈ 0.26Ra0.27

Figure 7.4 shows the comparison between data and fit, plotted on log-log paper.

N
u

4

6

8

10

12

Ra
1e+04 1e+05 1e+06

 Data
 Fit

Figure 7.4: Data and �t line
in Example 7.3

Observe that the curve is a straight line on a log-log graph. Now we shall calculate R2
Ad j

to ascertain the quality of the fit. Table given below helps in this.

7.2. Method of least squares for linear regression 285

X Y Y l (Y −Y l)2 (Y − Ȳ)2

4.528 0.658 0.658 9.336E-08 4.789E-02
4.759 0.714 0.721 4.823E-05 2.657E-02
4.864 0.749 0.749 4.128E-07 1.643E-02
4.958 0.780 0.775 2.596E-05 9.359E-03
5.128 0.815 0.821 4.790E-05 3.885E-03
5.208 0.841 0.843 4.406E-06 1.281E-03
5.281 0.865 0.863 5.225E-06 1.323E-04
5.352 0.889 0.882 4.333E-05 1.483E-04
5.417 0.911 0.900 1.106E-04 1.156E-03
5.599 0.960 0.950 9.983E-05 6.906E-03
5.654 0.954 0.965 1.183E-04 5.946E-03
5.707 0.984 0.979 2.084E-05 1.149E-02
5.757 0.989 0.993 2.120E-05 1.248E-02
5.855 1.008 1.020 1.281E-04 1.731E-02
5.901 1.036 1.032 1.646E-05 2.545E-02
Sum 13.153 13.153 6.908E-04 0.186

With n = 15, p = 2, R2
ad j may be calculated using defining Equation 7.12 as

R2
ad j = 1− (15−1)

(15−2)
×

(
0.6.908E−04

0.186

)
= 0.996

The value of R2
ad j = 0.996 represents a good fit to the above data.

Common misconceptions about R2

R2 is large
Larger values of R2 means the fit is a good representation of the data. The data used to determine
the fit often represents only a small sample size. If the sample does not represent the entire
distribution properly, the resulting fit will not represent the distribution accurately. Therefore, a
good fit to a data may not be a good fit in the entire range. In fact the main challenge faced by one
is to obtain proper sample data.
Sampling of data can be poor for following possible reasons

1. Number of data points are small (see Figure 7.5). As the number of data points are small,
the uncertainty in the coefficients would be high. Also, the R2

ad j term would be usually
small. The confidence in the fit increases with large volumes of data points. As the number
of data points become large, R2

ad j tends to R2.

x

y

Figure 7.5: A linear �t across four
data points may not be accurate �t even
though R2 is close to 1

286 Chapter.7 Regression or curve fitting

2. Data points may be concentrated only in some regions of the entire domain. It may be
possible that the sampled data corresponds to a small region and does not cover the entire
range. In that sense, the regression fit is valid only in the sampled region. Use of the fit
beyond may amount to extrapolation.

Example 7.4
Represent the following data by linear fit.

x 0.7 0.75 0.8 0.85 0.9 0.95 1
y 0.49 0.5625 0.64 0.7225 0.81 0.9025 1

The above data corresponds to the exact curve y = x2. Compare the linear fit to the exact
curve.
Solution :

All the statistical parameters are determined using the table below.

No. x y x2 xy
1 0.7 0.49 0.49 0.343
2 0.75 0.5625 0.5625 0.421875
3 0.8 0.64 0.64 0.512
4 0.85 0.7225 0.7225 0.614125
5 0.9 0.81 0.81 0.729
6 0.95 0.9025 0.9025 0.857375
7 1 1 1 1

Column sum 5.95 5.1275 5.1275 4.477375
Column mean 0.85 0.7325 0.7325 0.639625

y

-0.5

0

0.5

1

1.5

2

x
0 0.5 1 1.5

 Linear fit
 Exact curve
 Data points

Figure 7.6: Comparison between
linear �t and exact curve in the
range 0< x < 1.5

The linear fit to the data is y=−0.7125+1.7x. The R2 for the linear fit is 0.9977. Therefore,
the linear fit is a good representation of the data in the region 0.7 < x < 1. However, we
are aware that the exact curve is of quadratic form and the fit is of linear form. Figure 7.6

7.3. Multi-linear regression 287

compares the linear fit curve and the exact curve in the range 0 < x < 1.5. It is clear from
the figure that the linear fit is a good approximation of the curve in the range 0.7 < x < 1
while the fit represents the curve poorly away from the region.

The example clearly illustrates the importance of sampling. The sample being restricted
to a small range can mislead that x and y share linear relationship where as the actual
relationship may be different. Therefore R2 being close to 1 is an indicator that the fit is
good in the data range and may not indicate the true relationship at all!

R2 is small
Small value of R2 suggests that the fit is not good. This may lead to a conclusion that x and y are
unrelated which may be totally untrue. Similarly correlation index used to indicate the goodness
of a linear fit indicates the linear relationship between x and y to be poor. It is possible that x
and y share a nonlinear relationship! Essentially R2 only indicates the goodness of the fit to the
available data but may not be a true representer of the relationship between dependent (effect)
and independent (cause) variables.

7.3 Multi-linear regression
In general a multi-liner fit is of form y f = a0+a1x1+a2x2+·· ·+amxm where x j are m causes and

y f is the effect. We have to determine the parameters a0,a1, . . .am by the least squares method.

S =
n∑

i=1

[
yi − y f

]2 =
n∑

i=1

[
yi −a0 −a1x1,i −a2x2,i −·· ·−amxm,i

]2 (7.16)

The sum of the squares of the error has to be minimized. For minimum of S, the partial derivatives
∂S
∂ai

= 0. We then obtain the following normal equations

∑
yi = na0 +a1

∑
x1,i +a2

∑
x2,i +·· ·+ am

∑
xm,i∑

yix1,i = a0
∑

x1,i +a1
∑

x2
1,i +a2

∑
x2,ix1,i +·· ·+ am

∑
xm,ix1,i

· · · · · · · · · · · ·∑
yixm,i = a0

∑
xm,i +a1

∑
x1,ixm,i +a2

∑
x2,ixm,i +·· ·+ am

∑
x2

m,i

(7.17)

Rewriting the above equations in matrix form

n
∑

x1,i ·· ∑
x j,i ·· ∑

xm,i∑
x1,i

∑
x2

1,i ·· ∑
x j,ix1,i ·· ∑

xm,ix1,i∑
x2,i

∑
x1,ix2,i ·· ∑

x j,ix2,i ·· ∑
xm,ix2,i

·· ·· ·· ·· ·· ··∑
xm,i

∑
x1,ixm,i ·· ∑

x j,ixm,i ·· ∑
x2

m,i

a0
a1
a2
· · ·
am

=

∑
yi∑

yix1,i∑
yix2,i

· · ·∑
yixm,i

(7.18)

where the summations are from i = 1 to i = n. The coefficient matrix is symmetric and the above
set of equations may be solved by matrix manipulations such as conjugate gradient method we
are already familiar with. It has to be noted that all least square problems result in symmetric
matrices. The goodness of fit may be gaged by the R2

ad j value.

288 Chapter.7 Regression or curve fitting

Program 7.1: Multi-linear regression

1 function [coeff ,ss ,R2] = multilinearregression (x,y)

2 % I n p u t x : i n d e p e n d e n t v a r i a b l e s
3 % y : d e p e n d e n t v a r i a b l e
4 % O u t p u t c o e f f : c o e f f i c i e n t s
5 % s s : s t a n d a r d e r r o r
6 % R2 : i n d e x o f c o r r e l a t i o n
7 [n,m] = size(x); % s i z e o f x
8 % m = number o f i n d e p e n d e n t v a r i a b l e s
9 % n = number o f d a t a p o i n t s

10 A = zeros(m+1,m+2); % i n i t i a l i z i n g C o e f f i c i e n t M a t r i x
11 r = [ones(n,1) x y]; % i n i t i a l i z i n g r m a t r i x r = { 1 X Y }
12 i = 1;

13 while(i<=m+1) % c o n s t r u c t i n g c o e f f i c i e n t m a t r i x
14 for j =1:m+2

15 r1(:,j) = r(:,j).*r(:,i);

16 end

17 A(i,:) = sum(r1);

18 i = i+1;

19 end

20 coeff = choleskydecomposition(A(:,1:m+1),A(:,m+2));

21 yfit = r(:,1:m+1)*coeff; % c a l c u l a t e y f i t
22 ss = sqrt(sum((y-yfit).^2) /(n-m-1)); % c a l c u l a t e s s
23 R2 = 1-ss^2/ var(y); % c a l c u l a t e R2
24 % v a r (y) b u i l t i n f u n c t i o n t o c a l c u l a t e v a r i a n c e

Example 7.5
Following data has been gathered where the effect y depends on two causes x1 and x2. Obtain
the fit parameters that characterize a multi-linear fit. Also evaluate the goodness of fit.

No. 1 2 3 4 5 6 7 8 9 10
x1 1.2 2.15 2.66 2.95 3.42 3.65 3.92 4.22 4.33 4.56
x2 0.85 0.96 1.12 1.45 1.79 2.06 2.44 2.54 2.76 3.07
y 9.65 12.97 14.98 18.76 20.8 22.4 26.1 27.8 29.1 30.6

Solution :
The normal equations for this case are obtained as

n
∑

i
x1,i

∑
i

x2,i∑
i

x1,i
∑

i
x2

1,i
∑

i
x1,ix2,i∑

i
x2,i

∑
i

x2,ix1,i
∑

i
x2

2,i

a0
a1
a2

=

∑
i

yi∑
i

x1,i yi∑
i

x2,i yi

where 1≤ i ≤ 10. The required sums are easily calculated as given in the following table:

7.4. Polynomial regression 289

x1 x2 y x2
1 x2

2 x1x2 x1 y x2 y
1.2 0.85 9.65 1.44 0.7225 1.02 11.58 8.2025

2.15 0.96 12.97 4.6225 0.9216 2.064 27.8855 12.4512
2.66 1.12 14.98 7.0756 1.2544 2.9792 39.8468 16.7776
2.95 1.45 18.76 8.7025 2.1025 4.2775 55.342 27.202
3.42 1.79 20.8 11.6964 3.2041 6.1218 71.136 37.232
3.65 2.06 22.4 13.3225 4.2436 7.519 81.76 46.144
3.92 2.44 26.1 15.3664 5.9536 9.5648 102.312 63.684
4.22 2.54 27.8 17.8084 6.4516 10.7188 117.316 70.612
4.33 2.76 29.1 18.7489 7.6176 11.9508 126.003 80.316
4.56 3.07 30.6 20.7936 9.4249 13.9992 139.536 93.942

33.06 19.04 213.16 119.5768 41.8964 70.2151 772.7173 456.5633

The normal equations then are
10 33.06 19.04

33.06 119.5768 70.2151
19.04 70.2151 41.8964

a0
a1
a2

=

213.16
772.7173
456.5633

The above set of equations are solved by Gauss elimination (bring the augmented matrix
to upper triangle form) to get a1 = 1.70, a2 = 2.95 and a3 = 5.19. The desired fit to data is
given by

y f (x1, x2)= 1.70+2.95x1 +5.19x2

yf

0

5

10

15

20

25

30

35

y
0 5 10 15 20 25 30 35

yf vs y
Parity line

Figure 7.7: Parity plot for multi-
linear �t of Example 7.5

Since there are two independent variables and one dependent variable a ‘parity plot’ helps
in assessing the fit. In essence we make a plot of y vs y f to obtain a parity plot. If the
scales along the two axes are chosen properly the data points should lie close to the 45◦ line
passing through the origin, known as the partiy line (see Figure 7.7). Goodness of fit may, of
course, be gaged from the value of R2

ad j calculated as usual. In the present case R2
ad j = 0.994

which indicates a very good fit. The estimated error of the fit is given by σe = 0.54.

7.4 Polynomial regression
Linear regression methodology may easily be applied to a case where the cause effect de-

pendence is a polynomial. The coefficients in the polynomial take on the roles of parameters.

290 Chapter.7 Regression or curve fitting

Consider the case where the data set (xi, yi), 1 ≤ i ≤ n is represented by a polynomial of form
yl(x)= a1+a2x+a3x2 . . .+amxm−1 where m < n. We have to determine the parameters a1,a2, . . .am
by the least squares method. It may easily be shown that the parameters are the solution of the
following set of normal equations.

n
∑

xi ·· ∑
x j

i ·· ∑
xm−1

i∑
xi

∑
x2

i ·· ∑
x j+1

i ·· ∑
xm

i∑
x2

i
∑

x3
i ·· ∑

x j+2
i ·· ∑

xm+1
i

·· ·· ·· ·· ·· ··∑
xm−1

i

∑
xm+2

i ·· ∑
x j+m−1

i ·· ∑
x2m−2

i

a1
a2
a3
· · ·
am

=

∑
yi∑

yixi∑
yix2

i
· · ·∑

yixm−1
i

(7.19)

where the summations are all from i = 1 to i = n. The above set of equations may be solved by
matrix manipulations we are already familiar with. The goodness of fit may again be gaged by the
R2

ad j value.

Example 7.6
The location of a particle changes along a line with time. It is desired to look for a quadratic
fit to the time vs location data (SI units) globally. Obtain such a fit by least squares.

Time Location Time Location
No. t y No. t y
1 0.094 1.356 11 2.245 1.918
2 0.204 1.382 12 2.884 2.087
3 0.538 1.462 13 3.112 2.157
4 0.922 1.562 14 3.568 2.312
5 1.088 1.582 15 3.798 2.458
6 1.465 1.725 16 4.154 2.576
7 1.798 1.817 17 4.248 2.662
8 1.442 1.688 18 4.653 2.789
9 1.576 1.756 19 5.123 2.875
10 1.785 1.814

Also discuss the quality of the fit. What is the expected error in using the fit instead of the
data?
Solution :

In this case m = 3 and there are three parameters a1, a2, a3 to be determined such that
the fit is given by y f (t) = a1 + a2t+ a3t2. The sums required in formulating the normal
equations are easily obtained as

∑
i

ti = 44.697,
∑

i
t2

i = 148.896,
∑

i
t3

i = 572.973,
∑

i
t4

i =
2377.375,

∑
i

yi = 37.798,
∑

i
ti yi = 102.928,

∑
i

t2
i yi = 368.051 where i goes from 1 to 19. The

normal equations are then given by
19 44.697 148.896

44.697 148.896 572.973
148.896 572.973 2377.375

a1
a2
a3

=

37.978
102.928
368.051

In the above and what follows numbers are shown truncated to three significant digits after
decimals. However the calculations have been performed with available computer precision
and finally rounded as described.

7.5. Non-linear regression 291

These equations may easily be solved (for example, by Gauss elimination) to get the
parameter set as a1 = 1.337,a2 = 0.226,a3 = 0.017. The fit and data are compared in the
following table.

No. t y y f No. t y y f

1 0.094 1.356 1.358 11 2.245 1.918 1.928
2 0.204 1.382 1.384 12 2.884 2.087 2.127
3 0.538 1.462 1.463 13 3.112 2.157 2.201
4 0.922 1.562 1.560 14 3.568 2.312 2.355
5 1.088 1.582 1.603 15 3.798 2.458 2.435
6 1.465 1.725 1.704 16 4.154 2.576 2.562
7 1.798 1.817 1.797 17 4.248 2.662 2.597
8 1.442 1.688 1.698 18 4.653 2.789 2.748
9 1.576 1.756 1.735 19 5.123 2.875 2.930

10 1.785 1.814 1.793

The goodness of fit may be checked by calculating the R2
ad j. In the present case n = 19 and

p = 3. Calculation of the sums of squares may easily be made using a spreadsheet program.
Leaving these to the reader, the calculated value of R2

ad j = 0.995. The fit is a very good
representation of the data. Further we calculate the error of the fit as σe = 0.034.

Polynomial fit considered in Example 7.6 may be visualized as multi-linear fit if we set t2 = u
(say) such that the fit is of the form y f = a1 +a2t+a3u.

Program 7.2: Polynomial regression

1 function [coeff ,ss ,R2] = polyregression(x,y,m)

2 % I n p u t x : i n d e p e n d e n t v a r i a b l e
3 % y : d e p e n d e n t v a r i a b l e
4 % m : d e g r e e o f t h e f i t
5 % O u t p u t : c o e f f : c o e f f i c i e n t s
6 % c o n v e r t p o l y n o m i a l r e g r e s s i o n t o m u l t i p l e l i n e a r r e g r e s s i o n
7 % [x x ^2 . . . x ^m] = [x 1 x 2 . . . xm]
8 for i=1:m % c o n s t r u c t i n g m u l t i p l e p a r a m e t e r m a t r i x
9 r(:,i) = x.^(i);

10 end

11 [coeff ,ss ,R2] = multilinearregression(r,y); % c a l l f u n c t i o n
% m u l t i r e g r e s s i o n

7.5 Non-linear regression
By far the most involved case is that of non-linear regression. Minimization of sum of squares

of the residuals requires the application of an optimization method considered earlier in Chapter
4.

The method of solving for the parameters representing a non-linear fit is perforce iterative.
The normal equations are seldom explicitly written down. The iterative scheme actually looks
at the minimization of the sum of squares of residuals, within a reasonable tolerance set by the
user. Jacobian matrix of a least square method is always symmetric and hence methods such
as Conjugate gradient can be applied. The sum of squares of residuals will always be non-zero
positive quantity. An example is used to demonstrate the method useful for non-linear regression.

292 Chapter.7 Regression or curve fitting

Example 7.7
The following tabulated data is expected to be well represented by the relation y f = a1ea2x +
a3x. Determine the three fit parameters a1 −a3 by non-linear least squares.

x 0 0.2 0.4 0.6 0.8
y 1.196 1.379 1.581 1.79 2.013
x 1 1.2 1.4 1.6 1.8
y 2.279 2.545 2.842 3.173 3.5

Also discuss the quality of the fit. Estimate the error of fit.
Solution :

The sum of squares of residuals is given by

S =
10∑
i=1

[
yi − y f

i

]2 =
10∑
i=1

[
yi −a1ea2xi −a3xi

]2

In order to find the best values of the parameters we need to set the three partial derivatives
of S to zero i.e.

∂S
∂a1

= −2
10∑
i=1

[
yi −a1ea2xi −a3xi

]
ea2xi = 0

∂S
∂a2

= −2
10∑
i=1

[
yi −a1ea2xi −a3xi

]
a1xiea2xi = 0

∂S
∂a3

= −2
10∑
i=1

[
yi −a1ea2xi −a3xi

]
xi = 0

Since it is not feasible to solve this system directly we look at the corresponding optimization
problem where we obtain the parameter set that minimizes the sum of squares of residuals.
We start the iteration process by assuming an initial set of parameters given by

a0
1 = 1, a0

2 = 0.2, a0
3 = 0.1

With these starting set of values the sum of squares of residuals and partial derivatives are
calculated using a spreadsheet shown as Table 7.2.

The magnitude of the gradient vector |g| and corresponding unit vector u along the
gradient are obtained as

|g| =
√√√√ 3∑

i=1

(
∂S
∂ai

)2
=

√
24.0232 +30.6822 +23.0032 = 45.250968

and
uT =

−0.531 −0.678 −0.508

We now take a step in a direction opposite to u. The step size is determined by quadratic
search method. We start with α = 0.5 along the descent direction. The minimization step

7.5. Non-linear regression 293

Table 7.2: Spreadsheet for Example 7.7

x y y f (y− y f)2 ∂S/∂a1 ∂S/∂a2 ∂S/∂a3
0 1.196 1.000 0.038 -0.392 0.000 0.000

0.2 1.379 1.061 0.101 -0.662 -0.132 -0.127
0.4 1.581 1.123 0.210 -0.992 -0.397 -0.366
0.6 1.790 1.187 0.363 -1.359 -0.815 -0.723
0.8 2.013 1.254 0.577 -1.783 -1.426 -1.215
1 2.279 1.321 0.917 -2.339 -2.339 -1.915

1.2 2.545 1.391 1.331 -2.933 -3.520 -2.769
1.4 2.842 1.463 1.901 -3.649 -5.108 -3.861
1.6 3.173 1.537 2.676 -4.506 -7.209 -5.235
1.8 3.500 1.613 3.560 -5.408 -9.735 -6.792

Column Sums 11.674 -24.023 -30.682 -23.003

size is then given by α = 0.4176. The parameter set gets updated as a1
1 = 1.2217, a1

2 =
0.483, a1

3 = 0.312. Correspondingly S = 0.0059 which is a significant reduction after just one
descent step. The minimization process using steepest descent converges in 1533 iterations
to yield the parameter set a1 = 1.194, a2 = 0.512, a3 = 0.282 with S = 0.0004. However,
the same results are obtained, using CG method in just 101 iterations. The fit is a good
representation of the data as indicated by Figure 7.8. R2

ad j is calculated as 0.9999 which
fortifies the previous observation about the quality of the fit. Error of fit is estimated as
σe = 0.0076.

y

1

1.5

2

2.5

3

3.5

4

x
0 0.5 1 1.5 2

 Data
 Fit

Figure 7.8: Comparison be-
tween data and �t in Example
7.7

294 Chapter.7 Regression or curve fitting

Concluding remarks

In this chapter we have given a brief introduction to techniques used in data fit. Data fit is
an essential part of any experimental research irrespective of the field of study. The goal of
experimental research is to look for patterns in the data so that simple and useful relationships
may be brought out. Such analysis also exposes any factors that may not have been considered
in the experimental data.

7.A MATLAB routines related to Chapter 7
MATLAB provides a curve fitting toolbox, a graphical user interface, which can be used for

performing linear and nonlinear regression, interpolation using splines, b-splines and smoothing
functions. Here are some of the built in functions provided by MATLAB for regression

MATLAB routine Function

cftool opens curve fitting toolbox

fit performs curve fit for a range of library
functions provided by MATLAB

nlinfit nonlinear regression
nlintool graphical user interface for nlinfit
confint confidence intervals for fit coefficients

7.B Suggested reading
1. J.E. Freund Mathematical Statistics with Applications (7th Edition) Prentice Hall, 2003

Chapter 8

Numerical Di�erentiation

In many engineering applications such as structural mechanics, heat transfer and fluid
dynamics numerical methods are employed to solve the governing partial differential
equations. The numerical data is available at discrete points in the computational
domain. It is then necessary to use numerical differentiation to evaluate or estimate
derivatives. Usually finite difference approximations are used to evaluate derivatives.
Forward, backward and divided differences dealt with in section 5.3 are in fact related
to approximations of derivatives of a given function. We look at numerical differentiation
in greater detail in this chapter.

295

296 Chapter.8 Numerical Differentiation

8.1 Introduction
Derivative is a mathematical operation indicating the rate of change of dependent variable f

with respect to the independent variable x. Mathematically one can define the derivative at a
point x0 as

d f
dx

∣∣∣∣
x0

= f (1)(x0)= lim
h→0

f (x0 +h)− f (x0)
h

(8.1)

First derivative is nothing but the slope of the tangent to the curve at the point where as the second
derivative is related to the curvature. Recollect, in Chapter 4, we have discussed about Newton
Raphson method where the root of the algebraic equation was approximated as the intercept of
the tangent with the x axis. In secant method, a secant line joining two points are used instead
of the tangent. Slope of secant line is an approximation of the first derivative as shown in Figure
8.1. As the step size h decreases and tends towards zero, the slope of the secant line becomes the
slope of the tangent. Therefore, the estimate of the first derivative can be written as

x

f

A

B

C

Tangent

Figure 8.1: Approximation of a
tangent with secants A, B and C

f (1)(x0)≈ f (x0 +h)− f (x0)
h

(8.2)

Numerical differentiation deals with estimating the derivatives using function evaluations alone.
We have already dealt with some examples in Chapter 4 where Hessian and Jacobian matrices are
evaluated numerically. Differential equations are used to model most physical phenomena and
numerical differentiation is employed extensively in solving them. We introduce different aspects
of numerical differentiation in the following sections.

8.2 Finite difference formulae using Taylor’s series

Forward and backward difference

Consider a function f (x) whose first derivative is required at a point x0. A Taylor series
representation of the function in the neighborhood of x0 may be written as

f (x)= f (x0)+ (x− x0) f (1)(x0)+O(x− x0)2 (8.3)

where the symbol O is the order symbol which means that the term adjoining the symbol is roughly
the size of the term, within a multiplicative constant. If (x− x0) is sufficiently small we may

8.2. Finite difference formulae using Taylor’s series 297

truncate the right hand side by neglecting the third term onwards to get an estimate of the first
derivative as

f (1)(x0)≈ f (x)− f (x0)
x− x0

(8.4)

It is seen at once that this is nothing but the first divided difference at x0. This formula is referred
to as the forward difference approximation of the first derivative at x0. In normal practice x−x0 is
specified as the step size h so that the above formula becomes

f (1)(x0)≈ f (x0 +h)− f (x0)
h

(8.5)

It is also seen that the neglected term is of O(h). The above estimate is exact for a linear equation
and hence we say that the forward difference formula for the first derivative is first order accurate.

The reader will easily be able to realize that the above is also the backward difference
approximation (recall the discussion in section 5.3) of the first derivative at x0 + h. Hence the
backward difference formula for first derivative can be written as

f (1)(x0)≈ f (x0)− f (x0 −h)
h

(8.6)

Central difference

First order accurate formulae are seldom used in practice. Higher order finite differences are
possible using, for example, central differences that are second order accurate. We consider equi-
spaced data first. We choose three consecutive equi-spaced points xi −h, xi and xi +h and using
Taylor expansion write

f (xi +h) = f (xi)+ f (1)(xi)h+ f (2)(xi)
h2

2
+ f (3)(xi)

h3

6
+O(h4) · · · (a)

f (xi −h) = f (xi)− f (1)(xi)h+ f (2)(xi)
h2

2
− f (3)(xi)

h3

6
+O(h4) · · · (b) (8.7)

Subtracting Equation 8.7(b) from Equation 8.7(a) we get

f (xi +h)− f (xi −h)= 2 f (1)(xi)h+O(h3)

This may be rewritten in the form

f (1)(xi)= f (xi +h)− f (xi −h)
2h

+O(h2) (8.8)

Thus we get the central difference approximation for the first derivative and it is second order
accurate i.e. the derivative estimate is exact for a quadratic curve. This may be recast as

f (1)(xi)=
f (xi+h)− f (xi)

h + f (xi)− f (xi−h)
h

2
+O(h2) (8.9)

showing thereby that the central difference approximation for the first derivative is the average of
the forward and backward difference approximations to the first derivative at the central node xi
(Figure 8.2).

298 Chapter.8 Numerical Differentiation

xixi −h xi +h x

f

C

A

B

Tangent
Figure 8.2: Forward (A), back-
ward (B) and central di�erence
(C) approximations of �rst deriva-
tive

Second derivative using central differences

Adding Equations 8.7(a) and (b) we get

f (xi +h)+ f (xi −h)= 2 f(xi)+ f (2)(xi)h2 +O(h4)

This may be rewritten in the form

f (2)(xi)= f (xi +h)−2 f (xi)+ f (xi −h)
h2 +O(h2) (8.10)

Thus we get the central difference approximation for the second derivative and it is second order
accurate.

8.3 Differentiation of Lagrange and Newton polynomials
It is possible to obtain finite difference approximations to the derivatives by term by term

differentiation of the approximating polynomials such as Lagrange or Newton polynomials.
Additional advantage of this method is that finite difference formulae may easily be derived for
arbitrarily spaced data.

8.3.1 Derivatives of Lagrange polynomials: arbitrarily spaced data

Lagrange polynomials may be differentiated term by term to obtain the derivatives. Usually
our interest is limited to the first and second derivatives. Consider first the case with arbitrarily
spaced data and second degree Lagrangian polynomial given by Equation 5.6. Term be term
differentiation once with respect to x gives

f (1)(x) ≈ dL2

dx
= dwi

dx
f i + dwi+1

dx
f i+1 + dwi+2

dx
f i+2

= (2x− xi+1 − xi+2) f i

(xi − xi+1)(xi − xi+2)
+ (2x− xi − xi+2) f i+1

(xi+1 − xi)(xi+1 − xi+2)

+ (2x− xi − xi+1) f i+2

(xi+2 − xi)(xi+2 − xi+1)
(8.11)

8.3. Differentiation of Lagrange and Newton polynomials 299

By substituting a value of x in the range xi ≤ x ≤ xi+2 we will be able to obtain the first derivative
at any point in the interval. Specifically we put x = xi to get the first derivative at xi as

f (1)(xi) ≈ dL2

dx

∣∣∣∣
xi

= (2xi − xi+1 − xi+2) f i

(xi − xi+1)(xi − xi+2)
+ (xi − xi+2) f i+1

(xi+1 − xi)(xi+1 − xi+2)

+ (xi − xi+1) f i+2

(xi+2 − xi)(xi+2 − xi+1)
(8.12)

Obviously this is second order accurate and is referred to as the one sided (forward) three point
formula for the first derivative. Another differentiation of Equation 8.11 with respect to x yields

f (2)(xi) ≈ d2L2

dx2 = 2 f i

(xi − xi+1)(xi − xi+2)
+ 2 f i+1

(xi+1 − xi)(xi+1 − xi+2)

+ 2 f i+2

(xi+2 − xi)(xi+2 − xi+1)
(8.13)

The second derivative, as it should be, is seen to be independent of x.

Example 8.1
Function vs location data is given in the following table. Obtain the first derivative with
respect to x at x = 0 and x = 0.42. Compare different estimates.

i 0 1 2 3 4 5 6 7
xi 0 0.07 0.15 0.23 0.34 0.42 0.47 0.52
f i 1 0.91681 0.83271 0.75928 0.67403 0.62239 0.59421 0.56900

Solution :
At x = 0 the first derivative may be evaluated using 1) forward difference or 2) one sided
(forward) three point formula. The former is easily evaluated as

f (1)(0)≈ 0.91681−1.00000
0.07−0

=−1.18843

The latter uses Equation 8.11 at x = x0 = 0 and uses the data at i = 0, i = 1 and i = 2.
Equation 8.11 is recast as

f (1)(0) ≈ (2x0 − x1 − x2) f0

(x0 − x1)(x0 − x2)
+ (x0 − x2) f1

(x1 − x0)(x1 − x2)
+ (x0 − x1) f2

(x2 − x0)(x2 − x1)

Introducing numbers, we get

f (1)(0) ≈ (0−0.07−0.15)1.00000
(0−0.07)(0−0.15)

+ (0−0.15)0.91681
(0.07−0)(0.07−0.15)

+ (0−0.07)0.83271
(0.15−0)(0.15−0.07)

=−1.25245

This may be compared with the known exact value of the derivative of -1.25637.

At the point x = 0.42 we have several options for calculating the first derivative. They
are: 1) Forward difference, 2) Backward difference, 3) One-sided three point - forward, 4)

300 Chapter.8 Numerical Differentiation

One-sided three point - backward and 5) Centered three point formula. These calculations
are given below.

1) Forward difference:

f (1)(x = 0.42)≈ 0.59421−0.62239
0.47−0.42

=−0.56360

2) Backward difference:

f (1)(x = 0.42)≈ 0.62239−0.67403
0.42−0.34

=−0.64550

3) One-sided three point - forward:
We use Equation 8.11 at x = x5 = 0.42 and use the data at i = 5, i = 6 and i = 7. Equation
8.11 is recast as

f (1)(0.42)≈ (2x5 − x6 − x7) f5

(x5 − x6)(x5 − x7)
+ (2x5 − x5 − x7) f6

(x6 − x5)(x6 − x7)
+ (2x5 − x5 − x6) f7

(x7 − x5)(x7 − x6)

Introducing numbers we get

f (1)(0.42) ≈ (2×0.42−0.47−0.52)0.62239
(0.42−0.47)(0.42−0.52)

+ (0.42−0.52)0.59421
(0.47−0.42)(0.47−0.52)

+ (0.42−0.47)0.56900
(0.52−0.42)(0.52−0.47)

=−0.59330

3) One-sided three point - backward:
We use Equation 8.11 at x = x5 = 0.42 and use the data at i = 5, i = 4 and i = 3. The details
are left to the reader. The resulting first derivative is equal to -0.59097.

4) Centered three point formula:
We use Equation 8.11 at x = x5 = 0.42 and use the data at i = 4, i = 5 and i = 6. Equation
8.11 is recast as

f (1)(0.42) ≈ (2x5 − x5 − x6) f4

(x4 − x5)(x4 − x6)
+ (2x5 − x4 − x6) f5

(x5 − x4)(x5 − x6)

+ (2x5 − x4 − x5) f6

(x6 − x4)(x6 − x5)

Introducing numbers we get

f (1)(0.42) ≈ (0.42−0.47)0.67403
(0.34−0.42)(0.34−0.47)

+ (2×0.42−0.34−0.47)0.62239
(0.42−0.34)(0.42−0.47)

+ (0.42−0.34)0.59421
(0.47−0.34)(0.47−0.42)

=−0.59510

All of the above may be compared with the exact derivative of -0.59431.

8.3. Differentiation of Lagrange and Newton polynomials 301

8.3.2 Derivatives of Ln(x)

In general, derivatives of Ln(x) may be obtained by term by term differentiation. The first
derivative of Ln would be

dLn

dx
= dw0

dx
f0 + dw1

dx
f1 +·· ·+ dwn

dx
fn =

n∑
i=0

f i
dwi

dx
(8.14)

The mth derivative of Ln (m ≤ n) is

dmLn

dxm = dmw0

dxm f0 + dmw1

dxm f1 +·· ·+ dmwn

dxm fn =
n∑

i=0
f i

dmwi

dxm (8.15)

The weight function wi is of form

wi(x)= ai0 +ai1x+ai2x2 +·· ·+ainxn (8.16)

Hence, the first derivative of the above would be

dwi

dx
= ai1 +2ai2x+3ai3x2 +·· ·+nainxn−1 (8.17)

The second derivative would be

d2wi

dx2 = 2ai2 +6ai3x+12ai4x2 +·· ·+n(n−1)ainxn−2 (8.18)

The mth derivative of the function would be of form

dmwi

dxm = m!
0!

aim + m+1!
1!

aim+1x+·· ·+ r!
r−m!

airxr−m +·· ·+ n!
n−m!

ainxn−m (8.19)

MATLAB program has been given below to differentiate any nth degree polynomial. The program
can be used to differentiate the weight function polynomials also. In such a case, the input to the
program is the coefficient matrix obtained from Program 5.2.

Program 8.1: Di�erentiate polynomial functions

1 function pder = polyderivative(p,m)

2 % I n p u t p : m a t r i x o f p o l y n o m i a l c o e f f i c i e n t s o f w e i g h t
% f u n c t i o n

3 % m : o r d e r o f d i f f e r e n t i a t i o n
4 % O u t p u t p d e r : m a t r i x o f p o l y n o m i a l c o e f f i c i e n t s o f

% d i f f e r e n t i a t e d p o l y n o m i a l
5 n = size(p,2); % d e g r e e o f p o l y n o m i a l
6 pder = zeros(size(p)); % i n i t i a l i z e d e r i v a t i v e p o l y n o m i a l s
7 for i= m+1:n % e v a l u a t e c o e f f i c i e n t o f d e r i v a t i v e
8 pder(:,i-m) = p(:,i); % p o l y n o m i a l s
9 for j=1:m

10 pder(:,i-m) = (i-j)*pder(:,i-m);

11 end

12 end

302 Chapter.8 Numerical Differentiation

8.3.3 Derivatives of Lagrange polynomials: equi-spaced data

Consider the second degree Lagrangian polynomial given by Equation 5.13, valid when the data
is equi-spaced. We note that dx = hdr and hence the first derivative is obtained by term by term
differentiation as

f (1)(x)= 1
h

d f
dr

≈ 1
h

dL2(r)
dr

= (r−1)+ (r−2)
2h

f i − r+ r−2
h

f i+1 + r+ (r−1)
2h

f i+2

= 2r−3
2h

f i − 2r−2
h

f i+1 + 2r−1
2h

f i+2 (8.20)

x = xi corresponds to r = 0 and the first derivative at xi is given by putting r = 0 in Equation 8.20.
Alternately we may substitute xi+1 − xi = xi+2 − xi+1 = h, xi+2 − xi = 2h in Equation 8.12 to get the
following.

f (1)(xi) ≈ 1
h

dL2

dr

∣∣∣
r=0

= −3
2h

f i − −2
h

f i+1 + −1
2h

f i+2

= −3 f i +4 f i+1 − f i+2

2h
(8.21)

This is one sided three point formula (forward) with equi-spaced data. We may obtain the first
derivative at xi+1 by substituting r = 1 in Equation 8.20 to get

f (1)(xi+1) ≈ 1
h

dL2(r)
dr

∣∣∣
r=1

= −1
2h

f i − 0
h

f i+1 + 1
2h

f i+2

= f i+2 − f i

2h
(8.22)

This, as we have seen earlier, is the central difference approximation to first derivative. Lastly we
may obtain the first derivative at xi+2 by putting r = 2 in Equation 8.20.

f (1)(xi+2) ≈ 1
h

dL2

dr

∣∣∣
r=2

= 1
2h

f i − 2
h

f i+1 + 3
2h

f i+2

= f i −4 f i+1 +3 f i+2

2h
(8.23)

This is one sided three point formula (backward). The second derivative will, of course, be
independent of x since it is given by a second differentiation of Equation 8.20 as

f (2)(x)= 1
h2

d2 f
dr2 ≈ 1

h2
d2L2(r)

dr2 = 2
2h2 f i − 2

h2 f i+1 + 2
2h2 f i+2

= f i −2 f i+1 + f i+2

h2 (8.24)

This is central difference formula for the second derivative. One may similarly differentiate
Newton polynomials to obtain finite difference approximations to the derivatives of a function.
This we shall demonstrate by obtaining higher order (>2) formulas by differentiating Newton
polynomials. This demonstration is restricted to equi-spaced data.

8.3. Differentiation of Lagrange and Newton polynomials 303

8.3.4 Higher order formulae using Newton polynomials

Sometimes we require higher order formulae to evaluate numerically the first and higher order
derivatives of a function. A fourth degree Newton polynomial provides appropriate formulae for
doing this. We make use of five equi-spaced data points given at i−2, i−1, i, i+1 and i+2 and hence
the derived formulae will be referred to as five point formulae. Setting i = 2, for convenience, these
five points become 0,1,2,3 and 4. The highest degree Newton polynomial is written down using
the Newton Gregory series as

f (r)≈ p4(r) = f0 + r∆ f0 + r(r−1)
2!

∆2 f0 + r(r−1)(r−2)
3!

∆3 f0

+ r(r−1)(r−2)(r−3)
4!

∆4 f0 (8.25)

where r = x− x0

h
, f (x) = f (x0 + hr) and all forward differences are with respect to x0. First

derivative of the above polynomial with respect to x is written down by term by term differentiation
as

f (1)(x)≈ 1
h

dp4

dr
=∆ f0 + (2r−1)

2!h
∆2 f0 + (3r2 −6r+2)

3!h
∆3 f0 + (4r3 −18r2 +22r−6)

4!h
∆4 f0 (8.26)

Setting r = 0 in the above, and making use of forward difference Table 5.3, we get the one sided
five point forward difference rule.

f (1)(x0)= −25 f0 +48 f1 −36 f2 +16 f3 −3 f4

12h
+O(h4) (8.27)

Similarly setting r = 2, we get the five point mid point rule given by

f (1)(x2)= f0 −8 f1 +8 f3 − f4

12h
+O(h4) (8.28)

As indicated both formulae are fourth order accurate.

Second derivative of the polynomial with respect to x is written down by term by term
differentiation as

f (2)(x)≈ 1
h2

d2 p4

dr2 = 1
h2∆

2 f0 + (6r−6)
3!h2 ∆3 f0 + (12r2 −36r+22)

4!h
∆4 f0 (8.29)

Setting r = 2 the five point centered formula for second derivative is obtained as

f (2)(x2)= − f0 +16 f1 −30 f2 +16 f3 − f4

12h2 +O(h4) (8.30)

Example 8.2
Function vs location data is given in the following table with equal spacing of h = 0.1. Obtain
the first derivative with respect to x at x = 0 and x = 0.3. Compare different estimates.

i 0 1 2 3 4
xi 0.1 0.2 0.3 0.4 0.5
f i 0.09983 0.19867 0.29552 0.38942 0.47943

304 Chapter.8 Numerical Differentiation

Solution :
At the first point in the table we may use 1) forward difference, 2) one sided three point or
3) one sided five point rule.
1) Forward difference:

f (1)(0.1)= 0.19867−0.09983
0.1

= 0.98840

2) One sided three point:

f (1)(0.1)= −3×0.09983+4×0.19867−0.29552
2×0.1

= 0.99835

3) One sided five point:

f (1)(0.1) = (−25×0.09983+48×0.19867−36×0.29552

+16×0.38942−3×0.47943)÷ (12×0.1)= 0.99510

The best estimate is the one given by the use of the five point rule i.e. f (1)(0.1) = 0.99510.
The exact value of the derivative is known to be 0.99500 in this case.

The point x = 0.3 corresponds to the mid point in the table. The options for calculation of
first derivative are: 1) Forward difference 2) Backward difference 3) three point forward 4)
three point backward 5) central difference and 6) five point centered. These are worked out
below.
1) Forward difference: f (1)(0.3)= 0.38942−0.29552

0.1
= 0.93900

2) Backward difference: f (1)(0.3)= 0.29552−0.19867
0.1

= 0.96850

3) Three point forward: f (1)(0.3) = −3×0.29552+4×0.38942−0.47943
2×0.1

= 0.95845

4)Three point backward: f (1)(0.3) = 3×0.29552−4×0.19867−0.09983
2×0.1

= 0.95855 5)

Central difference: f (1)(0.3)= 0.38942−0.19867
2×0.1

= 0.95375
6) Five point centered:

f (1)(0.3)= 0.09983−8×0.19867+8×0.38942−0.47943
12×0.1

= 0.95533

The last value is the closest to the exact value of 0.95534.

Example 8.3
The function f (x) = xx is to be differentiated at x = 0.5 numerically. Compare the numerical
estimates with the exact derivative. Study the influence of step size on the numerically
obtained derivative.
Solution :

Before looking at the numerical part we obtain the exact derivative by logarithmic
differentiation. Taking logarithms of f (x) = xx we get ln(f) = x ln x. On differentiation this
yields

d ln(f)
dx

= 1
f

d f
dx

= ln x+1

8.3. Differentiation of Lagrange and Newton polynomials 305

Thus we have
f (1)(x)= f (ln x+1)= xx(ln x+1)

We now consider various approximations to the first derivative with step size of h = 0.05.
Results are tabulated below.

x 0.4 0.45 0.5 0.55 0.60
f (x) 0.69315 0.69815 0.70711 0.71978 0.73602

Backward Difference 0.17924
Forward Difference 0.25345
Central Difference 0.21635

Three point backward 0.21885
Three point forward 0.21776

Exact 0.21698

It is seen that the error is unacceptable in the case of both forward and backward
differences. However the three estimates that use central, three point forward or three point
backward all have error with respect to the exact of similar order. The absolute deviation is
less than 0.002. We now change the step size to h = 0.025, redo the calculations and present
the results below.

x 0.45 0.475 0.5 0.525 0.55
f (x) 0.69815 0.70215 0.70711 0.71299 0.71978

Backward Difference 0.19830
Forward Difference 0.23534
Central Difference 0.21682

Three point backward 0.21736
Three point forward 0.21723

Exact 0.21698

We see that the error has moved to the fourth place after the decimal point in the case of
central difference and the three point formulae. The absolute maximum error is limited
to 0.0004. Both forward and backward difference estimates are unacceptable. Figure
8.3 shows error of numerical differentiation formulae for different step sizes using double
precision (16 digits after decimal place). The figure clearly asserts the importance of order
of accuracy. The slope of the error vs step size plot indicates the order of accuracy of the
approximation, in the linear portion. The forward difference of O(h) has the least slope
where as the central difference of O(h4) has the highest slope. Also, it must be noted that
the error of the approximation reaches a minimum and then starts increasing with smaller
step size. Theoretically, as the step size tends towards zero, the approximation should tend
towards the exact solution. However, this is not the case due to round off errors i.e. limited
numerical precision of the computer.
The following table indicates the role of machine precision on the error in numerical
differentiation.

Single precision Double precision
Scheme hmin ε hmin ε

Forward Difference O(h) 2.05E-04 1.81E-04 3.44E-09 4.72E-09
Central Difference O(h2) 5.12E-04 6.69E-06 2.10E-06 4.71E-12
Central Difference O(h4) 2.00E-02 9.91E-07 5.12E-04 1.19E-13

306 Chapter.8 Numerical Differentiation

lo
g 1

0 ε

-15

-10

-5

0

log10 h
-10 -5 0

 forward O(h)
central O(h2)
forward O(h2)
central O(h4)

Figure 8.3: Error in derivatives
calculated using di�erent di�erence
schemes and step sizes (double pre-
cision)

8.4 Numerical partial differentiation

8.4.1 First derivatives in a rectangular domain

Consider the rectangular domain in Figure 8.4. It is intended to calculate first derivatives at any
point inside the domain. Linear interpolation over a rectangle has been considered in an earlier
chapter where we had

f = w1 f1 +w2 f2 +w3 f3 +w4 f4 (8.31)

x = x1 x = x2

y= y1

y= y2

x

y

k

h

3(x1, y2) 4(x2, y2)

1(x1, y1) 2(x2, y1)

Figure 8.4: Rectangular domain

Hence, the partial first derivatives at a point (xi, yi) are given by

∂ f
∂x

= ∂w1

∂x
f1 + ∂w2

∂x
f2 + ∂w3

∂x
f3 + ∂w4

∂x
f4 (8.32)

∂ f
∂y

= ∂w1

∂y
f1 + ∂w2

∂y
f2 + ∂w3

∂y
f3 + ∂w4

∂y
f4 (8.33)

8.4. Numerical partial differentiation 307

where the indicated partial derivatives of the weights are evaluated at (xi, yi). The weight
functions being linear functions of x and y, the evaluation of the first derivatives are simple. As
the weight functions are product of two functions -one of x and another of y (see Equation 6.2), the
derivatives can also be written as

∂w1

∂x
= dw1x

dx
w1y

∂w1

∂y
= w1x

dw1y

d y
∂w2

∂x
= dw2x

dx
w1y

∂w2

∂y
= w2x

dw1y

d y
∂w3

∂x
= dw1x

dx
w2y

∂w3

∂y
= w1x

dw2y

d y
(8.34)

∂w4

∂x
= dw2x

dx
w2y

∂w4

∂y
= w2x

dw2y

d y

The first partial derivatives of the weight functions are given below

∂w1

∂x
= (yi − y2)

(x1 − x2)(y1 − y2)
∂w1

∂y
= (xi − x2)

(x1 − x2)(y1 − y2)
∂w2

∂x
= (yi − y2)

(x2 − x1)(y1 − y2)
∂w2

∂y
= (xi − x1)

(x2 − x1)(y1 − y2)
∂w3

∂x
= (yi − y1)

(x1 − x2)(y2 − y1)
∂w3

∂y
= (xi − x2)

(x1 − x2)(y2 − y1)
∂w4

∂x
= (yi − y1)

(x2 − x1)(y2 − y1)
∂w4

∂y
= (xi − x1)

(x2 − x1)(y2 − y1)
(8.35)

Differentiation formulas using local coordinates

The first derivatives can be determined from local coordinate representation also. Consider the
local coordinate of a linear rectangular element shown in Figure 6.5. Following previous section,
the partial derivatives in the local coordinates would be

∂w1

∂ξ
= −1−η

4
∂w1

∂η
= −1−ξ

4
∂w2

∂ξ
= 1−η

4
∂w2

∂η
= −1+ξ

4
∂w3

∂ξ
= −1+η

4
∂w3

∂η
= 1−ξ

4
∂w4

∂ξ
= 1+η

4
∂w4

∂η
= 1+ξ

4

(8.36)

The partial derivatives in local coordinates can be transformed into x, y coordinates. Using chain
rule, the partial derivatives in x and y directions would be

∂wi

∂x
= ∂wi

∂ξ

∂ξ

∂x
+ ∂wi

∂η

∂η

∂x
(8.37)

∂wi

∂y
= ∂wi

∂ξ

∂ξ

∂y
+ ∂wi

∂η

∂η

∂y
(8.38)

308 Chapter.8 Numerical Differentiation

where
dξ
dx

= 2
x2 − x1

= 2
h

;
dξ
d y

= 0;
dη
dx

= 0;
dξ
d y

= 2
y2 − y1

= 2
k

; (8.39)

The partial derivatives in original coordinates can be written as
∂wi

∂x
= ∂wi

∂ξ

dξ
dx

= 2
h
∂wi

∂ξ
;

∂wi

∂y
= ∂wi

∂η

dη
dy

= 2
k
∂wi

∂η
(8.40)

Evaluating the first derivatives at the nodes, we have

Nodes 1 and 2:
∂ f
∂x

= f2 − f1

h
Nodes 3 and 4:

∂ f
∂x

= f4 − f3

h

Nodes 1 and 3:
∂ f
∂y

= f3 − f1

k
Nodes 2 and 4:

∂ f
∂y

= f4 − f2

k

(8.41)

It is not surprising to see that the partial derivatives at the nodes are the first order forward and
backward difference formulae over a line.

Second order first derivative formulae

x0 −h x0 +hx0

y0 −k

y0

y0 +k

x

y

k

h

(0,0)
(−h,0)

(−h,k) (0,k) (h,k)

(h,0)

(0,−k)(−h,−k) (h,−k)

Figure 8.5: Quadratic rectangular
element

Higher order formula for first derivative can be determined by differentiating the weight
functions of rectangular quadratic element. Therefore, we can write the first derivatives as

∂ f
∂ξ

=
9∑

i=1

∂wi

∂ξ
f i;

∂ f
∂η

=
9∑

i=1

∂wi

∂η
f i (8.42)

The weight functions for 9 noded quadratic element is a product of two quadratic functions along
ξ and η as given below

wi =G(η)F(ξ)T =

η(η−1)
2

(1−η2)

η(η+1)
2

 ξ(ξ−1)

2
(1−ξ2)

ξ(ξ+1)
2

 (8.43)

and the derivatives are as given below

∂wi

∂ξ
=G(η)

dF(ξ)
dξ

=

η(η−1)
2

(1−η2)

η(η+1)
2

 2ξ−1

2
−2ξ

2ξ+1
2

 (8.44)

8.4. Numerical partial differentiation 309

∂wi

∂η
= dG(η)

dη
F(ξ)=

2η−1
2

−2η

2η+1
2

 ξ(ξ−1)

2
(1−ξ2)

ξ(ξ+1)
2

 (8.45)

The derivatives in the original coordinates can be determined using chain rule. For a rectangular
domain as in Figure 8.5 the derivatives would be

dξ
dx

= 1
h

;
dξ
d y

= 0;
dη
dx

= 0;
dξ
dy

= 1
k

; (8.46)

Therefore, the second order accurate first derivatives are as given below

∂wi

∂x
= 1

h
dF(ξ)

dξ
G(η)

∂wi

∂y
= 1

k
F(ξ)

dG(η)
dη

(8.47)

The first derivatives at the nodes would be

∂ f
∂x

= −3 f (−h, j)+4 f (0, j)− f (h, j)
2h

j =−k,0,k

∂ f
∂x

= f (h, j)− f (−h, j)
2h

j =−k,0,k

∂ f
∂x

= f (−h, j)−4 f (0, j)+3 f (h, j)
2h

j =−k,0,k

∂ f
∂y

= −3 f (i,−k)+4 f (i,0)− f (i,k)
2k

i =−h,0,h

∂ f
∂y

= f (i,k)− f (i,−k)
2k

i =−h,0,h

∂ f
∂y

= f (i,−k)− f (i,0)+3 f (i,k)
2k

i =−h,0,h (8.48)

which are nothing but the second order forward, backward and central difference formulae applied
over a line.

8.4.2 Derivatives for an arbitrary quadrilateral

In the last section, we derived first derivative formulas for a rectangular domain. For an
arbitrary quadrilateral, the domain is transformed to local coordinates. Using chain rule, the
partial derivatives in x and y directions would be

∂wi

∂x
= ∂wi

∂ξ

∂ξ

∂x
+ ∂wi

∂η

∂η

∂x
(8.49)

∂wi

∂y
= ∂wi

∂ξ

∂ξ

∂y
+ ∂wi

∂η

∂η

∂y
(8.50)

Writing the above equations in the matrix form
∂wi

∂x
∂wi

∂y

=

∂ξ

∂x
∂η

∂x
∂ξ

∂y
∂η

∂y

︸ ︷︷ ︸
J

∂wi

∂ξ

∂wi

∂η

 (8.51)

310 Chapter.8 Numerical Differentiation

where J is the Jacobian matrix of ξ,η with respect x, y. For a rectangular domain, the Jacobian
matrix is

J=

2

(x2 − x1)
0

0
2

(y2 − y1)

 (8.52)

However, for arbitrary quadrilaterals it would be difficult to determine the Jacobian matrix. As x
and y can be represented as functions of ξ and η, it is possible to determine the inverse of J as

J−1 =

∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
dη

or

J =

∂ξ

∂x
∂η

∂x
∂ξ

∂y
∂η

∂y

= 1
∂x
∂ξ

∂y
dη − ∂x

∂η
∂y
∂ξ

∂y
∂η

−∂y
∂ξ

−∂x
∂η

∂x
dξ

 (8.53)

Second partial derivatives

A similar approach as that for first derivatives is to be followed for higher derivatives. We need

to determine the second partial derivative of form
∂2

∂x2∂x1
. x1 and x2 can be either x or y. First let

us write down the expression for
∂

∂x1
.

∂w
∂x1

= ∂w
∂ξ

∂ξ

∂x1
+ ∂w
∂η

∂η

∂x1
(8.54)

Differentiating the above equation with respect to x2 we obtain

∂2w
∂x1∂x2

= ∂2w
∂ξ∂x2

∂ξ

∂x1
+ ∂w
∂ξ

∂2ξ

∂x1∂x2
+ ∂2w
∂η∂x2

∂η

∂x1
+ ∂w
∂η

∂2η

∂x1∂x2
(8.55)

Let us consider the first term on the right hand side alone. Applying chain rule to the term we get

∂2w
∂ξ∂x2

= ∂2w
∂ξ2

∂ξ

∂x2
+ ∂2w
∂ξ∂η

∂η

∂x2
(8.56)

Therefore the final expression for the second partial derivative would be

∂2w
∂x1∂x2

= ∂2w
∂ξ2

∂ξ

∂x1

∂ξ

∂x2
+ ∂2w
∂ξ∂η

(
∂ξ

∂x1

∂η

∂x2
+ ∂ξ

∂x2

∂η

∂x1

)
+∂w
∂ξ

∂2ξ

∂x1∂x2
+ ∂w
∂η

∂2η

∂x1∂x2
+ ∂2w
∂η2

∂η

∂x1

∂η

∂x2
(8.57)

Choosing x1 and x2 suitably we get the required three second partial derivatives. The mixed
derivative is the same as Equation 8.57 with x1 = x and x2 = y or vice versa. The other two
derivatives would be given by

∂2w
∂x2 = ∂2w

∂ξ2

(
∂ξ

∂x

)2
+2

∂2w
∂ξ∂η

∂ξ

∂x
∂η

∂x
+ ∂w
∂ξ

∂2ξ

∂x2 + ∂w
∂η

∂2η

∂x2 + ∂2w
∂η2

(
∂η

∂x

)2
(8.58)

∂2w
∂y2 = ∂2w

∂ξ2

(
∂ξ

∂y

)2
+2

∂2w
∂ξ∂η

∂ξ

∂y
∂η

∂y
+ ∂w
∂ξ

∂2ξ

∂y2 + ∂w
∂η

∂2η

∂y2 + ∂2w
∂η2

(
∂η

∂y

)2
(8.59)

8.4. Numerical partial differentiation 311

8.4.3 Second derivative formulas for a rectangle

The second derivative formula can be derived by differentiating the interpolation formula over
a nine noded rectangle which would be

∂2 f
∂ξ2 =

9∑
i=1

∂2wi

∂ξ2 f i;
∂2 f
∂η2 =

9∑
i=1

∂2wi

∂η2 f i (8.60)

Hence the second derivative formulas would be

∂2wi

∂ξ2 =G(η)
d2F(ξ)

dξ2 =

η(η−1)
2

(1−η2)

η(η+1)
2

 1 −2 1

 (8.61)

∂2wi

∂ξ∂η
= dG(η)

dη
∂F(ξ)

dξ
=

2η−1
2

−2η

2η+1
2

 2ξ−1

2
−2ξ

2ξ+1
2

 (8.62)

∂2wi

∂η2 = d2G(η)
dη2 F(ξ)=

1

−2

1

 ξ(ξ−1)

2
(1−ξ2)

ξ(ξ+1)
2

 (8.63)

For a rectangular domain, the transformation is linear and hence all higher order derivatives of
the transformation are zero i.e.

∂2x
∂ξ2 = 0;

∂2 y
∂η2 = 0 (8.64)

Therefore, the second derivatives in original coordinates can be written as

∂2wi

∂x2 = ∂2wi

∂ξ2

(
dx
dξ

)2
= ∂2wi

∂ξ2
1
h2 ;

∂2wi

∂x∂y
= ∂2wi

∂ξ∂η

dx
dξ

d y
dη

= ∂2wi

∂ξ∂η

1
hk

∂2wi

∂y2 = ∂2wi

∂η2

(
dη
d y

)2
= ∂2wi

∂η2
1
k2

Evaluating the second derivatives at the nodes we get

∂2 f
∂x2 = f (−h, j)−2 f (0, j)+ f (h, j)

h2 j =−k,0,k

∂2 f
∂y2 = f (i,−k)−2 f (i,0)+ f (i,k)

k2 i =−h,0,h (8.65)

which are the same as the second order approximate second derivatives over lines.

Example 8.4
A certain function is available as a table of data specified at 9 points on the standard square
domain of side 2.

312 Chapter.8 Numerical Differentiation

Node i ξi ηi f i = f (ξi,ηi) Node i ξi ηi f i = f (ξi,ηi)
1 -1 -1 1.221403 6 1 0 1.105171
2 0 -1 1.105171 7 -1 1 1.221403
3 1 -1 1.221403 8 0 1 1.105171
4 -1 0 1.105171 9 1 1 1.221403
5 0 0 1.000000

Obtain the function, first and second derivatives at ξ= 0.4, η=−0.3.

Solution :
Point at which the function and its derivatives are required is given as ξ = 0.4, η = −0.3.
The weights in this example are the same as those that were calculated in Example 6.3.
Using the weights and the function values given in this example, the function value at
ξ= 0.4, η=−0.3 is calculated using a spreadsheet, as shown below.

Node i wi wi × f i Node i wi wi × f i
1 -0.0234 -0.028581 6 0.2548 0.281598
2 0.1638 0.181027 7 0.0126 0.015390
3 0.0546 0.066689 8 -0.0882 -0.097476
4 -0.1092 -0.120685 9 -0.0294 -0.035909
5 0.7644 0.764400 Sum = 1 1.026452

The bold entry in the above table is the desired function value. First derivatives
∂ f
∂ξ

and
∂ f
∂η

of the function may be obtained as the sum of product of partial derivatives of the respective
weights evaluated at ξ = 0.4, η = −0.3 and the function values at the nodes. The weights
have been given in function form in Example 6.3. Partial derivatives of these have been
used in arriving at the following spreadsheet shown as Table 8.1.

Table 8.1: First partial derivatives with data in Example 8.4

Node i
∂wi

∂ξ

∂wi

∂ξ
× f i

∂wi

∂η

∂wi

∂η
× f i

1 -0.0195 -0.023817 0.096 0.117255
2 -0.156 -0.172407 -0.672 -0.742675
3 0.1755 0.214356 -0.224 -0.273594
4 -0.091 -0.100571 -0.072 -0.079572
5 -0.728 -0.728000 0.504 0.504000
6 0.819 0.905135 0.168 0.185669
7 0.0105 0.012825 -0.024 -0.029314
8 0.084 0.092834 0.168 0.185669
9 -0.0945 -0.115423 0.056 0.068399

Sum = 0.084933 -0.064164

Bold entries in Table 8.1 give the desired derivatives as
∂ f
∂ξ

= 0.084933 and
∂ f
∂η

=
−0.064164 at ξ= 0.4, η=−0.3.

8.4. Numerical partial differentiation 313

Similarly we may obtain second derivatives (there are three of them) as presented in the
spreadsheet Table 8.2.

Table 8.2: Second partial derivatives with data in Example 8.4

Node i
∂2wi

∂ξ2
∂2wi

∂ξ2 × f i
∂2wi

∂ξ∂η

∂2wi

∂ξ∂η
× f i

∂2wi

∂η2
∂2wi

∂η2 × f i

1 0.195 0.238174 0.08 0.097712 -0.12 -0.146568
2 -0.39 -0.431017 0.64 0.707309 0.84 0.928344
3 0.195 0.238174 -0.72 -0.879410 0.28 0.341993
4 0.91 1.005706 -0.06 -0.066310 0.24 0.265241
5 -1.82 -1.820000 -0.48 -0.480000 -1.68 -1.680000
6 0.91 1.005706 0.54 0.596792 -0.56 -0.618896
7 -0.105 -0.128247 -0.02 -0.024428 -0.12 -0.146568
8 0.21 0.232086 -0.16 -0.176827 0.84 0.928344
9 -0.105 -0.128247 0.18 0.219852 0.28 0.341993

Sum = 0.212333 -0.005309 0.213881

Bold entries in Table 8.2 give the second derivatives as
∂2 f
∂ξ2 = 0.212333,

∂2 f
∂ξ∂η

=

−0.005309 and
∂2 f
∂η2 = 0.213881.

The function used in this example was f (ξ,η) = e
(ξ2+η2)

10 . The exact values and the
numerically obtained values evaluated above are compared in the following table.

Numerical Exact Difference

f 1.026452 1.025315 0.001137

∂ f
∂ξ

0.084933 0.082025 0.002908

∂ f
∂η

-0.064164 -0.061519 -0.002645

∂2 f
∂ξ2 0.212333 0.211625 0.000708

∂2 f
∂ξ∂η

-0.005309 -0.004922 -0.000388

∂2 f
∂η2 0.213881 0.208754 0.005127

314 Chapter.8 Numerical Differentiation

8.4.4 Linear triangular domain

The expressions for the first derivatives can be written as

∂ f
∂x

= ∂w1

∂x
f1 + ∂w2

∂x
f2 + ∂w3

∂x
f3

∂ f
∂y

= ∂w1

∂y
f1 + ∂w2

∂y
f2 + ∂w3

∂y
f3 (8.66)

The weight functions are of the form wi(x, y) = ai + bix+ ci y where ai,bi and ci are constants

defined in Equation 6.19. It may be inferred that the partial derivatives of the weights are
∂wi

∂x
= bi

and
∂wi

∂y
= ci. The derivatives may be represented in terms of local coordinates also which is left

as an exercise to the reader.

Example 8.5
Function value is available at three points as shown in the table below.

Point No. x y f (x, y)
1 0 0 1
2 0.1 0 1.007975
3 0 0.1 1.012699

Obtain the first derivatives of the function at x = 0.03, y= 0.04.
Solution :

The area of the triangle formed by the three points is determined first.

A = 1
2

∣∣∣∣∣∣
1 0 0
1 0.1 0
1 0 0.1

∣∣∣∣∣∣= 0.005

Partial derivatives of weights are calculated next.

∂w1

∂x
= (y2 − y3)

2A
= 0−0.1

2×0.005
=−10 ;

∂w1

∂y
= (x3 − x2)

2A
= 0.1−0

2×0.005
= 10

∂w2

∂x
= (y3 − y1)

2A
= 0.1−0

2×0.005
= 10 ;

∂w2

∂y
= (x1 − x3)

2A
= 0−0

2×0.005
= 0

∂w3

∂x
= (y1 − y2)

2A
= 0−0

2×0.005
= 0 ;

∂w3

∂y
= (x1 − x2)

2A
= 0.1−0

2×0.005
= 10

We then have

∂ f
∂x

∣∣∣∣
(x=0.03, y=0.04)

= −10×1+10×1.007975+0×1.012699= 0.079749

∂ f
∂y

∣∣∣∣
(x=0.03, y=0.04)

= −10×1+0×1.007975+10×1.012699= 0.126991

8.A. MATLAB routines related to Chapter 8 315

Concluding remarks

Numerical differentiation is at the back of all finite difference methods used in the solution of
ordinary and partial differential equations. The material of the present chapter will be very
useful later on in Modules III and IV where we will be considering numerical solution of both
ODE and PDE.

8.A MATLAB routines related to Chapter 8

MATLAB routine Function

diff(u) difference between adjacent elements of array
u

diff(u,n) nth order difference for array u

gradient(u) calculates first derivatives along x and y
directions

del2(u)
Finite difference approximation of Laplacian

in two dimensions
(
∂2u
∂x2 + ∂2u

∂y2

)

Chapter 9

Numerical Integration

Integration of a function is best performed, when possible, by analytical methods to get
the integral in closed form. However, many a time it is difficult or impossible to obtain
result in closed form. In such a case one has to obtain an integral numerically. There are
many methods available, of which the following will be dealt with here:

• Trapezoidal rule
• Simpson’s rule
• Romberg method
• Gauss quadrature

Apart from line integrals we shall also look at numerical evaluation of double integrals.

317

318 Chapter.9 Numerical Integration

9.1 Introduction
Integration is one of the most important mathematical operations used by scientists and

engineers. Integration over a line is defined as

I =
∫ b

a
f (x)dx (9.1)

The operation simply indicates the area under the curve f (x) and the x axis between x = a and
x = b. For example, the area under a Gaussian distribution represents the cumulative probability
of occurrence of an event between the two limits.

Wide steps Narrow steps

xx

ff

baba
Figure 9.1: Approximating area under graph with vertical strips

The integrals have to be obtained numerically when analytical expressions are not available for
them. Consider the area under the curve to be approximated by a large number of vertical strips
as indicated in Figure 9.1 (Figure shows “wide” strips at the left and “narrow” strips at the right).
The sum total of the area under these strips would be close to the actual area under the curve.
The area of each vertical strip is the product of function value at the middle of the strip and the
width of the strip. As the number of strips increases, the sum total area of these vertical strips
would tend towards the exact area. In the limit the number of strips tend to infinity, the sum total
area of the strips would be equal to the exact value. However, it would be practically impossible to
achieve this.

In general the integral can be approximated as∫ b

a
f (x)dx =

n∑
i

wi f i +ε= w0 f0 +w1 f1 +·· ·+wn fn +ε (9.2)

where f i is the function value at a node (points at which function is evaluated) and wi is the
weightage associated with the node, ε is the error associated with the approximation method. The
nodes are points which lie in the range a ≤ x ≤ b. The above representation of the integral is
known as quadrature formula. The aim of any numerical integration procedure is to estimate
the area within satisfactory limits and with least number of vertical strips or function evaluations.
The following sections will introduce the reader to different strategies to evaluate the integrals
accurately.

9.2. Trapezoidal rule 319

9.2 Trapezoidal rule
This is the simplest numerical integration scheme and yields exact result for a function that is

either a constant are a linear function of x. It may not be bad if the range of integration is divided
into small segments over each of which the function may be approximated by a linear function.
Let us assume that each segment is of uniform length h such that

h = b−a
n

(9.3)

where the range of integration is covered by n steps of length h each. The integral over the step
xi,xi+1 may be approximated as the area of a trapezium with heights of sides of f i, f i+1 and of
width h (see Figure 9.2). ∫ xi+1

xi

f (x)dx = f i + f i+1

2
h (9.4)

a b

f i

f i+1

xi xi+1
x

f

Figure 9.2: Integral over step h
as area of trapezium

Integral from x = a to x = b may be obtained by summing integral over each of the n steps.
Except the end points all other points will occur twice and hence it is easily seen that the integral
must be given by ∫ b

a
f (x)dx ≈ T(h)=

{
f0 + fn

2
+

n−1∑
i=1

f i

}
h (9.5)

where T(h) represents the trapezoidal estimate of the integral.

The following MATLAB program evaluates the trapezoidal estimate of the integral for equi-
spaced nodes.

Program 9.1: Trapezoidal rule

1 function in = trapezoidal(f,h)

2 % I n p u t f : f u n c t i o n v a l u e s a t n o d e s
3 % h : s t e p s i z e s
4 % O u t p u t i n : t r a p e z o i d a l e s t i m a t e
5 n = length(f); % number o f n o d e s
6 in = (f(1)+f(n)+2* sum(f(2:n-1)))*h/2;

320 Chapter.9 Numerical Integration

Error of trapezoidal rule
Trapezoidal rule integrates a linear function exactly and produces errors for polynomial functions
of degree 2 or higher. Let us estimate the error of trapezoidal rule. Consider the integration
applied over a single segment xi ≤ x ≤ xi +h.

I i =
∫ xi+h

xi

f (x)dx (9.6)

Express the function as a Taylor’s series around point xi to get

f (x)= f (xi)+ f (1)(xi)(x− xi)+ 1
2

f (2)(xi)(x− xi)2 +O(x− xi)3 (9.7)

Integrating the function analytically we get

I i =
∫ xi+h

xi

f (x)dx = f (xi)h+ f (1)(xi)
h2

2
+ f (2)(xi)

h3

6
+O(h4) (9.8)

However, the trapezoidal estimate for the integral is

Ti = f (xi)+ f (xi +h)
2

h (9.9)

Taylor expand f (xi +h) in the above to get

Ti = f (xi)h+ f (1)(xi)
h2

2
+ f (2)(xi)

h3

4
+O(h4) (9.10)

The difference between Equations 9.8 and 9.10 is the error of the trapezoidal estimate. Thus

εi = I i −Ti =− 1
12

f (2)(xi)h3 +O(h4) (9.11)

The above error is for one segment. Summing up errors over all segments between a and b we get

ε=
n∑

i=1
εi ≈− n

12
f (2)
maxh3 ≈−b−a

12
f (2)
maxh2 (9.12)

where f (2)
max is the maximum second derivative in the interval [a,b]. We can see that the error of

trapezoidal rule is proportional to h2 and hence it is a second order method.

Example 9.1
Integrate y = e−x2

between 0 and 1 using Trapezoidal rule with a step size of h = 0.125.
Compare this with the exact value of 0.746824.
Background :

We note that
∫ x

0
e−x2

dx =
p
πerf(x)

2
where erf(x) is the error function, which is a tabulated

function. We come across this function in various areas of physics such as transient
diffusion.
Solution :
We compute function values with required spacing of h = 0.125 and tabulate below.

9.3. Simpson’s rule 321

x f (x) x f (x)
0 1 0.625 0.676634
0.125 0.984496 0.75 0.569783
0.25 0.939413 0.875 0.465043
0.375 0.868815 1 0.36788
0.5 0.778801

Trapezoidal estimate is obtained by using Equation 9.5 where n = 8. Thus

T(0.125) =
{

1+0.367880
2

+0.984496+0.939413+0.868815

+0.778801+0.676634+0.569783+0.465043
}
×0.125

= 0.745866

The error in this estimate with respect to the exact value is given by

Error= 0.745866−0.746824=−0.000958≈ 0.001

9.3 Simpson’s rule
In order to improve the accuracy of the integral estimated as above, we consider an improvement

that has an order of accuracy up to 3 i.e. integrals up to cubic polynomials are exact. Simpson’s
rule comes in two variants, the first one - the Simpson’s 1/3 rule - uses three points in each segment
and the second one - the Simpson’s 3/8 rule - uses four points in each segment. However both of
these have errors of order five (proportional to h5), as will be seen below.

9.3.1 Simpson’s 1/3 rule

Derivation of Simpson’s 1/3 rule - Integration of a second degree polynomial

Consider three points defining a segment of width 2h for integration, as shown in Figure 9.3.
Using the trick that was employed in defining central difference formulae, we can easily show that
a quadratic that passes through the three points is given by

f (x)= f i + f i+1 − f i−1

2h
(x− xi)+ f i−1 −2 f i + f i+1

2h2 (x− xi)2 (9.13)

which is valid in the region xi−1 ≤ x ≤ xi+1. The integral over the segment may be obtained by
integrating term by term Equation 9.13 from x = xi−1 to x = xi+1. This is equivalent to integrating
with respect to t = x− xi between −h and h. Thus we have∫ xi+1

xi−1

f (x)dx =
∫ h

−h
f (t)dt

S(h) =
[

f i t+ f i+1 − f i−1

2h
t2

2
+ f i−1 −2 f i + f i+1

2h2
t3

3

]∣∣∣∣h

−h

=
[
2 f i + f i−1 −2 f i + f i+1

3

]
h = (f i−1 +4 f i + f i+1)

h
3

(9.14)

Note that the linear term yields zero on integration. Similarly a cubic term, if present, would also
integrate out to zero. Hence the error term must be proportional to h5.

322 Chapter.9 Numerical Integration

h

Quadratic

f (x)f i−1

f i

f i+1

xi−1 xi xi+1

Figure 9.3: Segment of width
2h for Simpson's 1/3 rule

Alternate derivation - Method of undetermined coefficients

A second method of arriving at the above is given now. We require that the Simpson estimate of
the integral over t =−h to t = h be given by∫ h

−h
f (t)dt = w0 f i−1 +w1 f i +w2 f i+1 (9.15)

and yield the exact integral for
f (t)= 1, f (t)= t, f (t)= t2 (9.16)

since any quadratic may be represented as a linear combination of these three functions. Noting
that ti−1 =−h, ti = 0, ti+1 = h, we should then have

f (t)= 1;
∫ h

−h
f (t)dt = w0 +w1 +w2 = 2h · · · · · · · · · · · · · ·(a)

f (t)= t;
∫ h

−h
f (t)dt = w0(−h)+w10+w2h = 0 · · · · · · (b)

f (t)= t2;
∫ h

−h
f (t)dt = w0(h2)+w10+w2h2 = 2h3

3
· · · (c) (9.17)

From Equation 9.17(b) w0 = w2. Substitute this in Equation 9.17(c) to get 2w0 = 2w2 = 2h
3

or

w0 = w2 = h
3

. This in Equation 9.17(a) gives w1 = 2h−w0 −w2 = 2h− h
3
− h

3
= 4h

3
. Immediately we

get back Equation 9.14.

Alternate derivation - using Newton’s polynomial

A third method of arriving at the Simpson’s 1/3 rule is to represent the quadratic passing
through the three points by a Newton polynomial given by

f (r)≈ p2(r)= f i−1 +∆i−1r+ ∆
2
i−1

2!
r(r−1) (9.18)

where r = x− xi−1

h
. We note that the forward differences occurring in Equation 9.18 are given by

∆i−1 = f i − f i−1 and∆2
i−1 = f i−1 −2 f i + f i+1 (9.19)

9.3. Simpson’s rule 323

The integral required is given by
∫ xi+1

xi−1

f (x)dx = h
∫ 2

0
f (r)dr. Term by term integration of Equation

9.18 gives

h
∫ 2

0
f (r)dr ≈ S(h)= h

∫ 2

0
p2(r)dr = h

∫ 2

0

[
f i−1 +∆i−1r+ ∆

2
i−1

2!
r(r−1)

]
dr

=
[

2 f i−1 +2∆i−1 + 2
3

∆2
i−1

2!

]
h (9.20)

Introduce Expressions 9.19 in Equation 9.20 to get the result given in Equation 9.14.

Error of Simpson’s rule for one segment

Simpson’s rule produces exact integrals up to cubic polynomials. Error in Simpson’s estimate
arises from term of degree 4 or higher. The error for one segment may be derived as in the case of
trapezoidal rule to obtain

ε= I −S =− 1
90

h5 f (4) (9.21)

9.3.2 Simpson’s 3/8 rule

Simpson’s 3/8 rule uses a segment containing four points and three steps as indicated in Figure
9.4. We are looking for a rule which will yield exact integral when f (t)= 1, f (t)= t, f (t)= t2, f (t)=
t3. We look for a rule in the form

S(h)=
∫ 3h

t=0
f (t)dt = w0 f i +w1 f i+1 +w2 f i+2 +w3 f i+3 (9.22)

xi xi+h xi+3hxi+h

ti = 0 ti+1 = h ti+3 = 3hti+2 = 2h

h
Figure 9.4: Segment of width 3h for Simpson's 3/8 rule

Following the logic of Equations 9.17 we then have

f (t)= 1;
∫ 3h

0
f (t)dt = w0 +w1 +w2 +w3 = 3h (a)

f (t)= t;
∫ 3h

0
f (t)dt = w00+w1h+w22h+w3 ·3h = 9h2

2
(b)

f (t)= t2;
∫ 3h

0
f (t)dt = w00+w1h2 +w24h2 +w39h2 = 9h3 (c)

f (t)= t3;
∫ 3h

0
f (t)dt = w00+w1h3 +w28h3 +w327h3 = 81h4

4
(d)

Eliminating w1 between Equation 9.23(b) and (c) we get

2w2 +6w3 = 9h
2

(9.23)

324 Chapter.9 Numerical Integration

Eliminating w1 between Equation 9.23(c) and (d) we get

4w2 +18w3 = 45h
4

(9.24)

From the above two equations we eliminate w2 to get

6w3 =
(

45
4

−9
)

h or w3 = 3h
8

(9.25)

Use this in Equation 9.23 to get

2w2 =
(

9h
2

−6× 3h
8

)
or w2 = 9h

8
(9.26)

Using the above two equations in Equation 9.23(b) we then get

w1 = 9h
2

−2× 9h
8

−3× 3h
8

= 9h
8

(9.27)

Finally from Equation 9.23(a) we get

w0 = 3h− 9h
8

− 9h
8

− 3h
8

= 3h
8

(9.28)

Hence we get the Simpson’s 3/8 rule given by

S(h)=
∫ 3h

t=0
f (t)dt = [f i +3 f i+1 +3 f i+2 + f i+3]

3h
8

(9.29)

The error of 3/8 rule is also proportional to h5

Composite Simpson’s 1/3 rule

Segment 1

Segment 2

Segment (i+1)/2

Segment (n−2)/2

Segment n/2

0 1 2 3 4 i−1 i i+1 n−4 n−3 n−2 n−1 n

Figure 9.5: Division of range into segments for applying Simpson's 1/3 rule

Now consider the range x = a, x = b to be divided into a number of segments as shown in Figure
9.5. Obviously n is an even number (with x = a counted as 0). Expression 9.14 holds for the

general segment
i+1

2
. The Simpson’s 1/3 rule is nothing but integration of piecewise quadratic

interpolating polynomial considered in Example 5.8. The desired integral is obtained by summing
the contribution to it from each segment. When we do this the end points of each segment (barring
the end points 0 and n) contributes to the integral to the two adjoining segments and hence∫ xn

x0

f (x)dx ≈ S(h)=
[
(f0 +4 f1 + f2)+ (f2 +4 f3 + f4)+·· ·

+(f i−1 +4 f i + f i+1)+·· · · · · · · ·+ (fn−4 +4 fn−3 + fn−2)

+(fn−2 +4 fn−1 + fn)
] h

3

= [f0 +4 f1 +2 f2 +4 f3 +2 f4 +·· ·+2 fn−2 +4 fn−1 + fn]
h
3

(9.30)

9.3. Simpson’s rule 325

where S(h) stands for Simpson estimate with step h. The above may be rewritten in the form of a
weighted sum given by

S(h)= h
i=n∑
i=0

wi f i (9.31)

with
w0 = wn = 1

3
, w1 = w3 = ·· ·wodd = 4

3
, w2 = w4 = ·· ·weven = 2

3
(9.32)

Error of composite Simpson’s 1/3 rule

Summing up errors over all the segment we get

ε=
n/2∑
i=1

εi ≈− n
180

f (4)
maxh5 ≈−b−a

180
f (4)
maxh4 (9.33)

where f (4)
max is the maximum fourth derivative in the interval [a,b]. We can see that the error of

composite Simpson’s 1/3 rule is proportional to h4. Simpson’s rule is a fourth order rule.
Composite Simpson’s 3/8 rule: We may again divide the interval x = a to x = b into a number
of segments having four nodes each and obtain the integral by summing over these segments. n
should be a multiple of 3 (with node at x = a counted as 0). The result is left to the reader to write
down.

When n is neither an even number or a multiple of 3, a combination of Simpson’s 1/3 rule and
3/8 rule can be applied. The error of such a scheme is still proportional to h4. The simplest scheme
is to divide the range into segments such that the last segment contains 4 nodes where as all other
segments contain 3 nodes. Then 1/3 rule is applied to all segments having 3 nodes where as 3/8
rule is applied to the last segment. A MATLAB program has been provided below to perform the

Segment 1

Segment 2

Segment (i+1)/2

Segment (n−2)/2

Segment n/2

0 1 2 3 4 i−1 i i+1 n−4 n−3 n−2 n−1 n n+1

Figure 9.6: Division of range into segments for applying composite Simpson's rule

Composite Simpson’s rule.

Program 9.2: Composite Simpson rule

1 function in = compsimpson(f,h)

2 % I n p u t f : f u n c t i o n v a l u e s a t n o d e s
3 % h : s t e p s i z e
4 % O u t p u t i n : c o m p o s i t e S i m p s o n e s t i m a t e
5 n = length(f); % number o f n o d e s
6 if (mod(n,2) == 1) % i f n i s odd , S i m p s o n ’ s 1 / 3 r u l e
7 in = (f(1)+f(n)+4* sum(f(2:2:n))+2* sum(f(3:2:n-2)))*h/3;

8 else % i f n i s e v e n S i m p s o n ’ s 1 / 3 + 3 / 8 r u l e
9 in = (f(1)+f(n-3) +4* sum(f(2:2:n-3))+2* sum(f(3:2:n-4)))*h/3;

10 in = in + 3*(f(n-3) +3*f(n-2) +3*f(n-1)+f(n))*h/8;

11 end

326 Chapter.9 Numerical Integration

Example 9.2
Integrate y= e−x2

between 0 and 1 using Simpson rule with a step size of h = 0.125. Compare
this with the exact value of 0.746824.
Solution :

Function values in Example 9.1 are useful in this case also. Simpson estimate is based on
Equation 9.30. Use Program 9.2 to evaluate the integral.

x = [0:0.125:1] ';

y = exp(-x.^2);

in = compsimpson(y ,0.125);

The output of the program is as follows

S(0.125) =
{
(1+0.367880)+4× (0.984496+0.868815+0.676634+

0.465043)+2× (0.939413+0.778801+0.569783)
}
× 0.125

3
= 0.746826

The Simpson estimate differs from the exact by +0.000002. This is surprising since the
same data as in the Trapezoidal estimate is used in this case also!

9.4 Integration of functions
Examples that have been considered until now use equi-spaced tabulated data. We do not rule

out the possibility of having different step sizes in different segments. If only data points are
available and the functional relationship between the variables is not known, the accuracy of
the integration is limited by the number of available data points. We encounter such situations
frequently in engineering practice while using property tables, material design handbooks etc.

On the other hand, if the functional relationship between x and y is known, the accuracy would
depend on the step size h and the quadrature scheme that has been employed. How do we decide
the appropriate step size or quadrature scheme? In practical problems, we do not know the exact
value for the integral and hence we are not sure of the error. Errors for trapezoidal and Simpson’s
rule can be estimated by determining the second and fourth derivatives of the function respectively.
But determining the derivatives may not be possible for all functions. There can be two ways by
which the error can be reduced namely

1. h refinement: As we have seen in Example 9.3, the error of the trapezoidal and Simpson’s
estimates depend on h. The error of the quadrature rule can be reduced by decreasing h
systematically.

2. The accuracy of the estimate can also be increased by using a higher order accurate
quadrature rule.

9.4.1 h refinement: Error estimation

Let us consider trapezoidal rule. We note that the trapezoidal rule uses a linear function
between nodes and hence the dominant error is proportional to h2. If a quadratic function is

9.4. Integration of functions 327

used, as in the Simpson’s rule, the dominant error is proportional to h4. Hence we see that the
error should go as A1h2 + A2h4 +, involving only even powers of h. Thus we may write

I =
∫ b

a
f (x)dx = T(h)+ A1h2 + A2h4 +·· · · · · (9.34)

We may take two step sizes h1 = h and h2 = h/2 and write

I = T(h)+ A1h2 + A2h4 +·· · · · ·
I = T(h/2)+ A1h2/4+ A2h4/16+·· · · · · (9.35)

Subtracting Equations 9.35 from 9.34 we get,

T(h)−T(h/2)≈−A1h2 3
4
+O(h4) (9.36)

Rearranging the above equation and neglecting the higher order terms we get

A1
h2

4
= εT (h/2)= T(h/2)−T(h)

3
(9.37)

which is nothing but the error estimate for T(h/2). If εT (h/2) = A1
h2

4
is less than the desired

tolerance, the estimate of the desired output is accepted. A simple algorithm can hence be proposed
as follows
Step 1 Start with h
Step 2 Evaluate T(h) and T(h/2)

Step 3 If
|T(h/2)−T(h)|

3
< tolerance, stop iteration

Step 4 else refine grid, h = h/2

Grid refinement is done in a similar way for Simpson’s 1/3 rule. The error for Simpson’s rule can
be estimated as

εS(h/2)= S(h/2)−S(h)
15

(9.38)

One observes that in both trapezoidal and Simpson’s 1/3 rule, the function values are reused
after refining the grid. The advantage of refining the grid by halving h is that the calculated
functional values at the existing nodes are reused. However, in case of Simpson’s 3/8 rule, the
already calculated function values are not used on grid refinement. Hence, Simpson’s 1/3 rule is
preferred over Simpson’s 3/8 rule (even though both have same order of accuracy). The same is
applicable for Newton Cotes (treated later) rules with odd number of points (5,7 etc).

Let us reexamine Example 9.3. It is intended to obtain the integral within a tolerance of 1×10−6.
A MATLAB program has been written to determine the desired estimate.

in = 0; % i n i t i a l i z e i n t e g r a l
i = 2; % i n i t i a l i z e i
tol = 1e-6 % t o l e r a n c e
while 1 % s t a r t l o o p

h = 1/2^i; % s t e p s i z e
h1(i-1) = h;

328 Chapter.9 Numerical Integration

x = [0:h:1]'; % x
f = 1./(1+25*x.^2); % e v a l u a t e f u n c t i o n
in(i) = trapezoidal(f,h); % t r a p e z o i d a l
% i n (i) = c o m p s i m p s o n (f , h) ; % (u n c o m m e n t f o r S i m p s o n ’ s)
if(abs(in(i)-in(i-1))/3 < tol) % f o r t r a p e z o i d a l r u l e
% i f (a b s (i n (i) − i n (i − 1)) / 1 5 < t o l) % f o r S i m p s o n ’ s r u l e

break; % i f e r r o r < t o l e r a n c e , b r e a k l o o p
end

i = i+1; % i n c r e m e n t i f o r g r i d r e f i n e m e n t
end

Table 9.1 summarizes the grid refinement procedure for trapezoidal and Simpson’s rules. For

Table 9.1: E�ect of grid re�nement

Trapezoidal Simpson’s
h estimate εT estimate εS

1/4 0.278449 0.261738
1/8 0.274611 1.28E-03 0.273332 7.73E-04
1/16 0.274656 1.50E-05 0.274671 8.93E-05
1/32 0.274674 6.01E-06 0.274680 6.05E-07
1/64 0.274679 1.50E-06

1/128 0.274680 3.76E-07

achieving the desired tolerance, the number of function evaluations for Trapezoidal and Simpson’s
rule are respectively 129 and 17.

9.4.2 Closed Newton Cotes quadrature rules

Newton Cotes1 integration rules can be used when equi-spaced data is available. Closed means
the data including those at the end points are made use of by the quadrature formula. Trapezoidal

and Simpson rules naturally fall under the category of Newton Cotes formulae.
∫ b

a
f (x)dx is

calculated by integrating the Lagrange polynomial passing through the data points.

Consider n+1 points, x0 to xn, equally distributed in the range a ≤ x ≤ b with a step size of

h = b−a
n

. Newton Cotes integration formula can be written as

∫ b

a
f (x)dx =

∫ x0+nh

x0

Ln(x)dx = ch
n∑

i=0
wi f i (9.39)

where c is a multiplication constant. wi is the weight for each node which is obtained by
integrating the Lagrange weight functions

wi =
∫ b

a
l i(x)dx (9.40)

where l i are the Lagrange weight functions2 . A MATLAB routine has been provided below to
integrate the polynomial function. The function can be used to integrate Lagrange polynomial
functions.

1Roger Cotes, 1682 - 1716, English mathematician who worked closely with Newton.
2Note that the Lagrange weights were indicated by wi in Chapter 5 dealing with interpolation.

9.4. Integration of functions 329

Program 9.3: Integration of polynomial functions

1 function in = polyintegral(pp ,x1 ,x2)

2 % I n p u t pp : c o e f f i c i e n t s o f p o l y n o m i a l s
3 % x 1 : l o w e r b o u n d
4 % x 2 : u p p e r b o u n d
5 % O u t p u t i n : i n t e g r a l
6 n = size(pp ,2) +1; % number o f p o i n t s
7 m = size(pp ,1); % number o f p o l y n o m i a l e q u a t i o n s
8 pint = zeros(size(pp ,1),size(pp ,2) +1); % i n i t i a l i z e p i n t
9 in = zeros(m,1); % i n i t i a l i z e i n

10 for i= 2:n % e v a l u a t e i n t e g r a t e d p o l y n o m i a l
11 pint(:,i) = pp(:,i-1)/(i-1);

12 end

13 for i=1:n % e v a l a u a t e i n t e g r a l
14 in = in + pint(:,i).*(x2.^(i-1)-x1.^(i-1));

15 end

Table 9.2 lists the weights for various Newton Cotes formulae.

Table 9.2: Weights for Newton Cotes quadrature rules

c Weights |ε|†

n 0 1 2 3 4 5 6

1
1
2

1 1 Trapezoidal
h3

12
f (2)

2
1
3

1 4 1 Simpson’s 1/3rd h5

90
f (4)

3
3
8

1 3 3 1 Simpson’s 3/8th 3h5

8
f (4)

4
2
45

7 32 12 32 7
8h7

945
f (6)

5
5

288
19 75 50 50 75 19

275h7

12096
f (6)

6
1

140
41 216 27 272 27 216 41

9h9

1400
f (8)

†Error estimate is over a single segment

Error estimate The error estimate for ith order accurate Newton quadrature rule can be
determined in the same way as in the previous section i.e. based on the difference between
estimates with two grids h and h/2 which is

ε= I(h/2)− I(h)
2i −1

(9.41)

Runge phenomenon and Newton Cotes Quadrature Use of higher order quadrature
rules do not ensure accuracy of the integration. Recollect Runge phenomenon in Chapter 5, where

330 Chapter.9 Numerical Integration

higher order interpolation over equi-spaced data can cause large errors. The same error would
reflect in integration while using higher order quadrature schemes. The weights of higher order
Newton Cotes formulae can be negative making the integration unstable and also unphysical.
Consider a rod of length L having a temperature distribution T(x). The mean temperature of the
rod is defined as

Tmean = 1
L

∫ L

0
T(x)dx = w0T0 +w1T1 +·· ·+wnTn

If a certain node is having a negative weight in a quadrature rule, it means that the node
contributes negatively to the mean temperature which is obviously unphysical.

Example 9.3
Evaluate integral

∫ 1

0

1
1+25x2 dx using the following schemes

1. Composite trapezoidal
2. Composite Simpson’s 1/3
3. Newton Cotes quadrature rules

with h = 1/8, 1/16 and 1/32. Compare the individual results with the exact value.
Solution :

Integrating the function analytically we get∫ 1

0

1
1+25x2 = 1

5
tan−1(5x)

∣∣∣∣1
0
= 1

5
tan−1 5= 0.274680 (9.42)

Programs 9.1, 9.2 and 9.3 have been used to apply trapezoidal rule, Simpson’s 1/3 rule and
Newton Cotes rules. A sample of the program has been given below.

h = 1/8; % s t e p s i z e
x = [0:h:1]'; % n o d e p o s i t i o n s
f = 1./(1+25*x.^2); % f u n c t i o n v a l u e s a t n o d e s
trap = trapezoidal(f,h); % t r a p e z o i d a l e s t i m a t e
simp = compsimpson(f,h); % S i m p s o n ’ s e s t i m a t e
pp= lagrangeweightfunction (x); % L a g r a n g e w e i g h t f u n c t i o n s
w = polyintegral(pp ,0,1);

nc = sum(w.*f); % N e w to n C o t e s e s t i m a t e

The following table lists estimates of the integral evaluated by these methods and
the corresponding errors with respect to the exact value (difference between exact and
estimate).

Trapezoidal Simpson’s Newton Cotes
h estimate ε estimate ε estimate ε

0.1250 0.2746 6.90E-05 0.2733 1.35E-03 0.2752 5.51E-04
0.0625 0.2747 2.41E-05 0.2747 9.08E-06 0.2746 4.44E-05
0.0312 0.2747 6.02E-06 0.2747 4.55E-09 2.51E+08 2.51E+08

Accuracy of Simpson’s and Trapezoidal estimates increase as the number of nodes increase.
However, observe that the Newton Cotes approximation diverges rapidly for higher order

9.4. Integration of functions 331

approximation. The Runge phenomenon makes the estimate poor. The divergence of
higher order Newton Cotes formulae occurs because of the rounding errors of the Lagrange
interpolation weights. Direct integration of higher order interpolation formulae must be
avoided. Also observe that the convergence of Simpson’s estimate to the exact solution is
much faster than that of Trapezoidal rule. Figure 9.7 shows the relationship between error
and step size for different schemes.

Composite Newton Cotes rule: Like composite Simpson’s rule, We can divide the range
into smaller segments and apply Newton Cotes quadrature rules over each of these segments. Such
a scheme is known as Composite Newton Cotes rule.The following example considers composite
Newton Cotes quadrature.

ε

10-10

10-5

100

h
0.01 0.1

 Trapezoidal
 Simpson's
 Newton Cotes

Figure 9.7: Error vs step size for
di�erent integration schemes

Example 9.4
Integrate y = e−x2

between 0 and 1 using Newton Cotes rules with n = 4 and 8 with a step
size of h = 0.125. Compare this with the exact value of 0.746824.
Solution :

Function values are listed in Example 9.1. The number of nodes is equal to 9. We have
already calculated the integral with n = 1 (trapezoidal) and n = 2 (Simpson’s 1/3) in earlier
examples.
Let us apply Newton Cotes quadrature rule for n = 4. The range is divided into two
segments (0 ≤ x ≤ 0.5 and 0.5 ≤ x ≤ 1). Each segment has four points with x = 0.5 shared
between the two segments. The weight functions for all the nodes except x = 0.5 are those
listed in Table 9.2. As node at x = 0.5 is shared between two segments, the total weight at
the node is sum of the weights from individual segments. Integration procedure has been
summarized in Table 9.3.

The integral is equal to ch
8∑

i=0
wi f i = 2

45
×0.125×134.428351= 0.746824. The error of the

estimate is found to be 3.71×10−08

We can use program 9.3 to evaluate the integral with n = 8
x = [0:1/8:1] ';

f = exp(-x.^2);

332 Chapter.9 Numerical Integration

pp= lagrangeweightfunction (x); % e v a l u a t e w e i g h t f u n c t i o n s
w = polyintegral(pp ,0,1); % i n t e g r a t e w e i g h t s
int = sum(w.*f); % i n t e g r a l
er = abs(int -sqrt(pi)*erf (1) /2); % e r r o r

Table 9.3: Spreadsheet for Example 9.4

i x f i wi wi f i
0 0 1.000000 7 7.000000
1 0.125 0.984496 32 31.503886
2 0.25 0.939413 12 11.272957
3 0.375 0.868815 32 27.802082
4 0.5 0.778801 14 10.903211
5 0.625 0.676634 32 21.652283
6 0.75 0.569783 12 6.837394
7 0.875 0.465043 32 14.881382
8 1 0.367879 7 2.575156

Sum 134.428351

The output of the program is
int = 0.7468

er = 9.0250e-09

We can see that the error has reduced quite significantly!
In practice, higher order Newton Cotes quadrature rules are avoided. It may be advisable to

employ composite Newton Cotes rules up to order 7.

9.4.3 Romberg method: Richardson extrapolation

In earlier sections, we were able to estimate the error and used it as an indicator to stop
grid refinement. Richardson extrapolation goes one step further by utilizing the calculated
error to push the error to higher order. The method does not suffer from instabilities due to
Runge phenomenon as seen for higher order Newton quadrature rules, at the same time achieves
estimates with higher order accuracy. Also, the procedure determines the trapezoidal estimate
(lowest order of accuracy) and then gradually pushes the error to higher and higher orders.

Again we consider trapezoidal estimates of two step sizes h1 = h and h2 = h/2 and write

I = T(h)+ A1h2 + A2h4 +·· · · · ·
I = T(h/2)+ A1h2/4+ A2h4/16+·· · · · · (9.43)

We may divide the first of these by h2 and the second by (h/2)2 and subtract the first from the
second to get

4I
h2 − I

h2 = 4T(h/2)
h2 − T(h)

h2 + A2(h2/4−h2)+·· · · · · (9.44)

This may be rearranged to get

I =
4T(h/2)

h2 − T(h)
h2

4
h2 − 1

h2

+ A2
(h2/4−h2)

4
h2 − 1

h2

=
4T

(
h
2

)
−T(h)

4−1
− A2

4
h4 · · · · · · (9.45)

9.4. Integration of functions 333

Rearranging the above equation we obtain

I ≈ T
(
h,

h
2

)
= T

(
h
2

)
+ T(h

2)−T(h)
3︸ ︷︷ ︸

εT (h/2)

(9.46)

The above equation is a better estimate for the integral since the error is proportional to h4.
Observe that the above estimate is the same as Simpson’s estimate. This extrapolation process
may be continued by noting that

I = T
(
h,

h
2

)
+ A2h4 +·· · · · · (9.47)

I = T
(

h
2

,
h
4

)
+ A2

h4

16
+·· · · · · (9.48)

We may eliminate A2 from these two equations to get a better estimate to the integral given by

I = T
(

h
2

,
h
4

)
+

T
(

h
2 , h

4

)
−T

(
h, h

2

)
22·2 −1︸ ︷︷ ︸
εS (h/2)

+A3h6 (9.49)

Thus T
(
h,

h
2

,
h
4

)
= T

(
h
2

,
h
4

)
+

T
(

h
2 , h

4

)
−T

(
h, h

2

)
22·2 −1

is a superior estimate to the integral since it

involves error of order h6 = h2·3. This process may be extended to push the error further to higher
orders. In general, we may write

T
(
h,

h
2

, . . . ,
h
2n

)
= T

(
h
2

, . . . ,
h
2n

)
+

T
(

h
2 , . . . , h

2n

)
−T

(
h, h

2 , . . . , h
2n−1

)
22·n −1

+ Anh2·(n+1) (9.50)

The above procedure leads to a Romberg table (Table 9.4) as given below. The entries along the
upward going diagonal, starting in any row, represent the best estimates for the integral. Usually
one stops when two entries along this diagonal differ by less than a user defined tolerance.

Table 9.4: Romberg table

Error order

h2 h4 h6 h8 h10

T(h) T
(
h,

h
2

)
T

(
h,

h
2

,
h
4

)
T

(
h,

h
2

,
h
4

,
h
8

)
T

(
h,

h
2

h
4

,
h
8

,
h
16

)
T

(
h
2

)
T

(
h
2

,
h
4

)
T

(
h
2

,
h
4

,
h
8

)
T

(
h
2

,
h
4

,
h
8

,
h
16

)
T

(
h
4

)
T

(
h
4

,
h
8

)
T

(
h
4

,
h
8

,
h
16

)
T

(
h
8

)
T

(
h
8

,
h
16

)
T

(
h
16

)

334 Chapter.9 Numerical Integration

Example 9.5
Use Romberg method and integrate f (x) = 1

0.3− x4 between 1 and 0.8. Compare the value
you obtain with the exact value.
Solution :

Romberg method requires trapezoidal estimates with h,
h
2

etc. In the present case we take

a h value of − 1
30

= −0.033333. Assuming that at least three Trapezoidal estimates are

needed, we calculate the function data with a step size of
h
4
= −0.033333

4
=−0.00833333 as

tabulated below.

i x f (x) i x f (x) i x f (x)
0 1 -1.42857 9 0.925 -2.31431 17 0.858333 -4.11895
1 0.991667 -1.49907 10 0.916667 -2.46265 18 0.85 -4.50437
2 0.983333 -1.57485 11 0.908333 -2.62647 19 0.841667 -4.95455
3 0.975 -1.65648 12 0.9 -2.80820 20 0.833333 -5.48687
4 0.966667 -1.74463 13 0.891667 -3.010820 21 0.825 -6.12556
5 0.958333 -1.84005 14 0.883333 -3.237992 22 0.816667 -6.90537
6 0.95 -1.94361 15 0.875 -3.494284 23 0.808333 -7.87804
7 0.941667 -2.05634 16 0.866667 -3.785471 24 0.8 -9.12409
8 0.933333 -2.17943

The required Trapezoidal estimates are obtained using Equation 9.5. With these the
Romberg table is constructed and tabulated below

T(h) T(h,h/2) T(h,h/2,h/4)
0.70937

0.69487
0.69850 0.69477

0.69478
0.69571

It appears that the results are good to 5 places after the decimal point. We shall evaluate
the exact value of the integral now. The integrand is expanded in terms of partial fractions.
Setting a = 0.3

1
4 the integrand is written as

Integrand= 1
a4 − x4 = 1

4a3

[
1

a− x
+ 1

a+ x

]
+ 1

2a2
1

a2 + x2

On integrating term by term and substituting the limits, the integral in closed form turns
out to be ∫ 0.8

1

dx
a4 − x4 = 1

4a3 ln
[

(a−1)(a+0.8)
(a+1)(a−0.8)

]
+ 1

2a3

[
tan−1

(
0.8
a

)
− tan−1

(
1
a

)]
= 0.69477

The Romberg estimate is in agreement with the exact value of the integral given above.

9.4. Integration of functions 335

Example 9.6
Use Romberg method to integrate

∫ 1

0

1
1+25x2 dx with h = 1/8. Compare the results with exact

value.
Solution :

We have already calculated the trapezoidal estimates for h = 1/8,1/16, and 1/32 in Example
9.3.

T(h) T(h/2) T(h/4)
0.274611 0.274656 0.274674

We shall apply Richardson extrapolation to the trapezoidal estimates.

T
(
h,

h
2

)
= 4×0.274656−0.274611

3
= 0.274671

T
(

h
2

,
h
4

)
= 4×0.274674−0.274656

3
= 0.274680

Observe that the Richardson extrapolated values are the same as the Simpson’s estimates
(see Example 9.3). It turns out that the first extrapolated value of trapezoidal rule is
Simpson’s 1/3 rule. Let us extrapolate the integral further

T
(
h,

h
2

,
h
4

)
= 16×0.274680−0.274671

15
= 0.274681

The extrapolation can stop when the desired degree of accuracy is achieved. The following
table lists the Romberg estimates and its error.

h T(h) T(h,h/2) T(h,h/2,h/4) Error
1/8 0.274611 0.274671 0.274681 6.90E-05 9.08E-06 6.01E-07

1/16 0.274656 0.274680 0.274680 2.41E-05 4.55E-09 2.53E-11
1/32 0.274674 0.274680 6.02E-06 2.61E-10
1/64 0.274679 1.5E-06

One important point to be noted is that Romberg method being an extrapolation method,
round-off errors accumulated at a particular level will continue to accumulate in further
extrapolations.

The distribution of nodes in the methods considered so far are uniform. The number of function
evaluations required to achieve desired accuracy is considerably high. We shall look at two other
important methods which can compute the integral with lesser number of function evaluations.

336 Chapter.9 Numerical Integration

9.5 Quadrature using Chebyshev nodes
In chapter 5, it was seen that Lagrange polynomial passing through Chebyshev nodes was

not affected by Runge phenomenon. Hence if we integrate a polynomial passing through the
Chebyshev nodes, we can expect accurate results. Chebyshev nodes are roots of Chebyshev
polynomials which are orthogonal polynomials. We take up an example to check out the quality of
the integral estimate on using Chebyshev nodes.

Example 9.7
Revisit Example 9.3 and estimate the integral I =

∫ 1

0

1
1+25x2 dx by using Chebyshev nodes.

Compare the estimate with the exact solution for the integral and also obtained with other
quadrature rules.
Solution :

Chebyshev nodes are defined as ξ(i) = cos
(

2i−1
2(n+1)

π

)
in the range (−1,1) where n is the

degree of the polynomial. We transform the coordinates using Equation 5.15 which is given
by

x = 0+1
2

+ 1−0
2

ξ= 0.5+0.5ξ (9.51)

The following program has been used to estimate the integral using Chebyshev nodes
n = 8;

i = [1:n+1]';

x = cos ((2*i-1)*pi *0.5/(n+1));

f = 1./(1+25*(0.5*x+0.5) .^2);

pp= lagrangeweightfunction (x);

w = polyintegral(pp ,-1,1);

in = sum(w.*f)/2;

er = abs(int -atan (5) /5);

The output of the program is given below
in = 0.274680

er = 3.2379e-07

Figure 9.8 shows the error in integration using equi-spaced nodes and Chebyshev nodes.

ε

10-10

10-8

10-6

10-4

10-2

n
0 5 10 15 20 25

 Equi-spaced nodes
 Chebyshev nodes

Figure 9.8: Error comparisons be-
tween estimations with Chebyshev
nodes and equi-spaced nodes

9.6. Gauss quadrature 337

Estimate using quadrature rule with 9 Chebyshev nodes meets the required tolerance
compared to 32 function evaluations required for composite Simpson’s rule! Quadrature
using Chebyshev nodes is more accurate compared to equi-spaced nodes. This is because
quadrature using equi-spaced nodes correspond to Newton Cotes rules which are sensitive
to Runge phenomenon. The divergence of higher order polynomials does not indicate the
failure of the quadrature rule. The divergence is due rather to the round off error of
Lagrange functions. The intention of considering the above example is to make the reader
aware of a powerful quadrature scheme.

Fejer quadrature rules and Clenshaw-Curtis quadrature rules3 use Chebyshev polynomials to
estimate the integral. Chebyshev quadrature rules exactly integrate polynomial up to degree n.
In fact, the integration performed in Example 9.7 corresponds to one of the Fejer quadrature rules.
However in practice, quadrature rules based on Chebyshev polynomials use Discrete Cosine
Transform to estimate the integral. More discussion on this quadrature rule is available in
advanced texts.

Both Newton Cotes quadrature and rules based on Chebyshev polynomials integrate polynomials
exactly up to degree n. Now we shall look at Gauss quadrature rule which can integrate
polynomials of degree 2n−1 exactly.

9.6 Gauss quadrature
Gauss quadrature deals with integration over a symmetrical range of x from -1 to +1. The

important property of Gauss quadrature is that it yields exact values of integrals for polynomials
of degree up to 2n−1. Gauss quadrature uses the function values evaluated at a number of interior
points (hence it is an open quadrature rule) and corresponding weights to approximate the integral
by a weighted sum.

I =
∫ 1

−1
f (x)dx =

n−1∑
i=0

wi f (xi) (9.52)

A Gauss quadrature rule with 3 points will yield exact value of integral for a polynomial of degree
2×3−1 = 5. Simpson’s rule also uses 3 points, but the order of accuracy is 3. Gauss quadrature
evaluates integrals with higher order accuracy with smaller number of points and hence smaller
number of function evaluations.4 Moreover Gauss quadrature integration is not affected by Runge
phenomenon.

If the limits of integration are x = a and x = b, it is possible to use a simple linear transformation
to bring the limits to the standard [-1,1] using Equation 5.15. The transformation would be

x = a+b
2

+ b−a
2

ξ (9.53)

3C.W. Clenshaw and A.R. Curtis “A method for numerical integration on an automatic computer” 1960,
Numerische Mathematik, 2(1), 197-205.

4Performance of Gauss quadrature may not be better than other methods discussed earlier for certain
functions. Please refer to L.N. Trefethen, “Is Gauss quadrature better than Clenshaw-Curtis?” 2008, SIAM
review, 50(1), 67-87.

338 Chapter.9 Numerical Integration

We also have dx = b−a
2

dξ and hence the required integral is given by

I =
∫ b

a
f (x)dx = b−a

2

∫ 1

−1
f
(

b−a
2

ξ+ a+b
2

)
dξ (9.54)

With the above proviso we now consider integration of a function over the interval [-1,1]. All the
evaluation points are within the interval i.e. −1< xi < 1.

2 point Gauss Quadrature

A two point Gauss rule produces exact results for polynomials up to degree 3. The points and
the weights are to be chosen such that the above condition is met. More or less, we are fitting
a straight line to the cubic polynomial. As the integration is performed over symmetric region,
contributions due to odd functions such as x, x3 disappear. As there are even number of points,
the points are symmetric about the origin i.e. x1 = −x2. Also, the weights of both the points are
equal i.e. w1 = w2. The approximation already works for x and x3. Let us determine the points
and weights such that the approximation is exact for f (x)= 1 and f (x)= x2. Thus we have

f (x)= 1;
∫ 1

−1
f (x)dx = w1 +w2 = 2−→ w1 = w2 = 1 · · · · (a)

f (x)= x2;
∫ 1

−1
f (x)dx = w1x2

1 +w2x2
2 =

2
3
−→ x1 =±

√
1
3
· · · (b) (9.55)

Hence the 2 point Gauss rule would be

IG2 =
∫ 1

−1
f (x)dx = f

(√
1
3

)
+ f

(
−

√
1
3

)
(9.56)

where the subscript G2 indicates a two point Gauss quadrature.

3 point Gauss Quadrature

We consider next the three point rule which is explained by Figure 9.9. In case of odd number

f (x)

x1 = 0x2 x3

x =−1 x = 0 x = 1
Gauss nodes

Figure 9.9: Gauss quadrature
with three points

of points such as the case shown in the figure origin will automatically be one Gauss point and the
other Gauss points are symmetrically arranged with respect to the origin. Hence in the case shown
in the figure the Gauss points are x0 = 0, x1 =−x2 and the weights for the two symmetrically placed
points are the same. Thus w1 = w2. These automatically satisfy the condition that integrals of x,

9.6. Gauss quadrature 339

x3 and x5 over the limits [-1,1] vanish, as they should. The points and the weights are determined
by requiring that the integral be exact for f (x)= 1, f (x)= x2 and f (x)= x4. Thus we have

f (x)= 1;
∫ 1

−1
f (x)dx = w0 +w1 +w2 = w0 +2w1 = 2 · · · · (a)

f (x)= x2;
∫ 1

−1
f (x)dx = w1 · x2

1 +w2 · x2
2 = 2w1 · x2

1 =
2
3
· · · (b)

f (x)= x4;
∫ 1

−1
f (x)dx = w1x4

1 +w2x4
2 = 2w1x4

1 =
2
5
· · · · · · · ·(c) (9.57)

Dividing Equation 9.57(c) by Equation 9.57(b) we get

x2
1 =

3
5

or x1 =
√

3
5

(9.58)

Hence x2 =−x1 =−
√

3
5

. Then Equation 9.57(b) gives

2w1x2
1 =

2
3

or w1 = 5
9

(9.59)

Hence w2 = 5
9

and from Equation 9.57(a) we have

w0 = 2−2w1 = 2−2
5
9
= 8

9
(9.60)

Thus the Gauss three point rule is

IG3 =
∫ 1

−1
f (x)dx = 8

9
f (0)+ 5

9

[
f

(√
3
5

)
+ f

(
−

√
3
5

)]
(9.61)

Legendre polynomials

The three Gauss points (points at which the function values are evaluated in Gauss quadrature)

in the above indeed represent the three zeros of the Legendre polynomial P3(x) = x(5x2 −3)
2

. This
connection is not fortuitous but may be shown rigorously to hold for any number of Gauss points
i.e. for a n point Gauss rule the points are the zeroes of Pn(x). Legendre polynomials defined as

Pn(x)= 1
2nn!

dn

dxn

[
(x2 −1)n]

(9.62)

satisfy the Legendre differential equation. Alternatively, Pn may be determined by

Pn(x)= 2n
n∑

i=0

(
n
i

)(
(n+ i−1)/2

n

)
xi (9.63)

where
(

n
i

)
= nCi = n!

(n− i)!i!
. For this reason Gauss quadrature is also referred to as Gauss

Legendre quadrature. The weights of Gauss Legendre quadrature can be determined using

340 Chapter.9 Numerical Integration

method of undetermined coefficients. Table 9.5 is a short listing of Gauss points and weights.
For a complete listing of Gauss nodes and weights, reader may refer to the book by Abramovitz
and Stegun5.

Table 9.5: Gauss points and weights

n x w 2n−1
1 0 2 1
2 ±0.577350 1 3

3
0 0.888889

5±0.774597 0.555556

4
±0.339981 0.652145

7±0.861136 0.347855

n x w 2n−1

5
0 0.568889

9±0.538469 0.478629
±0.906180 0.236927

6
±0.238619 0.467914

11±0.661209 0.360762
±0.932470 0.171324

MATLAB program has been given below to compute the integral using 5 Gauss points.

Program 9.4: 5 point Gauss quadrature

1 function in = gauss5pt(f,a,b)

2 % I n p u t f : f u n c t i o n t o b e i n t e g r a t e d
3 % a : l o w e r b o u n d
4 % b : u p p e r b o u n d
5 % O u t p u t i n : G a u s s 5 p t e s t i m a t e
6 x = [-0.906179846; -0.538469310; 0.000000000;

7 0.538469310; 0.906179846]; % g a u s s n o d e s
8 w = [0.236926885; 0.478628670; 0.568888889;

9 0.478628670; 0.236926885]; % w e i g h t s
10 x = (a+b)/2 + (b-a)*x/2; % t r a n s f o r m c o o r d i n a t e s
11 in = (b-a)*sum(w.*f(x))/2; % c o m p u t e i n t e g r a l

Similar programs can be written for other order Gauss quadratures also. It may be better to store
all the weights and nodes in a single file and use them as required. Algorithms are available to
determine the nodes and weights efficiently for higher order Legendre polynomials. A simple
algorithm to determine the weights of Gauss quadrature is to integrate Lagrange polynomial
through the roots of Legendre polynomial between the interval (−1,1). However, as the order of
polynomial increases, round off errors would make it difficult to determine the weights accurately.
Alternatively, the nodes and weights can be determined using eigenvalue computations.6

Example 9.8
Use Gauss quadrature and integrate f (x) = 1

0.3− x4 between 1 and 0.8. Compare the value
you obtain with the exact value.
Solution :

In applying Gauss quadrature the limits of integration have to be −1 and +1. In this
example the lower limit is a = 1 and the upper limit is b = 0.8. Transformation required

5Abramowitz and Stegun Handbook of Mathematical Functions Available online at
http :// people.math.sfu.ca/~cbm/aands/. To best of our knowledge the book is not copyrighted.

6G.H. Golub and J.H. Welsch, “Calculation of Gauss quadrature rules” 1969, Math. Comp, 23(106), 221-
230.

9.6. Gauss quadrature 341

to convert the limits to [-1, +1] is x = a+b
2

+ t
b−a

2
= 1+0.8

2
+ t

0.8−1
2

= 0.9−0.1t. We also
have dx =−0.1dt. Hence the desired integral is written as∫ 0.8

1

dx
a4 − x4 =−0.1

∫ 1

−1

dt
a4 − (0.9−0.1t)4

One may use different Gauss quadrature rules to solve this problem. We show the use of
Gauss quadrature with n = 5 as an example. Only 5 function evaluations are required to get
an estimate for the integral. We make use of the Gauss points and weights given in Table
9.5 for this purpose. The computation is tabulated as shown below.

t f (t) w(t) IG5

0.000000 -2.808200 0.568889 0.69473
0.538469 -4.703220 0.478629

-0.538469 -1.894730 0.478629
0.906180 -7.742635 0.236927

-0.906180 -1.508303 0.236927

It is interesting to note that the Gauss estimate of the integral has an error of only -0.00004
when compared to the exact value.

Composite Gauss quadrature Like other quadrature methods discussed before, composite rules
can be applied using Gauss quadratures also. The entire integration range is divided into small
segments and Gauss quadrature is applied to each segment. The following MATLAB program
performs composite Gauss quadrature.

Program 9.5: Composite 5 point Gauss quadrature

1 function in = compositegauss5pt(f,a,b,n)

2 % I n p u t f : f u n c t i o n t o b e i n t e g r a t e d
3 % a : l o w e r b o u n d
4 % b : u p p e r b o u n d
5 % n : number o f s e g m e n t s
6 % O u t p u r i n : c o m p o s i t e G a u s s 5 p t e s t i m a t e
7 in = 0; % i n i t i a l i z e i n t e g r a l
8 h = (b-a)/n; % s t e p s i z e
9 for i=1:n % G a u s s 5 p t o v e r e a c h s e g m e n t

10 in = in + gauss5pt(f,a+(i-1)*h,a+i*h);

11 end

Example 9.9
Integrate

∫ 1

0

1
1+25x2 dx using Gauss quadratures. Refine the grid and apply composite

Gauss quadrature rules. Comment on the errors.
Solution :

Program 9.5 is used to estimate the integral. Following table summarizes the estimate and
error of Gauss quadrature.

342 Chapter.9 Numerical Integration

h estimate actual error
estimated
error

1 0.274321 3.59E-04
0.5 0.274667 1.28E-05 3.46E-04

0.25 0.274680 2.71E-07 1.25E-05
0.125 0.274680 9.51E-10 2.70E-07

Estimated error in the above table indicates the difference between two consecutive
quadrature estimates. One can obtain good convergence using small number of segments.
Alternatively, one can use higher order Gauss quadrature formulae over the entire interval.
But one must be careful not to round off the weights and nodes of the Gauss quadrature
rules so that accuracy is not compromised.

Other Gauss quadrature rules While Gauss Legendre quadrature is most commonly used,
there are other rules which can be used under special conditions. All Gauss quadrature rules are
exact up to polynomial degree of 2n−1. Consider the integral of the form

I =
∫ 1

−1
f (x)dx =

∫ 1

−1
W(x)g(x)dx (9.64)

where f (x) is a convolution (product) of two functions W(x) and g(x). Then for certain known
functions W(x) (orthogonal functions), the integral can be approximated as

I =
∫ 1

−1
W(x)g(x)dx ≈

n∑
i=1

wi g(xi) (9.65)

When W(x) = 1, we get the standard Gauss Legendre quadrature. Table 9.6 indicates some of the
other quadrature rules.

Table 9.6: Variants of Gauss quadrature rules

Quadrature Integral W(x) Orthogonal polynomial

Gauss-Legendre
∫ 1

−1
g(x)dx 1 Legendre

Chebyshev-Gauss
∫ 1

−1

1p
1− x2

g(x)dx
1p

1− x2
Chebyshev

Gauss-Laguerre
∫ ∞

0
e−x g(x)dx e−x Laguerre

Gauss-Hermite
∫ ∞

−∞
e−x2

g(x)dx e−x2
Hermite

The nodes and weight functions for rules given in Table 9.6 are available in handbooks.
Alternatively, the nodes and weights of these orthogonal polynomials can be determined by solving
eigenvalue problems.

9.7. Singular integrals 343

9.7 Singular integrals
Consider the integral ∫ 1

0

1p
x

dx = 2
p

x
∣∣1
0 = 2 (9.66)

x = 0 is a singular point since the integrand becomes infinite as x → 0. Such integrals are known as
singular integrals and are also classified as improper integrals. There are abundance of practical
examples which involve singular integrals. Closed Newton Cotes quadrature rules cannot be used
for a singular integral as they include the end points in their function evaluation.

9.7.1 Open Newton Cotes quadrature

Open Newton Cotes rules are similar to the closed quadrature rules discussed earlier. The
nodes of open quadrature rules are distributed within the integration domain and the end points
are avoided. The quadrature rule involves extrapolation of the Lagrange polynomial outside the
range of the quadrature points. Like the closed formulae, the Lagrange polynomial are integrated
over the entire domain. Hence open quadrature rules are useful when integrand is singular at
one/both of the end points.

Mid point rule

The simplest open quadrature rule is the mid-point rule. As the name suggests, the mid-point of
the integration segment is used as the node. Let the integration range be divided into n segments.
Then the step size of each segment is given by h = (b− a)/n. The mid-point rule applied over a
segment is given by ∫ xi+h

xi

f (x)dx ≈ hf (xi +h/2) (9.67)

The mid-point rule over the entire integration range can be written as∫ b

a
f (x)dx ≈ h

n−1∑
i=0

f (xi +h/2) (9.68)

Mid-point rule has been illustrated in Figure 9.1. The quadrature rule is equivalent to trapezoidal
rule as it also integrates a linear function exactly. The error of mid-point rule is proportional to
h2. However near a singularity the error of the integral is going to be large and very small step
sizes have to be chosen.

Example 9.10

Integrate
∫ 1

0

exp
(− 1

t
)

t
dt. Use step sizes of h = 0.25. Refine the grid and discuss the

improvement in the estimate.
Background :

Integral E1(x) =
∫ 1

0

exp
(− x

t
)

t
dt is known as exponential integral of order 1. An nth order

exponential function is defined as

En(x)=
∫ 1

0
tn−2exp

(
− x

t

)
dt

344 Chapter.9 Numerical Integration

These integrals occur in solution of neutron transport equation and radiative transfer
equation.

Solution :

At t = 0, we have lim
t→0

exp
(− 1

t
)

t
→ 0

0
. We cannot use Simpson’s rule or trapezoidal rule for this

example. We use the midpoint rule to evaluate the integral. The following table summarizes
the results for various step sizes using the mid point rule

h Integral Error
1/4 0.218868 · · ·
1/8 0.219416 5.48E-04

1/16 0.219384 3.19E-05
1/32 0.219384 3.49E-07

Error refers to difference between the estimates for two consecutive step sizes. One can
apply Richardson extrapolation to the above data and further improve the accuracy.

Example 9.11
Integrate

∫ 1

0

1p
x

dx using mid point rule and compare the same with exact value for h = 0.25.

Also refine the grid and discuss the improvement in the estimate.
Solution :

The following table summarizes the mid-point rule calculation with h = 0.25

xi 0.125 0.375 0.625 0.875
f (xi) 0.707107 0.408248 0.316228 0.267261

Integral = 1.698844

The exact value of the integral is 2. The estimate of the integral does not improve much
with grid refinement as seen in the following table.

h estimate
1/4 1.6988
1/8 1.7865

1/16 1.8489
1/128 1.9465
1/1028 1.9811

Even after using very fine grids, the estimate is poor!

The derivation of higher order open quadrature rules are similar to closed quadrature rules and
can be obtained by integrating Lagrange polynomials passing through the nodes.

9.8. Integrals with infinite range 345

Open Trapezoidal rule

a 1 b2

h
I = b−a

2
(f1 + f2) Degree of accuracy = 1

Milne’s rule

a 1 b2 3

h
I = b−a

3
(2 f1 − f2 +2 f3) Degree of accuracy = 3

The reader is encouraged to apply the higher order formulae to Example 9.11. Observe
that the weights of the lower order quadrature formulae contain negative coefficients. Going
by the arguments for closed Newton Cotes formulae, such methods are bound to be unstable.
Alternatively, one can use a combination of open and closed Newton quadratures. For example
apply open quadrature rule such as midpoint rule in a segment containing the singular point with
rest of the region estimated by closed quadrature rule.

Alternative to Newton Cotes formulae, Gauss Legendre quadrature can be used as they
naturally do not include the end points.

Example 9.12
Integrate

∫ 1

0

1p
x

dx using 5 point Gauss quadrature rule. Use step sizes of h = 0.25. Refine

the grid and discuss the improvement in the estimate.
Solution :

We use program 9.5 to evaluate the integrals using composite Gauss quadrature. The
results are summarized in the following table

h estimate
1 /4 1.920800
1/8 1.943997

1/16 1.960400
1/128 1.985999

1/1028 1.993000

Gauss quadrature performs better than mid-point rule but is not good enough. The reader
can try higher order Gauss rules and check the results.

9.8 Integrals with infinite range
In all the integrals we have considered, the bounds a and b were finite. Sometimes, we encounter

finite integrals which have a or b tending towards ∞. Such integrals are also known as improper
integrals and special attention needs to be paid in evaluating these integrals. Examples are:

1. Cumulative probability of normal distribution is given by

p(x)= 1p
2π

∫ x

−∞
e−

1
2 x2

dx

2.
∫ ∞

1

1
x

dx = ln(x)
∣∣∣∣∞
1

is also an improper integral, but the integral of this function is divergent

and quadrature rules are bound to fail for such an integral.

346 Chapter.9 Numerical Integration

9.8.1 Coordinate transformation

Quadrature rules such as Newton Cotes and Gauss Legendre cannot be applied directly to the
integral and would require some special operations. It always helps to reorganize the integral
such that the resultant integral(s) have finite limits making it possible for the quadrature rules
to be applied. This can be done in several ways. Consider the integral which is continuous in the
interval and the integral converges to a finite value.

I =
∫ ∞

0
f (x)dx (9.69)

Method 1 The integral can be broken into two parts as

I =
∫ 1

0
f (x)dx+

∫ ∞

1
f (x)dx (9.70)

The first integral can be determined by any of the methods discussed earlier. A coordinate
transformation can be performed on the second integral so that the limits are finite. In the above

integral, the coordinate transformation would be x = 1
t

and dx =− 1
t2 dt so that x = 1 becomes t = 1

and x →∞ becomes t = 0. Then the integral can be rewritten as

I =
∫ 1

0
f (x)dx+

∫ 1

0

1
t2 f

(
1
t

)
dt (9.71)

Method 2 Alternatively, one can use the transformation x = 1− t
t

and dx = −dt
t2 . The

transformation is equivalent to t = 1
1+ x

so that x = 0 becomes t = 1 and x → ∞ becomes t = 0.
Then the integral becomes

I =
∫ 1

0

1
t2 f

(
1− t

t

)
dt (9.72)

Therefore by suitable coordinate transformations one can convert infinite limit to finite limits.

Example 9.13
Integrate I =

∫ ∞

0

1
1+25x2 dx.

Solution :
We have already handled this function earlier.

Step 1 The exact solution for the integral is I = 1
5

tan−1∞= π

10
= 0.314159.

Step 2 We will split the interval of integration into two parts as follows

I =
∫ 1

0

1
1+25x2 dx+

∫ ∞

1

1
1+25x2 dx

Step 3 Numerically solve first integral (Example 9.6) to get I1 = 0.274680.
Step 4 Transform coordinate for second integral with x = 1/t to get

I2 =
∫ 1

0

1
t2

t2

t2 +25
dt =

∫ 1

0

1
t2 +25

dt

9.9. Adaptive quadrature 347

Step 5 Numerically integrating I2 (up to six digits accuracy) we get I2 = 0.039479.

Finally the desired integral is I = I1 + I2 = 0.314159.

Example 9.14
Integrate I =

∫ ∞

0
e−xdx.

Solution :

Step 1 The exact solution for the integral is I = −e−x∣∣∞
0 = 1.

Step 2 Transform the integral using x = 1− t
t

as

I =
∫ 1

0

1
t2 exp

(
1− t

t

)
dt

This integral is similar to the integral in Example 9.10
Step 3 Apply 5 point composite Gauss quadrature rule with n segments. The results have

been tabulated below

n estimate error
1 1.002635 2.64E-03
2 0.999888 -1.12E-04
3 1.000188 1.88E-04
4 0.999954 -4.58E-05
5 0.999988 -1.15E-05
6 1.000003 3.01E-06

Alternatively, as the integral is of the form
∫ ∞

0
e−x︸︷︷︸
W

f (x)dx with f (x) = 1, Gauss-Laguerre

quadrature can be used to estimate the integral.

9.9 Adaptive quadrature
For a given function, there could be regions where there is a steep variation in the integrand

compared to others. Large number of integration nodes would be required in such regions where
as only a few nodes would be sufficient in regions of gentle variations. In the methods discussed
thus far, there was complete disregard for the nature of variation of the function. This means,
even in regions where the function variation is gentle, fine grids were used. Adaptive quadrature
becomes useful when the integral is of the following forms:

1. The integrand is singular at one or both the boundaries.
2. The limits of integration are ±∞
3. Integrand has singular derivatives and hence cannot be represented by a polynomial. Even

Gauss quadrature may converge slowly in such cases.

348 Chapter.9 Numerical Integration

f

0

0.2

0.4

0.6

0.8

1

x
0 0.2 0.4 0.6 0.8 1

Figure 9.10: Distribution of
integrating segments for adaptive
quadrature

An adaptive quadrature method can be formulated such that it automatically decides the step
size. Instead of applying the refinement uniformly in the entire region, the refinement is applied
in required regions as shown in Figure 9.10. The procedure for one segment can be written as
Step 1 Determine estimate for grid size h and h/2 for the segment

Step 2 If |T(h)−T(h/2)| < 3ε for trapezoidal or |S(h)−S(h/2)| < 15ε for Simpson’s, stop refinement

Step 3 Else, equally divide the segment into two segments and repeat the steps again for each
segment. The tolerance for the new segments is half the tolerance for the big segment.
Therefore adaptive Simpson’s rule becomes a recursive program7 where the function calls itself
until the desired conditions are met.
Warnings: While programming, one must be careful about two aspects. As the program is
recursive in nature, one must specify a maximum level of recursion of the program i.e. number of
times the program calls itself. Also, one must terminate the recursion if the step size reached is
smaller than the precision of the computer.
A MATLAB program has been written to perform adaptive Simpson’s rule. We have fixed the
maximum recursion level at 15 and fixed minimum step size at 10−12

Program 9.6: Adaptive Simpson's rule

1 function in = adaptsimpsons(f,a,c,b,f1 ,f3 ,f2 ,tol ,i)

2 % I n p u t f : f u n c t i o n t o b e i n t e g r a t e d
3 % a : l o w e r b o u n d
4 % c : (a + b) / 2
5 % b : u p p e r b o u n d
6 % f 1 : f (a)
7 % f 3 : f (c)
8 % f 2 : f (b)
9 % t o l : t o l e r a n c e

10 % i : r e c u r s i o n l e v e l (i =0 f o r l e v e l 1)
11 % O u t p u t i n : i n t e g r a l
12 i = i+1; % i n c r e m e n t r e c u r s i o n l e v e l
13 d = (a+c)/2; e = (c+b)/2; % mid p o i n t s o f t w o s u b s e g m e n t s
14 f4 = f(d); f5 = f(e); % f u n c t i o n a t t w o s u b s e g m e n t s

7A program which calls itself is called as recursive and recursion would continue as long as specified
conditions are not met. For example to determine n! we can write a recursive program to multiply n with
n−1!. The program continues to call itself until n = 1.

9.9. Adaptive quadrature 349

15 in1 = (f1 + 4*f3+ f2)*(b-a)/6; % S (h)
16 in2 = (f1 + 4*f4 + 2*f3 + 4*f5 + f2)*(b-a)/12; % S (h / 2)
17 if(abs(in1 -in2) < 15* tol || i == 15 || b-c < 10^ -12)

18 % i f d i f f < t o l , o r i = max r e c u r s i o n l e v e l
19 % o r s t e p s i z e < 10^ −12
20 in = in2; % i n = S (h / 2)
21 else

22 % i f d i f f > t o l , d e t e r m i n e i n t e g r a l s f o r t w o s e g m e n t s
23 in1 = adaptsimpsons(f,a,d,c,f1 ,f4 ,f3 ,tol/2,i);

24 in2 = adaptsimpsons(f,c,e,b,f3 ,f5 ,f2 ,tol/2,i);

25 in = in1 + in2; % t o t a l i n t e g r a l o v e r s e g m e n t
26 end

Applying adaptive Simpson’s rule to Example 9.3 with tolerance 1×10−6.
f = @(x) 1./(1+25*x.^2);

f1 = f(0);

f2 = f(1);

f3 = f(0.5);

[in ,er] = adaptsimpsons(f,0,0.5,1,f1 ,f3 ,f2 ,1e-6,0);

The output of the program is
in = 0.274680

er = 8.2176e-07

The number of segments required for the above estimate is 66 with about 132 function evaluations.
The error of the estimate compared to the exact value is 3.37×10−8. It seems that the adaptive
Simpson’s rule has no added advantage over Composite Simpson’s rule. The real advantage of
adaptive quadrature comes when the integral does not converge easily. We consider an example to
illustrate the point.

Example 9.15
Integrate I =

∫ 1

0

p
xdx up to six digits accuracy using composite Simpson’s rule and adaptive

Simpson’s rule.
Solution :

Programs 9.2 and 9.6 have been used to estimate the integral.
inc = 0;

i = 2;

f = @(x) sqrt(x);

while 1

h = 1/2^i;

h1(i-1) = h;

x = [0:h:1]';

y = f(x);

in(i) = compsimpson(y,h);

if(abs(in(i)-in(i-1))/15 < 1e-6)

break;

end

i = i+1;

end

ina = adaptsimpsons(f,0,0.5,1,f(0) ,(0.5),f(1) ,1e-6,0);

350 Chapter.9 Numerical Integration

The integral estimates using composite Simpson’s rule, the actual error (difference between
integral estimate and exact value) and estimated errors for various sizes are tabulated
below.

h Integral Error
εS actual

1/4 0.656526 1.01E-02
1/8 0.663079 4.37E-04 3.59E-03

1/16 0.665398 1.55E-04 1.27E-03
1/32 0.666218 5.47E-05 4.48E-04
1/64 0.666508 1.93E-05 1.59E-04

1/128 0.666611 6.83E-06 5.61E-05
1/256 0.666647 2.42E-06 1.98E-05
1/512 0.666660 8.54E-07 7.01E-06

The adaptive Simpson’s rule converged to the correct solution with actual error of 10−9 and
required only 67 segments. The number of function evaluations of adaptive Simpson’s rule
is significantly lower than composite rule.

Adaptive Gauss quadrature
Adaptive quadrature can be used with Gauss Legendre rules. The procedure for adaptive Gauss
quadrature is similar to those of trapezoidal and Simpson’s rules. The Gauss quadrature points
of two different orders (apart from x = 0) never coincide. To estimate error of a Gauss quadrature,
one must compute the function values for each quadrature afresh. Thus, Gauss quadrature loses
the advantage of nesting as in Simpson’s rule. Rather nested Gauss quadratures (Gauss Kronrod
quadrature) can be used in which the nodes of the lower order quadrature (Gauss) are also nodes
of the higher quadrature formula (Kronrod)8. The error estimate of the integral is the difference
between Gauss and Kronrod rule. The weights and nodes of 7 point Gauss-15 point Kronrod
quadrature rule has been provided below.

Nodes Weights
Gauss Kronrod

± 0.991455 0.022935
± 0.949108 0.129485 0.063092
± 0.864864 0.104790
± 0.741531 0.279705 0.140653
± 0.586087 0.169005
± 0.405845 0.381830 0.190351
± 0.207785 0.204433

0 0.417959 0.209482

Adaptive Gauss Kronrod quadrature can be invoked using the command quadgk in MATLAB.
The usage of the command is as follows

8A brief history of Gauss Kronrod rules is given by W. Gautschi “A historical note on Gauss-Kronrod
quadrature” 2005 Numerische Mathematik, 100(3), 483-484. For more mathematical insight on nested
quadrature, refer to T.N.L. Patterson “The optimum addition of points to quadrature formulae” 1968, Math.
Comput, 22(104), 847-856.

9.10. Multiple integrals 351

f = @(x) sqrt(x);

in = quadgk(f,0,1)

The output of the program is
in = 0.6667

In general for all practical non-singular integrals, adaptive Simpson’s rule would be sufficient.
However, for an improper integral, adaptive Gauss quadrature may be necessary. Quadrature
rules based on Chebyshev polynomials (Clenshaw-Curtis) are also extensively used in such cases.
Gauss-Kronrod adaptive quadratures have been used extensively in most software packages
including MATLAB.

9.10 Multiple integrals
Multiple integrals refer to integrals of a function of more than one variable along more than

one direction. A double integral integrates the function along two directions where as a triple
integral involves integration along three directions. The concepts that have been presented until
now for line integrals can easily be adopted for multiple integrals. Geometrically, a double integral
of a function with respect to x and y is equal to the volume between the surface represented by
the function and the x− y plane. Like we represented the line integral as summation of areas of
vertical strips, the double integral can be approximated as the total sum of volumes of vertical
boxes. Geometrical representation of higher dimensional integrals become difficult to visualize. A
multiple integral can also be represented by a quadrature rule which is a weighted sum of function
values at a few suitably chosen points in the integration range.

I =
∫ ∫

· · ·
∫

f (x1, x2 · · ·xm)dx1dx2 · · ·dxm ≈
n∑
i

wi f i (9.73)

where m refers to the dimension of the integral and n refers to number of points used in
the quadrature rule. The following section introduces methods to construct multi-dimensional
quadrature rules from the concepts used in evaluating line integrals.

9.10.1 Double integral with fixed limits for both x and y

x = a

Sequence 1: Integrate along
this line

Sequence 2: Integrate along
this line

x = b

y= c

y= d

x

y

Figure 9.11: Double integral over a
rectangle

352 Chapter.9 Numerical Integration

Now consider a double integral over a rectangular domain as shown in Figure 9.11. The required
integral has constant upper and lower limits along x and y directions and is defined by

I =
∫ b

x=a

∫ d

y=c
f (x, y)dxdy (9.74)

Sequential integration is possible and hence one may perform first an integration along the vertical
line at any x followed by a second integration along the horizontal line as indicated below.

I =
∫ b

x=a

[∫ d

y=c
f (x, y)d y

]
dx =

∫ b

x=a
g(x)dx (9.75)

where g(x)=
∫ d

y=c
f (x, y)d y. Thus the first integration yields a function of x that may be integrated

with respect to x in the second sequence. This is indeed the method that is employed in analytical
integration. Of course it is possible to integrate first with respect to x along a horizontal line at any
y and subsequently with respect to y along the vertical line. The numerical integration scheme
also realizes the double integral as a sequential one as we shall see below.

9.10.2 Double integrals using Newton Cotes quadrature

x = a x = b

y= c

y= d

x

y

k

h

(a,d) (b,d)

(a, c) (b, c)

Figure 9.12: Trapezoidal rule for
integration in two dimensions

Consider the rectangle shown in Figure 9.12. Let us apply sequential integration over the
rectangle. The integral in each direction is approximated by trapezoidal rule. Therefore the
integral along y can be written as

g(x)=
∫ d

y=c
f (x, y)d y≈ f (x, c)+ f (x,d)

2
(d− c) (9.76)

Now integrating the above approximation along x direction we get

I =
∫ b

x=a
g(x)dx ≈ g(a)+ g(b)

2
(b−a)

≈ f (a, c)+ f (a,d)+ f (b, c)+ f (b,d)
4

hk (9.77)

where h = b−a and k = d−c are the step sizes along x and y directions respectively. This represents
the trapezoidal rule in two dimensions and the estimate is exact for functions linear in x and y.

9.10. Multiple integrals 353

x = a x = bx = a+b
2

y= c

y= c+d
2

y= d

x

y

k

h

(1,1)(0,1)

(0,2) (1,2) (2,2)

(2,1)

(1,0)(0,0) (2,0)

Figure 9.13: Simpson's rule for
two dimensions

Similarly, Simpson’s rule for two dimensions can be derived by performing sequential Simpson’s
rule along x and y directions. Consider the rectangular domain of width 2h and height 2k as
shown in Figure 9.13. The domain of integration has been covered by two steps of length h each
along the x direction and two steps of length k each along the y direction. The nodes are identified
by i, j where 0≤ i ≤ 2 and 0≤ j ≤ 2. Consider sequential integration as discussed previously. Using
Simpson’s 1/3 rule, the integrals are given by

g(x = a) = k
3

[
f0,0 +4 f0,1 + f0,2

]
g

(
x = a+b

2

)
= k

3
[
f1,0 +4 f1,1 + f1,2

]
(9.78)

g(x = b) = k
3

[
f2,0 +4 f2,1 + f2,2

]
We now use Simpson’s rule to integrate g(x) over the range 0,2h to get

I = h
3

[
g(a)+4g

(
a+b

2

)
+ g(b)

]

= hk
9

 f (0,0)+ 4 f (1,0)+ f (2,0)+
4 f (0,1)+ 16 f (1,1)+ 4 f (2,1)+
f (0,2)+ 4 f (1,2)+ f (2,2)

 (9.79)

Simpson’s quadrature for a double integral integrates exactly a function containing x3 and y3. The
errors in the estimate would occur due to terms involving x4 and y4. In general the quadrature
rules arising out of sequential integration can be written as

I =
∫ b

x=a

∫ d

y=c
f (x, y)dxdy=

n∑
i=0

m∑
j=0

wixw j y f (xi, yj)=
n∑

i=0

m∑
j=0

wi, j f (xi, yj) (9.80)

where wx and wy refer to the weights respectively along x and y directions. Table 9.7 summarizes
the weights for trapezoidal, Simpson’s 1/3 and Simpson’s 3/8 rule over two dimensions.

354 Chapter.9 Numerical Integration

Table 9.7: Weights for trapezoidal, Simpsons 1/3 and 3/8 two dimensional quadrature rules

Trapezoidal

1
4

1 1
1 1

Simpson’s 1/3

1
9

1 4 1
4 16 4
1 4 1

Simpson’s 3/8

9
64

1 3 3 1
3 9 9 3
3 9 9 3
1 3 3 1

The process of sequential integration can be applied to other quadrature rules such as Newton
cotes, Chebyshev and Gauss quadratures. Also, a combination of quadrature rules can be applied
over different directions. For example if the function is linear with respect to x and quadratic with
respect to y, one can apply trapezoidal rule along x direction and Simpson’s rule along y direction.

Alternative view of integration over a rectangle

Let us transform the coordinates to local coordinate system (Figure 9.14) for a rectangular
element introduced in earlier chapter.

4(b, c)

2(b,d)1(a, c)

3(a,d)

ξ

η
4′(1,1)

2′(1,−1)1′(−1,−1)

3′(−1,1)

=⇒

Figure 9.14: Transforming coordinates to local coordinate system

The coordinate transformation can be written as

x = b+a
2

+ b−a
2

ξ; y= c+d
2

+ d− c
2

η; (9.81)

dx = b−a
2

dξ; d y= d− c
2

dη; (9.82)

Therefore the integral becomes

I =
∫ b

a

∫ d

c
f (x, y)d ydx = (b−a)

2
(d− c)

2

∫ 1

−1

∫ 1

−1
f (ξ,η)dηdξ (9.83)

Recollect two dimensional interpolation over a rectangle from Chapter 5. The function within the
rectangle is represented in Lagrange form and the integral becomes

I = (b−a)
2

(d− c)
2

∫ 1

−1

∫ 1

−1
f (ξ,η)dηdξ= (b−a)

2
(d− c)

2

∫ 1

−1

∫ 1

−1

n∑
i=1

l i f idηdξ

= (b−a)
2

(d− c)
2

n∑
i=1

f i

∫ 1

−1

∫ 1

−1
l idηdξ (9.84)

9.10. Multiple integrals 355

where l i is the Lagrangian weight functions of the two dimensional element. Going by the
definition of quadrature rules, the weights of the quadrature rule can be written as

wi = (b−a)
2

(d− c)
2

∫ 1

−1

∫ 1

−1
l idξdη (9.85)

Integration over a linear rectangular element
The function within the linear element is written as

f (ξ,η)= l1 f1 + l2 f2 + l3 f3 + l4 f4 (9.86)

and the Lagrange weight function is given by Equation 6.11

l1(ξ,η)= (1−ξ)
2

(1−η)
2

l2(ξ,η)= (1+ξ)
2

(1−η)
2

l3(ξ,η)= (1−ξ)
2

(1+η)
2

l4(ξ,η)= (1+ξ)
2

(1+η)
2

(9.87)

Integrating the first Lagrange weight function we get

w1 = (b−a)
2

(d− c)
2

∫ 1

−1

∫ 1

−1

(1−ξ)
2

(1−η)
2

dξdη

= hk
16

(
ξ− ξ2

2

)∣∣∣∣1−1

(
η− η2

2

)∣∣∣∣1−1
= hk

4
(9.88)

Similarly, other weights may be derived to get

w1 = w2 = w3 = w4 = hk
4

(9.89)

These are the same as for the trapezoidal rule.
Integration over a quadratic rectangular element
The weight functions for a Lagrange quadratic element are

ξ

η
(1,1)(0,1)

(0,−1) (1,−1)(−1,−1)

(−1,1)

(1,0)(0,0)(−1,0)

98

2 31

7

654 Figure 9.15: Lagrange quadratic
rectangular element

l1 = ξη(ξ−1)(η−1)
4

l2 = (1−ξ2)η(η−1)
2

l3 = ξη(ξ+1)(η−1)
4

l4 = ξ(ξ−1)(1−η2)
2

l5 = (1−ξ2)(1−η2) l6 = ξ(ξ+1)(1−η2)
2

(9.90)

l7 = ξη(ξ−1)(η+1)
4

l8 = (1−ξ2)η(η+1)
2

l9 = ξη(ξ+1)(η+1)
4

356 Chapter.9 Numerical Integration

Integrating the first Lagrange weight function we get

w1 = (b−a)
2

(d− c)
2

∫ 1

−1

∫ 1

−1

ξη(ξ−1)(η−1)
4

dξdη

= 4hk
4

1
4

(
ξ3

3
− ξ2

2

)1

−1

(
η3

3
− η2

2

)1

−1
= hk

9
(9.91)

Similarly all the other weights of the quadrature rule are determined and we end up with
Simpson’s 1/3 rule applied along the two directions.

A similar process can be used to derive higher order Newton Cotes quadrature rules. But as
stated for line integral, it is advisable to use composite lower order quadrature rules.

Double integral using composite trapezoidal rule

Let us consider the use of composite trapezoidal rule in determining double integral over a
rectangle as shown in Figure 9.13. The rectangle is of width 2h and height 2k as shown. The
domain of integration has been covered by two steps of length h each along the x direction and two
steps of length k each along the y direction. Let us perform sequential integration. The integrals
are given by

g(x = 0) = k
[f0,0

2
+ f0,1 +

f0,2

2

]
g(x = h) = k

[f1,0

2
+ f1,1 +

f1,2

2

]
(9.92)

g(x = 2h) = k
[f2,0

2
+ f2,1 +

f2,2

2

]
We now use composite trapezoidal rule to integrate g(x) over the range 0,2h to get

I = k
[

g(x = 0)
2

+ g(x = h)+ g(x = 2h)
2

]
= hk

[f0,0 + f0,2 + f2,0 + f2,2

4
+ f1,0 + f0,1 + f2,1 + f1,2

2
+ f1,1

]
(9.93)

k

h

(1,1)
(0,1)

(0,2) (1,2) (2,2)

(2,1)

(1,0)(0,0) (2,0)

Figure 9.16: Use of composite
trapezoidal rule for numerical in-
tegration over a rectangle

It is clear that the expression given above may be interpreted as a weighted sum of function
values at the nodes, the weights being fractions of the elemental area hk. The corner nodes have

weights each of
1
4

, nodes at the centers of sides have weights each of
1
2

and the center node has a

9.10. Multiple integrals 357

x = a x = b

y= c

y= d

x

y

k

h

Figure 9.17: Distribution of
nodes and segments for composite
trapezoidal rule

weight of 1. The nodes and weights are shown by the areas associated with each of the nodes in
Figure 9.16. The area in white is associated with the central node. The hatched areas represent
those associated with the corner nodes. The areas filled with gray indicate the areas associated
with the nodes lying on the middle of the sides of the rectangle.

We may extend the above to an arbitrary rectangle lying between x = a, x = b and y = c, y = d
as shown in Figure 9.17. The width of the rectangle is divided into uniform segments of width

h = b−a
m

where m is an integer. Similarly the height of the rectangle is divided into uniform

segments of height k = d− c
n

where n is an integer. The integral is replaced by a double sum given
by

I =
∫ x=b

x=a

∫ y=d

y=c
f (x, y)dxdy= hk

m∑
i=0

n∑
j=0

wi, j f (xi, yj) (9.94)

where the weights are as indicated in Array 9.95.

wi, j = 1
4

0 1 2 3 · · · · · · n−1 n
0 1 2 2 2 · · · · · · 2 1
1 2 4 4 4 · · · · · · 4 2
2 2 4 4 4 · · · · · · 4 2
3 2 4 4 4 · · · · · · 4 2
· ·
· ·

m−1 2 4 4 4 · · · · · · 4 2
m 1 2 2 2 · · · · · · 2 1

(9.95)

Example 9.16
Obtain the double integral I =

∫ 3

x=2

∫ 3

y=2
(x2 + y2)dxdy by trapezoidal rule.

Solution :
We use step size of h = 0.25 and k = 0.25 to obtain the trapezoidal estimate of the double
integral. The function values required are calculated and tabulated below.

358 Chapter.9 Numerical Integration

x ↓ y→ 2 2.25 2.5 2.75 3
2 8 9.0625 10.25 11.5625 13
2.25 9.0625 10.125 11.3125 12.625 14.0625
2.5 10.25 11.3125 12.5 13.8125 15.25
2.75 11.5625 12.625 13.8125 15.125 16.5625
3 13 14.0625 15.25 16.5625 18
Entries in the table are function values

Multiplying the entries in the table by the appropriate weights given by Array 9.95 the
following table may be constructed.

2 4.53125 5.125 5.78125 3.25
4.53125 10.125 11.3125 12.625 7.03125

5.125 11.3125 12.5 13.8125 7.625
5.78125 12.625 13.8125 15.125 8.28125

3.25 7.03125 7.625 8.28125 4.5
Entries in the table are product of function and weights

The required double integral is then given by the sum of all entries in the above table
multiplied by hk = 0.25×0.25 = 0.0625. Thus we have IT = 203×0.0625 = 12.6875. The
exact value of the integral may easily be obtained by sequential integration as IE = 12.6667.
Trapezoidal estimate has an error of 12.6875−12.6667= 0.0208.

Double integral using composite Simpson’s rule

x = a x = b

y= c

y= d

x

y

{ {k

h

Figure 9.18: Distribution of
nodes and segments for composite
Simpson's rule

We shall now see what happens in the case of a rectangle bound by x = a, x = b and y = c, y = d
as shown in Figure 9.18. The rectangle is divided into m steps of size h along x and n steps of size

9.10. Multiple integrals 359

k along y where both m ≥ 2 and n ≥ 2 are even integers. The reader may easily show that Equation
9.94 is valid with weights alone being replaced by those shown by Array 9.96.

wi, j = 1
9

0 1 2 3 · · · · · · n−1 n
0 1 4 2 4 · · · · · · 4 1
1 4 16 8 16 · · · · · · 16 4
2 2 8 4 8 · · · · · · 8 2
3 4 16 8 16 · · · · · · 16 4
· ·
· ·

m−1 4 16 8 16 · · · · · · 16 4
m 1 4 2 4 · · · · · · 4 1

(9.96)

Example 9.17
Obtain the double integral I =

∫ 1

x=0

∫ 1

y=0
e−(x2+y2)dxdy by Simpson rule. Use equal step sizes

of 0.25 in the two directions.
Solution :

We use step size of h = 0.25 and k = 0.25 to obtain the Simpson estimate of the double
integral. The function values required are calculated and tabulated below.

x ↓ y→ 0 0.25 0.5 0.75 1
0 1 0.939413 0.778801 0.569783 0.367879
0.25 0.939413 0.882497 0.731616 0.535261 0.345591
0.5 0.778801 0.731616 0.606531 0.443747 0.286505
0.75 0.569783 0.5352613 0.4437473 0.3246523 0.2096113
1 0.3678793 0.345591 0.286505 0.209611 0.135335
Entries in the table are function values

Multiplying the entries in the table by the appropriate weights given by Array 9.96 the
following table may be constructed.

0.111111 0.417517 0.173067 0.253237 0.040875
0.417517 1.568883 0.650325 0.951576 0.153596
0.173067 0.650325 1.078277 0.394442 0.063668
0.253237 0.951576 0.394442 0.577160 0.093161
0.040875 0.153596 0.063668 0.093161 0.015037
Entries in the table are product of function and weights

The required double integral is then given by the sum of all entries in the above table
multiplied by hk = 0.25×0.25 = 0.0625. Thus we have IS = 9.733395×0.0625 = 0.608337.
This may be compared with the exact value of IE = 0.557747. We see that the error is an
unacceptably high value of 0.608337−0.557747= 0.050590.

360 Chapter.9 Numerical Integration

9.10.3 Double integrals using Gauss quadrature

The method essentially consists in obtaining the double integral by sequential integration. First
we may integrate with respect to y using a Gauss rule with Ny points. The limits of integration

are changed to -1,1 by the transformation y = c+d
2

+ d− c
2

η such that integration with respect to
y is written down as

g(x)= d− c
2

∫ 1

−1
f
(
x,

c+d
2

+ d− c
2

η

)
dη (9.97)

We make use of Gauss quadrature with Ny Gauss points to write the above integral as

g(x)= d− c
2

Ny∑
i=0

wyi f
(
x,

c+d
2

+ d− c
2

ηi

)
(9.98)

where wyi ’s are the Gauss weights. We now integrate g(x) with respect to x by using Gauss
quadrature with Nx points. Again the limits of integration are changed to -1,1 by the transforma-

tion x = a+b
2

+ b−a
2

ξ. The double integral is then written down as

I = (b−a)
2

(d− c)
2

Nx∑
j=0

Ny∑
i=0

wx jwyi f
(

a+b
2

+ b−a
2

ξ j,
c+d

2
+ d− c

2
ηi

)
(9.99)

where wx j ’s are the Gauss weights.

Specific example

A specific example will make the above procedure clear. Consider, for simplicity, a square domain
of side 2 each. Assume that we want to use a three point Gauss quadrature formula for integration
with respect to both x and y. The Gauss points are then as indicated in Figure 9.19(a), based
on data from Table 9.5. The weights are now calculated as products of weights, as required by
Equation 9.99 and indicated in Figure 9.19(b).

ξ

η

η=
√

3
5

η=−
√

3
5

ξ=
√

3
5

ξ=−
√

3
5

(0,0)

(a)

1
81

25 40 25
40 64 40
25 40 25

(b)

Figure 9.19: Gauss points and weights
for double integration over the standard
square

We may thus write the integral as

I = 64
81

f (0,0)

9.10. Multiple integrals 361

+ 40
81

{
f

(√
3
5

,0

)
+ f

(
−

√
3
5

,0

)
+ f

(
0,−

√
3
5

)
+ f

(
0,

√
3
5

)}

+ 25
81

{
f

(√
3
5

,

√
3
5

)
+ f

(
−

√
3
5

,

√
3
5

)
+ f

(
−

√
3
5

,−
√

3
5

)
+ f

(√
3
5

,−
√

3
5

)}

Example 9.18
Obtain the double integral I =

∫ 1

x=0

∫ 1

y=0
e−(x2+y2)dxdy by Gauss quadrature. Use three Gauss

points along the two directions.
Solution :

In the first step we transform the unit square (domain of integration) to a standard
square with side 2 with −1 ≤ ξ or η ≤ 1. We then have dxdy = 0.25dξdη. The desired
transformations are easily shown to be x = 0.5(1+ξ) and y= 0.5(1+η). The Gauss points and
weights are as in Section 9.10.3. The function values required are calculated and tabulated
below.

ξ ↓ η→ −
√

3
5

0

√
3
5

−
√

3
5

0.974917 0.768971 0.449329

0 0.768971 0.606531 0.354411√
3
5

0.449329 0.354411 0.207091

Entries in the table are function values

Multiplying the entries in the table by the appropriate weights given in Figure 9.19 the
following table may be constructed.

0.300900 0.379739 0.138682
0.379739 0.479234 0.175018
0.138682 0.175018 0.063917
Entries in the table are product
of function and weights

The required double integral is then given by the sum of all entries in the above table
multiplied by 0.25 to account for the transformation. Thus we have IG = 2.230928×0.25 =
0.557732. This may be compared with the exact value of IE = 0.557747. We see that the
error is a mere 0.557732−0.557747=−0.000015.

9.10.4 Double integral with variable limits on x or y

We now consider a double integral in the form

I =
∫ b

x=a

∫ d(x)

y=c(x)
f (x, y)d ydx (9.100)

362 Chapter.9 Numerical Integration

The integration is over an area bounded by the two curves y= c(x) and y= d(x) and the lines x = a
and x = b, as shown in Figure 9.20. Integration again proceeds sequentially to get

I =
∫ b

x=a

[∫ d(x)

y=c(x)
f (x, y)d y

]
dx =

∫ b

x=a
g(x)dx (9.101)

x = a

Sequence 1: Integrate along
this line

Sequence 2: Integrate along
this line x = b

y= c(x)

y= d(x)

x

y

Figure 9.20: General double
integration evaluation method

Composite Newton Cotes

Consider the application of a composite trapezoidal rule to evaluate this integral. The step size

along y used in integration at a fixed xi = a+ ih will be given by ki = d(xi)− c(xi)
m

assuming that
the number of steps in the y direction is a constant equal to m. The weights are now changed as
shown in Array 9.102.

hkwi, j = h
4

0 1 2 3 · · · · · · m−1 m
0 k0 2k0 2k0 2k0 · · · · · · 2k0 k0
1 2k1 4k1 4k1 4k1 · · · · · · 4k1 2k1
2 2k2 4k2 4k2 4k2 · · · · · · 4k2 2k2
3 2k3 4k3 4k3 4k3 · · · · · · 4k3 2k3
· ·
· ·

n−1 2kn−1 4kn−1 4kn−1 4kn−1 · · · · · · 4kn−1 2kn−1
n kn 2kn 2kn 2kn · · · · · · 2kn kn

(9.102)

Figure 9.21 indicates the geometrical representation of trapezoidal rule applied to a variable

Figure 9.21: Composite trapezoidal rule
over a two dimensional domain with
variable limits

domain. Reader may similarly work out the weights for composite Simpson’s rule also.

9.10. Multiple integrals 363

Gauss quadrature

Once we decide the number of Gauss points, the procedure of obtaining the integral is quite
straightforward. Corresponding to the Gauss point with the x component xi the limits of
integration are given by y = c(xi) and x = d(xi). This region is easily transformed to the limits

η = −1 to η = 1 by the transformation y = c(xi)+d(xi)
2

+ d(xi)− c(xi)
2

η. The integral g(xi) is
thus obtained by using Gauss quadrature with Ny Gauss points after the transformation. The
second integration with respect to x is as before in the case of double integral with fixed limits of
integration on x and y.

Example 9.19
Obtain the double integral I =

∫ 2

x=1

∫ (0.5+0.5x)

y=0.5
(x2 y− xy2)dxdy by using 3 Gauss points along

each direction of integration.
Solution :

We see that the double integral is required over the quadrilateral ABCD shown in Figure
9.22. The width of the domain is constant and is from x = 1 to x = 2. We transform this to

y

0.4

0.6

0.8

1

1.2

1.4

1.6

x
0.8 1 1.2 1.4 1.6 1.8 2 2.2

Domain boundary
Gauss points

BA

C

D

Figure 9.22: Domain of integra-
tion in Example 9.19 showing also
the Gauss points

standard −1≤ ξ≤ 1 by the transformation x = 1.5+0.5ξ. We also have dx = 0.5dξ. The three

Gauss points along ξ situated at 0,±
√

3
5

translate to x values as shown below:

ξ x
-0.774597 1.112702

0 1.5
0.774597 1.887298

Corresponding to these x values the ordinates on the top boundary are given by the following
table:

364 Chapter.9 Numerical Integration

x y
1.112702 1.056351

1.5 1.25
1.887298 1.443649

We choose to transform the ordinates at each of these points such that the interval between
a point on the bottom boundary and a corresponding one on the top boundary is the standard
interval −1,1. This is done by transformations shown in the following tabulation:

yl yu
yl + yu

2
yu − yl

2
Formula

0.5 1.056351 0.778175 0.278175 y= 0.778175+0.278175η
0.5 1.25 0.875 0.375 y= 0.875+0.375η
0.5 1.443649 0.971825 0.471825 y= 0.978175+0.478175η

In the table above yl and yu represent respectively the y values on lower and upper
boundary at the chosen x values that correspond to Gauss points along the x direction.
It is now possible to get the ordinates of all the Gauss points by substituting suitable η’s in
the formulae shown in the last column of the table above. The x, y coordinates of all nine
Gauss points are thus obtained and tabulated below and also are shown in Figure 9.22.

xG yG
1.112702 0.562702 0.778175 0.993649
1.5 0.584526 0.875 1.165474
1.887298 0.606351 0.971825 1.337298

The table shows the three yG values corresponding to each xG value. Function values are
now calculated and tabulated below.

0.344365 0.289659 0.131629
0.802678 0.820313 0.584822
1.465871 1.679091 1.388135

The weights have to be evaluated as follows. Transformation from x to ξ involves a scale
factor of 0.5. For each fixed value of Gauss point x there corresponds an additional scale
factor given by the coefficients of η in the formulae presented in an earlier table. Thus
the factors due to scaling will be given by 0.5 × 0.278175 = 0.139088 corresponding to
x = 1.056351, 0.5×0.375 = 0.1875 corresponding to x = 1.25 and 0.5×0.278175 = 0.139088
corresponding to x = 1.443649. These row weights will multiply the Gauss weights given
earlier in Figure 9.19 to get the weights shown below.

0.042928 0.068685 0.042928
0.092593 0.148148 0.092593
0.072812 0.116500 0.072812

Finally each function value is multiplied by the corresponding weight and summed to get
the integral as IG = 0.69375. Incidentally this coincides with the exact value (the reader is
encouraged to work it out). This is as expected since Gauss quadrature with three points
will be exact for a power of x or y up to 5.

9.10. Multiple integrals 365

Integration over an arbitrary quadrilateral

Consider the integration over a quadrilateral as shown in Figure 9.23.

I =
∫ ∫

f (x, y)dxdy (9.103)

The arbitrary quadrilateral can be transformed to local coordinates and the integration may be

c(x, y)

a(x, y) b(x, y)

d(x, y)

Figure 9.23: Integration over an
arbitrary quadrilateral

performed using the local coordinates. If the quadrilateral is represented by straight lines, we can
use isoparametric transformation discussed earlier

x = l1x1 + l2x2 + l3x3 + l4x4; y= l1 y1 + l2 y2 + l3 y3 + l4 y4 (9.104)

where l i are the shape functions for a rectangular element. The total derivatives of x and y can be
written as dx

d y

=

∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

︸ ︷︷ ︸
J

 dξ
dη

 (9.105)

With the transformation, the integral becomes

I =
∫ 1

−1

∫ 1

−1
|J(ξ,η)| f (x, y)︸ ︷︷ ︸

g(ξ,η)

dξdη (9.106)

where |J| is the determinant of the Jacobian. Now, any quadrature rule can be applied over the
local coordinates. The advantage of using local coordinates for integration is that the distribution
of nodes within the domain is simpler.

Example 9.20
Obtain the double integral in Example 9.19 using trapezoidal, Simpson’s and Gauss
quadrature rules using local coordinates
Solution :

The coordinates of the quadrilateral are (x1, y1)= (1,0.5), (x2, y2)= (2,0.5), (x3, y3)= (1,1) and
(x4, y4)= (2,1.5).
Step 1 Let us first transform the geometry to local coordinates using isoparametric

transformation and determine the Jacobian of the transformation.

x = (1−ξ)(1−η)
4

1+ (1+ξ)(1−η)
4

2+ (1−ξ)(1+η)
4

1+ (1+ξ)(1+η)
4

2

366 Chapter.9 Numerical Integration

= 1.5+0.5ξ

y = (1−ξ)(1−η)
4

0.5+ (1+ξ)(1−η)
4

0.5+ (1−ξ)(1+η)
4

1+ (1+ξ)(1+η)
4

1.5

= 1−η
4

+ (1+η)(5+ξ)
8

The partial derivatives would be

∂x
∂ξ

= 1
2

;
∂x
∂η

= 0;
∂y
∂ξ

= 1+η
8

;
∂y
∂η

= 3+ξ
8

Jacobian of the transformation is

|J| =

∣∣∣∣∣∣∣∣
1
2

0

1+η
8

3+ξ
8

∣∣∣∣∣∣∣∣=
3+ξ
16

(9.107)

Step 2 Integration in the transformed coordinates is

I =
∫ 1

−1

∫ 1

−1
J(ξ,η) f (x, y)dηdξ=

∫ 1

−1

∫ 1

−1
g(ξ,η)dηdξ (9.108)

Trapezoidal and Simpson’s rules are applied to the above integral and have been summa-
rized in following table.

ξ η x y J(ξ,η) f (x, y)
wi g i

Trapezoidal Simpson’s 1/3
-1 -1 1 0.5 0.125 0.25 0.007812 0.003472
-1 0 1 0.75 0.125 0.1875 0.011719 0.010417
-1 1 1 1 0.125 0 0.000000 0.000000
0 -1 1.5 0.5 0.1875 0.75 0.070312 0.062500
0 0 1.5 0.875 0.1875 0.8203125 0.153809 0.273438
0 1 1.5 1.25 0.1875 0.46875 0.043945 0.039062
1 -1 2 0.5 0.25 1.5 0.093750 0.041667
1 0 2 1 0.25 2 0.250000 0.222222
1 1 2 1.5 0.25 1.5 0.093750 0.041667

Integral estimate 0.725098 0.694444

Step 3 Gauss quadrature rule is applied to the above integral and has been summarized
in following table.

ξ η x y J(ξ,η) f (x, y) wi g i
-0.774597 -0.774597 1.112702 0.562702 0.139088 0.344365 0.014783
-0.774597 0.000000 1.112702 0.778175 0.139088 0.289659 0.019895
-0.774597 0.774597 1.112702 0.993649 0.139088 0.131629 0.005651
0.000000 -0.774597 1.500000 0.584526 0.187500 0.802678 0.074322
0.000000 0.000000 1.500000 0.875000 0.187500 0.820312 0.121528
0.000000 0.774597 1.500000 1.165474 0.187500 0.584822 0.054150
0.774597 -0.774597 1.887298 0.606351 0.235912 1.465871 0.106734
0.774597 0.000000 1.887298 0.971825 0.235912 1.679091 0.195614
0.774597 0.774597 1.887298 1.337298 0.235912 1.388135 0.101073

Integral estimate 0.693750

9.10. Multiple integrals 367

Notice that the above procedure is no different from Example 9.19. The integral estimated
by the use of Gauss quadrature agrees with the exact value while the estimates using
trapezoidal and Simpson’s 1/3 rule do not. It has to be noted that Simpson’s 1/3 rule is
accurate up to first 9 terms of the binomial series. Although Simpson’s rule should exactly
integrate the original function x2 y− xy2, the coordinate transformation makes the number
of terms of the series more than 9 and hence the observed error in the estimate. For the
present case, Simpson’s 3/8 rule will integrate exactly.

9.10.5 Quadrature rules for triangle

Integration over a triangle is important in numerical methods such as FEM and FVM and
we will briefly introduce some ideas on the quadrature rules for triangular elements. Consider
integration over an arbitrary triangle

I =
Ï

4
f (x, y)d ydx (9.109)

In an earlier chapter, conversion of a triangle to its local coordinate system was considered. Also, it
was shown that the transformation maps the actual triangle onto an isosceles right angled triangle
(Figure 9.24). Thus the integral after transformation becomes

I = 2A
∫ 1

0

∫ 1−η1

0
f dη2dη1 (9.110)

where A is the area of the triangle.
η2

η1

η2 = 1−η1

3(0,1)

2(1,0)1(0,0)

Figure 9.24: Integration over a triangle

Integration over a linear element

Lagrange weight functions for the linear triangular element are

l1 = 1−η1 −η2; l2 = η1; l3 = η2 (9.111)

The integral over the triangle can be written as

I = 2A
3∑

i=1
f i

∫ 1

0

∫ 1−η1

0
l idη2dη1 (9.112)

Integrating first Lagrange weight function l1

I = 2A
∫ 1

0

∫ 1−η1

0
(1−η1 −η2)dη2dη1 = 2A

∫ 1

0

[
η2(1−η1)− η2

2
2

]∣∣∣∣∣
1−η1

0

dη1

368 Chapter.9 Numerical Integration

= 2A
∫ 1

0

(1−η1)2

2
dη1 = A

[
η1 −η2

1 +
η3

1
3

]∣∣∣∣∣
1

0

= A
3

(9.113)

Performing integration of other two Lagrange weight functions, we finally get

I = A
3

(f1 + f2 + f3) (9.114)

Integration over a quadratic element
η2

η1

6(0,0.5) 5(0.5,0.5)

4(0.5,0)

3(0,1)

2(1,0)1(0,0)

Figure 9.25: Integration over a
quadratic triangular element

Lagrange weight functions for quadratic triangular element are

l1 = 2(1−η1 −η2)(0.5−η1 −η2) l2 = 2η1(η1 −0.5) l3 = 2η2(η1 −0.5)
l4 = 4(1−η1 −η2)η1 l5 = 4η1η2 l6 = 4(1−η1 −η2)η2

(9.115)

The integral over the triangle can be written as

I = 2A
6∑

i=1
f i

∫ 1

0

∫ 1−η1

0
l idη2dη1 (9.116)

Integrating the Lagrange weight functions, we get

I = A
3

(f4 + f5 + f6) (9.117)

It is interesting that the weights for the corner nodes are zero and therefore the method requires
only three function evaluations. Quadrature rules for higher order elements can be derived
similarly. In fact, the above rules are also referred to as closed Newton Cotes quadrature rules
for a triangle.

Gauss Quadrature rules for triangles

Similar to Gauss quadrature rules for integration over a line, we can construct quadrature rules
for a triangle. Gauss quadrature rule for a triangle are exact up to 2n−1 terms of the binomial
equation. The quadrature rule assumes the form

I = 2A
∫ 1

0

∫ 1−η1

0
f dη2dη1 ≈ A

n∑
i=1

wi f i (9.118)

The quadrature rules can be constructed using the method of undetermined coefficients already
familiar to us.

9.10. Multiple integrals 369

One point formula

First let us consider quadrature rule based on a single point. Quadrature rule based on one
point has to give exact integral with a function that is linear in η1 and η2. The error arises due to
the higher order terms involving η1 and η2. Therefore the integral is exact for f = 1, η1 and η2. As
there is only one point, w1 = 1 and the quadrature rule automatically satisfies the requirement for
f = 1.

f = η1; I = 2A
∫ 1

0

∫ 1−η1

0
η1dη2dη1 = A

3
= Aη1 (9.119)

f = η2; I = 2A
∫ 1

0

∫ 1−η1

0
η2dη2dη1 = A

3
= Aη2 (9.120)

following which we get the quadrature point as
(

1
3

,
1
3

)
which is nothing but the centroid of the

triangle.

Three point formula

A three point formula (η11,η21), (η12,η22) and (η13,η23) would give exact integral for f = 1, η1,η2,
η1η2, η2

1 and η2
2. Conveniently we choose the points to be symmetric with respect to the centroid of

the triangle. This means the three weights of the quadrature rule are equal to
1
3

. This condition
automatically satisfies the required condition when f = 1. Integrating f = η1, we get

f = η1; I = 2A
∫ 1

0

∫ 1−η1

0
η1dη2dη1 = A

3
I = A

(
w1η11 +w2η12 +w3η13

)
−→ η11 +η12 +η13 = 1

The coordinates of the points should be chosen such that all other conditions are also satisfied.
Thus we have

f Condition
η1 η11 +η12 +η13 = 1
η2 η21 +η22 +η23 = 1
η1η2 η11η21 +η12η22 +η13η23 = 0.25
η2

1 η2
11 +η2

12 +η2
13 = 0.5

η2
2 η2

21 +η2
22 +η2

23 = 0.5

Due to symmetry, η11 = η22 and η12 = η21. Therefore η13 = η23 = 1 − η11 − η12. On further
simplification we find that, there are two sets of points that satisfy the conditions, namely

1. (0.5,0), (0,0.5) and (0.5,0.5)

2.
(

2
3

,
1
6

)
,
(

1
6

,
2
3

)
and

(
1
6

,
1
6

)
Higher order quadrature rules can be derived similarly. Table 9.8 indicates some of the Gauss

quadrature rules for triangle (reproduced from Cowper9). Multiplicity refers to number of possible
combinations with the specified coordinates.

9G. R. Cowper “Gaussian quadrature formulae for triangles” International Journal for Numerical
Methods in Engineering Vol. 7(3), pages 405-408, 1973

370 Chapter.9 Numerical Integration

Table 9.8: Gauss quadrature rules for a triangle

No. of
points

Degree of
accuracy wi η1 η2 η3 Multiplicity

1 1 1 0.333333 0.333333 0.333333 1
3 2 0.333333 0.666667 0.166667 0.166667 3
3 2 0.333333 0.500000 0.500000 0.000000 3
6 3 0.166667 0.659028 0.231933 0.109039 6

6 4
0.109952 0.816848 0.091576 0.091576 3
0.223382 0.108103 0.445948 0.445948 3

Example 9.21
Obtain the double integral I =

∫ 2

x=1

∫ (0.5+0.5x)

y=0.5
(x2 y− xy2)dxdy by splitting the domain into a

rectangle and triangle.
Solution :

The domain of integration considered here is shown in Figure 9.26. The domain is split into

0.4

0.6

0.8

1

1.2

1.4

1.6

x
0.8 1 1.2 1.4 1.6 1.8 2 2.2

A B

C

E

D

BA

C D

E

Figure 9.26: Domain of
integration in Example 9.21

two sub-domains, rectangle ABCD and triangle CDE. The integral would be

I =
∫ 2

x=1

∫ 1

y=0.5
(x2 y− xy2)dxdy︸ ︷︷ ︸

Rectangle

+
∫ 2

x=1

∫ (0.5+0.5x)

y=1
(x2 y− xy2)dxdy︸ ︷︷ ︸

Triangle

The integrand is of degree three and we must use quadrature rules that would produce
exact integral for the function.
Step 1 First, let us integrate in the rectangular domain. Simpson’s 1/3 rule will integrate

the function exactly in the domain. The results are summarized in the following table

9.10. Multiple integrals 371

x y wi f (x, y) wi f i
1 0.5 0.111111 0.25 0.027778

1.5 0.5 0.444444 0.75 0.333333
2 0.5 0.111111 1.5 0.166667
1 0.75 0.444444 0.1875 0.083333

1.5 0.75 1.777778 0.84375 1.5
2 0.75 0.444444 1.875 0.833333
1 1 0.111111 0 0

1.5 1 0.444444 0.75 0.333333
2 1 0.111111 2 0.222222

I1 = hk
∑

wi f i = 0.4375

Step 2 Now integration is performed over the triangular domain. The triangle is first
transformed into local coordinates such that ηi = ai +bix+ ci y. The area of the triangle is

A = 1
2
×0.5×1= 0.25

The constants (Equations 6.19) corresponding to the coordinate transformation are given
below.

x y ai bi ci
1 1 2 -1 0
2 1 1 1 -2
2 1.5 -2 0 2

We choose a third order accurate quadrature rule from Table 9.8. The quadrature nodes are
specified in the local coordinates and corresponding location in actual coordinates are given
by

x = (η1 −a1)c2 − (η1 −a2)c1

b1c2 −b2c1
; y= (η1 −a1)b2 − (η1 −a2)b1

b2c1 −b1c2

The quadrature rule over the triangular region is summarized in the table below.

η1 η2 x y f(x,y)
0.659028 0.231933 1.340972 1.054520 0.405067
0.659028 0.109039 1.340972 1.115967 0.336716
0.231933 0.659028 1.768067 1.054520 1.330382
0.109039 0.659028 1.890961 1.115966 1.635431
0.231933 0.109039 1.768067 1.329514 1.030893
0.109039 0.231933 1.890961 1.329514 1.411511

I2 = A
∑

wi f i = 0.256250

Step 3 The estimate for the integral is

I = I1 + I2 = 0.4375+0.256250= 0.693750

which is the same as the exact value.

372 Chapter.9 Numerical Integration

Transforming triangle to a rectangle

Before ending this topic, we will draw the attention of the reader to an important transformation
that converts a triangular domain to a rectangular domain. The first transformation is from (x, y)
to (η1,η2). Subsequently, we introduce a transformation given below and as illustrated in Figure
9.27

η1 = 1+u
2

; η2 = (1−u)(1+v)
4

(9.121)

1 (x1, y1) 2 (x2, y2)

3 (x3, y3)

(x, y)

η2

η1

η2 = 1−η1

3(0,1)

2(1,0)1(0,0)

u

v
2′′(1,1)

2′(1,−1)1′(−1,−1)

3′(−1,1)

=⇒ =⇒

Figure 9.27: Transformation of a triangular domain to a rectangular domain

The Jacobian of the transformation is given by

J=

1
2

0

1+v
4

1−u
4

 (9.122)

The integral thus becomes

I = 2A
∫ 1

−1

∫ 1

−1

1−u
8

f du dv (9.123)

The above integral can be evaluated using quadrature rules over a rectangle given in earlier
sections.

Let us evaluate the integral over the triangular region in Example 9.21 by transforming the
domain into a rectangular domain. 3 point Gauss quadrature rule is applied over the transformed
rectangular region along the two directions and have been summarized in the following table.

u v η1 η2 x y
1−ui

8
f i

0.774597 0.774597 0.887298 0.100000 1.112702 1.006351 0.003355
0.000000 0.774597 0.500000 0.443649 1.500000 1.028175 0.090960
-0.774597 0.774597 0.112702 0.787298 1.887298 1.050000 0.368061
0.774597 0.000000 0.887298 0.056351 1.112702 1.028175 0.002725
0.000000 0.000000 0.500000 0.250000 1.500000 1.125000 0.079102
-0.774597 0.000000 0.112702 0.443649 1.887298 1.221825 0.340400
0.774597 -0.774597 0.887298 0.012702 1.112702 1.050000 0.002064
0.000000 -0.774597 0.500000 0.056351 1.500000 1.221825 0.063728
-0.774597 -0.774597 0.112702 0.100000 1.887298 1.393649 0.288020

I = 2A
∑

wi
1−ui

8
f i 0.256250

9.A. MATLAB routines related to Chapter 9 373

Concluding remarks

Numerical integration is central to most analysis of engineering problems. Specifically,
integration over a line, area or a volume is routinely met with in analysis. Interpolation
of functions, introduced in Chapters 5 and 6 are very useful in understanding numerical
integration.

We have presented integration techniques which are traditionally used by engineers in
routine evaluations as well as special techniques useful for improper integrals, integral over
rectangles, quadrilaterals and triangles which are used in advanced applications such as FEM
and FVM.

9.A MATLAB routines related to Chapter 9

MATLAB routine Function

trapz(x,y) integration using trapezoidal rule

quad(fun,a,b) integrates function fun between the limits a
and b using adaptive Simpson’s quadrature

quadv integration using adaptive Simpson’s quadra-
ture (vectorized quad)

quadl(fun,a,b) integrates function fun between the limits a
and b using adaptive Lobatto quadrature

quadgk(fun,a,b)
integrates function fun between the limits
a and b using adaptive Gauss Kronrod
quadrature

dblquad(fun,a,b,c,d) evaluates double integral of a function fun

over a rectangle a ≤ x ≤ b and c ≤ y≤ d

quad2d(fun,a,b,c,d) evaluates double integral of a function fun

over a 2d region a ≤ x ≤ b and c(x)≤ y≤ d(x)
triplequad evaluates triple integral over a cuboid

9.B Suggested reading
1. P.J. Davis and P. Rabinowitz, P Methods of numerical integration Dover Publications,

2007
2. P.K. Kythe and M.R. Schaferkotter Handbook of computational methods for integration

Chapman and Hall, 2004
3. Abramowitz and Stegun Handbook of Mathematical Functions Available online at

http://people.math.sfu.ca/ cbm/aands/. To best of our knowledge the book is not
copyrighted.

Exercise II

II.1 Interpolation
Ex II.1: Variation of density of air at atmospheric pressure with temperature is provided in the

following table. Obtain the value of density at 50◦C by interpolation. Both Lagrange and
Newton interpolations may be tested out for this purpose.

Temperature: ◦C 0 20 40 60 80 100
Density: kg/m3 1.2811 1.1934 1.1169 1.0496 0.9899 0.9367

The answer must be accurate to four digits after decimals.

Ex II.2: The following table gives equi-spaced data of a certain function. By interpolation obtain
the value of the function at x = 0.5 by the following three methods and compare them with
the value f (0.5)= 1.12763.
a) Linear interpolation, b) Lagrangian interpolation using a cubic and
c) Newton interpolation based on forward differences.

x 0 0.2 0.4 0.6 0.8 1.0
f (x) 1.00000 1.08107 1.02007 1.18547 1.33744 1.54308

Ex II.3: Obtain the value of the tabulated function f (x) at x = 0.3 by linear and quadratic
interpolations. Obtain the second derivative at x = 0.4 by central difference formulae.
Obtain the first derivative at x = 0.4 by central difference formula and the three point one
sided formula.

x 0 0.2 0.4 0.6 0.8
f (x) -0.200 0.152 0.936 2.344 4.568

Ex II.4: Function and its first derivatives have been provided in the following table with uniform
spacing of h = 0.2. Fit a Hermite interpolating polynomial through the data by writing a
computer program.

x 1 1.2 1.4 1.6 1.8 2
f (x) 0.582 1.072 1.760 2.653 3.742 5.009
f (1)(x) 1.989 2.934 3.950 4.966 5.911 6.729

375

376 Exercise II

Use the Hermite interpolating polynomial to obtain the values of the function at x = 1.5 and
x = 1.9. Compare these with the values obtained by using Newton polynomial of highest
possible degree.

Ex II.5: Obtain a cubic spline fit using the function data given in Exercise II.4. Use the cubic
spline to obtain f (1.5) and f (1.9). Compare these with the values obtained in Exercise II.4.
Evaluate the first derivative of the cubic spline fit at x = 1.4 and compare it with the
first derivative data supplied in Example II.4. Make suitable comment(s) based on the
comparison.

Ex II.6: Use the first derivative data in Exercise II.4 to obtain the second derivative at x = 1.4
using central differences. Compare this with second derivative obtained at the same point
by the cubic spline. Compare these two and make suitable comments.

Ex II.7: A certain function has been provided in the form of a table of values as shown below.
Obtain a cubic spline fit to the data over the entire range from x = 0.6 to x = 1.5. Estimate
the second derivative at x = 1.2 using the spline fit. Compare this with the values obtained
by using centered three and five point rules.

x 0.6 0.7 0.8 0.9 1
f (x) 1.04932 1.14100 1.23646 1.33732 1.44535
x 1.1 1.2 1.3 1.4 1.5
f (x) 1.56245 1.69064 1.83213 1.98929 2.16465

Obtain interpolated value of the function at x = 1.45 using Newton Gregory series and
compare this with that given by the cubic spline.

Ex II.8: It is desired to represent the function f (x) = 1+2x− x2

x4 −2x3 +3
in the range 0 ≤ x ≤ 2 by an

approximating polynomial. Use a single polynomial of highest possible degree and also
piecewise polynomials to study the utility of each in representing the function. Use data
generated with ∆x = 0.1 for the purpose of this exercise.

Try also a cubic spline for the purpose of approximating the function. Compare the
performance of the cubic spline with those obtained above. Use of computer is essential
for this exercise.

II.2 Interpolation in two dimensions
Ex II.9: Tabulated data below is of a function f (x, y). Obtain the value of the function at

(0.25,0.35) by linear and quadratic interpolations.

x ↓ y→ 0.15 0.3 0.45
0.2 1.3221 1.9596 2.8201
0.3 1.9596 2.8201 3.9817
0.4 2.8201 3.9817 5.5496

Compare the results obtained with nine noded and eight noded (serendipity) elements.

Ex II.10: A function f (x, y) is shown as a table of values as indicated below. Obtain by linear and
quadratic interpolation the value of the function at x = 0.35, y = 0.22 and compare it with
the exact value of 0.64380.

II.3. Regression 377

x y f (x, y)
0.20 0.30 0.59400
0.40 0.00 0.66000
0.60 0.60 1.29200
0.30 0.15 0.59675
0.50 0.30 0.80400
0.40 0.45 0.84225
Note that the data is provided over

a six noded triangular (serendipity) element

Ex II.11: The coordinates of four corners of a quadrilateral are given by the entries in the table.

Point No. x y
1 0 0
2 1 0
3 0 1
4 1.5 2.5

Transform the quadrilateral to the standard square of side equal to 2? What happens to the
point x = 0.5, y= 0.5 under this transformation?

Ex II.12: Data below is given for an eight noded serendipity element. Determine the value of the
function at x = 0.75, y= 0.95.

x ↓ y→ 0.6 0.9 1.2
0.6 -1.208 -0.182 1.816
0.8 -0.928 2.096
1 -0.568 0.458 2.456

Ex II.13: Three vertices of a triangular element are given below along with the values of a certain
function. Convert the triangle to local coordinates and find the value of the function at
x = 0.4, y= 0.3.

x y f (x, y)
0.20 0.30 -0.019
0.40 0.00 0.064
0.60 0.60 0.000

II.3 Regression

Ex II.14: y and x in the following table are expected to follow the relation y = e
(
A+ B

x + C
x2

)
.

Estimate the values of the parameters A−C using least squares.

x 0.27 0.29 0.31 0.33 0.35 0.37 0.39 0.41 0.43 0.45
y 0.01 0.02 0.07 0.20 0.47 1.01 1.99 3.61 6.78 10.03

Discuss the quality of the fit. Estimate the value of y at x = 4 using the fit. Compare this
value with those obtained by linear and quadratic interpolations.

378 Exercise II

Ex II.15: The following data is expected to follow the relation y = c1xc2 . Obtain the best
estimates for the parameters c1 and c2. Discuss the quality of the fit. What is the error
with respect to fit?

x 1.0 1.2 1.8 2.2 3.0 4.2 5.1 6.3 7.0
y 37.0 39.5 60.6 67.8 93.8 122.1 127.3 155.8 179.0

Ex II.16: The data shown in the table below is expected to be well represented by a relation of

form y= 1
c1 + c2x2 . Obtain best estimates for the fit parameters using least squares. Discuss

the quality of the fit.

x 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
y 0.434 0.394 0.373 0.370 0.285 0.261 0.258 0.209 0.187

Ex II.17: Data shown in the table below follows the relation y = c1ec2x. Determine the two fit
parameters by least squares. Comment on the goodness of fit. What are the uncertainties
in the parameters?

x 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
y 0.661 0.568 0.479 0.412 0.338 0.283 0.243 0.207 0.170

Ex II.18: Data tabulated below is expected to follow the relation y = xc0

c1 + c2x
. Estimate the fit

parameters using least squares. Comment on the quality of the fit based on the index of
correlation.

x 0.2 0.4 0.6 0.8 1
y 0.6493 0.9039 1.1774 1.3019 1.4682
x 1.2 1.4 1.6 1.8 2
y 1.5075 1.5980 1.6496 1.7441 1.7322

Ex II.19: Fit a relation of form y= c0+ c1x1+ c2x2 to the data given in the following table. Make
a parity plot and discuss the quality of the fit. Estimate also the standard error of the fit.

x1 x2 y
0.15 0.23 0.593
0.22 0.28 0.729
0.27 0.34 0.818
0.31 0.39 0.903
0.36 0.45 1.020
0.44 0.52 1.174
0.49 0.56 1.256
0.56 0.64 1.405
0.61 0.69 1.506
0.69 0.77 1.659
0.73 0.83 1.758
0.80 0.95 1.846

II.4. Numerical differentiation 379

II.4 Numerical differentiation
Ex II.20: Consider the function y = e

[
1− 5

x + 1
x2

]
in the range 1 ≤ x ≤ 3. Obtain numerically, using

suitable finite difference formulae, the derivative of this function at x = 2 that agrees with
the exact value of the derivative to 4 digits after decimals.

Ex II.21: Estimate numerically the first and second derivatives of the function y = 2cos(x)−
4sin(5x) at x = 0.6 that agree with the exact values to 5 digits after decimals.

Ex II.22: Estimate numerically the first and second derivatives of the function y = sinh(x)−
cosh(3x) at x = 0.5 that agree with the exact values to 5 digits after decimals.

Ex II.23: Table below gives an extract from data pertaining to the distribution of a function of
f (x, y) with respect to x, y. Estimate the following:

• Second order accurate first derivative with respect to x at x = 0.4, y= 0.3
• Second derivatives with respect to x and y at x = 0.2, y= 0.2
• Second order accurate first derivative with respect to y at x = 0.1, y= 0.1

• Second order accurate mixed derivative
(
i.e.

∂2 f
∂x∂y

)
at x = 0.2, y= 0.2

y ↓ x → 0.1 0.2 0.3 0.4
0.1 100.00 100.00 100.00 100.00
0.2 48.26 66.10 73.05 74.93
0.3 26.93 43.11 51.18 53.61
0.4 16.36 28.20 34.97 37.14

Ex II.24: Table below gives an extract from data pertaining to the distribution of a function of
f (t, x) with respect to t, x. Estimate the following:

• Second order accurate first derivative with respect to x at t = 0.016, x = 0.0250
• Second derivatives with respect to x and t at t = 0.016, x = 0.025
• Second order accurate first derivative with respect to t at t = 0.048, x = 0

• Second order accurate mixed derivative
(
i.e.

∂2 f
∂t∂x

)
at t = 0.032 x = 0.0250

x ↓ t → 0.000 0.016 0.032 0.048 0.064
0.0000 1.0000 0.0000 0.0000 0.0000 0.0000
0.0125 1.0000 0.4639 0.3797 0.3077 0.2627
0.0250 1.0000 0.8557 0.6633 0.5675 0.4832
0.0375 1.0000 0.9588 0.8508 0.7317 0.6308
0.0500 1.0000 0.9794 0.9048 0.7912 0.6812

Ex II.25: Consider the function f (x, y) = ex sin(y)− ycos(x). Obtain all first and second partial
derivatives at the point x = 0.5, y= 0.5 using suitable finite difference approximations. The
results are required with four digit accuracy.

What is the numerical value of
∂2 f
∂x2 + ∂2 f

∂y2 at the point x = 0.5, y = 0.5? Use the partial

derivatives obtained previously based on finite differences.

Ex II.26: Consider the data given in Exercise II.10. Use finite differences and estimate all first
and second partial derivatives at the centroid of the triangle.

Ex II.27: Consider the data given in Exercise II.12. Use finite differences and estimate all first
and second partial derivatives at the point x = 0.8, y= 0.9.

380 Exercise II

II.5 Numerical integration
Ex II.28: Integrate using trapezoidal rule the function f (x) = 1

x+0.1
between x = 0 and x = 1.

Four figure accuracy is desired for the integral.

Ex II.29: Obtain numerically the line integral
∫ 1

0
ln(x)dx accurate to four digits after the decimal

point. Make use of (a) trapezoidal rule coupled with Romberg and (b) Gauss quadrature with
a suitable number of Gauss points, for this purpose. Comment on which is a better method
in the present case and why.

Ex II.30: (a) Find the mean value of the function y= 3x4−2x2+2 in the interval 0≤ x ≤ 1 accurate
to six digits after decimals. Use a suitable quadrature and verify by comparison with the
result obtained by analysis.
(b) Find the weighted mean of the same function as in part (a) with the weight w(x)= x+0.5.
The weighted mean is again required with six digit accuracy.

Hint: Weighted mean is defined as

∫ x2
x1

w(x) f (x)dx∫ x2
x1

w(x)dx
where x1 and x2 are the lower and upper

values defining the range of x.

Ex II.31: Find the area between the curve y = sin(x) and the line y = 0.5x between x = 0 and
x = π

2
. Use suitable quadrature and obtain the area correct to at least four digits after

decimals. Try to simplify the calculations so that the variable limits do not pose much of a
problem.

Ex II.32: Obtain the integral
∫ 3

2

[
x3 + ln(x+3)

]
dx by Gauss quadrature using 4 Gauss points.

Compare this with the exact value of the integral.

Ex II.33: Determine the definite integral I =
∫ 1

0
x3e−xdx by (a) Simpson rule with ∆x = h = 0.125

and (b) Gauss quadrature with 3 Gauss points. Show that the two results agree to four
digits after decimals.

Ex II.34: Complete the Romberg table by supplying the missing entries. What is the best
estimate of the line integral based on this table?

T(h) T
(
h,

h
2

)
T

(
h,

h
2

,
h
4

)
T

(
h,

h
2

,
h
4

,
h
8

)
0.113448

0.125099

0.124146 0.124801
0.124801

0.124637

Ex II.35: Obtain, by a suitable integration scheme, the integral I =
∫ ∞

0

x3

ex −1
dx, accurate to at

least 4 digits after decimals. Analytically derived value of this integral is
π4

15
.

II.5. Numerical integration 381

Ex II.36: Obtain I =
∫ 1

x=0

∫ 1
2

y=0
e−(x+2y) sin(πxy) dxdy by a suitable numerical integration scheme.

Ex II.37: Obtain the double integral I =
∫ 1

0

∫ 1

0
(x+ y2)ex2+2ydxdy by the following methods and

make comparisons:

• Trapezoidal rule with h = k = 0.25
• Simpson rule with h = k = 0.25
• Gauss quadrature with four Gauss points along each direction

Ex II.38: Consider the integral in Exercise II.37 again. Change step size in the Simpson scheme
and obtain the integral convergent to 5 digits after decimals.

Ex II.39: Consider the integral in Exercise II.37 again. Divide the domain into sub domains and
obtain the integral by using Gauss quadrature with four Gauss points over each of the sub
domains. Goal is to obtain the value of the integral good to 5 digits after decimals.

Ex II.40: Determine the mean value of the function f (x, y)= e(x−y) cos[π(x+ y)] over the rectangle
−0.5≤ x ≤ 0.5 and −1≤ y≤ 1.

Ex II.41: Determine the mean value of the function in Exercise II.40 over the triangle given by
the vertices A(0.0), B(0,1) and C(0.5,0).

Ex II.42: We come across moment of inertia I in rotational motion that is analogous to mass in
linear motion. From Newton’s law (of mechanics) we have T = Iα where T is the torque and
α is the angular acceleration. Moment of inertia of an arbitrary shaped rigid body about an
axis of rotation is given by

ρ

∫
v

r2dv

where ρ is the density and integration is performed over entire three dimensional volume
and r is the distance from the axis of rotation. Moment of inertia for a plane region such as
disks or plates is known as area moment of inertia or second moment and is defined as

I =
∫

A
r2dA =

∫
A

r2dxdy

Determine the area moment of inertia of an ellipse with major axis 3 and minor axis 2 for
the following cases

• axis of rotation is aligned with major axis
• axis of rotation is aligned with minor axis
• axis of rotation is perpendicular to the plane of the ellipse and passing through the

origin.
• axis of rotation is perpendicular to the plane of the ellipse passing through coordinates

(1,0)

x2

9
+ y2

4
= 0

module III

Ordinary di�erential equations

Ordinary differential equations naturally occur when we try to describe the behavior of
physical systems with respect to spatial (one dimension) or temporal variations. The former
occur as a class of problems in one-dimension in areas such as electricity, magnetism, fluid
dynamics, structural dynamics etc. The latter describe dynamical systems such as structural,
thermal electrical etc. Solution of ODEs are hence of great importance in most applications.
In this module we consider both types of ODEs namely initial value problems corresponding to
dynamical systems as well as boundary value problems corresponding to one dimensional field
problems. Various numerical methods of solving both initial and boundary value problems
form the content of this module.

Chapter 10

Initial value problems

Ordinary differential equations (ODE) occur very commonly in analysis of problems of
engineering interest. Analytical solution of such equations is many times difficult or the
evaluation using closed form solution itself may be as laborious as a numerical solution.
Hence numerical solution of ODE is a topic of much practical utility.
We develop numerical methods to solve first order ODEs and extend these to solve higher
order ODEs, as long as they are initial value problems (IVP). The following methods of
solution of IVPs will be discussed here:

• Euler method
• Modified Euler or Heun method or the second order Runge Kutta (RK2) method
• Runge Kutta methods
• Predictor corrector methods
• Backward difference formulae based methods (BDF methods)

385

386 Chapter.10 Initial value problems

10.1 Introduction
A first order ordinary differential equation is the starting point for our discussion here. A first

order system is governed, in general, by the first order ODE given by

d y
dt

= f (t, y) or y(1) = f (t, y) (10.1)

subject to the initial condition
t = t0, y= y0 (10.2)

Consider the ODE
y(1) = t (10.3)

Integrating the above equation we get,

y= 0.5t2 +C (10.4)

where C is a constant of integration that depends on the initial value. Therefore we have a family
of curves satisfying the same differential equation, satisfying different initial values, as shown in
Figure 10.1

y

0

0.2

0.4

0.6

0.8

1

t
0 0.2 0.4 0.6 0.8 1

C=0.75

C=0.5

C=0.25

C=0 C=-0.25 C=-0.75C=-0.5

Figure 10.1: Family of curves
satisfying y(1) = t

Equation 10.1 is classified as a linear first order ODE if f (t, y) is linear in y. Equation 10.1 is
said to be non-linear if f (t, y) is non-linear in y. Examples of these two types are:

Linear ODE: y(1)(t, y) = 3t2 y+cos(t)
Non-linear ODE: y(1)(t, y) = 3sin(y)+4t3 y+7t2 +10 (10.5)

Note that f (t, y) is not non-linear if it involves non-linear functions of t alone.

Geometric interpretation of a first order ODE is possible if we recognize that the given ODE is a
relation between the slope and the function since f (t, y) represents the slope of the tangent drawn
at any point P on the solution curve, as shown in Figure 10.2. For a general first order ODE, the
derivative could be a function of t and y and direct integration may not be possible. However for
certain systems of differential equations exact solutions are available. When it is difficult to obtain

10.2. Euler method 387

t

y

yn+1

yn

tn tn+1

tangent at P

P

Q
ε

Solution curve
passing through P

Figure 10.2: Geometric interpretation
of a �rst order ODE

exact solution to the differential equation, one must resort to numerical methods. The derivative
at a point tn is defined as

y(1)(tn)= f (tn, yn)= lim
h→0

y(tn +h)− y(tn)
h

(10.6)

Numerical solution of the ODE consists in taking a finite sized step h = tn+1 − tn, starting at tn,
where the solution is known to be yn. Then, the solution to the differential equation at tn+1 can
be evaluated as yn+1 ≈ yn +hf (tn, yn). As h → 0, the approximate solution would tend to the exact
value. It is not practical to have very small step sizes as the number of computations increase
and also round-off errors would become important as h → 0. Thus point P on the solution curve is
known and the numerical method aims to determine a point on the solution curve with abscissa
tn+1, possibly within a small but acceptable error. At every step of the numerical method there
would be a local error and these errors would accumulate to produce cumulative errors. If the step
size is too large the numerical solution may show unwanted oscillations or even may diverge due
to accumulation of these errors thus making the solution unstable. For any numerical integration
scheme for ODE, the step size will have to be chosen such that the solution is stable and accurate.
In the following sections, concepts of stability and accuracy of different numerical methods for
solving initial value problems will be introduced.

10.2 Euler method
The simplest method of solving a first order ODE is by the Euler1 method. This method is

explicit and uses only the information known at tn to obtain the solution at tn+1. By Taylor
expansion of y around tn, we have

yn+1 = yn + y(1)
n (tn+1 − tn)+O(tn+1 − tn)2 = yn + f (tn, yn)h+O(h2) (10.7)

If we ignore the second order term (term proportional to h2) in Equation 10.7 we get the Euler
scheme given by

yn+1 ≈ yn +hf (tn, yn) (10.8)

The second order term that was ignored in writing the above is the local truncation error (LTE)
and is proportional to h2. In practice we will be integrating the ODE from the starting point t = a
to an end point t = b after taking n steps of size h. At each step there is an LTE of order h2.

1Leonhard Euler, 1707-1783, was a pioneering Swiss mathematician and physicist

388 Chapter.10 Initial value problems

Hence the total or global truncation error (GTE) will be proportional to nh2 = a−b
h

h2 = (a− b)h,
which is proportional to h and is of first order. Hence the Euler method is first order accurate.
In general a kth order accurate method would drop terms of order k+1 in each integration step
i.e. dropped term would be proportional to hk+1 or LTE is proportional to hk+1. GTE over the
range of the solution would however be proportional to hk. Figure 10.2 shows that the error is
the departure of the actual solution (shown by the dot on the solution curve) from Q. The Euler
method approximates the solution by a straight line segment lying along the tangent at the point
P.

Example 10.1
Use step size of h = 0.1 to obtain the solution of the first order ordinary differential equation
y(1)+ y= 0 up to t = 0.5 using the Euler method. The initial value is specified to be fy(0)= 1.
Background :
The above first order differential equation is known as exponential decay equation. General
exponential decay ODE is of the form y(1) = λy. λ is known as the decay constant and
controls the rate at which the quantity y decreases. We come across these equations in
modeling radioactive decay, a first order thermal system, and charging-discharging of a
capacitor.

Temperature history of a hot object losing heat to surroundings at T∞.

m, cp, Tw
q =

hc A(Tw −T∞)

Rate of change of inter-
nal energy mcpTw of
system

=
Heat transfer q from sys-
tem to the surroundings

mcp
d(Tw −T∞)

dt
= −hc A(Tw −T∞)

or
dθ
dt

= − hc A
mcp

θ

where m is the mass, cp is the specific heat capacity and A is the surface area of the object,
hc is the heat transfer coefficient. The above is known as a Lumped model.

Voltage E across a capacitor during charging or discharging

RC
dE
dt

= E0 −E

or
dδE
dt

= − 1
RC

δE

where δE = E0 − E, R is the resistance and C is the
capacitance.

E0

Battery

C

R

Switch

Solution :
For the given ODE we have f (t, y)=−y, which does not contain t explicitly. The ODE is said
to be autonomous. At t = 0, y = 1 and hence f (t, y) = f (0,1) = −1. With h = 0.1, first Euler
step yields y(t = 0+ 0.1) = y(0.1) = y(0)+ h× f (0,1) = 1+ 0.1× (−1) = 0.9. This process is
repeated till we reach t = 0.5. The results are shown conveniently in tabular form. We also
show the exact solution given by yE = e−t.

10.2. Euler method 389

t f (t, y) Euler Exact Error
yEu yE εy %εy

0 -1 1 1 0 0
0.1 -0.9 0.9 0.9048 -0.0048 -0.53
0.2 -0.81 0.81 0.8187 -0.0087 -1.06
0.3 -0.729 0.729 0.7408 -0.0118 -1.59
0.4 -0.6561 0.6561 0.6703 -0.0142 -2.12
0.5 -0.5905 0.5905 0.6065 -0.016 -2.64

The last two columns indicate the absolute error εy - difference between the Euler solution

and the Exact solution and relative error given by %εy = εy ×100
yE

. Note that the error

increases progressively with t indicating accumulation of error at each step. The Euler
solution becomes practically useless since the error is in the second place after decimals.
Accuracy may be improved by using a smaller step size.

Convergence and stability Stability and convergence are two characteristics of a numerical
scheme. Stability means the error caused during numerical solution does not grow with time.
Convergence means the numerical solution tends to the exact solution as the step size tends to
zero.

10.2.1 Stability of Euler method

Consider now the first order ODE y(1) = λy subject to the initial condition y(0) = y0 and λ a
constant. Analytical solution to this problem is obtained as an exponential given by y(t) = eλt. If
λ > 0, the function value grows exponentially with t and if λ < 0, we have an exponential decay.
Numerical solution to the ODE will have a truncation error at every step. It is desired to have the
error under control and the approximate solution to be close to the exact solution. However, the
truncation error at every step accumulates.
Figure 10.3 shows the solution to the above differential equation using Euler method for λ=−1

y

0

0.2

0.4

0.6

0.8

1

t
0 0.2 0.4 0.6 0.8 1

Euler

y0=0.25

y0=0.5

y0=0.75

y0=2

y0=1

y0=1.25 y0=1.75

y0=1.5

y0=
0.875

and step size h = 0.5. Also indicated is the exact solution to the differential equation (by dashed
lines) for various initial values of y at t = 0 (y0). All these curves are part of the same family as they

Figure 10.3: Migration of Euler
solution away from the exact
solution due to error buildup

390 Chapter.10 Initial value problems

satisfy the same differential equation but different initial values. When performing integration of
the ODE at the starting point using Euler method, a small error has occurred. The new point
would actually fall on a different solution curve (y0 close to 0.875) but from the same family as the
original solution. While integrating the ODE about the new point, the derivatives are evaluated
on this new curve and not the original curve. Therefore, at every step of integration, we move
away from the original solution i.e. all points lie on different curves of the same family. If the
accumulated error at a given step is large the system can diverge away from the exact solution.
Therefore, in numerical solution of ODE, it would be important to control the error to ensure
stability as well as accuracy.

Consider the first order ODE y(1) =λy subject to the initial condition y(0)= 1. The exact solution
to the above equation is y = eλt. When applying explicit numerical methods to solve ODE, the
function value at the beginning of a given step is taken for all calculations. Then the solution to
ODE becomes

y(1)
n =λyn (10.9)

The error in the numerical approximation at a given step would thus be

En = yn −eλtn

or
yn = eλtn +En

(10.10)

Equation 10.9 can hence be written as

(eλtn +En)(1) =λ(eλtn +En)

=⇒ E(1)
n =λEn (10.11)

The above differential equation represents the error accumulation after n time steps. If the error
at the starting step is known to be E0, the analytical solution for the above equation would also
be an exponential function En = E0eλtn . Following this we can conclude that for positive values of
λ the error would grow and for negative values of λ, the error would decay. Therefore, λ has to be
always negative for a stable solution.

However, numerical methods involve truncation errors and λ< 0 does not ensure stability. Now
we look at the Euler solution applied to this equation with a step size ∆t = h. The error at next
step would be

E1 = E(h)= E0(1+λh) (10.12)

After n Euler steps we have

En = E(nh)= En−1(1+λh)= E0(1+λh)n (10.13)

We define the amplification factor as
∣∣∣∣ En

En−1

∣∣∣∣ = |1+λh| which is the ratio of two consecutive error

evaluations. For the analytical solution showing exponential decay to 0, the amplification factor of
the numerical scheme should be less than 1. Otherwise, for amplification factors greater than 1,
the solution would diverge away from the exact solution. A numerical scheme is termed as stable,
if the approximate solution closely follows the exact solution. Therefore, the Euler scheme will be

stable only if the amplification factor
∣∣∣∣ En

En−1

∣∣∣∣= |1+λh| < 1 or if λh <−2 or h <−2
λ

.

For |λh| < 1 the solution is bounded and monotonic. For |λh| > 1 the solution is oscillatory. The
amplitude diverges with h for |λh| ≥ 2. Hence the Euler solution is conditionally stable i.e. the step

10.2. Euler method 391

size has to be chosen carefully such that the solution is stable. Accuracy of the solution, in fact,
requires much smaller h since the method is only first order accurate i.e. the error is proportional
to h itself.

More generally if λ is a complex number, λh = z is also complex2 and the stability criterion reads
as |1+ z| < 1 where z is a complex number. This represents the region inside a unit circle centered
at z =−1 in the z plane (shaded region in Figure 10.4). In order to clarify these ideas a simulation

Im
(λ

h)

-1.5

-1

-0.5

0

0.5

1

1.5

Re(λh)
-2 -1.5 -1 -0.5 0 0.5 1

Region of stability
Figure 10.4: Region of stability
of Euler method

was performed by taking various step sizes and obtaining the value of the function at t = 0.5 for
the above simple first order ODE. Table 10.1 shows the result of such a simulation.

Table 10.1: Error at t = 0.5 with di�erent step sizes

h yEuler(0.5) yE(0.5) εy %εy
0.025 0.6027 0.6065 -0.0038 -0.62

0.05 0.5987 0.6065 -0.0078 -1.28
0.1 0.5905 0.6065 -0.016 -2.64

0.25 0.5625 0.6065 -0.044 -7.25
0.5 0.5 0.6065 -0.1065 -17.56

We observe that the step size is to be chosen such that accuracy is guaranteed. Even h = 0.025
has an error of ≈ 4 in the third decimal place. Now we look at what happens if h > 0.5. We do
another simulation and show the results in Table 10.2.

The oscillatory nature of the numerical solution for h > 1 is seen from Figure 10.5 where we have
used Euler scheme with a step size of h = 1.5. The exact solution is also shown for comparison.
The numerical solution still follows the exact solution (on an average) which is not the case when
h > 2.

To summarize, step size used in a numerical method of solving an ODE has to be chosen such
that the solution is stable and also accurate. In most applications the latter is the deciding factor.

2A complex number is defined as z = x+ j y where x and y are real numbers and j =
p
−1 is a pure

imaginary number. z represents a point in the (x, y) plane. x is referred to as the real part of z (written as
Re(z)) while y is referred to as the imaginary part of z (written as Im(z)).

392 Chapter.10 Initial value problems

y

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

t
0 2 4 6 8 10 12 14

y - Euler
y - Exact

Figure 10.5: Numerical oscilla-
tions while using Euler scheme
with h = 1.5

Table 10.2: Error at t = 5 with di�erent step sizes

h yEuler(5) yE(5) εy %εy
0.5 0.001 0.0067 -0.0058 -86.57

0.5556 0.0007 0.0067 -0.0061 -91.04
0.625 -0.0007 0.0067 -0.0074 -110.45

0.8333 0 0.0067 -0.0067 -100.00
1 0 0.0067 -0.0067 -100.00

1.25 0.0039 0.0067 -0.0028 -41.79
1.6667 -0.2963 0.0067 -0.3031 -4523.88

However there may be specific cases where stability of the solution is also an important criterion
for determining the step size. Such cases will be treated later on, while dealing with stiff ODEs.

10.3 Modified Euler method or Heun method
The modified Euler method is also known as the Heun3 method and accounts for the change in

the slope of the tangent to the solution curve as we move from tn to tn+1. The first step in the
calculation is the Euler step that gives an estimate for yn+1 as yP

n+1 (Equation 10.8), a predictor
for the nodal value at node n+1. The slope at the target point is calculated using this predicted
value so that the average slope over the step h is given by

Average Slope= f (tn, yn)+ f (tn+1, yn+1)
2

≈ f (tn, yn)+ f (tn+1, yP
n+1)

2
(10.14)

We then get a better estimate for yn+1 as

yn+1 = yn +h
f (tn, yn)+ f (tn+1, yP

n+1)
2

(10.15)

The Heun method is second order accurate and hence is superior to the Euler method. We note
that the method is equivalent to using a Taylor expansion that includes the second derivative at tn,
using however, only the predictor value of the function f at tn+1. Figure 10.6 shows the geometric

3after Karl Heun,1859-1929, a German mathematician

10.4. Runge Kutta (RK) methods 393

t

y

yP
n+1

yn+1

yn

tn tn+1

tangent at P

P

Q

Q′

Solution curve passing
through P

line of mean slope

tangent at Q

Figure 10.6: Geometric con-
struction for the Heun method

equivalent of the Heun scheme. Line PQ is along the tangent at the known point P on the solution
curve. y at point Q is the Euler estimate yP

n+1 for yn+1. Function f (t, y) calculated at Q represents
the slope of the tangent at Q. The line of mean slope is the direction that is chosen for estimating
yn+1 by the Heun method (point Q′). Geometric construction in the figure shows that the error is
considerably smaller in this method. That the error is of second order will be shown later while
discussing the Runge Kutta methods.

10.4 Runge Kutta (RK) methods
Runge Kutta4 methods are very popular because they are single step methods and hence

self starting. These methods, in general, estimate yn+1 by making use of the function f (t, y)
evaluated at several points within the step yn - yn+1, updating the y’s at these points by suitable
approximations. We shall consider second order RK method in detail in what follows since the
algebra is tractable and it yields the core idea used in the RK methods.

10.4.1 Second order Runge Kutta method (RK2)

A second order method requires that it be equivalent to using Taylor expansion that includes
terms proportional to h2. Hence we have

yn+1 = yn + y(1)
n h+ 1

2!
y(2)

n h2 +O(h3) (10.16)

where the subscript n indicates that the calculation is made at tn. LTE is proportional to h3 (this
is the dominant term that is ignored in the Taylor expansion). However GTE is proportional to h2

(reader may use a procedure that was used in discussing the order of Euler scheme). Hence the
method is second order accurate. Noting that y(1) = f (t, y), we may write the second derivative as

y(2) = f (1)(t)= ∂ f
∂t

+ ∂ f
∂y

y(1) = ∂ f
∂t

+ f
∂ f
∂y

(10.17)

Introduce Equation 10.17 in 10.16 to get

yn+1 = yn + fnh+ [f t,n + f y,n fn]
h2

2
+O(h3) (10.18)

4after Martin Wilhelm Kutta, 1867-1944, a German mathematician

394 Chapter.10 Initial value problems

where f t ≡ ∂ f
∂t

and f y ≡ ∂ f
∂y

. The RK2 method aims to achieve equivalence with the above

expression by using the following algorithm

k1 = hf (tn, yn)

k2 = hf (tn +αh, yn +βk1) (10.19)

yn+1 = yn +w1k1 +w2k2

where weights w1, w2 and fractions α and β have to be chosen suitably. The last step in Equation
10.19 may be rewritten as

yn+1 = yn +w1 fnh+w2hf (tn +αh, yn +β fnh)+O(h3) (10.20)

We use Taylor expansion to get

f (tn +αh, yn +β f (tn, yn)h)= fn + f t,nαh+ f y,n fnβh (10.21)

Using Equation 10.21 in Equation 10.20 we get

yn+1 = yn + (w1 +w2) fnh+w2(f t,nα+ f y fnβ)h2 +O(h3) (10.22)

Term by term comparison of Equations 10.18 and 10.22 shows that we must have

w1 +w2 = 1; w2α= 1
2

; w2β= 1
2

(10.23)

Since the number of equations is less than the number of unknowns multiple solutions are possible

for Equation 10.23. A choice that is commonly made is α= 1. It is then seen that w2 = 1
2

, w1 = 1
2

and β= 1 . The RK2 algorithm given by Equation 10.19 may then be written as

k1 = hf (tn, yn)

k2 = hf (tn +h, yn +k1)= hf (tn+1, yn +k1) (10.24)

yn+1 = yn +h
(

k1 +k2

2

)
The reader may note that the above algorithm is essentially the same as the Heun method. Hence
both Heun and RK2 are second order accurate methods.

Consider the special case where f (t, y)= f (t) only. Then last of Equation 10.24 takes the form

yn+1 = yn +h
[

k1 +k2

2

]
= yn +h

[
f (tn)+ f (tn+1)

2

]
This is nothing but the trapezoidal rule introduced earlier while dealing with numerical integra-
tion over a line.

Example 10.2
Use step size of h = 0.1 to obtain the solution of the first order ordinary differential equation
y(1) + y= 0 up to t = 0.5 using RK2. The initial value is specified to be y(0)= 1.
Solution :

The ODE is the same as that considered in Example 10.1. We would like to improve

10.4. Runge Kutta (RK) methods 395

the solution by using a higher order scheme viz. RK2 which is second order accurate.
Starting with the initial solution, using a step size of h = 0.1, we have k1 = hf (0,1) =
0.1× (−1)=−0.1. We update t0 to t1 = t0+h = 0+0.1= 0.1 and y0 to y0+k1 = 1+ (−0.1)= 0.9
and evaluate k2 as k2 = hf (t0 + h, y0 + k1) = 0.1 × (−0.9) = −0.09. Finally RK2 yields

y1 = y0 + k1 +k2

2
= 1+ −0.1−0.09

2
= 0.9050. Compare this with the Euler estimate of 0.9

obtained in Example 10.1. The exact value is given by e−0.1 = 0.9048. The error is thus
given by 0.9050−0.9048 = 0.0002 which is much less than what we saw in the Euler case.
We show the results up to t = 0.5 as a table below.

x yRK2 k1 k2 yE εRK2,abs %εRK2,rel
0 1 -0.1 -0.09 1 0 0
0.1 0.905 -0.0905 -0.0815 0.9048 0.0002 0.022
0.2 0.819 -0.0819 -0.0737 0.8187 0.0003 0.036
0.3 0.7412 -0.0741 -0.0667 0.7408 0.0004 0.053
0.4 0.6708 -0.0671 -0.0604 0.6703 0.0005 0.074
0.5 0.6071 -0.0607 -0.0546 0.6065 0.0005 0.082
Subscript abs is absolute while subscript rel is relative

We notice that there has been a good improvement in the accuracy of the numerical
solution.

Accuracy and stability of RK2

In order to look at the stability and accuracy of the second order RK method (the same as the
Heun method) we present below the effect of step size on the solution. Table 10.3 shows the effect
of h on the solution at t = 0.5. The error with respect to the exact solution is also shown in the last
column of the table.

Table 10.3: Error at t = 0.5 with di�erent step sizes

h yRK2(0.5) yE(0.5) εRK2,abs %εRK2,rel
0.025 0.6066 0.6065 0.00003 0.005

0.05 0.6067 0.6065 0.00013 0.021
0.1 0.6071 0.6065 0.00055 0.091

0.125 0.6074 0.6065 0.00087 0.143
0.25 0.6104 0.6065 0.00382 0.630

For practical purposes a step size as large as 0.1 may be acceptable since the solution at t = 0.5
is accurate to three digits after decimals. Table 10.4 shows what happens when the step size is
bigger than 0.25. The function value at t = 5 is being looked at.

Table 10.4: Error at t = 5 with di�erent step sizes

h yRK2(0.5) yE(0.5) εRK2,abs %εRK2,rel
0.25 0.0072 0.0067 0.0004 5.97

0.5 0.0091 0.0067 0.0024 35.82
1 0.0313 0.0067 0.0245 365.67

1.25 0.0797 0.0067 0.0729 1088.06
1.6667 0.3767 0.0067 0.37 5522.39

2.5 2.6406 0.0067 2.6339 39311.94

396 Chapter.10 Initial value problems

Simulation shows that the numerical solution is stable up to h = 2. For example the RK2 solution
with h = 1.6667 shows a monotonic decay (hence stable) but with significant deviation from the
exact solution as shown in Figure 10.7.

y

0

0.2

0.4

0.6

0.8

1

t
0 5 10 15 20 25 30 35

y - RK2
y - Exact

Figure 10.7: Comparison of RK2
solution with the exact solution
using a step size of h = 1.6667

The RK2 method relates two neighboring values of the dependent variable by an expression that
includes the second derivative term. Thus the Taylor expansion for this case is given by

yn+1 = yn +hfn + h2

2
f (1)
n (10.25)

For the standard problem y(1) −λy= 0 where λ is complex the above becomes

yn+1 = yn +hλyn + λ2h2

2
yn = yn

(
1+λh+ λ2h2

2

)
(10.26)

In general, stability of the RK2 method is governed by the magnification factor
∣∣∣∣ yn+1

yn

∣∣∣∣ < 1 or∣∣∣∣1+ z+ z2

2

∣∣∣∣ < 1 where z stands for λh. We at once see that z = 0 and z = −2 bracket the stability

region along the real axis. Thus λ must be negative and |λh| < 2. The region of stability in the
complex plane is now the slightly oblong region shown in Figure 10.8. It is also noticed that the
region of stability of RK2 is bigger than that for the Euler scheme.

Im
(λ

h)

-3

-2

-1

0

1

2

3

Re(λh)
-3 -2 -1 0 1 2 3

2

4

Euler

Figure 10.8: Stability regions for
various methods 2 - RK2, 4 - RK4

10.4. Runge Kutta (RK) methods 397

10.4.2 Fourth order Runge Kutta method (RK4)
RK4 is by far the most popular Runge Kutta method and is given below without proof.5 It uses

f calculated at the end points as well at a point within the step.

k1 = hf (tn, yn)

k2 = hf
(
tn + h

2
, yn + k1

2

)
k3 = hf

(
tn + h

2
, yn + k2

2

)
k4 = hf (tn +h, yn +k3)

yn+1 = yn + k1 +2k2 +2k3 +k4

6
(10.27)

We see that the solution at the end of the step is obtained as a weighted sum of the f values
calculated as k1 to k4. Note that the sum of the weights (=6) is the same as the denominator, in
the final summation step.

tn tn +h

k1 = hf (tn, yn) k2 = hf (tn +h, yn +k1)

tn tn+1
tn + h

2

k2 = hf
(
tn + h

2
, yn + k1

2

)
k3 = hf

(
tn + h

2
, yn + k2

2

)
k1 = hf (tn, yn) k4 = hf (tn +h, yn +k3)

RK2

RK4

Figure 10.9: Function calculations in RK2 and RK4

The function calculations involved in RK2 and RK4 are shown in Figure 10.9. RK2 involves
two function calculations per step while RK4 involves four function calculations per step. RK4 is
fourth order accurate which means that the LTE is proportional to h5 and GTE is proportional to
h4.

Again, in the special case when f (t, y) = f (t) RK4 reduces to the Simpson 1/3 rule introduced
earlier while dealing with numerical integration over a line. Note that h in the present context is
2h in the context of Simpson rule.

Stability of the RK4 scheme is governed by the inequality∣∣∣∣1+ z+ z2

2
+ z3

6
+ z4

24

∣∣∣∣< 1

In the complex plane the region of stability is as shown in Figure 10.8. It is seen that the region of
stability of RK4 is even bigger than that of RK2. A MATLAB program has been provided below to
solve ODE using RK4. The program can also solve a system of linear ODEs (will be dealt in detail
in a later section).

5See Runge - Kutta methods for ordinary differential equations, J Butcher - 2005,
http://www.math.auckland.ac.nz

398 Chapter.10 Initial value problems

Program 10.1: Initial value problem using Runge Kutta 4

1 function [X,Y] = ODERK4(x1 ,y1 ,h,n,F,varargin)

2 % I n p u t : x 1 : s t a r t i n g p o i n t
3 % y 1 : i n i t i a l v a l u e s o f y ’ s a t x = x 1
4 % h : s t e p s i z e
5 % n : number o f i n t e r v a l s
6 % F : e x t e r n a l f u n c t i o n c o n t a i n i n g d e r i v a t i v e s
7 % y ’ = F (x , y)
8 % v a r a r g i n : o p t i o n a l a r g u m e n t s t o b e p a s s e d t o F
9 % O u t p u t :

10 % X : a b c i s s c a
11 % Y : o r d i n a t e s
12 x2 = x1+n*h; % e n d p o i n t o f i n t e r v a l
13 m = length(y1); % number o f f i r s t o r d e r ODEs
14 Y = zeros(n+1,m); % i n i t i a l i z e Y
15 X = x1:h:x2; % d e f i n e g r i d
16 Y(1,:) = y1; % i n i t i a l c o n d i t i o n a t t = 0
17 for i = 1:n % l o o p f o r RK4 c a l c u l a t i o n
18 k1 = h*F(X(i),Y(i,:),varargin {:});

19 k2 = h*F(X(i)+h/2,Y(i,:)+k1/2, varargin {:});

20 k3 = h*F(X(i)+h/2,Y(i,:)+k2/2, varargin {:});

21 k4 = h*F(X(i)+h,Y(i,:)+k3 ,varargin {:});

22 Y(i+1,:) = Y(i,:) + (k1+2*k2+2*k3+k4)/6; %yn+1
23 end

varargin is useful to perform parametric study, which will be demonstrated in some of the examples that
follow.

Example 10.3
Solve the first order ordinary differential equation y(1) = y−3t2 subject to initial condition
y(0) = 1. Use RK4 with a step size of h = 0.1 and obtain the solution till t = 0.5. Discuss the
error by comparing the numerical solution with the exact solution.
Solution :

The exact solution to the given non-homogeneous ODE may be obtained by summing
complementary function and the particular integral and making sure that the initial
condition is satisfied. The reader may verify that the exact solution is given by

yE = 3t2 +6t+6−5et

In order to apply the RK4 we note that the function is given by f (t, y) = y−3t2. We start
with t = 0, y = 1 and use a step size of h = 0.1 as specified in the problem. We go through
one RK4 cycle in detail below.

k1 = hf (t0, y0)= 0.1(1−3×02)= 0.1

k2 = hf
(
t0 + h

2
, y0 + k1

2

)
= 0.1

[
1+ 0.1

2
−3×

(
0.1
2

)2]
= 0.1043

k3 = hf
(
t0 + h

2
, y0 + k2

2

)
= 0.1

[
1+ 0.1043

2
−3×

(
0.1
2

)2]
= 0.1045

k4 = hf (t0 +h, y0 +k3)= 0.1
[
1+0.1045−3×0.12]= 0.1074

y1 = y0 + k1 +2k2 +2k3 +k4

6
= 1+ 0.1+2(0.1043+0.1045)+0.1074

6
= 1.1041

10.4. Runge Kutta (RK) methods 399

The exact solution is the same as above, when rounded to four significant digits. It may
be ascertained that the error is equal to −2× 10−7 when more digits are retained in the
calculations. The calculations continue till t = 0.5 as given in Table 10.5. The numerical
solution, for all practical purposes, is as good as the exact solution.

Table 10.5: RK4 solution till t = 0.5 to ODE in Example 10.3

t yRK4 k1 k2 k3 k4 yEx εRK4,abs
0 1.0000 0.1000 0.1043 0.1045 0.1074 1.0000 0
0.1 1.1041 0.1074 0.1090 0.1091 0.1093 1.1041 -2.01E-07
0.2 1.2130 0.1093 0.1080 0.1079 0.1051 1.2130 -3.79E-07
0.3 1.3207 0.1051 0.1006 0.1003 0.0941 1.3207 -5.27E-07
0.4 1.4209 0.0941 0.0860 0.0856 0.0757 1.4209 -6.35E-07
0.5 1.5064 0.0756 0.0637 0.0631 0.0489 1.5064 -6.95E-07

Error estimation

In practice, the exact solution of ODE will not be available and there is no information on error.
However, an estimate for error can be determined (similar to numerical integration) using the
following methods

1. Difference between estimates using two grid sizes h and h/2
2. Difference between two estimates using ODE solvers of order n and n+1

The former procedure is demonstrated in the next example. The latter option is considered later
on.

Example 10.4
Solve the first order ordinary differential equation y(1) = sin(t)− ycos(t) subject to initial
condition y(0)= 1. Use RK4 and obtain the solution till t = 0.5.
Solution :

We use a step size of h = 0.1, use RK4 and obtain the solution up to t = 0.5. The results are
tabulated below.

t yRK4 k1 k2 k3 k4
0 1.000000 -0.100000 -0.089883 -0.090389 -0.080523
0.1 0.909822 -0.080544 -0.071035 -0.071505 -0.062294
0.2 0.838503 -0.062312 -0.053484 -0.053912 -0.045403
0.3 0.784751 -0.045418 -0.037294 -0.037676 -0.029868
0.4 0.747213 -0.029881 -0.022441 -0.022776 -0.015633
0.5 0.724556 -0.015643 -0.008835 -0.009125 -0.002583

We want to find out how good is the solution, realizing that we are unable to obtain the
exact solution. In order to do this we recalculate the solution using a smaller step size, say

h = 0.1
2

= 0.05. The computed results are shown in the table below.

400 Chapter.10 Initial value problems

t yRK4 k1 k2 k3 k4
0 1.000000 -0.050000 -0.047485 -0.047548 -0.045064
0.05 0.952478 -0.045065 -0.042620 -0.042681 -0.040271
0.1 0.909822 -0.040272 -0.037903 -0.037962 -0.035632
0.15 0.871883 -0.035633 -0.033346 -0.033402 -0.031155
0.2 0.838502 -0.031156 -0.028954 -0.029007 -0.026846
0.25 0.809515 -0.026847 -0.024732 -0.024782 -0.022708
0.3 0.784751 -0.022709 -0.020680 -0.020728 -0.018740
0.35 0.764040 -0.018741 -0.016798 -0.016843 -0.014940
0.4 0.747213 -0.014941 -0.013081 -0.013123 -0.011302
0.45 0.734105 -0.011303 -0.009523 -0.009563 -0.007821
0.5 0.724555 -0.007822 -0.006119 -0.006156 -0.004488

We have two estimates for the nodal values of y at t = 0.5 viz. 0.724556 obtained by RK4
with step 0.1 and 0.724555 obtained by RK4 with step 0.05. The change is noted to be
−4.16× 10−7. We may accept the solution with h = 0.1 as being accurate to at least six
significant digits after decimals.

10.4.3 Embedded Runge Kutta methods

An alternate way of estimating the error of RK methods is to determine the difference between
two schemes having order of accuracy n and n+1. For example, difference between Euler estimate
and RK2 estimate is an indicator for error. Similar procedure can be applied for higher order
Runge Kutta methods also. Two consecutive RK methods do not share any common points (except
the first and last point of the segment) between them and hence both the estimates have to be
evaluated independently. Following such conditions, this approach for error estimation is not
very advantageous. Instead embedded RK methods can be applied where the points of function
evaluation are common for the two numerical schemes. These methods are suited for automatic
control of step size.

Runge Kutta Fehlberg method

The method is another member of Runge Kutta family proposed by German mathematician
Erwin Fehlberg, where the ODE is solved using Runge Kutta method of orders 4 and 5 and the
error is estimated from the difference between these two estimates.6 The main advantage of this
method over classical RK methods is that the points of function evaluations are shared between
4th and 5th order solvers. This is economical compared to using classical RK methods as well as
using two steps of h and h/2. Functions are evaluated at six points within the interval. Four of
these points are used for evaluating fourth order estimate and five points are used for estimating

6Erwin Fehlberg (1969), Low-order classical Runge-Kutta formulas with step size control and their
application to some heat transfer problems, NASA Technical Report 315.

10.4. Runge Kutta (RK) methods 401

fifth order estimate and the difference between the two solutions is the estimate for error. The six
function evaluations are given below:

k1 = hf (tn, yn) k2 = hf
(
tn + h

4
, yn + k1

4

)
k3 = hf

(
tn + 3h

8
, yn + 3k1

32
+ 9k2

32

)
k4 = hf

(
tn + 12h

13
, yn + 1932k1

2197
− 7200k2

2197
+ 7296k3

2197

)
k5 = hf

(
tn +h, yn + 439k1

216
−8k2 + 3680k3

513
− 845k4

4104

)
k6 = hf

(
tn + h

2
, yn − 8k1

27
+2k2 − 3544k3

2565
+ 1859k4

4104
− 11k5

40

)
(10.28)

The estimate of yn+1 and error are provided below.

yn+1,4 = yn + 25
216

k1 + 1408
2565

k3 + 2197
4101

k4 − 1
5

k5

ε= 1
360

k1 − 128
4275

k3 − 2197
75240

k4 + 1
50

k5 + 2
55

k6

(10.29)

The following MATLAB program performs one step of Runge Kutta Fehlberg procedure

Program 10.2: Runge Kutta Fehlberg 45

1 function [Y,er] = ODERKF45(x1 ,y1 ,h,F,varargin)

2 % I n p u t : x 1 : s t a r t i n g p o i n t
3 % y 1 : i n i t i a l v a l u e s o f y ’ s a t x = x 1
4 % h : s t e p s i z e
5 % F : e x t e r n a l f u n c t i o n c o n t a i n i n g d e r i v a t i v e s
6 % y ’ = F (x , y)
7 % v a r a r g i n : o p t i o n a l a r g u m e n t s t o b e p a s s e d t o F
8 % O u t p u t :
9 % Y : o r d i n a t e s

10 % e r : e r r o r e s t i m a t e
11 a1 = 1/4; b11 =1/4; % RKF c o n s t a n t s
12 a2 = 3/8; b21 =3/32; b22 =9/32;

13 a3 = 12/13; b31 =1932/2197; b32 = -7200/2197; b33 = 7296/2197;

14 a4 = 1; b41= 439/216 ; b42=-8;

15 b43 = 3680/513; b44= -845/4104;

16 a5 = 1/2; b51 = -8/27; b52 = 2; b53 = -3544/2565;

17 b54 = 1859/4104; b55 = -11/40;

18 k1 = h*F(x1 ,y1 ,varargin {:});

19 k2 = h*F(x1+a1*h,y1+b11*k1 ,varargin {:});

20 k3 = h*F(x1+a2*h,y1+b21*k1+b22*k2 ,varargin {:});

21 k4 = h*F(x1+a3*h,y1+b31*k1+b32*k2 ...

22 + b33*k3 ,varargin {:});

23 k5 = h*F(x1+a4*h,y1+b41*k1+b42*k2 ...

24 + b43*k3 + b44*k4 ,varargin {:});

25 k6 = h*F(x1+a5*h,y1+b51*k1+b52*k2 ...

26 + b53*k3 + b54*k4+ b55*k5 ,varargin {:});

27 er = abs(k1 /360 - 128* k3 /4275 - ...

28 2197* k4 /75240 +k5/50 +2*k6 /55); % e r r o r
29 Y = y1 + 25*k1 /216 + 1408* k3 /2565 ...

30 + 2197* k4 /4104 - 1*k5/5; % e s t i m a t e

402 Chapter.10 Initial value problems

Since the method estimates the error, it can be used to automatically to select the step size.

10.4.4 Adaptive Runge Kutta methods

Similar to numerical integration, adaptive methods automatically decide on the step size
required to achieve sufficient accuracy. The error estimates calculated using the two methods
discussed earlier can be used to decide the step size. Two sets of tolerance values have to be
provided (tolmax and tolmin) to control the step size. The following simple strategy can be used to
apply adaptive techniques with RK methods
Step 1 Determine the error estimate using two grids h and h/2 or RKF method.

Step 2 If the error estimate is greater than specified tolerance tolmax, reduce the step size by half
(h = h/2) and recalculate the error.

Step 3 Else if the error estimate is less than a specified maximum tolerance tolmax, stop iteration
and accept the present value of tn and yn.

Step 4 If the error estimate is smaller than tolmin, double the step size for next point.
MATLAB program has been provided below to solve an ODE adaptively. The following program
can also take into account a system of linear ODEs (will be discussed later).

Program 10.3: Adaptive RK4 using h and h/2 segments

1 function [X,Y] = ODEadaptRK4(x1 ,x2 ,y1 ,h,F,tol ,varargin)

2 % I n p u t : x 1 : s t a r t i n g p o i n t
3 % x 2 : e n d p o i n t
4 % y 1 : i n i t i a l v a l u e s o f y ’ s a t x = x 1
5 % h : s t e p s i z e
6 % F : e x t e r n a l f u n c t i o n c o n t a i n i n g d e r i v a t i v e s
7 % y ’ = F (x , y)
8 % t o l : t o l e r a n c e
9 % v a r a r g i n : o p t i o n a l a r g u m e n t s t o b e p a s s e d t o F

10 % O u t p u t :
11 % X : a b c i s s c a
12 % Y : o r d i n a t e s
13 X(1) = x1; % i n i t i a l i z e x (1)
14 Y(1,:) = y1; % y(x = 0)
15 count = 1; % no . o f p o i n t s i n i n t e r v a l
16 while (abs(X(count)-x2) >= 1e -15) % o u t e r l o o p
17 if(x2 - X(count) < h)

18 h = x2 -X(count);

19 end

20 [xh ,yh] = ODERK4(X(count),Y(count ,:),h,1,F,varargin {:});

21 while 1 % i n n e r l o o p
22 [xh2 ,yh2] = ODERK4(X(count),Y(count ,:), ...

23 h/2,2,F,varargin {:});

24 if(max(abs(yh2 (3,:)-yh(2,:))) > tol & h > 1e-6)

25 h = h/2; % h a l v e t h e i n t e r v a l
26 yh = yh2;

27 else

28 X(count +1) = X(count) + h; % u p d a t e X
29 Y(count +1,:) = yh2 (3,:); % u p d a t e Y
30 count = count + 1; % u p d a t e p o i n t c o u n t
31 max(abs(yh2 (3,:)-yh(2,:))) % maximum e r r o r
32 if(max(abs(yh2 (3,:)-yh(2,:))) < tol /10)

10.4. Runge Kutta (RK) methods 403

33 % t o l m a x = 1 0 * t o l m i n
34 h = 2*h; % d o u b l e i n t e r v a l
35 end

36 break % b r e a k l o o p
37 end

38 end

39 end

Note: tolmax = 10tolmin

Example 10.5
Use RK2 and RK4 to solve the following initial value problem.

y(1) =−(y4 −1), y(0)= y0 = 2

Choose suitable step size for obtaining the solution by comparison with the exact solution.
Also apply adaptive method and comment on the solution.
Background :
Radiative heat transfer is the only mode of heat transfer available to cool components in a
spacecraft. Heat is rejected to space by radiation and hence maintains the temperature of
components at desired level. If a component of heat capacity mcp and temperature T is
exposed to space at temperature T∞, the temperature of the component will be governed by

mcp
dT
dt

=−εσ(T4 −T4
∞)

where ε is surface emissivity and σ is the Stefan Boltzmann constant. Equation being
considered in this example is a specific case based on this equation.

Solution :
Before we look at the numerical solution we obtain the exact solution by noting that the
given first order ODE is in variable separable form. The exact solution must therefore be
given by

−
∫ y

y0

d y
(y4 −1)

=
∫ t

0
dt

The integrand in the integral on the left hand side may be simplified by using partial
fractions as

1
y4 −1

= 1
2

(
1

y2 −1
− 1

y2 +1

)
= 1

4

(
1

y−1
− 1

y+1

)
− 1

2
1

y2 +1

Term by term integration yields the solution given below.

t = 1
4

ln
(

(y0 −1)(y+1)
(y0 +1)(y−1)

)
− 1

2
(
tan−1(y0)− tan−1(y)

)
Now we look at the numerical solution. Starting at t = 0, y0 = 2 we get the solution using a
step h = 0.05 and the RK2. One pass of the calculation is shown below.

t1 = t0 +h = 0+0.05= 0.05

k1 = hf (t0, y0)=−0.05(24 −1)=−0.75

k2 = hf (t1, y0 +k1)=−0.05((2−0.75)4 −1)=−0.0720703

y1 = y0 + k1 +k2

2
= 2+ −0.75−0.0720703

2
= 1.588965

404 Chapter.10 Initial value problems

Since the exact solution yields t corresponding to a y we calculate the tE corresponding to
the above y as

tE,1 = 1
4

ln
(

(2−1)(1.588965+1)
(2+1)(1.588965−1)

)
− 1

2
(
tan−1(2)− tan−1(1.588965)

)= 0.046475

The accuracy of the method is judged by the difference between the two t’s i.e. εt = t1−tE,1 =
0.05−0.046475= 0.003525 which is quite poor!

We may improve the solution by taking a smaller h or by improving the method. If we
use RK4 and keep the step size the same, we get the following results in tabular form.

t y k1 k2 k3 k4
0 2.00000 -0.75000 -0.29865 -0.53653 -0.17935
0.05 1.56672

Corresponding to y1 = 1.56672 we have t1 = 0.0507567. The error now is given by εt =
0.05−0.050757 = 0.00076 which is somewhat better. The error has migrated to the fourth
place after decimals. Finally, if we take a step size of h = 0.02 (50 steps) the error gets
reduced to approximately 3×10−6, for all t. This last one may be taken as an acceptable
solution. We may use Program 10.3 to solve the ODE using adaptive method.

[X,Y] = ODEadaptRK4 (0,1,2,0.05, @odeexample ,1e-6);

The adaptive method requires 29 steps. A comparison of RK4 with exact solution is shown
in Figure 10.10. The two solutions appear to agree closely with each other.

y

1

1.2

1.4

1.6

1.8

2

t
0 0.2 0.4 0.6 0.8 1

Exact
RK4

Figure 10.10: Comparison of adaptive
RK4 with the exact solution in Example
10.5

RK methods evaluates the function several times within one interval. Sometimes, evaluation of
function may be computationally expensive. Now we shall look at predictor corrector methods
which can be used under such situations.

10.5. Predictor corrector methods 405

10.5 Predictor corrector methods
We have already introduced Heun method as a predictor corrector method. Calculation of yP

n+1
was a predictor, corrected by function calculation at the target point. Adams Bashforth and Adams
Moulton methods are multi-step predictor corrector methods that are very useful in practice. Both
of these methods can be applied independently to solve an ODE. AB being an explicit method
would be prone to numerical errors. However AM being an implicit method would become difficult
to treat non-linear ODE (will be treated in detail later). Most frequently AB and AM methods
are applied together as predictor corrector pairs overcoming the limitations of each. Multi-step
methods use the already calculated function values to extend the solution as opposed to the Runge
Kutta methods that calculate function values at a number of points within a step.

Explicit and implicit methods: Methods to treat Initial value problems can be classified as
explicit or implicit solvers. Consider a first order ODE

d y
dt

= f (t, y)

Let us replace the derivative with a first order forward difference formula.

yn+1 − yn

∆t
= f (t, y)

An important question remains is at what t should f (t, y) be evaluated. From calculus, it is
known that the point lies between tn and tn+1. However, as the function itself is not known such
evaluation is not straightforward. Hence in practice, f (t, y) is evaluated as a weighted sum of
function evaluations at a number of points. In an explicit method, functions are evaluated at
previous nodes i.e. function evaluations are already available for future calculations. Euler and
RK methods are both explicit. On the other hand when f (t, y) is expressed as a function of the
current point tn+1, f (tn+1, yn+1) is not known and becomes part of the solution procedure, the
method is implicit. Implicit methods become computationally intensive for nonlinear differential
equations. Explicit methods are computationally simple and can be applied to a wide range of
problems. However, implicit methods become necessary when stability issues arise. Implicit
methods will be treated in more detail later.

10.5.1 Adams Bashforth Moulton (ABM2) second order method

The second order predictor corrector method uses function evaluations at two points in the
explicit Adams Bashforth step (n−1 and n) and function evaluations at two points in the implicit
Adams Moulton step (n and n+1) as illustrated in Figure 10.11.

Adams Bashforth predictor step (explicit)

Adams Bashforth method (AB2) is the predictor step of the method. This step is explicit i.e. it
is assumed that yn−1 and yn are available and we intend to obtain yn+1. We may use a Newton
polynomial of degree one to extrapolate the function f (ti, yi) outside the interval tn − tn−1 as

f (ti, yi)≈ p1(r)= fn + r∇n (10.30)

406 Chapter.10 Initial value problems

f P
n+1

fn+1

Extrapolate here
Interpolate here

n+1n

n−1 n n+1

h

AB2: Explicit
Predictor

Corrector

AM2: Implicit

Figure 10.11: Steps in 2nd order predictor corrector method

where r = ti − tn

h
and ∇n = fn − fn−1. This step is explicit since the function f at the target point is

not involved in the calculation. The predictor yP
n+1 may then be written down as

yP
n+1 = yn +h

∫ 1

0
[fn + r∇ fn]dr = yn +h

[
fnr+∇ fn

r2

2

]∣∣∣∣1
0

= yn +h
[

fn + ∇ fn

2

]
= yn +h

[
3
2

fn − 1
2

fn−1

]
(10.31)

Adams Moulton corrector step (implicit)

Second order accurate Adams Moulton (AM2) step is implicit and uses the function values at n
and n+1 to construct an approximation given by

f (ti, yi)≈ p1(r)= fn+1 + r∇n+1 (10.32)

where r = ti − tn+1

h
and ∇n+1 = fn+1 − fn. The backward difference is usually written as ∇n+1 =

f P
n+1 − fn where the Adams Bashforth predictor yP

n+1 is used to start the calculation. It is possible
to then use the Adams Moulton step as a fixed point iteration scheme to determine yn+1. We thus
have

yn+1 = yn +h
∫ 0

−1

[
f P
n+1 + r∇n+1

]
dr = yn +h

[
f P
n+1r+∇n+1

r2

2

]∣∣∣∣0
−1

= yn +h
[

f P
n+1 −

∇n+1

2

]
= yn +h

[
fn + f P

n+1

2

]
(10.33)

This last expression is nothing but the familiar trapezoidal scheme.

Note that the Adams-Bashforth scheme requires starting values at two nodes n and n−1. Hence
the multi-step method is not self starting. If we are starting the solution at t = 0 we have one initial
condition specified as y(t = 0) = y0. Hence y(t = h) = y1 may be generated by a single Euler step
which is second order accurate. The solution may then be continued using the multi-step method.

Example 10.6
Solve the first order ordinary differential equation y(1) = y−3t2 subject to the initial condition
y(0) = 1. Use AB2-AM2 combination (i.e. ABM2) after the first Euler step. Use h = 0.05.

10.5. Predictor corrector methods 407

Solution :
Starting from the initial condition t = t0 = 0, y= y0 = 1 Euler step gives

y1 = y0 +h(y0 −3t2
0)= 1+0.05(1−3×02)= 1.05

at t = t1 = t0 +h = 0+0.05= 0.05. Using AB2 we get the predictor yP
2 as

yP
2 = y1 + h

2
[
3(y1 −3t2

1)− (y0 −3t2
0)

]
= 1.05+ 0.05

2
[3(1.05−3×0.052)− (1−3×02)]= 1.1032

Using AM2 we get the corrector y2 as

y2 = y1 + h
2

[(yP
2 −3t2

2)+ (y1 −3t2
1)]

= 1.05+ 0.05
2

[(1.1032−3×0.12)+ (1.05−3×0.052)]= 1.1029

This completes one AB2 AM2 pass. The calculations may be continued as required. The
exact solution may easily be shown to be given by yE = 3t2 +6t+6−5et. The exact values
of y are given by yE(0) = 1, yE(0.05) = 1.0511 and yE(0.1) = 1.1041. Results are tabulated
below up to t = 0.5. The last column shows the error of the numerical solution with respect
to the exact solution.

The error appears to be severe since it is in the third place after decimals. The solution
may be improved by taking a smaller step size.

t y(AM2) yP (AB2) yE εy
0 1.0000 Initial 1.0000 0.0000

Condition
0.05 1.0500 Euler 1.0511 -0.0011
0.1 1.1029 1.1032 1.1041 -0.0013
0.15 1.1570 1.1573 1.1583 -0.0014
0.2 1.2115 1.2118 1.2130 -0.0015
0.25 1.2657 1.2661 1.2674 -0.0016
0.3 1.3189 1.3193 1.3207 -0.0018
0.35 1.3702 1.3706 1.3722 -0.0019
0.4 1.4188 1.4192 1.4209 -0.0021
0.45 1.4637 1.4641 1.4659 -0.0023
0.5 1.5039 1.5044 1.5064 -0.0025

10.5.2 Fourth order method

This is a three step method that uses fn, fn−1, fn−2, fn−3 in the Adams-Bashforth explicit step
and f P

n+1, fn, fn−1, fn−2 in the implicit Adams-Moulton step (see Figure 10.12). Here f P
n+1 is the

value based on predictor yP
n+1.

408 Chapter.10 Initial value problems

f P
n+1

fn+1

Extrapolate here
Interpolate here

n+1n−2 nn−1

n−3 n−2 nn−1 n+1

h

AB4: Explicit calculation uses these four points

AM4: Implicit calculation uses these four points

Figure 10.12: Steps in 4th order predictor corrector method

Adams-Bashforth explicit step

We shall use backward differences and define a polynomial approximation to f that passes
through the points n, n−1, n−2 and n−3. This polynomial may be written down, using Newton
Gregory series with (t− tn)= hr as

f (r)= fn + r∇n + r(r+1)
2

∇2
n +

r(r+1)(r+2)
6

∇3
n (10.34)

This step is explicit since the function f at the target point is not involved in the calculation. The
predictor yP

n+1 may then be written down as

yP
n+1 = yn +h

∫ 1

0

[
fn + r∇n + r(r+1)

2
∇2

n +
r(r+1)(r+2)

6
∇3

n

]
dr

= yn +h
[

fnr+∇n
r2

2
+∇2

n

(
r3

6
+ r2

4

)
+∇3

n

(
r4

24
+ r3

6
+ r2

6

)]∣∣∣∣1
0

= yn +h
[

fn + ∇n

2
+ 5

12
∇2

n +
9

24
∇3

n

]
(10.35)

The last expression is simplified after writing the backward differences in terms of function values.
The reader may verify that we should get

yP
n+1 = yn + h

24
[55 fn −59 fn−1 +37 fn−2 −9 fn−3] (10.36)

Adams-Moulton implicit step

In the Adams-Moulton implicit step we use a polynomial representation of f based on nodes
n+ 1, n, n− 1, n− 2 but using f P

n+1 calculated as f (tn+1, yP
n+1). Again we make use of Newton

Gregory series using backward differences to get

f (r)= f P
n+1 + r∇P

n+1 +
r(r+1)

2
∇2P

n+1 +
r(r+1)(r+2)

6
∇3P

n+1 (10.37)

where r = t− tn+1

h
. This step is implicit since the function value at the target point n+1 is used

in the calculation. However this step has become explicit here since it is based on approximate

10.5. Predictor corrector methods 409

predictor value. We have to integrate the above between tn and tn+1 or r = −1 to r = 0 to get the
corrector as

yC
n+1 = yn +h

∫ 0

−1

[
f P
n+1 + r∇P

n+1 +
r(r+1)

2
∇2P

n+1 +
r(r+1)(r+2)

6
∇3P

n+1

]
dr

= yn +h
[

f P
n+1r+∇P

n+1
r2

2
+∇2P

n+1

(
r3

6
+ r2

4

)
+∇3P

n+1

(
r4

24
+ r3

6
+ r2

6

)]∣∣∣∣0
−1

= yn +h

[
f P
n+1 −

∇P
n+1

2
− 1

12
∇2P

n+1 −
1

24
∇3P

n+1

]
(10.38)

The last expression is simplified after writing the backward differences in terms of function values.
The reader may verify that we should get

yC
n+1 = yn + h

24

[
9 f P

n+1 +19 fn −5 fn−1 + fn−2

]
(10.39)

In principle the Adams-Moulton step may be used iteratively, as the reader will appreciate. We
notice that the 4th order predictor corrector method requires four nodal values to be known before
we can use the Adams-Bashforth step. In an initial value problem we have only one known nodal
value. We may use a method such as the RK4 to evaluate the required number of nodal values and
use Adams-Bashforth-Moulton scheme thereafter. A MATLAB program has been provided below
to solve ODE using ABM fourth order method.

Program 10.4: Fourth order Adams Bashforth Moulton method

1 function [X,Y] = ODEABM4(x1 ,y1 ,h,n,F,varargin)

2 % I n p u t : x 1 : s t a r t i n g p o i n t
3 % y 1 : i n i t i a l v a l u e s o f y ’ s a t x = x 1
4 % h : s t e p s i z e
5 % n : number o f i n t e r v a l s
6 % F : e x t e r n a l f u n c t i o n c o n t a i n i n g d e r i v a t i v e s
7 % y ’ = F (x , y)
8 % v a r a r g i n : o p t i o n a l a r g u m e n t s t o b e p a s s e d t o F
9 % O u t p u t : X : a b c i s s c a

10 % Y : o r d i n a t e s
11 x2 = x1+n*h; %
12 m = length(y1); % no o f ODEs
13 Y = zeros(n+1,m); % i n i t i a l i z e Y
14 X = [x1:h:x2]'; % i n i t i a l i z e g r i d
15 Y(1,:) = y1; % i n i t i a l c o n d i t i o n
16 Z = zeros(n+1,m); % i n i t i a l i z e f u n c t i o n v a l u e s
17 [X(1:4) ,Y(1:4 ,:)] = ODERK4(x1 ,y1 ,h,3,F,varargin {:});

18 % RK4 f o r t h r e e s t e p s
19 for i=1:4 % f u n c t i o n e v a l u a t i o n a t f i r s t
20 Z(i,:) = F(X(i),Y(i,:),varargin {:}); % f o u r p o i n t s
21 end

22 for i=4:n % l o o p f o r ABM
23 yp = Y(i,:) + h*(55*Z(i,:) -59*Z(i-1,:) ...

24 +37*Z(i-2,:) -9*Z(i-3,:))/24; % AB s t e p
25 zp = F(X(i+1),yp); % f u n c t i o n a t p r e d i c t o r
26 Y(i+1,:) = Y(i,:) + h*(9* zp +19*Z(i,:) ...

27 -5*Z(i-1,:)+Z(i-2,:))/24; % AM s t e p
28 Z(i+1,:) = F(X(i+1),Y(i+1,:),varargin {:});

410 Chapter.10 Initial value problems

29 % f u n c t i o n a t X (i + 1)
30 end

Stability of Adams Bashforth and Adams Moulton methods

Now we look at the stability aspect of AB2. We consider the standard problem y(1) = f =λy. AB2
step will then read as

yn+1 = yn +h
[

3
2

fn − 1
2

fn−1

]
= yn +hλ

[
3
2

yn − 1
2

yn−1

]
(10.40)

Noting that the solution is of form yn = y0zn where z is the gain parameter, possibly complex, the
above equation is recast as

y0zn+1 = y0zn +hλ
[

3
2

y0zn − 1
2

y0zn−1
]

(10.41)

or solving for λh in terms of z we get

hλ= 2z(z−1)
(3z−1)

(10.42)

Limit of stability is governed by z = e jθ = cosθ+ j sinθ . This represents |z| = 1 in polar form and
hence we have the stability condition given by

hλ= 2e jθ(e jθ−1)
(3e jθ−1)

(10.43)

AB2 is conditionally stable within the region of stability given by the closed contour shown in
Figure 10.13 (the closed contour is a plot of Expression 10.43).

Im
(λ

h)

-1

-0.5

0

0.5

1

Re(λh)
-1 -0.5 0 0.5

3 4
2

Figure 10.13: Stability regions
Adams Bashforth methods: 2 -
AB2, 3 - AB3 and 4 - AB4

Consider now the AM2. We may apply AM2 to the model problem and recast it as

z = yn+1

yn
= 1+ λh

2

1− λh
2

(10.44)

10.5. Predictor corrector methods 411

Im
(λ

h)

-4

-2

0

2

4

Re(λh)
-6 -4 -2 0

2

4
3

Figure 10.14: Stability regions Adams
Moulton 2 - AM2, 3 - AM3 and 4 - AM4

The gain factor in this case satisfies |z| < 1 as long as λh is in the left half of the z plane.7 The
method is said to be A-stable (Absolute stable). Stability regions of three Adams Moulton methods
are shown in Figure 10.14. Thus when we use AB2 as the predictor and AM2 as the corrector
stability is affected by the conditionally stable AB2 step. In order to see this we consider AB2
followed by AM2 such that, for the standard problem, we have

yn+1 = yn + λh
2

[
yn +λh

(
3
2

yn − 1
2

yn−1

)]
Inserting yn = y0zn, we get

z2 − z
[
1+a+ 3

4
a2

]
+ a2

4
= 0 (10.45)

where a =λh. We may recast this equation as

(1−3z)
4

a2 −az+ (z2 − z)= 0 (10.46)

We may now substitute z = e jθ and plot the locus of a =λh =λrh+ jλih to get the region of stability
for the AB2 AM2 combination. This is shown in Figure 10.15 by the region enclosed by the closed
contour labeled as 2. Without dwelling on the details of stability analysis we show the stability
region for AB4 and AM4 in Figures 10.13 and 10.14 respectively. We see that the stability regions
decrease as we increase the order of the Adams Moulton method. We also show in Figure 10.15 the
stability region for AB4 - AM4 combination. These are obtained by following the stability analysis
procedure given in the case of AB2, AM2 and AB2 -AM2 combination. Combination schemes have
stability regions in between those of AB and AM methods.

Example 10.7
Consider again the ODE of Example 10.6. Use AB4-AM4 combination after the required
number of RK4 steps using h = 0.1. Comment on the accuracy of the solution by comparing
it with the exact solution.
Solution :

7i.e. λ=λr + jλi with λr , the real part being negative. Note that h is always real and positive.

412 Chapter.10 Initial value problems

Im
(λ

h)

-1

0

1

Re(λh)
-2 -1.5 -1 -0.5 0 0.5

4

3
2

Figure 10.15: Stability regions
Adams Bashforth Moulton combi-
nations 2 - AB2-AM2, 3 - AB3-
AM3 and 4 - AB4-AM4

To start the solution we need y(t = 0)= y0,y(t = 0.1)= y1,y(t = 0.2)= y2,y(t = 0.3)= y3. These
are generated using RK4 with step size of 0.1. RK4 generated values are given by the
first four entries in the second column of the table given below. The function values are
calculated as shown in the third column of the table. Using these values we obtain the
predictor and corrector values at t = 0.4 as under.

yP
4 = 1.320705+ 1

24
[55×1.050705−59×1.092986+37×1.074145−9×1]= 1.420897

Using this the corrector value is obtained as

yC
4 = 1.320705+ 1

24
[9×0.940897+19×1.050705−5×1.092986+1.074145]= 1.420875

The solution is continued till t = 0.6 and the results are shown in the table below.

t y f (t, y) yP
n+1 f (t, yP) yE εy

0 1.000000 1.000000 Initial Value 1.000000 0
0.1 1.104145 1.074145 RK4 generated value 1.104145 -2.01E-07
0.2 1.212986 1.092986 RK4 generated value 1.212986 -3.79E-07
0.3 1.320705 1.050705 RK4 generated value 1.320706 -5.27E-07
0.4 1.420875 0.940875 1.420897 0.940897 1.420877 -1.52E-06
0.5 1.506391 0.756391 1.506415 0.756415 1.506394 -2.73E-06
0.6 1.569402 0.489402 1.569429 0.489429 1.569406 -4.18E-06

We see from the last column that the error is small and no more than 10−5, that too with
h = 0.1 as compared to the AB2-AM2 which had an error of ≈ 10−3 with h = 0.05.

Error estimates of ABM

Adams Bashforth step We may now make an estimate for the error by calculating the
next term that involves the next higher derivative of the function at tn. This term is equal to
r(r+1)(r+2)(r+3)

12
∇4

n which integrates to
251
720

h5∇4
n = 251

720
h5 f (4)

n . Thus we have

Error of predictor: EP
n+1 = yn+1 − yP

n+1 =
251
720

h5 f (4)
n (10.47)

10.5. Predictor corrector methods 413

where yn+1 is the exact value.
Adams Moulton step We may now make an estimate for the error by calculating the next
term that involves the next higher derivative of the function at t = tn+1. This term is equal to
r(r+1)(r+2)(r+3)

12
∇4

n+1 which integrates to − 19
720

h5∇4
n+1 ≈ − 19

720
h5 f (4)

n . The last approximation
assumes that the fourth derivative varies very little in the interval tn, tn+1. Thus we have

Error of corrector: EC
n+1 = yn+1 − yC

n+1 =− 19
720

h5 f (4)
n (10.48)

10.5.3 Improving accuracy of ABM methods

There are several variants of Adams Bashforth Moulton methods that can improve the accuracy
of the solution. A simple variation is to repeat the corrector step till convergence. This resembles
a fixed point iteration of implicit Adams Moulton method. This entails increased computational
effort and hence is not a very clever thing to do.

Another method of improving accuracy of ABM method is to eliminate the error from the solution
estimates (similar to Richardson extrapolation in integration). Equations 10.47 and 10.48 are the
errors in the estimation for predictor and corrector step respectively. With a simple manipulation,
we can eliminate truncation errors from the estimate. Subtract Equation 10.47 from Equation
10.48 to get

−yC
n+1 + yP

n+1 =−270
720

h5 f 4
n or h5 f 4

n = 720
270

(yC
n+1 − yP

n+1) (10.49)

Using this estimate for h5 f 4
n we may modify the predictor as

yM
n+1 = yP

n+1 +
251
270

(yC
n+1 − yP

n+1) (10.50)

As we do not have the values of yC
n+1, in this equation we may use the already available predictor

(yP
n) and corrector (yC

n) estimates to get

yM
n+1 = yP

n+1 +
251
270

(yC
n − yP

n) (10.51)

The corrector itself may be modified as

yn+1 = yC
n+1 −

19
270

(yC
n+1 − yP

n+1) (10.52)

Thus we may summarize the predictor corrector algorithm as follows:

Predictor: yP
n+1 = yn + h

24
[55 fn −59 fn−1 +37 fn−2 −9 fn−3]

Modifier: yM
n+1 = yP

n+1 +
251
270

(yC
n − yP

n)
Skip modifier for
first step.

Corrector: yC
n+1 = yn + h

24

[
9 f M

n+1 +19 fn −5 fn−1 + fn−2

]
Target value: yn+1 = yC

n+1 −
19

270
(yC

n+1 − yP
n+1) (10.53)

where f M
n+1 = f (tn+1, yM

n+1).

414 Chapter.10 Initial value problems

Example 10.8
Solve the first order ordinary differential equation y(1) = sin(t)− ycos(t) subject to initial
condition y(0) = 1. Use RK4 and obtain the solution till t = 0.3 and extend it beyond by
Adams-Bashforth-Moulton predictor corrector method
Solution :

The required RK4 solution with h = 0.1 is available as a part of solution worked out in
Example 10.4. The y values and f values are as given in the following table.

t y f (t, y)
0 1.000000 -1.000000
0.1 0.909822 -0.805443
0.2 0.838503 -0.623119
0.3 0.784751 -0.454181

Adam-Bashforth-Moulton without correction:
Using the four tabulated values of f (t, y) we use the Adams-Bashforth predictor to get

yP
4 = y3 + h(55 f3 −59 f2 +37 f1 −9 f0)

24

= 0.784751+
(

0.1
24

)
[55× (−0.454181)−59× (−0.623119)+37× (−0.805443)

−9× (−1)]= 0.747179

Using the predictor value the function is updated as f P
4 = f (0.4, yP

4) = sin(0.4)−0.747179×
cos(0.4)=−0.298779. Use this in the Adams-Moulton corrector to get

yC
4 = y3 +

h(9 f P
4 +19 f3 −5 f2 + f1)

24

= 0.784751+
(

0.1
24

)
[9× (−0.298779)+19× (−0.4541819)−5× (−0.623119)

+1× (−0.805443)]= 0.747217

The process may be continued to get solution for higher values of t.

Adams-Bashforth-Moulton with correction:
Using the four tabulated values of f (t, y) we use the Adams-Bashforth predictor to get yP

4
as in the case of Adams-Bashforth-Moulton without correction. The function is updated as
done there. Use this in the Adams-Moulton corrector to get

yC
4 = y3 +

h(9 f P
4 +19 f3 −5 f2 + f1)

24

= 0.784751+
(

0.1
24

)
[9× (−0.298779)+19× (−0.4541819)−5× (−0.62311)

+1× (−0.805443)]= 0.747217

The target value may then be calculated as

y4 = c4 − 19
270

(yC
4 − yP

4)= 0.747217− 19
270

(0.747217−0.747179)= 0.747214

10.5. Predictor corrector methods 415

This process is repeated to extend the solution to next higher value of t = 0.5 now. Using the
four tabulated values of f (t, y) we use the Adams-Bashforth predictor to get

yP
5 = y4 + h(55 f4 −59 f3 +37 f2 −9 f1)

24

= 0.747214+
(

0.1
24

)
[55× (−0.298811)−59× (−0.454181)+37× (−0.623119)

−9× (−0.805443)]= 0.724529

The modifier is now calculated as

yM
5 = p5 + 251

270
(yC

4 − yP
4)= 0.724531+ 251

270
(0.747217−0.747179)= 0.724564

The function value based on yM
5 is calculated as f M

5 = sin(0.5) − 0.724566 × cos(0.5) =
−0.156439. The corrector is then calculated as

yC
5 = y4 +

h(9 f M
5 +19 f4 −5 f3 + f2)

24

= 0.747214+
(

0.1
24

)
[9× (−0.156439)+19× (−0.298814)−5× (−0.454181)

+1× (−0.623119)]= 0.724557

Finally the target value is obtained as

y5 = yC
5 − 19

270
(yC

5 − yP
5)= 0.724557− 19

270
(0.724557−0.724531)= 0.724555

We could have continued the solution using RK4. In the following table we compare
the results obtained by Adams-Bashforth-Moulton (ABM) no error correction, Adams-
Bashforth-Moulton (ABM) with error correction and the RK4. Difference with respect to
the RK4 solution (it is valid with at least six decimal accuracy as shown in Example 10.4)
indicates the accuracy of the Predictor Corrector method.

ABM ABM Difference Difference
No error With error RK4-ABM (No RK4-ABM (With

t correction correction RK4 error correction) error correction)
0.4 0.747217 0.747214 0.747213 -3.26E-06 -6.01E-07
0.5 0.724561 0.724555 0.724556 -5.36E-06 1.67E-07
0.6 0.715538 0.715531 0.715531 -6.60E-06 6.94E-07

The ABM with error corrections is preferred over the ABM without error corrections. The
solution differs from RK4 by at the most 1 digit in the sixth place after decimals. This
example shows that, in general, RK4 is better than ABM in spite of error correction.

10.5.4 Adaptive ABM method: change of step size

We have seen that estimates of Adams Bashforth Moulton method can be improved by
eliminating error in the predictor and corrector steps. However, there was no automatic control

416 Chapter.10 Initial value problems

of step size. With the knowledge of the error for corrector step, the solution to ODE can be made
adaptive i.e. the step size is doubled or halved depending on the error estimated. This exercise also
ensures the error is below a threshold tolerance throughout the solution range. Being a multi-step
method, the step size of ABM has to be changed with proper care.

In Example 10.8 we solved a particular ODE with a step size of h = 0.1. However one may want
to either reduce or increase the step size depending on the error estimate, similar to RK methods.

In case the step size is to be reduced, say, to
h
2

we need starting values with this step size. One
may easily obtain the desired values using the previously calculated values with step size h and
an interpolating polynomial such as p3(t). In case we would like to increase the step size, say to
2h all we have to do is to use the already available data skipping alternate values (Figure 10.16).
An example is worked out below to demonstrate this.

n−3 n−2 n−1 n

n−3 n−2 n−1 n

n−6 n−5 n−4 n−3 n−2 nn−1

n−3 n−2 nn−1

New grid h/2

Old grid h

New grid 2h

Old grid h

h

h/2

2h

Figure 10.16: Modi�ed grid for h/2 and 2h

Example 10.9
Extend the RK4 solution beyond t = 0.3 in Example 10.8 by ABM method using a step size of
0.05 i.e. halving the step size used in RK4.
Solution :

The available RK4 solution with h = 0.1 is made use of to obtain the following forward
difference table.

t y ∆y ∆2 y ∆3 y
0 1 -0.0901779 0.0188582 -0.00128999
0.1 0.909822 -0.0713196 0.0175683
0.2 0.838503 -0.0537513
0.3 0.784751

Defining
x−0
0.1

= r a cubic Newton polynomial may be written down as

p3(r) = y0 + r∆y0 + r(r−1)
2

∆2 y0 + r(r−1)(r−2)
6

∆3 y0

= 1−0.0901779r+0.0094291r(r−1)−0.000214998r(r−1)(r−2)

The function values required at t = 0.15 or r = 1.5 and t = 0.25 or r = 2.5 are obtained and
shown below.

t r yint
0.15 1.5 0.871886 Value Needed
0.2 2 0.838503 Already Available
0.25 2.5 0.809512 Value Needed
0.3 3 0.784751 Already Available

10.6. Set of first order ODEs 417

Calculation proceeds now as in Example 10.8 but with a step size of h = 0.05. Suppressing
details we show below the results.

t y f (t, y) p f (t, yP) yM f (t, yM)
0.15 0.871886 -0.712657 · · ·Interpolation· · ·
0.2 0.838503 -0.623119 · · ·Solution by RK4 · · ·
0.25 0.809512 -0.536942 · · ·Interpolation· · ·
0.3 0.784751 -0.454181 · · ·Solution by RK4 · · ·
0.35 0.764040 -0.374821 0.764039 -0.374820 0.764039 -0.374820
0.4 0.747213 -0.298811 0.747213 -0.298810 0.747214 -0.298811
0.45 0.734105 -0.226057 0.734104 -0.226056 0.734105 -0.226057
0.5 0.724555 -0.156432 0.724555 -0.156431 0.724556 -0.156432

We also show the solution based on RK4 below with a step size of h = 0.05.

t yRK4 k1 k2 k3 k4
0 1.000000 -0.050000 -0.047485 -0.047548 -0.045064
0.05 0.952478 -0.045065 -0.042620 -0.042681 -0.040271
0.1 0.909822 -0.040272 -0.037903 -0.037962 -0.035632
0.15 0.871883 -0.035633 -0.033346 -0.033402 -0.031155
0.2 0.838502 -0.031156 -0.028954 -0.029007 -0.026846
0.25 0.809515 -0.026847 -0.024732 -0.024782 -0.022708
0.3 0.784751 -0.022709 -0.020680 -0.020728 -0.018740
0.35 0.764040 -0.018741 -0.016798 -0.016843 -0.014940
0.4 0.747213 -0.014941 -0.013081 -0.013123 -0.011302
0.45 0.734105 -0.011303 -0.009523 -0.009563 -0.007821
0.5 0.724555 -0.007822 -0.006119 -0.006156 -0.004488

It is seen that the two solutions agree to at least six digits after decimals.

10.6 Set of first order ODEs
In many engineering applications we need to solve a set of coupled first order ordinary

differential equations. Two first order systems that interact with each other will be governed
by two coupled first order differential equations that need to be solved simultaneously. Thus we
need to solve simultaneously two equations such as

y(1)
1 = f1(t, y1, y2)

y(1)
2 = f2(t, y1, y2) (10.54)

subject to initial conditions y1(0) = y1,0 and y2(0) = y2,0. Coupling between the two equations is
indicated by the appearance of y1 and y2 in both the equations. In general the functions f1 and f2
may be non-linear i.e. involve non-linear functions of y1 and y2. However there are some special
cases that are of interest in applications. The two equations may be linear in y1 and y2 and be of
form

y(1)
1 = a(t)y1 +b(t)y2 + s1(t)

418 Chapter.10 Initial value problems

y(1)
2 = c(t)y1 +d(t)y2 + s2(t) (10.55)

These equations are referred to as non-homogeneous first order ordinary differential equations
with variable coefficients. If, in addition, a− d are constant we refer to the equations as non-
homogeneous first ordinary differential equations with constant coefficients. If both s1 and s2 are
zero we have homogeneous first order ordinary differential equations with variable or constant
coefficients, respectively.

Exact solution to a set of homogeneous first order ordinary differential
equations with constant coefficients

Consider a set of first order differential equations with constant coefficients written in matrix
form below.

dy
dt

=Ay (10.56)

Here y is a vector and A is a square matrix of the coefficients. Recall that the solution consists of
exponentials and hence y= y0eλt. Introduce this in Equation 10.56 to get

y0λeλt =Ay0eλt (10.57)

This may be recast as
λy=Ay (10.58)

Thus the λ’s are the eigenvalues of the coefficient matrix A. We have seen earlier that we can find
a similarity transformation such that the coefficient matrix is brought to Schur form. This means
that we can find a matrix P such that P−1AP=Λ where Λ is a diagonal matrix, if the eigenvalues
are distinct. Let z=Py. Then we have

dPy
dt

= dz
dt

=PAy=PAP−1Py=ΛPy=Λz (10.59)

Thus we end up with a set of uncoupled equations for z. Easily the solution is written down as

zi = cieλi t (10.60)

In case the given set of ordinary differential equations are non-homogeneous we may use
superposition principle to write down the solution. In terms of z the equations will be of form

dz
dt

=Λz+Ps (10.61)

If we put Ps = s′ the particular integral corresponding to eigenvalue λi may be written down as

e−λi t
∫ t

0
s′ie

λi tdt. This may be added to the complementary function to get the complete solution as

zi = cieλi t +e−λi t
∫ t

0
s′ie

λi tdt (10.62)

Once z has been obtained we get the desired solution as

y=P−1z (10.63)

10.6. Set of first order ODEs 419

Example 10.10
Obtain the exact solution for the set of two ODEs

y(1)
1 = −3y1 + y2

y(1)
2 = y1 − y2

subject to the initial conditions y1(0)= y2(0)= 1.
Solution :

Writing the two equations in matrix form, the coefficient matrix is identified as

A=
 −3 1

1 −1

The characteristic equation is given by (−3 − λ)(−1 − λ) − 1 = λ2 + 4λ+ 2 = 0. The two

eigenvalues are given by λ= −4±p
8

2
or

λ1 = −4+p
8

2
=−0.5858

λ2 = −4−p
8

2
=−3.4142

The eigenvalues are thus real and distinct. We may obtain easily the corresponding
eigenvectors and construct the matrix P as

P=
 0.3827 0.9239

−0.9239 0.3827

The solution is given by

y1 = 0.3827c1e−0.5858t −0.9239c2e−3.4142t

y2 = 0.9239c1e−0.5858t +0.3827c2e−3.4142t

Constants c1 and c2 are obtained by requiring satisfaction of the initial conditions. Thus
we have c1 = 1.3066, c2 =−0.5412 and finally

y1 = 0.5e−0.5858t +0.5e−3.4142t

y2 = 1.2071e−0.5858t −0.2071e−3.4142t

10.6.1 Euler and RK2 applied to a set of first order ordinary differential
equations

The simplest algorithm to apply to a set of first order ODEs is the Euler method. The scheme is
first order accurate and is given by the following.

tn+1 = tn +h
y1,n+1 = y1,n +hf1(tn, y1,n, y2,n) (10.64)

420 Chapter.10 Initial value problems

y2,n+1 = y2,n +hf2(tn, y1,n, y2,n)

Here we are considering a set of two coupled first order ODEs. In the case of RK2 the above Euler
step is used as a predictor to get

tn+1 = tn +h
yP

1,n+1 = y1,n +hf1(tn, y1,n, y2,n) (10.65)

yP
2,n+1 = y2,n +hf2(tn, y1,n, y2,n)

This is followed by the corrector step as follows.

tn+1 = tn +h

y1,n+1 = y1,n + h
2

[f1(tn, y1,n, y2,n)+ f1(tn+1, yP
1,n+1, yP

2,n+1)] (10.66)

y2,n+1 = y2,n + h
2

[f2(tn, y1,n, y2,n)+ f2(tn+1, yP
1,n+1, yP

2,n+1)]

These may be modified to suit the special linear cases, alluded to earlier, without much effort.
In fact we work out a simple case of a set of two homogeneous first order ordinary differential
equations with constant coefficients below by the use of RK2 method.

Example 10.11
Solve the following set of two homogeneous first order ordinary differential equations with
constant coefficients

y(1)
1 = −3y1 + y2

y(1)
2 = y1 − y2

subject to the initial conditions y1(0) = y2(0) = 1. Use a step size of ∆t = h = 0.05. Comment
on how good is the solution obtained numerically by the RK2 method.
Solution :

We start the calculations from t = 0, y1(0)= y2(0)= 1 and follow through one pass of the RK2
method.
Predictor step:

t1 = t0 +0.05= 0+0.05= 0.05

yP
1,1 = y1,0 +h[−3y1,0 + y2,0]= 1+0.05(−3×1+1)= 0.9000

yP
2,1 = y2,0 +h[y1,0 − y2,0]= 1+0.05(1−1)= 1.0000

Corrector step:

t1 = t0 +0.05= 0+0.05= 0.05

y1,1 = y1,0 + h
2

[−3y1,0 + y2,0 −3yP
1,0 + yP

2,0]

= 1+ 0.05
2

(−3×1+1−3×0.9+1)= 0.9075

y2,1 = y2,0 + h
2

[−3y1,0 + y2,0 −3yP
1,0 + yP

2,0]

= 1+ 0.05
2

(1−1+0.9000−1)= 0.9975

This process may be continued and the results tabulated as under:

10.6. Set of first order ODEs 421

t y1 y2 y1E y2E εy1 εy2

0 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000
0.05 0.9075 0.9975 0.9071 0.9977 0.0004 -0.0002
0.1 0.8276 0.9910 0.8269 0.9912 0.0007 -0.0003
0.15 0.7584 0.9811 0.7575 0.9815 0.0009 -0.0003
0.2 0.6983 0.9687 0.6973 0.9690 0.0010 -0.0004
0.25 0.6459 0.9541 0.6448 0.9545 0.0010 -0.0004
0.3 0.6000 0.9378 0.5990 0.9382 0.0010 -0.0004
0.35 0.5597 0.9203 0.5587 0.9206 0.0010 -0.0004
0.4 0.5241 0.9017 0.5232 0.9021 0.0010 -0.0004
0.45 0.4926 0.8825 0.4917 0.8828 0.0009 -0.0003
0.5 0.4646 0.8627 0.4637 0.8631 0.0009 -0.0003

At x = 0.5 the RK2 solution is given by y1 = 0.4646 and y2 = 0.8627 as compared to exact
solution y1E = 0.4637 and y2E = 0.8631. The error is limited, respectively, to 9 units and 4
units in the fourth place after decimals. A full table showing both RK2 and exact values are
given above. The error seems to be larger (in the third place after decimals) for short times.
It may be necessary to reduce the step size if better results are required.

Stability issues of a system of ODEs

In the examples considered above, the solution is made of two exponentials, the first one with
an eigenvalue of λ1 = −0.5858 and the second one λ2 = −3.4142. Both are real and are negative.
From the earlier stability analysis we have seen that the condition for stability is that |λh| < 2.
Since there are two λ’s in the present problem the stability requirement imposes an upper limit

on the h given by h < 2
3.4142

= 0.5858 ≈ 0.6. Thus the bigger eigenvalue imposes a restriction on
the step size. We show in Figure 10.17 the results of varying the step size. When h = 0.2 the RK2
solution follows closely the exact solution. When we choose h = 0.6 the RK2 solution diverges and
is entirely worthless.

y

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

t
0 1 2 3 4 5

y1, h=0.2
y2, h=0.2
y1, Exact
y2, Exact
y1, h=0.6
y2, h=0.6

Figure 10.17: E�ect of step size
h on the solution by RK2

Differential equations where eigenvalues differ considerably in magnitude with a large gap
between the smallest and the biggest eigenvalues are termed as stiff equations. Such equations

422 Chapter.10 Initial value problems

show propensity for instabilities for the reason given above. Hence special methods are needed to
solve such problems. These will be taken up later on, after dealing with higher order differential
equations, that may also exhibit stiff nature.

10.6.2 Application of RK4 to two coupled first order ODEs

Consider first the general case of two coupled first order ODEs. Consider two equations given
by

d y1

dt
= f1(t, y1, y2)

d y2

dt
= f2(t, y1, y2) (10.67)

with the initial conditions specified for both the dependent variables y1 and y2. Let k′s and l′s
represent function values associated respectively with the two first order ODEs. The RK4 will
then be written down as follows.

tn+1 = tn +h
k1 = h · f1(tn, y1,n, y2,n) l1 = h · f2(tn, y1n, y2n)

k2 = h · f1

(
tn + h

2
, y1,n + k1

2
, y2,n + l1

2

)
l2 = h · f2

(
tn + h

2
, y1,n + k1

2
, y2,n + l1

2

)
k3 = h · f1

(
tn + h

2
, y1,n + k2

2
, y2,n + l2

2

)
(10.68)

l3 = h · f2

(
tn + h

2
, y1,n + k2

2
, y2,n + l2

2

)
k4 = h · f1(tn +h, y1,n +k3, y2,n + l3)

l4 = h · f2(tn +h, y1,n +k3, y2,n + l3)

y1,n+1 = y1,n + k1 +2k2 +2k3 +k4

6
y2,n+1 = y2,n + l1 +2l2 +2l3 + l4

6

Example 10.12
Solve the two first order ODEs of Example 10.11 by the RK4 method. Discuss the effect of
change in step size.
Solution :

As usual we will show detailed calculations for one pass of the RK4 starting from the initial
value. The initial values are taken as t0 = 0, y1,0 = y2,0 = 1. We take a step of h = 0.2 and
get the following by the use of Algorithm 10.68.

t1 = 0+0.2= 0.2

k1 = 0.2(−3+1)=−0.4

l1 = 0.2(1−1)= 0

k2 = 0.2
[
−3

(
1+ −0.4

2

)
+1

]
=−0.28

l2 = 0.2
[(

1+ −0.4
2

−1
)]

=−0.04

10.6. Set of first order ODEs 423

k3 = 0.2
[
−3

(
1+ −0.28

2

)
+

(
1+ −0.04

2

)]
=−0.32

l3 = 0.2
[(

1+ −0.28
2

)
−

(
1+ −0.04

2

)]
=−0.024

k4 = 0.2[−3(1−0.32)+ (1−0.024)]=−0.2128

l4 = 0.2[(1−0.32− (1−0.024))]=−0.0592

y1,1 = 1+ −0.4+2(−0.28−0.32)−0.2128
6

= 0.6979

y2,1 = 1+ 0+2(−0.04+−0.024)−0.0592
6

= 0.9688

The corresponding exact values are y1E = 0.6973 and y2E = 0.9690. The RK4 values have
errors respectively of 0.0006 and −0.0002. These seem to be somewhat excessive. However
the errors migrate to the 7th digit after decimals for t = 4 as shown by the first table below.

We may improve the solution for small t by using a smaller step size in the first few steps
of the RK4 algorithm. For example, if we use h = 0.05 we get the results in the second table
below.

t y1 y2 y1E y2E εy1 εy2

0 1.000000 1.000000 1.000000 1.000000 0.000000 0.000000
0.2 0.697867 0.968800 0.697312 0.969029 0.000555 -0.000229
0.4 0.523720 0.901871 0.523159 0.902103 0.000561 -0.000232
0.6 0.416714 0.822506 0.416288 0.822682 0.000426 -0.000176
0.8 0.345782 0.741872 0.345495 0.741991 0.000287 -0.000118
...
2.4 0.122717 0.295863 0.122713 0.295864 0.000004 -0.000001
2.6 0.109096 0.263177 0.109093 0.263177 0.000002 0.000000
2.8 0.097007 0.234093 0.097006 0.234093 0.000001 0.000000
...
3.6 0.060692 0.146518 0.060692 0.146517 0.000000 0.000000
3.8 0.053982 0.130320 0.053981 0.130320 0.000000 0.000000
4 0.048013 0.115913 0.048013 0.115912 0.000000 0.000000

t y1 y2 y1E y2E εy1 εy2

0 1.000000 1.000000 1.000000 1.000000 0.000000 0.000000
0.05 0.907101 0.997659 0.907100 0.997660 0.000001 0.000000
0.1 0.826933 0.991224 0.826932 0.991224 0.000001 0.000000
0.15 0.757550 0.981465 0.757549 0.981465 0.000001 -0.000001
0.2 0.697313 0.969029 0.697312 0.969029 0.000001 -0.000001
0.25 0.644837 0.954458 0.644835 0.954458 0.000001 -0.000001
0.3 0.598952 0.938204 0.598950 0.938205 0.000002 -0.000001
0.35 0.558671 0.920647 0.558669 0.920648 0.000001 -0.000001
0.4 0.523161 0.902102 0.523159 0.902103 0.000001 -0.000001

We see that the errors have migrated to the 6th digit after decimals. Since RK4 is a fourth
order method and also has a larger stability region (see Figure 10.8) the solution does not
get affected as severely by the stiffness of the equations as in the case of RK2.

424 Chapter.10 Initial value problems

Application of RK4 to a set of first order equations

The methods that have been discussed thus far can be easily extended to a set of m differential
equations considered below

y(1)
1 = f1(t, y1, y2, · · · , ym)

y(1)
2 = f2(t, y1, y2, · · · , ym)

· · ·
y(1)

m = fm(t, y1, y2, · · · , ym)

(10.69)

Applying RK4 to the above set of equations we get

ki,1 = hf i(t, y1,n, y2,n, · · · , ym,n)

ki,2 = hf i

(
t+ h

2
, y1,n +

k1,1

2
, y2,n +

k2,1

2
, · · · , ym,n +

km,1

2

)
ki,3 = hf i

(
t+ h

2
, y1,n +

k1,2

2
, y2,n +

k2,2

2
, · · · , ym,n +

km,2

2

)
ki,4 = hf i

(
t+h, y1,n +k1,3, y2,n +k2,3, · · · , ym,n +km,3

)
yi,n+1 = yi,n +

ki,1 +2ki,2 +2ki,3 +ki,4

6

(10.70)

Similarly, other methods including adaptive strategies discussed so far can be extended to a set of
differential equations.

Example 10.13
Solve the following system of differential equations using adaptive RK4 method

dx
dt

=σ(y− x);
d y
dt

= x(ρ− z)− y;
dz
dt

= xy−βz

where σ= 10, β= 8/3 and ρ = 28. Initial conditions are x = 1, y= 0 and z = 0.

Background :
The above set of differential equations is a simplified model for fluid circulation in a fluid
layer which is heated from below and cooled from above. These equations were derived by
Edward Lorenz and are also known as Lorenz attractor. The equations are known to exhibit
chaotic solutions for certain choice of parameters σ, β and ρ. The model is highly sensitive
to initial conditions, where a small change in initial conditions brings a huge change in the
final solution. This makes the solution to the problem highly unpredictable. This means
even small errors from the numerical model can render the solution inaccurate. This is the
main reason why numerical weather forecasting remains a challenge!8

Solution :
We have a set of three coupled first order differential equations. A MATLAB function has
been written to define the above system of governing equations.

function z = odelorenzprob(t,y,p)

% I n p u t t : i n d e p e n d e n t v a r i a b l e
% y : d e p e n d e n t v a r i a b l e s

8R. C. Hilborn “Sea gulls, butterflies, and grasshoppers: A brief history of the butterfly effect in nonlinear
dynamics” 2004, American Journal of Physics, 72, 425.

10.7. Higher order ODEs 425

% y (1) = x , y (2) = y and y (3) = z
% p : p a r a m e t e r s
% p (1) = σ , p (2) = β and p (3) = ρ

% O u t p u t z : f u n c t i o n e v a l u a t i o n

In the above function variable p has to be input by the user in the main function as given
below

Figure 10.18 shows the trajectory plot9 of the three variables. Readers are encouraged

to change the initial conditions and check the sensitivity of the trajectory to the initial
conditions.

10.7 Higher order ODEs
Higher order ODEs are essentially converted to a set of simultaneous first order ODEs and

solved by the many schemes that are available to solve first order ODEs. Consider a second order
ODE as a typical example. A general second order ODE is

d2 y
dt2 = f

(
t, y,

d y
dt

)
or y(2)(t)= f (t, y, y(1)) (10.71)

9A trajectory is the path of the dependent variables with respect to the independent variable (usually
time). Time appears implicitly in the plot.

426 Chapter.10 Initial value problems

Restricting our attention to initial value problems here (boundary value problems will be
considered separately later), initial conditions are specified as

t = 0, y= y0;
d y
dt

∣∣∣∣
t=0

= y(1)(0)= y(1)
0 (10.72)

Noting that the first derivative itself may be a function of t and y, we introduce the following
transformation

u0(t)= y; u1(t, y)= y(1)(t, y) (10.73)

The above transformation helps in converting a second order ODE to a set of two first order ODEs
given by

u(1)
0 = u1; u(1)

1 = f (t,u0,u1) (10.74)

The initial conditions may then be recast as

t = 0, u0(0)= y0, u1(0)= y(1)
0 (say) (10.75)

Thus the original second order ODE given by Equation 10.71 is equivalent to two first order ODEs
given by Equations 10.74. Both of these are amenable to solution by any of the numerical methods
that have been discussed earlier.

Consider mth order differential equation (initial value problem)

y(m) = f (t, y, y(1), y(2), · · · , y(m−1)) (10.76)

with m initial conditions. y,y(1),... y(m) can be transformed as u0,u1,..., um respectively. Then, the
above higher order differential equation reduces to a system of first order ODEs as follows

u(1)
m = f (t,u0,u1,u2, · · · ,um)

u(1)
m−1 = um

· · ·
u(1)

0 = u1

(10.77)

The above can also be written in matrix form

u(1)
m

u(1)
m−1

· · ·

u(1)
0

=

0 0 · · · 0 0 f (t,u0,u1,u2, · · · ,um)

1 0 · · · 0 0 0

· · · · · · · · · · · · · · · · · ·

0 0 · · · 1 0 0

um

· · ·

u1

u0

1

(10.78)

10.7.1 Euler method applied to second order ODE

Having recast the second order ODE as two first order ODEs the Euler method may be used to
obtain the solution. The algorithm is easily written down as follows.

tn+1 = tn +h; u1,n+1 = u1,n +hf (tn,u0,n,u1,n); u0,n+1 = u0,n +hu1,n (10.79)

An example follows.

10.7. Higher order ODEs 427

Example 10.14
Solve equation y(2) = t+ y+ y(1) +2

2
with y(0) = 0, y(1)(0) = 0. Use a step size of h = 0.1 and

obtain the solution for 0≤ x ≤ 0.5 using the Euler method.
Solution :

First we transform the variables as follows

u0 = y; u1 = y(1);

Then the differential system reduces to

u(1)
1 = t+u0 +u1 +2

2
u(1)

0 = u1

with initial conditions u0(0) = 0 and u1(0) = 0 We see that the algorithm is very simple and
given by

ti+1 = ti +h

u1,i+1 = u1,i +hu(1)
1,i = u1,i +h

ti +u0,i +u1,i +2
2

u0,i+1 = u0,i +0.1u1,i

We start with u0,0 = u1,0 = 0 to get u(1)
1,0 =

0+0+0+2
2

= 1 and hence

t1 = t0 +0.1= 0+0.2= 0.1

u1,1 = u1,0 +0.1u(1)
1,0 = 0+0.2×1= 0.1

u0,1 = u0,0 +0.2u1,0 = 0+0.1×0= 0

The algorithm is used again and again to get the following tabulated values.

i t y y(1) y(2) yE εy
0 0 0.0000 0.0000 1.0000 0.0000 0.0000
1 0.1 0.0000 0.1000 1.1000 0.0052 -0.0052
2 0.2 0.0100 0.2100 1.2100 0.0214 -0.0114
3 0.3 0.0310 0.3310 1.3310 0.0499 -0.0189
4 0.4 0.0641 0.4641 1.4641 0.0918 -0.0277
5 0.5 0.1105 0.6105 1.6105 0.1487 -0.0382

In the above table yE is the exact solution which may easily be shown to be given by yE =
et − t−1. The error with respect to the exact is excessive. Also it increases with t and the
solution quickly becomes useless! One may need to use a very small h to get an acceptable
solution.

428 Chapter.10 Initial value problems

10.7.2 RK2 method applied to second order ODE

With a little more effort we get a second order accurate solution by the use of the RK2 method
(or the Heun method). We easily see that the algorithm is as follows.

ti+1 = ti +h
Predictor step:

uP
0,i+1 = u0,i +hu1,i

uP
1,i+1 = u1,i +hf (ti,u0,i,u1,i)

Corrector step:

u0,i+1 = u0,i +
h(u1,i +uP

1,i+1)

2

u1,i+1 = u1,i +h

[
f (ti,u0,i,u1,i)+ f (ti+1,uP

0,i+1,uP
1,i+1)

]
2

(10.80)

Example 10.15
Solve the second order ODE of Example 10.14 by the Heun method with a step size of h = 0.1.
Obtain the solution for 0≤ x ≤ 0.5.
Solution :

We make use of the algorithm given by Equation 10.80 and give below the calculations for
a single pass starting at t = 0.

t1 = t0 +h = 0+0.1= 0.1

Predictor step:

uP
0,1 = u0,0 +hu1,0 = 0+0.1×0= 0

uP
1,1 = u1,0 +hf (t0,u0,0,u1,0)= 0+0.1

(0+0+0+2)
2

= 0.1

Corrector step:

u0,1 = u0,0 +
h(u1,0 +uP

1,1)

2
= 0+0.1

(
0+0.1

2

)
= 0.0050

u1,1 = u1,0 +h

[
f (t0,u0,0,u1,0)+ f (t1,uP

0,1,uP
1,1)

]
2

= 0+0.1
(

0+0+0+2+0.1+0+0.005+2
4

)
= 0.1050

The algorithm is used repeatedly to get the following tabulated values.

i x y u1 yP uP
1 yE εy

0 0 0.0000 0.0000 0.0000 0.1000 0.0000 0.0000
1 0.1 0.0050 0.1050 0.0155 0.2155 0.0052 -0.0002
2 0.2 0.0210 0.2210 0.0431 0.3431 0.0214 -0.0004
3 0.3 0.0492 0.3492 0.0842 0.4842 0.0499 -0.0006
4 0.4 0.0909 0.4909 0.1400 0.6400 0.0918 -0.0009
5 0.5 0.1474 0.6474 0.2122 0.8122 0.1487 -0.0013

10.7. Higher order ODEs 429

In the above table yE is the exact solution given by yE = et − t−1. The error with respect
to the exact is moderate. However it increases with t and the solution is probably adequate
with an error in the third decimal place. It is possible to improve the solution by reducing
the step size. Indeed improved solution shown below with h = 0.05 is better with error in
the fourth place after the decimal point.

i x y u1 yP uP
1 yE εy

0 0 0.0000 0.0000 0.0000 0.0500 0.0000 0.0000
1 0.05 0.0013 0.0513 0.0038 0.1038 0.0013 0.0000
2 0.1 0.0051 0.1051 0.0104 0.1604 0.0052 0.0000
3 0.15 0.0118 0.1618 0.0199 0.2199 0.0118 -0.0001
4 0.2 0.0213 0.2213 0.0324 0.2824 0.0214 -0.0001
5 0.25 0.0339 0.2839 0.0481 0.3481 0.0340 -0.0001
6 0.3 0.0497 0.3497 0.0672 0.4172 0.0499 -0.0002
7 0.35 0.0689 0.4189 0.0898 0.4898 0.0691 -0.0002
8 0.4 0.0916 0.4916 0.1162 0.5662 0.0918 -0.0002
9 0.45 0.1180 0.5680 0.1464 0.6464 0.1183 -0.0003
10 0.5 0.1484 0.6484 0.1808 0.7308 0.1487 -0.0003

Application of RK4 to a second order ODE

Now consider a second order ODE converted to two first order ODEs as given by Equations 10.73
and 10.74. At any stage of the calculation we have u0,n and u1,n. We may identify the k’s with
Equation 10.74 and the l’s with Equation 10.73. The RK4 algorithm will then be written down as
follows:

tn+1 = tn +h

k1 = h · f (tn,u0,n,u1,n) l1 = h ·u1,n

k2 = h · f
(
tn + h

2
,u0,n + l1

2
,u1,n + k1

2

)
l2 = h ·

(
u1,n + k1

2

)
k3 = h · f

(
tn + h

2
,u0,n + l2

2
,u1,n + k2

2

)
l3 = h ·

(
u1,n + k2

2

)
k4 = h · f (tn +h,u0,n + l3,u1,n +k3) l4 = h · (u1,n +k3

)
u0,n+1 = u0,n + l1 +2l2 +2l3 + l4

6

u1,n+1 = u1,n + k1 +2k2 +2k3 +k4

6

(10.81)

Example 10.16
Solve the second order ODE of Example 10.14 by the RK4 method. Choose a step size of
h = 0.2 and obtain the solution up to t = 1.
Solution :

Using the starting values provided (at n = 0) earlier, one pass of calculations using
Equations 10.81 gives the following:

t1 = 0+0.2= 0.2

430 Chapter.10 Initial value problems

k1 = 0.2× 0+0+0+2
2

= 0.2

l1 = 0.2×0= 0

k2 = 0.2× 0+0.2/2+0+0/2+0+0.2/2+2
2

= 0.22

l2 = 0.2(0+0.2/2)= 0.02

k3 = 0.2× 0+0.2/2+0+0.02/2+0+0.22/2+2
2

= 0.222

l3 = 0.2(0+0.22/2)= 0.022

k4 = 0.2× 0+0.2+0+0.02+0+0.222+2
2

= 0.2444

l4 = 0.2(0+0.222)= 0.0444

y1 = 0+ 0+2(0.02+0.022)+0.0444
6

= 0.0214

y1,1 = 0+ 0.2+2(0.22+0.222)+0.2444
6

= 0.2214

The exact solution at t = 0.2 is yE(0.2) = e0.2 −0.2−1 = 0.2214. Actually the RK4 value has
an error of only −2.76×10−6 with respect to the exact value. The above calculation process
is repeated till t = 1 is reached and the results are tabulated below.

x 0.000000 0.200000 0.400000 0.600000 0.800000 1.000000
yRK4 0.000000 0.021400 0.091818 0.222106 0.425521 0.718251
u1,RK4 0.000000 0.221400 0.491818 0.822106 1.225521 1.718251
l1 0.000000 0.044280 0.098364 0.164421 0.245104 0.343650
l2 0.020000 0.068708 0.128200 0.200863 0.289615 0.398015
l3 0.022000 0.071151 0.131184 0.204508 0.294066 0.403452
l4 0.044400 0.098510 0.164600 0.245323 0.343917 0.464341
k1 0.200000 0.244280 0.298364 0.364421 0.445104 0.543650
k2 0.220000 0.268708 0.328200 0.400863 0.489615 0.598015
k3 0.222000 0.271151 0.331184 0.404508 0.494066 0.603452
k4 0.244400 0.298510 0.364600 0.445323 0.543917 0.664341
yE 0.000000 0.021403 0.091825 0.222119 0.425541 0.718282
εy 0.000000 -0.000003 -0.000007 -0.000012 -0.000020 -0.000031
u1,E 0.000000 0.221403 0.491825 0.822119 1.225541 1.718282
εu1 0.000000 -0.000003 -0.000007 -0.000012 -0.000020 -0.000031

The maximum error between the RK4 and exact solutions is −3.1×10−5 and occurs at t = 1.
In this case also the error increases with t but is not excessive as in the case of the Euler
method (note that h = 0.2 in the present case while it was 0.1 in both the Euler and Heun
solutions). RK4 is superior to the Heun method since the error is smaller and has moved
from the 4th (with h = 0.1) place to the 5th place after decimals with h = 0.2. If the error is
seen to be excessive it is easy to reduce the step size and improve the accuracy.

There can be practical examples where we have a set of coupled higher order differential equations.
We will consider one such example here.

10.7. Higher order ODEs 431

Example 10.17
A projectile of mass 1 (kg) is fired from ground (0,0) with a velocity of v0 = 20 (m/s) at an
angle of 30◦ to the horizontal. The magnitude of wind resistance faced by the projectile is
equal to kv2 (N) where k = 0.02. Determine the time and distance the projectile travels before
striking the ground.
Background :

30◦

x

y
v0

(0,0) (R,0)

The forces acting on the projectile are acceleration due to gravity acting along −y and wind
resistance acting opposite to the direction of motion. Resolving the forces along x and y
directions we have

Fx = max =−kv2 cosθ; Fy = may =−mg−kv2 sinθ;

where F and a represent respectively force and acceleration. We have ax = d2x
dt2 , ay = d2 y

dt2 ,

vx = dx
dt

and vy = d y
dt

. The governing equations of motion can hence be written as

dvx

dt
= − k

m
vx

√
v2

x +v2
y;

dvy

dt
= −g− k

m
vy

√
v2

x +v2
y;

dx
dt

= vx
d y
dt

= vy

Solution :

A MATLAB function to calculate acceleration and velocity is created as given below.
function U = projectile(t,y,k)

% I n p u t s : t : t i m e
% y (1) : x ; y (2) = y ; y (3) = vx ; y (4) = vy
% k : p a r a m e t e r r e l a t e d t o w i n d r e s i s t a n c e
g = 9.81;

U(1) = y(3);

U(2) = y(4);

U(3) = -k*(y(3) ^2+y(4) ^2) ^0.5*y(3);

U(4) = -g-k*(y(3) ^2+y(4) ^2) ^0.5*y(4);

MATLAB program has been written to determine the trajectory of the projectile.
y = [0 0 20* cosd (30) 20* sind (30)]; % i n i t i a l c o n d i t i o n s
dt = 0.1; % s t e p s i z e = 0 . 1
t = 0;

k = 0.02; % p a r a m e t e r r e l a t e d t o w i n d r e s i s t a n c e
count = 1; % i n i t i a l i z e number o f p o i n t s

432 Chapter.10 Initial value problems

while 1 % l o o p t o d e t e r m i n e t r a j e c t o r y
[y1 ,er]= ODERKF45(t(count),y(count ,:),dt ,@projectile ,k);

t(count +1) = t(count) + dt;

y(count +1,:) = y1;

count = count + 1;

if(y(count ,2) < 0)

break % b r e a k l o o p i f p r o j e c t i l e r e a c h e s g r o u n d
end

end

A step size of dt = 0.2 (s) is used. The results have been summarized in the table below.

t (s) x (m) y (m) vx (m/s) vy (m/s)
0 0.00 0.00 17.32 10.00

0.2 3.33 1.73 16.07 7.38
0.4 6.44 2.97 15.03 5.01
0.6 9.36 3.75 14.15 2.81
0.8 12.11 4.10 13.38 0.75
1 14.71 4.06 12.70 -1.20

1.2 17.19 3.63 12.08 -3.06
1.4 19.55 2.84 11.49 -4.82
1.6 21.79 1.70 10.93 -6.50
1.8 23.92 0.25 10.38 -8.08
2 25.94 -1.52 9.83 -9.57

y

0

2

4

x
0 10 20 30 40

k=0.02

without wind
resistance

Figure 10.19: Path of the
projectile with and without wind
resistance

The exact location where the projectile hits the ground may be obtained by interpolation
as 24.2 m. The governing equations have also been solved with zero wind resistance. The
projectile travels higher as well as farther without wind resistance. Further the flight time
of the projectile is about 22 seconds without wind resistance and 20 seconds for k = 0.02.
The paths traversed by the projectile with and without wind resistance have been shown in
Figure 10.19.

10.7. Higher order ODEs 433

We consider now a second order ODE with constant coefficients that will indicate the performance
of RK4 when applied to the case of a stiff ODE.

Example 10.18
Solve the second order ODE y(2) +25y(1) + y = 0 by the RK4 method. The initial conditions
are specified as y(0) = 1, y(1)(0) = 0. Comment on the effect of step size on the numerically
computed solution.
Background :
Practical examples of the above type of differential equation are spring mass damper system
(vehicle suspension), Resistance-capacitance -inductance (RLC) circuits and second order
thermal systems.

m

k c

The oscillations of a spring mass damper system is governed by
the following equation

d2x
dt2 + c

m
dx
dt

+ k
m

x = 0

where c is the damping parameter

The current i in the circuit is governed by the following equation

d2 i
dt2 + R

L
di
dt

+ 1
LC

i = 0

where L is the inductance

E0

C

R

L

In general the above equations can be rewritten as

d2x
dt2 +2ζω0

dx
dt

+ω2
0x = 0

where ζ is known as damping ratio and ω0 is known as undamped natural frequency. For a
spring mass system ω0 =

p
k/m and for a RLC circuit, ω0 = 1/

p
LC. Similarly, the damping

ratio for spring mass system and RLC circuit are respectively given by
c

2
p

mk
and

R
2

√
C
L

.

The value of ζ controls the response of the system to any external disturbance. For ζ = 0,
the equation reduces to a spring mass system with zero damping (Section 3.1.5). ζ < 1
represents an under damped system where the system oscillates about its mean position
with gradual reduction in amplitude with time. When ζ ≥ 1, the system does not oscillate
about its mean position but returns to the equilibrium position monotonically but more
slowly. ζ> 1 is referred to as an over damped system and ζ= 1 is referred to as a critically
damped system.

Solution :
The present example corresponds to a over damped system. We look at the exact solution
first. The characteristic equation is m2 + 25m + 1 = 0 which has the two roots m1 =
−25+

p
252 −4

2
= −0.040064 and m2 = −25−

p
252 −4

2
= −24.959936. Thus the given

second order ODE is stiff. The solution consists of two exponentials and is given by
yE = 1.0016077e−0.040064t −0.0016077e−24.959936t.

434 Chapter.10 Initial value problems

Stability using RK4 requires that |λmaxh| < 24.959936h < 2.784 or 25h. 2.75 or h. 0.11
(refer Figure 10.8). If indeed we choose this value of h the solution is quite useless. We have
to choose a step size much smaller than this to obtain a useful solution. We indicate below
what happens when we vary h and look at the results at the t value shown in column 2.

h t y(RK4) yE εy Comment
0.02 0.4 0.985684 0.985684 -5.84E-10 Stable
0.04 0.4 0.985684 0.985684 -1.55E-08 Stable
0.05 0.4 0.985684 0.985684 -5.56E-08 Stable
0.08 0.4 0.985678 0.985684 -6.44E-06 Stable
0.1 0.4 0.985407 0.985684 -2.77E-04 Stable
0.104 0.416 0.984544 0.985053 -5.09E-04 Stable
0.11 0.44 0.982841 0.984106 -1.26E-03 Stable
0.12 0.48 0.976942 0.982530 -5.59E-03 Unstable

We see that the error steadily increases with h and the solution is hardly useful beyond
h = 0.05. When h = 0.12 the solution is unstable and diverges for large t. For example the
value of y(RK4) at t = 4.8 is -412.961485!

10.8 Stiff equations and backward difference formulae
(BDF) based methods

As seen in the previous section stability considerations impose stringent conditions when we
intend to solve stiff differential equations. All the methods we have discussed till now are explicit
methods (either single or multi-step) that have restrictions on step size. In the case of stiff
equations we have seen the errors to be excessive even when relatively small values of h are used.
If we are able to devise methods that have larger stability regions we should expect the numerical
methods to perform better in solving stiff equations. We look at some of these here.

10.8.1 Implicit Euler or Backward Euler scheme

Consider the solution of a general first order ODE given by Equation 10.1. We approximate
the derivative at tn+1 by the backward difference formula given by

yn+1 − yn

h
so that the following

scheme emerges for the solution of the first order ODE.

tn+1 = tn +h (a)

yn+1 = yn +hf (tn+1, yn+1) (b) (10.82)

The scheme is implicit since yn+1 occurs on both sides of Equation 10.82(b). In case the function
f (t, y) is nonlinear, this equation needs to be solved using an iterative method such as the Newton
Raphson method. We shall look at the stability of this method. For this purpose we apply the
scheme to the standard equation y(1) =−λy. We then have

yn+1 = yn −hλyn+1 or yn+1 = yn

1+λh
(10.83)

The magnification factor is given by z = yn+1

yn
= 1

1+λh
. The stability requirement is obtained by

replacing z by e jθ and looking for the locus of λh such that |z| < 1 i.e. by looking at λh = e− jθ −1.

10.8. Stiff equations and BDF based methods 435

Im
(λ

h)

-1.5

-1

-0.5

0

0.5

1

1.5

Re(λh)
-1 -0.5 0 0.5 1 1.5 2

Region of
stability

Figure 10.20: Stability region of
implicit Euler method

This is a circle centered at λh = 1 and radius 1 in the z plane. The method is stable outside this
circle and specifically, it is stable in the entire left half of the z plane as shown in Figure 10.20.
Hence the method is A-stable. However the method is first order accurate and it is advisable to
look for a higher order method. For this purpose we look at a second order accurate method in
what follows.

10.8.2 Second order implicit scheme

Consider a first order ODE whose solution is available as y = yn at t = tn. Now take a step h to
define a point tn+1 = tn +h. We consider a quadratic function of form

p2(t)= a+b(t− tn)+ c(t− tn)2 (10.84)

We require that this quadratic satisfy the following three conditions viz. p2(tn) = yn, p(1)
2 (tn) =

f (tn, yn) and p(1)
2 (tn+1)= f (tn+1, yn+1). We at once see that a = yn. Taking the first derivative with

respect to t of the quadratic and setting t = tn we get b = f (tn, yn), and by setting t = tn+1 we get

c = f (tn+1, yn+1)− f (tn, yn)
2h

. Thus the desired quadratic is obtained as

p2(t)= yn + (t− tn) f (tn, yn)+ f (tn+1, yn+1)− f (tn, yn)
2h

(t− tn)2 (10.85)

Hence we have
p(1)

2 (t)= f (tn, yn)+ f (tn+1, yn+1)− f (tn, yn)
h

(t− tn) (10.86)

We integrate this with respect to t between t = tn and t = tn+1 to get

yn+1 = yn +hf (tn, yn)+h
f (tn+1, yn+1)− f (tn, yn)

2
(10.87)

= yn +h
f (tn, yn)+ f (tn+1, yn+1)

2
(10.88)

This scheme is second order accurate and is also implicit. We refer to this scheme as implicit
trapezoidal scheme. It is the same as the AM2 scheme that has been presented earlier. The reader

436 Chapter.10 Initial value problems

may note that this is also an implicit version of the Heun or the modified Euler or the RK2 method.
This scheme is A-stable.

The above procedure, when applied to a second order ODE with constant coefficients, requires
the simultaneous solution of two linear equations which may easily be accomplished by a method
such as Cramer’s rule. When solving a set of linear ODEs we may use any of the methods described
in the chapter on linear equations. Consider a system of linear ODE.

Y(1) =A(t)Y+b(t) (10.89)

Solving the above ODE using trapezoidal rule we get

Yn+1 =Yn +h
A(tn)Yn +A(tn+1)Yn+1

2
+h

b(tn)+b(tn+1)
2

(10.90)

On further simplification we get(
I− h

2
A(tn+1)

)
Yn+1 =

(
I+ h

2
A(tn)

)
Yn +h

b(tn)+b(tn+1)
2

(10.91)

where I is identity matrix. A MATLAB program has been provided below to solve a system of
linear ODEs using trapezoidal method.

Program 10.5: Solution of system of linear ODE using implicit trapezoidal method

1 function [X,Y] = ODEtrapezoidal(x1 ,y1 ,h,n,F)

2 % I n p u t : x 1 : s t a r t i n g p o i n t
3 % y 1 : i n i t i a l v a l u e s o f y ’ s a t x = x 1
4 % h : s t e p s i z e
5 % n : number o f i n t e r v a l s
6 % F : e x t e r n a l f u n c t i o n c o n t a i n i n g d e r i v a t i v e s
7 % [A , b] = F (x)
8 % O u t p u t :
9 % X : a b c i s s c a

10 % Y : o r d i n a t e s
11 X = x1:h:x1+n*h; % i n i t i a l i z e g r i d
12 m = length(y1); % no o f ODEs
13 Y = zeros(n+1,m); % i n i t i a l i z e Y
14 Y(1,:) = y1; % i n i t i a l c o n d i t i o n s
15 [A1 ,B1] = F(X(1));

16 for i= 1:n % l o o p f o r t r a p e z o i d a l m e t h o d
17 [A2 ,B2] = F(X(i)); %
18 A = eye(m) - h*A2 *0.5; % c a l c u l a t e c o e f f i c i e n t s
19 B = h*(B1+B2)*0.5 + Y(i,:)' +0.5*h*A1*Y(i,:) ';

20 y1 = ludecomposition(A,B); % s o l v e f o r Y
21 Y(i+1,:) =y1 '; % u p d a t e Y
22 A1 = A2; B1 = B2; %
23 end

Example 10.19
Obtain the solution of the second order ODE with constant coefficients of Example 10.18 by
second order implicit method. Comment on the effect of step size on the solution.
Solution :

10.8. Stiff equations and BDF based methods 437

The given ODE is written down, as usual, as two first order ODEs. We identify the functions
involved as

u(1)
0 = u1

u(1)
1 = −25u1 −u0

With a time step of h, the algorithm given by Equation 10.87 translates to the following two
equations:

u1,n+1 = u1,n +h
(−25u1,n −u0,n)+ (−25u1,n+1 −u0,n+1)

2

u0,n+1 = u0,n +h
u1,n +u1,n+1

2

These may be rewritten as

h
2

u0,n+1 +
(
1+ 25h

2

)
u1,n+1 = u1,n +h

(−25u1,n −u0,n)
2

u0,n+1 − h
2

u1,n+1 = u0,n +h
u1,n

2

The above may be recast in the matrix form as

h
2

(
1+ 25h

2

)
1 −h

2

 u0,n+1

u1,n+1

=
 u1,n +h

(−25u1,n −u0,n)
2

u0,n +h
u1,n

2

The determinant of the coefficient matrix is given by

∆=−
[
1+ 25h

2
+ h2

4

]
Using Cramer’s rule the solution is obtained as

u0,n+1 =
−u1,n

(
29
4 h− h2

4

)
−u0,n

(
1+ 25h

2 − h2

4

)
−

(
1+ 25h

2 + h2

4

)
u1,n+1 =

u0,nh−u1,n

(
1− 25h

2 − h2

4

)
−

(
1+ 25h

2 + h2

4

)

Before we look at the effect of h on the solution we show below the results obtained by
taking a step size of h = 0.1. The solution starts with the initial values provided in the
problem and is carried forward up to x = 1.

438 Chapter.10 Initial value problems

t u0 u1 yE εy
0 1.00000 0.00000 1.00000 0.00E+00
0.1 0.99778 -0.04440 0.99747 3.10E-04
0.2 0.99359 -0.03932 0.99360 -8.66E-06
0.3 0.98964 -0.03970 0.98964 3.04E-06
0.4 0.98568 -0.03948 0.98568 -1.85E-07
0.5 0.98174 -0.03933 0.98174 6.08E-09
0.6 0.97782 -0.03918 0.97782 -3.38E-08
0.7 0.97391 -0.03902 0.97391 -3.62E-08
0.8 0.97001 -0.03886 0.97001 -4.16E-08
0.9 0.96614 -0.03871 0.96614 -4.66E-08
1 0.96227 -0.03855 0.96227 -5.16E-08

The numerical solution is compared with the exact solution (see Example 10.18). The
biggest error occurs after the very first step and is equal to 3.10× 10−4. At t = 0.4 the
error has reduced to -1.85E-07. However, with the RK4 method and h = 0.1 the error at
t = 0.4 was much larger and equal to -2.77E-04, even though RK4 is a fourth order accurate
method. We also saw that h > 0.11 with RK4 leads to an unstable solution. However in the
case of implicit RK2 which is only second order accurate the solution is much better. With
h = 0.2 we still have an error of only −2.94×10−4 at x = 0.4. It is clear that the implicit RK2
is performing much better than RK4 in this case of a stiff ODE.

In the following table we show the error in the numerical solution with respect to the
exact at t = 1 using different step sizes.

h t y yE εy
0.05 1 0.96227 0.96227 -1.29E-08
0.1 1 0.96227 0.96227 -5.16E-08
0.2 1 0.96230 0.96227 2.29E-05
0.25 1 0.96216 0.96227 -1.13E-04
0.5 1 0.96143 0.96227 -8.43E-04

10.8.3 Higher order implicit schemes based on BDF

Higher order implicit schemes may also be devised by the use of backward difference formulae
of various orders. Consider a two step backward difference formula (referred to earlier as three

point one sided rule) given by y(1)
n = 3yn −4yn−1 + yn−2

2h
. We may apply this to the case of a first

order ODE to get

f (tn+1, yn+1)= 3yn+1 −4yn + yn−1

2h
(10.92)

which is in the implicit form. Clearly the method is second order accurate since the BDF is second
order accurate. We may apply this to the case of the standard problem y(1) = λy to bring out the
stability region for this method. Denoting the magnification of the solution in each step as z, we
obtain from Equation 10.92 the following expression for λh.

λh = 3z2 −4z+1
2z2 (10.93)

10.8. Stiff equations and BDF based methods 439

The stability region is obtained by setting z = e jθ. The region outside the closed curve indicated
as 2 in Figure 10.21 is the region of stability. Note that the method is A-stable in this
case also. A third order BDF scheme uses 3 steps and calculates the derivative as y(1)

n =
Im

(λ
h)

-4

-2

0

2

4

Re(λh)
0 2 4 6

1
2

3

Figure 10.21: Stability diagram
for the BDF methods (region
outside the closed curves are
stable)

11yn −18yn−1 +9yn−2 −2yn−3

6h
to write the solution to a first order ODE as

f (tn+1, yn+1)= 11yn+1 −18yn +9yn−1 −2yn−2

6h
(10.94)

The region of stability for this scheme may be easily shown to be governed by the equation

λh = 11z3 −18z2 +9z−2
6z3 (10.95)

The stability region is the region outside the curve shown with label 3 in Figure 10.21. The stability
region now excludes a small region in the left half of z plane and hence the scheme is not A-stable.

Example 10.20
Solve the equation y(1) = y−3t2 with y0 = 1. Use implicit RK2 for the first step and 2nd order
BDF thereafter (two step method).
Solution :

Since both implicit RK2 and two step BDF are second order accurate it is possible to start
the solution and use implicit RK2 for the first step and continue with the two step BDF
thereafter. Advantage of BDF is that f value need not be calculated again and again as in
the case of implicit RK2.

Using implicit RK2 for the first step we have

y1 =
(
y0

[
1+ h

2

])
+ h

2
(−3t2

0 −3t2
1)(

1− h
2

)

440 Chapter.10 Initial value problems

=
(
1

[
1+ 0.05

2

])
+ 0.05

2
(−3×02 −3×0.052)(

1− 0.05
2

) = 1.051090

Two step BDF approximates the ODE as y(1)
n+1 = 3yn+1 −4yn + yn−1

2h
= yn+1 − 3t2

n+1 which

may be solved for yn+1 to get yn+1 =
4yn − yn−1 −6ht2

n+1

3−2h
. The next step onwards we use the

two step BDF.

y2 = (4y1 − y0 −6ht2
2)

(3−2h)

= (4×1.051090−1−6×0.05×0.12)
(3−2×0.05)

= 1.103917

We may obtain the solution for larger t and tabulate the results as below.

t y yE εy
0 1.0000 1.0000 0.00E+00
0.05 1.0511 1.0511 -5.48E-05
0.1 1.1039 1.1041 -2.29E-04
0.15 1.1579 1.1583 -4.57E-04
0.2 1.2123 1.2130 -7.21E-04
0.25 1.2664 1.2674 -1.01E-03
0.3 1.3194 1.3207 -1.34E-03
0.35 1.3705 1.3722 -1.69E-03
0.4 1.4188 1.4209 -2.08E-03
0.45 1.4634 1.4659 -2.50E-03
0.5 1.5034 1.5064 -2.96E-03

The error has been calculated by comparing the numerical solution with the exact solution
given by yE = 3t2+6t+6−5et. Since the error is excessive we need to use a smaller step size
and redo the calculations.

Higher order implicit schemes are not self starting. Therefore, the solution procedure is started
with lower order implicit schemes and higher order schemes are employed when sufficient number
of function evaluations are available. The error can be estimated by comparing the estimates of
order n and n+1. Hence, one can automatically control the error using the strategies discussed
earlier. Hence, an implicit scheme is more computationally intensive than an explicit scheme
especially when a large number of equations have to be solved.

10.8.4 Non-linear ODEs

While using explicit solvers the nature of the ODE is not important. However stability of explicit
solvers may be poor especially for nonlinear ODEs. For an implicit solver iterative methods are
needed. Methods such as Newton Raphson is needed to linearize the nonlinear terms in each
iteration step. When dealing with a large number of ODEs, we need to evaluate a large Jacobian
matrix at each iteration step. Let us consider a non-linear first order ODE

y(1) = f (t, y) (10.96)

10.8. Stiff equations and BDF based methods 441

where f (t, y) is non linear with respect to y. Solving the equations using Backward Euler method
we get

yn+1 −hf (tn+1, yn+1)= yn (10.97)

The above nonlinear algebraic equation can be solved using any of the methods discussed in
Chapter 3. Applying Newton Raphson method to the above equation we get(

1−h
d f (tn+1, yn+1,i)

d yn+1

)
∆yn+1,i+1 =−[

yn+1,i −hf (tn+1, yn+1,i)− yn
]

(10.98)

where i is the iteration number.10

Example 10.21
Solve the following initial value problem

y(1) =−(y4 −1), y(0)= y0 = 2

using implicit Backward Euler ODE with h = 0.1.
Solution :

Exact solution for the above ODE has been given in Example 10.5.
We have

f (x, y)=−y4 +1;
d f (x, y)

d y
=−4y3

Applying Newton Raphson method to the present problem(
1+4hy3

n+1,i

)
︸ ︷︷ ︸

A

∆yn+1,i+1 =−
[

yn+1,i +h(y4
n+1,i −1)− yn

]
︸ ︷︷ ︸

B

(10.99)

where i is the iteration number. The following table summarizes the iteration procedure for
first step at t = 0.1

i y1 A B ∆y1
0 2.000000 4.200000 -1.500000 -0.357143
1 1.642857 2.773615 -0.271306 -0.097817
2 1.545040 2.475297 -0.014889 -0.006015
3 1.539025 2.458134 -0.000052 -0.000021
4 1.539004 2.458074 -6.28E-10 -2.56E-10

A MATLAB program has been written to solve the ODE using implicit backward Euler
method

n = 10; % no . o f n o d e s
h = 1/n; % s t e p s i z e
x = 0:h:1; % n o d e s
y = zeros(n+1,1); % i n i t i a l i z e y
y(1) = 2; % i n i t i a l c o n d i t i o n

10Equation 10.98 is similar to f (1)(x)∆x =− f (x) which is Newton Raphson formulation for solving f (x)= 0.
In the present case yn+1 takes on the role of x

442 Chapter.10 Initial value problems

for i =1:n % l o o p f o r s o l v i n g ODE u s i n g B a c k w a r d
% E u l e r

while 1 % l o o p f o r Ne w t on R a p h s o n
A = 1 + 4*h*y(i)^3;

B = -(y(i+1)+h*(y(i+1)^4-1)-y(i));

dy = B/A;

y(i+1) = y(i+1)+dy;

if(abs(dy) < 1e-6)

break % i f dy < t o l e r a n c e b r e a k Ne w t o n R a p h s o n
% l o o p

end

end

end

The comparison of Backward Euler estimate and exact solution is shown in Figure 10.22.
Backward Euler method is only first order accurate. The accuracy of the estimate can be
improved by refining the grid. Alternatively, more accurate estimates can be obtained by
using higher order implicit methods. Of course the present problem is not stiff and explicit
methods themselves produce accurate results and implicit methods are not required.

y

1

1.2

1.4

1.6

1.8

2

t
0 0.2 0.4 0.6 0.8 1

 Exact
 Backward Euler

Figure 10.22: Comparison of
solution of implicit Euler method
with exact solution for non-linear
ODE of Example 10.21

For a system of non-linear ODEs
Y(1) = f (t,Y) (10.100)

Applying Newton’s method to the above equation we get(
I−hJ(tn+1,Yn+1,i)

)
∆Yn+1,i+1 =−(

Yn+1,i −hf (tn+1,Yn+1,i)−Yn
)

(10.101)

J is the Jacobian matrix of f (t,Y) and I is the identity matrix. Similar expressions can be derived
for higher order implicit schemes. For trapezoidal rule we obtain the following(

I− h
2

J(tn+1,Yn+1,i)
)
∆Yn+1,i+1 =−

(
Yn+1,i −h

f (tn+1,Yn+1,i)+ f (tn,Yn)
2

−Yn

)

Program 10.6: Solution of system of nonlinear ODE using implicit trapezoidal method

1 function y2 = ODEtrapezoidalnonlin(x1 ,y1 ,h,F,J)

2 % I n p u t : x 1 : s t a r t i n g p o i n t

10.8. Stiff equations and BDF based methods 443

3 % y 1 : i n i t i a l v a l u e s o f y ’ s a t x = x 1
4 % h : s t e p s i z e
5 % F : e x t e r n a l f u n c t i o n d e r i v a t i v e s F (x , y)
6 % J : e x t e r n a l f u n c t i o n J a c o b i a n o f d e r i v a t i v e s
7 % O u t p u t :
8 % X : a b c i s s c a
9 % Y : o r d i n a t e s

10 x2 = x1+h; %
11 y2 = y1; % g u e s s v a l u e
12 m = length(y1); % no . o f ODEs
13 f1 = F(x1 ,y1) '; % d e r i v a t i v e s a t tn
14 while 1 % l o o p f o r Newton ’ s i t e r a t i o n
15 A = eye(m) - 0.5*h*J(x2 ,y2); % c o e f f i c i e n t s
16 B = -(y2 -0.5*h*(F(x2 ,y2) '+f1)-y1);

17 dy = ludecomposition(A,B); % ∆y
18 y2 = y2+dy; % u p d a t e yn
19 if(abs(dy) < 1e-6) % i f dy < t o l e r a n c e
20 break % b r e a k N ew t o n R a p h s o n l o o p
21 end

22 end

Example 10.22
Solve the following second order non-linear equation

d2 y
dt2 −λ(

1− y2) d y
dt

+ y= 0

with initial conditions y(t = 0)= 2 and
d y
dt

(t = 0)= 0 using Explicit RK4 scheme and implicit
trapezoidal scheme for λ= 1 and λ= 10. Use a step size of h = 0.1. Also apply adaptive RK4
scheme and comment on the results.
Background :
The above nonlinear differential equation corresponds to Van der Pol Oscillator and finds
application in a number of electronic circuits, laser systems etc. The main feature of the
oscillator is nonlinear damping of oscillations.

Solution :
Firstly We will transform the above second order differential equation into two first order
couped differential equations. We have u0 = y and u1 = y(1). Therefore the two first order
differential equations are

u(1)
0 = u1

u(1)
1 = λ

(
1−u2

0
)
u1 −u0

(10.102)

with initial conditions u0(t = 0) = 2 and u1(t = 0) = 0. MATLAB programs will be used
to solve the above system of differential equations. A MATLAB function to calculate the
derivative functions is created.

function A = vanderpoloscill(x,y,varargin)

% I n p u t : x , y i n d e p e n d e n t and d e p e n d e n t v a r i a b l e s
% y (1) = u0 ; y (2) = u1 ;
% v a r a r g i n : v a r i a b l e a r g u m e n t s v a r a r g i n { 1 } = λ

% O u t p u t : f (x, y)

444 Chapter.10 Initial value problems

A(1) = y(2);

A(2) = varargin {1}*(1 -y(1) ^2)*y(2)-y(1);

end

For applying implicit trapezoidal method a MATLAB function to calculate the Jacobian of
derivative matrix is constructed. The Jacobian matrix of the derivative function is given by

J=
 0 1

−2λu0u1 −1 λ(1−u2
0)

The MATLAB function is provided below

function J = vanderpoloscilljacob(x,y,varargin)

% I n p u t : x , y i n d e p e n d e n t and d e p e n d e n t v a r i a b l e s
% y (1) = u0 ; y (2) = u1 ;
% v a r a r g i n : v a r i a b l e a r g u m e n t s v a r a r g i n { 1 } = λ

% O u t p u t : J J a c o b i a n
J(1,1) = 0;

J(1,2) = 1;

J(2,1) = -2* varargin {1}*y(1)*y(2)-y(1);

J(2,2) = varargin {1}*(1 -y(1) ^2);

end

MATLAB program has been provided below to solve the system of differential equations
with above said methods

h = 0.1;

b = 15;

n = b/h;

lambda = 1;

[XaRK4 ,YaRK4] = ODEadaptRK4 (0,b,[2 0],0.05, ...

@vanderpoloscill ,1e-6,lambda);

[XRK4 ,YRK4] = ODERK4 (0,[2 0],0.1,n,@vanderpoloscill ,lambda);

Xtr = [0:h:b]';

Ytr = zeros(n+1,2);

Ytr (1,:) = [2 ; 0];

for i=2:n+1

Ytr(i,:) = ODEtrapezoidalnonlin(Xtr(i-1),Ytr(i-1,:) ',h ,...

@vanderpoloscill ,@vanderpoloscilljacob ,lambda) ';

end

Figure 10.23a indicates the function values for λ = 1 estimated by the three methods. All
the three numerical schemes seem to be equally adept in capturing the features of the
function. The trapezoidal scheme is of lower order accuracy and as expected found to be
the least accurate. The explicit schemes are enough for this set of differential equations.
Figure 10.23b indicates the function values for λ = 10. Adaptive RK4 and trapezoidal
method perform well where as RK4 diverges. The present set of differential equations
represents a stiff system. Hence, RK4 being an explicit scheme without any proper control
becomes unstable. However, adaptive RK4 scheme is able to capture the trend. Hence
adaptive schemes are very important for stiff equations. Similarly, the implicit trapezoidal
rule, though being a lower order scheme does capture the trend correctly. The number of
steps taken by trapezoidal scheme is 101 where as for the adaptive RK4 scheme it is 320.
However, implicit schemes are computationally intensive and it may be still advantageous

10.8. Stiff equations and BDF based methods 445

y

-2

-1

0

1

2

t
0 2 4 6 8 10

 RK4
 Trapezoidal
 Adaptive RK4

(a) λ= 1
y

-2

-1

0

1

2

t
0 2 4 6 8 10

 RK4
 Trapezoidal
 Adaptive RK4

(b) λ= 10

divergence

Figure 10.23: Solution to Van der Pol oscillator for low and high λ

to use explicit schemes. However, for a stiff system of equations implicit scheme may be
necessary. Also, one can incorporate adaptive strategies in an implicit method.

Concluding remarks

Most dynamical systems are governed by initial value ODEs. Hence we have presented all the
important techniques of numerically solving such ODEs like single step (RK) and multi-step
(ABM) predictor corrector methods. Detailed analysis of stability of various schemes has been
presented to highlight the limitation of the numerical schemes as well as to bring out need
for strategies to overcome these. Particularly, stiff ODEs pose challenges, which need special
methods such as adaptive and implicit methods (BDF). Error estimation (and correction)
requires special methods such as those that use sensitivity of the solution to the step size.
Alternatively one may combine numerical schemes of lower and higher order to get accurate
solutions.

Higher order equations are written as a set of first order ODEs and solved by any of the
techniques useful for the solution of first order ODEs.

Nonlinear equations require linearization followed by iteration when implicit methods are
made use of.

446 Chapter.10 Initial value problems

10.A MATLAB routines related to Chapter 10
MATLAB offers several inbuilt functions to solve initial value problems.

MATLAB routine Function

ode45 Solution of ODE using explicit RK45 (non stiff)
ode23 Solution of ODE using explicit RK23 (non stiff)
ode113 Solution of ODE using explicit ABM (non stiff)
ode15s Solution of ODE based on BDFs (stiff)

ode23s Solution of ODE based on Rosenbrock formula
(stiff)

ode23t Solution of ODE based on trapezoidal rule
(stiff)

ode23tb Solution of ODE based on implicit RK and
trapezoidal rule

ode15i Solution of ODE based on fully implicit BDF
method (stiff)

Reader may refer the MATLAB reference to understand the above functions.

10.B Suggested reading
1. E. Kreyszig Advanced engineering mathematics Wiley-India, 2007
2. L.F. Shampine, I. Gladwell and S. Thompson Solving ODEs with MATLAB Cambridge

University Press, 2003
3. J.C. Butcher Numerical methods for ordinary differential equations Wiley, 2008

Chapter 11

Boundary value problems (ODE)

Second and higher order ordinary differential equations may also be formulated as
problems defined over finite or semi-infinite domains. In such cases the function and its
derivatives may be specified at either ends of the interval defining the domain. The ODE
becomes a boundary value problem (BVP).
BVPs occur in applications such as heat transfer, electromagnetism, fluid mechanics
and, in general, in many field problems in one space dimension. Hence the solution of
such equations is important. The following numerical methods are considered in this
chapter:

• Shooting method
• Finite difference method (FDM)
• Method of weighted residuals (MWR)
• Collocation method
• Finite element and finite volume methods

447

448 Chapter.11 Boundary value problems (ODE)

11.1 Introduction
Consider a second order ODE given by

d2 y
dx2 +3

dy
dx

+2y= 0 (11.1)

valid in the range 0≤ x ≤ 1. This equation is similar to the ODE considered in Example 10.18. The
exact solution is determined by finding the roots of the characteristic equation m2 +3m+2 = 0.
The two roots of the characteristic equation are real and distinct, given by m1 =−1 and m2 =−2.
Hence the solution to the above ODE can be written as

y= Aem1x +Bem2x (11.2)

where A and B are two constants. Being a second order equation, two conditions are required to
determine the constants A and B. In an initial value problem two conditions are specified at a
point. If the initial conditions are specified as y(x = 0)= y0 and y(1)(x = 0)= y(1)

0 . Then we have

A + B = y0

m1 A + m2B = y(1)
0

(11.3)

Therefore the constants are given by

A = y(1)
0 −m2 y0

m1 −m2
; B = y(1)

0 −m1 y0

m2 −m1
; (11.4)

Figure 11.1 shows a family of curves satisfying the above differential equation and passing through
the origin (y0 = 0). The difference between these curves is due to the initial slope y(1)

0 .

y

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

x
0 0.2 0.4 0.6 0.8 1

y0
(1)= -0.2

y0
(1)= -0.1

y0
(1)= -0.05

y0
(1)= 0.05

y0
(1)= 0.1

y0
(1)= 0.2

Figure 11.1: Family of curves
satisfying a second order ODE
passing through the origin

Consider the curve having y(1)
0 =−0.05. The same solution curve may be obtained by specifying

two conditions at different values of x such as those shown in the following table

x = 0 x = 1
y = 0 y = -0.0116
y = 0 y(1) = 0.0049
y(1) = -0.05 y = -0.0116

11.2. The ‘shooting method’ 449

Such problems are classified as boundary value problems. The difference between IVP and BVP
lies in the nature of flow of information. All IVP are marching problems i.e. the information flows
along one direction. Where as the information for a BVP flows from both directions i.e. from both
boundaries of the domain. The boundary conditions may be of any of the following three types:

Boundary condition of first kind or
Dirichlet∗ boundary condition :

y is specified, in above example
y(x = 1)= 0.0116

Boundary condition of second kind
or Neumann† boundary condition : y(1) is specified, in above example

y(1)(x = 1)= 0.0049
Boundary condition of third kind or
Robin+ boundary condition : Relation between y and y(1) is

specified

∗ after Johann Peter Gustav Lejeune Dirichlet, 1805-1859, a German mathematician; † after Carl Gottfried
Neumann, 1832-1925, a German mathematician; + after Victor Gustave Robin, 1855-1897, a French
mathematician

There is a fourth kind of boundary condition called the Cauchy1 boundary condition. In this
case both the function and the derivative at a boundary are specified (as in initial value problems).

The present chapter will discuss different methods to solve boundary value problems.

11.2 The ‘shooting method’
Consider a second order ODE given by

d2 y
dx2 = f

(
x, y,

dy
dx

)
or y(2) = f (x, y, y(1)) (11.5)

valid in the range 0≤ x ≤ L. First kind boundary conditions are specified at the two boundaries as

y= y0 at x = 0 and y= yL at x = L (11.6)

The solution can be determined if both the conditions are available at one point. Then, the solution
to this problem can be obtained numerically using the methods discussed in Chapter 10 to solve
initial value problems.

All the methods that have been presented in Chapter 10 yield numerical solution of a second
order ODE if initial conditions are specified. Hence Equation 11.5 may be solved only if both
the function and the derivative are known, say at x = 0. Since the derivative is not known at
x = 0 we assume a value for the derivative as y(1) = s1 at x = 0 and solve Equation 11.5 with
Cauchy boundary conditions at x = 0. We may use any of the numerical methods discussed earlier
and obtain the value of the function at x = L as y1L. In general y1L 6= yL, the specified Dirichlet
condition at x = L. The way forward depends on the nature of the ODE. If the ODE is linear the
following procedure is used.

1after Augustin-Louis Cauchy, 1789-1857, a French mathematician

450 Chapter.11 Boundary value problems (ODE)

11.2.1 Linear ODE case

In this case we obtain a second solution by choosing y(1) = s2 at x = 0 and solve Equation 11.5
by any of the numerical methods and obtain the value of the function at x = L as y2L. Since the
ODE is linear, a linear combination of the two solutions is also another solution to the problem
(principle of superposition). Thus we may seek the solution to Equation 11.5 in the form of a
linear combination of the two solutions that are already available, in the form

y=αy1 + (1−α)y2 (11.7)

where α is an as yet undetermined fraction. We require that this solution satisfy the Dirichlet
condition at x = L. Hence

yL =αy1L + (1−α)y2L

and α is obtained as
α= yL − y2L

y1L − y2L
(11.8)

This value of α in Equation 11.7 yields the required solution that satisfies the two boundary
conditions.

Since the given ODE is solved by obtaining two trial solutions by using assumed slopes (related
to tangent of angle with the x axis) at x = 0, the method is referred to as the shooting method.
Analogy is with a gun which is fired at a suitable angle with respect to the ground so that the
projectile hits the target.

Example 11.1
Solve the homogeneous second order ODE with constant coefficients y(2) = 2y subject to the
boundary conditions y(x = 0) = 1 and y(x = 1) = 0.6. Make use of the shooting method.
Compare the solution with the exact solution.
Solution :

Exact solution: We obtain the exact solution before taking up the numerical solution. The
characteristic equation is m2−2= 0 which has the roots m =±

p
2. The general solution may

hence be written in terms of hyperbolic functions as

yE = A cosh(
p

2x)+Bsinh(
p

2x)

where A and B are constants to be determined by the use of specified boundary conditions.
The boundary condition at x = 0 is satisfied if we take A = 1. The boundary condition at

x = 1 is satisfied if B = 0.6−cosh(
p

2)

sinh(
p

2)
. Thus the constants of integration are given by A = 1

and B =−0.815571.

Alternately, the governing equation may be written in matrix form y(1) = Ay where the
coefficient matrix is given by

A=
 0 1

2 0

and yT =

y y(1)
. The eigenvalues of the coefficient matrix are the roots of the

characteristic equation that has already been obtained as a part of the exact solution. They

11.2. The ‘shooting method’ 451

are λ1 =
p

2 and λ2 = −
p

2. The roots are real and distinct. We may find eigenvectors and
use these to complete the solution (we leave it to the reader).

We are now ready to obtain the numerical solution by the shooting method.

Numerical solution: We convert the second order ODE in to two first order ODEs and
write them as

y(1) = u(1)
0 = u1(x,u0)

y(2) = u(1)
1 = 2y= 2u0

The system of ODEs is solved using RK4 method. Two numerical solutions are obtained
using y(0) = u0(0) = 1, u1(0) = y(1)(0) = −0.75 and y(0) = u0(0) = 1, u1(0) = y(1)(0) = −1.25
starting at x = 0. The calculations in both cases terminate at x = 1. The results are shown
as a table below.

First Trial Second Trial
x y= u0 y(1) = u1 y= u0 y(1) = u1
0 1.0 -0.75 1.0 -1.25
0.1 0.934767 -0.556846 0.884600 -1.061854
0.2 0.888260 -0.374847 0.786921 -0.894981
· · · · · · · · · · · · · · ·
0.8 0.974799 0.680416 0.483837 -0.175205
0.9 1.052832 0.882842 0.471105 -0.079870
1 1.151956 1.102953 0.467810 0.013865

In order to satisfy the Dirichlet condition at x = 1 we choose α as

α= 0.6−0.467810
1.151956−0.467810

= 0.193219

We may now combine the two solutions using the above α value to get the solution to the
problem. A MATLAB program has been written to carry out the calculations.

[X,Y1] = ODERK4 (0 ,[1; -0.75] ,0.1 ,10 , @odeexshooting); % t r i a l 1
[X,Y2] = ODERK4 (0 ,[1; -1.25] ,0.1 ,10 , @odeexshooting); % t r i a l 2
alpha = (0.6-Y2(11 ,1))./(Y1(11 ,1)-Y2(11 ,1)); % c a l c u l a t e α

Y = Y1*alpha + Y2*(1- alpha); % c o r r e c t s o l u t i o n

where odeexshooting is a MATLAB function defining the ODE given by
function z = odeexshooting(x,y)

z(1) = y(2); % u(1)
0

z(2) = 2*y(1); % u(1)
1

end

Table shows the solution thus obtained and also compares the solution with the exact
solution obtained earlier.

452 Chapter.11 Boundary value problems (ODE)

x y y(1) yE εy y(1)
E εy(1)

0 1.0 -1.1534 1.0 0.0 -1.1534 9.1E-07
0.1 0.8943 -0.9643 0.8943 4.6E-07 -0.9643 2.7E-07
0.2 0.8065 -0.7945 0.8065 8.1E-07 -0.7945 2.2E-07
0.3 0.7349 -0.6406 0.7349 1.0E-06 -0.6406 5.9E-07
0.4 0.6780 -0.4996 0.678 1.2E-06 -0.4996 8.7E-07
0.5 0.6346 -0.3685 0.6346 1.3E-06 -0.3685 1.1E-06
0.6 0.6040 -0.2449 0.604 1.3E-06 -0.2449 1.3E-06
0.7 0.5855 -0.1261 0.5855 1.3E-06 -0.1261 1.4E-06
0.8 0.5787 -0.0099 0.5787 1.2E-06 -0.0099 1.6E-06
0.9 0.5835 0.1061 0.5835 1.0E-06 0.1061 1.7E-06
1 0.6000 0.2243 0.6 0 0.2243 1.9E-06

The magnitude of the largest error in y is limited to 1e − 6. This is satisfactory for our
purpose in modeling a practical problem. If necessary one may improve the solution by
reducing h. The following figure illustrates the trial and actual solutions.

y

0.4

0.6

0.8

1

1.2

x
0 0.2 0.4 0.6 0.8 1

Trial 1

Solution

Trial 2

y(
1)

-1.5

-1

-0.5

0

0.5

1

1.5

x
0 0.2 0.4 0.6 0.8 1

Trial 1

Solution

Trial 2

Figure 11.2: Trial and actual solutions using the �Shooting method�

We consider a second example where Neumann boundary condition is specified at x = 1 and the
second order ODE is non-homogeneous.

Example 11.2
Solve numerically the second order ODE y(2) = 2y+ cos

(πx
2

)
. The boundary conditions have

been specified as y(x = 0) = 1 and y(1)(x = 1) = 0. Compare the numerical solution with the
exact analytical solution.
Solution :

Exact solution: The exact solution to the ODE may easily be obtained by combining the
complementary function (solution to the homogeneous equation) and a particular integral.
The result is given by

y= C1 cosh(
p

2x)+C2 sinh(
p

2x)− 4
π2 +8

cos
(πx

2

)

11.2. The ‘shooting method’ 453

where the constants are given by

C1 = π2 +12
π2 +8

C2 =
−p2C1 sinh(

p
2)− 4

π2+8p
2cosh(

p
2)

Numerical solution: The numerical solution is obtained by applying implicit RK22 with
h = 0.1. Equations to be solved are given by

 1 −h
2

−h 1

 yn+1

y(1)
n+1

=

 yn + hy(1)n+1
2

y(1)
n +hyn + h

2

[
cos

(πxn

2

)
+cos

(πxn+1

2

)]

We obtain the numerical solution with two different starting values for the slope at x = 0
and tabulate the results as given below.

First trial Second trial
x y y(1) x y y(1)

0 1 -1 0 1 -2
...
1 1.2983 1.5255 1 -0.0736 -0.6573

We linearly interpolate requiring that the slope be zero at x = 1. We then have

α= 0− (−0.6573)
1.5255− (−0.6573)

= 0.3011

The numerical solution satisfying the given boundary conditions are then obtained by linear
combination of the two solutions already obtained with weights of 0.3011 and 0.6989. We
show the results along with the exact solution as a table below.

x y y(1) yE εy y(1)
E εy(1)

0 1 -1.6989 1.0000 0.0000 -1.6990 0.0002
0.1 0.8443 -1.4151 0.8445 -0.0002 -1.4155 0.0004
0.2 0.7154 -1.1621 0.7159 -0.0004 -1.1627 0.0005
...
...
0.8 0.3556 -0.1693 0.3568 -0.0012 -0.1696 0.0003
0.9 0.3433 -0.0761 0.3447 -0.0014 -0.0763 0.0002
1 0.3395 0.0000 0.3410 -0.0015 0.0000 0.0000

It is seen that the maximum error in y is around 0.0015 or approximately 0.15%. This
may be acceptable in a practical application. However it is always possible to improve the
solution by taking a smaller h.

2Implicit RK2 may not be necessary in this example as the given ODE is not stiff. Here we have used it
for demonstration purpose.

454 Chapter.11 Boundary value problems (ODE)

11.2.2 Non-linear ODE case

In the case of a non-linear ODE the relationship between the initial slope and the final slope
follows a non-linear trend, assuming that we are interested in satisfying Neumann condition y(1) =
0 at x = L. It is clear that it is not possible to use a linear combination in this case. Secant method
is used to determine the correct initial slope such that the desired zero slope is obtained at x = L.
The algorithm can be summarized as follows

• Start with two guess values of initial slopes and solve the ODE as initial value problems
• Determine the new value of initial slope using secant method and solve the ODE.
• When the boundary condition at the second boundary is satisfied within desired tolerance,

stop iteration.

Example 11.3
Solve the equation y(2) − (y4 −0.5) = 0 with y(x = 0) = 1 and y(1)(x = 1) = 0. Use RK4 with
h = 0.1 and the secant method to determine the initial slope.
Solution :

As usual the non-linear second order ODE is written as a set of two first order ODEs.

y(1) = u(1)
0 = u1

y(2) = u(1)
1 = (u4

0 −0.5)

RK4 may now be used starting at x = 0 using the boundary condition y(0) = 1 and a guess
value for the slope given by y(1)(x = 0) = s11. In the present application we have used s11 =
−0.2 as the first guess value. The RK4 solution is obtained such that when x = 1 we have a
slope y(1)(x = 1)= s21. In the present case we obtain a value of s21 = 0.1674.

We obtain a second solution using RK4 starting at x = 0 using the boundary condition
y(0)= 1 and a guess value for the slope given by y(1)(x = 0)= s12. In the present application
we have used s12 = −0.3 as the second guess value. The RK4 solution is obtained such
that when x = 1 we have a slope y(1)(x = 1) = s22. In the present case we obtain a value
of s22 = −0.1338. The fact that the two values of the terminal slope are of opposite sign is
encouraging.

Using the secant method we determine the new approximating starting slope s1 as

s13 = s12 − s22(s11 − s12)
(s21 − s22)

=−0.3− −0.1338(−0.2+0.3)
(0.1674+0.1338)

=−0.2556

We now set s11 = −0.3, s12 = −0.2556 and continue the process outlined above. The initial
slope converges in a few secant method based iterations to the value -0.2527 as indicated in
the following table.

Result of secant method

y(1)
1 (0) y(1)

2 (0) y(1)
3 (0)

-0.200000 -0.300000 -0.255579
-0.300000 -0.255579 -0.252511
-0.255579 -0.252511 -0.252672
-0.252511 -0.252672 -0.252671
-0.252672 -0.252671 -0.252671

11.2. The ‘shooting method’ 455

In fact a plot of target slope as a function of the guess slope is non-linear as shown in Figure
11.3.

y(
1)
(x

=1
)

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

y(1)(x=0)
-0.3 -0.28 -0.26 -0.24 -0.22 -0.2

Actual
Linear

Figure 11.3: Relation be-
tween target slope and the
guess slope

The line labeled as “Linear” is simply a line joining the two end points in the figure. This
line is drawn to indicate that the relationship is indeed non-linear and the secant method
is required to solve the boundary value problem. The solution is finally obtained with the
initial slope determined by the secant method and tabulated below.

x y y(1) x y y(1)

0 1.0000 -0.2527 0.6 0.9128 -0.0673
0.1 0.9771 -0.2073 0.7 0.9070 -0.0488
0.2 0.9583 -0.1697 0.8 0.9030 -0.0318
0.3 0.9429 -0.1381 0.9 0.9007 -0.0157
0.4 0.9305 -0.1112 1 0.8999 0.0000
0.5 0.9206 -0.0879

We also show the above data in the form of a plot in Figure 11.4.

y

0.85

0.9

0.95

1

x
0 0.2 0.4 0.6 0.8 1

Figure 11.4: Plot of
solution in Example 11.3

456 Chapter.11 Boundary value problems (ODE)

MATLAB program to solve the above ODE using shooting method has been given below
s11 = -0.2; % i n i t i a l s l o p e g u e s s 1
s12 = -0.3; % i n i t i a l s l o p e g u e s s 2
[X,Y1] = ODERK4 (0 ,[1; s11],0.1,10, @odeexshooting2); % s o l u t i o n

%1
ds = abs(s11 -s12); % c h a n g e i n i n i t i a l s l o p e
count =1; % i t e r a t i o n c o u n t
while ds > 1e-6 % l o o p f o r s e c a n t m e t h o d

[X,Y2] = ODERK4 (0 ,[1; s12],0.1,10, @odeexshooting2); %
% s o l u t i o n 2

s21 = Y1(11 ,2); s22 = Y2(11 ,2); % s l o p e a t x = 1
s13 = s12 - s22*(s11 -s12)/(s21 -s22); % new i n i t i a l s l o p e
ds = abs(s13 -s12); % c h a n g e i n i n i t i a l s l o p e
s11 = s12; % u p d a t e i n i t a l s l o p e s
s12 = s13;

Y1 = Y2;

count = count + 1; % i n c r e m e n t i t e r a t i o n c o u n t
end

where odeexshooting is a MATLAB function defining the ODE given by
function z = odeexshooting2(x,y)

z(1) = y(2); % u(1)
0

z(2) = y(1) ^4 -0.5;; % u(1)
1

end

The non-linear equation of the present example does not have an analytical exact
solution. Hence we do not know how good the above solution is. In order to verify the quality
of the solution we have obtained a solution to the boundary value problem by halving the
step size. The starting slope turns out to be -0.252671 which is different from the previously
obtained value by approximately 6×10−7. Hence the solution with h = 0.1 is adequate and
it is not necessary to reduce the step size.

11.2.3 Boundary value problem over semi-infinite domain

In many engineering applications we encounter boundary value problems where one of the
boundaries is at infinity. Examples may be cited from various area such as electromagnetism,
fluid mechanics and heat transfer. In order to make the development easy for the reader to follow
we take a simple second order ODE. Consider the general second order ODE given by

y(2) = f (x, y, y(1)) (11.9)

with Dirichlet boundary conditions at both boundaries viz.

y(x = 0)= 0, and y(x →∞)= 1 (11.10)

Numerically speaking boundary at ∞ is something which is reachable in an asymptotic sense. Any
ODE solver can solve the governing equation once a finite but large numerical value is assigned
to the boundary at ∞ which we identify as x∞. The question arises as to how large should the
chosen value of x∞ be. One way of approaching the problem is to repeat the numerical solution

11.2. The ‘shooting method’ 457

of the ODE with different values for x∞ and find out a value of x∞ beyond which the solution is
insensitive to the chosen value of x∞. Such a procedure would be an inefficient cut and try type
of procedure. Also the solution should be obtained over a variable range depending on the chosen
value of x∞. Hence such a method is avoided in preference to the method that will be described
below.

The procedure that we would like to follow uses the transformation ξ = x
x∞

to transform the

domain from x = 0 to x =∞ to ξ = 0 to ξ = 1. The governing differential equation then takes the
form

d2 y
dξ2 = f

(
ξ, y,

d y
dξ

; x∞
)

(11.11)

where x∞ appears as a parameter and is shown to the right of the semicolon. The quantities to
the left of the semicolon represent the variables on which the second derivative of y depends. The
boundary conditions now are written down as

y(ξ= 0)= 0, and y(ξ= 1)= 1 (11.12)

Equation 11.11 subject to boundary conditions 11.12 may be easily solved by a method such as
the shooting method described earlier, for a chosen value of the parameter x∞. Two solutions
required to perform the shooting method may be evaluated using an accurate algorithm such as
the adaptive RK4.

We now turn our attention to the determination of x∞. After the solution has been obtained with
a particular value of x∞ we determine the trend of slope of y at the outer boundary (the boundary
at ∞ is referred to as the outer boundary) after reverting to the original coordinate. The slope

will in fact be given by
1

x∞
d y
dξ

which may be non-zero. We know that if the chosen value of x∞ is

satisfactory y(1) should be 0 at the outer boundary. If not, we linearly extrapolate y(1) using two
consecutive values, one at the boundary and the other at the previous node, to hit the x axis at a
new value of x∞ which is taken as the next trial values for x∞.

xnew
∞ = xold

∞

(
ξn − y(1)

n
ξn−1 −ξn

y(1)
n−1 − y(1)

n

)
= xold

∞

(
1− y(1)

n
ξn−1 −1

y(1)
n−1 − y(1)

n

)
since ξn = 1.

xnew
∞

xold
∞ x

1
x∞

d y
dξ

i = n−1

i = n

Extrapolation

In addition to the above condition, the slope at x = 0 should also become insensitive to x∞. Iteration
continues till convergence i.e. till the slope becomes zero at x∞ within a specified tolerance or
change in slope with x∞ is less than specified tolerance.

458 Chapter.11 Boundary value problems (ODE)

Example 11.4
Solve the boundary value problem y(2) + xy(1) = 0 subject to the boundary conditions y(0)= 0
and y → 1 as x → ∞. Compare the numerical solution with the exact solution and make
suitable comments.
Solution :

Exact solution: We obtain first the exact solution. The given equation is in variable
separable form and may be written as

y(2)

y(1) + x = 0

We may integrate once with respect to x to get

ln y(1) =− x2

2
+C′

1

where C′
1 is a constant of integration. This may be rewritten as

y(1) = e−
x2
2 +C′

1 = C1e−
x2
2

where we have set eC′
1 = C1, another constant. A second integration yields

y= C1

∫ x

0
e−

x2
2 dx+C2

where C2 is a second constant of integration. The boundary condition at x = 0 requires that

C2 be set to zero. The boundary condition at x →∞ requires that 1 = C1

∫ ∞

0
e−

x2
2 dx. We

may eliminate C1 and get the following expression for y.

y=
∫ x

0 e−
x2
2 dx∫ ∞

0 e−
x2
2 dx

The quantity on the right hand side is related to the error function and given by

y= erf
(

xp
2

)
where “erf” stands for the error function that is tabulated in handbooks of mathematics.

Numerical solution: Now we look at the numerical solution of the problem. Make a
transformation as indicated previously to convert the second order ODE to the following
form.

d2 y
dξ2 + x2

∞ξ
d y
dξ

= 0

with the boundary conditions y(0) = 0, y(1) = 1. The above differential equation is a linear
equation.
Step 1 We shall solve the differential equation using adaptive RK4 with tolerance of 10−6.

Assuming x∞ = 2 and applying shooting method we get

11.2. The ‘shooting method’ 459

ξ x y
d y
dξ

d y
dx

0 0 0.000000 1.671838 0.835919
0.05 0.1 0.083453 1.663500 0.831750
· · · · · · · · · · · · · · ·

0.95 1.9 0.987498 0.274975 0.137487
1 2 1.000000 0.226259 0.113129

Step 2 The slope
dy
dx

at x∞ is not equal to zero. Hence, x∞ is updated using extrapolation.

xnew
∞ = xold

∞

(
ξn − y(1)

n
ξn−1 −ξn

y(1)
n−1 − y(1)

n

)

= 2
(
1−0.113129× 0.95−1

0.137487−0.113129

)
= 2.4644

Step 3 Applying shooting method with the new x∞ we get

ξ x y
d y
dξ

dy
dx

0 0 0.000000 1.993701 0.815086
0.05 0.1223 0.099433 1.978623 0.808922
· · · · · · · · · · · · · · ·

0.975 2.38485 0.997419 0.111157 0.045444
1 2.446 1.000000 0.095680 0.039117

The slope at the outer boundary has reduced considerably.However it is still non-zero
and x∞ is updated using extrapolation. The procedure is repeated until a suitable x∞ is
obtained.
A MATLAB program has been written to perform the above operations.

xinf = 2; % x∞
count = 1; % i t e r a t i o n c o u n t
Sold = 0; % i n i t i a l i z e o l d s l o p e a t x = 0 d y/dx
while 1 % l o o p f o r s o l v i n g BVP

% A p p l y i n g s h o o t i n g m e t h o d
[X1 ,Y1] = ODEadaptRK4 (0,1,[0 1.8] ,0.05 , ... % t r i a l 1

@seminfiniteexamplefunc ,1e-6,xinf);

[X2 ,Y2] = ODEadaptRK4 (0,1,[0 0.2] ,0.05 , ... % t r i a l 2
@seminfiniteexamplefunc ,1e-6,xinf);

n1 = length(X1); % no . o f n o d e s f o r t r i a l 1
n2 = length(X2); % no . o f n o d e s f o r t r i a l 2
alpha =(1-Y1(n1 ,1))/(Y2(n2 ,1)-Y1(n1 ,1)); % α

% new s l o p e a t x = 0 new dy/dx
Snew = (Y2(1,2)*alpha + (1-alpha)*Y1(1,2))/xinf;

[X,Y] = ODEadaptRK4 (0,1,[0 Snew*xinf],0.05, ... % s o l u t i o n
@seminfiniteexamplefunc ,1e-6,xinf);

% e n d o f s h o o t i n g m e t h o d
count = count + 1; % i n c r e m e n t i t e r a t i o n c o u n t
n = length(X); % no o f n o d e s f o r s o l u t i o n
if(Y(n,2)/xinf < 1e-4 || abs(Snew -Sold) < 1e-4)

% c h e c k f o r c o n v e r g e n c e

460 Chapter.11 Boundary value problems (ODE)

break % i f c o n v e r g e d b r e a k l o o p
end

% p e r f o r m e x t r a p o l a t i o n t o u p d a t e x∞
y1 = Y(n,2); y2 = Y(n-1,2); x1 = X(n); x2 = X(n-1);

xinf = xinf *(x1 - y1*(x2 -x1)/(y2 -y1));

Snew = Sold; % u p d a t e o l d s l o p e a t x = 0
end

where seminfiniteexamplefunc is MATLAB function defining the differential equation.
The input to the function varargin passes the parameter x∞ from main program.

function z = seminfiniteexamplefunc (x,y,varargin)

z(2) = -varargin {1}^2*x*y(2); % y (1) = y , z (2) = y(2)

z(1) = y(2); % y (2) = y(1)

end

Iteration x∞ εy y(1)(x = 0) εy(1) y(1)(x∞)
1 2.0000 4.6E-02 0.8359 0.1131
2 2.4644 1.4E-02 0.8090 2.7E-02 0.0388
3 2.8453 4.4E-03 0.8014 7.5E-03 0.0140
4 3.1668 1.5E-03 0.7991 2.3E-03 0.0053
5 3.4487 5.6E-04 0.7983 7.8E-04 0.0021
6 3.7013 2.1E-04 0.7981 2.8E-04 0.0008
7 3.9312 8.4E-05 0.7980 1.0E-04 0.0004
8 4.1428 3.4E-05 0.7979 4.0E-05 0.0001

εy is the maximum difference between exact and numerical
solution
εy(1) is the change in the slope at x = 0 with x∞

y
or

 y
(1

)

0

0.2

0.4

0.6

0.8

1

x
0 1 2 3 4

y for x∞ = 2
y(1) for x∞ = 2
y for x∞ = 4.1428
y(1) for x∞ = 4.1428

Figure 11.5: Solution to
Example 11.4 using x∞ = 2
(initial guess for x∞) and
4.1428 (�nal value of x∞)

Numerical solution for y and y(1) have been plotted for x∞ = 2 and 4.1228 in Figure 11.5. It
is clear from the present exercise the size of the domain has to be chosen appropriately for
obtaining accurate solutions.

11.2. The ‘shooting method’ 461

11.2.4 Generalization of shooting method for higher order ODEs

Consider a fourth order boundary value problem

y(4) = f
(
x, y, y1, y(2), y(3)

)
(11.13)

with boundary conditions y = y0 and y(1) = y(1)
0 at x = 0 and y = y1 and y(1) = y(1)

1 at x = 1. The
problem is solved as an initial value problem with two given conditions (y0 and y(1)

0) and two
assumed conditions (y(2)

0 and y(3)
0). The solution would probably not match the boundary conditions

at x = 1. The shooting method is a root-finding method where initial conditions (independent
parameters) are selected such that all boundary conditions at x = 1 (dependent parameters) are
determined. The solution procedure is different based on the nature of the ODE.

Linear ODE

Since the ODE is linear, principle of superposition is applicable. Therefore, one has to solve the
ODE a certain number of times and the desired solution will be weighted sum of these solutions.
For the present case there are two dependent parameters. The ODE is solved with three trial
values of initial conditions and the final solution would be a linear combination of the three
solutions. Solution u1 is obtained using initial condition [y0 y(1)

0 u12 u13]T , u2 using initial
condition [y0 y(1)

0 u22 u23]T and u3 using initial condition [y0 y(1)
0 u32 u33]T . Then the solution

to the above BVP is given by y=α1u1+α2u2+α3u3 (y= [y y(1) y(2) y(3)]T). The constants α1, α2
and α3 have to be determined from boundary conditions at x = 1. We have

α1u1(x = 1)+α2u2(x = 1)+α3u3(x = 1) = y1

α1u(1)
1 (x = 1)+α2u(1)

2 (x = 1)+α3u(1)
3 (x = 1) = y(1)

1

In addition to this, the sum of the constants has to be equal to 1 i.e. α1 +α2 +α3 = 1, as otherwise,
the boundary condition at x = 0 will not be satisfied. Writing these in matrix notation we have

u1(x = 1) u2(x = 1) u3(x = 1)
u(1)

1 (x = 1) u(1)
2 (x = 1) u(1)

3 (x = 1)
1 1 1

α1
α2
α3

=

y1

y(1)
1
1

The constants αi may hence be determined by solving the system of linear equations. We shall
consider an example to demonstrate the shooting method for a linear fourth order ODE.

Example 11.5
Solve the fourth order differential equation y(4) =−1 with boundary conditions y(x = 0) = 0;
y(2)(x = 0)= 0; y(x = 1)= 0 and y(2)(x = 1)= 0 and compare with exact solution.
Background :
Deflection of Beams Estimating the deflection of loaded beams is important for designing
structures. The governing equations for a beam is

EI
d2 y
dx2 = M(x)

462 Chapter.11 Boundary value problems (ODE)

where EI is known as the flexural rigidity of the beam (E is Young’s modulus and I is the
moment of inertia of the beam) and M is the bending moment acting on the beam. Further
the equation can be rewritten as

d
dx

(
EI

d2 y
dx2

)
= dM(x)

dx
= V (x)

d2

dx2

(
EI

d2 y
dx2

)
= dV (x)

dx
= q(x)

where V is the shear force and q is the load distribution on the beam. Being a fourth order
ODE, four conditions need to be specified for solving the ODE. The following figure shows
two configuration of beams subjected to loading.

y

Cantilever beam

Load P

Simply supported beam

Load P

For a cantilever beam, the deflection y and slope of defection y(1) are zero at x = 0. Other
boundary conditions are M = y(2) = 0 at x = L and V = y(3) = P. For a simply supported
beam, the deflection y and bending moment M are zero at the two supporting ends.
The present problem corresponds to a simply supported beam having constant flexural
rigidity and subjected to uniform loading (self weight of the beam) throughout the span
of the beam as indicated below.

Uniform load

Solution :
Exact solution: The solution to the differential equation can be determined by integrating
the equation four times

y(3) = −x+C1

y(2) = − x2

2
+C1x+C2

y(1) = − x3

6
+C1

x2

2
+C2x+C3

y = − x4

24
+C1

x3

6
+C2

x2

2
+C3x+C4

11.2. The ‘shooting method’ 463

where C1, C2, C3 and C4 are constants. Applying the boundary conditions, we find C1 = 1
2

,

C2 = 0, C3 =− 1
24

and C4 = 0. Therefore y= 1
24

(−x4 +2x3 − x
)

and y(2) = 1
2

(−x2 + x
)
.

Numerical solution: The ODE is to be solved as an initial value problem using three trial
sets of initial conditions given by

uT
1 = [0 0 0 0] uT

2 = [0 1 0 0] uT
3 = [0 0 0 1]

The three trial solutions are obtained using RK4 with step size of 0.1. The values of the
function and second derivative at x = 1 of the three trial solution are given below

i = 1 i = 2 i = 3
ui(x = 1) -0.041667 0.958333 0.125

u(1)
i (x = 1) -0.5 -0.5 0.5

The correct solution is of the form y = α1u1 +α2u2 +α3u3 where the constants have to be
determined from given boundary conditions at x = 1. Expressing in matrix notation

−0.041667 0.958333 0.125
−0.5 −0.5 0.5

1 1 1

︸ ︷︷ ︸
J

α1
α2
α3

=

0
0
1

On solving, we get α1 = 0.541667 and α2 =−0.041667 and α3 = 0.5. The procedure has been
programmed in MATLAB.

ug1 = [0 0 0 0]; % t r i a l 1 i n i t i a l c o n d i t i o n
ug2 = [0 1 0 0]; % t r i a l 2 i n i t i a l c o n d i t i o n
ug3 = [0 0 0 1]; % t r i a l 3 i n i t i a l c o n d i t i o n

% s o l v e ODE u s i n g RK4 f o r t h e 3 t r i a l s
[X,u1] = ODERK4 (0,ug1 ,0.1,10 , @bendingfunc);

[X,u2] = ODERK4 (0,ug2 ,0.1,10 , @bendingfunc);

[X,u3] = ODERK4 (0,ug3 ,0.1,10 , @bendingfunc);

% d e f i n i n g c o e f f i c i e n t m a t r i x f r o m b o u n d a r y c o n d i t i o n
j(1,1) = u1(11 ,1); j(1,2) = u2(11 ,1); j(1,3) = u3(11 ,1);

j(2,1) = u1(11 ,3); j(2,2) = u2(11 ,3); j(2,3) = u3(11 ,3);

j(3,:) = 1;

alpha =

inv(j)*[0; 0; 1]; % d e t e r m i n i n g α

Y = alpha (1)*u1 + alpha (2)*u2+alpha (3)*u3; % s o l u t i o n

where bendingfunc is a MATLAB function defining the ODE.
function z = bendingfunc(x,y,varargin)

z(1) = y(2); % y (1) = y ; z (1) = y(1)

z(2) = y(3); % z (2) = y(2)

z(3) = y(4); % z (3) = y(3)

z(4) = -1; % z (4) = y(4)

end

The results have been summarized in the following table.

464 Chapter.11 Boundary value problems (ODE)

x y yExact y(1) y(2) y(3)

0 0.0000 0.0000 0.0000 0.000 0.5
0.1 -0.0041 -0.0041 -0.0393 0.045 0.4
0.2 -0.0077 -0.0077 -0.0330 0.080 0.3
0.3 -0.0106 -0.0106 -0.0237 0.105 0.2
0.4 -0.0124 -0.0124 -0.0123 0.120 0.1
0.5 -0.0130 -0.0130 0.0000 0.125 0.0
0.6 -0.0124 -0.0124 0.0123 0.120 -0.1
0.7 -0.0106 -0.0106 0.0237 0.105 -0.2
0.8 -0.0077 -0.0077 0.0330 0.080 -0.3
0.9 -0.0041 -0.0041 0.0393 0.045 -0.4
1 0.0000 0.0000 0.0417 0.000 -0.5

As the function y is a polynomial of degree 4 the numerical solution obtained using RK4 is
exact.

In general, if we have a nth order ODE with m conditions specified at x = 0 and n−m conditions
at the other boundary, then the number of trial solutions that have to be solved is n−m+1.

Non-linear ODE

Let us denote the independent parameters y(2)
0 = u1 and y(3)

0 = u2 and dependent parameters
y1 = v1 and y(1)

1 = v2. The relationship between the dependent and independent variables is
nonlinear and assumes the form

v1 = g1 (u1,u2)
v2 = g2 (u1,u2)

The solution to the differential equation can be determined by solving the above system of
non-linear equations using the methods discussed earlier. We start with a guess value of the
independent variables and update the values using Newton’s method as below

∂g1

∂u1

∂g1

∂u2
∂g2

∂u1

∂g2

∂u2

︸ ︷︷ ︸
J

 ∆u1
∆u2

=
 −g1

−g2

 ∆u1
∆u2

=J−1
 −g1

−g2

Quasi-Newton methods have to be applied to determine the inverse of the Jacobian matrix. For a
nth order differential equation with m boundary conditions specified at x = 0 and n−m boundary
conditions, the problem reduces to determination of n−m roots. The algorithm can be summarized
as follows

• Start with a guess value for independent parameters
• Estimate the Jacobian matrix and the new estimates of independent parameters.
• Iterate until convergence.

11.3. Finite difference method 465

Choosing an appropriate initial guess is important for convergence of shooting method. Shooting
method becomes cumbersome as the number of dependent variables increases. Also, application of
the method to stiff equations is computationally intensive. Shooting methods cannot be extended
to higher dimensional problems. We shall look into alternative methods which can accommodate
one or more limitations of shooting method.

11.3 Finite difference method
The finite difference method (FDM) is a powerful technique that may be used for the solution of

boundary value problems. It is possible to solve both linear and non-linear differential equations
by the FDM. It is possible to solve ODEs involving constant as well as variable coefficients. FDM
can also be extended to multidimensional problems governed by partial differential equations (See
Module IV)

11.3.1 Second order ODE with constant coefficients: a simple example

As an example consider the problem in Example 11.1. The given second order ODE is directly
converted to the finite difference form by dividing the domain 0 ≤ x ≤ 1 into segments of width h
such that we have n segments. Nodes are placed at x = 0, x = h, x = 1. The nodes are numbered
as 0, 1, 2,,n−1, n and we associate y= yi (i is node number) with each node.

h
x = 0
i = 0 1 2 3 4 i−1 i i+1 n−2 n−1 n

x = 1

Figure 11.6: Discretization of the problem domain

Consider a node i lying between 1 and n−1. Using central differences, we have

yi−1 −2yi + yi+1

h2 −2yi = 0 (11.14)

This may be recast in the form
yi−1 −2(1+h2)yi + yi+1 = 0 (11.15)

In case Dirichlet conditions are imposed at both boundaries, we have for example

y0 = 1 yn = 0.6 (11.16)

i−2 i−1 i i+1 i+2

Figure 11.7: Finite di�erence and connectivity of nodal function values

Referring to Figure 11.7 we see that function at node i will appear in the equations for nodes i,
i−1 and i+1. Thus each nodal function value appears in three equations of form 11.14. Thus all

466 Chapter.11 Boundary value problems (ODE)

the nodal function values are related, end to end, through a set of linear simultaneous equations
as given below:

1 0 0 · · · · · · 0
1 −2(1+h2) 1 · · · · · · 0
0 1 −2(1+h2) 1 · · · 0
· · · · · · · · · · · · · · · · · ·
0 0 0 1 −2(1+h2) 1
0 0 0 0 0 1

y0
y1
y2
· · ·

yn−1
yn

=

1
0
0
· · ·
0

0.6

(11.17)

Since the coefficient matrix is tri-diagonal we may use TDMA (see Chapter 2) to obtain the
solution.

Example 11.6
Based on the formulation given above obtain the solution to the equation in Example 11.1
by finite differences with h = 0.1. Comment on the results by comparing the solution with
the exact solution. Comment also based on comparison with the solution obtained by the
shooting method.
Background :
The above equation represents heat transfer from a pin fin of uniform cross section. Fins
are extended surfaces that enhance the convective heat transfer between the object and the
environment. Convective heat transfer from any surface is given by

q = hc A(Tw −T∞)

where hc is the convective heat transfer coefficient, A is the exposed area available for heat
transfer and Tw and T∞ are respectively the temperatures of the surface and environment.
In order to increase the heat transfer from the surface (Tw −T∞) is constrained for most
applications), either hc or A of the surface can be increased. Increasing the available area
of heat transfer is a simple option of improving the heat transfer. Thermal conductivity of
fin should be high for good heat transfer enhancement.

Base at Tw

hc, T∞ Consider a fin of length L (m), area
of cross section As (m2) and perimeter
p (m) extending from the base surface
maintained at Tw (K). The thermal
conductivity of the fin is k (W /m2K).

The temperature is lumped across the cross section (the temperature variation across the
cross section is negligible) and hence is a function of x alone. Then the equation governing
heat transfer from the fin to the environment is given by

kAS
d2T
dx2 −hc p(Tw − t∞)= 0

or
d2θ

dx2 − hc p
kAs︸ ︷︷ ︸
m2

θ = 0

11.3. Finite difference method 467

where θ = T −T∞
Tw −T∞

is the dimensionless temperature and m is known as the fin parameter.

In the absence of fin, heat transfer from the surface would be q = hc As(Tw −T∞). The heat

transfer in the presence of the fin is given by q = −kAs
dT
dx

∣∣∣∣
x=0

.

Solution :
With h = 0.1 there are 11 nodes starting with i = 0 and ending with i = 10. With y0 = 1 and
y10 = 0.6 we need to essentially solve for the nine nodal values viz. y1 to y9. The coefficient
matrix is written down as

A=

−2.02 1 0 0 0 0 0 0 0
1 −2.02 1 0 0 0 0 0 0
0 1 −2.02 1 0 0 0 0 0
0 0 1 −2.02 1 0 0 0 0
0 0 0 1 −2.02 1 0 0 0
0 0 0 0 1 −2.02 1 0 0
0 0 0 0 0 1 −2.02 1 0
0 0 0 0 0 0 1 −2.02 1
0 0 0 0 0 0 0 1 −2.02

The solution vector required is of form yT =
y1 y2 · · · y8 y9

 and the right hand vector is

bT =
−1 0 0 · · · 0 −0.6

. We use TDMA and tabulate the results as shown below.

Node a a′ a′′ b P Q y y(1)

0 1.0000 -1.1456
1 2.02 1 0 1 0.4950 0.4950 0.8944 -0.9667
2 2.02 1 1 0 0.6558 0.3246 0.8067 -0.7966
3 2.02 1 1 0 0.7330 0.2380 0.7351 -0.6424
4 2.02 1 1 0 0.7770 0.1849 0.6782 -0.5011
5 2.02 1 1 0 0.8045 0.1487 0.6348 -0.3698
6 2.02 1 1 0 0.8227 0.1224 0.6042 -0.2459
7 2.02 1 1 0 0.8352 0.1022 0.5857 -0.1269
8 2.02 1 1 0 0.8440 0.0863 0.5788 -0.0104
9 2.02 0 1 0.6 0.0000 0.5836 0.5836 0.1058
10 0.6000 0.2225

Note that the entries in column 2 are −ai and entries in column 5 are −bi. If the derivative
is also required at the nodal points we may obtain them by using second order accurate
formulae. At either end we may use three point one sided rules while at the interior nodes
we may use central differences. These are shown as entries in the last column of the table.

We compare below the finite difference solution with the exact solution as well as that
obtained using the shooting method (second order RK).

468 Chapter.11 Boundary value problems (ODE)

FDM SM Exact Error FD Error SM
x y y yE εy εy
0 1.0000 1.0000 1.0000 0.0000 0.0000

0.1 0.8944 0.8941 0.8943 0.0001 -0.0002
0.2 0.8067 0.8062 0.8065 0.0002 -0.0003
0.3 0.7351 0.7345 0.7349 0.0002 -0.0004
0.4 0.6782 0.6775 0.6780 0.0002 -0.0004
0.5 0.6348 0.6342 0.6346 0.0002 -0.0005
0.6 0.6042 0.6036 0.6040 0.0002 -0.0004
0.7 0.5857 0.5851 0.5855 0.0002 -0.0004
0.8 0.5788 0.5784 0.5787 0.0001 -0.0003
0.9 0.5836 0.5833 0.5835 0.0001 -0.0002
1 0.6000 0.6000 0.6000 0.0000 0.0000

FD - Finite Difference, SM - Shooting Method

The errors in the above table are the difference between the respective numerical and exact
solutions. Since we have used second order methods in both FD and SM cases the errors are
of the same order. The numerical solutions are correct to at least three digits after decimals.
The FD solution seems to be slightly superior to the SM solution. Fourth order RK4 method
was used in Example 11.1 to solve the same ODE and the errors are found to be of the order
of 1e−6. Similarly, the FD estimate can be improved by using higher order finite difference
formulae. Also, the accuracy of the estimate can be improved further by refining the grid.

However as exact solutions are not known for most practical problems, we have to check
for the convergence of the solution with grid refinement. The change in solution parameter
such as function value or gradient of the function at a specified point with grid refinement
can be used as a measure of convergence of numerical solution. In the present problem,
we choose the gradient at x = 0 as the parameter to check convergence. This is because
the above parameter is directly related to the performance of the fin. The following table
indicates the first derivative of the function value at x = 0 obtained with different step sizes
h.

no of nodes h y(1)(x = 0) ε εE
11 0.1 -1.1456 0.00023
21 0.05 -1.1513 0.005 5.7E-05
41 0.025 -1.1529 0.0013 1.4E-05
81 0.0125 -1.1533 0.00035 3.6E-06

161 0.00625 -1.1534 8.8E-05 8.9E-07

In the above table ε =
∣∣∣∣∣ y(1)

h − y(1)
h/2

y(1)
h/2

∣∣∣∣∣ and εE = max |y− yE |. The first derivative has been

calculated using three point one sided formula.

y(1) = −3y0 +4y1 − y2

2h

We see that a grid of 161 is sufficient as the gradient at x = 0 does not change significantly.

11.3. Finite difference method 469

11.3.2 Second order ODE with constant coefficients: a variant

Now consider the same example as that considered in the previous section but with Neumann
boundary condition at x = 1, y(1)(x = 1) = y(1)

1 . The FDM formulation at interior nodes do not
change. The boundary at which the Neumann condition is specified needs special attention.
The obvious approach of approximating a first derivative is to use forward (backward) difference
formula

y(1) ≈ yn − yn−1

h
= y(1)

1

However, as the above is first order accurate, whereas the function values at the interior nodes are
approximated using second order accurate formulae it is desirable to use second order accurate
formula at the boundary as well.

h

i = n−2 i = n−1 i = n

One approach is to use a second order accurate one sided three point formula for the first
derivative.

y(1) ≈ yn−2 −4yn−1 +3yn

2h
= y(1)

1

Representing the set of linear equations in matrix form

1 0 0 · · · · · · 0
1 −2(1+h2) 1 · · · · · · 0
0 1 −2(1+h2) 1 · · · 0
· · · · · · · · · · · · · · · · · ·
0 0 · · · 1 −2(1+h2) 1
0 0 · · · 1 −4 3

y0
y1
y2
· · ·

yn−2
yn−1
yn

=

1
0
· · ·
0

2hy(1)
1

(11.18)

The above equations can be solved using the methods discussed earlier. However, one cannot use
TDMA directly. To apply TDMA, yn is eliminated from last two equations to reduce the matrix to
a tridiagonal form.

1 0 0 · · · · · · 0
1 −2(1+h2) 1 · · · · · · 0
· · · · · · · · · · · · · · · · · ·
0 0 · · · 1 −2(1+h2) 1
0 0 · · · 0 2 −2−6h2

y0
y1
y2
· · ·

yn−3
yn−2
yn−1

=

1
0
· · ·
0

−2hy(1)
1

(11.19)

Alternatively, we may use a ghost point to the right of x = 1 or i = n and at a distance of h and
use it to evaluate the first derivative at x = 1. This means that

y(1) ≈ yn+1 − yn−1

2h
= y(1)

1

yn+1 = yn−1 +2hy(1)
1

which is nothing but the central difference approximation to the first derivative at x = 1.

470 Chapter.11 Boundary value problems (ODE)

h

h

i = n−1 i = n
ghost node

i = n+1

Thus we will be able satisfy the Neumann condition at x = 1. Now we treat the node n as an
interior node and write

yn−1 −2(1+h2)yn + yn+1 = 2yn−1 −2(1+h2)yn +2hy(1)
1 = 0

or yn−1 −
(
1+h2)

yn = −hy(1)
1 (11.20)

Equation 11.17 will then be recast as

1 0 0 · · · · · · 0
1 −2(1+h2) 1 · · · · · · 0
0 1 −2(1+h2) 1 · · · 0
· · · · · · · · · · · · · · · · · ·
0 0 0 1 −2(1+h2) 1
0 0 0 0 1 −(

1+h2)

y0
y1
y2
· · ·

yn−1
yn

=

1
0
0
· · ·
0

−hy(1)
1

(11.21)

This set of equations may again be solved by TDMA.

The numerical solution produced from the two approaches discussed above would be of identical
accuracy but not the same. Both the approaches are second order accurate and the error is
proportional to h2.

Example 11.7
Solve the boundary value problem y(2) = 2y subject to the conditions y(x = 0) = 1 and
y(1)(x = 1) = 0 by FDM. Comment on the results by comparing the solution with the exact
solution.
Solution :

With h = 0.1 there are 11 nodes starting with 0 and ending with 10. With y0 = 1 and y(1)
10 = 0

we need to essentially solve for the ten nodal values viz. y1 to y10. The coefficient matrix is
written down based on the discussion just preceding this example as

A=

−2.02 1 0 0 0 0 0 0 0 0
1 −2.02 1 0 0 0 0 0 0 0
0 1 −2.02 1 0 0 0 0 0 0
0 0 1 −2.02 1 0 0 0 0 0
0 0 0 1 −2.02 1 0 0 0 0
0 0 0 0 1 −2.02 1 0 0 0
0 0 0 0 0 1 −2.02 1 0 0
0 0 0 0 0 0 1 −2.02 1 0
0 0 0 0 0 0 0 1 −2.02 1
0 0 0 0 0 0 0 0 1 −1.01

The solution vector required is of form yT =

y1 y2 · · · y9 y10

 and the right hand vector

is bT =
1 0 0 · · · 0 0

. We use the TDMA and tabulate the results as shown in the first
table below.

11.3. Finite difference method 471

The exact solution to the problem may easily be shown to be yE = cosh
[p

2(1− x)
]

cosh
p

2
.

Comparison of the FDM solution with the exact solution is shown in the second table below.

Node a a′ a′′ b P Q y
0 1.0000
1 2.02 1 0 1 0.4950 0.4950 0.8841
2 2.02 1 1 0 0.6558 0.3246 0.7859
3 2.02 1 1 0 0.7330 0.2380 0.7033
4 2.02 1 1 0 0.7770 0.1849 0.6349
5 2.02 1 1 0 0.8045 0.1487 0.5791
6 2.02 1 1 0 0.8227 0.1224 0.5350
7 2.02 1 1 0 0.8352 0.1022 0.5015
8 2.02 1 1 0 0.8440 0.0863 0.4781
9 2.02 1 1 0 0.8504 0.0734 0.4642
10 1.01 0 1 0 0.0000 0.4596 0.4596

x y yE εy y(1) y(1)
E εy(1)

0 1.0000 1.0000 0.0000 -1.2476 -1.2564 0.0088
0.1 0.8841 0.8840 0.0001 -1.0707 -1.0683 -0.0025
0.2 0.7859 0.7856 0.0002 -0.9038 -0.9016 -0.0021
0.3 0.7033 0.7030 0.0003 -0.7548 -0.7530 -0.0018
0.4 0.6349 0.6345 0.0004 -0.6210 -0.6194 -0.0016
0.5 0.5791 0.5787 0.0004 -0.4996 -0.4983 -0.0013
0.6 0.5350 0.5345 0.0004 -0.3882 -0.3872 -0.0010
0.7 0.5015 0.5010 0.0005 -0.2846 -0.2838 -0.0008
0.8 0.4781 0.4776 0.0005 -0.1866 -0.1861 -0.0005
0.9 0.4642 0.4637 0.0005 -0.0924 -0.0921 -0.0002
1 0.4596 0.4591 0.0005 0.0000 0.0000 0.0000

The derivatives shown in the last column of the above table have been obtained using
second order accurate finite difference formulae using the computed nodal values of y. The
procedure has also been programmed in MATLAB.

n = 11; % no . o f n o d e s
x = [0:1/(n-1) :1]'; % n o d e s
h = 1/(n-1); % s t e p s i z e
a = zeros(n,1); % TDMA c o e f f i c i e n t n o d e i
a1 = zeros(n,1); % TDMA c o e f f i c i e n t n o d e i +1
a2 = zeros(n,1); % TDMA c o e f f i c i e n t n o d e i −1
b = zeros(n,1); % TDMA c o n s t a n t
a(1) = 1; % f i r s t n o d e
b(1) = 1; % D i r i c h l e t c o n d i t i o n
for i=2:n-1 % c o e f f i c i e n t s f o r

a(i) = 2+2*h^2; % i n t e r i o r n o d e s
a1(i) = 1;

a2(i) = 1;

end

a(n) = 1+h^2; % l a s t n o d e

472 Chapter.11 Boundary value problems (ODE)

a2(n) = 1; % Neumann c o n d i t i o n
b(n) = 0;

y = tdma(a2 ,a,a1 ,b); % s o l v e u s i n g TDMA
yr = cosh(sqrt (2)*(1-x))/cosh(sqrt (2)); % e x a c t s o l u t i o n
er = abs(yr -y); % e r r o r

The reader can check for the convergence of the solution with grid refinement.

11.3.3 Application of FDM using non-uniform grids

Just like adaptive methods used to solve an IVP, non-uniform grids may be useful for BVP. A fine
grid may be used in regions of steep function variation and a coarse grid may be used in regions
of gentle function variations. Let us consider the second order differential equation considered
in Example 11.7. Dirichlet condition y = 1 is specified at x = 0 and Neumann condition y(1) = 0
at the other boundary. The second derivative at the interior nodes are approximated by second
derivatives of Lagrange polynomials.

xi−1 xi xi+1

y(2)
i = 2

xi+1 − xi−1

(
yi+1 − yi

xi+1 − xi
− yi − yi−1

xi − xi−1

)
= 2

xi+1 − xi−1

[
yi+1

xi+1 − xi
− yi

(
1

xi − xi−1
+ 1

xi+1 − xi

)
+ yi−1

xi − xi−1

]

Therefore the algebraic equation for node i is given by

a′′
i yi−1 −ayi +a′

i yi+1 = 0

where a′
i =

2
(xi+1 − xi−1)(xi+1 − xi)

, a′′
i =

2
(xi+1 − xi−1)(xi − xi−1)

and ai = a′
i +a′′

i +2.

Neumann boundary condition at x = 1 can be achieved by either of the two approaches discussed
earlier. Let us apply the ghost node approach where a ghost node is assumed at a distance xn−xn−1
from xn.

h

h

xn−1 xn

ghost node
xn+1

On simplifications we get
a′′

n yn−1 −an yn = 0

11.3. Finite difference method 473

where a′′
n = 2

(xn − xn−1)2
and a = (

a′′
n +2

)
. The system of linear equation is represented in matrix

notation of the form Ay=b where

A=

1 0 0 · · · · · · 0
a′′

1 −(a′′
1 +a′

1 +2) a′
1 · · · · · · 0

0 a′′
2 −(a′′

2 +a′
2 +2) a′

2 · · · 0
· · · · · · · · · · · · · · · · · ·
0 0 0 a′′

n−1 −(a′′
n−1 +a′

n−1 +2) a′
n−1

0 0 0 0 a′′
n −(

a′′
n +2

)

y=

y0
y1
y2
· · ·

yn−1
yn

and b=

1
0
0
· · ·
0

−hy(1)
1

(11.22)

A MATLAB program is presented below to solve the differential equation of Example 11.7 using
nonuniform (Chebyshev) nodes. To treat the second boundary condition ghost node approach has
been used in the present case.

n = 11; % no o f n o d e s
x = zeros(n,1); % n o d e s
x(1) = 0;

x(n) = 1;

for i=2:n-1 % C h e b y s h e v n o d e s
x(i) = 0.5 -0.5* cos ((2*(i-1) -1)*pi /(2*(n-2)));

end

a = zeros(n,1); % TDMA c o e f f i c i e n t s a
a1 = zeros(n,1); % TDMA c o e f f i c i e n t s a ’
a2 = zeros(n,1); % TDMA c o e f f i c i e n t s a ’ ’
b = zeros(n,1); % TDMA c o e f f i c i e n t s b
a(1) = 1; % f i r s t n o d e
b(1) = 1; % D i r i c h l e t c o n d i t i o n
for i=2:n-1 % i n t e r n a l n o d e s

a1(i) = 2/((x(i+1)-x(i))*(x(i+1)-x(i-1)));

a2(i) = 2/((x(i)-x(i-1))*(x(i+1)-x(i-1)));

a(i) = a1(i) + a2(i) + 2;

end

a2(n) = 2/(x(n)-x(n-1))^2; % l a s t n o d e
a(n) = c(n)+2; % Neumann c o n d i t i o n
y = tdma(a2 ,a,a1 ,b); % s o l v e u s i n g TDMA

11.3.4 Solution of non-linear case by FDM

It is possible to apply the FDM to the case of a non-linear second order ODE also. However the
solution method is perforce an iterative one. Essentially it consists in the use of a method such as
Newton Raphson to linearize the equations, at every step.

For example we consider the second order ODE of Example 11.3. Assume that a trial solution is
available as yk. The fourth degree term may be linearized such that

y4 = (yk+1)4 = [yk + (yk+1 − yk)]4 ≈ (yk)4 +4(yk)3(yk+1 − yk)= 4(yk)3 yk+1 −3(yk)4 (11.23)

474 Chapter.11 Boundary value problems (ODE)

yk+1 is the new value of the function we seek at the end of the iteration. The finite difference
analog of the governing differential equation, applied to an interior node, then takes the form

yk+1
i+1 −2yk+1

i + yk+1
i−1 −h2[4(yk

i)3 yk+1
i −3(yk

i)4 −0.5]= 0 (11.24)

This may be rewritten as.

yk+1
n [2+4h2(yk

i)3]︸ ︷︷ ︸
ak

i

= yk+1
i−1 + yk+1

i+1 +h2[3(yk)4 +0.5]︸ ︷︷ ︸
bk

i

(11.25)

Reader may verify that the same linearization scheme will result on application of the Newton
Raphson method. Observe that coefficients ai and bi change from iteration to iteration.

In general a nonlinear term S can be linearized as

Sk+1 = Sk + dS
dy

∣∣∣∣
k

(yk+1 − yk)

We thus end up with a set of linear equations that may be solved by TDMA. Iterations stop when
the change in any nodal value is less than or equal to a preassigned small number. We present the
FDM solution of this nonlinear case in the next example.

Example 11.8
Solve the boundary value problem y(2) = y4 −0.5 subject to the conditions y(x = 0) = 1 and
y(1)(x = 1)= 0 by FDM.
Solution :

Since the solution is an iterative one based on the linearized set of nodal equations, we start
the solution by assuming trial values for all the nodal values of y. In the present case we
have taken the nodal values to follow the relation y(x) = 1−0.2x for 0 ≤ x ≤ 1. We may use
Equation 11.25 to calculate the coefficients in the matrix and tabulate them as shown below.

y0 a a′ a′′ b
1.00
0.98 2.0376 1 0 1.0327
0.96 2.0354 1 1 0.0305
0.94 2.0332 1 1 0.0284
0.92 2.0311 1 1 0.0265
0.90 2.0292 1 1 0.0247
0.88 2.0273 1 1 0.0230
0.86 2.0254 1 1 0.0214
0.84 2.0237 1 1 0.0199
0.82 2.0221 1 1 0.0186
0.80 2.0205 0 2 0.0173

The entries in the last row are obtained by imposing the zero slope condition at x = 1 using
essentially the arguments given earlier. Entries shown as a and b only will change from
iteration to iteration. Using the coefficients in the above table and TDMA we get the
following update for the nodal values of y.

11.3. Finite difference method 475

P Q y1 Change
1 0

0.4908 0.5068 0.9775 -2.54E-03
0.6474 0.3478 0.9590 -9.62E-04
0.7216 0.2715 0.9441 4.08E-03
0.7636 0.2276 0.9321 1.21E-02
0.7902 0.1993 0.9226 2.26E-02
0.8084 0.1797 0.9153 3.53E-02
0.8216 0.1652 0.9100 5.00E-02
0.8319 0.1540 0.9065 6.65E-02
0.8402 0.1450 0.9045 8.45E-02
0.0000 0.9039 0.9039 1.04E-01

This completes one iteration. We use y1 as the starting set to improve the solution.
Iterations stop when the values have converged. In the present case convergence is obtained
after three iterations as indicated by the following table.

x Initial Set Iter 1 Iter 2 Iter 3
0 1.000000 1.000000 1.000000 1.000000
0.1 0.980000 0.977455 0.977120 0.977119
0.2 0.960000 0.959038 0.958356 0.958354
0.3 0.940000 0.944081 0.943028 0.943025
0.4 0.920000 0.932066 0.930608 0.930603
0.5 0.900000 0.922591 0.920688 0.920682
0.6 0.880000 0.915336 0.912953 0.912946
0.7 0.860000 0.910042 0.907165 0.907157
0.8 0.840000 0.906490 0.903148 0.903140
0.9 0.820000 0.904494 0.900785 0.900776
1 0.800000 0.903882 0.900005 0.899995

The procedure has been programmed in MATLAB and given below
n = 11; % n o d e number
x = [0:1/(n-1) :1]'; % n o d e s
h = 1/(n-1); % s t e p s i z e
a = zeros(n,1); % TDMA c o e f f i c i e n t a
a1 = zeros(n,1); % TDMA c o e f f i c i e n t a ’
a2 = zeros(n,1); % TDMA c o e f f i c i e n t a ’ ’
b = zeros(n,1); % TDMA c o n s t a n t
yo = 1 -0.2*x; % g u e s s v a l u e f i r s t s e t
a(1) = 1; % f i r s t n o d e
b(1) = 1; % D i r i c h l e t c o n d i t i o n
a1(2:n-1) = 1; % c o e f f i c i e n t s f o r
a2(2:n-1) = 1; % i n t e r n a l n o d e s
a2(n) = 2; % c o e f f i c i e n t l a s t n o d e
tol = 1e-4; % t o l e r a n c e f o r c o n v e r g e n c e
res = 0; % i n i t i a l i z e r e s i d u a l
count = 0; % i t e r a t i o n c o u n t
while (res > tol || count == 0) % l o o p f o r c o n v e r g e n c e

476 Chapter.11 Boundary value problems (ODE)

a(2:n) = 2+4* yo(2:n).^3* dx^2; % u p d a t e a and d
b(2:n) = 3*yo(2:n).^4* dx ^2+0.5* dx^2;

y = tdma(a2 ,a,a1 ,b); % s o l v e y
res = sum(abs(y-yo)); % c a l c u l a t e r e s i d u a l
yo = y; % u p d a t e y
count = count + 1; % i n c r e m e n t i t e r a t i o n c o u n t

end

11.3.5 Application of FDM to second order ODE with variable
coefficients

We consider next the application of finite difference method to the solution of a boundary value
problem involving an ODE with variable coefficients. Consider the second order ODE given by
Equation 11.5. Consider it in the specific linear form3 given by

d2 y
dx2 + A(x)

d y
dx

+B(x)y= f (x) (11.26)

The finite difference method uses central differences to rewrite the above in the form

yi−1 −2yi + yi+1

h2 + A(xi)
yi+1 − yi−1

2h
+B(xi)yi = f (xi)

where h = xi+1−xi, 1≤ i ≤ n−1 corresponding to an internal node. Node 0 represents the boundary
at x = 0 and node n represents the boundary at x = L. The above equation may be recast in the
form of an algebraic equation

yi−1

(
1− A(xi)h

2

)
− yi(2−B(xi)h2)+ yi+1

(
1+ A(xi)h

2

)
= f (xi)h2 (11.27)

At the boundary nodes we simply have the specified boundary values. For example, if both
boundaries have first kind of boundary conditions, then we simply have

y(0)= y0 and y(L)= yn = yL (11.28)

Thus the nodal equations take the form

y0 = y0

y0

(
1− A(x1)h

2

)
− y1(2−B(x1)h2)+ y2

(
1+ A(x1)h

2

)
= f (x1)h2

y1

(
1− A(x2)h

2

)
− y2(2−B(x2)h2)+ y3

(
1+ A(x2)h

2

)
= f (x2)h2

· · · = · · ·
yi−1

(
1− A(xi)h

2

)
− yi(2−B(xi)h2)+ yi+1

(
1+ A(xi)h

2

)
= f (xi)h2

· · · · · ·
yn−3

(
1− A(xn−2)h

2

)
− yn−2(2−B(xn−2)h2)+ yn

(
1+ A(xn−2)h

2

)
= f (xn−2)h2

3There is no difficulty if the equation is non-linear

11.3. Finite difference method 477

yn−2

(
1− A(xn−1)h

2

)
− yn−1(2−B(xn−1)h2)+ yn

(
1+ A(xn−1)h

2

)
= f (xn−1)h2

yn = yL (11.29)

Letting ai = 2−B(xi)h2, a′
i = 1+ A(xi)h

2
, a′′

i = 1− A(xi)h
2

and bi = − f (xi)h2 (in TDMA form), the
above equations are rewritten as

Ay=b (11.30)
where

[A]=

1 0 0 · · · · · · · · · · · · 0
a′′

1 −a1 a′
1 0 · · · · · · · · · 0

0 a′′
2 −a2 a′

2 0 · · · · · · 0

· · · · · · . . .
. . .

. . . · · · · · · · · ·
0 0 0 a′′

i −ai a′
i 0 0

· · · · · · · · · · · · . . .
. . .

. . . · · ·
0 0 0 0 · · · a′′

n−1 −an−1 a′
n−1

0 0 0 0 0 0 0 1

{y}=

y0
y1
y2
· · ·
yi
· · ·

yn−1
yn

and {b}=

y0
f (x1)h2

f (x2)h2

· · ·
f (xi)h2

· · ·
f (xn−1)h2

yn

Again the set of equations may be solved by TDMA. When Neumann condition is specified at

the second boundary we require a different method as shown in the following example.

Example 11.9
Solve the second order ODE with variable coefficients y(2) + 1

x
y(1) − y = 0 subject to the

boundary conditions y(x = 1)= 1 and y(1)(x = 2)= 0 by the finite difference method.
Solution :

The formulation follows the method described above. We choose a step size of h = 0.1 to
discretize the equations. Note that i = 0 corresponds to x = 1 and i = 10 corresponds to
x = 2. At the second boundary i.e. at x = 2 Neumann condition has been specified. We can
use the ghost node approach for the present problem. Instead we will approximate the first
derivative using three point one sided rule. Specifically this requires that 3y10−4y9+ y8 = 0.
In the formulation we would like to preserve the tri-diagonal form and hence some
preconditioning is required. We know that a9 y9 = a′

9 y10+a′′
9 y8 as applicable to node 9. From

the latter equation we have y8 = a9

a′′
9

y9 −
a′

9

a′′
9

y10. Introducing this in the former equation we

get 3y10 −4y9 + a9

a′′
9

y9 −
a′

9

a′′
9

y10 = 0 or, on simplification
(
3− a′

9

a′′
9

)
y10 =

(
4− a9

a′′
9

)
y9.

478 Chapter.11 Boundary value problems (ODE)

We note that the a−a′′ are given by the following:

ai = 2+h2, a′
i = 1+ h

2xi
, a′′

i = 1− h
2xi

Excepting b1 all other b’s are zero. b1 alone is given by 1− h
2x1

. Using these, the required

input for performing the TDMA is tabulated as given below:

x a a′ a′′ b x a a′ a′′ b
1 1.6 2.0100 1.0313 0.9688 0
1.1 2.0100 1.0455 0.0000 0.9545 1.7 2.0100 1.0294 0.9706 0
1.2 2.0100 1.0417 0.9583 0 1.8 2.0100 1.0278 0.9722 0
1.3 2.0100 1.0385 0.9615 0 1.9 2.0100 1.0263 0.9737 0
1.4 2.0100 1.0357 0.9643 0 2 1.9459 0.0000 1.9357 0
1.5 2.0100 1.0333 0.9667 0

Results are rounded to 4 digits after decimals. However, all computations have been made
with available machine precision. On applying TDMA we get the solution given in the
following table.

x P Q y y(1) x P Q y y(1)

1 1.0000 -1.0264 1.6 0.8671 0.1056 0.6417 -0.2753
1.1 0.5201 0.4749 0.9058 -0.8579 1.7 0.8811 0.0877 0.6182 -0.1979
1.2 0.6891 0.3011 0.8284 -0.7029 1.8 0.8911 0.0739 0.6021 -0.1275
1.3 0.7707 0.2149 0.7652 -0.5719 1.9 0.8984 0.0630 0.5927 -0.0626
1.4 0.8176 0.1636 0.7140 -0.4595 2 0.0000 0.5896 0.5896 0.0000
1.5 0.8472 0.1296 0.6733 -0.3617

The derivatives shown in the table have of course been obtained by using the appropriate
second order accurate finite difference formulae.

FDM can be applied to higher order BVPs. Also, higher order finite difference formulae can
be used. Now we shall look at the Collocation method. A polynomial collocation method is a
generalized form of FDM.

11.4 Collocation method
The domain is discretized into a number of points also known as collocation points. The

philosophy of collocation method is to choose parameters and basis functions such that the residual
is zero at the collocation points. If the basis functions are sinusoidal functions, we refer to the
method as Fourier collocation method. If the basis functions are polynomial, we refer to the method
as polynomial collocation method. Again the polynomials could be orthogonal polynomials such as
Chebyshev, Legendre, Jacobi etc.

We shall consider polynomial collocation method where the function y is assumed to be a
Lagrange polynomial passing through all the collocation nodes given by

y= y0l0 + y1l1 + y2l2 +·· ·+ ynln (11.31)

11.4. Collocation method 479

where l i are the Lagrange polynomial weights (basis function) and yi are the unknown function
values that have to be determined. The derivatives in the differential equation at each of the nodes
is obtained by differentiating the Lagrange polynomial weights.

Reader should to refer to the concepts on numerical differentiation of Lagrange weights presented
in Section 8.3.2.

Example 11.10
Solve the following second order ODE using Collocation method.

y(2) −2y= 0 (11.32)

The boundary conditions are y(x = 0) = 1 and y(1)(x = 1) = 0. Study the grid sensitivity of
Collocation method
Solution :

Discretization: The domain is divided into n (say 4) equal segments i.e the number of
points would be equal to n+1 as indicated in the following figure.

x = 0 x = 0.25 x = 0.5 x = 0.75 x = 1

i = 0 i = 1 i = 2 i = 3 i = 4

Collocation method: y is approximated as a Lagrange polynomial passing through all the
nodes represented as

y= y0l0 + y1l1 +·· ·+ yn−1ln−1 + ynln

where l i are the Lagrange weights and yi are the function values at the nodes. yi are
unknown and have to be determined by satisfying the ODE and boundary conditions. At
the first node, y0 = 1. At interior nodes i.e. i = 1,2 to n−1, the ODE has to be satisfied and
hence we have

y0

[
d2l0

dx2

∣∣∣∣
xi

−2l0(xi)
]
+·· · yi

[
d2l i

dx2

∣∣∣∣
xi

−2l i(xi)
]
+·· ·+ yn

[
d2ln

dx2

∣∣∣∣
xi

−2ln(xi)
]
= 0

or y0
d2l0

dx2

∣∣∣∣
xi

+·· ·+ yi

[
d2l i

dx2

∣∣∣∣
xi

−2
]
+·· ·+ yn

d2ln

dx2

∣∣∣∣
xi

= 0

At i = n, Neumann boundary condition has to be satisfied as given below

d y
dx

∣∣∣∣
xn

= dl0

dx

∣∣∣∣
xn

y0 + dl1

dx

∣∣∣∣
xn

y1 +·· ·+ dln−1

dx

∣∣∣∣
xn

yn−1 + dln

dx

∣∣∣∣
xn

yn = 0

Hence we have a system of linear equations of the form Ay=b where

A=

1 · · · 0 · · · 0

· · · · · · · · · · · · · · ·
d2l0
dx2

∣∣∣∣∣
xi

· · ·
[

d2l i
dx2

∣∣∣∣∣
xi

−2

]
· · · d2ln

dx2

∣∣∣∣∣
xi

· · · · · · · · · · · · · · ·
dl0
dx

∣∣∣∣
xn

· · · dl i
dx

∣∣∣∣
xn

· · · dln
dx

∣∣∣∣
xn

480 Chapter.11 Boundary value problems (ODE)

yT =
 y0 y1 · · · yn−1 yn

 and bT =
 1 · · · 0 · · · 0

We can solve these equations using any of the methods discussed earlier. A MATLAB
program has been written to apply collocation method to the present problem.

n = 5; % no . o f n o d e s
x = [0:1/(n-1) :1]'; % n o d e s
A = zeros(n); % i n i t i a l i z e c o e f f i c i e n t m a t r i x
B = zeros(n,1); % i n i t i a l i z e f o r c e v e c t o r
A(1,1) = 1; % f i r s t n o d e
B(1) = 1; %
p = lagrangeweightfunction (x); % g e n e r a t e L i
p1 = polyderivative(p,1); % f i r s t d e r i v a t i v e
p2 = polyderivative(p,2); % s e c o n d d e r i v a t i v e
w = lagrangeweight(p,x(2:n-1)); % e v a l u a t e L a t n o d e s
w2 = lagrangeweight(p2 ,x(2:n-1)); % e v a l u a t e d2L/dx2 a t n o d e s
A(2:n-1,:) = w2 -2*w; % c o e f f i c i e n t f o r i n t e r i o r n o d e s
w1 = lagrangeweight(p1 ,x(n)); % e v a l u a t e dL/dx a t l a s t

% n o d e
A(n,:) = w1; % c o e f f i c i e n t f o r l a s t n o d e
y = A\B; % s o l v e f o r y
yr = cosh(sqrt (2)*(1-x))/cosh(sqrt (2)); % e x a c t s o l u t i o n
er = max(abs(yr -y));

The results for n = 4 are summarized in the following table

x y yE εy
0 1.0000 1.0000 0

0.25 0.7424 0.7425 9.3E-05
0.5 0.5783 0.5787 4.1E-04

0.75 0.4873 0.4881 7.7E-04
1 0.4580 0.4591 1.1E-03

Figure 11.8 shows the results of the grid sensitivity study that has been conducted.
Collocation method converges much faster than the finite difference method. However,
roundoff error becomes important around n = 10.

ε y

10-8

10-6

10-4

10-2

n
5 10 15

Figure 11.8: Grid sensitivity
study for Example 11.10

11.4. Collocation method 481

Collocation method can be easily extended to a nonlinear ODE. All nonlinear terms can be
linearized using Newton Raphson method. We will consider an example of nonlinear ODE now.

Example 11.11
Solve BVP from Example 11.8 y(2) = y4 − 0.5 subject to the conditions y(x = 0) = 1 and
y(1)(x = 1)= 0 using collocation method.
Solution :

The above equation has a non-linear term y4 and has to be linearized. Let us denote the
nonlinear term as S. The domain is discretized into n equal parts. The function value for
node 1 has been specified. The function y in the domain is defined as Lagrange polynomial
passing through all the nodes.

y= y0l0 + y1l1 + y2l2 +·· ·+ ynln

Then the equation for internal node i is given by

y0
d2l0

dx2

∣∣∣∣
xi

+·· ·+ yi

[
d2l i

dx2

∣∣∣∣
xi

−Si

]
+·· ·+ yn

d2ln

dx2

∣∣∣∣
xi

=−0.5

We apply Newton Raphson method to linearize S

Snew = Sold +4y3
old(ynew − yold)= 4y3

old ynew −3Sold

Then the nodal equations are given by

y0
d2l0

dx2

∣∣∣∣
xi

+·· ·+ yi

[
d2l i

dx2

∣∣∣∣
xi

−4y3
i,old yi,new

]
+·· ·+ yn

d2ln

dx2

∣∣∣∣
xi

=−0.5−3Si,old

At i = n, Neumann boundary condition is satisfied by differentiating the Lagrange
polynomial.

d y
dx

∣∣∣∣
xn

= dl0

dx

∣∣∣∣
xn

y0 + dl1

dx

∣∣∣∣
xn

y1 + dl2

dx

∣∣∣∣
xn

y2 +·· ·+ dln

dx

∣∣∣∣
xn

yn = 0

The system of linear equations is solved iteratively until convergence. A MATLAB program
has been written to solve the BVP using collocation method.

n = 6; % no o f n o d e s
x = [0:1/(n-1) :1]'; % n o d e s
A = zeros(n); % i n i t i a l i z e c o e f f i c i e n t m a t r i x
B = zeros(n,1); % i n i t i a l i z e f o r c e v e c t o r
A(1,1) = 1; % f i r s t n o d e
B(1) = 1; % D i r i c h l e t c o n d i t i o n
p = lagrangeweightfunction (x); % g e n e r a t e L i
p1 = polyderivative(p,1); % f i r s t d e r i v a t i v e
p2 = polyderivative(p,2); % s e c o n d d e r i v a t i v e
w2 = lagrangeweight(p2 ,x(2:n-1)); % e v a l u a t e d2L/dx2 a t n o d e s
w = lagrangeweight(p,x(2:n-1)); % e v a l u a t e L a t n o d e s
w1 = lagrangeweight(p1 ,x(n)); % e v a l u a t e dL/dx a t l a s t n o d e

482 Chapter.11 Boundary value problems (ODE)

count = 0; % i n i t i a l i z e i t e r a t i o n c o u n t
tol =1e-6; % t o l e r a n c e
res = 0; % r e s i d u a l
yo = ones(n,1); % i n i t i a l i z e y
while(count == 0 || res > tol) % l o o p f o r i t e r a t i o n

A(2:n-1,:) = w2; % i n t e r n a l n o d e s
for i=2:n-1

A(i,i)=A(i,i) -4*yo(i)^3;

end

B(2:n-1) = -3*yo(2:n-1) .^4 -0.5;

A(n,:) = w1; % l a s t n o d e
y = A\B; % s o l v e f o r y
res = sum(abs(yo -y));

yo = y;

count = count +1; % u p d a t e i t e r a t i o n c o u n t
end

The following table compares the result obtained using FDM and collocation method

x yFDM yc |yFDM − yc|
0 1.000000 1.000000 0.0E+00
0.1 0.977119 0.977075 4.4E-05
0.2 0.958354 0.958282 7.3E-05
0.3 0.943025 0.942934 9.1E-05
0.4 0.930603 0.930501 1.0E-04
0.5 0.920682 0.920572 1.1E-04
0.6 0.912946 0.912832 1.1E-04
0.7 0.907157 0.907040 1.2E-04
0.8 0.903140 0.903022 1.2E-04
0.9 0.900776 0.900657 1.2E-04
1 0.899995 0.899877 1.2E-04

For the present example, there is not much difference between the two methods.

Recollecting from earlier chapters on function approximation, higher order polynomial approxi-
mations are prone to round off errors. Also for equi-spaced nodes, the errors can be larger close
to the boundaries. As a remedy one can use Chebyshev nodes. Orthogonal polynomials can also
be used as basis functions leading to the Pseudo-spectral method. If the boundary conditions are
symmetric, Fourier series can be used to approximate the function y. Now we shall look at method
of weighted residuals, which would help us to understand different numerical methods used to
solve BVPs.

11.5 Method of weighted residuals
Consider the second order BVP

d2 y
dx2 = f (x, y, y(1)) (11.33)

11.5. Method of weighted residuals 483

over the interval 0≤ x ≤ 1. Another approach of treating the problem is to approximate y as

y= a0φ0 +a1φ1 +a2φ2 +·· ·+anφn (11.34)

where φi are the basis functions (polynomial, Fourier series etc.) used to approximate the
functions. The approximation should be such that the residual is minimum. Residual is defined as

R= d2 y
dx2 − f (x, y, y(1)) (11.35)

The reader must make a distinction between error and residual. Error arises from approximating
function y whereas residual comes from approximating the differential equation. For most
practical problems exact solutions do not exist and it would not be possible to directly calculate
the error. However as residual can be calculated with more ease, it can be used as an estimate for
accuracy. It is desirable that both residuals and errors are within tolerable limits. Solution to the
differential equation can be looked upon as an optimization problem where we look to minimize
the residual globally as well as locally through out the domain. The unknown coefficients ai of
the basis functions have to be determined such that the residual is a minimum. The method
resembles estimation of parameters using regression. The minimization procedure is achieved
using the following form ∫ 1

0
Wi(x)R(x)dx = 0; i = 0 to n (11.36)

where Wi(x) is a weighting function which is used to control the distribution of residual along
x. The number of weight functions is equal to the number of unknowns. The above operation
converts a differential equation into a system of linear equations which can be solved using
methods familiar to us. Some of the common weight functions are given below.

Collocation The weight function used in collocation method is Kronecker δ, a mathematical
function defined by

δ(x− xi)=
{

1 x = xi
0 otherwise (11.37)

If Kronecker δ is used as the weight function, the residual is equal to zero only at the nodes
or collocation points. We are not worried about the residuals at other points in the domain.
Hence, the equation to be solved becomes

δ(x− xi)R(x)= 0; i = 1 to n
or

R(xi)= 0; i = 1 to n (11.38)

FDM as MWR: Finite difference method can also be classified as Method of Weighted
residuals. We have already seen that FDM solves the governing equation at each of the
nodes. Equation 11.38 is another way of expressing FDM.

0 1 i n−1 n

W0 W1 Wi Wn−1 Wn

484 Chapter.11 Boundary value problems (ODE)

Galerkin methods: In Galerkin4 methods, the basis functions used to approximate the actual
function is used as weight functions. Hence Equation 11.36 becomes∫ 1

0
φiRdx i = 0 to n (11.39)

Galerkin methods form the basis of FEM which will be discussed later.
Method of moments: In this method, the weight functions are 1, x, x2, · · · , xn. Hence Equation

11.36 becomes ∫ 1

0
xiRdx i = 0 to n (11.40)

If a polynomial is used as weight function, the method of moments and Galerkin approach
are identical.

Least squares method: We have already encountered least squares method in Chapter 5
(regression). In the least squares method we minimize the square of the residual.

Minimize: I =
∫ 1

0
R2dx (11.41)

For a function to be minimum, the derivative of the function with respect to the variables
should be equal to zero.

∂I
∂ai

= 2
∫ 1

0

∂R
∂ai

Rdx = 0; i = 1,no of variables (11.42)

Hence, the weight function for a least square method is the derivative of the residual with

respect to the parameter ai i.e.
∂R
∂ai

.

Strong and weak forms of ODE: Strong form of an ODE is nothing but the differential equation
itself. FDM and collocation methods consider the strong form of the equation directly i.e. the
residual is forced to zero at nodes. On the other hand, methods using Galerkin, least squares
and moments as the weight functions are weak form representation of the ODE. As the name
suggests, the weak form of ODE weakly enforces the residual equation. The weak form tries to
satisfy the ODE on an average in the entire domain instead of satisfying the ODE at a few points.

Example 11.12
Solve y(2) = 2y with boundary conditions y = 1 at x = 0 and y(1) = 0 at x = 1 using method
of weighted residuals. Choose appropriate basis functions. Compare results obtained using
different weight functions.
Solution :

Let us select basis functions such that they satisfy the boundary conditions automatically.
On investigation we see that y can assume the form

y= 1+a1(2x− x2)+a2(2x− x2)2 +·· ·+an(2x− x2)n (11.43)

where n is the number of basis functions in the domain. The above description satisfies
the boundary conditions irrespective of the choice of parameters ai and number of basis

4Boris Grigoryevich Galerkin, 1871-1945, a Russian/Soviet mathematician and engineer

11.5. Method of weighted residuals 485

functions.
Kronecker δ as weight: Let us consider a single basis function for all our examples. Then
y= 1+a1(2x− x2). The residual is

δ(x− x1)R1 = y(2) −2y=−2a1 −2(1+a1(2x1 − x2
1)) = 0

−→ a1(2+4x1 −2x2
1) =−2

The method requires us to choose collocation point x1 where the weight is equal to 1. If the
point were to be chosen as x1 = 0.5 we get a1 = −0.571428 and for x1 = 1 we get a1 = −0.5.
Therefore we get different solutions based on the choice of the collocation point as indicated
in the Figure 11.9. From the figure it is evident that the residual is zero at the collocation
points. The reader must make a distinction between residual and error. Though the residual
is zero at the collocation points, error is non zero at these points. The solution may be further
improved by adding more number of collocation points.

Consider two collocation points x1 = 0.5 and x2 = 1. Then y= 1+a1(2x− x2)+a2(2x− x2)2.

R2 =−2−{
2+2(2x− x2)

}
a1 +

{
12x2 −24x+8−2(2x− x2)2

}
a2 = 0

The residuals have to be zero at these two collocation points and hence we obtain a system
of two linear equations. −3.5 −2.125

−4 −6

 a1
a2

=
 2

2

Solving these equations we get a1 = −0.62 and a2 = 0.08. The solution and the residual
have been plotted in Figure 11.9. We see that the solution has improved to a large extent
(maximum error of 0.0016, Table 11.2) and the residuals are also significantly smaller.
The choice of collocation points are important for the accuracy of the method. We have

y

0.4

0.5

0.6

0.7

0.8

0.9

1

x
0 0.2 0.4 0.6 0.8 1

 Exact
 x = 0.5
 x = 1
 x = 0.5 and 1

|R
|

0

0.2

0.4

0.6

0.8

1

x
0 0.2 0.4 0.6 0.8 1

 x = 0.5
 x = 1
 x = 0.5 and 1

Figure 11.9: Solution and residuals of weighted residuals method with weighing function taken as
Kronecker δ

seen approximating a function with Chebyshev nodes produces minimum errors. If the
collocation nodes are chosen as Chebyshev nodes, we get a1 =−0.627078 and a2 = 0.085511.
Method of moments: The weight function of moments is xi. For two basis functions,
Equation 11.36 reduces to∫ 1

0
R2dx −→ 2+3.33333a1 +1.06667a2 = 0

486 Chapter.11 Boundary value problems (ODE)

∫ 1

0
xR2dx −→ 1+1.83333a1 +1.73333a−2= 0

On solving we get a1 =−0.627906 and a2 = 0.0872093.
Galerkin method: The weighing function for Galerkin method is the basis function itself.
For n = 2, we have∫ 1

0
(2x− x2)R2dx −→ 1.3333+2.4a1 +1.9809a2 = 0∫ 1

0
(2x− x2)2R2dx −→ 1.0667+1.9810a1 +2.0317a2 = 0

On solving we get a1 =−0.626016 and a2 = 0.085366.
Least squares: The weighing function for least squares is derivative of the residual. Let
us first consider n = 2. The derivative of the residual is given by

∂R2

∂a1
=−2−2(2x− x2);

∂R2

∂a2
= 12x2 −24x+8−2(2x− x2)2;

Hence the least square weighted residual method reduces to∫ 1

0

∂R2

∂a1
R2dx −→ 6.6667+11.4667a1 +6.0952a2 = 0∫ 1

0

∂R2

∂a2
R2dx −→ 2.1333+6.0952a1 +19.3016a2 = 0

Solving for the parameters we get a1 =−0.6280 and a2 = 0.0878.

The results of all the four methods for two basis functions have been summarized in the
table below

Table 11.2: Comparison of di�erent weighting methods

Method a1 a2 εy,max |Rmax|
Collocation (x=0.5 and 1) -0.620000 0.080000 1.60E-03 1.20E-01
Collocation (Chebyshev) -0.627078 0.085511 9.55E-04 6.18E-02
Moments -0.627907 0.087209 6.71E-04 4.65E-02
Galerkin -0.626016 0.085366 2.51E-04 6.50E-02
LS -0.628073 0.087813 6.41E-04 4.14E-02

Figure 11.10 shows the distribution of residuals for the different methods considered.
From these results the following conclusions emerge

• There is little to choose between different methods applied to the differential equation
considered in this example. There may be differential equations where choice of
weightage function is crucial.

• Accuracy of collocation method depends on the choice of points.
• Collocation method is the easiest to apply. Galerkin and Least square methods

involve elaborate algebra and may be difficult when n is large. Nevertheless, they
are powerful methods and are often used in engineering problems

11.6. Finite element method 487

|R
|

0

0.02

0.04

0.06

0.08

0.1

0.12

x
0 0.2 0.4 0.6 0.8 1

Collocation (x=0.5 and 1)
Collocation (chebyshev)
Galerkin
Moments
Least squares Figure 11.10: Comparison of

residuals for di�erent weight
schemes

The above exercise is only of academic interest to demonstrate different aspects of MWR. In
the example considered, basis functions were chosen such that the boundary conditions are
automatically satisfied. Formulating such basis functions may be difficult for general problems.
Similar to collocation method discussed in Section 11.4, Galerkin and least squares approach can
also be applied. The algebra involving these methods are much more demanding. Interested
readers are encouraged to refer to more advanced books.

Sub domain methods
As discussed in chapters on interpolation and integration, methods applied over the entire range
have limitations. On the other hand, it would be advantageous to divide the domain into a large
number of smaller domains or sub domains and solve the equations over them individually. This
allows the use of adaptive methods (distribution of nodes according to function variation). The
methods discussed until now i.e. collocation, Galerkin, moments and least squares can also be
applied over smaller domains. Collocation method applied over smaller domain reduces to finite
difference method which we have already discussed. Other common tools for solving differential
equations are finite volume method and finite element method. We will briefly introduce Galerkin
FEM and FVM.

11.6 Finite element method
FEM is also a weighted residual method. FEM was initially developed for solving problems

in structural mechanics, but has slowly found applications in other areas of engineering. In this
section we will discuss application of Galerkin FEM to a BVP.

11.6.1 Elements

In FEM, the entire domain is discretized into large number of sub domains called elements. The
function y is defined within each element by basis functions. In FEM literature, basis functions are
referred to as shape functions denoted as Ni. We will use this notation here. If the shape function
is linear, the element contains two nodes where as a quadratic element contain three nodes.

488 Chapter.11 Boundary value problems (ODE)

Linear element Quadratic element

Cubic element

Composite quadrature rules also divide the domain into several segments. Each segment of
trapezoidal rule contains two nodes (linear element), Simpson’s 1/3 rule has 3 nodes (a quadratic
element). Similar to composite quadrature rules, the nodes on the boundaries of the element are
shared between two or more elements.

Domain discretized using linear elements

h

e1 e2 e3 e4 e i e i+1 en−1

i = 0 1 2 3 i−1 i i+1 n−2 n−1 n

en

Domain discretized using quadratic elements

e1

e2

e(i+1)/2

en/2

0 1 2 3 4 i−1 i i+1 n−2 n−1 n

e refers to element, 0 and n are boundary nodes.

The shape function for a linear element is same as Lagrange polynomial discussed in interpola-
tion chapter

y= Ni yi +Ni+1 yi+1 for xi ≤ x ≤ xi+1

Ni = x− xi+1

xi − xi+1
Ni+1 = x− xi

xi+1 − xi

Similarly shape function for a quadratic element would be

y = Ni yi +Ni+1 yi+1 +Ni+2 yi+2 for xi ≤ x ≤ xi+2

Ni(x) = (x− xi+1)(x− xi+2)
(xi − xi+1)(xi − xi+2)

Ni+1(x) = (x− xi)(x− xi+2)
(xi+1 − xi)(xi+1 − xi+2)

Ni+2(x) = (x− xi)(x− xi+1)
(xi+2 − xi)(xi+2 − xi+1)

Elements with other basis functions such as cubic spline, Hermite polynomial etc. can also be
used.

11.6.2 Weightage function

The weightage function is defined locally for each element. Weightage function used in Galerkin
method is same as the shape function for the element. For a domain discretized by linear elements,
the weightage function has been illustrated in the following figure.

11.6. Finite element method 489

1

i−1 i i+1 i+2i−2

e i−1 e i e i+1 e i+2

Wi−1 Wi Wi+1

The weightage function for ith node is given by

Wi =

x− xi−1

xi − xi−1
= N i

i for ith element

x− xi+1

xi − xi+1
= N i+1

i for i+1th element

The notation followed is N j
i , i refers the node number where as j refers to element number. The

residual equation for ith node would be∫ i+1

i−1
WiRdx =

∫ i

i−1
WiRdx︸ ︷︷ ︸
e i

+
∫ i+1

i
WiRdx︸ ︷︷ ︸

e i+1

= 0 (11.44)

Node i is shared between two elements e i and e i+1. Hence, the residual equation contains
contributions from each element shared by the node. Effectively, the residual equations can be
applied over each element independently and later assembled together. This is same as what is
done for composite quadrature rules, only that function values at the nodes are unknown. Hence,
we obtain a system of linear equations which have to be solved for function values at the nodes.
First, let us apply FEM to a second order BVP.

11.6.3 Second order ODE with linear element
Let us consider the differential equation y(2) −2y = 0 with boundary conditions y(x = 0) = 1 and

y(1)(x = 1)= 0. The domain is discretized into n equispaced linear elements.

h

e1 e2 e3 e i e i+1 en−1

i = 0 1 2 3 i−1 i i+1 n−2 n−1 n

en

e refers to element, 0 and n are boundary nodes.

The shape function for a linear element would be

y= x− xi+1

xi − xi+1
yi + x− xi

xi+1 − xi
yi+1 for xi ≤ x ≤ xi+1

y= N i+1
i yi +N i+1

i+1 yi+1

1

N i+1
i N i+1

i+1

i i+1
Element i+1

490 Chapter.11 Boundary value problems (ODE)

where N i
j is the shape function for jth node for ith element. The shape function can be represented

in terms of local coordinates (Equation 5.15) as

y= 1−ξ
2

yi + 1+ξ
2

yi+1 for −1≤ ξ≤ 1

The first derivative of the shape function can be written as

dN j
i

dx
=− 1

xi+1 − xi
;

dN j
i+1

dx
= 1

xi+1 − xi
;

Let us apply residual equations to an internal node i∫ xi+1

xi−1

WiRdx =
∫ xi

xi−1

N i
i (y(2) −2y)dx+

∫ xi+1

xi

N i+1
i (y(2) −2y)dx = 0∫ xi

xi−1

N i
i y(2)dx+

∫ xi+1

xi

N i+1
i y(2)dx︸ ︷︷ ︸

I1

−2
∫ xi

xi−1

N i
i ydx−2

∫ xi+1

xi

N i+1
i ydx︸ ︷︷ ︸

I2

= 0

The residual equations have two integrals corresponding to y(2) and y. Product of two functions
Ni and y(2) can be rewritten as

d
dx

(
Ni y(1)

)
= Ni y(2) + dNi

dx
y(1)

or Ni y(2) = d
dx

(
Ni y(1)

)
− dNi

dx
y(1)

Substituting the above into I1 gives

I1 =
∫ xi

xi−1

{
d
dx

(
N i

i y(1)
)
− dN i

i
dx

y(1)

}
dx+

∫ xi+1

xi

{
d
dx

(
N i+1

i y(1)
)
− dN i+1

i
dx

y(1)

}
dx

= N i
i y(1)

∣∣∣xi

xi−1
+ N i+1

i y(1)
∣∣∣xi+1

xi
− yi − yi−1

(xi − xi−1)2
(xi − xi−1)+ yi+1 − yi

(xi+1 − xi)2
(xi+1 − xi)

= y(1)
e i

(xi)− y(1)
e i+1

(xi)− yi − yi−1

xi − xi−1
+ yi+1 − yi

xi+1 − xi

The term y(1)
e i

(xi)− y(1)
e i+1

(xi) is the difference between the left hand side and right hand
side first derivatives at xi. As we have used piecewise linear elements which have zero
order continuity (continuous only in y) this term is non-zero (unless the solution itself is
linear). Hence, the above term corresponds to the residual and is neglected in numerical
computation.5 The magnitude of the residual decreases as the grid spacing reduces. As
the nodes are uniformly spaced we get

I1 = yi+1 −2yi + yi−1

h
5The term y(1)

e i − y(1)
e i+1 can be reduced to zero by using a basis function having first order continuity i.e.

continuous in y(1) such as cubic spline or Hermite interpolating polynomial

11.6. Finite element method 491

The above equation has a semblance to central difference formula. Now we shall
determine the integral I2.

I2 = 2
∫ xi+1

xi

N i+1
i (N i+1

i yi +N i+1
i+1 yi+1)dx+2

∫ xi

xi−1

N i
i (N

i
i yi +N i

i+1 yi+1)dx

= (xi+1 − xi)
(

2yi

3
+ yi+1

3

)
+ (xi − xi−1)

(
2yi

3
+ yi−1

3

)
= h

3
(yi−1 +4yi + yi+1)

The above expression resembles Simpson’s 1/3 rule. Assembling integrals I1 and I2 we
have

yi+1 −2yi + yi−1

h
− h

3
(yi−1 +4yi + yi+1)= 0(

1
h
− h

3

)
yi+1 −

(
2
h
+ 4h

3

)
yi +

(
1
h
− h

3

)
yi−1

Boundary conditions: Let us apply the above procedure for boundary node n. It has to
be noted that the boundary node is associated with a single element.∫ xn

xn−1

WnRdx =
∫ xn

xn−1

Nn
n (y(2) −2y)dx = 0

y(1)
n − yn − yn−1

h
− h

3
(yn−1 +2yn)= 0

One must concentrate on the term y(1)
n which indicates the derivative at the boundary.

Hence, both Neumann and Robin boundary conditions specified at the boundary are
represented. Hence, FEM naturally takes into account the boundary conditions. In the
present case y(1)

n = 0. Hence we have the discretized equation for node n as(
1
h
− h

3

)
yn−1 −

(
1
h
+ 2h

3

)
yn = 0

The system of equations may be written in matrix form as

1 0 0 · · · · · · 0
a′ −2a a′ · · · · · · 0
0 a′ −2a a′ · · · 0
· · · · · · · · · · · · · · · · · ·
0 0 · · · a′ −2a a′

0 0 · · · 0 a′ −a

y0
y1
y2
· · ·

yn−2
yn−1
yn

=

1
0
· · ·
0
0

 (11.45)

where a′ =
(

1
h
− h

3

)
and a =

(
1
h
+ 2h

3

)
. A MATLAB program has been provided below to

carry out the solution using TDMA.

492 Chapter.11 Boundary value problems (ODE)

n = 160; % number o f n o d e s
x = [0:1/(n-1) :1]'; % n o d e s
a = zeros(n,1); % TDMA c o e f f i c i e n t n o d e i
a1 = zeros(n,1); % TDMA c o e f f i c i e n t n o d e i +1
a2 = zeros(n,1); % TDMA c o e f f i c i e n t n o d e i −1
b = zeros(n,1); % TDMA c o n s t a n t
a(1) = 1; % f i r s t n o d e
b(1) = 1; % D i r i c h l e t c o n d i t i o n
for i=2:n-1 % c o e f f i c i e n t s f o r

h1 = x(i)-x(i-1); % i n t e r i o r n o d e s
h2 = x(i+1)-x(i);

a1(i) = 1/h2 -h2/3;

a2(i) = 1/h1 -h1/3;

a(i) = 1/h2+2*h2/3 + 1/h1+2*h1/3;

end

h1 = x(n)-x(n-1); % l a s t n o d e
a2(n) = 1/h1 -h1/3; % Neumann b o u n d a r y c o n d i t i o n
a(n) = 1/h1+2*h1/3;

y = tdma(a2 ,a,a1 ,b); % s o l v e u s i n g TDMA

It is a good practice to apply the residual equations to every element and assemble the
matrix equations together. This becomes important for multidimensional problems when
a node is shared by more than two elements. The residual equations applied to the
element i+1 can be represented as∫ xi+1

xi

 N i+1
i (y(2) −2y)

N i+1
i+1 (y(2) −2y)

dx = 0

which on integration yields −y(1)(xi) 0
0 y(1)(xi+1)

+ 1
h

 −1 1
1 −1

 yi
yi+1

− h
3

 2 1
1 2

 yi
yi+1

Node i is shared between elements i and i+1. We would get local elemental matrices of
size 2 of the form −ai a′

i
a′′

i+1 −ai+1

 yi
yi+1

=
 bi

bi+1

All the local matrices are then to be assembled together to form a global matrix as
illustrated below

i−1 i i+1

node i−1 · · ·+ ai
i−1 a

′ i
i−1

node i a
′′ i
i ai

i + ai+1
i a

′ i+1
i

node i+1 a
′′ i+1
i+1 ai+1

i+1 +·· ·

Element i Element i+1

11.6. Finite element method 493

Example 11.13
Solve the differential equation in Example 11.9 using FEM approach.
Solution :

The differential equation to be solved is

y(2) + 1
x

y(1) − y= 0

with boundary conditions y(x = 1) = 1 and y(1)(x = 2) = 0. The domain is discretized into n
equal linear elements, the number of nodes being n+1 (0 to n). Let us consider an element
i+1 containing nodes i and i+1, residual equations for which can be written as

∫ xi+1

xi

N i+1

i (y(2) + 1
x

y(1) − y)

N i+1
i+1 (y(2) + 1

x
y(1) − y)

dx = 0

I1 I2 I3

The residual equation is composed of three integrals, of which two integrals has already
been evaluated.

I1 =
 −y(1)(xi) 0

0 y(1)(xi+1)

+ 1
h

 −1 1
1 −1

 yi
yi+1

I3 = h

6

 2 1
1 2

 yi
yi+1

Again, for all the interior nodes we neglect the term related to y(1). At the boundary at x = 2,
we take into account of the Neumann boundary condition. In the present case, y(1)(x = 2)= 0.
Now let us concentrate on I2.

I2 =
∫ xi+1

xi

1
x

N i+1

i

N i+1
i+1

dN i+1
i /dx dN i+1

i+1 /dx

dN i+1
i /dx dN i+1

i+1 /dx

yi

yi+1

dx

We will represent the above equation in local coordinates

x = 1−ξ
2

xi + 1+ξ
2

xi+1 = xi+1 + xi

2
+h

ξ

2

The above integral reduces to

I2 =
∫ 1

−1

1
xi+1 + xi +hξ

1−ξ

1+ξ

−0.5 0.5

−0.5 0.5

yi

yi+1

dξ

Essentially we have to evaluate two integrals which can be evaluated analytically (in
general one may use numerical quadrature)

I4 =
∫ 1

−1

1−ξ
xi+1 + xi +hξ

dξ = 2xi+1 log[xi+1 + xi +hξ]−hξ
h2

∣∣∣∣1−1
= log

(
xi+1

xi

)
2xi+1

h2 − 2
h

494 Chapter.11 Boundary value problems (ODE)

I5 =
∫ 1

−1

1+ξ
xi+1 + xi +hξ

dξ =− 2xi log(xi+1 + xi +hξ)−hξ
h2

∣∣∣∣1−1
= − log

(
xi+1

xi

)
2xi

h2 + 2
h

Therefore the integral I2 becomes

I2 = 1
2

 −I4 I4
−I5 I5

 yi
yi+1

All elemental equations have to be assembled together to get a global set of linear equations.

1 0 0 · · · · · · · · · 0
a′′

1 −a1 a′
1 0 · · · · · · 0

0 a′′
2 −a2 a′

2 0 · · · 0

· · · · · · . . .
. . .

. . . · · · · · ·
0 0 0 a′′

i −ai a′
i · · ·

· · · · · · · · · · · · . . .
. . . · · ·

0 0 0 0 · · · a′′
n −an

y0
y1
y2
· · ·
yi
· · ·

yn−1
yn

=

1
0
0
· · ·
0
· · ·
0

where a′′
i = 1

h
− h

6
− I i

5

2
, a′

i =
1
h
− h

6
+ I i+1

4
2

and ai = 2
h
+ h

3
− I i

5

2
+ I i+1

4
2

. I i
5 and I i+1

4 are

integrals calculated for ith and i+1th elements respectively. The system of linear equation
is tridiagonal and we can solve the system of linear equations using TDMA. A MATLAB
program has been written below to solve the ODE.

n = 11; % no o f n o d e s
x = [1:1/(n-1) :2]'; % n o d e s
a = zeros(n,1); % TDMA c o e f f i c i e n t n o d e i
a1 = zeros(n,1); % TDMA c o e f f i c i e n t n o d e i +1
a2 = zeros(n,1); % TDMA c o e f f i c i e n t n o d e i −1
b = zeros(n,1); % TDMA c o n s t a n t
a(1) = 1; % f i r s t n o d e
b(1) = 1;

for i=1:n-1 % d e t e r m i n e e l e m e n t a l e q u a t i o n s
h = x(i+1)-x(i); % l e n g t h o f e l e m e n t
% I 4 and I 5 and i n t e g r a l s a s i n s o l u t i o n
I4 = log(x(i+1)/x(i))*2*x(i+1)/h^2 - 2/h;

I5 = -log(x(i+1)/x(i))*2*x(i)/h^2 + 2/h;

% E l e m e n t s a r e s t o r e d i n TDMA f o r m a t
if(i~=1) % f u n c t i o n i s known a t n o d e 1
a(i) = a(i)+1/h +h/3 + I4/2;

a1(i) = 1/h -h/6 + I4/2;

end

a(i+1) = a(i+1) +1/h +h/3 - I5/2;

a2(i+1) = 1/h -h/6 - I5/2;

end

y = tdma(a2 ,a,a1 ,b); % s o l u t i o n u s i n g TDMA
% n o t e i n d i c e s o f n o d e s i n p r o g r a m and t e x t a r e n o t same b u t

% i d e n t i c a l

The following table compares the result obtained using FDM (Example 11.9) and FEM.
The solutions from FEM and FDM closely agree with each other! As the exact solution for

11.6. Finite element method 495

the above equation is not written down (it involves special functions), we have performed
grid sensitivity study to ascertain the convergence of the solution to the exact solution. The
derivative of the function value at x = 1 has been taken as the marker. The derivative itself
is calculated using three point forward difference formula.

x yFDM yFEM |yFDM − yFEM |
1.0 1 1 0
1.1 0.9058 0.9056 1.5E-04
1.2 0.8284 0.8282 2.2E-04
1.3 0.7652 0.7650 2.5E-04
1.4 0.7140 0.7138 2.5E-04
1.5 0.6733 0.6731 2.1E-04
1.6 0.6417 0.6415 1.6E-04
1.7 0.6182 0.6181 9.7E-05
1.8 0.6021 0.6021 1.9E-05
1.9 0.5927 0.5928 6.9E-05
2.0 0.5896 0.5898 1.7E-04

Grid sensitivity study has been summarized below as a table. From the above analysis,
there is no significant difference between FDM and FEM. One can improve the order of
accuracy of FEM using higher order elements such as quadratic and cubic elements. This
is equivalent to using higher order finite difference formulae in FDM.

No of y(1)(x = 1)
elements FDM FEM

10 -2.0529 -2.0566
20 -2.0685 -2.0695
40 -2.0730 -2.0733
80 -2.0742 -2.0743

160 -2.0745 -2.0745
320 -2.0746 -2.0746

11.6.4 Finite element method applied to structural problems

Our discussion on FEM would be incomplete without discussing application of FEM
to structural problems. Like before, the domain is discretized into elements but the
definition of the residual equations is based on principle of minimum potential energy.
We shall consider a simple case where strain and stress are linearly related.

Background

Consider the following spring mass system subject to a load F as shown. We are
interested in describing the new equilibrium position in the presence of the load.

496 Chapter.11 Boundary value problems (ODE)

No load
position

Loaded
position

x

k
k

m
m F

kx

The change in the equilibrium position changes
the potential energy of the system.

PE = 1
2

kx2 −Fx

The new equilibrium position is such that the
potential energy of the system is minimum.

dPE
dx

= kx−F = 0

The same principle known as the principle of minimum potential energy can be applied
to the analysis of structures. At equilibrium position the potential energy of the system
would be minimum.

Now let us consider a simple block having uniform cross section area A and length l
subjected to axial load.

F

u

The block elongates by an amount u (displacement) due to the load. For an elastic
homogeneous material, stress σ and strain ε are linearly related, σ = Eε. E is known
as the Young’s modulus. Strain ε is the ratio of elongation u to the length of the block L
i.e. ε= u/L. The stress acting on the member is σ= F/A. Then

F
A

= E
u
L

→ AE
L︸︷︷︸
k

u−F = 0

Hence the above configuration can be treated as an elongated spring subjected to an axial
load. The potential energy for a structural system is given by

PE = strain energy−Fu

The strain energy is given by
∫

V

σε

2
dV where V refers to the volume of the block. Then

the potential energy of the block would be

PE = 1
2
σεAL−Fu = 1

2
Eε2 AL−Fu

11.6. Finite element method 497

The strain can be represented in the differential form as

ε= ∂u
∂x

and hence the strain energy for an axially loaded block is given by

SE = 1
2

∫
A(x)E

(
∂u
∂x

)2
dx

FEM based on principle of minimum potential energy

Now we shall try to understand the application of FEM to an axially loaded homoge-
neous block with uniform area of cross section. We shall discretize the block into n linear
elements.

h

e1 e2 e3 e4 e i e i+1 en−1

i = 0 1 2 3 i−1 i i+1 n−2 n−1 n

en

Then the total potential energy for the entire domain can be written as

PE = 1
2

∫ 1

0
A(x)E

(
∂u
∂x

)2
dx+

no of nodes∑
j

F ju j

where F j and u j are the loads and displacement at node j. As the elements are linear, the
total potential energy can be written as

PE =
no of elements∑

i

∫
e

AE
2

(
u2 −u1

x2 − x1

)2
dx+

no of nodes∑
j

F ju j

(the indices u1 and u2 are local indices for an element). Principle of minimum potential
energy states that at equilibrium, the potential energy is minimum. Hence we have
an optimization problem on hand. Hence, the minimum value can be determined by
differentiating the potential energy with respect to the unknown displacements u. For
an internal node j, on simplification, we have

∂PE
∂u j

= AE
2

(u j −u j−1

x j − x j−1
+ u j+1 −u j

x j+1 − x j

)
−F j = 0

Now, we have system of equations which can be solved by methods familiar to us.

As we did earlier, it would be easier to handle element by element. Let us consider an
element i.

u1 u2F1 F2
The index of the elements are local

498 Chapter.11 Boundary value problems (ODE)

u1 and u2 are the displacements at the two nodes and F1 and F2 are the two forces acting
on the nodes. The strain energy corresponding to the linear element

SE =
∫ x2

x1

AE
2

(
u2 −u1

x2 − x1

)2
dx = AE

2

(
u2 −u1

x2 − x1

)2
(x2 − x1)= AE

2
u2

2 −2u1u2 +u2
1

x2 − x1

Similarly the work done by force F1 and F2 are equal to F1u1 and F2u2. Thus the potential
energy of element i is given by

PE = AE
2

u2
2 −2u1u2 +u2

1

x2 − x1
−F1u1 −F2u2

Note the PE corresponds to a single element and the total potential energy. To minimize
PE, we shall consider term by term i.e. SE and F and differentiate these terms with
respect to the unknowns u1 and u2.

∂SE
∂u1

= AE
u2 −u1

x2 − x1

∂w
∂u1

=−F1

∂SE
∂u2

= AE
u1 −u2

x2 − x1

∂w
∂u2

=−F2

Representing in the matrix form we have

∂SE
∂u

= AE
x2 − x1

 1 −1
−1 1

︸ ︷︷ ︸
K

 u1
u2

 ;
∂w
∂u

=
 F1

F2

︸ ︷︷ ︸
F

The matrix K is referred to as the stiffness matrix and the vector F is referred as force
vector in FEM (the name is derived from the analogy with springs). The above equations
are applicable for an element. We should assemble all the local elemental equations as
discussed earlier to obtain a set of linear equations of the form Ku−F = 0. We will take
up a simple example now.

Example 11.14
Determine the displacements at node 2 and 3 for the stepped block shown below.

AE/L = 2 AE/L = 1

L

e1 e2

L

F=11 2 3

11.6. Finite element method 499

Solution :
Element 1
Displacement at node 1 is zero. Then the nodal equations for node 2 is given by

2(u2 −u1)

Element 2
The nodal equations are

node 2 u2 −u3

node 3 u3 −u2 −1

Assembling the elemental equations we have

u1 = 0

−2u1 +3u2 −u3 = 0

0u1 −u2 +u3 = 1

On solving the above set of equations we get u2 = 0.5 and u3 = 1.5.

Another example involving a tapered block subject to axial load is considered now.

Example 11.15
A tapered block is subjected to an axial load. Determine the elongation of the tapered block.

F = 100 N

L

x = 0 x = 1 AE = (1−0.5x)×105 m−1

L = 1 m

Solution :
Exact solution It can be shown that the total elongation of the tapered block is given by

u =
∫ 1

0

F
AE

dx =
∫ 1

0

10−3

1−0.5x
dx = −0.002log(1−0.5x)|10 = 0.00138629

FEM solution We shall discretize the tapered block into n elements. Consider ith element

u1 u2F1 F2
The index of the elements are local

500 Chapter.11 Boundary value problems (ODE)

Then the elemental equation would be

PE =
∫ x2

x1

AE
2

(
u2 −u1

x2 − x1

)2
dx−F1u1 −F2u2

= 105[1−0.25(x2 + x1)]
(u2 −u1)2

x2 − x1
−F1u1 −F2u2

Differentiating the potential energy with respect to the unknown displacement we get

K
 1 −1

−1 1

 u1
u2

−
 F1

F2

where K = 105[1−0.25(x2 + x1)]

x2 − x1
. The displacement at x = 0 is 0. On assembling all the

elemental equations we get system of linear equation of the form

1 0 0 · · · 0 0 0

−K1 K1 +K2 −K2 · · · 0 0 0
· ·
0 0 0 · · · −Kn−1 Kn−1 +Kn −Kn
0 0 0 · · · 0 −Kn Kn

u0
u1
u2
· · ·

un−2
un−1
un

=

0
0
· · ·
0

100

The above equation can be solved using TDMA and a MATLAB program has been written
to solve the same.

n=11; % no o f n o d e s
x=0:1/(n-1) :1; % n o d e s
a = zeros(n,1); % TDMA c o e f f i c i e n t s a
a1 = zeros(n,1); % TDMA c o e f f i c i e n t s a ’
a2 = zeros(n,1); % TDMA c o e f f i c i e n t s a ’ ’
b = zeros(n,1); % TDMA c o e f f i c i e n t s b
a(1) = 1; % f i r s t n o d e
for i=1:n-1 % e l e m e n t b y e l e m e n t c a l c u l a t i o n s

K = 10^5*(1 -0.25*(x(i)+x(i+1)))/(x(i+1)-x(i));

if(i~=1) %
a(i) = a(i) + K; a1(i) = K;

end

a(i+1) = K; a2(i+1) = K;

end

d(n) = 100; % a x i a l l o a d l a s t n o d e
u = tdma(a2 ,a,a1 ,d); % s o l v e f o r d e f l e c t i o n u s i n g TDMA

Using 11 nodes, the total elongation of the block is 0.00138567 which is close to the exact
solution.

Now we shall look at a third example related to bending of beams.

Example 11.16
Determine the deflection of the beam at the free end of a cantilever beam of length L = 1 m for

11.6. Finite element method 501

the following configurations.

Case 1 Concentrated load
p = 500 N

Case 2 Uniform loading of w =−100N/m

Use EI = 100000 N/m2.
Background :
The principle of minimum potential energy can be applied to beams as well. We have
already introduced some concepts on beam deflection earlier. Now, consider a small section
of the beam subjected to bending moments and shear forces.

M1 M2

V1 V2

y

x V1 and V2 are the shear forces acting
at nodes and M1 and M2 are the
bending moments at the nodes.

The strain for a beam element is given by

ε=−y
d2u
dx2

Then the strain energy for a beam element would be

SE = 1
2

∫
V

E
(
y

d2u
dx2

)2

dAdx = 1
2

∫ x2

x1

E
(

d2u
dx2

)2 [∫
A

y2dA
]

︸ ︷︷ ︸
I

dx = 1
2

∫ x2

x1

EI
(

d2u
dx2

)2

dx

I is the moment of inertia of the beam cross-section. EI represents the flexural rigidity of
the beam. The work done by the external forces V1 and V2 are V1u1 and V2u2 respectively.
Similarly, the work done by the bending moments M1 and M2 are given by M1θ1 and M2θ2

respectively. θ is equal to
du
dx

. Hence the potential energy of the small section is given by

PE = 1
2

∫ x2

x1

EI
(

d2u
dx2

)2

dx−V1u1 −V2u2 −M1θ1 −M2θ2

To apply FEM, we cannot discretize the domain using linear elements. Also, as the strain
energy is proportional to the second derivative, we should have at least first order continuity
(first derivative is continuous) at the nodes. In interpolation chapter, we have considered
two curves which have first order continuity at the nodes viz. Hermite polynomial and cubic
spline. We shall use Hermite polynomial as the interpolation polynomial.

M1 M2

V1 V2

1 2

502 Chapter.11 Boundary value problems (ODE)

The Hermite polynomial equation for a domain between 0 ≤ ξ ≤ 1 (Equation 5.55) is given
by

u(ξ) = u1 (2ξ3 −3ξ2 +1)︸ ︷︷ ︸
Nu,1(ξ)

+u2 (−2ξ3 +3ξ2)︸ ︷︷ ︸
Nu,2(ξ)

+θ1 h(ξ3 −2ξ2 +ξ)︸ ︷︷ ︸
Nθ,1(ξ)

+θ2 h(ξ3 −ξ2)︸ ︷︷ ︸
Nθ,2(ξ)

where h = x2 − x1. The second derivative
d2u
dξ2 can be written as

d2u
dξ2 = u1N(2)

u,1 +u2N(2)
u,2 +θ1N(2)

θ,1 +θ2N(2)
θ,2

= u1(12ξ−6)+u2(−12ξ+6)+θ1h(6ξ−4)+θ2h(6ξ−2)

The strain energy in the local coordinates is

SE = EI
2h3

∫ 1

0

(
d2u
dξ2

)2

dξ

As the potential energy of the beam element has to be minimum, we differentiate the
potential energy with respect to the unknowns u1, u2, θ1 and θ2 to get

EI
h3

∫ 1

0

N(2)
u,1N(2)

u,1 N(2)
u,1N(2)

u,2 N(2)
u,1N(2)

θ,1 N(2)
u,1N(2)

θ,2

N(2)
u,2N(2)

u,1 N(2)
u,2N(2)

u,2 N(2)
u,2N(2)

θ,1 N(2)
u,2N(2)

θ,2

N(2)
θ,1N(2)

u,1 N(2)
θ,1N(2)

u,2 N(2)
θ,1N(2)

θ,1 N(2)
θ,1N(2)

θ,2

N(2)
θ,2N(2)

u,1 N(2)
θ,2N(2)

u,2 N(2)
θ,2N(2)

θ,2 N(2)
θ,2N(2)

θ,2

u1

u2

θ1

θ2

dx−

V1

V2

M1

M2

This can be further simplified to

EI
h3

12 −12 6h 6h

−12 12 −6h −6h

6h −6h 4h2 2h2

6h −6h 2h2 4h2

u1

u2

θ1

θ2

−

V1

V2

M1

M2

All the local elemental equations are assembled together to form a set of linear equations
and are solved for the unknowns u and θ.
Solution :
Case 1 Exact solution for the present case is

u =

px2

6EI
(1.5− x) for 0< x < 0.5

p
48EI

(3x−0.5) for 0.5< x < 1

Hence, we should expect the FEM solution to be exact. We shall discretize the domain into
two elements, h = 0.5.

M1 = 0 M2 = 0 M3 = 0

V1 = 0 V2 =−500 N V3 = 0
1 2 3

11.6. Finite element method 503

The boundary conditions are u1 = 0 and θ1 = 0. Now let us write down the elemental
equations.
Element 1

EI
h3

 −12 12 −6h −6h

6h −6h 2h2 4h2

u1

u2

θ1

θ2

Element 2

EI
h3

12 −12 6h 6h

−12 12 −6h −6h

6h −6h 4h2 2h2

6h −6h 2h2 4h2

u2

u3

θ2

θ3

Combining the two elemental equations

EI
h3

1 0 0 0 0 0

−12 24 −12 −6h 0 6h

0 −12 12 0 −6h −6h

0 0 0 1 0 0

6h 0 −6h 2h2 8h2 2h2

0 6h −6h 0 2h2 4h2

u1

u2

u3

θ1

θ2

θ3

−

0

−500

0

0

0

0

= 0

On solving we get u2 = −2.083×10−4 m, u3 = −5.208×10−4 m, θ2 = −6.25×10−4 rad and
θ3 =−6.25×10−4 rad.

It can be shown that the numerical solution is the same as the exact solution.
Case 2 The exact solution for the present configuration is given below.

u = wx2

24EI
(
x2 +6L2 −4Lx

)
The strain energy for the present case remains the same as presented earlier. However, we
have to consider the work done by the uniform loading on the beam. Consider an element
subjected to uniform loading

w(x)

1 2

=⇒
M1 M2

V1 V2

1 2

Then the work done by uniform loading is

W = h
∫ 1

0
w(ξ)

(
Nu,1u1 +Nu,2u2 +Nθ,1θ1 +Nθ,2θ2

)
dξ

504 Chapter.11 Boundary value problems (ODE)

= h
(

w
2

u1 + w
2

u2 + wh
12

θ1 − wh
12

θ2

)
The above equation is equivalent to shear force and bending moments acting at the two
nodes. Differentiating the above to minimize the potential energy we get the elemental
equations as

EI
h3

12 −12 6h 6h

−12 12 −6h −6h

6h −6h 4h2 2h2

6h −6h 2h2 4h2

u1

u2

θ1

θ2

−

wh
2

wh
2

wh2

12

−wh2

12

First let us discretize the beam into two equal elements. The stiffness matrix for the beam
would remain the same and only the force vector would change as below.

EI
h3

1 0 0 0 0 0

−12 24 −12 −6h 0 6h

0 −12 12 0 −6h −6h

0 0 0 1 0 0

6h 0 −6h 2h2 8h2 2h2

0 6h −6h 0 2h2 4h2

u1

u2

u3

θ1

θ2

θ3

−

0

−50

−25

0

0

2.08333

= 0

Solving the above we get u1 =−4.43×10−5 m, u2 =−1.25×10−4 m, θ1 =−1.458×10−4 rad
and θ2 = −1.667×10−4 rad. We find that the numerical solution matches with the exact
solution at the nodes.

11.7 Finite volume method

FVM has been frequently applied to numerical solution of problems in fluid dynamics
and heat transfer. The method considers discretizing the domain into large number of sub
domains or volumes with each volume represented by a node (usually placed at the center
of the volume).

11.7.1 Background

Fluid flow and heat transfer are governed by conservation equations involving mass,
momentum and energy. Conservation laws occur in also electromagnetism, neutron
transfer, chemical reaction engineering etc. The basis of finite volume method is
conservation of the variable y over each discretized volume. y could be mass, momentum
or any other conserved variable depending on the problem that is being considered.

Let us consider conservation of energy in one dimension.

11.7. Finite volume method 505

qx qx+dx
G

The above figure shows a small one dimensional element of length dx and area of cross
section A. G is the amount of energy that is generated per unit volume in the system
and q is the amount of energy per unit area entering/leaving the system. Applying energy
conservation we get

GAdx+ qx A︸ ︷︷ ︸
energy added

− qx+dx A︸ ︷︷ ︸
energy removed

= 0 (11.46)

When the length of the element tends to 0, we get the differential equation

dq
dx

−G = 0 (11.47)

For a three dimensional element, we can generalize the conservation equation as

∂qx

∂x
+ ∂qy

∂y
+ ∂qz

∂z
−G = 0

∇.q−G = 0

where q = [qx qy qz]T is the energy flux vector, ∇ = ∂

∂x
î+ ∂

∂y
ĵ+ ∂

∂z
k̂ is the divergence

operator where î, ĵ and k̂ are the unit vectors along the three directions.

Now let us consider an arbitrary system of volume δv. A i is the area of the sides of the
system and qi is the energy per unit area entering normally the respective sides of the
system as shown in the figure below.

q1

q2

q3

q4

q5

G

Now, the net amount of energy entering the system should be equal to the volumetric
energy dissipated within the system

G∆v+ q1 A1 + q2 A2 + q3 A3 + q4 A4 + q5 A5 =G∆v+∑
i

qi A i = 0 (11.48)

506 Chapter.11 Boundary value problems (ODE)

As the number of sides of the system increase and the area of each side of the system
becomes infinitesimally small, the summation operation can be replaced by integration of
energy over the boundary. Hence, the above equation reduces to

G∆v+
∮

q.ndA = 0 (11.49)

Applying Gauss divergence theorem6 to the above equation we obtain∮
(∇.q−G)dv = 0 (11.50)

Hence, the above equation is the integral form of differential equation 11.47. Finite
volume method considers Equation 11.49 as the governing equation in place of the
differential equation. After discretization the integral equation reduces to the form of
Equation 11.48. The advantage of finite volume method is that it is naturally conservative
globally as well as locally.

11.7.2 Discretization

Discretization of the domain can be carried out in several ways.
Discretization 1 The nodes are distributed throughout the domain (uniform or nonuni-
form). The boundaries of the control volume are placed at the midpoint of two consecutive
nodes. The volumes at the boundary are represented by half volumes as indicated in the
following figure.

0 1 i n−1 n

v0 v1 vi vn−1 vn

v refers to volume

It would be later shown that above discretization reduces to finite difference formulation
under certain conditions.
Discretization 2 The entire domain is discretized into n volumes and two boundary
nodes. Following figure indicates domain discretized into uniform volumes.

0 1 2 i n n+1

v1 v2 vi vn

v refers to volume, 0 and n+1 are boundary nodes.

6Refer to a book on vector calculus such as Murray R. Spiegel, “An Introduction to Tensor Analysis”,
Schaum’s outline series, McGraw Hill, 2009.

11.7. Finite volume method 507

Governing differential equations are applied over the n volumes and boundary conditions
are applied at the respective boundary nodes. This discretization scheme is more
frequently used in the finite volume method.

Again the placement of nodes with respect to the volume can be done in two ways
viz. cell centered and vertex centered. In cell centered discretization, the internal nodes
are placed at the center of each volume. In vertex centered discretization scheme, the
boundary of the volumes are placed at the midpoint between two consecutive nodes.

h

h
2

h
2

xi−1 xi xi+1

Cell centered discretization

Vertex centered discretization

xi−1 xi xi+1

xi − xi−1
2

xi+1 − xi
2

For a grid system with uniform volume elements, there is no distinction between cell-
centered and vertex-centered discretization schemes. Hence in FVM, one has to specify
the location of the nodes as well as the boundaries of the control volume.

11.7.3 Simple example with discretization scheme 1

Let us consider the differential equation y(2) −2y = 0 with boundary conditions y(x =
0) = 1 and y(1)(x = 1) = 0. Without delving into the physical attributes of the differential
equation, let us understand the concept of FVM. FVM is a weighted residuals method
where the weight function is 1 over corresponding sub domain and zero otherwise.

Wi = 1 for ith volume
0 for other volumes

(11.51)

The domain is discretized uniformly using discretization scheme 1. This means, that all
internal nodes are placed at the center of the control volume and the vertex of the control
volume is equi distant from the two adjacent nodes. Therefore the residual equation for
ith internal volume is∫ xi+0.5h

xi−0.5h
(y(2) −2y)dx =

[
d y
dx

∣∣∣∣
xi+0.5h

− d y
dx

∣∣∣∣
xi−0.5h

]
−2

∫ xi+0.5h

xi−0.5h
ydx (11.52)

508 Chapter.11 Boundary value problems (ODE)

i−1 i i+1

vi

h

d y
dx

∣∣∣∣
xi−0.5h

d y
dx

∣∣∣∣
xi+0.5h

Notice that the derivatives are evaluated at the boundaries of the control volume (just as
we did in the derivation of the equations of conservation of energy). The evaluation of the
first derivatives and integral depends on the choice of basis functions. A simple choice of
basis function is to assume y is constant inside every volume. The first derivatives at the
faces can be approximated by central difference formulae. Then Equation 11.52 reduces
to

yi+1 − yi

h
− yi − yi−1

h
−2yih = 0

yi+1 −2yi + yi−1 −2h2 yi = 0

Note the similarities between FVM and FEM. As both treat integral equations of the governing
equation, a term related to y(1) arises in the discretized equation. In FEM discussed earlier,
this term was conveniently neglected, which leads to non-zero residuals. In FVM, this term is
approximated using finite difference approximations. As all the terms in the discretized equation
are accounted for, the net residual for a control volume is zero. This makes FVM naturally
conservative and hence is favored for treating conservative laws! Note: In the present case,
second order central difference was used for calculating the derivatives. Higher order difference
formulas can also be used. There is thus a similarity between FVM and FDM.

Boundary conditions: The function value is specified at x0. Let us consider the other
boundary node xn where Neumann boundary condition has been specified. Applying FVM
to the boundary control volume.

n−1 n

vn

h/2

d y
dx

∣∣∣∣
xn−0.5h

d y
dx

∣∣∣∣
xn

= 0

From the above figure it is clear that the boundary conditions are included by the
numerical method automatically. Therefore the residual equation for nth volume is∫ xn

xn−0.5h
(y(2) −2y)dx =

[
d y
dx

∣∣∣∣
xn

− d y
dx

∣∣∣∣
xn−0.5h

]
−2

∫ xn

xn−0.5h
ydx = 0

0− yn − yn−1

h
−2yn

h
2

= yn−1 − yn −h2 yn = 0

The above set of linear equations obtained using FVM is the same as that obtained using
FDM with ghost node approach at the boundaries.

11.7. Finite volume method 509

11.7.4 Simple example with discretization scheme 2

Let us consider the same differential equation as earlier. Now, the domain is discretized
uniformly using scheme 2. The reader may verify that the equations for internal nodes
2≤ i ≤ n−1 are the same as derived earlier. The difference between the two schemes only
arises in the treatment of boundary conditions. First let us apply FVM to node at xn.

n−1 n n+1

vi

h

d y
dx

∣∣∣∣
xn−0.5h

d y
dx

∣∣∣∣
xn+1

= 0

The residual equation for nth volume is∫ xn+1

xn−0.5h
(y(2) −2y)dx =

[
d y
dx

∣∣∣∣
xn+1

− d y
dx

∣∣∣∣
xn−0.5h

]
−2

∫ xn+1

xn−0.5h
ydx = 0

0− yn − yn−1

h
−2ynh = yn−1 − yn −2h2 yn = 0

The above equation has directly accounted for the boundary condition. Notice that
function value at n+1 does not occur in the above equation, decoupling it from the rest
of the nodes. (The same would not be the case if Robin condition was specified at xn+1)
The function value at xn+1 can be determined by using finite difference approximation at
xn+1 such as first order formula

yn+1 − yn

0.5h
= 0 or three point backward difference formula.

The three nodes are not equally spaced and hence we shall differentiate the quadratic
polynomial passing through the three nodes and obtain

yn−1 −9yn +8yn+1

3h
= 0

Now let us consider node at x1.

0 1 2

vi

h

d y
dx

∣∣∣∣
x0

dy
dx

∣∣∣∣
x1+0.5h

The residual equation for 1st volume is∫ x1+0.5h

x0

(y(2) −2y)dx =
[

d y
dx

∣∣∣∣
x1+0.5h

− d y
dx

∣∣∣∣
x0

]
−2

∫ x1+0.5h

x0

ydx = 0

510 Chapter.11 Boundary value problems (ODE)

We shall use the central difference formula for
d y
dx

∣∣∣∣
x1+0.5h

and three point forward

difference formula for
d y
dx

∣∣∣∣
x0

which is

d y
dx

∣∣∣∣
x1+0.5h

= y2 − y1

h
;

dy
dx

∣∣∣∣
x0

= −8y0 +9y1 − y2

3h

Then we obtain,
8
3

y0 −
(
4+2h2)

y1 + 4
3

y2 = 0

Hence, the set of linear equations is

1 0 0 · · · · · · · · · 0 0
8/3 −4−2h2 4/3 · · · · · · · · · 0 0
0 1 −2−2h2 1 · · · · · · 0 0
· ·
0 0 · · · · · · 1 −2−2h2 1 0
0 0 · · · · · · 0 1 −1−2h2 0
0 0 · · · · · · 0 1 −9 8

y0
y1
y2
y3
· · ·

yn−2
yn−1
yn

yn+1

=

1
0
0
· · ·
0
0
0

(11.53)

11.7.5 Example using piecewise linear function

Previously we have assumed that the dependent variable is constant within each
volume element. However it is possible to assume a better variation such as a linear
variation within each volume element. We then have

y= x− xi+1

xi − xi+1
yi + x− xi

xi+1 − xi
yi+1 for xi ≤ x ≤ xi+1

The entire domain is discretized using scheme 1. The first derivatives at the boundaries
of a control volume remain the same as FDM. However, the term proportional to y is
subjected to change. Evaluating the integral of y over the volume element we get∫ xi+0.5h

xi−0.5h
ydx =

∫ xi

xi−0.5h

(
x− xi

xi−1 − xi
yi−1 + x− xi−1

xi − xi−1
yi

)
dx

+
∫ xi+0.5h

xi

(
x− xi+1

xi − xi+1
yi + x− xi

xi+1 − xi
yi+1

)
dx

= 0.125hyi−1 +0.75hyi +0.125hyi+1

Hence, the equations at the interior nodes can be written as

(1−0.25h2)yi+1 − (2+1.5h2)yi + (1−0.25h2)yi−1 = 0

Similarly, one can derive the equations at the boundary as

(1−0.25h2)yn−1 − (1+0.75h2)yn = 0

11.7. Finite volume method 511

Let a = 1+0.75h2 and a′ = 1−0.25h2, we represent the system of linear equation in matrix
notation.

1 0 0 · · · · · · 0
a′ −2a a′ · · · · · · 0
0 a′ −2a a′ · · · 0
· · · · · · · · · · · · · · · · · ·
0 0 · · · a′ −2a a′

0 0 · · · 0 a′ −a

y0
y1
y2
· · ·

yn−2
yn−1
yn

=

1
0
· · ·
0
0

 (11.54)

MATLAB program has been written to carry out the above procedure.
n = 11; % no o f n o d e s
x = [0:1/(n-1) :1]'; % n o d e s
h = 1/(n-1); % s t e p s i z e
a = zeros(n,1); % TDMA c o e f f i c i e n t a
a1 = zeros(n,1); % TDMA c o e f f i c i e n t a ’
a2 = zeros(n,1); % TDMA c o e f f i c i e n t a ’ ’
b = zeros(n,1); % TDMA b
a(1) = 1; % f i r s t n o d e
b(1) = 1; % D i r i c h l e t c o n d i t i o n
for i=2:n-1 % i n t e r n a l n o d e s

a1(i) = 1 -0.25*h^2;

a2(i) = 1 -0.25*h^2;

a(i) = 2+1.5*h^2;

end

a2(n) = 1 -0.25*h^2; % l a s t n o d e
a(n) = 1+0.75*h^2; % Neumann c o n d i t i o n
y = tdma(a2 ,a,a1 ,d); % s o l v e u s i n g TDMA

Table 11.3 compares the solution obtained using three methods viz. FDM, FEM and FVM
with the exact solution. The reader may note that the exact solution is given by

yE = cosh(
p

(2)(1− x)
cosh(

p
(2)

It is interesting to notice that FDM, FEM and FVM produce similar solutions. The reader
is encouraged to perform the grid sensitivity study and check for the convergence of the
three methods.

Table 11.3: Comparison of FDM, FEM and FVM solutions

x yFDM yFEM yFV M Exact
0 1 1 1 1
0.1 0.88408 0.88384 0.88390 0.88396
0.2 0.78585 0.78541 0.78552 0.78563
0.3 0.70333 0.70274 0.70289 0.70304
0.4 0.63488 0.63418 0.63435 0.63453
0.5 0.57913 0.57834 0.57854 0.57874
0.6 0.53496 0.5341 0.53432 0.53453
0.7 0.50149 0.50059 0.50081 0.50104
0.8 0.47805 0.47711 0.47735 0.47758
0.9 0.46417 0.46322 0.46346 0.46370
1 0.45958 0.45862 0.45886 0.45910

512 Chapter.11 Boundary value problems (ODE)

Concluding remarks

BVPs involving second or higher order differential equations occur in many areas of science
and engineering. As opposed to IVPs the conditions to be satisfied by the function and/or its
derivatives are specified at more than one location. Hence, in general, BVPs are more difficult
to solve and may involve iterative procedures in the case of nonlinear BVPs. Several methods
including FDM have been presented in great detail to afford the reader a choice in the solution
of such equations. Basic introduction to collocation, FEM and FVM have also been given. The
reader should refer to advanced books to carry forward from here.

We will see later that many of the concepts introduced in the solution of ODEs are also useful
in solving PDEs.

11.A MATLAB routines related to Chapter 11

MATLAB routine Function

bvp4c solution of BVPs
bvp5c solution of BVPs

The difference between the above two program is in the specification of error.

11.B Suggested reading
1. L.F. Shampine, I. Gladwell and S. Thompson Solving ODEs with MATLAB

Cambridge University Press, 2003
2. B.A. Finlayson The method of weighted residuals and variational principles

Academic Press, 1972
3. L.J. Segerlind Applied finite element analysis Wiley, 1976
4. J.P. Boyd Chebyshev and Fourier spectral methods Dover publications, 2001

Exercise III

III.1 Initial value problems
Ex III.1: Solve the first order ODE y(1) =−e−2t y+ (t2 −1) with y(0) = 1. Obtain the value of y(1)

numerically using (a) Euler method and (b) Heun method. What step size will guarantee 6
digit accuracy in the two methods.

Ex III.2: Solve the ODE of Exercise III.1 using RK4 method. What step size is suitable for
obtaining solution good to six digits after decimals? Compare the computational effort
required in using RK4 with that required in the case of Euler and Heun schemes, for
achieving the same accuracy.

Ex III.3: Solve the ODE of Exercise III.1 using RK4 method to obtain enough number of function
values to continue the solution by ABM4 method with corrections. Compare ABM4 with
RK4 in terms of the computational effort needed to get the same accuracy of 5 digits after
decimals.

Ex III.4: Solve the first order ODE
d y
dt

+my = ncos(ωt) where m = 0.1, n = 1.5 and ω = 0.2. All
quantities are in compatible units and hence the reader need not worry about these. At
zero time y is given to be 1. Use ABM2 to solve the problem. Choose a suitable step size
after giving reason(s) for the choice. Obtain the solution up to a t beyond which the solution
shows a steady state behavior (what is it?). Compare the numerical result with the exact
solution.7

Ex III.5: A first order system is governed by the ODE y(1) = −y0.25. The initial condition is
specified as y(0)= 5. Obtain the solution up to t = 2 by RK4. Study the effect of step size on
the solution. Starting step size may be taken as ∆t = 0.25.
Use the exact solution for comparison purposes.

Ex III.6: Solve the following set of two ODEs by a numerical scheme of your choice.

y(1)
1 = y2 − y1 y(1)

2 = y1 −3y2

Initial conditions are specified as y1(0) = 1, y2(0) = 0.5. Results are required till t = 5 and
accuracy to five digits after decimals. Solution is to be compared with the exact solution.

7Based on an example in the book: S.P. Venkateshan, “Heat Transfer”, 2nd Edition, Ane Books, 2011.
Governing equation models the transient of a lumped system under convection and incident time varying
heat flux.

513

514 Exercise III

Ex III.7: Numerically solve the following two coupled first order ODEs.

y(1)
1 = y2 +1 y(1)

2 = y1 +1

The initial conditions are y1(0)= 1, y2(0)= 0. Compare the numerical solution with the exact
solution.

Ex III.8: Convert the two coupled ODEs of Exercise III.6 to a single second order ODE by
eliminating one of the dependent variables between the two equations. What will be the
two initial conditions to the second order ODE? Solve the resulting second order ODE by an
initial value solver of your choice. Obtain therefrom the solution to the dependent variable
that was eliminated while arriving at the single second order ODE.

Ex III.9: Solve the set of two coupled first order differential equations given below with the initial
conditions y1(0)= 1 and y2(0)= 0.5.8

4y(1)
1 − y(1)

2 +3y1 = sin(t); y(1)
1 + y2 = cos(t)

Ex III.10: Transient behavior of a second order system subject to step input is governed by the
ODE y(2) +0.25y(1) + y = 1. The initial conditions have been specified as y(0) = y(1)(0) = 0.
Solve this equation numerically using adaptive RK4.

Ex III.11: Solve the following coupled second order ordinary differential equations by a numeri-
cal scheme of your choice. Solution with five digit precision is required.

y(2)
1 + y(1)

2 = 0; y(2)
2 − y(1)

1 = 0

Initial conditions have been specified as y1(0) = y2(0) = 0; y(1)
1 (0) = 1, y(1)

2 (0) = 0. Plot the
solution as a trajectory with y1 along the abscissa and y2 along the ordinate. Compare your
solution with the exact solution.9

Ex III.12: Certain object is moving under the influence of gravity and experiences wind
resistance proportional to the square of its velocity. The governing differential equation

has been derived and is given by
d2 y
dt2 +0.1

(
dy
dt

)2
= 10. At t = 0 both y and

d y
dt

are specified

to be zero. Obtain the solution numerically and determine the value of y at t = 10.10

(Hint: Terminal velocity of the object should be 10 for large t such as t = 10.)

Ex III.13: A boat of mass M = 500 kg experiences water resistance of FD = 50v where FD is
the drag force in N and v is its velocity in m/s. Boat is initially moving with a velocity of
v = 15 m/s. How long does it take the boat to reduce the speed to 7.5 m/s? How far will it
be from the starting point. Obtain the solution by solving the equation of motion of the boat
numerically using a second order accurate method and compare the results with the exact
results.

8Based on an example in the book: H.B. Phillips, “Differential Equations”, John Wiley and Chapman and
Hall, 1922

9Ibid: Motion of an electrically charged particle in a magnetic field is modeled by these equations
10Ibid

III.1. Initial value problems 515

Ex III.14: Solve the initial value problem t
d2 y
dt2 − d y

dt
+4t3 y = 0 subject to the initial conditions

y = 1 and
d y
dt

= −1 at the initial time of t =
√
π

2
. Carry forward the calculations ten steps

from the starting value using a step size of∆t = 0.05. Make use of the RK4 method. Compare

the numerical solution with the exact solution given by y= sin(t2)+ 1p
2π

cos(t2).

Ex III.15: Dynamics of a linearly damped pendulum is governed by the second order ODE y(2) +
0.5y(1) + 10sin(y) = 0. The initial conditions have been specified as y(0) = 0.5 y(1)(0) = 0.
Obtain the solution to t = 2.5 with five digit accuracy. Comment on the results based on the
observed behavior of the solution. Can you identify periodicity in the solution?

Ex III.16: Consider the damped pendulum of Exercise III.15 again but with a forcing function
of f (t) = 5sin(t). Solve the resulting non-homogeneous equation by a suitable initial value
solver. Make comments on the observed behavior of the pendulum by obtaining the solution
to large enough t.

Ex III.17: Solve the first order ODE y(1) = 1− y2 from t = 0 to t = 5. Initial value is specified as
y(0) = 0.2. Use Euler and Backward Euler methods. Make suitable comments based on the
solution of the given ODE by these two methods. Write a program to solve the equation
by second order BDF method. Compare the numerical solution with analytically obtained
solution.

Ex III.18: Solve the initial value problem y(1) = 3(1− y4) with y(0) = 0 from t = 0 to t = 1.5. Use
any scheme as long as you achieve 4 digit accuracy.11

Ex III.19: Obtain the solution of the initial value problem y(2) = x2 − 2
x2 − xy in the range 1 ≤

t ≤ 2. The initial conditions are specified as y(1) = 1 and y(1)(0) =−1.The solution should be
accurate to 5 digits after decimals. Use a solver of your choice.

Ex III.20: Solve the IVP
d2 y
dt2 + 2ζ

d y
dt

+ 4y = sin(2t) subject to initial conditions y(0) = 0.2 and

d y
dt

∣∣∣∣
t=0

= 0. Make use of RK4 combined with ABM4 to solve the problem. Compare the

results with the exact solution. Consider three cases: (i) ζ = 1 (ii) ζ = 2 and (iii) ζ = 2.5.
Comment on the nature of the solution in each case.

Ex III.21: Consider a simple two stage chemical reaction

y1
k1−→ y2; y2

k2−→ y3

where k1 and k2 are kinetic rate constants of the two reactions. ODEs governing the
chemical reactions are given by

d y1

dt
=−k1 y1;

dy2

dt
= k1 y1 −k2 y2;

dy3

dt
=−k2 y2;

Comment on the stiffness of the ODEs for the following combinations of k1 and k2. (i)
k1 = 0.01 and k2 = 0.05, (ii) k1 = 10 and k2 = 0.05 and (iii) k1 = 0.01 and k2 = 10. Solve
the system of ODEs for the above combinations of k1 and k2 using a suitable numerical
scheme with proper justification. Use the following initial conditions: y1(0) = 1, y2(0) = 0
and y3(0)= 0.

11It is clear that as t →∞ the dependent variable approaches unity. When this happens the derivative of
the right hand side viz. f (1)(y)→−12 which is large. Hence the given ODE is stiff.

516 Exercise III

Ex III.22: A simple chemical reaction usually involves a large number of intermediate reaction
steps and are nonlinear and stiff making numerical solution very difficult. An interesting
example is that proposed by Robertson.12

y1
k1−→ y2; y2 + y2

k2−→ y3 + y2; y2 + y3
k3−→ y1 + y3;

leading to the following set of ODEs
y(1)

1

y(1)
2

y(1)
3

=

−k1 y1 +k3 y2 y3

k1 y1 −k2 y2
2 −k3 y2 y3

k2 y2
2

where the rate constants are k1 = 0.04, k2 = 3×107 and k3 = 104. Solve the above system of
ODEs using a suitable method. Reader is encouraged to use the inbuilt MATLAB functions
for obtaining the numerical solution. Assume initial conditions as y1(0) = 1, y2(0) = 0 and
y3(0)= 0.

III.2 Boundary value problems

Ex III.23: Solve the boundary value problem
d2 y
dx2 + 1

x
d y
dx

− 3y = 0 subject to the boundary

conditions y(x = 1) = 1,
d y
dx

∣∣∣∣
x=2

= 0 by the use of shooting method. Fourth order Runge

Kutta method may be used for starting the solution followed by the ABM4 method with
corrections for continuing the solution to the other boundary. Use a uniform step size of
∆x = 0.05.

Ex III.24: Solve the boundary value problem
d2 y
dx2 = 2y+

[
1−sin

(πx
2

)]
subject to the boundary

conditions y(0)= 1 and
d y
dx

∣∣∣∣
x=1

= 0. Use the shooting method. Choose a step size of ∆x = 0.1

and RK4 - ABM4 combination to solve the problem. Compare the numerical solution with
the exact solution and comment on the accuracy of the numerical scheme used.

Ex III.25: Solve the boundary value problem (1+ y)
d2 y
dx2 +

(
d y
dx

)2
= 0 subject to the boundary

conditions y(0) = 0; y(1) = 1. Use a second order accurate scheme for your calculations. For
example, you may make use of the Heun method. Compare the numerical solution with the
exact solution.13

Ex III.26: Solve the two point non-linear boundary value problem
d2 y
dx2 = y+ y4 by shooting

method. The boundary conditions are specified as y(0)= 1 and
d y
dx

∣∣∣∣
x=1

= 0.

12H.H. Robertson The solution of a set of reaction rate equations In J. Walsh, editor, “Numerical Analysis:
An Introduction”, pages 178-182. Academic Press, London, 1966.

13A simple one dimensional heat conduction problem with variable thermal conductivity leads to this
equation

III.2. Boundary value problems 517

Ex III.27: Consider the boundary value problem
d2 y
dx2 = c

dy
dx

where c is a parameter that can

take different values. Consider four different values viz. c = 0.1, c = 1, c = 10 and c = 100
and solve the equation by a numerical method of your choice. The boundary conditions

remain the same in all the cases with y(0) = 1 and
d y
dx

∣∣∣∣
x=1

= 0. Comment on the step size

required in the four cases and also the nature of the solution. Compare the solution with
the exact solution, in each of the cases.14

Ex III.28: Solve the boundary value problem
d3 y
dx3 −4

d y
dx

+3 = 0 with y(0) = 0.1, y(1) = 0.5 and

d y
dx

∣∣∣∣
x=1

=−0.25. Use shooting method for solving the problem. Six digit accuracy is required.

Ex III.29: Velocity of viscous fluid flow in the boundary layer past a flat plate is governed by the
boundary value problem y(3)+0.5yy(2) = 0 where y(1) is the velocity. The applicable boundary
conditions are y(0) = y(1)(0) = 0 and y(1) → 1 as y →∞. Obtain the solution to this equation
using the shooting method.
Hint: Outer boundary condition needs an iteration scheme.

Ex III.30: Solve the boundary value problem of Exercise III.25 by the finite difference method.
Compare the solution obtained by FDM with the exact solution.

Ex III.31: Solve the boundary value problem of Exercise III.26 by the finite difference method.
Compare the solution obtained by FDM with that obtained earlier by the shooting method.

Ex III.32: Consider the boundary value problem given in Exercise III.24. Solve it by the finite
difference method. Use a suitable step size such that the solution agrees with that obtained
there by the shooting method.

Ex III.33: Consider the boundary value problem given in Exercise III.24. Solve it by the
collocation method. Compare the solution with that obtained earlier by the shooting method
as well as the exact solution.

Ex III.34: Solve the boundary value problem given in Exercise III.23 by the finite difference
method. In addition to the boundary conditions specified there, consider also a second case
where the boundary conditions are y(x = 1)= 1 and y(x = 2)= 0.5.

Ex III.35: Inhomogeneous ODE in the form
1
r

d
dr

(
r

du
dr

)
= cos

(
π(r−1)

2

)
is satisfied by a function

u(r) in an annulus defined by inner boundary r = 1 and outer boundary r = 2. Neumann

condition
du
dr

= 0 is specified at the inner boundary and Robin condition
du
dr

= 0.1(u4 −0.4)
is specified at the outer boundary. Obtain the solution to this problem by the finite difference
method.

Ex III.36: The temperature field in a circular disk of radius 1 is governed by the equation
d2u
dr2 +

1
r

du
dr

−2u = 0. The periphery of the disk is specified with the Dirichlet condition u(r = 1)= 1.
Obtain the solution to this boundary value problem by finite difference method.

14The ODE becomes stiffer as c is increased

518 Exercise III

Ex III.37: The governing ODE for steady conduction in a material with temperature dependent

thermal conductivity is given by
d
dx

(
(1+u)

du
dx

)
−2u = 0. Boundary conditions are specified

as u(x = 0) = 1 and u(x = 1) = 0.5. Obtain the solution to this nonlinear BVP by finite
differences.

module IV

Partial di�erential equations

Many problems in science and engineering involve functions of more than one variable.
For example, the temperature in a solid depends, in general, on time and space coordinate(s).
Equation governing temperature in the solid is the heat equation which is a partial differential
equation (PDE) involving derivatives of temperature with respect to each of the independent
variables. They may be first or higher partial derivatives. A material under the action of
external loads is subject to stresses that vary with more than one independent variable again
leading to one or more PDEs. Motion of a fluid in more than one dimension is governed by
a set of PDEs involving the pressure and the fluid velocity vector. Problems in electricity and
magnetism are governed by appropriate PDEs involving electrical and magnetic field vectors.
Thus the solution of PDEs is an important part of analysis in science and engineering.
Numerical solution of PDEs are built upon the ideas discussed while dealing with ODEs. Yet,
special methods are required in treating PDEs. In this module we look at the fundamental
ideas involved in the numerical solution of PDEs.

Chapter 12

Introduction to PDEs

12.1 Preliminaries

In most applications in science and engineering we come across second order partial
differential equations. Hence these are of particular interest to us. However it is
instructive to look at first order PDEs before turning our attention to PDEs of second
order. For most part we will be considering two independent variables such as t- time and
x - space or x- space and y- space. Hence the PDEs will involve partial derivatives with
respect to t, x or x,y.

To start the discussion consider a first order homogeneous partial differential equation,
typically of the form

a
∂u
∂x

+b
∂u
∂y

= 0 (12.1)

where a and b are non-zero constants. Using short hand notation
∂u
∂x

= ux and
∂u
∂y

= uy

we rewrite the above in the form
aux +buy = 0 (12.2)

The above equation may also be written in the form of a matrix equation given bya b
 ux

uy

= 0 (12.3)

or in vector form as
a ·∇u = 0 (12.4)

Thus, at every point the gradient of u is perpendicular to the vector a whose components
are a and b.

523

524 Chapter.12 Introduction to PDEs

We seek solution to the above in the form u = f (αx+βy) = f (ξ) where ξ is short hand
notation for αx+βy. We shall also denote the total derivative of u with respect to ξ as uξ.
Substituting the above in Equation 12.2 we get

aαuξ+bβuξ = 0 or aα=−bβ

With this we have αx+βy = β

(
b
a

x− y
)
. Note now that for u = constant = C we have

b
a

x− y = constant = c and hence it is a straight line with slope equal to
b
a

and intercept
−c on the y axis. The line is referred to as a “characteristic” of the first order PDE.
For different values of C we get a set of parallel characteristic lines but with different
intercepts as shown in Figure 12.1.

a

b

y

x

Figure 12.1: Characteristic lines

12.2 Second order PDE with constant coefficients

Consider now the second order homogeneous PDE with constant coefficients given by

auxx +buxy + cuyy = 0 (12.5)

We would like to test whether the solution can be represented by a function of the form
u = u(αx+βy)= u(ξ). The derivatives appearing in Equation 12.5 may all be written down
as under:

uxx =α2uξξ, uxy =αβuξξ, uyy =β2uξξ (12.6)

Substituting these in Equation 12.5, removing the common term uξξ and denoting the
ratio

α

β
as γ (note that this will be the same as the slope of the characteristic line) we get

the quadratic equation
aγ2 +bγ+ c = 0 (12.7)

γ can have two values corresponding to the two roots of the above quadratic given by

γ= −b±
p

b2 −4ac
2a

(12.8)

12.2. Second order PDE with constant coefficients 525

The type of PDE is determined by the discriminant (quantity under the square root sign).

Hyperbolic: If it is positive we have two real roots i.e two real and distinct slopes for
the characteristic lines. The PDE is said to be “hyperbolic”. An example of an PDE of this
type is the wave equation in one dimension given by

utt − s2uxx = 0 (12.9)

where t is time variable and x is the space variable and s is the wave speed. Note that
a = 1, b = 0 and c = −s2 and hence the slope of the two characteristics are ±s. The
two characteristics are given by ξ1 = st+ x and ξ2 = −st+ x. Since both time and space
derivatives are second derivatives, this equation can support two initial conditions and
two boundary conditions.

Parabolic: In case the discriminant is zero the two roots are real, identical and given

by − b
2a

. Essentially there is only one characteristic. The PDE is said to be “parabolic”. A
common example of a parabolic type of equation is the heat equation given by

uxx −ut = 0 (12.10)

In this case a = 1, b = 0 and c = 0. Hence γ = 0 is the repeated root. The characteristic
simply becomes ξ = t. This equation will support an initial condition and two boundary
conditions.

Elliptic: In case the discriminant is negative there are no real roots and hence there is
no characteristic with real slope. This type of ODE is referred to be “elliptic”. A common
example of an elliptic equation is the Laplace equation given by

uxx +uyy = 0 (12.11)

In this case a = 1, b = 0 and c = 1. Hence b2−4ac =−4 and hence the two roots are ± j (pure
imaginary). In this case both coordinates are space coordinates and hence the equation
supports only boundary conditions. Unlike the other two types of equations which are
initial boundary value problems the elliptic PDE is always a boundary value problem.

In practice we may come across PDEs which cannot be classified as parabolic, hyperbolic
or elliptic i.e. these equations have terms having different characteristics. Some of the
PDEs occurring in practice are given below.

1. One dimensional advection equation

∂u
∂t

+a
∂u
∂x

= 0

where a is the advection velocity. Advection equation is important in fluid dynamics
and heat transfer.

526 Chapter.12 Introduction to PDEs

2. Poisson equation has applications in electrodynamics, heat transfer, mass diffusion,
seeping flows, stress in continuum etc. Poisson equation1 is given by

∂2u
∂x2 + ∂2u

∂y2 + ∂2u
∂z2︸ ︷︷ ︸

Laplacian of u

= q

The above equation is elliptic. Laplacian term can also be written as ∇2u. If q = 0,
we get the Laplace equation.

3. Diffusion equation which occurs in heat transfer and fluid dynamics is elliptic with
respect to space and parabolic with respect to time.

∂u
∂t

=α∇2u

α is known as diffusivity.
4. Wave equation occurs in electromagnetism, mechanical vibrations, acoustics and is

given by
∂2u
∂t2 +a2∇2u = 0

where a is the wave velocity.
5. The following equation is the x momentum equation of the Navier Stokes equations

used in fluid dynamics

∂u
∂t

+u
∂u
∂x

+v
∂u
∂y︸ ︷︷ ︸

advection

=−1
ρ

∂p
∂x

+ν
(
∂2u
∂x2 + ∂2u

∂y2

)
︸ ︷︷ ︸

Laplacian

where u and v are x and y velocities, p is pressure, ρ is density of fluid and ν is
kinematic viscosity of fluid.

12.3 Numerical solution methods for PDEs

Numerical methods for ODE can also be extended to solution of PDE. Methods discussed
for treating initial value problems can be adopted for parabolic as well as hyperbolic
equations. Similarly, methods that have been discussed for treating BVPs can be adopted
for solution of elliptic PDEs which are also boundary value problems. However, the
extension of the methods to solve PDE is not straightforward.

Methods such as finite difference method (FDM), finite volume method (FVM), finite
element method (FEM), boundary element method (BEM) etc are commonly used for
treating PDE numerically. All numerical methods used to solve PDEs should have
consistency, stability and convergence.

1after Simeon Denis Poisson, 1781-1840, a French mathematician and physicist

12.4. MATLAB functions related to PDE 527

A numerical method is said to be consistent if all the approximations (finite difference,
finite element, finite volume etc) of the derivatives tend to the exact value as the step size
(∆t, ∆x etc) tends to zero. A numerical method is said to be stable (like IVPs) if the error
does not grow with time (or iteration). Convergence of a numerical method can be ensured
if the method is consistent and stable.

We shall look at different aspects of numerical treatment of different types of PDE in
the forthcoming chapters.

12.4 MATLAB functions related to PDE

MATLAB provides an extensive set of tools to solve elliptic, parabolic and hyperbolic
PDEs. MATLAB provides a graphical user interface (GUI) toolbox “pdetool” to solve PDE
in two dimensional space domain. FEM has been adopted for the solution of PDEs. The
interface allows user to construct the geometry, discretize the geometry using triangular
meshes, apply boundary conditions, solve the equations and post-process the results.
Alternatively for users not intending to use the GUI, the following inbuilt functions may
be used

MATLAB routine Function

pdepe solves initial value problem in elliptic and
parabolic PDEs

assempde

constructs (assemble in FEM terminology) the
coefficient matrix and right hand side vector
for an elliptic PDE (Poisson equation). The
above function can also be used to solve the
same.

pdenonlin solves nonlinear elliptic PDEs
parabolic solves parabolic PDE using FEM
hyperbolic solves hyperbolic PDE using FEM
pdeeig solves eigenvalue PDE problem using FEM

The reader should look at MATLAB help and reference for more details on the above
functions.

12.A Suggested reading
1. S.J. Farlow Partial differential equations for scientists and engineers Dover Publi-

cations, 1993

Chapter 13

Laplace and Poisson equations

Laplace and Poisson equations occur as field problems in many areas of engineering and
hence have received much attention. Relaxation methodsa were developed originally in
order to solve such field problems. In the linear case the governing equations (Laplace or
Poisson) are transformed to a set of linear equations for the nodal values and are solved
by the various techniques given in Chapter 2. However when nonlinearities are involved
such as when the properties of the medium depends on the dependent variable,
discretized equations are linearized and then solved iteratively. Even though analytical
solutions are sometimes possible numerical techniques have become the norm in solving
elliptic PDEs.

aDeveloped by Richard Vynne Southwell, 1888 - 1970, British mathematician. Refer
“Relaxation methods in engineering science : a treatise on approximate computation”, Oxford
Univ. Press - 1940)

529

530 Chapter.13 Laplace and Poisson equations

13.1 Introduction
Laplace and Poisson equations are elliptic partial differential equations and occur in

many practical situations such as inviscid flow (also called potential flow or ideal fluid
flow), heat conduction, mass diffusion, electrostatics etc. These equations are boundary
value problems applied over multi-dimensions. Poisson1 equation is given by

∂2u
∂x2 + ∂2u

∂y2 + ∂2u
∂z2︸ ︷︷ ︸

∇2u

=−q(x, y, z) (13.1)

∇2 (or laplacian) is the divergence operator. In the above equation the variable u could
be temperature in which case q represents a heat generation term. When solving an
electrostatic problem, u represents electric potential and q represents charge density
distribution. If the source term q(x, y, z) is zero we get the Laplace equation.

Such equations can be treated analytically under special conditions and hence numeri-
cal treatment of these equations become important. In this chapter we shall discuss the
solution of these equations using FDM and also briefly explain the application of FEM
and FVM.

13.2 Finite difference solution
Laplace equation in two dimensions has been presented earlier as an example of an

elliptic PDE of second order. We have introduced the standard problem with Dirichlet
boundary conditions along the four edges of a rectangular domain. We consider this
problem to introduce the FDM as applicable to elliptic problems (see Figure 13.1). The
domain is discretized by dividing the edges parallel to the x axis into n segments of width
h each and the edges parallel to the y axis into m segments of width k each. The number
of nodes in the domain will then equal (n+1)× (m+1) of which 2(n+m) are nodes on the
boundary. In effect the rectangular domain has been divided into many small rectangles
of area h× k each.The boundary conditions are applicable at each boundary node and
hence the unknown u′s are associated with “internal” nodes which are (n−1)× (m−1) in
number. Using subscript i to represent node number along x and subscript j to represent
node number along y, the coordinates corresponding to node i, j will be x = ih, y= jk.

13.2.1 Discretization of computational domain

Nodal equations

Nodal equations for internal nodes are obtained by writing the finite difference analog
of the governing equation viz. the Laplace equation in two dimensions given by Equation
12.11. We make use of central differences and write this equation as

ui−1, j −2ui, j +ui+1, j

h2 + ui, j−1 −2ui, j +ui, j+1

k2 = 0 (13.2)

1named after French mathematician Simeon Denis Poisson 1781 - 1840, French mathematician

13.2. Finite difference solution 531

x = a x = b

y= c

y= d

x

y

j−1

j

j+1

i−1 i i+1

(i, j)
Figure 13.1: Discretization of the
computational domain

This equation may be rewritten as

ui, j =
k2(ui−1, j +ui+1, j)+h2(ui, j−1 +ui, j+1)

2(h2 +k2)
(13.3)

showing that the nodal value at i, j depends on the nodal values at the four nearest
neighboring nodes. In case h = k the above equation may be simplified to get

ui, j =
(ui−1, j +ui+1, j +ui, j−1 +ui, j+1)

4
(13.4)

In this case the function at node P is the arithmetic mean of the nodal values at the four
nearest neighbors.

Nodal equation such as 13.4 may be written for all the interior nodes i.e. for 1≤ i ≤ (n−1)
and 1 ≤ j ≤ (m−1). All boundary nodes are assigned the specified boundary values. The
interior nodal equations relate nodal values to adjoining nodes which may happen to be
boundary nodes. This means that the function at all interior nodes get affected by the
function values at all boundary nodes. In particular, if any one of the boundary nodal
value is perturbed it will affect all the interior nodal values. This is a consequence of the
PDE being elliptic.

Solution of nodal equations

As seen above the nodal equations form a set of simultaneous linear equations for the
nodal values of the function u. These equations are conveniently solved by methods that
have been discussed in great detail in Chapter 2. We take a simple example amenable to
solution by Gauss elimination.

Example 13.1
Figure 13.2 shows the temperatures on the boundary of a solid material in which the
temperature distribution is governed by the Laplace equation in 2 dimensions. The nodal
spacing is the same along the two directions. Determine the temperatures at the four nodes

532 Chapter.13 Laplace and Poisson equations

identified by numbers 1 - 4.

100 100 100 100

75

60

50 50 50 50

65

70

2

1

4

3

h = k

Figure 13.2: Nodal scheme used in
Example 13.1

Solution :
The nodal equations may easily be written down based on Equation 13.4.

T1 = 175+T2 +T3

4
; T2 = 110+T1 +T4

4

T3 = 170+T1 +T4

4
; T4 = 115+T2 +T3

4

In this form the equations are naturally suited for solution by Jacobi iteration scheme or
the variants viz. Gauss Seidel and SOR (see Chapter 2). Alternately we may recast the
equations in matrix form given below.

4 −1 −1 0
−1 4 0 −1
−1 0 4 −1

0 −1 −1 4

T1
T2
T3
T4

=

175
110
170
115

We can convert the coefficient matrix to lower triangle form by elementary row operations
to get the following augmented matrix.

1.0000 −0.2500 −0.2500 0.0000 43.75
0.0000 1.0000 −0.0667 −0.2667 41.00
0.0000 0.0000 1.0000 −0.2857 60.00
0.0000 0.0000 0.0000 3.4286 220.00

Back-substitution yields the desired solution as TT =

79.17 63.33 78.33 64.17
.

Next example considers solution of Poisson equation.

Example 13.2
Poisson equation is applicable in a square domain 0 ≤ x, y ≤ 1 with source term given by
q = 100sin(πx)sin(πy). The boundaries of the domain are maintained at u = 0. Determine
the solution using finite difference method.
Solution :

We shall discretize the domain uniformly using step sizes of h and k along x and y direction
respectively. The equations at the nodes are given by

ui+1, j −2ui, j +ui−1, j

h2 + ui, j+1 −2ui, j +ui, j−1

k2 =−qi, j

13.2. Finite difference solution 533

or
ui, j = 1

2/h2 +2/k2

(ui+1, j +ui−1, j

h2 + ui, j+1 +ui, j−1

k2 + qi, j

)
where qi, j = 100sin(πxi)sin(πyj). The system of equations can be solved iteratively by
Gauss Seidel method. MATLAB program has been written to carry out the above procedure.
We have chosen h = k = 11 with uniform grid spacing of ∆x =∆y= 0.1.

n = 11; m = 11; % no o f n o d e s
x = 0:1/(n-1) :1; y = 0:1/(m-1) :1; % n o d e s
h = 1/(n-1); k = 1/(m-1); % s t e p s i z e
[Y,X] = meshgrid(y,x); %
q = 100* sin(pi*X).*sin(pi*Y); % s o u r c e t e r m
u = zeros(n); uo = u; % i n i t i a l i z e f u n c t i o n
residual = 1;

while residual > 1e-6 % G a u s s S i e d e l i t e r a t i o n
for i=2:n-1

for j=2:n-1 % i n n e r n o d e s
u(i,j) = ((u(i+1,j) + u(i-1,j))/h^2 + ...

(u(i,j+1) + u(i,j-1))/k^2 + q(i,j)) /(2/h^2+2/k^2);

end

end

residual = max(max(abs(uo -u))); % r e s i d u a l
uo = u; % u p d a t e u

end

The maximum change in the function value after every iteration has been considered for
applying the convergence criterion. Alternatively, one can define the residual as

R =
∣∣∣∣ ui+1, j −2ui, j +ui−1, j

h2 + ui, j+1 −2ui, j +ui, j−1

k2 + qi, j

∣∣∣∣
and use the same for applying the convergence criterion. Residual indicates how well the
solution satisfies the governing equations (in the present case, the discretized equations).
Although the residual is reduced to a small value at the end of an iteration process, the
solution may not be close to the exact solution. Hence, one must perform a grid sensitivity
study and check for convergence of the solution. For carrying out the study, we can choose
function or the derivative of the function at a given point as a criterion. For the present
problem, let us choose the function value at x = y = 0.5 as the parameter. The function
value at the above point also represents the maximum value of u inside the domain. The
following table shows the convergence of the solution with grid refinement

n h u(0.5,0.5) %ε no. of iterations
11 0.1 5.10792 133
21 0.05 5.07645 0.62 476
41 0.025 5.06850 0.16 1679
81 0.0125 5.06606 0.05 5814
%ε refers to percentage difference between
u(0.5,0.5) for two consecutive grid size

Figure 13.3 shows the contour plot of u for two different grid size. It is evident from the
plot, that as we refine the grid we are likely to move towards the exact solution.

534 Chapter.13 Laplace and Poisson equations

y

0

0.2

0.4

0.6

0.8

1

x
0 0.2 0.4 0.6 0.8 1

u=1 u=2
u=3
u=4

u=5

y

0

0.2

0.4

0.6

0.8

1

x
0 0.2 0.4 0.6 0.8 1

u=2
u=3

u=4

u=5

u=1

Figure 13.3: Contour plot of u using a) 11×11 and b) 81×81 grids

The convergence of Gauss Seidel is slow. Now we shall look at the relative performance of
Jacobi, Gauss Seidel and SOR.

Example 13.3
Obtain the nodal values of a function that satisfies the Laplace equation in two dimensions
within a square domain. The domain has been discretized such that there are 5 nodes
along each of the directions. The boundaries are specified Dirichlet boundary conditions
as indicated in the following figure

1 1 1

0.5

0.5

0.5

0.5

0.5

0.5

0.5 0.5 0.5

1,1 2,1 3,1

1,2 2,2 3,2

1,3 2,3 3,3h = k

i

j

Use Jacobi, Gauss Seidel and SOR (with ω = 1.25) iteration schemes. Compare the three
methods from the point of view of number of iterations required for convergence to five
significant digits after decimals.

Solution :
From the figure it is clear that we need to solve for the nodal values ui, j at the 9 interior
nodes for 1≤ i ≤ 3, 1≤ j ≤ 3. The three schemes are written down as under:

Jacobi: uk+1
i, j =

uk
i−1, j +uk

i, j−1 +uk
i+1, j +uk

i, j+1

4

Gauss Seidel: uk+1
i, j =

uk+1
i−1, j +uk+1

i, j−1 +uk
i+1, j +uk

i, j+1

4

SOR: uk+1
i, j = (1−ω)uk

i, j +ω
(
uk+1

i−1, j +uk+1
i, j−1 +uk

i+1, j +uk
i, j+1

)
4

where index k stands for the iteration number and ω is taken as 1.25. We initialize all nodal
values to 0.5 to start the iterations. After the very first iteration the nodal values according

13.2. Finite difference solution 535

to the three schemes are as indicated below (All values are shown rounded to 4 digits after
decimals. Boundary values are not shown in the tables).

After one iteration
Jacobi iteration
i = 1 i = 2 i = 3

j = 1 0.6250 0.6250 0.6250
j = 2 0.5000 0.5000 0.5000
j = 3 0.5000 0.5000 0.5000

Gauss Seidel Iteration
i = 1 i = 2 i = 3

j = 1 0.6250 0.6563 0.6641
j = 2 0.5313 0.5469 0.5527
j = 3 0.5078 0.5137 0.5166

SOR with ω= 1.25
i = 1 i = 2 i = 3

j = 1 0.6563 0.7051 0.7203
j = 2 0.5488 0.5793 0.5937
j = 3 0.5153 0.5296 0.5385

Each of the schemes converges to the same set of final values given below.

After convergence
All three schemes

i = 1 i = 2 i = 3
j = 1 0.7143 0.7634 0.7143
j = 2 0.5938 0.6250 0.5938
j = 3 0.5357 0.5491 0.5357

Jacobi iteration requires 28 iterations, Gauss Seidel scheme requires 15 iterations
whereas the SOR method requires only 10 iterations. In this case SOR is the best bet for
solving the problem. The following MATLAB program performs the calculations discussed
above. Variable sor in the program is used to choose the iteration method.

n = 5; % number o f n o d e s a l o n g x and y
h = 1/(n-1); % g r i d s p a c i n g
u = zeros(n); % i n i t i a l i z e u
% D i r i c h l e t b o u n d a r y c o n d i t i o n s
u(n,:) = 0.5; u(:,1) = 0.5; u(:,n) = 0.5; u(1,:) = 1;

uo = u; % u o l d (b e f o r e i t e r a t i o n)
un = u; % unew (w i t h o u t a p p l y i n g r e l a x a t i o n)
res = 1; % r e s i d u a l
count = 0; % i t e r a t i o n c o u n t
sor = 1; % r e l a x a t i o n f a c t o r
% s o r = 0 J a c o b i ; s o r = 1 G a u s s S i e d e l
% s o r < 1 u n d e r r e l a x a t i o n ; s o r > 1 o v e r r e l a x a t i o n
while res > 1e-5 % i t e r a t i o n l o o p

for i=2:n-1

for j=2:n-1

un(i,j) = (u(i-1,j) + u(i+1,j) + ...

u(i,j-1) + u(i,j+1))/4; % unew
% a p p l y i n g r e l a x a t i o n

536 Chapter.13 Laplace and Poisson equations

u(i,j) = sor*un(i,j) + (1-sor)*uo(i,j);

end

end

res = max(max(abs(un -uo))); % r e s i d u a l
uo = un; u = un; % u p d a t e u o l d and u
count = count +1; % u p d a t e i t e r a t i o n c o u n t

end

13.2.2 Different types of boundary conditions

Example 13.1 has considered the case of Laplace equation with Dirichlet conditions
specified along all the boundaries of the rectangular domain. In this section we look
at the other types of boundary conditions (see Chapter11) that may be specified at the
boundaries.

Neumann or second kind boundary condition

The Neumann boundary condition specifies the normal derivative at a boundary to be
zero or a constant. When the boundary is a plane normal to an axis, say the x axis,
zero normal derivative represents an adiabatic boundary, in the case of a heat diffusion
problem. Conduction heat flux is zero at the boundary. It may also represent a plane of
symmetry.

Symmetric
boundary
∂u
∂x

= 0

1 1 1

0.5

0.5

0.5

0.5

0.5

0.5

0.5 0.5 0.5

1,1 2,1

1,2 2,2

1,3 2,3
h = k

i

j
Figure 13.4: Symmetric bound-
ary condition as applied to Exam-
ple 13.3

In Example 13.1 the solution is symmetric with respect to the mid plane parallel to the
y axis. We may economize on arithmetic calculations by limiting the domain to the left
half of the mid plane referred to above. Instead of 9 nodal equations we have to solve
for only 6 nodal equations for i = 1 and 2, j = 1 to 3. At the mid plane we use the
symmetry conditions viz. u1, j = u3, j so that the nodal equations on the mid plane are of

form u2, j =
2u1, j +u1, j−1 +u1, j+1

4
. The previous example is now redone making use of the

symmetry condition.

Example 13.4
Redo Example 13.3 by using symmetry boundary condition along mid plane parallel to the

13.2. Finite difference solution 537

y axis.Use SOR with ω = 1.25. Calculate nodal values after halving the grid spacing and
comment on how good the solution is. Use a tolerance of 10−5 for stopping the iterations.
Solution :

We repeat the calculations made in Example 13.3 but for only the 6 nodal points alluded to
above using SOR with ω= 1.25. The result is the same as that presented there.
Now we reduce the grid size to half its earlier value by introducing extra nodes. The total
number of interior nodes at which iterations have to be performed is 28 with 1 ≤ i ≤ 4 and
1 ≤ j ≤ 7. We initialize all nodal function values to 0.5 to start the iterations. We make use
of SOR and get the following nodal values after convergence.

i = 1 i = 2 i = 3 i = 4
j = 7 0.5087 0.5160 0.5208 0.5224
j = 6 0.5188 0.5345 0.5446 0.5481
j = 5 0.5322 0.5584 0.5752 0.5809
j = 4 0.5515 0.5919 0.6167 0.6250
j = 3 0.5818 0.6410 0.6748 0.6857
j = 2 0.6346 0.7155 0.7559 0.7680
j = 1 0.7413 0.8305 0.8653 0.8746

Nodal function values
on and to the left of
the plane of symmetry

In the table the nodal values on the plane of symmetry are shown in italics. Every alternate
value in this table also is an entry in the table presented earlier with bigger grid spacing.
We tabulate the nodal values for the two grid spacing after convergence and also show the
change in the values on halving the grid spacing.

Grid spacing h
i = 1 i = 2

j = 3 0.5357 0.5491
j = 2 0.5938 0.6250
j = 1 0.7143 0.7634

Grid spacing h/2∗

i = 2 i = 4
j = 6 0.5345 0.5481
j = 4 0.5919 0.6250
j = 2 0.7155 0.7680

Change due to change
in grid spacing#

i = 1 i = 2
j = 1 0.0013 0.0010
j = 2 0.0019 0.0000
j = 3 -0.0012 -0.0046

∗ Note change in node numbers
Node number with h

Since the changes of nodal values are small when the grid spacing is halved the values
obtained with the original grid spacing may be considered acceptable.

Robin or third kind boundary condition

This is the most general possible boundary condition that may be imposed at a
boundary. Robin condition specifies a relation between the normal derivative and the

538 Chapter.13 Laplace and Poisson equations

function at the surface.2 For example, at a boundary parallel to the y axis, the Robin
condition may be specified as

f
(
u,
∂u
∂x

)
= 0 (13.5)

which may, in general, be non-linear. Two examples are given below, the first one linear
and the second non-linear.

∂u
∂x

+ c1u = c2 (i)

∂u
∂x

+ c1u4 = c2 (ii) (13.6)

where c1 and c2 are constants. In the context of a problem in heat conduction the former
corresponds to convection boundary condition while the latter corresponds to radiation
boundary condition.

Consider now a boundary node i, j. The Robin boundary condition in the linear version
is written as

3ui, j −4ui−1, j +ui−2, j

2h
+ c1ui, j = c2

or (3+2c1h)ui, j −4ui−1, j +ui−2, j −2c2h = 0 (13.7)

where h is the grid spacing along the x direction (see Figure 13.5). Note the use of
second order accurate three point backward formula for the first partial derivative at
the boundary.

(i−2, j) (i−1, j) (i, j)

Figure 13.5: Robin condition
at a plane boundary: one sided
backward di�erence used for the
derivative

Alternately, we may use the concept of ghost node and write the boundary condition as

ui+1, j −ui−1, j

2h
+ c1ui, j = c2

or ui+1, j = ui−1, j −2c1hui, j +2c2h (13.8)

This is substituted in Laplace equation written for node i, j to get

ui, j =
2ui−1, j +2c2h+ui, j−1 +ui, j+1

4+2c1h
(13.9)

2Named after Victor Gustave Robin (1855-1897), a French mathematical analyst and applied
mathematician

13.2. Finite difference solution 539

Application of boundary condition to a corner node

Consider a boundary node which is located at a corner as shown in Figure 13.6.

The corner node may be associated partly to the plane parallel to the y axis and partly
to the plane parallel to the x axis. We may assume that the Robin condition is the mean
of the two3. Hence we may write the nodal equation for the corner node i, j as below.

The above formulation is also applicable to the case when we have Robin condition along
one plane and Neumann condition along the other. For example, if Neumann condition
(zero derivative normal to the plane) is specified along the plane parallel to the x axis, we
put c3 = c4 = 0 to get

(3+ c1h)ui, j −2(ui−1, j +ui, j−1)+ ui−2, j +ui, j−2

2
− c2h = 0 (13.10)

(3+ [c1 + c3]h)ui, j −2(ui−1, j +ui, j−1)+ ui−2, j +ui, j−2

2
− (c2 + c4)h = 0 (13.11)

(n,m)(n−1,m)(n−2,m)

(n,m−1)

(n,m−2)

Figure 13.6: Robin condition at
a corner: �rst method

Alternately we may use two ghost nodes as shown in Figure 13.7. We introduce one
node to the right of the corner and another above the corner , as shown. We shall assume
∆x =∆y= h, for simplicity.

(n,m)

(n−1,m)

(n+1,m)

(n,m−1)

(n,m+1)

ghost nodes

Figure 13.7: Robin condition at
a corner: alternate method using
ghost nodes

3When h and k are not equal the Robin condition is a weighted sum with respective weights of
h

h+k
and

k
h+k

.

540 Chapter.13 Laplace and Poisson equations

The Robin conditions on the two sides forming the corner lead to the following two
equations.

un+1,m = un−1,m −2c1hun,m +2hc2

un,m+1 = un,m−1 −2c3hun,m +2hc4 (13.12)

We now treat the corner node as an internal node to get

2un−1,m −2[2+ (c1 + c3)h]un,m +2un,m−1 =−2h(c2 + c4) (13.13)

Example 13.5
Consider a rectangular domain in which Laplace equation is satisfied. Dirichlet boundary
condition is specified along the lower boundary - u = 1; Neumann condition along the right

boundary -
∂u
∂x

= 0 and Robin condition is specified along the other two boundaries with
2c1h = 2c3h = 0.2 and 2c2h = 2c4h = 0.1 . Obtain all the nodal function values using SOR
with ω= 1.25.

∂u
∂x

= 0

u = 1.0

Robin condition

Robin condition

Solution :
We assume that the grid spacing is the same along x and y directions, with 5 nodes along
each direction. Function values need to be obtained at all the 20 nodes with 0 ≤ i ≤ 4 and
1≤ i ≤ 4. Interior nodal equations are written down as in Example 13.3. Neumann condition
along the right boundary is represented by one sided three point formula (left) excepting the
corner node which uses the relation given by expression 13.10. The left boundary is treated
using an expression following 13.11. The other corner uses expression 13.11 with c1 = c3
and c2 = c4. To summarize we have the following, suitable for the application of SOR.

Internal Nodes with 1≤ i ≤ 4, 1≤ j ≤ 3:

uk+1
i, j = (1−ω)uk

i, j +ω
(

uk+1
i−1, j +uk+1

i, j−1 +uk
i+1, j +uk

i, j+1

4

)
Nodes on right boundary i = 4, 1≤ j ≤ 3:

uk+1
4, j = (1−ω)uk

4, j +ω
(

4uk+1
3, j −uk+1

2, j

3

)

13.2. Finite difference solution 541

Nodes on left boundary i = 0, 1≤ j ≤ 3:

uk+1
0, j = (1−ω)uk

0, j +ω
(

4uk
1, j −uk

2, j +2c2h

3+2c1h

)

Left corner node i = 0, j = 4:

uk+1
0,4 = (1−ω)uk

0,4 +ω

2(uk
1,4 +uk+1

0,3)+ uk
2,4+uk+1

0,2 +(c2+c4)h
2

3+ (c1 + c3)h

Right corner node i = 4, j = 4:

uk+1
4,4 = (1−ω)uk

4,4 +ω

2(uk+1
3,4 +uk+1

4,3)+ uk+1
2,4 +uk+1

4,2 +c4h
2

3+ c3h

We initialize all the nodal function values suitably and use SOR with ω = 1.25 till
convergence. Tolerance chosen is |uk+1

i, j −uk
i, j| ≤ 10−5. The converged nodal values are shown

in the following table.

i = 0 i = 1 i = 2 i = 3 i = 4
j = 4 0.7104 0.7205 0.7410 0.7585 0.7697
j = 3 0.7547 0.7778 0.7960 0.8084 0.8125
j = 2 0.8134 0.8399 0.8568 0.8665 0.8698
j = 1 0.8818 0.9116 0.9249 0.9312 0.9333
j = 0 1.0000 1.0000 1.0000 1.0000 1.0000

Robin condition - non-linear case

The non-linear Robin condition given by equation 13.6(ii) is considered now. The
solution is sought by the SOR method. Consider the nodal function value uk

i, j at a
boundary node is to be updated. We may assume that the change uk+1

i, j − uk
i, j is small

and hence we may linearize the fourth power term as

(uk+1
i, j)4 = [uk

i, j + (uk+1
i, j −uk

i, j)]
4 ≈ 4(uk

i, j)
3uk+1

i, j −3(uk
i, j)

4

The Robin condition applied to the boundary node then takes the form

3uk+1
i, j −4uk+1

i−1, j +uk+1
i−2, j

2h
+ c1

[
4(uk

i, j)
3uk+1

i, j −3(uk
i, j)

4
]
= c2

This may be simplified to the following expression suitable for SOR iterations.

uk+1
i, j = (1−ω)uk

i, j +ω
(

4uk+1
i−1, j −uk+1

i−2, j +6c1h(uk
i, j)

4 +2c2h

3+8c1h(uk
i, j)

3

)
(13.14)

542 Chapter.13 Laplace and Poisson equations

Example 13.6
Consider a rectangular domain in which Laplace equation is satisfied. Dirichlet boundary
condition is specified along the bottom, left and the top boundaries. The right boundary is
subject to the non-linear Robin boundary condition with c1h = 0.1 and c2h = 0.05 (Equation
13.6(ii)). Obtain all the nodal function values using SOR with ω= 1.25.

u = 0.5

u = 1.0

u = 0.5

Robin condition

Solution :
We initialize all internal and right boundary nodes to 0.5 to get the initial set given below.

i = 0 i = 1 i = 2 i = 3
j = 4 0.5 0.5 0.5
j = 3 0.5 0.5 0.5 0.5
j = 2 0.5 0.5 0.5 0.5
j = 1 0.5 0.5 0.5 0.5
j = 0 1 1 1

Entries shown in italics in the table change from iteration to iteration. Nodes on the right
boundary satisfy Equation 13.14 (with i = 1, 1 ≤ j ≤ 3) while the internal nodes satisfy the
Laplace equation. After one iteration the nodal values are given by the following.

i = 0 i = 1 i = 2 i = 3
j = 4 0.5000 0.5000 0.5000
j = 3 0.5000 0.5153 0.5296 0.5768
j = 2 0.5000 0.5488 0.5793 0.6436
j = 1 0.5000 0.6562 0.7051 0.8030
j = 0 1.0000 1.0000 1.0000

After 11 iterations convergence to 5 digits after decimals is obtained and the result is
tabulated below.

i = 0 i = 1 i = 2 i = 3
j = 4 0.5000 0.5000 0.5000
j = 3 0.5000 0.5528 0.5925 0.6287
j = 2 0.5000 0.6188 0.6886 0.7267
j = 1 0.5000 0.7338 0.8165 0.8437
j = 0 1.0000 1.0000 1.0000

13.2. Finite difference solution 543

13.2.3 Alternate direction implicit or ADI method

Methods of solving the nodal equations presented above are referred to as point by point
iteration methods. An alternate method consists of line by line iteration using the ADI
method. In this method we convert the sparse coefficient matrix to tri-diagonal form so
that TDMA may be used. This may be accomplished as follows.

ADI step 1 ADI step 2

Explicit Implicit

Implicit Explicit

Figure 13.8: ADI scheme

Consider an internal node where the Laplace equation is satisfied (with grid spacing
the same along the two directions). Then we have

4uk+1
i, j = uk+1

i−1, j +uk+1
i, j−1 +uk

i+1, j +uk
i, j+1 (13.15)

This has been written with point by point (Gauss Seidel) iteration scheme in mind. It may
also be recast with SOR in mind. In the first ADI step we recast the above as

uk+1
i−1, j −4uk+1

i, j +uk+1
i+1, j︸ ︷︷ ︸

unknown

=−uk+1
i, j−1 −uk

i, j+1︸ ︷︷ ︸
known

(13.16)

Here we hold j fixed and vary i from end to end to get a set of simultaneous equations
in the tri-diagonal form (see Figure 13.8(i)). Nodal equations are implicit along the x
direction. Essentially the equations are in one dimensional form, with the function values
along y direction being taken as knowns i.e. explicit. Hence this step considers the
rectangular domain to be covered by lines parallel to the x axis and iteration is for all
the values along each of these lines. Of course, appropriate expressions will have to be
written for the boundary nodes. We may solve these set of equations by TDMA. In the
second ADI step we write nodal equations in the form

uk+2
i, j−1 −4uk+2

i, j +uk+2
i, j+1︸ ︷︷ ︸

unknown

=−uk+2
i−1, j −uk+1

i+1, j︸ ︷︷ ︸
known

(13.17)

Here we hold i fixed and vary j from end to end to get a simultaneous equations in the
tri-diagonal form (see Figure 13.8(ii)). Nodal equations are implicit along the y direction.
Hence this step considers the rectangular domain to be covered by lines parallel to the y
axis and iteration is for all the values along each of these lines. We may again solve these
set of equations by TDMA.

The two step ADI process has to be repeated till convergence. Note that k will be 0 or
an even integer.

544 Chapter.13 Laplace and Poisson equations

Example 13.7
Consider a rectangular domain in which Laplace equation is satisfied. Dirichlet boundary
condition is specified along all the boundaries (see Figure). Obtain all the nodal function
values using ADI method.

u = 0.5

u = 1.0

u = 0.5

u = 0.5

Solution :
Let us discretize the domain into 4 equal segments in x and y direction respectively.

1 1 1

0.5

0.5

0.5

0.5

0.5

0.5

0.5 0.5 0.5

1,1 2,1 3,1

1,2 2,2 3,2

1,3 2,3 3,3h = k

i

j

Then the discretized equation would be

4ui, j = ui+1, j +ui−1, j +ui, j+1 +ui, j−1

with Dirichlet conditions specified at the boundaries. Let us initialize the function values
at the nodes at 0.5. The following MATLAB program discretizes the domain, calculates the
coefficients of nodal equations.

n = 5; % number o f n o d e s a l o n g x and y
x = 0:1/(n-1) :1; % n o d e s a l o n g x
y = 0:1/(n-1) :1; % n o d e s a l o n g y
h = 1/(n-1); % g r i d s p a c i n g
u = 0.5* ones(n); % i n i t i a l i z e u
a = zeros(n); % c o e f f i c i e n t o f i , j
bi = zeros(n); % c o e f f i c i e n t o f i + 1 , j
ci = zeros(n); % c o e f f i c i e n t o f i −1 , j
bj = zeros(n); % c o e f f i c i e n t o f i , j +1
cj = zeros(n); % c o e f f i c i e n t o f i , j −1
d = zeros(n); % c o n s t a n t t e r m
a(1,:) = 1; a(n,:) = 1; a(:,1) = 1; a(:,n) =1; % b o u n d a r y

% n o d e s

13.2. Finite difference solution 545

d(1,:) = 1; d(n,:) = 0.5; d(:,1) = 0.5; d(:,n) =0.5;

a(2:n-1,2:n-1) = 4; % i n t e r i o r n o d e s
bi(2:n-1,2:n-1) = 1;

ci(2:n-1,2:n-1) = 1;

bj(2:n-1,2:n-1) = 1;

cj(2:n-1,2:n-1) = 1;

ADI step 1: The equations will be solved implicitly along i and explicitly along j. We start
with j = 1, then the nodal equations for 1≤ i ≤ 3 can be written as

4u1
i,1 = u1

i+1,1 +u1
i−1,1︸ ︷︷ ︸

implicit

+u0
i,2 +u0

i,0︸ ︷︷ ︸
explicit

4u1
i,1 = u1

i+1,1 +u1
i−1,1 +1

On applying TDMA to above set of linear equations we have

i a a′ a′′ d P Q ui,1
0 1 0 0 1 0 1 1
1 4 1 1 1 0.25 0.5 0.63393
2 4 1 1 1 0.26667 0.4 0.53571
3 4 1 1 1 0.26786 0.375 0.50893
4 1 0 0 0.5 0 0.5 0.5

Similarly, the procedure is repeated for other lines j = 2 and 3. At the end of first ADI step,
we get

i\ j 0 1 2 3 4
0 1 1 1 1 1
1 0.5 0.63393 0.67251 0.68444 0.5
2 0.5 0.53571 0.55612 0.56523 0.5
3 0.5 0.50893 0.51626 0.52037 0.5
4 0.5 0.5 0.5 0.5 0.5

ADI step 2 The procedure is now repeated by keeping i fixed i.e. explicit along i and implicit
along j. At the end of the procedure we get

i\ j 0 1 2 3 4
0 1 1 1 1 1
1 0.5 0.69331 0.73753 0.70069 0.5
2 0.5 0.57625 0.60275 0.58095 0.5
3 0.5 0.52921 0.54059 0.53038 0.5
4 0.5 0.5 0.5 0.5 0.5

This completes one iteration of ADI method. The procedure is repeated until the solution
does not change in its fifth digit after decimals. The above procedure has been programmed
in MATLAB as given below.

546 Chapter.13 Laplace and Poisson equations

uo = u; % i n i t i a l i z e u o l d
res = 1; % r e s i d u a l
count = 0; % i t e r a t i o n c o u n t
while res > 1e-5 % i t e r a t i o n l o o p

% ADI s t e p 1 , i m p l i c i t a l o n g i , e x p l i c i t a l o n g j
for j=2:n-1

d1 = bj(:,j).*u(:,j+1)+cj(:,j).*u(:,j-1) + d(:,j);

u(:,j) = tdma(ci(:,j),a(:,j),bi(:,j),d1);

end

% ADI s t e p 2 , i m p l i c i t a l o n g j , e x p l i c i t a l o n g i
for i=2:n-1

d1 = bi(i,:).*u(i+1,:)+ci(i,:).*u(i-1,:) + d(i,:);

u(i,:) = tdma(cj(i,:),a(i,:),bj(i,:),d1);

end

res = max(max(abs(u-uo))); % u p d a t e r e s i d u a l
uo = u; % u p d a t e u o l d
count = count +1; % u p d a t e i t e r a t i o n c o u n t

end

The solution converges in 7 iterations where as it took 15 iterations (Example 13.3) using
point by point scheme! Further the method can be coupled with relaxation schemes as well.
The following MATLAB commands plots the contour map of u.

[Y,X] = meshgrid(y,x);

contour(X,Y,u);

The following figure shows the contour map of u.

0.
5

 0
.5

1.0

0.5

0.55

0.60

0.70

0.80

0.90

Figure 13.9: Contour map of u

13.3 Elliptic equations in other coordinate systems

We have considered elliptic equations in Cartesian coordinates till now. Many applica-
tions in engineering involve other coordinate systems such as the cylindrical and spherical
coordinates. The Laplace equation will have to be modified as given below.

13.3. Elliptic equations in other coordinate systems 547

Laplace equation in cylindrical coordinates

1
r
∂

∂r

(
r
∂u
∂r

)
+ 1

r2
∂2u
∂θ2 + ∂2u

∂z2 = 0 (13.18)

where u is a function of r,θ and z. There are interesting applications where u may be a
function of either r, z or r,θ - representing two dimensional problems.

Laplace equation in spherical coordinates

1
r2

∂

∂r

(
r2 ∂u
∂r

)
+ 1

r2 sinθ
∂

∂θ

(
sinθ

∂u
∂θ

)
+ 1

r2 sin2θ

∂2u
∂φ2 = 0 (13.19)

where u is a function of r,θ and φ. There are interesting applications where u may be a
function of either r,θ or θ,φ - representing two dimensional problems.

Example 13.8
Consider a cylindrical annulus of inner radius 1 and outer radius 2 as shown in Figure 13.8.
The inner boundary of the annulus has Dirichlet boundary condition specified as u(r = 1)= 1

for 0 ≤ θ ≤ 2π. One half of the outer boundary is specified with no flux condition i.e.
∂u
∂r

= 0
for r = 2,π≤ θ ≤ 2π while the rest of the outer boundary is specified with Dirichlet boundary
condition in the form u(r = 2)= 0.0 for 0≤ θ ≤π.

∂u
∂r

∣∣∣∣
r=2

= 0 for π≤ θ ≤ 2π

line of symmetry

u(2,θ)= 0.0 for 0≤ θ ≤π

u(1,θ) = 1 for
0≤ θ ≤ 2π

r = 1

r = 2

Domain showing boundary
conditions in Example 13.8

Obtain the solution numerically.

Solution :
PDE governing the problem is given by

1
r
∂

∂r

(
r
∂u
∂r

)
+ 1

r2
∂2u
∂θ2 = 0

or
1
r
∂u
∂r

+ ∂2u
∂r2 + 1

r2
∂2u
∂θ2 = 0

The boundary conditions are

u(r = 1)= 1; u(r = 2,0≤ θ ≤π)= 0;
∂u
∂r

∣∣∣∣
r=2,π≤θ≤2π

= 0

548 Chapter.13 Laplace and Poisson equations

Owing to the symmetry of the problem about θ = π/2 and θ = 3π/2, only half of the domain
may be used for numerical calculation. Then, along the line of symmetry, the boundary

condition
∂u
∂θ

= 0 is imposed. Let us discretize r coordinate into n equal divisions (say 4,
∆r = 0.25) and θ coordinate into 2m equal divisions (say m=3, ∆θ =π/3). Then, there would
be n+1 nodes along r numbered i = 0 to n and 2m+1 nodes along θ numbered j =−m to m
as indicated in the figure below.

j = 0

j = 1

j = 2
j = 3

j =−1

j =−2
j =−3

0
1
2
3
4

i

n = 4 and m = 3

Interior nodes:
1≤ i ≤ 3 and −2≤ j ≤ 2
Boundary nodes:

Condition Nodes

u(r = 1)= 1 i = 0 and −m ≤ j ≤ m

u(r = 2,0≤ θ ≤π)= 0 i = n and 0≤ j ≤ m
∂u
∂r

∣∣∣∣
r=2,π≤θ≤2π

= 0 i = n and −m ≤ j ≤ 0

∂u
∂θ

= 0 j = m and j = −m for
0≤ i ≤ n

Nodal equations for interior nodes

1
r i

ui+1, j −ui−1, j

2∆r
+ ui+1, j −2ui, j +ui−1, j

∆r2 + 1
r2

i

ui, j+1 −2ui, j +ui, j−1

∆θ2 = 0

or

(
2
∆r2 + 2

r2
i∆θ

2

)
ui, j =

(
1
∆r2 + 1

2r i∆r

)
ui+1, j +

(
1
∆r2 − 1

2r i∆r

)
ui−1, j

+ 1
r2

i∆θ
2

(ui, j+1 +ui, j−1)

Boundary nodes
∂u
∂r

= 0 (i = n(4) and j =−1,−2)
We shall use the ghost node approach and applying the boundary condition we have un+1, j =
un−1, j. Hence, the discretized equations reduce to(

2
∆r2 + 2

r2
n∆θ

2

)
un, j =

(
2
∆r2

)
un−1, j + 1

r2
n∆θ

2
(un, j+1 +un, j−1)

Boundary nodes
∂u
∂θ

= 0 (i = 1 to 3, j =−3)
Again ghost node approach shall be used and we have ui, j+1 = ui, j−1. The discretized
equation reduces to(

2
∆r2 + 2

r2
i∆θ

2

)
ui, j =

(
1
∆r2 + 1

2r i∆r

)
ui+1, j +

(
1
∆r2 − 1

2r i∆r

)
ui−1, j + 2

r2
i∆θ

2
ui, j+1

13.3. Elliptic equations in other coordinate systems 549

Boundary nodes
∂u
∂θ

= 0 (i = 1 to 3, j = 3)
Again ghost node approach shall be used and we have ui, j+1 = ui, j−1. The discretized
equation reduces to(

2
∆r2 + 2

r2
i∆θ

2

)
ui, j =

(
1
∆r2 + 1

2r i∆r

)
ui+1, j +

(
1
∆r2 − 1

2r i∆r

)
ui−1, j + 2

r2
i∆θ

2
ui, j−1

Boundary node i = 4 and j =−3,
∂u
∂θ

= 0 and
∂u
∂r

= 0
This node is a corner node. We will apply ghost node method along both the directions.
Hence, the discretized equations will be(

2
∆r2 + 2

r2
n∆θ

2

)
un,−m =

(
2
∆r2

)
un−1,−m + 2

r2
n∆θ

2
un,−m+1

All the above equations may be written in the form

aui, j = biui+1, j + ciui−1, j +b jui, j+1 + c jui, j−1 +d

The following MATLAB program discretizes the domain and calculates the coefficients
corresponding to (i, j) and its neighboring nodes and the right hand side term d.

n = 5; % number o f n o d e s a l o n g r
m = 7; % number o f n o d e s a l o n g θ

r = 1:1/(n-1) :2; % n o d e s a l o n g r
theta = -pi/2:pi/(m-1):pi/2; % n o d e s a l o n g θ

% N o t e : n o d e n u m b e r i n g i n p r o g r a m i s d i f f e r e n t
dr = 1/(n-1); % ∆r
dtheta = pi/(m-1); % ∆θ

u = zeros(n,m); % i n i t i a l i z e f u n c t i o n
a = zeros(n,m); % c o e f f i c i e n t o f i , j
bi = zeros(n,m); % c o e f f i c i e n t o f i + 1 , j
ci = zeros(n,m); % c o e f f i c i e n t o f i −1 , j
bj = zeros(n,m); % c o e f f i c i e n t o f i , j +1
cj = zeros(n,m); % c o e f f i c i e n t o f i , j −1
d = zeros(n,m); % c o n s t a n t
a(1,:) = 1; % D i r i c h l e t b o u n d a r y c o n d i t i o n
d(1,:) = 1; % u = 1
u(1,:) = 1;

for i=2:n-1 % c o e f f i c i e n t s f o r i = 1 t o n−1
bi(i,:) = 1/dr ^2+1/(2* dr*r(i)); % i n t e r i o r n o d e s
ci(i,:) = 1/dr ^2 -1/(2* dr*r(i)); % i n t e r i o r n o d e s
bj(i,2:m-1) = 1/(r(i)*dtheta)^2; % i n t e r i o r n o d e s
cj(i,2:m-1) = 1/(r(i)*dtheta)^2; % i n t e r i o r n o d e s
bj(i,1) = 2/(r(i)*dtheta)^2; % ∂u/∂θ = 0 j =−m
cj(i,m) = 2/(r(i)*dtheta)^2; % ∂u/∂θ = 0 j =m
a(i,:) = bi(i,:) + ci(i,:) + bj(i,:) + cj(i,:);

end

a(n ,1:(m+1) /2) = 1; % D i r i c h l e t b o u n d a r y c o n d i t i o n
d(n ,1:(m+1) /2) = 0; % u = 0 , i =n , j =0 t o m

% Neumann b o u n d a r y c o n d i t i o n i =n , j =−1 t o −m
u(n ,1:(m+1) /2) = 0;

ci(n,(m+1) /2+1:m) = 2/dr^2;

550 Chapter.13 Laplace and Poisson equations

bj(n,(m+1) /2+1:m-1) = 1/(r(n)*dtheta)^2; % j =1 t o m−1
cj(n,(m+1) /2+1:m-1) = 1/(r(n)*dtheta)^2; % j =1 t o m−1
cj(n,m) = 2/(r(n)*dtheta)^2; %∂u/∂θ = 0 j =m
a(n,(m+1) /2+1:m) = bi(n,(m+1) /2+1:m) ...

+ ci(n,(m+1) /2+1:m) ...

+ bj(n,(m+1) /2+1:m) + cj(n,(m+1) /2+1:m);

The solution can be obtained from the discretized equations using point by point iterative
scheme. Alternatively, one can apply ADI scheme to solve the system of linear equations.
The following MATLAB program performs ADI iterations. The iterations stop when
maximum change in the values of the variable is less than 1×10−6.

uo = u; % o l d v a l u e o f u
res = 1; % i n i t i a l i z e r e s i d u a l
count = 0; % i t e r a t i o n c o u n t
while res > 1e-6 % i t e r a t i o n l o o p

% ADI 1 s t s t e p i m p l i c i t a l o n g r , e x p l i c i t a l o n g θ

d1 = bj(:,1).*u(:,2)+ d(:,1); % c o n s t a n t t e r m f o r TDMA
u(:,1) = tdma(ci(:,1),a(:,1),bi(:,1),d1);

for j=2:m-1

d1 = bj(:,j).*u(:,j+1)+cj(:,j).*u(:,j-1) + d(:,j);

u(:,j) = tdma(ci(:,j),a(:,j),bi(:,j),d1);

end

d1 = cj(:,m).*u(:,m-1) + d(:,m);

u(:,m) = tdma(ci(:,m),a(:,m),bi(:,m),d1);

% ADI 2 nd s t e p i m p l i c i t a l o n g θ , e x p l i c i t a l o n g r
for i=2:n-1

d1 = bi(i,:).*u(i+1,:)+ci(i,:).*u(i-1,:) + d(i,:);

u(i,:) = tdma(cj(i,:),a(i,:),bj(i,:),d1);

end

res = max(max(abs(u-uo))); % u p d a t e r e s i d u a l
uo = u; % u p d a t e o l d v a l u e o f u
count = count +1; % u p d a t e i t e r a t i o n c o u n t

end

The following MATLAB program constructs contour plot of the solution u.
[Theta ,R] = meshgrid(theta ,r);

X = R.*cos(Theta);

Y = R.*sin(Theta);

contour(X,Y,u)

Figure 13.10 shows the contour map of u in the annular region (right half). Also shown
is the grid sensitivity study. As the number of nodes are increased, the iteration count
also increases. In practice, the sensitivity of a desired quantity such as u or gradient at a
location is used for grid sensitivity study.

13.4 Elliptic equation over irregular domain
FDM can be applied to irregular geometries as well. Let us consider applying FDM in

Cartesian coordinates to the cylindrical domain considered in Example 13.8. A simple

13.4. Elliptic equation over irregular domain 551

(a)

0.9
0.8

0.6

0.4
0.2

0

1

no. of nodes u(1.5,0) %ε
no. of

r θ iterations
4 6 0.473 12
8 12 0.516 8.37 33

16 24 0.545 5.32 110
32 48 0.558 2.27 382
64 96 0.563 0.98 1371

128 192 0.566 0.43 4733
%ε refers to percentage difference between u(1.5,0) for
two consecutive grid size

(b)

Figure 13.10: (a) Contour map of u (grid size 128×192) (b) Grid sensitivity study with r = 1.5,
θ = 0 used as the marker node

discretization of the domain in Cartesian coordinates has been shown in the figure below.
As the domain is non uniform, the distribution of nodes close to the boundary also are
non-uniformly distributed.

Under such cases, application of Neumann boundary condition is not straightforward. The
gradients can be determined using multidimensional interpolation

∂u
∂n
θ ∂u

∂n
= ∂u
∂x

cosθ+ ∂u
∂y

sinθ

where θ is the angle made by the normal vector to the horizontal.

Alternatively, one can use boundary fitted coordinate system where the irregular
domain is mapped onto a regular domain, say a square. In such a case, the governing
equations would transform according to the Jacobian of the transformation. For the case
of a cylindrical annulus, the Laplace equation in Cartesian coordinates would transform
into that in cylindrical coordinates.

Example 13.9
Poisson equation with a constant source term q = 1 is applicable over a two dimensional

552 Chapter.13 Laplace and Poisson equations

trapezoidal domain as shown in the figure below. Discretize the domain using finite
difference method and determine the distribution of function inside the domain.

1

1 0.
5

u
=

0 symmetry

u
=

0

u = 0

u = 0

Solution :
As symmetry is applicable, we shall consider only one half of the domain, in which case the

condition at the line of symmetry is
∂u
∂y

= 0. Poisson equation in Cartesian coordinates is

given by
∂2u
∂x2 + ∂2u

∂y2 =−1

Coordinate transformation Now we shall transform the trapezium to a square and hence
from Cartesian coordinates (x, y) to new coordinates (ξ,η).

y

x(0,0)
a

b

c

d

0.5

0.25

1

u
=

0

u = 0

u
=

0

∂u
∂y

= 0

=⇒

(0,0)

η

ξ

1

1
a

b c

d

The trapezoidal domain can be transformed to the square domain using isoparametric
transformation introduced in Chapter 6. The weight function for the four points are

wa = (1−η)(1−ξ); wb = (1−ξ)η; wc = ηξ; wd = ξ(1−η);

Then the transformation can be written as

x = xawa + xbwb + xcwc + xdwd = ξ

y= yawa + ybwb + ycwc + ydwd = 0.5η−0.25ξη

ξ and x are same and the transformation occurs with respect to η. Jacobian of the
transformation can be determined using Equation 8.53.

J=

∂ξ

∂x
∂η

∂x
∂ξ

∂y
∂η

∂y

= 1
∂x
∂ξ

∂y
dη − ∂x

∂η
∂y
∂ξ

∂y
∂η

−∂y
∂ξ

−∂x
∂η

∂x
dξ

13.4. Elliptic equation over irregular domain 553

We have
∂x
∂ξ

= 1;
∂x
∂η

= 0;
∂y
∂ξ

=−0.25η;
∂y
∂η

= 0.5−0.25ξ

Then the Jacobian of the transformation becomes

J=

∂ξ

∂x
∂η

∂x
∂ξ

∂y
∂η

∂y

= 1
0.5−0.25ξ

 0.5−0.25ξ 0.25η
0 1

Then applying equations 8.58 and 8.59, second derivatives would become

∂2u
∂x2 = ∂2u

∂ξ2 +2
0.25η

0.5−0.25ξ
∂2u
∂ξ∂η

+
(

0.25η
0.5−0.25ξ

)2 ∂2u
∂η2

∂2u
∂y2 = 1

(0.5−0.25ξ)2
∂2u
∂η2

Thus, the Poisson equation in the transformed coordinates is0.5−0.25ξ
2

︸ ︷︷ ︸
a

∂2u
∂ξ2 +

0.5η(0.5−0.25ξ)
︸ ︷︷ ︸

b

∂2u
∂ξ∂η

+ (
1+0.0625η2)︸ ︷︷ ︸

c

∂2u
∂η2 = (0.5−0.25ξ)2︸ ︷︷ ︸

d

Poisson equation in the new coordinate system contains two second derivative terms and
also an additional mixed derivative term. The extra factor in the source term d accounts for
the change in area due to transformation.
One has to transform the boundary conditions as well to the new coordinate system. The

Neumann boundary condition at the bottom boundary becomes
∂u
∂η

= 0

Discretization
We shall discretize the square domain uniformly with n = 11 segments along ξ direction and
m = 11 segments along η direction. The step size along the two directions are ∆ξ and ∆η
respectively.

n = 11;m = 11; % no o f n o d e s
xi = 0:1/(n-1) :1; eta = 0:1/(m-1) :1; % n o d e s
[Eta ,Xi] = meshgrid(eta ,xi); % mesh
dxi = 1/(n-1); deta = 1/(m-1); % s t e p s i z e
u = zeros(n,m); % i n i t i a l i z e f u n c t i o n
uo = u;

a = (0.5 -0.25* Xi).^2/ dxi ^2; % t r a n s f o r m a t i o n
b = 0.5* Eta .*(0.5 -0.25* Xi)/(4* dxi*deta); % c o n s t a n t s
c = (1+0.0625* Eta .^2)/deta ^2; %

Discretization at internal node:

i−1 i i+1

j−1

j

j+1

554 Chapter.13 Laplace and Poisson equations

Poisson equation contains three terms of which
∂2u
∂ξ2 and

∂2u
∂η2 are discretized using central

difference formula. The third term is a mixed derivative and has not been treated yet. We
shall apply central differences to the mixed derivative term

∂

∂ξ

∂u
∂η

 =
∂u
∂η

∣∣∣
i+1

− ∂u
∂η

∣∣∣
i−1

2∆ξ
= ui+1, j+1 −ui+1, j−1 −ui−1, j+1 +ui−1, j−1

4∆η∆ξ

Then the difference equation for an internal node is

2
(ai, j

∆ξ2 + ci, j

∆η2

)
ui, j = ai, j

ui+1, j +ui−1, j

∆ξ2 + ci, j
ui, j+1 +ui, j−1

∆η2

+bi, j
ui+1, j+1 −ui+1, j−1 −ui−1, j+1 +ui−1, j−1

4∆η∆ξ
+di, j

Discretization at bottom boundary: We use ghost node approach to get ui,−1 = ui,1. The
mixed derivative term automatically disappears. The difference equation for this boundary
would be

2
(ai,0

∆ξ2 + ci,0

∆η2

)
ui,0 = ai,0

ui+1,0 +ui−1,0

∆ξ2 +2ci,0
ui,1

∆η2 +di,0

y

0

0.1

0.2

0.3

0.4

0.5

x
0 0.2 0.4 0.6 0.8 1

Figure 13.11: Contour plot of
function in the trapezoidal domain

0.05

0.04

0.03

0.02

0.01

The above procedure has been programmed in MATLAB. Gauss Seidel iteration has been
adopted. The iteration is stopped when the maximum change in the function values is less
than the specified tolerance.

residual = 1; % i n i t i a l i z e r e s i d u a l
while residual > 1e-12 % i t e r a t i o n l o o p

for i=2:n-1 % i n t e r n a l n o d e s
for j=2:m-1

u(i,j) = (a(i,j)*(u(i+1,j)+u(i-1,j)) + ...

c(i,j)*(u(i,j+1)+u(i,j-1)) + ...

b(i,j)*(u(i+1,j+1)+u(i-1,j-1) - ...

u(i-1,j+1)-u(i+1,j-1)) + d(i,j)) ...

13.4. Elliptic equation over irregular domain 555

/(2*a(i,j)+2*c(i,j));

end

end

j = 1; % b o t t o m b o u n d a r y n o d e s
for i=2:n-1

u(i,j) = (d(i,j)+a(i,j)*(u(i+1,j)+u(i-1,j)) + ...

2*c(i,j)*u(i,j+1))/(2*a(i,j)+2*c(i,j));

end

residual = max(max(abs(uo -u))); % r e s i d u a l
uo = u; % u p d a t e u

end

X = Xi; % t r a n s f o r m c o o r d i n a t e s
Y = 0.5*Eta -0.25* Xi.*Eta;

contour(X,Y,u); % c o n t o u r p l o t

A contour plot of the function within the trapezoidal domain is given in Figure 13.11.

Now we shall look at application of Robin and Neumann boundary condition for an
irregular geometry.

Example 13.10
Laplace equation is applicable over a two dimensional trapezoidal domain as shown in
figure. Discretize the domain using finite difference method and determine the distribution
of function inside the domain.

1

1 0.
5

u
=

1 symmetry

∂
u
∂

x
=

0

∂u
∂n

+u = 0

∂u
∂n +u = 0

∂u
∂n

is the derivative normal to
the boundary

Solution :
As symmetry is applicable, we shall consider only one half of the domain, in which case the

condition at the line of symmetry is
∂u
∂y

= 0. Laplace equation in Cartesian coordinates is

given by
∂2u
∂x2 + ∂2u

∂y2 = 0

Coordinate transformation Now we shall transform the trapezium to a square and hence
from Cartesian coordinates (x, y) to new coordinates (ξ,η).

556 Chapter.13 Laplace and Poisson equations

y

x(0,0)
a

b

c

d

0.5

0.25

1

∂
u
∂

x
=

0

∂u
∂n +u = 0

u
=

1

∂u
∂y

= 0

=⇒

(0,0)

η

ξ

1

1
a

b c

d

u
=

1

∂
u
∂

x
=

0

∂u
∂η

= 0

∂u
∂n

+u = 0

The Laplace equation in the transformed coordinates is (see previous example)0.5−0.25ξ
2

︸ ︷︷ ︸
a

∂2u
∂ξ2 +

0.5η(0.5−0.25ξ)
︸ ︷︷ ︸

b

∂2u
∂ξ∂η

+ (
1+0.0625η2)︸ ︷︷ ︸

c

∂2u
∂η2 = 0

Boundary conditions
Bottom boundary

∂u
∂y

= ∂u
∂ξ

∂ξ

∂y
+ ∂u
∂η

∂η

∂y
= 1

0.5−0.25ξ
∂u
∂η

= 0

Right boundary

∂u
∂x

= ∂u
∂ξ

∂ξ

∂x
+ ∂u
∂η

∂η

∂x
= ∂u
∂ξ

+ 0.25η
0.5−0.25ξ

∂u
∂η

= ∂u
∂ξ

+η∂u
∂η

= 0

Top boundary
The normal gradient at the top boundary is given by

∂u
∂n

= ∂u
∂x

cosθ+ ∂u
∂y

sinθ

θ is the angle made by the normal with respect to horizontal. For the present problem, we
have a straight line. For a general curve, slope can be determined by performing gradient
operation on the curve. The equation of the top boundary is given by 0.25x+y= 0.5, gradient
of which is 0.25î+ ĵ, with the magnitude of the vector being

√
1+0.252 = 1.0308. Hence

cosθ = 0.25
1.0308

and sinθ = 1
1.0308

. Expanding other terms we get

∂u
∂n

+u = cosθ
∂u
∂ξ

+ 0.25cosθ+sinθ
0.5−0.25ξ

∂u
∂η

+u = 0

Discretization
We shall discretize the square domain uniformly with n = 11 segments along ξ direction and
m = 11 segments along η direction. The discretization can be achieved using the program
given in the previous example.
Equations for internal nodes: Then the difference equation for an internal node is

2
(ai, j

∆ξ2 + ci, j

∆η2

)
ui, j = ai, j

ui+1, j +ui−1, j

∆ξ2 + ci, j
ui, j+1 +ui, j−1

∆η2

13.4. Elliptic equation over irregular domain 557

+bi, j
ui+1, j+1 −ui+1, j−1 −ui−1, j+1 +ui−1, j−1

4∆η∆ξ

Equations for nodes on the bottom boundary: Again using ghost node approach, the
difference equation for the boundary would be

2
(ai,0

∆ξ2 + ci,0

∆η2

)
ui,0 = ai,0

ui+1,0 +ui−1,0

∆ξ2 +2ci,0
ui,1

∆η2

Equations for nodes on the right boundary: We shall use three point one sided difference for
ξ coordinate and central difference formula for η coordinate.

ui−2, j −4ui−1, j +3ui, j

2∆ξ
+ηi, j

ui, j+1 −ui, j−1

2∆η
= 0

ui, j = 1
3

(
4ui−1, j −ui−2, j −ηi, j∆ξ

ui, j+1 −ui, j−1

∆η

)
Equations for nodes on the top boundary: We will use three point one sided formula along η
and central differences along ξ coordinate.

cosθ
ui+1,m −ui−1,m

2∆ξ
+K

ui,m−2 −4ui,m−1 +3ui,m

2∆η
+ui, j = 0

ui, j = 1
3K
2∆η +1

(
K

4ui,m−1 −ui,m−2

2∆η
−cosθ

ui+1,m −ui−1,m

2∆ξ

)

where K = 0.25cosθ+sinθ
0.5−0.25ξi, j

.

Equation at bottom right corner At bottom right corner we have
∂u
∂η

= 0. We use the ghost

node approach.

2
(an,0

∆ξ2 + cn,0

∆η2

)
un,0 = 2an,0

un−1,0

∆ξ2 +2cn,0
un,1

∆η2

Equation at top right corner At top right corner, we use the Neumann boundary condition
∂u
∂x

= 0. We use three point formula in both directions to get

ui, j =
(

3
∆ξ

+ 3ηi, j

∆η

)−1 (4ui−1, j −ui−2, j

∆ξ
+ηi, j

4ui, j−1 −ui, j−2

∆η

)
The above procedure has been programmed in MATLAB. Gauss Seidel iteration has been
adopted. The iteration is stopped when the maximum change in the function values is less
than the specified tolerance.

residual = 1; % r e s i d u a l
cost = 0.25/ sqrt (1+0.25^2); % cosθ
sint = 1/ sqrt (1+0.25^2); % sinθ
while residual > 1e-12 % i t e r a t i o n l o o p

for i=2:n-1 % i n t e r n a l n o d e s
for j=2:m-1

u(i,j) = (a(i,j)*(u(i+1,j)+u(i-1,j)) + ...

558 Chapter.13 Laplace and Poisson equations

c(i,j)*(u(i,j+1)+u(i,j-1)) + ...

b(i,j)*(u(i+1,j+1)+u(i-1,j-1) - ...

u(i-1,j+1)-u(i+1,j-1))) ...

/(2*a(i,j)+2*c(i,j));

end

end

j = 1; % b o t t o m b o u n d a r y
for i=2:n-1

u(i,j) = (a(i,j)*(u(i+1,j)+u(i-1,j)) + ...

2*c(i,j)*u(i,j+1))/(2*a(i,j)+2*c(i,j));

end

j = m; % t o p b o u n d a r y
for i=2:n-1

K = (0.25* cost+sint)/(0.5 -0.25* Xi(i,j));

u(i,j) = (K/(2* deta)*(4*u(i,m-1)-u(i,m-2)) - ...

cost *(u(i+1,m)-u(i-1,m))/(2* dxi))/ ...

(3*K/(2* deta)+1);

end

i = n; % r i g h t b o u n d a r y
for j=2:m-1

u(i,j) = (4*u(i-1,j) - u(i-2,j) ...

-dxi*Eta(i,j)*(u(i,j+1)-u(i,j-1))/deta)/3;

end

i=n;j=m; % t o p r i g h t n o d e
u(i,j) = ((4*u(i-1,j) - u(i-2,j))/dxi ...

+Eta(i,j)*(4*u(i,j-1)-u(i,j-2))/deta)/ ...

(3*(1/ dxi+Eta(i,j)/deta));

i=n;j=1; % b o t t o m r i g h t n o d e
u(i,j) = (2*a(i,j)*u(i-1,j) + ...

2*c(i,j)*u(i,j+1)) ...

/(2*a(i,j)+2*c(i,j));

residual = max(max(abs(uo -u))); % r e s i d u a l
uo = u; % u p d a t e u

end % e n d l o o p

A contour plot of the solution within the trapezoidal domain has given in Figure 13.12.

y

0

0.1

0.2

0.3

0.4

0.5

x
0 0.2 0.4 0.6 0.8 1

Figure 13.12: Contour plot of
function in the trapezoidal domain0.9

0.8
0.7

0.6

0.5

13.5. FEM and FVM applied to elliptic problems 559

Another alternative is to divide the geometry into sub domains. Finite difference
discretization is applied to each sub domain individually.

Domain 1 Domain 2 Domain 3

FDM using boundary fitted transformation can be used to solve a wide range of irregular
domains. They have been extensively employed in engineering practice. However,
they become tedious and involve extensive algebraic manipulations. Solving PDEs over
irregular domains is a challenge and there have been many strategies that have been used
to treat them. Now we shall introduce briefly application of FEM and FVM techniques
to multidimensional problems. FEM and FVM have been prominently used to treat
nonuniform domains.

13.5 FEM and FVM applied to elliptic problems
We have already introduced FEM and FVM in an earlier chapter. The advantage of

FEM and FVM lies in their application to irregular domains. We shall briefly introduce
these concepts towards a multidimensional elliptic equation.

Galerkin FEM

Let us consider the two dimensional Poisson equation over a square

∂2u
∂x2 + ∂2u

∂y2 =−q(x, y) (13.20)

The square domain is discretized into a number of linear elements (rectangular or
triangular) as shown in the figure below

The function within each rectangular element is defined using bilinear interpolation
discussed in Chapter 6. The weighted residual (Galerkin formulation) equations for an
element would be ∫

Ae

Ni(∇2u+ q)dA =
∫

Ae

Ni

(
∂2u
∂x2 + ∂2u

∂y2 + q
)

dA = 0

560 Chapter.13 Laplace and Poisson equations

where Ae is the area of the two dimensional element and Ni is the shape function
associated with node i. The residual consists of two integrals integrated over the

elemental area. The integral
∫

Ae

Ni qdA can be evaluated using any of the quadrature

rules we are familiar with. The order of the quadrature rule to be used for evaluation of
the integral would affect the accuracy of the final numerical solution.

The second integral
∫

Ae

Ni∇2udA, just as one dimensional problems, can be rewritten
as ∫

Ae

Ni∇2udA =
∫

Ae

∇ (Ni.∇u)dA︸ ︷︷ ︸
I1

−
∫

Ae

∇Ni.∇udA︸ ︷︷ ︸
I2

Applying Gauss divergence theorem to I1, the area integral is converted to line integral

I1 =
∫

S
Ni.∇uds

where s is the boundary of the element. This term is nothing but normal first derivatives
to the boundary integrated over the boundary of the element as shown in the following
figure.

For internal nodes the derivative terms are not available and hence these terms are
neglected in the residual equation. Hence this term (similar to one dimensional case)
accounts for residual. The residual becomes small as the grids are refined. As this term
is related to normal derivatives, both Neumann and Robin condition are accounted for
i.e. when such boundary conditions are specified, integral I1 would be considered in the
residual.

I2 is an area integral given by

I2 =−
∫

Ae

(
∂Ni

∂x
∂u
∂x

+ ∂Ni

∂y
∂u
∂y

)
dA

which can be rewritten as

I2 =−
∫

Ae

(
∂Ni

∂x

∑
j

∂N j

∂x
u j + ∂Ni

∂y

∑
j

∂N j

∂y
u j

)
dA

13.5. FEM and FVM applied to elliptic problems 561

The residual equations are solved for each element and are assembled together to form a
set of linear equations. We shall take a simple example to illustrate the method.

Example 13.11
Laplace equation is valid in the following domain. Solve for the function at nodes 2, 3, 5 and
6 using FEM

1

4

7

2

5

8

3

6

9

h

k

1

1

1
0 0

e1 e2

e3 e4

l1

l2

∂
u
∂

x
+u

=
0

∂u
∂y

= 0

e refers to element
h = k = 0.5
1) u at left wall = 1
2) u at top wall = 0

3) At bottom wall,
∂u
∂y

= 0

4) At right wall,
∂u
∂x

+u = 0

Solution :
The domain has been discretized into four area elements and the number of unknowns are
four.

Let us first consider a rectangular element in its local coordinate system −1 ≤ ξ ≤ 1 and
−1≤ η≤ 1.

a b

c d
The weight functions at the nodes are

Na = (1−ξ)(1−η)
4

Nb = (1+ξ)(1−η)
4

Nc = (1−ξ)(1+η)
4

Nd = (1+ξ)(1+η)
4

For an internal node, we will consider integral I2 and transform the same to local
coordinates

I2 =−
∫

Ae

(
∂Ni

∂x
∂u
∂x

+ ∂Ni

∂y
∂u
∂y

)
dA =−hk

4

∫ 1

−1

∫ 1

−1

(
∂Ni

∂ξ

∂u
∂ξ

4
h2 + ∂Ni

∂η

∂u
∂η

4
k2

)
dξdη

where

∂u
∂ξ

= ∂Na

∂ξ
ua + ∂Nb

∂ξ
ub +

∂Nc

∂ξ
uc + ∂Nd

∂ξ
ud

∂u
∂η

= ∂Na

∂η
ua + ∂Nb

∂η
ub +

∂Nc

∂η
uc + ∂Nd

∂η
ud

Then the residual integral for a node i in the element is

I2 = hk
4

∫ 1

−1

∫ 1

−1

(
∂Ni

∂ξ

∑
j

∂N j

∂ξ
u j

4
h2 + ∂Ni

∂η

∑
j

∂N j

∂η
u j

4
k2

)
dξdη

562 Chapter.13 Laplace and Poisson equations

We have to evaluate the integrals
∫ 1

−1

∫ 1

−1

∂Ni

∂ξ

∂N j

∂ξ
dξdη and

∫ 1

−1

∫ 1

−1

∂Ni

∂η

∂N j

∂η
dξdη The first

partial derivatives are

∂Na

∂ξ
=−1−η

4
;

∂Nb

∂ξ
= 1−η

4
;

∂Nc

∂ξ
=−1+η

4
;

∂Nd

∂ξ
= 1+η

4
;

∂Na

∂η
=−1−ξ

4
;

∂Nb

∂η
=−1+ξ

4
;

∂Nc

∂η
= 1−ξ

4
;

∂Nd

∂η
= 1+ξ

4
;

On evaluating the integrals, we build the residual matrix for the element as

I2 =− k
6h

2 −2 1 −1
−2 2 −1 1
1 −1 2 −2
−1 1 −2 2

ua
ub
uc
ud

− h
6k

2 1 −2 −1
1 2 −1 −2
−2 −1 2 1
−1 −2 1 2

ua
ub
uc
ud

Now we shall consider individual elements.
Element 1 consists of 4 nodes 1, 2, 4 and 5 which are a, b, c and d respectively in the local
coordinates. Function values at 2 and 5 are unknown and the local elemental equation are

node 2 − k
6h

(−2+2u2 −1+u5)− h
6k

(1+2u2 −1−2u5)

− k
6h

(−3+2u2 +u5)− h
6k

(2u2 −2u5)

node 5 − k
6h

(−2+u2 −1+2u5)− h
6k

(−1−2u2 +1+2u5)

− k
6h

(−3+u2 +2u5)− h
6k

(−2u2 +2u5)

Element 2 is composed of 2, 3, 5 and 6 which are a, b, c and d respectively in the local
coordinates. All the four are unknowns and the elemental equations are same as stated
earlier which are

node 2 − k
6h

(2u2 −2u3 +u5 −u6)− h
6k

(2u2 +u3 −2u5 −u6)

node 3 − k
6h

(−2u2 +2u3 −u5 +u6)− h
6k

(u2 +2u3 −u5 −2u6)

node 5 − k
6h

(u2 −u3 +2u5 −2u6)− h
6k

(−2u2 −u3 +2u5 +u6)

node 6 − k
6h

(−u2 +u3 −2u5 +2u6)− h
6k

(−u2 −2u3 +u5 +2u6)

Element 3 is composed of nodes 4, 5, 7 and 8 which are a, b, c and d respectively in the
local coordinates. Function values at 5 is unknown and the local elemental equation is

node 5 − k
6h

(−3+2u5)− h
6k

(2u5)

Element 4 is composed of nodes 5, 6, 8 and 9 which are a, b, c and d respectively in the
local coordinates. Function values at 5 and 6 are unknown and the local elemental equation
are

node 5 − k
6h

(2u5 −2u6)− h
6k

(2u5 +u6)

13.5. FEM and FVM applied to elliptic problems 563

node 6 − k
6h

(2u6 −2u5)− h
6k

(2u6 +u5)

Boundary conditions
Now we have to consider the boundary conditions. The bottom wall is subjected to Neumann

boundary condition
∂u
∂y

= 0. This boundary condition has already been represented in the

discretized equations. The right wall is subjected to Robin condition and integral I1 has to
be evaluated at the right boundary which is

I1 =
∫

s
Ni.∇uds =

∫
Ni

∂u
∂x

d y=−
∫

Niud y

As the integral is applied over a line, we need to consider the line element alone. We have
two such linear elements on the boundary, l1 - nodes 3 and 6 and l2 nodes 6 and 9. The
above integral has already been evaluated in Chapter 11.6.3. From element l1 we have
nodal equation for node 6

node 6 − k
6

2u6

and from element l2 we have

node 3 −k
6

(u6 +2u3)

node 6 −k
6

(2u6 +u3)

Nodal equations
We shall assemble all the elemental equations to obtain the following set of linear equations

node 2 u2 = 1
8

(2u5 +u3 +2u6 +3)

node 3 u3 = (u2 +2u5 +u6(1−k))
4+2k

node 5 u5 = 1
8

(3+u2 +u3 +u6)

node 6 u6 = (2u2 +2u5 +u3(1−k))
8+4k

On solving the above set of equations we get u2 = 0.6130, u3 = 0.3580, u5 = 0.5271 and
u6 = 0.2459. We have to refine the grid for obtaining an acceptable solution. FEM can be
programmed to take into account of such grid refinement.

FEM program would consist of three stages

1. Preprocessing - discretizing the domain
2. Processing - determine the elemental equations, assemble these equations and solve

the system of equations
3. Post-processing - analyze the solution, plot the results etc.

564 Chapter.13 Laplace and Poisson equations

For that matter, the above three stages form the core for any method including FDM
and FVM. The examples that have been presented thus far, the discretization has
been straightforward. Such grids are also called as structured grids. But for an
arbitrary irregular domain structured grids may not be possible and we may have to
use unstructured grids or meshes. The reader would have to refer to advanced books
for programming aspects of FEM. Nevertheless we briefly introduce some aspects (the
program to be discussed is only for illustration). We shall consider a two dimensional
domain discretized using triangular elements.

Preprocessing: Constructing mesh, creating nodes, element and boundary database can
be obtained using any preprocessing tool. MATLAB itself has an inbuilt preprocessing
tool available. To demonstrate the application of FEM, we take up a simple strategy to
construct grid and necessary databases.

We shall consider a rectangular domain. Firstly, nodes are distributed uniformly
throughout the domain (similar to FDM) n nodes along x coordinate and m nodes along y
coordinate. Nodes are numbered similar to Example 13.11. If i and j are indices along x
and y coordinate respectively, the node can be numbered using the formula (j −1)n− i.
In addition to this, we should know the element properties (type of element -linear
triangular, quadrilateral etc) and its associated nodes. We shall consider the domain to
be discretized into triangular elements. A MATLAB program has been written to produce
the array containing coordinates of the nodes and element array.

Program 13.1: Construct list of nodes over a rectangular domain

1 function [p,t] = constructnodes(n,m)

2 % I n p u t n , m : no o f n o d e s a l o n g x and y
3 % O u t p u t p : c o o r d i n a t e s o f n o d e s
4 % p (: , 1) x c o o r d i n a t e
5 % p (: , 2) y c o o r d i n a t e
6 % t : s t o r e s n o d e n u m b e r s a s s o c i a t e d w i t h e l e m e n t
7 % t (: , 1) , t (: , 2) , t (: , 3) a r e n o d e n u m b e r s a r r a n g e d
8 % i n c o u n t e r c l o c k w i s e d i r e c t i o n
9 x = 0:1/(n-1) :1; y = 0:1/(m-1) :1; % n o d e s

10 [Y,X] = meshgrid(y,x); % mesh
11 nn = n*m; p = zeros(nn ,2); % i n i t i a l i z e n o d e s
12 count = 1; % i n i t i a l i z e n o d e c o u n t
13 for i=1:n

14 for j=1:m

15 p(count ,1) = X(i,j);

16 p(count ,2) = Y(i,j);

17 count = count + 1;

18 end

19 end

20 nqe = 2*(n-1)*(m-1); % no o f e l e m e n t s
21 t = zeros(nqe ,3); % i n i t i a l i z e e l e m e n t s
22 % t s t o r e s t h e n o d e n u m b e r s a s s o c i a t e d w i t h t h e e l e m e n t
23 count = 1; % i n i t i a l i z e e l e m e n t c o u n t
24 for j=1:m-1

25 for i=1:n-1

13.5. FEM and FVM applied to elliptic problems 565

26 t(count ,1) = (j-1)*n+i;

27 t(count ,2) = (j-1)*n+i+1;

28 t(count ,3) = j*n+i+1;

29 t(count +1,1) = (j-1)*n+i;

30 t(count +1,2) = j*n+i+1;

31 t(count +1,3) = j*n+i;

32 count = count + 2;

33 end

34 end

A sample output is given below.

1

4

7

2

5

8

3

6

9

e1

e2

e3

e4

e5

e6

e7

e8

node
number x y

1 0 0
2 0.5 0
3 1 0
4 0 0.5
5 0.5 0.5
6 1 0.5
7 0 1
8 0.5 1
9 1 1

Element
numbers

Node
numbers

1 1 2 5
2 1 5 4
3 2 3 6
4 2 6 5
5 4 5 8
6 4 8 7
7 5 6 9
8 5 9 8

In addition to this we must also have a database of the boundary elements, its associated
nodes and the respective condition applicable over the element. For a two dimensional
domain, boundaries are represented by line elements. There can be two types of
boundary conditions viz. Dirichlet or Neumann/ Robin boundary condition. We shall store
these boundary conditions separately. The database associated with Dirichlet boundary
condition would store the node number and the value fixed at the node. We shall follow
the following convention

% D i r i c h l e t
bd(:,1) stores node number

bd(:,2) stores value associated with the node

A Neumann condition is specified as

∂u
∂n

+ c1u = c2

Hence, the database associated with Neumann boundary condition should store the nodes
associated with the line element and values of c1 and c2. We shall follow the following
convention for programming

% Neumann
% b r (: , 1) s t o r e s f i r s t n o d e number
% b r (: , 2) s t o r e s s e c o n d n o d e number
% b r (: , 3) s t o r e s c1
% b r (: , 4) s t o r e s c2

566 Chapter.13 Laplace and Poisson equations

We shall take up these two database when taking up specific examples.

Processing: We have to construct a system of linear equations and it is always better
to consider element by element. Like wise, it would be better to treat each term of
the equation independently and later assembled together. Determining all the local
matrices involves evaluation of shape functions and quadrature rules. Hence, separate
sub programs for quadrature of a term over an element can be written. Hence, the local
coordinate system representation becomes useful.

Recollect

1 (x1, y1) 2 (x2, y2)

3 (x3, y3) For a triangular element, the shape function Ni = ai +bix+ ci y
where

a1 = (x2 y3 − y2x3)
2A

b1 = (y2 − y3)
2A

c1 = (x3 − x2)
2A

a2 = (x3 y1 − y3x1)
2A

b2 = (y3 − y1)
2A

c1 = (x1 − x3)
2A

a3 = (x1 y2 − y1x2)
2A

b3 = (y1 − y2)
2A

c1 = (x2 − x1)
2A

where A is the area of the triangular element. Program 6.2 can be used to determine the above
parameters. The area of the element would be A = a1 +a2 +a3

2
. Program 6.3 is useful for carrying

out the quadrature rules.

First let us consider the Laplacian term,
∫

Ae

Ni∇2udA. We have already shown that

this term can be reduced to

−
∫

Ae

∂Ni

∂x

3∑
j=1

∂N j

∂x
u jdA+

∫
Ae

∂Ni

∂y

3∑
j=1

∂N j

∂y
u jdA

The first partial derivatives for a triangular element are constant and hence the above
integral becomes

K = −A

b2

1 b1b2 b1b3
b1b2 b2

2 b2b3
b1b3 b2b3 b2

3

− A

c2

1 c1c2 c1c3
c1c2 c2

2 c2c3
c1c3 c2b3 c2

3

= −A

b1
b2
b3

 b1 b2 b3

− A

c1
c2
c3

 c1 c2 c3

The integral related to source term

∫
Ae

Ni qdA can be evaluated using quadrature rules.

The simplest would be to use the corners of three nodes for evaluating the integral. Then
the source term simply reduces to

QT = A
3

 q1 q2 q3

13.5. FEM and FVM applied to elliptic problems 567

Now, we have to consider integrals related to Neumann and Robin condition. A general
boundary condition involves

∂u
∂n

+ c1u = c2 or
∂u
∂n

=−c1u+ c2

If c1 = 0, we get Neumann condition. Now the line integral I1 =
∫

S
Ni.∇uds is considered

which becomes
∫

S
Ni (−c1u+ c2)ds. This integral is applied over the edges over which

such boundary conditions are specified. Let us consider one element subjected to the
above condition. Then the integral to be evaluated becomes

−c1

∫
S

 N2
1 N1N2

N1N2 N2
2

 u1
u2

ds+ c2

∫
S

 N1
N2

ds

N1 and N2 are the shape functions for a line element. Hence, the integral becomes

− c1L
6

 2 1
1 2

 u1
u2

+ c2L
2

 1
1

where L is the length of the line element.

Assembly: All the local elemental terms have to be assembled together to form a
global set of equations. Assembly remains the most crucial aspect of FEM. Unlike, one
dimensional problem, the matrix is not tridiagonal. However matrix is sparse i.e. large
number of zero elements in the matrix. Thus one needs to store only the non zero values
of the matrix. MATLAB provides inbuilt functions to handle sparse matrices. However,
we shall leave sparse matrices to the interest of the reader.

A simple way to assemble the equations is to consider the full matrix directly. We shall
initialize the full matrix to zero. We start calculating the local matrices for every element
and add the full matrix directly. After assembling all the equations, Dirichlet boundary
conditions is also fed into the matrix. These equations are then solved using any of the
methods that have been presented earlier. As we have used full matrix, the method would
be computationally intensive. However, using sparse matrix algebra can tremendously
reduce the computational cost.

A MATLAB function has been given below to solve two dimensional Poisson equation
based on what has been discussed till now.

Program 13.2: FEM to solve 2D Poisson equation

1 function u = fempoisson(p,t,bd ,br ,q)

2 % I n p u t p : c o o r d i n a t e s o f n o d e s
3 % t : t r i a n g u l a r e l e m e n t s
4 % bd : n o d e s w i t h D i r i c h l e t BC
5 % b r : n o d e s w i t h Neumann / R o b i n BC
6 % q : s o u r c e v a l u e a t n o d e s

568 Chapter.13 Laplace and Poisson equations

7 % O u t p u t u : s o l u t i o n
8 nn = size(p,1); % no . o f n o d e s
9 nte = size(t,1); % no . p f e l e m e n t s

10 A = zeros(nn); % i n i t i a l i z e m a t r i x A
11 B = zeros(nn ,1); % i n i t i a l i z e v e c t o r B
12 nbd = size(bd ,1); % no . o f d i r i c h l e t b o u n d a r y n o d e s
13 nbr = size(br ,1); % no . o f Neumann b o u n d a r y e l e m e n t s
14 for i=1: nte % l o o p f o r l a p l a c e and s o u r c e t e r m
15 [a,b,c,Area] = trlocalcoeff(p(t(i,1) ,:),p(t(i,2) ,:) ...

16 ,p(t(i,3) ,:));

17 K = -Area *(b'*b+c'*c); %% e l e m e n t a l l a p l a c i a n m a t r i x
18 % u p d a t i n g g l o b a l m a t r i x
19 A(t(i,1),t(i,1)) = A(t(i,1),t(i,1))+K(1,1);

20 A(t(i,1),t(i,2)) = A(t(i,1),t(i,2))+K(1,2);

21 A(t(i,1),t(i,3)) = A(t(i,1),t(i,3))+K(1,3);

22 A(t(i,2),t(i,1)) = A(t(i,2),t(i,1))+K(2,1);

23 A(t(i,2),t(i,2)) = A(t(i,2),t(i,2))+K(2,2);

24 A(t(i,2),t(i,3)) = A(t(i,2),t(i,3))+K(2,3);

25 A(t(i,3),t(i,1)) = A(t(i,3),t(i,1))+K(3,1);

26 A(t(i,3),t(i,2)) = A(t(i,3),t(i,2))+K(3,2);

27 A(t(i,3),t(i,3)) = A(t(i,3),t(i,3))+K(3,3);

28 % % u p d a t i n g s o u r c e t e r m
29 B(t(i,1)) = B(t(i,1)) + q(t(i,1))*Area /3;

30 B(t(i,2)) = B(t(i,2)) + q(t(i,2))*Area /3;

31 B(t(i,3)) = B(t(i,3)) + q(t(i,3))*Area /3;

32 end

33 % Neumann and R o b i n c o n d i t i o n
34 for i=1: nbr

35 length = sqrt ((p(br(i,1) ,1)-p(br(i,2) ,1))^2 ...

36 + (p(br(i,1) ,2)-p(br(i,2) ,2))^2);

37 c1 = br(i,3); c2 = br(i,4);

38 A(br(i,1),br(i,1)) = A(br(i,1),br(i,1))-c1*length /3;

39 A(br(i,1),br(i,2)) = A(br(i,1),br(i,2))-c1*length /6;

40 A(br(i,2),br(i,2)) = A(br(i,2),br(i,2))-c1*length /3;

41 A(br(i,2),br(i,1)) = A(br(i,2),br(i,1))-c1*length /6;

42 B(br(i,1)) = B(br(i,1)) - c2*length /2;

43 B(br(i,2)) = B(br(i,2)) - c2*length /2;

44 end

45 % D i r i c h l e t c o n d i t i o n
46 for i=1: nbd

47 A(bd(i,1) ,:) = 0; A(bd(i,1),bd(i,1)) = 1;

48 B(bd(i,1)) = bd(i,2);

49 end

50 u = A\B; % s o l v e

The above program can be used to solve a two dimensional Poisson equation over an
arbitrary domain, provided the required database is already available. Now we shall take
up some cases considered earlier.

Poisson equation over square domain, Example 13.2
The boundaries are subjected to Dirichlet boundary condition u = 0 and the source term

13.5. FEM and FVM applied to elliptic problems 569

q = 100sin(πx)cos(πx). MATLAB program is provided below to solve this problem using
FEM.

n = 41; m = 41; % no o f n o d e s
% c o n s t r u c t n o d e s and e l e m e n t s
[p,t] = constructnodes(n,m);

% c o n s t r u c t b o u n d a r y c o n d i t i o n d a t a b a s e
bdcount = 1; % D i r i c h l e t c o n d i t i o n d a t a b a s e
j = 1;

for i=1:n % b o t t o m b o u n d a r y
bd(bdcount ,1) = (j-1)*n+i; % n o d e number
bd(bdcount ,2) = 0; % v a l u e
bdcount = bdcount + 1;

end

i= n; % r i g h t b o u n d a r y
for j=2:m

bd(bdcount ,1) = (j-1)*n+i; % n o d e number
bd(bdcount ,2) = 0; % v a l u e
bdcount = bdcount + 1;

end

i= 1; % l e f t b o u n d a r y
for j=2:m

bd(bdcount ,1) = (j-1)*n+i; % n o d e number
bd(bdcount ,2) = 0; % v a l u e
bdcount = bdcount + 1;

end

j = m;

for i=2:n-1 % b o t t o m b o u n d a r y
bd(bdcount ,1) = (j-1)*n+i; % n o d e number
bd(bdcount ,2) = 0; % v a l u e
bdcount = bdcount + 1;

end

% s o u r c e t e r m a t t h e n o d e s
q = -100* sin(pi*p(:,1)).*sin(pi*p(:,2));

u = fempoisson(p,t,bd ,[],q); % s o l v e u s i n g FEM
% [] i n d i c a t e s e m p t y m a t r i x
% p o s t p r o c e s s i n g
X = 0:0.01:1; Y = 0:0.01:1;

[X,Y] = meshgrid(X,Y);

Z = griddata(p(:,1),p(:,2),u,X,Y); % d a t a i n g r i d f o r m
contour(X,Y,Z); % c o n t o u r p l o t

The solution obtained is comparable to the FDM solution. For a grid of 41×41, the function
value at (0.5,0.5), u(0.5,0.5)= 5.06866

Laplace equation over irregular domain, Example 13.10 FEM is suitable for an
irregular domain. For the present case, we have first created the nodes and elements
in the transformed coordinates after which the nodes are transformed to Cartesian
coordinates.

570 Chapter.13 Laplace and Poisson equations

n = 5; m = 5;

[pl ,t] = constructnodes(n,m);

p(:,1) = pl(:,1);

p(:,2) = pl(:,2) .*(0.5 -0.25* pl(:,1));

Now, we shall create the boundary condition database and solve the equations using FEM.

bdcount = 1; brcount = 1;

j = 1;

for i=1:n-1 % b o t t o m b o u n d a r y
br(brcount ,1) = (j-1)*n+i;

br(brcount ,2) = (j-1)*n+i+1;

br(brcount ,3) = 0;

br(brcount ,4) = 0;

brcount = brcount + 1;

end

% r i g h t b o u n d a r y
i= n;

for j=1:m-1

br(brcount ,1) = (j-1)*n+i;

br(brcount ,2) = (j)*n+i;

br(brcount ,3) = 0;

br(brcount ,4) = 0;

brcount = brcount + 1;

end

i= 1; % l e f t b o u n d a r y
for j=1:m

bd(bdcount ,1) = (j-1)*n+i;

bd(bdcount ,2) = 1;

bdcount = bdcount + 1;

end

j = m;

for i=1:n-1 % t o p b o u n d a r y
br(brcount ,1) = (j-1)*n+i;

br(brcount ,2) = (j-1)*n+i+1;

br(brcount ,3) = 1;

br(brcount ,4) = 0;

brcount = brcount + 1;

end

q = 0*p;

u1 = fempoisson(p,t,bd ,br ,q);

% p o s t − p r o c e s s i n g
Xi =0:0.01:1; Eta = 0:0.01:1;

[Xi ,Eta] = meshgrid(Xi ,Eta);

X = Xi; Y = 0.5*Eta -0.25* Eta.*Xi;

Z = griddata(p(:,1),p(:,2),u1 ,X,Y);

figure;contour(X,Y,Z)

We have demonstrated how a same set of programs can be applied to wide range of
problems. The programs presented in the section are not optimized for computation. They
may be used by the reader to solve simple problems. We have not dealt with the pre-
processing stage of FEM. However, this is the most important stage of FEM and the reader

13.5. FEM and FVM applied to elliptic problems 571

should refer to a specialized references on FEM. The quality of the mesh would affect the
accuracy of the solution and often in practice, most of the effort goes into producing quality
meshes.

FVM

Let us consider the Poisson equation over a square domain. The domain is to be divided
into finite volumes. For FVM, the weight over a volume is equal to 1. The residual
equation applied to one finite volume is given by

R =
∫

Ae

∂2u
∂x2 + ∂2u

∂y2 + q
dA =

∫
s

∂u
∂n

.nds+
∫

Ae

qdA

The above integral is related to the first derivatives normal to the boundary of the volume
similar to FEM. For a rectangular domain the following shows the details

i, ji−1, j i+1, j

i, j+1

i, j−1

∂u
∂y

∣∣∣∣
yi+0.5k

∂u
∂y

∣∣∣∣
yi−0.5k

∂u
∂x

∣∣∣∣
xi−0.5h

∂u
∂x

∣∣∣∣
xi+0.5h

The residual equation for node i, j will be

∂u
∂y

∣∣∣∣
yi+0.5k

h+ ∂u
∂y

∣∣∣∣
yi−0.5k

h

+ ∂u
∂x

∣∣∣∣
xi−0.5h

k+ ∂u
∂x

∣∣∣∣
xi+0.5h

k+ qi, jhk = 0

The derivatives at the boundaries of the
control volume can be approximated using
finite difference schemes. If derivatives at
the boundary has been provided (Neumann
or Robin condition), they can be directly
incorporated.

We shall take up an example illustrating FVM.

Example 13.12
Solve Example 13.11 using FVM.

1

4

7

2

5

8

3

6

9

h

k

1

1

1
0 0

∂
u
∂

x
+u

=
0

∂u
∂y

= 0

h = k = 0.5
1) u at left wall = 1
2) u at top wall = 0

3) At bottom wall,
∂u
∂y

= 0

4) At right wall,
∂u
∂x

+u = 0

572 Chapter.13 Laplace and Poisson equations

Solution :
We have to determine the function value at four nodes. We shall write down the nodal
equations. The derivatives at the boundary of the domain are to be determined using central
differences.
Node 5 Internal node

5 64

8

2

u4 −u5

h
k+ u6 −u5

h
k+ u8 −u5

k
h+ u2 −u5

k
h = 0

u5 = 1+u6 +u2 +u8

4

Node 2 Bottom wall

2 31

5

∂u
∂y

= 0

u1 −u2

h
k
2
+ u3 −u2

h
k
2
+ u5 −u2

k
h = 0

u2 = 1+2u5 +u3

4

Node 6 Right wall

6

3

5

9

∂
u
∂

x
+u

=
0

u5 −u6

h
k+ u9 −u6

k
h
2
+ u3 −u6

k
h
2
−u6k = 0

u6 = 2u5 +u3

4+2k

Node 3 Right bottom corner

32

6

∂
u
∂

x
+u

=
0

∂u
∂y

= 0

u2 −u3

h
k
2
+ u6 −u3

k
h
2
−u3

k
2
= 0

u3 = u2 +u6

2+k

13.5. FEM and FVM applied to elliptic problems 573

On solving the above set of equations we get u2 = 0.4286, u3 = 0.4286, u5 = 0.1429 and
u6 = 0.1429. The solution obtained using FVM is different from FEM. However, on grid
refinement both the methods would yield the same solution. We encourage the reader to
write a program for FVM and compare the same with the FDM/FEM solutions obtained
earlier.

Concluding remarks

In this chapter we have covered various techniques of numerically solving Poisson and Laplace
equations. We have also attempted problems in cylindrical coordinates and also problems
involving irregular boundaries to show that FDM and other techniques are quite capable of
obtaining solutions in these cases.

Chapter 14

Advection and di�usion equations

This chapter considers an important class of problems where advection and diffusion
come together. Numerical schemes for advection and diffusion terms have different
limitations. Hence it is a challenge to evolve schemes where both are present.

Stability and accuracy are dependent on the specific schemes used for spatial and
temporal discretization. Hence the study of stability issues and error analysis using
methods such as von Neumann stability analysis and Taylor series are important. These
are discussed in sufficient detail so that the reader can look independently at such issues
in new situations he/she may come across. Many worked examples bring out the features
of different numerical schemes.

575

576 Chapter.14 Advection and diffusion equations

14.1 Introduction

Some examples of PDE involving time are

∂u
∂t

= a
∂u
∂x

advection equation

∂u
∂t

= ∂2u
∂x2 Diffusion equation

∂u
∂t

= a
∂u
∂x

+ ∂2u
∂x2 Advection-diffusion equation

∂2u
∂t2 = a2 ∂

2u
∂x2 wave equation

A PDE with time as one of its independent variable is an initial value problem. The
right hand side of the above equations are function of space variables alone. The terms
involving spatial derivatives can be discretized using FDM, collocation, FEM, FVM and
other suitable methods. Let us consider the diffusion equation whose spatial derivative
is discretized using second order central difference. Then we have a set of ODEs with
time as the independent variable and the function values at the nodes as the dependent
variable.

dui

dt
= ui+1 −2ui +ui−1

h2

As we are already familiar with a set of IVPs, the above set of ODEs can be integrated
with respect to time using the methods discussed in Chapter 10. Such an approach to
solve time dependent PDEs is also referred to as Method of lines. However, being an initial
value problem, one has to consider both stability and accuracy of the numerical solution.
It has to be noted that the spatial discretization affects the stability of the solution. The
present chapter would introduce numerical methods applicable to advection equation and
diffusion equation with attention directed to errors and stability.

14.2 The advection equation

It is instructive to consider the solution of a first order PDE of form given by Equation
12.1. Specifically we consider the special form of the equation, the advection equation,
given by

∂u
∂t

+a
∂u
∂x

= 0 (14.1)

where a is a constant representing the advection velocity. The characteristic direction is
given by ξ= x−at. The solution is given by u = f (ξ). If the initial solution is u = f (x) the
same will be translated to the right by a distance equal to at0 at a later time t0. Figure
14.1 shows this for an initial pulse located at x0 = b. It is found, without change of shape,
at x = b+at0 at a later time t0. Thus the pulse translates to the right, with velocity equal
to the advection velocity.

14.2. The advection equation 577

x

u

t

xo = b

t = t0

at0

Characteristic line
Figure 14.1: Solution of advec-
tion equation

Since the solution to the advection equation is very simple, it is possible to use this
equation to study the usefulness of various finite difference schemes, in solving advection
as well as other PDEs.

14.2.1 Finite difference schemes for advection equation

Even though the advection equation is very simple and has a straight forward analytical
solution, the number of different numerical schemes that may be used to solve it are many.
We will consider a few of them here. We shall discretize the space domain by taking
uniformly spaced nodes with a spacing of ∆x and choose a time step of ∆t. The function
value is represented as uk

i where i represents node number along space and k represents
node number along time. The computational domain for the problem is then visualized as
in Figure 14.2.

∆t

∆xi = 0 1 i = nu0
i

u1
i

u0
i+1u0

i−1
k = 0

k = 1

k = 2

k = 3

t

x

Figure 14.2: Nodal scheme for discretization of the advection equation

Different numerical schemes are compared based on their stability characteristics as
well as on the nature and consequence of errors introduced by them.

1. Explicit FTCS (Forward in Time - Centered in Space) scheme:

Figure 14.3 shows the nodes involved in the computational scheme. We use forward
difference for the time derivative while using the central difference for the space
derivative. This means the finite difference approximation is first order accurate in time

578 Chapter.14 Advection and diffusion equations

and second order accurate in space. An explicit scheme means the above integration
process is the same as Euler method.

k

k+1

uk
i−1 uk

i uk
i+1

uk+1
i Figure 14.3: Nodes involved in

the FTCS scheme

The scheme is written down easily as

uk+1
i −uk

i

∆t
+a

uk
i+1 −uk

i−1

2∆x
= 0 or uk+1

i = uk
i −

C
2

(
uk

i+1 −uk
i−1

)
︸ ︷︷ ︸

Central difference in space

(14.2)

where C = a∆t
∆x

is known as the Courant number. Now we shall look at the stability of the
numerical scheme. For this purpose we derive the analytical solution to the problem. Let
the solution to the advection equation be represented by u(x, t) = A(t)e jωx where ω is the
wave number. We then have

∂u
∂x

= jωA(t)e jωx

∂u
∂t

= dA
dt

e jωx

Substitute these in Equation 14.1 to get the following equation.

dA
dt

+ jaωA = 0 (14.3)

This is an initial value problem having the solution

A = A0e− jaωt (14.4)

where A0 is the initial value of A at t = 0. We see thus that the solution to the advection
equation is given by

u(x, t)= A0e jω(x−at) (14.5)

The above solution to the advection equation is consistent with that described in Section
10.6. Also observe that the term x−at is related to the characteristic line. We shall now
substitute the exact values of u in Equation 14.2. We have uk

i = A0e jω(i∆x−ak∆t), uk
i+1 =

A0e jω((i+1)∆x−ak∆t) = e jω(i∆x−ak∆t)e jω∆x = uk
i e jω∆x and uk

i−1 = uk
i e− jω∆x. On simplification

Equation 14.2 becomes

uk+1
i

uk
i

= 1−C

(
e jω∆x −e− jω∆x)

2
= 1− jC sin(ω∆x) (14.6)

14.2. The advection equation 579

This is nothing but the magnification factor arising out of the FTCS scheme. For
stability magnification factor must be less than 1. The magnitude of the ratio is equal

to
√

1+C2 sin2(ωx) which is equal to or greater than 1 for all C. Hence the FTCS scheme
is unconditionally unstable for all values of ∆x and is not useful. The stability analysis
presented here is known as von Neumann stability analysis1.

2. Explicit FTFS and FTBS schemes leading to the upwind scheme:

Now let us consider FTFS scheme (Forward in Time - Forward in Space). We
approximate both the time and space derivatives by forward differences to get the
following.

uk+1
i −uk

i

∆t
+a

uk
i+1 −uk

i

∆x
= 0 or uk+1

i = uk
i −C

(
uk

i+1 −uk
i

)
(14.7)

Both derivatives are first order accurate and hence the truncation errors are proportional
to the step size along the two directions. The nodes involved in the FTFS scheme are
shown in Figure 14.4.

k+1

k
ui,k ui+1,k

ui,k+1 Figure 14.4: Nodes involved in the
FTFS scheme

Using the exact solution, we have uk
i = A0e jω(i∆x−ak∆t). Also, we have uk

i+1 =
A0e jω((i+1)∆x−ak∆t) = e jω(i∆x−ak∆t)e jω∆x = uk

i e jω∆x. Introducing these in the FTFS scheme
and after simplification we get

uk+1
i

uk
i

= 1+C
(
1−e jω∆x

)
(14.8)

This is nothing but the magnification factor arising out of the FTFS scheme. The
maximum magnitude of the ratio is equal to (1+C)2 +C2 and for stability should be less
than 1. Hence stability requires that C < 0 and |C| ≤ 1. This simply means that positive
advection velocity a > 0 makes FTFS unconditionally unstable. In fact the requirement
that C < 0 leads to the FTBS (Forward in Time Backward in Space) given by

uk+1
i = uk

i −C
(
uk

i −uk
i−1

)
(14.9)

which is stable for a > 0 and |C| ≤ 1. This is known as Courant-Friedrichs-Lewy2 condition
or CFL condition. The FTFS scheme is stable when a < 0. When C = 1, we get uk+1

i = uk
i−1,

1after John von Neumann, 1903-1957, a Hungarian-born American mathematician
2after Richard Courant, 1888-1972, Kurt Otto Friedrichs, 1901-1982, and Hans Lewy, 1904-1988, all

German American mathematicians

580 Chapter.14 Advection and diffusion equations

which means the disturbance moves exactly by one grid spacing in one time step. The
method becomes unstable if the disturbance moves more than one grid spacing!
The spatial differencing has to be done according to the direction of velocity a i.e. use
FTFS for a < 0 and FTBS for a > 0. The scheme is referred to as upwind scheme.
Mathematically upwind scheme can be written as

uk+1
i = uk

i −
(
max[−C,0]uk

i+1 −|C|uk
i +max[0,C]uk

i−1

)
The upwind scheme involves the nodes shown in Figure 14.5.

k+1

kui,k ui+1,k

ui,k+1

a

k+1

k

ui,k+1

ui,kui−1,k

a
Figure 14.5: Nodes involved in the Upwind scheme with a < 0 and a > 0

Upwind scheme is conditionally stable with C ≤ 1.

Example 14.1
Solve the advection equation using the upwind scheme with a = 1. Initial shape of the
solution is specified to be a Gaussian defined by u(x,0) = e−100(x−0.5)2 for 0 ≤ x ≤ 1. Use a
Courant number of 0.5.
Solution :

We choose ∆x = 0.02 and get ∆t = 0.01 using C = 0.5. We then make use of Equation 14.9 to
get

uk+1
i = uk

i −
(
uk

i −uk
i−1

)
2

= uk
i−1 +uk

i
2

where 0 < i < 50 and k ≥ 0. At the two end nodes we use periodic boundary condition such
that

uk+1
0 = uk

49 +uk
0

2
and uk+1

50 = uk
49 +uk

50

2
The periodic boundary condition ensures that the pulse will reappear from the left boundary
when once it crosses the right boundary. A MATLAB program has been written to carry out
the computation

dx = 0.02; % s t e p s i z e
n = 1/dx+1; % no o f n o d e s
x = 0:dx:1; % n o d e s
dt = 0.5* dx; % t i m e s t e p
c = dt/dx; % C o u r a n t number
u = exp (-100*(0.5 -x') .^2); un = u; % i n i t i a l v e l o c i t y
for t=1:10 % l o o p f o r t i m e i n t e g r a t i o n

un(1) = u(1)-c*(u(n)-u(n-1)); % p e r i o d i c
un(n) = un(1); % b o u n d a r y c o n d i t i o n s

14.2. The advection equation 581

for i=2:n-1 % l o o p f o r i n t e r n a l n o d e s
un(i) = u(i)-c*(u(i)-u(i-1));

end

u = un; % u p d a t e u
end

We have obtained the solution over several time steps to make a sketch of the solution for
larger time also. Figure 14.6 shows the state of affairs. We notice that the position of the
peak is close to that given by the exact solution i.e ξ = 0.5. However the amplitude of the
numerical solution keeps decreasing with time.

u

0

0.2

0.4

0.6

0.8

1

ξ
0 0.2 0.4 0.6 0.8 1

t = 0.1

t = 1

t = 0.5

Exact

Figure 14.6: Evolution of solu-
tion with time computed using the
upwind scheme with C = 0.5

Error analysis of Upwind scheme: Upwind scheme is only first order accurate in
space. Let us consider advection with a > 0. We have to use backward difference for
space derivative.

uk+1
i −uk

i

∆t
+a

uk
i −uk

i−1

∆x
= 0 (14.10)

Perform Taylor series expansion of uk
i−1 and uk+1

i about ui to get

uk
i−1 = uk

i −
∂u
∂x
∆x+ 1

2!
∂2u
∂x2 ∆x2 +O(∆x3)

uk+1
i = uk

i +
∂u
∂t
∆t+ 1

2!
∂2u
∂t2 ∆t2 +O(∆t3)

Replacing uk
i−1 and uk+1

i in Equation 14.10 with those from the Taylor series expansion
we get

∂u
∂t

+a
∂u
∂x︸ ︷︷ ︸

advection

=−1
2
∂2u
∂t2 ∆t+ 1

2
a∆x

∂2u
∂x2︸ ︷︷ ︸

error

+O(∆t2,∆x2) (14.11)

582 Chapter.14 Advection and diffusion equations

Upwind scheme solves the above PDE rather than the advection equation. The above may
be simplified as follows. Differentiate Equation 14.11 with respect to t and get

∂2u
∂t2 +a

∂2u
∂x∂t

=−∆t
2
∂3u
∂t3 +a

∆x
2

∂3u
∂x2∂t

+O(∆t2,∆x2) (14.12)

Differentiate Equation 14.11 with respect to x after multiplying it by a and get

a
∂2u
∂t∂x

+a2 ∂
2u
∂x2 =−a

∆t
2

∂3u
∂t2∂x

+O(∆t2,∆x2) (14.13)

Subtracting Equation 14.13 from 14.12 we get

∂2u
∂t2 = a2 ∂

2u
∂x2 +O(∆t,∆x) (14.14)

Using this back in Equation 14.11 the error term simplifies to

ε= a∆x
2

(1−C)
∂2u
∂x2︸ ︷︷ ︸

diffusive/dissipative

+O(∆t2,∆x2) (14.15)

The error term is in the form of diffusion or dissipation term. This term causes error in
amplitude of the function. The diffusion term is the reason for reduction in amplitude and
increase in the width of the pulse (spreading) seen in the previous example. The diffusive
nature of upwind scheme increases in the presence of sharp gradients of u. Also, the
diffusion error is related to C and step size ∆x. Including terms of second order leads to
dispersion error given by3

ε=−a
∆x2

6
(2C2 −3C+1)︸ ︷︷ ︸

dispersion error

(14.16)

Figure 14.7 shows the effect of step size and Courant number on the solution. C should
be close to 1 for minimum error. This plot uses ξ along the abscissa so that the disturbance
is stationary. The amplitude and the width of the pulse are used to bring out the effects of
dispersion and dissipation. In fact when C = 1 the diffusion error and dispersive error are
reduced to zero i.e. the numerical solution is the same as the exact analytical solution.
This deduction is hardly surprising because the numerical computation is performed
along the characteristic line. It should also be remembered that the numerical solution
becomes unstable for C > 1. The error is significantly reduced by choosing smaller step
size. But one has to understand that smaller the step size more the computation time
(∆t is restricted by C). For upwind scheme, dispersion component of the error is small
(higher order) compared to the diffusion error. We shall discuss the relevance of dispersion
later when handling higher order methods. We have analyzed Euler scheme for time
integration, however one can improve the accuracy of time integration by using higher
order schemes such as RK4, ABM4 etc.

3For details see Analysis of numerical dissipation and dispersion at www.mathematik.uni-
dortmund.de/ kuzmin/cfdintro/lecture10.pdf

14.2. The advection equation 583

u

0

0.2

0.4

0.6

0.8

1

ξ
0 0.2 0.4 0.6 0.8 1

Exact

C=0.95

C=0.75

C=0.5

(a) ∆x = 0.02

u

0

0.2

0.4

0.6

0.8

1

ξ
0 0.2 0.4 0.6 0.8 1

Exact

Δx = 0.005

Δx = 0.02

Δx = 0.01

(b) C = 0.5
Figure 14.7: Evolution of solution with time computed using the upwind scheme at t = 1

3. Explicit Lax-Friedrichs scheme:

The FTCS scheme may be made stable by replacing the first term on the right hand side
of Equation 14.2 by the mean value of the function at nodes i−1 and i+1. Thus we have

uk+1
i =

(
uk

i−1 +uk
i+1

)
2

− C
2

(
uk

i+1 −uk
i−1

)
(14.17)

The nodes involved in this scheme are shown in Figure 14.8.

k

k+1

ui−1,k ui,k ui+1,k

ui,k+1

Figure 14.8: Nodes involved in
the Lax-Friedrichs scheme

Even though the stability of the scheme is improved i.e. the scheme is stable as long as
C ≤ 1 (the reader may show this using von Neumann stability analysis), it is seen that the
above may be rewritten as

uk+1
i = uk

i +
(
uk

i−1 −2uk
i +uk

i+1

)
2

− C
2

(
uk

i+1 −uk
i−1

)
This may further be recast as

uk+1
i −uk

i

∆t
=

(
∆x2

2∆t

) (
uk

i−1 −2uk
i +uk

i+1

)
∆x2 −

(a
2∆x

)(
uk

i+1 −uk
i−1

)

584 Chapter.14 Advection and diffusion equations

which is equivalent to the PDE given by

∂u
∂t

+a
∂u
∂x︸ ︷︷ ︸

advection

=
(
∆x2

2∆t

)
∂2u
∂x2 +O(∆x3)︸ ︷︷ ︸

error

(14.18)

Thus the Lax-Friedrichs scheme represents the solution to a slightly different PDE which

has introduced a second derivative term with a small coefficient
∆x2

2∆t
. This artificial

diffusion term introduces a small amount of ‘spreading’ of the function as it propagates
in time. A detailed error analysis of the Lax-Friedrichs scheme leads to the following
equation

ε= ∆x2

2∆t
(
1−C2) ∂2u

∂x2︸ ︷︷ ︸
diffusive/dissipative

− a∆x2

2
(1−C2)

∂3u
∂x3︸ ︷︷ ︸

dispersive

(14.19)

This means Lax4 Friedrichs is also first order accurate in space with leading error term
being dissipative. Like upwind scheme, both dispersive and dissipative errors are zero
when C = 1.

Example 14.2
Solve Example 14.1 by the use of Lax-Friedrichs scheme. Use Courant number of C = 0.5 and
a spatial step of ∆x = 0.02 with an advection speed of a = 1.
Solution :

With C = 0.5, ∆x = 0.02 and a = 1, we have ∆t = C∆x
a

= 0.5×0.02
1

= 0.01. The algorithm
takes the form

uk+1
i = 0.5

(
uk

i−1 +uk
i+1

)
−0.25

(
uk

i+1 −uk
i−1

)
The initial solution is given by the Gaussian profile u0

i = e−100(xi−0.5)2 where 0 ≤ i ≤ 50.
Periodic boundary condition is applied by the use of the following:

uk+1
0 = uk+1

50 = 0.5
(
uk

49 +uk
1

)
−0.25

(
uk

1 −uk
49

)
Consider the initial peak of the profile located at i = 25. Let us see what happens to the
function value at the peak. A short extract of a table is given below to indicate the state of
affairs after one time step, i.e. at k = 1.

x u(x,0) u(x,0.0025
0.485 0.97775 0.96810
0.490 0.99005 0.98269
0.495 0.99750 0.99254
0.500 1 0.99750
0.505 0.99750 0.99751
0.510 0.99005 0.99257
0.515 0.97775 0.98273

4after Peter David Lax, born 1926, an Hungarian born American mathematician

14.2. The advection equation 585

Figure 14.9 shows the solution at various time intervals.

u

0

0.2

0.4

0.6

0.8

1

ξ
0 0.2 0.4 0.6 0.8 1

t = 0.1

t = 0.5

Exact

t = 1

Figure 14.9: Numerical solution
using the Lax-Friedrichs scheme in
Example 14.2

The Lax-Friedrichs scheme is more diffusive compared to the upwind scheme. The

artificial diffusion term which is proportional to
∆x2

2∆t
= 0.022

2×0.01
= 0.02. If the step size

were to be reduced to ∆x = 0.005, the artificial diffusion term would be 0.005 and hence one
would expect smaller dissipation error.

4. Explicit Lax Wendroff scheme:

The Lax Wendroff5 scheme, an improved scheme that achieves second order accuracy
along both space and time directions, is based on Taylor expansion. Consider x fixed and
t alone is varying. We then have

u(x, t+∆t)= u(x, t)+ ∂u
∂t
∆t+ 1

2
∂2u
∂t2 ∆t2 + . . . (14.20)

Making use of the advection equation we have
∂u
∂t

= −a
∂u
∂x

and
∂2u
∂t2 = ∂

∂t

(
∂u
∂t

)
=

∂

∂t

(
−a

∂u
∂x

)
=−a

∂

∂x

(
∂u
∂t

)
= a2 ∂

∂x

(
∂u
∂x

)
= a2 ∂

2u
∂x2 . Hence Equation 14.20 may be rearranged

as
∂u
∂t

= u(x, t+∆t)−u(x, t)
∆t

− a2

2
∂2u
∂x2 ∆t (14.21)

Substituting this into the advection equation, using FD representation for the derivatives,
we get the Lax Wendroff scheme given below.

uk+1
i = uk

i −
C
2

(
uk

i+1 −uk
i−1

)
+ C2

2

(
uk

i−1 −2uk
i +uk

i+1

)
(14.22)

5after Burton Wendroff, born 1930, an American applied mathematician

586 Chapter.14 Advection and diffusion equations

We may perform von Neumann stability analysis for this scheme to get

G = uk+1
i

uk
i

= (1−C2)+C2 cos(jω∆x)+ jC sin(jω∆x) (14.23)

The gain factor may then be written as

|G| = 1−C2(1−C2)[1−cos(jω∆x)]2 (14.24)

Stability is conditional and guaranteed for C ≤ 1. If we choose C = 1, we at once see that
Equation 14.22 becomes

uk+1
i = uk

i−1 (14.25)

which is the same as the exact solution!
Error analysis: Lax Wendroff scheme is second order in space and time. Now we shall
look at the leading order truncation error terms. Expanding the functions using Taylor
series we get

ui+1 = ui + ∂u
∂x
∆x+ 1

2!
∂2u
∂x2 ∆x2 + 1

3!
∂3u
∂x3 ∆x3 +O(∆x4)

ui−1 = ui − ∂u
∂x
∆x+ 1

2!
∂2u
∂x2 ∆x2 − 1

3!
∂3u
∂x3 ∆x3 +O(∆x4)

Substituting the above expressions into Equation 14.22 we get

∂u
∂t

+a
∂u
∂x

=− 1
3!
∂3u
∂t3 ∆t2 + 1

3!
a
∂3u
∂x3 ∆x2 +O(∆x3)

Noting that
∂3u
∂t3 is equal to a3 ∂

3u
∂x3 , we get

∂u
∂t

+a
∂u
∂x︸ ︷︷ ︸

advection

=−1
6

a(1−C2)
∂3u
∂x3 +O(∆x3)︸ ︷︷ ︸

error

The leading order error term is proportional to
∂3u
∂x3 which is dispersive in nature and the

dissipation error is smaller. Figure 14.10 shows the solution obtained using Lax Wendroff
scheme. A much welcome improvement in the solution is that the amplitude is very close
to the exact solution unlike previously discussed methods. However, the solution contains
unphysical features or wiggles. Also position of the peak is shifted with respect to the
exact solution. These unsavory features are caused due to dispersive errors.

14.2. The advection equation 587

u

0

0.2

0.4

0.6

0.8

1

ξ
0 0.2 0.4 0.6 0.8 1

 Exact
 t = 0.1
 t = 1.0

Figure 14.10: Numerical solution
using the Lax-Wendro� scheme to
Example 14.2, C = 0.5, ∆x = 0.02

5. Crank Nicolson scheme:

The last scheme we consider here is the unconditionally stable Crank Nicolson6 scheme.
This scheme is implicit unlike others that have been discussed until now. This scheme
uses central difference along both time and space directions by satisfying the advection

equation at t+ ∆t
2

. Crank Nicolson scheme is the same as trapezoidal scheme applied to
stiff initial value problems. The nodes used in this scheme are shown in Figure 14.11.

k

k+1

uk
i−1

uk+1
i−1

uk
i

uk+1
i+1

uk
i+1

uk+1
i Figure 14.11: Nodes involved in

the CN method

The time derivative is written as
∂u
∂t

= uk+1
i −uk

i

∆t
which is central difference approxi-

mation for the derivative at t = t+ ∆t
2

or k+ 1
2

. The space derivative is evaluated using
central differences and by averaging the derivatives at k and k + 1 thus obtaining the

space derivative essentially at k+ 1
2

. Thus we have
∂u
∂x

= uk
i+1 −uk

i−1

4∆x
+ uk+1

i+1 −uk+1
i−1

4∆x
. The

advection equation may then be written as

−C
4

uk+1
i−1 +uk+1

i + C
4

uk+1
i+1 = uk

i −
C
4

(
uk

i+1 −uk
i−1

)
(14.26)

6after John Crank, 1916-2006, British mathematical physicist and Phyllis Nicolson, 1917-1968, British
mathematician

588 Chapter.14 Advection and diffusion equations

Note that the nodal equation is in implicit form since all three function values on the
left hand side are unknown. We may perform stability analysis using the exact solution
derived earlier. We see that the following hold:

uk
i+1 −uk

i−1 = uk
i

(
e jω∆x −e− jω∆x

)
uk+1

i+1 −uk+1
i−1 = uk+1

i

(
e jω∆x −e− jω∆x

)
These in Equation 14.26 yield us the following.

G = uk+1
i

uk
i

= 1− C
2 sin(ω∆x)

1+ C
2 sin(ω∆x)

(14.27)

We see that |G| = 1 for all ω and C. Hence the Crank Nicolson scheme is unconditionally
stable. Typically we choose C = 2 to get the following nodal equation.

−uk+1
i−1 +2uk+1

i +uk+1
i+1 = uk

i−1 +2uk
i −uk

i+1 (14.28)

Error analysis On performing Taylors expansion of all the terms about uk+1/2
i we get

∂u
∂t

+a
∂u
∂x︸ ︷︷ ︸

advection

=−a∆x2

24
(4+C2)

∂3u
∂x3︸ ︷︷ ︸

error

The leading error term being proportional to ∂3u/∂x3, Crank Nicolson also suffers from
dispersion errors.

Example 14.3
Solve Example 14.1 by the use of Crank Nicolson scheme. Use Courant number of C = 2 and
a spatial step of ∆x = 0.02 with an advection speed of a = 1.
Solution :

With C = 2, ∆x = 0.02 and a = 1, we have ∆t = C∆x
a

= 2×0.02
1

= 0.04. Periodic boundary
conditions are made use of. We start with the Gaussian specified in Example 14.1 and
perform the calculations for two time steps. The results are shown in tabular form for
0.5≤ x ≤ 0.7 where the function variation is significant.

x u(x,0) u(x,0.04) u(x,0.08) uE(x,0.08)
0.50 1.0000 0.8752 0.5737 0.5273
0.52 0.9608 0.9734 0.7507 0.6977
0.54 0.8521 0.9979 0.8964 0.8521
0.56 0.6977 0.9450 0.9821 0.9608
0.58 0.5273 0.8282 0.9918 1.0000
0.60 0.3679 0.6730 0.9268 0.9608
0.62 0.2369 0.5082 0.8042 0.8521
0.64 0.1409 0.3574 0.6504 0.6977
0.66 0.0773 0.2347 0.4919 0.5273
0.68 0.0392 0.1443 0.3492 0.3679
0.70 0.0183 0.0834 0.2335 0.2369

14.2. The advection equation 589

This data is also shown as a plot in Figure 14.12.

u

0

0.2

0.4

0.6

0.8

1

x
0 0.2 0.4 0.6 0.8 1

u at t = 0
u at t = 0.04
u at t = 0.08

Figure 14.12: Solution to the
advection equation by Crank
Nicolson scheme

We see that the Crank Nicolson scheme performs well in solving the advection equation.

Dispersion and dissipation errors

u

-1

-0.5

0

0.5

1

ξ
0 0.1 0.2 0.3 0.4

cos(10πx)

u

-1

-0.5

0

0.5

1

ξ
0 0.2 0.4 0.6 0.8 1

cos(1.5πx)

 Exact Numerical

Figure 14.13: Numerical solution using the Lax-Wendro� scheme to Example 14.2, C = 0.5, ∆x =
0.02

We shall discuss about dissipation and dispersive errors. Figure 14.13 indicate the
exact and numerical solution of sinusoidal functions using Lax Wendroff scheme. Observe
that the numerical solution of both sinusoidal curves are out of phase with respect to the
exact solution. The phase difference between the solution and exact curve is a function
of the wavelength of the sinusoidal curve. Also, dissipation is a function of wavelength.
Sinusoidal functions of different wavelengths travel at different speeds. We know that
any periodic function can be represented as a Fourier series and different terms in the
series travel at different rates and also undergo some amount of dissipation. This causes

590 Chapter.14 Advection and diffusion equations

distortion of the original function.
Dispersion error becomes substantial in the presence of sharp gradients in the function.
Let us consider an example with an initial shape given by the “top hat” function as

u =
{

1 0.4≤ x ≤ 0.6
0 otherwise

0 0.2 0.4 0.6 0.8 1

a = 1

Figure 14.14 compares different methods applied to the top hat function for identical
parameters. The results are self explanatory. Upwind and Lax Friedrichs scheme suffer
from strong diffusive errors where as Lax Wendroff and Crank Nicolson methods have
dominant dispersive errors. The problem with dispersive errors is the presence of large
undesirable unphysical oscillations.

u

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

ξ
0 0.2 0.4 0.6 0.8 1

 Lax Wendroff
 CN method

u

0

0.5

1

ξ
0 0.2 0.4 0.6 0.8 1

 Upwind
 Lax Freidrich

Figure 14.14: Comparison of solution using di�erent numerical methods applied to step function
with Courant number 0.8 and ∆x = 0.1

All the methods that have been discussed for solving advection equation suffer from either
dissipative or dispersion errors. Though implicit schemes are unconditionally stable, the accuracy
of implicit scheme is no better than the explicit schemes. In some cases having artificial
dissipation in the solution procedure stabilizes the numerical solution especially when treating
sharp function variations such as shocks. A solution procedure has to be chosen such that the
solution is devoid of wiggles. Godunov’s theorem states that only first order numerical schemes
can produce such solutions. All higher order methods suffer from dispersive errors and would
produce non-physical solutions. However, use of flux limiter with higher order schemes can
produce solutions without unphysical wiggles. Interested reader should refer to advanced texts.

14.2. The advection equation 591

14.2.2 Advection equation with varying a:

The solution of advection equation when the advection velocity varies with space and
time may be handled by the numerical schemes that have been considered above. Consider
the advection equation given by

∂u
∂t

+a(x, t)
∂u
∂x

= 0 (14.29)

We know that u = constant requires the following to hold.

∂u
∂t

dt+ ∂u
∂x

dx = 0

In other words we have, on using Equation 14.29

dx
dt

=−
∂u
∂t
∂u
∂x

= a(x, t) (14.30)

Thus the characteristic is such that its slope is nothing but the advection velocity. If it
varies with space and time the characteristic is a curve instead of a straight line. If it
varies only with space it is a straight line but with different slopes at different locations.

Consider Example 14.1 again but with the advection velocity a(x, t) = 1+ 0.4x in the
range 0 ≤ x ≤ 1. We run through the upwind scheme again but with the nodal equations
given by

uk+1
i = uk

i − (1+0.4xi)

(
uk

i −uk
i−1

)
2

where we have taken C = 0.5. We use ∆x = 0.02 so that ∆t = 0.01. Results are calculated
for several time steps and the results are shown plotted in Figure 14.15. We observe

u

0

0.2

0.4

0.6

0.8

1

x
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

u at t = 0
u at t = 0.01
u at t = 0.05
u at t = 0.1

Figure 14.15: Solution to the advec-
tion equation with variable advection
speed using upwind scheme

that the symmetry of the initial shape is lost as time proceeds. The upwind scheme also
exhibits a reduction in the peak amplitude with time.

592 Chapter.14 Advection and diffusion equations

14.2.3 Nonlinear advection equation

We come across nonlinear advection equation while treating fluid flow problems.

∂u
∂t

+u
∂u
∂x

= 0

Here u stands for the fluid velocity, in this case, a function of x, t. The above equation is
also a form of inviscid Burger equation. One can directly use explicit schemes. In such
a case, velocity at previous time step can be used as wave velocity. The upwind scheme
discussed in the earlier section can be employed.

The solution of advection equation has introduced many different schemes that may be used in
the numerical solution of such an equation. Advection terms may occur in heat diffusion problem
when there is a physical movement of the medium. This will be considered at the end of next
section dealing with parabolic equations. Advection equation is also a precursor to the wave
equation that will be considered later under hyperbolic equations.

14.3 Parabolic PDE: Transient diffusion equation
The simplest case of a parabolic equation is the one dimensional diffusion equation. In

Cartesian coordinates, we have the equation

∂2u
∂x2 = 1

α

∂u
∂t

(14.31)

In this equation u may stand for temperature, α for thermal diffusivity, a property of the
material. This equation also represents the case of mass transport. In that case u may
stand for concentration, α for mass diffusivity. We have to specify initial and boundary
conditions to obtain the solution. Typically the solution is required for t > 0 and 0 ≤ x ≤ L
(say).
Non-dimensionalization: We may easily standardize the diffusion equation by intro-

ducing ξ= x
L

and τ= αt
L2 to get the diffusion equation in the standard form.

∂2u
∂ξ2 = ∂u

∂τ
(14.32)

The above equation is valid for τ> 0 and 0≤ ξ≤ 1. The initial variation of u is specified as
u(ξ,0) = f (ξ). Different types of boundary conditions may be specified at the two ends as
summarized below.

u(0,τ)= 0 and u(1,τ)= c1 · · · · · · · · · · · · (Case1)

u(0,τ)= 0 and
∂u
∂ξ

∣∣∣∣
τ=1

= 0 · · · · · · · · · · · · · (Case2) (14.33)

u(0,τ)= 0 and
∂u
∂ξ

+ c2u(1,τ)= c3 · · · · (Case3)

where c1 − c3 are specified constants.

14.3. Parabolic PDE: Transient diffusion equation 593

14.3.1 Explicit formulation

Simplest formulation uses an explicit scheme (counterpart of Euler scheme used in the
case of ODE). The time derivative is written as a forward difference formula while the
second derivative with respect to space is written using central differences, based on the
values at the beginning of the time step. Thus we have, for an internal node, the following
equation.

uk+1
i −uk

i

∆τ
= uk

i−1 −2uk
i +uk

i+1

∆ξ2

which may be rearranged to obtain the following explicit expression for uk+1
i .

uk+1
i = uk

i +Foe

(
uk

i−1 −2uk
i +uk

i+1

)
(14.34)

where Foe =
(
∆τ

∆ξ2

)
is known as the elemental Fourier number7. The node connectivities

involved in the explicit scheme are shown in Figure 14.16. The solution may be updated,
starting with the initial solution, by the use of the above explicit expression, by simple
arithmetic operations. However the method is subject to stability condition as we shall
see a little later.

k

k+1

uk
i−1 uk

i uk
i+1

uk+1
i Figure 14.16: Nodes involved in the

explicit formulation for FD solution of
di�usion equation

Boundary conditions

Dirichlet boundary conditions are easy to apply. Neumann or the Robin condition
requires some effort. Consider Case 3 in Equation 14.33. We may either use a second
order accurate three point backward difference formula or use the concept of a ghost point
that uses central differences to approximate the derivative. In the latter case, we have

uk
N+1 = uk

N−1 −2c1∆ξuk
N +2c2∆ξ (14.35)

Treating the boundary node as an internal node, we may then get the following nodal
equation.

uk+1
N = uk

N +Foe

(
2uk

N−1 −2uk
N −2c1∆ξuk

N +2c2∆ξ
)

(14.36)

7in terms of x and t elemental Fourier number is Foe = α∆t
∆x2

594 Chapter.14 Advection and diffusion equations

Stability of explicit method

Assume that the discretization has been done as explained above. Since the solution is
a function of time and space, we shall assume that the solution is subject to a perturbation
given by uk

i = A(τ)cos(ωξi) where where A(τ) is the time varying amplitude and ω is the
spatial frequency of the disturbance.8 We then have the following:

uk
i−1 = A(τ)cos[ω(ξi −∆ξ)] = A(τ)[cosωξi cosω∆ξ−sinωξi sinω∆ξ]

uk
i+1 = A(τ)cos[ω(ξi +∆ξ)] = A(τ)[cosωξi cosω∆ξ+sinωξi sinω∆ξ]

uk+1
i = A(τ+∆τ)cos(ωξi)

We substitute these in Equation 14.34, and after simplification we get

A(τ+∆τ)
A(τ)

= 1−2Foe(1−cosω∆ξ) (14.37)

Note that the maximum value of 1− cosω∆ξ is 2, the amplitude ratio |G| =
∣∣∣∣ A(τ+∆τ)

A(τ)

∣∣∣∣ is

less than unity (this is the necessary condition for stability) only if Foe < 0.5. Thus the
explicit method is conditionally stable.

Error analysis

We expand uk+1
i , uk

i+1 and uk
i−1 about uk

i and replace the same in Equation 14.34, to get

∂u
∂t

−α∂
2u
∂x2︸ ︷︷ ︸

diffusion

=−1
2
∂2u
∂t2 ∆t+ α∆x2

12
∂4u
∂x4︸ ︷︷ ︸

error

Instead of solving the diffusion equation, explicit scheme solves the above PDE. All the
error terms are of even order and hence they are also diffusive in nature. As ∆x → 0, all
the truncation errors tend to zero and we approach the exact solution.

Example 14.4
1D heat equation is satisfied in the region 0 ≤ ξ ≤ 0.5 with the initial condition given by a
linear variation of u from u = 0 at ξ = 0 to u = 1 at ξ = 0.5. The left boundary is subject to
the boundary condition u = 0 for τ > 0 while the right boundary is subject to the condition
∂u
∂ξ

= 0 for τ > 0. Obtain the solution by the use of three different values of Foe = 0.25,0.50

and 0.75. Calculate the solution up to τ= 0.03 in each case and comment on the results. Use
∆ξ= 0.1.
Solution :

We choose ∆ξ = 0.1 to get six equi-spaced nodes covering the domain from end to end.
Explicit formulation presented immediately above is made use of. In case we choose

8The cosine form chosen here for the spatial behavior is based on the fact that any function may be
written as a weighted sum of its Fourier components.

14.3. Parabolic PDE: Transient diffusion equation 595

Foe = 0.25 the step size along the time direction is obtained as ∆τ = 0.25×0.12 = 0.0025.
The number of explicit steps to reach τ = 0.03 is 12. We start with the initial set
u0

0 = 0,u0
1 = 0.2,u0

2 = 0.4,u0
3 = 0.6,u0

4 = 0.8,u0
5 = 1 and obtain the nodal values after one

time step as shown below, using Equations 14.34 and 14.36.

u1
1 = 0.2+0.25(0−2×0.2+0.4)= 0.2

u1
2 = 0.4+0.25(0.2−2×0.4+0.6)= 0.4

u1
3 = 0.6+0.25(0.4−2×0.6+0.8)= 0.6

u1
4 = 0.8+0.25(0.6−2×0.8+1)= 0.8

u1
5 = 1+0.25(2×0.8−2×1)= 0.9

The calculations may proceed along the same lines for subsequent time steps. Table below
shows the results. First four columns show the calculations with ∆τ= 0.0025. Subsequently
the results at the end of every fourth explicit step is shown.

ξ τ= 0 τ= 0.0025 τ= 0.005 τ= 0.0075 τ= 0.01 τ= 0.02 τ= 0.03
0 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.1 0.2 0.2000 0.2000 0.2000 0.2000 0.1949 0.1827
0.2 0.4 0.4000 0.4000 0.4000 0.3984 0.3794 0.3510
0.3 0.6 0.6000 0.6000 0.5938 0.5844 0.5374 0.4892
0.4 0.8 0.8000 0.7750 0.7500 0.7266 0.6465 0.5809
0.5 1 0.9000 0.8500 0.8125 0.7813 0.6858 0.6132

We next choose a bigger step size along the time direction (δτ = 0.005 - twice that in the
above case) corresponding to Foe = 0.5. Calculations proceed as before and are tabulated
below.

ξ τ= 0 τ= 0.005 τ= 0.01 τ= 0.015 τ= 0.02 τ= 0.025 τ= 0.03
0 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.1 0.2 0.2000 0.2000 0.2000 0.2000 0.1875 0.1875
0.2 0.4 0.4000 0.4000 0.4000 0.3750 0.3750 0.3438
0.3 0.6 0.6000 0.6000 0.5500 0.5500 0.5000 0.5000
0.4 0.8 0.8000 0.7000 0.7000 0.6250 0.6250 0.5625
0.5 1 0.8000 0.8000 0.7000 0.7000 0.6250 0.6250

Finally we choose a time step size of (δτ= 0.0075 - thrice that in the first case) corresponding
to Foe = 0.75. The calculations proceed similarly as in the previous two cases. Results are
tabulated as below.

ξ τ= 0 τ= 0.0075 τ= 0.03 τ= 0.06
0 0 0.0000 0.0000 0.0000
0.1 0.2 0.2000 0.2000 1.0691
0.2 0.4 0.4000 0.2734 -1.7081
0.3 0.6 0.6000 0.6844 3.4038
0.4 0.8 0.8000 0.2516 -3.4752
0.5 1 0.7000 0.9813 4.6702

596 Chapter.14 Advection and diffusion equations

We make a plot of the results at τ = 0.03 obtained using the three values of the elemental
Fourier number.

We infer from the figure that the last case corresponding to ∆τ = 0.0075 leads to an
unstable solution. Case with ∆τ = 0.005 is stable but shows minor oscillations. The most
reliable solution is the case with ∆τ= 0.0025. These observations are in agreement with the
stability condition presented earlier.

u

0

0.2

0.4

0.6

0.8

1

ξ
0 0.1 0.2 0.3 0.4 0.5

Foe=0.25
Foe=0.5
Foe=0.75

τ=0.03 in each case

Figure 14.17: Solution at τ = 0.03
obtained by the explicit method using
di�erent time steps

14.3.2 Implicit formulation

In order to overcome the stability constraint on the time step we explore the possibility
of a method that has better stability. Implicit method uses backward difference for the
time derivative and uses central difference for the space derivative, using the as yet
unknown function values at k+1. The formulation becomes fully implicit. Nodal equation
takes the form

Foeuk+1
i−1 − (1+2Foe)uk+1

i +Foeuk+1
i+1 =−uk

i (14.38)

When we assemble all the nodal equations we get a tri-diagonal system that may be solved
by TDMA.

k+1

k
uk

i−1 uk
i uk

i+1

uk+1
i

Figure 14.18: Nodes involved in the
implicit formulation for FD solution of
di�usion equation

On performing stability analysis we get the amplification factor

|G| =
∣∣∣∣ A(τ+∆τ)

A(τ)

∣∣∣∣= ∣∣∣∣ 1
1+2Foe(1−cosω∆ξ)

∣∣∣∣ (14.39)

14.3. Parabolic PDE: Transient diffusion equation 597

which is less than 1 for all values of Foe. Hence, implicit method is unconditionally stable.
Implicit method is first order accurate in time and second order accurate in space. The
implicit method is same as Backward Euler method discussed earlier in the chapter on
IVPs.

14.3.3 Crank Nicolson or semi-implicit scheme

Semi-implicit or CN method uses central difference in both space and time. The second
derivative with respect to space is taken as the mean of the second derivatives at k and
k+1. The time derivative, in effect takes on the central difference form.

uk+1
i−1 −2uk+1

i +uk+1
i+1

2∆ξ2 + uk
i−1 −2uk

i +uk
i+1

2∆ξ2 = uk+1
i −uk

i

∆τ
(14.40)

This may be recast as

Foeuk+1
i−1 −2(1+Foe)uk+1

i +Foeuk+1
i+1 = 2(1−Foe)uk

i −Foe(uk
i−1 +uk

i+1) (14.41)

Stability of the CN method

A stability analysis may be made as we did in the case of the explicit method.
Introducing a disturbance of form u = A(τ)cos(ωξ), substituting in the nodal equation
above, we can show that

|G| =
∣∣∣∣ A(τ+∆τ)

A(τ)

∣∣∣∣=
∣∣∣∣∣1+ Foe

2 (2cosω∆ξ−2)

1− Foe
2 (2cosω∆ξ−2)

∣∣∣∣∣ (14.42)

which is less than unity for all Foe. Hence the CN method is unconditionally stable. If
Foe is chosen as 1, the nodal equations become

uk+1
i−1 −4uk+1

i +uk+1
i+1 =−(uk

i−1 +uk
i+1) (14.43)

Figure 14.19 shows the nodes involved in the CN method (Foe = 1). When the nodal
equations are all assembled end to end we have a tri-diagonal system solvable by TDMA.

k

k+1

uk
i−1

uk+1
i−1

uk
i

uk+1
i+1

uk
i+1

uk+1
i

Figure 14.19: Nodes involved (indicated by dotted line) in the CN method for the �nite di�erence
solution of the 1D di�usion equation. In the special case Foe = 1 node i at k is not involved as
indicated by open circle.

598 Chapter.14 Advection and diffusion equations

Boundary conditions

Application of boundary conditions are simple for Dirichlet type. Robin and Neumann
boundary conditions can be treated in the same way as discussed earlier in BVPs. Robin
and Neumann conditions can be applied in two ways - ghost cell approach or the three
point difference formula. Consider a ghost node to the right, as usual, assuming that the

right boundary has the Robin boundary condition specified as
∂u
∂ξ

+c1u = c2. We then have

uk
N+1 = uk

N−1 −2c1∆ξuk
N +2c2∆ξ (14.44)

uk+1
N+1 = uk+1

N−1 −2c1∆ξuk+1
N +2c2∆ξ (14.45)

These are substituted into Equation 14.43 after setting i = N and simplified to get

uk+1
N−1 − (2+ c1∆ξ)uk+1

N =−(uk
N−1 − c1∆ξuk

N −2c2∆ξ) (14.46)

The nodal equation is in a form convenient for the application of TDMA. The difference
between the above equation and BVPs is that an additional transient term is present in
the equation.

Example 14.5
A semi-infinite wall is initially maintained at uniform temperature u = 0 (non-dimensional
temperature). The surface of the wall is instantaneously exposed to a step change in
temperature u = 1. The governing equation is the standard diffusion equation. Obtain the
temperature distribution in the wall by using explicit, implicit and CN scheme up to τ= 0.05
and comment on the results. Use ∆ξ = 0.1 and α = 1. Compare the results with the exact
solution.
Background :
The exact solution for the present problem can be determined using method of similarity.
Method of similarity converts a PDE to a ODE by using a similarity variable. The similarity
variable for the present problem is η= x

2
p
αt

and the transformed ODE is

d2u
dη2 +2η

du
dη

= 0

The exact solution for the above problem is

u = 1− 2p
π

∫ η

0
e−η

2
dη= erfc(η)

where erfc is the complementary error function. Numerically, the above ODE can be solved
using the method discussed in Section 11.2.3. However, we shall solve the PDE using FDM.

u → 0 as
x → ∞ for
all t

u
=

1,
t≥

0

x = 0 x

−∞

∞ A semi-infinite solid is bounded at one end and
extends to infinity in other direction. It may
not be possible to simulate the entire domain
in the current form. The boundary condition
at x → ∞ can be modeled as a finite domain
with the boundary condition at the other end

as Neumann condition
∂u
∂x

= 0. The size of the
domain should be such that u is negligible at
this end.

14.3. Parabolic PDE: Transient diffusion equation 599

Solution :
The size of the domain for the present problem is taken as x = 2 and the step size would be
0.1. Let us take Foe = 0.5, then dt = 0.005.
Discretization for interior nodes:

βFoe

(
uk+1

i−1 −2uk+1
i +uk+1

i+1

)
+ (1−β)Foe

(
uk

i−1 −2uk
i +uk

i+1

)
= uk+1

i −uk
i

where β is a parameter used to decide the time integration scheme. β = 1 is fully implicit,
β= 0 is fully explicit and β= 0.5 is Crank Nicolson.
Discretization at last node:

2βFoe

(
uk+1

n−1 −uk+1
n

)
+2(1−β)Foe

(
uk

n−1 −uk
n

)
= uk+1

n −uk
n

MATLAB program has been written to solve the problem
n = 21; % no o f n o d e s
x = 0:2/(n-1) :2; % n o d e s
dx = 2/(n-1); % s t e p s i z e
u = zeros(n,1); u(1) = 1; % i n i t i a l c o n d i t i o n
a = zeros(n,1); % TDMA c o e f f i c i e n t a
a1 = zeros(n,1); % TDMA c o e f f i c i e n t a ’
a2 = zeros(n,1); % TDMA c o e f f i c i e n t a ’ ’
b = zeros(n,1); % TDMA c o n s t a n t b
fou = 0.5; % F o u r i e r number
dt = fou*dx^2; % t i m e s t e p
beta = 0.5; % CN s c h e m e
% b e t a = 0 ; % e x p l i c i t
% b e t a = 1 ; % i m p l i c i t
t = 5; % no . o f t i m e s t e p s
a(1) = 1; b(1) = 1; % u(x = 0)
for i=2:n-1 % i n t e r n a l n o d e s

a(i) = 2* beta + 1/fou;

a1(i) = beta;

a2(i) = beta;

end

a(n) = 2* beta + 1/fou; % l a s t n o d e
a2(n) = 2* beta;

unew = u;

for j=1:t % l o o p f o r t i m e i n t e g r a t i o n
for i=2:n-1 % i n t e r i o r n o d e s

b1(i) = (1-beta)*(u(i-1)+u(i+1) -2*u(i)) + u(i)/fou;

end

b(n) = (1-beta)*(2*u(n-1) -2*u(n)) + u(n)/fou;

unew(:,j+1) = tdma(a2 ,a,a1 ,b); % s o l v e f o r u
u = unew(:,j+1); % u p d a t e t i m e

end

uexact = erfc(x/(2* sqrt(t*dt))); % e x a c t s o l u t i o n

The following figure shows the temperature distribution at t = 0.05 obtained using the three
time integration schemes.

600 Chapter.14 Advection and diffusion equations

t

0

0.2

0.4

0.6

0.8

1

x
0 0.2 0.4 0.6 0.8 1

 Explicit
 CN
 Implicit
 Exact

Figure 14.20: Temperature distribu-
tion in the wall at t = 0.05 (Foe = 0.5
and ∆x = 0.1).

All the three integration schemes capture the trend satisfactorily. The following table
shows the maximum difference between numerical simulation and exact solution for various
step sizes and Fourier numbers at t = 0.05.

∆x Foe Explicit CN Implicit
0.1 0.5 0.02174 0.00252 0.01452
0.1 0.25 0.00611 0.00266 0.00776

0.05 0.5 0.00611 0.00067 0.00363
0.05 0.25 0.00153 0.00067 0.00194
0.05 0.125 0.00078 0.00068 0.00110

0.025 0.25 0.00039 0.00017 0.00049
0.025 0.125 0.00020 0.00017 0.00027

Both time step and space step are important for accuracy of numerical simulation. CN being
second order accurate, converges to the true solution much faster than explicit and implicit
schemes which are only first order accurate. Notice, that for a given step size, reduction in
time step does not improve the solution. At this stage one has to refine the spatial grid.

One has to keep in mind that the temperature at last node should be negligible. If that is
not the case, the domain will have to be extended.

Pseudo transient method: Methods for solving transient boundary value problems can be used
to solve steady state boundary value problems also. At very long periods of time, the change in
the function value would be negligible and would reach steady state. This approach of solving
boundary value problems is known as “pseudo transient method”. The method is equivalent to
solving the boundary value problem using Gauss Seidel iteration scheme. The time parameter
Foe plays the role of the relaxation parameter.

Example 14.6
Initial nodal values follow a triangular distribution with u = 0.5 at the two ends and u = 1

at the middle. For τ> 0 the two ends are subject to Neumann condition in the form
∂u
∂ξ

= 0.

14.3. Parabolic PDE: Transient diffusion equation 601

Obtain the transient field in the physical domain using CN method if the equation governing
u is the standard diffusion equation with 0≤ ξ≤ 1. Use a spatial step of ∆ξ= 0.1.
Solution :

Choosing Foe = 1 the corresponding time step is given by ∆τ = 0.12 = 0.01. We note that
there is symmetry with respect to ξ = 0.5 and hence we need to consider only the region
0 ≤ ξ ≤ 0.5 which will contain 6 nodes. With the initial condition specified in the problem,
we have the following table.

i ξ u(τ= 0) a a′ a′′ b
0 0 0.5 4 2 0 1.2000
1 0.1 0.6 4 1 1 1.2000
2 0.2 0.7 4 1 1 1.4000
3 0.3 0.8 4 1 1 1.6000
4 0.4 0.9 4 1 1 1.8000
5 0.5 1 4 0 2 1.8000

With these starting values the coefficients appearing in the tri-diagonal matrix are obtained
and shown in the table. The boundary conditions at ξ = 0 and ξ = 0.5 are satisfied by
choosing c1 and c2 as zero in Equation 14.46. We use TDMA, take one time step and obtain
the following at τ= 0.01.

ξ P Q u(τ= 0.01)
0 0.5 0.3000 0.6152
0.1 0.2857 0.4286 0.6303
0.2 0.2692 0.4923 0.7061
0.3 0.2680 0.5608 0.7939
0.4 0.2680 0.6326 0.8697
0.5 0.0000 0.8848 0.8848

This procedure may be continued to obtain the solution till a desired value of τ is reached.

u

0.5

0.6

0.7

0.8

0.9

1

ξ
0 0.2 0.4 0.6 0.8 1

τ = 0
τ = 0.04
τ = 0.08
τ = 0.16

Figure 14.21: Transient solution
in Example 14.6

The results are plotted as shown in Figure 14.21. The results are plotted for the whole
domain from end to end. The initial triangular variation will eventually become a uniform

602 Chapter.14 Advection and diffusion equations

value or reach steady state equal to the mean of u = 0.75. At τ= 0.16 it appears to be close
to this value.

Now we shall consider an example with Robin boundary condition.

Example 14.7
Diffusion equation is satisfied in the range 0≤ ξ≤ 1 with the initial value of u = 1 throughout.
For τ > 0 u is maintained constant at zero at the left boundary while Robin condition is
specified at the right boundary with c1 = 1 and c2 = 0.5. Obtain numerically the solution to
the problem using Crank Nicolson method with ∆ξ= 0.1.
Solution :

With ∆ξ = 0.1 the number of nodes from end to end is 11. Node 0 corresponds to the
left boundary while node 10 corresponds to the right boundary. At the left boundary the
boundary condition is easily taken as u0 = 0. At the right boundary Robin condition needs
to be applied. Based on Equation 14.46, by taking c1 = 1 and c2 = 0.5, we have the right
boundary nodal equation given by

uk+1
9 −2.2uk+1

10 =−(uk
9 −0.1uk

10 −0.1)

The interior nodal equations from i = 1 to i = 9 may be written down based on Equation
14.43. Solution to the equations are obtained by the use of TDMA as explained in Example
14.6. With Foe = 1 and ∆ξ = 0.1 the time step is ∆τ = 0.01. Table below shows the results
of TDMA for different τ’s, from the beginning. As τ → ∞ the solution tends to a linear
variation of u with u0 = 0 and u10 = 0.25. This represents the steady state for the system.

ξ τ= 0 τ= 0.02 τ= 0.05 τ= 0.1 τ= 0.2 τ→∞
0 1 0.0000 0.0000 0.0000 0.0000 0.0000
0.1 1 0.4226 0.2614 0.1794 0.1172 0.0250
0.2 1 0.7624 0.4947 0.3488 0.2303 0.0500
0.3 1 0.9141 0.6814 0.4996 0.3354 0.0750
0.4 1 0.9709 0.8134 0.6255 0.4292 0.1000
0.5 1 0.9901 0.8958 0.7233 0.5088 0.1250
0.6 1 0.9954 0.9387 0.7923 0.5723 0.1500
0.7 1 0.9941 0.9531 0.8339 0.6182 0.1750
0.8 1 0.9857 0.9474 0.8507 0.6462 0.2000
0.9 1 0.9646 0.9265 0.8459 0.6562 0.2250
1 1 0.9311 0.8928 0.8222 0.6492 0.2500

The results are also shown graphically in Figure 14.22

CN scheme is second order accurate in time and space where as explicit and implicit scheme are
first order accurate in time and second order accurate in space. Hence in practice, CN scheme is
preferred for the solution of equations with diffusion terms.

14.4. Advection with diffusion 603

u

0

0.2

0.4

0.6

0.8

1

ξ
0 0.2 0.4 0.6 0.8 1

τ = 0
τ = 0.01
τ = 0.05
τ = 0.1
τ = 0.2
τ → ∞

Figure 14.22: Transient solution in
Example 14.7

14.4 Advection with diffusion
We have considered advection equation and diffusion equation, independently, in the

previous sections. There are many applications in which both advection and diffusion
take place simultaneously. Such applications are to be found in transport of a pollutant
in a river or atmosphere, transient heat transfer in a moving medium such as in welding,
mechanics of fluids etc. In the present section we will consider the simplest of such cases,
viz. advection and diffusion in one dimension.

Consider the advection diffusion equation given by

∂u
∂t

+a
∂u
∂x

=α∂
2u
∂x2 (14.47)

where a is the constant advection velocity and α is the diffusivity. If the problem is one
of heat transfer α will be the thermal diffusivity and u the temperature. If the problem
refers to pollutant transport α will be the mass diffusivity and u the concentration of the
pollutant.

Non dimensionalization: The above equations can be non dimensionalized as

∂u
∂τ

+Pe
∂u
∂ξ

= ∂2u
∂ξ2

where ξ = x
L

and τ = αt
L2 . The parameter Pe = aL

α
is known as the Peclet number. Pe

can be rewritten as ratio of Courant number and Fourier number i.e. Pe = C
Foe

, which

signifies the relative importance of advection and diffusion. As Pe → 0, we move towards
pure diffusion where as Pe →∞ the solution tends to pure advection. Numerical solution
of the advection diffusion equation may easily be accomplished by the numerical schemes
that have already been discussed in great detail. Unfortunately, a scheme that is good for
diffusion may not be good for advection and vice versa.

604 Chapter.14 Advection and diffusion equations

14.4.1 FTCS

Explicit FTCS scheme is suitable for diffusion where as it is not suitable for advection.
Nevertheless, we shall briefly consider discretization of advection diffusion equation using
FTCS.

uk+1
i −uk

i

∆t
+a

uk
i+1 −uk

i−1

2∆x
=αuk

i+1 −2uk
i +uk

i−1

∆x2

or uk+1
i = (1−2Foe)uk

i + (Foe −C/2)uk
i+1 + (Foe +C/2)uk

i−1

The above equation is similar to Lax Friedrichs scheme where an artificial diffusion term
was added. The physical diffusion in the present case is equivalent to the artificial

diffusion term. When Foe = 1
2

, the above discretization scheme becomes the same as

Lax Friedrichs scheme. For numerical stability, C2 ≤ 2Foe ≤ 1 should be met. This
is consistent with our deductions for pure advection and pure diffusion cases. For a
advection dominated problem (Pe À 1), the domain has to be discretized into very small
steps to maintain stability. Hence explicit FTCS is of academic interest and is not used in
practice.

14.4.2 Upwind for advection and central difference for diffusion

We consider first an explicit method - the upwinding scheme that was presented earlier
while solving the advection equation. Upwinding is used for the advection term and
central difference is used for the diffusion term. The idea of treating each term differently
is known as operator splitting. Time derivative is written using forward difference. Finite
difference form of Equation 14.47 may then be shown to lead to the following nodal
equation.

uk+1
i = (C+Foe)uk

i−1 + (1−C−2Foe)uk
i +Foeuk

i+1 (14.48)

Stability of upwinding scheme is limited by C+2Foe ≤ 1 i.e. coefficient of uk
i ≥ 0.

An example is considered below to demonstrate the use of upwind scheme.

Example 14.8
Initially the function is distributed linearly with u = 0 at x = 0 and u = 1 at x = 1. For t > 0
the boundaries continue to remain at the values given above. The governing equation is
ut+aux =αuxx where a =α= 1. Obtain the solution at various times as also the steady state
solution. Use the upwind scheme.
Solution :

We choose Foe = 0.25 and make use of Equation 14.48 to obtain all the interior nodal
equations. At the boundary nodes we apply the Dirichlet conditions specified in the problem.
We choose ∆x = 0.1, and with Foe = 0.25 we obtain ∆t = 0.25∆x2 = 0.25×0.12 = 0.0025. The

Courant number is then given by C = a∆x
∆t

= 0.0025
0.1

= 0.025. With this value of C Equation
14.48 takes the form

uk+1
i = 0.275uk

i−1 +0.475uk
i +0.25uk

i+1

14.4. Advection with diffusion 605

Starting with the initial solution u(x, t = 0)= x we see that u0
i = xi and hence

u1
i = 0.275xi−1 +0.475xi +0.25xi+1

= 0.275(i−1)∆x+0.475i∆x+0.25(i+1)∆x
= 0.0275(i−1)+0.0475i+0.025(i+1)

where 1≤ i ≤ 9 and the boundary conditions take care of the end nodes such that u1
0 = 0 and

u1
10 = 1. Thus the solution at t =∆t = 0.0025 is obtained. Solution is extended to larger t by

repeated application of the upwind algorithm. Eventually the solution tends to the steady
state solution which is the solution to the equation with the time derivative term set to zero
i.e. of the equation aux =αuxx subject to the stated boundary conditions. This equation has
an exact solution obtained easily by noting that the equation is in variable separable form.
The reader is encouraged to show that the solution is

u(x)= (exPe −1)
(ePe −1)

The following table shows the function history for a few representative times.

x u u u u u u Stead y
x t = 0 t = 0.0025 t = 0.01 t = 0.05 t = 0.1 t = 0.5 State
0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.10 0.1000 0.0975 0.0929 0.0811 0.0734 0.0629 0.0612
0.20 0.2000 0.1975 0.1906 0.1683 0.1530 0.1321 0.1289
0.30 0.3000 0.2975 0.2901 0.2603 0.2384 0.2081 0.2036
0.40 0.4000 0.3975 0.3900 0.3558 0.3290 0.2917 0.2862
0.50 0.5000 0.4975 0.4900 0.4540 0.4247 0.3837 0.3775
0.60 0.6000 0.5975 0.5900 0.5546 0.5257 0.4847 0.4785
0.70 0.7000 0.6975 0.6900 0.6580 0.6323 0.5958 0.5900
0.80 0.8000 0.7975 0.7905 0.7652 0.7458 0.7179 0.7132
0.90 0.9000 0.8975 0.8927 0.8783 0.8676 0.8523 0.8495
1.00 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Solution at t = 0.5 is already close to the steady state solution. The data presented in the
table is also shown plotted in Figure 14.23.

14.4.3 Crank Nicolson scheme

Crank Nicolson scheme - a semi-implicit method which is unconditionally stable as
shown earlier - may be applied to rewrite Equation 14.47 as

−
(

C
4
+ Foe

2

)
uk+1

i−1 + (1+Foe)uk+1
i +

(
C
4
− Foe

2

)
uk+1

i+1

=
(

C
4
+ Foe

2

)
uk

i−1 + (1−Foe)uk
i −

(
C
4
− Foe

2

)
uk

i+1

(14.49)

If we choose Foe = 1 the above further simplifies to

−
(
1+ C

2

)
uk+1

i−1 +4uk+1
i +

(
1− C

2

)
uk+1

i+1 =
(
1+ C

2

)
uk

i−1 +
(
1− C

2

)
uk

i+1 (14.50)

606 Chapter.14 Advection and diffusion equations

u

0

0.2

0.4

0.6

0.8

1

x
0 0.2 0.4 0.6 0.8 1

u at t = 0
u at t = 0.01
u at t = 0.1
u at t = 0.5
SteadyState

Figure 14.23: Transient and steady
state solutions in Example 14.8

Example 14.9
Advection diffusion equation ut + ux = uxx is satisfied in the region 0 ≤ x ≤ 1. The initial
distribution of the function is given for 0 < x < 1 as u(x,0) = 0 throughout. Boundary
conditions are specified as u(0, t) = 0 and u(1, t) = 1 for t>0. Obtain the transient solution
using the Crank Nicolson method.
Solution :

We choose Foe = 1 and make use of Equation 14.50 to obtain all the interior nodal equations.
At the boundary nodes we apply the Dirichlet conditions specified in the problem. We choose
∆x = 0.1, and with Foe = 1 we obtain ∆t = ∆x2 = 0.12 = 0.01. We then have the Courant

number given by C = ∆x
∆t

= 0.1
0.01

= 0.1. With this value of C Equation 14.50 takes the form

−1.05uk+1
i−1 +4uk+1

i +0.95uk+1
i+1 = 1.05uk

i−1 +0.95uk
i+1

The initial function is defined by ui = 0 where xi = i∆x = 0.1i for 0 ≤ i ≤ 10. The resulting
nodal equations are in tri-diagonal form. The coefficient matrix is tabulated below. These
incorporate u0 = 0 and u10 = 1 for all t.

i ai a′
i a′′

i di
1 4 0.95 0 0
2 4 0.95 1.05 0
3 4 0.95 1.05 0
4 4 0.95 1.05 0
5 4 0.95 1.05 0
6 4 0.95 1.05 0
7 4 0.95 1.05 0
8 4 0.95 1.05 0
9 4 0 1.05 1.9

The last column shows the non-homogeneous terms arising out of the right hand side terms,
for the starting time step. This column alone will change from time step to time step. The
solution obtained by TDMA after the first time step is shown below.

14.4. Advection with diffusion 607

x u(t = 0) a a′ a′′ d P Q u(∆t)
0 0 1 Boundary condition→ 0
0.1 0.0000 4 0.95 0 0 0.2375 0 0.0000
0.2 0.0000 4 0.95 1.05 0 0.2533 0 0.0000
0.3 0.0000 4 0.95 1.05 0 0.2544 0 0.0001
0.4 0.0000 4 0.95 1.05 0 0.2545 0 0.0005
0.5 0.0000 4 0.95 1.05 0 0.2545 0 0.0021
0.6 0.0000 4 0.95 1.05 0 0.2545 0 0.0084
0.7 0.0000 4 0.95 1.05 0 0.2545 0 0.0330
0.8 0.0000 4 0.95 1.05 0 0.2545 0 0.1295
0.9 0.0000 4 0 1.05 1.9 0 0.5090 0.5090
1 1 1 Boundary condition→ 1

We may extend the solution to larger times by the repeated application of TDMA, changing
b values after each time step. Eventually the solution tends to the steady state solution
which has already been obtained in the previous example.9 Alternately it may be obtained
numerically by the use of FDM. The nodal equations are obtained as

−
(
1+ ∆x

2

)
ui−1 +2ui −

(
1− ∆x

2

)
ui+1 = 0

or
−1.1ui−1 +2ui −0.9ui+1 = 0

Again we may use TDMA for the solution. The exact, FDM and the solution obtained by
solving for the nodal values using the transient as t → ∞ all are equally acceptable as
indicated by the following table.

Steady state solution
Transient Steady State

x t →∞ FDM Exact
0 0.000 0.000 0.000
0.1 0.061 0.061 0.061
0.2 0.129 0.129 0.129
0.3 0.204 0.204 0.204
0.4 0.287 0.286 0.286
0.5 0.378 0.377 0.378
0.6 0.479 0.478 0.478
0.7 0.590 0.590 0.590
0.8 0.714 0.713 0.713
0.9 0.850 0.849 0.849
1 1.000 1.000 1.000

A plot of the transient and the steady state solutions are given in Figure 14.24.

9The steady state solution in Examples 14.8 and 14.9 is the same even though the initial conditions are
different

608 Chapter.14 Advection and diffusion equations

u

0

0.2

0.4

0.6

0.8

1

x
0 0.2 0.4 0.6 0.8 1

u at t = 0.01
u at t = 0.05
u at t = 0.1
Steady State

Figure 14.24: Transient and steady
state solutions in Example 14.9

We have seen that CN scheme applied to pure advection equation produces unphysical
oscillations. Consider the initial distribution given by step function

u(t = 0)=
{

1 0≤ x ≤ 0.5
0 0.5< x ≤ 1

0 0.25 0.5 0.75 1

u = 1

The following figure shows the function simulated using Crank Nicolson scheme for
advection dominated flow.

u

0

0.2

0.4

0.6

0.8

1

x
0 0.2 0.4 0.6 0.8 1

Figure 14.25: Function simulated
using Crank Nicolson scheme for
Pe = 1000, C = 0.5

It is evident that CN scheme applied for both advection and diffusion does not perform
well for high Peclet numbers. CN scheme being a higher order method causes unphysical

14.5. Advection equation in multi dimensions 609

oscillations for advection dominated problems. Rather, we can use upwind scheme for
advection and Crank Nicolson scheme for diffusion. This is also known as operator
splitting where each term in PDE is treated separately. The advection term can be either
treated explicitly or implicitly. The following equation represents the explicit upwind
formulation for advection and CN formulation for diffusion.

−Foe

2
uk+1

i−1 + (1+Foe)uk+1
i − Foe

2
uk+1

i+1

=
(

C
2
+ Foe

2

)
uk

i−1 +
(
1−Foe − C

2

)
uk

i +
Foe

2
uk

i+1

(14.51)

Diffusion term is easier to treat than advection term. The main limitation of upwind
scheme as stated earlier is its strong dissipative nature. On the other hand higher order
advection schemes suffer from dispersive errors. However, one can use Total Variation
Diminishing (TVD) schemes for advection which are higher order in nature but also
suppress unphysical oscillations. These schemes can be incorporated by using operator
splitting.

14.5 Advection equation in multi dimensions
Advection equation in two dimensions is given by

∂u
∂t

+ax
∂u
∂x

+ay
∂u
∂y

= 0 (14.52)

where ax and ay are the velocity of the wave along x and y direction. Let us look at some
numerical schemes applicable to two dimensions.

14.5.1 Upwind scheme

First order upwind scheme is the simplest numerical scheme. Let us consider a case
where both ax and ay are positive. Then the advection equation has to be discretized
using backward differences.

uk+1
i, j −uk

i, j

∆t
+ax

uk
i, j −uk

i−1, j

∆x
+ay

uk
i, j −uk

i, j−1

∆y
= 0

or uk+1
i, j = Cxuk

i−1, j +Cyuk
i, j−1 + (1−Cx −Cy)uk

i, j

where Cx = ax∆t
∆x

and Cy =
ay∆t
∆y

are the Courant numbers along x and y direction. For

stability we require Cx ≥ 0 and Cy ≥ 0. Also we require Cx+Cy ≤ 1 for numerical stability.
In general, upwind equation in two dimensions can be summarized as

uk+1
i, j = −max[0,−Cx]uk

i+1, j −max[0,Cx]uk
i−1, j −max[0,−Cy]uk

i, j+1

−max[0,Cy]uk
i, j−1 + (1−|Cx|− |Cy|)uk

i, j

We shall take up an example to check the performance of upwinding scheme.

610 Chapter.14 Advection and diffusion equations

Example 14.10
Solve 2D advection equation using upwind scheme with ax = ay = 1. The initial shape of the

solution is a Gaussian profile given by u(x, y,0)= e−100
[
(x−0.5)2+(y−0.5)2

]
Solution :

Initial shape of the Gaussian profile

The magnitude of advection velocity is equal in both x and y directions and therefore the
advection velocity would be equal to

p
2 along a direction that makes an angle of 45◦ with

respect to the horizontal. We shall consider the domain as 0≤ x, y≤ 1 with periodic
boundary conditions applied at the boundaries. The step size of the discretization is 0.02.
From stability considerations, we have Cx = Cy ≤ 0.5. MATLAB program has been written

to perform the calculations.

dx = 0.02; % s t e p s i z e
n = 1/dx+1; % no . o f n o d e s
x = 0:dx:1; y = x; % n o d e s
[X,Y] = meshgrid(x,y); % mesh
u = exp (-100*((0.5 -X).^2+(0.5 -Y).^2)); % i n i t i a l p r o f i l e
dt = 0.5* dx; % t i m e s t e p
c = dt/dx; % C o u r a n t number
un = u;

for t=1:10 % t i m e s t e p
% c o r n e r n o d e s
un(n,n) = u(n,n)-c*(2*u(n,n)-u(n-1,n)-u(n,n-1));

un(1,n) = u(1,n)-c*(2*u(1,n)-u(n-1,n)-u(n,n-1));

un(1,1) = u(1,1)-c*(2*u(1,1)-u(n-1,1)-u(n-1,1));

un(n,1) = u(n,1)-c*(2*u(n,1)-u(n,n-1)-u(n-1,1));

for i=2:n-1

% b o u n d a r y n o d e s
un(1,i) = u(1,i)-c*(2*u(n,i)-u(n-1,i)-u(n,i-1));

un(n,i) = un(1,i);

un(i,1) = u(i,1)-c*(2*u(i,n)-u(i,n-1)-u(i-1,n));

un(i,n) = un(i,1);

for j=2:n-1 % i n t e r n a l n o d e s
un(i,j) = u(i,j)-c*(2*u(i,j)-u(i-1,j)-u(i,j-1));

14.5. Advection equation in multi dimensions 611

end

end

u = un; % u p d a t e f u n c t i o n
end

The following figure indicates the solution at two different time steps.

Figure 14.26: Solution at t = 0.1 and t = 0.2

One can clearly see that the peak of the solution has dissipated to a large extent. This is a
known artifact of upwind scheme. Following figure shows the spread of the solution with

time.

η

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ξ
0.2 0.3 0.4 0.5 0.6 0.7 0.8

 Exact
 t = 0.2
 t = 0.4
 t = 1.0

Figure 14.27: Isolines of function
u = 0.1 at di�erent times

It is interesting to note that the rate of diffusion varies with direction. The diffusion is
higher along a direction that is perpendicular to the advection velocity. We discuss the
source of such errors in what follows.

612 Chapter.14 Advection and diffusion equations

Error analysis of upwind scheme in two dimensions We perform Taylor series
expansion of terms uk

i, j−1, uk
i−1, j−1 and uk+1

i, j and replace the same in the advection
equation to get

∂u
∂t

+ax
∂u
∂x

+ay
∂u
∂y

=−1
2
∂2u
∂t2 ∆t+ ax∆x

2
∂2u
∂x2 + ay∆y

2
∂2u
∂y2︸ ︷︷ ︸

error

The second derivative of u with respect to time
∂2u
∂t2 may be obtained by differentiating

the advection equation with respect to time. Then we replace this term in the above
expression to get

ε= ax∆x
2

(1−Cx)
∂2u
∂x2 + ay∆y

2
(
1−Cy

) ∂2u
∂y2 −axay∆t

∂2u
∂x∂y

The last term in the above expression is an anisotropic term (a term which makes diffusion
vary with direction). When the advection velocity is along x and y, the anisotropic error
term of upwind scheme is zero. But when the advection velocity is at an angle, the
diffusion becomes anisotropic. In order to overcome this, we shall look at operator splitting
algorithms.

14.5.2 Operator splitting and upwind scheme

Operator splitting is a simple technique which overcomes the effects of anisotropic
diffusion. In this method we consider advection along x and y directions independently.
We first consider advection along x (or y) alone and then correct the solution by
considering advection along other direction. Operator splitting applied to upwind scheme
(ax and ay are positive) is written down as

u∗
i, j = uk

i, j +Cx

(
uk

i, j −uk
i−1, j

)
along x direction

uk+1
i, j = u∗

i, j +Cy

(
u∗

i, j −u∗
i, j−1

)
along y direction

In the above equation, the first step acts like a predictor and the second step as a corrector.
Effectively, the operator splitting can be written as

uk+1
i, j = (1−Cx)(1−Cy)uk

i, j +Cx(1−Cy)uk
i−1, j +Cy(1−Cx)uk

i, j−1 +CxCyuk
i−1, j−1 (14.53)

The last term in the above equation corresponds to ui−1, j−1 and this makes a huge
difference between the simple upwind scheme and the operator splitting based upwind
scheme. For stability requirements, Cx ≤ 1 and Cy ≤ 1. Figure 14.28 shows the spread of
the solution (curve is isoline of u = 0.1) applied to Example 14.10 using Operator splitting
method. Unlike the normal upwind method, the operator splitting shows diffusion
uniformly in all the directions.

14.5. Advection equation in multi dimensions 613

η

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ξ
0.2 0.3 0.4 0.5 0.6 0.7 0.8

 Exact
 Upwind
 Operator Splitting

Figure 14.28: Isolines of the
function u = 0.1 at t = 0.1
for upwind and operator splitting
upwind

Error analysis: Let us perform Taylor series expansion of all the terms about uk
i, j. Then

the actual PDE we are solving would be

∂u
∂t

+ax
∂u
∂x

+ay
∂u
∂y︸ ︷︷ ︸

advection

=−1
2
∂2u
∂t2 ∆t+ ax∆x

2
∂2u
∂x2 + ay∆y

2
∂2u
∂y2 +axay∆t

∂2u
∂x∂y︸ ︷︷ ︸

error

Rewriting
∂2u
dt2 as before, the error becomes

ε= ax∆x
2

(1−Cx)
∂2u
∂x2 + ay∆y

2
(
1−Cy

) ∂2u
∂y2

The anisotropic diffusion term is absent from the solution. Let us try and understand the
physical implications of advection in two dimensions.

Upwinding

(i, j)(i−1, j)

(i, j−1)

(i, j)(i−1, j)

(i, j−1)(i−1, j−1)

Operator splitting

ay

ax

a
θ

The above figure shows the nodes involved using upwind scheme and the operator
splitting scheme. For a scheme to yield exact solution, the first derivative in the advection
term should also be oriented along the advection velocity. However, in upwind scheme the
diagonal nodes are completely disregarded and the derivative is not oriented along the
direction of advection. By splitting the operator, the diagonal nodes have been implicitly
included in the solution procedure. One must realize that the discretized equation of
the operator splitting algorithm is same as bilinear interpolation across the rectangular
region.

614 Chapter.14 Advection and diffusion equations

The above method can easily be extended to three dimensions. The advantage of this
method is that one can apply an one dimensional advection algorithm over multiple
dimensions.

14.6 Diffusion equation in multi dimensions

Heat equation in two dimensions is given by

∂2u
∂x2 + ∂2u

∂y2 = 1
α

∂u
∂t

(14.54)

Assume that the physical domain is a rectangle of width Lx and height L y. Discretization
of the equation is easily accomplished by finite differences.

14.6.1 Explicit formulation

Explicit formulation is only of academic interest and is presented here because of its
simplicity. Let i, j represent a node where the indices indicate x and y positions of a
node. Step sizes along the two directions are taken as ∆x and ∆y such that the x and
y coordinates of the node are given by xi = i∆x and yj = j∆y. Step size along the time
direction is taken as ∆t. Time is indicated by superscript k such that tk = k∆t. Using
forward difference for time derivative and central differences for the space derivatives,
the explicit formulation yields the following for an interior node:

uk
i−1, j −2uk

i, j +uk
i+1, j

∆x2 +
uk

i, j−1 −2uk
i, j +uk

i, j+1

∆y2 = 1
α

uk+1
i, j −uk

i, j

∆t
(14.55)

This equation leads to an explicit relation for the nodal function value at t+∆t or k+1 in
the form

uk+1
i, j = uk

i, j +
α∆t
∆x2

(
uk

i−1, j −2uk
i, j +uk

i+1, j

)
+ α∆t
∆y2

(
uk

i1, j−1 −2uk
i, j +uk

i, j+1

)
which may be recast as

uk+1
i, j = uk

i, j +Foe,x

(
uk

i−1, j −2uk
i, j +uk

i+1, j

)
+Foe,y

(
uk

i, j−1 −2uk
i, j +uk

i, j+1

)
or uk+1

i, j = (
1−2Foe,x −2Foe,y

)
uk

i, j +Foe,x

(
uk

i−1, j +uk
i+1, j

)
(14.56)

+ Foe,y

(
uk

i, j−1 +uk
i, j+1

)
where Foe,x = α∆t

∆x2 and Foe,y = α∆t
∆y2 are the elemental Fourier numbers. The stability of

explicit scheme would require Foe,x +Foe,y ≤ 1
2

i.e. the coefficient of uk
i, j ≥ 0.

14.6. Diffusion equation in multi dimensions 615

14.6.2 Implicit and Crank Nicolson schemes

Similar to one dimensional diffusion cases, the discretization can be carried out using
implicit schemes. The discretized equation for implicit scheme would be(

1+2Foe,x +2Foe,y
)
uk+1

i, j −Foe,x

(
uk+1

i−1, j +uk+1
i+1, j

)
−Foe,y

(
uk+1

i, j−1 +uk+1
i, j+1

)
= uk

i, j

Each discretized equation contains 5 unknowns. The above equations can be solved using
any method discussed earlier. Crank Nicolson scheme would also lead to similar set
of equations. However, solving the above equations would become laborious. On the
contrary, one can use operator splitting algorithms such as ADI which can simplify the
cost of computation to a great extent.

14.6.3 ADI method

We have already presented the ADI method as applicable to the elliptic case. ADI
method may be extended to the parabolic case without much difficulty.10 It requires time
(operator) splitting in which the time step is taken as a sequence of two half time steps

(first ADI step from t to t+ ∆t
2

or k to k+ 1
2

; second ADI step from t+ ∆t
2

to t+∆t or

k+ 1
2

to k+1). During the first half time step x direction is treated implicitly while the y
direction is treated explicitly. In the next half time step the y direction is treated implicitly
while the x direction is treated explicitly. In either step we reduce the formulation to one
dimension in space and hence it is possible to use line by line calculation using TDMA.

Nodal equations

As far as internal nodes are concerned the nodal equations in the first ADI step are
written down as under.

u
k+ 1

2
i−1, j −2u

k+ 1
2

i, j +u
k+ 1

2
i+1, j

∆x2 +
uk

i1, j−1 −2uk
i, j +uk

i, j+1

∆y2 = 1
α

u
k+ 1

2
i, j −uk

i, j
∆t
2

which may be rearranged as

Foe,xu
k+ 1

2
i−1, j −2(1+Foe,x)u

k+ 1
2

i, j +Foe,xu
k+ 1

2
i+1, j =

−Foe,yuk
i, j−1 −2(1−Foe,y)uk

i, j − Foe,yuk
i, j+1 (14.57)

The boundary conditions also need to be treated in a similar fashion. Analogously the
nodal equations in the second ADI step are written down as under.

Foe,yuk+1
i, j−1 −2(1+Foe,y)uk+1

i, j +Foe,xuk+1
i, j+1 =

10D.W. Peaceman and H.H. Rachford, “The numerical solution of parabolic and elliptic differential
equations”, SIAM, Vol. 3, pp. 28-41

616 Chapter.14 Advection and diffusion equations

−Foe,xu
k+ 1

2
i−1, j −2(1−Foe,x)u

k+ 1
2

i, j − Foe,xu
k+ 1

2
i+1, j (14.58)

The ADI method is unconditionally stable. In case the step sizes are the same along x and
y we have Foe,x = Foe,y = Foe. We may choose Foe = 1 and simplify the above to get the
following nodal equations.

ADI Step 1: u
k+ 1

2
i−1, j −4u

k+ 1
2

i, j +u
k+ 1

2
i+1, j =−

(
uk

i, j−1 −uk
i, j+1

)
(14.59)

ADI Step 2: uk+1
i, j−1 −4uk+1

i, j +uk+1
i, j+1 =−

(
u

k+ 1
2

i−1, j −u
k+ 1

2
i+1, j

)
(14.60)

ADI step 1 ADI step 2

Explicit

t → t+∆t/2
k → k+1/2

t+∆t/2 → t+∆t
k+1/2 → k+1

Implicit

Implicit Explicit

Both these form a set of linear equations in tri diagonal form and hence are solved
using TDMA. In the example that follows we shall demonstrate the treatment of boundary
conditions.

Example 14.11
The heat equation in 2 dimensions is valid in a square region which is defined by the corners
at ξ = 0,η = 0; ξ = 0,η = 1; ξ = 1,η = 0 and ξ = 1,η = 1. The heat equation is in the standard
form uξξ+uηη = uτ. Initially u = 1 throughout the physical domain. For τ> 0 the left, bottom
and right sides are maintained at u = 0 while Robin condition is specified along the top as
uη + c1u = c2 with c1 = 1 and c2 = 0.5. Obtain the transient temperature field within the
domain by ADI method.

u = 0.5

u = 0.5

u = 0.5

Robin condition

Solution :
We choose ∆ξ = ∆η = 0.1 and Foe = 1. The step size along the time direction is then given

14.6. Diffusion equation in multi dimensions 617

by ∆τ=∆ξ2 = 0.12 = 0.01. In the ADI method we take two half steps of 0.005 each to cover
one time step. We note that the nodal system will be such that 0 ≤ i ≤ 10 and 0 ≤ j ≤ 10.
However there is symmetry with respect to i = 5 and hence we need to consider the nodes
in the range 0≤ i ≤ 5 and 0≤ j ≤ 10 only.

Interior nodal equations follow those given in Equations 14.59 and 14.60. We now look at
the boundary nodes.
Node on top boundary
Top boundary corresponds to j = 10. We have the Robin condition specified there. In the
first ADI step the boundary condition is applied in an explicit fashion. Thus we have, using
the concept of ghost node

uk
i,11 −uk

i,9

2∆η
+ c1uk

i,10 = c2 or uk
i,11 = uk

i,9 −2c1∆ηuk
i,10 +2c2∆η

We substitute this in the nodal equation of ADI Step 1, treating the boundary node as an
internal node to get

u
k+ 1

2
i−1,10 −4u

k+ 1
2

i,10 +u
k+ 1

2
i+1,10 =−

(
2uk

i,9 −2c1∆ηuk
i,10 +2c2∆η

)
In the second ADI step the boundary condition is applied in an implicit fashion. Thus we
have, using the concept of ghost node

uk+1
i,11 −uk+1

i,9

2∆η
+ c1uk+1

i,10 = c2 or uk+1
i,11 = uk+1

i,9 −2c1∆ηuk+1
i,10 +2c2∆η

n = 6; m = 2*n-1; % no o f n o d e s a l o n g x and y
x = 0:0.5/(n-1) :0.5; y = 0:1/(n-1) :1; % n o d e s
h = 0.5/(n-1); Foe = 1; dt = Foe*h^2; % s t e p s i z e
u = ones(n,m); uo = u; % i n i t i a l i z e f u n c t i o n
c1 = 1; c2 = 0.5; % c o e f f i c i e n t s f o r R o b i n c o n d i t i o n
ax = zeros(n,1); % c o e f f i c i e n t o f i , j a l o n g x
ay = zeros(m,1); % c o e f f i c i e n t o f i , j a l o n g y
bx = zeros(n,1); % c o e f f i c i e n t o f i + 1 , j (a l o n g x)
cx = zeros(n,1); % c o e f f i c i e n t o f i −1 , j (a l o n g x)
by = zeros(m,1); % c o e f f i c i e n t o f i , j +1 (a l o n g y)
cy = zeros(m,1); % c o e f f i c i e n t o f i , j −1 (a l o n g y)
dx = zeros(n,1); % c o n s t a n t t e r m (a l o n g x)
dy = zeros(m,1); % c o n s t a n t t e r m (a l o n g y)

u
=

0.
5

u = 0.5

∂
u
∂

x
=

0

Robin

618 Chapter.14 Advection and diffusion equations

We substitute this in the nodal equation of ADI Step 2, treating the boundary node as an
internal node to get

2uk+1
i,9 − (4+2c1∆η)uk+1

i,10 =−
(
u

k+ 1
2

i−1,10 +u
k+ 1

2
i+1,10 +2c2∆η

)
Node on right boundary
Right boundary corresponds to i = 5. We have the Neumann condition specified there. In
the first ADI step the boundary condition is applied in an implicit fashion. Thus we have,

using the concept of ghost node, u
k+ 1

2
6, j = u

k+ 1
2

4, j . Treating the boundary node as an internal
node, we then get

2u
k+ 1

2
4, j −4u

k+ 1
2

5, j =−
(
uk

5, j−1 −uk
5, j+1

)
In the second ADI step the boundary condition is applied in an explicit fashion. Thus we

have, using the concept of ghost node, u
k+ 1

2
6, j = u

k+ 1
2

4, j . Treating the boundary node as an
internal node, we then get

uk+1
5, j−1 −4uk+1

5, j −uk+1
5, j+1 =−2u

k+ 1
2

4, j

Node at right corner i = 5, j = 10
In this case two ghost nodes are introduced as shown in Figure 14.29. In the first ADI step
we treat the ghost node 6,10 implicitly and ghost node 5,11 explicitly.

u
k+ 1

2
n,m

u
k+ 1

2
n−1,m

u
k+ 1

2
n+1,m

uk
n,m−1

uk
n,m+1

ghost nodes

uk+1
n,m

u
k+ 1

2
n−1,m

u
k+ 1

2
n+1,m

uk+1
n,m−1

uk+1
n,m+1

ghost nodes

Note: in the example n = 5 and m = 10

Figure 14.29: Corner node in Example 14.11

We thus have the following two relations:

u
k+ 1

2
6,10 = u

k+ 1
2

4,10

uk
5,11 = uk

5,9 −2c1∆ηuk
5,10 +2c2∆η

Now treat the corner node as an interior node, introduce the above to get the following
equation in the first ADI step.

2u
k+ 1

2
4,10 −4u

k+ 1
2

5,10 =−2
(
uk

5,9 − c1∆ηuk
5,10 + c2∆η

)

14.6. Diffusion equation in multi dimensions 619

In the second ADI step we treat the ghost node 6,10 explicitly and ghost node 5,11 implicitly.
We thus have the following two relations:

u
k+ 1

2
6,10 = u

k+ 1
2

4,10

uk+1
5,11 = uk+1

5,9 −2c1∆ηuk+1
5,10 +2c2∆η

Now treat the corner node as an interior node, introduce the above to get the following
equation in the first ADI step.

2uk+1
5,9 − (4+2c1∆η)uk+1

5,10 =−2
(
u

k+ 1
2

4,9 + c2∆η

)
% TDMA c o e f f i c i e n t s f o r ADI s t e p 1
ax(1) = 1; dx(1) = 0.5;

ax(2:n-1) = 2+2* Foe;

bx(2:n-1) = Foe;

cx(2:n-1) = Foe;

ax(n) = 2+2* Foe;

cx(n) = 2*Foe;

% TDMA c o e f f i c i e n t s f o r ADI s t e p 2
ay(1) = 1; dy(1) = 0.5;

ay(2:m-1) = 2+2* Foe;

by(2:m-1) = Foe;

cy(2:m-1) = Foe;

ay(m) = 2+2* Foe +2* Foe*c1*h;

cy(m) = 2*Foe;

% t i m e i n t e g r a t i o n
for t=1:5

% ADI STEP 1
for j=2:m

if(j==m) % t o p b o u n d a r y
dx(2:n-1) = 2*Foe*uo(2:n-1,m-1) ...

+ 2*(1-Foe -Foe*c1*h)*uo(2:n-1,m) + 2*Foe*c2*h;

dx(n) = 2*Foe*uo(n,m-1) ...

+ 2*(1-Foe -Foe*c1*h)*uo(n,m) + 2*Foe*c2*h;

else % i n t e r i o r l i n e
dx(2:n-1) = Foe*(uo(2:n-1,j+1)+uo(2:n-1,j-1)) ...

+ 2*(1- Foe)*uo(2:n-1,j);

dx(n) = Foe*(uo(n,j+1)+uo(n,j-1)) ...

+ 2*(1- Foe)*uo(n,j);

end

u(:,j) = tdma(cx ,ax ,bx ,dx);

end

%ADI s t e p 2
for i=2:n

if(i==n) % s y m m e t r i c b o u n d a r y
dy(2:m-1) = 2*Foe*uo(n-1,2:m-1) ...

+ 2*(1- Foe)*uo(n,2:m-1);

dy(m) = 2*Foe*uo(n-1,m) ...

+ 2*(1- Foe)*uo(n,m) + 2*c2*Foe*h;

else % i n t e r i o r l i n e
dy(2:m-1) = Foe*(uo(i+1,2:m-1)+uo(i-1,2:m-1)) ...

620 Chapter.14 Advection and diffusion equations

+ 2*(1- Foe)*uo(i,2:m-1);

dy(m) = Foe*(uo(i+1,m)+uo(i-1,m)) ...

+ 2*(1- Foe)*uo(i,m) + 2*c2*Foe*h;

u(i,:) = tdma(cy ,ay ,by ,dy);

end

end

uo = u; % u p d a t e f u n c t i o n
end

The function values after one time step have been tabulated below

ir j 0 1 2 3 4 5
10 0.5 0.73635 0.97271 0.97271 0.97271 0.94876
9 0.5 0.74634 0.99268 0.99268 0.99268 0.99862
8 0.5 0.74901 0.99803 0.99803 0.99803 0.99862
7 0.5 0.74971 0.99943 0.99943 0.99943 0.99862
6 0.5 0.74984 0.99967 0.99967 0.99967 0.99862
5 0.5 0.74964 0.99927 0.99927 0.99927 0.99862
4 0.5 0.74871 0.99741 0.99741 0.99741 0.99862
3 0.5 0.74519 0.99038 0.99038 0.99038 0.99862
2 0.5 0.73205 0.96410 0.96410 0.96410 0.99862
1 0.5 0.68301 0.86603 0.86603 0.86603 0.74931
0 0.5 0.5 0.5 0.5 0.5 0.5

The temperature field at t = 1 have been tabulated below

ir j 0 1 2 3 4 5
10 0.5 0.50019 0.50036 0.50049 0.50058 0.50061
9 0.5 0.50020 0.50039 0.50053 0.50063 0.50066
8 0.5 0.50021 0.50040 0.50055 0.50065 0.50068
7 0.5 0.50021 0.50040 0.50054 0.50064 0.50068
6 0.5 0.50020 0.50038 0.50052 0.50061 0.50064
5 0.5 0.50018 0.50034 0.50047 0.50055 0.50058
4 0.5 0.50015 0.50029 0.50040 0.50047 0.50050
3 0.5 0.50012 0.50023 0.50032 0.50037 0.50039
2 0.5 0.50008 0.50016 0.50022 0.50026 0.50027
1 0.5 0.50004 0.50008 0.50011 0.50013 0.50014
0 0.5 0.5 0.5 0.5 0.5 0.5

The solution is close to the steady state solution. The transient method discussed above can
be applied to solve a steady state solution (pseudo-transient method). In fact, the method
discussed above is the same as the one considered to solve elliptic problems.

It is important to perform space and time step sensitivity study to ascertain convergence
of the solution. We leave it to the interest of the reader.

14.A. Suggested reading 621

All the methods that have been discussed so far can be applied in other coordinate systems
as well. In such a case the spatial discretization remains similar to that considered in
elliptic problems with a suitable time integration scheme. The spatial discretization can
be performed using FDM, FEM or FVM. As such, methods that have been discussed to
solve a system of initial value ODEs such as Runge Kutta, ABM, implicit methods can be
used to perform time integration.

Concluding remarks

In this chapter we have presented simple explicit schemes, implicit and semi-implicit schemes
and hybrid schemes for the solution of advection equation, diffusion equation and advection
diffusion equation. No numerical scheme is of either universal applicability or capable of
giving satisfactory solution in all these cases. Hence a number of specific schemes are discussed
applicable to advection, diffusion and advection-diffusion equations.

We have also presented detailed von Neumann stability analysis of various numerical
schemes presented here. Accuracy characteristics of the schemes have been brought out by use
of Taylor series based method.

14.A Suggested reading
1. S. Patankar Numerical heat transfer and fluid flow Taylor and Francis, 1980
2. H.K. Versteeg and W. Malalasekera An introduction to computational fluid

dynamics: the finite volume method Prentice Hall, 2007
3. C. Hirsch Numerical computation of internal and external flows: the fundamentals

of Computational Fluid Dynamics Butterworth -Heinemann, 2007

Chapter 15

Wave equation

Waves occur in various forms such as longitudinal acoustic waves in a medium such as
air, transverse waves in a string, waves in a membrane and as electromagnetic
radiation. All these are governed by the wave equation with the dependent variable
being pressure or displacement or electric field etc. Wave equation is hyperbolic in nature
and exhibits real and distinct characteristic directions in the case of waves in one
dimension. Hence it is possible to solve analytically the wave equation in one dimension.
Wave equation is also amenable to analytical solutions using the method of separation of
variables. However emphasis here is on numerical solution of the wave equation in
different circumstances. We also consider waves in two dimensions, such as those that
are possible in a vibrating membrane or a diaphragm. Speakers and musical
instruments use vibrating diaphragms to produce sound.

623

624 Chapter.15 Wave equation

15.1 Introduction

Consider the wave equation in one dimension i.e.

a2 ∂
2u
∂x2 = ∂2u

∂t2 (15.1)

where a is the wave speed. This equation may be factored as under:(
a
∂

∂x
− ∂

∂t

)(
a
∂

∂x
+ ∂

∂t

)
u = 0 (15.2)

Here the operator
(
a2 ∂2

∂x2 − ∂2

∂t2

)
has been written as the product of two operators acting

on u. Hence the general solution should be the sum of two solutions of the advection
equation with speeds a and −a. Thus we should have

u(x, t)= f1(x−at)+ f2(x+at) (15.3)

The first part remains constant along the characteristic x − at = ξ = constant and the
second part remains constant along the characteristic x+ at = η = constant. Along the

first characteristic we have
dx
dt

= a and along the second characteristic we have
dx
dt

=−a.
Consider a point x = x0, t = 0. Then we see that ξ = x0 along the first characteristics
and η = x0 along the second characteristics. Set of characteristics for the wave equation
are shown in Figure 15.1. The full lines represent ξ = constant while the dashed lines
represent η= constant.

t

0

1

2

3

4

x
0 1 2 3 4

Figure 15.1: Set of character-
istics for the wave equation

The wave equation can support two initial conditions and two boundary conditions
because of second derivatives with respect to space and time that occur in it. In case

the domain stretches from x =−∞ to x =∞, we may specify both u as well as
∂u
∂t

i.e. the
initial displacement and initial velocity for all x. In case the domain is finite, 0≤ x ≤ L we
have to, in addition, specify two boundary conditions.

15.2. General solution of the wave equation 625

Example 15.1
Consider an infinite string of lineal density m = 0.1 kg/m under a tension of T = 2.5 N.
Determine wave speed when a small transverse displacement is set up in the string.
Solution :

When the transverse displacement is small we may assume the tension in the string to
remain constant. Consider a small length dx of string as shown in Figure 15.2.

θ+∆θ

θ

u

u+∆u
T

T

m∆x Figure 15.2: Transverse displace-
ment of a string under constant
tension

∆x

x x+∆x

Resolve forces along the u direction to obtain the net force acting on the element of string
in the transverse direction as

F = T [sin(θ+∆θ)−sinθ]
= T [sinθ cos∆θ+cosθsin∆θ−sinθ]≈∆θ

where we have set cosθ ≈ 1 and sinθ ≈ θ in the limit of small displacement. We note also

that tanθ ≈ sinθ ≈ θ = ∂u
∂x

. Hence we write the net transverse force as

F = T∆θ ≈ T
∂2u
∂x2 ∆x

Applying Newton’s second law we than have

m∆x
∂2u
∂t2 = T

∂2u
∂x2 ∆x

or
∂2u
∂t2 = T

m
∂2u
∂x2 = a2 ∂

2u
∂x2

where the wave speed is identified as a =
√

T
m

. In the present case the wave speed is

calculated as

a =
√

2.5
0.1

= 5 m/s

15.2 General solution of the wave equation
Consider the case where the domain stretches from x =−∞ to x =∞. At t = 0 the initial

shape is specified with zero velocity throughout. Consider the solution as given previously
by u = f1(x−at)+ f2(x+at)= f1(ξ)+ f2(η). We then have

∂u
∂x

= d f1

dξ
+ d f2

dη
;

∂u
∂t

=−a
d f1

dξ
+a

d f2

dη
;

626 Chapter.15 Wave equation

∂2u
∂x2 = d2 f1

dξ2 + d2 f2

dη2 ;
∂2u
∂t2 = a2 d2 f1

dξ2 +a2 d2 f2

dη2 (15.4)

The wave equation is identically satisfied. Hence u = f1(x−at)+ f2(x+at)= f1(ξ)+ f2(η) is
a general solution to the wave equation. The solution may be interpreted as being made
up of two waves, one propagating towards the right [f1(x−at)] and the other propagating
towards the left [f2(x+at)]. Consider the case where the initial shape of the disturbance
is given by u(x,0)= f (x) for −∞≤ x ≤∞. Solution at later time is given by

u(x, t)= f (x−at)+ f (x+at)
2

= f (ξ)+ f (η)
2

(15.5)

The initial disturbance divides into two equal parts, one moving towards the right and the
other moving towards the left as shown in Figure 15.3.

A/2

A x

u

t

x = b

t = t0

at0at0

Figure 15.3: Right and left going
waves in an in�nite domain

15.2.1 d’Alembert’s solution to the one dimensional wave equation

Now we consider the general case where the initial shape as well as initial velocity is
prescribed. We start with the general solution given by Equation 15.3. From this solution
we get the velocity as

∂u
∂t

∣∣∣∣
x,t

=−a
d f1

dξ
+a

d f2

dη
(15.6)

If we let t = 0 in the above (then ξ= η= x), we get the initial velocity given by

∂u
∂t

∣∣∣∣
x,0

=−a
d f1

dx
+a

d f2

dx
= g(x) (15.7)

We may integrate this equation with respect to x to get

−af1(x)+af2(x)=
∫

g(x)dx+h(t = 0) or − f1(x)+ f2(x)= 1
a

∫ x

x0

g(s)ds (15.8)

where x0 is an arbitrary point within the domain. Also we have, from the initial condition
defining the shape as

f1(x)+ f2(x)= f (x) (15.9)

Adding Equations 15.8 and 15.9 and rearranging we get

f2(x)= f (x)
2

+ 1
2a

∫ x

x0

g(s)ds (15.10)

15.2. General solution of the wave equation 627

Subtracting Equation 15.8 from Equation 15.9 and rearranging we get

f1(x)= f (x)
2

− 1
2a

∫ x

x0

g(s)ds (15.11)

It is clear, in general, that we can replace x by x−at in Equation 15.11 to get the first part
of the general solution and that we can replace x by x+ at in Equation 15.10 to get the
second part of the general solution. We then combine these two to get the general solution
as

u(x, t)= f (x−at)+ f (x+at)
2

+ 1
2a

∫ x+at

x−at
g(s)ds (15.12)

This last result is known as the d’Alembert’s1 solution to the one dimensional wave
equation. d’Alembert’s solution shows that the solution is influenced by the zone of
influence associated with the point, as indicated in Figure 15.4.

x0 x0 +atx0 −at x

t

Zone of
influence

15.2.2 Boundary conditions

If the two ends are rigid no displacement is possible at the ends and hence Dirichlet
conditions u(0, t) = u(L, t) = 0 may be specified. This condition can be visualized by a
string tied to a pole. A wave traveling towards a fixed node, gets reflected. The reflected
wave moves with the same speed and amplitude but is out of phase with respect to the
original wave as illustrated in the figure below.

a

F
ix

ed

a

Reflected wave

F
ix

ed

Free nodes are free to move about the equilibrium position. A wave reflected from the free
node has the same speed, amplitude and phase as the original wave as illustrated below.

a

F
re

e

F
re

e

a

Reflected wave

F
re

e

1after Jean-Baptiste le Rond d’Alembert, 1717-1783, a French mathematician

Figure 15.4: Zone of in�uence
arising out of d'Alembert's solu-
tion

628 Chapter.15 Wave equation

This boundary condition can be realized by tying the string to a ring where the ring can
slide freely on the pole. Mathematically, a free boundary means the first derivative of

displacement
∂u
∂x

= 0 at this node which is nothing but Neumann boundary condition.

Another possible boundary condition is a combination of fixed and free conditions where
there is a small resistance to the displacement at this boundary. This will occur at the
interface of two media characterized by different wave speeds.

a1

a1

a2

Reflected wave

Transmitted wave

Then part of the initial wave is reflected back into the first medium where as the other
part of the disturbance is transmitted into the second medium.

Non-dimensionalization

The wave equation may be written in terms of non-dimensional variables X = x
Lch

and

τ = at
Lch

where Lch is a characteristic length. In case the string is of finite length L

stretched between two supports, we may set Lch = L and obtain the wave equation in the
standard form

∂u
∂X2 = ∂u

∂τ2 (15.13)

15.2.3 A useful theorem

A very useful theorem is derived based on the general solution of the one dimensional
wave equation. Consider four points P,Q,R,S as shown in Figure 15.5. The lines joining
the points are characteristics of the wave equation. Two of the characteristics are right
going while the other two are left going.

P

Q

R

S

ξ=
ξ 2

ξ=
ξ 1 η=

η
1

η=
η
2

Figure 15.5: Four points in the t, x plane
lying on characteristics

15.2. General solution of the wave equation 629

From the general solution to the one-dimensional wave equation we have the following
identities.

uP = f1(xP −atP)+ f2(xP +atP); uQ = f1(xQ −atQ)+ f2(xQ +atQ);

uR = f1(xR −atR)+ f2(xR +atR); uS = f1(xS −atS)+ f2(xS +atS) (15.14)

Since the points lie on the characteristics, we also have the following identities.

xP −atP = xQ −atQ ; xP +atP = xS +atS;

xR −atR = xS −atS; xR +atR = xQ +atQ (15.15)

With these Equations 15.14 may be recast as follows.

uP = f1(xQ −atQ)+ f2(xS +atS); uQ = f1(xQ −atQ)+ f2(xQ +atQ)

uR = f1(xS −atS)+ f2(xQ +atQ); uS = f1(xS −atS)+ f2(xS +atS) (15.16)

Thus we have
uP +uR = uQ +uS or uP = uQ +uS −uR (15.17)

An example is considered now to demonstrate the use of the above theorem.

Example 15.2
Initial shape of a string stretched between two supports is the sinusoidal distribution given
by u = 0.05sin

(πx
L

)
. Initial velocity is zero for all x. The tension and mass per unit length of

string are given as T = 2.5 N and m = 0.1 kg/m. The length of the string between supports is

L = 0.1 m. Determine the displacement of the string at x = L
4

at t = 0.0075 s.

Solution :

The wave speed in this case is a =
√

2.5
0.1

= 5 m/s. The characteristics passing through point

P with xP = L
4
= 0.1

4
= 0.025 m and tP = 0.0075 s are given by

ξP = xP −atP = 0.025−5×0.0075=−0.0125

ηP = xP +atP = 0.25+5×0.0075= 0.0625

The construction shown in Figure 15.6 gives the characteristics required in solving the
problem. The characteristic ξ = −0.0125 is outside the domain i.e. 0 ≤ ξ ≤ 0.1 and hence
the general solution cannot be used directly to obtain the displacement at this point. The
characteristic ξ = −0.0125 hits the left boundary at the point Q. With xQ = 0 we get tQ =
−ξQ

a
= −−0.0125

5
= 0.0025. Consider now the characteristic line passing through x = 0

which corresponds to ξ= 0. Points R and S are chosen to lie on this characteristic. We note
that ηR = ηQ = 5×0.0025 = 0.0125. Hence we have xR +atR = 0.0125. Since ξR = 0 we also

have xR − atR = 0 or atR = xR . Thus we have xR = 0.0125
2

= 0.00625 and tR = 0.00625
5

=
0.00125. Similarly we can show that xS = 0.03125 and tS = 0.00625. Hence the solution

630 Chapter.15 Wave equation

required at P is obtained by the use of the theorem presented earlier, using the four points
P,Q,R,S shown in Figure 15.6.

t

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

x
0 0.02 0.04 0.06 0.08 0.1

P

Q

R

S

Figure 15.6: Construction
of characteristics for Example
15.2

Since point Q lies at the left boundary uQ = 0 for all t. The displacement at point R is
obtained using the general solution as

uR = f (ξR)+ f (ηR)
2

= 0+0.05sin
(
π · 0.00625

0.1
)

2
= 0.009755

Displacement at point S may again be obtained from the general solution as

uS = f (ξS)+ f (ηS)
2

= 0+0.05sin
(
π · 0.0625

0.1
)

2
= 0.023097

Using the theorem we than have

uP = uQ +uS −uR = 0+0.023097−0.009755= 0.013342

We consider another example to demonstrate the use of the d’Alembert’s solution. Initially
the string is in its equilibrium position with the velocity specified at each point on the
string.

Example 15.3
A string L = 4 m long is stretched between two rigid supports. The tension in the spring is
T = 100 N and the lineal density is m = 0.64 kg/m. The string is initially in its equilibrium
position and the transverse velocity is given by the formula g(x,0)= 0.1x(L−x) m/s. Calculate
the displacement at the midpoint of the string (i.e. at x = 2 m) as a function of time.
Solution :

With the data provided in the problem the wave speed is calculated as

a =
√

100
0.64

= 12.5 m/s

15.2. General solution of the wave equation 631

The integral involved in the d’Alembert’s solution is obtained as∫ η

ξ
g(s)ds =

∫ η

ξ
0.1s(L− s)ds = 0.1

(
L
2

(η2 −ξ2)+ η3 −ξ3

3

)
Since the string is initially at the equilibrium position, f (x) = 0 and hence the solution is
given by

u(x, t)= 1
2a

∫ η

ξ
g(s)ds = 0.004

(
L
2

(η2 −ξ2)+ η3 −ξ3

3

)
where u is in m. At any time, we have,

ξ= x−12.5t; and η= x+12.5t

Using these the solution may be simplified as

u(x, t)= 0.1
[

tx(L− x)− a2t3

3

]
Also we may then obtain the velocity by differentiating the above with respect to t as

∂u
∂t

∣∣∣∣
x,t

= 0.1
[
x(L− x)−a2t2]

The displacement at mid span may be obtained by substituting x = 2 m in the expression for
u to get

u(2, t)= 0.1
[
4t− a2t3

3

]
Mid span displacement has been calculated from t = 0, the equilibrium position to t = 0.16 s
when the string reaches the maximum displacement position and is shown in the following
table. We may verify , using the expression given above for the velocity of the string, that
the velocity is zero at t = 0.16 s. For t > 0.16 s the displacement decreases and is again
at the equilibrium position at t = 0.32 s. The motion of the string then continues in the
negative direction and returns to the equilibrium position at t = 0.64 s i.e. after one period
of oscillation. The motion is periodic and repeats itself with this period.

x t ξ η u t ξ η u
2 0 2 2 0 0.09 0.875 3.125 0.0322
2 0.01 1.875 2.125 0.004 0.1 0.75 3.25 0.0348
2 0.02 1.75 2.25 0.008 0.11 0.625 3.375 0.0371
2 0.03 1.625 2.375 0.0119 0.12 0.5 3.5 0.039
2 0.04 1.5 2.5 0.0157 0.13 0.375 3.625 0.0406
2 0.05 1.375 2.625 0.0193 0.14 0.25 3.75 0.0417
2 0.06 1.25 2.75 0.0229 0.15 0.125 3.875 0.0424
2 0.07 1.125 2.875 0.0262 0.16 0 4 0.0427
2 0.08 1 3 0.0293

The data is also shown plotted in Figure 15.7.

632 Chapter.15 Wave equation

u(
L/

2,
t)

0

0.01

0.02

0.03

0.04

0.05

t
0 0.04 0.08 0.12 0.16

Figure 15.7: Displacement
history at mid span of the
string in Example 15.3

15.3 Numerical solution of the one dimensional wave
equation

We now direct our attention to the numerical solution of the one dimensional wave
equation using the finite difference method. We present first an explicit scheme followed
by a discussion of an implicit method.

15.3.1 Explicit scheme

Since the wave equation involves second derivatives with respect to both space and
time, the least we can do is to apply central differences along both the space and time
directions. Letting subscript i represent node number along x and superscript k represent
nodes along t, central difference in time and central difference in space (CTCS) may be
used to recast the governing PDE in terms of nodal equation. With ∆x and ∆t as the steps
along x and t respectively, we have

uk
i−1 −2uk

i +uk
i+1

∆x2 = 1
a2

uk−1
i −2uk

i +uk+1
i

∆t2 (15.18)

This may be recast as an explicit relation between uk+1
i and other nodal values as

uk+1
i = 2(1−C2)uk

i −uk−1
i +C2(uk

i−1 +uk
i+1) (15.19)

where C = a∆t
∆x

is the Courant number. We see that displacements at k− 1 and k are
required for determining the displacement at k+1.
First time step: Let us assume that we are starting at k = 0 when both the displacement
and velocity are given. We may then approximate the nodal velocity by central difference
in time, using a ghost node at k−1= 0−1=−1. We then have

u1
i −u−1

i

2∆t
= g i (15.20)

15.3. Numerical solution of the one dimensional wave equation 633

where g i represents the nodal velocity. We can solve this for u−1
i as

u−1
i = u1

i −2g i∆t (15.21)

We substitute this in Equation 15.19 with k = 1 to get

u1
i = (1−C2)u0

i + g i∆t+ C2

2
(u0

i−1 +u0
i+1) (15.22)

Thus we are able to calculate explicitly the nodal displacements after one time step. The
computations can then progress for higher times simply be the use of Equation 15.19.
Note that only nodal displacements and not velocities are involved in calculations beyond
the first time step.

15.3.2 Stability analysis of the explicit scheme

Stability of the explicit scheme is studied by the use of familiar von Neumann stability
analysis. We assume that the solution is given by u(x, t) = A(t)e jωx where the amplitude
is a function of time. We assume that the time variation is such that the magnification is

given by
A(t+∆t)

A(t)
=λ or

A(t)
A(t−∆t)

=λ. Substituting the above in Equation 15.19 we get

λA(t)e jωx = 2(1−C2)e jωx − A(t)
λ

e jωx +C2 A(t)e jωx(e jω∆x +e− jω∆x)

This may be simplified, after canceling the common e jωx term, to read

λ2 −2
(
1−2C2 sin2

(
ω∆x

2

))
λ+1 = 0

or λ2 −2αλ+1 = 0 (15.23)

where we have represented the circular function in terms of half angle and set α =(
1−2C2 sin2

(
ω∆x

2

))
. We see at once that α is bound by 1 and 1− 2C2. The former is

of no consequence. However if α= 1−2C2, the solution to the above quadratic for λ is

λ=α±
√
α2 −1= 1−2C2 ±2C

√
(C2 −1) (15.24)

If C > 1 the amplification factor λ> 1 and the numerical scheme is unstable. For example,
if C =

p
2, we get λ = −3±

p
8 and one of the roots is greater than 1. If C = 1, λ is real

(equal to −1) with the absolute value equal to 1 and hence the numerical scheme is stable.
If C < 1, λ is complex with the absolute value of the amplification factor equal to 1. For
example, if C = 0.5 we have λ=−0.5± j

p
0.75. The magnitude of this complex number is

seen to be 1. Thus the explicit scheme is conditionally stable for C ≤ 1.

634 Chapter.15 Wave equation

Example 15.4
Waves are set up in the region 0≤ x ≤ 1 with an initial displacement given by u(x,0)= f (x)=
0.01{1− cos(2πx)} and initial velocity h(x) = 0.02x(1− x). Compute the shape of the wave at
t = 0.3 using the explicit method with C = 0.5, C = 1 and C = 1.5. Comment on the results
in comparison with the exact d’Alembert’s solution. The wave equation is specified to be
uxx = utt.
Solution :

We shall first obtain the exact solution. Using Equation 15.12 and the initial displacement
and velocity functions prescribed in the problem, we get

u(x, t)= 0.005
(
2−cos(2πξ)−cos(2πη)

)+0.01
(
η2 −ξ2

2
+ η3 −ξ3

3

)
We choose ∆x = 0.1 so that there are 11 nodes along the x direction. The exact solution
is calculated at these points. At the two ends we impose zero displacement conditions.
At t = 0.3 the ξ and η values are within range (i.e. 0 ≤ ξ or η ≤ 1) for all x except x =
0.1, x = 0.2, x = 0.8 and x = 0.9. Because of symmetry in the initial values, the displacement
at x = 0.1 is the same as that at x = 0.9 and the displacement at x = 0.2 is the same as
that at x = 0.8. Thus it is enough if we evaluate the displacements at x = 0.1, t = 0.3 and
x = 0.2, t = 0.3 using the theorem introduced earlier. At all other points the d’Alembert’s
solution may be directly applied.

The four points required in the
case of x = 0.1, t = 0.3 are shown

below

0
0

0.1

0.1

0.2

0.2

0.3

0.3

Q

R

P

S

The four points required in the
case of x = 0.2, t = 0.3 are shown

below

0
0

0.1

0.1

0.2

0.2

0.3

0.3

Q
R

P
S

Calculations for these two points are tabulated below.

xP ξR ηR ξS ηS uS uR uQ uP
0.1 (0.9) 0 0.2 0 0.4 0.00963 0.00363 0 0.00600
0.2 (0.8) 0 0.1 0 0.5 0.01083 0.00100 0 0.00983

We may calculate all the other nodal displacements (uE indicates Exact) and tabulate the
results as shown below.

15.3. Numerical solution of the one dimensional wave equation 635

x ξ η uE
0 0
0.1 -0.20000 0.40000 0.00600
0.2 -0.10000 0.50000 0.00983
0.3 0.00000 0.60000 0.01013
0.4 0.10000 0.70000 0.00876
0.5 0.20000 0.80000 0.00823
0.6 0.30000 0.90000 0.00876
0.7 0.40000 1.00000 0.01013
0.8 0.50000 1.10000 0.00983
0.9 0.60000 1.20000 0.00600
1 0

Calculated
above

Calculated
above

FDM solution Now consider the numerical solution based on the explicit formulation. The
time step size is determined by the value of the chosen Courant number. In case C = 0.5 we
have ∆t = 0.05 and hence t = 0.3 is reached after 6 time steps. In case C = 1 we have ∆t = 0.1
and hence t = 0.3 is reached after 3 time steps. In case C = 1.5 we have ∆t = 0.15 and hence
t = 0.3 is reached after 2 time steps. First time step uses Equation 15.22 while subsequent
time steps use Equation 15.19. The state of affairs at t = 0.3, obtained with the three values
of C are shown in the table below.

u(x,0.3)
x C = 0.5 C = 1 C = 1.5
0 0 0 0
0.1 0.00612 0.00601 0.00356
0.2 0.00978 0.00985 0.01191
0.3 0.00993 0.01015 0.01004
0.4 0.00893 0.00878 0.00848
0.5 0.00846 0.00825 0.00787
0.6 0.00893 0.00878 0.00848
0.7 0.00993 0.01015 0.01004
0.8 0.00978 0.00985 0.01191
0.9 0.00612 0.00601 0.00356
1 0 0 0

It is seen from the table that the solution is erratic for C = 1.5. This is expected since
the CFL condition is violated and the numerical scheme is unstable. Both the results for
C = 0,5 and C = 1 appear to be close to the exact solution. The above procedure has been
programmed in Matlab.

n = 11; % no . o f n o d e s
x = [0:1/(n-1) :1]'; % n o d e s
c = 1; dx = 1/(n-1); dt = c*dx; % c = C o u r a n t number
u0 = zeros(n,1); % d i s p l a c e m e n t a t k −1
u1 = 0.01*(1 - cos (2*pi*x)); % d i s p l a c e m e n t a t k
u2 = zeros(n,1); % d i s p l a c e m e n t a t k +1

636 Chapter.15 Wave equation

v = 0.02*x.*(1-x); % i n i t i a l v e l o c i t y
% f i r s t t i m e s t e p
for i=2:n-1 % c a l c u l a t e new d i s p l a c e m e n t

u2(i) = c^2*(u1(i-1)+u1(i+1))/2 + (1-c^2)*u1(i) + v(i)*dt;

end

u0 = u1; u1 = u2; % u p d a t e d i s p l a c e m e n t s
for k=2:3 % l o o p f o r h i g h e r t i m e s t e p s

for i=2:n-1 % c a l c u l a t e new d i s p l a c e m e n t
u2(i) = c^2*(u1(i-1)+u1(i+1) -2*u1(i)) + 2*u1(i)-u0(i);

end

u0 = u1; u1 = u2; % u p d a t e d i s p l a c e m e n t s
end

The results are also shown plotted in Figure 15.8. Figure 15.9 shows the displacement
history of midpoint x = 0.5. One can clearly see the divergence of displacement for C = 1.5.

u(
x,

0.
3)

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

x
0 0.2 0.4 0.6 0.8 1

C = 0.5
C = 1
C = 1.5
Exact

Figure 15.8: E�ect of varying C
on the numerical solution (explicit
CTCS scheme)

u(
0.

5)

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

t
0 1 2 3 4

 C = 1
 C = 1.5

Figure 15.9: Displacement his-
tory of midpoint

15.3. Numerical solution of the one dimensional wave equation 637

Modes of vibration

In section 3.1.3, we have seen that the solution of the wave equation is an eigenvalue
problem. The wave equation can be solved analytically by separation of variables where
the displacement is written as a product of two functions u(x, t) = v(x)w(t) to reduce the
partial differential equation to a set of ODE. Thus

d2v
dx2 = −λ

2

a2 v

d2w
dt2 = −λ2w

The disturbance due to the wave can be represented as a weighted sum of modes of
vibration given by

u(x)=
∞∑

n=1
An sin

λnx
a

sinλnt (15.25)

where λn = naπ
L

is nth mode of vibration. The modes of vibration can be determined by
solving the following eigenvalue problem

d2v
dx2 +kv = 0

where k = λ2

a2 or λ= a
p

k.

Example 15.5
Determine the fundamental mode of vibration of a string of length 1, fixed at x = 0 and free
at x = 1. The wave velocity in the string is 1.
Solution :

We have to solve the following eigenvalue problem

d2v
dx2 +kv = 0

We shall discretize the derivative term using FDM. The domain is discretized using n = 21
equal elements of step size h i.e. n+1 nodes.
For interior nodes, the discretization becomes

vi+1 −2vi +vi−1

h2 +kvi = 0

The first node is fixed and hence v0 = 0. Hence, the discretization equation at node i = 1
becomes

v2 −2v1

h2 +kv1 = 0

The last node is free and hence Neumann boundary condition is applicable at this node.
Using the ghost node approach, we obtain the following equation

2vn−1 −2vn

h2 +kvn = 0

638 Chapter.15 Wave equation

Writing the system of linear equations in matrix form

1
h2

−2 1 0 · · · 0 0
1 −2 1 · · · 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 2 −2

︸ ︷︷ ︸
A

u1
u2
u3
...

un−1
un

+k

u1
u2
u3
...

un−1
un

Now the fundamental mode corresponds to the smallest eigenvalue of the matrix A. Note
the eigenvalue of matrix A will be equal to −k. The smallest eigenvalue can be determined
using inverse power shift method. We shall use MATLAB to determine the fundamental
mode of the above system.

n = 21; % no . o f n o d e s
A = zeros(n-1); % i n i t i a l i z e m a t r i x
h = 1/(n-1); % s t e p s i z e
A(1,1) = -2/h^2; A(1,2) = 1/h^2; % n o d e a t i = 1
for i=2:n-2 % i n t e r i o r n o d e s

A(i,i-1) = 1/h^2; A(i,i) = -2/h^2; A(i,i+1) = 1/h^2;

end

A(n-1,n-1) = -2/h^2; A(n-1,n-2) = 2/h^2; % l a s t n o d e
A = inv(A); % i n v e r s e o f A
uguess = ones(n-1,1); % g u e s s v a l u e s o f e i g e n v e c t o r
[e1 ,u1] = powermethod(A ,eguess ,1e-6); % P r o g r a m 3.1

k1 = -1/e1; % 1 / e

On solving, we get k1 = 2.4661 or λ1 = 0.4999π which is in good agreement with the exact
solution (λ1 = 0.5π). The eigenvector corresponds to the shape of the string for fundamental
frequency. We can now determine the next mode using inverse power method combined
with deflation.

A = A-e1*u1*u1 '; % p o w e r m e t h o d w i t h d e f l a t i o n
[e2 ,u2] = powermethod(A,uguess ,1e-6);

k2 = -1/e2; % 1 / e

We obtain k2 = 22.104 or λ2 = 1.4965π (exact value λ2 = 1.5π). Figure 15.10 shows the shape
of the string for the fundamental and first overtones. Similarly higher modes of vibration
can also be determined. However, the accuracy of higher modes of vibration would be large
compared to the fundamental mode. Note: one has to perform grid sensitivity study to
ascertain convergence of the solution.

The number of modes captured in the numerical solution depends on the spatial
discretization. Spatial discretization should be such that all desired wavelengths are
captured by the numerical solution. Otherwise the shape of the wave will not be
preserved.

15.3. Numerical solution of the one dimensional wave equation 639

u

-0.1

-0.05

0

0.05

0.1

x
0 0.2 0.4 0.6 0.8 1

 Fundamental
 First overtone

Figure 15.10: Shape of the
string for fundamental and �rst
overtones (plotted with n = 161)

15.3.3 Implicit scheme

Now we turn our attention to derive an implicit scheme for the solution of the wave
equation in one dimension. Consider time levels t+∆t and t i,e. k+1 and k. The second

derivative with respect to space at t+ ∆t
2

or at k+ 1
2

is given by

∂2u
∂x2

∣∣∣∣
i,k+ 1

2

= uk+1
i−1 −2uk+1

i +uk+1
i+1

2∆x2 + uk
i−1 −2uk

i +uk
i+1

2∆x2 (15.26)

Consider time levels t and t−∆t i,e. k and k−1. The second derivative with respect to

space at t− ∆t
2

or at k− 1
2

is given by

∂2u
∂x2

∣∣∣∣
i,k− 1

2

= uk
i−1 −2uk

i +uk
i+1

2∆x2 + uk−1
i−1 −2uk−1

i +uk−1
i+1

2∆x2 (15.27)

The implicit scheme is based on the mean of the second derivative expressions given above
i.e.the second derivative is approximated as

∂2u
∂x2

∣∣∣∣
i,k

=
∂2u
∂x2

∣∣∣
i,k+ 1

2

+ ∂2u
∂x2

∣∣∣
i,k− 1

2

2

Thus we have

∂2u
∂x2

∣∣∣∣
i,k

= (uk+1
i−1 −2uk+1

i +uk+1
i+1)+2(uk

i−1 −2uk
i +uk

i+1)+ (uk−1
i−1 −2uk−1

i +uk−1
i+1)

4∆x2 (15.28)

The second derivative with respect to time is evaluated as in the explicit scheme. Hence
the implicit formulation is written down as

−uk+1
i−1 +2

(
1+ 2

C2

)
uk+1

i −uk+1
i+1 = 2

[
uk

i−1 −2
(
1− 2

C2

)
uk

i +uk
i+1

]
+uk−1

i−1 −2
(
1+ 2

C2

)
uk−1

i +uk−1
i+1

(15.29)

640 Chapter.15 Wave equation

which is in tri-diagonal form. For the very first time step we use the central difference
formula for the velocity as done earlier to write the nodal equations as

−u1
i−1 +2

(
1+ 2

C2

)
u1

i −u1
i+1 =

[
f i−1 −2

(
1− 2

C2

)
f i + f i+1

]
−∆t

[
g i−1 −2

(
1+ 2

C2

)
g i + g i+1

] (15.30)

15.3.4 Stability of implicit scheme

von Neumann stability analysis may be performed in a straight forward manner.

Introducing the gain factor λ as the ratio
A(t+∆t

A(t)
and assuming the space dependence to

be e jωx, Equation 15.30 may be shown to lead to

λ2 +2λ

[
1− 2

C2 −cosω∆x

1+ 2
C2 −cosω∆x

]
+1= 0 (15.31)

Expressing cosω∆x in terms of half angle, we then get

λ2 +2λ

[
sin2 ω∆x

2 − 1
C2

sin2 ω∆x
2 + 1

C2

]
+1= 0 (15.32)

Solution to this quadratic is written down, after simplification as

λ=
[
sin2 ω∆x

2 − 1
C2

]
± j 2

C2 sin ω∆x
2[

sin2 ω∆x
2 + 1

C2

] (15.33)

The magnitude of λ (λ is complex and hence the magnitude is the square root of sum
of squares of real and imaginary parts) is seen to be unity for all C. Hence the implicit
scheme is unconditionally stable. In what follows we solve an example using the implicit
scheme with C = 1. The nodal equations are then given by the following.

−uk+1
i−1 +6uk+1

i −uk+1
i+1 = 2

[
uk

i−1 +2uk
i +uk

i+1

]
+uk−1

i−1 −6uk−1
i +uk−1

i+1 (15.34)

and
−u1

i−1 +6u1
i −u1

i+1 = [f i−1 +2 f i + f i+1]−∆t [g i−1 −6g i + g i+1] (15.35)

Example 15.6
Redo Example 15.4 using the implicit scheme with C = 1. Compare the solution at t = 0.3
with that obtained by the explicit scheme and the exact solution.
Solution :

We choose ∆x = 0.05 and hence ∆t = 0.05 with C = 1. Zero boundary conditions are imposed
at x = 0 and x = 1. For the first time step we use the f (x) and g(x) specified in Example
15.4. TDMA is made use of to solve for the nodal values of the displacement at t = 0.05 and
0 < i < 10 using nodal equations based on Equation 15.35. Table below gives the results at
the end of first time step.

15.3. Numerical solution of the one dimensional wave equation 641

xi f (x) g(x) ai a′
i a′′

i bi Pi Q i u1
i

0 0.00000 0.00000 0.00000
0.05 0.00049 0.00095 6 1 0 0.00308 0.16667 0.00051 0.00091
0.1 0.00191 0.00180 6 1 1 0.00880 0.17143 0.00160 0.00237
0.15 0.00412 0.00255 6 1 1 0.01758 0.17157 0.00329 0.00453
0.2 0.00691 0.00320 6 1 1 0.02859 0.17157 0.00547 0.00722
0.25 0.01000 0.00375 6 1 1 0.04076 0.17157 0.00793 0.01019
0.3 0.01309 0.00420 6 1 1 0.05290 0.17157 0.01044 0.01315
0.35 0.01588 0.00455 6 1 1 0.06385 0.17157 0.01275 0.01582
0.4 0.01809 0.00480 6 1 1 0.07253 0.17157 0.01463 0.01794
0.45 0.01951 0.00495 6 1 1 0.07811 0.17157 0.01591 0.01930
0.5 0.02000 0.00500 6 1 1 0.08003 0.17157 0.01646 0.01977
0.55 0.01951 0.00495 6 1 1 0.07811 0.17157 0.01623 0.01930
0.6 0.01809 0.00480 6 1 1 0.07253 0.17157 0.01523 0.01794
0.65 0.01588 0.00455 6 1 1 0.06385 0.17157 0.01357 0.01582
0.7 0.01309 0.00420 6 1 1 0.05290 0.17157 0.01140 0.01315
0.75 0.01000 0.00375 6 1 1 0.04076 0.17157 0.00895 0.01019
0.8 0.00691 0.00320 6 1 1 0.02859 0.17157 0.00644 0.00722
0.85 0.00412 0.00255 6 1 1 0.01758 0.17157 0.00412 0.00453
0.9 0.00191 0.00180 6 1 1 0.00880 0.17157 0.00222 0.00237
0.95 0.00049 0.00095 6 0 1 0.00308 0.00000 0.00091 0.00091
1 0.00000 0.00000 0.00000

Extension to time t = 0.1 requires the values of u at t = 0.05 as well as t = 0 as shown in the
table below.

xi u0
i u1

i ai a′i a′′i bi Pi Q i u2
i

0 0.0000 0.0000
0.05 0.00312 0.00326 6 1 0 0.01285 0.16667 0.00214 0.00315
0.1 0.00589 0.00632 6 1 1 0.02469 0.17143 0.00460 0.00605
0.15 0.00789 0.00861 6 1 1 0.03487 0.17157 0.00677 0.00846
0.2 0.00938 0.00993 6 1 1 0.04039 0.17157 0.00809 0.00984
0.25 0.01064 0.01059 6 1 1 0.04140 0.17157 0.00849 0.01019
0.3 0.01177 0.01093 6 1 1 0.03992 0.17157 0.00831 0.00992
0.35 0.01276 0.01113 6 1 1 0.03762 0.17157 0.00788 0.00941
0.4 0.01353 0.01125 6 1 1 0.03550 0.17157 0.00744 0.00891
0.45 0.01402 0.01132 6 1 1 0.03406 0.17157 0.00712 0.00857
0.5 0.01418 0.01134 6 1 1 0.03355 0.17157 0.00698 0.00845
0.55 0.01402 0.01132 6 1 1 0.03406 0.17157 0.00704 0.00857
0.6 0.01353 0.01125 6 1 1 0.03550 0.17157 0.00730 0.00891
0.65 0.01276 0.01113 6 1 1 0.03762 0.17157 0.00771 0.00941
0.7 0.01177 0.01093 6 1 1 0.03992 0.17157 0.00817 0.00992
0.75 0.01064 0.01059 6 1 1 0.04140 0.17157 0.00851 0.01019
0.8 0.00938 0.00993 6 1 1 0.04039 0.17157 0.00839 0.00984
0.85 0.00789 0.00861 6 1 1 0.03487 0.17157 0.00742 0.00846
0.9 0.00589 0.00632 6 1 1 0.02469 0.17157 0.00551 0.00605
0.95 0.00312 0.00326 6 0 1 0.01285 0.00000 0.00315 0.00315
1 0.0000 0.0000

The state of affairs at t = 0.3 obtained by the implicit scheme with C = 1, explicit scheme
with C = 1 and the exact are shown in the following table.

642 Chapter.15 Wave equation

ui at t = 0.3
xi Implicit Explicit Exact
0 0.00000 0.00000 0.00000
0.1 0.00605 0.00601 0.00600
0.2 0.00984 0.00985 0.00983
0.3 0.00992 0.01015 0.01013
0.4 0.00891 0.00878 0.00876
0.5 0.00845 0.00825 0.00823
0.6 0.00891 0.00878 0.00876
0.7 0.00992 0.01015 0.01013
0.8 0.00984 0.00985 0.00983
0.9 0.00605 0.00601 0.00600
1 0.00000 0.00000 0.00000

It is seen that the three solutions agree closely with each other.

15.4 Waves in a diaphragm
Transverse waves may be set up in a diaphragm which is tightly stretched and clamped

at the periphery, as in a drum. Diaphragm may be rectangular, circular or of any other
shape. We consider first a diaphragm in the form of a rectangle of length Lx and width
L y. Boundary conditions are then specified as u(±Lx/2, y, t) = 0 and u(x,±L y/2, t) = 0. Let
the stretching force per unit length in the diaphragm be T while the mass of diaphragm
per unit area is m. Initially the displacement of the diaphragm is specified as u(x, y,0) =
f (x, y). It is required to study the variation of displacement as a function of time.

T∆
y

T∆
x

T∆y

T∆
x

∆x
∆y

Figure 15.11: Waves in
a diaphragm under constant
tension

Consider an element dxdy of the diaphragm that has undergone a small displacement
away from the equilibrium position, as shown in Figure 15.11. The net force acting on the
element in the transverse direction is given by

Net transverse force on the element= Td y
∂2u
∂x2 dx+Tdx

∂2u
∂y2 d y (15.36)

This must equal the product of mass of the element and the acceleration i.e.

Mass of element×acceleration= mdxd y
∂2u
∂t2 (15.37)

15.4. Waves in a diaphragm 643

Equating these two and removing the common factor dxdy results in the two dimensional
wave equation in cartesian frame of reference.

∂2u
∂x2 + ∂2u

∂y2 =∇2u = 1
a2

∂2u
∂t2 (15.38)

In the above expression the wave speed a is given by a =
√

T
m

and ∇2 is the Laplace

operator. In case the diaphragm is circular it is convenient to represent the wave equation
in cylindrical coordinates. All one has to do is to recast the Laplacian in cylindrical
coordinates. Thus, for a circular diaphragm, we have

1
r
∂

∂r

(
r
∂u
∂r

)
+ 1

r2
∂2u
∂θ2 = 1

a2
∂2u
∂t2 (15.39)

where a point P is represented by r,θ in cylindrical coordinates. An one dimensional
form for the wave equation is possible in cylindrical coordinates, if the displacement is a
function of r alone. Then the wave equation becomes

1
r
∂

∂r

(
r
∂u
∂r

)
= 1

a2
∂2u
∂t2 (15.40)

This may be recast in the following alternate form.

∂2u
∂r2 + 1

r
∂u
∂r

= 1
a2

∂2u
∂t2 (15.41)

15.4.1 Explicit scheme for one dimensional waves in a circular
diaphragm

The explicit scheme is the familiar CTCS scheme used earlier in the case of one
dimensional wave equation in cartesian frame of reference. The spatial derivatives
appearing in Equation 15.41 are approximated as follows using the already known
function values.

∂2u
∂r2 = uk

i−1 −2uk
i +uk

i+1

∆r2

1
r
∂u
∂r

= 1
r i

uk
i+1 −uk

i−1

2∆r

(15.42)

Note that both the first and second derivatives use central differences and hence are
second order accurate. The time derivative is approximated again by central differences
as

1
a2

∂2u
∂t2 = uk−1

i −2uk
i +uk+1

i

a2∆t2 (15.43)

644 Chapter.15 Wave equation

Using these expressions, solving for the displacement at k+1, after some simplification,
we get the required nodal equation.

uk+1
i = C2

(
1− ∆r

2r i

)
uk

i−1 +2(1−C2)uk
i +C2

(
1+ ∆r

2r i

)
uk

i+1 −uk−1
i (15.44)

where C is the familiar Courant number given by C = a∆t
∆r

. Above equation is valid for
nodes 1≤ i ≤ (n−1). Node i = n corresponds to r = R, the radius of the circular diaphragm
where u = 0. The node at center i.e. i = 0 requires special attention since r0 = 0 there.

The first derivative term should vanish at r = 0 and hence the term
1
r
∂u
∂r

is in the form
0
0

.

Using l’Hospital’s rule we get this ratio as
∂2u
∂r2 and hence the wave equation at the origin

becomes

2
∂2u
∂r2 = 1

a2
∂2u
∂t2

In order to obtain finite difference analog of the second derivative, we use a ghost node
at i =−1 where the function value uk

−1 is obtained using symmetry condition as uk
1. The

second derivative is then approximated as

∂2u
∂r2 = uk

−1 −2uk
0 +uk

1

∆r2 = 2uk
1 −2uk

0

∆r2

The nodal equation may then be approximated as

uk+1
0 = 4C2uk

1 +2(1−2C2)uk
0 −uk−1

0 (15.45)

The very first time step requires the use of initial displacement and velocity to eliminate
u−1

i . The reader is encouraged to work this out.

Example 15.7
A circular diaphragm of unit radius is stretched such that the wave speed is unity. Initially
the diaphragm is displaced with f (x) = 0.01(1− r2) and let go with zero velocity. Obtain the
shape of the diaphragm as a function of time using explicit CTCS scheme.
Solution :

We discretize the domain with ∆r = 0.1 such that there are 11 nodes. Node 10 corresponds

to the fixed periphery of the diaphragm. We choose C = 0.5 such that ∆t = ∆r
2

= 0.05. The

initial condition imposes a displacement but no velocity. Hence u−1
i = u1

i and the nodal
equation for the first step becomes

u1
i =

C2

2

(
1− ∆r

2r i

)
u0

i−1 + (1−C2)u0
i +

C2

2

(
1+ ∆r

2r i

)
u0

i+1

where 1≤ i ≤ 9. For the node at the center the nodal equation for the first time step is given
by

u1
0 = 2C2u0

1 + (1−2C2)u0
0

15.4. Waves in a diaphragm 645

With f (r = 0)= 0.01 and f (r = 0.1)= 0.01(1−0.12)= 0.0099, we have u1
0 = 2×0.52 ×0.0099+

(1−2×0.52)×0.01= 0.0098. For the node at i = 1 we have u1
1 =

1
2
×0.52

(
1− 0.1

2×0.1

)
0.0099+

(1− 0.52)0.01+ 1
2

(
1+ 0.1

2×0.1

)
0.0099 = 0.0097. Similarly we may evaluate all the nodal

displacements. For calculating the nodal displacements further we use Equations 15.44
and 15.45. The calculations are tabulated as shown below.

r u0
i u1

i u2
i

0 0.01000 0.00995 0.00980
0.1 0.00990 0.00985 0.00970
0.2 0.00960 0.00955 0.00940
0.3 0.00910 0.00905 0.00890
0.4 0.00840 0.00835 0.00820
0.5 0.00750 0.00745 0.00730
0.6 0.00640 0.00635 0.00620
0.7 0.00510 0.00505 0.00490
0.8 0.00360 0.00355 0.00340
0.9 0.00190 0.00185 0.00171
1 0.00000 0.00000 0.00000

The data is shown in the form of a plot in Figure 15.12 where the shape of the diaphragm
is shown for t up to 0.5. The above procedure has been programmed in Matlab.

n = 11; % no o f n o d e s
r = [0:1/(n-1) :1]'; % r a d i a l n o d e s
c = 0.5; dr = 1/(n-1); dt = c*dr; % c = C o u r a n t number
u0 = zeros(n,1); u2 = u0; % d i s p l a c e m e n t a t k −1 and k +1
u1 = 0.01*(1 -r^2); % d i s p l a c e m e n t a t k
%v = z e r o s (n , 1) ; % i n i t i a l v e l o c i t y
% c a l c u l a t e d i s p l a c e m e n t f o r f i r s t t i m e s t e p
for i=2:n-1 % i n t e r n a l n o d e s

u2(i) =0.5*(c^2*(1 -dr/(2r(i))*u1(i-1) +2*(1 -c^2)*u1(i) ...

+c^2*(1+ dr/(2r(i))*u1(i+1));

end

u2(1) = 2*c^2*u1(2) +(1 -2*c^2)*u0(1); % u(r = 0)
u0 = u1; u1 = u2; % u p d a t e d i s p l a c e m e n t s
for k=2:100 % l o o p f o r h i g h e r t i m e s t e p s

for i=2:n-1 % i n t e r n a l n o d e s
u2(i) = c^2*(1 -dr/(2r(i))*u1(i-1) +2*(1 -c^2)*u1(i) ...

+c^2*(1+ dr/(2r(i))*u1(i+1)-u0(i)

end

u2(1) = 4*c^2*u1(2) +2*(1 -2*c^2)*u1(1)-u0(1);

u0 = u1; u1 = u2; % u p d a t e d i s p l a c e m e n t s
end

Example 15.7 has considered the solution of the wave equation in a diaphragm. The initial
displacement variation was axi-symmetric and led to an one-dimensional wave propagation

646 Chapter.15 Wave equation

u(
r,t

)

0

0.002

0.004

0.006

0.008

0.01

r
0 0.2 0.4 0.6 0.8 1

t = 0
t = 0.1
t = 0.2
t = 0.3
t = 0.4
t = 0.5

Figure 15.12: Displacement his-
tory for a circular diaphragm

problem in r, t coordinates. The initial shape of the disturbed diaphragm was basically a parabola
with u(0,0) = 0.01 and u(1,0) = 0. This shape may be split into a number of Fourier components
in terms of Bessel functions with respect to r and circular functions with respect to t. Each
component is referred to as a mode. Various modes are defined by a set of orthogonal functions.
These solutions are obtained easily by the method of separation of variables.
The shape of the surface will vary with some periodicity determined by the combination of modes
that go into the solution. In order to clarify these ideas we consider next an example where
the initial shape is specified by the first mode given by f (r) = J0(λ0r) where λ0 = 2.4048 is the
parameter that characterizes the first mode. Here J0 is the Bessel function of first kind and
order 0, familiar to us as the solution of Laplace equation in cylindrical coordinates. Shape of
the displaced surface has a temporal variation given by cosλ0t so that the period of the wave is

τ = 2π
λ0

= 2π
2.4048

= 2.6127. Hence the displacement which is at its maximum at t = 0 will reach

zero value at t = τ

4
= 0.6532 (after a quarter period).

Example 15.8
Initial displacement distribution of a circular diaphragm is given by its fundamental mode
given by u(r,0) = f (r) = 0.01J0(λ0r) and the velocity is zero everywhere. Solve the wave
equation from t = 0 to t = τ

4
= 0.6532 by an explicit method.

Solution :
The problem has been solved using a spreadsheet program that has Bessel function as a
built in function that may be called using the function call BESSEL(x,ν) with x = 2.4048r
and ν = 0 in the present case. We choose a spatial step size of ∆r = 0.1 and a temporal

step size of ∆t = τ

40
= 2.4048

40
= 0.06532 so that a quarter period is covered by taking 10

time steps from the beginning. The initial displacement distribution is evaluated using the
spreadsheet Table 15.1.

In MATLAB, inbuilt subroutines to evaluate Bessel functions are available. The initial
condition can be specified as

u1 = 0.01* besselj (0 ,2.4048*r)

The rest of the code from the earlier example can be used to solve this problem. Figure
15.13 indicates the initial displacement of the circular membrane. With the step sizes

15.4. Waves in a diaphragm 647

Table 15.1

f (r)= 0.01× f (r)= 0.01×
r BESSEL(2.4048x,0) r BESSEL(2.4048x,0)
0 0.010000 0.6 0.005435
0.1 0.009856 0.7 0.004076
0.2 0.009430 0.8 0.002680
0.3 0.008741 0.9 0.001303
0.4 0.007817 1 0.000000
0.5 0.006699

Figure 15.13: Initial displace-
ment in circular membrane corre-
sponding to fundamental mode

chosen above, the value of Courant number is given by C = 0.06532
0.1

= 0.6532. The nodal
equations given by Equations 15.44 and 15.45 are made use of. For the very first time step
nodal equations are modified as explained in Example 15.7. The shape of the diaphragm as
a function of time is evaluated using the explicit scheme and the results are shown plotted
in Figure 15.14. It is seen that the diaphragm has arrived at the equilibrium position
with zero displacement everywhere at t = τ

4
. However the velocity is non-zero all along the

diaphragm except at the periphery where it is zero.

u(
r,t

)

-0.002

0

0.002

0.004

0.006

0.008

0.01

r
0 0.2 0.4 0.6 0.8 1

t = 0
t = 0.1306
t = 0.2613
t = 0.3919
t = 0.5226
t = 0.6532

Figure 15.14: Displacement his-
tory for a circular diaphragm from

t = 0 to t = τ

4

648 Chapter.15 Wave equation

15.4.2 Waves in two dimensions - waves in a rectangular diaphragm or
plate

Waves set up in a rectangular diaphragm (length of rectangle Lx and width of rectangle
L y or plate satisfy the wave equation in two dimensions (Equation 15.38). We choose
spatial steps of ∆x and ∆y along the two directions and a time step of ∆t. We make use of
explicit CTCS scheme. We then have

uk
i−1, j −2uk

i, j +uk
i+1, j

∆x2 +
uk

i, j−1 −2uk
i, j +uk

i, j+1

∆y2 = 1
a2

uk−1
i, j −2uk

i, j +uk−1
i, j

∆t2

which may be simplified to obtain the following nodal equation.

uk+1
i, j = C2

x(uk
i−1, j +uk

i+1, j)+C2
y(uk

i, j−1 +uk
i, j+1)−uk−1

i, j +2(1−C2
x −C2

y)uk
i, j (15.46)

In the above subscript i identifies the position along x, subscript j identifies the position

along y, Cx = a∆t
∆x

and Cy = a∆t
∆y

. In case the step sizes are identical along x and y we

have C2
x = C2

y = C2 and the above simplifies to

uk+1
i, j = C2(uk

i−1, j +uk
i+1, j +uk

i, j−1 +uk
i, j+1)−uk−1

i, j +2(1−2C2)uk
i, j (15.47)

Stability requires that 1−2C2 ≥ 0 (coefficient of uk
i, j in Equation 15.47) or C ≤ 1p

2
.

The diaphragm is clamped all along its four edges where zero displacement boundary conditions
are imposed. In fact, the boundary conditions allow vibration of the diaphragm for selected modes
with unique mode shapes and the solution to the wave equation is dependent on the strength of
each of these modes. Each mode is characterized by an ordered pair of mode numbers nx and

ny (both are integers) such that
(

nx

Lx

)2
+

(ny

L y

)2
= 4
λ2 where λ is the wavelength of the wave. For

example, if the diaphragm is a square of side L each, the simplest wave that can occur is the one
that corresponds to nx = ny = 1 such that λ=

p
2L.

Example 15.9
A square diaphragm of size 1× 1 is fixed along all its edges. Initial displacement of the
diaphragm is given by u(x, y,0) = f (x, y) = 0.01sin(πx)sin(πy) with zero velocity everywhere.
The stretching force in the diaphragm is such that the wave speed is unity. Obtain the shape
of the diaphragm as a function of time for two time steps (using explicit scheme) of suitable
size.
Solution :

In this case Lx = L y = L = 1 and a = 1. We choose equal step sizes such that ∆x =∆y = 0.1.

We make use of the maximum possible value of C = 1p
2
= 0.707107 and obtain time step

size of ∆t = 0.070711.
nx = 11; ny = 11; % no . o f n o d e s a l o n g x and y
x = 0:1/(nx -1) :1; y = 0:1/(ny -1) :1; % x and y c o o r d i n a t e s
dx = 1/(nx -1); dy = 1/(ny -1); % s t e p s i z e

15.4. Waves in a diaphragm 649

[Y,X] = meshgrid(y,x); % n o d e s
u0 = zeros(nx ,ny); % d i s p l a c e m e n t a t k −1
u1 = 0.01* sin(pi*X).*sin(pi*Y); % d i s p l a c e m e n t a t k
u2 = u0; % d i s p l a c e m e n t a t k +1
cx = 1/ sqrt (2); dt = cx*dx; cy = dt/dy; % C o u r a n t number

For the first time step the nodal equations are given by

u1
i, j =

C2

2
(u0

i−1, j +u0
i+1, j +u0

i, j−1 +u0
i, j+1)+ (1−2C2)u0

i, j

With C2 = 1
2

this expression simplifies to

u1
i, j =

(u0
i−1, j +u0

i+1, j +u0
i, j−1 +u0

i, j+1)

4

Consider node 1,1 corresponding to x = 0.1, y = 0.1. Initial displacements at the nearest
neighbours are given by

j ↓ i → 0 1 2
0 0.000000
1 0.000000 0.000955 0.001816
2 0.001816

After the first time step we have t = 0+∆t = 0.070711 and the displacement at 1,1 is given
by

u1
1,1 =

0+0+0.001816+0.001816
4

= 0.000908

Similarly we may obtain all other nodal displacements.
% f i r s t t i m e s t e p
for i=2:nx -1

for j=2:ny -1

u2(i,j) = (1-cx^2-cy^2)*u1(i,j) ...

+ 0.5* cy ^2*(u1(i+1,j) +u1(i-1,j)) ...

+ 0.5* cx ^2*(u1(i,j+1)+u1(i,j-1));

end

end

u0 = u1; u1 = u2; % u p d a t e d i s p l a c e m e n t s

For the next time step we make use of the following nodal equations.

u2
i, j =

(u1
i−1, j +u1

i+1, j +u1
i, j−1 +u1

i, j+1)

2
−u0

i, j

Again, for the node 1,1 we have

j ↓ i → 0 1 2
0 0.000000
1 0.000000 0.000908 0.001727
2 0.001727

650 Chapter.15 Wave equation

and u0
1,1 = 0.000955. Using these we get

u1
1,1 =

0+0+0.001727+0.001727
2

−0.000955= 0.000773

Similar calculations may be made for all other interior nodes to get the shape of the
diaphragm at t = 2×0.070711= 0.141422.

% h i g h e r t i m e s t e p s
for t=1:1000

for i=2:nx -1

for j=2:ny -1

u2(i,j) = 2*(1-cx^2-cy^2)*u1(i,j) ...

+ cy ^2*(u1(i+1,j) + u1(i-1,j)) ...

+ cx ^2*(u1(i,j+1)+u1(i,j-1)) - u0(i,j);

end

end

u0 = u1; u1 = u2; % u p d a t e d i s p l a c e m e n t s
end

The results have been plotted for displacement at y= 0.5 or x = 0.5 and for two time steps as
shown in Figure 15.15. Figure 15.16 shows the shape of the diaphragm initially and after
half time period.

u(
x,

0.
5,

t)
 o

r
u(

0.
5,

y,
t)

0

0.002

0.004

0.006

0.008

0.01

0.012

x or y
0 0.2 0.4 0.6 0.8 1

t = 0
t = 0.07071
t = 0.14142

Figure 15.15: Displacement
history for a square diaphragm
at midplane, y= 0.5 or x = 0.5

15.4.3 Waves in two dimensions - waves in a circular diaphragm or
plate

Displacement in this case can vary with both r and θ and the governing equation is
given by Equation 15.39. We discretize the physical domain by using step size of ∆r along
the radial direction and ∆θ along the θ direction. Note that ∆θ has to be chosen such that
n∆θ = 2π where n is an integer. Let i and j identify the node position along r and θ. The

15.4. Waves in a diaphragm 651

Figure 15.16: Initial de�ection in the diaphragm and de�ection after one half period

spatial derivatives appearing in Equation 15.39 are approximated as follows using the
already known function values.

∂2u
∂r2 =

uk
i−1, j −2uk

i, j +uk
i+1, j

∆r2

1
r
∂u
∂r

= 1
r i

uk
i+1, j −uk

i−1, j

2∆r
1
r2
∂2u
∂θ2 = 1

r2
i

uk
i, j−1 −2uk

i, j +uk
i, j+1

∆θ2

(15.48)

Finite difference form of the time derivative is obtained as in the case of a rectangular
diaphragm. We then have the following for the nodal equation.

uk+1
i, j = C2

r

(
1− ∆r

r i

)
uk

i−1, j +2
{

1−C2
r

(
1+

[
∆r

r i∆θ

]2)}
uk

i, j +C2
r

(
1+ ∆r

r i

)
uk

i+1, j

+
(

Cr∆r
r i∆θ

)2
(uk

i, j−1 +uk
i, j+1)−uk−1

i, j

(15.49)

Stability of the scheme requires that 1−C2
r

(
1+

[
∆r

rmin∆θ

]2)
≥ 1 (coefficient of uk

i should be

positive). This may be recast in the form C2
r ≤

1

1+ ∆r2

r2
min∆θ

2

. This may further be simplified

to read
∆t ≤ 1√

1
∆r2 + 1

r2
min∆θ

2

(15.50)

The node at the center of the diaphragm requires special treatment. Locally one may
use the wave equation in Cartesian frame of reference. We consider the node at the center

652 Chapter.15 Wave equation

(∆r,0)(−∆r,0) (0,0)

(0,∆r)

(0,−∆r)

Figure 15.17: Node at the center
of a circular diaphragm

and four nearest neighbors as shown in Figure 15.17. Note that all nodal spacings are the
same and equal to ∆r. The spatial derivatives required are calculated as

∂2u
∂x2 = uk(−∆r,0)−2uk(0,0)+uk(∆r,0)

∆r2

∂2u
∂y2 = uk(0,−∆r)−2uk(0,0)+uk(0,∆r)

∆r2

∂2u
∂t2 = uk−1(0,0)−2uk(0,0)+uk+1(0,0)

∆t2

(15.51)

Using these the nodal equation for the center node turns out to be

uk+1(0,0)= C2[uk(−∆r,0)+uk(∆r,0)+uk(0,−∆r)+uk(0,∆r)]
−2(1−C2)uk(0,0)−uk−1(0,0)

(15.52)

Note that the nodal values have been indicated with the x, y coordinates instead of r,θ
coordinates. However, it is easy to see that this equation may be recast in r,θ coordinates
as given below.

uk+1(0,0)= C2
[
uk(∆r,π)+uk(∆r,0)+uk

(
∆r,

3π
2

)
+uk

(
∆r,

π

2

)]
−2(1−C2)uk(0,0)−uk−1(0,0)

(15.53)

Example 15.10
A circular diaphragm of radius r = 1 is given an initial displacement of u = 0.01sin(rπ)cosθ
with zero velocity everywhere. The wave velocity in the membrane is unity. Obtain the
displacement history of the membrane.
Solution :
We shall discretize the radius into 10 equal segments. We shall discretize each quarter of
the membrane into 3 equal segments such that we have 13 nodes along θ direction as shown
in the following figure .

15.4. Waves in a diaphragm 653

Initial displacement of circu-
lar diaphragm.

i = 0 i 10

j = 0

j = 1

j =
2

j = 3

j = 12

Note: Only a quadrant is depicted in
the figure

∆r = 0.1, ∆θ = 2π
12

As solution is periodic in θ, ui,0 = ui,12
At r = 0, we use the Cartesian represen-
tation as discussed earlier.
The time step has been chosen accord-
ing to the stability requirements.

Cr =
√

1
1+ 1

∆θ2

nt=3; nr = 11; nthe = 4*nt+1; % no o f n o d e s a l o n g r and
% t h e t a

r = 0:1/(nr -1) :1; the = 0:2* pi/(nthe -1) :2*pi; % n o d e s
dr = 1/(nr -1); dthe = 2*pi/(nthe -1); % s t e p s i z e
u0 = zeros(nr ,nthe); % d i s p l a c e m e n t a t k −1
u1 = 0.01* sin(R*pi).*cos(The); % d i s p l a c e m e n t a t k
u2 = u0; % d i s p l a c e m e n t a t k +1
cr = 1/ sqrt (1+1/ dthe ^2); dt = cr*dr; % C o u r a n t number

At first time step, we have zero initial velocity, therefore we have u+1
i, j = u−1

i, j . Accordingly,
the equations are modified as below

% r = 0 , c e n t e r n o d e
u2(1,1)=u1(1,1) *(1 -2*cr^2) + cr ^2*0.5*(u1(2,1) + u1(2,1+nt)...

+ u1(2,2*nt+1) + u1(2,1+nt*3));

u2(1,2: nthe) = u2(1,1);

for i=2:nr -1 % l o o p f o r i n t e r i o r n o d e s
j = 1; % θ = 0 or θ = 2π
u2(i,j) = (1-cr^2-cr^2*dr ^2/(r(i)^2* dthe ^2))*u1(i,j)+ ...

0.5* cr ^2*(u1(i+1,j)+u1(i-1,j)) + ...

0.5* cr^2*dr*(u1(i+1,j)-u1(i-1,j))/(2*r(i)) ...

654 Chapter.15 Wave equation

+0.5* cr^2*dr ^2*(u1(i,j+1)+u1(i,nthe -1))/(r(i)^2* dthe ^2)

%;

u2(i,nthe) = u2(i,1);

for j=2:nthe -1 % 0< θ < 2π
u2(i,j)=(1-cr^2-cr^2*dr ^2/(r(i)^2* dthe ^2))*u1(i,j)+ ...

0.5* cr ^2*(u1(i+1,j)+u1(i-1,j)) + ...

0.5* cr^2*dr*(u1(i+1,j)-u1(i-1,j))/(2*r(i)) ...

+0.5* cr^2*dr ^2*(u1(i,j+1)+u1(i,j-1))/(r(i)^2* dthe ^2);

end

end

u0 = u1; u1 = u2; % u p d a t e d i s p l a c e m e n t s

For subsequent time steps, we use the discretized equations as discussed earlier.
for t=1:50 % l o o p f o r t i m e
% r = 0 , c e n t e r n o d e
u2(1,1) = 2*u1(1,1) *(1 -2*cr^2)+cr ^2*(u1(2,1)+u1(2,1+nt)...

+ u1(2,2*nt+1) + u1(2,1+nt*3)) - u0(1,1);

u2(1,2: nthe) = u2(1,1);

for i=2:nr -1 % l o o p f o r i n t e r n a l n o d e s
j = 1; % θ = 0 or θ = 2π
u2(i,j)=2*(1 -cr^2-cr^2*dr ^2/(r(i)^2* dthe ^2))*u1(i,j)+...

cr ^2*(u1(i+1,j)+u1(i-1,j)) - u0(i,j) +...

cr^2*dr*(u1(i+1,j)-u1(i-1,j))/(2*r(i)) ...

+cr^2*dr ^2*(u1(i,j+1)+u1(i,nthe -1))/(r(i)^2* dthe ^2);

u2(i,nthe) = u2(i,1);

for j=2:nthe -1 % 0< θ < 2π
u2(i,j)=2*(1 -cr^2-cr^2*dr ^2/(r(i)^2* dthe ^2))*u1(i,j)...

+ cr ^2*(u1(i+1,j)+u1(i-1,j)) - u0(i,j) + ...

cr^2*dr*(u1(i+1,j)-u1(i-1,j))/(2*r(i)) ...

+ cr^2*dr ^2*(u1(i,j+1)+u1(i,j-1))/(r(i)^2* dthe ^2) ;

end

end

u0 = u1; u1 = u2; % u p d a t e d i s p l a c e m e n t s
end

Figure 15.18 shows the displacement history of the circular membrane along θ = 0. Figure
15.19 shows the shape of the diaphragm at t = 0.5102

u(
r,θ

=0
)

0

0.002

0.004

0.006

0.008

0.01

r
0 0.2 0.4 0.6 0.8 1

 t = 0
 t = 0.1392
 t = 0.2783

Figure 15.18: Displacement his-
tory of circular membrane along
θ = 0

15.4. Waves in a diaphragm 655

Figure 15.19: Circular diaphragm
at t = 0.5102

Concluding remarks

This chapter has been a short introduction to solution of the wave equation. We have considered
only one dimensional and two dimensional problems representing transverse waves on a string
or the motion of a diaphragm. We have presented numerical schemes that may be used for the
solution of the wave equation in these cases. We discuss but without proof about the stability
aspects of the numerical schemes. Wherever possible we have drawn attention to underlying
physical aspects of the problem under consideration.

Waves of high intensity such as shock waves that occur in supersonic flow are considered in
specialized books and the interested reader may consult them.

Exercise IV

IV.1 Types of partial differential equations
Ex IV.1: Consider the first order PDE (2x+ y)ux+(x+2y)uy = 0. Sketch a characteristic line that

passes through the point x = 0.5, y= 0.5.
(Hint: Characteristic line is obtained as the solution of an ODE. The ODE may be solved by
a suitable numerical method.)

Ex IV.2: Discuss the nature of the PDE uxx +6uxy +7uyy + ux +3uy +4u = y? Reduce it to the
standard2 or canonical form by suitable change of variables.

Ex IV.3: Reduce the PDE 9uxx+6uxy+4uyy+ux+3x = 0 to the standard form. What is the nature
of this PDE?

Ex IV.4: Discuss the nature of the PDE 4uxx +5uxy +9uyy +ux +3uy +4u = y? Reduce it to the
standard form.

IV.2 Laplace and Poisson equations
Ex IV.5: Figure IV.1 shows some nodal temperatures that have been obtained (function values

are shown for these) and a few that need to be obtained (node numbers are shown for
these). Obtain these by writing appropriate nodal equations if Laplace equation is satisfied
within the domain. The nodal spacing is the same and equal to 0.05 along both the x and y
directions.

74 5 6 7

86 2 3 4

90 76 65 1

∂u
∂y

= 0

∂
u
∂

x
+0

.2
u
=

0

Figure IV.1: Figure showing data
for Exercise IV.5

h = k = 0.05

Reader may try FDM, FEM and FVM formulations for solving the problem.
2See, for example, Alan Jefferey, “Advanced Engineering Mathematics”, Academic Press, 2002.

657

658 Exercise IV

Ex IV.6: Consider a rectangular region of width w = 1 and height h = 2 in which a certain function
satisfies the Poisson equation uxx +uyy = f (x, y). The source term (the right hand term) is

given by f (x, y) = cos
(πx

w

)
cos

(πy
h

)
where the origin is placed at the center of the domain

with the four corners at x = w
2

, y = h
2

, x = −w
2

, y = h
2

, x = w
2

, y = −h
2

and x = −w
2

, y = −h
2

.
The boundary conditions are specified as given below:

ux = 0.5; x =−w
2

, −h
2
≤ y≤ h

2
: ux =−0.5; x = w

2
, −h

2
≤ y≤ h

2

uy = 1; y=−h
2

, −w
2

≤ x ≤ w
2

: uy =−1; y= h
2

, −w
2

≤ x ≤ w
2

Obtain numerically the solution by FDM using ADI method.

Ex IV.7: A tube (made of a dielectric) of square section 0.1× 0.1 m has walls that are 0.02 m
thick. The inner surface of the tube is at a potential of 100 V while the outer surface is
connected to the ground. The electric potential is known to satisfy the Laplace equation
within the tube material. Obtain the solution by discretization the domain suitably. Use an
iterative scheme of your choice to obtain the nodal potentials. Make a contour plot showing
equipotential lines.

Ex IV.8: Solve Poisson equation uxx+uyy = 0.5+1.5x in two dimensions in a rectangular domain
of length 10 units and width 1.5 units. The origin is placed at a corner and the long side
is oriented along x. Use 5 nodes along the short side and a suitable number of nodes along
the longer side. One of the short sides is specified with Dirichlet condition u = 1 and the
other sides are specified Robin condition in the form un+0.2u+0.1= 0 where un represents
the normal derivative. (a) Obtain nodal values of u. Make use of SOR method with a
suitable relaxation parameter. (b) Redo the problem if the Robin condition is recast as
un +0.2u1.25 +0.1= 0.

Ex IV.9: Solve for nodal values of a certain function u(x, y) that satisfies the Laplace equation in
a rectangular domain of sides l = 2 and b = 1. One of the longer edges is placed along the
x axis and one of the shorter edges is placed along the y axis. The boundary conditions are
specified as under:

∂u
∂x

= 1 for x = 0, 0≤ y≤ 1 :
∂u
∂x

= 0 for x = 2, 0≤ y≤ 1

u = 1 for y= 0, 0≤ x ≤ 2 :
∂u
∂y

= 0.5u for y= 1, 0≤ x ≤ 2

Use suitable step sizes so as to get results accurate to four digits after decimals.

Ex IV.10: A channel of unit width has a 90◦ bend in it. The channel extends 2 channel widths as
shown in the Figure IV.2 and a certain function u(x, y) satisfies the Laplace equation within
the channel.3 u is zero along the shorter boundary while it is equal to 1 along the longer
boundary. Also the function varies linearly between 0 and 1 along the other two boundaries.
Obtain the solution to Laplace equation by finite differences. Use suitable step sizes along
the two directions. Locate the origin according to convenience and use symmetry to your

3If u is identified as the stream function, the problem represents ideal fluid flow in a channel with 90◦
bend. See a book on fluid flow such as Frank M White, “Fluid Mechanics”, Tata McGraw-Hill Education, 1994

IV.2. Laplace and Poisson equations 659

advantage. Solution is required good to 5 digits after decimals. This may be ascertained by
a grid sensitivity study. Make a contour plot.

Figure IV.2: Stream function
data for Exercise IV.10

2

2

1

1
u= 1

u= 0

u = 0

u = 1

u
=

0

u
=

1
Ex IV.11: Poisson equation in the form

1
r
∂

∂r

(
r
∂u
∂r

)
+ 1

r2
∂2u
∂θ2 = 0.5 is satisfied by a function u(r,θ)

in a cylinder defined by the boundary at r = 1. Robin condition
∂u
∂r

= 0.1(u−0.4) is specified
along one half of the boundary between θ = 0 and θ = π. The other half of the boundary
is imposed Dirichlet condition in the form u = 0.4. Obtain numerical solution using finite
differences. Would you be able to use the ADI method in this case?

Ex IV.12: Poisson equation in the form
1
r
∂

∂r

(
r
∂u
∂r

)
+ 1

r2
∂2u
∂θ2 = cos

(
π(r−1)

2

)
is satisfied by a

function u(r,θ) in an annulus defined by inner boundary r = 1 and outer boundary r = 2.

Neumann condition is specified at the inner boundary as
∂u
∂r

= 0 and Robin condition
∂u
∂r

= 0.1(u4 −0.4) is specified along one half of the outer boundary between θ = 0 and θ = π.
The other half of the outer boundary is imposed Dirichlet condition in the form u = 0.4.
Obtain numerical solution using finite differences.

Ex IV.13: Poisson equation in the form uxx +uyy +0.04(x2 + y2) = 0 is satisfied in a right angled
triangular region as shown in the Figure IV.3. The long side is aligned with the x axis and
the short side with the y axis. Right angled vertex is positioned at the origin. The following
boundary conditions have been specified:

u = 1; y= 0, 0≤ x ≤ 4 : u = 0.5; x = 0, 0≤ y≤ 3
du
dn

= 0; Normal derivative on the diagonal

Obtain the solution numerically by FDM. Also solve the problem using FEM.

Ex IV.14: ∇2u−0.2u = 0 governs the variation of a function u over a thin semi-circular disk of
radius 0.5. Dirichlet condition u = 1 is specified along the flat edge of the plate that is aligned
with the y axis and the center of the semi-circular disk is located at the origin. Over the
semi-circular edge Robin condition is specified as ur +0.1u = 0. Obtain numerical solution
by FDM. Use such step lengths that the solution is good to at least three digits after the
decimal point.

660 Exercise IV

3

u
=

0.
5

4

u = 1

5
∂u

∂n = 0

Figure IV.3: Data for Exercise
IV.13

IV.3 Advection and diffusion equations
Ex IV.15: A function that satisfies advection equation in one dimension ut−0.2ux = 0, is initially

specified as u(x,0)= 50(x−0.4)(0.6−x) and zero outside the interval 0.4≤ x ≤ 0.6. Obtain the
solution for a few suitably chosen space and time steps using different schemes introduced
in the text. Make comments based on the results. Compare each numerically obtained
solution with the exact solution.

Ex IV.16: Consider advection in one dimension of a triangular pulse with height 1 and width
0.05. The advection speed is equal to unity and in the positive direction. Compare the
performance of different schemes in the quality of the solution, in comparison with the exact
solution. Make plots such that the pulse is stationary. Use periodic condition as explained
in the text.

Ex IV.17: A wave travels to the right on a string of infinite length. The velocity of the wave is
discontinuous and is equal to 1 m/s to the left of the origin and 2 m/s to the right of the
origin. At t = 0 a triangular pulse of height 0.1 m and width 0.02 m is located at x =−0.2 m.
Describe the state of affairs for t > 0. Use a numerical scheme of your choice to obtain the
solution. Specifically find out what happens when the pulse reaches the origin.

Ex IV.18: Transient temperature field in a plate follows the equation
∂u
∂t

= ∂2u
∂x2 +cos

(πx
2

)
where

0 ≤ x ≤ 1 and t > 0. The boundary conditions have been specified as u(0, t) = 0 and
∂u
∂x

= 0
at x = 1 for t > 0. At t = 0 the entire plate is at zero temperature. Obtain numerically the
solution for 0< t ≤ 1 by (a) explicit scheme and (b) Crank Nicolson scheme. What step sizes
are required to get the solution, good to three digits after decimals, in each of these methods?
Obtain also the steady solution to the problem. How close is the transient at τ = 1 to the
steady solution?

Ex IV.19: Transient heat transfer in a plate is governed by the equation
∂u
∂t

= ∂2u
∂x2 − u where

0≤ ξ≤ 1 and t > 0. The boundary conditions have been specified as u(0, t)= 1 and
∂u
∂x

= 0 at
x = 1 for all t. Initially u(x,0) = 1 for 0 ≤ x ≤ 1. Obtain numerically the solution for t up to 1
by (a) explicit scheme and (b) Crank Nicolson scheme. What step sizes are required to get
the solution, good to three digits after decimals, in each of these methods? Obtain also the
steady solution to the problem. How close is the transient at t = 1 to the steady solution?

Ex IV.20: Transient temperature field in a circular disk of unit radius is governed by the

equation
∂u
∂t

= 1
r
∂

∂r

(
r
∂u
∂r

)
+ (1− r2). Initially u = 1 throughout the disk. For t > 0 the

IV.3. Advection and diffusion equations 661

periphery of the disk is maintained at a uniform u of 0.2. Obtain the transient solution
till the steady state by FDM. Results are desired convergent to 4 digits after decimals.

Ex IV.21: Perform von Karman stability analysis of an explicit method applied to the case of
transient heat transfer in two dimensions. Obtain therefrom the appropriate stability
conditions.

Ex IV.22: Discuss the stability of ADI scheme when applied to heat equation in two and three
dimensions.

Ex IV.23: Advection with diffusion is governed by the equation ut − 0.5ux = uxx + x(1 − x).
Boundary conditions are specified as u(0,0) = 1 and ux = 0 at x = 1 and for t > 0. Initial
condition is specified by the function u(x,0) = 0.5(1+ e−x). Obtain the solution to steady
state using an appropriate numerical scheme.

Ex IV.24: Transient temperature field in a plate follows the equation
∂u
∂t

= ∂2u
∂x2 +cos

(πx
2

)
where

0 ≤ x ≤ 1 and t > 0. The boundary conditions have been specified as u(0, t) = 0 and
∂u
∂x

+0.5u4 = 0 at x = 1 for t > 0. At t = 0 the entire plate is at zero temperature. Obtain
numerically the solution for 0 < t ≤ 1 by a numerical scheme of your choice. Indicate how
you would take care of the nonlinear boundary condition.

Ex IV.25: A sphere of unit radius is initially at a uniform temperature of u = 1 throughout. It
starts cooling by losing heat to a cold ambient by radiation. The appropriate PDE has

been derived and is given by
∂u
∂t

= 1
r2

∂

∂r

(
r2 ∂u
∂r

)
. Radiation boundary condition at r = 1

is specified as
∂u
∂r

+0.2u4 = 0. Obtain the transient temperature field numerically using a
numerical scheme of your choice. Indicate how you would deal with the node at the center
of the sphere.

Ex IV.26: ut =∇2u−0.2u governs the transient variation of a function u over a thin semi-circular
disk of radius 0.5. Dirichlet condition u = 1 is specified along the flat edge of the plate that
is aligned with the y axis and the center of the semi-circular disk is located at the origin.
Over the semi-circular edge Robin condition is specified as ur + 0.1u = 0. Initially u = 1
throughout the domain. Obtain numerical solution by FDM till t = 1.

Ex IV.27: A cylindrical annulus has an inner radius of 0.5 and an outer radius of 1. Heat is being
uniformly generated within the annulus. The inner boundary is insulated so that Neumann
condition is applicable there i.e. ur(0.5, t) = 0. At the second boundary Dirichlet condition
is specified as u(1, t) = 0.5. Initially the annulus is at zero temperature throughout. The

governing equation is given as
∂u
∂t

= 1
r
∂

∂r

(
r
∂u
∂r

)
+ (

1− r2)
. Obtain the solution till t = 5 by

FDM.

Ex IV.28: A long rectangular duct has outer dimensions of 4× 2 and a uniform thickness of
0.5. Initially the duct cross section is at a uniform temperature of zero. For t > 0 heat is
generated in the duct such that the governing equation is of form ut = uxx + uyy +0.5(2−
x)(1− y). Inner boundary is specified with Neumann condition i.e. normal derivative un = 0
while the outer boundary is maintained at zero temperature. Obtain the solution by finite
differences. Take advantage of any symmetry present in the problem.

662 Exercise IV

Ex IV.29: One dimensional heat equation appropriate to a material of temperature dependent

thermal conductivity is given by
∂u
∂t

= ∂

∂x

(
(1+u)

∂u
∂x

)
− 2u. In a certain application x is

limited to the region 0 ≤ x ≤ 0.5. Initially the entire domain has a uniform temperature of
u = 1. For t > 0 temperature at x = 0 remains unaltered while the temperature at x = 0.5
takes on a value of u = 0.5 and remains fixed at this value. Obtain the transient temperature
field by FDM using the Crank Nicolson scheme.

IV.4 Wave equation
Ex IV.30: Consider waves in an infinitely long uniform cross sectioned string under tension. The

wave speed has been specified as unity. At t = 0 the string is displaced from its equilibrium
position such that the displacement profile is y(x) = 0.1cos(5πx) for −0.1 ≤ x ≤ 0.1 and
zero for all x outside this range. The string is let go with zero velocity. Obtain solution
numerically and compare it with the exact solution.

Ex IV.31: A string of uniform cross section and 1 m long has a mass of 250 g. It is stretched
between rigid supports with a tension of 9 N. What is the wave speed? The string has an
initial displacement given by u(x)= 0.02sin(πx) and is released from rest. Obtain the shape
of the string after 0.125 times the period of oscillation. (a) Use d’Alembert’s solution for this
purpose. (b) Use finite difference solution and obtain the answer. Will the nodal spacing
have a role to play in the solution? Explain giving reasons.

Ex IV.32: Consider the wave equation with damping given by uxx = utt +γut in the region 0 ≤
x ≤ 1. The wave speed is unity and γ is the damping parameter. The system is allowed to
perform motion form a position of rest but with an initial displacement given by u(x,0) =
0.02x(1− x). Allow the damping parameter to vary between 0 and 0.5. Use FDM to obtain
the solution. Study the effect of γ on the variation of the displacement at x = 0.5 with time.
You may assume that the displacement remains zero at x = 0 and x = 1 for all t.

Ex IV.33: A rectangular diaphragm of mass per unit area m = 0.1 kg/m2 is stretched with a
uniform force per unit length of T = 20 N/m. The length and width of the diaphragm are
Lx = 0.25 m and L y = 0.375 m. What is the wave speed? What is the frequency of the
fundamental mode of vibration of the diaphragm?

Initial displacement of the diaphragm is u(x, y,0) = xy(x−0.25)(y−0.375) with the origin
located at left bottom corner. Obtain displacement throughout the diaphragm as a function
of time, by a suitable numerical scheme, if the diaphragm is allowed to vibrate starting from
rest. Comment on the nodal spacing vis a vis the accuracy of the displacement calculated by
the numerical scheme.

Ex IV.34: A string of nonuniform density is stretched between two rigid supports L apart. The
density (mass per unit length) varies according to the relation m(x)= m0

(
1+a

x
L

)
where m0

and a are specified constants. Formulate the governing PDE for this case assuming that the
tension T in the string remains constant as the string is set into vibration.

Consider the specific case m0 = 0.1 kg/m, a = 1, T = 10 N and L = 0.5 m. The initial
displacement of the string is given by the function u(x,0)= 0.04x(0.5−x). Obtain the solution
using a numerical scheme of your choice. How does the solution differ from that for a string
of uniform density? Assume that the string is initially at rest.

Ex IV.35: A circular membrane of variable thickness of radius R has the mass per unit area
varying with radius as m(r) = m0

(
1−a

r
R

)
.The membrane is firmly stretched such that the

IV.4. Wave equation 663

periphery is attached to a rigid ring and the stretching force per unit length is equal to T.
Formulate the applicable PDE that describes axi-symmetric vibrations in the membrane.

In a certain case m0 = 0.1 kg/m2, T = 100 N/m, R = 0.2 m and a = 0.25. The membrane
is initially disturbed from the equilibrium position by the displacement function given by
u(r,0)= 0.1

(
1− r

R

)
and allowed to execute transverse vibrations starting from rest. Obtain

the solution numerically using a scheme of your choice. How does the solution differ from
that for a membrane of uniform density?

Ex IV.36: Solve utt +0.4ut = uxx if u(x,0)= 0 and

ut(x,0)=

0 0≤ x < 0.4
(x−0.4)(0.6− x)

5
0.4≤ x ≤ 0.6

0 0.6< x ≤ 1

Chapter 16

Beyond the book - the way ahead

The book has presented essential ideas behind computational methods, useful especially
for engineering applications and hence is, at best, an introduction to computational
methods in engineering. Many worked examples have been presented to bring home the
applications of the many methods that have been dealt in the book. Application examples
have been broadly from the area of mechanics - structural mechanics, vibrations, fluid
mechanics and heat transfer. Some examples have treated analysis of electrical circuits
also.

The book should benefit two types of readers.

• Those who want to learn the techniques and use these in their own research activity
involving specific problems that require development of optimized code.

• Those who want to learn just enough to understand how commercial codes work.
They will benefit by the basic knowledge gained from the book so that they can use
the commercial codes efficiently. They will also avoid making costly mistakes in
using commercial codes.

The “way forward” will address the needs of both these types of readers.

16.1 Researchers developing their own code

This class of readers should refer to books that deal with the theory of ordinary
and partial differential equations to benefit fully from the present book. A thorough
understanding of analytical methods will provide the insight they need for independent
research. They should also refer to more advanced books on numerical methods. Domain
specific books that deal with numerical and computational methods should be consulted
for assessing the state of the art in their chosen field.

665

666 Chapter.16 Beyond the book - the way ahead

Several topics such as integral transforms, Fourier analysis, integral equations, grid
generation etc. have not been covered in the present book. Specialized books exist on
these topics and the reader is advised to consult them.

This class of reader would benefit by the excellent support available in computational
resources such as MATLAB. He/she may develop fairly complex computational tools using
MATLAB. Capability to use spreadsheet programs will help in exploratory analysis.

In addition, this class of readers will benefit, by looking at applications of computational
methods, presented in domain specific peer reviewed journals.

16.2 Users of commercial codes

A good grounding in computational methods is essential for those who use many
commercial software available as general purpose and domain specific computational
tools. A good understanding of the physical problem being modeled is essential in
obtaining proper solutions using the relevant commercial code. Grasp of the underlying
physics is essential in getting physically meaningful numerical solutions. Most mistakes
occur due to use of wrong initial and boundary conditions. Before using any software they
should consult the concerned manual to know about the capabilities as well as limitations
of the concerned software. It is good practice to use the software to analyze simple cases
which are easy to interpret and move on to more complex cases. Validation exercise
should be taken up before using any computational tool for solving new problems. Most
commercial codes are supplied with test cases that have been validated independently
and hence may be used by the beginner to test his own skills in using the software.

16.3 Where does one look for help?

There are excellent books and web resources for the interested reader. One very
useful book that may be referred to is the text book by S. Chapra and R. Canale,
“Numerical Methods for Engineers”, McGraw-Hill, 6th edition, 2009. Both authors are
Professors of Civil Engineering and bring in an engineering point of view to the material
being presented. As far as specialized books are concerned, the book “Fundamentals of
Computational Fluid Dynamics”, Hermosa Publishers,1998 by P.J. Roache is one that
takes the reader beyond what is in the present book in solving PDEs of interest in Fluid
Dynamics. The book “An introduction to computational fluid dynamics” 2nd Edition by H.
K. Versteeg and W. Malalasekera, Pearson/Prentice Hall, 2007 is a detailed exposition on
the finite volume method. Those interested in the finite element method may look at “An
Introduction to the Finite Element Method” 3rd edition, McGraw-Hill, 2005 by J. N. Reddy
as the starting point.

Resources on the net are plenty and a few useful sites are given below.

16.3. Where does one look for help? 667

16.3.1 Free resources

• Numerical recipes: at http://www.nr.com/ provide algorithms and programs for
several commonly used functions.

• Netlib Repository: http://www.netlib.org/ is a repository of library of subroutines
maintained at University of Tennessee, Knoxville and Oakridge National Labora-
tory managed by University of Tennessee Battelle.

• GNU operating system: http://www.gnu.org/software/gsl/ provides free software
useful for numerical computations.

• Fortran Library: http://www.fortranlib.com/ is a directory of Fortran resources
including books, tutorials, compilers, and free software.

• MATLAB: http://www.mathworks.fr/matlabcentral/fileexchange/ provides a plat-
form for the users to share their MATLAB programs and also find useful programs
developed by others.

16.3.2 Licensed resources

• IBM - ESSL: Look up www.ibm.com/systems/software/essl/ and access Engineering
and Scientific Subroutine Library (ESSL) and Parallel ESSL

• Numerical Analysis Group: The NAG Fortran Library provides a large number
of subroutines that may be used for computing.

Index

Adams Bashforth Moulton, 405
Adaptive

integration, 347
ODE, 402, 415

Advection equation, 576
nonlinear, 592

advection equation, 525
Advection equation in multi dimensions,

609
advection velocity, 576, 591
Advection with diffusion, 603
Alternate Direction Implicit(ADI), 543
Array, 11
artificial diffusion, 584
Assembly, 567

backward difference, 297
Bessel function, 646
Bisection method, 157–159
Boundary conditions

Cauchy, 449
Dirichlet, 449
Neumann, 449
Robin, 449

Boundary value problem
ODE, 447
semi-infinite domain, 456

central difference, 297
CFL condition, 579
characteristic, 524

Chebyshev
interpolation, 236
quadrature, 336

Coefficient of correlation, 278
Collocation method, 478
Complex eigenvalues, 119, 147
Condition number, 29–32
Conjugate gradient

linear, 92–102
nonlinear, 184–190, 291

Convergence, 161
Coordinate transformation, 346
corner node, 539
Courant number, 632
Cramer’s rule, 20
Crank Nicolson scheme, 587
cylindrical coordinates, 547

derivative of Ln(x), 301
Diffusion equation in multi dimensions,

614
ADI method, 615

element
Hexahedral, 272
Tetrahedral, 273

error
dispersion, 582
dissipation, 582
dissipation and dispersion, 584, 586,

589

669

670 INDEX

error function, 458

Finite difference, 296
Finite Difference Method(FDM), 465

non-linear BVP, 473
non-uniform grids, 472
ODE, 465

finite element method, 255
Finite Element Method(FEM), 487
finite volume method, 255
Finite volume method(FVM), 504
first derivative

three point formula, 299
five point rule, 303
Fixed point iteration, 159–163
Floating point, 2

double precision, 3
single precision, 3

forward difference, 297
Forward in Time - Centered in Space

(FTCS), 577
Fourier number, 593
Francis shift, 147–150

Galerkin FEM, 559
Galerkin method, 484
Gauss elimination, 36–43
Gauss Kronrod quadrature, 350
Gauss quadrature, 337
Gauss Seidel

linear, 87–92, 99–102
nonlinear, 171–172, 191–200

Godunov’s theorem, 590
Goodness of fit, 280
grid refinement, 468
grid sensitivity, 533

Hessenberg matrix, 138–143

Ill conditioned matrix, 31
Implicit methods

ODE, see ODE-stiff equations
Index of correlation, 280
Integration

adaptive, 347
Chebyshev, 336
composite Simpsons rule, 324
error estimation, 326
Gauss, 337
Newton Cotes

closed, 328
Simpsons rule, 321
trapezoidal, 319

Interpolation
Cubic spline, 247–254
Hermite, 240–247, 252–254
polynomial, 214–239

interpolation
Multidimensional, 255

Inverse of a matrix, 23
Gauss Jordan, 43–47

irregular domain, 550
iteration

Gauss Seidel, 534
Jacobi, 534
SOR, 534

Jordan form, 118, 122

Laplace equation, 526, 529
Lax Wendroff scheme, 585
Lax-Friedrichs scheme, 583
Least squares

regression, 277
Legendre polynomials, 339
Local coordinate system, 258
LU decomposition, 47–60

Cholesky, 56–62
tridiagonal, 61–62

Crout, 56
Doolittle, 48–56

MATLAB, 1
Graphics, 14
Loops, 14
Scripts, 10

Matrices, 11
Method of lines, 576

INDEX 671

Method of Weighted Residuals(MWR), 482
Modes of vibration, 637

Newton Cotes
open, 343

Newton method of optimization, 180–182
Newton polynomials, 303
Newton Raphson, 163–165, 175

Multivariate, 173–175, 180–182, 190
Newton Raphson method, 474
Numerical differentiation, 295

error, 305
partial, 306

ODE
BDF methods, 434
error, 399
Euler, 387
Heun, 392
nonlinear, 440
Predictor corrector, 405
predictor corrector

adaptive, 415
Runge Kutta, 393, 422

adaptive, 402
Runge Kutta Fehlberg, 400
stability, 389, 395, 410, 421
stiff equations, 434

operator splitting, 604
Operator splitting and upwind scheme,

612
Optimization, 175–190

Partial Differential Equation(PDE), 521
elliptic, 525
hyperbolic, 525
parabolic, 525

Peclet number, 603
Permutation matrix, 26
Pivoting, 32, 41–43
Poisson equation, 526, 529
Polynomial

interpolation, 214
Chebyshev nodes, 235–237

Lagrange, 214–221
Newton, 221–232
piecewise, 238–239

regression, 289–291
Polynomials

Legendre, 339
post-processing, 563
Power method, 126–129

Deflation, 134–135
Inverse, 129–130
Inverse with shift, 130–132

preprocessing, 563
principle of minimum potential energy,

497
products of lines, 260

QR factorization, 66–86
Givens rotation, 76–86, 141–142
Gram-Schmidt, 66–69
Householder, 70–76, 139–141

QR iteration, 135–138
with shift, 143–153

Quadratic element, 261
serendipity, 264

Quadratic interpolation search method,
177–179, 186

Quadrature, see Integration

Rank, 20
Rayleigh Quotient iteration, 132–134
Regression

linear, 277–291
multi-linear, 287–291
nonlinear, 291–293
polynomial, 289–291

Regula Falsi method, 169
Richardson extrapolation, 332
Romberg method, 332
Rounding errors, 4
Runge Kutta, 393

embedded, 400
Runge phenomenon, 329

Schur form, 113, 120

672 INDEX

Secant method, 166–169
secant method, 454
Second partial derivatives, 310
shape function, 257
shooting method

Linear ODE, 450
Non-linear ODE, 454

Similarity transformation, 113
spherical coordinates, 547
Steepest descent

linear, 93–96
nonlinear, 182–184

stiffness matrix, 498
Sub domain methods, 487
Successive over relaxation, 87–92, 99–

102
superposition, 450

TDMA, 62–66, 466
Cholesky, 61

transformations
Isoparametric , 259

Transient diffusion equation, 592
Crank Nicolson scheme, 597
explicit formulation, 593
Implicit formulation, 596

Trapezoidal
ODE, 435

triangular element, 266
linear, 267
quadratic, 269

truncation, 6

upwind scheme, 580

von Neumann stability analysis, 579

Wave equation
explicit scheme

Stability, 633
General solution, 625
implicit scheme

Stability, 640
one dimension, 624

d’Alembert’s solution, 626
numerical solution, 632

one-dimension
Explicit CTCS, 632
Implicit scheme, 639

wave speed, 525
waves in a circular diaphragm

one dimension, 643
two dimensions, 650

waves in a rectangular diaphragm, 648
Wilkinson shift, 143–146

