
www.ebook3000.com

http://www.ebook3000.org

MASTERING
SOFTWARE PROJECT

MANAGEMENT
Best Practices, Tools and Techniques

Murali Chemuturi
Thomas M. Cagley, Jr.

J. Ross Publishing; All Rights Reserved

www.ebook3000.com

http://www.ebook3000.org

Copyright ©2010 Copyright J. Ross Publishing

ISBN-13: 978-1-60427-034-1
Printed and bound in the U.S.A. Printed on acid-free paper
10  9  8  7  6  5  4  3  2  1
	
	 Library of Congress Cataloging-in-Publication Data
Chemuturi, Murali, 1950-
 Mastering software project management : best practices, tools and
techniques / by Murali Chemuturi and Thomas M. Cagley Jr.
 p. cm.
 Includes index.
 ISBN 978-1-60427-034-1 (hardcover : alk. paper)
 1. Computer software--Development. 2. Project management. I. Cagley,
Thomas M., 1956- II. Title.
 QA76.76.D47C478 2010
 005.1--dc22	 2010019185

This publication contains information obtained from authentic and highly regarded sources.
Reprinted material is used with permission, and sources are indicated. Reasonable effort has
been made to publish reliable data and information, but the author and the publisher cannot
assume responsibility for the validity of all materials or for the consequences of their use.

All rights reserved. Neither this publication nor any part thereof may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, electronic, mechani-
cal, photocopying, recording or otherwise, without the prior written permission of the pub-
lisher.

The copyright owner’s consent does not extend to copying for general distribution for
promotion, for creating new works, or for resale. Specific permission must be obtained from J.
Ross Publishing for such purposes.

Direct all inquiries to J. Ross Publishing, Inc., 5765 N. Andrews Way, Fort Lauderdale,
FL 33309.

Phone: (954) 727-9333
Fax: (561) 892-0700

Web: www.jrosspub.com

J. Ross Publishing; All Rights Reserved

www.ebook3000.com

http://www.ebook3000.org

Contents

Foreword... ix
Preface ..xiii
About the Authors... xv
Web Added Value™.. xvii

Chapter 1. Software Project Basics.. 1
Introduction... 1
Types of Software Projects... 5
Classifications of Software Projects.. 6

Based on Software Development Life Cycle... 7
Approach Driven.. 9
Maintenance.. 12
Web Application... 16
Agile Development... 17

Conclusion.. 17

Chapter 2. Approaches to Software Project Management............................. 19
Alignment of Software Engineering Methodology with Project

Management Methodology... 19
The Ad Hoc Methods-Based Approach... 21
The Process-Driven Approach ... 22
So, What Is the Right Approach?.. 23

The Ad Hoc Approach.. 24
The Process-Driven Approach... 24
But Is a Process-Driven Approach the Right Choice?.................................... 24
In a Process-Driven Approach: What Process and How Much?.................. 26

Chapter 3. Software Project Acquisition... 31
From an External Client... 31

iiiJ. Ross Publishing; All Rights Reserved

www.ebook3000.com

http://www.ebook3000.org

iv  Mastering Software Project Management

The Request for Proposal.. 32
The Proposal... 34
Negotiation.. 42
Contract Acceptance.. 43

From an Internal Client.. 44
The Feasibility Study.. 45
Preparing the Proposal.. 47
Finalizing the Proposal.. 47

Reference... 48

Chapter 4. Software Project Initiation.. 49
Introduction... 49
Initiation Activities.. 49
Project Management Office-Level Activities... 52

Identifying the Software Project Manager.. 52
Preparing/Handing Over the Project Dossier to the

Software Project Manager.. 52
Coordinating Allocation of Project Resources... 53
Assisting the Software Project Manager in Obtaining

Necessary Service Level Agreements from
Departments in the Organization... 55

Assisting the Software Project Manager with the
Project Kickoff Meeting... 55

Software Project Manager-Level Activities.. 55
Ensuring that Project Specifications Are Complete.. 57
Reviewing Estimates and Revisions/Updates of Estimates............................ 57
Identifying Necessary Resources and Raising Requests................................. 59
Preparing Project Plans... 62
Setting Up the Development Environment.. 63
Arranging for Project-Specific Skill Training.. 63
Organizing the Project Team.. 64
Training the Project Team on the Project Plans.. 64
Conducting a Project Kickoff Meeting.. 65
Arranging for a Phase-End Audit.. 65

Common Pitfalls in Project Initiation.. 66
Identifying the Wrong Software Project Manager.. 66
Identifying Inappropriate Resources... 66
Incurring Delays in Software Project Initiation Activities............................. 67

References... 67

J. Ross Publishing; All Rights Reserved

www.ebook3000.com

http://www.ebook3000.org

Contents  v

Chapter 5. Software Project Planning... 69
Introduction... 69
Planning Defined... 71
Plans Prepared in Software Project Management.. 73
The Project Management Plan.. 77

Resources... 77
Skill Sets... 77
Computer Systems.. 79
Project Management Method... 79

The Configuration Management Plan.. 80
Naming Conventions... 83
Change Management... 84

The Quality Assurance Plan... 85
The Schedule Plan... 86
The Induction Training Plan... 86
The Risk Management Plan... 87
The Build Plan.. 88
The Deployment Plan... 88
The User Training Plan.. 89
The Handover Plan... 90
The Software Maintenance Plan.. 90
The Documentation Plan... 90
Roles in Planning... 91

The Organization.. 91
The Software Project Manager... 92

Pitfalls in Software Project Planning.. 93
Best Practices in Software Project Planning.. 95
References... 96

Chapter 6. Software Project Execution... 97
Introduction... 97
Work Management... 98

Work Registers.. 100
De-allocation... 102

Configuration Management... 104
Information Artifacts... 104
Code Artifacts... 106
Configuration Registers... 111
Configuration Management Tools... 115

Quality Management... 117

J. Ross Publishing; All Rights Reserved

www.ebook3000.com

http://www.ebook3000.org

vi  Mastering Software Project Management

Verification Techniques ... 119
Validation Techniques... 120
Product Testing... 121
Allocation of Quality Assurance Activities... 124
But How Much Quality Assurance?... 124
Testing Tools... 125

Morale Management... 126
Motivation... 126
Conflict... 130

Productivity Management.. 131
Stakeholder Expectations Management... 133
Product Integration Management... 138
Pitfalls and Best Practices... 140

Chapter 7. Software Project Execution Control... 143
Introduction... 143
Aspects of Control in Project Execution.. 144

Scope Control.. 145
Cost Control.. 146
Schedule/Progress Control.. 147
Quality Control... 147
Effort Control.. 148
Productivity Monitoring... 148

Control Mechanisms... 149
Progress Assessment: Earned Value Analysis... 153

Chapter 8. Change Management in Software Development Projects.......... 157
Introduction... 157
Origins of Change.. 158
The Change Request Register.. 160
Change Request Resolution... 162

Change Request Implementation Strategy... 163
The Value of Metrics Derived from a Change Request Register........................ 167

Chapter 9. Scheduling.. 171
Introduction... 171
The Initial Work Breakdown Structure... 172
A Work Breakdown Structure with Predecessors Defined................................. 172
A Work Breakdown Structure with Initial Dates... 176
A Work Breakdown Structure with Resource Allocation................................... 178
Scheduling in Practice... 181
Graphic Representation of a Schedule... 181

J. Ross Publishing; All Rights Reserved

www.ebook3000.com

http://www.ebook3000.org

Chapter 10. Software Project Closure... 183
Introduction... 183
Identifying Reusable Code Components... 185
Documenting the Best Practices.. 186
Documenting the Lessons Learned... 187
Collecting/Deriving and Depositing the Final Project Metrics in

the Organizational Knowledge Repository.. 188
Conducting Knowledge-Sharing Meetings with Peer Software

Project Managers.. 188
Depositing Project Records with the Project Management Office.................... 189
Depositing Code Artifacts in the Code Repository.. 190
Conducting the Project Postmortem.. 190
Releasing the Software Project Manager.. 191
Closing the Project.. 192
The Role of the Organization in Project Closure... 192

The Project Management Office.. 192
The Configuration Control Board... 193
The Systems Administration Department.. 194

Reference... 194

Chapter 11. Agile Project Management.. 195
Introduction... 195
Project Management Roles... 195
Agile Project Management Characteristics ... 196

Metaphor... 197
Teamwork and Collaboration... 197
Guiding Principles.. 198
Open Information.. 198
Use a Light Touch.. 199
Monitoring and Adjustment... 199

The Nuts and Bolts of Agile Project Management... 200
Planning the Work... 200
Controlling the Work.. 202

Process Improvement... 205
Reference... 206

Chapter 12. Pitfalls and Best Practices in Software Project
Management... 207
Introduction... 207
Organizational-Level Pitfalls and Best Practices... 208

Process-Driven Project Management.. 208

Contents  vii

J. Ross Publishing; All Rights Reserved

www.ebook3000.com

http://www.ebook3000.org

viii  Mastering Software Project Management

An Ineffective Project Management Office or No Project
Management Office.. 208

Poor Project Initiation... 210
Poor Software Estimation.. 211
Poor Project Planning.. 211
The Wrong Service Level Agreements.. 212
Poor Standards and Guidelines for Software Development........................ 213
Poor Project Oversight.. 214
Inadequate Project Management Training... 214

Software Project Manager-Level Pitfalls and Best Practices............................... 215
Fair Treatment of Project Human Resources.. 216
A Balanced Workload.. 216
Equitable Rewards.. 217
Poor Software Estimation.. 217
Poor Project Planning.. 217
Informal Issue Resolution... 217
Poor Change Management... 218
Poor Record Keeping... 218

Additional Best Practices for Software Project Management............................. 219
A Knowledge Repository... 219
Continuous Process Improvement.. 219
Project Postmortems.. 219
Training in the Soft Skills.. 220
Information Sharing... 220
Management Support.. 220

Some Closing Words... 221

Appendix A. Management of Software Development Projects.................... 223

Appendix B. Decision-Making for Software Project Managers................... 237

Appendix C. People Management... 251

Appendix D. Productivity Concepts for Software Project Managers.......... 271

Appendix E. Issue Resolution in Software Project Management................. 287

Appendix F. Measurement and Metrics in Software Development
Organizations... 295

Appendix G. Measurement and Management of Customer Satisfaction.... 315

Appendix H. An Introduction to PERT/CPM.. 327

Appendix I. Abbreviations.. 347

Appendix J. Templates for Software Project Managers............................... 351

Index... 373

J. Ross Publishing; All Rights Reserved

www.ebook3000.com

http://www.ebook3000.org

foreword

When a software project fails, the impact to an organization can be significant.
The losses the organization experiences may be financial, the project’s failure may
negatively impact the organization’s credibility with customers, or the organiza-
tion may lose market position and competitive advantage. As of this writing, the
latest statistics from the 2009 Standish Group CHAOS report state that “44%
were challenged which are late, over budget, and/or with less than the required
features and functions.” This is an alarming number. It represents a dismal trend
and is in fact an increase in the number of failures, representing the highest fail-
ure rate in over a decade.

Although the reasons for these failures vary, there is every reason to believe
that some of these failures are directly attributable to ineffective software project
management. Furthermore, it is safe to assume that in nearly all of these failures,
project management played at least a minor role. Show me a failed project and I
will show you a failed project manager or process.

Does the blame for a failed project always rest on the project manager’s
shoulders? Can organizational behaviors be blamed for some of these failures?
Can a customer or client cause a project to fail? If we concede that, from time to
time, there are some extraordinary causes of failure that are outside the boundary
of a project manager’s control, plenty of fingers are still left pointing at ineffective
project management skills, practices, techniques, and technologies.

So, what is at the heart of these project failures? Is it the skill level of the
individual project manager? Is it the result of unavailable or inaccurate project
data? Is it a lack of training or a lack of a proper project management practices?

To state the obvious, it is essential that software development organizations
focus their attention on improving the state of their project management prac-
tices. More to the point, there is enough collective experience and understanding
that we can now acknowledge and identify software project management best
practices.

ixJ. Ross Publishing; All Rights Reserved

www.ebook3000.com

http://www.ebook3000.org

x  Mastering Software Project Management

This is in fact what Murali Chemuturi and Tom Cagley have accomplished
in Mastering Software Project Management: Best Practices, Tools and Techniques.
They have compiled their collective experience and wisdom and have presented it
in a practical, clear, and concise format that is of value to a new project manager
as well as more experienced project managers. The authors present the process
and the philosophy behind the methodologies and techniques of software project
management.

The introduction to the book quickly puts context around the authors’
working definition of a software development project and the classification of a
software project, which includes the software development life cycle, approach-
driven software, software maintenance, agile software development, and Web-
application development. The authors are clear — this book addresses software
project management utilizing a process-driven approach.

Their project management framework comprises four core elements: acqui-
sition, initiation, execution, and closure. In the four chapters that discuss these
core elements, we learn about various workflows and best practice activities and
are given helpful tools and techniques. The book is formatted in such a way as
to be useful as an educational text as well as a practical reference guide for the
practitioner.

Mastering software project management is about gaining control through
the use of reliable and meaningful information. The authors have addressed the
importance of control with insightful chapters on planning, scheduling, and
change management. Once again, they present process flows, useful templates,
and guidance on how to execute the best practices they have outlined.

Software project management best practices would not be complete without
a chapter on agile development. The authors drive home the point that for an
organization to achieve success, the organization must first embrace the agile
philosophy. Here, too, the authors discuss how to plan and control the workflow
in an agile environment.

Chapter 12 discusses pitfalls and best practices and begins with an important
observation regarding how best practices may be viewed in an organization. The
authors point out that management is unique to an organization based on that
organization’s culture. And while producing positive results is an important
aspect of management, of greater importance is that the results are achieved with
optimal costs, productivity, quality, and morale. In their words, “… it is neces-
sary for organizations to adopt best practices and avoid the pitfalls to grow and
prosper.”

And perhaps, quite possibly, the authors have saved the best for last. There
are ten appendixes that focus on project management intangibles, such as
Appendix C, dealing with the art and science of managing people, in which the
authors discuss such topics as delegating and managing your superiors. Appendix

J. Ross Publishing; All Rights Reserved

Foreword  xi

B addresses the practice of making decisions. Appendix E centers on issue
resolution. The list goes on to include other relevant topics such as productivity,
measures and metrics, and customer satisfaction. Yes, all of these topics should
be considered to be part of a comprehensive discussion on mastering software
project management.

This book should be required reading for all software project managers and
for those organizations that struggle with late and costly project implementation.
The advice and processes so rigorously detailed in this book should become the
de facto standard for improving an organization’s development practices.

—	 David Herron
	 Vice President of Knowledge

	 Solution Services
	 David Consulting Group, USA

J. Ross Publishing; All Rights Reserved

J. Ross Publishing; All Rights Reserved

PREFACE

Before we talk about software project management, we need to understand the
terms project and management. Once we understand these two terms and how
they relate to each other, we can apply them to the field of software development.
In the subsequent chapters and appendices, we strive to define and explain and
then to show just what software project management is.

Software projects are initiated, planned, and executed at two places. The first
is within the same organization that is going to use the end product; the second
is in an organization specialized in developing software that will be used by other
organizations. In this book, we are not considering hobby projects although
they can use the techniques in the book also. Projects can also be called internal
projects and external projects. Internal projects are those with an end product
that is used within the same organization; external projects are those with an end
product that is used by another organization. We will expand on these terms in
subsequent chapters.

Our focus in this book is on the management of software projects that are
tightly planned, monitored, controlled, and executed. These projects could be
internal or external projects.

This book is not geared to help you pass exams of any kind or to receive
certification. Rather it helps you pass the examination conducted by life and
to achieve success in software project management. This book is based on our
experiences: experiences gained through academic efforts, reading books and
literature, and managing and observing real-life projects. What we have learned
has been plowed back in to fine tune our theories. This book is a result of that
fine tuning and is something akin to the expression “What they don’t teach you
at Harvard.”

We will be glad to receive your feedback and promise to usually respond in
one business day. We can be reached at murali@chemuturi.com and t.cagley@
davidconsultinggroup.com.

xiiiJ. Ross Publishing; All Rights Reserved

J. Ross Publishing; All Rights Reserved

ABOUT THE AUTHORS

Murali Chemuturi is an information technology
and software development subject matter expert,
hands-on programmer, author, consultant, and
trainer. In 2001, he formed Chemuturi Consultants,
his own IT consulting and software development
firm. Chemuturi Consultants help software devel-
opment organizations to achieve their quality and
value objectives. The firm provides training in
several software engineering and project manage-
ment topics, such as software estimation, test effort
estimation, function point analysis, and software
project management, to name a few. Chemuturi

Consultants also offers a number of products to aid project managers and soft-
ware development professionals, such as PMPal, a software project management
tool, and EstimatorPal, FPAPal, and UCPPal, a set of software estimation tools.

Prior to starting Chemuturi Consultants, Murali gained over 15 years of
industrial experience in various engineering and manufacturing management
positions. He then gained over 24 years of information technology and software
development experience. His most recent position prior to forming Chemuturi
Consultants was vice president of Software Development at Vistaar e-Business
Pvt., Ltd.

His undergraduate degrees and diplomas are in electrical and industrial engi-
neering. He holds a MBA and a postgraduate diploma in computer methods and
programming. Murali also has several years of academic experience, teaching a
variety of computer and IT courses, such as COBOL, Fortran, BASIC, computer
architecture, and database management systems.

He is a member of IEEE, a senior member of the Computer Society of India,
and a Fellow of the Indian Institute of Industrial Engineering as well as a well-
published author in professional journals.

xvJ. Ross Publishing; All Rights Reserved

xvi  Mastering Software Project Management

Thomas M. Cagley, Jr. is vice president of consulting
for the David Consulting Group. He is an author-
ity in guiding organizations through the process
of integrating software measurement with model-
based assessments to yield effective and efficient
process improvement programs. He is a recognized
industry expert in the measurement and estimation
of software projects. His areas of expertise encom-
pass management experience in project management,
development methods and metrics, quality integra-
tion, quality assurance, and the application of the

Software Engineering Institute’s Capability Maturity Model Integration® to achieve
process improvements.

Tom has over 20 years experience in the software industry and has been a
consultant since 1997. He was previously metrics practice manager at Software
Productivity Research. Earlier, he held technical and managerial positions in dif-
ferent industries as a leader in software methods and metrics, quality assurance,
and systems analysis. He is a frequent speaker at metrics, quality, and project
management conferences.

Tom blogs about software development and management topics at www.
tcagley.wordpress.com and edits a podcasts of essays and interviews entitled
Software Process and Measurement Cast (www.spamcast.net). The blog and pod-
cast serve as a platform to share information with the development industry and
to foster a continuing dialog. Sharing and dialog are the means of paying it for-
ward.

He is a member of the International Function Point Users Group and is a
Certified Function Point Specialist. He is currently the immediate past president
of IFPUG and previously served as the chair of the IFPUG Conference Committee
and director of Conferences and Education.

Tom has a B.S. from Louisiana State University and has done extensive post-
graduate work at Cleveland State University, Case Western Reserve University,
and Kent State University.

J. Ross Publishing; All Rights Reserved

Free value-added materials available from
the Download Resource Center at www.jrosspub.com

At J. Ross Publishing we are committed to providing today’s professional with
practical, hands-on tools that enhance the learning experience and give readers
an opportunity to apply what they have learned. That is why we offer free ancil-
lary materials available for download on this book and all participating Web
Added Value™ publications. These online resources may include interactive ver-
sions of material that appears in the book or supplemental templates, worksheets,
models, plans, case studies, proposals, spreadsheets and assessment tools, among
other things. Whenever you see the WAV™ symbol in any of our publications
it means bonus materials accompany the book and are available from the Web
Added Value™ Download Resource Center at www.jrosspub.com.

Downloads available for Mastering Software Project Management: Best
Practices, Tools and Techniques consist of free software project planning tem-
plates; a demo version of an integrated and collaborative software project
managment tool called PMPal, which is valid for 180 days; TestPal, a free, fully
functional tool useful for test effort estimations and test case design; and PET, a
free personal effectiveness tool.

xviiJ. Ross Publishing; All Rights Reserved

J. Ross Publishing; All Rights Reserved

1

SOFTWARE PROJECT BASICS

INTRODUCTION

Human endeavor, from its earliest hunter/gatherer roots, was carried out in
teams, each with a hierarchy of roles. As civilization progressed, the need for
structure and rules increased. A large farm is a team organization based on a
simple hierarchy of an owner, overseers, and employed laborers. The Industrial
Revolution created factories which required more complex hierarchies, both
within teams and between teams. Factories aggregated the production of goods
for consumption into concentrated units capable of greater productivity. To
achieve this great jump in productivity, rules were developed to effectively run
the factories. These developments were the genesis of the art and science of man-
aging production, which has been called production management.

Classification of organizations. The type of production can be used to
classify organizations based on the manner in which goods are produced. The
categories are:

•	 Mass production: continuously produces the same products
•	 Batch production: produces goods in batches; each batch is similar,

but not identical
•	 Flow process production: production of chemicals, pharmaceuticals,

and fertilizer products, generation of electricity, etc.
•	 Job order production: produces tailor-made goods (i.e., goods are

produced only when an order is received)

1J. Ross Publishing; All Rights Reserved

www.ebook3000.com

http://www.ebook3000.org

2  Mastering Software Project Management

Initially, management texts focused on mass production, batch production,
and flow process production systems (also known as “made to warehouse” produc-
tion systems). In made to warehouse production systems, goods are produced and
stored in warehouses for distribution. The significant feature of mass production
and flow process production is that the rate of consumption/demand equals or
exceeds the rate of production for the product. In batch production, the rate of
production exceeds the rate of consumption/demand for the product. The goal of
production management is to balance both rates.

Production management texts, however, did not address organizations such
as ship building, aircraft manufacturing, heavy equipment manufacturing, etc.
These organizations are known as job order production or made to order organi-
zations. In made to order organizations, items are produced only after an order
is received.

By leaving out job order “shops,” management texts also excluded organiza-
tions that constructed buildings, highways, and other infrastructure facilities.
These types of organizations are certainly not serial production organizations
even though they create wealth and employ people. Their work was classified as
projects. Some knowledge, however, was gathered and released under the title of
project management. Job order production system organizations latched onto this
concept and became project-based production systems.

Presently, management theory addresses organizations in two basic catego-
ries: production organizations and service organizations. The art and science of
managing these organizations has metamorphosed from production management
to operations management.

Similarly, we can categorize organizations by the nature of their operations:
•	 Continuous operations: organizations with fixed facilities that carry

out similar operations day after day continuously and produce prod-
ucts for stockpiling in warehouses (real or virtual)

•	 Project operations: organizations with fixed but flexible facilities that
carry out dissimilar operations from day to day and produce only
against a customer order

More and more organizations are moving toward project operations due to mar-
ket forces, which put emphasis on individual preferences while reducing costs.
Gone are the days of the famous words of Henry Ford, Sr.: “You can have the car
of any color as long as it is black.”

The project operations category has seen significant development over the
past few years under the title “mass customization.” Mass customization blends
aspects of continuous and project operations.

Having put the concept of project operations in an historical perspective,
see Table 1.1 for a comparison of continuous operations with project operations.
Mass customization walks the line between the two extremes identified in Table

J. Ross Publishing; All Rights Reserved

Software Project Basics  3

1.1, typically with most of the benefits of each, but with a greater reliance on self-
directed teams that make hierarchies and matrix organizations very nervous.

Description of a project. Let’s now examine what comprises a project: a proj-
ect is a temporary endeavor with the objective of manufacturing (producing or
developing) a product or delivering a service, while adhering to the specifications

Table 1.1. Comparisons of Continuous Operations with Project Operations

Item
Number Aspect Continuous Operations Project Operations

1 Product design Designed once: updated
as needed/dictated by
market forces

Designed for every order
received

2 Trigger for
commencement

Marketing asks for the
product

Customer’s order triggers
commencement

3 Planning Periodic: annual,
quarterly, monthly,
weekly, etc.

Order-wise as well as
periodic

4 Workstation design Low cost: to produce one
type of component

Potentially higher cost:
versatile workstations to
produce a wide variety of
components

5 Required education
levels for staff

Low: needs to understand
instructions and can be
easily trained (leads to a
flatter training curve)

High: needs to be able
to interpret drawings/
instructions and may require
longer training (leads to a
steeper learning curve)

6 Products Batches of identical
products

Products range from similar
to (but never identical to) to
radically different

7 Types of workstation
operations

Mostly repetitive with little
variety

Mostly nonrepetitive with
wide variety

8 Specialization Highly feasible Limited specialization

9 Planning Planning utilization
of facilities becomes
more predominant and
important

Planning development
of the product becomes
predominant, while facility
utilization planning becomes
less important

10 Organizational
structure

Hierarchical mostly Mix of hierarchical and
matrix organization

11 Customers Repetitive customers
possible to a high degree

Normally one-off customers
with low probability of
repeat order for same
product

J. Ross Publishing; All Rights Reserved

4  Mastering Software Project Management

of the customer (including functionality, quality, reliability, price, and schedule)
and conforming to international/national/customer/internal standards for per-
formance and reliability. Translation:

•	 A project is a temporary endeavor.
•	 A project has a definite beginning and a definite ending.
•	 No two projects will be identical, although they may be similar.
•	 Each project needs to be separately approved, planned, designed,

engineered, constructed, tested, delivered, installed, and commis-
sioned.

•	 A project may be stand-alone or a component in a larger program.
•	 A project is executed in phases, with an initiation phase and one or

more intermediate phases and a closing phase.
•	 Many projects have a transition phase (e.g., handover to customer).
•	 A project may extend through a maintenance phase.
A software development project (often shortened to software project) has the

objective of developing a software product or maintaining an existing software
product. Software development projects have several general attributes, including:

•	 The project has a definite beginning and a definite end.
•	 The project deliverable is functional software and related artifacts.
•	 Activities that may be included in a project are user and software

requirements, software design, software construction, software testing,
acceptance testing, and software delivery, deployment, and handover.

•	 Activities not included in a project are the activities of project selec-
tion/acquisition and post-handover.

Some of the more unique attributes of software development projects include:
•	 The primary output is not physical — in the sense that the primary

deliverable is functional software and no tangible components are
delivered — almost everything is inside a computer.

•	 Process inspection does not facilitate progress assessment — func-
tional software or at least the code is the real measure of progress. In
a manufacturing organization, one can see semifinished goods. The
proof of work being performed is in the noise made by machines. In a
software development organization, visual assessment is not enough
to ensure that a person is performing. One needs to walk through the
code being developed to ensure that the person is working.

•	 Despite significant progress in software engineering tools and dia-
gramming techniques, they do not rise to the level of precision of the
engineering drawings used in other engineering disciplines.

J. Ross Publishing; All Rights Reserved

Software Project Basics  5

•	 Professional associations in software development and standards
organizations have not defined standards or practices for devel-
oping software as has occurred in other engineering practices.
The International Organization for Standardization (ISO) and the
Institute of Electrical and Electronic Engineers (IEEE) have defined a
number of standards, but these standards are not at the same level of
granularity as other engineering standards.

•	 Although significant improvements in software development method-
ologies have been made, these methodologies are still largely depen-
dent on human beings for productivity and quality. Tools are available
to help in development or testing, but they still have not been able
to rise to the level set by the standards and tools used in fabrication/
inspection/testing in other engineering disciplines. In other engineer-
ing disciplines, tools are available that shift the onus for productivity/
quality from human beings to the combination of tools and process.
Most would agree that an average-skilled person can achieve higher
productivity/quality with tools than a super-skilled person without
tools.

Therefore, the rigor of planning is all the more important in software devel-
opment than in other engineering projects — planning is a critical tool to keep a
project focused. In other engineering projects, a simple schedule based on PERT/
CPM (Program Evaluation and Review Technique/Critical Path Method) would
suffice, whereas in software development projects, increased rigor and more
planning documents are required (planning documents commonly required are
described in subsequent chapters).

TYPES OF SOFTWARE PROJECTS

Software development projects (SDPs) are not homogenous. They come in
various sizes and types. Some examples will help us gain an understanding of the
breadth of SDPs:

•	 An organization desires to shift a business process from manual infor-
mation processing to computer-based information processing. This
project will include studying the user requirements and carrying out
all of the activities necessary to implement the computer-based system

•	 An organization desires to shift a business process from manual infor-
mation processing to computer-based information processing. The
organization does not want the software be developed from “scratch.” It
wants to use a commercial off-the-shelf software (COTS) product. This

J. Ross Publishing; All Rights Reserved

6  Mastering Software Project Management

project will include implementation and perhaps some customization
of the COTS product to make it appropriate for the organization.

•	 An organization has a computer-based system that needs to be shifted
to another computer system because the existing system has become
obsolete and support to keep the obsolete system in working condi-
tion is no longer available. This project could include porting the
code, training users, and testing the new implementation.

•	 An organization has a computer-based system and desires to shift it
from a flat file system to a RDBMS-based system (relational database
management system). Activities will include data conversion in addi-
tion to other activities.

•	 An organization has a computer-based information processing system
and needs to effect modifications in the software or add additional
functionality. Activities include adding functionality and making
required modifications in the software of a third party (if required).

•	 An organization has developed a computer-based information pro-
cessing system and wants to get it thoroughly tested by an inde-
pendent organization. Activities will include testing and interfacing
between the organizations.

These examples barely scratch the surface of the breadth of software proj-
ects — and new project types keep coming in. In all cases, however, the projects
concern software, but the tasks, activities, and therefore the work in each of the
projects are vastly different.

CLASSIFICATIONS OF SOFTWARE PROJECTS

Software projects may be classified in multiple ways (Figure 1.1). For example,
software projects may be classified as:

■	 Software development life cycle (SDLC) projects
•	 Full life cycle projects
•	 Partial life cycle projects

■	 Approach-driven software development projects
•	 “Fresh” development (creating the entire software from “scratch”)
•	 COTS product customization/implementation
•	 Porting
•	 Migration
•	 Conversion of existing software to meet changed conditions such

as Y2K and Euro conversion

J. Ross Publishing; All Rights Reserved

Software Project Basics  7

■	 Maintenance projects
•	 Defect repair
•	 Functional expansion
•	 Operational support
•	 Fixing odd behavior
•	 Software modification

■	 Web application projects
■	 Agile development projects

Let’s now discuss each type of software project in greater detail.

Based on Software Development Life Cycle
Full life cycle projects. A full life cycle project is a project that traverses the

entire arc of the methodology being used: starts at the beginning and ends at

Software Project Agile Development

Web Applicatio
ns

Co
nv

er
sio

n

Software Maintenance

Part Life Circle

Fu
ll

Li
fe

 C
irc

leFresh Development

M
igration

Porting

Customize a COTS Product and Implement

Figure 1.1. Software project types.

J. Ross Publishing; All Rights Reserved

8  Mastering Software Project Management

the end. One problem when discussing a full life cycle project is that there is no
standardization concerning what constitutes a software development life cycle
(SDLC). Generally agreed is that user requirements analysis, software require-
ments analysis, software design, construction, and testing (regardless of what they
are called) are parts of a SDLC. Some of the components of an SDLC that remain
in question include:

•	 A feasibility study determining whether the project is worthwhile
•	 Special testing that is beyond unit testing, integration testing, system

testing, and acceptance testing
•	 Implementation, including installation of hardware, system software,

application software, etc.
•	 Software commissioning, including creating master data files, user

training, pilot runs, parallel runs, etc.
In many instances, when the end product is used within the same organiza-

tion, these four components are considered part of an SDLC. Alternately, in other
circumstances, these components are excluded for organizations that specialize in
software development and/or develop software for use by a different organization
(unless contractually included or part of a software as a service architecture).

In this book, we exclude these four components. We assume that a full life
cycle project is one that starts with user requirements and ends with the delivery
of software. Therefore, all post-delivery activities and pre-user requirement activi-
ties are not considered to be within the scope of this book.

Partial life cycle projects. Partial life cycle projects are those that include only
a portion of the SDLC. In partial life cycle projects, any number of permutations
could occur, including:

■	 Testing projects in which the scope of the work involves conducting
the specified or necessary software tests on the software product to
certify the product (Unit testing and code walk-through are normally
not included in this type of project.)

■	 Independent verification and validation (IV&V) projects in which
projects go beyond mere testing, including code walk-through and
other forms of validation to determine the efficiency of coding

■	 A project divided between two or more vendors based on the specialty
to derive the advantages of best practices developed through special-
ization which can lead to defining the project by phase or by combina-
tion of phases, such as:
•	 Requirements analysis
•	 Design
•	 Software construction
•	 Testing

J. Ross Publishing; All Rights Reserved

Software Project Basics  9

Approach Driven
Fresh or new software development projects. Fresh or new software devel-

opment projects are identical to full life cycle development projects previously
discussed.

COTS product customization/implementation projects. Numerous popular
COTS products are available in the marketplace. Examples include the implemen-
tation of ERP (enterprise resource planning software, e.g., by SAP and PeopleSoft),
CRM (customer relationship management), SCM (supply chain management),
EAI (enterprise applications integration), and data warehousing software. Typical
phases in these projects include:

	 1.	 Current system study: a review of the present system
	 2.	 Gap analysis: a comparison of the current system to the COTS prod-

uct
	 3.	 Customization report: a discussion of the desired levels of custom-

ization of the system
	 4.	 Statement of work: definition of the required customization of the

COTS product
	 5.	 Design: how the software will accomplish the task
	 6.	 Construction and integration
	 7.	 Testing
	 8.	 Custom code integration: integration of the code bases (in some

cases it can include building a layer over the COTS product and
integration of custom developed code into the source code of the
COTS product)

	 9.	 COTS source code modification (rare)
	10.	 Implementation
	11.	 Training: instruction of users (all classes required) in usage of the sys-

tem, troubleshooting, and operations and maintenance of the system
	12.	 Transition of the system

Many variations of these phases are also possible for COTS projects.

Porting. Porting projects deal with moving software from one hardware plat-
form to another hardware platform. Porting projects can include:

•	 Changes in programming language
•	 Differences between implementations
•	 Manual intervention to make the existing software work on new hard-

ware without issues

J. Ross Publishing; All Rights Reserved

10  Mastering Software Project Management

Project execution work in a porting project involves:

	 1.	 Documenting the differences between the two versions of the pro-
gramming languages

	 2.	 Developing a software tool to make corrections in the code based on
the details mentioned above (Sometimes, vendors of the program-
ming language supply this type of tool.)

	 3.	 Execution of the software porting tool to make all possible corrections
	 4.	 Manual correction to make any specific corrections needed
	 5.	 Conducting the specified software tests
	 6.	 Modifications to the software engineering documents required to

reflect the changes made in the software
	 7.	 Conducting acceptance testing
	 8.	 Delivery of the software

Migration. Oftentimes, new versions of programming languages and data-
bases are released. For example, Visual Basic has gone through many versions:
from version 1 to 6 and then the release of the next set as 2003, 2005, and 2008.
Similarly, Oracle has gone through upgrades: up to version 11. Operating sys-
tems have also been upgraded. For example, Microsoft has had many upgrades
including MS-DOS, Windows, 2 and 3, and then 95, 98, 2000, XP, Vista, and
now Windows 7. When upgrades are released, upgrading software may become
necessary:

•	 To take advantage of new features and facilities provided in the newly
released version

•	 Because an older version is no longer available when additional hard-
ware or system software is installed or the existing software does not
function well on the new software (In these days of multitier Web-
based software architectures, an upgrade of any tier may necessitate
migration!)

•	 Because limitations existing in an older version are removed in the
new release and the existing software needs to be upgraded to remove
the limitations

Upgrades are typically due to the ever-changing environment and the
increasing needs of an organization. Of course, if the configuration of hardware
and software remains exactly same, and the existing software is meeting the user’s
needs, the software would not need to be upgraded. A new version, however,
could contain additional features and facilities that are totally absent in an older
version. Therefore, a software tool cannot be used to make the changes that are
necessary to port the software. To take advantage of new facilities and features
available in the newer version, manual changes are typically required and involve:

J. Ross Publishing; All Rights Reserved

Software Project Basics  11

	 1.	 Studying the new version
	 2.	 Deciding which new features are desirable and need to be imple-

mented
	 3.	 Developing a functional expansion design document detailing the

new features being implemented in the existing software
	 4.	 Running and upgrading the software (if an upgrade tool is provided

by the vendor)
	 5.	 Implementing the functional expansion design in the software cod-

ing and incorporating necessary software changes (may also include
correcting the existing code)

	 6.	 Conducting all the tests necessary to ensure that the software deliv-
ers all the functionality it was supposed to before migration and all
the functionality that is designed for the new software

	 7.	 Conducting acceptance testing and delivering the software
	 8.	 Data migration involving (sometimes the project scope may include

data migration):
•	 Mapping the old database schema to the new database schema
•	 Developing software/locating tools provided with the new data-

base (if any) to migrate data from the old database to the new
database

•	 Running the tools to migrate data from the old database to the
new database

•	 Arranging for data entry in the new database for those fields that
are absent in the old database, but present in the new database

•	 Testing the database for known cases using the software, com-
paring the results with the desired results, and making necessary
changes so that the new database is correct

•	 Integrating the database with the software

Specific migration projects may have different activities from the activities
described above.

Note: Porting and migration projects are similar. There is no strict distinction
between the two. Therefore, these two terms are sometimes used interchangeably.

Conversion. Year 2000 (Y2K) and Euro conversion projects are excellent
examples of conversion projects. Using a Y2K project as example, the work
includes verifying all programs for code limitations and then making any neces-
sary modifications. Typical activities in a conversion project include:

	 1.	 Studying the existing software and specifications of the necessary
conversion

J. Ross Publishing; All Rights Reserved

12  Mastering Software Project Management

	 2.	 Preparing a conversion guidelines document detailing the procedure
for incorporating the required modifications in the software

	 3.	 Developing a tool (if feasible) to automatically incorporate the modi-
fications in the software

	 4.	 Running the tools or hand coding the changes
	 5.	 Performing a manual walk-through of each program to locate the

remaining required modifications and implementing them
	 6.	 Conducting unit testing (and other tests as specified or as necessary)
	 7.	 Conducting acceptance testing
	 8.	 Delivering the software

In Euro conversion projects, some countries that did not make use of decimals in
their financial software had to incorporate decimals as well as provide for the use
of the Euro symbol.

Maintenance
Software maintenance projects are major money makers for software develop-
ment organizations that are dependent on outsourcing. We need, however, to
relax the specific beginning and ending requirements to call software mainte-
nance a project. In a software maintenance project, generally there is a contract
between the parties to take care of a specific application for a given period of time,
e.g., 1 or 2 years, but a contract can be extended as long as both parties remain
satisfied with each other’s performance or as long as the application is in commis-
sion. An overall contract would specify:

•	 Billing rates
•	 Mode of requesting work
•	 Service level agreement (SLA) specifying the priorities and turn-

around times
•	 Persons authorized to initiate/authorize work requests, accept deliver-

ies, give clarifications
•	 Escalation mechanisms
•	 Billing cycles and payment schedules

This list could go on forever, depending on the specific needs and the “pain” of
the organizations.

Normally, a maintenance work request (MWR) triggers software maintenance
work. An MWR can be known by other terms, depending on the organization:

•	 Program modification request (PMR)
•	 Program change request (PCR)
•	 Defect report
•	 Software change request

Again, this list can also go on forever.
J. Ross Publishing; All Rights Reserved

Software Project Basics  13

Contractually, an MWR is expected to have proper authorizations and to
have them in advance. However, for an immediate need, a telephone call, a fax,
or an email can also be used and later regularized through raising an MWR, i.e.,
post-facto (although frowned upon as potentially leading to loss of control).

Work included in a software maintenance project is classified into five types:
defect fixing, operational support, fixing odd behavior, software modification,
and functional enhancement.

Defect repair. Defect fixing work involves fixing a reported defect. A defect
may be classified as:

•	 Critical (a “show-stopper”)
•	 Major (hinders smooth functioning of work)
•	 Minor (mostly a nuisance; work is not affected)
Typically, defect fixing has an associated SLA in which the turnaround time

for each class of defect, based on priority, is defined (i.e., the time between when
a defect is reported until the time it is fixed, the regression test is completed, and
the software is handed over to production). Sometimes, the turnaround time can
be as little as hours or minutes, depending on the application and the needs of the
organization. Normally, the maximum turnaround time for fixing a defect would
be about 2 days. In a defect-fixing scenario, follow-up and progress reporting are
frequent and close together. Generally, the steps in fixing a defect include:

	 1.	 Studying the defect report
	 2.	 Replicating the defect scenario in a development environment
	 3.	 Studying the code
	 4.	 Locating the defect
	 5.	 Fixing the defect, conforming to code change guidelines
	 6.	 Arranging for peer review and implementing feedback (if any)
	 7.	 Arranging for independent regression testing and implementing

feedback (if any)
	 8.	 Delivering the fixed code to production for implementation in the

production system
	 9.	 Closing the request

Functional expansion. When additional functionality is required in existing
software, functional enhancement is the tool to achieve it. Functional enhance-
ment work is generally of longer duration and may range from a calendar week
upward. Work included in functional enhancement includes:

•	 Adding a new screen or report
•	 Adding additional processing functionality (e.g., quarterly/half yearly/

yearly processing)

J. Ross Publishing; All Rights Reserved

14  Mastering Software Project Management

•	 Adding a new module in the software
•	 Integrating with another software
•	 Building interfaces with other software
•	 Adding new hardware and building an interface to the new hardware

in the existing software
Functional expansion generally fits the full SDLC model in which the proj-

ect leverages the full software engineering process and the project management
process and can be treated as an independent project if the duration is sufficiently
long enough. The level of process rigor required is typically driven by risk. Each
organization has a different definition of a project that should be treated as a
functional enhancement project. For example, in one organization, a functional
enhancement project is defined as “work with the duration of one person-month
of effort or more,” while in another, the definition of a functional enhancement
project is “40 hours of effort.”

Operational support. Operational support is similar to defect fixing. Many
times, operational support requires immediate attention. Activities under opera-
tional support include:

•	 Running periodic jobs (end of day/week/month)
•	 Taking backups
•	 Restoring from backups
•	 User management functionality (including creation, deletion, and

suspending of user accounts and changing access privileges, etc.)
•	 Providing “hand-holding” assistance at a specific workstation
•	 Extracting data and producing an ad hoc report on an urgent basis
•	 Providing a temporary patch so that operations may continue
•	 Investigating operational complaints

Again, the list of activities is long and varied.

Fixing odd behavior. In large, complex software systems, and in systems that
have been in existence for many years and have undergone software maintenance
(e.g., defect fixes, software modifications, and functional expansions), random
defects may often crop up under some circumstances, but not in others. These
random defects are generally difficult to replicate in a development environment.
One reason is because the defect occurs in the field and the person witnessing the
defect does not note the chain of events that caused the defect. So until the defect
becomes chronic, it might have been handled as an operational support activity
and not have been recognized as defect. Such puzzling defects can be placed in
the odd behavior category of software maintenance. Odd behavior can be caused
by the application software or the system software, a client workstation or a virus,

J. Ross Publishing; All Rights Reserved

Software Project Basics  15

network security, or a combination of all of these. Diagnosing and correcting odd
behavior issues may take longer than a week because correcting odd behavior is
similar to conducting research. General steps in fixing odd behavior include:

	 1.	 Studying the odd behavior report
	 2.	 Trying to replicate the behavior scenario in a development environ-

ment
	 3.	 Studying the code
	 4.	 Listing all possible alternative reasons for the reported behavior
	 5.	 Reviewing the code for each alternative for possible opportunities

for improvement
	 6.	 Iterating/eliminating all causes, one by one
	 7.	 Fixing all possible opportunities for code improvement
	 8.	 Arranging for peer review
	 9.	 Arranging for independent regression testing
	10.	 Delivering the software to production for implementation of

improved code in the production system
	11.	 Waiting for another report of the identical odd behavior and repeat-

ing all the above steps.
	12.	 Keeping the request open through a period of observation

Software modification. Software modification work is the bulk of software
maintenance in most organizations. Modification of working software is neces-
sitated due to:

•	 Changes in requirements mainly due to changed conditions occurring
over a period of time

•	 Changes in business processing logic
•	 Convenience for users
•	 Changes in statutory requirements
Often, modifications include changes to reports, changes to screens by mov-

ing around data fields, adding or deleting a data field or two, or some other small
enhancement. Steps in the process of software modification include:

	 1.	 Studying the software modification request
	 2.	 Analyzing the existing software to identify components that require

modification
	 3.	 Preparing a design modification document and obtaining approval

from appropriate executives
	 4.	 Implementing the approved design modification in the code
	 5.	 Arranging for peer review of the modified code

J. Ross Publishing; All Rights Reserved

16  Mastering Software Project Management

	 6.	 Arranging for independent functional testing of the modified func-
tionality — to ensure that it conforms to the approved design docu-
ment — and implementing feedback (if any)

	 7.	 Arranging for independent regression testing and implementing
feedback (if any)

	 8.	 Delivering the modified artifact to production for implementation in
the production system

	 9.	 Closing the request

Web Application
Web projects refer to Web-based application development projects. Web projects
differ from other projects because they have more than two tiers:

•	 Presentation tier
•	 Database server tier
•	 Application server tier
•	 Web server tier
•	 Security server

A Web application consists of:
•	 HTML pages that include graphics to enhance the “look and feel” of

the Web pages
•	 Backend programs for data manipulation
•	 Middleware programs for application server or rules engines
•	 Middleware programs for security management
•	 Other application-specific programs
Another notable feature of Web applications is that backend programming

and middleware programming may be in different programming languages and
may require persons with different skill sets, even for the same project. Another
request is for independence from databases and Web browsers, which neces-
sitates coding routines that are not oriented toward functionality. Additionally,
a Web application needs to be developed so that it facilitates an easy change of
code. Environmental changes that have nothing to do with the organization, e.g.,
a new security threat, the release of a new browser, or the upgrade of an existing
browser, etc., can also trigger software maintenance in a Web application — even
though the functionality remains unaltered. Web-based and client server projects
have a very similar profile.

J. Ross Publishing; All Rights Reserved

Software Project Basics  17

Agile Development
Agile software development refers to a group of software development meth-
odologies based on iterative development, in which requirements and solutions
evolve through collaboration between self-organizing, cross-functional teams.
(Agile project management is discussed at length in Chapter 11.)

CONCLUSION

Software projects are basically projects with a definite beginning and a definite
ending, except that the final end product delivered is not physical. Software
projects come in various types and sizes. Product maintenance in software is also
treated as a project — unlike physical product maintenance. This chapter defines
software projects as well as enumerates the different types of projects, laying
a foundation for better assimilation of the science and art of software project
management. Subsequent chapters will deal with the subject of software project
management, building on this foundation.

This book has free material available for download from the
Web Added Value™ resource center at www.jrosspub.com

J. Ross Publishing; All Rights Reserved

J. Ross Publishing; All Rights Reserved

2

APPROACHES TO SOFTWARE
PROJECT MANAGEMENT

Software project execution has two components, namely, software engineering
and management. Software engineering consists of all of the technical activities
that are performed to build the project deliverable (the “just build it” activities).
Software engineering deals with constructing the components, integrating them,
verifying them, validating them, and finally combining all of the components
into a product and convincing the customer to accept delivery of it. Management
facilitates software engineering so that the project deliverable is completed on
time, efficiently and effectively, and without defects.

ALIGNMENT OF SOFTWARE ENGINEERING METHODOLOGY
WITH PROJECT MANAGEMENT METHODOLOGY

There are two general schools of thought about the linkage of the software engi-
neering and management methodologies: tightly coupled and loosely coupled.

Tightly coupled. One school of thought maintains that both of the method-
ologies are tightly coupled and that management is completely dependent on the
software engineering methodology adopted for building the project deliverable.
Therefore, project management needs to be tightly interlaced with software engi-
neering.

Note: In some software engineering methodologies, such as agile methods, the
distinction between software engineering and project management is somewhat
blurred. In this situation, the argument is that the SPM or software project manager

19J. Ross Publishing; All Rights Reserved

20  Mastering Software Project Management

acts as a coach because the primary responsibility of an SPM is to be the voice of
the people and a leader rather than a director.

Loosely coupled. In the other school of thought, the two aspects of software
engineering and management are loosely coupled, but they do influence each
other. Therefore, each aspect needs some amount of tailoring to suit the other.
Additionally, in this school of thought, project management is considered to
have multiple objectives, with the primary objective being to build the deliver-
able. Other objectives include management of the schedule, productivity, quality,
resources, morale, customers, and profit. In the loosely coupled school of thought,
an SPM is to be a manager first and to be aware of the software engineering meth-
odology second.

Briefly, software engineering methodologies include waterfall, incremental,
spiral, object-oriented, use case-based (unified modeling language), and agile
methods of various types. These methodologies are also commonly referred to
as SDLCs (software development life cycles). Agile methods include extreme
programming (XP), scrum, clear case, feature-driven development, test-driven
development, dynamic systems development, rational unified process (RUP,
the agile version), adaptive software development, and pragmatic programming.
Agile methods, with the exception of RUP, encourage only the development of
the minimal required documentation associated with the software’s development.
RUP, however, is an exception because RUP is a detailed software engineering
process that includes levels of documentation that are similar to other types of
methods.

The alignment of the project management methodology to the software devel-
opment methodology is driven by a number of factors, such as organizational size
and the form of software engineering used on a particular project. For example,
in a small organization in which the owner is a technical person who is actively
involved in project activities, the management methodology can completely align
with the software engineering methodology. In other cases, e.g., when types of
projects and project management styles are more varied, using disparate software
engineering methodologies, then aligning the project management methodology
completely with the software engineering methodology, is problematic.

A completely aligned project management methodology is suitable for
smaller, more homogenous organizations, while less homogenous organizations
should have a project management methodology that is decoupled from the soft-
ware engineering methodology of the project. Because the methodology of soft-
ware engineering used on a project has an impact on project management, each
project will need to have the management methodology tailored to some extent to
align with the software engineering methodology.

J. Ross Publishing; All Rights Reserved

Approaches to Software Project Management  21

THE AD HOC METHODS-BASED APPROACH

By definition, ad hoc methods are not documented and are dependent on the
involved parties. In an ad hoc method approach, a software project manager
(SPM) is given almost absolute control within a general policy framework that
tends to be rather flexible. In organizations that allow ad hoc methods, manage-
ment typically dictates policy and then modifies the policy as necessary or when
convenient. In this situation, often the management style also reflects the person-
ality of the leader of the organization. Management driven by the personality of
the leader is classically referred to as “hero-driven” management. In organizations
with hero-driven management, success is more luck than process supported.

Advantages of the ad hoc methods approach are that it:
•	 Fits a dynamic environment
•	 Allows the leader to have absolute control
•	 Is perceived to allow very fast response to environmental changes
•	 Can be the least costly, and the most profitable, methodology (with a

well-seasoned SPM and if nothing surprising happens)
•	 Is perfect for pinning the blame for failure on one person (Always

have your CV ready!)
•	 Reduces process overhead activities to nearly zero (e.g., process defi-

nition, maintenance groups, measurement, and analysis)
•	 Permits the principle of “unity of command” to be implemented (can

be a great motivator for people involved in a project)
•	 Leads to a sense of “heroism” in management styles

Disadvantages of the ad hoc methods approach are that it:
•	 Creates uncertainty in the workplace
•	 Fosters a leader-centric environment rather than an environment

driven by organizational and project goals
•	 Centralizes authority: lose the leader, lose the project
•	 Results in outcomes being unpredictable (because they are person-

driven)
•	 Focuses on people monitoring rather than on overall project monitoring
•	 Causes organizational bandwidth (the capability of the organiza-

tion to handle multiple projects concurrently) to be dependent on a
leader’s capacity (to manage multiple projects simultaneously, work
long hours, etc.)

•	 Causes growth in an organization to be limited by the capacity of an
SPM

J. Ross Publishing; All Rights Reserved

22  Mastering Software Project Management

•	 Leads to deterioration of morale in the workplace due to the encour-
agement of an undesirable, ego-driven environment (e.g., encourages
an increase of self-serving sycophants)

•	 Hinders (or makes impossible) the development of leaders from
within the organization (employees work in their own “cocoons”)

•	 Hastens the inevitability of failure of human endeavors
All in all, the ad hoc method approach might produce some grand successes,

but these successes are not sustainable. Because of the inevitability of failure in
human endeavors, the impact on the organization can be severe: failure cripples
an organization — from which it may not recover. Despite the risks, however,
ad hoc approaches to software project management continue to be adopted by a
significant number of organizations.

THE PROCESS-DRIVEN APPROACH

Organizations using a process-driven approach are characterized by having docu-
mented processes for all activities. Individuals must also be knowledgeable in the
processes that concern them to be effective and efficient.

An organization that adopts a process-driven approach to software project
management recognizes that the onus is on the organization as well as the indi-
vidual SPM for ensuring continued project successes. The organization facilitates
the execution of projects by providing the processes, the tools, a knowledge repos-
itory, the training, and expert assistance as needed to help the SPM(s). In other
words, the organization’s infrastructure enables successful execution of projects
by the SPM. In addition to facilitation, the organization also has the responsibility
of project oversight, monitoring, measurement, and benchmarking and effecting
improvements in processes, tools, and the knowledge repository to continuously
keep the organization well honed.

Each SPM is responsible for executing projects while diligently conforming
to defined processes provided by the organization. SPMs also are responsible for
providing feedback, suggestions, and support for the organizational initiatives in
continuous improvement of processes, tools, and the knowledge repository.

In a process-driven organization, the organization and the SPM work in a
close-knit manner, complimenting each other’s efforts. The goal of the process-
driven approach is to achieve uniformity across the organization in project
execution regardless of the SPM involved. An often-mentioned benefit of the
process-driven approach is that it enables the free movement of people from proj-
ect to project with no discernable impact on project execution.

Advantages of a process-driven approach to software project management
include:

J. Ross Publishing; All Rights Reserved

Approaches to Software Project Management  23

•	 Minimizes the person-dependency of project management
•	 Enables a beginner in project management to perform like an expert

and an expert to excel
•	 Facilitates the “plowing back” of experience gained from project exe-

cution into the process (As a result, every project execution enriches
the process.)

•	 Equips everyone with the best practices in the process culled from
project execution.

•	 Monitors projects rather than people
•	 Involves the organization in project execution and organizational

expertise, not only from the process, but also from senior executives
whose considerable experience influences project execution and sup-
ports its continued success

•	 Provides uniformity of project execution across the organization,
irrespective of the people involved in the project, which leads to orga-
nizational maturity

•	 Facilitates measurement, resulting in fair performance appraisals,
which makes possible real morale improvement in an organization
(Having measurements also facilitates benchmarking the organiza-
tional performance with similar organizations and enables improve-
ment thereof.)

•	 Builds the basis for predictability in project execution
•	 Enables all-round participation; iteratively drives an organization

toward excellence
•	 Promotes the recruitment and induction of new people into projects

because process-driven processes facilitate raising newcomers’ perfor-
mances to acceptable levels quickly

All in all, a process-driven approach facilitates person-independence in proj-
ect execution, while facilitating process improvement and moving toward unifor-
mity in project execution across the organization — characteristics that tend to
foster organizational excellence.

SO, WHAT IS THE RIGHT APPROACH?

The field of software development is characterized more by diversity than by
homogeneity. Therefore, attempting to prescribe one “right” approach is neither
feasible nor appropriate. Although this book deals with software project man-
agement from the viewpoint of an organizational approach to software project
management that utilizes a process-driven approach, we will briefly describe the
characteristics of the ad hoc approach.

J. Ross Publishing; All Rights Reserved

24  Mastering Software Project Management

The Ad Hoc Approach
An ad hoc approach will serve well organizations in which:

•	 The organization is small.
•	 The number of SPMs in the organization is small (e.g., two or three).

Having a few SPMs facilitates resolution of differences between the
methodologies adopted by the SPMs through progress-monitoring
meetings. Small organizations do not need to have a set of docu-
mented project references. The senior manager can ensure uniformity
through personal intervention and act as the resolution mechanism
when there are differences of opinion.

•	 The number of concurrent projects is five or less. Having a small
number of projects also makes resolution of differences in project
execution easier.

Most organizations that evolve in an organic manner start small, typically
beginning with an ad hoc approach to software project management. As the
organization grows and takes on more projects, the workload increases, putting
pressure on the human resources. As this pressure on the human resources builds
up, two things can happen: the organization buckles under the pressure and
moves toward stagnation, failure, and closure or the organization moves toward
a process-driven approach.

The Process-Driven Approach
When an organization embraces a process-driven approach, it first adopts a pro-
cess improvement philosophy and the development of processes to cover project
management. Then the organization moves on to address additional organiza-
tional areas and movement toward a more mature process — which would seem
to be a natural progression. However, embracing a process-driven approach pro-
actively when an organization is at the “take-off” stage is better than having to be
forced to do so by the complexity created from the sheer volume of work.

But Is a Process-Driven Approach the Right Choice?
Some organizational activities are already process-driven. For example, in almost
every country, through statutes, financial accounting is the first activity to adopt a
rigorous process, especially in companies or organizations that handle funds from
the public. Strict internal controls and external verification through audits are also
mandatory. In addition to auditors, other statutory groups act as “watchdogs”
over these organizations.

Human resources (HR) departments are often the next area that adopts
a process-driven approach. The need for a process-driven approach in HR

J. Ross Publishing; All Rights Reserved

Approaches to Software Project Management  25

departments, however, results from the need to ensure fairness to candidates
approaching the organization for employment and to ensure that the right human
resources are supplied within the organization. Additionally, the unionization of
workers as well as other statutes enacted to ensure fair working/hiring conditions
increase pressure on organizations to adopt a process-driven approach in their
HR departments. In these two examples, each department has an objective of
ensuring fairness, but their main objective is to deliver actual results.

In the project environment, however, the aspect of fairness in delivering
results is not mandated by any statute. Thus adopting a process-driven approach
for reasons of fairness is optional, which leads some organizations to disapprove
of a process-driven approach. In these organizations, some even go so far as to say
that any process-driven approach is a restriction of their freedom to act creatively.
In organizations that do not practice process-driven management, but prefer ad
hoc methods of project management, often heard are statements such as “results
at any cost” and “by hook or by crook.” Other statements that indicate an ad hoc
project management approach are hearing a senior manager tell subordinates, “I
do not know (or care) how you do it — but I want it by ….”

If all of the “heroic” types are curtailed, and a true factory approach replaces
a project-oriented environment, when success is realized, all of the stakeholders
are heroes, not just a few individuals! Continued success leads to the organization
becoming “heroic” as well. As a result, all of the employees perceive that they are
wearing the “crown of a hero” — something all organizations striving for excel-
lence pursue. Organizational success belongs to its people. For example, employ-
ees of organizations such as IBM, Microsoft, GE, etc. often feel heroic, while
employees at other less successful organizations have “chips on their shoulders”
and often are jealous of these heroic organizations.

Conversely, an organization that adopts the ad hoc approach produces heroes
by luck or chance, while a process-driven organization makes everyone in the
organization a hero/heroine! An organization that adopts an ad hoc approach
may survive on the heroics of its employees, but a process-driven organization
runs like a well-oiled machine, without the necessity of wide-scale heroics by
anyone.

From the beginning, however, software engineers have resisted any move
toward adopting a process-driven approach. For example, the waterfall model was
the first process-driven approach to software development, but in today’s envi-
ronment, more people continue to hate the waterfall model rather than to love
it. As a result, many other approaches, namely, rapid application development
(RAD), joint application development (JAD), incremental, and agile methods
(e.g., XP, scrum), were developed to replace the waterfall methodology. Although
methodologies come and go, and some are forgotten, interestingly the waterfall
model is still in the mix.

J. Ross Publishing; All Rights Reserved

26  Mastering Software Project Management

Even today, strong resistance to the process-driven approach continues and
numerous write-ups continue to extol the virtues of ad hoc approaches to project
management. So our advocacy of the process-driven approach is fraught with the
prospect of stiff resistance. Still, we believe that the process-driven approach is a
means to assure project success — the first time and almost every time. We think
the process-driven approach ensures organizational success in the short term as
well as in the long term.

In a Process-Driven Approach: What Process and How Much?
Once we decide to adopt a process-driven approach, the next questions to address
are what type of process should we adopt and how deeply should the process pen-
etrate into organizational functioning?

When deciding about the type of process to use, there are two predominant,
popular, process standard frameworks: ISO 9000 (of the International Organization
for Standardization) and CMMI (Capability Maturity Model Integration of the
SEI, the Software Engineering Institute of Carnegie Melon University). ISO covers
the entire organization, while CMMI covers activities that are specifically relevant
to software and hardware products. Both frameworks advocate a process-driven
approach. The nuts and bolts may differ, but the main premise remains similar.
Although, there are other frameworks, these two are predominant.

So, what does a process-driven approach contain? From a simple point of
view, a process-driven approach consists of:

•	 Processes for carrying out the activities
•	 Agencies responsible for carrying out the activities
•	 Processes for ensuring that quality is built into the deliverables
•	 Agencies responsible for assuring quality in the deliverables
•	 Processes for defining and maintaining organizational processes
•	 Agencies responsible for defining and maintaining organizational

processes
•	 Processes for measuring and analyzing the process performance
•	 Agencies responsible for measurement and analysis of process perfor-

mance
In short, a process-driven approach contains defined methods for carrying out
the work as well as the checks and balances necessary to ensure that the processes
deliver results and that everyone adheres to the processes.

A simple framework for project management is comprised of project acqui-
sition, initiation, execution, and closure. Once acquired, project processes and
project management processes begin with project initiation followed by project
execution and project closure. Thus, at the project level, there should be project
management processes for:

J. Ross Publishing; All Rights Reserved

Approaches to Software Project Management  27

•	 Project initiation
	1.	 Review and revision(s) of preliminary estimates
	2.	 Identification and acquisition of necessary resources
	3.	 Finalization of service level agreements (SLAs) between various

stakeholders of the project
	4.	 Preparation of project plans
	5.	 Conducting induction training for team members
	6.	 Kickoff of project

•	 Project execution
	1.	 Work management
	2.	 Configuration management
	3.	 Quality management
	4.	 Productivity management
	5.	 Team management
	6.	 Customer management
	7.	 Measurement and analysis
	8.	 Project monitoring
	9.	 Reporting and escalation
	10.	 Project delivery
	11.	 User training
	12.	 Documentation

•	 Project closure
	1.	 Release of project resources
	2.	 Documentation of best and worst practices as well as lessons

learned in the project
	3.	 Identification of reusable components and documentation of

their design and usage
	4.	 Updating of the skills database
	5.	 Updating of the knowledge repository with lessons learned and

best and worst practices
	6.	 Updating of the code library with reusable components
	7.	 Conducting the project postmortem
	8.	 Conducting a knowledge-sharing session
	9.	 Release of the software project manager (SPM)

In addition to project acquisition, initiation, execution, and closure, which
are the core phases of project management, the organization also has a role in
ensuring the success of projects; hence, project management should also have
organizational-level processes for:

■	 Project acquisition
	1.	 RFP (request for proposal) scrutiny (a feasibility study in the case

of internal projects)J. Ross Publishing; All Rights Reserved

28  Mastering Software Project Management

	2.	 Cost estimation
	3.	 Proposal preparation and submission
	4.	 RFP follow up
	5.	 Obtaining the order (obtaining budget approvals in the case of

internal projects)
■	 The PMO (project management office)

	1.	 Project initiation
◆	 Identification of software project manager (SPM)
◆	 Allocation of resources for the project
◆	 Finalization of SLAs (service level agreements) between various

stakeholders of the project
◆	 Kickoff of project

	2.	 Project execution
◆	 Project monitoring
◆	 Exception reporting
◆	 Measurement and analysis at the organization level

	3.	 Project closure
◆	 Takeover of project records
◆	 Coordination of knowledge sharing

■	 Measurement and analysis
	1.	 Measurement procedures
	2.	 Analysis procedures
	3.	 Process capability determination procedures
	4.	 Metrics reporting procedures

■	 The training process
1.	 Identification of organizational training needs
2.	 Fulfilling skill gaps uncovered during training needs analysis
3.	 Maintaining a skill database for all organizational human resources
4.	 Maintaining a training material repository as part of the organi-

zational knowledge repository
5.	 Taking ownership for maintaining the organization at the cutting

edge of the organization’s chosen area of expertise
■	 The knowledge repository process

	1.	 Identifying components of the organizational knowledge repository
	2.	 Designing, building, and maintaining the organizational repository
	3.	 Periodically carrying out cleanup of the repository

■	 Process engineering group processes
	1.	 Defining and maintaining organizational processes
	2.	 Defining process and quality audit processes
	3.	 Defining roles and responsibilities

J. Ross Publishing; All Rights Reserved

Approaches to Software Project Management  29

■	 Software engineering processes
1.	 Requirements processes
2.	 Software design processes
3.	 Software construction processes
4.	 Software testing processes

With the exception of the software engineering processes, all of these processes
will be discussed in detail in subsequent chapters.

Briefly, software engineering processes describe the technical side of software
development. There are several methodologies for software engineering; however,
a detailed description of these methodologies is beyond the scope of this book.
In subsequent chapters, however, we will discuss the influence that each of these
methodologies exercises on software project management.

This book has free material available for download from the
Web Added Value™ resource center at www.jrosspub.com

J. Ross Publishing; All Rights Reserved

J. Ross Publishing; All Rights Reserved

3

SOFTWARE PROJECT
ACQUISITION

The first activity in software project management is the acquisition of a project.
Project acquisition is an activity carried out primarily by a business acquisition
team with the assistance of a technical team. (In smaller organizations, project
acquisition can be conducted by a single person or a team, depending on the
distribution of labor. Key to remember is that the tasks required to seek out
and acquire the work must be accomplished by someone — whether by a single
person or by a team is immaterial.) Deciding on the project to be undertaken is
a very important strategic activity because the decision made will have a huge
influence on the organization’s financial health and profitability. Project acquisi-
tion should therefore be a collaborative activity between the business acquisition
team, technical team, finance team, and senior management. The focus of senior
management is from a strategic perspective.

Two typical project acquisition scenarios are acquisition from an external
client and acquisition from an internal source. Each of these scenarios has a dif-
ferent workflow.

FROM AN EXTERNAL CLIENT

In a scenario in which a project is acquired from a prospective client (an external
organization), the project is to be a revenue-generating device. Characteristics of
a project from a prospective client include:

•	 The project will result in revenue for the acquiring organization from
the external client.

31J. Ross Publishing; All Rights Reserved

www.ebook3000.com

http://www.ebook3000.org

32  Mastering Software Project Management

•	 The software product resulting from execution of the project will be
used or resold by the external organization.

•	 The external organization will impose stipulations on quality, sched-
ule, and cost.

•	 End users will typically not be directly accessible to the software devel-
opment team. (The development team interacts with the end users via
a proxy.)

Project acquisition from a prospective client follows several steps:

	 1.	 The request for proposal
	 2.	 The proposal

•	 Software estimation
•	 Delivery commitments
•	 Pricing the proposal
•	 Preparing the proposal

	 3.	 Negotiation
	 4.	 Contract acceptance

These steps will now be explained in greater detail. The process of acquiring a
project from an external customer is also depicted in Figure 3.1.

The Request for Proposal
Usually, project acquisition begins with an RFP (request for proposal), or alter-
nately with an RFI (request for information), from a prospective client. An RFP
is obtained from a prospective client by the organization’s business acquisition
team. (Because obtaining an RFP is a core marketing activity, obtaining an RFP
is therefore not covered in this book.) The RFP document normally contains the
following:

•	 Name of the prospective client and other details about the client
•	 Name of the project and other details about the project
•	 Contact details for the project coordinator of the prospective client
•	 Scope of the work and terms of reference
•	 Bidding details, including the format of the bid document (either a

single-bid system, technical bid and financial bid in one document; or
a two-bid system, technical bid and financial bid in two different docu-
ments and submitted separately); any requirements for a bank guaran-
tee/earnest money deposit toward project execution warranty; etc.

•	 Procedure for evaluating bids that are received by the prospective client
•	 Important dates, including the date for requesting clarifications; the

date for submission of bid; the date for awarding of the project; etc.

J. Ross Publishing; All Rights Reserved

Software Project Acquisition  33

Sales Obtains an RFP Technical Proposal

Review of Technical Proposal

Financial Proposal by Marketing

Review of Financial Proposal

Order/Project

Proposal to
Customer

Managerial Review of Proposal

Technical Negotiations
Commercial Negotiations

Input for Financial Proposal
from Finance Department

Software
Estimation

Delivery
Commitments

Pricing

$ $

Figure 3.1. Project acquisition from an external customer.

J. Ross Publishing; All Rights Reserved

34  Mastering Software Project Management

Usually, the business acquisition team initially reviews an RFP to ensure
that the information contained in the RFP is complete. Next, the RFP is passed
on to the project management office (PMO) or to the head of the technical team
responsible for delivery to clients. Then the RFP is assigned to a software proj-
ect manager (SPM) for preparation of the technical proposal. To determine the
feasibility of execution, the SPM reviews the RFP to ensure that areas describing
the scope of work and the terms of reference and suggested technology, if any,
are complete. Then the SPM prepares the software estimate for the project. Other
components of the estimate (e.g., hardware, business processes, etc.) are handled
by the appropriate project managers or management groups.

The Proposal
Arriving at the proposal includes software estimation, delivery commitments, pric-
ing the proposal, and preparing the proposal, which will now be explained in more
detail.

Software estimation. Software estimation is carried out at this point to set a
price for the proposal. Estimators need to keep in mind that software estimation
assists project pricing, but is not the same as project pricing. Project pricing is a
commercial decision. (Pricing methods will be described later in this chapter.)
Software estimation has four dimensions:

•	 Estimation of the size of the software product to be produced
•	 Estimation of the effort in person hours or person days that will be

required to develop the specified software product
•	 Estimation of the cost that will need to be expended to execute the

project
•	 Estimation of the duration (schedule) in calendar days or months that

are necessary to execute the project
At this stage, the purpose of software estimation is to:

•	 Assist in the pricing decision (because the software development
effort is a major cost component in the price of the project)

•	 Estimate the resources required to execute the project (human,
machine, money, and duration)

•	 Assist the decision makers in determining whether the organization
has adequate bandwidth in terms of resources to execute the project
as detailed in the RFP

•	 Assist the decision makers in making delivery commitments to the
prospective client

J. Ross Publishing; All Rights Reserved

Software Project Acquisition  35

Many methods are used to develop an estimate, ranging from parametric
models to relational estimates. Usually, the SPM carries out the software estimation
based on the organization’s software estimation process. The estimates are then
subjected to peer and managerial reviews. After implementing the review feed-
back, if any, and closing the review reports, the SPM submits the software estimate
directly to the requestor or makes it a part of the technical proposal. (Software
estimation is an independent subject and hence is not covered in this book. A
suggested source of additional information on this topic is Software Estimation —
Best Practices, Tools and Techniques by Chemuturi.1)

Delivery commitments. Delivery commitments are usually a part of a techni-
cal proposal, but as in project pricing, keep in mind that delivery commitments
are also a commercial decision. Delivery commitments depend on:

•	 The prospective client’s requirements/urgency
•	 The competition (which might offer shorter delivery commitments)
•	 The possibility of a future project that will require the release of

resources from this project
•	 Any other specific reason

Note: The schedule should not be influenced by the above considerations. If a
shorter schedule is committed to by the decision makers, explore ways to meet the
commitment: either by the infusion of more resources or more expert resources,
or by subcontracting a part of the project, or by the project team taking on more
stress.

Pricing the proposal. Pricing is a complex interaction of various factors,
including commercial considerations, the perceived necessity/desirability of
acquiring the project, the opportunity at hand, and pricing models — consider-
ations which dictate pricing for a project. Pricing strategies include:

■	 Order book position: If an organization’s order book is empty (no
ongoing projects at the present or none in the near future), the organi-
zation might price a project low, so that at least the project will pay the
organization’s variable costs. Conversely, if the organization’s order
book is full (at the present as well as in the near future) and it does
not wish to expand its capacity, the organization might price a project
high.

■	 Necessity to obtain an order: Sometimes winning a particular order is
critical for reasons other than just the need to fill the order queue. In
this situation, an organization might price a project just low enough
to win the bid. Reasons for this scenario include:
•	 The project will open up avenues of future business.

J. Ross Publishing; All Rights Reserved

36  Mastering Software Project Management

•	 The project will provide significant visibility.
•	 The project will generate significant free publicity.
•	 The project will provide an opportunity to train a number of the orga-

nization’s resources (personnel) in a cutting-edge technology, from
which the organization can win future orders at higher margins.

•	 The project will result in the organization gaining a foothold in a
new and lucrative market.

■	 Desirability of winning the order: Sometimes an organization does not
desire to obtain the order, but must pursue a particular client’s busi-
ness for “political” reasons. In this situation, one strategy is to price
the project so high that the organization is certain not to win the bid.
Reasons for this scenario include:
•	 The organization does not have the technology to execute the

order.
•	 The organization does not wish to do business with the client (per-

haps the client is slow to pay or otherwise has a bad reputation),
but there is a strong business reason to answer the RFP.

•	 The project involves obsolete technology or technology that is
becoming obsolete, causing the organization’s resources to be dis-
interested in the project or unwilling to work on it.

■	 Stiff competition in the field: The organization might price a project
with a bare minimum profit margin just to compete with other orga-
nizations.

■	 Monopolistic: Sometimes an organization is in the unique position of
being the only supplier of a product or service. In this situation, the
organization exploits (skims) the opportunity and gets as much rev-
enue from the order as possible. In this situation, pricing is focused on
maximizing the return from the project.

■	 Oligopolistic: An organization might collaborate with other vendors
in the market to establish one price for a product or service that is
profitable for all of the vendors involved. (The authors note that this
strategy is of questionable legality, especially in North America and
Europe, but oligopolistic activity does occur; therefore, it is included
for completeness.)

■	 Repeat orders. The organization offers a service to an existing cus-
tomer at a price that is fair to both the organization and the customer.

■	 New market opportunity. If an order facilitates entry into a new mar-
ket — either geographical- or domain-based — the organization will
establish pricing in a manner that maximizes its chances of getting the
order.

J. Ross Publishing; All Rights Reserved

Software Project Acquisition  37

Let’s now look at the pricing models that are applicable to software projects.
Pricing models are a means of implementing a pricing strategy. Any strategy
can leverage one or more pricing models. Some popular pricing models that are
available to free-to-price organizations (i.e., organizations not constrained by a
government statute when setting prices or situations in which market forces set
pricing) include:

■	 Time and material pricing: Time and material (T&M) pricing involves
agreeing on an hourly rate for each category of human resources
engaged in the project and then charging for these resources based
on the actual time spent on the project. Time spent is assessed using
time sheets that have been approved by the client. (T&M pricing also
includes other expenses. For example, travel expenses incurred by
human resources on activities that have been approved by the cli-
ent are charged at the actual cost incurred by the human resources.)
Although economic pressure appears to be moving more contracts to
a fixed-price model, the T&M model is still in existence.

■	 Cost plus: Cost plus is a typical model in project pricing. In cost plus
pricing, an organization accounts for all of the costs and then adds a
reasonable profit to the final cost. The costs of the vendor are trans-
parent to the purchaser. The cost plus pricing model is commonly
adopted between partners who have a strong, long-standing bond.
For the most part, cost plus pricing is a fixed-price model, sometimes
with a provision for cost escalation for changes that are requested and
approved by the client.

■	 Opportunity: In the opportunity pricing model, pricing depends on
the opportunity presented by a potential purchaser. If the purchaser
has no choice but to buy from a single selling organization, the organi-
zation can charge top dollar. Conversely, if there is too much compe-
tition, the organization might charge a lower price. The organization
might even price a project at a loss if a prestigious project would pro-
vide significant publicity to the organization. Within the opportunity
pricing model are two variants:
•	 Penetration: A new entrant into a market adopts penetration pric-

ing in a market that is already overflowing with existing providers.
To gain a foothold in such a market, a new entrant charges lower
prices as an incentive to motivate purchasers to entrust the project
to the new entrant. Sometimes the penetration pricing model is
known as introductory pricing.

•	 Skimming: Skimming or high-margin pricing is used by an orga-
nization that has an advantage, such as being an “early bird” in an
emerging market. The organization charges higher prices before

J. Ross Publishing; All Rights Reserved

38  Mastering Software Project Management

their competition enters the market; then, once competition is
firmly established, the organization lowers prices.

■	 Going rate: The going rate pricing model is adopted by organizations
in fields in which there is abundant competition and the price for a
particular product is well known to purchasers. The going rate pricing
model entails pricing a product (or service) at a price that is similar to
the competition. (T&M pricing is typically dictated by the going rate
for the cost of human resources.)

■	 Monopolistic: Monopolistic pricing is a variant of going rate pricing.
In the monopolistic model, the seller promotes a unique feature of its
product and thus prices the product higher or lower than the going
rate. Monopolistic pricing is frequently used when a two-bid system
(technical bid and financial bid) is adopted by a purchaser.

■	 Oligopolistic: The oligopolistic pricing model is used in a market that
has a limited number of suppliers. Suppliers collaborate (sometimes
by forming an association) to establish a fixed price for a product and
then to enforce that price — the price is the same from all suppliers.
(Note: This strategy is of questionable legality, especially in North
America and Europe, but oligopolistic pricing activity does occur and
therefore is included for completeness.)

■	 Transfer: The transfer pricing model is adopted by two departments
that are within the same organization. In this scenario, only the actual
cost is transferred from one department to another. Transfer pricing
is also known as a chargeback model.

■	 Loss leader: Loss leader pricing is adopted by organizations that are
trying to lure clients away from their current vendors. In the loss
leader pricing model, an organization provides a product (or ser-
vice) at a loss to a customer, speculating that as a result of the pricing
strategy, increased additional business from this customer will offset
the losses. Alternatively, an organization may offer free publicity or a
prestigious status to new buyers, which might result in new business
from other potential buyers.

Because an RFP presents a project opportunity for an organization, a business
acquisition team considers the opportunity from a business perspective and then
decides how best to utilize the opportunity. Remember from an earlier discussion
that pricing and estimation are two separate scenarios that are generally handled
by two different areas in an organization.

Although every organization has its own pattern of implementation, project
pricing typically follows a stepwise process:

J. Ross Publishing; All Rights Reserved

Software Project Acquisition  39

	 1.	 The technical team prepares the software estimates (software size,
software development effort, and software development schedule)
and presents them to the business acquisition team.

	 2.	 The business acquisition team prepares the cost estimation and pres-
ents it to the finance team.

	 3.	 The finance team suggests a floor price to the marketing team, below
which the project will not be attractive financially.

	 4.	 The business acquisition team coordinates pricing with senior man-
agement (in some cases there might be a pricing committee) and
determines:
•	 The price to be offered to the potential client
•	 The negotiation margin (if negotiations are foreseen)

The price for a project proposal, therefore, is set by an organization in a col-
laborative, step-by-step manner (with, of course, organization-specific changes
in the methodology). Larger organizations have a higher degree of formality,
with committees, meetings, and approvals, whereas smaller organizations have a
lower degree of formality, engaging in consultations with the concerned agencies.
Although the steps listed above are a simplification of the process used in large
organizations, by and large they are the major steps taken to determine the project
price.

Preparing the proposal. The business acquisition team uses the approved
price and then prepares the proposal in the required format (either the format of
the organization or the format specified by the prospective client), arranges for
peer review and managerial review, and obtains formal approval for the proposal
document. The approved proposal document is then submitted to the prospective
client. The business acquisition team follows up with the prospective client until
either the project is acquired or is lost to a competitor.

A proposal is usually a multipage document that has two separate parts (even
if both documents are submitted in the same envelope): the technical proposal
and the financial proposal.

A technical proposal. A typical technical proposal usually contains the fol-
lowing sections:

•	 Title page: Include a title page containing the name of the project,
revision history, the date of the proposal, and the prospective client’s
name.

•	 Contents: List the contents of the proposal.
•	 Introduction: Include information about the organization submitting

the proposal and the context of the proposal.

J. Ross Publishing; All Rights Reserved

40  Mastering Software Project Management

•	 Scope of work: Include a detailed scope of the work as given in the
RFP; any subsequent clarifications issued by the prospective client;
and any additional information that the organization may wish to
provide.

•	 Approach and methodology: Describe the proposed execution of the
project; the methodology to be adopted for executing the project; and
the project management methodology.

•	 Deliverables: List the deliverables to the client that are expected from
the project.

•	 Approvals required from the client: List the artifacts that need to be
approved by the client during project execution, including the time-
line required for approvals.

•	 Schedule for project execution: Depending on specifications from the
prospective client or the organization’s standards, a schedule can
range from a detailed structure that mimics the project to a list of
major milestones with dates (or the number of calendar days from the
commencement of the project).

•	 Software estimation: When mandated by the client, include the soft-
ware size, development effort, development cost, and a detailed sched-
ule. (Software estimates are not submitted with a technical proposal
unless they are mandated by an RFP.)

•	 Inclusions: Describe all of the software engineering activities that are
proposed to be performed to derive the specified deliverable.

•	 Exclusions: List all of the software engineering activities not proposed
to be performed during the project execution. Also list any software
components that are not being included in the deliverables.

•	 Responsibilities: List responsibilities of the vendor and the vendee for
all major activities proposed to be carried out during project execu-
tion. The responsibility for each activity can be a primary responsibil-
ity for one party and a secondary responsibility for the other party or
responsibility can be primary for both parties.

A financial proposal. A typical financial proposal usually contains the fol-
lowing sections:

•	 Fee: State the fee for the project.
•	 Fee exclusions: List items that are not included in the proposal and

items that are not included in the project fee (items such as travel,
master data file creation, data migration, pilot runs, etc. that may not
have been included in the proposal or the fee for the project).

J. Ross Publishing; All Rights Reserved

Software Project Acquisition  41

•	 Validity period: State the period during which the fee offered will be
maintained.

•	 Payment terms: Include any advance fees required; interim payment
schedules that are based on period/milestone /delivery requirements;
performance guarantees or retention holdbacks; and any penalties for
delayed payments.

•	 Intellectual property rights (IPR): For any deliverables, specify the IPR
restrictions on all parties, including the software produced. IPR may
rest with the client or with the developer. If a third party component
is used, the specific IPR may rest with the party from which the com-
ponent is procured. All of these aspects should be described in the
proposal.

•	 Force majeure clause: Specify remedies for extreme conditions should
they become a reality during the period of project execution (general
strife, war, floods, earthquakes, etc.)

•	 Software tools or components to be supplied by the client: A project may
require the use of specialized software tools, components, or system
software. If the client is expected to supply such software or compo-
nents, specify this requirement.

•	 Facilities: Should the vendor’s staff need to work at the client’s site,
describe the logistics requirements for the workplace that are to be
provided for the vendor’s staff at the client’s site. Specify what orga-
nization will be responsible for expenses that are incurred for reasons
related to logistics.

•	 Price escalation clause: Costs may increase, especially for long-
duration projects or software maintenance projects. Include an esca-
lation clause that sets out the conditions on which a price escalation
would be based; when the price escalation would be effected; and the
mechanisms that would be used to fairly make a decision about a pro-
posed price escalation.

•	 Arbitration and jurisdiction: Describe dispute resolution mechanisms
so that if and when a dispute arises, all parties will understand how
a dispute will be resolved, including the arbitration and legal pro-
cesses. The arbitration/jurisdiction clause should include the condi-
tions under which recourse to arbitration/legal actions may be taken.
Additionally, arbitration/jurisdiction clauses typically include names
of qualified arbitrators who may be approached to resolve a dispute
and the courts of law that have jurisdiction to hear and award judg-
ments.

J. Ross Publishing; All Rights Reserved

42  Mastering Software Project Management

•	 Consequential liability: Define the limits of the vendor’s consequen-
tial liability (sometimes called special damages) should such liability
become applicable.

•	 Other: Include any other items that are relevant to the financial
aspects of the proposal.

Negotiation
In negotiating, the client’s finance team, assisted by the client’s technical team,
conducts price negotiations with the vendor’s business acquisition team. As in
most negotiation situations, give-and-take occurs. For example, the vendor might
offer to give some type of discount (price, scope, technical changes, etc.) or the
client might place an order after making amendments that would include changes
in scope and duration. (Decisions about the maximum amount of discount that
can be offered, the minimum duration in which the project can be completed,
etc. should be made by the vendor prior to conducting negotiations.) During the
negotiation process, decisions are made “across the table” to clinch the deal.

Three familiar bidding scenarios are public bidding, private bidding, and a
synthesis of the two. Each scenario has a different perspective:

■	 Public bidding: In a public bidding scenario, a prospective client posts
an RFP on the Internet or in the press and invites bids from all orga-
nizations that meet the criteria contained in the RFP.

■	 Private biding: In a private bidding scenario, two options are possible:
•	 An RFP is raised on multiple prequalified vendors.
•	 An RFP is raised on only one prequalified vendor. (This scenario

occurs when an established relationship exists between a client and
a vendor.)

■	 Synthesis biding: In a synthesis bidding scenario, open solicitation is
combined with the use of a strong core of favored/preferred vendors.

Public bidding. In a public bidding scenario, a two-bid system is usually
used (a financial bid and a technical bid). Bids are evaluated based on the criteria
specified in the RFP. Proposals are taken as “final.” Usually no negotiations are
conducted for the purposes of price or technical bargaining. (An exception in
price bargaining would be in instances in which a client’s budget has been over-
shot by all bidders. An exception in technical negotiations would be in situations
in which no bidder has offered a complete technical solution.) In a public bidding
scenario, technical proposals from all of the vendors are evaluated first to shortlist
those vendors that fulfill all of the technical requirements and provide the best
technical solution. Then, the financial bids from only the shortlisted vendors are
considered. Usually, the lowest financial bid is selected from among the short-
listed vendors.

J. Ross Publishing; All Rights Reserved

Software Project Acquisition  43

Private bidding. In a private bidding scenario, especially when raised on only
one vendor, price negotiations are usually applied (whether for actual cost or
functionality). In a private bidding scenario, because there is an existing relation-
ship, more transparency is expected from each party (less is expected, however,
from an external client). In multiple-bid scenarios, even though all of the vendors
are prequalified, price negotiations are applied to get the lowest price or to get
what is perceived to be the highest quality product. Sometimes the client expects
a discount in return for their continued trust in the vendor. Therefore, arriving at
a price, including the software size and effort, is derived through negotiation. The
private bidding type of pricing tends to cause a business acquisition team to build
a “buffer” into the price so that a discount expected by the client can be offered,
but planned profitability is still retained.

Synthesis biding. No typical scenario exists for synthesis bidding. The sce-
nario is rather ad hoc in nature. Synthesis bidding is similar to a private bidding
scenario, but to obtain the best technical solution at the lowest possible price, new
vendors are brought in to put pressure on existing vendors. The final winner of
the project order is usually an existing vendor, although awarding a project in
favor of a new vendor is not ruled out.

When negotiations have been successfully completed in an external project,
the client places the order to execute the project with the selected vendor.

Contract Acceptance
Once the order to execute a project has been received from the client, and upon
receipt of the order, the business acquisition team reviews the order to ensure:

	 1.	 Price, delivery date, and payment terms are in agreement with those
specified in the order.

	 2.	 All terms and conditions agreed upon and those specified in the
order are in agreement.

	 3.	 Any new conditions are inserted in the order.
	 4.	 The scope of work is as agreed.

If new concerns are raised, the business acquisition team may need to rene-
gotiate with the client to resolve all contentious issues. In some cases, an order
acknowledgment letter is given to the client as a final means of completing the
deal. In disputes, the RFP, the proposal, the order, and the order acknowledgment
are crucial legal documents. Hence, exercise extreme care when preparing these
documents.

J. Ross Publishing; All Rights Reserved

44  Mastering Software Project Management

FROM AN INTERNAL CLIENT

In this section, internal project refers to two scenarios:
•	 An organization whose main business is not software development:

The organization desires to computerize operations of one of its
functional departments. The in-house software development depart-
ment is to develop the necessary software.

•	 An organization whose main business is software development: The
organization desires to computerize operations in one of its depart-
ments. The in-house software development team is to develop the
necessary software.

In both of these scenarios, the common factor is that the software is intended for
internal use within the same organization. The software might even be used by
the software development team itself. The characteristics of an internal project
include:

•	 The resultant software product is not for delivery to an outside orga-
nization.

•	 No direct revenue for the organization will result from this project.
•	 Project expenditures are treated as a cost to the organization.
•	 Expected benefits are reduced cost of operations, improved quality,

reduced turnaround times, etc.
•	 End users of the developed software are within the same organization

and therefore are accessible to the software development team.
•	 The project commences with a feasibility study and ends when the

software is installed and “goes live” for use by the end users or the
project is cancelled. (These types of projects typically go from a devel-
opment mode to software maintenance mode.)

Expenditures for development of the software and computerization are nor-
mally (depending on the cost and applicable rules for capitalization in the locale)
treated as capital expenditures and go through the organizational process for
sanctioning a capital expenditure budget. Approval of a budget and allocation
of funds for the project are usually considered to be sufficient permission for
commencement of a project. Steps in acquiring a project from an internal source
include:

	 1.	 Conducting the feasibility study
	 2.	 Preparing the proposal

•	 Software estimation
•	 Delivery commitments
•	 Proposal preparation

J. Ross Publishing; All Rights Reserved

Software Project Acquisition  45

	 3.	 Finalizing the proposal (from discussions with the end user depart-
ment or other budgetary groups)

Each of these steps is now described in greater detail.

The Feasibility Study
A feasibility study is usually conducted by business analysts or systems analysts
from the software development team. The analysts study the existing system, the
documents, and the current process being used.

User requirements. In a feasibility study, the goal of the analysts is to elicit
the user requirements for the new software product from the designated end users
of the proposed system. Based on the user requirements, the study ascertains the
technical feasibility of executing the project.

Technology requirements. The feasibility study determines the technology
to be used, including the databases, the software development platform (such as
the programming language, software development tools, Web server, application
server, etc.), and the hardware and system software requirements. These require-
ments determine if any new hardware and system software needs to be procured.

Software development approach. The feasibility study determines the pos-
sible software development approach. For example, based on the user require-
ments, can a COTS (commercial off-the-shelf) product with customization be
used or does the software need development from “scratch?”

Type of execution. The feasibility study specifies whether the project can
be executed in-house or if it should be outsourced. Based on the requirements,
if outsourcing is required, the analysts specify the extent/portion of work to be
outsourced. For example, in some cases, a part of the software may need to be out-
sourced; yet at other times, the entire software needs to be outsourced. Creation of
the master data files using data entry may also need to be outsourced.

Tangible and intangible benefits. The feasibility study also determines tan-
gible and intangible benefits expected to accrue from the proposed project.

At this point, typically a “ballpark” estimate of the overall cost of the project
has also been made. The estimate is comprised of:

•	 Cost of hardware and system software
•	 Cost of software development
•	 Cost of creating master data files or cost of data migration

J. Ross Publishing; All Rights Reserved

46  Mastering Software Project Management

•	 Cost of training resources in the new system and cost of change-
management activities (activities that are necessary to change opera-
tions from the existing system to the new system)

•	 Any other relevant costs
A feasibility report containing the results of the feasibility study is prepared.

A feasibility report usually contains the following sections:
■	 Title page: Provide revision and approval history.
■	 Contents: List the contents of the feasibility report.
■	 Project preliminaries: Provide the name of the project, departments

affected, cost center, contact persons, etc.
■	 The project: Describe the project.
■	 Probable benefits: Describe the probable benefits expected from the

project as well as the possible negative impacts of not implementing
the project.

■	 Cost estimates: Provide the ballpark cost estimates for the project.
■	 Proposed technology: Describe the proposed technology and the rea-

sons for selecting the technology over other competing technologies.
■	 Implementation strategy: Describe the project implementation strat-

egy, including the need for outsourcing (if any), the amount of out-
sourcing, and the expected duration.

■	 Appendices: Include the following:
•	 User requirements document
•	 List of persons interviewed for eliciting requirements
•	 List of documents referenced
•	 Details of estimates
•	 Analyses for arriving at probable benefits, technology proposed,

etc.
•	 Any other relevant material

The feasibility report is submitted to management (or to a capital expenditure
approval committee) for consideration and for allocation of budget funds. The
approving authority, be it senior management or the capital expenditure commit-
tee, considers all competing proposals for available funds for capital expenditure.
Capital budgeting techniques such as return on investment (ROI), net present
value, and internal rate of return, etc. are used to select and prioritize competing
projects. The approving authority then grants (or denies) approval for the project
based on the availability of allocable funds and the strategic needs of the organiza-
tion. If approval for the project is received, the next step in an internal project is
preparing the proposal.

J. Ross Publishing; All Rights Reserved

Software Project Acquisition  47

Note: Prepare the proposal in line with the approved budget. Budget approval
can be granted in full for an entire project as detailed in the feasibility report or
for only a part of the project. When budget approval includes only the first few
phases of a project, approval for the next phases is not considered until after
completion of the sanctioned work.

Preparing the Proposal
Proposal preparation for an internal project is comprised of the software estima-
tion and the delivery commitments for the sanctioned activities as contained in
the revised budget. These activities are described in the section on acquisition of
an external project; hence, the description of these activities is not repeated here.

The proposal for an internal project is subjected to a peer review and a mana-
gerial review and is then submitted for approval by the client — in this case, the
head of the user department. For the organization, the proposal forms the basis
for carrying out the work and making deliveries of the software product to the
end user department. For the end user department, the proposal is used to plan
activities to support execution of the project as well as to conduct the follow-up
activities needed to effectively make use of the delivered software product.

Finalizing the Proposal
The proposal is discussed with the internal client to ensure that all of their
requirements as approved in the budget are met and that the proposed expen-
diture and timelines meet their expectations. Any feedback received is imple-
mented in the proposal. Once the proposal is approved by the internal client, the
project is ready for execution.

Note: In internal projects, the emphasis is not on price, but rather on function-
ality, expenditures, and meeting required timelines. More, actually maximum,
transparency is expected and demanded because both parties are from the same
organization. Closer scrutiny of project details is also likely.

Some closing words. Whether a project is from an external client or from an
internal source, project acquisition is a preliminary, prerequisite step in project
execution. Once the project is acquired, the next step in project execution is
project initiation. The next seven chapters will describe the initiation, planning,
execution, execution control, change management, scheduling, and project clo-
sure phases of software project development.

J. Ross Publishing; All Rights Reserved

48  Mastering Software Project Management

REFERENCE

1.	 Chemuturi, Murali. Software Estimation Best Practices, Tools & Techniques:
a Complete Guide for Software Project Estimators 2009. Ft. Lauderdale, FL: J.
Ross Publishing.

This book has free material available for download from the
Web Added Value™ resource center at www.jrosspub.com

J. Ross Publishing; All Rights Reserved

49

4

SOFTWARE PROJECT
INITIATION

INTRODUCTION

If asked to name one step that is crucial for the success of project execution, the
answer would have to be a well-executed software project initiation. A software
project that begins well has a much greater probability of being successful than a
software project that begins poorly. Why is this statement true rather than merely
being a truism? Because beginning well is far more than just being the most obvi-
ous best situation — beginning well is vitally important. Why? Because certain
mistakes that are committed during the initiation of a project do not lend them-
selves to corrections as the project progresses.

A project that starts out on the “right foot” is well on its way to being success-
ful! In fact, proper preparation for a project’s execution “journey” is as important
as the project’s goal.

INITIATION ACTIVITIES

The software project initiation phase begins after an organization acquires a proj-
ect from a client. The objectives of software project initiation ensure that:

•	 Ownership for project execution, project delivery, and customer accep-
tance is entrusted to a software project manager.

J. Ross Publishing; All Rights Reserved

50  Mastering Software Project Management

•	 The software project manager is provided with support commitments
from the service departments in the organization.

•	 The project starts out on the “right foot.”
•	 To ensure success, the experience of the organization is brought to

bear on the project.
Ownership of the initiation activities is shared between the organization and

the software project manager (SPM). Usually, an organization that is geared up
for executing software development projects has a department or group that is
entrusted with the responsibility of acting as the repository of project records and
charged with initiating and closing projects. So, who should perform these roles?
In some organizations (usually smaller ones), the person who heads up delivery
has this responsibility. In larger organizations, however, a group or a department
known as the PMO (project management office) is charged with the responsibility
for being the repository for project records and for initiating and closing proj-
ects. Although this book focuses on the PMO model, management of the various
activities — whether by an individual or a PMO — is not as important as that the
activities are actually accomplished.

During the initiation phase, in a model that has a PMO and an SPM, the PMO
and SPM have specific responsibilities. The PMO:

•	 Identifies the SPM
•	 Prepares the project dossier and provides the dossier to the SPM
•	 Coordinates allocation of resources for the project
•	 Assists the SPM to obtain the necessary service level agreements

(SLAs) from other departments in the organization
•	 Assists the SPM with the project kickoff meeting

The SPM:
■	 Studies the project specifications and ensures that they are complete
■	 Refines project estimates based on new knowledge:

•	 Reviews the estimates prepared during the project acquisition phase
•	 Revises and updates the estimates with details provided in the

order received from the client (or the details as approved by man-
agement for internal projects)

•	 Prepares revised estimates if specifications have undergone a major
change since the last estimation

•	 Performs software estimation if an estimate was not performed
during the project acquisition phase (includes software size, effort,
cost, and schedule)

J. Ross Publishing; All Rights Reserved

Software Project Initiation   51

■	 Identifies necessary resources and raises requests for them:
•	 Human resources
•	 Hardware resources
•	 Software resources
•	 Facilities
•	 Connectivity (networking, security, and the Internet)

■	 Prepares project plans (depending on the organization, some of these
plans can be created by the teams that are directly responsible for the
activities described):
•	 Project management
•	 Configuration and change management
•	 Data management
•	 Risk management
•	 Quality assurance
•	 Project execution and delivery schedule
•	 Product integration
•	 Deployment
•	 Induction training
•	 Handover
•	 Issue resolution

■	 Sets up the development environment:
•	 Facilities
•	 Hardware
•	 System software and the development tool kit
•	 Information-sharing directories
•	 Networking and Internet facilities (as needed by the project)
•	 Work allocation and execution mechanisms

■	 Arranges for project-specific skill training for project team members
(If needed, training needs may include programming languages,
application tiers, RDBMSs, the development tool kit, etc.)

■	 Organizes the project team into its constituent functions: module
teams, quality control teams, database team, etc.

■	 Trains the project team on all aspects of project execution as specified
in the project plans

■	 Conducts a project kickoff meeting with other relevant departments
and obtains commitments for project-specific service levels and issue-
resolution mechanisms

Organizational-level (PMO) and SPM-level activities will now be examined in
greater detail.

J. Ross Publishing; All Rights Reserved

52  Mastering Software Project Management

PROJECT MANAGEMENT OFFICE-LEVEL ACTIVITIES

Organization-level (PMO) activities include SPM identification, project dossier
preparation and handover, coordination of the allocation of project resources,
and assisting with setting/obtaining SLAs and the project kickoff meeting.

Identifying the Software Project Manager
Once the project is sanctioned and approval to begin the project is received (in the
form of a management approval, a purchase order from a customer, or a letter of
intent), the PMO identifies an SPM. Identification of an SPM considers several
subjective and objective factors:

•	 Availability
•	 Past experience in a pertinent functional domain
•	 Expertise in a pertinent technical domain
•	 The capability to handle the size of the present team
•	 A willingness to handle the project

Preparing/Handing Over the Project Dossier to the Software
Project Manager
The PMO that is handling the responsibilities for project initiation at the organi-
zation level (or in the absence of a PMO, the individual) prepares a project dossier
and hands it over to the SPM. The project dossier contains:

•	 The project initiation note (The PIN contains basic information about
the project. The PIN is typically the first document in a project dos-
sier.)

•	 The RFP, the proposal, and the purchase order (or the approval in the
case of an internal project)

•	 Technical specifications of the project as stated and agreed upon with
the customer

•	 Important project milestones and the commitment dates
•	 Other requirements, such as communication mechanisms, progress

reporting formats and intervals, and escalation mechanisms
•	 Pointers to past experience, such as the results of similar projects to

bring organizational experience to bear on project execution (Include
estimates, project plans, design documents, and project retrospective
information.)

•	 Invoicing information for external projects
•	 Any other relevant data for initiating the project

J. Ross Publishing; All Rights Reserved

Software Project Initiation   53

The dossier is the initial set of documentation for the project. The dossier
(also known as a project notebook as well as a number of other terms) will evolve
over the life of the project. Often the physical aspect of the dossier (also known as
instantiation) can range widely: from a physical paper to wiki or SharePoint web-
sites. The physical form of the documentation is far less important than the actual
coalescing of information about the project. Documentation should be done in a
manner that permits the SPM and the project team to derive knowledge from the
data. The project is executed against the backdrop of information included in the
project dossier. A sample PIN is shown in Table 4.1.

Coordinating Allocation of Project Resources
In many organizations, the PMO acts as a clearinghouse for resource requests
created by the SPM and arranges for resources to be allocated to the project. The
PMO monitors the allocation of human resources on projects to identify:

•	 Resources that are not allocated to any project
•	 Resources that are allocated to other projects, but are likely to be avail-

able to fulfill resource requests raised by the SPM
•	 Resources that are allocated to other projects, but are being used as a

resource buffer

Note: The resource activities described above are commonly monitored by the
PMO; however, many different organizational models can also accomplish these

Table 4.1. Sample Project Initiation Note

Project Name Development of Software for Materials Management

Project ID DP/2008/MM/001

Project description Develop software for a materials management function, including
procurement, warehouse management, and inventory control

Start date 1-Oct-08

End date 1-Feb-09

Project manager John Smith

Person-months (efforts) 56

Resources: software To be identified after estimation

Resources: hardware To be identified after finalization of estimation by SPM

Reference documents 1. Technical specifications
2. Documents for project XYZ
3. Metrics data for project XYZ

Created by/date PMO/15-Aug-08

J. Ross Publishing; All Rights Reserved

54  Mastering Software Project Management

activities. In a small organization, a department manager might manage this type
of resource monitoring and allocation informally (in his/her head), whereas in a
growing organization that is encountering the complexities of managing projects
across continents (some say, “rearing their ugly heads”), specialization such as the
PMO structure becomes a tool to increase efficiency.

The human resources identified as not allocated, allocated and available, or
held as a buffer are reserved for possible allocation to the project. The PMO then
interacts with the SPM and other key players to determine timing and the avail-
ability of resources to firm up the allocations.

At times, identified and available resources are determined to be inadequate
to meet the needs of the project. In such situations, the PMO arranges for addi-
tional resources in coordination with different departments of the organization,
using the techniques described, for each type of resource:

Human resources. The PMO coordinates with the human resources (HR)
department to arrange for additional human resources. The HR department has
several alternatives:

•	 Recruit from the market
•	 Hire temporary workers from a consulting company
•	 Hire part-time workers
•	 Borrow workers from a sister company or division
•	 Ask existing resources to work extra hours

Computer resources. The PMO coordinates with the systems administration
department to arrange for additional computer resources. The system administra-
tion department may choose from one or more alternatives:

•	 Procure new systems/hardware from the market
•	 Rent systems or hardware
•	 Request that employees work in shifts and share resources

Monetary resources. The PMO coordinates with the finance department to
arrange for the additional financial resources. The finance department obtains
additional financial resources from:

•	 An advance from the customer
•	 Leveraging the financial reserves of the company
•	 Borrowing from the market
•	 Asset sales (e.g., accounts receivables can be packaged and sold on the

open market)
If delivery commitments cannot be met with the present level of resources,

the PMO assists the SPM by finding and infusing additional resources. Other

J. Ross Publishing; All Rights Reserved

Software Project Initiation   55

options that the PMO (or some other management model that is being used)
might suggest include:

•	 Seeking expert guidance to achieve better productivity
•	 Investigating the appropriateness of using automation tools to speed

up the project if adding resources or improving productivity is not
feasible (Introducing new tools in an important project sometimes
increases risk.)

•	 Coordinating with the business acquisition team to renegotiate the
time lines if all else fails to meet the requirements of the project

Simply put: The role of the PMO is to assist the SPM with obtaining the necessary
resources to ensure success of a project.

Assisting the Software Project Manager in Obtaining
Necessary Service Level Agreements from Departments
in the Organization
SLAs for each project are negotiated between the SPM and the service depart-
ments (HR, finance, networking, and systems administration). At the request of
the SPM, the PMO coordinates setting up meetings with outside resources and
ensures that an amicable resolution is achieved between a project activity and the
responsible service department. A sample SLA is shown in Table 4.2.

Assisting the Software Project Manager with the Project
Kickoff Meeting
In consultation with the SPM and all project stakeholders, the PMO:

•	 Determines the date for the kickoff meeting
•	 Coordinates and ensures that all project stakeholders are represented

at the project kickoff meeting
•	 Assists the SPM in getting project stakeholders to accept the roadmap

that has been laid out for project execution and in ensuring that proj-
ect stakeholders support the project

•	 Formalizes the kickoff meeting by recording the minutes of the meet-
ing (including issues and action items) and circulating the minutes to
all stakeholders

SOFTWARE PROJECT MANAGER-LEVEL ACTIVITIES

SPM-level activities include ensuring that the project specifications are complete;
reviewing estimates, revisions, and re-estimating; identifying resources and

J. Ross Publishing; All Rights Reserved

56  Mastering Software Project Management

Table 4.2. Sample Service Level Agreement

Step Description of Activity SLA for Project Responsibility

1 Installation of new computer
hardware
Installation of communication
equipment
Installation of peripherals

1 day for small systems
(desktops, printers)
1–2 days for large systems
(servers)
1 week for routers, switches,
communication controllers

SA

2 General troubleshooting and
problem rectification of computer
systems and peripherals in
different projects

30 min–4 hr from request
(if procurement, time is
dependent on vendor)

SA

3 Operating system installation and
troubleshooting

0.5–2 days SA

4 PC/desktop printer allocation 1–3 days from requisition
(subject to availability)

SA

5 Software/consumables issues 30–60 min (subject to
availability)

SA

6 Software installation 2–4 hr SA

7 Software problem/network
troubleshooting/PC or printer

2–4 hr SA

8 Mail server-related problems

Proxy server-related problems

30–60 min SA

9 Review and editing of proposals 25 pages/day TW

10 Review and editing of documents
(system and user documentation)

20 pages/day SQAG

11 Conduct audit 1 day SQAG

12 Prepare audit report 2 working days after audit
complete

SQAG

13 Review project plans 2 days SQAG

14 Conduct final inspection of
deliveries

2–3 hr SQAG

15 Conduct audit 0.5–2 days (depending on item) SQAG

16 Conduct project closure 1–2 days PMO

17 Conduct quality training 3 days HR

18 Coordinate project-specific
training

Within 2 weeks after receiving
request (duration depends on
type of training)

HR

19 Process waiver request 1 week SEPG

20 Allocate skilled manpower to
other projects

1–2 weeks required from date
of request (provided necessary
training requirement can be
fulfilled)

HR

Legend: SA, systems administration; TW, technical writer; SQAG: software quality assurance group;
PMO, project management office; HR, human resources; SEPG, software engineering process group.J. Ross Publishing; All Rights Reserved

Software Project Initiation   57

raising requests for additional resources; preparing project plans; setting up the
development environment; arranging for project-specific skill training; organiz-
ing the project team; training the team; conducting the project kickoff meeting;
and arranging for a phase-end audit. The SPM takes ownership for all software
project initiation (SPI) activities at the project level. As owner, the SPM either
carries out the SPI activities or ensures that a designate performs them. Each of
the typical activities of an SPM in SPI will now be considered in greater detail.

Ensuring that Project Specifications Are Complete
The SPM reviews all project specifications received from the client, even if the
day-to-day responsibility for the project will be delegated to another manager.
Project specifications can include:

•	 Technical specifications
•	 Delivery commitments
•	 Details of milestone events
As required, the SPM interacts with the PMO or the customer to fill in gaps

in the specifications (if any). The SPM also reviews all other known aspects of the
project. Based this review and assessment, the SPM gauges the work involved and
the means for achieving the known aspects.

Reviewing Estimates and Revisions/Updates of Estimates
The SPM reviews all estimates and revised estimates. The best-case scenario is
that the estimate prepared during the project acquisition phase is still valid. If no
changes in specifications have been made, using the initial estimate is appropri-
ate. However, a specification change that affects the scope of work requires the
SPM to revise and update the acquisition estimate so that it reflects the current
specifications:

•	 New specification: If an estimate is determined to be invalid, a newly
added specification is generally the culprit. After the acquisition
phase, the client (or management in the case of an internal project)
may have added a new specification that affects the scope of work.
Usually, the addition of a specification impacts the estimate that was
prepared when the project was acquired.

•	 Significant alteration: An estimate can be rendered useless by signifi-
cant alteration of project specifications. If the specifications have been
significantly altered, the SPM needs to re-estimate the project using
the current specifications. Re-estimation may require renegotiating
the agreement with the client.

J. Ross Publishing; All Rights Reserved

58  Mastering Software Project Management

An important aspect to keep in mind while revising and re-estimating is that
delivery commitments generally cannot be altered. Delivery commitments, with-
out renegotiation, have usually already been made to the customer. Therefore, any
change in delivery commitments can put the agreement at risk. If the estimated
schedule for delivery overshoots the delivery commitments, the SPM must then
use all of his or her skills to find a way to meet the schedule, including consulta-
tion with senior management and the PMO. The estimate review process will now
be described.

Review the estimate prepared during the project acquisition stage. In this
review, the SPM ensures that the existing estimate matches the current specifica-
tions. If there is variation between the existing estimate and the current specifica-
tions, the SPM:

•	 Determines the extent of variation
•	 Determines whether to use the existing estimate with or without

modifications or to prepare a new estimate

Revise and update the acquisition estimate. If the SPM determines that the
existing estimate more or less reflects the current specifications, albeit needing
modification, the SPM revises the estimate so that it matches the current specifi-
cations. The SPM first updates the software size estimation by deleting obsolete
entries, adding new entries, and modifying existing entries as necessary. Using the
new software size estimate, and any other known attributes, the SPM then arrives
at the effort required to execute the project at hand. Using the effort estimate, the
SPM updates the schedule and cost estimates. Next, the SPM arranges for a peer
review of the revised/updated estimates and implements the review feedback. The
SPM considers all feedback and implements feedback that will improve the proj-
ect. The SPM then arranges for a managerial review to obtain approval. All esti-
mates should be reviewed and approved by management. These revised/approved
estimates will then be used in execution of the project execution.

Re-estimate if needed. At times, re-estimation is needed. Many situations can
require that a project be re-estimated, including:

•	 No estimates were made during the project acquisition stage. The
project may have been acquired using an opportunity pricing model
(“what we can get from this customer”).

•	 Ballpark estimates that had little detail were used during the project
acquisition stage. During the project execution stage, ballpark esti-
mates cannot be used to manage a project.

•	 The existing estimate is unusable because specifications have changed
significantly.

J. Ross Publishing; All Rights Reserved

Software Project Initiation   59

When re-estimating during the initiation phase, the process includes estimation
of:

•	 The size of the software to be produced
•	 The effort needed to successfully execute the project as well as the skill

sets necessary
•	 The schedule for project execution
•	 A new cost estimation for the project
•	 The known risks and issues
When feasible, the SPM (or a business analyst) usually estimates the size of

the software product to be produced. (The SPM chooses an appropriate size mea-
sure for the software project based on the organization’s standard and customer
preference.) Next, the SPM converts the software size into effort in person days
or hours, using applicable productivity figures or a parametric estimation model.
(If for any reason, software size estimation for a project is not feasible, the SPM
estimates the effort required to execute the project at hand using techniques such
as task-based, Delphi, or analogy estimation.) The SPM then converts the esti-
mated effort into a schedule for development and determines the cost of product
development based on the estimated effort.

Note: Software estimation is vast topic in its own right and cannot be covered in
this section in adequate detail. Readers are advised to refer to Chemuturi1 and to
interviews on estimation2 for complete information on software estimation.

Following organizational processes, the SPM then submits the new estimates
to the appropriate authority in the organization to obtain necessary appropria-
tions and approval of the budget. The approvals and appropriations are then used
to obtain the required resources for execution of the project.

Identifying Necessary Resources and Raising Requests
Based on the estimates and budgetary approvals, the SPM identifies the resources
necessary to successfully execute the project. Based on the schedule, the SPM also
determines the dates on which the resources are required. Generally, required
resources include:

Human resources. Human resources may include:
•	 Programmers for each of the programming languages required by the

project
•	 Database specialists to assist the programmers in designing an effi-

cient database and to optimize data handling routines or to develop
stored procedures (triggers) at the database level to reduce the pro-
gramming effort of programmers

J. Ross Publishing; All Rights Reserved

60  Mastering Software Project Management

•	 Middleware specialists to program the middle tier software (if neces-
sary)

•	 Testers to independently test the software to ensure that it is defect-free
•	 Graphics specialists to develop Web pages or other user interface

components
•	 Any other human resources specifically required for the project at hand

Computer resources. Computer resources may include:
•	 Client machines, with the required configuration of RAM, hard disk,

and system software
•	 Servers for the database, middle tier, and security
•	 The software development tool kit, including interactive development

environment (IDE), testing tools, and personal Web servers
•	 Networking hardware, including routers, switches, and bandwidth

Physical logistics. Regardless of where the team is housed (or at how many
locations), the SPM determines the number of seats that are required for the proj-
ect team and ensures that they exist. When a co-located strategy is pursued, the
SPM makes a judgment call about the team members who need to be co-located
and the team members who can work from remote locations.

Networking and Internet services. The SPM determines the networking
requirements of the project team and the amount of bandwidth needed for the
team, as well as the timing of these requirements.

Miscellaneous resources. Miscellaneous resources include local transport
facilities, travel arrangements for team members, petty cash for day-to-day project
expenses (based on organizational standards and culture), etc.

Note: Although the level of formality for obtaining approvals for resource requests
is driven by an organization’s size and culture, the need for consideration of
resources always exists.

Once identified, all required resources are then enumerated and estimated.
Based on the estimates, requests are raised to the appropriate departments to
obtain resources for the project when needed:

Human resources. Requests for human resources, including the necessary
mix of skills, development platform experience, domain expertise and level, etc.,
are normally raised to the HR department. In larger organizations, having a
resource group that is vested with the authority of allocating people to projects
is common. If human resources need to be recruited (or acquired), this group
interacts with HR.

J. Ross Publishing; All Rights Reserved

Software Project Initiation   61

Systems administration. Requests for hardware resources are raised to the
systems administration department. Systems administration then allocates the
necessary hardware for project execution. Systems administration is also charged
with procuring any required special hardware and with making the special hard-
ware available to the SPM. Requests for software resources are also raised to the
systems administration department. Systems administration then allocates the
necessary system software and development kits for project execution. As with
hardware, the systems administration department procures any special software
required for the project and makes the software available to the SPM. Requests
for connectivity requirements (networking and Internet) are also raised to systems
administration. Systems administration is responsible for providing the necessary
interconnection for the project team and for security and Internet facilities.

Administration/facilities. Based on requests from the SPM or PMO, seating
facilities are handled by the administration/facilities department. Administration/
facilities provides seating facilities for the project team to meet the needs of the
project (ranging from co-location to distributed facilities).

Keeping the PMO in the information loop is critical to ensure that if conflicts
arise, the PMO will be positioned to resolve them. A sample resource request form
is shown in Table 4.3.

Table 4.3.  Sample Resource Request Form

Project ID:_ _________________________	 Date: _ ___________________________

Serial
Number

Resource
Requested

Resource
Type Quantity

Required by
Date

Probable Release
Date by Phase

1 Java
programmers

Personnel 12 10-Oct-08 1.  5 by 20-Nov-08

2.  10 by 10-Dec-08

3.  5 by 1-Jan-09

2 Business
analysts/
Finance

Personnel 2 1-Oct-08 1-Jan-09

3 PCs Hardware 2 1-Oct-08 1-Jan-09

4 PCs Hardware 12 10-Oct-08 1.  5 by 20-Nov-08

2.  10 by 10-Dec-08

3.  5 by 1-Jan-09

5 Oracle DBA Personnel 1 1-Oct-08 10-Dec-08

Requested by/date:__________________	 Approved by/date:_ _______________

J. Ross Publishing; All Rights Reserved

www.ebook3000.com

http://www.ebook3000.org

62  Mastering Software Project Management

Preparing Project Plans
Project planning is a complex activity and a major factor leading to success or
failure in the execution of a project. (Project planning is such a complex activity
that it is addressed separately in Chapter 5.) In a nutshell, and depending on the
size of the project and methodology followed, several plans are prepared:

•	 Project management: Details about the project’s scope, milestones,
and tools and techniques used in the project and how topics such as
communication and issue-resolution mechanisms will be addressed

•	 Configuration and change management: Details about development
configuration, development state promotion, change management
procedures, and the naming conventions (and the tools to address
these items) and the build strategies

•	 Quality assurance: Activities required to ensure that organizational
processes are followed and that a quality product is delivered
(includes topics such as proposed QA activities for the project, met-
rics to benchmark the project, and the QA roles and responsibilities
for the project)

•	 Project execution and delivery schedule: A detailed work breakdown
structure, typically expressed as a schedule listing all activities,
assigned resources, and dates assigned for each of the activities and a
summary of milestones, deliveries, and project completion dates for
use in status documents and other communication vehicles

•	 Product integration: The proposed approach for integrating the prod-
uct and integration testing, including the roles and the associated
responsibilities for product integration

•	 Deployment: Details of hardware and software required for deploying
the solution, the schedule of deployment, and who assumes roles and
associated responsibilities for deployment

•	 Induction training. Details of topics to be covered when training new
project team members (may also include information about course
material, roles and associated responsibilities for conducting induc-
tion training, and how the induction training will be evaluated)

•	 Handover: Details of hardware and software components that will be
handed over to the client’s representatives, the acceptance mecha-
nisms (including how the handover will be measured), and the roles
and associated responsibilities for handover

•	 Issue resolution: Details about reporting issues, obtaining resolution,
and roles and associated responsibilities required to support resolving
issues

J. Ross Publishing; All Rights Reserved

Software Project Initiation   63

Setting Up the Development Environment
The development environment may involve co-locating the project team; ensur-
ing that all of the developers have the necessary development tool kit; providing
access to communication facilities; and ensuring that QA personnel have all of
the necessary testing tools, as well as a separate test environment. Setting up a
development environment includes several activities:

•	 Seating: Take possession of the seating resources provided by the
administration/facilities department and allocate them to team mem-
bers in such a way that each member is located in the most optimal
configuration possible.

•	 Hardware: Provide necessary hardware resources to team members.
•	 System software and development tool kit: Ensure that all team mem-

bers are provided with relevant and necessary software to perform
their roles (may include, but is not limited to, system software, data-
base management system, and a development tool kit, including edi-
tors, compilers, and debuggers).

•	 Information sharing directories: Organize information so the team can
quickly and efficiently share knowledge. Directories may include user
requirements, design documents, project plans, training materials,
issue reporting formats, test plans, and all other formats and templates
needed by the team. Setting up the information sharing directories
includes providing access to all the team members and ensuring suf-
ficient security (based on need).

•	 Networking and Internet: Ensure interconnection of all hardware of
the project team.

•	 Work allocation and execution mechanisms: Deploy work registers
at commonly accessible locations and inform team members of the
communication protocols for making work allocations. Work alloca-
tion and execution mechanisms also include task/time accounting
procedures and how task completion is reported.

•	 Standards: Identify appropriate standards and guidelines for coding,
designing, testing, and reviewing. Identify the sources that are to assist
in defining any standards or guidelines that are unavailable.

Arranging for Project-Specific Skill Training
In view of the ever-changing field of information technology, to enable successful
project execution, team members often need specific training. As necessary, the
SPM arranges for such training in coordination with the PMO and the HR/train-
ing department. Training can be classroom training, guided self-study training,

J. Ross Publishing; All Rights Reserved

64  Mastering Software Project Management

or any other suitable training method. The goal of such training is equipping the
team members to handle project tasks effectively and efficiently.

Organizing the Project Team
The SPM strategically organizes the project team into the various constituent
teams that are required for the smooth execution of the project. A functional
approach might leverage teams by role: module teams, QA and QC teams, data-
base teams, etc., whereas an integrated approach might leverage cross-functional
teams so that many roles within the organization interact continually.

If the project uses a functional or role-based approach, team breakdown may
include:

•	 Module teams: A separate team for the development of each module
of the software product

•	 Database team: All database specialists who will assist the project
team in optimizing the data handling routines

•	 Graphics team: All graphics specialists who will assist the project team
in developing the Web pages

•	 Testing team: All testing personnel who will carry out independent
testing to uncover all defects and to ensure a defect-free delivery

If the project uses an integrated approach, the organizational structure of the team
may use a cross-functional model. In a cross-functional team, personnel from the
functional areas of the organization work together as a team to focus on objec-
tives and to take responsibility for coordinating activities across the organization
— particularly for problems that arise, but also for any issues that arise which are
related to innovation. Functional areas represented on a cross-functional team
may include research and development, engineering, marketing, finance, human
resources, and operations.

Note: Although the choice of project methodology and the existing organizational
culture of an organization do have significant impact on how an SPM organizes
personnel to achieve any goal, there is no single best structure.

Training the Project Team on the Project Plans
The SPM informs team members of the contents of the project plans. Project
plans training for team members includes:

•	 Details about the project
•	 Management methods
•	 Tools and techniques to be used
•	 Quality assurance and testing mechanisms

J. Ross Publishing; All Rights Reserved

Software Project Initiation   65

•	 Work allocation mechanisms
•	 Progress reporting mechanisms
•	 Configuration management to be used
Project plans training is conducted to ensure that the team members under-

stand the team’s organization, the roles and responsibilities of the personnel
involved with the project, and the mechanisms for issue resolution. Project plans
training typically takes a half day (or up to a full day for a large project). If a proj-
ect is small or if a team has been in place for a long time, with few role changes,
project plans training may be handled in a far more informal manner.

Conducting a Project Kickoff Meeting
A kickoff meeting is usually carried out with the help of the PMO, which arranges
the meeting and invites all necessary department representatives/stakeholders.
Typically, kickoff meetings include representatives from several departments:
software quality assurance (SQA), systems administration, administration/facili-
ties, networking, marketing, and customer relationship management (CRM). The
project kickoff meeting is conducted by the SPM. During the kickoff meeting,
the SPM presents the details of the project, including milestones and the support
needed from those present as well as the SLAs needed. The goal of the SPM’s
presentation is to solicit/obtain the documented commitment of all present from
the appropriate department in the organization: for any project requirements, for
any project-specific SLAs, and for the mechanisms of issue resolution that these
departments are to satisfy. (Note: Each organization has a different focus on being
inclusive. Invite all areas of the organization that might need to know about the
project.) The PMO formalizes the kickoff meeting by recording minutes of the
meeting and circulating them to all stakeholders.

SLAs. Usually SLAs are worked out with support groups prior to the kickoff
meeting; however, the kickoff meeting can provide a platform for final tweaking.
During the kickoff meeting, a project support group should be formed. The proj-
ect support group would consist of representatives from each support group that
has committed to an SLA for the project. When services from any support group
are needed, representatives from the support groups are to act as contact persons
for the project team.

Arranging for a Phase-End Audit
A phase-end audit is the final activity of the project initiation phase. The phase-
end audit for software project initiation is actually a QA activity. The audit
ensures that all subactivities have been performed in conformance with the

J. Ross Publishing; All Rights Reserved

66  Mastering Software Project Management

defined organizational process and also uncovers any activities or subactivities
that were not performed in conformance with the defined process. Such devia-
tions are termed as non-conformances (NCs).

The SPM invites the QA group or the internal auditor who has been desig-
nated for the project to audit the project for conformance with the defined proj-
ect initiation process. Any NCs are reported to the SPM, who arranges for their
rectification and then closes the NCs. When the phase-end audit is complete, the
software project initiation phase is considered complete!

COMMON PITFALLS IN SOFTWARE PROJECT INITIALTION

Common pitfalls in SPI include selecting the wrong SPM, identifying inappropri-
ate resources, and incurring delays in SPI activities.

Identifying the Wrong Software Project Manager
At times, an SPM is selected to lead a project just because he or she happens to be
available at the time — not because this particular SPM is the most suitable leader
for the project. For instance, the most suitable SPM might be unavailable due to
a host of reasons: engaged in a different and equally important project, unwilling
to take up the current project, etc. At other times, the selection of an SPM can
become “political,” particularly if prestige is associated with the project. When
a prestigious project is involved, SPMs often vie with each other to manage the
project.

Remember: Every effort must be made to select the right or the best SPM for the
project. The goal is successful execution of the project. Try to minimize negative
politics. If necessary, to ensure the success of a project, leverage the PMO to a
greater degree by having the PMO serve as a mentor to an SPM who is not the
first choice to lead the project.

Identifying Inappropriate Resources
In all software development projects, having the best-qualified human resources
is crucial for success. Ideally, a project team should consist of resources who are
proficient in the development platform and who have worked in similar domains.
Practically, however, allocating the best resources to a project may be impossible.
In this situation, one solution is to ensure that the project team has a balanced mix
of expert and not-so-expert resources. Using a mix of expertise creates a scenario
in which the more experienced team members can mentor the junior team mem-
bers to ensure success of the project. A worst-case scenario is a situation in which

J. Ross Publishing; All Rights Reserved

Software Project Initiation   67

all of the available experts are allocated to one project, while other projects are
“starving” from a lack of needed expertise. Allocating the best mix of resources to
a project is the best practice — the art, however, is finding that mix.

Incurring Delays in Software Project Initiation Activities
Sometimes, SPI activities simply experience unforeseen delays. Maybe the PMO
takes extra time in identifying the SPM; or identification and allocation of the
resources take longer than expected; or arriving at satisfactory SLAs in the project
kickoff meeting consumes excess time. Delays such as these must be absorbed by
project execution — which can cause a project to get off to a bad start. Sometimes
a delay is even used as a “weapon” to get an SPM to accept the SLAs and resources
that have been offered, even if they are suboptimal. Whatever the reasons are for
delays, it is important to understand that any delay in initiation typically reduces
the time available for completion of the remainder of the project — which
increases pressure on project execution. The best practice is to consume only the
minimum possible time allowed in the schedule for concluding SPI activities.
(Additional best practices and pitfalls for SPI may be found in Chapter 12.)

REFERENCES

1.	 Murali Chemuturi. Software Estimation: Best Practices, Tools & Techniques.
A Complete Guide for Software Project Estimators 2009. Ft. Lauderdale, FL: J.
Ross Publishing.

2.	 Software Process and Measurement Cast (http://www.spamcast.net).

This book has free material available for download from the
Web Added Value™ resource center at www.jrosspub.com

J. Ross Publishing; All Rights Reserved

J. Ross Publishing; All Rights Reserved

5

SOFTWARE PROJECT
PLANNING

Nobody plans to fail –
they just fail to plan.

 – Anonymous

If I were given six hours to fell a tree,
I would spend the first four hours sharpening the axe.

 – Abraham Lincoln

INTRODUCTION

Most articles and books about achieving success (in any endeavor) begin by
describing the necessity to plan and to plan well. In rare cases, success can be
achieved without planning, but planning reduces the risk of failure and increases
the chances of success. Better yet, planning coupled with control (control from
the point of view of project discipline, including measuring progress and tak-
ing corrective actions) brings more predictability to the probable outcome of an
endeavor.

An often-asked question is, “Can I plan in my head or should planning be
documented on paper?” Although planning is a necessity, documenting the plan
(or planning on paper) is not always a necessity. For instance, for a small, short-
duration endeavor, mental planning may be adequate (Figure 5.1).

Few of us actually omit planning. Usually, we conduct the planning — it’s
just the degree of rigor with which we plan (including documenting the planning
activities) that is open to discussion.

69J. Ross Publishing; All Rights Reserved

70  Mastering Software Project Management

Planning on paper has advantages. A documented plan can:
•	 Be reviewed by others to see if any important aspect has been over-

looked, thereby improving the plan (or self-reviewed “after the dust
has settled”)

•	 Act as a point of reference for stakeholders concerned with or involved
in the project

•	 Facilitate control and performance evaluation during execution
•	 Facilitate validation of the planning parameters by providing a base-

line for comparison of the actual values generated during execution
Except for very small projects, written documentation of a plan is a good idea.

Once the decision has been made to document planning, the next question is
usually, “What level of granularity should be used?” The granularity of planning
(or the required detail) depends on:

•	 Duration of the endeavor
•	 Number of resources employed
•	 Complexity involved
•	 Relationship between the duration, number of resources, and com-

plexity
•	 Geography of the project

Now consider some aspects of the duration of the endeavor, the number of
resources employed, and the complexity involved in the project:

•	 The longer the duration, the greater the necessity for rigor. (If a
project has no time constraints on completion, the level of rigor and
granularity can be reduced. In the real world, however, it is duration
that is often constrained, which increases the need for planning rigor.)

•	 As the number of resources employed in a project increases, the level
of planning rigor increases.

Figure 5.1. The planning dilemma.

Can we keep our
plans in our heads?

Should we document
our plans?

J. Ross Publishing; All Rights Reserved

Software Project Planning   71

•	 As complexity (of all varieties and above what is normal) for the team
members increases, the greater is the need for greater planning rigor.

•	 Different combinations of duration, the number of resources employed,
and complexity require different levels of rigor in planning.

Numerous other questions could be asked about project planning, but before pro-
ceeding with any further discussion on planning, let’s define planning.

PLANNING DEFINED
Planning is defined as the intelligent estimate of resources required to perform a
predefined project successfully at a future date within a defined environment. This
definition of planning contains several key terms:

•	 Estimate indicates that planning is preceding performance and that it
is based on organizational norms (also known as organization base-
lines). Simply, an estimate is a prediction of the future.

•	 Resources are the four M’s of men (human resources, either male or
female), materials, methods, and machines (equipment). Resources are
always applied over a period of time (duration).

•	 Project indicates a specific scope of work that can be defined as a proj-
ect (see Chapter 1).

•	 At a future date indicates that the dates for executing the project are
in the future and are typically decided during the course of planning.

•	 Within a defined environment refers to the environment in which the
work will be performed. The environment is either known or defined
during the planning exercise. Any variation in the environment will
have an effect on the plan. Environment may also refer to the techni-
cal environment, work logistics, workstation design, processes and
methods of management, prevailing morale in the workplace, and the
corporate culture to name a few.

The definition of planning also provides a framework for evaluating the process
of planning.

In several aspects, the planning for software development projects is the
same as the planning for many other types of projects. In software development
planning, however, the planning process is tailored to suit the specific attributes
of software development. So, what are the attributes that make software develop-
ment projects unique?

•	 Output is not physical: The output from a software development proj-
ect is not physical — in the sense that the primary deliverable is not
an actual physical component. Functionality is the primary output of
a software development project. (Physical and nonphysical resources
are consumed, however, when a software product is created.) J. Ross Publishing; All Rights Reserved

72  Mastering Software Project Management

•	 Process inspection does not facilitate progress assessment: In a manu-
facturing organization, the conversion of raw materials into work-in-
progress and finally into finished goods is proof of progress. (Some
say that progress may be assessed by the noise made by manufacturing
equipment.) In a software development organization, however, visual
inspection is not enough to ensure that work is being done and prog-
ress is being made. In a software project, functional software is the
only true marker of progress.

•	 Software engineering tools have limited predictability: Although sig-
nificant progress has been made in software engineering tools, these
tools do not have nearly as much precision as engineering drawings
and cannot produce the predictability that is seen in other engineering
disciplines. Much of the energy expended in software development
projects continues to be “sweat equity.”

•	 Professional associations in the software development field lack prac-
tice and behavior standards: Organizations such as the Institute of
Electrical and Electronic Engineers (IEEE) have defined some stan-
dards, but these standards do not rise to the levels of specificity and
granularity that are found in other engineering fields.

•	 Productivity and quality are dependent on human beings: Significant
improvement has been made in software development; however, for
productivity and quality, the processes used continue to be largely
dependent on human beings. Tools are available to support develop-
ment and testing, but to meet the standards found in other engineer-
ing disciplines these tools need to evolve further. The goal must be
shifting the onus for productivity and quality from human beings to
tools in the hands of humans.

Because software development continues to rely primarily on human
endeavors, the rigor of planning needed becomes even more significant than
that required for engineering projects (an environment in which tools provide
a major impetus to the process). For example, in some engineering projects, a
simple schedule based on PERT/CPM will suffice, whereas software development
projects (especially large ones) require increased rigor and planning. The plans
typically required for a software development project are now described in sub-
sequent sections, but first, let’s review the general attributes of a software project:

•	 A project has a definite beginning and a definite end.
•	 The project deliverable is software and the related artifacts (e.g., docu-

mentation).

J. Ross Publishing; All Rights Reserved

Software Project Planning   73

•	 The activities in a software project may include defining the user and
software requirements, software design, software construction, software
testing, acceptance testing, and software delivery, deployment, and han-
dover.

Project selection, acquisition, and post-handover activities are not part of a soft-
ware development project.

PLANS PREPARED IN SOFTWARE PROJECT MANAGEMENT

A common misunderstanding among members of the software development
fraternity is that a schedule constitutes software project planning. This is categori-
cally untrue. Software project planning goes far beyond scheduling. Several plans
are typically prepared for a large software development project.

A project management plan. A PMP describes how a software project will be
managed. In engineering projects, how a project will be managed is covered in the
standard operating procedures/policies (or SOPs) of an organization’s produc-
tion environment or production facility. SOPs work well for engineering projects
because all projects are managed similarly. Therefore, a completely new manage-
ment plan for every project may be unnecessary. The SOPs also ensure that how a
project is to be managed is well understood. The software project developmental
environment, however, is much more dynamic. In software projects, the devel-
opmental environment is completely different for almost every project, which
necessitates the need to plan and document how each project will be managed.
Information contained in a PMP includes:

•	 Project demographic information
•	 A software estimate (software size, effort, cost, and schedule)
•	 Milestones and delivery schedules
•	 Delivery acceptance criteria
•	 Human resources requirements and a projected timeframe for when

they will be required
•	 Management methods (including but not limited to work allocation

and management, information and source code management, quality
control, communication management, etc.)

•	 Tools to be used for the project (development tools, testing configura-
tion tools, and project management tools, etc.)

The elements of a software PMP template are shown in Figure 5.2. IEEE Standard
1058 provides details for a PMP and a suggested template for documenting a plan.

J. Ross Publishing; All Rights Reserved

74  Mastering Software Project Management

A configuration management plan. A CMP describes how code and noncode
assets of a project will be managed. Information in a CMP includes:

•	 Naming conventions to be followed for project artifacts, includ-
ing documents and code units of all types (including databases and
tables); procedures for managing changes to configuration items

•	 Organization of project information to facilitate access by project
teams when a reference is needed

•	 References to organizational standards and processes for use in the
project

•	 Code and code library organization, check-in and check-out criteria,
authorizations, and procedures for state changes of source code artifacts
(from development to review/testing, to integration and delivery, etc.)

IEEE Standard 828 provides details of a CMP and a suggested CMP template.

Title: Software Project Management Plan

Name of Client:

Revision History:

Table of Contents

	 1.0	Project Overview
1.1	 Project Summary
1.2 	 Purpose, Scope, and Objectives
1.3 	 Deliverables
1.4	 Major Milestones

	 2.0 	References

	 3.0 	Definitions and Acronyms

	 4.0 	Project Organization
4.1	 Project Team
4.2	 Client Interfaces
4.3	 Roles and Responsibilities

	 5.0	Managerial Process
5.1	 Project Startup
5.2	 Project Execution
5.3	 Project Control
5.4	 Risk Management
5.5	 Project Closure

	 6.0	Technical Process
6.1	 Software Development Life Cycle
6.2	 Methods, Tools, and Techniques
6.3	 Product Acceptance Plan

	 7.0	Support Process Plans
7.1	 Software Configuration

Management Plan
7.2	 Software Quality Assurance Plan
7.3	 Process Improvement Plan
7.4	 Induction Training Plan
7.5	 Schedule
7.6	 Work Breakdown Structure
7.7	 Issue Resolution Plan

	 8.0	Any Additional Plans
8.1	 Deployment Plan
8.2	 Warranty Support Plan
8.3	 Data Migration Plan
8.4	 Any Other Plans

	 9.0	Annexes

	10.0	Waivers

Figure 5.2. Software project management elements.

J. Ross Publishing; All Rights Reserved

Software Project Planning   75

A quality assurance plan. A QAP describes how a project will ensure that the
deliverables meet the quality requirements for the project. Information in a QAP
typically includes:

•	 Standards selected for use during the project (coding, design, and test-
ing guidelines)

•	 Quality control activities proposed for the project (code walk-through,
review of requirements and design, proposed tests including but not
limited to unit testing, integration testing, functional testing, negative
testing, end-to-end testing, system testing, and acceptance testing)

•	 Software metrics to be collected for the project and how they will be
used

•	 Processes, procedures, and events that trigger the need for causal
analysis, whether for failures, defects, or even successes

•	 Audits proposed for the project and who will perform them
IEEE Standard 730 gives details of preparing a QAP and a suggested QAP template.

A schedule. The schedule contains a work breakdown structure for the proj-
ect, including the start and end dates and the resources required for each of the
activities. The schedule document is used to plan and to monitor the progress of
the project. Analysis techniques, such the Critical Path Method and the Program
Evaluation and Review Technique (often referred to collectively as PERT/CPM),
are useful to evaluate task flows and relationships. The CPM is a step-by-step proj-
ect management planning technique that identifies the tasks in a project that are
on a critical path. Tasks (activities from the start milestone to the end milestone
and in between) that are on a critical path are those tasks that are critical in meet-
ing the project’s schedule and for the success of the project. The goal of identify-
ing the critical tasks is to prevent time-related problems. Knowledge gained from
the CMP is used to focus attention on the truly important tasks so that a project’s
overall completion date is not impacted. (Note: Because the critical path shifts
over time as project execution progresses, the critical path should be monitored
so that events do not suddenly become overwhelming.) PERT/CPM can also be
used to assist in resource allocation. Through the use of probability theory, PERT
helps a project manager to understand and mitigate the uncertainty that is inher-
ent in working out a schedule. Knowledge of PERT/CPM techniques is essential
to arriving at a credible schedule for a project. (Many resources describing how to
perform PERT and CPM analyses are available on the Internet.)

An induction training plan. Also known as an onboarding plan (as well as
an initiation or assimilation plan, etc.), an induction training plan contains the
training requirements for new team members who join the project. Explicitly

J. Ross Publishing; All Rights Reserved

76  Mastering Software Project Management

stated are the requirements for bringing a new team member up to par with other
team members. Typically, the induction training plan focuses on processes and
standards rather than on explicit technical requirements, which have a longer-
term learning horizon). Topics also included are knowledge building about the
project plans that are being leveraged on the project: the “how’s” of executing
and controlling the project; the quality assurance activities; the mechanisms for
communication and issue resolution; project-specific tool/development platform
training, etc.

A build plan. The strategy for building the code is included in a build plan.
This plan details the build period (ranging from continuous to daily or some other
period) and how the build will be tested and validated. Also included is the num-
ber of planned builds for delivery of the product to the client.

A deployment plan. Contained in a deployment plan is a description of the
target location of the project’s functionality, including deployment of the hard-
ware, the system software, the middleware, and pilot runs.

A user training plan. A user training plan outlines the user training, the
deployment strategy (classroom, online, etc.), and the duration and includes an
anticipated schedule for the training.

A handover plan. Details included in a handover plan describe how the sys-
tem will be handed over to the team that will operate the system. Also included in
the plan are the handover timelines, the team or the person who will accept the
application, the artifacts required at handover, acceptance test criteria, and any
required signoffs.

A software maintenance plan. The mechanisms for identifying and prioritiz-
ing maintenance work requests, any required service levels for maintenance, and
the support turnaround times necessary for maintaining the software are included
in a software maintenance plan.

All of these plans may not be required as separate documents (depending on
the methodology used, the content also may not be applicable). For instance, in a
smaller project, the plans described above can easily be included in the PMP. In
a medium-sized project, usually a PMP, CMP, QAP, and a schedule are prepared
(any other plans are included in the PMP).

Next, how to carry out software project planning and the preparation of typi-
cal project planning deliverables are described in greater detail.

J. Ross Publishing; All Rights Reserved

Software Project Planning   77

THE PROJECT MANAGEMENT PLAN

A PMP is the top-level plan that consolidates all of the relevant information about
a project, from the purchase order to the initial estimates and requirements, into
the plan. The PMP also incorporates the methods that will be used for managing
the project, the project management tools to be used, the project milestones, the
communication protocols, and the mechanisms for escalation and issue resolution.

Resources
A resource plan is typically a subsection of a PMP. Once a project has been
estimated, a work schedule for execution of the project can be developed. The
work schedule provides details of the resources required and the dates when the
resources will be needed.1 Attributes that influence the human resources aspects
of estimation include:

•	 Skill sets required for the project: The initial, required skill sets are
derived from the technical specifications of the project. (Over the life
of a project, innovation may alter the skill sets needed.)

•	 Size of software to be developed: The size of the software is estimated
using accepted software size measures, such as Function Point
Analysis, The Netherlands Software Metrics Association (NESMA)
Function Point Analysis, or Software Size Units (SSU).

•	 Amount of effort required to deliver the project: Effort is directly esti-
mated using estimation techniques, such as parametric estimation,
task-based estimation, analogy, or Delphi estimation. Effort also can
be derived from the estimated software size. (Remember from an ear-
lier discussion that effort and duration are not the same.)

•	 Duration that resources will be required on the project: Duration is
estimated by allocating the resources and assigning calendar dates
to the activities that have to be performed to execute the project — a
process called scheduling. (Scheduling will be covered in greater detail
in Chapter 9).

•	 Likely dates for resources: Based on estimated and compiled data, the
dates on which the resources are likely to be needed by the project
are derived. Estimates and schedules are fluid and can be adversely
affected by events; therefore, monitoring is critical. A schedule is not
a “fire and forget” task.

Skill Sets
Capers Jones, a leading authority in software estimating, has said that IT has more
specialties than any other profession. In a large project, therefore, a wide range

J. Ross Publishing; All Rights Reserved

78  Mastering Software Project Management

of different skill sets may be needed. In addition to a project leader/SPM, several
roles are typical:

•	 Programmers: to write the necessary programs
•	 Database administrator/database specialists: for data modeling and to

design the database, to develop stored procedures (programs written
at the database end for data handling), and then to offer assistance to
programmers in the efficient development of data handling routines
(DBAs can also carry out data migration or assist the team in data
migration activity as applicable.)

•	 Team leaders: to lead and manage teams of programmers, testers, and
DBAs on a day-to-day basis

•	 Software testers/testing specialists: to prepare test plans and test cases,
carry out software testing, and guide the team to ensure that testing is
properly carried out and all defects are uncovered and rectified

•	 Language smiths: to assist in troubleshooting programming issues
(Language smiths, also known as lead programmers or expert pro-
grammers, are experts in the programming languages used on a
project. Language smiths use their expertise to assist in troubleshoot-
ing programming issues and are often requested on an “as required”
basis.)

•	 Software (solution) architects: for process modeling to develop appli-
cation architecture and to integrate the developed solution

•	 Business (systems) analysts: to interact with the customer(s) to under-
stand requirements and to translate those needs/requirements into a
form which can be understood and used by the software developers
to produce the solution that meets the client requirements (In some
cases, business analysts also act as a proxy for the customer within the
project team.)

•	 Configuration controller: to ensure that the artifacts (both information
and software) are available to various team members and to ensure
that deliveries to the customer contain the correct versions of all deliv-
erables (also known as a configuration manager)

•	 Process coordinator: to ensure that the organization’s processes are
implemented and that process-related information is made available
on time to concerned functionaries of the organization

Other possible roles are process and product quality assurance analysts (PPQA),
user interface designers (UI), usability testers, etc. The list could go on and on.

At times, some roles are handled on a part-time or as-needed basis. A project
leader or project manager often takes on the roles of configuration controller,
process coordinator, and software architect. Programmers may take on the role of

J. Ross Publishing; All Rights Reserved

Software Project Planning   79

testers. Once the required skill sets and the duration for which they are required
are identified, resource requests can be placed with the department that allocates
human resources to projects.

Computer Systems
Depending on the nature of the project, a project team needs various hardware
items for execution of a project execution. Typical hardware and system software
requirements for a project include:

•	 Special computers (based on project needs)
•	 Personal computers (with appropriate terminal emulation software,

if necessary, to connect to the development machine/server or appro-
priate system software, a development tool kit, and any other neces-
sary tools)

•	 Networking hardware and software
•	 Connectivity to customer machines (if the project is to be executed

from a remote location)
•	 Bandwidth (if communication with a remote customer or testing of a

Web application is involved)
•	 Special software (databases, programming languages, testing tools,

configuration management tools, documentation tools, team collabo-
ration tools, etc.)

Project Management Method
A number of methods may be used to manage a project. (Note: Methods are
part of the Project Management Body of Knowledge that forms the basis of PMP©
certification.2) Project management methods include work allocation, progress
measurement and review, and communication.

Work allocation. In the work allocation method, work is allocated to the
human resources to execute the tasks. Then progress reporting is done at the task
level. Work allocation may use a variety of vehicles: an Excel sheet, Microsoft
Project or Primavera scheduling tools, or PMPal, a work breakdown structure
(WBS) collaboration tool. Work allocation may also be performed using a tool
such as Microsoft Project Server, in a formal email, and by telephone or even in
person. Reporting then leverages the same tool or method.

Progress measurement and review. In progress measurement and review,
tools and methods are used to ensure that the status of a project is clearly under-
stood. Progress measurement and review techniques include earned value analysis
(EVA) and line of balance (LOB). A weekly status report is the most common

J. Ross Publishing; All Rights Reserved

80  Mastering Software Project Management

progress reporting vehicle for projects. (Note: In agile projects, a daily stand-up
meeting and monthly sprint reviews/planning sessions take the place of status
reports.) In all cases, from EVA to stand-up meetings, the reporting process is
used as a basis for progress review and for deciding on action points.

Communication. Meetings, emails, and telephone calls are the most fre-
quently used mechanisms for communication within and outside a project team
— albeit new tools, such as wikis, Twitter, and instant messaging, are in the
process of supplementing email and telephone messaging systems due to their
intimacy and immediacy. The communication plan in the PMP should cover
several scenarios:

•	 Communicating within the project team
•	 Communicating work allocation and completion dates
•	 Progress reporting
•	 Communicating with the client
•	 Communicating with project support groups

Other considerations related to communication concern the environment and
issue-resolution and escalation mechanisms:

•	 Environment: Ensure that the tools, techniques, hardware, system
software, database, integrated (also interactive) development environ-
ment (IDE), testing tools, CM tools, and folder structures for artifacts
in various states that are required for the project are clearly described.

•	 Issue resolution: Ensure that the process is described so that whenever
there is ambiguity and clarifications are needed that an issue is raised
and tracked to resolution. Description of the process must include the
mechanism used to record all issues for the project, how the issue is
communicated to the appropriate person, and how the issue is tracked
to resolution. (Appendix E discusses issue-resolution mechanisms in
greater detail.)

•	 Escalation: Ensure that the process to raise an issue to the next higher
level is described. Include the levels to which an issue can be escalated,
when to escalate an issue, and to whom the issue should be escalated.

Typically, issue-resolution and escalation mechanisms form part of a PMP.

THE CONFIGURATION MANAGEMENT PLAN

A software development project has several configurations:

Development. The development configuration is the arrangement of the
hardware (the development machines: PCs, servers, and networks) and software

J. Ross Publishing; All Rights Reserved

Software Project Planning   81

(the development platform, including the programming language(s), database(s),
IDE, and third-party software used in the project) to be used by the programmers
for developing the software product. A development configuration plan typically
has two distinct parts:

•	 Code: the source code being developed
•	 Information/documentation: information received from the client;

developed for use in the project (requirement specifications, design,
test plans, test cases, etc.); and generated by the project (test and
review logs); all change requests

Review/testing. The review/testing configuration is the arrangement of the
hardware and software to be used by the reviewers and testers. Generally, software
does not change in the review/testing configuration. Programs enter the configu-
ration and after testing:

•	 Are returned to the development configuration for rectification or
•	 Are promoted to the integration configuration for integration with

other code units
Software is transient when in the review/testing configuration, i.e., the data por-
tion of the development configuration is used for testing and to unearth any
defects in the software.

Integration (build). The integration/build configuration is the arrangement
of the hardware and software to be used by product integrators. Integration is the
process that receives software components and integrates them into the build of
the product. Software components enter this configuration only when they have
been reviewed, tested, and all known defects have been satisfactorily rectified (or
put on a backlog).

Delivery. The delivery configuration is the arrangement for delivery of the
software components to the client. Typically the delivery configuration contains
some combination of the following:

•	 The software build
•	 The source code components
•	 Third-party software
•	 Software libraries
•	 Artifacts received from client
•	 Images
•	 User documentation and training materials
•	 Installation guide, operations guide, and troubleshooting manual

J. Ross Publishing; All Rights Reserved

82  Mastering Software Project Management

Deployment (target/production). The deployment configuration is the
arrangement of the hardware and software components in the target system on
which the developed software will be deployed and used.

All required configurations are determined and then documented in configu-
ration management planning. Because different configurations are needed at dif-
ferent levels of granularity at various times in a project, plans will be modified as
needed. As the level of knowledge changes, definitions should be also augmented.
(The necessity to modify plans and to update the project definitions is why a plan
is said to be “a living and breathing document.”)

Daily configuration management activities generally revolve around two
basic roles: moving components from one configuration to another and the
processes required to ensure that the “right” versions of components (software
and information artifacts) are assembled for delivery to the customer. Suggested
template elements for a CMP are shown in Figure 5.3.

Title: Software Configuration Management Plan

Name of Client:

Revision History:

Table of Contents

Figure 5.3. Configuration management plan elements.

	 1.0	 Introduction

	 2.0	References

	 3.0	Definitions and Acronyms

	 4.0	Organization of Configuration
Management
•	 Roles and Responsibilities
•	 Configuration Control Board Roles

and Responsibilities

	 5.0	Tools, Techniques, and Methodology

	 6.0	Configuration Management Activities
•	 Identification of Configuration Items
•	 List of Configuration Items
•	 Naming Conventions
•	 Baseline Management
•	 Repositories
•	 Configuration Management Software

	 7.0	Change Management
•	 Change Control
•	 Change Requests and Change

Register
•	 Release Management

	 8.0	Configuration Status and Accounting
•	 Storage and Release
•	 Reports
•	 Audits

	 9.0	Training

	10.0	Subcontractor Configuration Control
Activities

J. Ross Publishing; All Rights Reserved

Software Project Planning   83

Obsolete artifacts. An important aspect of configuration management plan-
ning is the management of artifacts that are undergoing improvement and the
management of obsolete artifacts that are created by every project. Obsolete arti-
facts are not destroyed — at least not until a project is complete. A mechanism
is needed to ensure that concerned parties refer only to the appropriate set. (The
word appropriate is used because at times previous baselines are needed as much
as an unambiguous reference to the “current set.”) A simple approach to manag-
ing artifacts is to create three folders:

•	 Current: all relevant, active artifacts that are complete and which will
be referred to when needed

•	 Archives: all previous versions of artifacts
•	 In process: all artifacts that are being developed/revised

Ensure that a version of an artifact is in only one of the folders. No artifact of the
same version is to be duplicated (except as a project backup).

Naming Conventions
Naming conventions are typically part of a CMP or part of an organizational stan-
dard referred in a CMP or PMP. Why are naming conventions needed? Naming
conventions:

•	 Prevent duplicate names or bring clarity when similar names are used
•	 Easily recognize the contents of the artifact
•	 Easily identify a group of artifacts (such as all artifacts related to a

specific module)
•	 Achieve uniformity in the naming of artifacts across teams in the

same project and across different projects within the organization
In programming, naming conventions allow one type of variable to be distinguished
from another type of variable (e.g., programming variables and table fields).

One approach to naming conventions is to use prefixes to distinguish between
the various categories. Several prefixes can be combined to provide a rich layering
of meaning. Typical naming conventions include:

•	 Document names
•	 Program/subprogram names
•	 Screens, reports
•	 Numeric variables
•	 Alphanumeric variables
•	 Flags
•	 Counters
•	 Database table names

J. Ross Publishing; All Rights Reserved

84  Mastering Software Project Management

•	 Database table field names
•	 Error messages
•	 Information messages
•	 Window
•	 Controls (combo box, text box, command buttons)

Change Management
Change is an inevitable occurrence in a software project (similar to death and
taxes!). Identifying (or defining) the process required for change management
typically occurs in a configuration management plan. (See Chapter 8 for more
detailed information about change management.) Inclusion of the contents of the
change management process in the CMP is not an absolute, but no matter where
change management is documented, the contents of the process are important.
Change management in software projects includes:

■	 Receiving change requests: designates a single point for receiving CRs
(from all sources), for consolidating the CRs, and for maintaining a
change register (also known as a change log)

■	 Analyzing change requests: specifies who is responsible for analyzing
CRs (Analysis includes developing an understanding of the impact on
schedule, effort, and cost.)

■	 Establishing a change control board: receives data from the CR analy-
sis process and uses that data to make accept or reject decisions or
to request more information about the CR. If the CR is accepted for
implementation, the change control board:
•	 Decides when to implement the CR (as and when received, in a

later release, or to retrofit all CRs in the final release?)
•	 Decides how to absorb the impact of the CR (internally or pass

impact on to the customer?)
•	 Obtains/accords approval for implementation of the CR
•	 Implements the CR
•	 Monitors quality control of CR implementation
•	 Closes the CR

■	 Reporting progress: determines the mechanisms to be used to track all
CRs received, to track all CRs to resolution, and to communicate the
status of all CRs to all concerned parties on a periodic basis

■	 Closing change requests: closes CRs when no further attention is
required (Authority for closing a CR rests with the change control
board. When a CR is closed, the requesting party receives notification
of the final disposition of the CR.)

J. Ross Publishing; All Rights Reserved

Software Project Planning   85

THE QUALITY ASSURANCE PLAN

Quality assurance planning focuses on achieving the specified level of quality of
the artifacts to be produced by a development team. A QAP usually contains:

■	 Standards to be used in the project:
•	 Coding
•	 Database design
•	 GUI design
•	 Test case design
•	 Testing
•	 Review
•	 Organizational process reference
•	 Other organization-specific standards

■	 Quality goals for the project:
•	 Defect injection rate
•	 Defect density
•	 Productivity for the project’s artifacts
•	 Schedule variances
•	 Other project-specific quality goals

■	 Quality assurance and control activities to be implemented in the
project:
•	 Code walk-through
•	 Peer review
•	 Managerial review
•	 Types of tests to be carried out during project execution (At a

minimum, testing should include unit, integration, system, and
acceptance testing.)

■	 Measures and the processes for measurement (Cover the defined
quality levels, the periodicity of testing, and the reporting mecha-
nisms.)

■	 Causal analysis (process and schedule) for positive and negative vari-
ances

■	 Schedules for proposed project audits:
•	 Periodic conformance
•	 Phase-end
•	 Criteria for investigative audits
•	 Delivery

■	 Process improvement activities (if any)
■	 Progress reporting mechanisms for the status of quality assurance

activities implemented in the project (for all concerned parties)

J. Ross Publishing; All Rights Reserved

86  Mastering Software Project Management

A suggested template for a QAP is shown in Figure 5.4.
As with all other plans, each section of a QAP must be evaluated for its perti-

nence to the project. For example, the section on standards could contain a refer-
ence to existing organizational standards. (Note: The authors are firm believers
in doing what is needed — not just approaching project quality management and
control as a rote checklist.)

THE SCHEDULE PLAN

Scheduling planning is best achieved by using scheduling software (e.g., Microsoft
Project or Primavera). All of the activities that are needed to execute a project
are enumerated; their predecessor relationships are defined; the resources are
allocated; and the dates are set for the activities. (Chapter 9 provides greater detail
about scheduling a project.)

THE INDUCTION TRAINING PLAN

An induction training plan (also known as an onboarding plan) describes how
personnel are to be brought up to speed to ensure the highest level of efficiency
for the project throughout its entire life cycle. An induction training plan contains
the training topics, duration of training, and the possible faculty for each topic
needed by the personnel before beginning to work on the project. The plan should

Title: Software Quality Assurance Plan

Name of Client:			 Proposed Reviews for Project:

Revision History:			 Proposed Tests for Project:

Table of Contents			

	 1.0	 Introduction

1.1	 Scope

1.2	 Objectives

1.3	 Overview

	 2.0	References

	 3.0	Definitions and Acronyms

	 4.0	Roles and Responsibilities

	 5.0	Standards and Guidelines

	 6.0	Quality Assurance Activities

	 7.0	Metrics Proposed to Be Collected for

the Project

	 8.0	Tools, Techniques, and Methodologies

	 9.0	Causal Analysis Proposed

	10.0	Quality Assurance of Subcontracted/

Client-Supplied Products

	11.0	Training

Figure 5.4. Quality assurance plan elements.

J. Ross Publishing; All Rights Reserved

Software Project Planning   87

also include a waiver process for the personnel who do not require training due to
previous training or their level of experience. Training topics may include:

•	 Project plans
•	 Team communication methods
•	 Quality assurance activities
•	 Issue-resolution mechanisms
•	 Escalation procedures
•	 Development platform
•	 Training methods
•	 Availability of self-study materials
•	 Waiver process

Suggested template elements for an induction training plan are shown in Figure 5.5.

THE RISK MANAGEMENT PLAN

A risk management plan describes how risks will be identified, prioritized, and
managed across the life of the project. Having a risk management plan helps to
ensure that risks do not disrupt progress if at all possible. The risk management
plan may be included as a part of a PMP or developed and documented as a stand-
alone plan. Typical risk management activities include:

•	 Risk identification
•	 Risk quantification
•	 Risk prioritization

Title: Induction Training Plan

Name of Client:

Revision History:

Table of Contents

Figure 5.5. Induction training plan elements.

	 1.0	 Introduction
1.1	 Scope
1.2	 Objectives
1.3	 Overview

	 2.0	References

	 3.0	Definitions and Acronyms

	 4.0	Roles and Responsibilities

	 5.0 	Training Approach

	 6.0 	Training Resources

	 7.0 	Training Topics

	 8.0	Project-Specific Skill Training

	 9.0 	Training Evaluation

J. Ross Publishing; All Rights Reserved

88  Mastering Software Project Management

•	 Risk mitigation
•	 Risk monitoring and reporting

Suggested template elements for a risk management plan are illustrated in Figure 5.6.

THE BUILD PLAN
A build plan contains the strategy for building the software project’s code and
details the build period (ranging from continuous to daily or to some other
period) and how the build will be tested. Details of the build plan include when
and how functionality will be delivered to the client. A typical build plan contains:

•	 The approach for integration (i.e., top-down or bottom-up)
•	 Roles and responsibilities for preparing the builds
•	 Configuration of the integration environment
•	 Quality assurance activities before accepting components into the

build environment
•	 Quality assurance activities after integrating each component, after

integrating each module, and at completion of the build

THE DEPLOYMENT PLAN
A deployment plan contains a description of the target location of the project’s
functionality, including the deployment of hardware, system software, middle-
ware, and pilot runs. A deployment plan typically contains:

•	 A schematic diagram of the deployment components, including hard-
ware, software, networking, etc.

Title: Risk Management Plan

Name of Client:

Revision History:

Table of Contents

Figure 5.6. Risk management plan elements.

	 1.0	 Introduction

1.1	 Scope

1.2	 Objectives

1.3	 Overview

	 2.0	References

	 3.0	Definitions and Acronyms

	 4.0	Risk Management for the Project
4.1	 Overview
4.2	 Risk Identification
4.3	 Risk Mitigation
4.4	 Risk Monitoring Activities
4.5	 Tools and Techniques

	 5.0	Training

J. Ross Publishing; All Rights Reserved

Software Project Planning   89

•	 Floor plans for deployment of hardware and networking (if necessary)
•	 A bill of materials (lists all components being deployed along with the

technical specifications of each of the components)
•	 Quality assurance activities planned for deployment
•	 Technical methods for deploying the configuration (if necessary)

Suggested template elements for a deployment plan are shown in Figure 5.7.

THE USER TRAINING PLAN

A user training plan describes how users of the system will be taught to use the
functionality being delivered. A user training plan minimally contains:

•	 A delineation of the types of users to be trained and the topics for each
type of user

•	 Details of each of the training topics
•	 Course material for each course (including, but not limited to, train-

ing slides, teaching notes, lesson plans, session breakdown, and par-
ticipant handouts)

•	 A schedule of the courses to be conducted
•	 Details of the facilities needed for conducting the training

Figure 5.7. Deployment plan elements.

Title: Deployment Plan

Name of Client: 			 Proposed Reviews for Project:

Revision History: 			 Proposed Tests for Project:

Table of Contents

	 1.0	 Introduction

1.1	 Scope

1.2	 Objectives

1.3	 Overview

	 2.0	References

	 3.0	Definitions and Acronyms

	 4.0	Roles and Responsibilities

	 5.0	Schedule of Deployment

	 6.0	Resources Required for Deployment

	 7.0	Facilities

	 8.0	Hardware

	 9.0	Deployment Unit

	10.0	Support Necessary for Deployment

	11.0	Training

J. Ross Publishing; All Rights Reserved

90  Mastering Software Project Management

THE HANDOVER PLAN

A handover plan describes how the functionality will be delivered to the client or
support organization. A typical handover plan contains:

•	 A bill of materials (all components to be handed over to the client)
•	 The mode of handover/takeover
•	 The required sign-off details
•	 A schedule for the handover

THE SOFTWARE MAINTENANCE PLAN

A software maintenance plan is typically driven by contractual requirements. At
a minimum, however, a software maintenance plan describes the activities, roles,
and processes for the usual warranty period (sometimes, longer warranty peri-
ods may be requested; if so, a separate software maintenance project is usually
spawned). A software maintenance plan may contain:

•	 The process for raising requests for software maintenance
•	 Formats and templates for raising software maintenance requests
•	 Service level agreements (including turnaround times for software

maintenance requests)
•	 The procedure for classifying software maintenance requests and pri-

oritizing them
•	 Issue-resolution mechanisms and escalation mechanisms during

maintenance
•	 The environment for software maintenance

THE DOCUMENTATION PLAN

Documenting of software project plans differs significantly from standard busi-
ness writing. Software project plans are documents that are used by many indi-
viduals as a reference for guiding human efforts and for incurring expenditures.
Therefore, approach the writing of a software project plan document as if it were
an engineering drawing. Attributes of an engineering drawing include:

•	 Unambiguous representation: The same inference would be drawn
from the document irrespective of the person who is interpreting it.

•	 One fact — one location: A fact is presented at one and only one loca-
tion and is never repeated. Presentation of information at multiple
locations may cause conflict or create a maintenance nightmare.

J. Ross Publishing; All Rights Reserved

Software Project Planning   91

•	 Specific language: No free-flowing language is used in writing project
plans. Project plans are not literature.

Therefore, using the analogy of an engineering drawing, a project plan should:
•	 Adhere to the documentation guidelines of the organization
•	 Avoid duplication of information at multiple locations
•	 Avoid ambiguity
Keeping in mind that multiple individuals are likely to prepare plan docu-

ments, uniformity can be achieved in an organization through the use of tem-
plates and reviews. Every organization, therefore, should define its templates. One
suggestion is to start by using templates from industry associations, standards
organizations (e.g., IEEE), or a consulting group.

ROLES IN PLANNING

Collaboration between various groups within an organization is critical in achiev-
ing effective project planning. At least two entities in an organization impact proj-
ect planning: the organization that provides the infrastructure and the individual
who carries out the project planning.

The Organization
To plot a project’s future, an organization needs project planning. Therefore, to
facilitate process planning, the organization provides an infrastructure that facili-
tates and enables effective project planning:

•	 Development, establishment, implementation, and continuous improve-
ment of the project planning process in the organization (procedures,
templates, formats, and quality assurance for plans)

•	 Implementation guidelines and standards (documentation guidelines,
checklists for the preparation and review of plans, and estimation
guidelines and productivity figures for various technologies used in
the organization)

•	 Establishment of a PMO (or similar) that takes charge of all project
plans and assists all concerned individuals in preparing project plans
and that also acts a lightening rod to receive feedback and to ensure
that feedback is analyzed, acted upon, and incorporated into pro-
cesses, standards, and guidelines

•	 Arranging for peer and managerial reviews of all plans at the prepara-
tion stage and, upon completion of a project, conducting a variance
analysis to capture the best and worst practices and to measure the
efficacy of the project plans

J. Ross Publishing; All Rights Reserved

92  Mastering Software Project Management

•	 Development and population of a knowledge repository for project
planning that acts as the corporate “memory” of past estimates and
project plans (a repository) so information can be used as reference
for project planning

•	 Providing structured training for planning projects
•	 Recognizing that project planning is a specialist activity and subject-

ing it to the rigors of process improvement
•	 Rewarding individuals who excel at project planning

The Software Project Manager
Individuals can “make or break” project planning. An individual who is vested
with the responsibility of project planning should be a person who strives to excel
at project planning. In addition to making the best use of the available infrastruc-
ture, an SPM who is well versed in project planning can achieve effective plan-
ning for the projects. A good project planner can add value to the organizational
project planning process through:

•	 Diligently planning the project and preparing plan documents so that
they adhere to organizational processes, standards, and guidelines

•	 Recognizing that project planning is important. It is not just prepar-
ing documents — it is planning the project. The documents are an
offshoot of the planning process that are to be used for the purposes
of review, improvement, and reference by all concerned groups in the
organization

•	 Assisting the organization in developing, establishing, implementing,
and continuously improving the project planning process

•	 Adhering to organizational processes, standards, and guidelines in
“letter and spirit”

•	 Giving feedback to concerned parties
•	 Participating in process improvement activities wholeheartedly
•	 Carrying out the project planning activity to the best of one’s ability

as diligently as possible
Individuals who are poorly suited for project planning usually whine about the
planning process. They generally cause more effort to be spent on the process
than needed. Vesting the exercise of project planning in an SPM or a team mem-
ber who is unsuited for project planning is just one of many potential pitfalls in
software project planning, the subject of the next section.

J. Ross Publishing; All Rights Reserved

Software Project Planning   93

PITFALLS IN SOFTWARE PROJECT PLANNING

Briefly, some common pitfalls in project planning in organizations include:

Preparing only documents. As discussed earlier, creating documents is not
the same as project planning. (Remember: Documentation is done to organize
thoughts and information about a project’s plans and to allow information from
the plans to be used as a reference for project stakeholders.) Many organizations,
however, treat the project planning process as nothing more than the preparation
of documents. Sometimes, with little or no thought, a past plan is converted to
the plan for a new project. This lack of thought causes the focus on the planning
aspects of a project to be reduced. Each aspect of a plan must be well considered
and thought out before a plan is documented. The bottom line is that a plan must
be implementable.

Best practice: Shift the focus from treating planning as documentation to using
documentation as a tool to organize a project.

Inadequate time for planning. Often, when an organization is in a hurry to
begin a project, the start of the project will be rushed and inadequate time will
be allotted to planning. Planning, however, is a crucial activity. Failing to allow
enough time to permit adequate planning causes the plans to be less likely to be
effective. Execution is also more likely to require deviations from the plan and
a greater frequency of midcourse corrections. An organization is well served to
remember the wise counsel of Abraham Lincoln about felling a tree, which is
quoted at the beginning of this chapter.

Best practice: Allow adequate time for planning activities — plan for planning.

No training or the wrong training. Project planning training for computer
science students by educational institutions, if done at all, is rare. Even more
unlikely is training for these students in the art and science of project planning.
Therefore, when promoting or recruiting a programmer to become a project man-
ager, training in the art and science of planning will be needed. (Note: Most indi-
viduals learn to use Microsoft Project from their peers or from senior members
in the organization. Few are formally trained in Microsoft Project — and many
of those confuse scheduling and planning. Individuals who do receive training in
Microsoft Project rarely receive training about the theory and practice of PERT/
CPM, the basis of actually using the tool. Not uncommon is seeing Microsoft
Project plans with hanging nodes and no resource constraints. Needless to say,
these schedules are obviously in error and not being used to their full value.)

J. Ross Publishing; All Rights Reserved

94  Mastering Software Project Management

Best practice: Provide formal training in PERT/CPM and other project manage-
ment tools to individuals who are vested with the responsibility of planning.

Skipping reviews. Two types of reviews are essential for quality control: a
peer review and a managerial review. A peer review is conducted by a person (or
persons) who has similar experience in a similar role. A peer review looks very
closely at the details, whereas a managerial review looks at the “big picture.” Both
of these reviews have a significant value. Cutting either one short (but more fre-
quently the peer review) would be compromising. Because planning is the initial
stage of a project, errors that are undetected in the planning review process will
likely have costly consequences for the project.

Best practice: Conduct peer and managerial reviews.

Lacking a PMO or having an ineffective PMO. Because a PMO is a cost
center that needs costly senior and human resources, many organizations have
a PMO in name only. In this scenario, the “non-PMO” is more project admin-
istration than project management. This type of PMO does not assist SPMs, but
instead actually causes a greater expenditure of resources. By demanding all sorts
of data and analyses, this type of PMO typically becomes a hindrance for SPMs.
(Remember: The PMO should collect data from the SPMs to carry out analyses
in the most nonintrusive manner possible. These analyses are then supplied to
SPMs and senior management to facilitate the corrective actions needed to keep
the project on course.)

Best practice: Establish a robust and effective PMO based on a well-defined and
well-implemented process framework.

Lacking a knowledge repository or having a poorly organized knowledge
repository. Many organizations fail to take the development and maintenance of
a knowledge repository seriously. The knowledge repository becomes a “dumping
ground” for records from completed projects. To have a proper knowledge
repository, resources (hardware, software, and human resources) need to be dedi-
cated to the vital activity of maintaining a knowledge repository. Not only does
a well-structured knowledge repository assist in ensuring project success, but it
also provides a springboard for taking an organization to the next higher level of
increased effectiveness.

Best practice: Have a well-structured knowledge repository.

J. Ross Publishing; All Rights Reserved

Software Project Planning   95

BEST PRACTICES IN SOFTWARE PROJECT PLANNING

In addition to the best practices already described, a few additional best practices
include:

Process-driven planning. A process-driven planning approach facilitates
uniformity among SPMs in the project planning community of an organiza-
tion. By providing templates to ensure that no important aspect is forgotten or
overlooked, process-driven planning also facilitates more comprehensive plan-
ning. Defining the process planning process and then subjecting it to continuous
improvement will hone organizational project planning skills and progressively
improve planning to a stage in which the variances between planned and actual
achievements are narrowed down to a minimum.

Best practice: Have a process-driven planning approach.

Balanced planning. When planning each project, strike a balance between
“what is needed” and “what is mandated.” Although having a PMP is a “bare
minimum” planning requirement, a PMP will be inadequate for many projects.
A better option (unless a project is very small) is to prepare a minimum of three
plans: a PMP, a CMP, and a QAP. Include other pertinent aspects as needed
in these three documents. Based on the complexity, duration, and the person-
month effort required to execute the project, the preparation of more detailed (or
additional) plans may be needed. For example, as additional human resources are
employed, the complexity of management increases. Having three plans (a PMP,
CMP, and QAP) may be adequate if the number of teams in a project is one (one
team consists of six to ten people), but if the number of teams increases beyond
one, the number and rigor of these plans must increase.

Best practice: Create a balanced set of plans based on the type of project, the
effort required to execute the project, the expected duration, and the number of
teams working on the project. Refer to the organizational norms for the recom-
mended set of plan documents.

Norms for planning. For the estimation component of planning to be real-
istic, norms, especially for software estimation, resource estimation, and other
software engineering activities, must be made available to project planners.
Obviously these norms should form a part of the organization’s knowledge
repository. Derivation of norms based on studies and periodic adjustment, tak-
ing into consideration actual achievements, goes a long way in ensuring effective
planning.

Best practice: Use organizational norms from the knowledge repository for the
estimation component of planning.

J. Ross Publishing; All Rights Reserved

96  Mastering Software Project Management

Variance analysis. Once a project is completed, an analysis of the variances
from estimates to actual achievements needs to be carried out. A variance analy-
sis includes comparing the original plan to the actual achievements, eliminating
abnormal achievements with assignable causes that are specific to the project,
drawing the correct inferences from the data, and updating the organizational
norms. Subjecting a completed project to variance analysis and then adding
updates to the knowledge repository ensure that the knowledge repository
contains reliable and credible information. Although variance analysis is an
important step in the postmortem process, in many organizations, conducting a
variance analysis is more often an exception rather than the rule.

Best practice: Conduct a variance analysis during project postmortems and
update the knowledge repository.

REFERENCES

1.	 Chemuturi, Murali. Software Estimation Best Practices, Tools & Techniques:
a Complete Guide for Software Project Estimators 2009. Ft. Lauderdale, FL: J.
Ross Publishing.

2.	 PMI. A Guide to the Project Management Body of Knowledge, Fourth Edition
(PMBOK® Guide) 2009 January. Chicago: The Project Management Institute.

This book has free material available for download from the
Web Added Value™ resource center at www.jrosspub.com

J. Ross Publishing; All Rights Reserved

97

6

SOFTWARE PROJECT
EXECUTION

INTRODUCTION

Software process execution is where “the rubber hits the road” — it is the crux of
software project management. In project execution, the art and science aspects of
management are implemented and results are obtained; the efficacy of the plan-
ning is put to the test; and the deliverables are constructed, tested, and delivered
to the customer. Software project execution is typically composed of several
management activities:

■	 Work
■	 Configuration
■	 Quality
■	 Team morale
■	 Productivity
■	 Stakeholder expectations

•	 Customers
•	 The organization and management
•	 Project teams

■	 Product integration
■	 Control

Software project execution activities are illustrated in Figure 6.1. Appendix A also
covers the broad subject of management in greater detail. (Note: Because of the

J. Ross Publishing; All Rights Reserved

98  Mastering Software Project Management

importance of control management, Chapter 7 is devoted entirely to the subject
of project control.)

WORK MANAGEMENT

Work management in software projects has no specific definition, but in software
projects, work is managed by executing it in a stepwise process:

	 1.	 Allocating the work for execution
	 2.	 Assuring that completed work is under configuration management

and that it is subjected to appropriate QA activities
	 3.	 De-allocating human resources so that they can take up other task
	 4.	 Promoting an artifact to the next level of activity

These four steps are iterated until all work is completed.
Before work can be managed using this stepwise process, the work needs to be

broken down into components for allocation. In other types of projects, work con-
sists of performing tasks. In software development, however, because components
are constructed, changed, or repaired, it is functionality that needs to be broken
down into constituent modules. Then these modules are broken into submodules,
and so on, until no further breakdown is feasible or until any further breakdown
will yield no additional advantage in work allocation. The work “package” should
be a stand-alone piece, i.e., it can be allocated to one person for construction.

Work
Management

Configuration
Management

Quality
Management

Team Morale
Management

Team Morale
Management

Team Morale
Management

Product
Integration

Management

Control

Figure 6.1. Software project management execution.

J. Ross Publishing; All Rights Reserved

Software Project Execution  99

But how large should a work package be for allocation to one person?
Whenever possible, when allocating work to an individual, consider the following
guidelines:

•	 A work package should consist of a single component. (Allocating
more than two or three components at the same time is possible, but
not ideal. Instead, components of the same module should be allo-
cated to the same person serially.)

•	 The component should be amenable for independent testing.
•	 The allocation should have independent functionality. (If functional-

ity is divided into more than one component, all components should
be allocated to one individual or to members of the same team.)

•	 A work allocation should occupy an individual for at least a full day
or for multiples of a day thereafter. (Allocating work multiple times
in a day is cumbersome for the individual as well as the SPM/project
leader. Also possible is that fractions of a day will simply be lost if the
individual does not remember to report completion of the work allo-
cation an hour before the close of the day and ask for the next alloca-
tion. Completion of work is expected to be reported immediately, to
the minute, but in reality many individuals take a break before they
report completion of work.)

•	 A work allocation should be no longer than a week.
So, how is work allocated? Two approaches are common: an ad hoc approach

and a process-driven approach:

Ad hoc. In an ad hoc approach, work is allocated by:
•	 Sitting with the person in a one-on-one meeting
•	 Explaining the functionality
•	 Bargaining and setting a completion target
•	 Getting the individual to carry out the work

Process driven. In a process-driven approach, work is allocated by:
•	 Maintaining a work register that is available to all project team mem-

bers (e.g., using an Excel sheet or a software tool such as Microsoft
Project or PMPal)

•	 Entering work allocations in the work register
At the beginning of each workday, a team member checks the work register for
his/her work allocation (as well as to determine the next work allocation when the
work allocation is completed). Then the team member:

•	 Collects the appropriate support information (e.g., the design docu-
ment from the common information repository)

J. Ross Publishing; All Rights Reserved

100  Mastering Software Project Management

•	 Notes the effort estimate and targets from the work register (and if
necessary bargains with the SPM/PL for correction of the effort esti-
mate or the completion target until agreement is reached)

•	 Starts the work

Work Registers
A work register consists of multiple columns. A work register may be maintained
as a single register or by using multiple registers (one for each phase). When
multiple registers are maintained, a separate register is used for each development
activity: requirements, software design, construction, review/walk-through, unit
testing, integration, integration testing, build preparation, and system testing.

An activity-based work register. In an activity-based register, the Attribute
column states the size measure and the size. Actual values for the Actual Size
column are captured from the individual who completes the work. (Note: The
size of a work allocation might not be given if the size does not lend itself to
measurement, but this situation does not indicate that recording project-level size
data should be abandoned.) A work register based on a development activity is
illustrated in Table 6.1.

A single register. A single register tracks the work allocation against the com-
ponents. In a single register, product integration and build preparation, as well as
their associated QA activities, are treated as components. Each row depicts alloca-
tion information for all of the activities for a single component. Advantages of a
single work register include:

•	 All components are tracked in a single place: finding out if every com-
ponent has been included is easy.

•	 All information pertaining to a component is in one row: finding out
if a specific activity has been carried out is easy.

•	 Because all components are tracked, determining project status is easy.
•	 Metrics computation is easy.
•	 Automating register maintenance and data collection is easy.

Each row in a single register is very long, however, which makes using the register a
bit tedious when maintained manually. A single work register is shown in Table 6.2.

Table 6.1. An Activity-Based Work Register: Construction Activity

Component
Name Attribute

Estimated
Size

Actual
Size

Allocated
to

Scheduled
Start

Actual
Start

Scheduled
Completion

Actual
Completion

XYZ C 200 LOC ABC 10 Oct 09 11-Oct-09

J. Ross Publishing; All Rights Reserved

Software Project Execution  101

Multiple registers. Similarly to maintaining a single work register, multiple
registers maintain several registers — one for each phase-level activity. Some
advantages of maintaining multiple registers include:

•	 The information in each register is homogenous: register mainte-
nance is easy.

•	 Work is tracked based on type of activity: finding out if a component
has been completed in a certain activity is easy.

Some disadvantages of multiple registers include:
•	 As the number of moving parts increases and overhead levels become

higher, a single activity becomes more likely to “fall through the
cracks” and be overlooked (e.g., overlooking a quality assurance activ-
ity for a component is possible).

Table 6.2. A Single Work Register

Component

Module name

Attribute

Estimated size

Actual size

Allocated for construction to

Scheduled start of construction

Actual start of construction

Scheduled finish of construction

Actual finish of construction

Allocated for review to

Scheduled start of review

Actual start of review

Scheduled finish of review

Actual finish of review

Number of defects uncovered in review

Allocated for unit testing to

Scheduled start of unit testing

Actual start of unit testing

Scheduled finish of unit testing

Actual finish of unit testing

Number of defects uncovered in unit testing

J. Ross Publishing; All Rights Reserved

102  Mastering Software Project Management

•	 Determining project status requires referring to multiple registers.
•	 Metrics computation requires compilation of data from multiple reg-

isters.
•	 Duplication of data is possible in some registers (if not all).

De-allocation
The term de-allocated sounds harsh, but de-allocated merely refers to the assign-
ment of an individual to another task. De-allocation is a stepwise process in which
an individual completes an allocated work; the results of the work are promoted;
and the individual is reassigned to other work:

	 1.	 The individual to whom the work has been allocated completes the
work.

	 2.	 The individual informs the SPM/PL that the work is complete.
	 3.	 The SPM/PL takes possession of the completed artifact and does a

cursory inspection to ensure that the work is indeed complete.
	 4.	 The SPM/PL obtains the completion information and the actual size

of the product constructed for construction allocations. (For QA
allocations, the number of discovered defects is obtained.)

	 5.	 The SPM/PL updates information in the work register.
	 6.	 The SPM/PL uses the data collected to determine the level of pro-

ductivity achieved by the individual on the component. (Depending
on the level of productivity achieved, the SPM/PL provides any
mentoring needed to the individual.)

	 7.	 The individual is de-allocated from the current allocation, which
makes the individual available for the next allocation.

	 8.	 The SPM/PL promotes the artifact to the next step in the artifact’s
development life cycle.

This process of allocation and de-allocation is leveraged until all components
are constructed, integrated, and tested; the final build is prepared, tested, deliv-
ered to the customer; and all resources are released. The de-allocation process is
illustrated in Figure 6.2.

But, why go to all this trouble? The answer: using work registers and de-
allocation is effective in work management. They ensure that:

•	 All construction work and all related activities are tracked so that they
will be completed on time.

•	 All QA activities are performed and defects are fixed.
•	 Wait time between work allocations is eliminated or minimized.
•	 Re-work due to lack of coordination is minimized.
•	 No work allocation is duplicated (i.e., no component is built twice).

J. Ross Publishing; All Rights Reserved

Software Project Execution  103

Start

Work
assigned is
completed.

SPM/PL is
informed.

SPM/PL takes
possesion of

completed artifacts.

Record completion
information in
work register.

Release the
person for next

allocation.

Promote the
artifact for next

activity.

Completed

Is
performance

OK?

Counsel the
person.

No

Yes

Figure 6.2. The work de-allocation process.

J. Ross Publishing; All Rights Reserved

104  Mastering Software Project Management

•	 The “right” work is allocated to the “right” person (the right person
for every assignment and the right assignment for every person — pun
intended!).

CONFIGURATION MANAGEMENT
Configuration management in software development deals with safekeeping the
integrity of all project artifacts and with controlling the changes that need to be
effected on the artifacts. Configuration management covers system configurations
of two types: production configuration and development configuration.

Note: Production configuration is established in the actual environment in which
the software will run. Configuration management in production configuration
deals with the maintenance of the artifacts through a system of checks and bal-
ances and a series of approvals to ensure that end-users are using the right soft-
ware. This book does not cover management of the production configuration.
Configuration management in this book deals with the development configura-
tion: the time frame in the software development life cycle (SDLC) when software
is being developed.

In development configuration management, each software project should
have a configuration control board (CCB). The CCB oversees implementation of
the configuration management process in a project. A CCB typically consists of
one or more persons. The actual day-to-day work of configuration management
is carried out by an individual (sometimes more than one individual), who has
been designated as the configuration controller (CC; this role may be referred to
by other titles, including configuration manager). Configuration management
in development configuration is applicable to two types of artifacts: information
artifacts and code artifacts.

Information Artifacts
Information artifacts are the project-specific documents. Project-specific docu-
ments include:

•	 Project initiation records (the PIN, RFP, feasibility report, proposal,
order, and approvals)

•	 Requirements documents
•	 Design documents
•	 Project plans
•	 Test plans, test cases, and test logs
•	 Review records
•	 Work registers

J. Ross Publishing; All Rights Reserved

Software Project Execution  105

•	 Change requests and the change register
•	 Customer interface communications (approvals, commendations,

and complaints)
•	 Progress reports
•	 Meeting minutes
•	 Any other related documents
Information generated within a project may be maintained in three macro-

states:
•	 Under preparation set: Documents remain in “under preparation”

while they are being prepared and until they are either approved or
discarded.

•	 Current set: Documents to be used by the project team in carrying out
work on other deliverables are kept in “current set.”

•	 Archive set: Documents are kept in “archive set” when they have been
superseded. They are maintained for the duration specified in the
configuration management plan.

Information received from a client or from another department, however, has
only one state: current state. Configuration management ensures that for that any
given document, a given version is available at only one place.

Replacing a document in the current set. Steps in a recommended process
for replacing an existing document in the current state with an updated document
include:

	 1.	 The originator of a proposed replacement requests that the CCB
process the change. (The actual communication may be through
email or via a wide variety of methods. More and more often, soft-
ware configuration tools are replacing the need for external com-
munication methods.)

	 2.	 The CCB verifies the new artifact to ensure that it is complete that
that it has received the required approvals.

	 3.	 If complete and the required approvals have been accorded, the CCB
instructs the CC to effect the change. The CC then copies the exist-
ing artifact from current set to archive set and deletes it from current
set.

	 4.	 The CC then copies the new artifact from the under preparation set
to current set and deletes it from under preparation set.

	 5.	 The configuration controller then arranges for a peer review of the
change and informs the CCB.

	 6.	 The CCB informs the originator of the request that the process is
complete.

J. Ross Publishing; All Rights Reserved

106  Mastering Software Project Management

The document replacement process is depicted in Figure 6.3. Most current change
management tools or scripts automate these steps through some form of work
flow, creating records of the change process and obtaining approvals (as required)
for auditing and security reasons.

Code Artifacts
Code artifacts are the second, and the more important, set of artifacts managed in
configuration management. Code artifacts typically include:

■	 The program code that is being developed by the project
■	 Components supplied by the customer
■	 Components obtained from a subcontractor
■	 Reusable components from the organization’s code repository:

•	 Components that can be used without any modification
•	 Components that can be used with modification

■	 Code libraries obtained from a third party (e.g., a COTS product)
■	 Software components obtained from a third party (e.g., a COTS prod-

uct or a component)
■	 Database table scripts
■	 Test data

Of these code artifacts, four have multiple states — the program code, compo-
nents that can be used with modification, database table scripts, and test data:

	 1.	 Initial coding
	 2.	 Review
	 3.	 Unit testing
	 4.	 Rectification
	 5.	 Integration
	 6.	 Integration testing
	 7.	 Build preparation
	 8.	 System testing
	 9.	 Acceptance testing
	10.	 Delivery

Code integrity. Usually, developing code for a component takes multiple
days. Performing the quality assurance (QA) activities designed for the compo-
nent also takes multiple days. Therefore, until the component has been completed
in all respects, including QA, the integrity of the code must be ensured. (Note:
Code integrity means that the right version of code is promoted to the next stage
of development work.) Configuration management of code artifacts ensures the

J. Ross Publishing; All Rights Reserved

Software Project Execution  107

Start

A document is updated and approved.

Replacement request is placed with CCB.

CCB verifies the document for approvals
and completeness.

CCB informs CC to replace the document
in CM repository.

CC moves the document in the
current repository to archive repository.

CC moves the new document into the
current repository.

CC arranges peer review for the
change effected.

CC informs CCB about the completion
of document replacement.

CCB informs the originator about the
completion of document replacement.

Completed

Is
the document OK
for inclusion in CM

repository?

No

Yes

Figure 6.3. The process for document replacement.J. Ross Publishing; All Rights Reserved

108  Mastering Software Project Management

integrity of the code being developed. To ensure that the integrity of the code is
protected, code library environments are typically leveraged:

•	 Development: The foundation of the development environment is
comprised of the software development tool kit. Programmers use
the development environment to develop code and to conduct self-
testing. Each programmer has a designated area and the appropriate
access rights to the code and to modify programs. Code in the devel-
opment environment undergoes frequent changes.

•	 Testing: The testing environment consists of the testing tools, the test
data, and any other components necessary to carry out testing of the
code that has been developed by the programmers. (Usually, no sys-
tem testing is carried out in the testing environment: system testing is
carried out in the actual environment or in a simulation of the actual
environment.) No changes should be made to code in the testing envi-
ronment. To effect this recommendation, allow no access rights to the
code. Testers should only have access to execute the code and modify
test data as needed.

•	 Integration: The integration environment is similar to the develop-
ment environment. Access rights in the integration environment are
limited to only the programmers who are charged with integration
of the individual units and building them into the designed software
product. In larger projects that consist of multiple modules, each
module could have an environment for integration and an environ-
ment designated to final build preparation.

•	 Systems testing: The systems testing environment consists of the target
configurations in which the developed software product is expected
to function in “real life.” No changes to code should be made in the
systems testing environment. Testers only have access to execute the
code and modify test data as necessary.

•	 Delivery: The delivery environment is a repository where all compo-
nents to be delivered are collated. No changes to code are allowed in
the delivery environment. Only the configuration controller/configu-
ration manager has access rights in this environment.

Configuration management activity is heavily focused on controlling the
movement of code. Most of the work in configuration management is carried out
by managing the state transition of code (i.e., from one state to another) to ensure
that only the right version of code is ultimately delivered to the customer. The
movement of code typically follows a stepwise process:

	 1.	 The code begins in the development environment.
	 2.	 The code moves from the development environment to the testing

environment for code review.
J. Ross Publishing; All Rights Reserved

Software Project Execution  109

	 3.	 If any defects are uncovered in code review, the code goes from the
testing environment back to the development environment for rec-
tification.

	 4.	 After the defects are fixed, the code again moves from the develop-
ment environment to the testing environment for re-review (as
appropriate).

Steps 3 and 4 are iterated until all defects are fixed or a threshold level has been
triggered (based on thresholds in the organizational review process).

	 5.	 Upon certification of integration by the reviewer that the code is free
of defects, the code is retained in the testing environment for unit
testing.

	 6.	 If any defects are uncovered in unit testing, the code moves from
the testing environment back to the development environment for
rectification of the defects that have been unearthed in unit testing.

	 7.	 After fixing the defects, the code again moves from the development
environment to testing environment for regression testing.

Steps 6 and 7 are iterated until all defects are fixed.
	 8.	 Once testing certifies the code as defect-free, the code moves from

the testing environment to the integration environment for integra-
tion.

	 9.	 Once integration of the product (or a module) is completed, self-
reviewed, and self-tested, the code is moved from the integration
environment to the testing environment for integration testing.

	10.	 If any defects are uncovered during integration testing, the code
moves from the testing environment back to the integration envi-
ronment to rectify the defects that have been unearthed in integra-
tion testing.

	11.	 After fixing the defects, the code again moves from the integration
environment to the testing environment for regression testing.

Steps 10 and 11 are iterated until all defects are fixed.
	12.	 Once testing certifies the code as defect-free, the code moves from

the testing environment to the system testing environment for sys-
tem testing.

	13.	 System testing and any other related tests planned for the software
product are conducted in the system testing environment. If any
defects are uncovered by these tests, the code would be moved back
to the integration/development environment for rectification of the
defects.

J. Ross Publishing; All Rights Reserved

110  Mastering Software Project Management

	14.	 After fixing the defects, the code is moved from the integration envi-
ronment to the system testing environment for regression testing.

Steps 13 and 14 are iterated until all defects uncovered by system testing are fixed.
	15.	 Once the testers certify the code as defect-free, the code would be

moved to the delivery environment for delivery to the customer.
	16.	 If any change requests are received for the code in any environment,

the code is moved to the development environment for implementa-
tion of the change request. Once a change is completed, it follows the
same procedure as described above.

The state transition of code artifacts is illustrated in Figure 6.4.
All software development organizations might not use all of these environ-

ments individually. Instead, a combination of environments could be used,
e.g., combining the testing environment and the system testing environment to
become a single testing environment. Similarly, the development environment
and integration environment could be combined into a single development envi-
ronment. Another possibility is that an organization with specialized needs might
create additional environments to meet a specific need.

Develop/modify code

Unit testing environment

Integration environment

Integration testing environment

System testing environment

Delivery environment

Code is developed
or changed.

Review and unit testing
are conducted.

Modules and product
are integrated.

Integration testing
is conducted.

System testing
is conducted.

All deliverables
are collated.

For fixing defects

For fixing defects

For fixing defects

For fixing defects

Figure 6.4. State transition of code in configuration management.

J. Ross Publishing; All Rights Reserved

Software Project Execution  111

Code maintenance. In software maintenance projects, typical code mainte-
nance environments are production, development, testing, and delivery:

•	 Production: contains all code and the data being used
•	 Development: a replica of the production environment that is used to

make software modifications
•	 Testing: for carrying out the testing of software fixes
•	 Delivery: for staging changes before they are promoted to the produc-

tion environment
In the maintenance environment, code movement follows a stepwise process:

	 1.	 When a maintenance work request (MWR) is received, the affected
code is copied from the production environment to the development
environment to implement the changes described in the MWR.

	 2.	 After implementing the changes described in the MWR and self-
testing, the code is moved to the testing environment for regression
testing.

	 3.	 If any defects are uncovered during regression testing, the code is
moved back to the development environment for repair.

Steps 2 and 3 are iterated until all defects are fixed.
	 4.	 Once the code is certified as defect-free, the code is moved to the

delivery environment.
	 5.	 The code is moved from the delivery environment to the production

environment.

Note: Movement into the production environment (as well as movement into
and out of all environments) must conform to change management procedures.
Approvals are typically part of change management procedures. Movement into
production also occurs according to an organizational norm: weekly, monthly,
need-based, or in some other interval that meets the organization’s business
needs.

Configuration Registers
The goal of this section is not to identify a particular format, but to give the reader
an understanding of the configuration register and to emphasize the necessity
of monitoring and tracking the movement of configuration items. The number
of columns used in a manual configuration register is based on organizational
needs. The number of columns used is also based on the configuration manage-
ment process used. Almost all current configuration management tools can track
and provide register-like reporting. In many of the more popular tools, code and
information artifacts are tracked, versioned, and maintained side-by-side virtually,

J. Ross Publishing; All Rights Reserved

112  Mastering Software Project Management

capabilities that have caused many organizations to replace manual registers with
configuration management tools.

A configuration register (also known as configuration records) is maintained
by a configuration controller under the guidance of the CCB. A configuration
register contains a list of all project artifacts: the information artifacts and the
code artifacts. A configuration register also maintains a version number for each
type of artifact: an artifact with a version number less than the number in the con-
figuration register is considered to be obsolete; an artifact with a version number
greater than the number in the configuration register is understood to not yet be
approved for use:

•	 Information artifacts: Version numbers are maintained as part of the
document, normally in a table referred to as the revision history or the
approval record.

•	 Code artifacts: The version number is maintained in the revision his-
tory inside the code.

Maintaining two registers for a project is customary: one for information
artifacts and another for code artifacts. A format for a manual configuration reg-
ister is shown in Table 6.3. Entries in the cells in Table 6.3 contain the following
information:

•	 Name of Artifact: the name of the artifact (e.g., the document file
name or the program file name)

•	 Current Version: the current version number of the approved artifact
•	 Location: the directory/folder/library where the artifact resides (with

the current version number)
•	 Date of First Check-In to Configuration Register: the date on which the

artifact is entered in the configuration register
•	 Date of Approval for Current Version: the date on which the artifact is

approved (with the current version number)
•	 Checked In By: the name of the person who checked the current ver-

sion into its current location (usually the configuration controller)
•	 Baseline Purpose: the purpose of the current baseline and its intended

use (testing, integration, delivery, etc.)

Table 6.3. Format for a Manual Configuration Register

Name of
Artifact

Current
Version

Location
(References
Location of
the Artifact)

Date of First
Check-In to

Configuration
Register

Date of
Approval

for Current
Version

Checked
in By

Baseline
Purpose

J. Ross Publishing; All Rights Reserved

Software Project Execution  113

When making delivery to a customer, the configuration register is checked for the
purpose for which the artifact is baselined. Only when the baseline purpose for an
artifact has been flagged as “delivery” does an artifact qualify for delivery.

Another format for a manual configuration register is shown in Table 6.4. In
this register, entries in the cells contain baseline information:

•	 Name of Artifact: the name of the artifact (e.g., document file name or
the program file name)

•	 Development Baseline Date: the date on which development is com-
pleted and approved

•	 Development Baseline Version: the version number of the artifact that
has been completed and approved

•	 Testing Baseline Date: the date on which testing is completed and all
defects uncovered have been fixed and approved

•	 Testing Baseline Version: the version number of the artifact that has
been tested and all uncovered defects have been fixed and approved

•	 Integration Baseline Date: the date on which integration is completed
and integration testing is completed for the artifact and approved

•	 Integration Baseline Version: the version number of the artifact that
has had integration completed in all respects and has been approved

•	 Delivery Baseline Date: the date on which the artifact is approved for
delivery to a customer

•	 Delivery Baseline Version: the version number of the artifact that is
ready for delivery to a customer

The two Delivery Baseline columns must be completed for all relevant artifacts
before delivery to a customer can occur.

When delivery to a customer is completed, delivery inspection is carried
out to ensure that the version number on each artifact matches the correspond-
ing version number for the artifact in the configuration register. Any deviation
is reported as a defect. Rectification must be carried out before the artifact is
“passed” for delivery.

Baselining an artifact. Baselining an artifact refers to updating the version
number for an artifact and entering the information in a configuration register.

Table 6.4. Alternate Format for a Configuration Register

Name of
Artifact

Development
Baseline

Testing
Baseline

Integration
Baseline

Delivery
Baseline

Date Version Date Version Date Version Date Version

J. Ross Publishing; All Rights Reserved

114  Mastering Software Project Management

Although variations of the baseline procedure exist in organizations, baselining
typically follows several steps:

	 1.	 An artifact is allocated to an individual for construction.
	 2.	 When construction of the artifact is completed and approved for

promotion to testing, the first baseline for the artifact is established.
	 3.	 Whenever any modification is carried out on the artifact, for any

reason, the version number is incremented according to the version
numbering guidelines for the project.

	 4.	 When testing of the artifact (review in the case of an information
artifact) is completed and all defects uncovered have been fixed, the
testing baseline is established using the version number and the date
on which the artifact was approved for the next stage.

	 5.	 When the artifact is integrated into its module or product, the
integration testing is completed, and all defects uncovered during
integration testing have been fixed, the integration baseline is estab-
lished using the version number and the date on which approval for
the next stage was received.

	 6.	 When all activities on the artifact are completed and the artifact is
approved for delivery to a client, the delivery baseline is established
using the version number and the date on which approval for the
next stage was received. The delivery baseline is the final baseline.

Note: Should a change request be received for any artifact after it has been base-
lined, the artifact’s status is returned to development baseline. Once development
is completed, the artifact reenters the process at the beginning of testing.

Obtaining approval for baselines. A typical approach for obtaining approval
to baseline an artifact includes:

•	 A request to baseline an artifact is made by the SPM/PL to the CCB.
•	 The CCB considers the request and inspects the pertinent reports to

ensure that the prerequisite activities for baselining have indeed been
completed.

•	 If appropriate, the CCB instructs the configuration controller to base-
line the artifact.

•	 The configuration controller enters/updates the information in the
configuration register and physically moves the artifact to the next
stage.

Managing all of these activities constitutes configuration management during
software development. At times, an SPM takes on the configuration management
roles, particularly when a project is small in size and in duration; however, a for-
mal definition of the various configuration roles is typically done in large develop-
ment and software maintenance projects.J. Ross Publishing; All Rights Reserved

Software Project Execution  115

Configuration Management Tools
A plethora of configuration management tools are available. Although using a
configuration management tool is not mandatory, these tools do provide a sepa-
rate security system over and above an operating system’s security layer. (If you
are willing to expend the effort, you can achieve the same results by using the
operating system’s directory/library/folder structures and its security cover as can
be achieved by using a configuration management tool.) Configuration manage-
ment tools can provide:

•	 Controlled check-in and check-out of artifacts
•	 Retrieval of any earlier versions without having to keep manual

backups of every version (enables the selection of one version for a
particular project/customer and another version for another project)

•	 Maintenance of a version number within an artifact itself, automati-
cally updating the version number every time the artifact is checked
in (eliminates the necessity of manual modification and automates
revision history maintenance)

•	 Facilitation of final build preparation (Configuration management
tools have facilities for automatic build preparation or to provide an
interface to build preparation utilities: once a list of artifacts with their
version numbers is provided, the majority of the build process is man-
aged by the tool.)

Note: The ability to retrieve an earlier version without having to keep manual
backups of every version is especially useful for COTS developers who maintain
products that are being used by different environments/customers. As the com-
plexity caused by the number of configurations increases, a tool-based configura-
tion register assumes its true significance and importance. Perhaps this version
retrieval ability is the greatest advantage of using a configuration management
tool. Life without a configuration management tool for COTS product developers
would be very difficult.

Configuration management tools provide excellent facilities. Older tools,
however, focus more on production configuration management than on software
development configuration. Once a software product is in production, the artifacts
do not change daily. During development, however, artifacts can undergo daily
change until the final build is ready.

Note: If configuration management tools are used without the proper guidelines,
some “interesting” situations can occur. In one situation, we observed 20 as being
the version of a program — and the final build was not even prepared! This situ-
ation happened because the programmer checked in every evening and checked
out every morning. By the time the program passed unit testing, its version had J. Ross Publishing; All Rights Reserved

116  Mastering Software Project Management

already shot up to 10! The point of this story is that a program must be complete
before it is checked back in.

When a configuration management tool is used, the following are helpful
check-in guidelines:

•	 Initial check-in: Do not check-in a program unit/screen/report, etc. to
a configuration management tool until it has passed through indepen-
dent unit testing. One approach for an information artifact is to not
check-in until the artifact has received its first approval. (This piece of
advice is found on the introduction page of the Help file of more than
one configuration management tool, but who reads Help files these
days?)

•	 Recheck-in: Only allow recheck-in after due approval has been
obtained. For a code artifact, passing regression testing could be a
criterion when using a configuration management tool. For an infor-
mation artifact, approval by a competent person could be a criterion.

•	 When under development: The configuration management tool
should not be used as an online backup device. While under coding/
preparation/rectification, an artifact should not be checked into the
tool.

•	 Limited check-in access: Allow only one person to check-in artifacts (if
not for the entire project, at least for each module). Enforce check-in
security strictly.

Adhering to all of these precautions is a sine qua non (absolutely indispensable)
in the production environment. Based on the development process being used,
this type of discipline should also be inculcated in the development environment.

Any tool or process is similar to a knife: a knife can be used to cause injury
or be put to some productive purpose. Similarly, configuration management tools
can cause problems or they can greatly assist in ensuring the integrity of software
artifacts. To use configuration management tools effectively, first learn how to
properly use them; next define the guidelines, including the best practices for
using the tool; and then diligently follow the guidelines when using the tool.

So, if using a configuration management tool can sometimes cause problems,
what would be the negative impact associated with not using a tool? Without a
configuration management tool, ensuring the integrity of an artifact becomes a
manual task. Maintenance that would have to be done manually includes:

•	 The creation of directory/library/folder structures, the configuration
register, check-in and check-out (with more diligence), and security
enforcement

•	 The artifact revision history

J. Ross Publishing; All Rights Reserved

Software Project Execution  117

•	 Backups of all versions for historical purposes and for retrieval of
older versions

•	 Retrieval of artifacts for builds
Each scenario needs careful evaluation to facilitate selecting the right configu-

ration management tool. For example, for a small, less complicated project, the
“right” tool might be no tool at all.

The perils of poor configuration management. Poor CM practices can result
in delivery of the wrong version of software and information artifacts to a cus-
tomer. If a wrong version is delivered, the artifacts may contain defects that were
actually fixed during a subsequent development activity. Suggested best practices
for better CM include:

•	 Training all members of the project management team, the CCB, and
the configuration controller on the concepts of CM (Knowledge goes
a long way toward improving performance.)

•	 Having formal training for the project team on how to use the con-
figuration management tool (if appropriate)

•	 Setting up appropriate security for check-in and check-out proce-
dures in the configuration management plan of the project and then
enforcing them diligently.

•	 Maintaining a body of knowledge on CM in the organizational knowl-
edge repository.

•	 Conducting CM audits periodically and diligently
•	 Analyzing the CM practices used during project execution and shar-

ing the best practices and pitfalls with the organization during the
project postmortem process (knowledge is a terrible thing to waste)

QUALITY MANAGEMENT

Because software quality assurance is a major topic that merits an entire book, this
section will only provide an overview of quality management activities. Quality
management refers to all of the activities performed to ensure that quality is built
into the project deliveries. But before describing quality management activities,
let’s first define the term quality.

Quality is generally defined as a fitness for use. The words fitness and use apply
to separate scenarios:

•	 Fitness refers to the robustness of the software product and the use
limits to which it can be put.

•	 Use defines how the product will be used.

J. Ross Publishing; All Rights Reserved

118  Mastering Software Project Management

So, for every product, fitness and use need to be interpreted in the product specifi-
cations for every product and in the project scenario. Simply put: Fitness and use
are user requirements that influence software design.

In a project scenario, quality management can be defined as the need to ensure
quality for:

•	 Specifications (all requirements)
•	 Software design
•	 Software construction

These elements are illustrated in Figure 6.5. Quality assurance tools and the tech-
niques appropriate for each of the project artifacts are shown in Table 6.5.

Two sets of tools and techniques are used to ensure conformance to quality:
•	 Verification: code walk-through, peer review, expert review, and

managerial review
•	 Validation: several types of software testing

Software quality
assurance

Sp
ec

ifi
ca

tio
ns

 Q
ua

lit
y

Software Design Quality
Softw

are Constru
ction Quality

Figure 6.5. Elements of software quality assurance.

J. Ross Publishing; All Rights Reserved

Software Project Execution  119

Verification Techniques
Included in verification techniques are code walk-through, peer review, and
managerial review:

Code walk-through. A code walk-through is a process in which peers (one
or more who have similar experience and knowledge) go through every line of
code, assessing its usefulness, necessity, and compliance to standards. A code
walk-through may be assisted or unassisted. In an unassisted walk-through, the
code is given to a peer who walks through each line of code and makes a report
detailing any defects uncovered (the least formal approach). In an assisted walk-
through, the author of the code presents the code to one or more peers and notes
any improvement suggestions (a more formal approach). A code walk-through is
a very valuable tool for ensuring code quality; code walk-throughs should never
be skipped. Typical objectives of a code walk-through include:

•	 Ensuring fulfillment of a designated functionality
•	 Enforcing conformance to code formatting guidelines and standards
•	 Pressuring teams to conform to guidelines: efficiency of execution,

defect prevention, naming conventions, and resource usage
•	 Detecting trash code which increases complexity without improving

functionality (Examples of trash code are the existence of unused
variables; statements inserted for debugging, but left lying in the code;
unnecessary loops; etc. Removal of trash code is sometimes called
refactoring/retrofitting.)

•	 Removing of malicious code such as time bombs (unwanted function-
ality triggered by system clock), trigger bombs (unwanted function-
ality triggered by an event), and any other unwanted or potentially
harmful functionality

•	 Enforcing the use of the right constructs or frameworks in the code

Table 6.5. Quality Assurance Tools and Techniques for Project Artifacts

Artifact Quality Assurance Techniques

Source code Code walk-through and inspection

Executable code Software testing: at a minimum, unit, integration, system,
and acceptance testing

User requirements document Peer review, expert review, and managerial review

Software design documents Usability testing, peer review, expert review, and
managerial review

Test plans Peer review and managerial review

Test results Managerial review

J. Ross Publishing; All Rights Reserved

120  Mastering Software Project Management

Peer review. Peer review is similar to code walk-through except that peer
reviews are used for information artifacts. Formal inspections are the most rig-
orous form of inspection (and are also known as Fagan inspections). They are
a structured process that tries to find defects in the deliverables (code and non-
code). Most formal inspections include the use of moderators and other formal
roles. Statistically, formal reviews have been shown to be very effective in uncov-
ering and removing defects.

Managerial review. Managerial review is an approval step that is performed
by a person (or persons) who has been designated as the management approver
for the project plan. Generally, a managerial review does not deal with minute
details. Instead, based on the approver’s knowledge of the environment and the
circumstances, the approver makes a judgment call about the level of review
required: the viewpoint is from an overall perspective of the contents of the arti-
fact. The approver also ensures that peer review has been conducted on the arti-
fact and that all defects uncovered in the peer review have been fixed. The hurdle
associated with a managerial review is answering the question: can the artifact be
implemented in the project with no concerns? (Note: On occasion, fixing all of
the defects is unnecessary due to business decisions or some prearranged criteria).

Validation Techniques
The primary validation technique is testing. Two well-known macro-level testing
techniques are commonly used: white box and black box testing.

White box testing. The white box technique uses an internal perspective that
focuses on using the tester’s knowledge of the software to uncover defects that are
lurking (i.e., are concealed, but can be discovered). White box testing assumes that
a tester understands the underlying code. Typically, white box testing involves
exercising as much of the code and branch as feasible. Also critical for a tester
is knowledge of the software’s programming language and structure of the pro-
gram. (Note: In recent years, white box testing has been strengthened by the use
of automated testing tools, which make possible the evaluation of more code and
branches than is typically possible using manual brute force techniques.)

Black box testing. The black box technique uses an external perspective in
which the tester has little or no knowledge of the software’s internal structure.
A set of inputs is fed to the software and the resultant outputs from the software
are compared to expected outputs. The black box technique is most effectively
executed, however, when the tester is familiar with the required functionality of
the system.

J. Ross Publishing; All Rights Reserved

Software Project Execution  121

When software is developed as a product for delivery to a single client or for
use at a single location, the product undergoes the following tests:

•	 Unit: Unit testing is the responsibility of the person who wrote the
code. In most circumstances, unit testing is replicated by an indepen-
dent peer using the white box testing technique. There are two schools
of thought, however, on leveraging independent testers for unit test-
ing. The first is that unit testing is the responsibility of the program-
mer who developed the code: who else would know when the work
has been completed? So, in this school of thought, no independent
unit testing is necessary. The second school says that only through
independent unit testing can an organization be assured that an arti-
fact is without defects. This school of thought believes that humans in
general are blind to their own defects and therefore cannot uncover
all of the defects that are lurking in their own code. Both schools of
thought exist in the industry.

•	 Integration: Integration testing is carried out as a one-off (when all
integration is completed) or incrementally (whenever one unit of the
software is integrated and until all units are integrated; also known
as continual testing). Black box testing is typically used for one-off
integration testing. When leveraging continual integration, white box
testing and black box testing are used.

•	 System: System testing is carried out to ensure that the software works
in all intended target systems.

•	 User acceptance: User acceptance testing (also known as UAT) is car-
ried out with the customer or only by the customer. The goal of user
acceptance testing is to obtain a sign-off so that the software can be
delivered and payment will be received from the customer.

Numerous other tests may be conducted at the request of the customer, because
of a specific project/product need, or based on an organization’s methodology.

Product Testing
Product testing is a specialized form of testing: a product is first developed as
a project and then it undergoes all of the typical tests for a project (e.g., unit,
integration, and system testing). Then, in the systems testing component, test-
ing is more rigorous than in the unit testing and integration testing components.
Testing is also on all systems that the product is likely to target. Some of the more
rigorous tests carried out include:

•	 Load testing: Load testing may be accomplished in Web or multiuser
applications by having a large number of users log on to the application

J. Ross Publishing; All Rights Reserved

122  Mastering Software Project Management

and use the software in a random manner as well as in typical pat-
terns. Load testing reveals issues that are connected with bandwidth,
database, and sufficiency of RAM and storage. The objective of load
testing is to see if the software can manage multiple requests and accu-
rately provide results.

•	 Volume testing: Volume testing subjects the software to a high volume
of data or transactions to determine if performance meets the stan-
dards set for the application as the amount of data grows.

•	 Functional testing: Functional testing ensures that all functions of the
software are working as specified.

•	 End-to-end testing: End-to-end testing tracks an entity from begin-
ning to end as the entity traverses an application. For example, in a
payroll application, an employee joins the organization, is promoted,
and then demoted. As a result, salary increases and decreases are
made, kept in abeyance, or transferred. Then the employee may quit,
be terminated, or retire. The goal of end-to-end testing is to ensure
that the state transitions occur as designed.

•	 Parallel testing: Parallel testing is conducted on software that is
designed to handle a number of users who are performing the same
function at the same time (e.g., call center software). Parallel testing
assesses the ability of the system to handle multiple requests that are
given at the same time and to preserve data integrity.

•	 Concurrent testing: Concurrent testing is similar to parallel testing.
Concurrent testing is conducted to reveal issues that occur when two
or more users use the same functions, at the same time, to retrieve,
update, or modify the same data, but with different values. For exam-
ple, in a ticket reservation scenario in which only one seat is available,
the seat would be shown as being available to more than one user. If
two of the users confirm purchase of the seat at the same time, the
system should accept only one request and reject the other. At other
times, seat allocation occurs first and then a credit card transaction
must take place. If payment does not go through, the seat allocation
must be reversed. The goal of concurrent testing is to unearth any
issues that occur when two or more users use the same functions to
retrieve, update, or modify the same data with different values at the
same time.

•	 Stress testing: Stress testing seeks to determine what happens when
an application exceeds the planned/expected resources. Stress test-
ing can include causing deadlock scenarios to determine if resources
are released to ensure that the software has routines built in to
handle such stress. Other scenarios in stress testing are events such as
machine reset, Internet disconnection, and server timeouts.J. Ross Publishing; All Rights Reserved

Software Project Execution  123

•	 Positive testing: Positive testing involves using the software as designed
to ensure that all defined functions perform as expected when prop-
erly used. Positive testing is typically performed during customer/
end-user acceptance testing.

•	 Negative testing: Negative testing involves using the software in a
manner for which it is not designed or using it in an unexpected way
to thereby reveal all hidden defects. Negative testing is conducted to
ensure that even malicious usage will not affect the software or data
integrity.

•	 User manual testing: User manual testing involves using the software
as it is documented in the user manual. User manual testing ensures
that the manual and the software are in sync with each other.

•	 Deployment testing: Deployment testing executes the software in the
target environment to ensure that the deployment specified is appro-
priate.

•	 Regression testing: Regression testing is best carried out after defects
unearthed in an earlier test have been fixed. The goal of regression
testing is to determine if changes made to an application have affected
unchanged portions.

•	 Security testing: Security testing is conducted to expose vulnerability
to hacking, viruses, and spyware threats.

•	 Performance testing: Performance testing determines if an application
performs within an acceptable range. Test results are gauged against
response time requirements, standards, and service level agreements.

•	 Usability testing: Usability testing determines if a software product is
fit for use. Usability testing includes determining if the software is fit
for its intended purpose as well as if the software meets legal access
standards (e.g., usability testing must be performed if the software is
to be used by persons with disabilities).

•	 Install/uninstall testing: Install/uninstall testing is typically the most
important for shrink-wrapped software (retail or available over the
counter in stores). Install/uninstall testing ensures that the install and
uninstall operations can be satisfactorily performed on all target plat-
forms without affecting the existing software performance.

•	 Comparison testing: Comparison testing (also known as benchmark-
ing) involves determining how a software product performs against a
competing product(s). Comparison testing contrasts the differences
between competing products to determine the relative market posi-
tion of the product.

•	 Intuitive testing: Intuitive testing is conducted to determine if the
product can be used with little or no reference to a user guide.

J. Ross Publishing; All Rights Reserved

124  Mastering Software Project Management

•	 Sanity testing: Sanity testing ensures that the components of the soft-
ware package are complete and that they represent the appropriate
versions. Sanity testing is typically the final test carried out before
delivery to a customer or before compiling a software build.

Although product testing often includes several of these tests, rarely are all
of them (or even a majority of them) carried out for every project executed in an
organization. (Some organizations might conduct additional types of testing, but
only on an “if time and budget are available” or an “if essential” basis.) Often some
combination of tests is conducted. Most organizations, however, conduct at least
these four types of testing:

•	 Functional: to ensure that all functionalities allocated to the software
are working and that when used properly, there are no inaccuracies

•	 Integration: to ensure that there is coupling between various software
modules

•	 Positive testing acceptance testing: to ensure user acceptance of the
software

•	 Load testing: to ensure that a system does not crash when heavy loads
occur

Allocation of Quality Assurance Activities
Maintaining a common work register makes tracking the QA activities performed
for every component easier. If a separate work register is used for executing QA
activities, however, manual monitoring of all components and recording whether
each component has undergone QA activities are required (separate actions and
more “moving parts”). A separate work register as shown in Table 6.1 may be
used for the allocation and performance of QA activities. Alternatively, Table 6.2,
the same work register used for the construction of software, may be used for the
allocation and performance of QA activities.

But How Much Quality Assurance?
A frequently asked question is, “How much quality assurance activity makes
sense, especially for code walk-through and independent unit testing?” The next
question is often, “Should we carry out a 100% code walk-through or can we use a
sample and then draw conclusions based on the results of the sample?”

In manufacturing, sampling is typically used for QA if:
•	 The process is predominantly carried out by machines and the role of

human resources is limited (roles that would affect the quality of the
output).

J. Ross Publishing; All Rights Reserved

Software Project Execution  125

•	 The operations process is stable and variances are known to be within
an acceptable limit.

•	 The operations are identical and the output is homogenous, i.e., the
same component or product is produced.

If software development were compared to these manufacturing scenarios, the
differences would be notable:

•	 Human resources are critical to achieving quality in software output.
Machines have a limited role in achieving quality.

•	 It cannot be said that the software process is stable or that variances
are known. No software project is identical to another.

•	 The output is not identical at all!
Sampling should be used sparingly at best. The best practice is to perform

code walk-throughs and independent unit testing on 100% of the components.
Although more rigorous and invasive techniques, such as inspections, are often
approached by using sampling techniques, these invasive techniques are in addi-
tion to walk-throughs and unit testing.

Testing Tools
Many testing tools have the facility to “record and play back.” In the record-and-
play-back technique, a test is done once manually and then the tool will automati-
cally execute the test. A word of caution: Products with elaborate functionality
may need programming to conduct testing automatically. To ensure that the tools
integrate into the project processes, project planning must include how tools will
be used. Tools are widely used to conduct tests such as load testing (to simulate
use by a number of users) and parallel and concurrent testing (in which functions
are replicated accurately only by a tool).

For a first-time use, testing tools place the tool programming overhead on
the project team or on the testing department. Although subsequent testing will
accrue potential savings of a huge amount of effort, each organization must evalu-
ate if investment in the tool, programming of the testing tool, and in maintenance
of the test scripts provides a significant advantage. In general, the need for a tool
needs to be assessed on a case-by-case basis and appropriate decisions made.

The bottom line is that quality assurance for the individual components of a
project is the responsibility of the individual team members who built them and
quality management is the primary responsibility of an SPM, including ensuring
a fully functional product and defect-free delivery, while minimizing the effort
spent on confirming quality and minimizing rework.

J. Ross Publishing; All Rights Reserved

126  Mastering Software Project Management

MORALE MANAGEMENT

Team morale is the confidence team members have in their combined capability
to achieve the objective of a project. Morale includes the self-esteem of the team
and the pride that the team takes in its work. Morale is also the “spirit” of the
team. Morale can be positive, neutral, or negative. A team with negative morale
will underperform a team with somewhat better morale, whereas a team with
positive morale generally outperforms a team with poor morale.

Role of an SPM. Team morale is the most important area of focus for an SPM.
If an SPM can achieve and sustain positive morale in a project team, the team will
act as one and achieve wonders (if not near miracles!). An SPM who can achieve
positive morale and sustain it throughout project completion is always in high
demand.

Note: A technically competent SPM is easier to find than an SPM who is techni-
cally competent and a strong team morale builder. Finding the proper balance
required is always difficult, but we suggest that when “push comes to shove” and
compromise is needed, usually the correct tradeoff is to accept lower technical
capabilities if an SPM has strong morale-building skills.

Team morale is primarily achieved through motivation. SPMs are first and
foremost technical people. Very few SPMs are trained to understand the psycho-
logical needs of project team members and then treat or coach them individually
to higher levels of performance. (Note: Although generally not practical, many
organizations are beginning to leverage coaches that have specific training for a
motivational role.) An SPM, however, should have at least a rudimentary under-
standing of how to motivate people. Team members are not just pairs of hands
— they are human beings with skills, aspirations, and likes and dislikes that affect
how they interact and work with other team members.

Motivation
Although numerous theories apply to motivation in the workplace, our discussion
will deal with only three of the practical aspects of motivation: the work itself,
treatment in the workplace, and workplace expectations. A complete survey of the
various motivational theories, however, is beyond the scope of this book.

The work. The work itself can be a great motivator. Does this statement sound
strange? If so, consider this example. Surely you have observed checkout clerks in
a mall during after-Thanksgiving sales. The checkout clerks are constantly busy.
Many customers are waiting in long lines. But the checkout clerks do their jobs
even if the pay is low. Perhaps they are even temporary hires. Have you ever

J. Ross Publishing; All Rights Reserved

Software Project Execution  127

wondered what could possibly motivate them? The answer: the work that needs
to be done — the work itself is demanding their constant attention. This example
may seem a bit simplistic, but apply it to the challenge of an important project
(with the challenge being a critical motivational factor) and the example might
seem less farfetched. Why? No one wants to be the person on a team who blocks
progress toward reaching an important goal. Therefore, everyone “stretches” to
reach the finish line. Remember that the stretch must be possible — unattainable
goals are strong de-motivators. (Note: Sometimes the monotony of repetitive
work causes complaints. Most work-related complaints, however, stem from
having inadequate work to fill the available time. But in projects, the question of
repetitive work does not arise. So, if there are complaints, they must be due to a
lack of adequate work.) Ensuring the right quantity and quality of work requires
forethought. Consider some best practices for work loading:

•	 The work load needs to be commensurate with the abilities and skills
of the team member.

•	 The team member must be able to carry out the work. (Nothing is
more frustrating than to be responsible for work in which failure is a
foregone conclusion. No one likes to fail.)

•	 The work must be achievable and at the same time test and stretch the
capabilities of the team member charged with performing the task.
(The possibilities of learning and growth are important components
of motivation.)

•	 The work allocation must be perceived as being fair; the workload
allocation ought to be comparable to that of the other team mem-
bers. (If an individual perceives that he or she is overloaded unfairly,
morale will be affected.)

•	 Team members do not like to admit that they do not have enough
work to do or to ask for more work. (The sense of self-esteem and
value of team members depends on the quality and quantity of work
in hand. If no work is planned for the next day, team members may
leave for the day thinking that there will be nothing to do the next day
or that a layoff is coming.) When possible, allocate workloads so that
team members do not have to continually ask for more work. Just-in-
time allocation is the best practice.

•	 Conversely, very few team members prefer to receive multiple work
allocations on a single day, especially professionals such as software
engineers. When allocating work that takes more than a day, an
effective practice is to allocate tasks that take a calendar week. Select
Mondays or Fridays to allocate work for the week. (Multiple daily
work allocations appear to be micromanagement.)

J. Ross Publishing; All Rights Reserved

128  Mastering Software Project Management

•	 Use a formal mechanism to allocate work and communicate how the
mechanism will be used. (Formal mechanisms are efficient. A shared
Excel sheet, a work register tool, or stand-up meetings are excellent
tools.)

•	 Set project targets tightly — just slightly tighter than the organiza-
tional norms. Tight project targets give an impression that the work
is important and therefore urgent. Take care when dealing with
urgency, however, because an artificial sense of urgency can be very
debilitating.

Treatment in the workplace. Everyone wants to be treated fairly and well.
Well-known industrial experiments by Elton Mayo at the Western Electric
Hawthorne plant examined the impact of working conditions in employee pro-
ductivity. (Numerous publications and Internet sources describe the Hawthorne
effect in detail.) These early experiments, also known as the Hawthorne Studies,
examined the physical and environmental influences of the workplace (e.g., the
lighting and humidity) on productivity, but they later addressed the psychological
aspects of the workplace and how they affected productivity (e.g., group dynam-
ics, work hours, number of breaks, managerial involvement, etc.). Fair treatment
today is translated by team members as having:

•	 Fair allocations of work (based on the best practices of work allocation
previously described)

•	 Fair recognition of the results achieved
•	 A voice in matters of concern
•	 Access to information about matters of concern

Note: According to stimulus-response theory, a response to a stimulus will be
proportional to the stimulus. The theory works when a positive stimulus gets a
positive response and a negative stimulus gets a negative response. But this asso-
ciation gets a bit messy in the workplace if a team member suppresses his or her
immediate, natural response based on the prevailing situation. Even if a response
is not immediately expressed, the response is still there — lurking just below the
surface, but waiting until later to be expressed. An SPM should carefully consider
positive and negative stimuli to ensure that the stimulus used generates the most
positive response possible.

Workplace expectations. Everyone comes to the workplace with a certain set
of expectations. One of those expectations is to earn wages in return for perform-
ing the work that is assigned. Another expectation is that team members (or an
SPM) should expect to expend a fair amount of effort coupled with the skills that
he or she possesses to do a job. (A familiar maxim is “a fair day’s work for a fair

J. Ross Publishing; All Rights Reserved

Software Project Execution  129

day’s pay.”) Another expectation is extra compensation for extra effort (but not
less compensation for less effort; and extra compensation can mean any number
of things). Because most people have an innate need for recognition, to satisfy
that need, they may put in extra effort, bring additional skills to a project, show
creativity, or come up with innovative ideas. All of these things can be viewed as
being a higher level of performance. Having an awareness of the innate need for
recognition is mandatory for an SPM. Individuals translate their need for recogni-
tion into action for many reasons:

•	 To receive higher monetary compensation
•	 To receive a reward
•	 To receive recognition (either public or private)
•	 To receive a promotion
•	 To be treated as being superior to others
•	 To just please you, if you are the leader
No matter what an expectation concerns, realize that the degree of expecta-

tion will likely be different for each team member. Sometimes, just the pursuit of
the project’s goal will not generate motivation, particularly if expectations are not
met. When one team member’s expectations are not met, for example, he or she
might be likely to become frustrated and then become negative. More often than
not, frustration does arise if high expectations are set or there is an implication
that the expectations cannot be met. Maybe there is an understanding gap about
the expectations. Although meeting team members’ expectations does not guar-
antee that the team members will be better motivated for even higher performance
levels, avoid frustration by establishing realistic expectations at the beginning of
a project. Setting realistic expectations involves rewarding performance: positive
rewards for positive performance and negative rewards for negative performance.
Defining what team members can expect for higher levels of performance should
to be fair and commensurate with performance.

Team members also expect negative “rewards” to be received for negative
performance. Failing to give negative rewards can be very detrimental to team
morale. If a team member deserves a negative reward, but does not receive it,
other team members receive the message that negative performance is acceptable.

Motivation is one thing — developing a cohesive team is quite another.
Numerous books on motivation are available. The three aspects discussed in this
section are practical approaches to motivation. Motivation is merely a tool to
create a team of highly motivated individuals — because a highly motivated team
performs better than a team with little motivation.

But what causes low morale in a team that has highly motivated members?
The answer is conflict. Conflict can damage team morale. The probability of

J. Ross Publishing; All Rights Reserved

130  Mastering Software Project Management

conflict occurring is directly proportional to the stress levels of the members of the
team. Higher levels of stress increase the probability for conflict (and vice versa).

To achieve successful performance results, teams depend on other teams.
One team’s output is the input for another team. When working on a team, how-
ever, sometimes the paths of various team members cross in a negative sense.
Sometimes the success of one team seems to be at cross-purposes with that of
another team. For example, the effectiveness of QA is directly measured by the
quantity of defects found, but the effectiveness of software construction is mea-
sured by productivity and the defect injection rate (i.e., the number of errors made
that introduce defects into the product). So, if the QA function uncovers more
defects, the programmers may be viewed negatively; if the QA function finds
fewer defects, QA may be seen as being ineffective. So, some amount of stress and
potential conflict is unavoidable — it is inherent in an organization. Stress and
conflict in the workplace lead to the topic of “conflict management.”

Conflict
An SPM must recognize that conflict is part of life and then manage it. Although
a high level of conflict may indicate low morale, no conflict may also mean a team
has low morale. (Note: This section provides conflict management information
that is only relevant to an SPM. A comprehensive discussion of conflict manage-
ment is beyond the scope of this book.) Reflecting on successful IT organizations,
some practical tips for managing conflict and individual competition and keeping
it at a healthy level include:

•	 Conflict and competition are closely related. If not managed well,
competition will result in conflict. Tip: Promote competition and
manage conflict.

•	 Competition and one-upmanship are also closely related. Their
aim is to get ahead of others. Although both competition and one-
upmanship cause conflict, competition is somewhat better because
competition focuses on self-excellence as the route to get ahead —
one-upmanship is just unhealthy. One-upmanship blocks the path of
others trying to get ahead by putting hurdles in their way (sometimes
referred to as “politics”). Tip: Discourage one-upmanship with a gen-
tle but firm hand (“use an iron fist inside a velvet glove”) and promote
competition.

•	 Encourage QA to uncover as many defects as possible. After all,
detecting defects while a project is in hand is better than learning
about them after the product reaches a customer. Tip: Discourage list-
ing frivolous defects by the testing group just to run up the statistics.

J. Ross Publishing; All Rights Reserved

Software Project Execution  131

•	 Encourage programmers to accept the defects found by the QA team
with grace. Ensure that programmers draw lessons from a reported
defect to avoid its repetition (it is human to err; but it is foolish to
repeat a mistake). Tip: Conduct benchmarking. Know if a team is
improving and if the processes being used are effective. Record and
compare defect injection rates to other teams (or team members) to
help a team determine if its defect injection rates are comparable to
the organization and if the trend of defect injection rates is decreasing.

•	 Ensure transparency in reward criteria. Let’s face it, as soon as one
person hears that the reward criteria are secret, everyone else will
hear about it. Transparency in the reward criteria will go a long way
in keeping morale at a high level. Tip: Base rewards on objective data,
not subjective considerations. If rewards are given based on subjec-
tive considerations, the team gets the message that performance is
not being measured. To avoid sending a message that there is a team
“favorite,” do not give a reward to the same team member repetitively.
Bottom line: Be scrupulously fair in rewards and ensure everyone
knows you are fair.

Motivation and conflict management are tools used to create a team with high
morale. Although each team or organizational culture may have different levels of
acceptable conflict, specific techniques may be required to managing motivation,
competition, and conflict. An SPM who works daily on these areas is more likely
to create and maintain high team morale.

PRODUCTIVITY MANAGEMENT

Completing allocated work is the responsibility of team members. Ensuring that
only the right amount of effort is spent on completing the work is the responsibil-
ity of an SPM. Productivity management is a major focus area for an SPM.

In a production process, productivity is the measure of output from input
(i.e., from converting an input into an output). Efficiency is one dimension of a
team’s effectiveness. Productivity is also the achievements of an endeavor — a
reflection of what was done during the project. Productivity measurement is also
used to benchmark the performance of one team member against another as well
as to benchmark the performance of the team against other teams. An SPM’s
knowledge of productivity is used to estimate and set equitable targets for a team.
(Productivity concepts are discussed in greater detail in Appendix D.)

One approach to setting equitable targets for an entire project is to set pro-
ductivity and defect injection rate targets for each separate activity at the begin-
ning of the project at a level that is meaningful for the project and team. Publish

J. Ross Publishing; All Rights Reserved

132  Mastering Software Project Management

the goals in a way that ensures that they are available to all team members. Team
members need to know exactly what has to be achieved to reach an acceptable
level of performance.

In many organizations, performance norms are obtained by an SPM from
the organizational knowledge repository, the software engineering process group
(SEPG), the PMO, or the quality department. If organizational norms are not
available, an SPM should brainstorm with the team members to arrive at the
norms through a consensus (groupthink). Types of norms include:

•	 Coding, with an acceptable defect injection rate for each programming
language

•	 Documentation, with an acceptable defect injection rate
•	 Code walk-through
•	 Unit testing
•	 Integration testing
•	 System testing

Ensure that the norms cover all of the activities that are to be carried out in the
project (including QA activities).

The crux of productivity measurement is defining size. Some guidelines to
selecting the unit of measure for measuring software size include:

•	 Once selected, apply a size measure consistently.
•	 For software coding, use a software size measure such as Function

Point Analysis (FPA) or Software Size Units (SSU).
•	 For documentation, use the number of pages (physical or logical).
•	 For software testing, use the number of test cases or a software size

measure (FPA or SSU).
•	 For all other activities, measure the output in the form that is to be

delivered and divide that quantity by the effort spent to achieve the
output.

When measuring the productivity of all work allocations, look for large devia-
tions from the norms. If a variance is large, find the root cause of the variance.
Finding the root cause of a variance determines if there are any assignable causes
(e.g., unforeseen issues, delays in receiving approvals, malfunction of a software
tool, or the genesis of a new best practice). If a variance is negative, carry out a
critical examination to arrive at the reasons for the variance and take corrective
and preventive actions so that a recurrence can be prevented. In summary, pro-
ductivity management:

•	 Determines and sets appropriate productivity norms for a project
during the project planning stage

•	 Uses norms to set targets during the work allocation process

J. Ross Publishing; All Rights Reserved

Software Project Execution  133

•	 Measures productivity for each work allocation after the assignment
is complete (Note: Determine the applicable level of granularity. Only
measure at the level you will manage.).

•	 Conducts variance analysis between targeted and achieved productiv-
ity and takes corrective and preventive actions as needed

STAKEHOLDER EXPECTATIONS MANAGEMENT

Expectations are typically implicit performance assumptions that are require-
ments for a project. (Although performance assumptions are implicit, we suggest
that an SPM makes performance expectations explicit and then documents them).
Common expectations that may be used as the basis for translating expectations
into requirements are provided in Table 6.6 and Figure 6.6.

All stakeholders have expectations: the customer, the organization, manage-
ment, and the team. Not all expectations are reasonable, but neither are they
always unreasonable. For example, a customer expects courtesy, lucid communi-
cations, and accommodation of change requests. The organization and the team
expect to accommodate change requests if the requests are reasonable and can be
done in terms of cost and schedule. All of these expectations are reasonable. But
what about expectations that are unreasonable? Unreasonable expectations can
translate into requirements if they are not confronted and discussed. The best
way to manage expectations is identify them as early as possible and then openly
discuss those expectations so they are set correctly. But what expectations are rea-
sonable and what ones are not? Unfortunately, there is no standard formula for
reasonable: being reasonable depends on the circumstances of the project.

Customer expectations. Remember that customers pay the expenses of projects:
■	 Be professional. Show the courtesies that are due to the customer.
■	 Ensure that all communications are lucid and timely.
■	 Extend cooperation in all matters.
■	 Come to an understanding about the impact of change requests.

Create a set of rules to evaluate each change request so that specific
project needs and organizational culture norms are met. For example:
•	 A change request that consumes less than 8 person hours will be

absorbed if it does not impact the project schedule or its cost. Set a
limit on the number of such absorbable requests.

•	 A change request that consumes more than 8 person hours, but
less than 24 person hours, will be absorbed if the schedule impact
is acceptable.

J. Ross Publishing; All Rights Reserved

134  Mastering Software Project Management

Table 6.6. Stakeholder Expectations

Artifact Requirements Expectations

Customer Software product that meets
specified functionality

The team will use its expertise to bridge any
gaps in specifications

Defect-free delivery Cooperation: to accommodate change requests
without impacting price, schedule, or quality

Timely delivery Lucid communications

Professionalism Extend all courtesies due to customer, including
polite interaction

Customer service Show patience if payments are delayed

Customer service Never escalate issues to a higher level

Organizational
management

Execute project successfully Avoid complaints from customer

Deliver on time Deliver a referable customer and obtain a
commendation letter from the customer

Control change Use a price-escalation clause to get a client
to pay extra for each change request received
from the customer

Ensure defect-free delivery Test software against stated and unstated
requirements

Follow up and obtain
payments from the customer

Ensure you follow up with the client; shepherd
invoices through any of the client’s accounting
processes

Good internal teamwork Release resources if they are required in another
project or for any other use willingly, without
complaining and without impacting your project

Be a communicator Be a channel of communication between
management and the project team, especially
when conveying bad news

Be a leader All deserving persons cannot be rewarded,
so find a way to maintain team morale even if
some injustices occur

Project team Fair allocation of work “Allocation of work ought to consider my likes
and dislikes.”

Fair assessment of work
completed

“Fairness ought to be tempered with an
understanding of human frailties.”

Fair performance appraisals “Fairness ought to be tilted toward the employee.”

Fair rewards “Fairness ought to be tilted toward the employee.”

Fair treatment “We have the right to criticize you, but you
ought to be realistic before criticizing a team
member. Leaders should never be insensitive.”

“Project urgencies and deadlines are the usual,
but my need for leave is rare. So you should
grant me a leave of absence when I require one,
not just when you can spare me.”

“Your norms are too unrealistic.”J. Ross Publishing; All Rights Reserved

Software Project Execution  135

•	 A change request that consumes more than 24 person hours
impacts the cost and the schedule and therefore will not be under-
taken unless additional time and budget are provided.

■	 Strive to bridge specification gaps; raise issues for clarification only
after the “homework” has been done.

■	 Escalate issues to a higher level only as a last resort. Do not resort to
escalation unless absolutely necessary.

Note: A “cumulative test” must be applied to absorbable change requests. If a proj-
ect continually receives small change requests, and they are absorbed, the cumula-
tive effect can be significant. One of us participated in supporting litigation for a
project that had continually received small change requests that were absorbed.

Expectation
Management

Customer Management
• Functionality expectations
• Quality expectations
• Schedule expectations
• Professionalism expectations
• Service expectations
• Cooperation expectations

Organizational Management
• Success expectations
• Schedule expectations
• Quality expectations
• Change control expectations
• Team building expectations
• Monetary expectations
• Communication expectations
• Leadership expectations

Project Management
• Fairness expectations
• Reward expectations
• Treatment expectations
• Accommodation expectations

Figure 6.6. Stakeholder expectations.

J. Ross Publishing; All Rights Reserved

136  Mastering Software Project Management

These change requests cumulatively had a huge impact — so much so, that the
multimillion-dollar project failed.)

Organizational and management expectations. Organizational management
expects a project team to:

•	 Plan time adequately to support organizational initiatives. Organiza-
ational initiatives enhance capabilities for everyone in an organization.

•	 Negotiate the release of resources to other projects when required to
reach win-win solutions.

•	 Base price escalations on fact. Based on a project’s circumstances, cre-
ate a set of criteria that provides guidelines for price escalations.

•	 Communicate with management. A project manager is a channel of
communication between management and a project team. Use this
channel wisely.

•	 Keep organizational imperatives in mind when demanding promo-
tions and rewards for your team members (as well as yourself).

Project team expectations. A project team has expectations of its own, so:
•	 Consider the personal aspects of individual team members as well as

their skill sets when allocating work to team members. (Note: In “real
life,” allocating work to a team member that is not to his or her lik-
ing often becomes necessary. When this situation occurs, present the
assignment in such a way that the work becomes a personal challenge
or learning opportunity. Sometimes the only choice is to just make the
assignment and tell the team member that you have no other choice.
So, for the team to succeed, he or she needs to succeed.)

•	 Ensure that performance appraisals are based on objective criteria,
meticulous record keeping, and benchmarking between the team
members so there can be no concerns from the team members about
fairness.

•	 Recognize that team members are “juniors” and hence are likely to be
less mature when handling criticism — giving or receiving. Encourage
team members to give constructive criticism and to develop tactful
ways to make suggestions. (If you are competent and also fair, the
view that you are negatively criticizing a team member will only come
about because of a communication gap.)

•	 Involve team members in target setting and be transparent in setting
norms to reduce the team’s resistance to setting tight targets. Regular
communication will mitigate resistance when an urgent need arises.
Communicate well and regularly.

J. Ross Publishing; All Rights Reserved

Software Project Execution  137

The key to managing stakeholders’ expectations. The word communicate
appears frequently in the descriptions of the classes of project stakeholders. Why?
The answer: communication is an essential aspect of expectation management.
Excellent communication, defined as providing information that is right for the
receiver and is timely and lucid, bridges many communication gaps and solves
many issues. Diligently work to have excellent communication. In particular,
communicate progress. Remember that all stakeholders want to know “what’s
happening.” They want first-hand, official, and accurate information. Progress
reports and stand-up meetings are convenient vehicles for communicating with
customers:

•	 Progress reports: Send progress reports regularly to a customer, pref-
erably every week, on Monday (or the first workday of the week if
Monday is a holiday), and at the beginning of the day. By the time
customer stakeholders come to their workstations on the first work-
day of the week, the progress report should be available (as output or
as an email). Depending on the progress of the project, early avail-
ability provides necessary information and allows activity planning.
Action items are also noted so required actions may be taken. (Not
having information about a project’s status or having to ask for infor-
mation about the progress of the project and the action points can be
very frustrating for a customer.)

•	 Daily stand-up meetings: If feasible, hold daily stand-up meetings (an
agile practice) in which customers also participate in updates of a
project’s status, any problems, and the possible solutions. (Typically,
everyone attending the meeting stands up in a circle to keep discus-
sions short.)

Similarly, regular progress reporting to the organization’s management
stakeholders is a necessity and should follow the same pattern as that is used for
customers. (Note: Often many of the issues and topics reported within an orga-
nization are not appropriate for communicating to customers. Purely internal
action points for organizational management stakeholders should be kept “in the
family.”)

The goal of any type of project meeting is to get the project team “on the same
page” as project management and get the team members involved in the project
in a more committed manner. Although holding daily stand-up meetings is a best
practice, at the very least, project team members should hold a weekly project
meeting in which the overall progress of the project is reported. These project
meetings should also be used as a platform for bringing issues faced by the team
members to the surface for resolution.

J. Ross Publishing; All Rights Reserved

138  Mastering Software Project Management

In summary, three classes of stakeholder expectations are managed in a
project: customer expectations, organizational management expectations, and
project team expectations. Managing these stakeholder expectations can be
accomplished by:

•	 Listening to stakeholders and understanding that there will be expec-
tations

•	 Meeting and fulfilling all reasonable expectations
•	 Setting the right expectations in case of remaining expectations
•	 Communicating clearly, with the right communication and in a

timely manner

PRODUCT INTEGRATION MANAGEMENT

Building components that are defect-free is the responsibility of the entire proj-
ect team, but integrating all of the individual components into a fully functional,
defect-free product is ultimately the responsibility of an SPM (and still another
measure of success). Although software construction and assembly (of the soft-
ware and the software modules) are mainly software engineering activities, the
SPM acts the “conductor,” ensuring that all of the pieces come together at the
right place and at the right time. Product integration involves several steps:

	 1.	 Decide the integration approach. (Many integration approaches
may be used: two popular approaches are top down and bottom up.)

	 2.	 Develop all of the shared components first, test them, and make
them available to the module integrators (said by some to be “where
the miracles happen”).

	3a.	 If the approach is top down:
•	 Assign one person to integrate each module.
•	 Ensure that the component(s) that acts as the framework for

other components to link into has been developed and tested.
(The authors strongly suggest that the framework standards be
developed and published before design and coding.)

•	 As components are finished (coded and tested) have the inte-
grator add each component to the assembly and then put the
component through QA and testing activities.

•	 Iterate the second and third steps of this approach until integra-
tion is complete.

	3b.	 If the approach is bottom up:
•	 Collect all components into the assigned code library as their

construction and testing activities are completed.

J. Ross Publishing; All Rights Reserved

Software Project Execution  139

•	 When all of the modules are completed (or at preassigned time
points in the CM plan), assign a person(s) to integrate them
into the macro components and then into the product.

•	 Once integration is completed, carry out all testing activities
and arrange to fix all relevant defects uncovered.

	 4.	 Plan and execute integration testing of all modules.
	 5.	 Assign a person(s) to prepare the product build and hand over all of

the integrated modules.
	 6.	 Once the product is built, arrange for QA activities (review and test-

ing) to be carried out.
	 7.	 Arrange for all relevant defects uncovered during QA activities to be

fixed and complete the product build.
	 8.	 Arrange for system testing (as required by the quality plan) and

arrange for all relevant defects uncovered in system testing to be
fixed.

	 9.	 Prepare the product for acceptance testing (if required) and deliv-
ery. (This is where you spike the ball!)

Configuration management assumes a significant role during the project
integration process in ensuring defect-free integration and preparation of the
product build. Because careful attention should be given to product integra-
tion management, the SPM should personally oversee this function. To achieve
flawless integration, the SPM needs to maintain a register for each module. This
register is made available to the integrator for ensuring that all components are
integrated into the module. A sample register is shown in Table 6.7.

Note: We suggest integrating location and status into the work register. Microsoft
Excel, for example, can filter information to easily present the data needed. PMPal
can also efficiently manage a work register. If configuration management tools
are used, however, separate registers do not need to be maintained for product
integration. Configuration management tools can facilitate module integration
and build preparation without the necessity of maintaining separate registers.

Table 6.7. Components List for Module XYZ

Component Name Type of Component Nature of Component Location

ABC Screen/report/stored procedure/
middleware routine/table graphic, etc.

Shared/dedicated to
this module

Library

J. Ross Publishing; All Rights Reserved

140  Mastering Software Project Management

PITFALLS AND BEST PRACTICES

Nonconformance to the plan. Frequently, significant time and effort are
spent on planning a project, but once the plan is approved, it is relegated to the
project’s records. The project team then fails to conform to the plan and project
execution is undertaken intuitively. Failing to conform to the project’s plan can
be detrimental to successful execution of the project. Intuition tends to rely on
luck.

Best practice: Plan a project diligently and then comply with the plan during
execution, revising the plan as necessary.

Informal work allocation. In an informal scenario, work is allocated infor-
mally without using a formal work register. Informal work allocation can result in
duplication of some components and the possibility of overlooking other compo-
nents. Informal work allocation can also create an imbalance of work allocation
to team members.

Best practice: Allocate work using a formal work register.

Bulk work allocation. Bulk allocation is the assignment of work to a team
of three or four people that allows those team members to distribute the work
among themselves. Although this type of informal allocation might reduce the
work burden of an SPM, informal allocation often tends to result in delays. (The
90/10 rule says that 90% of the activities may be reported as being accomplished,
but it is the remaining 10% that will be the most time consuming.) Work alloca-
tion is the responsibility of an SPM and should be done by following a formal
process. (In large projects, however, work allocation may be delegated one level
downward to a lead team member.) An SPM who allows team members to allo-
cate work in an informal manner is simply shirking an important responsibility.

Best practice: Allocate work to team members using formal methods.

Nonconformance to productivity and quality norms. Arbitrarily setting tar-
get norms can be detrimental to team morale. Appropriate norms for a project
should be set at the project planning stage. Then, during work allocation, the
productivity and quality targets should be set based on these norms. Targets
based on appropriate norms encourage team members to think that performance
appraisals will be based on objective criteria, which motivates them to achieve
higher levels of performance.

Best practice: Set performance targets that are based on appropriate norms that
have been set at the beginning of a project.

J. Ross Publishing; All Rights Reserved

Software Project Execution  141

Failing to measure. Appropriate measurements, such as capturing the actual
size of a completed artifact and the actual effort expended and conducting a vari-
ance analysis, should be routinely carried out. Unless data at completion is cap-
tured and variance analysis is performed, assessing performance and the efficacy
of target setting cannot be validated.

Best practice: Capture data for an actual achievement and then conduct a vari-
ance analysis to eliminate any variances due to assignable causes and to provide
validated data for future use.

Some words of caution about using configuration management tools: When
tools are used for configuration management of code artifacts, the guidelines
for using these tools may be neglected. Neglect, however, negates the benefits of
using a configuration management tool. The best practice is to define tool usage
guidelines before a configuration management tool is used in a project and then
to train team members in the correct usage of the configuration management tool
as well. Another pitfall is that an artifact is checked in during its initial prepara-
tion, but the artifact has not gone through testing. Configuration management
tools can provide a great advantage for configuration management during state
transition and for preparing the final build, but configuration management tools
need to be used in a disciplined manner: a code artifact should be checked in only
after it passed through unit testing; an information artifact should be checked in
only after it has been approved.

Best practice: Control check-in and check-out procedures in accordance with
the configuration management plan.

Assuming multiple roles. Often an SPM takes on the role of configuration
control board and configuration controller (particularly in small-to-medium-
sized projects). The roles of approval and implementation should be kept sepa-
rate. If both of these roles are played by one person, the checks and balances of
the approval process are negated.

Best practice: Keep the roles of CCB and CC separate. If an SPM must take on
one of these roles, it should be the role of the CCB rather than the CC.

Skipping quality assurance activities. The most frequently skipped QA
activities are peer review and independent unit testing. Often peer review is sup-
planted by managerial review. Managerial review, however, does not delve into
the minute details. Only peer review looks at an artifact with a magnifying lens.
At times, peer review is arranged for only a sample of the programs (perhaps
because these programs are considered to be more complex in the opinion of the
module leader or the PL). Although peer review of a sample of the programs is
better than nothing, peer review should be done for all software artifacts.

J. Ross Publishing; All Rights Reserved

142  Mastering Software Project Management

Best practice: Conduct peer review of all programs. Skipping peer reviews is risky
(i.e., your own personal risk!).

Omitting white box testing. White box testing is only practical for unit test-
ing. It is impractical for all other types of software testing. Never miss an opportu-
nity to conduct white box testing. Independent unit testing is a best practice that
is often foregone. All developed code should be unit tested, period.

Best practice: In all cases carry out independent unit testing. Always conduct
white box testing.

Failing to conduct independent system testing. Although independent sys-
tem testing is often conducted by a member of the project team (albeit by a team
member who did not code the artifact), system testing that ensures that the soft-
ware product works without issues in the field should be done by an independent
testing team. (Note: The number of permutations and combinations possible in
software, especially in Web applications, is mind-boggling. When considering,
for example, the office suites, anti-virus software, anti-spyware software, operat-
ing systems and browsers, and other free utilities that are present in the field, the
number of permutations becomes more understandable. Many organizations
recognize that testing is complex, so they focus on using tools and independent
testing teams.)

Best practice: Leverage independent testing.

Setting unrealistic expectations. Although unrealistic expectations are rarely
set by explicit statements, sometimes they are implied. For example, by promis-
ing team members a bonus, or promotions, or higher wages, an SPM might easily
raise the expectations of the team to an unrealistic level. Ensure that there is no
reason for team members to have unrealistic expectations. Unrealistic expecta-
tions can also be set for an organization’s management when issues (or potential
issues) are not revealed until they become hurdles. Management thus does not
become involved with an issue(s) until a much later stage. Sometimes, SPMs
avoid reporting issues because they want to resolve the issues themselves. SPMs
also fear that management will take a dim view of them if issues are raised. Late
involvement of management in a problem scenario, however, does not solve a
problem, it only compounds it. One way to make management aware of poten-
tial problems is to include a section in progress reports that lists potential issues.
Management can them intervene when they deem intervention is appropriate.
Management that is involved early can often derive a satisfactory resolution
before an issue becomes a problem.

Best practice: Leave no room for unrealistic expectations by a project team and
inform management early if a project encounters a problem.

J. Ross Publishing; All Rights Reserved

7

SOFTWARE PROJECT
EXECUTION CONTROL

INTRODUCTION

The term control has many connotations, some good and some less so. In some
organizations, the term control is frequently followed by the word freak, which
describes a person who unfairly manipulates the people around him/her. So, in
those organizations, control has a negative connotation. But in software project
management, control has a totally different connotation (or at least it should).

In software project management, control is defined as the corrective action
that is taken periodically during project execution that stems from measuring the
progress on various aspects of the project and comparing and contrasting the actual
achievements against the desired achievements. Let’s look at some key terms in
this definition:

■	 Project execution: As used in this book, the definition focuses on
project control during the project execution phase and excludes the
phases of planning and post-delivery (these phases are outside of the
scope of this chapter).

■	 Measuring the progress: Progress is determined by periodically mea-
suring the aspects of a project, with measure signifying quantitative
versus qualitative measurement.

■	 Comparing and contrasting: Two aspects receive focus:
•	 Desired achievements: The desired achievements are the targets

that have been set and accepted through estimation, planning, and

143J. Ross Publishing; All Rights Reserved

144  Mastering Software Project Management

scheduling: what is desired and who desires it. These targets are
set by project management in concurrence with the project’s
stakeholders (the customer, organizational management, and the
project team).

•	 Actual achievements: Knowing what is desired and the actual per-
formance achieved is valuable only if the actual values achieved
are compared with the desired values. The process of comparison
can reveal gaps in achievement. A situation in which no gap exists
(i.e., there is no difference between the actual achievement and the
desired progress) indicates conformance of performance with the
desired value. A positive gap is when achievement is better than
desired. A negative gap occurs when achievement is worse than the
desired progress.

■	 Corrective action: When a negative gap is revealed during comparing
and contrasting activities, taking action becomes necessary to bridge
the negative gap. Corrective action may be of many forms, including
pumping more resources into the project so that the negative gap will
disappear by the time the next measurement takes place or correcting
the expectations.

■	 That is taken periodically: Measurement, comparing and contrasting,
and taking corrective actions take place regularly during project exe-
cution. Although spot audits may be conducted, typically measure-
ment, comparing/contrasting, and taking corrective action activities
occur at preset time intervals.

■	 Various aspects of the project: Many areas of a project require periodic
oversight and measurement (and correction if necessary). Typical
aspects that are measured include:
•	 Scope
•	 Cost
•	 Schedule
•	 Quality
•	 Effort
•	 Productivity

Levels of control in software project management are depicted in Figure 7.1.

ASPECTS OF CONTROL IN PROJECT EXECUTION

Who is actually responsible for taking corrective action in the various aspects of
a project? The answer: it depends on what needs to be done. Usually, however,

J. Ross Publishing; All Rights Reserved

Software Project Execution Control  145

corrective actions are the responsibility of the project team and other relevant
stakeholders. So, let’s discuss each of the typical aspects of control.

Scope Control
The term scope refers to the amount of work required to deliver the requirements
of a project. Scope is typically determined during project acquisition or start-up
and with agreement between the stakeholders. Scope, however, can increase or
decrease (rarely) during the project execution phase. By the end of the project, a
significant gap may be found to exist between what was originally agreed upon
and what was finally delivered. This increase or decrease in scope is often referred
to as scope creep (also scope churn). Many scenarios can modify the original
scope, ranging from approved changes to phasing the deliveries. More often than
not, however, more work is delivered than was originally agreed to (or possibly
was agreed to subsequently). If not properly addressed during project acquisition,
technology requirements can also result in scope creep. Scope creep occurs mainly
due to:

•	 User requirements: Insufficient/improper understanding of user
requirements can occur at the project acquisition stage. During
the project acquisition stage, in an eagerness to acquire a project,

Plan/set
goals.

Execute
project.

Project Level

Conduct
variance
analysis.

Measure
progress.

Take corrective
and preventive

actions.

No

Yes

No

Organizational
baselines/norms

Correct
organizational

baselines/norms

Conduct variance
analysis of

project variances.

Organizational Level

Is there
any trend?

Are the
variances within

acceptable
levels?

Yes

Variances
due to chance

causes?

Yes

No

Figure 7.1. Control in software project management.

J. Ross Publishing; All Rights Reserved

146  Mastering Software Project Management

marketing (or the area negotiating the technical aspects) may make
overcommitments without making proportionate increases in the
cost, effort, and schedule estimates. This situation may occur as a
conscious or an unconscious choice.

•	 Scope statement implications: Making ambitious scope commitments,
without fully realizing their implications, is inherent in writing scope
statements. At other times, when a project is accepted, and the scope
of the work is stated by using high-level statements, the implications
of the scope statement are not recognized. As the project evolves,
however, the scope implications are realized, e.g., during the require-
ments analysis or in software design, the scope implications became
known, but it is now too late to renegotiate the impact of the implica-
tions on the schedule, cost, and effort.

•	 Business analysts: When business analysts are improperly or inad-
equately trained, they may not visualize the full scope of work when
conducting the business analysis of a project, which can lead to scope
creep during project execution. Business analysts must be competent
so that they realize the implications contained in scope statements.

•	 Change requests: Change requests are an integral part of project
execution. Lack of a proper change management process or noncon-
formance to an existing change management process can cause scope
creep. Adhering to an appropriate change management process helps
ensure that increases in scope also have concomitant adjustments of
cost, schedule, and effort.

•	 Standards: Using a defined process, templates, and checklists for
requirements gathering, scope commitment, and review helps ensure
that the scope of a project is understood and that commitments are
carefully made. Checklists, standards, and guidelines also assist nego-
tiators in “right sizing” the scope of the work.

Remember that scope creep affects all project parameters: cost, schedule, and
effort. Diligently control the scope of work during project execution.

Cost Control
Effort is the major cost component in a software development project. Effort is
impacted by:

■	 Poor productivity, which could result from:
•	 Poor supervision
•	 Lack of proper software development tools
•	 Lack of proper infrastructure (which results in wasted time due

to low-quality hardware and software, inadequate power supply
J. Ross Publishing; All Rights Reserved

Software Project Execution Control  147

or power outages, lack of the right common facilities, inadequate
lighting, ventilation, environmental control, etc.)

•	 Human resources practices (which results in low levels of morale
or a lack of motivation in the organization)

•	 Poor processes
■	 Scope creep
■	 Change requests

Ensure that productivity is maintained at the levels needed (or at better levels) and
that all costs are closely monitored and controlled to meet the commitments made
during project acquisition.

Schedule/Progress Control
A schedule can go “haywire” for any number of reasons. Common issues that
cause schedule problems include:

•	 Laxity in conforming to the original schedule by project management
(Remember: Having a schedule is essentially immaterial if the sched-
ule is not used.)

•	 An improperly developed original schedule (e.g., when tasks are not
granular enough to be properly tracked)

•	 Not getting timely approvals for deliverables from identified persons
•	 Allowing most of the tasks to be slightly elastic and then stretching

them during execution (Even if the effect on the schedule for each task
is minor, the cumulative effect can be significant. In simple terms: fail-
ing to studiously take care of the cents can lead to the loss of dollars,
a scenario that arises from poor project management.)

•	 Scope creep
•	 Uncontrolled acceptance of change requests
•	 Poor monitoring by superiors (If the schedule is not important to

management, it probably will not be important to anyone else either.)

Quality Control
The importance of quality in project execution cannot be overemphasized. Suffice
it to say: “Quality has to be built in — it is not an addendum.” Poor-quality work
causes re-work. Productivity of re-work is very low, and re-work causes loss of
motivation:

■	 Control quality in all phases and in all deliverables by using standards,
guidelines, specifications, and peer review and testing by peers in
these dimensions:
•	 Specifications quality

J. Ross Publishing; All Rights Reserved

148  Mastering Software Project Management

•	 Design quality
•	 Construction quality

■	 Confirm quality through an appropriate organizational quality assur-
ance process, tools, and managerial support.

■	 Ensure that organizational motivation and morale are at levels that
will achieve high quality.

Any and all effort spent on quality assurance pays rich dividends.

Effort Control
As already discussed, effort is a major component of cost that has a major impact
on the schedule. Every increase in effort results in proportionate increases in the
cost of a project and in the schedule. Effort increases due to:

•	 Scope creep
•	 Low productivity
•	 Poor-quality work that results in re-work
•	 Uncontrolled change requests
•	 Poor levels of motivation or morale in the organization that result in

low productivity

Closely monitor the effort being spent on a project.

Productivity Monitoring
Low productivity results in increased effort and inefficient use of other resources
in a project, which leads to cost escalation. Reasons for lower productivity include:

•	 Poor working environment
•	 Poor supervision
•	 Lack of the proper tools (e.g., tools that would increase productivity)
•	 Lack of a software process, a poor definition of the process, or laxity

in conforming to a defined process
•	 A poor quality assurance process or quality assurance practices that

result in re-work and reduced productivity
•	 Low motivation or morale in the organization
Productivity improvement is a continuous process. Pay close attention to

monitoring productivity levels in software projects. Humans are often capable of
delivering much higher productivity levels. We must therefore focus close atten-
tion on monitoring productivity levels in our software projects.

J. Ross Publishing; All Rights Reserved

Software Project Execution Control  149

CONTROL MECHANISMS

So, how do we ensure that proper control is exercised in software projects? What
tools and mechanisms are available to provide assistance? Projects that leverage
project tracking and monitoring processes, audits, metrics, software verification and
validation processes, checklists, standards, guidelines, and assessments are likely to
keep project execution controlled and closely aligned with the project plans.

A well-defined software process. Having a well-defined software process goes
a long way in exercising control on project execution (assuming the plan is fol-
lowed). Behavioral and performance norms are a particularly important compo-
nent of an organizational process definition. Norms are defined for productivity
and permissible variances in schedule, effort, productivity, and cost. These norms
help support the definitions of what is important to measure and analyze to sup-
port project execution and control.

Progress reporting and monitoring meetings are important tools that can be
used as control mechanisms. They provide excellent assistance to project stake-
holders for exercising control over a project’s activities:

Progress reports. Typically, progress reports are generated on a periodic basis
(weekly usually) by the project manager and distributed to all project stakehold-
ers. Progress reports allow all stakeholders to assess the progress of a project and
then to determine if corrective intervention is needed. Progress reports also allow
stakeholders to determine if any resolution issues are pending on their docket
and then to take the necessary action to resolve these issues. Suggested elements
of a progress report template are illustrated in Figure 7.2. This template can be
customized to meet specific project needs. A progress report usually contains:

•	 Project status and the project plans
•	 Metrics that give quantitative measures for quality, productivity,

effort, and schedule
•	 Issues that could impact the project execution and their status
•	 Other aspects as defined in the project management plan

Progress monitoring meetings. These meetings are conducted as adjuncts to
project progress reports. Monitoring meetings can occur in a face-to-face manner,
as teleconferences, or as videoconferences (whether by telephone or Internet, the
manner in which a meeting is held is less important than that the meeting actually
occurs). Usually, progress monitoring meetings are conducted a day or two after
the progress report has been communicated to all stakeholders. In monitoring
meetings, all stakeholders analyze the project’s progress, using the project’s plans
and progress reports as the basis of comparison. The meeting generally begins
with an explanation of the project’s status by the SPM as well a description of any

J. Ross Publishing; All Rights Reserved

150  Mastering Software Project Management

issues that need resolution. Then the stakeholders discuss the progress as well as
the issues needing resolution. Action points are then assigned to an appropriate
person who is participating in the meeting. These action points are recorded in
the meeting minutes and distributed to all stakeholders. The action points thus
captured are tracked to closure. This record is used as a reference for monitoring
further progress. During the meeting, stakeholders also agree on any corrective
action that needs to be implemented. A suggested format for recording the min-
utes of progress monitoring meetings is illustrated in Figure 7.3. Multiple types of
progress monitoring meetings may be conducted:

•	 The SPM and the project team
•	 The SPM, the project team, and organizational management
•	 The SPM and the customer
•	 The SPM, organizational management, and the customer

Figure 7.2. Elements for a weekly project progress report.

Project Information:
1.1	 Name of Project
1.2	 Name of Project Manager
1.3	 Reporting Period

Executive Summary:

Status of Project:
•	 Overall Status
•	 Tasks Completed During the Period
•	 Tasks Planned for the Next Period
•	 Any Tasks that Are Outside Project Work

Resource Position:

Issue-Resolution Status:

Project Metrics:

Significant Events During Period:

Customer Interface:
•	 Commendations Received
•	 Complaints Received

Issues Needing Management Attention:
•	 Project Support Group Issues
•	 Employee Grievances
•	 Any Interface Issues

Best Practices/Pitfalls to Share with Organization:

Process Improvement Suggestions:

J. Ross Publishing; All Rights Reserved

Software Project Execution Control  151

Many formats and structures are available for progress meetings, ranging from
stand-up meetings (e.g., as used in scrum) to very formal presentations to boards
of directors. Implement progress meetings in a manner that meets the needs and
corporate culture of each project.

Audits. Two types of audits are normally conducted in organizations: orga-
nization-level and project-level audits. Organizational audits are conducted on a
periodic basis, whereas project-level audits are conducted upon completion of a
project phase. Let’s take a closer look at each type of audit.

Organization-level audits. Organizational audits are normally conducted on
a periodic basis (e.g., once a quarter, semiannually, or annually). Organizational
audits mainly look for evidence of implementation of project plan and organiza-
tional processes; hence, organizational audits are often referred to as conformance
audits. The quality assurance department (or another department vested with this
responsibility) organizes organizational audits. At times, during an organizational
audit, all aspects of all projects are audited. When all aspects are audited, the
audit is referred to as a vertical audit. At other times, only one aspect is audited
in greater detail in all projects, e.g., configuration management or the project
planning processes. When one aspect is audited, the audit is referred to as a hori-
zontal audit. A common practice, however, is to conduct a combination of these
two audits to provide the data needed to analyze process implementation and
to unearth any opportunities for process improvements across the organization.
Organization-level audits also assist management in identifying slippages and
initiating corrective action as early as possible to get a project(s) back on track.
Audit findings for all projects are consolidated and analyzed to detect patterns
or trends. The audit findings are then presented to all SPMs and organizational
management so that any process improvement opportunities can be discovered
and implemented.

The purpose of an organizational audit is to ensure that:
•	 All projects are adhering to the defined software process of the orga-

nization

Item
Number Action Item

Date of
Origination

Scheduled
Date of

Completion
Person

Responsible
Status

(Open/Closed)

1

2

3

Figure 7.3.  A format for recording meeting minutes of project progress monitoring meetings.

J. Ross Publishing; All Rights Reserved

152  Mastering Software Project Management

•	 All projects are being executed in conformance with their project plans
•	 All QA activities planned for projects are being diligently imple-

mented.
If an audit finds any evidence of nonconformance in any aspect of a project, a
nonconformance report (NCR) is raised on the project. NCRs require that cor-
rective action be taken and that preventive action plans be developed to avoid
nonconformance in the future.

Project-level audits. Project-level audits are not period based, but rather are
tied to an execution phase. The purpose of a project-level audit is to identify, as
early as possible, any lack of diligence that could cause serious issues in the later
stages of project execution and also to ensure that the project is ready for the next
stage. Project-level audits are conducted upon completion of project phases and
deliverables:

	 1.	 Project initiation
	 2.	 Project planning
	 3.	 Completion of construction of a module
	 4.	 Integration of a module
	 5.	 Preparation of the product build
	 6.	 Completion of testing
	 7.	 Ready for delivery
	 8.	 Project closure

Customarily, at a minimum, three audits are conducted for every project: one
after project initiation; one in the middle of project execution; and then a final
audit following project closure, particularly for short-duration projects. For
longer-duration projects (e.g., 12 calendar months or longer), we recommend
combining some of the phases and conducting an audit every 2 months (i.e., using
a periodic audit process).

Metrics. Metrics facilitate close control of a project and assist in the quan-
titative assessment of the project’s health. Analysis of the variances in a project
provides an objective view of the efficiency of project execution and also facilitates
taking the corrective action necessary to bring a project back on track with the
project plan. Project progress reports or a dashboard (a large chart) that is main-
tained on daily basis are useful tools for distributing metrics. Six classes of metrics
are typically collated, computed, and distributed to project stakeholders:

•	 Quality: the defect injection rate of a deliverable and the code develop-
ment; the defect removal efficiency of each QA activity

•	 Schedule: schedule variances, such as occurrences of meeting the sched-
ule (expressed as a percentage) or not meeting the schedule (expressed
as a percentage); the occurrence of replanning the schedules

J. Ross Publishing; All Rights Reserved

Software Project Execution Control  153

•	 Productivity: the productivity of each software engineering activity
and any variances from plan

•	 Cost: actual expenditure; the budged expenditure; and variance analysis
•	 Change: the number of change requests received; the impact of change

requests on effort, schedule, and cost
•	 Effort: actual effort expended; the planned effort; and variance analysis

Computation of a project’s metrics can consume a significant amount of time
and effort for an SPM. A tool such as PMPal is of great assistance in reducing the
overhead associated with computing project metrics.

PROGRESS ASSESSMENT: EARNED VALUE ANALYSIS

Because project execution has so many facets, obtaining an accurate assessment of
a project’s progress is difficult. Projects do not come with a GPS! But earned value
analysis (EVA), a popular measurement technique, can be used to assess a project’s
progress. In simple terms, EVA (also referred to as BCWP or the budgeted cost of
work performed) indicates how much of the budget should have been spent when
compared to the amount of work that has actually been completed. EVA is particu-
larly useful in large projects with longer duration. Although EVA is extensively used
in large construction projects and in U.S. defense projects, in commercial software
development, use of EVA is more the exception than the rule.

EVA measures a project’s performance using financial terms. Measuring the
progress of a large project by simply tracking a large number of activities, which
are in various stages of completion, is tedious. Keeping track of the money spent
on the project is much easier. Comparing the amount of money actually spent
on the project with the amount budgeted allows the progress of the project to be
expressed with a single number. In simple words: “We should have spent $5000,
and we actually completed $4000 of work; therefore, we have completed about
80% of the planned work.”

The three primary values. EVA uses three primary values for each task:
•	 BCWS (the budgeted cost of work scheduled): BCWS is the portion of

the cost that is planned to be spent on a task (or project) between the
task’s start date and the status date. For example, the total planned
budget for a 4-day task is $100. The task starts on a Monday. If the
status date is set for the following Wednesday, the BCWS is $75.

•	 ACWP (the actual cost of work performed): ACWP is the total actual
cost incurred while work is performed on a task (or project) during a
given period. For example, if the 4-day task actually incurs a total cost
of $35 during each of the first 2 days, the ACWP for this period is $70.

J. Ross Publishing; All Rights Reserved

154  Mastering Software Project Management

•	 BCWP (the budgeted cost of work performed): BCWP is the percent-
age of the budget that should have been spent for a given percentage
of work performed on a task (or project). For example, if after 2 days,
60% of the work on a task has been completed, 60% of the total task
budget is expected to have been spent or $60.

Other key values are determined from these three primary values. The most com-
mon and useful ones are cost variance, schedule variance, the cost performance
index, and the schedule performance index. To better understand these key
values, let’s continue with the example of a 4-day task, with BCWS of $100, an
ACWP of $70, and BCWP of $60.

Cost variance (CV) is the difference between a task’s estimated cost and its
actual cost:

CV = BCWP – ACWP
CV = 60 – 70
CV = (–) 10

As can easily be seen, we budgeted $60, but we spent $70. We have overspent by
$10! We may need to make cuts in the future or allocate more funds to complete
the task.

Schedule variance (SV) is the difference between the current progress and the
scheduled progress of a task in terms of cost.

SV = BCWP – BCWS
SV = 60 – 75
SV = (–) 15

This computation indicates that we are behind schedule. Against a budgeted
expenditure of $75, we have spent only $60. Some might say that we have saved
budget funds. Possibly, we did. If so, the savings will be reflected in the cost per-
formance index and the schedule performance index. If CPI and SPI are more
than 1, then we can infer that we have saved budget funds.

The cost performance index (CPI) is the ratio of budgeted costs to actual
costs:

CPI = BCWP/ACWP
CPI = 60/70
CPI = 0.86

The CPI is 0.86, so we have overspent the budget for the task. A CPI of less than
1 indicates overspending; a CPI of more than 1 indicates saving.

The schedule performance index (SPI) is the ratio of work performed to work
scheduled:

J. Ross Publishing; All Rights Reserved

Software Project Execution Control  155

SPI = BCWP/BCWS
SPI = 60/75

SPI = 0.8

The SPI is 0.80, so we have completed 80% of the work. An SPI of less than 1
indicates that we are behind schedule; an SPI more than 1 indicates that we are
ahead of schedule.

An interpretation. EVA results can be interpreted in multiple ways:
■	 Earned value indicators that are variances, such as cost variance, can

be positive or negative:
•	 A positive variance indicates that a task or project is ahead of

schedule or under budget. A positive variance might enable reallo-
cation of money and resources from tasks or projects with positive
variances to tasks or projects with negative variances.

•	 A negative variance indicates that a task or project is behind sched-
ule or over budget and action needs to be taken. If a task or project
has a negative cost variance (CV), the budget might have to be
increased or reduced profit margins may have to be accepted.

■	 Earned value indicators that are ratios, such as the cost performance
index (CPI) and the schedule performance index (SPI), can be greater
than 1 or less than 1:
•	 A value that is greater than 1 indicates that the task or project is

ahead of schedule or under budget. An SPI of 1.5 means that only
67% of the planned time to complete a portion of a task in a given
time period has been used.

•	 A value that is less than 1 indicates that a task or project is behind
schedule or over budget. A CPI of 0.8 means that 25% more has
been spent on a task than was planned for a given time period.

Some benefits of earned value analysis. In summary, performing EVA has
certain benefits:

■	 Earned value analysis provides reliable answers to key questions:
•	 Is there enough money left in the budget to complete the project?
•	 Is there enough time left in the schedule to finish the project on time?

■	 Earned value indicators express a project’s progress in terms of cost
and schedule:
•	 Will the money run out before the project is completed?
•	 Will there be a surplus when the project is completed?

Earned value analysis is especially useful in large projects that have longer dura-
tions.

J. Ross Publishing; All Rights Reserved

J. Ross Publishing; All Rights Reserved

8

CHANGE MANAGEMENT IN
SOFTWARE DEVELOPMENT
PROJECTS

INTRODUCTION

The Greek Philosopher Heraclitus said, “There is nothing permanent except
change.” A reflection of these words is particularly evident in software develop-
ment projects. To say that rarely is any software development project completed
without some change(s) being necessary during the execution phase is not
far-fetched. (Note: In one of the author’s experience, only two projects did not
change; both of them had a legally mandated scope and both of them ended in
litigation.) Even though change is inevitable and expected, rarely is receiving a
change request (CR) a welcome event for a project team.

Change management during a project is a primary (majority) activity that is
especially critical during initial software development. As discussed in Chapters
5 and 6, change management is part of configuration management (CM). While
software is still in the development phase, however, configuration management
deals mostly with the state transition of software artifacts. (Note: Change manage-
ment is also part of configuration management when software is in production.
When in the production environment, change management deals with changing
out artifacts with updated artifacts.) To deal with change, software process spe-
cialists have provided the software development industry with a change manage-
ment process for handling CRs with equanimity and to do so effectively.

157J. Ross Publishing; All Rights Reserved

158  Mastering Software Project Management

In its simplest form, change is basically a requirement from a stakeholder in
a software project that is specified “after the event.” After the event means that
the new requirement is specified after completion of the phase in which it should
have been specified. For example, if a new user requirement is specified after the
user requirement specification document has been approved and the next activity
is being carried out, then the new requirement is a change. A screen modification
that is requested from the development team after a screen has been coded and
unit tested is another example of change, e.g., the addition of another control to
the screen, the deletion of a control from a screen, or a rearrangement of controls
on a screen. Other examples of change include:

•	 A change in specifications for a software product or a new specifica-
tion after specifications have been approved

•	 A change in user requirements or a new user requirement after the
user requirements have been approved

•	 A change in the software design of the product or an addition to the
existing design after the design has been finalized and approved

•	 A change in the source code or an addition or deletion of existing code
after the unit has been coded and tested

Changes necessitate the retracing of steps already taken or the modifying of arti-
facts so that the required changes can be implemented. Changes cause disruption
to the flow of project execution, regardless of whether the flow is on a smooth or
chaotic path.

Rarely does a CR impact an artifact that is incomplete. Instead, the tim-
ing of the CR usually impacts a completed artifact and tends to be severe. If the
CR impacts only a current artifact, however, the impact tends to be less severe.
Regardless of the scenario, artifacts such as requirements documents, design
documents, etc. will have to be reviewed and perhaps revised, which will certainly
impact the flow of project execution. The phase of development in which a CR
is received also determines the severity of the impact. For example, a CR that is
received just after the requirements phase is completed tends to cause the least
severe impact as compared to a CR for the same item that is received when the
project is in the system testing phase. The severity of the impact of CRs on project
execution flow is shown in Table 8.1.

ORIGINS OF CHANGE

CRs may originate from various stakeholders:

Customers. Customer representatives may raise CRs that affect the overall
project. Sometimes, a security specification is changed when a new security threat

J. Ross Publishing; All Rights Reserved

Change Management in Software Development Projects  159

is reported; the middleware that a customer plans to use releases a new version;
additional management reports are needed; or a new governmental regulation
may be enacted that necessitates making changes in a project. Any number of
other reasons, including the dynamic nature of the world, can cause customer
representatives to raise CRs.

End users. Similarly, end users may raise CRs if they are aware of the project
and participating in overall project execution, e.g., if they realize an error was
introduced during the user requirements gathering phase. End users raise CRs
in other scenarios that are as simple as needing an additional report or because
an internal procedural change necessitates the modification of a screen or report.

A project team. Although rare, project team members can raise a CR.
Sometimes, the design may not be practical, especially while packing controls on
the screen or in a report. Practicality issues necessitate seeking a design concession
from the designers of the project: perhaps to split the screen into two screens, to
create two tabs, or to use a popup facility. Sometimes, team members suggest a
better method of achieving functionality, such as reducing the number of screens
by a better combination of controls or developing a shared component instead
of replicating similar functionality in multiple modules, etc. Often when team
members request a change, they are either seeking a concession or are attempting
to improve the product’s technical performance.

A testing team. A testing team may find opportunities for improvement while
carrying out testing. Although these opportunities are raised as CRs, in practical
terms these changes often are initially confused with problem reports. Testing

Table 8.1. Severity of Impact Caused by Change Requests

Phase in which
Change Request

Received

Severity of Impact Caused by Change Request Based on Type

Specification
CR

User
Requirement

CR
Design

CR
Construction

CR

Specification Nil Nil Nil Nil

User requirements Medium severity Nil Nil Nil

Design High severity Medium severity Nil Nil

Construction High severity High severity High
severity

•	Medium if
component
is already
constructed

•	Low if component
is not yet
constructed

J. Ross Publishing; All Rights Reserved

160  Mastering Software Project Management

teams, however, do find opportunities for improvement and raise CRs to pursue
those changes. The frequency of opportunity improvement-related CRs is driven
by how integrated the testing team is with the development team.

The organizational standards group. The organizational standards group
may change an existing standard or bring out a new one, which impacts projects
that are in progress. In such cases, the organizational standards group raises a CR
to retrofit the standard into the project deliverables. Unless the change addresses
a critical issue, however, the organizational standards group generally identifies a
migration path for the change and identifies pertinent grandfathering situations.

Changes are communicated to the SPM using a CR form. The CR would
contain details of the project, the module, and the component(s) that are likely to
be affected by the CR. The CR should also include reasons for the CR. Suggested
CR form elements are illustrated in Figure 8.1. Remember that scope creep occurs
when changes are made without a CR.

The Change Request Register

A CR register is used to record all CRs received from any source and to track each
CR to closure. The CR register is the main tool for monitoring all CRs to resolu-
tion. When a CR is received, the first activity is to record it in the CR register.
Usually, a CR register is maintained electronically (also known as soft copy). The
actual format of CR register can be an Excel Worksheet or a tool-based register
such as PMPal that facilitates the functionality of the register. A CR register usu-
ally contains:

Figure 8.1. Elements of a change request.

Project Name:

Date:

Change Request Reference:

Initiator Information:

Details of Change Requested:

Implementation Information:

J. Ross Publishing; All Rights Reserved

Change Management in Software Development Projects  161

•	 The CR reference number
•	 Date on which the CR is received
•	 Allocation details for analysis, including to whom the CR is allocated

and the completion date
•	 Allocation details for approval of the CR, including to whom it is allo-

cated and the completion date
•	 Allocation details for resolution of the CR, including to whom it is

allocated and the completion date
•	 Allocation details for peer review, including to whom it is allocated

and the completion date
•	 Allocation details for regression testing, including to whom it is allo-

cated and completion date
•	 Status: open, closed, or under analysis/approval/resolution/peer

review/regression testing
•	 Date on which the CR is closed

A suggested CR register format is illustrated in Figure 8.2.

C
R

 R
ef

er
en

ce

C
R

 D
at

e

A
p

p
ro

ve
d

 B
y

A
p

p
ro

va
l D

at
e

A
na

ly
ze

d
 B

y

A
na

ly
si

s
S

ta
rt

 D
at

e

A
na

ly
si

s
E

nd
 D

at
e

Im
p

le
m

en
te

d
 B

y

Im
p

le
m

en
ta

tio
n

S
ta

rt
 D

at
e

Im
p

le
m

en
ta

tio
n

E
nd

 D
at

e

R
ev

ie
w

ed
 B

y

R
ev

ie
w

 S
ta

rt
 D

at
e

R
ev

ie
w

 E
nd

 D
at

e

Te
st

ed
 B

y

Te
st

in
g

S
ta

rt
 D

at
e

Te
st

in
g

E
nd

 D
at

e

S
ta

tu
s

C
lo

se
 D

at
e

Figure 8.2. Format of a change register

J. Ross Publishing; All Rights Reserved

162  Mastering Software Project Management

CHANGE REQUEST RESOLUTION

Resolution of a change request can range from rejection to acceptance and imple-
mentation. In larger projects, after a CR has been logged into the CR register, the
CR is analyzed by the configuration control board (CCB). In small projects, the
CR is analyzed by the SPM or some other designated person. In either case, the
analysis determines:

•	 If implementation of the CR is feasible (When a CR is raised by
internal sources, such as a project team or testing team, in addition to
feasibility, the analysis also determines if implementation is desirable
from a user point of view.)

•	 The amount of effort and calendar time it will take to implement the
CR

•	 The impact of the CR on the overall project: if it is accepted (especially
in terms of effort, schedule, and cost) or if it is rejected (fit for use)

Once the analysis is completed, the impact analysis is submitted to the CCB
or to the project’s SPM, who approves or rejects the CR. If rejected, the decision
and the reasons why the CR has been rejected are communicated to the origina-
tor of the CR. The CR is then closed in the CR register. If approved, the CR is
implemented in accordance with the implementation strategy determined for the
CR and then recorded in the software configuration management plan (SCMP).
(Note: Whether rejected or accepted, all CRs received should be recorded and
tracked to closure.)

Table 8.2. Artifacts Impacted and Change Request Implementation Strategy
Based on Phase When Change Request Received

Phase in which Change
Request Received Artifacts Impacted

Suitable Strategies for
Implementation

Specifications/user
requirements phase

Specifications and user
requirements documents

As/when received or when
convenient, but before design
is started

Design phase Specifications document, user
requirements documents, and
design documents

As/when received or when
convenient, but before design
is completed

Construction phase Specifications document, user
requirements documents,
design documents, and
source code

As/when received or retrofitted
or situational implementation

J. Ross Publishing; All Rights Reserved

Change Management in Software Development Projects  163

Change Request Implementation Strategy
The timing of a CR can influence the implementation of the CR and the imple-
mentation strategy chosen. The impact on a set of typical artifacts, based on the
phase during which a CR is received and the possible strategies for implement-
ing the CR, are shown in Table 8.2. Typical approaches include the situational
approach, consolidating/retrofitting at a specific time, and the as/when received
approach. CR implementation strategy is illustrated in Figure 8.3. Initiating
change implementation always assumes that the CR has been accepted.

Approved for
implementation?

Activity
completed?

Implementation of CR

CR received

Make the
CR part of

specifications/
requirements

Allocate for
implementation

Hold until
convenient

Hold until
end

As
and

when
Retrofit

When convenient

Started, but
not completed

No

CR analysis

Intimate
originator

Strategy:
as and when

received/retrofit at the
end/convenient

time

Close CR

Figure 8.3. Determining the strategy for change request implementation.

J. Ross Publishing; All Rights Reserved

164  Mastering Software Project Management

Situational approach. First, let’s look at the most typical strategy for change
implementation: the situational approach. The steps generally followed for CR
implementation in a situational strategy include:

	 1.	 If work on the activity is not complete (or not yet started), incor-
porate the CR into the specifications, requirements, and design (as
required).

	 2.	 If work on the impacted component has started, but is not com-
plete, hand the CR over for implementation to the team member
who is carrying out the work. The CR is then incorporated into the
required deliverables.

	 3.	 If work on the component impacted by the CR is complete, the CR is
kept pending, either to be implemented at the end of the project or
at a convenient time, such as when other resources become free or if
part of the team is idle and waiting for an approval, clarification, etc.

Consolidating/retrofitting at a specific time. If a project is following a strat-
egy of holding CRs and then retrofitting them at a specific point in time, the fol-
lowing steps are followed to implement CRs:

	 1.	 Each CR is further analyzed to determine the components and
deliverables that will be impacted.

	 2.	 At the completion of analysis, CR implementation activities are
consolidated into packages (perhaps by component).

	 3.	 Work allocation is made so that all CRs pertaining to one compo-
nent or to one set of related components are given to the same team
member(s).

	 4.	 The allocated team members complete the CR implementation
activities.

	 5.	 The modifications are subjected to standard QA activities, such as
peer and managerial reviews and regression testing.

	 6.	 All defects uncovered during reviews and testing are rectified by the
appropriate team member(s).

	 7.	 When all CRs are implemented, a managerial review of CR imple-
mentation is carried out by the SPM or by a person designated by
the SPM to ensure that all CRs are satisfactorily resolved and that
they have passed through QA activities. The CRs would then be
closed.

	 8.	 The software is promoted to the next stage.

This process is very similar the steps required for a software release after the
initial implementation. The process for retrofitting CRs at the end of a project is
illustrated in Figure 8.4.

J. Ross Publishing; All Rights Reserved

Change Management in Software Development Projects  165

Any defects?

Any defects?

Retro�t completed

Begin retro�tting CRs

No

Analyze each CR

Consolidate
changes by
component

Allocate impacted
components for
resolution of CRs

Peer review of CR
implementation

Regression
testing

Managerial
review

Team members
implement CRs

No

Yes

Yes

Figure 8.4. Retrofitting change requests at the end of a project.

J. Ross Publishing; All Rights Reserved

166  Mastering Software Project Management

As received/when convenient. If a CR is implemented when received or when
convenient, the following steps are taken to resolve the CR:

	 1.	 The CR is allocated for resolution to the appropriate team member(s).
	 2.	 If the CR impacts an information artifact:

•	 The information artifact is copied to an in-process folder.
•	 The information artifact is modified as necessary.
•	 The information artifact is subjected to QA activities, e.g., peer

review and managerial review.
•	 Any defects uncovered during QA are rectified by the concerned

team member(s).
•	 After all defects are rectified, the artifact receives appropriate

approvals.
•	 The artifact in the current artifacts folder is then moved to the

archived artifacts folder and the updated artifact is moved to the
current artifacts folder.

•	 All concerned team members would be informed of the change
in the artifact.

•	 If CR implementation includes modifying the code artifacts, in
addition to information artifacts, the CR is then passed on to
the team members who are allocated the work of implementing
the CR in the code artifacts along with reference to the updated
information artifact.

	 3.	 If the CR impacts a code artifact, either independently or after an
information artifact has been updated, the following steps are fol-
lowed to implement the CR in code artifacts:
•	 The SPM allocates the CR for resolution to an appropriate team

member(s) for implementation along with references to any
updated information artifacts.

•	 The allocated team members carry out the necessary coding.
(Coding activity is governed by coding guidelines for the project.)

•	 The CR is then allocated for peer review. Peer review personnel
review the code to ensure that:
◆	 Implementation fulfills the requirements of the CR.
◆	 The implementation conforms to the project guidelines and

other software engineering standards of the organization.
◆	 No trash or malicious code is left in the software.
◆	 The changed code ensures efficiency of execution and

response times.

J. Ross Publishing; All Rights Reserved

Change Management in Software Development Projects  167

•	 Once the CR is passed through peer review, it is submitted for
regression testing.
◆	 The testing team carries out regression testing to ensure

that all functionalities requested in the CR are correctly
working and that the original functionality is unaffected by
implementation of the CR.

◆	 Once regression testing is complete and all defects pointed
out either in peer review or regression testing are resolved
and closed, the CR is closed in the CR register. The artifact
is then promoted to the next stage.

The process of CR implementation is illustrated in Figure 8.5.

THE VALUE OF METRICS DERIVED FROM A CHANGE
REQUEST REGISTER

A CR is usually viewed as a change in requirements received from a customer.
Yet, when a CR is not raised by a customer/user, but instead is raised by a team
member or a QA person, can the change still be termed a “requirement” change?
Of course, because the request is still a requirement — it is just not a user/cus-
tomer requirement. For example, a team member may raise a change request
because some requirement of the team has not been met. A QA person may raise
a CR because a quality requirement has not been met. Sometimes conforming
to a specific design item or a user requirement is determined to be impractical.
In cases such as this, a CR is raised to amend the requirement itself — therefore
making it a requirements change. (Note: A defect report is not a CR.)

The number of CRs can reflect the stability of the requirements. (Note: One
argument is that if requirements analysis has been diligently carried out and all
necessary QA activities have been applied, then CRs will not be present. When
referring to requirements analysis, ensure that analysis activities include not only
the user/customer requirements, but also other ancillary requirements, includ-
ing the feasibility to achieve the user requirements, the security requirements,
the usability requirements, the maintenance requirements, etc.) Therefore,
the CR register becomes a source of information for measuring the stability of
requirements: metrics which are normally referred to as change or CR metrics.
The following formula is used to compute requirements stability (expressed as a
percentage):

(Total number of requirements – number of change requests) ÷
total number of requirements

J. Ross Publishing; All Rights Reserved

168  Mastering Software Project Management

Any defects?

CR implemented

CR ready for
implementation

No

No

Copy to
in-process

folder

Implement CR

No

YesYes

Peer review and
managerial

review

Approvals

Archive current
artifact

Promote
modified artifact
to current level

Allocate CR for
implementation

Implement CR

Peer review

Regression
testing

Code or
information

artifact?

Any defects?

Yes
Any defects?

Information Code

Figure 8.5. Implementation of a change request.

J. Ross Publishing; All Rights Reserved

Change Management in Software Development Projects  169

Another metric normally derived is the amount of relative effort spent on resolv-
ing CRs (expressed as a percentage):

(Total effort spent on resolving change requests ÷ total effort spent on project) × 100

Analysis that is carried out to segment the changes into various categories
identifies the origin of changes and allows inferences to be developed to deter-
mine if any trend is emerging or if action is needed. Suppose the bulk of CRs:

•	 Result from coding: The organization is alerted that training for cod-
ers is necessary.

•	 Indicate an unsatisfactory understanding of customer requirements:
The organization is alerted to the need of more training for the busi-
ness analysts in effective processing of requirements solicitation/
elicitation/development.

•	 Are due to defective design: The organization is alerted to the need for
software designers/architects improvement.

Status of CR implementation, the progress of CR resolution, and the CR
metrics are usually reported as components of a weekly status reports to con-
cerned executives. This report serves the purpose of providing historical records
and alerting senior management to the need for intervention as necessary. In
the opinion of the authors, however, most categories of CRs can be alleviated by
adopting one or more of the following suggestions:

•	 Impart training to improve the skills of personnel.
•	 Develop better software development processes and procedures.
•	 Set higher standards and have strong guidelines for coding, design,

architecture, and review.
•	 Rigorously implement conformance and investigative audits.

This book has free material available for download from the
Web Added Value™ resource center at www.jrosspub.com

J. Ross Publishing; All Rights Reserved

J. Ross Publishing; All Rights Reserved

9

SCHEDULING

INTRODUCTION

Scheduling is a very important activity in software project management. To say
that project planning in many organizations consists of only the scheduling activ-
ity would not be an exaggeration. In these organizations, project planning refers
only to preparation of a schedule. A schedule during the project planning stage,
however, is actually a calendar through which the project is envisaged for execu-
tion. This practice of schedule-based project planning/managing is apparently
seductively simple, but a schedule is only one component of project planning. The
schedule is but one of the tools that is available to a software project manager for
project monitoring.

Scheduling in its simplest form is the sequencing and setting of calendar
dates for the project activities that have been envisaged to accomplish the goals of
a project. Yet, scheduling is not merely a rote activity. Good scheduling requires
human creativity and ingenuity. When scheduling a project, having an under-
standing of the aspects of a project is essential:

•	 A project consists of a number of activities (tasks). Performing these
activities/tasks results in execution of the project.

•	 A project has a number of milestones. Reaching the milestones signi-
fies completion of a certain group of activities.

•	 A project has a starting point, which is the project’s first milestone or
start milestone.

•	 A project has an ending point, which is the project’s last milestone or
end milestone.

171J. Ross Publishing; All Rights Reserved

172  Mastering Software Project Management

•	 All activities of a project must be performed between the start and the
end milestones.

•	 Some activities of a project can be performed concurrently with (par-
allel to) each other.

•	 Some activities must be performed sequentially (one after the other).
•	 Some activities can use multiple resources and some activities cannot.
•	 There is a limit to the number of resources that can be deployed for

any given activity.
Let’s now schedule a project using a sample project.

ThE Initial Work Breakdown Structure

The list of activities/tasks and milestones needed to execute and complete a proj-
ect is commonly known as a work breakdown structure or WBS. The first item in
a WBS is the start milestone, which signifies the beginning of the project. The last
item in a WBS is the end milestone, which signifies completion of the project. The
project “happens” between these two milestones.

So, the first step in scheduling a project is to prepare a WBS that contains all
of the tasks that are to be scheduled. A simple initial WBS for a materials manage-
ment software development project is illustrated in Table 9.1, where all activities
are embedded between the start and end milestones. Of course, a real-life project
would have many more activities.

A WORK BREAKDOWN STRUCTURE with Predecessors
defined

Having prepared the initial WBS, the next step is to determine the sequence of the
execution of the tasks listed in the WBS in Table 9.1. This is achieved by adding a
Predecessor column to Table 9.1 (as shown in Table 9.2). Some organizations use
predecessors and successors (what must come next) as a tool to define sequence.
By definition, the start milestone does not have any predecessors (even though we
know from earlier discussions that significant activities may have taken place to
acquire the project before its start). The other project activities, however, should
have at least one predecessor (some activities may have more). By definition, the
end milestone has no successors.

Defining the predecessors consists of a process that includes considering each
activity and then answering the question, “What activities should have already
been completed before this activity can begin?” The answer is recorded in the
Predecessor column. The Predecessor column indicates all of the activities that

J. Ross Publishing; All Rights Reserved

Scheduling  173

need to be completed before the next activity can begin. The scheduler walks
through the WBS, iterating the process of asking and answering this “order ques-
tion” for each activity in the WBS, to ensure that predecessors are identified and
recorded for all activities. Some activities will have only one predecessor, while
others may have multiple activities as predecessors.

A task can also have multiple predecessors or multiple successors. In Table
9.2, the predecessor and the successor for each task are shown. For Task 2, the
predecessor is Task 1 and the successor is Task 3 (and Task 2 is the predecessor for
Task 3). For Task 5, the predecessor is Task 4 and the successor is Task 6. Notice
that Task 6 is a predecessor for five tasks: five tasks can start once Task 6 is com-
pleted. Notice also that Task 11 has five predecessors: Task 11 cannot start until
these five tasks have been completed (think of this as web converging to a single
point). (Note: Predecessors and successors for each task may also be mapped in a
Gantt/PERT chart, which will be briefly described at the end of this chapter.) In
summary:

Table 9.1. Initial Work Breakdown Structure

Task ID Task Description Effort in Person-Days

 1 Start 0

 2 Project initiation 2

 3 Project planning 5

 4 Requirements analysis 10

 5 Software requirements specification 4

 6 Design 12

 7 Construction of warehouse module 15

 8 Construction of purchase module 12

 9 Construction of inventory control module 10

10 Construction of payables module 6

11 Integration 5

12 Integration testing and fixing defects 3

13 System testing 3

14 User acceptance testing 2

15 User documentation 5

16 User training 3

17 Software installation and master data creation 10

18 Pilot run 2

19 Handover and customer sign-off 1

20 End 0

J. Ross Publishing; All Rights Reserved

174  Mastering Software Project Management

•	 The number of milestones that can be documented between the start
and end milestones have no limit: milestones enhance a schedule’s
clarity and understanding.

•	 Except for the start milestone of a schedule, which has no predecessor,
and the end milestone, which has no successor, every task must have
one or more predecessors and one or more successors.

Note: There may be multiple tasks as successors to the start milestone which are
beyond the scope of the present project. Similarly, the end milestone may have
multiple predecessors which are again beyond the scope of the present project.

Returning to Table 9.2, notice that no task lists Task 16 as a predecessor. But
doesn’t Task 16 have a successor? This is an anomaly that has to be rectified before
we can have a complete schedule. Conversely, if we cannot perceive that another

Table 9.2. Work Breakdown Structure with Predecessors

Task ID Task Description
Effort in

Person-Days Predecessor

1 Start 0

2 Project initiation 2 1

3 Project planning 5 2

4 Requirements analysis 10 3

5 Software requirements specification 4 4

6 Design 12 5

7 Construction of warehouse module 15 6

8 Construction of purchase module 12 6

9 Construction of inventory control module 10 6

10 Construction of payables module 6 6

11 Integration 5 6, 7, 8, 9, 10

12 Integration testing and fixing defects 3 11

13 System testing 3 12

14 User acceptance testing 2 13

15 User documentation 5 12

16 User training 3 14, 15

17 Software installation and master data creation 10 14

18 Pilot run 2 17

19 Handover and customer sign-off 1 18

20 End 0 19

J. Ross Publishing; All Rights Reserved

Scheduling  175

task or activity is a successor to an activity, its successor by definition is the end
milestone.

Also notice in Table 9.2, that an analysis of the schedule will raise questions
about the predecessor relationships. Look at Tasks 2 and 3. Task 3 (project plan-
ning) cannot be started unless Task 2 (project initiation) has been completed.
This relationship is called a finish-to-start relationship: Task 2 must be finished
before Task 3 can be started. Task 11 (integration) can start once Task 6 (design)
has been completed, and other modules can be integrated when any module is
completed. Therefore, there is a finish-to-start relationship between Task 6 and
Task 11. So, in our example, Task 11 can start when Task 6 is finished, but Task
11 cannot be completed until Tasks 7, 8, 9, and 10 are completed. The relationship
between Task 11 and Tasks 7, 8, 9, and 10 is called finish-to-finish relationship.

Now, look at Task 11 (integration) and Task 12 (integration testing and fixing
defects). Should Task 12 wait until all four of the modules are integrated? It could,
but waiting is not necessary because when a module is integrated, its integration
can be tested. The relationship between Task 11 and Task 12 therefore is a called
a start-to-start relationship. Task 12 can be started after Task 11 starts, but with
the time lag that is necessary to allow finishing the integration of the first module.

To account for all of the possible relationships, one more relationship needs
to be defined: the start-to-finish relationship. In the start-to-finish relationship,
Task “n” must be started to finish Task “m.” The start-to-finish relationship,
however, is atypical in software development and is described here only for the
sake of completeness.

Summarizing, there are four types of predecessor relationships:
•	 Finish (predecessor)-to-start (successor) or FS-n (with “n” being the

days the successor must wait after finishing the predecessor; if “n” is
not mentioned, n = 0)

•	 Start (predecessor)-to-start (successor) or SS-n (with “n” being the
days the successor must wait after starting the predecessor; if “n” is
not mentioned, n = 0)

•	 Finish (predecessor)-to-finish (successor) or FF-n (with “n” being the
days the successor must wait after finishing the predecessor; if “n” is
not mentioned, n = 0)

•	 Start (successor)-to-finish (predecessor) or SF-n (with “n” being the
days the successor must wait after starting the predecessor to finish
successor; if “n” is not mentioned, n = 0)

For each of these relationships, a lag (waiting time) may be specified before the
successor is started:

J. Ross Publishing; All Rights Reserved

176  Mastering Software Project Management

•	 Task 3 can be started 1 day after finishing Task 2. This is depicted as
FS-1: the relationship of Task 3 to predecessor Task 2 is finish-to-start
with a lag of 1 day.

•	 Task 12 can be started after 2 days of starting Task 11. This is depicted
as SS-2: the relationship of Task 12 to Task 11 is start-to-start with a
lag of 2 days.

A Work Breakdown Schedule with initial dates

Once the structure of the WBS has been completed by defining the predecessors
and the predecessor relationships, and by ensuring that all tasks have predeces-
sors and successors, the next step is to start assigning dates to the tasks. Note the
following points from the schedule depicted in Table 9.3:

•	 The start date for the start milestone is the project’s starting date.
•	 The end date for the end milestone is the project’s completion date.
•	 Weekends (Saturday and Sunday) are not counted as working days.

(Also exclude holidays, e.g., notice that July 4, which is Independence
Day in the United States, is excluded in Task 18.)

•	 Task 3 starts April 3 and Task 2 is completed on April 2 (the day
before). Why? Because when a task is to be completed on April 2,
typically the task will be completed by the end of the working day on
April 2. Therefore, the successor can only start the next day.

•	 Task 11 (with five predecessors) starts on May 16, the day after the
completion of Task 6. Task 11 has a finish-to-start (FS) relationship
with Task 6. Task 11 also has a finish-to-finish with 2 days lag (FF-2)
relationship with the rest of its predecessors. Therefore, Task 11 com-
pletes on June 9, 2 working days after the completion of Task 7. Task
7 is the predecessor that finishes last (on June 5) of all the predecessors
of Task 11. Because the lag is 2 days, Task 11 completes on June 9,
which is 2 working days after the completion of its last predecessor.

•	 No relationship for Task 16 is given. When no relationship is explic-
itly given, the relationship is a finish-to-start relationship (FS) with
no lag. Task 16 has two predecessors: Task 14 (completes on June 19)
and Task 15 (completes on June 26). Therefore, Task 16 can start 1
day after Task 15, which is the last of Task 16’s predecessors.

•	 Look at the end milestone, which has two predecessors. Both of these
predecessors must be completed for the end milestone to be reached.
Therefore, the start date (as well as the end date) is July 7, the day on
which Task 19 (the last task) is completed.

J. Ross Publishing; All Rights Reserved

Scheduling  177

Table 9.3. Work Breakdown Structure with Initial Dates

Task ID Task Description
Effort in

Person-Days Predecessor Start Date Finish Date

1 Start 0 1-Apr-08 1-Apr-08

2 Project initiation 2 1 1-Apr-08 2-Apr-08

3 Project planning 5 2 3-Apr-08 9-Apr-08

4 Requirements
analysis

10 3 10-Apr-08 23-Apr-08

5 Software
requirements
specification

4 4 24-Apr-08 29-Apr-08

6 Design 12 5 30-Apr-08 15-May-08

7 Construction of
warehouse module

15 6 16-May-08 5-Jun-08

8 Construction of
purchase module

12 6 16-May-08 2-Jun-08

9 Construction of
inventory control
module

10 6 16-May-08 29-May-08

10 Construction of
payables module

6 6 16-May-08 23-May-08

11 Integration 5 6 (FS),
7 (FF-2),
8 (FF-2),
9 (FF-2),
10 (FF-2)

16-May-08 9-Jun-08

12 Integration testing
and fixing defects

3 11 10-Jun-08 12-Jun-08

13 System testing 3 12 13-Jun-08 17-Jun-08

14 User acceptance
testing

2 13 18-Jun-08 19-Jun-08

15 User documentation 5 12 20-Jun-08 26-Jun-08

16 User training 3 14, 15 27-Jun-08 1-Jul-08

17 Software installation
and master data
creation

10 14 19-Jun-08 2-Jul-08

18 Pilot run 2 17 3-Jul-08 7-Jul-08

19 Handover and
customer sign-off

1 18 8-Jul-08 8-Jul-08

20 End 0 19 8-Jul-08 8-Jul-08

J. Ross Publishing; All Rights Reserved

178  Mastering Software Project Management

Some inferences for future use may be drawn from this description of the rela-
tionships:

■	 The start date of an activity depends on its relationship with its pre-
decessors:
•	 In a finish-to-start relationship, the start date depends on the pre-

decessor that finishes last.
•	 In a start-to-start relationship, the start date depends on the pre-

decessor that starts first.
•	 Other relationships have no impact.

■	 The end date of an activity depends on its duration and on the rela-
tionship with its predecessors:
•	 In a finish-to-finish relationship, the end date depends on its pre-

decessor finishing last.
•	 Other relationships have no impact.

A Work Breakdown Structure with Resource
Allocation

In Table 9.3, the term effort is used synonymously for duration. In our example,
this synonymous use of the term allows us to assume that only one resource
has been allocated to the project. In most real-life projects, however, multiple
resources are allocated to a project and the resources have different skill sets.
Naturally, multiple resources and the various skill sets of these resources result in
differences between the effort and the duration for specific activities.

For example, say that coding takes 100 person-days to complete. So, if one
programmer is allocated to the task, the duration will be 100 workdays; if two
programmers are allocated, the duration will be 50 workdays; and if four pro-
grammers are allocated, the duration will be 25 workdays (assuming that all
programmers are equal). So, to get a realistic schedule, we need to add a Resource
Allocated column and a Duration column to Table 9.3 and adjust duration.

Now, look at Table 9.4. Notice that Duration (effort ÷ number of resources)
has been adjusted for each task by taking into consideration the number of
resources allocated for each task. Duration depends on the effort in person-days
and the number of resources allocated for the activity. The dates in the schedule
have been set based on the duration and predecessor relationships. Table 9.4 now
reflects all of the components needed to develop a useable schedule.

J. Ross Publishing; All Rights Reserved

Scheduling  179

T
ab

le
 9

.4
. W

o
rk

 B
re

ak
d

o
w

n
S

tr
uc

tu
re

 w
it

h
R

es
o

ur
ce

 A
llo

ca
ti

o
n

T
as

k
ID

T
as

k
D

es
cr

ip
ti

o
n

E
ff

o
rt

 in

P
er

so
n-

D
ay

s
R

es
o

ur
ce

s
A

llo
ca

te
d

D
ur

at
io

n
P

re
d

ec
es

so
r

S
ta

rt
 D

at
e

Fi
ni

sh
 D

at
e

1

S
ta

rt
0

0
0

1-
A

p
r-

08
1-

A
p

r-
08

2

P
ro

je
ct

 in
iti

at
io

n
2

1
2

1
1-

A
p

r-
08

2-
A

p
r-

08

3

P
ro

je
ct

 p
la

nn
in

g
5

1
5

2
3-

A
p

r-
08

9-
A

p
r-

08

4

R
eq

ui
re

m
en

ts
 a

na
ly

si
s

10
2

5
3

10
-A

p
r-

08
23

-A
p

r-
08

5

S
of

tw
ar

e
re

q
ui

re
m

en
ts

 s
p

ec
ifi

ca
tio

n
4

1
4

4
24

-A
p

r-
08

29
-A

p
r-

08

6

D
es

ig
n

12
4

3
5

30
-A

p
r-

08
15

-M
ay

-0
8

7

C
on

st
ru

ct
io

n
of

 w
ar

eh
ou

se
 m

od
ul

e
15

3
5

6
16

-M
ay

-0
8

5-
Ju

n-
08

8

C
on

st
ru

ct
io

n
of

 p
ur

ch
as

e
m

od
ul

e
12

4
3

6
16

-M
ay

-0
8

2-
Ju

n-
08

9

C
on

st
ru

ct
io

n
of

 in
ve

nt
or

y
co

nt
ro

l m
od

ul
e

10
2

5
6

16
-M

ay
-0

8
29

-M
ay

-0
8

10
C

on
st

ru
ct

io
n

of
 p

ay
ab

le
s

m
od

ul
e

6
3

2
6

16
-M

ay
-0

8
23

-M
ay

-0
8

11
In

te
gr

at
io

n
5

1
5

6
(F

S
),

7
(F

F-
2)

,
8

(F
F-

2)
,

9
(F

F-
2)

,
10

(F

F-
2)

16
-M

ay
-0

8
9-

Ju
n-

08

12
In

te
gr

at
io

n
te

st
in

g
an

d
 f

ix
in

g
d

ef
ec

ts
3

1
3

11
10

-J
un

-0
8

12
-J

un
-0

8

13
S

ys
te

m
 t

es
tin

g
3

1
3

12
13

-J
un

-0
8

17
-J

un
-0

8

14
U

se
r

ac
ce

p
ta

nc
e

te
st

in
g

2
1

2
13

18
-J

un
-0

8
19

-J
un

-0
8

15
U

se
r

d
oc

um
en

ta
tio

n
5

1
5

12
20

-J
un

-0
8

26
-J

un
-0

8

16
U

se
r

tr
ai

ni
ng

3
1

3
14

,
15

27
-J

un
-0

8
1-

Ju
l-

08

17
S

of
tw

ar
e

in
st

al
la

tio
n

an
d

 m
as

te
r

d
at

a
cr

ea
tio

n
10

2
5

14
19

-J
un

-0
8

2-
Ju

l-
08

18
P

ilo
t

ru
n

2
1

2
17

3-
Ju

l-
08

7-
Ju

l-
08

19
H

an
d

ov
er

 a
nd

 c
us

to
m

er
 s

ig
n-

of
f

1
1

1
18

8-
Ju

l-
08

8-
Ju

l-
08

20
E

nd
0

0
0

19
8-

Ju
l-

08
8-

Ju
l-

08

J. Ross Publishing; All Rights Reserved

180  Mastering Software Project Management

Fi
g

ur
e

9.
1.

 G
an

tt
 c

ha
rt

.

1-Apr

9-Apr

16-Apr

22-Apr

25-Apr

2-May

6-May

9-May

14-May

16-May

23-May

28-May

St
ar

t

Pr
oj

ec
t i

ni
tia

tio
n

Pr
oj

ec
t p

la
nn

in
g

R
eq

ui
re

m
en

ts
 a

na
ly

si
s

So
ftw

ar
e

re
qu

ire
m

en
ts

 s
pe

ci
fic

at
io

n

D
es

ig
n

C
on

st
ru

ct
io

n
of

 w
ar

eh
ou

se
 m

od
ul

e

C
on

st
ru

ct
io

n
of

 p
ur

ch
as

e
m

od
ul

e

C
on

st
ru

ct
io

n
of

 in
ve

nt
or

y
co

nt
ro

l
m

od
ul

e

C
on

st
ru

ct
io

n
of

 p
ay

ab
le

s
m

od
ul

e

In
te

gr
at

io
n

In
te

gr
at

io
n

te
st

in
g

an
d

fix
in

g
de

fe
ct

s

Sy
st

em
 te

st
in

g

U
se

r a
cc

ep
ta

nc
e

te
st

in
g

U
se

r d
oc

um
en

ta
tio

n

U
se

r t
ra

in
in

g

So
ftw

ar
e

in
st

al
la

tio
n

an
d

m
as

te
r

da
ta

 c
re

at
io

n

Pi
lo

t r
un

H
an

do
ve

r a
nd

 c
us

to
m

er
 s

ig
n-

of
f

En
dJ. Ross Publishing; All Rights Reserved

Scheduling  181

Scheduling in practice

In actual practice, manual iteration is not required as many times as we have
done in our example. Tools such as spreadsheets (e.g., Microsoft Excel) may be
used and information can be filled in column by column. Excel’s capability for
date arithmetic can then be used to our advantage for assigning dates to tasks.
Specialized software tools, such as Primavera, Microsoft Project, and PMPal, can
also assist in scheduling. These tools take weekends and holidays into account
when assigning dates to tasks. Using an automated spreadsheet or specialized
scheduling software also makes scheduling easier when a project start date is
shifted or if a change in any of the tasks subsequently requires recalculation of
the schedule.

Graphic Representation of A schedule

Graphic representations of schedules are frequently used. Two popular graphic
representations are bar charts (also called Gantt charts) and network diagrams:

Bar charts. A Gantt chart is illustrated in Figure 9.1. A Gantt chart is a type
of bar chart that illustrates a project schedule. Gantt charts can be produced
using Microsoft Excel spreadsheets or scheduling packages such as Primavera
and Microsoft Project.

Network diagram. Network diagrams may take various forms. In Figure 9.2,
each task is depicted in a circle and is identified by only its task IDs. In more tra-
ditional network diagrams, a task is depicted in the arrow of the network and the

1 2 3 4 13 16 205

7

18

116 14

10

12

9 15

17

19
8

Figure 9.2. Network diagram.

J. Ross Publishing; All Rights Reserved

182  Mastering Software Project Management

circle depicts the milestone. In network diagrams currently being used in the soft-
ware development industry, the arrow represents only a predecessor relationship.

Network node diagram. The most frequently used depiction of an activity,
however, is illustrated in Figure 9.3. This graphic representation of a task is in a
rectangular shape that is divided into seven sections. Variations of this represen-
tation are found in effective scheduling software tool packages, such as Microsoft
Project, Primavera, PMPal, EstimatorPal, etc.

Figure 9.3. Network node diagram.

Early Start Duration Early Finish

Task Name

Late Start Slack Late Finish

This book has free material available for download from the
Web Added Value™ resource center at www.jrosspub.com

J. Ross Publishing; All Rights Reserved

10

SOFTWARE PROJECT
CLOSURE

INTRODUCTION

Project initiation looks forward to ensure the successful execution of a project.
Project closure, however, looks backward: to take stock of what went right and
what went wrong and to draw lessons accordingly from these events for use in the
future. As a result, project initiation draws from the knowledge repository (cor-
porate memory) of the organization and project closure adds to the knowledge
repository.

When conducted methodically, project closure activities facilitate the reduc-
tion of defect injection rates and turnaround time and the improvement of
productivity and customer satisfaction in future projects. By contributing to the
success of future software projects, project closure activities also contribute to
the overall success of an organization. Yet, as important as project closure is to
an organization, it is one of the most neglected areas of project management in
software development organizations.

Before discussing project closure any further, let’s first explore project closure
by asking what should be an easy question to answer: “When does a project really
close?” Rarely is the answer to this question as simple as one might think. For
example, most projects have a warranty phase during which an application will be
supported by members of the project team. Usually, the warranty support team is
much smaller than the project team. When an application has a warranty phase,
the project closes only after completion of the warranty phase. When a project

183J. Ross Publishing; All Rights Reserved

184  Mastering Software Project Management

moves to the warranty phase, often the SPM will be retained. In some cases, how-
ever, a PL or some other person will be designated by the organization to lead war-
ranty support. (If the SPM is moved out of the project during the warranty phase,
all of the project’s artifacts are handed over to the person leading the warranty
support.) The project will then be closed upon completion of warranty support.

Another possibility is that software maintenance is assigned to the develop-
ment organization. In this case, sometimes the development project is closed
and the software maintenance project is immediately initiated. If the same team
continues to support the software during maintenance phase, the project is closed
only after the completion of software maintenance. Treating software mainte-
nance as a separate project can have plusses and minuses. For example, software
development and software maintenance require people with very different apti-
tudes. People who efficiently develop software from scratch may not be able to
modify code very well. Conversely, people who can efficiently repair code may not
be able to develop fresh code well. When this is the case, having different teams for
software maintenance and software development makes sense. So, when software
maintenance is initiated as a fresh project, the development part of the project is
closed as soon as the software is delivered to the client and the project is handed
over to the new maintenance team.

In summary, a project may be closed:
■	 Soon after warranty support is completed, if software maintenance is

not assigned to the same organization.
■	 If software maintenance is assigned to the same organization:

•	 The development project may be closed soon after customer accep-
tance and delivery of the software.

•	 The development project may be closed after completion of the
warranty period and when software maintenance work is spawned
as another project.

•	 The project may be closed only after the contract with the cus-
tomer is terminated, i.e., hybrid development and maintenance
may continue as long as the software maintenance work continues.

Several activities are typically performed in project closure:
•	 Identifying reusable code components and depositing them in the

organizational code repository (including allied documentation, such
as design and user documents)

•	 Documenting and depositing the best practices in the organizational
knowledge repository

•	 Documenting and depositing the lessons learned from project execu-
tion in the organizational knowledge repository

J. Ross Publishing; All Rights Reserved

Software Project Closure  185

•	 Compiling and deriving the final project metrics and depositing them
in the organizational knowledge repository

•	 Conducting a knowledge-sharing meeting with peer SPMs
•	 Depositing the project records in the PMO
•	 Depositing the project code artifacts in the code repository
•	 Conducting a project postmortem
•	 Releasing the SPM
•	 Closing the project (and celebrating!)

Let’s now discuss each of these activities in more detail.

IDENTIFYING REUSABLE CODE COMPONENTS

Reusable code components are the components that have been developed to
meet common technical scenario requirements: dynamic linked libraries (DLLs),
stored procedures, or interface routines and any other components that were
developed exclusively in the current project in such a way that they are expected
to be useful in future projects or for other applications. Factors to be considered
when identifying reusable components include:

•	 Does the organization have intellectual property rights (IP) for the
code? (If the IP resides with the client, the organization is not autho-
rized to use any part of the code unless use of the code is specifically
negotiated.)

•	 Are the components generally stand-alone in nature or can they be
packaged for a specific purpose?

•	 Do the components connect to a backend database for achieving data-
base independence?

•	 Are code components or snippets that are created during the project
for current and future use?

Once the components have been identified for inclusion in the organizational
code repository, the components are prepared for inclusion by:

	 1.	 Removing any hard-coding present in the code (the practice of
defining the values for data directly in the code instead of receiving
values as input) and replacing it with parameterized code so that the
data can be received as input (Removing hard-coding may require
adding additional code for reading the data from an external source,
e.g., a file, table, or program parameters.)

	 2.	 Including in-line documentation to assist future programmers in
using a component

	 3.	 Removing any trash or dead code present inside the component
J. Ross Publishing; All Rights Reserved

186  Mastering Software Project Management

	 4.	 Preparing design documentation for the component (Preparing the
design documentation may involve taking information about the
component from the project design document; bringing it up to
as-built stage; and adding the additional documentation necessary
to include the functionality added to accommodate removing the
hard-coding in the component.)

	 5.	 Preparing a component usage document that details aspects such as:
•	 The functionality of the component
•	 Prerequisites necessary for using the component: parameters to

be supplied along with the component, details of data files to be
created, or database tables necessary for the component

•	 Instructions for embedding the component in the code
•	 Limitations of the component: size of data and data validations
•	 Platform requirements: operating system, programming language,

database, and special hardware/software requirements
	 6.	 Preparing a note recommending inclusion of the component in the

code repository and submitting it to the configuration control board
(CCB) of the organizational code repository and following the rec-
ommendation through until it is either included or rejected

Typically, the SPM has the responsibility to carry out the activities of identifying
all possible reusable components from the project and after obtaining necessary
approvals to deposit them in the code repository.

DOCUMENTING THE BEST PRACTICES

Best practices are the processes, practices, or sets of activities that yielded excellent
results during execution of a project. Typically, we are interested in capturing the
practices that yielded results far above the norm:

•	 Any software engineering methodology that was used differently or
was developed to improve quality and productivity during develop-
ment of the software

•	 A new algorithm that solved a tricky issue in a project
•	 Any project practice, such as work allocation, quality assurance, moti-

vation, configuration management, build preparation, or deployment
methods, that reduced the effort necessary and resulted in improved
quality

•	 Use of a new tool or a new way of using an existing tool that assisted
the project in any manner to achieve better results

J. Ross Publishing; All Rights Reserved

Software Project Closure  187

•	 A new tool that was exclusively developed for the project, but could be
used in future projects

•	 Any new or modified formats and templates that were used in the
project that resulted in improved clarity

•	 Any new checklists prepared for use in the project that were found to
be useful in ensuring comprehensiveness in any project activity

•	 Any new procedure or process developed for the project that yielded
positive results outside of the norm

The SPM is responsible for preparing the best practice documents, arrang-
ing for their review, and implementing any review feedback. Upon approval, the
final step in the process is for the SPM to deposit the new best practices in the
knowledge repository.

DOCUMENTING THE LESSONS LEARNED

All projects provide learning opportunities. During execution of a project, the
project team and the SPM will at least have learned a few lessons. These lessons
are typically a mixture of positives and negatives. (As humans, we tend to extol
our successes and play down our failures, but as leaders we must keep an open
mind to the possibility of positive and negative impacts on a project.) Only after
we have neutralized a problem and recognized the lesson to be learned, do we
learn from a negative experience. Once recognized, lessons are only valuable if we
then carry out situational analyses using a critical examination technique to draw
inferences for the future.

Whenever an unexpected impact is encountered in a project, we need to doc-
ument the impact and the cause so that we (and others) can learn and benefit from
the experience. Only from documentation and learning from others’ experiences
has so large a body of knowledge been gathered in the scientific world. Software
project management is no different. Typically, the areas of project management
that are the most conducive for providing lessons include:

•	 Communications with clients, within the project team, and with other
project stakeholders

•	 Work allocation mechanisms
•	 Defect resolution mechanisms
•	 Change request resolution
•	 Grievance handling
•	 Software engineering, development platform issues, and solutions
These areas and any other areas that created challenges and opportunities for

the project team should be documented. Once documented, they can be submit-
ted for managerial review and then deposited in the organizational knowledge
repository.J. Ross Publishing; All Rights Reserved

188  Mastering Software Project Management

COLLECTING/DERIVING and DEPOSITING THE FINAL
PROJECT METRICS in the organizational knowledge
repository

Just as best practices and lessons learned represent holistic views of a project, the
activities of collecting, deriving, and depositing the final project metrics provide
quantitative information about the project, which involves computing the metrics
for the overall project. These metrics typically include:

•	 Productivity metrics for each of the programming languages used
in the project as well as for the other software engineering activities:
reviews, testing, requirements analysis, and design

•	 Quality metrics, including defect injection rates for each of the pro-
gramming languages and the defect removal efficiency for each of the
quality assurance activities implemented in the project

•	 Schedule variance metrics for the entire project as well as for each of
the project execution phases

•	 Effort variance metrics for the entire project as well as for each of the
software engineering activities

•	 Personnel metrics, including productivity metrics and quality metrics
for each of the project team members

•	 Other relevant metrics: the relative effort spent on various project
execution activities (requirements analysis, software design, coding,
review, and testing)

These metrics are reviewed against organizational baselines. Variances are
then analyzed to determine if they are purely due to chance (random variance)
or are due to assignable causes. By leveraging this type of variance analysis, the
metrics are reviewed and validated and credible information is extracted and then
deposited in the organizational metrics repository for future use.

CONDUCTING KNOWLEDGE-SHARING MEETINGS WITH
PEER SOFTWARE PROJECT MANAGERS

A knowledge-sharing meeting is the counterpart of a project kick-off meeting.
The audience is the same for both meetings. The kick-off meeting, however, is
the first meeting in a project, whereas the knowledge-sharing meeting is the last
meeting. One of the goals of a properly conducted knowledge-sharing session is
to ensure uniformity of project execution as well as to ensure the success of all
projects in the organization.

J. Ross Publishing; All Rights Reserved

Software Project Closure  189

Once the activities of identifying the reusable components; documenting the
best practices and the lessons learned; and deriving the metrics have been com-
pleted, the information is shared with peer SPMs. This sharing of knowledge helps
to ensure that all SPMs have access to the same depth of rich knowledge so that they
can utilize the knowledge gained in their projects. A knowledge-sharing meeting is
normally coordinated by the PMO. Representatives of the PMO, the software engi-
neering process group, and the quality assurance department also participate in the
meeting so that they also can utilize the information in future projects.

During the meeting, the project’s SPM presents all aspects of project execu-
tion, including the successes and failures. The SPM also presents the project
execution methodology and the results obtained in detail. During the knowledge-
sharing session, the SPM also discusses the things that could have been done
better as well as the things that were executed better than originally envisaged.
All in all, a knowledge-sharing meeting provides a bird’s eye view of the project
to the participants. To improve their knowledge, meeting participants can elicit
additional information from the SPM during the meeting itself or later on.

DEPOSITING PROJECT RECORDS WITH THE PROJECT
MANAGEMENT OFFICE
Collating all project records and arranging for the updating of all documents to
reflect the “as-built” stage (i.e., so that it reflects the final build of the product) is the
responsibility of the SPM. Once the records are collated and updated, the SPM hands
over all project records to the PMO for record keeping purposes and for inclusion in
the knowledge repository as applicable. Typically, project records include:

•	 Software estimates
•	 Project plans
•	 Work allocation register
•	 Configuration register
•	 Defect resolution register
•	 Change request register
•	 Issue-resolution register
•	 Client communications, including commendations and complaints
•	 Client-supplied documents
•	 Project-specific guidelines
•	 Software engineering documents, including requirements specifications

and design documents
•	 Review logs and test logs
•	 Audit reports and NCRs of the project
•	 Waivers and special approvals
•	 Process improvement suggestions

J. Ross Publishing; All Rights Reserved

190  Mastering Software Project Management

All hard copies, soft copies, and location references are passed on to the PMO
by the SPM. Often, most of the documents are in a soft copy form. Therefore,
documents are handed over on a backup medium (e.g., a CD/DVD) or are just
copied to a PMO-specified location on the organizational server. Some artifacts,
such as the configuration, defect, and change request registers, may also be part of
a database. In this case, only details of the information are handed over to PMO.

DEPOSITING PROJECT CODE ARTIFACTS IN
THE CODE REPOSITORY

The SPM arranges for collation of all code artifacts. Each related set of artifacts
is placed in a separate folder with a document describing the folder’s contents as
well as the nature of the folder’s contents. When complete, all of the folders are
then copied to a suitable backup media and submitted to the code repository of
the organization. Code artifacts of a project typically include:

•	 The source code of all programs developed in the project, sifted on the
basis of the programming language

•	 Executable code of the software
•	 Database code, including table scripts, triggers, stored procedures, PL/

SQL routines, master data, and parameter files
•	 Build preparation scripts, including any make files or build routines
•	 Libraries, including DLLs
•	 Graphics developed for the project
•	 Third-party libraries used in the project
•	 Third-party utilities embedded in the software product
•	 Macros developed for configuring the intermediate layers of the software
•	 HTML pages developed for the project.

These artifacts are in addition to the reusable code components discussed in the
earlier section.

CONDUCTING THE PROJECT POSTMORTEM

In his novel Final Diagnosis, Arthur Hailey spoke of a quote heard in medical
circles: “A surgeon knows nothing, but does everything; a psychiatrist knows
nothing and does nothing; a pathologist knows everything and does everything,
but after the patient has died.”1 A medical postmortem looks at a body dispas-
sionately, with the sole objective of learning the true cause of death. The result-
ing information is presented at a conference by the pathologist(s) and the lead

J. Ross Publishing; All Rights Reserved

Software Project Closure  191

physician. During the conference, participants discuss the events prior to death,
including symptoms, diagnostic investigations, treatment, and cause of death.
The intent of the conference is not to assign blame, but to be a platform for col-
lectively learning everything possible from the event. To say that a postmortem is
the primary platform for arriving at root causes and developing new treatments
to improve survival rates is no exaggeration. Project postmortems are conducted
with the same objective: to gain knowledge and to increase the effectiveness of
SPMs and the organization as a whole.

The prerequisite for a project postmortem is an investigative audit. An
investigative audit reviews variances in the project and the analysis thereof to
determine the efficacy of the variance analysis and the inferences drawn from the
variances. Once the audit is completed, the auditor who conducted the investiga-
tive audit on the project presents the findings to the SPM of the project as well as
to all other SPMs in the organization. All findings are dissected so that everyone
attending the meeting can learn from the project’s issues. The postmortem find-
ings are then included in the project records of the knowledge repository so that
they are available to the entire organization.

Note: Some organizations combine the postmortem with the knowledge-sharing
meeting. Combining these meetings is not always effective because the knowl-
edge-sharing meeting provides information only from the SPM’s experiences,
whereas the project postmortem is typically led by an auditor who conducted the
investigative audit on the project.

RELEASING THE SOFTWARE PROJECT MANAGER

Before the SPM can be released from a project, all project closure aspects must
have been completed. Additionally, performance appraisals of the project team
members should have been completed. Typically, the SPM is gradually released
from the project because of the overlap of SPM responsibilities with those of the
warranty support leader(s). For example, often an SPM is allocated to a different
project, but is still required to provide assistance to an earlier project during its
warranty phase and sometimes during the software maintenance phase as well
(as necessary). As the involvement of the SPM gradually increases in the next
project, involvement in the completed project gradually decreases. Only when the
new team handling support for either the warranty or the maintenance services is
confident that it can handle the project on its own is the SPM completely released
from the project.

J. Ross Publishing; All Rights Reserved

192  Mastering Software Project Management

CLOSING THE PROJECT
When all project closure aspects are completed and the SPM is released, the PMO
closes the project. Project closure typically involves the PMO issuing a project clo-
sure note to all stakeholders, including senior management; the finance, human
resources, systems administration, facilities, and administration departments; and
the customer, indicating that the project is closed. Based on the project closure
note from the PMO:

	 1.	 The finance department allows no further booking of effort or
expenditures to the project.

	 2.	 The human resources department allocates no further human
resources to the project.

	 3.	 The facilities department repossesses all seating facilities allotted to
the project.

	 4.	 The administration department entertains no requests for purchases
(or any other requests) for the project.

The project closure note issued by the PMO marks the end of project execution in
all respects and is the last document placed in the project’s dossier.

THE ROLE OF THE ORGANIZATION IN PROJECT CLOSURE
Just as the organization has a vital role in all aspects of project execution, the orga-
nization also has an important role in project closure. But the organization’s role
is more than just closing a project per se. The organization must also ensure that
the knowledge gained from the project is gathered in the organizational knowl-
edge repository, that the reusable components are received in the organizational
code repository, and that knowledge is then spread to all concerned members of
the organization. The organization exercises this role primarily through three
entities: the PMO, the CCB, and the systems administration department.

The Project Management Office
From previous discussions, we know that the PMO is the central project-
coordinating agency in an organization. The PMO maintains the organization’s
knowledge repository, is responsible for updating the knowledge repository with
information collated from project closure, and coordinates knowledge-sharing
meetings and project postmortems. When initiating a project, the PMO draws
from the organization’s knowledge repository; when closing a project, the PMO
adds to (or updates) the organization’s knowledge repository.

During project closure, the PMO coordinates the project postmortem and
ensures that it is conducted objectively and that inferences are drawn professionally.

J. Ross Publishing; All Rights Reserved

Software Project Closure  193

The PMO also collects all of the information about a project, with the objective
of making the project’s information available for use in other projects. The PMO
takes over the project’s records and metrics and the various analyses performed
on the project from the SPM. Typically, the PMO scours all of the analyses for
assignable causes and includes the validated data for consideration (e.g., to revise
the organizational baselines for the next iteration of an activity). While taking
over records, metrics, and analyses from the SPM, the PMO ensures that all infor-
mation has been updated to reflect the latest achievements in the project and that
all analyses have been properly carried out. If any shortfalls are uncovered, the
PMO obtains the necessary clarifications from the SPM and rectifies the anoma-
lies. After collecting the data, the PMO classifies the information into appropriate
categories and stores the information in such a way that it can be located and
retrieved easily when required.

The Configuration Control Board
At the organizational level, the CCB takes ownership of maintaining the organiza-
tional code repository. The organizational code repository contains all code arti-
facts developed during the execution of projects. (Note: If the contract between the
organization and the client stipulates that all the code artifacts must be delivered to
the client and that no code artifacts can be retained in the organization, then the
code artifacts of such projects are not be maintained in the code repository.)

During project initiation and under the direction of PMO, the code reposi-
tory is made available to project team members. The repository provides the
project team with a “jump start” because it includes all possible tools, reusable
components, development tool kits, and third-party code artifacts for efficient
and effective project execution. During project closure, the code repository repos-
sesses all of the code artifacts provided during project initiation as well as the
reusable components developed during project execution, any client-supplied
components, and any third-party code artifacts procured for the project.

Code artifacts repossessed or taken over from projects are the responsibil-
ity of the organizational CCB: to ensure that all documentation necessary for
future use is prepared and that the documentation is in a usable form. The CCB
also conducts sanity testing to ensure that the code artifacts match the respective
documentation in terms of functionality and usage. Another important respon-
sibility of the CCB is to ensure that the organization does indeed have the intel-
lectual property rights for the code artifacts being deposited by projects. The code
repository typically contains:

•	 The source code of all projects
•	 The object code and executable code of all projects
•	 All project graphics

J. Ross Publishing; All Rights Reserved

194  Mastering Software Project Management

•	 All table scripts, triggers, stored procedures, and PL/SQL routines of
databases

•	 All library code (including static libraries, DLLs, and shared libraries)
•	 All client-supplied code
•	 All third-party artifacts procured for use in projects
•	 All development and testing tools used in projects
•	 All system software (including operating systems, databases, IDEs,

debuggers, and all software tools for use in projects)
•	 Reusable components
All code artifacts in the code repository are properly stored to prevent damage

or interference. They are indexed for easy location and retrieval and are periodi-
cally checked for integrity.

The Systems Administration Department
The systems administration department takes ownership of the organization’s
hardware and networking resources. During project initiation and under direc-
tion of the PMO, systems administration provides the necessary computer
systems, networking, and Internet connectivity to a project team. Systems admin-
istration also loads all system software necessary to ensure that the systems pro-
vide the intended functionality. Once a project is closed, systems administration
repossesses the hardware resources, cleans the computer systems of unnecessary
data and software (after ensuring that all backups have been taken and all code
artifacts have been deposited in the code repository), and makes these resources
ready for allocation to another project.

Some final words about project closure. Project closure is a vitally important
activity that needs to be performed diligently. Unfortunately, many organizations
do not devote adequate importance to project closure. Often, an SPM dumps the
project records on the PMO, the code on the organizational CCB, and the systems
on the systems administration department and then moves on to the next project.
Project postmortems and knowledge sharing, vitally important activities for gar-
nering organizational experience and enriching an organization’s maturity level,
are forgotten or forsaken. As they say in HR circles, “Did we execute one project
thirty times or did we execute thirty projects?” Project closure is the activity that
can make all the difference between executing one project thirty times or execut-
ing thirty projects.

REFERENCE

1.	 Arthur Hailey. Final Diagnosis 1959. New York: Doubleday & Company

J. Ross Publishing; All Rights Reserved

11

AGILE PROJECT
MANAGEMENT

INTRODUCTION

The term agile has come to mean many things to many people. The definitions
and connotations range from how work is organized within a project to a descrip-
tion of the speed at which work is completed or, alternately, to a radical rethinking
of organizational culture. One thing that most practitioners of agile will agree on,
however, is that agile is not an abandonment of discipline, but rather a change
of focus. Regardless of how you define agile, likely everyone will agree that agile
methods are now maturing and have become core practices in the software devel-
opment community. Therefore, all project managers need to have at the least
an understanding of agile concepts and the ability to deploy them. We will now
approach the subject of agile in three areas: the roles typically held in agile proj-
ects, the principles that need to be embraced to effectively use agile methods, and
the techniques that are part of agile project management.

PROJECT MANAGEMENT ROLES

When discussing agile project management, our focus will be on three basic roles.
Depending on the specific methodology being leveraged, each of these roles tends
to be referred to by different names. But regardless of what a role is called, the
concepts of the roles are the same:

195J. Ross Publishing; All Rights Reserved

196  Mastering Software Project Management

•	 Team leader
•	 Team members
•	 Customers

The team leader. The team leader facilitates the team’s organization and acts
as the “grease on the axle,” which is the project. This leadership role is often called
coach or scrum master. The team leader acts as the interface between the external
organization and the team so that the team can focus on the work at hand. The
leader handles the overhead common to all organizations that is not directly related
to delivering functionality. As a coach, the leader brings forth the best in the team
through teaching and support rather than by directing and administrating.

Team members. Team members perform the tasks that are required to
execute the project. Depending on the type of project, these tasks can include all
of the steps required to deliver functional code, to design a project, and to test the
project or a combination of all of the steps needed to deliver a working product. In
addition, team members have nontechnical tasks, such as supporting their fellow
team members, participating in team activities, and openly communicating status
and issues within the team.

Customers. The customer (real or proxy) has a substantial role in an agile proj-
ect. Customers take the lead in providing information about what a project will
deliver, including stories (user requirements) and information about priorities.
Prioritization is a process that occurs not once, but on a periodic basis (because
customer priorities are expected to change over the life of the project). (Note:
The reprioritization period depends on the length of the iterations/sprints that a
project uses. We suggest using shorter iterations/sprints the more experimental
or investigatory a project is.) The customer(s) also provides continual explana-
tions and feedback as the team progresses through a sprint. In a perfect world, the
customer would be colocated with the team so that no time would be lost while
waiting for the time to have a discussion or to generate answers. Whether due to
distance or to the size of the firm, co-location is not always practical. Therefore,
proxies or daily planned interaction is sometimes used as a workaround.

AGILE PROJECT MANAGEMENT CHARACTERISTICS

To apply agile project management effectively, we suggest six basic characteristics
that your organization needs to embrace to be successful when using agile as a
project management framework. All six of these characteristics are important:

•	 Metaphor

J. Ross Publishing; All Rights Reserved

Agile Project Management  197

•	 Teamwork and collaboration
•	 Guiding principles
•	 Open information
•	 Light touch
•	 Constant monitoring and adjustment

Note: We have seen organizations successfully implement agile as a framework
without addressing all six of these characteristics perfectly. But, to a greater or
lesser extent, they do address all six of them.

Metaphor
In many agile frameworks, the concept of a central metaphor is used to ensure
that the whole team moves in the same direction, even when working on different
components. The project leader must therefore help the team develop a vision of
what they are trying to achieve. A metaphor is then used to cement that vision.
Metaphor, in the sense that we are using it in agile project management, is an
implicit comparison between two concepts that seem to be unrelated: usually one
concept is commonly understood and the other is not. The metaphor is used to
provide a path from the understood concept to the concept that is not.

A classic example of a metaphor is from Shakespeare’s words from As You
Like It (1600): “All the world’s a stage, and all the men and women merely play-
ers.” This metaphor equates life to a play. Another example commonly seen in the
software process improvement world is a metaphor using a flag stuck in a moun-
tain peak with a specific goal scrawled on it: “CMMI or Bust.” This metaphor links
the journey to the goal. A metaphor acts as an anchor that a team can reference to
ensure that each step moves the team and project in the same direction.

Teamwork and Collaboration
Much of the power of agile methods can be traced to the use of multidisciplinary
teams that work and interact well together and are focused on a specific short-
term goal. (A short-term goal is used to provide tangible feedback to the team and
to the customer.) The term multidisciplinary includes mixing customers (or their
proxies) with a technical team that may include developers, testers, and design-
ers. An ideal team includes people from all of the various disciplines required to
achieve the goal set for the team. Teamwork means the team must treat people’s
ideas and concerns equitably. We use the term equitably because for teamwork
to be fostered and to grow, ideas must be weighed irrespective of the position or
power of each team member. If ideas are not treated equitably, team members will
not be motivated to contribute. All ideas, however, are not equal. So, one of the
tasks that the leader must accept is that of facilitator. In the role of facilitator, the

J. Ross Publishing; All Rights Reserved

198  Mastering Software Project Management

team leader ensures that opinions, thoughts, and ideas are shared in a positive,
nonhostile manner.

Another key characteristic the team leader will help to create is a team that
has the ability to make a decision — or the term collaboration can be “code” for
endless rehashing. The team leader/coach is often the teacher: teams learn how to
collaborate and interact together from their leaders.

Guiding Principles
We use the term guiding principles rather than guiding processes to set metaphoric
limits rather than providing a set of perspective rules. Each team therefore has the
flexibility to define how they will work together within the limits set by the larger
organization. Agile methods do not eschew processes, but rather they size the pro-
cesses needed to the simplest set of processes possible. One exhortation that we
do make is that the principles/guidelines must be explicitly stated and understood
by the team. We strongly suggest that the principles/guidelines are documented
and posted for the team to refer to continually (which also has the side benefit of
ensuring that the number of principles is kept to a minimum). In the real world,
these principles must fit into the organization’s overall management framework,
which makes every implementation of agile project management a little different.

Processes, procedures, checklists, and documentation are par for the course
in many methodologies (development or management), but in agile they are
replaced by guiding principles. In many cases, the level of process definition was
originally scaled to the largest, most critical project in the organization rather than
to the smallest and then scaled upward to meet the whole spectrum of projects. A
project leader needs to focus on having only the principles needed for the work
at hand. The project leader must then involve the team in deciding on which
principles are needed and how they will be implemented. This process takes time
to “gel,” which is why highly performing teams should be kept together whenever
possible.

Open Information
One of the tenets of classical management theory is that control of information is
critical for developing the power required to manage. In agile management, this
theory is turned on it head: information is shared so that everyone is free to lever-
age the power that information provides. Information ranging from requirements
(user stories) to project code to status information, to name a few, is considered
to be collectively owned by the team.

One means of sharing information is team proximity (co-location). Another
technique for creating proximity is to establish team rooms to ensure that team
members know what is happening within the project so they can help keep the

J. Ross Publishing; All Rights Reserved

Agile Project Management  199

project on track. Other techniques that are used for sharing what would be typi-
cally considered “management status” information include the “big visible chart”
(described in extreme programming), burn down charts (defined in scrum; a
graphic representation of the work left to do at any specific time and the capac-
ity of the project team), and daily stand-up meetings (also typically attributed to
scrum).

Use a Light Touch
Team interaction and self-direction are hallmarks of agile projects. As a standard,
each agile project decides on its own guiding principles, allocates work to team
members as a team, and deals with team issues inside team boundaries (i.e., all
within some set of limits). The role of the leader is to facilitate these processes
rather than to direct or make decisions about them. This is perhaps the hardest
concept for a typical project manager to adjust to in the agile world. But let’s face
it, if you have been successful in the past, change is scary. An analogy that we use
is that of the sweeper in the sport of curling. The sweeper clears the ice as the rock
arcs down the ice without actually touching the rock. Similarly, the team leader
acts as a facilitator to help the team reaching its potential. The goal of the project
manager is to prepare the way for the team.

Note: Non-agile project managers, when they exist in agile teams, are usually
focused on communicating and interacting outward from the team. Non-agile
project managers take on the role of resolving issues that are blocking progress
and that exist outside the team’s boundaries.

Monitoring and Adjustment
The combination of open information, teamwork, and collaboration provides a
foundation from which a team and its leader can constantly keep tabs on their
progress and at the same time share issues that are blocking progress. Techniques,
such as daily stand-up meetings, big visible charts, and other feedback mecha-
nisms, ensure that progress (or lack of progress) toward the goals the team has
committed to are examined on at least a daily basis. Daily feedback provides
a self-directed team with the information required to adjust tasks and assign-
ments. The team acts as a self-correcting organism based on feedback-consistent
mechanisms. Teams without feedback mechanisms are not agile — they are blind.
Retrospectives provide feedback at a more macro level that allows the team to
alter principles and processes for the next sprint (as needed) so that problematic
issues do not recur.

J. Ross Publishing; All Rights Reserved

200  Mastering Software Project Management

THE NUTS AND BOLTS OF AGILE PROJECT MANAGEMENT

Philosophies are an important and necessary foundation upon which agile man-
agement techniques can be implemented. More importantly they are required
so that agile can work effectively. We think this point is absolutely critical. If an
organization cannot embrace agile philosophies, they should not expect perfect
results. It is our intent to now review a number of techniques for agile project
management in a linear manner. In application, however, these techniques will
be applied in an overlapping, iterative manner.

Planning the Work
In non-agile software development models, requirements are typically gathered at
the beginning of a project and then “managed” across the life span of the project.
In this model, some basic assumptions are made. The first assumption is that
users can express what they want in great enough detail that the development
organization can quantify and estimate the project. In typical mechanical and civil
engineering projects, this is the case. In software projects, however, this statement
tends to be less true because software is not physical, but conceptual (at least at
this stage).The second assumption is that the business drivers for the work are
relatively static in the moderate to long term. The assumption is that the business
drivers are relatively static in today’s environment. This assumption, however, can
be not only wrong, but in some cases be criminally wrong. These are strong state-
ments. They should help shake any complacency you might have. Agile project
management leverages several techniques that are designed to address scenarios
when assumptions fail.

Agile projects begin by developing a list of requirements. These requirements
can be called many things, but one of the most common titles given to these
requirements is “user stories.” We think the metaphor created by using the term
user stories is important because it focuses on the list of requirements that satisfy
the customer’s needs. (The technique for trawling or the eliciting of requirements
used by Suzanne Robertson is outside the scope of this book.1)

The list of user requirements is termed a backlog. The backlog will be revis-
ited and reprioritized periodically during the project. New requirements can be
added to the backlog at anytime. Just adding an item to the backlog does not mean
that it will be addressed — only that the item will be considered. In an agile proj-
ect, the project backlog is a starting point, not an ending point.

A tension exists between adherents of using Gantt charts to manage the work
and the adherents of backlogs. We recognize that both methods serve the same
purpose from a process point of view. Each technique provides a means to judge
progress and status. Both are good tools. The difference is wrapped up in the dif-
ferences in the psychology between agile and non-agile projects.

J. Ross Publishing; All Rights Reserved

Agile Project Management  201

 All projects that have more than one release contemplated have a cadence.
The term cadence defines the time between releases and/or deliveries. At a more
micro level, cadence can also define the time between builds or sprints. Agile proj-
ects typically embrace a very quick cadence based on iterations or sprints (the fast
metaphor slips in) that range from 2 to 4 weeks. (We have seen sprints of 1 week,
but do not recommend them except in the most fluid environments.)

Prior to beginning each sprint or iteration, the project team goes through a
planning exercise. In its simplest form, the process flow for planning could be
summarized as beginning with a review of the progress of the previous sprint,
followed by a review and reprioritization of the backlog, and then selection of the
user stories for the next sprint. Planning for an agile team includes the custom-
ers (or proxies), product personnel, and IT personnel. In the planning process,
the customer is the leader. The customer specifies what they want and in what
order they want to receive it. (Obviously, product and IT personnel will play an
informative role because there are times when you cannot have that bright shiny
widget until you build the infrastructure to support it.) We suggest the following
planning approach:

	 1.	 Pre-sizing: Pre-size and evaluate all backlog items. This is a joint
activity with overall project leadership. (We recommend Quick and
Early Function Points™.)

	 2.	 Product planning: Periodically prioritize/reprioritize the backlog
prior to beginning sprints. This is a customer-lead activity.

	 3.	 Sprint planning: In sprint planning, the sprint teams evaluate and
commit to the user stories prioritized by their customers and based
on their capabilities. The sprint teams have a primary role in this
activity.

Once a team commits to a set of stories that they will tackle during a sprint,
the “die is cast.” The team tackles the stories, leveraging feedback and explana-
tions provided by their customer as they move forward, but they do not add to
active stories “in flight.” Not adding to active stories while in flight is an important
concept. The team leader, manager, or scrum master acts as a barrier to keep the
outside world from impacting the team. Figure 11.1 provides a graphic interpre-
tation of these concepts when implemented in a scenario in which a project is
comprised of multiple teams.

Final planning notes. Change is a given in almost all projects, for reasons rang-
ing from it is hard to know what a customer really wants when you deliver the prod-
uct to a world that views instant gratification as a right, not a feature. Agile planning
recognizes that change will occur and provides a means to embrace change. If you
have a known deliverable with a fixed deliverable date, agile techniques are not

J. Ross Publishing; All Rights Reserved

202  Mastering Software Project Management

necessary. Agile techniques are effective for most projects, but they are most effec-
tive when change will occur.

Remember: Agile project management cannot fix bad project management. Bad
project management is bad management, regardless of the technique or method
used.

Controlling the Work
Controlling the work covers a significant number of subtopics, ranging from
stand-up meetings to configuration management. But before we discuss con-
trolling the work, remember our earlier discussions about guiding principles.
Agile project management does not view control through the eyeglass of the
old command-and-control model (which we suggest is paternal in nature), but
rather through a collaborative filter. A project team guided by agile principles will
interpret and react to project data to direct itself rather than to have the project
manager tell it what to do. Interestingly, the agile model is the most-used model
by modern militaries for training and empowering small teams.

Scrum Master

Scrum Master

Product Owner
Group

Story Cards
Product
Owner

Planning
Session

Scrum Master

Development
Team

Prioritization
(Pre-meeting)

Scrum Master
Scrum Team(s)

Sprint
Planning

Scrum Master
Scrum Team(s)

Sprint
Tasks

Commitments
or Connections

Prioritized
Story Cards

Figure 11.1. A scrum project.

J. Ross Publishing; All Rights Reserved

Agile Project Management  203

Daily stand-up meetings. A daily stand-up meeting is a common tool used
for agile teams to share status information, to seek help to alleviate blocking
issues, and to decide on which tasks are going to be done next. The stand-up
meeting ensures that each member of the team stays focused on a specific set of
tasks and that if there are problems that they will be surfaced. By nature, daily
stand-up meetings are short. The team leader facilitates a stand-up meeting and
leads the charge to resolve any issues that are blocking progress. The agile leader
acts as the voice of the team rather than the voice of management or the voice of
the process. The agile leader, also known as a coach, leads the team rather than
acting as a director. Each team member typically answers several questions:

•	 What was accomplished (typically what was completed) yesterday?
•	 What tasks or activities will be completed today?
•	 Are any issues blocking progress?
The leader or facilitator must ensure that the questions are addressed and

that the discussion does not devolve into explanations or explorations of solu-
tions. Those are conversations that should take place outside the standup meet-
ing. Issues that cannot be resolved within the team should be championed by the
project leader.

Displaying measurement data. Measurements and free access to informa-
tion provide primary control techniques within any agile project. Numerous
techniques capture and display measurement data at the sprint or iteration level.
Critical measurement components include:

•	 Accepted stories and broken tasks required to accomplish a story
•	 Team capacity
•	 Work accomplished and work remaining on stories or on the tasks

currently being addressed
Using these pieces of data, an agile team can create a burn down chart to

graphically represent the work left to do at any specific time and the capacity of
the project team. The pending work (or backlog) is often shown on the vertical
axis with the time shown on the horizontal axis. The capacity of the team is gen-
erally represented as the straight line going from the initial amount of work to be
done to the end of the sprint.

Using a big visible chart (defined in extreme programming) puts a critical set
of metrics in front of the project team on a daily basis. (A “high touch” approach
is updating the chart daily by hand.) Metrics that are important to the team can
change over time, e.g., the team’s velocity (the ratio of estimated development
time and calendar time), the number of tasks still outstanding, the number of test
issues, etc. We suggest letting the team have input in (or crowdsource) the metrics

J. Ross Publishing; All Rights Reserved

204  Mastering Software Project Management

that will be tracked. When a measure attains a consistent 100% level, it is no lon-
ger worth measuring. We suggest replacing a metric that has consistently attained
a 100% level with the next most important metric.

So, how do team members know when there is no more work to be done to
complete a story or a sprint? Each agile project creates a definition of the word
done that supports delivering functional software. Definitions vary and depend on
how organizations organize work, but typically done means:

	 1.	 Code is complete.
	 2.	 Code is commented and checked in (including tested if this is part of

the environment),
	 3.	 Functionality is peer reviewed (unless built using pair program-

ming).
	 4.	 The code builds without errors.
	 5.	 Unit tests have been written and executed (and passed).
	 6.	 Relevant documentation has been produced and checked in.

The list could go on, but as you can see, the concept of done represents a dis-
ciplined process that generates functional code. Functional means that the code
works without defects and that the relevant documentation is produced (relevant
being the critical term). If a particular type of documentation is not needed to
support functional code, an agile team would be hard pressed to describe it as
relevant.

Configuration management. Another core practice within agile projects is
configuration management. The practices and processes used for configuration
management supplement the basic concept of project management. In discussing
configuration management, we will touch on code and relevant documentation.
Code should be checked in when complete and the overall set of project code is
built (and tested) on a daily basis. Problems with the build should be tackled and
resolved as they occur. Because developers are committing to activities and tasks
on a daily basis, they should be able to check-out the required code and know that
it is functional. (Remember that testing is listed in the definition of done.) The use
of automatic testing suites has made the concept of the daily build combined with
unit and smoke testing a very powerful tool for making configuration manage-
ment valuable at the coder level (notice the smoke metaphor).

Information requirements. Agile projects operate within organizations
that have needs and requirements for specific information. Specific information
might be driven by software projects for other organizations that might have con-
tracts with defined service level agreements. Another set of specific information
needs might occur when coding and design standards are set at the organization

J. Ross Publishing; All Rights Reserved

Agile Project Management  205

level. Sometimes financial records are required for tax purposes (or others) in
many projects. To satisfy these information needs, specific deliverables may be
required. So, each project should begin by reviewing (and in some cases negotiat-
ing) the types of non-code deliverables that are required. Upon agreement, these
deliverables should be maintained as if they were code (check-in, check-out, test-
ing, and approval).

Testing. We have been asked to describe the role of a testing group in an agile
project many times. In its simplest form, the answer is that the role of an indepen-
dent testing group does not have to change. Although the role does not change,
the approach may change. Some types of testing (such as functional testing)
can be incorporated directly into the development teams. We consider embed-
ding testing personnel into the development testing teams (to keep the matrix
reporting intact) a best practice. Embedding testers helps facilitate transferring
knowledge training to the project team and can ensure that the issue of testability
(and simplicity) stays at the forefront of the team. As features and functions are
combined into their final forms, many organizations begin testing sprints. In
these testing sprints (iterations), the teams apply the same processes and rules as
in development sprints. When testers are embedded in a development team, the
testers typically are drawn back into the testing group to provide deeper subject
matter expertise of the functionality and functional code.

Sprint review meeting. The final control step in an agile project, iteration or
sprint, is the sprint review meeting. As noted earlier, a sprint begins with plan-
ning meeting in which the teams commit to what they will do. A sprint review
meeting “plays back” what was actually completed (i.e., met the definition of
done) for all of the stakeholders. The power of peer and organizational pressure
is applied in the processes of public commitment and public demonstration,
providing a level of control that a project manager cannot. The commitment and
review processes are bookends and to some extent can be viewed as management
by peer pressure. If a deliverable does not work, and therefore does not meet the
definition of done, the team cannot hide from their failure. “Spin” has no place
in a sprint review.

PROCESS IMPROVEMENT

Retrospectives provide opportunities to generate team memory. They provide
an agile team with a platform to figure out what worked, what did not, and what
needs to be changed. The bottom-line goal of most retrospectives is for a project
team to change how it is doing work (rather than to create lessons learned deliv-
erables for outsiders to consume; that is not to say, however, that if action items

J. Ross Publishing; All Rights Reserved

206  Mastering Software Project Management

are created that they should not be captured and pursued). In projects with mul-
tiple iterations, all teams should take time for a retrospective after the first sprint
and then periodically afterward, with one of the retrospectives occurring at the
end of the project. (Because they have learned to share and communicate, teams
that have operated together for long periods of time generally do not have as great
a need for a retrospective after each iteration or sprint.) When global issues are
identified, the team leader/coach should take the lead in making sure these issues
are brought forward.

Some final words about agile project management. Agile is about focus-
ing on the tasks and activities that add value to functional code. In this sense,
agile is very similar to the concept of lean manufacturing. Agile projects define
what the term done means before they begin. So, although the bottom line of
a software project is working software, working typically means more than just
being functional — working includes being tested and the inclusion of relevant
documentation.

REFERENCE

1.	 Suzanne Robertson and Robertson, James C. Mastering the Requirements
Process, Second Edition 2006. Reading, MA: Addison-Wesley.

This book has free material available for download from the
Web Added Value™ resource center at www.jrosspub.com

J. Ross Publishing; All Rights Reserved

12

PITFALLS AND BEST
PRACTICES IN SOFTWARE
PROJECT MANAGEMENT

INTRODUCTION

Because there are numerous viewpoints on the subject, discussing the pitfalls and
best practices in software project management is a bit difficult. All practices are
contextual to an organization, and based on an organization’s culture, manage-
ment is also unique. Often people in an organization think that the way they man-
age is the “best in the world” because they are producing results. Producing results
is certainly a very important aspect of management. More important, however, is
that the results are achieved in an effective manner, with optimal costs, productiv-
ity, quality, and morale. The achievement of results also ought to be sustainable
— so that the organization is maintained in an ever-expanding upward-moving
results’ spiral. Best practices ensure several objectives: optimal costs, productivity,
quality, and morale. Best practices also ensure that an organization’s performance
improves with every completed project and that the organization continues to
move in an ever-improving direction.

Pitfalls can bring an organization down: from excellence to mediocrity or
worse. To avoid pitfalls and to grow and prosper, adopting best practices is there-
fore necessary. We will now examine some common pitfalls in software project
management and the best practices for approaching them to achieve successful
software project management and organizational excellence. Because effective

207J. Ross Publishing; All Rights Reserved

208  Mastering Software Project Management

software project management requires organization-level support in addition
to diligent efforts by software project managers, we will discuss pitfalls and best
practices at each of these levels. We will also discuss some overall best practices.

ORGANIZATIONAL-LEVEL PITFALLS AND BEST PRACTICES

Organizational-level processes and practices establish the platform on which an
SPM will perform software project management. Organizational-level practices
also “set the tone” for an SPM to orchestrate and produce results.

Process-Driven Project Management
A process-driven approach to work facilitates the predictability of results. A
person-driven method, however, is dependent on the personal capabilities of
the individual doing the work. Many organizations use person-dependent pro-
cesses in their organizations, and these processes certainly do not preclude them
from being successful, but as an organization grows and concurrently executes
larger numbers of projects, person-driven processes can lead to unpredictable or
inconsistent results. Leveraging process-driven approaches such as the ISO- and
SEI-defined certification models will generally achieve consistent success. (The
process-driven approach to software project management is covered in Chapter
2.) Many organizations that have adopted the process-driven approach have even
obtained appraisals and certifications. Unfortunately, however, some organiza-
tions chase obtaining an appraisal or certification without actually embracing the
continued adaptation and implementation of the process-driven approach.

Best practice: We strongly recommend the process-driven approach to project
management as a best practice — with the proviso that you define the process
that is “right” for your organization based on the size and number of concurrently
handled projects. Once the process is determined, another best practice is to
continuously monitor the results being delivered by the process and improve the
process as necessary in a regular manner. (The alternative is a common pitfall.)

An Ineffective Project Management Office or No Project
Management Office
A significant pitfall is failing to see the importance of having an efficient and
effective PMO. Some organizations perceive that the role of the PMO is to just
create the project initiation note (PIN) document and nothing more! Sometimes
the PMO is attached to the software delivery manager. A secretary then becomes
responsible for generating the PIN and maintaining the project documents in a

J. Ross Publishing; All Rights Reserved

Pitfalls and Best Practices in Software Project Management  209

file. At other times, a “refugee” from one of the technical teams is assigned to the
PMO and given the role of initiating projects and being the custodian of project
records. This type of PMO is generally ineffective. It cannot provide aid to SPMs
when needed because of its administrative slant. Additionally, the necessary refer-
ences cannot be provided to an SPM during project initiation. So, every project is
started in just the same way as a new organization initiates its first project — with-
out references to knowledge that has been captured earlier. The SPM is therefore
left to his own resources when planning and executing the project. This situation
is akin to “reinventing the wheel” — and in all likelihood, the same issues will
confront the SPMs and the same mistakes will recur in almost all projects because
the experience gained from the execution of projects is not made available to the
SPMs when necessary.

A well-organized PMO with a competent staff goes a long way in an organi-
zation to ensure the success of projects. An effective PMO is actively involved in
providing support to projects. At times, getting the best resources for a project is
not always possible. In such cases, the PMO can play an important role by pro-
viding mentoring and expert assistance. The PMO is also involved during project
execution by giving exception reports to senior management and providing sup-
port to the SPM. One aspect of this involvement includes measuring the project’s
“health” with metrics, such as earned value, quality, and productivity, and assist-
ing the SPM in any course corrections that are required.

We suggest having a robust PMO because the benefits generally outweigh the
costs. An effective PMO performs several functions:

•	 Acts as the central agency for all matters relating to project execution
in the organization (The PMO should continuously capture organiza-
tional experience from project management: collating all the best prac-
tices, bad practices, and lessons learned; subjecting them to analysis;
and maintaining them in the organizational knowledge repository.)

•	 Takes ownership of the organizational repository of project manage-
ment knowledge (Ownership includes gathering relevant knowledge
from internal and external sources; organizing the data in a meaning-
ful manner so that it can be retrieved quickly and easily; and ensuring
that the data is made available to all SPMs when they need it.)

•	 Initiates software projects in such a manner that the SPMs can lever-
age the organization’s experience from similar past projects

•	 Takes ownership of organizational metrics related to software project
management, including deriving the organizational performance and
productivity baselines; collating metrics on a regular basis and analyzing
them; and continuously updating the organizational metrics reposi-
tory with credible metrics data

J. Ross Publishing; All Rights Reserved

210  Mastering Software Project Management

•	 Takes ownership of the project closure process, including the project
postmortem; knowledge sharing; variance analysis of actual versus
estimated/planned values; and taking possession of project records

•	 Scans the technological horizon continuously for developments and
improvements in project management and ensures that the organiza-
tion’s SPMs have access to such developments and improvements

•	 Mentors SPMs in the organization, including providing necessary
training to perform project management effectively

•	 Participates in project progress monitoring meetings and provides
information and assistance to SPMs to help correct the course of a
project when necessary

The PMO should be headed by a competent professional who has the neces-
sary support personnel. This person should be a senior SPM who has executed
software projects. The PMO assumes a senior staff role by providing specialist
assistance in project management to SPMs. Some organizations rotate their SPMs
in the lead role in the PMO so that they better understand the concerns of other
SPMs as well as those of the organization. Although some organizations see the
role of PMO lead as being suitable for an entry-level SPM, our opinion is that only
senior personnel are able to do justice to the role.

Best practice: Have a robust PMO and, based on the size of the organization and
the number of projects being executed in the organization, add supporting staff as
needed for effective execution within the PMO.

Poor Project Initiation

Project initiation is a very important step in ensuring the successful execution of a
project. Poor project initiation can significantly impact the possibility of a project
succeeding, effectively or not. Yet, in some organizations, project initiation has
become the mere formality of handing the project dossier over to the SPM. So,
these organizations experience the pitfall of poor project initiation: preparing only
the PIN document, filing the purchase/work order, and including the technical
specifications in the project dossier and then handing it over to the SPM. (Project
initiation is discussed in Chapter 4.)

Best practice: Treat project initiation as an essential step in ensuring the success
of a project.

J. Ross Publishing; All Rights Reserved

Pitfalls and Best Practices in Software Project Management  211

Poor Software Estimation
Robust software estimation helps to identify the “right” resources and the “right”
amount of these resources needed for efficient execution of a project. Many organi-
zations, however, do not treat software estimation as an important activity. They do
not collect metrics on effort actually spent and contrast them with estimated effort
or use normalized baselines for planning. Many organizations also do not even
leverage a standard software size measure for their organization, resorting to the
view that the software they produce is unique and therefore cannot be measured. In
these organizations, a ballpark estimation is the most-often used software estima-
tion technique. But overestimating and underestimating result in an imbalanced
application of project resources. Significant estimation errors do not augur well for
project health during execution.

When software estimation is not diligently performed, a project’s schedule
will also not be practical. At best, the team will only have a “best guess” schedule.
When a schedule is not practical, it likely will slip: either the project’s completion
is delayed or the resources take on a lot of extra stress to complete the project on
time. In the ensuing haste for completion, quality will also take a beating. In short,
the project will not be completed satisfactorily. To say that poor software estima-
tion is a major cause of project failure may not be an exaggeration.

Best practice: Treat software estimation as an important activity. Provide training
on software estimation and on the use of metrics to aid in accurate estimation.
Define an excellent software estimation process for the organization and carry
out software estimation using that process. Then develop and implement orga-
nizational estimation standards. Monitor the performance of these processes and
standards regularly and improve them by using actual values that are collected
and analyzed to correct organizational baselines. Maintain all estimates prepared
in the organization in the organizational knowledge repository and make them
available to SPMs.

Poor Project Planning
Remember the quote attributed to Abraham Lincoln in Chapter 5? It says, “If I
were given six hours to fell a tree, I would use the first four hours sharpening the
axe.” This quote is the best advice that we can offer to describe the importance of
planning because several pitfalls are associated with planning.

SPMs who do not understand the value of planning often take project plans
from an earlier project. They then do a “Save As” to arrive at project plans for a
new project.

Best practice: Make new plans. But completely doing away with the practice of
“Save As” is unnecessary. Instead use parts of previous plans in a “Cut/Paste”

J. Ross Publishing; All Rights Reserved

212  Mastering Software Project Management

mode when appropriate to allow fresh thinking based on the requirements of the
new project.

Some SPMs equate project planning solely with generating a project schedule
(e.g., using a Microsoft Project schedule as a plan). Software project planning goes
far beyond just generating a schedule.

Best practice: Ensure that plans have adequate detail to make implementation
easier during project execution.

A common complaint heard in some organizations is that planning requires
too many documents. Sometimes the planning process does go overboard and
bureaucracy replaces efficiency, particularly in organizations that treat project
planning as an exercise in creating documents just for the sake of meeting process
requirements. Such organizations create plan documents and then put them aside
and execute the project on an ad hoc basis. Yet, planning is not an exercise to cre-
ate documents. Planning is a time when an SPM focuses on what is to be achieved
and how it is to be achieved. Planning is looking ahead and making provisions
for the required resources so that a project will be executed smoothly and without
any surprises.

Best practice: Ensure that all processes are lean (just enough to meet the needs
of the organization) and scalable (smaller projects need less rigor than larger
projects). Scalability suggests that for small and short-duration projects, creating
a single overall plan (with all other plans embedded in it) will be adequate; for
large projects that are especially prone to failure, create separate plans in greater
detail. Treat project planning as an important and critical activity rather than as
an exercise in creating a set of documents that is required for a quality audit or
an appraisal.

The Wrong Service Level Agreements
Another frequent pitfall we have seen is providing the “wrong” service level agree-
ments (SLAs) for a project. Having poor SLAs between a project and the service
departments will lead to project failures, delays in delivery, or poor-quality deliv-
erables.

Software development activities typically need the support of other depart-
ments in the organization, such as the quality department, systems administra-
tion, the PMO, and the HR department. One way of achieving support is to
negotiate the needed support on a case-by-case basis. The service department,
for example, would then indicate the turnaround time whenever the project team
approaches the department for support. Another approach is to define an SLA
for each department and then conform to it. A third way is to define the SLAs on

J. Ross Publishing; All Rights Reserved

Pitfalls and Best Practices in Software Project Management  213

a project-by-project basis. The issue or balancing act is whether to optimize the
capacity utilization of the support department or to provide full support to proj-
ect teams. Cost control or delivery is another way to state this question. The aim
of case-by-case SLAs and department-level SLAs is to control costs, but perhaps
at the expense of project delivery. The aim of project level-SLAs is to strengthen
delivery, but perhaps at the risk of increasing support costs. Software development
organizations have to balance these two objectives.

Any project needs timely responses to its needs, especially when provisioning
resources, troubleshooting when an issue arises, and obtaining expert assistance
when projects are stuck with an issue, just to name a few. If the SLAs provided
for these types of support are not in tune with project requirements, the con-
sequences will be undesirable, regardless of why. Providing the SLAs necessary
for a project rather than asking the project to live with generic SLAs proffered
by the support groups is therefore necessary. If support groups have resources
or tools limitations, the PMO should interact with senior management to facili-
tate removal of the hurdles that the support departments have in providing the
required SLAs. We have often seen situations in which a project is asked to adjust
to substandard SLAs rather than asking the support groups to provide the SLAs
that meet the project’s needs.

Best practice: The organization has a leading role in providing appropriate SLAs
to projects. Usually, the PMO champions the provisioning of SLAs between the
service departments and SPMs. One best practice is to have each service depart-
ment define a set of SLAs which is then published. SPMs plan project execution
in keeping with the service departments’ SLAs, but if an SPM needs any above-
normal SLAs, the SPM leverages the PMO to broker a resolution. Another best
practice is for the PMO to receive the SLAs needed from an SPM(s) and then
obtain commitments from the service departments for these project require-
ments. If a disagreement is encountered, the PMO will negotiate with the service
department and the SPM to achieve a mutually acceptable SLA.

Poor Standards and Guidelines for Software Development
Standards and guidelines are established to assist a development team in achiev-
ing predictable quality for an end product. A high-quality set of standards and
guidelines will go a long way in executing projects in an efficient and effective
manner. Yet, some organizations pay lip service to the concept of having high-
quality standards and guidelines or, if they have them at all, they implement the
standards/guidelines poorly. A badly defined set of coding standards will cause
quality issues and rework. So, organizations that totally neglect defining standards
and guidelines, define sketchy standards and guidelines, have ad hoc standards, or
pay lip service to following them, do so at the risk of poor quality.

J. Ross Publishing; All Rights Reserved

214  Mastering Software Project Management

Organizations that neglect the development and implementation of standards
and guidelines argue that standards and guidelines stifle creativity and innovation
and thereby promote mediocrity. This statement is untrue. What standards and
guidelines stifle is unbridled experimentation in the name of innovation (which is
more akin to random movement than true experimentation), not true creativity
and innovation. No organization wants experimentation on a live project. In any
process-driven organization, facilities to improve processes, including standards
and guidelines, are always available. SPMs may freely offer improvement sugges-
tions for all aspects of the process. Furthermore, SPMs may volunteer to develop
new standards or modify the existing ones and then pilot the standards on a proj-
ect they are managing. We acknowledge that emergencies do arise (although not
very many). When faced with an emergency, the urgency of the project should
allow the leverage of a process waiver request.

Best practice: Define excellent standards and guidelines for development. Have
coding guidelines for all programming/scripting languages used in a project.
Coding guidelines are critical for ensuring the quality of a project’s deliverables.
A well-defined set of coding standards facilitates achieving excellent quality levels
and reduces project rework. Also facilitate improvement of organizational stan-
dards and guidelines in prescribed manner.

Poor Project Oversight
Inadequate project oversight is a common pitfall for senior management.
Oversight can be inadequate if it is infrequent or overdone, i.e., “breathing
down the neck” of an SPM. So, what is the right approach? The answer is that
no universally accepted “right” interval exists for reviewing a project’s progress
by senior management. Oversight should therefore be at some regular interval
— short enough to facilitate timely intervention, but long enough to allow some
space (breathing room) for the SPM. Set oversight intervals based on the planned
duration of a project. For shorter-duration projects, weekly monitoring may be
adequate, whereas monthly monitoring may be adequate for longer-duration
projects.

Best practice: Determine oversight intervals on a project-by-project basis. Then
record the decision in the project’s software project management plan and con-
form to it.

Inadequate Project Management Training
Project management training is conducted to ensure that an organization’s phi-
losophy, processes, standards, and guidelines are imparted to trainees. The train-
ing is based on the software project management body of knowledge that exists

J. Ross Publishing; All Rights Reserved

Pitfalls and Best Practices in Software Project Management  215

within the organization. Training results in homogeneity among all SPMs in the
organization and promotes predictability in project management. The course
content is subject to regular improvement (as are the organizational processes,
standards, and guidelines). If the training stifles creativity or innovation, the
training program needs to have closer examination and be improved. In some
organizations, however, project management training is frequently neglected.

Most SPMs have a background in a technical specialty, such as being a pro-
grammer. Using the example of a programmer, a common progression is for a
programmer to rise from being a coder to a module leader (or team leader) to
a project leader and then to an SPM. During this transition, the programmer
has generally learned the basics of software project management from on-the-
job observation of superiors. Unless the former programmer works under the
supervision of a number of SPMs, and on all types of projects, the knowledge
gained is likely to be limited by the practices of the SPMs that the programmer
has observed.

So, in the absence of a formal well-designed training program, most newly
promoted SPMs will imitate the SPMs that they have worked under. This prob-
lematic situation tends to be accentuated when SPMs are recruited from outside
an organization. These SPMS arrive with their own project management phi-
losophies, which may not be (and in most cases are not) in sync with the project
management philosophy of the organization. When SPMs in an organization have
different philosophies of project management, discord is likely.

Organizations that neglect project management training frequently argue
that their senior project managers will use mentoring to smooth out any “rough
edges” on new SPMS. Another argument sometimes made (albeit rarely) is that
training has the potential to stifle innovation in SPMs. In essence, this argument
says that if given a free hand, new SPMs will develop innovative and new methods
and that the resulting discord and conflict are just a normal part of any organiza-
tion and can be managed. (Very convincing, aren’t they?)

Best practice: Conduct software project management training (either full sylla-
bus training or refresher training) for all SPMs before allocating them to manage
projects. Subject the training curriculum to regular enhancement in line with the
organizational process for improvement.

SOFTWARE PROJECT MANAGER-LEVEL PITFALLS
AND BEST PRACTICES

Although organizational-level processes and practices establish the platform on
which an SPM performs project management, even so, the SPM has a critical role
in ensuring the success of a project. We will next address some pitfalls and best
practices from the SPM-level point of view.

J. Ross Publishing; All Rights Reserved

216  Mastering Software Project Management

Fair Treatment of Project Human Resources
Project management includes achieving work through the actions of subordi-
nates. A well-motivated project team can reach unimaginable heights of perfor-
mance. An SPM can add to (or detract from) the prevailing morale of a project
team. If a project team perceives that the SPM is not treating team members fairly,
morale will deteriorate. Some SPMs fall into the pitfall of showing favoritism to
their cronies, something that will be noticed in no time at all.

Best practice: Treat team members fairly and equally to ensure that high levels of
motivation are maintained in the project team. Refrain from giving special treat-
ment to any team member. Remember that it is not enough to be fair — but to be
seen as being fair.

A Balanced Workload
Each member of a team wants to perform his or her share of the work and to
achieve the best possible results. And no team members want to see another team
member laze around when they are working hard. SPMs may not perceive that
team members are keeping tabs on them, but team members absolutely do. So,
any imbalance in loading work to team members is noticed immediately. So, bal-
ancing the workload equitably is essential.

Best practices: Best practices in work allocation include:
•	 Maintain a formal work register for all work allocations. The register

helps to quantitatively assess the workload of each of the team mem-
bers when allocating work or when reviewing individual contributions
of team members. A formal work register also allows team members
to see their individual contributions as contrasted with others. A for-
mal level is needed in large projects. Using informal methods makes
ensuring workload balance very difficult. The absence of a formal
work register also makes answering any accusations of overloading by
a team member very difficult.

•	 Make the formal work register available to all team members so that
they can assess for themselves how equitably the workload has been
allocated.

•	 Measure actual achievements, productivity, and quality for each team
member and make these measurements part of the work register.

•	 Acknowledge achievements when a team member is allocated with
more work and attains that level of contribution.

J. Ross Publishing; All Rights Reserved

Pitfalls and Best Practices in Software Project Management  217

Equitable Rewards
Dispensing rewards is another area in which an SPM can be perceived as being
unfair. Sometimes only positive results are rewarded. To be equitable, however,
positive performance should receive a positive reward and a negative performance
should receive a negative reward. To refrain from acknowledging either scenario
or failing to deliver the appropriate reward will certainly cause less motivation
among team members. Douglas McGregor (1906–1964; MIT Sloan School of
Management) recommends that discipline ought to be like a hot stove. A hot stove
burns anyone who touches it. The burn is immediate. The amount of the burn is
directly proportional to the amount of touch. The stove is impartial (it burns
everyone irrespective of rank or importance). (Note: Numerous websites may be
consulted for additional information about the theories of Douglas McGregor.)

Best practice: Reward positive and negative performance equally. Remember the
adage, “Justice delayed is justice denied.” When applied to rewards, this adage
says that rewards must be in close proximity to the occurrence of the performance
that deserves the reward.

Poor Software Estimation
Software estimation must be pursued with diligence at the organizational level.
The SPM for a project is responsible for ensuring that software estimation is car-
ried out as diligently and as accurately as possible. If software estimation goes
haywire, project planning and execution have little chance of being successful.

Best practice: Focus attention on estimation and then perform the estimation
activity with all diligence.

Poor Project Planning
In the sections discussing organizational-level pitfalls, common pitfalls included
treating project planning as a document creation activity and using plans from a
completed project for a new project. SPMs can also indulge in the pitfall of treat-
ing project planning as a document creation activity. Taking documents from an
earlier project, to have “Save Them As” plans for a current project, makes sense
only if the older documents are used as a vehicle for thinking through the project
and making provisions for every foreseeable contingency in the project plan.

Best practice: Use the project planning exercise to think through a project and to
carry out the planning activity with total diligence.

J. Ross Publishing; All Rights Reserved

218  Mastering Software Project Management

Informal Issue Resolution
Issues crop up in most projects. As noted previously, we recommend using a for-
mal mechanism to record every issue and to track the issue through to resolution.
Also report the status of every issue in the weekly status report. A common pitfall
is to not record every issue, but to try to resolve it informally (“off the record”). In
particular, project stakeholders should be kept informed of every significant issue
that arises in a project and should know about these issues early enough to avoid
unpleasant surprises.

Best practice: Use a formal mechanism for issue resolution. Record every issue
and report every issue in the weekly status report. Keep all project stakeholders
informed about the status of issue resolution.

Poor Change Management
Failing to handle change management with a well-planned strategy is one of the
most common pitfalls encountered in project management. Often a project begins
with a sense of overconfidence that the customer will not ask for changes or, if
the customer does make change requests, that the team will have the ability to
take care of them informally, without impacting the budget, quality levels, or the
delivery date. This kind of informal handling of change requests can evolve into
project failure and even litigation (we have seen it happen).

Best practice: Follow a formal strategy for handling change requests. Include
change management in the project plans. Regularly report the status of change
requests to all project stakeholders.

Poor Record Keeping
Execution of a software project generates a host of information. When properly
analyzed and included in the organizational knowledge repository, this infor-
mation can facilitate manyfold improvement in an organization’s efficiency.
Improved efficiency can generate a significant amount of savings in monetary
terms — savings that can end up directly on the organization’s bottom line. An
SPM is responsible to ensure that all information is properly recorded so that
it can be processed and analyzed. If an SPM does not keep diligent records, all
further analysis will yield incorrect results. Any modifications of organizational
processes or baselines that are based on these wrong indicators will be disastrous
for the organization. (Remember the adage, “Garbage in, garbage out?”)

Poor record keeping is an easy pitfall to fall into for a project manager. But
why does this happen? Typically, SPMs do not set out to gather bad data. Instead
they view record keeping as an overhead activity that is not directly linked to

J. Ross Publishing; All Rights Reserved

Pitfalls and Best Practices in Software Project Management  219

delivering software (something that is easy to do) and often neglect it. Typically,
poor or inadequate record keeping is not caught until an investigative audit is
done as part of a project’s postmortem.

Best practice: Diligently maintain project records so the records provide useful,
worthwhile information about project planning and execution

ADDITIONAL BEST PRACTICES FOR SOFTWARE project
MANAGEMENT

We will now address some additional best practices for software project man-
agement. These are in addition to the pitfalls and best practices discussed at the
SPM- and organizational-levels.

A Knowledge Repository
A well-organized knowledge repository (not just a dumping ground for records of
completed projects) will greatly enhance the chances for success in project initia-
tion and execution. A well-stocked repository can significantly simplify an SPM’s
work and be of great assistance: to get records for relevant projects at the time of
project initiation and then again if needed by the project team.

Continuous Process Improvement
Continuous process improvement ensures that the best practices are incorpo-
rated into organizational processes and that the bad practices are eliminated.
Continuous process improvement activities help to enable SPMs to be success-
ful in project execution. Having a well-structured software engineering process
group (SEPG) with a competent support staff to support serious process defini-
tion and improvement activities within an organization is a best practice. (Note:
An SEPG is now known as an engineering process group or EPG by the Software
Engineering Institute.)

Project Postmortems
If a patient dies in a hospital, a mandatory medical postmortem is conducted to
determine the real cause of death. A medical postmortem helps physicians to
assess if the patient’s diagnosis and treatment were correct and allows them to
learn lessons for the future diagnosis and treatment of patients. We recommend
conducting a project postmortem for all software projects, regardless of whether
they succeed or fail. We find, however, that the project postmortem (regardless
of what it is called) is often skipped, with the argument that a postmortem takes

J. Ross Publishing; All Rights Reserved

220  Mastering Software Project Management

a significant amount of time that could be otherwise spent on revenue-earning
activities. Sometimes we hear an explanation about a customer satisfaction survey
being quite enough to assess a project’s performance. We find these arguments to
be shortsighted.

At other times, we see a project closure meeting being treated as the project
postmortem. A project closure meeting and a project postmortem, however, serve
very different purposes (see Chapter 10 for a more in-depth discussion of project
closure and postmortems). The goal of a project postmortem is to identify all of
the pitfalls that were faced by the project and all of the best practices that were
discovered. Analyzing and critically examining the causes for these pitfalls and
best practices will facilitate process improvement. The best practice is to conduct
a postmortem for every completed project.

Training in the Soft Skills
Training for SPMs should cover more than the software project management
training described in a previous section. The SPM and the project team should
be trained in the soft skills that are required for the team to be effective. Soft
skills training should include topics such as problem solving, communication,
interpersonal relationships, conflict management, motivation, and morale. These
soft skills will help the SPM and the project team to maintain a harmonious
atmosphere during execution of the project. Role-based training is also sometimes
neglected in an organization. So, in the absence of formal training, resources tend
to imitate a boss or the most charismatic person in the organization, which may
not be in the best interests of the organization. A best practice is to conduct formal
training for all resources involved in project execution.

Information Sharing
Formal and informal sharing of information should be encouraged among SPMs.
Within an organization, information sharing can be achieved through holding
meetings designed for information sharing between SPMs, by attending seminars
(internal and external), and by providing a bulletin/discussion board. Any of these
activities can be implemented in an organization without incurring significant
cost.

Management Support
Presented last, but in no means being the least in importance, management
support and funding are vital for any success to be achieved in an organization.
Management must recognize that software project management is just as essential

J. Ross Publishing; All Rights Reserved

Pitfalls and Best Practices in Software Project Management  221

to the success of a project as programming. All of the best practices cited above
can be implemented only if management sponsors them.

We know of a chairman of a mid-sized software development company (300
programmers) who has stated, “I do not want to have managers in my organiza-
tion. I want only programmers.” We also know that this organization’s success
rate is not very high for large projects and that the organization survives only
because of small projects. Now we ask you: “Can that organization get out of the
rut of doing small projects and ever achieve the capability of handling large com-
plex projects without a change in management attitude?”

Some closing words

Software development has grown into a complex activity. The size of software
products has steadily increased. The facts that MS-DOS used to come on a 360-KB
floppy disk in the 1980s and now Windows comes on a DVD should bear wit-
ness to this phenomenon of the ever-increasing size of software products! “Back
in the day,” computers were “programmed,” now we are “developing software.”
Large teams of software engineers work on software development and the work is
now treated as a “project.” Software engineers develop the software; SPMs ensure
that they do so efficiently, effectively, and with the best possible quality. Software
development therefore should be managed so that the project not only delivers
the software, but also delivers functional, defect-free software at the greatest speed
and at the lowest cost and with the highest quality.

In this book, we have endeavored to present you with the art and the science
of project management as applicable to the software development domain, draw-
ing from our own experiences as well as those from the available literature and
from our learnings from experienced SPMs. Our hope is that you will derive ben-
efit from this work of ours. We welcome your feedback. Please feel free to email
murali@chemuturi.com.We promise to respond to every email.

This book has free material available for download from the
Web Added Value™ resource center at www.jrosspub.com

J. Ross Publishing; All Rights Reserved

J. Ross Publishing; All Rights Reserved

APPENDIX A

MANAGEMENT OF
SOFTWARE DEVELOPMENT
PROJECTS

BACKGROUND

Numerous articles, books, and other types of literature are available on the topic
of management. Many management models, tools, and theories are also avail-
able. These models, tools, theories, and literature are all largely derived from and
focused on manufacturing organizations, with modifications to some extent based
on the services industry (e.g., retailing, banking, and insurance). Most manufac-
turing organizations started out being “person-dependent,” but over time they
grew to be “technology-dependent,” with a goal of leveraging their processes to
reduce dependency on the inscrutable resource — human beings. The software
development industry, however, the industry which has helped other sectors to
reduce person-dependency, is still woefully person-dependent.

Several aspects of the software development industry and the manufacturing
industry are contrasted in Table A.1. In a nutshell, manufacturing industries need
blue-collar workers and the software industry predominantly needs professionals
or white-collar workers. Management of these types of workers requires vastly
different strategies and tactics. Appendix A looks at management from the stand-
point of a manager, in particular a software project manager. We will provide as
much information as possible on the subject of management in this limited space,
describing a number of topics briefly:

•	 Project planning
•	 Project execution and control
•	 Motivation and morale
•	 Interpersonnel relationship management
•	 Communication

223J. Ross Publishing; All Rights Reserved

224  Mastering Software Project Management

WHAT IS MANAGEMENT?

Management may be viewed from three angles:
•	 As the group who is responsible for running the affairs of an organi-

zation: here the word management connotes a group of individuals.
An example illustrates this usage: “Management decided to reduce
working hours from 48 to 40 hours per week, which will take effect
beginning the first of next month.”

•	 As an art (and a social science) that is practiced to get things done
through other individuals in an environment in which authority is
not absolute and the procedures/processes are somewhat vague (e.g.,
matrix management): here the word management connotes a process.
An example illustrates this usage: “The management of professional
workers is entirely different from the management of blue-collar
workers.”

•	 As a body of knowledge on the subject of management: here the word
management connotes a social science. An example illustrates this
usage: “Besides the responsibility for results, management science
specifies that delegation and motivation are essential responsibilities
of a manager.”

Appendix A looks at the term management from the second viewpoint: as a pro-
cess and the art of getting work done through other individuals.

But why do we use the word art when describing the word management? The
answer is because the topic of management consists of a large body of knowledge.
This body of knowledge has been collected empirically by practitioners them-
selves or from studying other practitioners. Adopting this body of knowledge
generally produces predictable results. Additionally, many mathematical models,

Table A.1. Comparison of the Software Development Industry with Other Industries

Predominant
Aspect

Software Development
Industry

Manufacturing
Sectors

Type of workers White collar (professional workers) Blue collar

Education College Some school

Number of college-educated
persons

Mostly Few

Knowledge-gap between the
managing and the managed

Very little Vast

Type of work Mostly new, with some amount of routine Mostly routine

Pay/salary High Low

Environmental change Frequent Infrequent

J. Ross Publishing; All Rights Reserved

Management of Software Development Projects  225

such as linear programming, the transportation problem technique, and manage-
ment games, as well as other topics have been developed to assist managers in
making objective decisions and obtaining predictable results. Although many
aspects of management are scientific, many of these aspects are still not measur-
able. So, no formulas can objectively predict consequences precisely. Regardless
of the slow and steady progress that is evolving management into a science, it is,
as yet, at least partially an art.

EVOLUTION OF THE MANAGEMENT DISCIPLINE

The word management itself signifies that something is not under control!
Consider this adage: “If we can, we control it. If we cannot, we manage it.” This
adage brings to mind a second adage: “If you cannot surmount it, then circumvent
it.” So, management can have a number of varied objectives:

•	 To achieve what you originally set out to do
•	 To attain your goal; to reach your target
•	 To not win the race, but to stay in it and complete the course (to finish it)
•	 To keep all concerned parties from becoming unhappy/dissatisfied
Perhaps, we should also have said that the word management signifies that if

something is not desirable to be controlled (or is not controllable), then it is better
for it to be managed. But control can sometimes beget a penalty-avoidance type
of performance. At times therefore using control is not always desirable —letting
things happen and then managing (maneuvering) to get innovation and thus
better-than-average performance is better: “If we can, we administer. If we can-
not, we manage!”

Management has evolved from a base process of oversight and ensuring that
everyone worked to their full capacity. From this base process, Frederick Winslow
Taylor (1856–1915) proved that full capacity is not really the same as maximum
output. Taylor used physical experiments and coined the term scientific manage-
ment. He advocated studying the work being carried out and then using that study
to design the proper methods for carrying out the work. Taylor also advocated
that providing rest breaks increased output. Taylor’s work has lead to new fields
of “work study” (method study and work measurement), industrial engineering,
ergonomics, “a fair day’s work for a fair day’s pay,” productivity, and quality
assurance. Taylor’s work caused significant evolution in work design and work-
station design. (Several websites can be consulted to obtain additional informa-
tion about Taylor’s work.)

The evolution of management continued with Henri Fayol (1841–1925).
Fayol’s work vastly influenced the process of management and was the forerun-
ner of present-day management thought.1 Fayol began as an apprentice engineer

J. Ross Publishing; All Rights Reserved

226  Mastering Software Project Management

and went on to become the managing director of a mining company in France.
His management background is reflected in his later theories. (Fayol wrote a book
entitled Administration Industrielle et Générale in 1916. This book was translated
and published in English as General and Industrial Management.) Fayol classified
management functions into five categories:

•	 Planning
•	 Organizing
•	 Commanding
•	 Coordinating
•	 Controlling

These categories have subsequently been modified to:
•	 Planning
•	 Organizing
•	 Staffing
•	 Directing (leading)/coordinating
•	 Controlling

and then further refined to:
	 1.	 Planning
	 2.	 Organizing
	 3.	 Leading
	 4.	 Controlling

Henri Fayol also offered fourteen management principles:
•	 Division of work (specialization): Work should be divided into pack-

ages that foster specialization among the workers. (This division of
work principle is said to be the harbinger of assembly lines in manu-
facturing, which led to a reduced cost of goods.)

•	 Authority: Those who have the responsibility for results should have
the authority to issue commands and exact obedience.

•	 Discipline: Personnel should be disciplined and perform their func-
tions diligently.

•	 Unity of command: Each employee should have only one boss. An
employee should not receive commands from multiple individu-
als. (In organizations using matrix management, especially software
development organizations, practice of this principle seems to have
dropped significantly.)

•	 Unity of direction: Each position should have a single objective. (In
today’s business environment almost every executive position has
multiple objectives.)

J. Ross Publishing; All Rights Reserved

Management of Software Development Projects  227

•	 Subordination of personal interest (to the organization’s best inter-
est): Pursue organizational goals when at work and do not look for
personal aggrandizement. (This principle seems to be directed more
at management personnel, but the principle applies to everyone.)

•	 Remuneration: Pay workers a fair wage for their services. (This prin-
ciple may be the harbinger for the “need-based minimum wage” con-
cept.)

•	 Centralization: Make decisions at the top of the hierarchy and every-
one else will follow orders.

•	 Line of authority: Hierarchy is defined as a pyramidal structure for the
organization.

•	 Order: There is a place for everything and everyone and everything
and everyone should be in its place. (This concept of segregation of
work and strict order is still followed by the armed forces.)

•	 Equity: All personnel should be treated in a fair and just manner.
(Henri Fayol advocated kindness in the treatment of employees.)

•	 Tenure for personnel: Ensure that employees work longer for the
organization. (The basis for this principle is the recognition that the
loss of a trained employee has substantial impact on an organization.
Job insecurity is not good for any organization. Fayol recommended
putting steps in place to lessen the chances of a good employee leaving
the organization.)

•	 Initiative: All employees should demonstrate initiative.
•	 Esprit de corps: Promote team spirit in which a team pulls together to

achieve a goal.

MANAGEMENT IN A PRESENT-DAY CONTEXT

As discussed previously, Fayol’s initial five categories of management function
were eventually refined to four categories. Present-day management is now
understood to be:

•	 Planning
•	 Organizing
•	 Leading
•	 Controlling

Present-day managers are expected to perform these four tasks as primary respon-
sibilities. The scale, however, differs for each type of manager: a project manager
performs these tasks at a project level and a senior manager performs them at a
group or organizational level. We will now briefly discuss the four tasks.

J. Ross Publishing; All Rights Reserved

228  Mastering Software Project Management

Planning
Planning is defined as “the intelligent anticipation of resources required to per-
form a predefined endeavor successfully at a future date in a defined environ-
ment.” The key terms contribute the following meanings:

•	 Anticipation indicates that planning precedes performance and that it
is a best guess (no matter how diligently the guess was derived).

•	 Resources refer to the four M’s (4 M’s) of men (individuals, male and
female), materials, methods (includes information), and machines
(equipment) plus time (duration).

•	 At a future date indicates that the work has not already been per-
formed and that it is consistent with the anticipation of resources.

•	 In a defined environment indicates that the location of the work (where
it will be carried out) is known and defined. (Any variation in the envi-
ronment will have an effect on the plan. The environment also refers
to the working conditions, including work and workstation design,
methods of management, prevailing morale at the workplace, etc.)

•	 Predefined endeavor indicates that the scope of the work is known.
To accomplish planning, several activities need to be performed:

	 1.	 Size and effort estimations for the human resources required
	 2.	 Scheduling to estimate the calendar time resource within the con-

straints of the existing facilities and the availability of other resources
	 3.	 Cost estimation to define the monetary resources needed (also called

budgeting)
	 4.	 Definition of the environment to determine the requirements and to

allocate the physical resources
	 5.	 Documentation of all estimates and plans

Organizing
Organizing refers to creating the work environment. Organizing includes several
tasks:

	 1.	 Breaking down activities of the organization into departments/sec-
tions/teams so that work can be performed efficiently and effectively

	 2.	 Designing and arranging the workstations that will be used to
accomplish the work (A workstation is a combination of the
machine and human resources that are required to accomplish the
work assigned.)

	 3.	 Breaking the work down into its constituent components so that that
they may be allocated and executed at a workstation

J. Ross Publishing; All Rights Reserved

Management of Software Development Projects  229

	 4.	 Defining and developing methods, standards, and processes for all
types of work, including quality assurance, to be carried out in the
organizations

Leading
Leading is concerned with guiding the team that works for a manager/leader
toward achieving the objectives. More specifically the tasks include:

■	 Providing direction
■	 Providing guidance
■	 Providing assistance/removing obstacles to performance
■	 Providing motivation and ensuring team morale
■	 Setting targets:

•	 Productivity
•	 Quality
•	 Schedule
•	 Technical goals

■	 Conducting performance evaluations
■	 Pursuing team goals and tracking them until they are accomplished

successfully
■	 Coaching and mentoring team members

Controlling
Controlling involves ensuring that the execution of a project adheres to the plan.
Tasks in controlling include:

	 1.	 Continuously measuring progress
	 2.	 Comparing actual performance against the planned performance

and identifying gaps in achievements (if any)
	 3.	 Taking corrective action to align actual performance with planned

performance:
•	 Adding resources
•	 Providing expert assistance
•	 Providing better tools/methods
•	 Changing the plan when required

	 4.	 Taking preventive action so that future occurrences of slippage are
prevented and the time lost is made up so that final deliveries are not
affected adversely

J. Ross Publishing; All Rights Reserved

230  Mastering Software Project Management

THE PRIMARY RESPONSIBILITIES OF MANAGERS

The primary responsibilities of managers fall into four categories:
■	 Work management

•	 Division of work: Break down the product to be developed into
work packages that may be allocated to individuals for execution.
Breakdown of the product should ensure that the output of the
work packages can later be assembled/integrated into the speci-
fied final product in an efficient manner. The division should also
facilitate inspection/testing of the packages to ensure that quality
is built into the product. The work packages must also facilitate
measurement of productivity. When breaking the work down, a
manager should ensure that the packaging does not necessitate fre-
quent work allocations (there is no minimum duration, however,
having allocated work take at least 1 day is better).

•	 Allocation of work for execution: Allocate work in such a way that
the individual receiving the assignment has the ability to execute
it. The allocation of work should be done in such a manner that
the targets for schedule, productivity, and quality are achievable.
The targets must also be commensurate with the skill level of the
individual given the work. Whenever possible, ensure that all indi-
viduals have a similar workload: the fair allocation to all of avail-
able individuals should be perceived as being fair.

•	 Integration of the product: Arrange work so that assembly, testing,
and delivery of all components as designed are accomplished and
made ready for delivery to the client.

•	 Ensure quality: Implement all planned quality control activities
to ensure that work is executed in conformance to organizational
standards and quality norms.

•	 Ensure productivity: Implement all measures necessary so that the
work carried out meets or exceeds organizational productivity levels.

•	 Deliver, install, commission, train, and hand over: Deliver the prod-
uct to the customer while also meeting schedule and quality specifi-
cations. Delivery typically includes assisting in the implementation
and rollout of the product and lastly obtaining acceptance from the
client.

•	 Get paid: Arrange for billing and collection for services rendered,
which may include any follow-up with the client.

J. Ross Publishing; All Rights Reserved

Management of Software Development Projects  231

■	 Expectations management
•	 Senior management: Senior management expects that the project

will be executed with minimal necessity for their intervention and
with maximum client satisfaction; while also meeting or exceeding
organizational norms for schedule, quality, and productivity; that
they have access to correct project information when needed; that
managers will maintain team morale; and finally that the project
will earn revenue.

•	 Clients: Clients expect to have access to progress information; that
the team will adhere to agreed-upon schedules and quality norms;
that there will be cooperation in the resolution of issues and change
requests; and finally that the team will pay attention and provide
quick turnaround of their communication.

•	 Peers: Peers expect sharing of knowledge and experience; assistance
in reviews; assistance when interviewing recruits; and assistance in
process improvement initiatives.

•	 Teams: A team expects fair work allocations; assistance in trouble-
shooting issues; fair performance appraisals; transparent and fair
performance targets; fair recognition, including rewards and pun-
ishments; and grievances to be redressed.

■	 Morale management
•	 Self: A central component of personal morale is self-confidence.

Self-confidence is a personal belief in your ability to deliver the
expected results and that management will support your actions.

•	 Team: Central to team morale is being confidant that other team
members can achieve their objectives and strongly believing that
their manager (you) will support the team.

•	 Organization: Just as people do, organizations have a culture and
morale. An organization’s morale should invigorate managers and
their teams and provide a sense of confidence that the organization
has the ability to support the teams.

■	 Resource management
•	 Humans: The goal of human resources management is to use team

members effectively, efficiently, and wisely.
•	 Time: Management of time resources boils down to one criti-

cal resource: the calendar time (unless you have access to a time
machine!). Calendar time is a consumable resource. If used poorly,
calendar time can rarely be recovered. Optimize the utilization of
time so that targets and schedules are met.

J. Ross Publishing; All Rights Reserved

232  Mastering Software Project Management

•	 Equipment: Computers, system software, and development tools
should be used efficiently. Maintain them at peak capacity to sup-
port the management of human and time resources.

•	 Monetary: Monetary resources include expenses and revenues.
Both must be managed well and accounted for completely. Your
goal is to use expenses and revenues optimally.

Keep these primary responsibilities in mind while performing software project
management. Translating these responsibilities into action requires specific tac-
tics, which we will now discuss.

Delegating
The job of a manager is to get things done. This means that unless you manage
a one-person project, you, as a manager, will need to work with and through
other individuals. You will therefore need to delegate work to subordinates. An
important aspect to keep in mind is that although you can delegate authority, you
cannot delegate responsibility! As a manager, the responsibility for results always
remains with you. In other words, you may delegate something to a subordinate
to do, but if this subordinate goofs up, you are still responsible for getting the
delegated task done. As a manager, however, when you delegate authority to your
subordinates, you also extract accountability from them.

Consider this exaggerated example: a cashier in a bank steals some money.
Who is responsible for answering to the customers and depositors? Will the
depositors only shrug their shoulders and say, “That poor bank manager — what
can he do if a cashier just runs away? It’s just our bad luck. Let’s not blame the
manager.” No way would that ever be the case! Bottom line: the bank manager
is responsible for his subordinate’s actions. But will the subordinate get off scot-
free? No. The cashier will be accountable for his or her actions. The bank manager
will file a report with police to track down, arrest and jail, and recover the stolen
money from the cashier.

Managing People
People management is vast topic, which is beyond the scope of this appendix. We
will therefore devote a separate appendix to people management (Appendix C). A
few points related to people management, however, are pertinent for inclusion in
this appendix: interacting with subordinates, peers, and superiors.

J. Ross Publishing; All Rights Reserved

Management of Software Development Projects  233

Interacting with Subordinates
At times, you will need to deal with subordinates in ways that are similar to how a
concerned and disciplined father treats and disciplines his teenaged children. We
use teenaged children as an example because a teenager:

•	 Is not yet fully “grown-up”
•	 Is sharp and smart, but immature
•	 Is capable, but likely to be somewhat irresponsible
•	 Requires proper handling (firmness coupled with love)
Proper handling of these characteristics can produce astounding results.

Treat subordinates with firmness that is coupled with compassion — you will see
them respond to (not react to) you.

Interacting with Peers
Treat peers as a true friend treats his friends. We use the word friend because a
true friend:

•	 Is still a friend even when you are in need (Likewise, when a peer has
a need, you step in to help — no invitation is needed.)

•	 Listens patiently and gives complete attention to a friend’s ideas and
views

•	 Bridges gaps in a friend’s performance
•	 Is willing to teach a new skill to a friend
•	 Does not expect anything in return from a friend
Friendly interaction with peers, however, does not include gossiping and

sharing personal information. Life (as well as the workplace) is full of competitors.
Be careful what you share. (Refrain from gossiping and inappropriate sharing of
information. Your career might end with a note on Facebook!)

Interacting with Superiors
Treat superiors like a responsible son or daughter treats their father. We use the
comparison of a father and a child because generally a child:

•	 Has no suspicions about his father’s intentions — he believes his father
•	 Wants to take care of her father
•	 Takes reprimands better from her father (her ego and self-confidence

are not affected as much)
•	 Wants to do better than his father
•	 Wants to please her father and to get words of praise from him

By exhibiting these characteristics, your superiors will slowly but surely begin to
exhibit fatherly behavior with you.

J. Ross Publishing; All Rights Reserved

234  Mastering Software Project Management

But are these recommendations sure to get results — always? Difficult people
are everywhere. So, you may not always get the results promised from following
our recommendations. (This topic is discussed in more detail in Appendix C.)

WORK MANAGEMENT

As a manager, you have the responsibility for conducting certain activities that
are necessary to ensure that work is carried out by your subordinates. Activities
performed for getting the work done and for making delivery to clients include:

	 1.	 Work allocation
	 2.	 Assisting and facilitating the subordinates who are carrying out the

work
	 3.	 Arranging quality control activities, such as inspection, walk-

through, review, and testing, to ensure that the executed work and
deliverables conform to the organizational standards and design

	 4.	 Arranging for integrating disparate components into a single entity:
product or deliverable

	 5.	 Arranging for acceptance testing by the client
	 6.	 Delivery

Management Levels
First level. The first level of management if often called technical management

or line management. Technical management is the conduit between the individu-
als who do the work and the individuals who manage the work. Technical manag-
ers are therefore very close to where the work is being carried out. The day-to-day
job of a technical manager is primarily concerned with providing leadership for
the technical aspects of the work (the “how” of getting things done). The control
aspect of technical management therefore focuses on guiding the work and the
people. Often the planning role for technical management is primarily work
allocation.

Second level. Second-level management is typically called middle manage-
ment (for devotees of Dilbert, picture the pointy-haired boss). Second-level man-
agement supervises first-level managers and interacts with other management
layers. Often second-level management has multiple levels and names, including
manager, senior manager, deputy general manager, general manager, etc. The list
could go on and on. The primary concern of this layer of management is to ensure
integration, cohesion, results delivery, and fire fighting and to be the bridge
between senior management and first-level management.

J. Ross Publishing; All Rights Reserved

Management of Software Development Projects  235

Senior level. Senior management is concerned with the profitability of their
unit. Senior management takes full ownership of a unit or a division or a group
or a company. The key measure of success for senior-level management is results
— the results that are expected by top management.

Top level. Top-level management sets and manages strategy and sets the ulti-
mate goals of the organization. Top management is concerned with the direction,
survival, and growth of the organization.

In large organizations and in large projects, a software project manager is in
the middle-management level. In smaller organizations or smaller projects, an
SPM is in the first level — technical or line management.

SO, WHAT DOES A SOFTWARE PROJECT MANAGER DO?

We gave thought to this question and we came up with an answer . . . plenty. So,
we made a list:

	 1.	 Delivery functions
•	 Manage work

◆	 Plan
◆	 Organize
◆	 Allocate
◆	 Progress chasing
◆	 Completion of individual assignments
◆	 Integrate
◆	 Deliver as specified

•	 Manage quality
◆	 Plan
◆	 Implement verification and validation
◆	 Allocate verification and validation activities
◆	 Progress chasing
◆	 Completion of quality assignments
◆	 Monitor and measure quality continuously
◆	 Improve quality continuously

•	 Manage productivity
◆	 Plan
◆	 Monitor and measure productivity
◆	 Improve productivity

J. Ross Publishing; All Rights Reserved

236  Mastering Software Project Management

•	 Manage team morale
◆	 Plan
◆	 Monitor morale
◆	 Motivate the team continuously

•	 Manage the schedule
◆	 Plan
◆	 Monitor work progress vis-à-vis schedule
◆	 Implement preventive and corrective actions as required
◆	 Deliver on schedule

	 2.	 Reporting functions
•	 Report to management
•	 Report to the client
•	 Report to the quality department (or SEPG)
•	 Participate in meetings

	 3.	 Organizational assistance functions
•	 Participate in strategic initiatives
•	 Participate in quality initiatives/certification

◆	 Process improvement activities
◆	 Participate in audits
◆	 Conduct audits
◆	 Verification and validation assistance to peers

•	 Assist in recruitment/interviews
•	 Assist in human resource development (training, recruitment)
•	 Assist in project acquisition

	 4.	 Miscellaneous functions as required (i.e., do what it takes to deliver
value)

Performing the delivery and reporting functions well is critical to the success of
an SPM.

Some final words about management and SPMs. In Appendix A, we have
tried to present the art and science of management in a nutshell as we think is rel-
evant to SPMs. Many books address this subject. To learn more about the art and
science of management, we strongly recommend that you read the good ones.

REFERENCE

1.	 Henri Fayol and Gray, Irwin. General and Industrial Management 1984. New
York: Institute of Electrical and Electronics Engineers.

J. Ross Publishing; All Rights Reserved

APPENDIX B

DECISION-MAKING
FOR SOFTWARE PROJECT
MANAGERS

INTRODUCTION

Decisions, decisions, decisions … sometimes we make decisions, postpone mak-
ing decisions, jump to making a decision, sit on decisions, and face tough deci-
sions and sometimes we delegate making decisions. Decisions are part of everyday
life — and even more so for a manager. Your job description as an SPM likely
includes “the ability to make quality decisions” as one of the key result areas.
Appendix B presents some of the aspects of decision-making. In some instances,
the material presented is quite brief (which might induce you to study the subject
further and master it).

But first, let’s attempt to define decision-making. Decision-making is “choos-
ing between alternatives in a volatile environment, while having incomplete/
unreliable information about the scenario at hand and with uncertain and unpre-
dictable outcomes for the available alternatives. Speed is needed, mainly for the
sake of expediency.” Now, let’s look at the key words in this definition.

Volatile. In the software project environment, the environment is described
as being volatile because software project execution is never stable (e.g., the
human resources are inherently nonlinear systems and therefore chaotic). By defi-
nition, a project is also not a continuous endeavor: it is temporary, with a defined
beginning and ending. Additionally, a specific project is executed only once and
for the first time, people are temporarily assigned to the project; as well, the client
is new and changes in requirements are certain. So, how could we define this situ-
ation as being anything but a volatile environment?

237J. Ross Publishing; All Rights Reserved

238  Mastering Software Project Management

Incomplete and unreliable information. The terms incomplete and unreli-
able information are included in the definition of decision-making because in the
project environment, we do not have time to wait for perfect information to be
received. Deadlines always loom large on the horizon. So we also cannot wait to
ensure that the information is complete. The information at hand therefore will
always be incomplete and unreliable (even though the degree of unreliability and
incompleteness will certainly vary). We cannot expect to have better than a 90%
level of completeness and reliability of information. (If you have complete and
reliable information, then you can make authoritative judgment calls instead of
decisions.)

Uncertain and unpredictable outcomes. Similarly, the terms uncertain and
unpredictable outcomes are used because a volatile environment is not conducive
to having predictability of outcomes. (Again, if you know the outcome and its
certainty, the decisions would be called judgments.)

Expediency. We also use the term expediency, a term which is not synony-
mous with “aiming to do justice.” Decisions are often made in organizations to
“tide them over” in a current situation/difficulty, to solve an immediate problem/
issue, or to simply get things moving. Decisions therefore render injustice at
times. We do not condone being unjust in the name of expediency; we are merely
confirming the facts of life in decision-making.

A prevalent misunderstanding is that decisions are judgments, which is far
from being universally true. True, judgment is used to make a decision, but rarely
are the terms synonymous. Now that we have a definition, let’s move forward with
our discussion of decision-making.

CLASSIFICATION OF DECISIONS

Decisions may be classified for better understanding. Our taxonomy includes:
■	 Strategic and periodic decisions

•	 Selection decisions
◆	 Products/services
◆	 Process
◆	 Location
◆	 Layout
◆	 Equipment
◆	 Workforce

J. Ross Publishing; All Rights Reserved

Decision-Making for Software Project Managers  239

•	 Design decisions
◆	 Product design
◆	 Service design
◆	 Job design
◆	 Process design
◆	 Control system design
◆	 Capacity design

•	 Recurring decisions
◆	 Target setting
◆	 Scheduling
◆	 Sequencing
◆	 Inventory control
◆	 Cost control
◆	 Maintenance

•	 Planning decisions
◆	 The system
◆	 Usage of the system

•	 Organizing decisions
◆	 Organizational structure
◆	 Jobs
◆	 Staffing
◆	 Work and workstation design
◆	 Standards of performance
◆	 Compensation systems

•	 Controlling decisions
◆	 Quality
◆	 Quantity
◆	 Schedule
◆	 Inventories
◆	 Costs
◆	 Maintenance

Although all of us make some of these decisions, very rarely does any given deci-
sion-maker make all of the decisions in the list — except, perhaps, entrepreneurs.

Decision-Making Styles
Decision-making styles differ from person to person. And obviously the same
style of decision-making is not appropriate for every scenario. Even though indi-
viduals have their own particular style of decision-making, having knowledge of
the various decision-making styles allows us to have flexibility in adopting the
appropriate style to fit the scenario at hand. Let’s look at some decision-making
styles.

J. Ross Publishing; All Rights Reserved

240  Mastering Software Project Management

Judgment-/hunch-based. The judgment-/hunch-based style of decision-
making is used by people who have a vast amount of experience. Experience
builds knowledge about the possible consequences that can result from a deci-
sion. Experience therefore hones hunches to a fine edge. Some people are inher-
ently “convergent thinkers,” meaning that they look for one single best solution
for a situation. Convergent thinkers tend to use the judgment-/hunch-based
style of decision-making. This style is also best suited for situations in which the
experience/knowledge gap is wide between the decision-maker and the decision-
implementers. Some scenarios include:

•	 Trainee/novice decision-implementers and a more experienced or
knowledgeable decision-maker

•	 Emergency situations (such as a battlefield-like or fire-fighting sce-
nario)

•	 Breakdown maintenance

Analytical. Analytical decision-making implies that a thorough analysis has
been carried out in which all possible alternatives as well as their costs and the
possible outcomes have been considered. After all of the possible paths are ana-
lyzed, the optimal alternative is selected. Analytical decision-making is used by
knowledgeable individuals who are somewhat less experienced in their particular
field. The scenarios in which analytical decision-making is appropriate include:

•	 Strategic decisions that have a long-term impact, especially selection
and design decisions

•	 When time is available for developing all of the alternatives and mak-
ing the decision

Precedence-based. A precedence-based decision-making process uses estab-
lished practices and policies to make decisions. (A precedence that has been well
repeated is also known as organizational policy.) The precedence-based decision-
making style is used to ensure uniformity between different decision-makers,
perhaps at different locations. Scenarios for precedence-based decision-making
include:

•	 Senior management who sets the policy and middle managers who
make the decisions

•	 Headquarters that sets the policy and branches that make the deci-
sions

Participative. Participative decision-making is sometimes called consultative
decision-making. In the participative decision-making style, the decision-maker
consults stakeholders to get their perspectives on the scenario at hand to ensure

J. Ross Publishing; All Rights Reserved

Decision-Making for Software Project Managers  241

that all concerns are taken into consideration, and that those concerns can be
addressed, before making the decision. Possible scenarios for participative deci-
sion-making include:

•	 Target setting
•	 Sequencing
•	 Scheduling
•	 Inventory control
•	 Preventive maintenance

Democratic. In the democratic style of decision-making, the decision-
maker simply lets the decision-implementers make the decision. Democratic
decision-making is especially useful in public-interfacing scenarios. The decision-
maker formulates guidelines (or sets boundaries) and then allows the decision-
implementer to make the decision. The democratic style of decision-making is
prevalent in knowledge realms, such as research and development organizations,
educational institutions, high-tech fields, and aid distribution work.

Consensus building. In consensus building, a decision-maker generates
acceptance for a decision from individuals who have different, and sometimes
conflicting, interests in the matter at hand. The decision-maker consults all of the
involved parties and finds out about their concerns and their levels of acceptance
for a proposed decision. The decision-maker then negotiates with the involved
parties to arrive at a consensus. The decision-maker then rolls out the decision.
The consensus-building process is normally followed by committees in which
peers come together to discuss and finalize a decision that concerns all parties.
The trick is to arrive at a win-win situation for everyone. Usually, everyone has
to give up something to get something. The consensus-building process needs a
decision-maker who is mutually acceptable to all parties and who is thoroughly
knowledgeable in the field and in the decision scenario.

Dominant Factor in Decision Scenario
At times, a dominant factor influences decision-making. For example, a mining
company may have no alternative but to open a plant that is near a mine, or a
maritime shipping company’s liners may need to be docked at a seacoast. The
location of a company’s market is another dominant factor. Although locating a
company away from its market is possible, typically being close to customers is
more efficient. Other dominant factors in decision-making include emotional fac-
tors that influence an entrepreneur, such as using a native location when opening
a company, and the expertise of an entrepreneur, such as selection of the product,
etc. In day-to-day affairs, however, a customer’s preference usually becomes the

J. Ross Publishing; All Rights Reserved

242  Mastering Software Project Management

dominant factor. A statutory obligation can also be the dominant factor. In some
cases (e.g., Y2K), even the calendar is the dominant factor. When a dominant
factor is present in a decision-making scenario, the decision will be affected by
the dominant factor and our understanding of the factor. We therefore have to
manage around dominant factors (they guide and direct).

When a dominant factor is absent, or using a dominant factor is not pref-
erable, tools and techniques may be used. Some of these tools/techniques are
described in the next section.

TOOLS AND TECHNIQUES FOR DECISION-MAKING

Over time, tools and techniques have been developed to improve the quality of
decision-making and to reduce dependency on a given manager’s capacity to
arrive at a good hunch-based decision.

Critical Examination
Critical examination is an excellent technique for bringing more clarity to a sce-
nario and to evaluate the available alternatives. Critical examination is based on
two types of questions:

•	 Primary: “What” and “why” questions are used to clarify a scenario.
•	 Secondary: “What else” and “what should” questions are used to dis-

cover alternatives and to focus on a selection.
Using questions can illuminate the five aspects of any scenario:

•	 Purpose (why)
•	 Means (how)
•	 Place (where)
•	 Sequence (when)
•	 Person (who)

Use of these questions is shown in Table B.1. Answers to the questions in the
What Should column provide the decision.

Critical examination can be used “all by itself” or in combination with other
tools in any decision-making scenario. For example, answers to the questions in
the What Else column can be obtained from another tool and yet another tool can
be used for evaluating the alternatives and to arrive at the best possible decision.

Queuing Theory
Queuing theory facilitates analysis of the workload at a single workstation so that
the number of workstations needed to optimize capacity utilization and service

J. Ross Publishing; All Rights Reserved

Decision-Making for Software Project Managers  243

levels can be planned. Queuing theory allows us to visualize the work arrival and
execution rates at a given workstation and provides us with a set of equations for
making decisions, especially in regard to the building capacity that is adequate to
execute the tasks at hand effectively and economically. Some examples of places
where the application of queuing theory can be seen and used for decision-
making include service departments in software development organizations,
retail checkout counters and counters where tickets are issued, and in automobile
service departments (e.g., by mechanics).

Linear Programming
Linear programming (LP) is a mathematical optimization technique that allows
us to define objectives and constraints. LP provides a procedure for optimizing
a process to meet an objective. Optimization includes either maximization (such
as revenue or profit) or minimization (such as cost or tardiness). The solution
is derived by a procedure called simplex programming. Using manual means for
simplex programming is impractical. Computer assistance is more or less essen-
tial for the use of this technique.

The Transportation Problem Technique
The transportation problem technique deals with reaching a number of places
(m), originating from a number of places (n), while optimizing travel, usually by
reducing distance or time. Originally this type of decision-making was typically
applied to determining how to distribute items from a number of warehouses that
were located across a country (or for that matter, now the world) to a number of
sales points that were also located across the country (or the world). By using the

Table B.1. Critical Examination Questions

Question What Why What Else
What

Should

Purpose What is done?
Is it necessary?

Why is it done? What else could be done? What should
be done?

Means How is it done? Why is it done
this way?

How else could it be done? How should
it be done?

Place Where is it done? Why is it done
there?

Where else could it be done? Where should
it be done?

Sequence When is it done? Why is it done
then?

When else could it be done? When should
it be done?

Person Who does it? Why is it done
by them?

Who else could do it? Who should
do it?

J. Ross Publishing; All Rights Reserved

244  Mastering Software Project Management

transportation problem technique, this distribution problem can be optimized by
using a number of iterations. Each of the iterations involves making an assign-
ment of originations and destinations and then computing the costs between
these points. The assignment of originations/destinations is iterated until a satis-
factory solution is found. For real-life problems, computer assistance is essential
when using the transportation problem technique.

PERT/CPM
PERT (the Program Evaluation and Review Technique) originated in the research
and development (R&D) field as a tool for visualizing the activities to be per-
formed for completing a program. The PERT process also supports handling the
uncertainty involved in the R&D domain with the aid of probability theory. CPM
(the Critical Path Method) originated in the construction industry as a tool for
determining the completion time for projects and for identifying critical activities
(the activities which should not be delayed if the project is to be completed on
schedule). Both techniques are based on building and utilizing a network diagram.
Over time, these techniques have come to be used and referred to together. PERT/
CPM techniques help us visualize the activities and their sequence of performance
to complete a project; to deal with uncertainties; and to identify the critical activi-
ties in the project. PERT/CPM is performed best by using computer assistance.
(PERT/CPM is discussed in greater detail in Appendix H.)

Management Games
Management games (or game theory) are a tool that helps to analyze the competi-
tion’s strategy. Game theory helps us to know the outcome of strategies between
two or more parties. The basic form of the game theory decision-making tool is
expressed in the popular example of the prisoner’s dilemma. In the prisoner’s
dilemma, two men are caught at the scene of a theft. They are taken to a police
station and interrogated in two separate rooms. Now, if neither confesses, they
might go scot-free or be given only the minimum sentence. But if either one (or
both) confesses and implicates the other, one of these men will certainly receive
the maximum sentence. The dilemma is that neither prisoner knows the strategy
of the other.

More often than not, a manager finds himself (or herself) in a similar situ-
ation. But instead of a jail sentence, the dilemma concerns the consequences of
profit/loss or gaining/losing a deal. Game theory helps us to work out the pos-
sible outcomes for a number of strategies/counterstrategies and then to select the
optimal strategy.

J. Ross Publishing; All Rights Reserved

Decision-Making for Software Project Managers  245

Delphi Method
The Delphi method consists of consulting knowledgeable persons in an anony-
mous manner and soliciting a response or a decision from each; comparing the
answers and sharing the rationale for all or at least the outliers; and then iterating
until a consensus has been reached on the decision at hand. Crowdsourcing is a
variant of the Delphi method.

Decision Trees
Decision trees allow us to graphically explore the possibilities for the conse-
quences of our actions. The following diagram is an example of a decision tree:

Action

Outcome 1

Outcome 2

Outcome 2.1

Outcome 2.2

Outcome 2.2.1

Outcome 2.2.2

The branches of a decision tree can contain any number actions and outcomes.
A side benefit of the graphical nature of a decision tree is that it helps organize
seemingly disparate thoughts that can “grow” in any direction.

Interpolation and Extrapolation
Historical data provide a source of substantial information. Interpolation and
extrapolation are statistical techniques for forecasting future trends using histori-
cal data. Interpolation is for forecasting an intermediate value; extrapolation is for
forecasting a future value. These techniques are also referred to as time series
analysis.

Sampling
Sampling is a technique used for the gathering information. In data gathering, the
sampling technique is used to test assumptions, theories, proposed decisions, and
quality control. The basis for using sampling plans is the underlying assumption
that a randomly drawn sample truly represents a homogenous population. Key
terms used in the context of sampling include:

•	 Universe or population: includes the whole gamut of data of all rel-
evant candidates that can be included (A population is generally very
large, so large that it is impractical to cover every member of the
population.)

J. Ross Publishing; All Rights Reserved

246  Mastering Software Project Management

•	 Sample: a small section of the population or universe, drawn at ran-
dom

•	 Candidate: represents each data item in the population or universe
that will be considered for inclusion in the sample

For sampling to be successful, the key aspects are (1) the population or uni-
verse is homogenous and (2) the sample is randomly drawn. On many occasions,
however, we find that the population is not homogenous and that the sample is
not truly random. Therefore, we use several techniques and strategies to ensure
that sampling produces better results.

Techniques for drawing samples. Some commonly used techniques for draw-
ing samples include:

•	 Random sampling: used in a homogenous population in which sample
candidates are drawn based on a lottery or by using random numbers

•	 Judgment sampling: a selection process based on our judgment about
a candidate’s ability to truly represent the population

•	 Convenient sampling: a technique in which we select candidates who
are readily available to us (exertion of effort is hardly required)

•	 Stratified sampling: a more powerful manner of sampling used in pop-
ulations that are not truly or fully homogenous; a technique in which
the population is divided into various strata and a random sample is
drawn from each stratum

•	 Cluster sampling: a technique similar to stratified sampling in which
the population is divided into representative clusters and then sample
candidates are drawn from each of the clusters using a random sam-
pling technique

Strategies for sampling. Strategies, such as the single sampling plan or the
double sampling plan, are also used in the context of sampling:

•	 Single sampling: A single sample is drawn from the population and
used for drawing conclusions about the population.

•	 Double sampling: Double sampling plans use two typical methods:
drawing samples sequentially or concurrently.

Sequential sampling. In the sequential sampling method, one sample is
drawn and tested. Then, if the results of this first sample are found to be unsatis-
factory for some reason, another sample is drawn from the same population and
this sample is tested. A decision(s) is then made based on the outcome of testing
the two samples. The one-sample method is popular in lot testing. Lot testing is
done when large numbers of products are to be tested. A sample is drawn and

J. Ross Publishing; All Rights Reserved

Decision-Making for Software Project Managers  247

tested. If the first sample fails the criteria for lot acceptance, a second sample is
drawn. If the second sample confirms the findings of the first sample, the lot will
be rejected. But if the first sample fails the criteria for lot acceptance and the sec-
ond sample passes the criteria, the organization’s process is followed. This process
could be to accept the lot or to carry out 100% testing or to take another sample
and then use the majority outcome.

Concurrent sampling. In the concurrent sampling method, two samples are
concurrently drawn from the same population and tested concurrently by two
independent agencies. The results are then compared. A familiar example that
comes to mind is from the medical community: laboratory testing for cancer via
a biopsy. In this example, two tissue samples are sent to two different laboratories
and the findings are compared.

Statistical Analysis
Statistical analysis is a set of methods (tools) that allows managers to extract
information (and perhaps knowledge) from data. (We will even go so far as to say
that every manager uses statistics — in that managers use averages and trends.)
Because descriptions in this section are not comprehensive, our recommendation
is that you educate yourself about these techniques by studying more elaborate
material about them. In fact, our recommendation is that every manager who is
interested in making good decisions should take a basic course in statistics. We
will now describe a few statistical techniques that we think are the most valuable
for decision-makers:

■	 Central tendency, dispersion, and skewness: The measures of central
tendency, dispersion, and skewness help us to draw inferences about a
population. The three measures of central tendency for data are mean,
mode, and median:
•	 The arithmetic mean (usually called the average value) is used to

summarize data. We use such terms as mean time between failures,
average defect density, and average duration of a project (just to
name a few of the common metrics). The arithmetic mean is a
good measure to use when we have a large number of observations.
Use of the mean, however, may not be appropriate for a small
number of observations.

•	 The statistical mode (modal value or the most frequently occurring
value) is typically more suitable for small samples of data.

•	 The median (or the middle value) is another measure of central
tendency.

J. Ross Publishing; All Rights Reserved

248  Mastering Software Project Management

The measures of dispersion describe the variability of data. Commonly used
measures of dispersion are standard deviation (represented by Greek letter sigma,
σ) and variance. Other measures of dispersion are quartile deviation, percentile
deviation, etc. Skewness is a measure that indicates if the data is uniformly dis-
tributed or is skewed in some way. We must check for skewness because normal
decisions cannot be made from data that is skewed in one way or another.

■	 Correlation: Correlation (or covariance) is a method to determine
if one set of outcomes is related to another set of inputs. A com-
mon question can be examined/confirmed by this measure: “Would
increased inspection ensure higher quality? We compute the coef-
ficient of covariation and, based this computation, draw an inference
about whether one is dependent on the other or not. But remember
one important thing about correlation: correlation and causality can
be two very different things!

■	 Probability distributions: Three popular probability distributions are
normal, binomial, and Poisson:
•	 Normal probability distribution assists us in making inferences

about normally occurring values. In many populations, for exam-
ple, there is one central tendency with an equal number of obser-
vations occurring on either side of this central tendency, but with
fewer observations occurring the further away they are from the
central point.

•	 Binomial probability distribution assists us in making inferences
about values that are binary in nature, such as in tossing a coin: in
a coin toss, only two possible values (outcomes) are possible (we
will ignore the possibility of the coin standing edgewise!).

•	 Poisson probability distribution assists us in making inferences
about rare events, such as fires, floods, and earthquakes.

Other probability distributions, such as beta distribution, gamma distribu-
tion, and T distribution are used for specific purposes. Statistics handbooks may
be consulted for in-depth information.

■	 Tests of goodness of fit: Goodness of fit is a set of techniques that is used
to validate the results obtained from statistical testing. We compute
the measure of goodness of fit from the interaction of expected val-
ues and the actual values (χ2, chi-square; pronounced with “ch” as in
“kay”).

■	 Hypothesis testing: Hypothesis testing is a set of techniques that assists
us in designing tests (or experiments) and using sampling of data to
determine if a hypothesis is valid or not.

J. Ross Publishing; All Rights Reserved

Decision-Making for Software Project Managers  249

Consultants
More often than not, a manager will need to manage a particular knowledge area,
but the manager has less knowledge than he or she would prefer to have. Another
possibility is that the manager has no experience in the particular decision sce-
nario, i.e., he or she is has no experience in defining and assessing the alternatives,
in assessing the possible outcomes, or even in properly defining the problem in
the first place. In scenarios such as these, using a consultant can come in handy.
A properly chosen consultant brings his or her knowledge and training to the
decision-making process to assist in all areas: from problem definition to develop-
ment of the decision scenario, to enumerating the alternatives, and to generating
the possible outcomes, which enables the selection of the optimal decision.

THE DECISION POSTMORTEM

We should learn from the outcomes of all of the decisions that we make. Possible
decision outcomes include:

•	 As expected: In this outcome, we need to examine if we made a really
good decision or if control of the decision’s implementation ensured
the expected result.

•	 Better than expected: In this outcome, we need to analyze what caused
the improved outcome so that we can use that aspect in making all
future decisions (assuming the outcome was more than just a random
variation).

•	 Worse than expected: In this outcome, we need to analyze what caused
the failure. Why did the decision we made result in failure and how
could that failure have been prevented so this pitfall can be avoided in
the future?

So, should we conduct a formal postmortem for the decision outcome with all
concerned and then document it? Our recommendation: If a decision is impor-
tant enough to be approached formally, then the answer is “yes.” In general, docu-
menting the results of a decision is always a good idea because the information
will be available for future reference, even if only for us. If a decision involves oth-
ers, documentation is optional. Having the documentation, however, will allow us
to have flexibility in the future because we may or may not involve others. Get the
facts/data, analyze the decision, and then decide what to do in the future.

Some closing words. Everyone makes decisions. We therefore need to be
aware of decision-making theory, techniques, and tools. Mastering as many tools
and techniques as possible enriches a software project manager.

J. Ross Publishing; All Rights Reserved

J. Ross Publishing; All Rights Reserved

APPENDIX C

PEOPLE MANAGEMENT

INTRODUCTION

Our opinion is that people management is the oldest form of management.
The word management itself contains the word man, which represents human
beings as being at the beginning of the word. Ever since humans have organized
themselves to accomplish a task, they have required some form of management
(some would say manipulation) to achieve a desired result. The endeavors of
management can vary from waging wars to building edifices or growing food.
Any endeavor requires that some form of organization be performed (even if it is
done inefficiently). To accomplish any task with more than just a few people also
requires some combination of exhorting (motivating), judging/measuring perfor-
mance, rewarding, promoting, punishing, and possibly even demoting individuals
or groups.

In software project management, as in all other endeavors, people are man-
aged to achieve the objective of delivering a software product, while meeting the
goals of being on time and being within the allocated budget, and at the same time
maintaining and improving the morale of the team members. In software project
management, people management includes carrying out several activities:

•	 Estimating the human resources requirement
•	 Acquiring the required human resources for project execution
•	 Allocating work to team members so that project execution is efficient

and effective
•	 Motivating team members to higher levels of achievement
•	 Maintaining team morale at desirable organizational levels
•	 Disciplining team members as necessary
•	 Developing and mentoring people who are suitable for higher respon-

sibilities
•	 Releasing human resources when the project is completed

251J. Ross Publishing; All Rights Reserved

252  Mastering Software Project Management

Let’s look at each of these activities in greater detail.

ESTIMATING THE REQUIRED HUMAN RESOURCES

Arriving at a project’s human resources requirements is achieved from the effort
estimate that has been made for the project in conjunction with the project’s tech-
nical specifications. A software project needs human resources who have various
skill sets. Some of the usual skill sets include:

•	 Systems analysts/business analysts who collect user requirements,
either directly from the end users or from documentation or from
reverse engineering an existing product, and then document them in
such a way that software designers can carry out the software design
activity

•	 Software architects/designers who develop the designs for a software
product, including the software architecture, navigation, inputs, out-
puts, and processing, and document the software design in such a way
that programmers can develop the software

•	 Programmers who develop the required code based on the design
documents (A project may use multiple programming languages. If
so, each programming language will need programmers with different
skills.)

•	 Database specialists who are experts in the data handling aspects of
the software project (Database specialists design the database and
develop stored procedures/triggers that assist the programs in han-
dling data efficiently. Database specialists also guide the programmers
in developing efficient data handling routines.)

•	 User interface designers who develop the user interface screens in a
manner that is aesthetically pleasant for end users and also develop
the necessary graphics, icons, and buttons that are required for the
screens

•	 Testers who carry out software testing for all of the components as
well as the testing to ensure that the end product of the software proj-
ect conforms to the project’s testing plans

To determine the human resources requirements, we apportion the effort
estimated for the project among the skill categories (and possibly others) and
then round the estimates off to the nearest day. (Allocating a person for part of
a day may be ideal; however, allocating a person for less than a full day is often
impractical.) Based on the effort required for each of these categories, we deter-
mine the persons who are required full time and those who can be allocated

J. Ross Publishing; All Rights Reserved

People Management  253

part time. Full-time people are for the activities that require significant duration
continuously. Part-time people are best applied to those tasks that are required
for only a short period of time or for those tasks that are needed intermittently
over a long period of time, but in which each requirement is of a short duration.
The SPM will also need to develop the schedule for project execution so that the
period during which each of the skill sets will be required is understood and can
be easily communicated.

Based on the needed skill sets and the schedule, we can request human
resources from the organizational entity vested with the responsibility of allocat-
ing human resources to projects. In this request, we detail the number of people
needed, the dates on which they are required, and the skill sets needed by them.
(A sample resource request form is presented in Chapter 4.)

ACQUIRING THE REQUIRED HUMAN RESOURCES

To execute a project, people (as necessary) have to be acquired either from within
the organization or from external sources. Sources internal to the organization
include:

•	 People “on the bench” who are not currently allocated to any proj-
ect (People on the bench could just have been de-allocated from a
completed project and be awaiting allocation to another project or
they could be new recruits who are waiting for allocation to their first
project.)

•	 People working on other projects who are likely to be released by the
required date(s)

•	 People in the recruitment pipeline who are likely to join the organiza-
tion and who therefore will be available by the required date(s)

Sources external to the organization could include:
•	 Consultants from consultancy organizations who are taken on as tem-

porary hires
•	 Freelance consultants who are taken on as temporary hires
•	 New recruitments for the regular rolls of the company

The project management office is responsible for acquiring the required number
of people with the desired skill sets for the project and for arranging for their
allocation. Based on the resource request, the PMO (or the entity that is vested
with the responsibility of making people available to projects) allocates the people.

A situation that plagues many SPMs is the differences in the skill levels of the
people in the organization: in any organization, the skill levels of the people will
vary from poor to super, with fair, good, and very good skill levels in between.

J. Ross Publishing; All Rights Reserved

254  Mastering Software Project Management

When estimating effort, however, we assume an average level of skills (i.e., good
skills). Ideally, the total number of allocated persons will equal the number of
requested people when the skill levels are factored into the equation. Yet, when
actual allocation takes place, the SPM could get a mix of skill levels that range
from poor to super skills. For example, suppose an SPM requests five persons
who have average skills. But when the actual allocation is made, the SPM receives
one person with very good skills, two persons with good skills, and four persons
with poor skills — for a total of seven persons. When we normalize the allocated
number based on the individual skill levels allocated, the total number of people
allocated is five. The allocation is therefore as the SPM has requested. The PMO
needs to ensure that the allocation matches the normalized request for personnel
from the SPM and then, if necessary, to convince the SPM that a fair allocation
of people has been made to the project. (Appendix D, Productivity for Software
Project Managers, deals with this concept and the aspects of productivity in
greater detail.)

ALLOCATING WORK TO TEAM MEMBERS

Once human resources are acquired and allocated to the project, they should be
allocated work in such a manner that project execution can begin and run effi-
ciently and effectively. The following activities are part of work allocation:

	 1.	 Organize work into work packages that can be executed by one
person or by a small team of two to three persons working together.
Include the work’s scope and instructions (documented) for car-
rying out the work in each work package. Work packages typically
include developmental as well as quality assurance work (as appro-
priate).

	 2.	 Estimate the effort required to complete the work based on the skill
of a person putting in an average (good) level of skill.

	 3.	 Allocate work to the persons who are responsible for its completion
by:
•	 Entering the work allocation in a work register
•	 Providing the scope of the work and instructions for carrying out

the work
•	 Providing schedule, effort, and quality targets
•	 Negotiating and then finalizing the targets with the assignees

	 4.	 Monitor progress and ensure completion.

The subject of motivating people to put forth super effort and to achieve higher
levels has received significant attention. In fact, motivating teams and maintain-
ing their morale are such large topics that they are subjects unto themselves. Full

J. Ross Publishing; All Rights Reserved

People Management  255

coverage of them is therefore beyond the scope of this appendix. Numerous works
are available that discuss the motivation of people in great detail. Online material
is available as well. We recommend that SPMs educate themselves on these topics
so that they can perform the vital function of motivation effectively.

MOTIVATING TEAM MEMBERS

Concerning their occupational work, people typically have two primary objec-
tives: to earn a livelihood and to perform the work that has been assigned to them.
These primary objectives are followed by a host of secondary objectives: the pos-
sibility of advancement, earning more money, achieving satisfaction from doing
work, and receiving respect from society and from others. Regardless of the sec-
ondary objectives, the first objective is to earn a livelihood! (Remember Maslow’s
hierarchy of five basic needs?1)

Of course, the people who still come to work even though their livelihoods
have already been taken care of by their ancestors (or spouses, good fortune, etc.)
are an exception. For these people, their primary objectives might include:

•	 Gaining the respect of others and the self-satisfaction that comes from
working (i.e., for the purpose of enhancing their personal sense of self-
respect)

•	 Acquiring knowledge (e.g., to learn about a business so that they will
be able to start a similar one)

•	 Having social interaction and using time productively
Thus, the work is generally a means to an end rather than a goal unto itself.

In addition to the objectives for working, people can be classified in several
simple ways:

■	 By their purpose
•	 Straightforward (open)
•	 Scheming (closed)
•	 Normally straightforward (unless in a situation that affects them

personally)
■	 By pleasantness

•	 Pleasant
•	 Disagreeable
•	 Neutral (no pronounced inclination to either characteristic)

■	 By their expectations
•	 Easy to please
•	 Difficult to please
•	 Usually easy to please, but can be difficult

J. Ross Publishing; All Rights Reserved

256  Mastering Software Project Management

■	 By their level of desire
•	 Ambitious
•	 No ambition
•	 Somewhat ambitious

■	 By their level of acceptance (of you)
•	 Willing
•	 Reluctant
•	 Usually willing (except when you have bad news)

■	 By their level of responsibility
•	 Responsible by nature
•	 Irresponsible by nature
•	 Mostly responsible

■	 By age
•	 In the prime of life
•	 Well past the prime of life
•	 Slightly past the prime of life

Classifying people by age, the last category, is illegal, especially for recruitment or
advancement, in North America and in Europe at a minimum. Nevertheless, indi-
viduals in any organization naturally fall into certain age categories. In all of these
classification schemes, however, notice that types one and two are the extremes.
Type three is typically found in most organizations, but an individual can be any
combination of these classifications:

•	 Straightforward, pleasant, easy to please, ambitious, willing, respon-
sible, rich, and in the prime of age (obviously a best-case scenario!)

•	 Scheming, unpleasant, difficult to please, no ambition, reluctant, irre-
sponsible, poor, and well past prime

The list can (and does) go on with a multitude of combinations and permutations.
Given this level of complexity, how do we motivate people to perform their tasks
to the best of their ability?

History is replete with examples of ordinary people performing extraordinary
feats when motivated by necessity, fear, or some reward. Motivation schemes
include:

Carrot and stick. One of the most common and effective techniques is the
carrot and the stick. (Why? It works with many types of people!) The carrot and
stick technique rewards excellent performance and punishes poor performance.
This reward/punishment process can go a long way in maintaining performance
in ordinary situations. A cardinal rule for this technique, however, is that the
technique must be exercised fairly, without fear, and without favoritism. Any

J. Ross Publishing; All Rights Reserved

People Management  257

perception of bias or hesitation when exercising this technique renders it inef-
fective (including taking umbrage during extraordinary situations and avoiding
application of policy). (Note: A limitation to the carrot and stick technique is that
SPMs are rarely in a position to reward or punish on their own or with the desired
immediacy, which might mean using this technique in modern, progressive orga-
nizations is not all that feasible.)

Stimulus-response. The second most effective technique is the stimulus-
response theory. This technique is based on the assumption that people will
respond visibly and positively to a positive stimulus. The alternative is also
true: people respond negatively to a negative stimulus — albeit not always in an
explicit manner (which can be misleading). In most cases, for example, a negative
response comes sooner rather than later, but maybe not when we are ready for it
or at a time that we would prefer. So, take care to ensure that a negative stimulus,
when given, is administered in such a way that a positive response is generated
— doing so is very important. (Remember the words of Mario Puzo in his novel
The Godfather: “It is not easy to say ‘no’ and one needs training in administering
negative stimuli.”2)

Expectancy. Another theory we need to learn about is the motivational theory
proposed by Victor Vroom (Yale School of Management) in 1964.3 According
to Vroom’s Expectancy Theory, people have expectations when they come to an
organization and put in the effort required to complete their assignments. In
addition to earning a salary, these expectations can include fair treatment, career
advancement, recognition, rewards, and punishment (e.g., for lack of perfor-
mance, violations, errors, etc.). In Vroom’s Expectancy Theory, when positive
performance results in a realization of positive expectations and negative perfor-
mance results in a realization of negative expectations, an individual will be moti-
vated to better performance. (Note: A point of interest is that most individuals
watch how the expectations of others are being met. If they perceive that certain
individuals are getting more positive or fewer negative rewards, they are likely to
become de-motivated. Numerous books and online articles that discuss Vroom’s
Expectancy Theory in great detail are available.)

Laissez-faire. Remember from our discussion of the laissez-faire leadership
style that it is a “hands-off” style in which a manager provides little direction
concerning the assignment and completion of tasks and gives team members
as much freedom as possible. The team members have the power to make
decisions and solve problems on their own. Having this added responsibility
can be a source of motivation to the team. The manager does not, however,
ignore the team. The manager is available to answer questions and provide/

J. Ross Publishing; All Rights Reserved

258  Mastering Software Project Management

supply information as required. But even in laissez-faire management, a man-
ager must still be fair, and also be perceived as being fair, in all of his/her actions
by all concerned parties. (If a manager is unfair, yet seen as being fair, or vice
versa, any motivational actions taken tend to result in failure.) The laissez-faire
philosophy is sine qua non (absolutely indispensable) in people management and
motivation situations.

Behavioral correction. An important aspect of motivation is delivering
behavioral correction to people who are not performing in a way that is com-
mensurate with the exigencies of the work, the abilities of the person, and the
compensation being given to the person. Behavioral correction is best achieved
through coaching and counseling. Coaching provides expert guidance to a per-
son on how to achieve better performance. The “how to” is provided by training
(either classroom or on-the-job) and expert assistance by a senior person that
is followed by periodic progress assessments. Counseling is resorted to when
the skills are present, but an “attitude correction” is necessary. The first form of
counseling is typically friendly — counseling in which the correction needed is
pointed out in nonconfrontational manner. Nonconfrontational counseling may
be used when an individual is unintentionally exhibiting an undesirable behav-
ior — the individual does not realize the consequences of his/her behavior and
is therefore receptive to counseling. Even after friendly counseling, sometimes
an individual’s undesirable behavior continues. When an individual knows that
he/she is exhibiting an undesirable behavior, confrontational counseling is used.
Confrontational counseling involves presenting the individual with the expected
behavioral correction as well as irrefutable evidence of the undesirable behavior
and the consequential damages. Confrontational counseling also includes outlin-
ing the consequences to the person if the required behavioral correction does not
materialize. (Outlining the consequences of not making the desired behavioral
correction requires management’s approval.) We recommend training in the art
of confrontational counseling for all SPMs so that they will be equipped with the
skills necessary to better deal with difficult situations. Training can be through
formal training or by self-study.

MAINTAINING TEAM MORALE

Think about the classic movie entitled Charge of the Light Brigade, a film that is
based on the poem The Charge of the Light Brigade (by Alfred Lord Tennyson)
and history of the Crimean War (1853–1856).4 As in this film, even underdogs can
be exhorted to incredible actions if their morale is extremely high. In sports, we
often see that a team with higher morale wins over a team with lower morale, even

J. Ross Publishing; All Rights Reserved

People Management  259

if the two teams have similar skills. Keeping team morale at the levels desired by
an organization is also extremely important for successful project execution. Yet,
even if every team member is positive, the team’s morale can still be low. Some
reasons for low team morale include:

•	 A perception that the project is not important to higher management
or that it is not important within the organization

•	 A perception that the technology used in the project is obsolete
•	 A perception that the human resources are being treated unfairly by

the project’s management
•	 A perception that team meetings and reviews do not receive adequate

importance
•	 A view that the targets are either too lax or too tight
•	 The presence of rumor mongers and gossips on the team
Many other reasons lead to lower morale. But what is important is that an

SPM should continuously monitor team morale and strive to maintain it at a
desirable level.

DISCIPLINING WHEN NECESSARY

Although all precautions and actions are taken to motivate team members and to
maintain team morale at higher levels, sometimes disciplining an errant subordi-
nate becomes necessary. Disciplining a team member is usually necessary, how-
ever, only if the team member is found to be willfully indulging in some act(s) that
is detrimental to the health of the project and to the morale of the project team.
For example, an unintentional delay in an assigned task or a task taking more
effort than has been estimated might necessitate counseling and coaching, but
not disciplining. A subordinate might also act out as a result of some unresolved
grievance. So, before subjecting a subordinate to disciplinary action, ensure that:

•	 All grievances have been resolved.
•	 Some reasonable expectations of the individual have not been met by

the organization.
•	 The infraction is not the result of an innocent action(s).
•	 The offending act is indeed willful.
•	 Other persons are not engaged in a conspiracy against the employee.
When these criteria have been addressed, disciplinary action(s) can be taken

with the assurance that a mistake is not being made. Remember a cardinal rule:
the punishment should be commensurate with the infraction. Terminating the
services of an individual is akin to capital punishment. Additionally, recruit-
ing a new employee and training this person costs much more than correcting

J. Ross Publishing; All Rights Reserved

260  Mastering Software Project Management

and retaining an existing employee. The result of a disciplinary action therefore
should be targeted at correcting the behavior (if possible) rather than being puni-
tive. If discipline is inevitable, we recommend that a manager should carry out
the disciplinary procedure/policy of the organization, diligently giving the errant
individual every opportunity to redeem himself/herself.

We should also note that infractions typically do not just “crop up overnight.”
Most behavioral issues tend to be the culmination of a number of incidents that
have occurred over a period of time. We typically find that the need to discipline
is a failure of management: it could have been prevented through the proper use
of motivation and behavioral correction. (Consult textbooks and other types of
books on industrial relations for more information on disciplinary procedures.)

DEVELOPING AND MENTORING SUITABLE PEOPLE FOR
GREATER RESPONSIBILITIES

SPMs are uniquely positioned to spot potential leadership talent in software
engineers in an organization. Once leadership potential is discovered, an SPM is
usually the first person in the organization who can develop this potential into a
reality. How? The SPM puts the latent talent to practical use. By allowing an indi-
vidual with potential to exercise his/her latent leadership talent, the SPM creates
a development opportunity for the individual. Continued mentoring by the SPM
involves the individual in decision-making and provides leadership opportuni-
ties, beginning in a small team environment, with continuous coaching of the
individual, and then gradually increasing his/her independence from supervision
over time. We recommend exposing latent leadership talent to senior levels of
management so that he/she can be evaluated by senior management and so that
the individual’s development will continue from the enhanced opportunities pro-
vided from being allocated to other projects. By being allocated to other projects,
the developing leader will also have opportunities to work with other SPMs within
the organization.

RELEASING HUMAN RESOURCES UPON COMPLETION OF
THE PROJECT

Remember from previous discussions that a project typically follows a general
cycle:

	 1.	 They start with a minimum set of people to carry out the project
initiation activities.

	 2.	 More people are then added to carry out the business/systems analy-
sis and to carry out the software design.

J. Ross Publishing; All Rights Reserved

People Management  261

	 3.	 Even more people are added to develop the source code and to build
the software product.

	 4.	 When software design is complete, some of the people who carried
out the business/systems analysis and software design may need to
be released because they will be required in smaller numbers during
software construction.

	 5.	 As development progresses, software testers may need to be ramped
up to test the developed software.

	 6.	 As software construction nears an end, generally programmers need
to be released because they will be needed in smaller numbers.

	 7.	 When testing is completed, fewer testers are needed.
	 8.	 After delivery of the software, most of the project team may need to

be released (except those assigned to software maintenance activi-
ties).

	 9.	 At the close of the project, typically everyone is released.

Also remember that software projects are not static. So, to be effective and effi-
cient, projects generally require that human resources be continuously ramped
up and down. Ramping up involves conducting induction training for new team
members. Ramping down involves conducting performance appraisals for the
team members so they can understand how they performed on the project.

Releasing human resources from a project involves following a set of activities
for each individual:

	 1.	 Carry out a performance appraisal. After agreement from the indi-
vidual has been obtained, give the performance appraisal to the HR
department.

	 2.	 Update the skills database of the organization with the new skills that
have been acquired by the individual during project execution.

	 3.	 Take over all project-related artifacts, including source code, code
libraries, and the development kit.

	 4.	 Archive project-related communication that may need to be pre-
served as part of project records for future reference and possible use
(a legal requirement in some countries).

	 5.	 Recover hardware resources from the individual.
	 6.	 Prepare the project release communication (a formal letter or an

email) and hand the individual over to the PMO (or the agency in
charge of reallocating employees to another project).

	 7.	 Document the best practices, worst practices, or any other events
that deserve special mention. Forward the documentation to con-
cerned management personnel.

J. Ross Publishing; All Rights Reserved

262  Mastering Software Project Management

	 8.	 Take software artifacts, communications, and hardware resources
from the individual to concerned agencies in the organization for
further maintenance and reallocation.

	 9.	 Update the project information to reflect the release of the indi-
vidual.

Release of contractors would entail similar activities.

BEST PRACTICES IN PEOPLE MANAGEMENT

We have several recommendations to help you manage the human resources of
a project well:

•	 Communicate continuously and coherently with all team members.
In the absence of official communication, team members will listen
to the organization’s grapevine, which can distort facts so that they
become detrimental to the project’s (and organization’s) well being.

•	 Monitor morale continuously. Strive to keep morale at a sensibly high
level. Remember: A team with high morale can scale unimaginable
heights.

•	 Motivate continuously. Learn about the team members and try your
best to motivate them. To some extent, motivation is unique to an
individual. It pays to show team members individual attention.

•	 Discipline only when you are absolutely sure you are taking the cor-
rect action. Make every effort to not only be fair, but to also appear to
be fair to the entire team. Remember: Unless you administer discipline
very skillfully, your actions can end up de-motivating the entire team.

MANAGING DIFFICULT PEOPLE

As a software project manager, you will need to deal with various individu-
als, ranging from your own team members to peers, superiors, and customers.
Typically, all of these individuals are well educated and highly intelligent. Most of
them are good individuals and will perform well what is expected of them, but a
few will be “difficult.” Will these few difficult individuals really matter? Consider
what George Bernard Shaw once said, “The reasonable man adapts himself to
the world; the unreasonable one persists in trying to adapt the world to himself.
Therefore, all progress depends on the unreasonable man.”5 Also noteworthy
to consider is the effect of the “insignificant majority and significant minority.”
Identifying the significant minority and insignificant majority is commonly used
in ABC analysis (Always Better Control), VED analysis (Vital, Essential and

J. Ross Publishing; All Rights Reserved

People Management  263

Desirable), etc. (Although ABC analysis and VED analysis are beyond the scope
of this section, we refer to them to forewarn you of the significant minority so that
you can more effectively manage people.)

Our discussion of difficult people reminds us an amusing anecdote: a psy-
chiatry professor was giving a lecture to her students about the behavior of the
abnormal man. This was the fifth time in a row. When the professor began a
continuation of the lecture the sixth time, a student raised his hand and asked her:
“Professor, when are you going to start telling us about the behavior of the normal
man?” She replied, “When we find him, we cure him.”

So, are any people easy to handle? The answer: “Yes, but often only for a
period of time.” People who are easily managed for a short time include:

•	 Trainees: until their training has been completed and they are on the
permanent rolls of the company

•	 New employees: until they have successfully completed their probation
period

•	 Employees: until they have received an expected promotion (and still
wish to receive it)

•	 Employees: who are low on performance, but high on pleasing the boss
(and thus survive)

•	 Eager beavers: who always want to please their bosses (just for the sake
of pleasing)

Wise individuals, however, understand their role as well as yours as a man-
ager and perform their duties diligently, irrespective of your provocation (e.g.,
at times when the message from upper management is not good or the tasks are
challenging, etc.), and are always easy to handle. The percentage of these people in
an organization is usually miniscule. The remaining percentage is to some degree
difficult to handle.

What Are Some Types of Difficult People?
We will now profile the difficult people and give you some tips for handling them.
Is your first thought, “But why should I even try to deal with difficult people? Our
answer: “Because you cannot avoid dealing with them.” Difficult people are part
of every organization (and who knows, maybe you are difficult to handle for some
people).

We classify difficult people into twelve types:
•	 The two-timer
•	 The backstabber
•	 The first chapter expert
•	 The martyr

J. Ross Publishing; All Rights Reserved

264  Mastering Software Project Management

•	 The prima donna
•	 The manipulator
•	 The gossip
•	 The breather-down-the neck
•	 The buck-stopper
•	 The “no” man
•	 Mr. Justice
•	 The carrier pigeon

So, where do you find these people? You find them everywhere. They are among
your subordinates, your peers, and your superiors.

The two-timer. The two-timer is a person whose stand depends on the situ-
ation and the people involved. He puts on a “public smile,” but a “private snarl.”
What he says in public is different from what he says in private. He is completely
undependable. We easily spot him the first time he two-times us. But do not treat
the first occurrence as a mere coincidence. No person two-times unintention-
ally. Two-timers can be subordinates and peers as well as superiors. How do we
handle a two-timer? If he makes a private commitment to you, do not depend on
it unless you get the commitment in written form: an email or a chat in a messen-
ger forum. Save the email or messenger conversation. When you deal with him,
always try to have a witness. When you have a meeting with him, record minutes
of the meeting.

Backstabber. Backstabbers betray your confidence, particularly if doing so
will get them positive “points” with upper echelon managers. Backstabbers are
often not your enemies, but your friends. Spotting backstabbers or proving that
they backstabbed you is very difficult. Backstabbers are only identified through
using secondary sources. For example, if a boss-type person exhibits animosity
toward you for no apparent reason, someone has likely backstabbed you. And that
someone has likely suddenly become quite “friendly” with the boss-type person.
Backstabbing people are among your peers and subordinates. Rarely is backstab-
bing behavior found in superiors. A backstabber obtains the information that
assists him in backstabbing you — from you! He uses charm, encouragement, and
sympathy to egg you on, particularly to criticize senior persons. Remember the
advice from World War II: “Loose lips sink ships.” Never criticize a senior person
in the workplace in the presence of others, especially someone who is powerful.
Remember that a backstabber can hurt you only when you turn your back on
them. So never show your back to anyone, including your most charming friend.

The first chapter expert. The first chapter expert knows something about
every scenario, technology, and person in the organization. She never allows

J. Ross Publishing; All Rights Reserved

People Management  265

anyone to go into detail about something because her knowledge is limited. Her
knowledge is limited to the introductory chapter of some book on the subject at
hand. So she ends up using her limited knowledge to shoot down any positive
proposal by “picking holes” in it — holes which are plugged in subsequent chap-
ters in the book. Arguing with a person with half-baked knowledge on a subject is
extremely difficult. First chapter experts are also easy to spot. You see her discuss-
ing new topics everywhere, but she disappears as soon as someone else goes into
detail about the topic. First chapter experts are mostly found among your peers.
You can deal with a first chapter expert by giving the details first and then by giv-
ing her some credit, saying something like: “As Jane can probably explain to you
because she knows ….” This usually shuts her up.

The martyr. People who are overlooked for promotions often become mar-
tyrs, particularly the people who have a long tenure in the organization, who lack
the academic credentials to allow them to reach the top echelons, or who are not
on the career progression fast track. These people often exhibit the attributes of
a martyr. Martyrs have a negative spin on everything, especially in private. They
usually do not express a negative spin in public for fear that they will be fired from
the organization. Martyrs are easy to spot. When something goes wrong, a martyr
comes to you and says, “I told you (thought) so.” If there is a new initiative, he
will tell you privately that it is going to fail. Although a martyr is harmless, he can
discourage you from coming up with new initiatives or taking up a challenging
opportunity. Martyrs are found among your peers and superiors. You handle a
martyr by indulging him, but never taking his discouraging words seriously. He
is actually a great source for pointing out the other side of your proposals. So use
him as your personal quality assurance person for proposals and initiatives.

The prima donna. A prima donna is a stickler for the rules, regulations,
conventions, practices, etc. Often a prima donna is a petty-minded person. Prima
donnas are found in the security department, as secretaries to bosses, as auditors,
as parking lot attendants, etc. For example, have you ever had an experience with a
parking attendant who waits until you have parked your vehicle, locked it, and are
ready to go before he slowly ambles over to tell you that you have parked wrongly
or are in the wrong place and that you have to park where he says. You think
(and maybe say): “Why didn’t you just tell me before I parked”? This parking lot
attendant is a prima donna. Perhaps you are visiting a client and his secretary
tells you to wait. But you soon see that she is polishing her nails and not mak-
ing any attempt to communicate your arrival to her boss. You then remind her
gently, only to be reprimanded. She is a prima donna. These people have limited
power, and just to annoy you, they use it to its full extent. So how is a prima donna
handled? Give the parking lot attendant a friendly greeting when you enter the

J. Ross Publishing; All Rights Reserved

266  Mastering Software Project Management

parking lot. Put on your charm and best manners with the secretary. The trick is
to give them the impression that you respect their position and power; then you
can get along well with them.

The manipulator. Manipulators act as if they are very busy either to avoid
work or to pass it on to you. Manipulators always look haggard and as if they are
under pressure. Often they are slow workers or do something else during work-
ing hours. A manipulator eventually comes to a peer saying something similar to:
“I’m really busy right now. Can you help me by doing this?” Sometimes a manipu-
lator goes so far as to tell her boss: “Even though it’s my job, Mark is best person
because of his experience and special skills (real or imagined) and he seems to be
free of any work right now.” Manipulators are mostly found among your peers.
To handle a manipulator, put on that same haggard look yourself when you notice
the “always busy-as-a-bee” person and approach her to see if she is free to help
you out. But wait — are we telling you to become a manipulator yourself? You
bet we are! No medicine is better suited for a manipulator than to give her a dose
of her own medicine.

The gossip. The problem with gossips is that they hear the words of someone
thinking out loud or they hear part of a conversation and then put two and two
together to make eight and pass the result off as fact. If they cannot find anything
worth circulating, they often invent some piece of juicy information. The impact
of a gossip is best illustrated by a quote attributed to Mark Twain: “A lie travels
half-way around the world before truth gets its boots on.”6 Gossips sow distrust,
prejudice, and suspicion among other people. They also waste a lot of time —
yours, theirs, and everyone else. For some reason, a gossip seems to have a lot of
spare time. He is also a very good conversationalist and can narrate with great skill
to hold your interest — so well that listening to him can even become somewhat
addictive and make you want to ask for more information. Gossips are found
among your subordinates and peers. The best way to handle a gossip is to avoid
him or avoid being drawn into a gossip session with anyone. Remember that if a
gossip is giving false information to you about someone else, then he surely will
do the same about you with others when you are not present.

The breather-down-the-neck. A breather-down-the-neck is an uneasy del-
egator. She is usually in a supervisory position (a boss). Perhaps due to some past
bad experience with her subordinates, she is not comfortable delegating work. She
is also insecure about her position. When a person who normally works alone is
promoted to the position of a boss, that person also often becomes a breather-
down-the-neck until he/she attains maturity. Even a boss with a few subordinates
will resort to breathing down the necks of their subordinates because they have

J. Ross Publishing; All Rights Reserved

People Management  267

little else to do (or nothing else better to do). If a boss is a breather-down-the-
neck, understand that she may just be maturing into the skills needed to be a boss
and give her some space. Something that gets a breather-down-the-neck off your
back is to meet a deadline the first time and a few more times so that she becomes
more confident with your commitments. Then she will not be so overbearing. The
trick is to give her a sense of confidence about your commitments.

The buck-stopper. Anything that goes to a buck-stopper stays there. It never
comes out. If you want the buck to be moved, you have to chase down the buck-
stopper. A buck-stopper never says “no,” but neither does he give a commitment
or an actual response. His desk is a bottomless pit. You can put something on it,
but getting it back will be very difficult. A buck-stopper generally dodges all of
your queries about the status of a task or for a commitment to a date for comple-
tion of any action expected from her. You find buck-stoppers among your peers
and handling grievances or complaints in service departments. A buck-stopper’s
thinking is that “if it’s really urgent, someone will come and ask about it in per-
son.” To get something done by a buck-stopper, you need to push him. Pay a visit
to him to get what you need.

The “no” man. A “no” man is able to say “no” to everything you say. A no
man uses excellent logic to deny your proposal or a request. Even if you were to
say, “The sun rises in the east,” a no man would say, “No — the sun does not
rise in the east.” If you press on with an argument, he will say that the east itself
is ill-defined, that the physical north pole and the magnetic north pole are not
the same, that the Earth itself is slanted, etc. A no man is easy to spot. The most
frequent word spoken by him is either “no” or “not.” No men are found among
your peers, particularly in service departments. Although negative, no men are
eager to make proposals. So, to get a no man to say “yes” (or something similar),
ask him to make proposals on your behalf. Instead of telling him what needs to
be done, consult him and make suggestions, but let him think that your proposal
is in fact his proposal.

Mr. Justice. Mr. Justice has grown up hearing the stories of class struggle. Mr.
Justice therefore divides the world (and the organization) into the “haves” (those
who have power or the management) and the “have not’s” (staff, workers, profes-
sional workers, etc.). Mr. Justice sees injustice in every action taken by manage-
ment. He denigrates the benefits, but always accentuates the side effects. More
often than not, Mr. Justice (or Ms.) is active, directly or indirectly, in a trade union
and some other similar type of association. Mr. Justice also opposes the recogni-
tion of meritorious persons. He instead advocates seniority for receiving awards
and rewards. Consequently, Mr. Justice types are low performers. They hover

J. Ross Publishing; All Rights Reserved

268  Mastering Software Project Management

around the penalty-avoidance level of performance. Mr. Justice is mostly found
among your subordinates. Rarely is he found in your peers. Confrontational
counseling, using quantitative data, is the best way to bring Mr. Justice in line —
and it will be a continuous and periodic chore. If you miss a single confrontational
counseling session, Mr. Justice will revert to using trade union jargon.

The carrier pigeon. The bearer of good news is always well received and
rewarded. You have seen this scenario in movies when the heroin hugs or kisses
the postman who brings a letter from her distant lover or from someone inform-
ing her of good news. Some people in an organization take on this role of the
postman. When some achievement is made or something great is done, the carrier
pigeon immediately visits the boss to inform him — before the person actually
making the achievement has a chance to talk to the boss. A carrier pigeon always
keep her antennae up, scanning the horizon for newsworthy items to report to
the boss. This behavior is harmless, but the excitement for you, the achiever, is
gone — you have been beaten to the punch! Your success is already “old hat” to
the boss. Carrier pigeons are easily spotted by observation. They constantly poke
their noses into other people’s affairs. If something important is going on in the
organization, a carrier pigeon always manages to be in close quarters irrespective
of whether she is involved. She is usually at places where she is not needed. Carrier
pigeons are mostly found among your peers. Obviously, carrier pigeons have the
ear of the boss. So, be careful about what you say to a carrier pigeon. She not only
carries good news, but she also carries tales. If you criticize the boss in a carrier
pigeon’s presence, know for certain that your message will be carried. Discretion
is therefore your best safeguard. If you are on the verge of some success, keep it
to yourself. Remain calm and wait to show your excitement in the presence of
your boss.

Some final words about handling difficult people. Humans are basically
difficult to handle because humans are unpredictable. Most of the time, another
person’s response is not commensurate with your stimulus. A person’s personal-
ity attributes can also change over time. So not necessarily is “once a thief always a
thief” always correct, but “forewarned is forearmed” is certainly better than being
ignorant. As an SPM, you need to know how to motivate people toward success
and you need to practice motivating them diligently, but being prepared to handle
difficult people is also necessary. The purpose of Appendix C is to “forewarn and
forearm” you.

J. Ross Publishing; All Rights Reserved

People Management  269

REFERENCES

1.	 http://en.wikipedia.org/wiki/Maslow’s_hierarchy_of_needs.
2.	 http://en.wikipedia.org/wiki/The_Godfather_(novel).
3.	 http://en.wikipedia.org/wiki/Victor_Vroom.
4.	 http://en.wikipedia.org/wiki/The_Charge_of_the_Light_Brigade_(1936_

film).
5.	 www.quotationspage.com/quotes/George_Bernard_Shaw.
6.	 http://www.twainquotes.com/Lies.html (Although often attributed to Mark

Twain, this quote has not been verified as actually originating with him.
The quote may have originated with Charles H. Spurgeon, a fundamentalist
Baptist preacher, in a sermon in 1855.)

This book has free material available for download from the
Web Added Value™ resource center at www.jrosspub.com

J. Ross Publishing; All Rights Reserved

J. Ross Publishing; All Rights Reserved

Appendix D

Productivity Concepts
for SOFTWARE PROJECT
MANAGERS

In general, productivity is a term that is used in the context of human beings.
There are various ways to define productivity. One definition is “the rate of output
per unit input” (sometimes called industrial productivity because of the initial
definition of productivity that stems from the practice of industrial engineering).
Another definition can be expressed as a certain number of units of output per
person-day or a certain number of units of output per person-hour. Another
definition can be expressed as a ratio of output to input. Still others invert this
equation and call it productivity, albeit the actual term for that metric is delivery.
Perhaps the simplest conceptual definition of productivity is “the rate of achieving
or accomplishing something in a human endeavor.” In this appendix, productiv-
ity is defined as “the rate of producing some output, using a set of inputs, during a
defined period of time, leveraging a defined work environment by a qualified per-
son who is acclimatized to the working environment and who is using a defined
set of methods at a pace that can be maintained day after day without any harmful
physical effects.”

Concerns with Productivity

Our observation is that the software development industry confuses the terms
productivity, capacity, and efficiency, substituting the word productivity. So, at the
outset, let’s distinguish our understanding of the terms productivity, efficiency, and
capacity. These terms have similar meanings, but markedly different distinctions:

Productivity. In addition to the previous definitions, productivity can also
be defined and expressed as the amount of output per unit input. The term pro-
ductivity is normally used in the context of human beings who are performing

271J. Ross Publishing; All Rights Reserved

272  Mastering Software Project Management

work. Productivity is also used in reference to one type of homogeneous activ-
ity. A person’s productivity depends on the activity and the working conditions.
Productivity lends itself to improvement by using better methods, tools, and
techniques, but without the addition of more workstations.

Efficiency. Efficiency is output divided by input and is expressed as a percent-
age. The term efficiency is normally used in the context of a process or machinery.
For example, the efficiency of fuel in generating heat, the efficiency of a machine,
or the efficiency of peer review processes.

Capacity. Capacity is the throughput of a system. For example, a car factory
produces 5000 cars per day. The term capacity assumes that several disparate
activities with varying rates of achievement are being performed within the sys-
tem. Capacity therefore accounts for the final output of multiple heterogeneous
activities. Capacity is also used in reference to an entity, such as an automobile
manufacturing plant or a software project team. The capacity of a facility or plant
is designed before the facility or plant is actually set up. Once a specific capacity
has been designed and built, increasing the capacity is not possible without add-
ing new workstations, changing the efficiency of the machines or processes, or
increasing productivity.

The software development industry is obsessed with giving a single, empiri-
cal, all-activities-encompassing figure for productivity. Attempts are made to
express productivity numerically, e.g., 10 person-hours per function point, with a
rider that this number (figure) could vary from 2 to 135 person-hours, depending
on the product’s size and other factors. Sometimes ranges are given, such as 15
to 30 hours per use case point. At other times, empirical formulas are used that
depend on a set of factors such as those used in the COCOMO (constructive cost
model) method of software estimation. These productivity figures lump all soft-
ware development activities (i.e., requirements analysis, design, coding, review,
testing, etc.) into a single measure. But in reality, the skill requirements for each
of these activities are different, the tools used are different, the inputs are differ-
ent, and the outputs are different. Therefore, combining all of them under a single
head of “software development” and giving a single figure of productivity can at
best offer only a rough estimate — never an accurate one.

Currently focus in the software industry is on macro productivity (which is
really capacity), using a single figure to represent the productivity of all of the activi-
ties of software development. This approach needs to change. Focus needs to shift
from macro to micro productivity, using a figure for each specific activity involved
in developing software. To achieve this, we either modify our timesheets (if we
use empirical methods to determine productivity) or we have industrial engineers

J. Ross Publishing; All Rights Reserved

Productivity Concepts for Software Project Managers  273

arrive at the productivity for each activity of the tasks that lend themselves to this
level of measurement. The benefits of productivity at a micro level include:

•	 Better predictability of software development (because the effort for
each specialized activity is separately estimated)

•	 More accurate estimates for pricing assistance during project acquisi-
tion and sanction stages

•	 More precise target-setting when assigning work
•	 More accurate cost estimation
•	 Better prediction of skill and resource requirements
•	 More precise variance analysis (which can lead to process improve-

ment and establishment of productivity norms)

Standard Time AND PRODUCTIVITY

The American Institute of Industrial Engineering (AIIE) defines standard time
as the amount of time taken to accomplish a unit of work performed using a given
method under defined working conditions by a qualified worker after adjustment at
a pace that can be maintained day after day without any harmful physical effects.
Needless to say, standard time is the unit of measure for productivity. The key
terms and phrases in the AIIE definition include:

•	 Unit of work: The amount of work is in its smallest possible size
(which implies that there must be an accepted unit of measure for the
work for which productivity is being defined).

•	 Given method: The method of performing the work must be defined
and the person performing the work must adhere to that definition in
letter and in spirit.

•	 Qualified worker: The person performing the work has the knowledge
and skills to carry out the work (either by certification or by training).

•	 After adjustment: The qualified worker is not performing the work for
the first time (i.e., he/she has put in some amount of time in the orga-
nization and has adjusted to the work environment and the methods
of working).

•	 At a pace that can be maintained day after day: The pace must be such
that it can be achieved every day and will not affect the person’s health
in any manner (physical or psychological).

An analogy for pace. Consider this illustrative analogy. The Olympic record
for the 100-meter dash is between 9 and 10 seconds. But the Olympic record for
the marathon, 26 miles or 42 kilometers, is disproportionately longer than what

J. Ross Publishing; All Rights Reserved

274  Mastering Software Project Management

would be obtained mathematically by using the Olympic record for the 100-meter
dash in calculations. But an average person is not an Olympian, so in this context,
the pace of working is the pace of a normal person (an average person) who is
running a marathon race, not that of an Olympic champion running a 100-meter
dash.

We have now defined productivity (using standard time), but we still need to
consider the aspect of an organization having personnel with a mix of skill levels.
Maynard’s Industrial Engineering Handbook defines five skill levels:1

•	 Super skill: a person who has extensive experience and who knows all
there is to know about the work, including all the best practices and
all the shortcuts (This person is an authority who can guide others on
the subject.)

•	 Very good skill: a person who has a lot of experience and who has
learned all there is to learn about the work, but who perhaps has not
personally applied all of this knowledge (This person knows all the
best practices and most of the shortcuts and can guide others on the
subject.)

•	 Good skill: a person who has adequate experience and is capable of
delivering results, but who perhaps needs to refer to documents or
seek guidance from senior colleagues in advanced aspects of the work
(This person does the work, but may not be able to guide others.)

•	 Fair skill: a person who is not a trainee and who has some experi-
ence, but who needs reference documents or assistance from senior
colleagues to complete the work (This person needs occasional guid-
ance.)

•	 Poor skill: a person who is a new entrant and who has not completed
a formal training period in the organization (This person needs con-
tinuous guidance from senior colleagues.)

Another aspect we need to consider is the level of effort put into performing the
task:1

•	 Super effort: no trial and error, not a second lost, all available time
used, allowed breaks not taken, all effort focused on the task

•	 Very good effort: no trial and error, very effective use of time, all
allowed breaks not taken, all effort focused on the task

•	 Good effort: very little trial and error, uses time fully, takes only
allowed breaks, all effort focused on the task

•	 Fair effort: some trial and error, uses most of the available time, takes
all allowed breaks, most effort focused on the task

J. Ross Publishing; All Rights Reserved

Productivity Concepts for Software Project Managers  275

•	 Poor effort: keen to experiment, uses as much of the available time as
possible, takes all allowed breaks and more, all effort not focused on
the task

As you have no doubt deciphered, the output of a person with super skill, but
who is putting in poor effort, may be equal to that of a person who has poor skill,
but is putting in super effort.

Remembering our Olympian analogy, productivity is defined based on a
person of good skill level who is putting in good effort — an average person.
Organizations have a mix of workers with different skill levels, however, which
raises three questions:

•	 As advocated, if productivity is defined based on an average person,
how do we reconcile the output of a super-skilled person and a poor-
skilled person? Obviously the productivity of a super-skilled person is
much higher, but at a higher cost than that of poor-skilled person. So,
our expectation is that the costs will be different for people of differ-
ent skills. We use an “average person” as the basis for estimating, but
during execution, target setting will be commensurate with the skill
levels of the persons to whom the tasks are entrusted.

•	 A mix of skill levels results in the actual time varying from the esti-
mated time, right? Absolutely! But in large projects, the combination
of mixed skill levels and mixed effort levels tends to average out. So,
the overall actual time to complete the tasks required for the project
should come very close to the estimated time. (And, of course, the skill
level is only one source of variance between the estimated values and
actual values.)

•	 So, how does resource allocation occur if resource estimation is per-
formed using the parameters of average skill and average effort, know-
ing that the organization has a mix of resources? Resource allocation
is not just making the requested number of resources available. For
example, when an SPM makes a request for ten software engineers,
the request typically means ten resources of average skill. But if we
allocate super-skilled resources, we will not need to allocate ten
of them (unless ten super-skilled resources have been specifically
requested). Similarly, if we allocate all poor-skilled resources, we will
need to allocate more than ten. When resources possess different skill
levels, the person in charge of allocating resources to projects needs
to ensure that a project has an equivalent of the requested number of
average skilled persons. To accomplish equivalent allocation effec-
tively, an organization should maintain conversion rates for convert-
ing one level of skill to another level (e.g., one super-skilled person is
equal to three poor-skilled persons).

J. Ross Publishing; All Rights Reserved

276  Mastering Software Project Management

An example. Suppose an SPM has requested ten resources from the develop-
ment pool. The person allocating the resources would use conversion rates (as
shown in Table D.1) to ensure that an equivalent of ten average (good) skilled
resources is allocated to the project). An allocation can be any combination of
skill levels (as shown in Table D.2). (Note that sometimes an allocation plan will
require an absolute number of physical resources due to the multithreading of the
work. This requirement must be communicated to the appropriate person if the
SPM is not allocating resources himself/herself.) As can be seen in Table D.2, even
though the actual number of resources allocated is seven, the allocation meets the
equivalent requirement of the SPM.

Concerning the effort per day or per period expended, all resources are
expected to put in average level of effort. Therefore the onus of the SPM is to
ensure that all resources expend the level of effort required of them. If the SPM
can find ways to motivate the team to expend more than an average level of effort,
the project will be completed before its scheduled date. Conversely, if the SPM
fails to ensure that everyone on the team expends an average level of effort, the
project will be completed later than its scheduled date.

Table D.1. Conversion Rates for Skill Levels

Skill Level Conversion Rate

Super 2

Very good 1.5

Good 1

Fair 0.60

Poor 0.50

Table D.2. Example of Resource Allocation Using Conversion Rates

Skill Level
Number of Resources

Actually Allocated
Equivalent Number of

Average-Skilled Resources

Super 2 4

Very good 2 3

Good 1 1

Poor 4 2

Total allocated 7 10

J. Ross Publishing; All Rights Reserved

Productivity Concepts for Software Project Managers  277

The Productivity Path

Remember from our earlier discussions that software development involves (but
is not limited to) the following activities:

■	 Preproject activities
•	 Feasibility study (proposal in the case of external projects)
•	 Financial budgeting and approvals for the project (negotiations in

the case of external projects)
•	 Approvals, both financial and technical (receipt of purchase order

in the case of external projects)
•	 Project go-ahead decision (project initiation in the case of external

projects)
■	 Project start-up activities

•	 Identification of the project manager
•	 Allocation of the project team
•	 Setting up of the development environment
•	 Project planning
•	 Setting up of various protocols
•	 Service level agreements and progress reporting formalities
•	 Project-related training

■	 Software engineering activities
•	 User requirements analysis
•	 Software requirements analysis
•	 Software design
•	 Coding and unit testing
•	 Testing (integration, functional, negative, system, and acceptance)
•	 Preparation of the build and documentation

■	 Rollout activities
•	 Installation of the hardware and system software
•	 Setting up of the database
•	 Installation of the application software
•	 Pilot runs
•	 User training
•	 Parallel runs
•	 Rollover

■	 Project cleanup activities
•	 Documentation of good and bad practices
•	 Project postmortem
•	 Archiving of records

J. Ross Publishing; All Rights Reserved

278  Mastering Software Project Management

•	 Releasing of resources
•	 Releasing of the SPM to enable him/her to take up another project
•	 Initiation of software maintenance

Industry “rules of thumb” for productivity are not clear as to how many of these
software development activities are included in the productivity figure. Rules of
thumb are good to help confirm assumptions and paradigms, but they are not
exact tools. So, do not stake your career on a productivity figure that is an industry
rule of thumb!

Let’s draw a parallel between software development activities and the manu-
facturing industry. The following activities (tasks) are involved (in order) in the
activity of punching a hole in a steel sheet:

	 1.	 Set up machine
	 2.	 Set up tool
	 3.	 Load job
	 4.	 Punch hole
	 5.	 Deburr hole
	 6.	 Clean up
	 7.	 Deliver work piece to next operation

If multiple holes are punched, the time to complete Activity 4 will be a mul-
tiple of the number of holes to be punched: the number of holes punched is mul-
tiplied by the time per hole. The times for the other activities remains unaltered
because these activities are one-time activities.

If we take the task of coding a unit (under “software engineering activities” in
our list of software development activities), micro activities could involve:

	 1.	 Receiving instructions
	 2.	 Studying the design document
	 3.	 Coding the unit
	 4.	 Testing and debugging the unit for functionality
	 5.	 Testing and debugging the unit for unintended usage
	 6.	 Deleting trash code from the unit
	 7.	 Regression testing the unit
	 8.	 Releasing the unit for the next step

Similarly, we can have micro activities for each software development phase.

J. Ross Publishing; All Rights Reserved

Productivity Concepts for Software Project Managers  279

Classification of software development activities

The major classes of software development work include:
•	 Requirements analysis: involves understanding what the user needs,

wants, and expects and then documenting this information so that
the software designers can understand and design a system in strict
conformance with them (Requirements analysis depends greatly on
external factors.)

•	 Software design: involves considering the alternatives available for
hardware, system software, and development platforms; arriving at
the optimal configuration; designing an architecture that will meet
the stated requirements and fulfill expectations, yet be feasible with
the current technologies; and documenting the design in such a way
that the programmers understand and can deliver a product that con-
forms to the original user specifications (Because several alternatives
are possible, software design is a strategic activity. Errors made during
software design have strategic consequences.)

•	 Construction: involves developing software code that conforms to the
design and is as defect-free as possible

•	 Reviews of requirements, design, and code: involves walking through
the requirements, design, and code developed by another person;
deciphering the functionality; and unearthing any possible defects

•	 Testing: involves trying to unearth all defects remaining in the soft-
ware (An accepted fact is that 100% testing, or testing for every even-
tuality, is just not practical.)

•	 Build preparation: involves linking all of the components into one
software product and preparing the product for rollout (Depending
on specific project, multitiered software and architectures can cause
this stage to become a major specialist activity in itself.)

•	 Documentation: includes user guides, operation manuals, user train-
ing materials, and troubleshooting manuals (Developing this level of
documentation for a new application can be a major activity in large
projects. Many organizations employ specialist technical writers for
this task.)

When considering the variety in the nature of these activities, it soon becomes
obvious that the productivity of the activities cannot be uniform: the pace of work
is different for each of these activities and the activities depend on the amount of
software code produced as well as on other factors such as:

•	 Requirements analysis depends on the efficiency and clarity of the
source of requirements, such as users or documentation.

J. Ross Publishing; All Rights Reserved

280  Mastering Software Project Management

•	 Software design depends on the complexity of processing, alternatives
available, and constraints within which the functionality is to be realized.

•	 Code review depends on the style of coding.
•	 Testing depends on the density of residual defects: the more defects

found, the more time required to test and retest.
•	 Coding depends on the quality of the software design.
•	 Build preparation depends on the number of tiers and components in

the software architecture.
•	 Documentation depends on the size of functionality achieved by the

software product.
Having separate productivity figures for each of these activities is therefore only
logical.

So, How do we arrive at productivity?

Productivity (standard time) can be determined in two distinct ways: empirical
methods and work measurement.

Empirical Methods
Empirical methods involve collecting actual data from a large number of projects
and then computing an average productivity (statistical mean, mode, or median)
and a standard deviation. The software industry, to a large extent, follows the
empirical methods technique.

A reliable and easily obtained source of credible data is the historical data
from timesheets, provided timesheets have been filled out accurately and dili-
gently. Most timesheet software used in the industry is oriented toward payroll
and billing, however, rather than toward capturing data at the micro level so that
it can be used to arrive at productivity figures. In addition to date and time, most
timesheets only capture data at two or three levels: the project level is always the
first level; the second and third levels are either at the module and component
levels, the component and activity levels, or some other similar combination. But
to derive reliable productivity figures, timesheets need to capture data from five
levels: project, module, component, development phase, and task accomplished.
These levels are in addition to the date and time for each employee. If timesheets
supply such information, the “right” data will be available for establishing produc-
tivity data empirically and in a realistic manner.

A word of caution. Our observation is that some individuals in the software
development industry perceive the term average to mean arithmetic mean. The

J. Ross Publishing; All Rights Reserved

Productivity Concepts for Software Project Managers  281

drawback with the arithmetic mean is that it is influenced by extreme values
(values which result from extreme circumstances). Using the arithmetic mean
produces skewed results. The statistical mode is a better measure to use to arrive
at average productivity because the statistical mode is the most frequently occur-
ring value in a population and therefore is not influenced by extreme values. A
matter of concern is that after nearly three decades of intense software develop-
ment activity, no universally accepted norms have been established for arriving
at productivity in the software development field. The result is that software
development is poorly managed and costs more for the end-users.

A recommendation. If empirical methods are selected to arrive at produc-
tivity, use the statistical mode, not the arithmetic mean, to arrive at an average.
The nature of the statistical mode, i.e., of not being influenced by extreme values,
allows for better accuracy within the software development environment.

Work Measurement
In the early 1980s, the International Labour Organization (Geneva) released the
Compendium for Professional Workers, adding a third category to the organi-
zational workforce: the professional worker (the original two categories being
workers and management).2 This compendium treated software developers as
professional workers. Although the ILO compendium separated programmers
from management, providing them with certain benefits and facilities enjoyed
by other workers, it did not suggest methods for measuring their work as it did
for other workers. The premise was that programmers’ work is creative and
therefore cannot be measured. (Note: This premise is true when the program-
ming work performed by a programmer is not mechanistic and the programmer
does not work with the assistance of a design document. It is not true, however,
when software developers are working in a contract development scenario. These
developers work with defined user requirements and a design document. In this
case the work is mechanistic and cannot be described as creative by any stretch
of the imagination.)

Work measurement involves defining the unit of measure for the work and
setting the standard time required to perform it. The ILO has approved a few
methods for this activity, including:

•	 Time study
•	 Motion study
•	 Therbligs
•	 Synthesis
•	 Analytical estimation
•	 Work sampling

J. Ross Publishing; All Rights Reserved

282  Mastering Software Project Management

The method most often associated with work measurement is the time and
motion study. Although time and motion study techniques are commonly used
in the manufacturing industry, using them in the software industry is not fea-
sible. Factory workers do not sit in cubicle. Supervisors in factories can scan each
workstation from his or her location to ensure that work is being carried out. In
the software industry, this type of supervision is impossible. In many cases, all a
supervisor can see is that the programmers are in their cubicles staring intently at
their screens with brief periods when their fingers fly across the keyboards. Most
programmers do work productively, but sometimes a programmer:

•	 Sends personal emails
•	 Surfs the Internet
•	 Chats with an online friend
•	 Prepares his/her résumé for submission to a recruiter
•	 Does some similar type of non-work-related activity

Not all of these activities are necessarily bad. Substantial literature suggests that
some level of personal or non-work-related activity actually increases productiv-
ity and creativity.

In the past, white-collar productivity was thought to be unmeasurable, but
it is now, and norms for office-type work have been established. Using work
measurement techniques is now possible in the software industry. So, should
productivity norms be set for every programming language used in the software
development industry?

In the software industry, common understanding is that programming lan-
guages differ vastly from one another. The productivity of programming in dif-
ferent languages is also thought to vary vastly. This thinking, however, is a myth.
Let’s look at some facts:

•	 All programming languages have facilities for input, output, and data
manipulation functions as well as other miscellaneous functions.
Although the syntax and semantics vary, the philosophy remains the
same: to achieve the given functionality with a defined quality in the
minimum amount of time. (Before you protest, one of the authors
has programmed in many languages and makes this statement from
personal experience.)

•	 Software is written by programmers who are proficient in the lan-
guage being used and with the help of a design document.

•	 Although the work is not purely mechanical and repetitive, because
programmers write programs with the help of a design document (just
as factory workers use a drawing to perform their work), very little cre-
ativity is involved (similar to the scenario in job-order manufacturing,
such as ship building, air craft manufacturing, construction, etc.).

J. Ross Publishing; All Rights Reserved

Productivity Concepts for Software Project Managers  283

Another myth is that some programming languages are more complex than
others. For example, COBOL language has been called “top of the line” in the
past (we’ve actually heard that), but now, after the turn of the century, this same
COBOL language is considered to be “bottom of the line.” Pascal, C, dBase III
Plus, Oracle, and VB have gone through a similar journey. Programming lan-
guage is always complex when it is new. Few teachers are available for a new
programming language. Programmers therefore have to educate themselves so
they can master and write code in the new language — a tedious task. But as time
elapses, the new language becomes manageable and actually easy to master. As
more teachers and experts become available, programmers are able to more easily
learn the language, get help when they are stuck, and master the language.

For Java programmers, Dot Net is complex (and vice versa!), but by its gen-
eral nature, no programming language is any more or less complex than another.
So, where does the myth that some languages are more difficult than others
spring from? (Perhaps it is from the programmers who have spent a considerable
amount of time learning a new language on their own and therefore believe that
they deserve a premium!) The difficulty associated with a programming language
is more about learning and mastering the language, than using it. Another diffi-
culty is that many organizations have a shortage of programmers who are skilled
in a particular new language (or programmers are unavailable).

A programmer might also say that more time is required to produce 100
LOC (lines of code) in Java than in Dot Net, but why? Because Java requires more
characters per line to achieve a given functionality than Dot Net does? Or because
the programmer is not as well versed in Java as he is in Dot Net? If a program-
mer says that Dot Net takes more lines to achieve a given functionality than Java,
this statement might be accurate (and suitable for testing), but more than likely
the same amount of time will be taken to produce the same number of LOCs,
irrespective of the programming language. We base this statement based on the
following assumptions:

•	 Dot Net and Java programmers have similar skills (proficiency) in
their respective languages.

•	 Dot Net and Java programmers are assisted by similar design docu-
ments.

•	 Dot Net and Java programmers type characters at a similar speed.
So, what might the limiting factor be? Could it be typing speed? A speed of

10,000 keystrokes per hour is the accepted norm for data entry operators, which
is comparable to a typing speed of approximately 35 words per minute (with each
word assumed to have five characters on average). In typewriting and stenog-
raphy circles, however, 35 words a minute is considered “lower.” (Stenography
circles classify typewriting speeds as either lower, i.e., 35 words per minute, or
higher, i.e., 45 words per minute. Typewriting and shorthand “species,” of course,

J. Ross Publishing; All Rights Reserved

284  Mastering Software Project Management

are more or less extinct today after being very common just 25 years ago!) So,
perhaps the problem is that not very many programmers practice typewriting.
(Typewriting courses are not part of a software engineering curriculum, although
in our opinion they should be because software engineers spend their most of
their lives punching keys and their speed is approximately 15 words per minute!)

Using the work measurement technique for factory workers, we prefix and
suffix two activities to the actual work when measuring work:

•	 Setup time (pre-work) or the time taken for receiving instructions,
collecting information, and studying the information to understand it

•	 Cleanup time (post-work) or the time taken for delivering the output,
clarifying any issues, and handing over the artifacts

Carrying out time studies to set standard time (productivity) for a good number
of software development activities is both feasible and possible.

How to Conduct a Time Study in a Software Development
Organization
The technique of work sampling can be used to conduct productivity studies
in a software development organization. Work sampling involves observing
employees at work without causing any interference and recording how much
time they spend on various activities — productive and nonproductive activi-
ties. Nonproductive activities (e.g., personal matters, meetings, etc.) are usually
classified into various categories for analysis purposes. Then productive time is
separated from the time spent on nonproductive activities and set as the basic
time. Basic time is then corrected using the “rate (pace) of working,” which is a
percentage of “normal working” (an average level of effort by a person of an aver-
age level of skill). Consider two examples of established benchmarks in which the
rate of working is considered to be 100% if:

•	 Hand movements compare well with the motions of dealing cards
when 52 cards are dealt in a minute in a game of bridge.

•	 When walking, the walking rate is 3 miles per hour
From these examples, we can easily see that having a rate of working that is more
than 100% is possible for some people.

Basic time, after correction using the rate of working, is called the normal
time. We add a relaxation allowance based on factors defined by the ILO to obtain
the standard time.

Stopwatches are used for time studies in factories (because the operations
often take only minutes). Ordinary watches, however, are adequate for carrying
out work sampling for software development activities. Work measurement can
be carried out and productivity norms set for all of the seven types of software
development activities that have been described earlier in this chapter.

J. Ross Publishing; All Rights Reserved

Productivity Concepts for Software Project Managers  285

Capacity Vis-à-vis Productivity

As stated at the beginning of this appendix, our opinion is that some in the soft-
ware development industry confuse the terms capacity and productivity. When
dealing with the overall throughput for a facility, we use the term capacity, e.g.,
we say that an automotive plant has a capacity of 5000 cars per day or that a
shipyard has a capacity of 10 ships per year. Capacity implies that various activi-
ties are performed at different workstations, that each activity may need different
skill sets from the staff, and that each worker might have a different productiv-
ity (or rate of achievement). Capacity can also refer to the overall output from a
facility. In other words, capacity can be a certain number of units per a defined
time period. For example, in an automotive plant or a shipyard, the workflow is
routed through different workstations. Some workers at their workstations take
more time to complete their assigned operations than workers at other worksta-
tions do. In this situation, the workstations taking more time are considered fully
utilized and the remaining workstations are considered to be underutilized and
to have spare capacity. The capacity of a plant is therefore limited by the fully
utilized workstations. Thus, to increase capacity (to produce more automobiles),
the plant needs to add only those workstations that are fully utilized.

So, if an automotive plant has 500 persons working (or 500 person-days of
effort) to produce 5,000 cars per day, and production needs to be increased to
10,000 cars per day, the required manpower and workstations would not double.
Why? Because, some spare capacity already exists in the plant. We just need to
add machines and persons as required after considering each workstation and the
number of units that it can produce. This process of increasing the capacity to
produce more units is an exercise called “line balancing” and “capacity planning.”
Therefore, less than 1,000 person-days of effort are required to produce 10,000
cars. We also cannot say that because 500 person-days are spent to produce 5000
cars per day that 1 person-day produces 10 cars. Why? The production depends
not just on the person, but also on the machinery and the tools used.

Capacity is finite at each workstation irrespective of utilization. Think of a
car with five seats. The car always has five seats: if only one seat is occupied by the
driver or if all five seats are occupied. Similarly, a plant is designed for a certain
capacity. But producing less than the designed capacity increases cost per unit.
Well understood and accepted is that some amount of “waste” is built into the
production system. (Capacity planning is an altogether different subject that is
beyond the scope of this book.) So, in software development, we need to design
a facility for a specified capacity and then populate it with personnel to fill the
required roles (e.g., with architects, designers, business analysts, programmers,
testers, etc.) to achieve the capacity goals of the organization.

J. Ross Publishing; All Rights Reserved

286  Mastering Software Project Management

To develop (produce) software, the skill sets previously mentioned in this
appendix are needed. In practice, we can allocate a person for a minimum period,
but we cannot allocate a person, say a designer, for eight different activities in a
day without impacting his effectiveness and efficiency as well as his motivation.

determinING productivity

Our recommendation is to set up productivity norms using work sampling tech-
niques, a method that produces a fair result, a result that is arrived at through
scientific study by unbiased, independent experts. Setting norms from past
project records requires accepting data without knowing the causes for the pace
of working (be it slow, average, or fast), which could result in having skewed
norms. Using skewed norms is not fair to programmers or to the organization.
Conducting time studies to set standard time is also fair to staff and to the orga-
nization because time studies set the “right” expectations and predictability for
human endeavors and work results.

REFERENCES

1.	 Kjell Zandin, Editor-in-Chief. Maynard’s Industrial Engineering Handbook,
Fifth Edition 2001. New York: McGraw-Hill Professional.

2.	 http://www.ilo.org/public/english/bureau/dgo/.

This book has free material available for download from the
Web Added Value™ resource center at www.jrosspub.com

J. Ross Publishing; All Rights Reserved

Appendix E

ISSUE RESOLUTION IN
SOFTWARE PROJECT
MANAGEMENT

WHAT IS AN ISSUE?

The word issue has multiple meanings in a dictionary, ranging from a topic to a
subject, a problem, or a concern as well as several others. For this appendix, the
word issue indicates a concern or a problem. So, why is the word issue used? Why
not just use the word problem or concern? The answer is because during software
project execution, we sometimes encounter a situation that might not be a prob-
lem or a concern. Instead, the situation requires focus and resolution from various
agencies other than the project management team. Consider these scenarios:

•	 During requirements specification, the end user (or the customer)
held one or more requirements as a TBD (to be decided later).

•	 During the course of project execution, the project team found that
one requirement (or more) was unclear, ambiguous, or open to mul-
tiple interpretations. To obtain the correct interpretation, all unclear
requirements need clarification.

•	 During the course of project execution, the project team found that
it may be unable to implement one requirement (or more) fully (or
perhaps even partially). A concession is therefore needed from the
end user or customer concerning alternatives for implementing the
requirement(s) in question.

•	 Some approvals or reviews needed from the end user/customer did
not take place or the results of discussions have not been received by
the project team.

287J. Ross Publishing; All Rights Reserved

288  Mastering Software Project Management

Situations such as these are not problems (yet), but they need resolution
before they do become problems. These scenarios are known as issues in software
project management parlance.

THE ISSUE-RESOLUTION PROCESS

Often heard are simplistic statements such as: “If you have an issue, pick up the
telephone and make a call. Don’t make it so bureaucratic.” If a single telephone
call can solve all of the issues, excellent. In small projects, or even when the
number of issues is limited, those approaches are indeed adequate. (In the agile
approach, co-location of a customer allows more opportunities for interaction
using simple person-to-person approaches that are adequate for issue resolution.)
But when a situation becomes even somewhat complicated, “things can fall apart.”

Many attributes can complicate a project’s environment: the project is large,
the duration of execution is relatively long, too many TBDs, etc. Complications
associated with attributes such as these tend to require a more formal approach
for adequately tracking all of the issues to resolution. Our opinion is that generally
a process-oriented approach is necessary for effective issue resolution. Consider
this scenario: a customer/end user needs to consult their project team because the
true decision-makers are waiting for another vendor to come up with the specifi-
cations for a particular component. In this case, the issue has to be kept pending
because its resolution is awaiting action from the other vender. If not recorded,
the issue could be forgotten until it becomes a more significant problem. This
scenario provides just one of the reasons why a procedure or a process is needed
for issue and resolution tracking. Issue resolution has three components:

•	 An issue register: a place where all issues can be recorded and exchanged
between the project team and the end user/customer

•	 A communication vehicle: to be used to assist resolving issues (in addi-
tion to an issue register, emails, teleconferences, video conferences,
and face-to-face meetings)

•	 An escalation mechanism: to be used to provide an escalation mecha-
nism to raise the level of visibility of an issue when a resolution is
either not forthcoming or if the resolution offered is not practical or
satisfactory

Let’s now discuss these components.

An Issue Register
Often an issue register is maintained using a spreadsheet (e.g., such as can be gen-
erated in Excel or by some other software tool). This register contains numerous

J. Ross Publishing; All Rights Reserved

Issue Resolution in Software Project Management  289

types of information: the issue ID number, an issue description, the date that the
issue was raised, the name of the person raising the issue, the category defined for
the issue, a description of the resolution date on which the resolution was provided,
the status of the issue (open or closed), the date on which the issue is closed, and
any other information that a particular organization may need to manage issues.

When an issue is discovered by the project team, the issue should be recorded
in the issue register. The register is sent to the customer as a communication
vehicle for issue resolution whenever a new issue arises (or periodically if real-
time communication is not possible). The customer then records a resolution to
the issue raised and sends the register back to the project team, usually within one
business day (particularly for issues developed by the project team). If the end-
user or customer has any issues from their side, these issues may also be recorded
in the register. The project team will then record resolutions against the issues
raised by the customer. Only one copy (in addition to backups) of the register is
maintained. At any given time, control of the register is either with the project
team or the end user/customer. As execution progresses, issues in the register will
move to “closed” status. A recommended format for an issue register is illustrated
in Table E.1.

Communication for Resolving Issues
Sometimes, the description of a resolution issue is large enough to warrant a sepa-
rate document. If so, a reference to the document is recorded in the issue register.

Table E.1. Sample Issue Register Format

Issue
ID

Issue
Category

Reported
by (Name) Priority

Description
of Issue

Date
Originally
Reported

Closing
Date

(Project
Team)

Assigned
to

(Project
Team)

Solution
by

(Name)

Client
Comments/

Reply

Project
Team

Comments/
Reply

Final
Status

Closed/
Open

(Client)

Date
Closed
(Client)

Status
(Project
Team)

Remarks/
Attachments

J. Ross Publishing; All Rights Reserved

290  Mastering Software Project Management

The document itself is archived by the project team. If feasible, the document
should be embedded in the register itself. Sometimes a discussion is needed:

•	 To explain the resolution in greater detail
•	 To elicit details about an ambiguous definition of the issue
•	 For “thinking out loud” between both parties about the possible alter-

natives/approaches to resolve the issue
If discussion is needed, holding a teleconference or a videoconference may be
very useful. Many tools (e.g., Skype, Dimdim, Webex, Centra, etc.) are available
for conducting conferences in a very cost-effective manner. We strongly recom-
mend capturing meeting minutes and either archiving them or embedding them
in the register.

If a discussion is needed, the person who raised the issue begins the process
by explaining the issue and its impact on the project. If a straightforward resolu-
tion is possible, the resolution is explained and discussed among the concerned
parties. If alternative solutions are possible, each solution is discussed and the
optimum solution is selected. If a resolution is not possible during the meeting,
the estimated resolution date for the issue is recorded along with the name of
the person who is responsible for resolving the issue. Several aspects should be
described when documenting a resolution:

•	 An explanation (with elaboration) of the issue resolution provided
earlier in the register if requested by the originator of the issue

•	 Additional explanation (with elaboration) of the issue if requested by
the person resolving the issue

•	 Any issues encountered in implementing the resolution as originally
described

•	 A discussion of the various alternative solutions that are available for
the issue

•	 Status of the resolution
Record all discussions in the meeting minutes (MM; also MOM, minutes

of the meeting). The MM must also contain the person responsible for the issue
resolution as well as the target date for the resolution and any other information
discussed. Update all resolutions arrived at during the discussion in the issue
register.

The Escalation Mechanism
Sometimes a project team or a customer needs to escalate an issue(s). Scenarios
that could necessitate an escalation of issues include:

•	 A customer or end user thinks that the project is tardy and that their
entreaties are falling on deaf ears.

J. Ross Publishing; All Rights Reserved

Issue Resolution in Software Project Management  291

•	 A customer or end user thinks that a crucial requirement is not being
implemented by the project team due to some technical reason.

•	 Project team members think that approvals are not being given in a
timely manner and therefore are hampering progress.

•	 Project team members think that a customer or end user is insist-
ing on an immediate implementation of the requirements that could
hamper the project’s progress (this situation would not be possible in
an agile project).

An escalation mechanism defines:

	 1.	 Name of the person (with contact details) for the first level of escala-
tion (The first level of escalation is typically to a person concerned
with the project who is one level above the concerned parties.)

	 2.	 Name of the person or persons (with contact details) for further lev-
els of escalation if needed (Further levels of escalation are normally
to a senior level of management that is concerned with the project.)

	 3.	 A final decision-maker if a conflict occurs that needs to be recorded
	 4.	 A description of the circumstances under which escalation can be

invoked (These circumstances can be triggered if one of the parties is
causing unreasonable delays or unreasonably holding to a stated posi-
tion without giving consideration to the other party’s limitations.)

	 5.	 The communication process for escalation, including the means of
communication (e.g., a telephone call, email, a template or format,
etc.)

	 6.	 Approvals required for escalation (if necessary)

The software project management plan (SPMP) contains a section on escalation
mechanisms. All escalations have the potential to damage relations between the
project team and the customer. Escalation therefore must not be undertaken (or
resorted to) frivolously. No escalation should be made until very careful consider-
ation has been given to the situation. Concurrence from senior management must
also be obtained. Escalations by the project team are frowned upon. Escalations
by a customer, however, are likely to occur more frequently, something that can
perhaps be avoided through tactics such as co-location.

A project’s SPM should continuously monitor customer satisfaction with all
pending issues and take any actions necessary to prevent a customer from becom-
ing dissatisfied. When a customer does escalate an issue, action must be taken.
(Remember that an issue can be escalated not only to the persons mentioned in
the SPMP, but also to marketing, the person who is handling the CRM functions
in the organization, senior management, and even top management.) Escalations
cause disturbances in an organization and raise doubts about an SPM’s ability to

J. Ross Publishing; All Rights Reserved

292  Mastering Software Project Management

ensure customer satisfaction. Remember the adage about prevention: “an ounce
of prevention is worth a pound of cure.”

Should an escalation take place, an SPM needs to be prepared to satisfactorily
resolve the issue: first internally and then with the customer. When an escalation
from a customer occurs, senior management typically asks for an explanation.
(Note: If you suspect that escalation of an issue is imminent, obtaining buy-in
from senior management will be helpful. So, whenever an issue cannot be resolved
to the satisfaction of the customer, promptly escalate the issue internally to
senior management. Senior management will then be prepared to make a proper
response if the customer ultimately escalates the issue to a higher level.) We rec-
ommend providing the following information to senior management:

•	 Reasons for the issue
•	 Efforts taken to resolve the issue
•	 Present status of the issue-resolution process
•	 Barriers to meeting the customer’s expectations for resolving the issue
•	 Possible alternative solutions for resolving the issue as well as the

concomitant merits and demerits
•	 The optimum solution in the SPM’s opinion

When supplying information to senior management, focus on the issue.
Avoid bringing personalities into any discussion. The goal is to provide senior
management with information that will facilitate gaining an understanding of the
issue from an accurate perspective. Having knowledge helps senior management
to deal with an escalation in a way that arrives at an amicable resolution of the
issue for all.

Issue escalation occurs during project execution even when all reason-
able efforts have been made to maintain friendly relations with a customer.
Recognizing that escalations do take place and having mechanisms in place to
handle them successfully helps ensure that escalation issues will have better reso-
lutions rather than damaging customer relationships.

Status Reporting for Issue Resolution
A summary of the status of issues is usually a part of a project progress report
(weekly or monthly). The total number of issues raised, the number of issues
resolved, and the total number of open issues should be reported in the project
progress report. Issue status should also be reviewed and monitored along with
other aspects of the project during project progress-monitoring sessions.

Some final words about issue resolution. Issues are part and parcel of soft-
ware project execution. Under even the best of circumstances, issues will occur

J. Ross Publishing; All Rights Reserved

Issue Resolution in Software Project Management  293

during project execution, and some of them will be escalated to senior manage-
ment. Organizations and project teams must therefore plan for issue resolution
by including the proper methodology for resolution in the SPMP. Having a
defined process for issue resolution is essential. A defined process ensures that
there is uniformity in handling issues across the organization. A defined process
also ensures that as issues are raised, they will be recorded and tracked to closure.
As much as possible, however, foresee the potential for an issue to occur and
take steps to prevent escalation of the issue by a customer (or vice versa). When
escalation does take place, handle it promptly and carefully with the objective of
arriving at an amicable resolution.

This book has free material available for download from the
Web Added Value™ resource center at www.jrosspub.com

J. Ross Publishing; All Rights Reserved

J. Ross Publishing; All Rights Reserved

APPENDIX F

MEASUREMENT AND
METRICS IN SOFTWARE
DEVELOPMENT
ORGANIZATIONS

INTRODUCTION

A diligent measurement process and metrics program goes a long way in under-
standing an organization’s health and in determining whether the organization’s
management of software development is effective or not. The ISO 9000 Series of
Standards and CMMI (Capabilities Maturity Model Integration of the Software
Engineering Institute of Carnegie Melon Institute, U.S.) emphasize measurement
and make measurement mandatory for achieving certification of (or achievement
of) a higher level of maturity. This appendix will shed some light on the metrics
used in the software development industry, with specific focus on software project
management.

Change in the information technology arena is happening at phenomenal
speed. By the time a baseline is established, a newer technology is established. So,
the available baselines become indicators of past achievements, but they are not
useful for predicting future performance.

The software development world does not have a standards organization,
which is unfortunate because other industry segments have organized to form
industry associations to generate standards and then to generally encourage com-
pliance with those standards. Our opinion is that not coming together and failing
to standardize are unique to the software development industry. Part of the issue
may be that intellectual property rights legislation and legal actions are more pro-
lific (and more serious) in the software industry than in any other. Have you ever
heard of a copyright suit because a new car looks like an existing car? Yet, in the

295J. Ross Publishing; All Rights Reserved

296  Mastering Software Project Management

software industry, examples of litigation equivalent to that include dBase going
to court against FoxBase alleging copyright violation and Lotus 123 going court
against VP Planner for the same reason. The lack of a single industry standard
makes measuring the efficacy of software development essential within each orga-
nization. (There is hope that organizations such as SPIN, the Software Process
Improvement Network, and SPMN, the Software Project Managers Network, will
help support standardization and encourage the use of standards.)

MEASUREMENT AND METRICS: THE PRESENT SCENARIO

The ISO 9000 Series of Standards stipulates measurement and metrics as being
mandatory. The SEI stipulates that measurement and metrics are part of their
CMM (Capability Maturity Model) and their CMMI (CMM Integration) that
came later. Unless measurement and metrics are ingrained into the organization,
Level 4 of CMM could not be achieved. IEEE Standards 982.1, 982.2, 1045, and
1061 and SEI’s handbook1 set the guidelines for measurement in software devel-
opment organizations.

Most organizations, however, do have a department dedicated to collating
and analyzing metrics. Some organizations delegate this responsibility to their
quality department; others vest it in their PMOs. These departments collate met-
rics from the reports of the SPMs, maintain them in a repository, and analyze and
present them to their respective managements as well as to external assessment/
certifying/auditing agencies.

Every organization has its own “cadence” for discussing metrics. In many
organizations, quarterly metrics reviews are held; in other organizations, reviews
are bimonthly. The reviews are typically part of a management review meet-
ing (also known by many other names). During the meeting, the department in
charge of maintaining the metrics repository presents the metrics. The metrics
analysis is then discussed and decisions are made so that preventive action can
be taken.

Project-level metrics. Project-specific metrics are reported by SPMs (manu-
ally or in an automated manner), using reporting vehicles such as weekly or
monthly status reports. In some organizations, only a monthly metrics report
is collected from SPMs. SPMs compute productivity metrics, taking effort and
size data from their work allocation and management systems. Quality defects
are computed utilizing data from peer reviews, testing, and defect reports from
clients. (Many organizations have defect reporting and management systems in
place that are used to automatically generate defect/quality metrics reporting.)

J. Ross Publishing; All Rights Reserved

Measurement and Metrics in Software Development Organizations  297

Schedule metrics are computed using data from project schedules (planned and
actual).

Organizational-level metrics. At the organizational level, computing a single
metric for productivity is elusive because of the wide mix of platforms used to
meet the needs of clients that is coupled with a fast-changing technological envi-
ronment. And generally, organizations do not specialize in only one technology.

In most organizations, spreadsheets (and in some cases automated tools) are
used for capturing measurement data and computing metrics. Although once rare,
comprehensive tools for process measurement are now becoming much more
common. Among other reasons for using spreadsheets extensively, two reasons
are because only a few “right” tools are available and the cost of available tools is
very high. As a result, in many organizations, the process of collating, computing,
and analysis of metrics is largely manual or the tools are self-developed.

CLASSIFYING METRICS

In the software development industry, metrics basically fall into five categories:
•	 Productivity metrics
•	 Quality (defect) metrics
•	 Schedule metrics
•	 Effort metrics
•	 Resource utilization metrics

Let’s now discuss each one of these categories in greater detail.

Productivity Metrics
Appendix D provided a discussion of the concept of productivity for SPMs.
Appendix D should therefore be reviewed before proceeding with this section.
Productivity metrics assist us:

•	 During the project acquisition stage to estimate the effort needed for
cost estimation

•	 During the project planning stage to estimate the resources needed for
the project, for scheduling the project, and for making delivery com-
mitments

•	 In setting targets for people when allocating work
•	 In assessing the performance of resources and the fair dispensation of

rewards
•	 In performing benchmarking with other projects within the organiza-

tion or with other organizations

J. Ross Publishing; All Rights Reserved

298  Mastering Software Project Management

Productivity metrics are therefore important metrics used and derived during
project execution. To derive productivity metrics we need data:

•	 The size of the work package
•	 The effort in person-days

Size. The concept of sizing conceptual items such as software elicits signifi-
cant confusion and passion. LOC (lines of code) has been a classic measure of size,
but lack of universal acceptance of LOC on the treatment of inline documenta-
tion and the possibility of the same functionality being achievable in lesser or
more numbers of lines have made use of LOC contentious. The advent of GUIs
(graphical user interfaces), RDBMS (relational database management system),
and multitier architectures have changed the paradigm of software development:
size does not entirely depend on LOC alone and software does not lend itself to
easy counting. Other popular measures of software size include function points,
object points, software size units, story points, and use case points:

•	 Function points: As a size measure, function points have the largest
following and are the easiest to derive, but as with all things, function
points have critics.

•	 Object points: As a size measure, object points have not attained the
level of acceptance of function points, although object points are a
very good measure for determining software size.

•	 Software size units: SSUs are relatively new and yet to find roots.
•	 Story points: Story points are also new and used in agile project esti-

mation. A commonly accepted methodology does not yet exist.
•	 Use case points: Use case points are also a good measure of size, par-

ticularly when use case and RUP (Rational Unified Process) method-
ologies are adopted.

As software developers and scientists look for better methods to size software,
other size measures will likely evolve. Currently, all in all, there does not appear
to be a single, universally acceptable size measure for the size of software to be
developed. Our recommendation is that every organization should standardize a
software size measure for the organization and then use it across all of its projects.
Other size measures could be used if necessary, but a conversion factor can be
developed and used to convert software size into the organization’s standard size
measure. No matter what size measure is accepted, having a formal work alloca-
tion process in place is necessary to obtain the size of the software to be developed.

Effort. To get effort in person-days, a robust time recording process needs to
be in place. The time accounting process needs to capture time at the source. All
team members must therefore diligently record the details of the time spent —

J. Ross Publishing; All Rights Reserved

Measurement and Metrics in Software Development Organizations  299

down to the level of developmental phases and tasks. Several productivity metrics
can be derived:

•	 Gross productivity for an entire project: The gross productivity metric
includes all project activities, including requirements analysis, soft-
ware design, construction, and testing. The size of the delivered soft-
ware product is used to produce all of these measures. Size measures
recommended for use in determining gross productivity are function
points, use case points, object points, software size units (SSUs), or
some similar measure. We can also derive productivity as person-
hours per size measure, which assists us in software estimation for
projects and to benchmark the project against other projects.

•	 Requirements analysis productivity for a project: The requirements
analysis metric includes all activities in requirements analysis, includ-
ing interviewing of executives, requirements gathering from second-
ary sources of information, preparation of documentation, and peer
review. We can use the delivered software product size to derive
productivity, the number of requirements, or the number of pages of
the requirements document. If we use the size of the software prod-
uct, we recommend using one of the functional measures: function
points, use case points, object points, or SSUs. If we use (as some
organizations do) the number of requirements as a size measure, use
the finally approved requirements as the size and derive productivity
in terms of person-hours per requirement. Probable, however, is that
all requirements will not be of the same size. We might therefore have
to normalize requirements using a normalization factor. For example,
if we use the number of pages of the requirements document, we can
derive the requirements analysis productivity as person-hours per
page. (Productivity increases the more verbose a writer is!)

•	 Software design productivity for a project: The software design pro-
ductivity metric includes all activities needed to convert the project
requirements into artifacts that can be used for the construction of
the software product. We can derive a gross productivity for the
entire design activity or derive two metrics: one for the high-level
design (also known as software requirements specification, functional
design specification, software architecture, etc.) and another for the
low-level design (also known as software design description, detailed
design specification, program specifications, etc.) productivity. The
gross productivity figure assists in determining software estimation.
High-level and low-level design metrics (requirements analysis pro-
ductivity and software design productivity) assist us in target setting
and performance assessment. We can use either the delivered software

J. Ross Publishing; All Rights Reserved

300  Mastering Software Project Management

product size or the number of pages of software design documents. Thus,
we can derive software design productivity as person-hours per unit size
measure or person-hours per page of software design documents.

•	 Construction productivity for a project: We can also derive gross pro-
ductivity for the entire construction activity, including all activities
such as table scripts, stored procedures (triggers, PL/SQL code seg-
ments, macros, and the list goes on), graphics, the code of different
programming languages used in the project, and the build routines
(make files). In the case of gross productivity derivation, we can use
the size of the delivered software product. This gross productivity fig-
ure assists in software estimation for project acquisition and project
planning. We can also derive productivity for each of the individual
construction activities just mentioned by using the size measure
appropriate for each activity. However, we will face challenges in mea-
suring the size of GUI screens, the graphics used in Web pages, and
reports developed using report-generator tools. Graphics are largely
in the creativity arena and therefore depend on the graphic itself and
the graphic artist. For screens, we can use the number of normalized
controls used in the screen. We can take a text box as the base measure
and normalize all other controls into text boxes, using a conversion
figure for each set of controls. We might need to develop norms for
such conversion figures at the organizational level for this purpose.
For reports, we might need to use data items included on the report,
including derived fields, control statistics, parameter fields, etc. We
recommend using LOC as the size measure for programs (table
scripts, stored procedures, triggers, programs, PL/SQL code segments,
macros, etc.).

•	 Testing productivity for the project: We also need to derive productiv-
ity for each type of testing. Deriving gross productivity for the entire
testing process will not yield a correct understanding because testing
strategy differs from project to project (including the type of testing,
the number of tests, regression testing strategy, and who conducts
the tests, etc.). We recommend deriving productivity for unit test-
ing, integration testing, system testing, and acceptance testing in the
minimum. We can then use the number of test cases, test points, or
software test units as the size measure for deriving the testing pro-
ductivity. Testing productivity can be derived as person-hours per
test case, person-hours per test point, or person-hours per software
test unit using this data. (Note: Another book by Murali Chemuturi
contains a detailed explanation of test effort estimation and produc-
tivity.2)

J. Ross Publishing; All Rights Reserved

Measurement and Metrics in Software Development Organizations  301

For all of the productivity metrics just described, the formula for productiv-
ity is productivity = size ÷ number of person hours. The metrics for each project
are derived periodically and reported to the PMO, quality department, or entity
that is vested with the function of maintaining the organization’s metrics reposi-
tory. These metrics are used to compile the productivity metrics and to derive the
organization’s capability baseline. This baseline must be updated periodically in
conformance with the organization’s metrics process.

Quality Metrics
Quality metrics indicate the “state of quality” of software being developed in an
organization. Quality metrics are derived from the number of defects “trapped”
during software development as well as the number of delivered defects (usu-
ally defects that have been delivered to the customer). To get accurate data for
computing quality metrics, a defect management process should be in place.
The defect management process should include a formal recording of reported
defects and a mechanism to track them through resolution. To be most effective,
the defect management process should be developed and set at the organizational
level. To be complete, the process needs to include defect reporting, defect analy-
sis, defect resolution, defect resolution review, defect testing, and defect analysis
functions. A range of quality metrics can be computed:

•	 Defect density: Defect density is a definition of the quality of the soft-
ware developed in any organization. One method of computing defect
density is using the delivered defects. Delivered defects are the residual
defects remaining in a software product after all of the planned qual-
ity assurance activities have been performed and after the software
product has been delivered to a customer. We more or less universally
accept that some defects will lurk in software — even after extensive
quality assurance procedures. (Organizations that achieve a six-sigma
level of quality will still have three defects per one million opportuni-
ties.) So, to compute the defect density metric, we use the delivered
software product size and the number of defects reported after
delivery to the customer. (Here, delivery means the product has been
placed in the hands of the customer.) Other versions of the defect den-
sity metric use the number of defects uncovered during other testing
and review activities (which are viewed as process metrics). The size
of software can be stated in LOC, function points, use case points,
object points, or SSUs. The number of defects is taken from defect
reports. The formula for computing defect density is number of defects
÷ software size and is expressed as one defect per unit of size. Should
we include all defects irrespective of whether they are critical, major,

J. Ross Publishing; All Rights Reserved

302  Mastering Software Project Management

or minor in nature? The answer is that different organizations take
different stands. But one thing is certain: a defect, even if minor in
nature, is still a defect. (Would you accept a new shirt from a vendor
if it has a tiny hole in the tail — even if that part of the shirt could be
tucked inside your pants when you wear the shirt?)

•	 Defect injection rate: In computations, the defect injection rate is
similar to defect density except that the defect injection rate takes
into consideration all of the defects uncovered during in-house qual-
ity assurance activities as well as those reported by the customer. The
defect injection rate metric defines the ability of the organization’s
resources to produce quality software in the first iteration. The for-
mula for computing the defect injection rate is number of defects ÷
software size, with the result being expressed a one defect per unit of
software.

•	 Defect removal efficiency: The defect removal efficiency metric indi-
cates the efficacy of the quality assurance activities being conducted
in an organization. Although defect removal efficiency is computed
for each quality assurance activity conducted in the organization,
defect removal efficiency is generally computed and discussed at an
organization level. The formula for computing this metric is defects
uncovered in the QA activity ÷ total defects uncovered in the software
product in the subsequent QA activities, with the result expressed as a
percentage.

•	 Cost of quality assurance: Cost of quality assurance is computed as
a percentage. The formula is person hours spent on carrying out QA
activities ÷ total person hours spent on software development, includ-
ing QA, with the result expressed as a percentage. Note that cost
of QA can be computed using costs rather than effort, albeit using
person-hours eliminates the impact of inflation, etc. during year-on-
year comparison. The person-hours spent on QA do not include the
person-hours spent on fixing defects. The person-hours spent include
all of the effort spent on QA activities such as peer reviews and all
types of testing (including regression testing). A trend analysis of the
cost of QA can indicate whether a development process is improving
or deteriorating. If the software development process is improving,
the cost of QA should be declining. If the cost of QA is increasing,
however, the indications are that the development process has prob-
lems that need attention.

•	 Cost per defect: Another important metric is cost per defect. The
formula for cost per defect is total person hours spent on uncovering
defects and fixing them ÷ total number of defects uncovered, with the

J. Ross Publishing; All Rights Reserved

Measurement and Metrics in Software Development Organizations  303

result expressed as person-hours per defect (again this metric can be
computed using cost, albeit using person-hours eliminates the impact
of inflation, etc. during year-to-year comparison). Person-hours spent
on uncovering and fixing defects includes all QA activities, includ-
ing peer reviews, all types of testing, analyzing the defects, fixing the
defects, peer review of the defect fixes, and regression testing of the
defect fixes. The cost per defect metric can be computed periodically
as well as at the end of a project. Trend analysis of the cost per defect
metric is useful in gaining insight into the waste caused by defects
during project execution. Costs that show an increasing trend suggest
that the software development teams are not performing quality work.

From defect density and the defect injection rate, we can infer the capabilities
of the development teams as well as the QA functions of the organization. Table
F.1 illustrates some of the inferences that can be drawn from defect density and
the defect injection rate.

Schedule Metrics
Schedule metrics provide information about an organization’s capability to meet
deadlines, carry out work, and conform to a preset schedule. Deriving accurate

Table F.1. Interpretation of Defect Density and Defect Injection Rate

Defect
Density DIR Inference Necessary Action

High High Software development and QA
activities are inefficient.

Improve software development and
QA activities.

Low Low Software development and QA
activities are efficient.

Maintain the status quo (the ideal
scenario).

High Low Software development activities
are efficient.

QA activities are not as efficient
as development activities.

The organization is not
spending adequate effort on
QA activities.

Improve QA activities or processes
and other relevant aspects.

Low High The organization is spending
more effort on QA activities.

QA activities are more efficient
than development activities.

Software development activities
are not efficient.

Improve software development
process, activities, and other
relevant aspects to reduce the DIR.

J. Ross Publishing; All Rights Reserved

304  Mastering Software Project Management

schedule metrics requires a number of processes to be in place, including plan-
ning, change management, and time recording processes. The planning process
provides the scheduled dates, the change management process delivers informa-
tion about changes in functionality and schedules, and the time recording process
delivers actual dates. Schedule metrics are computed from this data. We also com-
pute the metrics of schedule variance (SVM) and schedule conformance capability
(SCCM) using this information. The formula for deriving the SVM is number of
days taken for delivery ÷ number of days originally scheduled for the delivery, with
the result expressed as a percentage. The formula for computing SCCM is number
of total schedules met ÷ total number of schedules, with the result also expressed as
a percentage. We recommend that the following schedule metrics be computed:

•	 Schedule variance metric: When multiple deliveries are to be made to
a customer, the SVM for deliveries is calculated for each delivery. We
recommend computing SVM for each delivery because any delay in
delivery adversely affects customer satisfaction.

•	 Schedule conformance capability metric: The SCCM is calculated when
multiple deliveries are effected to a customer. The formula is number
of deliveries effected within the schedule ÷ total number of deliver-
ies effected, with the result expressed as a percentage. In addition to
providing information about the organization’s ability to conform
to delivery schedules, the SCCM also indicates the capability of an
SPM to meet the schedules (and therefore can facilitate improved
performance by SPMs). SCCM should be computed at multiple levels,
including the organizational, project, and SPM levels, to better under-
stand the ability to make deliveries on time.

•	 Schedule variance metric for phase completion: The SVM for phase
completion is computed to show the schedule variance for complet-
ing various software development phases, e.g., requirements analysis,
software design, construction, and testing. Trend analysis at the
organizational level can detect if any phases are consistently not meet-
ing the schedule. Organizational weaknesses at the phase level are
revealed, which provides an opportunity to improve organizational
capabilities.

•	 Schedule conformance capability metric for phase completion: The
SCCM for phase completion is computed by phase at the organiza-
tional level. SCCM is computed for each software development phase.
The formula is number of times the phase was completed within sched-
ule ÷ total number of times the phase was performed in the organiza-
tion, with the result expressed as a percentage. SCCM is computed
periodically on completed phases. Combining the SCCM for phase

J. Ross Publishing; All Rights Reserved

Measurement and Metrics in Software Development Organizations  305

completion with trend analysis allows the detection of organizational
weaknesses in the performance of individual phases of software
development — knowledge that permits an opportunity to improve
organizational capabilities.

•	 Schedule conformance capability metric for team members: Based on
data obtained about how team members are meeting the targets set for
each allocation, the SCCM for each team member can be computed
as work is allocated to them and they subsequently complete it. The
formula used is number of times schedule was met ÷ total number of
allocations, with the result expressed as a percentage. SCCM provides
an insight into a team member’s capability to meet the schedule.
Combining the SCCM for team members with the defect injection
rate and effort variance metrics provides an objective view of a team
member’s strengths and weaknesses. Analysis of the results of the
SCCM for team members allows determination of the type of training
a team member needs as well as effecting improvement of the team
member’s capabilities.

•	 Schedule conformance capability metric for the project: The SCCM for
the project is a metric that provides important insight into why a delay
in project completion occurred. The SCCM for the project provides
insight into the question: was the delay due to an overriding cause
or was it due to an overall delay in every activity? An overall delay in
every activity (or most) could be due to poor planning or poor con-
trol during project execution. The formula for SCCM for the project
is total number of activities completed within schedule ÷ total number
of activities performed in the project, with the result expressed as a
percentage. Table F.2 illustrates the inferences to be drawn from the
SCCM for the project. An SCCM above 95% is considered to be high
(and low otherwise).

Effort Metrics
Effort metrics are concerned with the efficacy of effort estimation as well as how
effort is spent in an organization. Effort metrics tend to focus on the variance
between the estimated effort and the actual effort spent on the activities and the
relationship of the effort spent on various software development phases. Effort
variance metrics allow drawing inferences about the efficacy of software estima-
tion, estimation norms, and the effort control activities during project execution.
Relative effort metrics tell us about the relative importance being placed on the
various software development phases — which permits detection of too much
effort being spent on any one phase (or phases). For example, the effort metric

J. Ross Publishing; All Rights Reserved

306  Mastering Software Project Management

might reveal that most of the effort in projects is being spent on construction and
that the requirements analysis and software design phases are being neglected.
When anomalies such as these are uncovered, they can then be corrected. The
recommended effort metrics for projects as well as organizations include:

•	 Effort variance metric: The EVM is generally computed for the entire
project: for each software development phase and for each relevant
work allocation. In all cases, the formula is actual effort spent – esti-
mated effort) ÷ estimated effort, with the result expressed as a per-
centage. Effort can be measured in person-hours or person-days.
Project-level EVM facilitates trend analysis at the organizational level
to detect trends that can be used to take the necessary corrective
actions. Phase-level EVM facilitates trend analysis and also uncovers
tardy phases. For instance, if we were to discover that the same phase
is consuming more effort than estimated in multiple projects, a root
cause analysis could be conducted and necessary corrective actions
could be put in place to prevent recurrence. Work allocation-level
EVM facilitates uncovering chronic overshooting of estimated effort
by resources. Work allocation-level analysis also facilitates uncovering
specific types of activity that are repeatedly overshooting the estimated
effort. The answer may be that the estimation norms are erroneous or
the methods of performing the specific activity need improvement.
Whatever the cause, these metrics help uncover problems and provide
opportunities for improvement.

Table F.2. Inferences from the SCCM Metric for the Project

SCCM
Project

Completion Inference Necessary Action

High On schedule No concerns No special action except
analyzing the activities that
could not meet the schedule

High Overshot
schedule

Could be a special cause; or
a few activities could have
caused the delay

Investigate the special cause
for the delay or the activity
that caused the delay and take
corrective action

Low On schedule Possible only when a short
cut is resorted to or overtime
working is done during the
final days

Investigate how the situation
became possible and take
necessary corrective action

Low Overshot
schedule

To be expected; also indicates
poor progress monitoring

Investigate the reasons for not
meeting the schedule (e.g., poor
planning or poor control during
execution) and take necessary
corrective action

J. Ross Publishing; All Rights Reserved

Measurement and Metrics in Software Development Organizations  307

•	 Relative effort metric: The REM is computed at the project level and at
the organizational level. The REM facilitates the evaluation of effort
spent on a particular software development phase vis-à-vis the value
of that phase to the project. Obviously, effort spent on a particular
software development phase should be commensurate with its value
to the project. The REM can help us determine if we are effectively
expending effort or wasting it. The formula for REM is effort spent on
a software development phase ÷ total effort spent on the project, with
the result expressed as percentage. Effort may be measured in person-
hours or person-days. At an organizational level, REM provides a
view of the activity that is receiving the most attention. The REM also
indicates if effort is being spent in a balanced manner. If the REM
indicates that effort is being spent in a lop-sided manner, the neces-
sary corrective actions can be taken to rectify the situation. A correla-
tion analysis of the REM with defect origins may reveal the reasons for
defects in a software product. To elaborate a little more, consider the
correlation between the REM of requirements analysis and the defects
that originate in requirements analysis (i.e., are traceable to), which
are shown in Table F.3.

Notice the very high negative correlation between columns two and three in
Table F.3. From Table F.3, we can safely draw an inference: as we spend more rela-
tive effort on requirements analysis, the defects traceable to requirements analysis
decrease. A positive correlation between two variables means that the dependent
variable will increase (or decrease) with any increase (or decrease) in the base vari-
able. A negative correlation means the dependent variable decreases (or increases)
with an increase (or decrease) in the base variable. A positive correlation shows
a direct proportion and a negative correlation shows an inverse proportion type
of relationship between both sets of values. Remember another thing: correlation
does not infer causality.

Table F.3. Correlation Analysis between Relative Effort Metric and Defects
Traceable to Requirements Analysis

Project
REM of Requirements

Analysis (%)
Number of Defects Traceable

to Requirements Analysis

Project A 20 2

Project B 15 4

Project C 22 1

Project D 12 3

Project E 16 3

Note: Correlation coefficient is (–)0.822 (using CORREL function of MS Excel).

J. Ross Publishing; All Rights Reserved

308  Mastering Software Project Management

Resource Utilization Metrics
The resource utilization metric (RUM) provides data about the effectiveness of
resource utilization. The RUM is computed in terms of revenue-earning and
nonrevenue-earning activities as well as a gainfully employed resource or an idle
resource.

Revenue-earning. The formula for computing the RUM for revenue earning
is person hours spent on revenue earning activities ÷ total person hours available,
with the result being expressed as a percentage. The RUM for revenue-earning
activities provides a view of the extent of utilization of resources on internal
activities. In all organizations, a certain amount of resource time needs to be
spent on nonrevenue-earning activities, e.g., process definition and improve-
ment, receiving and giving training, assisting the organization’s HR department
in recruitment activities, and assisting marketing in project acquisition (to name
only a few).

Gainful utilization. The formula for RUM for gainful utilization is person
hours utilized on gainful work ÷ total person hours, with the result being expressed
as a percentage. Obtaining the accurate RUM for gainful utilization requires
encouraging resources to book their idle time factually. Although allocated to
projects, resources may need to be idle due to a host of reasons, e.g., waiting for
inputs, approvals, or clarifications being a few. If the extent of idleness is known,
corrective actions may be put in place to minimize such idleness.

Nonrevenue-earning. All time spent on nonrevenue-earning activities affects
the profitability of an organization. RUMs give us a sense of whether (or not) rev-
enue is being lost due to resource utilization gaps. If an increase in resource utili-
zation for nonrevenue-earning activities is due to a lack of work, the focus should
be on project acquisition. If projects are pending, however, and the time utilized
for nonrevenue-earning activities is high, people should be shifted from nonrev-
enue-earning activities to revenue-earning activities. When the gap widens, we
can correct the situation and increase utilization of resources on revenue-earning
activities. Using the RUM as barometer can influence the bottom line positively.

WHEN TO DERIVE METRICS

Metrics are derived at the project level by the SPM and then collated at the orga-
nizational level. In many organizations, the QA department or the PMO is vested
with the responsibility for deriving and maintaining organizational metrics.
All metrics are to be maintained in an organization’s metrics repository, which

J. Ross Publishing; All Rights Reserved

Measurement and Metrics in Software Development Organizations  309

should be part of the organization’s knowledge repository, or a repository for
metrics alone.

Computing all of these metrics will consume a significant amount of time.
Computing metrics every week and making them part of the weekly status report
can place a considerable amount of overhead on an SPM. We recommend there-
fore that SPMs derive all metrics once a month and then report them in a sepa-
rate metrics report. We also recommend finding automation tools to support the
process.

PROCESSES CRITICAL TO AN EFFECTIVE METRICS
PROGRAM

Our opinion is that for a metrics program to be effective, five organizational pro-
cesses are critical. When these five processes (or groups of processes) are in place,
a metrics program will enable organizations to derive the benefits of numeric or
quantitative management:

•	 Software estimation is a critical process for the metrics program: If
software estimation is conducted by conforming to a defined pro-
cess, using organizational baselines for productivity, the estimation
process is amenable to improvement. Many organizations, however,
carry out ballpark estimation which does not lend itself to variance
analysis, productivity computation, and improvement at a granular
level. Yet, without having estimated values, variance analysis cannot
be performed. Some organizations do not even estimate software size
and therefore make deriving productivity impossible.

•	 A formal work allocation process and tracking mechanism is essential
to make data available in an organization: A formal work allocation
process allows classification of the effort spent on software develop-
ment phases, peer reviews, various types of tests, and rework (includ-
ing defect fixing) to name only a few areas of interest. Work allocation
provides the information necessary for computing schedule metrics.
A work allocation process also permits computation of effort metrics,
resource utilization metrics, and schedule metrics at a granular level.
Without a formal work allocation process and mechanism to track
allocation, this vital data will not be available in an organization and
many metrics cannot be computed.

•	 Timesheets need to provide relevant data for computing metrics. In
many organizations, timesheets are focused on obtaining payroll
data rather than on obtaining information for computing metrics.
A timesheet needs to have a depth of seven levels: project, module,

J. Ross Publishing; All Rights Reserved

310  Mastering Software Project Management

component, software development phase, software development task,
type of task (fresh construction, change request, or defect fixing), and
the date and start/end times for each activity. Having this informa-
tion will permit the gathering of the data required for computing
many metrics. For effort information to be relevant, all time must be
recorded.

•	 A defined metrics process is necessary to conduct useful metrics analy-
sis: A formal metrics process defines the metrics to be used in the
organization, the procedure for gathering data and computing the
metrics, how the metrics will be reported, and derivation of the orga-
nizational metrics. Defining how metrics analysis will be performed
at the organizational level is also a very important component of the
metrics program. By having a defined process, the metrics analysis
activity receives an implied high level of importance within the orga-
nization, which helps ensure that metrics analysis is performed. Our
opinion is that without a defined process, metrics analysis will be
performed sporadically.

•	 Centralization and control facilitate the effective use of data through-
out an organization: A metrics repository contains all of the metrics
derived in the organization. These metrics should be maintained in
a single location so that all concerned individuals in the organiza-
tion can have controlled access to the information to retrieve it when
required. Centralization and control facilitate the effective use of
organizational data. The metrics repository can be a part of the orga-
nizational knowledge repository or a standalone. A repository lends
itself to more effective usage when automated using a software inter-
face and the data stored in an RDBMS.

IMPORTANT METRICS ANALYSES

Two basic types of analyses can be conducted on metrics data to aid decision-
making: trend analysis and correlation analysis.

Trend Analysis
Trend analysis facilitates the detection of trends. Trend analysis is used for track-
ing the trends of productivity, defect injection rate, defect removal efficiency,
defect density, and relative effort utilization to name a few. Many times trend
analysis is a chronology-based analysis, meaning the data is arranged in chrono-
logical order and then analyzed (also known as time series analysis).

J. Ross Publishing; All Rights Reserved

Measurement and Metrics in Software Development Organizations  311

To better understand trend analysis, let’s consider an example of trend analy-
sis. The defect injection rate in seven projects is depicted in Table F.4. When we
plot this information on a graph, the trend can be seen graphically, as depicted
in Figure F.1. As can easily be inferred, the DIR shows an increasing trend. If
this trend were occurring in your organization, the scenario would be alarming.
At the very least, a closer look at the software development process is required.
Trend analysis conducted at the organizational level provides valuable informa-
tion about the trends occurring in an organization and enables management to
put actions in place actions to correct the trend.

Correlation Analysis
We often want to know if software size or team size has an impact on productivity.
To determine this, we need to carry out correlation analysis. Correlation analysis
allows the determination of whether (or not) a relationship exists between two
sets of data, which is particularly helpful in the context of software estimation to
establish if any of the following variables impact productivity:

•	 Software size
•	 Team size
•	 Average experience of team members
•	 Location of work (on-site or at a client’s site)
•	 Programming language

When we establish that a relationship does exist, causal analysis can be used
to determine if changes can be made to improve productivity. Correlation has
three aspects: positive and negative; simple, partial, and multiple; and linear and
nonlinear:

Table F.4. Defect Injection Rate of Projects

Project
Size

(in Function Point) Defects

DIR
(Function Point
per One Defect)

Project A 1250 67 18.66

Project B 1500 76 19.74

Project C 2200 111 19.82

Project D 3100 156 19.87

Project E 1100 57 19.30

Project F 4200 211 19.91

Project G 5200 256 20.31

J. Ross Publishing; All Rights Reserved

312  Mastering Software Project Management

■	 Positive and negative correlation:
•	 A positive correlation is a directly proportional correlation.
•	 A negative is correlation is an inversely proportional correlation.

■	 Simple, partial, and multiple correlation:
•	 A simple correlation refers to a relationship between two variables.
•	 A multiple correlation refers to a relationship between three or

more variables, studied simultaneously.
•	 A partial correlation refers to a relationship between three or more

variables, but studied between two variables, assuming that the
other variables remain constant.

■	 Linear and nonlinear correlation:
•	 A linear correlation is when the influence is based on a constant

ratio.
•	 A nonlinear correlation is when the influence is not based on a

constant ratio.

Microsoft Excel has formulas for computing correlation that can be used
directly. Table F.3 shows an example of correlation analysis between REM and
the defects traceable to the requirements analysis phase.

Some final words. We have described the most important metrics that are rel-
evant for SPMs at the project level and at the organizational level. IEEE Standards
982.1, 982.2, 1045, 1061, and SEI’s guideline1 provide greater details about of all
the metrics that can be derived in software development organizations.

17.5

18

18.5

19

19.5

20

20.5

Project A Project B Project C Project D Project E Project F Project G

D
ef

ec
t I

n
je

ct
io

n
 R

at
e

Projects

DIR (FP per one defect)

Trend line

Figure F.1. Trend analysis of defect injection rate.

J. Ross Publishing; All Rights Reserved

Measurement and Metrics in Software Development Organizations  313

REFERENCES

1.	 William A. Florac, Robert E. Park, and Anita Carleton. Practical Software
Measurement: Measuring for Process Management and Improvement 1977.
CMU/SEI-97-HB-003. Pittsburgh: Software Engineering Institute/Carnegie
Mellon University.

2.	 Murali Chemuturi. Software Estimation Best Practices, Tools & Techniques: A
Complete Guide for Software Project Estimators 2009. Ft. Lauderdale: J. Ross
Publishing.

This book has free material available for download from the
Web Added Value™ resource center at www.jrosspub.com

J. Ross Publishing; All Rights Reserved

J. Ross Publishing; All Rights Reserved

APPENDIX G

MEASUREMENT AND
MANAGEMENT OF
CUSTOMER SATISFACTION

INTRODUCTION

Project-based organizations place a lot of emphasis on customer satisfaction and
rightly so. Customer satisfaction is key for improving a company’s internal pro-
cesses in addition to its market reputation, repeat orders, and improved profit-
ability. Customer satisfaction ratings (CSR) are often obtained through using a
questionnaire (a customer satisfaction survey or CSS). But determining customer
satisfaction in this manner has a drawback: customers are likely to be influenced
by their emotions when filling out a CSS questionnaire. Why? The answer is
because when filling out a CSS questionnaire, a customer can be extremely pleased
about something or just the opposite. Naomi Karten, an expert on the subject of
customer satisfaction, confirms this situation when she says, “People tend to rate
service higher when delivered by people they like than by people they don’t like.1”
(Karten goes on to describe what one can do to be “likable!”) So, more often than
not, CSS ratings received from customers represent perceived feedback rather than
impartial feedback. Sample form elements for a CSS are shown in Figure G.1.

Even with its limitations, a CSS is very important because, ultimately, cus-
tomer perception is very important. But consider this scenario: often only one
person in a customer’s organization fills out a CSS, despite the fact that many
people in the organization are using the product. When only one person is being
surveyed, his expectations can be managed, making generation of the desired rat-
ing possible. And if only one person fills out the CSS, and we want all concerned
individuals consulted, can we be sure that he actually does consult them before
filling out the CSS? Ideally, he should, but more often than not, he will not. Yet,
other users of the product may continue to unearth defects (and certainly do) in

315J. Ross Publishing; All Rights Reserved

316  Mastering Software Project Management

the product. Perhaps some of them are decision-makers. At some point, the per-
son who filled out the CSS form might be shifted to another department or even
leave the organization for greener pastures.

So, we recognize that responses to a CSS can be emotionally biased, that
perception-based ratings alone cannot be relied upon, and that a customer is
not one person, but everyone who is impacted. We also know that gaining an
understanding of the true extent of customer satisfaction with the delivered
software is important, which gives rise to the need for some way to accurately
compute a customer satisfaction rating (CSR) based on internal data — data
that is free from bias, accurate data that is available to us, and data that gives a
realistic metric for customer satisfaction — in addition to the external percep-
tion of the customer.

Name of Organization Executing the Project:

Date:

Project Details:

Details of Person Filling Out Survey:

Instructions for Filling Out Survey:

■	 Rate each of the services provided using a five-point scale:

•	 Quality of deliverables

•	 On-schedule deliveries

•	 Communication

•	 Cooperation

■	 Elaborate on ratings.

Overall Satisfaction:

Provide Any Project-Related Observations:

Signature:

Name:

Date:

For Internal Use:

1.	 Received by:

2.	 Received on:

3.	 Progress report in which this information is included:

Figure G.1. Elements for a customer satisfaction survey form.

J. Ross Publishing; All Rights Reserved

Measurement and Management of Customer Satisfaction  317

THE USEFULNESS OF A CUSTOMER SATISFACTION
SURVEY RATING

A CSS facilitates management of customer satisfaction by a project team. As
already discussed, customer satisfaction management is very important for an
organization: a satisfied customer is more likely to give a glowing reference
about the capabilities of the organization to prospective customers. Remember
a modernized version of a familiar adage: “An ounce of image is worth a pound
of performance.” If we combine that pound of performance with a “good” image
and “wonderful” performance, the organization will go a long way along the road
to success.

A good image, however, is inadequate for the long term. To really be success-
ful in the long term, an organization needs to have a strong performance-based
reputation — a reputation for efficient and effective project execution and for
delivering a quality product. Having long-term success is where measurement of
customer satisfaction comes into the picture.

SO, WHY MEASURE CUSTOMER SATISFACTION
WITH INTERNAL DATA?

Consider three scenarios:
•	 The customer is pragmatic. He is not swayed by things such as the

“recency” factor or the one-incident factor (a one-time occurrence of
an unfortunate outcome, e.g., an error that negatively impacts a major
function for a customer), prejudices of any kind, poor judgment, or
some personal stake. He keeps meticulous project execution records
and is an expert data analyst. Although having such a customer may
be rare, his rating of customer service is likely to be a true reflection
of a vendor’s performance.

•	 The customer is an average person. Her rating is influenced by some
of the factors in Scenario 1. Now assume that she rates this same
vendor’s performance as poor. If this low rating (which is biased)
were accepted, the personnel in the organization involved in project
execution would also receive low ratings as a result. They might, in
turn, also receive lower pay increases and bonuses, if any at all — a
situation that will lower motivation in these workers — when in fact
they actually did a fairly good job and merit a better rating.

•	 The customer is an average person. His rating is influenced by some
of the factors in Scenario 1. Assume that he rates this same vendor’s
performance as excellent. As a result, the personnel involved in the

J. Ross Publishing; All Rights Reserved

318  Mastering Software Project Management

project execution might receive higher pay increases and bonuses, a
situation that will further lower the motivation of the personnel in
Scenario 2.

Scenarios 2 and 3 illustrate a phenomenon known as “rewarding the underper-
formers and punishing the better performers,” a disastrous situation for any orga-
nization. An impact even more disastrous is that the organization does not have
a realistic picture of how satisfied its customers really are. In this situation, any
efforts to improve customer satisfaction can go in the wrong direction.

CRITICAL ASPECTS OF CUSTOMER SATISFACTION

A method based on five parameters that are critical to customer service can be
used to derive a metric for customer service. (Note: One of the authors, Murali
Chemuturi, developed this method based on internal data from organizations for
which he provided consulting services. He developed the method through reverse
engineering a vendor-rating metric that manufacturers use to rate their suppliers.
He considers these five parameters to be essential for achieving high levels of cus-
tomer satisfaction.) Each parameter is a tangible aspect of customer satisfaction
that can be measured objectively:1

•	 Quality: Our opinion is that quality is first. The dictum that “custom-
ers forget the delays, but not the quality” aptly states the value of qual-
ity. Furthermore, customers usually forget everything else if (and only
if) the quality delivered is superb.

•	 On-time delivery: Assuming that quality standards are met, nothing
is more irritating for a customer than not receiving a delivery on the
promised date. If a delivery is late, plans at the customer’s end may
have to be redrawn, resource allocations may have to be shifted, and
subsequent actions may have to be rescheduled, which can cause sig-
nificant inconvenience for the customer and potentially have a nega-
tive monetary impact.

•	 Money: Money in this instance refers to the money that a customer
pays. Not uncommon is for escalation clauses to be built into con-
tracts. So, when a vendor chooses to apply an escalation clause and
to bill the customer for higher amount, the customer can be greatly
impacted and inconvenienced. Often when the cost of a project
increases, additional approvals also need to be obtained for the extra
amount billed — besides having to answer many questions about the
increase in cost. In short, price escalations irritate customers.

J. Ross Publishing; All Rights Reserved

Measurement and Management of Customer Satisfaction  319

•	 Issues: Most projects have issue-resolution mechanisms (i.e., methods
to solve problems). Some vendors, in an eagerness to always interpret
the specifications accurately (and from fear that they might, in fact,
misinterpret the specifications), raise issues in a manner that seems
gratuitous. When valid issues are raised, a customer is usually more
than willing to resolve them, but if the issues raised are perceived to
be trivial, the customer is very likely to become annoyed.

•	 Accommodation and cooperation: Few projects are ever completed
without changes being requested by a customer. When a customer
requests a change, within reason, a vendor should cooperate with the
customer and accommodate the change, implementing the change
without postponing delivery and without increasing the price.

RATINGS

Five ratings are also critical to achieving customer satisfaction: quality, delivery
schedule, price, issues, and cooperation.

The Quality Rating
No project is ever perfect, and most of the time, defects might not be detectable
immediately upon delivery. Usually, a customer’s expectation is “zero” defects,
but all software quality professionals know that zero defects is rarely achieved. If
an acceptable number of defects are detected during the warranty period, how-
ever, a customer likely will be happy (or as happy as he can be when a defect is
discovered).

Sometimes, a customer specifies an acceptable defect density (the number
of defects per number of opportunities for error). At other times, the acceptable
defect density is implicit, e.g., when a customer selects a vendor based on their
certifications or market reputation because the vendor’s reputation alone does not
lend itself to direct measurement. Using six-sigma philosophy, however, we can
measure and specify the number of expected defects based on the “sigma” level of
the vendor organization.

If an organization is at six-sigma level, expected defects from that organiza-
tion will be three defects for every million opportunities. If the organization is at
five-sigma level, expected defects will be three defects for every 100,000 opportu-
nities; at four-sigma level, three defects for every 10,000 opportunities; at three-
sigma level, three defects for every 1,000 opportunities. The expected number of
defects delivered should be contrasted against the actual number of defects deliv-
ered. Usually, defect counting begins during the acceptance testing stage because

J. Ross Publishing; All Rights Reserved

320  Mastering Software Project Management

defects can be discovered by the customer. An accounting of defects continues
through the pilot runs, during live or production runs, and throughout the war-
ranty period and afterward.

Defects can be classified in three categories: critical, major, and minor. One
suggestion is to only count critical and major defects because minor defects are
sometimes merely a difference in perception. For example, something that the
customer perceives as a defect may not be considered to be a defect by the vendor.

Defect density is computed as defects per unit size or, conversely, as units of
product per one defect. As already discussed, software size is measured as lines of
code (LOC), function points (FPs), or some other size measure used in an organi-
zation. (What is important here is to select one unit of size and then to use it for
all measurements.)

Use the following formula to compute a quality rating (QR) for customer
satisfaction:

QR =	(actual defect density – accepted defect density)
	 ÷ accepted defect density

If the actual defect density is less than the accepted defect density, then the QR
metric is negative, meaning customer expectations have been exceeded. If the
actual defect density is the same as the accepted defect density, then the QR metric
is zero and customer expectations have been fully met. If the actual defect density
is more than the accepted defect density, then the QR metric is positive, meaning
customer expectations have not been fully met.

The Delivery Schedule Rating
Not receiving a delivery on the agreed-upon day can be very frustrating. Although
the frustration might be eased a bit if the customer is called about the delivery
being delayed, frustration will be there just the same. The funny thing is that even
if the delay is the result of a change that the customer requested, the late delivery
still frustrates the customer. Sometimes the customer seems to be thinking, “Can’t
they just accommodate this teeny-weeny change without postponing the delivery
date? Vendors will take any opportunity they can to delay deliveries!”

On occasion vendors have been known to prefer compromising on quality
rather than to delay a delivery. The philosophy these vendors espouse is that it will
take the customer some period of time to discover a defect, but it will take no time
at all for the customer to “come down heavy” on the vendor if a delivery is not on
time. Sometimes, a simple statement can be quite convincing: “Sorry for the defect.
Here’s the corrected version. In our fervent effort to deliver on time, a defect crept
in.” Remember that in the long run, customers may forget a delayed delivery, but
they will seldom forget poor quality. When asked for references, customers usually

J. Ross Publishing; All Rights Reserved

Measurement and Management of Customer Satisfaction  321

highlight the quality a vendor provides over the vendor’s timeliness, which is the
reason the aspect of the delivery is placed second in importance when determin-
ing customer satisfaction.

To compute the delivery rating (DR) metric, we contrast the accepted delivery
with the actual delivery. But which date should be used as the accepted delivery
date? To compute the highest rating possible for the organization, take the latest
approved delivery date. To derive a true customer satisfaction rating, take the
date that is on the purchase order. Some organizations use both: one for internal
purposes and one for external purposes.

Use the following formula for computing a DR for customer satisfaction:

DR =	 (actual days taken for delivery – accepted days for delivery)
	 ÷ accepted days for delivery

To determine the actual days taken for delivery, use the number of calendar days
between the date of the purchase order and the date on which delivery was actu-
ally made. To determine the accepted days for delivery, use the number of calen-
dar days between the date of the purchase order and the date of delivery specified
on the purchase order.

If the actual delivery is made before the accepted delivery date, then the DR
metric is negative, meaning customer expectations have been exceeded. If actual
delivery is made on the accepted delivery date, then the DR metric is zero and
customer expectations have been fully met. If actual delivery is made later than
the accepted delivery date, then the DR metric is positive, meaning customer
expectations have not been fully met.

The Price Rating
Obviously, no vendor can bill a customer for an amount that was not agreed to
by the customer, particularly if the vendor expects his invoice to be paid in full
and without issue. But why is the price rating important? Sometimes contracts
are drawn up using an hourly rate with a maximum cap amount, which allows
some amount of variance on either side. In such cases, the final billed amount can
be lower or higher than the specified amount. At other times, e.g., when a price
escalation clause is implemented or an additional payment is requested due to a
change, negotiation will usually occur before the customer accepts the escalation.
The amount accepted by the customer might not be the same as requested by the
vendor. Requesting extra payment of money and the resultant negotiations can
certainly frustrate customers, particularly if they have not been part of the discus-
sion from the beginning. Whenever a customer has to pay more than the original
purchase order amount, the customer can become dissatisfied. (Conversely, a

J. Ross Publishing; All Rights Reserved

322  Mastering Software Project Management

customer is usually pleased when a vendor charges less money than the amount
specified on the purchase order and also delivers what was promised!)

To compute the price rating (PR), use the price agreed upon (before taxes) on
the original purchase order and the final amount billed. For the PR metric, use the
formula for computing customer satisfaction:

PR =	(actual amount billed – amount on the purchase order)
	 ÷ amount on the purchase order

 If the actual amount billed is less than the purchase order amount, then the
PR metric will be negative, meaning customer expectations have been exceeded. If
the actual amount billed is equal to the purchase order price, then the PR metric
is zero and customer expectations have been fully met. If the actual amount billed
is more than the purchase order price, then the PR metric is positive, meaning
customer expectations have not been fully met.

The Issue Rating

Issues crop up during project execution mainly because the specifications are
unclear, understanding of the specifications is lacking, or changes have occurred
in business needs. Issues may also occur because of a conflict or an error in the
requirements.

When a vendor raises an issue whose origin is attributable to the customer,
the customer’s satisfaction is not usually affected. The customer’s satisfac-
tion is affected, however, if the issues raised are due to the vendor’s improper
understanding of the requirements when an understanding should have existed.
Customers usually expect any shortfall in exhaustive requirements specifications
to be bridged by the vendor. Failure to meet a customer’s expectations in bridging
the gaps in the customer’s requirements can cause dissatisfaction.

To compute an issue rating (IR), use the issue density (ID). Although the fac-
tor for ID can easily be computed, no standard measure exists for an acceptable
ID. To calculate ID, use the number of issues and the software size. Although
issues can directly relate to requirements, the number of requirements cannot be
used because no common method for defining requirements exists, which means
that size and granularity can vary significantly. Thus, ID is computed as follows:

ID = number of issues raised ÷ software size

Software size can be any software size measure, e.g., LOC or FP. Because no uni-
versal measure of ID exists, define an organizational standard and continuously
improve it.

J. Ross Publishing; All Rights Reserved

Measurement and Management of Customer Satisfaction  323

The formula for computing the IR component of customer satisfaction is as
follows:

IR = (actual ID – standard ID) ÷ standard ID

 If the actual ID is less than the standard ID, then the ID metric is negative,
meaning customer expectations have been exceeded. If the actual ID is the same as
the standard ID, then the ID metric is be zero, suggesting that customer expecta-
tions have been met. If the actual ID was more than the standard ID, then the ID
metric will be positive, meaning customer expectations have not been fully met.

The Cooperation Rating
Most projects will not be completed without a few change requests from the cus-
tomer. Because change requests are commonly implemented before delivery, how
then do change requests rise give rise to customer dissatisfaction? The answer
is that change requests cause additional work for a vendor. The impact on the
vendor can be felt in two ways: a revised delivery schedule and potentially higher
costs. Sometimes, the vendor can absorb both. At other times, the vendor absorbs
the impact of the change by reducing their margin, but passes on the impact on
the delivery schedule to the customer. In another scenario, the vendor absorbs the
impact of the change to the delivery schedule, but passes on the impact on price to
the customer. (The vendor may also reject the change request.)

Of course, to be expected is that a customer will be happy when all change
requests are accepted, with no impact on the price or the delivery schedule. But
because this situation is rarely practical, we compute a cooperation rating (CR)
that has a formula:

CR = (number of change requests received – number of change requests
implemented without affecting delivery date or price) ÷ number of
change requests received

 If the number of change requests received is the same as the number of
change requests implemented, without affecting either delivery schedule or price,
then the CR metric is zero, meaning customer expectations have been fully met.
If the number of change requests received is greater than the number of change
requests implemented, without affecting either delivery schedule or price, then
the CR metric will be positive, meaning customer expectations have not been fully
met. In the CR rating, there is no way to exceed customer expectations.

J. Ross Publishing; All Rights Reserved

324  Mastering Software Project Management

The Composite Customer Satisfaction Rating
Having computed all of the five ratings that are critical to achieving customer
satisfaction, the composite customer satisfaction rating (CCSR) can be computed.
Obviously, in achieving customer satisfaction, all five of the ratings do not have
the same importance. The ratings also vary from organization to organization,
from customer to customer, and from project to project. Some customers may
perceive quality as being the most important aspect of a product or a service, while
some may perceive delivery as the most important aspect. For others, the highest
importance may be placed on price. Given the differences in customer percep-
tions and preferences, assigning weights to each of the five ratings is necessary to
arrive at a reasonably accurate CCSR.

To calculate a meaningful CCSR, the sum of all of the weights must equal
1.00. An example of how weights can be distributed is shown in Table G.1. Use
this formula to compute CCSR:

CCSR = 5 – (QR × w1 + DR × w2 + PR × w3 + IR × w4 + CR × w5)

This formula gives the CCSR on a five-point scale. It is possible for the CCSR to
be greater than five in some cases. When this happens, customer expectations
have been exceeded.

ANALYZING CUSTOMER SATISFACTION

Contrasting the CSS ratings with the CCSR allows organizations to improve their
processes. Let’s explore three scenarios:

•	 Scenario 1: The internal CCSR is in agreement with a CSS rating. The
balance between the two metrics indicates that the customer’s per-
ception is in sync with the performance delivery and that customer
expectations are being managed as they should be. The organization’s

Table G.1. Weights for Ratings

Serial Number Rating Weight

1 Quality rating w1 = 0.30

2 Delivery rating w2 = 0.30

3 Price rating w3 = 0.30

4 Issue rating w4 = 0.05

5 Cooperation rating w5 = 0.05

Total weight = 1.00

J. Ross Publishing; All Rights Reserved

Measurement and Management of Customer Satisfaction  325

strengths are equal in service and expectations management, giving
a realistic picture to management. In this case, the organization only
needs to take corrective action based on a rating that is poor.

•	 Scenario 2: The internal CCSR is way below the CSS rating, meaning
that the customer’s perception of the organization’s service is better
than the service level actually provided. This result sounds good, but
it is of no benefit to the organization. If the organization continues
to “sing its own praises” based on the customer’s perception that the
level of service is high, the organization will head downward. The
resources will continue to place emphasis on expectations manage-
ment rather than on service, thus never improving service. In this
case, the resources need training to improve their levels of providing
service (and other process changes may be required as well).

•	 Scenario 3: The internal CCSR is way above the CSS rating. In this
case, the customer’s perception of the organization’s service is worse
than the service measurements suggest. This situation suggests that
the organization is concentrating on service with little concern for
expectations management. The organization may also be neglecting
interpersonal relations and communication with the customer. In this
case, the resources may need training in expectations management.

There is room in the CCSR method to allow every organization to adapt the
method to the organization’s specific needs. For example, perhaps some of the
five ratings could be dropped, substituted for, or even new categories could be
added to suit a specific organization’s needs. Our recommendation is to use the
CSS and the CCSR to get a correct picture of the organization’s level of customer
satisfaction. Use them together to bring about improvement.

REFERENCE

1.	 Naomi Karten. Seminar: Tales of Whoa and the Psychology of Customer
Satisfaction 2007. Randolph, MA: Karten Associates (www.nkarten.com).

This book has free material available for download from the
Web Added Value™ resource center at www.jrosspub.com

J. Ross Publishing; All Rights Reserved

J. Ross Publishing; All Rights Reserved

APPENDIX H

AN INTRODUCTION
TO PERT/CPM

Project managers have relied on PERT/CPM techniques to plan, schedule, and
control projects for the last 60 years. PERT is an acronym for Program Evaluation
and Review Technique. CPM is an acronym for Critical Path Method. PERT has
its origins in research projects, but was successfully used in the development of
the Polaris ballistic missile — a missile that would be launched from beneath the
ocean’s surface in 1960.1,2 Owing to the success of the Polaris project, PERT gained
popularity and was adopted in project-based manufacturing organizations. CPM
had its origins in the construction industry.3 PERT and CPM came on the scene in
a big way after World War II.4 Over a period of time, project managers have begun
to combine the two techniques and use them together (known as PERT/CPM).5

A NETWORK DIAGRAM

The backbone of the PERT and CPM techniques is a network diagram. A network
diagram graphically represents the relationships between the activities that are
needed to execute and complete a project. Traditionally, a network diagram is
composed of events (also referred to as milestones). An event denotes reaching of
a milestone or the completion of an activity. These events are connected by arrows
that represent activities.

Events. By definition, an event is the culmination of activity. An event does
not consume resources. An event (or milestone) also represents a significant point
in a project, e.g., the completion of a set of activities. In classic network diagrams,
an event is represented by a circle.

Activities. An activity is the smallest unit of productive effort that can be
planned, scheduled, and controlled. Activities are also referred to as tasks. An activ-
ity consumes resources: time, money, material, equipment, and information. In
classic network diagrams, an activity is represented by an arrow. In more modern

327J. Ross Publishing; All Rights Reserved

328  Mastering Software Project Management

network diagrams, an activity is represented by a circle or some other shape. In
these diagrams, arrows are used to represent precedence relationships.

In a diagram, the entire network is embedded between two events: the Start
event and the End event. The Start event signifies the start of the project; the End
event signifies completion of the project. A traditional network diagram is shown
in Figure H.1.

In Figure H.1, the circles represent events. In common usage, these circles are
also referred to as nodes. Nodes are numbered, but they can also be named. The
activities are represented by arrows and are referred by the predecessor event and
the successor event. In Figure H.1, the activities are 1–2, 1–3, 2–4, 3–5, 4–6, 5–6,
and 6–7.

With the passage of time, the orientation of network diagrams changed from
event-oriented to activity-oriented. This activity orientation has shifted how
activities are now represented (i.e., the circle in a modern network diagram).
The arrows now represent the relationship between activities. Activity-oriented
network diagrams are referred to as activity on node (AON) network diagrams or
precedence network diagrams. Precedence network diagrams are predominantly
used today. An AON network diagram is depicted in Figure H2.

CONSTRUCTION OF A NETWORK DIAGRAM

Develop the Work Breakdown Structure
The first step in constructing a network diagram is to develop the work break-
down structure (WBS) for the project. A WBS is a functional breakdown (or
decomposition) of the project into successive levels of activities that need to be
performed in order to complete the project. We will use a Start-End or End-Start
approach to constructing a network diagram. In a Start-End approach, the steps
include:

Start
1

2 4

3 5

6 End
7

Figure H.1. The traditional network diagram.

J. Ross Publishing; All Rights Reserved

An Introduction to PERT/CPM  329

	 1.	 Enumerating all activities that are to be performed to begin the proj-
ect

	 2.	 Enumerating all activities that are to be performed upon completion
of the initial activities

	 3.	 Enumerating the next level of activities that are to be performed
	 4.	 Iterating Step 3 until all activities have been defined
	 5.	 A final listing of all activities (When all activities have been listed, the

WBS is ready.)

This stepwise approach can be visualized as an upright triangle as shown in Figure
H3.

The End-Start approach to building a WBS is exactly the opposite of the Start-
End approach. The steps in an End-Start approach include:

	 1.	 Enumerating the last and final activities that need to be performed
before completing the project

	 2.	 Enumerating the activities that need to be performed to enable
beginning the last set of activities

	 3.	 Enumerating the activities that need to be performed to begin the
next preceding set of activities

	 4.	 Iterating Step 3 until we reach a stage in which no previous set of
activities exists (i.e., as long we can foresee the previous set of activi-
ties to be performed)

	 5.	 A finished WBS

This stepwise approach can be visualized as an inverted triangle as shown in
Figure H4.

Once all activities have been identified, we establish the precedence rela-
tionships between the activities in the WBS. Remember that performing some

Start

Requirements
Analysis

Construction

Requirements
Analysis

Construction

Integration Testing End

Design

Design

Module 1

Module 2

Figure H.2. An activity on node network diagram.

J. Ross Publishing; All Rights Reserved

330  Mastering Software Project Management

Final-Level Activities

D
ire

ct
io

n
of

 D
ec

om
po

si
tio

n

Initlal-Level Activities

Intermediate Activities

Intermediate Activities

Intermediate Activities

Intermediate Activities

Figure H.4. The End-Start approach to a work breakdown structure.

Final-Level Activities

D
ire

ct
io

n
of

 D
ec

om
po

si
tio

n

Intermediate Activities

Intermediate Activities

Intermediate Activities

Intermediate Activities

Initial-Level Activities

Figure H.3. The Start-End approach to a work breakdown structure.

J. Ross Publishing; All Rights Reserved

An Introduction to PERT/CPM  331

activities in parallel with each other (concurrently) is possible and also that some
activities have to be performed in sequence with each other activity (one after the
other). In the diagram shown in Figure H2, the Module 1 and Module 2 activities
can be performed concurrently, but Integration and Testing activities need to be
performed in sequence. In other words, Testing can only be started after comple-
tion of the Integration activity. As an illustration, let’s build a WBS that would
generate the network diagram shown in Figure H2. This WBS is shown in Table
H1.

Using the WBS in Table H.1, we can draw the network diagram shown
in Figure H2. The following guidelines are helpful when drawing a network
diagram:

	 1.	 Draw the Start node at the left-most place.
	 2.	 Add nodes to the right of the first node until the diagram is com-

pleted.
	 3.	 Number the nodes for easy identification/reference purposes, incre-

menting the node numbers from left to right and from top to bot-
tom.

	 4.	 Do not cross the arrows unless doing so is unavoidable (shown in
Figure H5).

Table H.1. Example of a Work Breakdown Structure

Activity ID Activity Description Predecessors Successors

1 Start None 1. Requirements
analysis of Module 1

2. Requirements
analysis of Module 2

2 Requirements analysis
of Module 1

Start Design of Module 1

3 Design of Module 1 Requirements analysis
of Module 1

Construction of
Module 1

4 Construction of Module 1 Design of Module 1 Integration

5 Requirements analysis
of Module 2

Start Design of Module 2

6 Design of Module 2 Requirements analysis
of Module 2

Construction of
Module 2

7 Construction of Module 2 Design of Module 2 Integration

8 Integration 1.  Construction of Module 1

2.  Construction of Module 2

Testing

9 Testing Integration End

10 End Testing None

J. Ross Publishing; All Rights Reserved

332  Mastering Software Project Management

	 5.	 Avoid loops in the network diagram (shown in Figure H6).
	 6.	 Distinguish each level of concurrent activities and draw the network

diagram in tiers.
	 7.	 Allow no dangling activities. (Allowing no dangling activities means

that every activity, with the exception of the Start and the End,
should have a minimum of one predecessor and a minimum of one
successor.)

Estimate the Duration for Each Activity
The next step in the PERT process is estimation of the duration for each of the
activities. PERT recognizes the uncertainty inherent in estimation. PERT recom-
mends estimating three values of duration for each activity:

•	 Optimistic time: Optimistic time (to) is the best-case-scenario dura-
tion: an expert performs the activity, all resources are available on
time, no unforeseen incidents cause delays, etc. Optimistic time is the
shortest duration in which an activity can be completed.

•	 Pessimistic time: Pessimistic time (tp) is the worst-case-scenario dura-
tion: a novice performs the activity, all possible delays occur, resource
availability is delayed, etc. Pessimistic time is the longest duration
needed to complete an activity.

Figure H.5. Avoid crossing arrows in network diagrams.

Figure H.6. Avoid loops in network diagrams.

J. Ross Publishing; All Rights Reserved

An Introduction to PERT/CPM  333

•	 Most likely time: Most likely time (tm) is a normal-case-scenario dura-
tion: a person with average skills performs the operation, some delays
occur, most resources are available on time, etc. Most likely time is the
duration that will usually take place to complete an activity.

From these three duration values, the expected time (te) can be computed
using a formula:

te = (to + 4tm + tp)/6

Table H.2 shows an example of computations of the expected times for the activi-
ties of the network diagram shown in Figure H.2.

Now let’s calculate the duration required to complete the project. We com-
pute this value using the te or the expected times of each activity. We do this from
the network diagram shown in Figure H2. We place the values for Start and Finish
near the node (shown in Figure H.7).

In Figure H.7, ES represents the earliest Start, which signifies the day on
which the activity can begin, as counted from the first day on which the project
began. EF represents earliest Finish time and signifies the day on which the activ-
ity can earliest finish, as calculated from the day on which the project began.

ES is computed as the earliest Finish day of the preceding activity. For
example, the activity of design of Module 1 can be started on day 6. Day 6 is the
day on which the preceding activity of Requirements analysis for Module 1 fin-
ishes. Now consider the Integration activity, which has two preceding activities:
the construction of Module 1 and the construction of Module 2. Construction of

Table H.2. Data for Estimated Durations for Activities in Figure H.2

Activity
ID

Activity
Description

Optimistic
Time

Pessimistic
Time

Most Likely
Time

Expected
Time

1 Start 0 0 0 0

2 Requirements analysis
of Module 1

4 8 6 6

3 Design of Module 1 5 11 8 8

4 Construction of Module 1 10 16 13 13

5 Requirements analysis
of Module 2

3 7 5 5

6 Design of Module 2 4 10 7 7

7 Construction of Module 2 10 18 14 14

8 Integration 5 9 7 7

9 Testing 3 5 4 4

10 End 0 0 0 0

J. Ross Publishing; All Rights Reserved

334  Mastering Software Project Management

Module 1 finishes on day 27, whereas the construction of Module 2 finishes on
day 26. The Integration activity can therefore start only on day 27. Therefore, the
rule for computing the ES for an activity is the last finish time of all of its prede-
cessor activities. The rule for computing the EF for an activity is simply the ES of
the activity plus its duration.

The method of computing project duration that we have just described is
referred to as forward pass or the earliest time computation. Based on this com-
putation, the End activity finishes on day 38, which is the earliest duration for the
project completion.

We can now compute the durations for the activities by beginning from the
End activity backward until we reach the Start activity. We compute the latest
times for all the activities coming backward from the End activity to the Start
activity. This method is referred to as backward pass (shown in Figure H.8).

In Figure H.8, LS represents the latest Start time for an activity. LS is the time
at which an activity must start so that the successor activity will not be delayed.
LF represents the latest Finish time for the activity.

To compute the latest times, we begin at the End activity and work backward.
So, for the Testing activity, the LF should be day 38 so that the End activity is not
delayed. The LS for the Testing activity is (LF – duration) or day 34. We work
backward in this manner and compute the latest times for all activities.

The difference between the earliest time and the latest time for an activity is
known as slack or float. For example, for the Design activity of Module 2, the ES
is 5 and the LS is 6 (alternately, EF is 12 and LF is 13). Therefore, the slack for that

Start
0

Requirements
Analysis

6

Construction
13

Requirements
Analysis

5

Construction
14

Integration
7

Testing
4

End
0

Design
8

Design
7

Module 1

Module 2

ES-0
EF-0

ES-0
EF-6

ES-6
EF-14

ES-14
EF-27

ES-0
EF-5

ES-5
EF-12

ES-12
EF-26

ES-27
EF-34

ES-34
EF-38

ES-38
EF-38

Figure H.7. Forward pass: a network diagram with earliest Start and Finish values for each
activity.

J. Ross Publishing; All Rights Reserved

An Introduction to PERT/CPM  335

activity is 1 (or 13 – 12). Slack is the amount of time by which the activity could
be delayed without delaying its successor activities.

Notice in Figure H.8 that some activities have slack and some do not.
Activities that have no slack are known as critical activities. Critical activities are
those activities that are vital to the timely completion of the project. Any delay in
completing a critical activity will directly and proportionately delay the project’s
completion.

The path from the Start activity to the End activity, which is connected by
all of the critical activities, is known as the critical path. In a network diagram,
all critical activities are normally connected by a red arrow. Notice in Figure H.8
that the critical activities are connected by a thicker line. To arrive at the duration
of the project, simply sum up the duration of each of the activities on the critical
path.

The critical path can also be derived by using an alternate way. We first trace
all of the parallel the paths on the network diagram from the Start activity to the
End activity and compute each of their durations. Notice in Figure H.8 that we
have two paths: Path 1 and Path 2.

•	 Path 1 is Start–Requirements Analysis for Module 1–Design of
Module 1–Construction of Module 1–Integration–Testing–End. The
duration of this path is 38 days.

•	 Path 2 is Start–Requirements Analysis for Module 2–Design of
Module 2–Construction of Module 2–Integration–Testing–End. The
duration of this path is 37 days.

Requirements
Analysis

6

Construction
13

Requirements
Analysis

5

Construction
14

Integration
7

Testing
4

End
0

Design
8

Design
7

Module 1

Module 2

ES-0 LS-
EF-0 LF-

ES-0 LS-0
EF-6 LF-6

ES-6 LS-6
EF-14 LF-14

ES-14 LS-14
EF-27 LF-27

ES-0 LS-1
EF-5 LF-6

ES-5 LS-6
EF-12 LF-13

ES-12 LS-13
EF-26 LF-27

ES-27 LS-27
EF-34 LF-27

ES-34 LS-34
EF-38 LF-38

ES-38 LS-38
EF-38 LF-38

Start
0

Figure H.8. Backward pass: a network diagram with the latest Start and Finish values for each
activity.

J. Ross Publishing; All Rights Reserved

336  Mastering Software Project Management

The critical path in a network is the path that has the longest duration from the
Start activity to the End activity. Clearly, Path 1 has longer duration. Path 1 is
therefore the critical path in Figure H.8.

PERT AND PROBABILITY

PERT acknowledges the uncertainty inherent in estimating the duration of
projects and provides a methodology for estimating the probability for project
completion for a given duration:

•	 The formula for computing the standard deviation for an activity is
finding the difference between the optimistic time and the pessimistic
time for the activity and then dividing the result by 6. The formula is
standard deviation = (tp – to) ÷ 6.

•	 Variance for an activity is the square of the standard deviation. We
compute variance for all activities on the critical path.

•	 The standard deviation for the project is the square root of the sum of
variances of the critical activities. The formula is standard deviation
for the project = square root (sum of variances of all activities on the
critical path).

Let’s use the data in Table H.2 and compute the values, which are shown in Table
H.3. The critical path, computed as discussed earlier and identified by the values
in Table H.3, is 1, 2, 3, 4, 8, 9, and 10. The sum of their variances is (0 + 0.44 + 1

Table H.3. Data Illustrating the Computation of Standard Deviation

Activity
ID

Activity
Description

Optimistic
Time

Pessimistic
Time

Standard
Deviation Variance

1 Start 0 0 0.00 0.00

2 Requirements analysis
of Module 1

4 8 0.67 0.44

3 Design of Module 1 5 11 1.00 1.00

4 Construction of Module 1 10 16 1.00 1.00

5 Requirements analysis
of Module 2

3 7 0.67 0.44

6 Design of Module 2 4 10 1.00 1.00

7 Construction of Module 2 10 18 1.33 1.78

8 Integration 5 9 0.67 0.44

9 Testing 3 5 0.33 0.11

10 End 0 0 0.00 0.00

J. Ross Publishing; All Rights Reserved

An Introduction to PERT/CPM  337

+ 1 + 0.44 + 0.11) = 2.99 or 3. Therefore, the standard deviation for the project is
square root of 3 or 1.732.

To compute probability, we determine the value of Z using a formula:

Z = (D – te)/standard deviation

where:

D = the required due date for project completion
te = the expected time of completion of project according to the critical

path

Then, we look up the probability for the value of Z (from probability tables that
are available on the Internet, in mathematical tables, or in any book on statistics).

For the project shown in Figure H.8, let’s now compute the probability of
completing the project in 36 days:

D = 36
te = 38
Standard deviation = 1.732
Z = (36 – 38)/1.732 = –1.15

When we look up the value of Z from probability tables, we get a value of 0.12507
or about 12.507%. Thus we can say that the probability of executing the project
(whose expected time of completion is 38 days) in 36 days, is about 12.5%.

CPM

As discussed earlier in this appendix, like PERT, CPM is also a network diagram-
based technique, except in the matter of handling uncertainty. CPM treats the
duration of activities as deterministic. Deterministic activities are those activities
whose duration is known with certainty. CPM uses a single time estimate for
each activity. CPM assumes the possibility, however, that by pumping in more
resources, the duration of the activities can be reduced, within certain predefined
limits, so that the total duration of the project can be reduced. This aspect of
pumping in more resources to reduce the duration of activities, and thereby
reducing the total duration of a project, is known as crashing the project. Crashing
is the systematic reduction of the duration of an entire project, with the least pos-
sible increase in the cost of the project.

Before going any further, we need to answer a question: “Why would we need
to resort to crashing the project?” (In other words, we are assuming that the proj-
ect completion date arrived at using forward pass and backward pass computa-
tions will be acceptable to the client.) Often, however, the project completion date

J. Ross Publishing; All Rights Reserved

338  Mastering Software Project Management

arrived at by our computations and the completion date demanded by the client
are not the same. If the completion date demanded by the client is later than our
date, all is well. But if the date demanded by the client occurs before our date, we
are faced with a difficult situation. This situation is often a reality. Crashing can
help us try to reduce the initial project completion date to meet client demands.

Each activity is associated with two sets of values: normal duration and
normal cost and crash duration and crash cost. The relationship between these
two sets of values is assumed to be linear. For example, say the Design activity
of Module 1 has a normal duration of 5 days, with an associated normal cost of
1000. The activity’s crash duration is 3 days and its crash cost is 1500. The activ-
ity’s crash cost per day is then [(1500 – 1000) ÷ 2] = 250, a value that is known as
cost-time slope.

Let’s now look at an example of crashing using the project depicted in Figure
H.8. The initial data for crashing is shown in Table H.4. Using the data in Table
H.4, we can compute the number of crashable days and the cost-time slope
for each activity, which is shown in Table H.5. Crashing is an iterative process
because the process takes a number of iterations to achieve the objective. In this
example, for a better understanding of the process, let’s crash the project to its
minimum possible duration.

In the first iteration, we will have two paths: Path 1 is 1–2–3–4–8–9–10, with
duration of 38 days; Path 2 is 1–5–6–7–8–9–10, with duration of 37 days. Thus,
we know the critical path is 1–2–3–4–8–9–10. To reduce the duration, we need to
crash critical activities. So, we first consider the activity that has the least cost-time
slope for crashing. We see in Table H.5 that Activity 4 (Construction of Module

Table H.4. Initial Data for a Crashing Example

Activity
ID

Activity
Description

Normal
Time

Normal
Cost ($)

Crash
Time

Crash
Cost ($)

1 Start 0 0 0 0

2 Requirements analysis
of Module 1

6 9,000 4 12,000

3 Design of Module 1 8 12,000 7 15,000

4 Construction of Module 1 13 13,000 10 16,000

5 Requirements analysis
of Module 2

5 7,500 4 10,000

6 Design of Module 2 7 10,500 6 14,000

7 Construction of Module 2 14 14,000 11 17,000

8 Integration 7 14,000 5 18,000

9 Testing 4 6,000 4 6,000

10 End 0 0 0 0

J. Ross Publishing; All Rights Reserved

An Introduction to PERT/CPM  339

1) has the least cost-time slope — 1000 per day. So, we will select this activity for
crashing. Our next decision will be how much duration do we crash? We need to
select duration such that the present critical path will not become shorter than
any other path in the network diagram after crashing. We already know that the
difference between the two paths is 1 day, so we can crash Activity 4 for 1 day.

From our discussion, we can now formulate the rules for crashing in the first
iteration:

	 1.	 Select the activity on the critical path that has the least cost-time
slope.

	 2.	 Select the duration such that the duration of the critical path after
crashing is not less than any other paths in the network diagram.

Next, we need to redraw the network diagram using this new information. The
new network diagram drawn after the first iteration of crashing is shown in Figure
H.9.

Now, let’s carry out the second iteration. As you can see from the new net-
work diagram in Figure H.9, we now have two critical paths. When there is more
than one critical path in a network diagram, the first rule in selecting the next

Table H.5. Data for Crashable Days and Cost-Time Slope for a Crashing Example

Activity
ID

Activity
Description

Normal
Time

Normal
Cost ($)

Crash
Time

Crash
Cost ($)

Crashable
days

Cost/
time
slope

1 Start 0 0 0 0 0 0

2 Requirements
analysis of
Module 1

6 9,000 4 12,000 2 1,500

3 Design of
Module 1

8 12,000 7 15,000 1 3,000

4 Construction
of Module 1

13 13,000 10 16,000 3 1,000

5 Requirements
analysis of
Module 2

5 7,500 4 10,000 1 2,500

6 Design of
Module 2

7 10,500 6 14,000 1 3,500

7 Construction
of Module 2

14 14,000 11 17,000 3 1,000

8 Integration 7 14,000 5 18,000 2 2,000

9 Testing 4 6,000 4 6,000 0 0

10 End 0 0 0 0 0 0

J. Ross Publishing; All Rights Reserved

340  Mastering Software Project Management

activity for crashing is to select activities that are common to all of the critical
paths. In Figure H.9, we have two such activities: Integration and Testing. We
already know that when we have multiple candidate activities for crashing that we
need to select the one with the least cost-time slope. In our example, we have only
one activity that can be crashed: Integration. Integration can be crashed by 2 days
at an extra cost of 4000. But before crashing, a question needs to be answered:
“Will full crashing (i.e., reducing the duration of the Integration activity fully

Start
0

Requirements
Analysis

6

Construction
12

Requirements
Analysis

5

Construction
14

Integration
7

Testing
4

End
0

Design
8

Design
7

Module 1

Module 2

ES-0 LS-
EF-0 LF-

ES-0 LS-0
EF-6 LF-6

ES-6 LS-6
EF-14 LF-14

ES-14 LS-14
EF-26 LF-26

ES-0 LS-0
EF-5 LF-5

ES-5 LS-5
EF-12 LF-12

ES-12 LS-12
EF-26 LF-26

ES-26 LS-26
EF-33 LF-33

ES-33 LS-33
EF-37 LF-37

ES-37 LS-37
EF-37 LF-37

Figure H.9. A network diagram after the first iteration of crashing.

Start
0

Requirements
Analysis

6

Construction
12

Requirements
Analysis

5

Construction
14

Integration
7

Testing
4

End
0

Design
8

Design
7

Module 1

Module 2

ES-0 LS-
EF-0 LF-

ES-0 LS-0
EF-6 LF-6

ES-6 LS-6
EF-14 LF-14

ES-14 LS-14
EF-26 LF-26

ES-0 LS-0
EF-5 LF-5

ES-5 LS-5
EF-12 LF-12

ES-12 LS-12
EF-26 LF-26

ES-26 LS-26
EF-33 LF-33

ES-33 LS-33
EF-35 LF-35

ES-35 LS-35
EF-35 LF-35

Figure H.10. A network diagram after the second iteration of crashing.

J. Ross Publishing; All Rights Reserved

An Introduction to PERT/CPM  341

to its minimum duration) reduce the entire project duration in the same linear
amount? In this case: “Yes.” So let’s crash the Integration activity fully and redraw
the network diagram. The revised network diagram is shown in Figure H.10.

Now, project duration is reduced to 35 days. Is further crashing possible?
Let’s look at the activities that can be crashed further:

•	 Activity 2 can be crashed by 2 days with a cost-time slope of 1500.
•	 Activity 3 can be crashed by 1 day with a cost-time slope of 3000.
•	 Activity 4 can be crashed by 2 days (because we have already crashed

this activity by 1 day) with a cost-time slope of 1000.
•	 Activity 5 can be crashed by 1 day with a cost-time slope of 2500.
•	 Activity 6 can be crashed by 1 day with a cost-time slope of 3500.
•	 Activity 7 can be crashed by 3 days with a cost-time slope of 1000.

So, to reduce project duration by 1 day, we have to select one activity from
both of the paths. As you can see, Activities 4 and 6 both have a least cost-time
slope of 1000 per day. Activity 4 allows for crashing of 2 days, but activity 6 allows
for crashing by 3 days. We can now draw one more network diagram by crashing
these two activities, compute the critical path once more, and continue to iterate.
But before doing that, we need to ask ourselves: “Has the desired duration been
reached?” If so, we do not need to crash the schedule any further.

But because we have set the objective of crashing to reach the limit of possible
reduction in duration, we need to check for the maximum possible amount of
crashing. To do this, we enumerate all of the critical paths, along with their dura-
tions, and evaluate the extent possible for crashing. Let’s look at it:

•	 Path 1–2–3–4–8–9–10 has a duration of 35 days, with a maximum
crashability of 5 days (Activity 2 with 2 days, Activity 3 with 1 day,
and Activity 4 with 2 days).

•	 Path 1–5–6–7–8–9–10 has a duration of 35 days, with a maximum
crashability of 5 days (Activity 5 with 1 day, Activity 6 with 1 day, and
Activity 7 with 3 days).

Notice that both paths allow a reduction of 5 days each, which is the limit to
which this project can be crashed. So, let’s draw a final network diagram, which
is depicted in Figure H.11.

The project is now fully crashed, i.e., the minimum duration has been
reached. No further crashing is possible. The final durations with costs are shown
in Table H.6. From Table H.6, we can see that the normal duration is 38 days
with a total cost of 86,000 and that the crashed duration is 32 days with a cost of
108,000.

J. Ross Publishing; All Rights Reserved

342  Mastering Software Project Management

So, summarizing the discussions on crashing:

	 1.	 Crashing is a systematic exercise to reduce the duration of a project
with minimum increase in project cost.

	 2.	 Before attempting crashing, we need to set an objective for the
reduction of project duration (or set the maximum permissible
increase in project cost).

	 3.	 Crashing is an iterative process, which is iterated until the objective
is met.

	 4.	 In any iteration, the rules for selecting the candidate activities for
crashing are:

	 a.	 If there are multiple critical paths, then the activities common to
all critical paths are to be selected. Otherwise, all activities a on
the critical path are candidates for crashing.

	 b.	 In all the candidate activities for crashing, we need to select those
activities that have the lease cost-time slope.

	 5.	 Crash the selected activities and recalculate the critical paths.
	 6.	 Check to see if the objectives have been met in terms of duration and

cost.
	 7.	 If the objectives are met, redraw/update the network diagram and

end the exercise. If the objectives are not met, reiterate Steps 4 to 6
until the objectives are met.

In practice, a manual crashing exercise for even a moderately large project hav-
ing 500 activities may be impractical because a number of iterations are needed,

Start
0

Requirements
Analysis

4

Construction
10

Requirements
Analysis

4

Construction
11

Integration
7

Testing
4

End
0

Design
7

Design
6

Module 1

Module 2

ES-0 LS-
EF-0 LF-

ES-0 LS-0
EF-4 LF-4

ES-4 LS-4
EF-11 LF-11

ES-11 LS-11
EF-21 LF-21

ES-0 LS-0
EF-4 LF-4

ES-4 LS-4
EF-10 LF-10

ES-10 LS-10
EF-21 LF-21

ES-21 LS-21
EF-28 LF-28

ES-28 LS-28
EF-32 LF-32

ES-32 LS-32
EF-32 LF-32

Figure H.11. A network diagram showing a fully crashed project.

J. Ross Publishing; All Rights Reserved

An Introduction to PERT/CPM  343

which requires a large number of computations. We therefore use computer-
based tools such as Microsoft Project or Primavera to automate the process of
crashing. Before using tools for crashing, understanding how the process actually
works is important.

RESOURCE LEVELING

You might have noticed that we use duration when computing the critical path
in our examples. A question may arise: “How was this duration derived?” PERT/
CPM are duration-based techniques for arriving at a project’s completion date.
In both the techniques, the assumption is that all of the required resources are
available for performing the activities when the activity is scheduled to start (e.g.,
the human, monetary, equipment, methods, material, and information resources,
including the necessary approvals). But in reality, resources are often limited,
particularly for costly resources that are shared by many projects and perhaps by
many activities within the same project itself. If any of these required resources
are unavailable, an activity will be delayed by the period that the resource is
unavailable.

Resource leveling refers to the iterative exercise of systematically reduc-
ing the overload of the resources with the objective of maintaining the existing
project completion date. If this is not possible, then the objective is to delay the
project by the minimum (possible) extent. So, we follow several steps when com-
puting the project completion date:

Table H.6. Data for a Fully Crashed Project

Activity
ID

Activity
Description

Normal
Time

Normal
Cost ($)

Crash
Time

Crash
Cost ($)

1 Start 0 0 0 0

2 Requirements analysis of Module 1 6 9,000 4 12,000

3 Design of Module 1 8 12,000 7 15,000

4 Construction of Module 1 13 13,000 10 16,000

5 Requirements analysis of Module 2 5 7,500 4 10,000

6 Design of Module 2 7 10,500 6 14,000

7 Construction of Module 2 14 14,000 11 17,000

8 Integration 7 14,000 5 18,000

9 Testing 4 6,000 4 6,000

10 End 0 0 0 0

Total Cost 86,000 108,000

J. Ross Publishing; All Rights Reserved

344  Mastering Software Project Management

	 1.	 Initially we assume that all of the resources are available for all of the
activities and compute the critical path and the project completion
date.

	 2.	 Then we allocate the required resources to each activity.
	 3.		 Then we plot resource loading for each resource for the entire dura-

tion of the project by:
a.	 Computing the number of hours of workload in terms of the

activities to be performed by each resource
b.	 Drawing a resource loading graph

	 4.	 Then we identify the resources that are overloaded. Overloaded
resources include:

	 a.	 Resources that have more than 8 hours of workload for the day
(human resources and equipment resources)

	 b.	 Resources that are not available or are in short supply (material
and monetary resources)

	 5.	 Then we try to reduce the overloading of resources (human resources
and equipment resources) by:

	 a.	 Temporarily expanding capacity (the first consideration) by:
	 i.	 Getting resources to work extra time for the required days

and paying them overtime wages (or other incentives)
	 ii.	 Hiring temporary workers for the required period
	 iii.	 Subcontracting a portion of the work

	 b.	 Providing all of the required resources to the critical activities
and delaying the noncritical activities using each activity’s avail-
able slack

	 c.	 Computing the critical path to assess the impact on the project’s
completion date (We also recalculate resource loading for all
of the resources for all days of project duration and assess the
remaining resource overloading if any.)

	 d.	 Performing Steps 5b and 5c iteratively until all overloading of
resources is leveled to normal loading levels without delaying
the project completion date

	 e.	 Resorting to iterating Steps 5b and 5c and trying to minimize delay
in the project’s completion date when eliminating resource over-
loading is not possible without delaying the project’s completion

When resources such as monetary and material resources are in short sup-
ply, we need to just go ahead and procure them. Otherwise, the resources in
short supply will only delay the project by the amount of time procurement is
delayed. Information resources also delay a project if their availability is delayed.

J. Ross Publishing; All Rights Reserved

An Introduction to PERT/CPM  345

Monetary, material, and information resources, however, cannot be leveled by
delaying the noncritical activities.

Just as crashing is an iterative process, so is resource leveling. For real-life
projects that have 500 or more activities and 25 or more resources, resource level-
ing is very difficult and tedious. Usually computer-based tools such as Microsoft
Project and Primavera are used for resource leveling, but these tools usually per-
form “resource-constrained” scheduling rather than leveling the resources. Our
recommendation is that you do not commit to a project completion date until
resource leveling or resource-constrained scheduling is performed.

Some closing words. We have presented a brief outline of the techniques of
PERT/CPM. Even though introductory, this brief is adequate for software proj-
ect managers who will use computer-based tools such as Microsoft Project and
Primavera for scheduling of projects. The background information provided is to
enable an SPM to perform scheduling effectively. Abundant literature is available
for SPMs to learn more about PERT/CPM topics.

REFERENCES

1.	 http://en.wikipedia.org/wiki/UGM-27_Polaris
2.	 http://pert-chart.biz/tag/polaris-missile/
3.	 http://en.wikipedia.org/wiki/Critical_path_method
4.	 http://www.referenceforbusiness.com/encyclopedia/Per-Pro/Program-

Evaluation-and-Review-Technique-PERT.html
5.	 http://www.interventions.org/pertcpm.html

This book has free material available for download from the
Web Added Value™ resource center at www.jrosspub.com

J. Ross Publishing; All Rights Reserved

J. Ross Publishing; All Rights Reserved

APPENDIX I

ABBREVIATIONS

ABC	 Always Better Control
ACWP	 Actual cost of work performed
BCWP	 Budgeted cost of work performed
BCWS	 Budgeted cost of work scheduled
CC	 Configuration controller
CCB	 Configuration control board
CCSR	 Composite customer satisfaction rating
CM	 Configuration management
CMM	 Capability Maturity Model
CMMI	 Capability Maturity Model Integration
CMP	 Configuration management plan
COCOMO	 Constructive Cost Model
COTS	 Commercial off-the-shelf
CPI	 Cost performance index
CPM	 Critical Path Method
CR	 Change request
CR (Appendix G)	 Cooperation rating
CRM	 Customer relationship management
CSR	 Customer satisfaction rating
CSS	 Customer satisfaction survey
CV	 Cost variance
DBA	 Database administrator
DIR	 Defect injection rate
DLL	 Dynamic link library
DR	 Delivery rating
EAI	 Enterprise applications integration
EF	 Earliest finish
ES	 Earliest start
EVA	 Earned value analysis
EVM	 Effort variance metric
FF	 Finish to finish
FP	 Function point

347J. Ross Publishing; All Rights Reserved

348  Mastering Software Project Management

FS	 Finish to start
GUI	 Graphical user interface
HR	 Human resources
HTML	 Hyper text markup language
ID	 Issue density
IDE	 Integrated development environment
IEEE	 Institute of Electrical and Electronic Engineers
IP	 Intellectual property
IPR	 Intellectual property rights
IR	 Issue rating
ISO	 The International Organization for Standardization
IV&V	 Independent verification and validation
JAD	 Joint application development
LF	 Latest finish
LOB	 Line of balance
LOC	 Line of code
LS	 Latest start
MM	 Meeting minutes
MOM	 Minutes of meeting
MS	 Microsoft
MWR	 Maintenance work request
NC	 Nonconformance
NCR	 Nonconformance report
PC	 Personal computer
PCR	 Program change request
PD	 Person-day
PERT	 Program Evaluation and Review Technique
PI	 Project initiation
PIN	 Project initiation note
PL	 Project leader
PL/SQL	 Programming language/structured query language
PMO	 Project management office
PMP	 Project management plan
PMR	 Program modification request
PPQA	 Process and product quality assurance
PR	 Price rating
QA	 Quality assurance
QAP	 Quality assurance plan
QC	 Quality control
QR	 Quality rating
RAD	 Rapid application development

J. Ross Publishing; All Rights Reserved

Abbreviations  349

RAM	 Random access memory
RDBMS	 Relational database management system
REM	 Relative effort metric
RFP	 Request for proposal
RUM	 Resource utilization metric
RUP	 Rational Unified Process
SCCM	 Schedule conformance capability metric
SCMP	 Software configuration management plan
SDLC	 Software development life cycle
SDP	 Software development project
SEI	 Software Engineering Institute
SEPG	 Software engineering process group
SF	 Start to finish
SLA	 Service level agreement
SPI	 Software performance index
SPM	 Software project manager
SPMP	 Software project management plan
SQA	 Software quality assurance
SQAP	 Software quality assurance plan
SQL 	 Structured query language
SRS	 Software requirements specification
SS	 Start to start
SSU	 Software size unit
SV	 Schedule variance
SVM	 Schedule variance metric
TBD	 To be decided
UI	 User interface
UML	 Unified modeling language
VED	 Vital, Essential, Desirable
WBS	 Work breakdown structure
XP	 Extreme programming
Y2K	 Year 2000

This book has free material available for download from the
Web Added Value™ resource center at www.jrosspub.com

J. Ross Publishing; All Rights Reserved

J. Ross Publishing; All Rights Reserved

APPENDIX J

TEMPLATES FOR
SOFTWARE PROJECT
MANAGERS

Our thinking was that including multipage templates in the text of the chapters
in the book would hinder the flow of the material. Therefore, we have provided
a brief outline of the template contents within the corresponding book chap-
ters. For convenience, more-detailed, multipage templates are presented in this
appendix.

Exhibit 5.2. Template for a Software Project Management Plan

Exhibit 5.3. Template for a Configuration Management Plan

Exhibit 5.4. Template for a Quality Assurance Plan

Exhibit 5.5. Template for an Induction Training Plan

Exhibit 5.6. Template for a Risk Management Plan

Exhibit 5.7. Template for a Deployment Plan

Exhibit 7.2. Template for a Weekly Project Progress Report

Exhibit 8.1. Template for a Change Request Form

Exhibit G.1. Template for a Customer Satisfaction Survey Form

351J. Ross Publishing; All Rights Reserved

352  Mastering Software Project Management

Software Project Management Plan for Sample Project

Name of Client

Revision History

Version Number Date Description of Changes Prepared by Approved by

Draft Initial draft XYZ ABC

1.0 First release XYZ ABC

TABLE OF CONTENTS
	 1.0	 Project Overview.. 1
	 2.0	 References... 1
	 3.0	 Definitions and Acronyms.. 2
	 4.0	 Project Organization.. 2
	 5.0	 Managerial Process... 2
	 6.0	 Technical Process.. 3
	 7.0	 Support Process Plans.. 3
	 8.0	 Any Additional Plans.. 4
	 9.0	 Annexes.. 4
	10.0	 Waivers... 4

	 1.0	 Project Overview
1.1	 Project Summary <provide a brief description about the project’s functionality, the

client, target platform, etc.>
1.2	 Purpose, Scope, and Objectives <describe the purpose, scope, and objectives set

for this document>
1.3	 Deliverables <describe all deliverables in a table as shown below>

Deliverable
Soft Copy/
Hard Copy Delivered to

Planned Date
of Delivery Comments

Source code Soft Systems
Administration
of Client

Others

1.4	 Major Milestones

Milestone Planned Date to Reach Comments

	 2.0	 References

Reference Origin Comments

<Client/project team/organizational process/
IEEE standard/etc.>

J. Ross Publishing; All Rights Reserved

Templates for Software Project Managers  353

	 3.0	 Definitions and Acronyms 	
<describe any definitions and acronyms that are unique to the project>

Term/Acronym Definition/Full Form

	 4.0	 Project Organization
4.1	 Project Team <provide an organizational chart and add any explanatory state-

ments>
4.2	 Client Interfaces <describe the organization at the customer’s end for interfacing

with the project team and escalation of issues>
4.3	 Roles and Responsibilities <describe roles and responsibilities of the project team;

organizational process may be referred to if it contains roles and responsibilities
of project team; for such roles and responsibilities that are not contained in the
organizational process, the table below may be used to describe these roles and
responsibilities>

Role Primary Responsibilities Secondary Responsibilities

5.0	 Managerial Process
5.1	 Project Start-Up

5.1.1	 Estimation Plan <describe the events that trigger estimation, re-estimation,
and revision of estimates>

5.1.2	 Staffing Plan <describe requirements of the different types of staff that are
required along with the dates of their requirements and probable release
dates>

Type of Staff Number Required From Date Probable Release Date

5.1.3	 Training Plan <describe the list of training programs that need to be con-
ducted for the project team or refer to the induction training program docu-
ment>

5.2	 Project Execution
5.2.1	 Work Allocation and Control <describe the methods used for allocating

work to the staff, communicating work allocation to team members, report-
ing back progress and completion, target setting, etc.>

5.2.2	 Quality Assurance Activities <list the quality assurance activities planned for
the project or give reference to the quality assurance plan document of the
project>

5.2.3	 Productivity Monitoring <detail the productivity targets set for the project
and the methods for measuring individual productivity and controlling it>

5.2.4	 Effort Monitoring <describe the method for estimating the effort required for
each work allocation, target setting, and monitoring the same>

J. Ross Publishing; All Rights Reserved

354  Mastering Software Project Management

5.3	 Project Control
5.3.1	 Project Scope Control <describe the requirements management methods

or give reference to requirements management plan document>
5.3.2	 Schedule Control <describe reference to project schedule document and

methods of monitoring it>
5.3.3	 Cost Control <describe cost control methods>
5.3.4	 Quality Control <describe the methods of quality monitoring>
5.3.5	 Progress Reporting <describe the periodicity of progress reporting along

with reference to progress reporting formats, stakeholders to whom the
report would be sent, etc.>

5.3.6	 Metrics Reporting <describe the metrics reporting, periodicity of reporting,
stakeholders to whom the report would be sent, or make reference to met-
rics plan document>

5.4	 Risk Management
5.4.1	 Risk Identification <if there is a separate risk management plan, make refer-

ence to it or describe the identified risks>
5.4.2	 Risk Mitigation <if there is a separate risk management plan, make reference

to it or describe how the identified risks would be mitigated>
5.5	 Project Closure

5.5.1	 Release Resources <describe the resource release activities along with
probable dates>

5.5.2	 Performance Appraisals <describe the plan for conducting performance
appraisals for the project team>

5.5.3	 Document Best and Worst Practices <describe the plan for documenting
the best practices of the project>

5.5.4	 Identify Reusable Components <describe the plan for identifying reusable
components>

5.5.5	 Archive Project Artifacts <describe the plan for archiving the project arti-
facts>

5.5.6	 Project Postmortem <describe the plan for conducting the project postmor-
tem>

5.5.7	 Project Closure Meeting <describe the plan for conducting the project clo-
sure meeting>

	 6.0	 Technical Process
6.1	 Software Development Life Cycle <give reference to the organizational approved

SDLCs and the SDLC selected for the project and the tailoring, if any, thereof for
the project>

6.2	 Methods, Tools, and Techniques <describe the methods, tools, and techniques of
software engineering proposed for use in the project>

6.3	 Product Acceptance Plan <describe the acceptance testing and customer sign-off
process>

	 7.0	 Support Process Plans
7.1	 Software Configuration Management Plan <describe the software configuration

management plan or make reference to the software configuration management
plan>

7.2	 Software Quality Assurance Plan <describe the software quality assurance plan or
make reference to the software quality assurance plan>

7.3	 Process Improvement Plan <describe the process improvement plan or make refer-
ence to the process improvement plan>

J. Ross Publishing; All Rights Reserved

Templates for Software Project Managers  355

7.4	 Induction Training Plan <describe the induction training plan or make reference to
the induction training plan>

7.5	 Schedule <make reference to the project schedule document here>
7.6	 Work Breakdown Structure <make reference to the work register for the project

here>
7.7	 Issue-Resolution Plan <describe the issue-resolution activities of the project and

make reference to change register document here>

	 8.0	 Any Additional Plans
8.1	 Deployment Plan <make reference to deployment plan document, if any, here>
8.2	 Warranty Support Plan <make reference to warranty support plan document, if any,

here>
8.3	 Data Migration Plan <make reference to data migration plan document, if appli-

cable, here>
8.4	 Any Other Plans

	 9.0	 Annexes	
<describe the list of appendices in a table>

Annex Description of the Annex

	10.0	 Waivers 	
<list the process waivers obtained if any with references to approvals thereof>

Exhibit 5.2. Template for a software project management plan.

J. Ross Publishing; All Rights Reserved

356  Mastering Software Project Management

Software Configuration Management Plan for Sample Project

Name of Client

Revision History

Version Number Date Description of Changes Prepared by Approved by

Draft Initial draft XYZ ABC

1.0 First release XYZ ABC

TABLE OF CONTENTS
	 1.0	 Introduction.. 1
	 2.0	 References... 1
	 3.0	 Definitions and Acronyms.. 1
	 4.0	 Organization of Configuration Management... 1
	 5.0	 Tools, Techniques, and Methodology... 1
	 6.0	 Configuration Management Activities... 2
	 7.0	 Change Management.. 2
	 8.0	 Configuration Status and Accounting... 2
	 9.0	 Training.. 2
	10.0	 Subcontractor Configuration Control Activities... 2

	 1.0	 Introduction
1.1	 Scope <describe briefly the scope of the plan, including the concerns, etc.>
1.2	 Objectives <describe the objectives of this plan>
1.3	 Overview <provide a brief overview of the project and the product>

	 2.0	 References

Reference Origin Comments

<Client/project team/organizational process/
IEEE standard/etc.>

	 3.0	 Definitions and Acronyms 	
<describe any definitions and acronyms that are unique to the project>

Term/Acronym Definition/Full Form

	 4.0	 Organization of Configuration Management
•	 Roles and Responsibilities <describe the roles and responsibilities of people per-

forming the configuration management activities in the project>
•	 Configuration Control Board Roles and Responsibilities <describe the CCB, con-

stitution, roles and responsibilities, etc. in granting approvals for change approvals
for the project>

	 5.0	 Tools, Techniques, and Methodology 	
<describe the configuration management methodology for the project, tools and tech-
niques used for managing the configuration, etc.>

J. Ross Publishing; All Rights Reserved

Templates for Software Project Managers  357

	 6.0	 Configuration Management Activities
•	 Identification of Configuration Items <describe the types of items that will be

brought under configuration management, including hardware, software and docu-
mentation>

•	 List of Configuration Items <make reference to the CI register document>
•	 Naming Conventions <detail the conventions to be followed for naming project arti-

facts, including documents, program names, database tables, table fields, program
variables, constants, screens, reports, etc.>

•	 Baseline Management <identify the product baselines and how and when baselines
are produced for all baselines, including development baselines, internal baselines,
approved baselines, etc.>

•	 Repositories <detail the code repository and information repository giving directory
structures with check-in/check-out procedures and authorities>

•	 Configuration Management Software <describe the software tool being used for
managing the project configuration, if any; alternatively give reference to the tool
documentation>

	 7.0	 Change Management	
<describe the procedure to manage the configuration control, including procedures
used for changing baselines, authorities for approvals for changing baselines, etc.>
•	 Change Control <describe the methodology for controlling changes to CIs and

baselines>
•	 Change Requests and Change Register <describe the methodology for evaluat-

ing change requests, approval/rejection of change requests, implementation of
change requests, prioritization of change requests, tracking of change requests,
and review and closure of change requests; make reference to formats of change
requests and change register>

•	 Release Management <describe the methodology of releasing deliverables to the
customer, preparing the build for release, release inspection, etc.>

•	 Version Control <describe the procedure to control the version of an artifact, ver-
sion numbering system, the configuration management activities required for mak-
ing modifications to a version-controlled artifact, etc.>

	 8.0	 Configuration Status and Accounting
•	 Storage and Release <describe the policy of retention, backups, recovery plans,

etc.>
•	 Reports <detail the reports for CI status, released CIs, change history of CIs, base-

lines, etc. with reference to report templates for each of the reports and periodicity
of reporting>

•	 Audits <describe the proposed audits for configuration management activity,
periodicity thereof, who would conduct the audits, closure of NCRs, audit results
reporting, etc.>

	 9.0	 Training	
<give reference to project induction training program if this topic is included or describe
the training proposed for the project team on project configuration management and
tools thereof>

	10.0	 Subcontractor Configuration Control Activities	
<describe the configuration control activities at the subcontractor if any part of the soft-
ware is subcontracted>

Exhibit 5.3. Template for a configuration management plan.

J. Ross Publishing; All Rights Reserved

358  Mastering Software Project Management

Software Quality Assurance Plan for Sample Project

Name of Client

Revision History

Version Number Date Description of Changes Prepared by Approved by

Draft Initial draft XYZ ABC

1.0 First release XYZ ABC

TABLE OF CONTENTS
	 1.0	 Introduction.. 1
	 2.0	 References... 1
	 3.0	 Definitions and Acronyms.. 1
	 4.0	 Roles and Responsibilities.. 1
	 5.0	 Standards and Guidelines... 1
	 6.0	 Quality Assurance Activities.. 2
	 7.0	 Metrics Proposed to Be Collected for the Project.. 3
	 8.0	 Tools, Techniques, and Methodologies.. 3
	 9.0	 Causal Analysis Proposed... 3
	10.0	 Quality Assurance of Subcontracted/Client-Supplied Products 3
	11.0	 Training.. 3

	 1.0	 Introduction
1.1	 Scope <describe briefly the scope of the plan, the areas of the project addressed

by this plan, etc.>
1.2	 Objectives <describe the objectives of this plan>
1.3	 Overview <provide a brief overview of the project and the product>

	 2.0	 References

Reference Origin Comments

<Client/project team/organizational process/
IEEE standard/etc.>

	 3.0	 Definitions and Acronyms 	
<describe any definitions and acronyms that are unique to the project>

Term/Acronym Definition/Full Form

	 4.0	 Roles and Responsibilities
<describe the roles and responsibilities of people performing quality assurance activi-
ties in the project as well as approval authorities, etc.>

	 5.0	 Standards and Guidelines
<list all the standards and guidelines proposed to be used in the project>

Project Area Reference to Applicable Standard/Guideline

J. Ross Publishing; All Rights Reserved

Templates for Software Project Managers  359

	 6.0	 Quality Assurance Activities
<list all the quality assurance activities proposed for the project>

		 Proposed Reviews for Project	
<list all the reviews proposed for the project against each type of artifact>

Project Artifact Type of Review
Number and Type

of Reviewer

Requirements
documents

Guided walk-through/postal
review/meeting review/
managerial review

Design documents

Source code

Project plans

Test plans

Test cases

Test results

Table scripts

User documentation

Operations
documentation

Any Other

		 Proposed Tests for the Project	
<list all the proposed tests for the project against each test unit>

Project Test
Unit

Type of Tests
Proposed

Test
Environment

Who Will
Conduct

Test

Pass/
Fail

Criteria

Program unit Unit test/
integration test/
system test/
functional test/
negative test/load
test/stress test/
acceptance test,
etc.

Development
environment/
test environment/
target environment,
etc.

Peer/PL/PM/
testing team/
client, etc.

Sub-module

Module

Product

Each
customer
release

Product

Any Other

J. Ross Publishing; All Rights Reserved

360  Mastering Software Project Management

	 7.0	 Metrics Proposed to Be Collected for the Project	
<list all the metrics proposed to be collected with norms and permitted variance thereof>

Metrics
Norm for
Project

Permitted
Variance

Periodicity of
Reporting

Productivity metrics <percentage or
absolute value>

<weekly/monthly>

Quality metrics

Schedule variance

Effort Variance

Change metrics

Any Other Metrics

	 8.0	 Tools, Techniques, and Methodologies
<describe the testing tools, testing techniques, and methodologies adopted in the proj-
ect for carrying out the quality assurance activities; if automated testing tools are used,
then give reference to the user guides of the proposed tools; methodologies for work
allocation, progress reporting, test result evaluation, completion of testing may also be
described>

	 9.0	 Causal Analysis Proposed
<describe the causal analysis and defect analysis to be performed for defects
unearthed during quality assurance activities; also describe the events/threshold levels
that trigger causal analysis>

	10.0	 Quality Assurance of Subcontracted/Client-Supplied Products
<describe the methodology to carry out quality assurance activities for the part of soft-
ware subcontracted, if any, including the activities and tests to be carried out as well as
the activities to be carried out on the client-supplied product, if any>

	11.0	 Training
<describe the training necessary for carrying out the quality assurance activities
described above and the plan to carry it out; if these topics are included in the induc-
tion training program, make reference to that document>

Exhibit 5.4. Template for a quality assurance plan.

J. Ross Publishing; All Rights Reserved

Templates for Software Project Managers  361

Induction Training Plan for Sample Project

Name of Client

Revision History

Version Number Date Description of Changes Prepared by Approved by

Draft Initial draft XYZ ABC

1.0 First release XYZ ABC

TABLE OF CONTENTS
	 1.0	 Introduction.. 1
	 2.0	 References... 1
	 3.0	 Definitions and Acronyms.. 1
	 4.0	 Roles and Responsibilities.. 1
	 5.0	 Training Approach... 1
	 6.0	 Training Resources.. 1
	 7.0	 Training Topics.. 2
	 8.0	 Project-Specific Skill Training.. 2
	 9.0	 Training Evaluation.. 2

	 1.0	 Introduction
1.1	 Scope <describe briefly the scope of the plan, the areas of the project addressed

by this plan, etc.>
1.2	 Objectives <describe the objectives of this plan>
1.3	 Overview <provide a brief overview of the project and the product>

	 2.0	 References

Reference Origin Comments

<Client/project team/organizational process/
IEEE standard/etc.>

	 3.0	 Definitions and Acronyms 	
<describe any definitions and acronyms that are unique to the project>

Term/Acronym Definition/Full Form

	 4.0	 Roles and Responsibilities
<describe the roles and responsibilities of people performing induction training activi-
ties in the project as well as approval authorities, etc.>

	 5.0	 Training Approach
<describe the approach taken to impart the induction training, including classroom
training, guided self-learning, on-the-job training, etc.>

	 6.0	 Training Resources
<describe the training facilities, course outlines, course materials, self-learning materi-
als, training slides, case studies, etc. that would be used for conducting induction
training>

J. Ross Publishing; All Rights Reserved

362  Mastering Software Project Management

	 7.0	 Training Topics
<describe the training topics to be covered in the induction training>

Topic Duration Faculty Type of Training

Project plans 4 hours PM/PL Classroom

Configuration
management tool

2 hours PM/PL Classroom

Testing tools 6 hours Tool expert to be
arranged by the training
department

Classroom +
hands-on

Any others

	 8.0	 Project-Specific Skill Training
<list the topics on which project-specific skill training may be required for the project>

Topic Duration Faculty Type of Training

Programming
language abc

24 hours Language expert to be
arranged by the training
department

Classroom +
hands-on

Any others

	 9.0	 Training Evaluation
<describe the methodology proposed for evaluating the training conducted for the
project; if it is part of organizational process, make reference to it>

Exhibit 5.5. Template for an induction training plan.

J. Ross Publishing; All Rights Reserved

Templates for Software Project Managers  363

Risk Management Plan for Sample Project

Name of Client

Revision History

Version Number Date Description of Changes Prepared by Approved by

Draft Initial draft XYZ ABC

1.0 First release XYZ ABC

TABLE OF CONTENTS
	 1.0	 Introduction.. 1
	 2.0	 References... 1
	 3.0	 Definitions and Acronyms.. 1
	 4.0	 Roles and Responsibilities... 1
	 4.1	 Overview... 1
	 4.2	 Risk Identification... 1
	 4.3	 Risk Mitigation.. 1
	 4.4	 Risk Monitoring Activities... 1
	 4.5	 Tools and Techniques.. 2
	 5.0	 Training... 2

	 1.0	 Introduction
1.1	 Scope <describe briefly the scope of the plan, the areas of the project addressed

by this plan, etc.>
1.2	 Objectives <describe the objectives of this plan>
1.3	 Overview <provide a brief overview of the project and the product>

	 2.0	 References

Reference Origin Comments

<Client/project team/organizational process/
IEEE standard/etc.>

	 3.0	 Definitions and Acronyms 	
<describe any definitions and acronyms that are unique to the project>

Term/Acronym Definition/Full Form

	 4.0	 Risk Management for the Project
4.1	 Overview <describe the overview of the proposed risk management activities for

the project>
4.2	 Risk Identification <describe the risks identified for the project, their impact, prob-

ability of occurrence, etc.; if a separate list is prepared, make reference to that list>
4.3	 Risk Mitigation <describe the proposed risk mitigation activities for the risks identi-

fied>
4.4	 Risk Monitoring Activities <describe the risk monitoring and reporting activities; if

this is part of weekly status report, make reference to that document>

J. Ross Publishing; All Rights Reserved

364  Mastering Software Project Management

4.5	 Tools and Techniques <describe the tools and techniques, if any, used for carrying
out risk management activities in the project>

	 5.0	 Training
<describe the training necessary for carrying out the deployment activities described
above and the plan to carry it out; if these topics are included in the induction training
program, give reference to that document>

Exhibit 5.6. Template for a risk management plan.

J. Ross Publishing; All Rights Reserved

Templates for Software Project Managers  365

Deployment Plan for Sample Project

Name of Client

Revision History

Version Number Date Description of Changes Prepared by Approved by

Draft Initial draft XYZ ABC

1.0 First release XYZ ABC

TABLE OF CONTENTS
	 1.0	 Introduction.. 1
	 2.0	 References... 1
	 3.0	 Definitions and Acronyms.. 1
	 4.0	 Roles and Responsibilities... 1
	 5.0	 Schedule of Deployment.. 1
	 6.0	 Resources Required for Deployment... 2
	 7.0	 Facilities... 2
	 8.0	 Hardware.. 2
	 9.0	 Deployment Unit.. 2
	10.0	 Support Necessary for Deployment.. 2
	11.0	 Training... 2

	 1.0	 Introduction
1.1	 Scope <describe briefly the scope of the plan, the areas of the project addressed

by this plan, etc.>
1.2	 Objectives <describe the objectives of this plan>
1.3	 Overview <provide a brief overview of the project and the product>

	 2.0	 References

Reference Origin Comments

<Client/project team/organizational process/
IEEE standard/etc.>

	 3.0	 Definitions and Acronyms 	
<describe any definitions and acronyms that are unique to the project>

Term/Acronym Definition/Full Form

	 4.0 	 Roles and Responsibilities
<describe the roles and responsibilities of the project team, the project support
groups, and the client delineating the respective primary, secondary and support
responsibilities as well as approval authorities, etc.>

	 5.0	 Schedule of Deployment
<describe the schedule of the deployment activity; if this is included in the project
schedule, give reference to that document here>

J. Ross Publishing; All Rights Reserved

366  Mastering Software Project Management

	 6.0	 Resources Required for Deployment
<list the resources required for deploying the product; if a bill of materials is prepared,
make reference to that document>

	 7.0	 Facilities
<describe the required facilities, including building rooms, power requirements, privacy
and security requirements, etc.; if there is an engineering drawing prepared for this
purpose, make reference to it>

	 8.0	 Hardware
<list the hardware, including the model, version, and configuration, required for
deploying the product; if a bill of materials is prepared, make reference to that docu-
ment>

	 9.0	 Deployment Unit
<list the software and documentation that is provided as part of the delivery that is
going to be deployed>

	10.0	 Support Necessary for Deployment
<describe the support necessary for deployment, including support software, docu-
mentation, and personnel>

	11.0	 Training
<describe the training necessary for carrying out the deployment activities described
above and the plan to carry it out; if these topics are included in the induction training
program, make reference to that document>

Exhibit 5.7. Template for a deployment plan.

J. Ross Publishing; All Rights Reserved

Templates for Software Project Managers  367

Weekly Project Progress Report

Project Information:
	 1.1	 Name of Project
	 1.2	 Name of Project Manager
	 1.3	 Reporting Period <from mm/dd/yyyy to mm/dd/yyyy>

Executive Summary:

<describe the highlights of the project such as overall progress, any significant events, etc.;
briefly give the total picture of project progress>

Status of Project:

Overall Status

Percentage Completion

Module Name Construction Review Unit Testing Integration

Module Name 1

Module Name 2

Module Name n

Tasks Completed During the Period

Module Name Task Description Start Date End Date Remarks

Module Name 1

Module Name 2

Module Name n

Tasks Planned for the Next Period

Module Name Task Description Start Date
Scheduled
End Date

Remarks

Module Name 1

Module Name 2

Module Name n

Any Tasks that Are Outside Project Work

Task Description Explanation of Need and Benefits Thereof

Tasks handled during the period:

Tasks planned for next period:

J. Ross Publishing; All Rights Reserved

368  Mastering Software Project Management

Resource Position:

Resource Name Beginning of Period Additions Attritions End of Week

SPM

PL

Module leaders

Programmers

DBAs

Business analysts

Issue-Resolution Status:

Pending With Beginning of Period Additions Resolved End of Week

Customer

Systems Administration

Human Resources

Project Metrics:

<enumerate all metrics achieved until the end of the reporting period under these five heads>

Metric Organizational Standard Actual Achievement Explanation for Variance

Productivity

Defects

Effort

Schedule

Changes

Significant Events During Period:

<describe all significant events such as achievements and failures, including the circumstance
that led to the event, if any action is required, from whom, etc.>

Description of Event Explanation of Event Action Required

Customer Interface:

Commendations Received

Date of
Receipt

From Whom
(Person Commending)

Description of
Commendation

Name of Team Member
Earning Commendation

J. Ross Publishing; All Rights Reserved

Templates for Software Project Managers  369

Complaints Received

Date of
Receipt

From Whom
(Person Complaining)

Description of
Complaint

Reasons for Origination of
Complaint

Issues Needing Management Attention:

Project Support Group Issues

Description of Issue Date of Origination Pending With (Person)

Employee Grievances

Description of Issue Date of Origination Pending With (Person)

Any Interface Issues

Description of Issue Date of Origination Pending With (Person)

Best Practices/Pitfalls to Share with Organization:

Area Where Practice Is Applicable Description of Best Practice/Pitfall

Process Improvement Suggestions:
<enumerate all suggestions>

Exhibit 7.2. Template for a weekly project progress report.

J. Ross Publishing; All Rights Reserved

370  Mastering Software Project Management

Change Request

Project Name:

Date:

Change Request Reference:

Initiator Information:

Name of Initiator

Designation

Contact Information

• Telephone number

• Email ID

• Location

Details of Change Requested:

Name of module affected by change request

List of components affected by change
request

Description of the requested change (add
additional sheets, if required)

Reasons for change

Priority (immediate implementation/when
possible before completion of project/to be
retrofitted at end of project)

Implementation Information:

Aspect Name of Person Date of Completion

Analysis

Approved for implementation

Implementation

Review

Regression testing

Closed on

Exhibit 8.1. Template for a change request form.

J. Ross Publishing; All Rights Reserved

Templates for Software Project Managers  371

Name of Organization Executing the Project
Customer Satisfaction Survey

Date:

Project Details:

Project ID

Name of Project

Project Initiation Date

Project Completion Date

Current Status of Project

Name of Project Manager

Name of Client Contact

Person Filling Out Survey:

Name

Designation

Organization

Role in Project

Instructions for Filling in Aspect Ratings:

•	 Rate each aspect in the table below using the following five-point scale:
1.  Completely dissatisfied
2.  Does not meet expectations
3.  Just meets expectations
4.  Exceeds expectations
5.  Excellent service

•	 If possible, elaborate on your ratings in the Comments column.

Aspect Rating Comments

Quality of deliverables:
1.  Overall product quality
2.  Quality of Module A
3.  Quality of Module B
4.  Quality of Module n

On-schedule deliveries:
1.  Delivery A
2.  Delivery B
3.  Delivery n

J. Ross Publishing; All Rights Reserved

372  Mastering Software Project Management

Aspect Rating Comments

Communication:
1.  Progress reporting
2.  Tele-conferences
3.  Video conferences
4.  Issue resolution

Cooperation:
1.  Courteous communications
2.  Accommodations when necessary

Overall Satisfaction

Provide Any Project-Related Observations:

Signature:
Name:
Date:

For Internal Use:
1.  Received by:
2.  Received on:
3.  Progress report in which this information is included:

Exhibit G.1. Template for a customer satisfaction survey form.

This book has free material available for download from the
Web Added Value™ resource center at www.jrosspub.com

J. Ross Publishing; All Rights Reserved

A
ABC analysis (Always Better Control),

262–263
Activity on node (AON) network diagram,

328, 329
Actual cost of work performed (ACWP),

earned value analysis and, 153
ACWP. See Actual cost of work performed
Ad hoc methods-based approach, 21–22, 24

advantages of, 21
disadvantages of, 21–22

Administration/facilities, required resources
and, 61

After the event, in change management, 158
Agile development projects, 7, 17
Agile project management, 195–206

cadence/sprints/iterations in, 201
characteristics of, 196–199
 facilitator, role of team leader as,

197–198
final words/planning notes, 201–202,

206
guiding principles, 198
light touch and, 199
metaphor concept in, 197
methods, 20
monitoring/adjustment, 199
nuts and bolts of, 200–205
open information, 198–199
process improvement in, 205–206
project management roles, 195–196
scrum project, 202
teamwork/collaboration in, 196, 197–198

user stories in, 200
work planning, 200–202

Agile project management, work control in,
202–205

configuration management, 204
daily stand-up meetings, 203
done, meaning of, 204, 205
information requirements, 204–205
measurement data, display of, 203–204
retrospectives, 205–206
sprint review meeting, 205
testing, 205

Allocation of work. See Work management
AON. See Activity on node (AON) network

diagram
Approach-driven software development

projects, 6, 9–12. See also Software project
management approaches

conversion, 11–12
COTS products, 9
fresh/new projects, 9
migration, 10–11
porting, 9–10

Arbitration/jurisdiction clauses, as part of
financial proposal, 41

Artifacts. See Project artifacts
Assimilation. See Induction training
Audit

investigative, 191
organizational-level, 151–152
for phase-end, 65
project postmortem as, 191

Automated testing/tools, 120, 204, 309

INDEX

J. Ross Publishing; All Rights Reserved

374  Mastering Software Project Management

B
Balanced planning, 95
Balanced workload, 216
Ballpark estimate, as part of feasibility study,

45–46
Bar charts, 180, 181
Baselining an artifact, 113–114
BCWP. See Budgeted cost of work performed
BCWS. See Budgeted cost of work scheduled
Benefits, tangible/intangible, 45–46
Best practices, 95–96

balanced planning, 95
documentation of, 186–187
norms for planning, 95
in people management, 262
process-driven planning, 95
for software project execution, 140–142
in software project management, 207–221
variance analysis, 96

Black-box testing, 120–121
Brainstorming, 132
Budgeted cost of work performed (BCWP),

153, 154
Budgeted cost of work scheduled (BCWS),

153
Build plan, 76, 88

build preparation, 279
daily build, 204

Business analysts, 146

C
Calendar. See Scheduling
Capability Maturity Model (CMM), 296
Capability Maturity Model Integration

(CMMI), 26, 295, 296
Capacity, productivity concerns and, 272–

273, 285–286
Capital budgeting techniques, 46
CCB. See Configuration control board
Change, defined/examples of, 158
Change, origins of, 158–160

customers, 158–159
end users, 159

organizational standards group, 160
project team, 159
testing team, 159–160

Change control board (CCB), 84
Change management, 84, 157–169, 218
Change request (CR), 146, 157

absorbable, 135
elements of, 160
implementation strategy, 163–167
register for, 160–162
resolution of, 162
severity of impact from, 159
template for, 370

Change request implementation strategy,
163–167

consolidating/retrofitting at specific time,
164–165

determination of, 163
as received/when convenient, 166–167,

168
situational approach, 164
strategies for implementation, 162

Change request register, 160–162
elements of, 160
format of, 161
metrics derived from, 167, 169

Classification, of organizations, 1–3
Classifications, software projects, 6–17

approach-driven, 9–12
based on SDLC, 7–8
maintenance, 12–16

Closure of project. See Software project
closure

CMM. See Capability Maturity Model
CMMI. See Capability Maturity Model

Integration
COCOMO (constructive cost model), 272
Code artifacts

CCB and, 193
code maintenance, 111
multiple states of, 106
types of, 106
version numbers, 112

J. Ross Publishing; All Rights Reserved

Index  375

Code integrity, 106, 108–110
code library environments, 108
iterated steps, 109–110
movement of code, 108–110
state transition of code artifacts, 110

Code library environments, 108
Code maintenance, 111
Code repository, 190
Code walk-through, 119, 125, 279
Coding a unit, task of, 278. See also

Programmers
Collaboration, agile and, 197–198
Co-location, teams, proximity, information

sharing and, 198
Commercial off-the-shelf software (COTS),

5–6, 9, 45
Communication, 80

meetings/reports, 137
for resolving issues, 289–290

Comparison testing, 123
Compensation, as workplace expectation, 129
Component usage document, 186
Composite customer satisfaction rating

(CCSR), 324
Computer-based tools, 343, 345
Concurrent testing, 122, 125
Configuration control board (CCB), 104,

141, 162, 186, 193–194
Configuration controller (CC), 141
Configuration management, 104–117

code artifacts, 106, 107–111
configuration registers, 111–114
information artifacts, 104–106, 107
tools for, 115–117, 141

Configuration management plan (CMP), 74,
80–84

delivery, 81
deployment (target/production), 82
development, 80–81
elements of, 82
integration (build), 81
obsolete artifacts, 83
review/testing, 81

Configuration management tools, 115–117
check-in guidelines, 116
manual maintenance, 116–117
perils of poor configuration

management, 117
Configuration registers, 111–114

alternate format, 113
baselining an artifact, 113–114
manual configuration register, 112
obtaining approval for baselines, 114

Conflict in workplace, 129–131
Connectivity requirements, 61
Construction, as class of software

development work, 279
Construction productivity for project, as

metric, 300
Constructive cost model. See COCOMO
Continuous operations, project operations

and, 3
Continuous process improvement, as best

practice, 219
Contract acceptance, external client, 43
Control mechanisms, 149–153

audits, 151
organizational-level audits, 151–152
progress monitoring meetings, 149–150,

151
progress reports, 149, 150
project-level audits, 152
well-defined software process, 149

Conversion projects, as an approach-driven
software development project, 11–12

Cooperation rating (CR), formula for, 323
Corrective action, in definition of control,

144
Correlation analysis, 311–312
Cost control, as aspect of project execution,

146–147
Cost performance index (CPI), 154, 155
Cost plus pricing model, 37
Cost variance (CV), formula for, 154
COTS. See Commercial off-the-shelf software
CPI. See Cost performance index

J. Ross Publishing; All Rights Reserved

376  Mastering Software Project Management

CPM. See Critical Path Method
CR. See Change request. See also

Cooperation rating
Crashing a project. See Critical Path Method
Critical path, project tasks and, 75, 335–336
Critical Path Method (CPM), 244, 327, 337–

343. See also PERT/CPM
activities to crash further, 341
crashing example, 338
deterministic activities and, 337
full crashing, 340–341
fully crashed project, 341–342, 343
network diagrams in, 339, 342
rule formulation in, 339
summarization of crashing, 342

CRM. See Customer relationship
management

Cross-functional model/team, integrated
approach and, 64

CSR. See Customer satisfaction ratings
CSS. See Customer satisfaction survey
Current set of documents, information

artifacts and, 105–106
Customer relationship management (CRM),

65
Customer requirements, change requests

and, 167, 169
Customer satisfaction, 315–325

analysis of, 324–325
composite customer satisfaction rating

(CCSR), 324
cooperation rating (CR), 323
critical aspects of, 318–319
CSS rating, usefulness of, 317
delivery schedule rating, 320–321
internal data and, 317–318
issue rating (IR), 322–323
price rating (PR), 321–322
quality rating (QR), 319–320

Customer satisfaction ratings (CSR), 315, 316
Customer satisfaction survey (CSS), 315, 316,

371–372
Customers, role of in agile project, 196
CV. See Cost variance

D
Daily build, 204
Data migration, as an approach-driven

software development project, 10
De-allocation of work, 102–104
Decision-making, 237–249

classifications of, 238–242
consultants for, 249
dominant factor in, 241–242
postmortem for, 249
styles of, 239–241

Decision-making tools/techniques, 242–249
critical examination, 242, 243
decision trees, 245
Delphi method, 245
interpolation/extrapolation, 245
linear programming (LP), 243
management games (game theory), 244
PERT/CPM and, 244
queuing theory, 242–243
sampling, 245–247
statistical analysis, 247–248
transportation problem technique,

243–244
Defect injection rate (DIR), 311, 312
Defect management process. See Quality

metrics
Defects

categories of, 320
density of, 319–320
fixing defects, 13

Delegation of work, as role of manager, 232
Deliverables, as part of technical proposal, 40
Delivered defects, in computing defect

density, 301
Delivery

configuration, 81
environment, 108
rating (DR), 320–321

Deployment (target/production), as part of
configuration management plan, 82

Deployment plan, 76, 88–89
template, elements of, 89
template for, 365–366

J. Ross Publishing; All Rights Reserved

Index  377

Deployment testing, 123
Design documentation, 186
Design reviews, 279
Deterministic activities, in CPM, 337
Development environment, 51

code library environments and, 108
setting up, 63

Difficult people, managing/types of, 262–268
backstabber, 264
breather-down-the-neck, 266–267
buck-stopper, 267
carrier pigeon, 268
final words on, 268
first chapter expert, 264–265
gossip, the, 266
manipulator, 266
martyr, 265
Mr. Justice, 267–268
no man, 267
prima donna, 265–266
two-timer, 264
types of people, overview of, 263–264

DIR. See Defect injection rate
DLLs. See Dynamic linked libraries
Documentation, 279. See also Knowledge

repository
of best practices, 186–187
component usage document, 186
design documentation, 186
document replacement process, 107
information artifacts, 104–106, 107
in-line documentation, 185
of lessons learned, 187
planning and, 212
relevant documentation, 204
of a resolution, 290

Documentation plan, 90–91, 93
Dot Net programmers, 283
DR. See Delivery rating
Dynamic linked libraries (DLLs), as reusable

code component, 185

E
Earned value analysis (EVA), 79, 153–155

benefits of, 155
interpretation of results, 155
primary values in, 153–154

Efficiency
as dimension of team effectiveness, 131
as distinguished from productivity, 272

Effort, productivity metrics and, 298–301
construction productivity and, 300
formula for productivity, 301
gross productivity metrics, 299
requirements analysis and, 299
software design productivity and,

299–300
testing productivity for project, 300

Effort levels, 274–275
Effort metrics, 305–307

correlation, causality and, 307
EVM and REM, 306–307
Effort variance metric (EVM), 306
Empirical methods, 280–281
Employee morale. See Morale management;

Motivation
End users, as source of change requests, 159
End-to-end testing, 122
Environment

communication and, 80
defined environment, 71

Escalation of issues, 80, 290–292
persons/processes defined in, 291
senior management and, 292

Estimates, 57–59
at project acquisition stage, 58
re-estimating, 58–59
revising/updating, 58

Euro conversion projects, example of
conversion project, 11, 12

EVA. See Earned value analysis
EVM. See Effort variance metric
Exclusions, as part of a technical proposal, 40
Execution phase, 152
Expectations

J. Ross Publishing; All Rights Reserved

378  Mastering Software Project Management

management of, 231
recognition and, 129
setting unrealistic, 142

External client, project acquisition, 31–43
contract acceptance, 43
negotiation, 42–43
project characteristics, 31–32
proposal, 34–42
from prospective client, 32
request for proposal, 32, 34

Extreme programming (XP), 20, 203–204

F
Facilities/administration, 61
Fagan inspections, 120
Fayol, Henri, 225–227

management function categories of, 226
management principles of, 226–227

Feasibility report, elements of, 46
Feasibility study, elements of, 45–47
Fee exclusions, as part of a financial

proposal, 40
Financial proposal, elements of, 40–42
Financial resources, allocation of, 54–55
Fixing odd behavior, 14–15
FPA. See Function Point Analysis
Full life cycle projects, 7–8
Function Point Analysis (FPA), 132
Function points (FPs), 298, 320
Functional approach, in project team

organization , 64
Functional code, as concept of done, 204
Functional expansion, 13–14
Functional testing, 122, 124
Functionality, software components,

constituent modules and, 98

G
Gainful utilization formula, 308
Game theory, 244
Gantt chart, 180, 181, 200
Going rate pricing model, 38
Graphic representations, 181–182

bar charts/Gantt charts, 180, 181
network diagram, 181–182
network node diagram, 182

Groupthink, 132

H
Handover plan, 76, 90
Hard-coding, 185
Hardware resources, systems administration

allocation and, 61
Hero-driven management, 21, 25
Horizontal audit, 151
HR. See Human resources
Human resources (HR). See also Difficult

people, managing/types of; People
management; Resources; Work
management

fair treatment of project human
resources, 216

overloading, reduction in, 344
PMO and, 54
process-driven approach and, 24–25
at project initiation, 59–60
project initiation and, 60

I
ID. See Issue density
IEEE. See Institute of Electrical and

Electronic Engineers
IEEE Standards, 296, 312

IEEE Standard 1058, 73
IEEE Standard 730, 75
IEEE Standard 828, 74

ILO. See International Labour Organization
Implementation strategy, as part of a

feasibility report, 46
Inclusions, as part of a technical proposal, 40
Independent unit testing, 125, 142
Independent verification and validation

(IV&V), 8
Induction training, 62, 75–76

plan for, 86–87
template for, 361–362

J. Ross Publishing; All Rights Reserved

Index  379

Information artifacts
project-specific documents, 104–105
replacing document in current set,

105–106, 107
version numbers, 112

Information sharing
best practices in, 220
co-location and, 198

Information sharing directories, as part of
development environment, 63

In-house project execution, 45
Initiation activities, 49–51. See also Induction

training
In-line documentation, 185
Install/uninstall testing, 123
Institute of Electrical and Electronic

Engineers (IEEE), 5, 72
Integrated approach, team organization and,

64
Integration (build), 81
Integration environment, 108
Integration testing, 121, 124
Intellectual property rights (IPR), 41, 185,

193–194
Internal client, project acquisition, 44–47

characteristics of project, 44
feasibility study, 45–47
finalization of proposal, 47
proposal preparation, 47
steps in, 44–45

International Labour Organization (ILO),
281

International Organization for
Standardization (ISO), 5

Internet services, as required resource, 60
Introductory pricing, as pricing model, 37
Intuitive testing, 123
Investigative audit, 191
IPR. See Intellectual property rights
IR. See Issue rating
ISO. See International Organization for

Standardization
ISO 9000, 26, 295, 296
Issue density (ID), 322–323

Issue rating (IR), 322–323
Issue resolution, 80, 218, 287–288
Issue-resolution process, 288–293

communication for, 289–290
escalation mechanism, 290–292
issue register, 288–289
status reporting in, 292–293

IV&V. See Independent verification and
validation

J
Java programmers, 283
Job skill levels. See Skill levels
Joint application development (JAD), 25
Jones, Capers, 77
Jurisdiction/arbitration clauses, as part of

financial proposal, 41

K
Karten, Naomi, 315
Kickoff. See Project kickoff meeting
Knowledge repository. See also

Documentation
best practices in, 219
lacking/poorly organized, 94
process, 28
project closure and, 188

Knowledge-sharing meeting, 188–189

L
Leadership potential identification, role of

SPM and, 260
Lessons learned, documentation and, 187
Liability, as part of financial proposal, 42
Line management, 234
Line of balance (LOB), 79
Linear programming (LP), 243
Lines of code (LOC), 300, 320
Load testing, 121–122, 124, 125
LOB. See Line of balance
LOC. See Lines of code
Logistics, as required resource, 60
Loss leader pricing, 38
LP. See Linear programming

J. Ross Publishing; All Rights Reserved

380  Mastering Software Project Management

M
Macro-level testing techniques, 120–121
Maintenance projects, 7, 12–16. See also

Software maintenance plan
code maintenance, 111
contract for, 12
defect repair, 13
fixing odd behavior, 14–15
functional expansion, 13–14
operational support, 14
software modification, 15–16

Maintenance work request (MWR), 12, 13,
111

Malicious code, identification of in code
walk-through, 119

Management. See also People management;
Present-day management

evolution of, 225–227
leadership potential, 260
levels of, 234–235
management functions, 226
principles of, 226–227
production management, 1, 2
support of, 220–221
viewpoints on, 224–225

Managerial review, as best practice and
verification technique, 94, 120

Managers, primary responsibilities, 230–234
delegating, 232
expectations management, 231
morale management, 231
peers, interacting with, 233
people management, 232
resource management, 231–232
subordinates, interacting with, 233
superiors, interacting with, 233–234
work management, 230

Manual configuration register, 112
McGregor, Douglas, 217
Measurement and analysis, 28, 141. See also

Customer satisfaction; Metrics Meetings
daily stand-up meetings, 137, 203
knowledge-sharing, 188–189
meeting minutes, importance of, 290

Metrics, 295–313
analyses, types of, 310–312
classes of, 152–153
CR register, derivation from, 167, 169
critical processes and, 309–310
crowdsourcing of, 203–204
defined process for, 310
final project metrics, 188
organizational level, 297
present scenario, 296–297
project-level, 296–297
quality metrics, 301–303
repository for, 310
when to drive, 308–309

Metrics, classification of, 297–307
effort metrics, 305–307
productivity metrics, 297–301
quality metrics, 301–303
schedule metrics, 303–305, 306

Middle management, in work management,
234

Middleware, 159
Migration, as software development project,

10–11
Monetary resources, PMO and allocation of,

54–55
Monopolistic pricing model, 36, 38
Morale management, 126–131, 231

conflict, 129–131
motivation, 126–130

Motivation, 126–130, 255–258
behavioral correction and, 258
carrot and stick technique, 256–257
classification of people, 255–256
expectancy theory, 257
expectations and, 129
laissez-faire management, 257–258
low morale/conflict, 129–130
stimulus-response technique, 257
treatment in workplace, 128
workplace expectations, 128–129
work loading, 126–128

Movement of code, as stepwise process,
108–110

J. Ross Publishing; All Rights Reserved

Index  381

Multidisciplinary teams, 197
MWR. See Maintenance work request

N
Naming conventions, 83–84
NCR. See Nonconformance report
Negative rewards, 129
Negative testing, 123
Negotiation, external client, 42–43

private bidding, 42, 43
public bidding, 42
synthesis bidding, 42, 43

Network diagram, 181–182, 327–328, 329
activities, 327–328
activity durations, estimating, 332–336
construction of, 328–336
events, 327
guidelines for drawing, 331–332
after iterations of crashing, 339, 340
network node diagram, 182
patterns to avoid in, 332
traditional network diagram, 328

Networking requirements, 60
New market opportunity, as pricing strategy,

36
Nonconformance report (NCR), 152
Non-conformances (NCs), 66, 140
Nonproductive activities, 284
Nonrevenue-earning formula, 308
Norms for planning, 95

O
Object points, 298
Odd behavior, fixing, 14–15
Oligopolistic pricing model, 36, 38
Onboarding plan. See Induction training
Operational support, as software

maintenance project, 14
Opportunity pricing model, 37–38

penetration, 37
skimming, 37–38

Order book position, 35
Organizational knowledge repository. See

Knowledge repository

Organizational standards group, as origina of
change requests, 160

Organizational-level audits, 151–152
Organizational-level metrics, 297
Organizational-level pitfalls/best practices,

208–215
inadequate PM training, 214–215
ineffective or no PMO, 208–210
poor project initiation, 210
poor project oversight, 214
poor project planning, 211–212
poor software estimation, 211
poor standards/guidelines, 213–214
process-driven project management, 208
wrong SLAs, 212–213

Organizations, classification of, 1–3
Outsourcing, feasibility study and, 45

P
Parallel testing, 122, 125
Partial life cycle projects, 8
PCR. See Program modification request
Peer review, 94, 120
Peers, interacting with, 233
Penetration pricing model, 37
People management, 232, 251–269. See

also Difficult people, managing/types of;
Human resources; Work management

acquiring human resources, 253–254
activities in, 251
best practices in, 262
difficult people, managing/types of,

262–268
disciplining when necessary, 259–260
estimation of human resources, 252–253
mentoring suitable people, 260
motivating team members, 255–258
ramping up/down, 261
releasing human resources, 260–262
short-term management, 263
team morale, maintaining, 258–259
work allocation, 254–255

Performance testing, 123

J. Ross Publishing; All Rights Reserved

382  Mastering Software Project Management

PERT/CPM (Program Evaluation and
Review Technique/Critical Path Method),
5, 72, 244, 327–345. See also Critical Path
Method

activity durations, estimating, 332–336
construction of network diagram,

328–336
critical activities/critical path, 335–336
critical path and, 75
forward pass/backward pass, 334, 335
network diagram, 327–328, 329
optimistic/pessimistic/most likely time,

332–333
PERT, probability and, 336–337
resource leveling, 343–345
slack or float, 334–335

Phase-end audit, 65
Physical logistics, 60
PIN. See Project initiation note
Pitfalls in software project planning, 93–94

inadequate time for planning, 93
knowledge repository issues, 94
no training/wrong training, 93–94
PMO, lacking or ineffective, 94
preparing only documents, 93
project execution and, 140–142
skipping reviews, 94

Pitfalls/best practices in software project
management, 207–221. See also Best
practices

additional best practices, 219–221
organizational level, 208–215
SPM-level, 215–219

Planning. See Software project planning
PMO. See Project management office
PMP. See Project management plan
PMP template, 73–74
PMR. See Program modification request
Porting, as approach-driven software

development project, 9–10
Positive testing, 123, 124
Postmortem for project, 190–191, 194,

219–220

PPQA. See Product quality assurance
analysts

PR. See Price rating
Preproject activities, 277
Present-day management, functions of,

227–229
controlling, 229
leading, 229
organizing, 228–229
planning, 228

Price escalation clause, as part of a financial
proposal, 41

Price rating (PR), as measure of customer
satisfaction, 321–322

Pricing the proposal, for an external client,
31–43

competition, 36
cost plus pricing, 37
delivery commitments, 35
desirability of winning order, 36
going rate model, 38
loss leader pricing, 38
monopolistic pricing, 36, 38
necessity to obtain order, 35–36
negotiation, 42–43
new market opportunity, 36
oligopolistic pricing, 36, 38
opportunity pricing, 37–38
order book position, 35
proposal, 34–39
repeat orders, 36
request for proposal, 32
software estimation, 34
stepwise process in, 38–39
time and material (T&M) pricing, 37
transfer pricing, 38

Pricing the proposal, for an internal client,
44–46

feasibility study, 45–46
proposal, 47

Private bidding, 42, 43
Process improvement

agile and, 205–206
continuous, 219

J. Ross Publishing; All Rights Reserved

Index  383

Process-driven approach, 22–23, 24–26
organizational-level processes, 27–29
project-level management processes,

26–27
what process/how much, 26–29

Process-driven planning, 95
Process-driven project management, 208
Product integration management, 138–139
Product quality assurance analysts (PPQA),

78
Product testing, rigorous types of,

121–124
Production configuration, 104

Productivity, 271–286
capacity vis-à-vis, 285–286
concerns with, 271–273
determination of, 286
empirical methods for, 280–281
formula for, 301
macro vs. micro level, 272–273, 278
management of, 131–133
monitoring of, 148
path for, 277–279
SD activities classification, 279–280
standard time and, 273–276
time study, conducting, 284
work measurement, 281–284

Productivity metrics, 297–301
effort and, 298–301
software size and, 298

Program change request (PCR), 12
Program Evaluation and Review Technique/

Critical Path Method. See PERT/CPM
Program modification request (PMR), as

maintenance request, 12
Programmers

programming languages, 282–284
skill sets, 78–79

Progress assessment. See Earned value
analysis

Progress measurement/review, 79–80
Progress monitoring meetings, 149, 150–151

action points and, 150
format for minutes, 151

Progress reports
contents of, 149, 150
stakeholder expectations and, 137
template for, 367–369

Project
cleanup activities, 277–278
closure of, 27
description of, 3–5
execution of, 27

Project acquisition, 27–28. See also Software
project acquisition

Project artifacts
baselining of, 113–114
code artifacts, 190
naming conventions for, 74
obsolescence of, 83
quality assurance tools/techniques, 119

Project code artifacts, in software project
closure, 190

Project closure, and CCB, 193–194
Project cycle, typical, 260–261
Project dossier, 52–53
Project initiation, 27, 210
Project initiation note (PIN), 53, 208
Project kickoff meeting, 55, 65
Project management method, as part of

project management plan
communication, 80
progress measurement and review, 79–80
work allocation, 79

Project management office (PMO), 28, 34
activities of, 50, 52–55, 209–210
establishment of, 91
lacking or ineffective, 94, 208–210
project closure and, 189–190
project dossier and, 52–53
project kickoff meeting and, 55
resource allocation by, 53–55
role in project closure, 192–193
service level agreements and, 55, 56
SPM identification, 52

Project management plan (PMP), 77–80
as part of software project planning, 73,

J. Ross Publishing; All Rights Reserved

384  Mastering Software Project Management

computer systems, 79
project management method, 79–80
resources, 77
skill sets, 77–79

Project notebook. See Project dossier
Project operations, continuous operations

and, 3
Project oversight, 214
Project plans, 51

as responsibility of SPM, 51
poor planning, pitfalls/best practices,

211–212, 217
preparation of, 62
project team and, 64–65

Project postmortem, 190–191, 194, 219–220
Project progress report, 149

and customer satisfaction survey, 316,
372

issue resolution status, 292
and stakeholder expectations, 137
template for, 149–150, 367–369
timing of, 149

Project records, as part of project closure,
189–190

Project resources. See Human resources;
Resources

Project specifications, review of as
responsibility of SPM, 57

Project start-up activities, 277
Project team

as origin of change requests, 159
organization of by SPM, 64
project plans training and, 64–65
project-specific skill training, 63–64

Project-level audits, 152
Project-level metrics, 296–297
Project-specific documents as artifacts,

104–105
Proposal, external client, 34–42

delivery commitments, 35
pricing of, 35–39
software estimation, 34–35

Proposal preparation, 39–42

financial proposal, 40–42
technical proposal, 39–40

Public bidding, as pricing strategy, 42

Q
QA. See Quality assurance
QR. See Quality rating
Quality, defined, 117
Quality assurance plan (QAP), 85–86
Quality assurance (QA). See also Software

quality assurance; Testing/review
allocation of activities, 124–125
code integrity and, 106
cost of, 302
for project components, 125
sampling, 124–125
skipping activities, 141–142

Quality control, importance of, 147–148
Quality management, 117–125

product testing, 121–124
as SPM responsibility, 125
tool sets in, 118–121

Quality metrics, 301–303
cost of quality assurance, 302
cost per defect, 302–303
defect density, 301–302, 303
defect injection rate, 302, 303
defect removal efficiency, 302
effort metrics, 305–307
schedule metrics, 303–305, 306

Quality rating (QR), 319–320

R
Random defects, fixing of, 14–15
Rapid application development (RAD), 25
Rational unified process (RUP), 20, 298
RDBMS-based system (relational database

management system)
shift to as type of software project, 6
sizing in software development, 298
stored data in, and usefulness of metrics

repository, 310
Recognition, as workplace expectation, 129

J. Ross Publishing; All Rights Reserved

Index  385

Record keeping, pitfalls and best practices,
218–219

Regression testing, 123
Relational database management system. See

RDBMS-based system
Relative effort metric (REM), 307
REM. See Relative effort metric
Repeat orders, as part of proposal pricing, 36
Request for information (RFI), 32
Request for proposal (RFP), 34
Resource leveling, 343–345
Resource utilization metrics (RUM), 308
Resources. See also Human resources

allocation of, 53–55, 275, 276
four M’s of, 71, 228
inappropriate, identifying, 66
management of, 231–232
PMP and, 77
project initiation and, 59–61
request form, sample of, 61

Responsibilities, primary/secondary, as part
of a technical proposal, 40

Return on investment (ROI), 46
Reusable code, identifying, 185–186
Revenue-earning formula, 308
Rewards, transparency in criteria for, and

fairness in, 131, 217
RFI. See Request for information
RFP. See Request for proposal
Right project management approach, 23–29
Risk management plan, 87–88

template elements, 88
template for, 363–364

ROI. See Return on investment
Role-based training, 220
Roles in IT, 78
Roles in planning

for the organization, 91–92
for software project manager, 92

Rollout activities, 277
RUM. See Resource utilization metrics
RUP. See Rational unified process

S
Sampling, 124–125, 245–247. See also Work

sampling
concurrent, 247
sequential, 246–247
strategies for, 246
techniques for drawing samples, 246

Sanity testing, 124
Scalability of projects, 212
SCCM. See Schedule conformance capability

metric
Schedule conformance capability metric

(SCCM), 304–305, 306
Schedule metrics, 303–305, 306

resource utilization metrics (RUM), 308
Schedule performance index (SPI), 154–155
Schedule variance metric (SVM), 304
Schedule variance (SV), 154
Scheduling, 86, 171–182. See also Work

breakdown structure
graphic representation of, 181–182
initial work breakdown structure, 172
in practice, 181
project aspects and, 171–172
schedule/progress control, 147
software tool packages, 181, 182

Scientific management, of Frederick
Winslow Taylor, 225

SCMP. See Software configuration
Scope creep/scope churn, 145–146, 148, 160
Scope of work, 40, 146
Scope statement implications, 146
Scrum, 20, 196, 202
Security testing, 123
Security threat, as origin of change request,

158
SEI. See Software Integration Institute
Senior management, in work management,

235, 292
Service level agreement (SLA)

kickoff meeting and, 65
for maintenance project, 12
PMO and, 56

J. Ross Publishing; All Rights Reserved

386  Mastering Software Project Management

sample of, 55
wrong SLAs/best practices, 212–213

Show stopper, in defect classification, 13
Six-sigma philosophy, 319
Size of software, as part of PMP, 77
Skill levels

conversion rates for, 276
defined, five levels, 274
mix of, 275

Skill sets, 77–79
Skill training. See Training
Smoke testing, 204
Soft skills, training in, 220
Software configuration management plan

(SCMP), 162, 356–357
Software design, as classification of software

development activities, 279
Software design productivity, as productivity

metric, 299–300
Software development

activities, classification of, 279–280
approach to, 45
standards/guidelines for, 213–214

Software development life cycle (SDLC), 20
full life cycle projects, 7–8
partial life cycle projects, 8
project classification, 6
standardization and, 8

Software development project (SDP)
attributes of, general, 4, 71–72
types, 5–6
unique attributes of, 4–5

Software development projects (SDPs),
management of, 223–236

background, 223–224
evolution of management discipline,

225–227
in present-day context, 227–229
primary responsibilities, 230–234
SPM responsibilities and, 235–236
types of, 5–6
viewpoints on, 224–225
work management, 234–235

Software engineering activities, 277
Software engineering methodology, 19–20

loosely coupled, 20
tightly coupled, 19–20

Software engineering process group (SEPG),
132, 219

Software engineering processes, 29
Software estimation, 34–35, 40, 211

metrics program and, 309
poor job of, 217

Software Integration Institute (SEI), 26
Software maintenance plan, 76, 90. See also

Maintenance projects
Software maintenance projects. See

Maintenance projects
Software modification, as type of software

maintenance, 15–16
Software process, well-defined, 149
Software project. See also Software

development project
Software project acquisition, 31–47

from external client, 31–43
from internal client, 44–47

Software project closure, 27, 183–194
activities performed in, 184–185
best practices in, 186–187
closure of project, 192
final words on, 194
knowledge repository and, 188
knowledge-sharing meetings, 188–189
lessons learned and, 187
organizational knowledge repository, 188
organization’s role in, 192–194
postmortem for project, 190–191
project code/code repository, 190
project metrics, final, 188
project records to PMO, 189–190,

192–193
reasons for closure, 184
reusable code, identifying, 185–186
SPM release, 191

Software project execution, 97–142
configuration management, 104–117

J. Ross Publishing; All Rights Reserved

Index  387

morale management, 126–131
pitfalls/best practices, 140–142
product integration management,

138–139
productivity management, 131–133
quality management, 117–125
stakeholder expectations management,

133–138
work management, 98–104

Software project execution control, 143–155
aspects of control, 144, 145–148
control mechanisms, 149–153
cost control, 146–147
earned value analysis (EVA), 153–155
effort control, 148
key terms, 143–144
levels of control, 145
productivity monitoring, 148
quality control, 147–148
schedule/progress control, 147
scope control, 145–146

Software project initiation (SPI), 49–67
initiation activities, 49–51
pitfalls in, 66–67
PMO-level activities, 52–55
SPM-level activities, 55, 56–66

Software project management, 73–76. See
also Issue resolution

build plan, 76
configuration management plan (CMP),

74
deployment plan, 76
handover plan, 76
induction training plan, 75–76
pitfalls/best practices, 207–221
project management plan (PMP), 73–74
quality assurance plan (QAP), 75
schedule, 75
software maintenance plan, 76
user training plan, 76

Software project management approaches,
19–29

ad hoc methods-based approach, 21–22, 24

process-driven approach, 22–23, 24,
26–29

right approach, 23–29
software engineering methodology and,

19–20
Software project management plan (SPMP)

escalation mechanisms and, 291
template for, 352–355

Software project manager (SPM), 34. See also
Decision-making

activities of, 50–51, 56–66, 235–236
identifying wrong one, 66
knowledge-sharing meetings and,

188–189
multiple roles of, 141
project kickoff meeting and, 55
quality management role, 125
release from project, 191
role in planning, 92
service level agreements and, 55
team morale and, 126

Software project planning, 69–96
best practices in, 95–96
build plan, 88
configuration management plan, 80–84
deployment plan, 88–89
documentation plan, 90–91
granularity of planning, 70
handover plan, 90
inadequate time for, 93
induction training plan, 86–87
pitfalls in, 93–94
planning, defined, 71–73
planning on paper, 70
project management plan, 77–80
quality assurance plan, 85–86
resources/complexity, 70–71
risk management plan, 87–88
roles in planning, 91–92
schedule plan, 86
software maintenance plan, 90
software project management and, 73–76
user training plan, 89

J. Ross Publishing; All Rights Reserved

388  Mastering Software Project Management

Software quality assurance (SQA), 65.
See also Quality assurance; Quality
management

elements of, 118
template for, 358–360

Software resources, 61
Software size, 132, 298, 320
Software size units (SSUs), 132, 299
Software tools, 181
SOPs. See Standard operating procedures/

policies
Specialization, as management principle of

Henri Fayol, 226
Specifications, SPM and review of, 57
SPI. See Schedule performance index
SPM. See Software project manager
SPM-level pitfall/best practices, 215–219

balanced workload, 216
equitable rewards, 217
fair treatment of project HR, 216
issue resolution, informal, 218
poor change management, 218
poor project planning, 217
poor record keeping, 218–219
poor software estimation, 217

SPMP. See Software project management
plan

Spreadsheets, scheduling and, 181
SQA. See Software quality assurance
SSU. See Software Size Units
Stakeholder expectations management,

133–138
customer expectations, 133, 135
key to management, 137–138
organizational/management

expectations, 136
project team expectations, 136
stakeholder expectations, 134–135

Standards, software project management
and, 146, 160, 295

Standard deviation, computation of, 336
Standard operating procedures/policies

(SOPs), 73
Standard time, productivity and, 273–276

State transition, code artifacts and, 110, 157
Statistical analysis, 247–248. See also

Variance analysis
Statistical mode, 281
Stress testing, 122
Subordinates, interacting with, 233
Superiors, interacting with, 233–234
Survey. See Customer satisfaction survey
SV. See Schedule variance
SVM. See Schedule variance metric
Synthesis bidding, perspective of, 42, 43
System testing, 121
Systems testing, 108

T
T&M. See Time and material pricing
Taylor, Frederick Winslow, 225–227
Team morale. See Morale management
Technical management, 234
Technical proposal, 39–40
Technology requirements, as part of

feasibility study, 45
Teleconferences, 290
Templates, 351–372

change request form, 370
configuration management plan, 356–

357
customer satisfaction survey form,

371–372
deployment plan, 365–366
induction training plan, 361–362
quality assurance plan, 358–360
risk management plan, 363–364
software project management plan,

352–355
weekly progress report, 367–369

Testing team, as change origin, 159–160
Testing/review, 81. See also Quality assurance

for agile project, 205
environment for, 108
testing tools, 125

Throughput, 272–273, 285
Time, productivity and, 273–276
Time and material (T&M) pricing, 37

J. Ross Publishing; All Rights Reserved

Index  389

Time and motion study techniques, 282
Time bombs/trigger bombs, 119
Time series analysis, 310–311
Time study, conducting, 284
Timesheets, 309–310
Training

induction training, 62, 75–76
no training/wrong training, 93
organizational-level processes for, 28
project-specific, 63–64
in soft skills, 220
user training plan, 89

Transfer pricing model, 38
Trash code, 119, 185
Trend analysis, 310–311

U
UAT. See User acceptance testing
UI. See User interface designers
Unit testing, 121, 125, 142
Upgrades, as approach-driven software

development project, 10–11
Usability testing, 123
Use case points, 298
User acceptance testing (UAT), 121
User interface designers (UI), 78
User manual testing, 123
User requirements, 45, 145–146, 167

backlog of, 200
prioritization/reprioritization, 196

User training plan, 76, 89

V
Validation techniques, 118, 120–121

black-box testing, 120–121
white-box testing, 120

Variance analysis, 96, 188. See also Statistical
analysis

VED analysis (Vital, Essential and
Desirable), 262–263

Verification techniques, 118
code walk-through, 119
managerial review, 120
peer review, 120

Version numbers, 112
Vertical audit, 151
Videoconferences, 290
Volume testing, 122
Vroom, Victor, 257

W
Waterfall model, 25
WBS. See Work breakdown structure
Web application projects, 7, 16
Weekly progress report template, 367–369
White-box testing, 120, 142
Work allocation, 63. See also Human

resources
best practices in, 216
division of work, 226, 230
metrics program and, 309
as project management method, 79

Work breakdown structure (WBS), 79,
328–332

End/Start approach, 329, 330
example of, 331
with initial dates, 176–178
initial structure, 172, 173
with predecessors defined, 172–176
with resource allocation, 178–179
Start/End approach, 328–329, 330

Work management, 98–104, 234–235. See
also People management

ad hoc approach, 99
bulk work allocation, 140
de-allocation, 102–104
informal work allocation, 140
management levels, 234–235
process-driven approach, 99
stepwise process in, 98
work package, 98–99
work registers, 100–102

Work measurement, productivity and,
281–284

programming languages and, 282–284
time and motion study, 282

Work registers, 100–102, 140
activity-based work register, 100

J. Ross Publishing; All Rights Reserved

390  Mastering Software Project Management

multiple registers, 101–102
single register, 100–101

Work sampling, 284, 286. See also Sampling
Workload, balanced, 216
Workplace. See Morale management

X
XP. See Extreme programming

Y
Y2K, as approach-driven software

development project, 11

J. Ross Publishing; All Rights Reserved

	Table of Contents

	About the Authors

	Chapter 1: Software Project Basics

	Chapter 2: Approaches to Software Project Management

	Chapter 3: Software Project Acquisition

	Chapter 4: Software Project Initiation

	Chapter 5: Software Project Planning

	Chapter 6: Software Project Execution

	Chapter 7: Software Project Execution Control

	Chapter 8: Change Management in Software Development Projects

	Chapter 9: Scheduling

	Chapter 10: Software Project Closure

	Chapter 11: Agile Project Management

	Chapter 12: Pitfalls and Best Practices in Software Project Management

	Appendix A: Management of Software Development Projects

	Appendix B: Decision-Making for Software Project Managers

	Appendix C: People Management

	Appendix D: Productivity Concepts for Software Project Managers

	Appendix E: Issue Resolution in Software Project Management

	Appendix F: Measurement and Metrics in Software Development Organizations

	Appendix G: Measurement and Management of Customer Satisfaction

	Appendix H: An Introduction to PERT/CPM

	Appendix I: Abbreviations

	Appendix J: Templates for Software Project Managers

	Index

