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Preface

The study of economics, political science, and the social sciences more generally
is an attempt to understand the ways in which people behave and make decisions,

as individuals and in group settings. The goal is often to apply our understanding to
the analysis of questions pertinent to the functioning of societies and their institutions,
such as markets, governments, and legal institutions. Social scientists have developed
frameworks and rigorous models that abstract from reality with the intent of focusing
attention on the crux of the issues at hand, while ignoring details that seem less relevant
and more peripheral. We use these models not only to shed light on what we observe
but also to help us predict what we cannot yet see. One of the ultimate goals is to
prescribe policy recommendations to the private and public sectors, based on the
simplistic yet rigorous models that guide our analysis. In this process we must be
mindful of the fact that the strength of our conclusions will depend on the validity of
our assumptions, in particular those regarding human behavior and the environment
in which people act.

Game theory provides a framework based on the construction of rigorous models
that describe situations of conflict and cooperation between rational decision mak-
ers. Following the tradition of mainstream decision theory and economics, rational
behavior is defined as choosing actions that maximize one’s payoff (or some form of
payoff ) subject to the constraints that one faces. This is clearly a caricature of reality,
but it is a useful benchmark that in many cases works surprisingly well. Game theory
has been successfully applied to many relevant situations, such as business compe-
tition, the functioning of markets, political campaigning, jury voting, auctions and
procurement contracts, and union negotiations, to name just a few. Game theory has
also shed light on other disciplines, such as evolutionary biology and psychology.

This book provides an introduction to game theory. It covers the main ideas of the
field and shows how they have been applied to many situations drawn mostly from
economics and political science. Concepts are first introduced using simple motivating
examples, then developed carefully and precisely to present their general formulation,
and finally used in a variety of applications.

The Book’s Origins and Intended Audience

As with many textbook authors, it was never my intention to write a textbook. This
book grew out of lecture notes that I used for an advanced undergraduate game theory
course that I taught at Stanford University from 1997 through 2004. Over the years
I was convinced by some colleagues and a persistent executive editor to take those
notes and expand them.

xi



xii . Preface

Given its origins, the book is aimed at more advanced undergraduates in econom-
ics. In writing the book I tried hard to be precise—as one ought to be with a more
advanced textbook—while at the same time being reader friendly. Relative to the ad-
vanced course that I taught, I added many more examples, both easier and harder than
the ones I had used in my class.

I was somewhat frustrated by the books that were available at the time I taught:
some were too loose and others were too dense. As a consequence the ideas in this
textbook are first presented in a way that most students with minimal mathematical
training can follow; they are then further developed to meet the needs and address
the curiosity of students who are more rigorously trained. Concepts are presented
rigorously but illustrated using examples with varying degrees of complexity from
easier to harder. I am therefore quite confident that first-year graduate students in
economics and political science will find the book useful as well, especially as a
backdrop to more demanding graduate-level textbooks.

This text is meant to be self-contained. Many examples should help the reader
absorb the concepts of decision making and strategic analysis. Because precise
logical reasoning is at the center of game theory, and of this textbook, a degree
of mathematical maturity will be useful to comprehend the material fully. That
said, it is not assumed that the reader has a strong mathematical background. A
mathematical appendix covers most of what would be needed by someone with
a relatively rigorous high school training. Calculus and knowledge of some ba-
sic probability theory are required to follow all of the material in this book, but
even without this knowledge many of the basic examples and constructions can be
appreciated.

The Book’s Structure and Suggested Use

The book contains five parts:

. Part I (Chapters 1–2)—Rational Decision Making: This part presents the
basic ideas of the rational choice paradigm used in economics and adopted
by many other social science disciplines. Students who have had a basic
microeconomics course can easily skip this part of the book.

. Part II (Chapters 3–6)—Static Games of Complete Information: The most
fundamental aspects of game theory and “normal-form” games are developed
in this part of the book. It starts with the notions of dominated and dominant
strategies, moves on to consider the consequences of assuming rationality
and common knowledge of rationality, and ends with the celebrated concept
of Nash equilibrium. All the concepts are first introduced using “pure” (non-
stochastic) strategies, and the more demanding concept of mixed strategies is
introduced toward the end of this part.

. Part III (Chapters 7–11)—Dynamic Games of Complete Information: This
part extends the static framework developed earlier to be able to deal with
games that unfold over time. The “extensive-form” game is introduced, as well
as the concepts of sequential rationality and subgame-perfect equilibrium.
These concepts are then used to explore multistage and repeated games, as well
as bargaining games. Applications include collusion between price-setting
firms, the development of institutions that support anonymous trade, and
legislative bargaining.
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. Part IV (Chapters 12–14)—Static Games of Incomplete Information: This is
where the analysis becomes more demanding. This part expands the concepts
introduced in Part II to be able to tackle situations in which players are not ex-
actly aware of the characteristics of the other players with whom they interact.
The concepts of Bayesian games and Bayesian Nash equilibria are carefully
developed and applied to such important contexts as adverse selection, jury
voting, and auctions. Some of the more advanced treatments of auctions, and
the chapter on mechanism design, are intended for graduate students and very
rigorously trained undergraduates.

. Part V (Chapters 15–18)—Dynamic Games of Incomplete Information: The
last part of the book extends Part IV to deal with games in which information
unfolds over time. The idea of sequential rationality is extended to Bayesian
games, and equilibrium concepts such as perfect Bayesian and sequential
equilibrium are defined and illustrated. Applications include signaling games,
the development of reputation, and information-transmission games.

As this outline illustrates, the book contains much more material than can be taught
in a quarter or semester undergraduate course. Since it is not suited for an easy “math-
free” course, I envision it being used in one or more of the following three courses:

. Intermediate undergraduate game theory: Such a course, most likely aimed
at undergraduates who either have been exposed to intermediate microeco-
nomics or are comfortable with logical analysis, would include Chapters 3–5
and 7–8. Depending on the instructor’s preferences, and the students’ level
of preparation, some parts of Chapter 6, as well as Chapters 9–12 could be
used, and possibly even parts of Chapters 15–16. Students who have not been
exposed to rational choice theory will benefit from covering Chapters 1–2.

. Advanced undergraduate game theory: This is the course I taught at Stanford.
It was aimed at undergraduates who had had intermediate microeconomics
with calculus, and were familiar with probabilities and random variables. It
included all of the material described for the intermediate course, as well as
Chapter 6, most parts of Chapters 9–12, and parts of Chapters 13 and 15–16.

. Graduate game theory: This book would not be suited for an advanced grad-
uate course on game theory, for which there are several excellent texts, such
as Myerson (1991), Osborne and Rubinstein (1994), and most notably Fuden-
berg and Tirole (1991). It would be quite useful, however, for first-year Ph.D.
students in economics and political science who are covering a first course on
game theory. The topics would cover everything described in the advanced
undergraduate course, as well as all of Chapters 12 and 15–16 and parts of
Chapters 13–14 and 17–18.

Regardless of the way in which the book is used, all the topics are motivated with
simple examples that illustrate the main concepts, many of which are used to slowly
and carefully explain the main ideas. The easiest examples are tailored to appeal to
students in an intermediate undergraduate class, while some examples will be suited
only for the most advanced undergraduates as well as for graduate students. The book
contains over 150 exercises, which should be more than enough to drive the various
points home. About half the exercises have solutions that are freely accessible online,
while solutions to the rest are available only to instructors. For more information, visit
this book’s page on the Princeton University Press web site at http://press.princeton
.edu/titles/10001.html.
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The Book’s Style

The book is casual yet precise in tone, and sometimes a bit demanding. Where
mathematical concepts and notation are introduced, they are explained, and where
applicable the reader is referred to the mathematical appendix. Given that I trust
instructors to assign the book to its intended audience, I expect most students not
to need the appendix. However, because my intention is for a curious reader to be
able to use the book without an instructor, the mathematical appendix may come in
handy.

Many authors struggle with the fact that the English language does not have a
singular pronoun that is sex neutral. I have noticed that in recent years many authors
have been careful to use a mix of male and female players, and some have decided
to tip the balance toward the female pronoun. Alas, I don’t trust myself to be careful
enough to catch all the uses of “he” and “she” were I to attempt to use both, and I am
sure that I would sometimes make an error. Hence I decided to be old fashioned and
use the singular male pronoun. I hope that readers will not find this practice insensitive.

Acknowledgments

One person is responsible for me choosing an academic career: Yossi Greenberg.
Yossi introduced me to game theory and planted the seed of academic curiosity deep
in the soil of my mind. I continued learning game theory from Binyamin Shitovitz
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and privilege of learning so much more game theory from Eric Maskin and Drew
Fudenberg. I owe my passion for the subject to the wonderful professors I have had
during the years of my training.

Teaching curious students at Stanford only fueled that passion further. Many
wonderful students passed through the game theory course that I taught, some of
whom have continued on to their own academic careers and from whom I am now
learning new things. One student has had a particularly important impact on this book.
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examples, definitions, and tangent comments, and typed them up for me. These notes
formed the skeleton of the lecture notes that I used over the next three years, and from
those notes came this textbook—after many more hours than I am willing to admit to
myself.

While I was developing the notes at Stanford, I had the good fortune of employ-
ing two excellent Ph.D. students as my teaching assistants, David Miller and Dan
Quint, who have both offered many valuable suggestions that improved the notes.
In addition, Victor Bennett, Peter Hammond, Igal Hendel, Matt Jackson, and Steve
Matthews have kindly agreed to use parts of this book in its earlier stages and have
provided valuable feedback. Several anonymous reviewers selected by Princeton Uni-
versity Press offered excellent direction and comments. The final manuscript of this
textbook was read by Orie Shelef, whose careful reading is second to none and whose
thoughtful comments proved to be invaluable.

Of course, the editors at Princeton University Press played an important role in
making this book a reality. Tim Sullivan’s relentless pursuits convinced me to embark
on the journey of transforming class notes into a textbook. After Tim left the Press,
Seth Ditchik provided the necessary encouragement to make me follow through on
my commitment. There were many days, and even more nights, when I regretted that
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decision, although I am now pleased with the outcome. I was once told that there
are three things one should do in the course of one’s life: have a child, plant a tree,
and write a book.1 I must thank Tim and Seth for helping me scratch the third and
last item off that list! I am also thankful to Peter Strupp and his team at Princeton
Editorial Associates for providing outstanding copyediting and production services
that improved the book tremendously.

Last but not least, I am grateful to my wife, Irit, whose help and encouragement
touch my work in so many ways. Her sharp mind, exceptional drive, and superb
organizational skills are an inspiration. Without her constant support I surely would
accomplish only a fraction of what I manage to do. And when I think of game theory,
I can’t deny that my two sons, Nadav and Noam, constantly teach me that when it
comes to strategy, there is still so much more that I have to learn!

1. Some attribute this saying to the Cuban national hero, poet, and writer José Marti.
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1
The Single-Person
Decision Problem

Imagine yourself in the morning, all dressed up and ready to have breakfast. You
might be lucky enough to live in a nice undergraduate dormitory with access to

an impressive cafeteria, in which case you have a large variety of foods from which
to choose. Or you might be a less-fortunate graduate student, whose studio cupboard
offers the dull options of two half-empty cereal boxes. Either way you face the same
problem: what should you have for breakfast?

This trivial yet ubiquitous situation is an example of a decision problem. Decision
problems confront us daily, as individuals and as groups (such as firms and other
organizations). Examples include a division manager in a firm choosing whether or not
to embark on a new research and development project; a congressional representative
deciding whether or not to vote for a bill; an undergraduate student deciding on a
major; a baseball pitcher contemplating what kind of pitch to deliver; or a lost group
of hikers confused about which direction to take. The list is endless.

Some decision problems are trivial, such as choosing your breakfast. For example,
if Apple Jacks and Bran Flakes are the only cereals in your cupboard, and if you hate
Bran Flakes (they belong to your roommate), then your decision is obvious: eat the
Apple Jacks. In contrast, a manager’s choice of whether or not to embark on a risky
research and development project or a lawmaker’s decision on a bill are more complex
decision problems.

This chapter develops a language that will be useful in laying out rigorous foun-
dations to support many of the ideas underlying strategic interaction in games. The
language will be formal, having the benefit of being able to represent a host of dif-
ferent problems and provide a set of tools that will lend structure to the way in which
we think about decision problems. The formalities are a vehicle that will help make
ideas precise and clear, yet in no way will they overwhelm our ability and intent to
keep the more practical aspect of our problems at the forefront of the analysis.

In developing this formal language, we will be forced to specify a set of assump-
tions about the behavior of decision makers or players. These assumptions will, at
times, seem both acceptable and innocuous. At other times, however, the assump-
tions will be almost offensive in that they will require a significant leap of faith. Still,
as the analysis unfolds, we will see the conclusions that derive from the assumptions

3



4 . Chapter 1 The Single-Person Decision Problem

that we make, and we will come to appreciate how sensitive the conclusions are to
these assumptions.

As with any theoretical framework, the value of our conclusions will be only as
good as the sensibility of our assumptions. There is a famous saying in computer
science—“garbage in, garbage out”—meaning that if invalid data are entered into
a system, the resulting output will also be invalid. Although originally applied to
computer software, this statement holds true more generally, being applicable, for
example, to decision-making theories like the one developed herein. Hence we will at
times challenge our assumptions with facts and question the validity of our analysis.
Nevertheless we will argue in favor of the framework developed here as a useful
benchmark.

1.1 Actions, Outcomes, and Preferences

Consider the examples described earlier: choosing a breakfast, deciding about a
research project, or voting on a bill. These problems all share a similar structure:
an individual, or player, faces a situation in which he has to choose one of several
alternatives. Each choice will result in some outcome, and the consequences of
that outcome will be borne by the player himself (and sometimes other players
too).

For the player to approach this problem in an intelligent way, he must be aware
of three fundamental features of the problem: What are his possible choices? What
is the result of each of those choices? How will each result affect his well-being?
Understanding these three aspects of a problem will help the player choose his best
action. This simple observation offers us a first working definition that will apply to
any decision problem:

The Decision Problem A decision problem consists of three features:

1. Actions are all the alternatives from which the player can choose.

2. Outcomes are the possible consequences that can result from any of the
actions.

3. Preferences describe how the player ranks the set of possible outcomes, from
most desired to least desired. The preference relation �∼ describes the player’s
preferences, and the notation x �∼ y means “x is at least as good as y.”

To make things simple, let’s begin with our rather trivial decision problem of
choosing between Apple Jacks and Bran Flakes. We can define the set of actions as
A = {a, b}, where a denotes the choice of Apple Jacks and b denotes the choice of
Bran Flakes.1 In this simple example our actions are practically synonymous with the
outcomes, yet to make the distinction clear we will denote the set of outcomes by
X = {x, y}, where x denotes eating Apple Jacks (the consequence of choosing Apple
Jacks) and y denotes eating Bran Flakes.

1. More on the concept of a set and the appropriate notation can be found in Section 19.1 of the
mathematical appendix.
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1.1.1 Preference Relations

Turning to the less familiar notion of a preference relation, imagine that you prefer
eating Apple Jacks to Bran Flakes. Then we will write x �∼ y, which should be read as
“x is at least as good as y.” If instead you prefer Bran Flakes, then we will write y �∼ x,
which should be read as “y is at least as good as x.” Thus our preference relation is
just a shorthand way to express the player’s ranking of the possible outcomes.

We follow the common tradition in economics and decision theory by expressing
preferences as a “weak” ranking. That is, the statement “x is at least as good as y” is
consistent with x being better than y or equally as good as y. To distinguish between
these two scenarios we will use the strict preference relation, x � y, for “x is strictly
better than y,” and the indifference relation, x ∼ y, for “x and y are equally good.”

It need not be the case that actions are synonymous with outcome, as in the case
of choosing your breakfast cereal. For example, imagine that you are in a bar with a
drunken friend. Your actions can be to let him drive home or to order him a cab. The
outcome of letting him drive is a certain accident (he’s really drunk), and the outcome
of ordering him a cab is arriving safely at home. Hence for this decision problem your
actions are physically different from the outcomes.

In these examples the action set is finite, but in some cases one might have
infinitely many actions from which to choose. Furthermore there may be infinitely
many outcomes that can result from the actions chosen. A simple example can be
illustrated by me offering you a two-gallon bottle of water to quench your thirst. You
can choose how much to drink and return the remainder to me. In this case your action
set can be described as the interval A = [0, 2]: you can choose any action a as long
as it belongs to the interval [0, 2], which we can write in two ways: 0 ≤ a ≤ 2 or
a ∈ [0, 2].2 If we equate outcomes with actions in this example then X = [0, 2] as
well. Finally it need not be the case that more is better. If you are thirsty then drinking
a pint may be better than drinking nothing. However, drinking a gallon may cause
you to have a stomachache, and you may therefore prefer a pint to a gallon.

Before proceeding with a useful way to represent a player’s preferences over var-
ious outcomes, it is important to stress that we will make two important assumptions
about the player’s ability to think through the decision problem.3 First, we require the
player to be able to rank any two outcomes from the set of outcomes. To put this more
formally:

The Completeness Axiom The preference relation �∼ is complete: any two outcomes
x, y ∈ X can be ranked by the preference relation, so that either x �∼ y or y �∼ x.

At some level the completeness axiom is quite innocuous. If I show you two foods,
you should be able to rank them according to how much you like them (including being
indifferent if they are equally tasty and nutritious). If I offer you two cars, you should
be able to rank them according to how much you enjoy driving them, their safety

2. The notation symbol ∈ means “belongs to.” Hence “x, y ∈ X” means “elements x and y belong to
the set X.” If you are unfamiliar with sets and these kinds of descriptions please refer to Section 19.1
of the mathematical appendix.
3. These assumptions are referred to as “axioms,” following the language used in the seminal book
by von Neumann and Morgenstern (1944) that laid many of the foundations for both decision theory
and game theory.
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specifications, and so forth. If I offer you two investment portfolios, you should be
able to rank them according to the extent to which you are willing to balance risk and
return. In other words, the completeness axiom does not let you be indecisive between
any two outcomes.4

The second assumption we make guarantees that a player can rank all of the out-
comes. To do this we introduce a rather mild consistency condition called transitivity:

The Transitivity Axiom The preference relation �∼ is transitive: for any three out-
comes x, y, z ∈ X, if x �∼ y and y �∼ z then x �∼ z.

Faced with several outcomes, completeness guarantees that any two can be ranked,
and transitivity guarantees that there will be no contradictions in the ranking, which
could create an indecisive cycle. To observe a violation of the transitivity axiom,
consider a player who strictly prefers Apple Jacks to Bran Flakes, a � b, Bran
Flakes to Cheerios, b � c, and Cheerios to Apple Jacks, c � a. When faced with
any two boxes of cereal, say A = {a, b}, he has no problem choosing his preferred
cereal a. What happens, however, when he is presented with all three alternatives,
A = {a, b, c}? The poor guy will be unable to decide which of the three to choose,
because for any given box of cereal, there is another box that he prefers. Therefore,
by requiring that the player have complete and transitive preferences, we basically
guarantee that among any set of outcomes, he will always have at least one best
outcome that is as good as or better than any other outcome in that set.

To foreshadow what will be our premise for decision making, a preference relation
that is complete and transitive is called a rational preference relation. We will be
concerned only with players who have such rational preferences, for without such
preferences we can offer neither predictive nor prescriptive insights.

Remark As noted by the Marquis de Condorcet in 1785, it is possible to have a group
of rational individual players who, when put together to make decisions as a group,
will become an “irrational” group. For example, imagine three roommates, called
players 1, 2, and 3, who have to choose one box of cereal for their apartment kitchen.
Player 1’s preferences are given by a �1 c �1 b, player 2’s are given by c �2 b �2 a,

and player 3’s are given by b �3 a �3 c. Imagine that our three players make choices
in a democratic way and use majority voting to reach a decision. What will be the
resulting preferences of the group, �G? When faced with the pair a and c, players
1 and 3 will vote for Apple Jacks, hence a �G c. When faced with the pair c and
b, players 1 and 2 will vote for Cheerios, hence c �G b. When faced with the pair
a and b, players 2 and 3 will vote for Bran Flakes, hence b �G a. As a result,
our three rational players will not be able to reach a conclusive decision using the
group preferences that result from majority voting! This type of group indecisiveness
resulting from majority voting is often referred to as the Condorcet Paradox.Because
we will not be analyzing group decisions, it is not something we will confront, but it
is useful to be mindful of such phenomena, in which imposing individual rationality
does not imply “group rationality.”

4. In other words, this axiom prohibits the kind of problem referred to as “Buridan’s ass.” One version
describes a situation in which an ass is placed between two identical stacks of hay, assuming that the
ass will always go to whichever stack is closer. However, since the stacks are both the same distance
from the ass, it will not be able to choose between them and will die of hunger.
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1.1.2 Payoff Functions

When we restrict attention to players with rational preferences, not only do we get
players who behave in a consistent and appealing way, but as an added bonus we
can replace the preference relation with a much friendlier, and more operational,
apparatus. Consider the following simple example. Imagine that you open a lemonade
stand on your neighborhood corner. You have three possible actions: choose low-
quality lemons (l), which imply a cost of $10 and a revenue from sales of $15; choose
medium-quality lemons (m), which imply a cost of $15 and a revenue from sales of
$25; or choose high-quality lemons (h), which imply a cost of $28 and a revenue from
sales of $35. Thus the action set is A = {l, m, h}, and the outcome set is given by net
profits and is X = {5, 10, 7}, where the action l yields a profit of $5, the action m yields
a profit of $10, and the action h yields a profit of $7. Assuming that obtaining higher
profits is strictly better, we have 10 � 7 � 5. Hence you should choose alternative m

and make a profit of $10.
Notice that we took a rather obvious profit-maximizing problem and fit it into

our framework for a decision problem. We derived the preference relation that is
consistent with maximizing profit, the objective of any for-profit business. Arguably
it would be more natural and probably easier to comprehend the problem if we looked
at the actions and their associated profits. In particular we can define the profit
function in the obvious way: every action a ∈ A yields a profit π(a). Then, instead of
considering a preference relation over profit outcomes, we can just look at the profit
from each action directly and choose an action that maximizes profits. In other words,
we can use the profit function to evaluate actions and outcomes.

As this simple example demonstrates, a profit function is a more direct way for a
player to rank his actions. The question then is, can we find similar ways to approach
decision problems that are not about profits? It turns out that we can do exactly that if
we have players with rational preferences, and to do that we define a payoff function.5

Definition 1.1 A payoff function u : X → R represents the preference relation �∼ if
for any pair x, y ∈ X, u(x) ≥ u(y) if and only if x �∼ y.

To put the definition into words, we say that the preference relation �∼ is represented
by the payoff function u : X → R that assigns to each outcome in X a real number, if
and only if the function assigns a higher value to higher-ranked outcomes.

It is important to notice that representing preferences with payoff functions is
convenient, but that payoff values by themselves have no meaning whatsoever. Payoff
is an ordinal construct: it is used to order the alternatives from most to least desirable.
For example, if I like Apple Jacks more than Bran Flakes, then I can construct
the payoff function u(.) so that u(a) = 5 and u(b) = 3. I can also use a different
payoff function ũ(.) that represents the same preferences as follows: ũ(a) = 100 and
ũ(b) = −237. Just as Fahrenheit and Celsius are two different ways to describe hotter
and colder temperatures, there are many ways to represent preferences with payoff
functions.

Using payoff functions instead of preferences will allow us to operationalize a
theory of how decision makers with rational preferences ought to behave, and how
they often will behave. They will choose actions that maximize a payoff function that

5. Recall that a function relates each of its inputs to exactly one output. For more on this see
Section 19.2 of the mathematical appendix.
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represents their preferences. One last question we need to ask is whether we know
for sure that this method will work: is it true that players will surely have a payoff
function representing their preferences? One case is easy and worth going through
briefly. In what follows, we provide a formal proposition and a formal, yet fairly easy
to follow, proof.

Proposition 1.1 If the set of outcomes X is finite then any rational preference relation
over X can be represented by a payoff function.

Proof The proof is by construction. Because the preference relation is complete and
transitive, we can find a least-preferred outcome x ∈ X such that all other outcomes
y ∈ X are at least as good as x, that is, y �∼ x for all other y ∈ X. Now define the
“worst outcome equivalence set,” denoted X1, to include x and any other outcome for
which the player is indifferent between it and x. Then, from the remaining elements of
X\X1,

6 define the “second worst outcome equivalence set,” X2, and continue in this
fashion until the “best outcome equivalence set,” Xn, is created. Because X is finite
and �∼ is rational, such a finite collection of n equivalence sets exists. Now consider
n arbitrary values un > un−1 > . . . > u2 > u1, and assign payoffs according to the
function defined by: for any x ∈ Xk, u(x) = uk. This payoff function represents �∼.
Hence we have proved that such a function exists.

This proposition is useful: for many realistic situations, we can create payoff
functions that work in a similar way as profit functions, giving the player a useful
tool to see which actions are best and which ought to be avoided. We will not explore
this issue further, but payoff representations exist in many other cases that include
infinitely many outcomes. The treatment of such cases is beyond the scope of this
textbook, but you are welcome to explore one of the many texts that offer a more
complete treatment of the topic, which is referred to under the title “representation
theorems.” (See, e.g., Kreps [1990a, pp. 18–37, and 1988] for an in-depth treatment
of this topic.)

As we have seen so far, the formal structure of a decision problem offers a coherent
framework for analysis. For decades, however, teachers, students, and practitioners
have instead used the intuitive and graphically simple tool of decision trees.

Imagine that, in addition to Apple Jacks (a) and Bran Flakes (b), your breakfast
options include a muffin (m) and a scone (s). Your preferences are given as s �
a � m � b. (Recall that we now consider preferences over outcomes as directly over
actions.) Consider the following payoff representation: v(s) = 4, v(a) = 3, v(m) = 2,
and v(b) = 1. We can write down the corresponding decision tree, which is depicted
in Figure 1.1.

To read this simple decision tree, notice that the player resides at the “root” of
the tree on the left, and that the tree then branches off, each branch representing a
possible action. In the example of choosing breakfast, each action results in a final
payoff, and these payoffs are written to correspond to each of the action branches.
Our rational decision maker will look down the tree, consider the payoff from each
branch, and choose the branch with the highest payoff.

The node at which the player has to make a choice is called a decision node. The
nodes at the end of the tree where payoffs are attached are called terminal nodes. As

6. The notation A\B means “the elements that are in A but are not in B,” or sometimes “the set A

less the set B.”
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FIGURE 1.1 A simple breakfast decision tree.

the next chapter demonstrates, the structure of a decision tree will become slightly
more involved and useful to capture more complex decision problems. We will return
to similar trees in Chapter 7, where we consider the strategic interaction between
many possible players, which is the main focus of this book.

1.2 The Rational Choice Paradigm

We now introduce Homo economicus or “economic man.” Homo economicus is
“rational” in that he chooses actions that maximize his well-being as defined by
his payoff function over the resulting outcomes.7 The assumption that the player is
rational lies at the foundation of what is known as the rational choice paradigm.
Rational choice theory asserts that when a decision maker is choosing between
potential actions he will be guided by rationality to choose his best action. This can
be assumed to be true for individual human behavior, as well as for the behavior of
other entities, such as corporations, committees, or nation-states.

It is important to note, however, that by adopting the paradigm of rational choice
theory we are imposing some implicit assumptions, which we now make explicit.

Rational Choice Assumptions The player fully understands the decision problem by
knowing:

1. all possible actions, A;

2. all possible outcomes, X;

3. exactly how each action affects which outcome will materialize; and

4. his rational preferences (payoffs) over outcomes.

Perhaps at a first glance this set of assumptions may seem a bit demanding, and
further contemplation may make you feel that it is impossible to satisfy for most
decision problems. Still, it is a benchmark for a world in which decision problems are
completely understood by the player, in which case he can approach the problems
in a systematic and structured way. If we let go of any of these four knowledge

7. A naive application of the Homo economicus model assumes that our player knows what is best for
his long-term well-being and can be relied upon to always make the right decision for himself. We
take this naive approach throughout the book, though we will sometimes question how appropriate
this approach is.
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requirements then we cannot impose the notion of rational choice. If (1) is unknown
then the player may be unaware of his best course of action. If (2) or (3) are unknown
then he may not correctly foresee the actual consequences of his actions. Finally if
(4) is unknown then he may incorrectly perceive the effect of his choice’s consequence
on his well-being.

To operationalize this paradigm of rationality we must choose among actions,
yet we have defined preferences—and payoffs—over outcomes and not actions. It
would be useful, therefore, if we could define preferences—and payoffs—over actions
instead of outcomes. In the simple examples of choosing a cereal or how much water
to drink, actions and outcomes were synonymous, yet this need not always be the
case. Consider the situation of letting your friend drive drunk, in which the actions
and outcomes are not the same. Still each action led to one and only one outcome:
letting him drive leads to an accident, and getting him a cab leads to safe arrival.
Hence, even though preferences and payoff were defined over outcomes, this one-
to-one correspondence, or function, between actions and outcomes means that we
can consider the preferences and payoffs to be over actions, and we can use this
correspondence between actions and outcomes to define the payoff over actions as
follows: if x(a) is the outcome resulting from action a, then the payoff from action a

is given by v(a) = u(x(a)), the payoff from x(a). We will therefore use the notation
v(a) to represent the payoff from action a.8 Now we can precisely define a rational
player as follows:

Definition 1.2 A player facing a decision problem with a payoff function v(.) over
actions is rational if he chooses an action a ∈ A that maximizes his payoff. That is,
a∗ ∈ A is chosen if and only if v(a∗) ≥ v(a) for all a ∈ A.

We now have a formal definition of Homo economicus: a player who has rational
preferences and is rational in that he understands all the aspects of his decision
problem and always chooses an option that yields him the highest payoff from the
set of possible actions.

So far we have seen some simple examples with finite action sets. Consider instead
an example with a continuous action space, which requires some calculus. Imagine
that you’re at a party and are considering engaging in social drinking. Given your
physique, you’d prefer some wine, both for taste and for the relaxed feeling it gives
you, but too much will make you sick. There is a one-liter bottle of wine, so your action
set is A = [0, 1], where a ∈ A is how much you choose to drink. Your preferences are
represented by the following payoff function over actions: v(a) = 2a − 4a2, which
is depicted in Figure 1.2. As you can see, some wine is better than no wine (0.1 liter
gives you some positive payoff, while drinking nothing gives you zero), but drinking
a whole bottle will be worse than not drinking at all (v(1) = −2). How much should
you drink? Your maximization problem is

max
a∈[0,1]

2a − 4a2.

Taking the derivative of this function and equating it to zero to find the solution, we
obtain that 2 − 8a = 0, or a = 0.25, which is a bit more than two normal glasses of

8. To be precise, let x : A → X be the function that maps actions into outcomes, and let the payoff
function over outcomes be u : X → R. Define the payoff over actions as the composite function
v = u ◦ x : A → R, where v(a) = u(x(a)).
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FIGURE 1.2 The payoff from drinking wine.

wine.9 Thus, by considering how much wine to drink as a decision problem, you were
able to find your optimal action.

1.3 Summary

. A simple decision problem has three components: actions, outcomes, and
preferences over outcomes.

. A rational player has complete and transitive preferences over outcomes and
hence can always identify a best alternative from among his possible actions.
These preferences can be represented by a payoff (or profit) function over
outcomes and the corresponding payoffs over actions.

. A rational player chooses the action that gives him the highest possible payoff
from the possible set of actions at his disposal. Hence by maximizing his
payoff function over his set of alternative actions, a rational player will choose
his optimal decision.

. A decision tree is a simple graphic representation for decision problems.

1.4 Exercises

1.1 Your Decision: Think of a simple decision you face regularly and formalize
it as a decision problem, carefully listing the actions and outcomes without
the preference relation. Then assign payoffs to the outcomes and draw the
decision tree.

1.2 Going to the Movies: There are two movie theaters in your neighborhood:
Cineclass, which is located one mile from your home, and Cineblast, located
three miles from your home. Each is showing three films. Cineclass is showing
Casablanca, Gone with the Wind, and Dr. Strangelove, while Cineblast is
showing The Matrix, Blade Runner, and Aliens. Your problem is to decide
which movie to go to.

9. To be precise, we must also make sure that first, the second derivative is negative for the solution
a = 0.25 to be a local maximum, and second, the value of v(a) is not greater at the two boundaries
a = 0 and a = 1. For more on maximizing the value of a function, see Section 19.3 of the mathematical
appendix.
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a. Draw a decision tree that represents this problem without assigning
payoff values.

b. Imagine that you don’t care about distance and that your preferences
for movies are alphabetic (i.e., you like Aliens the most and The Matrix
the least). Using payoff values 1 through 6 complete the decision tree
you drew in part (1). Which option would you choose?

c. Now imagine that your car is in the shop and that the cost of walking
each mile is equal to one unit of payoff. Update the payoffs in the
decision tree. Would your choice change?

1.3 Fruit or Candy: A banana costs $0.50 and a piece of candy costs $0.25
at the local cafeteria. You have $1.25 in your pocket and you value money.
The money-equivalent value (payoff ) you get from eating your first banana is
$1.20, and that of each additional banana is half the previous one (the second
banana gives you a value of $0.60, the third $0.30, and so on). Similarly the
payoff you get from eating your first piece of candy is $0.40, and that of each
additional piece is half the previous one ($0.20, $0.10, and so on). Your value
from eating bananas is not affected by how many pieces of candy you eat and
vice versa.

a. What is the set of possible actions you can take given your budget of
$1.25?

b. Draw the decision tree that is associated with this decision problem.
c. Should you spend all your money at the cafeteria? Justify your answer

with a rational choice argument.
d. Now imagine that the price of a piece of candy increases to $0.30. How

many possible actions do you have? Does your answer to (c) change?

1.4 Alcohol Consumption: Recall the example in which you needed to choose
how much to drink. Imagine that your payoff function is given by θa − 4a2,
where θ is a parameter that depends on your physique. Every person may have
a different value of θ , and it is known that in the population (1) the smallest θ

is 0.2; (2) the largest θ is 6; and (3) larger people have higher θs than smaller
people.

a. Can you find an amount that no person should drink?
b. How much should you drink if your θ = 1? If θ = 4?
c. Show that in general smaller people should drink less than larger

people.
d. Should any person drink more than one 1-liter bottle of wine?

1.5 Buying a Car: You plan on buying a used car. You have $12,000, and you are
not eligible for any loans. The prices of available cars on the lot are given as
follows:

Make, model, and year Price

Toyota Corolla 2002 $9,350

Toyota Camry 2001 10,500

Buick LeSabre 2001 8,825

Honda Civic 2000 9,215

Subaru Impreza 2000 9,690
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For any given year,you prefer a Camry to an Impreza, an Impreza to a Corolla,
a Corolla to a Civic, and a Civic to a LeSabre. For any given year, you are
willing to pay up to $999 to move from any given car to the next preferred
one. For example, if the price of a Corolla is $z, then you are willing to
buy it rather than a Civic if the Civic costs more than $(z − 999), but you
would prefer to buy the Civic if it costs less than this amount. Similarly you
prefer the Civic at $z to a Corolla that costs more than $(z + 1000), but
you prefer the Corolla if it costs less. For any given car, you are willing to
move to a model a year older if it is cheaper by at least $500. For example, if
the price of a 2003 Civic is $z, then you are willing to buy it rather than a 2002
Civic if the 2002 Civic costs more than $(z − 500), but you would prefer to
buy the 2002 Civic if it costs less than this amount.

a. What is your set of possible alternatives?
b. What is your preference relation between the alternatives in (a) above?
c. Draw a decision tree and assign payoffs to the terminal nodes associ-

ated with the possible alternatives. What would you choose?
d. Can you draw a decision tree with different payoffs that represents the

same problem?

1.6 Fruit Trees: You have room for up to two fruit-bearing trees in your garden.
The fruit trees that can grow in your garden are either apple, orange, or pear.
The cost of maintenance is $100 for an apple tree, $70 for an orange tree, and
$120 for a pear tree. Your food bill will be reduced by $130 for each apple tree
you plant, by $145 for each pear tree you plant, and by $90 for each orange tree
you plant. You care only about your total expenditure in making any planting
decisions.

a. What is the set of possible actions and related outcomes?
b. What is the payoff of each action/outcome?
c. Draw the associated decision tree. What will a rational player choose?
d. Now imagine that the reduction in your food bill is half for the second

tree of the same kind. (You like variety.) That is, the first apple tree
still reduces your food bill by $130, but if you plant two apple trees
your food bill will be reduced by $130 + $65 = $195, and similarly
for pear and orange trees. What will a rational player choose now?

1.7 City Parks: A city’s mayor has to decide how much money to spend on parks
and recreation. City codes restrict this spending to no more than 5% of the
budget, and the yearly budget of the city is $20,000,000. The mayor wants to
please his constituents, who have diminishing returns from parks. The money-
equivalent benefit from spending $c on parks is v(c) = √

400c − 1
80c.

a. What is the action set for the city’s mayor?
b. How much should the mayor spend?
c. The movie An Inconvenient Truth has shifted public opinion, and

now people are more willing to pay for parks. The new preferences
of the people are given by v(c) = √

1600c − 1
80c. What now is the

action set for the mayor, and how much spending should he choose to
cater to his constituents?



2
Introducing Uncertainty

and Time

Now that we have a coherent and precise language to describe decision problems,
we move on to be more realistic about the complexity of many such problems.

The cereal example was fine to illustrate a simple decision problem and to get used
to our formal language, but it is certainly not very interesting.

Consider a division manager who has to decide on whether a research and devel-
opment (R&D) project is worthwhile. What will happen if he does not go ahead with
it? Maybe over time his main product will become obsolete and outdated, and the
profitability of his division will no longer be sustainable. Then again, maybe profits
will still continue to flow in. What happens of he does go ahead with the project? It
may lead to vast improvements in the product line and offer the prospect of sustained
growth. Or perhaps the research will fail and no new products will emerge, leaving
behind only a hefty bill for the expensive R&D endeavor. In other words, both actions
have uncertainty over what outcomes will materialize, implying that the choice of a
best action is not as obvious as in the cereal example.

How should the player approach this more complex problem? As you can imagine,
using language like “maybe this will happen, or maybe that will happen” is not
very useful for a rational player who is trying to put some structure on his decision
problem. We must introduce a method through which the player can compare un-
certain consequences in a meaningful way. For this approach, we will use the concept
of stochastic (random) outcomes and probabilities, and we will describe a framework
within which payoffs are defined over random outcomes.

2.1 Risk, Nature, and Random Outcomes

Put yourself in the shoes of our division manager who is deciding whether or not
to embark on the R&D project. Denote his actions as g for going ahead or s for
keeping the status quo, so that A = {g, s}. To make the problem as simple as possible,
imagine that there are only two final outcomes: his product line is successful, which is
equivalent to a profit of 10 (choose your denomination), or his product line is obsolete,
which is equivalent to a profit of 0, so that X = {0, 10}. However, as already explained,
there is no one-to-one correspondence here between actions and outcomes. Instead

14
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there is uncertainty about which outcome will prevail, and the uncertainty is tied to
the choice made by the player, the division manager.

In order to capture this uncertainty in a precise way, we will use the well-
understood notion of randomness, or risk, as described by a random variable. Use of
random variables is the common way to precisely and consistently describe random
prospects in mathematics and statistics. We will not use the most formal mathematical
representation of a random variable but instead present it in its most useful depiction
for the problems we will address. Section 19.4 of the mathematical appendix has a
short introduction to random variables that you can refer to if this notion is completely
new to you. Be sure to make yourself familiar with the concept: it will accompany us
closely throughout this book.

2.1.1 Finite Outcomes and Simple Lotteries

Continuing with the R&D example, imagine that a successful product line is more
likely to be created if the player chooses to go ahead with the R&D project, while
it is less likely to be created if he does not. More precisely, the odds are 3 to 1 that
success happens if g is chosen, while the odds are only 50-50 if s is chosen. Using the
language of probabilities, we have the following description of outcomes following
actions: If the player chooses g then the probability of a payoff of 10 is 0.75 and
the probability of a payoff of 0 is 0.25. If, however, the player chooses s then the
probability of a payoff of 10 is 0.5, as is the probability of a payoff of 0.

We can therefore think of the player as if he is choosing between two lotteries. A
lottery is exactly described by a random payoff. For example, the state lottery offers
each player either several million dollars or zero, and the likelihood of getting zero
is extremely high. In our example, the choice of g is like choosing a lottery that pays
zero with probability 0.25 and pays 10 with probability 0.75. The choice of s is like
choosing a lottery that pays either zero or 10, each with an equal probability of 0.5.

It is useful to think of these lotteries as choices of another player that we will call
“Nature.” The probabilities of outcomes that Nature chooses depend on the actions
chosen by our decision-making player. In other words, Nature chooses a probability
distribution over the outcomes, and the probability distribution is conditional on the
action chosen by our decision-making player.

We can utilize a decision tree to describe the player’s decision problem that
includes uncertainty. The R&D example is described in Figure 2.1. First the player
takes an action, either g or s. Then, conditional on the action chosen by the player,
Nature (denoted by N ) will choose a probability distribution over the outcomes 10 and
0. The branches of the player are denoted by his actions, and the branches of Nature’s

10N

g

s

0.75

0.25

0.5

0.5N

0

10

0

Player

FIGURE 2.1 The R&D decision problem.
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choices are denoted by their corresponding probabilities, which are conditional on
the choice made by the player.

We now introduce a definition that generalizes the kind of randomness that was
demonstrated by the R&D example. Consider a decision problem with n possible
outcomes, X = {x1, x2, . . . , xn}.
Definition 2.1 A simple lottery over outcomes X = {x1, x2, . . . , xn} is defined as
a probability distribution p = (p(x1), p(x2), . . . , p(xn)), where p(xk) ≥ 0 is the
probability that xk occurs and

∑n
k=1 p(xk) = 1.

By the definition of a probability distribution over elements in X, the probability
of each outcome cannot be a negative number, and the sum of all probabilities over
all outcomes must add up to 1. In our R&D example, following a choice of g, the
lottery that Nature chooses is p(10) = 0.75 and p(0) = 0.25. Similarly, following a
choice of s, the lottery that Nature chooses is p(10) = p(0) = 0.5.

Remark To be precise, the lottery that Nature chooses is conditional on the action
taken by the player. Hence, given an action a ∈ A, the conditional probability that
xk ∈ X occurs is given by p(xk|a), where p(xk|a) ≥ 0, and

∑n
k=1 p(xk|a) = 1 for all

a ∈ A.

Note that our trivial decision problem of choosing a cereal can be considered as a
decision problem in which the probability over outcomes after any choice is equal to
1 for some outcome and 0 for all other outcomes. We call such a lottery a degenerate
lottery. You can now see that decision problems with no randomness are just a very
special case of those with randomness. Thus we have enriched our language to include
more complex decision problems while encompassing everything we have developed
earlier.

2.1.2 Simple versus Compound Lotteries

Arguably a player should care only about the probabilities of the various final out-
comes that are a consequence of his actions. It seems that the exact way in which
randomness unfolds over time should not be consequential to a player’s well-being,
but that only distributions over final outcomes should matter.

To understand this concept better, imagine that we make the R&D decision
problem a bit more complicated. As before, if the player chooses not to embark on
the R&D project (s) then the product line is successful with probability 0.5. If he
chooses to go ahead with R&D (g) then two further stages will unfold. First, it will
be determined whether the R&D effort was successful or not. Second, the outcome
of the R&D phase will determine the likelihood of the product line’s success. If the
R&D effort is a failure then the success of the product is as likely as if no R&D had
been performed; that is, the product line succeeds with probability 0.5. If the R&D
effort is a success, however, then the probability of a successful product line jumps
to 0.9. To complete the data for this example, we assume that R&D succeeds with
probability 0.625 and fails with probability 0.375.

In this modified version of our R&D problem we have Nature moving once after
the choice s and twice in a row after the choice g: once through the outcome of the
R&D phase and then through the determination of the product line’s success. This
new decision problem is depicted in Figure 2.2.
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FIGURE 2.2 The modified R&D decision problem.

It seems like the two decision problems in Figures 2.1 and 2.2 are of different
natures (no pun intended). Then again, let’s consider what a decision problem ought
to be about: actions, distributions over outcomes, and preferences. It is apparent
that the player’s choice of s in both Figure 2.1 and Figure 2.2 leads to the same
distribution over outcomes. What about the choice of g? In Figure 2.2 this is followed
by two random stages. However, the outcomes are still either 10 or 0. What are the
probabilities of each outcome?

There are two ways that 10 can be obtained after the choice of g: First, with
probability 0.625 the R&D project succeeds, and then with probability 0.9 the payoff
10 will be obtained. Hence the probability of “R&D success followed by 10” is equal
to 0.625 × 0.9 = 0.5625. Second, with probability 0.375 the R&D project fails, and
then with probability 0.5 the payoff 10 will be obtained. Hence the probability of
“R&D failure followed by 10” is equal to 0.375 × 0.5 = 0.1875. Thus if the player
chooses g then the probability of obtaining 10 is just the sum of the probabilities
of these two exclusive events, which equals 0.5625 + 0.1875 = 0.75. It follows that
if the player chooses g then the probability of obtaining a payoff of 0 is 0.25, the
complement of the probability of obtaining 10 (you should check this).

What then is the difference between the two decision problems? The first, simpler,
R&D problem has a simple lottery following the choice of g. The second, more
complex, problem has a simple lottery over simple lotteries following the choice of g.
We call such lotteries over lotteries compound lotteries. Despite this difference, we
impose on the player a rather natural sense of rationality. In his eyes the two decision
problems are the same: he has the same set of actions, each one resulting in the same
probability distributions over final outcomes. This innocuous assumption will make
it easier for the player to evaluate and compare the benefits from different lotteries
over outcomes.

2.1.3 Lotteries over Continuous Outcomes

Before moving on to describe how the player will evaluate lotteries over outcomes,
we will go a step further to describe random variables, or lotteries, over continuous-
outcome sets. To start, consider the following example. You are growing 10 tomato
vines in your backyard, and your crop, measured in pounds, will depend on two inputs.
The first is how much you water your garden per day and the second is the weather.
Your action set can be any amount of water up to 50 gallons (50 gallons will completely
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flood your backyard), so that A ∈ [0, 50], and your outcome set can be any amount
of crop that 10 vines can yield, which is surely no more than 100 pounds, hence
X = [0, 100]. Temperatures vary daily, and they vary continuously. This implies that
your final yield, given any amount of water, will also vary continuously.

In this case we will describe the uncertainty not with a discrete probability, as we
did for the R&D case, but instead with a cumulative distribution function (CDF)
defined as follows:1

Definition 2.2 A simple lottery over an interval X = [x, x] is given by a cumulative
distribution function F : X → [0, 1], where F (̂x) = Pr{x ≤ x̂} is the probability that
the outcome is less than or equal to x̂.

For those of you who have seen continuous random variables, this is not new. If
you have not, Section 19.4 of the mathematical appendix may fill in some of the gaps.2

The basic idea is simple. Because we have infinitely many possible outcomes, it is
somewhat meaningless to talk about the probability of growing a certain exact weight
of tomatoes. In fact it is correct to say that the probability of producing any particular
predefined weight is zero. However, it is meaningful to talk about the probability of
being below a certain weight x, which is given by the CDF F(x), or similarly the
probability of being above a certain weight x, which is given by the complement
1 − F(x).

Remark Just as in the case of finite outcomes, we wish to consider the case in which
the distribution over outcomes is conditional on the action taken. Hence, to be precise,
we need to use the notation F(x|a).

Now that we have concluded with a description of what randomness is, we can
move along to see how our decision-making player evaluates random outcomes.

2.2 Evaluating Random Outcomes

From now on we will consider the choice of an action a ∈ A as the choice of a lottery
over the outcomes in X. If the decision problem does not involve any randomness,
then these lotteries are degenerate. This implies that we can stick to our notation
of defining a decision problem by the three components of actions, outcomes, and
preferences. The novelty is that each action is a lottery over outcomes.

The next natural question is: how will a player faced with the R&D problem
in Figure 2.1 choose between his options of going forward or staying the course?
Upon reflection, you may have already reached a conclusion. Despite the fact that his
different choices lead to different lotteries, it seems that the two lotteries that follow
g and s are easy to compare. Both have the same set of outcomes, a profit of 10 or
a profit of 0. The choice g has a higher chance at getting the profit of 10, and hence
we would expect anyone in their right mind to choose g. This implicitly assumes,
however, that there are no costs to launching the R&D project.

1. The definition considers the outcome set to be a finite interval X = [x, x]. We can use the same
definition for any subset of the real numbers, including the real line (−∞, ∞). An example of a
lottery over the real line is the normal “bell-shape” distribution.
2. You are encouraged to learn this material since it will be useful, but one can continue through
most of Parts I–III of this book without this knowledge.
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FIGURE 2.3 The R&D problem with costs.

Let’s consider a less obvious revision of the R&D problem, and imagine that there
is a real cost of pursuing the R&D project equivalent to 1. Hence the outcome of
success yields a profit of 9 instead of 10, and the outcome of failure yields a profit
of −1 instead of 0. This new problem is depicted in Figure 2.3. Now the comparison
is not as obvious: is it better to have a coin toss between 10 and 0, or to have a good
shot at 9, with some risk of losing 1?

2.2.1 Expected Payoff: The Finite Case

To our advantage, there is a well-developed methodology for evaluating how much
a lottery is worth for a player, how different lotteries compare to each other, and
how lotteries compare to “sure” payoffs (degenerate lotteries). This methodology,
called “expected utility theory,” was first developed by John von Neumann and Oskar
Morgenstern (1944), two of the founding fathers of game theory, and explored further
by Leonard Savage (1951). It turns out that there are some important assumptions that
make this method of evaluation valid. (The foundations that validate expected payoff
theory are beyond the scope of this text, and are rather technical in nature.)3

The intuitive idea is about averages. It is common for us to think of our actions
as sometimes putting us ahead and sometimes dealing us a blow. But if on average
things turn out on the positive side, then we view our actions as pretty good because
the gains will more than make up for the losses. We want to take this idea, with its
intuitive appeal, and use it in a precise way to tackle a single decision problem. To do
this we introduce the following definition:

Definition 2.3 Let u(x) be the player’s payoff function over outcomes in X =
{x1, x2, . . . , xn}, and let p = (p1, p2, . . . , pn) be a lottery over X such that pk =
Pr{x = xk}. Then we define the player’s expected payoff from the lottery p as

E[u(x)|p] =
n∑

k=1

pku(xk) = p1u(x1) + p2u(x2) + . . . + pnu(xn).

The idea of an expected payoff is naturally related to the intuitive idea of averages:
if we interpret a lottery as a list of “weights” on payoff values, so that numbers that
appear with higher probability have more weight, then the expected payoff of a lottery
is nothing other than the weighted average of payoffs for each realization of the lottery.

3. The key idea was introduced by von Neumann and Morgenstern (1944) and is based on the
“Independence Axiom.” A nice treatment of the subject appears in Kreps (1990a, Chapter 3).
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That is, payoffs that are more likely to occur receive higher weight while payoffs that
are less likely to occur receive lower weight.

Using the definition of expected payoff we can revisit the R&D problem in Figure
2.3. First assume that the payoff to the player is equal to his profit, so that u(x) = x.
By choosing g, the expected payoff to the player is

v(g) = E[u(x)|g] = 0.75 × 9 + 0.25 × (−1) = 6.5.

In contrast, by choosing s his expected payoff is

v(s) = E[u(x)|s] = 0.5 × 10 + 0.5 × 0 = 5.

Hence his best action using expected profits as a measure of preferences over actions
is to choose g. You should be able to see easily that in the original R&D game in
Figure 2.1 the expected payoff from s is still 5, while the expected payoff from g is
7.5, so that g was also his best choice, as we intuitively argued earlier.

Notice that we continue to use our notation v(a) to define the expected payoff
of an action given the distribution over outcomes that the action causes. This is a
convention that we will use throughout this book, because the object of our analysis
is what a player should do, and this notation implies that his ranking should be over
his actions.

2.2.2 Expected Payoff: The Continuous Case

Consider the case in which the outcomes can be any one of a continuum of values
distributed on some interval X. The definition of expected utility will be analogous,
as follows:

Definition 2.4 Let u(x) be the player’s payoff function over outcomes in the interval
X = [x, x]with a lottery given by the cumulative distribution F(x), with density f (x).
Then we define the player’s expected payoff as4

E[u(x)] =
∫ x

x

u(x)f (x)dx.

To see an example with continuous actions and outcomes, recall the tomato
growing problem in Section 2.1.3, in which your choice is how much water to use in
the set A = [0, 50] and the outcome is the weight of your crop that will result in the
set X = [0, 100]. Imagine that given a choice of water a ∈ A, the distribution over
outcomes is uniform over the quantity support [0, 2a]. (Alternatively the distribution
of x conditional on a is given by x|a ∼ U [0, 2a].) For example, if you use 10 gallons
of water, the output will be uniformly distributed over the weight interval [0, 20],
with the cumulative distribution function given by F(x|a = 10) = x

20 for 0 ≤ x ≤ 20,

4. More generally, if there are continuous distributions that do not have a density because F(.) is not
differentiable, then the expected utility is given by

E[u(x)] =
∫

x∈X

u(x)dF (x).

This topic is covered further in Section 19.4 of the mathematical appendix.
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and F(x|a = 10) = 1 for all x > 20. More generally the cumulative distribution func-
tion is given by F(x|a) = x

2a
for 0 ≤ x ≤ 2a, and F(x|a) = 1 for all x > 2a. The

density is given by f (x|a) = 1
2a

for 0 ≤ x ≤ 2a, and f (x|a) = 0 for all x > 2a. Thus
if your payoff from quantity x is given by u(x) then your expected payoff from any
choice a ∈ A is given by

v(a) = E[u(x)|a] =
∫ 2a

0
u(x)f (x|a)dx = 1

2a

∫ 2a

0
u(x)dx.

Given a specific function to replace u(.) we can compute v(a) for any a ∈ [0, 50]. As
a concrete example, let u(x) = 18

√
x. Then we have

v(a) = 1

2a

∫ 2a

0
18x

1
2 dx = 9

a

[
2

3
x

3
2

∣∣∣∣2a

0
= 6

a
(2a)

3
2 = 12

√
2a.

2.2.3 Caveat: It’s Not Just the Order Anymore

Recall that when we introduced the idea of payoffs in Section 1.1.2, we argued that
any payoff function that preserves the order of outcomes as ranked by the preference
relation �∼ will be a valid representation for the preference relation �∼. It turns out that
this statement is no longer true when we step into the realm of expected payoff theory
as a paradigm for evaluating random outcomes.

Looking back at the R&D problem in Figure 2.3, we took a leap when we equated
the player’s payoff with profit. This step may seem innocuous: it is pretty reasonable
to assume that, other things being equal, a rational player will prefer more money to
less. Hence for the player in the R&D problem we have 10 � 9 � 0 � −1, a preference
relation that is indeed captured by our imposed payoff function where u(x) = x.

What would happen if payoffs were not equated with profits? Consider a different
payoff function to represent these preferences. In fact, consider only a slight modi-
fication as follows: u(10) = 10, u(9) = 9, u(0) = 0, and u(−1) = −8. The order of
outcomes is unchanged, but what happens to the expected payoffs? E[u(s)] = 5 is
unchanged, but now

v(g) = E[u(x)|g] = 0.75 × 9 + 0.25 × (−8) = 4.75.

Thus even though the order of preferences has not changed, the player would now
prefer to choose s instead of g, just because of the different payoff number we assigned
to the profit outcome of −1.

The reason behind this reversal of choice has important consequences. When we
choose to use expected payoff then the intensity of preferences matters—something
that is beyond the notion of simple order. We can see this from our intuitive description
of expected payoff. Recall that we used the intuitive notion of “weights”: payoffs that
appear with higher probability have more weight in the expected payoff function. But
then, if we change the number value of the payoff of some outcome without changing
its order in the payoff representation, we are effectively changing its weight in the
expected payoff representation.

This argument shows that, unlike payoff over certain outcomes, which is meant to
represent ordinal preferences �∼, the expected payoff representation involves a cardi-
nal ranking, in which values matter just as much as order. At some level this implies
that we are making assumptions that are not as innocuous about decision making
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when we extend our rational choice model to include preferences over lotteries and
choices among lotteries. Nevertheless we will follow this prescription as a benchmark
for putting structure on decision problems with uncertainty. We now briefly explore
some implications of the intensity of preferences in evaluating random outcomes.

2.2.4 Risk Attitudes

Any discussion of the evaluation of uncertain outcomes would be incomplete without
addressing a player’s attitudes toward risk. By treating the value of outcomes as
“payoffs” and by invoking the expected payoff criterion to evaluate lotteries, we
have effectively circumvented the need to discuss risk, because by assumption all
that people care about is their expected payoff.

To illustrate the role of risk attitudes, it will be useful to distinguish between
monetary rewards and their associated payoff values. Imagine that a player faces
a lottery with three monetary outcomes: x1 = $4, x2 = $9, and x3 = $16 with the
associated probabilities p1, p2, and p3. If the player’s payoff function over money x

is given by some function u(x) then his expected payoff is

E[u(x)|p] =
3∑

k=1

pku(xk) = p1u(x1) + p2u(x2) + p3u(x3).

Now consider two different lotteries: p′ = (p′
1, p′

2, p′
3) =

(
7

12 , 0, 5
12

)
and p′′ =

(p′′
1, p′′

2, p′′
3) = (0, 1, 0). That is, the lottery p′ randomizes between $4 and $16 with

probabilities 7
12 and 5

12 , respectively, while the lottery p′′ picks $9 for sure. Which
lottery should the player prefer? The obvious answer will depend on the expected
payoff of each lottery. If 7

12u(4) + 5
12u(16) > u(9), then p′ will be preferred to p′′,

and vice versa. This answer, by itself, tells us nothing about risk, but taken together
with the special way in which p′ and p′′ relate to each other, it tells us a lot about the
player’s risk attitudes.

The lotteries p′ and p′′ were purposely constructed so that the average payoff of
p′ is equal to the sure payoff from p′′: 7

12 × 4 + 5
12 × 16 = 9. Hence, on average,both

lotteries offer the player the same amount of money, but one is a sure thing while the
other is uncertain. If the player chooses p′ instead of p′′, he faces the risk of getting
$5 less, but he also has the chance of getting $7 more. How then do his choices imply
something about his attitude toward risk?

Imagine that the player is indifferent between the two lotteries, implying that
7

12u(4) + 5
12u(16) = u(9). In this case we say that the player is risk neutral, because

replacing a sure thing with an uncertain lottery that has the same expected monetary
payout has no effect on his well-being. More precisely we say that a player is risk
neutral if he is willing to exchange any sure payout with any lottery that promises the
same expected monetary payout.

Alternatively the player may prefer not to be exposed to risk for the same expected
payout, so that 7

12u(4) + 5
12u(16) < u(9). In this case we say that the player is risk

averse. More precisely a player is risk averse if he is not willing to exchange a sure
payout with any (nondegenerate) lottery that promises the same expected monetary
payout. Finally a player is risk loving if the opposite is true: he strictly prefers any
lottery that promises the same expected monetary payout.

Remark Interestingly risk attitudes are related to the fact that the payoff repre-
sentation of preferences matters above and beyond the rank order of outcomes, as
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discussed in Section 2.2.3. To see this imagine that u(x) = x. This immediately
implies that the player is risk neutral: 7

12u(4) + 5
12u(16) = 9 = u(9). In addition

it is obvious from u(.) that the preference ranking is $16 � $9 � $4. Now imag-
ine that we use a different payoff representation for the same preference ranking:
u(x) = √

x. Despite the fact that the ordinal ranking is preserved, we now have
7

12u(4) + 5
12u(16) = 17

6 < 3 = u(9). Hence a player with this modified payoff func-
tion, which preserves the ranking among the outcomes, will exhibit different risk
attitudes.

2.2.5 The St. Petersburg Paradox

Some trace the first discussion of risk aversion to the St. Petersburg Paradox, so named
in Daniel Bernoulli’s original presentation of the problem and his solution, published
in 1738 in the Commentaries of the Imperial Academy of Science of Saint Petersburg.
The decision problem goes as follows.

You pay a fixed fee to participate in a game of chance. A “fair” coin (each side has
an equal chance of landing up) will be tossed repeatedly until a “tails” first appears,
ending the game. The “pot” starts at $1 and is doubled every time a “head” appears.
You win whatever is in the pot after the game ends. Thus you win $1 if a tail appears
on the first toss, $2 if it appears on the second, $4 if it appears on the third, and so on.
In short, you win 2k−1 dollars if the coin is tossed k times until the first tail appears. (In
the original introduction, this game was set in a hypothetical casino in St. Petersburg,
hence the name of the paradox.)

The probability that the first “tail” occurs on the kth toss is equal to the probability
of the “head” appearing k − 1 times in a row and the “tail” appearing once. The
probability of this event is

( 1
2

)k
, because at any given toss the probability of any side

coming up is 1
2 . We now calculate the expected monetary value of this lottery, which

takes expectations over the possible events as follows: You win $1 with probability
1
2 ; $2 with probability 1

4 ; $4 with probability 1
8 , and so on. The expected value of this

lottery is

∞∑
k=1

1

2k
× 2k−1 =

∞∑
k=1

1

2
= ∞.

Thus the expected monetary value of this lottery is infinity! The reason is that
even though large sums are very unlikely, when these events happen they are huge.
For example, the probability that you will win more than $1 million is less than one
in 500,000!

When Bernoulli presented this example, it was very clear that no reasonable person
would pay more than a few dollars to play this lottery. So the question is: where is the
paradox? Bernoulli suggested a few answers, one being that of decreasing marginal
payoff for money, or a concave payoff function over money, which is basically risk
aversion. He correctly anticipated that the value of this lottery should not be measured
in its expected monetary value, but instead in the monetary value of its expected
payoff.

Throughout the rest of this book we will make no more references to risk pref-
erences but instead assume that every player’s preferences can be represented using
expected payoffs. For a more in-depth exposition of attitudes toward risk, see Chap-
ter 3 in Kreps (1990a) and Chapter 6 in Mas-Colell et al. (1995).
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2.3 Rational Decision Making with Uncertainty

2.3.1 Rationality Revisited

We defined a rational player as one who chooses an action that maximizes his payoff
among the set of all possible actions. Recall that the four rational choice assumptions
in Section 1.2 included a requirement that the player know “exactly how each action
affects which outcome will materialize.”

For this knowledge to be meaningful and to guarantee that the player is correctly
perceiving the decision problem when outcomes can be stochastic, it must be the
case that he fully understands how each action translates into a lottery over the set
of possible outcomes. In other words, the player knows that by choosing actions he
is choosing lotteries, and he knows exactly what the probability of each outcome is,
conditional on his choice of an action.

Understanding the requirements for rational decision making under uncertainty,
together with the adoption of expected payoff as a means of evaluating random
outcomes, offers a natural way to define rationality for decision problems with random
outcomes:

Definition 2.5 A player facing a decision problem with a payoff function u(.) over
outcomes is rational if he chooses an action a ∈ A that maximizes his expected payoff.
That is, a∗ ∈ A is chosen if and only if v(a∗) = E[u(x)|a∗] ≥ E[u(x)|a] = v(a) for
all a ∈ A.

That is, the player, who understands the stochastic consequences of each of his
actions, will choose an action that offers him the highest expected payoff. In the R&D
problems described in Figures 2.1 and 2.3 the choice that maximizes expected payoff
was to go ahead with the project and choose g.

2.3.2 Maximizing Expected Payoffs

As another illustration of maximizing expected payoff with a finite set of actions
and outcomes, consider the following example. Imagine that you have been working
after college and now face the decision of whether or not to get an MBA at a
prestigious institution. The cost of getting the MBA is 10. (Again, you can decide
on the denomination, but rest assured that this sum includes the income lost over the
course of the two years you will be studying!) Your future value is your stream of
income, which depends on the strength of the labor market for the next decade. If the
labor market is strong then your income value from having an MBA is 32, while your
income value from your current status is 12. If the labor market is average then your
income value from having an MBA is 16, while your income value from your current
status is 8. If the labor market is weak then your income value from having an MBA is
12, while your income value from your current status is 4. After spending some time
researching the topic, you learn that the labor market will be strong with probability
0.25, average with probability 0.5, and weak with probability 0.25. Should you get
the MBA?

This decision problem is depicted in Figure 2.4. Notice that following the decision
of whether or not to get an MBA, we subtract the cost of the degree from the income
benefit in each of the three states of nature. To solve this decision problem we first
evaluate the expected payoff from each action. We have
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FIGURE 2.4 The MBA degree decision problem.

v(Get MBA) = 0.25 × 22 + 0.5 × 6 + 0.25 × 2 = 9

v(Don’t get MBA) = 0.25 × 12 + 0.5 × 8 + 0.25 × 4 = 8.

Thus we conclude that, given the parameters of the problem, it is worth getting the
MBA.

To illustrate the maximization of expected payoffs when there is a continuous
set of actions and outcomes, consider the following example, which builds on the
tomato growing problem from Section 2.2.2, with A = [0, 50], X = [0, 100] and the
distribution of x conditional on a is uniform given by x|a ∼ U [0, 2a]. We showed in
the example in Section 2.2.2 that if the player’s payoff from quantity x is given by
u(x) then his expected payoff from any choice a ∈ A is given by

v(a) = E[u(x)|a] = 1

2a

∫ 2a

0
u(x)dx.

To account for the cost of water, assume that choosing a ∈ A imposes a payoff cost of
2a (you can think of 2 being the cost of a gallon of water). Also assume that the payoff
value from quantity x is given by the function u(x) = 18

√
x. (The square root function

implies that the added value of every extra unit is less than the added value of the
previous unit because this function is concave.) Then the player wishes to maximize
his expected net payoff. This will be obtained by choosing the amount of water a that
maximizes the difference between the expected benefit from choosing some a ∈ A

(given by E[18
√

x|a]) and the actual cost of 2a. Thus the player’s mathematical
representation of the decision problem is given by

max
a∈[0,50]

1

2a

∫ 2a

0
18

√
xdx − 2a.

Solving for the integral, this is equivalent to maximizing the objective function
12

√
2a − 2a. Differentiating this gives us the first-order condition for finding an

optimum, which is

12√
2a

− 2 = 0,
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resulting in the solution a = 18, the quantity of water that maximizes the player’s net
expected payoff.5 Plugging this back into the objective function yields the expected
net payoff of 12

√
2 × 18 − 2 × 18 = 36.

2.4 Decisions over Time

The setup we have used up to now fits practically any decision problem in which you
need to choose an action that has consequences for your well-being. Notice, however,
that the approach we have used has a timeless, static structure. Our decision problems
have shared the feature that you have to make a choice, after which some outcome
will materialize and the payoff will be obtained. Many decision problems, however,
are more involved; they require some decisions to follow others, and the sequencing
of the decision making is imposed by the problem at hand.

2.4.1 Backward Induction

Once again, let’s consider a modification of the R&D problem described in Figure 2.2,
with a slight twist. Imagine that after the stage at which Nature first randomizes
over whether or not the R&D project succeeds, the player faces another decision
of whether to engage in a marketing campaign (m) or do nothing (d). The campaign
can be launched only if the R&D project was executed. The marketing campaign will
double the profits if the new product line is a success but not if it is a failure, and the
campaign costs 6. The resulting modified decision problem is presented in Figure 2.5.
For example, if the R&D effort succeeds and the marketing campaign is launched then
profits from the product line will be 20 (double the original 10 in Figure 2.2), but the
cost of the campaign, equal to 6, must be accounted for. This explains the payoff of
20 − 6 = 14.

Now the question of whether the player should choose g or s is not as simple as
before, because it may depend on what he will do later, after the fate of the R&D
project is determined by Nature. Our assumption that the player is rational has some
strong implications: he will be rational at every stage at which he faces a decision. At
the beginning of the problem the player knows that he will act optimally to maximize
his expected payoff at later stages, hence he can predict what he will do there.

This logic is the simple idea behind the optimization procedure known as dynamic
programming or backward induction. To explain this procedure it is useful to
separate the player’s decision nodes into separate groups as follows: Group 1 will
include all the nodes after which no more decision nodes exist, so that only Nature or
final payoffs follow such nodes. For example, in Figure 2.5 Group 1 would include
both decision nodes at which the player must decide between m and d. Then define
Group 2 nodes as follows: a node k will belong to Group 2 if and only if the only
decision nodes that follow any action at node k are decision nodes of Group 1. Define
higher-order groups similarly.

Now consider all the nodes in Group 1 and figure out the optimal action of
the player at each of these nodes. Once this is done we can compute the expected
payoff from optimizing at that node, and that will be the value of the decision node.

5. We also need to check the second-order condition, that the second derivative of the objective
function is negative at the proposed candidate. This is indeed the case, since the second derivative

of the objective function is −12(2a)
3
2 , which is always negative (the objective function is concave).
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FIGURE 2.5 The R&D problem with a marketing phase.

Effectively we can throw away all the branches that follow the decision nodes of
Group 1 and, assuming rationality, associate these nodes with the expected payoff
from acting optimally. We can continue this process “backward” through the tree
until we cover all the decision nodes of the player.

We can use the decision problem in Figure 2.5 to illustrate this procedure. First,
we can compute the expected payoff of the player from choices m and d at the node
after it has been determined by Nature that the R&D project was a success. We have

E[u(x)|R&D succeeds and m] = 0.9 × (20 − 6) + 0.1 × (−6) = 12

E[u(x)|R&D succeeds and d] = 0.9 × 10 + 0.1 × 0 = 9,

which implies that at this node the player will choose m in anticipation of an expected
payoff of 12. Now consider his same choice problem at the node after it has been
determined by Nature that the R&D project was a failure. We have

E[u(x)|R&D fails and m] = 0.5 × (20 − 6) + 0.5 × (−6) = 4

E[u(x)|R&D fails and d] = 0.5 × 10 + 0.5 × 0 = 5,

which implies that at this node the player will choose D in anticipation of an expected
payoff of 5.

Imposing these rational decisions in the Group 1 nodes allows us to rewrite the
decision tree as a simpler tree that already folds in the optimal decisions of the player
at the Group 1 nodes. This “reduced” decision tree is depicted in Figure 2.6. The
player’s choice at the beginning of the tree is now easy to analyze. Taking into account
his optimal actions after the R&D project’s fate is determined, his expected payoff
from choosing g is

v(g) = 0.625 × 12 + 0.375 × 5 = 9.375.



28 . Chapter 2 Introducing Uncertainty and Time

12

N R&D succeeds

R&D failsg

s

0.625

0.375

0.5

0.5

N

5

10

0

Player
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Because his expected payoff from choosing s is 5, it is clear that, anticipating his
future decisions, his first decision should be to choose g.

2.4.2 Discounting Future Payoffs

In the R&D example as we have analyzed it so far, a player treated his costs and
benefits equally. That is, even though the costs of the R&D project were incurred at
the beginning, and the benefits came some (unspecified) time later, a dollar “today”
was worth a dollar “tomorrow.” However, this is often not the way current and future
payments are evaluated. The convention in decision analysis is to discount future
payoffs so that a dollar tomorrow is worth less than a dollar today.

For those who have had some experience with finance, the motivation for dis-
counting future financial payoffs is simple. Imagine that you can invest money today
in an interest-bearing savings account that yields 2% interest a year. If you invest $100
today then you can receive $100 × 1.02 = $102 in a year, $100 × (1.02)2 = $104.04
in two years, and similarly $100 × (1.02)t in t years. As we can see, any amount today
will be worth more and more in nominal terms as we move further into the future. As
a consequence, the opposite should be true: any amount $x that is expected in t years
will be worth $v = x

(1.02)t
today precisely because we need only to invest $v today in

order to get $x in t years. More generally, if the interest rate is r% per period, then any
amount $x that is received in t periods is discounted and is worth only x

(1+r)t
today.

Another motivation for discounting future payoffs is uncertainty over the future
coupled with expected future values. Most people are quite certain that they will be
alive and well a year from today. That said, there is always that small chance that
one’s future may be cut short due to illness or accident. (This is the reason that life
insurance companies use actuarial tables.) Imagine that a player assesses that with
probability δ ∈ (0, 1) he will be alive and well in one period (a year, a month, and
so forth), while with probability 1 − δ he will not. This implies that if he is offered
a payoff of x in one period then his expected utility is v = δx + (1 − δ)0 = δx < x.
Similarly, if he is promised a payoff of x in t periods, then he would be willing to
trade that promise for a payoff of v = δtx today.

More generally, if a player expects to receive a stream of payments x1, x2, . . . , xT

over the periods t = 1, 2, . . . , T , and he evaluates payments with the utility function
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u(x) in every period, then in the first period t = 1 his discounted sum of future payoffs
is defined by

v(x1, x2, . . . , xT ) = u(x1) + δu(x2) + . . . + δT −1u(xT ) =
T∑

t=1

δt−1u(xt).

The reason that discounting future payoffs is important is that changes in the
discount rate will change the way decisions today are traded off against future payoffs.
Consider the simple R&D problem. A successful product line, worth 10 in one period,
will occur with probability 0.75 if the player chooses g, while only with probability
0.5 if he chooses s. The cost today of the R&D project is 1. If future payoffs are
discounted at a rate of δ, then the problem is described by the decision tree depicted
in Figure 2.7.

The expected payoffs for the player from choosing g or s are given by

v(g) = E[u(x)|g] = 0.75 × (10δ − 1) + 0.25 × (−1) = 7.5δ − 1

and

v(s) = E[u(x)|s] = 0.5 × 10δ + 0.5 × 0 = 5δ.

It is easy to see that the optimal decision will depend on the discount factor δ. In
particular the player will choose to go ahead with the R&D development if and only
if 7.5δ − 1 > 5δ, or δ > 0.4. The intuition is quite straightforward: the cost of the
investment equal to 1 is borne today, and hence evaluated at a value of 1 regardless of
the discount factor δ. Future payoffs, however, are discounted at the rate of δ. Hence
as δ gets smaller the value of the future benefits from R&D decreases, while the value
of today’s costs remains the same, and once δ drops below the critical value of 0.4
the costs are no longer covered by the added benefits.

2.5 Applications

2.5.1 The Value of Information

When decisions lead to stochastic outcomes, our rational player chooses his action to
maximize his expected payoff so that on average he is making the right choice. If the
player actually knew the choice of Nature ahead of time then he might have chosen
something else. Recall the example in Section 2.3.2, the decision of whether or not
to get an MBA, which is depicted in Figure 2.4. As our previous analysis indicated,
the expected payoff from getting an MBA is 9, while the expected payoff from not
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getting an MBA is only 8. Hence our rational decision maker will leave his job and
go back to school, making what is, on average, the right choice.

Now imagine that an all-knowing oracle appears before the player the moment
before he is about to resign from his job and says, “I know what the state of the labor
market will be and I can tell you for a price.” If you are the player, the questions that
you need to answer are, first, is this information valuable, and second, how much is
it worth?

It is quite easy to answer the first question: the information is valuable if it may
cause you to change the decision you would have made without it. Looking at the
decision problem, the answer is clear: If you learn that the labor market is strong then
you will not change your decision. In contrast, if you learn that the labor market is
weak then you would rather forgo the MBA program because it gives you a payoff of
2 while staying at your current job gives you a payoff of 4. The same decision would
be made if you learn that the labor market is average in its strength. Hence it is quite
clear that the oracle has what may be considered valuable information.

Now to our second question: how much is this information worth? This question is
also not too hard to answer by considering the decision problem the player would face
after the oracle’s announcement. In particular we can calculate the expected payoff
that the player anticipated before making a decision without the advice of the oracle
and compare it to the expected payoff the player anticipated before making a decision
with the oracle’s advice. The difference is clearly due to the oracle’s information, and
this will be our measure of the value of the information.

We concluded that the choice the player would have made without the oracle’s
advice was to get an MBA, and that the expected payoff of this choice was 9, which is
the expected value of the decision problem depicted in Figure 2.4. With the oracle’s
advice, though, the player can make a decision after learning the state of the labor
market. How does this affect his expected payoff? The correct way to calculate this
is to maintain the probability distribution over the three states of Nature, but to take
into account that the player will make different choices that depend on the state of
Nature, unlike the case in which he has to make a choice that applies to all states of
Nature.

This new decision problem is shown in Figure 2.8, and as we argued, the player
will condition his behavior on the oracle’s advice. In particular the labor market will
be strong with probability 0.25, and in this case the player will get an MBA and will
have a payoff of 22. The labor market will be average with probability 0.5, and in this
case the player will not get an MBA and will have a payoff of 8. Finally the labor
market will be weak with probability 0.25, and in this case the player will not get an
MBA and will have a payoff of 4. This implies that, before hearing the oracle’s advice,
with the anticipation of using the oracle’s advice, the player will have an expected
payoff of

E[u] = 0.25 × 22 + 0.5 × 8 + 0.25 × 4 = 10.5.

Thus we can conclude that with the oracle’s advice the expected payoff to the
player is 10.5, which is 1.5 more than his expected payoff without the oracle’s advice.
This answers our second question: the oracle’s information is worth 1.5 to the player.

In general when a decision maker is faced with the option of whether or not to
acquire information and how much to pay for it, then by comparing the decision
problem with the added information to the decision problem without the additional
information, the player will be able to calculate the value of the information. Of
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course, this approach assumes that the player knows exactly what kind of information
he can receive, how each piece of information will affect his payoffs, and what are the
probabilities that each event will happen. Despite relying on a very demanding set of
assumptions, this approach is valuable in offering a framework for decision making
and valuing information.

2.5.2 Discounted Future Consumption

Usually we receive income or monetary gifts every so often, but we need to consume
over several periods of time in between these income events. For example, you may
receive a paycheck every month, but after paying your monthly costs, like rent and
utilities, you need to buy groceries every week. If you spend too much during the
first week, you may go hungry toward the end of the month. This kind of problem is
known as choosing consumption over time.

Imagine a player who has $K today that need to be consumed over the next two
periods, t = 1, 2. The utility over consuming $x in any period is given by the concave
utility function u(x), with u′(x) > 0 and u′′(x) < 0. At period t = 1, the player values
his utility from consuming x2 in period t = 2 at the discounted value of δu(x2), so
that at period t = 1 the player maximizes his present value of utility given by

max
x1

u(x1) + δu(K − x1),

and the player’s first-order condition is therefore6

u′(x1) = δu′(K − x1). (2.1)

6. Because u(.) is concave, the second-order condition (that the second derivative be zero) is satisfied,
implying that the solution to the first-order condition is the maximum.
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For example, if u(x) = ln(x), so that u′(x) = 1
x

, the solution to the player’s problem
will be

1

x1
= δ

K − x1

or

x1 = K

1 + δ
. (2.2)

Turning back to the player’s first-order condition in equation (2.1), the solution
has a nice intuitive flavor that will be familiar to students of economics. Because the
player needs to allocate a scarce resource, K, across the two periods, the optimal
solution equates the marginal values across the two periods, taking into account that
the second period is discounted by the factor δ. Turning to the specific form using
the natural log function in (2.2), we can see that when period t = 2 is not discounted
(δ = 1) then the player splits K equally between the two periods. This is the case in
which the player perfectly smooths his first-period resource across the two periods.
As discounting becomes stronger, more of the scarce resource is consumed in the first
period, and when the second period is completely discounted (δ goes to zero) then
the player consumes all of the resource in the first period.

2.6 Theory versus Practice

We required the player to be rational in that he fully understands the decision problem
he is facing. Hence if we present the same decision problem in different ways to the
player, then as long as our presentation is loyal to the facts and includes all the relevant
information, he should be able to decipher the true problem regardless of the way we
present it to him. Yet Amos Tversky and Daniel Kahneman (1981) have shown that
“framing,” or the way in which a problem is presented, can affect the choices made
by a decision maker. This would imply that our fundamental assumptions of rational
choice do not hold.

Tversky and Kahneman demonstrated systematic “preference reversals” when the
same problem was presented in different ways, in particular for the “Asian disease”
decision problem. Physician participants were asked to “imagine that the U.S. is
preparing for the outbreak of an unusual Asian disease, which is expected to kill 600
people. Two alternative programs to combat the disease have been proposed. Assume
the exact scientific estimates of the consequences of the programs are as follows.”
The first group of participants was presented with a decision problem between two
programs:

Program A 200 people will be saved.
Program B There is a 1

3 probability that 600 people will be saved and a 2
3 probability

that no people will be saved.

When presented with these alternatives, 72% of participants preferred program A
and 28% preferred program B. The second group of participants was presented with
the following choice:

Program C 400 people will die.
Program D There is a 1

3 probability that nobody will die, and a 2
3 probability that

600 people will die.



2.8 Exercises . 33

For this decision problem, 78% preferred program D, while the remaining 22%
preferred program C. Notice, however, that programs A and C are identical, as are
programs B and D. A change in the framing of the decision problem between the two
groups of participants produced a “preference reversal,” with the first group preferring
program A/C and the second group preferring program B/D.

Many argue today that framing biases affect a host of decisions made by people
in their daily lives. Preference reversals and other associated phenomena have been
key subjects for research in the flourishing field of behavioral economics, which is
primarily involved in the study of behavior that contradicts the predictions of rational
choice theory.

Nevertheless the rather naive and simple framework of rational choice theory goes
a long way toward helping us understand the decisions of many individuals. Fur-
thermore many argue that the “rational” decision makers will drive out the irrational
ones when the stakes are high enough, and hence when we look at behavior that
persists in situations for which some people have the opportunity to learn the envi-
ronment, that behavior will often be consistent with rational choice theory. I will use
the rational choice framework throughout this book, and I will leave its defense to
others.

2.7 Summary

. When prospects are uncertain, a rational decision maker needs to put structure
on the problem in the form of probability distributions over outcomes that we
call lotteries.

. Whether the acts of Nature evolve over time or whether they are chosen
once and for all, a rational player cares only about the distribution over final
outcomes. Hence any series of compound lotteries can be compressed to its
equivalent simple lottery.

. When evaluating lotteries, we use the expected payoff criterion. Hence every
lottery is evaluated by the expected payoff it offers the player.

. Unlike certain outcomes in which only the order of preferences matters, when
random outcomes are evaluated with expected payoffs, the magnitude of
payoffs matters as well. The difference in payoff values between outcomes
will also be related to a player’s risk preferences.

. Rational players will always choose the action that offers them the highest
expected payoff.

. When decisions need to be made over time, a rational player will solve his
problem “backwards” so that early decisions take into account later decisions.

. Payoffs that are received in future periods will often be discounted in earlier
periods to reflect impatience, costs of capital, or uncertainty over whether
future periods will be relevant.

2.8 Exercises

2.1 Getting an MBA: Recall the decision problem in Section 2.3.2, and now
assume that the probability of a strong labor market is p, that of an average
labor market is 0.5, and that of a weak labor market is 0.5 − p. All the other
values are the same.
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a. For which values of p will you decide not to get an MBA?
b. If p = 0.4, what is the highest price the university can charge for you

to be willing to go ahead and get an MBA?

2.2 Recreation Choices: A player has three possible activities from which to
choose: going to a football game, going to a boxing match, or going for a
hike. The payoff from each of these alternatives will depend on the weather.
The following table gives the agent’s payoff in each of the two relevant weather
events:

Alternative Payoff if rain Payoff if shine

Football game 1 2

Boxing match 3 0

Hike 0 1

Let p denote the probability of rain.

a. Is there an alternative that a rational player will never take regardless
of p?

b. What is the optimal decision as a function of p?

2.3 At the Dog Races: You’re in Las Vegas, and you must decide what to do
at the dog-racing betting window. You may choose not to participate or you
may bet on one of two dogs as follows. Betting on Snoopy costs $1, and you
will be paid $2 if he wins. Betting on Lassie costs $1, and you will be paid
$11 if she wins. You believe that Snoopy has probability 0.7 of winning and
that Lassie has probability 0.1 of winning (there are other dogs on which you
are not considering betting). Your goal is to maximize the expected monetary
return of your action.

a. Draw the decision tree for this problem.
b. What is your best course of action, and what is your expected value?
c. Someone offers you gambler’s “anti-insurance,” which you may ac-

cept or decline. If you accept it, you get paid $2 up front and you agree
to pay back 50% of any winnings you receive. Draw the new decision
tree and find the optimal action.

2.4 Drilling for Oil: An oil drilling company must decide whether or not to engage
in a new drilling venture before regulators pass a law that bans drilling on that
site. The cost of drilling is $1 million. The company will learn whether or not
there is oil on the site only after drilling has been completed and all drilling
costs have been incurred. If there is oil, operating profits are estimated at
$4 million. If there is no oil, there will be no future profits.

a. Using p to denote the likelihood that drilling results in oil, draw the
decision tree for this problem.

b. The company estimates that p = 0.6. What is the expected value of
drilling? Should the company go ahead and drill?

c. To be on the safe side, the company hires a specialist to come up with
a more accurate estimate of p. What is the minimum value of p for
which it would be the company’s best response to go ahead and drill?

2.5 Discount Prices: A local department store sells products at a given initial
price, and every week a product goes unsold, its price is discounted by 25%
of the original price. If it is not sold after four weeks, it is sent back to the
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regional warehouse. A set of kitchen knives was just put out for $200. Your
willingness to pay for the knives (your dollar value) is $180, so if you buy
them at a price P, your payoff is u = 180 − P. If you don’t buy the knives,
the chances that they will be sold to someone else, conditional on not having
been sold the week before, are as follows:

Week 1 0.2

Week 2 0.4

Week 3 0.6

Week 4 0.8

For example, if you do not buy the knives during the first two weeks, the
likelihood that they will be available at the beginning of the third week is
the likelihood that they do not sell in either week 1 or week 2, which is
0.8 × 0.6 = 0.48.

a. Draw your decision tree for the four weeks after the knives are put out
for sale.

b. At the beginning of which week, if any, should you run to buy the
knives?

c. Find a willingness to pay for the knives that would make it optimal to
buy at the beginning of the first week.

d. Find a willingness to pay that would make it optimal to buy at the
beginning of the fourth week.

2.6 Real Estate Development: A real estate developer wishes to build a new
development. Regulations require an environmental impact study that will
yield an “impact score,” which is an index number based on the impact the
development will likely have on such factors as traffic, air quality, and sewer
and water usage. The developer, who has lots of experience, knows that the
score will be no less than 40 and no more than 70. Furthermore he knows
that any score between 40 and 70 is as likely as any other score between 40
and 70 (use continuous values). The local government’s past behavior implies
that there is a 35% chance that it will approve the development if the impact
score is less than 50 and a 5% chance that it will approve the development
if the score is between 50 and 55; if the score is greater than 55 then the
project will surely be halted. The value of the development to the developer is
$20 million. Assuming that the developer is risk neutral, what is the maximum
cost of the impact study such that it is still worthwhile for the developer to
have it conducted?

2.7 Toys: WakTek is a manufacturer of electronic toys, with a specialty in remote-
controlled miniature vehicles. WakTek is considering the introduction of a
new product, a remote-controlled hovercraft called WakAtak. Preliminary
designs have already been produced at a cost of $2 million. To introduce
a marketable product requires the building of a dedicated production line
at a cost of $12 million. In addition, before the product can be launched a
prototype must be built and tested for safety. The prototype can be crafted in
the absence of a production line, at a cost of $0.5 million, but if the prototype
is created after the production line is built then its cost is negligible (you can
treat it as zero). There is uncertainty over what safety rating WakAtak will get.
This could have a significant impact on demand, as a lower safety rating will
increase the minimum age required of users. Safety testing costs $1 million.
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The outcome of the safety test is estimated to have a 65% chance of resulting
in a minimum user age of 8 years, a 30% chance of a minimum age of 15
years, and a 5% chance that the product will be declared unsafe—in which
case it could not be sold at all. (The cost of improving the safety rating of
a finished design is deemed prohibitive.) After successful safety testing the
product could be launched at a cost of $1.5 million.

There is also uncertainty over demand, which will have a crucial impact
on the eventual profits. Currently the best estimate is that the finished product,
if available to the 8- to 14-year demographic, has a 50-50 chance of resulting
in profits of either $10 million or $5 million from that demographic. Similarly
there is a 50-50 chance of either $14 million or $6 million in profits from
the 15-year-or-above demographic. These demand outcomes are independent
across the demographics. The profits do not take into account the costs previ-
ously defined; they are measured in expected present-value terms, so they are
directly comparable with the costs.

a. What is the optimal plan of action for WakTek? What is the current
expected economic value of the WakAtak project?

b. Suddenly it turns out that the original estimate of the cost of safety
testing was incorrect. Analyze the sensitivity of WakTek’s optimal plan
of action to the cost of safety testing.

c. Suppose WakTek also has the possibility of conducting a market sur-
vey, which would tell it exactly which demand scenario is true. This
market research costs $1.5 million if done simultaneously for both de-
mographics and $1 million if done for only one demographic. How, if
at all, is your answer to part (a) affected?

d. Suppose that demand is not independent across demographics after
all, but instead is perfectly correlated (i.e., if demand is high in one
demographic then it is for sure high in the other one as well). How, if
at all, would that change your answer to part (c)?

2.8 Juice: Bozoni is a Swiss maker of fruit and vegetable juice, whose products
are sold at specialty stores throughout Western Europe. Bozoni is considering
whether to add cherimoya juice to its line of products. “It would be one
of our more difficult varieties to produce and distribute,” observes Johann
Ziffenboeffel, Bozoni’s CEO. “The cherimoya would be flown in from New
Zealand in firm, unripe form, and it would need its own dedicated ripening
facility here in Europe.” Three successful steps are absolutely necessary for the
new cherimoya variety to be worth producing. The industrial ripening process
must be shown to allow the delicate flavors of the cherimoya to be preserved;
the testing of the ripening process requires the building of a small-scale
ripening facility. Market research in selected limited regions around Europe
must show that there is sufficient demand among consumers for cherimoya
juice. And cherimoya juice must be shown able to withstand the existing
tiny gaps in the cold chain (the temperature-controlled supply chain) between
the Bozoni plant and the end consumers (these gaps would be prohibitively
expensive to fix). Once these three steps have been completed, there would be
about €2,500,000 worth of expenses in launching the new variety of juice. A
successful new variety will then yield profits, in expected present-value terms,
of €42.5 million.
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The three necessary steps can be done in parallel or sequentially, and in
any order. Data about these three steps are given in the following table:

Step Probability of success Cost

Ripening process 0.7 €1,000,000

Market research 0.3 5,000,000

Cold chain 0.6 500,000

“Probability of success” refers to how likely it is that the step will be
successful. If it is not successful, then that means that cherimoya juice cannot
be sold at a profit. All probabilities are independent of each other (i.e., whether
a given step is successful or not does not affect the probabilities that the other
steps will be successful). “Cost” refers to the cost of undertaking the step
(regardless of whether it is successful or not).

a. Suppose Mr. Ziffenboeffel calls you and asks your advice about
the project. In particular he wants to know (i) should he undertake
the three necessary steps in parallel (i.e., all at once) or should he
undertake them sequentially, and (ii) if sequentially, what’s the correct
order in which the steps should be done? What answers do you give
him?

b. Mr. Ziffenboeffel calls you back. Since the table was produced, Bozoni
has found a small research firm that can perform the necessary tests for
the ripening process at a lower cost than Bozoni’s in-house research
department. At the same time, the European Union (EU) has tightened
the criteria for getting approval for new food-producing facilities,
which raises the costs of these tests. Mr. Ziffenboeffel would like to
know how your answer to (a) changes as a function of the cost of the
ripening test. What do you tell him?

c. Mr. Ziffenboeffel calls you back yet again. The good news is that the
cost of adhering to the EU regulations and the savings from outsourc-
ing the ripening tests balance each other out, so the cost of the test
remains €1,000,000. Now the problem is that his marketing depart-
ment is suggesting that the probability that the market research will
result in good news about demand for the juice could be different in
light of recent data on the sales of other subtropical fruit products. He
would like to know how your answer to (a) changes as a function of
the probability of a positive result from the market research. What do
you tell him?

2.9 Steel: AK Steel Holding Corporation is a producer of flat-rolled carbon,
stainless, and electrical steels and tubular products through its wholly owned
subsidiary, AK Steel Corporation. The recent surge in demand for steel sig-
nificantly increased AK’s profits,7 and it is now engaged in a research project
to improve its production of rolled steel. The research involves three distinct

7. See “Demand Sends AK Steel Profit Up 32%,” New York Times, July 23, 2008, http://www
.nytimes.com/2008/07/23/business/23steel.html?partner=rssnyt&emc=rss.
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steps, each of which must be successfully completed before the firm can im-
plement the cost-saving new production process. If the research is completed
successfully, it will save the firm $4 million. Unfortunately there is a chance
that one or more of the research steps might fail, in which case the entire
project would be worthless. The three steps are done sequentially, so that the
firm knows whether one step was successful before it has to invest in the next
step. Each step has a 0.8 probability of success and costs $500,000. The risks
of failure in the three steps are uncorrelated with one another. AK Steel is a
risk-neutral company. (In case you are worried about such things, the interest
rate is zero.)

a. Draw the decision tree for the firm.
b. If the firm proceeds with this project, what is the probability that it

will succeed in implementing the new production process?
c. If the research were costless, what would be the firm’s expected gain

from it before the project began?
d. Should the firm begin the research, given that each step costs $500,000?
e. Once the research has begun, should the firm quit at any point even if

it has had no failures? Should it ever continue the research even if it
has had a failure?

After the firm has successfully completed the first two steps, it discovers
an alternate production process that would cost $150,000 and would lower
production costs by $1 million with certainty. This process, however, is a
substitute for the three-step cost-saving process; they cannot be used simulta-
neously. Furthermore, to have this process available, the firm must spend the
$150,000 before it knows if it will successfully complete the third step of the
three-step research project.

f. Draw the augmented decision tree that includes the possibility of
pursuing this alternate production process.

g. If the firm continues the three-step project, what is the chance it would
get any value from also developing the alternate production process?

h. If developing the alternate production process were costless and if the
firm continues the three-step project, what is the expected value that it
would get from having the alternate production process available (at
the beginning of the third research step)? (This is known as the option
value of having this process available.)

i. Should the firm

i. Pursue only the third step of the three-step project?
ii. Pursue only the alternate production process?

iii. Pursue both the third step of the three-step project and the
alternate production process?

j. If the firm had known of the alternate production process before it
began the three-step research project, what should it have done?

2.10 Surgery: A patient is very sick and will die in 6 months if he goes untreated.
The only available treatment is risky surgery. The patient is expected to live
for 12 months if the surgery is successful, but the probability that the surgery
will fail and the patient will die immediately is 0.3.

a. Draw a decision tree for this decision problem.
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b. Let v(x) be the patient’s payoff function, where x is the number of
months until death. Assuming that v(12) = 1and v(0) = 0, what is the
lowest payoff the patient can have for living 3 months so that having
surgery is a best response?

For the rest of the problem, assume that v(3) = 0.8.

c. A test is available that will provide some information that predicts
whether or not surgery will be successful. A positive test implies an
increased likelihood that the patient will survive the surgery as follows:

True-positive rate: The probability that the results of this test will
be positive if surgery is to be successful is 0.90.

False-positive rate: The probability that the results of this test will
be positive if the patient will not survive the operation is 0.10.

What is the probability of a successful surgery if the test is positive?
d. Assuming that the patient has the test done, at no cost, and the result

is positive, should surgery be performed?
e. It turns out that the test may have some fatal complications; that is, the

patient may die during the test. Draw a decision tree for this revised
problem.

f. If the probability of death during the test is 0.005, should the patient
opt to have the test prior to deciding on the operation?

2.11 To Run or Not to Run: You’re a sprinter, and in practice today you fell
and hurt your leg. An x-ray suggests that it’s broken with probability 0.2.
Your problem is deciding whether you should participate in next week’s
tournament. If you run, you think you’ll win with probability 0.1. If your
leg is broken and you run, then it will be further damaged and your payoffs
are as follows:

+100 if you win the race and your leg isn’t broken
+50 if you win and your leg is broken
0 if you lose and your leg isn’t broken
−50 if you lose and your leg is broken
−10 if you don’t run and if your leg is broken
0 if you don’t run and your leg isn’t broken

a. Draw the decision tree for this problem.
b. What is your best choice of action and its expected payoff?

You can gather some more information by having more tests, and you can
gather more information about whether you’ll win the race by talking to your
coach.

c. What is the value of perfect information about the state of your leg?
d. What is the value of perfect information about whether you’ll win the

tournament?
e. As stated previously, the probability that your leg is broken and the

probability that you will win the tournament are independent. Can you
use a decision tree in the case that the probability that you will win the
race depends on whether your leg is broken?

2.12 More Oil: Chevron, the number 2 U.S. oil company, was facing a tough
decision. The new oil project dubbed “Tahiti” was scheduled to produce its first
commercial oil in mid-2008, yet it was still unclear how productive it would
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be. “Tahiti is one of Chevron’s five big projects,” said Peter Robertson, vice
chairman of the company’s board, to the Wall Street Journal.8 Nevertheless
it was unclear whether the project would result in the blockbuster success
Chevron was hoping for. As of June 2007 $4 billion had been invested in
the high-tech deep sea platform, which sufficed to perform early well tests.
Aside from offering information on the type of reservoir, the tests would
produce enough oil to just cover the incremental costs of the testing (beyond
the $4 billion investment).

Following the test wells, Chevron predicted one of three possible scenar-
ios. The optimistic one was that Tahiti sits on one giant, easily accessible oil
reservoir, in which case the company expected to extract 200,000 barrels a
day after expending another $5 billion in platform setup costs, with a cost
of extraction of about $10 a barrel. This would continue for 10 years, after
which the field would have no more economically recoverable oil. Chevron
believed this scenario had a 1-in-6 chance of occurring. A less rosy scenario,
twice as likely as the optimistic one, was that Chevron would have to drill
two more wells at an additional cost of $0.5 billion each (above and beyond
the $5 billion setup costs), in which case production would be around 100,000
barrels a day with a cost of extraction of about $30 a barrel, and the field would
still be depleted after 10 years. The worst-case scenario involves the oil being
tucked away in numerous pockets, requiring expensive water injection tech-
niques, which would involve upfront costs of another $4 billion (above and
beyond the $5 billion setup costs) and extraction costs of $50 a barrel; produc-
tion would be estimated to be at about 60,000 barrels a day for 10 years. Bill
Varnado, Tahiti’s project manager, was quoted as giving this least desirable
outcome odds of 50-50.

The current price of oil is $70 a barrel. For simplicity assume that the
price of oil and all costs will remain constant (adjusted for inflation) and that
Chevron faces a 0% cost of capital (also adjusted for inflation).

a. If the test wells would not produce information about which one of
three possible scenarios would result, should Chevron invest the setup
costs of $5 billion to be prepared to produce under whichever scenario
is realized?

b. If the test wells do produce accurate information about which of three
possible scenarios is true, what is the added value of performing these
tests?

2.13 Today, Tomorrow, or the Day After: A player has $100 today that needs
to be consumed over the next three periods, t = 1, 2, 3. The utility over
consuming $xt in period t is given by the utility function u(x) = ln(x), and
at period t = 1 the player values his net present value from all consumption
as u(x1) + δu(x2) + δ2u(x3), where δ = 0.9.

a. How will the player plan to spend the $100 over the three periods of
consumption?

b. Imagine that the player knows that in period t = 2 he will receive an
additional gift of $20. How will he choose to allocate his original $100
initially, and how will he spend the extra $20?

8. “Chevron Bets Big on Gulf Output,” Wall Street Journal, June 27, 2007, http://online.wsj.com/article/
SB118291402301349620.html.
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Preliminaries

The language and tools of analysis that we have developed so far seem to be ideal to
depict and analyze a wide variety of decision problems that a rational individual,

or an entity with well-defined objectives, could face. The essence of our framework
argues that any decision problem is best understood when we set it up in terms of
the three elements of which it is made up: the possible actions, the deterministic or
probabilistic relationship between actions and outcomes, and the decision maker’s
preferences over the possible outcomes. We proceeded to argue that a decision maker
will choose those actions that are in his best interest.

This framework offers many attractive features: it is precise, well structured, and
generally applicable, and most importantly it lends itself to systematic and consistent
analysis. It does, however, suffer from one drawback: the world of a decision problem
was described as a world in which the outcomes that determine our well-being are
consequences of our own actions and some randomness that is beyond our control.

Let’s consider for a moment a decision problem that you may be facing now if
you are using this text as part of a university course, which you are taking for a grade.
It is, I believe, safe to assume that your objective is some combination of learning the
material and obtaining a good grade in the course, with higher grades being preferred
over lower ones. This objective determines your preferences over outcomes, which
are the set of all possible combinations of how much you learned and what grade you
obtained. Your set of possible actions is deciding how hard to study, which includes
such elements as deciding how many lectures to attend, how carefully to read the text,
how hard to work on your problem sets, and how much time to spend preparing for
the exams. Hence you are now facing a well-defined decision problem.

To complete the description of your decision problem, I have yet to explain how
the outcome of your success is affected by the amount of work you choose to put
into your course work. Clearly as an experienced student you know that the harder
you study the more you learn, and you are also more likely to succeed on the exams.
There is some uncertainty over how hard a given exam will be; that may depend on
many random events, such as how you feel on the day of the exam and what mood
the professor was in when the exam was written.

Still something seems to be missing. Indeed you must surely know that grades
are often set on a curve, so that your grade relies on your success on the exam as an
absolute measure of not only how much you got right but also how much the other
students in the class got right. In other words, if you’re having a bad day on an exam,
your only hope is that everyone else in your class is having a worse day!

43
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The purpose of this example is to point out that our framework for a decision
problem will be inadequate if your outcomes, and as a consequence your well-being,
will depend on the choices made by other decision makers. Perhaps we can just treat
the other players in this decision problem as part of the randomness of nature: maybe
they’ll work hard, maybe not, maybe they’ll have a bad day, maybe not, and so on.
This, however, would not be part of a rational framework, for it would not be sensible
for you to treat your fellow players as mere random “noise.” Just as you are trying
to optimize your decisions, so are they. Each player is trying to guess what others
are doing, and how to act accordingly. In essence, you and your peers are engaged
in a strategic environment in which you have to think hard about what other players
are doing in order to decide what is best for you—knowing that the other players are
going through the same difficulties.

We therefore need to modify our decision problem framework to help us describe
and analyze strategic situations in which players who interact understand their envi-
ronment, how their actions affect the outcomes that they and their counterparts will
face, and how these outcomes are assessed by the other players. It is useful, there-
fore, to start with the simplest set of situations possible, and the simplest language
that will capture these strategic situations, which we refer to as games. We will start
with static games of complete information, which are the most fundamental games,
or environments, in which such strategic considerations can be analyzed.

A static game is similar to the very simple decision problems in which a player
makes a once-and-for-all decision, after which outcomes are realized. In a static game,
a set of players independently choose once-and-for-all actions, which in turn cause
the realization of an outcome. Thus a static game can be thought of as having two
distinct steps:

Step 1: Each player simultaneously and independently chooses an action.
By simultaneously and independently, we mean a condition broader and

more accommodating than players all choosing their actions at the exact same
moment. We mean that players must take their actions without observing what
actions their counterparts take and without interacting with other players to
coordinate their actions. For example, imagine that you have to study for your
midterm exam two days before the midterm because of an athletic event in
which you have to participate on the day before the exam. Assume further
that I plan on studying the day before the midterm, which will be after your
studying effort has ended. If I don’t know how much you studied, then by
choosing my action after you I have no informational advantage over you; it
is as if we are making our choices simultaneously and independently of each
other. This idea will receive considerable attention as we proceed.

Step 2: Conditional on the players’ choices of actions, payoffs are distributed to
each player.

That is, once the players have all made their choices, these choices will
result in a particular outcome, or probabilistic distribution over outcomes. The
players have preferences over the outcomes of the game given by some payoff
function over outcomes. For example, if we are playing rock-paper-scissors
and I draw paper while you simultaneously draw scissors, then the outcome
is that you win and I lose, and the payoffs are what winning and losing mean
in our context—something tangible, like $0.10, or just the intrinsic joy of
winning versus the suffering of losing.
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Steps 1 and 2 settle what we mean by static. What do we mean by complete
information? The loose meaning is that all players understand the environment they
are in—that is, the game they are playing—in every way. This definition is very much
related to our assumptions about rational choice in Section 1.2. Recall that when we
had a single-person decision problem we argued that the player must know four things:
(1) all his possible actions, A; (2) all the possible outcomes, X; (3) exactly how each
action affects which outcome will materialize; and (4) what his preferences are over
outcomes. How should this be adjusted to fit a game in which many such players
interact?

Games of Complete Information A game of complete information requires that the
following four components be common knowledge among all the players of the game:

1. all the possible actions of all the players,

2. all the possible outcomes,

3. how each combination of actions of all players affects which outcome will
materialize, and

4. the preferences of each and every player over outcomes.

This is by no means an innocuous set of assumptions. In fact, as we will discuss
later, they are quite demanding and perhaps almost impossible to justify completely
for many real-world “games.” However, as with rational choice theory, we use these
assumptions because they provide structure and, perhaps surprisingly, describe and
predict many phenomena quite well.

You may notice that a new term snuck into the description of games of complete
information: common knowledge. This is a term that we often use loosely: “it’s
common knowledge that he gives hard exams” or “it’s common knowledge that green
vegetables are good for your health.” It turns out that what exactly common knowledge
means is by no means common knowledge. To make it clear,

Definition 3.1 An event E is common knowledge if (1) everyone knows E,
(2) everyone knows that everyone knows E, and so on ad infinitum.

On the face of it, this may seem like an innocuous assumption, and indeed it may
be in some cases. For example, if you and I are both walking in the rain together, then
it is safe to assume that the event “it is raining” is common knowledge between us.
However, if we are both sitting in class and the professor says “tomorrow there is an
exam,” then the event “there is an exam tomorrow” may not be common knowledge.
Despite me knowing that I heard him say it, perhaps you were daydreaming at the
time, implying that I cannot be sure that you heard the statement as well.

Thus requiring common knowledge is not as innocuous as it may seem, but
without this assumption it is quite impossible to analyze games within a structured
framework. This difficulty arises because we are seeking to depict a situation in
which players can engage in strategic reasoning. That is, I want to predict how
you will make your choice, given my belief that you understand the game. Your
understanding incorporates your belief about my understanding, and so on. Hence
common knowledge will assist us dramatically in our ability to perform this kind of
reasoning.
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3.1 Normal-Form Games with Pure Strategies

Now that we understand the basic ingredients of a static game of complete informa-
tion, we develop a formal framework to represent it in a parsimonious and general
way, which captures the strategic essence of a game. As with the simple decision
problem, the players will have actions from which to choose, and the combination
of their choices will result in outcomes over which the players have preferences. For
now we will restrict attention to players choosing certain (deterministic) actions that
together cause certain (deterministic) outcomes. That is, players will not choose ac-
tions stochastically, and there will be no “Nature” player who will randomly select
outcomes given a combination of actions that the players will choose.

One of the most common ways of representing a game is described in the following
definition of the normal-form game:

A normal-form game consists of three features:

1. A set of players.

2. A set of actions for each player.

3. A set of payoff functions for each player that give a payoff value to each
combination of the players’ chosen actions.

This definition is similar to that of the single-person decision problem that we
introduced in Chapter 1, but here we incorporate the fact that many players are
interacting. Each has a set of possible actions, the combination (profile) of actions
that the players choose will result in an outcome, and each has a payoff from the
resulting outcome.

We now introduce the commonly used concept of a strategy. A strategy is often
defined as a plan of action intended to accomplish a specific goal.Imagine a candidate
in a local election going to meet a group of potential voters at the home of a neigh-
borhood supporter. Before the meeting, our aspiring politician should have a plan of
action to deal with the possible questions he will face. We can think of this plan as a
list of the form “if they ask me question q1 then I will respond with answer a1; if they
ask me question q2 then I will respond with answer a2; . . . ” and so on. A different
candidate may, and often will, have a different strategy of this kind.

The concept of a strategy will escort us throughout this book, and for this reason
we now give it both formal notation and a definition:

Definition 3.2 A pure strategy for player i is a deterministic plan of action. The
set of all pure strategies for player i is denoted Si. A profile of pure strategies
s = (s1, s2, . . . , sn), si ∈ Si for all i = 1, 2, . . . , n, describes a particular combination
of pure strategies chosen by all n players in the game.

A brief pause to consider the term “pure” is in order. As mentioned earlier, for the
time being and until we reach Chapter 6, we restrict our attention to the case in which
players choose deterministic actions. This is what we mean by “pure” strategies: you
choose a certain plan of action. To illustrate this idea, imagine that you have an exam in
three hours, and you must decide how long to study for the exam and how long to just
relax, knowing that your classmates are facing the same choice. If, say, you measure
time in intervals of 15 minutes, then there are a total of 12 time units in the three-hour
window. Your set of pure strategies is then Si = {1, 2, . . . , 12}, where each si ∈ Si

determines how many 15-minute units you will spend studying for the exam. For
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example, if you choose si = 7 then you will spend 1 hour and 45 minutes studying and
1 hour and 15 minutes relaxing. An alternative to choosing one of your pure strategies
would be for you to choose actions stochastically.For example, you can take a die and
say “I will roll the die and study for as many 15-minute units as the number on the die
indicates.” This means that you are stochastically (or randomly) choosing between
any one of the six pure strategies of studying for 15 minutes, 30 minutes, and so on
for up to 1 hour and 30 minutes.

You may wonder why anyone would choose randomly among plans of action. As
an example, dwell on the following situation. You meet a friend to go to lunch. Your
strategy can be to offer the names of two restaurants that you like and then have your
friend decide. But what should you do if he says, “You go ahead and choose”? One
option is for you to be prepared with a choice. Another is for you to take out a coin
and flip it, so that it is not you who is choosing; instead you are randomizing between
the two choices.1 For now, we will restrict attention to pure strategies in which such
stochastic play is not possible. That said, stochastic choices play a critical role in game
theory. We will introduce stochastic or mixed strategies in Chapter 6 and continue to
use them throughout the rest of the book.

To some extent applying the concept of a strategy or a plan of action to a static
game of complete information is overkill, because the players choose actions once
and for all and simultaneously.Thus the only set of relevant plans for player i is the set
of his possible actions. This change of focus from actions to strategies may therefore
seem redundant. That said, focusing on strategies instead of actions will set the stage
for games in which there will be relevance to conditioning one’s actions on events that
unfold over time, as we will see in Chapter 7. Hence what now seems merely semantic
will later be quite useful and important. We now formally define a normal-form game
as follows.2

Definition 3.3 A normal-form game includes three components as follows:

1. A finite set of players, N = {1, 2, . . . , n}.
2. A collection of sets of pure strategies, {S1, S2, . . . , Sn}.
3. A set of payoff functions, {v1, v2, . . . , vn}, each assigning a payoff value to

each combination of chosen strategies, that is, a set of functions vi : S1 × S2 ×
. . . × Sn → R for each i ∈ N .

This representation is very general, and it will capture many situations in which
each of the players i ∈ N must simultaneously choose a possible strategy si ∈ Si.
Recall again that by simultaneous we mean the more general construct in which

1. From my experience, once you offer to take out the coin then your friend is very likely to say,
“Oh never mind, let’s go to x.” By taking out the coin you are effectively telling your friend, “If you
have a preference for one of the places, now is your last chance to reveal it.” This takes away your
friend’s option of “being nice” by letting you choose since it is not you who is choosing. I always
find this strategy amusing since it works so well.
2. Recall that a finite set of elements will be written as A = {a, b, c, d}, where A is the set and a, b, c,
and d are the elements it includes. Writing a ∈ A means “a is an element of the set A.” If we have
two sets, A and B, we define the Cartesian product of these sets as A × B. If a ∈ A and h ∈ B then
we can write (a, h) ∈ A × B. For more on this subject, refer to Section 19.1 of the mathematical
appendix.
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each player is choosing a strategy without knowing the choices of the other play-
ers. After strategies are selected, each player will realize his payoff, given by
vi(s1, s2, . . . , sn) ∈ R, where (s1, s2, . . . , sn) is the strategy profile that was selected
by the agents. Thus from now on the normal-form game will be a triple of sets:〈
N, {Si}ni=1, {vi(.)}ni=1

〉
, where N is the set of players, {Si}ni=1 is the set of all players’

strategy sets, and {vi(.)}ni=1 is the set of all players’ payoff functions over the strategy
profiles of all the players.3

3.1.1 Example: The Prisoner’s Dilemma

The Prisoner’s Dilemma is perhaps the best-known example in game theory, and it
often serves as a parable for many different applications in economics and political
science. It is a static game of complete information that represents a situation consist-
ing of two individuals (the players) who are suspects in a serious crime, say, armed
robbery. The police have evidence of only petty theft, and to nail the suspects for the
armed robbery they need testimony from at least one of the suspects.

The police decide to be clever, separating the two suspects at the police station
and questioning each in a different room. Each suspect is offered a deal that reduces
the sentence he will get if he confesses, or “finks” (F ), on his partner in crime. The
alternative is for the suspect to say nothing to the investigators, or remain “mum” (M),
so that they do not get the incriminating testimony from him. (As the Mafia would
put it, the suspect follows the “omertà”—the code of silence.)

The payoff of each suspect is determined as follows: If both choose mum, then
both get 2 years in prison because the evidence can support only the charge of petty
theft. If, say, player 1 mums while player 2 finks, then player 1 gets 5 years in prison
while player 2 gets only 1 year in prison for being the sole cooperator. The reverse
outcome occurs if player 1 finks while player 2 mums. Finally, if both fink then both
get only 4 years in prison. (There is some reduction of the 5-year sentence because
each would blame the other for being the mastermind behind the robbery.)

Because it is reasonable to assume that more time in prison is worse, we use the
payoff representation that equates each year in prison with a value of −1. We can now
represent this game in its normal form as follows:

Players: N = {1, 2}.
Strategy sets: Si = {M, F } for i ∈ {1, 2}.
Payoffs: Let vi(s1, s2) be the payoff to player i if player 1 chooses s1 and player

2 chooses s2. We can then write payoffs as

v1(M, M) = v2(M, M) = −2

v1(F, F ) = v2(F, F ) = −4

v1(M, F ) = v2(F, M) = −5

v1(F, M) = v2(M, F ) = −1.

This completes the normal-form representation of the Prisoner’s Dilemma. We
will soon analyze how rational players would behave if they were faced with this
game.

3. {Si}ni=1 is another way of writing {S1, S2, . . . , Sn}, and similarly for {vi(.)}ni=1.
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3.1.2 Example: Cournot Duopoly

A variant of this example was first introduced by Augustin Cournot (1838). Two
identical firms, players 1 and 2, produce some good. Assume that there are no fixed
costs of production, and let the variable cost to each firm i of producing quantity
qi ≥ 0 be given by the cost function, ci(qi) = q2

i
for i ∈ {1, 2}. Demand is given by

the function q = 100 − p, where q = q1 + q2. Cournot starts with the benchmark of
firms that operate in a competitive environment in which each firm takes the market
price, p, as given, and believes that its behavior cannot influence the market price.
Under this assumption, as every economist knows, the solution will be the competitive
equilibrium in which each firm produces at a point at which price equals marginal
costs, so that the profits on the marginally produced unit are zero. In this particular
case, each firm would produce qi = 25, the price would be p = 50, and each firm
would make 625 in profits.4

Cournot then argues that this competitive equilibrium is naive because rational
firms should understand that the price is not given, but rather determined by their
actions. For example, if firm 1 realizes its effect on the market price, and produces
q1 = 24 instead of q1 = 25, then the price will have to increase to p(49) = 51 for
demand to equal supply because total supply will drop from 50 to 49. The profits of
firm 1 will now be v1 = 51× 24 − 242 = 648 > 625. Of course, if firm 1 realizes that
it has such an effect on price, it should not just set q1 = 24 but instead look for the
best choice it can make. However, its best choice depends on the quantity that firm 2
will produce—what will that be? Clearly firm 2 should be as sophisticated, and thus
we will have to find a solution that considers both the actions and the counteractions
of these rational and sophisticated firms.

For now, however, let’s focus on the representation of the normal form of the
game proposed by Cournot. The actions are choices of quantity, and the payoffs are
the profits. Hence the following represents the normal form:

Players: N = {1, 2}.
Strategy sets: Si = [0, ∞] for i ∈ {1, 2} and firms choose quantities si ∈ Si.

Payoffs: For i, j ∈ {1, 2}, i = j ,

vi(si,sj ) =
{

(100 − si − sj)si − s2
i

if si + sj < 100

−s2
i

if si + sj ≥ 100.

Notice that the payoff function is a little tricky because it has to be well defined for
any pair of strategies (quantities) that the players choose. We are implicitly assuming
that prices cannot fall below zero, so that if the firms together produce a quantity that
is greater than 100, the price will be zero (because p = 100 − s1 − s2) and each firm’s
payoffs are its costs.

3.1.3 Example: Voting on a New Agenda

Consider three players on a committee who have to vote on whether to remain at the
status quo (whatever it is) or adopt a new policy. For example, they could be three

4. Those who have taken a course in microeconomics know that the marginal cost is the derivative
of the cost function and hence is equal to 2qi . Equating this to the price gives us each firm’s supply
function, 2qi = p or qi = p

2 , and adding up the two supply functions yields the market supply,
q = p. Equating this to demand yields p = 100 − p, resulting in the competitive price of p = 50,
and plugging this into the supply function yields qi = 25 for i = 1, 2.
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housemates who currently have an agreement under which they clean the house once
every two weeks (the status quo) and they are considering cleaning it every week (the
new policy). They could also be the members of the board of a firm who have to vote
on changing the CEO’s compensation, or they could be a committee of legislators
who must vote on whether to adopt new regulations.

Each can vote “yes” (Y ), “no” (N ), or “abstain” (A). We can set the payoff from
the status quo to be 0 for each player. Players 1 and 2 prefer the new policy, so let their
payoff value for it be 1, while player 3 dislikes the new policy, so let his payoff from
it be −1. Assume that the choice is made by majority voting as follows: if there is no
majority of Y over N then the status quo prevails; otherwise the majority is decisive.

We can represent this game in normal form as follows:

Players: N = {1, 2, 3}.
Strategy sets: Si = {Y, N, A} for i ∈ {1, 2, 3}.
Payoffs: Let P denote the set of strategy profiles for which the new agenda is

chosen (at least two “yes” votes), and let Q denote the set of strategy profiles
for which the status quo remains (no more than one “yes” vote). Formally,

P =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(Y, Y, N), (Y, N, Y ),

(Y, Y, A), (Y, A, Y ),

(Y, A, A), (A, Y, A),

(Y, Y, Y ), (N, Y, Y ),

(A, Y, Y ), (A, A, Y )

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
and

Q =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(N, N, N), (N, N, Y ), (N, Y, N), (Y, N, N),

(A, A, A), (A, A, N), (A, N, A), (N, A, A),

(A, Y, N), (A, N, Y ), (N, A, Y ), (Y, A, N),

(N, Y, A), (Y, N, A), (N, N, A), (N, A, N),

(A, N, N)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
.

Then payoffs can be written as

vi(s1, s2, s3) =
{

1 if (s1, s2, s3) ∈ P

0 if (s1, s2, s3) ∈ Q
for i ∈ {1, 2},

v3(s1, s2, s3) =
{ −1 if (s1, s2, s3) ∈ P

0 if (s1, s2, s3) ∈ Q.

This completes the normal-form representation of the voting game.

3.2 Matrix Representation: Two-Player Finite Game

As the voting game demonstrates, games that are easy to describe verbally can some-
times be tedious to describe formally. The value of a formal representation is clarity,
because it forces us to specify who the players are, what they can do, and how their
actions affect each and every player. We could take some shortcuts to make our life
easier, and sometimes we will, but such convenience can come at the cost of mis-
specifying the game. It turns out that for two-person games in which each player has
a finite number of strategies, there is a convenient representation that is easy to read.
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In many cases, players may be constrained to choose one of a finite number of
actions. This is the case for the Prisoner’s Dilemma, rock-paper-scissors, the voting
game described previously, and many more strategic situations. In fact, even when
players have infinitely many actions to choose from, we may be able to provide a
good approximation by restricting attention to a finite number of actions. If we think
of the Cournot duopoly example, then for any product that comes in well-defined
units (a car, a computer, or a shirt), we can safely assume that we are limited to
integer units (an assumption that reduces the strategy set to the natural numbers—
after all, fractional shirts will not sell very well). Furthermore, the demand function
p = 100 − q suggests that flooding the market with more than 100 units will cause
the price of the product to drop to zero. This means that we have effectively restricted
the strategy set to a finite number of strategies (101, to be accurate, for the quantities
0, 1, . . . , 100).

Being able to distinguish games with finite action sets is useful, so we define a
finite game as follows:

Definition 3.4 A finite game is a game with a finite number of players, in which the
number of strategies in Si is finite for all players i ∈ N .

As it turns out, any two-player finite game can be represented by a matrix that will
capture all the relevant information of the normal-form game. This is done as follows:

Rows Each row represents one of player 1’s strategies. If there are k strategies in S1
then the matrix will have k rows.

Columns Each column represents one of player 2’s strategies. If there are m strate-
gies in S2 then the matrix will have m columns.

Matrix entries Each entry in this matrix contains a two-element vector (v1, v2),
where vi is player i’s payoff when the actions of both players correspond to the row
and column of that entry.

As the following examples show, this is a much simpler way of representing a two-
player finite game because all the information will appear in a concise and clear way.
Note, however, that neither the Cournot duopoly nor the voting example described
earlier can be represented by a matrix. The Cournot duopoly is not a finite game (there
are an infinite number of actions for each player), and the voting game has more than
two players.5

It will be useful to illustrate this with two familiar examples.

3.2.1 Example: The Prisoner’s Dilemma

Recall that in the Prisoner’s Dilemma each player had two actions, M (mum) and F

(fink). Therefore, our matrix will have two rows (for player 1) and two columns (for
player 2). Using the payoffs for the prisoner’s dilemma given in the example above,
the matrix representation of the Prisoner’s Dilemma is

5. We can represent the voting game using three 3 × 3 matrices: the rows of each matrix represent
the actions of player 1, the columns those of player 2, and each matrix corresponds to an action of
player 3. However, the convenient features of two-player matrix games are harder to use for three-
player, multiple-matrix representations—not to mention the rather cumbersome structure of multiple
matrices.
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Player 2
M F

Player 1
M −2, −2 −5, −1

F −1, −5 −4, −4

Notice that all the relevant information appears in this matrix.

3.2.2 Example: Rock-Paper-Scissors

Consider the famous child’s game rock-paper-scissors. Recall that rock (R) beats
scissors (S), scissors beats paper (P ), and paper beats rock. Let the winner’s payoff
be 1 and the loser’s be −1, and let the payoff for each player from a tie (i.e., they both
choose the same action) be 0. This is a game with two players, N = {1, 2}, and three
strategies for each player, Si = {R, P, S}. Given the payoffs already described, we
can write the matrix representation of this game as follows:

Player 2
R P S

R 0, 0 −1, 1 1, −1

Player 1 P 1, −1 0, 0 −1, 1

S −1, 1 1, −1 0, 0

Remark Such a matrix is sometimes referred to as a bi-matrix.In a traditional matrix,
by definition, each entry corresponding to a row-column combination must be a single
number, or element, while here each entry has a vector of two elements—the payoffs
for each of the two players. Thus we formally have two matrices, one for each player.
We will nonetheless adopt the common abuse of terminology and call this a matrix.

3.3 Solution Concepts

We have focused our attention on how to describe a game formally and fit it into a
well-defined structure. This approach, of course, adds value only if we can use the
structure to provide some analysis of what will or should happen in the game. Ideally
we would like to be able to either advise players on how to play or try to predict how
players will play. To accomplish this, we need some method to solve the game, and
in this section we outline some criteria that will be helpful in evaluating potential
methods to analyze and solve games.

As an example, consider again the Prisoner’s Dilemma and imagine that you are
player 1’s lawyer, and that you wish to advise him about how to behave. The game
may be represented as follows:

Player 2
M F

Player 1
M −2, −2 −5, −1

F −1, −5 −4, −4
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Being a thoughtful and rational adviser, you make the following observation for
player 1: “If player 2 chooses F , then playing F gives you −4, while playing M gives
you −5, so F is better.” Player 1 will then bark at you, “My buddy will never squeal
on me!” You, however, being a loyal adviser, must coolly reply as follows: “If you’re
right, and player 2 chooses M , then playing F gives you −1, while playing M gives
you −2, so F is still better. In fact, it seems like F is always better!”

Indeed if I were player 2’s lawyer, then the same analysis would work for him, and
this is the “dilemma”: each player is better off playing F regardless of his opponent’s
actions, but this leads the players to receive payoffs of −4 each, while if they could
only agree to both choose M , then they would obtain −2 each. Left to their own
devices, and to the advocacy of their lawyers, the players should not be able to resist
the temptation to choose F . Even if player 1 believes that player 2 will play M , he is
better off choosing F (and vice versa).

Perhaps your intuition steers you to a different conclusion. You might want to say
that they are friends, having stolen together for some time now, and therefore that
they care for one another. In this case one of our assumptions is incorrect: the payoffs
in the matrix may not represent their true payoffs, and if taken into consideration,
altruism would lead both players to choose M instead of F . For example, to capture
the idea of altruism and mutual caring, we can assume that a year in prison for each
player is worth −1 to himself and imposes − 1

2 on the other player’s payoff. (You care
about your friend, but not as much as you care about yourself.) In this case, if player
1 chooses F and player 2 chooses M then player 1 gets −3 1

2

(− 1
2 for each of the 5

years player 2 goes to jail, and −1 for player 1’s year in jail
)

and player 2 gets −5 1
2(− 1

2 for the year player 1 is in jail and −5 for the 5 years he spends in jail
)
. The matrix

representing the “altruistic” Prisoner’s Dilemma is given by the following:

Player 2
M F

Player 1
M −3, −3 −5 1

2 , −3 1
2

F −3 1
2 , −5 1

2 −6, −6

The altruistic game will predict cooperative behavior: regardless of what player 2
does, it is always better for player 1 to play M , and the same holds true for player 2.
This shows us that our results will, as they always do, depend crucially on our
assumptions.6 This is another manifestation of the “garbage in, garbage out” caveat—
we have to get the game parameters right if we want to learn something from our
analysis.

Another classic game is the Battle of the Sexes, introduced by R. Duncan Luce and
Howard Raiffa (1957) in their seminal book Games and Decisions. The story goes as
follows. Alex and Chris are a couple, and they need to choose where to meet this
evening. The catch is that the choice needs to be made while each is at work, and they
have no means of communicating. (There were no cell phones or email in 1957, and
even landline phones were not in abundance.) Both players prefer being together over
not being together, but Alex prefers opera (O) to football (F ), while Chris prefers the
opposite. This implies that for each player being together at the venue of choice is

6. Another change in assumptions might be that player 2’s brother is a psychopath. If player 1 finks,
then player 2’s brother will kill him, giving player 1 a utility of, say, −∞ from choosing to fink.
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better than being together at the other place, and this in turn is better than being alone.
Using the payoffs of 2,1 and 0 to represent this order, the game is summarized in the
following matrix:

Chris
O F

Alex
O 2, 1 0, 0

F 0, 0 1, 2

What can you recommend to each player now? Unlike the situation in the Prisoner’s
Dilemma, the best action for Alex depends on what Chris will do and vice versa. If we
want to predict or prescribe actions for this game, we need to make assumptions about
the behavior and the beliefs of the players. We therefore need a solution concept that
will result in predictions or prescriptions.

A solution concept is a method of analyzing games with the objective of restricting
the set of all possible outcomes to those that are more reasonable than others. That
is, we will consider some reasonable and consistent assumptions about the behavior
and beliefs of players that will divide the space of outcomes into “more likely” and
“less likely.” Furthermore, we would like our solution concept to apply to a large set
of games so that it is widely applicable.

Consider, for example, the solution concept that prescribes that each player choose
the action that is always best, regardless of what his opponents will choose. As we
saw earlier in the Prisoner’s Dilemma, playing F is always better than playing M .
Hence this solution concept will predict that in this game both players will choose F .
For the Battle of the Sexes, however, there is no strategy that is always best: playing
F is best if your opponent plays F , and playing O is best if your opponent plays O.

Hence for the Battle of the Sexes, this simple solution concept is not useful and offers
no guidance.

We will use the term equilibrium for any one of the strategy profiles that emerges
as one of the solution concept’s predictions. We will often think of equilibria as the
actual predictions of our theory. A more forgiving meaning would be that equilibria
are the likely predictions,because our theory will often not account for all that is going
on. Furthermore, in some cases we will see that more than one equilibrium prediction
is possible for the same game. In fact, this will sometimes be a strength, and not a
weakness, of the theory.

3.3.1 Assumptions and Setup

To set up the background for equilibrium analysis, it is useful to revisit the assumptions
that we will be making throughout:

1. Players are “rational”: A rational player is one who chooses his action,
si ∈ Si, to maximize his payoff consistent with his beliefs about what is going
on in the game.

2. Players are “intelligent”: An intelligent player knows everything about the
game: the actions, the outcomes, and the preferences of all the players.

3. Common knowledge: The fact that players are rational and intelligent is
common knowledge among the players of the game.

To these three assumptions, which we discussed briefly at the beginning of this
chapter, we add a fourth, which constrains the set of outcomes that are reasonable:
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4. Self-enforcement: Any prediction (or equilibrium) of a solution concept must
be self-enforcing.

The requirement that any equilibrium must be self-enforcing is at the core of our
analysis and at the heart of noncooperative game theory. We will assume throughout
this book that the players engage in noncooperative behavior in the following sense:
each player is in control of his own actions, and he will stick to an action only if he
finds it to be in his best interest. That is, if a profile of strategies is to be an equilibrium,
we will require each player to be happy with his own choice given how the others make
their own choices. As you can probably figure out, the profile (F, F ) is self-enforcing
in the Prisoner’s Dilemma game: each player is happy playing F . Indeed, we will see
that this is a very robust outcome in terms of equilibrium analysis.

The requirement of self-enforcing equilibria is a natural one if we take the game
to be the complete description of the environment. If there are outside parties that can,
through the use of force or sanctions, enforce profiles of strategies, then the game we
are using is likely to be an inadequate depiction of the actual environment. In this
case we ought to model the third party as a player who has actions (strategies) that
describe the enforcement.

3.3.2 Evaluating Solution Concepts

In developing a theory that predicts the behavior of players in games, we must evaluate
our theory by how well it does as a methodological tool. That is, for our theory to
be widely useful, it must describe a method of analysis that applies to a rich set
of games, which describe the strategic situations in which we are interested. We
will introduce three criteria that will help us evaluate a variety of solution concepts:
existence, uniqueness, and invariance.

3.3.2.1 Existence: How Often Does It Apply? A solution concept is valuable in-
sofar as it applies to a wide variety of games, and not just to a small and select family
of games. A solution concept should apply generally and should not be developed in
an ad hoc way that is specific to a certain situation or game. That is, when we apply
our solution concept to different games we require it to result in the existence of an
equilibrium solution.

For example, consider an ad hoc solution concept that offers the following predic-
tion: “Players always choose the action that they think their opponent will choose.”
If this is our “theory” of behavior, then it will fail to apply to many—maybe most—
strategic situations. In particular when players have different sets of actions (e.g.,
one chooses a software package and the other a hardware package) then this theory
would be unable to predict which outcomes are more likely to emerge as equilibrium
outcomes.

Any proposed theory for a solution concept that relies on very specific elements
of a game will not be general and will be hard to adapt to a wide variety of strategic
situations, making the proposed theory useless beyond the very special situations it
was tailored to address. Thus one goal is to have a method that will be general enough
to apply to many strategic situations; that is, it will prescribe a solution that will exist
for most games we can think of.

3.3.2.2 Uniqueness: How Much Does It Restrict Behavior? Just as we require our
solution concept to apply broadly, we require that it be meaningful in that it restricts
the set of possible outcomes to a smaller set of reasonable outcomes. In fact one might



56 . Chapter 3 Preliminaries

argue that being able to pinpoint a single unique outcome as a prediction would be
ideal. Uniqueness is then an important counterpart to existence.

For example, if the proposed solution concept says “anything can happen,” then it
always exists: regardless of the game we apply this concept to, “anything can happen”
will always say that the solution is one of the (sometimes infinite) possible outcomes.
Clearly this solution concept is useless. A good solution concept is one that balances
existence (so that it works for many games) with uniqueness (so that we can add some
intelligent insight into what can possibly happen).

It turns out that the nature of games makes the uniqueness requirement quite hard
to meet. The reason, as we will learn to appreciate, lies in the nature of strategic
interaction in a noncooperative environment. To foreshadow the reasons behind this
observation, notice that a player’s best action will often depend on what other players
are doing. A consequence is that there will often be several combinations of strategies
that will support each other in this way.

3.3.2.3 Invariance: How Sensitive Is It to Small Changes? Aside from existence
and uniqueness, a third more subtle criterion is important in qualifying a solution
concept as a reasonable one, namely that the solution concept be invariant to small
changes in the game’s structure. However, the term “small changes” needs to be
qualified more precisely.

Adding a player to a game, for instance, may not be a small change if that player has
actions that can wildly change the outcomes of the game. Thus adding or removing
a player cannot innocuously be considered a small change. Similarly if we add or
delete strategies from the set of actions that are available to a player, we may hinder
his ability to guarantee himself some outcomes, and therefore this too should not be
considered a small change to the game. We are left with only one component to fiddle
with: the payoff functions of the players. It is reasonable to argue that if the payoffs of
a game are modified only slightly, then this is a small change to the game that should
not affect the predictions of a “robust” solution concept.

For example, consider the Prisoner’s Dilemma. If instead of 5 years in prison,
imposing a pain of −5 for the players, it imposed a pain of −5.01 for player 1 and
−4.99 for player 2, we should be somewhat discouraged if our solution concept
suddenly changed the prediction of what players will or ought to do. Thus invariance
is a robustness property with which we require a solution concept to comply. In other
words, if two games are “close,” so that the action sets and players are the same yet the
payoffs are only slightly different, then our solution concept should offer predictions
that are not wildly different for the two games. Put formally, if for a small enough
value ε > 0 we alter the payoffs of every outcome for every player by no more than
ε, then the solution concept’s prediction should not change.

3.3.3 Evaluating Outcomes

Once we subscribe to any particular solution concept, as social scientists we would
like to evaluate the properties of the solutions,or predictions, that the solution concept
will prescribe. This process will offer insights into what we expect the players of a
game to achieve when they are left to their own devices. In turn, these insights can
guide us toward possibly changing the environment of the game so as to improve the
social outcomes of the players.

We have to be precise about the meaning of “to improve the social outcomes.” For
example, many people may agree that it would be socially better for the government
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to take $10 away from the very rich Bill Gates and give that $10 to an orphan in Latin
America. In fact even Gates himself might have approved of this transfer, especially
if the money would have saved the child’s life. However, Gates may or may not have
liked the idea, especially if such government intervention would imply that over time
most of his wealth would be dissipated through such transfers.

Economists use a particular criterion for evaluating whether an outcome is socially
undesirable.An outcome is considered to be socially undesirable if there is a different
outcome that would make some people better off without harming anyone else. As
social scientists we wish to avoid outcomes that are socially undesirable, and we
therefore turn to the criterion of Pareto optimality, which is in tune with the idea of
efficiency or “no waste.” That is, we would like all the possible value deriving from
a given interaction to be distributed among the players. To put this formally:7

Definition 3.5 A strategy profile s ∈ S Pareto dominates strategy profile s′ ∈ S if
vi(s) ≥ vi(s

′)∀ i ∈ N and vi(s) > vi(s
′) for at least one i ∈ N (in which case, we will

also say that s′ is Pareto dominated by s). A strategy profile is Pareto optimal if it
is not Pareto dominated by any other strategy profile.

As social scientists, strategic advisers, or policy makers, we hope that players will
act in accordance with the Pareto criterion and find ways to coordinate on Pareto-
optimal outcomes, or avoid those that are Pareto dominated.8 However, as we will see
time and time again, this result will not be achievable in many games. For example, in
the Prisoner’s Dilemma we made the case that (F, F ) should be considered as a very
likely outcome. In fact, as we will argue several times, it is the only likely outcome.
One can see, however, that it is Pareto dominated by (M, M). (Notice that (M, M) is
not the only Pareto-optimal outcome. (M, F ) and (F, M) are also Pareto-optimal
outcomes because no other profile dominates any of them. Don’t confuse Pareto
optimality with the best “symmetric” outcome that leaves all players “equally” happy.)

3.4 Summary

. A normal-form game includes a finite set of players, a set of pure strategies
for each player, and a payoff function for each player that assigns a payoff
value to each combination of chosen strategies.

. Any two-player finite game can be represented by a matrix. Each row repre-
sents one of player 1’s strategies, each column represents one of player 2’s
strategies, and each cell in the matrix contains the payoffs for both players.

. A solution concept that proposes predictions of how games will be played
should be widely applicable, should restrict the set of possible outcomes to
a small set of reasonable outcomes, and should not be too sensitive to small
changes in the game.

. Outcomes should be evaluated using the Pareto criterion, yet self-enforcing
behavior will dictate the set of reasonable outcomes.

7. The symbol ∀ denotes “for all.”
8. The criterion is named after the Italian economist Vilfredo Pareto. In general economists and other
advocates of rational choice theory view this criterion as noncontroversial. However, this view is not
necessarily held by everyone. For example, consider two outcomes: In the first, two players get $5
each. In the second, player 1 gets $6 while player 2 gets $60. The Pareto criterion clearly prefers the
second outcome, but some other social criterion with equity considerations may disagree with this
ranking.
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3.5 Exercises

3.1 eBay: Hundreds of millions of people bid on eBay auctions to purchase goods
from all over the world. Despite being carried out on line, in spirit these
auctions are similar to those that have been conducted for centuries. Is an
auction a game? Why or why not?

3.2 Penalty Kicks: Imagine a kicker and a goalie who confront each other in a
penalty kick that will determine the outcome of a soccer game. The kicker
can kick the ball left or right, while the goalie can choose to jump left
or right. Because of the speed of the kick, the decisions need to be made
simultaneously. If the goalie jumps in the same direction as the kick, then the
goalie wins and the kicker loses. If the goalie jumps in the opposite direction
of the kick, then the kicker wins and the goalie loses. Model this as a normal-
form game and write down the matrix that represents the game you modeled.

3.3 Meeting Up: Two old friends plan to meet at a conference in San Francisco,
and they agree to meet by “the tower.” After arriving in town, each realizes
that there are two natural choices: Sutro Tower or Coit Tower. Not having cell
phones, each must choose independently which tower to go to. Each player
prefers meeting up to not meeting up, and neither cares where this would
happen. Model this as a normal-form game and write down the matrix form
of the game.

3.4 Hunting: Two hunters, players 1 and 2, can each choose to hunt a stag, which
provides a rather large and tasty meal, or hunt a hare—also tasty, but much less
filling. Hunting stags is challenging and requires mutual cooperation. If either
hunts a stag alone, then the stag will get away, while hunting the stag together
guarantees that the stag will be caught. Hunting hares is an individualistic
enterprise that is not done in pairs, and whoever chooses to hunt a hare will
catch one. The payoff from hunting a hare is 1, while the payoff to each from
hunting a stag together is 3. The payoff from an unsuccessful stag hunt is 0.
Represent this game as a matrix.

3.5 Matching Pennies: Players 1 and 2 each put a penny on a table simultane-
ously. If the two pennies come up the same side (heads or tails) then player 1
gets both pennies; otherwise player 2 gets both pennies. Represent this game
as a matrix.

3.6 Price Competition: Imagine a market with demand p(q) = 100 − q. There
are two firms, 1 and 2, and each firm i has to simultaneously choose its price
pi. If pi < pj , then firm i gets all of the market while no one demands the good
of firm j . If the prices are the same then both firms split the market demand
equally. Imagine that there are no costs to produce any quantity of the good.
(These are two large dairy farms, and the product is manure.) Write down the
normal form of this game.

3.7 Public Good Contribution: Three players live in a town, and each can choose
to contribute to fund a streetlamp. The value of having the streetlamp is 3 for
each player, and the value of not having it is 0. The mayor asks each player to
contribute either 1 or nothing. If at least two players contribute then the lamp
will be erected. If one player or no players contribute then the lamp will not
be erected, in which case any person who contributed will not get his money
back. Write down the normal form of this game.
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Rationality and

Common Knowledge

In this chapter we study the implications of imposing the assumptions of rationality
as well as common knowledge of rationality. We derive and explore some solution

concepts that result from these two assumptions and seek to understand the restrictions
that each of the two assumptions imposes on the way in which players will play games.

4.1 Dominance in Pure Strategies

It will be useful to begin by introducing some new notation. We denoted the payoff of
a player i from a profile of strategies s = (s1, s2, . . . , si−1, si, si+1, . . . , sn) as vi(s).
It will soon be very useful to refer specifically to the strategies of a player’s opponents
in a game. For example, the actions chosen by the players who are not player i are
denoted by the profile

(s1, s2, . . . , si−1, si+1, . . . , sn) ∈ S1 × S2 × . . . × Si−1 × Si+1 × . . . × Sn.

To simplify we will hereafter use a common shorthand notation as follows: We define
S−i ≡ S1 × S2 × . . . × Si−1 × Si+1 × . . . × Sn as the set of all the strategy sets of all
players who are not player i. We then define s−i ∈ S−i as a particular possible profile
of strategies for all players who are not i. Hence we can rewrite the payoff of player
i from strategy s as vi(si, s−i), where s = (si, s−i).

4.1.1 Dominated Strategies

The Prisoner’s Dilemma was easy to analyze: each of the two players has an action
that is best regardless of what his opponent chooses. Suggesting that each player will
choose this action seems natural because it is consistent with the basic concept of
rationality. If we assume that the players are rational, then we should expect them
to choose whatever they deem to be best for them. If it turns out that a player’s best
strategy does not depend on the strategies of his opponents then we should be all the
more confident that he will choose it.

59
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It is not too often that we will find ourselves in situations in which we have a best
action that does not depend on the actions of our opponents. We begin, therefore,
with a less demanding concept that follows from rationality. In particular consider
the strategy mum in the Prisoner’s Dilemma:

Player 2
M F

Player 1
M −2, −2 −5, −1

F −1, −5 −4, −4

As we argued earlier, playing M is worse than playing F for each player regardless of
what the player’s opponent does. What makes it unappealing is that there is another
strategy, F, that is better than M regardless of what one’s opponent chooses. We say
that such a strategy is dominated. Formally we have

Definition 4.1 Let si ∈ Si and s′
i
∈ Si be possible strategies for player i. We say that

s′
i

is strictly dominated by si if for any possible combination of the other players’
strategies, s−i ∈ S−i, player i’s payoff from s′

i
is strictly less than that from si. That is,

vi(si, s−i) > vi(s
′
i
, s−i) for all s−i ∈ S−i.

We will write si �i s′
i

to denote that s′
i

is strictly dominated by si.

Now that we have a precise definition for a dominated strategy, it is straightforward
to draw an obvious conclusion:

Claim 4.1 A rational player will never play a strictly dominated strategy.

This claim is obvious. If a player plays a dominated strategy then he cannot be
playing optimally because, by the definition of a dominated strategy, the player has
another strategy that will yield him a higher payoff regardless of the strategies of
his opponents. Hence knowledge of the game implies that a player should recognize
dominated strategies, and rationality implies that these strategies will be avoided.

When we apply the notion of a dominated strategy to the Prisoner’s Dilemma we
argue that each of the two players has one dominated strategy that he should never
use, and hence each player is left with one strategy that is not dominated. Therefore,
for the Prisoner’s Dilemma, rationality alone is enough to offer a prediction about
which outcome will prevail: (F, F ) is this outcome.

Many games, however, will not be as special as the Prisoner’s Dilemma, and
rationality alone will not suggest a clear-cut, unique prediction. As an example,
consider the following advertising game. Two competing brands can choose one of
three marketing campaigns—low (L), medium (M), and high (H )—with payoffs
given by the following matrix:

Player 2
L M H

L 6, 6 2, 8 0, 4

Player 1 M 8, 2 4, 4 1, 3

H 4, 0 3, 1 2, 2
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It is easy to see that each player has one dominated strategy, which is L. However,
neither M nor H is dominated. For example, if player 2 plays M then player 1 should
also play M, while if player 2 plays H then player 1 should also play H . Hence
rationality alone does not offer a unique prediction. It is nonetheless worth spending
some time on the extreme cases in which it does.

4.1.2 Dominant Strategy Equilibrium

Because a strictly dominated strategy is one to avoid at all costs,1 there is a counterpart
strategy, represented by F in the Prisoner’s Dilemma, that would be desirable. This is
a strategy that is always the best thing you can do, regardless of what your opponents
choose. Formally we have

Definition 4.2 si ∈ Si is a strictly dominant strategy for i if every other strategy of
i is strictly dominated by it, that is,

vi(si, s−i) > vi(s
′
i
, s−i) for all s′

i
∈ Si, s′

i
= si, and all s−i ∈ S−i.

If, as in the Prisoner’s Dilemma, every player had such a wonderful dominant
strategy, then it would be a very sensible predictor of behavior because it follows from
rationality alone. We can introduce this simple idea as our first solution concept:

Definition 4.3 The strategy profile sD ∈ S is a strict dominant strategy equilib-
rium if sD

i
∈ Si is a strict dominant strategy for all i ∈ N .

This gives a formal definition for the outcome “both players fink,” or (F, F ), in
the Prisoner’s Dilemma: it is a dominant strategy equilibrium. In this equilibrium the
payoffs are (−4, −4) for players 1 and 2, respectively.

Caveat Be careful not to make a common error by referring to the pair of payoffs
(−4, −4) as the solution. The solution should always be described as the strategies
that the players will choose. Strategies are a set of actions by the players, and payoffs
are a result of the outcome. When we talk about predictions, or equilibria, we will
always refer to what players do as the equilibrium, not their payoffs.

Using this solution concept for any game is not that difficult. It basically requires
that we identify a strict dominant strategy for each player and then use this profile
of strategies to predict or prescribe behavior. If, as in the Prisoner’s Dilemma, we
are lucky enough to find a dominant strategy equilibrium for other games, then this
solution concept has a very appealing property:

Proposition 4.1 If the game � = 〈
N, {Si}ni=1, {vi}ni=1

〉
has a strictly dominant strategy

equilibrium sD, then sD is the unique dominant strategy equilibrium.

This proposition is rather easy to prove, and that proof is left as exercise 4.1 at the
end of the chapter.

1. This is a good point at which to stop and reflect on a very simple yet powerful lesson. In any
situation, look first for your dominated strategies and avoid them!
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4.1.3 Evaluating Dominant Strategy Equilibrium

Proposition 4.1 is very useful in addressing one of our proposed criteria for evaluating
a solution concept: when it exists, the strict-dominance solution concept guarantees
uniqueness. However, what do we know about existence? A quick observation will
easily convince you that this is a problem.

Consider the Battle of the Sexes game introduced in Section 3.3 and described
again in the following matrix:

Chris
O F

Alex
O 2, 1 0, 0

F 0, 0 1, 2

Neither player has a dominated strategy, implying that neither has a dominant strategy
either. The best strategy for Chris depends on what Alex chooses and vice versa. Thus
if we stick to the solution concept of strict dominance we will encounter games, in fact
many of them, for which there will be no equilibrium. This unfortunate conclusion
implies that the strict-dominance solution concept will often fail to predict the choices
that players ought to, or will, choose in many games.

Regarding the invariance criterion, the strict-dominance solution concept does
comply. From definition 4.2, sD is a strictly dominant strategy equilibrium if and only
if vi(s

D
i

, s−i) > vi(s
′
i
, s−i) for all s′

i
∈ Si and all s−i ∈ S−i. Because the inequality is

strict, we can find a small enough value ε > 0 such that if we either add or subtract ε

from any payoff vi(si, s−i) the inequality will still hold.
We now turn to the Pareto criterion of equilibrium outcomes when a strict-

dominance solution exists. The Prisoner’s Dilemma has an equilibrium prediction
using the strict-dominance solution concept, so we can evaluate the efficiency prop-
erties of the unique strictly dominant strategy equilibrium for that game. It is easy to
see that the outcome prescribed by this solution is not Pareto optimal: both players
would be better off if they could each commit to play M, yet left to their own devices
they will not do this. Of course, in other games the solution may be Pareto optimal
(see, for example, the “altruistic” Prisoner’s Dilemma in Section 3.3).

The failure of Pareto optimality is not a failure of the solution concept. The
assumption that players are rational causes them to fink in the Prisoner’s Dilemma
if we restrict attention to self-enforcing behavior. The failure of Pareto optimality
implies that the players would benefit from modifying the environment in which they
find themselves to create other enforcement mechanisms—for example, creating a
“mafia” with norms of conduct that enforce implicit agreements so as to punish those
who fink.

To explicitly see how this can work, imagine that a mafia member who finks on
another member is very seriously reprimanded, which will change the payoff structure
of the Prisoner’s Dilemma if he is caught. If the pain from mafia punishment is
equivalent to z, then we have to subtract z units of payoff for each player who finks.
The “mafia-modified” Prisoner’s Dilemma is represented by the following matrix:

Player 2
M F

Player 1
M −2, −2 −5, −1 − z

F −1 − z, −5 −4 − z, −4 − z
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If z is strictly greater than 1 then this punishment will be enough to flip our predicted
equilibrium outcome of the game because then M becomes the strict dominant
strategy (and (M, M) is Pareto optimal).

This example demonstrates that “institutional design,” which changes the game
that players play, can be very useful in affecting the well-being of players. By
introducing this external enforcer, or institution, we are able to get the players to
choose outcomes that make them both better off compared to what they can achieve
without the additional institution. Moreover, notice that if the players believe that
the mafia will enforce the code of conduct then there is no need to actually enforce
it—the players choose not to fink, and the enforcement of punishments need not
happen. However, we need to be suspicious of whether such an institution will be
self-enforcing, that is, whether the mafia will indeed enforce the punishments. And,
for it to be self-enforcing, we need to model the behavior of potential punishers and
whether they themselves will have the selfish incentives to carry out the enforcement
activities. This is something we will explore at length when we consider multistage
and repeated games in Chapters Chapters 9 and 10.

Remark A related notion is that of weak dominance. We say that s′
i

is weakly
dominated by si if, for any possible combination of the other players’ strategies, player
i’s payoff from s′

i
is weakly less than that from si. That is,

vi(si, s−i) ≥ vi(s
′
i
, s−i) for all s−i ∈ S−i.

This means that for some s−i ∈ S−i this weak inequality may hold strictly, while for
other s′

−i
∈ S−i it will hold with equality. We define a strategy to be weakly dominant

in a similar way. This is still useful because if we can find a dominant strategy for a
player, be it weak or strict, this seems like the most obvious thing to prescribe. An
important difference between weak and strict dominance is that if a weakly dominant
equilibrium exists, it need not be unique. To show this is left as exercise 4.2.

4.2 Iterated Elimination of Strictly Dominated Pure Strategies

As we saw in the previous chapter, our requirement that players be rational implied
two important conclusions:

1. A rational player will never play a dominated strategy.

2. If a rational player has a strictly dominant strategy then he will play it.

We used this second conclusion to define the solution concept of strict dominance,
which is very appealing because, when it exists, it requires only rationality as its
driving force. A drawback of the dominant strategy solution concept is, however, that
it will often fail to exist. Hence if we wish to develop a predictive theory of behavior in
games then we must consider alternative approaches that will apply to a wide variety
of games.

4.2.1 Iterated Elimination and Common Knowledge of Rationality

We begin with the premise that players are rational, and we build on the first con-
clusion in the previous section, which claims that a rational player will never play a
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dominated strategy. This conclusion is by itself useful in that it rules out what play-
ers will not do. As a result, we conclude that rationality tells us which strategies will
never be played.

Now turn to another important assumption introduced earlier: the structure of the
game and the rationality of the players are common knowledge among the players.
The introduction of common knowledge of rationality allows us to do much more
than identify strategies that rational players will avoid. If indeed all the players know
that each player will never play a strictly dominated strategy, they can effectively
ignore those strictly dominated strategies that their opponents will never play, and
their opponents can do the same thing. If the original game has some players with
some strictly dominated strategies, then all the players know that effectively they are
facing a “smaller” restricted game with fewer total strategies.

This logic can be taken further. Because it is common knowledge that all players
are rational, then everyone knows that everyone knows that the game is effectively a
smaller game. In this smaller restricted game, everyone knows that players will not
play strictly dominated strategies. In fact we may indeed find additional strategies that
are dominated in the restricted game that were not dominated in the original game.
Because it is common knowledge that players will perform this kind of reasoning
again, the process can continue until no more strategies can be eliminated in this way.

To see this idea more concretely, consider the following two-player finite game:

Player 2
L C R

U 4, 3 5, 1 6, 2

Player 1 M 2, 1 8, 4 3, 6

D 3, 0 9, 6 2, 8

(4.1)

A quick observation reveals that there is no strictly dominant strategy, neither for
player 1 nor for player 2. Also note that there is no strictly dominated strategy for
player 1. There is, however, a strictly dominated strategy for player 2: the strategy C

is strictly dominated by R because 2 > 1 (row U ), 6 > 4 (row M), and 8 > 6 (row D).
Thus, because this is common knowledge, both players know that we can effectively
eliminate the strategy C from player 2’s strategy set, which results in the following
reduced game:

Player 2
L R

U 4, 3 6, 2

Player 1 M 2, 1 3, 6

D 3, 0 2, 8

In this reduced game, both M and D are strictly dominated by U for player 1,
allowing us to perform a second round of eliminating strategies, this time for player 1.
Eliminating these two strategies yields the following trivial game:

Player 2
L R

Player 1 U 4, 3 6, 2
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in which player 2 has a strictly dominated strategy, playing R. Thus for this example
the iterated process of eliminating dominated strategies yields a unique prediction:
the strategy profile we expect these players to play is (U, L), giving the players the
payoffs of (4, 3).

As the example demonstrates, this process of iterated elimination of strictly
dominated strategies (IESDS) builds on the assumption of common knowledge
of rationality. The first step of iterated elimination is a consequence of player 2’s
rationality; the second stage follows because players know that players are rational;
the third stage follows because players know that players know that they are rational,
and this ends in a unique prediction.

More generally we can apply this process to games in the following way. Let Sk
i

denote the strategy set of player i that survives k rounds of IESDS. We begin the
process by defining S0

i
= Si for each i, the original strategy set of player i in the

game.

Step 1: Define S0
i

= Si for each i, the original strategy set of player i in the game,
and set k = 0.

Step 2: Are there players for whom there are strategies si ∈ Sk
i that are strictly

dominated? If yes, go to step 3. If not, go to step 4.

Step 3: For all the players i ∈ N, remove any strategies si ∈ Sk
i that are strictly

dominated. Set k = k + 1, and define a new game with strategy sets Sk
i that

do not include the strictly dominated strategies that have been removed. Go
back to step 2.

Step 4: The remaining strategies in Sk
i are reasonable predictions for behavior.

In this chapter we refrain from giving a precise mathematical definition of the
process because this requires us to consider richer behavior by the players, in partic-
ular, allowing them to choose randomly between their different pure strategies. We
will revisit this approach briefly when such stochastic play, or mixed strategies, is
introduced later.2

Using the process of IESDS we can define a new solution concept:

Definition 4.4 We will call any strategy profile sES = (sES
1 , . . . , sES

n
) that survives

the process of IESDS an iterated-elimination equilibrium.

Like the concept of a strictly dominant strategy equilibrium, the iterated-
elimination equilibrium starts with the premise of rationality. However, in addition
to rationality, IESDS requires a lot more: common knowledge of rationality. We will
discuss the implications of this requirement later in this chapter.

4.2.2 Example: Cournot Duopoly

Recall the Cournot duopoly example we introduced in Section 3.1.2, but consider
instead a simpler example of this problem in which the firms have linear rather than
quadratic costs: the cost for each firm for producing quantity qi is given by ci(qi) =
10qi for i ∈ {1, 2}. (Using economics jargon, this is a case of constant marginal cost

2. Just to satisfy your curiosity, think of the Battle of the Sexes, and imagine that Chris can pull out
a coin and flip between the decision of opera or football. This by itself introduces a “new” strategy,
and we will exploit such strategies to develop a formal definition of IESDS.
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equal to 10 and no fixed costs.) Let the demand be given by p(q) = 100 − q, where
q = q1 + q2.

Consider first the profit (payoff ) function of firm 1:

v1(q1, q2) =
Revenue︷ ︸︸ ︷

(100 − q1 − q2)q1 −
Costs︷︸︸︷
10q1

= 90q1 − q2
1 − q1q2.

What should firm 1 do? If it knew what quantity firm 2 will choose to produce, say
some value of q2, then the profits of firm 1 would be maximized when the first-order
condition is satisfied, that is, when 90 − 2q1 − q2 = 0. Thus, for any given value of
q2, firm 1 maximizes its profits when it sets its own quantity according to the function

q1 = 90 − q2

2
. (4.2)

Though it is true that the choice of firm 1 depends on what it believes firm 2 is
choosing, equation (4.2) implies that firm 1 will never choose to produce more than
q1 = 45. This follows from the simple observation that q2 is never negative, in which
case equation (4.2) implies that q1 ≤ 45. In fact, this is equivalent to showing that any
quantity q1 > 45 is strictly dominated by q1 = 45. To see this, for any q2, the profits
from setting q1 = 45 are given by

v1(45, q2) = (100 − 45 − q2)45 − 450 = 2025 − 45q2.

The profits from choosing any other q1 are given by

v1(q1, q2) = (100 − q1 − q2)q1 − 10q1 = 90q1 − q1q2 − q2
1 .

Thus we can subtract v1(q1, q2) from v1(45, q2) and obtain

v1(45, q2) − v1(q1, q2) = 2025 − 45q2 − (90q1 − q1q2 − q2
1)

= 2025 − q1(90 − q1) − q2(45 − q1).

It is easy to check that for any q1 > 45 this difference is positive regardless of the
value of q2.3 Hence we conclude that any q1 > 45 is strictly dominated by q1 = 45.

It is easy to see that firm 2 faces exactly the same profit function, which implies
that any q2 > 45 is strictly dominated by q2 = 45. This observation leads to our first
round of iterated elimination: a rational firm produces no more than 45 units, implying
that the effective strategy space that survives one round of elimination is qi ∈ [0, 45]
for i ∈ {1, 2}.

We can now turn to the second round of elimination. Because q2 ≤ 45, equation
(4.2) implies that firm 1 will choose a quantity no less than 22.5, and a symmetric
argument applies to firm 2. Hence the second round of elimination implies that the
surviving strategy sets are qi ∈ [22.5, 45] for i ∈ {1, 2}.

The next step of this process will reduce the strategy set to qi ∈ [22.5, 333
4 ], and

the process will continue on and on. Interestingly the set of strategies that survives

3. This follows because if q1 > 45 then q1(90 − q1) < 2025 and q2(45 − q1) ≤ 0 for any q2 ≥ 0.
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q1(q2)

q1(q2) =
90 – q2—

2

q29045

45

22.5 33.75

Round 1

Round 2

Round 3

Round 4

FIGURE 4.1 IESDS convergence in the Cournot game.

this process converges to a single quantity choice of qi = 30. To see this, notice how
we moved from one surviving interval to the next. We started by noting that q2 ≥ 0,
and using equation (4.2) we found that q1 ≤ 45, creating the first-round interval of
[0, 45]. Then, by symmetry, it follows that q2 ≤ 45, and using equation (4.2) again we
conclude that q1 ≥ 22.5, creating the second-round interval [22.5, 45]. We can see this
process graphically in Figure 4.1, where we use the upper (lower) end of the previous
interval to determine the lower (upper) end of the next one. If this were to converge
to an interval and not to a single point, then by the symmetry between both firms,
the resulting interval for each firm would be [qmin, qmax] that simultaneously satisfy
two equations with two unknowns: qmin = 90−qmax

2 and qmax = 90−qmin
2 . However, the

only solution to these two equations is qmin = qmax = 30. Hence using IESDS for the
Cournot game results in a unique predictor of behavior where q1 = q2 = 30, and each
firm earns a profit of v1 = v2 = 900.

4.2.3 Evaluating IESDS

We turn to evaluate the IESDS solution concept using the criteria we introduced
earlier. Start with existence and note that, unlike the concept of strict dominance, we
can apply IESDS to any game by applying the algorithm just described. It does not
require the existence of a strictly dominant strategy, nor does it require the existence
of strictly dominated strategies. It is the latter characteristic, however, that gives this
concept some bite: when strictly dominated strategies exist, the process of IESDS is
able to say something about how common knowledge of rationality restricts behavior.

It is worth noting that this existence result is a consequence of assuming common
knowledge of rationality. By doing so we are giving the players the ability to reason
through the strategic implications of rationality, and to do so over and over again,
while correctly anticipating that other players can perform the same kind of reasoning.
Rationality alone does not provide this kind of reasoning.

It is indeed attractive that an IESDS solution always exists. This comes, however,
at the cost of uniqueness. In the simple 3 × 3 matrix game described in (4.1) and the
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Cournot duopoly game, IESDS implied the survival of a unique strategy. Consider
instead the Battle of the Sexes, given by the following matrix:

Chris
O F

Alex
O 2, 1 0, 0

F 0, 0 1, 2

IESDS cannot restrict the set of strategies here for the simple reason that neither O

nor F is a strictly dominated strategy for each player. As we can see, this solution
concept can be applied (it exists) to any game, but it will often fail to provide a unique
solution. For the Battle of the Sexes game, IESDS can only conclude that “anything
can happen.”

After analyzing the efficiency of the outcomes that can be derived from strict
dominance in Section 4.1.3, you may have anticipated the possible efficiency of
IESDS equilibria. An easy illustration can be provided by the Prisoner’s Dilemma.
IESDS leaves (F, F ) as the unique survivor, or IESDS equilibrium, after only one
round of elimination. As we already demonstrated, the outcome from (F, F ) is not
Pareto optimal. Similarly, both previous examples (the 3 × 3 matrix game in (4.1)
and the Cournot game) provide further evidence that Pareto optimality need not be
achieved by IESDS: In the 3 × 3 matrix example, both strategy profiles (M, C) and
(D, C) yield higher payoffs for both players—(8, 4) and (9, 6), respectively—than
the unique IESDS equilibrium, which yields (4, 3). For the Cournot game, producing
q1 = q2 = 30 yields profits of 900 for each firm. If instead they would both produce
q1 = q2 = 20 then each would earn profits of 1000. Thus common knowledge of
rationality does not mean that players can guarantee the best outcome for themselves
when their own incentives dictate their behavior.

On a final note, it is interesting to observe that there is a simple and quite obvious
relationship between the IESDS solution concept and the strict-dominance solution
concept:

Proposition 4.2 If for a game � = 〈N, {Si}ni=1, {vi}ni=1〉 s∗ is a strict dominant
strategy equilibrium, then s∗ uniquely survives IESDS.

Proof If s∗ = (s∗
1 , . . . , s∗

n
) is a strict dominant strategy equilibrium then, by defini-

tion, for every player i all other strategies s′
i

are strictly dominated by s∗
i
. This implies

that after one stage of elimination we will be left with a single profile of strategies,
which is exactly s∗, and this concludes the proof.

This simple proposition is both intuitive and straightforward. Because rationality
is the only requirement needed in order to eliminate all strictly dominated strategies
in one round, then if all strategies but one are strictly dominated for each and every
player, both IESDS and strict dominance will result in the same outcome. This shows
us that whenever strict dominance results in a unique outcome, then IESDS will result
in the same unique outcome after one round. However, as we saw earlier, IESDS may
offer a fine prediction when strict dominance does not apply. This is exactly what
the extra assumption of common knowledge of rationality delivers: a more widely
applicable solution concept. However, the assumption of common knowledge of
rationality is far from innocuous. It requires the players to be, in some way, extremely
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intelligent and to possess unusual levels of foresight. For the most part, game theory
relies on this strong assumption, and hence it must be applied to the real world with
caution. Remember the rule about how assumptions drive conclusions: garbage in,
garbage out.

4.3 Beliefs, Best Response, and Rationalizability

Both of the solution concepts we have seen so far, strict dominance and IESDS, are
based on eliminating actions that players would never play. An alternative approach
is to ask: what possible strategies might players choose to play and under what
conditions? When we considered eliminating strategies that no rational player would
choose to play, it was by finding some strategy that is always better or, as we said, that
dominates the eliminated strategies. A strategy that cannot be eliminated, therefore,
suggests that under some conditions this strategy is the one that the player may like
to choose. When we qualify a strategy to be the best one a player can choose under
some conditions, these conditions must be expressed in terms that are rigorous and
are related to the game that is being played.

To set the stage, think about situations in which you were puzzled about the
behavior of someone you knew. To consider his choice as irrational, or simply stupid,
you would have to consider whether there is a way in which he could defend his action
as a good choice. A natural way to determine whether this is the case is to simply ask
him, “What were you thinking?” If the response lays out a plausible situation for
which his choice was a good one, then you cannot question his rationality. (You may
of course question his wisdom, or even his sanity, if his thoughts seem bizarre.)

This is a type of reasoning that we will formalize and discuss in this chapter.
If a strategy si is not strictly dominated for player i then it must be that there are
combinations of strategies of player i’s opponents for which the strategy si is player
i’s best choice. This reasoning will allow us to justify or rationalize the choice of
player i.

4.3.1 The Best Response

As we discussed early in Chapter 3, what makes a game different from a single-player
decision problem is that once you understand the actions, outcomes, and preferences
of a decision problem, then you can choose your best or optimal action. In a game,
however, your optimal decision not only depends on the structure of the game, but it
will often depend on what the other players are doing.

Take the Battle of the Sexes as an example:

Chris
O F

Alex
O 2, 1 0, 0

F 0, 0 1, 2

As the matrix demonstrates, the best choice of Alex depends on what Chris will do.
If Chris goes to the opera then Alex would rather go to the opera instead of going to
the football game. If, however, Chris goes to the football game then Alex’s optimal
action is switched around.
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This simple example illustrates an important idea that will escort us throughout
this book and that (one hopes) will escort you through your own decision making in
strategic situations. In order for a player to be optimizing in a game, he has to choose
a best strategy as a response to the strategies of his opponents. We therefore introduce
the following formal definition:

Definition 4.5 The strategy si ∈ Si is player i’s best response to his opponents’
strategies s−i ∈ S−i if

vi(si, s−i) ≥ vi(s
′
i
, s−i) ∀s′

i
∈ Si.

I can’t emphasize enough how central this definition is to the concept of strategic
behavior and rationality. In fact rationality implies that given any belief a player has
about his opponents’ behavior, he must choose an action that is best for him given his
beliefs. That is,

Claim 4.2 A rational player who believes that his opponents are playing some
s−i ∈ S−i will always choose a best response to s−i.

For instance, in the Battle of the Sexes, if Chris believes that Alex will go to the
opera then Chris’s best response is to go to the opera because

v2(O, O) = 1 > 0 = v2(O, F ).

Similarly if Chris believes that Alex will go to the football game then Chris’s best
response is to go to the game as well.

There are some appealing relationships between the concept of playing a best
response and the concept of dominated strategies. First, if a strategy si is strictly
dominated, it means that some other strategy s′

i
is always better. This leads us to the

observation that the strategy si could not be a best response to anything:

Proposition 4.3 If si is a strictly dominated strategy for player i, then it cannot be a
best response to any s−i ∈ S−i.

Proof If si is strictly dominated, then there exists some s′
i
�i si such that vi(s

′
i
, s−i) >

vi(si, s−i) for all s−i ∈ S−i. But this in turn implies that there is no s−i ∈ S−i for which
vi(si, s−i) ≥ vi(s

′
i
, s−i), and thus that si cannot be a best response to any s−i ∈ S−i.

A companion to this proposition would explore strictly dominant strategies, which
are in some loose way the “opposite” of strictly dominated strategies. You should
easily be able to convince yourself that if a strategy sD

i
is a strictly dominant strategy

then it must be a best response to anything i’s opponents can do. This immediately
implies the next proposition, which is slightly broader than the simple intuition just
provided and requires a bit more work to prove formally:

Proposition 4.4 If in a finite normal-form game s∗ is a strict dominant strategy
equilibrium, or if it uniquely survives IESDS, then s∗

i
is a best response to s∗

−i
∀i ∈ N.

Proof If s∗ is a dominant strategy equilibrium then it uniquely survives IESDS,
so it is enough to prove the proposition for strategies that uniquely survive
IESDS. Suppose s∗ uniquely survives IESDS, and choose some i ∈ N . Suppose in
negation to the proposition that s∗

i
is not a best response to s∗

−i
. This implies that there
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exists an s′
i
∈ Si\{s∗

i
} (this is the set Si without the strategy s∗

i
) such that vi(s

′
i
, s∗

−i
) >

vi(s
∗
i
, s∗

−i
). Let S′

i
⊂ Si be the set of all such s′

i
for which vi(s

′
i
, s∗

−i
) > vi(s

∗
i
, s∗

−i
).

Because s′
i
was eliminated while s∗

−i
was not (recall that s∗ uniquely survives IESDS),

there must be some s′′
i

such that vi(s
′′
i
, s∗

−i
) > vi(s

′
i
, s∗

−i
) > vi(s

∗
i
, s∗

−i
), implying that

s′′
i

∈ S′
i
. Because the game is finite, an induction argument on S

′
i

then implies that
there exists a strategy s′′′

i
∈ S′

i
that must survive IESDS. But this is a contradiction to

s∗ being the unique survivor of IESDS.

This is a “proof by contradiction,” and the intuition behind the proof may be a bit
easier than the formal write-up. The logic goes as follows: If it is true that s∗

i
was not

a best response to s∗
−i

then there was some other strategy s′
i

that was a best response
to s∗

−i
that was eliminated at some previous round. But then it must be that there was

a third strategy that was better than both of i’s aforementioned strategies against s∗
−i

in order to knock s′
i

out in some earlier round. But then how could s∗
i

knock out this
third strategy against s∗

−i
, which survived? This can’t be true, which means that the

initial negative premise in the proof, that s∗
i

was not a best response to s∗
−i

, must be
false, hence the contradiction.

With the concept of a best response in hand, we need to think more seriously about
the following question: to what profile of strategies should a player be playing a best
response? Put differently, if my best response depends on what the other players are
doing, then how should I choose between all the best responses I can possibly have?
This is particularly pertinent because we are discussing static games, in which players
choose their actions without knowing what their opponents are choosing. To tackle
this important question, we need to give players the ability to form conjectures about
what others are doing. We have alluded to the next step in the claim made earlier,
which stated that “a rational player who believes that his opponents are playing some
s−i ∈ S−i will always choose a best response to s−i.” Thus we have to be mindful of
what a player believes in order to draw conclusions about whether or not the player
is choosing a best response.

4.3.2 Beliefs and Best-Response Correspondences

Suppose that s′
i
is a best response for player i to his opponents playing s′

−i
, and assume

for the moment that it is not a best response for any other profile of actions that i’s
opponents can choose. When would a rational player i choose to play s′

i
? The answer

follows directly from rationality: he will play s′
i

only when his beliefs about other
players’ behavior justify the use of s′

i
, or in other words when he believes that his

opponents will play s′
−i

.
Introducing the concept of beliefs, and actions that best respond to beliefs, is

central to the analysis of strategic behavior. If a player is fortunate enough to be
playing in a game in which he has a strictly dominant strategy then his beliefs about
the behavior of others play no role. The player’s strictly dominant strategy is his best
response independent of his opponents’ play, and hence it is always a best response.
But when no strictly dominant strategy exists, a player must ask himself, “What do
I think my opponents will do?” The answer to this question should guide his own
behavior.

To make this kind of reasoning precise we need to define what we mean by a
player’s belief. In a well-defined game, the only thing a player should be thinking
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about is what he believes his opponents are doing. Therefore we offer the following
definition:

Definition 4.6 A belief of player i is a possible profile of his opponents’ strategies,
s−i ∈ S−i.

Given that a player has a particular belief about his opponents’ strategies, he will
be able to formulate a best response to that belief. The best response of a player to
a certain strategy of his opponents may be unique, as in many of the games we have
seen up to now.

For example, consider the Battle of the Sexes. When Chris believes that Alex is
going to the opera, his unique best response is to go to the opera. Similarly, if he
believes that Alex will go to the football game, then he should go to the game. For
every unique belief there is a best response. Similarly recall that in the Cournot game
the best choice of player 1 given any choice of player 2 solved the first-order condition
of player 1’s maximization problem, resulting in the function

q1(q2) = 90 − q2

2
, (4.3)

which assigns a unique value of q1 to any value of q2 for q2 ∈ [0, 90]. Hence the
function in (4.3) is the best-response function of firm 1 in the Cournot game.

We can therefore think of a rational player as having a recipe book that is a list of
instructions as follows: “If I think my opponents are doing s−i, then I should do si;
if I think they’re doing s′

−i
, then I should do s′

i
;. . . . ” This list should go on until it

exhausts all the possible strategies that player i’s opponents can choose. If we think
of this list of best responses as a plan, then this plan maps beliefs into a choice of
action, and this choice of action must be a best response to the beliefs. We can think
of this as player i’s best-response function.

There may, however, be games in which for some beliefs a player will have more
than one best-response strategy. Consider, for example, the following simple game:

Player 2
L C R

U 3, 3 5, 1 6, 2

Player 1 M 4, 1 8, 4 3, 6

D 4, 0 9, 6 6, 8

If player 1 believes that player 2 is playing the column R then both U and D are each
a best response. Similarly if player 1 believes that player 2 is playing the column L

then both M and D are each a best response.
The fact that a player may have more than one best response implies that we can’t

think of the best-response mapping from opponents’ strategies S−i to an action by
player i as a function, because by definition a function would select only one action
as a best response (see Section 19.2 of the mathematical appendix). Thus we offer the
following definition:

Definition 4.7 The best-response correspondence of player i selects for each s−i ∈
S−i a subset BRi(s−i) ⊂ Si where each strategy si ∈ BRi(s−i) is a best response to s−i.
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That is, given a belief player i has about his opponents, s−i, the set of all his
possible strategies that are a best response to s−i is denoted by BRi(s−i). If he has a
unique best response to s−i then BRi(s−i) will contain only one strategy from Si.

4.3.3 Rationalizability

Equipped with the idea of beliefs and a player’s best responses to his beliefs, the
next natural step is to allow the players to reason about which beliefs to have about
their opponents. This reasoning must take into account the rationality of all players,
common knowledge of rationality, and the fact that all the players are trying to guess
the behavior of their opponents.

To a large extent we employed similar reasoning when we introduced the solution
concept of IESDS: instead of asking what your opponents might be doing, you asked
“What would a rational player not do?” Then, assuming that all players follow this
process by common knowledge of rationality, we were able to make some prediction
about which strategies cannot be eliminated.

In what follows we introduce another way of reasoning that rules out irrational
behavior with a similar iterated process that is, in many ways, the mirror image
of IESDS. This next solution concept also builds on the assumption of common
knowledge of rationality. However, instead of asking “What would a rational player
not do?” our next concept asks “What might a rational player do?” A rational player
will select only strategies that are a best response to some profile of his opponents.
Thus we have

Definition 4.8 A strategy si ∈ Si is never a best response if there are no beliefs
s−i ∈ S−i for player i for which si ∈ BRi(s−i).

The next step, as in IESDS, is to use the common knowledge of rationality to
build an iterative process that takes this reasoning to the limit. After employing this
reasoning one time, we can eliminate all the strategies that are never a best response,
resulting in a possibly “smaller” reduced game that includes only strategies that can
be a best response in the original game. Then we can employ this reasoning again and
again, in a similar way that we did for IESDS, in order to eliminate outcomes that
should not be played by players who share a common knowledge of rationality.

The solution concept of rationalizability is defined precisely by iterating this
thought process. The set of strategy profiles that survive this process is called the
set of rationalizable strategies. (We postpone offering a definition of rationalizable
strategies because the introduction of mixed strategies, in which players can play
stochastic strategies, is essential for the complete definition.)

4.3.4 The Cournot Duopoly Revisited

Consider the Cournot duopoly example used to demonstrate IESDS in Section 4.2.2,
with demand p(q) = 100 − q and costs ci(qi) = 10qi for both firms. As we showed
earlier, firm 1 maximizes its profits v1(q1, q2) = (100 − q1 − q2)q1 − 10q1 by setting
the first-order condition 90 − 2q1 − q2 = 0. Now that we have introduced the idea of
a best response, it should be clear that this firm’s best response is immediately derived
from the first-order condition. In other words, if firm 1 believes that firm 2 will choose
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the quantity q2, then it should choose q1 according to the best-response function,

BR1(q2) =
{

90−q2
2 if 0 ≤ q2 < 90

0 if q2 ≥ 90.

Notice that the best response is indeed a function. For all 0 ≤ q2 < 90 there is a unique
positive best response. For q2 ≥ 90 the price is guaranteed to be below 10, in which
case any quantity firm 1 will choose will yield a negative profit (its costs per unit are
10), and hence the best response is to produce nothing. Similarly we can define the
best-response correspondence of firm 2, which is symmetric.

Examining BR1(q2) implies that firm 1 will choose to produce only quantities
between 0 and 45. That is, there will be no beliefs about q2 for which quantities above
45 are a best response. By symmetry the same is true for firm 2. Thus a first round of
rationalizability implies that the only quantities that can be best-response quantities
for both firms must lie in the interval [0, 45]. The next round of rationalizability for
the game in which Si = [0, 45] for both firms shows that the best response of firm i is
to choose any quantity qi ∈ [22.5, 45]. Just as with IESDS, this process will continue
on and on. The set of rationalizable strategies converges to a single quantity choice
of qi = 30 for both firms.

4.3.5 The “p-Beauty Contest”

Consider a game with n players, so that N = {1, . . . , n}. Each player has to choose
an integer between 0 and 20, so that Si = {0, 1, 2, . . . , 19, 20}. The winners are the
players who choose an integer number that is closest to 3

4 of the average. For example,
if n = 3, and if the three players choose s1 = 1, s2 = 5, and s3 = 18, then the average
is (1+ 5 + 18) ÷ 3 = 8, and 3

4 of the average is 6, so the winner is player 2. This game
is called the p-beauty contest because, unlike in a standard beauty contest, you are
not trying to guess what everyone else is guessing (beauty is what people choose it
to be), but rather you are trying to guess p times the average, in this case p = 3

4 .4

Note that it is possible for more than one person to be a winner. If, for example,
s1 = s2 = 2 and s3 = 8, then the average is 3 and 3

4 of the average is 2 1
4 , so that both

player 1 and player 2 are winners. Because more than one person can win, define the
set of winners W ⊂ N as those players who are closest to 3

4 of the average, and the
rest are all losers. The set of winners is defined as5

W =
⎧⎨⎩i ∈ N : arg min

i∈N

∣∣∣∣∣∣si − 3

4

1

n

n∑
j=1

sj

∣∣∣∣∣∣
⎫⎬⎭.

4. John Maynard Keynes (1936) described the playing of the stock market as analogous to entering
a newspaper beauty-judging contest in which one selects the six prettiest faces out of a hundred
photographs, with the prize going to the person whose selections are closest to those of all the other
players. Keynes’s depiction of a beauty contest is a situation in which you want to guess what others
are guessing.

5. The notation arg mini∈N

∣∣∣si − 3
4

1
n

∑n
i=1 si

∣∣∣ means that we are selecting all the i’s for which

the expression
∣∣∣si − 3

4
1
n

∑n
j=1 sj

∣∣∣ is minimized. Since this expression is the absolute value of the

difference between si and 3
4

1
n

∑n
j=1 sj , this selection will result in the player (or players) who are

closest to 3
4 of the average.
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To introduce payoffs, each player pays 1 to play the game, and winners split the
pot equally among themselves. This implies that if there are m ≥ 1 winners, each gets
a payoff of N−m

m
(his share of the pot net of his own contribution) while losers get −1

(they lose their contribution).
Turning to rationalizable strategies, we must begin by finding strategies that are

never a best response. This is not an easy task, but some simple insights can get us
moving in the right direction. In particular the objective is to guess a number closest
to 3

4 of the average, which means that a player would want to guess a number that is
generally smaller than the highest numbers that other players may be guessing.

This logic suggests that if there are strategies that are never a best response, they
should be the higher numbers, and it is natural to start with 20: can choosing si = 20
be a best response? If you believe that the average is below 20, then 20 cannot be a
best response—a lower number will be the best response. If the average were 20, that
means that you and everyone else would be choosing 20, and you would then split
the pot with all the other players. If you believe this, and instead of 20 you choose
19, then you will win the whole pot for sure, regardless of the number of players,
because for any number of players n if everyone else is choosing 20 then 19 will be a
unique winner.6 This shows that 20 can never be a best response. Interestingly 19 is
not the unique best response to the belief that all others are playing 20. (This is left
as an exercise.) The important point, however, is that 20 cannot be a best response to
any beliefs a player can have.

This analysis shows that only the numbers S1
i
= {0, 1, . . . , 19} survive the first

round of rationalizable behavior. Similarly after each additional round we will “lose”
the highest number until we go through 19 rounds and are left with S19

i = {0, 1},
meaning that after 19 rounds of dropping strategies that cannot be a best response,
we are left with two strategies that survive: 1 and 0. If n > 2, we cannot reduce this
set further: if, for example, player i believes that all the other players are choosing
1 then choosing 1 is a best response for him. (This is left as an exercise.) Similarly
regardless of n, if he believes that everyone is choosing 0 then choosing 0 is his
best response. Thus we are able to predict using rationalizability that players will not
choose a number greater than 1, and if there are only two players then we will predict
that both will choose 0.

Will this indeed predict behavior? Only if our assumptions about behavior are
correct. If you were to play this game and you don’t think that your opponents are
doing these steps in their minds, then you may want to choose a number higher than 1.
An interesting set of experiments is summarized in Camerer (2003).7

Remark By now you must have concluded that IESDS and rationalizability are two
sides of the same coin, and you might even think that they are one and the same. This
is almost true, and for two-player games it turns out that these two processes indeed
result in the same outcomes. We discuss this issue briefly in Section 6.3, after we
introduce the concept of mixed strategies. A more complete treatment can be found
in Chapter 2 of Fudenberg and Tirole (1991).

6. The average, 1
n

[(n − 1)20 + 19], lies between 19.5 (if n = 2) and 20 (for n → ∞), so that 3
4 of

the average lies between 14 5
8 and 15.

7. From my own experience running these games in classes of students, it is rare that the winning
number is below 4.
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4.3.6 Evaluating Rationalizability

In terms of existence, uniqueness, and implications for Pareto optimality, rationaliz-
ability is practically the same as IESDS. It will sometimes have bite, and may even
restrict behavior quite dramatically as in the examples given. But if applied to the
Battle of the Sexes, rationalizability will say “anything can happen.”

4.4 Summary

. Rational players will never play a dominated strategy and will always play a
dominant strategy when it exists.

. When players share common knowledge of rationality, the only strategies that
are sensible are those that survive IESDS.

. Rational players will always play a best response to their beliefs. Hence any
strategy for which there are no beliefs that justify its choice will never be
chosen.

. Outcomes that survive IESDS, rationalizability, or strict dominance need not
be Pareto optimal, implying that players may not be able to achieve desirable
outcomes if they are left to their own devices.

4.5 Exercises

4.1 Prove Proposition 4.1: If the game � = 〈
N, {Si}ni=1, {vi}ni=1

〉
has a strictly

dominant strategy equilibrium sD, then sD is the unique dominant strategy
equilibrium.

4.2 Weak Dominance: We call the strategy profile sW ∈ S a weakly dominant
strategy equilibrium if sW

i ∈ Si is a weakly dominant strategy for all i ∈ N ,
that is, if vi(si, s−i) ≥ vi(s

′
i
, s−i) for all s′

i
∈ Si and for all s−i ∈ S−i.

a. Provide an example of a game in which there is no weakly dominant
strategy equilibrium.

b. Provide an example of a game in which there is more than one weakly
dominant strategy equilibrium.

4.3 Discrete First-Price Auction: An item is up for auction. Player 1 values the
item at 3 while player 2 values the item at 5. Each player can bid either 0, 1,
or 2. If player i bids more than player j then i wins the good and pays his bid,
while the loser does not pay. If both players bid the same amount then a coin
is tossed to determine who the winner is, and the winner gets the good and
pays his bid while the loser pays nothing.

a. Write down the game in matrix form.
b. Does any player have a strictly dominated strategy?
c. Which strategies survive IESDS?

4.4 eBay’s Recommendation: It is hard to imagine that anyone is not familiar
with eBay, the most popular auction web site by far. In a typical eBay auction
a good is placed for sale, and each bidder places a “proxy bid,” which eBay
keeps in memory. If you enter a proxy bid that is lower than the current highest
bid, then your bid is ignored. If, however, it is higher, then the current bid
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increases up to one increment (say, $0.01) above the second highest proxy
bid. For example, imagine that three people have placed bids on a used laptop
of $55, $98, and $112. The current price will be at $98.01, and if the auction
ended the player who bid $112 would win at a price of $98.01. If you were to
place a bid of $103.45 then the player who bid $112 would still win, but at a
price of $103.46, while if your bid was $123.12 then you would win at a price
of $112.01.

Now consider eBay’s historical recommendation that you think hard about
the value you impute to the good and that you enter your true value as your
bid—no more, no less. Assume that the value of the good for each potential
bidder is independent of how much other bidders value it.

a. Argue that bidding more than your valuation is weakly dominated by
actually bidding your valuation.

b. Argue that bidding less than your valuation is weakly dominated by
actually bidding your valuation.

c. Use your analysis to make sense of eBay’s recommendation. Would
you follow it?

4.5 Iterated Elimination: In the following normal-form game, which strategy
profiles survive iterated elimination of strictly dominated strategies?

Player 2
L C R

U 6, 8 2, 6 8, 2

Player 1 M 8, 2 4, 4 9, 5

D 8, 10 4, 6 6, 7

4.6 Roommates: Two roommates each need to choose to clean their apartment,
and each can choose an amount of time ti ≥ 0 to clean. If their choices are ti
and tj , then player i’s payoff is given by (10 − tj )ti − t2

i
. (This payoff function

implies that the more one roommate cleans, the less valuable is cleaning for
the other roommate.)

a. What is the best response correspondence of each player i?
b. Which choices survive one round of IESDS?
c. Which choices survive IESDS?

4.7 Campaigning: Two candidates, 1 and 2, are running for office. Each has one
of three choices in running his campaign: focus on the positive aspects of
one’s own platform (call this a positive campaign [P ]), focus on the positive
aspects of one’s own platform while attacking one’s opponent’s campaign
(call this a balanced campaign [B]), or finally focus only on attacking one’s
opponent (call this a negative campaign [N ]). All a candidate cares about is
the probability of winning, so assume that if a candidate expects to win with
probability π ∈ [0, 1], then his payoff is π . The probability that a candidate
wins depends on his choice of campaign and his opponent’s choice. The
probabilities of winning are given as follows:

If both choose the same campaign then each wins with probability 0.5.
If candidate i uses a positive campaign while j = i uses a balanced

one then i loses for sure.
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If candidate i uses a positive campaign while j = i uses a negative
one then i wins with probability 0.3.

If candidate i uses a negative campaign while j = i uses a balanced
one then i wins with probability 0.6.

a. Model this story as a normal-form game. (It suffices to be specific
about the payoff function of one player and to explain how the other
player’s payoff function is different and why.)

b. Write down the game in matrix form.
c. What happens at each stage of elimination of strictly dominated strate-

gies? Will this procedure lead to a clear prediction?

4.8 Beauty Contest Best Responses: Consider the p-beauty contest presented in
Section 4.3.5.

a. Show that if player i believes that everyone else is choosing 20 then
19 is not the only best response for any number of players n.

b. Show that the set of best-response strategies to everyone else choosing
the number 20 depends on the number of players n.

4.9 Beauty Contest Rationalizability: Consider the p-beauty contest presented
in Section 4.3.5. Show that if the number of players n > 2 then the choices
{0, 1} for each player are both rationalizable, while if n = 2 then only the
choice of {0} by each player is rationalizable.

4.10 Popsicle Stands: Five lifeguard towers are lined up along a beach; the leftmost
tower is number 1 and the rightmost tower is number 5. Two vendors, players
1 and 2, each have a popsicle stand that can be located next to one of five
towers. There are 25 people located next to each tower, and each person will
purchase a popsicle from the stand that is closest to him or her. That is, if
player 1 locates his stand at tower 2 and player 2 at tower 3, then 50 people
(at towers 1 and 2) will purchase from player 1, while 75 (from towers 3, 4,
and 5) will purchase from vendor 2. Each purchase yields a profit of $1.

a. Specify the strategy set for each player. Are there any strictly domi-
nated strategies?

b. Find the set of strategies that survive rationalizability.
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Pinning Down Beliefs:

Nash Equilibrium

We have seen three solution concepts that offer some insights into predicting the
behavior of rational players in strategic (normal-form) games. The first, strict

dominance, relied only on rationality, and in some cases, like the Prisoner’s Dilemma,
it predicted a unique outcome, as it would in any game for which a dominant strategy
equilibrium exists. However, it often fails to exist. The two sister concepts of IESDS
and rationalizability relied on more than rationality by requiring common knowledge
of rationality. In return a solution existed for every game, and for some games there
was a unique prediction. Moreover, whenever there is a strict dominant equilibrium,
it also uniquely survives IESDS and rationalizability. Even for some games for which
the strict-dominance solution did not apply, like the Cournot duopoly, we obtained a
unique prediction from IESDS and rationalizability.

However, when we consider a game like the Battle of the Sexes, none of these
concepts had any bite. Dominant strategy equilibrium did not apply, and both IESDS
and rationalizability could not restrict the set of reasonable behavior:

Chris
O F

Alex
O 2, 1 0, 0

F 0, 0 1, 2

For example, we cannot rule out the possibility that Alex goes to the opera while Chris
goes to the football game, because Alex may behave optimally given his belief that
Chris is going to the opera, and Chris may behave optimally given his belief that Alex
is going to the football game. Yet there is something troubling about this outcome.
If we think of this pair of actions not only as actions, but as a system of actions and
beliefs, then there is something of a dissonance: indeed the players are playing best
responses to their beliefs, but their beliefs are wrong!

In this chapter we make a rather heroic leap that ties together beliefs and actions
and results in the most central and best-known solution concept in game theory. As
already mentioned, for dominant strategy equilibrium we required only that players
be rational, while for IESDS and rationalizability we required common knowledge

79
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of rationality. Now we introduce a much more demanding concept, that of the Nash
equilibrium, first put forth by John Nash (1950a), who received the Nobel Prize in
Economics for this achievement.1

5.1 Nash Equilibrium in Pure Strategies

To cut to the chase, a Nash equilibrium is a system of beliefs and a profile of actions
for which each player is playing a best response to his beliefs and, moreover, players
have correct beliefs. Another common way of defining a Nash equilibrium, which
does not refer to beliefs, is as a profile of strategies for which each player is choosing
a best response to the strategies of all other players. Formally we have:

Definition 5.1 The pure-strategy profile s∗ = (s∗
1 , s∗

2 , . . . , s∗
n
) ∈ S is a Nash equi-

librium if s∗
i

is a best response to s∗
−i

, for all i ∈ N , that is,

vi(s
∗
i
, s∗

−i
) ≥ vi(s

′
i
, s∗

−i
) for all s′

i
∈ Si and all i ∈ N.

Consider as an example the following two-player discrete game, which we used
to demonstrate IESDS:

Player 2
L C R

U 4, 3 5, 1 6, 2

Player 1 M 2, 1 8, 4 3, 6

D 3, 0 9, 6 2, 8

In this game, the only pair of pure strategies that survived IESDS is the pair (U, L). As
it turns out, this is also the only pair of strategies that constitutes a Nash equilibrium.
If player 2 is playing the column L, then player 1’s best response is BR1(L) = {U};
at the same time, if player 1 is playing the row U , then player 2’s best response is
BR2(U) = {L}.

What about the other games we saw? In the Prisoner’s Dilemma, the unique
Nash equilibrium is (F, F ). This should be easy to see: if each player is playing
a dominant strategy then he is by definition playing a best response to anything his
opponent is choosing, and hence it must be a Nash equilibrium. As we will soon see in
Section 5.2.3, and as you may have already anticipated, the unique Nash equilibrium
in the Cournot duopoly game that we discussed earlier is (q1, q2) = (30, 30).

The relationship between strict-dominance, IESDS, rationalizability, and Nash
equilibrium outcomes in many of the examples we have analyzed is no coincidence.
There is a simple relationship between the concepts we previously explored and that
of Nash equilibrium, as the following proposition clearly states:

Proposition 5.1 Consider a strategy profile s∗ = (s∗
1 , s∗

2 , . . . , s∗
n
). If s∗ is either

1. a strict dominant strategy equilibrium,

2. the unique survivor of IESDS, or

1. Nash’s life was the subject of a very successful movie, A Beautiful Mind, based on the book by
Sylvia Nasar (1998).
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3. the unique rationalizable strategy profile,

then s∗ is the unique Nash equilibrium.

This proposition is not difficult to prove, and the proof is left as exercise 5.1 at
the end of the chapter. The intuition is of course quite straightforward: we know that
if there is a strict dominant strategy equilibrium then it uniquely survives IESDS and
rationalizability, and this in turn must mean that each player is playing a best response
to the other players’ strategies.

At the risk of being repetitive, let me emphasize the requirements for a Nash
equilibrium:

1. Each player is playing a best response to his beliefs.

2. The beliefs of the players about their opponents are correct.

The first requirement is a direct consequence of rationality. It is the second
requirement that is very demanding and is a tremendous leap beyond the requirements
we have considered so far. It is one thing to ask people to behave rationally given their
beliefs (play a best response), but it is a totally different thing to ask players to predict
the behavior of their opponents correctly.

Then again it may be possible to accept such a strong requirement if we allow
for some reasoning that is beyond the physical structure of the game. For example,
imagine, in the Battle of the Sexes game, that Alex is an influential person—people
just seem to follow Alex, and this is something that Alex knows well. In this case Chris
should believe, knowing that Alex is so influential, that Alex would expect Chris to
go to the opera. Knowing this, Alex should believe that Chris will indeed believe that
Alex is going to the opera, and so Chris will go to the opera too.

It is important to note that this argument is not that Chris likes to please Alex—such
an argument would change the payoff of the game and increase Chris’s payoff from
pleasing Alex. Instead this argument is only about beliefs that are “self-fulfilling.”
That is, if these beliefs have some weight to them, which may be based on past
experience or on some kind of deductive reasoning, then they will be self-fulfilling
in that they support the behavior that players believe will occur.

Indeed (O, O) is a Nash equilibrium. However, notice that we can make the
symmetric argument about Chris being an influential person: (F, F ) is also a Nash
equilibrium. As the external game theorist, however, we should not say more than
“one of these two outcomes is what we predict.” (You should be able to convince
yourself that no other pair of pure strategies in the Battle of the Sexes game is a Nash
equilibrium.)

5.1.1 Pure-Strategy Nash Equilibrium in a Matrix

This short section presents a simple method to find all the pure-strategy Nash equi-
libria in a matrix game if at least one exists. Consider the following two-person finite
game in matrix form:

Player 2
L C R

U 7, 7 4, 2 1, 8

Player 1 M 2, 4 5, 5 2, 3

D 8, 1 3, 2 0, 0
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It is easy to see that no strategy is dominated and thus that strict dominance cannot be
applied to this game. For the same reason, IESDS and rationalizability will conclude
that anything can happen. However, a pure-strategy Nash equilibrium does exist, and
in fact it is unique. To find it we use a simple method that builds on the fact that any
Nash equilibrium must call for a pair of strategies in which each of the two players
is playing a best response to his opponent’s strategy. The procedure is best explained
in three steps:

Step 1: For every column, which is a strategy of player 2, find the highest payoff
entry for player 1. By definition this entry must be in the row that is a best
response for the particular column being considered. Underline the pair of
payoffs in this row under this column:

Player 2
L C R

U 7, 7 4, 2 1, 8

Player 1 M 2, 4 5, 5 2, 3

D 8, 1 3, 2 0, 0

Step 1 identifies the best response of player 1 for each of the pure strategies
(columns) of player 2. For instance, if player 2 is playing L, then player 1’s
best response is D, and we underline the payoffs associated with this row in
column 1. After performing this step we see that there are three pairs of pure
strategies at which player 1 is playing a best response: (D, L), (M, C), and
(M, R).

Step 2: For every row, which is a strategy of player 1, find the highest payoff entry
for player 2. By definition this entry must be in the column that is a best
response for the particular row being considered. Overline the pair of payoffs
in this entry:

Player 2
L C R

U 7, 7 4, 2 1, 8

Player 1 M 2, 4 5, 5 2, 3

D 8, 1 3, 2 0, 0

Step 2 similarly identifies the pairs of strategies at which player 2 is playing
a best response. For instance, if player 1 is playing D, then player 2’s best
response is C, and we overline the payoffs associated with this column in row
3. We can continue to conclude that player 2 is playing a best response at three
strategy pairs: (D, C), (M, C), and (U, R).

Step 3: If any matrix entry has both an under- and an overline, it is the outcome of
a Nash equilibrium in pure strategies.

This follows immediately from the fact that both players are playing a
best response at any such pair of strategies. In this example we find that
(M, C) is the unique pure-strategy Nash equilibrium—it is the only pair of
pure strategies for which both players are playing a best response. If you apply
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this approach to the Battle of the Sexes, for example, you will find both pure-
strategy Nash equilibria, (O, O) and (F, F ). For the Prisoner’s Dilemma only
(F, F ) will be identified.

5.1.2 Evaluating the Nash Equilibria Solution

Considering our criteria for evaluating solution concepts, we can see from the Battle
of the Sexes example that we may not have a unique Nash equilibrium. However,
as alluded to in our earlier discussion of the Battle of the Sexes game, there is no
reason to expect that we should. Indeed we may need to entertain other aspects of an
environment in which players interact, such as social norms and historical beliefs, to
make precise predictions about which of the possible Nash equilibria may result as
the more likely outcome.

In Section 5.2.4 we will analyze a price competition game in which a Nash
equilibrium may fail to exist. It turns out, however, that for quite general conditions
games will have at least one Nash equilibrium. For the interested reader, Section 6.4
discusses some conditions that guarantee the existence of a Nash equilibrium, which
was a central part of Nash’s Ph.D. dissertation. This fact gives the Nash solution
concept its power—like IESDS and rationalizability, the solution concept of Nash
is widely applicable. It will, however, usually lead to more refined predictions than
those of IESDS and rationalizability, as implied by proposition 5.1.

As with the previous solution concepts, we can easily see that Nash equilibrium
does not guarantee Pareto optimality. The theme should be obvious by now: left to
their own devices, people in many situations will do what is best for them, at the
expense of social efficiency. This point was made quite convincingly and intuitively
in Hardin’s (1968) “tragedy of the commons” argument, which we explore in Sec-
tion 5.2.2. This is where our focus on self-enforcing outcomes has its bite: our solution
concepts took the game as given, and they imposed rationality and common knowl-
edge of rationality to try to see what players would choose to do. If they each seek
to maximize their individual well-being then the players may hinder their ability to
achieve socially optimal outcomes.

5.2 Nash Equilibrium: Some Classic Applications

The previous section introduced the central pillar of modern noncooperative game
theory, the Nash equilibrium solution concept. It has been applied widely in econom-
ics, political science, legal studies, and even biology. In what follows we demonstrate
some of the best-known applications of the concept.

5.2.1 Two Kinds of Societies

The French philosopher Jean-Jacques Rousseau presented the following situation that
describes a trade-off between playing it safe and relying on others to achieve a larger
gain. Two hunters, players 1and 2, can each choose to hunt a stag (S), which provides
a rather large and tasty meal, or hunt a hare (H )—also tasty, but much less filling.
Hunting stags is challenging and requires mutual cooperation. If either hunts a stag
alone, the chance of success is negligible, while hunting hares is an individualistic
enterprise that is not done in pairs. Hence hunting stags is most beneficial for society
but requires “trust” between the hunters in that each believes that the other is joining
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forces with him. The game, often referred to as the Stag Hunt game, can be described
by the following matrix:

S H

S 5, 5 0, 3

H 3, 0 3, 3

It is easy to see that the game has two pure-strategy equilibria: (S, S) and (H, H).
However, the payoff from (S, S) Pareto dominates that from (H, H). Why then would
(H, H) ever be a reasonable prediction? This is precisely the strength of the Nash
equilibrium concept. If each player anticipates that the other will not join forces,
then he knows that going out to hunt the stag alone is not likely to be a successful
enterprise and that going after the hare will be better. This belief would result in
a society of individualists who do not cooperate to achieve a better outcome. In
contrast, if the players expect each other to be cooperative in going after the stag, then
this anticipation is self-fulfilling and results in what can be considered a cooperative
society. In the real world, societies that may look very similar in their endowments,
access to technology, and physical environments have very different achievements,
all because of self-fulfilling beliefs or, as they are often called, norms of behavior.2

5.2.2 The Tragedy of the Commons

The tragedy of the commons refers to the conflict over scarce resources that re-
sults from the tension between individual selfish interests and the common good;
the concept was popularized by Hardin (1968). The central idea has proven useful
for understanding how we have come to be on the brink of several environmental
catastrophes.

Hardin introduces the hypothetical example of a pasture shared by local herders.
Each herder wants to maximize his yield, increasing his herd size whenever
possible. Each additional animal has a positive effect for its herder, but the cost of
that extra animal, namely degradation of the overall quality of the pasture, is shared
by all the other herders. As a consequence the individual incentive for each herder
is to grow his own herd, and in the end this scenario causes tremendous losses for
everyone. To those trained in economics, it is yet another example of the distortion
that results from the “free-rider” problem. It should also remind you of the Prisoner’s
Dilemma, in which individuals driven by selfish incentives cause pain to the group.

In the course of his essay, Hardin develops the theme, drawing on examples of
such latter-day commons as the atmosphere, oceans, rivers, fish stocks, national parks,
advertising, and even parking meters. A major theme running throughout the essay is
the growth of human populations, with the earth’s resources being a global commons.
(Given that this example concerns the addition of extra “animals” to the population,
it is the closest to his original analogy.)

2. For an excellent exposition of the role that beliefs play in societies, see Greif (2006). The idea that
coordinated changes are needed for developing countries to move out of poverty and into industrial
growth dates back to Paul Rosenstein-Rodan’s theory of the “big push,” which is explored further in
Murphy et al. (1989).
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Let’s put some game theoretic analysis behind this story. Imagine that there are n

players, say firms, in the world, each choosing how much to produce. Their production
activity in turn consumes some of the clean air that surrounds our planet. There is a
total amount of clean air equal to K , and any consumption of clean air comes out
of this common resource. Each player i chooses his own consumption of clean air
for production, ki ≥ 0, and the amount of clean air left is therefore K − ∑n

i=1 ki.
The benefit of consuming an amount ki ≥ 0 gives player i a benefit equal to ln(ki),
and no other player benefits from i’s choice. Each player also enjoys consuming the
remainder of the clean air, giving each a benefit ln(K − ∑n

i=1 ki). Hence the payoff
for player i from the choice k = (k1, k2, . . . , kn) is equal to

vi(ki, k−i) = ln(ki) + ln

(
K −

n∑
j=1

kj

)
. (5.1)

To solve for a Nash equilibrium we can compute the best-response correspon-
dences for each player and then find a strategy profile for which all the best-response
functions are satisfied together. This is an important point that warrants further em-
phasis. We know that given k−i, player i will want to choose an element in BRi(k−i).

Hence if we find some profile of choices (k∗
1, k∗

2, . . . , k∗
n
) for which k∗

i
= BRi(k

∗
−i

)

for all i ∈ N then this must be a Nash equilibrium.
This means that if we derive all n best-response correspondences, and it turns

out that they are functions (unique best responses), then we have a system of n

equations, one for each player’s best-response function, with n unknowns, the choices
of each player. Solving this system will yield a Nash equilibrium. To get player i’s
best-response function (and we will verify that it is a function), we write down the
first-order condition of his payoff function:

∂vi(ki, k−i)

∂ki

= 1

ki

− 1

K − ∑n
j=1 kj

= 0,

and this gives us player i’s best response function,3

BRi(k−i) = K − ∑
j =i kj

2
.

We therefore have n such equations, one for each player, and if we substitute the
choice ki instead of BRi(k−i) we get the n equations with n unknowns that need to
be solved.

We proceed to solve the equilibrium for two players and leave the n-player case as
exercise 5.7 at the end of the chapter. Letting ki(kj) be the best response of player i,
we have two best-response equations:

k1(k2) = K − k2

2
and k2(k1) = K − k1

2
.

These two equations are plotted in Figure 5.1. As the figure illustrates, the more player
j consumes, the less player i wants to consume. In particular if player 2 consumes
nothing (effectively not existing), then player 1 will consume k1 = K

2 , and as player

3. Of course, we are implicitly assuming that
∑n

j=1 kj ≤ K .
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k2(k1) =
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2

FIGURE 5.1 Best-response functions: two-player tragedy of the commons.

2’s consumption increases toward K , player 1’s consumption decreases toward zero.
If we solve the two best-response functions simultaneously, we find the unique Nash
equilibrium, which has both players playing k1 = k2 = K

3 , as shown in Figure 5.1.
Now we can ask whether this two-player society could do better. Is consuming

K
3 for each player too much or too little? The right way to answer these questions

is using the Pareto criterion: can we find another consumption profile that will make
everyone better off? If we can, we can compare that with the Nash equilibrium to
answer this question. To find such a profile we’ll use a little trick: we will maximize
the sum of all the payoff functions, which we can think of as the “world’s payoff
function,” w(k1, k2). I won’t go into the moral justification for using this approach,
but it will turn out to be a useful tool.4 The function we are maximizing is, therefore,

max
k1,k2

w(k1, k2) =
2∑

i=1

vi(k1, k2) =
2∑

i=1

ln(ki) + 2 ln

(
K −

2∑
i=1

ki

)
.

The first-order conditions for this problem are

∂w(k1, k2)

∂k1
= 1

k1
− 2

K − k1 − k2
= 0

and
∂w(k1, k2)

∂k2
= 1

k2
− 2

K − k1 − k2
= 0.

4. In general, maximizing the sum of utility functions, or maximizing total welfare, will result in a
Pareto-optimal outcome, but it need not be the only one. In this example, this maximization gives
us the symmetric Pareto-optimal consumption profile because the payoff function of each player is

concave in his own consumption with ∂vi
∂ki

> 0, ∂2vi

∂k2
i

< 0, and limki→0
∂vi
∂ki

= ∞.
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Solving these two equations simultaneously will result in Pareto-optimal choices for
k1 and k2. The unique solution to these two equations yields k1 = k2 = K

4 , which
means that from a social point of view the Nash equilibrium has the two players each
consuming too much clean air. Indeed they would both be better off if each consumed
ki = K

4 instead of ki = K
3 .5 In exercise 5.7 at the end of the chapter you are asked to

show the consequences of having more than two players.
Thus, as Hardin puts it, giving people the freedom to make choices may make

them all worse off than if those choices were somehow regulated. Of course the
counterargument is whether we can trust a regulator to keep things under control;
if not, the question remains which is the better of the two evils—an answer that game
theory cannot offer!

5.2.3 Cournot Duopoly

Let’s revisit the Cournot game with demand P = a − bq and cost functions ci(qi) =
ciqi for firms i ∈ {1, 2}. The maximization problem that firm i faces when it believes
that its opponent chooses quantity qj is

max
qi

vi(qi, qj) = (a − bqi − bqj)qi − ciqi.

Recall that the best-response function for each firm is given by the first-order condi-
tion, so that

BRi(qj) = a − bqj − ci

2b
.

This means that each firm chooses quantities as follows:

q1 = a − bq2 − c1

2b
and q2 = a − bq1 − c2

2b
. (5.2)

A pair of quantities (q1, q2) that are mutual best responses will be a Cournot-
Nash equilibrium, which occurs when we solve both best-response functions (5.2)
simultaneously. The best-response functions shown in Figure 5.2 depict the special
case we solved earlier, in which a = 100, b = 1, and c1 = c2 = 10, in which case the
unique Nash equilibrium is q1 = q2 = 30.

Notice that the Nash equilibrium coincides with the unique strategies that survive
IESDS and rationalizability, which is the conclusion of proposition 5.1. An exer-
cise that is left for you (exercise 5.8) is to explore the Cournot model with many
firms.

5. To see this we can calculate �vi , the difference between a player’s payoff when we maximize

total surplus
(

which we solved as ki = K
4

)
and his Nash equilibrium payoff:

�vi = ln

(
K

4

)
+ ln

(
K

2

)
− ln

(
K

3

)
− ln

(
K

3

)
= ln(K) − ln(4) + ln(K) − ln(2) − ln(K) + ln(3) − ln(K) + ln(3)

= 2 ln(3) − ln(2) − ln(4)

= 0.051 > 0.
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FIGURE 5.2 Cournot duopoly game: best-response functions and Nash equilibrium.

5.2.4 Bertrand Duopoly

The Cournot model assumed that the firms choose quantities and the market price
adjusts to clear the demand. However, one can argue that firms often set prices and
let consumers choose from where they will purchase, rather than setting quantities
and waiting for the market price to equilibrate demand. We now consider the game
in which each firm posts a price for otherwise identical goods. This was the situation
modeled and analyzed by Joseph Bertrand (1883).

As before, assume that demand is given by p = 100 − q and cost functions
ci(qi) = 10qi for firms i ∈ {1, 2}. Clearly we would expect all buyers to buy from the
firm whose price is the lowest. What happens if there is a tie? Let’s assume that the
market splits equally between the two firms. This gives us the following normal-form
game:

Players: N = {1, 2}.
Strategy sets: Si = [0, ∞] for i ∈ {1, 2}, and firms choose prices pi ∈ Si.

Payoffs: To calculate payoffs we need to know what the quantities will be for each
firm. Given our assumption on ties, the quantities are given by

qi(pi, pj) =

⎧⎪⎨⎪⎩
100 − pi if pi < pj

0 if pi > pj
100−pi

2 if pi = pj,

which in turn means that the payoff function is given by

vi(pi, pj) =

⎧⎪⎨⎪⎩
(100 − pi)(pi − 10) if pi < pj

0 if pi > pj
100−pi

2 (pi − 10) if pi = pj.
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Now that the description of the game is complete, we can try to calculate the best-
response functions of both firms. To do this we will start with a slight modification
that is motivated by reality: assume that prices cannot be any real number p ≥ 0,
but instead are limited to increments of some small fixed value, say ε > 0, which
implies that the strategy (price) sets are Si = {0, ε, 2ε, 3ε, . . .}. For example, if we
are considering cents as the price increment, so that ε = 0.01, then the strategy set
will be Si = {0, 0.01, 0.02, 0.03, . . .}. We will very soon see what happens when this
small denomination ε becomes very small and approaches zero.

We derive the best response of a firm by exhausting the relevant situations that it
can face. It is useful to start with the situation in which only one monopolistic firm
is in the market. We can calculate the monopoly price, which is the price that would
maximize a single firm’s profits if there were no competitors. This would be obtained
by maximizing vi(p) = pq − 10q = (100 − p)(p − 10) and the first-order condition
is 110 − 2p = 0, resulting in an optimal price of p = 55, in a quantity of q = 45, and
in profits equal to $2025.

Let us now turn back to the duopoly with two firms and consider the case in which
pj > 55. It is easy to see that firm i can act as if there was no competition: just set the
monopoly price of 55 and get the whole market. Hence we conclude that if pj > 55
then the best response of firm i is to set pi = 55.

It is also easy to see that in the case in which pj < 10 then the best response of
firm i is to set a price that is higher than that set by firm j . If it charges a price pi ≤ pj

then it will sell a positive quantity at a price that is lower than its costs, causing firm
i to lose money. If it charges a price pi > pj then it sells nothing and loses nothing.

Now consider the case 55 ≥ pj ≥ 10.02. Firm i can choose one of three options:
either set pi > pj and get nothing, set pi = pj and split the market, or set pi < pj

and get the whole market. It is not too hard to establish that firm i wants to just un-
dercut firm j and capture the whole market, a goal that can be accomplished by
setting a price of pi = pj − 0.01. To see this, observe that if pj > 10.01 then

by setting pi = pj firm i gets vi = 100−pj

2 (pj − 10), while if it sets pi = pj − 0.01 it
will get v′

i
= (100 − (pj − 0.01))((pj − 0.01) − 10). We can calculate the difference

between the two as follows:

�vi = v′
i
− vi = (100 − (pj − 0.01))((pj − 0.01) − 10) − 100 − pj

2
(pj − 10)

= 55.02pj − 0.5p2
j
− 501.1.

It is easy to check that �vi is positive at pj = 10.02 (it is equal to 0.0002). To see
that it is positive for all values of p ∈ [10.02, 55], we show that �vi has a positive
derivative for any pj ∈ [10.02, 55], which implies that this difference grows even
more positive as pj increases in this domain. That is,

d�vi

dpj

= 55.02 − pj > 0 for all p < 55.02.

Thus we conclude that when pj ∈ [10.02, 55] the best response of firm i is to charge
$0.01 less, that is, pi = pj − 0.01.

To complete the analysis, we have to explore two final cases: pj = 10.01 and
pj = 10. The three options to consider are setting pi = pj , pi > pj , or pi < pj .
When pj = 10.01 then undercutting j ’s price means setting pi = 10, which gives
i zero profits and is the same as setting pi > pj . Thus the best response is setting
pi = pj = 10.01 and splitting the market with very low profits. Finally, if pj = 10
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then any choice of price pi ≥ pj will yield firm i zero profits, whereas setting pi < pj

causes losses. Therefore any price pi ≥ pj is a best response when pj = 10.
In summary we calculated:

BRi(pj) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
55 if pj > 55

pj − 0.01 if 55 ≥ pj ≥ 10.02

10.01 if pj = 10.01

pi ∈ {10, 10.01, 10.02, 10.03, . . .} if pj = 10.

Now given that firm j ’s best response is exactly symmetric, it should not be hard
to see that there are two Nash equilibria that follow immediately from the form of
the best-response functions: The best response to pj = 10.01 is BRi(10.01) = 10.01,
and a best response to pj = 10 is pi = 10 or 10 ∈ BRi(10). Thus the two Nash
equilibria are

(p1, p2) ∈ {(10, 10), (10.01, 10.01)}.
It is worth pausing here for a moment to address a common point of confusion,

which often arises when a player has more than one best response to a certain action
of his opponents. In this example, when p2 = 10, player 1 is indifferent regarding
any price at or above 10 that he chooses: if he splits the market with p1 = 10 he gets
half the market with no profits, and if he sets p1 > 10 he gets no customers and has
no profits. One may be tempted to jump to the following conclusion: if player 2 is
choosing p2 = 10 then any choice of p1 ≥ 10 together with p2 = 10 will be a Nash
equilibrium. This is incorrect! It is true that player 1 is playing a best response with
any one of his choices, but if p1 > 10 then p2 = 10 is not a best response of player 2
to p1, as we can observe from the foregoing analysis.

Comparing the outcome of the Bertrand game to that of the Cournot game is an
interesting exercise. Notice that when firms choose quantities (Cournot), the unique
Nash equilibrium is q1 = q2 = 30. A quick calculation shows that for the aggregate
quantity of q = q1 + q2 = 60 we get a demand price of p = 40 and each firm makes a
profit of $900. When instead these firms compete on prices, the two possible equilibria
have either zero profits when both choose p1 = p2 = $10 or negligible profits (about
$0.45) when they each choose p1 = p2 = $10.01. Interestingly, for both the Cournot
and Bertrand games, if we had only one player then he would maximize profits by
choosing the monopoly price (or quantity) of $55 (or 45 units) and earn a profit of
$2025.

The message of this analysis is quite striking: one firm may have monopoly
power, but when we let one more firm compete, and they compete on prices, then
the market will behave competitively—if both choose a price of $10 then price will
equal marginal costs! Notice that if we add a third and a fourth firm this will not change
the outcome; prices will have to be $10 (or practically the same at $10.01) for all firms
in the Nash (Bertrand) equilibrium. This is not the case for Cournot competition, in
which firms manage to obtain some market power as long as the number of firms is
not too large.

A quick observation should lead you to realize that if we let ε be smaller than
$0.01, the conclusions we reached earlier will be sustained, and we will have two
Nash equilibria, one with p1 = p2 = 10 and one with p1 = p2 = 10 + ε. Clearly these
two equilibria become “closer” in profits as ε becomes smaller, and they converge to
each other as ε approaches zero.
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It turns out that if we assume that prices can be chosen as any real number, we
get a very “clean” result: the unique Bertrand-Nash equilibrium will have prices
equal to marginal costs, implying a competitive outcome. We prove this for the more
general symmetric case in which ci(qi) = cqi for both firms and demand is equal to
p = a − bq with a > c.6

Proposition 5.2 For ε = 0 (prices can be any real number) there is a unique Nash
equilibrium: p1 = p2 = c.

Proof First note that in any equilibrium pi ≥ c for both firms—otherwise at least
one firm offering a price lower than c will lose money (pay the consumers to take its
goods!). We therefore need to show that pi > c cannot be part of any equilibrium. We
can see this in two steps:

1. If p1 = p2 = p̂ > c then each would benefit from lowering its price to some
price p̂ − ε (ε very small) and get the whole market for almost the same price.

2. If p1 > p2 ≥ c then player 2 would want to deviate to p1 − ε (ε very small)
and earn higher profits.

It is easy to see that p1 = p2 = c is an equilibrium: Firm i’s best response to pj = c

is pi(c) ≥ c. That is, any price at or above marginal costs c is a best response to the
other player charging c. Hence p1 = p2 = c is the unique equilibrium because each is
playing a best response to the other’s choice and neither wants to deviate to a different
price.

We will now see an interesting variation of the Bertrand game. Assume that
ci(qi) = ciqi represents the cost of each firm as before. Now, however, let c1 = 1
and c2 = 2 so that the two firms are not identical: firm 1 has a cost advantage. Let the
demand still be p = 100 − q.

Now consider the case with discrete price jumps with ε = 0.01. The firms are
not symmetric in that firm 1 has a lower marginal cost than firm 2, and unlike the
example in which both had the same costs we cannot have a Nash equilibrium in
which both charge the same price. To see this, imagine that p1 = p2 = 2.00. Firm 2
has no incentive to deviate, but this is no longer true for firm 1, which will be happy
to cut its price by 0.01. We know that firm 2 will not be willing to sell at a price below
p = 2, so one possible Nash equilibrium (you are asked to find more in exercise 5.12
at the end of this chapter) is

(p∗
1, p∗

2) = (1.99, 2.00).

Now we can ask ourselves what happens if ε = 0. If we would think of using a
“limit” approach to answer this question then we may expect a result similar to the one
we saw before: if we focus on the equilibrium pair (p∗

1, p∗
2) = (2 − ε, 2) then as ε → 0

we must get the Nash equilibrium p1 = p2 = 2. But is this really an equilibrium?
Interestingly, the answer is no! To see this, consider the best response of firm 1. Its
payoff function is not continuous when firm 2 offers a price of 2 (or any other positive
price). The profit function of firm 1, as a function of p1 when p2 = 2, is depicted in
Figure 5.3. The figure first draws the profits of firm 1 as if it were a monopolist with

6. The condition a > c is necessary for firms to be able to produce positive quantities and not lose
money.
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Monopoly
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Duopoly
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v1(p1, p2)

p1p1
Mp2

FIGURE 5.3 The profit function in the Bertrand duopoly game.

no competition (the hump-shaped curve), and if this were the case it would charge
its monopoly price pM

1 = 50.5.7 If firm 2 charges more than the monopoly price, this
will have no impact on the choice of firm 1—it will still charge the monopoly price.
If, however, firm 2 charges a price p2 that is less than the monopoly price then there is
a discontinuity in the payoff function of firm 1: as its price p1 approaches p2 from
below, its profits rise. However, when it hits p2 exactly then it will split the market and
see its profits drop by half. Algebraically the profit function of firm 1 when p2 = 2 is
given by

vi(p1, 2) =
⎧⎨⎩

(100 − p1)(p1 − 1) if p1 < 2
(100−p1)(p1−1)

2 if p1 = 2

0 if p1 > 2.

This discontinuity causes firm 1 to not have a well-defined best response corre-
spondence when p2 < 50.5. Firm 1 wants to set a price as close to p2 as it can, but it
does not want to reach p2 because then it splits the market and experiences a sizable
decrease in profits. Once its price goes above p2 then firm 1’s profits drop further to
zero. Indeed the consequence must be that a Nash equilibrium does not exist precisely
because firm 1 does not have a “well-behaved” payoff function.

To see this directly, first observe that there cannot be a Nash equilibrium with
pi ≥ pj > 2: firm i would want to deviate to some p ∈ (2, pj). Second, observe that
there cannot be a Nash equilibrium with pi ≤ pj < 1: firm i would want to deviate to
any p > pj . Hence if there is a Nash equilibrium, it must have the prices between 1
and 2. Similar to the first observation, within this range we cannot have p1 ≥ p2 (firm

7. The maximization here is for the profit function v1 = (100 − p)(p − c1), where c1 = 1.
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1 would want to deviate just slightly below p2), and similar to the second observation,
we cannot have p2 ≤ p1 (firm 2 would want to deviate to any price above p1).

This problem of payoff discontinuity is one that we will avoid in the remainder
of this book precisely because it will often lead to problems of nonexistence of
equilibrium. We need to remember that it is a problem that disappears when we
have some discreteness in the actions of players, and if we think that our choice of
continuous strategies is one of convenience (to use calculus for optimization), then
we may feel comfortable enough ignoring such anomalies. We discuss the existence
of Nash equilibria further in Section 6.4.

Remark It is worth pointing out an interesting difference between the Cournot game
and the Bertrand game. In the Cournot game the best-response function of each player
is downward sloping. That is, the more player j produces, the lower is the best-
response quantity of player i. In the Bertrand game, however, for prices between
marginal costs (equal to 10 in the leading example) and the monopoly price (equal to
45), the higher the price set by player j, the higher is the best-response price of player
i. These differences have received some attention in the literature. Games for which
the best response of one player decreases in the choice of the other, like the Cournot
game, are called games with strategic substitutes. Another example of a game with
strategic substitutes is the tragedy of the commons. In contrast, games for which the
best response of one player increases in the choice of the other, like the Bertrand
game, are called games with strategic complements. Another example of a game
with strategic complements appears in exercise 5.10 at the end of the chapter. There
are several interesting insights to be derived from distinguishing between strategic
substitutes and strategic complements. For a nice example see Fudenberg and Tirole
(1984).

5.2.5 Political Ideology and Electoral Competition

Given a population of citizens who vote for political candidates, how should candi-
dates position themselves along the political spectrum? One view of the world is that
a politician cares only about representing his true beliefs, and that drives the cam-
paign. Another more cynical view is that politicians care only about getting elected
and hence will choose a platform that maximizes their chances. This is precisely the
view taken in the seminal model introduced by Hotelling (1929).8

To consider a simple variant of Hotelling’s original model, imagine that there are
two politicians, each caring only about being elected. There are 101 citizens, each
labeled by an integer −50, −49, . . . , 0, . . . , +49, +50. Each citizen has political
preferences: for simplicity let’s call the “−50” citizen the most “left”-leaning citizen
and the “+50” citizen the most “right”-leaning citizen.

Each candidate i chooses his platform as a policy ai ∈ {−50, −49, . . . , 0, . . . ,

+49, +50} so that each policy is associated with the citizen for whom this policy is
ideal. Each citizen chooses the candidate whose platform is closest to his political
preferences. For example, if candidate 1 chooses platform a1 = −15 while candidate
2 chooses platform a2 = +22, then all the citizens at or above +22 will surely vote

8. Hotelling’s main object of analysis was competition between firms. However, he did also discuss
the example of electoral competition, yielding important insights into rational choice–based political
science.
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–50 5043a1 = –15 a2 = 22

Vote for candidate 2Vote for candidate 1

FIGURE 5.4 The Hotelling model of voting behavior.

for candidate 2, all the citizens at or below −15 will surely vote for candidate 1, and
those in between will split between the candidates. In particular those citizens at or
below 3 will vote for candidate 1, while those at or above 4 will vote for candidate 2.
The reason is that −15 is at a distance of 18 away from citizen 3, while +22 is at a
distance of 19 away. This is shown in Figure 5.4.

The outcome is determined by majority rule: if a majority of citizens vote for
candidate i then he wins. Since there is an odd number of voters, unless someone is
indifferent, one candidate will always win. In the event that a citizen is indifferent
between the candidates then the citizen tosses a coin to determine for whom to vote.
Assume that our candidates want to win, so that they prefer winning to a tie, and
they prefer a tie to losing. Now consider the best response of player i. If player
j chooses a policy aj > 0 then by choosing ai = aj or ai = −aj there will be a
tie.9 By choosing ai > aj or ai < −aj , player i will surely lose, while by choosing
ai ∈ [−aj + 1, aj − 1], player i will win, so any platform in this interval is a best
response to aj > 0. Similarly a symmetric argument implies that any platform in the
interval ai ∈ [aj + 1, −aj − 1] is a best response to aj < 0. Observe that the best
response to aj = 0 is zero.10 Thus we can write the best-response correspondence of
each player as

BRi(aj) =

⎧⎪⎨⎪⎩
[aj + 1, −aj − 1] if aj < 0

0 if aj = 0

[−aj + 1, aj − 1] if aj > 0.

From here it is easy to see that there is a unique Nash equilibrium, a1 = a2 = 0,
implying that both candidates position their platforms smack in the middle of the
political spectrum! Indeed, as Hotelling (1929, p. 54) wrote, “The competition for
votes between the Republican and Democratic parties does not lead to a clear drawing
of issues, and adoption of two strongly contrasted positions between which the voter
may choose. Instead, each party strives to make its platform as much like the other’s
as possible.” A fine insight in 1929, and one that is echoed frequently today.

This simple example is related to a powerful result known as the median voter
theorem. It states that if voters are different from one another along a single-
dimensional “preference” line, as in Hotelling’s model, and if each prefers his own
political location, with other platforms being less and less attractive the farther away

9. For example, if candidate 1 chooses a1 = −10 and candidate 2 chooses a2 = 10 then all the
“positive” citizens will vote for candidate 2, all the “negative” ones will vote for candidate 1,
and citizen 0 is indifferent so he may choose not to vote. In this event there will be a tie. If we force
every citizen to vote one way or another then there will be no ties because we assumed an odd number
of citizens.
10. Notice that the best response to aj = −1 or aj = +1 is also unique and equal to ai = 0, because

in these cases the interval previously identified collapses to 0.
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they fall to either side of that location,11 then the political platform located at the
median voter will defeat any other platform in a simple majority vote. The theorem
was first articulated by Black (1948), and it received prominence in Downs’s famous
1957 book. Nevertheless one can see how the seed of the idea had been planted as far
back as Hotelling’s formalization of spatial competition.

Remark In the more common representation of the Hotelling competition model,
the citizens are a continuum of voters, say, given by the interval A = [a, a], with
distribution F(a) to determine the distribution of each political preference. We define

the median voter as that voter am for which Pr{a ≤ am} = 1
2 .
(

For example, if F(.) is

uniform then am = a+a

2 .
)

The best-response correspondence is similar to that given
earlier, but for all choices of player j that are not equal to am player i’s best response
is an open interval. For example, if aj > am, and if a′ < am is an “opposite” policy
that ties with aj , then the best response of player i is to choose any platform that lies
in the open interval (a′, aj). If, however, aj = am then player i’s unique best response
is to choose ai = am, implying that both candidates choosing am is the unique Nash
equilibrium. You are asked to prove this in exercise 5.15.

5.3 Summary

. Any strategy profile for which players are playing mutual best responses is a
Nash equilibrium, making this equilibrium concept self-enforcing.

. If a profile of strategies is the unique survivor of IESDS or is the unique
rationalizable profile of strategies then it is a Nash equilibrium.

. If a profile of strategies is a Nash equilibrium then it must survive IESDS and
it must be rationalizable, but not every strategy that survives IESDS or that is
rationalizable is a Nash equilibrium.

. Nash equilibrium analysis can shed light on phenomena such as the tragedy
of the commons and the nature of competition in markets and in politics.

5.4 Exercises

5.1 Prove Proposition 5.1.

5.2 Weak Dominance: A strategy sW ∈ S is a weakly dominant strategy equi-
librium if sW

i ∈ Si is a weakly dominant strategy for all i ∈ N , that is, if
vi(s

W
i , s−i) ≥ vi(s

′
i
, s−i) for all s′

i
∈ Si and for all s−i ∈ S−i. Provide an ex-

ample of a game for which there is a weakly dominant strategy equilibrium
as well as another Nash equilibrium.

5.3 Nash and IESDS: Consider a two-player game with m pure strategies for
each player that can be represented by an m × m matrix.

a. Show that if m = 2 and the game has a unique pure-strategy Nash
equilibrium then this is the unique strategy profile that survives IESDS.

11. This condition on preferences is called that of “single-peaked” preferences: if we draw the utility
function of some voter with his political “bliss point” being a ∈ A, the utility is highest at a and
declines in both directions, hence the single peak at a.
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b. Show that if m = 3 and the game has a unique pure-strategy equilib-
rium then it may not be the only strategy profile that survives IESDS.

5.4 Splitting Pizza: You and a friend are in an Italian restaurant, and the owner
offers both of you a free eight-slice pizza under the following condition. Each
of you must simultaneously announce how many slices you would like; that
is, each player i ∈ {1, 2} names his desired amount of pizza, 0 ≤ si ≤ 8. If
s1 + s2 ≤ 8 then the players get their demands (and the owner eats any leftover
slices). If s1 + s2 > 8, then the players get nothing. Assume that you each care
only about how much pizza you individually consume, and the more the better.

a. Write out or graph each player’s best-response correspondence.
b. What outcomes can be supported as pure-strategy Nash equilibria?

5.5 Public Good Contribution: Three players live in a town, and each can choose
to contribute to fund a streetlamp. The value of having the streetlamp is 3 for
each player, and the value of not having it is 0. The mayor asks each player to
contribute either 1 or nothing. If at least two players contribute then the lamp
will be erected. If one player or no players contribute then the lamp will not
be erected, in which case any person who contributed will not get his money
back.

a. Write out or graph each player’s best-response correspondence.
b. What outcomes can be supported as pure-strategy Nash equilibria?

5.6 Hawk-Dove: The following game has been widely used in evolutionary bi-
ology to understand how fighting and display strategies by animals could
coexist in a population. For a typical Hawk-Dove game there are resources
to be gained (e.g., food, mates, territories), denoted as v. Each of two players
can choose to be aggressive, as Hawk (H ), or compromising, as Dove (D).
If both players choose H then they split the resources but lose some payoff
from injuries, denoted as k. Assume that k > v

2 . If both choose D then they
split the resources but engage in some display of power that carries a display
cost d, with d < v

2 . Finally, if player i chooses H while j chooses D then i

gets all the resources while j leaves with no benefits and no costs.

a. Describe this game in a matrix.
b. Assume that v = 10, k = 6, and d = 4. What outcomes can be sup-

ported as pure-strategy Nash equilibria?12

5.7 The n-Player Tragedy of the Commons: Suppose there are n players in the
tragedy of the commons example in Section 5.2.2.

a. Find the Nash equilibrium of this game. How does n affect the Nash
outcome?

b. Find the socially optimal outcome with n players. How does n affect
this outcome?

c. How does the Nash equilibrium outcome compare to the socially
efficient outcome as n approaches infinity?

5.8 The n-Firm Cournot Model: Suppose there are n firms in the Cournot
oligopoly model. Let qi denote the quantity produced by firm i, and let

12. In the evolutionary biology literature, the analysis performed is of a very different nature. Instead
of considering the Nash equilibrium analysis of a static game, the analysis is a dynamic one in which
successful strategies “replicate” in a large population. This analysis is part of a methodology called
evolutionary game theory. For more on the subject see Gintis (2000).



5.4 Exercises . 97

Q = qi + . . . + qn denote the aggregate production. Let P(Q) denote the
market clearing price (when demand equals Q) and assume that the inverse
demand function is given by P(Q) = a − Q, where Q ≤ a. Assume that firms
have no fixed cost and that the cost of producing quantity qi is cqi (all firms
have the same marginal cost, and assume that c < a).

a. Model this as a normal-form game.
b. What is the Nash (Cournot) equilibrium of the game in which firms

choose their quantities simultaneously?
c. What happens to the equilibrium price as n approaches infinity? Is this

familiar?

5.9 Tragedy of the Roommates: You and your n − 1 roommates each have five
hours of free time you could spend cleaning your apartment. You all dislike
cleaning, but you all like having a clean apartment: each person’s payoff is the
total hours spent (by everyone) cleaning, minus a number c times the hours
spent (individually) cleaning. That is,

vi(s1, s2, . . . , sn) = −c . si +
n∑

j=1

sj .

Assume everyone chooses simultaneously how much time to spend cleaning.

a. Find the Nash equilibrium if c < 1.
b. Find the Nash equilibrium if c > 1.
c. Set n = 5 and c = 2. Is the Nash equilibrium Pareto efficient? If not,

can you find an outcome in which everyone is better off than in the
Nash equilibrium outcome?

5.10 Synergies: Two division managers can invest time and effort in creating a
better working relationship. Each invests ei ≥ 0, and if both invest more then
both are better off, but it is costly for each manager to invest. In particular
the payoff function for player i from effort levels (ei, ej) is vi(ei, ej) =
(a + ej)ei − e2

i
.

a. What is the best-response correspondence of each player?
b. In what way are the best-response correspondences different from

those in the Cournot game? Why?
c. Find the Nash equilibrium of this game and argue that it is unique.

5.11 Wasteful Shipping Costs: Consider two countries, A and B, each with a
monopolist that owns the only active coal mine in the country. Let firm 1 be
the firm located in country A and firm 2 the one in country B. Let qj

i , i ∈ {1, 2}
and j ∈ {A, B} denote the quantity that firm i sells in country j . Consequently
let qi = qA

i
+ qB

i
be the total quantity produced by firm i ∈ {1, 2} and let

qj = q
j

1 + q
j

2 be the total quantity sold in country j ∈ {A, B}. The demand
for coal in countries A and B is then given respectively by

pj = 90 − qj, j ∈ {A, B},
and the cost of production for each firm is given by

ci(qi) = 10qi, i ∈ {1, 2}.
a. Assume that the countries do not have a trade agreement and, in

fact, that the importation of coal into either country is prohibited.
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This implies that qA
2 = qB

1 = 0 is set as a political constraint. What
quantities qA

1 and qB
2 will both firms produce?

Now assume that the two countries sign a free-trade agreement that
allows foreign firms to sell in each country without any tariffs. There
are, however, shipping costs. If firm i sells quantity q

j

i in the foreign
country (i.e., firm 1 selling in B or firm 2 selling in A) then shipping
costs are equal to 10q

j

i . Assume further that each firm chooses a pair of
quantities qA

i
, qB

i
simultaneously, i ∈ {1, 2}, so that a profile of actions

consists of four quantity choices.

b. Model this as a normal-form game and find a Nash equilibrium of the
game you described. Is it unique?

Now assume that before the game you described in (b) is played the
research department of firm 1 discovers that shipping coal on the
existing vessels causes the release of pollutants. If the firm would
disclose this report to the World Trade Organization (WTO) then the
WTO would prohibit the use of the existing ships. Instead a new
shipping technology would be offered that would increase shipping
costs to 40q

j

i (instead of 10q
j

i as given earlier).

c. Would firm 1 be willing to release the information to the WTO? Justify
your answer with an equilibrium analysis.

5.12 Asymmetric Bertrand: Consider the Bertrand game with c1(q1) = q1 and
c2(q2) = 2q2 and demand equal to p = 100 − q, in which firms must choose
prices in increments of $0.01. We have seen in Section 5.2.4 that one possible
Nash equilibrium is (p∗

1, p∗
2) = (1.99, 2.00).

a. Show that there are other Nash equilibria for this game.
b. How many Nash equilibria does this game have?

5.13 Comparative Economics: Two high-tech firms (1 and 2) are considering a
joint venture. Each firm i can invest in a novel technology and can choose a
level of investment xi ∈ [0, 5] at a cost of ci(xi) = x2

i
/4 (think of xi as how

many hours to train employees or how much capital to spend for R&D labs).
The revenue of each firm depends on both its investment and the other firm’s
investment. In particular if firms i and j choose xi and xj , respectively, then
the gross revenue to firm i is

R(xi, xj) =

⎧⎪⎨⎪⎩
0 if xi < 1

2 if xi ≥ 1 and xj < 2

xi
. xj if xi ≥ 1 and xj ≥ 2.

a. Write down mathematically and draw the profit function (gross rev-
enue minus costs) of firm i as a function of xi for three cases: (i) xj < 2,
(ii) xj = 2, and (iii) xj = 4.

b. What is the best-response function of firm i?
c. It turns out that there are two identical pairs of such firms; that is,

the description applies to both pairs. One pair is in Russia, where
coordination is hard to achieve and businesspeople are very cautious,
and the other pair is in Germany, where coordination is common and
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businesspeople expect their partners to go the extra mile. You learn
that the Russian firms are earning significantly lower profits than the
German firms, despite the fact that their technologies are identical.
Can you use Nash equilibrium analysis to shed light on this dilemma?
If so, be precise and use your previous analysis to do so.

5.14 Negative Ad Campaigns: Each one of two political parties can choose to buy
time on commercial radio shows to broadcast negative ad campaigns against
its rival. These choices are made simultaneously. Government regulations
forbid a party from buying more than 2 hours of negative campaign time,
so that each party cannot choose an amount of negative campaigning above
2 hours. Given a pair of choices (a1, a2), the payoff of party i is given by the
following function: vi(a1, a2) = ai − 2aj + aiaj − (ai)

2.

a. What is the normal-form representation of this game?
b. What is the best-response function for each party?
c. What is the pure-strategy Nash equilibrium? Is it unique?
d. If the parties could sign a binding agreement on how much to cam-

paign, what levels would they choose?

5.15 Hotelling’s Continuous Model: Consider Hotelling’s model, in which cit-
izens are a continuum of voters on the interval A = [−a, a], with uniform
distribution U(a).

a. What is the best response of candidate i if candidate j is choosing
aj > 0?

b. Show that the unique Nash equilibrium is a1 = a2 = 0.
c. Show that for a general distribution F(.) over [−a, a] the unique Nash

equilibrium is where each candidate chooses the policy associated with
the median voter.

5.16 Hotelling’s Price Competition: Imagine a continuum of potential buyers,
located on the line segment [0, 1], with uniform distribution. (Hence the
“mass” or quantity of buyers in the interval [a, b] is equal to b − a.) Imagine
two firms, players 1 and 2, who are located at each end of the interval (player
1 at the 0 point and player 2 at the 1 point). Each player i can choose its price
pi, and each customer goes to the vendor who offers him the highest value.
However, price alone does not determine the value; distance is important as
well. In particular each buyer who buys the product from player i has a net
value of v − pi − di, where di is the distance between the buyer and vendor i

and represents the transportation costs of buying from vendor i. Thus buyer
a ∈ [0, 1] buys from 1 and not 2 if v − p1 − d1 > v − p2 − d2 and if buying
is better than getting zero. (Here d1 = a and d2 = 1 − a. The buying choice
would be reversed if the inequality were reversed.) Finally, assume that the
cost of production is zero.

a. What is the best-response function of each player?
b. Assume that v = 1. What is the Nash equilibrium? Is it unique?
c. Now assume that the transportation costs are 1

2di, so that a buyer
buys from 1 if and only if v − p1 − 1

2d1 > v − p2 − 1
2d2. Write down

the best-response function of each player and solve for the Nash
equilibrium.

d. Following your analysis in (c), imagine that transportation costs are
αdi, with α ∈ [0, 1]. What happens to the Nash equilibrium as α → 0?
What is the intuition for this result?
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5.17 To Vote or Not to Vote: Two candidates, D and R, are running for mayor
in a town with n residents. A total of 0 < d < n residents support candidate
D, while the remainder, r = n − d, support candidate R. The value for each
resident for having his candidate win is 4, for having him tie is 2, and for
having him lose is 0. Going to vote costs each resident 1.

a. Let n = 2 and d = 1. Write down this game as a matrix and solve for
the Nash equilibrium.

b. Let n > 2 be an even number and let d = r = n
2 . Find all the Nash

equilibria.
c. Assume now that the cost of voting is equal to 3. How does your answer

to (a) and (b) change?

5.18 Political Campaigning: Two candidates are competing in a political race.
Each candidate i can spend si ≥ 0 on ads that reach out to voters, which in
turn increases the probability that candidate i wins the race. Given a pair of
spending choices (s1, s2), the probability that candidate i wins is given by

si
s1+s2

. If neither spends any resources then each wins with probability 1
2 . Each

candidate values winning at a payoff of v > 0, and the cost of spending si is
just si.

a. Given two spend levels (s1, s2), write down the expected payoff of a
candidate i.

b. What is the function that represents each player’s best-response func-
tion?

c. Find the unique Nash equilibrium.
d. What happens to the Nash equilibrium spending levels if v increases?
e. What happens to the Nash equilibrium levels if player 1 still values

winning at v but player 2 values winning at kv, where k > 1?



6
Mixed Strategies

In the previous chapters we restricted players to using pure strategies and we
postponed discussing the option that a player may choose to randomize between

several of his pure strategies. You may wonder why anyone would wish to randomize
between actions. This turns out to be an important type of behavior to consider, with
interesting implications and interpretations. In fact, as we will now see, there are many
games for which there will be no equilibrium predictions if we do not consider the
players’ ability to choose stochastic strategies.

Consider the following classic zero-sum game called Matching Pennies.1 Players
1 and 2 each put a penny on a table simultaneously. If the two pennies come up the
same side (heads or tails) then player 1 gets both; otherwise player 2 does. We can
represent this in the following matrix:

Player 2
H T

Player 1
H 1, −1 −1, 1

T −1, 1 1, −1

The matrix also includes the best-response choices of each player using the method
we introduced in Section 5.1.1 to find pure-strategy Nash equilibria. As you can see,
this method does not work: Given a belief that player 1 has about player 2’s choice,
he always wants to match it. In contrast, given a belief that player 2 has about player
1’s choice, he would like to choose the opposite orientation for his penny. Does this
mean that a Nash equilibrium fails to exist? We will soon see that a Nash equilibrium
will indeed exist if we allow players to choose random strategies, and there will be
an intuitive appeal to the proposed equilibrium.

Matching Pennies is not the only simple game that fails to have a pure-strategy
Nash equilibrium. Recall the child’s game rock-paper-scissors, in which rock beats

1. A zero-sum game is one in which the gains of one player are the losses of another, hence their
payoffs always sum to zero. The class of zero-sum games was the main subject of analysis before
Nash introduced his solution concept in the 1950s. These games have some very nice mathematical
properties and were a central object of analysis in von Neumann and Morgenstern’s (1944) seminal
book.
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scissors, scissors beats paper, and paper beats rock. If winning gives the player a
payoff of 1 and the loser a payoff of −1, and if we assume that a tie is worth 0, then
we can describe this game by the following matrix:

Player 2
R P S

R 0, 0 −1, 1 1, −1

Player 1 P 1, −1 0, 0 −1, 1

S −1, 1 1, −1 0, 0

It is rather straightforward to write down the best-response correspondence for player
1 when he believes that player 2 will play one of his pure strategies as follows:

s1(s2) =
⎧⎨⎩

P when s2 = R

S when s2 = P

R when s2 = S,

and a similar (symmetric) list would be the best-response correspondence of player
2. Examining the two best-response correspondences immediately implies that there
is no pure-strategy equilibrium, just like in the Matching Pennies game. The reason
is that, starting with any pair of pure strategies, at least one player is not playing a
best response and will want to change his strategy in response.

6.1 Strategies, Beliefs, and Expected Payoffs

We now introduce the possibility that players choose stochastic strategies, such as
flipping a coin or rolling a die to determine what they will choose to do. This approach
will turn out to offer us several important advances over that followed so far. Aside
from giving the players a richer set of actions from which to choose, it will more
importantly give them a richer set of possible beliefs that capture an uncertain world.
If player i can believe that his opponents are choosing stochastic strategies, then this
puts player i in the same kind of situation as a decision maker who faces a decision
problem with probabilistic uncertainty. If you are not familiar with such settings, you
are encouraged to review Chapter 2, which lays out the simple decision problem with
random events.

6.1.1 Finite Strategy Sets

We start with the basic definition of random play when players have finite strategy
sets Si:

Definition 6.1 Let Si = {si1, si2, . . . , sim} be player i’s finite set of pure strate-
gies. Define �Si as the simplex of Si, which is the set of all probability distri-
butions over Si. A mixed strategy for player i is an element σi ∈ �Si, so that
σi = {σi(si1), σi(si2), . . . , σi(sim)) is a probability distribution over Si, where σi(si)

is the probability that player i plays si.
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That is, a mixed strategy for player i is just a probability distribution over his pure
strategies. Recall that any probability distribution σi(.) over a finite set of elements
(a finite state space), in our case Si, must satisfy two conditions:

1. σi(si) ≥ 0 for all si ∈ Si, and

2.
∑

si∈Si
σi(si) = 1.

That is, the probability of any event happening must be nonnegative, and the sum
of the probabilities of all the possible events must add up to one.2 Notice that every
pure strategy is a mixed strategy with a degenerate distribution that picks a single
pure strategy with probability one and all other pure strategies with probability zero.

As an example, consider the Matching Pennies game described earlier, with the
matrix

Player 2
H T

Player 1
H 1, −1 −1, 1

T −1, 1 1, −1

For each player i, Si = {H, T }, and the simplex, which is the set of mixed strategies,
can be written as

�Si = {(σi(H), σi(T )) : σi(H) ≥ 0, σi(T ) ≥ 0, σi(H) + σi(T ) = 1}.
We read this as follows: the set of mixed strategies is the set of all pairs (σi(H), σi(T ))

such that both are nonnegative numbers, and they both sum to one.3 We use the
notation σi(H) to represent the probability that player i plays H and σi(T ) to represent
the probability that player i plays T .

Now consider the example of the rock-paper-scissors game, in which Si =
{R, P, S} (for rock, paper, and scissors, respectively). We can define the simplex as

�Si ={(σi(R), σi(P ), σi(S)) :σi(R), σi(P ), σi(S)≥0, σi(R) + σi(P ) + σi(S)=1},
which is now three numbers, each defining the probability that the player plays one
of his pure strategies. As mentioned earlier, a pure strategy is just a special case of
a mixed strategy. For example, in this game we can represent the pure strategy of
playing R with the degenerate mixed strategy: σ(R) = 1, σ (P ) = σ(S) = 0.

From our definition it is clear that when a player uses a mixed strategy, he
may choose not to use all of his pure strategies in the mix; that is, he may have
some pure strategies that are not selected with positive probability. Given a player’s

2. The notation
∑

si∈Si
σ (si) means the sum of σ(si) over all the si ∈ Si . If Si has m elements, as in

the definition, we could write this as
∑m

k=1 σi(sik).
3. The simplex of this two-element strategy set can be represented by a single number p ∈ [0, 1],
where p is the probability that player i plays H and 1 − p is the probability that player i plays T .
This follows from the definition of a probability distribution over a two-element set. In general the
simplex of a strategy set with m pure strategies will be in an (m − 1)-dimensional space, where each
of the m − 1 numbers is in [0, 1], and will represent the probability of the first m − 1 pure strategies.
All sum to a number equal to or less than one so that the remainder is the probability of the mth pure
strategy.
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F(si)

10030

1

50

f(si)

sisi 10030

1—
20

50

FIGURE 6.1 A continuous mixed strategy in the Cournot game.

mixed strategy σi(.), it will be useful to distinguish between pure strategies that are
chosen with a positive probability and those that are not. We offer the following
definition:

Definition 6.2 Given a mixed strategy σi(.) for player i, we will say that a pure
strategy si ∈ Si is in the support of σi(.) if and only if it occurs with positive
probability, that is, σi(si) > 0.

For example, in the game of rock-paper-scissors, a player can choose rock or paper,
each with equal probability, and not choose scissors. In this case σi(R) = σi(P ) = 0.5
and σi(S) = 0. We will then say that R and P are in the support of σi(.), but S is not.

6.1.2 Continuous Strategy Sets

As we have seen with the Cournot and Bertrand duopoly examples, or the tragedy of
the commons example in Section 5.2.2, the pure-strategy sets that players have need
not be finite. In the case in which the pure-strategy sets are well-defined intervals, a
mixed strategy will be given by a cumulative distribution function:

Definition 6.3 Let Si be player i’s pure-strategy set and assume that Si is an interval.
A mixed strategy for player i is a cumulative distribution function Fi : Si → [0, 1],
where Fi(x) = Pr{si ≤ x}. If Fi(.) is differentiable with density fi(.) then we say that
si ∈ Si is in the support of Fi(.) if fi(si) > 0.

As an example, consider the Cournot duopoly game with a capacity constraint
of 100 units of production, so that Si = [0, 100] for i ∈ {1, 2}. Consider the mixed
strategy in which player i chooses a quantity between 30 and 50 using a uniform
distribution. That is,

Fi(si) =
⎧⎨⎩

0 for si < 30
si−30

20 for si ∈ [30, 50]

1 for si > 50

and fi(si) =
⎧⎨⎩

0 for si < 30
1

20 for si ∈ [30, 50]

0 for si > 50.

These two functions are depicted in Figure 6.1.
We will typically focus on games with finite strategy sets to illustrate most of

the examples with mixed strategies, but some interesting examples will have infinite
strategy sets and will require the use of cumulative distributions and densities to
explore behavior in mixed strategies.
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6.1.3 Beliefs and Mixed Strategies

As we discussed earlier, introducing probability distributions not only enriches the set
of actions from which a player can choose but also allows us to enrich the beliefs that
players can have. Consider, for example, player i, who plays against opponents −i. It
may be that player i is uncertain about the behavior of his opponents for many reasons.
For example, he may believe that his opponents are indeed choosing mixed strategies,
which immediately implies that their behavior is not fixed but rather random. An al-
ternative interpretation is the situation in which player i is playing a game against an
opponent that he does not know, whose background will determine how he will play.
This interpretation will be revisited in Section 12.5, and it is a very appealing justifi-
cation for beliefs that are random and behavior that is consistent with these beliefs.

To introduce beliefs about mixed strategies formally we define them as follows:

Definition 6.4 A belief for player i is given by a probability distribution πi ∈ �S−i

over the strategies of his opponents. We denote by πi(s−i) the probability player i

assigns to his opponents playing s−i ∈ S−i.

Thus a belief for player i is a probability distribution over the strategies of his op-
ponents. Notice that the belief of player i lies in the same set that represents the profiles
of mixed strategies of player i’s opponents. For example, in the rock-paper-scissors
game, we can represent the beliefs of player 1 as a triplet, (π1(R), π1(P ), π1(S)),
where by definition π1(R), π1(P ), π1(S) ≥ 0 and π1(R) + π1(P ) + π1(S) = 1. The
interpretation of π1(s2) is the probability that player 1 assigns to player 2 playing some
particular s2 ∈ S2. Recall that the strategy of player 2 is a triplet σ2(R), σ2(P ), σ2(S) ≥
0, with σ2(R) + σ2(P ) + σ2(S) = 1, so we can clearly see the analogy between π

and σ .

6.1.4 Expected Payoffs

Consider the Matching Pennies game described previously, and assume for the mo-
ment that player 2 chooses the mixed strategy σ2(H) = 1

3 and σ2(T ) = 2
3 . If player 1

plays H then he will win and get 1 with probability 1
3 while he will lose and get −1

with probability 2
3 . If, however, he plays T then he will win and get 1 with probability

2
3 while he will lose and get −1with probability 1

3. Thus by choosing different actions
player 1 will face different lotteries, as described in Chapter 2.

To evaluate these lotteries we will resort to the notion of expected payoff over
lotteries as presented in Section 2.2. Thus we define the expected payoff of a player
as follows:

Definition 6.5 The expected payoff of player i when he chooses the pure strategy
si ∈ Si and his opponents play the mixed strategy σ−i ∈ �S−i is

vi(si, σ−i) =
∑

s−i∈S−i

σ−i(s−i)vi(si, s−i).

Similarly the expected payoff of player i when he chooses the mixed strategy σi ∈ �Si

and his opponents play the mixed strategy σ−i ∈ �S−i is

v1(σi, σ−i) =
∑
si∈Si

σi(si)vi(si, σ−i) =
∑
si∈Si

( ∑
s−i∈S−i

σi(si)σ−i(s−i)vi(si, s−i)

)
.
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The idea is a straightforward adaptation of definition 2.3 in Section 2.2.1. The
randomness that player i faces if he chooses some si ∈ Si is created by the random
selection of s−i ∈ S−i that is described by the probability distribution σ−i(.). Clearly
the definition we just presented is well defined only for finite strategy sets Si. The
analog to interval strategy sets is a straightforward adaptation of the second part of
definition 2.3.4

As an example, recall the rock-paper-scissors game:

Player 2
R P S

R 0, 0 −1, 1 1, −1

Player 1 P 1, −1 0, 0 −1, 1

S −1, 1 1, −1 0, 0

and assume that player 2 plays σ2(R) = σ2(P ) = 1
2 ; σ2(S) = 0. We can now calculate

the expected payoff for player 1 from any of his pure strategies,

v1(R, σ2) = 1
2 × 0 + 1

2 × (−1) + 0 × 1 = − 1
2

v1(P, σ2) = 1
2 × 1 + 1

2 × 0 + 0 × (−1) = 1
2

v1(S, σ2) = 1
2 × (−1) + 1

2 × 1 + 0 × 0 = 0.

It is easy to see that player 1 has a unique best response to this mixed strategy of
player 2. If he plays P, he wins or ties with equal probability, while his other two
pure strategies are worse: with R he either loses or ties and with S he either loses or
wins. Clearly if his beliefs about the strategy of his opponent are different then player
1 is likely to have a different best response.

It is useful to consider an example in which the players have strategy sets that
are intervals. Consider the following game, known as an all-pay auction, in which
two players can bid for a dollar. Each can submit a bid that is a real number (we are
not restricted to penny increments), so that Si = [0, ∞), i ∈ {1, 2}. The person with
the higher bid gets the dollar, but the twist is that both bidders have to pay their bids
(hence the name of the game). If there is a tie then both pay and the dollar is awarded
to each player with an equal probability of 0.5. Thus if player i bids si and player
j = i bids sj then player i’s payoff is

4. Consider a game in which each player has a strategy set given by the interval Si = [si, si]. If player
1 is playing s1 and his opponents, players j = 2, 3, . . . , n, are using the mixed strategies given by
the density function fj(.) then the expected payoff of player 1 is given by

∫ s2

s2

∫ s3

s3

. . .

∫ sn

s
n

vi(si, s−i)f2(s2)f3(s3) . . . fn(sn)ds2ds3
. . . dsn.

For more on this topic see Section 19.4.4.
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vi(si, s−i) =

⎧⎪⎨⎪⎩
−si if si < sj
1
2 − si if si = sj

1 − si if si > sj .

Now imagine that player 2 is playing a mixed strategy in which he is uniformly choos-
ing a bid between 0 and 1. That is, player 2’s mixed strategy σ2 is a uniform distribution
over the interval 0 and 1, which is represented by the cumulative distribution function
and density

F2(s2) =
{

s2 for s2 ∈ [0, 1]

1 for s2 > 1
and f2(s2) =

{
1 for s2 ∈ [0, 1]

0 for s2 > 1.

The expected payoff of player 1 from offering a bid si > 1is 1− si < 0 because he will
win for sure, but this would not be wise. The expected payoff from bidding si < 1 is5

v1(s1, σ2) = Pr{s1 < s2}(−s1) + Pr{s1 = s2}
(

1
2 − s1

)
+ Pr{s1 > s2}

(
1 − s1

)
= (1 − F2(s1))(−s1) + 0

(
1
2 − s1

)
+ F2(s1)(1 − s1)

= 0.

Thus when player 2 is using a uniform distribution between 0 and 1 for his bid, then
player 1 cannot get any positive expected payoff from any bid he offers: any bid less
than 1 offers an expected payoff of 0, and any bid above 1 guarantees getting the
dollar at an inflated price. This game is one to which we will return later, as it has
several interesting features and twists.

6.2 Mixed-Strategy Nash Equilibrium

Now that we are equipped with a richer space for both strategies and beliefs, we are
ready to restate the definition of a Nash equilibrium for this more general setup as
follows:

Definition 6.6 The mixed-strategy profile σ ∗ = (σ ∗
1 , σ ∗

2 , . . . , σ ∗
n
) is a Nash equilib-

rium if for each player σ ∗
i

is a best response to σ ∗
−i

. That is, for all i ∈ N,

vi(σ
∗
i
, σ ∗

−i
) ≥ vi(σi, σ ∗

−i
) ∀ σi ∈ �Si.

This definition is the natural generalization of definition 5.1. We require that each
player be choosing a strategy σ ∗

i
∈ �Si that is (one of) the best choice(s) he can make

when his opponents are choosing some profile σ ∗
−i

∈ �S−i.

As we discussed previously, there is another interesting interpretation of the
definition of a Nash equilibrium. We can think of σ ∗

−i
as the belief of player i about

his opponents, πi, which captures the idea that player i is uncertain of his opponents’
behavior. The profile of mixed strategies σ ∗

−i
thus captures this uncertain belief over

all of the pure strategies that player i’s opponents can play. Clearly rationality requires

5. If player 2 is using a uniform distribution over [0, 1] then Pr{s1 = s2} = 0 for any s1 ∈ [0, 1].
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that a player play a best response given his beliefs (and this now extends the notion
of rationalizability to allow for uncertain beliefs). A Nash equilibrium requires that
these beliefs be correct.

Recall that we defined a pure strategy si ∈ Si to be in the support of σi if σi(si) > 0,

that is, if si is played with positive probability (see definition 6.2). Now imagine that
in the Nash equilibrium profile σ ∗ the support of i’s mixed strategy σ ∗

i
contains more

than one pure strategy—say si and s′
i

are both in the support of σ ∗
i

.
What must we conclude about a rational player i if σ ∗

i
is indeed part of a Nash

equilibrium (σ ∗
i
, σ ∗

−i
)? By definition σ ∗

i
is a best response against σ ∗

−i
, which means

that given σ ∗
−i

player i cannot do better than to randomize between more than one
of his pure strategies, in this case, si and s′

i
. But when would a player be willing to

randomize between two alternative pure strategies? The answer is predictable:

Proposition 6.1 If σ ∗ is a Nash equilibrium, and both si and s
′
i

are in the support of
σ ∗

i
, then

vi(si, σ ∗
−i

) = vi(s
′
i
, σ ∗

−i
) = vi(σ

∗
i
, σ ∗

−i
).

The proof is quite straightforward and follows from the observation that if a player
is randomizing between two alternatives then he must be indifferent between them. If
this were not the case, say vi(si, σ ∗

−i
) > vi(s

′
i
, σ ∗

−i
) with both si and s

′
i
in the support of

σ ∗
i

, then by reducing the probability of playing s′
i

from σ ∗
i
(s′

i
) to zero, and increasing

the probability of playing si from σ ∗
i
(si) to σ ∗

i
(si) + σ ∗

i
(s′

i
), player i’s expected payoff

must go up, implying that σ ∗
i

could not have been a best response to σ ∗
−i

.
This simple observation will play an important role in computing mixed-strategy

Nash equilibria. In particular we know that if a player is playing a mixed strategy then
he must be indifferent between the actions he is choosing with positive probability, that
is, the actions that are in the support of his mixed strategy. One player’s indifference
will impose restrictions on the behavior of other players, and these restrictions will
help us find the mixed-strategy Nash equilibrium.

For games with many players, or with two players who have many strategies,
finding the set of mixed-strategy Nash equilibria is a tedious task. It is often done
with the help of computer algorithms, because it generally takes on the form of a
linear programming problem. Nevertheless it will be useful to see how one computes
mixed-strategy Nash equilibria for simpler games.

6.2.1 Example: Matching Pennies

Consider the Matching Pennies game,

Player 2
H T

Player 1
H 1, −1 −1, 1

T −1, 1 1, −1

and recall that we showed that this game does not have a pure-strategy Nash equilib-
rium. We now ask, does it have a mixed-strategy Nash equilibrium? To answer this,
we have to find mixed strategies for both players that are mutual best responses.
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v1(s1, q)

v1(T, q)

v1(H, q)
1

1 q1–
2

FIGURE 6.2 Expected payoffs for player 1 in the Matching Pennies game.

To simplify the notation, define mixed strategies for players 1 and 2 as follows:
Let p be the probability that player 1 plays H and 1− p the probability that he plays
T . Similarly let q be the probability that player 2 plays H and 1 − q the probability
that he plays T .

Using the formulas for expected payoffs in this game, we can write player 1’s
expected payoff from each of his two pure actions as follows:

v1(H, q) = q × 1 + (1 − q) × (−1) = 2q − 1 (6.1)

v1(T, q) = q × (−1) + (1 − q) × 1 = 1 − 2q. (6.2)

With these equations in hand, we can calculate the best response of player 1 for any
choice q of player 2. In particular player 1 will prefer to play H over playing T if and
only if v1(H, q) > v1(T, q). Using (6.1) and (6.2), this will be true if and only if

2q − 1 > 1 − 2q,

which is equivalent to q > 1
2 . Similarly playing T will be strictly better than playing

H for player 1 if and only if q < 1
2 . Finally, when q = 1

2 player 1 will be indifferent
between playing H or T .

It is useful to graph the expected payoff of player 1 from choosing either H or T

as a function of player 2’s choice of q, as shown in Figure 6.2.
The expected payoff of player 1 from playing H was given by the function

v1(H, q) = 2q − 1, as described in (6.1). This is the rising linear function in the figure.
Similarly v1(T, q) = 1 − 2q, described in (6.2), is the declining function. Now it is
easy to see what determines the best response of player 1. The gray “upper envelope”
of the graph will show the highest payoff that player 1 can achieve when player 2
plays any given level of q. When q < 1

2 this is achieved by playing T; when q > 1
2

this is achieved by playing H; and when q = 1
2 both H and T are equally good for

player 1, giving him an expected payoff of zero.
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p

1

1

q

BR1(q)

1–
2

FIGURE 6.3 Player 1’s best-response correspondences in the Matching Pennies game.

This simple analysis results in the best-response correspondence of player 1,
which is

BR1(q) =

⎧⎪⎨⎪⎩
p = 0 if q < 1

2

p ∈ [0, 1] if q = 1
2

p = 1 if q > 1
2

and is depicted in Figure 6.3. Notice that this is a best-response correspondence, and
not a function, because at the value of q = 1

2 any value of p ∈ [0, 1] is a best response.
In a similar way we can calculate the payoffs of player 2 given a mixed-strategy

p of player 1 to be

v2(p, H) = p × (−1) + (1 − p) × 1 = 1 − 2p

v2(p, T ) = p × 1 + (1 − p) × (−1) = 2p − 1,

and this implies that player 2’s best response is

BR2(p) =

⎧⎪⎨⎪⎩
q = 1 if p < 1

2

q ∈ [0, 1] if p = 1
2

q = 0 if p > 1
2 .

To find a Nash equilibrium we are looking for a pair of choices (p, q) for which the
two best-response correspondences cross. Were we to superimpose the best response
of player 2 onto Figure 6.3 then we would see that the two best-response correspon-
dences cross at p = q = 1

2 . Nevertheless it is worth walking through the logic of this
solution.

We know from proposition 6.1 that when player 1 is mixing between H and T ,
both with positive probability, then it must be the case that his payoffs from H and
from T are identical. This, it turns out, imposes a restriction on the behavior of player
2, given by the choice of q. Player 1 is willing to mix between H and T if and only if
v1(H, q) = v1(T, q), which will hold if and only if q = 1

2 . This is the way in which
the indifference of player 1 imposes a restriction on player 2: only when player 2 is
playing q = 1

2 will player 1 be willing to mix between his actions H and T . Similarly
player 2 is willing to mix between H and T only when v2(p, H) = v2(p, T ), which
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is true only when p = 1
2 . We have come to the conclusion of our quest for a Nash

equilibrium in this game. We can see that there is indeed a pair of mixed strategies
that form a Nash equilibrium, and these are precisely when (p, q) = ( 1

2 , 1
2

)
.

There is a simple logic, which we can derive from the Matching Pennies example,
that is behind the general method for finding mixed-strategy equilibria in games. The
logic relies on a fact that we have already discussed: if a player is mixing several
strategies then he must be indifferent between them. What a particular player i is
willing to do depends on the strategies of his opponents. Therefore, to find out when
player i is willing to mix some of his pure strategies, we must find strategies of his
opponents, −i, that make him indifferent between some of his pure actions.

For the Matching Pennies game this can be easily illustrated as follows. First, we
ask which strategy of player 2 will make player 1 indifferent between playing H and
T . The answer to this question (assuming it is unique) must be player 2’s strategy in
equilibrium. The reason is simple: if player 1 is to mix in equilibrium, then player 2
must be playing a strategy for which player 1’s best response is mixing, and player 2’s
strategy must therefore make player 1 indifferent between playing H and T . Similarly
we ask which strategy of player 1 will make player 2 indifferent between playing H

and T , and this must be player 1’s equilibrium strategy.

Remark The game of Matching Pennies is representative of situations in which one
player wants to match the actions of the other, while the other wants to avoid that
matching. One common example is penalty goals in soccer. The goalie wishes to
jump in the direction that the kicker will kick the ball, while the kicker wishes
to kick the ball in the opposite direction from the one in which the goalie chooses to
jump. When they go in the same direction then the goalie wins and the kicker loses,
while if they go in different directions then the opposite happens. As you can see,
this is exactly the structure of the Matching Pennies game. Other common examples
of such games are bosses monitoring their employees and the employees’ decisions
about how hard to work, or police monitoring crimes and the criminals who wish to
commit them.

6.2.2 Example: Rock-Paper-Scissors

When we have games with more than two strategies for each player, then coming up
with quick ways to solve mixed-strategy equilibria is a bit more involved than in 2 × 2
games, and it will usually involve more tedious algebra that solves several equations
with several unknowns. If we consider the game of rock-paper-scissors, for example,
there are many mixing combinations for each player, and we can’t simply draw graphs
the way we did for the Matching Pennies game.

Player 2
R P S

R 0, 0 −1, 1 1, −1

Player 1 P 1, −1 0, 0 −1, 1

S −1, 1 1, −1 0, 0

To find the Nash equilibrium of the rock-paper-scissors game we proceed in three
steps. First we show that there is no Nash equilibrium in which at least one player
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plays a pure strategy. Then we show that there is no Nash equilibrium in which at
least one player mixes only between two pure strategies. These steps will imply that
in any Nash equilibrium, both players must be mixing with all three pure strategies,
and this will lead to the solution.

Claim 6.1 There can be no Nash equilibrium in which one player plays a pure strategy
and the other mixes.

To see this, suppose that player i plays a pure strategy. It’s easy to see from looking
at the payoff matrix that player j always receives different payoffs from each of
his pure strategies whenever i plays a pure strategy. Therefore player j cannot be
indifferent between any of his pure strategies, so j cannot be playing a mixed strategy
if i plays a pure strategy. But we know that there are no pure-strategy equilibria, and
hence we conclude that there are no Nash equilibria where either player plays a pure
strategy.

Claim 6.2 There can be no Nash equilibrium in which at least one player mixes only
between two pure strategies.

To see this, suppose that i mixes between R and P. Then j always gets a strictly
higher payoff from playing P than from playing R, so no strategy requiring j to
play R with positive probability can be a best response for j , and j can’t play R in
any Nash equilibrium. But if j doesn’t play R then i gets a strictly higher payoff
from S than from P, so no strategy requiring i to play P with positive probability
can be a best response to j not playing R. But we assumed that i was mixing
between R and P, so we’ve reached a contradiction. We conclude that in equilibrium i

cannot mix between R and P. We can apply similar reasoning to i’s other pairs of
pure strategies. We conclude that in any Nash equilibrium of this game, no player
can play a mixed strategy in which he only plays two pure strategies with positive
probability.

If by now you’ve guessed that the mixed strategies σ ∗
1 = σ ∗

2 = ( 1
3, 1

3, 1
3

)
form a

Nash equilibrium then you are right. If player i plays σ ∗
i

then j will receive an expected
payoff of 0 from every pure strategy, so j will be indifferent between all of his pure
strategies. Therefore BRj(σ

∗
i
) includes all of j ’s mixed strategies and in particular

σ ∗
j

∈ BRj(σ
∗
i
). Similarly σ ∗

i
∈ BRi(σ

∗
j
). We conclude that σ ∗

1 and σ ∗
2 form a Nash

equilibrium. We will prove that (σ ∗
1 , σ ∗

2 ) is the unique Nash equilibrium.
Suppose player i plays R with probability σi(R) ∈ (0, 1), P with probability

σi(P ) ∈ (0, 1), and S with probability 1 − σi(R) − σi(P ). Because we proved that
both players have to mix with all three pure strategies, it follows that σi(R) + σi(P ) <

1 so that 1 − σi(R) − σi(P ) ∈ (0, 1). It follows that player j receives the following
payoffs from his three pure strategies:

vj(R, σi) = −σi(P ) + 1 − σi(R) − σi(P ) = 1 − σi(R) − 2σi(P )

vj(P, σi) = σi(R) − (1 − σi(R) − σi(P )) = 2σi(R) + σi(P ) − 1

vj(S, σi) = −σi(R) + σi(P ).

In any Nash equilibrium in which j plays all three of his pure strategies with positive
probability, he must receive the same expected payoff from all strategies. Therefore,
in any equilibrium, we must have vj(R, σi) = vj(P, σi) = vj(S, σi). If we set these
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payoffs equal to each other and solve for σi(R) and σi(P ), we get σi(R) = σi(P ) =
1− σi(R) − σi(P ) = 1

3. We conclude that j is willing to include all three of his pure
strategies in his mixed strategy if and only if i plays σ ∗

i
= ( 1

3, 1
3, 1

3

)
. Similarly i will

be willing to play all his pure strategies with positive probability if and only if j plays
σ ∗

j
= ( 1

3, 1
3, 1

3

)
. Therefore there is no other Nash equilibrium in which both players

play all their pure strategies with positive probability.

6.2.3 Multiple Equilibria: Pure and Mixed

In the Matching Pennies and rock-paper-scissors games, the unique Nash equilibrium
was a mixed-strategy Nash equilibrium. It turns out that mixed-strategy equilibria
need not be unique when they exist. In fact when a game has multiple pure-strategy
Nash equilibria, it will almost always have other Nash equilibria in mixed strategies.
Consider the following game:

Player 2
C R

Player 1
M 0, 0 3, 5

D 4, 4 0, 3

It is easy to check that (M, R) and (D, C) are both pure-strategy Nash equilibria.
It turns out that in 2 × 2 matrix games like this one, when there are two distinct
pure-strategy Nash equilibria then there will almost always be a third one in mixed
strategies.6

For this game, let player 1’s mixed strategy be given by σ1 = (σ1(M), σ1(D)),
with σ1(M) = p and σ1(D) = 1 − p, and let player 2’s mixed strategy be given by
σ2 = (σ2(C), σ2(R)), with σ2(C) = q and σ2(R) = 1 − q. Player 1 will mix when
v1(M, q) = v1(D, q), or when

q × 0 + (1 − q) × 3 = q × 4 + (1 − q) × 0

⇒ q = 3
7 ,

and player 2 will mix when v2(p, C) = v2(p, R), or when

p × 0 + (1 − p) × 4 = p × 5 + (1 − p) × 3

⇒ p = 1
6 .

This yields our third Nash equilibrium: (σ ∗
1 , σ ∗

2 ) =
(( 1

6 , 5
6

)
,
( 3

7 , 4
7

))
.

6. The statement “almost always” is not defined here, but it effectively means that if we draw numbers
at random from some set of distributions to fill a game matrix, and it will result in more than one
pure-strategy Nash equilibrium, then with probability 1 it will also have at least one mixed-strategy
equilibrium. In fact a game will typically have an odd number of equilibria. This result is known as
an index theorem and is far beyond the scope of this text.
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p

1

1

q

BR1(q)

BR2(p)

3–
7

1–
6

FIGURE 6.4 Best-response correspondences and Nash equilibria.

It is interesting to see that all three equilibria would show up in a careful drawing
of the best-response functions. Using the payoff functions v1(M, q) and v1(D, q)

we have

BR1(q) =

⎧⎪⎨⎪⎩
p = 1 if q < 3

7

p ∈ [0, 1] if q = 3
7

p = 0 if q > 3
7 .

Similarly using the payoff functions v2(p, C) and v2(p, R) we have

BR2(p) =

⎧⎪⎨⎪⎩
q = 1 if p < 1

6

q ∈ [0, 1] if p = 1
6

q = 0 if p > 1
6 .

We can draw the two best-response correspondences as they appear in Figure 6.4.
Notice that all three Nash equilibria are revealed in Figure 6.4: (p, q) ∈ {(1, 0),( 1

6 , 3
7

)
, (0, 1)} are all Nash equilibria, where (p, q) = (1, 0) corresponds to the pure

strategy (M, R), and (p, q) = (0, 1) corresponds to the pure strategy (D, C).

6.3 IESDS and Rationalizability Revisited

By introducing mixed strategies we offered two advancements: players can have richer
beliefs, and players can choose a richer set of actions. This can be useful when we
reconsider the concepts of IESDS and rationalizability, and in fact present them in
their precise form using mixed strategies. In particular we can now state the following
two definitions:

Definition 6.7 Let σi ∈ �Si and s′
i
∈ Si be possible strategies for player i. We say

that s′
i

is strictly dominated by σi if

vi(σi, s−i) > vi(s
′
i
, s−i) ∀s−i ∈ S−i.

Definition 6.8 A strategy σi ∈ �Si is never a best response if there are no beliefs
σ−i ∈ �S−i for player i for which σi ∈ BRi(σ−i).
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That is, to consider a strategy as strictly dominated, we no longer require that
some other pure strategy dominate it, but allow for mixed strategies to dominate it
as well. The same is true for strategies that are never a best response. It turns out
that this approach allows both concepts to have more bite. For example, consider the
following game:

Player 2
L C R

U 5, 1 1, 4 1, 0

Player 1 M 3, 2 0, 0 3, 5

D 4, 3 4, 4 0, 3

and denote mixed strategies for players 1 and 2 as triplets, (σ1(U), σ1(M), σ1(D))

and (σ2(L), σ2(C), σ2(R)), respectively.
Starting with IESDS, it is easy to see that no pure strategy is strictly dominated by

another pure strategy for any player. Hence if we restrict attention to pure strategies
then IESDS has no bite and suggests that anything can happen in this game. However,
if we allow for mixed strategies, we can find that the strategy L for player 2 is strictly
dominated by a strategy that mixes between the pure strategies C and R. That is,
(σ2(L), σ2(C), σ2(R)) = (

0, 1
2 , 1

2

)
strictly dominates choosing L for sure because

this mixed strategy gives player 2 an expected payoff of 2 if player 1 chooses U , of
2.5 if player 1 chooses M , and of 3.5 if player 1 chooses D.

Effectively it is as if we are increasing the number of columns from which player 2
can choose to infinity, and one of these columns is the strategy in which player 2 mixes
between C and R with equal probability, as the following diagram suggests:

L C R
(
0, 1

2 ,
1
2

)
U 5, 1 1, 4 1, 0 2

M 3, 2 0, 0 3, 5 Player 2’s expected payoff from mixing C and R ⇒ 2.5

D 4, 3 4, 4 0, 3 3.5

Hence we can perform the first step of IESDS with mixed strategies relying on the
fact that

(
0, 1

2 , 1
2

) �2 L, and now the game reduces to the following:

Player 2
C R

U 1, 4 1, 0

Player 1 M 0, 0 3, 5

D 4, 4 0, 3

(
0, 1

2 ,
1
2

)
2 1.5

In this reduced game there still are no strictly dominated pure strategies, but careful
observation will reveal that the strategy U for player 1 is strictly dominated by a strat-
egy that mixes between the pure strategies M and D. That is, (σ1(U), σ1(M), σ1(D))
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= (
0, 1

2 , 1
2

)
strictly dominates choosing U for sure because this mixed strategy gives

player 1 an expected payoff of 2 if player 2 chooses C and 1.5 if player 2 chooses R.
We can then perform the second step of IESDS with mixed strategies relying on the
fact that

(
0, 1

2 , 1
2

) �1 U in the reduced game, and now the game reduces further to
the following:

C R

M 0, 0 3, 5

D 4, 4 0, 3

This last 2 × 2 game cannot be further reduced.
A question you must be asking is, how did we find these dominated strategies?

Well, a good eye for numbers is what it takes—short of a computer program or brute
force. Notice also that there are other mixed strategies that would work, because strict
dominance implies that if we add a small ε > 0 to one of the probabilities, and subtract
it from another, then the resulting expected payoff from the new mixed strategies can
be made arbitrarily close to that of the original one; thus it too would dominate the
dominated strategy.

Turning to rationalizability, in Section 4.3.3 we introduced the concept that after
eliminating all the strategies that are never a best response, and employing this
reasoning again and again in a way similar to what we did for IESDS, the strategies
that remain are called the set of rationalizable strategies. If we use this concept to
analyze the game we just solved with IESDS, the result will be the same. Starting
with player 2, there is no belief that he can have for which playing L will be a best
response. This is easy to see because either C or R will be a best response to one of
player 1’s pure strategies, and hence, even if player 1 mixes then the best response of
player 2 will either be to play C, to play R, or to mix with both. Then after reducing
the game a similar argument will work to eliminate U from player 1’s strategy set.

As we mentioned briefly in Section 4.3.3, the concepts of IESDS and rationaliz-
ability are closely related. To see one obvious relation, the following fact is easy to
prove:

Fact If a strategy σi is strictly dominated then it is never a best response.

The reason this is obvious is because if σi is strictly dominated then there is
some other strategy σ ′

i
for which vi(σ

′
i
, σ−i) > vi(σi, σ−i) for all σ−i ∈ �S−i. As

a consequence, there is no belief about σ−i that player i can have for which σi yields
a payoff as good as or better than σ ′

i
.

This fact is useful, and it implies that the set of a player’s rationalizable strategies is
no larger than the set of a player’s strategies that survive IESDS. This is true because
if a strategy was eliminated using IESDS then it must have been eliminated through
the process of rationalizability. Is the reverse true as well?

Proposition 6.2 For any two-player game a strategy σi is strictly dominated if and
only if it is never a best response.

Hence for two-player games the set of strategies that survive IESDS is the same as
the set of strategies that are rationalizable. Proving this is not that simple and is beyond
the scope of this text. The eager and interested reader is encouraged to read Chapter 2
of Fudenberg and Tirole (1991), and the daring reader can refer to the original research
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papers by Bernheim (1984) and Pearce (1984), which simultaneously introduced the
concept of rationalizability.7

6.4 Nash’s Existence Theorem

Section 5.1.2 argued that the Nash equilibrium solution concept is powerful because
on the one hand, like IESDS and rationalizability, a Nash equilibrium will exist for
most games of interest and hence will be widely applicable. On the other hand, the
Nash solution concept will usually lead to more refined predictions than those of
IESDS and rationalizability, yet the reverse is never true (see proposition 5.1). In his
seminal Ph.D. dissertation, which laid the foundations for game theory as it is used
and taught today and earned him a Nobel Prize, Nash defined the solution concept
that now bears his name and showed some very general conditions under which the
solution concept will exist. We first state Nash’s theorem:

Theorem (Nash’s Existence Theorem) Any n-player normal-form game with finite
strategy sets Si for all players has a (Nash) equilibrium in mixed strategies.8

Despite its being a bit technical, we will actually prove a restricted version of this
theorem. The ideas that Nash used to prove the existence of his equilibrium concept
have been widely used by game theorists, who have developed related solution
concepts that refine the set of Nash equilibria, or generalize it to games that were not
initially considered by Nash himself. It is illuminating to provide some basic intuition
first. The central idea of Nash’s proof builds on what is known in mathematics as
a fixed-point theorem. The most basic of these theorems is known as Brouwer’s
fixed-point theorem:

Theorem (Brouwer’s Fixed-Point Theorem) If f (x) is a continuous function from
the domain [0, 1] to itself then there exists at least one value x∗ ∈ [0, 1] for which
f (x∗) = x∗.

That is, if f (x) takes values from the interval [0, 1] and generates results from
this same interval (or f : [0, 1] → [0, 1]) then there has to be some value x∗ in the
interval [0, 1] for which the operation of f (.) on x∗ will give back the same value,
f (x∗) = x∗. The intuition behind the proof of this theorem is actually quite simple.

First, because f : [0, 1] → [0, 1] maps the interval [0, 1] onto itself, then 0 ≤
f (x) ≤ 1 for any x ∈ [0, 1]. Second, note that if f (0) = 0 then x∗ = 0, while if
f (1) = 1 then x∗ = 1 (as shown by the function f1(x) in Figure 6.5). We need to
show, therefore, that if f (0) > 0 and f (1) < 1 then when f (x) is continuous there
must be some value x∗ for which f (x∗) = x∗. To see this consider the two functions,
f2(x) and f3(x), depicted in Figure 6.5, both of which map the interval [0, 1] onto
itself, and for which f (0) > 0 and f (1) < 1. That is, these functions start above the
45◦ line and end below it. The function f2(x) is continuous, and hence if it starts above

7. When there are more than two players, the set of rationalizable strategies is sometimes smaller
and more refined than the set of strategies that survive IESDS. There are some conditions on the way
players randomize that restore the equivalence result to many-player games, but that subject is also
way beyond the scope of this text.
8. Recall that a pure strategy is a degenerate mixed strategy; hence there may be a Nash equilibrium
in pure strategies.
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FIGURE 6.5 Brouwer’s fixed-point theorem.
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FIGURE 6.6 Mapping mixed strategies using the best-response correspondence.

the 45◦ line and ends below it, it must cross it at least once. In the figure, this happens
at the value of x∗. To see why the continuity assumption is important, consider the
function f3(x) depicted in Figure 6.5. Notice that it “jumps” down from above the
45◦ line to right below it, and hence this function does not cross the 45◦ line, in which
case there is no value x for which f (x) = x.

You might wonder how this relates to the existence of a Nash equilibrium. What
Nash showed is that something like continuity is satisfied for a mapping that uses
the best-response correspondences of all the players at the same time to show that
there must be at least one mixed-strategy profile for which each player’s strategy is
itself a best response to this profile of strategies. This conclusion needs some more
explanation, though, because it requires a more powerful fixed-point theorem and a
bit more notation and definition.
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Consider the 2 × 2 game used in Section 6.2.3, described in the following matrix:

Player 2
C R

Player 1
M 0, 0 3, 5

D 4, 4 0, 3

A mixed strategy for player 1 is to choose M with probability p ∈ [0, 1] and for player
2 to choose C with probability q ∈ [0, 1]. The analysis in Section 6.2.3 showed that
the best-response correspondences for each player are

BR1(q) =

⎧⎪⎨⎪⎩
p = 1 if q < 3

7

p ∈ [0, 1] if q = 3
7

p = 0 if q > 3
7

(6.3)

and

BR2(p) =

⎧⎪⎨⎪⎩
q = 1 if p < 1

6

q ∈ [0, 1] if p = 1
6

q = 0 if p > 1
6 ,

(6.4)

which are both depicted in Figure 6.6. We now define the collection of best-response
correspondences as the correspondence that simultaneously represents all of the
best-response correspondences of the players. This correspondence maps profiles of
mixed strategies into subsets of the possible set of mixed strategies for all the players.
Formally we have

Definition 6.9 The collection of best-response correspondences, BR ≡ BR1 ×
BR2 × . . . × BRn, maps �S = �S1 × . . . × �Sn, the set of profiles of mixed strate-
gies, onto itself. That is, BR : �S →→ �S takes every element σ ∈ �S and converts it
into a subset BR(σ ′) ⊂ �S.

For a 2 × 2 matrix game like the one considered here, the BR correspondence can
be written as9 BR : [0, 1]2 →→ [0, 1]2 because it takes pairs of mixed strategies of the
form (q, p) ∈ [0, 1]2 and maps them, using the best-response correspondences of the
players, back to these mixed-strategy spaces, so that BR(q, p) = (BR2(p), BR1(q)).
For example, consider the pair of mixed strategies (q1, p1) in Figure 6.6. Looking
at player 1’s best response, BR1(q) = 0, and looking at player 2’s best response,
BR2(p) = 0 as well. Hence BR(q1, p1) = (0, 0), as shown by the curve that takes
(q1, p1) and maps it onto (0, 0). Similarly (q2, p2) is mapped onto (1, 1).

Note that the point (q, p) = (0, 1) is special in that BR(0, 1) = (0, 1). This should
be no surprise because, as we have shown in Section 6.2.3, (q, p) = (0, 1) is one of
the game’s three Nash equilibria, so it must belong to the BR correspondence of
itself. The same is true for the point (q, p) = (1, 0). The third interesting point is

9. The space [0, 1]2 is the two-dimensional square [01] × [01]. It is the area in which all the action
in Figure 6.6 is happening.
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( 3
7 , 1

6

)
, because BR

( 3
7 , 1

6

) = ([0, 1], [0, 1]), which means that the BR correspon-
dence of this point is a pair of sets. This results from the fact that when player 2 mixes
with probability q = 3

7 then player 1 is indifferent between his two actions, causing
any p ∈ [0, 1] to be a best response, and similarly for player 2 when player 1 mixes
with probability p = 1

6 . As a consequence,
( 3

7 , 1
6

) ∈ BR
( 3

7 , 1
6

)
, which is the reason

it is the third Nash equilibrium of the game. Indeed by now you may have antici-
pated the following fact, which is a direct consequence of the definition of a Nash
equilibrium:

Fact A mixed-strategy profile σ ∗ ∈ �S is a Nash equilibrium if and only if it is a
fixed point of the collection of best-response correspondences, σ ∗ ∈ BR(σ ∗).

Now the connection to fixed-point theorems should be more apparent. What Nash
figured out is that when the collection of best responses BR is considered, then once
it is possible to prove that it has a fixed point, it immediately implies that a Nash
equilibrium exists. Nash continued on to show that for games with finite strategy sets
for each player it is possible to apply the following theorem:

Theorem 6.1 (Kakutani’s Fixed-Point Theorem) A correspondence C : X →→ X has a
fixed point x ∈ C(x) if four conditions are satisfied: (1) X is a non-empty, compact,
and convex subset of R

n; (2) C(x) is non-empty for all x; (3) C(x) is convex for all
x; and (4) C has a closed graph.

This may surely seem like a mouthful because we have not defined any of the
four qualifiers required by the theorem. For the sake of completeness, we will go over
them and conclude with an intuition of why the theorem is true. First, recall that a
correspondence can assign more than one value to an input, whereas a function can
assign only one value to any input. Now let’s introduce the definitions:

. A set X ⊆ R
n is convex if for any two points x, y ∈ X and any α ∈ [0, 1],

αx + (1 − α)y ∈ X. That is, any point in between x and y that lies on the
straight line connecting these two points lies inside the set X.

. A set X ⊆ R
n is closed if for any converging sequence {xn}∞n=1 such that xn ∈ X

for all n and limn→∞ xn → x∗ then x∗ ∈ X. That is, if an infinite sequence of
points are all in X and this sequence converges to a point x∗ then x∗ must be
in X. For example, the set (0, 1] that does not include 0 is not closed because
we can construct a sequence of points

{ 1
n

}∞
n=1 = {

1, 1
2 , 1

3, . . .
}

that are all in
the set [0, 1) and that converge to the point 0, but 0 is not in (0, 1].

. A set X ⊆ R
n is compact if it is both closed and bounded. That is, there is

a “largest” and a “smallest” point in the set that do not involve infinity. For
example, the set [0, 1] is closed and bounded; the set (0, 1] is bounded but not
closed; and the set [0, ∞) is closed but not bounded.

. The graph of a correspondence C : X →→ X is the set {(x, y) | x ∈ X, y ∈
C(x)}. The correspondence C : X →→ X has a closed graph if the graph of C

is a closed set: for any sequence {(xn, yn)}∞n=1 such that xn ∈ X and yn ∈ C(xn)

for all n, and limn→∞(xn, yn) = (x∗, y∗), then x∗ ∈ X and y∗ ∈ C(x∗). For
example, if C(x) = x2 then the graph is the set {(x, y) | x ∈ R, y = x2},
which is exactly the plot of the function. The plot of any continuous function
is therefore a closed graph. (This is true whenever C(x) is a real continuous
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x

C(x)

FIGURE 6.7 A correspondence with a closed graph.

function.) Another example is the correspondence C(x) = [
x
2 , 3x

2

]
that is

depicted in Figure 6.7. In contrast the correspondence C(x) = (
x
2 , 3x

2

)
does

not have a closed graph (it does not include the “boundaries” that are included
in Figure 6.7).

The intuition for Kakutani’s fixed-point theorem is somewhat similar to that for
Brouwer’s theorem. Brouwer’s theorem was stated using two qualifiers: first, the
function f (x) was continuous, and second, it operated from the domain [0, 1] to
itself. This implied that if we draw any such function in [0, 1], we will have to cross
the 45◦ line at at least one point, which is the essence of the fixed-point theorem.

Now let’s consider Kakutani’s four conditions. His first condition, that X is a
non-empty, compact, and convex subset of R

n, is just the more general version of
the [0, 1] qualifier in Brouwer’s theorem. In fact Brouwer’s theorem works for [0, 1]
precisely because it is a non-empty, compact, and convex subset of R.10 His other
three conditions basically guarantee that a form of “continuity” is satisfied for the
correspondence C(x). If we consider any continuous real function from [0, 1] to itself,
it satisfies all three conditions of being non-empty (it has to be well defined), convex (it
is always just one point), and closed (again, just one point). Hence the four conditions
identified by Kakutani guarantee that a correspondence will cross the relevant 45◦ line
and generate at least one fixed point.

We can now show that for the 2 × 2 game described earlier, and in fact for any
2 × 2 game, the four conditions of Kakutani’s theorem are satisfied:

1. BR : [0, 1]2 →→ [0, 1]2 operates on the square [0, 1]2, which is a non-empty,
convex, and compact subset of R.

10. If instead we consider (0, 1), which is not closed and hence not compact, then the function
f (x) = √

x does not have a fixed point because within the domain (0, 1) it is everywhere above the

45◦ line. If we consider the domain
[
0, 1

3

]
∪
[

2
3 , 1

]
, which is not convex because it is has a gap

equal to
(

1
3 , 2

3

)
, then the function f (x) = 3

4 for all x ∈
[
0, 1

3

]
and f (x) = 1

4 for all x ∈
[

2
3 , 1

]
(which is continuous) will not have a fixed point precisely because of this gap.
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2. BR(σ) is non-empty for any σ ∈ [0, 1]2. This is obvious for the example given
earlier because both BR1(q) and BR2(p) are non-empty, as shown in (6.3)
and (6.4). More generally for 2 × 2 games: each player’s strategy is in the
compact set [0, 1]; each player’s expected payoff is a weighted average of the
four possible payoffs he can achieve (weighted by the mixed strategies); and
his expected payoff is therefore continuous in his strategy. As a consequence
each player has at least one best response for any choice of his opponent. (This
is because a continuous function operating on a compact set will achieve both
a maximum and a minimum over that set. This is known as the extreme value
theorem.)

3. BR(σ) is convex for any σ ∈ [0, 1]2. This is obvious for the example given
earlier because both BR1(q) and BR2(p) are convex, as shown in (6.3)
and (6.4). This follows more generally directly from proposition 6.1, which
states that if a player is mixing between two pure strategies then he must
be indifferent between them. This in turn implies that he is willing to mix
between them in any way, and as a consequence, if two mixed strategies
σ ′

1 and σ ′′
1 are in BR1(q) then any mixed strategy is in BR1, so that BR1

is convex. Because this argument works for both players, if any two mixed-
strategy profiles σ and σ ′ are in BR then any convex combination of them is
also in BR.

4. BR(σ) has a closed graph. Again we can see this from (6.3) and (6.4). For
each of the two players, BRi(σj) is equal to either 0, 1, or the whole interval
[0, 1]. More generally, for any 2 × 2 game consider a sequence of mixed-
strategy profiles {(qn, pn)}∞n=1 and a sequence of best responses {(q ′

n
, p′

n
)}∞

n=1,
where (q ′

n
, p′

n
) ∈ BR((qn, pn)) for all n. Let limn→∞(qn, pn) = (q∗, p∗)

and limn→∞(q ′
n
, p′

n
) = (q ′, p′). To conclude that BR(σ) has a closed graph

we need to show that (q ′, p′) ∈ BR(q∗, p∗). For player 2 it must be that
v2(q

′
n
, pn) ≥ v2(q, pn) for any q ∈ [0, 1] because q ′

n
is a best response to pn.

Because the (expected) payoff function is linear in q and p, it is continuous
in both arguments and, as a consequence, we can take limits on both sides of
the inequality while preserving the inequality, so that limn→∞ v2(q

′
n
, pn) ≥

limn→∞ v2(q, pn) for all q ∈ [0, 1], implying that v2(q
′, p∗) ≥ v2(q, p∗) for

all q ∈ [0, 1]. But this implies that q ′ ∈ BR2(p
∗), and a symmetric argument

for player 1 implies that p′ ∈ BR1(q
∗), which together prove that (q ′, p′) ∈

BR(q∗, p∗).

We conclude therefore that all four conditions of Kakutani’s fixed-point theorem
are satisfied for the (mixed-) strategy sets and the best-response correspondence of
any 2 × 2 game. Hence the best-response correspondence BR(σ) has a fixed point,
which in turn implies that any 2 × 2 game has at least one Nash equilibrium.

Recall that Nash’s theorem referred to any finite n-player game and not just 2 × 2
games. As Nash showed, the basic application of Kakutani’s fixed-point theorem to
finite games holds for any finite number of pure strategies for each player. If, say,
player i has a strategy set consisting of m pure strategies {si1, si2, . . . , sim} then his set
of mixed strategies is in the simplex �i = {(σi(si1), σi(si2), . . . , σi(sim)) | σi(sik) ∈
[0, 1] for all k = 1, 2, . . . , m, and

∑m
k=1 σi(sik) = 1}. It is easy to show that the set �i

is a non-empty, compact, and convex subset of R
m, meaning that the first condition

of Kakutani’s theorem is satisfied. Using the same ideas as in points 1–4, it is not too
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difficult to show that the three other conditions of Kakutani’s theorem hold, and as a
result that the best-response correspondence BR has a fixed point and that any such
game has a Nash equilibrium.

6.5 Summary

. Allowing for mixed strategies enriches both what players can choose and what
they can believe about the choices of other players.

. In games for which players have opposing interests, like the Matching Pen-
nies game, there will be no pure-strategy equilibrium but a mixed-strategy
equilibrium will exist.

. Allowing for mixed strategies enhances the power of IESDS and of rational-
izability.

. Nash proved that for finite games there will always be at least one Nash
equilibrium.

6.6 Exercises

6.1 Best Responses in the Battle of the Sexes: Use the best-response correspon-
dences in the Battle of the Sexes game to find all the Nash equilibria. (Follow
the approach used for the example in Section 6.2.3.)

6.2 Mixed Dominance 1: Let σi be a mixed strategy of player i that puts positive
weight on one strictly dominated pure strategy. Show that there exists a mixed
strategy σ ′

i
that puts no weight on any dominated pure strategy and that

dominates σi.

6.3 Mixed Dominance 2: Consider the game used in Section 6.3:

Player 2
L C R

U 5, 1 1, 4 1, 0

Player 1 M 3, 2 0, 0 3, 5

D 4, 3 4, 4 0, 3

a. Find a strategy different from (σ2(L), σ2(C), σ2(R)) = (
0, 1

2 , 1
2

)
that

strictly dominates the pure strategy L for player 2. Argue that you can
find an infinite number of such strategies.

b. Find a strategy different from (σ1(U), σ1(M), σ1(D)) = (
0, 1

2 , 1
2

)
that

strictly dominates the pure strategy U for player 1 in the game remain-
ing after one stage of elimination. Argue that you can find an infinite
number of such strategies.

6.4 Monitoring: An employee (player 1) who works for a boss (player 2) can
either work (W ) or shirk (S), while his boss can either monitor the employee
(M) or ignore him (I ). As in many employee-boss relationships, if the em-
ployee is working then the boss prefers not to monitor, but if the boss is not
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monitoring then the employee prefers to shirk. The game is represented by the
following matrix:

Player 2
M I

Player 1
W 1, 1 1, 2

S 0, 2 2, 1

a. Draw the best-response function of each player.
b. Find the Nash equilibrium of this game. What kind of game does this

game remind you of?

6.5 Cops and Robbers: Player 1 is a police officer who must decide whether to
patrol the streets or to hang out at the coffee shop. His payoff from hanging out
at the coffee shop is 10, while his payoff from patrolling the streets depends on
whether he catches a robber, who is player 2. If the robber prowls the streets
then the police officer will catch him and obtain a payoff of 20. If the robber
stays in his hideaway then the officer’s payoff is 0. The robber must choose
between staying hidden or prowling the streets. If he stays hidden then his
payoff is 0, while if he prowls the streets his payoff is −10 if the officer is
patrolling the streets and 10 if the officer is at the coffee shop.

a. Write down the matrix form of this game.
b. Draw the best-response function of each player.
c. Find the Nash equilibrium of this game. What kind of game does this

game remind you of?

6.6 Declining Industry: Consider two competing firms in a declining industry
that cannot support both firms profitably. Each firm has three possible choices,
as it must decide whether or not to exit the industry immediately, at the end of
this quarter, or at the end of the next quarter. If a firm chooses to exit then its
payoff is 0 from that point onward. Each quarter that both firms operate yields
each a loss equal to −1, and each quarter that a firm operates alone yields it
a payoff of 2. For example, if firm 1 plans to exit at the end of this quarter
while firm 2 plans to exit at the end of the next quarter then the payoffs are
(−1, 1) because both firms lose −1 in the first quarter and firm 2 gains 2 in
the second. The payoff for each firm is the sum of its quarterly payoffs.

a. Write down this game in matrix form.
b. Are there any strictly dominated strategies? Are there any weakly

dominated strategies?
c. Find the pure-strategy Nash equilibria.
d. Find the unique mixed-strategy Nash equilibrium. (Hint: you can use

your answer to (b) to make things easier.)

6.7 Grad School Competition: Two students sign up to prepare an honors thesis
with a professor. Each can invest time in his own project: either no time, one
week, or two weeks (these are the only three options). The cost of time is 0
for no time, and each week costs 1 unit of payoff. The more time a student
puts in the better his work will be, so that if one student puts in more time than
the other there will be a clear “leader.” If they put in the same amount of time
then their thesis projects will have the same quality. The professor, however,
will give out only one grade of A. If there is a clear leader then he will get
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the A, while if they are equally good then the professor will toss a fair coin
to decide who gets the A. The other student will get a B. Since both wish to
continue on to graduate school, a grade of A is worth 3 while a grade of B is
worth 0.

a. Write down this game in matrix form.
b. Are there any strictly dominated strategies? Are there any weakly

dominated strategies?
c. Find the unique mixed-strategy Nash equilibrium.

6.8 Market Entry: Three firms are considering entering a new market. The payoff
for each firm that enters is 150

n
, where n is the number of firms that enter. The

cost of entering is 62.

a. Find all the pure-strategy Nash equilibria.
b. Find the symmetric mixed-strategy equilibrium in which all three

players enter with the same probability.

6.9 Discrete All-Pay Auction: In Section 6.1.4 we introduced a version of an all-
pay auction that worked as follows: Each bidder submits a bid. The highest
bidder gets the good, but all bidders pay their bids. Consider an auction in
which player 1 values the item at 3 while player 2 values the item at 5. Each
player can bid either 0, 1, or 2. If player i bids more than player j then i wins
the good and both pay. If both players bid the same amount then a coin is
tossed to determine who gets the good, but again both pay.

a. Write down the game in matrix form. Which strategies survive IESDS?
b. Find the Nash equilibria for this game.

6.10 Continuous All-Pay Auction: Consider an all-pay auction for a good worth 1
to each of the two bidders. Each bidder can choose to offer a bid from the unit
interval so that Si = [0, 1]. Players care only about the expected value they
will end up with at the end of the game (i.e., if a player bids 0.4 and expects
to win with probability 0.7 then his payoff is 0.7 × 1 − 0.4).

a. Model this auction as a normal-form game.
b. Show that this game has no pure-strategy Nash equilibrium.
c. Show that this game cannot have a Nash equilibrium in which each

player is randomizing over a finite number of bids.
d. Consider mixed strategies of the following form: Each player i chooses

an interval [xi, xi] with 0 ≤ xi < xi ≤ 1 together with a cumulative
distribution Fi(x) over the interval [xi, xi]. (Alternatively you can
think of each player choosing Fi(x) over the interval [0, 1] with two
values xi and xi such that Fi(xi) = 0 and Fi(xi) = 1.)

i. Show that if two such strategies are a mixed-strategy Nash
equilibrium then it must be that x1 = x2 and x1 = x2.

ii. Show that if two such strategies are a mixed-strategy Nash
equilibrium then it must be that x1 = x2 = 0.

iii. Using your answers to (i) and (ii), argue that if two such
strategies are a mixed-strategy Nash equilibrium then both
players must be getting an expected payoff of zero.

iv. Show that if two such strategies are a mixed-strategy Nash
equilibrium then it must be that x1 = x2 = 1.

v. Show that Fi(x) being uniform over [0, 1] is a symmetric Nash
equilibrium of this game.
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6.11 Bribes: Two players find themselves in a legal battle over a patent. The patent
is worth 20 to each player, so the winner would receive 20 and the loser 0.
Given the norms of the country, it is common to bribe the judge hearing a case.
Each player can offer a bribe secretly, and the one whose bribe is the highest
will be awarded the patent. If both choose not to bribe, or if the bribes are the
same amount, then each has an equal chance of being awarded the patent. If
a player does bribe, then the bribe can be valued at either 9 or 20. Any other
number is considered very unlucky, and the judge would surely rule against a
party who offered a different number.

a. Find the unique pure-strategy Nash equilibrium for this game.
b. If the norm were different, so that a bribe of 15 were also acceptable,

is there a pure-strategy Nash equilibrium?
c. Find the symmetric mixed-strategy Nash equilibrium for the game

with possible bribes of 9, 15, and 20.

6.12 The Tax Man: A citizen (player 1) must choose whether to file taxes honestly
or to cheat. The tax man (player 2) decides how much effort to invest in
auditing and can choose a ∈ [0, 1]; the cost to the tax man of investing at a
level a is c(a) = 100a2. If the citizen is honest then he receives the benchmark
payoff of 0, and the tax man pays the auditing costs without any benefit from
the audit, yielding him a payoff of −100a2. If the citizen cheats then his payoff
depends on whether he is caught. If he is caught then his payoff is −100 and
the tax man’s payoff is 100 − 100a2. If he is not caught then his payoff is 50
while the tax man’s payoff is −100a2. If the citizen cheats and the tax man
chooses to audit at level a then the citizen is caught with probability a and is
not caught with probability (1 − a).

a. If the tax man believes that the citizen is cheating for sure, what is his
best-response level of a?

b. If the tax man believes that the citizen is honest for sure, what is his
best-response level of a?

c. If the tax man believes that the citizen is honest with probability p,
what is his best-response level of a as a function of p?

d. Is there a pure-strategy Nash equilibrium for this game? Why or
why not?

e. Is there a mixed-strategy Nash equilibrium for this game? Why or why
not?
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As we have seen in a number of examples, the normal-form representation seems
like a general method of putting formal structure on strategic situations. It

allowed us to analyze a variety of games and reach some conclusions about the
outcomes of strategic interaction when players are rational, as well as when there
is common knowledge of rationality. Setting a game within the limits of our “actions,
outcomes, and preferences” language seems, therefore, to have been a useful exercise.

The simplicity and generality of the normal form notwithstanding, one of its
drawbacks is its inability to capture games that unfold over time. That is, there is
a sense of how players’ strategy sets correspond to what they can do, and of how
the combination of their actions affects each other’s payoffs, but there is no way to
represent situations in which the order of moves might be important.

As an example, consider the familiar Battle of the Sexes game:

Chris
O F

Alex
O 2, 1 0, 0

F 0, 0 1, 2

but with a slight modification. Imagine that Alex finishes work at 3:00 p.m. while Chris
finishes work at 5:00 p.m. This gives Alex ample time to get to either the football game
or the opera and then to call Chris at 4:45 p.m. and announce “I am here.” Chris then
has to make a choice of where to go. Where should Chris go? If the choice is to the
venue where Alex is waiting then Chris will get some payoff. (It would be 1 if Alex
is at the opera and 2 if Alex is at the football game.) If Chris’s choice is to go to the
other venue, then he will get 0. Hence a rational Chris should go to the same venue
that Alex did. Anticipating this, a rational Alex ought to choose the opera, because
then Alex gets 2 instead of 1 from football.

As you can see, there is a fundamental difference between this example and the
simultaneous-move Battle of the Sexes game. Here Chris makes a move after learning
what Alex did, hence the difference is in what Chris knows when Chris makes a move.
In other words, in the simultaneous-move Battle of the Sexes game neither player
knows what the other is choosing, so each player conjectures a belief and plays a best
response to this belief. Here, in contrast, when it’s his turn to make a move, Chris
knows what Alex has done, and as a result the notion of conjecturing beliefs is moot.

129
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Furthermore Alex knows,by common knowledge of rationality, that Chris will choose
to follow Alex because it is Chris’s best response to do so. As a result Alex can get
what Alex wants.

This is a simple yet convincing example of the commonly used phrase “first-mover
advantage.” By moving first, Alex gets to set the evening’s venue. Before we draw
far-reaching conclusions about the generality of the first-mover advantage, consider
the Matching Pennies game. If I were to play with you, no matter what my position
would be (player 1 or 2), I would be happy to give you the opportunity to show your
coin first. I am sure that you can see why!

This chapter lays out a framework that allows us to represent formally such sequen-
tial strategic situations and apply strategic reasoning to these new representations. We
then go a step further and introduce a solution concept that captures the important idea
of sequential rationality, which is the general version of the dynamic reasoning of-
fered in the Battle of the Sexes example. Earlier movers will take into account the
rationality of players who move later in the game. This idea should resonate with the
backward induction procedure introduced in Section 2.4.1.

7.1 The Extensive-Form Game

In this section we derive the most common representation for games that unfold over
time and in which some players move after they learn the actions of other players.
The innovation over the normal-form representation is to allow the knowledge of some
players, when it is their turn to move, to depend on the previously made choices of
other players. As with the normal form, two elements must be part of any extensive-
form game’s representation:

1. Set of players, N .

2. Players’ payoffs as a function of outcomes, {vi(.)}i∈N .

To fix these ideas, let’s use the Battle of the Sexes example introduced earlier, in
which Alex moves first. In the extensive form the set of players is still N = {1, 2}
(Alex is 1 and Chris is 2), and their payoffs over outcomes are given as before:
v1(O, O) = v2(F, F ) = 2, v1(F, F ) = v2(O, O) = 1, and vi(O, F ) = vi(F, O) = 0
for i ∈ {1, 2}.

To overcome the limitations of the normal form and capture sequential play, we
need to expand the rather simplistic concept of pure-strategy sets to a more complex
organization of actions. We do this by introducing two parts for actions: First, as
before, what players can do, and second, when they can do it. Using our example,
we need to specify that the players can choose O or F as in the normal-form game,
but we also need to specify that player 1 moves first and that it is only then, after
learning what player 1 has chosen, that player 2 moves. Thus in general we need two
components to capture sequential play:

3. Order of moves.

4. Actions of players when they can move.

Because some players move after choices are made by other players, we need to be
able to describe the knowledge that players have about the history of the game when
it is their turn to move. Recall that we argued in Section 3.1 that the simultaneity of
the normal form was illustrative of players who know nothing about their opponents’
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moves when they make their choices. More precisely it is not the chronological order
of play that matters, but what players know when they make their choices.

In the Battle of the Sexes, for example, whether or not Chris knows what Alex
chose before it is his turn to move is critical. Perhaps it is the case that Alex made
a choice several hours before Chris did. However, if Chris has to make a choice
without knowing Alex’s actual choice, then it is the simultaneous-move normal-
form model that correctly represents the situation. Despite moving after Alex, Chris
cannot condition his action on the action chosen by Alex. In contrast, if Alex’s choice
is revealed to Chris before Chris makes a move, then we need to account for this
circumstance in the representation of the game.

To represent the way in which information and knowledge unfold in a game, we
add a fifth component to the description of an extensive-form game:

5. The knowledge that players have when they can move.

That is, we need a way to say more than “Chris moves after Alex.” We must
distinguish between “Chris moves after Alex and knows what Alex did” and “Chris
moves after Alex but does not know what Alex did.”

Finally we must account for the possibility that some random event can happen
during the course of the game. Recall that in our treatment of single-person decision
problems we allowed for random events. For example, in Chapter 2 we considered
a firm choosing whether or not to embark on an R&D project that yields uncertain
success. We can enrich the single-firm environment by adding another firm that can
choose whether or not to adapt its competitive strategy given the outcome of the first
firm’s R&D project. Indeed this second firm may benefit from waiting to see how the
first firm’s R&D project develops. Because the outcome of the R&D project is not
certain, we need to be able to capture these random events in order to model this kind
of game correctly.

Similar to the setup described in Chapter 2, stages in a game in which some
uncertainty is resolved are called moves of Nature. It is useful to think of Nature as
a nonstrategic player that has a predetermined stochastic strategy. In the R&D story,
when it is Nature’s choice to move, it “chooses” whether the project succeeds or fails
according to some probability distribution that is fixed and exogenous to the game.
By “exogenous” we mean that the predetermined probability distribution of Nature’s
choices does not depend on the choices made by the strategic players. Thus our sixth
element represents Nature as follows:

6. Probability distributions over exogenous events.

Finally, to be able to analyze these situations with the methods and concepts to
which we have already been introduced, we add a final and familiar requirement:

7. The structure of the extensive-form game represented by 1–6 is common
knowledge among all the players.

With the building blocks of 1–7 in place, one question remains: what formal
notation will be used to put all this together? For this we borrow from the familiar
concept of a decision tree that was introduced at the end of Section 1.1.2 and expand
it to capture multiplayer strategic situations.
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FIGURE 7.1 A trust game.

7.1.1 Game Trees

Just as decision trees offered a simple diagrammatic description of a single player’s
decision problem, a game tree will offer a diagrammatic description that is suitable to
represent extensive-form games. Consider, for example, a game that is very common
and falls under the general category of a “trust game.” Player 1 first chooses whether
to ask for the services of player 2. He can trust player 2 (T ) or not trust him (N ), the
latter choice giving both players a payoff of 0. If player 1 plays T , then player 2 can
choose to cooperate (C), which represents offering player 1 some fair level of service,
or defect (D), by which he basically cheats player 1 with an inferior, less costly to
provide service. Assume that if player 2 cooperates then both players get a payoff of
1, while if player 2 chooses to defect then player 1 gets a payoff of −1 and player 2
gets a payoff of 2.

This game represents many real-life trading situations. It could be a driver who
trusts a mechanic to be honest and perform the right service for his vehicle rather than
rip him off; a buyer on an auction web site like eBay who trusts a seller by paying up
front and hoping that the seller will deliver the described item rather than something
inferior, or nothing at all; or a local farmer who puts up a roadside produce stand with
a jar for money and relies on his customers to pay for the produce they take according
to the “honor system.”

A simple way to represent this game is with the game tree depicted in Figure 7.1.
In this figure we draw player 1 at the top with his two choices, and following the
choice of N are the payoffs (0, 0). Following the choice T , however, player 2 gets to
move with one of his two choices, and the payoffs will be determined by the choice
he makes. In this book we will use the convention of drawing the flow of the game
from top to bottom, and the payoffs as a vertical list in which the top number is player
1’s payoff and the bottom is player 2’s. (If there are more than two players we will
have more entries, still following the natural top-down order.)

This very simple structure is the most elementary form of a game tree. It includes
most of the elements we described, but it still lacks the formal structure that would
clearly delineate the “rules” that are used to describe such a game. Most importantly,
how do we capture knowledge? For example, going back to the Battle of the Sexes
game, in which Alex moved first, we may want to use the diagram in Figure 7.2 to
represent it as a game tree. It starts at a node denoted x0, at which player 1 can choose
between O and F. Then, depending on the choice of player 1, player 2 gets to move at
either node x1 or x2 and make a choice between o and f . (We’re now using lowercase
letters to denote the choices of player 2, a convenient way to distinguish between the
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FIGURE 7.2 The sequential-move Battle of the Sexes game.

players.) The sequence of choices will result in one of the outcomes at the bottom
of the tree. However, how can we distinguish between the sequential case in which
player 2 knows the move of player 1 and the simultaneous case in which player 2
moves after player 1 but is ignorant about player 1’s move?

To address this concern formally, and to complete the structure of a game tree,
a certain amount of detail and notation needs to be introduced.1 This is the main
objective of this section; later, once the concepts are clear, we will focus our efforts
on a variety of examples to master the use of game trees.

Definition 7.1 A game tree is a set of nodes x ∈ X with a precedence relation x > x′,
which means “x precedes x′.” Every node in a game tree has only one predecessor. The
precedence relation is transitive (x > x′, x′ > x′′ ⇒ x > x′′), asymmetric (x > x′ ⇒
not x′ > x), and incomplete (not every pair of nodes x, y can be ordered). There is a
special node called the root of the tree, denoted by x0, that precedes any other x ∈ X.
Nodes that do not precede other nodes are called terminal nodes, denoted by the set
Z ⊂ X. Terminal nodes denote the final outcomes of the game with which payoffs
are associated. Every node x that is not a terminal node is assigned either to a player,
i (x), with the action set Ai(x), or to Nature.

This definition is quite a mouthful, but it formally captures the “physical” structure
of a game tree, ignoring the actions of players and what they know when they move.
To illustrate the definition, look back at the Battle of the Sexes game in Figure 7.2.
x0 is where the game begins, and x0 precedes both x1 and x2. Each of these nodes
precedes two terminal nodes, each describing a different outcome of the game. Since
the terminal nodes are the game’s outcomes, payoffs to the two players are noted at
the terminal nodes.

Another example is given in Figure 7.3. In this game we have payoffs for four
players, N = {1, 2, 3, 4}, but only players 1, 2, and 4 have actual moves. Hence we can
think of player 3 as a “dummy player.” The terminal nodes are Z = {x4, x5, x6, x7, x8},
and payoffs are defined over terminal nodes: vi : Z → R, where vi(z) is i’s payoff if
terminal node z ∈ Z is reached. For example, if node x5 is reached, then player 2 gets
v2(x5) = 7 and player 4 gets v4(x5) = −5.

1. I borrow heavily from the notation in Fudenberg and Tirole (1991). This approach will serve the
reader who is interested in learning about their more advanced treatment of the subject, and I hope
it will not deter the reader who is not.
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FIGURE 7.3 A game tree with a “dummy” player.

The precedence relation, together with the way in which players are assigned
to nodes, describes the way in which the game unfolds. For example, in Figure 7.3
player 1 is assigned to the root, so i(x0) = 1. His action set at the root, A1(x0), includes
two choices that determine whether the game will terminate at node x4 with payoffs
(2, 0, −4, 3), or whether player 2 will get to play at node x1. Player 2 then can choose
whether player 4 will play at x2 or x3, and at each of these nodes player 4 has two
choices that both end in termination of the game. Player 3 has no moves to make.2

There is still one missing component: how do we describe the knowledge of each
player when it is his turn to move? In Figure 7.3 we see that player 2 moves after
player 1. Would player 2 know what player 1 did? In this example we would think
the answer should be obvious: if player 1 chose his other action, the game would end
and player 2 would not have the option of choosing an action. Moving down the game
tree to player 4, however, raises some questions. It seems implicit in the way we drew
the game tree in Figure 7.3 that player 4 knows what happened before he moves, that
is, if he is at node x2 or at node x3. Hence if player 4 knows where he is in the game
tree then he must know what player 2 did before him.

Perhaps the game that is played actually calls on player 4 to make his move without
knowing what player 2 did at x1. How can we describe this situation in a game tree?
Clearly we need to find a way to represent the case in which player 4 cannot distinguish
between being at x2 and being at x3. That is, we need to be able to make statements
like “I know that I am at either x2 or x3, but I don’t know at which of the two I am.”

We proceed to put structure on the information that a player has when it is his turn
to move. A player can have very fine information and know exactly where he is in
the game tree, or he may have coarser information and not know what has happened
before his move, therefore not knowing exactly where he is in the game tree. We
introduce the following definition:

2. Note that the moves from any nonterminal node result in a move to another node in the game. Thus
we can save on notation and give moves “names” that are consistent with the nodes in which they
will result. For our current example we could write A1(x0) = {x1, x4}, A2(x1) = {x2, x3}, A4(x2) =
{x5, x6}, and A4(x3) = {x7, x8}.
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FIGURE 7.4 The simultaneous-move Battle of the Sexes game.

Definition 7.2 Every player i has a collection of information sets hi ∈ Hi that
partition the nodes of the game at which player i moves with the following properties:

1. If hi is a singleton that includes only x then player i who moves at x knows
that he is at x.

2. If x = x′ and if both x ∈ hi and x′ ∈ hi then player i who moves at x does not
know whether he is at x or x′.

3. If x = x′ and if both x ∈ hi and x′ ∈ hi then Ai(x
′) = Ai(x).

The formal definition builds on a simple idea. Consider the sequential-move Battle
of the Sexes game in Figure 7.2 and observe that player 2 moves at x1. We want to
describe whether or not he knows that he is at x1. If we write h2 = {x1}, this means that
the information set at x1 is a singleton (it includes only the node x1). Hence player
2 has information that says “I am at x1,” which is captured by property (1) of the
definition. In this case it will follow that player 2 will have another information set,
h′

2 = {x2}.
If, in contrast, we want to represent a game in which player 2 does not know

whether he is at x1 or x2, then it must be the case that his information is “I know that
I am at either x1 or x2, but I don’t know at which of the two I am.” Thus we will write
h2 = {x1, x2}, which exactly means that player 2 cannot tell whether he is at x1 or x2.
This is the essence of property (2) of the definition.

Finally, property (3) is also essential to maintain the logic of information. If instead
x ∈ hi and x′ ∈ hi but Ai(x

′) = Ai(x), then by the mere fact that player i has different
actions from which to choose at each of the nodes x and x′, he should be able to
distinguish between these two nodes. It would therefore be illogical to assume that
he cannot distinguish between them.

We are left to construct a graphical representation to show which nodes belong in
the same information set. In Figure 7.4 we present the two common ways of depicting
this using the extensive-form representation of the simultaneous-move Battle of the
Sexes game that we have already seen and analyzed. Player 1 chooses from the action
set A1 = {O, F }, and player 2 chooses from A2 = {o, f }, without observing the choice
of player 1. On the left side of Figure 7.4 we use an ellipse to denote an information
set, and all the nodes that are in the same ellipse belong to the same information set.
In this example player 2 cannot distinguish between x1 and x2, so that h2 = {x1, x2}.
On the right side of Figure 7.4 is another common way of depicting information sets,
according to which the dashed line connecting x1 with x2 denotes that both are in the
same information set. Another example of a simultaneous-move game depicted as a
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game tree is the game of rock-paper-scissors, depicted in Figure 7.5. In this game
player 1 chooses from the set A1 = {R, P, S} while player 2 chooses from the set
A2 = {r, p, s}, without observing the choice made by player 1.

7.1.2 Imperfect versus Perfect Information

We defined games of complete information in Chapter 3 as the situation in which
each player i knows the action set and the payoff function of each and every player
j ∈ N, and this itself is common knowledge. This definition sufficed for the normal-
form representation. For extensive-form games, however, it is useful to distinguish
between two different types of complete-information games:

Definition 7.3 A game of complete information in which every information set is a
singleton and there are no moves of Nature is called a game of perfect information.
A game in which some information sets contain several nodes or in which there are
moves of Nature is called a game of imperfect information.

In a game of perfect information every player knows exactly where he is in the
game by knowing what occurred before he was called on to move. Examples would
be the trust game in Figure 7.1 and the sequential-move Battle of the Sexes game
in Figure 7.2. In a game of (complete but) imperfect information some players do
not know where they are because some information sets include more than one node.
This happens, for example, every time they move without knowing what some players
have chosen previously, implying that any simultaneous-move game is a game of
imperfect information. Examples include the simultaneous-move Battle of the Sexes
game shown in Figure 7.4 and the rock-paper-scissors game depicted in Figure 7.5.

Games of imperfect information are also useful to capture the uncertainty a player
may have about acts of Nature. For example, imagine the following card game: There
is a large deck that includes an equal number of only kings and aces, from which
player 1 pulls out a card without looking at it. The probability of getting a king is 0.5,
and we can think of this as Nature’s move. Hence player 1 moves after Nature and
does not know if Nature chose a king or an ace. After drawing the card, player 1 can
call (C) or fold (F ). If he folds, he pays $1 to player 2. If he calls, he pays $2 to player
2 if the card is a king, while player 2 pays him $2 if the card is an ace.

We can accurately describe this game in one of the two ways depicted in Figure 7.6.
To see this, consider the game tree in the left panel. The order of appearance is loyal
to the story: Nature chose K or A. Player 1 does not know what happened, but he
knows that he is at either node in his information set with probability 1

2 . Then player
1 makes his move and the game ends. The game on the right looks different but is
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FIGURE 7.6 A card game.

strategically equivalent. Player 1 makes his move (C or F ) without knowing which
card was drawn, and then Nature draws the card, K or A, with equal probability.
Therefore in both games we are depicting exactly the same information and moves,
and hence we are getting the story right.3

There is an insight worth emphasizing here. A game will be one of imperfect
information when a player must make a move either without knowing the move of
another player or without knowing the realization of a choice of Nature. Uncertainty
over the choice of Nature, or exogenous uncertainty, is at the heart of the single-
person decision problems that were described in Chapter 2. (And the card game
in Figure 7.6 is effectively a single-person decision problem because player 2 has
no choices to make.) Uncertainty over the choice of another player, or endogenous
uncertainty, is the subject of simultaneous-move games like the simultaneous-move
Battle of the Sexes game in Figure 7.4. Notice, however, that both situations share
a common feature: occurrences that some player does not know are captured by
uncertainty over where he is in the game, be it from exogenous or endogenous
uncertainty. In either case a player must form beliefs about the unobserved actions,
of Nature or of other players, in order to analyze his situation.

7.2 Strategies and Nash Equilibrium

Now that we have the structure of the extensive-form game well defined, and have
developed game trees to represent this structure, we move to the next important step
of describing strategies. Recall that in Section 3.1 we argued that “a strategy is often
defined as a plan of action intended to accomplish a specific goal.” In the normal-
form game it was very easy to define a strategy for a player: a pure strategy was
some element from his set of actions, Ai, and a mixed strategy was some probability
distribution over these actions. As we will now see, a strategy is more involved in
extensive-form games.

7.2.1 Pure Strategies

Consider the sequential-move Battle of the Sexes game described again in Figure 7.7.
(We will now seldom include the names of nodes in our game trees because they have

3. This is the reason that the definition of games of perfect or imperfect information explicitly requires
the reference to moves of Nature. It is sometimes possible to include them in a game tree in which
all the information sets are singletons.
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no real consequence for the issues with which we are concerned.) Player 1 has a single
information set with one node, so for him a pure strategy is as simple as “play O”
or “play F .” For player 2, however, things are a bit more involved. Player 2 has two
information sets, each associated with a different action of player 1. Hence the two
simple statements “play o” and “play f ” do not seem to exhaust all the possibilities
for player 2. In particular, player 2 can choose the following rather attractive strategy:
“If player 1 plays O then I will play o, while if player 1 plays F then I will play f .”

This simple example demonstrates that when a player’s move follows after the
realization of previous events in the game, and if the player can distinguish between
these previous events (they result in different information sets), then he can condition
his behavior on the events that happened. A strategy is therefore no longer a simple
statement of what a player will do, as in the normal-form simultaneous-move game.
Instead we have

Pure Strategies in Extensive-Form Games A pure strategy for player i is a
complete plan of play that describes which pure action player i will choose at each
of his information sets.

If we consider the simultaneous-move Battle of the Sexes game in Figure 7.8,
the pure strategies for player 1 are S1 = {O, F }, and those for player 2 are S2 =
{o, f }. Because each player has only one information set, the extensive-form game is
identical to the simple normal-form game we have already encountered. In contrast, in
the sequential-move Battle of the Sexes game in Figure 7.7, player 2 has two distinct
information sets in which he can choose o or f , each information set resulting from
the previously made choice of player 1. Therefore a “complete plan of play” must
accommodate a strategy that directs what player 2 will choose for each choice of
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FIGURE 7.8 The simultaneous-move Battle of the Sexes game.
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player 1. That is, player 2’s choice of action from the set {o, f } can be made contingent
on what player 1 does, admitting the possibility of strategies of the form “If player 1
plays O then I will play o, while if player 1 plays F then I will play f .”

For this example, we can describe the set of pure strategies for player 2 as follows:

S2 = {oo, of, f o, ff },
where a pure strategy “ab” is shorthand for “I will play a if player 1 plays O and I
will play b if he plays F.” For player 1 the pure strategy set remains S1 = {O, F }.

We now introduce some notation that builds on what we have already developed
in order to define formally a pure strategy. Let Hi be the collection of all information
sets at which player i plays, and let hi ∈ Hi be one of i’s information sets. Let Ai(hi)

be the actions that player i can take at hi, and let Ai be the set of all actions of player
i, Ai = ∪hi∈Hi

Ai(hi) (i.e., the union of all the elements in all the sets Ai(hi)). We can
now define a pure strategy as follows:

Definition 7.4 A pure strategy for player i is a mapping si : Hi → Ai that assigns
an action si(hi) ∈ Ai(hi) for every information set hi ∈ Hi. We denote by Si the set
of all pure-strategy mappings si ∈ Si.

A final point is in order, and the sequential-move Battle of the Sexes game in
Figure 7.7 is useful to illustrate it. Notice that even though player 2 has only two
actions from which to choose, by moving after observing what player 1 has chosen,
his strategy defines actions that are conditional on his information about where he is
in the game. In this example the two actions translate into four pure strategies because
he has two information sets.

This observation implies that a potentially small set of moves can translate into a
much larger set of strategies when sequential moves are possible, and when players
have knowledge of what preceded their play. In general assume that player i has k > 1
information sets, the first with m1 actions from which to choose, the second with m2,
and so on until mk. Letting |Si| denote the number of elements in Si, the total number
of pure strategies player i has is

|Si| = m1 × m2 × . . . × mk.

For example, a player with 3 information sets, 2 actions in the first, 3 in the second,
and 4 in the third will have a total of 24 pure strategies.

7.2.2 Mixed versus Behavioral Strategies

Now that we have defined pure strategies, the definition of mixed strategies follows
immediately, just like in the normal-form game:

Definition 7.5 A mixed strategy for player i is a probability distribution over his
pure strategies si ∈ Si.

How do we interpret a mixed strategy? In exactly the same way that we did for
the normal form: a player randomly chooses between all his pure strategies—in this
case all the complete plans of play—and once a particular plan is selected the player
follows it.

You may notice that this interpretation takes away some of the dynamic flavor
that we set out to capture with extensive-form games. More precisely, when a mixed
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strategy is used, the player selects a plan randomly before the game is played and then
follows a particular pure strategy.

This description of mixed strategies was sensible for normal-form games because
there it was a once-and-for-all choice to be made. In a game tree, however, the
player may want to randomize at some nodes, independently of what he did at earlier
nodes. In other words, the player may want to “cross the bridge when he gets there.”
This cannot be captured by mixed strategies as previously defined because once the
randomization is over, the player is choosing a pure plan of action.

To illustrate this point, consider again the sequential-move Battle of the Sexes
game in Figure 7.7. The previous definition of a mixed strategy implies that player 2
can randomize among any of his four pure strategies in the set S2 = {oo, of, f o, ff }.
It does not, however, allow him to choose strategies of the form “If player 1 plays O

then I’ll play f , while if he plays F then I’ll mix and play f with probability 1
3.”

To allow for strategies that let players randomize as the game unfolds we define a
new concept as follows:

Definition 7.6 A behavioral strategy specifies for each information set hi ∈ Hi

an independent probability distribution over Ai(hi) and is denoted by σi : Hi →
�Ai(hi), where σi(ai(hi)) is the probability that player i plays action ai(hi) ∈ Ai(hi)

in information set hi.

Arguably a behavioral strategy is more in tune with the dynamic nature of the
extensive-form game. When using such a strategy, a player mixes among his actions
whenever he is called to play. This differs from a mixed strategy, in which a player
mixes before playing the game but then remains loyal to the selected pure strategy.

Luce and Raiffa (1957) provide a nice analogy for the different strategy types we
have introduced. A pure strategy can be thought of as an instruction manual in which
each page tells the player which pure action to take at a particular information set, and
the number of pages is equal to the number of information sets the player has. The
set Si of pure strategies can therefore be treated like a library of such pure-strategy
manuals. A mixed strategy consists of choosing one of these manuals at random and
then following it precisely.

In contrast a behavioral strategy is a manual that prescribes possibly random
actions on each of the pages associated with play at particular information sets.
To see this, consider the sequential-move Battle of the Sexes game in Figure 7.9.
Player 2 has two information sets associated with the nodes x1 and x2, which we
denote hO

2 and hF
2 , respectively, and in each he can choose between two actions

in A2 = {o, f }. A pure strategy would be an element from S2 = {oo, of, f o, ff }.
A mixed strategy would be a probability distribution (poo, pof , pf o, pff ), where
ps2

≥ 0 and poo + pof + pf o + pff = 1. Denote a behavioral strategy as four prob-
abilities, σ2(o(hO

2 )), σ2(f (hO
2 )), σ2(o(hF

2 )), and σ2(f (hF
2 )), where σ2(o(hO

2 )) +
σ2(f (hO

2 )) = σ2(o(hF
2 )) + σ2(f (hF

2 )) = 1. In Figure 7.9 we have used σ2(o(hO
2 )) =

1
3, σ2(f (hO

2 )) = 2
3 , and σ2(o(hF

2 )) = σ2(f (hF
2 )) = 1

2 .
Having defined two kinds of nonpure strategies, the obvious question is whether

we need to consider both kinds of strategies for a complete description of possible
behavior, or whether it suffices to consider only one kind or the other. We can
answer this question by answering two complementary questions. The first is, given
a mixed (not behavioral) strategy, can we find a behavioral strategy that leads to
the same outcomes? Using our example, can we replace a mixed strategy of the
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FIGURE 7.9 Behavioral strategies in the sequential-move Battle of the Sexes game.

form (poo, pof , pf o, pff ) with
∑

s∈S2
ps = 1 with a behavioral strategy of the form

(σ2(o(hO
2 )), σ2(f (hO

2 )), σ2(o(hF
2 )), σ2(f (hF

2 ))) that leads to the same randomization
over outcomes?

The answer is yes, which is quite easy to see. Conditional on reaching x1 the
probability of playing o is Pr{o|O} = poo + pof , and conditional on reaching
x1 the probability of playing f is Pr{f |O} = pf o + pff , so that Pr{o|O}+
Pr{f |O} = 1. Similarly, conditional on reaching x2 the probability of playing
o is Pr{o|F } = poo + pf o, and the probability of playing f is Pr{f |F } =
pof + pff , so that Pr{o|F } + Pr{f |F } = 1. Thus we can define a behavioral strat-
egy σ2(a2(h)} = Pr{a2|h} that yields the same randomization as the mixed strategy
(poo, pof , pf o, pff ).

The complementary question is whether, given a behavioral strategy, we can
find a mixed strategy that leads to the same outcomes. Again, turn to the example
as an illustration and consider the behavioral strategy shown in Figure 7.9, where
σ2(o(O)) = 1

3, σ2(f (O)) = 2
3 , and σ2(o(F )) = σ2(f (F )) = 1

2 . Notice that if the
player uses a mixed strategy (poo, pof , pf o, pff ) then conditional on player 1 choos-
ing O,action o will be chosen with probability poo + pof , and action f will be chosen
with probability pf o + pff . Similarly, conditional on player 1 choosing F, action o

will be chosen with probability poo + pf o, and action f will be chosen with prob-
ability pof + pff . Thus to replicate the behavioral strategy, four equalities must be
satisfied by the mixed strategy (poo, pof , pf o, pff ):

Pr{o|O} = poo + pof = 1
3

Pr{f |O} = pf o + pff = 2
3

Pr{o|F } = poo + pf o = 1
2

Pr{f |F } = pof + pff = 1
2 .

It may seem like we have four equations with four unknowns, but this system
of equations is “underidentified” because these four equations are really only two
equations. By definition it must be true that

poo + pof + pf o + pff = 1,
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which implies that we have only three equations with four unknowns.4 It follows that
many values of (poo, pof , pf o, pff ) will satisfy the equations, implying that this par-
ticular behavioral strategy can be generated by an infinite number of different mixed
strategies. For example, (poo, pof , pf o, pff ) = ( 1

3, 0, 1
6 , 1

2

)
will lead to equivalent

outcomes as the behavioral strategy, but so will (poo, pof , pf o, pff ) = ( 1
6 , 1

6 , 1
3, 1

3

)
.

This example may suggest that any randomization over play can be represented
by either mixed or behavioral strategies. As it turns out, this is true under a rather
mild condition.

Definition 7.7 A game of perfect recall is one in which no player ever forgets
information that he previously knew.

That is, a game of perfect recall is one in which, if a player is called upon to
move more than once in a game, then he must remember the moves that he chose in
his previous information sets. Practically all of the analysis in game theory, and in
applications of game theory to the social sciences, assumes perfect recall, as will we
in this text. For the class of perfect-recall games, Kuhn (1953) proved that mixed and
behavioral strategies are equivalent, in the sense that given strategies of i’s opponents,
the same distribution over outcomes can be generated by either a mixed or a behavioral
strategy of player i.

Remark (The Absent-Minded Driver) Despite our focus on games of perfect recall,
it may be interesting to dwell for a moment on the example of the “absent-minded
driver” that was introduced by Piccione and Rubinstein (1997) to depict a simple game
(in fact, a single-person decision problem) with imperfect recall. The story goes as
follows. An absent-minded driver is driving home along the highway. The first exit
on the road, exit 1, takes him to a bad neighborhood, yielding him a payoff of 0. Exit
2, farther down the road, is the best route to his home, yielding him a payoff of 4.
If he misses exit 2 then he will eventually get home the long way, yielding him a
payoff of 1. Imperfect recall means that he cannot distinguish between exits 1 and 2
and therefore cannot remember whether he has already passed one exit or not. This
decision problem is depicted in Figure 7.10. Define a “planning” mixed strategy of
the player as a probability p that he will exit at any exit he passes (both nodes in
his single information set)—that is, the probability that the driver will commit to exit
when he is at an intersection. His expected payoff from this strategy is 0p + 4p(1−
p) + 1(1 − p)2 = −3p2 + 2p + 1, which is maximized at p = 1

3. As Piccione and
Rubinstein argue, a puzzle emerges once the driver finds himself at an intersection.
He knows that with some probability q he is at Exit 1, and with some probability
(1 − q) he is at exit 2. The driver’s payoff for choosing to exit with probability p is
now, at the intersection, q[4p(1− p) + 1(1− p)2] + (1− q)[4p + 1(1− p)], which
is equivalent to the planning problem only when q = 1, that is, only when he believes
for sure that he is at the first exit. This leads to an interesting dynamic inconsistency
in that the driver would plan one thing in advance and then rationally change his mind
once he finds himself at an intersection.

4. This follows because poo + pof = 1
3 together with poo + pof + pf o + pff = 1 implies that

pf o + pff = 2
3 , and, at the same time, poo + pf o = 1

2 together with poo + pof + pf o + pff = 1

implies that pof + pff = 1
2 . Therefore two of the five equations are redundant.
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FIGURE 7.11 The Battle of the Sexes game: two versions.

7.2.3 Normal-Form Representation of Extensive-Form Games

Consider the two variants of the Battle of the Sexes game presented in Figure 7.11.
The simultaneous-move version in the right panel is one that we have seen before in
its matrix form, as follows:

Player 2
O F

Player 1
O 2, 1 0, 0

F 0, 0 1, 2

Now consider the sequential-move Battle of the Sexes game depicted in the left
panel. Recall that S1 = {O, F } and S2 = {oo, of, f o, ff }, where f o, for example,
means that player 2 plays f after player 1 plays O, while player 2 plays o after player
1 plays F . This game can be represented by a 2 × 4 matrix as follows:

Player 2
oo of f o ff

Player 1
O 2, 1 2, 1 0, 0 0, 0

F 0, 0 1, 2 0, 0 1, 2

As this matrix demonstrates, each of the four payoffs in the original extensive-form
game is replicated twice. This happens because for any pure strategy of player 1, two
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of the four pure strategies of player 2 are equivalent. For example, if player 1 plays
O, then only the “first component” of player 2’s strategy matters (what player 2 does
following player 1’s choice of O). Therefore oo (player 2 playing o after O and o

after F ) and of (player 2 playing o after O and f after F ) yield the same outcome.
If, however, player 1 plays F , then only the second component of player 2’s strategy
matters, so that oo and f o yield the same outcome.

Any extensive-form game can be transformed into a normal-form game by using
the set of pure strategies of the extensive form (see definition 7.4) as the set of pure
strategies in the normal form, and the set of payoff functions is derived from how
combinations of pure strategies result in the selection of terminal nodes. Furthermore
every extensive-form game will have a unique normal form that represents it, which
is not true for the reverse transformation (see the following remark).

Clearly this exercise of transforming extensive-form games into the normal form
seems to miss the point of capturing the dynamic structure of the extensive-form game.
Why then would we be interested in this exercise? The reason is that the concept of
a Nash equilibrium is static in nature, in that the equilibrium posits that players take
the strategies of others as given, and in turn they play a best response. Therefore
the normal-form representation of an extensive form will suffice to find all the Nash
equilibria of the game. This is particularly useful if the extensive form is a two-player
game with a finite number of strategies for each player, because we can write its
normal form as a matrix and solve it with the simple techniques developed earlier. As
we will now see, this approach has some useful implications.

Remark Though every extensive form has a unique normal-form representation, it is
not true that every normal form can be represented by a unique extensive-form game.
Consider the following matrix for a normal-form game:

C D

N 0, 0 0, 0

E 1, 1 −1, 2

and notice that it is a consistent representation of either of the two game trees
depicted in Figure 7.12. Notice that the extensive form on the left is a game of perfect
information while the game on the right is one of imperfect information. However,
in terms of their “strategic” character, the two extensive-form games are identical,
because a game’s strategic essence is captured by its normal form.
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FIGURE 7.12 Two extensive forms with the same normal form.
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7.3 Nash Equilibrium and Paths of Play

We are now ready to analyze the equilibrium predictions in extensive-form games
using the concept of Nash equilibrium. As mentioned in the previous section, by
transforming an extensive form into its normal-form representation, we are concisely
capturing the strategic essence of the game and can use the normal form to find all
the Nash equilibria of the game. The simultaneous-move Battle of the Sexes game in
the right panel of Figure 7.11 is equivalent to the normal form that we had already
analyzed. Hence we know that there are two pure-strategy Nash equilibria, (O, o) and
(F, f ), and a mixed-strategy equilibrium in which player 1 plays O with probability 2

3
and player 2 plays o with probability 1

3. By calculating (or drawing) the best-response
correspondences of the two players, it is easy to show that these are the only three
Nash equilibria for this game.

Now consider the sequential-move Battle of the Sexes game depicted in the left
panel of Figure 7.11. It is easy to see that we can “replicate” the outcomes of the
Nash equilibria we found for the simultaneous version of this game with the strategies
(O, oo) and (F, ff ). The first pair of strategies (O, oo) specify that player 1 chooses
O and player 2 chooses “I play o after O and o after F ,” which yields the outcome of
both players going to the opera. Similarly (F, ff ) yields the outcome of both going
to the football game. The question is whether there are other Nash equilibria in pure
strategies. The extensive form does not offer a simple way to answer this question
(though it is possible to use the extensive form to check for more equilibria). Instead
consider the normal-form representation,

Player 2
oo of f o ff

Player 1
O 2, 1 2, 1 0, 0 0, 0

F 0, 0 1, 2 0, 0 1, 2

By using the simple method described in Section 5.1.1 (underlining the best responses
of player 1 to each column and overlining the best responses of player 2 to each row),
we can see that a third pure-strategy Nash equilibrium exists: (O, of ). This strategy
yields the same outcome as (O, oo) but with the following strategies: player 1 chooses
O and player 2 chooses “I play o after O and f after F .”

This example demonstrates a convenient feature of the matrix-form representation
of a two-player finite extensive-form game: it will immediately reveal all the pure
strategies of each player, and in turn will offer an easy way to find all the pure-
strategy profiles that are Nash equilibria. (This will require a bit more work for games
that cannot be represented by a matrix, in which case we will have to find the best-
response correspondences and use them to compute the possible Nash equilibria.)

Notice also that in the sequential-move Battle of the Sexes example there are
two Nash equilibria that result in the exact same outcome of both players going to
the opera: (O, of ) and (O, oo). Is there an important difference between these two
predictions? Indeed there is—the difference between these two equilibria is not in
what the players actually play in equilibrium, but instead what player 2 plans to play
in an information set that is not reached in equilibrium.

This observation is useful in making the following more general point. In the
extensive form, every outcome of the game is associated with a unique path of play
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FIGURE 7.13 Equilibrium paths in the sequential-move Battle of the Sexes game.

because there is a unique path from the root of the game to each terminal node. This
follows from the construction that every node can be preceded by only one node. We
also know that players will play a Nash equilibrium because, given their correct beliefs
about the strategies of their opponents, it is in their best interest to stick with their
equilibrium strategies. This implies that if a strategy profile s∗ is a Nash equilibrium,
each player i prefers sticking to the predicted path of play over “leaving” it and
choosing some other path in the game, given his belief that the other players will
stick to s∗

−i
. It is therefore useful to define the following:

Definition 7.8 Let σ ∗ = (σ ∗
1 , . . . , σ ∗

n
) be a Nash equilibrium profile of behavioral

strategies in an extensive-form game. We say that an information set is on the
equilibrium path if given σ ∗ it is reached with positive probability. We say that
an information set is off the equilibrium path if given σ ∗ it is never reached.

Using this definition we can reinterpret the forces that make a Nash equilibrium
prediction self-enforcing. In a Nash equilibrium players choose to proceed on the
equilibrium path because of their beliefs about what the other players are doing both
on and off the equilibrium path. In Figure 7.13 the Nash equilibrium (F, ff ) of the
sequential-move Battle of the Sexes game is shown with the highlighted edges in the
tree. This equilibrium is supported by player 1’s correct belief that if he would deviate
from the equilibrium path and play O then he would receive 0 because player 2 will
proceed to play f in the information set x1. In other words, the “threat” imposed by
player 2’s strategy of how he will proceed off the equilibrium path is supporting the
actions of player 1 on the equilibrium path.

Notice, however, that the Nash equilibrium (F, ff ) has a rather curious feature.
The reason that player 1 is not willing to deviate from F to O is his belief that player 2
will choose f in information set x1. However, choosing f after O is an irrational
choice of player 2 given the payoffs of the game, implying that this “threat” is
somewhat incredible.Now ask yourself: is the Nash equilibrium (F, ff ) a reasonable
prediction about the rational choice of player 1? By the definition of Nash equilibrium
it is: F is a best response to ff and vice versa. However, this implies that if, for some
unexpected reason, player 1 would suddenly choose to play O then player 2 would
not respond optimally: his strategy ff commits him to choose f even though o would
yield him a higher payoff after a choice of O by player 1. This argument sheds some
light on a weakness of the normal-form representation in that it treats all choices as
“once-and-for-all” simultaneous choices, and thus beliefs can never be challenged.
We address this weakness in the next chapter.
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7.4 Summary

. In addition to the set of players, their possible actions, and their payoffs from
outcomes, the extensive-form representation captures the order in which they
play as well as what each player knows when it is his turn to move. Game
trees provide a useful tool to describe extensive-form games.

. If a player cannot distinguish between two or more nodes in a game tree
then they belong to the same information set. Care has to be taken to specify
correctly each player’s information sets.

. In games of perfect information, every player knows exactly what transpired
before each of his turns to move, so each information set is a singleton. If this
is not the case then the players are playing a game of imperfect information.

. A pure strategy defines a player’s deterministic plan of action at each of
his information sets. A mixed strategy is a probability distribution over pure
strategies, while a behavioral strategy is a plan of probability distributions
over actions in every information set.

. Every extensive-form game has a unique normal-form representation, but the
reverse is not necessarily true.

7.5 Exercises

7.1 Strategies: Imagine an extensive-form game in which player i has K infor-
mation sets.

a. If the player has an identical number of m possible actions in each
information set, how many pure strategies does he have?

b. If the player has mk actions in information set k ∈ {1, 2, . . . , K}, how
many pure strategies does the player have?

7.2 Strategies and Equilibrium: Consider a two-player game in which player 1
can choose A or B. The game ends if he chooses A while it continues to player
2 if he chooses B. Player 2 can then choose C or D, with the game ending
after C and continuing again with player 1 after D. Player 1 can then choose
E or F , and the game ends after each of these choices.

a. Model this as an extensive-form game tree. Is it a game of perfect or
imperfect information?

b. How many terminal nodes does the game have? How many informa-
tion sets?

c. How many pure strategies does each player have?
d. Imagine that the payoffs following choice A by player 1 are (2, 0),

those following C by player 2 are (3, 1), those following E by player
1 are (0, 0), and those following F by player 1 are (1, 2). What are the
Nash equilibria of this game? Does one strike you as more “appealing”
than the other? If so, explain why.

7.3 Tic-Tac-Toe: The extensive-form representation of a game can be cumber-
some even for very simple games. Consider the game of tic-tac-toe, in which
two players mark “X” or “O” in a 3 × 3 matrix. Player 1 moves first, then
player 2, and so on. If a player gets three of his kind in a row, column, or
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one of the diagonals then he wins, and otherwise it is a tie. For this question
assume that even after a winner is declared, the players must completely fill
the matrix before the game ends.

a. Is this a game of perfect or imperfect information? Why?
b. How many information sets does player 2 have after player 1’s first

move?
c. How many information sets does player 1 have after each of player 2’s

moves for the first time?
d. How many information sets does each player have in total? (Hint:

For this and part (e) you may want to use a spreadsheet program like
Excel.)

e. How many terminal nodes does the game have?

7.4 Centipedes: Imagine a two-player game that proceeds as follows. A pot of
money is created with $6 in it initially. Player 1 moves first, then player 2,
then player 1 again, and finally player 2 again. At each player’s turn to move,
he has two possible actions: grab (G) or share (S). If he grabs he gets 2

3 of the
current pot of money, the other player gets 1

3 of the pot, and the game ends. If
he shares then the size of the current pot is multiplied by 3

2 and the next player
gets to move. At the last stage at which player 2 moves, if he chooses S then
the pot is still multiplied by 3

2 , player 2 gets 1
3 of the pot, and player 1 gets 2

3
of the pot.

a. Model this as an extensive-form game tree. Is it a game of perfect or
imperfect information?

b. How many terminal nodes does the game have? How many informa-
tion sets?

c. How many pure strategies does each player have?
d. Find the Nash equilibria of this game. How many outcomes can be

supported in equilibrium?
e. Now imagine that at the last stage at which player 2 moves, if he

chooses to share then the pot is equally split among the players. Does
your answer to part (d) change?

7.5 Veto Power: Two players must choose among three alternatives, a, b, and c.
Player 1’s preferences are given by a �1 b �1 c while player 2’s preferences
are given by c �2 b �2 a. The rules are that player 1 moves first and can veto
one of the three alternatives. Then player 2 chooses one of the remaining two
alternatives.

a. Model this as an extensive-form game tree (choose payoffs that rep-
resent the preferences).

b. How many pure strategies does each player have?
c. Find all the Nash equilibria of this game.

7.6 Entering an Industry: A firm (player 1) is considering entering an established
industry with one incumbent firm (player 2). Player 1 must choose whether or
not to enter the industry. If player 1 enters the industry then player 2 can either
accommodate the entry or fight the entry by waging a price war. Player 1’s
most-preferred outcome is entering with player 2 not fighting, and its least-
preferred outcome is entering with player 2 fighting. Player 2’s most-preferred
outcome is player 1 not entering, and its least-preferred outcome is player 1
entering with player 2 fighting.
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a. Model this as an extensive-form game tree (choose payoffs that rep-
resent the preferences).

b. How many pure strategies does each player have?
c. Find all the Nash equilibria of this game.

7.7 Roommates Voting: Three roommates need to vote on whether they will
adopt a new rule and clean their apartment once a week or stick to the
current once-a-month rule. Each votes “yes” for the new rule or “no” for
the current rule. Players 1 and 2 prefer the new rule while player 3 prefers the
old rule.

a. Imagine that the players require a unanimous vote to adopt the new
rule. Player 1 votes first, then player 2, and then player 3, the latter two
observing the previous votes. Draw this as an extensive-form game and
find the Nash equilibria.

b. Imagine now that the players require a majority vote to adopt the new
rule (at least two “yes” votes). Again player 1 votes first, then player 2,
and then player 3, the latter two observing the previous votes. Draw
this as an extensive-form game and find the Nash equilibria.

c. Now imagine that the game is as in part (b), but the players put their
votes into a hat—so that the votes of earlier movers are not observed
by the later movers—and the votes are counted after all have voted.
Draw this as an extensive-form game and find the Nash equilibria. In
what way is this result different from the result in (b)?

7.8 Brothers: Consider the following game that proceeds in two stages: In the
first stage one brother (player 2) has two $10 bills and can choose one of two
options: he can give his younger brother (player 1) $20 or give him one of the
$10 bills (giving nothing is inconceivable given the way they were raised).
This money will then be used to buy snacks at the show they will see, and
each $1 of snacks purchased yields one unit of payoff for a player who uses
it. In the second stage the show they will see is determined by the following
Battle of the Sexes game:

Player 2
O F

Player 1
O 16, 12 0, 0

F 0, 0 12, 16

a. Present the entire game in extensive form (a game tree).
b. Write the (pure-) strategy sets for both players.
c. Present the entire game in one matrix.
d. Find the Nash equilibria of the entire game (pure and mixed strategies).

7.9 The Dean’s Dilemma: A student stole the DVD player from the student
lounge. The dean of students (player 1) suspects the student (player 2) and
begins collecting evidence. However, evidence collection is a random process,
and concrete evidence will be available to the dean only with probability 1

2 .
The student knows that the evidence-gathering process is under way but does
not know whether the dean has collected evidence or not. The game proceeds
as follows: The dean realizes whether or not he has evidence and can then
choose his action, whether to accuse the student (A) or bounce the case (B) and
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FIGURE 7.14 Exercise 7.10.

forget it. Once accused, the student has two options: he can either confess (C)
or deny (D). Payoffs are realized as follows: If the dean bounces the case then
both players get 0. If the dean accuses the student and the student confesses,
the dean gains 2 and the student loses 2. If the dean accuses the student and
the student denies, then payoffs depend on the evidence: If the dean has no
evidence then he loses face, which gives him a loss of 4, while the student
gains glory, which gives him a payoff of 4. If, however, the dean has evidence
then he is triumphant and gains 4, while the student is put on probation and
loses 4.

a. Draw the game tree that represents the extensive form of this game.
b. Write down the matrix that represents the normal form of the extensive

form you drew in (a).
c. Solve for the Nash equilibria of the game.

7.10 Perfect and Imperfect Recall: Consider the game depicted in Figure 7.14.

a. What are the pure-strategy sets for each player?
b. Show that for any behavioral strategy for player 1 there is a mixed

strategy that leads to the same distribution over the terminal nodes
regardless of the strategy chosen by player 2.

c. Show that for any behavioral strategy for player 2 there is a mixed
strategy that leads to the same distribution over the terminal nodes
regardless of the strategy chosen by player 1.

d. Now imagine that the game does not have perfect recall so that
player 2’s bottom two information sets are now one large informa-
tion set. Can you find an example showing that the claim in (c) is no
longer true?



8
Credibility and Sequential

Rationality

Consider the simple extensive-form coordination game described in Figure 8.1,
which is represented in normal form in the following matrix:

Player 2
e p

Player 1
E 0, 0 0, 0

P 0, 0 1, 1

Each player can exit (E for player 1 and e for player 2), or proceed (P and p,
respectively). If the players coordinate on proceeding, then they both receive a payoff
of 1 while any other profile of strategies yields each a payoff of 0.

There is a good reason to assume that the players will successfully coordinate
on the Nash equilibrium profile (P, p): the exit strategy is weakly dominated by the
choice to proceed. However, a quick look at the matrix shows that there is another
Nash equilibrium: (E, e). Using the terminology of Section 7.3, the players stick to
the equilibrium path of player 1 choosing E because of player 2’s threat to choose e

off the equilibrium path.
There is therefore something unappealing about the logic of Nash equilib-

rium in extensive-form games. The concept asks only for players to act rationally

E P

e p
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FIGURE 8.1 A coordination game.

151



152 . Chapter 8 Credibility and Sequential Rationality

on the equilibrium path given their beliefs about what will transpire both on
and off the equilibrium path. Nevertheless it puts no restrictions on the beliefs of
players off the equilibrium path, nor on how they should consider such beliefs.
In fact the normal-form representation of a sequential game is not able to address
such a requirement, which adds constraints on what we would tolerate as “rational
behavior.”

We would, however, expect rational players to play optimally in response to
their beliefs whenever they are called to move. In the simple coordination game
in Figure 8.1 this would require that player 2 commit to play p when it is his
turn to move. Applying this reasoning to the sequential-move Battle of the Sexes
game in Figure 7.11 suggests that of the three Nash equilibria of the game, two
are unappealing. The equilibria (O, oo) and (F, ff ) have player 2 committing to
a strategy that, despite being a best response to player 1’s strategy, would not have
been optimal were player 1 to deviate from his strategy and cause the game to move
off the equilibrium path. In what follows we will introduce a natural requirement that
will result in more refined predictions for dynamic games. These will indeed rule out
equilibria such as (E, e) in the coordination game and (O, oo) and (F, ff ) in the
sequential-move Battle of the Sexes game.

8.1 Sequential Rationality and Backward Induction

To address the critique we posed regarding the incredible nature of the equilibria
(O, oo) and (F, ff ) in the sequential-move Battle of the Sexes game, we will directly
criticize the behavior of player 2 in the event that player 1 did not follow his prescribed
strategy. We will insist that a player use strategies that are optimal at every information
set in the game tree. We call this principle sequential rationality, because it implies
that players are playing rationally at every stage in the sequence of the game, whether
it is on or off the equilibrium path of play. Formally, we have

Definition 8.1 Given strategies σ−i ∈ �S−i of i’s opponents, we say that σi is
sequentially rational if and only if i is playing a best response to σ−i in each of
his information sets.

Using this definition we can revisit the sequential-move Battle of the Sexes game
and ask: what are player 2’s best responses in each of his information sets? The answer
is obvious: if player 1 played O then player 2 should play o, and if player 1 played
F then player 2 should play f . Any other strategy of player 2 is not a best response
in at least one of these information sets, and this implies that a sequentially rational
player 2 should be playing the pure strategy of .

Now move back to the root of the game where player 1 has to choose between
O and F . Taking into account the sequential rationality of player 2, player 1 should
conclude that playing O will result in the payoffs (2, 1) while playing F will result
in the payoffs (1, 2). Now applying sequential rationality to player 1 requires that
player 1, who is correctly predicting the behavior of player 2, should choose O. Hence
the unique prediction from this process is the path of play that begins with player 1
choosing O followed by player 2 choosing o. Furthermore the process predicts what
would happen if players deviate from the path of play: if player 1 chooses F then
player 2 will choose f . We conclude that the Nash equilibrium (O, of ) is the unique
pair of strategies that survives our requirement of sequential rationality.

This type of procedure, which starts at nodes that directly precede the terminal
nodes at the end of the game and then inductively moves backward through the game
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tree, is also known as backward induction in games. This is exactly the multiperson
dynamic programming version of the single decision maker’s process described in
Section 2.4.1. As the example just given suggests, when we apply this procedure to
finite games of perfect information it will result in a prescription of strategies for each
player that are sequentially rational, as the following proposition states:

Proposition 8.1 Any finite game of perfect information has a backward induction
solution that is sequentially rational. Furthermore if no two terminal nodes prescribe
the same payoffs to any player then the backward induction solution is unique.

The proof is rather straightforward and is based on the simple idea of backward
induction. By definition a finite game of perfect information has a finite set of terminal
nodes. Consider the nodes that immediately precede a terminal node, and call the set
of these nodes “level 1” nodes. Select for every player at a level 1 node an action
that yields him his highest payoff. (There can be more than one if there are ties in the
payoffs.)1 Now similarly define “level 2” nodes as those that immediately precede a
level 1 node, and let the players at these nodes choose the action that maximizes their
payoff given that level 1 players will choose their action as previously specified. This
process continues iteratively until we reach the root of the game (because the game
has finite length) and results in a specification of moves that are sequentially rational.

Remark This proposition is often referred to as Zermelo’s Theorem, named after the
mathematician Ernst Zermelo. In 1913 Zermelo published a paper roughly stating
that in games like chess, a player can guarantee at least a tie in a finite number
of moves. Interestingly neither backward induction nor the notion of strategies—
and surely not sequential rationality—was used in Zermelo’s original paper, despite
widespread belief to the contrary. For an excellent summary of the history of this line
of research see Schwalbe and Walker (2001).

Notice that, by the construction of the backward induction procedure, each player
will necessarily play a best response to the actions of the other players who come
after him (the best responses are constructed for every information set). This results
in the following corollary:

Corollary 8.1 Any finite game of perfect information has at least one sequentially
rational Nash equilibrium in pure strategies. Furthermore if no two terminal nodes
prescribe the same payoffs to any player then the game has a unique sequentially
rational Nash equilibrium.

As we saw in the sequential-move Battle of the Sexes example, other pure-strategy
Nash equilibria may exist.

8.2 Subgame-Perfect Nash Equilibrium: Concept

As the previous section argues, we expect rational players to play in ways that
are sequentially rational. Furthermore we established that backward induction is a
useful method to find a sequentially rational Nash equilibrium in finite games of

1. This is where the qualifier “if no two terminal nodes prescribe the same payoffs to any player”
plays a role. If this is the case then there is a unique action that maximizes each player’s payoff. If
not, we can select any one of the maximizing actions.
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FIGURE 8.2 The voluntary Battle of the Sexes game.

perfect information. Things become a bit trickier when we try to expand our reach to
suggest solutions for games of imperfect information, in which backward induction
as previously defined encounters some serious problems.

Consider, for example, a game in which player 1 decides whether or not to
play a Battle of the Sexes game with player 2. He can decide yes (Y ), in which case
they play a simultaneous-move Battle of the Sexes game, or no (N ), in which case both
players get a payoff of 1.5. The game is described in Figure 8.2. To try to solve this
game using backward induction we need to first identify the set of “last players” that
precede terminal nodes and then choose actions that would maximize their payoff
at this stage. In this game, however, this is not possible, because player 2 has an
information set before the terminal nodes that is not a singleton. His best response is
therefore not well defined without assigning a belief to this player about what player 1
actually chose to do, and these beliefs are not part of the backward induction process.

This example shows that backward induction cannot be applied to games of
imperfect information. Interestingly there is another important class of games for
which we cannot apply the procedure of backward induction, and these are games
that do not necessarily end in finite time. Intuitively games that do not necessarily end
in a finite number of moves may not have a finite set of terminal nodes, and without
such a set we cannot begin the backward induction procedure. At first thought such
games may seem a bit bizarre—what kind of game will never end? As we will see in
Chapters 10 and 11, such games not only are interesting in their own right but also
will offer critical ways to model realistic situations. Hence our goal is to find a natural
way in which to extend the concept of sequential rationality to games of imperfect
information and to games that have an infinite sequence of moves.

Let’s start with the problem posed by imperfect information. For example, the
problem we encountered in the game depicted in Figure 8.2 is that the best response
of player 2 in his information set depends on the node where he is, or on his beliefs
about where he is in the information set. This of course depends on the action of
player 1, which in turn depends on what player 1 believes that player 2 will do. Thus
it seems that sequential rationality will have to cope with both of these decisions being
interdependent. For this reason we advance the following definition:

Definition 8.2 A proper subgame G of an extensive-form game � consists of only
a single node and all its successors in � with the property that if x ∈ G and x′ ∈ h(x)
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FIGURE 8.3 Subgames in a game with perfect information.

then x′ ∈ G. The subgame G is itself a game tree with its information sets and payoffs
inherited from �.

The idea of a proper subgame (which we will often just call a subgame) is simple
and allows us to “dissect” an extensive-form game into a sequence of smaller games,
an approach that in turn will allow us to apply the concept of sequential rationality to
games of imperfect information. To be able to do this, however, we will require that
every such smaller game be an extensive-form game in its own right, which means that
it must have a unique root and follow the structure that we defined in Section 7.1.1.

In every game of perfect information, every node is a singleton and hence can be
a root of a subgame. This implies that in games of perfect information every node,
together with all the nodes that succeed it, forms a proper subgame. As an example,
consider the game depicted in Figure 8.3. The two “smallest” subgames start at nodes
x2 and x3. A“larger” subgame starts at x1, and it includes the two subgames that start
at x2 and x3. Finally the “largest” subgame starts at the original game’s root, x0, and
includes all the other subgames.

Now let’s return to the voluntary Battle of the Sexes game depicted again in
Figure 8.4. There are only two proper subgames in this game: the whole game (which
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FIGURE 8.4 Proper subgames in the voluntary Battle of the Sexes game.
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is always, by definition, a proper subgame) and the subgame starting at the node x1.
The reason these are the only two subgames follows from definition 8.2. Note that x2
and x3 cannot be roots of a subgame because they belong to the same information set.
From definition 8.2, if x2 belongs to a subgame then x3 must belong to that subgame
too. In addition, from the definition we know that any subgame must begin with
a single node, and thus the information set that contains x2 and x3 cannot begin a
subgame. Hence, aside from the whole game, the only other proper subgame starts
at x1.

Another interesting example appears in Figure 8.5, which describes the following
game. Players 1 and 2 put a dollar each in a pot, and player 1 pulls a card out of a
deck of kings and aces, with an equal probability of getting a king (K) or an ace (A).
Player 1 observes his card and then decides whether not to play the game (N ), and
forfeit his dollar to player 2, or proceed with the game (Y ). If player 1 proceeds with
the game, then without knowing which card player 1 drew (hence the information set
denoted by the dashed line) player 2 can fold (F ) and forfeit his dollar to player 1 or
call (C), in which case each player must add another dollar to the pot. After this, if
player 1 has a king then player 2 wins the pot, while if player 1 has an ace then player
1 wins the pot.

Now ask yourself: what are the proper subgames of this game? Clearly neither
x3 nor x4 can be a root of a subgame because they belong to the same information
set. Can x1 be the root of a subgame? If it could be then x3 must be in its subgame
because x1 precedes x3. But by definition, if x3 is in the subgame then x4 ∈ h(x3), and
therefore it too should be in the subgame (as well as all the relevant terminal nodes
that follow after x1, x3, and x4). But this would not be a proper subgame because x1
does not precede x4. A similar argument implies that x2 cannot be the root of the
subgame. We conclude that for this card game the only proper subgame is the whole
game.

By now you may have realized why a subgame, which is a stand-alone game
within the whole game, will prove to be useful to apply the concept of sequential
rationality to extensive-form games. In particular, at any node or information set
within a subgame G, a player’s best response depends only on his beliefs about what
the other players are doing within the subgame G, and not at nodes that are outside the
subgame.
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FIGURE 8.6 Subgame-perfect equilibrium in the sequential-move Battle of the Sexes game.

As demonstrated using the voluntary Battle of the Sexes game in Figure 8.4, the
problem with backward induction was that we could not apply it to the end of the
game because there was an information set that included two nodes that preceded
terminal nodes, namely x2 and x3. However, what we can do is restrict attention to the
subgame that begins at the node x1 and require rational play in this subgame. Then
we can use rational play in this “endgame” to move backward and apply sequential
rationality. This is the idea behind a powerful solution concept defined as follows:

Definition 8.3 Let � be an n-player extensive-form game. A behavioral strategy
profile σ ∗ = (σ ∗

1 , σ ∗
2 , . . . , σ ∗

n
) is a subgame-perfect (Nash) equilibrium if for every

proper subgame G of � the restriction of σ ∗ to G is a Nash equilibrium in G.

This important concept was introduced by Reinhard Selten (1975), who was the
second of the three Nobel Laureates sharing the prize in 1994 for the development
of game theory. This equilibrium concept brings sequential rationality into the static
Nash equilibrium solution concept. Using the terminology developed in Section 7.3,
subgame perfection requires not only that a Nash equilibrium profile of strategies be a
combination of best responses on the equilibrium path, which is a necessary condition
of a Nash equilibrium, but also that the profile of strategies consist of mutual best
responses off the equilibrium path.This is precisely what follows from the requirement
that the restriction of the strategy profile σ ∗ be a Nash equilibrium in every proper
subgame, including those subgames that are not reached in equilibrium.

Notice that, by the definition of a subgame-perfect equilibrium, every subgame-
perfect equilibrium is a Nash equilibrium. However, not all Nash equilibria are
necessarily subgame-perfect equilibria, implying that subgame-perfect equilibrium
refines the set of Nash equilibria, yielding more refined predictions on behavior. To
see this consider again the sequential-move Battle of the Sexes game in Figure 8.6
and its corresponding normal-form, given as:

Player 2
oo of f o ff

Player 1
O 2, 1 2, 1 0, 0 0, 0

F 0, 0 1, 2 0, 0 1, 2

As we saw earlier, there are three pure-strategy Nash equilibria, (O, oo), (F, ff ),
and (O, of ). Of these three, only (O, of ) is the unique subgame-perfect equilibrium.
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This follows from the fact that in the subgame beginning at x1, the only Nash
equilibrium is player 2 choosing o, because he is the only player in that subgame and
he must choose a best response to his belief, which must be “I am at x1.” Similarly
in the subgame beginning at x2, the only Nash equilibrium is player 2 choosing f .
Anticipating this, player 1 must choose O at x0. Thus of the three Nash equilibria of
the game, only (O, of ) satisfies the condition that its restriction is a Nash equilibrium
for every proper subgame of the whole game, and hence (O, oo) and (F, ff ) are Nash
equilibria that are not subgame perfect.

Notice that the game we just analyzed is a finite game of perfect information. For
these games we have an easy and familiar way to find the subgame-perfect equilibria,
which is using the procedure of backward induction because

Fact For any finite game of perfect information, the set of subgame-perfect Nash
equilibria coincides with the set of Nash equilibria that survive backward induction.

This is a very useful fact because it gives us an operational procedure to find all the
subgame-perfect equilibria in finite games of perfect information. However, because
this procedure does not apply to games of imperfect information, we need to analyze
the game using a revised version of backward induction that takes into account the
proper subgames as the relevant stages in the backward induction process.

As an example, consider the voluntary Battle of the Sexes game depicted in Figure
8.4. In this game player 1 has four pure strategies. Using the previous convention, the
strategy set for player 1 is S1 = {YO, YF, NO, NF }, where, for example, YO means
that player 1 plans to play Y at x0 and O at x1. Note that if player 1 plays either NO or
NF then, regardless of player 2’s strategy, the game will end after player 1’s choice
of N . Player 2, on the other hand, has only two strategies, S2 = {o, f }, because he
must make his choice without knowing the choice of player 1. Hence the matrix-form
representation of this game is as follows:

Player 2
o f

YO 2, 1 0, 0

Player 1
YF 0, 0 1, 2

NO 1.5, 1.5 1.5, 1.5

NF 1.5, 1.5 1.5, 1.5

As we can see, there are three pure-strategy Nash equilibria in this game, given by
the set ENash = {(YO, o), (NO, f ), (NF, f )}. Of these only two pairs of strategies
form a subgame-perfect equilibrium, so the set of subgame-perfect equilibria profiles
is ESPE = {(YO, o), (NF, f )}. The reason, as shown in Figure 8.7, is that in the
subgame that starts at the node x1, the only pairs of restricted strategies that form a
Nash equilibrium are (O, o) and (F, f ). Hence the profile (NO, f ) is not a Nash
equilibrium when we restrict attention to the subgame that starts at x1. This game
has one mixed-strategy subgame-perfect equilibrium that you are asked to find in
exercise 8.1.
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FIGURE 8.7 Subgame-perfect equilibria in the voluntary Battle of the Sexes game.

8.3 Subgame-Perfect Nash Equilibrium: Examples

This section presents some well-known examples of games and their corresponding
subgame-perfect equilibria.

8.3.1 The Centipede Game

Consider the perfect-information game depicted in Figure 8.8. The game should be
read from left to right as follows: Player 1 can terminate the game immediately by
choosing N in his first information set or can continue by choosing C. Then player
2 faces the same choice (using lowercase letters for his choices), and if player 2
chooses to continue then the ball is back in player 1’s court, who again can terminate
or continue to player 2, at which stage player 2 concludes the game by choosing n or
c for the second time.

It would be nice for the players to be able to continue through the game to reach
the payoffs of (3, 3). However, backward induction indicates that this will not happen.
At his last information set, player 2 will choose n to get 4 instead of 3. Anticipating
this a step earlier, player 1 will choose N to get 2 instead of 1, and the logic follows
until player 1’s first information set, at which he will choose N and both players will
receive a payoff of 1.

Notice that this game has an interesting structure: as long as the players continue,
the sum of their payoffs goes up by 1. You can easily see that we can continue with the
payoffs in this way with (2, 5), (4, 4), (3, 6), . . . and make the payoff from reaching
the end of the game extremely large. Nevertheless the “curse of rationality,” so to
speak, predicts a unique outcome: at the last stage the last player will, by being selfish,

N n

C c C c

N n

1

(1, 1) (0, 3) (2, 2) (1, 4)

(3, 3)2 1 2

FIGURE 8.8 The Centipede Game.
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prefer to stop short of the payoff that maximizes the sum of the players’ payoffs, and
backward induction implies that this decision is anticipated and acted on by the player
before him, and so on as the actions unravel to the bleak outcome of (1, 1).

Remark The Centipede Game was first introduced by Rosenthal (1981), who used it
as an example of a game in which the unique backward induction solution is extremely
unappealing and goes against every intuition one might have about how the players
will play. Indeed this game has been taken into the lab by letting pairs of players play
it, and the experimental evidence of many studies, starting with McKelvey and Palfrey
(1992), suggests that players do not play in the way predicted by backward induction.
There are at least two reasons that players will not play the backward induction
solution. One is that they actually care about each other’s payoffs. This explanation
may be less convincing for cases in which the players are anonymous, but it is not
easy to rule out. The other reason is that players do not share a common knowledge of
rationality. Palacios-Huerta and Volij (2009) try to put this second hypothesis to a test
by taking the game to a chess tournament and having highly ranked chess players play
it. Contrary to previous evidence, their results show that 69% of chess players choose
to end the game immediately, and when grand masters are playing, all of them end
the game immediately! This striking result suggests that when players are expected
to share common knowledge of rationality they indeed play the backward induction
solution.

8.3.2 Stackelberg Competition

The Stackelberg duopoly is a game of perfect information that is a sequential-moves
variation on the Cournot duopoly model of competition. It was introduced and ana-
lyzed by Heinrich von Stackelberg (1934). It illustrates an important point: the order
of moves might matter, and rational actors will take this into account.

Consider our familiar Cournot game with demand p = 100 − q, q = q1 + q2, and
ci(qi) = 10qi for i ∈ {1, 2}. We have already solved for the best-response functions of
each firm by maximizing their profit functions when each takes the other’s quantity
as fixed (the simultaneous-move game), so that each i solves

max
qi

(100 − qi − qj)qi − 10qi,

and the best response is given by the first-order condition, which can be written as

qi(qj) = 90 − qj

2
.

We now change a small but important detail of the game and assume that player 1
will choose q1 first, and that player 2 will observe the choice made by player 1 before
it makes its choice of q2. We begin by analyzing the backward induction solution of
this game.

From the fact that player 2 maximizes its profit when q1 is already known it should
be clear that player 2 will follow its best-response function, and hence sequential
rationality implies that

q2(q1) = 90 − q1

2
. (8.1)
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This follows from not only the fact that player 2 has a belief about q1 but also that this
belief is in reality due to the actual observation of q1. This is precisely the backward
induction conclusion of considering firm 2 first, because its moves are those that
precede the terminal nodes. Notice that in this game there are infinitely many terminal
nodes and infinitely many information sets preceding the terminal nodes. In particular,
every different choice of q1 is a different information set of player 2. Nevertheless,
because there is perfect information, and because there is a well-defined optimal
choice of player 2 for every choice of player 1, the backward induction procedure
works.

Now assuming common knowledge of rationality, what should player 1 do? It
would be rather naive to maximize its profits based on some fixed belief about q2,
because firm 1 knows exactly how a rational player 2 would respond to its choice of
q1: player 2 will choose q2 using equation (8.1). This in turn means that a rational firm
1 would replace the “fixed” q2 in its profit function with the best response of firm 2
and choose q1 to solve

max
q1

[
100 − q1 −

(
90 − q1

2

)]
q1 − 10q1. (8.2)

There is a fundamental difference between this maximization problem and the one
we solved for the Cournot example in Section 3.1.2, and it depends on what the firms
know when they make their choices. In the Cournot game neither firm knew what the
other was choosing, so each set a belief and maximized its profit function. Here, in
contrast, firm 2 knows what firm 1 has produced when it makes its choice, and as a
result firm 1 knows, by common knowledge of rationality, that firm 2 will choose q2
rationally, that is, by using its best-response function, given in (8.1).

The solution for firm 1 is then given by the first-order condition of (8.2), which is

100 − 2q1 − 45 + q1 − 10 = 0,

yielding q1 = 45. Then, using firm 2’s best response, we have q2 = 22.5. The resulting
profits are π1 = (100 − 67.5) × 45 − 10 × 45 = 1012.5, and π2 = (100 − 67.5) ×
22.5 − 10 × 22.5 = 506.25. Recall that in the original (simultaneous-move) Cournot
example the quantities and profits were q1 = q2 = 30 and π1 = π2 = 900. We conclude
that when two firms are competing by setting quantities, if one firm can somehow
commit to move first, it will enjoy a first-mover advantage.

We know already that if a profile of strategies survives backward induction then
this profile is also a subgame-perfect equilibrium, and in particular a Nash equilib-
rium. There is a simple yet very important point worth emphasizing here. When we
write down the pair of strategies as a pure-strategy Nash equilibrium we must be
careful to specify the strategies correctly: player 2 has a continuum of information
sets, each being a particular choice of q1. This implies that the backward induction

solution yields the following Nash equilibrium: (q1, q2(q1)) =
(

45, 90−q1
2

)
. Writing

down (q1, q2) = (45, 22.5) is not identifying a Nash equilibrium because q1 = 45 is
not a best response to q2 = 22.5. We must specify q2 for every information set for it
to be a well-defined strategy in the Stackelberg game, and in this case we defined
it to be q2(q1) = 90−q1

2 .
To illustrate the application of subgame perfection in this game with continuous

strategy sets, consider a heuristic game tree described in Figure 8.9. Player 1 has
an infinite number (a continuum) of choices, depicted by the arc, and each choice
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FIGURE 8.9 The Stackelberg duopoly game.
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FIGURE 8.10 The Cournot duopoly game.

results in a proper subgame. Every choice q1 of player 1 is an information set for
player 2 that precedes an infinite number (a continuum) of terminal nodes associated
with the specific q1 together with player 2’s choice of q2. The payoff for player i is
(100 − q1 − q2)qi − 10qi.

Similarly we can heuristically depict the simultaneous-move Cournot game in
Figure 8.10. We draw player 2’s information set to include all the choices of q1 that
player 1 can make to try to describe the simultaneous nature of the Cournot game in
that player 2 makes its choice without observing the choice of player 1.

In the Cournot game we know from the analysis in Section 3.1.2 that q1 = q2 = 30
is the unique Nash equilibrium. Because every subgame-perfect equilibrium is a Nash
equilibrium, and because the whole game is the only unique proper subgame in the
Cournot example, then q1 = q2 = 30 is the unique subgame-perfect equilibrium in the
Cournot game.

An interesting question is whether the outcome q1 = q2 = 30 could be the outcome
of a Nash equilibrium in the Stackelberg game. The answer, perhaps surprisingly, is
yes. To see this consider the following strategies in the Stackelberg game: q1 = 30
and q2(q1) = 30 for any choice q1. These two strategies are mutual best responses,
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implying that they constitute a Nash equilibrium. Notice two things: First, we have
to specify q2 for every information set for it to be a well-defined strategy in the
Stackelberg game, and in this case we defined it to be q2(q1) = 30 for every q1. Second,
it is a pair of mutual best responses only on the equilibrium path. That is, conditional
on q1 = 30, q2 = 30 is a best response, and conditional on q2(q1) = 30 for every q1,
q1 = 30 is a best response. This requirement, mutual best responses on the equilibrium
path, is all that Nash equilibrium requires.

However, as we have shown using backward induction, the unconditional strategy
q2 = 30 for player 2 is not sequentially rational because it is never a best response off
the equilibrium path for q1 = 30. The only strategy for player 2 that satisfies sequential
rationality is

q2(q1) = 90 − q1

2
,

which in turn implies that q1 = 45 and q2 = 90−q1
2 constitute the unique subgame-

perfect equilibrium of the Stackelberg game.

Remark Interestingly there are many other Nash equilibria that appear when the
game is a perfect-information sequential-move game like the Stackelberg model. To
see this, consider the following strategy for player 2:

q ′
2(q1) =

{
35 if q1 = 20

100 if q1 = 20.

What would be the best response of firm 1? Clearly q1 = 20 yields positive profits,
while any other choice yields nonpositive profits if player 1 believes that player 2 will
follow its strategy. Thus q1 = 20 is the best response. Then notice that q2 = 40 is a
best response to q1 = 20 from player 2’s best-response function in (8.1), implying that
q1 = 20 and q ′

2(q1) constitute a Nash equilibrium. At this stage you should be able to
convince yourself that there are many Nash equilibria—in fact, a continuum of Nash
equilibria! To see this, fix any q̃1 ∈ [0, 90] and replace the 35 in q ′

2(q1) with player 2’s

best response q̃2 = 90−̃q1
2 .

8.3.3 Mutually Assured Destruction

A very nice example for subgame-perfect equilibrium analysis in a game with imper-
fect information appears in Gardner (2003, p. 165), who uses a game theoretic analysis
to represent the Cuban missile crisis of 1962. The crisis started with the United States’
discovery of Soviet nuclear missiles in Cuba, after which the United States escalated
the crisis by quarantining Cuba. The USSR then backed down, agreeing to remove
its missiles from Cuba, which suggests that the United States had a credible threat
along the lines of “if you don’t back off we both pay dearly.” Could this indeed be a
credible threat?

To analyze this as a game, consider two superpowers, player 1 (the United States)
and player 2 (the USSR), that have engaged in a provocative incident.2 The game starts
with player 1’s choice to either ignore the incident (I ), resulting in maintenance of the

2. The pregame phase—the USSR placing the missiles in Cuba—is assumed to be a situation that
materialized without taking into account the continuing game between the superpowers.
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FIGURE 8.11 Mutually assured destruction.

status quo with payoffs (0, 0), or escalate the situation (E). Following escalation by
player 1, player 2 can back down (B), causing it to lose face and resulting in payoffs
of (10, −10), or it can choose to proceed to a nuclear confrontation (N ). Upon this
choice, the players play a simultaneous-move game in which they can either retreat
(R for player 1, r for player 2) or choose Doomsday (D for player 1, d for player 2), in
which the world is all but destroyed. If both call things off and retreat then they suffer
a small loss due to the mobilization process and payoffs are (−5, −5), while if either
party chooses Doomsday then the world destructs and payoffs are (−100, −100).

The extensive form of this game is depicted in Figure 8.11. Before solving for the
subgame-perfect equilibria, we begin by solving for the Nash equilibria. To do this it
is convenient to transform the extensive-form game into a normal-form game. Each
player has two information sets, each with two actions, implying that each player has
four pure strategies. Following our earlier convention, the strategy set for player 1 is
S1 = {IR, ID, ER, ED} and that for player 2 is S2 = {Br, Bd, Nr, Nd} (where IR

means that player 1 plays I in his first information set and R in his second one, and
the other strategies are defined similarly). The normal form can be represented by the
following matrix:

Player 2
Br Bd Nr Nd

IR 0, 0 0, 0 0, 0 0, 0

Player 1
ID 0, 0 0, 0 0, 0 0, 0

ER 10, −10 10, −10 −5, −5 −100, −100

ED 10, −10 10, −10 −100, −100 −100, −100

In this game there are six pure-strategy Nash equilibria, and these are the profiles in the
set ENash = {(IR, Nr), (IR, Nd), (ID, Nr), (ID, Nd), (ED, Br), (ED, Bd)}.
(We will ignore the mixed-strategy Nash equilibria in this example. There are too
many!)
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FIGURE 8.12 Reductions of the mutually assured destruction game.

To solve for the subgame-perfect equilibria, we perform backward induction using
the subgames as we did earlier for the voluntary Battle of the Sexes game. There
are three proper subgames depicted in Figure 8.11. The first is the whole game; the
second subgame has its root at the point where player 2 chooses between B and N

and includes all the moves that follow; and the third subgame starts where player 1
chooses between R and D and includes all the moves that follow.

It is easy to see that the third subgame is a simultaneous-move game, which we
can call the “war stage” of the game. (Notice that we can switch the order of play in
the third subgame because it is a simultaneous-move subgame.) This war-stage game
can be described by the following matrix:

Player 2
r d

Player 1
R −5, −5 −100, −100

D −100, −100 −100, −100

The war-stage game has two pure-strategy Nash equilibria:3

NE1: (R, r) that yields a payoff of (−5, −5).

NE2: (D, d) that yields a payoff of (−100, −100).

We can now proceed in one of two possible ways to continue our backward
induction analysis. Case 1 will perform backward induction with the belief that if
the war stage is reached then the players will play NE1, and case 2 will perform
backward induction with the belief that if the war stage is reached then the players
will play NE2. Thus we are analyzing one of the two games depicted in Figure 8.12:

Case 1: From the left panel of Figure 8.12 we can see that for case 1 player 2 would
prefer to choose N over B because losing face is worse than the consequence
of mutual retreat. Moving backward another step shows that player 1 would
prefer I to E because, anticipating retreat, it is better to ignore the whole
situation.

3. There is a mixed-strategy Nash equilibrium that you are asked to find, and use as part of a subgame-
perfect equilibrium in exercise 8.2.
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Case 2: From the right panel of Figure 8.12 we can see that for case 2 player 2
would prefer to choose B over N because of the dire consequences of war,
and moving backward another step shows that player 1 would prefer E to I

because he anticipates that player 2 will back off.

Thus we have found two different (pure-strategy) subgame-perfect equilibria
given by the set ESPE = {(IR, Nr), (ED, Bd)}. We have two different subgame-
perfect equilibria because in the final war-stage subgame there are two very distinct
pure-strategy Nash equilibria, NE1 and NE2. These two Nash equilibria have different
implications for the behavior of player 2 in the preceding stage of the game, which in
turn affects the behavior of player 1 at the beginning of the game.

There is a nice qualitative difference between the two equilibria. The first equilib-
rium, (ED, Bd), represents the case in which player 1 escalates because he believes
that player 2 will treat this as a signal that player 1 is willing to “go all the way.” More
precisely in game theoretic terms, player 1 believes that both will play the Doomsday
equilibrium NE2 in the war stage, and in turn player 2, who shares these beliefs, will
back off. The second equilibrium, (IR, Nr), is one in which player 1 chooses to ig-
nore the incident because he believes that if he were to escalate then two things would
happen: player 2 would go nuclear and they would then retreat together, resulting in a
payoff of −5 instead of 0. It is interesting that in both these equilibria the war game is
off the equilibrium path. Nonetheless it is the expected behavior in this last and final
stage that dictates how players will play.

8.3.4 Time-Inconsistent Preferences

In Section 2.5.2 we analyzed the decision problem of a single player who needs to
allocate a scarce resource over two periods. We assumed that the player maximizes
his discounted sum of payoffs, as we defined in Section 2.4.2. We explained that a
player who expects to receive a stream of payments x1, x2, . . . , xT over the periods
t = 1, 2, . . . , T , and who evaluates per-period payments using the utility function
u(x), will evaluate his discounted sum of future payoffs in period t = 1 as

v(x1, x2, . . . , xT ) = u(x1) + δu(x2) + . . . + δT −1u(xT ) =
T∑

t=1

δt−1u(xt), (8.3)

where δ ∈ (0, 1) is the player’s discount factor, which he uses to discount future
payoffs.

Consider a player with u(x) = ln(x) who needs to allocate a fixed budget K

across three periods. Since he will not waste any of his budget, it follows that
x1 = K − x2 − x3 and the player solves the following problem:

max
x2,x3

v(K − x2 − x3, x2, x3) = ln(K − x2 − x3) + δ ln(x2) + δ2 ln(x3).

To solve this problem we have to solve the two first-order conditions

∂v

∂x2
= − 1

K − x2 − x3
+ δ

x2
= 0

and

∂v

∂x3
= − 1

K − x2 − x3
+ δ2

x3
= 0.
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Solving these two equations yields the solutions

x3 = K
δ2

1 + δ + δ2
(8.4)

and

x2 = K
δ

1 + δ + δ2
, (8.5)

and using x1 = K − x2 − x3 gives

x1 = K
1

1 + δ + δ2
. (8.6)

The player’s solution is similar to the solution we saw in Section 2.5.2. The player
chooses to consume more in earlier periods because he is equating the marginal utility
from consumption across time, taking into account that future periods are discounted.
An interesting question is the following: if the player planned out his consumption
over time, would he choose to stick to his plan of action after he consumes x1? To
answer this, imagine that the player has already consumed his planned amount x1
given in (8.6), which implies that in period t = 2 he is left with a budget of

K2 = K − K
1

1 + δ + δ2
= K

δ + δ2

1 + δ + δ2
. (8.7)

Now consider the player’s maximization problem in period t = 2, where he is left
with a budget of K2. The problem is the same two-period problem as the one we saw
in Section 2.5.2:

max
x2

ln(x2) + δ ln(K2 − x2),

and the solution to the player’s problem will be

1

x2
= δ

K2 − x2

or

x2 = K2

1 + δ
. (8.8)

We can now substitute K2 from (8.7) into (8.8) to solve for the choice of x2 in terms
of the original budget K to obtain

x2 = K2

1 + δ
= K

δ + δ2

1 + δ + δ2
× 1

1 + δ
= K

δ

1 + δ + δ2
,

which is identical to the player’s original choice of x2 given by (8.5).
We call this kind of behavior time consistent because a player will choose to

follow his original plan. The discounting rule described by (8.3) is called exponential
discounting, and it is generally known in economic analysis that a player who uses
this formula to evaluate his present-value utility will always stick to his plan of
action; therefore his behavior will be time consistent. Strotz (1956) suggested that
players who use discounting rules other than exponential discounting will exhibit
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time-inconsistent behavior in that, as time goes by, they will want to deviate from
plans of action that they originally set.

To model this idea consider a different discounting rule known as hyperbolic
discounting. The player uses the discount rate δ for the future periods as in exponential
discounting, but he uses an additional discount factor β ∈ (0, 1) to discount all of the
future compared to present consumption. Using our three-period example, the player’s
modified discounted present-value problem is given by

max
x2,x3

v(K − x2 − x3, x2, x3) = ln(K − x2 − x3) + βδ ln(x2) + βδ2 ln(x3). (8.9)

Simply put, when the player is looking toward the future, the discount factor he uses
between periods t = 1 and t = 2 is stronger than the one he uses between periods
t = 2 and t = 3. In particular, at any period and looking forward, the player uses
βδ < δ to discount between the current period and the next, while he uses only δ to
discount between any two consecutive future periods.4 As we will now see, hyperbolic
discounting will cause problems of self-control, in that a player will plan to do one
thing but later choose to revise his plan.

Imagine that the player is very well aware of his self-control problem—at period
t = 1 he discounts between periods t = 2 and t = 3 at the rate of δ, but he knows that
when tomorrow (t = 2) comes around, he will discount t = 3 at a rate of βδ. In other
words, the player at t = 1(call him player 1) is aware that he is playing a game with his
“future self” at t = 2 (call him player 2), who will exhibit different preferences over
time. In this case a rational, forward-looking player 1 will solve his problem using
backward induction; in other words he will solve for the subgame-perfect equilibrium
of the implied dynamic game.

To make things simple, fix δ = 1. Recall from equations (8.4)–(8.6) that a player
who uses exponential discounting with δ = 1will choose to equalize his consumption
over time, so that xt = K

3 for all t ∈ {1, 2, 3}. Now consider a sophisticated player with
hyperbolic discounting with δ = 1 and β = 1

2 (you are asked to solve for the more
general problem in exercise 8.15). Looking forward to his future self, he knows that
player 2, who is left with a budget of K2, will solve the following problem (remember
that δ = 1 and β = 1

2 ):

max
x2

v2(x2, K2 − x2) = ln(x2) + 1
2 ln(K2 − x2),

for which the first-order condition is

dv2

dx2
= 1

x2
− 0.5

K2 − x2
= 0,

which in turn implies that player 2’s best-response function is

x2(K2) = 2
3K2.

As a consequence x3(K2) = 1
3K2. Hence the choices x2(K2) and x3(K2) made by

player 2 are the solution to any of the (infinitely many) subgames that start at the

4. More generally the discounted present value of a player who uses hyperbolic discounting is given
by u(x1) + β

∑T
t=2 δt−1u(xt).
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node at which player 2 is left with a budget of K2. Now moving up to the root of the
game, where player 1 decides how much to allocate between his own consumption
and that of player 2, he must solve the following problem:

max
x1

v1

(
x1,

2
3(K − x1),

1
3(K − x1)

)
= ln(x1) + 1

2 ln
(

2
3(K − x1)

)
+ 1

2 ln
(

1
3(K − x1)

)
,

for which the first-order condition is

dv1

dx1
= 1

x1
− 2

3
× 0.5

K − x1
− 1

3
× 0.5

K − x1
= 0 ,

which in turn implies that player 1’s best-response function is

x1(K) = 2
3K.

This results in a very different solution than our exponential discounting bench-
mark, in which (with δ = 1) the player split his resources equally across the three
periods. Here player 1 realizes that player 2 will choose to overconsume resources
compared to what player 1 would have preferred his future self to choose. As a con-
sequence player 1 himself overconsumes to leave a lower budget for his future self,
player 2, by spending more in period 1.

Problems of self-control and time-inconsistent behavior are at the center of the
field known as behavioral economics. Models of hyperbolic discounting have been
used to explain insufficient savings (Laibson, 1997), procrastination (O’Donoghue
and Rabin, 1999), and other related phenomena. Scholars in this literature often
distinguish between players who are not aware of their self-control problem (they
do not perform backward induction), referring to them as naive, and players who
are aware of their self-control problem, referring to them as sophisticated. What is
interesting about sophisticated players is that they would choose to constrain their
own future behavior in order to achieve a higher net present value from their stream
of consumption. You are asked to show this in exercise 8.16.

8.4 Summary

. Extensive-form games will often have some Nash equilibria that are not
sequentially rational, yet we expect rational players to choose sequentially
rational strategies.

. In games of perfect information backward induction will result in sequentially
rational Nash equilibria. If there are no two payoffs at terminal nodes that are
the same then there will be a unique sequentially rational Nash equilibrium.

. Subgame-perfect equilibrium is the more general construct of backward in-
duction for games of imperfect information.

. At least one of the Nash equilibria in a game will be a subgame-perfect
equilibrium.
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8.5 Exercises

8.1 Mixed-Strategy Subgame-Perfect Equilibrium: Find the mixed-strategy
subgame-perfect equilibrium of the sequential-move Battle of the Sexes game
depicted in Figure 8.2.

8.2 Mutually Assured Destruction Revisited: Consider the game in Section
8.3.3.

a. Find the mixed-strategy Nash equilibrium of the war-stage game and
argue that it is unique.

b. What is the unique subgame-perfect equilibrium that includes the
mixed strategy you found in (a)?

8.3 Brothers Revisited: Find all the subgame-perfect equilibria in the “Brothers”
exercise (exercise 7.8) from the previous chapter.

8.4 Industry Leader: Three oligopolists operate in a market with inverse demand
given by P(Q) = a − Q, where Q = q1 + q2 + q3, and qi is the quantity
produced by firm i. Each firm has a constant marginal cost of production,
c, and no fixed cost. The firms choose their quantities dynamically as follows:
Firm 1, which is the industry leader, chooses q1 ≥ 0. Firms 2 and 3 observe
q1 and then simultaneously choose q2 and q3, respectively.

a. How many proper subgames does this dynamic game have? Explain
briefly.

b. Is it a game of perfect or imperfect information? Explain briefly.
c. What is the subgame-perfect equilibrium of this game? Show that it is

unique.
d. Find a Nash equilibrium that is not a subgame-perfect equilibrium.

8.5 Technology Adoption: During the adoption of a new technology a CEO
(player 1) can design a new task for a division manager. The new task can be
either high level (H ) or low level (L). The manager simultaneously chooses
to invest in good training (G) or bad training (B). The payoffs from this
interaction are given by the following matrix:

Player 2
G B

Player 1
H 5, 4 −5, 2

L 2, −2 0, 0

a. Present the game in extensive form (a game tree) and solve for all the
Nash equilibria and subgame-perfect equilibria.

b. Now assume that before the game is played the CEO can choose not
to adopt this new technology, in which case the payoffs are (1, 1), or
to adopt it, in which case the game is played. Present the entire game
in extensive form. How many proper subgames does it have?

c. Solve for all the Nash equilibria and subgame-perfect equilibria of the
game described in (b).

8.6 Investment in the Future: Consider two firms that play a Cournot com-
petition game with demand p = 100 − q and costs for each firm given by
ci(qi) = 10qi. Imagine that before the two firms play the Cournot game firm



8.5 Exercises . 171

1 can invest in cost reduction. If it invests the costs of firm 1 will drop to
c1(q1) = 5q1. The cost of investment is F > 0. Firm 2 does not have this in-
vestment opportunity.

a. Find the value F ∗ for which the unique subgame-perfect equilibrium
involves firm 1 investing.

b. Assume that F > F ∗. Find a Nash equilibrium of the game that is not
subgame perfect.

8.7 Debt and Repayment: A project costing $100 yields a gross return of $110.
A lender (player 1) is approached by a debtor (player 2) requesting a standard
loan contract to complete the project. If the lender chooses not to offer a loan,
then both parties earn nothing. If the lender chooses to offer a loan of $100,
the debtor can realize the project’s gains and is obliged by contract to repay
$105. For simplicity assume that money is continuous and that the debtor
can choose to return any amount of money x ≤ 110. Ignore the time value
of money. Assume first that no legal system is in place that can compel the
debtor to repay, so that default on the loan (less than full repayment) carries
no repercussions for the debtor.

a. Model this as an extensive-form game tree as best you can and find a
subgame-perfect equilibrium of this game. Is it unique?

b. Now assume that there is a legal system in place that allows the lender
to voluntarily choose whether or not to sue when the debtor defaults
and repays an amount x < 105. Furthermore assume that it is costless
to use the legal system (it is supplied by the state), and if the lender sues
a debtor that defaulted, the lender will get the $105 repaid in full. After
paying the lender, the borrower will pay a fine of $5 to the court, above
and beyond the repayment. Model this as an extensive-form game tree
as best you can and find a subgame-perfect equilibrium of this game.
Is it unique?

c. Are there Nash equilibria in the game described in (b) that are not
subgame-perfect equilibria?

d. Now assume that using the legal system is costly: if the lender sues,
he pays lawyers a legal fee of $105 (this is the lawyers’ price; it is
unrelated to the contract). The rest of the game proceeds as before. (If
the lender sues a debtor that defaulted, the lender will get repaid in full;
after paying the lender, the borrower will pay a fine of $5 above and
beyond the repayment.) Model this as an extensive-form game tree as
best you can and find a subgame-perfect equilibrium of this game. Is
it unique?

e. Are there Nash equilibria in the game described in (d) that are not
subgame-perfect equilibria?

f. Now assume that a change in the law is proposed: upon default, if a
debtor is sued he has to first repay the lender $105 and then pay the
legal fees of $105 above and beyond repayment of the loan, and no
extra fine is imposed. Should the lender be willing to pay to have this
change in the law enacted? If so, how much?

g. If you were a social planner, would you implement the suggested law?

8.8 Entry Deterrence 1: NSG Corporation is considering entry into the local
phone market in the San Francisco Bay Area. The incumbent, S&P Corpo-
ration, predicts that a price war will result if NSG enters. If NSG stays out,
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S&P earns monopoly profits valued at $10 million (net present value of prof-
its) while NSG earns zero. If NSG enters, it must incur irreversible entry costs
of $2 million. If there is a price war, each firm earns $1 million. S&P always
has the option of accommodating entry (i.e., not starting a price war). In such
a case both firms earn $4 million (net present value). Suppose that the timing
is such that NSG first has to choose whether or not to enter the market. Then
S&P decides whether to “accommodate entry” or “engage in a price war.”
What is the subgame-perfect equilibrium outcome to this sequential game?
Set up a game tree.

8.9 Entry Deterrence 2: Consider the Cournot duopoly game with demand p =
100 − (q1 + q2) and variable costs ci(qi) = 0 for i ∈ {1, 2}. The twist is that
there is now a fixed cost of production k > 0 that is the same for both firms.

a. Assume first that both firms choose their quantities simultaneously.
Model this as a normal-form game.

b. Write down the firm’s best-response function for k = 1000 and solve
for a pure-strategy Nash equilibrium. Is it unique?

c. Now assume that firm 1 is a “Stackelberg leader” in the sense that it
moves first and chooses q1. Then after observing q1 firm 2 chooses q2.
Also assume that if firm 2 cannot make strictly positive profits then it
will not produce at all. Model this as an extensive-form game tree as
best you can and find a subgame-perfect equilibrium of this game for
k = 25. Is it unique?

d. How does your answer in (c) change for k = 225?

8.10 Playing It Safe: Consider the following dynamic game: Player 1 can choose
to play it safe (denote this choice by S), in which case both he and player 2
get a payoff of 3 each, or he can risk playing a game with player 2 (denote this
choice by R). If he chooses R then they play the following simultaneous-move
game:

Player 2
A B

Player 1
C 8, 0 0, 2

D 6, 6 2, 2

a. Draw a game tree that represents this game. How many proper sub-
games does it have?

b. Are there other game trees that would work? Explain briefly.
c. Construct the matrix representation of the normal form of this dynamic

game.
d. Find all the Nash and subgame-perfect equilibria of the dynamic game.

8.11 Resident Assistant Selection with a Twist: Two staff managers in the B�

sorority, the house manager (player 1) and kitchen manager (player 2), must
select a resident assistant from a pool of three candidates: {a, b, c}. Player 1
prefers a to b, and b to c. Player 2 prefers b to a, and a to c. The process that
is imposed on them is as follows: First, the house manager vetoes one of the
candidates and announces the veto to the central office for staff selection and
to the kitchen manager. Next the kitchen manager vetoes one of the remaining
two candidates and announces it to the central office. Finally the director of
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the central office assigns the remaining candidate to be a resident assistant at
B�.

a. Model this as an extensive-form game (using a game tree) in which
a player’s most-preferred candidate gives a payoff of 2, the second
most-preferred candidate gives a payoff of 1, and the last candidate
gives 0.

b. Find the subgame-perfect equilibrium for this game. Is it unique?
c. Are there Nash equilibria that are not subgame-perfect equilibria?
d. Now assume that before the two players play the game, player 2 can

send an alienating e-mail to one of the candidates, which would result
in that candidate withdrawing her application. Would player 2 choose
to do this, and if so, with which candidate?

8.12 Agenda Setting: An agenda-setting game is described as follows. The “issue
space” (set of possible policies) is an interval X = [0, 5]. An agenda setter
(player 1) proposes an alternative x ∈ X against the status quo q = 4. After
player 1 proposes x, the legislator (player 2) observes the proposal and selects
between the proposal x and the status quo q. Player 1’s most-preferred policy
is 1, and for any final policy y ∈ X his payoff is given by

v1(y) = 10 − |y − 1|,

where |y − 1| denotes the absolute value of (y − 1). Player 2’s most preferred
policy is 3, and for any final policy y ∈ X his payoff is given by

v2(y) = 10 − |y − 3|.

That is, each player prefers policies that are closer to his most-preferred policy.

a. Write the game down as a normal-form game. Is this a game of perfect
or imperfect information?

b. Find a subgame-perfect equilibrium for this game. Is it unique?
c. Find a Nash equilibrium that is not subgame perfect. Is it unique? If

yes, explain. If not, show all the Nash equilibria for this game.

8.13 Junk Mail Advertising: Suppose a single good is owned by a single seller
who values it at c > 0 (he can consume the good and get a payoff of c). There
is a single buyer who has a small transportation cost k > 0 to get to and back
from the seller’s store, and he values the good at v > c + k. The buyer first
decides whether to make the commute or stay at home, not buy the good,
and receive a payoff of 0. If the buyer commutes to the store, the seller can
then make the buyer a take-it-or-leave-it price offer p ≥ 0. The buyer can then
accept the offer, pay p, and get the good, or he can walk out and not buy the
good. Assume that c, v, and k are common knowledge.

a. As best you can, draw the extensive form of this game. What is the
best response of the buyer at the node at which he decides whether to
accept or reject the seller’s offer?

b. Find the subgame-perfect equilibrium of the game and show that it is
unique. Is it Pareto optimal?

c. Are there Nash equilibria that yield a higher payoff to both players as
compared to the subgame-perfect equilibrium you found in (b)?
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d. Now assume that before the game is played the seller can, at a small
cost ε < (v − c − k), send the buyer a postcard that commits the seller
to a certain price at which the buyer can buy the good (e.g., “bring this
coupon and get the good at a price p”). Would the seller choose to do
so? Justify your answer with an equilibrium analysis.

8.14 Hyperbolic Discounting: Consider the three-period example of a player with
hyperbolic discounting described in Section 8.3.4 with utility ln(x) in each of
the three periods and with discount factors 0 < δ < 1 and 0 < β < 1.

a. Solve the optimal choice of player 2, the second-period self, as a
function of his budget K2, δ, and β.

b. Solve the optimal choice of player 1, the first-period self, as a function
of K , δ, and β.

8.15 Time Inconsistency: Consider the three-period example of a player with
hyperbolic discounting described in Section 8.3.4 with utility ln(x) in each
of the three periods, with initial budget K and with discount factors δ = 1 and
β = 1

2 .

a. Solve the optimal plan of action of a naive player 1 who does not take
into account how his future self, player 2, will alter the plan. What is
player 1’s optimal plan x∗

1 , x∗
2 , and x∗

3 as a function of K?
b. Let K2 be the amount left from the solution to (a) after player 1

consumes his planned choice of x∗
1 . Given K2, what is the optimal

plan of player 2? In what way does it differ from the optimal plan set
out by player 1?

8.16 The Value of Commitment: Consider the three-period example of a player
with hyperbolic discounting described in Section 8.3.4 with utility ln(x) in
each of the three periods and with discount factors δ = 1and β = 1

2 . We solved
the optimal consumption plan of a sophisticated player 1.

a. Imagine that an external entity can enforce any plan of action that
player 1 chooses in t = 1 and will prevent player 2 from modifying it.
What is the plan that player 1 would choose to enforce?

b. Assume that K = 90. Up to how much of his initial budget K will
player 1 be willing to pay the external entity in order to enforce the
plan you found in (a)?
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Multistage Games

The normal-form game was a model of players choosing their actions simulta-
neously, without observing the moves of their opponents. The extensive form

enriches the set of situations we can model to include those in which players learn
something about the choices of other players who moved earlier, in which case a
player can condition his behavior on the moves of other players in the game.

The extensive-form games analyzed so far were characterized by having payoffs
delayed until the game reached a terminal node that was associated with the game’s
end. In reality dynamic play over time may be more complex, and it may not be cor-
rectly modeled by one “grand” game that unfolds over time with payoffs distributed
at the end of the game. For instance, consider two firms that compete in one market,
with the flow of profits that results from their behavior; after some time they choose to
compete in another market, with a new flow of payoffs. Similarly a group of elected
lawmakers may serve on a committee, on which their behavior and votes will affect
the likelihood of their being reelected. Those who are reelected may sit on another
committee together, with different choices and different consequences.

The broad message of these examples is that players can play one game that is
followed by another, or maybe even several other games and receive some payoffs
after each one of the games in this sequence is played. In such cases two natural
questions emerge. First, if the players are rational and forward looking, should they
not view this sequence of games as one grand game? Second, if they do view these
as one grand game, should we expect that their actions in the later stages will depend
on the outcomes of earlier stages? In particular, will the players be destined to play a
sequence of action profiles that are Nash equilibria in each stage-game, or will they be
able to use future games to support behavior in the earlier stages that is not consistent
with Nash equilibrium in those early stages?

This chapter answers these questions. Before doing so, Sections 9.1–9.3 formally
show how such multistage games can be modeled as extensive-form games so that we
can use the tools developed in the previous chapter. It will be possible to answer the
two questions just posed. First, the players should indeed anticipate future games and
use them to create a richer environment for themselves. Second, they will benefit from
using future play to create incentives that constrain their behavior in earlier stages. If
players have the opportunity to condition future behavior on past outcomes, they may
be able to create credible, self-enforcing incentives to follow behavior in earlier-stage
games that would not be possible if there were no continuation games following. This

175
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is the core insight of multistage games: if players can condition future behavior on
past outcomes then this may lead to a richer set of self-enforcing outcomes.

9.1 Preliminaries

We define a multistage game as a finite sequence of normal-form stage-games,
in which each stage-game is an independent, well-defined game of complete but
imperfect information (a simultaneous-move game). These stage-games are played
sequentially by the same players, and the total payoffs from the sequence of games
are evaluated using the sequence of outcomes in the games that are played. We adopt
the convention that each game is played in a distinct period, so that game 1 is played
in period t = 1, game 2 in period t = 2, and so on, up until period t = T , which will
be the last stage in the game.1 We will also assume that, after each stage is completed,
all the players observe the outcome of that stage, and that this information structure
is common knowledge.2

In each stage-game, players have a set of actions from which they can choose, and
the profiles of actions lead to payoffs for that specific game, which is then followed
by another game, and another, until the sequence of games is over. A sequence of
normal-form games of complete information with the same players is not too hard
to conceive. Consider again the examples used earlier in this chapter, such as firms
in common markets or lawmakers interacting on a sequence of committees. To make
things concrete, let’s start with a stylized example, which is a small twist on the
familiar Prisoner’s Dilemma game.

Consider a two-stage game that we call the Prisoner-Revenge Game. Suppose that
in a first period labeled t = 1 two players from different local neighborhoods play the
familiar Prisoner’s Dilemma with pure actions mum and fink (uppercase for player 1
and lowercase for player 2) and with the payoff matrix

Player 2
m f

Player 1
M 4, 4 −1, 5

F 5, −1 1, 1

Now imagine that after this game is over the same two players play the following
Revenge Game in a second period t = 2. Each player can choose whether to join
his local neighborhood gang or remain a “loner.” If the players remain loners then
they go their separate ways, regardless of the outcome of the first game, and obtain
second-period payoffs of 0 each. If both join gangs, then because of the nature of
neighborhood gangs they will fight each other and suffer a loss, causing each to receive
a payoff of −3. Finally if player i joins a gang while player j remains a loner then

1. It is possible to consider an infinite sequence of games, but we restrict attention to a finite sequence
of games in this chapter. In the next chapter we will consider such infinite sequences, in which the
stage-games are always the same game that repeats itself again and again.
2. It is possible to imagine games in which some stages are played before the outcomes of previous
stages are learned. In the extreme case of no information being revealed, this is no different than a
simultaneous-move game. If some but not all the information is revealed, the analysis becomes more
complicated, and such games are beyond the scope of this text.
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the loner suffers dearly since he has no gang to defend him, thus receiving a payoff
of −4, while the new gang member suffers much less and receives a payoff of −1.
The Revenge Game is described by the following matrix:

Player 2
l g

Player 1
L 0, 0 −4, −1

G −1, −4 −3, −3

From our previous analysis of static games of complete information, we know
how to analyze these two games independently. In the first-stage game, the Prisoner’s
Dilemma, there is a unique Nash equilibrium, (F, f ). In the second-stage game, the
Revenge Game, there are two pure-strategy Nash equilibria, (L, l) and (G, g), and a
mixed-strategy equilibrium in which each player plays loner with probability 1

2 (verify
this!). In what follows, we will see that once these two games are played in sequence,
equilibrium behavior can be more interesting.

9.2 Payoffs

How should we evaluate the total payoffs from a sequence of outcomes in each of the
sequentially played stage-games? We adopt the well-defined notion of present value,
which we used to analyze the single-person decision problems of consumption over
time described in Sections 2.5.2 and 8.3.4.

In particular at any period t we will collapse any sequence of payments from the
games played starting at period t onward into a single value that can be evaluated at
period t . To do this we take the payoffs derived from each of the individual games and
add them up with the added assumption (as described and motivated in Section 2.5.2)
that future payoffs are discounted at a rate 0 ≤ δ ≤ 1. A higher discount factor δ means
that the players are more patient and will care more about future payoffs. An extreme
case of impatience occurs when δ = 0, which means that only the payoffs of the
current stage-game matter.

Consider a multistage game in which there are T stage-games played in each of
the periods 1, 2, . . . , T . Let vt

i be player i’s payoff from the anticipated outcome in
the stage-game played in period t . We denote by vi the total payoff of player i from
playing the sequence of games in the multistage game and define it as

vi = v1
i
+ δv2

i
+ δ2v3

i
+ . . . + δT −1vT

i
=

T∑
t=1

δt−1vt
i
,

which is the discounted sum of payoffs that the player expects to get in the sequence of
games. The payoffs one period away are discounted once, those two periods away are
discounted twice (hence the δ2), and so on. For example, if in the Prisoner-Revenge
Game we have the sequence of play be (F, m) followed by (L, g) then, given a
discount factor δ for each player, the payoffs for players 1 and 2 are v1 = 5 + δ(−4)

and v2 = −1 + δ(−1).
Using the concept of discounted payoffs we can write down the extensive form of

the multistage Prisoner-Revenge Game to demonstrate all the possible outcomes, and
the total sum of discounted payoffs, as shown in Figure 9.1. Notice that this way of
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FIGURE 9.1 The multistage Prisoner-Revenge Game.

representing the game does not seem to capture the fact that payoffs are accumulated
as the stages of the game proceed. That said, this is not important from a strategic
point of view because we have incorporated the payoffs into the extensive form of
the multistage game by accurately taking into account the sum of discounted payoffs
that are a consequence of any combination of play in the two stage-games.

9.3 Strategies and Conditional Play

Imagine that the players are playing a multistage game that consists of T stage-
games. If we naively treat each game independently, so that players do not make
any attempt to link their behavior in a given stage-game to the outcomes of previous
stage-games, then strategies would be extremely simple: each player treats each stage-
game independently and commits to some action for each of the stage-games that is
independent of how the games unfold over time.

More sophisticated players may benefit from using strategies that create a strategic
link between the stage-games in ways that are no different than what children do in
preschool: “If you play with the dolls this way now, I will play hide-and-seek with
you later, and if you don’t then I won’t play with you at all.” More generally players
can use strategies of the form “If such-and-such happens in games 1, 2, . . . , t − 1
then I will choose action ai in game t .” In the Prisoner-Revenge Game, for example,
player 1 can use the following strategy: “I will play F in the first game and I will play
L in the second game only if player 2 played m in the first game. If player 2 played
f in the first game then I will play G in the second.”

A convenient way to introduce such strategies is by writing down the extensive
form of the complete multistage game as we did in Figure 9.1 and focus on what the
players can do at every stage of the game. It is important to determine correctly the
information sets of each player. Because the outcomes of every stage are revealed
before the next stage is played, the number of information sets at any stage t must be
equal to the number of possible outcomes from the previously played stage-games,
1, 2, . . . , t − 1.

For example, in the multistage Prisoner-Revenge Game, the first-stage game has
four outcomes. This implies that in the second-stage game each player should have
four information sets, each associated with one of the four outcomes of the first-stage
game. Note, however, that in each stage-game the players do not know what their
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opponent is choosing at that stage, which means that we must have some information
sets with more than one node in them, as demonstrated in Figure 9.1. In the first stage
each player chooses between mum and fink without knowing what his opponent is
choosing at that stage. In the second stage he chooses between loner and gang without
knowing what his opponent is choosing at that stage, but each player knows exactly
how the first-stage game concluded: with either Mm, Mf , Fm, or Ff .

We can therefore define a strategy for player i in the multistage Prisoner-Revenge
Game as a quintuple, si = (s1

i
, s2

i
(Mm), s2

i
(Mf ), s2

i
(Fm), s2

i
(Ff )), where s1

i
is what

player i will do in the first-stage Prisoner’s Dilemma game and s2
i
(ab) is what player

i will do in the second-stage Revenge Game, if player 1 played a ∈ {M, F } and player
2 played b ∈ {m, f } in the first-stage game. Notice that each element of the quintuple
that represents each player’s strategy can take on two values (e.g., s1

1 ∈ {M, F } and
s2

1(Mm) ∈ {L, G}). Hence each player has 32 pure strategies, which means that if
we try to draw a matrix it will be of size 32 × 32 and will have 1024 pure-strategy
combinations! For this reason it is most useful to use the extensive form to analyze
such a game.

More generally, in a multistage game that consists of T stage-games, a pure
strategy of player i will be a list of conditional pure strategies of the following form:
Si = {s1

i
, s2

i
(h1), . . . , st

i (ht−1), . . . , sT
i
(hT −1)}, where ht−1 is a particular outcome

that occurred up to period t , not including period t , and st
i (ht−1) is an action for

player i from the t th stage-game. We can conveniently think of ht−1 as a particular
history of events that occurred up to period t , from the set of all possible histories
(or outcomes) Ht−1. The different histories that occurred before stage-game t are
associated with different information sets in the stage-game of period t , each history
being associated with a distinct sequence of outcomes from the previous stage-games
in periods 1, 2, . . . , t − 1 combined.

To solidify this idea consider a game with n firms that are choosing prices
in a sequence of markets. At stage t = 1 they choose prices in market 1, prof-
its in this market are determined, and this is followed by T − 1 more market
games, each with its own demand structure. If each firm selects its price pt

i in
period t (which is stage-game t), then a pure strategy for firm i is a list of prices
p1

i
, p2

i
(h1), . . . , pt

i (ht−1), . . . , pT
i
(hT −1), where p1

i
≥ 0 and pt

i(ht−1) ≥ 0 for all
t ∈ {2, . . . , T }. Each history ht is the sequence of previously chosen prices: h1 =
(p1

1, p1
2, . . . , p1

n
), h2 = ((p1

1, p1
2, . . . , p1

n
), (p2

1, p2
2, . . . , p2

n
)), and generally

ht−1 = ((p1
1, p1

2, . . . , p1
n
), (p2

1, p2
2, . . . , p2

n
), . . . , (pt−1

1 , pt−1
2 , . . . , pt−1

n
)).

Notice that for this example a pure strategy for player i is a list of continuous functions,
each from the set of continuously many histories to a single price.

Just as we have defined pure strategies for multistage games, we can define mixed
behavioral strategies in which every player can mix between his or her pure actions in
every information set. The formal extension is straightforward: in a multistage game
that consists of T stage-games a behavioral strategy of player i will be a list of condi-
tional randomizations of the following form: σi = {σ 1

i
, σ 2

i
(h1), . . . , σ t

i (ht−1), . . . ,

σ T
i

(hT −1)}, where ht−1 is the set of outcomes that occurred up to period t , not includ-
ing period t , and σ t

i (ht−1) is a randomization over player i’s actions in the stage-game
of period t .

In summary the definition of strategies for multistage games uses the extensive
form to represent the game’s structure. Furthermore, as in extensive-form games,
strategies are defined as a complete list of (mixed or pure) actions for each player
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at each of his information sets. In multistage games, each player’s information set is
associated with the history of play from the previous stage-games.

9.4 Subgame-Perfect Equilibria

Because multistage games are dynamic in nature, and because past play is revealed
over time, we turn to the notion of a subgame-perfect equilibrium as a solution
concept. In particular, rational players should play sequentially rational strategies,
which justifies the use of the subgame-perfect equilibrium concept. The question then
is, how do we find a subgame-perfect equilibrium for such a game? The following
result will offer a natural first step:

Proposition 9.1 Consider a multistage game with T stages, and let σ t∗ be a Nash
equilibrium strategy profile for the t th stage-game. There exists a subgame-perfect
equilibrium in the multistage game in which the equilibrium path coincides with the
path generated by σ 1∗, σ 2∗, . . . , σ T ∗.

Proof Fix a sequence of Nash equilibria for each stage-game, and let σ t∗ denote
the profile of strategies that form the Nash equilibrium for the stage-game t , where
σ t∗

i is player i’s strategy in the profile σ t∗. Consider the following unconditional
strategies for each player i: in each stage t ∈ {1, 2, . . . , T } play σ t∗

i regardless of the
history of plays before stage t (i.e., σ 1

i
= σ 1∗

i
and σ t

i (ht−1) = σ t∗
i for any ht−1 ∈ Ht−1).

By construction, for subgames that start at stage T this is a Nash equilibrium. Now
consider all the subgames that start at stage T − 1. The total payoffs from play in
stage T − 1 are equal to the payoffs from the T − 1 stage-game plus a constant that
has two components. One is the fixed payoff resulting from the previous games, and
the second is the expected payoff from the game at stage T that does not depend on
the outcomes of stage T − 1. This implies that σ ∗

T −1 followed by σ ∗
T

in any subgame at
stage T is a Nash equilibrium in any subgame starting at time T − 1. Using backward
induction, this argument implies that at any stage t, current play does not affect future
play, and this inductive argument for a finite number of stages in turn implies that in
any subgame these strategies constitute a Nash equilibrium.

The proof follows from a very intuitive argument. To see this consider the Prisoner-
Revenge Game, described earlier, and focus on the sequence of stage-game Nash
equilibria, (F, f ) followed by (L, l). Now consider the following multistage strate-
gies for the two players:

s1 = (s1
1, s2

1(Mm), s2
1(Mf ), s2

1(Fm), s2
1(Ff )) = (F, L, L, L, L)

s2 = (s1
2, s2

2(Mm), s2
2(Mf ), s2

2(Fm), s2
2(Ff )) = (f, l, l, l, l).

That is, each player plays fink in the first-stage game and then plays loner in the
second-stage game regardless of what was played in the first stage. Now observe
that with this pair of strategies the players are clearly playing a Nash equilibrium in
each of the four subgames in the second stage. This follows because the first-period
payoffs are set in stone and do not depend on the second-period choices, and in each of
these second-period subgames both players playing loner is a Nash equilibrium. Then,
moving back to the subgame that begins with the first stage-game (which is the whole
subgame), because the payoffs in the second period are a constant equal to 0 for each
player, regardless of the play in the first stage-game, it follows that each player has
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a dominant strategy, which is to play fink.3 Thus both playing fink in the first-stage
game is part of the Nash equilibrium in the whole game. It is easy to see that this
argument immediately implies that there is another (pure-strategy) subgame-perfect
equilibrium of the multistage game in which the players play

s1 = (s1
1, s2

1(Mm), s2
1(Mf ), s2

1(Fm), s2
1(Ff )) = (F, G, G, G, G)

s2 = (s1
2, s2

2(Mm), s2
2(Mf ), s2

2(Fm), s2
2(Ff )) = (f, g, g, g, g).

The logic is identical because both players playing gang is a Nash equilibrium of the
Revenge Game.4

The proposition should therefore be quite consistent with what we expect. It
basically says that if we look at a sequence of plays that is a Nash equilibrium in
each game independently then players should be content playing these stage-game
strategies in each stage-game. By considering such unconditional strategies, we are
removing any strategic link between stages, and thus each stage can be treated as if
it were an independent game.

The interesting question that remains to be answered is whether we are ignoring
behavior that can be supported as a subgame-perfect equilibrium if we actually use a
strategic linkage between the games. In other words, if players were to condition their
future play on past play in a sequentially rational manner, would we be able to support
behavior in early stages that is not a Nash equilibrium in the early stage-games?

The answer is yes, and this approach yields some interesting insights, which we
discuss subsequently. The trick for strategically linking the stage-games will be to
condition the behavior in later stage-games on the actions taken in earlier stage-
games. As we will see, this will be possible only when some of the stage-games in
later periods have multiple Nash equilibria. As a first step toward understanding this
requirement it is easy to establish the following proposition:

Proposition 9.2 If σ ∗ is a Nash equilibrium of the multistage game consisting of
stage-games G1, G2, . . . , GT then the restriction of σ ∗ to the stage-game in period
T must be a Nash equilibrium of that stage-game.

The proposition states that for any finite stage-game of length T , in the last stage-
game GT the players must play a Nash equilibrium of that stage-game. The reasoning
is simple: because there is no future that can depend on the actions taken at stage T ,
the only thing that determines what is best for any player at that stage is to play a best
response to what he believes the other players are doing at that stage. This insight
implies another important fact:

Proposition 9.3 If a finite multistage game consists of stage-games that each have
a unique Nash equilibrium then the multistage game has a unique subgame-perfect
equilibrium.

3. Note that adding a constant to the payoffs of players at every terminal node of an extensive-form
game will not change the players’ ranking of the outcomes and hence will not change the set of
equilibria.
4. Because there is also a mixed-strategy Nash equilibrium in the Revenge Game, there is a third
subgame-perfect equilibrium that can be constructed in a similar way: fink in the first-stage game fol-
lowed by the mixed-strategy Nash equilibrium in the Revenge Game, which is played unconditional
on the outcome of the first-stage game.
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The proof of this simple observation follows immediately from backward induc-
tion. In the last stage, T , the players must play the unique Nash equilibrium of that
game. In the stage before last, T − 1, they cannot condition future (T -stage) behavior
on current (T − 1)-stage outcomes, so they must play the unique Nash equilibrium
of the stage-game in period T − 1, continued by the unique Nash equilibrium of the
stage-game in period T . This induction argument continues until the first stage of the
game.

We now use the Prisoner-Revenge Game as an illustration of what players can
do when the stage-game played at the end of a multistage game has more than
one Nash equilibrium. It would be interesting, and surely appealing for the play-
ers, to try to support a subgame-perfect equilibrium in which the players will play
(M, m) in the first period. This would be interesting because, as we know, in the
stand-alone Prisoner’s Dilemma, playing (M, m) cannot be supported as an equilib-
rium. However, given the appended Revenge Game, we may be able to use history-
dependent strategies to support the cooperative behavior in the first stage. As a
starting point, proposition 9.2 implies that as part of any pure-strategy subgame-
perfect equilibrium of the multistage Prisoner-Revenge Game the players will have
to play (L, l) or (G, g) in any of the subgames that include the second-stage game
(or the unique mixed-strategy Nash equilibrium of the second-stage game). Intuitively
sequential rationality implies that players must play a Nash equilibrium in the second-
stage game.

To support cooperative behavior (M, m) as part of an equilibrium path of play
in a subgame-perfect equilibrium, the players must find a way to give themselves
incentives to stick to (M, m) and resist the temptation to deviate to fink. Notice that
in the second-stage Revenge Game the two pure-strategy Nash equilibria are very
different. The Nash equilibrium (L, l) yields each player a payoff of 0, which we can
call the “friendly” equilibrium, and (G, g) yields each player a payoff of −3, which
we can call the “gang” equilibrium. To provide the incentives for the first-stage game,
the players can agree to play the friendly equilibrium of the Revenge Game if (M, m)

was played in the first stage, while they can punish themselves by switching to the
gang equilibrium of the Revenge Game if anything other than (M, m) was played
in the first-stage game. That is, each player will play the following strategy in the
multistage game:

Player 1: Play M in stage 1. In stage 2 play L if (M, m) was played in stage
1, and play G if anything but (M, m) was played in stage 1 (or s∗

1 =
(s1

1, s2
1(Mm), s2

1(Mf ), s2
1(Fm), s2

1(Ff )) = (M, L, G, G, G)).

Player 2: Play m in stage 1. In stage 2 play l if (M, m) was played in stage 1, and
play g if anything but (M, m) was played in stage 1 (or s∗

2 = (s1
2, s2

2(Mm),
s2

2(Mf ), s2
2(Fm), s2

2(Ff )) = (m, l, g, g, g)).

We are left to check if this pair of strategies is a subgame-perfect equilibrium.
It is easy to see that in each of the subgames beginning at stage 2 the players are
playing a Nash equilibrium (either both play loner following (M, m) or both play
gang following other histories of play). Hence to check that this is a subgame-perfect
equilibrium we need to check that players would not want to deviate from mum in
the first stage of the game. In other words, is mum a best response in period 1, given
what each player believes about his opponent, and given the continuation play in the
second-period stage-games? Consider player 1 and observe that
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v1(M, s2) = 4 + 0 × δ and v1(F, s2) = 5 + (−3) × δ,

which implies that M is a best response if and only if 4 ≥ 5 − 3δ, or

δ ≥ 1
3 .

Thus if the discount factor is not too small then we can support the behavior of
(M, m) in the first-stage game even though it is not a Nash equilibrium in the stand-
alone Prisoner’s Dilemma. The fact that the Revenge Game has two different Nash
equilibria, one of which is significantly better than the other, allows the players to offer
a self-enforcing incentive scheme that supports cooperative behavior in the first-stage
game.

This example is illuminating because it sheds light on two requirements that are
crucial to supporting behavior in the first stage (or early periods in general) that is not
a Nash equilibrium at this first stage. These requirements are as follows:

1. There must be at least two distinct equilibria in the second stage: a “stick” and
a “carrot.”

2. The discount factor has to be large enough for the difference in payoffs
between the “stick” and the “carrot” to have enough impact in the first stage
of the game.

The first requirement is necessary to offer the players the possibility of “reward
and punishment” strategies, which help support first-period play that is not a Nash
equilibrium in the stand-alone first-stage game. To see this, consider the following: If
we are trying to support behavior in the first period that is not a Nash equilibrium in that
period, it must be the case that at least one player would like to deviate in the first stage
(because at least one is not playing a best response). The player would indeed deviate
from the proposed play in the first period if there were no future consequences to such
a deviation. In other words, in the first stage some players would benefit in the short
run from deviating from the proposed path of play, and to keep them on the path of
play we must guarantee that such deviations will be met with credible “punishments.”
For these punishments to be credible, they must take the form of moving from an
equilibrium in which the player gets a high payoff to an equilibrium in which he
gets a low payoff. That is, the players use long-term losses to deter themselves from
pursuing short-term gains.

This is where the second requirement has bite: it must be that these long-term
losses are enough to deter the players from deviating toward their short-term gains.
For this to be the case it must be that the players value the payoffs that they will receive
in the second period, which can only happen if they do not discount the future too
much. Thus the effective punishment from deviating will depend first on the difference
in payoffs of the two equilibria, the “reward” and the “punishment,” and second on the
discount factor. A more figurative way to think about this is that the friendly and gang
continuation equilibria are the “carrot” and the “stick,” respectively. Then a smaller
discount factor makes the carrot smaller and the stick less painful, which in turn makes
deterrence harder.

To see another example of a similarly constructed subgame-perfect equilibrium
in the Prisoner-Revenge Game, we can support the path of play (F, m) followed by
(L, l). To do this we use the following strategies for each player: Player 1 plays
F in stage 1, and player 2 plays m. In stage 2 both players play loner if (F, m)

was played in stage 1, while they play gang if anything but (F, m) was played in
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stage 1 (formally, s1 = (s1
1, s2

1(Mm), s2
1(Mf ), s2

1(Fm), s2
1(Ff )) = (F, G, G, L, G),

and s2 = (s1
2, s2

2(Mm), s2
2(Mf ), s2

2(Fm), s2
2(Ff )) = (m, g, g, l, g)). Clearly player

1 would not want to deviate from F in the first period because he’s playing a dominant
strategy in that period, followed by the best possible second-stage equilibrium. For
player 2 things are different. In the first-stage game his payoffs from m and f ,
respectively, are:

v2(s1, m) = −1 + 0 × δ and v2(s1, f ) = 1 − 3 × δ,

which implies that m is a best response for player 2 in the first-stage game if and only
if −1 ≥ 1 − 3δ, or if

δ ≥ 2
3 .

As we can see, to support this outcome we need a higher discount factor compared
with supporting (M, m) in the first period. Compared to the earlier path of (M, m)

followed by (L, l), here the future loss of 3 is enough to deter player 2’s deviation
only when the future is not discounted as much, because the short-term gains from
deviating are equal to 2. These are higher than the gains from deviating from (M, m),
which were only 1.

The foregoing analysis of the multistage Prisoner-Revenge Game captures most
of what is interesting about multistage games. For this reason it is not too useful to
consider more involved games. The next section offers a result that is quite technical
in nature but that is also very useful in proving which strategies are or are not part of
a subgame-perfect equilibrium. To summarize: in order to check if a strategy profile
(σ ∗

i
, σ ∗

−i
) is a subgame-perfect equilibrium in a multistage (or any finite extensive-

form) game, all we need to show is that for every player i, given σ ∗
−i

, player i does
not have a single information set from which he would want to deviate. In the next
chapter this result will prove to be even more useful.

9.5 The One-Stage Deviation Principle

As an illustration of multistage games, the Prisoner-Revenge Game was not hard to
analyze. In particular, to check that a certain proposed strategy profile was a subgame-
perfect equilibrium, we needed only to check that no player wanted to deviate in the
first stage, because we constructed our candidates for subgame-perfect equilibria to
consist of Nash equilibria in each of the second-stage subgames. It might seem that if
we had, say, a five-stage game it would be more complicated to check that a profile of
strategies constitutes a subgame-perfect equilibrium, and that in particular we would
have to check that the players do not want to deviate at any single stage-game. That is,
maybe they could gain by combining several deviations in separate stages of the game.

This is where the one-stage deviation principle comes in to simplify what seems
like a rather daunting task. Interestingly the principle is based on an idea that was
originally formulated by David Blackwell (1965) in the context of dynamic program-
ming for a single-player decision problem. The relation to a single-player decision
problem comes from the fact that when we want to check if a player i is playing a
best response to σ−i in every subgame, then all we are really doing is checking to
see whether he is playing an optimal action in each of his information sets, taking
the actions of all other players σ−i as given. Thus once the strategies σ−i of other
players in the extensive form are considered to be fixed, player i solves a standard
dynamic programming problem like the ones discussed in Section 2.4. This in turn
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implies that we can formulate the one-stage deviation principle within the context of
a single-person decision tree.

Consider an extensive-form game tree of finite length (every path ends after a
finite number of moves) with payoffs associated with each terminal node, and fix the
strategies of all players that are not i. The strategy σi assigns to each information set
hi a probability distribution over i’s actions Ai(hi), and starting from any information
set hi a strategy profile (σi, σ−i) induces a probability distribution over paths of play
and terminal nodes.

Thus if we treat every information set hi as a node in the single-player decision
tree induced by σ−i, we can define vi(σi, hi) to be the expected payoff of player i

from the information set hi onward by playing σi (recall that σ−i is considered to be
fixed). We say that a strategy σi is optimal if there is no strategy σ ′

i
and information

set hi such that vi(σ
′
i
, hi) > vi(σi, hi).

Given a strategy σi, define the strategy σ
a,hi

i as the strategy that is identical to
σi everywhere except at hi, and at hi we substitute the prescribed (possibly random)
action of σi with the action a ∈ Ai(hi). We introduce the following definition:

Definition 9.1 A strategy σi is one-stage unimprovable if there is no information
set hi, action a ∈ Ai(hi), and corresponding strategy σ

a,hi

i such that vi(σ
a,hi

i , hi) >

vi(σi, hi).

Clearly an optimal strategy is one-stage unimprovable. It is the converse that is
stated in the following theorem:

Theorem 9.1 A one-stage unimprovable strategy must be optimal.

Proof Suppose in negation that σi is one-stage unimprovable but it is not optimal.
Then there exist σ ′

i
and information set h1

i
such that vi(σ

′
i
, h1

i
) > vi(σi, h1

i
). Because

stochastic strategies do not affect the highest attainable payoffs, this is equivalent to
saying that there is a path starting from h1

i
through a finite number n of i’s information

sets (the last being a terminal node) such that i’s payoff from this path is greater than
vi(σi, h1

i
). Call these n information sets that define this path h1

i
, h2

i
, . . . , hn

i . This
implies that a finite number of one-stage deviations at the information sets h1

i
through

hn−1
i , with σi used everywhere else in the tree, will offer i a higher payoff than σi.

Define a collection of n − 1 different strategies σ t
i , for t = 1, . . . , n − 1, such that

σ t
i chooses the action ai ∈ Ai(h

r
i
) that induces the information set hr+1

i , for every r

between 1 and t , and coincides with σi at every other information set of i. Then our
earlier assertion that σi is not optimal implies that

vi(σ
n−1
i , h1

i
) > vi(σi, h1

i
). (9.1)

Notice that σn−2
i fully coincides with σi from the information set hn−1

i up to hn
i , while

σn−1
i is a one-stage deviation from σi at hn−1

i . Because σi is one-stage unimprovable
by assumption, it must be that

vi(σ
n−2
i , hn−1

i ) = vi(σi, hn−1
i ) ≥ vi(σ

n−1
i , hn−1

i ).

Because σn−2
i and σn−1

i share the same information sets h1
i

through hn
i along every

path generated by the two, it must be that

vi(σ
n−2
i , h1

i
) ≥ vi(σ

n−1
i , h1

i
). (9.2)
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Combining (9.1) and (9.2) we conclude that

vi(σ
n−2
i , h1

i
) > vi(σi, h1

i
).

Using an induction argument we must conclude that

vi(σ
1
i
, h1

i
) > vi(σi, h1

i
), (9.3)

but σ 1
i

is a one-stage deviation from σi, implying that (9.3) contradicts the assertion
that σi is one-stage unimprovable. Therefore if σi is one-stage unimprovable then it
must be optimal.

Though the formal proof is a bit tedious, the intuition is not. If the strategy σi were
not a best response to σ−i (not “optimal” in the proof just given), then given that the
game is finite, there must be a finite number of deviations to improve upon σi. We can
look for the “last” such deviation in the sequence, and if we restrict attention to the
subgame that starts at that information set (or at the closest possible root that precedes
it, if it is not a singleton) then in that subgame player i has a one-stage deviation that
makes him better off.

9.6 Summary

. Multistage games are defined by a series of normal-form stage-games that are
played in sequence, in which players obtain payoffs after every stage-game
and future payoffs are discounted.

. Any sequence of stage-game Nash equilibrium play can be supported as a
subgame-perfect equilibrium in the multistage game, regardless of the dis-
count factor.

. Players can use credible threats and promises in later stages to provide long-
term incentives for short-term actions that may not be self-enforcing in the
earlier-period stage-games.

. Because future payoffs are discounted, the effectiveness of long-term incen-
tives will depend on how patient the players are.

. The set of outcomes that can be supported by a subgame-perfect equilibrium
will often depend on the discount factor.

9.7 Exercises

9.1 Multistage Practice: Consider the following simultaneous-move game that is
played twice (the players observe the first-period outcome prior to the second-
period play):

Player 2
L C R

T 10, 10 2, 12 0, 13

Player 1 M 12, 2 5, 5 0, 0

B 13, 0 0, 0 1, 1
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N n

C c C c

N n

1

(1, 1) (0, 3) (2, 2) (1, 4)

(3, 3)2 1 2

FIGURE 9.2 The Centipede Game.

a. Find all the pure-strategy subgame-perfect equilibria with no discount-
ing (δ = 1). Be precise in defining history-contingent strategies for
both players.

b. For each of the equilibria you found in (a), find the smallest discount
factor that supports it.

9.2 Centipedes Revisited: Two players are playing two consecutive games. First,
they play the Centipede Game described in Figure 9.2. After the Centipede
Game they play the following coordination game:

Player 2
a b

Player 1
A 1, 1 0, 0

B 0, 0 3, 3

a. What are the Nash equilibria of each stage-game?
b. How many pure strategies does each player have in the multistage

game?
c. Find all the pure-strategy subgame-perfect equilibria with extreme dis-

counting (δ = 0). Be precise in defining history-contingent strategies
for both players.

d. Now let δ = 1. Find a subgame-perfect equilibrium for the two-stage
game in which the players receive the payoffs (2, 2) in the first stage-
game.

e. What is the lowest value of δ for which the subgame-perfect equilib-
rium you found in (d) survives?

f. For δ greater than the value you found in (e), are there other outcomes
of the first-stage Centipede Game that can be supported as part of a
subgame-perfect equilibrium?

9.3 Campaigning Revisited: Two political candidates are scheduled to campaign
in two states, in one in period t = 1and in the other in t = 2. In each state each
candidate can choose either a positive campaign that promotes his own agenda
(P for player 1, p for player 2) or a negative one that attacks his opponent (N
for player 1, n for player 2). Residents of the first-period state do not mind
negative campaigns, which are generally effective, and payoffs in this state
are given by the following matrix:

Player 2
p n

Player 1
P 2, 2 0, 5

N 5, 0 3, 3
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In the second-period state, residents dislike negative campaigns despite their
effectiveness, and the payoffs are given by the following matrix:

Player 2
p n

Player 1
P 4, 4 1, 0

N 0, 1 2, 2

a. What are the Nash equilibria of each stage-game? Find all the pure-
strategy subgame-perfect equilibria with extreme discounting (δ = 0).
Be precise in defining history-contingent strategies for both players.

b. Now let δ = 1. Find a subgame-perfect equilibrium for the two-stage
game in which the players choose (P, p) in the first stage-game.

c. What is the lowest value of δ for which the subgame-perfect equilib-
rium you found in (b) survives?

d. Can you find a subgame-perfect equilibrium for this game in which the
players play something other than (P, p) or (N, n) in the first stage?

9.4 Online Gaming: Consider a two-stage game between two firms that produce
online games. In the first stage, they play a Cournot competition game (each
chooses a quantity qi) with demand function p = 100 − q and zero marginal
production costs (ci(qi) = 0 for i = 1, 2). In the second stage, after observing
the pair (q1, q2) and after profits have been distributed, the players play a
simultaneous-move “access” game in which each can open its platform to
allow players on the other platform to play online with players on its platform
(O for player 1, o for player 2), or choose to keep its platform noncompatible
(N for player 1, n for player 2), in which case each platform’s players can play
only with others on the same platform. If they choose (N, n) then second-
stage payoffs are (0, 0). If only one firm chooses to open its platform, it bears
a cost of −10 with no benefit, since the other firm did not allow open access.
Finally if both firms choose (O, o) then each firm gets many more eyeballs for
advertising, and payoffs for each are 2500. Both players use the same discount
factor δ to discount future payoffs.

a. Find the unique Nash equilibrium in the first-stage Cournot game and
all of the pure-strategy Nash equilibria of the second-stage access
game. Find all the pure-strategy subgame-perfect equilibria with ex-
treme discounting (δ = 0). Be precise in defining history-contingent
strategies for both players.

b. Now let δ = 1. Find a subgame-perfect equilibrium for the two-
stage game in which the players choose the monopoly (total
profit–maximizing) quantities and split them equally (a symmetric
equilibrium).

c. What is the lowest value of δ for which the subgame-perfect equilib-
rium you found in (b) survives?

d. Now let δ = 0.4. Can you support a subgame-perfect equilibrium
for the two-stage game in which the players choose the monopoly
quantities and split them equally? If not, what are the highest profits
that the firms can make in a symmetric equilibrium?

9.5 Campaign Spending: Two political candidates are destined to play the fol-
lowing two-stage game. Assume throughout that there is no discounting
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(δ = 1). First, they compete in the primaries of their respective parties. Each
candidate i can spend si ≥ 0 resources on ads that reach out to voters, which
in turn increases the probability that candidate i wins the race. Given a pair
of spending choices (s1, s2), the probability that candidate i wins is given by

si
s1+s2

. If neither spends any resources then each wins with probability 1
2 . Each

candidate values winning at a payoff of 16 > 0, and the cost of spending si is
equal to si. After each player observes the resources spent by the other and a
winner in the primaries is selected, they can choose how to interact. Each can
choose to be pleasant (P for player 1 and p for player 2) or nasty (N and n,
respectively). At this stage both players prefer that they be nice to each other
rather than nasty, but if one player is nasty then the other prefers to be nasty too.
The payoffs from this stage are given by the following matrix (where w > 0):

Player 2
p n

Player 1
P w, w −1, 0

N 0, −1 0, 0

a. Find the unique Nash equilibrium of the first-stage game and the two
pure-strategy Nash equilibria of the second-stage game.

b. What are the Pareto-optimal outcomes of each stage-game?
c. For which value of w can the players support the path of Pareto-optimal

outcomes as a subgame-perfect equilibrium?
d. Assume that w = 1. What is the “best” symmetric subgame-perfect

equilibrium that the players can support?
e. What happens to the best symmetric subgame-perfect equilibrium that

the players can support as w changes? In what way is this related to
the role played by a discount factor?

9.6 Augmented Competition: Consider two firms playing a two-stage game with
discount factor δ. In the first stage they play a Cournot quantity-setting game in
which each firm has costs ci(qi) = 10qi for i ∈ {1, 2} and the demand is given
by p(q) = 100 − q, where q = q1 + q2. In the second stage, after the results
of the Cournot game are observed, the firms play the following standard-
setting game:

Player 2
a b

Player 1
A 100, 100 0, 0

B 0, 0 300, 300

a. Find the unique Nash equilibrium of the first-stage game and the two
pure-strategy Nash equilibria of the second-stage game.

b. As far as the two firms are considered, what are the symmetric Pareto-
optimal outcomes of each stage-game?

c. For which values of δ can the Pareto-optimal outcomes be supported
as a subgame-perfect equilibrium?

d. Assume that δ = 0.5. What is the “best” symmetric subgame-perfect
equilibrium that the players can support?

e. What happens to the best symmetric subgame-perfect equilibrium that
the players can support as δ drops toward zero?
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Repeated Games

The previous chapter on multistage games demonstrated two important lessons.
First, when players play a sequence of games over time, it will be to their benefit

to use conditional strategies in later stage-games to support desirable behavior in
early stage-games. More importantly the behavior that can be supported need not
be a static best response in the early stage-game because the conditional strategies
in later stage-games can act as a powerful incentive scheme to help players resist
the short-run temptation of deviating from the proposed path of play. Second, and
equally important, the future that the players face must be important enough to support
these dynamic incentives as self-enforcing. Using so-called reward-and-punishment
strategies to sustain static non-best-response behavior is possible only if the players
do not discount the future too heavily.

A special case of multistage games has received considerable attention over the
years: the case of repeated games. A repeated game is simply a multistage game in
which the same stage-game is being played at every stage. These games have been
studied for two primary reasons. The first is that repeated games seem to capture many
realistic settings. These include firms competing in the same market over long periods
of time, politicians engaging in pork-barrel negotiations in session after session of a
legislature, and workers on a team production line who perform some joint task day
after day. The second reason is that repeating the same game over time results in a
very convenient mathematical structure that makes the analysis somewhat simple and
elegant. As such, social scientists were able to refine this analytical tool and provide
a wide range of models that can be applied to understand different social phenomena.
This chapter provides a glimpse into the analysis of repeated games and shows some
of the extreme limits to what we can do with reward-and-punishment strategies.

10.1 Finitely Repeated Games

A finitely repeated game is, as its name suggests, a stage-game that is repeated a
finite number of times. Given that we have defined a multistage game in the previous
chapter, we can easily define a finitely repeated game as follows:

Definition 10.1 Given a stage-game G, G(T, δ) denotes the finitely repeated game
in which the stage-game G is played T consecutive times, and δ is the common
discount factor.

190
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As an example, consider the two-stage repeated game in which the following game
is repeated twice with a discount factor of δ:

Player 2
m f r

M 4, 4 −1, 5 0, 0

Player 1 F 5, −1 1, 1 0, 0

R 0, 0 0, 0 3, 3

As the matrix shows, there are two pure-strategy Nash equilibria, and they are Pareto
ranked, that is, (R, r) is better than (F, f ) for both players. Thus, as we have seen
before in Chapter 9 on multistage games, we have a “carrot” and a “stick” to use in an
attempt to discipline first-period behavior. This implies that for a high enough discount
factor we may be able to find subgame-perfect equilibria that support behavior in the
first stage that is not a Nash equilibrium of the one-shot stage-game.

You should be able to convince yourself that for a discount factor δ ≥ 1
2 the

following strategies1 constitute a subgame-perfect equilibrium of this two-stage game:

Player 1: Play M in stage 1. In stage 2 play R if (M, m) was played in stage 1,
and play F if anything but (M, m) was played in stage 1.

Player 2: Play m in stage 1. In stage 2 play r if (M, m) was played in stage 1, and
play f if anything but (M, m) was played in stage 1.

In fact, the players’ ability to provide reward-and-punishment strategies in this
game is very similar to that in the Prisoner-Revenge Game we analyzed in the previous
chapter. In the two-stage repeated game, if any one of the players deviates from
the proposed path of play (M, m) then both players will incur a loss of −2 in the
second-period stage-game because the players will switch from the “good” second-
stage equilibrium, (R, r), to the “bad” one, (F, f ). The temptation to deviate from
(M, m) for either player is the added payoff of +1 in the first period that a player
gets by deviating from M (or m) to F (or f ).2 The difference between this example
and the Prisoner-Revenge Game of the previous chapter is that in this example the
same game is repeated twice. It is the multiplicity of equilibria in the stage-game that
is giving the players the leverage to use conditional second-stage strategies of the
reward-and-punishment kind.

1. Because this stage-game has nine outcomes, it is a bit cumbersome to write down the formal
representation of these strategies. A simple way to write down this strategy for player 1 would be
s∗

1 = (s1
1, s2

1(h1)), where s1
1 = M and

s2
1(h1) =

{
R if h1 = (M, m)

F if h1 = (M, m).

2. In case you had trouble convincing yourself that these strategies form a subgame-perfect equilib-
rium, here is the argument: In the second stage the players are clearly playing a Nash equilibrium
regardless of the history of play. To check that this is a subgame-perfect equilibrium we need to
check that players would not want to deviate from M in the first stage of the game. Consider player
1 and observe that v1(M, s2) = 4 + 3 × δ and v1(F, s2) = 5 + 1× δ, which implies that M is a best
response if and only if −1 ≥ −2δ, or δ ≥ 1

2 .
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Because finitely repeated games are a special case of multistage games, the
conclusion must be that we need multiple continuation Nash equilibria to be able
to support behavior that is not a Nash equilibrium of the stage-game in earlier stages.
This immediately implies the following result, which is a special case of proposition
9.3 that was stated for multistage games:

Proposition 10.1 If the stage-game of a finitely repeated game has a unique
Nash equilibrium, then the finitely repeated game has a unique subgame-perfect
equilibrium.

The proof is identical to that of proposition 9.3. What are the consequences of this
proposition? It immediately applies to a finitely repeated game like the Prisoner’s
Dilemma or any of the simultaneous-move market games (Cournot and Bertrand
competitions) that we analyzed in Section 5.2. If such a stage-game is played T times
in a row as a finitely repeated game, then there will be a unique subgame-perfect
equilibrium that is the repetition of the static noncooperative Nash equilibrium play
in every stage.

This result may seem rather disturbing, but it follows from the essence of cred-
ibility and sequential rationality. If two players play the Prisoner’s Dilemma, say,
500 times in a row, then intuition suggests that they can use the future to disci-
pline behavior and try to cooperate by playing mum in early periods, with devia-
tions from mum being punished by a later move to fink. However, the “unraveling”
process that proves proposition 10.1 will apply to this finitely repeated Prisoner’s
Dilemma precisely because it is common knowledge that the game will end after
500 periods. In the last stage-game at T = 500, the players must each play fink
because it is the unique Nash equilibrium. (In fact it is the unique dominant strat-
egy!) As a consequence, in the stage-game at T = 499 the players cannot provide
reward-and-punishment incentives, so in this stage they must again play fink. This
argument will continue, thus proving that it is impossible to support a subgame-
perfect equilibrium in which the players can cooperate and play mum in early stages
of the game.

For many people this argument is at first counterintuitive. Because the players
have a long future ahead of them, this should seem enough to construct equilibrium
strategies that provide them with incentives to cooperate. The problem is that in
order to provide such incentives, the players must be able to construct reward-and-
punishment continuation equilibrium strategies. More importantly, these continuation
strategies themselves must be equilibrium strategies and hence must rely on multiple
equilibria in the continuation of the repeated game.

As we will see in the next section, however, putting a somewhat different inter-
pretation on the idea of a long future will restore our intuition—albeit in a rather
surprising way.

10.2 Infinitely Repeated Games

The problem identified with the finitely repeated Prisoner’s Dilemma is a consequence
of the common knowledge among the players that the game has a fixed and finite
number of periods. If a repeated game is finite, and if its stage-game has a unique
Nash equilibrium, then starting in the last period T the “Nash unraveling” of the
static Nash equilibrium follows from sequential rationality.
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What would happen if we eliminated this problem by assuming that the game
does not have a final period? That is, what if, regardless of the stage at which the
players find themselves and whatever they have played, there is always a “long”
future ahead of them? As we will see, this slight but critical modification will give
the players the ability to support play that is not a static Nash equilibrium of the
stage-game, even when the stage-game has a unique Nash equilibrium. In fact we
will see that once the stage-game is repeated infinitely often, the players will have
the freedom to support a wide range of behaviors that are not consistent with a static
Nash equilibrium in the stage-game. First we need to define payoffs for an infinitely
repeated game.

10.2.1 Payoffs

Let G be the stage-game, and denote by G(δ) the infinitely repeated game with
discount factor δ. The natural extension of the present-value concept that we used
in the previous chapter is given by the following:

Definition 10.2 Given the discount factor 0 < δ < 1, the present value of an infinite
sequence of payoffs {vt

i}∞t=1 for player i is

vi = v1
i
+ δv2

i
+ δ2v3

i
+ . . . + δt−1vt

i
+ . . . =

∞∑
t=1

δt−1vt
i
.

Notice that unlike the case of a finitely repeated game (or finite multistage game)
we must have a discount factor that is less than 1 for this expression to be well defined.
This follows because for δ = 1 this sum may not be well defined if it approaches
infinity. If the payoffs vt

i are bounded, that is, all stage payoffs vt
i are less than some

(potentially large) number, then with a discount factor δ < 1this sum is a well-defined
bounded number.3

As we argued in Section 2.4.2, discounting future payoffs is a natural economic
assumption for a sequence of payoffs that are received over time. The question is
whether it is reasonable to assume that players will engage in an infinite sequence of
play. Intuitively a sensible answer is that they won’t. We can, however, motivate this
idea by interpreting discounting as a response to an uncertain future.

Imagine that the players are playing a given stage-game today and with some
probability δ < 1 they will play the game again tomorrow. With probability 1 − δ,
however, their relationship ends for some exogenous reason and the players will no
longer interact with each other. If the relationship continues for one more day then
again, with probability δ < 1, they will continue for another period, and so on.

3. To see this, assume that there exists some bound b > 0 such that vt
i
< b for all t . First observe that

vi = ∑∞
t=1 δt−1vt

i
<

∑∞
t=1 δt−1b. We are left to show that B = ∑∞

t=1 δt−1b is finite. Notice that

B(1 − δ) =
∞∑
t=1

δt−1b − δ

∞∑
t=1

δt−1b =
∞∑
t=1

δt−1b −
∞∑
t=1

δtb

= b +
∞∑
t=1

δtb −
∞∑
t=1

δtb = b,

which in turn implies that B = b
1−δ

< ∞ for any 0 < δ < 1.
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Now imagine that in the event these players continue playing the game, the payoffs
of player i are given by the sequence {vi

t
}∞
t=1. If there is no additional discounting,4

we can think of the expected payoff from this sequence as

Ev = v1
i
+ δv2

i
+ (1 − δ) × 0 + δ2v3

i
+ δ(1 − δ) × 0 + δ3v4

i
+ δ2(1 − δ) × 0 + . . .

=
∞∑
t=1

δt−1vt
i
.

That is, we can think of the present value from the sequence of payoffs as the expected
value from playing this stochastic sequence of stage-games. There is something
appealing about the interpretation of δ < 1 as the probability that the players continue
their ongoing relationship for one more period. In particular we can ask a simple
question: what is the probability that the players will play this game infinitely many
times? The answer is clearly δ∞ = 0! What makes this interesting is that the game
will end in finite time with probability 1, but the potential future is always present at
any given period.

To drive the point home, consider a very high probability of continuation, say
δ = 0.97. The probability of playing for at least 100 periods is 0.97100 = 0.0475, and
the probability of playing for at least 500 periods is 0.97500 = 2.4315 × 10−7, which
is less than one in four million! Nonetheless, as we will soon see, even though the
likelihood that players play for so long is infinitesimally small, this structure will
give the players a lot of leverage. In summary, we need not literally imagine that
these players will play infinitely many games, but merely that they will have a chance
to continue the play after every stage is over.

Before continuing with our analysis of equilibrium behavior in infinitely repeated
games, it is useful to introduce the following definition:

Definition 10.3 Given δ < 1, the average payoff of an infinite sequence of payoffs
{vt

i}∞t=1 is

vi = (1 − δ)

∞∑
t=1

δt−1vt
i
.

That is, the average payoff from a sequence is a normalization of the net present
value: we are scaling down the net present value by a factor of 1− δ. This is convenient
because of the following mathematical property. Consider a player who receives a
finite sequence of fixed payments v in each period t ∈ {1, 2, . . . , T }. His net present
value is then the sum

s(v, δ, T ) = v + δv + δ2v + . . . + δT −2v + δT −1v. (10.1)

4. If there were discounting in addition to an uncertain future, then let δ < 1 be the probability of
continuation, and let ρ < 1 be the discount factor. Then the effective discount factor would just be
δρ, and the expected discounted payoff would be given by

Ev = v1
i
+ δρv2

i
+ (1 − δ) . 0 + (δρ)2v3

i
+ δ(1 − δ) . 0 + (δρ)3v4

i
+ δ2(1 − δ) . 0 + . . .

=
∞∑
t=1

(δρ)t−1vt
i
.
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Consider this sum multiplied by δ, that is,

δs(v, δ, T ) = δv + δ2v + δ3v + . . . + δT −1v + δT v, (10.2)

and notice that from (10.1) and (10.2) we obtain that s(v, δ) − δs(v, δ) = v − δT v,
implying that

s(v, δ, T ) = v − δT v

1 − δ
.

Now if we take the limit of this expression when T goes to infinity (the game is
infinitely repeated) then we get

s(v, δ) = lim
T →∞ s(v, δ, T ) = v

1 − δ
.

How does this relate to the average payoff? If we look at the net present value of a
stream of fixed payoffs v, then by definition the average payoff is

v = (1 − δ)s(v, δ) = (1 − δ)
v

1 − δ
= v.

That is, the average payoff of an infinite fixed sequence of some value v is itself
equal to v. As we will soon see, using average payoffs will help simplify the analysis
of subgame-perfect equilibria in infinitely repeated games. This approach will also
help us identify the set of payoffs that can be supported by strategies that form a
subgame-perfect equilibrium of a repeated game.

10.2.2 Strategies

Consider the extensive-form representation of an infinitely repeated game. In partic-
ular imagine a tree with a root, from which it continues to expand both in “length”—
because of the added stages—and in “width”—because more and more information
sets are created after each period. Because the stage-game is repeated infinitely many
times, there will be an infinite number of information sets! Because a player’s strategy
is a complete contingent plan that specifies what the player will do in each informa-
tion set, it may seem that defining strategies for players in an infinitely repeated game
will be quite cumbersome, if not outright impossible.

It turns out that there is a convenient and rather natural way to describe strategies
in this setup. Notice that every information set of each player is identified by a unique
path of play or history that was played in the previous sequences. We already hinted at
this fact when we discussed multistage games in the previous chapter. For example,
if we consider the infinitely repeated Prisoner’s Dilemma, then in the fourth stage
each player has 64 information sets.5 Each of these 64 information sets corresponds
to a unique path of play, or history, in the first three stages. For example, the players
playing (M, m) in each of the three previous stages is one such history. Any other
combination of three consecutive plays will be identified with a different and unique
history.

5. Because the stage-game has four distinct outcomes, after three repetitions of the stage-game there
will be 43 = 64 distinct outcomes, or histories.
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This observation implies that there is a one-to-one relationship between informa-
tion sets and histories of play. Because of this relationship, from now on we use the
word “history” to describe a particular sequence of action profiles that the players
have chosen up until the stage that is under consideration (for which past play is in-
deed the history). To make things precise, we define histories, and history-contingent
strategies, as follows:

Definition 10.4 Consider an infinitely repeated game. Let Ht denote the set of all
possible histories of length t , ht ∈ Ht , and let H = ∪∞

t=1Ht be the set of all possible
histories (the union over t of all the sets Ht). A pure strategy for player i is a mapping
si : H → Si that maps histories into actions of the stage-game. Similarly a behavioral
strategy of player i, σi : H → �Si maps histories into stochastic choices of actions
in each stage.

The interpretation of a strategy is basically the same as what we had used for
multistage games, which was demonstrated by the Prisoner-Revenge Game that
we analyzed in the last chapter (see Figure 9.1). Because every information set is
identified with a unique history, this is a complete definition of a strategy that is fairly
intuitive to perceive.

10.3 Subgame-Perfect Equilibria

Now that we have identified a precise and concise way of describing strategies for the
players in an infinitely repeated game, it is straightforward to define a subgame-perfect
equilibrium:

Definition 10.5 A profile of pure strategies (s∗
1(.), s∗

2(.), . . . , s∗
n
(.)), si : H → Si for

all i ∈ N, is a subgame-perfect equilibrium if the restriction of (s∗
1(.), s∗

2(.), . . . ,

s∗
n
(.)) is a Nash equilibrium in every subgame. That is, for any history of the game

ht , the continuation play dictated by (s∗
1(.), s∗

2(.), . . . , s∗
n
(.)) is a Nash equilibrium.

(Similarly for behavioral strategies (σ ∗
1 (.), σ ∗

2 (.), . . . , σ ∗
n
(.)).)

As with the case of strategies, this may at first seem like an impossible concept
to implement. How could we check that a profile of strategies is a Nash equilibrium
for any history, especially because each strategy is a mapping that works on any one
of the infinitely many histories? As it turns out, one familiar result will be a useful
benchmark:

Proposition 10.2 Let G(δ) be an infinitely repeated game, and let (σ ∗
1 , σ ∗

2 , . . . , σ ∗
n
)

be a (static) Nash equilibrium strategy profile of the stage-game G. Define the
repeated-game strategy for each player i to be the history-independent Nash strategy,
σ ∗

i
(h) = σ ∗

i
for all h ∈ H . Then (σ ∗

1 (h), . . . , σ ∗
n
(h)) is a subgame-perfect equilibrium

in the repeated game for any δ < 1.

The proof is quite easy and basically mimics the ideas of the proof of proposition
9.1 for finite multistage games. If player i believes that his opponents’ behavior is
independent of the history of the game then there can be no role for considering how
current play affects future play. As a consequence, if he believes that his opponents’
current play coincides with their play in the static Nash equilibrium of the stage-game,
then by the definition of a Nash equilibrium his best response must be to choose his
part of the Nash equilibrium.
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This proposition demonstrates that for the infinitely repeated Prisoner’s Dilemma
playing fink unconditionally in every period by each player is a subgame-perfect
equilibrium. The more interesting question that remains is whether or not we can
support other types of behavior as part of a subgame-perfect equilibrium. In particular
can the players choose mum for a significant period of time in equilibrium? The
answer is yes, and in many ways the intuition rests on arguments that are similar
to those underlying the reward-and-punishment strategies we saw in the Prisoner-
Revenge Game analyzed in the previous chapter, but much more subtle.

Before discussing some general results, we start with an example of the infinitely
repeated Prisoner’s Dilemma with discount factor δ < 1, in which the following stage-
game is infinitely repeated:

Player 2
m f

Player 1
M 4, 4 −1, 5

F 5, −1 1, 1

Consider the path of play in which the two players choose (M, m) in every
period. Following this path the players’ average payoffs as defined in definition 10.3
are (v1, v2) = (4, 4). We now ask whether this path of play can be supported as a
subgame-perfect equilibrium. Clearly the history-independent strategies of “play M

(or m) regardless of the history” cannot be a subgame-perfect equilibrium for a simple
reason: following a deviation of any player from mum to fink at any stage, the other
player’s strategy suggests that he is committed to continue to play mum, making the
deviation profitable. This implies that if we can support (M, m) in each and every
period then we need to find some way to “punish” deviations.

The Prisoner-Revenge Game that we analyzed in the previous chapter hints at
what we need to support any “good” behavior as a subgame-perfect equilibrium. First
we need a “carrot” continuation equilibrium to reward good behavior and a “stick”
continuation equilibrium to punish bad behavior. Second we need a high enough
discount factor for the reward-and-punishment strategies to be effective.

An obvious candidate for a “stick” continuation equilibrium is the unconditional
repeated play of the (F, f ) static Nash equilibrium, which results in the players re-
ceiving an average payoff (v1, v2) = (1, 1). What then can be the “carrot” continuation
equilibrium? This is where things get interesting, and in a very ingenious way. Recall
that we are trying to support the play (M, m) in every period as a subgame-perfect
equilibrium. If we can indeed do this, it means that playing (M, m) forever would be a
consequence of some subgame-perfect equilibrium with appropriately defined strate-
gies. But if this is true then we have our answer: the subgame-perfect equilibrium that
implies the play of (M, m) forever will be the “carrot” continuation equilibrium that
supports itself.

Now this may at first come across as a circular argument: the reason that playing
(M, m) forever can be a subgame-perfect equilibrium is that it can be supported
as a subgame-perfect equilibrium! Indeed this is a circular argument, but it is not
inconsistent. It is for this reason that an equilibrium of this nature is often called a
bootstrap equilibrium, in that we are using the proposed equilibrium to support itself.
This argument is consistent precisely because any infinitely repeated game has the
same set of possible future plays at any stage of the game. It is this observation that
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makes the analysis manageable and offers us the ability to use this circular logic in a
consistent way.

To see how this works consider the Prisoner’s Dilemma previously described. As-
suming that playing (M, m) in every future period can be the reward, or “carrot”
continuation equilibrium, we need to determine whether playing (F, f ) uncondition-
ally forever can be a sufficient “stick.” To do this consider the following strategies for
each player:

Player 1: In the first stage play s1
1 = M . For any stage t > 1, play st

1(ht−1) = M

if and only if the history ht−1 is a sequence that consists only of (M, m),

that is, ht−1 = {(M, m), (M, m), . . . , (M, m)}. Otherwise, if some player
ever played fink and ht−1 = {(M, m), (M, m), . . . , (M, m)} then play
st

1(ht−1) = F .

Player 2: Play the mirror strategy to player 1: s1
2 = m. For any stage t > 1, play

st
2(ht−1) = m if and only if ht−1 = {(M, m), (M, m), . . . , (M, m)}, while if

ht−1 = {(M, m), (M, m), . . . , (M, m)} then play st
2(ht−1) = f .

Before checking if this pair of strategies is a subgame-perfect equilibrium, it is
worth making sure that they are well defined. We have to define the players’ actions
for any history, and we have done this as follows: in the first stage they both intend to
be “good” and play mum. Then at any later stage they look back at history and ask:
was there ever a deviation in any previous stage from always playing mum? If the
answer is no, meaning that both players always cooperated and played mum, then in
the next stage each player chooses mum. If, however, there was any deviation from
cooperation in the past, be it once or more than once, be it by one player or both,
the players will revert to playing fink, and by the definition of the strategies they will
stick to fink thereafter.

These strategies are commonly referred to as grim-trigger strategies because
they include a natural trigger: once someone deviates from mum, this is the trigger
that causes the players to revert their behavior to fink forever, resulting in a very
grim future. More generally the idea behind grim-trigger strategies is as follows.
If the stage-game has a Nash equilibrium, and we are trying to support subgame-
perfect equilibrium behavior that results in outcomes that are better than any Nash
equilibrium, we use the established subgame-perfect equilibrium of playing the grim
static Nash outcome forever to support the more desirable outcomes that are not
supported by static best responses being played. Hence we use the grim trigger to
provide incentives for the players to stick to behavior for which short-run temptations
to deviate are present.

To verify that the grim-trigger strategy pair is a subgame-perfect equilibrium we
need to check that there is no profitable deviation in any subgame. This may seem
like an impossible mission because we have an infinite number of subgames. As with
multistage games, however, it is not that tedious thanks to the power of the one-
stage deviation principle introduced in Section 9.5. Indeed the following powerful
proposition is extremely useful:

Proposition 10.3 In an infinitely repeated game G(δ) a profile of strategies σ ∗ =
(σ ∗

1 , . . . , σ ∗
n
) is a subgame-perfect equilibrium if and only if there is no player i and

no single history ht−1 for which player i would gain from deviating from si(ht−1).
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The idea of the proof, which is omitted, closely follows that of theorem 9.1.6 The
one-stage deviation principle implies that in order to confirm that a profile of strategies
is a subgame-perfect equilibrium, we need only to check that no player has a single
history from which he would want to deviate unilaterally. Applying this to our repeated
Prisoner’s Dilemma may not seem helpful because there are still an infinite number
of histories. Nonetheless the task is not a hard one because even though there are an
infinite number of histories, they fall into one of two relevant categories: either there
was no deviation and the players intend to play (M, m) or there was some previous
deviation and the players intend to play (F, f ). These two categories of histories
are common to any application of grim-trigger strategies in repeated games, which
makes them relatively easy to check as part of a subgame-perfect equilibrium. That
is, whenever we are trying to support one kind of behavior forever with the threat of
resorting to another kind of behavior, we have two “states” in which the players can
be, and we need only to check that they would not want to deviate from each of these
two states.

Consider first the category of histories that are not consecutive sequences of only
(M, m), implying that play ought to be the grim Nash equilibrium of the stage-game.
Notice that these histories are off the equilibrium path because following the proposed
strategies would result in (M, m) being played forever. Thus in any subgame that is off
the equilibrium path, the proposed strategies recommend that the players play (F, f )

in this period, and in any subsequent period, because a deviation from (M, m) has
occurred sometime in the past. Clearly if this is the case then no player would want to
choose mum instead of fink because, given his belief that his opponent will play fink,
such a deviation from fink to mum will cause him a loss of −2 at this stage (getting
−1 instead of 1), together with no gains in subsequent stages because the previous
deviation will keep the players on the grim-trigger Nash equilibrium path. Thus in
any subgame that is off the equilibrium path no player would ever want to deviate
unilaterally from fink to mum.

Now consider the other category of histories that are consecutive sequences of
(M, m), which are all the histories that are on the equilibrium path.If a player chooses
to play mum, his current payoff is 4, and his continuation payoff from the pair of
strategies is an infinite sequence of 4s starting in the next period. Therefore his payoff
from following the strategy and not deviating will be

v∗
i

= 4 + δ4 + δ24 + . . . = 4 + δ
4

1 − δ
.

The division of the player’s payoff into today’s payoff of 4 and the continuation payoff
from following his strategy of δ 4

1−δ
is useful. It recognizes the idea that a player’s

actions have two effects: The first is the direct effect on his immediate payoffs today;

6. Here we cannot assert that there is a finite number of deviations that improves upon σi . Instead the
discounting of payoffs implies a useful notion of continuity of the payoffs from paths of play that
are “close” in that they coincide over many information sets. In particular if some deviation from
σi to σ ′

i
at ht

i
improves upon σi , then there is a strategy σ ′′

i
that is identical to σ ′

i
for n < ∞ stages

after hi and identical to σi everywhere else, and σ ′′
i

must improve upon σi . Then, since n < ∞, we
can use an induction argument similar to that for theorem 9.1. For a proof see Fudenberg and Tirole
(1991), theorem 4.2.
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the second is the indirect effect on his continuation equilibrium payoff, which results
from the way in which the equilibrium continues to unfold.

If the player deviates from mum and chooses fink instead, then he gets 5 instead of
4 in the immediate stage of deviation, followed by his continuation payoff, which is
an infinite sequence of 1s. Indeed we had already established that in the continuation
game following a deviation off the equilibrium path, every player will stick to playing
fink because his opponent is expected to do so forever. Therefore his payoff from
deviating from the proposed strategy will be

v′
i
= 5 + δ1 + δ21 + . . . = 5 + δ

1

1 − δ
.

Thus we can easily see that the trade-off between sticking to the proposed strategy
and deviating boils down to a simple comparison. A deviation will yield an immediate
gain of 1 because the player gets 5 instead of 4 in the deviation stage, which needs
to be weighed against the loss in continuation payoffs, which will drop from δ 4

1−δ
to

δ 1
1−δ

. We conclude that the player will not want to deviate if v∗
i

≥ v′
i
, or

4 + δ
4

1 − δ
≥ 5 + δ

1

1 − δ
, (10.3)

which is equivalent to

δ ≥ 1
4 .

Once again, as with multistage games, we see the value of patience. If the players
are sufficiently patient, so that the future carries a fair amount of weight in their
preferences, then there is a reward-and-punishment strategy that will allow them to
cooperate forever. The loss in continuation payoffs will more than offset the gains
from immediate defection, and this will keep the players on the cooperative path of
play.

Using the probabilistic interpretation of δ, these strategies will credibly allow the
players to cooperate as long as the game is likely enough to be played again. It is
reminiscent of the saying “what goes around comes around”: to the extent that the
players are likely to meet again, good behavior can be rewarded and bad behavior
can be punished. If the future does not offer that possibility, there can be no credible
commitment to cooperation.

To relate the current analysis to the analysis of the two-period multistage Prisoner-
Revenge Game in Chapter 9, think of the repeated game as having two stages: “today,”
which is the current stage, and “tomorrow,” which is the infinite sequence of play after
this stage is over. In a two-period multistage game we determined that there are two
necessary conditions that are required to support non-Nash behavior in the first stage:
First, we need to have multiple equilibria in the second stage, and second, we need
the players to be sufficiently patient. Clearly the inequality δ ≥ 1

4 is the “sufficient
patience” condition. The question is, where are the multiple equilibria coming from?
This is where the infinite repetition creates “magic” through bootstrapping: from the
unique equilibrium of the stage-game we get multiple equilibria of the repeated game.
This so-called magic is so strong that many types of behavior can be supported as
subgame-perfect equilibria, as Section 10.6 demonstrates.
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10.4 Application: Tacit Collusion

One of the most celebrated applications of repeated-game equilibria with reward-
and-punishment strategies has been to the study of tacit collusion among firms.
Most developed countries forbid firms from entering into explicit contracts to restrict
competition. In the United States section 1 of the Sherman Antitrust Act of 1890
proclaims as illegal any “conspiracies in restraint of trade,” including such contracts
to fix prices. However, even if there have been no actual meetings or discussions
between competitors, can we be certain that they are not setting prices through some
implicit understanding or agreement?

The use of repeated-game strategies can come in handy for firms, which through
their beliefs about collusion-supporting strategies can support anticompetitive behav-
ior without ever discussing it or reaching explicit agreements. Instead they employ
implicit or tacit collusion. To demonstrate this point consider the Cournot duopoly
problem in which each of the two firms has costs of production equal to ci(qi) = 10qi

and demand is given by p = 100 − q, and imagine that this market game is played
repeatedly in periods t = 1, 2, . . . with some discount factor δ ∈ (0, 1).

In Section 5.2.3 we solved for the Nash-Cournot equilibrium of the stage-game in
which q∗

1 = q∗
2 = 30, the resulting equilibrium marker price was p = 40, and profits

for each firm were v∗
i
= 900. We also concluded that the sum of the Cournot profits is

less than that of the monopoly profits. Indeed if the firms each produced q1 = q2 = 22.5
then each firm would earn profits equal to vi = (100 − 45) × 22.5 − 10 × 22.5 =
1012.5, which is half the monopoly profits. If the firms could write a binding contract
that restricted production for the stage-game to qi = 22.5 then they would do so
in order to improve profits. We now proceed to see how reward-and-punishment
strategies similar to those previously proposed for the repeated Prisoner’s Dilemma
will allow our firms to coordinate on monopoly profits in a self-enforcing subgame-
perfect equilibrium, without the need to use binding contracts that violate such
regulations as the Sherman Act.

First, we have to decide how the firms will cooperate to split the monopoly profits,
which will be determined by a pair of quantities qc

1 and qc
2. We know that to achieve

monopoly profits we must have qc
1 + qc

2 = 45, resulting in a price of p = 55. To
make this example more interesting, consider a split given by the quantities qc

1 = 22
and qc

2 = 23, which is of course not symmetric. The implied stage-game profits are
vc

1 = (55 − 10) × 22 = 990 and vc
2 = (55 − 10) × 23 = 1035.

Second, following the logic of the infinitely repeated Prisoner’s Dilemma example,
we know what the general form of the firms’ strategies ought to be. Each firm i will
play qc

i in the first period. Then in every period t > 1 each firm will play qc
i if the

sequence of previous plays included only the pairs (qc
1, qc

2) and will instead play the
grim-trigger static Nash equilibrium q∗

i
= 30 if any other history occurred.

Third, we need to check that no firm wants to deviate from the proposed strategies.
Again it is useful to recognize that there are two classes of histories: those that are
on the equilibrium path, following sequences of (qc

1, qc
2), and those that are off the

equilibrium path, which follow any other sequence of quantities. Thus, using the one-
stage deviation principle, it suffices to check that, both on and off the equilibrium path,
no player wants to deviate from his proposed subgame-perfect equilibrium strategy.

It is easy to see that no player would want to deviate from the proposed behavior off
the equilibrium path. The reason is that at any stage off the equilibrium path player i

expects player j to play q∗
j

= 30, and q∗
i

= 30 is a best response to this choice. As a
consequence deviating in any off-the-equilibrium path history at any stage will cause
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an immediate loss, with no scope for future gain because once the grim-trigger strategy
is triggered, it is history independent. Thus for any value of δ there is no temptation
for deviations off the equilibrium path.

Now we check to see that no firm wants to deviate on the equilibrium path. Recall
that on the equilibrium path each firm chooses qc

i and gets a per-period (and average)
payoff of vc

i . Notice that in each stage no one of the two firms is playing a static best
response. To see this, recall the best-response function derived in Section 5.2.3,

BRi(qj) = 90 − qj

2
. (10.4)

From (10.4) we can see that firm 1’s best response to qc
2 = 23 is BR1(23) = 33.5 and

firm 2’s best response to qc
1 = 22 is BR2(22) = 34. Hence each firm i can gain in any

given period by deviating from qc
i , at the cost of losing the future stream of cooperative

outcomes and resorting to the Nash-Cournot equilibrium forever after.
Furthermore we know that the most tempting deviation for each firm i in the stage-

game is indeed to choose its static best response, which we denote as qd
i = BRi(q

c
j ).

From the previous calculations, for firm 1 we have qd
1 = 33.5 and qd

2 = 34. This gives
the deviating firm a one-stage deviation payoff of

vd
i

= (100 − qd
i

− qc
j
)qd

i
− 10qd

i
,

which for firm 1 is vd
1 = (100 − 33.5 − 23) × 33.5 − 10 × 33.5 = 1122.25 and for

firm 2 is vd
2 = (100 − 23 − 34) × 34 − 10 × 34 = 1122.

We can now check the condition for a firm to prefer not to deviate from the
proposed equilibrium path derived from the subgame-perfect equilibrium strategies.
The stage-game payoff on the equilibrium path was denoted by vc

i , the payoff from
the best deviation is vd

i , and the payoff from the Nash-Cournot outcome is v∗
i
. Hence,

similar to inequality (10.3) for the repeated Prisoner’s Dilemma example, firm i will
not want to deviate if the following inequality is satisfied:

vc
i︸︷︷︸

Current payoff
from cooperate

+ δvc
i

1 − δ︸ ︷︷ ︸
Future payoff
if cooperate

≥ vd
i︸︷︷︸

Current payoff
from best defect

+ δv∗
i

1 − δ︸ ︷︷ ︸
Future payoff

if defect

,

which, after some algebra, is equivalent to

δ ≥ vd
i − vc

i

vd
i − v∗

i

. (10.5)

We proceed by calculating a “cutoff” discount factor for each firm by plugging
the stage-game payoffs just calculated into (10.5) for each of the two firms. This
calculation will result in a value of δi for each firm that is the lowest possible discount
factor for which the firm will not be tempted to deviate from the equilibrium path. In
particular,

δ1 ≥ 1122.25 − 990

1122.25 − 900
= 0.595 and δ2 ≥ 1122 − 1035

1122 − 900
= 0.392,

which nicely reflects the temptations to deviate. Firm 1 gains more from deviating in
any period than does firm 2, and firm 1 has less to lose from the drop in the continuation
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payoffs than does firm 2. For this reason firm 1 has to value the future more than firm
2, and hence has to have a higher discount factor for this pair of strategies to be a
self-enforcing subgame-perfect equilibrium.

Two points are worth making before we conclude this section. First, if the two firms
somehow manage to share these beliefs, and never talk about any agreement, then they
can circumvent the anticompetitive rules and regulations. One may be skeptical that
such beliefs can converge so nicely without any communication between the firms.
When rules against collusion and anticompetitive behavior do not apply, however, as
in the case of OPEC, then in lieu of an enforceable contract the firms will indeed be
able to resort to these kinds of reward-and-punishment strategies.

Second, and perhaps more intriguing, we know from history that even when such
collusive agreements are in place there are occasional price wars between the firms,
in which collusive behavior fails for some amount of time and is later restored.7 Our
analysis suggests that price wars are instances of off-the-equilibrium-path behavior
and hence are puzzling when they do occur. That is, if the collusive behavior is
sustainable as a subgame-perfect equilibrium then no firm would want to deviate
at any stage on the equilibrium path. Why then would the firms engage in a price
war? One explanation may be that they cannot easily detect deviations because, for
example, actual produced quantities are not readily observable.

To demonstrate the idea behind this argument, consider the case of OPEC, a
cartel that really does manipulate prices through the quantities that are produced (à
la Cournot). Arguably it is prohibitively difficult to observe the quantities produced
by each country (each “firm”), which in turn implies that using trigger strategies is
problematic. Indeed if the players cannot observe the choices made by other players
then how will they know if they should move from the “carrot” equilibrium to the
“stick” equilibrium?

A clever observer will make the following argument: In the repeated Cournot
model we do not have to observe quantities—as long as no firm deviates, the market
price will remain fixed (at p = 45 in the example previously solved). If the price
suddenly falls, it is immediately apparent that someone deviated from the proposed
quantities, and the grim-trigger strategy results in a price war.

Such an observation is clever indeed, but it fails in the potential instance of random
prices. In the market for oil, for example, the price is determined by supply (quantity
produced) and demand. In the real world, however, demand is not constant as in our
simplistic example. In some weeks there is a greater need for energy (say, in colder
weeks when homes need heating) and in others the need is less. As a consequence
prices will no longer be “clean” indicators of deviations by firms. Instead they can
act only as “noisy” signals that imply either a reduction in demand or a deviation in
quantities by some player. This in turn implies that players will be tempted to deviate
and offer the excuse “I didn’t deviate; demand must have been low!” So it turns out
that occasional price wars are an inherent reality of trying to collude when detection
is not perfect.

This interesting idea was first put forth in a seminal paper by Green and Porter
(1984), which led to a large literature aimed at analyzing repeated games with imper-
fect monitoring. In such games players cannot perfectly monitor the behavior of other
players, and as a consequence they must rely on signals that are not perfect indicators

7. In the repeated Cournot model this is a “quantity war” that causes a reduction in prices. You are
asked to perform a similar analysis for the repeated Bertrand game in exercise 10.8 at the end of this
chapter.
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of the behavior of those players. This literature is extremely technical and is beyond
the scope of this textbook. The interested (and suitably trained) reader should consult
Mailath and Samuelson (2006, parts 2 and 3) for a deep dive into these technically
challenging topics.

10.5 Sequential Interaction and Reputation

In the infinitely repeated Prisoner’s Dilemma or the infinitely repeated Cournot game,
players were able to use their ongoing relationship to support cooperative behavior
that was not self-enforcing in the short run because of the temptation to deviate from it.
In both examples two critical elements were required: that there be no predetermined
terminal period and that the discount factor not be too small. As we have seen, if there
is a terminal period then it is impossible to provide incentives to cooperate at the end of
the game and, predicting this, the players will resort to noncooperative self-enforcing
behavior. Similarly if the discount factor is too small then the incentives provided by
the game’s ongoing continuation are not strong enough to overcome the temptation
to deviate from the cooperative path of play.

10.5.1 Cooperation as Reputation

One interpretation that has been used to describe the ability to create long-term
incentives to overcome short-term temptations is that players in a repeated relationship
can create a reputation to cooperate with each other. As long as a player maintains
his reputation of being cooperative, other players will trust him and respond in kind.
If a player fails to be cooperative at any stage then he will lose his goodwill and the
players will move to a noncooperative phase of their engagement (e.g., using grim-
trigger strategies such as those described in Section 10.3). Such reputational concerns
may be dampened—or disappear altogether—when there is no future or when the
future is not important enough.

Let’s examine another game in which reputational incentives can facilitate better
outcomes than those possible in a one-shot or finitely repeated setting. Recall the
“trust game” that we introduced in Section 7.1.1. Player 1 first chooses whether to
ask for the services of player 2. He can trust player 2 (T ) or not trust him (N ). If player
1 plays T , then player 2 can choose to cooperate (C), which represents offering player
2 some fair level of service, or he can defect (D), which is better for player 2 at the
expense of player 1. The players prefer engaging in a cooperative exchange over not
interacting at all (no trust), but the temptations to deviate make that impossible. As
mentioned earlier, this game captures many real-life exchanges in which one party
must trust another in order to achieve some gains from trade, but the second party can
abuse that trust. The game is depicted in Figure 10.1.

If this one-shot game is repeated infinitely often with a discount factor of δ

then we can create incentives that support cooperative behavior in ways similar to
those demonstrated earlier for the infinitely repeated Prisoner’s Dilemma game.8 For
instance, we can prescribe grim-trigger strategies of the following kind: Player 1’s

8. Notice that this one-shot game is not a simultaneous-move game, yet we defined repeated games
as repetitions of a normal-form game. Of course every extensive-form game can be represented by
a normal form, so this can be done without any modifications to what we have already defined.
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FIGURE 10.1 The one-shot trust game.

will be “In period 1 I will trust player 2, and as long as there were no deviations from
the pair (T, C) in any period then I will continue to trust him. Once such a deviation
occurs then I will not trust him forever after.” Similarly player 2’s strategy will be “In
period 1 I will cooperate, and as long as there were no deviations from the pair (T, C)

in any period then I will continue to do so. Once such a deviation occurs then I will
deviate forever after.”9

These two strategies will form a subgame-perfect equilibrium if no player wants to
deviate at any stage. Using the one-stage deviation principle, it is first easy to see that
no player wants to deviate off the equilibrium path: the strategies prescribe that player
2 will deviate so player 1 should indeed not trust, and they prescribe that player 1 will
never trust again, so player 2, if found off the equilibrium path, should deviate. On
the equilibrium path it is easy to see that player 1 is playing a best response because
the stream of payoffs of 1 is better than the stream of payoffs of 0. Player 2 will prefer
to stick to the equilibrium path if and only if the infinite stream of a payoff of 1 is
better than deviating to get 2 today and 0 thereafter, that is,

1

1 − δ
≥ 2

or

δ ≥ 1
2 .

This example illustrates again the power of continued relationships. If the two
players play the game only once, we know that player 2 will not be able to commit to
cooperate, and anticipating player 2’s defection, player 1 will not trust player 2 at all.

10.5.2 Third-Party Institutions as Reputation Mechanisms

When we consider the trust game, or similar games, an important question arises:
can we find a way to provide incentives to player 2 that extend beyond the terminal
period of a one-shot interaction? One way to proceed is to use a third player who acts

9. Notice that I did not specify player 2’s strategy in the following way: “As long as player 1 trusts
me I will cooperate.” The reason is that combining this strategy with player 1’s proposed strategy is a
Nash equilibrium, but it is not subgame-perfect. The problem is that some off-the-equilibrium-path
prescriptions are not best responses. Showing this is left as exercise 10.4.
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FIGURE 10.2 Trust game with a bond option.

as a guarantor, or enforcement institution. Imagine that player 2 deposits a payment
equivalent to 2 in the hands of the guarantor, player 3, with the following contract: “If
player 1 trusts me and I defect then you keep the payoff of 2 that I deposited in your
hands. In any other circumstance you return it to me.” Assume for the moment that
player 3 must follow the contract and has no discretion of his own. This effectively
modifies the game to a new game, described in Figure 10.2, and gives player 2 the
option to post a “performance bond” in the hands of player 3 that guarantees the right
incentives to cooperate for player 2. To see this, we can apply backward induction
to this modified game (marked in the figure by the dotted arrow lines). In the unique
subgame-perfect equilibrium, player 2 chooses to use the guarantor and player 1 then
rationally anticipates that player 2 will cooperate, which indeed happens.

Of course two questions arise. First, why would such a committed guarantor exist
in the first place? This modifies the nature of the trust game, and one might argue
that, more often than not, such a guarantor does not exist. Second, if the guarantor is
really to be thought of as a third player, then we should give him the option to choose
whether or not to return the money to player 2 after player 2 cooperates. If we add
the guarantor as player 3 instead of the terminal nodes at the left side of the tree in
Figure 10.2, then it is obvious that player 3 has a dominant strategy: don’t return the
money to player 2!

Now consider the following situation. Imagine that player 3 is some local official
such as a judge or arbitrator, who can provide his services in every period t = 1, 2, . . .

and uses a discount factor δ < 1to evaluate future payoffs. In every period t a new pair
of players P t

1 and P t
2 arrive in the jurisdiction of the judge, each pair playing a one-

shot trust game with no future interaction. Player P t
2 can choose to post a bond equal

to 2 with player 3, as described in Figure 10.2, but must pay him a fee of w = 0.1
for his services. Alternatively he can choose not to use player 3’s services.

Can we support an equilibrium in which every pair of players P t
1 and P t

2 chooses to
use player 3’s services and successfully engages in cooperative trade in every period,
despite not having their own mutual future trades on which to rely? Interestingly the
answer is yes. Consider the following strategies for the players of this game:

Player P t
1: If player P t

2 posted a bond with player 3 then trust him, and otherwise
don’t.
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Player P t
2: Bond posting: In period t = 1 post a bond with player 3. In periods

t > 1, if player 3 followed the bond contract in all periods before period t

then post a bond with player 3, and otherwise don’t.
Response to P t

1: If a bond was posted in period t then choose to cooperate
with P t

1, and otherwise choose to defect.

Player 3: If player P t
2 posts a bond in period T and pays the wage then return the

bond to player P t
2 if he cooperated, and otherwise don’t return the bond. (This

is the bond contract.)

To confirm that this is a subgame-perfect equilibrium, we need to check that
players are playing a best response on and off the equilibrium path, regardless of
the history. Starting with the equilibrium path, it is easy to see that players P t

1 and P t
2

are playing a best response. Effectively, given the prescribed strategy of player 3, then
in every period players P t

1 and P t
2 are exactly playing the game depicted in Figure

10.2 (with the small change that instead of receiving a payoff of 1from cooperating on
the equilibrium path, player 2 receives 0.9 because of the wage he pays to player 3).
Now consider player 3. If he follows his proposed strategy then he is guaranteed an
infinite stream of payoffs of w = 0.1 per period. If he defects in any period t then
he will get 2 in that period, and 0 forever after. Hence he will follow his proposed
strategy if and only if

0.1

1 − δ
≥ 2 or δ ≥ 0.95.

Thus if the discount factor is large enough then player 3 will happily play the role of
bondholder and follow the contract as described.10

The concept that third parties can play the role of a guarantor and enforce good
trading behavior was introduced by Milgrom et al. (1990). The idea is that instead
of the players themselves trying to maintain a reputation for good behavior, a third
party—be it a judge or some other institutional player—will be able to sustain a repu-
tation for supporting the good behavior of others. Milgrom et al. use this observation to
explain the role of law merchants (player 3) in medieval Europe as institutional actors
who helped support trade among players who had no ongoing relationships of their
own. The key factor that enabled such institutions to add value is that future traders
somehow learned about the law merchant, and about his past adherence to the pre-
scribed norms of behavior. See Greif (2006) for an in-depth review of repeated-game
approaches to the role of institutions in the development of trade.

10.5.3 Reputation Transfers without Third Parties

As the previous section showed, when instead of two infinitely long-lived players
we have a sequence of short-lived (one-shot) pairs of players, then with the help of
an infinitely lived third party we can restore reputational incentives to support gains

10. Note that the bond needs only to be greater than 1 for player 2 to prefer C over D because the
gain to any P t

2 is exactly 1 from defecting. In addition, because the benefit to player 2 from following
the equilibrium strategy is 1, compared to 0 if he does not post a bond, he should be willing to pay
any fee up to 1 to player 3. In exercise 10.10 you are asked to use this fact and show that cooperative
behavior can be sustained for any positive discount factor.
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from trade. This perhaps suggests that some player, or some kind of institution, must
continue to be active forever for there to be any kind of reputational concern that
supports trade between players who themselves do not have the incentives to play
cooperatively.

Kreps (1990b) offered an interesting observation on this matter. He suggested that
reputation acquired under the name of a firm, or entity, may be separated from the
identity of the player who is operating under the firm’s name. Perhaps we don’t need
players to live for infinitely many periods; instead we need only an abstract entity
that can be passed on from one player to the next. The entity will have a value in its
own right because it carries with it the reputational concerns needed to maintain good
behavior, and guarding its value will provide valuable incentives to its owner.

As before, imagine that in every period t a new pair of players P t
1 and P t

2 are
matched to play a one-shot trust game as described in Figure 10.1, with no future
interaction. Just before the first period starts, player P 1

2 can create a unique company
or brand name—call it Trusted Associates. Assume that once he creates the brand
name player P 1

2 has the sole rights to sell that name in the future. Now consider the
following strategies:

Player P1
1: If player P 1

2 created a unique brand name then trust him, and otherwise
don’t.

Player P1
2: Choose a unique name, and cooperate with player P 1

1 . Afterwards offer
the brand name for sale to player P 2

2 at a price p∗ > 1.

Player P t
1 (t > 1): If (1) player P t

2 bought the brand name from player P t−1
2 and

(2) no abuse of trust (defection) ever occurred under that brand name then
trust him. Otherwise don’t.

Player P t
2 (t > 1): If (1) player P t−1

2 bought the brand name from player P t−2
2 at

price p∗ and (2) no abuse of trust (defection) ever occurred under that brand
name then buy the brand name from player P t−1

2 , and then cooperate with
player P t

1. Afterwards offer the brand name for sale to player P t+1
2 at price p∗.

Showing that this set of strategies is a subgame-perfect equilibrium is not difficult
and follows logic similar to that of the game in Figure 10.2. (You are asked to do this
in exercise 10.11.) The idea behind the construction of these strategies is simple and
appealing: the so-called brand name acts as a bearer of firm reputation that is passed
on from one player 2 to the next. The investment made in the name before play begins
in period t acts like a bond, and it will only be recovered if that period’s player 2 will
indeed cooperate.

The innovation laid out by Kreps (1990b) is the argument that we don’t need
a third player to intermediate the exchange of that bond, but instead can have a
firm’s good name be the bearer of its reputation. As a consequence short-lived agents
become infinitely lived in the sense that the concept of a terminal period is removed
altogether. The idea that an institution like a firm can sustain cooperative behavior
among its employees, even if these come and go over time, was developed earlier
by Cremer (1986), and the concept of using a firm’s brand value as a bond for its
performance dates back to Klein and Leffler (1981).

This repeated-game approach to a firm’s reputation does, however, leave some
questions unanswered. The most critical is that this approach does not account for
how reputations arise and become valuable assets. There is no account of how a
firm’s reputation, represented by the value of its name, may increase (or decrease)
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in value, as is commonly observed in reality.11 This is, of course, a consequence
of the nature of the “bootstrapping” equilibria in repeated games, as discussed in
Section 10.3. As the next section demonstrates, the force provided by using the future
to provide incentives for present behavior in infinitely repeated games results in a
rather disturbing outcome.

Remark The Princess Bride is a wonderfully funny film (based on a novel by
William Goldman) that includes a lot of game theoretic insights, including an un-
forgettable scene on common knowledge (regarding a poisoned cup of wine). With
respect to the value of a name, the following scene speaks directly to the insights pro-
vided by Kreps. In this scene Westley, who plays the role of the feared and ruthless
Dread Pirate Roberts, tells his true love, Buttercup, that he really is not who people
believe him to be:

Well, Roberts had grown so rich, he wanted to retire. He took me to his cabin
and he told me his secret. “I am not the Dread Pirate Roberts,” he said. “My
name is Ryan; I inherited the ship from the previous Dread Pirate Roberts,
just as you will inherit it from me. The man I inherited it from is not the real
Dread Pirate Roberts either. His name was Cummerbund. The real Roberts
has been retired fifteen years and living like a king in Patagonia.” Then he
explained the name was the important thing for inspiring the necessary fear.
You see, no one would surrender to the Dread Pirate Westley.

10.6 The Folk Theorem: Almost Anything Goes

In this section we describe, in a somewhat formal way, one of the key results from
the theory of infinitely repeated games. This insight goes to the heart of the “magic”
that we described in Section 10.3, explaining that when a stage-game with a unique
Nash equilibrium is repeated infinitely often, many outcomes can be supported by a
subgame-perfect equilibrium. We begin by introducing some necessary mathematical
concepts.

Definition 10.6 Consider two vectors v = (v1, v2, . . . , vn) and v′ = (v′
1, v′

2, . . . , v′
n
)

in R
n. We say that the vector v̂ = (̂v1, v̂2, . . . , v̂n) is a convex combination of

v and v′ if there exists some number α ∈ [0, 1] such that v̂ = αv + (1 − α)v′, or
v̂i = αvi + (1 − α)v′

i
for all i ∈ {1, . . . , n}.

To imagine this concept intuitively, consider two payoff vectors in the Prisoner’s
Dilemma, say, v = (4, 4) and v′ = (5, −1). As depicted in Figure 10.3, if a line
segment is drawn to connect between these in the plane R

2, then any point on this line
will be a convex combination of these two payoff vectors. For example, if we take
α = 0.6 then the vector v̂ = 0.6 × (4, 4) + 0.4 × (5, −1) = (4.4, 2) is on that line
segment. Another way to think of a convex combination is as a weighted average, in
which each point gets a (potentially) different weight. In this example (4.4, 2) puts a
weight of 0.6 on the vector (4, 4) and a weight of 0.4 on the vector (5, −1).

11. An alternative approach to understanding a firm’s name as a bearer of reputation, which accounts
for the way reputations fluctuate in value, is given in Tadelis (1999). Personally I find the topic of
reputations fascinating, and the interested reader can consult Bar-Isaac and Tadelis (2008) for a more
recent survey.
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4

2

–1

4

4.4 5
v1

v = (4, 4)

v′ = (5, –1)

v̂ = (4.4, 2)

FIGURE 10.3 A convex combination of two vectors.

The definition of a convex combination can be generalized as follows. Consider a
finite set of vectors V = {v1, v2, . . . , vk} in R

n. We say that v̂ = (̂v1, v̂2, . . . , v̂n) is
a convex combination of the elements in V if there exist weights (α1, . . . , αk) ∈ R

k
+,∑k

j=1 αj = 1, such that v̂ = ∑k
j=1 αjv

j . Using this concept we offer the following
definition:

Definition 10.7 Given a set of vectors V = {v1, v2, . . . , vk} in R
n, the convex hull

of V is

CoHull(V )

=
⎧⎨⎩v ∈ R

n : ∃(α1, . . . , αk) ∈ R
k
+,

k∑
j=1

αj = 1, such that v =
k∑

j=1

αjv
j

⎫⎬⎭.

That is, the convex hull of a set of k vectors includes all the vectors that can be
generated by convex combinations of the k vectors. We will apply this definition to the
set of average payoffs in a game. Recall from Section 10.2.1 that the average payoff
of an infinite stream of some value v is itself v. This implies that if we take a profile
of pure strategies s in a stage-game with n players and repeat it infinitely often then
the players’ average payoffs from the sequence of plays of s are equal to the stage-
game payoffs from s. If the strategy sets are finite then the set of payoff vectors from
pure strategies in the stage-game is finite and coincides with the set of average payoffs
from playing any one of these pure strategies infinitely often. This will be a finite set
of vectors in R

n, playing the role of Z in the definition. For example, in the Prisoner’s
Dilemma given by the matrix

Player 2
m f

Player 1
M 4, 4 −1, 5

F 5, −1 1, 1

the set of payoff vectors is V = {(4, 4), (5, −1), (−1, 5), (1, 1)}, and the convex hull
is given by the gray shaded area in Figure 10.4.
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v̄2

v̄1
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1
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1–1 4 5

FIGURE 10.4 The convex hull of average payoffs for the Prisoner’s Dilemma game.

We are ready to introduce one of the most celebrated results in the theory of
repeated games. It turns out that for a high enough discount factor then for almost any
vector v in the convex hull of the average payoffs in the repeated game it is possible
to find a strategy profile that supports it as a subgame-perfect equilibrium. To state
a version of this result formally, we call the convex hull of a game’s payoffs the set
of feasible payoffs, because each vector in the set can be achieved in the infinitely
repeated game by combinations of strategies in the stage-game. We can now state the
following result:

Theorem 10.1 (The Folk Theorem) Let G be a finite, simultaneous-move game of
complete information, let (v∗

1, . . . , v∗
n
) denote the payoffs from a Nash equilibrium

of G, and let (v1, . . . , vn) be a feasible payoff of G. If vi > v∗
i
, ∀i ∈ N , and if δ is

sufficiently close to 1, then there exists a subgame-perfect equilibrium of the infinitely
repeated game G(δ) that achieves an average payoff arbitrarily close to (v1, . . . , vn).

Legend has it that the intuition for this result was floating around in the late 1960s
and it is impossible to trace it to a single contributor; hence it is referred to as the folk
theorem.However, one of the earliest publications of such a result was by James Fried-
man (1971). This result is not too hard to prove, but it is nonetheless omitted from this
text. The interested reader can refer to Fudenberg and Tirole (1991, pp. 152–154) for
a version of the folk theorem with an appropriate proof, and a more thorough analysis
of a variety of versions of the folk theorem appears in Mailath and Samuelson (2006).

The idea behind the theorem is rather intuitive and is worth exploring. First,
consider a payoff vector (v1, . . . , vn) that is in the convex hull of the stage-game’s
payoffs and offers every player more than he can get from a Nash equilibrium of
the stage-game, which results in the payoffs (v∗

1, . . . , v∗
n
). By the definition of a

convex hull, (v1, . . . , vn) is a weighted average of some combination of payoffs that
result from pure-strategy profiles of the stage-game. Second, it turns out that when
the discount factor is close to 1, it is possible to construct a sequence of strategy
profiles that will result in average payoffs equal to (v1, . . . , vn). The intuition is
that the sequence of plays will choose different payoffs of the stage-game’s pure
strategies in a way that will imitate the weights required to achieve (v1, . . . , vn)



212 . Chapter 10 Repeated Games
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FIGURE 10.5 Constructing the folk theorem for the repeated Prisoner’s Dilemma game.

as a convex combination. Third, because this feasible payoff vector (v1, . . . , vn)

offers payoffs to each player that exceed his payoff from a Nash equilibrium of the
stage-game, this provides us with the “wedge” that is needed to create reward-and-
punishment strategies. Finally, with a high enough discount factor, we can make that
wedge sufficiently large to deter short-run gains from deviation, no matter how large
they are. This last point follows because even the biggest one-stage gain is dwarfed
by an infinite series of even small losses when the discount factor is arbitrarily close
to 1.

To see this through a simple example, take the Prisoner’s Dilemma game described
earlier and consider the average payoffs of (2, 2). We will first show that for a discount
factor δ that is close enough to 1we can get average payoffs (v1, v2) that are arbitrarily
close to (2, 2). As Figure 10.5 demonstrates, the payoff vector (2, 2) is a convex
combination of the payoffs (5, −1) and (−1, 5), each with an equal weight of 0.5.
These two pairs of payoffs are achieved with the pure strategies (F, m) and (M, f ),
respectively. Hence, loosely speaking, it seems reasonable that if somehow the players
can spend half their time playing each of these strategies then on average they should
get the payoffs (2, 2).

Consider the following strategies:

Player 1: In period 1 play F .
In even periods t = 2, 4, . . . play M if and only if the pattern of play was

(F, m), (M, f ), (F, m), . . . , and otherwise play F .
In odd periods t = 3, 5, . . . play F .

Player 2: In period 1 play m.
In odd periods t = 3, 5, . . . play m if and only if the pattern of play was

(F, m), (M, f ), (F, m), . . . , and otherwise play f .
In even periods t = 2, 4, . . . play f .

If the two players follow these proposed strategies then their path of play will
result in the payoff realizations alternating between (5, −1) and (−1, 5), resulting in
the following average payoffs:
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v1 = (1 − δ)

∞∑
t=1

v1
t

= (1 − δ)[5 + δ (−1) + δ2(5) + δ3(−1) + . . . ]

= (1 − δ)[5(1 + δ2 + δ4 + . . .) + (−1)(δ + δ3 + δ5 + . . .)]

= (1 − δ)

[
5 . 1

1 − δ2
+ (−1) . δ

1 − δ2

]
= 5 − δ

1 + δ
,

and similarly for player 2,

v2 = (1 − δ)[(−1) + δ (5) + δ2(−1) + δ3(5) + . . . ]

= −1 + 5δ

1 + δ
.

But notice that for both players

lim
δ→1

v1 = lim
δ→1

v2 = 2,

which shows that for both players the average payoffs approach (2, 2) as δ gets closer
and closer to 1.

We now have to check to see if these strategies form a subgame-perfect equilib-
rium. As before, we need to check that no player would want to deviate unilaterally
at any stage of the game. To do this we will use the one-stage deviation principle and
the fact that every subgame is the same infinitely repeated game. It suffices therefore
to check for three types of deviations:

1. The punishment phase: If there was a deviation from the proposed strategies
at some period and the players enter the “punishment phase” (play (F, f )

forever), no player will want to deviate because this guarantees a loss of
−2 in the deviation period with no gains. (This is similar to the analysis
in Section 10.3 that showed how to support the play of (M, m) forever as
a subgame-perfect equilibrium.)

2. A player’s “good” period: On the equilibrium path we have a form of
symmetry: every odd period is “good” for player 1 (he gets 5) and “bad” for
player 2 (he gets −1), while in every even period their roles are reversed. We
first need to check if player 1 (player 2) wants to deviate in an odd (even)
period. If he does not deviate then he obtains an average payoff of v1. If he
deviates then he will get 4 instead of 5 in the deviating period and in subsequent
periods the players will play (F, f ) forever, giving a stream of 1s in each
period instead of alternating between −1and 5. It is easy to see that this cannot
be a good idea: this deviation yields an average payoff of

v′
1 = (1 − δ)[4 + δ . 1 + δ2 . 1 + . . .] = (1 − δ)4 + δ.

It is easy to see that for high δ close to 1 the value of v′
1 will be itself just

barely above 1, while v1 is close to 2, implying that this deviation is not
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profitable. More precisely the player will not want to deviate if and only if
5−δ
1+δ

≥ (1− δ)4 + δ, which actually holds for all possible values of δ ∈ (0, 1).

3. A player’s “bad” period: We are left to check if player 1 (player 2) wants
to deviate in any even (odd) period. If he does not deviate then he obtains an
average payoff of −1+5δ

1+δ
. If he deviates then he will get 1 instead of −1 in

the deviating period, but in subsequent periods the players will play (F, f )

forever, giving a stream of 1s in each period instead of alternating between −1
and 5, so this deviation yields an average payoff of

v′′
1 = (1 − δ)[1 + δ . 1 + δ2 . 1 + . . .] = 1.

Thus the player will not deviate if −1+5δ
1+δ

≥ 1, which holds if and only if δ ≥ 1
2 .

We have concluded that the payoffs of (2, 2) can (nearly) be achieved by the pair
of strategies that we have specified when the discount factor is close enough to 1. The
infinite repetition introduced the ability to include reward-and-punishment strategies,
which as we have seen are intuitive incentive schemes used when people interact
often, and believe that every interaction is likely to be followed by another one.

Remark It is actually possible to approach the payoffs of (2, 2) in the repeated
Prisoner’s Dilemma even without δ approaching 1. For example, let δ = 0.9. The
strategies previously suggested will yield average payoffs of v1 = 5−0.9

1+0.9 = 2.158 and

v2 = −1+0.9×5
1+0.9 = 1.842. Now imagine that we slightly alter the proposed path of play

so that in the even period t = 26 instead of playing (F, m) the players will play (F, f ).
(And of course the strategies described earlier will be modified to account for this
change.) In period t = 26 player 1 will receive a stage-game payoff of 1 instead of
5, while player 2 will receive a stage-game payoff of 1 instead of −1. It follows that

the average payoff of player 1 drops by (5−1)×0.925

1+0.9 = 0.151 while the average payoff
of player 2 increases by (1−(−1))×0.925

1+0.9 = 0.076. Hence the revised path gives our two
players average payoffs of v1 = 2.158 − 0.151 = 2.007 and v2 = 1.842 + 0.076 =
1.918. We can continue to fine-tune the payoffs in this way. If in period t = 36 we
require the players to play (M, m) instead of (M, f ) then player 1 will receive a stage-
game payoff of 4 instead of 5, while player 2 will receive a stage-game payoff of 4

instead of −1. The average payoff of player 1 drops further by (5−4)×0.935

1+0.9 = 0.013
while the average payoff of player 2 increases by (4−(−1))×0.935

1+0.9 = 0.066, resulting
in v1 = 2.007 − 0.013 = 1.994 and v2 = 1.918 + 0.066 = 1.984. By manipulating
payoffs that are further away in a similar fashion we can approach the average payoffs
of (2, 2) even when the discount factor is not approaching 1.

10.7 Summary

. If a stage-game that has a unique Nash equilibrium is repeated for finitely many
periods then it will have a unique subgame-perfect equilibrium regardless of
the discount factor’s value.

. If a stage-game that has a unique Nash equilibrium is repeated infinitely often
with a discount factor 0 < δ < 1, it will be possible to support behavior in each
period that is not a Nash equilibrium of the one-shot stage-game.
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. The “carrot” and “stick” incentives are created by bootstrapping the repetition
of the stage-game’s unique equilibrium, which becomes a more potent threat
as the discount factor approaches 1.

. The folk theorem teaches us that as the discount factor approaches 1, the set
of average payoffs that can be supported by a subgame-perfect equilibrium of
the infinitely repeated game grows to a point that almost anything can happen.

. Repeated games are useful frameworks to understand how people cooperate
over time, how firms manage to collude in markets, and how reputations for
good behavior are sustained over time even when short-run temptations are
present.

10.8 Exercises

10.1 Medicare Drug Policy: In early 2005 there was a discussion of a proposed
U.S. government policy that supported the use of so-called discount cards
which pharmaceutical firms could offer senior citizens for the purchase of
medications. These cards would have a subscription fee and would in return
offer discounts if prescription drugs were bought through the issuing com-
panies. The federal government argued that any of the large pharmaceutical
companies could enter this market for discount cards, and this in turn would
promote competition. To ensure this the government maintained a web site
with posted prices and posted discounts for each card. Some consumer ad-
vocates suggested that the companies would just hike up prices and offer a
discount from those higher prices, resulting in less benefit for consumers. The
government argued that this approach would not make too much sense because
there was free entry into the program and resultant competition. Can you ar-
gue, using some formal ideas on tacit collusion, that given the way things are
set up it is in fact possible—and maybe even easier—for the firms to squeeze
more profits out at the expense of consumers?

10.2 Grim Trigger: Consider the infinitely repeated game with discount factor
δ < 1 of the following variant of the Prisoner’s Dilemma:

Player 2
L C R

T 6, 6 −1, 7 −2, 8

Player 1 M 7, −1 4, 4 −1, 5

B 8, −2 5, −1 0, 0

a. For which values of the discount factor δ can the players support the
pair of actions (M, C) played in every period?

b. For which values of the discount factor δ can the players support the
pair of actions (T, L) played in every period? Why is your answer
different from that for (a)?

10.3 Not-So-Grim Trigger: Consider the infinitely repeated Prisoner’s Dilemma
with discount factor δ < 1 described by the following matrix:
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Player 2
m f

Player 1
M 4, 4 −1, 5

F 5, −1 1, 1

Instead of using grim-trigger strategies to support a pair of actions (a1, a2)
other than (F, f ) as a subgame-perfect equilibrium, assume that the players
wish to choose a less draconian punishment called a “length-T punishment”
strategy. If there is a deviation from (a1, a2) then the players will play (F, f )
for T periods and then resume playing (a1, a2). Let δT be the critical discount
factor so that if δ > δT then the adequately defined strategies will implement
the desired path of play with length-T punishment as the threat.

a. Let T = 1. What is the critical value δ1 to support the pair of actions
(M, m) played in every period?

b. Let T = 2. What is the critical value δT to support the pair of actions
(M, m) played in every period?12

c. Compare the two critical values in (a) and (b). How do they differ and
what is the intuition for this?

10.4 Trust Off the Equilibrium Path: Recall the trust game depicted in Figure
10.1. We argued that for δ ≥ 1

2 the following pair of strategies is a subgame-
perfect equilibrium. For player 1: “In period 1 I will trust player 2, and as long
as there were no deviations from the pair (T, C) in any period, then I will
continue to trust him. Once such a deviation occurs then I will not trust him
forever after.” For player 2: “In period 1 I will cooperate, and as long as there
were no deviations from the pair (T, C) in any period, then I will continue to
do so. Once such a deviation occurs then I will deviate forever after.” Show
that if instead player 2 uses the strategy “as long as player 1 trusts me I will
cooperate” then the path (T, C) played forever is a Nash equilibrium for δ ≥ 1

2
but is not a subgame-perfect equilibrium for any value of δ.

10.5 Negative Ad Campaigns Revisited: Recall exercise 5.14 from Chapter 5, in
which each one of two political parties can choose to buy time on commercial
radio shows to broadcast negative ad campaigns against its rival. These choices
are made simultaneously. Government regulations forbid a party from buying
more than 2 hours of negative campaign time, so that each party cannot
choose an amount of negative campaigning above 2 hours. Given a pair of
choices (a1, a2), the payoff of party i is given by the following function:
vi(a1, a2) = ai − 2aj + aiaj − (ai)

2.

a. Find the unique pure-strategy Nash equilibrium of the one-shot game.
b. If the parties could sign a binding agreement on how much to cam-

paign, what levels would they choose?
c. Now assume that this game is repeated infinitely often, and the fore-

going demonstrates the choices and payoffs per period. For which

12. Hint: You should encounter an equation of the form aδ3 − (a + 1)δ + 1 = 0, for which it is
easy to see that δ = 1 is a root. In this case you know that the equation can be written in the form
(δ − 1)(aδ2 + aδ − 1) = 0, and you can solve for the other relevant root of the cubic equation.
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discount factors δ ∈ (0, 1) can the levels you found in (b) be supported
as a subgame-perfect equilibrium of the infinitely repeated game?

d. Despite the parties’ ability to coordinate, as you have demonstrated
in your answer to (c), the government is concerned about the parties’
ability to run up to 2 hours a day of negative campaigning, and it is
considering limiting negative campaigning to 1

2 hour a day, so that now
ai ∈ [0, 1

2 ]. Is this a good policy to limit negative campaigns further?
Justify your answer with the relevant calculations. What is the intuition
for your conclusion?

10.6 Regulating Medications: Consider a firm (player 1) that produces a unique
drug that is used by a consumer (player 2). This drug is regulated by the gov-
ernment so that its price is p = 6. This price is fixed, but the quality of the drug
depends on the manufacturing procedure. The “good” (G) manufacturing pro-
cedure costs 4 to the firm and yields a value of 9 to the consumer. The “bad” (B)
manufacturing procedure costs 0 to the firm and yields a value of 4 to the con-
sumer. The consumer can choose whether or not to buy at the price p, and this
decision must be made before the actual manufacturing procedure is revealed.
However, after consumption, the true quality of the drug is revealed to the
consumer. The choice of manufacturing procedure, and thus of the cost of pro-
duction, is made before the firm knows whether the consumer will buy or not.

a. Draw the game tree and the matrix of this game, and find all the Nash
equilibria.

b. Now assume that the game is repeated twice. (The consumer learns
the quality of the product in each period only if he consumes.) Assume
that each player tries to maximize the (nondiscounted) sum of his stage
payoffs. Find all the subgame-perfect equilibria of this game.

c. Now assume that the game as repeated infinitely many times. Assume
that each player tries to maximize the discounted sum of his or her
stage payoffs, where the discount rate is δ ∈ (0, 1). What is the range
of discount factors for which the good manufacturing procedure will
be used as part of a subgame-perfect equilibrium?

d. Consumer advocates are pushing for a lower price for the drug, say 5.
The firm wants to approach the Food and Drug Administration and
argue that if the regulated price is decreased to 5 then this may have
dire consequences for both consumers and the firm. Can you make
a formal argument, using the given parameters, to support the firm?
What about the consumers?

10.7 Diluted Happiness: Consider a relationship between a bartender and a cus-
tomer. The bartender serves bourbon to the customer and chooses x ∈ [0, 1],
which is the proportion of bourbon in the drink served, while 1− x is the pro-
portion of water. The cost of supplying such a drink (standard 4-ounce glass)
is cx, where c > 0. The customer, without knowing x, decides on whether or
not to buy the drink at the market price p. If he buys the drink his payoff is
vx − p, and the bartender’s payoff is p − cx. Assume that v > c and all pay-
offs are common knowledge. If the customer does not buy the drink he gets 0
and the bartender gets −cx. Because the customer has some experience, once
the drink is bought and he tastes it, he learns the value of x, but this is only
after he pays for the drink.
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a. Find all the Nash equilibria of this game.
b. Now assume that the customer is visiting town for 10 days, and this

“bar game” will be played on each of the 10 evenings that the cus-
tomer is in town. Assume that each player tries to maximize the (non-
discounted) sum of his stage payoffs. Find all the subgame-perfect
equilibria of this game.

c. Now assume that the customer is a local, and the players perceive
the game as repeated infinitely many times. Assume that each player
tries to maximize the discounted sum of his stage payoffs, where the
discount rate is δ ∈ (0, 1). What is the range of prices p (expressed
in the parameters of the problem) for which there exists a subgame-
perfect equilibrium in which every day the bartender chooses x = 1
and the customer buys at the price p?

d. For which values of δ (expressed in the parameters of the problem)
can the price range that you found in (c) exist?

10.8 Tacit Collusion: Two firms, which have zero marginal cost and no fixed cost,
produce some good, each producing qi ≥ 0, i ∈ {1, 2}. The demand for this
good is given by p = 200 − Q, where Q = q1 + q2.

a. First consider the case of Cournot competition, in which each form
chooses qi and this game is infinitely repeated with a discount factor
δ < 1. Solve for the static stage-game Cournot-Nash equilibrium.

b. For which values of δ can you support the firms’ equally splitting
monopoly profits in each period as a subgame-perfect equilibrium that
uses grim-trigger strategies (i.e., after one deviates from the proposed
split, they resort to the static Cournot-Nash equilibrium thereafter)?
(Note: Be careful in defining the strategies of the firms!)

c. Now assume that the firms compete à la Bertrand, each choosing a
price pi ≥ 0, where the lowest-price firm gets all the demand and in
case of a tie they split the market. Solve for the static stage-game
Bertrand-Nash equilibrium.

d. For which values of δ can you support the firms’ equally splitting
monopoly profits in each period as a subgame-perfect equilibrium that
uses grim-trigger strategies (i.e., after one deviates from the proposed
split, they resort to the static Bertrand-Nash equilibrium thereafter)?
(Note: Be careful in defining the strategies of the firms!)

e. Now instead of using grim-trigger strategies, try to support the firms’
equally splitting monopoly profits as a subgame-perfect equilibrium
in which after a deviation firms would resort to the static Bertrand
competition for only two periods.For which values of δ will this work?
Why is this answer different than your answer in (d)?

10.9 Negative Externalities: Two firms are located adjacent to one another, and
each imposes an external cost on the other: the detergent that firm 1 uses in
its laundry business makes the fish that firm 2 catches in the lake taste funny,
and the smoke that firm 2 uses to smoke its caught fish makes the clothes
that firm 1 hangs out to dry smell funny. As a consequence each firm’s profits
are increasing in its own production and decreasing in the production of its
neighbor. In particular if q1 and q2 are the firms’ production levels then their
per-period (stage-game) profits are given by v1(q1, q2) = (30 − q2)q1 − q2

1
and v2(q1, q2) = (30 − q1)q2 − q2

2 .
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a. Draw the firms’ best-response functions and find the Nash equilibrium
of the stage-game. How does this compare to the Pareto-optimal stage-
game profit levels?

b. For which levels of discount factors can the firms support the Pareto-
optimal level of quantities in an infinitely repeated game?

10.10 Law Merchants Revisited: Consider the three-person game described in
Section 10.5.2. A subgame-perfect equilibrium was constructed with a bond
equal to 2, a fee equal to w = 0.1 was paid by every player P t

2 to player 3, and
it was shown that it is indeed an equilibrium for any discount factor δ ≥ 0.95.
Show that a similar equilibrium exists in which players P t

1 trust players P t
2

who post bonds, players P t
2 post bonds and cooperate, and player 3 follows

the contract in every period, for any discount factor 0 < δ < 1.

10.11 Trading Brand Names: Show that the strategies proposed in Section 10.5.3
constitute a subgame-perfect equilibrium of the sequence of trust games.

10.12 Folk Theorem Revisited: Consider the infinitely repeated trust game de-
scribed in Figure 10.1.

a. Draw the convex hull of average payoffs.
b. Are the average payoffs (v1, v2) = (−0.4, 1.1) in the convex hull of

average payoffs? Can they be supported by a pair of strategies that form
a subgame-perfect equilibrium for a large enough discount factor δ?

c. Show that there is a pair of subgame-perfect equilibrium strategies for
the two players that yields average payoffs that approach (v1, v2) =( 1

3, 4
3

)
as δ approaches 1.



11
Strategic Bargaining

Of the many possible applications of strategic interaction among a small number
of players, one ubiquitous situation surely comes to mind: bargaining. Exam-

ples are plentiful: a firm and a union bargaining over wages and benefits; a local
municipality bargaining with a private provider over the terms of service; the head
of a political party bargaining with other party members over campaign issues; and
even the mundane bargaining that occurs between a buyer and a merchant at a street
bazaar. In all of these examples, deals are struck by parties bargaining over terms,
payments, and other aspects that all boil down to one basic fact: each party wants to
get the best deal it can.

How can we model and analyze bargaining through the lens of game theory?
As demonstrated by the examples just mentioned, the issue is often about a surplus
that has to be split among the parties, and it involves the parties making proposals,
responding to them, and trying to settle on an agreement. Following some early
work by Ståhl (1972, 1977), Rubinstein (1982) offered a particular stylized model of
bargaining that has become the standard in most applications. The simple framework
considers two players that need to split a “pie” (representing the surplus from an
agreement or the gains from trade). The pie is assumed to have a total value that is
normalized to equal 1, and then the parties bargain on how to split the pie.

In order to analyze this process as a strategic game, the bargaining process itself
needs to be structured to include actions, outcomes that result from actions, and pref-
erences over the outcomes, as with any other game we can imagine. Ståhl suggested a
prespecified procedure in which the game starts with player 1 making an offer to split
the pie and player 2 either accepting or rejecting the offer. If the offer is accepted,
the split proposed by player 1 is implemented, and the game ends. If player 2 rejects
player 1’s offer, the players then switch roles: player 2 makes the offer and player 1
responds by accepting or rejecting the offer. The game can either continue this way
until some exogenous deadline arrives or simply go on forever.

Yet, as the saying goes, “time is money,” and delay ought to impose some loss on
the players. There are two ways to impose this loss. First, there may be a fixed cost of
progressing from one round to another, so that a constant piece of the pie is removed
every time a rejection occurs. Alternatively we can impose discounting in the same
way we did for repeated games: after every period of rejection, the total size of the
pie is only a fraction of what it was before. This second approach is the one we will
be following here, and we can summarize the game as follows.

220
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In the first round:

. Player 1 offers shares (x, 1 − x), where player 1 receives x and player 2
receives 1 − x.

. Player 2 then chooses to accept, causing the game to end with payoffs v1 = x

and v2 = 1 − x, or reject, causing the game to move to the second round.

In the second round:

. A share 1− δ of the pie is dissipated (the pie is discounted with discount factor
0 < δ < 1).

. Player 2 offers shares (x, 1 − x), where player 1 receives x and player 2
receives 1 − x.

. Player 1 chooses to accept, causing the game to end with payoffs v1 = δx and
v2 = δ(1 − x), or reject, causing the game to move to the third round.

In the third round and beyond:

. The game continues in the same way, where following rejection in an odd
period player 2 gets to offer in the next even period, and vice versa.

. Each period has further discounting of the pie, so that in period t the total pie
is worth δt−1.

From the specification of the bargaining procedure we see that once a player agrees
to the offer made by his opponent, the game will end with an agreement. If instead
the players keep rejecting offers then the game may continue either indefinitely or
until some prespecified deadline is reached. Assume for now that the game ends in
some prespecified final period T, which will be reached if the players did not reach
an agreement in the T − 1 periods that preceded T . Furthermore assume that period
T is a “hard deadline,” so that both players receive a payoff of zero if they fail to
reach an agreement in this last period. This, for example, can be the case with a
fisherman bargaining with a restaurateur over a fresh catch. If they wait more than
a few hours, the fish will go bad and there will no longer be gains from trade. The
heuristic extensive form of this game with an odd number of periods T (so that player
1 is first and last) is depicted in Figure 11.1.

Notice that this game has an interesting structure that is different from what we
have seen so far. On the one hand, it has some features of a finitely repeated game as
follows: If we think of an “odd” round as one in which player 1 proposes and player 2
responds, and an “even” round as the converse, then we can treat each pair of rounds
as one stage that repeats itself as long as an agreement is not reached. Furthermore
as rounds proceed the value of the pie that these players need to split is shrinking
according to the discount factor δ. On the other hand, there are two features that are
not part of the repeated-game structure we developed in Chapter 10. First, the game
can end during any round if the proposal is accepted, and second, payoffs are obtained
only when the game actually ends and not as a flow of stage-game payoffs.

Before proceeding with the analysis, an obvious question is whether this stylized
bargaining game is a reasonable caricature of reality. We need to convince ourselves
that this game is, at least at some level, representative of what we believe bargaining is
about. To a large extent, sequences of offers and counteroffers are natural components
of any type of bargaining, and clearly once agreements are reached the bargaining
stage is over. However, the fixed end date T, at which an all-or-nothing agreement
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FIGURE 11.1 An odd T -period alternating-offer bargaining game.

is reached, is not extremely appealing. For simplicity, we will first analyze the game
with a finite end date; later we will extend the analysis to eliminate this artificial
termination stage.

11.1 One Round of Bargaining: The Ultimatum Game

We begin the analysis with an easy case in which there is only one round of bargaining,
so that T = 1. This is often referred to in the literature as an ultimatum game: player
1 makes an ultimatum take-it-or-leave-it offer to player 2, and player 2 either accepts
it, in which case the pie is split between the players, or rejects it, in which case both
players receive a payoff of zero. Because this is a game of perfect information (player
2 sees the offer of player 1 before he needs to accept or reject it), we can apply
backward induction to find which paths of play can be supported by a subgame-perfect
equilibrium.

As a benchmark, we begin the analysis by finding which paths of play can be
supported by a Nash equilibrium without requiring sequential rationality. The result
is quite striking:
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Proposition 11.1 In the bargaining game if T = 1 then any division of surplus
x∗ ∈ [0, 1], (v1, v2) = (x∗, 1 − x∗), can be supported as a Nash equilibrium.

Proof We will construct a pair of strategies that are mutual best responses and that
lead to (x∗, 1− x∗) as the division of surplus. Let player 1’s strategy be “I propose x∗,”
and let player 2’s strategy be “I accept any offer x ≤ x∗ and reject any offer x > x∗.”
It is easy to see that these two strategies are mutual best responses independent of the
value of x∗ ∈ [0, 1].

This proposition tells us that the concept of Nash equilibrium has no bite for this
simple one-stage bargaining game because it can rationalize any division of surplus.
In other words, we cannot predict in any meaningful way what the outcome of such
a game will be if we require only that people choose strategies that are mutual best
responses.

That said, a close observation of the strategies constructed to support an arbitrary
division of surplus will immediately reveal that sequential rationality is almost always
violated: Player 2 is saying “there is a minimum that I am willing to accept.” But what
if player 1 offers him less? In particular what if he offers him (1 − x) = ε > 0 with
ε being a very small number? If player 2 rejects this offer he will get 0, while if he
accepts it he will get a payoff of ε > 0, implying that his best response is to accept any
strictly positive payoff. Anticipating this, player 1 should offer player 2 the smallest
possible amount. This logic leads to the following result:

Proposition 11.2 The bargaining game with T = 1admits a unique subgame-perfect
equilibrium in which player 1 offers x = 1 and player 2 accepts any offer x ≤ 1.

Proof We have established that player 2 must accept any positive share (x < 1).
Player 2 is indifferent between accepting or rejecting x = 1, so the proposed strategy
is sequentially optimal, and the unique best response of player 1 to player 2’s strategy
is to offer x = 1. The only other sequentially rational strategy for player 2 is to accept
any strictly positive share (x < 1) and reject getting 0 (x = 1). But player 1 does not
have a best response to this strategy,1 and therefore it cannot be part of a subgame-
perfect equilibrium.

This result is very stark, especially when compared with the analysis of Nash
equilibrium. Requiring only mutual best responses yields no meaningful prediction,
but sequential rationality predicts a unique and extreme outcome: player 2 should
accept anything, and thus player 1 has an extreme form of take-it-or-leave-it first-
mover advantage, giving him the whole pie of surplus.

Remark Many experiments have been performed by researchers to see what behav-
ior actually prevails for the ultimatum game, in which player 1 can offer to split a
sum of money with player 2. If player 2 accepts then the split is realized and both
players receive the proposal of player 1. If player 2 rejects then the players receive

1. This is similar to what happens in the asymmetric-cost Bertrand competition model presented in
Section 5.2.4, in which player 1’s payoff function is discontinuous, and hence he does not have a
well-defined best response. To see it in this context, imagine that player 2’s strategy is to accept any
offer x < 1and reject x = 1. Clearly x = 1is not a best response because any offer x < 1is better. The
problem is that no offer x < 1 is a best response either. If player 1 offers some x′ < 1, then the offer
x = x′ + 1−x′

2 is better than x′. The conclusion is that player 1’s payoff function is discontinuous at
x = 1, and he does not have a best response to player 2’s strategy.
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nothing. Contrary to the theory, and maybe not too surprisingly, the experiments show
that those players in the role of player 1 offer significant shares to those in the role
of player 2, typically between 25% and 50% of the total value. Furthermore, when
player 2 is offered a small amount, typically less than 20–25% of the total value, then
he will reject these offers. This suggests that subjects in the role of player 2 act with
some “spite” when they are offered low shares because they prefer getting nothing
to an outcome in which player 1 gets a large fraction of the total value. See Camerer
(2003) for an excellent summary of the experimental results and some theories that
predict this behavior.

11.2 Finitely Many Rounds of Bargaining

When we consider bargaining games that extend beyond one period but that will still
end at some specified date T < ∞, the Nash equilibrium concept continues to have no
predictive power. In particular we can easily construct the kind of strategies used in the
proof of proposition 11.1 to any horizon, including an infinite horizon. To construct
a Nash equilibrium that results in an arbitrary division of surplus x∗ ∈ [0, 1] we can
use the following time-independent strategies: In every odd round in which player 1
proposes, player 1 will propose x∗ and player 2 will accept proposals of x ≤ x∗. In
every even round in which player 2 proposes, player 2 will propose x∗ and player 1
will accept proposals of x ≥ x∗. It is easy to see that these strategies are mutual best
responses, and an agreement is reached in the first round with the division of surplus
(x∗, 1 − x∗).

What is even more disappointing is that, using the Nash concept, we cannot even
pin down when an agreement will be reached. For example, we can adopt the strategies
that result in any (x∗, 1− x∗) with the following modification: in the first period player
1 offers x = 1 and player 2 rejects any offer. It is easy to see that these form a pair of
best responses, resulting in a Nash equilibrium in which an agreement is reached in
the second period. In exercise 11.1, you are asked to show that similar strategies can
be constructed to support an agreement of any division of surplus in any period.

Imposing sequential rationality will, once again, offer a stark contrast. Indeed it
should not be surprising that applying sequential rationality and subgame perfection to
any finite-length bargaining game will result in a unique outcome, because backward
induction will apply in a similar way that it did for the case of one round of bargaining.
In the last round the proposer will offer to keep the entire pie to himself, the responder
will agree, and the solution will proceed sequentially using backward induction.

In the one-round ultimatum game analyzed previously, player 1 got all the surplus
in the unique subgame-perfect equilibrium because by construction the only round is
the last round. Sequential rationality implies that in the last round the player making
the offer has all the “bargaining power,” which in turn implies that he will get the
whole surplus. We can ask then, what will happen in a game with two rounds of
bargaining?

As Figure 11.2 demonstrates, the second round is a one-round bargaining game,
which implies that if it is reached then player 2 gets the whole pie in any subgame-
perfect equilibrium. Continuing with backward induction, and assuming that δ ≤ 1,
we can find the subgame-perfect equilibrium for the two-round game as follows. In
the first round player 2 knows that in the next (and last) round he will receive the whole
pie, which will be worth only δ because of discounting. Thus if he is offered less than
δ for himself (player 1 offers x > 1− δ) then player 2 should reject the offer and get
the whole pie in the next period. Hence the unique sequentially rational strategy for
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FIGURE 11.2 An alternating-offer bargaining game with two periods.

player 2 at the accept/reject stage of the first round is to accept any offer of x ≤ 1− δ.
Moving up the tree to the node at which player 1 makes his first offer, he realizes that
any offer x > 1− δ will be rejected, while any offer x ≤ 1− δ will be accepted. Thus
player 1’s best response is to offer x = 1− δ, leading to a division of surplus equal to
(v1, v2) = (1 − δ, δ).

Note that if δ = 1 then player 2 gets the whole pie because he then has the ultimate
form of a take-it-or-leave-it advantage, and with δ < 1player 1 has a bit of a first-mover
advantage owing to the discounting. This observation is useful because it suggests
an interesting pair of forces. Essentially the backward induction logic that we have
used for the two-round bargaining model will generalize to any finite-round game.
Therefore a tension will emerge between the ability to make a last take-it-or-leave-it
offer and the first-mover advantage that is a result of discounting given δ < 1. Whether
player 1 or player 2 is the last mover will artificially depend on whether the game has
an odd or even number of periods.

Consider the case with an odd number of rounds T < ∞, implying that player 1 has
both the first-mover and last-mover advantages. The following backward induction
argument applies:

. In period T player 2 accepts any offer, so player 1 offers x = 1 and payoffs
are v1 = δT −1 and v2 = 0.

. In period T − 1 (even period, player 2 offers), by backward induction player
1 should accept anything resulting in a payoff of v1 ≥ δT −1. If player 1 is
offered x in period T − 1 then v1 = δT −2x. This implies that in period T − 1
player 1 will accept any x ≥ δ and by backward induction player 2 should
offer x = δ, which yields player 1 a payoff of v1 = δ × δT −2 = δT −1. Payoffs
are then v1 = δT −1 and v2 = δT −2(1 − δ).
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. In period T − 2 (odd period), conditional on the analysis for T − 1, player 2’s
best response is to accept any x that gives him δT −3(1 − x) ≥ δT −2(1 − δ).

Player 1’s best response to this is to offer the largest x that satisfies this
inequality, and solving it with equality yields player 1’s best response: x =
1− δ + δ2. This offer followed by player 2’s acceptance yields v1 = δT −3x =
δT −3 − δT −2 + δT −1 and v2 = δT −2 − δT −1.

. In period T − 3 (even period), using the same backward induction argument,
player 1’s best response is to accept any x that satisfies δT −4x ≥ δT −3 −
δT −2 + δT −1, and player 2 then makes an offer that satisfies this constraint
with equality, x = δ − δ2 + δ3, yielding v1 = δT −3 − δT −2 + δT −1 and v2 =
δT −4(1 − x) = δT −4 − δT −3 + δT −2 − δT −1.

We can continue with this tedious exercise only to realize that a simple pattern
emerges. If we consider the solution for an odd period T − s (s being even because T

is assumed to be odd) then the backward induction argument leads to the sequentially
rational offer

xT −s = 1 − δ + δ2 − δ3 + . . . + δs,

while for an even period T − s (s being odd) then the backward induction argument
leads to the sequentially rational offer

xT −s = δ − δ2 + δ3 − δ4 + . . . + δs.

We can use this pattern to solve for the subgame-perfect equilibrium offer in the
first period, x1, which by backward induction must be accepted by player 2 and it is
equal to

x1 = 1 − δ + δ2 − δ3 + δ4 + . . . + δT −1

= (1 + δ2 + δ4 + . . . + δT −1) − (δ + δ3 + δ5 + . . . + δT −2)

= 1 − δT +1

1 − δ2
− δ − δT

1 − δ2

= 1 + δT

1 + δ
,

and this in turn implies that

v∗
1 = x1 = 1 + δT

1 + δ
and v∗

2 = (1 − x1) = δ − δT

1 + δ
. (11.1)

We can now offer some insights into this solution, which has some very appealing
properties. The first observation is important:

Proposition 11.3 Any subgame-perfect equilibrium must have the players reach an
agreement in the first round.

The proof follows a simple logic. If an agreement is reached in a later round with
payoffs (v′

1, v′
2) then discounting implies that part of the surplus is wasted and that

v′
1 + v′

2 < 1. But then player 1 could deviate and offer x = 1− v′
2 − ε for some small

ε > 0, which guarantees player 2 the payoff v′
2 + ε immediately in the first round.

Sequential rationality implies that player 2 should accept this immediately, and for ε

small enough this gives player 1 a payoff greater than v′
1.
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A second observation follows from the fact that player 1 has both the last-mover
take-it-or-leave-it advantage and the first-mover discounting advantage. This implies
that v∗

1 > v∗
2 for any discount factor δ ∈ [0, 1], as can be seen from the equilibrium

values in (11.1). Because T is fixed, however, it is hard to isolate these two effects,
especially if we wish to measure the way in which patience, represented by δ, affects
the equilibrium payoffs. For example, if players are very impatient and δ = 0 then
the first-mover advantage kicks in with full force. Regardless of T , this is basically
equivalent to a one-round game in which player 1 gets the whole surplus. On the other
hand, if we consider the limit of δ = 1 then v∗

1 = 1and v∗
2 = 0, because no discounting

implies that moving last guarantees the whole surplus, regardless of the length of the
game T .

This last observation is somewhat disturbing: if players are very patient then the
last mover’s take-it-or-leave-it advantage just flows up the game tree no matter how
long the game is! This rather counterintuitive result is precisely due to the artificial
stopping period T . If δ = 1 then the only thing that matters is who has the last word—
there is no loss from waiting, and hence the forward-looking players know that the
last person to make an offer holds all the bargaining power.

To overcome this artificially dictated outcome, we will first address the source
of the problem by fixing the discount factor δ and observing what happens to the
equilibrium payoffs as the game gets longer and longer. More precisely,

lim
T →∞ v∗

1 = lim
T →∞

1 + δT

1 + δ
= 1

1 + δ
and lim

T →∞ v∗
2 = lim

T →∞
δ − δT

1 + δ
= δ

1 + δ
.

(11.2)

As we can see from the limit payoffs in (11.2), the artificial end-period effect
disappears. We can clearly observe the first-mover discounting advantage in that for
any 0 < δ < 1 it must be that limT →∞ v∗

1 > limT →∞ v∗
2. We can also use the limiting

equilibrium payoffs to ask what happens as the patience of the players changes without
the problem posed by an artificial end period T . For the extreme case of impatience
with δ = 0 we get the same result: the game is equivalent to a one-round ultimatum
game. When the players become very patient, we now obtain a more sensible result,

lim
δ→1

lim
T →∞ v∗

1 = lim
δ→1

1

1 + δ
= 1

2
and lim

δ→1
lim

T →∞ v∗
2 = lim

δ→1

δ

1 + δ
= 1

2
.

(11.3)

The limit payoffs in (11.3) suggest a rather appealing and intuitive result for very long
horizons with very patient players: the very long horizon eliminates the last mover’s
take-it-or-leave-it advantage for any given discount factor δ, leaving only the first-
mover advantage due to discounting. If we take the level of patience to its limit of
δ = 1 then this eliminates the first-mover advantage as well, and we have the two
players splitting the pie equally in the unique subgame-perfect equilibrium.2

As exercise 11.3, you can solve for the subgame-perfect equilibrium when the
number of periods is even, and see that at the limit we get the same results.

2. Note that to reach this appealing conclusion the order of limits matters. If we reverse the order of
limits and take δ → 1 first, followed by T → ∞ second, then lim v∗

1 = 1 and lim v∗
2 = 0, preserving

the artificial take-it-or-leave-it advantage.
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11.3 The Infinite-Horizon Game

We now analyze the infinite-horizon bargaining game in which, if an agreement is
never reached, the players continue to alternate roles indefinitely. In this case the
assumption that disagreement leads to zero payoffs is natural because of discounting:
if the two players disagree forever then there is nothing left on which to agree.
However, there is a crucial difference between analyzing the infinite-horizon game
and considering the infinite limit of the finite-horizon game: the path of perpetual
disagreement is of infinite length, and we cannot therefore apply a backward induction
argument to find the subgame-perfect equilibrium.

There is, however, an interesting feature of the infinite-horizon bargaining game:
the stationary structure of the game following a disagreement at any stage. Every odd
period is the same, with player 1 making an offer, and the continuation game has a
potentially infinite horizon. Similarly every even period is the same, with player 2
making the offer. This allows us to apply a rather appealing, and not too difficult,
logic to solve for what turns out to be the unique subgame-perfect equilibrium of the
infinite-horizon bargaining game.3

The first important observation is that, following the same logic we introduced
earlier in proposition 11.3, sequential rationality implies that an agreement must be
reached in the first period. The reason is that wasteful discounting will not be tolerated
because it can be avoided in the first stage. Hence any subgame-perfect equilibrium
must have agreement reached in the first period.

Now imagine that there is more than one subgame-perfect equilibrium. If this were
the case then when player 1 makes an offer he must have a best subgame-perfect
equilibrium, yielding him a value of v1, and a worst subgame-perfect equilibrium,
yielding him a value of v1. Similarly when player 2 makes an offer after rejecting an
offer made by player 1 then he too has a best subgame-perfect equilibrium, yielding
him a value of v2, and a worst subgame-perfect equilibrium, yielding him a value
of v2.

This is where the stationary structure of the game is useful, because it implies
that v1 = v2 = v and v1 = v2 = v. The reason is that in any odd period the game looks
exactly the same as in any even period, just with the identities of the players switched.
Hence if the structure of the game results in the existence of different subgame-perfect
equilibria that support certain payoffs for player 1 starting in period 1, the same must
be true for player 2 in period 2.

Now we take advantage of the fact that what one player gives up, the other player
must receive (and recall that agreement must be reached in the first period), which
results in a straightforward relationship between the best- and worst-payoff subgame-
perfect equilibria of the game. What is worst for player 1 must be best for player 2
and vice versa. Hence in the subgame-perfect equilibrium that supports the payoff v

for player 1 in period 1, it must be true that if player 2 rejects player 1’s offer, he can
secure himself a payoff of v when it is his turn to make the offer.

Immediate agreement implies that player 1 must offer player 2 a share of the pie
that will deter player 2 from rejecting player 1’s offer. If player 2 can get v after
rejection, this implies that player 1 must offer player 2 a payoff of at least δv in the
first period. Of course player 1 will offer the least he can to secure an agreement,

3. The method used here was developed by Shaked and Sutton (1984), but the infinite model was
proposed, and the unique solution was identified, in the seminal paper by Rubinstein (1982).
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which implies that he will offer player 2 a share exactly equal to δv, which in turn
implies that player 1’s payoff from this subgame-perfect equilibrium must be

v = 1 − δv. (11.4)

A symmetric argument applies for the subgame-perfect equilibrium that results in
player 1 obtaining a payoff of v and player 2 obtaining a payoff of v, which results
in the equation

v = 1 − δv. (11.5)

Taking (11.4) and (11.5) we obtain that

v = v = 1

1 + δ
.

This result characterizes the unique subgame-perfect equilibrium of the infinite-
horizon bargaining game. Notice that it coincides with the limit of the unique
subgame-perfect equilibrium of the finite-horizon bargaining game as shown in Sec-
tion 11.2. Furthermore because we know that agreement is reached in the first round
we can use this payoff characterization to spell out the strategies that together support
this outcome. In the unique subgame-perfect equilibrium the strategies are as follows:
In each odd round player 1 offers to keep x = 1

1+δ
to himself and player 2 accepts

the offer if x ≤ 1
1+δ

. In each even round player 2 offers to give player 1 x = δ
1+δ

and
player 1 accepts any x ≥ δ

1+δ
.

Remark As you might have imagined, bargaining games have received considerable
attention in the literature, in both economics and political science, because bargaining
situations are so ubiquitous. Many variants of the bargaining game described here
have been analyzed, in which the relationship might break down, the players each
have an “outside option” that is greater than zero, there are more than two players
that can be matched randomly, . . . the list goes on and on. Nash (1950b) offered an
analysis of the bargaining problem, but interestingly he did not follow the framework
of noncooperative game theory that he himself had founded. Instead he offered
an axiomatic approach to suggest a sensible solution to the two-person bargaining
problem. The resulting “Nash bargaining solution” is widely used in economics. For
a broad treatment of bargaining games and solutions see Osborne and Rubinstein
(1990) and Muthoo (1999).

11.4 Application: Legislative Bargaining

The bargaining model analyzed here offers a reasonable depiction of many two-person
bargaining situations. In particular there is the potential for give-and-take, and at the
end an agreement has to be reached by both parties for the deal to be sealed. Another
setting in which bargaining is ubiquitous is in legislatures, where lawmakers bargain
over the allocation of surplus through either bills, budget agreements, or regulations.
In most political settings the convention is that once a majority of players concur
on an offer, the allocation is agreed upon despite the dismay of those who may still
oppose it.

In an important contribution, Baron and Ferejohn (1989) build on the Rubinstein-
Ståhl model of bargaining and offer a framework for analyzing multilateral bargaining
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with a simple majority rule. The two main departures from the two-player model are
as follows: First, there is an odd number N of players, where N+1

2 votes are needed to
secure an agreement. Second, instead of players alternating their roles in a prespecified
order, the bargaining protocol follows a random-assignment rule: in every period each
player has an equal probability of being the proposer.

Baron and Ferejohn consider two bargaining rules that to a large extent mimic
common practices: the closed rule, under which proposals cannot be amended, and
the open rule, under which they can. In what follows, we adhere to the approach
used in Section 11.3 to analyze the outcomes and expected payoffs from a potentially
infinite-horizon model. The technique is to use the payoffs that some players expect
to get if they reject an offer to determine what the equilibrium payoffs must be to
support the proposed equilibrium behavior.

11.4.1 Closed-Rule Bargaining

The closed-rule setting is very much an N -player version of the Rubinstein infinite-
horizon model. When called upon to propose, the proposer makes an offer to the
legislative body of the form x = (x1, x2, . . . , xN), where xi is the share of surplus
offered to player i, with

∑n
i=1 xi ≤ 1. If a majority accepts the proposal then the game

ends, and if not then the current “pie” is discounted according to the discount factor δ.
It turns out that when there are three or more players in an N -player version of the

Rubinstein infinite-horizon bargaining game then there are many possible subgame-
perfect equilibria.4 What Baron and Ferejohn suggest is a simple way around this
indeterminacy. They focus attention on symmetric stationary equilibria in which first,
each player proposes the same split of the pie every time he is called to propose,
regardless of the history of the game, and second, the respondents vote based only
on the current proposal as it compares to their expectations about future proposals.
What is clever about these assumptions is that together they imply that, like the two-
player version of Rubinstein’s model, the game effectively “starts over” every time a
proposal is rejected, and because the proposer is chosen randomly at the beginning
of every stage, the continuation value of each player is the expected utility of playing
the game.5

Let v be the expected payoff for any player i to play the subgame-perfect equi-
librium of this game at the beginning of any stage,6 and consider a player i who is
choosing to respond to a proposal that awards him xi. If he rejects the proposal then

4. This was noted first by Herrero (1985). For a large number of players and a discount factor close
to 1, any split of the pie can be supported by a subgame-perfect equilibrium. Showing this is beyond
the scope of this text, but the interested reader can consult Baron and Ferejohn (1989) for a proof.
5. More precisely, Baron and Ferejohn (1989) define two subgames as structurally equivalent if
(1) the agenda at the initial nodes of the subgames is identical; (2) the set of players who can
be recognized is the same; and (3) the strategy sets of players are identical. This means that two
subgames in which a previous offer was rejected and someone is chosen to propose a bill are
structurally equivalent. An equilibrium is then defined to be stationary if the continuation values for
each structurally equivalent subgame are the same. Symmetry then implies that each player behaves
in the same way. As a consequence of these restrictions, before any subgame of proposal starts, all
players have the same expected payoff from playing the game.
6. Given the assumption that players are playing a symmetric stationary equilibrium, and because
each player is equally likely to be chosen to be a proposer at the beginning of the game and at any
stage, then this value v must be the same for every player.
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he expects to get v in the next period, and hence he will accept the proposal if and only
if xi ≥ δv. As a consequence, any player who plays the role of a proposer anticipates
that he must propose at least δv to at least N+1

2 other players.
Given this observation, the proposer’s best response is to choose exactly N−1

2 other
players and offer them exactly δv each, keeping the rest of the pie for himself. Notice
that N−1

2 is half of the group of responders, which together with the proposer makes
up a majority in favor of the proposed split. Hence the portion of the pie that the
proposer keeps for himself in the symmetric subgame-perfect equilibrium is

k = 1 − N − 1

2
δv. (11.6)

To maintain symmetry, each proposer chooses his N−1
2 coalition partners randomly

from the remaining N − 1 players, implying that each of the N − 1 responders gets
chosen to be part of the coalition with probability 1

2 .
The equilibrium analysis leads to the computation of v. At the beginning of the

game (and of every stage after rejection), each player expects to play in one of three
roles. He can either be the proposer and receive k, which occurs with probability 1

N
,

or be a responder, which occurs with probability N−1
N

. If he is a responder, then with
probability 1

2 he will be in the winning coalition and receive δv, or he can be outside
the coalition and receive zero. This implies that

v = k

N
+ N − 1

2N
δv. (11.7)

Combining (11.6) and (11.7) we obtain that v = 1
N

. This should not be surprising
because, after all, we focused on a symmetric equilibrium. As a consequence, we
force all the players to get an equal share in expectations. In addition, because any
agreement that could be reached at a later period can be reached at the beginning of
the game, there is no need to have a delay.

It is more interesting to focus attention on the value of k, the share obtained by
the proposer, which is

k(N) = 1 − δ

(
N − 1

2N

)
. (11.8)

Two implications of (11.8) are noteworthy. The first, which is congruent with Rubin-
stein’s two-player model, is that as the discount factor δ increases, the share obtained
by the first-mover proposer decreases. The intuition is that the proposer has to pay
more to the responders in order to discourage them from waiting for their turns be-
cause the future becomes more valuable, and in the future they have a chance of being
proposers themselves.

The second is the relationship between the share that the proposer has to offer
his coalition partners and the size of the coalition needed. On the one hand, as the
number of players grows the per-partner offer goes down, because, as we have seen,
v = 1

N
. On the other hand, the proposer needs to pay more partners to form a winning

coalition. It turns out that the second force overcomes the first, and as N grows the
share of the proposer decreases. More concretely if N = 3 then the share obtained
by the proposer is k(3) = 1 − δ 1

3 > 2
3 , while as N increases this share drops and at

the limit is limN→∞ k(N) = 2−δ
2 . It is interesting to try to interpret this result as

bargaining power. As N increases, it is true that in absolute terms the share of the
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proposer drops. However, in relative terms, compared to the share of other players
(that is, in terms of the ratio of the proposer’s share to the share of a coalition member),
it increases and approaches infinity. Intuitively, as there are more and more players,
the proposer has more options to form a coalition, and hence has more relative to
the others in his coalition. Nonetheless to form that coalition he has to give up more
resources.

11.4.2 Open-Rule Bargaining

Now let’s introduce the option of amending a proposal, as is allowed in the U.S.
Congress. Of course there are many ways in which bills and proposals can be
amended, and just as with the closed-rule model we have to make some assump-
tions on the protocol to make the model tractable. As such, assume that after the
proposer makes his proposal x = (x1, x2, . . . , xN), one of the remaining N − 1 play-
ers is selected to offer an amendment; we refer to him as the amender. The amender
can second the proposer’s original proposal and then bring it to a yes-or-no vote. In
this case a simple majority of N+1

2 is needed to pass the proposal x.
Alternatively the amender can offer an amendment, x′ = (x′

1, x′
2, . . . , x′

N
), in

which case the game proceeds in two steps: First, the players vote between the original
proposal x and the amendment x′. The winner of this vote becomes the baseline
proposal for the next period of play, in which a new amender is chosen randomly
among the N players to either second the baseline proposal or offer a new amendment.
The game proceeds in this way until a proposal both passes the stage at which an
amender seconds it and is accepted by a simple majority. As you can imagine, this
model is more complex than the closed-rule model, given its protocol of allowing for
amendments. As such, we take the simplest case of N = 3.

In the open-rule model not only is the original proposer constrained to offer a
proposal that might be accepted by a simple majority, but he must also offer enough
to deter a random amender from proposing his own amendment that he hopes to
pass instead of the original proposal. Hence, whatever the original proposer offers,
it must be enough to discourage any potential amender from offering an alternative
amendment.

We proceed therefore with two possible approaches. In the first, called “guaranteed
success,” the original proposal will offer the same share to each of the two potential
amenders, and in equilibrium each amender will second the proposal, and it will pass.
In the second approach, called “risky success,” the original proposer will offer a share
to only one of the two potential amenders, taking the risk that the other player will
be selected as an amender and in turn will “punish” the original proposer by offering
him nothing.

11.4.2.1 Guaranteed Success We will construct a symmetric stationary subgame-
perfect equilibrium in which the first proposal passes, regardless of who the amender
is. Let the proposer keep k for himself and offer each of the other two players 1−k

2 ,
with the expectation that either of the two potential amenders will second the proposal
and it will pass. As before, we will use the equilibrium conditions to compute the
equilibrium level of k. In addition, symmetry implies that in expectations all the
players get the same expected payoff from playing the game.

Just as we defined v in the closed-rule model to be the expected payoff for any
player i to play the subgame-perfect equilibrium of this game at the beginning of any
stage, let v(k) be the equilibrium expected payoff of a player beginning an amendment
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stage with a previous proposal that offers k to one of the players, say i, and 1−k
2 to

the other two players.
Hence in an equilibrium in which the original proposal is adopted, a proposer

must offer each of the other two players at least δv(k) to induce each to second the
proposal, implying that 1−k

2 ≥ δv(k). The proposer will seek to maximize his share
given this constraint, so his best response is to choose 1−k

2 = δv(k). But notice that
owing to symmetry each of the potential amenders could follow the same strategy
and get the equilibrium proposal adopted, with k for himself. As such, it must be the
case that v(k) = k, and this observation leads to the equation that characterizes this
symmetric subgame-perfect equilibrium:

1 − k

2
= δk or k = 1

1 + 2δ
. (11.9)

Comparing this outcome to that of the closed-rule model, there is one predictable
similarity, together with a perhaps more surprising difference. As in the closed-rule
case, and as in any dynamic bargaining model with discounting, the original proposer
has a first-mover advantage, which is decreasing in the discount factor: the more
patient the players are, the more the proposer has to offer the others.

What is more interesting is the effect of amendments. By comparing the solution
in (11.9) with the solution of the closed-rule case (11.8), we can show that the original
proposer is better off in the closed-rule case.7 The reason is that in the closed-rule case
the proposer can target a subset of the players and play them off against the others,
thus gaining extra bargaining power. With an open rule, such targeting is impossible
if the proposer wants to guarantee that his proposal will pass, because if he caters
to some players at the expense of others then those players who were shortchanged
will have an incentive to amend the proposal at the expense of the proposer. As (11.9)
shows, when the discount factor approaches 1 then the proposer has no bargaining
power at all and the pie is equally split among the players, unlike the closed-rule case,
in which his share approaches 2

3 of the pie.

11.4.2.2 Risky Success We concluded the previous analysis with the observation
that the proposer can guarantee himself a share of the pie equal to k = 1

1+2δ
. An

interesting question is the following: can it be beneficial for the proposer to target
only one of the other two lawmakers and offer him a larger share at the expense of
the remaining one, while taking the risk that the proposal might fail?

To analyze this situation assume again that the proposer keeps k for himself, but
instead of splitting the remaining surplus among the two other players he targets
only one and offers him 1 − k, while the remaining player is offered nothing. The
equilibrium for which we are aiming is one in which the player who was offered a
share of 1 − k moves to second the offer, and hence have it accepted by a majority
of two players. However, the strategy is risky because the player who was offered
nothing by the proposer will certainly propose an amendment. It is easy to see that
any amendment he offers that would give the other player at least 1− k will beat the
original proposal.

7. Subtracting the proposer’s guaranteed-success equilibrium payoff in the open-rule model from his
equilibrium payoff in the closed-rule model with three players yields, for all 1 > δ > 0,(

1 − δ

3

)
−

(
1

1 + 2δ

)
= δ(5 − 2δ)

3(1 + 2δ)
> 0.
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Of course we have to determine what the player who was offered nothing will
himself propose as an amendment. To make things simpler, while focusing as before
on a symmetric subgame-perfect equilibrium, we assume that players follow a simple
selective inclusion strategy. To illustrate this strategy, imagine that the proposer, i,
offers k to himself, 1 − k to player j , and 0 to player h. If j is the randomly chosen
amender then he will second the proposal and have it accepted. If instead h is the
randomly chosen amender then he will make an amendment in which he proposes k

to himself, 1 − k to player j , and 0 to player i. Because player j is indifferent, we
can assume that he will vote for the amendment and cause it to be accepted.

Now we can calculate the symmetric subgame-perfect equilibrium value of k given
the equilibrium restrictions, which in this case are a bit trickier than in the guaranteed-
success case because there is asymmetry between the two responders at the proposal
stage. Define v(k) to be the equilibrium expected payoff of a proposer who offers k

to himself, 1 − k to his coalition partner, and 0 to the third player. Let v(0) be the
equilibrium expected payoff of the player who will be offered 0.

Given the selective inclusion strategies, the proposer’s offer will be accepted with
probability 1

2 , in which case he will get k, and will be rejected with probability 1
2 , in

which case there will be a delay of one period and then the proposer will find himself
in the shoes of the player who gets offered 0. Hence the equilibrium expected payoff
of the proposer is

v(k) = 1
2k + 1

2δv(0). (11.10)

Similarly consider the situation of the player who was offered 0. With probability 1
2

he will not be selected as the amender, in which case he will receive the proposed
0 because the other responder will second the original proposal and it will pass.
However, with probability 1

2 he will be selected, in which case he will find himself in
the position of the proposer after the pie is discounted. Hence the equilibrium expected
payoff of the player who is offered 0 is

v(0) = 1
2δv(k). (11.11)

These two restrictions offer us two equations with three unknowns, v(0), v(k), and
k. The final restriction is the equilibrium requirement that the player who is proposed
the share of 1 − k will indeed accept it. Since he can put himself immediately in the
shoes of the proposer if he is willing to delay the deal by one period, his equilibrium
payoff must be at least as large as what he can get from becoming a proposer, hence
1− k ≥ δv(k), and because the proposer will offer as little as possible to get this player
to respond, we get the third equilibrium restriction, which is

1 − k = δv(k). (11.12)

Solving equations (11.10)–(11.12) yields the solution, which is

k = 4 − δ2

4 + 2δ − δ2

and

v(k) = 2

4 + 2δ − δ2
. (11.13)
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Recall that because there is a probability of 1
2 that the proposer’s offer is rejected,

his equilibrium expected utility is given by v(k) in equation (11.13). By comparing
the solution in (11.13) with the solution of the closed-rule case in (11.8), we can show
that the original proposer is better off in the closed-rule case.8 As before, the closed
rule offers the proposer more bargaining power.

It is most interesting to compare the risky-success symmetric equilibrium payoff
to the guaranteed-success symmetric equilibrium payoff. The risky-success outcome
will yield a higher expected payoff than the guaranteed-success outcome if and only
if the value in (11.13) is greater than the value in (11.9), that is,

2

4 + 2δ − δ2
= 1

1 + 2δ

or

δ >
√

3 − 1.

That is, when the discount factor is above the value
√

3 − 1, the expected payoff
from the risky-success equilibrium is greater than that obtained from the guaranteed-
success equilibrium.

This result not only has interesting implications but also has some intuition behind
it. When the discount factor is high then players are patient, and it becomes quite
costly for the proposer to prevent amendments from both potential amenders. As a
consequence the proposer would rather opt to cater to only one of the two potential
amenders, at the risk of having an amendment on the table that hurts him.

As for the results implication, if we are willing to take seriously the idea that
the equilibrium played by the players will be the one that yields them the highest
expected payoff, then the result suggests two interesting features of open-rule leg-
islative bargaining. The first is that sometimes proposals will pass with a large (in
the guaranteed-success case, unanimous) coalition, while at other times there will be
a minimum coalition. Second, in the event that the minimum coalition is expected,
there is some probability that the proposal fails and amendments impose costly delay
in equilibrium, because every time a proposal fails the surplus is discounted.

11.5 Summary

. Bargaining situations are common across many social settings. Stylized mod-
els of bargaining games can help shed light on the outcomes that are more
likely to occur as a consequence of the bargaining protocol.

. A key determinant of how players will share the surplus from an agreement is
the discount factor. The higher the discount factor the more patient the players,
and the surplus will be shared more equally among them.

8. Subtracting the proposer’s risky-success expected equilibrium payoff in (11.13) from his equilib-
rium payoff in the closed-rule model with three players yields, for all 1 > δ > 0,(

1 − δ

3

)
−

(
2

4 + 2δ − δ2

)
= 6 + 2δ − 5δ2 + δ3

12 + 6δ − 3δ2
> 0.
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. The bargaining protocol and agreement rules will have a significant impact
on how the surplus is shared. In finite games with prespecified alternating
moves, the last player to move has a last-mover strategic advantage, while the
first player has an advantage owing to discounting.

. When the game is not finite or when the role of proposer is determined
randomly with equal probability, there is no last-mover advantage and only
the first-mover advantage remains.

11.6 Exercises

11.1 Disagreement: Construct a pair of strategies for the ultimatum game (T = 1
bargaining game) that constitute a Nash equilibrium and together support the
outcome that there is no agreement reached by the two players and the payoffs
are zero to each. Show that this disagreement outcome can be supported by a
Nash equilibrium regardless of the number of bargaining periods.

11.2 Holdup: Consider an ultimatum game (T = 1 bargaining game) in which
before player 1 makes his offer to player 2, player 2 can invest in the size of the
pie. If player 2 chooses a low level of investment (L) then the size of the pie is
small, equal to vL, while if player 2 chooses a high level of investment (H ) then
the size of the pie is large, equal to vH . The cost to player 2 of choosing L is cL,
while the cost of choosing H is cH . Assume that vH > vL > 0, cH > cL > 0,
and vH − cH > vL − cL.

a. What is the unique subgame-perfect equilibrium of this game? Is it
Pareto optimal?

b. Can you find a Nash equilibrium of the game that results in an outcome
that is better for both players as compared to the unique subgame-
perfect equilibrium?

11.3 Even/Odd Symmetry: In Section 11.2 we analyzed the alternating-offer
bargaining game for a finite number of periods when T was odd. Repeat the
analysis for T even.

11.4 Constant Delay Cost: Consider a two-player alternating-offer bargaining
game in which instead of the pie shrinking by a discount factor δ < 1, the
players each pay a cost ci > 0, i ∈ {1, 2}, to advance from one period to the
next. So if player i receives a share of the pie that gives him a value of xi in
period t then his payoff is vi = xi − (t − 1)ci. If the game has T periods then
a sequence of rejections results in each player receiving vi = −(T − 1)ci.

a. Assume that T = 2. Find the subgame-perfect equilibrium of the game
and show in which way it depends on the values of c1 and c2.

b. Are there Nash equilibria in the two-period game that are not subgame
perfect?

c. Assume that T = 3. Find the subgame-perfect equilibrium of the game
and show in which way it depends on the values of c1 and c2.

11.5 Asymmetric Patience 1: Consider a three-period sequential (alternating-
offer) bargaining model in which two players have to split a pie worth 1
(starting with player 1 making the offer). Now the players have different
discount factors, δ1 and δ2.

a. Compute the outcome of the unique subgame-perfect equilibrium.
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b. Show that when δ1 = δ2 player 1 has an advantage.
c. What conditions on δ1 and δ2 give player 2 an advantage? Why?

11.6 Asymmetric Patience 2: Consider the analysis of the infinite-horizon bar-
gaining model in Section 11.3 and assume that the players have different
discount factors δ1 and δ2. Find the unique subgame-perfect equilibrium using
the same techniques, and show that as δ1 and δ2 become closer in value, the
solution you found converges to the solution derived in Section 11.3.

11.7 Legislative Bargaining Revisited: Consider a finite T -period version of the
Baron and Ferejohn legislative bargaining game with an odd number N of
players and with a closed rule as described in Section 11.4.1.

a. Find the unique subgame-perfect equilibrium for T = 1. Also find a
Nash equilibrium that is not subgame perfect.

b. Find the unique subgame-perfect equilibrium for T = 2 with a dis-
count factor 0 < δ ≤ 1. Also find a Nash equilibrium that is not sub-
game perfect.

c. Compare what the first period’s proposer receives in the subgame-
perfect equilibrium you found in (b) to what a first-period proposer
receives in the two-period, two-person Rubinstein-Ståhl bargaining
game. What intuitively accounts for the difference?

d. Compare the subgame-perfect equilibrium you found in (b) to the so-
lution of the infinite-horizon model in Section 11.4.1. What intuitively
accounts for the similarity?
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12
Bayesian Games

In all the examples and appropriate tools for analysis that we have encountered
thus far, we have made an important assumption: that the game played is common

knowledge. In particular we have assumed that the players are aware of who is play-
ing, what the possible actions of each player are, and how outcomes translate into
payoffs. Furthermore we have assumed that this knowledge of the game is itself com-
mon knowledge. These assumptions enabled us to lay the methodological foundation
for such solution concepts as iterated elimination of dominated strategies, rationaliz-
ability, and most importantly Nash equilibrium and subgame-perfect equilibrium.

Little effort is needed to convince anyone that these idealized situations are rarely
encountered in reality. For example, consider one of our early examples, the duopoly
market game. We have analyzed both the Cournot and Bertrand models of duopolistic
competition, and for each we have a clear and precise, easily understood outcome.
One assumption of the model was that the payoffs of the firms, like their action spaces,
are common knowledge. However, is it reasonable to assume that the production
technologies are indeed common knowledge? And if they are, should we believe that
the productivity of workers in each firm is known to the other firm? More generally,
is it reasonable to assume that the cost function of each firm is precisely known to its
opponent?

Perhaps it is more convincing to believe that firms have a reasonably good idea
about their opponents’ costs but do not know exactly what they are. Yet the analysis
toolbox we have developed so far is not adequate to address such situations. How
do we think of situations in which players have some idea about their opponents’
characteristics but don’t know for sure what these characteristics are? At some level
this is not so different from the situation in a simultaneous-move game in which a
player does not know what actions his opponents are taking, but instead knows what
the set of actions can be.As we have seen earlier, a player must form a conjecture about
the behavior of his opponents in order to choose his best response, and we identified
this idea as the player’s belief over the actions that his opponents will choose. We also
required that these beliefs, and the appropriate best responses, be mutually consistent
and correct for us to be able to use the concept of equilibrium as a method of analysis.

In the mid-1960s John Harsanyi realized the similarity between beliefs over
a player’s actions and beliefs over his other characteristics, such as costs and
preferences. Harsanyi proceeded to develop an elegant and extremely operational way
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to capture the idea that beliefs over the characteristics of other players—their types—
can be embedded naturally into the framework of game theory that we have already
developed. This advancement set Harsanyi up to be the third Nobel Laureate to share
the prestigious prize with John Nash and Reinhard Selten in 1994.

We call games that incorporate the possibility that players could be of different
types (a concept soon to be well defined) games of incomplete information. As with
games of complete information, we will develop a theory of equilibrium behavior
that requires players to have beliefs about their opponents’ characteristics and their
actions, and furthermore requires that these beliefs be consistent or correct. It should
be no surprise that this will require very strong assumptions about the cognition of the
players: we assume that common knowledge reigns over the possible characteristics
of players and over the likelihood that each type of player is indeed part of the game.

To develop this concept further, let’s go back to the structure of a strategic-form
game in which there is a set of players, N = {1, 2, . . . , n} and for each player i ∈ N ,
a set of actions Ai. Continue to assume that the set of players and the possible actions
that each player has are common knowledge. The missing component is the set of
payoff functions or preferences that the players have over outcomes. To capture the
idea that a player’s characteristics may be unknown to other players, we introduce
uncertainty over the preferences of the players. That is, instead of having a unique
payoff function for each player that maps profiles of actions into payoffs, games of
incomplete information allow players to have one of possibly many payoff functions.
We associate each of a player’s possible payoff functions with the player’s type, which
captures the idea that a player’s preferences, or type, may not be common knowledge.

To operationalize this idea and endow players with well-defined beliefs over
the types of other players, Harsanyi (1967–68) suggested the following framework.
Imagine that before the game is played Nature chooses the preferences, or type,
of each player from his possible set of types.1 Another way to think about this
approach is that Nature is choosing a game from among a large set of games, in
which each game has the same players with the same action sets, but with different
payoff functions. If Nature is randomly choosing among many possible games, then
there must be a well-defined probability distribution over the different games. It is
this observation, together with the requirement that everything about a game must be
common knowledge, that will make this setting amenable to equilibrium analysis.

At this stage an example is useful. Consider the following simple “entry game,”
depicted in Figure 12.1, in which an entrant firm, player 1, decides whether or not to
enter a market. The incumbent firm in that market, player 2, decides how to respond
to an entry decision of player 1 by either fighting or accommodating entry. The
payoffs given in Figure 12.1 show that if player 1 enters, player 2’s best response is to
accommodate, which in turn implies that the unique subgame-perfect equilibrium is
for player 1 to enter and for player 2 to accommodate entry. (Convince yourself that
there is another pure-strategy Nash equilibrium that is not subgame perfect.)

Now imagine that there is one type of player 1 with payoffs as given in Figure 12.1,
and there are two types of player 2. The first type, called “rational,” has payoffs as
shown in Figure 12.1. The second type, called “crazy,” enjoys fighting and the payoff

1. As we will soon see, two different types of a player may not necessarily differ in that player’s
preferences, but they may differ in the knowledge that the player has about the types of other players,
or about other characteristics of the game. Since this concept is a bit more subtle, we leave it for later,
when we will be more comfortable with the notion of Bayesian games and incomplete information.



Chapter 12 Bayesian Games . 243

1
1

–1
–1

2

Fight Accommodate

Out Enter

0
2

1

FIGURE 12.1 A simple entry game.
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FIGURE 12.2 An incomplete-information entry game.

he gets from (Enter, Fight) is 2 instead of −1. The structure of the game is fixed by the
set of players N and the action spaces Ai for each player i ∈ N, yet Nature chooses
which type of player 2 is playing the game with player 1. To complete the structure of
this game we need to state the likelihood or probability of each type being selected by
Nature. Let p denote the probability that Nature chooses the rational type. We can now
depict the extensive form of this incomplete-information entry game in Figure 12.2.

Before being able to analyze this game, we must address the issue of what players
know when they play the game. Recall that our motivating examples were descriptions
of situations in which players were uncertain about the preferences of other players.
To discuss optimal behavior, we have to let the players maximize their payoffs given
their beliefs about the situation they are in, just as we did with the analysis of single-
person decisions and with games of complete information. Thus we must assume that
players know their own preferences, which in turn will allow us to analyze a player’s
best response given his assumptions about the behavior of his opponents. This is the
reason for the single information set in Figure 12.2, which shows that player 1 is
uncertain about the preferences of player 2, but player 2 knows what his preferences
are when he needs to make a decision.

A final issue still needs to be addressed. If players know their own preferences, but
they do not know the preferences or types of their opponents, then what must players
know in order for them to have a well-defined best response and in turn let us perform
equilibrium analysis? The natural step, as Harsanyi realized, is to require players to
form correct beliefs about the preferences and types of their opponents. This in turn
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makes it possible for players to form rational conjectures about the way in which their
opponents will play the game.

For this reason we assume that, despite each player not necessarily knowing the
actual preferences of his opponents, he does know the precise way in which Nature
chooses these preferences. That is, each player knows the probability distribution over
types, and this itself is common knowledge among the players of the game. In the entry
game of Figure 12.2 this is given by specifying that p is common knowledge, and
hence player 1 knows that the probability that he is at the left node in his information
set is p. This is often called the common prior assumption, and it means that all the
players agree on the way the world works, as described by the probabilities according
to which Nature chooses the different types of players. This is of course a strong
assumption, but without it we will not be able even to discuss equilibrium behavior.

Now that we have completed the extensive-form representation of this game, we
can turn to its normal form. Notice that in the normal form player 2 must have four pure
strategies: in each of his information sets he has two actions from which to choose.
Let’s define a strategy of player 2 as xy ∈ {AA, AF, FA, FF }, where x describes
what a rational player 2 does and y what a crazy one does. This is a preview of what we
will soon see more generally: when we introduce incomplete information, a strategy
of a player is now a prescription that tells each type of a player what he should do if
this is the type that Nature chose for the game. The strategy set for player 1 is simply
{E, O}.

As we have seen earlier in Section 7.3, each pair of pure strategies will result in a
unique path of play that starts with Nature’s choice and then follows with the actions
of both players. In this example, if, say, player 2 plays AF (A if he is rational and
F if he is crazy), and if player 1 plays E, then with probability p the outcome will
yield payoffs of (1, 1), and with probability (1− p) the payoffs will be (−1, 2). Thus
in expectations the pair of payoffs from the pair of strategies (AF, E) is

v1 = p × 1 + (1 − p) × (−1) = 2p − 1

v2 = p × 1 + (1 − p) × 2 = 2 − p.

In this way we can compute the expected payoffs of both players from each pair of
strategies, which results in the following normal-form matrix game:

Player 2
AA AF FA FF

Player 1
O 0, 2 0, 2 0, 2 0, 2

E 1, 1 2p − 1, 2 − p 1 − 2p, 1 − 2p −1, 2 − 3p

For concreteness, set p = 2
3 , which results in the following normal-form matrix

game:

Player 2
AA AF FA FF

Player 1
O 0, 2 0, 2 0, 2 0, 2

E 1, 1 1
3 , 4

3 − 1
3 , − 1

3 −1, 0

Now that we have the normal-form matrix of this game, we can be agnostic about
its origins and the way we constructed it, and instead just treat it as we would any other
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normal-form game, using the standard tools to find the possible Nash equilibria. That
is, we can treat the payoff entries in the matrix as if they came from some alternative
game without types or Nature, in which player 1 has two pure strategies and player
2 has four. Considering the best responses of each player, this game has three pure-
strategy Nash equilibria: (O, FA), (O, FF ), and (E, AF ). Also notice that of these
three, only (E, AF ) is a subgame-perfect equilibrium.

Though our analysis of this game seems complete (ignoring mixed strategies),
it may still be confusing to appreciate fully the strides we took from the start of
describing a world in which players were not sure about certain elements of the
game. First, we modeled this situation as one in which players have uncertainty
about the preferences of other players. Second, we assumed that players share the
same beliefs about this uncertainty, which allowed us to create a new game for
which the standard equilibrium analysis applied. In particular the matrix game has
two players with expected payoffs derived from the probability distribution over the
different types of each player (in this case only player 2 had types). This was John
Harsanyi’s ingenious solution: we cannot perform equilibrium analysis unless we
assume that each player knows the distribution of his opponents’ types (the common
prior assumption). Then, with this requirement in place, once a player assumes some
behavior of the different types of his opponents then he can calculate his expected
payoff from his own different actions. In this way Harsanyi changed the complex and
challenging concept of incomplete information into a well-known game of imperfect
information, in which Nature chooses the players’ types and we can then use our
standard tools of analysis.

There remains one potentially confusing point that is worth clarifying before we
go on to the more general formal definitions. We can see how each type of player i

can calculate his expected payoffs given a belief over the actions of each type of his
opponents. But by writing a single game of imperfect information as we did, we are
averaging the payoffs of all the types for each player using the likelihood of each
type as the weight. That is, we have produced a “meta-player” (e.g., player 2 in the
example) who cares about this average payoff across his different types rather than
looking at the game one type at a time.

The question is, why will this meta-player’s optimal response coincide with the
optimal responses of each of the different types of which he is composed? This is
precisely where the definition of strategies in extensive-form games comes in. When
player 2 in the matrix game chooses the strategy AA, for example, then conditional on
player 1 choosing E, the rational type of player 2 is playing a best-response strategy
A, while the crazy type is playing his dominated strategy, A. For this reason AA in the
matrix game is not a best response to E, but instead AF is a best response to E. This
follows because when player 1 plays E, AF gives the crazy type a higher payoff than
AA, while the payoff to the rational type is unchanged. As a consequence AF gives
the meta-player higher expected payoffs than AA when player 1 plays E—another
elegant consequence of Harsanyi’s solution.

There is, however, an important point worth emphasizing further. Harsanyi’s
solution to the problem of incomplete information is not something we get for
free. We must take a big leap of faith by assuming that the distribution of types
(in the example given by p) is common knowledge. Before introducing incomplete
information, the Nash equilibrium concept required players to form conjectures, or
beliefs, that in equilibrium have to match the choices of their opponents. Here we
must ask for more: all the players agree on the way in which players’ types differ
from each other, and on the way in which Nature chooses among these profiles
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of types. Therefore when we apply our models and tools to realistic situations, we
should be mindful of the strong informational assumptions that we must make, which
should guide us in putting confidence in our predictions or prescriptions. This is
where art meets science: the modeler must be conscientious about when it makes
sense to apply models with such strong assumptions, and when this leap requires too
much faith.

12.1 Strategic Representation of Bayesian Games

12.1.1 Players, Actions, Information, and Preferences

Recall from Section 3.1 that a normal-form game of complete information is repre-
sented by

〈
N, {Si}ni=1, {vi(.)}ni=1

〉
, where N = {1, 2, . . . , n} is the set of players, Si is

the strategy space of player i, and vi : S → R is the payoff function of player i, where
S ≡ S1 × S2 × . . . × Sn. Also recall that in a simultaneous-move (or static) game,
each player’s strategy set Si is associated with his action set Ai.

To model situations in which players know their own payoffs from outcomes
(different profiles of actions), but do not know the payoffs of the other players, we
introduce the concept of incomplete information, which is composed of three new
components. First, a player’s preferences are associated with his type. If a player can
have several different preferences over outcomes, each of these will be associated
with a different type. More generally information that the player has about his own
payoffs, or information he might have about other relevant attributes of the game, is
also part of what defines a player’s type. Second, uncertainty over types is described
by Nature choosing types for the different players. Thus we introduce type spaces
for each player, which represent the sets from which Nature chooses the players’
types. Last but not least, there is common knowledge about the way in which Nature
chooses between profiles of types of players. This is represented by a common prior,
which is the probability distribution over types that is common knowledge among the
players. Because every agent learns his own type, he can use the common prior to
form posterior beliefs over the types of other agents. Formally we offer the following
definition:

Definition 12.1 The normal-form representation of an n-player static Bayesian
game of incomplete information is〈

N, {Ai}ni=1, {�i}ni=1, {vi(.; θi), θi ∈ �i}ni=1, {φi}ni=1

〉
,

where N = {1, 2, . . . , n} is the set of players; Ai is the action set of player i;
�i = {θi1, θi2, . . . , θiki

} is the type space of player i; vi : A × �i → R is the type-
dependent payoff function of player i, where A ≡ A1 × A2 × . . . × An; and φi

describes the belief of player i with respect to the uncertainty over the other players’
types, that is, φi(θ−i|θi) is the (posterior) conditional distribution on θ−i (all other
types but i) given that i knows his type is θi.

As the definition states, aside from the three basic components of players, actions,
and preferences, the addition of types, type-dependent preferences, and beliefs about
the types of other players captures the ideas illustrated earlier. Notice that in the
definition we assume that each player’s type space is finite, so that there are a total of
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ki types for each player. It is not difficult to expand the definition to include infinite
type spaces.2

It is convenient to think about a static Bayesian game as one that proceeds through
the following steps:

1. Nature chooses a profile of types (θ1, θ2, . . . , θn).

2. Each player i learns his own type, θi, which is his private information, and
then uses his prior φi to form posterior beliefs over the other types of players.

3. Players simultaneously (hence this is a static game) choose actions ai ∈ Ai,

i ∈ N .

4. Given the players’ choices a = (a1, a2, . . . , an), the payoffs vi(a; θi) are
realized for each player i ∈ N .

In the foregoing definition a player’s payoff vi(a; θi) depends on the actions
of all players and only on i’s type, but it does not depend on the types of the
other players θ−i. This particular assumption is known as the private values case
because each type’s payoff depends only on his private information. This case
is not rich enough to capture all the interesting examples that we will analyze,
and for this reason we will later introduce the case of common values, in which
vi(a1, a2, . . . , an; θ1, θ2, . . . , θn) is possible. For expositional clarity, we first explore
the private values setting.

Remark We took a very simple approach by effectively assuming that a player’s
beliefs are about the preferences of other players. Of course life is more complex
than that. To use the tools of strategic analysis rigorously, player i’s beliefs need also
be well defined over the beliefs of his opponents about the preferences of player i,
about the beliefs of the other players about the beliefs of player i about the beliefs of
the other players about i’s preferences, and so on ad infinitum. As you can imagine, all
this gets very messy very fast. Harsanyi’s celebrated solution to this problem followed
from his argument that rather than write down the entire hierarchy of beliefs, it is
possible to consider a model in which each player’s “type” describes his preferences
and all of his beliefs. Years later Mertens and Zamir (1985) and Brandenburger and
Dekel (1993) made Harsanyi’s idea precise and showed that it is indeed possible to
define a rich type space that would allow for all possible hierarchies of belief. (These
two papers are very technical and mathematically sophisticated.)

12.1.2 Deriving Posteriors from a Common Prior: A Player’s Beliefs

In the definition of a Bayesian game we introduced the concept of a common prior,
that is, all the players share the same beliefs about the distribution over the choices
made by Nature. In this section we explore the meaning of each player i using the
common prior to derive a posterior belief about the distribution of the other types
of players. This concept is a simple application of conditional probabilities. If this
material is unfamiliar to you, you should consult Section 19.4.3.

2. For example, a type space can be an interval �i = [θi, θ i], and instead of probabilities pi over
the distribution of other players’ types, there will be a well-defined density fi(.). This point will be
revisited, together with an example, in Section 12.2.2.
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Conditional probabilities follow a mathematical rule that derives the way in which
a player or decision maker should change a prior (initial) belief in the light of new
evidence, resulting in a posterior (updated) belief. In our application the idea can
be described as follows. First, before Nature chooses the actual type of each player,
imagine that every player does not yet know what his type will be; but he does know
the probability distribution that Nature uses to choose the types for all the players.
Later, after Nature has chosen a type for each player, they all independently and
privately learn their types. This new piece of information for each player, his type,
may provide some new piece of evidence about how the other players’ types may
have been chosen. It is in this respect that a player may derive new beliefs about the
other players once he learns his type.

As a concrete example, imagine that there are two of many possible states of
Nature or events (the possible choices that Nature can make). One is that it will
be sunny (S) and the other is that the waves will be high (H ). These two states can
occur exclusively or together according to some prior distribution φ(.). That is, φ(.)

describes the probabilities assigned to any combination of these states being true. Let
φ(S) be the prior probability that it will be sunny, φ(H) be the prior probability that
the waves will be high, and φ(S ∩ H) be the prior probability that it will be sunny
and that the waves will be high. Let’s imagine that you wake up and see that it is
sunny; without seeing them, what can you infer about the probability that the waves
are high? It is not necessarily true that it is φ(H), because you just learned that it
is sunny and this new information may be relevant. This is where the conditional
probability formula applies, because it precisely computes the probability of state H

given that you know that state S happened. Formally we have

Definition 12.2 Conditional on event S being true, the conditional probability that
event H is true is given by

Pr{H |S} = φ(S ∩ H)

φ(S)
. (12.1)

The intuition is simple. If we know that S is true then there are two possibilities:
either H is true or it is not. We can therefore think of two possible “combined” events.
The first event is that both S and H are true, which given the prior belief occurs with
probability φ(S ∩ H). The second event is that S is true but H is false, which happens
with probability φ(S ∩ [not H ]). Thinking of both S and H together, we can ask, what
is the probability that S is true? It must be the sum φ(S) = φ(S ∩ H) + φ(S ∩ [not
H ]) because S can be true either with H being true or with [not H ] being true, and
clearly H and [not H ] are mutually exclusive events. As a consequence, if I know
that S is true then conditional on this knowledge, the likelihood of H being true is the
relative likelihood of both S and H being true, among all the states in which S can
be true. Using our particular example,

Pr{H |S} = φ(S ∩ H)

φ(S ∩ H) + φ(S ∩ [not H ])
= φ(S ∩ H)

φ(S)

To put this into the context of a Bayesian game, consider the following example.
Imagine that there are two players, 1and 2, each having two possible types, θ1 ∈ {a, b}
and θ2 ∈ {c, d}. Nature chooses these types according to a prior over the four possible
type combinations, where the following joint distribution matrix describes Nature’s
prior:
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Player 2’s type
c d

Player 1’s type
a 1

6
1
3

b 1
3

1
6

That is, the prior probability that player 1 is type a and player 2 is type d is equal to
the prior probability that player 1 is type b and player 2 is type c, and this probability
is 1

3. Similarly the prior probability that player 1 is type a and player 2 is type c is
equal to the prior probability that player 1 is type b and player 2 is type d, and this
probability is 1

6 . The common prior assumption implies that each of the two players
takes as given that Nature chooses the types according to the matrix.

Now imagine that player 1 learns that his type is a. What must be his belief about
player 2’s type? Using the conditional probability formula in (12.1),

φ1(θ2 = c|θ1 = a) = Pr{θ1 = a ∩ θ2 = c}
Pr{θ1 = a} =

1
6

1
6 + 1

3

= 1

3
,

and similarly

φ1(θ2 = d|θ1 = a) = Pr{θ1 = a ∩ θ2 = d|}
Pr{θ1 = a} =

1
3

1
6 + 1

3

= 2

3
.

12.1.3 Strategies and Bayesian Nash Equilibrium

Recall that in the static normal-form games of complete information described in
Section 3.1 we did not make a distinction between actions and strategies because
choices were made once and for all. For games of incomplete information, however,
we need to be a bit more careful to specify strategies correctly. The representation of a
Bayesian game described earlier has action sets, Ai, for each player i ∈ N . However,
each player i can be one of several types θi ∈ �i, and each type θi may choose a
different action from the set Ai. Thus to define a strategy for player i we need to
specify what each type θi ∈ �i of player i will choose when Nature calls upon this
type to play the game. For this we define strategies as follows:

Definition 12.3 Consider a static Bayesian game〈
N, {Ai}ni=1, {�i}ni=1, {vi(.; θi), θi ∈ �i}ni=1, {φi}ni=1

〉
.

A pure strategy for player i is a function si : �i → Ai that specifies a pure action
si(θi) that player i will choose when his type is θi. A mixed strategy is a probability
distribution over a player’s pure strategies.

This turns out to be a convenient way to specify strategies for Bayesian games. You
can think of it as if each player chose his type-contingent strategy before he learned his
type and then played according to that strategy. This should remind you of strategies
for extensive-form games that are defined as mappings from information sets to
actions, where a pure strategy is a rulebook of what to choose in each information
set. In Bayesian games we can think of the types of players as being their information
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sets: when player i learns his type then it is as if he is in a unique information set that
is identified with this type.

This observation is useful because it allows us to consider consistently the beliefs
of players over the strategies of their opponents when their opponents can be of
different types. To illustrate this point, consider the entry game used to demonstrate
the central ideas developed here, shown in Figure 12.2 and in its normal form by the
following matrix:

Player 2
AA AF FA FF

Player 1
O 0, 2 0, 2 0, 2 0, 2

E 1, 1 1
3 , 4

3 − 1
3 , − 1

3 −1, 0

As we can now see, this game is just a special case of the more general Bayesian
game described in definition 12.1. The strategy of the incumbent player 2 depends
on his type, and hence the matrix representation of this game includes four type-
dependent pure strategies. Player 1 has correct beliefs about the distribution of types
given by Nature’s probability distribution, and together with a specific strategy of
player 2, player 1 will have well-defined beliefs over the different continuation paths
and outcomes of the game.

It is useful to stress the way in which beliefs over outcomes are determined in
static Bayesian games of incomplete information, which allows players to evaluate
their expected payoffs from their alternative choices. In the entry game in Figure 12.2,
let θ2 ∈ {r, c} denote player 2’s type (for rational and crazy), with p being the common
prior that player 2 is rational. Now consider the case in which player 1 believes that
player 2 is using the pure strategy AF, which can be described as

s2(θ2) =
{

A if θ2 = r

F if θ2 = c.

In this simple example there is only one type of player 1. From player 1’s own
perspective, his expected payoff from playing E will be

Ev1
(
E, s2

(
θ2
)) = pv1(E, s2(r)) + (1 − p)v1(E, s2(c))

= p × 1 + (1 − p) × (−1),

which with p = 2
3 yields Ev1

(
E, s2

(
θ2
))= 1

3, corresponding to the payoff entry from
the pure-strategy pair (E, AF) in the matrix that represents this game.3

There are two observations worth emphasizing at this point. First, notice that if
player i is using a pure (type-dependent) strategy, while Nature chooses player i’s
types randomly, then as far as players j = i are concerned they are facing a player i

who is using a mixed strategy. Again, using the example of the entry game, if player 2
uses the strategy AF then as far as player 1 is concerned, it is as if player 2 is choosing
A with probability p and F with probability 1 − p.

3. Because player 1 has a single type, writing Ev1
(
E, s2

(
θ2
)

; θ1
)

and p1
(
θ2|θ1

)
has an obvious

redundancy.
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Second, as mentioned briefly earlier, we are effectively specifying player i’s
strategy for all his information sets—one for each type—just as in any extensive-
form game. Thus, given a certain realization of Nature, we are specifying what any
player i will do even for those types that have not been realized. The reason we
must specify i’s strategy completely is so that player i’s opponents can form well-
defined beliefs over i’s behavior. Players j = i need to combine their beliefs from their
posterior over i’s types together with their beliefs over what each type θi of player i

plans to do. Without this complete specification, players j = i cannot calculate their
expected payoffs from their own actions.

Now that we have completely defined what a static Bayesian game is, and what
the strategies for each player are, it is easy to define a solution concept that is derived
from Nash equilibrium as follows:

Definition 12.4 In the Bayesian game〈
N, {Ai}ni=1, {�i}ni=1, {vi(.; θi), θi ∈ �i}ni=1, {φi}ni=1

〉
,

a strategy profile s∗ = (s∗
1(.), s∗

2(.), . . . , s∗
n
(.)) is a pure-strategy Bayesian Nash

equilibrium if, for every player i, for each of player i’s types θi ∈ �i, and for every
ai ∈ A, s∗

i
(.) solves∑

θ−i∈�−i

φi(θ−i|θi)vi(s
∗
i
(θi), s∗

−i
(θ−i); θi) ≥

∑
θ−i∈�−i

φi(θ−i|θi)vi(ai, s∗
−i

(θ−i); θi).

(12.2)

That is, regardless of the type realization, no player wants to change his strategy s∗
i
(.).

To restate the definition, a Bayesian Nash equilibrium has each player choose
a type-contingent strategy s∗

i
(.) so that given any one of his types θi ∈ �i, and his

beliefs about the strategies of his opponents s∗
−i

(.), his expected payoff from s∗
i
(θi)

is at least as large as that from any one of his actions ai ∈ Ai. His expectations are
derived from the strategies played by other players and the mixing that occurs owing
to the randomization of nature that each player faces through his beliefs φi(θ−i|θi).

Note that on the right side of the inequality (12.2) we can replace ai with s′
i
(θi) so

that it reads∑
θ−i∈�−i

φi(θ−i|θi)vi(s
∗
i
(θi), s∗

−i
(θ−i); θi) ≥

∑
θ−i∈�−i

φi(θ−i|θi)vi(s
′
i
(θi), s∗

−i
(θ−i); θi),

which means that player i of type θi does not want to replace the strategy s∗
i
(.) with

any other s′
i
(.) ∈ Si because this inequality holds for every type θi ∈ �i. It suffices

to consider any deviation from s∗
i
(.) to an action, ai, instead of the more complex

notion of deviating to a type-dependent strategy, s′
i
(.). Also note that the definition is

stated for pure-strategy Bayesian Nash equilibria. The definition of a mixed-strategy
Bayesian Nash equilibrium is the straightforward extension in which, instead of si(.)

that maps types into pure actions, we will include σi(.) that maps types into probability
distributions over actions.

Remark In the definition of a Bayesian Nash equilibrium we can write the condition
(12.2) of playing a best response more generally as follows:

Eθ−i
[vi(s

∗
i
(θi), s∗

−i
(θ−i); θi)|θi] ≥ Eθ−i

[vi(ai, s∗
−i

(θ−i); θi)|θi] for all ai ∈ Ai.
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Just as in (12.2) we take the expectations of player i over the realizations of types
θ−i when player i knows his own type (hence the conditional expectation takes
the form Eθ−i

[.|θi], which is conditional on the realization of θi). This notation is
more general in the sense that it is not restricted to a finite type space and instead
can apply to a continuum of types for each player. For example, each player may
have an infinite number of possible types drawn from an interval �i = [θi, θ i], with
cumulative distribution Fi(θi) and density function fi(θi) = F ′

i
(θi). In this case the

expected payoff of player i will be written as an integral (more precisely, n − 1
integrals) that forms the expectations over the realizations of the other players’ types,
and accordingly their actions as derived from their strategies.

12.2 Examples

This section offers two examples as illustrations of Bayesian games of incomplete
information. In the first example each player has a finite number of actions and types,
while in the second each player has a continuum of types. Sections 12.3–12.5 present
some important applications of Bayesian games.

12.2.1 Teenagers and the Game of Chicken

It is often the case that a player who finds himself in some game of conflict will hold
out and suffer in order to appear strong, instead of letting his rival get the better of him.
Be it firms in the marketplace, politicians in government, countries at war, or even
kids on the playground, the optimal behavior will depend on some combination of
each player’s tendency to be aggressive and his belief about his opponent’s tendency
to be aggressive.

To illustrate this idea, consider a simple game of aggression that is known to many
teenagers: the game of “chicken.” The 1955 film Rebel Without a Cause features James
Dean as a juvenile delinquent and introduced to the silver screen one rather dangerous
variant of the game. In the movie two teenagers simultaneously drive their cars toward
the edge of a cliff. The first one to jump out is considered chicken and loses the contest.
(In the movie one dies, and coincidentally Dean himself died in a car accident just
before the film was released.) Many other films have featured variations on this game
of chicken, a well-known example being Grease (1978), starring John Travolta. The
following example is yet another variant of the game.

Two teenagers, players 1 and 2, have borrowed their parents’ cars and decided to
play the game of chicken as follows: They drive toward each other in the middle of a
street, and just before impact they must simultaneously choose whether to be chicken
and swerve to the right, or continue driving head on. If both are chicken then both
gain no respect from their friends but suffer no losses; thus both get a payoff of 0.
If i continues to drive while j = i plays chicken then i gains all the respect, which
is a payoff of R, and j gets no respect, which is worth 0. In this case both players
suffer no additional losses. Finally if both continue to drive head on then they split
the respect (because respect is considered to be relative), but an accident is bound
to happen and they will at least be reprimanded by their parents, if not seriously
injured. An accident imposes a personal loss of k on each player, so the payoff to
each one is R

2 − k.
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FIGURE 12.3 The game of chicken with incomplete information.

There is, however, a potential difference between these two youngsters: The
punishment, k, depends on the type of parents they have. For each kid, parents can be
either harsh (H ) or lenient (L) with equal probability, and the draws from Nature on
the types of parents are independently distributed. This means that the likelihood that
player i’s parents are harsh is equal to 1

2 and is independent of the type of parents that
player j has. If player i’s parents are harsh then they will beat the living daylights
out of their child, which imposes a high cost of an accident, denoted by k = H . If
instead the parents are lenient then they will give their child a long lecture on why
his behavior is unacceptable, which imposes a lower cost of an accident, denoted by
k = L < H . Each kid knows the type of his parents but does not know the type of
his opponent’s parents. The distribution of types is common knowledge (this is the
common prior assumption).

The extensive form of this game is depicted in Figure 12.3. There are four states
of Nature, θ1θ2 ∈ {LL, LH, HL, HH } that denote the types of player 1 and player
2, respectively, and each of these four states occurs with equal probability because of
the probability distributions described earlier. The structure of the information sets
follows from the knowledge of the players when they make their moves. Player 1,
for example, cannot distinguish between the states of Nature LL and LH (his type is
L), nor can he distinguish between HL and HH (his type is H ). However, he knows
what his own type is, and hence he can distinguish between these two pairs of states. A
similar logic explains the information sets of player 2. The action sets of each player
are A1 = {C, D} and A2 = {c, d}, where C (or c) stands for “chicken” and D (or d)
stands for “drive.”

From the extensive form in Figure 12.3 we can derive the matrix form as follows.
A strategy for player 1 is denoted by xy ∈ S1 = {CC, CD, DC, DD}, where x is
what he does if he is an L type and y is what he does if he is an H type. Similarly
S2 = {cc, cd, dc, dd}. The payoffs are calculated using the probabilities over the
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states of Nature together with the strategies of the players. For example, if player
1 chooses CD and player 2 chooses dd then the expected payoffs for player 1 are

Ev1(CD, dd) = 1

4
× v1(C, d; L) + 1

4
× v1(C, d; L) + 1

4
× v1(D, d; H) + 1

4
× v1(D, d; H)

= 1

4
× 0 + 1

4
× 0 + 1

4
×

(
R

2
− H

)
+ 1

4
×

(
R

2
− H

)
= R

4
− H

2

and the expected payoffs for player 2 are

Ev2(CD, dd) = 1

4
× v2(C, d; L) + 1

4
× v2(C, d; H) + 1

4
× v2(D, d; L) + 1

4
× v2(D, d; H)

= 1

4
× R + 1

4
× R + 1

4
×

(
R

2
− L

)
+ 1

4
×

(
R

2
− H

)
= 3R

4
− L

4
− H

4
.

In a similar way we can calculate the payoffs from all the other combinations of pure
strategies for each player (this would be useful practice for you if things still feel a
bit shaky mathematically). This results in the following matrix-form Bayesian game:

Player 2
cc cd dc dd

CC 0, 0 0, R
2 0, R

2 0, R

Player 1
CD R

2 , 0 3R
8 − H

4 , 3R
8 − H

4
3R
8 − H

4 , 3R
8 − L

4
R
4 − H

2 , 3R
4 − L

4 − H
4

DC R
2 , 0 3R

8 − L
4 , 3R

8 − H
4

3R
8 − L

4 , 3R
8 − L

4
R
4 − L

2 , 3R
4 − L

4 − H
4

DD R, 0 3R
4 − L

4 − H
4 , R

4 − H
2

3R
4 − L

4 − H
4 , R

4 − L
2

R
2 − L

2 − H
2 , R

2 − L
2 − H

2

To solve for the Bayesian Nash equilibria we need to have more information about
the parameters R, H , and L. Assume that R = 8, H = 16, and L = 0, which results
in the following matrix-form game:

Player 2
cc cd dc dd

CC 0, 0 0, 4 0, 4 0, 8

Player 1
CD 4, 0 −1, −1 −1, 3 −6, 2

DC 4, 0 3, −1 3, 3 2, 2

DD 8, 0 2, −6 2, 2 −4, −4

A quick analysis reveals that the game has a unique pure-strategy Bayesian Nash
equilibrium: (DC, dc). That is, the children of lenient parents will continue driving
head on, while those of harsh parents will swerve to avoid the costly consequences. If
the payoffs we assumed are indeed representative of this situation then the view that
harsh upbringing yields better outcomes can be supported. Perhaps, however, children
of lenient parents learn somehow to respect their parents’ property (the car), while
children of harsh parents, despite anticipating the pain of a harsh punishment, do not
respect their parents’ property. In light of this different description, we might assume
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that L = 16 and H = 0, which would result in the opposite prediction. Hence, as in
any game, we need to get the payoffs right in order to feel comfortable offering policy
recommendations.

12.2.2 Study Groups

Some if not most of you have participated in study groups, in which each student
takes upon himself some effort, the fruits of which are shared with the other group
members. Let’s consider such a situation with two students, players 1 and 2, who have
to hand in a joint lab assignment. Each student i can either put in the effort (ei = 1)
or shirk (ei = 0), where the cost of putting in the effort is the same for each student
and is given by some c < 1, while shirking involves no cost. If either one or both of
the students put in the effort then the lab assignment is a success, while if both shirk
then it is a failure.

Students vary in how much they care about their educational success, which is
described by the following specification. Each student has a type θi ∈ [0, 1], which
is independently and uniformly distributed over this interval. That is, for each player
i the distribution of his type is F(θi) = θi for θi ∈ [0, 1], and the density is f (θi) = 1
for θi ∈ [0, 1]. Student i’s personal value from a successful assignment is given by the
square of his type, θ2

i
. Hence if student i chooses to put in the effort then his payoff is

guaranteed to be θ2
i

− c. If he chooses to shirk, however, then his payoff depends on
what his partner does. If his partner j puts in the effort then student i’s payoff is θ2

i
,

while if his partner j shirks as well then student i’s payoff is 0. Each student knows
only his own type before choosing his effort e. It is also common knowledge that the
types are distributed independently and uniformly on [0, 1] and that the cost of effort
is c.

This is an example of a Bayesian game with continuous type spaces and discrete
sets of actions. It is not too useful to try to draw the game tree that represents this game
because of the continuous types, nor can we derive a matrix because, despite the two
possible actions, e ∈ {0, 1}, the continuous types imply that there is a continuum of
strategies: a pure strategy for player i is a function si : [0, 1] → {0, 1} that identifies
a choice of ei ∈ {0, 1} for every type θi ∈ [0, 1].

Given a belief of player i about the strategy of player j , the only factor that affects
i’s payoff is the probability that player j chooses ej = 1. That is, if we consider two
strategies of player j , sj(θj) and ŝj (θj)—which result in the same probability that
he chooses ej = 1, so that Pr{sj(θj) = 1} = Pr{̂sj(θj) = 1}—then player 1 gets the
same expected payoff from not choosing to put in his own effort. (Recall that player
i’s payoff from putting in effort ei = 1 is equal to θ2

i
− c regardless of the choice of

player j .)
The best response of player i will be to choose effort e = 1if this is (weakly) better

than choosing e = 0, which will be true if and only if

θ2
i

− c ≥ θ2
i

Pr{sj(θj) = 1},

which can be rewritten as

θi ≥
√

c

1 − Pr{sj(θj) = 1} . (12.3)



256 . Chapter 12 Bayesian Games

This in turn implies the following:

Claim 12.1 The best response of player i to any strategy sj(θj) is a threshold rule:
there exists some θ̂i such that i’s best response is to choose e = 1 if θi ≥ θ̂i and to
choose e = 0 if θi ≤ θ̂i.

The claim follows directly from (12.3) because for any strategy of player j the
right side of the inequality is a constant. The intuition behind this result is quite simple.
Imagine that player i believes that Pr{sj(θj) = 1} = 0, so that he expects his partner
to shirk for sure. If player i cares enough about the grade, namely θ2

i
− c > 0, then he

should put in the effort e = 1 in order to succeed. This will be true for any θi ≥ √
c, so

that the type θi = √
c of player i is just indifferent between working and shirking.

If instead player i believes that his partner will choose e = 1 with some positive
probability then player i can “free ride” a bit, and now the type θi = √

c is no longer
indifferent and strictly prefers to shirk, as will some small interval of types just above
θi = √

c. For any given strategy of player j this type of player i who doesn’t care
enough about the grade (

θi <

√
c

1 − Pr{sj(θj) = 1}
)

will shirk. If the probability that player j puts in the effort e = 1 is really high then
c

1−Pr{sj (θj )=1} > 1 and player i will shirk for sure.

This means that we are looking for a Bayesian Nash equilibrium in which each
student has a threshold type θ̂i ∈ [0, 1] such that4

si(θi) =
{

0 if θi < θ̂i

1 if θi ≥ θ̂i.

This observation lets us calculate what a player’s best-response function is given his
belief about the threshold strategy of his opponent. If player j is using a threshold θ̂j

so that e = 1 if and only if θj ≥ θ̂j then it follows that Pr{sj(θj) = 1} = 1 − θ̂j . This
in turn means that player i will choose e = 1 if and only if

θi ≥
√

c

θ̂j

. (12.4)

This in turn results in the best response of player i. If θ̂j > c then the right side of
(12.4) is less than 1, implying that player i’s threshold is less than 1. If θ̂j < c then
the right side of (12.4) is greater than 1, implying that player i’s threshold is equal
to 1 (it cannot of course be greater than 1). Define the best response of player i,
BRi(θ̂j ), as his best-response threshold strategy θ̂i given that player j is using the
threshold θ̂j . We therefore have

4. Notice that we are breaking the tie at θi = θ̂i in favor of e = 1. This is inconsequential for expected
payoffs since the uniform distribution of θi puts zero probability on the type θ̂i being realized.
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BRi(θ̂j ) =
{√

c

θ̂j

if θ̂j ≥ c

1 if θ̂j < c.
(12.5)

Claim 12.2 In the unique Bayesian Nash equilibrium each player chooses the same
threshold level θi = θ∗, where 0 < θ∗ < 1.

This claim follows directly from the best-response function given in (12.5). First,
consider the possibility of a Bayesian Nash equilibrium in which each player i is
choosing his threshold on the part of the best-response function where θ̂j ≥ c (the top
part of (12.5)). We then have two best-response equations with two unknowns,

θ̂1 =
√

c

θ̂2
and θ̂2 =

√
c

θ̂1
, (12.6)

which together imply that θ̂2
1 θ̂2 = c and θ̂2

2 θ̂1 = c. Because we assumed that

0 < c < 1 the equality can be satisfied only if θ̂1 = θ̂2 = θ∗, where 0 < θ∗ < 1. Sub-
stituting θ̂1 = θ̂2 = θ∗ into any of the two best-response functions in (12.6) implies

that θ∗ = c
1
3 < 1 (because c < 1 and c

1
3 > c).

Next we need to make sure that there is no Bayesian Nash equilibrium in which for
some player the threshold is θ̂j < c, implying that player i will choose the threshold
θ̂i = BRi(θ̂j ) = 1 (never choose e = 1). But notice that if θ̂i = 1 then player j ’s
best response is to choose a threshold equal to BRj(1) = √

c, which contradicts
the premise that θ̂j < c because

√
c > c for c < 1. Hence the unique Bayesian Nash

equilibrium is the symmetric threshold choices θ∗ = c
1
3 , which are implemented by

the following strategies for each player i ∈ {1, 2}:

s∗
i
(θi) =

{
0 if θi < c

1
3

1 if θi ≥ c
1
3 .

Indeed it is also possible to verify this as the unique equilibrium by considering
the plot of the best-response functions depicted in Figure 12.4. For example, player

θ1

θ2

BR1(θ2)

BR2(θ1)

1

1

Bayesian-Nash
equilibrium

c1/3

c1/2

c

c1/3c1/2c

FIGURE 12.4 Best-response thresholds of the study group game.
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2’s best-response threshold is the lowest when player 1’s threshold is θ̂1 = 1, where

BR2(1) = c
1
2 , and it reaches a maximum when player 1’s threshold is θ̂1 = c

1
2 ,

where BR2(c
1
2 ) = 1. Player 1’s best-response function is symmetric, and the two

cross at exactly the point where both equal c
1
3 .

12.3 Inefficient Trade and Adverse Selection

One of the main conclusions of competitive market analysis in economics is that
markets allocate goods to the people who value them the most. The simple intuition
behind this conclusion works as follows: If a good is misallocated so that some people
who have it value it less than people who do not, then so-called market pressures will
cause the price of that good to increase to a level at which the current owners
will prefer to sell it rather than hold on to it, and the people who value it more will be
willing to pay that price. The determination of such a price is not clearly specified,
but various mechanisms such as bargaining, auctions, or market intermediaries may
help obtain it.

This powerful argument is based on some assumptions, one of which is that
the value of the good is easily understood by all market participants, or in our
terminology, there is perfect information about the value of the good. This is of course
an assumption that applies to an ideal world, one that often departs from reality. Yet the
assumption of perfect information not only implies the powerful result that markets
will allocate goods to the agents who value them the most, but also allows us to
obtain what is known as the Coase theorem. Its originator, Ronald Coase (1960),
was awarded a Nobel Prize in part for this important contribution. It argues that in a
world with perfect information and no market frictions (often referred to as transaction
costs), the allocation of property rights will not affect economic efficiency. That is,
even if for some reason goods are allocated to the people who do not value them the
most, then with perfect information and well-functioning mechanisms to exchange
goods, these goods will end up in the hands of those who value them the most.

It is important to understand the extent to which these arguments stand or fall in
the face of incomplete information, when some people are better informed about the
value of goods than others. To address this question we will develop a simple example
that follows in the spirit of the important contribution made by George Akerlof (1970),
a contribution that introduced the idea of adverse selection into economics and earned
its author a Nobel Prize.

Imagine a scenario in which player 1 owns an orange grove. The yield of fruit
depends on the quality of the soil and other local conditions, and we assume that
through his experience only player 1 knows the quality of the land. Local geological
surveys conclude that the quality of the land may be low, mediocre, or high, each with
equal probability 1

3 . Thus we can think of the knowledge of player 1 about the quality
of the land as his type, �1 = {L, M, H }, where each type has a different value for
the land. Assume that the value for player 1 of owning land of type θ1 is given by the
following monetary-equivalent values:

v1(θ1) =
⎧⎨⎩

10 if θ1 = L

20 if θ1 = M

30 if θ1 = H .

Now imagine that player 2 is a soybean grower who is considering the purchase
of this land for production. Player 2’s family expertise in growing soybeans has been
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FIGURE 12.5 A trading game with incomplete information.

very profitable, but that pursuit also depends on the quality of the land. In particular
player 2’s monetary-equivalent values are given by

v2(θ1) =
⎧⎨⎩

14 if θ1 = L

24 if θ1 = M

34 if θ1 = H .

The problem, however, is that player 2 knows only that the quality is distributed
equally among the three options (the geological survey’s results); he does not know
which of the three it is.

Consider the following game: player 2 makes a take-it-or-leave-it price offer to
player 1, after which player 1 can accept (A) or reject (R) the offer, and the game ends
with either a transfer of land for the suggested price or no transfer. A strategy for player
2 is therefore a single price offer, p ≥ 0, and a pure strategy for player 1 is a mapping
from the offered price and his type space �1 to a response, s1 : [0, ∞) × �1 → {A, R}.
The game is depicted in Figure 12.5.

The assumptions on the payoffs of the two players imply that from an efficiency
point of view player 2 should own the land. Indeed if the quality of the land were
common knowledge then there would be many prices at which both player 1 and
player 2 would be happy to trade the property. For example, if the quality were known
to be low then, as in the one-period bargaining model in Section 11.1 (the ultimatum
game), the unique subgame-perfect equilibrium would have player 2 offering player
1 a price of 10 and player 1 accepting. Similarly any price between 10 and 14 would
be supported by some Nash equilibrium.5 We will now see which trades are possible
in equilibrium when there is incomplete information as previously described.

Let’s consider the value that player 2 places on the land. He knows that with equal
probability it is worth one of the values v2 ∈ {14, 24, 34}, so on average it is worth
24. He also knows that on average it is worth 20 to player 1. It would seem that the
natural equilibrium candidate would be to offer the lowest price at which player 2
thinks that player 1 will accept, and such an offer would be p = 20.

5. For any p∗ ∈ [10, 14] a strategy for player 1 of accepting any offer p ≥ p∗ and a strategy for
player 2 of offering p∗ would be a Nash equilibrium when the quality is low.
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But what then would be player 1’s best response? Recall that player 1 knows the
quality of the land, in which case he would accept the offer only if his type is L or M.

This implies that player 2 would get a parcel of land that is of low or mediocre quality,
each with equal probability, and receive an expected value of 1

2 × 14 + 1
2 × 24 = 19.

This implies that player 2’s expected payoff from trading is Ev2 = 19 − 20 < 0,

implying that he would be better off not buying the land.6

Notice that for any offer p ∈ [20, 30) player 1 would accept the offer only if his
type is L or M , and player 2’s expected value is still 19, making such a trade impossible
in equilibrium. Thus if player 2 is to take into account the best response of player 1,
he knows that he will get all types of player 1 to agree to sell only if player 2 offers
30, but in this case he would get only an expected value of 24, which is not profitable.
Therefore we conclude that no trade can occur at a price greater than 20.

This implies that if trade is to occur it will occur at a price less than 20, which
in turn implies that player 1 will agree to such a trade only if his type is L. Taking
this into account, player 2 should offer a price no greater than p = 14, commensurate
with player 1 trading if his type is indeed L. This logic yields the following result:

Proposition 12.1 Trade can occur in a Bayesian Nash equilibrium only if it involves
the lowest type of player 1 trading. Furthermore any price p∗ ∈ [10, 14] can be
supported as a Bayesian Nash equilibrium.

The reason that only the lowest type can trade in equilibrium follows from our
analysis. To see that any price p∗ ∈ [10, 14] can be supported as a Bayesian Nash
equilibrium, consider the following strategies: player 2 offers a price p∗, and the
strategy for player 1 is

s1(θ1) =

⎧⎪⎨⎪⎩
A if and only if p ≥ p∗ and R otherwise when θ1 = L

A if and only if p ≥ 20 and R otherwise when θ1 = M

A if and only if p ≥ 30 and R otherwise when θ1 = H .

In this case the strategies of the two players are mutual best responses, and therefore
they constitute a Bayesian Nash equilibrium.

The conclusion of this result is that trade will occur only if the quality of the land
is the lowest. This happens because of what is called adverse selection. When the
buyer is willing to pay a price equal to his average value, then the type of seller who
is willing to sell at this price is below average, because the best types select not to sell
for an average price, hence the adverse selection of lower-than-average sellers. In the
example this unraveling causes traded quality to drop to its lowest level, preventing
the market from implementing efficient trade outcomes.

It is also worth mentioning that this scenario falls into the category of games with
common values. In this category of games the type of one player affects the payoffs
of another player. In this example the type of player 1 affects the payoffs of both
player 1 and player 2. It is precisely this feature of the game that causes the adverse
effects of equilibrium.

Remark Notice that in this setup the players would benefit if somehow player 1 could
reveal to player 2 what the true quality of the land was. However, announcements of
the type “my soil is of high quality” are useless: if player 2 were to believe such an

6. This follows from Bayes’ rule: if only L or M types sell then conditional on a sale, each of these
types occurs with probability 1

2 .
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announcement then player 1 would always say “My soil is of high quality.” If somehow
player 1 could credibly reveal his type then the outcome would be different—a topic
that is discussed in Chapter 16.

12.4 Committee Voting

Many decisions are made by committees. Examples include legislatures, firms, mem-
bership clubs, and juries. Each member of the committee will have different infor-
mation, or different ways of interpreting information, and the goals of the committee
members may be congruent or diverse. Because each committee member has private
information about his own preferences or about the value of different decisions to
other players, committee votes can be modeled as Bayesian games.

As an example, consider a jury made up of two players (jurors) who must collec-
tively decide whether to acquit (A) or to convict (C) a defendant. The process calls
for each player to cast a sealed vote, and the defendant is convicted only if both vote
C. The problem is that there is uncertainty about whether the defendant is guilty (G)
or innocent (I ). The prior probability that the defendant is guilty is given by q > 1

2
and is common knowledge. Assume that each player cares about making the right
decision, so that if the defendant is guilty then each player receives a payoff of 1 from
a conviction and 0 from an acquittal. If instead the defendant is innocent then each
player receives a payoff of 0 from a conviction and 1 from an acquittal.

If the only information available to the players is the probability q then the game
can be described by the following matrix:

Player 2
A C

Player 1
A 1 − q, 1 − q 1 − q, 1 − q

C 1 − q, 1 − q q, q

As the matrix shows, if either of the players chooses A then the defendant is acquitted
and each player receives an expected payoff of 1 − q. If both choose C then the
defendant will be convicted and each will receive a payoff of q. Clearly because
q > 1

2 each player has a weakly dominant strategy, which is to vote C and convict the
defendant.

Now imagine that things are a bit more complex. Each player i has a different
expertise and, when observing the evidence, gets a private signal θi ∈ {θG, θI } that
contains valuable information. In particular when the defendant is guilty player i is
more likely to receive the signal θi = θG than when the defendant is innocent, and
vice versa for θi = θI . Assume that the signals are independent: the probability of
receiving the signal θG when the defendant is guilty is equal to the probability of
receiving the signal θI when the defendant is innocent, so that

Pr{θi = θG|G} = Pr{θi = θI |I } = p > 1
2 for i ∈ {1, 2}

and

Pr{θi = θG|I } = Pr{θi = θI |G} = 1 − p < 1
2 for i ∈ {1, 2}.

Note that the private information that each player receives, or his type, is not about
how he evaluates outcomes. Instead it is information about the state of the world,
namely the likelihood that the defendant is guilty. However, because the state of the
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world affects each player’s payoff from the outcome, this means that the types are
actually relevant for payoffs.

With this information structure in place we have a Bayesian game of incomplete
information in which each player i will choose a signal-dependent action to maximize
the probability that a guilty defendant is convicted while an innocent one is acquitted.
Because each player has two types, given by the signal he observes, each player will
have four pure strategies, si ∈ {AA, AC, CA, CC}, where strategy xy means that
he chooses x when his signal is θG and he chooses y when his signal is θI . Notice
that, like the adverse selection game in Section 12.3, this is a common-values game
because both players want the right judgment to be rendered.

A natural first question is the following: if each player would be able to convict or
acquit the defendant by himself, how would his signal determine his choice? Consider
the decision problem with just one player. Without receiving the signal, the player
knows that the defendant is guilty with probability q > 1

2 , so that he would choose to
convict the defendant. After receiving the signal, however, the player will update his
beliefs about the defendant as follows. If the signal was θG then the updated belief is7

Pr{G|θi = θG} = Pr{G and θi = θG}
Pr{θi = θG} = qp

qp + (1 − q)(1 − p)
> q,

which means that the player is even more convinced that the defendant is guilty, and
hence will choose to convict him.

If, however, the signal was θI then the updated belief is8

Pr{G|θi = θI } = Pr{G and θI }
Pr{θI }

= q(1 − p)

q(1 − p) + (1 − q)p
< q.

This means that the player is less sure of the defendant’s guilt than he was before the
signal, and whether this is enough to persuade him to acquit the defendant depends
on the value of p. In particular he will choose to acquit the defendant if and only if

q(1 − p)

q(1 − p) + (1 − q)p
< 1

2 ,

which reduces to p > q. Indeed the reason p has to be “high enough” is that the signal
has to be informative enough about the defendant’s actual condition. If, for example,
p = 1

2 the signal contains no information and the posterior Pr{G|θi = θI } = q. As p

increases above 1
2 , the signal becomes more informative and the posterior, Pr{G|θi =

θI }, decreases. Once p increases above the critical level of q then the signal is strong
enough to reverse the player’s prior conviction, and his posterior belief is that the
defendant is more likely to be innocent than guilty.

The observation that if p > q then each player would choose to vote according to
his signal in the one-person decision problem leads to the obvious next question: is
the pair of strategies in the game, si = CA, where each votes according to his signal,
a Bayesian Nash equilibrium? Intuitively it seems like it should be because the signal

7. The inequality follows from the fact that the denominator is less than p because qp + (1− q)(1−
p) < qp + (1 − q)p = p.
8. The inequality follows from the fact that the denominator is greater than 1 − p because
q(1 − p) + (1 − q)p > q(1 − p) + (1 − q)(1 − p) = 1 − p.
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that each player receives is informative about the actual condition of the defendant.
To see whether this is indeed the case we need to verify whether CA is a best response
to CA for each player.

Before proceeding to answer this question, it will be useful to calculate the
probabilities of the different informational states of the two signals that the players can
receive. There are four relevant informational states: either both receive the signal θG,
both receive the signal θI , or each player receives a different signal (two states). For
example, if the defendant is guilty then the probability that both receive a signal θG is
equal to p2, while if the defendant is innocent then the probability that both receive a
signal θG is equal to (1− p)2. Because the prior probability that the defendant is guilty
equals q and the signals are independent conditional on the defendant’s condition, the
probability of both players receiving a signal θG is equal to qp2 + (1 − q)(1 − p)2.

Similarly the probability that player 1 receives a signal θG and that player 2 receives
a signal θI is equal to qp(1− p) + (1− q)(1− p)p = p (1 − p). Continuing in this
way we can compute the probabilities of each of these states, given by the following
table (which of course all add up to 1):

θ2 = θG θ2 = θI

θ1 = θG qp2 + (1 − q)(1 − p)2 p(1 − p)

θ1 = θI p(1 − p) q(1 − p)2 + (1 − q)p2

To continue notice that given the rule that unanimity is needed to convict the
defendant, a player is decisive, or “pivotal,” only if the other player chooses C. The
reason is that if player j chooses A then the defendant will be acquitted for sure,
regardless of what player i chooses, while if player j chooses C then the decision of
whether the defendant will be convicted or not depends on the choice of player i. For
this reason, if player i believes that player j is playing according to the strategy CA,
then he must also believe that his own vote matters only when player j observes a
signal θj = θG. We therefore need to calculate the posterior belief that player i has
about whether the defendant is guilty conditional on his own signal and on the belief
that player j ’s signal is θG.

If player i’s signal was θi = θG then his updated belief is9

Pr{G|θi = θG and θj = θG} = Pr{G and θi = θG and θj = θG}
Pr{θi = θG and θj = θG}

= qp2

qp2 + (1 − q)(1 − p)2
> q,

which means that the player is even more convinced that the defendant is guilty and
hence will choose C to guarantee that the defendant is convicted when both have the
signal θG.

If the signal was θI then the updated belief of player i conditional on the belief
that player j ’s signal is θG is10

9. The inequality follows from the fact that the denominator is less than p2 because qp2

+(1 − q)(1 − p)2 < qp2 + (1 − q)p2 = p2.
10. The inequality follows from the fact that the denominator is greater than 1 − p because
q(1 − p) + (1 − q)p > q(1 − p) + (1 − q)(1 − p) = 1 − p.
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Pr{G|θi = θI and θj = θG} = Pr{G and θi = θI and θj = θG}
Pr{θi = θI and θj = θG} = q(1 − p)p

p(1 − p)
= q.

This means that when player i is conditioning the value of his signal on the event
when his vote actually counts, which is when player j chooses C, then his signal
θi = θI becomes less convincing about the defendant’s innocence. In fact, given the
symmetric informational structure of the signals, if player i is in the situation in which
he believes that he is pivotal then observing a signal of innocence is canceled out by
his belief that player j saw a signal of guilt. That is, both signals cancel out, leaving
the posterior equal to the prior q.

We conclude therefore that playing si = CA for both players is not a Bayesian
Nash equilibrium. In fact both players choosing CC, always convict regardless of the
signal, is a Bayesian Nash equilibrium (showing this is left as part of exercise 12.8).
This means that when both players receive a signal θi = θI , which occurs with
probability q(1− p)2 + (1− q)p2 > 0, despite the fact that it is more likely that the
defendant is innocent, he will still be convicted.

This example is a simple case of what Feddersen and Pesendorfer (1996) refer
to as the “swing voter’s curse” and is also closely related to independent work by
Austen-Smith and Banks (1996). When a voter believes that his vote counts, he must
condition this on the situation in which his vote counts. But then it means that he will
interpret his information differently and not use it in an unbiased way. The jury game
here is a simple two-player example of the more general analysis in Feddersen and
Pesendorfer (1998), who show that with more than two players there will sometimes
be conditions under which players will vote based on their information, but that the
problem of the swing voter’s curse is generally present.

This observation is quite important for scholars of voting in political science
because it is in tension with the famous Condorcet jury theorem. That theorem states
that under certain assumptions, the likelihood that a group of individuals will choose
the correct alternative by majority voting exceeds the likelihood that any individual
member of the group will choose that alternative. One of the assumptions is that
individuals in the voting game behave exactly as they would if choosing alone—they
will follow their information in voting. However, the insights from our example show
that in strategic situations, individuals must form beliefs about when their vote counts
and incorporate these beliefs into their own information.

12.5 Mixed Strategies Revisited: Harsanyi’s Interpretation

Consider the static game of Matching Pennies introduced in Chapter 6, given by the
following matrix:

Player 2
H T

Player 1
H 1, −1 −1, 1

T −1, 1 1, −1

and recall that the unique mixed-strategy Nash equilibrium has each player playing
heads with probability 1

2 . One reason this solution may be somewhat unappealing is
that players are indifferent between H and T , yet they are prescribed to randomize
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between these strategies in a unique, particular, and precise way for this to be a Nash
equilibrium. Does it make sense to expect such precision when a player is indifferent?

This question has caused some discomfort with the notion of mixed-strategy equi-
libria. However, John Harsanyi (1973) offered a twist on the basic model of behavior
to resolve this problem and alleviate, to some extent, the indifference problem. His
idea works as follows. Imagine that each player may have some slight preference for
choosing heads over tails or choosing tails over heads. This is done in such a way as to
“break” the indifference of a player’s best response if he believes that the probability
of his opponent playing heads is exactly 1

2 .
In particular imagine that the payoffs are given by this “perturbed” Matching

Pennies game:

Player 2
H T

Player 1
H 1 + ε1, −1 + ε2 −1 + ε1, 1

T −1, 1 + ε2 1, −1

and imagine that both ε1 and ε2 are independent and uniformly distributed on the
interval [−ε, ε] for some small ε > 0. This means that if εi > 0 is realized then player
i has a strict preference for choosing H over T when he believes his opponent is
choosing H with probability 1

2 , and similarly, if εi < 0 is realized, then player i has
a strict preference for choosing T over H when he believes his opponent is choosing
H with probability 1

2 .
Assume further that the value of εi is known only to player i but that the distribution

of the values of εi is common knowledge. This perturbed Matching Pennies game is
a Bayesian game of incomplete information with two actions for each player and
a continuum of types, similar to the study group example solved in Section 12.2.2.
Hence a pure strategy for each player is a mapping si : [−ε, ε] → {H, T } that assigns
a choice to every type of player i.

Claim 12.3 In the Bayesian perturbed Matching Pennies game, there is a unique
pure-strategy Bayesian Nash equilibrium in which si(εi) = H if and only if εi ≥ 0,
and si(εi) = L if and only if εi < 0. This equilibrium converges in outcomes and
payoffs to the Matching Pennies game when ε → 0.

It is quite easy to see that the proposed strategies are a Bayesian Nash equilibrium.
If they are followed by player i, then because the distribution of εi is uniform over
the interval [−ε, ε], it follows that with probability 1

2 player i is playing H , in which
case the strategy of player j is a best response. To see that this is the unique Bayesian
Nash equilibrium requires more work, but is not too hard.

This example is a simple special case of Harsanyi’s purification theorem, following
the idea that we can use incomplete information to “purify” any mixed-strategy
equilibrium of a game of complete information. How should we interpret this result?
It implies that if people are somewhat heterogeneous in the way monetary payoffs and
actions are related, then we can have uncertainty over the types of players who are
playing pure strategies, but the distribution of types makes a player have beliefs as if
he were facing a player who is playing a mixed strategy. Harsanyi argues that using
mixed-strategy equilibria in simple games of complete information can be thought of
as a solution to the more complex games of incomplete information, in which players
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do not randomize but rather have strict best responses. The interested reader should
refer to Govindan (2003) for a short and elegant presentation of Harsanyi’s approach.

12.6 Summary

. In most real-world situations players will not know how much their opponents
value different outcomes of the game, but they may have a good idea about
the range of their valuations.

. It is possible to model uncertainty over other players’ payoffs by introducing
types that represent the different possible preferences of each player. Adding
this together with Nature’s distribution over the possible types defines a
Bayesian game of incomplete information.

. Using the common prior assumption on the distribution of players’ types, it is
possible to adopt the Nash equilibrium concept to Bayesian games, renamed
a Bayesian Nash equilibrium.

. Markets with asymmetric information can be modeled as games of incomplete
information, resulting in Bayesian Nash equilibrium outcomes with inefficient
trade outcomes.

. Harsanyi’s purification theorem suggests that mixed-strategy equilibria in
games of complete information can be thought of as representing pure-strategy
Bayesian Nash equilibria of games with heterogeneous players.

12.7 Exercises

12.1 Chicken Revisited: Consider the game of chicken in Section 12.2.1 with the
parameters R = 8, H = 16, and L = 0 as described there. A preacher, who
knows some game theory, decides to use this model to claim that moving to
a society in which all parents are lenient will have detrimental effects on the
behavior of teenagers. Does equilibrium analysis support this claim? What if
R = 8, H = 0, and L = 16?

12.2 Cournot Revisited: Consider the Cournot duopoly model in which two firms,
1 and 2, simultaneously choose the quantities they supply, q1 and q2. The
price each will face is determined by the market demand function p(q1, q2) =
a − b(q1 + q2). Each firm has a probability μ of having a marginal unit cost
of cL and a probability 1 − μ of having a marginal unit cost of cH . These
probabilities are common knowledge, but the true type is revealed only to
each firm individually. Solve for the Bayesian Nash equilibrium.

12.3 Armed Conflict: Consider the following strategic situation: Two rival armies
plan to seize a disputed territory. Each army’s general can choose either to
attack (A) or to not attack (N ). In addition, each army is either strong (S)
or weak (W ) with equal probability, and the realizations for each army are
independent. Furthermore the type of each army is known only to that army’s
general. An army can capture the territory if either (i) it attacks and its rival
does not or (ii) it and its rival attack, but it is strong and the rival is weak. If
both attack and are of equal strength then neither captures the territory. As
for payoffs, the territory is worth m if captured and each army has a cost of
fighting equal to s if it is strong and w if it is weak, where s < w. If an army
attacks but its rival does not, no costs are borne by either side. Identify all
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the pure-strategy Bayesian Nash equilibria of this game for the following two
cases, and briefly describe the intuition for your results:

a. m = 3, w = 2, s = 1.
b. m = 3, w = 4, s = 2.

12.4 Grade Gambles: Two students, 1 and 2, took a course with a professor who
decided to allocate grades as follows: Two envelopes will each include a grade
gi ∈ {A, B, C, D, F }, where each of the five options is chosen with equal
probability and the draws for each student i ∈ {1, 2} are independent. The
payoffs of each grade are 4, 3, 2, 1, and 0, respectively. Assume that the game
is played as follows: Each student receives his envelope, opens it, and observes
his grade. Then each student simultaneously decides if he wants to hold on to
his grade (H ) or exchange it with the other student (X). Exchange happens
if and only if both choose to exchange. If an exchange does not happen then
each student gets his assigned grade. If an exchange does happen then the
grades are bumped up by one. That is, if student 1 had an initial grade of C

and student 2 had an initial grade of D, then after the exchange student 1 will
get a C (which was student 2’s D) and student 2 will get a B (which was
student 1’s C). A grade of A is bumped up to an A+, which is worth 5.

a. Assume that student 2 plays the following strategy: “I offer to ex-
change for every grade I get.” What is the best response of student 1?

b. Define a weak exchange Bayesian Nash equilibrium (WEBNE) as a
Bayesian Nash equilibrium in which each student i chooses si(gi) = X

whenever

E[vi(X, s−i(g−i), gi|gi)] ≥ E[vi(H, s−i(g−i), gi|gi)].

That is, given his grade gi and his (correct belief about his) opponent’s
strategy s−i, choosing X is as good as or better than H . In particular
a WEBNE is a pair of strategies (s1, s2) such that given s2 student 1
offers to exchange grades if exchange gives him at least as much as
holding, and vice versa. Find all the symmetric (both students use the
same strategy) WEBNE of this game. Are they Pareto ranked?

c. Now assume that the professor suggests modifying the game: every-
thing works as before, except that the students must decide if they
want to exchange before opening their envelopes. Using equilibrium
analysis, would the students prefer this game or the original one?

d. From your conclusion in (c), what can you say about the statement
“more information is always better”?

12.5 Not All That Glitters: A prospector owns a gold mine where he can dig to
recover gold. His output depends on the amount of gold in the mine, denoted
by x. The prospector knows the value of x, but the rest of the world knows
only that the amount of gold is uniformly distributed on the interval [0, 1].
Before deciding to mine, the prospector can try to sell his mine to a large
mining company, which is much more efficient in its extraction methods. The
prospector can ask the company owner for any price p ≥ 0, and the owner
can reject (R) or accept (A) the offer. If the owner rejects the offer then the
prospector is left to mine himself, and his payoff from self-mining is equal to
3x. If the owner accepts the offer then the prospector’s payoff is the price p,
while the owner’s payoff is given by the net value 4x − p, and this is common
knowledge.
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a. Show that for a given price p ≥ 0 there is a threshold type x(p) ∈ [0, 1]
of prospector, such that types below x(p) will prefer to sell the mine,
while types above x(p) will prefer to self-mine.

b. Find the pure-strategy Bayesian Nash equilibrium of this game, and
show that it is unique. What is the expected payoff of each type of
prospector and of the company owner in the equilibrium you derived?

12.6 Reap and Weep: A farmer owns some land that he can farm to produce crops.
Farming output depends on the talent of the farmer. The farmer knows his
talent, but the rest of the world knows only that a farmer’s talent is uniformly
distributed: θ ∈ [0, 1]. The farmer’s payoff from farming his land is equal
to his talent θ . Before setting up his farm, the farmer approaches the local
manufacturing plant and offers to work on the production line. The farmer
can ask the plant owner for any wage w ≥ 0, and the owner can reject (R)
or accept (A) the offer. If the owner rejects the offer then the farmer must
return home and settle into his farming. If the owner accepts the offer then the
farmer’s payoff is the wage w, while the owner’s payoff is given by the net
value 3

2θ − w, and this is common knowledge.

a. Define the set of pure strategies for each player and find the pure-
strategy Bayesian Nash equilibria of this game.

b. Averaging over the type of farmer, what are the possible levels of social
surplus (sum of expected payoffs of the farmer and the owner in their
potential relationship) from the equilibrium you derived in (a)?

c. A local policy maker who is advocating for the increase of social
surplus is proposing to cut water subsidies to the farmers, which would
imply that a farmer of type θ would get a payoff of 1

2θ from farming his
land. This policy has no effect on the productivity of manufacturing.
Using the criterion of social surplus, can you advocate for this policy
maker using equilibrium analysis?

12.7 Trading Places: Two players, 1 and 2, each own a house. Each player i values
his own house at vi. The value of player i’s house to the other player, i.e., to
player j = i, is 3

2vi. Each player i knows the value vi of his own house to
himself, but not the value of the other player’s house. The values vi are drawn
independently from the interval [0, 1] with uniform distribution.

a. Suppose players announce simultaneously whether they want to ex-
change their houses. If both players agree to an exchange, the exchange
takes place. Otherwise no exchange takes place. Find a Bayesian Nash
equilibrium of this game in pure strategies in which each player i ac-
cepts an exchange if and only if the value vi does not exceed some
threshold θi.

b. How would your answer to (a) change if player j ’s valuation of player
i’s house were 5

2vi?
c. Try to explain why any Bayesian Nash equilibrium of the game de-

scribed in (a) must involve threshold strategies of the type postulated
in (a).

12.8 Jury Voting: Consider the jury voting game in Section 12.4.

a. Show that both players choosing CC is a Bayesian Nash equilibrium
of the two-player game.

b. Would it be better for the two players if only one of them decided on
the fate of the defendant? Why or why not?
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c. Consider a three-player game in which the defendant is convicted
if at least two players vote to convict him, and acquitted otherwise
(i.e., majority voting determines the defendant’s fate). Assume that
the informational structure is the same as in the two-player game. Are
there conditions in which voting according to one’s signal (C if θi = θG

and A if θi = θI ) is a Bayesian Nash equilibrium?

12.9 Grab the Dollar: Each of two players has two possible actions: grab the dollar
or don’t grab the dollar. Player i’s payoff is 1 if he is the only one to grab the
dollar, and his payoff is 0 if he does not. Each player’s payoff is −1 if both
players grab the dollar.

a. Find the Nash equilibria of this game of complete information.
b. Consider the following perturbation of the game. The payoff structure

is the same, with the following addition: When player i is the only
one to grab the dollar his payoff is 1 + θi, where θi is player i’s type
and it is uniformly distributed over [−ε, ε] with ε < 1. Each player
knows only his own type, and the distribution of types is common
knowledge. Find the pure-strategy Bayesian Nash equilibrium of this
game of incomplete information.

c. Show that when ε converges to 0, the pure-strategy Bayesian Nash
equilibrium converges to the mixed-strategy Nash equilibrium of the
game with complete information.

12.10 Purification: Consider the perturbed Matching Pennies game described in
Section 12.5 and show that the Bayesian Nash equilibrium identified is the
unique Bayesian Nash equilibrium. (Hint: Some insights can be gained by
looking at the solution to the study group example in Section 12.2.2.)



13
Auctions and Competitive

Bidding

The use of auctions to sell goods has become commonplace thanks to the Internet
auction platform eBay, which has become a popular shopping destination for

over 100 million households across the globe. Before the age of the Internet, the
thought of an auction raised visions of the sale of a Picasso or a Renoir in one of
the prestigious auction houses, such as Sotheby’s (founded in 1744) or Christie’s
(founded in 1766). In fact the use of auctions dates back much further. For a history
of auctions see Cassidy (1967). Auctions are also used extensively by private- and
public-sector entities to procure goods and services.1

The use of game theory to analyze both behavior in auctions and the design of
auctions themselves, was introduced by the Nobel Laureate William Vickrey (1961),
whose work spawned a large and still-expanding literature. The “big push” of game
theoretical research on auctions happened after the successful use of game theory
to advise both the U.S. government and the bidding firms when the Federal Com-
munications Commission first decided to auction off portions of the electromagnetic
spectrum for use by telecommunication companies in 1994. This auction was consid-
ered so successful that a reference to the work of many game theorists appears in an
article in The Economist titled “Revenge of the Nerds” (July 23, 1994, page 70).

As we will soon see, auctions have many desirable properties, and these have
made them a favorite choice of the U.S. Federal Acquisition Regulation as the legally
preferred form of procurement in the public sector. They are very transparent, they
have well-defined rules, they usually allocate the auctioned good to the party who
values it the most, and, if well designed, they are not too easy to manipulate.

Generally speaking there are two common types of auctions. The first type, as we
will refer to it, is the open auction, in which the bidders observe some dynamic price
process that evolves until a winner emerges. There are two common forms of open
auctions:

1. These are often referred to as “reverse auctions” because instead of selling at the highest price the
auctioneer wishes to buy at the lowest price.

270
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The English Auction: This is the classic auction we often see in movies (e.g., The
Red Violin), in which the bidders are all in a room (or nowadays sitting by a
computer or a phone) and the price of the good goes up as long as someone
is willing to bid it higher. Once the last increase is no longer challenged, the
last bidder to increase the price wins the auction and pays that price for the
good. (The price may start at some minimum threshold, which would be the
seller’s reserve price.)

The Dutch Auction: This less familiar auction almost turns the English auction on
its head. As with the English auction, the bidders observe the price changes in
real time, but instead of starting low and rising by pressure from the bidders,
the price starts at a prohibitively high value and the auctioneer gradually drops
the price. Once a bidder shouts “buy,” the auction ends and the bidder gets the
good at the price at which he cried out. This auction was and still is popular
in the flower markets of the Netherlands, hence its name.

The second common type of auction is the sealed-bid auction, in which par-
ticipants write down their bids and submit them without knowing the bids of their
opponents. The bids are collected, the highest bidder wins, and he then pays a price
that depends on the auction rules. As with open auctions, there are two common forms
of sealed-bid auctions:

The First-Price Sealed-Bid Auction: This very common auction form has each
bidder write down his bid and place it in an envelope; the envelopes are opened
simultaneously. The highest bidder wins and then pays a price equal to his own
bid. A mirror image of this auction, sometimes referred to by practitioners
as a reverse auction, is used by many governments and businesses to award
procurement contracts. For example, if the government wants to build a new
building or highway, it will present plans and specifications together with
a request for bids. Each potential builder who chooses to participate will
submit a sealed bid; the lowest bidder wins and receives the amount of its
bid upon completion of the project (or possibly incremental amounts upon
the completion of agreed-upon milestones).

The Second-Price Sealed-Bid Auction: As with the first-price sealed-bid auction,
each bidder writes down his bid and places it in an envelope; the envelopes are
opened simultaneously and the highest bidder wins the auction. The difference
is that although the highest bidder wins, he does not pay his bid but instead
pays a price equal to the second-highest bid or the highest losing bid. This
auction may not seem common or familiar, but it turns out that it has very
appealing properties and shares a strong connection to the very common
English auction.

Regardless of the type of auction that is being administered, two things should be
obvious. First, auctions are games in which the players are the bidders, the actions
are the bids, and the payoffs depend on whether or not one receives the good and how
much one pays for it (and possibly how much one pays for participating in the auction
in the first place). In fact we have seen a simple two-player version of a different kind of
auction, the all-pay auction, in Section 6.1.4. Second, it is hard to believe that bidders
know exactly how much the good being sold is worth to the other bidders. Hence
auctions have all the characteristics we have specified as appropriate for modeling as
Bayesian games of incomplete information.
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13.1 Independent Private Values

Buyers can have two reasons to purchase a good. They may wish to consume it, like
some specialty food, thus using it for their own consumption benefit. Or they may
wish to buy it as an investment, like gold or stocks, and possibly sell it at a later date.
Motives can also be mixed, like those for buying a rare painting or a home, which can
be both enjoyed by the buyer and considered an investment.

In the first case, buying a good for immediate consumption, the only valuation of
the good that should matter to each potential buyer is how much it is worth from his
own private perspective, with no consideration of how much others value the good.
Consider a seller who offers a prime but extremely ripe piece of filet mignon that will
go bad within the hour. With no time to turn around and resell it, the only thing one
can do with the filet is to quickly grill it and eat it. The value one imputes to it, or
one’s willingness to pay for it, should depend only on how much one will enjoy this
particular dish. This situation is referred to as one of private values, in which each
person’s willingness to pay depends only on his own type, and this in turn is private
information. This differs from the common-values setting, in which the preferences
of some players may depend on the types of other players (e.g., recall the adverse
selection game in Section 12.3).

We start our analysis of auctions using the simpler private values setting and
describe our auction setting as a game with the set of bidders N = {1, 2, . . . , n}.
We refrain from considering the seller as a player, because once the auction rules are
set by him, he has no effect on bidding behavior or the outcomes that follow.

To capture the idea that players differ in their private willingness to pay, we resort
to the familiar notion of types to describe the players’ private valuations. In particular
assume that the value for player i of obtaining the good is his type, θi, drawn from the
interval θi ∈ [θi, θ i] according to the cumulative distribution function Fi (.) , where
Fi(θ

′) = Pr{θi ≤ θ ′} and θi ≥ 0. We assume that the draws of θi from [θi, θ i]according
to Fi(.) are independent and not correlated in any way. The payoff of a player who
does not get the good is normalized to zero, and the payoff of a player who gets the
good and pays a price p ≥ 0 is vi = θi − p. Hence this setting is referred to as the
independent private values or IPV case.

Following the methodology of Bayesian games, we assume that every player
knows the distribution of all types of the other players and uses the n − 1 cumulative
distribution functions Fj (.) , j = i, to form beliefs about the types θ−i of the other
players.

13.1.1 Second-Price Sealed-Bid Auctions

We begin the analysis with second-price sealed-bid auctions, which are the easiest
to analyze. The rules of the game are as follows. First, players learn their private
valuations, but they know only the distribution of their opponents’ valuations. Second,
each player submits a bid bi ≥ 0, which is the action each player can choose. Finally
the bids are collected, the highest bidder wins, and he pays a price equal to the second-
highest bid. Thus we can write the payoff function of each player i as2

2. Notice that we resolve the possibility of two players being tied with the highest bid by assuming
that in that case neither gets the good and both pay nothing. This can be easily changed to have
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Region MRegion L Region H

bi θi

FIGURE 13.1 Weakly dominant strategies in second-price auctions.

vi(bi, b−i; θi) =
{

θi − b∗
j

if bi > bj for all j = i and b∗
j
≡ maxj =i{bj}

0 if bi ≤ bj for some j = i.

Given that a player’s action is his bid, a player’s strategy assigns a bid to each
of the player’s types, in this case private valuations. Thus a strategy for player i is
a function si : [θi, θ i] → R+ that assigns a nonnegative bid to each of his possible
valuations.

Now we can write down the payoff of player i with valuation θi as a function of
his own bid bi and the strategies used by the other players sj(.), j = i. First it is worth
writing down a shorthand expression for player i’s expected payoff as follows:

Eθ−i
[vi(bi, s−i(θ−i); θi)|θi] = Pr{i wins and pays p} × (θi − p) + Pr{i loses} × 0.

In more specific terms, taking into account the rules of the second-price sealed-bid
auction, the probability that player i wins is equal to the probability that all the other
bids are below bi, and in this event the price player i pays is the second-highest bid
equal to p. The hard question is, what is the probability that all the other bids are below
bi? This of course will depend on the strategies sj(θj) of the other players j = i. In
particular the probability that i’s bid is higher than j ’s bid is equal to the probability
that j is a type that bids less than bi. But without knowing exactly what j ’s strategy
is we cannot write this probability down. This may look like quite a daunting task,
but it turns out that the rules of this auction result in a rather surprising result:

Proposition 13.1 In the second-price sealed-bid auction, each player has a weakly
dominant strategy, which is to bid his true valuation. That is, si(θi) = θi for all i ∈ N

is a Bayesian Nash equilibrium in weakly dominant strategies.

If you are not already familiar with this famous result, first discovered by Vickrey
(1961), then it is indeed quite remarkable. As we will see, it is also quite straight-
forward once the analysis is laid out. We will prove this result by showing that for any
valuation θi bidding θi weakly dominates both higher bids and lower bids. The analysis
will argue the case for not bidding bi < θi, and the other argument is practically the
mirror image.

Consider the case of a bidder who is bidding below his valuation, bi < θi, as
described in Figure 13.1. There are three possible cases of interest with respect to
the other n − 1 bids:

Case 1: Player i is the highest bidder, in which case i wins and pays a price p < bi.
This corresponds to the situation in which all the other n − 1bids are in region

one of them randomly be the winner and pay the second-highest price, which would be equal to his
own bid (since the two tied as the highest bid). This case would add negligible complications and is
remarked upon at the end of this section.
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L in Figure 13.1, including the second-highest bid. If instead of bidding bi

player i would have bid θi then he would still win and pay the same price, so
in case 1 bidding his valuation is as good as bidding bi.

Case 2: The highest bidder j bids b∗
j
> θi, in which case i loses. This corresponds

to the situation in which the winning bid is in region H in Figure 13.1. If
instead of bidding bi player i would have bid θi then he would still lose to b∗

j
,

so in case 2 bidding his valuation is as good as bidding bi.

Case 3: The highest bidder j bids bi < b∗
j
< θi, so that the highest bid is in region

M and i does not win. If instead player i would have bid θi, he would have
won the auction and received a payoff of

vi = θi − b∗
j
> 0,

making this a profitable deviation, so in case 3 bidding his valuation is strictly
better than bidding bi.

Since cases 1–3 cover all the relevant situations, we conclude that bidding θi

weakly dominates any lower bid because it is never worse and sometimes better. A
similar argument shows that a bid bi > θi will also be weakly dominated by bidding
θi, and is left as exercise 13.1.

The fact that every player has a weakly dominant strategy, si(θi) = θi, implies
that each player bidding his valuation is a Bayesian Nash equilibrium in weakly domi-
nant strategies. This result is noteworthy not only because of its simple prescription—
that players bid their valuations truthfully in a second-price sealed-bid auction—but
also because it implies three other attractive attributes of this auction format.

First, in the IPV setting, bidders in a second-price sealed-bid auction do not
care about the probability distribution over their opponents’ types, and therefore the
assumption of common knowledge of the distribution of types can be relaxed when
such auctions are analyzed. In particular it means that we can apply this result even
when we think that players have no idea about their opponents’ valuations. This is a
very nice feature of the second-price sealed-bid auction.

Second, in a second-price sealed-bid auction, even if types are correlated but
values are private (a player’s value depends only on his own type and not the types of
other players), then it is a weakly dominant strategy to bid truthfully. This implies that
if we are correct about our private values assumption, but we incorrectly assume that
values are independent, it is still true that bidding your valuation is a weakly dominant
strategy.

Last but not least, in the private values setting, the outcome of a second-price
sealed-bid auction is Pareto optimal because the person who values the good most
will be the one who gets it.

As we will now briefly see, the second-price sealed-bid auction is closely related
to the very common English auction.

Remark We can change the game to be more appealing with respect to the treatment
of tied highest bids. Assume that if m ≤ n bidders tie with the highest bid then they are
each equally likely to win, and they pay the second-highest bid, which by definition
is equal to their own bid in the case of a tie. Then the payoff function of each bidder
can be written as
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vi(bi, b−i; θi) =

⎧⎪⎨⎪⎩
θi − b∗

j
if bi > bj for all j = i and b∗

j
≡ maxj =i{bj}

θi−bi

#{highest bidders} if bi ≥ bj for all j = i and bi = bj for some j = i

0 if bi < bj for some j = i.

You should be able to convince yourself that the arguments leading to bi = θi being a
weakly dominant strategy are still valid, and thus that the foregoing analysis applies.

13.1.2 English Auctions

The typical English auction has an auctioneer with bidders in a room, and the auction-
eer increases the standing bid until no bidder is willing to push the price higher. The
process is observed by all the bidders as the price progresses toward the final price.
This seems rather easy to describe as a game, but there is a slight problem: without
prespecified discrete increments, a player i with a valuation greater than the current
price (p < θi) has no best response, because for any increment he can make, a smaller
increment would be better. This problem is similar to the one we saw in the Bertrand
duopoly model with different costs (see Section 5.2.4), and it was discussed further
in Section 6.4.

There are two solutions to this problem. First, we can use a discrete action space
such as dollars and cents. This is realistic, but if we would like to use calculus for
the analysis then this would be impossible, implying a more cumbersome analytical
approach. A second solution is to change the game slightly without losing the spirit
of English auctions, which is precisely what Milgrom and Weber (1982) suggested in
their influential paper. The “button-auction” game they proposed proceeds as follows.

As before, there are n players, each with valuation θi ∈ [θi, θ i] drawn according
to the cumulative distribution function Fi (.), which is independent across bidders.
An added actor (not a strategic player) is an auctioneer who announces the current
price, starting at p = 0, and raises it continuously over time. Each player has a button
that is pressed at the beginning of the game when the starting price is p = 0. If the
button of player i is continuously pressed and the current price is p > 0, this means
that player i is willing to pay p if everyone else would drop out of the auction now.
Once a player releases his button, he drops out of the auction and cannot reenter it.
The winner is the last person to hold his button down, and the price is the posted price
at which the second-to-last player let go of his button.

The similarity between the button-auction model and the English auction is ap-
parent. As long as there is more than one player who is willing to push the current
price up, the auctioneer will raise the price. Unlike the English auction, in which at
a current price $p the auctioneer cries “Do I hear $(p + k)?” in the button-auction
model this happens automatically with an increment k that is infinitesimally small.

As in the second-price sealed-bid auction, we define strategies for each player as
maps from their types, or valuations, to the price at which a player lets go of his button.
Using these definitions of strategies, we can derive the expected payoff functions of
every player, given his beliefs about the other players’ strategies and types. This again
may seem like a daunting task, but just as with the second-price sealed-bid auction,
the following appealing result makes the analysis very simple:

Proposition 13.2 In the button-auction model it is a weakly dominant strategy for
each player to keep his button pressed as long as p < θi and to release it once p = θi.
This results in a Bayesian Nash equilibrium in weakly dominated strategies that is
outcome-equivalent to the second-price sealed-bid auction.
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The proof of this proposition follows precisely from the following simple observa-
tions: First, if the current price is p < θi then player i (who is not the currently highest
bidder) should continue holding his button, therefore causing the price to increase fur-
ther. If he drops out, he may forgo the opportunity of winning the item at a price lower
than his valuation, and if he continues with the proposed strategy he is guaranteed a
nonnegative payment because he exits when p = θi. Second, if p = θi then player i

should drop out; otherwise he might win and pay more than his valuation.
The fact that the outcome is the same as in the second-price sealed-bid auc-

tion follows immediately: the player with the highest valuation wins, and he pays a
price equal to the second-highest valuation because that was the price at which the
second-to-last player dropped out. Hence the same three appealing features of
the second-price sealed-bid auction are inherited by the English auction in the private
values setting. First, each player has a best strategy that depends neither on the distri-
butions of the other players’ types nor on the strategies that they are using. Second,
even if the distributions of the players’ types are correlated, as long as each player’s
valuation depends only on his type (private values) then this is a weakly dominant
strategy. Last but not least, the outcome is Pareto optimal.

Note that on the popular marketplace site eBay, the way the auctions work is very
similar to this button-auction model: eBay uses a “proxy bidding” system that takes
your bid and uses it as a proxy for your behavior. If you are the highest bidder then the
current price is one increment above the second-highest bidder, in a similar fashion
to the button-auction model with a positive increment. It is interesting to note that the
instructions on eBay suggest that you bid truthfully: “When you place a bid, enter the
maximum amount you are willing to pay for the item. eBay will bid on your behalf
only if there is a competing bidder and only up to your maximum amount.”3

13.1.3 First-Price Sealed-Bid and Dutch Auctions

Unlike the second-price sealed-bid auction, the first-price sealed-bid auction has
each bidder pay his own bid. Obviously no bidder would want to bid more than his
valuation. Not surprisingly, however, in the first-price sealed-bid auction we lose one
of the appealing features of the second-price auction:

Claim 13.1 In a first-price sealed-bid auction it is a dominated strategy for a player
to bid his valuation.

The reason this claim is true is straightforward. If a player bids his valuation then
his payoff is zero: if he loses then he gets zero and if he wins then he pays his valuation,
thus getting a payoff of zero. If instead the player bids slightly less than his valuation,
then with some positive probability the other bids will be below his bid, in which
case he will win the item and obtain a positive payoff. Hence his expected payoff is
positive, which is more than he gets from bidding his valuation.

The fact that players will not want to bid their valuations implies a simple intuition.
By lowering your bid incrementally you increase your net payoff margin when you
win, which is the marginal benefit from reducing your bid. At the same time the
probability of winning becomes lower, which is the marginal cost of reducing your

3. At the time of writing the quote appeared on http://pages.ebay.com/education/buyingtips/index
.html#bid.
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bid. However, this simple intuition is far from enough to help us find a Bayesian Nash
equilibrium. It turns out that in the first-price sealed-bid auction the players do not
have any weakly dominant strategy that maps types to bids because their best response
depends on the belief over other players’ bids, which depends on the other players’
strategies.

To help make our analysis a bit more tractable, we will impose a reasonable
assumption on the bidding behavior of players:

Assumption 13.1 The higher a player’s valuation, the higher is his bid. That is, if
θ ′
j
> θ ′′

j
then sj(θ

′
j
) > sj(θ

′′
j
).

This assumption implies that each player’s bid function is invertible, meaning that
for every bid b that a player j can make, there is a unique type of player j that makes
this bid, and this type is given by the inverse of the player’s strategy, s−1

j (b). The main
benefit of imposing this assumption is that it results in a very simple expression for
the probability that i’s bid is higher than j ’s bid, which is

Pr{sj(θj) < bi} = Pr{θj < s−1
j (bi)} = Fj(s

−1
j (bi)).

Recall that in the IPV setting we assumed that the different types are drawn
independently, meaning that the valuations of the players are independent random
variables. For this reason, the probability that i’s bid is higher than all other bids
is just the multiplication of the probabilities Fj(s

−1
j (bi)), j = i. Thus the expected

payoff of player i in a first-price sealed-bid auction is

Eθ−i
[vi(bi, s−i(θ−i); θi)|θi] =

∏
j =i

[
Fj(s

−1
j (bi))

]
× (θi − bi). (13.1)

Therefore both the distributional assumptions on the players’ types will matter,
as well as the beliefs about their strategies. This is where the common knowledge
assumption on a common prior has real bite, because without it, players cannot have
consistent beliefs about the distribution of types. To complete the analysis of what
a Bayesian Nash equilibrium for a first-price sealed-bid auction might be, we have
to find a profile of strategies so that each player i’s strategy maximizes his expected
payoff given in (13.1), given the other n − 1 players’ strategies.

To simplify our analysis further, consider the symmetric case in which for each
player i the valuation is distributed on the same interval [θ, θ ] with θ > 0, according
to the same distribution F(.) and density f (.). We will write down the conditions for
a symmetric equilibrium (a restriction that makes the analysis much easier), where
each of the n bidders uses the same strategy s : [θ, θ ] → R+. Thus the objective of
each player i when his type is θi, and when all other players are using the bidding
strategy s(.), is derived from (13.1) and becomes

max
b≥0

E−i[vi(b, s−i(θ−i); θi)|θi] =
[
F(s−1(b))

]n−1
(θi − b). (13.2)

Assuming an interior solution we can write the first-order condition of (13.2) as
follows:

−
[
F(s−1(b))

]n−1 + (n − 1)
[
F(s−1(b))

]n−2
f (s−1(b))

ds−1(b)

db
(θi − b) = 0.

(13.3)
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For the profile of bidding strategies (s1(.), . . . , sn(.)) = (s∗(.), . . . , s∗(.)) to be
a Bayesian Nash equilibrium, b = s∗(θ) itself has to be the solution to (13.3) for any

value of θ ∈ [θ, θ ]. If this is true then s∗−1(b) = θ , and because ds−1(b)
db

= 1
s′(s−1(b))

,
we can derive the condition for a symmetric Bayesian Nash equilibrium from (13.3)
to be

− [F(θ)]n−1 + (n − 1) [F(θ)]n−2 f (θ)(θ − s(θ))

s′(θ)
= 0. (13.4)

This may look a bit daunting, but it turns out to be a rather manageable differential
equation.4 We can rewrite (13.4) to obtain

[F(θ)]n−1 s′(θ) + (n − 1) [F(θ)]n−2 f (θ)s(θ) = (n − 1) [F(θ)]n−2 f (θ)θ. (13.5)

A careful look at the left side of (13.5) should convince you that it is the derivative of
[F(θ)]n−1 s(θ). It follows therefore that by integrating both sides of (13.5) we obtain

[F(θ)]n−1s(θ) =
∫ θ

θ

(n − 1) [F(x)]n−2 f (x)xdx. (13.6)

The next step is to use integration by parts on the right side of (13.6), which yields
the symmetric Bayesian Nash equilibrium bid (strategy) function5

s(θ) = θ −
∫ θ

θ
[F(x)]n−1 dx

[F(θ)]n−1
. (13.7)

As (13.7) demonstrates, in this Bayesian Nash equilibrium a player i with valu-
ation θ will be below his valuation, as intuition suggests, and the amount by which
he “shades” his bid will depend on the distribution of valuations F(.), the number
of bidders n, and his type θ . Interestingly it turns out that in this symmetric example
this is the unique symmetric Bayesian Nash equilibrium, but showing this result is
beyond the scope of this text.

As a relatively simple illustration of such a Bayesian Nash equilibrium, consider
the special case in which F(.) is uniform over [0, 1]. We can explicitly solve for (13.7)
as follows:

4. A differential equation is an equation in which the derivatives of a function appear as variables.
In this case we have a first-order differential equation since only the first derivative of s(.) appears
together with s(.) in the equation. The solutions to these problems can be found in any standard
textbook on the topic.
5. Given two functions g(θ) and h(θ), by the product rule of derivation we know that
(gh)′ = g′h + gh′, and integrating both sides of this equation implies that g(θ)h(θ) = ∫

g′(θ)h(θ)dθ

+ ∫
g(θ)h′(θ)dθ . Integration by parts uses this fact to express the following relationship:∫

g′(θ)h(θ)dθ = g(θ)h(θ) − ∫
g(θ)h′(θ)dθ . Letting g′(θ) = (n − 1) [F(θ)]n−2 f (θ) and letting

h(θ) = θ , we have∫ θ

θ

(n − 1) [F(x)]n−2 f (x)xdx = [F(θ)]n−1 θ −
∫ θ

θ

[F(x)]n−1 dx

because F(θ) = 0.
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s(θ) = θ −
∫ θ

0 xn−1dx

θn−1

= θ − θn

nθn−1

= θ

(
n − 1

n

)
. (13.8)

In this case the equilibrium bid function or strategy of each player is his type multiplied
by what we can call a “bid shading factor” equal to 0 < n−1

n
< 1. This of course implies

that players bid below their valuation θ and that the amount of shading depends on
the number of bidders. (The strategy already uses the uniform distribution to obtain
this simple linear form.) As we can clearly see, the more bidders there are, the more
fierce the competition is, and the closer is the bid to the player’s true valuation θ .

It turns out that the Dutch and first-price sealed-bid auctions are closely related
in the same way that the English and second-price sealed-bid auctions are. Recall
that the Dutch auction starts at an obscenely high price and then drops continuously
until the first bidder jumps in with the announcement “buy.” Each bidder therefore
must ask himself, at what price will I jump in and announce that I will buy? The longer
a bidder waits, the more he obtains conditional on winning, but this comes at the risk
of someone else jumping in, which reduces the probability of winning.

This simple observation suggests that the Dutch and first-price sealed-bid auctions
are strategically equivalent in that these two games have the same normal form, and
as a consequence have the same set of Bayesian Nash equilibria. In particular the
solution to (13.7) will also be the solution to the equilibrium “buy” announcement of
a bidder in the Dutch auction. The intuition is that the bid in the first-price sealed-
bid auction, like the acceptance price in the Dutch auction, trades off the bidder’s
profit margin conditional on winning (which is the marginal benefit of shading the
bid further below the valuation) with the reduced probability of winning (which is the
marginal cost of shading the bid). If a player in a (symmetric) Dutch auction believes
that all the other players are using the bid function given by (13.7) then by using the
same bid function himself he will be playing a best response, because the Dutch and
first-price sealed-bid auctions are strategically equivalent.

13.1.4 Revenue Equivalence

As we have seen, there are many auction formats that differ in their rules: sealed bids,
open bids, first price, second price, . . . you can add your own imaginative twists. As
a seller who plans to sell a good using an auction, the following question is natural:
which of the many auction formats will yield the highest expected revenue? For the
IPV setting, in which bidders’ payoffs are given by θ − p if they win at price p and
zero if they lose, the answer is quite surprising. It turns out that the expected revenue
a seller obtains from any of the four auctions we considered is the same.

It should not be too surprising that the second-price sealed-bid auction and the
English auction yield the same expected revenues because in both cases the players
have a (weakly) dominant strategy, and it results in the same outcome. In addition, as
argued earlier, the Dutch and first-price sealed-bid auctions result in similar revenues
because in both the bid shading is a delicate play between the attempt to make some
profit and the attempt to win the good, making these games strategically equivalent.
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However, the fact that bid shading in the first-price auction and the seller settling
for the second-highest valuation in the second-price auction both result in the same
expected revenues is quite remarkable.

This result is called the revenue equivalence theorem and is considered one of
the major findings of auction theory. A first proof of this result was given by William
Vickrey (1961) and generalized by Myerson (1981) and independently by Riley and
Samuelson (1981). Both Vickrey and Myerson were awarded the Nobel Prize in
economics based partly on their contributions to auction theory, which have shaped
the way economists and policy makers think about this commonly used allocation
mechanism.

The revenue equivalence theorem states that any auction game that satisfies four
conditions will yield the seller the same expected revenue, and will yield each type of
bidder the same expected payoff. These conditions are as follows: (1) each bidder’s
type is drawn from a “well-behaved” distribution;6 (2) bidders are risk neutral;7

(3) the bidder with the highest type wins; and (4) the bidder with the lowest possible
type (θ ) has an expected payoff of zero.

Before turning to a simple illustration of this important result some background
will be helpful. Imagine that we are drawing a series of realizations of a random
variable using some distribution F(.). That is, we have some random variable x ∼
F(.), and we are taking a series of draws, x1, x2, and so on until some xn, all from the
distribution F(.). Furthermore each of the draws xi is drawn independently so that no
two draws are correlated. Given the sample of draws (x1, x2, . . . , xn), we can consider
the ranking of the realized values and rank them from highest to lowest. The highest
draw out of n, x[1]

n
≡ max{x1, x2, . . . , xn}, is called the first-order statistic of this

sample. Similarly the second-highest draw, x[2]
n

, is called the second-order statistic,
and the same for third-, fourth-, and kth-order statistics for any k ∈ {1, 2, . . . , n} for
this sample in which we obtain n draws from the distribution F(.).

The relation of these statistical objects to bidding should now be rather apparent.
Imagine n symmetric bidders with valuations that are independently drawn from
some distribution F(.) over an interval [θ, θ ]. In a second-price auction the seller
will receive the second-highest valuation of the n bidders. The unique Bayesian Nash
equilibrium in weakly dominant strategies has each player bid his valuation and the
highest-bid winner pays the second-highest bid. This is just the second-order statistic
of n draws from the distribution F(.). Hence the expected revenue of the seller is
E[θ [2]

n
], which is the expected value of the second-order statistic.

In a first-price auction the seller will receive the highest bid of the n bidders. If
the symmetric bidders all use the same bidding strategy s(θ) then this is just the first-
order statistic of n draws from some distribution G(.), which is the distribution of
bids, not valuations. Hence the expected revenue of the seller is E[b[1]

n
], which is the

expected value of the first-order statistic of the bid functions.
To see an illustration of the revenue equivalence theorem we will show that with

n symmetric bidders whose types are drawn from the uniform distribution over the
interval [0, 1], the expected first-order statistic of the bid functions from a first-price
sealed-bid auction is equal to the expected second-order statistic of the types (which
is what the winner will pay in a second-price sealed-bid auction).

6. The distribution function Fi(.) from which each bidder’s type is distributed must be strictly
increasing and continuous.
7. You are asked to verify what happens when bidders are risk averse in exercise 13.7.
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As we have shown in Section 13.1.3, the symmetric Bayesian Nash equilibrium
with n bidders whose types are drawn uniformly over an interval [θ, θ ] is given by
s(θ) = θ

(
n−1
n

)
, meaning that each bidder bids n

n−1 of his actual valuation θ . Hence

the winning bid will be max
{

θ1(n−1)
n

,
θ2(n−1)

n
, . . . ,

θn(n−1)
n

}
, which is equal to the

first-order statistic of a series of n draws from the uniform distribution on the interval[
0, n−1

n

]
. We can then compare this to the expected value from the second-price

sealed-bid auction, which is the expected second-order statistic of a series of n draws
from the uniform distribution over [0, 1].

To compute these two expected revenues, we need to calculate the distribution
of the first- and second-order statistics for the uniform distribution. The cumulative
distribution of the first-order statistic x[1]

n
of n draws of bids, which we denote by

F [1]
n

(.), is not difficult to derive. In particular F [1]
n

(x) is equal to the probability that
all the n bids that were drawn are less than or equal to x, and hence

F [1]
n

(x) = Pr{max{b1, b2, . . . , bn} ≤ x} = (F (x))n,

where the last equality follows from the fact that the n values are drawn indepen-
dently.8 For the uniform distribution, the bid of each agent bi is uniformly drawn
from [0, n−1

n
], so that F(bi) = n

n−1bi, implying that the distribution of the first-order
statistic is

F [1]
n

(x) = [F(x)]n =
(

nx

n − 1

)n

for 0 ≤ x ≤ n − 1

n
. (13.9)

It follows from (13.9) that the density of the first-order statistic is given by

f [1]
n

(x) = dF [1]
n

(x)

dx
= n

n

n − 1

(
nx

n − 1

)n−1

= n

x

(
nx

n − 1

)n

,

which in turn implies that the expected first-order statistic from Bayesian Nash
equilibrium bids in a first-price auction is given by

E
[
b[1]

n

]
=

∫ n−1
n

0
xf [1]

n
(x)dx =

∫ n−1
n

0
n

(
nx

n − 1

)n

dx

=
[

n

n + 1

(
n

n − 1

)n

xn+1
∣∣∣∣

n−1
n

0
= n − 1

n + 1
.

Thus the seller’s expected revenue from the first-price sealed-bid auction with n

bidders whose valuations are independently drawn from the uniform distribution over
[0, 1] is equal to n−1

n+1.
Now consider the distribution of a second-order statistic from n independent

draws that is denoted by the cumulative distribution function F [2]
n

(x) = Pr{x[2]
n

≤ x}.
The event {x[2]

n
≤ x} can occur in one of two distinct ways (i.e., from two mutually

exclusive events). In the first event, all the draws xi are below x, or xi ≤ x for all
i = 1, 2, . . . , n. In the second event, for n − 1 of the draws, xi ≤ x, and for only one
draw j , xj > x. This second event can occur in n different ways: (1) x1 > x and for

8. That is, Pr{bi ≤ x} = F(x) for all i = 1, 2, . . . , n, and since these draws are independent then
Pr{max{b1, b2, . . . , bn} ≤ x} = F(x) × F(x) × . . . × F(x) = (F (x))n.
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all i = 1, xi ≤ x; (2) x2 > x and for all i = 2, xi ≤ x; and so on up to (n) xn > x and
for all i = n, xi ≤ x.

This description reveals that the cumulative distribution of the second-order statis-
tic is as follows:

F [2]
n

(x) = Pr{max{b1, b2, . . . , bn} ≤ x} +
n∑

i=1

Pr{xi > x and for all j = i, xj ≤ x}

= [F(x)]n +
n∑

i=1

(1 − F(x))[F(x)]n−1

= [F(x)]n + n(1 − F(x))[F(x)]n−1

= n[F(x)]n−1 − (n − 1)[F(x)]n.

The bid of each agent bi in the second-price sealed-bid auction is his valuation, which
we assumed is uniformly drawn from [0, 1], so that F(bi) = bi, and we obtain

F [2]
n

(x) = nxn−1 − (n − 1)xn. (13.10)

It follows from (13.10) that the density of the second-order statistic is

f [2]
n

(x) = dF [2]
n

(x)

dx
= n(n − 1)xn−2 − n(n − 1)xn−1,

and it follows that the expected second-order statistic is

E
[
θ

[2]
2

]
=

∫ 1

0
xf [2]

n
(x)dx =

∫ 1

0
(n(n − 1)xn−1 − n(n − 1)xn)dx

=
[
(n − 1)xn − n(n − 1)xn+1

n + 1

∣∣∣∣ 1

0
= (n − 1) − n(n − 1)

n + 1
= n − 1

n + 1
.

We conclude therefore that the expected revenue of the seller is the same in both
the first-price and second-price sealed-bid auctions. The revenue equivalence theorem
is in fact much more general than the simplified version described here and is a very
deep result that applies to an important class of games of incomplete information. The
result is related to what is often called the envelope theorem. The interested reader
is encouraged to consult the books by Krishna (2002) and Milgrom (2004) for an in-
depth analysis of the revenue equivalence theorem and its implications for auction
design.

13.2 Common Values and the Winner’s Curse

Recall that the private values setting describes the situation in which each player’s
payoff depends on the profile of actions of all players and on his own type, but not
on the types of other players. This setting is useful in describing such scenarios as
how much different people value a hamburger or a bag of chips, but in many cases
the payoff of one player will depend on the private information of other players.

Consider, for instance, a house that is on the market—how much would you be
willing to pay for it? The answer will depend on two major components: first, your own
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private value of living in that house, and second, what you expect to get for the house
if you choose to sell it at a later date. Other people may have investigated the house
and hired inspectors who discovered different shortcomings that affect the value of
the house. Hence the information of other people would enter into your willingness to
pay for a house if you knew it, yet other people’s information, or types, will generally
be their own private information. This same argument will apply to a piece of art, a
car, or even a movie—you may value a movie more if you think other people value it
more, so you can later talk to them about it and all agree on how good (or bad) it was.

We refer to such scenarios as having a common-values component, similar to the
adverse selection model of Section 12.3. To illustrate an extreme example of pure
common values in which each player has the same value from winning the auction,
imagine that two identical oil firms are considering the purchase of a new oil field. It
is common knowledge that the amount of oil is either small, worth $10 million of net
profits; medium, worth $20 million of net profits; or large, worth $30 million of
net profits. Thus the oil field has one of three values, v ∈ {10, 20, 30}. Imagine that it
is also common knowledge that these values are distributed so that it is equally likely
that the amount is small or large, and twice as likely that it is medium, so that

Pr{v = 10} = Pr{v = 30} = 1
4 , and Pr{v = 20} = 1

2 .

Now assume that the government, which currently owns the field, will auction
it off in a second-price sealed-bid auction, and that before the auction each of the
two firms will perform a (free) exploration that will provide some signal about the
quantity of oil in the field. Specifically each firm i ∈ {1, 2} receives a low or high
signal, θi = {L, H }, which is correlated with the amount of oil as follows:

1. If v = 10 then θ1 = θ2 = L.

2. If v = 30 then θ1 = θ2 = H .

3. If v = 20 then either θ1 = L and θ2 = H, or θ1 = H and θ2 = L, where each
of these two events (conditional on v = 20) occurs with equal probability.

Thus the probabilities of each pair of signals materializing are given by the
following probability distribution matrix:

θ2
L H

θ1

L 1
4

1
4

H 1
4

1
4

where the signal outcomes are not independent—they are correlated with the actual
amount of oil.

We can associate each player’s signal with his type, to the extent that given a
signal, a player can form expectations about the signal of his opponent, and in
turn about the quantity of oil. If player i observes a low signal L then he knows
that the probability that player j ’s signal is low, Pr{θj = L|θi = L}, is equal to
the probability that player j ’s signal is high, Pr{θj = H |θi = L}, and is equal
to 1

2 . Similarly Pr{θj = H |θi = H } = Pr{θj = L|θi = H } = 1
2 .

Given the posterior updated beliefs that each type has, we can calculate the
expected amount of oil in the field conditional on the signal that a player has. If player
i observes a low signal, he knows that with probability 1

2 the other signal is low and
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v = 10, and with probability 1
2 the other signal is high and v = 20. Therefore

E[vi|θi = L] = 1
2 × 10 + 1

2 × 20 = 15,

and similarly

E[vi|θi = H ] = 1
2 × 20 + 1

2 × 30 = 25.

At this stage we have identified the way in which types, which are defined by
the information a player has, map into expectations over the amount of oil and
therefore into expected payoffs from owning the field. However, it is not true that one
player’s type alone determines the value of obtaining the oil field—there is valuable
information in the type of the other player, which, as we will now see, makes the
simple second-price sealed-bid auction somewhat less straightforward than in the
IPV case.

To see this let’s first consider the following question: in a second-price sealed-
bid auction, is it a Bayesian Nash equilibrium for both players to submit truthful
bids equal to their expected valuations? Formally, is si(θi) = E[vi|θi] for i ∈ {1, 2}
a Bayesian Nash equilibrium? To answer this question let’s assume that player 2 is
playing according to this prescription and then check whether following this strategy
is a best response of player 1.

Consider the case in which θ1 = L and player 1 bids 15 (his expected value), then
with probability 1

2 player 2 also bids 15, in which case they win with equal probability
and pay the second-highest bid of 15. This happens only when both players have a
low signal, in which case the value of the oil field is v = 10. With probability 1

2 player
2 has a high signal and player 1 loses, giving him a payoff of zero. Therefore, player
1’s expected payoff is

Ev1 = 1
2 ×

[
1
2 × (10 − 15)

]
+ 1

2 × [0] = −1.25,

and player 1 would rather bid less than 15 and never win.
This perhaps surprising outcome is a direct consequence of the common-values

setting in which the types are correlated. When player 1 wins the oil field it is because
his opponent’s bid was low (in this case they tie), a consequence of player 2 having
a low signal. But if player 1 bids his average value given his signal, then he is not
taking into account the fact that he wins only when player 2’s signal is low. This is
“bad news” because it implies that the quantity of oil is lower than the player thinks it
is on average. This phenomenon, which occurs in common-values settings, is known
as the “winner’s curse”: a player wins when his signal is the most optimistic, which
in the common-values setting means that he has overestimated the value of the good
and is overpaying if he does not take this conditioning into account. In an equilibrium,
therefore, players will have to choose their bids conditioning on the fact that when
they win, this means that their signal is higher than everyone else’s, which is likely to
imply that the winner is too optimistic about the good’s value. The reasoning is very
similar to that behind the “swing voter’s curse” described in Section 12.4. You are
asked to solve for the Bayesian Nash equilibrium of this auction in exercise 13.8.

This phenomenon exists in both first- and second-price sealed-bid auctions, and
it has important economic consequences as to which auctions may perform better
in allocating a common-values good efficiently. For more on this topic see Krishna
(2002) and Milgrom (2004).
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13.3 Summary

. Auctions are commonly used games that allocate scarce resources among
several potential bidders.

. There are two extreme settings of auction games. The first case is that of private
values, in which the information of each player is enough for him to infer his
value from winning the object. The second case is that of common values, in
which the information of other players will determine how much the object is
worth to any player.

. Auctions often differ in their rules, such as open or sealed bidding, or first
or second price. Different rules will result in different equilibrium bidding
behavior.

. In the private values setting, the second-price sealed-bid auction is strategi-
cally equivalent to the English auction. In both auctions each player has a
simple weakly dominant strategy of bidding his true value for the object. The
highest-value player wins and pays the second-highest value.

. In the private values setting, the first-price sealed-bid auction is strategically
equivalent to the Dutch auction. In both auctions each player’s best response
depends on the strategies of other players, and calculating a Bayesian Nash
equilibrium is not straightforward. In equilibrium each bidder shades his
valuation when bidding in order to obtain a positive expected value from the
auction.

. The revenue equivalence theorem identifies conditions under which each of
the four kinds of auctions yields the seller the same expected revenues and
results in the same outcomes for the participating bidders.

. If the auction is one of common values then players must take into account
the downsides of the winner’s curse and bid accordingly to avoid overpaying
for the object.

13.4 Exercises

13.1 Second-Price Auctions: Show that in a second-price sealed-bid auction bid-
ding your valuation weakly dominates bidding above your valuation.

13.2 Complete Information: Consider a set of N players participating in a sealed-
bid second-price auction, but assume that there is complete information so that
each player knows the valuation of every other player.

a. Is it still true that each player bidding his valuation is a weakly domi-
nant strategy?

b. Are there other Nash equilibria of this game?

13.3 Reserve Prices (Easier): Consider a seller who must sell a single private value
good. There are two potential buyers, each with a valuation that can take on one
of three values, θi ∈ {0, 1, 2}, each value occurring with an equal probability
of 1

3. The players’ values are independently drawn. The seller will offer the
good using a second-price sealed-bid auction, but he can set a “reserve price”
of r ≥ 0 that modifies the rules of the auction as follows. If both bids are below
r then neither bidder obtains the good and it is destroyed. If both bids are at
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or above r then the regular auction rules prevail. If only one bid is at or above
r then that bidder obtains the good and pays r to the seller.

a. Is it still a weakly dominant strategy for each player to bid his valuation
when r > 0?

b. What is the expected revenue of the seller when r = 0 (no reserve
price)?

c. What is the expected revenue of the seller when r = 1?
d. What explains the difference between your answers to (b) and (c)?
e. What is the optimal reserve price r for the seller, and what can you

conclude about the value of reserve prices?

13.4 Reserve Prices (Harder): Consider a seller who must sell a single private
value good. There are two potential buyers, each with a valuation that is drawn
independently and uniformly from the interval [0, 1]. The seller will offer the
good using a second-price sealed-bid auction, but he can set a “reserve price”
of r ≥ 0 that modifies the rules of the auction as follows. If both bids are below
r then neither bidder obtains the good and it is destroyed. If both bids are at
or above r then the regular auction rules prevail. If only one bid is at or above
r then that bidder obtains the good and pays r to the seller.

a. Show that choosing r = 0 is not optimal for the seller. What is the
intuition for this fact?

b. What is the optimal reserve price for the seller?

13.5 Mixed Strategies: Consider a seller who offers a single private value good
using a first-price sealed-bid auction. There are two potential buyers, each with
a valuation that can take on one of two values, θi ∈ {4, 8}, each value occurring
with an equal probability of 1

2 . The players’ values are independently drawn.
Call the type with θi = 4 the “low” type and θi = 8 the “high” type.

a. Show that in a Bayesian Nash equilibrium the low must be using a
pure strategy bid bL = 4. (Hint: First show that in a Bayesian Nash
equilibrium the low type cannot be using a pure strategy bid bL < 4.
Next show that in a Bayesian Nash equilibrium the low type cannot be
using a mixed strategy with two different bids.)

b. Show that given the fact described in (a), in any Bayesian Nash equi-
librium the high type will never choose a bid bH > 6.

c. Show that the low type choosing bL = 4 and the high type choosing
bH uniformly from the interval [4, 6] together constitute a Bayesian
Nash equilibrium.

d. Calculate the expected revenue to the seller given the Bayesian Nash
equilibrium in (c). How does it compare to the expected revenue he
would obtain from an English auction?

13.6 Third-Price Sealed-Bid Auction: Consider a third-price sealed-bid auction
in which the highest bidder wins the auction and the winner pays the third-
highest bid. Assume that n players’ valuations are private and are drawn
independently from the uniform distribution over the interval [0, 1].

a. Write down a bidder’s expected payoff function for this auction.
b. Show that if each player chooses the following bid strategy then the

players will be playing a Bayesian Nash equilibrium:

si(θi) = n − 1

n − 2
θi.
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c. Why do you think that bidders bid above their valuations?
d. Compute the seller’s expected revenue from this auction and compare

it to the expected revenue from the first- and second-price sealed bid
auctions.

13.7 Risk-Averse Bidders: Imagine an auction for a single item with n bidders
whose valuations θi are drawn uniformly from the interval [0, 1]. Assume
that the players are risk averse and that the utility to player i of type θi from
winning the item at a price p is given by

√
θi − p for p ≤ θi. (We will assume

that no bidder ever bids or pays more than his valuation.)

a. Write down a bidder’s expected payoff function for the first- and
second-price sealed-bid auctions.

b. Show that in the first-price sealed-bid auction each bidder of type θi

choosing the bidding strategy s(θi) = θi
m(n−1)

m(n−1)+1 forms a symmetric
Bayesian Nash equilibrium.

c. Show that in a second-price sealed-bid auction it is a (weakly) domi-
nant strategy for each bidder to bid his valuation.

d. Compare the seller’s expected revenue from the first- and second-price
sealed-bid auctions. In what way does this example differ from the case
of risk-neutral bidders?

13.8 Common Values: Consider the common-values oil field example of Sec-
tion 13.2. Find a Bayesian Nash equilibrium for the second-price sealed-bid
auction of the oil field.

13.9 Private Value Linear Bidding: Two players participate in a first-price sealed-
bid auction in an IPV setting. The value of the good for each player is given
by 0.5 + θi, where θi is observed only by player i and is uniformly distributed
over the interval [0, 1].

a. Show that there is a symmetric Bayesian Nash equilibrium in which
each bidder i’s bidding strategy is of the form s∗

i
(θi) = a + bθi.

b. What is the expected payoff of a player if his type is θi?

13.10 Common Values Linear Bidding: Two players participate in a first-price
sealed-bid auction in a common-values setting. The value of the good for each
player is given by θ1 + θ2, where θi is a signal observed only by player i and
is uniformly distributed over the interval [0, 1]. Hence if player i observes
his signal θi then his expected valuation is equal to 0.5 + θi (but unlike the
previous exercise, this is a common-values setting).

a. Show that there is a symmetric Bayesian Nash equilibrium in which
each bidder i’s bidding strategy is of the form s∗

i
(θi) = a + bθi.

b. What is the expected payoff of a player if his type is θi?
c. Show that for each value of θi the equilibrium bid of player i is less

than what you found in (a) of the previous exercise.



14
Mechanism Design

There are many economic and political situations in which some central authority
wishes to implement a decision that depends on the private information of a set

of players. For example, a government agency may wish to choose the design of a
public-works project based on the preferences of its citizens, who in turn have private
information about how much they prefer one design over another. Alternatively, a
monopolistic firm may wish to determine a set of consumers’ willingness to pay for
different products it can produce, with the goal of making as high a profit as possible.

In this section we provide a short introduction to the theory of mechanism design,
which is the study of what kinds of mechanisms such a central authority can devise in
order to reveal some or all of the private information that it is trying to extract from the
group of players with which it is interacting. In essence the mechanism designer, our
central authority, will design a game to be played by the players, and in equilibrium
the mechanism designer wishes to both reveal the relevant information and act upon
it. The study of mechanism design dates from the early work of Leonid Hurwicz
(1972), and it has been an active area of theoretical research for the past four decades.
In 2007 Hurwicz shared the Nobel Prize in economics with Eric Maskin and Roger
Myerson for laying the foundations of this thriving research agenda.1 Interestingly in
the past decade there has been a growing interest among theoretical computer science
scholars in mechanism design, which proves useful in the design of online systems,
in particular those for online advertising and auctions.

14.1 Setup: Mechanisms as Bayesian Games

14.1.1 The Players

We start with a set of players, N = {1, 2, . . . n}, and a set of public alternatives,
X. The set X could represent many possible kinds of alternatives. For example, an

1. For a survey of the contributions of these three economists, as well as related work, see
“Scientific background on the Sveriges Riksbank Prize in Economic Sciences in Memory of Al-
fred Nobel 2007, Mechanism Design Theory, Compiled by the Prize Committee of the Royal
Swedish Academy of Sciences” at http://www.nobelprize.org/nobel_prizes/economics/laureates/
2007/advanced-economicsciences2007.pdf.
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alternative x ∈ X could represent the attributes of a public good or service that is
provided to the set of players, such as investment in education or in preserving the
environment. Another example of an alternative x ∈ X can be the allocation of a
private good between the players, such as which of the n players gets the rights to a
patent or a license to pollute. The flexibility of what X can be is a key feature of this
framework, showing that it can be applied to many interesting and important settings.
We call X the set of public alternatives because the chosen alternative affects all the
players in N to the extent that even for a private good, if one player gets it then the
consequence is that everyone else does not (e.g., an auction).

Each player i privately observes a signal (his type) θi ∈ �i which determines
his preferences over outcomes just as we described in Chapter 12. The set of types
�i of player i can be finite or infinite. Given a realization of types θi for each i,
let θ = (θ1, θ2, . . . , θn) be the state of the world as it describes the profile of all
realized types for the n players. The state θ is drawn randomly from the state space
� ≡ �1 × �2 × . . . × �n, which is the set of all possible profiles of types θ ∈ �.
The draw of θ is according to some prior distribution φ(.) over �. (φ(.) is given by
probabilities if the state space � is finite and by a density, or cumulative distribution,
if the state space � is continuous.) As before we assume that θi is player i’s private
information and that the prior φ(.) is common knowledge.

Turning to payoffs, we will focus on a particularly convenient way to repre-
sent preferences over outcomes by assuming that every alternative has a “money-
equivalent” value, and that preferences are additive in money. That is, if player i is
given an amount of money equal to mi ∈ R (if mi < 0 then it means that money is
taken away from i), and if the public alternative chosen is x ∈ X, then player i’s payoff
is given by

vi(x, mi, θi) = ui(x, θi) + mi, (14.1)

where we interpret ui(x, θi) as the money-equivalent value of alternative x ∈ X when
i’s type is θi. This class of preferences, in which money is added linearly to some
function of other outcomes, is called quasilinear preferences.

As a result of this specification, we can think of outcomes as combinations of
the choice of the public alternative together with monetary amounts that each player
gets (or pays). Thus an outcome would be represented as y = (

x, m1, . . . , mn

)
, and

each player i has preferences over outcomes given by (14.1). Notice that we restrict
attention to the case of private values in which player i’s payoff does not depend
directly on other players’ private information. In the more general common values
case a player’s payoff can depend on other players’ information, which was the case
in the adverse selection problem in Section 12.3 and in the example of common-values
auctions in Section 13.2.

14.1.2 The Mechanism Designer

We now turn to the so-called central authority described earlier, whom we shall call
the mechanism designer. The mechanism designer has the objective of achieving an
outcome that depends on the types of the players. Before continuing we impose some
restrictions on the set of outcomes by assuming that the mechanism designer does
not have a source of funds to pay the players, which in turn implies that the monetary
payments they make or receive have to be self-financed. That is,

∑n
i=1 mi ≤ 0. Notice

that we allow for the sum of monetary transfers to be negative, which means that the
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mechanism designer can keep some of the money that he raises from the players. Thus
the set of outcomes is restricted as follows:

Y = {(x, m1, . . . , mn) : x ∈ X, mi ∈ R∀i ∈ N,

I∑
i=1

mi ≤ 0}.

The mechanism designer’s objective is given by a choice rule that takes the form

f (θ) = (x(θ), m1(θ), . . . , mn(θ)),

where x(θ) ∈ X and
∑I

i=1 mi(θ) ≤ 0. We will call x(θ) the decision rule and(
m1(θ), . . . , mn(θ)

)
the transfer rule because it determines the transfers made by

or to each player. Two examples may be useful to illustrate our setup.

Example 14.1 (public good) Let X = [0, x] be the level of some public good, say,
the size of a water treatment plant that will benefit some citizens and may displease
others. The citizens are the group of players, N . Player i’s willingness to pay (his
monetary value or harm) from a level x ∈ X of this public good is given by ui(x, θi).
The mechanism designer may be a utilitarian ruler who wants to choose the value of
x that maximizes the sum of the players’ valuations, so his decision rule x(θ) would
maximize

∑n
i=1 ui(x, θi).

Example 14.2 (allocation of a private good) A good, say a license to use a certain
portion of the electromagnetic spectrum for cell phone coverage, can be allocated
to one of a group of cellular carriers i ∈ N . Let xi ∈ {0, 1} indicate whether player i

receives the good (xi = 1) or not (xi = 0). Then the possible set of alternatives is

X = {(x1, x2, . . . , xn) such that xi ∈ {0, 1} and
n∑

i=1

xi = 1}.

Player i’s willingness to pay for owning the private good is given by ui(x, θi) = θixi,
where θi can be thought of as the value to each player of owning the portion of the spec-
trum (e.g., his future profits from providing service). The mechanism designer may
again be a utilitarian ruler who wants to choose the value of x that maximizes the sum
of the players’ valuations, so his decision rule x(θ) would maximize

∑n
i=1 ui(x, θi),

which in this case would be achieved by allocating the license to the player who values
it the most. Alternatively the mechanism designer may want to make the highest profit
he can by collecting money from the player who gets the good, or who participates
in some kind of auction to get it.

14.1.3 The Mechanism Game

In our setup the mechanism designer desires to implement a choice rule f : � → Y .
However, he cannot do this directly because the choice rule depends on the unobserved
state of the world θ . Thus in order to implement a state-contingent choice rule the
mechanism designer has to ask players to reveal their types, and then he can prescribe
an outcome on the basis of those types.

Perhaps, as you can imagine, players may not have incentives to reveal their types
truthfully. In the example of a public good just described, some players who don’t want
the water treatment plant built might exaggerate their harm from such a plant, while
others who want it built may exaggerate their benefit. The problem our mechanism
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designer faces can be described in two ways. First, what information would the players
be willing to share if the mechanism designer would in turn implement his choice rule
f (.)? Second, would the mechanism designer be able to implement f (.) using some
sophisticated set of rules that would end up revealing the players’ private information?

This second question deserves some thought. Maybe our mechanism designer
realizes that he cannot just extract the private information if he asks directly for the
players to reveal their types. However, he may be able to design some clever game
that the players will play, in which the rules of the game endow each player i with an
action set Ai, and following the choice ai ∈ Ai by each player there is some outcome
function g(a1, . . . , an) that makes a choice of an outcome y ∈ Y . Player i’s strategy
is a contingent plan si : �i → Ai. Because player i observes only his type θi and not
other players’ types, this is a game of incomplete information, and given the common
prior over types, φ(.), and the payoffs over outcomes, vi(g(s), θi), this setup is just
a Bayesian game. Formally we have

Definition 14.1 A mechanism, � = 〈
A1, A2, . . . , An, g(.)

〉
is a collection of n

action sets A1, A2, . . . , An and an outcome function g : A1 × A2 × . . . × An → Y .
A pure strategy for player i in the mechanism � is a function that maps types into
actions, si : �i → Ai. The payoffs of the players are given by vi(g(s), θi).

If the players are forced to play this game, then depending on their beliefs about
the choices of other players, and on the realization of the players’ types, each player
i will choose a best response from his action set Ai. Because we are concerned with
equilibrium behavior, we offer this definition:

Definition 14.2 The strategy profile s∗(.) = (s∗
1(.), . . . , s∗

n
(.)) is a Bayesian Nash

equilibrium of the mechanism � = 〈
A1, . . . , An, g(.)

〉
if for every i ∈ N and for

every θi ∈ �i

Eθ−i
[vi(g(s∗

i
(θi), s∗

−i
(θ−i)), θi)|θi]

≥ Eθ−i
[vi(g(a′

i
, s∗

−i
(θ−i)), θi)|θi] for all a′

i
∈ Ai.

That is, if player i believes that other players are playing according to s∗
−i

(θ−i)

then he maximizes his expected payoff by following the behavior prescribed by s∗
i
(θi)

regardless of which type player i is.
Now imagine that our mechanism designer was clever enough to design a mecha-

nism in which there is a profile of equilibrium strategies, s∗
i

: �i → Ai such that given
any realization of types θ , the outcome of the game is exactly what the mechanism de-
signer wants to achieve. That is, for all θ ∈ �, g(s∗

1(θ1), s∗
2(θ2), . . . , s∗

n
(θn)) = f (θ).

In this case our mechanism designer would be very lucky indeed, because the mech-
anism he devised would result in the outcome he would have chosen had he known
the types of the players. To define this scenario formally, we have

Definition 14.3 A mechanism � implements the choice rule f (.) if there exists a
Bayesian Nash equilibrium of the mechanism �, (s∗

1(θ1), s∗
2(θ2), . . . , s∗

n
(θn)), such

that g(s∗
1(θ1), s∗

2(θ2), . . . , s∗
n
(θn)) = f (θ) for all θ ∈ �.

The idea of a mechanism implementing a choice rule is illustrated in Figure 14.1.
The mechanism designer would like to know θ and then choose the outcome f (θ). Us-
ing the mechanism with equilibrium strategies s∗(θ) = (s∗

1(θ1), s∗
2(θ2), . . . , s∗

n
(θn)),

given any θ , the players choose actions a = (a1, a2, . . . , an) commensurate with
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FIGURE 14.1 A mechanism implementing f (.).

s∗(θ), and through the outcome function g(.) the mechanism does what the mech-
anism designer wanted to do, because for every θ a is chosen such that g(a) = f (θ).

Remark The formulated implementation concept introduced in definition 14.3 is
sometimes called partial implementation because it requires that the desired out-
come be an equilibrium, but allows for other, undesirable, equilibrium outcomes
as well. Consider the following simple example of majority voting. Let n = 3, and
assume there are two outcomes, Y = {a, b}, each being some alternative (e.g., a pair
of candidates or a pair of policies). Suppose that we want to implement a choice rule
f (.) such that f (θ) = a whenever at least two players strictly prefer a, and similarly
for b. Suppose that we use the majority voting mechanism for this purpose: each of the
three players casts a vote and the majority wins. The mechanism does have a desirable
Bayesian Nash equilibrium in which each player votes his true preference. However,
the majority voting mechanism also has an undesirable Nash equilibrium in which all
players vote for b in all states. This equilibrium results in outcome b even in a state
θ ∈ � in which all players prefer a to b. The reason is that if each player believes
that the other two will vote for b then he believes that b will win regardless of his
vote, and hence he too is willing to vote for b. The study of implementation without
so-called bad equilibria in which f (θ) is not implemented is called full implemen-
tation. We will not be concerned with the problem of undesirable equilibria and will
content ourselves with the concept of partial implementation. For more on this topic
see Mas-Colell et al. (1995, Chapter 23).

14.2 The Revelation Principle

We have just described what may be a useful tool in the hands of the mechanism
designer. It may be that a clever designer can design a mechanism, which is a
Bayesian game, and through it get the players to play equilibrium strategies that end
up implementing exactly what the mechanism designer intended. This may be useful
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only if the mechanism designer cannot get the players to reveal their types when they
realize that his intention is to implement f (.).

It seems that this scenario, in which the mechanism designer asks the players to
reveal their types in order to implement f (.), can itself be regarded as a particular
mechanism, and as such as a Bayesian game. The actions that players can choose are
announcing any one of their types, and given a profile of announced types, the outcome
is determined by f (.) operated on the announcements. Hence we can formally define
this game as follows:

Definition 14.4 � = 〈
�1, . . . , �n, f (.)

〉
is a direct revelation mechanism for

choice rule f (.) if Ai = �i for all i ∈ N and g(θ) = f (θ) for all θ ∈ �.

It will also be useful to define a very important benchmark, in which this straight-
forward direct revelation mechanism will actually have an equilibrium that imple-
ments the mechanism designer’s intended outcome:

Definition 14.5 The choice rule f (.) is truthfully implementable in Bayesian
Nash equilibrium if for all θ the direct revelation mechanism � = 〈

�1, . . . , �n ,

f (.)〉 has a Bayesian Nash equilibrium s∗
i
(θi) = θi for all i. Equivalently, for all i,

Eθ−i
[vi(f (θi, θ−i), θi)|θi] ≥ Eθ−i

[vi(f (θ̂i, θ−i), θi)|θi] for all θ̂i ∈ �i.

That is, f (.) is truthfully implementable in Bayesian Nash equilibrium if truth-
telling is a Bayesian Nash equilibrium strategy in the direct revelation mechanism. If
every player i believes that all other players are reporting their types truthfully, then
player i is also willing to report truthfully.

Effectively if some choice function f (.) was truthfully implementable then it
means that our mechanism designer does not have to resort to some sophisticated game
to get the outcome he desires. The question then is, if the mechanism designer’s choice
function f (.) is not truthfully implementable, can he find some clever mechanism that
implements it? The answer turns out to be negative:

Proposition 14.1 (The Revelation Principle for Bayesian Nash Implementation) A
choice rule f (.) is implementable in Bayesian Nash equilibrium if and only if it is
truthfully implementable in Bayesian Nash equilibrium.

Proof By definition, if f (.) is truthfully implementable in Bayesian Nash equilib-
rium then it is implementable in Bayesian Nash equilibrium using the direct revela-
tion mechanism. To prove the converse, suppose that there exists some mechanism
� = (A1, . . . , An, g(.)) that implements f (.) using the equilibrium strategy profile
s∗(.) = (s∗

1(.), . . . , s∗
n
(.)) and g(s∗(.)) = f (.), so that for every i ∈ N and θi ∈ �i,

Eθ−i
[vi(g(s∗

i
(θi), s∗

−i
(θ−i)), θi)|θi]

≥ Eθ−i
[vi(g(a′

i
, s∗

−i
(θ−i)), θi)|θi] for all a′

i
∈ Ai, (14.2)

which means that no player i wishes to deviate from s∗
i

(.). One particular way to
deviate for player i is by using s∗

i
(.) but pretending that his type is θ̂i rather than θi,
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i.e., choosing the action a′
i
= s∗

i
(θ̂i). Thus a particular case of (14.2) is

Eθ−i
[vi(g(s∗

i
(θi), s∗

−i
(θ−i)), θi)|θi]

≥ Eθ−i
[vi(g(s∗

i
(θ̂i), s∗

−i
(θ−i)), θi)|θi] for every θ̂i ∈ �i. (14.3)

But because g(s∗(θ)) = f (θ) for all θ ∈ �, (14.3) implies that, for all i ∈ N and for
all θi ∈ �i,

Eθ−i
[vi(f (θi, θ−i), θi)|θi] ≥ Eθ−i

[vi(f (θ̂i, θ−i), θi)|θi] for all θ̂i ∈ �i.

But this is just the condition for f (.) to be truthfully implementable in Bayesian Nash
equilibrium.

At first glance this proposition may seem quite remarkable. It basically says that if
the mechanism designer cannot implement f (.) directly then there is no mechanism
in the world that can. The result follows from the strong requirements of equilibrium
analysis, which is at the core of game theory. In a nutshell, in equilibrium players are
neither wrong nor surprised. Hence if players are playing a mechanism that results
in the implementation of f (.), then by construction of equilibrium beliefs they must
know that f (.) will be implemented, and hence the mechanism designer might as well
implement it directly.

To be more precise, the reasoning works as follows: Imagine that there is some
clever mechanism � that implements f (.) with the strategies s∗

i
(.) for each player i.

Now imagine that each player i writes a computer program to compute his equilibrium
action according to s∗

i
(.). That is, the player feeds his type θi ∈ �i into the program,

and the program calculates the equilibrium action s∗
i
(θi) and sends it to the mechanism

designer. The player will not want to lie to his computer because, by construction, the
program computes his best response strategy.

Because the mechanism designer knows that s∗
i
(.) is the player’s equilibrium strat-

egy, he can save the players the trouble of programming their strategies by “importing”
each player’s program into his own computer, which calculates g(s∗(θ)). This gives
rise to the following new mechanism �∗: players announce their types, Ai = �i for
all i, to the mechanism designer; the new outcome function g∗(.) is computed by first
feeding the players’ type announcements θ into their equilibrium programs s∗

i
(.); the

mechanism designer computes the outcome g(s∗
i
(θ)) and implements it. That is, given

announcements θ̂1, θ̂2, . . . , θ̂n,

g∗(θ̂1, θ̂2, . . . , θ̂n) = g(s∗
1(θ̂1), s∗

2(θ̂2), . . . , s∗
n
(θ̂n)) = f (θ̂1, θ̂2, . . . , θ̂n),

because the mechanism � implemented f (.). But in the new mechanism every player
will report his type θi truthfully to the designer by construction, and, playing the new
mechanism, they all know that it implements f (.). This in turn implies that we have
just created a direct revelation mechanism in which truth-telling is a Bayesian Nash
equilibrium. Thus the idea behind the powerful revelation principle is a consequence
of equilibrium analysis: in equilibrium the players know that the mechanism imple-
ments f (.), and they choose to stick to it, so they might as well announce their types
truthfully and have the mechanism designer implement f (.) directly.
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14.3 Dominant Strategies and Vickrey-Clarke-Groves
Mechanisms

14.3.1 Dominant Strategy Implementation

One particular form of a Bayesian Nash equilibrium is an equilibrium in dominant
strategies: that is, each player has a strategy that maximizes his expected payoff
regardless of what strategies he expects others to play. Formally, we have

Definition 14.6 The strategy profile s∗(.) = (s∗
1(.), . . . , s∗

n
(.)) is a dominant strat-

egy equilibrium of the mechanism � = 〈
A1, A2, . . . , An, g(.)

〉
if for every i ∈ N and

for every θi ∈ �i

vi(g(s∗
i
(θ), a−i), θ) ≥ vi(g(a′

i
, a−i), θ) for all a′

i
∈ Ai and for all a−i ∈ A−i.

The appealing feature of this equilibrium concept is in the weak requirements it
demands of the players: a player need not forecast what the others are doing, nor does
he have to have correct expectations on the distribution of the other players’ types. A
related advantage is that “bad” equilibria are usually not a problem. (If a player has
two dominant strategies they must be payoff-equivalent, and most games of interest
do not have two outcomes with exactly the same payoffs.)

The question then is, can we find a mechanism � that implements f (.) in domi-
nant strategies? By now you should be able to predict the answer. Because a dominant
strategy equilibrium is just a special case of a Bayesian Nash equilibrium, the revela-
tion principle applies. We conclude, therefore, that to check if f (.) is implementable
in dominant strategies we need only check that f (.) is truthfully implementable in
dominant strategies directly—that is, that for all i ∈ N and all θi ∈ �i,

vi(f (θi, θ−i), θi) ≥ vi(f (θ̂i, θ−i), θi) for all θ̂i ∈ �i, and for all θ−i ∈ �−i.

14.3.2 Vickrey-Clarke-Groves Mechanisms

Recall that we restricted our attention to preferences in which every alternative
has a money-equivalent value, and that preferences are additive in money, so that
vi(x, mi, θi) = ui(x, θi) + mi. These preferences are called quasilinear preferences
because the payoff of each player is linear in money and has an added component that
derives a type-dependent payoff from the choice of x ∈ X.

There is a nice feature of this quasilinear environment in which each player
has quasilinear preferences. Imagine that there are two alternatives x, x′ ∈ X and
a pair of players i and j with types θi and θj such that ui(x

′, θi) > ui(x, θi) and
uj(x, θj) > uj(x

′, θj). That is, player i prefers the outcome x′ over x, while player
j prefers the outcome x over x′. Further imagine that

ui(x
′, θi) − ui(x, θi) > uj(x, θj) − uj(x

′, θj).

This implies that i prefers x′ to x in monetary terms more than j prefers x to x′. The
quasilinear environment implies that for any amount of money k > 0 that satisfies
ui(x

′, θi) − ui(x, θi) > k > uj(x, θj) − uj(x
′, θj), we can replace x with x′ and

transfer k from player i to player j so as to make both players better off. This is
a consequence of the additivity in money in quasilinear preferences, and it gives rise
to the following useful proposition:
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Proposition 14.2 In the quasilinear environment, given a state of the world θ ∈ �,
an alternative x∗ ∈ X is Pareto optimal if and only if it is a solution to

max
x∈X

I∑
i=1

ui(x, θi).

That is, a solution is Pareto optimal if and only if it maximizes the sum of the
ui(., θi) functions. The proof is simple: if an alternative x did not maximize this sum
then we can find an alternative x′ that did, and then we can find money transfers among
the players that would ensure that the gains of some players more than compensate
for the losses of others. Notice that transfers of money between players are a “wash”
as far as Pareto efficiency is considered because one person’s gain is the other’s loss.
The only thing that matters for efficiency is getting the choice x ∈ X right, and the
transfers can be thought of as the way in which the surplus is divided among the
players to settle things.

Recall that the choice rule f (θ) determines the choice of the alternative, x(θ), and
the choice of monetary transfers, m1(θ), . . . , mn(θ). We call a decision rule x∗(.) the
first-best decision rule if for all θ ∈ �, x∗(θ) is Pareto optimal. We now focus on the
problem of a benevolent mechanism designer who wishes to implement the first-best
decision rule in a quasilinear environment:

x∗(θ) ∈ arg max
x∈X

I∑
i=1

ui(x, θi) ∀θ ∈ �.

The question of interest now becomes, can our mechanism designer find a transfer
rule (m1(.), . . . , mn(.)) such that the choice rule (x∗(.), m1(.), . . . , mn(.)) is imple-
mentable in dominant strategies? That is, if the players are faced with this Pareto
optimal choice rule (x∗(.), m1(.), . . . , mn(.)), will truth-telling be a dominant strat-
egy for each player in the direct revelation mechanism?

Let’s see what incentives a player faces in a direct revelation game with a first-
best choice rule (x∗(.), m1(.), . . . , mn(.)). Each player will choose to announce some
θ̂i ∈ �i, which generates an announcement profile, θ̂ = (θ̂1, . . . , θ̂n). The imple-
mented choice implies that each player’s payoff is vi(y, θi) = ui(x

∗(θ̂i, θ̂−i), θi) +
mi(θ̂i, θ̂−i), where θ̂i is player i’s announcement, θ̂−i are the announcements of all the
other players, and θi is player i’s true type. Thus the incentives that influence player
i’s decision on what to announce come from two sources: how his announcement
influences the choice x∗(θ̂i, θ̂−i), and how it affects the value of mi(θ̂i, θ̂−i).

Consider for example a choice rule in which mi(θ̂i, θ̂−i) ≡ 0, so that transfers are
never made to player i and his incentives are driven by the way his announcement
influences the choice of x∗(θ̂i, θ̂−i). It is easy to see that because x∗(θ̂i, θ̂−i) is the first-
best decision rule, i may not want to announce his type truthfully. The reason is that
x∗(θ̂i, θ̂−i) is chosen to maximize total surplus,but player i instead wants to maximize
his own payoff. Thus given a belief that player i has about the announcements of the
other players, player i will report a type θ̂i ∈ �i to achieve decision x that maximizes
ui(x, θi), and not one that maximizes the sum of all the players’ payoffs.

Using some conventional jargon from economics, the problem of these misaligned
incentives when no transfers are made is that the player does not account for the exter-
nality he imposes on others with his announcement. When player i’s announcement
induces some choice x′ instead of the Pareto-optimal choice x∗(θ), then he will gain
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ui(x
′, θi) − ui(x

∗(θ), θi), at the expense of imposing a loss on the rest of society
equal to

∑
j =i

(
uj(x

∗(θ), θj) − uj(x
′, θj)

)
. This problem could be solved by having

a clever transfer rule mi(θ̂i, θ̂−i) that lets player i internalize the externality and thus
aligns his private incentives with social incentives. To achieve this we need to set the
functions mi(.) so that each player internalizes the externality that he imposes on the
others. This is the idea behind the following important choice rule:

Definition 14.7 Given announcements θ̂ , the choice rule f (θ̂) = (x∗(θ̂), m1(θ̂), . . . ,

mn(θ̂)) is a Vickrey-Clarke-Groves (VCG) mechanism if x∗(.) is the first-best de-
cision rule and if for all i ∈ N

mi(θ̂) =
∑
j =i

uj(x
∗(θ̂i, θ̂−i), θ̂j ) + hi(θ̂−i),

where hi(θ̂−i) is an arbitrary function of θ̂−i.

This general family of choice rules was first described by Groves (1973). However,
Vickrey (1961) and Clarke (1971) had studied particular instances of such mecha-
nisms (which are described shortly). The appealing feature of VCG mechanisms is
described in the following proposition:

Proposition 14.3 Any VCG mechanism is truthfully implementable in dominant
strategies.

Proof In the VCG mechanism every player i solves

max
θ̂i∈�i

ui(x
∗(θ̂i, θ̂−i), θi) +

∑
j =i

uj(x
∗(θ̂i, θ̂−i), θ̂j ) + hi(θ̂−i).

Note first that hi(θ̂−i) does not affect i’s choice. Note also that the player’s announce-
ment θ̂i matters only through its effect on the decision x∗(θ̂i, θ̂−i). Thus we can ask
which decision the player wants to implement: maxx ui(x, θi) + ∑

j =i uj(x, θ̂j ). It
follows that player i wants to implement a decision that maximizes total surplus ac-
cording to his true type and the other players’ announced types. That is, he would like
to implement x∗(θi, θ̂−i). Player i can achieve this decision by announcing the truth
θ̂i = θi (by the definition of x∗(.)).

Intuitively a VCG mechanism operates as follows. By setting mi(θ̂) =∑
j =i uj(x

∗(θ̂i, θ̂−i), θ̂j ) + hi(θ̂−i), each player i’s payoff includes three compo-
nents: his own ui(x

∗(θ̂), θi), the component
∑

j =i uj(x
∗(θ̂i, θ̂−i), θ̂j ), and the com-

ponent hi(θ̂−i). Because hi(θ−i) is not a function of i’s announcement, it has no effect
on i’s incentives, and we can ignore it. Focusing on the second component, notice
that it has a helpful interpretation: this part of the transfer calculates a value that is the
sum of the other players’ uj(., θ̂j ) functions from the chosen alternative, if their true
types are the types that they announce. It is important to note, however, that it does
not matter whether or not the other players are indeed telling the truth, but only that
this part of the transfer to player i is calculated as if they are telling the truth. The
consequence is that player i is faced with a choice that is as if the other players are
telling the truth, and then his own payoff becomes the Pareto-optimal objective that
the mechanism designer wishes to maximize, with the only decision variable being
player i’s announced type. Thus it is as if the player chooses the ultimate decision x,
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and through the sum component of mi he internalizes the externality of his decision
on the other players.

Clarke (1971) suggested a particular VCG mechanism known as the pivotal
mechanism. It is obtained by setting

hi(θ̂−i) = −
∑
j =i

uj(x
∗
−i

(θ̂−i), θ̂j ),

where

x∗
−i

(θ̂−i) ∈ arg max
x∈X

∑
j =i

uj(x, θ̂j )

is the optimal choice of x for a society from which player i was absent. Thus

mi(θ̂) =
∑
j =i

uj(x
∗(θ̂i, θ̂−i), θ̂j ) −

∑
j =i

uj(x
∗
−i

(θ̂−i), θ̂j ).

We may interpret the pivotal mechanism as follows. When player i makes his
announcement, we can think of it as if he is joining the other players, and possibly
affecting the outcome of what would have happened had he not been part of society.
Thus there are two relevant cases:

Case 1: x∗(θ̂i, θ̂−i) = x∗
−i

(θ̂−i). In this case player i’s announcement does not
change what would have happened if he were not part of society. Then the
mechanism specifies a transfer of zero to player i.

Case 2: x∗(θ̂i, θ̂−i) = x∗
−i

(θ̂−i). In this case player i is pivotal in the sense that his
announcement changes what would have happened without him. His transfer
ends up taxing him for the externality that his announcement imposes on the
other players because the new choice is not as good for the other players as
the choice that maximizes their payoffs without player i.

Example 14.3 (allocation of an indivisible private good) Consider the same setting as
in example 14.2, where an object can be allocated to one of N players and the value
of owning the private good for player i is given by ui(x, θi) = θixi. The first-best
allocation solves

max
(x1,...,xn)∈{0,1}n

∑
i=1

θixi subject to
∑

i

xi = 1,

which results in allocating the good to the player i∗ with the highest valuation:
i∗ ∈ arg maxi θi, and

x∗
i
(θ) =

{
1 if i = i∗

0 otherwise.

The pivotal mechanism then has transfers

mi(θ̂) =
∑
j =i

uj(x
∗(θ̂), θ̂−i) −

∑
j =i

uj(x
∗
−i

(θ̂−i), θ̂ ) =
{ −{maxj =i∗ θ̂j} if i = i∗

0 otherwise.

That is, every player i = i∗ is not pivotal: his presence does not affect the allocation,
and therefore mi(θ̂) = 0. On the other hand, player i∗ is pivotal: without him, the
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object would go to the player with the second-highest valuation, and the total surplus
would be maxj =i∗ θj . This is exactly the externality player i∗ imposes on the others
by being present, and this is exactly how much he has to pay in the pivotal mechanism.
Now notice that this mechanism is identical to the second-price sealed-bid auction.
Recall that we have established that each player in this auction has a dominant strategy,
which is bidding his true valuation. This feature of the mechanism was first studied
by Vickrey (1961), and this mechanism is also known as the Vickrey auction.

14.4 Summary

. Many situations are characterized by a central designer who wishes to make
a decision regarding the welfare of a group of players, where the optimal
decision depends on the private information that the players have.

. A mechanism is a game that elicits information from the players to help the
central (mechanism) designer make a decision according to a decision rule
that the designer wishes to implement.

. The revelation principle states that if a decision rule can be implemented by
the mechanism designer using some mechanism, then it can be implemented
by the simple direct revelation game, in which each player announces his type
and the mechanism designer uses his decision rule.

. A particularly useful mechanism is the VCG mechanism, which implements a
Pareto-optimal decision rule in dominant strategies when players have quasi-
linear preferences.

14.5 Exercises

This chapter offered a very brief introduction to mechanism design aimed at more
technically trained readers. For a more complete treatment with numerous exercises
and examples, see Fudenberg and Tirole (1991, Chapter 7), Mas-Colell et al. (1995,
Chapter 23), and Jehle and Reny (2011, Chapter 9).

14.1 Brothers: Imagine two brothers who have preferences over the next possible
family vacation. The possible options are traveling to Amsterdam (A), to
Barcelona (B), or to Calcutta (C). Brother 1’s preferences are fixed and his
type is θ1; he prefers A to B and B to C. Brother 2 can be one of two types,
θ2 ∈ {θ ′

2, θ ′′
2 }, where type θ ′

2 prefers C to B and B to A while type θ ′′
2 prefers

B to A and A to C. Their parents wish to implement the following choice
function: f (θ1, θ ′

2) = B and f (θ1, θ ′′
2 ) = A.

a. If the parents use the direct revelation mechanism, is it a dominant
strategy for brother 2 to reveal his type truthfully?

b. Does your answer to (a) change if the choice function is f (θ1, θ ′
2) = C

and f (θ1, θ ′′
2 ) = A?

c. Does your answer to (a) change if the choice function is f (θ1, θ ′
2) = B

and f (θ1, θ ′′
2 ) = B?
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As we argued in Chapter 7, static (normal-form) games do not capture important
aspects of dynamic games in which some players respond to actions that other

players have previously made. Furthermore, as we demonstrated with the introduction
of backward induction and subgame-perfect equilibrium in Chapter 8, we need to pay
attention to the familiar problem of credibility and sequential rationality.This chapter
applies the idea of sequential rationality to dynamic games of incomplete information
and introduces equilibrium concepts that capture these ideas. That is, we want to focus
attention on equilibrium play in which players play best-response actions not only on
the equilibrium path but also at points in the game that are not reached, which we
referred to previously as off the equilibrium path.

As we saw in the examples in Section 12.2, in games of incomplete information
some players will have information sets that correspond to the set of types that their
opponents may have, because every player does not know which types Nature chose
for the other players. Regardless of whether a player observes his opponents’ past
behavior (which in games of complete information would imply perfect information),
there will always be uncertainty about which types the opponents are when incomplete
information is present. This in turn implies that structurally there will be many
information sets that are not singletons, and this will lead to many fewer proper
subgames. As we will now see, this impedes the applicability of subgame perfection
as a solution concept that guarantees sequential rationality. We will have to deal more
rigorously with the idea that players hold beliefs, and that these beliefs need to be
consistent with the environment (Nature) and the strategies of all other players.

15.1 The Problem with Subgame Perfection

To understand the role of proper subgames as introduced in Chapter 8, and how they
were used to reach the concept of subgame-perfect equilibrium, it is illuminating to
consider the following familiar entry game of complete information. Player 1 is a

303



304 . Chapter 15 Sequential Rationality with Incomplete Information
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FIGURE 15.1 A simple entry game.

potential entrant to an industry that has a monopolistic incumbent, player 2. If player
1 stays out (O) then the incumbent earns a profit of 2, while the potential entrant gets
0. The entrant’s other option is to enter (E), which gives the incumbent a chance to
respond. If the incumbent chooses to accommodate entry (A), then both the entrant
and the incumbent receive a payoff of 1. The incumbent’s other option is to fight
entry (F ), in which case the payoff for each player is −1. The extensive form of this
game is described in Figure 15.1. To find the Nash equilibria of this game it is useful
to look at its matrix form as follows:

F A

O 0, 2 0, 2

E −1, −1 1, 1

A quick observation reveals that the game has two pure-strategy Nash equilibria,
which are (O, F ) and (E, A). If, however, we consider the subgame-perfect equi-
librium concept, backward induction clearly implies that following player 1’s choice
of entering, player 2 will strictly prefer to accommodate entry. Therefore player 1
should enter, anticipating a payoff of 1 rather than staying out and receiving 0. Thus
subgame perfection implies sequential rationality and picks only one of the two Nash
equilibria as the unique subgame-perfect equilibrium, (E, A), in which firm 1 enters
and firm 2 accommodates entry.

Now consider a straightforward variant of this game that includes incomplete
information. In particular imagine that the entrant may have a technology that is as
good as that of the incumbent, in which case the game above describes the payoffs.
However, the entrant may also have an inferior technology, in which case he would not
gain by entering and the incumbent would lose less if fighting occurred. A particular
case of this story can be captured by the following sequence of events:

1. Nature chooses the entrant’s type, which can be weak (W ) or competitive (C),
so that θ1 ∈ {W, C}, and let Pr{θ1 = C} = p. The entrant knows his type but
the incumbent knows only the probability distribution over types.

2. The entrant chooses between E and O as before, and the incumbent observes
the entrant’s choice.

3. After observing the action of the entrant, and if the entrant enters, the incum-
bent can choose between A and F as before.
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FIGURE 15.2 An entry game with incomplete information.

The payoffs are different for each realization of player 1’s type, and they are given
in the extensive form of the game in Figure 15.2.

When considering the normal form of this game, player 1 has four pure strategies
that follow from the fact that a strategy for him is a type-dependent action, and there
are two types and two actions. We define a strategy for player 1 as s1 = sC

1 sW
1 , where

s
θ1
1 ∈ {O, E} is what a type θ1 of player 1 chooses. Thus the pure-strategy set of

player 1 is

s1 ∈ S1 = {OO, OE, EO, EE}.

For example, s1 = OE means that player 1 chooses O when his type is C, and he
chooses E when his type is W . Because player 2 has only one information set that
follows entry, and two actions in that information set, he has two pure strategies,
s2 ∈ {A, F }.

To convert this extensive-form game to a normal-form matrix game, we need to
compute the expected payoffs from each pair of pure strategies, where expectations are
over the randomizations caused by Nature. Because player 1 has four pure strategies
and player 2 has two, there will be eight entries in the normal-form matrix. For
example, consider the pair of strategies (s1, s2) = (OE, A). The payoffs of the game
will be determined by one of the following two outcomes:

1. Nature chooses θ1 = C, in which case player 1 plays O and the payoffs are
(0, 2). This happens with probability Pr{θ1 = C} = p.

2. Nature chooses θ1 = W , in which case player 1 plays E and player 2 plays A.
The payoffs for this outcome are (−1, 1), and this happens with probability
Pr{θ1 = W } = 1 − p.

From these two possible outcomes we can compute the expected payoffs for
players 1 and 2 as follows:

Ev1 = p × 0 + (1 − p) × (−1) = p − 1

Ev2 = p × 2 + (1 − p) × (1) = 1 − p.
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Similarly if the strategies are (s1, s2) = (EE, F ) then the expected payoffs for players
1 and 2 are

Ev1 = p × (−1) + (1 − p) × (−2) = p − 2

Ev2 = p × (−1) + (1 − p) × 0 = −p.

In this way we can complete the matrix and obtain the representation for this Bayesian
game of incomplete information. To actually compute expected payoffs, set p = 0.5,
in which case the matrix representation of the Bayesian game is as follows:

Player 2
F A

OO 0, 2 0, 2

Player 1
OE −1, 1 − 1

2 ,
3
2

EO − 1
2 ,

1
2

1
2 ,

3
2

EE − 3
2 , − 1

2 0, 1

Following our analysis in Chapter 12, it is easy to find the pure-strategy Bayesian
Nash equilibria: every Nash equilibrium of the matrix we have just calculated is
a Bayesian Nash equilibrium of the Bayesian game. Therefore both (OO, F) and
(EO, A) are pure-strategy Bayesian Nash equilibria of the Bayesian game.1

Interestingly these two Bayesian Nash equilibria are tightly related to the two
Nash equilibria of the complete-information game in Figure 15.1. The equilibrium
(OO, F) is one in which the incumbent “threatens” to fight, which causes the entrant
to stay out regardless of his type, similar to the (O, F ) equilibrium in the game of
complete information in Figure 15.1. The equilibrium (EO, A) is one in which the
incumbent accommodates entry, which causes the strong entrant to enter (getting 1
instead of 0) and the weak entrant to stay out (getting 0 instead of −1), similar to the
(E, A) equilibrium in the game in Figure 15.1.

Not only are the equilibria similar, but there is a similar problem of credibility with
the equilibrium (OO, F): player 2 threatens to fight, but if he finds himself in the in-
formation set that follows entry, he has a strict best response, which is to accommodate
entry. Thus the Bayesian Nash equilibrium (OO, F) involves noncredible behavior
of player 2 that is not sequentially rational.

Now comes the interesting question: which of these two equilibria survives as a
subgame-perfect equilibrium in the extensive-form game? Recall that the definition
of a subgame-perfect equilibrium is that in every proper subgame, the restriction of
the strategies to that subgame must be a Nash equilibrium in the subgame. This, as we
saw in Chapter 8, means that players are playing mutual best responses both on and
off the equilibrium path. However, looking at the extensive-form game in Figure 15.2,
it is easy to see that there is only one proper subgame, which is the complete game.
Therefore, both (OO, F) and (EO, A) survive as subgame-perfect equilibria.

1. Notice that for player 1 OE is strictly dominated by OO and EE is strictly dominated by EO.Notice
also that there are a continuum of mixed-strategy Bayesian Nash equilibria in which the incumbent
plays F with probability p ≥ 1

2 and the entrant plays OO.There cannot be a mixed-strategy Bayesian
Nash equilibrium in which the entrant mixes between OO and EO because then the incumbent’s best
response is A, in which case the entrant would strictly prefer to play EO over OO.
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This example demonstrates that the very appealing concept of subgame-perfect
equilibrium may have no bite for some games of incomplete information. At first this
may seem somewhat puzzling. However, the problem is that the concept of subgame-
perfect equilibrium restricts attention to best responses within subgames, but when
there is incomplete information the induced information sets over types of other
players often cause the only proper subgame to be the complete game.

The reason this happens is that in the modified entry game we analyzed, even
though player 2 observes the actions of player 1, the fact that player 1 has several
types implies that there is no proper subgame that starts with player 2 making a move.
This is because whenever player 2 makes a move, he does not know the type of player
1, which implies that there are no proper subgames except for the whole game. Indeed
this problem of action nodes being linked through information sets that represent the
uncertainty players have over the types of their opponents will carry over to all games
of incomplete information.

In order to extend the logic of subgame-perfect equilibrium to dynamic games
of incomplete information, we need to impose a more rigorous structure on our
solution concept in order for sequential rationality to be well defined. Our goal is
to identify a structure of analysis that will cause the elimination of equilibria that
involve noncredible threats such as those in the modified entry game, which we do in
the next section.

15.2 Perfect Bayesian Equilibrium

To address the problem with subgame perfection demonstrated in the previous section
we need to identify a way in which to express the fact that following entry, it is
not sequentially rational for player 2 to play fight. In particular we need to make
statements about the sequential rationality of player 2 within each of his information
sets even though the information set is not itself the first node of a proper subgame.
We need to be able to make statements like “in this information set player 2 is not
playing a best response, and therefore his behavior is not sequentially rational.”

This kind of reasoning is precisely what is missing from the definition of subgame-
perfect equilibrium—we were not able to isolate player 2 within his information set.
However, to describe a player’s best response within his information set, we will have
to ask what the player is playing a best response to. The answer, of course, must
follow from the definition of what a best response is: we must include beliefs in the
analysis. This will allow us to consider the beliefs of player 2 in his information sets
and then analyze his best response to these beliefs.

More generally, to introduce sequential rationality at information sets that are
not singletons, we need to insist that players form beliefs in every information set
they have. These will include information sets that are reached with some positive
probability given the proposed actions of the players as well as information sets that
are not reached at all. Recall from Section 7.3 the notion of being on and off the
equilibrium path, which is introduced again for Bayesian games as follows:

Definition 15.1 Let σ ∗ = (σ ∗
1 , . . . , σ ∗

n
) be a Bayesian Nash equilibrium profile of

strategies in a game of incomplete information. We say that an information set is on
the equilibrium path if given σ ∗ and given the distribution of types, it is reached
with positive probability. We say that an information set is off the equilibrium path
if given σ ∗ and the distribution of types, it is reached with zero probability.
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Notice that an important part of being on or off the equilibrium path is having
an equilibrium profile of strategies to start with. This is why the definition includes
a proposed Bayesian Nash equilibrium profile, σ ∗, from which we can discuss the
information sets that are on the equilibrium path given σ ∗, and those that are off the
equilibrium path given σ ∗. To illustrate this point consider the entry game previously
described and illustrated in Figure 15.2.

Assume that player 1 chooses the strategy EO, implying that he enters when he is
competitive and stays out when he is weak. In this case all information sets are reached
with positive probability. First, given the structure of the game, both information sets
of player 1 are always reached (with probabilities p and 1− p, respectively). Second,
the information set of player 2 is reached because the competitive type of player 1
will enter. This implies that it is reached with probability p.

Now assume instead that player 1 chooses the strategy OO, implying that he never
enters. In this case the information set of player 2 is not reached with positive proba-
bility. This illustrates a more general fact about games of incomplete information: the
actions of the player with private information will have an effect on which information
sets of the uninformed player are reached with positive probability.

We now formally introduce the notion that players must have beliefs in each of
their information sets:

Definition 15.2 A system of beliefs μ of an extensive-form game assigns a prob-
ability distribution over decision nodes to every information set. That is, for every
information set h ∈ H and every decision node x ∈ h, μ(x) ∈ [0, 1] is the probabil-
ity that player i who moves in information set h assigns to his being at x, where∑

x∈h μ(x) = 1 for every h ∈ H .

For example, in the entry game previously described the beliefs of player 1 are
trivially defined because his information sets are singletons, while the belief of player
2 is a probability distribution over the two nodes in his unique information set. Denote
by μ(x3) player 2’s belief that he is at the node corresponding to player 1 being
competitive (C) and playing E, and let 1 − μ(x3) be his belief that he is at the node
corresponding to player 1 being weak (W ) and playing E. We are now ready to lay out
our first requirement of sequential rationality in games of incomplete information:

Requirement 15.1 Every player will have a well-defined belief over where he is in
each of his information sets. That is, the game will have a system of beliefs.

Now that we have established the need to have a system of beliefs, we need
to ask the following question: how should the beliefs in a system of beliefs be
determined? That is, can players have any beliefs they want, or should the beliefs
be restricted by some elements that are not controlled by the player himself?

Just as we required the beliefs of players about the strategies of their opponents to
be correct in order to define a Nash equilibrium, here too we will add a very similar
requirement. In games of incomplete information, two constraints will influence
whether a player’s beliefs are correct. The first is the behavior of the other players,
which we can consider as an endogenous constraint on beliefs. It is endogenous in the
sense that it is determined by the strategies of the players, which are the “variables”
that the players control. The second constraint on beliefs comes from the choices of
Nature through the distribution of types. This is an exogenous constraint on beliefs.
It is exogenous in the sense that it is determined by Nature, which is not something
that the players control but rather part of the environment.
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Let’s illustrate this using the entry game. Following requirement 15.1, we defined
player 2’s belief in his information set as

μ(x3) = Pr{player 1 is competitive | E}
1 − μ(x3) = Pr{player 1 is weak | E}.

Imagine now that player 2 believes that player 1 is choosing the strategy EO, so that if
he is competitive he enters and if he is weak he stays out. What should player 2 believe
if his information set is reached? The only consistent belief would be that player 1
is competitive, and therefore it must be that μ(x3) = 1. This follows because with
probability p Nature chooses a competitive type for player 1, and with the strategy
EO a competitive player 1 always enters. The probability of reaching the node “weak
followed by entry” inside the information set of player 2 is 0 because with probability
1− p Nature chooses a weak type for player 1, and with the strategy EO a weak player
1 never enters. Any other belief would not be consistent with the belief that player 1
is playing EO.

Player 1’s behavior can of course be more complex than choosing EO. More
generally in the entry game, the probability of reaching the node “player 1 is type
C and he chose E” inside the information set of player 2 is p times the probability
that a type C player 1 chose E. By definition, μ(x3) is the belief that player 2 assigns
to “player 1 is type C conditional on entry occurring.” Hence we need to consider
the beliefs of player 2 as being conditional on the fact that his information set was
indeed reached. Assume that player 1 is playing the following strategy: If θ1 = C then
he plays E with probability σC and O with probability 1 − σC. Similarly if θ1 = W

then he plays E with probability σW and O with probability 1 − σW . Now because
Nature chooses Pr{θ1 = C} = p, by Bayes’ rule we must have2

μ(x3) = Pr{player 1 is competitive | entry occurred}

= Pr{competitive and entry occurred}
Pr{competitive and entry occurred} + Pr{weak and entry occurred}

= pσC

pσC + (1 − p)σW

.

For example, the pure strategy EO is just a special case of this mixed (behavioral)
strategy that has σC = 1and σW = 0, and if this is the proposed strategy then of course
μ(x3) = 1. Following this argument, we are ready to state our second requirement for
sequential rationality: given a conjectured profile of strategies, and given Nature’s
choices, we require players’ beliefs to be correct in information sets that are reached
with positive probability. Formally, we have

Requirement 15.2 Let σ ∗ = (σ ∗
1 , . . . , σ ∗

n
) be a Bayesian Nash equilibrium profile

of strategies. We require that in all information sets beliefs that are on the equilibrium
path be consistent with Bayes’ rule.

This is precisely how beliefs are formed; they include both the exogenous con-
straints that follow from Nature’s probability distribution and the endogenous

2. See Section 19.4.3 for a detailed description of Bayes’ rule and how it relates to dynamic games
of incomplete information.
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constraints that follow from beliefs about the other players’ strategies from σ ∗ =
(σ ∗

1 , . . . , σ ∗
n
).

Now consider the pure strategy OO (or σC = σW = 0). The probability of reaching
player 2’s information set is not positive because there is no way in which it is reached.
That is, no type of player 1 plays E, and this implies that E is never chosen. If player
2 believes that player 1 chooses OO, and suddenly finds himself in his information
set that follows entry, then Bayes’ rule does not apply because given the suggested
strategy both the numerator and the denominator in Bayes’ rule are zero, and thus
μ(x3) is not well defined. What then should determine μ(x3)? In other words, if we
cannot apply Bayes’ rule because of the beliefs over strategies, what will we use to
determine beliefs? For this we introduce the third requirement.

Requirement 15.3 At information sets that are off the equilibrium path any belief
can be assigned to which Bayes’ rule does not apply.

This means that when the moves of Nature combined with the belief over the
strategies of the other players do not impose constraints on beliefs, then indeed beliefs
could be whatever the player chooses them to be. Looking back at the case in which
player 1 chooses the pure strategy OO in the entry game, then μ(x3) can be any number
in the interval [0, 1] because it is not constrained by Bayes’ rule.

All of the first three requirements were imposed to introduce well-defined beliefs
for every player at each of his information sets. Now we come to the final requirement
of sequential rationality:

Requirement 15.4 Given their beliefs, players’ strategies must be sequentially ra-
tional. That is, in every information set players will play a best response to their
beliefs.

To write down requirement 15.4 formally, consider player i with beliefs over
information sets derived from the belief system μ, given player i’s opponents playing
σ−i. Requirement 15.4 says that if h is an information set for player i then it must be
true that he is playing a strategy σi that satisfies

E[vi(σi, σ−i, θi)|h, μ] ≥ E[vi(s
′
i
, σ−i, θi)|h, μ] for all s′

i
∈ Si,

where expectations are given over the beliefs of player i using μ.
We can now incorporate requirements 15.1–15.4 to show that the noncredible

equilibrium in the entry game with incomplete information is fragile. To see this,
notice that once we specify a belief μ(x3) for player 2, then for any μ(x3) ∈ [0, 1],
it is a best response for player 2 to play A. This means that once we endow player 2
with a well-defined belief (requirement 15.1) then despite the fact that these beliefs
are not restricted if player 1 chooses OO (by requirement 15.3), the Bayesian Nash
equilibrium (OO, F) has player 2 not playing a best response to any belief, which
violates requirement 15.4.

Now that we have defined beliefs together with sequential rationality, we need to
combine all these components to define a coherent equilibrium concept:

Definition 15.3 A Bayesian Nash equilibrium profile σ ∗ = (σ ∗
1 , . . . , σ ∗

n
) together

with a system of beliefs μ constitutes a perfect Bayesian equilibrium for an n-player
game if they satisfy requirements 15.1–15.4.

This definition puts together our four requirements in a way that will guarantee
sequential rationality. The next obvious question is, how do we find a perfect Bayesian
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equilibrium for a game? One way is to first find all the profiles of strategies in the
Bayesian game that are Bayesian Nash equilibria; then we can systematically check
for each Bayesian Nash equilibrium to see whether we can find a system of beliefs so
that together they constitute a perfect Bayesian equilibrium.

A first step in this process is the following observation. If a game has a Bayesian
Nash equilibrium that has all the information sets being reached on the equilibrium
path (all information sets are reached with positive probability), then beliefs will be
uniquely pinned down by Bayes’ rule owing to requirement 15.2. This observation
leads to the following result:

Proposition 15.1 If a profile of (possibly mixed) strategies σ ∗ = (σ ∗
1 , . . . , σ ∗

n
) is

a Bayesian Nash equilibrium of a Bayesian game �, and if σ ∗ induces all the
information sets to be reached with positive probability, then σ ∗, together with the
belief system μ∗ uniquely derived from σ ∗ and the distribution of types, constitutes a
perfect Bayesian equilibrium for �.

Proof Assume that the proposition was false, that is, σ ∗ is a Bayesian Nash equi-
librium but (σ ∗, μ∗), for which all the information sets are reached with positive
probability, do not together form a perfect Bayesian equilibrium. This implies that
for some player i playing according to σ ∗

i
is not a best response in (at least) one of his

information sets, say hi, to the beliefs derived from μ∗. Let σ ′
i

be a strategy for player
i that chooses a best response to μ∗ in the information set hi and coincides with σ ∗

i

in every other information set of player i. But because μ∗ is derived from σ ∗, σ
′
i

will
also be better than σ ∗

i
against σ ∗

−i
, contradicting the fact that σ ∗ is a Bayesian Nash

equilibrium.

As we soon turn to some applications of the perfect Bayesian equilibrium concept,
this proposition will come in handy in analyzing an important class of games. It is
easy to see how it applies to the entry game. As we demonstrated earlier, the game has
two Bayesian Nash equilibria: (EO, A) and (OO, F). Because the Bayesian Nash
equilibrium (EO, A) induces every information set to be reached, it follows that it
can be supported as a perfect Bayesian equilibrium, and by Bayes’ rule the belief that
player 2 must have in his information is that he faces a competitive type of entrant with
probability 1. As we also saw, (OO, F) cannot be supported as a perfect Bayesian
equilibrium.

Remark As mentioned earlier, requirement 15.3 imposes no restrictions off the
equilibrium path, which is one reason that some texts refer to this solution concept as
weak perfect Bayesian equilibrium. It is worth pointing out that a more stringent
requirement 15.3 is that beliefs off the equilibrium path are defined by Bayes’ rule
where possible. How can it be that Bayes’ rule has bite when an information set
is not reached? Consider the example in Figure 15.3, which does not have Nature
move, but by definition can have beliefs assigned to each information set, and thus
can accommodate requirement 15.3.

In this game, imagine that a profile of strategies has player 1 playing L, player
2 playing a mixed strategy σA = Pr{A}, and player 3 playing a mixed strategy σC =
Pr{C}. If these are the beliefs of player 4 then in this case the information set following
player 2 is reached with probability 1, and the belief must be μA = σA. However,
the information set following player 3 is not reached with positive probability, and
requirement 15.3 as already stated allows for any beliefs in this information set. A
more careful scrutiny would imply the following logic: If player 4 realizes that his
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FIGURE 15.3 Example: requirement 15.3 has restrictions.

information set following player 3 was reached then he must assume that player 1
deviated from his strategy of playing L. But why should he believe that player
3 also deviated from his strategy σC? Indeed a natural belief would be that only
player 1 deviated, and therefore we must have μC = σC. This more stringent statement
of requirement 15.3 implies that sometimes information sets that are reached with
zero probability can still have constraints on beliefs. The next section introduces a
refinement of perfect Bayesian equilibrium that explicitly deals with this issue.

15.3 Sequential Equilibrium

Perfect Bayesian equilibrium has become the most widely used solution concept for
dynamic games with incomplete information. There are, however, examples of games
in which the perfect Bayesian equilibrium solution concept allows for equilibria that
seem unreasonable. The reason for this is that restriction 3 of the perfect Bayesian
equilibrium concept places no restrictions on beliefs that are off the equilibrium path.

To see this, consider the game shown in Figure 15.4. If player 1 plays D with a
positive probability then by requirement 15.2 the beliefs of player 2 are completely
determined by Bayes’ rule, which implies that μ2(x1) = μ2(x2) = 1

2 . With these
beliefs player 2 must play L. If player 2 plays L then player 1’s best response is

U D

0
0

Nature

2
2
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2

U D
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x1 x2

1–
2

1–
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FIGURE 15.4 A game with an unreasonable perfect Bayesian equilibrium.
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to play D, which implies that the pair of strategies (D, L) together with the implied
beliefs μ2(x1) = μ2(x2) = 1

2 form a perfect Bayesian equilibrium. Note, however, that
the pair of strategies (U, R) can also be supported as a perfect Bayesian equilibrium.
If player 1 plays U then by requirements 15.2 and 15.3 beliefs are not restricted in
player 2’s information set. In particular, player 2 can believe that μ2(x1) > 2

3 , in which
case he believes that by playing R his expected payoff will be 3μ2(x1) > 2, for which
playing R is a best response. As a consequence, playing U for player 1 is also a best
response!

This example may seem unusual, but it turns out to be quite common. It is for
this reason that many applications of dynamic games of incomplete information
use stronger concepts than perfect Bayesian equilibrium. These are often referred
to as “equilibrium refinements,” as their goal is to refine the set of outcomes that
can be supported in equilibrium. The key idea behind these refinements is to put
restrictions on the sorts of beliefs that players can hold in information sets that are off
the equilibrium path.

One commonly used refinement is called sequential equilibrium, and it was intro-
duced by Kreps and Wilson (1982). They define the notion of “consistent” beliefs as
follows:

Definition 15.4 A profile of strategies σ ∗ = (σ ∗
1 , . . . , σ ∗

n
), together with a system of

beliefs μ∗, is consistent if there exists a sequence of nondegenerate mixed strategies,
{σk}∞

k=1, and a sequence of beliefs that are derived from each σk according to Bayes’
rule, {μk}∞

k=1, such that limk→∞(σ k, μk) = (σ ∗, μ∗).

To see the power behind this definition, observe that in the game described in
Figure 15.4 the only consistent beliefs for player 2 are μ2(x1) = μ2(x2) = 1

2 . The
reason is that any belief that is part of a consistent pair of strategies and beliefs must
be derived from a sequence of strategies that cause every information set to be reached
with positive probability on the equilibrium path. This follows from the requirement
that {σk}∞

k=1 be a sequence of nondegenerate mixed strategies, which implies that each
player is mixing among all his actions with positive probability. As we argued earlier,
if player 1 plays D with positive probability then the beliefs of player 2 are completely
determined by Bayes’ rule to be μ2(x1) = μ2(x2) = 1

2 , so in any sequence of the form
required by consistency the limit of these beliefs must be μ2(x1) = μ2(x2) = 1

2 .

Definition 15.5 A profile of strategies σ ∗ = (σ ∗
1 , . . . , σ ∗

n
), together with a system

of beliefs μ∗, is a sequential equilibrium if (σ ∗, μ∗) is a consistent perfect Bayesian
equilibrium.

This definition implies of course that every sequential equilibrium is a perfect
Bayesian equilibrium, but the reverse is not true. Indeed of the two perfect Bayesian
equilibria we identified earlier, (U, R) is not part of a sequential equilibrium because
the only beliefs that can be part of a consistent strategy profile–belief pair are μ2(x1) =
μ2(x2) = 1

2 , which implies that (D, L) together with the beliefs μ2(x1) = μ2(x2) = 1
2

is the unique sequential equilibrium.
Sequential equilibrium is a bit harder to apply than perfect Bayesian equilibrium

in practice, so as with most applications in the social sciences we will stick to perfect
Bayesian equilibrium as our solution concept. It is interesting to note that there are
games in which even sequential equilibrium allows for unreasonable outcomes, which
suggests that one might want to consider a stronger refinement for a solution concept.
Indeed we will see one such refinement for signaling games in Chapter 16.
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15.4 Summary

. Because games of incomplete information have information sets that are
associated with Nature’s choices of types, it will often be the case that the
only proper subgame is the whole game. As a consequence, subgame-perfect
equilibrium will rarely restrict the set of Bayesian Nash equilibria to those
that are sequentially rational.

. By requiring that players form beliefs in every information set, and requiring
these beliefs to be consistent with Bayes’ rule, we can apply the concept of
sequential rationality to Bayesian games.

. In a perfect Bayesian equilibrium, beliefs are constrained on the equilibrium
path but not off the equilibrium path. It is important, however, that beliefs off
the equilibrium path support equilibrium behavior.

. In some games the concept of perfect Bayesian equilibrium will not rule
out play that seems sequentially irrational. Equilibrium refinements, such as
sequential equilibrium, have been developed to address these situations.

15.5 Exercises

15.1 Equilibrium Selection: Consider the extensive-form game in Figure 15.5.

a. Find all the Bayesian Nash equilibria of this game.
b. Which of the Bayesian Nash equilibria are also perfect Bayesian equi-

libria? Why?

15.2 Not All That Glitters Revisited: Recall exercise 12.5 in Chapter 12 and
your analysis of the unique Bayesian Nash equilibrium for that game. The
secretary of commerce is contemplating the introduction of a certification
program. This will allow a prospector to get a certificate that exactly states
and publicizes the amount of gold in the mine and eliminates the problem
of asymmetric information. If the program is implemented the game would
be modified as follows: The prospector first decides whether or not to get
a government certificate and then decides for what price to ask. Thus each
type x chooses a pair (y(x), p(y)), where y(x) ∈ {N, x} denotes his choice
of certificate (N for no certificate and x for the true value on the certificate)
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and p(y) denotes his asking price given his certification choice. Assume that
the cost of obtaining a certificate is 1

2 .

a. Imagine that a prospector of type x gets a certificate. What is the
unique subgame-perfect equilibrium in the subgame that starts after
the certification?

b. Show that if there exists a perfect Bayesian equilibrium in which some
type x′ < 1 chooses to certify, it must be true that all higher types
x′′ ∈ (x′, 1] also choose to certify in that perfect Bayesian equilibrium.
Show that in any perfect Bayesian equilibrium type x = 1must choose
to be certified.

c. From (b) we know that if there is a perfect Bayesian equilibrium with
some certification then it must take on the following form: an upper
interval of types will choose to be certified, and the complementary
lower interval will not. That is, there is some threshold type x∗ ∈ [0, 1]
such that types in the interval (x∗, 1] will certify, types in the interval
[0, x∗) will not, and type x∗ will be indifferent (assume without loss
that type x∗ certifies). Show that if such a perfect Bayesian equilibrium
with certification exists, then the lower interval [0, x∗) will self-mine,
and there is no price at which they can trade their mines to the company
in equilibrium. Following your findings, find the (almost) unique pure-
strategy perfect Bayesian equilibrium and explain why it is unique.
(The meaning of “almost unique” is that the threshold type x∗ can
choose to certify with any probability, so excluding the behavior of
this type, the equilibrium behavior is unique.)

d. If the price of the government certification program is sufficient to
cover its cost, would you argue that the economy is better off in the
Pareto sense (some are better off while no one is worse off ) compared
to the status before government intervention? If so, who is better off?

15.3 Trust Thy Neighbor: A student, player 1, has to hand in a problem set at the
other end of (a large) campus but needs to rush into an exam. She has two
options. She can deliver the problem set after the exam (call this option L)
and incur a late penalty. Alternatively she can give the problem set to player
2, a random student who happens to be next to player 1 (call this option S).
Player 2 can then either deliver the problem set on time (call this option D)
or throw it away in the nearest trash can (call this option T ). For player 1 the
payoff is 1 if the problem set is delivered on time, −1 if it is thrown away, and
0 if it is delivered late. The payoffs for player 2 are x if he delivers and y if
he throws it away.

a. Draw the game tree that represents this game. Using equilibrium analy-
sis, what conditions on x and y would justify player 1 trusting player
2 to deliver the problem set?

b. Now assume that some proportion p of the population of students are
“nice guys” (N ), for which x = 1 and y = 0, while a proportion 1− p

of the population are “jerks” (J ), for which x = 0 and y = 1. Thus
we can think that before the game is played, Nature first chooses the
type of player 2 that player 1 will meet, according to the probabilities
previously described. Draw the game tree.

c. Now assume that for (b) p = 3
4 . What are the pure-strategy Bayesian

Nash equilibria of this game? Are there Bayesian Nash equilibria that
are not perfect Bayesian equilibria?
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d. For which values of p are all the Bayesian Nash equilibria also perfect
Bayesian equilibria?

15.4 Campaigning: Two politicians, an incumbent (player 1) and a potential rival
(player 2), are running for the local mayoralty. The incumbent has either a
broad base of support (B) or a small base of support (S), each occurring with
probability 1

2 . The incumbent knows his level of support but the potential
rival does not. The incumbent first chooses how much soft money to spend on
campaign financing: a low quantity (L) or a high quantity (H ), a decision that
is observed by the potential rival. The rival can then decide to run (R) or not to
run (N ). If the incumbent chooses a level of campaign financing L then given
the support base and the reaction of the potential rival, the payoffs are given by
the following payoff matrix (these are payoffs that represent the expectations
from winning, campaigning, and so on; this is not a matrix game):

Player 2’s response
R N

Support base
B 6, 4 10, 0

S 4, 4 6, 0

The cost in payoffs that an incumbent incurs for choosing H instead of L is
2 if he has a broad base of support and 4 if he has a small base of support
(that is, these are costs that are deducted from the payoffs in the payoff matrix
that are conditional on the type). A rival who runs against an incumbent with
a broad base of support who chose H will obtain a payoff of −10, while a
rival who runs against an incumbent with a small base of support who chose
H will obtain a payoff of −4. If the rival chooses not to run then he obtains
0, as in the payoff matrix.

a. Draw the extensive form of this game and identify the proper sub-
games. Draw the matrix that represents the normal form of the exten-
sive form.

b. If the rival could commit in advance to a certain pure strategy that
he would follow regardless of the incumbent’s choice of financing,
anticipating that the incumbent would then choose his best response,
what would that strategy be? What would be the incumbent’s best
response to this strategy? Is the pair of strategies you found a Bayesian
Nash equilibrium?

c. Can the pair of strategies you found in (b) be part of a perfect Bayesian
equilibrium?

d. Are there other pairs of strategies that can be part of a perfect Bayesian
equilibrium?

15.5 Entry (again): The market for widgets has an incumbent firm. The total value
of having 100% of the market is 10, which the incumbent receives if no one
enters. A potential entrant arrives, and it can be one of two types: tough (T )
or weak (W ). A weak entrant can choose one of three options: small entry
(S), big entry (B), or exit (X). A tough entrant can choose only between S or
B (it is inconceivable that it would choose X). There is no cost for a tough
entrant to enter at any level. However, it costs a weak entrant 6 to enter at any
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level. Exiting costs nothing to the entrant. The entrant knows his type, but the
incumbent knows only the prior distribution: Pr{T } = 1

2 .
In response to any level of entry, the incumbent can choose to accom-

modate (A) or fight (F ). Accommodating an entrant imposes no costs. Inde-
pendent of the entrant’s type, accommodating small entry gives the incumbent
60% of the market and the entrant 40%, while accommodating big entry gives
the incumbent 40% of the market and the entrant 60%. Fighting a tough entrant
increases the incumbent’s market share by 20% (relative to accommodating)
but imposes a cost of 4 on the incumbent. Fighting a weak entrant that chose
S increases the market share of the incumbent to 100% but imposes a cost of 2
on the incumbent. Fighting a weak entrant that chose B increases the market
share of the incumbent to 100% but imposes a cost of 8 on the incumbent.

a. Draw this game in extensive form.
b. Using a matrix representation, find all the pure-strategy Bayesian Nash

equilibria for this game.
c. Which one of the Bayesian Nash equilibria is preferred by the incum-

bent? Can it be supported as a perfect Bayesian equilibrium?
d. Find all the perfect Bayesian equilibria of this game.

15.6 Selten’s Horse: Consider the three-person game described in Figure 15.6,
known as Selten’s horse (for the obvious reason).

a. What are the pure-strategy Bayesian Nash equilibria of this game?
b. Which of the Bayesian Nash equilibria that you found in (a) are perfect

Bayesian equilibria?
c. Which of the Bayesian Nash equilibria that you found in (a) are

sequential equilibria?



16
Signaling Games

In games of incomplete information there is at least one player who is uninformed
about the type of another player. In some instances it will be to the benefit of

players to reveal their types to their opponents. For instance, if a potential rival to
an incumbent firm or an incumbent politician knows that he is strong, he may want
to reveal that information to the incumbent, to suggest “I am strong and hence you
should not waste time and energy fighting me.” Of course even a weak player would
like to try to convince his opponent that he is strong, so merely stating “I am strong”
will not do. There has to be some credible means, beyond such “cheap talk,” through
which the player can signal his type and make his opponent believe him.

Games in which such signaling is possible in equilibrium are called signaling
games; they originated in the Nobel Prize–winning contribution of Michael Spence
(1973), which he developed in his Ph.D. thesis. Spence investigated the role of
education as an instrument that signals information to potential employers about a
person’s intrinsic abilities, but not necessarily what he has learned.

Signaling games share a structure that includes the following four components:

1. Nature chooses a type for player 1 that player 2 does not know, but cares about
(common values).

2. Player 1 has a rich action set in the sense that there are at least as many actions
as there are types, and each action imposes a different cost on each type.

3. Player 1 chooses an action first, and player 2 then responds after observing
player 1’s choice.

4. Given player 2’s belief about player 1’s strategy, player 2 updates his belief
after observing player 1’s choice. Player 2 then makes his choice as a best
response to his updated beliefs.

These games are called signaling games because of the potential signal that player
1’s actions can convey to player 2. If in equilibrium each type of player 1 is playing a
different choice then in equilibrium the action of player 1 will fully reveal player 1’s
type to player 2. That is, even though player 2 does not know the type of player 1, in
equilibrium player 2 fully learns the type of player 1 through his actions.

Of course, it need not be the case that player 1’s type is revealed. If, for instance,
in equilibrium all the types of player 1 choose the same action then player 2 cannot

318
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update his beliefs at all. Because of this variation in the signaling potential of player
1’s strategies, these games have two important classes of perfect Bayesian equilibria:

1. Pooling equilibria: These are equilibria in which all the types of player 1
choose the same action, thus revealing nothing to player 2. Player 2’s beliefs
must be derived from Bayes’ rule only in the information sets that are reached
with positive probability.All other information sets are reached with probabil-
ity zero, and in these information sets player 2 must have beliefs that support
his own strategy. The sequentially rational strategy of player 2 given his beliefs
is what keeps player 1 from deviating from his pooling strategy.

2. Separating equilibria: These are equilibria in which each type of player 1
chooses a different action, thus revealing his type in equilibrium to player 2.
Player 2’s beliefs are thus well defined by Bayes’ rule in all the information
sets that are reached with positive probability. If there are more actions than
types for player 1, then player 2 must have beliefs in the information sets that
are not reached (the actions that no type of player 1 chooses), which in turn
must support the strategy of player 2. Player 2’s strategy supports the strategy
of player 1.

The choice of terms is not coincidental. In a pooling equilibrium all the types
of player 1 pool together in the action set, and thus player 2 can learn nothing from
the action of player 1. Player 2’s posterior belief after player 1 moves must be equal
to his prior belief over the distribution of Nature’s choices of types for player 1. In a
separating equilibrium each type of player 1 separates from the others by choosing
a unique action that no other type chooses. Thus after observing what player 1 did,
player 2 can infer exactly what type player 1 is.

Remark There is a third class of equilibria called hybrid or semi-separating equi-
libria, in which different types choose different mixed strategies. As a consequence
some information sets that belong to the uninformed player can be reached by different
types with different probabilities. Thus Bayes’ rule implies that in these information
sets player 2 can learn something about player 1 but cannot always infer exactly which
type he is. We will explore these kinds of equilibria in Chapter 17. See Fudenberg and
Tirole (1991, Chapter 8) for a more advanced treatment.

The incomplete-information entry game that we analyzed in the previous chapter
can be used to illustrate these two classes. In the Bayesian Nash equilibrium (OO, F),
both types of player 1 chose “out,” so player 2 learns nothing about player 1’s type
(in this case he has no active action following player 1’s decision to stay out). Thus
(OO, F) is a pooling equilibrium (though it is not a perfect Bayesian equilibrium,
as demonstrated earlier). In the Bayesian Nash equilibrium (EO, A), which is also
a perfect Bayesian equilibrium, player 1’s action perfectly reveals his type: if player
2 sees entry, he believes with probability 1 that player 1 is strong, while if player 1
chooses to stay out then player 2 believes with probability 1 that player 1 is weak.
Therefore (EO, A) is a separating equilibrium.

16.1 Education Signaling: The MBA Game

This section analyzes a very simple version of an education signaling game in the
spirit of Spence’s work that sheds some light on the signaling value of education. To
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focus attention on the signaling value of education, we will ignore any productive
value that education may provide. That is, we assume that a person learns nothing
productive from education but has to “suffer” the loss of time and the hard work of
studying to get a diploma, in this case an MBA degree.1 The game proceeds in the
following steps:

1. Nature chooses player 1’s skill (productivity at work), which can be high (H )
or low (L), and only player 1 knows his skill. Thus his type set is � = {H, L}.
The probability that player 1’s type is H is given by Pr{θ = H } = p > 0, and
it is common knowledge that this is Nature’s prior distribution.

2. After player 1 learns his type, he can choose whether to get an MBA de-
gree (D) or be content with his undergraduate-level degree (U), so that his
action set is A1 = {D, U}. Getting an MBA requires some effort that is type
dependent. Player 1 incurs a private cost cθ if he gets an MBA, and a cost
of 0 if he does not. We assume that high-skilled types find it easier to study,
captured by the assumption that cH < cL. We assume in particular that cH = 2
and cL = 5.

3. Player 2 is an employer, who can assign player 1 to one of two jobs. Specifi-
cally player 2 can assign player 1 to be either a manager (M) or a blue-collar
worker (B), so that his action set is A2 = {M, B}. The employer will retain
the profit from the project and must pay a wage to the worker depending on
the job assignment. The market wage for a manager is wM and that for a blue-
collar worker is wB , where wM > wB . We assume in particular that wM = 10
and wB = 6.

4. Player 2’s payoff (the employer’s profit) is determined by the combination of
skill and job assignments. It is assumed that the MBA degree adds nothing to
productivity. A high-skilled worker is relatively better at managing, while a
low-skilled worker is relatively better at blue-collar work. The employer’s net
profits from the possible skill-assignment matches are given in the following
table:

Assignment
M B

Skill
H 10 5

L 0 3

Given the information about the game that is laid out in (1)–(4), the complete
game tree is represented in Figure 16.1. Because player 2 does not know player 1’s
type and only observes his choice, there are two information sets. The two nodes that
follow the choice U are in one information set, and the two nodes that follow the
choice D are in the second information set. In the analysis that follows, we refer to
the first information set as IU and to the second as ID.

1. It is clearly true that obtaining an MBA degree from a prestigious university acts as a strong signal
of one’s ability. I can attest, however, that—at least at the University of California, Berkeley, where
I currently teach—there is also a serious productive component to the MBA program, from which
students certainly benefit.



16.1 Education Signaling: The MBA Game . 321

U D

1
3

1

Nature

5
0

6
3

10
0

U

μU 1 – μU

1 – μDμD

D

H
p 1 – p

L

4
6

1

2 2 2 2

8
10

6
5

10
10

M B M B M B M B

FIGURE 16.1 The MBA game.

First, to define beliefs, let μU denote the belief of player 2 that player 1’s type is H

conditional on player 1 choosing U, and similarly let μD denote the belief of player
2 that player 1’s type is H conditional on player 1 choosing D. These beliefs will
be determined by the distribution of Nature’s choice, together with the beliefs that
player 2 holds about the strategy that player 1 is playing. For equilibrium analysis,
these beliefs will be determined according to requirements 15.2 and 15.3 described
in Section 15.2.

In general if player 1 is using a mixed strategy in which type H chooses U with
probability σH and type L chooses U with probability σL, and if both σH and σL

are strictly between 0 and 1 (i.e., the two types are choosing nondegenerate mixed
strategies) then requirement 15.2 implies that by Bayes’ rule

μU = pσH

pσH + (1 − p)σL
(16.1)

and

μD = p(1 − σH)

p(1 − σH) + (1 − p)(1 − σL)
. (16.2)

Notice that if both σH = σL = 1 (both types are choosing U ) then beliefs are well
defined only by (16.1) from Bayes’ rule, so that μU = p, while from (16.2) beliefs
are not well defined by Bayes’ rule, so we have the freedom to choose μD. Similarly
if both σH = σL = 0 (both types are choosing D) then μU is not well defined while
μD = p.

We are now ready to proceed to find the perfect Bayesian equilibria in the MBA
game. Because each player has two information sets with two actions in each of these
sets, each player has four pure strategies. Let player 1’s strategy be denoted aH

1 aL
1 ,

where aθ
1 ∈ {U, D} denotes what player 1 does if he is type θ ∈ {H, L}. Similarly let

aU
2 aD

2 denote player 2’s strategy, where ak
2 ∈ {M, B} denotes what player 2 does if

he observes that player 1 chose k ∈ {U, D}.
To make our analysis more straightforward, assume that Nature chooses player

1’s type according to p = 1
4 , so that we can derive the matrix that is the normal-

form representation of the MBA Bayesian game. As we have demonstrated earlier
for the entry game, the payoffs in the matrix are calculated by taking each pair of
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pure strategies, observing which paths are played with the different probabilities that
are due to Nature’s choice, and then writing down the derived expected payoffs from
this pair of strategies. For example, if (UD, MB) are the pair of strategies then with
probability 1

4 Nature chooses type H for player 1 who chooses U, and in response
player 2 chooses M , yielding a payoff pair of (10, 10). This follows because player
1 gets a wage of 10 and incurs no cost of obtaining an MBA, while player 2 assigns
a high-skill worker to a managerial job, so he obtains a payoff of 10 as well. With
probability 3

4 Nature chooses type L for player 1 who chooses D, and in response
player 2 chooses B, yielding a payoff pair of (1, 3). This follows because player 1’s
net payoff is 6 − 5 = 1 (wage equal to 6 and a cost of studying equal to 5) and player
2’s net payoff is 3 (assigning a low-skill worker to a blue-collar job). The expected
pair of payoffs for the players from the strategy (UD, MB) is therefore

(v1, v2) = 1

4
(10, 10) + 3

4
(1, 3) = (3.25, 4.75).

Similarly we can calculate the expected payoffs for all the other 15 entries in the
Bayesian game matrix. Notice that when player 1 plays the same action for the
different types (rows 1 and 4) then part of player 2’s strategy is never used, so
there are repeat entries which reduce the number of calculations needed. The matrix
representation is

Player 2
MM MB BM BB

UU 10, 2.5 10, 2.5 6, 3.5 6, 3.5

Player 1
UD 6.25, 2.5 3.25, 4.75 5.25, 1.25 2.25, 3.5

DU 9.5, 2.5 8.5, 1.25 6.5, 4.75 4.5, 3.5

DD 5.75, 2.5 1.75, 3.5 5.75, 2.5 1.75, 3.5

If we follow the method of underlining player 1’s best responses for each column
and overlining player 2’s best responses for each row, we immediately observe that
there are two pure-strategy Bayesian Nash equilibria: (UU, BB) and (DU, BM).
To see whether these can be part of a perfect Bayesian equilibrium, we need to find
a system of beliefs that support the proposed behavior, and that together with these
strategies satisfy requirements 15.1–15.4.

From proposition 15.1 it follows that (DU, BM) can be part of a perfect Bayesian
equilibrium because all of the information sets are reached with positive probability.
In particular the derived beliefs from (DU, BM) are μU = 0 and μD = 1.2 It follows
from the Bayesian game matrix that player 2 is playing a best response to these beliefs
in each of his information sets, and that player 1 is playing a best response in each of
his. So (DU, BM) together with μU = 0 and μD = 1 constitute a perfect Bayesian
equilibrium.

What about the pair of strategies (UU, BB)? From (16.1) and (16.2), unique
beliefs are derived only for information set IU because ID is reached with zero
probability. In particular μU = 1

4 and μD is not well defined. It is easy to check that

2. Using equations (16.1) and (16.2) that we derived from Bayes’ rule, this is the case where σH = 0
and σL = 1, and the resulting μU and μD follow.
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player 2 choosing B is a best response in information set IU to the belief μU = 1
4 .

Therefore to see whether (UU, BB) can be part of a perfect Bayesian equilibrium we
need to see if there are beliefs μD that support B as a best response for player 2 in
information set ID.

For B to be a best response in the information set ID, it must be the case that given
the belief μD the expected payoff from B is higher than the expected payoff from M .
This can be written down as

5μD + 3(1 − μD) ≥ 10μD + 0(1 − μD),

which is true if and only if μD ≤ 3
8 . This implies that we can support (UU, BB)

as part of a perfect Bayesian equilibrium. In particular (UU, BB), together with
belief μU = 1

4 and any belief satisfying μD ∈ [
0, 3

8

]
, constitutes a perfect Bayesian

equilibrium.
We conclude that in the first perfect Bayesian equilibrium with strategies

(DU, BM), different types of player 1 choose different actions, thus using their
actions to reveal to player 2 their true types. In other words, this is a separating per-
fect Bayesian equilibrium. In the second perfect Bayesian equilibrium, with strategies
(UU, BB), both types of player 1 do the same thing, and thus player 2 learns nothing
from player 1’s action; this is a pooling perfect Bayesian equilibrium.

16.2 Limit Pricing and Entry Deterrence

We turn to another application of the analysis of dynamic games of incomplete
information, this time to an important antitrust issue. Bain (1949) argued that an
incumbent firm can engage in limit pricing to deter entry, and thus try to gain control
as a long-run monopolist. This practice is defined as one in which a firm prices below
marginal costs, which is obviously a losing strategy in the short run. But if by doing
this the firm runs competitors out of business, deters other firms from entering the
market, and thus becomes a monopolist, then this might be a winning strategy in
the long run. Limit pricing is considered anticompetitive behavior and is illegal in the
United States.

However, this argument should make one feel a bit uncomfortable: Is it reasonable
to punish firms for charging low prices? How can we convince ourselves that Bain’s
intuition is correct and that a firm may indeed choose to incur short-run losses to
generate long-run profits? These questions were answered by Milgrom and Roberts
(1982). We present a simplified version of their analysis in the following game.

Consider a market for some good that will last for two periods with demand
P = 5 − q in each period. In period t = 1 only one firm, the incumbent (player 1), is
in the market, and this incumbent will continue to produce in period t = 2. A potential
entrant (player 2) observes what happened in period t = 1 and then makes a choice of
whether to enter the market at a fixed cost of 1

2 and compete against the incumbent in
period t = 2, or to remain out of the market. If player 2 stays out of the market then
player 1 remains a monopolist in period 2, while if player 2 enters the market then
they compete in a Cournot duopoly game. Each firm has marginal costs ci, where it
is common knowledge that the entrant’s marginal costs are c2 = 2. There is asym-
metric information with respect to the costs (the type) of the incumbent. In particular
the entrant knows only that c1 ∈ {1, 2}, so that the incumbent can be either more ef-
ficient than the entrant (have low [L] costs of c1 = 1) or as efficient (have high [H]
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costs of c1 = 2). It is common knowledge that Pr{c1 = 1} = 1
2 , but only the incumbent

knows his true costs.
The timing of this game, which captures the story, is described as follows:

1. Nature chooses the type of player 1, c1 ∈ {1, 2}, each type with equal proba-
bility.

2. Player 1 observes his costs and decides how much to produce in the first period,
q1

1, and the price in the first period is then P = 5 − q1
1.

3. Player 2 observes q1
1 and decides whether or not to enter at a fixed cost of

F = 1
2 .

4. If player 2 stays out then in period t = 2 player 1 chooses q2
1 and the price is

P = 5 − q2
1 .

5. If player 2 enters then in period t = 2 each player i simultaneously chooses
q2

i
and the price is P = 5 − q2

1 − q2
2 (Cournot competition).

Given the continuous action spaces of this game (continuous quantity levels) it is
not too useful to write down a game tree. As a consequence solving for the perfect
Bayesian equilibria of this game is not as simple as for the MBA game. Because the
strategy sets are continuous we cannot look for all the Bayesian Nash equilibria in a
matrix and then check whether they can be supported as perfect Bayesian equilibria.
Thus to solve for the perfect Bayesian equilibria of this game we must go to the heart
of what sequential rationality means and solve the game using techniques similar to
backward induction. We proceed in two steps: we look first for separating perfect
Bayesian equilibria and then for pooling perfect Bayesian equilibria.

16.2.1 Separating Equilibria

We proceed to check for the existence and nature of separating perfect Bayesian
equilibria using a sequence of steps:

Step 1: What will q2
1 be if firm 2 stays out?

The answer is very simple. If firm 2 stays out then firm 1 is a monopoly and
maximizes profits,

max
q2

1

(5 − q2
1 − c1)q

2
1 .

This yields the solution using the first-order condition 5 − 2q2
1 − c1 = 0 (which in

this case is necessary and sufficient, as you can check), and this in turn gives us firm
2’s quantity:

q2
1 = 5 − c1

2
=

{
2 if c1 = 1

1.5 if c1 = 2.

Step 2: What will q2
1 and q2

2 be if firm 2 enters and firm 1’s costs are known to all?

In this case both firms play a Cournot game. Firm 1 maximizes its profits, given by

max
q2

1

v2
1 = (5 − q2

1 − q2
2 − c1)q

2
1,
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which yields the best-response function using the first-order condition 5 − 2q2
1 − q2

2 −
c1 = 0 (which is again necessary and sufficient),

BR1(q
2
2) = 5 − q2

2 − c1

2
. (BR1)

Firm 2 solves a problem that is similar except that it also includes the fixed cost of
entry in the objective function,

max
q2

2

v2
2 = (5 − q2

1 − q2
2 − c1)q

2
2 − 1

2
,

which yields the best-response function for firm 2 using the first-order condition
5 − 2q2

1 − q2
1 − c1 = 0 (which is again necessary and sufficient),

BR2(q
2
1) = 5 − q2

1 − c2

2
= 3 − q2

1

2
. (BR2)

Because firm 1 can be one of two types, there are two cases to be considered if c1
is known to firm 2 as well:

1. If firm 1 is a high-cost type then in this case c1 = 2, and (BR1) and (BR2)
imply that q2

1 = q2
2 = 1, P = 3, and profits for the two firms in the second

period are v2
1 = (3 − 2)1 = 1, while v2

2 = (3 − 2)1 − 1
2 = 1

2 .

2. If firm 1 is a low-cost type then in this case c1 = 1, and (BR1) and (BR2) imply
that q2

1 = 5
3, q2

2 = 2
3 , P = 8

3 , and profits for the two firms in the second period
are v2

1 = ( 8
3 − 1

) 5
3 = 25

9 , while v2
2 = ( 8

3 − 2
) 2

3 − 1
2 = − 1

18 .

Step 3: What quantities for each type will support firm 1’s separating (signaling)
behavior?

This is where things become more complex. To answer this question we consider
the logic of separating versus pooling equilibria. In any separating equilibrium dif-
ferent types of firm 1 choose different actions, implying that in any such equilibrium
firm 2 perfectly learns the type of firm 1. To continue our analysis consider a separat-
ing perfect Bayesian equilibrium with the following notation: qtθ

1 denotes the choice
of firm 1 in period t ∈ {1, 2} when he is of type θ ∈ {H, L}. That is, qtθ

1 is the strategy
of type θ in period t . Let q2

2(q1
1) denote the strategy of firm 2 in period t = 2, which is

a function of q1
1 being played by firm 1 in period 1. Finally let μ(q1

1) = Pr{c1 = 2|q1
1}

be firm 2’s posterior belief in period 2 after observing that q1
1 was played by firm 1 in

period 1. Using this notation we can write a perfect Bayesian equilibrium as3{
q1L

1 , q1H
1︸ ︷︷ ︸

Firm 1, t=1

, q2L
1 , q2H

1︸ ︷︷ ︸
Firm 1, t=2

, q2
2

(
q1

1

)︸ ︷︷ ︸
Firm 2, t=2

, μ
(
q1

1

)︸ ︷︷ ︸
Firm 2’s beliefs

}
.

3. To be precise, q2θ
1 must be a function of whether or not firm 2 decides to enter, and firm 2’s strategy

should include two components: first, whether or not to enter depending on q1
1, and then upon entry

what the choice q2
2(q1

1) is. We are simplifying by collapsing both of these choices of firm 2 into the
quantity choice, and we will let q2

2(q1
1) = 0 be the choice of no entry.
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We can now establish a series of claims:

Claim 16.1 In any separating perfect Bayesian equilibrium, when firm 2 believes that
c1 = 1 then it will stay out, and firm 1 will choose q2L

1 = 2, while if firm 2 believes
that c1 = 2 it will enter, and both firms produce q2H

1 = q2
2 = 1.

The proof follows from the foregoing analysis of the monopoly problem (step 1)
and the Cournot problem (step 2), and from the fact that we require firm 2’s behavior
to be sequentially rational. This is one of the nice features of a separating perfect
Bayesian equilibrium: even though firm 2 does not know the type of firm 1, in a
separating equilibrium types are revealed, and firm 2 must act as if he knew the type
of firm 1.

Claim 16.2 In any separating perfect Bayesian equilibrium, in the first period a high-
cost incumbent must produce q1H

1 = 1.5.

Proof From claim 16.1, in any separating perfect Bayesian equilibrium it must be
that following q1H

1 firm 2 will enter, and following q1L
1 firm 2 will stay out and let firm 1

be a monopolist (otherwise it would not be a separating perfect Bayesian equilibrium).
To see that in a separating perfect Bayesian equilibrium it must be that q1H

1 = 1.5,
assume in negation that this is not the case. Then in period 1 firm 1 is making less than
monopoly profits when its marginal costs are c1 = 2, and in period 2 firm 1 is making
Cournot profits. Now consider a deviation of firm 1, when c1 = 2, to the monopoly
quantity of q1H

1 = 1.5. In period 1 profits will be higher, which means that for this
deviation not to be profitable it must be that firm 1 gets less than Cournot profits in
the second period. But this cannot happen because either: (1) firm 2’s beliefs after
the deviation remain Pr{c1 = 2} = 1, in which case they will play the same Cournot
game, or (2) firm 2 changes its beliefs to Pr{c1 = 2} < 1, in which case firm 1 will
make higher-than-Cournot profits (either firm 2 will stay out or it will play Cournot
against an unknown rival and produce less than 1, depending on its beliefs). Thus we
conclude that if q1H

1 = 1.5 then firm 1 has a profitable deviation to q1H
1 = 1.5.

We have therefore established from our analysis that if a separating perfect
Bayesian equilibrium exists then it must satisfy q2L

1 = 2, q2H
1 = 1, q2

2(q1L
1 ) = 0,

q2
2(q1H

1 ) = 1, μ(q1L
1 ) = 0, and μ(q1H

1 ) = 1. From claim 16.2 we established that it
must satisfy q1H

1 = 1.5. We are left to find two more elements: we must define beliefs
for all other quantities q1

1 ∈ {q1H
1 , q1L

1 }, and we have to find q1L
1 . If we find these

values in a way for which strategies and beliefs satisfy requirements 15.1–15.4 from
Section 15.2 then we have found a separating perfect Bayesian equilibrium.

Step 4: Setting off-the-equilibrium-path beliefs.

To set off-the-equilibrium-path beliefs that will support behavior on the equilib-
rium path we will use a “trick” that is common for games with continuous strategy
sets and is similar to what we did for the MBA game. Recall that we want the sep-
arating perfect Bayesian equilibrium to work in such a way that each type of firm 1
θ ∈ {L, H } will stick to his strategy q1θ

1 , rather than deviating to some other quantity
q1

1. To do this, we can make the continuation game following any deviation from either
q1L

1 or q1H
1 to be as undesirable as possible for firm 1. How can we achieve this? Pre-

cisely by causing firm 2 to enter following any such deviation, which is guaranteed to
happen when firm 2 believes that firm 1 has high costs. Indeed when firm 2 acts in this
way then firm 1 faces the most severe second-period competition, and this is the most
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undesirable outcome for firm 1. Hence the easiest way to prevent deviations and keep
firm 1 on the equilibrium path is by setting beliefs that make off-the-equilibrium-path
behavior very unattractive to firm 1. This will be satisfied if

μ(q1
1) =

{
1 if q1

1 = q1L
1

0 if q1
1 = q1L

1 .

These beliefs cause a unique best response for firm 2, which is not to enter if q1
1 = q1L

1
and to enter and produce q2

2 = 1 if q1
1 = q1L

1 .

Step 5: What should q1L
1 be?

Once we have calculated all of the equilibrium components, for q1L
1 to satisfy the

missing piece of the puzzle it must satisfy the following two important conditions:

1. When firm 1 is an L type, it prefers to choose q1L
1 over any other quantity, in

particular over q1H
1 .

2. When firm 1 is an H type, it prefers to choose q1H
1 over q1L

1 .

The first condition is that type L is playing a best response. The second condition
just says that an H type does not want to imitate an L type. What about other
quantities? Using the belief system we defined earlier, claim 16.2 already implies
that an H type prefers q1H

1 = 1.5 to any other nonmonopoly profit that induces entry.
The reason we have to care about imitating an L type is because q1L

1 prevents entry,
allowing firm 1 to remain a monopolist in the second period.

We call these two conditions—that each type prefers choosing his designated
action rather than imitating some other type—incentive compatibility constraints.
The meaning is precisely that in equilibrium each type has an incentive to choose
his prescribed strategy and not choose the prescribed strategies for the other types.
Similar incentive compatibility constraints held for the separating perfect Bayesian
equilibrium that we found in the MBA game, and that is a general set of constraints
for signaling games.

To solve for q1L
1 we can start with a natural candidate: the monopoly quantity for

the L type. From the analysis of step 1, this is equal to q1L
1 = 2, and the first-period

profits would be 4. If this choice is part of a separating perfect Bayesian equilibrium
it will induce firm 2 to stay out, and thus firm 1 again gets a profit of 4 in period t = 2.
We must check now for incentive compatibility of the two types of firm 1. Starting
with the L type, would the L type of firm 1 want to deviate and choose q1H

1 or any
other quantity? The answer is clearly no, because if it chooses q1H

1 or any quantity
different than q1L

1 then not only will its first period profits be lower than monopoly
profits, but this will induce entry and lower firm 1’s profits in the second period. Hence
the L type’s incentive compatibility constraint is satisfied.

Turning to incentive compatibility of the H type, if that type follows its strategy
then it produces 1.5 in the first period and gets monopoly profits of 2.25, which induces
entry that results in Cournot profits of 1 in the second period. Total profits would
therefore be 3.25. From the foregoing analysis, the H type would not deviate to any
other entry-inducing quantity because that would lower its first-period profits without
deterring entry. We are left to check whether the H type would want to deviate and
choose q1L

1 = 2 instead of q1H
1 = 1.5.
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If the H type indeed deviates and chooses q1L
1 then this will deter entry and it can

obtain monopoly profits in the second period by producing at a level of q1H
1 . As a

consequence total profits for the H type will be:

π =
First period︷ ︸︸ ︷

(5 − q1L
1 − cH)q1L

1 +
Second period︷ ︸︸ ︷

(5 − q1H
1 − cH)q1H

1

= (5 − 2 − 2)2 + (5 − 1.5 − 2)1.5

= 4.25 > 3.25!

This shows that the incentive compatibility constraint of the H type is violated. This
happens because by imitating an L type, the H type is sacrificing some of its monopoly
profits in the first period to obtain full monopoly profits in the second period rather
than the significantly lower Cournot equilibrium profits. It turns out that the sacrifice
is well worth the extra gains, implying that q1L

1 = 2 causes a violation of the H type’s
incentive compatibility constraint and thus cannot be part of a separating perfect
Bayesian equilibrium.4

The intuition from the previous unsuccessful attempt at finding q1L
1 is that for

incentive compatibility to hold it must be the case that the H type will suffer enough
from deviating. This can be done by making the deviation less attractive, which means
we need to make q1L

1 larger (because the monopoly quantity for the L type is 1.5, the
larger is q1L

1 , the lower will be the profits from this choice).
It turns out that we do not need to make any guesses about q1L

1 because our analysis
has already pinned down all the other components of any separating perfect Bayesian
equilibrium. Hence to find a perfect Bayesian equilibrium we need only to find a level
of q1L

1 that satisfies the two incentive compatibility constraints. First, we need to make
sure that an H type does not want to deviate to q1L

1 . This condition will be satisfied
if the first-period profits from deviating, plus the second-period monopoly profits the
firm gets (which equal 2.25 because firm 2 stays out after q1L

1 ), are no more than what
the firm gets from producing its monopoly quantity in the first period followed by
Cournot competition in the second (which adds up to 3.25). This condition can be
written as

(5 − q1L
1 − 2)q1L

1 + 2.25 ≤ 3.25,

which is reduced to

q1L
1 ≥ 3

2 +
√

5
4 � 2.62.

This is therefore the lower bound on q1L
1 that is needed to deter the H type from

deviating from q1H
1 to q1L

1 . Similarly we have to make sure that the L type will not
want to deviate from q1L

1 to some other quantity. This would put an upper bound on
q1L

1 . To find this upper bound we need to figure out what would be the best deviation
for an L type of firm 1 in the first period. Given the belief system we are imposing,
any deviation from q1L

1 will induce entry, and firm 2 will produce q2
2 = 1 from the

previous analysis. So a type L that deviates should play a best response to q2
2 = 1 in

4. Note that if we introduce discounting into this model this conclusion might change. You are asked
to consider this in exercise 16.2.
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the second period. This is calculated by

max
q2

1

(5 − q2
1 − 1 − 1)q2

1,

which is maximized at q2
1 = 1.5, yielding a second-period profit of 2.25. Because any

deviation of an L type will be followed by this best response, an L type gains the most
from deviating to his monopoly quantity of q1

1 = 2 with a first-period profit equal to
4. This implies that the best deviation for firm 1 when it is an L type yields a profit
of 6.25, and as a consequence incentive compatibility of the L type is guaranteed if

(5 − q1L
1 − 1)q1L

1 + 4 ≥ 6.25,

which reduces to

qL
1

<∼ 3.32.

Summing up, this analysis allows us to state the following conclusion on separating
perfect Bayesian equilibria of this game:

Conclusion: In the limit pricing–entry deterrence game there is a continuum of
separating perfect Bayesian equilibria. Any profile of strategies{

q1L
1 , q1H

1 , q2L
1 , q2H

1 , q2
2

(
q1

1

)}
together with beliefs μ(q1

1) that satisfies

2.62 ≤ qL
1 ≤ 3.32

q1H
1 = 1.5

q2L
1 = 2

q2H
1 = 1

μ(q1
1) =

{
1 if q1

1 = q1L
1

0 if q1
1 = q1L

1

q2
2(q1

1) =
{

1 if q1
1 = q1L

1

0 if q1
1 = q1L

1

is a separating perfect Bayesian equilibrium.

It is worth noting something special about all these perfect Bayesian equilibria: for
a low-cost firm to deter entry, it must choose a quantity that is higher than its short-run
profit-maximizing (monopoly) profits. Why? Because to scare off opponents credibly,
it must choose something that a high-cost firm would not find profitable to do. In other
words, for a signal to be credible, it must be the case that no other type would want
to use the signal.

Note that in the example the low-cost (L-type) firm is charging a price that is above
marginal costs in the separating perfect Bayesian equilibrium. A modified example,
however, would admit an equilibrium in which the first-period price is below marginal
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costs. For example, if the second-period market demand were much higher than the
first-period demand (i.e., a growing market) then it may be the case that the first-
period separating quantity for the low type needs to be so high that the price would
be below marginal cost. Another alternative would be to extend the game to many
more periods. If by deterring entry in the first period the firm would be a monopoly
for several periods thereafter, then the lower bound we derived on q1L

1 would have
to be higher, as would the upper bound. This would eventually drive the first-period
price to be below marginal cost. This would be the extent of the sacrifice needed to
make sure that the signal is credible. Thus Bain’s intuition survives the test of a formal
model that is built to capture the essence of anticompetitive limit pricing.

16.2.2 Pooling Equilibria

Pooling equilibria are easier to find in this game. A pooling equilibrium will be
defined by {q1∗

1 , q2L
1 , q2H

1 , q2
2(q1

1), μ(q1
1)} because both types of firm 1 choose the

same quantity q1∗
1 in the first period. This immediately implies that beliefs must satisfy

μ(q1∗
1 ) = 1

2 because it is common knowledge that Nature chooses Pr{c1 = 1} = 1
2 , and

pooling behavior implies that firm 2 does not update its beliefs. This implies that firm
2, if it would enter following q1∗

1 , will play a static game of incomplete information.
We therefore need to find the Bayesian Nash equilibrium for this second-period game,
which is an incomplete-information version of the Cournot model. Thus we find q2L

1 ,
q2H

1 , and q2
2(q1∗

1 ) by simultaneously solving three maximization problems: one for
the entrant and two for the incumbent’s two types. The L-type incumbent solves

max
q2L

1

(5 − q2L
1 − q2

2(q1∗
1 ) − 1)q2L

1 ,

which yields the best-response function from the first-order condition

q2L
1 = 4 − q2

2(q1∗
1 )

2
.

Similarly an H -type incumbent maximizes

max
q2H

1

(5 − q2H
1 − q2

2(q1∗
1 ) − 2)q2H

1 ,

for which the best response is

q2H
1 = 3 − q2

2(q1∗
1 )

2
.

And finally the entrant, firm 2, maximizes

max
q2

2(q1∗
1 )

1

2

[
(5 − q2L

1 − q2
2(q1∗

1 ) − 2)q2
2(q1∗

1 )
]

+ 1

2

[
(5 − q2H

1 − q2
2(q1∗

1 ) − 2)q2
2(q1∗

1 )
]

− 1

2
,
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which results in the best-response function

q2
2(q1∗

1 ) = 3 − 1
2 (q2L

1 + q2H
1 )

2
.

The Bayesian Nash equilibrium of this incomplete-information Cournot game can
be found by solving the three best-response functions (which are just three first-order
conditions) simultaneously, which yields

q2
2(q1∗

1 ) = 5
6 , q2L

1 = 19
12 , q2H

1 = 13
12 .

This in turn results in second-period expected profits for firm 2 equal to v2
2 = 7

18 > 0,

for the H type of firm 1 equal to v2H
1 = ( 13

12

)2
, and for the L type of firm 1 equal to

v2L
1 = ( 19

12

)2
. This implies that firm 2 will choose to enter in a pooling equilibrium in

which it does not learn the type of firm 1.
To proceed we have to set beliefs for off-the-equilibrium-path choices of firm 1

(q1
1 = q1∗

1 ), which will determine the best-response function of firm 2 q2
2(q1

1) in
information sets that are off the equilibrium path. We will then need to find the
value of q1∗

1 to complete the equilibrium. As we have seen in our analysis of the
separating perfect Bayesian equilibrium, the best way to keep the different types of
firm 1 on the equilibrium path is by making deviation off the equilibrium path very
undesirable. This is done by setting the “worse” beliefs that firm 2 could have about
firm 1, which are μ(q1

1) = 1for q1
1 = q1∗

1 . Using these off-the-equilibrium-path beliefs
together with on-the-equilibrium-path beliefs μ(q1∗

1 ) = 1
2 immediately implies the

sequentially rational best-response function of firm 2,

q2
2(q1

1) =
{

1 if q1
1 = q1∗

1
5
6 if q1

1 = q1∗
1 .

We are left to find a level of q1∗
1 from which neither type of firm 1 would want to

deviate. In the analysis of the separating equilibrium we calculated the “best” first-
period deviation of each type, which is to choose its monopoly quantities followed by
the best response to q2

2 = 1 in the second period. These yielded a profit of 3.25 to the
H type and 6.25 to the L type, as we calculated earlier. We therefore need to satisfy
two inequalities for q1∗

1 to be a best response for both types. For the H type,

(5 − q1∗
1 − 2)q1∗

1 + ( 13
12

)2 ≥ 3.25,

which reduces to

1.083 ≤ q1∗
1 ≤ 1.917. (ICH)

Similarly for the L type,

(5 − q1∗
1 − 1)q1∗

1 + ( 19
12

)2 ≥ 6.25,

which reduces to

1.493 ≤ q1∗
1 ≤ 2.507. (ICL)
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Because q1∗
1 must satisfy both incentive constraints (ICH) and (ICL), we can summa-

rize our analysis as follows:5

Conclusion: In the limit pricing–entry deterrence game there is a continuum of
pooling perfect Bayesian equilibria. Any profile of strategies {q1∗

1 , q2L
1 , q2H

1 , q2
2(q1

1)}
together with beliefs μ(q1

1) that satisfies

1.493 ≤ q1∗
1 ≤ 1.917

q2L
1 = 19

12

q2H
1 = 13

12

q2
2(q1

1) =
{

1 if q1
1 = q1∗

1
5
6 if q1

1 = q1∗
1

μ(q1
1) =

{
1 if q1

1 = q1∗
1

1
2 if q1

1 = q1∗
1

is a pooling perfect Bayesian equilibrium.

Unlike the separating equilibrium in which the incumbent’s action reveals its
type to the entrant, this is not the case here. In fact it is not that convincing to state
that different types of the incumbent will choose the same actions, which makes the
pooling equilibrium look somewhat artificial and less appealing. As we will see in the
next section, there are some convincing arguments that not only favor the separating
equilibria as more reasonable but also often select one of the separating equilibria as
the most reasonable.

Signaling games that result in some form of entry deterrence have also been
applied to explain a phenomenon studied in political science: the huge efforts that
strong political incumbents exert to raise campaign contributions. Epstein and Zemsky
(1995) offer a formal game theoretic explanation that incumbents raise these huge
sums of money as a signal of strength to deter potential challengers.

16.3 Refinements of Perfect Bayesian Equilibrium
in Signaling Games

In both the MBA game and the limit pricing–entry deterrence game we had a plethora
of perfect Bayesian equilibria. This outcome suggests that when we applied sequential
rationality to the Bayesian Nash equilibrium concept we still did not manage to get rid
of many equilibria. It implies that for the games we analyzed the predictive power of
the perfect Bayesian equilibrium solution concept is not as sharp as we would hope.

Let’s consider the MBA game first and focus our attention on the pooling equilib-
rium in which both types of worker choose U , and then regardless of the education

5. Note that the inequalities are intuitive. For each type the best deviation is to its monopoly quantity,
which is 1.5 for the H type and 2 for the L type. Thus for each type the range is an interval that is
symmetric around its monopoly quantity.
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choice the employer assigns the worker to B. Now consider the following deviation
and the speech that an H type could deliver:

I am an H type. To convince you I am going to deviate and choose D. If you
believe me, and put me in the M job instead of a B job, I will get 8 instead
of 6. The reason you should believe me is that if I were an L type who chose
D and you were to promote me then I would get 5 instead of 6. Therefore
you should believe me when I tell you that I am an H type because no L

type in his right mind would do what I am about to do.

What should the employer think? The argument makes sense because if the
candidate were an L type then there is no way in which he could gain from this
move, and in fact he will lose. In contrast an H type can gain if he is believed by the
employer. This logic suggests that the employer should be convinced by this deviation
combined with the speech. Now if we take this a step further, the employer can make
these kinds of logical deductions himself:

Let me see which type can gain from this deviation. If neither can or if both
can, I will keep my off-the-equilibrium-path beliefs as before. But if only
one type of worker can benefit and other types can only lose, then I should
update my beliefs accordingly and act upon these new, more “sophisticated”
beliefs.

This logical process leads to the intuitive criterion that was developed by Cho
and Kreps (1987). For any given set of beliefs of player 2, player 1 (who has private
information) can use his action to send a message to player 2 in the spirit of “only an
x type would benefit from this move; therefore I am an x type.” The intuitive criterion
is a way of ruling out less reasonable equilibria, those for which such messages can
be profitably sent, and hence it acts to refine the equilibrium predictions. That is, take
a perfect Bayesian equilibrium and see if it survives the intuitive criterion. If it does
not—that is, a player can make a deviation with such a convincing message—then it
is ruled out by the intuitive criterion.

We now define the intuitive criterion more formally. Consider a signaling game in
which player 1 has private information θ ∈ � and chooses actions a1 ∈ A1 in the first
period, after which player 2 observes his action, forms a posterior belief over player
1’s type, and then chooses action a2 ∈ A2. Imagine that the set of player 1’s types �

is finite, and let �̂ ⊂ � be a subset of player 1’s types. Let BR2(�̂, a1) be the set of
best-response actions of player 2 if player 1 has chosen action a1 ∈ A1 and the belief
μ of player 2 puts positive probability only on types in the set �̂. Formally we have

BR2(�̂, a1) = ∪μ∈�(�) arg max
a2∈A2

∑
θ∈�̂

v2(a1, a2; θ)μ(θ).

Definition 16.1 A perfect Bayesian equilibrium σ ∗ fails the intuitive criterion if there
exist a1 ∈ A1, θ ∈ �, and �̂ ⊂ � such that

1. v1(σ
∗; θ) > maxa2∈BR2(�,a1)

v1(a1, a2; θ) for all θ ∈ �̂

2. v1(σ
∗; θ) < mina2∈BR2(�/̂�,a1)

v2(a1, a2; θ)

From the definition we see that a perfect Bayesian equilibrium fails the intuitive
criterion if two conditions hold. Condition (1) states that any type in the subset of
types �̂ would never choose to play a1 because regardless of which type player 2
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believes him to be, he would do strictly worse than if he stuck to the equilibrium.
Condition (2) states that type θ will do strictly better than the equilibrium by playing
a1 if he can convince player 2 that his type is not in �̂.

We can now go back to the MBA game and see why the pooling equilibrium fails
the intuitive criterion. In this equilibrium both types expect a payoff of 6. Using the
definition for the pooling equilibrium, let a1 = D, �̂ = {L}, and θ = H . Condition (1)
is satisfied because by choosing D the L type will be worse off: the most he can get is
5 (10 from a manager’s wage less 5 for the cost of education). Condition (2) is satisfied
because if player 2 is convinced that player 1 is indeed an H type then the H type
will receive 8 (10 from a manager’s wage less 2 for the cost of education) instead of
6. The separating equilibrium, however, does not fail the intuitive criterion because
no type can be made better off by convincing player 2 that he is truly that type.

For the limit pricing–entry deterrence game the analysis is more complex. To see
why the pooling equilibrium fails, we first need to define BR2(�, a1) for any a1
(which for the limit pricing game was q1

1). We saw from our analysis of the separating
equilibrium that at one extreme belief, when the entrant believes that he is facing the
high-cost incumbent, μ(q1

1) = 1, he will enter and in equilibrium produce q2
2 = 1. At

the other extreme, when he believes that the incumbent has low costs, μ(q1
1) = 0, then

he will stay out (effectively producing q2
2 = 0). We also saw that in the intermediate

case of a pooling equilibrium, the entrant’s belief is μ(q1
1) = 1

2 , and in equilibrium he
chooses to produce q2

2 = 5
6 . It should not be hard to realize that the lower the belief

μ(q1
1), the lower will be the equilibrium quantity chosen by player 2, until some lower

bound on beliefs is reached for which the incomplete-information Cournot Bayesian
Nash best response will be some level q2

2 = q < 5
6 that yields player 2 an expected

payoff of zero. Any lower quantity cannot be part of an equilibrium in which player
2 chooses to enter. Hence for the limit pricing–entry deterrence game we will have
BR2(�, a1) = {0} ∪ [ q, 1] regardless of a1.

Now to see that pooling fails the intuitive criterion, let a1 = 3, �̂ = {H }, and θ = L.
Condition (1) is satisfied because the pooling equilibrium yields the H type a payoff
of at least 3.25, while by deviating to q1

1 = 3 the H type will at most get monopoly
profits in period 2 equal to 2.25. So this deviation is always worse for him because

(5 − 3 − 2)3 + 2.25 = 2.25 < 3.25.

Condition (2) is satisfied because if player 2 is convinced that player 1 is indeed an
L type then player 2 will stay out and the L type will receive

(5 − 3 − 1)3 + 4 = 7 > 4 +
(

19
12

)2
. (16.3)

Notice that the right side of (16.3) is the highest pooling equilibrium payoff that
the type can receive, because it includes his monopoly profits in the first period
followed by the pooling equilibrium profits in the second. We conclude that the
pooling equilibrium fails the intuitive criterion.

In the limit pricing–entry deterrence game we are still left with a continuum of
separating equilibria, in which 2.62 ≤ qL

1 ≤ 3.32 was undetermined. It turns out that
of all these equilibria, the only one that does not fail the intuitive criterion is the
best separating equilibrium for player 1, which is q1L

1 = 2.62. The intuition is that
an L type would never benefit from choosing q1

1 = 2.62, so the H type can use this
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deviation from any other separating equilibrium quantity. You are asked to verify this
in exercise 16.7. For signaling games of the type we have seen, the intuitive criterion
will always select the best separating equilibrium as the unique prediction.

16.4 Summary

. In games of incomplete information some types of players would benefit from
conveying their private information to the other players.

. Announcements or cheap talk alone cannot support this in equilibrium, be-
cause then disadvantaged types would pretend to be advantaged and try to
announce “I am this type” to gain the anticipated benefits. This strategy can-
not be part of an equilibrium because by definition players cannot be fooled
in equilibrium.

. For advantaged types to be able to separate themselves credibly from dis-
advantaged types there must be some signaling action that costs less for the
advantaged types than it does for the disadvantaged types.

. Signaling games will often have many perfect Bayesian and sequential equi-
libria because of the flexibility of off-the-equilibrium-path beliefs. Refine-
ments such as the intuitive criterion help pin down equilibria, often resulting
in the least-cost separating equilibrium.

16.5 Exercises

16.1 Separating Equilibrium: Consider the entry game described in exercise 15.5.
Is it true that in this game any separating perfect Bayesian equilibrium imposes
unique beliefs for the incumbent in all information sets?

16.2 Limit Pricing Revisited: Consider the limit pricing–entry deterrence game
described in Section 16.2 and imagine that second-period profits are dis-
counted using a discount factor δ ≤ 1. Furthermore consider the strategies in
which each type of player 1 chooses its monopoly quantity in the first period
so that q1L

1 = 2 and q1L
1 = 1.5. For which values of δ will this be part of a

separating perfect Bayesian equilibrium?

16.3 More Limit Pricing: An incumbent firm (player 1) is either a low-cost type
θ1 = θL or a high-cost type θ1 = θH , each with equal probability. In period
t = 1 the incumbent is a monopolist and sets one of two prices pL or pH , and
its profits in this period depend on its type and the price it chooses, given by
the following table:

Type Profit from pL Profit from pH

θL 6 8

θH 1 5

After observing the period t = 1 price, a potential entrant (player 2), which
does not know the incumbent’s type but knows the distribution of types, can
choose to enter the market (E) or stay out (O) in period t = 2. The payoffs of
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both players in period 2 depend on the entrant’s choice and on the incumbent’s
type and are given by the following table:

Incumbent’s type Entrant’s choice Incumbent’s payoff Entrant’s payoff

θL E 0 −2

θL O 8 0

θH E 0 1

θH O 5 0

At the beginning of the game the incumbent discounts profits for period t = 2
using a discount factor δ ≤ 1.

a. Draw the extensive-form game tree of this game and write down the
corresponding matrix.

b. For δ = 1 find a pooling perfect Bayesian equilibrium of the game in
which both types of player 1 choose pL in period t = 1.

c. Find the range of discount factors for which a separating perfect
Bayesian equilibrium of the game exists in which type θL chooses
pL and type θH chooses pH in period t = 1.

16.4 School Choice: A prospective student, player 1, is deciding whether to go
to Brown Bear University (B) or Silly Tree University (S). Both are top-
rated universities that accept only the very best students. The difference is
that Silly Tree offers a more holistic and comfortable lifestyle, while Brown
Bear requires harder work and imposes more “studying” costs on its students.
For this reason a player who goes to Brown Bear learns to become more self-
sufficient and becomes more productive in the workforce. The cost of learning
and level of final productivity depend on the type of player 1, who can be either
excellent (E) or just really good (G) (because no other type would be accepted
into these universities). Player 1 knows his type, but all others in society know
only that a proportion p of young adults are type E. The cost of learning and
the level of productivity from each choice are given as follows:

Type University choice Learning cost Productivity

E B 2 12

E S 0 4

G B 8 10

G S 2 2

Once player 1 finishes school, he is hired by a firm (player 2), which can place
him in one of two jobs: low-tech (L) or high-tech (H ). The wage for the L

job is wL = 2 and that for the H job is wH = 6. The payoffs to player 1 are
the wages less the cost of education. The firm’s profits depend on both the job
assignment and the type of employee. If the employee is assigned to an H job,
the net profits to the firm are equal to the productivity of the employed player
1 less the wage he is paid. If the assignment is to an L job, the net profits are
half the productivity of the employed player 1 less the wage he is paid.

a. Draw this game in extensive form.
b. Assume that p = 1

2 . Represent the matrix form of the Bayesian game.
c. Find all the pure-strategy Bayesian Nash equilibria.
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d. Find all the pure-strategy perfect Bayesian equilibria.
e. In brief terms, what is the intuition that explains the comparison

between your results in (d) and (c)?

16.5 Drug Ads: A pharmaceutical company (player 1) introduces a new cold
medicine. The medicine may either be highly effective (H ) or have little
effect (L). The company knows the effectiveness of the drug, but a repre-
sentative consumer (player 2) knows only that the prior probability that it is
highly effective is 1

2 . The company can choose either to advertise the drug
excessively (A), at a cost c > 0, or not to advertise (N ), which costs noth-
ing. The representative consumer decides whether or not to buy the product
after observing whether the company advertised the drug. The net payoff to
the representative consumer from buying the drug is 1 if it is highly effec-
tive and −1 if it has little effect, and his payoff from not buying the drug is
0. If the drug is highly effective then if consumers buy the drug once they
will learn of its efficacy and buy it many more times, in which case the com-
pany earns a high payoff equal to R > c. If instead consumers learn that the
drug has little effect then the company will sell the drug to them only once,
and the company’s returns are equal to r > 0. If the representative consumer
does not buy the drug then the revenue of the company is 0. Assume that
R > c > r > 0.

a. Write down the extensive-form game tree.
b. Find a separating perfect Bayesian Nash equilibrium in which the

company chooses a different action depending on the drug’s efficacy.
c. Find a pooling perfect Bayesian Nash equilibrium in which the com-

pany chooses the same action regardless of the drug’s efficacy.
d. What changes when R > r > c > 0?

16.6 Publish or Perish:6 Imagine that any newly minted Ph.D. who starts a tenure-
track assistant professor job (player 1) is one of two types: high-ability (θH )
or low-ability (θL), where θH > θL > 0. The assistant professor knows his
type, but the department that hires him (player 2) knows only that he has high
ability with probability p < 1

2 . The assistant professor first chooses how hard
to work, which is effectively how many papers to publish in period 1 (the
pre-tenure period). After observing how many papers the assistant professor
published, the department decides whether to grant him tenure (T ) or not
to do so (N ). If the department chooses to grant tenure then the assistant
professor’s payoff is v1(q, T | θ) = V − q

θ
, where V is the value of being

tenured. The department’s payoff is 1 if it tenures a high-ability type and −1 if
it tenures a low-ability type. If the department denies tenure, it gets a payoff of
0 and the assistant professor’s payoff is v1(q, N | θ) = − q

θ
. Denote by μ(q)

the department’s belief that the professor is a high-ability type given that he
published q papers.

a. Write down a “rough” extensive form of this game.
b. If there is a pooling perfect Bayesian equilibrium, will the assistant

professor be tenured? Does he write any papers? What then is the
unique outcome of the pooling perfect Bayesian equilibrium?

6. This exercise is based on one written by Rod Garrett and John Wooders.
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c. Characterize the perfect Bayesian separating equilibria using the pa-
rameters of the game.

d. If there is more than one separating perfect Bayesian equilibrium, what
is the smallest number of papers that an assistant professor needs to
publish in order to get tenure?

16.7 Intuitive Limit Pricing: Show that of all the separating equilibria of the
limit pricing–entry deterrence game in Section 16.2 only the best separating
equilibrium does not fail the intuitive criterion.

16.8 Beer or Quiche? Cho and Kreps (1987) introduced what is now a famous two-
player signaling game. First, Nature selects player 1, who knows his type, to
be either a wimp (W ), with probability p = 0.1, or surly (S), with probability
1 − p = 0.9. Player 1 then chooses what to have for breakfast: beer (B) or
quiche (Q). A surly type prefers beer while a wimp prefers quiche. Player
1’s preferred breakfast gives him a payoff of 1 while his less-preferred choice
gives him 0. After breakfast player 2 observes what player 1 ate but does not
know whether he is a wimp or surly. Player 2 then chooses whether to duel
(D) with player 1 or not to duel (N ). Player 1, regardless of his type, prefers
no duel, yielding him an extra payoff of 2, to a duel, which gives him 0. (For
example, if player 1 eats his preferred breakfast and avoids a duel then his
final payoff is 3, while if he eats his preferred breakfast and is forced into a
duel then his final payoff is 1.) Player 2, however, prefers to duel if and only
if player 1 is a wimp. If player 1 is surly then player 2’s payoff is 0 from D

and 1 from N . If player 1 is a wimp then player 2’s payoff is 2 from D and 1
from N .

a. Draw the extensive form of this game.
b. What are the Bayesian Nash equilibria of this game?
c. What are the perfect Bayesian equilibria?
d. Of the equilibria you found in (c), which fail the intuitive criterion?



17
Building a Reputation

It is common to hear descriptions of some ruthless businesspeople as having “a
reputation for driving a tough bargain” or “a reputation for being greedy.” Others

are referred to as having “a reputation for being trustworthy” or “a reputation for
being nice.” What does it really mean to have a reputation for being a certain type
of person? Would people put in the effort to build a reputation for being someone
they really are not? Some of the most interesting applications of dynamic games of
incomplete information are in modeling and understanding how reputational concerns
affect people’s behavior.1

This chapter provides some of the central insights of the game theoretic literature
that deals with incentives of players to build or maintain reputations for being someone
they are not, in the sense of being nice, tough, or any other adjective that comes to
mind and can enhance their reputations in the eyes of others. The insights described
below have spawned a large literature, and the curious (and more technically inclined)
reader is encouraged to consult Mailath and Samuelson (2006).

17.1 Cooperation in a Finitely Repeated Prisoner’s Dilemma

The main idea that drives most game theoretic models of reputation building was first
developed by Kreps, Milgrom, Roberts, and Wilson (1982) in a seminal paper that
became known as the “gang of four” paper. In it they considered a finitely repeated
Prisoner’s Dilemma game for which backward induction implies that there is a unique
subgame-perfect equilibrium in which the players always defect (Chapters 9 and 10).
However, it is somewhat counterintuitive that players will play this way—is there no
chance that if the game is finite but sufficiently long then by cooperating today they
can sustain some quid-pro-quo cooperative behavior?

As the gang of four demonstrated, if there is even just a little bit of incomplete
information about the players’ types then for a long enough horizon of T periods
there can actually be quite a lot of cooperation. To understand the idea behind their
arguments, consider the following version of the Prisoner’s Dilemma:

1. In full disclosure I must admit that I am biased toward this area of game theory. My Ph.D. thesis
and the paper that got me my first academic job explored reputation as a tradable asset. The curious
reader is referred to Tadelis (1999).

339
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Player 2
c d

Player 1
C 1, 1 −1, 2

D 2, −1 0, 0

Imagine that player 2 has standard “strategic” Prisoner’s Dilemma payoffs given by
the matrix, so that for him the dominant strategy is to defect (D). Player 1, however, is
one of two types: he is either a strategic type or a grim-trigger type. The grim-trigger
type uses the following simple strategy: In the first period he always cooperates (C);
in every period t > 1 thereafter he continues to cooperate as long as player 2 has
cooperated (c). If in any period t player 2 defects then from period t + 1 onward the
grim-trigger type will defect (D). Let p > 0 be the probability that Nature chooses
player 1 to be the grim-trigger type.

If this game is played only once then the outcome is obvious: both player 2 and
the strategic player 1 will choose to defect as it is their dominant strategy. If the game
is played for two periods, however, things become a bit more subtle. We have the
following:

Claim 17.1 If the game is played for two periods then there is a unique perfect
Bayesian equilibrium. In period t = 2 player 2 and the strategic type of player 1
choose to defect. In period t = 1 the strategic type of player 1 chooses to defect while
player 2 chooses to cooperate if and only if p > 1

2 .

Proof It’s clear that in period t = 2 both player 2 and the strategic player 1 will
choose to defect regardless of what happened in period t = 1 and of player 2’s beliefs
about player 1’s type. In period t = 1 the strategic type of player 1 will choose d

because regardless of what he plays in period t = 1 he expects player 2 to play D in
period t = 2. We are left to show that player 2 chooses to cooperate in period t = 1
if and only if p > 1

2 . The grim-trigger type of player 1 will cooperate in period
t = 1, and in period t = 2 he will cooperate if and only if player 2 cooperated in
period t = 1. As a consequence player 2’s payoff from cooperating is

v1(c) =
t=1︷ ︸︸ ︷

p(1) + (1 − p)(−1) +
t=2︷︸︸︷
p(2) = 4p − 1,

while his payoff from defecting is

v1(d) =
t=1︷ ︸︸ ︷

p(2) + (1 − p)(0) +
t=2︷︸︸︷
p(0) = 2p.

It follows that player 2’s best response is to play c in period t = 1 if and only if p > 1
2 .

Claim 17.1 shows that when there is a high enough chance that player 1 is a grim-
trigger type then player 2 will choose to cooperate in the first period. The reason is
simply that if he defects, he guarantees himself a payoff of 0 in the second period,
while if he cooperates, he may get a payoff of 2 from defecting. He is, however, taking
a risk that he plays against a strategic type. Hence if that risk is not too high and if
the expected reward is high enough then he will cooperate. Notice, however, that this
has nothing to do with reputation—the strategic type of player 1 always plays defect



17.1 Cooperation in a Finitely Repeated Prisoner’s Dilemma . 341

and hence reveals himself immediately after the first period. With longer horizons,
however, things change quite dramatically, as the next claim shows.

Claim 17.2 If the game is played for three periods and if p > 1
2 then in the unique

perfect Bayesian equilibrium both player 2 and the strategic type of player 1 choose
to cooperate in period t = 1.

Proof We begin by considering how the game will proceed after period t = 1.
Observe that if player 2 defects in the first period then both players will defect
thereafter. Now imagine that player 2 cooperates in period t = 1and let μ(GT ) denote
player 2’s belief in period t = 2 that player 1 is a grim-trigger type. From claim 17.1
we know how the perfect Bayesian equilibrium will proceed in the last two periods,
so that player 2 will choose c in period t = 2 if μ(GT ) > 1

2 and d otherwise. We now
will see if the perfect Bayesian equilibrium can support both player 2 and the strategic
type of player 1 cooperating in period t = 1.

Now imagine that the strategic type of player 1 believes that player 2 will choose
c in period t = 1. If the strategic type chooses C then he pools with the grim-trigger
type, implying by Bayes’ rule that μ(GT ) = p > 1

2 , and his payoff from choosing C is
v2(C) = 1+ 2 + 0 = 3. (He will gain 1 in period t = 1from cooperating, and because
μ(GT ) > 1

2 then from claim 17.1 player 2 will choose c and the strategic type of player
1 will choose D in period t = 2, followed by (d, D) in period t = 3.) If the strategic
type chooses d then he separates from the grim-trigger type, implying by Bayes’ rule
that μ(GT ) = 0, and his payoff from choosing D is v2(D) = 2 + 0 + 0. (Because he
reveals himself to be a strategic type then μ(GT ) = 0 and the play continues with
both players choosing to defect in the following two periods.) This implies that a
strategic type of player 1 should pool with the grim-trigger type and cooperate in the
first period so as not to reveal his true type.

Turning to player 2, if he believes that both types of player 1 cooperate in t = 1
then his payoff from choosing c is v1(c) = 1 + p(1 + 2) + (1 − p)(−1) = 4p while
his payoff from choosing d is v1(d) = 2 + 0 + 0. Because p > 1

2 this implies that
player 2 should also cooperate in period t = 1. The reason this is the unique perfect
Bayesian equilibrium is that even if player 2 believes that the strategic type of
player 1 is playing D then he should still choose c because in this case v1(c) =
p(1+ 1+ 2) + (1− p)(−1) = 5p − 1while v1(d) = p(2) + (1− p)(0) = 2p, which
is less than v1(c) if p > 1

3.

Claim 17.2 demonstrates that with three periods a strategic type of player 1 has
incentives to behave as if he is a grim-trigger type, thus “building a reputation” for
cooperation. Of course, for this to be the unique perfect Bayesian equilibrium we had
to assume that p > 1

2 . It turns out, however, that the gang of four proved a much more
striking result: if the game is repeated for long enough then the players will cooperate
in almost all periods. More formally, we have the following:

Proposition 17.1 Consider a T -period repeated Prisoner’s Dilemma game in which
T is large. The number of periods in which either player 2 or the strategic player 1
defects is bounded above by a constant M < T that depends on p and not on T .

A formal proof is not provided, and the interested reader can refer to the original
paper by Kreps et al. (1982) or to Mailath and Samuelson (2006, Chapter 17). The
intuition follows from the fact that if the strategic type of player 1 chooses D in some
period t < T then it becomes common knowledge that that player 1 is strategic, and
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backward induction implies that both players will defect until the end of the game.
For this reason the strategic player 1 has an incentive to mimic the grim-trigger type
and maintain a reputation for not being strategic. These reputational incentives only
diminish as the game gets close to T . Anticipating these incentives, it is in the best
interest of player 2 to cooperate as well. What makes the gang of four result remarkable
is that it does not require specific assumptions on p. Even for very small values of
p, for a large enough T cooperation will be sustained for all but a finite number of
periods.

Remark The foregoing analysis relied on player 1 possibly being a grim-trigger type.
One can think of many other types for player 1 that follow all kinds of conditional
or unconditional strategies, in which case the equilibria will be different. Fudenberg
and Maskin (1986) showed that if all conceivable types are possible for both players
then a folk theorem result is obtained: any conceivable path of play is possible in
equilibrium.

17.2 Driving a Tough Bargain

Most bargaining games take on a simple form in which the more one player gets,
the less the other player gets, and the players need to reach some form of agreement
in order to share the surplus. In Chapter 11 we analyzed models of alternating-offer
bargaining in which one party makes offers to another, and the other player must
accept the offer for gains to be split. We start with a simple example of a one-stage
ultimatum game.

Consider a firm owner (player 1) who is in financial trouble and must renegotiate
a debt agreement with his lender (player 2) in order to continue operating. Player 1
can offer player 2 one of two options: a modest default on debt (M) in which player
1 pays player 2 a large portion of the debt he owes, or a high default on debt (H) in
which player 1 pays player 2 a small portion of the debt he owes. Player 2 can choose
to accept (A) or reject (R) player 1’s offer. If player 2 rejects, the firm will go bankrupt
and the legal fees will leave both players with a payoff of 0. If player 2 accepts then
the debt is renegotiated successfully, and the payoffs to the two players are shown in
the extensive-form game depicted in Figure 17.1.

A pure strategy for player 1 is an offer s1 ∈ {H, M}, and that for player 2 is
a planned response to each of player 1’s offers, s2 ∈ {AA, AR, RH, RR}, where
s2 = xy means that player 2 will choose x following an offer of H and y following an
offer of M . It is easy to see that this game has a unique subgame-perfect equilibrium:
(H, AA). You should easily be able to convince yourself that this game has Nash
equilibria that are not subgame-perfect equilibria, for example (H, AR), which yields

H M

0
0

1

2 2

1
2

0
0

2
1

A R A R

FIGURE 17.1 A perfect-information ultimatum game.
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FIGURE 17.2 An incomplete-information ultimatum game.

the same outcome as (H, AA) but in which player 2 is not playing a best response if
M was offered. The more interesting Nash equilibrium is (M, RA), in which player
2 gets his preferred outcomes, but this is supported by the sequentially irrational
threat of rejecting a high default offer and receiving a payoff of 0 instead of 1. One
can interpret this equilibrium as the one in which player 2 “drives a hard bargain,”
but because we believe that sequential rationality is an important feature of rational
behavior, this outcome seems less likely.

Now consider a variation of this game to include some incomplete information
about the type of player 2. In particular imagine that player 2 can be normal (θ2 = N )
with payoffs as already described, or he can be a jerk (θ2 = J ), who prefers both
players to get nothing over getting the inferior outcome. Imagine further that Nature
first chooses the type of player 2, who is a jerk with probability p, and assume that
the payoff to the jerk of accepting an offer of H is −1 instead of 1, whereas all other
payoffs are the same as in Figure 17.1. Player 1 does not know the type of player 2,
but he does know that player 2 is a jerk with probability p. This game of incomplete
information is described in Figure 17.2.

We can proceed to find the perfect Bayesian equilibrium of this game in one of
two ways. First, we can write down the matrix representation of this game, find the
Bayesian Nash equilibria, and then see which of these can be supported as a perfect
Bayesian equilibrium. For this we would need to write down a 2 × 16 matrix, which
is not too difficult; but in this case it is much simpler to use backward induction.

Consider player 2 at each of the four nodes (information sets) that follow an offer
from player 1. In any perfect Bayesian equilibrium, player 2 must be playing a best
response to his beliefs in every information set. Thus for each node player 2 must
play a best response at that node, which immediately implies that a normal player 2
will accept any offer, while a jerk will accept M and reject H . Given this behavior
of player 2, and the fact that the uninformed player 1 plays after Nature makes its
choices, the beliefs of player 1 are uniquely determined by Nature’s choice, so he
must believe that Pr{θ2 = J } = p. This implies that player 1 will strictly prefer to
offer H if and only if the following inequality holds:

p × 0 + (1 − p) × 2︸ ︷︷ ︸
Offer H

> p × 1 + (1 − p) × 1︸ ︷︷ ︸
Offer M

or

p < 1
2 ,
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FIGURE 17.3 Two-period bargaining with incomplete information.

and he will prefer to offer M otherwise. The intuition is simple—if there is a good
chance that player 2 is normal (p < 1

2 ) then player 1 is better offering H and risking
rejection than offering M and obtaining acceptance for sure.

Now we take our incomplete-information ultimatum game a step further and allow
for the possibility of reputation building by introducing the following sequence of
events. Player 1 makes an offer and player 2 responds as already described. If player
1’s initial offer is accepted then the game ends as before. If the initial offer is rejected
by player 2 then the decision is passed on to a bankruptcy judge, and player 1 can
appeal for another chance to renegotiate the debt. The judge will always grant such a
request, but this process causes delay. When player 1 is granted permission to make
a second offer then the game proceeds as in Figure 17.2 with the same payoffs. The
delay will result in discounted payoffs, with a discount factor of δ < 1. The extensive
form of this game is depicted in Figure 17.3.

Let μ(s1), s1 ∈ {H, M}, denote player 1’s belief in each of his information sets
that follow rejection. That is, μ(H) ∈ [0, 1] is player 1’s belief that player 2 is a jerk
conditional on player 2’s rejection of an offer H , and μ(M) ∈ [0, 1] is his belief that
player 2 is a jerk conditional on player 2’s rejection of an offer M .

If we attempt to turn this into a normal-form matrix game this will result in an
8 × 4096 matrix! (Player 1 has 3 information sets and player 2 has 12 information
sets with two actions each, so 23 = 8 and 212 = 4096 pure strategies.) However, by
using backward induction over all the information sets that are singletons we can
drastically simplify the relevant pure strategies that can be part of any perfect Bayesian
equilibrium. In the second stage a normal player 2 will accept any offer, and a jerk
will accept M and reject H . Taking into account this best response of player 2 at the
final stage after a second offer the game reduces to the one depicted in Figure 17.4,
which we call game 2.
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FIGURE 17.4 Game 2.

The reduced game 2 will still be a bit large to write down as a matrix because it
implies 8 rows and 16 columns, but it seems that we cannot proceed with backward
induction owing to the information sets of player 1 after a rejection in the first round
of bargaining. However, a more careful observation of game 2 suggests that we can
perform another step of backward induction. To do this consider the nodes in the
first round at which player 2 has to move after he is offered M . If he accepts then
he receives a payoff of 2, while if he rejects then the game moves into the next stage
of bargaining. Note, however, that in the next stage the most player 2 can receive is
2δ < 2. Sequential rationality therefore implies that player 2 must accept an offer of
M in the first stage, which allows us to reduce the game further because in any perfect
Bayesian equilibrium player 2 must accept M in the first round regardless of his type.
The further-reduced game appears in Figure 17.5, which we call game 3.

Game 3 is very manageable because it can be represented in its normal form by a
4 × 4 matrix. To do this we define strategies for both players in this reduced form of
the initial game as follows: Let s1

1s
2
1 ∈ {HH, HM, MH, MM} be a pure strategy for

player 1, where st
1 is what player 1 offers in bargaining stage t ∈ {1, 2}. Similarly let

sJ
2 sN

2 ∈ {AA, AR, RA, RR} be a pure strategy for player 2, where sθ
2 is what player 2

chooses in the first stage when offered H when his type is θ ∈ {J, N}.
To complete the matrix with real numbers, however, we need to specify values

for δ and p. Consider the case in which the future matters a lot, with δ = 0.9, and
in which the likelihood of being a jerk is small, p = 0.1. In this case, for example,
the pair of expected payoffs from player 1 choosing HM and player 2 choosing AR

will be

(v1, v2) = p(2, −1) + (1 − p)(δ, 2δ) = (1.01, 1.52).

Similarly we can compute the other combinations of strategies to obtain the following
matrix:
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Player 2
AA AR RA RR

HH 2, 0.8 1.82, 0.71 1.8, 0.9 1.62, 0.81

Player 1
HM 2, 0.8 1.01, 1.52 1.89, 1.08 0.9, 1.8

MH 1, 2 1, 2 1, 2 1, 2

MM 1, 2 1, 2 1, 2 1, 2

Any Nash equilibrium of this matrix will correspond to a Bayesian Nash equi-
librium of the reduced Bayesian game, game 3. Furthermore any perfect Bayesian
equilibrium of game 3 together with the sequentially rational best-response strategies
of player 2 that we have already found will be part of a perfect Bayesian equilib-
rium in the original game. It is easy to see that for player 1 MH and MM are both
strictly dominated by HH . The intuition is simple: For player 1, the strategy HH

will replicate the one-stage game in which he commits to offer H and then player 2
has to respond with no chance of getting M . The worst that can happen for player 1
with this strategy is that both types reject the initial offer, but at the second stage the
normal player 2 will accept. Because the likelihood of being a jerk is small, and there
is little discounting, this yields a better payoff than offering M for sure (1.62 versus
1). If some type of player 2 accepts the initial offer, then things are even better for
player 1.2

Once we eliminate MH and MM , it is easy to see that for player 2 the strategies
AA and AR are strictly dominated by RR. To give intuition, it is actually easier to
consider the following set of dominance relations: AA is dominated by RA because

2. Notice that if discounting were more severe, or if the probability of being a jerk were significantly
higher, then HH would not necessarily dominate.
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given that H is offered in the first stage, the jerk should reject rather than accept.
Similarly AR is dominated by RR. Thus we are left with the following simple 2 × 2
matrix:

Player 2
RA RR

Player 1
HH 1.8, 0.9 1.62, 0.81

HM 1.89, 1.08 0.9, 1.8

for which it is easy to see that there are no pure-strategy Nash equilibria.
As Nash’s existence theorem shows (Section 6.4), any finite game must have a

Nash equilibrium. To find it we need to find a mixed strategy σ1(HH) ∈ (0, 1) of
choosing HH by player 1 that will make player 2 indifferent between RA and RR,
and a mixed strategy σ2(RA) ∈ (0, 1) of choosing RA by player 2 that will make
player 1 indifferent between HH and HM . To find σ1(HH) we solve

Player 2’s payoff from choosing RA︷ ︸︸ ︷
σ1(HH)0.9 + (1 − σ1(HH))1.08 =

Player 2’s payoff from choosing RR︷ ︸︸ ︷
σ1(HH)0.81 + (1 − σ1(HH))1.8,

which yields σ1(HH) = 8
9 . Similarly to find σ2(RA), we solve

Player 1’s payoff from choosing HH︷ ︸︸ ︷
σ2(RA)1.8 + (1 − σ2(RA))1.62 =

Player 1’s payoff from choosing HM︷ ︸︸ ︷
σ2(RA)1.89 + (1 − σ2(RA))0.9

which yields σ2(RA) = 8
9 as well.

Because this is the unique Bayesian Nash equilibrium of the reduced game 3,
and because all information sets are reached with positive probability, we know that
these mixed strategies are also part of a perfect Bayesian equilibrium with the induced
beliefs using Bayes’ rule. Hence the unique perfect Bayesian equilibrium in game 3
is as follows:

Player 1: Play HH with probability 8
9 and HM with probability 1

9 .

Player 2: Play RA with probability 8
9 and RR with probability 1

9 .

Beliefs: μ(H) = 0.1
0.1+0.9 1

9
= 0.5.3

We now look back to the original game and incorporate all that we have analyzed
into a perfect Bayesian equilibrium. The following pair of strategies together with the
induced beliefs forms a perfect Bayesian equilibrium of the original game:

Player 1:

In the first stage play H .
After rejection following an H offer, play H with probability 8

9 and M with
probability 1

9 .
After rejection following an M offer, play H with probability 1.

3. This follows because the information set of rejection is reached for sure if player 2 is a jerk, hence
the 0.1, and is reached with probability 1

9 if player 2 is normal, hence the 0.9 1
9 . The rest follows

from Bayes’ rule.
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Player 2:

Type J: following H play R and following M play A in any stage.
Type N: In the first stage following M play A, and following H play R

with probability 1
9 and A with probability 8

9 . In the second stage play A

following any offer.

Beliefs: μ(H) = 0.5and μ(M) = μ∗, where μ∗ ∈ [
0, 1

2

]
is the off-the-equilibrium-

path belief.

It is important to notice that the combination of backward induction and the
analysis of the reduced game leaves undetermined what player 1 will do in the
information set that occurs after the rejection of an M offer in the first stage. However,
as we noticed earlier, nothing that player 1 does in this information set will affect the
behavior of player 2 when M is offered, so all we have to do is assign some belief to
player 1 in that information set and have him play a best response to that belief. We
suggested that he play H in that information set, which implies that he must believe
that Pr{θ2 = J |M rejected} < 1

2 , which imposes the restriction on μ∗. Alternatively
we could suggest that he play M in that information set, which implies that he must
believe that Pr{θ2 = J |M rejected} > 1

2 , and therefore we would have had to impose
the opposite restriction.

The interpretation of this type of equilibrium, which is called a semi-separating
equilibrium, is also interesting. One type, in this case the jerk, is playing a pure
strategy by accepting M and rejecting H , while the normal type always accepts M and
sometimes but not always accepts H . Player 1 will therefore sometimes learn player
2’s type, which happens when player 2 accepts H in the first period, and sometimes
only partially learn his type after a rejection of M . By the fact that the normal type
is rejecting H only with some probability, after a rejection of H player 1’s posterior
that player 2 is a jerk goes up. Hence the term “semi-separating”—the normal type
sometimes separates and sometimes does not.

To understand further the intuition that causes the semi-separating equilibrium to
be the unique perfect Bayesian equilibrium it is useful to understand why other forms
of behavior cannot be an equilibrium. We consider three natural cases and highlight
what problem each poses as an equilibrium candidate:

Case 1: Pooling on accept. In this case following an offer H by player 1, both
types of player 2 pool and choose to accept. This cannot be an equilibrium
because accepting H is a dominated strategy for the jerk. He gets 0 instead
of −1 and can guarantee himself at least 0 in the second period, giving an
expected payoff of at least 0 by rejecting.

Case 2: Pooling on reject. In this case following an offer H by player 1, both types
of player 2 pool and choose to reject. If this were part of an equilibrium then in
the second stage player 1 could not update his prior on the type of player 2 and
would continue to believe that Pr{θ2 = J } = 0.1, in which case he would offer
H again. However, if this is the continuation that a normal player 2 faces, he
is better off accepting the H offer in the first period than in the second because
of discounting. Thus this case cannot be an equilibrium.

Case 3: Separating. In this case following an offer H by player 1, a normal player
2 accepts the offer while a jerk does not. If this were part of an equilibrium,
then in the second stage player 1 would update his prior on the type of player
2 and believe that Pr{θ2 = J } = 1, in which case he would offer M . However,
if this is the continuation in which a normal player 2 believes, he is better off
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rejecting the H offer in the first period and getting M in the second because
the discounting is not too severe. Thus this case cannot be an equilibrium.

Now that we understand the problems of pooling or complete separation, it is easier
to understand the intuition behind the mixed-strategy equilibrium that we found. In
this equilibrium the normal type of player 2 sometimes acts like a jerk, which causes
player 1 to update his beliefs about the type of player 2 in a way that makes him
believe that player 2 is a jerk with a higher probability. For this to work, player 1’s
updated beliefs must be set high enough to just make him indifferent in the second
stage between offering H and M . Being indifferent, player 1 will then mix between
offering H and M in such a way that makes the normal type of player 2 indifferent
between rejecting and accepting H in the first stage. We can interpret this as player
2 sometimes building a reputation of being a jerk, and in this way gaining a chance
of getting M in the second period.

17.3 A Reputation for Being “Nice”

Consider a variant of the Centipede Game that we analyzed in Section 8.3.1, as shown
in Figure 17.6. Each player, starting with player 1, has 49 decision nodes of whether
to continue or stop. We denote each of the 98 nodes by xn, where n is the number of
potential moves left in the game, so that x1 is the last decision node, x2 is the second-
to-last, and so on until x98, which is the root of the game. If the players continue
until the end of the game then each gets a payoff of 50. However, backward induction
implies that player 2 will stop (s) at the last node x1. Anticipating this player 1 will
stop (S) at node x2, and this logic causes the game to unravel and end immediately
with player 1 choosing S at node x98.

Of course this prediction may seem preposterous. Can’t the players see that they
can make so much more by continuing the game? This critique is similar to the critique
of players not ever cooperating in a long but finitely repeated Prisoner’s Dilemma.
It turns out, maybe not surprisingly by now, that the same logic illustrated by the
argument of Kreps et al. (1982) will also help us explain how players can continue
playing the Centipede Game.

Consider a variant of the game in Figure 17.6 in which player 2 exhibits the same
payoffs but player 1 can be one of two types. With probability 0.99 player 1 is a selfish
type with payoffs as in Figure 17.6, while with probability 0.01 he is a nice type who
prefers not to cause the game to stop. To make things simple assume that if this type
of player 1 continues then he gets an extra payoff of 2 from not stopping the game.
This Centipede Game of incomplete information is depicted in Figure 17.7.

As in the perfect-information game in Figure 17.6 we index the nodes of each
player along the path in which player 1 is a selfish type by x98, x97, and so on until x1.
Similarly we index the nodes of each player along the path in which player 1 is a nice

S s

C c C c C c

S s S s

1
x98 x97 x96 x95 x2 x1

(1, 1) (0, 3) (2, 2) (1, 4)

(50, 50)

2 1 21 2

(49, 49) (48, 51)

FIGURE 17.6 A Centipede Game.
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FIGURE 17.7 An incomplete-information Centipede Game.

type by y98, y97, and so on until y1. In this game of incomplete information player 2
has 49 information sets, I1 = {x1, y1}, I3 = {x3, y3}, and so on until I97 = {x97, y97}.
Let μ(yn) denote the belief of player 2 that he is at node yn conditional on being in
information set In.

We know that a nice player 1 will always choose to continue. We will now establish
a series of claims that will characterize the properties of the unique perfect Bayesian
equilibrium of the incomplete-information Centipede Game depicted in Figure 17.7.

Claim 17.3 In any perfect Bayesian equilibrium, if player 2 will choose to continue
with probability 1 at information set In then player 1 will choose to continue with
probability 1 at node xn+1. Similarly if player 2 will choose to stop with probability 1
in information set In then a selfish player 1 will choose to stop with probability 1 at
node xn+1.

Proof If player 2 chooses c with probability 1 at some information set In then a selfish
player 1’s best response at node xn is to choose C with probability 1 because instead of
getting the stop payoff at node n + 1 he can continue and let player 2 continue further
to node n − 1, at which point the selfish player 1 can stop and get a strictly higher
payoff. Clearly if player 2 chooses s with probability 1 at some information set In

then a selfish player 1’s best response at node xn+1 is to choose S with probability 1.

Claim 17.3 simply says that if in equilibrium player 2 has a pure strategy in any of
his information sets then the selfish player 1 will have one at the node that precedes
this information set. In particular if player 2 wishes to continue for sure at some
information set then player 1 will continue for sure at the nodes that precede that
information set.

Claim 17.4 In any perfect Bayesian equilibrium, if player 2 will choose to continue
with probability 1 at information set In then both players will choose to continue with
probability 1 from the beginning of the game at least until information set In. As a
consequence, μ(yn) = 0.01.
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Proof This follows directly from claim 17.3. If player 2 will continue for sure at
information set In then both types of player 1 will continue at nodes xn+1 and yn+1.
But then player 2 at information set In+2 will guarantee himself to reach information
set In by continuing at In+2, and if continuing from In is an equilibrium best response
then his payoff must be higher than that from stopping at information set In. But from
claim 17.1 this implies that player 1 will choose to continue with probability 1 at
node xn+3, and this inductive argument continues until node x98. That μ(yn) = 0.01
follows from the fact that both the selfish and nice types of player 1 will continue until
information In, which implies that player 2 cannot update his original prior (both types
of player 1 pool).

Claim 17.4 establishes an interesting finding which states that if there is some
stage at which player 2 chooses to continue with probability 1 then the game must
reach that stage for sure. The next result establishes that player 2 will never choose
to stop the game prematurely.

Claim 17.5 In any perfect Bayesian equilibrium player 2 will choose to continue with
positive probability in all his information sets but his last one In, in which he will stop.

Proof Suppose instead that player 2 chooses s with probability 1 at some information
set In, n > 1. A selfish player 1’s best response is to choose S with probability 1 at node
xn+1. If this is part of the equilibrium then Bayes’ rule implies that μ(yn) = 1because
only a nice player 1 would continue in information set In+1. But then player 2’s best
response in information set In is to choose c with probability 1, a contradiction.

Claim 17.5 implies that in any perfect Bayesian equilibrium each of player 2’s
49 information sets is reached with positive probability because the nice player 1
plays C at each of his decision nodes and from claim 17.5 player 2 must play c with
positive probability in all but his last information set. This conclusion is convenient
because if all the information sets are reached with positive probability in any perfect
Bayesian equilibrium then the beliefs are determined by Bayes’ rule everywhere
(recall requirement 15.2 in Section 15.2).

Claim 17.6 In any perfect Bayesian equilibrium the selfish player 1 continues with
positive probability at all nodes but his last node x2.

Proof Suppose instead that the selfish player 1 chooses S with probability 1 at
some node xn, n > 2. If this is part of the equilibrium then Bayes’ rule implies
that μ(yn−1) = 1 because only a nice player 1 would continue in information set In.
This implies that player 2’s best response in information set In−1 is to choose c with
probability 1. But from claim 17.3 the best response of a selfish player 1 is to choose
C with probability 1 at xn, a contradiction.

Claim 17.6 highlights the crux of incomplete-information reputation models. If the
private-information player reveals his selfish preferences at any point, then behavior
that is not consistent with this immediately implies that player 1 is nice. This will
encourage player 2 to continue down the game until the very end, which in turn gives
player 1 incentives to continue himself and cheat player 2 at a later stage. However,
this is something that equilibrium behavior precludes because by definition no player
can be fooled in equilibrium.

We can now proceed to actually find the unique perfect Bayesian equilibrium of the
game. Let σ1(xn) denote the probability that a selfish player 1 chooses to stop at node
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xn, and let σ2(In) denote the probability that player 2 chooses to stop at information
set In.

We know that player 2 chooses s in I1 and hence, from claim 17.1, the selfish
player 1 chooses S at node x2. From claim 17.5 we know that in equilibrium player
2 mixes between s and c at I3, implying that he must be indifferent between these
choices, or equivalently,

50 = μ(y3)(51) + (1 − μ(y3))49,

which implies that in equilibrium

μ(y3) = 1
2 . (17.1)

Let v2(s|In) denote player 2’s expected payoff from stopping in information set In,
n > 3. From claim 17.5 player 2 must be indifferent between stopping and receiving
v2(s|In) and continuing and receiving a random outcome as follows. With probability
μ(yn) player 1 is nice and the game will proceed to In−2, where player 2 receives a
payoff of v2(s|In) + 1. With probability 1 − μ(yn) player 1 is selfish and chooses to
stop with probability σ1(xn−1), giving player 2 a payoff of v2(s|In) − 1, while player 1
continues with probability 1− σ1(xn−1), giving player 2 a payoff of v2(s|In) + 1. This
implies that

v2(s|In) = μ(yn)(v2(s|In) + 1)

+ (1 − μ(yn))[σ1(xn−1)(v2(s|In) − 1) + (1 − σ1(xn−1))(v2(s|In) + 1)],

which simplifies to

σ1(xn−1)(1 − μ(yn)) = 1
2 . (17.2)

Now observe that if player 2 chooses to continue then he moves from information
set In to information set In−2 in one of two ways: either player 1 is nice and he
continues for sure, or he is selfish and he continues with probability (1 − σ1(xn−1)).
Hence Bayes’ rule implies that

μ(yn−2) = μ(yn)

μ(yn) + (1 − μ(yn))(1 − σ1(xn−1))
(17.3)

= μ(yn)

1 − σ1(xn−1)(1 − μ(yn))
.

Notice that the left side of (17.2) appears in the denominator of (17.3), so substituting
(17.2) into (17.3), we can rewrite (17.3) as

μ(yn) = μ(yn−2)

2
. (17.4)

We can now use (17.1) together with an iterative application of (17.4) to obtain
the following sequence of equilibrium beliefs for player 2 in each of his information
sets In (n being odd):

μ(y3) = 1
2 , μ(y5) = 1

4 , μ(y7) = 1
8 , . . . , μ(yn) =

(
1
2

) n−1
2

, . . . (17.5)
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However, recall that μ(yn) is bounded below by 0.01, which is the prior probability
that player 1 is nice. This implies that the equilibrium sequence can go only up to
information set I13, in which μ(y13) = (0.5)6 = 0.015625 because μ(y15) = (0.5)7 <

0.01, which is impossible given the prior probability. This observation together with
claims 17.2–17.4 implies the following result:

Corollary 17.1 The incomplete-information Centipede Game depicted in Figure 17.7
has a unique perfect Bayesian equilibrium in which player 2 continues in all his
information sets In, n > 13, and the selfish player 1 continues at all nodes xn, n > 14.
At all but their last information sets both players mix between stop and continue, and
at their last information set both players stop.

To complete the full characterization of the perfect Bayesian equilibrium we must
compute the values of σ1(xn) and σ2(In), the probabilities that the selfish player 1 and
player 2 choose to stop in their later information sets. Rearranging (17.2) implies that
for any even n we have

σ1(xn) = 1

2(1 − μ(yn+1))
,

which together with the sequence defined in (17.5) allows us to obtain

σ1(xn) = 1

2
(

1 − ( 1
2

) n
2
) for all n ≤ 12 even. (17.6)

To compute σ2(In−1) we use the fact that player 2’s mixed strategy must cause player
1 to be indifferent between continuing and stopping. Letting v1(S|xn) denote the
expected payoff of a selfish player 1 from stopping at xn, we have

v1(S|xn) = σ2(In−1)(v1(S|xn) − 1) + (1 − σ2(xn−1))(v1(S|xn) + 1),

which reduces to

σ2(In−1) = 1
2 for all n ≤ 14 even. (17.7)

This analysis highlights another interesting aspect of reputation games that we saw
toward the end of Section 17.2. As corollary 17.1 indicates, backward induction shows
that as we move back at least 13 decision nodes from the end of the game, the two
players stop playing a mixed strategy and instead continue for sure. An implication
of this is that if this game was much shorter, like the game in Section 8.3.1 that had 4
decision nodes, 2 for each player, then the unique perfect Bayesian equilibrium would
be a semi-separating equilibrium as follows: players 1 and 2 would stop in their last
information sets x2 and I2; from (17.6) we know that a selfish player 1 would start the
game by stopping with probability σ1(x4) = 2

3 ; and from (17.7) player 2 will choose
σ2(I3) = 1

2 . In many reputation games that are not “long enough,” the perfect Bayesian
equilibrium will involve semi-separating behavior.

Remark This last observation has another side to it. Recall proposition 17.1, which
states that the “number of periods in which either player 2 or the strategic player 1
defects is bounded above by a constant M < T that depends on p and not on T .” We
can see that this is exactly what happens in the incomplete-information Centipede
Game as well. In the example just considered, the probability of player 1 being a nice
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type is p = 0.01, which implies that there will be no more than 13 decision stages in
which the players choose to stop with positive probability, and only one decision stage
for each player in which they choose to stop for sure. Hence if the Centipede Game is
of length T > 13 stages then for all stages T − 13 the two players will continue with
probability 1.

17.4 Summary

. Games of incomplete information can shed light on incentives for rational
strategic players to behave in ways that help them build a reputation for having
certain behavioral characteristics.

. In equilibrium models players are, by definition, never fooled. However, if
there is incomplete information then players will have rational uncertainty
about whether players they face are set in their ways.

. This rational uncertainty is what gives strategic players an incentive to imitate
behavioral “types” and act in ways that are not short-run best-response actions,
but that in turn give rise to long-run benefits, thus providing reputational
incentives.

. The incomplete information and the resulting reputational incentives cause
finitely repeated games and other finite dynamic games not to unravel to the
often grim backward-induction outcome, but instead to result in high-payoff
behavior that can persist on very long time horizons.

. These game theoretic models help us understand concepts such as apparently
“crazy” behavior that in turn results in long-run benefits for the player acting
in this way.

17.5 Exercises

17.1 Tit-for-Tat Reputation: Consider the following Prisoner’s Dilemma:

Player 2
c d

Player 1
C 1, 1 −1, 2

D 2, −1 0, 0

Player 2 has payoffs given by the matrix while player 1 has one of two types:
he is either a strategic type or a tit-for-tat (TFT) type. The TFT type uses the
following strategy: in the first period he always cooperates; in every period
t > 1 thereafter he plays what his opponent played in period t − 1. Let p = 1

4
be the probability that Nature chooses player 1 to be the TFT type. Assume
that the players do not discount future payoffs.

a. What is the perfect Bayesian equilibrium if the game is played twice?
b. If the game is played three times, is there an equilibrium in which the

strategic type of player 1 defects in the first period?
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c. What is the perfect Bayesian equilibrium if the game is played three
times?

17.2 Building Trust: A graduating senior (player 1) has an idea for two start-up
ventures, a small one and a large one. He can trust (T ) his ideas with his
roommate (player 2), who is the only one who can implement these ideas, or
he can not trust (N ) player 2, forget his dreams, and get a boring job, resulting
in the status quo payoffs of (0, 0) for players 1 and 2, respectively. There
are two types of player 2: an honest type that always honors trust (H) and a
normal type that can choose to honor trust (H) or abuse trust (A). It is common
knowledge that a quarter of the people in the world are honest, but only player
2 knows whether he is honest or not.

The sequence of play is as follows: First, player 1 can choose T or N

with respect to sharing his small idea. A choice of N (no trust) ends the game
and the payoffs are (0, 0). Following T player 2 can honor the trust, resulting
in payoffs of (1, 1), or abuse the trust and expropriate the idea, resulting in
payoffs of (−1, 2). (Recall that an honest player 2 cannot abuse trust.) If trust
was offered in the first stage then first-stage payoffs are determined (i.e., the
outcome is known to both players), and player 1 can then choose whether or
not to trust player 2 with his big idea. (If trust was not offered in the first stage
then the game ended.) No trust in the second stage will result in no payoffs in
addition to those obtained in the first stage. Following trust in the second stage,
if player 2 honors trust then the additional payoffs will be (7, 7), while if he
abuses trust and expropriates the idea the additional payoffs will be (−5, 11).
There is no discounting between these stages.

a. Draw the whole game tree and write down the pure strategies of each
player for the whole game. How many pure strategies does each player
have?

b. Using sequential rationality argue that following an abuse of trust in
the first stage, there will be no trust in the second stage, effectively
ending the game. Write down the reduced game tree that is implied
by this argument, and the resulting pure strategies for each of the two
players. From now on focus on the reduced game you derived, in which
the game ends after an abuse in the first stage.

c. Can there be a pooling perfect Bayesian equilibrium in which the
normal type in the first period honors trust for sure?

d. Can there be a separating perfect Bayesian equilibrium in which the
normal type in the first period abuses trust for sure?

e. Find the perfect Bayesian equilibrium of this game. Is there a unique
one?

17.3 Reputational Incentives: A seller (player 1) and buyer (player 2) can engage
in trade for two periods. The seller is good with probability 0.5. A good seller
produces a high-quality product with probability π and a low-quality product
with probability 1− π . The seller is strategic with probability 0.5. A strategic
seller chooses effort, e ∈ [0, 1], at a personal cost of c(e) = e2 and produces
a high-quality product with probability eπ and a low-quality product with
probability 1 − eπ . The buyer’s payoff from a high-quality product is 1 and
that from a low-quality product is 0. The game proceeds as follows: in each
period t the seller makes an ultimatum price offer pt to the buyer for his
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product. The buyer either accepts or rejects the offer. If he rejects the offer
then they move to the second period. If he accepts the offer then a strategic
seller chooses et ≥ 0 and delivers the product. Neither the seller’s type nor
his choice of et (if he is strategic) is known to the buyer. After the product is
delivered the buyer learns its quality.

a. If this game had only one period, what would be the effort level e and
the price p in the unique perfect Bayesian equilibrium?

b. Imagine the game is repeated for two periods. Is there a perfect
Bayesian equilibrium in which strategic sellers exert the level of effort
e that you found in (a) in each period?

c. Find the unique perfect Bayesian equilibrium of the two-period game.
Why is there a difference in the effort levels in each period?



18
Information Transmission

and Cheap Talk

Chapter 16 showed that in some situations it will be to the benefit of players to
reveal their types to their opponents. In the classic signaling example of Spence

(1973), a high-productivity worker wishes to convey the information “I am high
productivity and hence you should hire me for a high-paying job.” As we argued, if the
only means of communication available is cheap talk, then even a low-productivity
worker will try to convince his opponent that he is a high-productivity type, so merely
stating “I am high productivity” will not do. We concluded that if there is a credible and
costly signal—in the case of the worker the signal was education—then it can act as
a credible way for the player to signal his type and cause his opponent to believe him.

However, a credible and costly signal may not be available in every situation
in which some types may benefit from revealing their information. This chapter
describes the way in which game theoretic reasoning has been applied to situations in
which one player can use costless communication to try to convey hidden information
to an interested party. As in signaling games, in these cheap-talk or information-
transmission games player 1 has private information and the payoffs exhibit common
values, so that both players’ payoffs depend on player 1’s private information. Unlike
in signaling games, however, player 1’s action is a message that has no direct effect
on payoffs.

Given the nature of cheap-talk games, player 1 is often referred to as the sender
and player 2 as the receiver, and these games will typically proceed in the following
four steps:

1. Nature selects a type of player 1 θ ∈ � from some common-knowledge dis-
tribution p.

2. Player 1 learns θ and chooses some message (action) a1 ∈ A1.

3. Player 2 observes message a1 and chooses action a2 ∈ A2.

4. Payoffs v1(a2, θ) and v2(a2, θ) are realized.

As we will now see, the inherent conflict of interest between the players will put
limits on how much information the informed player can credibly communicate to
the uninformed player in equilibrium.

357
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18.1 Information Transmission: A Finite Example

This section illustrates a simple example of a cheap-talk game in which player 1 has
a finite type space. A good friend of mine recently decided to accept a job in San
Francisco and was contemplating where to live. He wants to trade off living close to
me (we’re really good friends) with having an easy commute. If traffic is generally
bad he would like to live very close to work, that is, somewhere in San Francisco.
If traffic is generally good then he would not mind commuting, and would like to
live in Palo Alto, right next to me. If traffic is neither bad nor good, he would prefer
living in between Palo Alto and San Francisco; the worse the traffic, the closer to San
Francisco he would like to live. Naturally I care more about him living close to me
than he does, and so I care less about how bad a commute he has. My friend relies on
my intimate knowledge of commuting conditions so that he can make an informed
choice.

To formalize the game we can think of me as player 1, who is the sender of
information, and my friend as player 2, who is the receiver of information, and we
can imagine that expected traffic conditions are given by θ ∈ {1, 3, 5}, where 1 is
bad, 3 is mediocre, and 5 is good. Player 1 knows the true value of θ , but player 2
knows only the prior distribution of θ . Player 1 transmits a message (his action) to
player 2 about the traffic conditions. Player 2 then chooses an action (where to live)
a2 ∈ A2 = {1, 2, 3, 4, 5}, where 1 is San Francisco, 5 is Palo Alto, and 2, 3, and 4 are
towns in between the two cities in that order.

The preferences of player 2 are described by the following payoff function:1

v2(a2, θ) = 5 − (θ − a2)
2.

Notice that player 2 has a clear best response: given any level of traffic, he wants to
choose his residence location equal to the traffic level. That is, his optimal choice is
a∗(θ) = θ . To capture the fact that player 1is biased toward having player 2 live closer
to location 5, the preferences of player 1 are given by the following payoff function:

v1(a2, θ) = 5 − (θ + b − a2)
2,

where b > 0 is the bias of player 1.
This is a dynamic game of incomplete information: player 1’s type, or the state

of the world θ , is known only to player 1, while player 2 knows only the distribution
of θ . Player 1’s type affects both his payoff and the payoff of player 2, making this a
common-values game. Player 1’s action set includes messages that he can transmit to
player 2, and player 2’s action set includes choosing where to live. To further fix ideas,
imagine that player 1is restricted to sending only one of three messages corresponding
to one of these states of nature: a1 ∈ A1 = {1, 3, 5}.2 For concreteness imagine that

1. The payoffs of both players are never positive in this model. However, because payoffs are a
simple way to represent preferences, this really does not matter. What matters is the payoff ranking
of actions.
2. It suffices if player 1 has at least as many messages as there are states of the world. If there are
less, then the message space will not be rich enough to describe all the possible states, while if it is
large enough then without loss we can consider only a number of messages that equals the number
of states.
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FIGURE 18.1 The commuting conditions information-transmission game.

b = 1.1 and the prior is such that each of the three states of the world occurs with
probability 1

3. The game is described in Figure 18.1.3

In a perfect Bayesian equilibrium player 1 will send (possibly) type-dependent
messages to player 2, who in turn will form a posterior belief over the states of the
world, given his belief about player 1’s strategy, and then choose where to live. A
mixed strategy for player 1 is a mapping σ1 : � → A1, so that for any state θ ∈ �

he chooses a probability distribution over his potential messages. A mixed strategy
for player 2 is a mapping σ2 : A1 → �A2, so that for each announcement of player 1
player 2 chooses a probability distribution over A2.

It is easy to see that for any value of traffic conditions, player 1 prefers player 2 to
choose a higher action a than player 2 himself would want to choose, that is, a location
closer to 5. For example, if θ = 3, then player 2’s best choice is a = 3, whereas player
1’s best choice is a = 4, and he even prefers a = 5 over a = 3.4 This should alert you,
and player 2, to a problem. If player 2 wants player 1 to share his expert opinion about
traffic in the Bay area, can he rely on player 1 to reveal the truth, or will player 1 offer
biased advice? In particular how much information can be credibly communicated in
a perfect Bayesian equilibrium? It is useful to start with an easy observation:

Claim 18.1 There is no perfect Bayesian equilibrium in which player 1 reports the
true state of the world.

Proof Assume in negation that player 1 truthfully reporting a1 = θ is part of a perfect
Bayesian equilibrium. It therefore must follow that when player 1 sends the message

3. The payoffs shown are rounded to the first decimal place. Furthermore not all the payoffs are
shown, but because player 1’s message does not influence the payoffs, the payoffs written down are
just replicated for the other nodes in which θ and a2 are the same.
4. We have v1(3, 3) = 5 − (3 + 1.1− 3)2 = 3.79, whereas v1(4, 3) = 5 − (3 + 1.1− 4)2 = 4.99 and
v1(5, 3) = 5 − (3 + 1.1 − 5)2 = 4.19.
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a1 ∈ {1, 3, 5} player 2 chooses a2 = a1. We saw that when θ = 3 player 1prefers a2 = 5
over a2 = 3. But if player 1 believes that player 2 will follow his advice then when
θ = 3 player 1’s best response is a1 = 5, a contradiction.

The intuition behind this result is simple, and easily generalizes to all such
information-transmission games in which there is a bias between the sender and
receiver with respect to the receiver’s optimal choice. If it is indeed the case that the
sender is reporting information truthfully, then it is in the receiver’s best interest to
take the sender’s information at face value. But then if the receiver is acting in this way
the sender has an incentive to lie.5 The next observation is also quite straightforward:

Claim 18.2 There exists a babbling equilibrium in which player 1’s message reveals
no information and player 2 chooses an action to maximize his expected utility given
his prior belief.

Proof To construct the babbling (perfect Bayesian) equilibrium let player 1’s strat-
egy be to send a message a1 ∈ {1, 3, 5} with equal probability of 1

3 each regardless
of θ . This means that the message is completely uninformative: player 2 knows that
regardless of the message, Pr{θ} = 1

3 for all θ ∈ {1, 3, 5}. This implies that player 2
maximizes his expected payoff,

max
a2∈{1,2,3,4,5} Ev2(a2, θ) = 5 − 1

3(−(1 − a2)
2) + 1

3(−(3 − a2)
2) + 1

3(−(5 − a2)
2),

which is maximized when a2 = 3.6 Because each of player 2’s information sets is
reached with positive probability, player 2’s beliefs are well defined by Bayes’ rule
everywhere, and player 1 cannot change these beliefs by changing his strategy.7 Hence
player 1 is indifferent between each of the three messages and is therefore playing a
best response.

Claims 18.1 and 18.2 paint a rather disappointing picture for our simple game. Not
only will truthful messages never be part of an equilibrium (claim 18.1), but there is
an equilibrium in which player 1’s valuable private information will have no effect
on player 2’s choice. The remaining question is whether there are other equilibria in
which there is some valuable information transmitted from the sender to the receiver.

Notice that the reason truth-telling is not an equilibrium is because were it to be an
equilibrium, player 1 could always achieve his most preferred outcome by misleading
player 2 into choosing a “higher” action. The reason for this is precisely because player
1 is biased toward higher actions compared to player 2. This suggests that if we can

5. In the case of a finite number of states, for this argument to be true it must be the case that the bias
is large enough. If we set b = 0.1 then it is easy to check that truth-telling will be part of a perfect
Bayesian equilibrium. In the next section we will analyze the continuous type case in which any
bias, no matter how small, will prevent truth-telling in equilibrium.
6. Because this is a discrete-choice problem we can’t use a first-order condition and simply have to
solve the expected payoff function for each of the five values of a2.
7. There are many other ways to support an uninformative babbling equilibrium. For instance, player
1’s strategy can be to choose the message a1 = 5 for any θ . Player 2’s on-the-equilibrium-path belief
will be that Pr{θ |a1 = 5} = 1

3 for all θ ∈ {1, 3, 5}. But now we need to add off-the-equilibrium-path
beliefs for messages a1 ∈ {1, 3}. It is easy to satisfy player 1’s equilibrium incentive constraint by
having player 2 believe that Pr{θ = 1|a1 = 5} = 1, so that if player 1 deviates from a1 = 5, player 2
will choose a1 = 1, which is always worse than a2 = 3.
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construct an equilibrium in which some valuable information is transmitted, then we
need to remove some of the temptation that player 1 has to announce higher numbers.
This can be done if we somehow put an upper bound on how high a number player 2
will choose, as the following claim shows:

Claim 18.3 There is a perfect Bayesian equilibrium in which player 1 partially
reports the true state of the world. In particular player 1 truthfully reveals state θ = 1
but pools information in states θ = 3 and θ = 5.

Proof To construct the equilibrium let player 1’s strategy be to send a message a1 = 1
when θ = 1 and a1 ∈ {3, 5} with equal probability of 1

2 each if θ ∈ {3, 5}. This implies
that player 2’s posterior belief is Pr{θ = 1|a1 = 1} = 1 while Pr{θ = 3|a1} = Pr{θ =
5|a1} = 0.5 for a1 ∈ {3, 5}. As a consequence, if a1 = 1 then player 2 will choose
a2 = 1, while if a1 ∈ {3, 5} then player 2 maximizes his expected payoff,

max
a2∈{1,2,3,4,5} Ev2(a2, θ) = 5 − 1

2 (−(3 − a2)
2) + 1

2 (−(5 − a2)
2),

which is maximized when a2 = 4. To see that player 1’s strategy is a best response it
is easy to confirm that if θ ∈ {3, 5} then player 1 prefers a2 = 4 over a2 = 1, implying
that he is indifferent between selecting a1 = 3 and a1 = 5 and strictly prefers either
over a1 = 1. If θ = 1 then player 1 prefers a2 = 1 over a2 = 4 so he strictly prefers
a1 = 1 over his other possible actions.

The equilibrium constructed in the proof of claim 18.3 supports partially truth-
ful information transmission because of the way in which information is revealed
by player 1 to player 2. We know from player 1’s bias that he would always pre-
fer that player 2 choose a somewhat higher action than player 2 would like, except
for when player 2 wishes to choose the highest possible action. At the same time, for a
low enough state, player 1 may prefer player 2’s optimal action over much higher ac-
tions. For this reason, if we want player 1 to truthfully reveal the state θ = 1, in which
player 2 will choose a2 = 1, it must be the case that if player 1 lies and announces a
higher state then player 2’s action will be significantly higher. That is, there must be a
large enough “gap” between the actions of player 2 in equilibrium. This satisfies the
equilibrium incentive constraint, requiring that when θ = 1, player 1 strictly prefers
to announce a2 = 1. The way in which this is done is by pooling player 1’s higher
information types so that when any other message except a1 = 1 is sent, player 2 will
believe that the state of the world is either θ = 3 or θ = 5, in which case he prefers to
choose a2 = 4.

This simple finite-information transmission game is useful in illustrating the three
main insights of cheap-talk equilibria: a fully truthful equilibrium never exists, a
babbling equilibrium always exists, and if player 1’s bias is not too large then some
information can be truthfully revealed in equilibrium. The reason that player 1’s bias
must not be too large is that if it is it will not be possible to create a large enough gap
in player 2’s choices. You are left to show that this is the case in exercise 18.1. We
now turn to a slightly more general and commonly used version of this game.

18.2 Information Transmission: The Continuous Case

This section presents the more elegant and extremely well-known model of cheap-
talk games introduced by Crawford and Sobel (1982), whose insights are highlighted
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FIGURE 18.2 Payoffs in the cheap-talk game.

here. The model they proposed is more general, but the special-case version presented
in this section has been widely applied in economics and political science.

The game is basically the same as the one described in the previous section, with
the exception of θ ∈ � = [0, 1] and the assumption that the state of the world θ is
uniformly distributed on [0, 1]. Let player 2’s action set include all real numbers,
a2 ∈ R. Player 1’s action set can be any arbitrary set of messages A1, but it will
be convenient to let A1 = [0, 1] so that the message space conforms with the state
space �. Player 2’s payoff is v2(a2, θ) = −(a2 − θ)2, while player 1’s payoff is
v1(a2, θ) = −(a2 + b − θ)2, which implies that for any given value of θ ∈ [0, 1],
player 2’s optimal choice is a2 = θ , while player 1’s is a2 = θ + b. The payoff
functions of the two players are depicted in Figure 18.2.

As in the finite example, both players would prefer a higher action to be taken
when the state θ is higher, but player 1 has a constant bias, making him prefer even
higher actions than player 2. This immediately implies that claim 18.1 generalizes to
the continuous setting because of the same reasoning: If player 2 believes that player 1
is reporting θ truthfully, then player 2’s best response is to choose a2 = θ . But if this
is player 2’s strategy then player 1 will report a1 = θ + b for any b = 0. Hence there
can never be a fully truthful equilibrium. Not surprisingly a babbling equilibrium still
exists:

Claim 18.4 There exists a babbling perfect Bayesian equilibrium in which player
1’s message reveals no information and player 2 chooses an action to maximize his
expected utility given his prior belief.

Proof We construct the equilibrium in a similar way to the finite case. Let player
1’s strategy be to send a message a1 = aB

1 ∈ [0, 1] regardless of θ . This means that
the message is completely uninformative and player 2 believes that θ is distributed
uniformly on [0, 1]. This implies that, conditional on receiving the message aB

1 ,
player 2 maximizes his expected payoff,

max
a2∈R

Ev2(a2, θ) =
∫ 1

0
−(θ − a2)

2dθ = − 1
3 + 2a2 − a2

2,

which is maximized when a2 = 1
2 . Let player 2’s off-equilibrium-path beliefs be

Pr{θ = 1
2 |a1 = aB

1 } = 1so that his off-the-equilibrium-path best response to any other
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message is a2 = 1
2 as well. It is easy to see that player 1 is indifferent between any of

his messages and hence choosing a1 = aB
1 is a best response.

We see that the continuous-space cheap-talk model has the same two extreme re-
sults demonstrated for the discrete-space game: there is no truthful equilibrium and
there is always a babbling equilibrium. The question then is, how much information
can the sender, player 1, credibly transmit to the receiver, player 2? We begin by
constructing a perfect Bayesian equilibrium in which player 1 uses one of two mes-
sages, a′

1 and a′′
1 , and player 2 chooses a different action following each message,

a2(a
′
1) < a2(a

′′
1).8

Claim 18.5 In a two-message equilibrium player 1 must use a threshold strategy as
follows: if 0 ≤ θ ≤ θ∗ he chooses a′

1, whereas if θ∗ ≤ θ ≤ 1 he chooses a′′
1 .

Proof For any θ player 1’s payoffs from a′
1 and a′′

1 are as follows:

v1(a2(a
′
1), θ) = −(a2(a

′
1) + b − θ)2

v1(a2(a
′′
1), θ) = −(a2(a

′′
1) + b − θ)2,

which implies that the extra gain from choosing a′′
1 over a′

1 is equal to

�v1(θ) = −(a2(a
′′
1) + b − θ)2 + (a2(a

′
1) + b − θ)2.

The derivative of �v1(θ) is equal to 2(a2(a
′′
1) − a2(a

′
1)) > 0 because a2(a

′
1) <

a2(a
′′
1). This implies that if type θ prefers to send message a′′

1 over a′
1 then every

type θ ′ > θ will also prefer a′′
1 . Similarly if type θ prefers to send message a′

1 over
a′′

1 then so will every type θ ′ < θ . This in turn implies that if two messages are sent
in equilibrium then there must be some threshold type θ∗ as defined in claim 18.5.
It follows that when θ = θ∗ player 1 must be indifferent between sending the two
messages.

Now that we know what restrictions apply to player 1’s strategy in a two-
message equilibrium, we can continue to characterize the strategy of player 2 in a
two-message perfect Bayesian equilibrium as follows:

Claim 18.6 In any two-message perfect Bayesian equilibrium in which player 1 is
using a threshold θ∗ strategy as described in claim 18.5, player 2’s equilibrium best
response is a2(a

′
1) = θ∗

2 and a2(a
′′
1) = 1−θ∗

2 .

Proof This follows from player 2’s posterior belief and from him playing a best
response. In equilibrium player 2’s posterior following a message a′

1 is that θ is
uniformly distributed on the interval [0, θ∗], and his posterior following a message a′′

1
is that θ is uniformly distributed on the interval [θ∗, 1]. Player 2 plays a best response
if and only if he sets a2(a1) = E[θ |a1], which proves the result.

8. Two things are worth noting. First, it does not matter which message is larger because the messages
have no inherent meaning. Second, there may be many more messages than just a′

1 and a′′
1 , especially

if the message space is continuous. There are two ways to proceed. First, we can take the message
space A1 and partition it into a′

1 ⊂ A1 and a′′
1 = A1\a′

1 so that there are no off-equilibrium-path beliefs.
Second, we can define off-equilibrium-path beliefs that will support a′

1 and a′′
1 as the two equilibrium

messages. Later in this section we will take the latter approach.
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Using claims 18.5 and 18.6 we can now characterize the two-message perfect
Bayesian equilibrium as follows:

Claim 18.7 A two-message perfect Bayesian equilibrium exists if and only if b < 1
4 .

Proof From claim 18.5 we know that when θ = θ∗ player 1 must be indifferent
between his two messages so that

v1(a2(a
′
1), θ∗) = v1(a2(a

′′
1), θ∗),

which from claim 18.6 and from the fact that θ∗
2 < θ∗ < 1−θ∗

2 is equivalent to

θ∗ + b − θ∗

2
= −

(
θ∗ + b − 1 − θ∗

2

)
. (18.1)

The solution to (18.1) is θ∗ = 1
4 − b, which can result in a positive value of θ∗ only

if b < 1
4 . To complete the specification of off-the-equilibrium-path beliefs, let player

2’s beliefs be Pr{θ = θ∗
2 |a1 ∈ {a′

1, a′′
1}} = 1, so that he chooses a2 = θ∗

2 , which causes
player 1 to be indifferent between sending the message a′

1 and any other message
a1 ∈ {a′

1, a′′
1}, implying that his threshold strategy is a best response.

It is interesting to observe the similarities between the equilibrium constructed
for the finite model in claim 18.3 of Section 18.1 and the two-message equilibrium
constructed in claim 18.7. First, note that the bias cannot be too big. If it is, then we
cannot find a threshold type θ∗ for which player 1 would not wish to deviate from
message a′

1 to message a′′
1 . Second, note that player 2 has more information when

message a′
1 is sent than when message a′′

1 is sent, which is similar to the fact that in
the discrete game player 2 knew in equilibrium when θ = 1 but could not distinguish
between θ = 3 and θ = 5. To see that player 2 has more information when a′

1 is sent
in the continuous game, from claim 18.7 we know that θ∗ = 1

4 − b < 1
4 , so that the

interval [0, θ∗] is significantly shorter than the interval [θ∗, 1]. This implies that in
equilibrium player 2 has much less uncertainty about the value of θ when the message
a′

1 is sent.
The steps we used to find the condition b < 1

4 under which a two-message equilib-
rium exists can be used to find more informative equilibria. For example, to construct
a three-message equilibrium we first divide the interval [0, 1] into three segments with
a message for each: a′

1 for [0, θ ′], a′′
1 for [θ ′, θ ′′], and a′′′

1 for [θ ′′, 1]. Player 2’s best

response must be a2(a
′
1) = θ ′

2 , a2(a
′′
1) = θ ′′+θ ′

2 , and a2(a
′′′
1 ) = 1+θ ′′

2 . Finally player 1
must be indifferent between a′

1 and a′′
1 when θ = θ ′, and indifferent between a′′

1 and
a′′′

1 when θ = θ ′′. This last condition yields two equations with two unknowns that
will determine the equilibrium thresholds θ ′ and θ ′′.

You are left to solve this equilibrium in exercise 18.3 and show that it exists if and
only if b < 1

12 . This should not be too surprising because the bias is what hampers
player 1’s ability to transmit more credible information in equilibrium. As the bias
drops, we can construct finer and finer partitions of the interval [0, 1] so that there is
more meaningful communication between the sender and the receiver. In particular
define b2 = 1

4 and b3 = 1
12 . We have shown that if b > b2 we have only a babbling

equilibrium, if b < b2 then we can construct a two-message equilibrium, and if b < b3
then we can construct a three-message equilibrium. It turns out that the smaller the bias
b, the more information can be transmitted in a perfect Bayesian equilibrium. Indeed
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there exist a series b2 > b3 > b4 > . . . > bM such that if b < bM then an equilibrium
with M partitions exists.

Two further conclusions are worth noting. First, no matter how small the bias is,
as long as b > 0 there is no fully truthful equilibrium, which is what we demonstrated
in claim 18.1. In any equilibrium there must be some loss of information that de-
pends on the magnitude of the bias b. Second, if b < bM then there are M different
perfect Bayesian equilibria, starting with the babbling equilibrium up until the “most
informative” equilibrium with M partitions.9

18.3 Application: Information and Legislative Organization

An interesting application of cheap-talk games was proposed by Gilligan and Krehbiel
(1987), who develop a model that sheds light on the role of parliamentary committees
and on the rules that govern the relative power of committees. The central idea of their
theory is that policy makers are not informed about how different policies may affect
outcomes. Committees are therefore formed to act as experts to transmit potentially
useful information to the general body of the parliament, which then must make policy
decisions.

The two players in this setting are a committee, player 1, which is required to
advise the policy makers, player 2, who in turn set policy. Player 1 has private
information about the state of the world, which can take on two values, θ ∈ {−w, w},
where w > 0, while player 2’s prior knowledge is only that each state is equally likely.
Player 2 must choose a policy from the real numbers, a2 ∈ R. Player 2’s preferences
are given by v2(a2, θ) = −(θ − a2)

2, which implies that player 2’s optimal policy is
a2 = θ . Player 1’s preferences are given by v1(a2, θ) = −(θ + b − a2)

2, with b > 0,
implying that its optimal policy is a2 = θ + b. The sequence of events is as follows:
first, player 1 sends a message to player 2, after which a policy decision is made.

As a benchmark, consider what player 2 would do if it had no further information
beyond its prior. In this case it would maximize its expected payoff, equal to

max
a2∈R

Ev2(a2, θ) = − 1
2 (w − a2)

2 − 1
2 (−w − a2)

2 = −a2
2 − w2,

which is maximized when a2 = 0. We refer to the policy choice of a2 = 0 as the status
quo policy because it would be selected in lieu of any information transmitted from
the committee to the floor. The expected payoff of player 2 from the status quo is
v

SQ

2 = −w2, and the expected payoff of player 1 (before learning the state of the
world) is v

SQ

1 = −b2 − w2.
The question posed by Gilligan and Krehbiel (1987) is whether different parlia-

mentary rules can support more or less information sharing in equilibrium and make
both players better off. Imagine that the parliament is considering one of two institu-
tional rules: open rule, in which the floor may choose any policy it wants after the
committee sends its message, or closed rule, in which the committee makes a policy
recommendation and the floor must choose between it and the status quo policy a2 = 0.

9. Note that the kind of refinements we discussed in Chapter 16 will not help refine the set of equilibria
because there is no scope for “forward induction” types of arguments. This is a consequence of the
sender’s messages being cheap talk.
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We begin the analysis with the open-rule institution because it is basically identical
in structure to the cheap-talk games we analyzed in Sections 18.1 and 18.2. The
question is, what are the conditions under which player 1 will truthfully reveal the
state of the world, or put differently, when will there be a fully separating perfect
Bayesian equilibrium? From the analysis of Sections 18.1 and 18.2 we know that a
babbling equilibrium always exists in which player 1 reveals no information. This can
be implemented (similar to claim 18.2) with the strategy in which player 1 chooses
each of its possible messages with equal probability regardless of the value of θ ,
causing player 2 to choose the status quo regardless of player 1’s message.

Now consider the possibility of a truthful separating equilibrium in which player
1 sends one message, a′

1 when θ = −w and a′′
1 when θ = w. In such an equilibrium

it must be the case that player 2 will choose a2 = θ because it fully learns the state
of the world by the nature of a separating equilibrium. This results in the following
characterization:

Claim 18.8 In an open-rule institution a fully truthful (separating) equilibrium in
which a2 = θ exists if and only if b ≤ w.

Proof Imagine that player 1 does fully reveal θ so that player 2 chooses a2 = θ .
Player 1’s expected utility in a truthful equilibrium is therefore vT

1 = −b2. Because
player 1 is biased toward higher policies, the deviation we are concerned with is
whether, when θ = −w, player 1 will send the message a′′

1 instead of a′
1. In this case,

instead of vT
1 = −b2 player 1 will receive a deviation payoff of vD

1 = −(−w + b −
w)2. Hence player 1 will prefer not to deviate if and only if

−(−2w + b)2 ≤ −b2,

which reduces to b ≤ w. If this condition is satisfied then the following is a perfect
Bayesian equilibrium: player 1 sends messages a′

1 if θ = −w and a′′
1 if θ = w; player

2’s beliefs are Pr{θ = w|a1 = a′′
1} = 1 and Pr{θ = w|a1 = a′′

1} = 0; player 2’s policy
choices are a2(a

′
1) = −w and a2(a

′′
1) = w.

Claim 18.8 reveals that the limits of the open-rule institution are that the com-
mittee’s bias cannot be too large, because if b > w then the only perfect Bayesian
equilibrium is the babbling equilibrium, which implements the status quo.

We now turn to the analysis of the closed-rule institution. With a closed rule in
place the committee will offer a policy, after which the floor will choose between
the committee’s recommendation and the status quo. Now consider a separating
equilibrium in which player 1’s proposed policy will be voted up or down and in
which player 2 fully learns the state of the world θ . We know that player 1’s bias
will motivate it to offer a policy greater than that preferred by player 2. In particular
player 1 would like to implement a policy of a2 = θ + b. We also know that player 2
can guarantee itself a payoff of v

SQ

2 = −w2 by choosing the status quo policy a2 = 0.
This observation results in the following:

Claim 18.9 In a closed-rule institution a fully truthful (separating) equilibrium in
which a2 = θ + b exists if and only if b ≤ w.

Proof Imagine that player 1 proposes the policy a2 = θ + b. Player 2’s payoff from
accepting the proposal is v2(θ + b, θ) = −(θ − (θ + b))2 = −b2 ≥ −w2 because
b ≤ w. This implies that the status quo is no better for player 2, and it will accept
player 1’s proposed policy. Player 1’s payoff is the highest possible payoff it can
receive, v2 = 0.
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Claim 18.8 shows that when there is a separating truthful equilibrium under the
open-rule institution then there is also one under the the closed-rule institution. It
turns out that the closed-rule institution has more to offer.

Claim 18.10 In a closed-rule institution a fully truthful (separating) equilibrium in
which a2 = θ + w exists when b < 2w.

Proof Imagine that player 1 proposes the policy a2 = θ + w. Player 2’s payoff from
accepting player 1’s policy is v2(θ + w, θ) = −(θ − (θ + w))2 = −w2, implying that
it is as well off as from the status quo and it will indeed accept the policy. We now
need to check if player 1 will indeed propose these policies. Because player 1 is
biased toward higher policies, the deviation with which we are concerned is whether
when θ = −w, player 1 will recommend 2w instead of 0. Player 1’s payoff from
recommending 0 when θ = −w is v1(0, w) = −(−w + b)2. If instead player 1 will
deviate to proposal 2w then it receives a deviation payoff of vD

1 = −(−w + b − 2w)2.
Hence player 1 will prefer not to deviate if and only if

−(−w + b)2 ≥ −(−w + b − 2w)2,

which reduces to b ≤ 2w.

Claim 18.10 shows that the closed-rule institution can support a separating perfect
Bayesian equilibrium when the open rule cannot. The closed rule imposes fewer limits
on the committee’s bias for information to be revealed in equilibrium. Gilligan and
Krehbiel (1987) therefore make the argument that empowering committees by tying
the hands of the floor can result in more information transmission.

18.4 Summary

. Many situations are characterized by a decision maker who would like to know
information to which a potential adviser with incongruent preferences is privy.

. Information-transmission or cheap-talk games offer a framework to explore
these situations and consider how much information can be transferred from
the adviser (sender) to the decision maker (receiver).

. Because the preferences of the two parties are not fully aligned, it will not be
in the interest of the sender to reveal fully the private information that he has.

. If the sender’s information space is very large then even a small amount of
bias between his preferences and the receiver’s preferences will result in some
information not being revealed.

. Cheap-talk games have been successfully applied to shed light on institutional
and organizational design.

18.5 Exercises

18.1 Only Babbling: Consider the pair of strategies used to construct the equilib-
rium in claim 18.3 in Section 18.1.

a. Find a threshold bias b∗ such that if b > b∗ then the pair of strategies
used in claim 18.3 is no longer an equilibrium.
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b. Show that if b > b∗ then the only perfect Bayesian equilibrium is the
babbling equilibrium.

18.2 Stockbrokers: A stockbroker can give his client one of three recommenda-
tions regarding a certain stock: buy (B), hold (H), or sell (S). The stock can
be one of three kinds: a winner (W ), mediocre (M), or a loser (L). The stock-
broker knows the type of stock but the client knows only that each type is
equally likely. The game proceeds as follows: first, the stockbroker makes a
recommendation a1 ∈ {B, H, S} to the client, after which the client chooses an
action a2 ∈ {B, H, S} and payoffs are determined. The payoffs to the stock-
broker (player 1) and client (player 2) depend on the type of stock and the
action taken by the client (the pairs are (v1, v2), where vi is player i’s payoff )
as follows:

Player 2’s action a2
B H S

W (2, 2) (−1, −1) (−2, −2)

Type of stock θ M (0, 1) (1, 0) (0, −1)

L (−2, 0) (−1, 1) (2, 0)

a. Find a babbling perfect Bayesian equilibrium of this game.
b. Is there a fully truthful perfect Bayesian equilibrium in which the

stockbroker makes the recommendation that, if followed, maximizes
the client’s payoff?

c. What is the most informative perfect Bayesian equilibrium of this
game?

18.3 Three Messages: Consider the three-message equilibrium described in Sec-
tion 18.2. Find the threshold values θ ′ and θ ′′ and show that for this to be an
equilibrium it must be that b < 1

12 .

18.4 Committees: Consider the committee cheap-talk model of Section 18.3 and
consider the case of a closed rule under which the committee can propose only
w or −w to be considered against the status quo choice.

a. Describe a babbling equilibrium for this game.
b. For what values of b is a separating perfect Bayesian equilibrium

possible?



19
Mathematical Appendix

This appendix is intended to refresh your memory in case you have forgotten some
of the mathematical concepts that are used in this text. An attempt has been made

to keep it as self-contained as possible even for those who may not have studied some
of the mathematical tools used, but in those cases you may need to consult other texts
as well.

19.1 Sets and Sequences

19.1.1 Basic Definitions

A set is a well-defined collection of objects. A set can include any collection of
elements, such as numbers, cars, people, fruit, or even other sets. Two sets A and
B are equal if and only if they include the exact same elements. One way to describe
a set is by using a defining rule. For example, we can define C as the set of all countries
that belong to the United Nations. Or we can define a set P to include all the positive
integers. A second way to define a set is by providing an explicit list of its elements
(or members). To do this we use curly brackets to define the set. For example, the set
A of integers from 1 through 5 can be written as

A = {1, 2, 3, 4, 5},
or the set C of colors in the U.S. flag can be written as

C = {red, white, blue}.
If a set includes an infinite number of members, such as the set of natural numbers

(or all positive integers), commonly denoted by N, then we cannot list all of its
members. Two common ways of defining the set of natural numbers are

N = {n: n > 0 is an integer}
or

N = {1, 2, 3, . . .},
where the notation “:” means “such that,” and the notation “. . .” means “and so on
and so forth.”

369
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Every member of a set must be unique, and the order in which they are listed is
irrelevant.1 The notation x ∈ A is used to denote the fact “x is a member of the set
A,” while “y is not a member of A” is denoted by y ∈ A. We denote by ∅ the empty
set, which is a set that contains no elements.

A sequence is an ordered list of objects (or elements). Unlike with a set, the order
matters, and the same object can appear multiple times in different positions in the
sequence. The length of the sequence equals the number of ordered elements in the
sequence, which can be infinite.

The notation |A| is used to denote the cardinality of A, which loosely is the
number of elements in A. For example, if A = {2, 4, 6, 8} then |A| = 4. As already
noted, given that ∅ denotes the empty set, the unique set that includes no elements,
|∅| = 0. The set N of natural numbers has an infinite number of members, but some
sets have a higher cardinality, or a “higher” infinity. For example, the set of real
numbers R (any number that is positive, negative, or zero) has a greater cardinality
than the set N. In fact, the set A = [0, 1]of all real numbers between 0 and 1, including
0 and 1,2 has a continuum of elements (numbers) and, unlike N, its elements cannot
be counted. For this reason we say that the set N is countable while R, or for that
matter any interval, is uncountable.

If every member of set B is also a member of set A, then we say that B is a subset
of A, denoted by B ⊆ A. If B is a subset of A but A is not a subset of B, denoted
A ⊆ B, then we say that B is a proper subset of A. For example, because every
natural number is a real number, but the reverse is not true, then N is a proper subset
of R, which we denote by N ⊂ R.

19.1.2 Basic Set Operations

The union of two sets is the set that includes all the members that belong either to A or
to B. We denote the union of the sets A and B by A ∪ B. For example, if A = {1, 2}
and B = {x, y, z} then A ∪ B = {1, 2, 3, x, y, z}. The intersection of two sets is
the set that includes all the members that belong both to A and to B. We denote the
intersection of the sets A and B by A ∩ B. For example, if A = {1, 2} and B = {x, y, z}
then A ∩ B = ∅ while if C = {a, b, c, d} and D = {b, d, f, h} then C ∩ D = {b, d}.
The subtraction of one set from another is possible. The notation A\B (in some texts,
A − B) is the subtraction of B from A and is the set of all elements that are members
of A but are not members of B. For example, if A = {a, b, 6, 9} and B = {g, a, 12, 6}
then A\B = {b, 9}. Similarly if C = [0, 2] and D = [1, 3] then C\D = [0, 1).

The Cartesian product of two sets A and B, denoted by A × B, defines a new
set that includes all the ordered pairs (a, b) such that a ∈ A and b ∈ B. For example,
if A = {1, 2} and B = {5, 6} then A × B = {(1, 5), (1, 6), (2, 5), (2, 6)}. A common
use of this concept in this book is the following: if Si is the set of all possible strategies
of player i and there are n players then the Cartesian product of the strategy sets is
the set

S = S1 × S2 × . . . × Sn = {(s1, s2, . . . sn) : si ∈ Si for all i = 1, 2, . . . , n}.

1. This is in contrast to a sequence, for which the order of members is important.
2. The set of real numbers between 0 and 1 that does not include 0 or 1 is denoted using parentheses
and not square brackets, (0, 1). In a similar way [0, 1) is the set of real numbers between 0 and 1
including 0 but excluding 1.
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A partition of a set A is a set of non-empty subsets of A, P = {A1, A2, . . . An},
such that every element a ∈ A is in exactly one of these subsets, Ai ∈ P . Equivalently
a partition P of A satisfies three properties: (1) it does not contain the empty set;
(2) the union of the elements of P is equal to A, that is, ∪Ai∈PAi = A; and (3) the
intersection of any two distinct elements of P is empty, or Ai ∩ Aj = ∅ for any
Ai, Aj ∈ P such that Ai = Aj . For example, one partition of the set A = {a, b, c, d, e}
is P1 = {{a, b}, {c, d}, {e}} while another is P2 = {{a}, {b, c, d}, {e}}.

Sets are also useful to define the elements that are used to add up numbers. For
example, if N is the set of players and each player i ∈ N has xi dollars, then to denote
the amount of all the money in the hands of all the players, say x, we can write

x =
∑
i∈N

xi.

If the players are ordered as i ∈ {1, 2, . . . , n} then this is the same as writing x =
x1 + x2 + . . . + xn.

19.2 Functions

19.2.1 Basic Definitions

A function defines a relationship between a set of inputs and a set of potential outputs
with the property that each input is related to exactly one output (though one output
can be related to more than one input). There are several ways to represent a function.
Functions are often described using a formula that explains how to compute the output
for any given input. For example, the function x2 takes any number x and computes
its square. Note that for any input x ∈ R there is a unique output, but for the output 4
(or any positive output for that matter) then both x = 2 and x = −2 can be the input
that generated the output 4. Another common way to describe a function is using
ordered pairs. The square function generates the ordered pairs <−2, 4>, <2, 4>, and
infinitely many more such pairs. The combination of all ordered pairs that describe
a function forms the graph of the function, and each ordered pair is a point on the
graph.

Because it is generally impossible to list all the ordered pairs, we formally denote
by f : X → Y a function f that relates inputs from the set X, called the domain of
the function, to potential outputs from the set Y , called the codomain of the function.
The set of all outputs that can occur is called the range or image of the function,
which is often a subset of a set of codomains. We denote by f (x) ∈ Y the output of
the function when it is operated on the input x ∈ X. For example, the rule f (x) = x2

transforms any input x ∈ R to its square, x2 ∈ R. The graph of f (x) = x2 is the set of
ordered pairs {<x, x2> : x ∈ R}, and its image is the set of all nonnegative numbers,
R

+ = {y ∈ R : y ≥ 0}, where R
+ ⊂ R. If the domain and codomain of f are both the

set of real numbers, R (which will often be the case in this textbook), then we call f

a real-valued function.
Inputs or outputs need not be numbers. A common function used in this textbook is

a player’s payoff, which relates profiles or collections of players’ strategies to a payoff
value. The inputs of payoff functions are profiles of strategies from the Cartesian
product of players’ strategy sets, S = S1 × S2 × . . . × Sn, to real numbers, and we
therefore denote by vi : S → R the payoff function of player i which relates profiles
(s1, s2, . . . , sn) to real numbers.
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FIGURE 19.1 Continuous (left) and discontinuous (right) functions.

Given a function f :X → Y , the inverse function of f is denoted by f −1 :Y → X,
and it maps outputs back into the inputs that generated them through f . For example, if
we take the square root function f (x) = √

x, so that f : R+ → R
+, then f −1 : R+ →

R
+ is f −1(x) = x2. Note that many functions do not have an inverse. For example,

f (x) = x2 does not have an inverse function because more than one input generates
the same output, and if we tried to invert the function then the inverse would try to
relate an input to more than one output, which by definition is not a function. (Recall
that a function relates each input to exactly one output.) Functions that do have an
inverse are called invertible, and a function is invertible if and only if it has two
properties: (1) It is one-to-one (also called an injection), which has the property that
if f (x) = f (z) then x = z (this means that every output is associated with only one
input). (2) It is an onto function (also called a surjection), which has the property
that for every y ∈ Y there exists an x ∈ X such that f (x) = y, so that every element
in the codomain has an associated element in the domain.

19.2.2 Continuity

A real-valued function is continuous if it has no “jumps.” For instance, the function
f (x), which is depicted in the left panel of Figure 19.1, is continuous, while the
function f (x), which is depicted in the right panel, is discontinuous at the point x0
because it has a jump at that point. Specifically as the value of the input x gets closer
and closer to x0 from below, then the value of f (x) gets closer and closer to y0, but
at x0, f (x0) = y0.

More formally a function f is continuous at some point x0 ∈ X if the limit of
f (x) as x approaches x0 is equal to f (x0). We write this statement as limx→x0

f (x) =
f (x0).

One of the most commonly known examples of a continuous function is a linear
function that takes the form f (x) = a + bx, where a and b are real numbers, a is
known as the intercept, and b is known as the slope. The intercept is the value of the
function when x = 0, which is where the function intercepts the vertical (y) axis, and
the slope of a function is the rate of change of the output as a function of changes in
the input. For example, if f (x) = 5 + 2x then the intercept is 5 and the slope is 2,
because when x = 0 then f (x) = 5, and for every one unit of increase (decrease) in
the value of x, the value of y increases (decreases) by 2 units. Two examples of linear
functions are depicted in Figure 19.2. You should be able to convince yourself that
any linear function is invertible.

Another common example of a continuous function is the quadratic function
that takes the form f (x) = ax2 + bx + c, where a, b, and c are real numbers. For
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FIGURE 19.2 Linear functions.
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FIGURE 19.3 Quadratic functions.

this function the intercept is equal to c, but the slope, or rate of change in the output
as a function of changes in the input, is not constant as in the linear function (which
we will revisit in the next section). When a > 0 the function is “U-shaped,” where
as x becomes very negative or very positive the value of f (x) becomes ever more
positive. Such a function is shown in the left panel of Figure 19.3. When a < 0 the
function is “inverse U-shaped,” where as x becomes very negative or very positive
the value of f (x) becomes ever more negative. Such a function is shown in the right
panel of Figure 19.3.

In Figure 19.3 notice that the functions cross the x axis twice, at x1 and at x2.
These points are often referred to as the roots of the quadratic equation f (x) =
ax2 + bx + c = 0. The well-known formula for solving for the roots of a quadratic
equation, assuming that b2 − 4ac ≥ 0, is given by

x1 = −b + √
b2 − 4ac

2a
and x2 = −b − √

b2 − 4ac

2a
.

19.3 Calculus and Optimization

19.3.1 Basic Definitions

In much of this textbook we will be maximizing functions that represent the payoffs
of players under the assumption that these players wish to make themselves as well
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FIGURE 19.4 The maximum and minimum of a function.

off as possible. A real function f obtains a maximum at a point x if moving away
from x in either direction causes the function’s value to decrease. An example of such
a point is xmax in the right panel of Figure 19.4. Similarly a real function f obtains a
minimum at a point x if moving away from x in either direction causes the function’s
value to increase. An example of such a point is xmin in the left panel of Figure 19.4.
An optimum is either a maximum or a minimum.

There is an important relationship between the slope of a function and whether
or not the function is at an optimum. This can be seen by considering the points xb,
which is slightly below xmax, and xa, which is slightly above xmax in the right panel
of Figure 19.4. Because xmax is a maximum, as we move up from xb toward xmax,
the value of the function rises, which means that the slope of the function is positive
at xb. Similarly as we move up from xmax toward xa, the value of the function falls,
which means that the slope of the function is negative at xb (if we were to reduce x

at xb then f (x) would rise). At the maximum value of xmax, we cannot increase the
value of the function if we move in any direction, and for this reason if the slope at
xmax is well defined (a concept to be explained soon) then it must be zero. A similar
argument can be applied to the figure’s left panel.

19.3.2 Differentiation and Optimization

The derivative of a real-valued function f : R → R at a point x is equal to the slope
of the tangent line to the graph of the function at x. Referring to the left panel of
Figure 19.4, the derivative at the point xb is negative because at xb the tangent line to
the graph has a negative slope (it is downward sloping). The derivative at the point xa

is positive because at xa the tangent line to the graph has a positive slope. At xmin the
derivative is equal to 0 (as it is at xmax).

The derivative of a function at a point x, or the slope at that point, can be expressed
as follows:

Slope at x = Change in f (x)

Change in x
= �f (x)

�x
,

where we use � to denote a change. For a linear function f (x) = a + bx, the slope
of the function is equal to b, as described earlier (see Figure 19.2). This slope is a
constant and does not depend on the value of x. For nonlinear functions, such as the
quadratic function f (x) = ax2 + bx + c, this is no longer the case. For example, if
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f (x) = x2 + x then if we are at the point x = 1 and we increase x by 1 then we have

Change in f (x)

Change in x
= (22 + 2) − (12 + 1)

2 − 1
= 4,

while if we are at the point x = 2 and we increase x by 1 then we have

Change in f (x)

Change in x
= (32 + 3) − (22 + 2)

3 − 2
= 6.

Furthermore these values will change if we change the amount of the increase of x.
Returning to the point x = 1, if we increase x by 0.1 then we have

Change in f (x)

Change in x
= (1.12 + 1.1) − (12 + 1)

1.1 − 1
= 3.1,

while if we are at the point x = 2 and we increase x by 0.1 then we have

Change in f (x)

Change in x
= (2.12 + 2.1) − (22 + 2)

2.1 − 2
= 5.1.

To define precisely the derivative of a function f at x we take the limit of the
ratio Change in f (x)

Change in x
as the amount of change in x goes to zero. That is, we define the

derivative of a function f (x) as

df

dx
= lim

k→0

f (x + k) − f (x)

k
, (19.1)

and the derivative of f at x is well defined if the limit exists, in which case we say that
f is differentiable at x. Another common notation for the derivative of a real-valued
function f (x) is f ′(x).

There are well-known formulas for the derivatives of commonly used functions.
For example, the derivative of a quadratic function f (x) = ax2 + bx + c is f ′(x) =
2ax + b. We can actually derive this using (19.1) as follows:

f ′(x) = lim
k→0

[a(x + k)2 + b(x + k) + c] − [ax2 + bx + c]

k

= lim
k→0

[ax2 + 2akx + k2 + bx + bk + c] − [ax2 + bx + c]

k

= lim
k→0

2akx + k2 + bk

k

= lim
k→0

[2ax + k + b]

= 2ax + b.

Some other often-used derivatives (you can look up more in any standard calculus
textbook) are

1. If f (x) = a + ln(x), where ln(x) is the natural logarithm, then f ′(x) = 1
x

.

2. If f (x) = xk then f ′(x) = kxk−1.
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FIGURE 19.5 The function f (x) = 9x − 1
3x3.

Returning to the objective of maximizing a function, we can now state the follow-
ing result:

Proposition 19.1 If the function f (x) is differentiable and if x∗ is an optimum then
f ′(x∗) = 0.

Therefore if x∗ is an optimum then it is a necessary condition that the derivative
of the function is equal to 0 at x∗, which is referred to as the first-order (necessary)
condition. However, this is true for either a maximum or a minimum. Take for
example the function f (x) = 9x − 1

3x3. The derivative of this function is f ′(x) =
9 − x2, which is equal to zero at two points: x1 = 3 and x2 = −3. By looking at
Figure 19.5 we can see that xmax = 3 and xmin = −3. But how would we know this
without seeing the graph?

To answer this question, it is useful to observe how the derivative changes around
the optima. Just below xmin the derivative is negative; it reaches 0 at xmin; and then
it becomes positive. That means that as x increases around xmin the derivative is
increasing from negative to positive. This in turn implies that the derivative of the
derivative, or the second derivative, denoted f ′′(x) or d2f

dx2 , is positive. Similarly at
xmax the second derivative is negative. Therefore

Proposition 19.2 Let f (x∗) = 0. If f ′′(x∗) < 0 then x∗ is a local maximum while if
f ′′(x∗) > 0 then x∗ is a local minimum.

This is known as the second-order (sufficient) condition because it guarantees
that the point in question is an optimum. We use the term “local” to mean that there
may be more than one such point, in which case one local maximum may be better
than another one (imagine a function with several humps). The derivative conditions
will not identify which of several local maxima (or minima) is the global one—the
actual highest (or lowest).

A differentiable function f (x) is concave if its second derivative is negative for
all values of x, and it is convex if its second derivative is positive for all values of x.
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f(x) = 4 – 2x
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FIGURE 19.6 The definite integral: Two examples.

Looking back at Figure 19.4, the function in the left panel is convex while the function
in the right panel is concave. Therefore

Proposition 19.3 Let f (x) be a concave (convex) differentiable function. If f ′(x∗) =
0 then x∗ is a global maximum (minimum).

For practically all the analyses in this text, when functions over real variables
represent payoffs we will resort to using concave payoff functions. As a consequence,
when we are looking for a maximum it suffices to use the first-order condition.

19.3.3 Integration

The indefinite integral (sometimes called the antiderivative) of a real-valued func-
tion f : R → R is a function F : R → R whose derivative is equal to f , that is,
F ′(x) = f (x). The indefinite integral of f (x) is denoted as F(x) = ∫

f (x)dx, and
the process of finding the indefinite integral (integration) is the opposite of the
process of finding a derivative (differentiation). For example, if f (x) = 2ax + b then
F(x) = ax2 + bx + c, and if g(x) = 1 then G(x) = x.

The definite integral of a function f over an interval [a, b], denoted by∫ b

a
f (x)dx, is defined informally as the total area “under” the function f (x) when

f (x) > 0, less the area “above” the function f (x) when f (x) < 0, in between the
points x = a and x = b. For example, Figure 19.6 depicts two examples of definite in-
tegrals. The function f (x) = 4 − 2x is depicted in the left panel. The definite integral∫ b

a
f (x)dx of this function, where a = −1 and b = 3, is equal to the gray shaded area

(the total area under the function when f (x) > 0) minus the hatched area (the total
area above the function when f (x) < 0). Because f (x) = 4 − 2x is a linear function
we can easily calculate these right-triangular areas. The gray shaded triangle has a
height of length 6 and a base of length 3 so its area is 9, and the hatched triangle has a
height of length 2 and a base of length 1 so its area is 1. Hence the definite integral is
equal to 8. A nonlinear graphical example is depicted in the right panel of Figure 19.6.



378 . Chapter 19 Mathematical Appendix

A very well-known result called the fundamental theorem of calculus relates
the definite integral of a function f (x) over an interval [a, b] to its indefinite integral
evaluated at the points a and b. In particular if f (x) is the derivative of F(x) then∫ b

a

f (x)dx = F(b) − F(a).

It is common to use the notation [F(x)|b
a

≡ F(b) − F(a). To illustrate this with
the example in Figure 19.6, in which f (x) = 4 − 2x, a = −1, and b = 3, note that
F(x) = 4x − x2 + c, where c can be any real number. We therefore have3

∫ b

a

(4 − 2x)dx =
[
4x − x2

∣∣∣3−1
= (4(3) − 32) − (4(−1) − (−1)2) = 8.

This textbook makes very little use of integrals, but as some parts of the next section
illustrate, computing the expected value of a continuous random variable (to be
defined shortly) will require their use.

19.4 Probability and Random Variables

19.4.1 Basic Definitions

Some variables are not predetermined but instead depend on some form of chance.
A random variable (or stochastic variable) describes such a chance-determined
variable that can equal one of many different values (or outcomes), each with an
associated probability (or likelihood). For example, a fair coin that is tossed in the
air will lead to an outcome of either heads or tails, each with equal probability of 1

2 ,
which we denote as Pr{head} = Pr{tail} = 1

2 ; a fair die that is rolled on a Monopoly
board will result in an integer value between 1 and 6, each with equal probability of 1

6 ;
and the temperature in San Francisco tomorrow will be any one of the real numbers
between 50 and 80, with some values more likely than others.

The coin or the die is an example of a discrete random variable because each can
result in one of a discrete, in this case finite, set of values. In contrast the temperature
in San Francisco tomorrow is an example of a continuous random variable because
it can result in an outcome drawn from an interval or continuum of values, in this
case [50, 80]. We define an event as an outcome or a set of outcomes that can occur.
For example, if we roll a die, define the event A as “the die shows an odd number,”
and define the event B as “the die shows the numbers 1 or 2,” then Pr{A} = 1

2 and
Pr{B} = 1

3. The function that describes the relative frequency of the possible events
that can be realized by a random variable is called a probability distribution. The set
of possible outcomes is typically called the sample space of the distribution, and if the
sample space consists of real numbers it is often called the support of the distribution.

For discrete and finite random variables such as the coin toss or the die roll,
the probability distribution associates each outcome in the sample space with a

3. Notice that c will be added and subtracted, which implies that we can ignore it when we write
down the definite integral.
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FIGURE 19.7 Discrete and continuous CDFs.

probability, which is a number between 0 and 1, and the sum of all the probabilities
of the discrete outcomes must add up to 1. For example, if a fair die is rolled then the
probability of each number between 1 and 6 being realized is 1

6 .

19.4.2 Cumulative Distribution and Density Functions

If, like the example of the roll of a die, all the outcomes of a random variable are
numbers then the probability distribution can be defined by a cumulative distribution
function (CDF), F : R → [0, 1], which describes the probability that the realized
value x will be less than or equal to a specified value, denoted by F(x0) = Pr{x ≤ x0}.
For example, if the random variable is generated by the roll of a die then F(4) =
F(4.9) = 2

3 because the probability that the outcome is less than or equal to 4 is equal
to the probability that it is less than 4.9, which is the probability that the roll of the
die was either 1, 2, 3, or 4. Similarly F(5) = F(5.43) = 5

6 and F(6) = F(112.3) = 1.
Any CDF F satisfies the following three properties:

1. If x2 > x1 then F(x2) ≥ F(x1).

2. F(−∞) = 0 and F(∞) = 1.

3. 1 − F(x0) = Pr{x > x0}.
The CDF of a discrete distribution, like that of the roll of a die, will be a “step”

function consisting of jumps at each possible outcome of the sample space. This is
illustrated by the CDF in the left panel of Figure 19.7. The CDF of a continuous
distribution will rise gradually and continuously. An example for a random variable
that is distributed over the interval [0, 6], with every number in the interval being
equally likely to be the outcome, is depicted in the right panel of Figure 19.7. Such a
continuous random variable that is equally likely to result in a number from a closed
interval [a, b] is called a uniform distribution over [a, b]. In the example a = 0
and b = 6.

Because continuous random variables such as the uniform distribution can take on
one of an uncountable, infinite number of values, it follows that each outcome has a
probability 0 of occurring. Such a distribution cannot be represented by a probability
distribution and instead is defined by its CDF. For the uniform distribution over [0, 6]
in the right panel of Figure 19.7 the CDF is given by
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F(x) =
⎧⎨⎩

0 for x < 0
1
6x for 0 ≤ x ≤ 6

1 for x > 6.

If the CDF F of a continuous distribution is differentiable then it has a derivative
f = F ′, which is called the probability density function. It therefore follows from
the fundamental theorem of calculus that for x2 > x1∫ x2

x1

f (x)dx = F(x2) − F(x1),

implying that the probability that the random variable outcome is between x1 and x2
is equal to the definite integral of the probability density function in that range. For
example, the density function for the uniform distribution over [0, 6] is given by

f (x) =
⎧⎨⎩

0 for x < 0
1
6 for 0 ≤ x ≤ 6

0 for x > 6.

19.4.3 Independence, Conditional Probability, and Bayes’ Rule

Given two events A and B, the notation A ∩ B (A intersection B) represents the
event that both events A and B occurred. Intuitively two events are independent if the
likelihood of one event occurring is not influenced by whether or not the other event
occurred. Formally we say that two events A and B are independent if and only if
the probability that they both occur is equal to the product of each event’s probability,
that is,

Pr{A ∩ B} = Pr{A} Pr{B}.
For example, imagine the roll of a die and the flip of a coin occurring simultaneously,
with A being “die’s number is even” and B being “coin shows head.” First, we
know that Pr{A} = Pr{B} = 1

2 , and letting ¬A denote the event “A did not occur”
we know Pr{¬A} = Pr{¬B} = 1

2 . Therefore the four possible combined events are
A ∩ B, ¬A ∩ B, A ∩ ¬B, and ¬A ∩ ¬B. Because the roll of the die and the toss
of the coin do not depend on each other (hence the term “independence”), it follows
that the likelihood of each of these four combined events is 1

4 , so that Pr{A ∩ B} =
Pr{A} Pr{B} = 1

4 .
In contrast consider the following situations. Two twins, Tweedledum and

Tweedledee, always wear the same matching outfits. They have two sets of clothes,
black and red, which are washed every night and prepared the next morning. Every
morning the twins flip a coin to determine what they will wear: heads chooses black
and tails chooses red. If A is the event “Tweedledum wears black” and B is the event
“Tweedledee wears black” then Pr{A} = Pr{B} = 1

2 , but because they always wear
the same clothes then Pr{A ∩ B} = 1

2 as well, and the condition for independence is
violated.

The conditional probability of an event A given an event B is the probability of
A occurring if B is known to have occurred; it is commonly denoted by Pr{A|B}. The
notions of conditional probability and independence are tightly related. Consider the
example of the die roll and coin toss. Because the events A (even die number) and B
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(heads) are independent, the probability of A occurring does not depend on whether
or not B occurred, and hence Pr{A|B} = Pr{A|¬B} = Pr{A} = 1

2 .
Things are different for Tweedledum and Tweedledee in choosing their clothes.

As noted previously, Pr{A} = 1
2 , but because they always choose to wear the same

clothes it follows that Pr{A|B} = 1 while Pr{A|¬B} = 0. We call the unconditional
probability (also called the marginal probability), Pr{A}, the prior probability of
the event A because it is the prior belief that the event A occurs without knowing any
additional information. We call the conditional probability Pr{A|B} the posterior
probability of the event A after learning that B occurred.

Assuming that Pr{B} > 0, the conditional probability of A given B is defined by

Pr{A|B} = Pr{A ∩ B}
Pr{B} . (19.2)

This relationship is intuitive. If event B is known to have occurred then there are
two possibilities: either A has occurred or it has not. We therefore have two possible
combined states: {A ∩ B} and {¬A ∩ B}, with prior beliefs of Pr{A ∩ B} and Pr{¬A ∩
B}, respectively. Because either A or ¬A must have occurred, and these events are
mutually exclusive, it is easy to see that

Pr{B} = Pr{A ∩ B} + Pr{¬A ∩ B). (19.3)

As a consequence, if we learn that B has occurred, then our posterior conditional
on this knowledge is the relative likelihood of {A ∩ B} occurring among all states in
which B had occurred, which is given by (19.2).

If we multiply both sides of equation (19.2) by Pr{B} we obtain

Pr{A ∩ B} = Pr{A|B} Pr{B},
and by symmetry it follows that

Pr{A ∩ B} = Pr{B|A} Pr{A}. (19.4)

Now we can replace the numerator of (19.2) with the right side of (19.4) to obtain the
formula for Bayes’ rule as follows:

Pr{A|B} = Pr{B|A} Pr{A}
Pr{B} . (19.5)

Equation (19.5) can be generalized as follows. Let Z be the set of all possible
outcomes from a random variable and let {A1, A2, . . . , An} be a partition of the set
Z. It follows that

Pr{B} =
n∑

i=1

Pr{Ai ∩ B}, (19.6)

because the events {A1, A2, . . . , An} are mutually exclusive and they cover the whole
state space. Now using (19.4) we can rewrite (19.6) as follows:

Pr{B} =
n∑

i=1

Pr{B|Ai} Pr{Ai},
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which implies a more general version of Bayes’ rule as follows:

Pr{Ai|B} = Pr{B|Ai} Pr{Ai}∑n
i=1 Pr{B|Ai} Pr{Ai}

. (19.7)

The version of Bayes’ rule in (19.7) is heavily used in Section 15.2 to define beliefs
of players in their information sets. To demonstrate this, imagine two events, A1 and
A2, that are known to player 1 and not to player 2, although player 2 knows the
probabilities Pr{A1} and Pr{A2}. After learning which of these two events occurred,
player 1 can choose B1 or B2. Player 1 can condition his choice on the event that he
observes, and his choice can also be stochastic. Let Pr{Bj |Ai} be player 2’s belief that
player 1 chooses Bj conditional on observing Ai. It follows from Bayes’ rule that

Pr{Ai|Bj} = Pr{Bj |Ai} Pr{Ai}∑2
i=1 Pr{Bj |Ai} Pr{Ai}

.

Note that Bayes’ rule is well defined only if the denominator is positive, which occurs
if Pr{Bj |Ai} Pr{Ai} > 0 for at least one i.

19.4.4 Expected Values

The expected value (also called the mean or the expectation) of a discrete real-valued
random variable is equal to the probability-weighted average of all the possible values
that can be realized. Informally we can interpret the expected value as the average of
many independent repetitions of an experiment that is represented by the random
variable. For example, imagine that a coin is tossed so that when heads occurs you
get $2, while if tails occurs you lose $1. By definition the expected value is equal to
1
2 (2) + 1

2 (−1) = 0.5. Now imagine that the coin is tossed 100 times, so that given the
probability of heads being 1

2 you would expect to win $2 about 50 times and lose $1
about 50 times, resulting in a total income of about 50(2) + 50(−1) = $50. Hence on
average you would win $0.50 per toss. This shows that the expected value may not
be “expected” in the sense that it may be impossible (receiving $0.50).

More formally imagine that a discrete real-valued random variable x can take on
the values xi ∈ {x1, x2, . . . , xn}, each xi with probability pi. The expected value of
the random variable is given by

E[x] =
n∑

i=1

pixi.

For example, imagine that a die is rolled and you receive an amount of money v

equal to the number shown by the die. In this case your expected value is equal to
E[v] = ∑6

i=1
1
6 i = 3.5.

For a continuous real-valued random variable we cannot compute a weighted
average in the same way. Let x be a continuous real-valued random variable. If the
CDF F(x) is differentiable so that the density function f (x) exists then the expected
value of x is defined as

E[x] =
∫ ∞

−∞
xf (x)dx.
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Intuitively this is the continuous version of the weighted average of a discrete real-
valued random variable. The density function plays the role of the weights, and the
realization x is the value. For example, if x is a random variable that is uniform over
the interval [a, b] then f (x) = 1

b−a
for all x ∈ [a, b] and zero elsewhere, so that

E[x] =
∫ b

a

x
1

b − a
dx =

[
x2

2(b − a)

∣∣∣∣b
a

= b2 − a2

2(b − a)
= a + b

2
.

It follows that the expected value of a uniform random variable is the “midpoint” of
the support of the distribution.
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