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Preface

Topological methods are among the most important theoretical tools in analysis,
useful for many questions arising in analysis, concerning finite-dimensional prob-
lems or also infinite-dimensional problems like differential or integral equations.
One particularly important tool is degree theory which was originally developed
by Leray and Schauder for equations of a rather specific form and which is mean-
while available for a much larger class of equations, even those which involve
noncompact situations or multivalued maps.

This monograph aims to give a self-contained introduction into the whole field:
Requiring essentially only basic knowledge of elementary calculus and linear al-
gebra, it provides all required background from topology, analysis, linear and
nonlinear functional analysis, and multivalued maps, containing even basic topics
like separation axioms, inverse and implicit function theorems, the Hahn-Banach
theorem, Banach manifolds, or the most important concepts of continuity of mul-
tivalued maps. Thus, it can be used as additional material in basic courses on such
topics. The main intention, however, is to provide also additional information on
some fine points which are usually not discussed in such introductory courses.

The selection of the topics is mainly motivated by the requirements for de-
gree theory which is presented in various variants, starting from the elementary
Brouwer degree (in Euclidean spaces and on manifolds) with several of its fa-
mous classical consequences, up to a general degree theory for function triples
which applies for a large class of problems in a natural manner. Although it has
been known to specialists that, in principle, such a general degree theory must
exist, this is probably the first monograph in which the corresponding theory is
developed in detail.

Berlin, March 2012 Martin Väth
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Chapter 1

Introduction

This monograph has several aims. For one thing, it is meant as an introduction to
topology, functional analysis, and analysis for the advanced reader. Secondly, the
aim is to develop a degree theory for function triples which unifies and extends
most known degree theories.

The monograph aims to be self-contained, and so many chapters could even
serve as a basis for courses on the covered topics; essentially, only knowledge
in basic calculus and of linear algebra (matrices, determinants, eigenvalues, etc.)
is assumed. However, some experience with the topics is useful for the reading,
since the order in which the topics are presented corresponds to the mathemat-
ically logical order. For instance, topological spaces and continuity properties
of multivalued maps in topological spaces are studied from the very beginning;
metric spaces and single-valued maps are considered as special cases and conse-
quently discussed much later, with emphasis on what more can be said in such
cases. Thus, roughly speaking, we start from the abstract and turn to the more
concrete case only later on in order to avoid unnecessary (from the mathematical
point of view) repetitions. For this reason, the monograph cannot substitute e.g. a
first course in analysis which should better be arranged from a didactical instead
of a logical point of view. Nevertheless, most results from analysis courses are
included in this monograph.

By this approach of coming from the abstract, we are partially able to give much
more elegant and shorter proofs of “standard” results of topology. For instance,
important statements like the connection between closed and proper maps (Corol-
lary 2.107) or closedness of projections under some compactness assumptions
(Corollary 2.112) which are rather cumbersome to prove in an elementary way
come out rather simply by using results for multivalued maps in an appropriate
manner.

Even for many “standard” results, some new approaches are presented. For in-
stance, for the classical implicit and inverse function theorems, we separate clearly
the differentiability assertions from the existence and uniqueness assertions into
separate theorems (which have rather different hypotheses). This is not only a di-
dactical advantage but also has the practical advantage that we obtain an implicit
function theorem that even works for functions of two variables which are not
C 1 in both variables but only in one variable. Such functions occur naturally in
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the later sections about degree theory as “Fredholm homotopies”, and for these
homotopies the corresponding generalization of the implicit function theorem is
needed in some crucial places.

There also occur some really new results in the first sections like an extension
theorem for continuous functions which not only includes the famous extension
theorems of Dugundji (or of Ma in the multivalued case) but also easily implies
the existence of Schauder projections.

The selection of the topics in the first sections is mainly inspired by the applica-
tion to degree theory in the later sections. For instance, for topological spaces not
all known separation axioms (T0, T1, T2, T2a etc.) are introduced but only those
which actually play a role in connection with degree theory in the later sections.
However, these are already quite a lot, including the less known axioms T5 and T6

for which it is hard to find references on basic properties that are therefore proved
in this monograph.

Similarly, also the selection of topics about ANR spaces and dimension theory
is based on the needs in degree theory in the later sections.

The notion of degree theory needs a more verbose explanation: In the simplest
case, the degree of a continuous function F W� ! X with an open set � � X is
“something like” the number of solutions x 2 � of the equation

F.x/ D y.

By “something like”, we mean that the solutions are counted with a certain mul-
tiplicity which corresponds to the geometric behavior of F in a neighborhood of
the solution. In the case of a holomorphic function F WC ! C this multiplicity is
the usual multiplicity known from function theory, but in general the multiplicity
can also be negative.

The important property is that this number turns out to be invariant under cer-
tain homotopies, that is, it does not change if the function F and the point y are
“moved” in a certain continuous manner, as long as during this movement there
don’t arise solutions on the boundary @�. This means that one can transform the
equation by such a homotopy into a possibly much simpler equation. Degree the-
ory can then be used by just considering this simpler equation to prove assertions
about the original equation.

For instance, one can use this idea to prove the famous Brouwer fixed point
theorem which states in its simplest form that any continuous map f W�! � has
a fixed point if � denotes the open unit ball in Rn. This result is not easy to prove
in an elementary way, but using degree theory one can consider the homotopy
Ft .x/ WD x� tf .x/ .0 � t � 1/ which relates the fixed point equation x D f .x/

(that is, F1.x/ D 0) with the trivial equation x D 0 (that is, F0.x/ D 0). Using
this idea, one obtains Brouwer’s fixed point theorem from elementary properties
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of the degree. This and some other classical applications of degree theory which
are perhaps more surprising are presented in detail in Section 9.6.

It should be clear that degree theory implies much more powerful results than
just such classical examples, and in fact a mere list of results which are nowadays
obtained by degree theory for dynamical systems or partial differential equations
would probably be longer than this whole monograph. However, the class of
equations for which the classical degree theory is applicable is quite limited: As
we have noted above, we must be able to write the equation with a map f W�! X

with open � � X ; actually even X D Rn is required (the classical Brouwer
degree) or that X is a Banach space and that idX �F is a compact map. The latter
is the classical Leray–Schauder degree, and classical applications of the latter,
like the famous Schauder fixed point theorem, which is an infinite-dimensional
analogue of the Brouwer fixed point theorem, are presented in Section 13.3. The
reason why this is presented only so late is that we obtain the Leray–Schauder
degree as a special case of a much more general degree theory.

In fact, several attempts had been made to generalize degree theory such that
it can treat a richer class of equations, and in this monograph, we will present
and unify a lot of these extensions. For instance, we will develop a degree theory
which can handle certain equations of the type

F.x/ D '.x/ (1.1)

where F; 'W� ! Y with � not necessarily being a subset of Y , a degree theory
for inclusions with multivalued maps, a degree theory where we relax the com-
pactness hypothesis of the Leray–Schauder degree, and, most importantly, we will
actually combine all these extensions. The most general degree theory which we
finally obtain is able to treat problems of the type

F.x/ 2 '.ˆ.x//, (1.2)

where, roughly speaking,

(a) F is a nonlinear Fredholm operator of index 0, that is, F is continuously
differentiable with all derivatives being Fredholm maps of index 0.

(b) ˆ is a multivalued upper semicontinuous map with acyclic values ˆ.x/.

(c) ' is continuous.

(d) The composition ' ıˆ is “more compact than F is proper”.

Of course, the hypotheses will be explained and made precise in the mono-
graph; they are mentioned here only to give an impression of what type of re-
quirements are involved.
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For the reader who dislikes multivalued maps, let us mention that one can equiv-
alently replace ˆ by the inverse of a certain single-valued map p, but the above
formulation is more convenient from the viewpoint of applications.

Thus, the degree theory which we finally obtain is actually a degree theory
which is appropriate for a triple of functions .F;ˆ; '/ (or .F; p; '/ for the equiv-
alent formulation with single-valued functions). In fact, the degree remains stable
under homotopies for each of these functions, that is, roughly speaking, when we
“move” all three functions simultaneously in a certain admissible manner. Thus,
this degree in fact can be considered as a (function) triple degree.

We point out that problems like (1.2) occur naturally in connection with dy-
namical systems or partial differential equations. Consider, for instance, an initial
value problem in a possibly infinite-dimensional Banach space

x0.t/ D f .t; x.t//, x.0/ D x0.

It is known that, even if f fails to be differentiable, under some natural hypotheses
the mapˆwhich associates to x0 the set of all solutions x of this problem is upper
semicontinuous with acyclic values. Hence, a large class of related problems like,
for instance, the nonlinear boundary value problem

x0.t/ D f .t; x.t//, F.x.0// D G.x.T //,

can be cast in the above form (1.2) with ' being the composition of G with the
map x 7! x.T /. However, such applications are still subject of future research
and only sketched in Section 14.6.

Degree theory for equations of the form (1.1) for nonlinear Fredholm maps F
and compact ' have been developed by P. Benevieri and M. Furi [17], [19]. Al-
though rather recently it was observed by the author that any degree theory for
the problem (1.1) extends to a degree theory for function triples, that is, for the
problem (1.2), this extension was never carried out in detail for the particular
Benevieri–Furi degree. Indeed, this extension procedure consists of three steps
(treating the finite-dimensional [140], the compact infinite-dimensional [142], and
the noncompact case [141]), and each of these steps is rather technical. Thus, al-
though it was known, in principle, that a corresponding degree theory exists, this
monograph is the first publication in which this program is carried out in detail
and where the degree and its precise properties are developed.

It should be mentioned that in [146] (see also [98], [121]) also a degree theory
for (1.2) is developed, using a rather different approach by approximation meth-
ods. However, the notion of orientation of Fredholm maps used in [146] is rather
different from the orientation used for the Benevieri–Furi degree so that it is not
straightforward to compare the two theories. Moreover, many of our results (es-
pecially most of our uniqueness results and perhaps also the homotopy invariance
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of the degree for Fredholm homotopies which are C 1 only in the last variable) can
probably not be accessed by the approach from [146].

Now it is time that we point out an important issue which occurs in connection
with nonlinear Fredholm operators but also in connection with degree theory on
finite-dimensional manifolds: the notion of orientation.

In fact, a notion of orientation for Fredholm maps is the crucial point for the
development of a degree theory for (1.1): P. Benevieri and M. Furi succeeded
in [17], [18] to develop a definition of orientation by which it is possible to reduce
the degree theory to a degree theory between finite-dimensional oriented mani-
folds.

In this monograph, we actually carry this one step further and develop a more
general notion of orientation for Fredholm maps on Banach bundles: In this more
general setting, it is perhaps even simpler to understand the basic properties of
the orientation than in the special (but rather involved) case of tangent bundles
studied in [17], [18]. In particular, we obtain results parallel to those from [18] in
this more general setting.

The main advantage of this more general setting is that it can be applied in
the finite-dimensional situation to orient continuous maps which are not necessar-
ily C 1 as for the Benevieri–Furi approach. We thus obtain also a corresponding
degree theory for continuous maps between finite-dimensional manifolds with the
corresponding (rather simple) notion of orientation.

In this connection, it should be pointed out that the study of manifolds is cru-
cial for the Benevieri–Furi approach: Even if one is interested only in the degree
theory with Fredholm operators in Banach spaces, one needs for this approach as
an auxiliary step a corresponding degree theory on manifolds (not only on normed
spaces). Consequently, although it is only considered as a tool and not as a main
aim of this monograph, also an introduction to Banach manifolds and to related
notions is included.

This monograph was written in the framework of a DFG project (Az. VA
206/2-1). Financial support by the DFG is gratefully acknowledged.

The author would like to thank P. Benevieri and W. Kryszewski for answering
several questions and sending otherwise unpublished notes about their results.





Chapter 2

Multivalued Maps

2.1 Notations for Multivalued Maps and Axioms

2.1.1 Notations

Throughout this monograph, we use standard notations for sets, elements, func-
tions, unions, and so on. For multivalued maps, there is not always a consensus
about the notations in literature, so we specify the details here.

LetX and Y be sets. We call a map fromX into the powerset of Y a multivalued
map and use the notation ˆWX ( Y . For such a map, we define its domain of
definition as

dom.ˆ/ WD ¹x 2 X W ˆ.x/ ¤ ¿º.
A selection ofˆ is a single-valued map f WX ! Y satisfying f .x/ 2 ˆ.x/ for all
x 2 X . For the case that ˆ.x/ has exactly one element for each x 2 X , that is, if
there is exactly one selection of ˆ, we callˆ single-valued, and in a slight misuse
of notation, we use then the same symbol for ˆ and its selection ˆWX ! Y . In
the same sense, we consider single-valued maps as special cases of multivalued
maps. For example, the symbol idX will denote the single-valued identity map of
a set X , defined by idX .x/ WD x for all x 2 X , but the symbol will also denote
the multivalued map idX WX ( X , defined by idX .x/ WD ¹xº.

For ˆWX ( Y , we define the image of a set M � X as

ˆ.M/ WD
[

x2M

ˆ.x/,

and the small and large counterimage of a set M as

ˆ�.M/ WD ¹x 2 X W ˆ.x/ �M º,
and

ˆC.M/ WD ¹x 2 X W ˆ.x/ \M ¤ ¿º,
respectively. It will be convenient to use the above definitions for arbitrary setsM ,
that is, we do not necessarily require that M � Y . For ˆWX ( Y , we define
ˆ�1WY ( X by

ˆ�1.y/ WD ˆC.¹yº/ D ¹x 2 X W y 2 ˆ.x/º.
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In particular, if f WX ! Y is single-valued, then by our tacit identification of
single-valued and multivalued maps, we have f �1WY ( X ; in this case

f �1.y/ D ¹x 2 X W f .x/ D yº D f C.¹yº/ D f �.¹yº/.
If ˆ�1WY ( X is single-valued (by our tacit identification of single-valued
and multivalued maps this means that ˆ�1WY ! X ), then we call ˆ invert-
ible. Clearly, a single-valued function f WX ! Y is invertible if and only if it is
one-to-one and onto, and in this case f �1WY ! X is the usual inverse.

For ˆWX ( Y , we define the graph of ˆ as the set

graph.ˆ/ WD ¹.x; y/ 2 X � Y W y 2 ˆ.x/º.
If X and Y are topological spaces, we will equip graph.ˆ/ with the topology
inherited from the product topology of X � Y (see Section 2.2).

Proposition 2.1. For ˆWX ( Y we have

graph.ˆ�1/ D ¹.y; x/ W .x; y/ 2 graph.ˆ/º.
In particular, .ˆ�1/�1 D ˆ, dom.ˆ�1/ D ˆ.X/, dom.ˆ/ D ˆ�1.Y /.

Proof. For fixed y 2 Y the set ˆ�1.y/ consists of all x 2 X with y 2 ˆ.x/, that
is, with .x; y/ 2 ˆ.

A fixed point of a multivalued map ˆ is a point x 2 dom.ˆ/ satisfying x 2
ˆ.x/, that is, .x; x/ 2 graph.ˆ/. If f is single-valued, the fixed points are
correspondingly the points x satisfying x D f .x/.

We use the standard notation ˆjM to denote the restriction of a (single- or
multivalued) map ˆWX ( Y to a subset M � X , that is, ˆjM WM ( Y is
defined by ˆjM .x/ WD ˆ.x/ for all x 2 M . The composition of two maps
ˆWX ( Y and ‰WY ( Z is the map ‰ ıˆWX ( Z, defined by

.‰ ıˆ/.x/ WD ‰
�

ˆ.x/
�

.

For ˆWX ( X , we define the n-th power of ˆ in the obvious way by induction

ˆ0 WD idX , ˆn WD ˆ ıˆn�1.

The product of two multivalued maps ˆWX ( Y and ‰WX ( Z is the multival-
ued map ˆ �‰WX ( Y �Z, defined by

.ˆ �‰/.x/ WD ˆ.x/ �‰.x/.
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Similarly, if ˆWX ( Y and ‰WW ( Z then the multivalued map ˆ˝ ‰WX �
W ( Y �Z is defined by

.ˆ˝‰/.x; y/ WD ˆ.x/ �‰.y/.
If ˆ;‰WX ( Y satisfy

ˆ.x/ � ‰.x/ for all x 2 X ,

we write more briefly ˆ � ‰. Note that for maps ˆ;‰WX ( Y we have

ˆ � ‰ ” graph.ˆ/ � graph.‰/,

so that our notation cannot lead to any confusion when the convention is used
that maps are identified with their graph. However, we will not require the latter
convention.

For later usage, we point out the following calculation rules for ˆWX ( Y .
The proof of these rules is straightforward. The first rule explains the names
small and large counterimages for ˆ�.M/ and ˆC.M/:

ˆ�.M/ \ dom.ˆ/ � ˆC.M/ � dom.ˆ/

ˆ
�

ˆ�.M/
� �M \ˆ�

ˆC.M/
�

(2.1)

ˆC�

ˆ.M/
� �M \ dom.ˆ/

M \ˆ.X/ � ˆ�

ˆC.M/
�

\

i2I

ˆ.Mi / � ˆ
�

\

i2I

Mi

�

if Mi � X (2.2)

[

i2I

ˆ.Mi / D ˆ
�

[

i2I

Mi

�

if Mi � X
[

i2I

ˆ�.Mi/ � ˆ��

[

i2I

Mi

�

(2.3)

ˆC.Y nM/ D X nˆ�.M/ (2.4)

2.1.2 Axioms

Proposition 2.2. (AC). Every multivalued map ˆWX ( Y with dom.ˆ/ D X

has a selection.

Proof. This is one of many equivalent formulations of the axiom of choice.
Note that the point of the assertion is that there is a function f WX ! Y satis-

fying f .x/ 2 ˆ.x/ for every x 2 X . In particular, graph.f / and f .X/ are sets,
even if there is not necessarily an “explicit formula” available for f .
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We denote the axiom of choice briefly by AC, and we use throughout the sym-
bol (AC) in the formulation of a result to indicate that we use the axiom of choice
to prove the result.

Without such an indication, the results obtained in this monograph can be
proved within Zermelo–Fraenkel’s set theory (ZF) together with the so-called
axiom of dependent choices (DC) which we formulate in the subsequent Theo-
rem 2.3.

In particular, the subsequent Theorem 2.3 implies that the so-called countable
axiom of choice (which is the special case X D N of Proposition 2.2) follows
from DC, and so we will usually use this countable axiom of choice without spe-
cial mentioning:

(AC!) (Countable axiom of choice). Every multivalued map ˆWN ( X with
dom.ˆ/ D N has a selection.

We include in the subsequent theorem also a typical example of an important
analytical result (Baire’s category theorem) which is meant to demonstrate for
which sort of reasoning the axiom DC is used, typically. This example is particu-
larly interesting since it turns out to be equivalent to DC.

We will recall the terminology used in the formulation and proof concerning
Baire’s category theorem later on; it is meant here as an example and can be
skipped at a first reading.

Theorem 2.3. In ZF the following statements are equivalent.

(DC) (Axiom of dependent choices). For every multivalued map ˆWX ( X

with dom.ˆ/ D X ¤ ¿ there is a function f WN ! X with f .nC 1/ 2
ˆ.f .n//.

(DC0) (Nonautonomous choices with history and start). For every family of
multivalued maps ˆnWX1 � � � � � Xn ( XnC1 and every x0 2 X1 with
the property that ˆn.x1; : : : ; xn/ ¤ ¿ whenever x1 D x0 and xkC1 2
ˆk.x1; : : : ; xk/ .k D 1; : : : ; n � 1/ there is a function f WN ! S1

nD1Xn

satisfying f .1/ D x0 and f .nC 1/ 2 ˆn.f .1/; : : : ; f .n// for all n 2 N.

(BC) (Baire’s category theorem). If X is a complete metric space and Nn � X
.n 2 N/ is a family of closed sets without interior points then

S1
nD1Nn is

without interior points.

Moreover, the implications

AC H) DC H) AC! (2.5)

hold in ZF, and none of it can be reversed.
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Similarly as for Proposition 2.2, the crucial point of the assertions DC and DC0
is that f in these assertion is a function, in particular, graph.f / is a set, even if
there is no “explicit formula” available for the values f .n/.

Proof. If AC holds then any map ˆWX ( X with dom.ˆ/ D X ¤ ¿ has
a selection F WX ! X by Proposition 2.2. Hence, fixing some x0 2 X , we can
inductively define a function f WN ! X by f .1/ WD x0 and f .nC1/ WD F.f .n//

.n 2 N/. This proves the first implication in (2.5).
To see that DC implies DC0, we let Yn .n 2 N/ denote the family of all

functions gW ¹1; : : : ; nº ! X1 [ � � � [ Xn satisfying g.1/ D x0 and g.k C 1/ 2
ˆk.g.1/; : : : ; g.k// for all k D 1; : : : ; n � 1. We let Y D S1

nD1 Yn, and
consider the multivalued map ‰WY ( Y , where ‰.h/ is defined for h 2 Yn

as the family of all g 2 YnC1 satisfying gj¹1;:::;nº D h. By (DC), there is
a function F WN ! Y satisfying F.n C 1/ 2 ‰.F.n// for all n 2 N. Put
fn WD F.n/ .n 2 N/. There is some index N with f1 2 YN . Then fnC1 2 YN Cn

for all n. Hence f .n/ WD fk.n/ is defined for k � max¹nC 1� N; 1º, and
this value f .n/ is independent of k, because fj C1 2 ‰.fj / .j 2 N/. Since
f j¹1;:::;nº D fnC1�N 2 Yn for all n � N , the definition of Yn implies that f has
all required properties.

If DC0 holds then we obtain AC! and DC for the particular choice Xn WD X for
all n and ˆn.x/ WD ˆ.n/ .x 2 Xn/ or ˆn.x; y/ WD ˆ.y/ .x 2 Xn�1, y 2 X/,
respectively.

If BC is false, then M0 �
S1

nD1Nn for some nonempty open set M0 � X ,
and Nn has no interior point for every n. By the latter, we can inductively choose
xn 2 Mn�1 nNn and, since the set Mn�1 nNn is open and thus xn is an interior
point of this set, an open ball Mn � X of radius less than 1=n around xn with
Mn � Mn�1 nNn. By DC0, we can assume that n 7! .xn;Mn/ is a map, that is,
a sequence. Since ¹xn; xnC1; : : :º is contained in the ball Mn of radius less than
1=n, we find that xn form a Cauchy sequence which thus converges to some

x 2
1
\

nD1

M n �
1
\

nD1

.Mn�1 nNn/.

SinceM0 �M1 � : : : , we obtain x 2M0 and x … Nn for all nwhich contradicts
M0 � S1

nD1Nn.
Assuming BC, we now use the idea from [20] to prove DC. Thus, let ˆWX (

X satisfy dom.ˆ/ D X ¤ ¿. The space Y D XN D Q1
nD1X of all maps

f WN ! X becomes a complete metric space if it is equipped with the metric

d.f; g/ WD
1

X

nD1
f .n/¤g.n/

2�n.
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The proof of this assertion is straightforward and skipped. (Actually, we will
prove this assertion in a more general context in Corollary 3.67 (observe Re-
mark 3.68), since the metric is in fact just the product metric (3.28) when dn

denotes the discrete metric

dn.x; y/ D
´

1 if x ¤ y,

0 if x D y,

on Xn WD X .)
For n 2 N, we let On denote the family of all f 2 Y with the property that for

each k � n there is some ` > k with f .`/ 2 ˆ.f .k//.
Then each On is open. Indeed, for each f 2 On there is some L such that

for each k � n there is some ` � k with f .`/ 2 ˆ.f .k// and ` � L. Then
On contains all g 2 Y with d.f; g/ < 2�L, because f .j / D g.j / for all j D
1; : : : ; L.

Hence, Nn WD Y nOn is closed. Moreover, for every f 2 Nn and every " > 0,
there is some g 2 On with d.f; g/ < ". Indeed, we fix some integer K � n with
2�K < ", and for k � K, we put g.k/ WD f .k/ and choose g.KCk/ 2 ˆ.f .k//;
for k > 2K, we put g.k/ WD x0 where x0 2 X is arbitrary. Then g 2 On by
construction, and d.f; g/ � P

k>K 2
�k D 2�K < ".

We thus have shown that Nn has no interior points. We conclude from BC that
Y ¤ S1

nD1 Nn, that is, there is some g 2 T1
nD1On. Hence, for every k 2 N

there is some smallest ` D `.k/ 2 N with g.`/ 2 ˆ.g.k//. Then `WN ! N, and
we can define f WN ! X inductively by f .1/ WD g.1/ and f .kC1/ WD g.`.k//.
Then f .nC 1/ 2 ˆ.f .n// holds for all n 2 N.

The proofs that none of the implications in (2.5) can be reversed in ZF require
to use Cohen’s forcing method which is beyond the scope of this monograph. We
refer to [81] for these proofs.

The above application of DC in Baire’s category theorem is typical for many
results from analysis which use an inductive “construction”. It turns out that prac-
tically all “standard” results of analysis (including Lebesgue integration theory)
can be carried out in ZF C DC. As the above equivalence shows, one can often
not omit DC. However, results which can be obtained with DC (instead of AC)
might be considered as “approximately constructive”. For these reasons, we will
use DC tacitly throughout, but mark those results explicitly which we can prove
only with AC.

Several applications where AC cannot be avoided refer to partial orders. Recall
that a relation � on a set X is called a partial order if it is

(a) reflexive, that is x � x holds for all x 2 X ,
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(b) transitive, that is x � y � z implies x � z, and

(c) antisymmetric, that is x � y and y � x implies x D y.

A chain in such a set is a subset C � X which is totally ordered, that is, for every
x; y 2 C one of the relations x � y or y � x holds. Recall that an element y 2 X
is an upper bound (lower bound) for M � X if x � y (y � x) for every x 2 M .
If additionally y 2 M then y is a maximum (minimum) of M . The antisymmetry
implies that each subset of M has at most one maximum (minimum), denoted by
maxM (minM ). The supremum of M � X is the minimum of the set of upper
bounds of M and is denoted by supM . Similarly, the infimum of M � X is the
maximum of the set of lower bounds of M and is denoted by infM .

Theorem 2.4 (Bourbaki–Witt). Let X ¤ ¿ be partially ordered such that every
nonempty chain in X has a supremum. If f WX ! X satisfies x � f .x/ for all
x 2 X then f has a fixed point.

Proof. Fix x0 2 X . Let A denote the system of all A � X satisfying x0 2 A,
f .A/ � A, and such that if C � A is a chain then supC 2 A. Then X 2 A, and
so we can define A0 WD T

A.
Note that A0 2 A. Indeed, x0 2 A0 by definition, and f .A0/ is contained in

each A 2 A and thus in A0. Similarly, for each chain C � A0 the element supC
is contained in each A 2 A and thus in A0.

If we can show that A0 is a chain, we put x� WD supA0 D maxA0. Then
f .x�/ 2 A0 implies x� � f .x�/, and so x� is a fixed point of f .

To see that A0 is a chain, we show first that x0 D minA0. Indeed, A1 WD
¹x 2 A0 W x0 � xº belongs to A, and so A0 � A1 � A0 implies A0 D A1.

Let B denote the set of all x 2 A0 such that for each y 2 A0 n ¹xº with y � x
we have f .y/ � x.

For x 2 B , let Bx denote the set of all y 2 A0 satisfying y � x or f .x/ � y.
We show that Bx 2 A. Indeed, since x 2 A0 we have x0 D minA0 � x, and so
x0 2 Bx. If y 2 Bx then we have in case f .x/ � y that f .x/ � y � f .y/ and
in case y � x in view of x 2 B either f .y/ � x or y D x (hence f .x/ � f .y/).
In all cases, we have f .y/ 2 Bx . Hence, we have shown f .Bx/ � Bx . Finally,
if C � Bx is a chain, we have to show that z WD supC 2 A0 belongs to Bx. This
is clear by definition of the supremum if x is an upper bound for C . Otherwise,
there is some y 2 C with f .x/ � y. Then f .x/ � y � z and thus also z 2 Bx .

Since Bx 2 A, we have A0 � Bx , and so every x 2 B has the property that
every y 2 A0 satisfies y � x or f .x/ � y.

We show now that B 2 A. Indeed, from x0 D minA0 we obtain that there is
no y 2 A0 n ¹x0º with y � x, and so x0 2 B . If x 2 B then for every y 2 A0

we have, by what we just proved, y � x or f .x/ � y. Hence, if y 2 A0 n ¹f .x/º
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and y � f .x/ then f .x/ — y, and so we must have y � x. Thus, x 2 B implies
f .y/ � x � f .x/ or y D x. In both cases, it follows that f .y/ � f .x/, hence
f .x/ 2 B , and so we have shown f .B/ � B . Finally, if C � B is a chain, we
have to show that z WD supC 2 A0 belongs to B . Thus, let y 2 A0 n ¹zº satisfy
y � z. Since z D supC , it follows that y is not an upper bound for C , and so
there is some x 2 C such that x — y. Since x � f .x/, we have f .x/ — y, and
so x 2 B implies y � x by what we have shown above. From x 2 B , we obtain
now f .y/ � x � z. Hence, z 2 B , as required.

Since B 2 A, we have A0 � B . Hence, if x; y 2 A0 we have x 2 B . By what
we have shown above, we have y � x or x � f .x/ � y, and so A0 is a chain.

Recall that a chain C � X in a partially ordered setX is maximal if C � C0 �
X implies that C0 D C or that C0 is not a chain. An element x 2 X is called
maximal (minimal) if x — y (y — x) for every y 2 X n ¹xº.
Theorem 2.5. In ZF the following statements are equivalent:

(a) AC.

(b) (Hausdorff’s Maximality Theorem; Kuratowski’s Lemma). Every par-
tially ordered set contains a maximal chain.

(c) (Zorn’s Lemma). If every chain in a partially ordered setX has a supremum
then X has a maximal element.

Proof. It is trivial that Hausdorff’s maximality theorem implies Zorn’s lemma.
Indeed, let C be a maximal chain in a partially ordered set X . If x WD supC
exists then it is a maximal element of X , since if there is some y 2 X n ¹xº with
x � y then y … C , and so the chain C [ ¹yº contradicts the maximality of C .

We show now that Hausdorff’s maximality theorem follows from each of the
other statements. Let X ¤ ¿ be partially ordered, and X0 be the set of all chains
inX , ordered by inclusion. Then X0 ¤ ¿, and each chain inX0 has a supremum,
namely the union of the chain. Every maximal element in X0 is a maximal chain
in X , so we are to show that X0 has a maximal element.

If Zorn’s lemma holds then X0 has a maximal element, and we are done. If AC
holds, we consider the multivalued map ˆWX0 ( X0, defined by

ˆ.C/ WD ¹C0 2 X0 n ¹C º W C � C0º.
If X0 has no maximal element then dom.ˆ/ D X0, and so AC (Proposition 2.2)
implies that ˆ has a single-valued selection f . Theorem 2.4 implies that f has a
fixed point which is then a maximal element of X0.

For the remaining implication, suppose that Hausdorff’s maximality theorem
holds, and that ˆWX ( Y satisfies dom.ˆ/ D X . Let X0 denote the set of
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all single-valued functions from a subset of X into Y which are selections of ˆ.
Then X0 is partially ordered by inclusion of the graph of these functions. If C
is a maximal chain in X0 then

S

C is the graph of a selection f WM ! Y of
ˆjM . Assume by contradiction that M ¤ X . Then there is some x 2 X nM .
We extend f to M [ ¹xº by letting f .x/ denote some element of ˆ.x/. Then
C [ ¹f º is a chain in X0, contradicting the maximality of C .

We will usually use Theorem 2.5 in the form of Hausdorff’s maximality the-
orem. As a simple first example of this type, we show the well-known fact that
every vector space has a Hamel basis.

Recall that a Hamel basis of a vector space X over some field K is a family of
linearly independent ei 2 X .i 2 I / such thatX is the linear hull of all ei .i 2 I /.

Corollary 2.6. (AC). Every vector space X has a Hamel basis.

We will see in Proposition 6.15 that AC is crucial here.

Proof. Let B denote the family of all linearly independent subsets of X . Then
B is partially ordered by inclusion (that is, B1 	 B2 ” B1 � B2), and by
Hausdorff’s maximality theorem, B contains a maximal chain C .

Since C is a chain, it follows that C D S

C is linearly independent. Indeed,
if e1; : : : ; en 2 C and �1; : : : ; �n 2 K satisfy �1e1 C � � � C �nen D 0, there are
Ck 2 C with ek 2 Ck for k D 1; : : : ; n. Since the finitely many sets Ck are
pairwise contained in each other, some of these sets, say C1, contains all other
Ck. In particular, we have e1; : : : ; en 2 C1. Since C1 is linearly independent, it
follows that �1 D � � � D �n D 0, and so also C is linearly independent.

The maximality of C implies that the linear hull of C is all of X . Indeed,
otherwise there is some e 2 X which is linearly independent from C , and then C

together with C [ ¹eº 2 B would be a strictly larger chain than C .

2.2 Topological Notations and Basic Results

For clarity, let us first fix some topological conventions which sometimes vary
slightly in literature.

By a topological space, we mean a space X and an associated family of open
subsets with the property that unions and finite intersections of open sets are open,
and X and ¿ are open. The closed sets are by definition the complements of open
sets.

Unless we explicitly say so, we do not require that neighborhoods are open.
Moreover, we also define neighborhoods of sets in the obvious way:
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Definition 2.7. Let X be a topological space, and A � X . A set M � X is a
neighborhood of A if there is an open set U � X with A � U �M . For the case
A D ¹xº, we call M a neighborhood of x 2 X .

We recall the following simple fact:

Proposition 2.8. A set M � X is open if and only if it is a neighborhood of each
of its points.

Proof. If M is a neighborhood of each of its points, then M is the union of all
open sets U � X satisfying U � M . The converse is trivial.

Unless we say something else, subsets of topological spaces are always en-
dowed with the inherited topology, that is:

Definition 2.9. IfX is a topological space and Y � X , then the open setsM � Y
are those of the form M D U \ Y with an open set U � X .

It is well-known that one can equivalently replace “open” by “closed” in this
definition.

The interior, closure, and boundary of a setM � X will be denoted by VM ,M ,
and @M , respectively. If X is unclear, we also write @XM for the boundary of M
in X . Recall that the closure of M is the smallest closed set containing M , that
is, it consists of all points x 2 M with the property that every neighborhood of x
intersects M . The interior of M is the largest open set contained in M , and the
boundary is the difference between these two sets, that is

@M DM n VM .

Proposition 2.10. Let M � Y � X . If M is open (closed) in X then M is open
(closed) in Y . The converse holds if Y is open (closed) in X . The closure of M
in Y is M \ Y where M denotes the closure of M in X .

Proof. The first assertions follow immediately from the definition, and the last
assertion follows from the first, since M is the intersection of all closed in X sets
containing M .

The following generalization of the last assertion for the case that M is not
necessarily a subset of Y will be useful in Section 14.4.
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Proposition 2.11. Let M;Y � X . If there is N � X such that N n Y is closed
(in X ) and contains M n Y then

M \ Y DM \ Y .

All closures are understood with respect to X .

Proof. Putting C WD N nY , we haveM � .M\Y /[C , and soM � .M \ Y /[
C . Since C is closed, we have C D C , and so

M \ Y � .M \ Y / [ .C \ Y / DM \ Y .

Hence, M \ Y �M \ Y , and the converse inclusion is trivial.

Occasionally, the following characterization of closed sets turns out to be use-
ful:

Proposition 2.12. A set M � X is closed if and only if every x 2 M has a
neighborhood U � X such that M \ U is closed in U .

Proof. If M is closed then the definition of the inherited topology implies that
M \ U is closed in U , even for every set U � X . Conversely, if M fails to
be closed then there is some x 2 M with x … M . For every neighborhood
U � X of x the following holds: Every neighborhood V � U of x in U is also
a neighborhood of x in X and thus contains some y 2 M . Since y 2 M \ V D
.M \ U / \ V , we conclude that x 2 U nM belongs to the closure of M \ U
in U , and so M \ U fails to be closed in U .

Recall that a map f WX ! Y is said to be continuous at x 2 X if for each
neighborhood V � Y of f .x/ the set f �1.V / is a neighborhood of x, that is,
if there is a neighborhood U � X of x with f .U / � V . A map f WX ! Y is
continuous if it is continuous at each x 2 X . It is well-known that this holds if
and only if f �1.M/ is open (closed) for every open (closed) set M � Y . The set
of continuous functions from X into Y is denoted by C.X; Y /.

A homeomorphism is a continuous map f WX ! Y between topological spaces
with a continuous inverse f �1WY ! X . If such an f exists then X and Y are
called homeomorphic.

We recall the definition of connectedness and path-connectedness.

Definition 2.13. A topological space X is connected if it is not the union of
two disjoint open nonempty subsets. It is path-connected if for each two points
x1; x2 2 X there exists a path in X connecting them, that is, a continuous map
f W Œ0; 1�! X with f .0/ D x1 and f .1/ D x2.
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In situations like these, the definition refers also to subsets of topological
spaces: We equip the subset with the inherited topology.

Proposition 2.14. Every path-connected space is connected. In particular, inter-
vals in R are connected.

Proof. Assume by contradiction that X D A1 [ A2 is path-connected although
A1; A2 � X are open and nonempty. There is a continuous f W Œ0; 1� ! X with
f .0/ 2 A1 and f .1/ 2 A2. Let t0 2 Œ0; 1� denote the supremum of all t 2 Œ0; 1�
with f .t/ 2 A. Then f .t0/ 2 Ai for i D 1 or i D 2. However, then f .U / � Ai

for a neighborhood Ui � Œ0; 1� of t0 which is a contradiction to the definition of
t0.

Recall that the converse to Proposition 2.14 does not hold: The “topologist’s
sine curve” (the closure of graph of the map x 7! sin.1=x/ for x > 0 in R2) is
an example of a space which is connected but not path-connected. To see that this
space is connected, we observe that the graph of the map x 7! sin.1=x/ .x > 0/

is path-connected, hence connected, and apply the following observation:

Lemma 2.15. If M � X is connected and M � N �M then N is connected.

Proof. If N D A1 [ A2 with two disjoint open (in N ) nonempty sets Ai , then
M D B1 [ B2 with the disjoint open (in M ) sets Bi WD M \ Ai . We obtain
a contradiction if we can show that Bi ¤ ¿ for i D 1; 2. However, if Bi D ¿
then Ai � N n M . Since Ai is open in N there is an open set U � X with
Ai D U \ N . Choose x 2 Ai . Then U is a neighborhood of x which is disjoint
from M , a contradiction to x 2 M .

Definition 2.16. The component of a point x 2 X in X is the union of all con-
nected sets containing x. The path-component of x in X is the union of all path-
connected sets containing x.

Proposition 2.17. The components are connected, and the path-components are
path-connected. Being in the same (path-)component of a space X is an equiva-
lence relation on X , that is, each space divides into its components (and into its
path-components). The components are closed.

Proof. Let Yi .i 2 I / denote the family of all path-connected subsets of X con-
taining x, and let Y be their union. If x1; x2 2 Y then xk 2 Yik and so xk can be
connected with x by some path in Yik

� Y . The obvious “concatenation” of the
corresponding paths defines a path from x1 to x2 in Y ; hence Y is path-connected.
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Let Xi .i 2 I / denote the family of all connected subsets of X containing x,
and let U be their union. Assume that U D A1 [ A2 with open (in U ) disjoint
nonempty A1; A2 � U . Without loss of generality, assume x 2 A1. Fix some
y 2 A2 and some i 2 I with y 2 Xi . Then Bk WD Ak\Xi are nonempty disjoint
open subsets of Xi with Xi D B1 [ B2 which is a contradiction. Hence, U is
connected. Since also U is connected by Lemma 2.15, we have Xi D U for some
i 2 I and thus U � U . Hence, U is closed.

For x 2 X , we let now K.x/ denote the (path-)component of x. By what
we have shown, each K.x/ is (path-)connected. If K.x1/ \ K.x2/ ¤ ¿, say
x3 2 K.x1/ \ K.x2/, we thus obtain first K.x3/ � K.xi/ .i D 1; 2/ and then
K.xi/ � K.x3/ .i D 1; 2/ and thus even K.xi/ D K.x3/ .i D 1; 2/.

Corollary 2.18. Let X D A1 [ A2 with disjoint open sets Ai � X .i D 1; 2/.
Then any component of X is contained in either A1 or in A2.

Proof. Let C be a component of X . Then C is connected by Proposition 2.17.
However, Bi WD C \ Ai are open in C and disjoint with C D B1 [ B2. Thus,
Bi D ¿ for some i .

Recall that a function ˆWX ( Y is called locally constant if each x 2 X has
a neighborhood U � X such that ˆjU is constant (that is, independent of the
argument).

Proposition 2.19. Let ˆWX ( Y be locally constant. Then ˆjC is constant for
any component C of X .

Proof. We fix x0 2 C and put A1 WD ¹x 2 X W ˆ.x/ D ˆ.x0/º and A2 WD
¹x 2 X W ˆ.x/ ¤ ˆ.x0/º. Then X D A1 [ A2, and A1 and A2 are disjoint
and open since ˆ is locally constant. Hence, the assertion follows from Corol-
lary 2.18.

We recall the following important property of continuous functions:

Proposition 2.20. If f WX ! Y is continuous and C � X is connected then
f .C / is connected.

Proof. Otherwise f .C / D A1 [ A2 with nonempty disjoint open sets A1; A2 �
f .C /. There are open sets Bi � Y with Ai D Bi \ f .C / .i D 1; 2/. Then
Ci WD C \ f �1.Bi/ are nonempty, disjoint and open in C with C D C1 [ C2,
contradicting the connectedness of C .



22 Chapter 2 Multivalued Maps

Definition 2.21. Let X be a topological space, and x 2 X . A basis of neighbor-
hoods of x is a family U of neighborhoods of x such that every neighborhood
of x is contained in some set from U .

Definition 2.22. A topological space X is locally connected or locally path-
connected if each point has a neighborhood basis consisting of connected or path-
connected sets, respectively.

Proposition 2.23. X is locally connected if and only if for each open U � X

the components of U are open in X . Moreover, the following statements are
equivalent:

(a) X is locally path-connected.

(b) For each open U � X the path-components of U are open in X .

(c) X is locally connected and each connected open U � X is path-connected.

(d) The components of each open U � X are open and coincide with its path-
components.

Proof. Suppose that the (path-)components of open subsets of X are open in X .
If x 2 X and U � X is an open neighborhood of x then the (path-)component
of U containing x is open in X and thus a neighborhood of x contained in U .
Hence, X is locally (path-)connected.

Conversely, let X be locally (path-)connected, and U � X be open. Let M be
a component of U . Each x 2 M has a (path-)connected neighborhood V � X

with V � U . Proposition 2.17 implies that M is the (path-)component of x and
thus V �M . Hence, Proposition 2.8 implies that M is open in X .

We thus have shown the first assertion and the equivalence of (a) and (b).
Suppose now (b). Let U � X be open and connected. By hypothesis, the path-

components of U are open. Hence, if A1 � U is a nonempty path-component
of U then A1 is open, and A2 WD U n A1 is the union of the path-components
disjoint from A1 and thus also open. Since U is connected, it follows that A2 D
¿, that is, U D A1 is path-connected. Hence, (c) holds.

If (c) holds and U � X is open, recall that we have already shown that the
components of U are open. Hence, by hypothesis, the components are path-
connected. In view of Proposition 2.14, it follows that the components are the
path-components. Thus, (d) holds. Finally, (d) evidently implies (b).

Definition 2.24. A family O of subsets of a topological space X is a cover of
M � X if

S

O D M . If additionally each O 2 O is open (closed), O is called
an open cover (closed cover).
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A locally finite cover of X is a cover O of X with the property that each x 2 X
has a neighborhood which intersects at most finitely many elements of O .

A cover O of X is a refinement of a cover U of X if for each O 2 O there is
some U 2 U with O � U .

We use throughout the convention that by a countable set we mean a set which
is either finite or countably infinite.

Definition 2.25. A subset of a topological spaceM � X is compact if every open
cover O ofM has a finite subcover. It is Lindelöf if every open cover O of M has
a countable subcover.

A topological space X is (countably) paracompact if every (countable) open
cover U of X has a locally finite open refinement.

Proposition 2.26. Every compact space X is paracompact.

Proof. Any finite subcover of an open cover U is a locally finite open refinement
of U .

We recall the most important properties of compact spaces:

Definition 2.27. A nonempty family Ai .i 2 I / has the finite intersection prop-
erty if

T

i2I0
Ai ¤ ¿ for each nonempty finite set I0 � I .

Proposition 2.28. X is compact if and only if every family of closed subsets Ai �
X .i 2 I / with the finite intersection property satisfies

T

i2I Ai ¤ ¿.

Proof. The familyOi WD X nAi .i 2 I / consists of open sets, and
T

i2I0
Ai D ¿

if and only if ¹Oi W i 2 I0º is a cover of X .

Proposition 2.29. M � X is compact if and only if M is a compact space with
the inherited topology. If X is compact andM � X is closed then M is compact.

Proof. Let M � X be compact, and O be an open in M cover of M . Let O0

be the family of all open set O � X with O \M 2 O . Since M is compact,
there is a finite subcover O1 � O0 for M , and then the sets O \M with O 2 O1

constitute a finite subcover of O for M .
Conversely, letM � X be compact with respect to the inherited topology. Now

if O is an open in X cover of M then the family of all O \M with O 2 O is
an open in M cover of M and thus has a finite subcover Ok \M .k D 1; : : : ; n/

with Ok 2 O . Then O1; : : : ; On 2 O form a finite open subcover of M .
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The second assertion follows from the first and Proposition 2.28, since subsets
of M are closed if and only if they are closed in X (Proposition 2.10).

There is an alternative proof of the second assertion of Proposition 2.29 which
has the advantage that the same idea can be used for paracompact spaces:

Proposition 2.30. If X is (countably) paracompact and M � X is closed then
M is (countably) paracompact.

Proof. Let O be a (countable) open in M cover of M . Let O0 be the family of
all sets of the form O [ .X nM/ with O 2 O . Then O0 is an open cover of X
and thus has a locally finite open refinement U . Then, in the space M , the family
¹U \M W U 2 U º is a locally finite open refinement of O .

Definition 2.31. A set M � X is relatively compact in X if it is contained in a
compact subset of X .

We point out that our definition differs slightly from the definition used in some
text books: In many text books, it is required that M be compact. In general, this
is equivalent only if X is a Hausdorff space (Corollary 2.47).

Proposition 2.32. Let M � X be relatively compact. Then every subset of M is
relatively compact, and every subset of M which is closed in X is compact.

Proof. The first assertion is an immediate consequence of the definition, and the
second follows from Proposition 2.29.

2.3 Separation Axioms

Concerning separation axioms of topological spaces, literature is not completely
unique: In some references T3 or T4 spaces are by definition supposed to be T1.
We will not assume this. In order to avoid any misunderstanding, we formulate
exactly the definitions which we will use.

We only list those axiom that will actually play a role for us later. Since we
have no other use for the axiom T1, we use the Hausdorff property instead in
the definition of “(completely) regular” and “(perfectly) normal” spaces which is
unusual but easily seen to be equivalent in this context.

Definition 2.33. Let X be a topological space.

(a) X is Hausdorff if each two different points of X have disjoint neighbor-
hoods.
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(b) X is T3 if for each closed subset A � X and each x 2 X n A the set A and
the point x have disjoint neighborhoods.

(c) X is T3a if for each closed subset A � X and each x 2 X n A there is
f 2 C.X; Œ0; 1�/ with f .x/ D 0 and f .A/ D ¹1º.

(d) X is T4 if each two disjoint closed subsets ofX have disjoint neighborhoods.

(e) X is T5 if each subset of X is T4.

(f) X is T6 if for each two disjoint closed subsets A;B � X there is f 2
C.X; Œ0; 1�/ with f �1.0/ D A and f �1.1/ D B .

A regular space is a T3 Hausdorff space, a completely regular space is a T3a

Hausdorff space, and a normal space is a T4 Hausdorff space. A completely nor-
mal space is a T5 Hausdorff space. A perfectly normal space is a T6 Hausdorff
space.

Remark 2.34. It is equivalent to require that the neighborhoods in the above def-
inition are open.

The class of T5 and T6 spaces is perhaps not so well-known, but these separa-
tion axioms will appear rather naturally as hypotheses in Proposition 4.40, Theo-
rem 12.22, and in dimension theory (Section 5.2). Moreover, T5 spaces will play
an important role in connection with the degree for noncompact function triples
(Section 11.4, Remark 14.39, Theorem 14.49 and its consequences).

Recall that A;B � X are separated in X if A \ B D ¿ and A \ B D ¿. In
several text books some of the following equivalent characterizations is used as
the definition of T5 spaces.

Proposition 2.35. For a topological space X the following statements are equiv-
alent:

(a) X is T5.

(b) All open subsets of X are T4.

(c) Any two separated subsets A;B � X have disjoint neighborhoods.

Proof. Suppose that (c) holds. IfM � X and ifA;B �M are disjoint and closed
in M then they are separated in X . Hence, A and B have disjoint open neighbor-
hoods U;V � X . Then U \M and V \M are disjoint open neighborhoods of A
and B in M . Thus, (a) holds.

Trivially, (a) implies (b). Suppose now that (b) holds and that A;B � X are
separated. The open subset M WD X n .A \ B/ is T4. Since A0 WD M \ A and
B0 WDM\B are closed inM and disjoint, they have disjoint open neighborhoods
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U;V �M . SinceM is open, U;V are also open inX , and we have A � A0 � U
and B � B0 � V .

As a rule of thumb, the number n in “Tn” indicates how restrictive the corre-
sponding separation axiom is. More precisely, this holds with only one exception,
and this exception does not exist for Hausdorff spaces.

Theorem 2.36. For every topological space X we have the chains of implications

T6)T5)T4, T3a)T3.

With the Hausdorff property, we have even

perfectly normal) completely normal) normal)
completely regular) regular)Hausdorff

Proof. The implication T5)T4 is trivial, and the implication T3a)T3 (and also
T6)T4) follows by considering the disjoint neighborhoods f �1.Œ0; 1=2// and
f �1..1=2; 1�/.

We show now the implication T6)T5. Thus, letX be T6. By Proposition 2.35,
we have to show that any separated sets A;B � X have disjoint neighborhoods.
Since X is T6, there are f; g 2 C.X; Œ0; 1�/ with f �1.0/ D B , g�1.0/ D A,
f �1.1/ D g�1.1/ D ¿. For n D 1; 2; : : : , we put

Un WD f �1
�

. 1
n ; 1�

� n g�1
�

Œ 1
n ; 1�

�

,

Vn WD g�1
�

.1
n ; 1�

� n f �1
�

Œ 1
n ; 1�

�

.

Then Un and Vn and thus also U WD S1
nD1 Un and V WD S1

nD1 Vn are open. For
k � n, we have Uk \Vn � f �1.. 1

n
; 1�/\Vn D ¿ and Vk \Un � g�1.. 1

n
; 1�/\

Un D ¿. Hence Uk \Vn D ¿ for all k; n D 1; 2; : : : which implies U \V D ¿.
We have A � U since for each x 2 A we have x … B and thus f .x/ > 0 D g.x/;
for n � 1=f .x/, we thus have x 2 Un � U . An analogous argument shows that
B � V . Hence, U and V are the required disjoint neighborhoods of A and B .

It remains to show that normal spaces are completely regular. This follows from
Urysohn’s lemma which is discussed below.

Remark 2.37. We point out that the only nontrivial assertions of Theorem 2.36
are the two implications T6)T5 and “normal)completely regular”. In particu-
lar, the implication T6)T4 is easy to obtain, as we have observed in the above
proof.

The famous lemma of Urysohn implies immediately that any normal space is
completely regular (put B WD ¹xº and consider the function 1 � f ):
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Lemma 2.38 (Urysohn). A space X is T4 if and only if for each two disjoint
closed subsets A;B � X there is a continuous function f WX ! Œ0; 1� with
f .A/ D ¹0º and f .B/ D ¹1º.

We postpone the proof of Lemma 2.38 for a moment.
It is well-known that topological vector spaces are T3a. Unfortunately, they

are not T4, in general. For this reason, the class of T3a spaces is of a particular
interest.

Also for T3a spaces there is some form of Urysohn’s lemma which is less
known but rather simple to prove:

Lemma 2.39 (Urysohn for T3a spaces). If X is T3a then for each two disjoint
subsets A;B � X , one being closed and the other being compact, there is f 2
C.X; Œ0; 1�/ with f .A/ D ¹0º and f .B/ D ¹1º.
Proof. Assume that A is compact and B is closed. Let O be the family of all
sets of the form g�1.Œ�1; 0// where g 2 C.X; Œ�1; 1�/ and with g.A/ D ¹1º.
Since X is T3a, the set O is an open covering of A. By the compactness of A,
we thus find finitely many continuous functions g1; : : : ; gn 2 C.X; Œ�1; 1�/ with
gk.B/ D ¹1º such that h.x/ WD min¹g1.x/; : : : ; gn.x/º < 0 for every x 2 A.
Hence, f .x/ WD max¹0; h.x/º has the required properties.

Using Urysohn’s lemma, we can give an alternative characterization of T6

spaces.
Recall that a subset M of a topological space X is called a Gı if it is the

intersection of countably many open sets Un � X .

Proposition 2.40. Let X be T4 (T3a) and A � X be closed (compact). Then the
following assertions are equivalent:

(a) A is a Gı .

(b) There is f 2 C.X; Œ0; 1�/ with f �1.0/ D A.

(c) For each closed B � X with A \ B D ¿ there is f 2 C.X; Œ0; 1�/ with
f �1.0/ D A and f .B/ D ¹1º.

Proof. The implication (c))(b) follows with the choice B D ¿. For the proof of
the implication (b))(a), suppose that (b) holds. Then Un WD f �1.Œ0; 1=n// are
open neighborhoods of A. For each x 2 X nA, we have f .x/ > 0, and so there is
some n with f .x/ > 1=n, hence x … Un. It follows that A D T1

nD1 Un is a Gı .
To prove (a))(c), let A be the intersection of open sets Un � X .n D

1; 2; : : : /. Let B � X be closed with A \ B D ¿. For each n D 1; 2; : : : ,
the closed (compact) set A and the closed set Bn WD B [ .X n Un/ are disjoint,
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and so Lemma 2.38 (or Lemma 2.39) implies that there is fn 2 C.X; Œ0; 1�/ with
fn.A/ D ¹0º and fn.Bn/ D ¹1º. Then f .x/ WD P1

nD1 2
�nfn.x/ is the uniform

limit of a sequence of continuous functions and thus belongs to C.X; Œ0; 1�/. By
construction, we have f .A/ D ¹0º. For every x 2 X n A there is some n with
x … Un, and so x 2 Bn implies fn.x/ D 1 and thus f .x/ � 2�n > 0. Hence,
f �1.0/ D A. Finally, for each x 2 B , we have x 2 Bn .n D 1; 2; : : : /, hence
f .x/ D P1

nD1 2
�n D 1, and so f .B/ D ¹1º. Thus, (c) holds.

Corollary 2.41. A space X is T6 if and only if X is T4 and each closed subset is
a Gı .

Proof. If A � X is closed and X is T6, then Proposition 2.40 implies that A is a
Gı . Moreover, X is T4 by Remark 2.37.

Conversely, suppose thatX is T4 and that A;B � X are closed and disjoint Gı -
sets. By Proposition 2.40, there are functions F;G 2 C.X; Œ0; 1�/ with F�1.0/ D
A, G�1.0/ D B , and F.B/ D G.A/ D ¹1º. Then the function f WD .F C 1 �
G/=2 2 C.X; Œ0; 1�/ satisfies

f �1.0/ D ¹x W F.x/ D G.x/� 1º D ¹x W F.x/ D 0 and G.x/ D 1º D A

and

f �1.1/ D ¹x W F.x/ D G.x/C 1º D ¹x W F.x/ D 1 and G.x/ D 0º D B .

Thus, the given condition is sufficient for T6.

All separation properties except for T4 carry over to subsets:

Theorem 2.42. If X is Hausdorff, T3, T3a, T5, or T6 then every subset M � X

has the same property. Hence, if X is regular, completely regular, completely
normal, or perfectly normal then every subset M � X has the same property.

Proof. The proof for Hausdorff spaces and T5 spaces is trivial, and for T3 and
T3a spaces, it follows from the fact that if A0 � M is closed in M then there is a
closed set A � X with A0 D A\M . Hence, if x 2M nA0 then also x 2 X nA,
and so the T3 or T3a property of X implies the corresponding property of M .

Let X be T6 and M � X . Since Theorem 2.36 implies that X is T5, the
subset M is T4. By Corollary 2.41, it suffices to show that every closed (in M )
subset A � M is a Gı in M . Letting A denote the closure of A in X , we have
by Proposition 2.10 that A D A \ M . Since X is T6, Corollary 2.41 implies
that A is a Gı in X . Hence, A is the intersection of a sequence of open (in X )
subsets Un � X . Then Vn WD Un \M are open in M , and their intersection is
A \M D A. Thus, A is a Gı in M , as required.
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Remark 2.43. Theorem 2.42 for T6 spaces implies the nontrivial implication
T6)T5 of Theorem 2.36. Indeed, if X is T6 then Theorem 2.42 implies that
any M � X is T6 and thus T4 by Remark 2.37. The latter means that X is T5.

Note, however, that we have used the implication T6)T5 to prove Theo-
rem 2.42 for T6 spaces so that we have actually shown that Theorem 2.42 for
T6 spaces is equivalent to the implication T6)T5 of Theorem 2.36.

For T4 spaces, there cannot be an analogue of Theorem 2.42: Every T4 space
which fails to be T5 is a counterexample by definition of T5 spaces. (A particular
example of such a space is the so-called Tychonoff plank [132] which is even
Hausdorff and compact.) However, a weak form of Theorem 2.42 holds also for
T4 spaces:

Proposition 2.44. If X is T4 then every closed subset is T4.

Proof. If X is T4, M � X is closed and A;B � M are closed and disjoint
then A;B are closed in X by Proposition 2.10. Hence, there are disjoint open
neighborhoods U;V � X of A and B , respectively. Then U \M and V \M are
disjoint open in M neighborhoods of A and B , respectively.

We recall that in the definition of Hausdorff and T3 spaces the single point may
be replaced by a compact set. We formulate the well-known proof to make clear
that it can be carried out without referring to the axiom of choice; not even the
countable axiom of choice is needed.

Proposition 2.45. In a Hausdorff space every compact subset is closed. If X is
Hausdorff then each two disjoint compact subsets have disjoint neighborhoods.
If X is T3 and A;B � X are disjoint, one of them being closed and the other
compact, then A and B have disjoint neighborhoods.

Proof. Let X be Hausdorff, A � X be compact, and x 2 X n A. Let O denote
the family of all open sets in X which are disjoint from some neighborhood of x.
Since X is Hausdorff, O is an open cover of A, and so a finite subcover of sets
O1; : : : ; On 2 O suffices. There are corresponding neighborhood U1; : : : ; Un �
X of x such that Oi \Ui D ¿ for i D 1; : : : ; n. Then

Sn
iD1Oi and

Tn
iD1 Ui are

disjoint neighborhoods of A and x, respectively. In particular, x … A, and so A is
closed.

Now if B � X is compact and disjoint from A, we have just seen that the set
U of all open sets with the property that there is a disjoint neighborhood of A
constitutes an open cover of B; the same holds if X is T3 and A is just closed.
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There is finite subcover of sets V1; : : : ; Vm 2 U and corresponding neighbor-
hoods W1; : : : ;Wm � X of B with Vi \Wi D ¿ .i D 1; : : : ;m/. Then

Sm
iD1 Vi

and
Tm

iD1Wi are disjoint neighborhoods of A and B , respectively.

Corollary 2.46. Every compact Hausdorff space X is normal.

Proof. By Proposition 2.29 closed subsets of X are compact, and so the assertion
follows from Proposition 2.45.

Corollary 2.47. A subset M of a Hausdorff space X is relatively compact in X
if and only if M is compact.

Proof. If M � K for some compact set K � X then K is closed by Proposi-
tion 2.45, and so M � K. Proposition 2.29 then implies that M is compact. The
converse implication is clear from the definition.

Usually, the T3 or T4 property is applied in the following form:

Corollary 2.48. The following statements for a topological space X are equiva-
lent:

(a) X is T3 (T4).

(b) For every open U � X and every compact (closed) A � X with A � U

there is an open V � X with

A � V � V � U .

In other words: A has a closed neighborhood which is contained in U .

All topological notions are understood with respect to the space X ; in particular,
V denotes the closure in X .

Proof. By Proposition 2.45 (or by the definition of T4 spaces), the sets A and
X nU have disjoint open neighborhoods V;W � X respectively. Since X nW is
closed, it contains V , and so V � X n U has the required property.

Conversely, if A;B � X are disjoint, B is closed and A D ¹xº (or A is closed)
then (b) with U WD X n B implies that there is an open V � X with A � V such
that the disjoint open set V0 WD X n V contains B . Hence, we have (a).

The following consequence will be used several times in the proof of the sum
theorem of dimension theory.

Corollary 2.49. If X is T4 then each two disjoint closed subsets A;B � X have
disjoint closed neighborhoods, that is, there are open sets U;V � X with A � U ,
B � V and U \ V D ¿.
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Proof. By Corollary 2.48, there is some open set U � X with A � U � U �
X n B and then some open set V � X with B � V � V � X n U .

Recall that X is locally compact if every point has a compact neighborhood.

Corollary 2.50. Every locally compact Hausdorff space X is regular.

Proof. Let A � X be closed and x 2 X n A. By hypothesis, there is a compact
neighborhood N � X of x. Then A \ N is closed in N and thus compact by
Proposition 2.29. Proposition 2.45 implies that A \ N and x have disjoint open
neighborhoods U;V � X , respectively. Since N is closed by Proposition 2.29,
we obtain that U [ .X n N/ and V \ N are disjoint neighborhoods of x and A,
respectively.

Now we return to Urysohn’s lemma. Actually, this Lemma 2.38 is a special
case of the Tietze extension theorem which we formulate and prove now.

Since the formulation of that result requires the notion of a convex hull, let us
first recall the latter in a more general context for later usage. A subset M of a
real or complex vector space X is called convex if for each x; y 2 M the “line
segment joining x and y” is contained in M , that is, if for each x; y 2 M and
each � 2 Œ0; 1�, we have �x C .1� �/y D y C �.x � y/ 2 M .

Proposition 2.51. Let M be a nonempty family of convex subsets of a real or
complex vector space X .

Then
T

M is convex. Moreover, if M is directed upwards with respect to set
inclusion, that is, if for each M;N 2 M there is some K 2 M withM [N � K,
then also

S

M is convex.
In particular, if M1 � M2 � � � � � X are convex then also

S1
nD1Mn is

convex.

Proof. If x; y 2 T

M and � 2 Œ0; 1� then the point �x C .1 � �/y belongs to
any M 2 M and thus to M. For the second assertion, assume that M is directed
upwards. Hence, for each x; y 2 S

M there is some M 2 M with x; y 2 M .
Since M is convex, we find for each � 2 Œ0; 1� that the point �x C .1 � �/y
belongs to M and thus to

S

M.

IfM is a subset of a real or complex vector spaceX , we use the symbol convM
to denote the convex hull of M , that is, the intersection of all convex subsets
containing M . By Proposition 2.51, convM is convex and thus the smallest
convex subset of X containing M . A more explicit description of convM is the
following.



32 Chapter 2 Multivalued Maps

Proposition 2.52. Let X be a vector space over R or C. Then convM D
S1

nD1 convn.M/ with

convn.M/ WD
°

n
X

kD1

�kxk W xk 2M;�k � 0;
n

X

kD1

�k D 1
±

.

Proof. We show first that M0 WD
S1

nD1 convn.M/ is convex. Thus, let x; y 2
M0, without loss of generality x D Pn

kD1 �kxk and y D PN
kDnC1 �kxk with

xk 2 M , �k � 0,
Pn

kD1 �k D
PN

kDnC1 �k D 1. For t 2 Œ0; 1�, we put

�k.t/ D
´

t�k if k � n,

.1 � t/�k if k > n.

Then �k.t/ � 0 and
PN

kD1 �k.t/ D t �1C .1� t/ �1 D 1, and so txC .1� t/y D
PN

kD1 �k.t/xk 2 M0. Hence, M0 is convex, and so convM �M0.
Conversely, we show by induction on n that any convex set N � X contain-

ingM satisfies convn.M/ � N . For n D 1, this is trivial, since conv1.M/ D M .
Suppose now x 2 convnC1.M/, say x D .

Pn
kD1 �kxk/C ty with xk ; y 2 M ,

�k ; t � 0 and s WD Pn
kD1 �k D 1� t . In case s D 0, we have x D y 2M � N ,

and in case s > 0 we have xs WD Pn
kD1 s

�1�kxk 2 convn.M/. The induction
hypothesis thus implies xs 2 N , and since y 2 N , we obtain by the convexity of
N that x D sxs C ty D .1� t/xs C ty 2 N , as required.

We will use the above results later on. The special caseM � X WD R which we
need now is actually much simpler: In this case, convM is the smallest interval
(closed, open, or half-open) containing M .

Theorem 2.53 (Tietze–Urysohn). Let X be a T4 space, A � X be closed, and
f 2C.A;R/. Then f has an extension to F 2C.X;R/ with F.X/�conv f .A/.

Historically, Lemma 2.38 was used as a tool to prove Theorem 2.53. The orig-
inal proof of the latter also used rather different methods (uniformly convergent
series etc). We use an approach from [103] to obtain both results simultaneously
by a method similarly to the original proof of Lemma 2.38.

Proof of Lemma 2.38 and Theorem 2.53. Let f 2 C.A;R/. We assume first that
f .A/ � Œ0; 1�. We put Q WD Q \ Œ0; 1�. For r 2 Q, we will construct closed sets
Br � X such that B1 D X , and

Br \ A D f �1.Œ0; r�/ for all r 2 Q,

Br � VBs for every r; s 2 Q, r < s.
(2.6)
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To this aim, we let � WD ¹.r; s/ 2 Q �Q W r < sº. Note that for .r; s/ 2 � the
set Ar WD f �1.Œ0; r�/ is closed in A and thus closed in X by Proposition 2.10.
Analogously, Us WD X n f �1.Œs; 1�/ is open in X , and Ar � Us . We show first
that for all .r; s/ 2 � there are open sets Vr;s � X satisfying

Ar � Vr;s � V r;s � Us for all .r; s/ 2 �,

V �;� � Vr;s for all .�; �/; .r; s/ 2 � with � < r and � < s.
(2.7)

To see that such sets exist, we let .rn; sn/ be an enumeration of the elements of
� and assume that Vr;s is already defined and satisfies (2.7) for all .r; s/ 2 �n WD
¹.rk; sk/ W k < nº. Since �n is finite, the sets

Cn WD Arn
[

[

.�;�/2�n
� < rn, � < sn

V �;�

and
On WD Usn

\
\

.r;s/2�n
rn < r , sn < s

Vr;s

are closed and open, respectively. Since Cn � On, we obtain from Corollary 2.48
that there is an open set Vrn;sn

� X satisfying Cn � Vrn;sn
� V rn;sn

� On.
Hence, we have defined Vr;s satisfying (2.7) for all .r; s/ 2 �nC1. The existence
of open Vr;s � X satisfying (2.7) for all .r; s/ 2 � now follows by induction (and
by the principle of dependent choices).

For r 2 Q with r < 1, we put now Br WD T

.r;s/2� V r;s , and B1 WD X .

These sets are closed and satisfy (2.6). Indeed, Ar � Vr;s � V r;s holds for all
.r; s/ 2 �, and so Ar � Br \ A. Conversely,

Br \ A �
\

.r;s/2�

.Us \ A/ D
\

s2Q
s>r

f �1
�

Œ0; s/
� D f �1

�

Œ0; r�
�

,

and for .�; �/ 2 � there is some r 2 Q with � < r < � , and so

B� � V �;r � Vr;� .

Since Vr;� is open and contained in V�;s for each s 2 Q with s > � , we have

Vr;� � VB� and thus have shown that B� � VB� . Hence, (2.6) is established.

Now we observe that (2.6) implies Bs � Br and VBs � VBr for s � r .s; r 2 Q/.
Hence, for any x 2 X D B1, the sets

I.x/ WD ¹s 2 Q W x 2 Bsº and J.x/ WD ¹s 2 Q W x 2 VBsº
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are intervals in Q containing 1, that is, putting I c.x/ WD Q n I.x/ and J c.x/ WD
Q n J.x/, we have

F1.x/ WD inf I.x/ D sup I c.x/ and F2.x/ WD inf J.x/ D sup J c.x/,

when we use the convention sup ¿ WD 1. Since (2.6) implies J.x/ � I.x/, we
have F1.x/ � F2.x/. On the other hand, for any r 2 J c.x/ and any s 2 Q with
s < r , we have s 2 I c.x/ by (2.6) and thus F1.x/ � F2.x/, whence we have

F.x/ WD F1.x/ D F2.x/ for all x 2 X .

Then F WX ! Œ0; 1� is continuous at every x0 2 X . To see this, we note that for
" > 0 there are r 2 J.x0/ and s 2 I c.x0/ with r � " < F.x0/ < s C ". Then
U WD VBr n Bs is a neighborhood of x0. For all x 2 U we have r 2 J.x/ and
s 2 I c.x/ and thus s � F.x/ � r . We obtain jF.x/� F.x0/j < " for all x 2 U ,
and so F is continuous at x0.

For x 2 A we have by (2.6) that

I.x/ D ¹s 2 Q W x 2 f �1.Œ0; s�/º D ¹s 2 Q W f .x/ � sº.
Since Q D Œ0; 1� � f .A/, we obtain F.x/ D inf I.x/ D f .x/.

We thus have shown that every continuous function f WA ! Œ0; 1� has a con-
tinuous extension F WX ! Œ0; 1�. This already implies Urysohn’s Lemma 2.38
(define f WA [ B ! Œ0; 1� by f jA D 0 and f jB D 1). Now if f .A/ is disjoint
from a set M � ¹0; 1º, then A and F�1.M/ are disjoint closed subsets of X ,
and so we find by Urysohn’s lemma a continuous function �WX ! Œ0; 1� with
�.A/ D ¹0º and �.F�1.M// D ¹1º. The continuous function

eF .x/ WD F.x/ � �.x/
�

F.x/� 1
2

�

then satisfies eF jA D F jA D f and

eF .X/ � conv
�

�

F.X/ nM �[
°1

2

±�

� Œ0; 1� nM .

Hence, we have shown that if I is any of the intervals I1 WD Œ0; 1�, I2 WD .0; 1�,
I3 WD Œ0; 1/, I4 WD .0; 1/ and if f WA! I is continuous then f has a continuous
extension eF WX ! I .

As the last step, we consider a general continuous map f WA ! R. Then
conv f .A/ is an interval, and so there is a homeomorphism hW conv f .A/ ! I

for some I 2 ¹I1; I2; I3; I4º. We have shown that h ı f has a continuous exten-
sion eF WX ! I , and then h�1 ı eF WX ! conv f .A/ is the required continuous
extension of f .
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Remark 2.54. In [123], there was a shortcut suggested to obtain sets Br satisfy-
ing (2.6) faster (with Q replaced by the dyadic numbers in Œ0; 1�). Unfortunately,
this shortcut seems to have a problem: With the notation from [123], it is not clear
why A.2�n�1.2i C 1// should be contained in the interior (with respect to X !) of
X.2�n.i C 1//.

An important property of Hausdorff spaces is the uniqueness of limits and ex-
tensions.

Recall that a sequence xn 2 X is said to be convergent to x 2 X , if each
neighborhood of x contains xn for all except at most finitely many n. We write in
this case x D limn!1 xn or, more briefly, xn ! x.

Lemma 2.55. Let Y be Hausdorff, and X be a topological space.

(a) If xn 2 Y satisfies xn ! x and xn ! y then x D y.

(b) If F;G 2 C.X; Y / are such that there is some M � X with F jM D GjM
and M D X then F D G.

Proof. Otherwise, there are disjoint neighborhoods O1; O2 � Y of x and y re-
spectively or F.z/ and G.z/ respectively for some z 2 X . However, xn 2
O1 \ O2 for all except finitely many n or F.u/ D G.u/ 2 O1 \ O2 for all
u 2M in a neighborhood of z.

Definition 2.56. A basis of the topology of X is a family O of open sets in X
with the property that every nonempty open set in X is the union of sets from O .

A subbasis of the topology of X is a family O of open sets in X with the
property that the family of all finite intersections of elements from O together
with X constitutes a basis of the topology.

Proposition 2.57. Let O be a family of subsets of X . Then there is a unique
topology with O as a subbasis. A nonempty set O ¤ X is open with respect to
this topology if and only if it is a union of finite intersections of elements from O .

Proof. The uniqueness is clear: Since O is a subbasis, the open sets must be
as described in the assertion. For the existence, one just has to verify that the
family T of open sets defined in this way is indeed closed under unions and finite
intersections. Only the latter is nontrivial. By induction, it suffices to show that
the intersection of each two sets from T belongs to T . Thus, assume thatOk 2 T

.k D 1; 2/. By hypothesis, Ok is the union of sets Fk;i .i 2 Ik/ where Fk;i is the
finite intersection of elements from O . Then

O1 \O2 D
�

[

i2I1

F1;i

� \ �

[

j 2I2

F2;j

� D
[

.i;j /2I1\I2

.F1;i \ F2;j /
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and the fact that each F1;i\F2;j is a finite intersection of elements from O implies
that O1 \O2 2 T .

Theorem 2.58 (Alexander’s Subbasis Theorem). (AC). Let X have a subbasis O
of open sets such that every cover of X by elements from O has a finite subcover.
Then X is compact.

Proof. Suppose by contradiction that X is not compact. Let C denote the system
of all open covers of X without finite subcover. Then C is partially ordered by
inclusion, and by Hausdorff’s maximality theorem, there is a maximal chain C0 �
C . Then U D S

C0 is an open cover of X . We show first that U has no finite
subcover. Indeed, if U would have a finite subcover V then each element of V

would be contained in some element of C0. Since C0 is a chain and V is finite,
V would be a subset of some element from C0 � C , contradicting the definition
of C .

In particular, the family O0 D O \U . cannot be a cover of X , since otherwise
it would have a finite subcover by hypothesis. Hence, there is some x 2 X with
x … S

O0. There is some U 2 U with x 2 U . Since O is a subbasis, there are
O1; : : : ; On 2 O with x 2 O1\� � �\On � U . For each k D 1; : : : ; n, the setOk

is not contained in U , since otherwise x 2 Ok 2 O0. It follows that U [ ¹Okº
has a finite subcover, since otherwise it would belong to C and contradict the
maximality of C0. Hence, for each k D 1; : : : ; n, there is a finite Uk � U such
that X D Ok[

S

Uk . Let U0 D U1[ � � �[Un. Then U0[¹U º is a finite subset
of U and thus cannot cover X . But by construction, for every element y 2 X nU
there is some k with y … Ok and thus y 2 S

Uk �
S

U0.

In some situations, we make use of countability axioms:

Definition 2.59. X is first countable if every point x0 2 X has a countable basis
of neighborhoods.

A topological space X is second countable if it has a countable basis of the
topology.

Clearly, each second countable space is first countable, but the converse need
not hold.

Recall that f WX ! Y is called sequentially continuous at x 2 X if xn ! x

implies f .xn/ ! f .x/. We call f sequentially continuous if f is sequentially
continuous at every x 2 X .
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Proposition 2.60. If f WX ! Y is continuous at x 2 X then f is sequentially
continuous at x 2 X . The converse holds if x has a countable basis of neighbor-
hoods. In particular, if X is first countable, the continuous functions f WX ! Y

are exactly the sequentially continuous functions.

Proof. If f is continuous at x, V � Y is a neighborhood of f , and xn ! x

then f �1.V / is a neighborhood of x and thus contains xn for all except finitely
many n. Hence, f .xn/! f .x/.

Conversely, suppose that x has a countable basis U1; U2; � � � � U of neighbor-
hoods and that xn ! x implies f .xn/ ! f .x/. Let V � Y be a neighborhood
of f .x/. If f �1.V / is not a neighborhood of x then there is for each n some
xn 2 U1 \ � � � \ Un with f .xn/ … V . It follows that xn ! x and thus by
hypothesis f .xn/! f .x/ which is a contradiction.

Proposition 2.61. Every second countable space is Lindelöf.

Proof. Let U be an open cover of a space X which has the countable basis O of
the topology. For each O 2 O choose some U 2 U with O � U , if such a set U
exists. The collection U0 of these U is a countable subcover of U . Indeed, for
every x 2 X there are V 2 U with x 2 V and O 2 O with x 2 O � V . Hence,
there is some U 2 U0 with O � U , and so x 2 U .

If X and Y are topological spaces, we understand X � Y equipped with the
product topology, that is, it has as a basis the sets of the form U � V where
U � X and V � Y are open.

Proposition 2.62. Let K � X � Y be compact. If A � X is closed then

KA WD ¹y 2 Y W .A � ¹yº/\K ¤ ¿º
is compact. In particular, if ¹xº is closed in X then ¹y W .x; y/ 2 Kº is compact.

Proof. By Proposition 2.29, we have to show that KA is compact in Y . Thus, let
O be an open in Y cover of KA. Then the sets UO WD X �O .O 2 O/ together
with U WD .X nA/�Y constitute an open cover ofK, since every .x; y/ 2 K nU
satisfies x 2 A and thus y 2 KA. By the compactness, there are finitely many
O1; : : : ; On 2 O with K � U [ UO1

[ � � � [ UOn
. For every y 2 KA there is

x 2 A with .x; y/ 2 K. Since .x; y/ 2 K nU , we have .x; y/ 2 UO1
[� � �[UOn

and thus y 2 O1 [ � � � [On. Hence, O1; : : : ; On 2 O constitute a finite subcover
of KA.
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We will frequently use Tychonoff’s theorem for finite products which in con-
trast to Tychonoff’s theorem for infinite products does not require the axiom of
choice.

Theorem 2.63 (Tychonoff). X � Y is compact (Lindelöf) if one of the spaces X
and Y is compact (Lindelöf) and the other compact.

Proof. Without loss of generality, let Y be compact. Let O be an open cover of
X � Y . Let U denote the family of all open sets U � X which have the property
that U � Y is covered by finitely many sets from O . We show first that U is an
open cover of X .

Thus, let x 2 X , and let Vx denote the family of all open sets V � Y which
have the property that there is some open neighborhood U � X of x and some
O 2 O with U � V � O. Note that for each y 2 Y there is some O 2 O with
.x; y/ 2 O and by definition of the product topology some open neighborhoods
U � X of x and V � Y of y with U � V � O. Hence, Vx is an open cover
of Y . Since Y is compact, Y is covered by finitely many V1; : : : ; Vn 2 Vx. Let
U1; : : : ; Un � U and O1; : : : ; On 2 O be corresponding sets satisfying x 2 Uk

and Uk � Vk � Ok .k D 1; : : : ; n/. Then U WD U1 \ � � � \ Un is an open
neighborhood of x with the property that

U � Y � U � .V1 [ � � � [ Vn/ � O1 [ � � � [On,

and so U 2 U . Hence, U is an open cover of X .
Since X is compact (Lindelöf) there is a finite (countable) U0 � U which

covers X . For each U 2 U0 there is a finite set OU � O with U � Y � S

OU .
Then

S

U 2U0
OU is a finite (countable) subcover of X � Y , and so X � Y is

compact (Lindelöf).

In general, if Xi .i 2 I / is a family of topological spaces, the product X WD
Q

i2I Xi is equipped with the topology which has as basis the sets
Q

i2I Oi where
Oi � Xi is open for every i 2 I and Oi D Xi for all but finitely many i 2 I .

Proposition 2.64. Let Xi .i 2 I / be a family of connected spaces. Then X WD
Q

i2I Xi is connected.

Proof. Suppose by contradiction that X D A [ B with nonempty disjoint open
sets A;B � X . Let x D .xi /i2I 2 A. Since B is open and nonempty, it
contains an element of the basis of the topology as a subset, and so there is some
y D .yi /i2I 2 B with xi D yi for all but finitely many i 2 I , say xi ¤ yi if and
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only if i 2 J D ¹i1; : : : ; inº. For k 2 ¹0; : : : ; nº, we put zk WD .xk;i /i2I where

zk;i WD

8

ˆ

<

ˆ

:

xi if i 2 ¹ij W j � kº,
yi if i 2 ¹ij W j > kº,
xi D yi if i 2 I n J .

Since z0 D y 2 B and zn D x 2 A, there is a smallest k 2 ¹1; : : : ; nº with
zk 2 A, and then zk�1 2 B .

Let A0; B0 � Xik denote the set of all w 2 Xik
such that .wi/i2I belongs

to A or B , respectively, if wi D zi for i ¤ ik and wik D w. Then A0 and B0

are nonempty, since zk;ik 2 A0 and zk�1;ik
2 B0. On the other hand, since A

and B are disjoint with X D A [ B , it follows that A0 and B0 are disjoint with
Xik D A0 [ B0. The definition of the product topology implies that A0 and B0

are both open, contradicting the connectedness of Xik
.

Proposition 2.65. A function f WY ! Q

i2I Xi , f .y/ D .fi .y//i2I , is continu-
ous at y0 2 Y if and only if each fi WY ! Xi .i 2 I / is continuous at y0.

Proof. Suppose that each fi is continuous at y0. Let U � X WD Q

i2I Xi be a
neighborhood of f .y0/. Then there are open sets Oi � X .i 2 I / with Oi ¤ X

only for those i from a finite set I0 � I such that f .y0/ 2
Q

i2I Oi � U . Then
V WD T

i2I0
f �1

i .Oi / is a neighborhood of y0 with f .V / � U , and so f is
continuous at y0.

Conversely, if f is continuous at y0 and Oi0 � Xi0 is an open neighborhood
of fi0.y0/ for some i0 2 I then we put Oi WD Xi for i 2 I n ¹i0º. Then
U WD Q

i2I Oi defines an open neighborhood of f .y0/, and so there is some
neighborhood V � Y of y0 with f .V / � U , hence fi0.V / � Oi0 . Thus, fi0 is
continuous at y0.

Corollary 2.66. (AC). If all Xi .i 2 I / are path-connected then so is X D
Q

i2I Xi .

Proof. Let Xi .i 2 I / be path-connected, and x D .xi /i2I ; y D .yi/i2I 2 X .
For each i 2 I , there are continuous 	i W Œ0; 1�! Xi with 	i .0/ D xi and 	i .1/ D
yi . Then Proposition 2.65 implies that 	.t/ WD .	i.t//i2I defines a continuous
map into X with 	.0/ D x and 	.1/ D y.

Corollary 2.67 (Tietze–Urysohn). (AC). If Ii � R .i 2 I / is a family of
nonempty intervals, X is a T4 space, and A � X is closed then every continuous
map f WA! Q

i2I Ii has an extension to a continuous map f WX ! Q

i2I Ii .
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Proof. By Proposition 2.65, We have f .y/ D .fi .y//i2I .y 2 Y / with continu-
ous maps fi WA! Ii . By the Tietze–Urysohn extension theorem (Theorem 2.53),
every fi has a continuous extension fi WX ! Ii , and so f .y/ WD .fi .y//i2I de-
fines the required extension by Proposition 2.65.

Remark 2.68. If I is finite (or countable) then AC is not needed (or the countable
axiom of choice suffices) for the proof of Corollaries 2.66 and 2.67. Indeed, AC
is only needed in the proof to ensure that 	i .i 2 I / or the extensions fi .i 2 I /
form a family of functions.

Corollary 2.69. If X and Y are locally (path-)connected then X � Y is locally
(path-)connected.

Proof. For .x; y/ 2 X � Y let U and V be (path-)connected neighborhood bases
of x 2 X and y 2 Y . Then the family of all sets U � V with U 2 U and V 2 V

is a neighborhood basis of .x; y/ 2 X � Y . Proposition 2.64 or Corollary 2.66
(and Remark 2.68) imply that the sets U � V are (path-)connected.

The important role of products of intervals is that they can serve as a class of
universal spaces of T3a spaces with the property of Corollary 2.67:

Proposition 2.70. Let X be completely regular. Then there is a homeomorphism
of X onto a subset of the product Œ0; 1�I WD Q

i2I Œ0; 1� with I WD C.X; Œ0; 1�/.

Proof. We show that a required homeomorphism is the map gWX ! Œ0; 1�I which
associates to each x 2 X the element g.x/ D .f .x//f 2I . Since each f is
continuous, Proposition 2.65 implies that g is continuous. For every x; y 2 X
with x ¤ y the Hausdorff property implies that A D ¹yº is closed, and so there
is some f 2 I with f .x/ D 0 and f .y/ D 1. Hence, g.x/ ¤ g.y/. Thus g is
a continuous one-to-one map onto a subset Y � Œ0; 1�I . It remains to show that
g�1WY ! X is continuous. Thus, let y0 2 Y D g.X/, and let V � X be a
neighborhood of x0 D g�1.y0/. Since X is T3a there is a continuous function
f0WX ! Œ0; 1� satisfying f0.x0/ D 0 and f0.X nV / D ¹1º. Let U WD Q

f 2I Of

where Of D Œ0; 1� for f ¤ f0 and Of0
D Œ0; 1/. Then U is open in Œ0; 1�I , and

so U0 WD U \Y is open in Y . The open setU0 consists of all y D .f .x//f 2I with
x D g�1.y/ 2 f �1

0 .Œ0; 1//. Hence, y0 2 U0 and g�1.U0/ � f �1
0 .Œ0; 1// � V ,

and so g�1 is continuous at y0.

Also for infinite products, the result of Theorem 2.63 holds, and so the universal
space of Proposition 2.70 is actually compact:
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Theorem 2.71 (Tychonoff). (AC). If Xi .i 2 I / are compact then
Q

i2I Xi is
compact.

Proof. For i 2 I , we define a map mi WXi ( X WD Q

j 2I Xj by mi.x/ WD
¹.xj /j 2I W xi D xº. By definition of the topology, the sets of the form mi.O/

with i 2 I and open O � Xi form a subbasis of the topology and cover X . By
Alexander’s subbasis theorem (Theorem 2.58), it suffices to show that every open
cover O of X consisting of sets of such a form has a finite subcover.

For i 2 I , let Oi denote the family of all open sets O � Xi with mi.O/ 2 O .
Assume first that there is some i 2 I such that Oi is a cover of Xi . Then Oi has a
finite subcover O1; : : : ; On � Xi . Hence, mi .Ok/ 2 O .k D 1; : : : ; n/ is a finite
subcover of X , and we are done.

In the other case, we have for each i 2 I some xi 2 X nS

Oi . Then .xi /i2I 2
X nO , contradicting the fact that O is a cover of X . (In the previous sentence, we
used AC a second time.)

It is known that the statement of Theorem 2.71 is actually equivalent to AC,
see [85] (and a minor correction of the latter in [100]).

For completeness, we also provide proofs for the following well-known facts
which we will need.

Proposition 2.72. Let X be paracompact. If X is Hausdorff or T3 then X is T4.
In particular, every paracompact Hausdorff space is normal.

Proof. Let A;B � X be closed and disjoint. Let UA;B denote the family of all
open sets with the property that they are disjoint from a neighborhood of B . We
will show that A and B have disjoint neighborhoods if we assume in addition that
UA;B is a cover of A.

This implies the assertion if X is T3, since in this case UA;B is a cover of A.
However, it also implies that X is T3 if X is Hausdorff, since if B consists of a
single point x 2 X n A, the set UA;¹xº is a cover of A.

Thus, assume that UA;B is a cover of A. Then U0 WD UA;B [ ¹X n Aº is an
open cover of X and thus has a locally finite open refinement O . Let O0 denote
the family of all O 2 O which intersect A. Since O is a cover of X , it follows
that U WD S

O0 is an open neighborhood of A. We claim that U and X n U are
disjoint open neighborhoods of A and B , respectively.

It remains to show that B \ U D ¿. Thus, let x 2 B . Since O is locally finite
there is a neighborhood V � X of x which intersects only finitely many elements
from O and thus at most finitely many elements O1; : : : ; On from O0 � O . Since
O is a refinement of U0 we can for each k D 1; : : : ; n argue as follows: Since Ok

is not contained in X n A there is some Uk 2 UA;B with Ok � Uk . By definition
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of UA;B there is a neighborhood Vk � X of B which is disjoint from Uk and thus
disjoint from Ok . Hence, V \ V1 \ � � � \ Vn is a neighborhood of x 2 B which is
disjoint from each Ok .k D 1; : : : ; n/ and thus disjoint from U D S

O0. Hence,
x … U .

Theorem 2.73. (AC). X � Y is paracompact if one of the spaces X and Y is
paracompact and the other compact.

Proof. Without loss of generality, let X be paracompact and Y be compact. Let
O be an open cover of X � Y . Let B be a basis for the topology of Y . We define
a multivalued map ˆ from the family of open subsets of X into the family B0 of
finite subsets of B as follows. For open U � X , let ˆ.U / be the system of all
finite open covers VU � B of Y with the property that for each V 2 VU the set
U � V is contained in a set from O .

Then dom.ˆ/ is an open cover of X . Indeed, for x 2 X let Vx denote the
family of all V 2 B with the property that there are an open neighborhood U � X
of x and O 2 O with U � V � O. Then Vx is an open cover of Y since for each
y 2 Y there is someO 2 O with .x; y/ 2 O, and thus there is an open set U � X
and V 2 B with .x; y/ 2 U � V � O. Since Y is compact, there is a finite
subcover by sets V1; : : : ; Vn 2 Vx. There are corresponding open neighborhoods
U1; : : : ; Un � U of x such that Uk � Vk is for each k D 1; : : : ; n contained in
a set from O . Then U WD U1 \ � � � \ Un is an open neighborhood of x, and
VU WD ¹V1; : : : ; Vnº is a finite open cover of Y , and for each Vk 2 VU the set
U � Vk is contained in a set from O . Hence, x 2 U 2 dom.ˆ/, and so dom.ˆ/
is an open cover of X .

SinceX is paracompact, there is a locally finite open refinement U0 of dom.ˆ/.
Note that the definition of ˆ implies that every open subset of a set from dom.ˆ/
belongs to dom.ˆ/. Hence, U0 � dom.ˆ/. By the axiom of choice, the mul-
tivalued map ˆjU0

has a selection U 7! VU . Put OU WD ¹U � V W V 2 VU º.
Then O0 WD S

U 2U0
OU is a locally finite open refinement of O . To see that

O0 is locally finite, note that for each .x; y/ 2 X � Y there is a neighborhood
Ux � X of x which intersects at most finitely many sets U1; : : : ; Un 2 U0. Then
Ux � Y is a neighborhood of .x; y/ which intersects only finitely many sets from
O0, namely the finitely many sets from OU1

[ � � � [ OUn
.

Remark 2.74. The countable axiom of choice suffices for Theorem 2.73 if the
paracompact space in the product is Lindelöf.

Indeed, in this case, we can assume that the set U0 in the proof of Theorem 2.73
is countable, and thus ˆjU0

has a selection.
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Remark 2.75. Theorem 2.73 does not even require the countable axiom of choice
if the compact space in the product is second countable.

Indeed, in this case we can assume that the set B and thus also B0 in the
proof of Theorem 2.73 is countable, say B0 D ¹V1;V2; : : :º. To define a se-
lection U 7! VU of ˆjU0

, we can thus put VU WD Vn.U / where n.U / WD
min¹n 2 N W Vn 2 ˆ.U /º.

Corollary 2.76. Let X be paracompact. If X is T3 or Hausdorff then Œ0; 1� � X
is paracompact, T3, and T4 (or even normal, respectively).

Proof. Since Œ0; 1� is second countable and compact, Remark 2.75 implies that
Œ0; 1� � X is paracompact. Since X is T3 or Hausdorff, also Œ0; 1� � X is T3 or
Hausdorff. Proposition 2.72 thus implies that Œ0; 1� �X is T4.

We point out that our proof of Corollary 2.76 did not even require the countable
axiom of choice.

Corollary 2.76 is almost the most general result by which the normality of
Œ0; 1� � X can be obtained. In fact, only a very slight refinement is possible:
Instead of requiring paracompactness, one can require countable paracompact-
ness and normality. But this is already the best which can be done, since Dowker
has shown in [40] that for every topological space X the following assertions are
equivalent:

(a) Œ0; 1� �X is normal.

(b) I �X is normal for every infinite compact metric space I .

(c) X is normal and countably paracompact.

Historically, Dowker had conjectured that normal spaces satisfy these properties
automatically. It took quite a while before the first counterexamples to this con-
jecture have been found, and the first constructions required spaces of extremely
large cardinality [128]. Such counterexamples are called Dowker spaces in litera-
ture.

2.4 Upper Semicontinuous Multivalued Maps

When one speaks about multivalued maps, one usually means multivalued maps
between topological spaces which satisfy some sort of continuity. Classically, one
distinguishes two notions of continuity for multivalued maps: upper semicontinu-
ity and lower semicontinuity, but there are also some other variants. A lot about
such maps can be found in [9], [10], [21]–[24], [71], [102], but we will recall in
this section all required results (and provide some new).
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Degree theory of multivalued maps is mainly related with the notion of upper
semicontinuity:

Definition 2.77. Let X and Y be topological spaces, and x0 2 X . Then ˆWX (
Y is upper semicontinuous at x0 if for each open neighborhood V � Y of ˆ.x0/

the set ˆ�.V / is a neighborhood of x0, that is, there is an open neighborhood
U � X of x0 with ˆ.U / � V . If ˆ is upper semicontinuous at every x0 2 X ,
we call ˆ upper semicontinuous.

For completeness, and since we will need it in the context of orientation of
nonlinear Fredholm maps, we also recall the dual notion:

Definition 2.78. Let X and Y be topological spaces, and x0 2 X . Then ˆWX (
Y is lower semicontinuous at x0 if ˆ.x0/ D ¿ or if for each y 2 ˆ.x0/ and each
open neighborhood V � Y of y the set ˆC.V / is a neighborhood of x0. If ˆ is
lower semicontinuous at every x0 2 X , we call ˆ lower semicontinuous.

Remark 2.79. In Definition 2.77 and 2.78, it is equivalent to consider neighbor-
hoods U and/or V which are not necessarily open.

In the single-valued case, both notions are equivalent to continuity:

Proposition 2.80. For f WX ! Y the following statements are equivalent:

(a) f is continuous at x0 2 X .

(b) f WX ( Y is upper semicontinuous at x0.

(c) f WX ( Y is lower semicontinuous at x0.

Proof. For V � Y , we have f �.V / D f �1.V / D f C.V /.

Intuitively, for an upper semicontinuous map the values in a neighborhood of
x0 must not “explode” (compared to the value at x0), while for a lower semicon-
tinuous map the values in a neighborhood of x0 must not “implode”. This is best
explained by some simple examples with X D Y D R at x0 D 0:

Example 2.81. The function ˆWR ( R,

ˆ.x/ WD
´

M1 if x ¤ 0,

M0 if x D 0

is upper semicontinuous if and only ifM1 � M0 and lower semicontinuous if and
only if M0 �M 1.
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In this (and many other) examples the “duality” between upper and lower semi-
continuity occurs only for functions with closed values. In fact, in most applica-
tions where upper semicontinuity occurs “naturally”, one has to do with functions
with closed values.

Example 2.82. The function ˆWR ( R,

ˆ.x/ WD
´

¹Cx;�xº if x ¤ 0,

M if x D 0

is upper semicontinuous if and only if 0 2 M and lower semicontinuous if and
only if M � ¹0º.
Example 2.83. The extension ˆWR ( R of the signum function

ˆ.x/ WD

8

ˆ

<

ˆ

:

¹C1º if x > 0,

¹�1º if x < 0,

M if x D 0

is upper semicontinuous if and only if ¹C1;�1º � M , and is lower semicontin-
uous at 0 if and only if M D ¿. Note that the restriction of ˆ to .�1; 0� and
Œ0;1/ is lower semicontinuous if and only if M � ¹�1º or M � ¹1º, respec-
tively.

In the particular case that M � ¹C1;�1º is a compact interval, the values
ˆ.x/ of the function from Example 2.83 are nonempty, compact and acyclic for
all x 2 X (cf. Definition 4.55). Because of these properties, this function is in
a sense the prototypical example for a function which should be treated by our
degree theory.

In fact, the following result implies that this and similar functions satisfy a
multivalued form of the intermediate value theorem. Degree theory can in a sense
be considered as a formulation of such an intermediate value theorem in a more
general topological setting: We will obtain the intermediate value theorem (of
single-valued functions) as a special case of degree theory in Remark 9.87.

Theorem 2.84 (Intermediate Value). Let ˆW Œa; b� ( Œ�1;1� be upper semi-
continuous and such that ˆ.x/ is a nonempty interval for every x 2 Œa; b�. Then
for each y1 2 ˆ.a/, y2 2 ˆ.b/ the set ˆ.Œa; b�/ contains all values between y1

and y2.

Proof. Without loss of generality, we assume a < b and y1 < y2. We have to
show that ˆ.Œa; b�/ contains every y 2 .y1; y2/. To this end, we put
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M WD ˆ�..y;1�/ and x0 WD infM (in case M D ¿, we put x0 WD b). We
claim that y 2 ˆ.x0/.

Assume on the one hand by contradiction that ˆ.x0/ � V1 WD .y;1�. Since
y > y1 2 ˆ.a/, we must have x0 > a, and the upper semicontinuity of ˆ at x0

would imply that M D ˆ�.V1/ is a neighborhood of x0. In particular, there is
some " > 0 such that M contains the point x0 � " > a, contradicting the fact that
x0 is a lower bound of M .

Assume on the other hand by contradiction that ˆ.x0/ � V2 WD Œ�1; y/.
Since y < y2 2 ˆ.b/, we must have x0 < b, and sinceˆ is upper semicontinuous
at x0, there is in particular some " > 0 such that for all x 2 Œx0; x0 C "� � Œa; b/

the inclusionˆ.x/ � V2 holds. Sinceˆ.x/ ¤ ¿, we obtain Œx0; x0C"�\M D ¿.
Since x0 is a lower bound for M , it follows that also x0C " < b is a lower bound
for M , contradicting the maximality of x0 D infM .

We thus have seen that ˆ.x0/ contains at least one point from Œ�1; y� and
at least one point from Œy;1�. Since ˆ.x0/ is an interval, we conclude y 2
ˆ.x0/.

The fact that lower semicontinuous functions cannot “implode” is reflected by
the following observation:

Proposition 2.85. Let M � X and ˆWX ( Y be lower semicontinuous in each
point from M nM . Then

ˆ.M/ � ˆ.M/.

Proof. For x0 2 M , we have ˆ.x0/ � ˆ.M/ � ˆ.M/. Thus, let x0 2 M nM
and y 2 ˆ.x0/. For each open neighborhood V � Y of y, the set U WD ˆC.V /
is a neighborhood of x0. Since x0 2 M , there is some x 2 U \ M . Hence,
V \ˆ.x/ ¤ ¿ and thus V \ˆ.M/ ¤ ¿. It follows that y 2 ˆ.M/.

An analogous assertion to Proposition 2.85 for upper semicontinuous maps
does not hold as can easily be seen with X D R and M D Œ�1; 1� n ¹0º in
each of the Examples 2.81, 2.82, and 2.83.

Remark 2.86. The latter has an important practical implication: In the single-
valued case, it is more or less only a matter of taste whether one develops degree
theory for continuous functions 'W�! Y or for continuous functions 'W�! Y

where � is an open subset of some space X . However, in the case of multivalued
functions ˆW� ( Y , the upper semicontinuity gives no control of ˆ on the
boundary @�. Hence, in this case, one obtains a much more natural theory if one
considers upper semicontinuous functions ˆW� ( Y . For this reason, we will
always consider degree theories for functions defined on � (and not on �). We
come back to this remark in Chapter 14.
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Unfortunately, the terms “upper semicontinuous” and “lower semicontinuous”
are historically used also in the context of single-valued maps with values in
Œ�1;1� with a different meaning:

Definition 2.87. Let X be a topological space, f WX ! Œ�1;1� and x0 2
X . Then f is upper semicontinuous at x0 if for each 
 > f .x0/ there is a
neighborhood U � X of x0 with f .U / � Œ�1; 
/. The function f is lower
semicontinuous at x0 if for each 
 < f .x0/ there is a neighborhood U � X of x0

with f .U / � .
;1�.
We call f upper semicontinuous (lower semicontinuous) if f is upper (lower)

semicontinuous at every point of X .

Formally, the meaning of “upper semicontinuous” and “lower semicontinuous”
for single- and multivalued maps is different and so some confusion might arise
by our convention to interpret single-valued maps as multivalued maps, although
we hope that the meaning will always be clear from the context. Nevertheless, the
following two results show that there is a relation between these notions.

Proposition 2.88. For f WX ! Œ�1;1� the following statements are equiva-
lent:

(a) f is upper/lower semicontinuous at x0.

(b) The multivalued map x 7! Œ�1; f .x/� is upper/lower semicontinuous at x0,
or f .x0/ D1.

(c) The multivalued map x 7! Œf .x/;1� is lower/upper semicontinuous at x0,
or f .x0/ D �1.

Moreover, the cases f .x0/ D ˙1 have to be distinguished only for the lower
semicontinuous multivalued maps.

Proof. Clear from the definitions.

Proposition 2.89. Let ˆWX ( Œ�1;1� be upper/lower semicontinuous at x0

with nonempty values.

(a) If maxˆ.x0/ exists then f .x/ WD supˆ.x/ is upper/lower semicontinuous
at x0.

(b) If minˆ.x0/ exists then f .x/ WD inf ˆ.x/ is lower/upper semicontinuous at
x0.

Proof. Clear from the definitions.
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The definition of upper/lower semicontinuity does not change if we enlarge or
shrink the space Y , and it is preserved under restrictions of X :

Proposition 2.90. ˆWX ( Y is upper/lower semicontinuous at x0 if and only if
for the restricted image space Y0 WD ˆ.X/ the map ˆWX ( Y0 is upper/lower
semicontinuous at x0.

If ˆ is upper/lower semicontinuous at x0, then for any subset X0 � X with
x0 2 X0 the restriction ˆjX0

WX0 ( Y is upper/lower semicontinuous at x0 for
every X0 � X with x0 2 X0.

Proof. Clear from the definition of the inherited topology.

Since we do not require (as many other authors) for ˆWX ( Y that ˆ.x/ ¤ ¿
for all x 2 X , that is, we do not require dom.ˆ/ D X , let us point out that this is
“almost” a consequence of upper semicontinuity:

Proposition 2.91. Let ˆWX ( Y be upper semicontinuous at x0 2 dom.ˆ/.
Then x0 2 dom.ˆ/.

In particular, if ˆ is upper semicontinuous on X then dom.ˆ/ is closed in X :
M � dom.ˆ/ implies M � dom.ˆ/.

Proof. If x0 … dom.ˆ/ then V D ¿ is a neighborhood of ˆ.x0/ D ¿. Hence,
there is a neighborhood U � X of x0 with ˆ.U / � V D ¿, that is U \
dom.ˆ/ D ¿, and so x … dom.ˆ/.

Proposition 2.92. For ˆWX ( Y the following statements are equivalent:

(a) ˆ is upper semicontinuous.

(b) ˆ�.V / is open for every open V � Y .

(c) ˆC.C / is closed for every closed C � Y .

Also the following statements are equivalent:

(a) ˆ is lower semicontinuous.

(b) ˆC.V / is open for every open V � Y .

(c) ˆ�.C / is closed for every closed C � Y .

Proof. If ˆ is upper (lower) semicontinuous, and V � Y is open, then ˆ�.V /
(ˆC.V /) is a neighborhood of each x0 2 ˆ�.V / (x0 2 ˆC.V /) and thus open
by Proposition 2.8. The converse implication is obvious, and the equivalence of
the last two assertions follows from (2.4) with M D V .
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As an almost immediate corollary, we obtain a multivalued version of the so-
called glueing lemma:

Lemma 2.93 (Multivalued Glueing). Let A1; : : : ; An � X be closed with X D
A1[ � � � [An, and ˆk WAk ( Y be compatible in the sense that ˆk.x/ D ĵ .x/

whenever x 2 Aj \ Ak .j ¤ k/. Then there is a unique map ˆWX ( Y with
ˆjAk

D ˆk . Moreover, ˆ is upper/lower semicontinuous if and only if all ˆk are
upper/lower semicontinuous.

Proof. The unique existence of ˆ is clear by the compatibility condition. If ˆ
is upper/lower semicontinuous then all ˆk are upper/lower semicontinuous by
Proposition 2.90. We show the converse.

For a closed set C � Y , we put M WD ˆC.C / (or M WD ˆ�.C / for the lower
semicontinuous case) and Mk WD ˆC

k
.C / (or Mk WD ˆ�

k
.C /, respectively) for

k D 1; : : : ; n. By Proposition 2.92, each Mk is closed in Ak and thus closed in X
by Proposition 2.10. Hence, M D M1 [ � � � [Mn is closed in X . Since C � Y

was an arbitrary closed set, the assertion follows from Proposition 2.92.

Upper and lower semicontinuity works well with compositions:

Proposition 2.94. If ˆWX ! Y is upper/lower semicontinuous on x0 and
‰WY ! Z is upper/lower semicontinuous at each point of ˆ.x0/ then ‰ ı ˆ
is upper/lower semicontinuous at x0.

Proof. We prove first the upper semicontinuous case. IfW � Z is an open neigh-
borhood of ‰.ˆ.x0// then the union V of all open sets V0 � Y with‰.V0/ � W
is an open neighborhood of ˆ.x0/. Hence, there is some open neighborhood
U � X of x0 with ˆ.U / � V . Then ‰.ˆ.U // � ‰.V / � W .

To prove the lower semicontinuous case, let W � Z be an open neighborhood
of some z 2 ‰�

ˆ.x0/
�

. There is some y 2 ˆ.x0/ with z 2 ‰.y/. Then V WD
‰C.W / is a neighborhood of y, and so U WD ˆC.V / is a neighborhood of x0

with U � .‰ ıˆ/C.W /.
An analogous result for the Cartesian product is trivial in the lower semicontin-

uous case:

Proposition 2.95. If ˆWX ( Y and ‰WX ( Z are lower semicontinuous at
x0 2 X , then ˆ �‰WX ( Y �Z is lower semicontinuous at x0 2 X .

Proof. LetM � Y �Z be an open neighborhood of some .y0; z0/ 2 .ˆ�‰/.x0/.
By definition of the product topology, there are open sets V � Y and W � Z

with .y0; z0/ 2 V �W � M . Then U WD ˆC.V / \ ‰C.W / is a neighborhood
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of x0, and for all x 2 U there is y 2 ˆ.x/ \ V and z 2 ‰.x/ \ W . Then
.y; z/ 2 .ˆ �‰/.x/\M , and so U � .ˆ �‰/C.M/.

A corresponding result for the Cartesian product of upper semicontinuous maps
does not hold (in contrast to some claims in text books like e.g. [71, (14.8)]), even
if one of the maps in this product is single-valued, as the following example shows.

Example 2.96. Let ˆWR ( R be defined by ˆ.x/ WD .�1; 1/. Then the map
idR �ˆWR ( R � R fails to be upper semicontinuous at x0 D 0. Indeed, the
Euclidean open unit disk V � R2 Š R�R contains .idR �ˆ/.0/, but there is no
neighborhood U � R of 0 with .idR �ˆ/.U / � V .

Example 2.96 might appear a bit artificial, since the valueˆ.x0/ is open: Upper
semicontinuity might appear not a very natural condition for such maps, since the
set V in Definition 2.77 need not be strictly larger than ˆ.x0/. However, one can
give examples similar to Example 2.96 where ˆ.x0/ is closed but unbounded.

Example 2.97. Let ˆWR ( R be defined by ˆ.x/ D N. Then idR �ˆWR (
R �R fails to be upper semicontinuous. To see this, we note that V WD ¹.x; y/ 2
R �R W jxyj < 1º is open with ˆ.0/ � V , but there is no neighborhood U � R
of 0 with .idR �ˆ/.0/ � V .

If we go to infinite-dimensional spaces, it can even be arranged that ˆ.x0/ is
closed and bounded.

Example 2.98. Let X be an infinite-dimensional normed space. It follows by
Riesz Lemma (which we will recall in Lemma 3.31) that there is a bounded count-
able set M D ¹e1; e2; : : :º � X such that ken � emk � 1 for all m < n. Then
the map ˆWR ( X , defined by ˆ.x/ WDM , assumes closed bounded values, but
idR �ˆWR ( R � X fails to be upper semicontinuous at 0. To see this, let V
be the union of all open balls in R � X with center .0; en/ and radius 1=n for
n D 2; 3; : : :

Then V is open withˆ.0/ � V , but there is no neighborhood U � R of 0 with
.idR �ˆ/.U / � V .

The previous examples suggest that it is actually the lack of compactness of
the map ˆ which makes these examples possible: If we assume that the values
of both maps are compact, we can prove the upper semicontinuity of products
of these maps. The proof is somewhat technical, but the result turns out to be
surprisingly powerful: Actually, we will use only the special case ˆ D idX ,
but already this special case will provide us some elegant (and to the author’s
knowledge new) proofs for some facts from elementary topology (Corollary 2.112
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and Corollary 2.119 for single-valued maps) which are mathematical folklore, but
whose elementary proofs would be rather cumbersome.

Proposition 2.99. If ˆWX ( Y and ‰WX ( Z are upper semicontinuous at
x0 2 X and ˆ.x0/ and ‰.x0/ are compact, then ˆ � ‰WX ( Y � Z is upper
semicontinuous at x0.

Proof. LetM � Y �Z be an open neighborhood of C WD ˆ.x0/�‰.x0/. There
is a family of open set Vi � Y and Wi � Z with Vi � Wi � M .i 2 I / and
C � S

i2I .Vi �Wi /. By the compactness of C (Tychonoff’s Theorem 2.63), we
can assume that I is finite. For each y 2 ˆ.x0/ let V y denote the intersection
of all Vi containing y, and for each z 2 ‰.x0/, let W z denote the intersection
of all Wi containing z. We denote the union of all sets V y .y 2 ˆ.x0// and W z

.z 2 ‰.x0// by V and W , respectively. For every v 2 V and w 2 W there are
y 2 ˆ.x0/ and z 2 ‰.x0/ with v 2 V y and w 2 W z . Since .y; z/ 2 C , there
is some i 2 I with .y; z/ 2 Vi � Wi , and so V y � Vi and W z � Wi . Hence,
.v;w/ 2 Vi � Wi � M . Since .v;w/ 2 V � W was arbitrary, we have shown
that V �W � M . There is a neighborhood U � X of x0 with ˆ.U / � V and
‰.V / � W , and so .ˆ �‰/.U / � V �W �M .

Also the proof of the following result is somewhat cumbersome, at least, if one
compares it to the much simpler proof in the single-valued case. However, this is
not so surprising since we will also see that it provides a surprisingly easy proof
for a nontrivial fact about single-valued maps (Corollary 2.107).

Proposition 2.100. IfˆWX ( Y is upper semicontinuous with ˆ.x/ being com-
pact for every x 2 X , then ˆ.C/ is compact for every compact C � X .

Proof. Let O be an open cover of ˆ.C/, and let O0 be the set of all finite unions
of sets from O . Then U0 WD ¹ˆ�.O/ W O 2 O0º is an open cover of C . Indeed,
for any x 2 C the compactness of ˆ.x/ implies that there is some O 2 O0 which
contains ˆ.x/, hence, x 2 ˆ�.O/. Since C is compact, there are finitely many
O1; : : : ; On 2 O0 with

C � ˆ�.O1/ [ � � � [ˆ�.On/ � ˆ�.O1 [ � � � [On/,

where the last inclusion follows from (2.3). The set O WD O1 [ � � � [ On thus is
a union of finitely many sets from O and satisfies ˆ.C/ � O by (2.1).

Corollary 2.101. Let K � Q

i2I Xi be compact and/or connected. Then there is
a family of compact and/or connected sets Ki � Xi .i 2 I / with K � Q

i2I Ki .
More precisely, one can choose Ki as the set of all x 2 Xi with the property

that there is some .xj /j 2I 2 X with xi D x.
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Proof. The maps pi ..xi /i2I / WD xi are continuous from
Q

i2I Xi into Xi by
definition of the product topology. Hence,Ki D pi .K/ have the required property
by Proposition 2.100 and/or Proposition 2.20.

Corollary 2.102. Let f WX ! Œ�1;1� be upper (lower) semicontinuous. Then
max f .C / (min f .C /) exists for any compact C � X .

Proof. By Proposition 2.88 the map ˆ.x/ WD Œ�1; f .x/� (ˆ.x/ WD Œf .x/;1�)
is upper semicontinuous with compact values. Hence, for any compact set C � X
the set ˆ.C/ � Œ�1;1� is compact and thus has a maximum (minimum).

2.5 Closed and Proper Maps

Definition 2.103. A multivalued map ˆWX ( Y is called closed if for every
closed set C � X the image ˆ.C/ is closed in Y .

Proposition 2.104. The map ˆWX ( Y is upper semicontinuous if and only if
ˆ�1WY ( X is closed.

Proof. For every C � Y , we have ˆC.C / D ˆ�1.C /. Hence, the claim follows
from Proposition 2.92.

Definition 2.105. A multivalued map ˆWX ( Y is called proper if ˆ�1.C / is
compact for every compact C � Y .

Corollary 2.106. For ˆWX ( Y and ‰ D ˆ�1WY ( X (that is ˆ D ‰�1) the
following statements are equivalent:

(a) ˆ is upper semicontinuous, and ˆ.x/ is compact for every x 2 X .

(b) ‰ is closed, and ‰�1.x/ is compact for every x 2 X .

(c) ‰ is closed and proper.

Proof. In view of ‰�1 D ˆ, the equivalence of the first two statements follows
from Proposition 2.104. If these assertions are satisfied, then Proposition 2.100
implies that‰�1.C / D ˆ.C/ is compact for compact C � X , and so‰ is proper.
Conversely, if ‰ is proper then the compactness of ¹xº implies that ‰�1.x/ is
compact.
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We point out that our proof of Corollary 2.106 essentially only used Proposi-
tion 2.100. To the author’s knowledge, this is a new (and perhaps the shortest
possible) proof of the following well-known statement about single-valued func-
tions whose elementary proof is not so short:

Corollary 2.107. A closed function pWX ! Y is proper if and only if p�1.x/ is
compact for every x 2 X .

Proof. This is a special case of the last equivalence of Corollary 2.106 with ‰ WD
p and ˆ WD p�1.

Let us mention some sort of converse of Corollary 2.107 for upper semicontin-
uous maps in particular spaces.

Recall that a topological space X is called compactly generated, if for a set
M � X the property that M \ C is closed in C for every compact set C � X

implies that M is closed in X .

Proposition 2.108. Every first countable space X is compactly generated.

Proof. If M � X fails to be closed in X , then there is some x 2 M nM . Let
U1; U2; � � � � X constitute a countable neighborhood basis of x. For each n, we
choose some xn 2M \U1\ � � �\Un. Then C WD ¹x1; x2; : : :º[ ¹xº is compact,
and M \ C D C n ¹xº is not closed in C .

Proposition 2.109. Let Y be a compactly generated Hausdorff space, and let
ˆWX ( Y be proper and upper semicontinuous and such that ˆ.x/ is compact
for every x 2 X . Then ˆ is closed.

Proof. Let A � X be closed. We have to show that ˆ.A/ is closed. Since Y
is compactly generated, it suffices to show that for each compact set C � Y the
intersection M WD ˆ.A/\C is closed in C . Sinceˆ is proper, the setˆ�1.C / D
ˆC.C / is compact, and so also its intersection AC WD A \ ˆC.C / with the
closed set A is compact (Proposition 2.29). Since ˆ is upper semicontinuous,
Proposition 2.100 implies that ˆ.AC / is compact and thus closed, since Y is
Hausdorff (Proposition 2.45). Hence, ˆ.AC / \ C D M is closed in C .

Corollary 2.110. Let Y be a compactly generated Hausdorff space. Then every
continuous proper function pWX ! Y is closed.

Proof. In view of Proposition 2.80, this follows from Proposition 2.109 with
ˆ.x/ D ¹p.x/º.
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We note that if X and Y are both metric spaces, Corollary 2.110 is well-known
and can be simpler proved by observing that preimages of convergent sequences
have convergent subsequences. However, the weaker variant if only Y is metriz-
able (or even just compactly generated) seems to be less known. The multivalued
variant (Proposition 2.109) is perhaps even new.

Now we come to the first application of Proposition 2.99 which turns out to
be crucial for our definition of the degree. Recall that a single-valued map of
topological spaces is called perfect if it is continuous, proper, closed, and onto.

Theorem 2.111. Let ˆWX ( Y be upper semicontinuous and such that ˆ.x/
is compact for every x 2 X . Let the map pW graph.ˆ/ ! X be defined by
p.x; y/ WD x. Then p�1.x/ D ¹xº �ˆ.x/ for every x 2 X , and p is continuous,
closed, and proper. The map p is perfect if and only if dom.ˆ/ D X .

Proof. For every x0 2 X , we have

p�1.x0/ D ¹.x; y/ 2 graph.ˆ/ W x D x0º D ¹.x0; y/ W y 2 ˆ.x0/º
D ¹x0º �ˆ.x0/:

Hence, ‰ WD p�1WX ( graph.ˆ/ is the same map as idX �ˆWX ( X � Y .
Since idX �ˆ is upper semicontinuous by Proposition 2.99, also ‰ is upper semi-
continuous by Proposition 2.90. Since ‰.x/ D ¹xº � ˆ.x/ is compact for ev-
ery x 2 X , we obtain from Corollary 2.106 that p is closed and proper. The
continuity of p follows from the definition of the product topology. Finally,
p.graph.ˆ// D dom.ˆ/ implies that p is onto if and only if dom.ˆ/ D X .

Our proof of Theorem 2.111 is based on Proposition 2.99 and thus simplifies the
argument from the related result in [4, Proposition (4.10)] (whose proof is only so
short because a cumbersome elementary argument was omitted). It is somewhat
surprising that we do not have to assume for our proof that X or Y are Hausdorff
spaces. In particular, graph.ˆ/ need not be closed under our hypotheses (we
come to the closedness of graph.ˆ/ in a moment).

We point out that the multivalued Theorem 2.111 (which we obtained as a spe-
cial case of Proposition 2.99) provides a short proof for the following well-known
result whose elementary proof would be somewhat cumbersome:

Corollary 2.112. For i D 1; 2, let pi WX1�X2 ! Xi be defined by pi.x1; x2/ WD
xi . Let C � X1 �X2 be closed.

(a) If p2.C / is relatively compact in X2 then p1.C / is closed in X1.

(b) If p1.C / is relatively compact in X1 then p2.C / is closed in X2.
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Proof. For symmetry reasons, it suffices to show the first assertion. We apply
Theorem 2.111 with X WD X1, Y � X2 being a compact subset containing
p2.C /, and ˆ.x/ WD Y . Theorem 2.111 implies that p D p1jX�Y is closed.
Since p2.C / � Y implies that C � X � Y , and thus C is closed in X � Y , it
follows that p.C/ D p1.C / is closed in X D X1.

Corollary 2.113. Let A � X be closed, and I be a compact space. Then for
every neighborhood U � I �X of I �A there is an open neighborhood V � X
of A with I � V � U .

Proof. We can assume that U is open. Applying Corollary 2.112 with X1 WD I ,
X2 WD X , C WD .I �X/ n U , we find that

V WD X n p2.C / D ¹x 2 X W .I � ¹xº/\ C D ¿º D ¹x 2 X W I � ¹xº � U º
is open. Hence, A � V and I � V � U

2.6 Coincidence Point Sets and Closed Graphs

Now we come to some properties of multivalued maps which require some sep-
aration axioms. For the case that we have two upper semicontinuous maps, the
following observation about the coincidence point set

coinX .ˆ;‰/ WD ¹x 2 X W ˆ.x/ \‰.x/ ¤ ¿º
is crucial.

Proposition 2.114. Let ˆ;‰WX ( Y be upper semicontinuous, and let x0 2
X be such that ˆ.x0/ and ‰.x0/ are disjoint. Assume in addition one of the
following:

(a) Y is Hausdorff, and the sets ˆ.x0/ and ‰.x0/ are compact.

(b) Y is T3, one of the sets ˆ.x0/ and ‰.x0/ is compact and the other closed.

(c) Y is T4, and the sets ˆ.x0/ and ‰.x0/ are closed.

Then there is a neighborhood U � X of x0 such that ˆ.U / and ‰.U / have
disjoint neighborhoods in Y . In particular, U is disjoint from coinX .ˆ;‰/.

Proof. In view of Proposition 2.45, the hypothesis implies that there are disjoint
open neighborhoods V1; V2 � X of ˆ.x0/ and ‰.x0/, respectively. Hence, U WD
ˆ�.V1/\ˆ�.V2/ is a neighborhood of x0 withˆ.U / � V1 and‰.U / � V2.

Corollary 2.115. Suppose that the hypotheses of Proposition 2.114 hold for every
x0 2 X n coinX .ˆ;‰/. Then coinX .ˆ;‰/ is closed in X .
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Proof. By Proposition 2.114, the complement of coinX .ˆ;‰/ is a neighborhood
for each of its points and thus open (Proposition 2.8).

Corollary 2.116. Let ˆWX ( Y be upper semicontinuous at x 2 X . Assume in
addition one of the following:

(a) Y is Hausdorff and ˆ.x/ is compact.

(b) Y is T3 and ˆ.x/ is closed.

Then (the closure being understood in X � Y )

graph.ˆ/ \ .¹xº � Y / D graph.ˆ/ \ .¹xº � Y /. (2.8)

Proof. Let y 2 Y nˆ.x/. Proposition 2.114 with the constant function ‰ 
 ¹yº
implies that there is a neighborhood U � X of x0 such that ˆ.U / and y have
disjoint neighborhoods, and so .x; y/ … graph.ˆ/.

Corollary 2.117. Suppose that Y is Hausdorff or T3. Let ˆWX ( Y be upper
semicontinuous with ˆ.x/ being closed (even compact if Y is not T3) for every
x 2 X . Then graph.ˆ/ is closed in X � Y .

Proof. Clear by Corollary 2.116.

Our second application of Proposition 2.99 consists in showing that the conclu-
sion of Proposition 2.114 concerning coinX .ˆ;‰/ holds even if we do not assume
that ˆ is upper semicontinuous, but if we merrily assume that the conclusion of
Corollary 2.116 holds.

Proposition 2.118. Let ˆ;‰WX ( Y and x0 2 X satisfy

(a) graph.ˆ/ \ .¹x0º �‰.x0// D ¿, the closure being understood in X � Y .

(b) ‰ is upper semicontinuous at x0, and ‰.x0/ is compact.

Then there is a neighborhood U � X of x0 which is disjoint from coinX .ˆ;‰/.

Proof. By Proposition 2.99, the map idX �‰WX ( X �Y is upper semicontinu-
ous at x0. Since V WD .X �Y /ngraph.ˆ/ is open inX �Y and .idX �‰/.x0/ �
V by hypothesis, there is a neighborhood U � X of x0 with .idX �‰/.U / � V ,
that is, ˆ.x/ \‰.x/ D ¿ for all x 2 U .

Corollary 2.119. Let ˆ;‰WX ( Y be such that graph.ˆ/ is closed in X �
Y , and that for every x in the complement of coinX .ˆ;‰/ the map ‰ is upper
semicontinuous at x with compact ‰.x/. Then coinX .ˆ;‰/ is closed in X .
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Proof. Proposition 2.118 implies that the complement of the set coinX .ˆ;‰/ is
open in X .

We point out that the requirement in Corollary 2.119 that graph.ˆ/ be closed
is a much weaker requirement than the upper semicontinuity of ˆ. The reader
familiar with weak convergence in Banach spaces will see this immediately from
the following example:

Example 2.120. (AC). Let X be a metric space, Y a normed space, and F WX !
Y be demicontinuous, that is, xn ! x implies that F.xn/ converges weakly to
F.x/. Then graph.F / is closed in X � Y . Indeed, if .x; y/ 2 graph.F /, there is
a sequence xn 2 X with xn ! x and F.xn/! y. Then F.xn/ converges weakly
to y and to F.x/, and so the classical Hahn–Banach extension theorem (we will
prove the corresponding assertion in Corollary 6.25) implies y D F.x/, that is,
.x; y/ 2 graph.F /.

Under additional compactness hypotheses, Corollary 2.117 has a strong con-
verse as we will show now.

Definition 2.121. Let ˆWX ( Y .

(a) ˆ is compact into Y if ˆ.X/ is relatively compact in Y .

(b) ˆ is locally compact at x0 into Y , if there is a neighborhood U � X of x0

such that ˆjU WU ! Y is compact, that is, ˆ.U / is contained in a compact
subset of Y .

(c) ˆ is locally compact into Y if it is locally compact at each x0 2 X .

Proposition 2.122. Let Y � Z be closed and ˆWX ( Y . Then ˆ is compact
into Y if and only if ˆ is compact into Z.

Proof. If ˆ.X/ � Y is contained in a compact subset K � Z then ˆ.X/ is
also contained in the set K \ Y � Y which by Proposition 2.29 is compact.
Conversely, every compact K � Y is also compact in Z by Proposition 2.29.

Proposition 2.123. Let ˆWX ( Y and x 2 X satisfy (2.8), the closure being
understood in X � Y . If ˆ is locally compact at x in Y then ˆ is upper semicon-
tinuous at x.

Proof. Let V � Y be a neighborhood of ˆ.x/. Assume by contradiction that for
each neighborhood U � X of x the set ˆ.U / n V is nonempty. By hypothesis
there is a compact set Y0 � Y and a neighborhood U0 � X of x with ˆ.U0/ �
Y0. Let U denote the family of all neighborhoods U � X of x which satisfy U �
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U0. Proposition 2.10 implies that AU WD ˆ.U / n V is closed in Y0. The family
of all sets AU .U 2 U / has the finite intersection property, since if U0 � U is
finite then U WD T

U0 belongs to U and satisfies by hypothesis and (2.2)

¿ ¤ ˆ.U / n V �
\

U 2U0

ˆ.U / n V �
\

U 2U0

AU .

Proposition 2.28 thus implies that there is some y 2 T

U 2U AU . Then .x; y/ 2
graph.ˆ/. Indeed, for any neighborhood W � X � Y of .x; y/ there are U 2 U
and a neighborhood V0 � Y of y with U � V0 � W . Since y 2 AU � ˆ.U /,
there is Oy 2 V0 \ˆ.U / and thus some Ox 2 U with

. Ox; Oy/ 2 graph.ˆ/ \ .U � V0/ � graph.ˆ/ \W .

Hence .x; y/ 2 graph.ˆ/ which by (2.8) implies .x; y/ 2 graph.ˆ/, that is,
y 2 ˆ.x/ � V . On the other hand, y 2 T

U 2U AU implies y … V which is a
contradiction.

Corollary 2.124. Let ˆWX ( Y be locally compact. If graph.ˆ/ is closed in
X � Y then ˆ is upper semicontinuous.

Example 2.120 shows that even for single-valued functions it is not possible to
drop the hypothesis that ˆ be locally compact.

Proposition 2.125. Let ˆWX ( Y be locally compact. Then each compact set
K � X has an open neighborhood U � X such that ˆ.U / is relatively compact
in Y .

Proof. Let U denote the system of all open sets U � X such that ˆ.U / is
relatively compact in Y . By hypothesis, U is an open cover of K. Since K is
compact, it is covered by finitely manyU1; : : : ; Un 2 U . ThenU WD U1[� � �[Un

is an open neighborhood of K, and

ˆ.U / D ˆ.U1/ [ � � � [ˆ.Un/

is relatively compact in Y .
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Metric Spaces

3.1 Notations and Basic Results for Metric Spaces

Recall that a function d WX �X ! Œ0;1/ is called a metric if it satisfies:

(a) d.x; y/ D 0 ” x D y for all x; y 2 X .

(b) d.x; y/ D d.y; x/ for all x; y 2 X (symmetry).

(c) d.x; y/ � d.x; z/C d.z; y/ for all x; y; z 2 X (triangle inequality).

The couple .X; d/ is called a metric space. Notationally, we usually just write X
and mean by d the corresponding metric. We define for nonempty M � X the
diameter

diamM WD sup¹d.x; y/ W x; y 2M º
and the distance function dist. � ;M/WX ! Œ0;1/ by

dist.x;M/ WD inf¹d.x; y/ W y 2M º.
Moreover, for nonempty N;M � X , we put

dist.N;M/ WD inf¹d.x; y/ W x 2 N , y 2M º D inf¹dist.x;M/ W x 2 N º.
In case M D ¿, it is convenient to define diamM D 0 and dist.x;M/ D
dist.N;M/D dist.M;N / D1 (also if N D ¿).

For x0 2M � X and r 2 Œ0;1�, we define the open and closed ball and sphere
(with radius r and center x0), and the ball-neighborhood of M (with radius r) by

Br.x0/ WD ¹x 2 X W d.x; x0/ < rº,
Kr.x0/ WD ¹x 2 X W d.x; x0/ � rº,
Sr .x0/ WD ¹x 2 X W d.x; x0/ D rº,
Br.M/ WD

[

x2M

Br.x/ D ¹x 2 X W dist.x;M/ < rº,

respectively. An "-net for M � X is a set N � X satisfying M � B".N /.
Each metric on X induces a topology which has Br.x/ (r > 0, x 2 R) as the

basis of open sets. We tacitly understand this topology when we speak about a



60 Chapter 3 Metric Spaces

metric space. A topological space is metrizable if there is a metric which induces
the given topology.

Note that if X and Y are metric spaces then f WX ! Y is continuous at x0

with respect to the induced topologies if and only if for each " > 0 there is some
ı > 0 with f .Bı.x0// � B".f .x0//.

Similarly, we have xn ! x if and only if for each " > 0 we have xn 2 B".x/

for all but at most finitely many n.
We recall the so-called inverse triangle inequality:

Proposition 3.1. If X is a metric space then

jd.x; y/ � d.w; z/j � d.x;w/C d.y; z/ for all x; y;w; z 2 X .

Proof. By the triangle inequality d.x; y/ � d.x;w/ C d.w; z/ C d.y; z/ and
d.w; z/ � d.w; x/ C d.x; y/ C d.y; z/ which together implies the claim in the
cases d.x; y/ � d.w; z/ or d.x; y/ � d.w; z/, respectively.

The inverse triangle inequality implies in particular that d WX � X ! R is
continuous.

Corollary 3.2. All open balls are open, all closed balls and spheres are closed.

Proof. Since f WD d. � ; x0/ is continuous, the assertion follows from Br.x0/ D
f �1..�1; r//, Kr.x0/ D f �1.Œ0; r�/ and Sr.x0/ D f �1.¹rº/.

Easy examples show that it need not be the case that Kr.x0/ D Br.x0/. How-
ever, this is the case for normed spaces. Recall that X is a (real or complex)
normed space if it is a vector space (over K D R or K D C) and if it is equipped
with a norm, that is a map k � kWX ! Œ0;1� satisfying the well-known properties

(a) kxk D 0 ” x D 0 .x 2 X/.
(b) k�xk D j�jkxk for all � 2 K, x 2 X .

(c) kx C yk � kxk C kyk for all x; y 2 X .

We equip a normed space with the metric d.x; y/ D kx � yk. The inverse triangle
inequality (Proposition 3.1 with y D z D 0) becomes for normed spaces

jkxk � kykj � kx � yk.

In particular, k � kWX ! R is continuous.

Proposition 3.3. If X is a normed space and r 2 .0;1/ then Br .x0/ is the
interior of Kr.x0/, Kr .x0/ D Br .x0/, Sr .x0/ D @Br.x0/ D @Kr .x0/, and
Br.x0/ and Kr.x0/ are convex.
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Proof. If x 2 Sr.x0/ and t 2 .0;1/ then xt WD x0Ct.x�x0/ belongs to Br .x0/

in case t < r and does not belong to Kr.x0/ in case t > r . Since Br .x0/ is open
and Kr.x0/ is closed, this implies the first two assertions and then also the third.
The last assertion follows from the estimate

d.txC.1�t/y; x0/Dkt.x � x0/C.1 � t/.y � x0/k� td.x; x0/C.1�t/d.y�x0/

for t 2 Œ0; 1�.

Definition 3.4. Let X and Y be metric spaces, f WX ! Y , and !W Œ0;1/ !
Œ0;1� be continuous at 0with !.0/ D 0. Then ! is called a modulus of continuity
at x0 for f if

d.f .x/; f .x0// � !.d.x; x0// for all x 2 X .

If there is L 2 Œ0;1/ such that !.t/ D Lt is a modulus of continuity at every
x0 2 X , we call f Lipschitz with Lipschitz constant L. Similarly, if there is
L 2 Œ0;1/ and ˛ 2 .0; 1/ such that !.t/ D Lt˛ is a modulus of continuity at
every x0 2 X , we call f Hölder (of exponent ˛) with Hölder constant L.

Proposition 3.5. Let X and Y be metric spaces, and f WX ! Y . Then f has a
modulus of continuity at x0 2 X if and only if f is continuous at x0 2 X .

Proof. Let ! be a modulus of continuity of f at x0. For each " > 0 there is ı > 0
such that !.t/ < " for all t 2 Œ0; ı/. Then f .Bı.x0// � B".f .x0//.

Conversely, if f is continuous at x0 then

!.t/ WD sup
x2Kt.x0/

d.f .x/; f .x0//

is a modulus of continuity for f at x0. Indeed, !.0/ D 0, and for each " > 0

there is ı > 0 with f .Bı.x0// � B".f .x0//, that is, for all x 2 Bı.x0/ we have
d.f .x/; f .x0// < ". Hence, !.Œ0; ı// � Œ0; "�, and so ! is continuous at 0.

Corollary 3.6. Every Lipschitz or Hölder function is continuous.

Proof. Every Lipschitz or Hölder function has a modulus of continuity at every
point. So the assertion follows from Proposition 3.5.

The following definition of a Cauchy sequence is not the one which is usually
found in text books on analysis. However, we will show in a moment that it is
equivalent. Moreover, it is much more convenient to verify and actually is even
much more natural since the relation with convergent sequences is immediately
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clear: Convergent sequences are exactly those Cauchy sequences for which x in
the following definition can be chosen independently of ".

Definition 3.7. A sequence xn in a metric space X is a Cauchy sequence if for
each " > 0 there is some x 2 X such that the relation d.xn; x/ < " holds for all
except finitely many n.

Recall that a metric space is complete if each Cauchy sequence converges. We
collect the well-known properties in the following lemma.

Lemma 3.8. Let X be a metric space.

(a) Each convergent sequence inX is a Cauchy sequence. Conversely, a Cauchy
sequence converges if and only if it has a convergent subsequence.

(b) A sequence xn 2 X is a Cauchy sequence if and only if for each " > 0 there
is some N with d.xn; xm/ � " for all n;m � N .

(c) If xn ! x and xn ! y then x D y.

(d) If M � X is complete then M is closed, and the converse holds if X is
complete.

Proof. If xn ! x then one can just choose the limit x in the definition of a
Cauchy sequence. Conversely, if xn 2 X is a Cauchy sequence with a convergent
subsequence xnk

! x then xn ! x. Indeed, for each " > 0 there is y 2 X and
N 2 N such that d.xn; y/ < " for all n � N and some k with nk � N and
d.xnk

; x/ < ". Then we have for all n � N that

d.xn; x/ � d.xn; y/C d.y; xnk
/C d.xnk

; y/ < 3".

If xn is a Cauchy sequence and " > 0 then there is x 2 X and N 2 N with
d.xn; x/ � " for all n � N . Hence,

d.xn; xm/ � d.xn; x/C d.x; xm/ � 2"
for all n � N . Conversely, if for each " > 0 there is some N with d.xn; xm/ � "
for all n;m � N then the choice x D xN shows that xn is a Cauchy sequence.

Assertion (c) follows from d.x; y/ � d.x; xn/C d.xn; y/! 0.
IfM is complete and x 2 M then for each n there is some xn 2 M \K1=n.x/,

in particular xn ! x. Then xn is a Cauchy sequence by (a) and thus convergent
to some y 2 M . By (c), we have x D y 2 M . Conversely, if X is complete,
M � X is closed, and xn 2 M is a Cauchy sequence then xn ! x for some
x 2 X . Since M is closed it follows that x 2 M , and so M is complete.
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For later usage, we recall Banach’s fixed point theorem.

Theorem 3.9 (Banach Fixed Point). Let X ¤ ¿ be a complete metric space, and
f WX ! X be Lipschitz with constant L < 1. Then f has a fixed point in X .

Proof. We choose x0 2 X and define inductively xn WD f .xn�1/. Using the
shortcut dn WD d.xnC1; xn/, we have dn D d.f .xn/; f .xn�1// � Ldn�1, and
thus an induction shows dn � Lnd0 for all n � 0. For 0 < m � n, we obtain

d.xn; xm/ �
n�1
X

kDm

dk �
1

X

kDm

Lkd0 D Lm

1� Ld0.

By Lemma 3.8(a), it follows that xn is a Cauchy sequence in X and thus conver-
gent to some x 2 X . The continuity of f implies xn D f .xn�1/ ! f .x/, and
so Lemma 3.8(c) implies f .x/ D x.

Actually, the fixed point of Theorem 3.9 is unique. We prove this in the follow-
ing generalization which is more convenient for most applications. Theorem 3.9
follows from the following result in the special case r D1.

Theorem 3.10 (Banach Fixed Point on Balls). Let X be a complete metric space,
x0 2 X and r 2 Œ0;1�, and let f WKr.x0/ ! X be Lipschitz with constant
L < 1. If � WD .1 � L/�1d.f .x0/; x0/ � r then f has exactly one fixed point,
and this fixed point belongs to K�.x0/.

Proof. For x 2 K�.x0/, we have

d.f .x/; x0/ � d.f .x/; f .x0//C d.f .x0/; x0/ � L�C .1 � L/� D �.

Hence, f WK�.x0/! K�.x0/. SinceK�.x0/ is closed and thus a complete metric
space by Lemma 3.8(d), the existence of a fixed point in K�.x0/ follows from
Theorem 3.10. Concerning the uniqueness, observe that if x and y are two fixed
points of f then d.x; y/ D d.f .x/; f .y// � Ld.x; y/ implies that d.x; y/ D 0,
hence x D y.

Lemma 3.11. Let X be a metric space, and F be a nonempty family of functions
f WX ! R and such that there is a modulus of continuity ! at x0 for every
f 2 F with ! being independent of f 2 F and finite on Œ0; r/. Suppose that
S.x/ WD supf 2F f .x/ is finite for x D x0. Then S.x/ is finite in Br.x0/, and
S WBr.x0/ ! R is continuous at x0 and has the modulus of continuity ! at x0.
An analogous result holds with “inf” instead of “sup”.
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Proof. Let S.x0/ <1 and x 2 Br.x0/. For every f 2 F , we have

f .x/ � f .x0/C !.d.x; x0// � S.x0/C !.d.x; x0//.

Taking the supremum over all f 2 F , we find S.x/ <1, hence S.x/ 2 R, and

S.x/ � S.x0/ � !
�

d.x; x0/
�

.

Conversely, taking the supremum over all f 2 F in

f .x0/ � f .x/C !
�

d.x; x0/
� � S.x/C !�

d.x; x0/
�

,

we find
S.x0/ � S.x/ � !

�

d.x; x0/
�

.

For the last assertion, note that inff 2F f .x/ D �S.x/ where S is the function
corresponding to the family ¹�f W f 2 F º.

Proposition 3.12. For every metric space X and nonempty M � X the func-
tion f WD dist. � ;M/WX ! Œ0;1/ is Lipschitz with constant 1. We have f D
dist. � ;M /, and f �1.0/ DM .

Proof. Put F WD ¹d. � ; y/ W y 2M º. Since each f 2 F is Lipschitz with con-
stant 1, Lemma 3.11 implies that S.x/ WD dist.x;M/ D inff 2F f .x/ is Lips-
chitz with constant 1.

For each x 2 X there is a sequence xn 2 M with d.x; xn/ ! dist.x;M/.
Choose yn2M with d.xn; yn/� 1=n. Then d.x; yn/�d.x; xn/C d.xn; yn/!
dist.x;M/, and so f .x/� dist.x;M/. The converse inequality is obvious. We
have f .x/ D 0 if and only if there is a sequence xn 2 M with d.x; xn/ ! 0

which means x 2M .

We obtain that metric spaces satisfy all separation properties introduced in Sec-
tion 2.3:

Corollary 3.13 (Urysohn’s Lemma for metric spaces). Every metric space X is
perfectly normal, that is, X is Hausdorff and T6. More precisely, there is a map
which associates to each pair .A;B/ of closed disjoint subsets A;B � X some
f.A;B/ 2 C.X; Œ0; 1�/ satisfying f �1

.A;B/
.0/ D A and f �1

.A;B/
.1/ D B .

Note that without AC, the described property is slightly stronger than T6, since
in general T6 spaces it is not clear without AC, whether there is a selection
.A;B/ 7! f.A;B/.
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Proof. For the Hausdorff property, we note that Br.x/ \ Br.y/ D ¿ for r <
d.x; y/=2. The continuous function

f.A;B/.x/ WD dist.x;A/
dist.x;A/C dist.x;B/

(in case A D ¿ and/or B D ¿, we replace in this formula dist.x;A/ and/or
dist.x;B/ by 1) has the required properties by Proposition 3.12.

Corollary 3.14. Let A and B be disjoint nonempty subsets of a metric space.
If A is compact and B is closed then there is some x 2 A with dist.x;B/ D
dist.A;B/ > 0.

Proof. The continuous function dist. � ; B/jAWA ! .0;1/ attains its minimum
on the compact set A.

Proposition 3.15. Let K be a compact space, X be a metric space, and let ˆ;‰W
K ( X be upper semicontinuous and such that for each x 2 K the sets ˆ.x/
and ‰.x/ are nonempty, compact and disjoint. Then

min
x2K

dist
�

ˆ.x/;‰.x/
�

> 0.

Proof. Since ˆ � ‰ is upper semicontinuous by Proposition 2.99, we obtain by
the continuity of d and Proposition 2.94 that F WD d ı .ˆ �‰/, that is F WK (
.0;1�, F.x/ WD d ı .ˆ � ‰/ D d.ˆ.x/;‰.x// is upper semicontinuous. Then
f .x/ WD minF.x/ > 0 exists by Corollary 3.14, and Proposition 2.88 implies
that f is lower semicontinuous. Corollary 2.102 implies that min f .K/ > 0

exists.

Recall that a setM0 �M � X is called dense inM ifM �M 0; a setM � X
is separable if it has a countable dense subset.

Proposition 3.16. Every metric space X is first countable. It is second countable
if and only if it is separable.

Proof. The sets B1=n.x0/ .n 2 N/ constitute a countable neighborhood basis
for x0. If O is a countable basis of the topology of X , we choose from each
nonempty element of O some point. The countable collection C of these points
is dense in X , since every neighborhood intersects C . Conversely, suppose that
C D ¹x1; x2; : : :º is dense in X . Then the family O of balls Br.xn/ with n 2 N
and r 2 Q \ .0;1/ is countable and dense in X . To see this, we note that every
open set O � X is the union of all elements from O contained in O. Indeed,
for every x 2 O there is some " > 0 with B2".x/ � O. We choose some r 2
Q \ .0; "/ and some n with d.x; xn/ < r ; then x 2 Br.xn/ � B2".x/ � O.



66 Chapter 3 Metric Spaces

Corollary 3.17. If X is a separable metric or second countable space then every
subset M � X has the same property

Proof. For second countable spaces, the assertion is obvious: If O is a countable
basis of the topology of X then the family of all O \M .O 2 O/ is a countable
basis of the topology of M . For separable metric spaces, the assertion follows
from Proposition 3.16.

Definition 3.18. Let X be a topological space and Y be a metric space. A map
ˆWX ( Y is upper semicontinuous in the uniform sense at x 2 X if for each
" > 0 there is some neighborhood U � X of x with ˆ.U / � B".ˆ.x//. If this
property holds for every x 2 X , we call ˆ upper semicontinuous in the uniform
sense.

Proposition 3.19. Let X be a topological space, Y be a metric space, and ˆW
X ( Y . If ˆ is upper semicontinuous at x 2 X , then ˆ is upper semicontinuous
in the uniform sense at x. The converse holds if ˆ.x/ is compact.

Proof. For the first claim, it suffices to note that B".ˆ.x// is a neighborhood
of ˆ.x/. For the converse implication, note that if V � Y is an open neigh-
borhood of the compact set ˆ.x/ then " WD dist.ˆ.x/;X n V / > 0 by Corol-
lary 3.14, and so B".ˆ.x// � V . Hence, if U is as in Definition 3.18, we have
ˆ.U / � V .

Recall that the inclusion ˆ.C/ � ˆ.C/ of Proposition 2.85 fails in general
for maps which are upper semicontinuous. Hence, it may be somewhat surprising
that in metric spaces, this relation holds by an appropriate choice of a countable
dense subset C (if dom.ˆ/ is separable). Actually, this is the case even if ˆ is
just upper semicontinuous in the uniform sense as we show now.

Proposition 3.20. Let X and Y be metric spaces and ˆWX ( Y be upper semi-
continuous in the uniform sense. If M � X is separable then there is a countable
set C � M with ˆ.M/ � ˆ.C/.
Proof. Replacing X by M , we may assume without loss of generality that M D
X . For n 2 N, let On be the family of all Bı.x/ � X with the property that
ˆ.Bı.x// � B1=n.ˆ.x//. Sinceˆ is upper semicontinuous in the uniform sense,
On is an open cover of X . Since X is Lindelöf by Propositions 2.61 and 3.16, On

has a countable subcover Bın;k
.xn;k/ .k 2 N/. Then the family C of all xn;k has
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the required property. Indeed, let y 2 ˆ.x/ and " > 0 be arbitrary. Choose some
n 2 N with 1=n < ". There is some k with x 2 Bın;k

.xn;k/. Then

y 2 ˆ�

Bın;k
.xn;k/

� � B1=n

�

ˆ.xn;k/
�

implies that there is some y0 2 ˆ.xn;k/ � ˆ.C/ with d.y; y0/ < 1=n < ".

Corollary 3.21. Let X and Y be metric spaces and ˆWX ( Y be upper semi-
continuous in the uniform sense. If M � X is separable and ˆ.x/ is separable
for every x 2 M then ˆ.M/ is separable.

Proof. By Proposition 3.20 there is a countable C � M with ˆ.M/ � ˆ.C/.
By hypothesis there is a countable A � ˆ.C/ with ˆ.C/ � A. Then A � ˆ.M/

is countable with ˆ.M/ � A.

3.2 Three Measures of Noncompactness

Definition 3.22. Let X be a metric space, and M � X . The Hausdorff measure
of noncompactness of M in X is

�X .M/ WD inf ¹" 2 Œ0;1� WM has a finite "-net N � Xº.
The Kuratowski measure of noncompactness of M is

˛.M/ WD inf ¹" 2 Œ0;1� WM has a finite cover by sets with diameter � "º.
The Istrǎţescu measure of noncompactness of M is

ˇ.M/ WD sup ¹" 2 Œ0;1� W There are x1; x2; � � � 2 M with

d.xn; xm/ � " for all n ¤ mº.

Note that ˛.M/ is in fact independent of X since the sets in the cover can be
chosen to be subsets of M .

We first collect some well-known estimates for the above quantities in the fol-
lowing Proposition 3.23. Only the last of the assertions of Proposition 3.23 seems
to be less known. The proof of that last assertion is surprisingly involved, but we
will need that assertion several times.

Proposition 3.23. For M � X0 � X , we have

�X .M/ � �X0
.M/ � �M .M/ � ˇ.M/ � ˛.M/ � 2�X .M/, (3.1)
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and for each r > �X .M/

�X .M/ D �Br .M/.M/. (3.2)

Moreover,

�X .M/ D inf ¹ı 2 Œ0;1� W There is an "-net N � X for M

with �X .N /C " � ıº,
(3.3)

˛.M/ D inf ¹ı 2 Œ0;1� W There is an "-net N � X for M

with ˛.N /C 2" � ıº, (3.4)

ˇ.M/ D inf ¹ı 2 Œ0;1� W There is an "-net N � X for M

with ˇ.N /C 2" � ıº, (3.5)

and for each sequence xn 2 M and each " > 0 there is a subsequence satisfying

d.xnj
; xnk

/ < ˇ.M/C " for all j; k 2 N. (3.6)

Proof. The first two inequalities of (3.1) are obvious, and the last follows
from (3.4) with finite sets N � X .

To prove �M .M/ � ˇ.M/, we note that 0 < " < �M .M/ implies that there is
no finite "-net for M inM . Hence, we can inductively define a sequence xn 2M
with d.xn; xm/ � " for all m < n, and so ˇ.M/ � ".

To prove ˇ.M/ � ˛.M/, we note that 0 < " < ˇM .M/ implies that there
is a sequence xn 2 M with d.xn; xm/ � " with n ¤ m. Now for each finitely
many sets M1; : : : ;Mn � X with M �M1 [ � � � [Mn, at least one of these sets
Mk must contain two elements of the sequence xn and thus satisfy diamMk � ".
Hence, ˛.M/ � ".

Now we prove (3.2). Thus, let r > �X .M/. For each � > �X .M/ with � < r ,
there is a finite �-net N � X for X . Then also N0 WD N \Br.M/ � Br.M/ is a
finite �-net for M , since for every x 2 M there is some x0 2 N with d.x; x0/ <

� < r . Hence, x0 2 N0 with d.x; x0/ < �. This shows �Br .M/.M/ � �, and so
�Br .M/.M/ � �X .M/. The converse inequality follows from (3.1), and so (3.2)
is established.

Note that “�” in (3.3), (3.4), and (3.5) follows for the choice N WDM . For the
converse inequalities, let N � X be an "-net for M , and we have to show that
"0 > �X .N / implies �X .M/ � "0 C ", "0 > ˛.N / implies ˛.M/ � "0 C 2",
and "0 > ˇ.N / implies ˇ.M/ � "0 C 2".

For the first of these implications, we choose an "0-netN0 � X forN , and then
the triangle inequality implies that N0 is an ."0 C "/-net for M . For the second
of these implications, we choose finitely many Nk � X with N � N1 [ � � � [Nn
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and diamNk � "0, and then Mk WD B".Nk/ cover M and satisfy diamMk �
diamNk C 2" � "0 C 2". For the last of these implications, suppose by contra-
diction that there is a sequence xn 2 M satisfying d.xn; xm/ � "0 C 2" for all
n ¤ m. There are yn 2 N with d.yn; xn/ � ", and then Proposition 3.1 implies
d.yn; ym/ � d.xn; xm/ � 2" � "0 for all n ¤ m which gives the contradiction
ˇ.N / � "0.

For the last assertion, we can assume that r WD ˇ.M/C" is finite and show first
that for each sequence yn 2M there is some n0 such that Br.yn0

/ contains yn for
infinitely many n. Indeed, if such an n0 would not exist, then we could inductively
define a family of infinite subsets Nk � N as follows: We put N1 D N, and if
Nk is already defined, we put nk WD minNk and observe that by assumption
yn 2 Br.ynk

/ only for finitely many n. Hence, the set NkC1 � Nk of all n 2 Nk

satisfying d.yn; ynk
/ � r is infinite. Now the infinite sequence xk WD ynk

has for
m > k the property that xm 2 Nm � NkC1 and thus d.xm; xk/ D d.xm; ynk

/ �
r . Thus, the sequence xk shows that ˇ.M/ � r which is a contradiction.

Now if xn 2 M is any sequence, we define inductively infinite sets Nk � N
and nk 2 Nk as follows: We put N1 WD N. If Nk is already defined, we consider
the subsequence xn .n 2 Nk/. By what we have shown above there is some
smallest index nk 2 Nk such that xn 2 Br.xnk

/ for infinitely many n 2 Nk .
Let NkC1 denote the set of all such n with n > nk. Now the sequence nk has
the required property, for if j > k then nj 2 Nj � NkC1 is larger than nk and
satisfies xnj

2 Br.xnk
/, that is, d.xnj

; xnk
/ < r .

The reason for the terminology “measure of noncompactness” will be explained
in a moment. We recall the famous Hausdorff criterion for compactness:

Theorem 3.24 (Hausdorff). For a subset M of a metric space X the following
statements are equivalent:

(a) M is relatively compact in X :

(b) M is compact.

(c) Every sequence in M has a subsequence convergent in X .

(d) M is complete and �X .M/ D 0.

Proof. Since X is Hausdorff, the equivalence of the first two statements follows
from Corollary 2.47. If M is compact and xn 2 M is a sequence, then the family
of closed subsets An WD ¹xn; xnC1; : : :º � M .n 2 N/ has the finite intersection
property. Proposition 2.28 thus implies that there is some x 2 S1

nD1An. We put
n0 WD 0 and choose inductively nk > nk�1 .k 2 N/ with d.x; xnk

/ < 1=k.
Then xnk

is a convergent subsequence of xn, and so (c) holds.
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Now suppose that (c) holds. If xn 2 M is a Cauchy sequence, we choose
yn 2 M with d.xn; yn/ < 1=n and a convergent subsequence ynk

! x. Then
d.xnk

; x/ � d.ynk
; x/ C 1=nk ! 0 implies xnk

! x. By Lemma 3.8(a), we
obtain xn ! x. Hence, M is complete. Moreover, �X .M/ > 0 would imply
ˇ.M/ > 0 by (3.1), and for 0 < " < ˇ.M/, we could find a sequence xn 2 M
with d.xn; xm/ � " for n ¤ m. This sequence has no Cauchy subsequence and
thus no convergent subsequence by Lemma 3.8(a).

It remains to show that (d) implies the compactness of M . Assume by contra-
diction that (d) holds but there is an open cover O of M without a finite sub-
cover. Let Nn � X be a finite 1=n-net for M . We define now inductively
closed sets Cn � M such that Cn is not covered by finitely many sets from
O: We put C1 WD M , and if Cn is already defined, we note that the family
Cn;x WD K2=n.x/ \ Cn .x 2 Nn/ is a finite cover of Cn, and so there is some
xn 2 Nn such that CnC1 WD Cn;xn

is not covered by finitely many sets from O .
In particular, Cn ¤ ¿, and so there is a sequence yn 2 Cn .n 2 N/. Since

C1 � C2 � � � � and diamCn � 4=n, it follows that yn 2 M is a Cauchy
sequence and thus convergent to some x 2 M . Since the sets Cn are closed, we
have x 2 Cn for every n 2 N. There is some O 2 O with x 2 O, and since O
is open and diamCn � 4=n, we have Cn � O for all sufficiently large n 2 N.
These Cn are even covered by a single set O 2 O , contradicting our choice of
Cn.

Recall that the completion of a metric space X is a complete metric space X
in which X is dense and such that the metric on X is the restriction of the metric
of X . It is well-known (and we will give a convenient proof in Corollary 3.64)
that every metric space has a completion. It is also well-known that one can speak
about “the” completion of a metric space by the following simple observation:

Proposition 3.25. The completion of a metric space is unique up to a natural
isometry, that is, ifX and Y are two completions ofX then idX extends (uniquely)
to an isometric bijection i of X onto Y .

Proof. For x 2 X there is a sequence xn 2 X with xn ! x in X . Then xn is a
Cauchy sequence in Y , and so Lemma 3.8 implies that xn is convergent in Y to a
unique y 2 Y . If Ox 2 X and Oxn 2 X satisfies Oxn ! Ox then also Oxn is convergent
in Y to a unique Oy 2 Y . The continuity of the metric d in X and the metric dY

in Y implies d.xn; Oxn/ ! d.x; Ox/ and d.xn; Oxn/ D dY .xn; Oxn/ ! dY .y; Oy/.
Hence, d.x; Ox/ D dY .y; Oy/. In particular, for x D Ox we have y D Oy, and
so y is actually independent of the particular choice of xn. Hence, we can define
a map i WX ! Y by x 7! y. By what we have shown, we have d.x; Ox/ D
dY .i.x/; i. Ox//, that is, d is an isometry and in particular one-to-one. To see that i
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is onto, we note that as in the beginning of the proof we find for each y 2 Y a
sequence xn 2 X with xn ! y in Y which then also converges in X to some
x 2 X , and so y D i.x/.

Using the notion of completion of a metric space, we can now explain the notion
“measure of noncompactness”. We collect also some other basic properties in the
following result.

Proposition 3.26. Let X be a metric space, and 	 2 ¹�X ; ˛; ˇº. Then we have
for all M;N � X :

(a) 	.M/ D 0 if and only if the completion of M is compact.

(b) If M is relatively compact in X then 	.M/ D 0. The converse holds if M is
complete.

(c) 	.M/ D 0 implies that M is separable.

(d) 	.M/ <1 if and only if diamM <1.

(e) 	.M/ � 	.N / if M � N � X .

(f) 	.M [N/ D max¹	.M/; 	.N /º.
(g) 	.M/ D 	.M/.

Proof. For the first assertion we note that by (3.1) the property 	.M/ D 0 is
actually independent of X . Hence, considering the completion of X if necessary,
we can assume without loss of generality that X is complete. Then the completion
of M is just M , and so the first assertion follows from the second which in turn
is contained in Theorem 3.24. If M � X satisfies 	.M/ D 0 then �M .M/ D 0

by (3.1), and this trivially implies that M is separable. The proof of the other
assertions is straightforward and left to the reader.

Corollary 3.27. If X is a metric space andM � X is relatively compact then M
is separable.

Proof. If M is relatively compact then 	.M/ D 0 and thus M is separable by
Proposition 3.26.

It is well-known and not hard to see that Lipschitz maps with constant L in-
crease measures of noncompactness at most by the factor L. The following result
generalizes this fact even for the case of functions of two variables. In the case
	 D ˇ, this is not so trivial as it might appear at a first glance. In fact, we need
the tricky last assertion of Proposition 3.23 for the proof in this case.
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Proposition 3.28. Let X , Y and Z be metric spaces and f WX �Y ! Z be such
that f . � ; y/ and f .x; � / are Lipschitz with constant L1 or L2 for every y 2 Y
or x 2 X , respectively. Then we have for every M � X and N � Y the estimate

	
�

f .M �N/� � L1	.M/C L2	.N /,

where 	 2 ¹�; ˛; ˇº (in the respective spaces X , Y , or Z).

Note that the assertion depends only on the metric on X , Y , and Z, not on a
metric on the product space X � Y .

Proof. For "1 > 	.M/ and "2 > 	.N /, put c WD L1"1 C L2"2. We are to show
that 	.f .M �N// � c WD L1"1 C L2"2. To this end, we note first that

d
�

f .x; y/; f .x0; y0/
� � c if d.x; x0/ � "1 and d.y; y0/ � "2. (3.7)

Indeed, (3.7) follows from d.f .x; y/; f .x0; y// � L1"1, d.f .x0; y/; f .x0;

y0// � L2"2, and the triangle inequality.
In case 	 D �, there is a finite "1-netN1 � X forM and a finite "2-netN2 � Y

for N . Then (3.7) implies that f .N1 �N2/ is a finite c-net for f .M �N/.
In the case 	 D ˛, the sets M and N are covered by finitely many sets

M1; : : : ;Mn � X and N1; : : : ; Nm � Y with diamMk � "1 and diamNj � "2,
respectively. Then the finitely many setsDk;j WD f .Mk �Nj / cover f .M �N/,
and satisfy diamDk;j � c by (3.7).

In case 	 D ˇ, we assume by contradiction that there is a sequence zn 2 f .M�
N/ with d.zn; zm/ > c .n ¤ m/. Then zn D f .xn; yn/ with .xn; yn/ 2 M �N .
Passing to a subsequence, we can assume by (3.6) that d.xn; xm/ � "1 for all
n;m 2 N. Since "2 > ˇ.N /, there are n ¤ m with d.yn; ym/ � "2. For this
choice, we obtain by (3.7) the contradiction d.zn; zm/ � c.

Corollary 3.29. Let X be a normed space over K D R or K D C, and M � X .
Ifƒ � K is bounded by r 2 Œ0;1/ then 	.ƒM/ � r	.M/ for all 	 2 ¹�X ; ˛; ˇº.
Proof. We can assume that 	.M/ < 1, and so M is bounded by Proposi-
tion 3.26. If M0 � X is bounded with M � M0, then f Wƒ � M0 ! X ,
defined by f .t; x/ WD tx, is Lipschitz with respect to x with constant L2 D
r and Lipschitz with respect to t with some constant L1. Since 	.ƒ/ D 0,
we obtain from Proposition 3.28 that 	.ƒM/ � r	.M/ for 	 2 ¹˛; ˇº and
�X .ƒM/ � r�M0

.M/. Choosing M0 WD BR.M/ with R > �X .M/, we have
r�M0

.M/ D r�X .M/ by (3.2).

Proposition 3.30. Let X be a normed space over K D R or K D C, and 	 2
¹�X ; ˛; ˇº. Then we have for every M;N � X and � 2 K:
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(a) 	.�M/ D j�j	.M/.

(b) 	.M CN/ � 	.M/C 	.N /.
Proof. Corollary 3.29 with ƒ WD ¹�º implies 	.�M/ � j�j	.M/. If � ¤ 0, we
apply this inequality with ��1 in place of � and obtain the converse inequality

j�j	.M/ D j�j	�

��1.�M/
� � j�jj��1j	.�M/ D 	.�M/.

For the second assertion, we are to show that for all " > 	.M/ and "0 > 	.N /,
we have 	.M C N/ � "C "0.

In the case 	 D �X , there is a finite "-net N0 � X for M and a finite "0-
net N1 � X for M . Then N0 C N1 is a finite ." C "0/-net for M , and so
�X .M CN/ � "C "0.

In the case 	 D ˛, note that M is covered by sets M1; : : : ;Mn � X with
diamMk < " .k D 1; : : : ; n/ and N is covered by sets N1; : : : ; Nm � X with
diamNj < "0 .j D 1; : : : ;m/. Then the finitely many sets Mk C Nj cover
M CN and satisfy

diam.Mk CNj / � diamMk C diamNj � "C "0,

and so ˛.M CN/ � "C "0.
In the case 	 D ˇ, assume by contradiction ˇ.MCN/ > "C"0, that is, there is

a sequence zn 2 M C N with kzn � zmk � "C "0 .n ¤ m/. There are xn 2 M
and yn 2 N with zn D xn C yn. Since " > ˇ.M/ we can assume by (3.6),
passing to a subsequence if necessary, that kxn � xmk < " for all n;m 2 N.
Since "0 > ˇ.M/, there are n ¤ m with kyn � ymk < "0. For this choice, we
find

kzn � zmk � kxn � xmk C kyn � ymk < "C "0,

contradicting our choice of zn.

Lemma 3.31 (Riesz). Let X be normed and U � X be a linear subspace. As-
sume U ¤ X (or dimU < 1 and U ¤ X ). Then for each " > 0 (or " D 0)
there is x 2 X with kxk D 1 and dist.x; U / � 1 � ".
Proof. In case dimU < 1 we will show in Proposition 3.59 that U is closed,
that is U D U ¤ X . Hence, in both cases there is x0 2 X n U , and so ı WD
dist.x0; U / > 0. There is some u0 2 U with kx0 � u0k � ı=.1 � "/ (in case
dimU < 1 and " D 0, we used here Corollary 3.14 and that we will also show
in Proposition 3.59 that closed bounded subsets of U are compact.) Then x WD
kx0 � u0k�1.x0�u0/ has the required property. Indeed, for any u 2 U , we have
in view of u1 WD u0Ckx0 � u0ku 2 U that kx � uk D kx0 � u0k�1kx � u1k �
kx0 � u0k�1ı � 1 � ".
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Proposition 3.32. Let X be normed and infinite-dimensional, and S D S1.0/,
K D K1.0/. Then the following holds:

(a) ˇ.S/ � 1 even in the strong sense that there is a sequence xn 2 S with
kxn � xmk � 1 for n ¤ m.

(b) �X .S/ D �X .K/ D �K.K/ D 1.

(c) ˛.S/ D ˛.K/ D 2.

(d)
p
2 � �S .S/ � ˇ.S/ � 2 if X is an inner product space, that is, if the norm

satisfies the parallelogram identity

2
�kxk2 C kyk2/ D kx C yk2 C kx � yk2 for all x; y 2 X .

Proof. By Lemma 3.31, we can inductively choose xn with kxnk D 1 and
dist.xn; Un/ � 1 where Un is the linear hull of x1; : : : ; xn�1. Then kxn � xmk �
1 for all n > m and thus for all n ¤ m.

Since ¹0º � K is a finite .1C "/-net for K for every " > 0, we have by (3.1)
that �X .S/ � �X .K/ � �K.K/ � 1. For the converse inequality, assume that
N � X is a finite "-net for S for some " 2 .0; 1/. Let U denote the linear hull
of N . Then Lemma 3.31 implies that there is some x 2 S with dist.x;N / �
dist.x; U / � 1 > ", a contradiction.

Since diamK � 2, we have in view of (3.1) that ˛.S/ � ˛.K/ � 2. Con-
versely, suppose that S can be decomposed into finitely many setsM1; : : : ;Mn of
diameter less than 2. Let U be an n-dimensional subspace and S WD U \ S1.0/.
Then Mk \ U .k D 1; : : : ; n/ are closed sets which cover the unit sphere of an
n-dimensional space. By the famous Ljusternik–Schnirel’man theorem (we will
give a proof in Theorem 9.89(c)), at least one of these sets M k \ U must contain
an antipodal pair and thus has diameter at least 2. Hence, also diamMk � 2 for
the corresponding k which is a contradiction.

By (3.1), we obtain �S .S/ � ˇ.S/ � ˛.S/ � 2. Conversely, suppose that
¹x1; : : : ; xnº is a finite "-net. Then S � M1 [ � � � [ Mn with the closed sets
Mk WD S \K".xk/. As above, we can use the Ljusternik–Schnirel’man theorem
to find that some Mk must contain an antipodal pair, that is, there is some k
and some y 2 S with y;�y 2 K".xk/. Since 2.kxkk2 C kyk2/ D 4, the
parallelogram identity implies that kxk � yk2 � 2 or kxk � .�y/k2 � 2. In both
cases, we obtain " � p2. Hence, �S .S/ �

p
2.

For countable sets, we will occasionally use the following result:

Lemma 3.33. Let X be a metric space, C D ¹x1; x2; : : :º � X , and D D
¹y1; y2; : : :º � X . If d.xn; yn/! 0 then 	.C / D 	.D/ for 	 2 ¹�X ; ˛; ˇº.
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Proof. Put Cn WD ¹x1; : : : ; xnº. Let " > 0. For sufficiently large n, the setD[Cn

is an "-net for C , and so (3.3), (3.5) and (3.4) implies 	.C / � 	.D [ Cn/C 2".
Since Proposition 3.26 shows that 	.D [ Cn/ D max¹	.D/; 	.Cn/º D 	.D/,
we thus have shown 	.C / � 	.D/ C 2". Since " > 0 was arbitrary, we obtain
	.C / � 	.D/. For symmetry reasons, this implies also 	.D/ � 	.C /.

3.3 Condensing Maps

Definition 3.34. Let X be a set. A function 	 which associates to each M � X

an element from Œ0;1� is called a set function on X . A set function 	X on X is
called monotone if

M � N � X H) 	X .M/ � 	X .N /.

Practically all set functions considered in applications are monotone. We are
mainly interested in the set functions �X , ˛, and ˇ which are all monotone by
Proposition 3.26.

Example 3.35. The so-called “inner Hausdorff measure of noncompactness”
	X.M/ WD �M .M/ fails to be monotone if X is an infinite-dimensional inner
product space. Indeed, for S D S1.0/ and K D K1.0/ we have S � K, but
Proposition 3.32 implies 	X.S/ �

p
2 > 1 D 	X .K/.

Definition 3.36. Let 	X and 	Y be set functions on X and Y . Let L 2 Œ0;1�.
Then ˆWX ( Y is called .L; �Y

�X
/-bounded if

	Y

�

ˆ.M/
� � L	X.M/ for all M � X , (3.8)

or if L D 1. In the special case 	X .M/ D 1, we consider (3.8) as satisfied,
even if L D 0. The smallest such constant L 2 Œ0;1� is denoted by Œˆ��Y

�X
.

The smallest such constant exists, because if L0 is the infimum of all constants
L 2 Œ0;1� satisfying (3.8) (or L D 1), then (3.8) holds also for L D L0

(or L0 D 1). The most important examples of maps with this property are the
following two:

Proposition 3.37. Let Y be a metric space, 	Y 2 ¹�Y ; ˛; ˇº and ˆWX ( Y .
If ˆ is compact then Œˆ��Y

�X
D 0, and the converse holds if Y is complete and

	X.X/ > 0.
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Proof. This follows from Proposition 3.26.

Proposition 3.38. If X and Y are metric spaces and F WX ! Y is Lipschitz with
constant L then ŒF ��Y

�X
� L, ŒF �˛˛ � L, and ŒF �ˇ

ˇ
� L.

Proof. This is a special case of Proposition 3.28.

Proposition 3.38 shows the main disadvantage of the Hausdorff measure of
noncompactness: While ˛ and ˇ do not depend on the space, and so one also has
a corresponding estimate if F WX0 ! Y with X0 � X , this is not the case for �X .
For �X , one really must require that F is defined (and Lipschitz) on the whole
space X as the following example shows:

Example 3.39. Let X be an infinite-dimensional inner product space, Y WD
S1.0/, and F D idY . Then F is Lipschitz with constant 1, but ŒF ��Y

�X
� p

2,
since �X .Y / D 1 <

p
2 � �Y .Y / by Proposition 3.32.

Even if one cannot obtain good Lipschitz constants for a map F , one can often
obtain much better estimates for the quantity ŒF ��Y

�X
. Here is an example which is

a key to many further examples.

Lemma 3.40. If X is a normed space, r 2 Œ0;1/, and �r WX n ¹0º ! Sr.0/ is
defined by �r .x/ WD rx=kxk then

Œ�r jXnB�.0/�
�
� � r=�,

for all 	 2 ¹�X ; ˛; ˇº and � > 0. Moreover, we have equality unless dimX <1.

Proof. Let M � X n B�.0/. Then �r .M/ � Œ0; r=��M implies by Proposi-
tion 3.26 and Corollary 3.29 that 	.�r .M// � 	.Œ0; r=��M/ � .r=�/	.M/. For
M D S�.0/, we have equality by Proposition 3.30.

Proposition 3.41. In a normed space X the radial retraction �r WX ! Kr.0/,
defined by

�r .x/ WD
8

<

:

x if x 2 Kr .0/,

r
x

kxk otherwise,

satisfies Œ���� � 1 for 	 2 ¹�X ; ˛; ˇº. Moreover, we have equality unless dimX <

1.
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Proof. We use the notation of Lemma 3.40. For any M � X , we have �r.M/ D
M1 [M2 with M1 D M \ Kr.0/ and M2 D �r.M nKr.0//. Hence, Proposi-
tion 3.26 and Lemma 3.40 imply

	
�

�r .M/
� D max¹	.M1/; 	.M2/º � 	.M/.

For M D Kr .0/, we have equality.

Note that in most spaces the function �r fails to be Lipschitz with constant 1.
Of particular importance is the case that the inequality in (3.8) is strict.

Definition 3.42. If the inequality in (3.8) is even strict in case 	X.ˆ.M// > 0

then ˆ is called .L; �Y
�X
/-condensing.

The reader be warned that the case 	X.M/ D 1 often has to be considered
separately in the above definition so that not every .L0;

�Y
�X
/-bounded map ˆ is

automatically .L; �Y
�X
/-condensing for L < L0.

More precisely, we have the following result:

Proposition 3.43. Let 	X and 	Y be monotone set functions on X and Y . Sup-
pose that ˆWX ( Y is .L0;

�Y
�X
/-bounded and 0 � L < L0. Then the following

statements are equivalent:

(a) ˆ is .L; �Y
�X
/-condensing.

(b) 	X.X/ <1 or 	Y .ˆ.X// <1.

Proof. By the monotonicity, we have 	Y .ˆ.M// � 	Y .ˆ.X// and 	X.M/ �
	X.X/ for every M � X . Hence, if the second case holds and 	X .M/ D1 then
	Y .ˆ.M// <1.

In literature, also the opposite inequality to (3.8) plays an important role. Since
we will only need the opposite inequality for single-valued maps, it turns out
that we do not need a separate definition for this case, since we can deal with
multivalued inverse maps:

Proposition 3.44. Let 	X and 	Y be set functions on X and Y , and F WX ! Y .
If 	Y is monotone then

	Y .F.M// � L	X .M/ for all M � X (3.9)

implies that F �1WY ( X is .L�1;
�X
�Y
/-bounded. If 	X is monotone, we have the

converse implication.
In case L > 0 we also have an analogous assertion for strict inequalities: If

	Y is monotone then strict inequality in (3.9) for 	X.M/ > 0 implies that F�1 is
.L�1;

�X
�Y
/-condensing. If 	X is monotone, the converse implication holds.
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Proof. F�1 is .K; �X
�Y
/-bounded if and only if

	X

�

F �1.N /
� � K	Y .N / for all N � Y , (3.10)

when we consider the inequality as satisfied for 	Y .N / D 1 or K D 1. More-
over, F�1 is .K; �X

�Y
/-condensing if and only if the inequality is even strict for

positive left-hand side.
If this holds and M � X , we put N WD F.M/ in (3.10). SinceM � F�1.N /,

we find for monotone 	X that

	X.M/ � 	X
�

F �1.N /
� � K	Y

�

F.M/
�

,

the last inequality being strict if 	X .M/ > 0 and F�1 is .K; �X
�Y
/-condensing.

Hence, (3.9) holds with L D K�1, with strict inequality if K <1, 	X.M/ > 0,
and F�1 is .K; �X

�Y
/-condensing.

Conversely, if (3.9) holds and N � Y , we put M WD F�1.N /. Then F.M/ �
N , and if 	Y is monotone, we thus obtain

	Y .N / � 	Y

�

F.M/
� � L	X

�

F�1.N /
�

.

Hence, (3.10) holds with K D L�1. In case of strict inequality and L > 0 also
the inequality in (3.10) is strict.

If the operator ˆ involves integration of vector functions, estimates like (3.8)
or (3.9) are usually hard to obtain: One can often obtain such estimates only for
countable subsets, see e.g. [76], [109] or [138, §11 and §12]. For this reason, we
introduce “countable” variants of Definition 3.36.

Definition 3.45. Let 	X and 	Y be set functions on X or Y , respectively. For

L 2 Œ0;1�, a map ˆWX ( Y is called .L; �Y

�c
X

/-bounded or .L;
�c

Y

�c
X

/-bounded

if (3.8) holds for all countable sets M � X or if

	Y .C / � L	X .M/ for all countable M � X and countable C � ˆ.M/,
(3.11)

respectively. We denote the corresponding minimal L 2 Œ0;1� by Œˆ��Y

�c
X

and

Œˆ�
�c

Y

�c
X

, respectively, and also define .L; �Y

�c
X

/-condensing and .L;
�c

Y

�c
X

/-condensing

maps by requiring in addition that the corresponding inequalities be strict if the
left-hand side is positive.

The notation “c” in 	c
X

and 	c
Y

should indicate that we consider only countable
subsets of X and Y , respectively.



Section 3.3 Condensing Maps 79

The reader might have observed that one case seems to be missing: This is the
case which one obtains by dropping the hypothesis that M be countable in (3.11).
However, this case actually gives nothing new:

Proposition 3.46. If 	X is monotone then (3.11) is equivalent to

	.C / � L	.M/ for all M � X and countable C � ˆ.M/. (3.12)

Proof. If C � ˆ.M/ is countable for some M � X , then there is a count-
able M0 � M with C � ˆ.M0/. Hence, if L satisfies (3.11) then 	Y .C / �
L	X.M0/ � L	X .M/, and so (3.12) holds. The converse implication is triv-
ial.

Proposition 3.47. (a) Each .L; �Y
�X
/-bounded map is .L; �Y

�c
X

/-bounded. If 	Y is

monotone then each .L; �Y

�c
X

/-bounded map is .L;
�c

Y

�c
X

/-bounded.

(b) Each .L; �Y
�X
/-condensing map is .L; �Y

�c
X

/-condensing. If 	Y is monotone then

each .L; �Y

�c
X

/-condensing map is .L;
�c

Y

�c
X

/-condensing.

In particular,

Œˆ�
�c

Y

�c
X

� Œˆ��Y

�c
X

� Œˆ��Y
�X

, (3.13)

where we require for the first inequality that 	Y is monotone.

Proof. If (3.12) holds then the monotonicity of 	Y implies for each countable
C � ˆ.M/ that 	X.M/ � L	Y .C / � L	Y .ˆ.M//. The other assertions are
shown similarly.

Proposition 3.48. Let 	X , 	Y , and 	Y be set functions on X , Y , and Z, respec-
tively. Then for any ˆWX ( Y and ‰WY ( Z:

Œ‰ ıˆ��Z
�X
� Œ‰jˆ.X/�

�Z
�Y
Œˆ��Y

�X

Œ‰ ıˆ��Z

�c
X

� Œ‰jˆ.X/�
�Z
�Y
Œˆ�

�c
Y

�c
X

Œ‰ ıˆ��c
Z

�c
X

� Œ‰jˆ.X/�
�c

Z

�c
Y

Œˆ�
�c

X

�c
Y

Proof. The proof is straightforward from the definitions.

For our particular three measures of noncompactness, we can compare all these
quantities up to the factor 2:
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Proposition 3.49. Let X and Y be metric spaces, and ˆWX ( Y . Then we have
for all monotone set functions 	X and 	Y on X and Y that

Œˆ��Y
�X
� Œˆ�ˇ�X

� Œˆ�˛�X
� 2Œˆ��Y

�X
(3.14)

Œˆ��Y
˛ � Œˆ��Y

ˇ
� Œˆ��Y

�X
� 2Œˆ��Y

˛ (3.15)

Œˆ�
�Y

�c
X

� Œˆ�ˇ
�c

X

� Œˆ�˛�c
X
� 2Œˆ��Y

�c
X

(3.16)

Œˆ�
�Y

˛c � Œˆ��Y

ˇ c � Œˆ��Y

�c
X

� 2Œˆ��Y

˛c (3.17)

Œˆ�
�c

Y

�c
X

� Œˆ�ˇ c

�c
X

� Œˆ�˛c

�c
X
� 2Œˆ��

c
Y

�c
X

(3.18)

Œˆ�
�c

Y

˛c � Œˆ��
c
Y

ˇ c � Œˆ��
c
Y

�c
X

� 2Œˆ��c
Y

˛c (3.19)

Suppose in addition that 	Y 2 ¹�Y ; ˛; ˇº. Then

Œˆ�
�c

Y

�c
X

� Œˆ��Y

�c
X

� Œˆ��Y
�X
� 2Œˆ��

c
Y

�c
X

(3.20)

and moreover:

(a) If ˆ.X/ is separable or 	Y D ˇ then

Œˆ�
�c

Y

�c
X

D Œˆ�
�Y

�c
X

D Œˆ��Y
�X

. (3.21)

(b) If ˆ is upper semicontinuous in the uniform sense and X is separable then

Œˆ�
�Y

�c
X

D Œˆ��Y
�X

.

If additionally ˆ.x/ is separable for every x 2 X then (3.21) holds.

(c) Either all of the quantities Œˆ��Y
�X

, Œˆ��Y

�c
X

, Œˆ�
�c

Y

�c
X

with 	X 2 ¹�X ; ˛; ˇº and

	Y 2 ¹�Y ; ˛; ˇº are finite or none, and if they are finite then diamˆ.M/ <

1 for each M � X with diamM <1.

Proof. The inequalities (3.14)–(3.19) follow immediately from (3.1), and the first
two inequalities of (3.20) follow from (3.13). The latter implies that, in order to

prove (3.21), we have to prove only Œˆ�
�c

Y

�c
X

� Œˆ��Y
�X

.

If ˆ.X/ is separable and M � X then ˆ.M/ is separable by Corollary 3.17,
and so there is a countable C � ˆ.M/ with ˆ.M/ � C . By Propositions 3.26
and 3.46, we obtain

	Y

�

ˆ.M/
� D 	Y .C / � Œˆ��

c
Y

�c
X

	.M/.
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If 	Y D ˇ and M � X , put ˇ0 WD ˇ.ˆ.M//. Assume first ˇ0 > 0. For each
c < ˇ0 there is a sequence xn 2 ˆ.M/ with d.xn; xm/ � c .n ¤ m/. Putting
C WD ¹x1; x2; : : :º, we have ˇ.C/ � c. By Propositions 3.26 and 3.46, we obtain

c � ˇ.C/ � Œˆ�ˇ c

�c
X

	.M/.

Since c < ˇ0 was arbitrary, we obtain (also in case ˇ0 D 0) that

ˇ
�

ˆ.M/
� D ˇ0 � Œˆ�ˇ

c

�c
X

	.M/.

Hence, also in this case Œˆ�
�c

Y

�c
X

� Œˆ��Y
�X

. We thus have established (a) in all cases.

Combining (3.21) in the special case 	X D ˇ with (3.14) and (3.18), we obtain
the last inequality of (3.20).

To prove (b), let M � X . Corollary 3.17 and Proposition 3.20 imply that there
is a countable M0 �M with ˆ.M/ � ˆ.M0/. Hence, Proposition 3.26 implies

	Y

�

ˆ.M/
� � 	Y

�

ˆ.M0/
� � Œˆ��Y

�c
X

	X .M0/ � Œˆ��Y

�c
X

	X .M/.

This proves Œˆ��Y
�X

� Œˆ�
�Y

�c
X

, and the converse inequality comes from (3.20). If

additionally ˆ.x/ is separable for every x 2 X then ˆ.X/ is separable by Corol-
lary 3.21, and so (a) applies.

Finally, the first assertion of (c) follows by combining the previous inequalities,
and in case Œˆ��Y

�X
<1, the second assertion follows from Proposition 3.26.

For our three particular measures of noncompactness, we have also a natural
compatibility with algebraic operations:

Proposition 3.50. Let X and Y be normed spaces over K D R or K D C. Then
for all ˆ;‰WX ( Y , � 2 K, and 	Y 2 ¹�Y ; ˛; ˇº and any set function 	X on X
there holds:

(a) ŒˆC‰��Y
�X
� Œˆ��Y

�X
C Œ‰��Y

�X
.

(b) ŒˆC‰��Y

�c
X

� Œˆ��Y

�c
X

C Œ‰��Y

�c
X

.

(c) ŒˆC‰��c
Y

�c
X

� Œˆ��c
Y

�c
X

C Œ‰��c
Y

�c
X

.

(d) Œ�ˆ��Y
�X
D j�jŒˆ��Y

�X
.

(e) Œ�ˆ��Y

�c
X

D j�jŒˆ��Y

�c
X

.

(f) Œ�ˆ�
�c

Y

�c
X

D j�jŒˆ��c
Y

�c
X

.
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Proof. The assertions follow straightforwardly from Proposition 3.30.

Recall that a map AWX ( Y between real or complex vector spaces X and Y
is positively homogeneous if A.�x/ D �A.x/ for all � � 0.

Theorem 3.51. Let X and Y be normed spaces. For positively homogeneous AW
X ( Y , 	X 2 ¹�X ; ˛; ˇº, and 	Y 2 ¹�X ; ˛; ˇº we have

ŒA��Y
�X
D ŒAjSr.0/�

�Y
�X

ŒA�
�Y

�c
X

D ŒAjSr.0/�
�Y

�c
X

ŒA�
�c

Y

�c
X

D ŒAjSr.0/�
�c

Y

�c
X

for all r 2 .0;1/. If some of these quantities is finite then A is upper semicontin-
uous at 0.

We point out that an analogue of Theorem 3.51 for condensing maps is un-
known, in general, even in many simple cases. We refer to the discussion in [87]
for some particular cases.

Proof. We have to show “�”, and to this end, we can assume that r is fixed
and that the respective right-hand side S D ŒAjSr .0/�

�Y
�X

, S D ŒAjSr .0/�
�Y

�c
X

, or

S D ŒAjSr .0/�
�c

Y

�c
X

is finite. Proposition 3.49(c) implies in particular that A.Sr.0//

is bounded by some N 2 .0;1/. Since A is positively homogeneous, it follows
that A.S�.0// is bounded by �N , and so

A
�

K�.0/
� � K�N .0/ for all � � 0. (3.22)

This implies that A is upper semicontinuous at 0. Let now M � X be arbi-
trary or countable, respectively. Since the inequalities (3.8) or (3.11) are trivial
if 	X .M/ D 1, we can assume by Proposition 3.26 that M � BR.0/ for some
R 2 .0;1/. Let also C D A.M/ be C � A.M/ be countable, respectively.

For " 2 .0; 1/, put rn WD ".1 C "/n�1. Fix some n with rn > R. We cut M
into finitely many slices Mk WD ¹x 2 M W kxk 2 .rk�1; rk�º .k D 1; : : : ; n/

and M0 WD M \ K".0/. We also divide C correspondingly into disjoint sets
C0; : : : ; Cn such that Ck � A.Mk/ .k D 0; : : : ; n/. For k D 1; : : : ; n, we put
Ik WD Œrk�1; rk�. Since A is positively homogeneous, we find for �.x/ WD x=kxk
in view of

Ck � A
�

Ik�.Mk/
�

that
Ck � IkAk with appropriate Ak � A

�

�.Mk/
�

.
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If Ck is countable, we can also choose Ak countable in this inclusion. Hence, we
obtain for k D 1; : : : ; n by Proposition 3.26, Corollary 3.29, and Lemma 3.40 that

	Y .Ck/ � 	Y .IkAk/ � rk	Y .Ak/ � rkS	X
�

�.Mk/
�

� rk

rk�1

S	X .Mk/ � .1C "/S	X .M/.

Moreover, since (3.22) implies C0 � A.K".0// � K".0/, we find by (3.3), (3.4),
or (3.5) that 	Y .C0/ � 2". Hence, Proposition 3.26 implies

	Y .C / D max¹	Y .Ck/ W k D 0; : : : ; nº � max¹.1C "/S	X .M/; 2"º.
Since " > 0 was arbitrary, we obtain 	.C / � S	X .M/, and so the assertion
follows.

Recall that a Banach space is a complete normed space.

Corollary 3.52. For positively homogeneous AWX ( Y in normed spaces X
and Y the following statements are equivalent.

(a) 	.A.Sr.0/// D 0 for some r > 0 and some 	 2 ¹�X ; ˛; ˇº.
(b) 	.A.M// D 0 for all bounded M � X and all 	 2 ¹�X ; ˛; ˇº.
(c) (If Y is a Banach space.) A is locally compact.

In this case, A is upper semicontinuous at 0.

Proof. The assertion follows from Theorem 3.51 and Proposition 3.26.

Recall that a map AWX ! Y between vector spaces over K is additive if A.xC
y/ D A.x/C A.y/ for all x; y 2 X . It is linear if additionally A.�x/ D �A.x/

for all x 2 X and all � 2 K.

Proposition 3.53. Let X and Y be normed spaces. If AWX ( Y is positively
homogeneous and upper semicontinuous at 0 then there is a finite constant C � 0
with

kykY � CkxkX for all x 2 X , y 2 A.x/. (3.23)

If AWX ! Y is linear with (3.23), that is

kA.x/k � Ckxk for all x 2 X ,

then A is Lipschitz continuous on X with constant C .
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Proof. Since V D K1.0/ � Y is a neighborhood of A.0/, the set A�.V / is a
neighborhood of 0 and thus contains Kr.0/ � X for some r > 0. If x ¤ 0

and y 2 A.x/, we put � WD r=kxkX . Then we have �x 2 Kr.0/ and thus
�y 2 A.�x/ � K1.0/ which implies kykY � ��1 D kxkX=r . Hence, (3.23)
holds with C WD 1=r . Conversely, if AWX ! Y is linear with (3.23) then
kA.x/ � A.y/k D kA.x � y/k � Ckx � yk implies that A is Lipschitz with
constant C .

3.4 Convexity

By a topological vector space we mean a vector space X over K D R or K D C,
endowed with a topology such that addition CWX � X ! X and scalar multi-
plication �WK � X ! X are continuous operations. A locally convex space is a
topological vector space with the property that some (hence: every) point of the
space has a neighborhood basis consisting of convex sets. Proposition 3.3 implies
that every normed space is a locally convex space.

For a subset M of a topological vector space X , we define convM as the
intersection of all closed convex subsets of X containing M . Then convM is
closed and convex by Proposition 2.51 and thus the smallest closed convex subset
of X containing M .

Proposition 3.54. We have convM � convM , and equality holds in locally
convex spaces.

Proof. Since convM is closed, the inclusion follows from convM � convM .
To prove the converse inclusion, it suffices to show thatM0 WD convM is convex.
Thus, let x; y 2 M0, and z D tx C .1 � t/y for some t 2 Œ0; 1�. Since X is
locally convex, it suffices to show that for every convex neighborhood U � X

of 0 there is some z0 2 convM with z0 2 z C U . There are x0; y0 2 convM
with x0 2 x C U and y0 2 y C U . Then the convexity of U implies that
z0 WD tx0 C .1� t/y0 2 z C U .

Proposition 3.55. Suppose that convM is a metrizable subset of a locally convex
space. Then for A � convM the following statements are equivalent:

(a) A is separable.

(b) There is a countable C �M with A � convC .

Proof. Assume first that A D ¹x1; x2; : : :º. For each n D 1; 2; : : : , we have xn 2
convM , and so Proposition 3.54 implies that there is a sequence yn;k 2 convM
with yn;k ! xn as k ! 1. With the notation of Proposition 2.52, we find for
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each n and k some number m.n; k/ with yn;k 2 convm.n;k/.M/. Hence, there
is a set Cn;k � M consisting of m.n; k/ points with yn;k 2 convm.n;k/ Cn;k �
convCn;k . If C denotes the union of all sets Cn;k , we thus have yn;k 2 convC
for all n and k, and so Proposition 3.54 implies xn 2 convC D convC for all n.
It follows that C �M is countable with A � convC .

Conversely, suppose that there is a countable C � M with A � convC . For
n D 1; 2; : : : , let Cn denote the set of all points

Pn
kD1 �kxk with rational �k � 0,

Pn
kD1 �k D 1, and xk 2 M . Then Cn is countable, and with the notation of

Proposition 2.52, we have C n D convn.C / and thus convC � S1
nD1 Cn. LetA0

denote the union of the countably many countable sets Cn. Then convC � A0,
and so Proposition 3.54 implies that A � A0. Corollary 3.17 thus implies that A
is separable.

An isomorphism between topological vector spaces X and Y is a linear home-
omorphism of X onto Y . If such an isomorphism exists, we call X and Y isomor-
phic.

Proposition 3.56. Let X and Y be normed spaces. A linear J WX ! Y is an
isomorphism of X onto the subspace J.X/ � Y if and only if

ckxkX � kJxkY � CkxkX for all x 2 X . (3.24)

If this is the case and X is a Banach space then J.X/ is a Banach space and thus
closed in Y .

Proof. If J is a homeomorphism onto J.X/ then J�1W J.X/! X and J WX !
Y are continuous which implies the two inequalities in (3.24) by Proposition 3.53.
Conversely, (3.24) holds then

ckx �exkX � kJx � JexkY (3.25)

implies that J is one-to-one, that is, J�1W J.X/ ! X , and the continuity of J
and J�1 follows by Proposition 3.53. If this holds and X is a Banach space,
let yn D Jxn be a Cauchy sequence in J.X/. Then (3.25) implies that xn is a
Cauchy sequence in X and thus convergent to some x 2 X . The continuity of J
implies yn ! Jx, and so J.X/ is complete.

In the following assertion, we equip Kn with the sum norm

k.x1; : : : ; xn/k WD jx1j C � � � C jxnj,
but we will see in a moment that we could have chosen also every other norm.
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Proposition 3.57. Let X be a vector space over K D R or K D C of finite
dimension n. Then there is a map J WKn ! X which is an isomorphism when-
ever X is equipped with a topology which turns it into a topological Hausdorff
vector space.

Proof. If e1; : : : ; en is a basis of X , we define J by J.x1; : : : ; xn/ WD x1e1 C
� � � C xnen. Then J is linear, one-to-one and onto, and we have to show that J is
a homeomorphism if X is a topological Hausdorff vector space. The continuity
of J is obvious. We are to show that J.Br.x0// is a neighborhood of y0 WD J.x0/

for each x0 2 Kn and each r > 0.
To this end, we put S WD Sr.x0/ � Kn. Since S is bounded, we have clearly

�X .S/ D 0. Hence S is relatively compact by Theorem 3.24. Since S is closed
and thus complete, it is actually compact. Proposition 2.100 implies that J.S/ is
compact and thus closed by Proposition 2.45. Since y0 … J.S/, the set U WD
X n J.S/ is an open neighborhood of y0. Since X is a topological vector space,
there is a neighborhood V � X of 0 and " > 0with y0CsV � U for all s 2 Œ0; "�.

We are to show that J.Br.x0// contains W WD y0 C "V which implies the
claim since W is a neighborhood for y0 D J.x0/. Thus, let y1 2 W , that is,
y1 D y0 C "v for some v 2 V . Put x1 WD J�1.y1/, and xt WD x0 C t.x1 � x0/,
yt WD J.xt/ for 0 < t < 1. Then yt D y0 C t "v 2 U and thus xt … S

for all t 2 Œ0; 1�. It follows that x1 2 Br.x0/ since otherwise there would be
a convex combination xt of x0 and x1 which lies on S . Hence, y1 D J.x1/ 2
J.Br.x0//.

Corollary 3.58. All topological Hausdorff vector spaces of finite dimension n
over the same field are isomorphic. Their topology is induced by a norm, and
all norms induce this same topology. Any two norms k � k and k � k� on a finite-
dimensional (real or complex) vector space X are equivalent in the sense that
there are constants 0 < c � C <1 with

ckxk � kxk� � Ckxk for all x 2 X , (3.26)

and X is a Banach space with that norm.

Proof. If X and Y are topological Hausdorff vector spaces of finite dimension n,
let JX , JY denote the corresponding maps from Proposition 3.57. Then
JY J

�1
X
WX ! Y is an isomorphism. We obtain a norm on X by kxk WD kJ�1

X
xk.

If k � k� is any norm on Y WD X , then JY J
�1

X D JXJ
�1

X D idX (note that JX D
JY does not depend on the topology) is an isomorphism. Hence, idX WX ! Y D
X is an isomorphism which means that the topologies onX and Y D X (the latter
induced by k � k�) are the same. If k � k is any norm on X , then idX WX ! Y D X
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is an isomorphism, and so (3.26) follows from (3.24). Since Kn is complete and
JX WKn ! X is an isomorphism, X is a Banach space by Proposition 3.56.

Proposition 3.59 (Heine–Borel). Let X denote a topological Hausdorff vector
space. Then each finite-dimensional subspace Y � X is closed, and each subset
M � Y with diamM < 1 for some norm on Y is relatively compact in Y and
in X .

Proof. In view of Corollary 3.58, we can assume that Y is equipped with the norm
kyk WD kJ�1xk where J WKn ! Y is the isomorphism of Proposition 3.57.

We prove first the last assertion. Now ifM � Y has finite diameter thenM0 WD
J�1.M/ � Kn is bounded and thus also its closureK � Kn is bounded. We thus
have obviously �X .K/ D 0, and so K is compact by Theorem 3.24. Hence,
J.K/ � Y is compact by Proposition 2.100 and contains M .

For the proof of the first assertion, assume that x 2 Y . By definition of the
inherited topology, there is an open set U � X with U \ Y D B1.0/ (open unit
ball in Y ). Let A denote the family of all sets of the form A WD Y \ .x C V / \ Y ,
where V � U is a neighborhood of 0. Note that A is the closure of .x C V / \ Y
in Y by Proposition 2.10 and thus closed in Y and contained in the setK1.0/ � Y
which by the second assertion is compact. Moreover x 2 Y implies that A has
the finite intersection property. Proposition 2.28 thus implies that there is some
y 2 Y which belongs to every element of A. We must have x D y 2 Y , since
otherwise there would exist a neighborhood V � U of 0 such that xCV and yCV
are disjoint which would imply that y … x C V (closure in X ), contradicting the
fact that A WD Y \ .x C V / \ Y belongs to A and thus contains y and satisfies
A � x C V .

Now we are in a position to define the general notion of a measure of noncom-
pactness:

Definition 3.60. A set function 	 on a topological vector space X is a measure of
noncompactness if

	.M/ D 	.convM/ for all M � X .

A measure of noncompactness is regular if

	.M/ D 0 ” M is relatively compact in X .

We note that in literature also measures of noncompactness are considered
which assume their values not only in Œ0;1� but also in partially ordered sets
like e.g. in Œ0;1�I for some index set I . The latter is important if one wants to
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deal with locally convex spaces, since for each seminorm, one can define a cor-
responding measure of noncompactness with values in Œ0;1�, and so the family
of these measures of noncompactness assumes values in Œ0;1�I (where I is a
family of seminorms). However, in this monograph, we are mainly interested in
Banach spaces, and so we do not consider this more general definition, although
many results would carry over to this case.

Theorem 3.61. Let X be a normed space. Then �X , ˛, and ˇ are measures of
noncompactness on X . They are regular if X is a Banach space.

Proof. The last assertion follows from Proposition 3.26. In view of Proposi-
tion 3.26, it suffices to show that 	.convM/ � 	.M/ for 	 2 ¹�X ; ˛; ˇº.

For 	 D �X , let � > �X .M/. There is a finite �-net N � X for M . We claim
that convN is a �-net for convM . Indeed, by Proposition 2.52, any x 2 convM
can be written in the form x D Pn

kD1 �kxk with n 2 N, xk 2 M , �k � 0, and
�1 C � � � C �n D 1.

There are yk 2 N with kxk � ykk < ", and so y WD Pn
kD1 �kyk belongs to

convN (Proposition 2.52) and satisfies

kx � yk D k
n

X

kD1

�k.xk � yk/k �
n

X

kD1

�kkxk � ykk <
n

X

kD1

�k" D ".

Hence, the estimate �X .convM/ � � now follows from (3.3), if we can show that
�X .convN/ D 0. Since Proposition 2.52 implies that convN is a bounded subset
of a finite-dimensional subspace of Y , the latter follows from Proposition 3.59 (or
alternatively from the assertion ˛.convN/ D ˛.N / D 0 which we will prove
now).

For 	 D ˛, let � > ˛.M/ be arbitrary. There are sets M1; : : : ;Mn � X

with M � M1 [ � � � [ Mn and diamMk � � .k D 1; : : : ; n/. Without loss
of generality, we can assume that Mk ¤ ¿. There is some r > 0 with Mk �
Br.0/ .k D 1; : : : ; n/. We denote by �n the set of all .�1; : : : ; �n/ 2 Œ0; 1�n

with �1 C � � � C �n D 1. Then �n is a bounded subset of Rn and thus satisfies
�Rn.�n/ D 0. Hence, ��n

.�n/ D 0 by (3.1), and so for every " > 0 there is a
finite "-net �n;" � �n. We define now

N" WD
[

.�1;:::;�n/2�n;"

.�1 convM1 C � � � C �n convMn/.

We claim that N" is a finite nr"-net for convM . Indeed, by Proposition 2.52, any
ex 2 convM can be written in the form ex D �1x1 C � � � C �mxm with xk 2
M1 [ � � � [ Mn, �k � 0, and �1 C � � � C �m D 1. We divide the index set
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¹1; : : : ;mº into disjoint sets J1; : : : ; Jn such that j 2 Jk implies xj 2 Mk ,
and put e�k WD

P

j 2Jk
�j and yk WD

P

j 2Jk
�jxj=e�k ; in case e�k D 0 choose

yk 2 Mk arbitrary. Then Proposition 2.52 implies yk 2 convMk , we have
es D .e�1; : : : ;e�n/ 2 �n, and ex D e�1y1 C � � � C e�nyn. Choosing some s D
.�1; : : : ; �n/ 2 �n;" with ks �esk < ", we obtain that x WD �1y1 C � � � C �nyn 2
N" satisfies kx �exk < nr".

By (3.4), we obtain now ˛.convM/ � ˛.N"/C 2nr". Moreover, since �n;" is
finite, Proposition 3.26 implies

˛.N"/ D max
.�1;:::;�n/2�n;"

˛.�1 convM1 C � � � C �n convMn/.

Using the first two assertions of Theorem 3.61, we find

˛.�1 convM1 C � � � C �n convMn/ � �1˛.convM1/C � � � C �n˛.convMn/.

Since diam.convMk/ � diam.Mk/ � �, we have ˛.convMk/ � �, and thus
obtain altogether

˛.convM/ � ˛.N"/C2nr" � max
.�1;:::;�n/2�n;"

.�1C� � �C�n/�C2nr" D �C2nr".

Since " > 0 was arbitrary, we have ˛.convM/ � �. Since � > ˛.M/ was
arbitrary, we obtain ˛.convM/ � ˛.M/.

The proof of the remaining estimate ˇ.convM/ � ˇ.M/ is very cumbersome.
Since we will not need it, we just refer to the literature. One proof can be found
in [2, Theorem 1.3.4].

Corollary 3.62 (Mazur). Let X be normed and M � X . Then convM is rela-
tively compact in X if and only if M is relatively compact in X and convM is
complete.

Proof. In view of Proposition 3.26, the assertion follows from Theorem 3.61.

3.5 Two Embedding Theorems for Metric Spaces

Theorem 3.63 (Arens–Eells). Arens-Eells Let X be a metric space. Then X is
isometric to a closed subset of a complex normed space and to a (not necessarily
closed) subset of a complex Banach space.

One can replace “complex” by “real”, since every complex normed space is
also a real normed space by just restricting the definition of multiplication to that
with real scalars.
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Proof. As a first step we show that X is isometric to a subset Y of a complex
Banach space Z. As a second step we show that Y is a closed subset of its (com-
plex) linear hull inZ so that this linear hull is the required space. IfX is complete,
we could omit the second step of course, since then also Y is complete and thus
closed in Z. (In fact, in this case one could simplify the definition of M in the
following proof.)

To define the Banach space Z, we let M denote the system of all nonempty
finite subsets of X . (If we are only interested in the first step, we could also let
M Š X denote the system of all sets A D ¹xºwith x 2 X .) LetZ WD `1.M;C/
denote the Banach space of all bounded function f WM ! C, equipped with the
sup-norm kf k1 WD supA2M jf .A/j. The isometry is as follows: We fix some
x0 2 X and will then associate with x 2 X the element fx 2 Z, defined by

fx.A/ WD dist.x;A/ � dist.x0; A/ for all A 2 M .

Note that fx is indeed bounded, since Proposition 3.12 implies jfx.A/j�d.x; x0/

for all A 2M . Moreover, Proposition 3.12 implies for all x; y 2 X that

jfx.A/� fy.A/j D jdist.x;A/ � dist.y;A/j � d.x; y/
for all A 2 M , and we have equality for the particular choice A WD ¹yº 2 M .
Hence,

kfx � fyk1 D d.x; y/ for all x; y 2 X , (3.27)

that is, the mapping x 7! fx is an isometry of X onto a subset Y of Z.
It remains to show that Y is closed in its (complex) linear hull Z0 in Z. Hence,

we have to show that every f 2 Z0 n Y has a neighborhood which is disjoint
from Y . Since f 2 Z0, there are �1; : : : ; �n 2 C and x1; : : : ; xn 2 X with
f D �1fx1

C � � � C �nfxn
. Note also that fx0

2 Y . The hypothesis f … Y thus
implies

r WD min¹kf � fxk
k1 W k D 0; 1; : : : ; nº > 0.

We claim that Br=2.f / \ Y D ¿. Assume by contradiction that there is some
x 2 X with fx 2 Br=2.f /. Then

r � kf � fxk
k1 � kf � fxk1 C kfx � fxk

k1 <
r

2
C kfx � fxk

k1

implies by (3.27) that

d.x; xk/ D kfx � fxk
k1 >

r

2
.k D 0; 1; : : : ; n/.
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Hence, putting A WD ¹x0; x1; : : : ; xnº, we have

fx.A/�f .A/Dfx.A/�
n

X

kD1

�kfk.A/Ddist.x;A/�
n

X

kD1

�k0Ddist.x;A/ >
r

2
:

In particular, kfx � f k1 > r=2, contradicting fx 2 Br=2.f /.

The Arens–Eells embedding theorem (even the simplified version without the
technical second step) provides an easy proof of the following well-known fact
without using a technical definition like equivalence classes of Cauchy sequences:

Corollary 3.64. Every metric space has a completion.

Proof. Let X be a metric space. By Theorem 3.63, there is a Banach space Z
such that X is isometric to a subset X0 of Z. Then X0 is a complete metric space
in which X0 is dense. Hence, when we replace in X0 the elements of X0 by the
corresponding elements of X (by the given isometry), the space obtained is the
completion of X .

Corollary 3.65. Let X be a separable metric space. Then X is isometric to a
closed subset of a separable complex normed space and to a (not necessarily
closed) subset of a separable complex Banach space.

Proof. Suppose that X is isometric to a subset M of a complex normed space Y .
SinceM is separable, it follows that also the linear hull Y0 ofM in Y is separable.

If additionally M is closed in Y (which we can assume by Theorem 3.63)
then M is also closed in Y0 by Proposition 2.10, and so Y0 is the required space
for the first assertion. If alternatively Y is a Banach space (which we could also
assume by Theorem 3.63) then Y 0 is a separable Banach space by Lemma 3.8 and
thus the required space for the second assertion.

For separable metric spaces, there is another important embedding theorem
which we prepare now.

Recall that if Xn .n 2 N/ are countably many metric spaces with respective
metric dn, then the product X WD Q1

nD1Xn becomes a metric space if we endow
it with the metric

d.x; y/ WD
1

X

nD1

d�
n .x; y/, (3.28)

where d�
n .x; y/ WD min¹dn.x; y/; 2

�nº. Moreover, the corresponding uniform
structure is that of the product of uniform spaces. Since we did not introduce
uniform structures, we formulate the assertion only in terms of sequences and
topologies:
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Proposition 3.66. With the above notation and xk D .xk;n/n; yk D .yk;n/n 2 X
we have

lim
k!1

d.xk ; yk/ D 0 ” lim
k!1

d.xk;n; yk;n/ D 0 for every n 2 N.

The metric induces the product topology on X .
If Y is a topological space then f WY ! X , f .y/ D .f1.y/; f2.y/; : : : / is

continuous if and only if each fn is continuous.

Proof. Let d.xk;n; yk;n/ ! 0 for every n 2 N. Then for every " > 0 there is
some n0 with 2�n0 < " and some k0 with d.xk;n; yk;n/ < "=n0 for k � k0

and n � n0. Then d.xk ; yk/ < " C P

k>n0
2�k < 2" for all k � k0. Hence,

d.xk ; yk/! 0. The converse implication follows from

min¹d.xk;n; yk;n/; 2
�kº � d.xn; yn/.

To see that the induced topology is the product topology, note that if O � X

is a neighborhood of x D .xn/n with respect to d , say B21�k .x/ � O for some
k 2 N then O contains all y D .yn/n 2 X satisfying dn.yn; xn/ < 2�k=k

for n D 1; : : : ; k, since d.y; x/ <
Pk

nD1 2
�k=k CP

n>k 2
�n D 21�k . Hence,

O is a neighborhood of x with respect to the product topology. Conversely, if O
is a neighborhood of x D .xn/n with respect to the product topology, then there
are " > 0 and n0 such that all y D .yn/n 2 X satisfying dn.yn; xn/ < " for
n < n0 belong to O. Since these y satisfy d.y; x/ � r WD n0"C 2�n0 , we have
Br.x/ � O, and so O is a neighborhood with respect to d .

The last assertion now follows from Proposition 2.65.

For countable products of metric spaces, we obtain Tychonoff’s theorem with-
out AC:

Corollary 3.67. If Xn .n 2 N/ is a family of complete (compact) metric spaces
then X D Q1

nD1 Xn is a complete (compact) metric space.

Proof. If xn D .xn;k/k is a Cauchy sequence in X then

min¹d.xn;k ; xm;k/; 2
�kº � d.xn; xm/

implies that for each fixed k the sequence xn;k is a Cauchy sequence and thus con-
vergent to some yk 2 Xk . Applying Proposition 3.66, we find that xn converges
to y D .yk/k .

Similarly, if all Xk are compact and xn D .xn;k/k is a sequence in X then a
standard diagonal argument shows that there is a subsequence such that xn;k con-
verges in Xk for every k. Indeed, for k D 1; 2; : : : one can successively choose
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subsequences nk;m (each a subsequence of the previous subsequence) such that
xnk;m;k 2 Xk converges to some yk 2 Xk asm!1; then the diagonal sequence
nm;m .m 2 N/ is a subsequence of nk;m for every k and thus xnm;m;k 2 Xk con-
verges to yk asm!1. Proposition 3.66 thus implies that xnm;m

converges inX
to y D .yk/k .

Remark 3.68. Concerning completeness, our argument in Corollary 3.67 did not
use any form of the axiom of choice, not even AC! . In particular, our argument
can be used for the proof of Theorem 2.3.

Lemma 3.69. Let H WD Œ0; 1�N D Q1
nD1Œ0; 1� be the Hilbert cube with the

product metric. For every normal second countable space X there is a homeo-
morphism of X onto a subset of H .

We will see later (Corollary 3.78) that it is equivalent to replace “normal” by
“regular” in Lemma 3.69.

Proof. Let O be a countable basis of the topology consisting of nonempty sets.
Then the family U of all pairs .U;O/ with U;O 2 O and U � O is countable.
Since X is T4, there is a countable family of continuous functions fnWX ! Œ0; 1�

such that for each .U;O/ 2 U there is some n and some tn 2 .0; 1� with fn.U / �
Œ0; tn/ and fn.X n O/ � Œtn; 1�. We claim that the required homeomorphism is
given by f WX ! H by f .x/ WD .fn.x//

1
nD1. Proposition 3.66 implies that f is

continuous.
We prove now that f .xk/! f .x/ implies xk ! x.
Indeed, let V � X be a neighborhood of x. There is O 2 O with x 2 O � V .

Since X is T3 there is an open U � X with x 2 U and U � O, without loss
of generality U 2 O . Hence, .U;O/ 2 U and so there is some n and tn with
fn.x/ < tn and fn.X n O/ � Œtn; 1�. Since f .xk/ ! f .x/, Proposition 3.66
implies fn.xk/! fn.x/ < tn. Hence, for all sufficiently large k we have xk 2 O
(since otherwise fn.xk/ � tn). Hence, xk 2 V for all sufficiently large k, that is
xk ! x.

If f .x/ D f .y/ then the particular choice xk WD y implies xk ! x and thus
x D y since X is Hausdorff. Hence, f is one-to-one. Thus f WX ! H0 is
invertible for H0 WD f .X/. Moreover, we have shown that f �1WH0 ! X is
sequentially continuous and thus continuous by Proposition 2.60.

Remark 3.70. If Y is a separable metric space in Lemma 3.69 then it can be
arranged that the homeomorphism f is uniformly continuous (that is, whenever
d.xk ; yk/ ! 0 then d.f .xk/; f .yk// ! 0). Note, however, that f �1 is not
uniformly continuous, in general.
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Indeed, if ¹y1; y2; : : :º is dense in Y , the proof of Proposition 3.16 shows that
a basis O of the topology of Y consists of all balls Br.yk/ with rational r >
0. Hence, the functions fn.x/ WD min¹d.x; yn/; 1º have the property required
in the proof of Lemma 3.69. Since each fn is Lipschitz (with constant 1) and
thus uniformly continuous, Proposition 3.66 implies that the function f .x/ D
.fn.x//

1
nD1 in the proof of Lemma 3.69 is uniformly continuous.

Actually, one could even simplify the proof of Lemma 3.69 in this special case
by showing elementary (without considering any basis) that the function f has
the property that f .xk/ ! f .x/ implies xk ! x. Indeed, for every " > 0 there
is some n with yn 2 B".x/. Since fn.xk/ ! fn.x/ < " by Proposition 3.66,
we have for all except finitely many k that fn.xk/ < " and thus d.xk; x/ �
d.xk ; yn/C d.yn; x/ < 2". Hence, xk ! x.

Lemma 3.71. IfX is a metric space andX0 � X is homeomorphic to a complete
metric space, then X0 is a Gı in X .

Proof. Let hWX0 ! Y be a homeomorphism onto a complete metric space Y . For
x 2 X0, put hr .x/ WD diam h.Br .x/\X0/. If hr .x/ < 1=n then hr=2.Br=2.x/\
X0/ � Œ0; 1=n/. Hence, the sets

An WD ¹x 2 X0 W hr .x/ � 1=n for all r > 0º
are closed in X0 and thus closed in X , and so X1 WD X0 n S1

nD1 An is a Gı ,
since it is the intersection of the open sets B1=n.X0/ n An. We are to show that
X1 D X0. If x 2 X0, then the continuity of h at x implies x … An for all n, and
so x 2 X1. Hence, X0 � X1.

It remains to prove the converse inclusion. Thus, let x 2 X1. Choose a se-
quence xn 2 X0 with xn ! x. We show first that h.xn/ is a Cauchy sequence.
Indeed, for each " > 0, there is some k 2 N with 1=k < ". Since x … Ak , we
find some rk > 0 with hrk

.x/ < 1=k < ". Choose some n0 with xn 2 Brk
.x/ for

n � n0. The definition of hrk
thus implies d.h.xn/; h.xm// < " for n;m � n0.

Since Y is complete, we thus have h.xn/! y for some y 2 Y . The continuity
of h�1 at y implies xn ! h�1.y/. Since xn ! x, we have x D h�1.y/ 2
h�1.Y / D X0. In particular, x 2 X0, and so we have proved X1 � X0.

The proof of the following Lemma 3.72 slightly simplifies that of [96, §24 IX]:

Lemma 3.72. Let X be a metric space and M � X be a Gı subset of X . Then
there is a homeomorphism ofX onto a closed subset ofX�Œ0; 1�N which mapsM
onto a closed subset of X � .0; 1�N .



Section 3.5 Two Embedding Theorems for Metric Spaces 95

Proof. Let M D T1
nD1 Un with open sets Un � X . Since X n Un is closed,

Corollary 3.13 implies that there are fn 2 C.X; Œ0; 1�/ satisfying f �1
n .0/ D X n

Un (and f �1
n .1/ D ¿). Proposition 3.66 implies that we obtain a continuous

function f WX ! X � Œ0; 1�N by putting

f .x/ WD �

x; f1.x/; f2.x/; : : :
�

.

Let pWX � Œ0; 1�N ! X be defined by p.x; y/ WD x for all x 2 X and all
y 2 Œ0; 1�N . Proposition 3.66 implies that p is continuous, and the definition of f
implies p ı f D idX . Hence, putting X0 WD f .X/, we find that f WX ! X0 is
invertible with f �1 D pjX0

WX0 ! X . Since pjX0
is continuous, it follows that

f WX ! X0 is a homeomorphism. To see thatX0 is closed in Y WD X�Œ0; 1�N , let
y 2 X0, that is, there is a sequence xn 2 X with f .xn/! y. The continuity of p
at y implies xn D p.f .xn// ! p.y/, and so the continuity of f at x WD p.y/

implies f .xn/! f .x/. Hence, y D f .x/ 2 f .X/ D X0.
It remains to show that f .M/ is a closed subset of Y0 WD X � .0; 1�N . Since

fn.x/ 2 .0; 1� if and only if x 2 Un, we have f .x/ 2 Y0 if and only if x 2
T1

nD1 Un D M . Hence, f .M/ D f .X/ \ Y0 D X0 \ Y0 is a closed subset of
Y0, since X0 is closed in Y (Proposition 2.10).

Lemma 3.73. For any sequence of metric spaces Xn and corresponding home-
omorphic metric spaces Yn the spaces X D Q1

nD1Xn and Y D Q1
nD1 Yn are

homeomorphic. Moreover, if Xn and Yn are independent of n then also X � Y is
homeomorphic to X and Y .

Proof. Let fnWXn ! Yn be a homeomorphism onto Yn. Then Proposition 3.66
implies that homeomorphisms of X onto Y or X � Y , respectively, are given as
follows: To each sequence xn 2 X we associate the sequence fn.xn/ 2 Yn or the
sequence .x2n; fn.x2nC1// 2 Xn � Yn, respectively.

Combining the previous preparations, we obtain now the announced embedding
theorem which was perhaps first observed in [106] (for the case X D RN ).

Theorem 3.74 (Embedding into Open Hilbert Cube). Let X D Q1
nD1 In where

each In � R is a noncompact interval. Then every separable (complete) metric
space is homeomorphic to a (closed) subset of X .

Proof. We claim first that the assertion is true for the case that In D .0; 1� for
all n 2 N. By Lemma 3.73, the spaces Œ0; 1�N and Œ1=2; 1�N are homeomorphic.
Hence, if Y is a separable metric space, then Lemma 3.69 implies that Y is home-
omorphic to a subset of Œ0; 1�N and thus also homeomorphic to a subset X0 of
Œ1=2; 1�N � X D .0; 1�N . Thus, the claim is proved if Y is incomplete.
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If Y is complete, then Lemma 3.72 implies that X0 is even a Gı subset of X .
In this case, Lemma 3.72 implies that X0 is homeomorphic to a closed subset X1

of X � .0; 1�N D X �X . By Lemma 3.73 there is a homeomorphism f of X �X
onto X . Then X2 D f .X1/ is closed in f .X � X/ D X , and composing the
corresponding homeomorphisms, we find that Y is homeomorphic to X2.

Now we prove the general case: Since each In is an open or half-open interval,
there are homeomorphisms fn of .0; 1� onto closed (in In) subsets Jn � In.
Lemma 3.73 implies that there is a homeomorphism f of .0; 1�N onto X0 D
Q1

nD1 Jn. Since Jn is closed in In, Proposition 3.66 implies that X0 is a closed
subset of X D Q1

nD1 In. By what we have shown, we find for each separable
(complete) metric space Y a homeomorphism h if X onto a (closed) subset Z �
.0; 1�N . Then f ı h is a homeomorphism onto the (closed in X0 and thus closed
in X ) set f .Z/ � X0.

3.6 Some Old and New Extension Theorems for Metric
Spaces

We recall Stone’s famous theorem:

Theorem 3.75 (Stone). (AC). Every metric space is paracompact.

Proof. An elementary proof can be found e.g. in [127].

We point out that AC cannot be avoided for Theorem 3.75, in principle [69].
However, using only the countable axiom of choice, we can prove the fol-

lowing variant which was originally proved by Morita [110]. Using ideas from
Michael [105], we give a simple proof of a stronger statement.

Theorem 3.76 (Morita). Let X be a T3 Lindelöf space. Then X is paracompact.
More precisely, every open cover U of X has a refinement to a locally finite
countable open cover O of X .

Proof. We show first that every open cover U0 of X has a locally finite countable
refinement to a cover A of X consisting of closed sets.

Indeed, since U0 is an open cover forX , we find for every x 2 X someU 2 U0

with x 2 U . Since X is T3, we find by Corollary 2.48 an open set O � X with
x 2 O � O � U . Hence, the family O0 of all open sets O � X satisfying
O � U for some U 2 U0 constitute an open cover of X . Since X is Lindelöf,
O0 has a countable subcover consisting of sets O1; O2; � � � 2 O0. Then the sets
An WD On n S

k<nOk are closed. Since for each x 2 X there is a smallest n
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with x 2 On and thus x 2 An, we find that the sets An constitute a cover A of X .
In view of An � On, this cover is a refinement of U0. Moreover, this cover is
locally finite, since for any x 2 X there is some n with x 2 On, and so On is
a neighborhood of x which intersects at most the finitely many sets A1; : : : ; An

from A.
To prove the assertion of the theorem, we note that we have just proved that

there is a refinement A D ¹A1; A2; : : :º of U which is a locally finite countable
cover ofX . Let U0 denote the system of all open sets which intersect only finitely
many elements from A. Since A is locally finite, it follows that U0 is an open
cover of X . Using once more what we have proved, we find a refinement A0 of
U0 which is a locally finite countable cover of X consisting of closed sets.

For each n, we choose some Un 2 U with An � Un, and let

Bn WD
[

¹A 2 A0 W A\ An D ¿º.
Then Bn is closed. Indeed, every x 2 X has a neighborhood O � X which
intersects only finitely many elements from A0. Hence, O \ Bn is a finite union
of sets of the form O \ A with A 2 A0 and thus closed in O. Thus, Bn is closed
by Proposition 2.12.

Hence, Vn WD UnnBn are open sets, and the definition of Bn implies An � Vn.
Since A is a cover of X , it follows that O WD ¹V1; V2; : : :º is also a cover of X . In
view of Vn � Un 2 U , this cover is a refinement of U . It remains to show that
O is locally finite.

To see this, we note first that each A 2 A0 is contained in a set from U0

which by definition of U0 intersects at most finitely many of the sets An .n 2 N/.
Note also that for A 2 A0 the relation A \ An D ¿ implies A � Bn and thus
A \ Vn D ¿. Hence, every A 2 A0 intersects at most finitely sets from O .

Every x 2 X has a neighborhood U such that AU WD ¹A 2 A0 W A \ U ¤ ¿º
is finite. Since A0 is a cover of U , it follows that AU is a cover of U . Since
we have just noted that each of the finitely elements from AU intersects at most
finitely elements from O and since AU is finite, there are at most finitely elements
from O which intersect some element from AU . Since AU is a cover of U , only
these finitely many elements can intersect U .

Corollary 3.77 (Stone for Separable Spaces). LetX be a separable metric space.
Then every open cover U of X has a refinement to a locally finite countable open
cover O of X .

Proof. Note that Corollary 3.13 (and Theorem 2.36) implies that X is regular.
Moreover, X is second countable by Proposition 3.16 and thus Lindelöf by Propo-
sition 2.61. Hence, Theorem 3.76 applies.
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Corollary 3.78. Every regular Lindelöf space is normal. In particular, every
second countable regular space is normal.

Proof. Theorem 3.76 implies that every regular Lindelöf space is paracompact
and thus normal by Proposition 2.72. The second assertion follows from Proposi-
tion 2.61.

In view of Lemma 3.69 we obtain the following side result:

Theorem 3.79 (Urysohn Metrization). Every second countable regular space is
metrizable.

Proof. Let X be second countable and regular. Corollary 3.78 implies that X
is normal, and so Lemma 3.69 implies that there is a homeomorphism f of X
onto a subset H0 of the Hilbert cube. If dH denotes the metric on the Hilbert
cube, a metric on X is thus given by d.x; y/ WD dH .f .x/; f .y//. Since f is
a homeomorphism and, by construction, an isometry, it follows that this metric
generates the original topology of X .

The following result is an important refinement of Theorem 3.76.

Theorem 3.80. Let X be a regular Lindelöf space. Then for every open cover
U of X there are countably many open sets Un; On � X with X D S1

nD1 Un,
U n � On for all n, and such that the family On .n 2 N/ is a locally finite
refinement of U .

Proof. By Theorem 3.76 there is a locally finite countable open cover Vn .n 2 N/
of X which refines U . Note that X is normal by Corollary 3.78. By the sub-
sequent Lemma 3.81 there are open sets Un � X with U n � Vn and X D
S1

nD1 Un. Since X is T4, Corollary 2.48 implies that there are open neighbor-
hoods On � X of U n with On � Vn. Since Vn .n 2 N/ is locally finite, it
follows that On .n 2 N/ is locally finite. Moreover, for every n 2 N there is
some U 2 U with Vn � U and thus On � U . Hence, On .n 2 N/ is a locally
finite refinement of U .

In the above proof of Theorem 3.80, we needed the following lemma.

Lemma 3.81. Let X be a T4 space, and Un .n 2 N/ a locally finite countable
open cover of X . Then there is a countable open cover On .n 2 N/ of X with
On � Un for all n.
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Proof. We show first by induction the there are open sets On � X such that
On � Un and

X D
[

k�n

On [
[

k>n

Uk . (3.29)

Indeed, if Ok is already defined for all k < n then Vn WD S

k<nOk [
S

k>n Uk

is an open set with Un [ Vn D X . Hence, X n Vn � Un. By Corollary 2.48 there
is an open neighborhood On � X of X nVn with On � Un. Since X nVn � On,
we have (3.29).

To see that O D ¹O1; O2; : : :º is a cover of X , let x 2 X . Since the cover
U is locally finite, there is a maximal n with x 2 Un. Then (3.29) implies
x 2 O1 [ � � � [On.

We recall that the important role of paracompact spaces is that they are related
with partitions of unity.

Definition 3.82. A partition of unity subordinate to an open cover U of a spaceX
is a family of continuous functions �i WX ! Œ0; 1� .i 2 I / such that the family A

of sets
supp�i WD ¹x 2 X W �i.x/ ¤ 0º .i 2 I /

is a locally finite cover of X which is a refinement of U , and

X

i2I

�i .x/ D 1 for every x 2 X .

Note that all except finitely many terms of the sum vanish since A is locally
finite.

Corollary 3.83. Let X be a regular Lindelöf space or a second countable metriz-
able space. Then every open cover U of X has a subordinate countable partition
of unity.

Proof. Actually in both cases X is a regular Lindelöf space (recall Corollary 3.13
and Propositions 2.61 and 3.16). Hence, Corollary 3.78 implies that X is normal.

If U is an open cover of X , let Un; On � X be as in Theorem 3.80. Since X
is normal there are continuous functions fnWX ! Œ0; 1� satisfying fn.On/ D ¹1º
and fn.X n Vn/ D ¹0º. Put Sn WD ¹x 2 X W fn.x/ ¤ 0º. Then On � Sn and
Sn � Un imply that the family Sn .n 2 N/ is a cover of X , and that Sn .n 2 N/
is locally finite. It follows that g.x/ WD P1

nD1 fn.x/ satisfies g.x/ ¤ 0 for all
x 2 X and that g is continuous at every x 2 X , since x has a neighborhood
which intersects only finitely many Sn. Hence, �n.x/ WD fn.x/=g.x/ is the
required countable subordinate partition of unity.
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Now we show that any function (not necessarily continuous) defined on a sub-
setM of a metric space with values in a topological vector space “matches almost”
to a map which is continuous outside of M . Although the proof has many simi-
larities with the proof of Dugundji’s famous extension theorem, this seems to be a
new and much more general result: We will obtain sharpenings of Dugundji’s ex-
tension theorem and also sharpenings of Ma’s extension theorem for multivalued
functions as special cases. The sharpenings are actually so general that we can
obtain results like the existence of so-called Schauder projections (which cannot
directly be deduced from the classical Dugundji extension theorem) as a trivial
special case in Proposition 13.8.

The key property is the following result. For the classical extension theorems,
the given map f in the subsequent result is continuous. It is rather surprising (and
important for us to obtain Ma’s extension theorem) that the result holds even for
discontinuous f WM ! Y : The result states that there is a continuous map defined
on the complement ofM which up to certain convex combinations is “very close”
to the given function f , especially near the boundary of M . Moreover, the map
which associates to f such an extension is actually a linear operator and in a
sense independent of the image space. This statement about the map will lead to
Dugundji’s result about “simultaneous extension” of continuous maps.

Theorem 3.84 (Continuous Matching of Discontinuous Maps). (AC). Let .X; d/
be a metric space, M � X nonempty, and LWX nM ! .1;1� be lower semicon-
tinuous. Then there is an operator ML;M;X which associates to each topological
vector space Y over R or C and each function f WM ! Y (not necessarily con-
tinuous) a function F D ML;M;X .f; Y / where F WX nM ! Y is continuous and
satisfies

F.x/ 2 conv¹f .y/ W y 2 M , d.x; y/ � L.x/ dist.x;M/º. (3.30)

The maps ML;M;X . � ; Y / are linear; if Y0 � Y as sets, then ML;M;X .f; Y0/ D
ML;M;X .f; Y /.

By “Y0 � Y as sets” we mean that the topology on Y0 need not necessarily be
the topology inherited from Y .

Proof. Putting X0 WD X n M , we can define a lower semicontinuous function
"WX0 ! .0; 1=2� by

".x/ WD
´

L.x/�1
2L.x/C4

if 1 < L.x/ <1,

1=2 if L.x/ D1.
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For x 2 X0, we put

r.x/ WD sup¹� 2 Œ0;1� W � � ".x/ dist.x;M/ and inf ".B�.x// � ".x/=2º.
Since dist.x;M/ D dist.x;M/ > 0 and " is positive and lower semicontinuous
at x 2 X0, we have r WX0 ! .0;1/. The sets Ux WD Br.x/.x/ .x 2 X0/ are
an open cover of X0. Since X0 is metrizable and thus paracompact by Stone’s
Theorem 3.75, there is a locally finite open refinement O of that cover. For each
O 2 O , we choose some xO 2 X0 with O � UxO

and some yO 2 M with

dist.xO ; yO / �
�

1C ".xO/
�

dist.xO ;M/. (3.31)

Since 1 C ".xO/ > 1 and dist.xO ;M/ D dist.xO ;M / > 0, a point yO 2 M
satisfying (3.31) indeed exists. By Corollary 3.13, there are �O 2 C.X; Œ0; 1�/
satisfying ��1

O .0/ D X nO (and ��1
O .1/ D ¿). We claim that

ML;M;X .f; Y /.x/ WD
P

O2O �O.x/f .yO/
P

O2O �O.x/

has the required properties. Indeed, since each x 2 X0 is contained in at least
one set from O and contains a neighborhood which intersects at most finitely
many sets from O , it follows that F WD ML;M;X .f / is defined and continuous on
that neighborhood, and F.x/ 2 conv¹f .yO/ W x 2 O 2 Oº by Proposition 2.52.
Hence, the claim follows if we can show the implication

x 2 O 2 O H) d.x; yO / � L.x/ dist.x;M/. (3.32)

Thus, let x 2 O 2 O . By construction, we have x 2 O � UxO
D Br.xO /.xO/,

hence d.x; xO/ < r.xO/. The definition of r.xO/ thus implies

d.x; xO/ � ".xO/ dist.xO ;M/ and ".x/ � ".xO/=2. (3.33)

We obtain by (3.31) that

d.x; yO / � d.x; xO/C d.xO ; yO/ �
�

1C 2".xO/
�

dist.xO ;M/

� �

1C 4".x/� dist.xO ;M/.
(3.34)

Since Proposition 3.12 and (3.33) imply

dist.xO ;M/ � d.xO ; x/C dist.x;M/

� ".xO/ dist.xO ;M/C dist.x;M/

� 2".x/ dist.xO ;M/C dist.x;M/,
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we have .1 � 2".x// dist.xO ;M/ � dist.x;M/. In case L.x/ < 1, we have
2".x/ < 1 and thus obtain with (3.34)

d.x; yO/ � 1C 4".x/

1� 2".x/ dist.x;M/ D L.x/ dist.x;M/.

Hence, (3.32) is established in case L.x/ < 1; the case L.x/ D 1 is trivial in
view of dist.x;M/ > 0.

Remark 3.85. We point out that the proof of Theorem 3.84 makes essential use of
AC (in using Stone’s theorem and in the choice of yO for each O 2 O). However,
ifXnM is separable then AC! suffices: Corollary 3.77 requires only AC! , and by
that result, X nM is paracompact, and the set O in the proof of Theorem 3.84 can
be assumed to be countable, so we have to choose only countably many yO 2 O .

We show in a moment that we obtain as a special case the following generaliza-
tion of Dugundji’s celebrated extension theorem [43] (see also [28, Section III.7]).

Theorem 3.86 (Dugundji’s Extension Theorem). (AC). Let X be a metric space,
A � X be closed, and Y be a locally convex space. Then each continuous f WA!
Y has a continuous extension F WX ! Y with F.X/ � conv f .A/.

Moreover, for every lower semicontinuous function LWX ! .1;1� and every
M � A with @A � M the extension may be chosen such that that (3.30) holds,
in particular F.X n A/ � conv f .M/. Simultaneously, it may be arranged that
the association .f; Y / 7! F D ML;M;X .f; Y / is linear with respect to f and
satisfies ML;M;X .f; Y0/ D ML;M;X .f; Y / if Y0 � Y as sets.

The importance of the linearity of the extension operation was already observed
by Dugundji.

Theorem 3.86 is actually only the single-valued special case of the following
result. This result generalizes [86] which in turn extends Ma’s extension theo-
rem [102, (2.1)] for upper semicontinuous maps with convex values.

Theorem 3.87. (AC). Let X be a metric space, A � X closed, Y a locally
convex space, and ˆWA ( Y be upper semicontinuous. Assume that ˆ.x/ is
convex, nonempty, and either compact or open for each x 2 @A. Then ˆ has an
upper semicontinuous extension ˆWX ( Y with ˆ.X/ � convˆ.A/ and such
that ˆjXnA is a single-valued continuous function F WX n A! Y .

Moreover, for every lower semicontinuous function LWX ! .1;1�, every
M � A with @A � M and every selection f WM ! Y of ˆjM , it may be ar-
ranged that (3.30) holds, in particular ˆ.X n A/ � conv f .M/, and that the
association .f; Y / 7! F D ML;M;X .f; Y / is linear with respect to f jM and
satisfies ML;M;X .f; Y0/ D ML;M;X .f; Y / if Y0 � Y as sets.
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Remark 3.88. Our proof will show that the requirement ˆ.x/ ¤ ¿ is actually
only needed for x 2 M . However, since @A � M , it follows automatically that
ˆ.x/ ¤ ¿ for all x 2 @A (Proposition 2.91).

Proof. Given L andM , we can assume without loss of generality that L assumes
its values in .1; 2�, since we can replace L by L0.x/ WD min¹L.x/; 2º if nec-
essary. We choose ML;M;X as in Theorem 3.84, and for f WM ! Y , we put
F WD ML;M;X .f; Y / and ˆ.x/ WD ¹F.x/º for x 2 X n A. We are to show that
this extension is automatically upper semicontinuous at every x0 2 @A.

Thus, let V be a neighborhood of ˆ.x0/. If ˆ.x0/ is compact, there is some
neighborhood U � Y of 0with V0 WD ˆ.x0/CU � V . Since Y is locally convex,
we can assume without loss of generality that U is convex. If ˆ.x0/ is open, we
put instead V0 WD ˆ.x0/. In both cases, V0 � V is a convex neighborhood of
ˆ.x0/.

SinceˆjA is upper semicontinuous at x0, there is r > 0 withˆ.A\Br .x0// �
V0. Since V0 is convex, this implies conv f .M \ Br .x0// � V0. By L.x/ � 2,
we obtain from (3.30) that F.Br=2.x0/ n A/ � V0.

Remark 3.89. In accordance with Remark 3.85, we point out that we used AC
for Theorem 3.87 not only to apply Theorem 3.84 but also to find a selection f of
ˆjM .

However, if X n A is separable, then there is also a countable dense M � @A,
and so in this case AC! is sufficient for our proof of Theorem 3.87 (and thus of
Theorem 3.86).





Chapter 4

Spaces Defined by Extensions, Retractions,
or Homotopies

4.1 AE and ANE Spaces

Definition 4.1. A topological space Y is an AE (“absolute extensor”) for a class
C of topological spaces if for every X from C , every closed subset A � X and
every continuous map f WA ! Y there is a continuous extension F WX ! Y

of f .
A topological space Y is an ANE (“absolute neighborhood extensor”) for a

class C of topological spaces if for every X from C , every closed subset A � X

and every continuous map f WA ! Y there is a neighborhood U � X with
A � U and a continuous extension F WU ! Y of f .

If C consists only of one space X , we call Y simply an AE (or ANE) for X .

Clearly, each AE for C is an ANE for C .

Remark 4.2. In Definition 4.1, one can equivalently require that the neighbor-
hood U � X be open.

Dugundji’s extension theorem (Theorem 3.86) can now be formulated as fol-
lows.

Theorem 4.3 (Dugundji’s Extension Theorem). (AC). Every convex subset of a
locally convex space is an AE for the class of metric spaces.

Remark 4.4. Without AC, we claim only that every locally convex space is an
AE for the class of separable metric spaces, cf. Remark 3.89.

Dugundji’s theorem provides us with a large class of examples of AE spaces
(and thus also ANE spaces) for some class. Once we know such examples, we
can construct more examples by the following observations:

Proposition 4.5. If Y is an ANE for a class C , then every open subset U � Y is
also an ANE for C .
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Proof. Let X be a space from C , A � X be closed, and f 2 C.A;U /. Then
f 2 C.A; Y /, and so there is an open neighborhood V � X ofA and an extension
f 2 C.V; Y /. Then V0 WD f �1.U / � V is an open (in V and thus in X
by Proposition 2.10) neighborhood of A, and so f jV0

WV0 ! U is the required
extension of f .

Proposition 4.6. If each Y1; : : : ; Yn is ANE (AE) for a class C then also Y WD
Y1 � � � � � Yn is an ANE (AE) for C .

Proof. Let X be a space from C , A � X be closed, and f 2 C.A; Y /. Then f D
.f1; : : : ; fn/ with fk 2 C.A; Yk/. There are extensions Fk 2 C.Uk; Yk/ of fk

with neighborhoods Uk � X of A (or Uk D X ). Putting U WD U1 \ � � � \Un, we
can define the required extension F 2 C.U; Y / by F WD .F1jU ; : : : ; fnjU /.

Proposition 4.7. Let g 2 C.Y; Y0/ be such that there is h 2 C.Y0; Y / with
g ı h D idY0

. If Y is an ANE (AE) for some class C of spaces then so is Y0.

Proof. Let X be a space from C , A � X be closed, and f 2 C.A; Y0/. Then
h ı f WA ! Y is continuous and thus has a continuous extension H WU ! Y

with a neighborhood U � X of A (or U D X , respectively). Then the map
F WD g ıH WU ! Y0 is continuous and satisfies F jA D g ı h ı f D f .

Corollary 4.8. If Y and Y0 are homeomorphic, and if Y is an AE (ANE) for a
class C then also Y0.

Proof. Apply Proposition 4.7 with a homeomorphism gWY ! Y0 and h D g�1.

Definition 4.9. A retraction in a topological spaceX is a continuous map �WX !
X with � ı � D �. The range of a retraction is called a retract of X .

Definition 4.10. A neighborhood retract of a topological space X is a set A � X
with the property that it is the retract of some of its neighborhoods.

Remark 4.11. A � X is a retract of X if and only if idA has a continuous exten-
sion �WX ! A. A � X is a neighborhood retract of X if and only if idA has a
continuous extension �WU ! A for some neighborhood U � X of A.

Corollary 4.12. If Y is an AE (ANE) for a class C then so is every (neighbor-
hood) retract Y0 � Y .
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Proof. There is a retraction �WU ! Y0 onto Y0 with U WD Y (resp. an open
neighborhood U � Y of Y0). Then U is an AE (ANE) for C (by Proposition 4.5),
and so Proposition 4.7 with g WD � and h WD idY0

implies that Y0 is an AE (ANE)
for C .

Proposition 4.13. Every retract of a Hausdorff space X is closed in X .

Proof. Let �WX ! Y be a retraction onto Y � X . Applying Corollary 2.115
withˆ WD � and ‰ WD idX , we find that Y D ¹x 2 X W �.x/ D idX .x/º is closed
in X .

Definition 4.14. A topological space X is called a LCR (“locally convex retract”)
if it is homeomorphic to a retract of a convex subset of a locally convex space.

A topological space X is called a LCNR (“locally convex neighborhood re-
tract”), if it is homeomorphic to a neighborhood retract of a convex subset of a
locally convex space.

Using this notion, Dugundji’s extension theorem can be formulated as follows.

Theorem 4.15 (Dugundji for Retracts). (AC). Every LCR (LCNR) is an AE
(ANE) for the class of metric spaces.

Proof. In view of Corollaries 4.8 and 4.12, the result follows from Theorem 4.3.

Remark 4.16. Without AC, we obtain in view of Remark 4.4 that every LCR
(LCNR) is an AE (ANE) for the class of separable metric spaces.

4.2 ANR and AR Spaces

Of particular importance is the following class of AE/ANE spaces:

Definition 4.17. A topological space X is an AR (“absolute retract”) if it is
metrizable and an AE for the class of metrizable spaces.

A topological space X is an ANR (“absolute neighborhood retract”) if it is
metrizable and an ANE for the class of metrizable spaces.

In literature, it is usually not distinguished between AR/ANR spaces and LCR/
LCNR spaces. The reason is the following corollary of the theorems of Arens–
Eells and Dugundji which also explains the name:
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Theorem 4.18 (Arens–Eells for Retracts). (a) Every metric AR (ANR) is iso-
metric to a closed (neighborhood) retract of a normed space. In particular,
every AR (ANR) is a metrizable LCR (LCNR), and the converse holds if we
assume AC.

(b) Every separable metric space which is an AE (ANE) for the class of sep-
arable metric spaces is isometric to a closed (neighborhood) retract of a
separable normed space and thus a metric LCR (LCNR). Conversely, every
LCR (LCNR) is an AE (ANE) for the class of separable metric spaces.

Proof. The Arens–Eells embedding theorem states that there is an isometry
f WX ! X0 onto a closed subset X0 of a normed space Y . By Corollary 3.65,
we can assume that Y is separable if X is separable. Now if X is an AE (ANE)
for Y , then also X0 has this property by Corollary 4.8, and so idX0

WX0 ! X0

has an extension to a continuous map �WY ! X0 (or �WU ! Y0 with an open
neighborhood U � Y of X0, respectively.) The converse assertion is the content
of Theorem 4.15 or Remark 4.16, respectively.

Proposition 4.19. (a) Every open subset of an ANR is an ANR.

(b) Every finite Cartesian products of AR (ANR) spaces is an AR (ANR).

(c) Every (neighborhood) retract of an AR (ANR) is an AR (ANR).

(d) Every space which is homeomorphic to an AR (ANR) is an AR (ANR).

(e) If X0 is a topological space, X is an AR (ANR), and if there are g 2
C.X;X0/ and h 2 C.X0; X/ with g ı h D idX0

then X0 is an AR (ANR).

Proof. The assertions follow immediately from Proposition 4.5, Proposition 4.6,
Corollary 4.12, Corollary 4.8, or Proposition 4.7, respectively. For the last asser-
tion, it remains to show that X0 is metrizable. Let d be a metric on X generating
the topology. Then a metric on X0 can be defined by

dh.y1; y2/ WD d.h.y1/; h.y2//. (4.1)

Since g ı h D idX0
implies that h.x/ ¤ h.y/ for x ¤ y, a straightforward calcu-

lation shows that this is indeed a metric on X0. This metric is compatible with the
topology of X0. To see this, let y0 2 X0. Since h and f WD d. � ; h.y0//WX !
Œ0;1/ are continuous, it follows that f ı h is continuous. Hence, for every r > 0
the set

Bh.r; y0/ WD ¹y 2 X0 W dh.y; y0/ < rº D .f ı h/�1.Œ0; r//

is an open neighborhood of y0. Conversely, if U � X0 is a neighborhood of
y0 2 X0, we put x0 WD h.y0/. Since g.x0/ D y0, the continuity of g implies
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that g�1.U / is a neighborhood of x and thus contains some ball Br.x0/ � X .
It follows that U contains Bh.r; y0/, since for all y 2 Bh.r; y0/ we have with
x WD h.y/ that d.x; x0/ D dh.y; y0/ < r , hence x 2 Br .x0/ � g�1.U /, and so
y D g.x/ 2 U .

We want to find spaces which are an AE or ANE for a larger class of spaces
than just metric spaces. To this end, the following notion is useful.

Definition 4.20. A metrizable space X is topologically complete, if it can be
equipped with a complete metric generating the topology. We call a topologically
complete ANR (AR) an ANRc (ARc).

Of course, every complete metric space is topologically complete. In particular,
every compact metrizable space is topologically complete.

However, the class of topologically complete spaces is much larger than one
might expect from this example:

Theorem 4.21. Let X be a topologically complete metrizable space. Assume one
of the following:

(a) X0 � X is open in X .

(b) X0 � X is closed in X .

(c) X0 is a neighborhood retract of X .

(d) X0 is homeomorphic to X .

(e) X0 is a topological space, and there are g 2 C.X;X0/, h 2 C.X0; X/ with
g ı h D idX0

.

Then X0 is a topologically complete metrizable space.

Proof. Let d be a complete metric on X generating the topology. Assume first
that X0 � X is closed in X . Then Lemma 3.8 implies that d is also a complete
metric on X0.

Assume next that X0 � X is open in X . In case X0 D X , we have nothing to
prove, and in case X0 ¤ X , a complete metric on X0 is given by

ı.x; y/ WD d.x; y/C
ˇ

ˇ

ˇ

ˇ

1

dist.x;X nX0/
� 1

dist.y;X nX0/

ˇ

ˇ

ˇ

ˇ

.

Indeed, a straightforward calculation shows that ı is a metric of X0. The metrics
ı and d generate the same topology on X0: If xn 2 X0 is a sequence and x 2 X
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satisfy ı.xn; x/! 0 then clearly d.xn; x/! 0, and conversely, if d.xn; x/! 0

then
dist.xn; X n X0/! c WD dist.x;X nX0/ > 0

by Lemma 3.11, and so the continuity of t 7! 1=t at c implies ı.xn; x/ ! 0.
Moreover, X0 is complete with respect to the metric ı. To see this, let xn 2 X0

be a Cauchy sequence with respect to ı. Then xn is a Cauchy sequence with
respect to d and thus convergent with respect to d to some x 2 X . By our
definition of a Cauchy sequence, we find for " WD 1 some y 2 X0 such that
ı.xn; y/ < " for all except finitely many n. This implies that 1=dist.xn; X nX0/

remains bounded, and so there is some " > 0 with dist.xn; X nX0/ � " for all n.
Since Proposition 3.12 implies that dist.xn; X nX0/! dist.x;X nX0/, we find
x 2 X0. Since d.xn; x/! 0 and x 2 X0 we thus obtain by what we have proved
above that ı.xn; x/! 0.

If X0 � X is a neighborhood retract of X , that is, there is an open neighbor-
hood U � X of X0 and a retraction �WU ! X0 onto X0, then by what we just
proved, U is a topologically complete metrizable space. Since X0 is closed in
U (Proposition 4.13) also X0 is a topologically complete metrizable space by the
first assertion.

The case of a homeomorphism is a special case of the last assertion. To see
the latter, let g 2 C.X;X0/ and h 2 C.X0; X/ satisfy g ı h D idX0

. Consider
on X0 the metric (4.1). As we have seen in the proof of Proposition 4.19, this
metric is compatible with the topology of X0. We show that it is complete. To
this end, we note that h is an isometry of X0 (with the metric dh) onto the subset
Y WD h.X0/ � X (with the metric d ). Moreover, � WD h ı gWX ! Y is a
retraction, because �.�.x/

� D h ı g ı h ı g D h ı g D �. Since g ı h D idX0
, it

follows that g.X/ D X0 and thus �.X/ D h.X0/ D Y . Hence, Y is a retract ofX
and thus closed by Proposition 4.13 and thus complete. Since h�1WY ! X0 is an
isometry onto X0 and thus preserves Cauchy sequences, convergent sequences,
and thus also completeness, it follows that X0 is complete.

Corollary 4.22. (a) Every open subset of an ANRc is an ANRc.

(b) Every finite product of ARc (ANRc) spaces is an ARc (ANRc).

(c) Every (neighborhood) retract of an ARc (ANRc) is an ARc (ANRc).

(d) If X0 is a topological space, X is an ARc (ANRc), and if there are
g 2 C.X;X0/, h 2 C.X0; X/ with gıh D idX0

then X0 is an ARc (ANRc).

Proof. The assertions follow from Proposition 4.19 and Theorem 4.21.
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Theorem 4.23 (Arens–Eells for ARc/ANRc). Every ARc (ANRc) is homeomor-
phic to a closed (neighborhood) retract of a Banach space, and the converse holds
if we assume AC.

Proof. If X is an ARc (ANRc), equipped with a complete metric, then Theo-
rem 3.63 implies that X is isometric to a subset X0 of a Banach space Y . By the
completeness, X0 is closed. Since X0 is an AE (ANE) by Corollary 4.8, the map
idX0

WX0 ! X0 has an extension to a continuous map �WY ! X0 (or �WU ! Y0

with an open neighborhood U � Y of X0, respectively.)
Conversely, if we assume the axiom of choice then every Banach space is an

ARc by Theorem 4.15. Hence, the claim follows from Corollary 4.22.

We will not use the following deep result but just cite it to give the reader an
intuition about the meaning of ARc and ANRc spaces.

Theorem 4.24. (AC). A metrizable space is an ARc (ANRc) if and only if it is
an AE (ANE) for the class of paracompact Hausdorff spaces.

Proof. A deep result from [8] resp. [41] states that every Banach space is an AE
for the class of so-called fully normal space resp. collectionwise normal spaces.
Since paracompact Hausdorff spaces have both this property, it follows that every
Banach space is an AE for the class of paracompact Hausdorff spaces. Hence,
if X is an ARc (ANRc) then Theorem 4.23 and Corollary 4.22 imply that X is
an AE (ANE) for the class of paracompact Hausdorff spaces. The converse was
obtained in [106] and, independently, in [41].

For the case that the space is separable, we obtain a stronger statement with a
much simpler proof even without AC.

Theorem 4.25. A metrizable space is an AE (ANE) for the class of T4 spaces if
and only if it is separable, topologically complete, and an AE (ANE) for the class
of separable metric spaces.

Proof. Let X be a separable complete metric space which is an AE (ANE) for
the class of separable metric spaces. By Theorem 3.74, X is homeomorphic to a
closed subset X0 of Y WD RN . Note that Y is separable since e.g. .Q \ .0; 1//N
is dense in Y by Proposition 3.66. Since X0 is an AE (ANE) for the class of
separable metric spaces by Corollary 4.8, it follows that idX0

WX0 ! Y has an
extension to a continuous map �WY ! Y (or �WU ! Y with a neighborhood
U � Y of X0, respectively). In particular, X0 is a (neighborhood) retract of Y .
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Note that Tietze’s extension theorem (note Remark 2.68) implies that Y is an
ANE for the class of T4 spaces. Since X0 is a (neighborhood) retract of Y , Corol-
lary 4.12 thus implies that X0 is an AE (ANE) for the class of T4 spaces. By
Corollary 4.12, it follows that also the homeomorphic space X is an AE (ANE)
for the class of T4 spaces.

The proof of the converse assertion is more involved. Since we do not need it,
we just remark that it was obtained in [106] and, independently, in [41].

We point out that we have shown in particular that the following result holds
without the (general) axiom of choice.

Corollary 4.26. For a separable topologically complete metrizable space X the
following statements are equivalent:

(a) X is homeomorphic to a (neighborhood) retract of a Banach space.

(b) X is a LCR (LCNR).

(c) X is an AR (ANR).

(d) X is an ARc (ANRc).

(e) X is an AE (ANE) for the class of separable metric spaces.

(f) X is an AE (ANE) for the class of T4 spaces.

Proof. By our assumptions on X the implications (a))(b), (f))(e), (f))(c),
and (c),(d))(e) are trivial. In view of Remark 4.16, we have the implication
(b))(e) (without AC). Theorem 4.25 provides us the implication (e))(f), and
the remaining implication (d))(a) is the content of Theorem 4.23.

Following Borsuk [28, IV.(6.1)], we give now a large class of examples of ANR
spaces. Let us first prepare this result:

Lemma 4.27. Let X1; X2 be closed subsets of a metric space X . If X1 and X2

are both AE (ANE) spaces forX , and ifX1\X2 is a (neighborhood) retract ofX
then X1 [X2 is a (neighborhood) retract of X .

Proof. We divide X into the three disjoint sets Y0, Y1, and Y2, consisting of all
x 2 X for which dist.x;X1/ is equal, less, or larger than dist.x;X2/, respec-
tively. Putting X0 WD X1 \ X2, we have then X0 � Y0. Let �WU ! X0 be a
retraction onto X0 with U D X (or U � X being an open neighborhood of X0,
respectively).

We put U0 WD X (or let U0 � X be an open neighborhood ofX0 with U 0 � U
which is possible by Corollary 2.48, since X0 is closed by Proposition 4.13.) Note
that U0 is open, and A WD U 0 satisfies X0 � U0 � A � U .



Section 4.2 ANR and AR Spaces 113

Note that Y0 is closed, and thus A0 WD A\Y0 is closed. Hence, for i D 1; 2 the
set Ai WD Xi [ A0 is closed, and the functions �i WAi ! Xi , defined by �i jXi

WD
idXi

and �i jA0
WD �jA0

are continuous by the glueing lemma (Lemma 2.93): For
the compatibility of the definition, note that Xi \ A0 � Xi \ Y0 � X0.

Thus, for i D 1; 2 there are continuous extensions �i WUi ! Xi with Ui D X

(or with Ui � X being open neighborhoods of Ai , respectively.) We define now
Ci WD .Yi \ Ui / [ A0 .i D 1; 2/ and C WD C1 [ C2. Since Y1; Y2 � X are
open and disjoint, it follows that Ci D .C n Y2�i / [ A0 .i D 1; 2/ are closed
in C , and C1 \C2 D A0. Since �i jA0

D �jA0
.i D 1; 2/, the glueing lemma thus

implies that we obtain a continuous function �WC ! X1 [ X2 by �jCi
WD �i jCi

.i D 1; 2/.
We show that this is the desired retraction. We put

M WD .Y1 \ U1/ [ .Y2 \ U2/ [ .U0 \ U1 \ U2/.

For i D 1; 2 we get by Y0 \Xi D X0 � U0 \ U1 \ U2 �M that

Xi D Xi \ .Yi [ Y0/ � .Yi \ Ui / [ .Y0 \Xi/ � .Yi [ Y0/ \M , (4.2)

and since Y0 \ Yi D ¿ and Y0 \ U0 � Y0 \ A D A0, we have further

.Yi [ Y0/\M � .Yi \M/[ .Y0 \M/ � .Yi \ Ui /[ .Y0 \U0/ � Ci . (4.3)

In particular, Xi � Ci implies that �jXi
D �i jXi

D idXi
, hence � is a retraction

of C onto X1 [ X2. Moreover, C D X (or C is a neighborhood of X1 [ X2,
respectively. Indeed, since Y1 and Y2 are open, the setM is open withX1[X2 �
M by (4.2), and by (4.3), we haveM D .Y1[Y2[Y0/\M � C1[C2 D C .)

Theorem 4.28. Let X1; X2 be closed in the metrizable space X1 [X2.

(a) (AC). If all three spaces X1, X2, and X1 \ X2 are AR (ANR) spaces then
so is X1 [X2.

(b) If all three spaces X1, X2, and X1\X2 are separable and an AE (ANE) for
the class of separable metric spaces then so is X1 [X2.

Proof. By the Arens–Eells embedding theorem, we can assume that X1 [ X2 is
a closed subspace of a normed space X . If X1 and X2 are separable, we can
assume in view of Corollary 3.65 that also X is separable. By extending idX1\X2

to a continuous map �WU ! X1 \ X2 with U D X (or a neighborhood U � X

of X1 \X2), we find in particular that X1 \X2 is a (neighborhood) retract of X .
Lemma 4.27 implies that X1 [ X2 is a (neighborhood) retract of X and thus a
metric LCR (LCNR). The assertion follows by Theorem 4.15 or Remark 4.16,
respectively.
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Corollary 4.29. (AC). Let X be a locally convex space, and Y D Y1 [ � � � [ Yn

where Yk are metrizable convex subsets ofX and closed in Y . Then Y is an ANR.

Proof. The proof is by induction on n: For n D 1, the claim follows from The-
orem 4.15, and if the claim is proved for n � 1, we apply Theorem 4.28 with
X1 WD Y1 [ � � � [ Yn�1 and X2 WD Yn. Since X1 \ X2 is the union of the n � 1
convex sets Yk \ Yn .k < n/ which are closed in X1 \ X2, the induction hy-
pothesis implies that X1 \ X2 is an ANR, and thus also X1 [ X2 is an ANR by
Theorem 4.28

Remark 4.30. Without AC, we obtain in view of Remark 4.16 and Corollary 4.26
a slightly weaker result than Corollary 4.29:

We have to assume in addition that all Yk are separable, and either we also
have to assume that Y is topologically complete, or we can conclude only that
Y D Y1 [ � � � [ Yn is an ANE for the class of separable metric spaces.

4.3 Extension of Compact Maps and of Homotopies

Theorem 4.31. Let X D Q

n2N In with nondegenerate intervals In � R. Then
for any compact set K � X and any neighborhood U � X of K the following
holds:

(a) There is a compact AR YX � X containing K.

(b) There is a compact ANR YU with K � YU � U .

Remark 4.32. The proof shows that YX can be chosen to be homeomorphic
to Œ0; 1�N .

Proof. Assume first that X D Œ0; 1�N , endowed with the metric (3.28). Then X
is compact by Tychonoff’s theorem (Corollary 3.67) and an AR by Remark 2.68.
Hence, the first assertion follows with YX D X . For the second assertion, we
assume without loss of generality that U ¤ X is open in X .

Since K is compact and disjoint from the closed set X n U , we find by Corol-
lary 3.14 some r > 0 with B2r.K/ � U . Choose some n 2 N with 2�n < r . We
equip Rn with the sum-norm, i.e.

k.x1; : : : ; xn/k WD jx1j C � � � C jxnj.
Let pWX ! Rn and qWX ! X denote the projections onto the first n coor-
dinates and onto the remainder, that is, p..x1; x2; : : : // WD .x1; : : : ; xn/ and
q..x1; x2; : : : // WD .xnC1; xnC2; : : : /. Proposition 3.66 implies that p and q
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are continuous. Clearly h WD p � qWX ! Rn � X is invertible, and also the
inverse is continuous by Proposition 3.66.

The set K0 WD p.K/ is compact. Hence, since the open balls Br.z/ � Rn

.z 2 K0/ cover K0 we find finitely many z1; : : : ; zm 2 K0 such that K0 is
contained in Y0 WD Kr.z1/ [ � � � [ Kr .zm/. Remark 4.30 implies that Y0 is
a compact ANR. Hence, Proposition 4.19 implies that Y0 � X and thus also
YU WD h�1.Y0 �X/ are compact ANR spaces.

Since K0 � Y0, we have YU D p�1.Y0/ � p�1.K0/ D p�1.p.K// � K. It
remains to show that YU � U . Thus, let y D .y1; y2; : : : / 2 YU . By definition
of YU , we find for p.y/ D .y1; : : : ; yn/ some zk 2 K0 with kp.y/ � zkk � r .
Since K0 D p.K/, there is some x D .x1; x2; : : : / 2 K with zk D p.x/. Now

d.y; x/ �
n

X

kD1

jyk � xk j C
1

X

kDnC1

2�k D kp.y/ � zkk C 2�n < 2r .

Hence, y 2 B2r .K/ � U .
For the general case X D Q1

nD1 In, we observe first that the projections
nWX!In, n..x1; x2; : : : // WD xn, are continuous by Proposition 3.66. Hence,
n.K/ is contained in a nondegenerate compact interval Jn � In, and so K �
X0 WD Q1

nD1 Jn � X . Lemma 3.73 implies that X0 and H WD Œ0; 1�N are
homeomorphic. Thus, the first claim follows with YX WD X0. For the sec-
ond claim, let h denote the homeomorphism of X0 onto H . Let U � X be a
neighborhood of K, without loss of generality open. Then U0 WD U \ X0 is
open in X0 with K � U0, and so h.U0/ is open in H and contains the com-
pact set h.K/. As we have shown above there is a compact ANR Y � H with
h.K/ � Y � h.U0/. Thus Proposition 4.19 implies that YU WD h�1.Y / is a
compact ANR with K � YU � U .

Remark 4.33. For the case that X is a normed space, a result analogous to The-
orem 4.31 was obtained in [68].

It seems to be an open problem whether the statement of Theorem 4.31 holds
also if X is replaced by an AR (for the first assertion) or an ANR (for the second
assertion), respectively.

In view of the Arens–Eells embedding theorem for retracts (Theorem 4.18)
and the mentioned result [68], one might conjecture at a first glance that such
a generalization is possible if one considers X as a subset of a normed space
OX . However, the corresponding compact ANR (AR) Y � OX is not necessarily

contained in X , and the intersection X \ Y of two ANR (AR) spaces X and Y
need not necessarily be an ANR (AR).
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Theorem 4.31 is rather useful if one wants to extend compact continuous maps
(although one can avoid to use that result in many cases, as we will see).

In connection with degree theory it turns out that it is very important to be able
to extend continuous compact maps. In fact, this is more important for us than ex-
tension results for maps which are just continuous. Somewhat surprisingly, these
extension results will play a particular role when we want to deal with noncom-
pact maps, as we will see in Chapter 14 (in particular, in Section 14.2, we will
need this property often).

Unfortunately, the notion of a compact map depends on the notion of a rela-
tively compact set which in turn does not only depend on the topology but also on
the considered space: A set can be relatively compact in a space Z but fail to be
relatively compact in Y � Z. For this reason, the following notion depends on a
space Z, in general:

Definition 4.34. Let Y and Z be topological spaces. Then Y is an CEZ (“com-
pact extensor into Z”) for a class C of topological spaces if for every space X
from C , every closed subset A � X , and every continuous f WA ! Y which is
compact into Z (that is, f .A/ is relatively compact in Z), there is a continuous
extension F WX ! Y of f which is compact into Z.

Similarly, Y is an CNEZ (“compact neighborhood extensor into Z”) for a class
C of topological spaces if for every space X from C , every closed subset A �
X , and every continuous map f WA ! Y which is compact into Z there is a
neighborhood U � X of A and a continuous compact extension F WU ! Y of f
which is compact into Z.

If C consists only of one space X , we call Y simply an CEZ (or CNEZ) for X .

Although we formally do not require it, this definition is only useful if Y \Z ¤
¿. Moreover, although formally it is not required in Definition 4.34 that on the
set Y \ Z the topologies induced by Y and Z coincide, we will typically have
Y � Z (with the inherited topology).

Let us first discuss the case that Y � Z is closed inZ. In this case, the space Z
actually plays no role:

Proposition 4.35. A closed set Y � Z is a CEZ (CNEZ) for a class C if and
only if Y is a CEY (CNEY ) for C .

Proof. The assertion follows immediately from Proposition 2.122.

For the case that Y � Z is closed in Z, the following criterion is sufficient for
most practical purposes:
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Theorem 4.36. Let Y � Z be closed in Z. If Y is a metrizable LCNR (LCR),
then Y is an CNEZ (CEZ) for the class of T4 spaces.

Proof. By Proposition 4.35, we are to show that Y is an CNEY (CEY ) for the
class of T4 spaces. Thus, let X be T4, A � X be closed, and f 2 C.A; Y / with
f .A/ contained in a compact set K � Y . By Lemma 3.69 there is a homeo-
morphism h of K onto a subset K0 � Œ0; 1�N . Since K0 D h.K/ is compact,
it is closed (Proposition 2.45). In view of Remark 4.16, Y is an ANE (AE) for
the separable metric space H WD Œ0; 1�N , and so h�1WK0 ! K � Y has a con-
tinuous extension gWV0 ! Y where V0 � H is an open neighborhood of K0

(or V0 D H , respectively). In view of Theorem 4.31, there is a compact ANR
(AR) Y0 satisfying K0 � Y0 � V0. Then Y0 is an ANE (AE) for the class of T4

spaces by Theorem 4.25, and so h ıf WA! K0 � Y0 has a continuous extension
F WU ! V with a neighborhood U � X of A (U D X ). Then Y1 WD h�1.Y0/ is
a compact subset of Y , and h�1 ıF WU ! Y1 is the required extension for f .

Remark 4.37. Theorem 4.31 will be used essentially in our proof of Theo-
rem 4.54. In the above proof of Theorem 4.36, the usage of Theorem 4.31 only
slightly simplified the argument, but it could have been avoided.

In fact, in the proof of Theorem 4.36, we could alternatively have observed
that, since H is T4, Corollary 2.48 implies that there is an open neighborhood
V1 � H of K0 with Y0 WD V 1 � V0. Then Y0 is compact but not necessarily
an ANR. Nevertheless, the open subset set V1 � H is an ANE for the class of
T4 spaces by Proposition 4.5, and so we can find similarly as in the above proof
of Theorem 4.36 a continuous extension F WU ! V1 � Y0 of h ı f with a
neighborhood U � X of A.

Corollary 4.38. If K is an ANR (AR) then K is a CNEK (CEK ) for the class of
T4 spaces.

Proof. Theorem 4.18 implies that K is a metrizable LCNR (LCR). Since K is
closed in K, the assertion follows from Theorem 4.36.

The following property will turn out to be crucial for degree theory in the non-
compact case.

Proposition 4.39. Let Z be a Banach space, and Y1; Y2 � Z closed convex
subsets with Y1 \ Y2 ¤ ¿. Then Y WD Y1 [ Y2 is a CEY for the class of T4

spaces.

Proof. Let X be T4, A � X be closed, and f 2 C.A; Y / with f .A/ be-
ing relatively compact in Y . Let y 2 Y1 \ Y2. By Corollary 3.62, the sets
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Ki WD conv..¹yº [ f .A// \ Yi / are compact convex subsets of Yi .i D 1; 2/.
Since K1, K2, and K1 \ K2 are convex and compact (and nonempty in view of
y 2 K1 \ K2), we obtain by Corollary 4.26 and Theorem 4.28 that K1 [ K2

is an AE for the class of separable metric spaces and thus even for the class of
T4 spaces. Hence, f has an extension F 2 C.X;K1 [ K2/ which is a required
extension of f .

Now we discuss Definition 4.34 for the case that Y � Z is not necessarily
closed in Z. In this case, a map f WX ! Y can be compact into Z although it is
not compact into Y . This is the case, for example, if Y is a non-closed bounded
subset of a finite-dimensional normed space Z and f D idY . Nevertheless, it
may happen that Y is an CEZ for a large class of spaces, as we will show now.

Although such results appear important for applications in degree theory, there
are not many sufficient criteria known for this property. It seems that the following
criteria are essentially new.

By a homotopy (from X into Y ) we mean a continuous map hW Œ0; 1��X ! Y .

Proposition 4.40. Let Y and Z be subsets of a topological space Z0 with the
inherited topology. Assume that YZ WD Y \ Z (closure in Z0) is a CNEYZ

(CEYZ
) for a class C of spaces. If there is a homotopy hW Œ0; 1� � YZ ! YZ

satisfying
h.0; � / D idYZ

and h..0; 1� � YZ/ � Y , (4.4)

then Y is a CNEZ (CEZ) for all T6 spaces from C .

Proof. LetX be a T6 space from the class C , letA � X be closed, and let f WA!
Y be continuous and compact into Z. Since YZ is closed in Z, Proposition 2.122
implies that f is compact into YZ . The hypothesis thus implies that f has a
continuous extension f WU ! YZ where U � X is a neighborhood of A (or
U D X , respectively), and f .U / is contained in a compact subset K � YZ .
Since X is T6, there is � 2 C.U; Œ0; 1�/ with ��1.0/ D A (and ��1.1/ D ¿).
Then F.x/ WD h.�.x/; f .x// defines a required extension of f . Indeed, for
x 2 A, we have F.x/ D h.0; f .x// D f .x/ by (4.4), and for x 2 U nA, we have
�.x/ > 0 and thus F.x/ 2 Y by (4.4). Finally, F.U / � h.Œ0; 1� � K/, and the
latter set is compact by Theorem 2.63 and Proposition 2.100, and it is contained
in YZ � Z.

In order to apply Proposition 4.40, we use the following simple observation
which we will also use later in Corollaries 9.78, 13.22, and 14.52.

Lemma 4.41. Let Y be a convex subset of a topological vector space, and y0 2
VY . Then for every z 2 Y and every t 2 .0; 1� we have .1 � t/z C ty0 2 Y .
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Proof. Since y0 2 VY , there is a neighborhood U of 0 in the topological vector
space with y0 C U � Y . In case t D 1, the assertion is trivial. Thus, assume
t 2 .0; 1/. Then r WD t=.1 � t/ 2 .0;1/, and so z � rU is a neighborhood of
z 2 Y and thus must contain some y1 2 Y . Then z � y1 2 rU , and so y2 WD
y0Cr�1.z�y1/ 2 y0CU � Y . Since Y is convex, it follows that also the convex
combination ty2C.1� t/y1 D ty0C.1� t/.z�y1/C.1� t/y1 D .1� t/zC ty0

belongs to Y .

Summarizing the previous observations, we obtain the following result which
seems to be new and generalizes a similar result from [86] in several respects.

Theorem 4.42. Let Z0 be a locally convex vector space, and Y � Z � Z0.
Suppose that Y is convex and that YZ WD Z\Y is metrizable with conv YZ � Z.

If VY ¤ ¿ then Y is an CEZ for the class of T6 spaces.

Proof. Proposition 3.54 implies that Y is convex. Hence, M WD Y \ conv YZ is
convex with YZ � M � Y \ Z D ZY , and so YZ D M is actually convex and
thus an LCR. Theorem 4.36 implies that YZ is an CEYZ

for the class of T4 spaces.

Let y0 2 VY . Lemma 4.41 shows that the homotopy h.t; z/ WD .1 � t/z C ty0

satisfies (4.4), and so the assertion follows from Proposition 4.40.

One of the most important properties of ANE spaces is Borsuk’s famous homo-
topy extension property which was originally only formulated for ANR spaces
[27] (see also [28, Theorem 8.1]). We provide a simple proof in a more general
situation, based on Corollary 2.112 and Urysohn’s lemma:

Theorem 4.43 (Homotopy Extension). Suppose that Y is an ANE (CNEZ) for
Œ0; 1� �X . Let A � X be closed, and suppose that one of the following holds:

(a) X is T4.

(b) X is T3a and A � X is compact.

Let h 2 C.Œ0; 1� � A;Y / (and be compact into Z), and let f 2 C.X; Y / (and
compact into Z) with h.0; � / D f jA. Then there is a continuous (and compact
into Z) extension H W Œ0; 1� �X ! Y of h with H.0; � / D f .

Proof. The set C WD .¹0º � X/ [ .Œ0; 1� � A/ is closed in P WD Œ0; 1� � X . We
extend h continuously to hWC ! Y by putting h.0; � / WD f . Since Y is an
ANE (CNEZ) for P , there is a continuous extension hWU ! Y (compact into Z)
where U � P is a neighborhood of C . By Corollary 2.113, there is an open
neighborhood V � X of A with Œ0; 1� � V � U . By Urysohn’s Lemma 2.38 or
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Lemma 2.39, respectively, there is � 2 C.X; Œ0; 1�/ with �.X n V / D ¹0º and
�.A/ D ¹1º. For all t 2 Œ0; 1�, we have

h0.t; x/ WD .�.x/t; x/ 2 .¹0º �X/ [ .Œ0; 1� � V / � C [ .Œ0; 1� � V / � U ,

that is, h0WP ! U . Hence,H WD hıh0W Œ0; 1��X ! Y is defined and continuous
(and compact into Z). For all .t; x/ 2 Œ0; 1� � A, we have h0.t; x/ D .t; x/ and
thus H.t; x/ D h.t; x/, that is, H extends h. Moreover, H.0; � / D h.0; � / D
f .

The homotopy extension property states, roughly speaking, that we can extend
homotopies from closed subsets when we prescribe the “beginning” of the homo-
topy. The next result extends this observation inasmuch as we can also prescribe
the “end” of the homotopy locally.

Theorem 4.44 (Both-Sided Homotopy Extension I). Suppose that Y is an ANE
(CNEZ) for Œ0; 1��X . LetA � X be closed, and suppose that one of the following
holds:

(a) X is T4.

(b) X is T3a and A � X is compact.

Let h 2 C.Œ0; 1� � A;Y / (and be compact into Z), and let f 2 C.X; Y / (and be
compact into Z) with h.0; � / D f jA. Let X0 � X be closed with A � X0 and
g 2 C.X0; Y / (and compact into Z) with h.1; � / D gjA.

Then there is a continuous (and compact into Z) extension H W Œ0; 1� � X !
Y of h with H.0; � / D f and an open neighborhood V � X of A such that
H.1; � /jV \X0

D gjV \X0
.

Proof. The set C WD .¹0º � X/ [ .Œ0; 1� � A/ [ .¹1º � X0/ is closed in P WD
Œ0; 1� � X . We extend h continuously to hWC ! Y by putting h.0; � / WD f and
h.1; � / WD g. Since Y is an ANE for P , there is a neighborhood U � P of C
such that h has a continuous (compact into Z) extension to some hWU ! P . By
Corollary 2.113, there is an open neighborhood V0 � X ofAwith Œ0; 1��V0 � U .

Since X is T4 (or T3 and A is compact) there is an open neighborhood V � X
of A with V � V0. Applying Theorem 4.43, we find a continuous extension
H W Œ0; 1� �X ! Y of hjŒ0;1��V with h.0; � / D f .

If either Y is an AE (not only an ANE) or if we are only interested in the local
extension (on both sides), we do not have to require any separation properties:

Theorem 4.45 (Both-Sided Homotopy Extension II). Suppose that Y is an ANE
(CNEZ) for Œ0; 1� �X , and that A � X is closed.
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Let h 2 C.Œ0; 1� � A;Y / (and be compact into Z). For i D 0; 1, let Xi � X

be closed with A � Xi , and let fi 2 C.Xi ; Y / (and be compact into Z) with
h.i; � / D fi jA.

Then there is a neighborhood V � X of A and a continuous (and compact
into Z) extension H W Œ0; 1� � V ! Y of h with H.i; � /jX0\V D fi jX0\V for
i D 0; 1.

If Y is an AE (CEZ) for Œ0; 1� �X , it may be arranged that V D X .

Proof. The set C WD .¹0º � X0/ [ .Œ0; 1� � A/ [ .¹1º � X1/ is closed in P WD
Œ0; 1� � X . We extend h continuously to hWC ! Y by putting h.i; � / WD fi

.i D 0; 1/. Since Y is an ANE (CNEZ) for P , there is a neighborhood U � P

of C such that h has a continuous (compact into Z) extension hWU ! P . By
Corollary 2.113, there is an open neighborhood V � X of A with Œ0; 1��V � U .
Hence, H WD hjŒ0;1��V has the required properties.

If Y is an AE (CEZ) for Œ0; 1� � X , we can choose U D P and thus V0 D X ,
hence V D X .

Recall that a subset M of a topological space X is called contractible in X if
it is empty or if there is a homotopy hW Œ0; 1� �M ! X with h.0; � / D idM and
h.1; � / D x0 for some x0 2 M .

Corollary 4.46. Let C be a class of T4 spaces. Let Y be an ANE for all spaces
of the form Œ0; 1� �X with X from C . Consider the statements:

(a) Y is contractible in itself.

(b) Y is an AE for all spaces from C .

(c) Y is an AE for the space Œ0; 1� � Y .

Then (a))(b) and (c))(a). Moreover, (a)–(c) are equivalent if Œ0; 1��Y belongs
to C (and thus is T4).

Proof. To prove (a))(b), suppose that Y is contractible in itself, that is, there is
H 2 C.Œ0; 1� � Y; Y / with H.0; � / D idY and H.1; � / D y0 for some y0 2 Y .
Let X be a space from C , A � X be closed, and f WA ! Y be continuous.
We define hW Œ0; 1� � A ! Y by h.t; x/ WD H.1 � t; f .x//, and f0WX ! Y

by f0.x/ 
 y0. Then f0jA D h.0; � /, and so the homotopy extension property
(Theorem 4.43) implies that h has an extension h 2 C.Œ0; 1� � X;Y /. Then
h.1; � /jA D f , and so h.1; � / 2 C.X; Y / is a required extension of f .

If Y belongs to C , the implication (b))(c) is trivial, and if (c) holds, we apply
Theorem 4.45 with A D ¿, f0 D idY , and f1.y/ 
 y0 to find a homotopy
hW Œ0; 1� � Y ! Y satisfying h.i; � / D fi .i D 0; 1/, that is, Y is contractible in
itself.
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Corollary 4.47. An ANR is an AR if and only if it is contractible in itself.

Proof. We apply Corollary 4.46 with the class C of metric spaces.

4.4 UV1 and Rı Spaces and Homotopic
Characterizations

Recall that two continuous maps f0; f1WX ! Y are called homotopic if there is
a homotopy hW Œ0; 1� � X ! Y with h.i; � / D fi for i D 0; 1. It is well-known
and easy to see that being homotopic is an equivalence relation in C.X; Y /. The
set of equivalence classes (homotopy classes) will be denoted by ŒX; Y �.

A crucial notion for us will be the following.

Definition 4.48. A compact Hausdorff space X is weak UV 1 if for every com-
pletely regular space Y the following holds. If Y is an ANE for the class of
paracompact Hausdorff spaces then any f 2 C.X; Y / is homotopic to a constant
map.

This definition may appear a bit unusual, although it is sometimes simple to
verify. The aim of this section is to give some other characterizations of that
definition. One is the following which somewhat explains the terminology:

Definition 4.49. A compact space X is UV 1 if it is homeomorphic to a closed
subset X0 of a space Y such that

(a) Y is a paracompact Hausdorff space and an ANE for the class of paracompact
Hausdorff spaces.

(b) Every neighborhood U � Y of X0 contains a neighborhood V � Y of X0

such that V is contractible in U .

Remark 4.50. It is equivalent to require that U and/or V are open.

Theorem 4.51. Every UV 1 space is weak UV 1. The converse holds if we
assume AC.

Proof. Let X be UV 1 and X0 � Y be as in Definition 4.49. Let Z be a com-
pletely regular space which is an ANE for the class of paracompact Hausdorff
spaces, and f 2 C.X;Z/. We are to show that f is homotopic to a constant
map. Let gWX0 ! X be the homeomorphism onto X which exists by hypoth-
esis. Then f ı gWX0 ! Z is continuous and thus has a continuous extension
F WU ! Z to a neighborhood U � Y of X0. By hypothesis, U contains a
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neighborhood V � X such that there is a homotopy hW Œ0; 1� � V ! U with
h.0; � / D idV and h.1; � / D x0 2 U . Then H W Œ0; 1� � X ! Z, defined by
H.t; x/ WD F.h.t; g�1.x///, is a homotopy satisfying H.0; � / D F ı g�1 D f

and h.1; � / D F.x0/, that is, f WX ! Z is homotopic to a constant map.
For the converse implication, let X be weak UV 1. By Proposition 2.70, there

is a homeomorphism J of X onto a subset X0 of Y WD Œ0; 1�I . The space Y
is Hausdorff, and if we assume AC, then Y is compact by Tychonoff’s Theo-
rem 2.71, and Y is an AE for the class of T4 spaces by Corollary 2.67. In par-
ticular, Y is paracompact and normal by Propositions 2.26 and 2.45, and in view
of Proposition 2.72, Y is an AE for the class of paracompact Hausdorff spaces.
Now let U � Y be an open neighborhood of X0. We are to show that U contains
a neighborhood V � Y of X0 which is contractible in U .

Proposition 4.5 shows that U is an ANE for the class of paracompact Hausdorff
spaces, and since Y is completely regular by Urysohn’s lemma, also U � Y is
completely regular by Theorem 2.42. Since X is weak UV 1 and J WX ! X0 �
U is continuous, it follows that there is a homotopy H W Œ0; 1� � X ! U with
H.0; � / D J and H.1; � / D x0 2 U . Since A WD X0 D J.X/ is compact, it is
closed in the Hausdorff space Y by Proposition 2.45. Define hW Œ0; 1� � A ! U

by h.t; x/ WD h.t; J�1.x//. Since Y is T4, Corollary 2.48 implies that there is
an open neighborhood V0 � Y of A [ ¹x0º with Y0 WD V 0 � U . By Proposi-
tion 2.30, Y0 is a paracompact Hausdorff space, and so also Œ0; 1� � Y0 is a para-
compact Hausdorff space by Corollary 2.76. Hence, U is an ANE for Œ0; 1� � Y0.
Define f WD idY0

and gWY0 ! Y0 by g.x/ 
 x0. Then h.0; � / D J ı J�1jA D
f jA and h.1; � / D gjA. Hence, the both-sided homotopy extension theorem
(Theorem 4.44) implies that h has a continuous extension hW Œ0; 1� � Y0 ! U

such that there is an open in Y0 set V1 � Y0 with A � V1, h.0; � / D idV1
and

h.1; � /jV1
D x0. In particular, V WD V0 \ V1 is open in Y with X0 � V � U ,

and the restriction hjŒ0;1��V proves that V is contractible in U .

Remark 4.52. Formally, our Definition 4.48 differs from the corresponding prop-
erty stated in [93, Proposition 1.15(i)], since in [93] ANE spaces are required to
be paracompact. This would be a problem, since it is not clear whether open
subsets of Œ0; 1�I are paracompact. However, according to personal communica-
tion, a slightly different definition for ANE spaces was meant than written in [93],
and with this intended definition, our Definition 4.48/Theorem 4.51 corresponds
exactly to [93, Proposition 1.15(i)].

We point out that the definitions of UV 1 spaces vary in literature in the classes
of considered spaces. In particular, in many cases only metric spaces are consid-
ered, that is, it is required that X be metric, and the property (a) of Definition 4.49
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is replaced by the requirement that Y is an ANR. Our Definition 4.49 corresponds
to the definition of UV 1 spaces from [93].

It is mathematical folklore that if one considers only metric spaces in the defi-
nition of UV 1 spaces, one obtains exactly the so-called Rı spaces:

Definition 4.53. A space X is called Rı if it is the intersection of a decreasing
sequence of compact metric spaces, each of it being contractible in itself.

For our slightly different definition of UV 1 spaces, one can expect that folk-
lore result at most if X is metrizable. However, even if X is metrizable, it is
not immediately clear that the Rı spaces are exactly the UV 1 space in our
sense, since we do not consider an ANR space Y in Definition 4.49: The class of
spaces Y which we consider in Definition 4.49a is on the one hand broader, since
Y might fail to be metrizable, and on the other hand smaller, since not every ANR
is an ANE for the class of paracompact Hausdorff spaces (recall Theorem 4.24).

Thus, it might be somewhat surprising that the two definitions are actually
equivalent for the case that X is metrizable. In fact, we will show this now si-
multaneously together with the mentioned folklore result.

We remark that the equivalence of UV 1 spaces with Rı spaces in the metric
case was remarked without proof in [93], but maybe the change of the condi-
tion (a) in Definition 4.49 was ignored there.

Theorem 4.54. For a compact metric spaceX the following statements are equiv-
alent:

(a) X is a weak UV 1 space.

(b) X is an UV 1 space.

(c) X is homeomorphic to a subset X0 of a compact ANR Y such that every
neighborhood U � Y of X0 contains a neighborhood V � Y of X0 such
that V is contractible in U .

(d) X is homeomorphic to a closed subsetX0 of a compact AR Y such that every
neighborhood U � Y of X0 contains a neighborhood V � Y of X0 such
that V is contractible in U .

(e) X is an Rı space.

(f) X is the intersection of a decreasing sequence of compact AR spaces.

(g) For every ANR Y every f 2 C.X; Y / is homotopic to a constant map.

(h) For every compact ANR Y every f 2 C.X; Y / is homotopic to a constant
map.
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We point out that in Theorem 4.54 the characterization (h) of Rı spaces is new
(to the author’s knowledge). This characterization seems to be very convenient if
one wants to prove that a given compact metric space is UV 1 (or, equivalently,
Rı ).

Proof. The implication (g))(f) is a deep result of D. M. Hyman [79]; we show
only the remaining implications.

The implication (f))(e) is a trivial consequence of the fact that every metric
AR is contractible in itself by Corollary 4.47.

To see (e))(g), let X D T1
nD1Xn with X1 � X2 � � � � being compact and

contractible in itself metric spaces. Let Y be an ANR, and let f 2 C.X; Y /.
Since Y is an ANE for X1, there is an open neighborhood U � X1 of X and
a continuous extension F WU ! Y of f . Since Xn n U is a decreasing se-
quence of closed subsets of the compact space X1 with an empty intersection,
there is some n with Xn n U D ¿ (Proposition 2.28), that is, Xn � U . Since
Xn is contractible in itself, there is a homotopy hW Œ0; 1� � Xn ! Xn � U

with h.0; � / D idXn
and h.1; � / D x0 2 Xn � U . Then the homotopy

H WD F ıhjŒ0;1��X W Œ0; 1��X ! Y satisfiesH.0; � / D f andH.1; � / D F.x0/,
and so f 2 C.X; Y / is homotopic to a constant map.

To prove (f))(d), we observe first that we have already obtained (g), and we
know that X is a subset of a compact AR Y D X1. It suffices to show that for
every open neighborhood U � X1 of X there is a neighborhood V � U of X
such that V is contractible in U . Since U is an ANR by Proposition 4.19, we
obtain from (g) that the inclusion map idX WX ! U is homotopic to a constant
map, that is, there is a homotopy hW Œ0; 1� � X ! U with h.0; � / D idX and
h.1; � / D x0 2 U . Put f WD idU , and let gWU ! U be the constant map
g.x/ WD x0. Now we can apply Theorem 4.44 with A WD X and obtain that there
is a continuous mapH W Œ0; 1��U ! U withH.0; � / D f jU and a neighborhood
V � U of X and H.1; � /jV D gjV . Then the homotopy H jŒ0;1��V shows that V
is contractible in U . Thus (d) holds with Y D X1.

Since every AR is an ANR, the implication (d))(c) is trivial.
For the implications (c))(b) and (a))(h), we observe that every compact

ANR Y is completely regular and paracompact by Corollary 3.13 and Proposi-
tion 2.26. Moreover, Y is complete (Theorem 3.24) and thus an ANE for the class
of paracompact Hausdorff spaces by Theorem 4.25 and Proposition 2.72. It fol-
lows that the space Y from Definition 4.48 or (c) can take the role of Y in (h) or
Definition 4.49, respectively.

The implication (b))(a) was already obtained in Theorem 4.51.
It remains to prove (h))(g). Thus, suppose that (h) holds, and let Y be an

ANR and f 2 C.X; Y / be continuous. Then X0 WD f .X/ � Y is compact.
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Lemma 3.69 implies that there is a homeomorphism g of X0 onto a compact
and thus closed subset K of the Hilbert cube Œ0; 1�N . Since Y is an ANR, there
is a neighborhood U � Œ0; 1�N of K such that g�1WK ! Y has a continuous
extension GWU ! Y . Theorem 4.31 implies that there is a compact ANR Y0

withK � Y0 � U . Applying the hypothesis (h), we find that there is a continuous
map hW Œ0; 1� � X ! Y0 with h.0; � / D g ı f and h.1; � / D x0 2 Y0. Since
Y0 � U , we obtain thatH WD GıhW Œ0; 1��X ! Y is continuous withH.0; � / D
G ı g ı f D f and H.1; � / D G.x0/ 2 Y . Hence, H is the retraction which
shows that (g) holds.

We try to avoid usage of algebraic topology in this monograph. However, in
order to give the reader familiar with homology theory an impression about the
meaning of UV 1 spaces, we sketch now briefly the relation with acyclic spaces.

Definition 4.55. For a topological space X , we denote by LHn.X/ the Čech co-
homology group of X for dimension n with coefficients in the group Z. The
space X is called acyclic if LHn.X/ D LHn.�/ for all n, where � denotes the space
consisting of only one point.

Proposition 4.56. Every weak UV 1 space is acyclic.

Proof. Let X be weak UV 1. In particular, X is Hausdorff and compact and thus
paracompact and locally compact. SinceG D Z is countable, it follows from [78]
that there is a bijection of LH n.X/ into the set of homotopy classes ŒX;Kn� where
Kn denotes the n-th Eilenberg–MacLane space. Since X is weak UV 1, every
f 2 C.X;Kn/ is homotopic to a constant map, that is, ŒX;Kn� is a singleton.

Remark 4.57. A more classical proof that every UV 1 space is acyclic proceeds
as follows: With the notation of Definition 4.49, since Y is Hausdorff and X0 is
compact, it follows that X0 is the inverse limit of its contractible neighborhoods
in Y . Since each U is acyclic and the Čech cohomology functor is continuous,
see [49], also X0 must be acyclic.

The converse of Proposition 4.56 does not hold:

Example 4.58 (Kahn). In [82] an example of an acyclic metric compact space X
is given such that there is a map ' 2 C.X; S3/ which is not homotopic to a
constant map. Hence, X cannot be UV 1.

However, from the viewpoint of applications the difference between UV 1
spaces and (compact Hausdorff) acyclic spaces is not very large: For practically
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all compact acyclic spaces which occur in analytical problems, one can also prove
that they are UV 1 spaces. So, “practically”, it is convenient to think of UV 1
spaces as the class of compact acyclic spaces.





Chapter 5

Advanced Topological Tools

5.1 Some Covering Space Theory

Let X , Y , and Z be topological spaces, and pWX ! Y .

Definition 5.1. A lifting of f WZ ! Y (with respect to p) is a continuous map
gWZ ! Y satisfying f D p ı g.

One can prove the existence and a certain uniqueness of liftings in many cases
if one makes the following assumption about p:

Definition 5.2. Let pWX ! Y . An open set U � Y is evenly covered if the set
p�1.U / is the union of pairwise disjoint open subsets Xi � X .i 2 I / such that
pjXi

is a homeomorphism onto U for each i 2 I . The map p is a covering map
if each point of Y is contained in an evenly covered set.

It is admissible by this definition that p is not onto, since I D ¿ is not excluded.
If it can be arranged in Definition 5.2 that I has always the same (finite) num-

ber k of elements then p is called a k-fold covering map.

Proposition 5.3 (Uniqueness of Lifting). Let pWX ! Y be a covering map. If Z
is connected and f WZ ! Y is continuous then each two lifts of f are equal if
they coincide in at least one point.

Proof. Let g1; g2 be two lifts of f , and put

A1 WD ¹z 2 Z W g1.z/ D g2.z/º
andZ WD X nA2. We are to show that Ak .k D 1; 2/ are both open. The assertion
then follows from the connectedness of Z.

Thus, let z 2 Ak (k D 1 or k D 2). Let U � Y be an evenly covered open
neighborhood of f .z/. Then p�1.U / is the union of pairwise disjoint open sets
Xi .i 2 I / such that pi WD pjXi

is a homeomorphism onto U for all i 2 I .
Let ij be such that gj .z/ 2 Xij .j D 1; 2/. By the continuity of gj there is a
neighborhood V � Z of z with gj .V / � Xij .j D 1; 2/. In case Xi1 D Xi2

(which happens for k D 1) we obtain from pi1 ı g1jV D f jV D pi2 ı g2jV that
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g1jV D g2jV . It follows also for k D 2 that Xi1
¤ Xi2

and thus Xi1
\ Xi2

D ¿
implies g1.V / \ g2.V / D ¿.

Theorem 5.4 (Homotopy Lifting). Let pWX ! Y be a covering map. Then for
each homotopy hW Œ0; 1� � Z ! Y and each lift h0 of h.0; � / there is a unique
lift H of h with H.0; � / D h0.

Proof. We will show that each z0 2 Z has a neighborhood M � Z such that
hjŒ0;1��M has a lift HM with HM .0; � / D h0jM . Then for any z 2 M the
map HM . � ; z/ is a lift of h. � ; z/ with HM .0; z/ D h0.z/ and thus uniquely
determined by this property by Proposition 5.3, since Œ0; 1� is connected (Propo-
sition 2.14). It follows that the only candidate for a lift is H. � ; z/ WD HM . � ; z/,
and that the latter is actually independent of the choice of M and thus H is well-
defined. Since HM is continuous, it follows that H is continuous and thus indeed
a lift.

Let O denote the system of sets of the form I �Z0 where I � Œ0; 1� is an open
(in Œ0; 1�) interval, Z0 � Z is open and where I �Z0 � h�1.U / for some evenly
covered open U � Y . Since the family of all sets h�1.U / with evenly covered
open U � Y is an open cover of Œ0; 1��Z, the definition of the product topology
implies that O is an open cover of Œ0; 1� �Z.

For any z0 2 Z the compact set Œ0; 1� � ¹z0º is covered by finitely many sets
I1�Z1; : : : ; Im�Zm 2 O . ThenZ0 WD Z1\ � � �\Zm is an open neighborhood
of z0. We define a partition 0 D t0 < t1 < � � � < tn D 1 of Œ0; 1� by choosing
for each finite nonempty intersection of the intervals I1; : : : ; Im some partition
point in this intersection (and adding 0 and 1 to the partition). Then for each
k D 1; : : : ; n there is some j with Œtk�1; tk � 2 Ij , and by construction there is
some evenly covered open Uk � Y with h.Œtk�1; tk � �Z0/ � Uk .

Now we define inductively open neighborhoods Z0 � M0 � M1 � � � � � Mn

of z0 such that hjŒ0;tk��Mk
has a lift Hk with Hk.0; � / D h0jMk

.k D 0; : : : ; n/.
Then M WD Mn is the required neighborhood.

For k D 0, we can choose M0 WD Z0. If Mk�1 is already defined, we al-
ready have a partially defined lift HkjŒ0;tk�1��Mk�1

. Since Uk is evenly covered,
p�1.Uk/ is the union of pairwise disjoint open sets Xi � X .i 2 I / such that
pi WD pjXi

is a homeomorphism onto Uk for each i 2 I . Let i 2 I be that in-
dex with Hk.tk�1; z0/ 2 Xi . The continuity of Hk.tk�1; � / implies that there is
some open neighborhood Mk � Mk�1 of z0 withHk.¹tk�1º �Mk/ � Xi . Then
Hk.t; z/ WD p�1

i ı h.t; z/ defines for .t; z/ 2 Œtk�1; tk � �Mk a continuous map.
By the glueing lemma (Lemma 2.93), Hk is even continuous on Œ0; tk � �Mk and
thus a required lift.
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As a special case, we obtain the so-called path-lifting property of covering
maps:

Corollary 5.5 (Path-Lifting). Let pWX ! Y be a covering map. Then for each
f 2 C.Œ0; 1�; Y / and each x 2 p�1.f .0// there is a unique lift F of f with
F.0/ D x.

Proof. This is Theorem 5.4 with Z WD ¹0º.
Our aim now is to show that the space Œ0; 1� in Corollary 5.5 can actually be

replaced by a much larger class of spaces.
Before we can do this, we use Corollary 5.5 to formulate a necessary and suffi-

cient criterion for the existence of a lifting:

Theorem 5.6 (Lifting Criterion). Let pWX ! Y be a covering map, and Z be
path-connected and locally path-connected. Let f WZ ! Y be continuous, and
x0 2 X and z0 2 Z be fixed with p.x0/ D f .z0/.

Then f has a lift F with F.z0/ D x0 if and only if for each 	 2 C.Œ0; 1�;Z/
with 	.0/ D 	.1/ D z0 the unique lift 	0 of 	 with 	0.0/ D x0 satisfies 	0.1/ D
x0. In this case, the lift F is unique.

Proof. If the lift F exists, it must by Corollary 5.5 be defined at z 2 Z as follows:
Let 	 W Œ0; 1� ! Z be some path with 	.0/ D z0 and 	.1/ D z, and let 	0 the
unique lift of 	 with 	0.0/ D x0. Then F.z/ must be 	0.1/.

With the choice z D z0, we obtain the necessity of the criterion. For the proof
of the sufficiency, we note that the above defined map F is well-defined. Indeed,
let ı be another path with a corresponding lift ı0. The glueing lemma implies the
continuity of

O	.t/ WD
´

	.2t/ if t 2 Œ0; 1=2�,
ı.2� 2t/ if t 2 Œ1=2; 1�,

which by hypothesis lifts to a path O	0 satisfying O	0.0/ D O	0.1/ D x0. By the
uniqueness of the lifting, it follows that 	0.1/ D O	0.1=2/ D ı0.1/, and so F.z/ is
well-defined.

To see that F is continuous at z1 2 Z, let U � Y be an evenly covered open
neighborhood of f .z1/. Let V � f �1.U / be a path-connected neighborhood of
z1. Since U is evenly covered, p�1.U / is the union of pairwise disjoint open sets
Xi � X .i 2 I / such that pi WD pjXi

is a homeomorphism onto U for every
i 2 I . Let i be that index with F.z1/ 2 Xi . For z 2 V , there is 	0 2 C.Œ0; 1�; V /
with 	0.0/ D z1 and 	0.1/ D z. Let 	1 2 C.Œ0; 1�;Z/ satisfy 	1.0/ D z0 and
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	1.1/ D z1. By the glueing lemma, we can define a continuous path from z0 to z
by

	2.t/ WD
´

	1.2t/ if t 2 Œ0; 1=2�,
	0.2t � 1/ if t 2 Œ1=2; 1�.

For i D 0; 1; 2, let e	 i be the unique lifting of 	i with e	1.0/ D e	2.0/ D x0 and
e	0.0/ De	1.1/. By the uniqueness, we have e	2.t/ De	0.2t � 1/ for t 2 Œ1=2; 1�.
Using this for t D 1, we obtain by the definition of F that F.z1/ D e	1.0/ D
e	0.0/ and F.z/ D e	2.0/ D e	0.1/. Note that C WD 	0.Œ0; 1�/ is path-connected
and by Proposition 2.14 thus connected. Since A1 WD C \ Xi and A2 WD C \
S¹Xj W Xj ¤ Xiº are open in C and disjoint with C D A1 [A2, it follows from
	0.z1/ 2 A1 that A2 D ¿ and thus C � Xi . Hence, F.z/ D 	0.z/ 2 Xi and thus
F.z/ D p�1

i .f .z// for every z 2 V . Since pi is a homeomorphism onto U , it
follows that F jV D p�1

i ıf jV is continuous on V . In particular, F is continuous
at z1.

Recall that a topological spaceZ is called simply connected at z 2 Z if for each
path 	 W Œ0; 1� ! Z with 	.0/ D 	.1/ D z there is a homotopy hW Œ0; 1�2 ! Z

with h.0; � / D 	 and h.1; � / D h. � ; 0/ D h. � ; 1/ D z. Z is simply connected if
it is simply connected at every z 2 Z.

Theorem 5.7 (Unique Existence of Lifting). Let pWX ! Y be a covering map,
andZ be path-connected, locally path-connected, and simply connected at z 2 Z.
Let f 2 C.Z; Y / and x 2 X be fixed with p.x/ D f .z/. Then f has a unique
lift F satisfying F.z/ D x.

Proof. By Theorem 5.6, it suffices to show that for each path 	 W Œ0; 1� ! Z with
	.0/ D 	.1/ D z the corresponding lift 	0 with 	0.0/ D x satisfies 	0.1/ D x.

By hypothesis, there is a homotopy hW Œ0; 1�2 ! Z with h.0; � / D 	 and
h.1; � / D h. � ; 0/ D h. � ; 1/ D z. By Theorem 5.4, h has a unique lift H with
H.0; � / D 	0. By Corollary 5.5, the path h. � ; 0/ has a unique lift f with f .0/ D
x. Since the constant function f . � / D x andH. � ; 0/ are two such lifts, it follows
that H. � ; 0/ D f . � / D x, in particular H.1; 0/ D x. Considering the paths
h.1; � /, we obtain similarly H.1; � / D x, in particular H.1; 1/ D x. Finally,
considering the paths h. � ; 1/, we obtain similarly H. � ; 1/ D x, in particular
	0.1/ D H.0; 1/ D x.

The path-lifting property (Corollary 5.5) is the special case of Theorem 5.7 with
Z D Œ0; 1�. Note, however, that we needed the path-lifting property first in order
to prove Theorem 5.7.
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5.2 A Glimpse on Dimension Theory

In Section 5.3, we will formulate a homotopic Vietoris theorem which is our main
tool for degree theory of multivalued maps. One of the hypotheses of that result
concerns the notion of the large inductive dimension.

Essentially, all what we need to know about this notion for degree theory is
that relatively compact subsets of finite-dimensional manifolds have finite large
inductive dimension. We will develop dimension theory only so far that this can
be proved conveniently.

Definition 5.8. The large inductive dimension IndX of a topological space X is
defined inductively as follows: Ind ¿ D �1, and for X ¤ ¿, let IndX be the
smallest integer number n � 0 (or 1 if no such number exists) such that for any
closed set A � X and any open neighborhood U � X of A there is an open
neighborhood V � U of A with Ind.@V / � n � 1.

A trivial induction by IndX shows that if Y is homeomorphic to X then
IndY D IndX . In other words, the large inductive dimension is preserved under
homeomorphisms and thus a topological invariant.

One might expect that IndM � IndX if M � X . Unfortunately, this is
not true without additional hypotheses: A counterexample due to Dowker can be
found in e.g. [52, Example 2.2.12]. However, this so-called subspace theorem of
dimension theory can be proved if X satisfies certain separation axioms or if M
is closed. The latter is simple:

Proposition 5.9. If M � X is closed then IndM � IndX .

Proof. We show by induction on n that if IndX � n and M � X is closed, then
IndM � n. The case n D �1 is trivial, since we must have X D ¿. For the
induction step, let A � M be closed in M and UM � M be open in M with
A � UM . Proposition 2.10 implies that A is closed in X , and by definition of
the subspace topology, there is an open in X set U � X with UM D M \ U .
Since IndX � n, there is an open neighborhood V � U of A with Ind.@V / �
n � 1. Then VM WD M \ V is open in M , and the relative boundary @MVM is
a closed subset of @XV . Hence, the induction hypothesis implies Ind.@MVM / �
Ind.@XV / � n � 1, and so IndM � n.
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Corollary 5.10. LetX ¤ ¿ be T4. Then the following conditions are equivalent:

(a) IndX � n.

(b) For each closed A � X and each open neighborhood U � X of A there is
an open set V � X with A � V � V � U and Ind.@V / � n � 1.

(c) For each disjoint closed sets A;B � X , X divides into three disjoint subsets
U;V;C with U;V being open such that A � U , B � V , and IndC � n�1.

Proof. Suppose that (a) holds. Corollary 2.48 implies that there is an open set
U0 � X satisfying A � U0 � U 0 � U . Since IndX � n, there is an open set
U � U0 with A � U and Ind.@U / � n � 1. Hence, (b) holds.

If (b) holds and A;B � X are closed and disjoint, then there is an open set
U � X with A � U � U � X n B such that C WD @U D U n U satisfies
IndC � n � 1. Then (c) holds with V being the complement of U D U [ C .

Suppose now that (c) holds. Let A � X be closed, and be U � X an open
neighborhood of A. Then B WD X nU is closed and disjoint from A. By hypothe-
sis, X divides into pairwise disjoint open sets V;W;C � X with V;W being open
such that A � V , B � W , and IndC � n�1. Then A � V � V � X nW � U ,
and so @V D V n V � C . Since @V is closed in X , it is also closed in C (Propo-
sition 2.10). Proposition 5.9 thus implies Ind.@V / � IndC � n � 1. Hence, (a)
holds.

For the proof of the mentioned subspace theorem (Proposition 5.9 if M fails to
be closed), we need a technical result which is of independent interest and due to
Dowker [42].

Theorem 5.11. Let X be T5. If there is a sequence of open sets Xk � X satisfy-
ing X D X1 � X2 � � � � , T1

kD1 Xk D ¿, and Ind.Xk n XkC1/ � n for all k
then IndX � n.

Proof. The proof is by induction on n. For the induction start n D �1, we observe
that we must have Xk n XkC1 D ¿ for all k and thus X D ¿. Suppose now that
the assertion holds for n � 1 and that Xk are as in the theorem. We are to show
that the property of Corollary 5.10(c) holds with n.

Thus, let A;B � X be closed and disjoint. Since X is T4, Corollary 2.49
implies that there are open sets U0; V0 � X with A � U0, B � V0, and U 0 \
V 0 D ¿. PuttingDk WD XknXkC1, we define now by induction on k D 1; 2; : : :

open sets Uk; Vk � X and sets Ck � X with IndCk � n � 1 satisfying the
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following properties:

U k \ V k \XkC1 D ¿, (5.1)

Uk \ Vk D Uk \ Ck D Vk \ Ck D ¿ (5.2)

Ck � Dk � Uk [ Vk [ Ck � Xk (5.3)

U k�1 \Xk � Uk and V k�1 \Xk � Vk. (5.4)

This is possible. Indeed, assume that Uk�1, Vk�1, and in case k � 2 also Ck�1

are already known, in particular (also for k D 1)

U k�1 \ V k�1 \Xk D ¿. (5.5)

The sets Ak WD U k�1 \Dk and Bk WD V k�1 \Dk are closed in Dk � Xk and
disjoint. Since IndDk � n, Corollary 5.10(c) implies that Dk divides into three
disjoint sets �0;k ;�1;k ; Ck � Dk with �0;k;�1;k being open in Dk such that
Ak � �0;k , Bk � �1;k , and IndCk � n � 1.

We consider now the space Yk WD XknCk . Note that Ck D Dk n.�0;k[�1;k/

is closed inDk which is closed in Xk . Hence, Proposition 2.10 implies that Ck is
closed in Xk and thus that Yk is open in Xk and thus open in X . Moreover, since
Ck � Dk is disjoint from XkC1, we have XkC1 � Yk .

Note that Zk WD Dk n Ck divides into the disjoint open subsets �0;k and
�1;k which thus are also closed in Zk D Yk n Xk which in turn is closed in
Yk . Using Proposition 2.10, we thus find that Ek WD .U k�1 \ Yk/ [ �0;k and
Fk WD .V k�1 \ Yk/ [�1;k are closed in Yk . Moreover, (5.5) implies

Ek \ Fk

� .U k�1 \ V k�1 \ Yk/ [ .�0;k \�1;k/

[ .�0;k \ V k�1/ [ .�1;k \ U k�1/ D ¿ [¿
[ .�0;k \ Bk/ [ .�1;k \ Ak/ D ¿:

Using that Yk is T4, we obtain by Corollary 2.49 that there are disjoint open in
Yk and thus open in X sets Uk ; Vk � Yk with Ek � Uk , Fk � Vk such that
the closures of Uk and Vk in Yk is disjoint. By Proposition 2.10, the latter means
U k \ V k \ Yk D ¿. Since XkC1 � Yk , this implies (5.1). From Yk \ Ck D ¿,
we obtain (5.2). Since

Uk [ Vk [ Ck � Ek [ Fk [ Ck � �0;k [�1;k [ Ck D Dk ,

we find (5.3). Finally, since Ck � Dk is disjoint from�0;k � Ak D Dk\U k�1,
we obtain

U k�1 \Xk D U k�1 \ Yk � Ek � Uk ,
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and analogously also the second inclusion of (5.4) holds. Hence, the sets Uk ; Vk;

Ck � X have all required properties.
Now we show that the sets

U WD
1
[

kD0

Uk , V WD
1
[

kD0

Vk , C WD
1
[

kD1

Ck

have the property required for Corollary 5.10. Indeed, since Uk and Vk are open,
it follows that U and V are open. Moreover, using (5.3), we find that U [ V [ C
contains all of the sets Dk .k D 1; 2; : : : /, and so U [ V [ C D X .

To see that U , V , and C are pairwise disjoint, we note that (5.4) implies that
U` \ Xk � Uk and V` \ Xk � Vk for all k � `. Since Uk ; Vk; Ck � Xk and
Ck � Dk by (5.3), we thus obtain with (5.2) that U` \ Vk � Uk \ Vk D ¿,
Uk \ V` � Uk \ Vk D ¿, .U` [ V`/ \ Ck � .Uk [ Vk/ \ Ck D ¿, and
.Uk [ Vk/ \ C` � Xk \ D` D ¿ for all k � `. Hence, U;V;C are pairwise
disjoint.

To see that IndC � n � 1, we apply the induction hypothesis in the space C
which is T5 by Theorem 2.42. Indeed, the open in C sets OXk WD C \ Xk satisfy
C D OX1 � OX2 � � � � and

T1
kD1

OXk D ¿. Moreover, ODk WD OXk n OXk�1 D
C \ Dk D Ck . For the last equality, we used that Ck � Dk by (5.3) and that
the sets D` � C` .` D 1; 2; : : : / are pairwise disjoint. Since IndCk � n � 1
by construction, we thus have Ind ODk � n � 1, and so by induction hypothesis
IndC � n � 1. Hence, the sets U;V;C indeed satisfy all properties required in
Corollary 5.10, and the induction step is complete.

Corollary 5.12. Let X be T5. Let there be pairwise disjoint sets A1; A2; � � � � X
which constitute a countable cover ofX and satisfy IndAk � n for all k and such
that A1 [ � � � [ Ak is closed for every k. Then IndX � n.

Proof. Putting Xk WD X n .A1 [ � � � [ Ak/, we obtain the assertion from Theo-
rem 5.11.

IfX satisfies a more restrictive separation axiom, the assertion of Corollary 5.12
holds even without the hypothesis that the sets Ak are pairwise disjoint. This
assertion is called the sum theorem of dimension theory. It was Dowker who
observed in [42] that the sum theorem and the special case of the announced sub-
space theorem for open sets are best proved together by an induction:

Theorem 5.13. Let X be a T6 space.

(a) (Sum Theorem of Dimension Theory). Let A1; A2; � � � � X be closed sets
which cover X and satisfy IndAk � n for all k. Then IndX � n.

(b) Let M � X be open and IndX � n. Then IndM � n.
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Proof. The proof is by induction on n. For the induction start n D �1, we must
have Ak D ¿ or X D ¿, respectively, and so the assertion is trivial. Assume now
that the assertion is proved for n � 1.

We show first that (b) holds for n. Thus, let M � X be open and IndX � n.
Since X is T6, there is f 2 C.X; Œ0; 1�/ with f �1.0/ D X nM (and f �1.1/ D
¿). We put P0 WD ¿, and for k D 1; 2; : : : , we put Pk WD f �1.Œ1=k; 1�/ and
Ok WD f �1..1=k; 1�/. Then the sets Pk are closed, Ok are open, and

Pk � OkC1 � PkC1 � M for k D 0; 1; 2; : : : . (5.6)

Since for each x 2 M there is some k � 2 with 1=k � f .x/ � 1=.k � 1/, we
have

M D
1
[

kD2

.Pk nOk�1/, (5.7)

and Proposition 5.9 implies IndPk � IndX � n for all k D 0; 1; : : :

In order to prove that IndM � n, we understand all topological notions relative
to the space M unless we say something else. Thus, let A � M be closed and
U �M be an open neighborhood of A. We define for k D 2; 3; : : :

Ak WD A \ .Pk nOk�1/ and Uk WD U \ .OkC1 n Pk�2/.

Since (5.6) implies Pk n Ok�1 � OkC1 n Pk�2 � PkC1, we have Ak � Uk �
PkC1. Moreover, Uk is open in X and thus open in PkC1, and Ak � M is
closed and thus also closed in PkC1 � M . Since IndPkC1 � n we obtain from
Corollary 5.10(b) that there is an open set Vk with Ind.@Vk/ D n � 1 such that
Ak � Vk � V k � Uk .

Here, the topological notions concerning Vk must first be understood relative
to the space PkC1. However, since Uk is open in PkC1 and thus Vk is open in
Uk which is open in M , it follows that Vk is open in M . Moreover, since PkC1

is closed, the closure of Vk in PkC1 and in X are the same. Since this closure
is contained in Uk � M , we obtain from Proposition 2.10 that this is also the
closure of Vk in M . Since Vk is open in M and PkC1 and its closures in the
spaces M and PkC1 are the same, it follows that also its boundaries in the space
M and PkC1 are the same so that the topological notions concerning Vk can also
be understood relative to the space M .

Now the set V WD S1
kD2 Vk is open (in M ). Since Ak � V � Uk � U , we

have with (5.7) that A � V � U . Hence, IndM � n follows if we can show that
Ind.@V / � n � 1. To see the latter, we observe that Theorem 2.42 implies that

X0 WD
1
[

kD2

.@Vk/
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(all topological notions still refer to M ) is T6. Since Ind.@Vk/ � n � 1, we
obtain from (a) for n � 1 (induction hypothesis) that IndX0 � n � 1. In view of
Proposition 5.9, it thus suffices to show that @V � X0.

Thus, let x 2 @V . We choose some index ` � 3 with x 2 O`�2. Then
O`�2 \M is an open (in M ) neighborhood of x which is disjoint from Vk � Uk

for all k � `, because O`�2 � Pk�2. Since x 2 V , it follows that x is already
contained in

V2 [ � � � [ V`�1 D V 2 [ � � � [ V `�1.

Since x … V , we find that x lies in some of the sets V k n Vk D @Vk for k � `.
This shows @V � X0. We thus have finished the proof that (b) holds for n.

It follows that also (a) holds for n. Indeed, if A1; A2; � � � � X are closed sets
which cover X and satisfy IndAk � n, we put Bk WD Ak n

S

`<k A`. Then Bk

is open in Ak , and so (a) implies IndBk � n. Since the sets Bk are pairwise
disjoint and B1 [ � � � [Bk D A1 [ � � � [Ak is closed for every k, we obtain from
Corollary 5.12 that IndX � n.

In the above proof of Theorem 5.13, we partly followed the arguments of the
proof of [52, Lemma 2.3.4].

Remark 5.14. (AC). In Theorem 5.13, the hypothesis thatX be T6 can be slightly
relaxed, and the assertion of Theorem 5.13(a) holds also for certain classes of
uncountable covers.

For details, we refer to Dowker’s original paper [42] or further generalizations
in [52, Section 2.3].

As a special case of Theorem 5.13(b), we obtain the announced subspace theo-
rem of dimension theory. In fact, it was already observed in [42] that for T5 spaces
the assertion of Theorem 5.13(b) is equivalent to the subspace theorem:

Theorem 5.15 (Subspace Theorem of Dimension Theory). Let X be a T6 space.
Then M � X implies IndM � IndX .

Proof. We show by induction on n that if IndX � n and M � X , then IndM �
n. The case n D �1 is trivial, since we must have X D ¿. For the induction step,
we note that X is T5 by Theorem 2.36, and so all subsets are T4. We verify the
property of Corollary 5.10(c) in the space M � X . Let A;B � M be disjoint
and closed in M . Then M0 WD X n .A \ B/ is an open subset of X and so
Theorem 5.13(b) implies IndM0 � IndX � n. Note that by Proposition 2.10
the closure of A in M is A D A \ M , and similarly B D B \ M . Hence,
A \ B \M D A \ B D ¿ which implies M �M0.
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The set A0 WD M0 \ A and B0 WD M0 \ B are disjoint closed subsets of
M0. Since IndM0 � n, find by Corollary 5.10(c) that M0 divides into disjoint
subsets U0; V0; C0 � M0 with U0; V0 being open in M0 such that A0 � U0,
B0 � V0, and IndC0 � n � 1. Then M � M0 divides into the disjoint subsets
U WD U0 \M , V WD V0 \M , and C WD C0 \M where U and V are open in M
and IndC � n � 1 by induction hypothesis, because C � C0.

As a historical note, we remark that for metric spaces the sum and subspace the-
orems were known much earlier than Dowker’s results, see for instance [111, The-
orem II.1]. However, although these proofs in metric spaces are rather different,
they are not much easier.

It is well-known that Ind Rn D n, but we need actually only the upper estimate
which follows from the sum theorem.

Proposition 5.16. Ind Rn � n.

Proof. We prove the assertion by induction on n. For n D 0, that is, for the space
X D ¹0º, we can choose V D ¿ or V D X in Definition 5.8. Suppose that the
assertion is proved for n � 1 and that A � U � Rn with closed A and open U .
Consider the intersection of Awith the cubeKk WD Œ�k; k�n. By the Heine–Borel
theorem (Proposition 3.59), this intersection is compact, and so it is covered by
finitely many open cubes whose closures are contained in U . Joining successively
cubes to this cover for larger k, we obtain that A has a countable cover by closed
cubes which are contained in U . Let V denote the interior of the union of these
cubes. Then @V has a countable cover by compact (hence closed) sets which
are homeomorphic to compact (hence closed) subsets of Rn�1. The induction
hypothesis, Proposition 5.9, and the sum theorem thus implies Ind.@V / � n � 1,
and so Ind Rn � n.

We will also formulate an alternative version of the homotopic Vietoris theo-
rem which has slightly different hypotheses. This alternative version involves the
covering dimension instead of the large inductive dimension. Since it seems that
this alternative version plays a less important role in connection with degree the-
ory, we do not develop the theory of covering dimension here. Nevertheless, we
formulate the definition and main results:

Definition 5.17. The covering dimension dimX of a topological space X is the
infimum of all integer numbers n � �1 (or 1 if no such number exists) such that
every finite open cover of X has a finite open refinement such that every point
of X is contained in at most nC 1 elements of the refinement.
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Clearly, also the covering dimension is a topological invariant.
Also for the covering dimension, a corresponding variant of the sum theorem

and of the subspace theorem (for closed subsets) can be proved for T4 spaces.
However, all what we need to know about the covering dimension concerning

degree theory is that relatively compact subsets of finite-dimensional manifolds
have finite covering dimension. This will follow from the subspace and sum the-
orem of Ind together with the following result:

Theorem 5.18. If X is T4 then dimX � IndX .

Proof. The proof requires the sum theorem for the covering dimension and several
other deeper results concerning coverings and is therefore beyond the scope of this
monograph. A very readable proof can be found in [52, Theorem 3.1.28]. For a
slightly different approach, see e.g. [111, Section VII.2.A].

5.3 Vietoris Maps

In classical approaches to degree theory of multivalued maps a crucial role is
played by so-called Vietoris maps:

Definition 5.19. Let X and Y be topological spaces. A perfect map pWX ! Y

is Vietoris, if for every y 2 Y the set p�1.y/ is acyclic.

The reason for the importance of Vietoris maps is the famous Vietoris–Begle
theorem:

Theorem 5.20 (Vietoris–Begle). Let X and Y be paracompact and Hausdorff. If
pWX ! Y is a Vietoris map then the induced map p�W LHn.Y / ! LHn.X/ is an
isomorphism for all n.

Proof. The proof of this result is beyond the scope of this monograph. The origi-
nal proof (in a special case) is due to Vietoris [143], the general case goes back to
Begle [12], [13].

Roughly speaking, this result states that – from the viewpoint of cohomology
theory – the map p can be inverted, that is, p�1 can – from the cohomological
point of view – be considered as a single-valued map.

Now if a multivalued map ˆ can be written in the form q ı p�1 with a Vietoris
map p (and such a representation does always exist), one can – on the homologi-
cal level – consider it as a single-valued map and develop a corresponding degree
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theory as in the single-valued case. This is how classically the degree of mul-
tivalued maps is defined, see e.g. [23], [33], [55], [73], [83], [94], [120], [148].
The same idea was used in numerous results on topological fixed point theory
for multivalued maps, e.g. [53], [70], [80] to name a few. Even the earliest pa-
per on topological methods for fixed points of multivalued maps with nonconvex
values [48] used this idea.

For our degree theory for function triples, it appears that the approach by ho-
mology theory is not sufficient: We must be able to apply some analogue on the
homotopic (and not on the homological) level. Such an approach was initiated
by W. Kryszewski who developed a corresponding degree in [91] (see also [89],
[90]). We note that forerunners of this theory were also developed in a somewhat
different setting by R. Bader, L. Gorniewicz, A. Granas, and others, see e.g. [11],
[72], [74]. The corresponding variant of the Vietoris result can be found in [92]
(see also [93]); we will go into details later.

Unfortunately, this approach requires the additional hypothesis that the cover-
ing dimension dimp�1.y/ is finite and even uniformly bounded with respect to y.
This is often not the case for multivalued operators in infinite-dimensional spaces.

An alternative approach to a homotopical variant of the Vietoris theorem was
also developed by W. Kryszewski in [34], [93] and is based on a trick of G. Ko-
zlowski (in an unpublished result) about a construction with a so-called double
mapping cylinder, see e.g. [45]. Roughly speaking, this approach allows us to
replace the hypothesis that p�1.y/ has finite dimension by the hypothesis that
p�1.y/ is a weak UV 1-space.

In fact, as remarked earlier, it will not be sufficient for our approach to consider
Vietoris maps: We either have to impose an additional restriction on the dimen-
sion of fibres, or we have to assume that the fibres are (weak) UV 1. From the
viewpoint of applications, this is not a severe additional restriction, but without
any such restriction our approach will not work. Maps which satisfy this slightly
more restrictive condition will be called Vietoris�:

Definition 5.21. Let X and Y be topological spaces. A perfect map pWX ! Y

is Vietoris�, if one of the following holds:

(a) For every y 2 Y the set p�1.y/ is weak UV 1.

(b) For every y 2 Y the set p�1.y/ is acyclic, and

sup
y2Y

dimp�1.y/ <1.

More precisely, in the first case, we call p a UV 1-Vietoris map, and in the second
case, we call p a finite-dimensional Vietoris map.
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Proposition 5.22. Every Vietoris� map is Vietoris.

Proof. This follows from Proposition 4.56.

We will also need the notion of a homotopy equivalence:

Definition 5.23. Two topological spaces X and Y are homotopy equivalent if
there are continuous maps f WX ! Y and gWY ! X such that the two maps
g ıf; idX WX ! X are homotopic to each other and simultaneously the two maps
f ı g; idY WY ! Y are homotopic to each other.

We will need this notion only in connection of the following example:

Example 5.24. In a normed spaceE, the setX WD En¹0º is homotopy equivalent
to the sphere Y WD S1.0/ � E. Indeed, f .x/ WD x=kxk and g WD idY satisfy
f ı g D idY , and the homotopy h.t; x/ WD .tkxk C .1� t//f .x/ proves that the
map g ı f D f WX ! X is homotopic to idX WX ! X . This example proves in
particular that the noncompact set E n ¹0º is homotopy equivalent to a compact
ANR.

The homotopic variant of the Vietoris theorem which we are going to use is the
following result from [92] and [93]:

Theorem 5.25 (Homotopic Vietoris). (AC). Let X and Y be paracompact Haus-
dorff spaces, and pWX ! Y . Let Z be a paracompact Hausdorff space which is
homotopy equivalent to an ANR. Assume that one of the following holds:

(a) p is UV 1-Vietoris, IndY <1, and Y is T6.

(b) p is finite-dimensional Vietoris, dim Y < 1, and Y is compact or Z is
homotopy equivalent to a compact ANR.

Then p induces a bijection between the homotopy classes of ŒY;Z� and of ŒX;Z�,
that is, for every continuous map 'WX ! Z there is some continuous  WY ! Z

such that ' is homotopic to ıp, and all maps with this property are homotopic
to each other.

Proof. The proof of this result is beyond the scope of this monograph. The second
case (if p is finite-dimensional Vietoris) is in view of [93, Remark 2.16(ii)] a
special case of [93, Theorem 2.17(i)] (alternatively, see [92]).

The first case (if p is UV 1-Vietoris) follows from [46, Theorem 10.4.5] if X
and Y are compact metric spaces. This special case is already sufficient for most
of our applications, cf. also the subsequent Remark 5.26. The result for more gen-
eral spaces (if p is UV 1-Vietoris) was announced in [93, Theorem 2.19], and
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the details will probably appear in [34]. The author thanks W. Kryszewski for
sending the details of that proof. However, the proof is not reproduced here, since
the details are rather involved and require several results about homotopy and di-
mension theory which we have not discussed in this monograph (e.g. results about
cofibrations, suspensions, mapping cylinder etc). We just remark that the proof is
similar to that of [45] and is by induction on IndX , based on a construction with
a so-called double mapping cylinder; the T6 property is used in the induction step
for the sum theorem of dimension theory (this or another hypothesis guaranteeing
the validity of the sum theorem was mistakenly forgotten in the announcement
in [93, Theorem 2.19]).

Remark 5.26. With the exception of one remark (Remark 11.38), we will need
Theorem 5.25 only for the case that Y (and thus also X ) is compact. In this case,
Theorem 5.25 can also be proved without AC.

Actually, in all our later applications to degree theory, we will have a compact
metrizable space Y and Z D E n ¹0º with a finite-dimensional normed space E
(recall Example 5.24).

Using classical ideas, we will now establish a correspondence between Vietoris
maps and multivalued maps which are acyclic in the following sense.

Definition 5.27. Let � and � be topological spaces, and ˆW� ( � .
Thenˆ is acyclic if it is upper semicontinuous and ˆ.x/ is nonempty, compact

and acyclic for every x 2 �
We call ˆW� ( � acyclic� if it is upper semicontinuous and the following

holds:

(a) For every x 2 � the set ˆ.x/ is a nonempty weak UV 1.

(b) For every x 2 � the set ˆ.x/ is nonempty, compact, and acyclic, and

sup
x2	

dimˆ.x/ <1.

More precisely, in the first case, we call ˆ a UV 1 map, and in the second case,
we call ˆ a finite-dimensional acyclic map.

Proposition 5.28. Every acyclic� map is acyclic.

Proof. This follows from Proposition 4.56.

Proposition 5.29. Let ˆ be acyclic. Then all restrictions of ˆ are acyclic. More-
over, if J1; J2 are homeomorphisms such that ‰ WD J2 ı ˆ ı J1 is defined,
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then also ‰ is acyclic. Analogous statements hold when one replaces “acyclic”
by “acyclic�”.

Proof. The first assertion follows from Proposition 2.90. It follows from the defi-
nition that the notions of UV 1-sets, acyclic sets, and dim are topological, that is,
invariant under homeomorphisms. The upper semicontinuity of ‰ follows from
Proposition 2.94.

Proposition 5.30. If pW� ! � is Vietoris or Vietoris�, then ˆ WD p�1W� ( �

is acyclic or acyclic� , respectively.

Proof. Corollary 2.106 implies that ˆ is upper semicontinuos. Hence, the claim
follows from ˆ.x/ D p�1.x/ for all x 2 �.

In Section 11.1 we will prove a certain converse of Proposition 5.30.
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Some Functional Analysis

6.1 Bounded Linear Operators and Projections

Throughout this section, let X and Y be normed spaces over K D R or K D C;
the norm will always be denoted by k � k. We will consider only Banach spaces
later on, but in this section, we also have to deal with incomplete spaces (for
instance, for the proof of the Hahn–Banach extension theorem). The following
test for completeness is rather convenient in normed spaces.

Proposition 6.1. X is a Banach space if and only if for any sequence xn 2 X with
P1

nD1kxnk < 1 the series x D P1
nD1 xn converges. If that series converges,

we have

kx �
n�1
X

kD1

xkk �
1

X

kDn

kxkk for all n D 1; 2; : : : (6.1)

We use throughout the convention that the empty sum is defined as zero. In
particular, (6.1) becomes in case n D 1 the “triangle inequality for series”

k
1

X

kD1

xkk �
1

X

kD1

kxkk

(if the left-hand side exists.)

Proof. Putting yn WD Pn
kD1 xk and sn WD Pn

kD1kxkk, we obtain by the triangle
inequality

kym � yn�1k �
m

X

kDn

kxkk D sm � sn�1 for all m � n � 1. (6.2)

If yn ! x, then letting m!1 in (6.2) and using the continuity of the norm, we
obtain (6.1). Moreover, if

P1
nD1kxnk < 1 then sn is a Cauchy sequence in R,

and thus we obtain from (6.2) with Lemma 3.8(b) that yn is a Cauchy sequence
in X . Hence, if additionally X is a Banach space, then yn converges.

Conversely, if X is incomplete, there is a Cauchy sequence yn 2 X which
does not converge. By Lemma 3.8(a), none of its subsequences is convergent.
Hence, passing to a subsequence if necessary, we can assume by Lemma 3.8(b)
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that kynC1 � ynk < .nC 1/�2 for all n. Putting y0 WD 0 and xn WD yn � yn�1,
we thus find that

P1
nD1kxnk <1 while

Pn
kD1 xk D yn fails to converge.

Recall that the product X � Y of two normed spaces becomes a normed space
in an obvious way with the sum norm k.x; y/k WD kxk C kyk. It is easy to see
that X � Y is a Banach space if X and Y are Banach spaces.

Recall also that if U � X is a linear subspace then one can define an equiva-
lence relation on X consisting of the equivalence classes Œx� WD x C U .x 2 U /.
The corresponding factor space X=U is defined as the vector space of equiva-
lence classes x C U with the operations Œx�C Œy� WD Œx C y� and �Œx� WD Œ�x�.
It is easily seen that these operations are well-defined. Moreover, if U is closed,
then X=U becomes a normed space with the norm

kŒx�k WD inf
Œy�DŒx�

kyk D inf
y2xCU

kyk D dist.x; U /.

Proposition 6.2. If X is a Banach space and U is closed then X=U is a Banach
space.

Proof. We apply Proposition 6.1. Thus, let Œxn� be a sequence in X=U with
P1

nD1kŒxn�k <1. By definition of the norm, there are yn 2 X with Œyn� D Œxn�

and kynk � kŒxn�k C 2�n. Then
P1

nD1kynk < 1, and so Proposition 6.1
implies that x D P1

nD1 yn converges. Then sn WD Œx1� C � � � C Œxn� converges
to Œx�, because zn WD y1 C � � � C yn satisfies sn D Œzn�, and so kŒx�� snk D
kŒx � zn�k � kx � znk ! 0.

For linear AWX ! Y , it is customary to omit the braces, that is, we use the no-
tation Ax WD A.x/. We denote by L.X; Y / the space of bounded linear operators
AWX ! Y , that is, for which A is linear, and

kAk WD sup
kxk�1

kAxk D sup
x¤0

kAxk
kxk

D min¹L 2 Œ0;1� W kAxk � Lkxk for all x 2 Xº
is finite. We also define the shortcut L.X/ WD L.X;X/.

It is straightforward to check that L.X; Y / is a linear space with k � k as a norm.

Proposition 6.3. For linear AWX ! Y the following statements are equivalent:

(a) A is continuous at 0.

(b) A 2 L.X; Y /.

(c) A is Lipschitz.

In the latter case a Lipschitz constant is kAk.
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Proof. In view of Corollary 3.6, this is a special case of Proposition 3.53.

For linear AWX ! Y , we define the null space N.A/ WD A�1.0/ and the range
R.A/ WD A.X/.

Proposition 6.4. For each A 2 L.X; Y / the set N.A/ is a closed linear subspace
of X , and R.A/ is a linear subspace of Y .

Proof. The subspace properties are trivial, and N.A/ D AC.¹0º/ is closed by
Proposition 2.92.

We recall that A is one-to-one if and only if N.A/ D ¹0º.

Lemma 6.5. If A 2 L.X; Y / and U WD N.A/ then there is a one-to-one A0 2
L.X=U; Y / with R.A/ D R.A0/ defined by A0Œx� WD Ax.

Proof. A straightforward calculation shows that A0 is well-defined and kA0k �
kAk. Since N.A/ D U , it follows that N.A0/ D ¹0º, and so A0 is one-to-one.

The dual space of X is defined as X� WD L.X;K/.

Proposition 6.6. X� is a Banach space. If Y is a Banach space then so is
L.X; Y /.

Proof. We prove the second assertion, since the first is a special case. Only the
completeness requires a proof. Thus, let An 2 L.X; Y / be a Cauchy sequence.
Then for every x 2 X the sequence Anx 2 Y is Cauchy and thus convergent to
some Ax 2 Y . Since An are linear, it follows that A is linear. For " > 0 there
is some N such that kAn � Amk � " for all n;m � N . Then we have for all
x 2 X and all n;m � N that kAnx � Amxk � "kxk. Letting m ! 1, we
obtain kAnx � Axk � "kxk for all n � N . In particular, kAn � Ak ! 0 which
also implies A D An � .An � A/ 2 L.X; Y /.

Proposition 6.7. If U � X is a dense linear subspace and Y is a Banach space
then every A0 2 L.U; Y / has a unique extension to some A 2 L.X; Y /, and we
have kAk D kA0k.

Proof. For x 2 X choose a sequence un 2 U with un ! x. Then un is a Cauchy
sequence, and the estimate kA0un � A0umk � kA0kkun � umk implies that also
A0un 2 Y is a Cauchy sequence and thus convergent to some y 2 Y .

This y is independent of the choice of the sequence, since if vn 2 U is any
sequence with vn ! x, we have kA0vn � A0unk � kA0kkvn � unk ! 0, and
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so also A0vn ! y. Hence, we can define AWX ! Y by Ax WD y, and by the
continuity, it is clear that this is the only candidate for the required extension.

Since A0 and forming limits are linear, it follows that A is linear. Moreover,
the continuity of the norm implies in view of kA0unk � kA0kkunk that kAxk �
kA0kkxk, and so A 2 L.X; Y / and kAk � kA0k; the converse inequality kAk �
kA0k follows from AjU D A0.

We recall that for linear operators AWX ! Y and BWY ! Z, one defines a
“multiplication” as the composition of the operators, that is BA WD B ı A. Then
we have kBAk � kBkkAk, and in case Y D X in particular kAnk � kAkn

.n D 0; 1; : : : /. We will need the continuity of the multiplication map:

Lemma 6.8. The map L.X; Y / � L.Y;Z/ ! L.X;Z/, .A;B/ 7! BA, is con-
tinuous.

Proof. The assertion follows from the estimates

kBA � B0A0k D kB.A � A0/C .B � B0/A0k
� kBkkA � A0k C kB � B0kkA0k

and kBk � kB0k C kB � B0k.

A well-known important consequence of Proposition 6.6 is the Neumann series
which we recall now.

Definition 6.9. We denote by Iso.X; Y / the set of all isomorphisms J 2 L.X; Y /

onto Y , that is, J�1 2 L.Y;X/. In case X D Y , we put Iso.X/ WD Iso.X;X/.

Proposition 6.10 (Neumann Series). Let X be a Banach space.

(a) If A 2 L.X/ satisfies
P1

nD0kAnk < 1 then idX �A 2 Iso.X/. Moreover,
.idX �A/�1 D P1

nD0 A
n, and

k.idX �A/�1 �
n�1
X

kD0

Akk �
1

X

kDn

kAkk for all n D 0; 1; : : : (6.3)

(b) The set Iso.X; Y / is open in L.X; Y /, and J 7! J�1 is continuous on
Iso.X; Y /. More precisely, if J0 2 Iso.X; Y /, then any J 2 L.X; Y / with
kJ � J0k < kJ�1

0 k�1 belongs to Iso.X; Y /, and

kJ�1 � J�1
0 k � kJ�1

0 .J � J0/kkJ�1
0 k

1 � kJ�1
0 .J � J0/k

. (6.4)
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Proof. For (a), we note that Proposition 6.1 implies in view of Proposition 6.6
that Sn WD Pn

kD0 A
k converges in L.X/ to some S , and

kS � Sn�1k D k
1

X

kDn

Akk �
1

X

kDn

kAkk.

Since the hypothesis implies kAnk ! 0 and thus Sn.idX �A/ D .idX �A/Sn D
idX �AnC1 ! idX , we find as n!1 in view of Lemma 6.8 that S.idX �A/ D
.idX �A/S D idX , and so S D .idX �A/�1.

Concerning (b), we apply (a) with A WD J�1
0 .J0 � J /, noting that we have

kAnk � qn with q WD kAk < 1. Hence, J1 WD idX �A D J�1
0 J 2 Iso.X/, and

applying (6.3) with n D 1, we find kJ�1
1 � idXk �

P1
kD1 q

k D q=.1 � q/. It
follows that J D J0J1 2 Iso.X; Y /, and since J�1 � J�1

0 D .J�1
1 � idX /J

�1
0

implies kJ�1 � J�1
0 k � kJ�1

1 � idXkkJ�1
0 k, we obtain that (6.4) holds which

implies the continuity of J 7! J�1 at J0.

We recall also the celebrated closed graph theorem.

Theorem 6.11 (Closed Graph). Let X and Y be Banach spaces and AWX ! Y

be linear. Then A 2 L.X; Y / if and only if graph.A/ is closed in X � Y .

Proof. If A 2 L.X; Y / then graph.A/ is closed by Corollary 2.117 and Propo-
sition 6.3. Conversely, let graph.A/ be closed. We note that the sets Mn WD
¹x 2 X W kAxk � nº satisfy X � S1

nD1Mn. Applying Baire’s category theo-
rem (Theorem 2.3) with Nn WD M n, we find that there is some n0 such that
Nn0

D M n0
has an interior point x0 2 X , that is, Kr.x0/ � M n0

for some
r > 0. Note that Mn0

is convex and symmetric (that is, 0 2 Mn0
D �Mn0

), and
so also M n0

is convex (Proposition 3.54) and symmetric. Hence,

Kr .0/ � conv
�

Kr.x0/ [
��Kr.x0/

�� � Mn0
D A�1

�

Kn0
.0/

�

,

and the linearity of A implies for each x 2 X that

0 D x � x 2 x C kxk
r
Kr.0/ � x CA�1

�

Kkxkn0=r.0/
� D A�1

�

Kkxkn0=r.Ax/
�

.

Thus, starting from any x0 2 X , we obtain inductively that there are xn 2
A�1

�

Kkxn�1kn0=r.Axn�1/
�

with kxnk � kxn�1k=2. Then kAxn � Axn�1k �
kxn�1kn0=r and kxnk � 2�nkx0k. Hence, yn WD Axn satisfies for all m > n

kym � ynk �
m

X

kDnC1

kyk � yk�1k �
m

X

kDnC1

2�.k�1/kx0kn0=r (6.5)

D 21�nn0kx0k=r .
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We obtain that yn is a Cauchy sequence, and so yn ! y for some y 2 Y .
Since .xn; yn/ 2 graph.A/, .xn; yn/ ! .0; y/, the hypothesis implies .0; y/ 2
graph.A/, that is, y D A0 D 0. Putting n D 0 in (6.5), we obtain as m ! 1
that

kAx0k D k�y0k � 21�0n0r
�1kx0k.

Since x0 2 X was arbitrary, this shows that A is bounded with kAk � 2n0=r .

Theorem 6.12 (Bounded Inverse). Let X and Y be Banach spaces. If A 2
L.X; Y / is invertible then A�1 2 L.Y;X/, that is A 2 Iso.X; Y /.

Proof. Proposition 2.1 implies that graph.A�1/ is closed if graph.A/ is closed.
Hence, the assertion follows from Theorem 6.11.

The main assertion of Theorem 6.11 is not empty: Even if X and Y are Ba-
nach spaces, it is not true that every linear AWX ! Y is automatically bounded,
although it is impossible to prove this without AC [145].

However, using AC or dropping the hypothesis that X is complete, we can give
a lot of examples of such operators. Using AC, we can even show that on every
infinite-dimensional normed space X (and Y ¤ ¹0º) there are unbounded linear
AWX ! Y :

Example 6.13. (AC). Let X be infinite-dimensional. Corollary 2.6 implies that
X has a Hamel basis ei 2 X .i 2 I /. We choose a sequence of pairwise different
in 2 I , and define

f .ei/ WD
´

nkeik if i D in,

0 otherwise.

Since f is defined on a Hamel basis, it extends to a linear functional f WX ! K
by means of

f .�1ej1
C � � � C �nejn

/ WD �1f .ej1
/C � � � C �nf .ejn

/

which in view of f .ein/ D nkeink is unbounded. For every normed space Y ¤
¹0º, e 2 Y n¹0º, it follows thatAWX ! Y ,Ax WD f .x/e is linear and unbounded.

Note that AC was “only” used to find an infinite Hamel basis. In particular, re-
placing X by a subspace spanned by countably infinite many linearly independent
vectors, we obtain A as above without referring to AC. However, the following
Proposition 6.14 shows that such spaces are never Banach spaces.

Proposition 6.14. If an infinite-dimensional normed space X has a countable
Hamel basis e1; e2; : : : then X is not a Banach space.
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Proof. Assume by contradiction that X is a Banach space. The linear hull Mn

of ¹e1; : : : ; enº is closed by Proposition 3.59. Since
S1

nD1Mn D X , Baire’s
category theorem implies that there is some n such that Mn has an interior point
x0. This is a contradiction since x0 C "enC1 … Mn for every " > 0.

Using the mentioned result of [145], we obtain from Example 6.13 that without
AC even some opposite of Corollary 2.6 holds:

Proposition 6.15. Without AC, it is impossible to prove (in ZF+DC) that there is
an infinite-dimensional Banach space X with a Hamel basis.

Proof. Otherwise, the construction of Example 6.13 would show that there is an
unbounded linear f WX ! K which contradicts [145].

Example 6.13 shows in particular that also operators A with dimR.A/ < 1
can be unbounded. However, for such operators there is a boundedness criterion
which is similar to the closed graph theorem but which does not require complete-
ness of the spaces:

Proposition 6.16. If AWX ! Y is linear with n D dimR.A/ < 1 then A 2
L.X; Y / if and only if AC.U / is closed for every subspace U � R.A/ with
dimU D n � 1.

In particular, a linear f WX ! K belongs to X� if and only if N.f / is closed.

Proof. Note that U is closed by Proposition 3.59, and so necessity follows from
Propositions 2.92 and 6.3.

For sufficiency, we consider first the case A D f WX ! K. We can assume that
there is x0 2 X with c WD f .x0/ ¤ 0. Since N.f / is closed by hypothesis, there
is r > 0 such that Br .x0/ is disjoint from N.f /. Since f is linear, it follows that
Br.0/ is disjoint from f �1.c/. We claim that f 2 X� with kf k � c=r . Indeed,
assume by contradiction that there is x 2 X with kxk � 1 and jf .x/j > c=r . The
latter implies that there is � 2 K with j�j < 1 and �f .x/ D c=r . We obtain the
contradiction �rx 2 Br .0/ \ f �1.c/.

For the general case, let e1; : : : ; en 2 Y be a basis of R.A/. Then there are
unique f1; : : : ; fnWX ! K withAx D f1.x/e1C� � �Cfn.x/en. SinceA is linear,
it follows that all fk are linear. Moreover, N.fk/ D AC.Uk/whereUk � R.A/ is
the linear hull of ¹e1; : : : ; enºn¹ekº. Since dimUk D n�1, the hypothesis implies
that N.fk/ is closed, and so fk 2 X�. In particular, f1; : : : ; fn are continuous,
and so also A is continuous and thus bounded by Proposition 6.3.

In the following considerations the sum of subspaces will play an important
role. Let us first give a simple sufficient criterion that such a sum is closed.
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Proposition 6.17. Let U;V � X be linear subspaces with U being closed and
dimV <1. Then U C V is closed in X .

Proof. Let A 2 L.X;X=U / be defined by Ax WD Œx�. Then M WD A.V / is
finite-dimensional and thus closed in X=U by Proposition 3.59. Consequently,
AC.M/ D U C V is closed.

Recall that if U;V � X then the direct sum U ˚ V is defined only if U and V
are linear subspaces with U \ V D ¹0º, and in this case U ˚ V WD U C V . The
elements of U˚V are those x 2 X which have a unique representation x D uCv
with u 2 U and v 2 V . A linear subspace V � X is complementary to a linear
subspace U � X if U ˚ V D X .

Recall that a map P 2 L.X/ is called a projection if it is a retraction (that is, if
P 2 D P ).

Proposition 6.18. For each projection P 2 L.X/ the spaces U WD R.P / and
V WD N.P / are complementary and closed, and P is the unique projection with
U D R.P / and V D N.P /. Moreover, Q WD idX �P is the unique projection
with V D R.Q/ and U D N.Q/.

Conversely if U;V � X are complementary and closed, and if X is a Banach
space or if dimU < 1 then there is a projection P 2 L.X/ with U D R.P /
and V D N.P /.

Proof. If U;V � X are complementary and closed then clearly each projection
P 2 L.X/ with U D R.P / and V D N.P / must be defined by

P.uC v/ WD u for all u 2 U , v 2 V . (6.6)

This shows the uniqueness assertions (for P and Q).
For the existence assertion, we note that if we define P WX ! X by (6.6)

then P is linear, P 2 D P , U D R.P /, and V D N.P /. We have to show that
P 2 L.X/.

In case n D dimU < 1, we have to show by Proposition 6.16 that for every
subspace U0 � U with dimU0 D n � 1 the subspace P�1.U0/ D U0 C V is
closed. Since dimU0 <1, this follows immediately from Proposition 6.17.

In the case that X is a Banach space, we have to show by Theorem 6.11 that
graph.P / is closed in X �X . Thus, suppose that .xn; un/ 2 graph.P / converge
to .x; u/ 2 X � X . Since un 2 R.P / D U and U is closed, we have u 2 U .
Similarly, vn WD xn � un 2 V implies v WD x � u 2 V . Hence, P.x/ D
P.uC v/ D u, and so .x; u/ 2 graph.P /.

We thus have shown the uniqueness resp. existence of P (and Q).
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Conversely, if P 2 L.X/ is a projection then V WD N.P / and U WD R.P / are
closed subspaces by Proposition 6.4 and Proposition 4.13, respectively. If x 2 U
then x D Px which implies that x 2 V holds only for x D 0. Each x 2 X has
a representation x D u C v with u WD Px 2 U and v WD x � u 2 V , since
Pv D P.x � u/ D u � Pu D 0. To prove that Q WD idX �P is the required
projection, we calculate for u 2 U and v 2 V that Q.u C v/ D .idX �P /uC
.idX �P /v D 0C idX v D v.

We call a subspace U � X complemented (in X ) if it is closed and if it has a
closed complementary subspace.

Corollary 6.19. For a linear subspace U � X , we consider the statements:

(a) U is complemented.

(b) U is the range of a projection P 2 L.X/.

(c) U is the null space of a projection Q 2 L.X/.

Then (b),(c))(a).
If X is a Banach space or dimU <1, all three statements are equivalent.

Proof. The assertion follows from Proposition 6.18.

The following consequences will be used for Fredholm operators.

Corollary 6.20. Let U;V � X be linear subspaces. Suppose that X is a Banach
space or that dimU <1.

IfU is complemented inX andW D U\V is complemented inU thenW � V
is complemented in V .

Proof. In case dimU D 1, we note that U is closed and thus a Banach space
by Lemma 3.8(d). Corollary 6.19 thus implies that there exists a projection P1 2
L.X/ onto U and a projection P2 2 L.U / onto W . Then P WD P2P1 2 L.X/

is a projection onto W , and so P jV 2 L.V;W / � L.V / is a projection onto W .
Hence, the assertion follows from Corollary 6.19.

Proposition 6.21. Let X D U ˚ V with closed subspaces U;V � X . Assume
that X is a Banach space or dimU < 1 or dimV < 1. Then for each B 2
L.U; Y /, C 2 L.V; Y / there is exactly one additive map AWX ! Y satisfying
AjU D B and AjV D C ; we have A 2 L.X; Y /. If B and C are isomorphisms
onto their respective ranges and Y D R.B/˚ R.C / then A 2 Iso.X; Y /.

Proof. By Proposition 6.18 there are unique projections P;Q 2 L.X/ satisfying
R.P / D N.Q/ D U and N.P / D R.Q/ D V . Then x D Px C Qx implies
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A.x/ D A.Px/ C A.Qx/ D BPx C CQx. Hence, A is uniquely defined,
and since compositions of bounded linear operators are bounded, it follows that
A 2 L.X; Y /.

For the second assertion, we apply the first assertion to find that there is a unique
A0 2 L.Y;X/ satisfying A0jR.B/ D B�1 and A0jR.C / D C�1. For u 2 U and
v 2 V we have A0A.uC v/ D A0AuCA0Av D uC v. Hence, A0A D idX and
similarly AA0 D idY .

The Hahn–Banach extension theorem is usually formulated with sublinear
functionals. For our purposes the following special case is more than sufficient.

Theorem 6.22 (Hahn–Banach Extension). (AC). Let U � X be a linear sub-
space and f 2 U �. Then f has an extension F 2 X� with kF k D kf k.

Proof. We show first the auxiliary assertion that in case U ¤ X the function f
has an extension F 2 V � with kF k � kf k with V � X being a strictly larger
subspace than U . More precisely, we can let V be the linear hull of U and some
given e 2 X n U .

We assume first that K D R. Then each x 2 V can be uniquely written as
x D �e C u with � 2 R and u 2 U , and so Fc.�e C u/ WD �c C f .u/ defines
for fixed c 2 R a linear Fc WV ! R which has the required property if and only
if jFc.x/j � kf kkxk for all x 2 V , that is, if and only if

j�c C f .u/j � kf kk�e C uk
holds for all .�; u/ 2 R�U . Since this is satisfied in case � D 0, we can assume
� ¤ 0. Dividing the inequality by �, we find that it is equivalent to require

�kf kke C ��1uk � c C f .��1u/ � kf kke C ��1uk.

Replacing ��1u by v, we thus have to show that there is some c 2 R satisfying

�kf kke C vk � f .v/ � c � kf kke C vk � f .v/ (6.7)

for all v 2 U . To see that such c 2 R exists, we note that for all u; v 2 U we have

f .u/� f .v/ D f
�

.e C u/ � .e C v/� � kf k�ke C uk C ke C vk�,

and so
�kf kke C vk � f .v/ � kf kke C uk � f .u/

holds for all u; v 2 U . It follows that the supremum c of all v 2 U of the left-
hand side is finite and satisfies (6.7). We thus have shown the auxiliary assertion
in case K D R.
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In case K D C, we understand U as a real normed space U0 (by restricting
the scalar multiplication) and define g 2 U �

0 by g.u/ WD Ref .u/. Note that
kgk � kf k. Applying twice what we have shown above, we obtain an extension
G 2 V �

0 of g to the (real) linear hull V0 of U0 and e; ie 2 X n U with kGk �
kgk � kf k. We can understand V0 as the complex linear hull V of U and e. Then
we can define F WV ! C by putting F.v/ WD G.v/ � iG.iv/. Note that F is an
extension of f , since for all u 2 U we have ReF.u/ D G.u/ D g.u/ D Ref .u/
and

ImF.u/ D �G.iu/ D �g.iu/ D �Ref .iu/ D Re
��if .u/� D Imf .u/.

The map F is linear, since for all ˛; ˇ 2 R and v 2 V we have

F
�

.˛ C iˇ/v� D G.˛v/� iG.i˛v/CG.iˇv/� iG.i2ˇv/
D ˛G.v/ � i˛G.iv/ � i2ˇG.iv/C iˇG.v/ D ˛F.v/C iˇF.v/.

Moreover, for each v 2 V there is some s 2 C with jsj D 1 such that sF.v/ 2 R.
It follows that sF.v/ D F.sv/ D G.sv/ � iG.isv/ is real. Since G.sv/ and
G.isv/ are real, we obtain that G.isv/ D 0, and so

jF.v/j D jsF.v/j D jG.sv/j � kf kksvk D kf kjsjkvk D kf kkvk.

Since v 2 V was arbitrary, we obtain F 2 V � and kF k � kf k, and so the
auxiliary assertion is also shown in case K D C.

The general case is reduced to the auxiliary assertion by means of Hausdorff’s
maximality theorem: We let F denote the set of all couples .g; V / where V � U
is a linear subspace of X and g 2 V � is an extension of f with kgk � kf k.
On F , we introduce a partial order by letting .g0; V0/ 	 .g1; V1/ if and only
if V0 � V1 and g1jV0

D g0. By Hausdorff’s maximality theorem, F contains
a maximal chain C . This chain has a maximal element .f0; U0/. Indeed, we
let U0 denote the union of all linear subspaces V � X with .g; V / 2 C for
some g, and for x 2 V , we put f0.x/ WD g.x/. We claim that we obtain a well-
defined f0 with .f0; U0/ 2 F . To see this, we note that for all x0; x1 2 U0, say
xi 2 Vi with .gi ; Vi / 2 C .i D 0; 1/ we can assume without loss of generality
that .g0; V0/ 	 .g1; V1/, because C is a chain. Hence, g0.x0/ D g1.x0/ (which
in case x0 2 U is f .x0/), g1.x0C x1/ D g1.x0/Cg1.x1/, g1.�x0/ D �g1.x0/,
and jg1.x0/j � kf kkx0k. It follows that f0 is well-defined on U0, extends f ,
is linear, and moreover f0 2 U �

0 with kf0k � kf k. Thus, .f0; U0/ 2 F , as
required.

If U0 ¤ X , we find by the auxiliary assertion that there is some .F; V / 2 F

with .f0; U0/ 	 .F; V / and U0 being a proper subspace of V . Hence,
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C [ ¹.F; V /º would be a strictly larger chain containing C which is a contradic-
tion. The contradiction shows that U0 D X , and so F D f0 is the required exten-
sion: Note that the converse inequality kf0k � kf k follows from f0jU D f .

Remark 6.23. We will see in the subsequent Remark 6.26 that it is not possible
to prove Theorem 6.22 without additional hypotheses without AC. However, if X
is separable then AC is not needed for the proof (it suffices to use DC).

Indeed, let ¹x1; x2; : : :º be dense in X . Using the auxiliary assertion of the
proof of Theorem 6.22 repeatedly, we find successively .Fn; Un/ 2 F with Un

being the linear hull of U and ¹x1; : : : ; xnº. By DC, the elements .Fn; Un/ form
a chain in F , and as in the proof of Theorem 6.22, we find some .f0; U0/ 2 F

with Un � U0 for all n. Since U 0 D X , Proposition 6.7 implies that f0 has a
unique extension to some F 2 X� satisfying kF k D kf0k D kf k.

A similar argument can be used to show that also a more general form of the
Hahn–Banach theorem holds without AC under some separability hypotheses,
see [67, p. 183].

Definition 6.24. The support of X� is the set of all x 2 X with the property that
either x D 0 or that there is some f 2 X� with f .x/ ¤ 0.

Corollary 6.25. (AC). The support of X� is X .

Proof. If e 2 X n ¹0º, we let U denote the linear hull of e, and we define f 2 U �
by f .�e/ WD � for � 2 K. By Theorem 6.22, there is F 2 X� satisfying
F.x/ D f .x/ D 1 ¤ 0.

Remark 6.26. Even if we do not assume AC, Corollary 6.25 holds if X is sep-
arable (by Remark 6.23). Moreover, even if X fails to be separable, Corol-
lary 6.25 can be shown for a large class of spaces without AC. For instance,
Corollary 6.25 holds trivially if X is an inner product space. Another huge class
of spaces for which Corollary 6.25 holds (without AC) is the class of preideal
spaces [135, Corollary 3.4.8] (which includes `1 and L1.S/) if the underlying
measure space S has the finite subset property (for instance, if S is � -finite).

However, without AC, it cannot be excluded that there are nontrivial Banach
spaces with X� D ¹0º. For instance, for the spaces X D L1.Œ0; 1�/=C.Œ0; 1�/
or X D `1=c0 the existence of a nonzero f 2 X� cannot be proved in ZF+DC,
see [101]. The subsequent Proposition 6.27 implies that in such spaces, we cannot
even prove (in ZFCDC) that there is a nontrivial finite-dimensional complemented
subspace.
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On the other hand, the converse implication of Proposition 6.27 also implies
that if X� has full support X then all finite-dimensional subspaces are comple-
mented.

Proposition 6.27. A finite-dimensional subspace U � X is complemented if and
only if U is contained in the support of X�.

Proof. Let U � X be a complemented finite-dimensional subspace and e 2 U n
¹0º. The linear hull V of e is a finite-dimensional subspace of U , and U D V ˚W
with a finite-dimensional subspace W . By hypothesis, there is a closed subspace
U0 with X D U ˚ U0 D .V ˚ W / ˚ U0 D V ˚ .W ˚ U0/. Since V and
W ˚ U0 are closed by Proposition 6.17, we obtain by Corollary 6.19 that there is
a projection P 2 L.X/ onto V . Since V is spanned by e, we have Px D f .x/e

for some f WX ! K. From P 2 L.X/, we obtain f 2 X�. Since Pe D e ¤ 0,
we have f .e/ D 1 ¤ 0, and so e is contained in the support of X�.

Conversely, we prove by induction on dimU that U is complemented if it is
contained in the support of X�. For U D ¹0º, the space X is the required closed
complement. Otherwise, U contains a subspace U0 � U with dimU0 D dimU�
1. By induction hypothesis and Corollary 6.19 there is a projection P0 2 L.X/

onto U0. Then A WD P0jU 2 L.U / is a linear map of the finite-dimensional
space U which is not onto. By the dimension theorem of linear algebra, N.A/ �
U must contain some e ¤ 0. Since U is contained in the support of X�, there
is f 2 X� with f .e/ ¤ 0. We put Px WD P0x C f .e/�1

�

f .x/ � f .P0x/
�

e.
Since AjU0

D idU0
and Ae D 0 ¤ e, we have e 2 U n U0. In view of dimU D

dimU0 C 1, each x 2 U can be written in the form x D u C �e with u 2 U0

and � 2 K. Then Px D PuC �Pe D .P0uC 0/C �.0C e/ D uC �e D x.
Hence, P jU D idU . Since R.P / � U , P 2 L.X/ is a projection onto U , and
Corollary 6.19 implies that U is complemented.

Corollary 6.28. (AC). Every finite-dimensional subspace U � X is comple-
mented.

Proof. In view of Corollary 6.25, this follows from Proposition 6.27.

The codimension of a linear subspace U � X is defined as the dimension of
X=U .

Proposition 6.29. For U � X and n 2 N the following statements are equiva-
lent:

(a) U has finite codimension n.

(b) There is a complementary subspace to U of finite dimension n.
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(c) There is a complementary subspace to U , and all complementary subspaces
have the same finite dimension n.

Proof. If Œe1�; : : : ; Œen� 2 X=U is a basis for X=U then e1; : : : ; en are a basis
for a linear subspace V � X with X D U ˚ V , since for each x 2 X we
have unique �1; : : : ; �n 2 K. Œx� D �1Œe1� C � � � C �nŒen� which means x D
uC �1e1 C � � � C �nen with u 2 U .

Conversely, if U ˚ V D X where V contains linear independent (or a basis)
e1; : : : ; en, then Œe1�; : : : ; Œen� are linear independent (or a basis) in X=U . In fact
Œx� D �1Œe1�C � � � C �nŒen� means x D uC �1e1 C � � � C �nen with u 2 U , and
the latter representation of x is unique (and exists for all x 2 X , respectively).

While finite-dimensional subspaces are automatically closed in view of Propo-
sition 3.59, an analogous assertion for subspaces of finite codimension does not
hold.

Example 6.30. Let f WX ! K be linear and unbounded (Example 6.13). We fix
some e 2 X with f .e/ ¤ 0, and let V be the linear hull of e. Then U WD N.f /
satisfies U ˚ V D X , since x D uC �e with u 2 U and � 2 K holds if and only
if f .x/ D �f .e/ (for sufficiency we note that u WD x��e belongs to U ). Hence,
U has (finite) codimension dimV D 1, but Proposition 6.16 shows that U is not
closed in X .

6.2 Linear Fredholm Operators

Throughout this section, let X and Y be Banach spaces over K D R or K D C;
the norm will always be denoted by k � k.

Definition 6.31. A 2 L.X; Y / is a linear Fredholm operator if the following
holds:

(a) N.A/ is a complemented subspace of finite dimension n.

(b) R.A/ is a subspace of finite codimension m.

In this case, k WD n � m is called the Fredholm index of A. The set of all linear
Fredholm operators of index k is denoted by Lk.X; Y /. In case X D Y , we put
Lk.X/ WD Lk.X; Y /.

Note that if one assumes AC then N.A/ is automatically complemented if it has
finite dimension (Corollary 6.28). However, the above definition will not require
us to invoke AC in the proofs.
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Example 6.32. The dimension theorem of linear algebra implies that in case
dimX;dim Y <1 we have L.X; Y / D Lk.X; Y / with k WD dimX � dim Y .

The name Fredholm operator comes from the famous Fredholm alternative. We
say that a linear AWX ! Y satisfies the Fredholm alternative if one of following
two alternatives holds.

(a) The equation Ax D y is well-posed, that is, uniquely solvable for every
y 2 Y , and moreover, the solution x depends continuously on y.

(b) The equation Ax D y is not solvable for every y 2 Y , and for those y 2 Y
for which it is solvable, the solution is not unique.

Proposition 6.33. For an operator A 2 L0.X; Y / the following statements are
equivalent:

(a) N.A/ D ¹0º, that is, A is one-to-one.

(b) R.A/ D Y , that is, A is onto Y .

(c) A 2 Iso.X; Y /.

In particular, A satisfies the Fredholm alternative.

Proof. N.A/ D ¹0º if and only if n D 0, andA is onto if and only ifm D 0. IfA is
one-to-one and onto then A is even an isomorphism onto Y by Theorem 6.12.

In many text books, it is required in the definition of Fredholm operators that
R.A/ be closed in Y . Since we assume that A is bounded, this requirement holds
automatically:

Proposition 6.34. If A 2 L.X; Y / and R.A/ has finite codimension then R.A/
is closed in Y . In particular, every linear Fredholm operator has a closed range.

Proof. We put U WD R.A/. By Proposition 6.29 there is a finite-dimensional
subspace V � Y with Y D U ˚ V . Actually, we will only use that V is closed
and thus a Banach space.

Without loss of generality, we can assume that A is one-to-one, since, otherwise
we can replace A by the operator A0 from Lemma 6.5. Then BWX � V ! Y ,
B.x; v/ WD Ax C v is onto and one-to-one, since Y D R.A/ ˚ V (in particu-
lar, B.x; v/ D 0 implies Ax D v D 0). By the theorem on the bounded inverse
(Theorem 6.12), it follows that C WD B�1 2 L.Y;X�V /. In particular, C is con-
tinuous (Theorem 6.11). SinceM WD X�¹0º is closed inX�V , Proposition 2.92
implies that R.A/ D B.M/ D C�1.M/ is closed in Y .
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Note that Example 6.30 implies that Proposition 6.34 cannot follow alone from
the fact that the codimension of R.A/ is finite. In fact, the proof uses the bound-
edness of A essentially.

The most important theorem about linear Fredholm maps is the relation with
locally compact operators.

By K.X; Y / (or K.X/ in case X D Y ), we denote the locally compact linear
operators AWX ! Y . We collect first the most important properties of K.X; Y /.
We recall that we consider only Banach spaces in this section.

Proposition 6.35. (a) A linear operator AWX ! Y belongs to K.X; Y / if and
only if 	

�

A.M/
� D 0 for all bounded M � X and all 	 2 ¹�Y ; ˛; ˇº.

(b) A linear AWX ! Y belongs to K.X; Y / if and only if 	
�

A
�

Sr.0/
�� D 0 for

some r > 0 and some 	 2 ¹�Y ; ˛; ˇº.
(c) K.X; Y / is a closed linear subspace of L.X; Y /.

(d) If Z is a Banach space over K, AWX ! Y and BWY ! Z are linear, one
being bounded and the other locally compact then BA 2 K.X; Y /.

(e) If A 2 L.X; Y / satisfies dim R.A/ <1 then A 2 K.X; Y /.

Proof. Corollary 3.52 implies the first two assertions and also that each A 2
K.X; Y / is continuous at 0. Hence, K.X; Y / � L.X; Y / by Proposition 6.3.
By (b) and Proposition 3.30, we obtain that K.X; Y / is a linear subspace of
L.X; Y /. To see that K.X; Y / is closed, suppose that An 2 K.X; Y / sat-
isfy kAn � Ak ! 0 for some A 2 L.X; Y /. Note that for M WD S1.0/ and
" > 0 the set An.M/ is an ." C kAn � Ak/-net for A.M/. Hence, (3.3) implies
�X

�

A.M/
� � �X

�

An.M/
� C kAn � Ak D kAn � Ak, and so A 2

K.X; Y /.
If B 2 L.Y;Z/ is continuous and A 2 K.X; Y / then BA 2 K.X; Y / follows

from Proposition 2.100, and if B 2 K.Y;Z/ and A 2 L.X; Y / then for any
bounded M � X the set N WD A.M/ is bounded and thus �Z

�

B.N /
� D 0. The

last assertion follows from Proposition 3.59.

The most important result about Fredholm operators of index 0 is the follow-
ing.

Theorem 6.36. For A 2 L.X; Y / the following statements are equivalent:

(a) A 2 L0.X; Y /.

(b) A can be written in the form A D J � K with J 2 Iso.X; Y / and K 2
K.X; Y /.



Section 6.2 Linear Fredholm Operators 163

(c) A can be written in the form A D J � K with J 2 Iso.X; Y / and K 2
L.X; Y / with dim R.K/ <1.

In the latter case, we have K 2 K.X; Y / and call K a corrector of A.

We prepare the proof of Theorem 6.36 by some results of independent interest.

Lemma 6.37. Let A D J �K where J 2 Iso.X; Y / and K 2 L.X; Y /, Suppose
that there are N 2 N and 	 2 ¹�X ; ˛; ˇº such that .J�1K/N jS1.0/ is .1; �c

�c/-
condensing. Then dim N.A/ <1, and R.A/ is closed.

Proof. Let U WD N.A/. For x 2 U , we have Jx D Kx and thus x D J�1Kx

which implies .J�1K/N jS1.0/\U D idS1.0/\U after a trivial induction by N . If
dimU <1 fails then we find by Proposition 3.32 a countable set C � S1.0/\U
with ˇ.C/ > 0. Then 	

�

.J�1K/N .C /
� D 	.C / > 0 by (3.1), contradicting the

hypothesis that .J�1K/N jS1.0/ is .1; �c

�c/-condensing.
We define the one-to-one and onto map A0 2 L.X=U;R.A// as in Lemma 6.5

and show that there is a constant c > 0 with kA0Œx�k � ckŒx�k. Then Proposi-
tion 3.56 implies that A0 is an isomorphism and that R.A/ is a Banach space and
thus closed. Thus, assume by contradiction that there is a sequence Œxn� 2 X=U
with kŒxn�k D 1 and yn WD A0Œxn� ! 0. By definition of the norm in X=U ,
we can assume that 1 � kxnk � 1 C n�1, and by definition of A0, we have
yn D Axn D Jxn � Kxn. Putting en WD xn=kxnk, we obtain J�1Ken D
en � kxnk�1J�1yn which implies (induction by N )

.J�1K/N en D en � sN;n with sN;n WD kxnk�1
N

X

kD1

.J�1K/k�1J�1yn.

Note that kxnk � 1 and yn ! 0 imply that sN;n ! 0 as n ! 1. Hence,
Lemma 3.33 implies for C WD ¹e1; e2; : : :º that 	

�

.J�1K/N .C /
� D 	.C /. Since

C � S1.0/ is .1; �c

�c /-condensing, we obtain 	.C / D 0. Hence, C is relatively
compact, and so, passing to a subsequence if necessary, we can assume that en !
e for some e 2 X . Since kxnk ! 1, we find xn ! e and thus kŒxn� � Œe�k D
kŒxn � e�k � kxn � ek ! 0. Hence, Œxn� ! Œe�. Since kŒxn�k D 1, we thus
have kŒe�k D 1. Moreover, the continuity of A0 implies yn D A0Œxn� ! A0Œe�.
Since yn ! 0, we have 0 ¤ Œe� 2 N.A0/, contradicting the fact that A0 is
one-to-one.

Lemma 6.38 (Riesz–Schauder Theory). Let A D idX �K where K 2 K.X/.
Then Rn WD R.An/ is closed, Nn WD N.An/ has finite dimension .n D 1; 2; : : : /,
and moreover:



164 Chapter 6 Some Functional Analysis

(a) A.Rn/ D RnC1 � Rn and Nn � NnC1 D A�.Nn/ for all n, and the
inclusions are strict at most for finitely many n.

(b) If n is sufficiently large, then X D Rn ˚ Nn, A.Nn/ � Nn, and AjRn
2

Iso.Rn/.

(c) If n is sufficiently large, then there is a unique J 2 Iso.X/ with J jRn
D

AjRn
and J jNn

D idNn
.

Proof. Proposition 6.35 implies after a trivial induction that Kn WD idX �An 2
K.X/ for n D 1; 2; : : : . Hence, the first assertion follows from Lemma 6.37. The
inclusion Nn � NnC1 D A�.Nn/ is immediate from the definition, and the proof
of A.Rn/ D RnC1 � Rn is just a trivial induction.

Assume by contradiction that the inclusion RnkC1 � Rnk
is strict for all k

.n1 < n2 < � � � /. Since RnkC1 is closed, Lemma 3.31 implies that there are
xk 2 Rnk

with xk 2 S WD S1.0/ and dist.xk; RnkC1/ � 1=2. Since Axj 2
Rnj C1 � RnkC1 .j � k/ and xj 2 Rnj

� RnkC1 .j > k/, we have yj;k WD
xj �Axj CAxk 2 RnkC1 .j > k/, and so kKxk �Kxjk D kxk � yj;kk � 1=2
.j > k/. Hence, ˇ

�

K.S/
� � 1=2, contradicting Proposition 6.35.

Similarly, if the inclusion Nnk
� NnkC1 is strict for all k .n1 < n2 < � � � /,

Lemma 3.31 would imply that there are xk 2 NnkC1 D A�.Nnk
/ with xk 2

S WD S1.0/ and dist.xk; Nnk
/ � 1. Since Axk 2 Nnk

� Nnj
.k � j / and

xk 2 Nnj
.k < j /, we have yk;j WD xk � Axk C Axj 2 Nnj

.k < j /, and so
kKxj �Kxkk D kxj � yk;j k � 1 .k < j /. Hence, ˇ

�

K.S/
� � 1, contradicting

Proposition 6.35. So we have established (a).
Concerning (b) and (c), we fix n such that A.Rn/ D RnC1 D Rn and Nn D

NnC1 D A�.Nn/ which holds for all sufficiently large n by (a). Then A.Nn/ �
Nn, B WD AjRn

WRn ! Rn is onto. Moreover, we have N.B/ D ¹0º. Indeed,
y 2 N.B/ � Rn implies By D 0 and y D Anx for some x 2 X . Hence,
AnC1x D 0, and so x 2 NnC1 D Nn which implies y D Anx D 0.

Since Rn is closed and thus a Banach space, Theorem 6.12 implies that B 2
Iso.Rn/. In view of Bn 2 Iso.Rn/, we find for each x 2 X in view of y WD
Anx 2 Rn exactly one z 2 Rn satisfying y D Bnz. The latter is equivalent
to Anx D Anz and thus equivalent to x � z 2 Nn. Hence, X D Rn ˚ Nn.
Since B 2 Iso.Rn/ and idNn

2 Iso.Nn/, we find by Proposition 6.21 a unique
J 2 Iso.X/ with J jRn

D B and J jNn
D idNn

.

Proof of Theorem 6.36. The last assertion follows from Proposition 6.35, and
with this the implication (c))(b) is trivial. If (b) holds then K0 WD J�1K 2
K.X/ by Proposition 6.35, and so we can apply Lemma 6.38 withA0 WD idX�K0.
We find that there are closed subspaces Xi � X .i D 1; 2/ with X D X1 ˚ X2,
A0.Xi / � Xi .i D 1; 2/, N.A0/ � X2, dimX2 < 1, and J0 2 Iso.X/ such
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that B WD J0jX1
D A0jX1

2 Iso.X1/ and J0jX2
D idX2

. Applying the dimension
theorem of linear algebra with C WD A0jX2

WX2 ! X2 in the finite-dimensional
space X2, we obtain linear subspaces Ui ; Vi � X2 .i D 1; 2/ with X2 D Ui ˚ Vi

.i D 1; 2/, U1 D N.C /, V2 D R.C /, and with dimU1 D dimU2. Since
N.A0/ � X2 and A D JA0, we have N.A/ D N.A0/ D N.C / D U1. Together
with R.A0/ D R.B/ ˚ R.C / D X1 ˚ V2, we obtain from X D X1 ˚ X2 that
X D N.A/˚.V1˚X1/ andX D R.A0/˚U2. In view of A D JA0, the latter im-
plies Y D R.A/˚J.U2/. It follows in view of Propositions 6.17 that N.A/ D U1

is complemented in X and that its dimension is dimU1 D dimU2 D dim J.U2/

which by Proposition 6.29 is the codimension of R.A/. Hence, A 2 L0.X; Y /.
Conversely, letA 2 L0.X; Y /. Using Proposition 6.29 and 6.34, we find closed

subspaces Ui ; Vi � X .i D 1; 2/ withX D Ui˚Vi .i D 1; 2/, U1 D N.A/, V2 D
R.A/, and dimU1 D dimU2 <1. Note that B WD AjV1

2 L.V1; V2/ is one-to-
one and onto an thus B 2 Iso.V1; V2/ by Theorem 6.12. By Corollary 3.58, there
is J1 2 Iso.U1; U2/. By Proposition 6.21, there is a unique J 2 Iso.U1˚V1; U2˚
V2/ D Iso.X/ satisfying J jU1

D J1 and J jV1
D B . Then K WD J � A satisfies

R.K/ D K.U1˚V1/ D K.U1/. Since dimU1 <1, we obtain dimR.K/ <1.
Hence, K is a corrector for A.

Proposition 6.39. LetA0 2 L0.X; Y /. Then for each correctorK0 of A0 there is
" > 0 such that everyA 2 L.X; Y /with kA � A0k � " belongs to L0.X; Y / and,
moreover, every K 2 L.X; Y / satisfying dimR.K/ < 1 and kK �K0k � " is
a corrector for A.

Proof. By hypothesis, J0 WD A0CK0 2 Iso.X; Y /. If 0 < 2" < kJ�1
0 k�1 and

A;K2L.X; Y / satisfy kA�A0k�" and kK�K0k�" then J WDACK satisfies
kJ�J0k<kJ�1

0 k�1, and so Proposition 6.10 implies that J 2 Iso.X; Y /.

We point out that perturbation results like Proposition 6.39 immediately carry
over to Fredholm maps of nonzero index:

Theorem 6.40. Let A0 2 Lk.X; Y /. Then there is some " > 0 such that all
A 2 L.X; Y / belong to Lk.X; Y / if one of the following holds:

(a) kA � A0k � " or

(b) A� A0 2 K.X; Y /.

Proof. The case k D 0 follows immediately from Proposition 6.39 or from The-
orem 6.36, respectively. To see the latter in case A�A0 2 K.X; Y /, we note that
A0 D J � K0 with some corrector K0, and so K WD K0 � .A � A0/ belongs to
K.X; Y / and satisfies A D J �K.
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The case k > 0 can be reduced to the case k D 0 as follows: We associate
to A and A0 the operators B;B0 2 L.X; Y �Kk/, defined by Bx WD .Ax; 0/ and
B0x WD .A0x; 0/. Then A 2 Lk.X; Y / implies B 2 L0.X; Y � Kk/. We have
already shown that the latter implies B0 2 L0.X; Y � Kk/ which then implies
A0 2 Lk.X; Y /.

Similarly, we can reduce the case k < 0 to the case k D 0 by associating to A
and A0 the operators B;B0 2 L.X � K�k; Y /, defined by B.x; y/ WD Ax and
B0.x; y/ WD A0x.

Using an analogous reduction to the case of index zero, it is possible to give a
very simple proof of the famous index formula:

Theorem 6.41. If A 2 Lk.X; Y / and B 2 L`.Y;Z/ then BA 2 LkC`.X;Z/.

Proof. Assume first k D ` D 0. By Theorem 6.36, there are correctors KA and
KB of A and B , respectively. Then JA WD A C KA 2 Iso.X; Y / and JB WD
B CKB 2 Iso.Y;Z/. It follows that

J WD BAC BKA CKBACKBKA D JBJA 2 Iso.X;Z/.

Since Proposition 6.35 implies K WD J � BA D BKA C KBA C KBKA 2
K.X;Z/, we obtain from Theorem 6.36 that BA 2 L0.X;Z/.

The general case reduces to the special case similarly as in the proof of Theo-
rem 6.40. To avoid case distinctions, we choose n 2 N with nCk; nCkC ` � 0
and define A0 2 L.X �Kn; Y �KnCk/ and B0 2 L.Y �KnCk ; Z �KnCkC`/

by A0.x; u/ WD .Ax; 0/ and B0.y; v/ WD .By; 0/ for x 2 X , y 2 Y , u 2 Kn,
v 2 KnCk . Then A0 and B0 are Fredholm of index 0, and so by what we just
proved B0A0 2 L0.X �Kn; Z �KnCkC`/. Since B0A0.x; u/ D .BAx; 0/, this
implies BA 2 LkC`.X;Z/.

For the degree on manifolds, an important role is played by transversality. Since
we will restrict our attention to Fredholm operators, the following definition of
transversality for linear Fredholm operators is appropriate for our purposes.

Definition 6.42. Consider a linear A 2 Lk.X; Y /. We call a closed subspace
Y0 � Y transversal to A if R.A/C Y0 D Y and if at least one of the following
holds:

(a) Y0 is complemented in Y .

(b) A�1.Y0/ is complemented in X .

The following result implies in particular that then actually both of the proper-
ties of Definition 6.42 hold.
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Proposition 6.43. Let A 2 Lk.X; Y /. Let Y0 � Y be a closed subspace with
R.A/C Y0 D Y , and put X0 WD A�1.Y0/. Then A0 WD AjX0

2 Lk.X0; Y0/, and
in case dim Y0 <1 also dimX0 D dim Y0 C k.

Moreover, Y0 is transversal to A if and only if there are closed subspaces Y1 �
Y and X1 � X with Y D Y0 ˚ Y1 and X D X0 ˚ X1 such that A1 WD AjX1

2
Iso.X1; Y1/.

Proof. We put R WD R.A/ and R0 WD R \ Y0. Since m WD dim.Y0=R/ �
dim.Y=R/ <1, Proposition 6.29 implies that there is a space V � Y0 of dimen-
sion m with Y0 D R0 ˚ V . Since R \ V � R0, we have R \ V D ¹0º, and
R C V D .R C R0/ C V D R C Y0 D Y . Hence, Y D R ˚ V . In particu-
lar, m D dimV is the codimension of R. From A 2 Lk.X; Y /, we obtain that
N WD N.A/ has dimension k C m, and that there is a closed subspace U � X

with X D N ˚ U . The operator J WD AjU 2 L.U;R/ is one-to-one and onto R.
Since Proposition 6.34 implies that R is closed, U and R are Banach spaces.
Hence, J 2 Iso.U;R/ by Theorem 6.12. We put U0 WD J�1.R0/ � U . Then
X0 D A�1.R0/ D N ˚U0. Since Y0 D R0˚V , it follows that the codimension
of R.A0/ D R0 in Y0 is dimV D m. Moreover, N.A0/ D N is complemented in
X0 and has dimension kCm. Thus, A0 2 Lk.X0; Y0/. In case ` WD dim Y0 <1,
we have ` D dimR0 C dimV D dim

�

J�1.R0/
� C m D dimU0 C m which

implies dimX0 D dimN C dimU0 D .k Cm/C ` �m D k C dimY0.
Note that X0 D N ˚U0 implies that U0 is complemented inX0. Note also that

U0 � U and X D N ˚ U imply that U0 D .N ˚ U0/ \ U D X0 \ U .
Hence, if X0 is complemented in X then Corollary 6.20 implies that U0 is

complemented in U , that is, there is a closed (in U ) X1 � U with U D U0˚X1.
Since J is an isomorphism, we obtain that Y1 WD J.X1/ is closed in R.

Similarly, if Y0 is complemented in Y then, since R0 is complemented in Y0,
Corollary 6.20 implies that R0 is complemented in R, that is, there is a closed
subspace Y1 � R with R D R0 ˚ Y1. Then X1 WD J�1.Y1/ is closed in U .

In both cases, we thus have found a closed subspace Y1 � R and a closed
subspace X1 � U with Y1 D J.X1/ such that U D U0 ˚X1 and R D R0 ˚ Y1.
Note that Proposition 2.10 implies that X1 is closed in X and Y1 is closed in Y .
We have X D N ˚ U0 ˚ X1 D X0 ˚ X1, Y D R0 ˚ V ˚ Y1 D Y0 ˚ Y1, and
A1 D J jX1

2 Iso.X1; Y1/.

Proposition 6.44. Let Y0 � Y be transversal to A0 2 Lk.X; Y /. Then there
is some " > 0 such that for all A 2 L.X; Y / with kA � A0k � " we have
A 2 Lk.X; Y /, and Y0 is transversal to A.

Proof. We put X0 WD A�1
0 .Y0/. By Proposition 6.43, there are closed subspaces

X1 � X and Y1 � Y with X D X0 ˚ X1, Y D Y0 ˚ Y1, and such that
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J0 WD A0jX1
2 Iso.X1; Y1/. By Proposition 6.10 there is ı > 0 such that ev-

ery map J 2 L.X1; Y1/ with kJ � J0k < ı is an isomorphism onto Y1. By
Proposition 6.18, there is a projection P 2 L.Y / with R.P / D Y1 and such that
Q WD idY �P is a projection with R.Q/ D Y0. Let " 2 .0; ı=kP k/. Decreasing
" > 0 if necessary, we can in view of Theorem 6.40 assume in addition that for
all A 2 L.X; Y / with kA � A0k � " we have A 2 Lk.X; Y /.

We show that Y0 is transversal to each such A. Indeed, putting J WD PAjX1
2

L.X1; Y1/, we have kJ � J0k D kPAjX1
� PJ0k � kP k" < ı, and so J 2

Iso.X1; Y1/. Since Y D Y0 ˚ Y1, we find that Y0 is complemented in Y and,
moreover, each y 2 Y can be written in the form y D y0 C y1 with yi 2 Yi

.i D 0; 1/. Put x1 WD J�1y1 2 X1 � X . Then z WD Ax1 2 R.A/, w WD
y0�Qz 2 Y0, and zCw D .P zCQz/C .y0�Qz/ D y0CPz D y0CJx1 D
y0 C y1 D y. Hence, Y D R.A/C Y0.



Chapter 7

Orientation of Families of Linear Fredholm
Operators

The aim of this chapter is to define a notion of orientation of families of linear
Fredholm operators of index 0. This will later be used to define the orientation
of nonlinear Fredholm maps and, in finite dimensions, also for continuous maps.
This notion will be one of the key tools in the definition of the degree of Fredholm
maps and the Brouwer degree on manifolds, respectively.

We ask the reader to be patient in this chapter, since these two important moti-
vations for the definitions cannot immediately be explained, and since we collect
a lot of minor results in this chapter for usage in later chapters. In particular, we
will apply the collected results straightforwardly in Chapters 8 and 9 to obtain re-
sults about the orientation of nonlinear Fredholm operators in Banach manifolds
or continuous maps in finite-dimensional manifolds, respectively.

The approach we take for the definition of orientation is in principle that
from [17], [18] but with a crucial refinement: It is much more convenient for us
to treat general Banach bundles than to consider only the special case of tangent
bundles of manifolds. This generalization seems to be completely new.

This novelty has not only the advantage that we can use our approach without
any difficulties also for continuous maps in finite-dimensional manifolds. It also
has the advantage that the presentation of the topic is less technical, since we do
not have to use implicitly the involved definition of tangent bundles of manifolds
as was required in the presentation in [17], [18]. In fact, by our approach it will
not be necessary at all to speak about manifolds in this chapter.

Throughout this chapter, we are interested in (families of) linear maps between
Banach spaces over the field K D R or K D C. In our later applications, the case
K D R is the only case of interest for us. However, it makes no difference in the
presentation to allow also K D C, so we will not exclude this, although it is not
clear whether the orientation is very useful for this case.

7.1 Orientation of a Linear Fredholm Operator

In this section, we are only interested in a single Fredholm operatorA 2 L0.X; Y /

between Banach spaces X and Y over the field K. In the case K D R which
interests us mainly, the notion of orientation of A will appear rather simple: It just
consists in picking one of (at most) two equivalence classes in the set of correctors.
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Let us first define the corresponding equivalence relation and prove that there
are exactly two equivalence classes (in case K D R) except in degenerate situa-
tions.

Let A 2 L.X; Y /, and let for a moment C.A/ denote the set of all correctors
of A, that is, the set of all K 2 L.X; Y / with dimR.K/ <1 such that ACK 2
Iso.X; Y /. Recall that according to Theorem 6.36 we have C.A/ ¤ ¿ if and only
if A 2 L0.X; Y /.

Now if K1;K2 2 C.A/, we consider the auxiliary operator

K1;2 WD idX �.ACK1/
�1.ACK2/ (7.1)

D .ACK1/
�1.ACK1/ � .ACK1/

�1.ACK2/

D .ACK1/
�1.K1 �K2/.

Since dim R.K1 � K2/ < 1, we have dim R.K1;2/ < 1. Hence, whenever
X0 � X is a finite-dimensional subspace containing dimR.K1;2/ then JX0

WD
idX0

�K1;2jX0
2 L.X0/. Since JX0

D .A C K1/
�1.A C K2/jX0

is one-to-one
and dimX0 <1, we have automatically JX0

2 Iso.X0/, and

det
�

.ACK1/
�1.ACK2/

� WD det
�

.ACK1/
�1.ACK2/jX0

� ¤ 0.

(This idea of defining a determinant in certain infinite-dimensional situations goes
probably back to Kato [84].) We call K1 and K2 equivalent if

det
�

.ACK1/
�1.ACK2/

�

> 0. (7.2)

Proposition 7.1. The above definition is independent of the particular choice of
X0. The above definition is indeed an equivalence relation on C.A/ which in
case K D R consists of at most two equivalence classes. For A 2 F0.X; Y / and
X� ¤ ¹0º there are at least two equivalence classes.

Recall that the Hahn–Banach theorem (Corollary 6.25) implies that X� ¤
¹0º ” X ¤ ¹0º. However, the above formulation avoids AC.

Proof. To see the independence ofX0, we writeX0 D U˚V with V WD R.K1;2/.
Since JX0

D idX0
�K1;2jX0

2 L.X0/ satisfies for u 2 U and v 2 V that
JX0

.uCv/ D JX0
uCJX0

v D .u�K1;2u/C.v�K1;2v/ D uC.JV v�K1;2u/,
we can write JX0

in matrix form

JX0

�

u

v

�

D
�

idU 0

�K1;2jU JV

� �

u

v

�

,

and so det JX0
D det JV , the latter being independent of X0.
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Let us write for the moment K1 � K2 if (7.2) holds, that is, if det JX0
> 0.

In this case det J�1
X0

> 0. Since J�1
X0

D .A C K2/
�1.A C K1/jX0

, this means
K2 � K1, and so � is symmetric. In case K1 D K2, we have JX0

D idX0
and

thus det JX0
D 1. Hence, � is reflexive.

Now let K1;K2;K3 2 C.A/. We put Ki;j WD idX �.A C Ki /
�1.A C Kj /

.i; j D 1; 2; 3/. As we have seen above, dimR.Ki;j / < 1, and so there is
a finite-dimensional linear subspace X0 � X which contains R.Ki;j / .i; j D
1; 2; 3/. Putting Ji;j D idX0

�Ki;j jX0
2 L.X0/, we have detJi;j ¤ 0 and

Ki � Kj if and only if det Ji;j > 0. Note now that J1;3 D J1;2J2;3, and so
detJ1;3 D det J1;2 det J2;3. Hence, K1 � K3 holds if either simultaneously
both K1 � K2 and K2 � K3 hold or if simultaneously K1 6� K2 and K2 6�
K3 and K D R. Hence, � is transitive and thus an equivalence relation and,
moreover, in case K D R there are at most two equivalence classes.

Now if A 2 L0.X; Y / there is someK1 2 C.A/ by Theorem 6.36, in particular
J WD AC K1 2 Iso.X; Y /. We fix some f 2 X� n ¹0º and some x0 2 X with
f .x0/ D 2. Now we can define C 2 L.X; Y / by Cx WD f .x/J x0. Then
dimR.C / D 1. We put K2 WD K1 � C .

If x 2 N.J � C/ then Jx D Cx implies x D J�1Cx D f .x/x0. Putting
� WD f .x/, we thus have x D �x0, and so � D f .x/ D �f .x0/ D 2� which
implies x D �x0 D 0. Hence, N.J � C/ D ¹0º. Since J � C 2 L0.X; Y / by
Theorem 6.36, Proposition 6.33 thus implies that ACK2 D J �C 2 Iso.X; Y /.
Since dimR.K2/ � dim R.K1/ C dim R.C / < 1, we thus have shown that
K2 2 C.A/.

With the previous notations, we have K1;2 D .A C K1/
�1.K1 � K2/ D

J�1C D f . � /x0. Hence, we can choose X0 as the linear hull of ¹x0º, and obtain
det.idX0

�K1;2/ D 1� 2 < 0. Consequently, K2 6� K1, and so C.A/ contains at
least two equivalence classes.

Definition 7.2. An orientation of A 2 L0.X; Y / is an equivalence class of cor-
rectors of A according to the equivalence relation (7.2). In case K D R and
X� ¤ ¹0º, we denote the complement as the opposite orientation.

An oriented linear Fredholm operator is a couple .A; �/ consisting of an A 2
L0.X; Y / and an orientation � for A. In a misuse of notation, we will usually
denote this couple by A and refer to � as “the orientation” of A.

Definition 7.3. For i D 1; 2 letXi and Yi be Banach spaces and Ai 2 L0.Xi ; Yi /

be oriented with orientations �i . Then the product orientation of A1 ˝ A2 2
L0.X1 � X2; Y1 � Y2/ is that orientation which contains K1 ˝ K2 for some
Ki 2 �i .i D 1; 2/.
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Proposition 7.4. The product orientation � is well-defined and, in the above no-
tation, the following holds for Ki 2 L.Xi ; Yi / .i D 1; 2/.

(a) If one of the two relationsK1 2 �1 andK2 2 �2 holds then the other relation
holds if and only if K1 ˝K2 2 � .

(b) If K D R and Ki are correctors of Ai with Ki … �i for i D 1; 2 then
K1 ˝K2 2 � .

Proof. Let Ki and OKi be correctors of Ai .i D 1; 2/. Then clearly K1 ˝K2 and
OK1 ˝ OK2 are correctors of A1 ˝ A2. We are to show that if Ki and OKi belong to

the same (or in case K D R alternatively opposite) equivalence class for i D 1 or
i D 2 then this holds for i D 1 and i D 2 if and only if K1 ˝K2 and OK1 ˝ OK2

belong to the same equivalence class. To see this, we put for i D 1; 2,

K1;2;i WD idXi
�.Ai CKi/

�1.Ai C OKi /,

and let X0;i � Xi be finite-dimensional subspaces containing R.K1;2;i /. Then
X0 WD X0;1 � X0;2 � X1 � X2 is a finite-dimensional subspace containing the
range of

K1;2 WD idX1
˝ idX2

�.A1 ˝ A2 CK1 ˝K2/
�1.A1 ˝ A2 C OK1 ˝ OK2/,

and in the splitting X0 D X0;1 �X0;2, we can write

det.idX0
�K1;2/ D det

�

idX0;1
�K1;2;1 0

0 idX0;2
�K1;2;2

�

D det.idX0;1
�K1;2;1/ det.idX0;2

�K1;2;2/.

Hence, if one of the determinants on the right-hand side is positive (or in case
K D R negative) then the determinant on the left-hand side is positive if and only
if also the other determinant on the right-hand side is positive (negative). This is
the assertion which we wanted show.

Definition 7.5. Let A 2 L0.X; Y / and B 2 L0.Y;Z/ be oriented with orien-
tation �A and �B . Then the composite orientation of BA 2 L.X;Z/ is defined
by

�BA WD ¹BKA CKBACKBKA W KA 2 �A, KB 2 �B .º

Proposition 7.6. In the above situation BA 2 L0.X;Z/, and �BA is an orienta-
tion. For every KA 2 �A, we have

�BA D ¹BKA CKBACKBKA W KB 2 �Bº,
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and for every KB 2 �B , we have

�BA D ¹BKA CKBACKBKA W KA 2 �Aº.
Moreover, if either �B or �A are given, then for any orientation �BA of BA there
is exactly one corresponding orientation �A or �B for A or B , respectively, such
that �BA is the composite orientation. For every KBA 2 �BA this orientation is
given by

�A WD ¹.B CKB/
�1.KBA �KBA/ W KB 2 �Bº,

�B WD ¹.KBA � BKA/.ACKA/
�1 W KA 2 �Aº,

respectively. Equivalently, for every KB 2 �B or KA 2 �A respectively, this
orientation is given by

�A WD ¹.B CKB /
�1.KBA �KBA/ W KBA 2 �BAº,

�B WD ¹.KBA � BKA/.ACKA/
�1 W KBA 2 �BAº,

respectively.

In particular: If two of the three maps .A;B;BA/ are oriented then the re-
maining map can be oriented uniquely such that BA carries the corresponding
composite orientation.

Proof. BA 2 L0.X;Z/ follows from Theorem 6.41. Let KA 2 �A. If KB 2
C.B/ then

KBA WD BKA CKBACKBKA 2 C.BA/, (7.3)

because BA C KBA D .B C KB /.A C KA/, and conversely, if KBA 2 C.BA/

then
KB WD .KBA � BKA/.ACKA/

�1

is the unique map with (7.3), and this map belongs to C.B/ since B C KB D
.BACKBA/.ACKA/

�1. If K0 2 C.B/, we put

K1;2 WD idY �.B CK0/
�1.B CKB/,

K0A WD BKA CK0ACK0KA 2 C.BA/, and

OK1;2 WD idX �.BACK0A/
�1.BACKBA/

D idX �
�

.B CK0/.ACKA/
��1

.B CKB /.ACKA/

D .ACKA/
�1K1;2.ACKA/.
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Putting Y0 WD R.K1;2/, we obtain that the finite-dimensional space X0 WD .AC
KA/

�1.Y0/ contains R. OK1;2/. Hence, JA WD .ACKA/jX0
2 L.X0/. Since JA is

one-to-one and dimX0 <1, it follows that JA 2 Iso.X0/, and

det.idX0
� OK1;2jX0

/ D det
�

J�1
A .idY0

�K1;2/JA/ D det.idY0
�K1;2/.

Hence, KBA;K0A 2 C.BA/ are in the same equivalence class if and only if
KB ;K0 2 C.B/ are in the same equivalence class. It follows that (7.3) runs
through an orientation of BA if and only if KB runs through an orientation of B .

Conversely, let KB 2 �B . If KA 2 C.A/ then it follows as above that (7.3)
holds, and conversely, if KBA 2 C.BA/ then

KA WD .B CKB /
�1.KBA �KBA/

is the unique map with (7.3), and this map belongs to C.A/ since A C KA D
.B CKB /

�1.BACKBA/. If K0 2 C.A/, we put

K1;2 WD idX �.ACK0/
�1.ACKA/,

KB0 WD BK0 CKBACKBK0 2 C.BA/, and note that

OK1;2 WD idX �.BACKB0/
�1.BACKBA/

D idX �
�

.B CKB /.ACK0/
��1

.B CKB/.ACKA/ D K1;2.

For X0 WD R.K1;2/ D R. OK1;2/, we obtain

det.idX0
� OK1;2jX0

/ D det.idX0
�K1;2jX0

/.

Hence, KBA;KB0 2 C.BA/ are in the same equivalence class if and only if
KA;K0 2 C.A/ are in the same equivalence class. It follows that (7.3) runs
through an orientation of BA if and only if KA runs through an orientation of A.

If an oriented Fredholm operator is an isomorphism, then 0 is a natural correc-
tor. For this reason, we define:

Definition 7.7. If J 2 Iso.X; Y / then the natural orientation � of J 2 L0.X; Y /

is that with 0 2 � .

Corollary 7.8. Let JX 2 Iso.X0; X/ and JY 2 Iso.Y; Y0/. For A 2 L.X; Y /,
we put A0 WD JYAJX 2 L.X0; Y0/. Then A 2 L0.X; Y / if and only if A0 2
L0.X0; Y0/, and in this case the orientations of A0 are exactly those of the form
�0 D JY ı� ıJX where � is an orientation of A. In this case, �0 is the composite
orientation of � with the natural orientations of JX and JY .
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Proof. The equivalence of A 2 L0.X; Y / and A0 2 L0.X0; Y0/ is trivial (or
can also be obtained from Theorem 6.41, using that JX , JY , J�1

X , and J�1
Y are

Fredholm operators of index 0.) Choosing the zero corrector for JX and JY , we
see that the formulas of Proposition 7.6 for the composite orientation reduce to
�0 D JY ı � ı JX and also that � is uniquely determined by �0.

In case K D R, we would like to consider the natural orientation as “positive”,
the opposite orientation as “negative”. Hence, we define:

Definition 7.9. If .A; �/ is an oriented Fredholm operator of index 0 then

sgnA WD

8

ˆ

<

ˆ

:

1 if 0 2 � ,

�1 if 0 … � and A 2 Iso.X; Y /,
0 if A … Iso.X; Y /.

Here, 0 2 � means that � is the equivalence class of the corrector K D 0.
The notation “sgnA” requires some care, since the orientation � (which is crucial
for the definition) is suppressed in the notation: A more precise notation would
be sgn.A; �/ but this would turn out notationally rather cumbersome in our later
applications.

Proposition 7.10. For the product orientation, we have in case K D R

sgn.A1 ˝ A2/ D sgn.A1/ sgn.A2/.

Proof. Let Ai 2 L0.Xi ; Yi / .i D 1; 2/ with orientation �i , X WD X1 � X2,
Y WD Y1 � Y2, A WD A1 ˝ A2, and let � denote the product orientation.

Clearly, A 2 Iso.X; Y / if and only if Ai 2 Iso.Xi ; Yi / for i D 1; 2. Hence,
sgnA ¤ 0 if and only if sgnA1 sgnA2 ¤ 0. Thus, it suffices to consider the case
Ai 2 Iso.Xi ; Yi / for i D 1; 2.

Suppose first that sgn.Ai/ D 1 for i D 1 or i D 2, that is 0 2 �i . Proposi-
tion 7.4(a) implies in this case that .0; 0/ 2 � if and only if 0 2 �1 and 0 2 �2

holds, that is sgnA D 1 if and only if sgn.A1/ D sgn.A2/ D 1.
Conversely, suppose that sgn.A1/ D sgn.A2/ D �1. Then 0 … �i is a corrector

of Ai for i D 1; 2 and so Proposition 7.4(b) implies that .0; 0/ 2 � , hence,
sgnA D 1.

In the finite-dimensional case there is a strict relation between oriented Fred-
holm operators and orientations of the space. Recall that on a finite-dimensional
vector space X a basis .e1; : : : ; en/ of X is equivalent to another basis
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.x1; : : : ; xn/ if the unique isomorphism sending ek to xk .k D 1; : : : ; n/ has pos-
itive determinant. An orientation of X is the choice of one of these equivalence
classes.

Let now X and Y be oriented (hence finite-dimensional). Recall that by Exam-
ple 6.32, a mapA 2 L.X; Y / belongs to L0.X; Y / if and only if dimX D dim Y .

Definition 7.11. Let X and Y be oriented. Then A 2 Iso.X; Y / is orienta-
tion preserving if for each basis .e1; : : : ; en/ of the orientation of X the image
.Ae1; : : : ; Aen/ is an orientation of Y .

If A 2 L0.X; Y / then the induced orientation on A is the family of all K 2
L.X; Y / such that ACK 2 Iso.X; Y / is orientation preserving.

Proposition 7.12. In case X D Y (with the same orientation), J 2 Iso.X/ is
orientation preserving if and only det J > 0.

Proof. J is the transformation of the corresponding basis.

Proposition 7.13. The induced orientation on A is an orientation. Conversely, if
A 2 L0.X; Y / is oriented and one of the spaces X or Y is oriented then there is
exactly one orientation on the other space so that the induced orientation on A is
the given orientation of A.

In other words: If A 2 L0.X; Y / and two items from .A;X; Y / are oriented
then there is a unique induced orientation for the third item.

Proof. Let K1 belong to the induced orientation, and let K2 be a corrector of A.
Then K1 and K2 are equivalent if and only if (7.2) holds. Applying Proposi-
tion 7.12 with J WD .A C K1/

�1.A C K2/, we see that this is the case if
and only if for each .e1; : : : ; en/ of the orientation of X also .x1; : : : ; xn/ D
.Je1; : : : ; Jen/ belongs to the orientation of X . Note that yk WD .AC K2/ek D
.ACK1/xk . Hence, the basis .y1; : : : ; yn/ belongs to the orientation of Y if and
only if .x1; : : : ; xn/ belongs to the orientation ofX . This shows the first assertion.
Conversely, if K1 runs through all elements of an orientation of A, it is clear that
ifX is oriented then .y1; : : : ; yn/ runs through an orientation of Y and conversely,
if Y is oriented then .x1; : : : ; xn/ runs through an orientation of Y , since by the
above considerations, we find for any orientation preserving J 2 Iso.X/ some
K2 in the same equivalence class as K1 with J D .ACK1/

�1.ACK2/.

Corollary 7.14. If X and Y are oriented and A 2 Iso.X; Y / is equipped with the
induced orientation then

sgnA D
´

1 if A is orientation preserving,

�1 otherwise.
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Proof. This follows from the definition of induced orientation.

In the infinite-dimensional situation, one cannot equip X and Y with an orien-
tation but only A 2 L0.X; Y /. However, to define a degree, we will need some
sort of orientations also on X and Y . The approach of P. Benevieri and M. Furi
is to use the following trick: X and Y are replaced by certain finite-dimensional
subspaces X0 � X and Y0 � Y with AjX0

2 L0.X0; Y0/: One can then work
nicely with orientations if the orientation of A induces an orientation of AjX0

in a
reasonable way. The latter is the purpose of the following definition:

Definition 7.15. Consider a linear oriented A 2 L0.X; Y /. Let Y0 � Y be
transversal to A, and put X0 WD A�1.Y0/ and A0 WD AjX0

2 L.X0; Y0/. Then
the inherited orientation of A0 (inherited from the orientation � of A), is given by

¹KjX0
2 L.X0; Y0/ W K 2 � and R.K/ � Y0º.

Proposition 7.16. In the above setting, we have A0 2 L0.X0; Y0/, and the cor-
rectors of A0 are exactly those from

¹KjX0
2 L.X0; Y0/ W K is a corrector of A with R.K/ � Y0º,

and conversely, there is a projection P 2 L.X/ with R.P / D X0 such that
for any corrector K0 of A0 the operator K WD K0P is a corrector of A with
R.K/ � Y0.

The inherited orientation is an orientation ofA0. Conversely, ifK is a corrector
of A which does not belong to the orientation of A and R.K/ � Y0 then KjX0

does not belong to the orientation of A.

Proof. By Proposition 6.43, we have A0 2 L0.X0; Y0/, and there are closed
subspaces X1 � X and Y1 � Y with X D X0 ˚ X1, Y D Y0 ˚ Y1, such that
A1 WD AjX1

2 Iso.X1; Y1/. By Proposition 6.18, there is a projection P 2 L.X/

with R.P / D X0 and N.P / D X1.
Now if K0 2 L.X0; Y0/ is a corrector of A0, then K WD K0P is a corrector

of A. Indeed, .AC K/jX0
D A0 CK0 2 Iso.X0; Y0/, and .ACK/jX1

D A1 2
Iso.X1; Y1/, and so Proposition 6.21 implies that A C K is an isomorphism of
X D X0 ˚ X1 onto Y D Y0 ˚ Y1. Hence, K is a corrector of A which satisfies
R.K/ � Y0 and K0 D KjX0

.
Conversely, if K is a corrector of A with R.K/ � Y0 then K0 WD KjX0

2
L.X0; Y0/ is a corrector of A0. Indeed, J WD ACK 2 Iso.X; Y /. Since R.K/ �
Y0, we have J�1.Y0/ � A�1.Y0/ D X0, and since J 2 Iso.X; Y /, we must have
J.X0/ D Y0. Hence, J jX0

D A0 CK0 2 Iso.X0; Y0/.
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Now ifKi .i D 1; 2/ are two correctors of A with R.Ki/ � Y0, we putKi;0 WD
Ki jX0

2 L.X0; Y0/. Since we have just calculated that .A C K1/
�1.Y0/ D X0

and that A0 C K1;0 2 Iso.X0; Y0/, we obtain that (7.1) assumes its range in a
finite-dimensional subspace X 0

0 � X0, and

K1;2;0 WD idX0
�.A0 CK1;0/

�1.A0 CK2;0/

D .A0 CK1;0/
�1.K2;0 �K1;0/ D K1;2jX0

.

In particular, X 0
0 contains the range ofK1;2;0, and since K1;2;0jX 0

0
D K1;2jX 0

0
, we

find that
det.idX 0

0
�K1;2;0jX 0

0
/ D det.idX 0

0
�K1;2jX 0

0
/

and thus

det
�

.A0 CK1;0/
�1.A0 CK2;0/

� D det
�

.ACK1/
�1.ACK2/

�

.

It follows that Ki .i D 1; 2/ belong to the same equivalence class of correctors
of A if and only ifKi;0 .i D 1; 2/ belong to the same equivalence class of correc-
tors of A0. Hence, if we consider all correctors K 2 C.A/ of the same equiva-
lence class with R.K/ � Y0, the corresponding operators K0 WD KjX0

2 C.A0/

constitute exactly an equivalence class of correctors of A0.

Corollary 7.17. Consider an oriented A 2 L0.X; Y /. Let Y0 � Y be transversal
to A, and put X0 WD A�1.Y0/ and A0 WD AjX0

2 L0.X0; Y0/ with the inherited
orientation. Then

sgnA D sgnA0.

In particular, A 2 Iso.X; Y / if and only if A0 2 Iso.X0; Y0/.

Proof. Proposition 7.16 implies that if 0 is a corrector of A then 0 D 0jX0
is a

corrector of A0, and conversely if 0 is a corrector ofA0 then 0 D 0P is a corrector
of A. This means A 2 Iso.X; Y / if and only if A0 2 Iso.X0; Y0/. In this case,
Proposition 7.16 implies further that 0 belongs to the orientation of A if and only
if 0 D 0jX0

belongs to the orientation of A0.

7.2 Orientation of a Continuous Family

In later sections, our aim will be to consider nonlinear operators. To this end, we
have to replace A by a family of operators (which will later e.g. be a family of
derivatives of the considered nonlinear operators), and we have to define a notion
of orientation for such a family.

We understand L0.X; Y / equipped with the topology inherited from L.X; Y /.
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Definition 7.18. Let I be a topological space, and AW I ! L0.X; Y / be contin-
uous. An orientation of A is a lower semicontinuous map � W I ( L.X; Y / such
that �.t/ is an orientation for A.t/ for each t 2 I .

We call A orientable if such an orientation exists.

Formally, “lower semicontinuous” appears to be a much weaker requirement
than the continuity requirement imposed in [17]. However, we will show now that
actually our definition is the same as that from [17], and we obtain also rather
convenient equivalent characterizations (some are mentioned in [17]). The key to
this equivalence is the following lemma which follows from the continuity (6.4)
of the inversion map.

Lemma 7.19. Let K D R. Let OK1; OK2 be correctors of OA 2 L0.X; Y / of the
same (or opposite) equivalence class. Then there is some " > 0 such that for all
A;K1;K2 2 L.X; Y / with kA � OAk � ", kKk � OKkk � " and dim R.Kk/ <1
.k D 1; 2/, we have A 2 L0.X; Y /, and K1;K2 are both correctors of A of the
same (or opposite, respectively) equivalence class.

Proof. Put OJk WD OAC OKk and J0 WD OJ�1
1

OJ2. By Proposition 6.10, there is " > 0
such that for all Jk 2 L.X; Y / with kJk � OJkk � 2" we have Jk 2 Iso.X; Y /
.k D 1; 2/ and

2k OJ�1
1 k"C kJ�1

1 � OJ�1
1 k.k OJ2k C 2"/ < kJ�1

0 k�1. (7.4)

Now let A;K1;K2 2 L.X; Y / satisfy kA � OAk � ", kKk � OKkk � ", and
dimR.Kk/ <1 .k D 1; 2/. We put Jk WD ACKk , and note that kJk � OJkk �
2" implies that Jk 2 Iso.X; Y / satisfy (7.4). In particular, Kk are correctors of A,
and so A 2 L0.X; Y / by Theorem 6.36. We defineK1;2 by (7.1) and analogously
OK1;2 by

OK1;2 D idX � OJ�1
1

OJ2 D OJ�1
1 . OK1 � OK2/.

Note that in particular R.K1;2/ and R. OK1;2/ are finite-dimensional and thus con-
tained in a finite-dimensional subspace X0 � X . Moreover,

K1;2 � OK1;2 D OJ�1
1

OJ2 � J�1
1 J2 D OJ�1

1 . OJ2 � J2/C . OJ�1
1 � J�1

1 /J2

implies by (7.4) and Proposition 6.10 that

J.t/ WD idX �tK1;2 � .1� t/ OK1;2 D J0 � t.K1;2 � OK1;2/

belongs to Iso.X/ for every t 2 Œ0; 1�. In particular, J.t/jX0
is one-to-one. Since

K1;2 and OK1;2 assume their range in X0, it follows that At WD J.t/jX0
2 Iso.X0/
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for every t 2 Œ0; 1�. In particular, det.At / ¤ 0 for all t 2 Œ0; 1�. The continuity of
the determinant in the space X0 implies that det.At / does not change its sign for
t 2 Œ0; 1�. Since

det.A0/ D det.idX0
� OK1;2/ D det

�

. OAC OK1/
�1. OAC OK2/

�

is positive (negative) by hypothesis, it follows that also det.A1/ is positive (neg-
ative). The latter determinant is just (7.2).

Now we can prove the announced equivalence:

Theorem 7.20. Let K D R, and AW I ! L0.X; Y / be continuous and � W I (
L.X; Y / such that �.t/ is an orientation for A.t/ for every t 2 I . Then for t0 2 I
the following statements are equivalent:

(a) � is lower semicontinuous at t0.

(b) There is some K 2 �.t0/ such that for each neighborhood of U � L.X; Y /

of K the set �C.U / is a neighborhood of t0.

(c) There is a neighborhood V � I of t0 with
T

t2V �.t/ ¤ ¿.

(d) For each K 2 �.t0/ there is a neighborhood V � I of t0 with K 2
T

t2V �.t/.

(e) The (pointwise) opposite orientation is lower semicontinuous at t0.

In particular, � is an orientation for A if and only if some (equivalently all) of the
above properties hold for every t0 2 I .

For (e), we require of course that the opposite orientation exists pointwise, e.g.
X� ¤ ¹0º.

The property (c) is the one used in [17] as the definition of orientation.

Proof. The implications (d))(a) and (c))(b) are trivial. Since �.t0/ ¤ ¿, we
have also trivially (d))(c) and (a))(b). We show now (b))(d).

Thus, let K 2 �.t0/ be as in (b), and let K0 2 �.t0/. By Lemma 7.19 there
is some " > 0 and a neighborhood V0 � I of t0 such that for all t 2 V0 and
all K1;K2 2 L.X; Y / with kK1 �Kk < ", kK2 �K0k < ", the operators
K1;K2 are correctors of A.t/ of the same equivalence class. Applying (b) with
U WD B".K/, we find that there is a neighborhood V � V0 of t0 such that for
all t 2 V there is K1 2 �.t/ with kK1 �Kk < ". Since t 2 V0, we obtain that
K2 WD K0 and K1 2 �.t/ are both correctors of A.t/ of the same equivalence
class, and so K0 D K2 2 �.t/. Hence, K0 2 T

t2V �.t/.
Concerning (e), let ��.t/ denote the opposite orientation of �.t/ for all t 2 I ,

and for t0 2 I choose K1 2 ��.t0/ and K2 2 �.t0/. Then K1;K2 are correctors
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of A.t0/ of different equivalence classes. Lemma 7.19 and the continuity of A
implies that there is a neighborhood V � I of t0 such that for each t 2 V the
operators K1;K2 are correctors of A.t/ of different equivalence classes. Hence,
� has the property (c) if and only if �� has the property (c).

Corollary 7.21. Let K D R and AW I ! L0.X; Y / be constant, A.t/ 
 A0.
Then any orientation of A is constant on the components of I .

Proof. Fix a component C of I and some t0 2 C . The set

A1 WD ¹t 2 I W �.t/ D �.t0/º D ¹t 2 I W �.t/ \ �.t0/ ¤ ¿º
and its complement

A2 WD ¹t 2 I W �.t/ ¤ �.t0/º D ¹t 2 I W �.t/ n �.t0/ ¤ ¿º
are both open in I by Theorem 7.20(d). Hence, Corollary 2.18 implies C �
A1.

One implication of the continuity of orientations is that we can easily compute
the change of signs in finite dimensions:

Proposition 7.22. Let AW I ! L0.X; Y / be continuous with an orientation � W
I ( L.X; Y /. Suppose dimX D dim Y < 1, K D R, and let t1; t2 belong to
the same component of I with A.t1/ 2 Iso.X; Y /. Then

sgnA.t1/ D sgnA.t2/ ” sgn det
�

A.t1/
�1A.t2/

�

> 0.

Proof. Since dimX D dimY <1 there is J 2 Iso.Y;X/. For B1 2 Iso.X; Y /
and B2 2 L.X; Y /, we calculate by the composition formula for determinants
that

det.B�1
1 B2/ D det

�

B�1
1 J�1JB2/ D det

�

.JB1/
�1JB2

� D det.JB2/

det.JB1/
. (7.5)

IfK1;K2 2 L.X; Y / are correctors of A.t/, it follows with Bi WD A.t/CKi that
K1 and K2 are equivalent if and only if det.J.A.t/ C Ki// have the same sign
for i D 1; 2. Note that g.t/ WD det.J.A.t/C �.t/// is the composition of lower
semicontinuous functions and thus lower semicontinuous. We have just shown
that either g.t/ � .0;1/ or g.t/ � .�1; 0/, and so the lower semicontinuity of g
implies that the single-valued function f .t/ WD sgng.t/ is actually continuous,
that is, locally constant. Proposition 2.19 thus implies f .t1/ D f .t2/. Note that

sgnA.ti / > 0 ” 0 2 �.ti / ” f .t/ D sgn det
�

JA.ti/
�
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for i D 1; 2. Applying (7.5) with Bi WD A.ti /, we find

sgn det
�

A.t1/
�1A.t2/

� D sgn det
�

JA.t2/
�

sgn det
�

JA.t1/
� D f .t2/ sgnA.t2/

f .t1/ sgnA.t1/
.

Hence, the assertion follows from f .t1/ D f .t2/.

There are several results about the existence and uniqueness of orientations
for continuous AW I ! L0.X; Y /. However, we will not formulate them here but
prove these results immediately in a more general context in the following section.

7.3 Orientation of a Family in Banach Bundles

For our later applications, it is not enough to consider maps AW I ! L0.X; Y /

where X and Y are constant. We will instead have to consider families of maps
A.t/ 2 L0.Xt ; Yt / .t 2 I / where Xt and Yt depend on t 2 I and are isomorphic
to a fixed space EX and EY , respectively, and where the dependence of Xt and
Yt on t is “continuous” in a certain sense.

The easiest of these cases is ifXt and Yt are mapped to fixed spaces by a norm-
continuous family of isomorphisms. This case is reduced to the setting of the
previous section straightforwardly by the following simple observation.

We equip Iso.X; Y / with the norm inherited from L.X; Y /.

Lemma 7.23. Let X , Y ,X0, and Y0 be Banach spaces, I be a topological space,
and let JX W I ! Iso.X0; X/ and JY W I ! Iso.Y; Y0/ be continuous. Then
ˆW I ( L.X; Y / is lower semicontinuous at t0 2 I if and only if ˆ0W I (
L.X0; Y0/, ˆ0.t/ WD JY .t/ ıˆ.t/ ı JX .t/, is lower semicontinuous at t0.

Proof. The multiplication mapping M W Iso.Y; Y0/ � L.X; Y / � L.X0; X/ !
L.X0; Y0/, M.C;B;A/ WD CBA is continuous by Lemma 6.8. If ˆ is lower
semicontinuous at t0, then also ‰.t/ WD ¹JY .t/º �ˆ.t/ � ¹JX.t/º is lower semi-
continuous at t0 by Proposition 2.95, and so the composition ˆ0 D M ı ‰ is
lower semicontinuous at t0 by Proposition 2.94.

Conversely, ifˆ0 is lower semicontinuous at t0 then ˆ.t/ D JY .t/
�1 ıˆ0.t/ı

JX .t/
�1 is lower semicontinuous at t0 by what we just proved, since t 7! Ji.t/

�1

.i D 1; 2/ are continuous by Proposition 6.10.

Proposition 7.24. Let X , Y , X0, and Y0 be Banach spaces, I be a topological
space, and let JX W I ! Iso.X0; X/ and JY W I ! Iso.Y0; Y / be continuous. Then
AW I ! L0.X; Y / is continuous if and only if A0W I ! L0.X0; Y0/, A0.t/ WD
JY .t/ ı A.t/ ı JX.t/ is continuous, and in this case the orientations of A0 are
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exactly those of the form �0.t/ WD JY .t/ ı �.t/ ı JX .t/ where � is an orientation
of A.

Proof. Lemma 7.23 implies immediately the first assertion and that � is lower
semicontinuous if and only if �0 is lower semicontinuous. Hence, the assertion
follows from Corollary 7.8.

The difficulty in a more general setting which we will meet soon is that Xt and
Yt are not equipped with a norm but are only isomorphic to fixed Banach spaces
EX and EY as topological vector spaces: For this reason, it is not clear how to
define a concept of norm-continuity for families A.t/ 2 L.Xt ; Yt / .t 2 I / as
above.

To define such a concept, we have to speak about Banach bundles. The details
of the formulation of the definition of the latter vary slightly in literature. We use
the following terminology.

Definition 7.25. Let X be a topological space, E be a Banach space over K, and
Xx .x 2 X/ be a family of pairwise disjoint vector spaces. Let T D S

x2X Xx

be equipped with a fixed topology.
A trivialization of T at x0 2 X is a homeomorphism h ofU�E onto

S

x2U Xx

where U � X is an open neighborhood of x0 and h.x; � / acts from E into Xx

and is linear for every x 2 U .
The bundle projection is the map which associates to each p 2 T the unique

x 2 X with p 2 Xx .

Proposition 7.26. In the above situation, if x 2 U thenXx is a topological vector
space (with the inherited topology), and hx WD h.x; � / is an isomorphism of X
onto Xx with

h�1
x .p/ D h�1.x; p/ for all x 2 U , p 2 Xx . (7.6)

The bundle projection  satisfies

�1.M/ D
[

x2M

Xx for each M � X , (7.7)

and if at each x0 2 X there is a trivialization, the following statements are equiv-
alent:

(a)  is continuous.

(b) At each x0 2 X there is a trivialization whose image is open in X .

(c) Every trivialization has an open image in X .
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Proof. Since h maps onto
S

x2U Xx , and hy maps into Xy which is disjoint
from Xx for y ¤ x, it follows that hx maps onto Xx and satisfies (7.6). Since
hx WE ! Xx is a linear homeomorphism, it is straightforward to verify that the
vector operations on Xx are continuous and thus that Xx is a topological vector
space and that hx is an isomorphism. The formula (7.7) is immediate from the
definition of  . Since the range of trivializations has the form (7.7) with open
M D U � X , it is open T if  is continuous. Conversely, if p 2 T , x0 WD .p/,
and if there is a trivialization hWU �E ! S

x2U Xx at x0 with h.U � E/ being
open in T then  is continuous at x. Indeed, if O � X is an open neighborhood
of x0 then M WD h..U \ O/ � E/ is open in h.U � E/ and thus open in T by
Proposition 2.10. Hence, M is a neighborhood of x with .M/ � O.

If dimE < 1, a definition of vector bundles found in literature in the above
situation is the requirement that at each x0 2 X there is a trivialization and that 
is continuous. Unfortunately, in case dimX D 1 this is not enough for our pur-
pose: We have to restrict our attention to a certain family of trivializations which
are compatible in the sense that a “change of trivializations” is not only continu-
ous but even continuous with respect to the operator norm topology. Therefore,
our definition is more cumbersome:

Definition 7.27. A Banach bundle over a Banach space E is a space T D
S

x2X Xx as in Definition 7.25 together with a family H of trivializations such
that for each x0 2 X there is some trivialization from H at x0 with open image
in T and such that for each h;H 2 H the corresponding maps hx WD h.x; � /
and Hx WD H.x; � / (defined for x on open subsets U;V � X ) are such that
x 7! H�1

x hx is continuous as a map from U \V into L.E/. In case dimE <1,
we call T a vector bundle.

Thus, formally, a Banach bundle is a couple .T;H /. However, we usually
do not mention H explicitly but just speak about H as the family of associated
trivializations.

In the case dimE < 1 the continuity of x 7! H�1
x hx follows automatically

from (7.6), and therefore, one could let H be the system of all trivializations:
The particular choice of H plays actually no crucial role in the definition of the
Banach bundle. However, in case dimE D 1, the set H must be part of the
definition.

Let us point out once more the reason for this technical requirement about
H : Since Xx are not normed, we have no natural concept of norm-continuity
of the maps x 7! hx . However, E is normed, and so we have a notion of norm-
continuity of the maps x 7! H�1

x hx .
The most important examples of Banach bundles for us are the following:
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Example 7.28. The constant bundle T WD X �E. This is a Banach bundle with
Xx WD ¹xº �Ex . The map idT is a trivialization at every x0 2 X , and the bundle
projection is given by .x; p/ D x.

This is the example which corresponds to the case that Xx is actually normed
and independent of x.

Example 7.29. Let X be a Banach manifold over E, and Xx .x 2 X/ be the
corresponding tangent spaces. (We will give precise definitions of these notions
in Section 8.3.) Then T D S

x2X Xx is a Banach bundle when we equip it with a
natural topology and trivialization which we will describe in Definition 8.20. This
will be the bundle which we use in the definition of nonlinear Fredholm maps. In
this example, the spaces Xx are not equipped with a norm.

Remark 7.30. The spaces Xx D �1.x/ are the fibres of  and thus in literature
often not mentioned explicitly in the definition of a vector bundle, since they are
determined by  : Formally, it is simpler to define a Banach bundle just as the
map  together with the family H of trivializations. In fact, without mentioning 
or explicitly repeating the definition of trivialization, the notation T D S

x2X Xx

is ambiguous.
However, the abstract definition using only  is a bit strange in the context of

the above examples which are the main case of interest to us, since  itself is
not the crucial object: The important objects are the spaces Xx D �1.x/ and
how they are “coupled” with the topology of X (and in case dimE D 1 by the
trivializations) which is what is described by our definition of Banach bundles.

Now we define what we mean by “norm-continuous” families of linear map-
pings in Banach bundles.

Definition 7.31. Let T and S be Banach bundles over EX and EY with fibres Xx

.x 2 X/ and Yy .y 2 Y / and associated trivializations HT and HS , respectively.
Let I be a topological space.

By L.I; T; S/, we denote the families of all maps A which associate to each
t 2 I a map A.t/ 2 L.Xx.t/; Yy.t// such that the following holds:

(a) xW I ! X and yW I ! Y are continuous.

(b) For each t0 2 I there are trivializations hT 2 HT and hS 2 HS at x.t0/ and
y.t0/, respectively such that the map

AhS ;hT
.t/ WD hS

�

y.t/; � ��1 ı A.t/ ı hT

�

x.t/; � � 2 L.EX ; EY / (7.8)

is continuous at t0 as a map from a neighborhood of t0 2 I into L.EX ; EY /.
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The sets Lk.I; T; S/ and Iso.I; T; S/ are the subsets of all A 2 L.I; T; S/ which
additionally satisfy A.t/ 2 Lk.Xx.t/; Yy.t// or A.t/ 2 Iso.Xx.t/; Yy.t// for all
t 2 I , respectively.

For the following simple observation it is actually not necessary that hT 2 HT

and hS 2 HS .

Proposition 7.32. A map A 2 L.I; T; S/ belongs to Lk.I; T; S/ or Iso.I; T; S/
if and only if for each t0 2 I there are trivializations hS and hT at x.t0/ or y.t0/,
respectively such that the above maps AhS ;hT

.t0/ belongs to Lk.EX ; EY / or
Iso.EX ; EY /, respectively.

More general, if hT and hS are trivializations defined on U �EX or V �EY ,
respectively, then the set of all t 2 I for which (7.8) is defined is the open set
x�1.U /\ y�1.V / � I , and for every t from this set, we have

A.t/ 2 Lk.Xx.t/; Yy.t// ” AhS ;hT
.t/ 2 Lk.EX ; EY /,

A.t/ 2 Iso.Xx.t/; Yy.t// ” AhS ;hT
.t/ 2 Iso.EX ; EY /.

Proof. The formula (7.8) shows that AhS ;hT
.t/ and A.t/ differ only by the com-

position with isomorphisms. Such compositions preserve the property of being
Fredholm of index k or being an isomorphism.

In the same manner as in Definition 7.31, we can define orientations for A 2
L0.I; T; S/:

Definition 7.33. Let T and S be Banach bundles over EX and EY with fibres Xx

.x 2 X/ and Yy .y 2 Y / and associated families of trivializations HT and HS ,
respectively. Let I be a topological space.

An orientation of A 2 L0.I; T; S/ is a map � which associates to each t 2 I
an orientation �.t/ � L.Xt ; Yt / of A.t/ 2 L.Xx.t/; Yy.t// such that for each
t0 2 I there are trivializations hT 2 HT and hS 2 HS , respectively such that the
multivalued map

�hS ;hT
.t/ WD hS

�

y.t/; � ��1 ı �.t/ ı hT

�

x.t/; � � � L.EX ; EY / (7.9)

is lower semicontinuous at t0 as a multivalued map from a neighborhood of t0 2 I
into L.EX ; EY /.

We call A 2 L0.I; T; S/ orientable if such an orientation exists.

In the above definitions, we have required the continuity resp. lower semicon-
tinuity only for one choice of the trivializations, and only at t0. The important
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point of H in Definition 7.27 is that it implies as a consequence the continuity
everywhere for each trivialization associated from H .

Proposition 7.34. Let T and S be Banach bundles over EX and EY with fibres
Xx .x 2 X/ and Yy .y 2 Y / and associated trivializations HT and HS , respec-
tively. Let I be a topological space.

(a) If A 2 L.I; T; S/ then for each hS 2 HS and hT 2 HT the map (7.8) is
continuous on the open set where it is defined.

(b) If � is an orientation of A 2 L0.I; T; S/ then for each h 2 H the map (7.9)
is an orientation of (7.8) (on the open set where this map is defined).

Proof. Let hT and hS be defined on U �EX and V �EY , respectively. Proposi-
tion 7.32 implies that (7.8) is defined on the open sets U0 WD x�1.U /\y�1.V / �
I , and the same holds for (7.9) by an analogous argument. We are to show that
these map are continuous (resp. lower semicontinuous) at every t0 2 U0. By hy-
pothesis there are trivializations HT 2 HT and HS 2 HS at x.t0/ and y.t0/,
respectively such that the corresponding maps AHS ;HT

and �HS ;HT
are lower

semicontinuous at t0.
There is some open neighborhood U1 � U0 of t0 such that HT and HS are

defined on x.U1/ �EX and y.U1/ �EY , respectively. For t 2 U1, we put

JX .t/ WD hT

�

x.t/; � ��1
HT

�

x.t/; � �

and
JY .t/ WD HS

�

y.t/; � ��1
hS

�

y.t/; � �.

The choice of HS and HT in Banach bundles implies that JX WU0 ! L.EX /

and JY WU0 ! L.EY / are continuous, in particular continuous at t0 2 T . Hence,
Lemma 7.23 implies thatAhS ;hT

.t/DJY .t/ıAHS ;HT
.t/ıJX .t/ and �hS ;hT

.t/D
JY .t/ ı �HS ;HT

.t/ ı JX .t/ are continuous (resp. lower semicontinuous) at t0.

An analogous assertion to Theorem 7.20(e) holds also in case of Banach bun-
dles:

Proposition 7.35. Let K D R, X� ¤ ¹0º, and A 2 L0.I; T; S/. Then � is an
orientation ofA if and only if the (pointwise) opposite orientation is an orientation
of A.

Proof. Let Xx .x 2 X/ and Yy .y 2 Y / denote the fibres, that is A.t/ 2
L0.Xx.t/; Yy.t//. Let � be an orientation for A. If hT 2 HT , hS 2 HS , then
Proposition 7.34 implies that (7.9) is an orientation for (7.8). Theorem 7.20(e) im-
plies that the pointwise opposite orientation is also an orientation for AhT ;hS

, and
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by Corollary 7.8, this corresponds to the pointwise opposite orientation of �.t/.
Hence, the pointwise opposite orientation is an orientation of A. The converse
holds by symmetry reasons.

Proposition 7.36. Let K D R, X� ¤ ¹0º, and A 2 Iso.I; T; S/ be oriented.
Then sgnA. � / is constant on the components of I .

Proof. We let � denote the orientation, and �� the opposite orientation according
to Proposition 7.35, and put

B1 WD ¹t 2 I W sgnA.t/ > 0º D �C.¹0º/.
Then the complement of B1 in I is

B2 WD ¹t 2 I W sgnA.t/ < 0º D �C� .¹0º/.
Assume that A.t/ 2 L.Xx.t/;y.t// for t 2 I . If t0 2 Bk (k D 1 or k D 2), we
find by Proposition 7.34 that there are trivializations hT and hS at x.t0/ or y.t0/
respectively such that the map (7.9), is an orientation for (7.8). The pointwise
opposite orientation is also an orientation by Theorem 7.20(c) which then implies
that Bk contains a neighborhood of t0. Thus, B1 and B2 are both open in I , and
so Corollary 2.18 implies that each component of I is contained in either B1 or in
B2.

There always do exist orientations as in Proposition 7.36. To see this, we define:

Definition 7.37. The natural orientation of A 2 Iso.I; T; S/ is that which asso-
ciates to each A.t/ the natural orientation.

Proposition 7.38. The natural orientation of A 2 Iso.I; T; S/ is an orientation
in the sense of Definition 7.33.

Proof. Using the notation of Definition 7.33, we are to show that (7.9) defines an
orientation for (7.8). Since 0 2 �hS ;hT

.t/ for every t , this follows from Theo-
rem 7.20(c).

It is useful to know that we can consider the orientation of A 2 L0.I; T; S/ as
a lifting. To simplify considerations, we work with a space depending on A.

Let T and S be a Banach bundles over EX and EY with fibres Xx .x 2 X/ and
Yy .y 2 Y / and associated trivializations HT and HS .

Let A 2 L0.I; T; S/ in the sense of Definition 7.31, in particular A.t/ 2
L0.Xx.t/; Yy.t//. We consider the space

IA WD ¹.t; �/ W � is an orientation of A.t/º.
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Inspired by [18], we consider for hT 2 HT , hS 2 HS and open O � I such that
hT and hS are defined at least on x.O/ � EX and y.O/ � EY , respectively, and
for any K 2 L.EX ; EY / the (possibly empty) subset

UhT ;hS ;O;K WD ¹.t; �/ 2 IA W t 2 O and K 2 hS

�

y.t/; � ��1 ı � ı hT

�

x.t/; � �º.
By Proposition 2.57, there is a unique topology on IA for which the family of all
sets UhT ;hS ;O;K produced in the above manner constitute a subbasis. We define
the projections pAW IA! I by pA.t; �/ WD t and qAW IA (

S

t2I L.Xx.t/; Yy.t//

by qA.t; �/ WD� .

Lemma 7.39. With the above notation, the orientations of A are exactly the maps
qA ı S where S is a lifting of idI with respect to pA, and the orientations � of A
and liftings S are in a one-to-one correspondence given by S.t/ WD .t; �.t//. In
particular, A is orientable if and only if idI has a lifting.

Proof. If � is an orientation of A then S.t/ WD .t; �.t// defines a lifting of idI .
To see that S is continuous at every t0 2 I , we let U � IA be a neighborhood of
S.t0/ with U ¤ IA. By definition of the topology, U contains a finite intersection
of sets UhT;k;hS;k ;Ok ;Kk

.k D 1; : : : ; n/ containing S.t0/. The latter implies
Kk 2 �k.t0/ where

�k.t/ WD hS;k

�

x.t/; � ��1 ı �.t/ ı hT;k

�

x.t/; � �.

Since Proposition 7.34 shows that �k is an orientation for

Ak.t/ WD hS;k

�

x.t/; � ��1 ı A.t/ ı hT;k

�

x.t.; � �,

we obtain from Theorem 7.20(d) that Kk 2 �k.t/ for all t in a neighborhood
Vk � I of t0. It follows that S.t/ 2 UhTk

;hSk
;Ok ;Kk

for all t 2 Vk and thus
S.t/ 2 U for all t 2 V1 \ � � � \ Vn.

Conversely, if S is a lifting of idI then �.t/ WD qA.S.t// is an orientation. In-
deed, given t0 2 I and trivializations hT 2 HT and hS 2 HS at x.t0/ and y.t0/,
defined on U �EX and V �EY , respectively, we have to show that (7.9) is lower
semicontinuous at t0 2 O WD x�1.U /\y�1.V /. Thus, letK 2 �hS ;hT

.t0/. Then
UhT ;hS ;O;K is a neighborhood of S.t0/, and so the continuity of S implies that
there is a neighborhood O0 � O of t0 with S.O0/ � UhT ;hS ;O;K , in particular
K 2 �hS ;hT

.t/ for every t 2 O0.

Lemma 7.40. If K D R and X� ¤ ¹0º then the above considered map pA is a
2-fold covering map.
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Proof. For t0 2 I , let hT 2 HT and hS 2 HS be trivializations at x.t0/ or y.t0/,
defined onU�EX and V �EY , respectively. We letB.t/ denote the operator (7.8),
that is, B is defined on the open neighborhood I0 WD x�1.U / \ y�1.V / of t0.
Proposition 7.1 implies that the operator B.t0/ has correctors K1;K2 of the two
opposite equivalence classes. Lemma 7.19 and the continuity of B at t0 imply that
there is an open neighborhood O � I0 of t0 such that K1 and K2 are correctors
for each B.t/ .t 2 O/ of opposite equivalence classes. We claim that this set O
is evenly covered by pA: Indeed, p�1

A
.O/ consists of all .t; �/ with t 2 O, where

the two possible choices of � are represented by hS .y.t/; � /ıKk ıhT .x.t/; � /�1

.k D 1; 2/ in view of Corollary 7.8. Hence, p�1.O/ is the disjoint union of the
two sets Xk WD UhS ;hT ;O;Kk

.k D 1; 2/, and pAWXk ! O .k D 1; 2/ is one-to-
one and onto. By definition of the topology, Xk are open in IA, and the open inXk

subsets of Xk are exactly those of the form ¹.t; �/ 2 Xk W t 2 M º D pj�1
Xk
.M/

where M � O is open. Hence, pjXk
is a homeomorphism onto O.

Theorem 7.41. Let K D R and X� ¤ ¹0º. Let T and S be Banach bundles, and
A 2 L0.I; T; S/ .

(a) If C � I is connected and � is an orientation of AjC 2 L0.C; T; S/ then �
is uniquely determined if its value is known in one point of C .

(b) If I is path-connected, locally path-connected, and simply connected then A
is orientable.

(c) If I D Œ0; 1�� I0 then A is orientable if and only if A.t0; � / is orientable for
some t0 2 Œ0; 1�. In this case, the orientation of A is uniquely determined by
the orientation of A.t0; � /.

Proof. In view of Lemma 7.39, we can reformulate the assertions in terms of
liftings of idI (or of the homotopy idŒ0;1��I0

) for the covering map pA (or pH )
considered above in an obvious manner. Lemma 7.40 implies that these refor-
mulations are special cases of Proposition 5.3, Theorem 5.7, and Theorem 5.4,
respectively.

If Ti are Banach bundles over Ei .i D 1; 2/ then T1 � T2 becomes a Banach
bundle over E1 �E2, called the product bundle, in an obvious manner with trivi-
alizations given by

h
�

.t1; t2/; .x1; x2/
� D �

h1.t1; x1/; h2.t2; x2/
�

,

where hi are trivializations of Ti .i D 1; 2/. In situations as the above, we write
h D h1 ˝ h2 although, formally, this holds only under a permutation of the
arguments.
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Definition 7.42. For i D 1; 2, let Ii be topological spaces, Ti and Si be Banach
bundles, and Ai 2 L.Ii ; Ti ; Si /. Then A1˝A2 2 L.I1�I2; T1�T2; S1�S2/ is
defined in the obvious pointwise manner. If Ai 2 L0.Ii ; Ti ; Si / are oriented with
orientations �i .i D 1; 2/, then the product orientation �.t1; t2/ of A1 ˝ A2 2
L0.I1 � I2; T1 � T2; S1 � S2/ is for ti 2 Ii defined as the product orientation of
�1.t1/ and �2.t2/.

Proposition 7.43. The product orientation is an orientation in the sense of Defi-
nition 7.33.

Proof. For ti 2 Ii , let Ai .ti / 2 L.Xi;xi .ti /; Yi;yi .ti // .i D 1; 2/, and let hTi
and

hSi
be trivializations of Ti and Si at xi.ti / or yi .ti /, respectively. Let hT and hS

be the corresponding trivializations of T WD T1 � T2 and S WD S1 � S2, and put
x WD x1˝x2, y WD y1˝y2, and A.t1; t2/ WD A1.t1/˝A2.t2/. We have to show
that (7.9) is lower semicontinuous at a given .t1; t2/. Since

�i;0.t/ WD hSi

�

yi.t/; �
��1 ı �i.t/ ı hTi

�

xi .t/; �
�

are orientations for

Ai;0.t/ WD hSi

�

yi.t/; �
��1 ıAi.t/ ı hTi

�

xi .t/; �
�

,

we obtain from Theorem 7.20(c) that there are neighborhoods Vi of ti such that
T

si 2Vi
�i;t0

.si / contains some Ki . Then V1 � V2 is a neighborhood of .t1; t2/
with

K1 ˝K2 2
\

.s1;s2/2V1�V2

�hT ;hS
.s1; s2/.

Since (7.9) are pointwise orientations for (7.8), we thus obtain from Theo-
rem 7.20(c) that (7.9) is indeed lower semicontinuous at .t1; t2/.

Definition 7.44. Let T , S , and R be Banach bundles with fibres Xx .x 2 X/,
Yy .y 2 Y /, and Zz .z 2 Z/, respectively. Let I and J be a topological spaces.
Let A 2 L.I; T; S/ and B 2 L.J; S;R/ such that A.t/ 2 L.Xx.t/; YyA.t// and
B.s/ 2 L.YyB.s/; Zz.s//. If there is a continuous � W I ! J with yB .�.t// D
yA.t/ then B ı
 A 2 L.I; T;R/ is defined by

.B ı
 A/.t/ WD B.�.t//A.t/ 2 L.Xx.t/; Zz.
.t///.

If additionally A 2 L0.I; T; S/ and B 2 L0.I; S;R/ have orientations �A and
�B , respectively, then the composite orientation �BA for B ı
 A is defined such
that �BA.t/ is the composite orientation of B.�.t// and A.t/.
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Proposition 7.45. The composite orientation is an orientation for B ı
 A in the
sense of Definition 7.33. Conversely, if �BA is any orientation of B ı
 A then:

(a) If B is oriented then there is a unique orientation of A such that �BA is the
composite orientation.

(b) If A is oriented and � is a homeomorphism onto its range J0 � J then there
is a unique orientation of BjJ0

such that �BA is the composite orientation.

In particular, if � is a homeomorphism onto J and if two of the three maps
.A;B;B ı
 A/ are oriented then the remaining map can be uniquely oriented such
that B ı
 A carries the composite orientation.

Proof. Proposition 7.6 implies that the corresponding orientations are uniquely
defined pointwise. We have to show that these pointwise orientation are actually
orientations in the sense of Definition 7.33. Thus, assume that T , S , and R are
Banach bundles over EX , EY , and EZ , and let hT , hS , and hR be trivializations
of T , S , and R at x.t0/, y.�.t0//, or z.�.t0//, respectively. We are to show for
the three assertions that the corresponding multivalued map

sBA.t/ WD hR

�

z.�.t//; � ��1 ı �BA.t/ ı hT

�

x.t/; � � � L.EX ; EZ/,

sA.t/ WD hS

�

y.�.t//; � ��1 ı �A.t/ ı hT

�

x.t/; � � � L.EX ; EY /,

sB.s/ WD hR

�

y.s/; � /�1 ı �B.s/ ı hS

�

x.s/; � � � L.EY ; EZ/

is lower semicontinuous at t0, t0, or �.t0/, respectively. By Proposition 7.34, we
know that the other two maps are orientations of the respective Fredholm maps

CBA.t/ WD hR

�

z.�.t//; � ��1 ı B.�.t//A.t/ ı hT

�

x.t/; � � 2 L0.EX ; EZ/,

CA.t/ WD hS

�

y.�.t//; � ��1 ıA.t/ ı hT

�

x.t/; � � 2 L0.EX ; EY /,

CB.s/ WD hR

�

y.s/; � /�1 ı B.s/ ı hS

�

x.s/; � � 2 L0.EY ; EZ/.

Since the orientation �BA.t/ is the composite orientation of the oriented maps
.B.�.t//; �B .�.t/// and .A.t/; �A.t//, it follows straightforwardly from Defini-
tion 7.5 that the orientation sBA.t/ is the composite orientation of the oriented
maps .CB .�.t//; sB .�.t/// and .CA.t/; sA.t//.

In particular, each KBA 2 sBA.t0/ satisfies KBA D K1.t0/ with

K1.t/ WD CB.�.t//KA CKBCA.t/CKBKA

for someKA 2 sA.t0/,KB 2 sB .�.t0//. If �A and �B are orientations then sA and
sB are orientations for CA and CB , and so Theorem 7.20(d) and the continuity
of � implies that there is a neighborhood U � I of t0 with KA 2 sA.t/ and
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KB 2 sB.t/ for all t 2 U . Hence, K1.t/ 2 sBA.t/ for all t 2 U . Since K1 is
continuous at t0, it follows that sBA is lower semicontinuous at t0, and so �BA is
indeed an orientation.

The proof for the other two assertions is similar: By Proposition 7.6, each
KA 2 sA.t0/ or each KB 2 sB.�.t0// satisfies KA D K2.t0/ or KB D K3.�.t0//

with

K2.t/ WD
�

B.�.t//CKB

��1
.KBA �KBA.t//

K3.s/ WD .KBA � B.s/KA/
�

A.��1.s//CKA

�

for some KBA 2 sBA.t0/ and some KB 2 sB .�.t0// or KA 2 sA.t0/, respectively.
If �BA and �B or �A, respectively, are orientations then sBA and sB or sA are ori-
entations for CBA and CB or CA, respectively. Theorem 7.20(d) and the continuity
of � implies that there is a neighborhood U � I of t0 with KBA 2 sBA.t/ and
KB 2 sB.�.t// or KA 2 sA.t/ for all t 2 U , respectively. The continuity of K2

and K3 at t0 or �.t0/, respectively, implies as above that sA and sB jJ0
are lower

semicontinuous at t0 or �.t0/, respectively. Hence, �A or �B jJ0
are orientations

for A or BjJ0
, respectively.

In finite dimensions, we can also speak about orientations of Banach bundles:

Definition 7.46. Let dimE < 1, and T be a vector bundle over E with fibres
Tx .x 2 X/. An orientation of the vector bundle T on M � X is an orientation
of every Tx .x 2 M/ with the following property.

For every x0 2M there is a trivialization h for x0, defined on U �E, such that
the isomorphism h.x; � / induces by the orientation of Tx an orientation �.x/ on
E (for every x 2 U \M ) with � jU \M being lower semicontinuous at x0.

Proposition 7.47. Let K D R and T be a vector bundle with fibres Tx .x 2 X/
which is oriented onM � X . Then for every trivialization h defined on U �E the
orientation �.x/ on E induced by h.x; � / has the property that � jM\U is locally
constant and constant on the components of M \ U .

Proof. We show first that � jM\U is lower semicontinuous at every x0 2 M \
U . By hypothesis there is a trivialization h0 at x0 defined on some U0 � E,
such that the orientation �0.x/ on E induced by h0.x; � / has the property that
�0jU0\M is lower semicontinuous at X0. Define J WU0 \ U \M ! Iso.E/ by
J.x/ WD h.x; � /�1 ı h0.x; � /. Since dimE < 1, the map J is continuous.
Moreover, �.x/ D J.�0.x//. Proposition 2.94 implies that � jU0\U \M is lower
semicontinuous at x0. Hence, also � jU \M is lower semicontinuous at x0.
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Now if .e1; : : : ; en/ represents the orientation of � jM\U there is some " > 0

such that for any basis .x1; : : : ; xn/ with kek � xkk < " .k D 1; : : : ; n/ the
unique J 2 Iso.E/ satisfying J.ek/ D xk satisfies kidE �Jk < 1. Proposi-
tion 6.10 implies that G.t/ D idE �t.idE �J / 2 Iso.E/ for every t 2 Œ0; 1�.
Hence, detG.t/ ¤ 0 for all t 2 Œ0; 1�. By the continuity of G and det, we obtain
that det J D detG.1/ has the same sign as detG.0/ D det idE D 1. Thus,
.x1; : : : ; xn/ represents the same orientation as .e1; : : : ; en/. Since � jM\U is
lower semicontinuous at x0, it follows that � jM\U is constant in a neighborhood
of X0. The last assertion follows from Proposition 2.19.

We see now that in the finite-dimensional case there is a canonical correspon-
dence between the orientation of maps from A 2 L0.I; T; S/ and the orientations
of T and S :

Proposition 7.48. Let K D R. Let T and S be vector bundles with finite-
dimensional fibres Xx .x 2 X/ and Yy .y 2 Y /, and A 2 L0.I; T; S/, A.t/ 2
L0.Xx.t/; Yy.t//. Then for M � I the following holds:

(a) If T and S are oriented on x.M/ and y.M/, respectively, then the pointwise
induced orientation on A.t/ .t 2M/ is an orientation of A on M .

(b) If A is oriented onM , S is oriented on y.M/, and xjM is a homeomorphism
onto x.M/ � T then the pointwise induced orientation of T on x.M/ is an
orientation on x.M/.

(c) If A is oriented onM , T is oriented on x.M/, and yjM is a homeomorphism
onto y.M/ � S then the pointwise induced orientation of S on y.M/ is an
orientation on y.M/.

Proof. We denote the given (or pointwise induced) orientations of A, T , and S by
�A, �T , and �S , respectively. In all cases, we have to show the lower semiconti-
nuity of the pointwise induced orientation at t0 2M , x.t0/, or y.t0/, respectively.
We choose trivializations hT and hS of T and S at x.t0/ or y.t0/, respectively,
and put JT .t/ WD hT .x.t/; � /�1 2 Iso.Tx.t/; E/ and JS .t/ WD hS .y.t/; � /�1 2
Iso.Ty.t/; E/. Then JT and JS are defined in a neighborhood U � I of t0.

Proposition 7.47 implies that if orientations �T or �S are given then sT .t/ WD
JT .t/ ı �T .x.t// or sS .t/ WD JS .t/ ı �S.y.t// are locally constant on M \ U .
Conversely, if �T or �S is only pointwise defined on x.M \U / or y.M \U /, and
if xjM\U or yjM\U is a homeomorphism and sT or sS is lower semicontinuous
on x.M \ U / or y.M \ U / then sT ı xj�1

M\U or sS ı yj�1
M\U is lower semicon-

tinuous on x.M \ U / or y.M \ U /, respectively, and so by definition �T or �S

are orientations on x.M \ U / or y.M \ U /.
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Similarly, Proposition 7.34 implies that the pointwise orientation �A is an ori-
entation onM \U if and only if the pointwise orientation �.t/ D JS.t/ı�A.t/ı
J�1

T .t/ is lower semicontinuous on M \ U .
Since �.t/ corresponds to the induced orientations of ss or sT (or vice versa),

the assertions follow by combining the above observations.





Chapter 8

Some Nonlinear Analysis

Throughout this chapter, let E, Z, EX , and EY be Banach spaces over K D R or
K D C.

8.1 The Pointwise Inverse and Implicit Function
Theorems

Recall that if U � E then a map F WU ! Z is called Gateaux differentiable at
x 2 VU with derivative dF.x/ D A if

Ah WD lim
t!0C

F.x C th/ � F.x/
t

exists for all h 2 E and defines some A 2 L.U;Z/.
For functions F WU ! Rm with U � Rn, the following result becomes the

well-known assertion that if the Gateaux derivative dF.x/ exists then it is given
by the Jacobi-matrix which consists of the k-th partial derivative (at x) as the k-th
row:

Proposition 8.1. Let x D .x1; : : : ; xn/ be an interior point of U � Rn, and let
F WU ! Z be Gateaux differentiable at x. Then all partial derivatives

dkF.x/ WD d.F.x1; : : : ; xk�1; � ; xkC1; : : : ; xn//.xk/

exist for k D 1; : : : ; n, and

dF.x/.h1; : : : ; hn/ D
n

X

kD1

dkF.x/hk . (8.1)

Proof. Considering h D ˙ek with ek D .0; : : : ; 0; 1; 0; : : : ; 0/ 2 Rn (with 1 at
the k-th position) in the definition of the Gateaux derivative, we find that dkF.x/

exists and is equal to dF.x/ek. Hence, dkF.x/hk D dF.x/hkek . Summing up
over all k, we obtain (8.1) by the linearity of dF.x/.

Gateaux differentiable functions satisfy the following form of the mean value
theorem:
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Theorem 8.2 (Mean Value). LetM � U � E whereM is convex. If F WU ! Z

is Gateaux differentiable at each x 2 M with kdF.x/k � L then F is Lipschitz
on M with constant L.

Proof. Let x0; y0 2 M and L0 > L. Define 'W Œ0; 1� ! M by '.t/ WD x0 C
t.y0 � x0/. For each t 2 Œ0; 1� the map F is Gateaux differentiable on x D '.t/

with kdF.x/k � L. Then '.s/ D x C .s � t/.y0 � x0/ for all s 2 Œ0; 1�, and so
there is some " > 0 such that

kF.'.s// � F.'.t//k � L0ky0 � x0kjs � t j
for s 2 K2".t/ (understood in the metric space X WD Œ0; 1�). Let r.t/ denote
the supremum of all these " 2 .0; 1�. Since X is compact, it is covered by finitely
many of the balls Br.t/.t/with t 2 Œ0; 1�, that is, there is a partition 0 D t0 � t1 �
� � � � tn D 1 such that tk � tk�1 < r.tk�1/C r.tk/ � max¹2r.tk�1/; 2r.tk/º for
k D 1; : : : ; n. By definition of r.t/, this implies

kF.y0/ � F.x0/k D
�

�

�

n
X

kD1

.F.'.tk// � F.'.tk�1///
�

�

�

�
n

X

kD1

L0ky0 � x0k.tk � tk�1/ D L0ky0 � x0k.

Since L0 > L was arbitrary, we obtain kF.y0/ � F.x0/k � Lky0 � x0k.

Recall that if U � E and F WU ! Z, then F is called Fréchet differentiable

(or just differentiable) at x 2 VU if there is some A 2 L.E;Z/ with

lim
h!0

kF.x C h/ � F.x/� Ahk
khk D 0. (8.2)

Replacing h by th in (8.2), we see that each Fréchet differentiable operator is
necessarily Gateaux differentiable, and that its derivative A is uniquely defined
and must be the Gateaux derivative.

Proposition 8.3. If F D z C AjU where z 2 Z, A 2 L.E;Z/, and U � E is a
neighborhood of x 2 E then F is differentiable at x with dF.x/ D A.

Proof. We have F.x C h/ � F.x/� Ah D 0, hence (8.2) holds.

Proposition 8.4. If Fi WU ! Zi are differentiable at x and Ai WD dFi .x/ for
i D 1; 2 then also F1 � F2WU ! Z1 � Z2 is differentiable at x with d.F1 �
F2/.x/ D A1 � A2
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Proof. We have

k.F1 � F2/.x C h/ � .F1 � F2/.x/� .A1 � A2/hk
D kF1.x C h/ � F1.x/ � A1hk C kF2.x C h/ � F2.x/� A2hk,

and so (8.2) holds.

We recall the continuity and the chain rule for differentiable functions:

Proposition 8.5. If F is differentiable at x then F is continuous at x. If addition-
ally G is differentiable at y D F.x/ then H WD G ı F is differentiable at x with
derivative C WD dG.y/dF.x/.

Proof. Put kh WD F.x C h/ � F.x/ and rh WD kh � dF.x/h. Then (8.2) implies
rh=khk ! 0 as h ! 0. In particular, there is some finite number K and some
ı > 0 with krhk=khk � K whenever 0 < khk < ı. PuttingK0 WD KCkdF.x/k,
we thus have kkhk � K0khk for khk < ı. In particular, kh ! 0 as h! 0. Hence,
F is continuous at x, and

H.x C h/ �H.x/ � Ch
khk

D kkhk
khk

G.y C kh/ �G.y/ � dG.y/kh

kkhk
C dG.y/

rh

khk ! 0

as h ! 0 by definition of dG.y/, since kkhk=khk � K0, rh=khk ! 0 and
kh ! 0 as h! 0.

To formulate the chain rule in terms of partial derivatives, letX , Y and I be Ba-
nach spaces. ForH WW ! Y with W � I �X , we denote the partial derivatives
by

dIH.t; x/ WD d.H. � ; x//.t/ 2 L.I; Y /

dXH.t; x/ WD d.H.t; � //.x/ 2 L.X; Y /.

Proposition 8.6. Let H WW ! Y as above be differentiable at .t; x/ 2 W . Then
dIH.t; x/ and dXH.t; x/ exist as Fréchet derivatives and satisfy

dXH.t; x/.hI ; hX / D dIH.t; x/hI C dXH.t; x/hX for all .hI ; hX / 2 I �X .

For any functions F WU ! I , GWU ! X with U � Z, .F �G/.U / � W which
are differentiable at z 2 U and satisfy F.z/ D t , G.z/ D x, the composition
c.u/ WD H.F.u/;G.u// is differentiable at z with

dc.z/ D dIH.t; x/dF.z/C dXH.t; x/dG.z/.
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Proof. Putting A WD dH.t; x/, we define AI 2 L.I;Z/ by AIhI WD A.hI ; 0/

and AX 2 L.X;Z/ by AXhX WD A.0; hX /. Then

kH.t C hI ; x/�H.t; x/�AIhI kDkH..t; x/C.hI ; 0//�H.t; x/�A.hI ; 0/k
implies that dIH exists at .t; x/ with AI D dIH.t; x/. Similarly one obtains
AX D dXH.t; x/. Since A is linear, we have A.hI ; hX / D AIhI C AXhX .
The second assertion follows by applying the chain rule and Proposition 8.4 to
c D H ı .F �G/.

The following form of a “pointwise inverse function theorem” without any con-
tinuity requirement on dF is perhaps not so well-known.

Theorem 8.7 (Pointwise Inverse Function). Let U0 � E and F WU0 ! Z be
differentiable at x. Let V � Z be a neighborhood of y D F.x/, and suppose
that F WU ! V is invertible for some U � U0. Then G WD F�1WV ! U is
differentiable at y D F.x/ if and only ifG is continuous at y, and A WD dF.x/ 2
Iso.E;Z/. In this case B WD dG.y/ 2 Iso.Z;E/ satisfies B D A�1.

For the subsequent application it is important that we do not require in Theo-
rem 8.7 that U is a neighborhood of x; only U0 must be a neighborhood of x by
definition of the derivative.

Proof. For necessity, we observe that Proposition 8.5 implies that G is continu-
ous. Moreover, Proposition 8.5 applied to idU D G ıF and idV D F ıG implies
idE D BA and idZ D AB . It follows that B D A�1 2 Iso.Z;E/.

For sufficiency, we put B WD A�1. Putting r.h/ WD G.y C h/ � x � Bh, we
are to show that r.h/=khk ! 0 as h ! 0. Let � > 0 be such that K�.y/ � V .
For h 2 K�.0/, put kh WD G.y C h/ � x. The continuity of G implies kh ! 0

as h ! 0, and we have x C kh D G.y C h/ 2 U and r.h/ D kh � Bh.
Since F is differentiable at x, we thus find for s.h/ WD F.xC kh/�y�Akh that
s.h/=kkhk ! 0 as h! 0. Shrinking � > 0 if necessary, we thus can assume that
kBs.h/k � kkhk=2 for h 2 K�.0/.

Note that F.xCkh/ D F.G.yCh// D yCh and thus s.h/ D h�Akh, hence
kh D Bh � Bs.h/. This implies r.h/ D �Bs.h/ and kkhk � kBhk C kkhk=2
for h 2 K�.0/. Hence, kkhk � 2kBhk � 2kBkkhk for h 2 K�.0/. We obtain

kr.h/k
khk � kBs.h/k

kkhk=.2kBk/ � 2kBk
2 ks.h/k
kkhk ! 0

as h! 0, as required.
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There is a corresponding “implicit function theorem”. In this result, let X ,
Y and I be Banach spaces.

Theorem 8.8 (Pointwise Implicit Function). LetW � I �X , andH WW ! Y be
differentiable at .t0; x0/ 2 W . Suppose that there are neighborhoods I0 � I of t0
and Y0 � Y of y0 WD H.t0; x0/ such that for each .t; y/ 2 I0�Y0 there is exactly
one x D G.t; y/ with .t; x/ 2 H�1.y/. Then GW I0 � X0 ! W is differentiable
at .t0; y0/ if and only if G is continuous at .t0; y0/ and dXH.t0; x0/ 2 Iso.X; I /.
In this case, dIG.t0; y0/ and dYG.t0; y0/ exist and satisfy

dIG.t0; y0/ D �dXH.t0; x0/
�1dIH.t0; x0/ 2 L.I;X/

dYG.t0; y0/ D dXH.t0; x0/
�1 2 Iso.Y;X/.

(8.3)

Proof. The assertion follows from Theorem 8.7 with E WD I � X , Z WD I � Y ,
V WD I0 � Y0, U0 WD W , U WD I0 � G.V /, and F.t; x/ WD .t;H.t; x//. Indeed,
as already pointed out, we need not require that U is a neighborhood of .t0; x0/.
Note that in operator matrix representation we have by Proposition 8.6 (applied
with H D F ) that

A WD dF.t0; x0/ D
�

idI 0

dIH.t0; x0/ dXH.t0; x0/

�

and so dF.t0; x0/ 2 Iso.E;Z/ if and only if dXH.t0; x0/ 2 Iso.X; I /. The
form of F implies for J WD F j�1

U0
that J.t; y/ D .t;G.t; y//. Hence, J is

continuous/differentiable at .t0; y0/ if and only if G is continuous/differentiable
at .t0; y0/. Hence, the assertion about the differentiability follows from Theo-
rem 8.7. Moreover, if G is differentiable at .t0; y0/ then Proposition 8.6 (applied
with H D J ) shows that in operator matrix representation

B WD dJ.t0; y0/ D
�

idI 0

dIG.t0; y0/ dYG.t0; y0/

�

.

We note that Theorem 8.7 implies AB D idE . Considering the lower line in this
operator matrix equality, we obtain (8.3).

Recall that if U � E is open, then F WU ! Z is called continuously differen-
tiable on U (and we write F 2 C 1.U;Z/ or F 2 C 1) if F is differentiable on U
and the derivative x 7! dF.x/ is continuous as a map from U into the normed
space L.E;Z/.

The classes C n, n � 2, are defined analogously by induction: We write F 2
C n.U;Z/ if x 7! dF.x/ belongs toC n�1.U;L.E;Z//. As customary, we define
C n in case n D 0 as the class C of continuous functions, and in case n D 1 as
those functions which are of class C n for every n 2 N.
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Proposition 8.9. If 0 � m � n � 1 then C n � Cm, and the composition of two
functions of class C n is of class C n.

Proof. The assertion follows from Proposition 8.5 and obvious inductions.

We consider I0 WD Iso.E;Z/ as a subset of the Banach space I WD L.E;Z/.
Recall that Proposition 6.10 implies that I0 is open. Applying Theorem 8.8 with
H W I0 � E ! Z, H.A; x/ WD Ax, we see that the implicit function G.A; y/ D
A�1y is differentiable with respect to A (the continuity of G follows from Pro-
position 6.10), and the derivative is in view of Proposition 8.3 given by (with
X WD E)

dIG.A; y/U D �dXH.A;A
�1y/�1dIH.A;A

�1y/U D �A�1UA�1y.

One can verify that this derivative holds actually even in operator norm. One
way to see this is to apply the above calculation for H W I0 � L.E/ ! L.Z;E/,
H.A;U / WD A�1U , but it is perhaps simpler to verify this directly:

Proposition 8.10. The map J W Iso.E;Z/ ! Iso.Z;E/, defined by J.A/ WD
A�1, is of class C1, and

dJ.A/U D �J.A/UJ.A/. (8.4)

Proof. For A 2 Iso.E;Z/, we put r.U / WD J.A C U / � J.A/C J.A/UJ.A/.
Then

.ACU /r.U / D idE �.idE CUA�1/C.UA�1CUJ.A/UJ.A//D UJ.A/UJ.A/

implies that for all U 2 L.E;Z/ n ¹0º
kr.U /k
kU k D k.AC U /�1UJ.A/UJ.A/k

kU k � kJ.AC U /kkJ.A/k2kU k.

Since Proposition 6.10 implies that J.ACU / remains bounded as kU k ! 0, we
obtain r.U /=kU k ! 0. Hence, dJ is differentiable at A, and the formula (8.4)
holds. Now an induction by n D 0; 1; : : : implies that J is of class C n. Indeed, the
case n D 0 follows from Proposition 8.5 (or alternatively from Proposition 6.10),
and if J is of class C n then (8.4) shows that dJ is of class C n, and so J is of
class C nC1.
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8.2 Oriented Nonlinear Fredholm Maps

Definition 8.11. If � � E is open then F W� ! Z is Fredholm of index k (in
symbols: F 2 Fk.�;Z/), if F 2 C 1.�;Z/ and dF W� ! Lk.E;Z/. In case
k D 0 and if M � �, an orientation for F on M is an orientation of dF jM
according to Definition 7.18.
F is called orientable (on M ) if F 2 F0.�;Z/ and an orientation � exists on

� (or M ). The couple .F; �/ is called an oriented Fredholm operator. Notation-
ally, we just write F and refer to � as “the orientation” of F .

Note that if X D E and F D A is linear then dF.x/ D A for every x 2 X .
SinceE is connected, all orientations of F are actually constant by Corollary 7.21
so that the choice of an orientation comes down to the choice of an orientation of
the linear A 2 F0.E;Z/. Hence, although formally the orientations for F as a
C 1-map and for F D A as a linear map are different items (one is a constant
multivalued map, the other only the image of this map in each point), the actual
orientation in each point means the same so that there is not really an ambiguity
with Definition 7.2 when we talk about orientations in this case.

We will also need (oriented) homotopies for the (oriented) Fredholm maps:

Definition 8.12. Let I be a topological space, W � I � E be open, and
Wt WD ¹u W .t; u/ 2 Eº. A generalized Fredholm homotopy (of index k) is
a continuous map H WW ! Z with open W � E and the property that
H.t; � / 2 Fk.Wt ; Z/ for every t 2 I such that the corresponding partial deriva-
tive dXH.t; x/ WD d.H.t; � //.x/ is continuous as a map from W into L.E;Z/.
In case k D 0 and if M � W , an orientation for H on M is an orientation for
dXH jM according to Definition 7.18.
H is called orientable (onM ) if such an orientation � exists onW (or M ). We

call the couple .H; �/ an oriented generalized Fredholm homotopy. Notationally,
we just write H and refer to � as “the orientation” of H .

For the case W D Œ0; 1� � � with some open � � E, we call H an (ori-
ented/orientable) Fredholm homotopy.

For easier reference, we collect some properties of the previous definitions:

Theorem 8.13. Let K D R, E� ¤ ¹0º, and � � E, I be a topological space,
and W � I � E be open. Let F 2 F0.�;Z/ and H WW ! Z be a generalized
Fredholm homotopy of index 0.

(a) � is an orientation for F or H if and only if the (pointwise) opposite orien-
tation is an orientation for F or H , respectively.
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(b) If F (orH ) are oriented on C � � (or C � W ) is connected with dF.C/ �
Iso.E;Z/ (or dXH.C/ � Iso.E;Z/) then sgndF.x/ (or
sgndXH.t; � /.x/) are the same for all x 2 C (or .t; x/ 2 C ).

(c) If C � � (or C � W ) is connected and � is an orientation for F (or H ) on
C then � is uniquely determined if its value is known in one point of C .

(d) Let I be locally path-connected. If � or W is simply connected and if in
some point of each component of� orW an orientation for F orH is given
then F and H have a unique corresponding orientation on � or W .

(e) If H is a Fredholm homotopy then H is orientable if and only if H.t0; � / is
orientable for some t0 2 Œ0; 1�. In this case, the orientation of H is uniquely
determined by the orientation of H.t0; � /.

Proof. The assertions follow straightforwardly from Propositions 7.35, Proposi-
tion 7.36, and Theorem 7.41, respectively. Concerning (d) note that E and I �E
are locally path-connected by Corollary 2.66. Proposition 2.23 implies that the
components of� and of I�� are open. Hence, the orientation on the components
can be fixed independent of each other. For the uniqueness, recall that components
are connected by Proposition 2.17.

Proposition 8.14. Let K D R and � � E, I be a topological space, and W �
I � E be open. Let F 2 F0.�;Z/, and H WW ! Z be a generalized Fredholm
homotopy of index 0. If C � � or C � W and dF or dXH are constant on C
then the orientations of F or H on C are exactly the constant orientations.

Proof. The nontrivial implication follows from Corollary 7.21.

8.3 Oriented Fredholm Maps in Banach Manifolds

In most applications of degree theory, one will have maps defined on an open
subset� of a Banach spaceE with values in a Banach spaceZ. In such a situation
the notions of Section 8.2 are sufficient to apply degree theory.

Unfortunately, they are not sufficient for us in this monograph, since we must
first define the degree before we can apply it. And in order to define the degree,
we need also degree theory on finite-dimensional manifolds.

We point this out once more: Even in order to develop only degree theory for
Fredholm maps on Banach spaces, we need as a tool degree theory on finite-
dimensional manifolds. So we cannot avoid to speak about manifolds. (This is
not the case if one only wants to apply the theory, but it is necessary if one wants
to develop it.)
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Since it makes no difference in the formal definitions, we can actually consider
even Banach manifolds. The definitions of manifolds differ slightly in literature,
so let us make precise what we mean by manifolds.

Definition 8.15. A Hausdorff space X is a Banach manifold of class C n over E,
n 2 ¹0; 1; : : : ;1º, if X has an open cover U D ¹Ui W i 2 I º with a correspond-
ing family ¹ci W i 2 I º (the atlas) such that the following holds:

(a) Each ci is a homeomorphisms (the chart) of Ui onto an open subset of E.

(b) For each i; j 2 I the map cj ı c�1
i W ci.Ui \ Uj /! E is C n.

A chart for a point x is a chart ci WUi ! E with x 2 Ui .

We point out that we require in Definition 8.15 that X is Hausdorff, but in
contrast to many text books, we do neither assume that X is paracompact nor
that X is second countable. (The latter would be a restrictive requirement anyway
in the context of Banach manifolds.)

Of course, when we speak about a Banach manifold X , we actually mean the
couple .X;A/ where A is an atlas for X . However, we do not mentioned the atlas
explicitly, but only implicitly take corresponding charts if required. Moreover, we
do not assume that the atlas is maximal, that is, when we speak of a chart we really
mean a member of the atlas (or in some cases the restriction of such a map).

Every open subset X of a Banach space E becomes a C1-Banach manifold
over E with ¹idX º as its atlas. We tacitly understand this atlas (and not any larger
atlas!) when we interpret a Banach space as a Banach manifold.

Proposition 8.16. Every Banach manifold X is locally path-connected. All sub-
sets of X are first countable and in particular compactly generated.

Proof. Since E is locally path-connected, every open subset of E and thus also
any space homeomorphic to such a set is locally path-connected. Hence, every
point in X has a locally path-connected neighborhood. Since E is first countable,
also X is first countable. Hence, also all subsets of X are first countable. The last
assertion follows from Proposition 2.108.

With the above convention of interpreting open X � E as a Banach manifold,
the following definition of C n-maps and of Fredholm maps extends our defini-
tions of Section 8.2.

Definition 8.17. Let X and Y be C n Banach manifolds over EX and EY , respec-
tively, and � � X be open. Then a map F W� ! Y is of class C n (and we
write F 2 C n.�; Y / or F 2 C n) if for each x 2 � there are charts cX and cY
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for x and F.x/, respectively, such that cY ı F ı c�1
X is of class C n in a neigh-

borhood of cX .x/. In case n � 1 and if each of the derivatives of cY ı F ı c�1
X

in every point belongs to Lk.EX ; EY /, we call F Fredholm of index k and write
F 2 Fk.�; Y /.

If I is a topological space and W � I � X is open, then a continuous map
H WW ! Y is a generalized partial C r homotopy .1 � r � 1) or generalized
Fredholm homotopy of index k, respectively, if the following holds. For each
.t0; x0/ 2 W there are charts cX and cY for x0 and H.t0; x0/, respectively, such
that there are open neighborhoods I0 � I of t0 and U � EX of cX .x0/ such that

Gt WD cY ıH.t; � / ı c�1
X 2 C r .U;EY / for all t 2 I0,

and .t; x/ 7! dGt .x/ is continuous as a map from .t; x/ 2 W into L.EX ; EY / or
Lk.EX ; EY /, respectively. In case r D 0, a generalized partial C 0 homotopy is
just a continuous map H WW ! Y .

In case W D Œ0; 1� � �, we speak about a partial C r homotopy or Fredholm
homotopy of index k, respectively.

Note that we require in this definition thatX and Y are of class Cn. It is easy to
see by this requirement that then actually the same condition holds for any choice
of the charts.

Unfortunately, the definition of orientation for Fredholm maps/homotopies in
Banach manifolds is much more involved and requires to introduce the tangent
bundle of a Banach manifold. To this end, we recall some of many equivalent
definitions of the tangent space.

Definition 8.18. Let X be a C 1-Banach manifold over E, and x 2 X . Consider
on the set of all couples .c; u/ where c is a chart for x and u 2 E the equivalence
relation

.c; u/ � .c0; u0/ ” d.c0 ı c�1/.c.x//u D u0. (8.5)

Let Tx;0 denote the set of corresponding equivalence classes Œ.c; u/�x. Then
Tx;0 becomes a vector space with the operations Œ.c; u1/�x C Œ.c; u2/�x WD
Œ.c; u1 C u2/�x and �Œ.c; u/�x WD Œ.c; �u/�x. The tangent space Tx (or, more
verbosely, TxX ) is defined as the vector space ¹xº � Tx;0 with the obvious inher-
ited operations.

The consideration of ¹xº � Tx;0 instead of Tx;0 is just a formal trick to make
sure that Tx \ Ty D ¿ for x ¤ y so that Tx are candidates for fibres of a
Banach bundle. Actually, also the definition of Tx;0 is only a formal trick which
we explain in a moment.
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Proposition 8.19. The relation (8.5) is indeed an equivalence relation, and the
above vector space operations are well-defined. Moreover, for each chart c for x
the map Lc;x WE ! Tx;0, defined by Lc;xu WD Œ.c; u/�x , is linear, one-to-one,
and onto, and if c0 is another chart for x then L�1

c0;xLc;x D d.c0 ı c�1/.c.x//.

Proof. If .c; u/ D .c0; u0/, we have d.c0 ı c�1/.c.x//u D d.id/.c.x//u D
idE u D u0, hence (8.5) is reflexive. Note that if c and c0 are two charts for x
then Theorem 8.7 implies that

d.c0 ı c�1/.c.x// 2 L.E/ is invertible with inverse d.c ı c�1
0 /.c0.x//. (8.6)

In particular, .c; u/ � .c0; u0/ implies

d.c ı c�1
0 /.c0.x//u0 D .d.c0 ı c�1/.c.x///�1u0 D u,

and so .c0; u0/ � .c; u/. If .c; u/ � .c0; u0/ and .c0; u0/ � .c1; u1/ then
Proposition 8.5 implies

d.c1 ı c�1/.c.x//u D d..c1 ı c�1
0 / ı .c0 ı c�1//.c.x//u

D d.c1 ı c�1
0 /.c0.x//d.c0 ı c�1/.c.x//u D d.c1 ı c�1

0 /.c0.x//u0 D u1,

and so .c; u/ � .c1; u1/. Hence, (8.5) is an equivalence relation. If c; c0 are charts
for x and Œ.c; ui /�x D Œ.c0; vi /�x .i D 0; 1; 2/ then d.c0 ı c�1/.c.x//.u1 C
u2/ D v1 C v2 and d.c0 ı c�1/.c.x//.�u0/ D �v0 which implies Œ.c; u1 C
u2/�x D Œ.c0; v1C v2/�x and Œ.c; �u0/�x D Œ.c0; �v0/�x . Hence, the vector space
operations are well-defined. It is clear from the definitions that Lc;x is linear.
Lc;x is one-to-one since Œ.c; u1/�x D Œ.c; u2/�x implies d.id/.c.x//u1 D u2

and thus u1 D idE u1 D u2. To see that Lc;x is onto, let Œ.c0; u0/�x 2 Tx;0.
By (8.6), we can define u WD .d.c0 ı c�1/.c.x///�1u0, and then obtain d.c0 ı
c�1/.c.x//u D u0. Hence, .c; u/ � .c0; u0/ which implies Lc;xu D Œ.c0; u0/�x .
The latter shows also that Lc;xu D Lc0;xu0 and thus u0 D L�1

c0;xLc;xu. Since
u0 D d.c0 ı c�1/.c.x//u, we obtain the formula for L�1

c0;xLc;x .

Proposition 8.19 implies that if we equip Tx with the topology induced by Lc;x

(we show in the moment that this topology is independent of the choice of c),
then Tx is isomorphic to E. Hence, we could actually have defined Tx;0 WD E

(considering E as a topological vector space, not as a Banach space).
However, in this way it would be harder to describe the relations of Tx;0 when x

varies which is what we will do now: The idea is that, although we do not want
to require that X be embedded as a “surface” in some other space, Tx;0 (and Tx)
should take the role of the “tangent plane” to this surface in the point x (with
origin of Tx;0 in x).
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It is a crucial technical difficulty in this connection that the given data is only
sufficient to describe the topology of Tx (which makes it isomorphic toE) but that
there is no “canonical” norm with which we could equip Tx , since each natural
candidate for a norm depends on the choice of the chart c. Fortunately, for Banach
bundles we only need to know the topology. So let us now give the family Tx

.x 2 X/ the full structure of a Banach bundle:

Definition 8.20. TX WD S

x2X Tx denotes the tangent bundle of the C 1-
manifold X . If c is a chart defined on U � X , we define TcWSx2U Tx !
c.U / � E by Tc.x; Œ.c; u/�x/ WD .c.x/; u/. We equip TX with the topol-
ogy whose basis consists of the sets .T c/�1.O1 � O2/ where c is a chart and
O1; O2 � E are open. The Banach bundle structure of Definition 7.27 comes
with I WD X and hc.x; u/ WD .x; Œ.c; u/�x/ as trivializations of the bundle for
x 2 U .

For a subset M � X , it will be convenient to define TM as the corresponding
restriction of the tangent bundle (with I D M ).

Even if the reader prefers to take another definition of Tx (for instance, in [77]
the equivalence relation is defined immediately for triples .x; c; u/ which avoids
the distinction between Tx;0 and Tx of Definition 8.18), all natural definitions
equip TX with the same topology and the corresponding natural trivializations hc

coming from charts of X . Later, we will only use hc to describe TX and avoid the
usage of the details of TX . However, first we have to prove that we obtain indeed
a Banach bundle.

Proposition 8.21. Tc is well-defined, one-to-one and onto. The topology on TX
is well-defined. If X is a C n-Banach manifold over E .n � 1/ then TX is a
Banach bundle over E and simultaneously a C n�1-Banach manifold over E �E
with Tc as charts. We have hc.x; � / 2 Iso.E; Tx/.

Proof. With Lc;x from Proposition 8.19, we have Tc.x; z/ D .c.x/;L�1
c;xz/, and

so Tc is well-defined, one-to-one, and onto c.U /�L�1
c .Tx;0/ D c.U /�E with

.T c/�1.y; u/ D .x;Lc;xu/ for y D c.x/ and u 2 E.
If c0 is another chart defined on U0 � X and x 2 U \ U0 then c and c0 are

charts for x, and for y D c.x/ and u 2 E, we have by Proposition 8.19 that

.T c0/ ı .T c/�1.y; u/ D .c0.x/;L
�1
c0;xLc;xu/ D .c0.x/; d.c0 ı c�1/.y/u/.

Hence, .T c0/ ı .T c/�1W c.U \ U0/ � E ! c0.U \ U0/ � E is one-to-one and
onto and given by

.T c0/ ı .T c/�1.y; u/ D ..c0 ı c�1/.y/; d.c0 ı c�1/.y/u/. (8.7)
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This map is continuous, and so also the inverse .T c/ ı .T c0/
�1 is continuous,

since it is the same map with just c and c0 exchanged. Thus, .T c0/ ı .T c/�1

is a homeomorphism. It follows that the topology defined in Definition 8.20 is
locally independent of the particular choice of c, and that it is actually the unique
topology such that .T c/�1 is a homeomorphism onto an open subset of TX . In
particular, Tc are homeomorphisms, and

S

x2U T x is open.
Since (8.7) shows also that .T c0/ ı .T c/�1 is of class C n�1, we find that TX

is a Cn�1-Banach manifold with Tc as charts if we can show that TX is Haus-
dorff. Thus, let z1; z2 2 TX , z1 ¤ z2 with zi D .xi ; Œci ; ui �xi

/ .i D 1; 2/. If
x1 D x2, let c be a chart for x1 D x2. Since Tc.z1/ and Tc.z2/ have disjoint
neighborhoods, and Tc is a homeomorphism, it follows that z1 and z2 have dis-
joint neighborhoods. In case x1 ¤ x2, we find disjoint neighborhood Ui � X of
xi .i D 1; 2/, and then

S

x2Ui
Tx are disjoint neighborhoods of zi .i D 1; 2/.

We have hc D .T c/�1ıgc with gcWU �E ! c.U /�E defined by gc.x; u/ WD
.c.x/; u/. Since gc and Tc are homeomorphisms, it follows that hc is a homeo-
morphism. Moreover, hc.x; � / D .x;Lc;x. � // is linear from E into Tx . Hence,
hc are trivializations with open images, and we can apply Proposition 7.26 to
obtain the continuity of the bundle projection.

To see that TX is a Banach bundle, it remains to show that the trivializations hc

satisfy the compatibility required in Definition 7.27. Hence, we have to show that
if c and c0 are two charts on U and U0, respectively, then f .x/ WD hc0

.x; � /�1 ı
hc.x; � / is continuous as a map from U \U0 into L.E/. Using Proposition 8.19,
we calculate

f .x/u D .x;L�1
c0;x ıLc;xu/ D .x; d.c0 ı c�1/.c.x//u/.

Hence, we have to show that x 7! d.c0 ı c�1/.c.x// 2 L.E/ is continuous. This
holds since c is continuous and c0 ı c�1 2 C 1.c.U \ U0/;E/.

For the rest of this section, let X and Y be Banach manifolds over the Banach
space EX and EY over the field K D R or K D C.

In order to avoid confusion, we use the notation TxX and TyY for the tangent
spaces at x 2 X or y 2 Y in the manifolds X and Y , respectively.

Definition 8.22. Let � � X be open F 2 C 1.�; Y /, we define dF .x/ 2
L.TxX;TF .x/Y / by

dF .x/ WD hcY
.F.x/; � / ı d.cY ı F ı c�1

X /.cX .x// ı hcX
.x; � /�1, (8.8)

where cX and cY are charts at x and F.x/, and where hcX
and hcY

denote the
corresponding trivializations of the tangent bundles according to Definition 8.20
(for X and Y , respectively).
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Similarly, if I is a topological space, W � I � X is open and H WW !
Y is a generalized C 1 homotopy, we define the partial derivative dXH.t; x/ 2
L.TxX;TH.t;x/Y / as the value of the derivative of H.t; � / at x.

For the following proof, we have of course to resort to the definition of hcX
and

hcY
.

Proposition 8.23. The above definition is independent of the particular choice of
charts. Moreover, dF 2 L.�; TX; T Y / and dXH 2 L.W; TX; T Y /.

We have dF.x/ 2 Lk.TxX;TF .x/Y / for all x 2 � if and only if F 2
Fk.X; Y /. Similarly, dXH.t; x/ 2 Lk.TxX;TH.t;x/Y / for all .t; x/ 2 W if
and only if H is a generalized Fredholm homotopy of index k.

Proof. By definition of hcX
and hcY

, we have

dF.x/.x; Œ.cX ; u/�x/ D .F.x/; Œ.cY ; d.cY ı F ı c�1
X /.cX.x//u/�F .x//.

By the definition of the equivalence class Œ � �F .x/, the right-hand side is indepen-
dent of the choice of cY , and by definition of Œ.cX ; u/�x it is also independent of
the choice of representatives .cX ; u/ from that class.

For the proof of dXH 2 L.W; TX; T Y /, we choose the trivializations hT WD
hcX

and hS WD hcy
in Definition 7.31. We have to show that

h.t; x/ WD hcy
.H.t; x/; � /�1dXH.t; x/ ı hcx

.x; � /
D d.cY ıH.t; � / ı c�1

X /.cX .x// 2 L.EX ; EY /

is continuous. Since x 7! cX.x/ is continuous, this is clear by the definition of a
generalized partial C 1 homotopy.

For the special choice H.t; x/ WD F.x/ it follows that dF 2 L.�; TX; T Y /.
The last assertion follows from Proposition 7.32.

Proposition 8.24. The chain rule holds also on manifolds, that is, if G and F are
C 1 maps between open subsets of manifolds then

d.G ı F /.x/ D dG.F.x//dF.x/,

in every point x for which .G ı F /.x/ is defined.
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Proof. Let cX , cY , and cZ be charts for x, y WD F.x/, and z WD G.y/ in the
respective manifolds. Then

dF.x/.x; Œ.cX ; u/�x/ D .y; Œ.cY ; d.cY ı F ı c�1
X /.cX.x//u/�y/,

dG.y/.y; Œ.cY ; v/�y/ D .z; Œ.cZ; d.cZ ıG ı c�1
Y /.cY .y//v/�z/,

and Proposition 8.5 implies

d.G ı F /.x/.x; Œ.cX ; u/�x/ D .z; Œ.cZ; d.cZ ıG ı F ı c�1
X /.cX .x//u/�z/

D .z; Œ.cZ; d.cZ ıG ı c�1
Y ı cY ı F ı c�1

X /.cX .x//u/�z/

D .z; Œ.cZ; d.cZ ıG ı c�1
Y /.cY .y//d.cY ı F ı c�1

X /.cX.x//u/�z/

A comparison of these formulas shows the assertion.

Due to Proposition 8.23, we are now finally in a position to define the orienta-
tion of Fredholm operators in Banach manifolds.

Definition 8.25. If � � X is open and F 2 F0.�; Y /, then an orientation
for F on M � � is an orientation for dF jM 2 L0.M; TX; T Y / according to
Definition 7.33.
F is called orientable on M if an orientation exists on M . The couple .F; �/

is called oriented Fredholm on M . Notationally, we just write F and refer to � as
“the orientation” of F on M .

Definition 8.26. If H WW ! Y is a generalized Fredholm homotopy of in-
dex 0 then an orientation for H on M � W is an orientation for dXH jM 2
L0.M; TX; T Y / according to Definition 7.33.
H is called an orientable on M if such an orientation � exists, and we call the

couple .H; �/ an oriented Fredholm homotopy on M . Notationally, we just write
H and refer to � as “the orientation” of H on M .

All results of Theorem 8.13 hold also on Banach manifolds:

Theorem 8.27. Let K D R, E� ¤ ¹0º, � � X be open, I be a topological
space, and W � I � X be open. Let F 2 F0.�; Y / and H WW ! Y be a
generalized Fredholm homotopy of index 0.

(a) � is an orientation for F or H if and only if the (pointwise) opposite orien-
tation is an orientation for F or H , respectively.

(b) Let F (or H ) be oriented and C � � (or C � W ) be connected. Sup-
pose that dF.x/ � Iso.TxX;TF .x/Y / for all x 2 C (or dXH.t; x/ �
Iso.TxX;TH.t;x/Y / for all .t; x/ 2 C ). Then sgnF.x/ (or sgnH.t; � /.x/)
are the same for all x 2 C (or .t; x/ 2 C ).
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(c) If C � � (or C � W ) is connected and � is an orientation for F (or H ) on
C then � is uniquely determined if its value is known in one point of C .

(d) Let I be locally path-connected. If � is simply connected and if in some
point of each component of � or W an orientation for F or H is given then
F and H have a unique corresponding orientation on � or W .

(e) If W D Œ0; 1� �� then H is orientable if and only if H.t0; � / is orientable
for some t0 2 Œ0; 1�. In this case, the orientation ofH is uniquely determined
by the orientation of H.t0; � /.

Proof. In view of Proposition 8.16, the proof of Theorem 8.13 carries over word
by word.

The general analogue of Proposition 8.14 is a bit clumsy to formulate in case of
Banach manifolds since “constantness” of the derivative can only be defined with
the aid of charts and, more severe, also depends on the choice of the chart. We
note only a special case for homotopies which is easy to formulate and sufficient
for most practical purposes.

Proposition 8.28. Let K D R, I be a topological space, W � I � X be open,
and let M � W be of the particular form M D C � ¹xº with some connected set
C � I .

Let H WW ! Y be a generalized Fredholm homotopy of index 0 which is ori-
ented on M . If dXH.t; x/ is independent of t 2 C then also the orientation of
dXH.t; x/ is independent of t 2 C .

Proof. Let cX and cY be charts for x and H.t; x/, respectively. Let hcX
and

hcY
be as in Definition 8.20. Put A.t/ WD cY ı d.H.t; c�1

X . � ///.cX.x//, J1 WD
hcX

.x; � / 2 Iso.TxX;EX / and J2 WD hcY
.H.t; x/; � / 2 Iso.TH.t;x/Y;EY /.

Note that J2 is independent of t 2 C . Then dXH.t; x/ D J2 ı A.t/ ı J�1
1 for

all t 2 C . Since the left-hand side and J2 are independent of t 2 C , also A.t/
is independent of t 2 C . If � denotes the orientation of dXH on M then by
definition s.t/ WD J2 ı �.t; x/ ı J1 must be an orientation for A. Corollary 7.21
implies that s is constant on C , and so � is constant on M .

Let X , Y , and Z be Banach manifolds.

Definition 8.29. Let � � X and U � Y be open, and F 2 F0.�;U /,
G 2 F0.U;Z/ be oriented on M � � and F.M/, respectively. Then the com-
posite orientation of H WD G ı F on M is defined at x 2 M for dH.x/ D
dG.F.x//dF.x/ 2 L.TxX;TH.x/Z/ as the composite orientation of the maps
dF.x/ 2 L.TxX;TF .x/Y / and dG.F.x// 2 L.TF .x/Y; TH.x/Z/.
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Proposition 8.30. Let X , Y , and Z be Banach manifolds. Then the composite
orientation is an orientation on M . Moreover:

(a) If G ı F and G are oriented on M and F.M/, respectively then there is
a unique orientation of F on M such that the orientation on G ı F is the
composite orientation.

(b) If G ı F and F are oriented on M and if F WM ! F.M/ is a homeo-
morphism then there is a unique orientation of G on F.M/ such that the
orientation of G ı F is the composite orientation.

Proof. The assertion follows from Proposition 7.45 with � D F .

We also have a corresponding result for generalized Fredholm homotopies.
Let X , Y , and Z be Banach manifolds, and I be a topological space. Let V �

I�X andW � Œ0; 1��Y be open andH1WV ! Y andH2WW ! Z be Fredholm
homotopies of index 0. Let M � V be such that with OH1.t; x/ WD .t;H1.t; x//

we have OH1.M/ � V . ThenH WD H2 ı OH1 is a generalized Fredholm homotopy
defined in an open neighborhood of M . We define the composite orientation of
H.t; � / as the composite orientation of H2.t; � / ıH1.t; � /.

Proposition 8.31. Consider the above situation. IfH1 andH2 are oriented onM
and M1, respectively, then the composite orientation of H D H2 ı OH1 is an
orientation of H on M . Moreover:

(a) If H and H2 are oriented on M and OH1.M/, respectively, then there is a
unique orientation of H1 on M such that H2 ı OH1 carries the composite
orientation.

(b) If H and H1 are oriented on M and if OH1WM ! OH1.M/ is a homeomor-
phism then there is a unique orientation ofH2 on OH1.M/ such that H2 ı OH1

carries the composite orientation.

Proof. The assertion follows from Proposition 7.45 with � D OH1.

If Xi are manifolds over Banach spaces EXi
.i D 1; 2/, we define the product

manifold X WD X1 � X2 over EX WD EX1
� EX2

such that the charts are given
by '1 ˝ '2 where 'i are charts of Xi for i D 1; 2. By a canonical identification,
it follows that TxX D Tx1

X1 � Tx2
X2 and that TX D TX1 � TX2 as a product

bundle.
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Definition 8.32. If Xi ; Yi .i D 1; 2/ are Banach manifolds, �i � Xi are open
and Fi 2 F0.�i ; Yi / have orientations �i on Mi � �i , then the product orienta-
tion �.x1; x2/ of F1 ˝ F2 2 F0.�1 ��2; Y1 � Y2/ is for .x1; x2/ 2 M1 �M2

defined as the product orientation of �1.x1/ and �2.x2/.

Proposition 8.33. The above defined product orientation is an orientation of F1˝
F2 on M1 �M2.

Proof. The assertion follows from Proposition 7.43.

8.4 A Partial Implicit Function Theorem in Banach
Manifolds

Throughout this section, letX and Y be C 1 Banach manifolds over Banach spaces
EX and EY over the field K D R or K D C.

Definition 8.34. Let U � X be open. A map F 2 C 1.U; Y / is a diffeomorphism
onto an open subset V � Y if F 2 C 1.U; V / is invertible and F�1 2 C 1.V;U /.
If X and Y are of class C r and if also F and F�1 are of class C r , we call F a
C r -diffeomorphism .1 � r � 1/.

Proposition 8.35. Let F be a diffeomorphism from an open subset U � X onto
an open subset of Y . Then the following holds:

(a) dF.x/ 2 Iso.TxX;TF .x/Y / for every x 2 U .

(b) If X and Y are of class C r .1 � r � 1/ then F is a C r -diffeomorphism if
and only if F is of class C r .

Proof. Let cX and cY be charts defined on open neighborhoods U0 � X and
V0 � Y of x and F.x/, respectively, without loss of generality F.U0/ � V0.
Then G WD cY ı F ı c�1

X
is defined on UX WD cX.U0/. The continuity of F�1

implies that UY WD G.UX / is open in V0 and thus open in EY . By hypothesis,
H WD cX ı F�1 ı c�1

Y is differentiable in a neighborhood of G.cX .x//. Clearly,
GWUX ! UY is invertible with inverse H . Theorem 8.7 implies that

d.cY ı F ı c�1
X /.cX .x// D dG.cX .x// 2 Iso.EX ; EY /.

Hence, the first assertion follows from (8.8). For the second assertion, we have to
show that if G is of class C r then also H D G�1 is of class C r . Theorem 8.7
implies dH.v/ D dG.H.v//�1. Defining J as in Proposition 8.10, we thus
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proved dH D J ı dG ıH . For all n < r the functions J and dG are of class Cn

(by Proposition 8.10 or hypothesis, respectively). It follows that if also H is of
class C n then dH is of class C n, and soH is of class CnC1. Hence, an induction
by n implies that H is of class C n for every finite n � r .

This has an important consequence on orientations:

Definition 8.36. Let U � X be open and J 2 C 1.U; V / be a diffeomorphism
onto an open subset V � Y . The natural orientation of J is defined for x 2 U
pointwise such that dJ.x/ 2 Iso.TxX;TJ.x/Y / carries the natural orientation in
the sense of Definition 7.7.

Proposition 8.37. The natural orientations of J is an orientation in the sense of
Definition 8.25.

Proof. The assertion follows from Proposition 7.38.

Let X , Y , X0 and Y0 be Banach manifolds, JX a diffeomorphism of an open
subset �0 � X onto� � X , and JY a diffeomorphism of an open subset V � Y
onto a subset of Y0. For F 2 F0.�; V / and F0 WD JY ı F ı JX , we have by
Proposition 8.24 that

dF0.x/ D dJY .F.JX .x///dF.JX.x//dJX.x/.

Proposition 8.38. In the above setting, there is a one-to-one correspondence be-
tween the orientations � of F and the orientations �0 of F0 which is given by

�0.x/ D dJY .F.JX.x/// ı �.JX .x// ı dJX .x/.

In this case, �0 is the composite orientation of � with the natural orientations of
JX and JY .

Similarly, if I is a topological space and W0 � I � �0 is open then there is
a one-to-one correspondence between the orientations � of generalized Fredholm
maps H WW ! Y with W WD ¹.t; JX .x// W .t; x/ 2 W0º and the orientations �0

of H0WW0 ! Y0,
H0.t; x/ WD JY .H.t; JX .x///,

which is given by

�0.t; x/ D dJY .H.t; JX .x/// ı �.t; JX .x// ı dJX .x/.
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Proof. Corollary 7.8 implies the pointwise one-to-one correspondence, and that
�0 is pointwise the composite orientation. Since the natural orientation is an ori-
entation by Proposition 8.37, the assertion follows from the respective Proposi-
tions 8.30 and 8.31.

The converse of Proposition 8.35 is usually called the inverse function theorem.
In Banach spaces the inverse function theorem reads as follows:

Theorem 8.39 (Inverse Function). Let X and Y be of class C r .1 � r � 1/,
Let U � X be open, and F 2 C r .U; Y /. Then x 2 U has an open neighborhood
U0 � X such that F jU0

is a C r -diffeomorphism onto an open subset V0 � Y if
and only if dF.x/ 2 Iso.TxX;TF .x/Y /. In this case

dF�1.y/ D dF.F�1.y//�1 for all y 2 V0. (8.9)

Proof. This is the special case H.t; x/ D F.x/ of the equivalence (a),(b) of the
subsequent Theorem 8.40; the formula (8.9) follows from (8.10).

Theorem 8.40 (Partial Implicit Function). Let X and Y be of class C r .1 � r �
1/, Let I be a topological space, W � I � X be open, and H WW ! Y be a
generalized partial C r homotopy. Then for .t0; x0/ 2 W and y0 WD H.t0; x0/

the following statements are equivalent.

(a) H.t0; � / is a C r -diffeomorphism of an open neighborhood of x0 onto an
open neighborhood of y0.

(b) dXH.t0; x0/ 2 Iso.Tx0
X;Ty0

Y /.

(c) There are open neighborhoods I0 � I of t0, U � X of x0, and V � Y of
y0, such that I0 � U � W and for each .t; y/ 2 I0 � V there is exactly one
x D G.t; y/ 2 U with .t; x/ 2 H�1.y/, and G is a generalized partial C r

homotopy with

dYG.t; y/ D .dXH.t;G.t; y///
�1 for all .t; y/ 2 I0 � V . (8.10)

The map J.t; y/ WD .t;G.t; y// is a homeomorphism of I0�V onto the open
set H�1.V / \ .I0 � U / with inverse H0.t; x/ WD .t;H.t; x//, and G.t; � /
is a C r -diffeomorphism onto the open set U \ H.t; � /�1.V / with inverse
H.t; � / for each t 2 I0.

Proof. The implication (a))(b) follows from Proposition 8.35. The implication
(c))(a) is trivial. Hence, we have to prove (b))(c). Note that the last part
of (c) follows automatically from the first part, since H.t; � / ıG.t; � / D idV and
H0 ı J D idI0�V by the definition of G, H0, and J .
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We show now that it suffices to prove the first part of (c) for the special case that
W D I � � with some open neighborhood � � X of x0, X D EX , Y D EY ,
and dXH.t; x/ 2 Iso.X; Y / for all .t; x/ 2 W .

To see this, note that there are open neighborhoods I1 � I of t0 and � � X

of x0 with I1 � � � W and such that there is a chart cX of X defined on �
and a chart cY of Y defined on H.I1 � �/. Since H is a generalized partial
C r homotopy, we obtain that the restriction of H0.t; u/ WD cY .H.t; c

�1
X .x///

to W0 WD I1 � cX .�/ is a generalized partial C r homotopy on a neighbor-
hood of .t0; cX .x0//. Moreover, from (8.8), we obtain for u0 WD cX .x0/ that
dXH0.t0; u0/ 2 Iso.EX ; EY /. Proposition 6.10 implies that we can assume,
shrinking I1 and � if necessary that H is a generalized partial Cn homotopy
on W0, and dXH0.W0/ � Iso.EX ; EY /. Using the special case X D EX and
Y D EY with H0 (with I replaced by I1 and W by W0) we obtain open neigh-
borhoods I0 � I1 of t0, U0 � cX .�/ of u0, and V0 � Y of v0 WD cY .y0/

such that for each .t; v/ 2 I0 � V0 there is exactly one x D G0.t; v/ 2 U0 with
.t; x/ 2 H�1

0 .v/, and G0 is a generalized partial C r homotopy satisfying

dYG0.t; y/ D .dXH0.t;G0.t; y///
�1.

We must have V0 � H.I1 ��/, and so V WD c�1
Y .V0/ and U WD c�1

X .U0/ have
the required properties with G.t; y/ D c�1

X .G0.t; cY .y///

Now we prove the mentioned special caseW D I ��,X D EX , Y D EY and
dXH.W / � Iso.EX ; EY /. LetL 2 .0; 1/ be fixed. Let I0 � I be a neighborhood
of t0 and � > 0 such that K�.x0/ � � and

kdXH.t; x/�dXH.t0; x0/k�L=kdXH.t0; x0/
�1k for all .t; x/2I0�K�.x0/.

Shrinking I0 if necessary, we find some " > 0 such that, for all .t; y/ 2 I0 �
K".y0/,

�t;y WD .1� L/�1kdXH.t0; x0/
�1k.ky � y0k C ky0 �H.t; x0/k/ < �.

We show that U WD B�.x0/ and V WD B".y0/ have the required properties.
To see this, we define for .t; y/ 2 I0 � V the auxiliary function

Ft;y.x/ WD x C dXH.t0; x0/
�1.y �H.t; x//

on K�.x0/, noting that the points x D G.t; y/ satisfying .t; x/ 2 H�1.y/ are
exactly the fixed points of Ft;y. We have

dFt;y.x/ D idX �dXH.t0; x0/
�1dXH.t; x/

D dXH.t0; x0/
�1.dXH.t0; x0/ � dXH.t; z//,
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and so Theorem 8.2 implies that Ft;yWKr.x/! X is Lipschitz with constant L.
Moreover,

.1 � L/�1kFt;y.x0/ � x0k � �t;y < r .

Theorem 3.10 implies that Ft;y has exactly one fixed point in Kr.x0/ which,
moreover, belongs to K�t;y

.x0/ � Br.x0/. Thus, GW I0 � V ! U is well-
defined as in the assertion (c), and G.t; y/ 2 K�t;y

.x0/. Since �t;y ! 0 as
.t; y/ ! .t0; y0/, we obtain that G is continuous at .t0; y0/. Putting U0 WD U \
H.t0; � /�1.V /, we have G.t0; � / D H.t0; � /j�1

U0
, and Theorem 8.7 implies that

G.t0; � / is differentiable at y0 and that (8.10) holds at least with .t; y/ D .t0; y0/.
Since dXH.I0 � V / � Iso.EX ; EY /, we can apply the partial assertion which

we proved so far when we replace .t0; y0/ by any other .t; y/ 2 I0�V . We obtain
for every .t; y/ 2 I0� V that G is continuous at .t; y/, G.t; � / is differentiable at
y, and the derivative satisfies (8.10). Since J 7! J�1 is continuous by (6.4), and
since dXH is continuous and also (as we have just shown) G is continuous on
I0 � V , we obtain from (8.10) that dYG is continuous, and so G is a generalized
partial C 1 homotopy. Proposition 8.35 implies that, since H.t; � / is of class C r ,
also the inverse G.t; � / is of class C r .

We point out that Theorem 8.40 is more general than the one which is usually
found in text books where it is usually assumed that H is even C r with respect
to both variables. In the latter case, one obtains of course a stronger conclusion
in view of our pointwise implicit function theorem (Theorem 8.8). For complete-
ness, we sketch how to derive this result from our previous ones:

Theorem 8.41 (Implicit Function). Let in Theorem 8.40 also I be a Banach man-
ifold of class C r and H 2 C r .W; Y /. Then the function G in Theorem 8.40(c) is
C r , and also dIG.t; y/ exists and satisfies

dIG.t; y/ D �dXH.t;G.t; y//
�1dIH.t; y/. (8.11)

Proof. To see that G is of class C r if Theorem 8.40(b) holds, we apply Theo-
rem 8.39 with the auxiliary map F.t; x/ WD .t;H.t; x// whose inverse is given
by F�1.t; y/ WD .t;G.t; y//: An analogous calculation as in the proof of Theo-
rem 8.8 shows by the operator matrix representation that

dF.t; x/ 2 Iso.TtI�TxX;TtI�TH.t;x/Y / D Iso.T.t;x/.I�X/; TF .t;x/.I�Y //
if dXH.t; x/ 2 Iso.TxX;TH.t;x/Y /. Hence, Theorem 8.39 implies that F�1 is
of class C r which implies that G is of class C r . The formula (8.11) follows
from (8.9) and from the operator matrix representation of dF.t; x/ analogously to
the proof of Theorem 8.8.
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We will now prepare corresponding results for Banach manifolds with bound-
aries. Let us first introduce the latter.

Definition 8.42. Any f 2 E� defines a closed halfspace EC � E by EC WD
¹x 2 E W Ref .x/ � 0º.

It is formally easier for us to allow also f D 0 in the above definition, although
then the notion “halfspace” is slightly misleading.

Note that @EC D ¹x 2 E W Ref .x/ D 0º if f ¤ 0. We need to define deriva-
tives of maps on @EC:

Proposition 8.43. LetU � E and F WEC\U ! Y . Suppose that x0 2 @EC\ VU .
If F has an extension F WU ! Y which is Gateaux differentiable at x0 then
dF.x0/ is independent of this extension.

Proof. From the definition of the Gateaux derivative, we find that dF.x0/h is
uniquely determined for all h 2 EC. Moreover, for h 2 E n EC, we have
�h 2 EC, and thus also dF.x0/h D �dF.x0/.�h/ is uniquely determined.

Proposition 8.43 implies that if an extension of F exists, we can speak about
dF.x0/ uniquely.

Definition 8.44. A manifold with boundary is defined analogously to a manifold
with the difference that the charts map not onto open subsets of E but onto open
subsets of closed halfspaces ofE. The C n smoothness of cj ıc�1

i is understood in
the sense that this map is required to map the boundary parts of the corresponding
halfspaces onto each other and has an extension to an invertible C n-map of an
open subset of E with a C n inverse. The boundary @X of X consists by definition
of all points which are mapped by a chart onto a boundary point of a halfspace.

Remark 8.45. In case n � 1, the inverse function theorem implies that interior
points of halfspaces have open neighborhoods which are mapped by cj ıc�1

i onto
open subsets of E so that the assumption that the boundary points of halfspaces
are mapped onto the corresponding boundary points of halfspaces is satisfied auto-
matically. In case of finite-dimensional manifolds, the same holds also for n D 0,
but we will prove this only much later (Theorem 9.94).

Remark 8.46. In case K D R, the boundary @X is a Banach manifold over N.f /
for f 2 E� n ¹0º.
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Definition 8.47. In Definition 8.44, we understand d.cj ı c�1
i / also for points

from ci.@X/ in the sense of Proposition 8.43. With this obvious extension, we
define the tangent bundle TX analogously as before. In particular, Tx is defined
even if x 2 @X .

The main reason why we need manifolds with boundaries is the following ex-
ample:

Example 8.48. IfX is a C n-manifold (without boundary) then Œ0; 1��X becomes
in a natural way a Cn-manifold with boundary .¹0º � X/ [ .¹1º � X/ (in case
K D R).

We recall that X is assumed in this section to be a C 1 manifold over a Banach
space EX . We now also allow that X is a C 1 manifold over EX with boundary.

Definition 8.49. If X is of class C n and � � X is open then a map F W� ! Y

is of class C n (and we write F 2 C n.�; Y / or F 2 C n) if for any chart cX
and cY of X and Y the composition cY ı F ı c�1

X is C n (where defined), where
the latter means on the boundary of a halfspace that this map has a C n-extension
defined on an open subset of E. In the sense of Proposition 8.43 we define then
dF.x/ 2 L.Tx ; Ty/ even if x 2 @X .

In case n � 1 and if each of the derivatives of these maps in every point of the
halfspace (including the boundary) belongs to Lk.E; Y /, we call F Fredholm of
index k and write F 2 Fk.�; Y /.

Remark 8.50. In view of Theorem 6.40, we can assume for F 2 Fk.�; Y / that
the extension of cY ı F ı c�1

X to the open subset of E is Fredholm of index k.

Theorem 8.51 (Implicit Function with Boundary). The assertion of Theorem 8.41
remains valid if I is a manifold with boundary.

Proof. Note that we already know by Theorem 8.40 that G is a homeomorphism,
that is, we really only have to prove that G is of class C r and satisfies (8.11).
However, the latter follows as in Theorem 8.41 by just extending the considered
functions.

8.5 Transversal Submanifolds

Throughout this section, we assume that X and Y are C 1 Banach manifolds over
Banach spaces EX and EY over the field K D R or K D C. The Banach mani-
fold X might have a boundary, but Y is assumed to be without boundary.
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Definition 8.52. A subset X0 � X is called a submanifold of dimension m of
class C r .0 � r � 1/ if for each x 2 X0 there is an open neighborhood U � X

of x, a C r -diffeomorphism c of U onto an open subset of EX , and a comple-
mented subspace E0 � EX of dimension m such that X0 \ U D c�1.E0/. We
call such a couple .c;E0/ a submanifold chart for x.

A subset X0 � X is a submanifold with boundary of dimension m, if for each
x 2 X0 there is an open neighborhood U � X of x, a diffeomorphism c of U
onto an open subset of E, a complemented subspace E0 � E of dimension M
and a halfspace E0;C � E0 of E0 such that X0 \ U D c�1.E0;C/.

Note that we do not define infinite-dimensional submanifolds, and for this rea-
son we do not have to care whether E0 is dependent on x or not: Every submani-
fold of dimension m can be considered as a manifold over Km in the following
manner.

Given a submanifold X0 of X of dimension m and if .c;E0/ is a submanifold
chart, we compose the maps cjX0\U with an isomorphism Jc 2 Iso.E0;Km/.
Then X0 becomes a manifold over Km of class C r whose atlas consists of all
these compositions c0 WD Jc ı cjX0\U . Concerning the tangent bundle, we note
that the definition of TX changes only formally when we add the map c to the
atlas of X for a moment.

We do this only to define hc correspondingly according to Definition 8.20; once
hc is known, we can return to our previous atlas of X . Now it is clear that

IX0
.x; � / WD hc.x; � / ı .hc0

.x; � / ı Jc/
�1 2 Iso.TxX0; TxX/,

where hc0
denotes the trivialization of TX0 according to Definition 8.20.

Proposition 8.53. IX0
is independent of the particular choice of c and Jc , hence

it defines a map IX0
WTX0 ! TX .

Proof. We fix x 2 U . Putting g WD hc0
.x; � / ı Jc , we calculate g.x; u/ D

.x; Œ.c0; Jcu/�x;X0
/, where the notation should indicate that the equivalence rela-

tion has to be understood in X0. Hence,

IX0
.x; Œ.Jc ı cjX0\U ; Jcu/�x;X0

/ D .x; Œ.c; u/�x;X /.

Now if Oc and OJ are possibly different choices, we have with Ou WDd. Ocıc�1/.c.x//u

that Œ. Oc; Ou/�x;X D Œ.c; u/�x;X , and so we are to show that

Œ. OJ ı OcjX0\U ; OJ Ou/�x;X0
/ D Œ.Jc ı cjX0\U ; Jcu/�x;X0

.
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This means, we are to show that

d. OJ ı OcjX0\U ı cj�1
X0\U ı J�1

c /.Jcc.x//Jcu D OJ Ou.

By the chain rule, the left-hand side becomes

OJd. OcjX0\U ı cj�1
X0\U /.c.x//u D OJd. Oc ı c�1/.c.x//u,

and this is OJ Ou, as required.

Since IX0
is a homeomorphism onto its range and IX0

.x; � / is an isomorphism,
we can identify TX0 with its image under IX0

. We make this identification from
now on, hence understanding TX0 as a subset of TX .

With this identification, TxX0 is a subspace of TxX . Note that the trivializa-
tions of the tangent bundle TX0 are by definition of IX0

given by

hc0
.x; � / D IX0

.x; � /�1 ı hc.x; � / ı J�1
c ,

where we still use the above notation. In the sense of the identification, we can
thus say that the trivializations are given by

Ohc.x; � / D hc.x; � / ı J�1
c ,

where .c;E0/ is a submanifold chart and Jc 2 Iso.E0;Km/. In particular, in the
sense of the identification, we have

TxX0 D hc.¹xº �E0/.

Definition 8.54. Let� � X be open, F 2 Fk.�; Y /, and Y0 � Y be a submani-
fold. Then Y0 is called transversal to F onM � X if for each x 2M \F�1.Y0/

the subspace TF .x/Y0 � TF .x/Y is transversal to dF.x/ 2 Lk.TxX;TF .x/Y /.

In finite-dimensional spaces, it is mathematical folklore that the following re-
sult is essentially a reformulation of the inverse function theorem, see e.g. [77,
Chapter 1, Section 3] or [1, Theorem 1.7 and §17]. We have chosen the defini-
tions such that essentially the same results hold in infinite-dimensional spaces.
Note that [1, §17] treats also infinite-dimensional spaces, but e.g. the definition of
transversality is slightly different, and it seems that it is much harder to verify in
case of Fredholm operators than our definition. Moreover, the case of manifolds
with boundary is not treated in [1].
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Theorem 8.55 (Transversality). Let F 2 Fk.X; Y / \ C r .X; Y / where X and Y
are C r manifolds .1 � r � 1), Y without boundary. Let Y0 � Y be a submani-
fold of class C r of dimension m without boundary which is transversal to F on
an open subset M � X . Let X0 WDM \ F�1.Y0/ ¤ ¿.

IfX0 does not contain a point from @X then kCm � 0, andX0 is a submanifold
of X of dimension k Cm of class C r without boundary.

If X0 contains a point from @X , assume in addition that K D R and that
Y0 is transversal to F j@X 2 C r .@X; Y / on @X . Then k C m � 1, and X0

is a submanifold of dimension k C m of class r with boundary @X0 D X0 \
@X .

In both cases, F0 WD F jX0
2 Fk.X0; Y0/, TxX0 D dF.x/�1.TF .x/Y0/ in the

sense of the above described identification of the tangent spaces, and dF0.x/ D
dF.x/jTxX0

.

Proof. Let x0 2 X0, V0 � Y be open, and .cY ; Z0/ be a submanifold chart
for y WD F.x0/, cY WV0 ! EY , of the submanifold Y0 � Y . Without loss of
generality, we assume cY .y/ D 0. Let hcY

denote the trivialization of Y described
above. By hypothesis, the subspace TyY0 D hcY

.¹yº � Z0/ is transversal to
dF.x0/.

Let cWU0 ! EX be a chart for x0, without loss of generality c.x0/ D 0. Re-
placing U0 by U0 \ M \ F �1.V0/ if necessary, we can assume that U0 � M

and F WU0 ! V0. Then G WD cY ı F ı c�1 is by hypothesis a C r Fred-
holm map from the open neighborhood U WD c.U0/ of 0 D c.x0/ into EY

with G.0/ D 0 (in case of x0 2 @X we consider an extension of G). In par-
ticular, A WD dG.0/ 2 Lk.EX ; EY /. Since TyY0 is transversal to dF.x0/, we
obtain from (8.8) that Z0 D hcY

.x0; � /�1.TyY0/ is transversal to A. Apply-
ing Proposition 6.43, we find that E0 WD A�1.Z0/ has dimension m C k � 0,
A0 WD AjE0

2 Lk.E0; Z0/, and that there are closed subspaces E1 � EX and
Z1 � EY with EX D E0 ˚ E1, EY D Z0 ˚ Z1 and such that A1 WD AjE1

2
Iso.E1; Z1/.

By Proposition 6.18, there is a projection P 2 L.EX/ with R.P / D E0 and
N.P / D E1, and Q WD idEX

�P is the unique projection with R.Q/ D E1

and N.Q/ D E0. There is also a projection S 2 L.EY / with R.S/ D Z1 and
N.S/ D Z0. Then Q1 WD A�1

1 SA 2 L.EX/ is a projection with R.Q1/ D E1

and E0 � N.Q1/. Since EX D E0 ˚ E1, it follows that E0 D N.Q1/ and thus
Q1 D Q, that is, A�1

1 SA D Q.
We define J 2 C r .U;EX / by J.u/ WD Pu C A�1

1 SG.u/. Then J.0/ D 0

and dJ.0/ D P C A�1
1 SA D P C Q D idEX

2 Iso.EX /. Shrinking U0 and
thus U D c.U0/ if necessary, we find by the inverse function theorem for Banach
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spaces that J is a diffeomorphism onto an open neighborhood V1 � cY .V0/ of
0 D cY .y/. For u D c.x/ 2 U , we have

x 2 X0 ” cY .F.x// 2 Z0 ” G.u/ 2 Z0 ” J.u/ 2 E0.

Hence, if x0 … @X , a required submanifold chart for x0 is given on U0 by . Oc;E0/

with Oc D J ı c�1.
Concerning the last assertion, we note that with hc as in Definition 8.20, we

have

dF.x0/ D hcY
.F.x0/; � / ı dG.0/ ı hc.x0; � /�1

D hcY
.F.x0/; � / ıA ı hc.x0; � /�1 2 L.Tx0

X;TyY /.
(8.12)

Hence,

dF.x0/
�1.TyY0/ D hc.¹x0º � A�1.Z0// D hc.¹x0º �E0/ D Tx0

X0.

We put now G0 WD cY ı F0 ı . OcjX0
/�1 D GjE0

. Then G0 2 C r.E0; Z0/, and
so F0 2 C r.X0; Y0/. Moreover, dG0.0/ D dG.0/ ı idE0

D A0 2 Lk.E0; Z0/,
and so dF0.x0/ 2 Lk.X0; Y0/. Since Proposition 8.21 implies similarly as above
that

dF0.x0/ D hcY
.y; � / ı dG0.v0/ ı h Oc.x0; � /�1

D hcY
.y; � / ıA0 ı h Oc.x0; � /�1 2 L.TxX0; TyY0/,

we obtain by comparison with (8.12) that dF0.x0/ D dF.x0/jTx0
X0

. Since
x0 2 X0 was arbitrary, we thus have shown the last assertion.

If x0 2 @X (hence K D R), we work throughout with extensions of the
considered maps, thus assuming that U is open in EX . Applying first what
we proved so far with the manifold @X , we find that U0 \ X0 \ @X is a sub-
manifold of @X of dimension m C k � 1 � 0. This is a submanifold of X .
Now using the above construction in X , we find that this submanifold is mapped
by the diffeomorphism Oc onto a submanifold M0 of E0 of the same dimension
mC k � 1.

Using a chart of the submanifold M0 and shrinking U if necessary, we find
that there is a C r -diffeomorphism J0 of E0 \ U onto an open subset of E0 such
that J0.M0 \ U / is an open subset of a linear subspace E0;0 � E0 of dimension
mC k � 1 D dimE0 � 1, and J0.0/ D 0.

Then J1 WD QC.J0ıP / is C r and satisfies dJ1.0/ D QCdJ0.0/P , in partic-
ular dJ1.0/jE0

D dJ0.0/ 2 Iso.E0/ and dJ1.0/jE1
2 Iso.E1/. Proposition 6.21

implies that dJ1.0/ 2 Iso.EX /, and by the implicit function theorem, we can thus
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assume (shrinking U if necessary) that J1WU ! EX is a C r -diffeomorphism
onto an open subset of EX , J1jE0\U D J0jE0\U , and J�1

1 .E0/ D E0 \ U .
We thus have constructed a C r -diffeomorphism ' WD J1 ı Oc with '�1.E0/ D

X0 \ U0 and '�1.E0;0/ D X0 \ U0 \ @X . There is f 2 E�
0 n ¹0º with

E0;0 D N.f /. Shrinking U0 if necessary, we can assume that I WD U0 n @X is
connected, and so also .f ı '/.I / � R n ¹0º is connected. Replacing f by �f if
necessary, we thus can assume without loss of generality that .f ı'/.I / � .0;1/.
Putting E0;C WD ¹x 2 E0 W f .x/ � 0º, we have then U0 D '�1.E0;C/ and
U0 \ @X D '�1.@E0;C/. This shows that ' is the required submanifold chart,
and U0 \X0 \ @X D U0 \ @X0.

The special case Y0 D ¹yº of Theorem 8.55 deserves a separate formula-
tion. In [77], Theorem 8.55 is even reduced to this special case (in the finite-
dimensional setting), but we have chosen to prove Theorem 8.55 independently,
since it seems that in the infinite-dimensional setting this reduction would be more
complicated than our above proof of Theorem 8.55.

Definition 8.56. A point x 2 X is called a regular point of F 2 C 1.X; Y / if
dF.x/ 2 L.TxX;TF .x/Y / is onto TF .x/Y ; otherwise, x is a critical point. A
point y 2 Y is called a regular value of F 2 C 1.X; Y / if each point of F�1.y/

is regular, otherwise critical value.

In other words: y is regular value of F if and only if ¹yº is transversal to F on
X .

Corollary 8.57. Let F 2 Fk.X; Y /. Let y 2 Y be a regular value of F , and
X0 WD F �1.y/ ¤ ¿. If X0 does not contain a point from @X then k � 0, and X0

is a submanifold of X of dimension k without boundary, and TxX0 D N.dF.x//
.x 2 X0/.

IfX0 contains a point from @X , we assume in addition that K D R and that y is
a regular value for F j@X 2 C 1.@X; Y /. Then k � 1, and X0 is a submanifold of
dimension k with boundary @X0 D X0 \ @X , and TxX0 D N.dF.x// .x 2 X0/.

Proof. This is the special case Y0 D ¹yº of Theorem 8.55

Remark 8.58. In case k D 0 the statement that F �1.y/ is a submanifold of
dimension 0 means that F �1.y/ is discrete, that is, each point x 2 F�1.y/ has
an open neighborhood which is disjoint from F�1.y/ n ¹xº.

Of course, this special case could have been obtained much more straightfor-
wardly by the inverse function theorem.
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8.6 Parameter-Dependent Transversality and Partial
Submanifolds

We define the notion of transversality also for generalized Fredholm homotopies
in the obvious manner:

Definition 8.59. Let I be a topological space, X and Y be a Banach manifolds,
W � I � X be open, and H WW ! Y be a generalized Fredholm homotopy.
Then a submanifold Y0 � Y is transversal to H on M � W if Y0 is transversal
to H.t; � / on Mt WD ¹x W .t; x/ 2 M º for every t 2 I .

The remainder of this section serves mainly as a preparation of tools needed
to prove the homotopy invariance of the Benevieri-Furi coincidence degree. The
reader not interested in this proof (or confined with the proof for C 1 homotopies)
may skip this section (or read only Remark 8.64, respectively).

The main observation is that there is also a parameter-dependent version of
Theorem 8.55 for Fredholm homotopies. We formulate it only for manifolds X
without boundaries.

Theorem 8.60. LetX and Y be C r manifolds without boundary with 1 � r � 1.
Let I be a topological space, W � I � X be open, and H WW ! Y be a
generalized Fredholm homotopy of index k. Let Y0 � Y be a submanifold of
class C r of dimension m without boundary which is transversal to H on W . Let
Xt WD H.t; � /�1.Y0/ and x0 2 Xt0

. Then k C m � 0, and there are open
neighborhoods I0 � I of t0, U � X of x0, an open neighborhood V � EX of
0, a complemented subspace E0 � EX of dimension k C m, and a generalized
partial C r homotopy H0W I0 � V ! X with the following properties.
H0.t0; 0/ D x0 and H0.¹tº � .E0 \ V // \ U D Xt \ U for all t 2 I0.

H0.t; � / is a C r -diffeomorphism onto an open subset of X , and H1.t; x/ WD
.t;H0.t; x// is a homeomorphism onto an open subset of W . The inverse of H1

is also a generalized partial C r homotopy. If I is a manifold (with or without
boundary) of class C q .1 � q � r/ and if H is of class C q then H1 is even a
C q-diffeomorphism.

Proof. Let .cY ; Z0/ be a submanifold chart for y WD H.t0; x0/ where cY WV0 !
EY with some open V0 � EY . Without loss of generality, let cY .y/ D 0. Let
hcY

denote the trivialization of Y described after Proposition 8.53. Since Y0 is
transversal of H on W , the subspace TyY0 D hcY

.¹yº � Z0/ is transversal to
dXH.t0; x0/.

Let U0 � X be an open neighborhood of x0 and cWU0 ! EX be a chart of X ,
without loss of generality c.x0/ D 0. Shrinking U0 if necessary, we can assume
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that there is an open neighborhood I0 � I of t0 such that I0 � U0 � W and
H.I0 � U0/ � V0. Then G.t; u/ WD cY .H.t; c

�1.u/// is by hypothesis a partial
Fredholm homotopy of index k from the open neighborhood I0 � c.U0/ of .t0; 0/
into EY with G.t0; 0/ D 0. In particular, A WD dXG.t0; 0/ 2 Lk.EX ; EY /.
By (8.8), we have that Z0 D hcY

.x0; � /�1.TyY0/ is transversal to A. Applying
Proposition 6.43, we find with E0 WD A�1.Z0/ that A0 WD AjE0

2 Lk.E0; Z0/,
and that there are closed subspaces E1 � EX andZ1 � EY withEX D E0˚E1,
EY D Z0 ˚Z1 and such that A1 WD AjE1

2 Iso.E1; Z1/.
By Proposition 6.18, there is a projection P 2 L.EX/ with R.P / D E0 and

N.P / D E1, and Q WD idEX
�P is the unique projection with R.Q/ D E1

and N.Q/ D E0. There is also a projection S 2 L.EY / with R.S/ D Z1 and
N.S/ D Z0. Then Q1 WD A�1

1 SA 2 L.EX/ is a projection with R.Q1/ D E1

and E0 � N.Q1/. Since E D E0 ˚ E1, it follows that E0 D N.Q1/ and thus
Q1 D Q, that is, A�1

1 SA D Q.
We define a partial C r homotopy G0W I0� c.U0/! EX by G0.t; u/ WD PuC

A�1
1 SG.t; u/. Then dXG0.t0; 0/ D P C dXG.t0; 0/ D P C A�1

1 SA D P C
Q D idEX

2 Iso.EX /. Shrinking I0 and U0 if necessary, we find by the partial
implicit function theorem (Theorem 8.40) that there is a neighborhood V � EX

of 0 and a uniquely defined partial C 1 homotopy J W I0 � V ! c.U0/ satisfying
G0.t; J.t; v// D v such that OH1.t; x/ WD .t; J.t; v// is a homeomorphism onto an
open subset of I �EX and J.t; � / is a diffeomorphism onto an open subset ofEX .
Theorem 8.51 implies that OH1 is even a C q-diffeomorphism if I is a manifold of
class C q and H and thus G and G0 are of class C q .

Shrinking I0 if necessary, we can assume that there is some open neighborhood
U1 � c.U0/ of 0 with G0.I0 � U1/ � V . For .t; u/ D .t; c.x// 2 I0 � U1, we
calculate

x 2 Xt ” cY .H.t; x// 2 Z0 ” G.t; u/ 2 Z0

” G0.t; u/ 2 E0 ” u 2 J.¹tº � .E0 \ V //.
Hence, c�1.J.¹tº�.E0\V //\U1/ D Xt\c�1.U1/. The assertion thus follows
with U WD c�1.U1/ and H0 WD c�1 ı J .

Theorem 8.60 motivates the following definition which we will extend in a
moment to submanifolds:

Definition 8.61. Let I be a topological space, and Z � I � X . For t 2 I ,
let Xt � X be manifolds of class C r .0 � r � 1/, Zt WD ¹tº � Xt , and
Z D S

t2Œ0;1�Zt .
We call Z a partial C r manifold over a Banach space E if it is equipped with

a family of maps (the partial charts) such that for each .t0; x0/ 2 Z there is a
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partial chart cWU ! I � E defined on an open neigbhorhood U � Z of .t0; x0/

such that c has the form c.t; x/ D .t; c0.t; x// where c0.t; � /WU \Xt ! E is the
restriction of a chart of Xt . Moreover, we require that for each two charts c1; c2

the composition c2 ı c�1
1 is a generalized partial C r homotopy.

In case r � 1, the partial tangent bundle TXZ overE of such a partial manifold
is defined as the union

S

.t;x/2Z TxZt where the topology is chosen such for
each chart c the trivializations are given by Hc..t; x/; u/ WD .t; hc.t; � /.u// where
hc.t; � / denotes the trivialization of TXt .

We call a continuous map H WZ ! Y a generalized partial C r homotopy if for
each partial chart c of Z the map H ı c�1 is a generalized partial C r homotopy.

Concerning submanifolds, the definition is as follows:

Definition 8.62. In the above situation, we call Z a partial C r submanifold of
I � X of dimension n if for each .t0; x0/ 2 Z there is partial submanifold chart
.c;E0/ for .t0; x0/, that is: E0 � EX is a complemented subspace of dimension
n, there is an open neighborhood U � Z of .t0; x0/, cWU ! I � EX is a ho-
moemorphism onto an open subset of I � EX of the form c.t; x/ D .t; c0.t; x//

where .c0.t; � /;E0/ is a submanifold chart for U \ Xt of class C r and c0 is a
partial C r homotopy.

Analogously to the case of ordinary submanifolds, we obtain that each partial
submanifold is a partial manifold over Kn by defining the partial charts as Oc D
.idI ˝J / ı c where .c;E0/ is a submanifold chart and J 2 Iso.E0;Kn/. Note
that the finite-dimensionality of Kn implies automatically that for each two such
partial charts Oci .i D 1; 2/ the map Oc2 ı Oc�1

1 is a generalized partial C r homotopy.

Corollary 8.63. Let X and Y be C r manifolds without boundary .1 � r � 1/,
let I be a topological space, and let W � I � X be open, and H WW ! Y

be a generalized Fredholm homotopy of index k, partial C r . Let Y0 � Y be a
submanifold of dimension m without boundary which is transversal to H on W .
Then Z WD H�1.Y0/ is empty or a partial C r submanifold of I �X of dimension
k C n.

If in addition I is a C q manifold of dimension n .0 � q � r/, possibly with
boundary, and if in addition H 2 C q.W; Y / then Z is also a submanifold of
I �X of class C q of dimension kCmCn with boundary @Z D Z\ ..@I /�X/.
Proof. The inverse of the map H1 of Theorem 8.60 serves as a submanifold chart
at .t0; x0/ 2 Z.
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Remark 8.64. For the case q D r , Corollary 8.63 is contained in Theorem 8.55
since Y0 is transversal to J.t; x/ WD .t;H.t; x//, and moreover, by hypothesis
also transversal to the restriction of J to @W D W \ .@I �X/. However, it seems
that the assertion for q < r (in particular, q D 0 < 1 � r is needed for the proof
of the homotopy invariance of the Benevieri–Furi coincidence degree) cannot be
obtained from Theorem 8.55 directly.

8.7 Orientation on Submanifolds and on Partial
Submanifolds

Throughout this section, we assume that X and Y are Banach manifolds without
boundary over Banach spaces EX andEY , respectively, and that I is a topological
space.

In case k D 0 in Theorem 8.55, we have F0 WD F jX0
2 F0.X0; Y0/ and that

dF0 is the restriction of A WD dF.x/ to TxX0. Note that TF .x/Y0 is transversal
to A. Hence, if F is an oriented Fredholm operator, then we obtain an inherited
orientation for dF0.x/ for every x 2 X0 by Definition 7.15.

Definition 8.65. If F 2 F0.X; Y / in Theorem 8.55 is an oriented Fredholm oper-
ator then for x 2 X0 the inherited orientation �.x/ of F0 WD F jX0

2 F0.X0; Y0/

is defined as the inherited orientation of dF0.x/ as above.

We will show in a moment that this is indeed an orientation.
However, we do this in the more general context of Fredholm homotopies, since

we will need the latter for the proof of the homotopy invariance of the Benevieri-
Furi coincidence degree.

Note that if W � I � X is open, and if Y0 is transversal to a generalized
Fredholm homotopy H WW ! Y of index 0, then we can apply Theorem 8.55
with F D H.t; � /. In particular, Xt WD H.t; � /�1.Y0/ is a submanifold.

Definition 8.66. If H is an oriented generalized Fredholm homotopy of index 0
then the inherited orientation �.t; x/ for H.t; � /jXt

2 F0.Xt ; Y0/ is defined as in
Definition 8.65 with F D H.t; � /.

Proposition 8.67. The inherited orientation of a Fredholm map is an orientation
in the sense of Definition 8.25. The inherited orientation of a generalized Fred-
holm homotopy has the property that it is an orientation of dXH , considered as a
map of the partial tangent bundle TXH

�1.Y0/ into the tangent bundle T Y .
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Proof. We show the assertion for generalized homotopies, since the assertion for
maps is the special case H.t; � / D F . For .t0; x0/ 2 Z WD H�1.Y0/ let H1,
V , and E0 be as in Theorem 8.60. Putting c D H�1

1 , we have that .c;E0/ is a
partial submanifold chart of TXZ. Moreover, c is a partial chart for TXW . Then
dXH1.t; x/ 2 L.EX ; T.t;x/W / can be considered as a trivialization of TXZ (up
to a composition with isomorphisms). Moreover, forH0 WD H1jV \E0

2 C.V;Z/
the map h1.t; x/ WD dXH0.t; x/ 2 L.E0; T.t;x/Z/ is a trivialization of TXZ. It
is crucial for us that h1 is just a restriction of dXH1.

Similarly, let .cY ; Z0/ denote a submanifold chart of Y0 for h.t0; x0/, and let
hcY

denote the corresponding trivialization of T Y . Then a trivialization h2 of
T Y0 is just given by a restriction of hcY

similarly as above.
Let � and �0 denote the original and inherited orientation, respectively. By

Proposition 7.34, we know that

s.t; x/ WD hcY
.H.t; x/; � /�1 ı �.t; x/ ı dXH1.t; x/ � L.EX ; EY /

is an orientation for

A.t; x/ WD hcY
.H.t; x/; � /�1 ı dXH.t; x/ ı dXH1.t; x/ 2 L.EX ; EY /

in a neighborhood of .t0; x0/, and we have to prove that

s0.t; x/ WD h2.H.t; x/; � /�1 ı �0.t; x/ ı dH1.t; x/ � L.E0; Z0/

is lower semicontinuous at x0. Thus, let K0 2 s.t0; x0/, that is

OK0.t; x/ WD h2.H.t; x/; � / ıK0 ı dXH1.t; x/
�1

satisfies OK0.t0; x0/ 2 �0.x/. By Definition 7.15, there is some K 2 �.t0; x0/

with R.K/ � TyY0 and OK0.t0; x0/ D KjTx0
Xt0

. Then

K1 WD hcY
.H.t0; x0/; � /�1 ıK ı dXH1.t0; x0/

belongs to s.t0; x0/. By Theorem 7.20, there is an open neighborhood U0 of
.t0; x0/ with K1 2 s.t; x/ for all .t; x/ 2 U0. It follows that

OK.t; x/ WD hcY
.H.t; x/; � / ıK1 ı hc.x; � /�1 2 �.t; x/

for all .t; x/ 2 U0. Since R.K1/ � Y0, we have R. OK.t; x// � TH.t;x/Y0. Hence,
OK.t; x/jTxX0

2 �0.t; x/ for all .t; x/ 2 U0 which means K0 2 s0.t; x/ for all
.t; x/ 2 U0. In particular, s0 is lower semicontinuous at .t0; x0/, as required.

For regular values, the orientations obtain the natural meaning:
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Proposition 8.68. Let � � X be open, F 2 F0.�; Y /, and Y0 � Y a finite-
dimensional submanifold which is transversal to F on �. Then X0 WD F�1.Y0/

is empty or a submanifold of the same dimension as Y0, and F0 WD F jX0
2

F0.X0; Y0/. Moreover:

(a) A point x 2 X0 is a regular point of F0 if and only if it is a regular point of
F .

(b) A value y 2 Y0 is a regular value of F0 if and only if it is a regular value of
F .

(c) If F is oriented on x 2 X0 and F0 carries the inherited orientation then

sgndF.x/ D sgndF0.x/ (8.13)

Proof. The assertions about X0 and F0 follow from Theorem 8.55. The Fredholm
alternative (Proposition 6.33) implies that x 2 X0 is a regular point of F0 or F if
and only if dF0.x/ 2 Iso.TxX0; TF0.x/Y0/ or dF.x/ 2 Iso.TxX;TF .x/Y0/, re-
spectively. The latter two are equivalent by Corollary 7.17, because Theorem 8.55
implies dF0.x/ D dF.x/jTxX0

, and because TF0.x/Y0 D TF .x/Y0 is transversal
to dF.x/. Corollary 7.17 implies also (8.13) if dF.x/ is oriented and dF0.x/

carries the inherited orientation. The assertion about regular values follows from
the assertion about regular points and the fact that F�1.y/ D F�1

0 .y/ for every
y 2 Y0.

8.8 Existence of Transversal Submanifolds

Throughout this section, we assume that X and Y are Banach manifolds without
boundary over Banach spaces EX andEY , respectively, and that I is a topological
space.

Note that by a closed submanifold of Y we just mean a submanifold which is
closed in Y in the sense of the topology.

Proposition 8.69 (Stability of Transversality). Let W � I � X be open, and
Y0 � Y be a closed submanifold of finite dimension which is transversal to a
generalized Fredholm homotopy H WW ! Y on M � W . Then there is an open
neighborhood U � W of M such that Y0 is transversal to H on U .

Proof. Let U be the union of all open sets O � W such that Y0 is transversal
to H on O. Then Y0 is transversal to F on U , and we have to show that M � U .
Thus, let .t0; x0/ 2M .
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In the case .t0; x0/…H�1.Y0/, the continuity ofH implies that O WDH�1.Y n
Y0/ is an open neighborhood of .t0; x0/. Trivially, Y0 is transversal to H on O,
and so O � U .

In the case .t0; x0/ 2 H�1.Y0/, let cWU ! EX be a chart for x0 2 X , and let
.cY ; E0/, cY WV ! EY , be a submanifold chart for y D H.t0; x0/ 2 Y . Let hcY

be the corresponding trivializations of T Y at y which by our identification (after
composition with an isomorphism) can be understood also as a trivialization of
T Y0 at y. We put

A.t; x/ WD d.cY ıH.t; � / ı c�1/.c.x// 2 L.EX ; EY /.

Since TyY0 is transversal to dXH.t0; x0/, it follows in view of (8.8) that Z0 WD
hY .y; � /�1.TyY0/ is transversal to A.t0; x0/. Proposition 6.44 and the continu-
ity of A imply that there is a neighborhood O � W of .t0; x0/ such that for
every .t; x/ 2 O the operator A.t; x/ is defined with Z0 being transversal to
A.t; x/. It follows by (8.8) that for every .t; x/ 2 O with H.t; x/ 2 Y0 the space
hY .¹H.t; x/º �Z0/ D TH.t;x/Y0 is transversal to dXH.t; x/. Hence, also in this
case O � U .

Concerning the existence of transversal manifolds, it suffices to consider the
case of generalized Fredholm homotopies H , since the case of Fredholm maps F
follows for constant homotopies H.t; � / D F .

We consider first the case that Y is a Banach space.

Proposition 8.70 (Existence of Transversal Subspaces). (AC). Let W � I � X
be open, and H WW ! Y D EY be a generalized Fredholm homotopy. Then
for each compact K � W there is an open neighborhood U � W of K and a
finite-dimensional subspace Y0 � Y which is transversal to dXH.t; x/ for every
.t; x/ 2 U . In particular for each finite-dimensional subspace Y1 � Y containing
Y1 and each y 2 Y , the set y C Y1 is transversal to H on U . If Y ¤ ¹0º, it may
be arranged that Y0 ¤ ¹0º.
Proof. Let O denote the system of all open subsets O � W with the property
that there is a finite-dimensional subspace V � Y such that V is transversal to
dXH.t; x/ for every .t; x/ 2 O. Proposition 6.29 implies for every .t0; x0/ 2 K
that there is some finite-dimensional subspace V � Y with Y D
R.dXH.t0; x0// ˚ V . This V is transversal to dXH.t0; x0/, and by Proposi-
tion 8.69 there is an open neighborhood O � W such that V is transversal to
dXH.t; x/ for every .t; x/ 2 O. Hence, O is an open cover of K.

Since K is compact, it is thus covered by finitely many open sets U1; : : : ; Un 2
O . There are finite-dimensional subspaces V1; : : : ; Vn � Y such that Vk is
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transversal to dXH.t; x/ for every .t; x/ 2 Uk if k D 1; : : : ; n. Then Y0 WD
V1 C � � � C Vn is finite-dimensional and satisfies R.dXH.t; x// C Y0 D Y for
every .t; x/ 2 U WD U1 [ � � � [ Un. Proposition 6.43 implies in view of Corol-
lary 6.28 that Y0 is transversal to dXH.t; x/ for every .t; x/ 2 U . For the last
assertion, we note that in case Y ¤ ¹0º but Vk D ¹0º for all k D 1; : : : ; n, we can
replace Y0 by any linear subspace of Y of positive finite dimension in the above
argument.

Remark 8.71. Note that AC is used only in the last step in our proof of Proposi-
tion 8.70. Using Proposition 6.27 instead of Corollary 6.28, we see that AC is not
needed if one of the following holds:

(a) E�
Y has full support EY .

(b) E�
X has full support EX .

Under this hypothesis, AC is also unnecessary for the following consequence.

Corollary 8.72 (Existence of Transversal Submanifolds). (AC). Let I be a topo-
logical space, W � I � X be open, and H WW ! Y be a generalized Fredholm
homotopy. Let K � W be compact, and suppose that there is a diffeomorphism
of an open neighborhood of H.K/ onto an open subset of EY . Then there is an
open neighborhood U � W of K and a finite-dimensional submanifold Y0 � Y

with the property that for every .t; x/ 2 U the subspace TH.t;x/Y0 � TH.t;x/Y is
transversal to dXH.t; x/. In particular, Y0 and every submanifold of Y contain-
ing Y0 is transversal to H on U . In case EY ¤ ¹0º, it may be arranged that Y0

has positive dimension.

Proof. Let J be the diffeomorphism of an open neighborhood V � Y of H.K/
onto an open subset ofEY . We apply Proposition 8.70 withW replaced byW0 WD
H�1.V / and H0 WD J ıHW0

. Note that K � W0. Hence, there exists a finite-
dimensional subspace E0 � EY (E0 ¤ ¹0º in case EY ¤ ¹0º) and an open
subset U � W0 containing K such that E0 is transversal to dXH0.t; x/ for every
.t; x/ 2 U . Theorem 8.55 implies that Y0 WD J�1.E0/ is a finite-dimensional
submanifold of Y with TyY0 D dJ.y/�1.E0/ for every y 2 V . For all .t; x/ 2 U
we have with y WD H.t; x/ 2 V by the chain rule on manifolds (Proposition 8.24)
that dXH0.t; x/ D dJ.y/dXH.t; x/. It thus follows that TyY0 is transversal to
dXH.t; x/.
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8.9 Properness of Fredholm Maps

For the Leray–Schauder triple degree, we will need that Fredholm maps are lo-
cally proper. In this section we obtain a corresponding result even for Fredholm
homotopies from the partial implicit function theorem and some properties of
Fredholm maps.

Let EX and EY be Banach spaces over K D R or K D C, and let X and Y be
Banach manifolds without boundary over EX and EY , respectively.

Theorem 8.73 (Fredholm Homotopies are Locally Proper). Let I be a locally
compact Hausdorff space, W � I �X be open and H WW ! Y be a generalized
Fredholm homotopy. Then H is locally proper in the sense that for each compact
K � W there is a neighborhood N � W of K such that H jN is proper.

Proof. Assume first that K D ¹.t0; x0/º. Let c and c0 be charts for x0 and y0 WD
H.t0; x0/, respectively. Shrinking W if necessary, we can assume that W D
I0 � � where I0 � I is an open neighborhood of t0 and � � X is an open
neighborhood of x0 and such that H0.t; u/ WD c0.H.t; c

�1.u/// is defined on
I0� c.�/. Without loss of generality, we assume that c.x0/ D 0 and c0.y0/ D 0.

By hypothesis, H0 is a generalized partial Fredholm homotopy, in particular
A WD dXH0.t0; x0/ 2 Lk.EX ; EY / for some k 2 Z.

Let n WD jkj, E0 WD EX � Kn, E1 WD EY � KnCk , and define H1W I0 �
� � Kn ! E1 by H1.t; u; z/ WD .H0.t; u/; 0/. Then the partial derivative
A1 WD d.H.t0; � //.x0/ satisfies A1.u; z/ D .Au; 0/ and thus is a generalized
partial Fredholm homotopy of index 0. By Theorem 6.36, there is a corrector
C 2 L.E0; E1/ of A1, that is, A1 C C 2 Iso.E0; E1/, and R.C / has finite
dimension.

We define GW I0 � c.�/ � Kn ! E1 by G.t; u; z/ WD H1.t; u; z/ C C.u; z/

and apply Theorem 8.40 in .t0; 0; 0/. Noting that d.G.t0; � //.0/ D A1 C C , we
find open neighborhoods I1 � I of t0, U0 � c.�/ of 0, and U1 � Kn of 0 such
that G.t; u; z/ WD .t;G.t; u; z// is a homeomorphism of U WD I1 �U0 �U1 onto
an open neighborhood V0 � I � E1 of .t0; 0; 0/. In particular, if M0 � V0 is
compact then U \ G�1

0 .M0/ is compact. Since I is locally compact, we find by
Corollary 2.50 some compact neighborhood I2 � I of t0 with I2 � I1. There is
a neigbhorhood V1 � E1 of .0; 0/ with I2 � V1 � V0. Put N WD I2 � U0 � U1.
If M1 � V1 is compact then M0 WD I2 �M1 � V0 is compact by Theorem 2.63,
and so U \G�1

0 .M0/ D N \G�1.M1/ is compact.
Let D0 � EX and D1 � Kn be closed bounded neighborhoods of 0 with

Di � Ui .i D 0; 1/. Then C0 WD C.D0 �D1/ is compact. Shrinking D0 and
D1 if necessary, we can assume that Kr.C0/ � V1 for some r > 0. Shrinking
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r > 0 if necessary, we may assume that Kr .0/ � EY is contained in the range
of the map c0. Moreover, shrinking I2 and D0 if necessary, we may assume for
N0 WD I2 �D0 that H0.N0/ � Kr.0/.

Now if M1 � Kr .0/ is compact then M0 WD M1 � C0 � V1 is compact, and
soN \G�1.M0/ is compact. The definition of G implies that for each .t; u; z/ 2
N1 WD I2 �D1 �D2 withH1.t; z; u/ 2 M1, we have .t; u; z/ 2 N \G�1.M0/.
Thus,

N1 \H�1
1 .M1/ � N \G�1.M0/.

Since N1 \ H�1
1 .M1/ is a closed subset of the compact set N \ G�1.M0/, we

obtain that N1\H�1
1 .M1/ is compact. By the definition ofH1, we conclude that

for any compactM � Kr.0/ � EY the setN\H�1
0 .M/ D .I2�D0/\H�1

0 .M/

is compact. Now if M � EY is an arbitrary compact set, we obtain in view of
H0.N0/ � Kr.0/ that N0 \ H�1

0 .M/ D N0 \ H�1
0 .M \ Kr.0// is compact.

Hence, H0jN0
is proper. We obtain with N2 WD ¹.t; c.u// W .t; u/ 2 N0º that

H jN2
is proper. Hence, the assertion is proved in the case K D ¹.t0; x0/º.

In general, let U denote the system of all open sets U � W which are con-
tained in some N � W such that H jN is proper. By what we just proved, U
is an open cover of K. By the compactness, K is covered by finitely many
U1; : : : ; Un 2 U . There are N1; : : : ; Nn � W with Uk � Nk and such that
H jNk

is proper for k D 1; : : : ; n. Then N WD N1 [ � � � [ Nk is the required
neighborhood of K, since for any compact set M � Y the set N \ F �1.M/ is
the union of the compact sets Nk \ F�1.M/ and thus compact.

Corollary 8.74 (Fredholm Maps are Locally Proper). Let � � X be open and
F 2 Fk.�; Y /. Then F is locally proper in the sense that for each compact
K � � there is a neighborhood N � � of K such that F jN is proper.

Proof. This is a special case of Theorem 8.73.

Corollary 8.74 was probably first observed in [131].





Chapter 9

The Brouwer Degree

It is somewhat surprising to the author that apparently no thorough exposition
of the Brouwer degree on manifolds (initiated by Brouwer in [29]) can be found
in literature: Most text books about the topic which the author found, including
e.g. [30], [37], [44], [50], [57], [77], [99], [107], [112], [122], [124], [147], treat
only special cases (like Rn or C1 maps or by considering only connected, para-
compact, or even closed manifolds), and the uniqueness of the degree is rarely
proved, usually only under much stronger assumptions like by requiring a nor-
malization property for diffeomorphisms which in case of a Banach space is not
the natural notion of a normalization. The aim of this chapter is to close this gap.

The classical Brouwer degree on manifolds requires to consider oriented mani-
folds. We will also take the opportunity to define the Brouwer degree in the more
general and more natural situation of oriented continuous maps instead of ori-
ented manifolds. Since we restrict our attention to C 1 manifolds, we will be able
to give a definition of orientation of continuous maps which is rather simple and
which for C 1 maps can be directly related to our previous notion of orientation of
Fredholm operators.

9.1 Finite-Dimensional Manifolds

In this section, we recall some well-known results for finite-dimensional mani-
folds.

We will frequently use the trick that instead of the whole manifold we consider
only the submanifold which consists in a certain open neighborhood of a given
compact set. It is due to this trick that we do not have to require that the considered
manifolds be paracompact or second countable. In the following result, we collect
all important topological properties which we can obtain by this trick.

Proposition 9.1. Let 0 � r � 1. Each C r manifold X (with or without bound-
ary) over a finite-dimensional space E is locally compact and regular. Moreover,
second countable subsets of X are paracompact and metrizable. All relatively
compact subsets M � X are second countable and satisfy dimM � IndM � n,
where n denotes the dimension of E over R in the sense of linear algebra.
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If K � X is compact, and U � X is an open neighborhood of K then the
following holds.

(a) K is contained in only finitely many components of the space U .

(b) There is an open neighborhood � � X of K with compact � � U and such
that �\Um and�\Um are path-connected for every component Um of the
space U .

If K consists of only one point not from the boundary, it may be arranged for any
given chart that this chart maps � and � onto some ball B�.x/ or K�.x/ in E,
respectively.

Proof. Proposition 3.59 implies that X is locally compact. To see that X is regu-
lar, recall thatX is Hausdorff, by hypothesis. LetA � X be closed and x 2 X nA.
There is an open set U � X nA such that there is a homeomorphism c of U onto
an open subset U0 � E. In view of dimE < 1, we can apply Corollary 3.58
and Proposition 3.59 to find that there is a neighborhood V0 � E of c.x/ such
that V 0 � U0 is compact. Then c�1.V 0/ is compact by Proposition 2.100 and
thus closed by Proposition 2.45, since X is Hausdorff. Hence, V WD X nc�1.V 0/

is an open neighborhood of A which is disjoint from c�1.V0/ � U . Since Propo-
sition 2.10 implies that c�1.V0/ is open in X and thus a neighborhood of x, we
have shown that X is regular.

Theorem 2.42 implies that also all subsets ofX are regular. In particular, second
countable subsets ofX , since they are Lindelöf by Proposition 2.61, are paracom-
pact and metrizable by Theorems 3.76 and 3.79.

Recall now thatX is locally path-connected by Proposition 8.16. Hence, alsoU
is locally path-connected, and each component of U is path-connected and open
in U by Proposition 2.17. In particular, the components of U are open. Thus, if
M denotes the family of all components of U then it is an open cover of K and
thus has a finite subcover which shows that K is contained in only finitely many
components U1; : : : ; Uk .

Let O denote the family of all open subsets �0 � X such that �0 and �0 are
C r -diffeomorphic to an open ball in E or its intersection with a closed halfspace,
and its closure, respectively, and�0 � U . Then O is an open cover of U . Indeed,
for every x 2 U there is an open subset V � U and a chart c which maps V (C r -
diffeomorphic) onto an open subset of a closed halfspace EC (we can replace
EC by E if x … @X ). There is some r > 0 with C WD Kr .c.x// \ EC � E.
Put � WD c�1.Br.c.x// \ EC/. Note that c�1.C / is compact and contains �.
Since X is Hausdorff, Proposition 2.45 implies that c�1.C / is closed in X and
thus contains �. The continuity of c now implies � D c�1.C /. It follows that
x 2 � 2 O .
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Since K is compact, it is covered by finitely many �1; : : : ;�n 2 O . If K
consists of only one point, we can assume n D 1.

For the assertions about relatively compact subsetsM � X , we can assume that
M � K. Note that Propositions 5.9 and 5.16 imply that Ind�k � IndE � n.
The sum theorem (Theorem 5.13) thus implies that Ind.�1 [ � � � [�n/ � n, and
so Proposition 5.9 shows that IndK � n. Hence, Theorem 5.18 and the subspace
theorem (Theorem 5.15) imply the estimates dimM � IndM � IndK � n.
Similarly, since all �k are second countable, it follows that also their finite union
is second countable, and thus also the subset M � K is second countable by
Corollary 3.17.

Recall that we have shown that each component Um of U is path-connected.
Hence, we can connect those �k belonging to the same component of U pairwise
in U by (compact) paths in U . Every of the compact paths is covered by finitely
many sets from O . Joining finitely many such sets to the considered finite family
�1; : : : ;�n, if necessary, it may thus be arranged, that for each k; j 2 ¹1; : : : ; nº
for which �k and �j belong to the same Um there is a chain k0 D k; : : : ; k` D
j 2 ¹1; : : : ; nº such that�ki

\�ki�1
¤ ¿ for i D 1; : : : ; `. It follows now easily

that � WD �1 [ � � � [ �n has the property that � \ Um is path-connected, and
then also that � D �1[� � �[�n has the property that�\Um is path-connected.
Since each �k is compact, we obtain also that � is compact.

Remark 9.2. Since every (relatively) compact subset M � X is metrizable, we
actually have dimM D IndM in Proposition 9.1, see e.g. [52, Theorem 4.1.3]
(since M is second countable and thus separable, even the simpler result [52,
Theorem 1.7.7] can be used to see this). Moreover, if in additionM has an interior
point then dimM D IndM D n. This follows, for instance, from the subset
Theorem 5.15, since a subset of M is homeomorphic to E Š Rn, because one
can show that actually Ind Rn D n. However, we will not need these facts.

Corollary 9.3. Let X be a C 0 manifold over a finite-dimensional space E, � �
X be open, I be a topological space, and K � I � X be compact. Then there
is an open �0 � X with compact �0 � � such that K � I � �0. If K is
connected, it may be arranged that �0 and �0 are path-connected.

Proof. By Corollary 2.101 there is a compact (and connected if K is connected)
K0 � �withK � I �K0. Proposition 9.1 implies that there is some open neigh-
borhood �0 � � of K0 with compact �0 � �. Moreover, if K0 is connected
then it is contained in one component of � and so, Proposition 9.1 implies also
that it may be arranged that �0 and �0 are path-connected.
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It follows that F 2 C.X; Y / with compact K D F�1.y/ are “locally proper”
in neighborhoods of y and K in a sense: The idea is that if F�1.y/ is contained
in a compact set and does not intersect the boundary of that set then it must be
compact. For later usage, we formulate this even for the case that F is replaced
by a homotopy and show that the same holds even for all homotopies which are
only sufficiently close.

Proposition 9.4. Let� be a topological space, Y0 a metric space, I be a compact
space, H 2 C.I � �;Y /, y 2 Y0, N � � be compact, and M � N have the

property that H�1.y/ � I � VM .
Then there is " > 0 such that for every X0 satisfying M � X0 � N and

every H0 2 C.I � X0; Y0/ satisfying d.H.t; x/;H0.t; x// � " for all .t; x/ 2
I � .X0 n VM/, and every closed C � K".y/ the set H�1

0 .C / is contained in

I � VM and compact.

Proof. Since B WD N n VM is closed in N , it is compact by Proposition 2.29.
Proposition 2.100 implies that A WD H.I � B/ is compact. Since H�1.y/ �
I � VM , we have y … A, and so Corollary 3.14 implies ı WD dist.y;A/ > 0. Let
0 < " < ı=2.

Now if X0 and H0 are as in the assertion, we have

d.H0.t; x/; y/ � d.H.t; x/; y/ � d.H0.t; x/;H.t; x// � ı � " > "
for all .t; x/ 2 I � .X0 n VM/. Hence, if C � K".y/ is closed, we have for all
.t; x/ 2 I � .X0 n VM/ that H.t; x/ \ C D ¿, that is H�1.C / � I � VM . In
particular, H�1

0 .C / D H0j�1

I�M
.C / is compact, since the latter is a closed subset

of the compact space I �M .

We recall a simple observation of elementary calculus:

Lemma 9.5. There is a function gWR ! Œ0; 1� of class C1 which satisfies
g�1.0/ D .�1; 0�.
Proof. A function with the required properties is given by

g.t/ WD
´

e�1=t if t > 0,

0 if t � 0.

Indeed, an induction by n D 0; 1; : : : shows that g.n/j.0;1/ is a linear combination
of the functions hk.t/ WD tke�1=t .t > 0/ with k 2 Z. Since hk.t/=t ! 0 as
t ! 0C, the definition of the derivative implies with an induction by n D 0; 1; : : :

that g.nC1/.0/ exists and is zero.
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Lemma 9.5 implies that in finite-dimensional spaces the Lemma of Urysohn
has a smooth variant. For the moment, the following special case is sufficient for
us.

Lemma 9.6. If E is a real finite-dimensional space, A � E is compact, and B �
E is closed and disjoint from A then there is a bounded function f 2 C1.E;R/
with f .E/ � Œ0;1/, f .A/ � .0;1/ and f .B/ D ¹0º.
Proof. Let e1; : : : ; en be a basis of E. Recall that Corollary 3.58 implies that the
norm on E is equivalent to the “Euclidean” norm

k
n

X

kD1

�nenk2 WD �2
1 C � � � C �2

n ,

and so without loss of generality we can assume thatE is equipped with that norm.
Let g be as in Lemma 9.5. For x0 2 E and r > 0, it follows that fx0;r WE ! R,
fx0;r .x/ WD g.r2 � kx � x0k2/, is of class C1. Moreover, fx0;r .x/ ¤ 0 if and
only if x 2 Br.x0/. The compact set A is covered by finitely many balls Brk

.xk/

.k D 1; : : : ;m/ which are disjoint from B . Then f WD fx1;r1
C � � � C fxm;rm

is
the required function.

The reason why second countable (hence paracompact) manifolds play such an
important role is the following:

Lemma 9.7. Let X be a second countable C r manifold over a real finite-dimen-
sional space E with 0 � r � 1. Then every open cover of X has a subordinate
countable partition of unity consisting of functions of class C r .

Proof. Recall that X is regular and Lindelöf by Propositions 9.1 and 2.61. Let
U be an open cover of X . Let O be the family of all open sets O � X with the
property that O � U for some U 2 U and that there is a chart c which is at least
defined on O and such that O is compact. Proposition 9.1 implies that O is an
open cover of X . By definition, O is a refinement of U .

Theorem 3.80 implies that there are open sets Un; On�X with XDS1
nD1 Un,

U n � On, and such that On .n 2 N/ is a refinement of O . Hence, for each n
there is some O 2 O with On � O. Let cn be a chart defined on O. Then An WD
cn.U n/ is compact, Bn WD E n cn.On/ is closed, and so Lemma 9.6 implies that
there is a bounded fn 2 C1.E;R/ with fn.E/ � Œ0;1/, fn.An/ � .0;1/, and
fn.Bn/ D ¹0º. Since cn is a C r -diffeomorphism, it follows that

gn.x/ WD
´

fn.cn.x// if x 2 O,

0 if x … O,
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defines a function of class C r such that Sn WD ¹x 2 X W gn.x/ ¤ 0º is contained
in On, and Un � Sn. Since On .n 2 N/ is locally finite, it follows that Sn D
supp gn .n 2 N/ is locally finite. It follows that g.x/ D P1

nD1 gn.x/ is C1 near
every x 2 X , since x has a neighborhood which intersects only finitely many Sn.
Since Un .n 2 N/ is a cover of X , we have g.x/ > 0 for every x 2 X . Hence,
�n.x/ WD gn.x/=g.x/ is a required partition of unity which is subordinate to O
and thus subordinate to U .

As a first application of Lemma 9.7, we obtain now a full smooth general-
ization of Urysohn’s lemma and even of the Tietze–Urysohn theorem, even in
finite-dimensional manifolds.

Theorem 9.8 (Smooth Tietze–Urysohn). Let X be a second countable C r man-
ifold over a real finite-dimensional space E with 0 � r � 1. Let A;B � X be
closed and disjoint with open neighborhoods U;V � X , respectively, and let Y
be a real Banach space. Then for every f 2 C r.U; Y /, g 2 C r .V; Y /, y 2 Y ,
there is F 2 C r .X; Y / satisfying F jA D f jA, F jB D gjB , and

F.X/ � conv.f .U /[ ¹yº/[ conv.g.V / [ ¹yº/.
The smooth variant of Tietze’s lemma is obtained with y 2 f .U / and B D

V D ¿ (and g being the empty function), and Urysohn’s lemma is the special
case Y D R, f 
 0, g 
 1, and y D 0.

Proof. Note that Proposition 9.1 implies that X is metrizable and thus T4. Hence,
without loss of generality, we can assume that U and V are disjoint. Lemma 9.7
implies that X has a countable partition of unity �n of class C r which is subordi-
nate to the open cover ¹U;V;X n .A [ B/º. Let NU ; NV be the (disjoint) set of
all indices n with supp�n � U or supp�n � V , respectively, and N0 the set of
the remaining indices. Then

F.x/ WD
X

n2NU

�n.x/f .x/C
X

n2NV

�n.x/g.x/C
X

n2N0

�n.x/y

defines a function with the required properties.

Using Lemma 9.7, one can also show results like the following.

Theorem 9.9. Let EX and EY be real finite-dimensional normed spaces. Let X
be a second countable C r manifold over EX .0 � r � 1/, K � X be compact,
and f WK ! EY be continuous. Then for each " > 0 there is g 2 C r .X;EY /

with kf .x/� g.x/k < " for all x 2 K.
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Proof. The family Ox WD f �1.B".f .x///[ .X nK/ .x 2 K/ is an open cover
of K. Let Ox1

; : : : ; Oxm
be a finite subcover of K which by definition of Ox is

then even a cover of X . By Lemma 9.7 there is a subordinate partition of unity
�n 2 C r .X;R/ .n 2 N/. For each n there is a minimal index k D kn such that
supp�n is contained in Oxk

. We define yn WD f .xkn
/. Then

g.x/ WD
1

X

nD1

�n.x/yn

has the required properties. Indeed, if x 2 K and n 2 N are such that �n.x/ ¤ 0

then x 2 supp�n � Oxkn
. Hence,

f .x/ 2 f .Okn
\K/ � B".f .xkn

// D B".yn/.

It follows that

kg.x/ � f .x/k D k
1

X

nD1

�n.x/.yn � f .x//k

�
1

X

nD1

�n.x/kf .x/� ynk <
1

X

nD1

�n.x/" D "

for all x 2 K.

Remark 9.10. The only reason why we do not obtain higher smoothness than r
in Lemma 9.7 and Theorem 9.9 is that higher smoothness is not well-defined for
manifolds of class C r : The maps constructed in the proof are as smooth as the
available charts. In particular, if X is a partial C r manifold, we obtain that the
partition of unity in Lemma 9.7 and the map g in Theorem 9.9 are partial C r

homotopies.
The proof of that statement is completely identical to our above proofs: One

only has to consider partial charts instead of charts.

The approach to the Brouwer degree from differential topology which we take
actually requires manifolds of class C 2 (or smoother), as we will see. Therefore,
we will need a tool which allows us to pass from manifolds of class C 1 to mani-
folds of class C 2 (or smoother). Such a tool is the following result. For simplicity,
we formulate it only for manifolds without boundary, since this is the only case
which we need.

Theorem 9.11. (AC). Every C 1 manifold over a real finite-dimensional space is
C 1-diffeomorphic to a C1 manifold.
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Proof. The proof of this result is beyond the scope this monograph. A proof can
be found in [77, Chapter 2, Theorem 2.10].

Theorem 9.11 states that there is a diffeomorphism F WX ! X0. Recall that
the latter means that F is invertible of class C 1 such that also F�1WX0 ! X is
of class C 1.

Unfortunately, there is no corresponding result for C 0 manifolds, that is, C 0

manifolds need not be homeomorphic to C 1 manifolds.
It is unknown to the author whether AC can be avoided in the proof of Theo-

rem 9.11. However, the following variant does not require AC.

Theorem 9.12. Let X be a C 1 manifold X over a real finite-dimensional space
E, and K � X be compact. Then there is an open neighborhood U � X of K
which is C 1-diffeomorphic to a C1 manifold. If K is contained in a component
of X , it may be arranged that U is connected.

Sketch of proof. We just sketch how the above mentioned proof of [77, Chapter 2,
Theorem 2.10] has to be modified to avoid Zorn’s lemma. By the compactness,
K has a finite cover by open sets U1; : : : ; Un, each of which is mapped by a chart
ck diffeomorphically onto an open subset E. Put U WD U1 [ � � � [ Un. Then
the argument from the proof of [77, Chapter 2, Theorem 2.10] shows that one
can inductively define a diffeomorphism Ock of Uk onto an open subset of E such
that Ock ı c�1

j .j < k/ are diffeomorphisms of class C1. Then the charts Ock

.k D 1; : : : ; n/ turn X into a C1 manifold OX , and idX WX ! OX is the required
diffeomorphism.

The last assertion follows from the first. Indeed, assume that K is contained in
a component M of X . Propositions 2.23 and 8.16 imply that M is open, and M
is connected by Proposition 2.17. Proposition 9.1 thus implies thatK is contained
in a path-connected compact set K0 � M . By the first assertion there is an open
neighborhood U0 � M of K0 which is diffeomorphic to a C1 manifold. Then
the component U of K0 in the space U0 has the required property. Note that U is
open by Propositions 2.23 and 8.16 and connected by Proposition 2.17.

To formulate the famous theorem of Morse–Sard, we recall that a subset of Rm

is called a null set if it has Lebesgue measure zero or, equivalently, if for every
" > 0 it is covered by countably many cuboids of total volume less than ".

Theorem 9.13 (Morse–Sard). Let ��Rn be open, and F2C r .Rn;Rm/. If r�1
and r >n �m then the set of critical values of F is a null set in Rm.
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Proof. The proof of Theorem 9.13 in the general case is rather involved and be-
yond the scope of this monograph. A relatively simple proof can be found in [1,
§15].

It turns out that for the Brouwer degree, we will not need Theorem 9.13 in its
full generality but only two special cases which are both much simpler to prove:
These are the special cases n � m and r D 1. For the case r D 1, relatively
simple proofs can be found in e.g. [77, Chapter 3, Section 1] or [107, Section 3].
We give only the proof for the case n � m which is the case considered originally
by Sard.

Proof of Theorem 9.13 in case n � m. LetC denote the set of critical points ofF .
Note that � is second countable by Proposition 9.1 and thus Lindelöf by Propo-
sition 2.61. The family of all open cubes contained in � is a cover of � and thus
has a countable subcover. Since each open cube is a countable union of compact
cubes, it follows that� can be written as a union of countably many (not disjoint)
compact cubes Kk .k 2 N/. Recall that the countable union of null sets is a null
set. Hence, it suffices to show that each F.Kk \ C/ .k 2 K/ is a null set since
then also their union F.C/ is a null set.

Thus, given a compact cube K � �, we are to show that F.K \ C/ is a null
set. Since K is compact, there is a constant M 2 Œ0;1/ with kdF.x/k � M for
all x 2 K. Moreover, since dF is uniformly continuous on the compact setK, we
find for every " > 0 some ı 2 .0; 1� such that kdF.x/ � dF.y/k � " whenever
x; y 2 K satisfy kx � yk � ı. Shrinking ı > 0 if necessary, we can assume that
` WD diamK=ı is an integer. We write K as the union of `n compact cubes Qk

.k D 1; : : : ; `n) with diamQk D ı.
We are to show that if Qk contains a point from C then

F.Qk/ is contained in a cuboid of volume 2mımMm�1". (9.1)

To see this, let Q D Qk be fixed and contain some point xk 2 C . In order
to prove (9.1), we can replace F by F � F.xk/ if necessary and thus assume
without loss of generality that F.xk/ D 0. Moreover, since xk 2 C and thus
A WD dF.xk/ is not onto, R.A/ is a subspace of dimension at mostm�1. Letting
J 2 Iso.Rm/ be an isometry which maps this subspace into ¹0º � Rm�1 and
replacing F by J ı F if necessary, we can assume without loss of generality
that R.A/ D ¹0º � Rm�1, that is, writing F.x/ D .F1.x/; : : : ; Fm.x// that
dF1.xk/ D 0. It follows that kdF1.x/k � " for all x 2 Q, and so the elementary
mean value theorem (or Theorem 8.2) implies

jF1.x/j D jF1.x/� F1.xk/j � "kx � xkk for all x 2 Q.
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In particular, F.Q/ is contained in a subset of the stripe S WD Œ�"ı; "ı� �Rm�1.
To find estimates for the other coordinates Fk.Q/ .k D 2; : : : ;m/, we use

Theorem 8.2 to obtain in view of kdF.x/k �M for all x 2 K that

kF.x/k D kF.x/ � F.xk/k �Mkx � xkk for all x 2 Q.

It follows that F.Q/ is contained in Œ�"ı; "ı��Œ�Mı;Mı�m�1. This shows (9.1).
Using (9.1), we find that F.K \ C/ is contained in a finite union of cuboids of

total volume at most

`n2mımMm�1" D .diamK/ım�n2mMm�1" � "2mMm�1 diamK,

because ı 2 .0; 1� and n � m. Since " > 0was arbitrary, we obtain that F.K\C/
is a null set, as required.

For the Brouwer degree, we will not use Theorem 9.13 directly but only the
following simple consequence:

Theorem 9.14 (Morse–Sard). Let Y denote a manifold over a real finite-dimen-
sional space EY . Let � be a second countable C r manifold over a real finite-
dimensional space EX where r � 1 satisfies r > dimEX � dimEY , and let U
be a second countable C rC1 manifold over R � EX with boundary @U . Then
each map from C r .�; Y /, C r .@U; Y /, or C rC1.U; Y / has a dense set of regular
values.

Proof. Let V � Y be nonempty and open. We have to show that V contains at
least one regular value for each map F of the described classes. There is a chart
defined on some nonempty open subset of V . Considering the composition of this
chart with an isomorphism ofEY to Rm (m WD dimEY ), we thus find a nonempty
open subset V0 � V and a diffeomorphism J (of class C r or C rC1, respectively)
of V0 onto an open subset of Rm. It suffices to show that G WD F jF �1.V0/ has a
regular value in V0. Hence, it suffices to show that J ı G has a regular value in
J.V0/. This proves that we can assume without loss of generality that Y D Rm.

Thus, let F 2 C r .�;Rm/, F 2 C r .@U;Rm/, or F 2 C rC1.U;RmC1/, re-
spectively. Let U denote the family of all open subsets of X D � or X D U ,
respectively, which are contained in the domain of a chart. Then U is an open
cover of X . Since X is second countable and thus Lindelöf (Proposition 2.61), U
has a countable subcover Uk .k 2 N/. Let ck .k 2 N/ be charts of X defined on
Uk , and I be an isomorphism of Rn or RnC1 onto EX or R � EX , respectively,
where n D dimEX . Then �k WD I�1.ck.Uk// is open in Rn or RnC1, and
Gk W�k ! Rm, Gk WD F ı c�1

k
ı I is of class C r or C rC1, respectively. Thus,

Theorem 9.13 implies that the set Ck of critical values of Gk is a null set in Rm.
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Note that Ck is exactly the set of critical values of F jUk
. Hence, the union C of

all sets Ck is the set of all critical values of F . Since the union of countably many
null sets is a null set, and since null sets have a dense complement, it follows that
Rm n C is dense. This is exactly the set of regular values of F .

For the Brouwer degree, we will actually only use the case dimEX D dimEY

of Theorem 9.14, and only for maps from C 1.�; Y /, C1.@U; Y /, and
C1.U; Y /, respectively. For the proof of these cases, the earlier mentioned sim-
pler special cases of Theorem 9.13 are sufficient.

Unfortunately, even if we would be willing to apply the most general form of
Theorem 9.13, we have in the above situation dimEX D dimEY that Theo-
rem 9.14 requires at least maps of class C 2.U; Y / and that U is a C 2 manifold:
This is the reason why considering only manifolds and maps of class C 1 is not
enough for our arguments and why we will have to use Theorems 9.9 and 9.12.

We will also make use of the classification theorem of compact 1-dimensional
manifolds. The following proof is inspired by [107]. We note that an exten-
sion of this proof can also be used to characterize even all second countable 1-
dimensional manifolds (as those manifolds which consist of at most countably
many components being diffeomorphic to circles or intervals), but we will need
only the compact case which is slightly simpler.

Theorem 9.15. Every compact connected 1-dimensional C 1 manifold X (with or
without boundary) is diffeomorphic to either the circle S1 WD S1.0/ in R2 or to
Œ0; 1�.

Proof. By shrinking the charts if necessary, we can assume that X is covered by
open sets, each of which is diffeomorphic to an interval. By the compactness,
we have X D U1 [ � � � [ Un such that each Uk is diffeomorphic to an interval.
Now if X is not diffeomorphic to S1, we show inductively that there are pairwise
different k1; : : : ; kj and diffeomorphisms fj of an interval Ij onto Xj WD Uk1

[
� � � [ Ukj

. Then we are done for j D n.
For the induction start, we put k1 WD 1. For the induction step, note that the

connectedness of X implies that there is some kj C1 different from k1; : : : ; kj

such that U WD UkjC1
intersects Xj . Let f be a diffeomorphism of an interval I

onto U . We put now M WD f �1
j .U \ Uj / and consider

� WD graph.f �1 ı fj jM / D ¹.t; s/ 2 Ij � I W f .s/ D fj .t/º
as a subset of Ij � I . Note that g D f �1 ı fj jM is a diffeomorphism (ofM onto
f �1.U \ Uj /), in particular � is the graph of the one-to-one C 1 function g with
nonzero derivative. Moreover, if .t; s/ 2 � belongs to the interior of Ij � I then
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� extends to the left and right of t , that is, � cannot end in the interior of the rect-
angle Ij � I . Since, by the injectivity of g, � intersects each side of the rectangle
at most once, it follows that there are at most two components of � , each starting
and ending at different sides of the rectangle. If there is only one component,
M is an interval. In this case, it is clear that we can (after reparametrizing f )
“concatenate” fj and f to a homeomorphism of Xj [ U to an interval. Thus,
assume � has two components, each connecting two sides of the rectangle. By
the injectivity of g, these must be “neighboring” sides, M is the union of two
disjoint open in M intervals M1 and M2, and by the injectivity of g the intervals
g.M1/ and g.M2/ cannot intersect. Filling the “gaps” between the intervals M1

and M2 using fj and between g.M1/ and g.M2/ using f , we see that there is
a diffeomorphism h of S1 onto Xj [ U . Since h.S1/ D Xj [ U is open and
compact and thus closed in X (Proposition 2.45), the connectedness of X implies
X D h.S1/. Hence, X is diffeomorphic to S1 which we had excluded for the
induction.

9.2 Orientation of Continuous Maps and of Manifolds

In this section, we introduce the concept of an oriented continuous map in finite-
dimensional manifolds. Although such a concept is already known, in principle,
see e.g. [39, Chapter VIII, Exercise 4.10.6], it seems that the concept which we
present here is much simpler than other similar concepts which can be found in
literature. In fact, it turns out to be a special case of the concept which we intro-
duced in Section 7.3.

Throughout this section, let X and Y be C 1 manifolds over real finite-dimen-
sional spaces EX and EY , respectively, with dimEX D dimEY > 0.

Note that only in finite dimensions it makes sense to speak about the orientation
of continuous maps and generalized homotopies in the following sense.

Definition 9.16. Let I be a topological space, DF � X and DH � I � X ,
and F WDF ! Y and H WDH ! Y be continuous. We associate to F and H
the maps A 2 L.DF ; TX; T Y / and B 2 L.DH ; TX; T Y / where for x 2 DF

and .t; x/ 2 DH the corresponding maps A.x/ 2 L.TxX;TF .x/Y / or B.t; x/ 2
L.TxX;TH.t;x/Y / are defined as the zero maps: A.x/u WD 0, B.t; x/u WD 0

.u 2 TxX/.
An orientation of F or H on a subset M � DF or M � DH is an orientation

� of A or B on M in the sense of Definition 7.33, respectively.
F and H are called orientable (on M ) if an orientation exists (on M ). The

couples .F; �/ or .H; �/ are called oriented continuous maps. Notationally, we
just write F or H and refer to � as “the orientation” of F or H .
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Remark 9.17. Before we discuss Definition 9.16 in more detail, let us point out
that in literature there are also (purely topological) notions of oriented maps which
are available even for maps between C 0 manifolds, see for instance [39, Chap-
ter VIII, Exercise 4.10.6].

In contrast, C 1 manifolds are essential for Definition 9.16, since otherwise we
could not speak about the tangent bundles. The advantage of Definition 9.16 is
that it is much more easier than the purely topological definition of oriented maps.
In particular, Definition 9.16 can be verified in practice rather easily if F and � are
given “explicitly”. In contrast, orientability in C 0 manifolds is defined by abstract
lifting properties which can be very hard to verify. For this reason, we will not
discuss the latter and just confine ourselves with the much simpler definition above
for which we will show in the following a lot of useful properties.

The disadvantage is of course that we cannot deal with C 0 manifolds in this
way which excludes some examples. However, since we will use a differential-
topological approach for the degree theory, we will have to exclude C 0 manifolds
later, anyway.

Unfortunately, for the case that F 2 C 1.�; Y /with open� � X , we have now
two different notions of orientation which are not identical: The orientation as a
continuous map in the sense of Definition 9.16 and the orientation as a Fredholm
operator in the sense of Definition 8.25. The two notions differ in the definition
of the associated map A: According to Definition 9.16, the associated map A
is always zero while the orientation of Fredholm operators corresponds to the
associated map dF . Thus, roughly speaking, from the viewpoint of orientations,
“Definition 9.16 acts as if dF D 0”.

However, this is only a formal difference: It turns out that F is orientable on
M � � as a continuous map if and only if it is orientable on M as a Fredholm
map, and if �C and �C 1 denote the corresponding orientations, they are related by

�C .x/ D dF.x/C �C 1.x/ for all x 2M . (9.2)

To see this, since (9.2) holds by definition, we only have to verify that (9.2) is
compatible with the additional “continuity” requirements for orientations:

Proposition 9.18. Let I be a topological space, � � X be open, W � I � X
be open, F 2 C 1.�; Y / and H WW ! Y be a partial C 1 homotopy. Let �C

and �C 1 denote the orientations in the sense of Definition 9.16 or 8.25 (or 8.26)
pointwise, that is, on each one-element subset of M � � (or M � W ). Then
�C is an orientation in the sense of Definition 9.16 on M if and only if �C 1 is an
orientation in the sense of Definition 8.25 (or 8.26) on M .
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Proof. We show the assertion for H . Let .t0; x0/ 2 M , and let cX and cY be
charts for x0 and H.t0; x0/, and let hcX

and hcY
be as in Definition 8.20. Putting

sC .t; x/ WD hcY
.H.t; x/; � /�1 ı �C .t; x/ ı hcX

.x; � / � L.EX ; EY /

and

sC 1.t; x/ WD hcY
.H.t; x/; � /�1 ı �C 1.t; x/ ı hcX

.x; � / � L.EX ; EY /,

we have to show that sC is lower semicontinuous at .t0; x0/ if and only if sC 1 is
lower semicontinuous at .t0; x0/. Since we have

�C .t; x/ D dXH.t; x/C �C 1.t; x/

by (9.2), we have
sC .t; x/ D sC 1.t; x/C A.t; x/

with

A.t; x/ WD hcY
.H.t; x/; � /�1 ı dXH.t; x/ ı hcX

.x; � / � L.EX ; EY /.

Since the addition is a continuous operation, it thus suffices in view of Proposi-
tion 2.94 to show that A is continuous. By (8.8), we have

A.t; x/ D d.cY ıH.t; � / ı c�1
X /.cX .x//,

and this is continuous, since cX is continuous and .t; u/ 7! d.cY ı H.t; � / ı
c�1
X /.u/ is continuous by the definition of a partial C 1 homotopy. The proof

for F is analogous (just omit t in the arguments).

In order to have a consistent definition of a sign, we thus define in the above
case, that is, when F 2 C 1.�; Y / and � D �c denotes the orientation of F in the
sense of Definition 9.16:

sgndF.x/ WD

8

ˆ

<

ˆ

:

1 if dF.x/ 2 �.x/,
�1 if dF.x/ 2 Iso.TxX;TF .x/Y / n �.x/,
0 if dF.x/ … Iso.TxX;TF .x/Y /.

This is of course nothing else than saying that sgndF.x/ is the sign for the orien-
tation of dF as a Fredholm operator induced by �c D � in the sense (9.2).

In case of C 1 maps, we can define a corresponding notion of inherited orienta-
tion:

Let� � X be open, F 2 C 1.�; Y / be oriented, and Y0 � Y be a submanifold
of dimension m which is transversal to F on an open subset �0 � �. Recall that
Theorem 8.55 implies that X0 WD �0 \ F�1.Y0/ is a submanifold of �0 (hence
of X ) of dimension m.
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Definition 9.19. In the above situation, suppose that F is oriented on M � �0

in the sense of Definition 9.16. Then the inherited orientation of F0 WD F jX0
2

C 0.X0; Y0/ on M \ X0 is defined as follows. We orient F as a C 1 map ac-
cording to (9.2), obtain an inherited orientation on F0 as a C 1 map according to
Definition 8.65, and then, using (9.2) for F0, we obtain the required orientation
for F .

Proposition 9.20. The inherited orientation is an orientation in the sense of Def-
inition 9.16.

Proof. According to Proposition 9.18, the orientation of F as a C 1 map is an
orientation in the sense of Definition 8.25. By Proposition 8.67, also F0 becomes
oriented in the same sense, and the orientation in the sense of Definition 9.16
follows by applying Proposition 9.18 for F0 in the opposite direction.

Similarly, also the notion of the natural orientation of a diffeomorphism can be
understood in the sense of Definition 9.16:

Definition 9.21. Let U � X be open and J 2 C 1.U; V / be a diffeomorphism
onto an open subset V � Y . The natural orientation of J is defined for x 2 U
pointwise such that dJ.x/ 2 Iso.TxX;TyY / represents the orientation of J at x
in the sense of Definition 9.16.

Proposition 9.22. The natural orientation of diffeomorphisms is an orientation
in the sense of Definition 9.16.

Proof. In view of Proposition 9.18, the assertion follows from Proposition 8.37.

We have the following analogue of parts of Theorem 8.27.

Theorem 9.23. Let I be a topological space, � � X and W � Œ0; 1� � X be
open, and let F W�! Y and H WW ! Y be continuous.

(a) � is an orientation for F or H if and only if the (pointwise) opposite orien-
tation is an orientation for F or H , respectively.

(b) If C � � (or C � W ) is connected and � is an orientation for F (or H ) on
C then � is uniquely determined if its value is known in one point of C .

(c) Let I be locally path-connected. If � is simply connected and if in some
point of each component of � or W an orientation for F or H is given then
F and H have a unique corresponding orientation on � or W .
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(d) If W D Œ0; 1� �� then H is orientable if and only if H.t0; � / is orientable
for some t0 2 Œ0; 1�. In this case, the orientation ofH is uniquely determined
by the orientation of H.t0; � /.

Proof. In view of Proposition 8.16, the proof of the corresponding assertions of
Theorem 8.13 carries over word by word.

For the case of C 1 maps, we also have the following analogues of previous
results:

Theorem 9.24. Let I be a topological space, � � X and W � I � X be open,
F 2 C 1.�; Y /, and H WW ! Y be a generalized partial C 1 homotopy.

(a) In case X D EX and Y D EY and if C � � (or C � W ) is connected
and dF jC (or dXHC ) is constant then all orientations of F or H on C are
constant.

(b) Let M WD C � ¹xº � W with a connected C � I . If dXH jM is constant
then all orientations of H on M are constant.

(c) Let F (or H ) be oriented on a connected set C � � (or C � W ). Sup-
pose that dF.x/ � Iso.TxX;TF .x/Y / for all x 2 C (or dXH.t; x/ �
Iso.TxX;TH.t;x/Y / for all .t; x/ 2 C ). Then sgnF.x/ (or sgnH.t; � /.x/)
are the same for all x 2 C (or .t; x/ 2 C ).

Proof. Using Proposition 9.18, we can transfer the assertions directly from Propo-
sitions 8.14, 8.28, and Theorem 8.27(b), respectively.

Theorem 9.25. Let I be a topological space, W � I �� be open, andH WW !
Y be a generalized partial C 1 homotopy. Let JX be a diffeomorphism of an open
subset of EX onto U � X . We put W0 WD W \ .I � U /. Let V � Y be a
neighborhood of H.W0/, and JY be a diffeomorphism of V onto an open subset
of EY . For t 2 I , we put ht WD JY ıH.t; � / ı JX .

Let H be oriented on M � W0, and let .ti ; xi / .i D 0; 1/ belong to the same
component of M and be such that hti

.xi/ 2 Iso.EX ; EY / .i D 0; 1/. Then we
have with ui WD J�1

X .xi/ .i D 0; 1/ that

sgndXH.t1; x1/ D sgndXH.t2; x2/ ” sgn det.dht1
.x1/

�1dht2
.x2// > 0.

Proof. We equip H jW0
.t; � / with the corresponding orientation of Proposi-

tion 9.18, that is, we understand H jW0
correspondingly oriented as a Fredholm

homotopy in the sense of Definition 8.26. Proposition 8.38 implies that the orien-
tation of H jW0

on M induces an orientation of the Fredholm homotopy
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h.t; x/ WD ht .x/ on M0 WD ¹.t; u/ W .t; JX .u// 2 M º such that

sgndXh.t; u/ D sgndXH.t; JX .u// for all .t; u/ 2 M0.

Note that the right-hand side is also the sign in the sense of the assertion. Since
Proposition 7.22 implies

sgndXh.t1; x1/ D sgndXh.t2; x2/ ”
sgn det.dXh.t1; x1/

�1dXh.t2; x2// > 0,

the assertion follows.

Definition 9.26. For i D 1; 2, let Xi and Yi be C 1 manifolds over real vector
spaces EXi

and EYi
, respectively, such that dimEXi

D dimEYi
< 1. Let

�i � Xi be open and Fi 2 C.�i ; Yi / have orientations �i on Mi � �i . Then
the product orientation �.x1; x2/ of F1 ˝ F2 2 C.�1 � �2; Y1 � Y2/ is for
.x1; x2/ 2M1 �M2 defined as the product orientation of �1.x1/ and �2.x2/.

Proposition 9.27. The above defined product orientation is an orientation of F1˝
F2 on M1 �M2.

Proof. The assertion follows from Proposition 7.43.

Definition 9.28. Let X , Y , Z be C 1 manifolds over real vector spaces EX , EY ,
and EZ with 0 < dimEX D dimEY D dimEZ < 1. Let M � X , M0 � Y

and let F WM ! Y andGWM0 ! Z be continuous and oriented with orientations
�F and �G , respectively, and such that F.M/ �M0.

Then the composite orientation �GıF of G ı F WM ! Z is defined by

�GıF .x/ WD �G.F.x// ı �F .x/. (9.3)

Proposition 9.29. The formula (9.3) gives pointwise the composite orientation in
the sense of Definition 7.45 for the corresponding maps from Definition 9.16.

The composite orientation is an orientation of G ı F in the sense of Defini-
tion 9.16. Moreover:

(a) For each orientation of G ı F and each orientation of G there is exactly
one orientation of F such that G ı F carries the corresponding composite
orientation.

(b) If F WM ! F.M/ is an oriented homeomorphism then for each orientation
of G ı F there is exactly one orientation of GjF .M/ such that G ı F carries
the corresponding composite orientation.
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Proof. Let AF .x/ 2 L.TxX;TF .x/Y /, AG.y/ 2 L.TyY; TG.y/Z/, and
AGıF .x/ 2 L.TxX;TG.F .x//Z/ denote the zero maps. Then (9.3) is the compos-
ite orientation of AG.F.x//AF .x/ onM according to Definition 7.5. This shows
the first assertion. Now the remaining assertions follow from Proposition 7.45
with � D F .

Corollary 9.30. Let X , X0 and Y , Y0 be manifolds over real vector spaces of the
same finite dimension. Let M0 � X , M � X , JX an oriented homeomorphism
of M0 onto M , F 2 C.M;Y /, and JY 2 C.F.M/; Y0/. Then the orientations
of F0 WD JY ı F ı JX are exactly the composite orientations induced by the
orientations of JY and JX and an orientation of F .

Proof. The assertion follows by applying Proposition 9.29 to the compositions
JY ı F and F ı JX , respectively.

In the case that JX and JY are diffeomorphisms, we can choose the natural
orientations:

Corollary 9.31. Proposition 8.38 holds also when all orientations are understood
in the sense of Definition 9.16 or Definition 9.21, respectively.

Proof. Equipping JX and JY with the natural orientations, the pointwise formu-
las for the orientation follow straightforwardly from Corollary 9.30 and Proposi-
tion 7.6. The remaining assertions carry over from Proposition 8.38 in view of
Proposition 9.22.

There is also a corresponding variant of Proposition 9.29 for generalized ho-
motopies.

Let X , Y , Z be manifolds over real vector spaces of the same finite dimension.
For M � Œ0; 1��X and continuous H1WM ! Y , we define OH1WM ! Œ0; 1��Y
by OH1.t; x/ WD .t;H1.t; x//. Let M0 � Œ0; 1� � Y satisfy OH1.M/ �M0, and let
H2WM0 ! Z be continuous. Then H WD H2 ı OH1WM ! Z is continuous. We
define the composite orientation of H pointwise for each fixed t as the composite
orientation of the maps H1.t; � / and H2.t; � /.
Proposition 9.32. In the above situation, if H1 and H2 are oriented, then the
composite orientation of H WD H2 ı OH1 is an orientation of H . Moreover:

(a) If H and H2 are oriented, then there is a unique orientation of H1 on M
such that H2 ı OH1 carries the composite orientation.

(b) If H and H1 are oriented on M and if OH1WM ! OH1.M/ is a homeomor-
phism then there is a unique orientation of H2 on OH1.M/ such that H2 ı OH1

carries the composite orientation.
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Proof. The assertion follows from Proposition 7.45 with � D OH1.

Only in finite dimensions, it makes sense to speak about the orientation of man-
ifolds.

Definition 9.33. An orientation of X on M � X is an orientation of the tangent
bundle TX on M in the sense of Definition 8.20.

There is a strong relation between oriented maps and orientations of manifolds:

Proposition 9.34. Let DF � X , DH � Œ0; 1� � X , and let F WDF ! Y and
H WDH ! Y be continuous. Then the following holds:

(a) If Y is oriented onMY and X is oriented on MX then the pointwise induced
orientation in the sense of Definition 7.11 is an orientation of F and H on
MX \ F�1.MY / or .Œ0; 1� �MX/ \H�1.MY /, respectively.

(b) If Y is oriented on MY and F is oriented on MX then the pointwise orien-
tation induced by F and Y in the sense of Proposition 7.13 is an orientation
of X on MX \ F�1.MY /.

(c) If F and X are oriented on M and F jM is a homeomorphism onto F.M/ �
Y then the pointwise orientation induced by F and X in the sense of Propo-
sition 7.13 is an orientation of Y on F.M/.

Proof. The assertions follow immediately from the corresponding assertions of
Proposition 7.48.

9.3 The C r Brouwer Degree

In this section, let X and Y be Banach manifolds of class C q .1 � q � 1/
without boundaries over real vector spaces EX and EY with 0 < dimEX D
dimEy <1.

The aim of the following considerations is to establish the Brouwer degree for
maps F 2 C r.�; Y / .0 � r � q/ with open � � X .

The Brouwer degree actually comes in two flavors: One for general maps, in
which case the Brouwer degree is a number from the group Z2 D ¹0; 1º (with the
usual addition modulo 2), and one for oriented maps, in which case the Brouwer
degree is a number from the group Z.

Definition 9.35. We write .F;�; y/ 2 Br.X; Y / if � � X is open, F 2
C r.�; Y /, y 2 Y , and F�1.y/ is compact.
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For the oriented version of the Brouwer degree, we assume in this definition
also that F is oriented, that is, we also assume an orientation � of F in the sense
of Definition 9.16, although we do not write � explicitly. In the oriented case, the
set Br.X; Y / consists of less maps in general, since not every map is orientable,
in general. So, strictly speaking, we should use a different symbol for the oriented
case and also write .F; �/ in that case instead of just F . However, we do not
do this to treat the two cases (oriented and non-oriented) similar and to simplify
notation.

We recall that in the oriented case and if F is of class C 1 in a neighborhood
of x then

sgn dF.x/ D

8

ˆ

<

ˆ

:

1 if dF.x/ 2 �.x/,
�1 if dF.x/ 2 Iso.TxX;TF .x/Y / n �.x/,
0 if dF.x/ … Iso.TxX;TF .x/Y /.

In the non-oriented case, when we calculate only in Z2 modulo 2, we avoid case
distinctions if we put

sgndF.x/ WD
´

1 if dF.x/ 2 Iso.TxX;TF .x/Y /,

0 if dF.x/ … Iso.TxX;TF .x/Y /.

Now we come to the Brouwer degree. Roughly speaking, the idea is that
deg.F;�; y/ should define an “homotopically invariant count” of the number of
solutions of the equation F.x/ D y in � where “counting” has to be understood
with certain multiplicities (where a multiplicity can also be negative, depending
on the orientation). For the oriented case, we emphasize once more that we un-
derstand F tacitly equipped with an orientation � , that is, we should write more
precisely deg..F; �/;�; y/, but we do not do this to simplify notation. However,
when we calculate with the degree in the oriented case, we have to specify, of
course, which orientation is meant.

The definition which we use is the following. We fix IEX ;EY
2 Iso.EX ; EY /

once and for all.

Definition 9.36. The C r Brouwer degree deg D deg .r;X;Y / onX and Y is a map
which associates to each .F;�; y/ 2 Br.X; Y / (with F being oriented in the
oriented case) a number from Z2 (resp. from Z in the oriented case) such that the
following holds.

(AB ) (Homotopy Invariance). If � � X is open and H W Œ0; 1� �� ! Y is an
(oriented) partial C r homotopy with H�1.y/ being compact then

deg.H.0; � /;�; y/ D deg.H.1; � /;�; y/.
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(BB) (Normalization). Suppose that there are charts c and cy defined at least
on � and y, respectively, and that there is v 2 EY such that .cy ı F ı
c�1/.u/ D v C IEX ;EY

u for all u 2 c.�/. Suppose also that there is some
(automatically unique) x 2 � with F.x/ D y. Then

deg.F;�; y/ D sgndF.x/.

(CB) (Excision). If �0 � � is an open neighborhood of F �1.y/ then

deg.F;�0; y/ D deg.F;�; y/.

(DB) (Additivity). If � D �1 [�2 with disjoint open subsets �i � � then

deg.F;�; y/ D deg.F;�1; y/C deg.F;�2; y/.

For the homotopy invariance, we note that the assumptions automatically im-
ply .H.i; � /;�; y/ 2 Br.X; Y / .i D 0; 1/, since H.i; � /�1.y/ is compact by
Proposition 2.62.

Concerning the normalization property, we recall that by a chart we mean only
a member of the atlas and that we do not assume that the atlas is maximal. In
particular, there might be very few charts in which case the normalization property
is only a requirement for very few maps F .

Remark 9.37. The formulation of the excision and additivity properties is a bit
sloppy:
To be formally correct, we should have written deg.F j	i

;�i ; y/ instead of
deg.F;�i ; y/ (for i D 0; 1; 2), and in the oriented case, we should have said
that we use the restriction of the original orientation.

However, in situations like these, such formal restriction symbols are omitted
for better readability.

One aim of the next two sections is to prove:

Theorem 9.38. For each fixed manifolds X , Y of class C q .1 � q � 1/ and
each 0 � r � q there is exactly one oriented C r Brouwer degree deg.r;X;Y /. The
degrees are compatible in the sense that

deg.R;X;Y / D deg.r;X;Y / jBR.X;Y / for 0 � r � R � q. (9.4)

The oriented and non-oriented versions deg and deg� are compatible in the sense
that for all .F;�; y/ 2 Br.X; Y /

deg.F;�; y/ 
 deg�.F;�; y/ .mod 2/ if F is oriented. (9.5)
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In the next two sections, we will also learn a lot of further useful properties
of the degree so that these sections should not be skipped completely, even if the
reader is not interested in the proof of Theorem 9.38.

Remark 9.39. For the case that X D EX and Y D EY (with idX and idY as the
only charts), the normalization property can be replaced by an apparently even
weaker property:

(BB ) (Normalization for Vector Spaces).

deg.IEX ;EY
; X; y/ D sgn IEX ;EY

.

We carry out the following proof of Remark 9.39 very detailed to explain how
to work with the orientation.

Proposition 9.40. Let X and Y be fixed. In case X D EX , Y D EY , the
C r Brouwer degree with the normalization property replaced by that from Re-
mark 9.39 satisfies automatically the normalization property of Definition 9.36.

Proof. Let� � X D EX be open and y; y0 2 Y such that y 2 IEX ;EY
.�/Cy0.

Putting F WD IEX ;EY
j	 C y0 and x0 WD I�1

EX ;EY
.y � y0/, we have to prove that

deg.F;�; y/ D sgn dF.x0/.
In the oriented case, let � denote the orientation of dF.x0/ D IEX ;EY

. Let
�0 � � be open and connected with x0 2 �0. Note that dF.x/ D IEX ;EY

for every x 2 �0. Since �0 is connected, Theorem 9.24(a) thus implies that
the orientation of dF.x/ is actually independent of x 2 �0. We put now G WD
IEX ;EY

C y0 where we equip dG.x/ D IEX ;EY
with the same orientation as

dF.x0/ D IEX ;EY
. Then the restriction Gj	0

has the same orientation as F j	0
.

Using now the excision property of the degree twice, we find that

deg.F;�; y/ D deg.F;�0; y/ D deg.G;�0; y/ D deg.G;X; y/.

In the non-oriented case, we have of course the same formula, and it would not
have been necessary to pass to �0 first, since F and Gj	 are identical as maps.
However, the orientation of these maps might differ on components of � which
do not contain �0.

As a final step, we consider the Fredholm homotopy H.t; x/ WD .1 � t/y0 C
IEX ;EY

x. In the oriented case, we equip dXH.t; x/ D IEX ;EY
for every .t; x/ 2

Œ0; 1� � X with the orientation of dF.x0/ D IEX ;EY
. The homotopy invariance

implies

deg.G;X; y/Ddeg.H.0; � /;X; y/Ddeg.H.1; � /;X; y/Ddeg.IEX ;EY
; X; y/.



Section 9.3 The C r Brouwer Degree 259

The claim now follows by using the normalization property from Re-
mark 9.39.

Remark 9.41. A more classical definition of the Brouwer degree does not con-
sider oriented maps but requires instead that the manifolds X and Y be oriented.

Note that whenX and Y are oriented then all maps and generalized homotopies
obtain an induced orientation according to Proposition 9.34.

If one restricts in the oriented case the Brouwer degree to maps with that in-
duced orientation we speak of the C r Brouwer degree for oriented mani-
folds.

Of course, the existence assertion of Theorem 9.38 implies immediately that
a C r Brouwer degree for oriented manifolds exists. However, the uniqueness of
that degree does not immediately follow from the uniqueness assertion of Theo-
rem 9.38, since the Brouwer degree for oriented manifolds is only a restriction of
the degree considered in Theorem 9.38.

For this reason we point out that actually all proofs and statements in Sec-
tions 9.4, and 9.5 hold also with obvious modifications for the case that X and
Y are oriented manifolds and that we consider only the orientations of maps in-
duced by X and Y . For instance, in the proof of Proposition 9.40, we need not
discuss orientations at all since the induced orientation is automatically the (only)
“correct” orientation for which we can apply the homotopy invariance. Similar
considerations hold for the subsequent proofs.

In particular, it follows then that (also the uniqueness assertion of) Theo-
rem 9.38 holds in this case.

Remark 9.42. We should briefly mention the advantages that we have (or not
have) by considering oriented maps instead of considering oriented manifolds as
in Remark 9.41.

One advantage is evident: There are cases where one can speak about the
Brouwer degree with values in Z in case of oriented maps while the (oriented)
degree of Remark 9.41 does not exist. For example, every diffeomorphism of X
onto Y is orientable by Proposition 9.22, even if X (and thus necessarily also Y )
fails to be orientable. Thus, we really obtain a theory which applies for more maps
than the classical degree of Remark 9.41 on oriented manifolds.

On the other hand, the most interesting case for us in the later applications
is that Y D EY is a (finite-dimensional) normed space. In this case, Y is ob-
viously orientable, and so Proposition 9.34 implies that if there is an orientable
F 2 C.X; Y / then X is orientable.

However, the existence of such a map is not a requirement for our (oriented)
degree theory: Even if X is non-orientable, we can apply the (oriented) degree
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theory for oriented maps F 2 C.�; Y / with open � � X . This implies that �
is orientable (and thus � ¤ X ), but typically there are a lot of such maps. For
instance, if Y D R2 and X is the Moebius strip, any set � � X can do which
only omits a line which “cuts through the strip”.

Of course, one can say that in such a case, one could again apply the degree
theory of Remark 9.41 with the oriented manifolds � and Y . This is true, but
then one cannot easily deduce relations between the degrees of map when the set
� � X changes. In contrast, such a change causes no technical difficulties for
the degree theory for oriented maps: The generalized homotopy invariance which
we will prove later on and which combines the excision property and homotopy
invariance in a sense can easily deal with varying sets �. In contrast, it would be
very hard even to just formulate such a result for the degree of Remark 9.41 if X
is non-orientable.

A more practical advantage of the degree theory for oriented maps (compared
to the degree theory of maps between oriented manifolds) will become clear in
Chapter 10: For Fredholm maps in infinite-dimensional spaces, we can only speak
about orientation of maps, and for certain restrictions of such maps, we obtain nat-
urally an inherited orientation for maps between finite-dimensional submanifolds.
For this application, it appears more natural to use directly the degree theory for
oriented maps.

Remark 9.43. The classical Brouwer degree on a finite-dimensional normed
space E occurs by putting X D Y D EX D EY D E (with only one chart)
and considering the same orientation on X and Y . For the normalization in Re-
mark 9.39, one chooses IE;E D idE for the classical Brouwer degree, that is, the
normalization property becomes simply

deg.idE ; E; y/ D 1.

In view of Remark 9.41, our proof shows also the uniqueness of this classical
Brouwer degree on E under this very natural normalization property. This special
case is of course a well-known result.

Remark 9.44. In the classical definition of the Brouwer degree, one considers
only triples .F;�; y/ with the additional property that � is compact and F has a
continuous extension to �, and y … F.@�/. It turns out that the definitions are
actually equivalent (by Corollary 9.3 and the excision property), but nevertheless
our definition applies to a larger class of maps and is therefore more convenient
to apply. There is one important exception, namely the Rouché property of the
degree which we discuss later on is a bit more complicated to formulate. How-
ever, for the case Y ¤ EY the classical Rouché property cannot be formulated,
anyway.
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The reader who is completely unfamiliar with the Brouwer degree in Rn might
want to have a look at Section 9.6 to get a feeling how useful the degree is to prove
difficult and interesting assertions. This might help to motivate to go through the
details of the rather cumbersome existence and uniqueness proofs of the following
sections.

9.4 Uniqueness of the Brouwer Degree

Throughout this section, let X and Y be manifolds of class C q .1 � q � 1/
without boundaries over real vector spaces EX and EY with 0 < dimEX D
dimEY <1, and let 0 � r � q.

Proposition 9.45. The C r Brouwer degree on fixed X and Y automatically sat-
isfies for every .F;�; y/ 2 Br.X; Y /:

(EB) (Existence). If deg.F;�; y/ ¤ 0 then y 2 F.�/.
(FB) (Excision-Additivity). If �i � � .i 2 I / is a family of pairwise disjoint

open sets with F �1.y/ � S

i2I �i such that F�1.y/ \�i is compact for
all i 2 I then

deg.F;�; y/ D
X

i2I

deg.F;�i ; y/,

where in the sum at most a finite number of summands is nonzero.

Proof. If y … F.�/, we can choose �0 D ¿ in the excision property and find
deg.F;�; y/ D deg.F;¿; y/. Choosing �1 D �2 D ¿ in the additivity prop-
erty, we obtain in turn that deg.F;¿; y/ D 0. Hence, deg.F;�; y/ D 0.

For the excision-additivity property, we note that �i .i 2 I / constitute an open
cover of the compact set F�1.y/. Hence, there is a finite subcover �i1 ; : : : ;�in

.
All �i different from these sets satisfy y … F.�i /, and so the existence property
implies deg.F;�i ; y/ D 0 for those i . Now the excision property with �0 WD
�i1 [ � � � [ �in

and the additivity applied for deg.F;�0; y/ give the required
formula after a trivial induction.

The reader be warned that the converse of the existence property does not hold,
that is, deg.F;�; y/ D 0 does not imply that y … F.�/. In fact, assume for
instance that F�1.y/ consists of exactly two points x1; x2 2 � such that there are
disjoint neighborhoods �i of xi with deg.F;�i ; y/ D .�1/i . Then we have by
the excision-additivity that deg.F;�; y/ D 0. However, a similar phenomenon
can also occur if F�1.y/ consists only of a single point: Intuitively, that point
might have a “multiplicity” of 0. An example with � D X D Y D R and y D 0
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is the map F.x/ D x2. Indeed, the homotopy invariance with H.t; x/ WD x2 C t

and existence property imply deg.F;�; 0/ D deg.F C 1;�; 0/ D 0.
Let us now prove the uniqueness of deg.F;�; y/ for the case that F 2 C 1 and

y is a regular value of F . Note that in this case Remark 8.58 implies that F�1.y/

is discrete so that the compactness of F �1.y/ implies that F�1.y/ is actually a
finite set.

The uniqueness (if y is a regular value) now follows from the subsequent regu-
lar normalization property:

Proposition 9.46. The C r Brouwer degree on fixed X and Y automatically sat-
isfies for every .F;�; y/ 2 Br.X; Y /:

(GB ) (Normalization for Diffeomorphisms). If F is a diffeomorphism onto an
open subset of Y then

deg.F;�; y/ D
´

0 if y … F.�/,
sgndF.F �1.y// otherwise.

(HB ) (Regular Normalization). If F is C 1 in an open neighborhood �0 � �

of F�1.y/ and if y is a regular value of F j	0
then we have a finite sum

deg.F;�; y/ D
X

x2F �1.y/

sgn dF.x/.

Recall that we define the empty sum as 0. Hence, the normalization property for
diffeomorphisms is just a simple special case of the regular normalization prop-
erty. The normalization property for diffeomorphisms deserves a special men-
tioning anyway, since a lot of references call this the normalization property of
the degree. However, we point out once more that the normalization property of
Definition 9.36 is much easier to verify, since if the atlas of X and Y is small, it
involves only a few maps. In fact, if one wants to verify that property, one might
use a minimal atlas for X and Y , as we will see.

Proof of the Regular Normalization. In case F�1.y/ D ¿, the existence property
implies that we must have deg.F;�; y/ D 0. Thus, it remains to discuss the case
that F�1.y/ contains finitely many points x1; : : : ; xn 2 �0 .n � 1/.

By the inverse function Theorem 8.39, there are open neighborhoods Uk � �0

of xk .k D 1; : : : ; n/ such that F jUk
is a diffeomorphism onto an open subset

of Y containing y. Let cy be a chart of Y for y, and R > 0 be such that the
range of cy contains at least the ball BR.v/ � EY with v WD cy.y/. Shrink-
ing Uk if necessary, we can assume that the Uk are pairwise disjoint and that
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there are charts ck of X defined at least on Uk and that cy is defined at least
on F.Uk/.

By Proposition 9.1, there are open neighborhoods �k � X of xk such that
�k � Uk is compact with ck.�k/ D Brk

.uk/ � EX and ck.�k/ D Krk
.uk/

with uk WD ck.xk/. We obtain by the excision-additivity property that

deg.F;�; y/ D deg.F;�1; y/C � � � C deg.F;�n; y/.

Hence, it suffices to prove

deg.F;�k ; y/ D sgndF.xk/. (9.6)

By construction, Gk WD cy ı F ı ck j�1
Uk

is a diffeomorphism of ck.Uk/ onto
an open subset of EY . Let Ak WD dGk.uk/ 2 Iso.EX ; EY /. Shrinking rk if
necessary, we can assume by the definition of the derivative

kGk.u/ � v � Ak.u � uk/k � 1

2kA�1
k
kku � ukk for all u 2 Krk

.uk/. (9.7)

We consider now the homotopies hk W Œ0; 1� �Krk
.uk/! EY , defined by

hk.t; u/ WD .1 � t/G.u/C t.v C Ak.u � uk//.

For u sufficiently close to uk , we haveG.u/; vCAk.u�uk/ 2 BR.v/. Shrinking
rk if necessary, we can assume without loss of generality that this is the case for all
u 2 Krk

.uk/. Proposition 3.3 implies then that hk.Œ0; 1� � Krk
.uk// � BR.v/.

Hence, Hk.t; x/ WD c�1
y .hk.t; ck.x/// defines a partial C r homotopy on �k

which is also continuous on Œ0; 1���k . Note that Hk.0; � / D c�1
y ıG ıcX D F .

For hck
and hcy

as in Definition 8.20, we calculate

dHk.t; xk/ D hcy
.y; � / ı ..1 � t/C t/Ak ı h�1

ck
.xk; � /

D hcy
.y; � / ı Ak ı h�1

ck
.xk; � / D dF.xk/.

We put Fk WD Hk.1; � /. If F is oriented then Theorem 9.23(d) implies that
Hk has a unique orientation such that Hk.0; � / D F has the same orientation
as F . Since dXHk.t; xk/ D dF.xk/ is independent of t 2 Œ0; 1�, we obtain from
Theorem 9.24(b) that Hk.1; � / carries on ¹xkº the same orientation as F . We
equip Fk with the orientation of Hk.1; � /.

For all t 2 Œ0; 1� and all u 2 Krk
.uk/, we calculate by (9.7) that

khk.t; u/ � vk D k.1 � t/Gk.u/C tAk.u � uk/ � .1 � t/vk
� kAk.u � uk/k � .1� t/ku � ukk

2kA�1
k
k .
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Since .1 � t/ku � ukk � kA�1
k
kkAk.u � uk/k, we obtain hk.t; u/ ¤ v for u ¤

uk , in particular for ku � ukk D rk. Hence, y … Hk.Œ0; 1� � @�k/. It follows
that the compact set H�1

k
.y/ � �k is contained in �k , and so Hk j�1

Œ0;1��	k
.y/ is

compact. The homotopy invariance of the degree thus implies

deg.F;�k ; y/ D deg.Hk.0; � /;�k ; y/

D deg.Hk.1; � /;�k ; y/ D deg.Fk ;�k ; y/,

where in the oriented case the orientations of F and Fk are such that dF.xk/ D
dFk.xk/ have the same orientation, in particular sgndF.xk/ D sgndFk.xk/.

Let now k 2 ¹1; : : : ; nº be fixed. The subsequent Lemma 9.47 implies that
there is a continuous map 	0W Œ0; 1� ! Iso.EY / with 	0.0/ WD AkI

�1
EX ;EY

and

	0.1/ D idEY
(in the case det.AkI

�1
EX ;EY

/ > 0) or 	0.1/ D J (in the case

det.AkI
�1
EX ;EY

/ < 0) where J 2 Iso.EY / is an arbitrary fixed map with detJ <
0. Then 	 W Œ0; 1� ! Iso.EX ; EY /, defined by 	.t/ WD 	0.t/ ı IEX ;EY

, is con-
tinuous with 	.0/ D Ak and 	.1/ D IEX ;EY

or 	.1/ D JIEX ;EY
. We put

h.t; u/ WD v C 	.t/.u � uk/ and H.t; x/ WD c�1
y .h.t; ck.x///. Shrinking rk if

necessary, we can assume that H is defined on Œ0; 1� ��k .
Since H.0; � / D Fk , Theorem 9.23(d) implies that in the oriented case, we

can orient H uniquely on Œ0; 1� ��k such that H.0; � / is oriented as Fk . Theo-
rem 9.24(c) implies in this case that

sgndXH.1; xk/ D sgn dXH.0; xk/ D sgndFk.xk/ D sgndF.xk/.

The homotopy invariance gives us

deg.Fk;�k ; y/ D deg.H.1; � /;�k ; y/.

In the case det.AkI
�1
E;Y / > 0, we have .cyıH.1; � /ıc�1

k
/.u/ D vCIX;Y .u�uk/,

and so the normalization property of the degree implies

deg.H.1; � /;�k ; y/ D sgndXH.1; xk/ (9.8)

which implies (9.6). We have to prove (9.8) also for the remaining k, that is
in case det.AkI

�1
EX ;EY

/ < 0. In that case, we have H.1; x/ D c�1
y .v C

JIEX ;EY
.ck.x/ � uk// where we are still free to choose J 2 Iso.EY / with

det J < 0. We fix some e 2 EY with 0 < kek < R=3 and f 2 E�
Y with

f .e/ D 1. Note that if we choose e as one vector of the basis in EY then
J.z/ WD idEY

.z/�2f .z/e is represented as a diagonal matrix which has�1 in one
diagonal entry (corresponding to the basis vector e), and C1 in all others. Hence,
det J D �1. Shrinking rk if necessary, we assume kIEX ;EY

k.1C kf kkek/rk <
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R=3. We fix now " > 0 so small that ck.�k/ contains all points from M0 WD
uk C I�1

EX ;EY
.Œ0; "�e/.

Let gWR ! .�1; 1/ be a C r -function which is strictly negative in .0; "/, strictly
positive outside of Œ0; "�, and which satisfies g.s/ D �s in a neighborhood of 0
and g.s/ D s � " in a neighborhood of ". We put h0.t; s/ WD g.s/ � s C t and
define hg W Œ0; 1� �EX ! EY by

hg.t; u/ WD v C IEX ;EY
.u � uk/C h0.t; f .IEX ;EY

.u � uk///e.

Note that jh0.t; s/j < 2C jsj for t 2 Œ0; 1�, and so

khg.t; u/ � vk < kIEX ;EY
kku � ukk C .2C kf kkIEX ;EY

kku � ukk/kek
< kIEX ;EY

k.1C kf kkek/rk C 2kek < R
for u 2 Brk

.uk/. Hence, hg .Œ0; 1� � Brk
.uk// � BR.v/. We observe that

hg.t; u/ D v holds if and only if z WD IEX ;EY
.u � uk/ satisfies z D se with

s WD �h0.t; f .z//. Since f .e/ D 1, the latter holds if and only if s D �h0.t; s/,
that is, if and only if g.s/ C t D 0. Note that this implies s 2 Œ0; "�, that is,
z 2 Œ0; "�e and thus u 2 M0. Moreover, g.s/ C t D 0 has for t D 1 no solution
and for t D 0 exactly the two solutions s D 0 and s D ", corresponding to u D uk

and u D vk WD uk C I�1
EX ;EY

."e/. Hence, if we define a partial C r homotopy

H0W Œ0; 1���k ! Y byH0.t; x/ WD c�1
y .hg.t; ck.x///, the closed in Œ0; 1���k

set H�1
0 .y/ is contained in the compact subset Œ0; 1� � c�1

k
.M0/ � Œ0; 1� � �k

and thus compact. Moreover, H0.0; x/ D y for x 2 �k if and only if x D xk or
x D Oxk WD c�1

k
.vk/, and y … H0.¹1º ��k/. Now by our choice of g we have

for a sufficiently small open neighborhood U� � Brk
.uk/ of vk that

hg .t; u/ D v C IEX ;EY
.u � uk/C .t � "/e for all u 2 U�. (9.9)

Similarly, for a sufficiently small neighborhood UC � Brk
.uk/ of uk , we have

hg.0; u/ D v C IEX ;EY
.u � uk/ � 2f .IEX ;EY

.u � uk//

D v C JIEX ;EY
.u � uk/ for all u 2 UC.

(9.10)

Then �˙ WD ck.U˙/ are neighborhoods of xk and Oxk , respectively, without loss
of generality disjoint. It follows that H0.0; � / coincides with H.1; � / in �C, in
particular dXH0.0; xk/ D dXH.1; xk/.

In the oriented case, since �k is homeomorphic to Brk
.uk/ and thus simply

connected, Theorem 9.23(c) implies that we can orientH0 on Œ0; 1���k uniquely
such that the orientation at .0; xk/ coincides with the orientation of H at .1; xk/.
Since dXH0.0; xk/ D dXH.1; xk/, we obtain

sgndXH0.0; xk/ D sgn dXH.1; xk/.
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We have by the excision property of the degree that

deg.H.1; � /;�k ; y/ D deg.H.1; � /;�C; y/ D deg.H0.0; � /;�C/,

and by the excision-additivity and homotopy invariance of the degree that

deg.H0.0; � /;�C; y/C deg.H0.0; � /;��; y/
D deg.H0.0; � /;�k ; y/ D deg.H0.1; � /;�k ; y/.

The existence property of the degree (Proposition 9.45) implies that the last num-
ber in this formula is 0. Summarizing, we have shown

deg.H.1; � /;�k ; y/ D � deg.H0.0; � /;��; y/. (9.11)

In the oriented case, we note that (9.9) and (9.10) imply

det..dhg .0; � //.vk/
�1dhg .0; � /.uk// D det.I�1

EX ;EY
JIEX ;EY

/ D det J < 0.

Since uk and vk belong to the same component of the connected set �k , we thus
obtain from Theorem 9.25 that sgn dXH0.0; xk/ D � sgndXH0.0; Oxk/. Note
that (9.9) and the normalization property of the degree imply

deg.H0.0; � /;��; y/ D sgndXH0.0; Oxk/

D � sgndXH0.0; xk/ D � sgndXH.1; xk/.

Together with (9.11), this implies (9.8).

Lemma 9.47. Let E ¤ ¹0º be a finite-dimensional real normed space. Then
Iso.E/ consists of exactly two components which are path-components, consisting
of the operators with positive and negative determinant, respectively.

Remark 9.48. The proof will also show that the determinant is negative if and
only if there is an odd number of eigenvalues in .�1; 0/. Here, eigenvalues
are understood as possibly complex eigenvalues, counted with algebraic multipli-
city.

Proof. Since detW Iso.E/ ! R n ¹0º is continuous, it follows that Iso.E/ is the
union of the disjoint open setsD� WDdet�1..�1; 0// andDC WDdet�1..0;1//,
and so Corollary 2.18 implies that the components of Iso.E/ are contained in
either DC or inD�. It thus remains to show that if A;B 2 Iso.E/ belong both to
DC or both toD�, that is if det.A/=det.B/ > 0, then A and B can be connected
by a path in Iso.E/.
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We recall that for any J 2 Iso.E/ there is a basis in E such that J can be
represented with respect to this basis as a matrix in real Jordan normal form that
is, as a diagonal block matrix with blocks of the form

0

@

� 1

:::
1
�

1

A or

0

B

B

B

@

Re � Im � 1 0� Im � Re � 0 1

:::
1 0
0 1

Re � Im �� Im � Re �

1

C

C

C

A

,

depending on whether the eigenvalue � ¤ 0 is real or complex. Replacing 1 in
the above representation by 1 � t .0 � t � 1/ and considering this as a path
in Iso.E/, we see that J belongs to the same path-components as the matrix J0

where the entries 1 in the above presentation are replaced by 0. Note that J0 is a
diagonal block matrix consisting of blocks of the form

�

�
�

or

�

Re� Im�

� Im� Re�

�

,

depending on whether � is real or complex. In case � 2 R, we replace � by
.1 � t/�C t sgn� .0 � t � 1/. In case of complex � with Re� ¤ 0, we replace
Re� by .1� t/Re�C t sgnRe� and Im� by .1� t/ Im�. In the remaining case
Re� D 0, we replace Im� by .1� t/ Im�C t sgn Im�. This path shows that J0

(and thus J ) belongs to the same path-component as the matrix J1 consisting of
diagonal blocks of the form

.sgn�/ � �1� or .sgn Re�/
�

1 0

0 1

�

or .sgn Im�/

�

0 1

�1 0

�

.

In the last case, we combine with the path

�

sint cost
� cost sint

�

.0 � t � 1

2
/.

All in all, we end with a matrix J2 in the same path-component of Iso.E/ as J
which has only entries ˙1 in the diagonal, where the �1 occurs exactly at those
places where � 2 .�1; 0/ in the matrix J . In the same manner, we can replace
J2 by a matrix where two successive diagonal entries have changed their sign:
Indeed, on the corresponding 2 � 2 diagonal block, we just have to replace the
block by the path

�

�1 cost �1 sint
��2 sint �2 cost

�

.0 � t � 1/
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where �1; �2 are the original diagonal entries. Changing successively the signs of
the first two diagonal entries, the second and third diagonal entry, etc, if necessary,
it can be arranged that all diagonal entries are 1 except for possibly the last one.
The latter holds if and only if the number of negative signs in J2 is odd which by
the construction is the case if and only if the number of complex eigenvalues of J
in .�1; 0/ is odd. This also implies the assertion of Remark 9.48.

To finish the proof of Lemma 9.47, we apply what we have shown to J WD
B�1A. Then det J D detA=detB > 0, and by what we have shown there
is a continuous path 	 W Œ0; 1� ! Iso.E/ with 	.0/ D J and 	.1/ D idE . It
follows that 	0.t/ WD B ı 	.t/ defines a continuous path 	0W Œ0; 1�! Iso.E/ with
	0.0/ D A and 	0.1/ D B .

Proposition 9.46 is the key to the proof of the uniqueness of the Brouwer degree.
It also shows for the existence proof how we have to define the Brouwer degree for
regular values. The idea of the proof in the general case is to use Theorem 9.14
to replace y by a “sufficiently close” regular value and to show that the result
is independent of the choice of this value. Concerning the uniqueness, this is a
relatively simple task, as we will see in a moment.

The reader familiar with the “classical” Brouwer degree in Rn should be aware
that we still have to tackle two difficulties.

The first of these difficulties is more or less formal: We have to reduce the
situation to compact sets, since only on such sets one can formulate a continuous
dependency of deg.F;�; y/ with respect to y.

The other difficulty is more serious: Our axioms of Definition 9.36 do not in-
clude any continuous dependency with respect to y. For the Brouwer degree in
Rn many text books allow in the definition of the homotopy invariance also that y
depends (continuously) on t . With such a requirement, the uniqueness would be
very easy to solve. However, such a requirement is not very natural and in practice
not easy to verify. Without such a requirement we have to prove such a continuous
dependence.

We will simultaneously solve another problem: It makes no sense at all to speak
about regular values of a C 0 function F , and Theorem 9.14 is not directly appli-
cable to F . Therefore, we not only have to approximate y but also F (by a C 1

function, using Theorem 9.9), and we need a result that the degree is independent
of the approximation.

Thus, our next aim is to prove a result which states, roughly speaking, that

deg.F;�; y/ D deg.F0;�; y0/
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whenever .F0; y0/ is “sufficiently close” to .F; y/. Once we have this, we obtain
immediately the uniqueness of the degree from the regular normalization property.
The reader who is familiar with the degree theory mentioned in Remark 9.44 will
have no doubt about such a “stability” of the degree with respect to y.

Unfortunately, things are not as simple in our case for several reasons:

Example 9.49. Let X D Y D R, and F.x/ D x=.1 C x/. Then the regular
normalization property implies the two examples

deg.idX ; .0; 1/; y/ D deg.F; .0;1/; y/ D
´

1 if y 2 .0; 1/,
0 if y 2 R n .0; 1/.

Note that both degrees are defined for every y 2 R.

In the first of these examples the degree is defined for y D 0 or y D 1 in our
sense but not in the sense of Remark 9.44, because 1 2 idX .@.0; 1//. We will see
that the second example breaks down for y D 1 in the sense of Remark 9.44 due
to the noncompactness of .0;1/ (closure in X ).

Thus, for a precise formulation, we have to reduce the general situation to the
case that � is compact. However, we have to tackle further difficulties: If Y is a
manifold, we have to specify a notion of “uniform closeness” of F and F0 in Y ,
since the topology in Y alone cannot define such a notion. Moreover, we must
guarantee that we can compare the orientations of F and approximating maps F0.
To achieve all this, the subsequent notion of a Rouché triple turns out to be useful.

We recall that X and Y are assumed to be of class C q .1 � q � 1/.

Definition 9.50. .�0; V; J / is a Rouché triple for .F;�; y/ 2 Br.X; Y / of class
Cp .1 � p � q/ if the following holds:

(a) V � Y is an open neighborhood of y.

(b) J is a Cp-diffeomorphism of V onto an open convex subset of EY .

(c) �0 � � is open with F�1.y/ � �0.

(d) �0 is compact.

(e) F has a continuous extension F W�0 ! Y .

(f) F.�0/ � V , y … F.@�0/.

This Rouché triple induces on V the metric

dJ .x; y/ WD kJ.x/� J.y/k.
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Remark 9.51. Since Y is Hausdorff, the continuous extension of F is unique by
Lemma 2.55, and so there is no ambiguity when we denote this extension also
by F .

Proposition 9.52. For each y 2 Y there are .V; J / such that, whenever
.F;�; y/ 2 Br .X; Y /, there is a Rouché triple .�0; V; J / of class C q with
�0 � �.

Proof. Let cWU ! EY be a chart for y. Then v WD c.y/ is an interior point of
the open set c.U /, and so there is some r > 0 with B WD Br.v/ � c.U /. Since B
is convex by Proposition 3.3, the set V WD c�1.B/ is an open neighborhood
of y. Now if .F;�; y/ 2 Br.X; Y /, the set �1 WD F �1.V / is open with K WD
F�1.y/ � �1. Corollary 9.3 implies that there is an open set �0 � X with
compact �0 � �1 � � and K � �0. Hence, .�; V; c/ is a Rouché triple.

Proposition 9.53. Let .�0; V; J / be a Rouché triple for .F;�; y/ 2 Br .X; Y / of
class Cp .1 � p � q/. Then for each " > 0 there are functions F0 2 Cp.�; Y /

and a regular value y0 2 V of F0j	0
such that F0 has a continuous extension to

�0 with F0.�0/ � V and

dJ .y; y0/ < " and dJ .F.x/; F0.x// < " for all x 2 �0.

Proof. We putG WD J ıF j	0
and observe thatK WD F.�0/[¹yº is compact by

Proposition 2.100 and disjoint from the closed setA WD EY nJ.V /. Corollary 3.14
implies that there is some � > 0 with B�.K/ � J.V /. Without loss of generality,
we assume " < �. Proposition 9.1 implies that there is a relatively compact,
hence second countable, open neighborhood U � X of the compact set �0. By
Theorem 9.9, there is G0 2 C q.U; Y / satisfying

kG.x/�G0.x/k < " for all x 2 �0.

Note that B".K/ � J.V / thus implies G0.�0/ � V . Then F0 WD J�1 ı G0j	0

is a function with the required properties: The existence of a regular value y0 of
F0j	0

in the neighborhood J�1.B".J.y/// of y follows from Theorem 9.14.

Proposition 9.54. The C r Brouwer degree for fixed X and Y automatically sat-
isfies the following property for .F;�; y/ 2 Br.X; Y / and 0 � r � p � q,
p � 1:
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(IB ) (Rouché Property). Let .�0; V; J / be a Rouché triple for .F;�; y/ of
class Cp , and F0 2 C r.�0; Y / have a continuous extension to �0 with
F0.�0/ � V and

dJ .F.x/; F0.x// ¤ dJ .F.x/; y/C dJ .F0.x/; y/ for all x 2 @�0.
(9.12)

Then .F0;�0; y/ 2 Br.X; Y /, .�0; V; d/ is a Rouché triple for .F0;�0; y/,
and

deg.F;�; y/ D deg.F;�0; y/ D deg.F0;�0; y/.

The orientation of F0 on �0 is described below.

(JB) (Stability). Let .�0; V; J / be a Rouché triple for .F;�; y/ of class Cp .
Then there is some " > 0 such that if y0 2 V , F0 2 C r .�0; Y / has a
continuous extension to �0 with F0.�0/ � V ,

dJ .y; y0/ � " and dJ .F.x/; F0.x// � " for all x 2 @�0,

then .F0;�0; y0/; .F;�0; y0/ 2 Br.X; Y /, .�0; V; J / is a Rouché triple
for .F0;�0; y0/ and for .F;�0; y0/, and

deg.F;�; y/ D deg.F;�0; y0/ D deg.F0;�0; y/ D deg.F0;�0; y0/.
(9.13)

The orientation of F0 on �0 is described below.

(KB) (Local Constantness in y). Let .�0; V; J / be a Rouché triple for
.F;�; y/, and M � V be such that F �1.M/ � �0. Then we have for
any z 2 M that .F;�; z/ 2 Br.X; Y /, .�0; V; J / is a Rouché triple for
.F;�; z/, and

deg.F;�; � / is constant on the components of M .

In the oriented case, the orientation of F0 on�0 is defined as follows. First, the
diffeomorphism J with the natural orientation induces an orientation of J ıF , see
Corollary 9.31. For a fixed orientation of EY , the orientation of J ıF induces an
orientation on �0 according to Proposition 9.34. A further application of Propo-
sition 9.34 shows that the orientations on �0 and EY induce an orientation of
J ı F0 on �0. According to Corollary 9.31 (with the natural orientation of J ),
we obtain an induced orientation of F0 on �0. The orientations on the maps are
well-defined, since if the opposite orientation is chosen in EY , then one obtains
the opposite orientation of �0 and thus the same orientation of the maps J ı F0

and F0 on �0.
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Proof. By definition, there is an isometry J of V onto an open convex subset
W � EY and a continuous extension F W�0 ! V of F . We put v WD J.y/

and G WD J ı F . In the oriented case, we equip J with the natural orientation
and fix an orientation on EY and a corresponding orientation on �0 as described
above.

We show first the Rouché property. Condition (9.12) means that G0 WD J ı F0

satisfy

kG.x/�G0.x/k ¤ kG.x/� vk C kv �G0.x/k for all x 2 @�0. (9.14)

We consider the homotopy hW Œ0; 1� ��0 ! W ,

h.t; x/ WD tG0.x/C .1 � t/G.x/,
and claim that v … h.Œ0; 1��@�0/. Indeed, assume by contradiction that there are
.t; x/ 2 Œ0; 1� � @�0 with h.t; x/ D v. Then

tkG.x/ �G0.x/k D kG.x/� h.t; x/k D kG.x/ � vk
and

.1 � t/kG.x/ �G0.x/k D kh.t; x/ �G0.x/k D kv �G0.x/k,

and adding both equations, we obtain a contradiction to (9.14). We thus obtain that
the set h�1.v/ is contained in Œ0; 1���0. Note that the continuity of h implies that
h�1.v/ is closed in � and thus compact by Proposition 2.29. Hence, if we define
the partial C r homotopyH W Œ0; 1���0 ! Y byH WD J�1ıhjŒ0;1��	0

, it follows
thatH�1.y/ is compact. In the oriented case, we orient h on Œ0; 1���0 according
to the orientations on EY and �0 by Proposition 9.34, and since h D J ı H ,
we obtain an induced orientation on H according to Corollary 9.31. It follows
that F0j	0

D H.1; � / is equipped with the orientation as described above. The
homotopy invariance of the degree implies

deg.F;�0; y/ D deg.F0;�0; y/,

and so the assertion follows from the excision property of the degree.
To prove the stability property, we note that @�0 is closed in the compact set

�0 and thus compact. Proposition 2.100 implies that B WD G.@�0/ is compact.
Corollary 3.14 implies in view of v … B that � WD dist.v;B/ > 0 (in case
@�0 D ¿, we fix � 2 .0;1/ arbitrary). We show first the auxiliary claim:
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Whenever F0 and y0 are as in the stability property with " 2 .0; �=2/, then
.F;�0; y0/; .F0;�0; y0/ 2 Br.X; Y /; moreover, .�0; V; J / is a Rouché triple
for .F0;�0; y0/ and for .F;�0; y0/, and

deg.F0;�0; y0/ D deg.F;�0; y0/.

Indeed, we have for all x 2 @�0 that

dJ .F.x/; y0/ � dJ .F.x/; y/ � " � � � " > 0.

In particular, the compact set F �1.y0/ \ �0 is contained in �0, and .�0; V; J /

is a Rouché triple for .F;�0; y0/ 2 Br.X; Y /. Moreover, we have for every
x 2 @�0 the estimate

dJ .F.x/; y0/C dJ .F0.x/; y0/ � 2dJ .F.x/; y0/ � " � 2dJ .F.x/; y/ � 3"
� 2� � 3" > " � dJ .F.x/; F0.x//,

so that the auxiliary claim now follows by applying the already proved Rouché
property with .F;�0; y0/ 2 Br.X; Y /.

Since A WD EY nW is closed and disjoint from the compact set K WD G.�0/,
Corollary 3.14 implies the there is some r > 0 with Br .K/ � W .

We show now that the stability property holds with " 2 .0; �=4/ if " � r=2.
Thus, let F0 and y0 be as in the stability property. Note that the auxiliary claim
already implies that .�0; V; J / is a Rouché triple for .F0;�0; y0/; .F;�0; y0/ 2
Br.X; Y /. By Proposition 9.53, we find that there are F1 2 C.�0; Y / and a
regular value y1 2 V of F1j	0

2 Cp.�0; Y / with

dJ .y0; y1/ < " and dJ .F.x/; F1.x// < " for all x 2 �0.

Putting G1 WD J ıF1 and G2 WD J.y0/�J.y1/CG1, we have for every x 2 �0

that kG2.x/�G.x/k < 2", and so G2.�0/ � B2".K/ � W D J.V /. Hence,
we can define F2 WD J�1 ı G2 2 C.�0; Y /, and we have dJ .F.x/; F2.x// <

2" < �=2 for all x 2 @�0. In the oriented case, we orient F1 and F2 analogously
to F0 on �0, induced by the orientations on �0 and EY as described earlier.
Applying the auxiliary claim twice, we find on the one hand that

deg.F0;�0; y0/ D deg.F;�0; y0/ D deg.F2;�0; y0/.

Using the excision property and the auxiliary claim, we have on the other hand

deg.F;�; y/ D deg.F;�0; y/ D deg.F1;�0; y1/.
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Hence, if we can show that

deg.F2;�0; y0/ D deg.F1;�0; y1/, (9.15)

we obtain two of the equalities in (9.13); applying these with the particular choice
F0 D F , we obtain also the remaining equality in (9.13).

To see (9.15), we note that the definition of G2 implies that for x 2 �0 the
equality F2.x/ D y0 is equivalent to the equality F1.x/ D y1. Moreover, since
the definition of G2 implies also that dG2 D dG1, we find by the chain rule
of manifolds (Proposition 8.24) for every such x in view of Gi D J ı Fi .i D
1; 2/ that dJ.y0/dF2.x/ D dJ.y1/dF1.x/ are invertible, because y1 is a regular
value of F1j	0

. In the oriented case, the above formula shows in view of the
definition of the orientation also that sgndF2.x/ D sgndF1.x/. Now the regular
normalization property (Proposition 9.46) yields

deg.F2;�0; y0/ D
X

x2	0\F �1
2

.y0/

sgn dF2.x/ D
X

x2	0\F �1
1

.y1/

sgndF1.x/.

(9.16)
Using the regular normalization property once more, we obtain (9.15). Hence, the
stability property is established.

The local constantness follows from the stability property. Indeed, for any
z 2 M , the set F�1.z/ is a closed subset of the compact set �0 and thus com-
pact. Since F�1.z/ � �0 � �, it follows that .F;�; z/ 2 Br.X; Y / and that
.�0; V; J / is a Rouché triple for .F;�; z/. By the excision property, we have

deg.F;�; z/ D deg.F;�0; z/ for all z 2M .

By the stability property, the right-hand side, considered as a function of z 2
M , is locally constant, and so Proposition 2.19 implies that it is constant on the
components of M .

The Rouché property of Proposition 9.54 should be understood as a more quan-
titative formulation of the stability property. Its condition (9.12) deserves some
remarks, since it is weaker than the condition which the reader knows perhaps
from other text books.

Note that in view of the triangle inequality of dJ the condition (9.12) can be
equivalently rewritten as

dJ .F.x/; F0.x// < dJ .F.x/; y/C dJ .F0.x/; y/ for all x 2 @�0.
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For the particular case thatX D Y D EX D EY D C, considered as a real vector
space (that is, considered as R2), one can choose V D Y and J D idY , and so
this condition becomes in case y D 0:

jF.z/ � F0.z/j < jF.z/j C jF0.z/j for all z 2 @�.

In this case the famous theorem of Rouché from complex analysis states that if F
and F0 are holomorphic in a bounded open set � � X then F and F0 have
the same numbers of zeroes in � (counted with multiplicity in the usual sense of
complex analysis). This is exactly a special case of the Rouché property of Propo-
sition 9.54 (with �0 D �) since for holomorphic F the number deg.F;�; 0/ is
the number of zeroes of F (for the natural orientation of F ), see Proposition 9.55.
This explains our choice of the name “Rouché” in this connection.

Actually, most text books on complex analysis only treat special cases of the
theorem of Rouché, like e.g. when � is connected or even a disk. Moreover,
usually, the more restrictive condition

jF.z/ � F0.z/j < jF.z/j for all z 2 @�
is required. Therefore it is worth mentioning that our hypothesis (9.12) is weaker
than the hypothesis which would be analogous to this special case

dJ .F.x/; F0.x// < dJ .F.x/; y/ for all x 2 @�0.

Our condition (9.12) not only has the advantage that it is weaker than the above
condition. It also has the advantage that it is symmetric with respect to F and F0

which in some cases can simplify considerations. To complete the above remark,
let us show the following result:

Proposition 9.55. Let X D Y D EX D EY D C, considered as a real vector
space, equipped with some fixed orientation (the same orientation forX as for Y ).
Let � � X be open and F W� ! Y be holomorphic and equipped with the
induced orientation. If y 2 Y is such that F�1.y/ is compact then .F;�; y/ 2
B1.X; Y /, and deg.F;�; y/ is exactly the number of zeroes of F � y, counted
according to multiplicity in the sense of complex analysis.

Proof. By Proposition 9.1 there is an open set �0 � Y containing F�1.y/ with
compact �0 � Y . Then .�0; Y; idY / is a Rouché triple for .F;�; y/. The clas-
sical theorem of Rouché of complex analysis implies that there is a neighborhood
V � Y of y such that the number of zeroes of F � y0 in �0 is the same for
all y0 2 V . By the stability property of Proposition 9.54 also deg.F;�0; y0/ D
deg.F;�; y/ for all y0 2 V sufficiently close to y. By Theorem 9.14, we find
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some such y0 which is a regular value of F j	0
. It follows that all zeroes of F �y0

in�0 are simple (in the sense of complex analysis), and the regular normalization
property 9.46 implies

deg.F;�; y/ D deg.F;�0; y0/ D
X

z2	0\F �1.y0/

sgndF.z/. (9.17)

Note that the Cauchy–Riemann equations imply det dF.z/ D jF 0.z/j2 � 0,
where F 0 denotes the complex derivative of F . Hence, dF.z/ is orientation pre-
serving by Proposition 7.12, and so Corollary 7.14 implies sgndF.z/ D 1 for all
z 2 �0\F�1.y0/. The latter is exactly the set of zeroes of F �y0 on�0 which,
as observed above, has exactly as many elements as the number of zeroes of F
(according to multiplicity). Thus, the assertion follows from (9.17).

The reader might have observed that the independence of the right-hand side
of (9.16) of the Brouwer degree already implies the uniqueness of the degree. For
completeness, we write down this fact explicitly, giving a slightly different proof.

Theorem 9.56. Let 1 � q � 1 and 0 � r � q. On C q manifolds X and Y over
EX and EY with 0 < dimEX D dimEY <1 there is at most one C r Brouwer
degree. Moreover:

(a) If X and Y are oriented, and if in the definition of the C r Brouwer degree
only the induced orientations of Proposition 9.34 are considered, then there
is at most one such degree.

(b) If in the definition of the C r Brouwer degree in the non-oriented case only
orientable maps and orientable homotopies are allowed, then there is at most
one such degree.

Proof. Let .F;�; y/ 2 Br.X; Y /. By Proposition 9.52, there is a Rouché triple
.�0; V; J / for .F;�; y/. Let " > 0 be as in the stability property of Proposi-
tion 9.54. Choosing a corresponding F0 and y0 as in Proposition 9.53, we obtain
by the stability property and the regular normalization (Proposition 9.46) that

deg.F;�; y/ D deg.F0;�0; y0/ D
X

x2	0\F �1
0 .y/

sgndF0.x/,

and the last expression does not depend on deg.
For the other two assertions, we note that Proposition 9.46 and 9.54 hold also

for the correspondingly defined degrees in view of Remark 9.41, and since, if we
started from an oriented map, the degree has only been used for oriented maps in
the proofs.
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Corollary 9.57. The Brouwer degrees satisfy the compatibility conditions (9.4)
and (9.5).

Proof. For 0 � r � R � q (and q � 1) the map deg.r;X;Y / jBR.X;Y / has
all properties of the C r Brouwer degree. Hence, the uniqueness of the latter
implies (9.4). Similarly, the degree

deg�.F;�; y/ WD deg.F;�; y/ mod 2

for oriented maps has all properties of the C r Brouwer degree of non-oriented
(but orientable) maps. Hence, (9.5) follows from Theorem 9.56(b).

We note that a uniqueness proof of the degree in a similar spirit can also be
found in [16].

The uniqueness implies very important properties of the Brouwer degree.

Proposition 9.58. The Brouwer degree has the following property for every
.F;�; y/ 2 Br.X; Y /.

(LB) (Topological Invariance). Let X0 and Y0 be manifolds of class C 1 over
real vector spaces EX0

and EY0
with 0 < dimEX0

D dimEY0
< 1. Let

J1 and J2 be (oriented) homeomorphisms of an open subset of X0 onto �
or of an open neighborhood U � Y of F.�/ [ ¹yº onto an open subsets of
Y0, respectively. Then

deg.r;X;Y /.F;�; y/ D deg.0;X0;Y0/.J2 ı F ı J1; J
�1
1 .�/; J2.y//.

In the oriented case, the orientation of J2ıF ıJ1 is the composite orientation
of Corollary 9.30.

(MB) (Diffeomorphic Invariance). Let X0 and Y0 be manifolds of class C s

.1 � s � r/ over real vector spaces EX0
and EY0

with 0 < dimEX0
D

dimEY0
< 1. Let J1 and J2 be C s-diffeomorphisms of an open subset of

X0 onto � or of an open neighborhood U � Y of F.�/[¹yº onto an open
subsets of Y0, respectively. Then

deg.r;X;Y /.F;�; y/ D deg.s;X0;Y0/.J2 ı F ı J1; J
�1
1 .�/; J2.y//.

In the oriented case, the orientation of J2 ıF ıJ1 is understood in the sense
of Corollary 9.31.

(NB) (Restriction). Let X0 � X and Y0 � Y be open. Then

deg.r;X0;Y0/ D deg.r;X;Y / jBr .X0;Y0/. (9.18)
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Proof. For the restriction property, we note that it can be verified straightfor-
wardly that the right-hand side of (9.18) defines a C r Brouwer degree on the
manifolds X0 and Y0. Hence, (9.18) follows from the uniqueness of such a degree
(Theorem 9.56).

To prove the topological invariance, we can consider � and U as manifolds.
On these manifolds, we can define a C r Brouwer degree by putting

deg.r;	;U /. OF ; O�; Oy/ WD deg.0;X0;Y0/.J2 ı OF ı J1; J
�1
1 . O�/; J2. Oy//.

Indeed, since deg.0;X0;Y0/ satisfies the normalization property for diffeo-
morphisms (Proposition 9.46), it follows that deg.r;	;U / satisfies the normaliza-
tion property. Since deg.0;X0;Y0/ satisfies the homotopy invariance, additivity and
excision properties, it follows straightforwardly that also deg.r;	;U / has these
properties (for the orientation of homotopies, recall Proposition 9.32). Hence,
deg.r;	;U / is actually the (unique) C r Brouwer degree on the manifolds� and U ,
and so the restriction property implies

deg.r;X;Y /.F;�; y/ D deg.r;	;U /.F;�; y/.

Combining this formula with our above definition of deg.r;	;U /, we obtain the
topological invariance. In view of the compatibility (9.4), the diffeomorphic
invariance is the special case of the topological invariance when the diffeomor-
phisms J1 and J2 carry the natural orientation.

Remark 9.59. If we change an atlas of a manifold such that the charts of the new
atlas are diffeomorphisms with respect to the original atlas then the two manifolds
are diffeomorphic. Proposition 9.58 implies in particular that the degree does not
change under such a change of the atlas. This has two important consequences:

(a) We can always enlarge or shrink the atlas (by compatible charts) without
changing the degree.

(b) We can always reduce considerations to manifolds over EX D EY D Rn.

Both was not clear from the very beginning: In fact, the choice of the atlas ap-
parently modifies the meaning of the normalization property. Also that one can
choose EX D EY D Rn is evident only once Proposition 9.58 and the existence
of the degree are established.

If X and Y are oriented, and the orientations are understood in the sense of
Remark 9.41, the orientations of the maps J2 ı F ı J1 in Proposition 9.58 should
be understood anyway as described in Proposition 9.58. This means that the ori-
entation of J2ıF ıJ1 is induced by the orientations of J�1

1 .�/ and J2.U / which
in turn is induced by the orientations of J1 and J2.
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This may be somewhat confusing if the manifold X0 and Y0 are open subsets
of X and Y , respectively, since in this case, it can mean that J2 ı F ı J1 is not
necessarily equipped with the orientations inherited from X and Y , since J�1

1 .�/

and J2.U / can carry different orientations. As a trivial example of this obser-
vation, consider for instance X D Y D Rn with some fixed orientation, and
J1; J2 2 Iso.Rn/. Then the diffeomorphic invariance means

deg.r;X;Y /.F;�; y/ D .sgn det J1/.sgn detJ2/

� deg.r;X;Y /.J2 ı F ı J1; J
�1
1 .�/; J2.y//.

Here, the change in the signs comes from the fact that J1.�/ � X and J2.V / � Y
carry the opposite orientation than X and Y in case sgn detJ1<0 or sgn det J2<

0, respectively.

9.5 Existence of the Brouwer Degree

Throughout this section, let X and Y be manifolds of class C q .1 � q � 1/
without boundaries over real vector spaces EX and EY with 0 < dimEX D
dimEY <1, and let 0 � r � q.

Concerning the existence of the C r Brouwer degree, the uniqueness proof of
Section 9.4 indicated how one must define deg.F;�; y/: Namely as the sum

deg.F;�; y/ WD
X

	0\F �1
0

.y0/

sgndF0.x/, (9.19)

where .�0; V; J / is a Rouché triple for F and .F0; y0/ are “sufficiently close” to
.F; y/, and y0 is a regular value for F0j	0

.
One of the major technical difficulties if one wants to define the degree in this

way is that one has to show the stability property for this definition: Note that one
has to show that this (the only possible) definition of the degree is actually well-
defined, that is, independent of the particular choice of F0 and y0. For the case
r D 1, that is if F 2 C 1, one might at a first glance try to use only F0 D F so that
the only difficulty here is to prove the stability with respect to y0. Unfortunately,
we will be able to prove this stability only in a very cumbersome way and only
in the case that F 2 C 2 so that for r < 2 we still have to use an approximating
function F0.

The above remark is not completely true: We are able to prove the stability
with respect to y0 also in a simple manner and for F 2 C 1, but only under the
additional condition that y is a regular value of F as the following result shows.
The difficulty is to get rid of this additional condition.
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Lemma 9.60. Let .F;�; y/ 2 B1.X; Y / be such that y is a regular value of F .
Then for each Rouché triple .�0; V; J / for .F;�; y/, there is a neighborhood
M � Y of y such that every Oy 2M is a regular value of F j	0

, and

X

x2F �1.y/

sgn dF.x/ D
X

x2	0\F �1. Oy/

sgndF.x/.

Proof. The compact set K WD F�1.y/ is discrete by Remark 8.58 and thus con-
sists of finitely many points x1; : : : ; xn. By the inverse function Theorem 8.39 and
Proposition 9.1 there are disjoint connected open neighborhoods �k � �0 of xk

.k D 1; : : : ; n/ such that F is a diffeomorphism of�k onto an open neighborhood
Yk � Y of y. Note that

K WD �0 n .�1 [ � � � [�n/

is closed in �0 and thus compact by Proposition 2.29. Since Y is Hausdorff,
Proposition 2.45 implies that y and the compact set F.K/ have disjoint open
neighborhoods M;M0 � Y . Shrinking M if necessary, we can assume that
M � Y1 \ : : : \ Yn. For every Oy 2 M , we have Oy … M0 � F.K/, and so
F�1. Oy/ is disjoint from K, that is �0 \ F�1. Oy/ � �1 [ � � � [ �n. Since F
is a diffeomorphism of �k onto Yk , it follows that for each Oy 2 M the set
�0 \ F�1. Oy/ contains exactly one point Oxk from each �k .k D 1; : : : ; n/ and
no other points. Hence, Oy is a regular value of F j	0

. Moreover, since �k is
connected and dF.x/ 2 Iso.Tx; TF .x/Y / is regular for every x 2 �k , Theo-
rem 8.27(b) implies in the oriented case that sgndF.xk/ D sgndF. Oxk/. This
holds of course also in the non-oriented case. It follows that

n
X

kD1

sgn dF.xk/ D
n

X

kD1

sgndF. Oxk/,

which is a reformulation of the assertion.

Remark 9.61. Using Lemma 9.60, one could prove the existence of a “small”
Brouwer degree for r � 1 which is only defined for .F;�; y/ 2 Br.X; Y /

when y is a regular value of F . For this “small” degree, it would not be too
hard to prove all required properties except for the homotopy invariance which
could be proved easily only under the additional hypothesis that y is a regular
value of H.t; � / for every t 2 Œ0; 1�.



Section 9.5 Existence of the Brouwer Degree 281

One might be less ambitious and consider only such a “small” degree theory,
hoping that in most applications the additional requirement that y be a regular
value of F is not very restrictive. Unfortunately, the requirement that y is a regular
value of H.t; � / makes this degree theory almost useless: For most Fredholm
homotopies h such that y is a regular value of h.i; � / .i D 0; 1/ and h�1.y/ is
compact there exists typically no Fredholm homotopy H with H.i; � / D h.i; � /
.i D 0; 1/ and compact H�1.y/ which satisfies this additional requirement that y
is a regular value for every H.t; � / .0 � t � 1/. Thus, even if one wants to use
“adapted” homotopies, one can usually not apply the “small” degree theory which
is therefore rather useless.

The major obstacle in the existence proof of the degree is that there is no method
known how to prove an analogue of Lemma 9.60 directly for the case that y is not
a regular value of F . All known proofs use an approximation argument by smooth
(at least C 2) maps and then some technical lemma showing that certain integrals
or sums vanish. (For alternative topological approaches by using homology the-
ory, one also implicitly approximates the given maps by “simplicial” maps of
one type or another.) Therefore, early attempts to generalize the approach to an
infinite-dimensional setting also required C 2 smoothness. Only in finite dimen-
sions, it is easy to relax this smoothness by an approximation argument.

We use an approach which also gives us the so-called bordism invariance of the
degree which we explain in a moment. For this approach, the “technical lemma”
mentioned above is some sort of bordism invariance for the quantity

X

x2F �1. Oy/

sgn dF.x/.

It is hard to trace back who used a lemma of such a type first for the definition
of the degree, but it seems that it goes back to Pontryagin. We use some ideas of
the presentation in [107] in the following.

To formulate the lemma and the notion of bordism invariance, we need a notion
of orientation of the boundary of an oriented manifold.

Let W be an oriented manifold over R �E with boundary @W . Recall that for
x 2 @W there is a chart c which maps an open neighborhood of x onto an open
subset of a closed halfspace

¹.t; u/ 2 R �E W f .t; u/ � 0º
where f 2 .R � E/� and, since x 2 @W , we can assume that f � ¤ ¹0º and
that f .c.x// D 0. There is a vector e 2 R � E with f .e/ < 0. With hc

from Definition 8.20, this vector corresponds by the chart c with a vector Oe WD
hc.x; e/ 2 TxW which, geometrically speaking, points from x 2 @W “outside”
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of W . There is also a basis e1; : : : ; en of N.f / (n D dimE). The corresponding
vectors Oek WD hc.x; ek/ 2 TxW are tangential to the manifold @W , that is, they
are a basis of Tx@W . Choosing the opposite of one of these vectors, if necessary,
we can assume that . Oe; Oe1; : : : ; Oen/ belongs to the orientation of TxW . Then we
define the orientation of Tx@W such that it is represented by . Oe1; : : : ; Oen/. In this
way, @W becomes an oriented manifold.

Definition 9.62. The bordism invariance is the following property of the Brouwer
degree.

(OB ) (Bordism Invariance for C q Manifolds). Let W be a C q manifold over
R�EX with boundary @W . Let �0;�1 � @W be open in @W and disjoint,
H 2 C r .W; Y /, and y 2 Y be such that H�1.y/ is compact and H�1.y/\
@W � �0[�1. Then we have for i D 0; 1 with Fi WD H j	i

2 C r .�i ; Y /

that .Fi ;�i ; y/ 2 Br.�i ; Y / for i D 0; 1, and

deg.r;	0;Y /.F0;�0; y/ D deg.r;	1;Y /.F1;�1; y/.

It is admissible that �i D ¿ in which case the corresponding degree in this
formula is considered as 0. The orientation of Fi in the oriented case is
described below.

In the oriented case, we assume that Y is oriented in a neighborhood V of
H.W /[ ¹yº, that W is oriented, and that @W is oriented as described above. We
assume that F0 is oriented according to the orientation of �0 � @W and V in
the sense of Proposition 9.34. Concerning F1, we assume that it has the op-
posite orientation as that which is induced by the orientations of �1 � @W

and V .
Note that .Fi ;�i ; y/ 2 Br.�i ; Y / for i D 0; 1 is actually automatic, since

F�1
i .y/ D H�1.y/\ .@W n�1�i / is a closed subset of the compact setH�1.y/

and thus closed by Proposition 2.29.
Now the “technical lemma” we announced states that the bordism invariance

holds in case of regular values for the only possible definition of the degree.

Lemma 9.63. In the situation of Definition 9.62, suppose that y is simultaneously
a regular value of H , of F0, and of F1. Then

X

x2F �1
0

.y/

sgn dF0.x/ D
X

x2F �1
1

.y/

sgn dF1.x/.
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Proof. For the proof, it is more convenient for us to put � WD �0 [ �1 and to
define F 2 C r .�; Y / by F.x/ D F0.x/ for x 2 �0 with the corresponding
orientation, and F.x/ D F1.x/ for x 2 �1 with the opposite orientation. Then
the assertion means

X

x2F �1.y/

sgn dF.x/ D 0. (9.20)

In the oriented case, we have by Corollary 7.14 for all x 2 F�1.y/:

sgndF.x/ > 0 ” dF.x/ 2 Iso.Tx@W; TyY / is orientation preserving.

Now we prove (9.20). Corollary 8.57 implies thatW0 WD H�1.y/ is a compact
submanifold of W of dimension 1 with boundary @W0 D W0 \ @W � � and that
TxW0 D N.dH.x// .x 2 W0/. Since� � @W , we have @W0 D W0 \�. Propo-
sition 9.1 implies for the manifold W0 and K WD M WD W0 that K intersects at
most finitely many components of M , that is, W0 consists of only finitely many
components C1; : : : ; Cm which are closed (Proposition 2.17) and thus compact.
By Theorem 9.15, each Ck is diffeomorphic to either a circle (without bound-
ary points) or to Œ0; 1� (with two boundary points corresponding to ¹0; 1º). Note
that the sum in (9.20) is over the points from W0 \ � D @W0. Hence, if Ck

is diffeomorphic to a circle then it does not contribute to the sum, and if Ck is
diffeomorphic to Œ0; 1�, only the two boundary points contribute to the sum. We
show that the sum for these two boundary points is zero, and so (9.20) follows.
In the non-oriented case, this is trivial since 1C 1 D 0 in Z2. It remains to ver-
ify that if x0 and x1 denotes the two boundary points of Ck then exactly one of
the maps dF.xi / 2 Iso.Tx@W; TyY / .i D 0; 1/ is orientation preserving, so that
sgndF.x0/ D � sgndF.x1/.

To see this, we define an orientation along the path Ck from x0 to x1 as follows.
For x 2 Ck , let v 2 TxCk n ¹0º. Note that, since y is a regular value of H ,
dH.x/ 2 L.TxW;TyY / has rank n where n WD dim TyY D dim TxW � 1.
Since v 2 TxW0 D N.dH.x//, it follows that if we extend v to some basis
.v; v1; : : : ; vn/ of TxW , without loss of generality representing the orientation
of TxW then .dH.x/v1; : : : ; dH.x/vn/ is a basis of Y . If this represents the
orientation of Y , then v should represent the orientation of TxCk . Otherwise, �v
will represent the orientation of TxCk in the described sense.

By the continuity of the representations, it is clear that Ck becomes oriented
this way. Obviously, there are only two possibilities to orient a path Ck at all:
The orientations at the endpoints x0 and x1 must be opposite. At the endpoints
xi .i D 0; 1/, we can consider a basis .v; v1; : : : ; vn/ of TxW with v1; : : : ; vn �
Txi
@W and v 2 Txi

Ck . It follows from the definitions that v 2 Txi
Ck represents

the orientation of the path if and only if dF.xi / is orientation preserving. Since
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the orientations at the endpoints of the path is opposite, we obtain that exactly one
of the maps dF.xi / is orientation preserving, as claimed.

We obtain that an analogue of Lemma 9.63 holds even if y is not a regular
value of H but under the additional hypothesis that H is C1. In fact, by the
latter hypothesis, we can apply Sard’s Theorem 9.14 in the following proof.

Lemma 9.64. In the situation of Definition 9.62, suppose that y is simultaneously
a regular value of F0 and of F1, and that W and H are of class C1.

Then there is a neighborhood M � Y of y such that every y1; y2 2 M is a
regular value of Fi with

X

x2F �1
i

.y/

sgn dFi.x/ D
X

x2	0\F �1
0

.y1/

sgndF0.x/ D
X

x2	1\F �1
1

.y2/

sgn dF1.x/

for i D 0 and i D 1.

Proof. Lemma 9.60 implies that there is a neighborhood M � Y of y such that
every y0 2 M is a regular value of Fi with

X

x2F �1
i

.y/

sgn dFi.x/ D
X

x2	i \F �1
i

.y0/

sgndFi .x/ (9.21)

for i D 0; 1. Putting K WD H�1.y/ [S

iD1;2¹iº ��i , we obtain from Proposi-
tion 9.1 that there is some open neighborhood W0 � W of K � W0 with compact
W 0 � W . Replacing �i by W0 \ �i if necessary, we can assume without loss
of generality that �i � W0 for i D 0; 1. By Theorem 9.14 there is some y3 2M
which is a regular value of H jW0

. Lemma 9.65, applied with H jW0
, thus gives

X

x2	0\F �1
0 .y3/

sgn dF0.x/ D
X

x2	1\F �1
1 .y3/

sgndF1.x/,

and the assertion follows by combining this equality with the equalities coming
from (9.21) with the choices y0 2 ¹y1; y2; y3º and i 2 ¹0; 1º.

We show now that the bordism invariance is actually a generalization of the
homotopy invariance. In particular, we are now in a position to prove the required
analogue of Lemma 9.60 for the case that y is not a regular value.

Lemma 9.65. LetW � Œ0; 1��X be open, H WW ! Y be a generalized oriented
homotopy, and y 2 Y . Then there is an orientation on an open neighborhood
V � Y of y and an orientation on W0 WD H�1.V / such that the orientation of
Fi WD H.i; � / on �i WD ¹x W .i; x/ 2 W0º is induced as in Definition 9.62 when
we replace W by W0.
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Proof. Let V � Y be an open neighborhood of y such that there is a chart cWV !
EY . We claim that the assertion follows with W0 WD H�1.V /. We must find
corresponding orientations of V and W0. We start by fixing some orientation
on V . Such an orientation exists, since we can fix an orientation of EY and let the
chart c induce an orientation on V by Proposition 9.34. It remains to define the
orientation of W0.

To this end, we observe that for each .t; x/ 2 W0 the orientation of H.t; � /
at x induces by the orientation of TH.t;x/Y an orientation on TxX according
to Proposition 7.13. Let .e1; : : : ; en/ represent the orientation of TxX . Then
..1; 0/; .0; e1/; : : : ; .0; en// represents an orientation of R�TxX D T.t;x/.Œ0; 1��
X/ D T.t;x/W0 (the first equality is understood by the canonical identification of
product manifolds). According to the definition of the orientation induced on
@W0, we find that F0 carries on �0 the orientation induced by @W0 and V in the
sense of Proposition 9.34, and that F1 carries on�1 the opposite of the orientation
induced by @W0 and V .

Corollary 9.66. The bordism invariance for q-manifolds .q � r/, the excision
property, and the restriction property of the Brouwer degree together imply:

(PB) (Generalized Homotopy Invariance with Constant y). If W � Œ0; 1� �
X is open, H WW ! Y a generalized (oriented) partial C r homotopy,
and y 2 Y are such that H�1.y/ is compact then we have with �i WD
¹x W .i; x/ 2 W º .i D 0; 1/ that

deg.r;X;Y /.H.0; � /;�0; y/ D deg.r;X;Y /.H.1; � /;�1; y/.

Note that .H.i; � /;�i ; y/ 2 Br.X; Y / is automatic, since H.i; � /�1.y/ � �i

is compact by Proposition 2.62.

Proof. Let W0 and V be as in Lemma 9.65. By the excision property, it is no loss
of generality to replace W by W0. Hence, the bordism invariance implies

deg.r;	0;Y /.H.0; � /;�0; y/ D deg.r;	1;Y /.H.1; � /;�1; y/.

The assertion follows now from the restriction property.

Corollary 9.67. Let X be a C1 manifold, W � Œ0; 1� � X be open, and H 2
C1.W; Y / be a generalized (oriented) partial C 1 homotopy. Let y 2 Y be a
regular value of Fi WD H.i; � / .i D 0; 1/ and H�1.y/ be compact. For i D 0; 1,
put Wi WD ¹x W .i; x/ 2 W º and Ki WD ¹x W H.t; x/ D yº. Let �i � X be open
with Ki � �i and compact �i � Wi .
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Then there is a neighborhood M � Y of Y such that every y1; y2 2 M is a
regular value of Fi with

X

x2F �1
i

.y/

sgn dFi.x/ D
X

x2	0\F �1
0 .y1/

sgndF0.x/ D
X

x2	1\F �1
1 .y2/

sgn dF1.x/

for i D 0 and i D 1.

Proof. Let W0 and V be as in Lemma 9.65. Then the assertion follows from
Lemma 9.64 with W replaced by W0.

Using Corollary 9.67, we finally obtain the existence of the degree for C1
manifolds by an approximation argument with C1 maps.

We note that we could replace C1 by C r in Lemma 9.64, Corollary 9.67, and
Lemma 9.68 (and in their proofs) if we would be willing to use Theorem 9.13
in C r with m D dimEY and n D m C 1 (recall that the proof of the latter is
much more involved than in the case r D 1). Unfortunately, since a hypothesis
of Theorem 9.13 is r > n � m, we must have r � 2 in any case so that the best
possible result which we could obtain in this way is a result for C 2 manifolds.

Lemma 9.68. Let X be a C1 manifold and Y D EY . Then for each 0 � r � 1
there is a C r Brouwer degree for X and Y which satisfies the bordism invariance
for C1 manifolds.

Before we go into the details of the proof, let us point out that the idea of the
proof is to use (9.19) for a smooth approximation of F . We have the additional
technical difficulty here in the choice of the set�0 which determines how good the
approximation must be: We must also prove the independence of this definition
from �0. The trick we use here is to consider two sets �0 � U0 and to define the
closeness with respect to both sets.

Proof. We define the degree for T WD .F;�; y/ 2 Br.X; Y / as follows. By
Corollary 9.3, there is an open neighborhood U0 � X of F �1.y/ with compact
U 0 � �. For each open neighborhood �0 � U0 of F�1.y/, we can define by
Proposition 9.4 a number rT .�0; U0/ > 0 as the supremum of all " 2 .0; 1� such
that whenever �0 � Z � U 0 and H W Œ0; 1� �Z ! V is continuous with

kH.t; x/ � F.x/k � 3" for all .t; x/ 2 Œ0; 1� �Z,

and y0 2 B".y/, then the set H�1.y0/ is contained in Œ0; 1� ��0 and compact.
It follows that rT is monotone in the sense that O�0 � �0 and U0 � OU0 imply
rT . O�0; OU0/ � rT .�0; U0/.
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By Proposition 2.45 there is a neighborhood �0 � X of F �1.y/ with �0 �
U0. Then .�0; Y; idY / and .U0; Y; idY / are both Rouché triples for .F;�; y/. By
Proposition 9.53 there is F0 2 C1.U0; V / and a regular value y0 of F0 such that

ky � y0k < rT .�0; U0/ and sup
x2U0

kF.x/ � F0.x/k < rT .�0; U0/.

We define
deg.F;�; y/ WD

X

x2	0\F �1
0

.y0/

sgndF0.x/. (9.22)

In the oriented case, we fix some orientation of Y D EY , and note that in the sense
of Proposition 9.34 the orientation of F then induces an orientation of U0 which
in turn induces an orientation of F0. (Clearly, this orientation is independent of
the choice of the orientation of Y D EY , since for the opposite orientation, we
obtain the opposite orientation of U0 and thus the same orientation of F0.) We
understand F0 equipped with this orientation.

We must show that (9.22) is well-defined, that is, independent of the particular
choice of U0, �0, F0, and y0. Thus, let U1, �1, F1, and y1 be corresponding
possibly different choices, and we have to show

X

x2	0\F �1
0

.y0/

sgndF0.x/ D
X

x2	1\F �1
1

.y1/

sgndF1.x/. (9.23)

We show this first for the special case U0 D U1 and �0 D �1. To this end, we
define H W Œ0; 1� � U0 ! EY by

H.t; x/ WD t.F1.x/C .y0 � y1//C .1 � t/F0.x/.

Since ky0 � y1k < 2rT .�;U0/, we have

kH.t; x/ � F.x/k
D kt.F1.x/ � F.x/C .y0 � y1//C .1 � t/.F0.x/ � F.x//k � 3" (9.24)

for some " < rT .�0; U0/. In the oriented case, we fix as above an orientation of Y
and note that F induces an orientation of U0 which in turn induces an orientation
of the partial C1 homotopy H . This orientation is actually independent of the
choice of the orientation of Y , and dXH.i; � / D dFi have the same orientations
for i D 0; 1. By (9.24) and the definition of " < rT .�0; U /, we obtain that
H�1.y0/ is a compact subset of Œ0; 1� � �0. Since yi are regular values for
Fi .i D 0; 1/ it follows that y0 is a regular value for H.0; � / and for H.1; � /.
Corollary 9.67 thus implies that

X

x2	0\F �1
0

.y0/

sgndF0.x/ D
X

x2	0\F �1
1

.y0/

sgndF1.x/.

By the definition of H , this means exactly (9.23).
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Now we show (9.23) in the general case. Let U2 WD U0[U1,�2 WD �0\�1,
and let .F2; y2/ be correspondingly as in the definition of the degree. By the
monotonicity of rT , we have rT .�2; U2/ � rT .�i ; Ui / .i D 0; 1/. Hence, the
choices .F2jUi

; y2/ are actually also admissible for our definition of the degree
when we replace .�2; U2/ by .�i ; Ui / with i D 0 or i D 1. It follows that the
special case we proved so far implies

X

x2	i \F �1
i

.yi /

sgn dFi.x/ D
X

x2	i \F �1
2

.y2/

sgndF2.x/ for i D 0; 1.

By definition of rT .�2; U2/, we have F�1.y2/ � �2, that is, the sum on the
right-hand side is actually over all x 2 F�1

2 .y2/ and thus independent of i 2
¹0; 1º. Hence, also the left-hand side is independent of i 2 ¹0; 1º which
means (9.23).

Summarizing, we have shown that the degree is well-defined by (9.22). We
have to show that it has all properties required for the C r Brouwer degree. The
normalization property (even the regular normalization property) follows imme-
diately from the definition. For the excision property, suppose that O� � � is
open and contains F �1.y/. Then we can choose the set �0 in the definition of
the degree even such that additionally �0 � O�, and then the independence of our
definition of the particular choice of �0 implies that

deg.F;�; y/ D deg.F; O�;y/.
For the additivity, let � be the union of disjoint open subsets �i .i D 1; 2/. We
note that we can choose .F0; y0/ in the above definition of deg.F;�; y/ such that
the same choice holds also for the definition of deg.F;�i ; y/ .i D 1; 2/. Then
the additivity is obvious from (9.22). The restriction property of the degree is
immediately clear from its definition. Hence, to prove the homotopy invariance,
it suffices by Corollary 9.66 to prove the bordism invariance.

Thus, letW be a C1 manifold over R�EX with boundary @W ,W0;W1 � @W
open and disjoint, H 2 C r .W; Y / be of class C r , and y 2 Y with compact
H�1.y/ and H�1.y/ \ @W � W0 [ W1. For i D 0; 1, let Fi WD H jWi

2
C r .Wi ; Y /. In the oriented case, we assume that Y is oriented on an open neigh-
borhood V of H.W / [ ¹yº, W is oriented, and Fi are oriented as described in
Definition 9.62.

By Proposition 9.1, there is an open set U � W with H�1.y/ � U and
compact U � W . For i D 0; 1, we put Ui WD Wi \ U . We let �i � X

be open neighborhoods of F�1
i .y/ with �i � Ui , put Ti WD .Fi ;Wi ; y/, and

let " > 0 be strictly less than rTi
.�i ; Ui / for i D 0; 1. By the compactness

of C WD H.U / [ ¹yº � V , we may assume in view of Corollary 3.14 that
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B".C / � V . By Proposition 9.1, the compact set U has a relatively compact
open neighborhood X1 � W which is second countable. By Theorem 9.9 there is
a map h 2 C1.X1; EY / with

kh.t; x/ �H.t; x/k � " for all .t; x/ 2 U .

Then Fi;0 WD hjUi
2 C1.Ui ; EY / .i D 0; 1/, even Fi;0.Ui / � V , and so we

can equip Fi;0 with the orientations analogously to Fi . Now we note that Theo-
rem 9.14 implies that the map hj@U has a regular value y0 in B".y/. Note that this
implies in view of @U � @W that y0 is a regular value for F ji;0, simultaneously
for i D 0 and i D 1. The definition of the degree now implies

deg.r;Wi ;Y /.Fi ;Wi ; y/ D
X

x2	i \F �1
i;0

.y0/

sgn dFi;0.x/ for i D 0; 1.

Lemma 9.64 shows that the right-hand side is actually independent of i 2 ¹0; 1º.
Hence also the left-hand side is independent of i 2 ¹0; 1º which means that the
degree satisfies the bordism invariance for C1 manifolds.

Lemma 9.69. Let X and Y be of class C q .1 � q � 1/. For each 0 � r � q

there is a C r Brouwer degree on X and Y satisfying the bordism invariance for
manifolds of class C q .

Proof. We define the degree for .F;�; y/ 2 Br.X; Y / as follows. By Theo-
rem 9.12, there is an open neighborhood U � X of F�1.y/ and a diffeomor-
phism J1 of a C1 manifold X0 onto U . There is a chart J2 WD c of y which
maps a neighborhood V � Y of y diffeomorphically onto an open subset of EY .
Replacing U by U \F �1.V / if necessary, we can assume that F.U / � V . Then
we define

deg.r;X;Y /.F;�; y/ WD deg.r;X0;EY /.J2 ı F ı J1; J
�1
1 .U /; J2.y//. (9.25)

The degree on the right-hand side of (9.25) exists by Lemma 9.68. In the oriented
case, the orientation of J2 ı F ı J�1

1 is induced in the sense of Corollary 9.31.
The diffeomorphic invariance of the degree (Proposition 9.58) implies that we
obtain the same value also for different choices of J1, X0, and J2, and moreover,
that we obtain the same values also for smaller sets U and V . It follows that the
above definition is actually independent of the particular choice of the auxiliary
data used for the definition.

It remains to verify that the thus defined degree has all required properties.
Since deg.r;X0;EY / satisfies the normalization property for diffeomorphisms (Pro-
posiion 9.46), it follows that deg.r;X;Y / satisfies the normalization property. The
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excision property follows from the very definition. The same holds for the re-
striction property. The additivity follows straightforwardly from the additivity
of deg.r;X0;EY /. In view of Corollary 9.66, it thus suffices to show the bordism
invariance.

To prove the bordism invariance, letW be a manifold of class C q over R�EX

with boundary @W , W0;W1 � @W open and disjoint, H 2 C r .W; Y / be of class
C r , and y 2 Y with compact K WD H�1.y/ and K \ @W � W0 [ W1. For
i D 0; 1, let Fi WD H jWi

2 C r .Wi ; Y /. In the oriented case, we assume that Y
is oriented on an open neighborhood V of H.W / [ ¹yº, W is oriented, and Fi

are oriented as described in Definition 9.62. Let J2 WD c be a chart of y which
maps an open neighborhood V0 � V of y diffeomorphically onto an open subset
of EY . By Theorem 9.12, there is an open neighborhood U � H�1.V0/ of K
and a diffeomorphism J1 of a C1 manifold M onto U . For i D 0; 1, we put
Ui WD Wi \ U , �i WD J�1

1 .Ui /, and note that J1;i D J1j	i
is a diffeomorphism

of �i onto Ui . In particular, the above definition of the degree implies

deg.r;Wi ;Y /.Fi ;Wi ; y/ D deg.r;	i ;EY /.J2 ı Fi ı J1;i ;�i ; J2.y//. (9.26)

Note that H.U / � V implies that we can define H0 WD J2 ı H ı J1. Then
J2 ıFi ıJ1;i is the restriction ofH0 to�i � @M D J�1

1 .@U / D J�1
1 .U \@W /.

In the oriented case, we equip J1 with the natural orientation, and M with the
orientation induced by J1 from W in the sense of Proposition 9.34. Now the
bordism invariance of the degree of Lemma 9.68 implies that the right-hand side
of (9.26) is independent of i 2 ¹0; 1º.

The proof of Theorem 9.38 is now complete: The assertions have been proved
in Theorem 9.56, Corollary 9.57, and Lemma 9.69.

The proof of Lemma 9.69 shows why it is so useful to have the uniqueness
assertion of Theorem 9.38 or at least the diffeomorphic invariance of the degree:
Without knowing the diffeomorphic invariance, we could not have defined the
degree by (9.25) so easily.

The proof of Lemma 9.69 shows also why it is useful to have the bordism
invariance of the degree or at least the generalized homotopy invariance with con-
stant y: If we would have attempted to prove the homotopy invariance directly for
H WW ! Y with W WD Œ0; 1� �� and Wi WD ¹0; 1º .i D 0; 1/, we would have
run into the problem that H0 in the above proof is not necessarily defined on a set
of the form Œ0; 1� �M0, since H�1.V0/ does in general not contain a set of such
a form.

Therefore, we emphasize that the bordism invariance and the generalized ho-
motopy invariance is a side result of our proof. For completeness, let us remark
that it is actually not necessary that y be constant for the generalized homotopy
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invariance. This is a somewhat surprising complement to the stability property
which can be formulated without Rouché triples:

Theorem 9.70. The C r Brouwer degree satisfies the bordism invariance for C q

manifolds (0 � r � q � 1, q � 1) and the following extension of the generalized
homotopy invariance with constant y:

(QB) (Generalized Homotopy Invariance). Let W � Œ0; 1� � X be open,
H WW ! Y be a generalized (oriented) partial C r homotopy, and y 2
C.Œ0; 1�; Y /.
If ¹.t; x/ 2 W W H.t; x/ D y.t/º is compact then we have with
Wt WD ¹x W .t; x/ 2 W º that .H.t; � /;Wt ; y.t/// 2 Br .X; Y / for all t 2
Œ0; 1�, and

deg.H.t; � /;Wt ; y.t// is independent of t 2 Œ0; 1�.

Proof. For the assertion .H.t; � /;Wt ; y.t// 2 Br.X; Y /, it suffices to note that
H.t; � /�1.y.t// � Wt is compact by Proposition 2.62.

By Lemma 9.69, we know that there is a C r Brouwer degree which satisfies
the bordism invariance. By the uniqueness, there is no other C r Brouwer degree.
Hence, the C r Brouwer degree satisfies the bordism invariance. Corollary 9.66
implies that it also satisfies the generalized homotopy invariance with constant y.

We have to show that even in case y 2 C.Œ0; 1�; Y / the number

d.t/ WD deg.H.t; � /;Wt ; y.t//

is constant. Since Œ0; 1� is connected by Proposition 2.14, Proposition 2.19 implies
that it suffices to prove that d is locally constant. Thus, let t0 2 Œ0; 1�. Let
V � Y be an open neighborhood of y0 WD y.t0/, and let cWV ! EY be a chart.
Shrinking W if necessary (which we can do by the excision property), we can
assume without loss of generality that there is a neighborhood I0 � Œ0; 1� of t0
such that for each t 2 I0 and x 2 Wt , we have H.t; x/; y.t/ 2 V \ J�1

t .c.V //

with
Jt .x/ WD c.x/C c.y.t0// � c.y.t//.

Note that the diffeomorphic invariance implies

d.t/ D deg.r;X;EY /.Jt.H.t; � //;Wt ; Jt .y.t///,

and that Jt .y.t// is actually independent of t 2 I0. Hence, replacing H by
.t; x/ 7! Jt.H.t; x// and y by t 7! Jt .y.t// if necessary, we can assume without
loss of generality that y.t/ D y0 is constant on I0. We have to show that d is
constant on I0.
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Thus, let t1; t2 2 I0, t1 < t2. We consider the continuous map gW Œ0; 1� � X !
Œt1; t2� �X , g.s; x/ WD .st1 C .1� s/t2; x/, and apply the generalized homotopy
invariance with constant y D y0 with OW WD g�1.W / and the generalized partial
C r homotopy OH WD H ı gW OW ! W . Note that, since h WD gj OW

is a homeo-
morphism onto Wt1;t2

WD W \ .Œt1; t2� �X/ and M WD H�1.y/ \ .Œt1; t2� �X/
is closed in W and thus compact, it follows that OH�1.y/ D h�1.M/ is indeed
compact. In the oriented case, if � denotes the orientation ofH , we define the ori-
entation of OH by O�.s; x/ D �.g.s; x//. The homotopy invariance with constant y
now implies with OWs WD ¹x W .s; x/ 2 OW º that

d.t2/ D deg. OH.1; � /; OW1; y0/ D deg. OH.0; � /; OW0; y0/ D d.t1/,

and so d is indeed constant on I0.

Corollary 9.71. The C r Brouwer degree satisfies the following property.

(RB ) (Elimination of y). If Y D EY then .F;�; y/ 2 Br.X; Y / is equivalent
to .F � y;�; 0/ 2 Br.X; Y /, and in this case

deg.r;X;EY /.F;�; y/ D deg.r;X;EY /.F � y;�; 0/.

Proof. The assertion follows by applying the generalized homotopy invariance
with y.t/ D ty0 and H.t; y0/ WD F.x/� y.t/.

Remark 9.72. By using an approach by homology theory instead of differential
topology, it is possible to prove the existence of a C 0 Brouwer degree also if X
and Y are only C 0 manifolds. Of course, orientations of maps and manifolds
have to be defined differently for C 0 manifolds: As we have mentioned already
in Remark 9.17, this is a much more complicated definition than in the case of C 1

manifolds.
Such an approach for degree theory on oriented C 0 manifolds can be found

in [39, Chapter VIII, §4], and the extension to oriented maps (on not necessarily
orientable manifolds) in [39, Chapter VIII, Exercise 4.10.6]. By definition, that
degree satisfies the topological invariance. Moreover, by [134, Section V.14] that
degree also satisfies the bordism invariance (for C 0 manifolds!).

However, it is unknown to the author whether the such defined degree must be
unique in case of C 0 manifolds, i.e., whether it is already completely determined
by the properties of Definition 9.36.

Remark 9.73. For the case r � 1, that is, for the C 1 Brouwer degree, we might
of course speak throughout about the orientation in the sense of Definition 8.25
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instead of Definition 9.16: This is more or less just a convention, since the ori-
entations can be transformed into each other by means of (9.2) (and Proposi-
tion 9.18). When we choose the orientation in the sense of Definition 8.25 for the
C 1 Brouwer degree, we obtain a special case of the Benevieri–Furi degree which
we study in Section 10.2.

9.6 Some Classical Applications of the Brouwer Degree

Mainly for the reader who is unfamiliar with the classical Brouwer degree on a
finite-dimensional normed space E, we provide now some applications of that
degree which demonstrate what kind of results one can obtain by using degree
theory.

Many of these examples are based on the so-called continuation principle:

Proposition 9.74 (Continuation Principle). Let X and Y be C 1 manifolds over
real finite-dimensional vector spaces of the same finite nonzero dimension,� � X
be open, and H W Œ0; 1� � � ! Y be a continuous (oriented or non-oriented)
homotopy with

deg.H.0; � /;�; y/ ¤ 0. (9.27)

If H�1.y/ is compact then the equation H.1; x/ D y has a solution x 2 �.

Proof. By the homotopy invariance

deg.H.1; � /;�; y/ D deg.H.0; � /;�; y/ ¤ 0,

so the assertion follows from the existence property of the degree.

Remark 9.75. The easiest case of this principle is ifH.0; � / is a diffeomorphism
of � onto an open subset of E with y 2 H.¹0º��/. In this case, (9.27) holds by
the diffeomorphic normalization property of the degree.

As a special case, we prove Brouwer’s fixed point theorem. The reader should
be aware that all known elementary proofs of Brouwer’s fixed point theorem are
relatively cumbersome; although meanwhile some are not that complicated, there
is no really short proof. The proofs which are less cumbersome make use of some
heavy machinery: algebraic topology or differential geometry (Gauß’ theorem)
or, in our case, degree theory.

Theorem 9.76 (Brouwer Fixed Point). LetM be a nonempty closed convex subset
of a finite-dimensional normed vector space E, and ' 2 C.M;M/ be such that
'.M/ is bounded. Then ' has a fixed point.
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Proof. By Theorem 4.36, M is an CEM for the class of T4 spaces. Since ' is
compact, we can thus extend ' to some compact f 2 C.E;M/. We consider the
map H 2 C.Œ0; 1� � E;E/, H.t; x/ WD x � tf .x/. Then H�1.0/ is closed and
bounded in Œ0; 1��E and thus compact. The continuation principle (Remark 9.75)
implies that there is some x 2 � WD E satisfying H.1; x/ D 0, that is, x D
f .x/ 2M . Since x 2M , x is a fixed point of the original map ' D f jM .

The underlying intuitive idea in the above application of the continuation prin-
ciple is that during the homotopy H.t; x/ D x � tf .x/ all zeroes of H.t; � /
depend in a sense “continuously” on t and so the zero of H.0; � / D idE may not
vanish suddenly if it remains in a bounded (compact) set.

This intuition is not true if one counts zeroes ofH.t; � / in the ordinary way, but
if one understands the number of zeroes as the degree, this argument is precisely
the homotopy invariance of the degree.

Since we actually only need that during the homotopy the zeroes lie in a com-
pact subset of�, we obtain immediately a generalization of Brouwer’s fixed point
theorem by relaxing the hypothesis f .M/ �M :

Theorem 9.77 (Leray–Schauder Alternative). Let� be an open subset of a finite-
dimensional normed space E. Let ' 2 C.�;E/. Then at least one of the follow-
ing holds:

(a) ' has a fixed point in �.

(b) For each x0 2 � the set
[

�>1

¹x 2 � W '.x/� x0 D �.x � x0/º (9.28)

is unbounded or intersects @�.

Proof. Assume by contradiction that both properties fail. Then there is x0 2 �
such that (9.28) is a bounded subset of �. We define H 2 C.Œ0; 1� � �;E/
by H.t; x/ WD x � t.'.x/ � x0/. Since ' has no fixed point in �, we have
H.1; � /�1.x0/ D ¿, and so the assumption implies that H�1.x0/ � Œ0; 1� � �
is bounded and closed in Œ0; 1� � � and thus compact. Hence, the continuation
principle with y D x0 implies in view of Remark 9.75 that there is some x 2 �
with H.1; x/ D x0, contradicting H.1; � /�1.x0/ D ¿.

We note that Theorem 9.77 actually contains Brouwer’s fixed point theorem for
sets of the formM D � as a special case. In fact, we need to verify the hypothesis
only on @�:
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Corollary 9.78 (Rothe’s Fixed Point Theorem). Let � be a nonempty open con-
vex subset of a finite-dimensional normed space E. Let ' 2 C.�;E/ be such that
'.�/ is bounded and '.@�/ � �. Then ' has a fixed point.

Proof. Let x0 2 �. Since '.�/ � '.�/ is bounded, it follows that the set (9.28)
is bounded. We claim that this set is disjoint from @�. Assume by contradiction
that there is some x 2 @� and some � > 1 such that '.x/ � x0 D �.x � x0/.
Then '.x/ 2 �, and so Lemma 4.41 with t WD 1 � ��1 2 .0; 1/ implies that
x D .1 � t/'.x/C tx0 2 � which is a contradiction.

There is a “dual” variant of the continuation principle:

Proposition 9.79 (Inverse Continuation Principle). LetX and Y be C 1 manifolds
over real finite-dimensional vector spaces of the same finite nonzero dimension,
� � X be open, and H W Œ0; 1� � � ! Y be a continuous (oriented or non-
oriented) homotopy such that the following degrees are defined and satisfy

deg.H.0; � /;�; y/ ¤ deg.H.1; � /;�; y/.
Then the setH�1.y/ fails to be compact. In particular, if� is compact andH has
an extension to a continuous map H0W Œ0; 1� ��! Y then y 2 H0.Œ0; 1� � @�/.
Proof. The first assertion is a reformulation of the homotopy invariance. If the
second assertion is false then, since ¹yº is closed, H�1

0 .¹yº/ D H�1.y/ is a
closed subset of the compact set Œ0; 1� �� and thus compact.

The inverse continuation principle typically implies the existence of “nonlin-
ear eigenvalues” for certain classes of functions. Here is a simple result in that
direction:

Theorem 9.80. Let E be a real normed space of finite dimension, � � E a
bounded open neighborhood of 0, and f 2 C.�;E/ satisfy 0 … f .�/. Then
there are �C > 0 > �� and x˙ 2 @� with f .x˙/ D �˙x˙.

Proof. Since f �1.0/ D ¿, the existence and normalization properties of the
degree imply

deg.f;�; 0/ D 0 ¤ deg.id	;�; 0/.

Hence, we can apply the inverse continuation principle with the homotopy
H.t; x/ WD tx C .1 � t/f .x/ which implies in view of f .x/ ¤ 0 that there
are �� < 0 and x� 2 @� with f .x�/ D ��x�. The existence of �C and xC
follows by applying this assertion with �f in place of f .
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Remark 9.81. Our above proofs show that Brouwer’s fixed point theorem and
Theorem 9.80 both follow straightforwardly from degree theory. It is interesting
to observe that one can see elementary that actually both assertions are equivalent,
at least in the most important case � D B1.0/ and M D �:

In fact, if Brouwer’s fixed point theorem holds and f 2 C.M;Rn/ satisfies 0 …
f .M/ then the maps F˙.x/ WD ˙f .x/=kf .x/k have fixed points x˙ 2 M which
satisfy x˙ D F˙.x˙/ 2 @� and f˙.x˙/ D �˙x˙ with �˙ WD ˙kf˙.x˙/k ¤
0.

Conversely, if the assertion of Theorem 9.80 holds and f 2 C.M;M/ would
have no fixed point then F.x/ WD f .x/� x would satisfy 0 … F.�/, and so there
are �C > 0 and xC 2 @� with F.xC/ D �CxC. Then f .xC/ D .1 C �C/xC
would imply kf .xC/k D 1C �C > 1 which is a contradiction.

For a different kind of application of the inverse continuation principle, we
equip X D Y D E D Rn with some orientation (the same on X and Y ). With
the induced orientation on the maps, the diffeomorphic normalization property
implies for every open neighborhood � � E of 0 that

deg.� id	;�; 0/ D sgn.� idE / D sgn det.� idE / D .�1/n.

For odd n this differs from

deg.id	;�; 0/ D sgn.idE / D 1.

By this observation the inverse continuation principle now implies the existence
of “nonlinear eigenvalues” in spaces of odd dimension without the hypothesis
0 … f .�/:

Theorem 9.82. Let E be a real normed space of odd finite dimension, � � E be
an open bounded neighborhood of 0, and f 2 C.�;E/. Then there are � 2 R
and x 2 @� with f .x/ D �x.

Proof. We fix an orientation on X D Y D E and consider the homotopies
H0.t; x/ D tx C .1 � t/f .x/ and H1.t; x/ D t.�x/ C .1 � t/f .x/ with the
induced orientations. We can assume that f .x/ ¤ 0 for all x 2 @�, since other-
wise we are done. Then the following degrees are defined:

deg.H0.0; � /;�; 0/ D deg.f;�; 0/ D deg.H1.0; � /;�; 0/.
Since we have calculated above that

deg.H0.1; � /;�; 0/ D 1 ¤ �1 D deg.H1.1; � /;�; 0/,
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the inverse continuation principle applies for at least one of the maps H0 and H1.
Hence, there are t 2 Œ0; 1� and x 2 @� with Hi.t; x/ D 0 for i D 0 or i D 1

which implies the assertion.

For � being the open unit ball in Rn, we obtain the famous “hedgehog the-
orem” which states that it is not possible to “comb” a hedgehog. We use for
x D .x1; : : : ; xn/; y D .y1; : : : ; yn/ 2 Rn the scalar product

hx; yi WD x1y1 C � � � C xnyn.

Corollary 9.83 (Hedgehog Theorem). For the unit sphere S D S1.0/ in Rn

with odd n there is no continuous tangential field f 2 C.S;Rn n ¹0º/, that is
hx; f .x/i D 0 for all x 2 S .

Proof. Otherwise, we put � WD B1.0/ and use Tietze’s extension theorem to
extend f to a map f 2 C.�;Rn/. Theorem 9.82 implies that there are x 2 S
and � 2 R with f .x/ D �x. Then 0 D hx; f .x/i D �hx; xi implies � D 0, that
is f .x/ D 0, contradicting the hypothesis.

We note that Corollary 9.83 (and thus also Theorem 9.82) fails for even dimen-
sion n, since then a continuous tangential field is given by

f .x1; : : : ; xn/ D .x2;�x1; x4;�x3; : : : ; xn;�xn�1/.

A different kind of application of degree theory uses Borsuk’s theorem that odd
maps have an odd degree on neighborhoods of zero:

Theorem 9.84 (Borsuk). Let X D Y D E be a real finite-dimensional vector
space and � � X be open with �� D �. Let F 2 C.�; Y / be odd, that is
F.�x/ D �F.x/ for all x 2 �. If F�1.0/ is compact then

deg.F;�; 0/ is

´

odd if 0 2 �,

even if 0 … �.
(9.29)

Proof. In view of (9.5), it suffices to consider the non-oriented degree. For the
case that F is of class C 1 and that 0 is a regular value of F , the regular nor-
malization property implies that deg.F;�; 0/ is odd/even if and only if the finite
number of elements in Z D F�1.0/ is odd/even. Since �Z D Z and 0 2 Z if
and only if 0 2 �, the assertion follows.

The idea of the proof is to reduce the general case to this special case. This is
somewhat technical since the straightforward idea to approximate F by a smooth
function and then to apply Sard’s lemma does not work, because F � c fails to
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be odd for c ¤ 0. However, the idea works when we construct the approximating
function coordinatewise appropriately.

Therefore, we assume without loss of generality that X D Y D E D Rn.
By the excision property of the degree, we can shrink � without changing the
assertion, as long as the shrinked set � satisfies �� D � and contains F�1.0/.
Hence, without loss of generality, we can assume in view of Proposition 9.1 that
� is bounded, that F has a continuous extension to �, and in case 0 … � that
there is some " > 0 such that K WD Œ�"; "�n is disjoint from �. In case 0 2 �,
we assume conversely that K � �.

By construction, .�; Y; idE / is a Rouché triple for .F;�; 0/. The stability
property of the degree (Proposition 9.54) implies that there is some ıF > 0 such
that any function G 2 C.�; Y / satisfies the implication

max
x2@	

kF.x/ �G.x/k < ıF H) deg.F;�; 0/ D deg.G;�; 0/. (9.30)

By Theorem 9.9 there is G 2 C1.X; Y / satisfying the left-hand side of (9.30).
In case 0 2 �, we can assume that GjK D idK , because by Theorem 9.8 there
is G0 2 C1.X; Y / satisfying G0j@	 D Gj@	 and G0jK D idK , and we can
replace G by G0 if necessary. Moreover, replacing G by

OG.x/ WD 1

2
.G.x/� G.�x//

if necessary, we can assume without loss of generality that G is odd. In view
of (9.30), it suffices to show the assertion for G in place of F .

This argument shows that, without loss of generality, we can assume from the
very beginning that F is the restriction of a function from C1.X; Y /, and in case
0 2 � that F jK D idK .

We fix now an odd 'WR ! R of class C1 satisfying '�1.0/ D Œ�"; "�; for
instance, with the function g of Lemma 9.5, we can put '.t/ WD tg.t2 � "2/. For
k D 1; : : : ; n, we put

�k WD ¹.x1; : : : ; xn/ 2 � W jxkj > "º.
We put F0 WD F . By induction, we define for k D 1; : : : ; n functions Gk W�k !
Y by

Gk.x1; : : : ; xn/ WD Fk�1.x1; : : : ; xn/

'.xk/
, (9.31)
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and by the Lemma of Sard there is a regular value ck of Gk such that kckk is so
small that, in view of (9.30) the function Fk W�! Y ,

Fk.x1; : : : ; xn/ WD F.x1; : : : ; xn/ � c1'.x1/ � � � � � ck'.xk/ (9.32)

satisfies deg.Fk ;�; 0/ D deg.Fk�1;�; 0/.
Then Fn is an odd function satisfying deg.Fn;�; 0/ D deg.F;�; 0/. Hence,

we are done if we can show that 0 is a regular value of Fn. To see this, we note
first that FnjK D idK so that we only have to show that 0 is a regular value of
Fnj	nK . Since � n K D �1 [ � � � [ �n, it suffices to show by induction on
k D 1; : : : ; n that 0 is a regular value for the restriction of Fk to �1 [ � � � [�k .

Thus, let x D .x1; : : : ; xn/ 2 F�1
k
.0/ satisfy x 2 �1 [ � � � [ �k . We have

to show that dFk.x/ is invertible. In case x … �k , that is if jxkj � ", we have
'0.xk/ D 0 and x 2 �1 [ � � � [ �k�1. In this case, it follows that dFk.x/ D
dFk�1.x/ is invertible by induction hypothesis. It remains to consider the case
x 2 �k . We have 0 D Fk.x/ D Fk�1.x/� ck'.xk/ which implies

ck'.xk/ D Fk�1.x/. (9.33)

In particular, we obtain Gk.x/ D ck. Since ck is a regular value of Gk by con-
struction, we find that dGk.x/ is invertible. We will show that

dFk.x/ D '.xk/dGk.x/. (9.34)

Since x 2 �k implies '.xk/ ¤ 0, we then obtain from (9.34) that dFk.x/ is
invertible, as required. In order to show (9.34), it suffices by Proposition 8.1 to
compare the partial derivatives, that is, we have to show that

djFk.x/ D '.xk/djGk.x/ (9.35)

for all j D 1; : : : ; n. This is clear in case j ¤ k, since in that case the function Fk

has by (9.32) the same j -th partial derivatives as Fk�1, and by (9.31) the function
Gk has the same j -the partial derivatives as Fk�1 up to the factor 1='.xk/, hence,

djGk.x/ D djFk�1.x/

'.xk/
D djFk.x/

'.xk/
,

which means (9.35). For j D k, we use the quotient rule for (scalar) derivatives
in (9.31) and obtain in view of (9.33) that

dkGk.x/ D dkFk�1.x/'.xk/ � '0.xk/Fk�1.x/

'.xk/
2

D dkFk�1.x/� ck'
0.xk/

'.xk/
D dkFk.x/

'.xk/
,

hence, (9.35) holds also for j D k.
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If � in Theorem 9.84 is bounded and F has a continuous extension to �, it
suffices to verify that F j@	 is odd:

Corollary 9.85 (Borsuk Fixed Point I). Let E be a finite-dimensional normed
vector space, � � E be open and bounded with �� D �, and F 2 C.�;E/ be
such that 0 … F.@�/ and F j@	 is odd. Then (9.29) holds, and in case 0 2 �, we
have 0 2 F.�/.
Proof. The function G.x/ WD 1

2 .F.x/ � F.�x// is odd and satisfies Gj@	 D
F j@	. Since .�;E; idE / is a Rouché triple for F , the stability property of the
degree implies deg.F;�; 0/ D deg.G;�; 0/. Theorem 9.84 implies (9.29). In
case 0 2 �, we have 0 2 F.�/ by the existence property of the degree.

Using the homotopy invariance of the degree, we show now that Corollary 9.85
holds also if F j@	 is not necessarily odd, but if only for all x 2 @� the (nonzero)
vectors F.x/ and F.�x/ do not point into the same direction, that is, if

kF.�x/kF.x/ ¤ kF.x/kF.�x/ for all x 2 @�. (9.36)

This is of course satisfied if 0 … F.@�/ and F j@	 is odd. Hence, Corollary 9.85
is actually a special case of the subsequent Corollary 9.86.

Corollary 9.86 is also applicable for unbounded � or if F does not necessarily
have a continuous extension to �.

Corollary 9.86 (Borsuk Fixed Point II). Let E be a finite-dimensional normed
space, � � E be open with �� D �, and F 2 C.�;E/ such that

C WD ¹x 2 � W kF.�x/kF.x/ D kF.x/kF.�x/º
is compact; this holds in particular if � is bounded and F 2 C.�;E/ satis-
fies (9.36). Then (9.29) holds, and in case 0 2 �, we have 0 2 F.�/.
Proof. In case (9.36), we even have

C D ¹x 2 � W kF.�x/kF.x/ D kF.x/kF.�x/º,
and by the continuity of F and of the norm, the set on the right-hand side is closed
in E and bounded (if � is bounded) and thus compact.

To prove the main assertion, we define H W Œ0; 1� ��! E by

H.t; x/ WD F.x/� tF .�x/.
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We have H.t; x/ D 0 if and only if F.x/ D tF .�x/. In case F.x/ ¤ 0, this
implies that F.x/ is a positive multiple of F.�x/, and so x 2 C . In case F.x/ D
0, we have trivially x 2 C . Hence, H�1.0/ is a closed subset of the compact set
Œ0; 1� � C and thus compact. The homotopy invariance of the degree implies that

deg.F;�; 0/ D deg.H.0; � /;�; 0/ D deg.H.1; � /;�; 0/.
SinceH.1; � / is an odd map, Borsuk’s Theorem 9.84 implies that the latter degree
satisfies (9.29), and so 0 2 F.�/ follows in case 0 2 � from the existence
property of the degree.

Remark 9.87. In case E D R, Corollary 9.86 is nothing else than the interme-
diate value theorem of continuous functions. Indeed, if F 2 C.Œ�a; a�;R/ is
such that F.�a/ and F.a/ have opposite (nonzero) signs then (9.36) holds with
� D .�a; a/, and so Corollary 9.86 implies that there is some x 2 .�a; a/ with
F.x/ D 0.

In this sense, degree theory and in particular Theorem 9.84 might be considered
as a higher-dimensional generalization of the intermediate value theorem.

Remark 9.88. The reader might be surprised why we call Corollaries 9.85
and 9.86 “fixed point theorems”. The reason is that they become indeed fixed
point theorems for ' if one applies the results with F WD id	 �'. Note that F
is odd if and only if ' is odd. This fixed point formulation might appear artificial
in the moment but is actually more natural in the setting of (infinite-dimensional)
Banach spaces, as we will see in Section 13.3: Theorem 13.24 will be an infinite-
dimensional generalization of Corollary 9.86.

Here are the most important consequence of Theorem 9.84:

Theorem 9.89. The following statements hold.

(a) (Borsuk Fixed Point Theorem on Balls). Let K D K1.0/ � Rn and
F 2 C.K;Rn/. If F jS1.0/ is odd then 0 2 F.K/.

(b) (Borsuk-Ulam Theorem). Let S D S1.0/ � Rn and F 2 C.S;Rm/ with
m < n. Then there is some x 2 S with F.x/ D F.�x/.

(c) (Ljusternik-Schnirel’man Theorem). Let S D S1.0/ � Rn. For all closed
sets A1; : : : ; An � Rn with S � A1 [ � � � [ An there is some k such that
S \ Ak contains an antipodal pair, that is, there is x 2 S with x 2 Ak and
�x 2 Ak .

Remark 9.90. As in Remark 9.88, we can reformulate assertion (a) of Theo-
rem 9.89 equivalently in “fixed point form” (with F D idK �'):
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(a) (Borsuk Fixed Point Theorem on Balls). Let K D K1.0/ � Rn and
' 2 C.K;Rn/. If 'jS1.0/ is odd then ' has a fixed point in K.

Proof. The assertion (a) is the special case of Corollary 9.85 with � D B1.0/.
To prove (b), we put � WD B1.0/ and extend F by Tietze–Urysohn (Corol-

lary 2.67) to some F 2 C.�;Rm/. Assuming by contradiction that there is
no x 2 S with F.x/ D F.�x/, we obtain that G 2 C.�;Rm/, G.x/ WD
.F.x/ � F.�x/; 0/, satisfies G�1.0/ � �. Hence, G�1.0/ is compact. Since G
is odd, we obtain by Borsuk’s Theorem 9.84 that deg.G;�; 0/ is odd, in particu-
lar nonzero. Since .�;E; idE / is a Rouché triple for .G;�; 0/, we obtain by the
stability property of the degree (Proposition 9.54) that also deg.G;�; y/ ¤ 0 for
all y in some neighborhood of 0. The existence property implies that y 2 G.�/
for all y in a neighborhood of 0, contradicting the fact that by definition of G, all
elements from G.�/ have 0 in their last coordinate.

To prove (c), we assume by contradiction that none of the sets Sk WD S \ Ak

.k D 1; : : : ; n/ contains an antipodal pair. Then

S �
n

[

kD1

Sk �
n�1
[

kD1

.Sk \ .�Sk//, (9.37)

because for every x 2 Sn, we have �x … Sn and thus �x 2 Sk for some k < n.
Since Sk and �Sk are closed and disjoint, we find by Urysohn’s lemma functions
gk 2 C.Rn; Œ�1; 1�/ satisfying gk.Sk/ D ¹1º and gk.Sk/ D ¹�1º. We put
� WD B1.0/ � Rn and define GW�! Rn by

G.x/ WD .g1.x/; : : : ; gn�1.x/; 1/.

Then F.x/ WD 1
2
.G.x/�G.�x// is an odd function. Moreover, the homotopy

H.t; x/ WD tG.x/C .1 � t/F.x/
satisfies 0 … H.Œ0; 1��@�/, because for every x 2 S some of the first n�1 coor-
dinates of H.0; x/ D F.x/ is˙1 by (9.37), and because for t > 0 the last coordi-
nate of H.t; x/ is t > 0. Hence, H�1.0/ is a compact subset of Œ0; 1� ��. Then
deg.H.1; � /;�; 0/ D deg.F;�; 0/ is odd, in particular nonzero, by Borsuk’s
Theorem 9.84. It follows from the continuation principle that 0 2 H.¹0º ��/ D
G.�/ which is a contradiction, since the definition of G implies that the last co-
ordinate of every y 2 G.�/ is 1.

The assertions (b) and (c) of Theorem 9.89 have famous real-world interpreta-
tions, which we discuss now.
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For n D 3 and m D 2 the assertion (b) means that at each fixed time there
is an antipodal pair on the earth surface with the same temperature and the same
pressure: Indeed, for every function F 2 C.S;R2/ which associates to each
point x of the earth surface S temperature and pressure at a given time there is
some x 2 S with F.x/ D F.�x/.

Another famous interpretation of (b) for n D 3 is that it is possible to divide a
piece of bread, an egg, and a ham simultaneously into two halves with one straight
cut:

Corollary 9.91 (Egg–Ham–Sandwich). Let M1; : : : ;Mn � Rn be Lebesgue
measurable with finite measure. Then there is a hyperplane which cuts each Mk

into two sets of equal measure.

Proof. Let S D S1.0/ � RnC1. For x D .x1; : : : ; xn; t/ 2 S , we define the
hyperplane

Hx WD ¹y D .y1; : : : ; yn/ 2 Rn W x1y1 C � � � C xnyn D tº,
and the corresponding “upper halfspace”

HC
x WD ¹y D .y1; : : : ; yn/ 2 Rn W x1y1 C � � � C xnyn > tº.

Note that the corresponding “lower halfspace” isHC�x . Hence, it suffices to prove
that there is some x 2 S satisfying

mes.Ak \HC
x / D mes.Ak \HC�x/ for k D 1; : : : ; n.

Defining F WS ! Rn by

F.x/ WD .mes.A1 \HC
x /; : : : ;mes.An \HC

x //,

we thus have to prove that there is some x 2 S satisfying F.x/ D F.�x/. This is
the assertion of Theorem 9.89(b) if F is continuous. The continuity of F follows
by the representation

mes.Ak \HC
x / D

Z

Rn

�
Ak\H

C
x

.y/ dy, (9.38)

where �
M

denotes the characteristic function of M , that is

�
M
.x/ WD

´

1 if x 2 M ,

0 otherwise.
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Indeed, if xj 2 S converges to x 2 S , we have �
Ak\H

C
xj

! �
Ak\H

C
x

almost

everywhere. Since 0 � �
Ak\H

C
xj

� �
Ak

and the latter function is integrable

(since Ak has finite measure), we obtain by Lebesgue’s dominated convergence
theorem and (9.38) that mes.Ak \HC

xj
/! mes.Ak \Hx/.

For n D 3, the assertion (c) of Theorem 9.89 implies that for peeling a potato
by straight cuts, one needs at least 4 cuts. More generally, the following result
holds:

Corollary 9.92. If a bounded set M � Rn with an interior point is “bordered”
by hyperplanes, then at least nC 1 such hyperplanes are used.

Proof. By scaling and shifting M , we may assume without loss of generality that
0 2 VM and M � B1.0/. We assume by contradiction that n hyperplanes are
sufficient to “border” M . The k-th hyperplane divides Rn into two halfspaces.
Let Ak denote that (closed) halfspace which lies on the opposite side of 0. Then
S1.0/ � A1 [ � � � [ An, and no S \ Ak contains an antipodal pair. This is a
contradiction to Theorem 9.89(c).

Remark 9.93. Our above proof shows that all assertions of Theorem 9.89 follow
straightforwardly from degree theory. It is interesting to observe that one can see
elementary that actually all assertions of Theorem 9.89 are equivalent.

To see the equivalence of (a) and (b), we assume that Rn and RnC1 are
equipped with the Euclidean norm, and we introduce the following notation. Let
K WD K1.0/ � Rn, S WD S1.0/ � Rn, and

SC WD ¹.x; t/ 2 RnC1 W kxk2 C t2 D 1 and t � 0º.
Then S0 WD SC [ .�SC/ is the unit sphere in RnC1.

To prove (b))(a), we assume now that F 2 C.K;Rn/ is such that F jS is odd.
We define GWS0 ! Rn by

G.x; t/ WD
´

F.x/ if .x; t/ 2 SC,

�F.�x/ if .x; t/ 2 �SC.

This is well-defined, since for .x; t/ 2 SC \ .�SC/, we have x 2 S , and so
F.�x/ D �F.x/. The glueing lemma (Lemma 2.93) implies that G is continu-
ous. We find by (b) some .x; t/ 2 S0 with G.x; t/ D G.�x;�t/, without loss of
generality .x; t/ 2 SC. Then F.x/ D �F.x/, hence F.x/ D 0.
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To prove the converse implication (a))(b), let F 2 C.S0;Rm/ be given with
some m � n. We define G 2 C.K;Rn/ by

G.x/ WD .F.x;
p

1 � kxk2/ � F.�x;�p

1 � kxk2/; 0/.

Then GjS is odd, and so (a) implies that there is x 2 K with G.x/ D 0. Putting
t WD p

1� kxk2, we obtain F.x; t/ D F.�x;�t/.
The following proof of the equivalence of (c) and (b) works with any choice of

the norm. To prove the implication (b))(c), we assume by contradiction that (c)
fails, that is, S is covered by closed setsA1; : : : ; An 2 Rn without antipodal pairs.
Then we find as in the proof of Theorem 9.89 that (9.37) holds with Sk WD S\Ak .
We define F 2 C.S;Rn�1/ by

F.x/ WD .dist.x; S1/; : : : ;dist.x; Sn�1//.

By (b), there is x 2 S with F.x/ D F.�x/, that is dk D dist.x; Sk/ D
dist.x;�Sk/ for k D 1; : : : ; n � 1. We must have dk ¤ 0, since otherwise
x 2 Sk \ .�Sk/ which is a contradiction. It follows that x … Sk [ .�Sk/ for
K D 1; : : : ; n � 1, and so x … S by (9.37) which is also a contradiction.

To prove the remaining implication (c))(b), we assume by contradiction
that (b) fails, that is, there is F 2 C.S;Rm/ with m < n satisfying F.x/ ¤
F.�x/ for all x 2 S . ThenG.x/ WD F.x/�F.�x/ is odd and satisfies 0 … G.S/.
The compactness of G.S/ and Corollary 3.14 imply dist.0;G.S// > 0. Hence,
withG D .G1; : : : ; Gm/ there is ı > 0 such that max¹jGk.x/j W k D 1; : : : ;mº >
ı for each x 2 S . Since all Gk are odd, it follows that the closed set

A WD ¹x 2 S W G1.x/; : : : ; Gm.x/ 2 .�1; ı�º
contains no antipodal pair. Since Gk are odd, also the closed sets

Ak WD ¹x 2 S W Gk.x/ � ıº .k D 1; : : : ;m/

contain no antipodal pair. However, the m C 1 � n sets A1; : : : ; Am; A cover S
by their definition. This contradicts (c).

Borsuk’s fixed point theorem on balls (or any of the other equivalent assertions
of Theorem 9.89) is a surprisingly powerful result. In fact, one can show without
using degree theory that it actually implies the most general form of Borsuk’s
fixed point theorem (Corollary 9.86 without the assertion about the degree), and
also that it implies Brouwer’s fixed point theorem, and that the latter implies the
Leray–Schauder alternative.

If one looks at our proofs of Brouwer’s fixed point theorem and the Leray–
Schauder alternative, it is not surprising that from a very abstract point of view,
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these are in a sense special cases of Borsuk’s result: The latter two results were
essentially consequences of the assertion deg.idE ; E; 0/ D 1, but actually only
deg.id; E; 0/ ¤ 0 is needed for the proof. The latter in turn is a trivial special case
of Borsuk’s Theorem 9.84. This heuristic is of course not a proof that already the
special case Theorem 9.89(a) implies all the other assertions in an elementary
manner, but a rigorous proof can be given using the theory of so-called epi maps
(sometimes also called essential maps) which we will not cover in this monograph:
For a proof of the mentioned implications without using degree theory, we refer
to [7].

We come to another important application of Borsuk’s theorem. We call a map
F WX ! Y locally one-to-one if every x 2 X has a neighborhood U such that
F jU is one-to-one.

Theorem 9.94 (Invariance of Domain). Let E be a finite-dimensional normed
space, and � � E be open. If F 2 C.�;E/ is locally one-to-one then F.�/ is
open in E.

Proof. We have to show that every y0 2 F.�/ is an interior point of F.�/. Let
x0 2 � satisfy y0 D F.x0/, and let r > 0 be such that �0 WD Br.x0/ satisfies
�0 � � and such that F j	0

is one-to-one. Without loss of generality, we can
assume that y0 D 0 and x0 D 0. We define H W Œ0; 1� ��0 ! E by

H.t; x/ WD F.x/ � F.�tx/.
Since F j	0

is one-to-one, we have H.t; x/ D 0 if and only if x D �tx which
holds if and only if x D 0. Hence, H�1.0/ D Œ0; 1� � ¹0º is compact. By the
homotopy invariance of the degree, we obtain

deg.F;�0; 0/ D deg.H.0; � /;�0; 0/ D deg.H.1; � /;�0; 0/.

Since H.1; � / is odd, the latter degree is odd by Borsuk’s Theorem 9.84, in
particular nonzero. Note that .�0; E; idE / is a Rouché triple for .F;�0; 0/.
We obtain by the stability property of the degree (Proposition 9.54) that also
deg.F;�0; y/ ¤ 0 for all y in some neighborhood U of 0. The existence property
of the degree thus implies U � F.�0/ � F.�/.

Also Theorem 9.94 could have been reduced to Borsuk’s fixed point theorem
on balls [7].

Corollary 9.95 (Dimension Invariance). Let nonempty open sets �1 � Rn and
�2 � Rm be homeomorphic. Then n D m.
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Proof. Assume by contradiction without loss of generality that m < n. By hy-
pothesis, there is a one-to-one map H 2 C.�1;�2/. Then we can define a
one-to-one map F 2 C.�1;Rn/ by putting F.x/ WD .H.x/; 0/. Theorem 9.94
implies that F.�1/ is open. This is a contradiction, since all y 2 F.�1/ have 0
as their last coordinate.





Chapter 10

The Benevieri–Furi Degrees

The aim of this chapter is to define a degree theory for (oriented) Fredholm
maps F which act from subsets of a Banach manifold X into a Banach mani-
fold Y . Moreover, also a coincidence degree for pairs of maps .F; '/ where ' is
continuous and compact should be developed. Similarly as the Brouwer degree,
this degree should “count” in a homotopically invariant manner the number of
solutions of the equation F.x/ D y or F.x/ D '.x/, respectively.

Of course, the coincidence degree is more general. Unfortunately, it is an open
problem of whether the coincidence degree exists in this general setting: Our
approach can prove its existence only for the case that Y is a Banach space.

Therefore, we present two degree theories: one for the case that Y is a Banach
manifold, and the coincidence degree when Y is a Banach space. These degrees
go back to [17] and [19]. In [19] only the case thatX is a Banach space is covered,
but we will develop the approach also if X is a Banach manifold.

Some historical notes are in order. There were several attempts to define a
degree theory for Fredholm maps. The work initiating the main research in this
direction is due to S. Smale [131], although similar results were obtained much
earlier by R. Caccioppoli [31]. In these early attempts only a degree with values
in Z2 (without orientation) was considered. Using various definitions of orienta-
tion or, more general, of something corresponding to sgndF.x/ in our setting, it
was observed in several subsequent research papers that essentially the same ap-
proach as for the Brouwer degree works if one considers C 2 maps, see e.g. [51],
[54]. At a first glance, it appears that one cannot do better than C 2 this way,
since Corollary 9.67 (or similar results for other approaches) require at least C 2

smoothness. The first successful attempts to avoid C 2 smoothness have been
made by Ju. I. Sapronov [26] and then later in [125], [126]. However, these
approaches appear not so simple than that from [19], so we will use the latter
approach.

The crucial idea of [17] by which C 1 maps can be treated is to use the Brouwer
degree. This has a drawback: Even if one is only interested in Banach spaces X
and Y , it is necessary for this approach to consider submanifolds and to use the
Brouwer degree of manifolds.
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We point out that our definition for both degrees differs from the corresponding
definition in [17] and [19]: We have chosen the so-called reduction property as
the key property for the definition of the degrees. This is the property which
makes the connection with the Brouwer degree most obvious. This approach by
the reduction property has the advantage that we can use the same idea later also
in the more general setting of function triples: The latter possibility was observed
only in [142].

We need to discuss this reduction property first in the setting of the Brouwer
degree.

10.1 Further Properties of the Brouwer Degree

Due to the compatibility property (9.4) of the Brouwer degree, all properties
which can be proved for the C 0 Brouwer degree also hold for the C r Brouwer
degree for r � 1 if they can be formulated for that degree. Therefore, we do
not formulate the subsequent properties for smoother maps than C 1, although this
would be possible (but gives nothing new). For this reason, we also omit the in-
dex r in the definition of deg, that is, from now on we write just deg.X;Y / instead
of deg.r;X;Y /.

Throughout this section, let X and Y be manifolds without boundary of class
C 1 over real vector spaces EX and EY with dimEX D dimEY <1.

The assertion of the subsequent reduction property is in the simplest case that if
deg.X;Y /.G;�; y/ is defined for some C 1 mapG, and if Y0 � Y is a submanifold
which is transversal to G and satisfies y 2 Y0 then this degree can be calculated
by considering the restriction of G to X0 WD G�1.Y0/. Note that this makes
sense since by the transversality theorem (Theorem 8.55) the restriction G0 D
GjX0

WX0 ! Y0 acts between manifolds of the same dimension, and therefore
one can speak about deg.X0;Y0/.G0; X0; y/.

However, for the coincidence degree which we develop later, we need a similar
assertion also when we replace G by a map F which is a “continuous perturbation
of G along Y0”. In the case that Y D EY is a vector space and Y0 is a linear
subspace, we mean by this that F has the form F D G � ' with ' 2 C.�; Y0/.
If Y is only a manifold (and not a vector space), we cannot define G � ' directly,
and therefore the formulation of the general case is a bit clumsy. An additional
technical difficulty in the oriented case is that Definition 9.19 only provides us an
orientation for G0 if G is oriented, but we are only given an orientation of F and
need to define an orientation for the restriction F0 of F .
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Theorem 10.1. The Brouwer degree has the following property:

(SB) (C 0 Reduction). Let .F;�; y/ 2 B0.X; Y /, and let J be a diffeomor-
phism of an open neighborhood V � Y of y onto an open subset of EY . Let
�0 � � be an open neighborhood containing F�1.y/ with F.�0/ � V ,
and let G 2 C 1.�0; V / and ' 2 C.�0; V / be such that

J ı F D .J ıG/ � .J ı '/. (10.1)

Let Z � EY be a linear subspace such that Y0 WD J�1.Z/ satisfies:

(a) '.�0/ � Y0 and y 2 Y0.

(b) Y0 is transversal to G on �0.

Then X0 WD �0 \ G�1.Y0/ is a submanifold of X of the same dimension
as Z, and if this dimension is positive, the map F0 WD F jX0

2 C.X0; Y0/

satisfies .F0; X0; y/ 2 B0.X0; Y0/ and

deg.X;Y /.F;�; y/ D deg.X0;Y0/.F0; X0; y/.

The orientation of F0 for the oriented case is described below.

In the oriented case, we fix some orientation of EY and equip J with the nat-
ural orientation. Then J induces an orientation on V by Proposition 9.34. The
given orientation of F induces a corresponding orientation on �0. The orienta-
tions on �0 and V induce an orientation on G. Note that the latter orientation is
independent of the choice of the orientation of EY , for if we choose the opposite
orientation of EY then the orientations on V and �0 are opposite, but the orienta-
tion of G stays the same. We equip G0 WD GjX0

2 C 1.X0; Y0/ with the inherited
orientation in the sense of Definition 9.19. We fix now some orientation of Z, and
equip the diffeomorphism J0 WD J jX0

2 C 1.Y0; Z/ with the natural orientation.
Then J0 induces an orientation on Y0, G induces a corresponding orientation on
X0, and these two orientations induce the required orientation on F0. As above,
this orientation is actually independent of the choice of the orientation of Z.

Proof. We note first that for each x 2 �0 with F.x/ 2 Y0 we have J.G.x// D
J.F.x//C J.'.x// 2 Z CZ � Z, and so x 2 X0. Hence,

�0 \ F �1.Y0/ � X0, in particular F�1.y/ D F�1
0 .y/. (10.2)

Thus, F0 2 C.X0; Y0/, and .F0; X0; y/ 2 B0.X0; Y0/ follows from .F;�; y/ 2
B0.X; Y /. By the excision property, it remains to show that

deg.X;Y /.F;�0; y/ D deg.X0;Y0/.F0; X0; y/. (10.3)
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Note that by Corollary 9.3 there is some open neighborhood U � X containing
F�1.y/ with compact U � �0. In view of the excision property, it suffices to
prove the assertion when we replace �0 by U . Hence, without loss of generality,
we can assume that .�0; J; V / is a Rouché triple for .F;�0; y/, .X0; J0; Y0/ is a
Rouché triple for .F0; X0; y/, and that, moreover, also G and ' have continuous
extensions to �0 satisfying G.�0/ [ '.�0/ � V . Since �0 is compact and
Y n J.V / is closed, we find by Corollary 3.14 some " > 0 such that

B"..J ı '/.�0/ [ .J ı F /.�0// � J.V /.
In particular, whenever H 2 C.�0; Z/ satisfies

max
x2	0

kH.x/ � .J ı '/k < ", (10.4)

then O' WD J�1 ıH 2 C.�0; Y0/ and

OF WD J�1 ı ..J ıG/ �H/ 2 C.�0; Y0/

are defined, and OF0 WD OF jX0
2 C.X0; Y0/. The stability property of the degree

(Proposition 9.54) implies that if " > 0 is chosen sufficiently small then none of
the two sides in (10.3) changes if we replace F by OF and F0 by OF0, respectively.

Using Theorem 9.9, we find someH 2 C 1.�;Z/ satisfying (10.4). Since then
H jX0

2 C 1.X0; Z/, we can assume by Theorem 9.14, replacing H by H C z

with some small z 2 Z if necessary, that J.y/ is a regular value of J ı G0 �
H jX0

2 C 1.X0; Z/ (we put G0 WD GjX0
2 C 1.X0; Y0/ as above). By the

above argument, it suffices to prove the assertion when we replace ' by O' and
correspondingly F by OF and F0 by OF0.

Hence, we have shown: It suffices to prove the reduction property for the case
that ' 2 C 1.�0; Y0 \ V / and that y is a regular value of F0 2 C 1.X0; Y0/.

We will show that it follows also that y is a regular value of F j	0
. To see this,

we observe that by (10.2) a point x 2 X belongs to F�1.y/ if and only if it be-
longs toF�1

0 .y/. We have to show for every such x that dF.x/ 2 Iso.TxX;TyY /,
that is, A WD d.J ı F /.x/ 2 Iso.TxX;Z/. Since x 2 X0 and y is a regular value
of F0, we know that dF0.x/ 2 Iso.TxX0; TyY0/, that is, A0 WD d.J0 ı F0/.x/ 2
Iso.TxX0; Z/.

Since Y0 is transversal to G on �0, we have that Z is transversal to J ı G
on �0. Putting B WD d.J ı G/.x/ 2 L.TxX;Y / and B0 WD d.J ı G0/.x/ 2
L.TxX0; Z/, we thus obtain from Theorem 8.55 that TxX0 D B�1.Z/ has the
same dimension as Z, and B0 D BjTxX0

. Let E1 � TxX be some subspace
with TxX D TxX0 ˚ E1. Since TxX0 D B�1.Z/, we have R.B/ D Z ˚
B.E1/. On the other hand Z is transversal to J ı G on �0; since x 2 �0, this
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implies by definition that Z is transversal to B . Hence, Z C R.B/ D Y . Since
R.B/ D Z ˚ B.E1/, it follows with Z1 WD B.E1/ that Y D Z ˚ Z1. Since
dimTxX D dim Y and dim TxX0 D dimZ, it follows that dimZ1 D dimE1,
and so B1 WD BjE1

2 Iso.E1; Z1/.
Next, we note that .J ı '/.�0/ � Z implies that C WD d.J ı '/.x/ 2

L.TxX;Z/. Let P 2 L.TxX/ denote the projection onto TxX0 with N.P / D
E1, and Q WD idTxX �P the projection onto E1 with kernel TxX0 (Proposi-
tion 6.18). Then C D CP C CQ 2 L.TxX;Z/. Finally, we note that (10.1)
implies A D B � C . Hence, according to the splitting TxX D TxX0 ˚ E1 and
Y D Z ˚Z1, we can write A D B � C in matrix form

A D
�

B0 0

0 B1

�

�
�

CP CQ

0 0

�

D
�

B0 � CP �CQ
0 B1

�

D
�

A0 �CQ
0 B1

�

.

Since A0 and B1 are isomorphisms, it follows that A is an isomorphism, as re-
quired. Hence y is a regular value of F j	0

. Applying the regular normalization
property (Proposition 9.46) to both sides of (10.3), we thus obtain the assertion if
we can show that even sgn dF.x/ D sgn dF0.x/. This is clear in the non-oriented
case.

In the oriented case, we fix orientations onEY andZ, and let�0 andX0 (hence
TxX and TxX0) be oriented as described earlier. We have to show that sgnA D
sgnA0 with the corresponding induced orientations. To this end, we observe that
sgnA0 is determined by the inherited orientation of

B D
�

B0 0

0 B1

�

.

Note that Corollary 7.17 implies sgnB0 D sgnB . We have

det.A�1B/ D det
�

A�1
0 B0 A�1

0 CQ

0 idE1

�

D det.A�1
0 B0/.

If this number is positive (negative), then A and B and A0 and B belong to the
same (opposite) class of correctors of the zero operator, and so sgnA D sgnB ,
sgnA0 D sgnB0 (or sgnA D � sgnB , sgnA0 D � sgnB0). In both cases,
we obtain from sgnB0 D sgnB that sgnA0 D sgnA. Hence, sgndF.x/ D
sgndF0.x/, and the reduction property is proved.

It seems that Theorem 10.1 was never observed before, although the special
case Y D EY with J D idY was mentioned without proof in [19].

The reader familiar with the fixed point index will see an analogue of Theo-
rem 10.1 with the reduction property of the fixed point index. If X D Y D EX D



314 Chapter 10 The Benevieri–Furi Degrees

EY with some fixed (the same) orientation and if .idX �';�; 0/ 2 B0.X; Y /

then we define the fixed point index on X by the formula

indX .';�/ WD deg.X;X/.idX �';�; 0/,
where the orientation is understood as the induced orientation. For the case that
X0 � X is a linear subspace and '.�/ � X0, the so-called reduction property of
the fixed point index states that

indX .';�/ D indX0
.';� \X0/.

This is in fact nothing else than the special case of Theorem 10.1 with G D idX .
In fact, our proof of Theorem 10.1 imitates the proof of this classical special

case. This strategy for the proof is rather natural: Using the stability of the degree,
one reduces the situation to the regular case and then one obtains the result by
direct calculation, using just basic linear algebra. Since the details in the above
result were a bit involved, let us give an example where the same strategy can be
applied more straightforwardly.

Theorem 10.2. The Brouwer degree has the following property:

(TB) (Cartesian Product). For i D 1; 2, let Xi and Yi be manifolds without
boundary of class C 1 over real vector spaces EXi

and EYi
, respectively,

with 0 < dimEXi
D dimEYi

<1. Let�i � Xi be open, Fi 2 C.�i ; Yi /,
and yi 2 Yi .i D 1; 2/. We putX WD X1�X2,� WD �1��2, Y WD Y1�Y2,
F WD F1 ˝ F2, and y WD .y1; y2/. Then .F;�; y/ 2 B0.X; Y / if and only
if .Fi ;�i ; yi / 2 B0.Xi ; Yi / for i D 1; 2 or if F �1

i .yi/ D ¿ for i D 1 or
i D 2. In the former case

deg.X;Y /.F;�; y/ D deg.X1;Y1/.F1;�1; y1/ deg.X2;Y2/.F2;�2; y2/.
(10.5)

In the oriented case F is equipped with the product orientation.

Proof. We have
F�1.y/ D F�1

1 .y1/ � F�1
2 .y2/, (10.6)

and so Theorem 2.63 and Corollary 2.101 imply that F�1.y/ is compact if and
only if F�1

i .yi/ .i D 1; 2/ are compact. Hence, .F;�; y/ 2 B0.X; Y / is equiv-
alent to .Fi ;�i ; yi / 2 B0.Xi ; Yi / for i D 1; 2.

If the latter holds, we find by Proposition 9.52 Rouché triples .�0;i ; Vi ; Ji/

for .�i ; Fi ; yi / .i D 1; 2/. Putting �0 WD �0;1 � �0;2, V WD V1 ˝ V2, and
J WD J1 ˝ J2, we find by Theorem 2.63 that .�0; V; J / is a Rouché triple for
.�;F; y/.
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Using the stability property (Proposition 9.54), we find some " > 0 such that
for every F0;i 2 C 1.�0;i ; Vi / and every y0;i 2 Vi with

dJi
.yi ; y0;i / � " and dJi

.Fi.x/; F0;i .x// � " for all x 2 �0;i ,

we have .F0;i ;�0;i ; y0;i / 2 B0.Xi ; Yi / and

deg.Xi ;Yi /.Fi ;�i ; yi / D deg.Xi ;Yi /.F0;i ;�0;i ; y0;i /

for i D 1; 2 and, moreover, for every F 2 C 1.�0; V / and every y0 2 V with

dJ .y; y0/ � 2" and dJ .F.x/; F0.x// � 2" for all x 2 �0,

we have .F0;�0; y0/ 2 B0.X0; Y0/ and

deg.X;Y /.F;�; y/ D deg.F0;�0; y0/.

(In the oriented case the orientation must be chosen as described after Proposi-
tion 9.54.) By Proposition 9.53, there are F0;i 2 C 1.�i ; Vi/ and regular values
y0;i 2 V for F0;i satisfying the above requirement. It follows that also F0 WD
F0;1 ˝ F0;2 and y0 WD .y0;1; y0;2/ satisfy the above requirement. Moreover,
in the oriented case, since F is equipped with the product orientation, it follows
that the product orientation of F0 corresponds to the orientation described after
Proposition 9.53.

The above argument shows that it suffices to prove the result for the special
case that Fi are functions of class C 1 and that yi is a regular value of Fi for
i D 1; 2. In this case, also F is of class C 1, and moreover, y is a regular value
of F . To see the latter, recall that by (10.6), we have for x D .x1; x2/ that
F.x/ D y if and only if Fi .xi/ D yi .i D 1; 2/. Since TxX D Tx1

X1 � Tx2
X2,

TyY D Ty1
Y1 � Ty2

Y2, and dF.x/ D dF.x1/˝ dF.x2/, it follows that dF.x/
is onto if (and only if) dF.xi / is onto for i D 1; 2. Hence y is a regular value of
F . Noting that Proposition 7.10 implies for x D .x1; x2/ 2 X that

sgndF.x/ D sgndF.x1/ sgndF.x2/,

we calculate in view of (10.6) that

deg.F;�; y/ D
X

x2F �1.y/

sgndF.x/ D
X

.x1;x2/2F �1.y/

sgndF1.x1/ sgndF2.x2/

D
X

x12F �1
1 .y1/

x22F �1
2 .y2/

sgndF1.x1/ sgn dF2.x2/

D
�

X

x12F �1
1

.y1/

sgndF1.x1/
��

X

x22F �1
2

.y2/

sgndF2.x2/
�

.
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By the regular normalization property of the degree (Proposition 9.46) this means
exactly (10.5).

In the special case of the fixed point index, we show now that the Cartesian
product property implies the remarkable commutativity property of the fixed point
index. The latter means that, roughly speaking, the fixed point index of F ı G is
the same as that of G ı F . This becomes reasonable if one considers the diagram

X

F
��� � �
Y

G

�� ���

where the arrows should be understood such that F and G are not necessarily
defined on the whole space X and Y but only on a subset. This diagram implies
that each fixed point x of G ı F becomes mapped by F into a fixed point y of
F ı G which then by G is mapped back to x. Conversely, each fixed point y of
F ıG is mapped byG into a fixed point ofGıF which then by F is mapped back
into y. If follows that F and G map the corresponding fixed point sets onto each
other and are inverse to each other on these sets, that is, their restriction to the fixed
point sets is a bijection to the respective other fixed point set with the other map
as inverse. In particular, the cardinality of the fixed points of F ıG and of G ı F
is the same. Thus, it is perhaps not too surprising that also their “homological
count”, the fixed point index, is the same. The perhaps surprising fact is that we
do not even need for the latter that X and Y have the same dimension.

Theorem 10.3 (Commutativity of the Fixed Point Index). Let X D EX and
Y D EY be finite-dimensional real normed spaces (not necessarily of the same
dimension). For open subsets �X � X and �Y � Y , let F W�X ! Y and
GW�Y ! X be continuous. Then

indX .G ı F;�X \ F�1.�Y // D indY .F ıG;�Y \G�1.�X //, (10.7)

in the strong sense that if one of the two indices is defined then so is the other.

Proof. Let KX � �1 WD �X \ F�1.�Y / and KY � �2 WD �Y \ G�1.�X /

denote the fixed point set of G ıF j	1
or F ıGj	2

, respectively. As we have seen
above, F jKX

is a bijection onto KY with inverse GjKY
. In particular, if KX is

compact then so is F.KX / D KY � �Y \ F�1.�X / and if KY is compact then
so is G.KY / D KX � �X \ G�1.�Y /. Thus, if one of the fixed point indices
in (10.7) is defined then so is the other. Assume now that this is the case. In case
KX D ¿ or, equivalently, KY D ¿, both indicesin (10.7) vanish. Hence, assume
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that there is some .x0; y0/ 2 K1 �K2. We consider the homotopies

H1W�1 ��2 ! X � Y , H1.t; .x; y// WD ..1� t/G.y/C tG.F.x//; F.x//
H2W�1 ��2 ! X � Y , H2.t; .x; y// WD .G.y/; .1 � t/F.x/C tF .G.y///
H3W�1 � Y ! X � Y , H3.t; .x; y// WD .G.F.x//; .1� t/F.x/C ty0/

H4WX ��2 ! X � Y , H4.t; .x; y// WD ..1� t/G.y/C tx0; F .G.y///

and put hi .t; .x; y// WD .x; y/ �Hi.t; .x; y// .i D 1; 2; 3; 4/. If .x; y/ is a fixed
point of Hi .t; � / for i D 1 or i D 2 then F.x/ D y and G.y/ D x, hence the
fixed point set of Hi.t; � / .i D 1; 2/ is contained in the set

K WD ¹.x; y/ 2 KX �KY W F.x/ D yº D ¹.x; y/ 2 KX �KY W G.y/ D xº.
which is a closed subset of KX �KY and thus compact. Conversely, every point
from K is a fixed point of Hi .t; � / for i D 1; 2, and so h�1

i .0/ D Œ0; 1� � K is
compact for i D 1; 2. Similarly,

h�1
3 .0/ D ¹.t; x; y/ 2 Œ0; 1� �KX � Y W y D .1� t/F.x/C ty0º,
h�1

4 .0/ D ¹.t; x; y/ 2 Œ0; 1� �X �KY W x D .1� t/G.y/C tx0º.
Since F.KX/ D KY and G.KY / D KX , it follows that these are closed subsets
of Œ0; 1��KX � .convKY / and Œ0; 1�� .convKX /�KY , respectively. The latter
sets are compact by Corollary 3.62 and Theorem 2.63, and so h�1

3 .0/ and h�1
4 .0/

are compact. Moreover, we have

h3.0; � /�1.0/ D ¹.x; y/ 2 KX � Y W y D F.x/º � KX �KY � �X ��Y ,

h4.0; � /�1.0/ D ¹.x; y/ 2 X �KY W x D G.y/º � KX �KY � �X ��Y .

Applying the homotopy invariance and excision property, we thus calculate

indX�Y .H3.1; � /;�1 � Y / D indX�Y .H3.0; � /;�1 � Y /
D indX�Y .H1.1; � /;�1 ��2/ D indX�Y .H1.0; � /;�1 ��2/

D indX�Y .H2.0; � /;�1 ��2/ D indX�Y .H2.1; � /;�1 ��2/

D indX�Y .H4.0; � /;X ��2/ D indX�Y .H4.1; � /;X ��2/.

Considering the constant maps cY .y/ WD y0 and cX .x/ WD x0, we obtain by two
further applications of the excision property that

indX�Y ..G ı F /˝ cY ;�1 ��2/ D indX�Y .cX ˝ .F ıG/;�1 ��2/.

Since the normalization of the degree implies that indX .cX ;�1/ D 1 and
indY .cY ;�2/ D 1, we obtain (10.7) from the Cartesian product property.
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The above proof uses ideas from [147].
Note that we only used the Cartesian product property of the degree in the proof

(besides the homotopy invariance and normalization property). Note also that the
reduction property of the fixed point index is a special case of the commutativity
with Y WD X0 and GWX0 ! X being the inclusion map. Hence, for the fixed
point index, the reduction property can be considered as a special case of the
Cartesian product property. However, it is unknown to the author whether this
is also the case in the more general setting of the Brouwer degree on manifolds.
At least, it seems that if the reduction property can be proved by means of the
Cartesian product property in the general case, then this proof cannot be much
simpler than the more direct proof of Theorem 10.1 which we had given.

Anyway, the above considerations show that the Cartesian product property of
the degree is an important property which is worth to be established also for the
more advanced degree theories which we discuss in this monograph.

10.2 The Benevieri–Furi C 1 Degree

Throughout this section, let X and Y be C 1 Banach manifolds without boundary
over real Banach spaces EX and EY , respectively. In order to avoid trivialities,
we assume throughout:

E�
X ¤ ¹0º, EY ¤ ¹0º, and at least one of E�

X or E�
Y has full support. (10.8)

If one assumes AC, the hypothesis (10.8) just means EX ¤ ¹0º and EY ¤ ¹0º by
the Hahn–Banach extension theorem (Corollary 6.25).

Similarly as the Brouwer degree, the Benevieri–Furi degree comes in a non-
oriented and in an oriented flavor: In the non-oriented case, it assumes values in
Z2, and in the oriented case, it assumes values in Z.

We denote by FBF.X; Y / the system of all .F;�; y/ where � � X is open,
F W�! Y , y 2 Y , F�1.y/ is compact, and such that there is an open neighbor-
hood �0 � � of F�1.y/ with F 2 F0.�0; Y /. For the oriented version of the
degree, we assume that F is oriented on �0.

Definition 10.4. The Benevieri–Furi C 1 degree is the map deg D deg.X;Y /

which associates to each .F;�; y/ 2 FBF.X; Y / a number from Z2 (or Z in
the oriented case) such that the following property holds:

(AFBF) (C 1 Reduction). Let Y0 � Y be a finite-dimensional submanifold with
y 2 Y0 which is transversal to F on an open neighborhood �0 � �

of F�1.y/ with F 2 F0.�0; Y / (and F being oriented on �0). For
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each such �0 and Y0 the set X0 WD �0 \ F�1.Y0/ is either empty or a
submanifold of the same dimension as Y0, and if the dimension of Y0 is
positive, the map F0 WD F jX0

2 C 1.X0; Y0/ satisfies

deg.X;Y /.F;�; y/ D deg.X0;Y0/.F0; X0; y/, (10.9)

where the right-hand side denotes the C 1 Brouwer degree. In case
X0 D ¿ the right-hand side is defined as zero. In the oriented case, the
orientation of F0 is the inherited orientation according to Definition 8.65.

Note that the inherited orientation is an orientation in the sense of Defini-
tion 8.25, that is, we understand the C 1 Brouwer degree according to Re-
mark 9.73. (Equivalently, we can convert the orientation into an orientation of
C 0 maps by means of (9.2) and Proposition 9.18, and use the C 0 Brouwer de-
gree.)

Theorem 10.5. For fixed Banach manifolds X and Y there is exactly one C 1

Benevieri–Furi degree. This degree satisfies the following properties for every
.F;�; y/ 2 FBF.X; Y /.

(BFBF) (Regular Normalization). If y is a regular value of F then we have a
finite sum

deg.F;�; y/ D
X

x2F �1.y/

sgn dF.x/.

(CFBF) (Excision). If �0 � � is an open neighborhood of F�1.y/ then

deg.F;�; y/ D deg.F;�0; y/.

(DFBF) (Compatibility with the Brouwer Degree). In case dimEX D
dimEY <1 the C 1 Benevieri–Furi degree is the same as the C 1 Brouwer
degree.

(EFBF) (Compatibility with the Non-oriented Case). The degrees for the ori-
ented and non-oriented case are the same modulo 2 (if the oriented case
applies).

Proof. Let .F;�; y/ 2 FBF.X; Y /. We note first that (10.8) implies that there is
some submanifold Y0 of finite positive dimension with y 2 Y0 which is transver-
sal to F on an open neighborhood �0 � � of F�1.K/ where F 2 F0.�0; Y /.
Indeed, this follows from Corollary 8.72 (and Remark 8.71) with H.t; x/
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WD F.x/, K WD F�1.y/, and a chart of y D F.K/ as the required diffeomor-
phism onto an open subset of EY . Theorem 8.55 implies that X0 WD F j�1

	0
.Y0/

is a submanifold of �0 (and thus a submanifold of X ) of the same dimension as
Y0. We put F0 WD F jX0

. If deg D deg.X;Y / is a C 1 Benevieri–Furi degree,
the C 1 reduction property implies that (10.9) holds, and so deg.X;Y /.F;�; y/ is
uniquely determined. This shows the uniqueness.

For the existence, we let Y0 and �0 be as above, define X0, F0 as above, and
define deg.F;�; y/ by (10.9). We have to show that this is well-defined, that
is, independent of the particular choice of �0 and Y0. Let us first show that this
is the case if y 2 Y is a regular value of F . By Proposition 8.68 the latter is
equivalent to y being a regular value of F0. Moreover, in view of (8.13) and
F �1.y/ D F�1

0 .y/, we obtain

deg.X0;Y0/.F0; X0; y/ D
X

x2F �1
0 .y/

sgndF0.x/ D
X

x2F �1.y/

sgn dF.x/.

The latter expression is independent of the particular choice of Y0 and �0, and
so deg.F;�; y/ is well-defined in this case. Moreover, we have also proved the
regular normalization property of the C 1 Benevieri–Furi degree. This in turn
implies the excision property for the case that y is a regular value of F .

To see that deg.F;�; y/ is well-defined also if y is not a regular value of F ,
let �0, Y0, X0, and F0 be as in the definition of the C 1 reduction property. By
Proposition 9.52, there is a Rouché triple .�1; V; J / for .F0; X0; y/. By defini-
tion of the inherited topology there is an open set O� � � with �1 D X0 \ O�.
Proposition 9.54 implies that there is an open neighborhood V0 � V of y such
that

deg.X0;Y0/.F0; X0; y/ D deg.X0;Y0/.F0;�1; z/

for all z 2 V1. By Proposition 9.53, there is a set V2 � V1 of regular values of
F0 with y 2 V 2. By the special case we proved before, each z 2 V2 is a regular
value of F , and so

deg.X0;Y0/.F0; X0; y/ D deg.F0; O�; z/ for all z 2 V2,

where we already know that the degree on the right-hand side is well-defined
and satisfies the excision property. The latter implies that the right-hand side is
actually independent of the particular choice of �0 and Y0, and so also the left-
hand side is independent of that choice which means that deg.F;�; y/ is well-
defined. By definition, this degree satisfies the C 1 reduction property. Hence, the
existence is established. Since the degree is well-defined, the excision property
is contained in the definition of the C 1 reduction property. The compatibility
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with the Brouwer degree follows with the choices Y0 WD Y and �0 WD � in the
C 1 reduction property. The compatibility of the oriented and non-oriented case
follows from the C 1 reduction property and the corresponding property of the
Brouwer degree.

Theorem 10.6. The C 1 Benevieri–Furi degree satisfies the following properties
for every .F;�; y/ 2 FBF.X; Y /.

(FFBF) (Generalized Homotopy Invariance). Let W � Œ0; 1� � X be open,
H WW ! Y and y 2 C.Œ0; 1�; Y /. Suppose that the coincidence set
K WD ¹.t; x/ 2 Œ0; 1� � X W H.t; x/ D y.t/º is compact and that there is
an open neighborhood U � W such that H jU is a generalized (oriented)
Fredholm homotopy of index 0. Then Wt WD ¹x W .t; x/ 2 W º satisfies
.H.t; � /;
Wt ; y.t// 2 FBF.X; Y / .t 2 Œ0; 1�/, and

deg.H.t; � /;Wt ; y.t// is independent of t 2 Œ0; 1�.

(GFBF) (Additivity). If � D �1 [�2 with disjoint open subsets �1;�2 � �

then
deg.F;�; y/ D deg.F;�1; y/C deg.F;�2; y/.

(HFBF) (Normalization for Diffeomorphisms). If F is a diffeomorphism onto
an open subset of Y then

deg.F;�; y/ D
´

0 if y … F.�/,
sgndF.F�1.y// otherwise.

(IFBF) (Existence). If deg.F;�; y/ ¤ 0 then y 2 F.�/.
(JFBF) (Excision-Additivity). If �i � � .i 2 I / is a family of pairwise disjoint

open sets with F �1.y/ � S

i2I �i such that �i \F�1.y/ is compact for
all i 2 I , then

deg.F;�; y/ D
X

i2I

deg.F;�i ; y/,

where in the sum at most a finite number of summands is nonzero.

(KFBF) (Diffeomorphic Invariance). Let J1 and J2 be diffeomorphisms of an
open subset of a Banach manifold X0 onto � or of an open neighborhood
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U � Y of F.�/ [ ¹yº onto an open subsets of a Banach manifold Y0,
respectively. Then

deg.X;Y /.F;�; y/ D deg.X0;Y0/.J2 ı F ı J1; J
�1
1 .�/; J2.y//.

In the oriented case, the orientation of J2 ı F ı J1 is understood in the
sense of Proposition 8.38.

(LFBF) (Restriction). Let X0 � X and Y0 � Y be open. Then

deg.X0;Y0/ D deg.X;Y / jFBF.X0;Y0/.

(MFBF) (Cartesian Product). For i D 1; 2, let Xi and Yi be manifolds without
boundary of class C 1 over Banach spaces EXi

and EYi
, respectively. Let

�i � Xi be open, Fi 2 F0.�i ; Yi /, and yi 2 Yi .i D 1; 2/. We put
X WD X1 � X2, Y WD Y1 � Y2, � WD �1 � �2, F WD F1 ˝ F2, and
y WD .y1; y2/. Then .F;�; y/ 2 FBF.X; Y / if and only if .Fi ;�i ; yi/ 2
FBF.Xi ; Yi / for i D 1; 2 or if F�1

i .yi / D ¿ for i D 1 or i D 2. In the
former case

deg.X;Y /.F;�; y/ D deg.X1;Y1/.F1;�1; y1/ deg.X2;Y2/.F2;�2; y2/.

In the oriented case F is equipped with the product orientation.

(NFBF) (Elimination of y). If Y D EY is a Banach space then .F;�; y/ 2
FBF.X; Y / is equivalent to .F � y;�; 0/ 2 FBF.X; Y /, and in this case

deg.X;EY /.F;�; y/ D deg.X;EY /.F � y;�; 0/.

Proof. The normalization for diffeomorphism and the existence properties are im-
mediate consequences of the regular normalization. The additivity, restriction,
diffeomorphic invariance, and Cartesian product properties are immediate conse-
quences of the definition and the corresponding properties of the Brouwer degree:
For example, for the Cartesian product property, we note that if Yi;0 � Yi are
finite-dimensional submanifolds which are transversal to Fi on �i;0 and satisfy
yi 2 Yi;0 .i D 1; 2/ then Y0 WD Y1;0 � Y2;0 is a submanifold of Y which is
transversal to F on � and satisfies y 2 Y0.

The excision-additivity follows from the excision and additivity properties; the
reasoning here is completely analogously to the Brouwer degree.

To prove the generalized homotopy invariance, we note first that Proposi-
tion 2.62 implies by the compactness of K that Kt WD ¹x W H.t; x/ D y.t/º is
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compact for every t 2 Œ0; 1�, and so .H.t; � /;Wt ; y.t// 2 FBF.X; Y /. By Propo-
sition 2.19, it suffices to show that

d.t/ WD deg.H.t; � /;Wt ; y.t//

is locally constant on Œ0; 1�. Thus, let t0 2 Œ0; 1�, and we must show that d is
constant in a neighborhood of t0.

Let cWV ! EY be a chart of Y with some open neighborhood V � Y of
y.t0/. Shrinking W if necessary (which we can do by the excision property) we
can assume without loss of generality that there is a neighborhood I0 � Œ0; 1� of
t0 such that for each t 2 I0 and x 2 Wt , we haveH.t; x/; y.t/ 2 V \J�1

t .c.V //

with
Jt .x/ WD c.x/C c.y.t0// � c.y.t//.

Note that the diffeomorphic invariance implies

d.t/ D deg.X;EY /.Jt .H.t; � //;Wt ; Jt .y.t///,

and that Jt .y.t// is actually independent of t 2 I0. Hence, replacing H by
.t; x/ 7! Jt.H.t; x// and y by Jt .y.t// if necessary, we can assume in the fol-
lowing without loss of generality that y.t/ D y0 for all t 2 I0, and that Y D EY

(because we will only consider t 2 I0 in the following). We can also assume that
I0 is a compact interval.

By Proposition 8.70 and Remark 8.71, there is a finite-dimensional subspace
Y0 � Y with y0 2 Y0, dim Y0 � 1, and an open neighborhood U � W of
K0 WD K \ .I0 � X/ such that Y0 is transversal to H on U . Corollary 8.63
implies that Z WD .I0 � X/ \ U \ H�1.Y0/ is a finite-dimensional manifold
(with a boundary) of class C 0. By Proposition 9.1, the space Z contains an open
neighborhood U0 � Z of K0 whose closure C in Z is compact. By definition
of the subspace topology, there is an open set W0 � W with U0 D Z \ W0.
Note that @ZU0 D C n U0 is closed in C and thus compact. Hence, H.@ZU0/

is compact and thus closed. In particular, there is an open ball V0 � Y0 around
y0 which is disjoint from H.@ZU0/. Note that �t WD ¹x W .t; x/ 2 U0º has a
compact closure in Xt WD ¹x W .t; x/ 2 Zº with ¹tº � @Xt

�t � @ZU0. Putting
Ft WD H.t; � /jXt

2 F0.Xt ; Y0/, we have by definition of the Benevieri–Furi
degree and the excision property of the Brouwer degree that

d.t/ D deg.Xt ;Y0/.Ft ;�t ; y0/ for all t 2 I0.

Since .�t ; Y0; idY0
/ is a Rouché triple for .Ft ;�t ; y0/ and @Xt

�t \H�1.V0/ D
¿, we obtain by the local constantness in y (Proposition 9.54) that

d.t/ D deg.Xt ;Y0/.Ft ;�t ; z/ for all z 2 V0, t 2 I0. (10.10)
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By Theorem 9.14, we may assume that z is a regular value of Ft0
j	t0

. PutH0 WD
H jW0

. Proposition 8.68 and the normalization property of the Benevieri–Furi
degree imply that z is a regular value for H0.t; � /, and so

d.t0/ D
X

x2H0.t0; � /�1.z/

sgndXH0.t0; z/.

Note that H0.t; � /�1.z/ consists for t D t0 of at most finitely many points
x1.t0/; : : : ; xn.t0/. By the partial implicit function theorem (Theorem 8.40), there
exist disjoint open neighborhoods U1; : : : ; Un � X of these points such that also
for all t in a neighborhood of t0, the set Uk contains exactly one point xk.t/ of
H0.t; � /�1.z/, and that this is a regular point of H0.t; � /jUk

and depends contin-
uously on t .

The remaining set C0 WD ¹.t; x/ 2 C W x … U1 [ � � � [ Unº is compact. Hence,
the closed subset M WD C0 \ H�1

0 .z/ is compact by Proposition 2.29. Putting
p.t; x/ WD t , we obtain that p.M/ � I0 is compact and thus closed in I0. Since
t0 … p.M/ we can assume, shrinking I0 if necessary, that I0 \ p.M/ D ¿, that
is, H�1

0 .z/ consists precisely of the at most finitely many points x1.t/; : : : ; xn.t/.
It follows that z is a regular value ofH0.t; � /. The regular normalization property
of the Benevieri–Furi degree implies together with (10.10)

d.t/ D
n

X

kD1

sgndXH0.t; xk.t//.

Since I0 is an interval, the set ¹.t; xk.t// W t 2 I0º is path-connected and thus
connected (Proposition 2.14). Theorem 8.27(b) thus implies that d is constant on
I0.

We thus have proved the generalized homotopy invariance. This property in
turn implies the elimination of y by considering y.t/ WD ty0 and H.t; y/ WD
F.x/ � y.t/.

Our above proof of the homotopy invariance, Theorem 10.6(FFBF ), was com-
pletely based on the regular normalization property of the Benevieri–Furi C 1 de-
gree. We will discuss two alternative strategies for a proof in Remark 10.11.

We point out that the uniqueness of the Benevieri–Furi C 1 degree can also
be obtained without any reduction property by using only the natural proper-
ties (FFBF) (withW D Œ0; 1���), (GFBF), and (HFBF) of Theorem 10.6, see [16].

10.3 The Benevieri–Furi Coincidence Degree

Finding solutions of equations F.x/ D '.x/ when ' is compact and F is a Fred-
holm map is rather important in the theory of PDEs. For the case that F is a
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linear Fredholm map, such a so-called coincidence degree was first developed by
Mawhin [66], [104] in case of Fredholm index 0. The case of positive index was
first studied by Nirenberg [113], [114]. The Benevieri–Furi degree which we will
discuss now treats the case of nonlinear Fredholm maps with index 0.

So it is a natural question whether it might also be possible to treat the case of
nonlinear Fredholm maps of positive index. This seems indeed possible, see [149]
(see also [131]), but the corresponding definitions are much more involved than
the relatively simple notion of orientability which one can use for the Benevieri–
Furi degree. Moreover, the degree for the case of positive index is not a number
but only an element of a homotopy group of spheres (or even just a cobordism)
and thus much more complicated to deal with. In fact, the homotopy groups
of spheres are still not completely understood, although meanwhile they can be
tackled computationally.

For fixed linear Fredholm operators of positive index there is no need to define
some higher-dimensional analogue of an orientation, and so the problem is some-
what easier. In fact, even a corresponding degree theory for function triples has
been developed by Kryszewski [93] (see also e.g. [63]).

In this monograph, we only consider the case of index 0 in order to have a con-
veniently accessible approach which is general enough to treat almost all related
applications: For nonlinear Fredholm operators, this is the Benevieri–Furi coinci-
dence degree. The generalization to function triples will be developed later in this
monograph.

We confine ourselves in this section to the case that the range of ' is contained
in a finite-dimensional subspace instead of considering locally compact maps '.
Although the latter was done for function pairs in [19], it was observed in [142]
that if one wants to obtain similar results for multivalued maps (i.e. for function
triples), one should first extend the degree to function triples and only afterwards
to (locally) compact maps. We will do this in the later sections, and therefore we
do not need to repeat essentially the same procedure already in this section: The
degree developed later will cover of course the single-valued case (of function
pairs) as well as we will discuss in Theorems 13.14 and 13.19. For this reason, we
will study in this section only maps ' with values in finite-dimensional subspaces.

A more severe restriction might lie in the nature of things: We already men-
tioned in the beginning of Chapter 10 that we will be forced to work with the
case that the image space Y is a Banach space, and we cannot treat the case of
a Banach manifold. In fact, it appears that the linear structure of Y is crucial
for the whole approach. For instance, we will not be able to prove a diffeomor-
phic invariance of the corresponding degree but only an “isomorphic” invariance
(with respect to Y ). The reason is that we cannot work with submanifolds Y0

of Y to define the degree by means of the reduction property but that we must use
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a very restricted class of submanifolds (we use here subspaces): The underlying
problem is that the union of two finite-dimensional submanifolds is in general (for
“badly” situated submanifolds) not contained in a finite-dimensional submanifold,
and so the reduction property of Theorem 10.1 cannot be used in some larger sub-
manifold to prove that the reduction property will give the same degree for both
manifolds. By using linear subspaces instead of submanifolds, this problem van-
ishes, since the union of two finite-dimensional subspaces is always contained in
a finite-dimensional subspace, namely in the sum of the two subspaces. It might
be possible to prove an extension of the Benevieri–Furi degree for Banach mani-
folds Y and certain subsets of admissible function pairs, if one considers another
subclass of finite-dimensional submanifolds with the property that each union of
two submanifolds of that class is contained in a submanifold of that class. Such
an extension might lead to a corresponding form of a “diffeomorphic invariance”.
However, since currently there seems to be no particular use for such an extended
theory and since it seems not possible to cover general diffeomorphisms this way,
we confine ourselves for the rest of this monograph to the simple situation that Y
is a Banach space.

Throughout this section, we assume that X is a Banach manifold over a real
Banach space E D EX and that Y D EY is a real Banach space. Moreover, we
make throughout the non-degeneracy hypotheses (10.8) which in the presence of
AC just means E ¤ ¹0º and Y ¤ ¹0º.

We write .F; ';�/ 2 PBF.X; Y / if � � X is open and F; 'W�! Y are such
that

coin	.F; '/ D ¹x 2 � W F.x/ D '.x/º
is compact and there is an open neighborhood �0 � � of coin	.F; '/ with
F j	0

2 F0.�0; Y / and 'j	0
2 C.�0; Y0/ for some finite-dimensional subspace

Y0 � Y . For the oriented version of the degree, we assume that F is oriented on
�0.

Definition 10.7. The Benevieri-Furi coincidence degree is the map deg D
deg.X;Y / which associates to each .F; ';�/ 2 PBF.X; Y / a number from Z2

(or Z in the oriented case) such that the following property holds:

(APBF) (Reduction). Let .F; ';�/ 2 PBF.X; Y /, �0 � � be an open
neighborhood of coin	.F; '/ with F j	0

2 F0.�0; Y /, and Y0 ¤ ¹0º
a finite-dimensional subspace of Y with 'j	0

2 C.�0; Y0/ and such
that Y0 is transversal to F on �0. Then X0 WD �0 \ F�1.Y0/ is
empty or a submanifold of X of the same dimension as Y0, and the map
G WD .F � '/jX0

2 C.X0; Y0/ satisfies .G;X0; 0/ 2 B0.X0; Y0/ and

deg.X;Y /.F; ';�/ D deg.X0;Y0/.G;X0; 0/, (10.11)
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where the right-hand side denotes the C 0 Brouwer degree. In case X0 D
¿, we define the right-hand side of (10.11) as 0. The orientation of G for
the oriented case is described below.

In the oriented case, we equip F0 WD F jX0
2 F0.X0; Y0/with the inherited ori-

entation. We use (9.2) (and Proposition 9.18) to understand this as an orientation
of a continuous map in the sense of Definition 9.16. Fixing some orientation of
the subspace Y0, we obtain an induced orientation on X0. These two orientations
in turn induce an orientation on G. This orientation is independent of the choice
of the orientation of Y0, since for the opposite orientation of Y0, we obtain the
opposite orientation of X0 and thus the same orientation of G.

Theorem 10.8. For every fixed Banach manifold X and fixed Banach space Y
there is exactly one Benevieri–Furi coincidence degree.

Proof. Shrinking �0 in the reduction property if necessary, we find by Propo-
sition 8.70 in view of Remark 8.71 that for each .F; ';�/ 2 PBF.X; Y / there
actually is a finite-dimensional subspace Y0 � Y which is transversal to F on�0.
Hence, the reduction property implies that (10.11) holds, and so
deg.X;Y /.F; ';�/ is uniquely determined. Thus, the uniqueness is established.
Concerning the existence, we use (10.11) to define the degree, and we have to
show that this is well-defined, that is, independent of the particular choice of �0

and Y0.
Thus, let �1 and Y1 be possibly different choices. We find by Proposition 8.70

and Remark 8.71 a finite-dimensional subspace Y2 � Y containing Y0CY1 which
is transversal to F on some open neighborhood �2 � � of coin	.F; '/. Then
in particular Yi � Y2 for i D 0; 1. Replacing �2 by �0 \�1 \�2 if necessary,
we can assume that �2 � �i .i D 0; 1/. For i D 0; 1; 2, we put Xi WD �i \
F�1.Yi / and Gi WD .F � '/jXi

2 C.Xi ; Yi /. In the oriented case, we orient Gi

and OGi according to the orientation of F as described after Definition 10.7. For
i D 0; 1, the C 0 reduction property of the degree (Theorem 10.1) implies with
OXi WD �2 \Xi that we have for the Brouwer degree

deg.X2;Y2/.G2; X2; 0/ D deg
. OXi ;Yi /

.Gi ; OXi ; 0/.

By the restriction and excision property of the Brouwer degree, we find

deg
. OXi ;Yi /

.Gi ; OXi ; 0/ D deg.Xi ;Yi /.Gi ;�2 \Xi ; 0/ D deg.Xi ;Yi /.Gi ; Xi ; 0/

for i D 0; 1. Summarizing, we have shown that

deg.X0;Y0/.G0; X0; 0/ D deg.X2;Y2/.G2; X2; 0/ D deg.X1;Y1/.G1; X1; 0/.
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This shows that the right-hand side of (10.11) is independent of the particular
choice of Y0 and �0, and so the Benevieri–Furi coincidence degree exists.

We point out once more the reason why we had to consider subspaces instead
of submanifolds in the above proof, and why we require that Y is a Banach space:
For any two finite-dimensional subspaces Y0; Y1 � Y there is a finite-dimensional
subspace Y2 � Y containing Y0 and Y1 (and transversal to F on some �2). A
corresponding statement does not hold if one replaces “subspace” by “submani-
fold”. In addition, for the application of Theorem 10.1 in the above proof for
the case that Y is only a Banach manifold, we would also have to require that
F.�0/ [ '.�0/ is contained in a set which is diffeomorphic to a Banach mani-
fold. Since we can consider only subspaces and not submanifolds, it is not clear
whether a corresponding definition would be independent of the choice of the
diffeomorphism (which in general only sends subspaces to submanifolds).

Theorem 10.9. The Benevieri–Furi coincidence degree satisfies the following
properties for every .F; ';�/ 2 PBF.X; Y /.

(BPBF) (Generalized Homotopy Invariance). Let W � Œ0; 1� � X be open,
H WW ! Y , and hWW ! Y be such that coinW .H; h/ is compact and
that there is an open neighborhood U � W of coinW .H; h/ such that
H jU is a generalized (oriented) Fredholm homotopy of index 0 and that
hjU 2 C.U; Y0/ for some finite-dimensional subspace Y0 � Y . Then
Wt WD ¹x W .t; x/ 2 W º satisfies .H.t; � /; h.t; � /;Wt / 2 PBF.X; Y / .t 2
Œ0; 1�/ and

deg.H.t; � /; h.t; � /;Wt / is independent of t 2 Œ0; 1�.

(CPBF) (Excision). If �0 � � is an open neighborhood of coin	.F; '/ then

deg.F; ';�/ D deg.F; ';�0/.

(DPBF) (Additivity). If � D �1 [�2 with disjoint open subsets �1;�2 � �

then
deg.F; ';�/ D deg.F; ';�1/C deg.F; ';�2/.

(EPBF) (Compatibility with the Brouwer Degree). If 0<dimEX DdimEY <

1 then
deg.F; ';�/ D deg.F � ';�; 0/,

where the right-hand side denotes the Brouwer degree. The orientation of
F � ' in the oriented case is described below.
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(FPBF) (Compatibility with the C 1 Degree I). If '.x/ D y for all x 2 � then

deg.F; ';�/ D deg.F;�; y/,

where the right-hand side denotes the Benevieri–Furi C 1 degree.

(GPBF) (Compatibility with the C 1 Degree II). If ' 2 C 1.�; y/ then

deg.F; ';�/ D deg.F � ';�; 0/,
where the right-hand side denotes the Benevieri–Furi C 1 degree. The ori-
entation of F � ' is described below.

(HPBF) (Compatibility with the Non-Oriented Case). The degrees for the ori-
ented and non-oriented case are the same modulo 2 (if the oriented case
applies).

(IPBF) (Existence). If deg.F; ';�/ ¤ 0 then coin	.F; '/ ¤ ¿.

(JPBF) (Excision-Additivity). If �i � � .i 2 I / is a family of pairwise disjoint
open sets with coin	.F; '/ �

S

i2I �i such that coin	i
.F; '/ is compact

for all i 2 I , then

deg.F; ';�/ D
X

i2I

deg.F; ';�i /,

where in the sum at most a finite number of summands is nonzero.

(KPBF) (Diffeomorphic-Isomorphic Invariance). Let J1 be a diffeomorphism
of an open subset of a Banach manifold X0 onto� and J2 an isomorphism
of a subspace containing F.�/ [ '.�/ onto a Banach space Y0. Then

deg.X;Y /.F; ';�/ D deg.X0;Y0/.J2 ı F ı J1; J2 ı ' ı J1; J
�1
1 .�//.

In the oriented case, the orientation of J2 ı F ı J1 is understood in the
sense of Proposition 8.38.

(LPBF) (Restriction). Let X0 � X be open, and Y0 � Y a subspace. Then

deg.X0;Y0/ D deg.X;Y / jPBF.X0;Y0/.

(MPBF) (Cartesian Product). For i D 1; 2, letXi be a Banach manifold without
boundary of class C 1 over the Banach space EXi

, and Yi be a Banach
space. Let �i � Xi be open, Fi 2 F0.�i ; Yi /, and 'i 2 C.�i ; Yi /. Put
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X WD X1 � X2, Y WD Y1 � Y2, � WD �1 � �2, F WD F1 ˝ F2, and
' WD '1 ˝ '2. Then .F; ';�/ 2 PBF.X; Y / if and only if .Fi ; 'i ;�i / 2
PBF.Xi ; Yi / for i D 1; 2 or if coin.Fi ; 'i / D ¿ for i D 1 or i D 2. In
the former case

deg.X;Y /.F; ';�/ D deg.X1;Y1/.F1; '1;�1/ deg.X2;Y2/.F2; '2;�2/.

In the oriented case F is equipped with the product orientation.

For the compatibility with the Brouwer degree, we define the orientation as
follows: We understand the orientation of F as an orientation of F as a continuous
map by means of (9.2) (recall Proposition 9.18). We fix an orientation for Y , and
equip � with the orientation induced by the orientations of F in the sense of
Proposition 9.34, and F � ' with the orientations induced by the orientations of
� and Y . This definition is independent of the choice of the orientation of Y ,
since for the opposite orientation on Y , we obtain the opposite orientation on �
and the same orientation on F � '.

For the compatibility with the C 1 degree, note that there is some open neigh-
borhood �0 � � of coin	.F; '/ such that F 2 F0.�0; Y / and ' 2 C.�0; Y0/

for some finite-dimensional subspace Y0 � Y . Theorem 6.40 implies that .F �
'/j	0

2 F0.�0; Y /, and so .F � ';�; 0/ 2 FBF.X; Y /. Moreover, by Theo-
rem 6.40 the map H.t; x/ WD F.x/ � t'.x/ is a Fredholm homotopy of index 0.
By Theorem 8.27(e), it has a unique orientation such thatH.0; � / D F is oriented
as F . The orientation required in (GPBF) is that of H.1; � / D F � '.

Proof. With the exception of the homotopy invariance and the compatibility with
the C 1 degree, the properties follow straightforwardly from the corresponding
properties of the Brouwer degree. For example, for the Cartesian product prop-
erty, we can argue as in the proof of Theorem 10.6, only replacing “subspace”
by “submanifold”. For the diffeomorphic-isomorphic invariance, we note that if
Y1 � Y0 is a finite-dimensional subspace which is transversal to J2 ı F ı J1 on
�0 then J�1

2 .Y1/ � Y is a finite-dimensional subspace which is transversal to F
on J1.�0/ and thus can serve as the space which is needed in Definition 10.7.
The existence and excision-additivity properties follow from the excision and ad-
ditivity properties by the same arguments as for the Brouwer degree.

To prove the generalized homotopy invariance, we note first that Proposi-
tion 2.62 implies by the compactness of K that Kt WD ¹x W H.t; x/ D h.t; x/º
is compact for every t 2 Œ0; 1�, and so .H.t; � /; h.t; � ;Wt / 2 PBF.X; Y /. By
Proposition 8.70 and Remark 8.71, we can assume that Y0 is transversal to H on
U . In view of the excision property, we can replace W by U if necessary and thus
assume without loss of generality that H is a generalized (oriented) Fredholm
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homotopy. It suffices to show by Proposition 2.19, that

d.t/ WD deg.H.t; � /; h.t; � /;Wt /

is locally constant on Œ0; 1�. Thus, let t0 2 Œ0; 1�, and we have to show that d is
constant in some neighborhood of t0.

Putting Xt WD H.t; � /�1.Y0/ and Zt WD ¹tº � Xt , we find by Corollary 8.63
that Z D S

t2Œ0;1�Zt is a partial C 1 manifold. In particular Z is a finite-
dimensional C 0 manifold (with boundary), and so we find by Proposition 9.1 that
there is some open neighborhood V � Z of coinW .H; h/whose closure C inZ is
compact. The function H�h is nonzero on the compact relative boundary @ZV D
C n V . Hence, Corollary 3.14 implies " D dist.0; .H � h/.@ZV // > 0. By Re-
mark 9.10, there is a partial C 1 map h0WZ ! Y0 with kh.t; x/ � h0.t; x/k <
"=2 for all .t; x/ 2 @ZV . For .t; x/ 2 Z, we put H0.t; x/ WD H.t; x/ �
h0.t; x/. By Theorem 9.14 there is a regular value of H0.t0; � / 2 C 1.Zt0

; Y0/ in
B"=2.0/ � Y0. Adding such a regular value if necessary, we have kH0.t; x/k < "
for all .t; x/ 2 @ZV , and 0 is a regular value of H0.t0; � /. We put Vt WD
¹x W .t; x/ 2 V º. Then .Vt ; Y; idY / is a Rouché triple for .H.t; � /�h.t; � /;Xt ; 0/,
and so the Rouché property of the Brouwer degree (Proposition 9.54) implies

d.t/ D deg.Xt ;Y0/.H.t; � / � h.t; � /;Xt ; 0/ D deg.Xt ;Y0/.H0.t; � /; Vt ; 0/.
(10.12)

In the oriented case, the orientation H.t; � / � h.t; � / is defined as described af-
ter Definition 10.7 and the orientation of H0.t; � / is defined correspondingly as
described after Proposition 9.54.

Since 0 is a regular value ofH0.t0; � /, the setH0.t; � /�1.0/ consists for t D t0
of at most finitely many points x1.t0/; : : : ; xn.t0/ 2 Vt0

. By the partial implicit
function theorem (Theorem 8.40), there exist open neighborhoods U1; : : : ; Un �
X of these points such that also for all t in a neighborhood of t0, the set Uk

contains exactly one point xk.t/ of H0.t; � /�1.0/, and that this is a regular point
of H0.t; � /jUk

and depends continuously on t .
The remaining set C0 WD V n .U1 [ � � � [ Un/ is compact. Hence, the closed

subset M WD C0 \H�1
0 .0/ is compact by Proposition 2.29. Putting p.t; x/ WD t ,

we obtain that p.M/ � Œ0; 1� is compact and thus closed. Since t0 … p.M/

we can assume there is a neighborhood I0 � Œ0; 1� of t0 with I0 \ p.M/ D ¿,
that is, H�1

0 .z/ consists for t 2 I0 precisely of the at most finitely many points
x1.t/; : : : ; xn.t/. It follows that z is a regular value of H0.t; � /. The regular
normalization property of the Brouwer degree implies together with (10.12)

d.t/ D
n

X

kD1

sgndXH0.t; xk.t//.
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Note that the orientation of dXH0 is actually an orientation when we consider it
as a map of the partial tangent bundle TXZ into Y0, according to Proposition 8.67.
We can assume that I0 is an interval. Then ¹.t; xk.t// W t 2 I0º is path-connected
and thus connected (Proposition 2.14). Proposition 7.36 thus implies that d is
constant on I0. Hence, (BPBF) is established.

Next, we prove the special case ' D 0 of property (FPBF). We note that Propo-
sition 8.70 and Remark 8.71 implies that there is an open neighborhood �0 � �

of coin	.F; '/ D F�1.0/ and a subspace Y0 � Y which is transversal to dF.x/.
It follows from the definition of the Benevieri–Furi degrees with X0 WD F�1.Y0/

that

deg.X;Y /.F; ';�/ D deg.X0;Y0/.F;�; 0/ D deg.X;Y /.F;�; 0/.

To prove (GPBF), we apply the homotopy invariance with H.t; x/ WD F.x/ �
t'.x/ and h.t; x/ WD t'.x/. We obtain

deg.X;Y /.F; ';�/ D deg.X;Y /.F � '; 0;�/.
By the special case y D 0 of (FPBF) which we had proved before, we ob-
tain (GPBF). For '.x/ D y, we obtain from (GPBF) that

deg.X;Y /.F; ';�/ D deg.X;Y /.F � y;�; 0/,
which implies (FPBF) by the “elimination of y” property of the C 1 degree.

Remark 10.10. It is unknown to the author whether the Benevieri–Furi coinci-
dence degree satisfies a diffeomorphic invariance property: The argument used to
prove the diffeomorphic-isomorphic invariance in Theorem 10.9 fails if J2 is only
a diffeomorphism, because then J�1

2 .Y1/ is only a submanifold and thus cannot
be used directly in the definition of the degree.

If the diffeomorphic invariance property can be proved, it is possible to extend
the definition of the Benevieri–Furi degree also to the case that Y is a Banach
manifold over a Banach space EY , at least with the additional restriction that only
those .F; ';�/ 2 PBF.X; Y / are considered which have the additional property
that there is an open neighborhood �0 � � of coin	.F; '/ such that F.�0/ [
'.�0/ has a neighborhood which is diffeomorphic to an open subset of EY : By
the diffeomorphic invariance, the corresponding definition of a degree would be
independent of the choice of the diffeomorphism. However, we emphasize once
more that the diffeomorphic invariance is currently unknown.

We point out that the homotopy invariance in Theorem 10.9(BPBF) in this
strong (and natural) form is a new result, to the author’s knowledge:
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In [19], the homotopy invariance was established only under the additional hy-
pothesis H 2 C 1.U; Y / in which case things are much easier, as we will see in
moment. Also in [126] it is required that H 2 C 1.U; Y /.

According to personal communication, this stronger result was known to the
authors of [19], but in this case it is not clear whether one can define the degree in
terms of the map F � ' as in [19] (instead of in terms of the couple .F; '/ which
we consider, so that this difficulty does not arise in our context).

Although our above proof might appear to be a rather direct transfer of the
proof of Theorem 10.6(FFBF), this is actually not the case. In fact, we needed to
introduce the involved machinery of partial tangent bundles and their orientation
(like e.g. Proposition 8.67) to deal with this more general setting. (Our arguments
in the proof of Theorem 10.6(FFBF ) avoided this machinery.) The underlying
difficulty in the proof is that one cannot approximate continuous functions by C 1

functions in Banach spaces, in general: Hence, we had to approximate only the
restriction of h to Z, and for this, we had to introduce an appropriate notion of
“continuity” for the orientation of that restriction which is not that simple, since
Z need not be a C 1 manifold. If we would have assumed thatH 2 C 1.U; Y /, we
could have avoided this difficulty.

The argument given in [19] under the assumption H 2 C 1.U; Y / is actually
completely different: Since this argument is in a sense the most natural way to
prove the homotopy invariance, we do not hesitate to give a second proof of
Theorem 10.9(BPBF) by using this argument.

Alternative proof of Theorem 10.9(BPBF ). Let I WD Œs0; s1� � Œ0; 1� and n D
dimY0. Replacing W by U if necessary (using the excision property), and us-
ing Proposition 8.70 and Remark 8.71, we can assume that n � 1 and that Y0

is transversal to H on W D U . By the additional assumption H 2 C 1.W; Y /,
we can apply Corollary 8.63 to find that the space Z WD H�1.Y0/ is empty or a
submanifold (with boundary) of I �X of dimension nC1 of class C 1. More pre-
cisely, putting Xt WD H.t; � /�1.Y0/ andZt WD ¹tº�Xt , we haveZ D S

t2I Zt ,
@Z D Z0 [Z1, and by Theorem 8.60 the charts c 2 C 1.U;R�Rn/ of Z can be
chosen such thatZt D U \c�1.¹tº�Rn/. We consider first the oriented case. By
Proposition 8.67, the inherited orientation on H0 WD H jZ WZ ! Y0 is an orienta-
tion of the partial tangent bundle TXZ. We aim now to apply the bordism invari-
ance of the Brouwer degree. To this end, we fix an orientation of Y0, and we define
a corresponding orientation onZ induced by the inherited orientation onH0 simi-
larly as in the proof of Lemma 9.65: By Proposition 7.48, the inherited orientation
of H0 and the fixed orientation of Y0 together induce an orientation of TXZ as
a vector bundle by Proposition 7.13. In particular, for each fixed .t0; x0/ 2 Z,
that is x0 2 Xt0

, we have an orientation of Tx0
Xt0

. Let .e1; : : : ; en/ 2 Tx0
Xt0
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be a basis representing the corresponding orientation. Since Zt0
D ¹t0º � Xt0

is the same as Xt0
under the canonical identification of x with .t0; x/, we also

have Tx0
Xt0

D T.t0;x0/Zt0
in a canonical sense. In this canonical sense, we can

understand .e1; : : : ; en/ as a basis of T.t0;x0/Zt0
� T.t0;x0/Z. Roughly speaking,

we will extend this to a basis .e0; e1; : : : ; en/ of T.t0;x0/Z where the remaining
basis vector e0 is chosen “in direction of t”.

More precisely, we choose some chart c2C 1.U;R�Rn/ ofZ with .t0; x0/2U
such that Zt DU \ c�1.¹tº � Rn/. Note that c0 WD cjZt0

2C 1.Zt0
; ¹t0º � Rn/

satisfies dc0.t0; x0/2L.T.t0;x0/Zt0
; ¹0º � Rn/. We put .0; Oek/ WDdc0.t0; x0/ek

.k D 1; : : : ; n/ where ek is understood as an element of T.t0;x0/Zt0
under the

canonical identification. Then ..1; 0/; .0; Oe1/; : : : ; .0; Oen// represents a basis on
RnC1, and dc.t0; x0/

�1 transforms that basis into a basis of T.t0;x0/Z of the form
.e0; e1; : : : ; en/. Since .1; 0/ 2 T.t0;x0/Zt0

points “in direction of t”, we can
interpret also e0 as pointing “in direction of t”.

Now this extended basis .e0; e1; : : : ; en/ represents an orientation of T.t0;x0/Z,
and doing this for every .t0; x0/ 2 Z, we obtain an orientation ofZ. By construc-
tion, the orientation of Zt for t 2 ¹s0; s1º is the orientation as the boundary of
the manifold Z. We put Fi WD .H � h/jZsi

2 C.Zsi
; Y0/ .i D 0; 1/. Equipping

F0 with the orientations induced by Zs0
and Y , and F1 with the opposite of the

orientation induced by Zs1
and Y , we obtain by the bordism invariance of the

Brouwer degree that

deg.Zs0
;Y0/.F0; Zs0

; 0/ D deg.Zs1
;Y0/.F1; Zs1

; 0/.

The same formula holds of course also in the non-oriented case. Since Zsi
D Xsi

up to a canonical identification, in particular, up to diffeomorphisms, the diffeo-
morphic invariance of the Brouwer degree implies

deg.Xs0
;Y0/.H.s0; � / � h.s0; � /;Xs0

; 0/

D deg.Xs1
;Y0/.H.s1; � / � h.s1; � /;Xs1

; 0/.

By definition of the Benevieri–Furi coincidence degree, this means exactly

deg.X;Y /.H.s0; � /; h.s0; � /;�/ D deg.X;Y /.H.s1; � /; h.s1; � /;�/.
Hence, the homotopy invariance is established.

In the author’s opinion, this second proof is much more natural and also shows
that the bordism invariance of the Brouwer degree is a very useful tool. The
disadvantage of this second proof is that it requires the additional hypothesis H 2
C 1.U; Y /. It might be possible to use the same idea of proof also without this
hypothesis, but this is rather hard work in the oriented case:
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Instead of orienting the C 1 manifold H�1.Y0/, one would have to orient the
C 0 manifold H�1.Y0/ (we use here that Corollary 8.63 holds also with q D 0)
and to use a C 0 bordism invariance of the Brouwer degree: The latter is true for
the Brouwer degree on C 0 manifolds by Remark 9.72. Since on the boundaries,
we still have C 1 manifolds and thus uniqueness of the Brouwer degree, the de-
gree of Remark 9.72 must be the same as our Brouwer degree, and so actually
our Brouwer degree satisfies a C 0 bordism invariance. Unfortunately, the notion
of orientation in C 0 manifolds (which we avoided to discuss in this monograph)
is much more involved than the orientation in C 1 manifolds. In particular, it is
not completely obvious how the relatively simple construction of the orientation
which we used above for the C 1 case should be carried out in the C 0 case, al-
though this can probably be done.

Remark 10.11. After Theorem 10.6, we announced two alternative strategies for
the proof of the homotopy invariance. These should be clear after the above dis-
cussions. Indeed, by the argument used in the proof of Theorem 10.6, one can
reduce the situation to the case that Y is a Banach space. Then the two alternative
proofs of Theorem 10.9(BPBF ) can be used with h.t; x/ D y.t/. Note that, al-
though our first proof of Theorem 10.9(BPBF ) looks formally similar to our proof
of Theorem 10.6, it is actually rather different, since the main argument takes
place in the finite-dimensional partial manifold Z instead of the original Banach
manifold X .





Chapter 11

Function Triples

Recall that the Benevieri–Furi coincidence degree is a “count” for the number of
solutions of the equation

F.x/ D '.x/ .x 2 �/,
where F is (oriented) Fredholm of index 0 and '.�/ is finite-dimensional. Our
aim is to obtain a corresponding notion also for the case that ' is multivalued and
then, later, to relax the assumption that '.�/ be finite-dimensional to some rather
mild compactness hypotheses.

More precisely, we will study inclusions of the type

F.x/ 2 '.ˆ.x// .x 2 �/, (11.1)

where ˆ is an acyclic� map. Before we describe our approach, we give a brief
historical overview.

Homotopical invariants for inclusions with multivalued maps have a long his-
tory, although usually only the fixed point case (that is, F D id	 and usually
also ' D idˆ.	/) has been treated. It is almost impossible to give a complete
bibliographical overview over the fixed point case, and therefore we just confine
ourselves to a view remarks. The first fixed point theorem for multivalued acyclic
maps appeared in [48], a Lefschetz number for the case of maps with UV 1 val-
ues was developed in [25]. The general Lefschetz number theory for (11.1) with
F D id	 and acyclic ˆ is due to Górniewicz, see e.g. [70]. A degree theory
for maps with convex values was developed in [102] (for the noncompact case
see e.g. [56]). A degree theory for acyclic maps was developed independently
in various forms by many authors. We essentially refer to the surveys [21], [23]
and the monographs [5], [71], [83] and their enormous number of references. The
following list of particular contributions is by no means complete!

For fixed points of noncompact acyclic maps, we mention [53], [55], [80]. One
of the earliest approaches for (11.1) with F D id	 and acyclic ˆ is by means of
a so-called coincidence index [73], [94], [95]. Actually, this coincidence index is
a count for the fixed points of ' ı ˆ (not of the coincidence points of ' and ˆ);
in this sense the notion is actually a misnomer. For the treatment of (11.1) with
F D id	 in the noncompact case, see e.g. [120], [148].
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All the early approaches which can treat acyclic ˆ have the disadvantage that
it is unknown whether the corresponding notion is unique or at least topologically
invariant. In [130] a topologically invariant degree was developed which works
for acyclic ˆ. This theory was extended to the noncompact case [47], [58], [59],
[144]. However, that theory is extremely technical, and it is an open problem
whether it can be extended for the case F ¤ id	.

Moreover, uniqueness of the degree can perhaps only be established if one re-
quires that ˆ is acyclic� . For the case that ˆ has UV 1 values, a degree theory
for (11.1) with F D id	 can be based on approximating such ˆ by single-valued
maps [72]; see also [11] and [3], [4]. This approximation approach can be also
used for the case that F is a Fredholm map: The non-oriented case can be found
in [121], and an oriented variant in [146] (but the notion of orientation is rather
different than ours).

For the case of acyclic ˆ with dimˆ.�/ < 1 the uniqueness (and existence)
of the degree for (11.1) with F D id	 was established by Kryszewski [91] by
means of the homotopic Vietoris Theorem 5.25. Kryszewski observed in [93]
(see also [62], [63]) that a similar approach can be taken if F is a linear Fredholm
map. Kryszewski’s original approach still required deep results from infinite-
dimensional homotopy theory.

We will take the route to employ the homotopy Vietoris theorem which has the
advantage that it works for both, maps with UV 1 values and acyclic maps with
dimˆ.�/ < 1 (that is, for acyclic� maps in our terminology): Instead of using
approximations, we use the homotopic Vietoris theorem to obtain a homotopy
which leads to the single-valued situation (we will call this a simplifier later on).
Thus, from the very nature of the approach, this will lead to a degree theory for
which we can prove the uniqueness.

More precisely, in the paper [140] a general scheme was developed by which
any coincidence degree theory (for function pairs .F; '/ like the Benevieri-Furi
degree) can be extended uniquely to a degree theory for function triples .F;ˆ; '/
in the finite-dimensional situation by means of the homotopic Vietoris theorem.
In [142], it was shown how such a degree theory for function triples can be ex-
tended to a degree theory for the infinite-dimensional situation if '.ˆ.�// is rel-
atively compact. Finally, in [141], it was discussed how such a theory in turn
can be extended uniquely to a degree theory under much weaker compactness
hypotheses.

We will not present these general axiomatic approaches here. Instead, we will
confine ourselves to the extension of the Benevieri-Furi coincidence degree to a
corresponding degree for function triples. In this chapter, we discuss function
triples in general and how the homotopic Vietoris theorem is related with the
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existence of homotopies which turn function triples (with a possibly multivalued
function) into function pairs (not multivalued).

11.1 Function Triples and Their Equivalences

Recall that our aim is to define a degree for inclusions of the type (11.1). This
degree will not only depend on the functions F and ' ıˆ but actually on the full
function triple .F;ˆ; '/ where, however, we will see that certain modifications
of the couple .ˆ; '/ are “harmless” in the sense that they will produce the same
degree.

The aim of this section is to make precise for which objects our degree will be
defined.

Definition 11.1. We call .F;ˆ; '/ or, more verbosely, .F;ˆ; ';�; Y; �/ a func-
tion triple if F W�! Y , ˆW� ( � , and 'W� ! Y .

We can visualize a function triple as diagrams as in Figure 11.1.

�

F

��
ˆ ı� ' �� Y

Y �
F�� ˆ ı� ' �� Y .

Figure 11.1. Two diagrams for the function triple .F;ˆ; ';�; Y; �/.

Later on, the map F will be an (oriented) Fredholm map of index 0 or, in
the finite-dimensional setting, an (oriented) continuous map. For the moment, it
is most convenient to consider an arbitrary map F with a closed graph (recall
Example 2.120).

Definition 11.2. A function triple .F;ˆ; '/ is called closed if the following
holds:

(a) � and � are Hausdorff spaces, Y is a topological space.

(b) graph.F / is closed in � � Y .

(c) ˆW� ( � is upper semicontinuous with compact values ˆ.x/.

(d) ' 2 C.�; Y /.
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We call .F;ˆ; '/ acyclic or acyclic� if ˆ is additionally an acyclic or acyclic�
map, respectively.

The point to consider compositions ' ı ˆ in (11.1) is that we do not want to
require that the composition ' ıˆ is acyclic. In fact, this is typically not the case:

Example 11.3. Let ˆ.x/ WD Œ0; 2� for all x 2 � and 'W Œ0; 2� ! R2 be
defined by '.t/ WD .cos t; sin t/. Then ˆ is acyclic (even acyclic�) but ' ıˆ fails
to be acyclic.

Our degree should “count” (with appropriate multiplicities) the number of so-
lutions of (11.1). These solutions will be denoted by coin.F;ˆ; '/:

Definition 11.4. For a function triple .F;ˆ; ';�; Y; �/ and M � �, we put

coinM .F;ˆ; '/ WD ¹x 2M W F.x/ 2 '.ˆ.x//º.
In case M D �, we sometimes omit the index M and just write

coin.F;ˆ; '/ WD¹x 2 � W F.x/ 2 '.ˆ.x//ºD¹x 2 � W x 2 .F�1 ı ' ıˆ/.x/º.
If this set is compact, we call .F;ˆ; '/ a proper triple.

We point out that, although formally coinM .F;ˆ; '/ is a fixed point set of the
multivalued map F �1 ı ' ı ˆ, the map F �1 typically assumes empty values, so
that classical fixed point theory of multivalued maps cannot be used.

In some cases, it is more convenient to “multiply” F�1 to the right, that is, to
consider ' ıˆ ı F�1 instead:

Definition 11.5. For a function triple .F;ˆ; ';�; Y; �/ and a set M � �, we
put

fixM .F;ˆ; '/ WD ¹y 2 F.M/ W y 2 .' ıˆ ı F �1/.y/º
D ¹y 2 Y W there is x 2M with y D F.x/ 2 '.ˆ.x//º
D F.coinM .F;ˆ; '//.

In case M D �, we sometimes omit the index M and write

fix.F;ˆ; '/ D F.coin.F;ˆ; '//.

This formula implies coin.F;ˆ; '/ ¤ ¿ if and only if fix.F;ˆ; '/ ¤ ¿, but
the latter set has less elements, in general (unless F is one-to-one). Note also that
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in general coin.F;ˆ; '/ � � while fix.F;ˆ; '/ � Y . The set fix.F;ˆ; '/ will
play a particular role in Chapter 14.

For the particular case that F is a Vietoris map, that is, F�1 is acyclic, then
the map ' ı ˆ ı F�1 has a form for which a lot of the earlier mentioned degree
theories apply, see e.g. [23], [47], [53], [59], [71], [83], [91], [95], [120], [130],
[144], [148]. However, these theories “count” the elements of fix.F;ˆ; '/ (for
instance, they satisfy the excision property and additivity on the domain Y ).

In contrast, the degree which we intend to define is of a rather different nature:
It will “count” the elements of coin.F;ˆ; '/ (that is, it will satisfy the excision
property and additivity on the domain �). Moreover, we do not require that F is
onto or that F�1 is acyclic. We will require instead that F is (oriented) Fredholm
of index 0. In the finite-dimensional setting even arbitrary continuous (oriented)
maps F will be allowed.

Proposition 11.6. Let .F;ˆ; '/ be a closed function triple. Then coin.F;ˆ; '/
is closed in �. Hence,

coinM .F;ˆ; '/ DM \ coin.F;ˆ; '/

is closed in M for every M � �. In particular, .F;ˆ; '/ is proper if and only if
coin.F;ˆ; '/ is relatively compact in �. In this case fixM .F;ˆ; '/ is compact
for any M � coin.F;ˆ; '/.

Proof. Putting ‰ WD ' ı ˆ and eˆ.x/ WD ¹F.x/º, we have coin.F;ˆ; '/ D
coin.eˆ;‰/, so that the assertion follows from Corollary 2.119, since graph.eˆ/ D
graph.F / is closed, ‰ is upper semicontinuous by Proposition 2.94, and ‰.x/ is
compact for every x 2 �.

Of course, the degree we intend to define will be invariant under a certain class
of homotopies. However, it is somewhat important that the degree will also be
invariant under certain modifications of ˆ, ', and � . For instance, it would be
rather strange if the degree would change when we replace � by a homeomorphic
copy of � or if we shrink or enlarge � (as long as it contains ˆ.�/). Actually, we
will see that we are even allowed to shrink or enlarge the values ˆ.x/ in a certain
sense.

For this reason, we intend to introduce an equivalence relation on the class of
function triples which allows to exchange .ˆ; '; �/ in a certain way. The degree
will then only depend on the equivalence class. This has not only practical advan-
tages for the calculation of the degree, but we will also see that it is crucial for our
construction of the degree.
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We will now introduce the announced equivalence relation. To define the equiv-
alence relation on the class of acyclic function triples, let us first give some heuris-
tic motivation for the definition in terms of the inclusion (11.1): Assume that the
continuous function ' is the composition of e' 2 C.e�; Y / and J 2 C.�;e�/, that
is, we have ' De' ı J . In particular, we can write (11.1) in the form

F.x/ 2 .e' ı J /.ˆ.x//. (11.2)

The function triple associated to this inclusion is .F;ˆ; '/ D .F;ˆ;e' ı J /. On
the other hand, we can rewrite (11.2) equivalently as

F.x/ 2e'..J ıˆ/.x//
which is associated with the triple .F; J ıˆ;e'/. We would like to consider such
triples as equivalent and write

.F;ˆ;e' ı J / - .F; J ıˆ;e'/.
If J is onto or a homeomorphism, respectively, we use the symbols 	 or  in-
stead. Note that unless J is a homeomorphism the construction is not reversible,
so that the relations - and	 are not symmetric and thus not equivalence relations.
Of course, this is only a formal difficulty, since we can define a corresponding
equivalence relation by passing to the transitive symmetric closure.

However, in the class of acyclic (or acyclic�) triples, this construction has an-
other problem: If ˆ is an acyclic map, the composition J ı ˆ is not acyclic, in
general (recall Example 11.3). Therefore, to enlarge the equivalence classes, we
additionally want to allow that J ıˆ is replaced by an acyclic map eˆwith possibly
larger sets as values, and in this case, we will write

.F;ˆ;e' ı J / v .F;eˆ;e'; /.
Of course, also this construction is irreversible, and we have to define a corre-
sponding equivalence relation by passing to the transitive symmetric closure. We
already point out that for the definition to the degree, we have to impose further
conditions on the considered triples (e.g. that the triple is proper), and therefore
it will be important that actually also the triple .F;eˆ;e'/ will satisfy these con-
ditions, that is, the extension eˆ will actually not be as arbitrary as it is in the
moment.

Let us now turn the above heuristics into precise definitions:
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Definition 11.7. A function triple .F;ˆ; ';�; Y; �/ is embedded into a function
triple .F;eˆ;e';�; Y;e�/ if there is J 2 C.�;e�/ with

J.ˆ.x// � eˆ.x/ for all x 2 �, and e'.J.z// D '.z/ for all z 2 � . (11.3)

We write in this case .F;ˆ; '/ v .F;eˆ;e'/. If J satisfies the stronger relation

J.ˆ.x// D eˆ.x/ for all x 2 �, and e'.J.z// D '.z/ for all z 2 � , (11.4)

then we write .F;ˆ; '/ - .F;eˆ;e'/. If additionally J is onto, we write
.F;ˆ; '/ 	 .F;eˆ;e'/. If additionally J is a homeomorphism, we write
.F;ˆ; '/  .F;eˆ;e'/.

By definition, the requirements become successively stronger, that is, we have
the chain of implications

A  eA H) A 	 eA H) A - eA H) A v eA.

Proposition 11.8. If .F;ˆ; '/ v .F;eˆ;e'/ then

'.ˆ.x// �e'.eˆ.x// for all x 2 �, (11.5)

and thus in particular

coin.F;ˆ; '/ � coin.F;eˆ;e'/ and fix.F;ˆ; '/ � fix.F;eˆ;e'/. (11.6)

If .F;ˆ; '/ - .F;eˆ;e'/ then

e'.eˆ.x// D '.ˆ.x// for all x 2 � (11.7)

and thus in particular

coin.F;ˆ; '/ D coin.F;eˆ;e'/ and fix.F;ˆ; '/ D fix.F;eˆ;e'/. (11.8)

Proof. The relation (11.3) implies for every x 2 � that

'.ˆ.x// De'.J.ˆ.x/// �e'.eˆ.x//

which means (11.5). Hence, (11.6) follows from the definition of coin and fix.
The proof of the second assertion is analogous: Instead of an inclusion we have in
the above calculation an equality by (11.4). This shows (11.7), and (11.8) follows
from the definition of coin and fix.
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Corollary 11.9. If .F;ˆ; '/ - .F;eˆ;e'/ then .F;ˆ; '/ is proper if and only if
.F;eˆ;e'/ is proper.

If .F;ˆ; '/ v .F;eˆ;e'/, .F;ˆ; '/ is closed and .F;eˆ;e'/ is proper then also
.F;ˆ; '/ is proper.

Proof. The first assertion follows from (11.8). For the second assertion, note that
if .F;eˆ;e'/ is proper, then (11.6) implies that coin.F;ˆ; '/ is relatively compact
in �. Proposition 11.6 thus implies that .F;ˆ; '/ is proper.

The notation is justified by the following observation:

Proposition 11.10. The relation v is reflexive and transitive, that is, for all func-
tion triples we have

(a) .F;ˆ; '/ v .F;ˆ; '/.
(b) If .F;ˆ; '/ v .F;ˆ0; '0/ v .F;eˆ;e'/ then .F;ˆ; '/ v .F;eˆ;e'/.

In the same sense - and 	 are reflexive and transitive, and  is even an equiva-
lence relation, that is,  is also symmetric.

Proof. The reflexivity follows with the choice J D id� in Definition 11.7. For
the transitivity, note that if there are corresponding continuous functions J0 and
eJ such that

J0 ıˆ � ˆ0, eJ ıˆ0 � eˆ, ' D '0 ı J0, '0 De' ıeJ ,

then eJ ıJ0ıˆ � eˆ and ' De'ıeJ ıJ0, that is, the continuous function J WD eJ ıJ0

satisfies (11.3).

Thus, there are several natural ways to obtain an equivalence relation on a class
of function triples: We can take , or we can either restrict or extend some of v,
-, or 	 to make it symmetric. Obviously, the strongest of all these equivalence
relations is . However, we are interested in obtaining an equivalence relation
which is as weak as possible, hence, we choose the way of extending the weakest
of the above relations by passing to the symmetric transitive closure. If we are
interested only in triples of a certain class, it is important that we consider also
the symmetric transitive closure only within this class. Hence, the equivalence
relation which we define actually depends on a given class:

Definition 11.11. Let T denote a class of function triples. Then two triples A and
eA from T are equivalent if there is a finite sequence A D A0; A1; : : : ; An D eA,
all belonging to the class T , such that for each k D 1; : : : ; n at least one of the
relations Ak�1 v Ak or Ak v Ak�1 holds true. In this case, we write A �T

eA.
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We point out that also all “intermediate” function triples A1; : : : ; An�1 are re-
quired to belong to T . Thus the definition of the relation�T really depends on the
class T . In particular, in order to verify the equivalence, it is not sufficient to find
corresponding maps Jk D J satisfying (11.3) for the corresponding functions,
but one also has to verify that the corresponding function triples indeed belong to
the class T .

An example which shows that it is useful that one can vary the direction in
Definition 11.11 will be given in Proposition 11.29.

Proposition 11.12. The relation �T is an equivalence relation in the class T .
For A;eA 2 T , we have the implications

A  eA H) A 	 eA H) A - eA H) A v eA H) A �T
eA.

Proof. The symmetry and transitivity of �T follows from its definition. Since v
is reflexive (Proposition 11.10), also �T must be reflexive. The last assertion is
obvious.

Proposition 11.13. We have for each function triple .F;ˆ; ';�; Y; �/ that

.F;ˆ; 'jˆ.	/;�; Y;ˆ.�// - .F;ˆ; ';�; Y; �/.

Proof. Put J.z/ WD z for all z 2 ˆ.�/ in Definition 11.7.

Remark 11.14. Proposition 11.13 implies that under the equivalence relation �T

and actually even under the more restrictive relation - the set � plays no role; only
the restriction of ' to ˆ.�/ (and the topology inherited from �) will be used.

We will use this observation later to suppress � in the notation. If Y is clear,
we will later also suppress Y from the notation.

Only under this independence from � the following definition deserves its
name:

Definition 11.15. The restriction of a function triple .F;ˆ; ';�; Y; �/ to �0 �
� is defined as the function triple .F;ˆ; ';�0 ; Y;ˆ.�0//.

Formally more correct, the last expression should read

.F j	0
; ˆj	0

; 'jˆ.	0/;�0; Y;ˆ.�0//,

but we used here the convention of omitting obvious restriction symbols for better
readability (cf. Remark 9.37).
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Proposition 11.16. If .F;ˆ; '/ - .F;eˆ;e'/ or .F;ˆ; '/ v .F;eˆ;e'/ then the
same relation holds for the corresponding restrictions.

Proof. The restriction of the map J from Definition 11.7 is the required map.

Now we come to the crucial definition which relates our objects with Vietoris
maps.

Definition 11.17. A function triple .F;ˆ; '/ is in standard form if there is a
continuous map pW� ! � with ˆ D p�1, that is, if ˆ.�/ D � and ˆ�1 is
single-valued and continuous.

We can visualize a function triple in standard form as diagrams as in Fig-
ure 11.2.

�

F

���
p�� ' �� Y

Y �
F�� �

p�� ' �� Y .

Figure 11.2. Two diagrams for a function triple in standard form.

Proposition 11.18. If .F;ˆ; '/ is a closed function triple in standard form then
the above map p is automatically closed and proper. If the triple is acyclic
(acyclic�), then p is Vietoris (Vietoris�).

Proof. Corollary 2.106 implies that p is closed and proper. The second assertion
follows from p�1.x/ D ˆ.x/.

Formally, the degree which we intend to consider later can only be defined for
a certain class T of acyclic function triples in standard form. Of course, “most”
acyclic function triples are not in standard form. Therefore, it is important for us
to consider the equivalence relation �T and to show:

(a) Each equivalence class contains a triple in standard form, and

(b) the corresponding degree is independent of the choice of that triple in the
equivalence class.
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This idea is not new, of course. It can be traced back at least to the work of
L. Gorniewicz [70] who defined so-called admissible pairs which are essentially
acyclic function triples in standard form in case� � Y and F being the inclusion
map. In a slightly more general terminology, W. Kryszewski defined in [93] so-
called co-triads which in our terminology correspond to acyclic function triples
in standard form. Also in [140]–[142], essentially only acyclic function triples in
standard form were considered. This has the technical advantage that the multival-
ued terminology vanishes from the notations, and so all topological considerations
can be carried out with single-valued maps. However, it has the disadvantage that
for the application of the theory to a problem in which a multivalued map oc-
curs, one first has to “translate” the problem into a standard form which can be
notationally rather inconvenient.

Therefore, from the viewpoint of applications, it is more natural to use multi-
valued terminology. Note that this multivalued terminology has not only a formal
advantage: For the equivalence relation of Definition 11.11 it is not only unnec-
essary that the two considered triples A and eA are in standard form, but also the
“intermediate” triples A1; : : : ; An�1 are not required to be in standard form. The
corresponding more restrictive (at a first glance) definition when all triples are re-
quired to be in standard form is in view of the subsequent Proposition 11.19 the
equivalence relation considered in [140]. Hence, at least formally, our equivalence
relation is easier to verify than that from [140].

Let us now equivalently reformulate the above relations for the case that the
function triples are in standard form.

Proposition 11.19. Let .F;ˆ; ';�; Y; �/ and .F;eˆ;e';�; Y;e�/ be two function
triples in standard form, ˆ D p�1 and eˆ D ep�1. Then the following statements
are equivalent.

(a) .F;ˆ; '/ v .F;eˆ;e'/.

(b) There is a continuous map J W� ! e� with

ep ı J D p and e' ı J D '. (11.9)

The corresponding maps J are exactly those from Definition 11.7, that is, actu-
ally (11.3) and (11.9) are equivalent.

Proof. For x 2 � and J W� ! e� the relation

J.ˆ.x// � eˆ.x/

is in view of eˆ.x/ D ep�1.x/ equivalent to

ep.J.ˆ.x/// � ¹xº.
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This means that for all z 2 p�1.x/ D ˆ.x/ the equality

ep.J.z// D p.z/

holds. Since p�1 is onto, it follows that J ı ˆ � eˆ is equivalent to ep ı J D p.
Hence, (11.3) and (11.9) are equivalent which implies the claim.

Corollary 11.20. For triples in standard form the following statements are equiv-
alent. (We use the notation of Proposition 11.19).

(a) .F;ˆ; '/ - .F;eˆ;e'/.

(b) .F;ˆ; '/ 	 .F;eˆ;e'/.
(c) There is a continuous map J W� ! e� with

ep�1 � J ı p�1, ep ı J D p, and e' ı J D q. (11.10)

Proof. The first inclusion in (11.10) is exactly the inclusion which is missing from
(11.3) to yield (11.4). Since ep�1 is onto, this inclusion implies that J is onto.

Corollary 11.21. For triples in standard form the following statements are equiv-
alent. (We use the notation of Proposition 11.19).

(a) .F;ˆ; '/  .F;eˆ;e'/.

(b) There is a homeomorphism J W� ! e� with (11.10).

Proof. The claim follows from the same argument as in Corollary 11.20.

Corollary 11.21 shows that the relation corresponds to the strong equivalence
relation introduced in [93, Definition 4.39] (which in turn is based on a definition
from [89]).

From the viewpoint of applications of degree theory, it is a big advantage that
we will be able to show that already the weaker equivalence relation A �T

eA

implies that the corresponding degrees of A and eA are equal. For this reason, it
is worth to discuss now briefly how our equivalence relation �T compares to a
more popular equivalence relation which can be found in literature.

There is a notion of equivalence classes for the earlier mentioned admissible
pairs from [70]. In our more general setting this corresponds to the notion of
equivalence for co-triads which can be found e.g. in [93, Definition 4.6]: In our
terminology, the latter means in view of Proposition 11.19 that two triples A and
eA in standard form are equivalent (in the sense of [93, Definition 4.6]) if there is
a third triple A0 in standard form with A0 v A and A0 v eA. Note that if A and
eA are proper and A0 is closed then A0 is automatically proper by Corollary 11.9.
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In particular, if T denotes the class of proper acyclic function triples and A and
eA belong to this class and are in standard form and equivalent in the sense of [93,
Definition 4.6], then A �T

eA in our sense. However, we do not know whether
also the converse holds, that is, our equivalence classes are perhaps even strictly
larger than the equivalence classes considered in [93, Definition 4.6].

In this sense, our notion �T of equivalence is weaker than all related popular
notions of equivalences which can be found in literature. Note that this means
that our claim that the degree depends only on the equivalence class improves all
related statements in literature.

The equivalence relation introduced in this section has not only practical advan-
tages for the calculation of the degree, but it is also crucial for our construction of
the degree in two respects:

(a) Strictly speaking, we can define the degree only if the triple is in standard
form. Only by passing to an appropriate equivalent triple, we will be able to
produce this standard form.

(b) When we want to interpret homotopies of function triples as function triples,
we will need the equivalence relation to obtain a natural meaning for the
homotopy “at time t”.

The first of these properties will be discussed just now, the second in Sec-
tion 11.3.

Definition 11.22. Let .F;ˆ; '/, more precisely .F;ˆ; ';�; Y; �/, be a function
triple. The corresponding standard form is the function triple .F;eˆ;e';�; Y;e�/,
defined as follows.

(a) e� WD graph.ˆ/

(b) eˆ WD p�1 where pWe� ! � is defined by p.x; y/ WD x.

(c) e' WD ' ı q where qWe� ! � is defined by q.x; z/ WD z.

The idea of this construction is well-known and has already been used in the
first paper on topological fixed point theory for acyclic maps [48]. The following
result implies that we obtain indeed a standard form in the corresponding equiva-
lence class:

Theorem 11.23. If .F;eˆ;e'/ is the standard form of .F;ˆ; '/, then .F;eˆ;e'/ is
in standard form satisfying

eˆ.x/ D ¹xº �ˆ.x/ (which is homeomorphic to ˆ.x/) (11.11)
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for all x, and
.F;eˆ;e'/ - .F;ˆ; '/. (11.12)

Moreover, if ˆ is upper semicontinuous with compact values then eˆ has the same
property.

In particular, (11.7) and (11.8) hold, and if .F;ˆ; '/ is closed, proper, acyclic
or acyclic� then .F;eˆ;e'/ has the same property.

Proof. Since p in Definition 11.22 is continuous, we obtain immediately that
.F;eˆ;e';�; Y;e�/ is in standard form. Definition 11.22 implies (11.11), and the
map J WD q from Definition 11.22 proves (11.12). Indeed, by (11.11), we have
ˆ D q ı p�1 D J ı eˆ and e' D ' ı q D ' ı J , hence (11.4) holds.

If ˆ is upper semicontinuous with compact values, then Theorem 2.111 im-
plies that the map p of Definition 11.22 is closed. Proposition 2.104 implies that
eˆ D p�1 is upper semicontinuous. The remaining assertions follow from Corol-
lary 11.9 and (11.11).

The following result implies that we can suppress � in the notation when we
deal with the standard form:

Proposition 11.24. The standard form of .F;ˆ; ';�; Y; �/ is independent of �
in the sense that it depends only on .F;ˆ; 'jˆ.	//.

Proof. The function e' of Definition 11.22 depends only on 'jˆ.	/.

Having the above independence from � in mind, we recall that it makes sense to
define a restriction (Definition 11.15). This operation commutes with the passage
to the standard form

Proposition 11.25. The standard form of the restriction is the restriction of its
standard form.

Proof. Let A D .F;ˆ; ';�; Y; �/ be some function triple, and A0 denote the re-
striction of A to some �0 � �. The standard form of A is then eA D
.F;eˆ;e';�; Y;e�/ with e� D graph.ˆ/, eˆ.x/ WD ¹xº � ˆ.x/, and e'.x; z/ WD
'.z/. The standard form of A0 is similarly .F j	0

; ˆ0; '0;�0; Y; �0/ with �0 D
¹.x; y/ 2 graph.ˆ/ W x 2 �0º, ˆ0.x/ WD ¹xº � ˆ.x/, and '0.x; z/ WD '.z/.
Since ˆ0.�0/ D �0, it follows that this is the restriction of eA to �0.

Formally, even if a triple is in standard form, its corresponding standard form
is a different object. Fortunately, this difference is covered by our equivalence
relation, even by the strongest equivalence relation which we consider.
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Proposition 11.26. Let .F;ˆ; '/ be in standard form, and let .F;eˆ;e'/ be the
corresponding standard form. Then

.F;eˆ;e'/  .F;ˆ; '/. (11.13)

Proof. Using the notation of the proof of Theorem 11.23, we have to show that
J WD qWe� ! � is a homeomorphism. Since ˆ D p�1

0 for some continuous map
p0W� ! �, we have for any z 2 � that z 2 p�1

0 .p0.z// D ˆ.p0.z//, hence
q0.z/ WD .p0.z/; z/ 2 e� D graph.ˆ/. Thus, q0 defines a map q0W� ! e� .
Since p0 is continuous, also q0 is continuous. For every .x; z/ 2 e� , we have
z 2 ˆ.x/ D p�1

0 .x/, hence p0.z/ D x, and so .x; z/ D q0.z/ D q0.q.x; z//.
This shows that q0 ı q is the identity map on e� . Since also q ı q0 is the identity
map on � , it follows that J D q is invertible with the continuous inverse q0.

It is a technical difficulty for us that Proposition 11.26 fails if .F;ˆ; '/ is not
in standard form:

Example 11.27. Let� D Y D � D Œ0; 1�, ˆ.x/ WD � , and F D ' D id	. Then
the corresponding standard form is .F;eˆ;e';�; Y;e�/ with e� D Œ0; 1� � Œ0; 1�.
Then (11.13) fails, because e� is not homeomorphic to � . The latter can be seen
by using the dimension invariance result of Corollary 9.95 or also elementary by
observing that � n¹1

2
º is disconnected while e� n¹zº is connected for every z 2 e� .

Example 11.27 shows that for our purposes the equivalence relation  would
be too restrictive. However, the equivalence relation �T will be sufficient in view
of (11.12).

Since we define the degree first only on triples in standard form, there is a tech-
nical difficulty when we want to show that the degree depends only on the equiv-
alence class: We need also that the “intermediate” triples in Definition 11.11 can
be chosen in standard form. It seems that this does not follow from the previous
results, so we have to show it:

Theorem 11.28. If A v A0, A - A0, A 	 A0, or A  A0 then the same relation
holds for the corresponding standard forms of A and A0.

Proof. Let A D .F;ˆ; ';�; Y; �/ and A0 D .F;ˆ0; '0;�; Y; �0/, and let eA D
.F;eˆ;e'; Y;e�/ and eA0 D .F;eˆ0;e'0; Y;e�0/ denote the respective corresponding
standard forms. If A v A0, there is a continuous map J W� ! �0 with

J ıˆ � ˆ0 and ' D '0 ı J .
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Since e� D graph.ˆ/ and graph.J ı ˆ/ � graph.ˆ0/ D e�0, we can define a
map J0We� ! e�0 by J0.x; z/ WD .x; J.z//. We show that this is the map required
for Definition 11.7. Indeed, J0 is continuous and satisfies for all x 2 �

J0.¹xº �ˆ.x// D ¹xº � J.ˆ.x// � ¹xº �ˆ0.x/

which means J0 ı eˆ � eˆ0. If q (or q0) denote the canonical projections of
graph.ˆ/ (or graph.ˆ0/) to � (or �0, respectively), then our definition of J0

means for all .x; z/ 2 � that

q0.J0.x; z// D J.z/ D J.q.x; z//,

that is q0 ı J0 D J ı q, and so

e' D ' ı q D '0 ı J ı q D '0 ı q0 ı J0 De'0 ı J0.

Hence, J0 has all required properties to show that eA v eA0.
The proof of the other assertions is similar: In the above arguments, one just has

to observe that one can replace throughout � by D, and that in this case, if J is
onto or a homeomorphism, also J0 is onto or a homeomorphism, respectively.

The following result will be useful to establish a relation of the degree for func-
tion triples with the ordinary degree in the single-valued case. This is also an
example which shows why it is useful to consider such a general equivalence re-
lation as in Definition 11.11:

Proposition 11.29. Let .F;ˆ; ';�; Y; �/ be a function triple such that ' ı ˆ is
single-valued on �. If .F;eˆ;e';�; Y;e�/ denotes the standard form of .F;ˆ; '/
we have

.F;ˆ; '/ % .F;eˆ;e'/ - .F; id	; ' ıˆ/. (11.14)

In particular, if all three of the above triples belong to T then

.F;ˆ; '/ �T .F; id	; ' ıˆ/.
Proof. The first relation in (11.14) is (11.12) of Theorem 11.23. For the second
relation, we recall that (11.11) means eˆ.x/ D ¹xº � ˆ.x/ and e'.x; z/ D '.z/.
In particular, dom.eˆ/ D dom.ˆ/ D �, since dom.' ı ˆ/ D �. Recall that
eˆ is in standard form, i.e. p D eˆ�1 is single-valued and continuous. Since
dom.eˆ/ D �, it follows that p.�/ D �. Putting J WD p, we calculate

J ı eˆ D p ı p�1 D id	 ,
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and for all .x; z/ 2 e� D graph.ˆ/, we have in view of z 2 ˆ.x/, since ' ıˆ is
single-valued that

.' ıˆ/.J.x; z// D .' ıˆ/.x/ D '.ˆ.x// D '.z/ De'.x; z/.

The map J in Definition 11.7 thus proves that .F;eˆ;e'/ - .F; id	; ' ıˆ/.

11.2 The Simplifier Property

Now we discuss a homotopic property of the standard form which is the key to
our approach to deal with the multivalued map for the degree.

The reason why the standard form is so crucial for our considerations is that
only in the standard form the following notion makes sense:

Definition 11.30. Let .F;ˆ; ';�; Y; �/ be a function triple in standard form,
that is, ˆ D p�1. Let M � �. Then f 2 C.M;Y / is called a simplifier on M
for .F;ˆ; '/ if '.z/ D f .p.z// for all z 2 ˆ.M/. In case M D �, we omit M
and call f just a simplifier for .F;ˆ; '/.

It may be more intuitive to consider this situation in the form of the commuta-
tive diagram in Figure 11.3.

Y � �MF��

f

��
ˆDp�1

ıˆ.M/ � �
p

��
' �� Y

Figure 11.3. A simplifier f for .F;ˆ; '/ on M .

Proposition 11.31. Let .F;ˆ; '/ be in standard form, and M � dom.ˆ/. Then
.F;ˆ; '/ has a simplifier onM if and only if 'ıˆ is single-valued and continuous
on M , and in this case f D ' ıˆ is the only simplifier on M .

Proof. Let ˆ D p�1. The relation ' D f ı p on ˆ.M/ implies ' ı ˆ D
f ı p ı ˆ D f ı p ı p�1 D f on M . Hence, f D ' ıˆ is the only candidate
for a simplifier, and it is a simplifier if and only if f is continuous.

The idea is that the single-valued function f can on M replace the couple
.ˆ; '/ in a sense. This idea makes sense according to our equivalence relation:
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Proposition 11.32. If f is a simplifier for .F;ˆ; ';�; Y; �/ then

.F; id	; f / 	 .F;ˆ; '/.
In particular, coin.F;f /Dcoin.F; id	;f /Dcoin.F;ˆ; '/ and fix.F; id	; f /D
fix.F;ˆ; '/.

Proof. We have ˆ D p�1. Then the map J WD p has the properties required
for Definition 11.7. Indeed, J D ' ı p D ' ı J holds by hypothesis, and
J ı p�1 D p ı p�1 D id	 since p is onto.

Not every function triple in standard form has a simplifier, of course. However,
concerning the degree, it will be sufficient to allow certain homotopies with re-
spect to ', that is, it will be sufficient to consider simplifiers which are admissible
in the following homotopic sense.

Definition 11.33. Let .F;ˆ; ';�; Y; �/ be a function triple in standard form,
that is, ˆ D p�1. Let M0 � M � � and Y0 � Y . Then f 2 C.M;Y0/

is called a .M0; Y0/-admissible simplifier on M if there is a continuous function
hW Œ0; 1� � ˆ.M/ ! Y0 with h.0; � / D ' and coinM0

.F;ˆ; h.t; � // D ¿ for all
t 2 Œ0; 1� such that f is a simplifier for .F;ˆ; h.1; � // on M , that is, h.1; � / D
f ı pjˆ.M/.

We attempt to visualize Definition 11.33 by a commutative diagram in Fig-
ure 11.4.

Y � �MF��

f

��

ˆDp�1

ıˆ.M/
p

��
'Dh.0; � / ��

h.t; � /

		��
���

���
���

��

h.1; � /





Y

Y

Y

Figure 11.4. An admissible simplifier f onM .

A crucial (but invisible) point of Figure 11.4 is that coinM0
.F;ˆ; h.t; � // D ¿

for all t 2 Œ0; 1�, that is that for each x 2 M0 � M the corresponding value
F.x/ “to the left” in that diagram does not lie in any of the corresponding sets
h.t;ˆ.x// “to the right” of the diagram.
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Actually, we would like to have not only the existence of an admissible simpli-
fier but also uniqueness in a homotopic sense:

Definition 11.34. Two maps f0; f1 2 C.M;Y0/ are .F;M0; Y0/-homotopic on
M if there is a continuous function hW Œ0; 1� �M ! Y0 with h.i; � / D fi .i D
0; 1/ and coinM0

.F; h.t; � // D ¿ for all t 2 Œ0; 1�.

Now we come to the point why we consider acyclic� function triples: For
acyclic� function triples, we can prove the existence (and uniqueness up to ho-
motopy) of admissible simplifiers.

In our applications for the degree, one should in the above definitions have the
following case in mind: � is an open set in a manifold, M � � the intersection
with a finite-dimensional submanifold, and Y0 a finite-dimensional normed space
with F.M/ � Y0. By modifying ' appropriately, we will be able to arrange
that '.ˆ.M// � Y0. In our application, the set M0 � M will be compact with
coinM0

.F;ˆ; '/ D ¿; for instance, M0 can be the boundary in M of a small
neighborhood neighborhood containing coinM .F;ˆ; '/ (but we will also need
some other cases).

The following example shows that even in this setting, admissible simplifiers
need not always exist for acyclic function triples:

Example 11.35. Let Y0 D Y D R4, and M0 D M D � D ¹x0º. Recall that by
Example 4.58 there exists an acyclic metric compact space � such that there is a
map ' 2 C.�; S3/ which fails to be homotopic to a constant map. We consider '
as a map from � into Y0 n ¹0º and put F.x/ WD 0 and ˆ.x/ WD � for all x 2 �
(that is, for x D x0).

Then .F;ˆ; '/ is an acyclic function triple in standard form and satisfies
coin.F;ˆ; '/ D ¿. However, .F;ˆ; '/ has no .M0; Y0/-admissible simplifier
on M . Indeed, otherwise there would exist a continuous map hW Œ0; 1� � � ! Y0

with h.0; � / D ' and coinM0
.F;ˆ; h.t; � // D ¿ for all t 2 Œ0; 1� such that

h.1; � / D f ı p for a map f WM ! Y0. Since M D ¹x0º, the latter means that
h.1; � / is constant, and coinM0

.F;ˆ; h.t; � // D ¿ means that 0 … h.Œ0; 1� � �/.
Hence, denoting by �WY0 n ¹0º ! S3 the radial retraction �.x/ D x=kxk, we
found that the map H WD � ı hW Œ0; 1� � � ! S3 is continuous with H.0; � / D '

and constant H.1; � /. We thus have shown that ' 2 C.�; S3/ is homotopic to a
constant map which contradicts the choice of '.

The map ˆ in Example 11.35 is acyclic, but not acyclic�. The latter is not
accidental. In fact, the following result implies for acyclic� function triples the
existence of a .M0; Y0/-admissible simplifier for any compact subset M0 � M
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for the setting sketched above. Moreover, this result also implies the uniqueness
of the simplifier (up to homotopies).

This result is the key property for the degree for function triples and will be
used many times. Since it is so important, we try to formulate it as general as
possible.

Recall that a topological group is a group endowed with a topology such that
the group operation and the forming of the inverse are continuous maps.

Theorem 11.36 (Unique Existence of Simplifiers). Let .F;ˆ; ';�; Y; �/ be an
acyclic� function triple in standard form. Let M0 � M � � and '.ˆ.M// �
Y0 � Y . Put M1 WDM0 \ F�1.Y0/, and suppose that the following holds:

(a) coinM1
.F;ˆ; '/ D ¿.

(b) IndM1 <1.

(c) ˆ is finite-dimensional acyclic or M1 is T6.

(d) There is y0 2 Y0 such that Y0n¹y0º is paracompact and homotopy equivalent
to an ANR.

(e) Y0 is an AE for Œ0; 1� �ˆ.M/ and for Œ0; 1� �M .

(f) Y0 is homeomorphic to a topological Hausdorff group.

(g) M1 is compact.

Then there exists a .M0; Y0/-admissible simplifier f for .F;ˆ; '/ on M . More-
over, every such simplifier g is .F;M0; Y0/-homotopic to f on M .

Remark 11.37. Theorem 11.36 holds even when we replace (f) by the following
weaker hypothesis:

(f) Y0 is Hausdorff, and there is Hy0
2 C.F.M1/ � Y0; Y0/ with Hy0

.y; y/ D
y0 for every y 2 F.M1/ such that Hy0

.y; � / is a homeomorphism on Y0

for every y 2 F.M1/ and such that its inverse hy0
.y; � / satisfies hy0

2
C.F.M1/ � Y0; Y0/.

If g is a homeomorphism of Y0 onto a Hausdorff topological group, this condition
is satisfied with Hy0

.y; z/ WD g�1.g.y0/ � g.y/ � g.z/�1/.

Remark 11.38. (AC). (Recall Remark 5.26).
Theorem 11.36 and Remark 11.37 hold also when we replace (g) by the follow-

ing hypotheses:

(g) (1) M1 and ˆ.M1/ are paracompact,

(2) M1 is closed in M , and ˆ.M1/ is closed in ˆ.M/.
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(3) At least one of the following holds:

(i) ˆ.M1/ is compact.
(ii) Y0 n ¹y0º is homotopy equivalent to a compact ANR.

(iii) ˆ.x/ is UV 1 for every x 2M1.

Theorem 11.36 is indeed a special case: IfM1 is compact then ˆ.M1/ is compact
by Proposition 2.100, and soM1 and ˆ.M1/ are paracompact and closed in every
Hausdorff space; hence the above assumptions (1)–(3) are automatically satisfied
for compact M1.

Remark 11.39. If we are only interested in the existence assertion of Theo-
rem 11.36 (or Remarks 11.37 or 11.38), that is, in the existence of an .M0; Y0/-
admissible simplifier, we may relax the requirement that Y0 be an AE for Œ0; 1��M
to the requirement that Y0 be an AE for M .

Proof of Theorem 11.36 and of Remarks 11.37, 11.38, and 11.39. We put p D
ˆ�1. For z 2 �0 WD ˆ.M1/, we have p.z/ 2 M1 and thus F.p.z// 2 Y0

and hence, we can define

G.z/ WD Hy0
.F.p.z//; '.z//. (11.15)

For z 2 �0, we have x WD p.z/ 2 M1 and z 2 p�1.x/. The hypothesis
coinM0

.F;ˆ; '/ D ¿ thus implies F.x/ ¤ '.z/, and so G.z/ ¤ y0. Hence,
GW�0 ! Z WD Y0 n ¹y0º.

Note that pj�0
W�0 ! M1 is Vietoris� by Proposition 11.18 (even UV 1-

Vietoris if ˆ.x/ D p�1.x/ is UV 1 for every x 2 M1), and that M1 and �0

are paracompact. The assumptions (also in Remark 11.38) are such that we can
apply the homotopic version of the Vietoris theorem (Theorem 5.25) with the
map pj�0

and the space Z. By this result, the map pj�0
thus induces a bijection

between the homotopy classes of ŒM1; Z� and of Œ�0; Z�. In particular, there is
f0 2 C.M1; Z/ such that G 2 C.�0; Z/ is homotopic to f0 ı pj�0

2 C.�0; Z/,
and moreover, if f1 2 C.M1; Z/ is another map with this property then f0 and
f1 are homotopic to each other.

Let h0W Œ0; 1���0!Z be a homotopy connecting h0.0; � /DG with h0.1; � /D
f0 ı pj�0

. We define H0W Œ0; 1� � �0 ! Z by

H0.t; z/ WD hy0
.F.p.z//; h0.t; z//.

Then H0.0; z/ D hy0
.F.p.z//;G.z// D '.z/ by (11.15), and H0.1; � / D f ı

pj�0
with f WM1 ! Y0 being defined by

f .x/ WD hy0
.F.x/; f0.x//. (11.16)
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For .t; z/ 2 Œ0; 1� � �0, we have h0.t; z/ ¤ y0 and thus H0.t; z/ ¤ F.p.z//. In
particular, if t 2 Œ0; 1� and x 2 M1, we have for any z 2 ˆ.x/ in view of z 2 �0

and p.z/ D x that H0.t; z/ ¤ F.x/. Hence, F.x/ … H0.t;ˆ.x//. We thus have
coinM1

.F;ˆ;H0.t; � // D ¿.
Since Y0 is an AE for M and M1 � M is closed, we can extend f to f 2

C.M;Y0/ .i D 0; 1/. Recall that Y0 is an AE for Œ0; 1� � ˆ.M/, and that �0 �
ˆ.M/ is closed. By the both-sided homotopy extension theorem (Theorem 4.45),
we can extend H0 to a homotopy H0W Œ0; 1� �ˆ.M/! Y0 such that H0.0; � / D
'jˆ.M/ and H0.1; � / D f ı pjˆ.M/. Then H0 is the homotopy showing that f
is a .M0; Y0/-admissible simplifier of .F;ˆ; '/ on M . Indeed, since H0 assumes
its values in Y0, we have

coinM0
.F;ˆ;H0.t; � // D coinM1

.F;ˆ;H0.t; � // D ¿.

To prove the assertion about the uniqueness, let gWM ! Y0 be a further
.M0; Y0/-admissible simplifier on M , that is, there is a continuous map H1W
Œ0; 1� � ˆ.M/ ! Y0 with H1.0; � / D ', H1.1; � / D g ı pjM , and such that
coinM0

.F;ˆ;H1.t; � // D ¿ for all t 2 Œ0; 1�. We define h1W Œ0; 1�� �0 ! Y0 by

h1.t; z/ WD Hy0
.F.p.z//;H1.t; z//.

If t 2 Œ0; 1� and z 2 �0, we have z 2 ˆ.x/ for some x 2 M1. Then p.z/ D x, and
coinM0

.F;ˆ;H1.t; � // D ¿ implies H1.t; z/ ¤ F.x/ D F.p.z//. It follows
that we have actually h1.t; z/ ¤ y0, that is, h1W Œ0; 1� � �0 ! Z. Hence, h1

is a homotopy connecting h1.0; � / D GW�0 ! Z with the map h1.1; � / D
f1 ı pj�0

W�0 ! Z where f1WM1 ! Y is defined by

f1.x/ WD Hy0
.F.x/; g.x//. (11.17)

Since p.�0/ D M1 and h1.¹1º � �0/ � Z, we have actually f1WM1 ! Z. By
what we had already observed from the homotopic version of the Vietoris theo-
rem, it follows that f0; f1WM1 ! Z are homotopic, that is, there is a continuous
map h2W Œ0; 1� � M1 ! Z with h2.i; � / D fi for i D 0; 1. Now we define
H2W Œ0; 1� �M1 ! Y0 by

H2.t; x/ WD hy0
.F.x/; h2.t; x//.

For i D 0; 1, we have H2.i; x/ D hy0
.F.x/; fi.x//, and so (11.16) and (11.17),

imply H2.0; � / D f jM1
, H2.1; � / D gjM1

. Since M1 is closed and Y0 is an
AE for Œ0; 1��M , we can use the both-sided homotopy extension theorem (Theo-
rem 4.45) to extendH2 to a homotopyH2W Œ0; 1��M ! Y0 satisfyingH2.0; � / D
f andH2.1; � / D g. ThenH2 shows that f and g are .F;M0; Y0/-homotopic on
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M . Indeed, assume by contradiction that there are .t; x/ 2 Œ0; 1� �M0 satisfying
F.x/ D H2.t; x/ 2 Y0. Then x 2 F�1.Y0/, and so x 2M1. We obtain

F.x/ D H2.t; x/ D hy0
.F.x/; h2.t; x//

and thus h2.t; x/ D Hy0
.F.x/; F.x// D y0, contradicting the fact that h2 as-

sumes its values in Z.

Theorem 11.36 will be our key tool to reduce the multivalued case to a setting
with single-valued maps concerning degree theory. However, essentially the same
idea works not only for degree theory but also for even finer and more sophisti-
cated tools from homotopy theory, see e.g. [64], [65].

11.3 Homotopies of Triples

Now we intend to define generalized homotopies between function triples.

Definition 11.40. A function triple .G;H; h/ or, more verbosely,
.G;H; h;W;X; Y; �/ is called a generalized homotopy triple for the family
.Gt ;Ht ; ht ;Wt ; Y; �t / .t 2 I / if the following holds:

(a) I , X , and � are Hausdorff spaces, Y is a topological space.

(b) W � I �X , Wt D ¹x 2 X W .t; x/ 2 W º.
(c) �t � � .t 2 I /. We equip e� WD S

t2I .¹tº��t / with the topology inherited
from the product topology of I � � .

(d) GWW ! Y , graph.G/ is closed in W � Y , Gt D G.t; � /WWt ! Y .

(e) H WW ( � is upper semicontinuous with compact values H.t; x/, and
Ht D H.t; � /W� ( �t .

(f) h 2 C.e�; Y /, ht D h.t; � /W�t ! Y .

If additionally H is acyclic or acyclic� , we call the generalized homotopy triple
acyclic or acyclic� . If

[

t2I

.¹tº � coin.Gt ;Ht ; ht // D ¹.t; x/ 2 W W Gt.x/ 2 ht .Ht.x//º (11.18)

is compact in W , we call the generalized homotopy triple proper.

These are indeed homotopies for closed function triples. Moreover, in a canon-
ical manner, we can interpret the homotopy triples as closed function triples.
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Proposition 11.41. We put in the above setting eH.t; x/ WD ¹tº � H.t; x/. Then
.G; eH;h;W; Y;e�/ is a closed function triple which is acyclic, acyclic�, or proper,
respectively. The set (11.18) is coin.G; eH;h/ and closed in W . The family
.Gt ;Ht ; ht / .t 2 I / consists automatically of closed function triples which are
acyclic, acyclic� , or proper, respectively. Moreover,

.G.t; � /; eH.t; � /; hj¹tº��t
;Wt ; Y; ¹tº � �t/  .Gt ;Ht ; ht ;Wt ; Y; �t /. (11.19)

Proof. The upper semicontinuity of eH follows from Proposition 2.99. The upper
semicontinuity ofHt follows from Proposition 2.90. Since eH.t; x/ is homeomor-
phic to H.t; x/ for every .t; x/ 2 W , we find that eH is acyclic or acyclic� if and
only if H has this property. Since .G; eH;h/ is closed, Proposition 2.29 yields
that coin.G; eH;h/ is closed in W . If this set is compact, the compactness of
coin.Gt ;Ht ; ht / follows from Proposition 2.62. The relation (11.19) follows by
considering the canonical homeomorphism J W ¹tº � �t ! �t , J.t; x/ WD x in
Definition 11.7.

Proposition 11.42. Let .G; eH;h;W; Y;e�/ be as in Proposition 11.41. Denote

the corresponding standard form by .G; eOH; Oh;W; Y; O�/, and the standard form of

.Gt ;Ht ; ht / by At WD .Gt ; eH t ;eht ;Wt ; Y;e� t /. Then eOH.t; x/ D ¹tº � OH.t; x/
where .G; OH; Oh/ is a generalized homotopy triple for a family

.Gt ; OHt ; Oht ;Wt ; Y; O�t /  At .t 2 I /.
Proof. We have

O� D graph.eH/ D ¹.t; x; t; z/ W .t; x/ 2 W , z 2 H.t; x/º,
eOH.t; x/ D ¹.t; x; t/º � H.t; x/, and Oh.t; x; t; z/ D h.t; z/. Hence, OH.t; x/ D
¹.x; t/º �H.t; x/. We find that we can choose OHt .x/ WD ¹.x; t/º �H.t; x/,

O�t WD ¹.x; t; z/ W x 2 Wt , z 2 H.t; x/º,
Oht .x; t; z/ WD h.t; z/. On the other hand, we have

e� t D ¹.x; z/ W x 2 Wt , z 2 H.t; x/º,
eH t .t; x/ D ¹xº � H.t; x/, and ht .x; z/ D h.t; z/. Comparison shows that we
can choose the canonical homeomorphism Jt W O�t ! e� t , Jt .x; t; z/ WD .x; z/, in
Definition 11.7.
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Definition 11.40 is probably what the reader might intuitively expect about a
generalized homotopy of function triples: Roughly speaking, it should be a gen-
eralized homotopy in each of the three functions. However, in order to interpret
the homotopy triple itself as a function triple, we had to introduce an auxiliary
map, and with this auxiliary map the natural correspondence (11.19) “at time t”
holds only after a canonical identification. This is another reason why it is impor-
tant for us that the degree does not change under such identifications.

Although Definition 11.40 might appear rather natural, it might also appear
unnecessarily restrictive: Although it is natural to require that W is a subset of a
product space, it is perhaps not so natural to expect the same for e� � I � � . In
fact, for the admissible pairs in [70], the co-triads in [93], and also in the general
approach from [140], another notion of homotopies is used where an arbitrary
Hausdorff space e� is used. If we also drop the requirement that W be a subset of
a product space, this corresponds to the following definition.

Definition 11.43. A function triple .G;H; h/ or, more verbosely,
.G;H; h;W; Y; �/ is called an abstract homotopy triple for the family
.Gt ;Ht ; ht ;Wt ; Y; �t / .t 2 I / if the following holds:

(a) X and � are Hausdorff spaces Y is a topological space.

(b) Wt � W is closed in W for each t 2 I .

(c) �t � � .t 2 I /.
(d) GWW ! Y , graph.G/ is closed in W � Y , Gt D GjWt

WWt ! Y .

(e) H WW ( � is upper semicontinuous with compact values H.x/, and Ht WD
H jWt

W� ( �t .

(f) h 2 C.�; Y /, ht D hj�t
W�t ! Y .

If additionally H is acyclic or acyclic� , we call the abstract homotopy triple
acyclic or acyclic� . If coin.G;H; h/ is relatively compact in W , we call the ab-
stract homotopy triple proper.

Proposition 11.44. In the above setting, the triple .G;H; h;W; Y; �/ is a closed
function triple which is acyclic, acyclic� , or proper, respectively. The family
.Gt ;Ht ; ht ;Wt ; Y; �t / .t 2 I / consists automatically of closed function triples
which are acyclic, acyclic�, or proper, respectively.

Proof. The first assertion is an immediate consequence of the definitions and
Proposition 11.6. The upper semicontinuity of Ht follows from Proposition 2.90.
Finally, if .G;H; h/ is proper then coin.Gt ;Ht ; ht / D Wt \ coin.G;H; h/ is
compact by Proposition 2.29, since Wt is closed.
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It may be somewhat surprising that in the most important case W � I � X
(with Wt D ¹x W .t; x/ 2 W º) we actually do not obtain more general results by
considering abstract homotopies instead of generalized homotopies.

In fact, both notions are equivalent in the sense that to each generalized ho-
motopy triple, we can canonically associate an abstract homotopy triple and vice
versa, corresponding to the same families up to some natural identifications:

Proposition 11.45. Let I and X be Hausdorff spaces, W � I � X , Wt D
¹x W .t; x/ 2 W º, and let Jt WWt ! ¹tº � Wt be the canonical homeomorphism
Jt .x/ WD .t; x/.

(a) Whenever .G;H; h;W; Y; �/ is a generalized homotopy triple for the family
.Gt ;Ht ; ht ;Wt ; Y; �t / .t 2 I /, then .G; eH;h;W; Y;e�/ with eH and e� as in
Proposition 11.41 is an abstract homotopy triple for the family

.Gj¹tº�Wt
; eH j¹tº�Wt

; hj¹tº��t
; ¹tº �Wt ; Y; ¹tº � �t/

 .Gt ı Jt ;Ht ı Jt ; ht ;Wt ; Y; �t /.

Moreover, .G;H; h;W; Y; �/ is acyclic, acyclic� , or proper if and only if
.G; eH;h;W; Y;e�/ has this property.

(b) Whenever .G;H; h;W; Y; �/ is an abstract homotopy triple for the family
.Gt ;Ht ; ht ; ¹tº �Wt ; Y; �t / .t 2 I / then .G;H;eh;W; Y;e�/ with

e� WD
[

t2I

.¹tº � �t / � I � � and eh.t; z/ WD h.z/

is a generalized homotopy triple for the family

.G.t; � /;H.t; � /; ht ;Wt ; Y; �t / D .Gt ıJ�1
t ;Ht ıJ�1

t ; ht ; ¹tº�Wt ; Y; �t /

Moreover, .G;H; h;W; Y; �/ is acyclic, acyclic� , or proper if and only if
.G;H;eh;W; Y;e�/ has this property.

Proof. The assertions follow straightforwardly from the definitions or Proposi-
tion 11.41.

Proposition 11.45 states that, roughly speaking, in case W � I � X it is just
a matter of taste and notation whether one considers abstract homotopy triples or
generalized homotopy triples. Typically, the former is more convenient for the
theory while the latter is more convenient for applications.

However, for the case that W is not a subset of a space of the form I � X
(like e.g. when I D ¹0; 1º and we want to prove a bordism invariance of the
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degree) it is not even possible to formulate the corresponding assertions by using
generalized homotopy triples: In such a case it cannot be avoided to work with
abstract homotopy triples.

Abstract homotopy triples satisfy an analogue of Proposition 11.42. It is not
even necessary to consider an equivalence relation for the corresponding state-
ment.

Proposition 11.46. Let .G;H; h/ be an abstract homotopy triple for the family
.Gt ;Ht ; ht ;Wt ; Y; �t / .t 2 I /. Then the standard form of .G;H; h/ is an ab-
stract homotopy triple for the standard forms of .Gt ;Ht ; ht / .t 2 I /.
Proof. Let .G; eH;eh;W; Y; �/ and .Gt ; eH t ;eht ;W; Y;e� t / denote the correspond-
ing standard forms. We have � D graph.H/ D ¹.x; z/ W z 2 H.y/º and e� t D
graph.Ht / D graph.H/\ .Wt �Y /. Hence, eH.x/ D ¹xº�H.x/ andeh.x; z/ D
h.z/ while eH t .x/ D ¹xº � H.x/ and eht.x; z/ D h.z/. It follows that eH t D
eH jWt

and eht Dehj
e� t

.

11.4 Locally Normal Triples

The following class of function triples will play a particular role in Chapter 14 for
the case I D Œ0; 1�.

Definition 11.47. Let I be a Hausdorff space. We call a function triple
.F;ˆ; ';�; Y; �/ locally I -normal (or locally normal) if there is an open neigh-
borhood �0 � � of coin	.F;ˆ; '/ such that for any open subset �1 � �0 and
any compact C � ˆ.�1/ there is a neighborhood Z0 of C in ˆ.�1/ such that
I �Z0 (or Z0) is normal.

We recall that even in case I D Œ0; 1�, it is slightly more restrictive to require
that I � Z0 is normal than to require that Z0 is normal, see Corollary 2.76 and
the subsequent remarks.

Clearly, .F;ˆ; ';�; Y; �/ is locally normal if � is completely normal. How-
ever, in most cases it suffices that � is normal, and actually even less suffices as
we will show now.

Note that if .F;ˆ; '/ is in standard form, that is, ˆ D p�1 with a continuous
map p then ˆ sends open sets onto open sets. The following result implies in
particular that in such a situation, it suffices that I � � is normal.

Proposition 11.48. Let I be a Hausdorff space. Then .F;ˆ; ';�; Y; �/ is locally
I -normal (or locally normal) if one of the following holds:
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(a) coin	.F;ˆ; '/ D ¿.

(b) There is some open neighborhood �0 � � of coin	.F;ˆ; '/ such that for
any Z � ˆ.�0/ the space I �Z (or Z) is normal. This holds in particular,
if I �ˆ.�0/ (or ˆ.�0/) is completely normal.

(c) There is some open neighborhood �0 � � of coin	.F;ˆ; '/ such that
ˆ.�0/ is contained in a Hausdorff space Z such that I � Z (or Z) is T4,
and for any open �1 � �0 the set ˆ.�1/ is open in Z.

Proof. In case (a), we choose �0 D ¿ in Definition 11.47.
Let �1 � �0 be open, and C � ˆ.�1/ be compact. In case (b), we put

Z0 WD Z WD ˆ.�1/ and obtain by hypothesis that I �Z0 is normal.
Suppose now that ˆ.�0/ is contained in a Hausdorff space Z such that I �

Z is T4, hence normal, and ˆ.�1/ is open in Z. Note that Z is regular by
Theorem 2.36, and so Corollary 2.48 implies that the compact set C � ˆ.�1/

has a closed neighborhood Z0 � Z which is contained in the open set ˆ.�1/.
Since I � Z0 is a closed subset of the normal space I � Z, Proposition 2.44
implies that I �Z0 is normal.
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The Degree for Finite-Dimensional Fredholm
Triples

12.1 The Triple Variant of the Brouwer Degree

Throughout this section, let X be a C 1 Banach manifold without boundary over a
real normed space E D EX ¤ ¹0º, and let Y D EY be a real normed space with
0 < dimEX D dimEY <1.

Definition 12.1. We write .F;ˆ; ';�/ 2 TBr.X; Y / if � � X is open, F 2
C.�; Y /, and if .F;ˆ; '/ is a proper acyclic� function triple.

Note that Corollary 2.117 implies automatically that graph.F / is closed.
The purpose of this section is to define a degree on the class TBr.X; Y / which

“counts” coin	.F;ˆ; '/.
According to Remark 11.14 and in view of the subsequent weak equivalence

invariance of the Brouwer degree, we can omit the set � from the notation of
function triples (although the topology on ˆ.�/ inherited from � will be consid-
ered given). We also omit Y from the notation.

The degree will assume its values in Z2. If we want to obtain a degree which
assumes its values in Z, we require in addition that F is oriented in the sense of
Definition 9.16. As in the discussion of the Brouwer and Benevieri–Furi degrees,
we will notationally not distinguish between these cases, although formally we
should write the couple .F; �/ (where � denotes an orientation of F ) instead of F
in the oriented case.

Definition 12.2. The Brouwer triple degree is an operator deg D deg.X;Y / which
associates to each .F;ˆ; ';�/ 2 TBr.X; Y / a number from Z2 (or from Z in the
oriented case) such that the following holds for each .F;ˆ; ';�/ 2 TBr.X; Y /:

(ATBr) (Homotopy Invariance in the Last Function). If h 2 C.Œ0; 1� �
ˆ.�/; Y / is such that

coinŒ0;1��	.F;ˆ; h/ D ¹.t; x/ 2 Œ0; 1� �� W F.x/ 2 h.t;ˆ.x//º (12.1)

is compact then

deg.F;ˆ; h.0; � /;�/ D deg.F;ˆ; h.1; � /;�/. (12.2)
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(BTBr) (Normalization). If ˆ D id	 then

deg.F; id	; ';�/ D deg.F � ';�; 0/,
where the right-hand side denotes the Brouwer degree. The orientation of
F � ' for the oriented case is described below.

(CTBr) (Excision). If �0 � � is open and contains coin.F;ˆ; '/ then

deg.F;ˆ; ';�0/ D deg.F;ˆ; ';�/.

(DTBr) (Weak Equivalence Invariance). If .F;eˆ;e'/ is an acyclic� function
triple then

.F;eˆ;e'/ - .F;ˆ; '/ H) deg.F;eˆ;e';�/ D deg.F;ˆ; ';�/.

Note for the weak equivalence invariance that .F;eˆ;e'/ 2 TBr.X; Y / is auto-
matic by (11.8).

In the oriented case, the orientation of F � ' in the normalization property is
defined as follows. We fix some orientation of Y . The orientation of Y and of
F induces an orientation on � in the sense of Proposition 9.34. The orientations
on � and Y in turn induce the required orientation on F � ' 2 C.�; Y /. This
orientation is well-defined, since for the opposite orientation of Y , we obtain the
opposite orientation of � and thus the same orientation of F � '.

Remark 12.3. The notation (12.1) coincides with our previous definition of coin,
if we consider .F;ˆ; h/ as a function triple, that is, if we consider F and ˆ as
functions defined on Œ0; 1��� (although they are actually independent of the first
argument). We will tacitly make such identifications from now on when we use
the notation coin or fix.

Theorem 12.4. For each fixed .X; Y / there is exactly one Brouwer triple degree
deg D deg.X;Y /. Its restriction to triples in standard form is uniquely determined
by the corresponding restriction of the properties of Definition 12.2 to triples in
standard form.

Moreover, the Brouwer triple degree satisfies the following properties for all
.F;ˆ; ';�/ 2 TBr.X; Y /:

(ETBr) (Equivalence Invariance). With T D TBr.X; Y /, we have

.F;ˆ; '/ �T .F;eˆ;e'/ H) deg.F;ˆ; ';�/ D deg.F;eˆ;e';�/.
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(FTBr) (Single-Valued Normalization). If ' ıˆ is single-valued then

deg.F;ˆ; ';�/ D deg.F; id	; ' ıˆ;�/ D deg.F � .' ıˆ/;�; 0/,
(12.3)

where the right-hand side denotes the Brouwer degree. The orientation of
F �.' ıˆ/ in the oriented case is analogous to the normalization property.

(GTBr) (Compatibility with the Non-oriented Case). The degrees for the ori-
ented and non-oriented case are the same modulo 2 (if the oriented case
applies).

Proof. Let T0 denote the class of all those .F;ˆ; ';�/ 2 TBr.X; Y / which are
in standard form. We prove the assertions first for the restriction of the de-
gree to T0. By Proposition 9.1, there is an open neighborhood �0 � � of
K WD coin.F;ˆ; '/ with compactM WD �0 � �. ThenM0 WD @�0 D �0 n�0

is compact, and coinM0
.F;ˆ; '/ D ¿. Moreover, M0 is metrizable (and thus

T6) and satisfies dimM0 � IndM0 < 1 by Proposition 9.1. Hence, by Theo-
rem 11.36, there is an .M0; Y /-admissible simplifier f for .F;ˆ; '/ on M .

To prove the uniqueness of the degree, we recall that this means that there is
H 2 C.Œ0; 1��ˆ.M/; Y / withH.0; � / D ' and coinM0

.F;ˆ;H.t; � // D ¿ for
all t 2 Œ0; 1� such that f is a simplifier for .F;ˆ;H.1; � // on M .

Using the convention of Remark 12.3, we note that Proposition 11.6 implies
that coinŒ0;1��	0

.F;ˆ;H/ is a closed hence compact subset of Œ0; 1� � �0 and
actually contained in Œ0; 1� ��0. Hence, we can calculate

deg.F;ˆ; ';�/ D deg.F;ˆ; ';�0/

D deg.F;ˆ;H.0; � /;�0/ D deg.F;ˆ;H.1; � /;�0/

D deg.F; id	0
; f;�0/ D deg.F � f;�0; 0/.

For the fourth inequality, we have used Proposition 11.32. This proves the unique-
ness, and also the compatibility with the non-oriented case follows from the cor-
responding property of the Brouwer degree.

To prove the existence, we define the degree in the above situation by

deg.F;ˆ; ';�/ WD deg.F � f;�0; 0/, (12.4)

where f is an .@�0; Y /-admissible simplifier for .F;ˆ; '/ on �0. We already
know that such an f exists, and we have to show that this definition is independent
of the particular choice of�0 and f0 WD f . Thus, let�1 and f1 be different such
choices. We have to show that

deg.F � f0;�0; 0/ D deg.F � f1;�1; 0/. (12.5)
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We assume first �0 D �1. In this case, we apply the uniqueness assertion
of Theorem 11.36 with M WD �0 and M0 WD @�0. We find that there is
a continuous h0W Œ0; 1� � M ! Y with h0.0; � / D f0, h0.1; � / D f1, and
coinM0

.F; h0.t; � // D ¿ for all t 2 Œ0; 1�. It follows that the closed and thus
compact set .F � h0/

�1.0/ � Œ0; 1� �M is even contained in �0 D �1. Hence,
(12.5) follows in case �0 D �1 by the homotopy invariance of the Brouwer
degree.

In case�0 ¤ �1, we put�2 WD �0\�1. For i D 0; 1, we apply the existence
assertion of Theorem 11.36 with M WD �i and M0 WD M n�2 to find that there
is an .M0; Y /-admissible simplifier gi for .F;ˆ; '/ on �i . Applying the special
case of the uniqueness which we have just shown, and using the excision property
of the Brouwer degree, we obtain that

deg.F � fi ;�i ; 0/ D deg.F � gi ;�i ; 0/ D deg.F � gi ;�2; 0/

for i D 0; 1. Now we note that g0 and g1 are both .@�2; Y /-admissible simplifiers
for .F;ˆ; '/ on�2. Applying once more the special case of the uniqueness which
we have just shown, we obtain

deg.F � g0;�2; 0/ D deg.F � g1;�2; 0/,

and (12.5) follows by combining the above equalities.
It is clear from the definition that the degree (12.4) satisfies the excision prop-

erty. If f D ' ı ˆ is single-valued then it is continuous by Propositions 2.80
and 2.94. Proposition 11.31 implies that f is a simplifier, and the homotopy
H.t; z/ D '.z/ shows that it is a .M0; Y /-admissible simplifier. Hence, we have

deg.F;ˆ; ';�/ D deg.F � .' ıˆ/;�; 0/.
This implies in particular the normalization property, and applying the normaliza-
tion property with ' ıˆ in place of ', we obtain the remaining equality in (12.3).

We show now that deg also satisfies the homotopy invariance in the last func-
tion. Thus, let hW Œ0; 1� ��! Y be an oriented homotopy with compact

K WD ¹.t; x/ 2 Œ0; 1� �� W F.x/ 2 h.t;ˆ.x//º.
By Corollary 9.3, there is an open set �0 � � with Œ0; 1��K � �0 and compact
�0 � �. We find by our definition of the degree a .@�0; Y /-admissible sim-
plifier f for .F;ˆ; h.1; � // on �0. In particular, there is a continuous function
H W Œ0; 1� �ˆ.M/! Y with H.0; � / D h.1; � / and coinM0

.F;ˆ;H.t; � // D ¿
for all t 2 Œ0; 1� such that f1 is a simplifier for .F;ˆ;H.1; � // on �0. We con-
sider the concatenated homotopy

H0.t; x/ WD
´

h.2t; x/ if 2t � 1,

H.2t � 1; x/ if 2t � 1,
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which is continuous by the glueing lemma (Lemma 2.93). Then H0 proves that
f1 is an .@�0; Y /-admissible simplifier f for .F;ˆ; h.1; � // on �0. By the defi-
nition of the degree, we have thus shown that

deg.F;ˆ; h.i; � /;�/ D deg.F � f;�0; 0/

for i D 0; 1, and so the homotopy invariance in the last function is established.
We prove now the equivalence invariance (with T replaced by T0). We can

assume that
.F;ˆ; ';�; Y; �/ v .F;eˆ;e';�; Y;e�/,

since the general case follows by induction. By our hypothesis, .F;ˆ; '/ and
.F;eˆ;e'/ are in standard form, say ˆ D p�1 and eˆ D ep�1. We obtain from
Proposition 11.19 that there is a continuous map J W� ! e� with

ep ı J D p and e' ı J D '.

Let�0 � X be an open neighborhood of the compact set coin.F;eˆ;e'/with com-
pact�0 � �. By (11.6), we also have coin.F;ˆ; '/ � �0. Let f be a .@�0; Y /-
admissible simplifier for .F;eˆ;e'/ on�0. This means that there isH 2 C.Œ0; 1��
eˆ.�0/; Y / with H.0; � / D e' and coin@	0

.F;eˆ;H.t; � // D ¿ for all t 2 Œ0; 1�
such thatH.1; � / D f ıep. Then the continuous functionH0W Œ0; 1��ˆ.�0/! Y ,
H0.t; z/ WD H.t; J.z//, has the property that H0.0; � / D ', and by (11.3), we
have H0.t;ˆ.x// � H.t;eˆ.x// and thus coin@	0

.F;ˆ;H0.t; � // D ¿ for all
t 2 Œ0; 1�. Finally, H0.1; � / D f ı ep ı J D f ı p. Consequently, H0 proves
that f is a .@�0; Y /-admissible simplifier for .F;ˆ; '/ on �0. We obtain by the
definition of the degree that

deg.F;ˆ; ';�/ D deg.F � f;�0; 0/ D deg.F;eˆ;e';�/,

and the equivalence invariance for the class T0 is established.
Finally, we pass to the general case. Given .F;ˆ; ';�/ 2 TBr.X; Y /, we let

.F;eˆ;e'/ denote the corresponding standard form. Theorem 11.23 implies that

.F;eˆ;e'/ 2 TBr.X; Y / is in standard form and

.F;eˆ;e'/ - .F;ˆ; '/.

The uniqueness of the degree thus follows from the weak equivalence invariance
and from the uniqueness of the degree for triples from T0. To define the degree,
we put

deg.F;ˆ; ';�/ WD deg.F;eˆ;e';�/, (12.6)

recalling that we have already proved that the latter is well-defined. Since

coin.F;ˆ; '/ D coin.F;eˆ;e'/ (12.7)
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by Proposition 11.8, we obtain the excision property from the excision property
for T0 and from Proposition 11.25. Similarly, we obtain the compatibility of the
oriented and non-oriented cases and the (single-valued) normalization properties
from the corresponding property for T0. To see the equivalence invariance, we
note that Theorem 11.28 implies that if two triples are T -equivalent then their
standard forms are T0-equivalent. Hence, also the equivalence invariance follows
from the corresponding property for T0. It remains to prove the homotopy invari-
ance in the last function. Recall that the definition of the standard form means that
the standard form of .F;ˆ; h.t; � /;�; Y; �/ has the form .F;eˆ;eh.t; � /;�; Y; Q�/
with Q� WD graph.ˆ/, eˆ.x; z/ WD x, and eh.t; .x; z// WD h.t; z/. In particular, eh is
continuous. By (12.7), we have

¹.t; x/ 2 Œ0; 1� �� W F.x/ 2eh.t;eˆ.x//º
D

[

t2Œ0;1�

.¹tº � coin.F;eˆ;eh.t; � /// D
[

t2Œ0;1�

.¹tº � coin.F;ˆ; h.t; � ///

D ¹.t; x/ 2 Œ0; 1� �� W F.x/ 2 h.t;ˆ.x//º.
Hence, if this set is compact, the homotopy invariance of the degree for triples in
standard form implies

deg.F;eˆ;eh.0; � /;�/ D deg.F;eˆ;eh.1; � /;�/.
By the definition (12.6) of the degree, this equality means (12.2).

Remark 12.5. The above uniqueness proof holds even if one fixes F (and its
orientation) and requires the properties of Definition 12.2 only for that fixed F
(and its restrictions).

Remark 12.6. In view of Remark 9.41, we emphasize that Theorem 12.4 and
the subsequent properties of the Brouwer triple degree hold also if X and Y are
oriented and if for the map F only the correspondingly induced orientations are
considered.

In fact, the existence (and further properties) of such a degree are clear, since it
is a special case of the degree we consider above. Only whether the uniqueness is
guaranteed by its properties may be unclear, but concerning uniqueness, we have
the even stronger result of Remark 12.5.

Remark 12.7. One could also define a C r Brouwer triple degree .1 � r � 1/
where only maps F of class C r are considered (one has to assume that X is of
class C r in this case).
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In fact, the existence (and further properties) of such a degree are special cases
of the setting with continuous F , and the uniqueness of such a degree follows
from Remark 12.5.

Of course, the degree is actually just the restriction of the degree which we
had considered above. However, for maps F 2 C 1.�; Y / D F0.�; Y / we have
a different notion of orientation (Definition 8.25) which is compatible with the
orientation which we used above (Definition 9.16) in the sense the orientations can
be transformed into each other by means of (9.2) (and Proposition 9.18). However,
the notions are not the same, so we must make precise:

When we speak about the C 1 Brouwer triple degree, we mean the orientation
in the sense of Definition 8.25. In this case, in the normalization property, we also
mean the corresponding C 1 Brouwer degree with the orientation in the sense of
Definition 8.25 (cf. Remark 9.73).

From the compatibility of both notions of orientations (Proposition 9.18), it
follows that there is exactly one C 1 Brouwer triple degree which satisfies the
same properties as the Brouwer triple degree.

The subsequent proof of the additivity is typical for all proofs of properties of
the Brouwer triple degree: Essentially, one has to repeat the above uniqueness
proof carefully, since it instructs how to actually “calculate” the degree (by means
of the ordinary Brouwer degree).

Theorem 12.8. The Brouwer triple degree has the following properties for each
.F;ˆ; ';�/ 2 TBr.X; Y /.

(HTBr) (Additivity). If � D �1 [�2 with disjoint open subsets �i � � then

deg.F;ˆ; ';�/ D deg.F;ˆ; ';�1/C deg.F;ˆ; ';�2/.

(ITBr) (Existence). If deg.F;ˆ; ';�/ ¤ 0 then coin	.F;ˆ; '/ ¤ ¿.

(JTBr) (Excision-Additivity). If �i � � .i 2 I / is a family of pairwise disjoint
open sets with coin	.F;ˆ; '/ �

S

i2I �i and coin	i
.F;ˆ; '/ is compact

for all i 2 I , then

deg.F;ˆ; ';�/ D
X

i2I

deg.F;ˆ; ';�i /,

where in the sum at most a finite number of summands is nonzero.

Proof. To prove the additivity, we recall that the (weak) equivalence invariance
and Theorem 11.23 imply that the degree of a triple is that of its standard form. By
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Proposition 11.25 the standard form of .F;ˆ; ';�i / .i D 1; 2/ is the restriction
of the standard form of .F;ˆ; ';�/. We have to show the additivity for these stan-
dard forms. Hence, without loss of generality, we may assume that .F;ˆ; ';�/
is in standard form, say ˆ D p�1. By Proposition 9.1, there is an open neigh-
borhood �0 � � of K WD coin.F;ˆ; '/ with compact M WD �0 � �. Then
M0 WD @�0 D �0 n �0 � � is compact, and coinM0

.F;ˆ; '/ D ¿. By
Theorem 11.36, there is an .M0; Y /-admissible simplifier f for .F;ˆ; '/ on M .
Hence, there is a continuous function H W Œ0; 1� � ˆ.M/! Y with H.0; � / D '

and coinM0
.F;ˆ;H.t; � // D ¿ for all t 2 Œ0; 1�. With the convention of Re-

mark 12.3, Proposition 11.6 implies thatK0 WD coinŒ0;1��M .F;ˆ;H/ is closed in
Œ0; 1��M and thus compact. By construction ofH , we haveK0 � Œ0; 1���0, and
by Proposition 2.29 also the closed subsets Ki WD K0 n .Œ0; 1� ��3�i /.i D 1; 2/

are compact. Using the excision property, the homotopy invariance in the last
function, Proposition 11.32, the (weak) equivalence invariance, and the normal-
ization property, we calculate

deg.F;ˆ; ';�/ D deg.F;ˆ; ';�0/ D deg.F;ˆ;H.1; � /;�0/

D deg.F; id	0
; f;�0/ D deg.F � f;�0; 0/:

Carrying out the same calculation with �i \ �0 in place of � (recall the com-
pactness of Ki ), we obtain also

deg.F;ˆ; ';�i / D deg.F � f;�i ; 0/ for i D 1; 2.

Now the additivity follows from the additivity of the Brouwer degree.
The existence and excision-additivity properties follow from the excision and

additivity by the same arguments that we had used for the Brouwer degree.

Now we come to the deeper properties of the Brouwer triple degree.
The Brouwer triple degree would not be very useful if it would not satisfy a

much stronger homotopy invariance property than that from Definition 12.2.
Roughly speaking, the idea of the proof of the generalized homotopy invariance

which we prove now is to find a simplifier simultaneously for every time t . This is
possible by applying Theorem 11.36 to an auxiliary triple .G; eH;h/. The crucial
point is that the simplifier f one obtains in this way is then actually continuous in
both variables .t; x/.

Theorem 12.9. The Brouwer triple degree has the following property:

(KTBr) (Generalized Homotopy Invariance). Let .G;H; h;W; Y; �/ be a gen-
eralized proper acyclic� homotopy triple for .Gt ;Ht ; ht ;Wt ; Y; �t / .t 2
Œ0; 1�/ where W � Œ0; 1� � X is open, and G 2 C.W; Y / a generalized
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(oriented) homotopy. Then .Gt ;Ht ; ht ;Wt / 2 TBr.X; Y / for all t 2 Œ0; 1�,
and

deg.Gt ;Ht ; ht ;Wt / is independent of t 2 Œ0; 1�.
Proof. Proposition 11.41 implies the assertion .Gt ;Ht ; ht ;Wt / 2 TBr.X; Y /.
Moreover, with eH.t; x/ WD ¹tº � H.t; x/ as in Proposition 11.41, we have that
.G; eH;h/ is a proper acyclic� homotopy triple. We can assume in view of Propo-
sition 11.42 and the (weak) equivalence invariance without loss of generality that
.G; eH;h/ is in standard form.

By Proposition 9.1, there is an open neighborhood U � W of the set K WD
coin.G;H; h/ with compact M WD U � W . Then M0 WD @U D U n U � W

is compact, and coinM0
.G;H; h/ D ¿. By Theorem 11.36, there is an .M0; Y /-

admissible simplifier f for .G;H; h/ onM . Hence, there is a continuous function
OhW Œ0; 1� �H.M/! Y with Oh.0; � / D h and coinM0

.G;H; Oh.s; � // D ¿ for all
s 2 Œ0; 1� such that f is a simplifier for .G;H; Oh.1; � //. With the convention of
Remark 12.3, Proposition 11.6 implies thatK0 WD coinŒ0;1��M .G;H; Oh/ is closed
in Œ0; 1� �M and thus compact. By construction of H , we have K0 � Œ0; 1� �U .
Using the excision property, the homotopy invariance in the last function, Propo-
sition 11.32, the (weak) equivalence invariance and the normalization property,
we calculate with Ut WD ¹x W .t; x/ 2 U º that

deg.Gt ;Ht ; ht ;Wt /Ddeg.Gt ;Ht ; Oh.0; t; � /; Ut /Ddeg.Gt ;Ht ; Oh.1; t; � /; Ut /

Ddeg.Gt ; idUt
; f .t; � /; Ut /Ddeg.G.t; � /�f .t; � /; Ut ; 0/:

Note also that by Proposition 11.32 the set K1 WD M \ .G � f /�1.0/ D
coinM .G;H; Oh.1; � // is disjoint from M and thus contained in U . Since K1 is a
closed subset of M and thus compact, we obtain by the generalized homotopy in-
variance of the Brouwer degree that the last degree is independent of t 2 Œ0; 1�.

The generalized homotopy invariance can even be extended to a bordism in-
variance for abstract homotopy triples.

Theorem 12.10. The Brouwer triple degree has the following property:

(LTBr) (Bordism Invariance for C 1 Manifolds). Let W be a C 1 manifold over
R � EX with boundary @W . Let .G;H; h;W; Y; �/ be a proper acyclic�
function triple such that C WD coin.G;H; h/ is compact. �0;�1 � @W be
open in @W and disjoint with C \ @W � �0 [�1. Then we have for i D
0; 1 withGi WD Gj	i

,Hi WD H j	i
, hi WD hjH.	i / that .Gi ;Hi ; hi ;�i / 2

TBr.�i ; Y /, and

deg.	0;Y /.G0;H0; h0;�0/ D deg.	1;Y /.G1;H1; h1;�1/.
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It is admissible that �i D ¿ in which case the corresponding degree in
this formula is considered as 0. The orientation of Gi in the oriented case
is described below.

In the oriented case, it is assumed thatW and Y be oriented, and @W be oriented
as the boundary as described in Definition 9.62. The orientation of G0 is then
assumed to be that induced by the orientations of Y and�0 � @W in the sense of
Proposition 9.34, while the orientation of G1 is assumed to be the opposite of the
orientation induced by the orientations of Y and �1 � @W .

Proof. By Proposition 9.1, we find for i D 0; 1 that there is an open in �i neigh-
borhood Ui � �i of the compact set C \ �i such that Wi WD U i is a compact
subset of �i . Putting �i WD Hi .�i /, we obtain that .G;H; h;W; Y; �/ is an ab-
stract homotopy triple for the family .Gi ;Hi ; hi ;Wi ; Y; �i / .i 2 ¹0; 1º/. By the
excision and restriction property, we are to show that

deg.U0;Y /.G0;H0; h0; U0/ D deg.U1;Y /.G1;H1; h1; U1/. (12.8)

Now we pass to the standard form of .G;H; h/. According to Proposition 11.46,
this corresponds to passing to the standard forms of .Gi ;Hi ; hi ; Ui /, and so the
(weak) equivalence invariance of the degree implies that none of the above degrees
changes. Hence, without loss of generality, we can assume that .G;H; h/ is in
standard form.

By Proposition 9.1, there is an open neighborhood U � W of C [ W0 [
W1 with compact M WD U � W . Then M0 WD @U D U n U � W is
compact, and coinM0

.G;H; h/ D ¿. By Theorem 11.36, there is an .M0; Y /-
admissible simplifier f for .G;H; h/ onM . Hence, there is a continuous function
OhW Œ0; 1� �H.M/ ! Y with Oh.0; � / D h and coinM0

.G;H; Oh.t; � // D ¿ for all
t 2 Œ0; 1� such that f is a simplifier for .G;H; Oh.1; � //. With the convention of
Remark 12.3, Proposition 11.6 implies that C0 WD coinŒ0;1��M .G;H; Oh/ is closed
in Œ0; 1� �M and thus compact. By construction of H , we have C0 � Œ0; 1� � U .
Using the homotopy invariance in the last function, Proposition 11.32, the (weak)
equivalence invariance, and the normalization property, we calculate for i D 0; 1

with fi WD f jUi
that

deg.Ui ;Y /.Gi ;Hi ; hi ; Ui/ D deg.Ui ;Y /.Gi ;Hi ; Oh.1; � /; Ui /

D deg.Ui ;Y /.Gi ; idUi
; fi ; Ui / D deg.Ui ;Y /.Gi � fi ; Ui ; 0/.

Note now that Gi � fi D .G � f /jUi
where G � f 2 C.M;Y /. Moreover, by

Proposition 11.32 the setM \ .G�f /�1.0/ D coinM .G;H; Oh.1; � // is compact
and disjoint from M0 and thus contained in U . Applying the bordism invariance
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of the Brouwer degree, we find that the last degree is actually independent of
i 2 ¹0; 1º which implies (12.8).

Proposition 12.11. The Brouwer triple degree has the following properties for
each .F;ˆ; ';�/ 2 TBr.X; Y /.

(MTBr) (Topological-Isomorphic Invariance). Let J1 be a homeomorphism of
an open subset of a Banach manifold X0 onto �, and J2 an isomorphism
of Y onto a real topological vector space Y0. Then

deg.X;Y /.F;ˆ; ';�/ D deg.X0;Y0/.J2 ıF ı J1; ˆ ı J1; J2 ı '; J�1
1 .�//.

In the oriented case, J1 and J2 are assumed to be oriented, and the orien-
tation of J2 ı F ı J1 is the composite orientation of Corollary 9.30.

(NTBr) (Diffeomorphic-Isomorphic Invariance). Let J1 be a diffeomorphism of
an open subset of a Banach manifold X0 onto � and J2 an isomorphism
of Y onto a real normed vector space Y0. Then

deg.X;Y /.F;ˆ; ';�/ D deg.X0;Y0/.J2 ıF ı J1; ˆ ı J1; J2 ı '; J�1
1 .�//.

In the oriented case, the orientation of J2 ı F ı J1 is understood in the
sense of Corollary 9.31.

(OTBr) (Restriction). Let X0 � X be open. Then

deg.X0;Y / D deg.X;Y / jTBr.X0;Y /. (12.9)

Proof. For (OTBr), we note that the right-hand side of (12.9) is a map which has all
properties required in Definition 12.2 when X is replaced by X0: Concerning the
normalization property, this follows from the restriction property of the Brouwer
degree. The uniqueness of the Brouwer triple degree thus implies (12.9).

Now we prove (MTBr). To this end, we consider J1, J2 and � � X as fixed,
and we define a map d for .F;ˆ; ';�0/ 2 TBr.�; Y / by

d.F;ˆ; ';�0/ WD deg.X0;Y0/.J2 ı F ı J1; ˆ ı J1; J2 ı '; J�1
1 .�0//.

A straightforward calculation shows that d satisfies all properties of Defini-
tion 12.2 (when .X;�/ is replaced by .�;�0/). This is nontrivial only con-
cerning the normalization property. For that property, we note that

.J2 ı F ı J1; id	0
ıJ1; J2 ı '/  .J2 ı F ı J1; J

�1
1 ı id	0

ıJ1; J2 ı ' ı J1/,



378 Chapter 12 The Degree for Finite-Dimensional Fredholm Triples

and so we find by the (weak) equivalence invariance and normalization properties
of deg.X0;Y0/ that

d.F; id	0
; '/ D deg.X0;Y0/.J2 ı F ı J1; idJ �1

1
.	0/; J2 ı ' ı J1; J

�1
1 .�0//

D deg.X0;Y0/.J2 ı F ı J1 � J2 ı ' ı J1; J
�1
1 .�0/; 0/

D deg.X0;Y0/.J2 ı .F � '/ ı J1; J
�1
1 .�0/; 0/

D deg.	;Y /.F � ';�0; 0/.

Here, we have used that J2 is linear and for the last equality the homeomorphic
invariance of the Brouwer degree.

By the uniqueness of the Brouwer triple degree, we conclude finally that d D
deg.	;Y /. Using the restriction property of the Brouwer triple degree which we
had already proved, we obtain that

d.F;ˆ; ';�/ D deg.X0;Y0/.F;ˆ; ';�/,

and so the topological-isomorphic invariance (MTBr) of the Brouwer triple degree
is established. The diffeomorphic-isomorphic invariance (NTBr) is only the special
case of (MTBr) when the diffeomorphism J1 and the isomorphism J2 carry the
natural orientations.

In order to extend the Brouwer triple degree to an infinite-dimensional setting,
we will make essential use of the following property.

Theorem 12.12. The Brouwer triple degree has the following property for each
.F;ˆ; ';�/ 2 TBr.X; Y /.

(PTBr) (Reduction). Suppose that there is an open neighborhood �0 � � of
coin	.F;ˆ; '/ with F 2 C 1.�0; Y / and a linear subspace Y0 � Y with

(a) '.ˆ.�0// � Y0.

(b) Y0 is transversal to F on �0.

Then X0 WD �0 \ F �1.Y0/ is a C 1 submanifold of X of the same dimen-
sion as Y0, and if this dimension is positive, we have with F0 WD F jX0

2
C 1.X0; Y0/ that

deg.X;Y /.F;ˆ; ';�/ D deg.X0;Y0/.F0; ˆ; ';X0/.

If F is oriented, the orientation of the restriction F0 is the inherited orien-
tation in the sense of Definition 9.19.
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Remark 12.13. To be formally correct, we should actually write on the right-
hand side deg.X0;Y0/.F0; ˆ0; '0; X0/ where ˆ0 and '0 denote corresponding re-
strictions ofˆ and ', respectively. However, we use here the same slightly sloppy
notation that we had already used several times. Only for F0 we made an excep-
tion to remind of the notation which we used for the inherited orientation.

Proof. Theorem 8.55 implies that X0 is a manifold of the same dimension as Y0.
Using Theorem 11.23 and the (weak) equivalence invariance of the degree, we can
assume that .F;ˆ; '/ is in standard form. By Proposition 9.1, there is an open
neighborhood U � X of K WD coin	.F;ˆ; '/ with compact M WD U � �.
Then also M0 WD @U D M n U and M1 WD M0 \ X0 are compact. By The-
orem 11.36, there is an .M0; Y0/-admissible simplifier f for .F;ˆ; '/ on M .
Hence, there is a homotopy hW Œ0; 1��ˆ.M/! Y0 with coinM0

.F;ˆ; h.t; � // D
¿ for all t 2 Œ0; 1� such that h.0; � / D ', and f is a simplifier for .F;ˆ; h.1; � //.
The excision property, homotopy invariance, Proposition 11.32, the (weak) equiv-
alence invariance, and the normalization property now imply

deg.X;Y /.F;ˆ; ';�/ D deg.X;Y /.F;ˆ; ';U / D deg.X;Y /.F;ˆ; h.1; � /; U /
D deg.X;Y /.F; idU ; f; U / D deg.X;Y /.F � f;U; 0/.

Since h and f assume only values from Y0, we obtain analogously that

deg.X0;Y0/.F0; ˆ; ';X0/ D deg.X0;Y0/.F0; ˆ; h.1; � /; U \ X0/

D deg.X0;Y0/.F0; idU \X0
; f; U \X0/

D deg.X0;Y0/.F0 � f;U \X0; 0/.

Since f assumes only values from Y0 and Y0 is transversal to F on U , the equal-
ity of the above expressions now follows from the C 0 reduction property of the
Brouwer degree (Theorem 10.1).

Remark 12.14. Theorem 12.12 is the only result which used the full strength of
Theorem 11.36: For all of our other applications of Theorem 11.36, the special
case Y0 D Y in Theorem 11.36 was sufficient, but now we had to use that F need
not necessarily assume its values in Y0.

For completeness, we show now also that the Brouwer triple degree inherits the
behaviour under Cartesian products from that of the Brouwer degree:

Proposition 12.15. The Brouwer triple degree has the following property:

(QTBr) (Cartesian Product). For i D 1; 2, let Xi be a manifold without bound-
ary of class C 1 over the real vector space EXi

, and let Yi D EYi
be a real
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vector space with 0 < dimEXi
D dimEYi

< 1. For .Fi ; ˆi ; 'i ;�i / 2
TBr.Xi ; Yi /, we put X WD X1 � X2, � WD �1 � �2, Y WD Y1 � Y2,
F WD F1 ˝ F2, ˆ WD ˆ1 ˝ ˆ2, and ' WD '1 ˝ '2. Then .F;ˆ; ';�/ 2
TBr.X; Y /, and

deg.X;Y /.F;ˆ; ';�/

D deg.X1;Y1/.F1; ˆ1; '1;�1/ deg.X2;Y2/.F2; ˆ2; '2;�2/.

In the oriented case, F is equipped with the product orientation.

Proof. It is evident that the standard form corresponding to .F;ˆ; '/ is the prod-
uct of the corresponding standard forms of .Fi ; ˆi ; 'i / .i D 1; 2/ in the same
sense as above. Hence, using Theorem 11.23 and the (weak) equivalence invari-
ance of the degree, we can assume that .F;ˆ; '/ and .Fi ; ˆi ; 'i / .i D 1; 2/ are
in standard form.

By Proposition 9.1, we find for i D 1; 2 open neighborhoods Ui � X of
Ki WD coin	i

.Fi ; ˆi ; 'i / with compact U i � �i . By Theorem 11.36, there
are .@Ui ; Yi /-admissible simplifiers fi for .Fi ; ˆi ; 'i / on U i . Hence, there are
homotopies hi W Œ0; 1� � ˆ.Mi/ ! Yi with coinMi

.Fi ; ˆi ; hi .t; � // D ¿ for all
t 2 Œ0; 1� such that hi .0; � / D ' and fi is a simplifier for .Fi ; ˆi ; hi .1; � //.
The excision property, homotopy invariance, Proposition 11.32, the (weak) equiv-
alence invariance, and the normalization property now imply on the one hand

deg.Xi ;Yi /.Fi ; ˆi ; 'i ;�i / D deg.Xi ;Yi /.Fi ; ˆi ; 'i ; Ui /

D deg.Xi ;Yi /.Fi ; ˆi ; hi .1; � /; Ui /

D deg.Xi ;Yi /.Fi ; idUi
; fi ; Ui/ D deg.Xi ;Yi /.Fi � fi ; Ui ; 0/

for i D 1; 2, and on the other hand, we obtain with U WD U1�U2, f WD f1˝f2,
and h.t; z1; z1/ WD .h1.t; z1/; h2.t; z2// analogously

deg.X;Y /.F;ˆ; ';�/ D deg.X;Y /.F;ˆ; ';U / D deg.X;Y /.F;ˆ; h.1; � /; U /
D deg.X;Y /.F; idU ; f; U / D deg.X;Y /.F � f;U; 0/.

Hence, the assertion follows from the Cartesian product property of the Brouwer
degree.

12.2 The Triple Variant of the Benevieri–Furi Degree

Our aim in this section is to extend the Brouwer triple degree of Section 12.1 to
the infinite-dimensional situation. Although the Brouwer degree is topological-
isomorphic invariant, it is not completely obvious how the reduction to a finite-
dimensional situation should be done, and in fact this problem was essentially only
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solved in [142]. The latter was our motivation to choose the reduction property
as the key property for the definition of the Benevieri–Furi degree. Now we can
actually use the more or less same idea also for function triples, and we will see by
the reduction property of the Brouwer triple degree that this leads to a well-defined
degree.

Throughout this section, letX be a C 1 Banach manifold without boundary over
a real Banach space E D EX , and let Y D EY be a Banach space. We assume
throughout the non-degeneracy hypothesis (10.8). Recall that with AC, the latter
means just EX ¤ ¹0º and EY ¤ ¹0º.
Definition 12.16. We write .F;ˆ; ';�/ 2 Tgen.X; Y / if � � X is open,
F W� ! Y , and if there is a Hausdorff space � with ˆW� ( � , 'W� ! Y ,
and if there is an open neighborhood �0 � � of

coin.F;ˆ; '/ D ¹x 2 � W F.x/ 2 '.ˆ.x//º
with the following properties:

(a) F j	0
2 F0.�0; Y /.

(b) ˆj	0
is acyclic� .

(c) 'jˆ.	0/ is continuous.

If additionally coin.F;ˆ; '/ is compact, we write .F;ˆ; ';�/ 2 Tprop.X; Y /.
If .F;ˆ; ';�/ 2 Tprop.X; Y / and additionally '.ˆ.�0// is contained in a

finite-dimensional linear subspace of Y , we write .F;ˆ; ';�/ 2 TBF.X; Y /. The
set �0 � � is called an admissible neighborhood.

The degree will assume its values in Z2. If we want to obtain a degree which
assumes its values in Z, we have to assume that F j	0

is oriented on�0 (for some
admissible neighborhood), and we call this setting the oriented case.

Note that we require all hypotheses only in a neighborhood of coin.F;ˆ; '/.
In applications, one usually knows more and thus can use the following more
convenient test.

Proposition 12.17. Let� � X be open, F 2 F0.�; Y /, � be a Hausdorff space,
ˆW� ( � be acyclic�, and ' 2 C.�; Y /. Then .F;ˆ; ';�/ 2 Tgen.X; Y / is a
closed function triple, and the following statements are equivalent:

(a) .F;ˆ; ';�/ belongs to Tprop.X; Y /.

(b) coin.F;ˆ; '/ is relatively compact in �.

Proof. Since F 2 C.�; Y / and Y is Hausdorff, graph.F / is closed by
Corollary 2.117. Hence, the assertion follows from Proposition 11.6.



382 Chapter 12 The Degree for Finite-Dimensional Fredholm Triples

Proposition 12.18. Let .F;ˆ; ';�/ belong to Tgen.X; Y / (Tprop.X; Y /), and�0

be admissible. Then .F;ˆ; '/ is a function triple, and the restriction of this triple
to �0 is a (proper) acyclic� function triple.

Proof. graph.F j	0
/ is closed in �0 � Y by Corollary 2.117.

Hence, after passing to appropriate subsets, we actually only deal with proper
acyclic� function triples.

Definition 12.19. The Benevieri-Furi triple degree is an operator deg D
deg.X;Y / which associates to each .F;ˆ; ';�/ 2 TBF.X; Y / a number from

Z2 (or from Z in the oriented case) such that the following holds:

(ATBF) (Reduction). Let �0 � � be an admissible open neighborhood of
coin	.F;ˆ; '/, that is F 2 F0.�0; Y / (being oriented on �0 in the ori-
ented case), ˆj	0

is acyclic�, and 'jˆ.	0/ is continuous and assumes its
values in a finite-dimensional subspace Y0 � Y . If additionally Y0 is
transversal to F on �0 then X0 WD �0 \ F�1.Y0/ is a C 1 submanifold
of X of the same dimension as Y0, and if this dimension is positive, we
have with F0 WD F jX0

2 F0.X0; Y0/ that

deg.X;Y /.F;ˆ; ';�/ D deg.X0;Y0/.F0; ˆ; ';X0/, (12.10)

where the right-hand side denotes the C 1 Brouwer triple degree (cf. Re-
mark 12.7). In case X0 D ¿, the right-hand side is defined as zero. In the
oriented case, the orientation of F0 is the inherited orientation in the sense
of Definition 8.65.

Theorem 12.20. For fixed X and Y there is exactly one Benevieri–Furi triple
degree. Moreover, this degree automatically has the following properties for any
.F;ˆ; ';�/ 2 TBF.X; Y /:

(BTBF) (Equivalence Invariance). With T D TBF.X; Y /, we have

.F;ˆ; '/ �T .F;eˆ;e'/ H) deg.F;ˆ; ';�/ D deg.F;eˆ;e';�/.

(CTBF) (Compatibility with the Brouwer Triple Degree). If dimEX D
dimEY <1 then deg is the C 1 Brouwer triple degree (cf. Remark 12.7).

(DTBF) (Compatibility with the Non–Oriented Case). The degrees for the ori-
ented and non-oriented case are the same modulo 2 (if the oriented case
applies).
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(ETBF) (Excision). If �0 � � is open and contains coin.F;ˆ; '/ then

deg.F;ˆ; ';�0/ D deg.F;ˆ; ';�/.

Proof. The uniqueness follows from (12.10), if we can prove that for each
.F;ˆ; ';�/ 2 TBF.X; Y / there actually is some �0 and Y0 as in the formulation
of the reduction property, i.e. that there is an admissible neighborhood �0 such
that '.�0/ is contained in a finite-dimensional subspace Y0 which is transversal
to F on �0. However, the latter follows immediately from Proposition 8.70 in
view of Remark 8.71.

For the existence, we choose such �0 and Y0 and define the degree by (12.10).
We have to show that this is well-defined, that is, independent of the particular
choice of �0 and Y0. Thus, let �1 and Y1 be possibly different choices. We
find by Proposition 8.70 and Remark 8.71 a finite-dimensional subspace Y2 �
Y containing Y0 C Y1 which is transversal to F on some open neighborhood
�2 � �0 \ �1 of coin	.F;ˆ; '/. Then in particular Y0; Y1 � Y2. For i D
0; 1; 2, we put Xi WD �i \ F �1.Yi /, and let Fi WD F jXi

2 F0.Xi ; Yi / with the
inherited orientation. For i D 0; 1, we put OXi WD �2 \ Xi and calculate with the
reduction property of the Brouwer triple degree (Theorem 12.12) together with
the restriction and excision properties for the Brouwer triple degree

deg.X2;Y2/.F2; ˆ; ';X2/ D deg
. OXi ;Yi /

.Fi ; ˆ; '; OXi /

deg.Xi ;Yi /.Fi ; ˆ; ';�2 \Xi / D deg.Xi ;Yi /.Fi ; ˆ; ';Xi / for i D 0; 1.

Since the left-hand side is independent of i 2 ¹0; 1º, so must be the right-hand
side, and so the Benevieri–Furi triple degree is well-defined.

The excision property follows from the very definition, since in the reduction
property also any smaller admissible neighborhood �0 can be chosen (and must
give the same value for the Benevieri–Furi triple degree, since we know that it is
well-defined). This definition via the reduction property also implies the compat-
ibility with the non-oriented case by the corresponding property of the Brouwer
triple degree. The compatibility with the Brouwer triple degree follows from the
choice Y0 D Y in the reduction property. For the proof of the equivalence invari-
ance, it suffices by induction to consider the case

.F;ˆ; '/ v .F;eˆ;e'/.
In this case, we choose the sets �0 and Y0 for the definition of the degree ac-
cording to the triple .F;eˆ;e'/. It follows that the same sets can be used in the
definition of the degree for .F;ˆ; '/, and then the equalities of the corresponding
degrees follows from (12.10) and the equivalence invariance of the C 1 Brouwer
triple degree (recall Proposition 11.16).
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Theorem 12.21. The Benevieri–Furi triple degree has the subsequent properties
for every .F;ˆ; ';�/ 2 TBF.X; Y /.

(FTBF) (Homotopy Invariance in the Last Function). Let� � X be open, F 2
F0.�; Y / (oriented on�), � a Hausdorff space, and ˆW� ( � acyclic� .
If Y0 � Y is a finite-dimensional subspace and h 2 C.Œ0; 1� � ˆ.�/; Y0/

is such that

coinŒ0;1��	.F;ˆ; h/ D ¹.t; x/ 2 Œ0; 1� �� W F.x/ 2 h.t;ˆ.x//º
is compact then

deg.F;ˆ; h.0; � /;�/ D deg.F;ˆ; h.1; � /;�/.

(GTBF) (Weak Equivalence Invariance). If .F;eˆ;e'/ is an acyclic� function
triple then

.F;eˆ;e'/ - .F;ˆ; '/ H) deg.F;eˆ;e';�/ D deg.F;ˆ; ';�/.

(HTBF) (Normalization). If ˆ D id	 then

deg.F; id	; ';�/ D deg.F; ';�/,

where the right-hand side denotes the Benevieri–Furi coincidence degree.

(ITBF) (Single-Valued Normalization). If ' ıˆ is single-valued then

deg.F;ˆ; ';�/ D deg.F; id	; ' ıˆ;�/ D deg.F; ' ıˆ;�/, (12.11)

where the right-hand side denotes the Benevieri–Furi coincidence degree.

Proof. The weak equivalence invariance is in view of (11.8), a special case of
the equivalence invariance, which has been proved in Theorem 12.20. Concern-
ing (FTBF), we note that

K WD
[

t2Œ0;1�

coin	.F;ˆ; h.t; � ///

is compact by Corollary 2.101. Proposition 8.70 implies in view of Remark 8.71
that there is an open neighborhood �0 � � of K and a finite-dimensional sub-
space Y1 � Y containing Y0 which is transversal to F on �0. By the reduction
property, we obtain with X0 WD �0 \ F�1.Y1/ and F0 WD F jX0

2 F0.X0; Y1/

that
deg.F;ˆ; h.i; � /;�/ D deg.X0;Y1/.F0; ˆ; h.i; � /;X0/
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for i D 0; 1. Now the homotopy invariance in the last function of the C 1 Brouwer
triple degree implies that the right-hand side is independent of i 2 ¹0; 1º, and
(FTBF) is established. Concerning the single-valued normalization property, we
recall that Proposition 8.70 implies that there is an admissible neighborhood �0 �
� and a finite-dimensional subspace Y0 � Y which is transversal to F on�0 and
contains '.ˆ.�0//. The reduction property of the Benevieri–Furi triple degree
implies for X0 WD �0 \ F�1.Y0/ and F0 WD F jX0

2 F0.X0; Y0/ that

deg.F;ˆ; ';�/ D deg.X0;Y0/.F;ˆ; ';X0/,

while the reduction property of the Benevieri–Furi coincidence degree implies

deg.F; ' ıˆ;�/ D deg.X0;Y0/.F � .' ıˆ/jX0
; X0; 0/.

By the single-valued normalization property of the C 1 Brouwer triple degree,
these expressions are the same. The normalization property is a special case and
implies the remaining equality in (12.11).

We have defined the Benevieri–Furi triple degree analogously to the definition
of the Benevieri–Furi coincidence degree and proved in particular that it has the
properties (ETBF)–(HTBF).

Perhaps, it might have been a more natural approach to define the degree by the
properties (ETBF)–(HTBF): This would be an analogous definition to the Brouwer
triple degree, but only replacing the Brouwer degree by the Benevieri–Furi coin-
cidence degree in the definition.

The following theorem states that actually both approaches lead to the same
degree under a mild additional hypothesis concerning separation axioms for the
spaces occurring in the considered function triples. It is unknown to the author
whether without this additional hypothesis the degree is uniquely determined by
the properties (ETBF)–(HTBF). This is the reason why Definition 12.19 was cho-
sen.

For a moment, let T0 be the subclass of all function triples .F;ˆ; ';�/ 2
TBF.X; Y / with the additional property that there is an admissible neighborhood
�0 with the property that Œ0; 1���0�ˆ.�0/ is T5. If .F;ˆ; ';�/ is in standard
form, we require only that �0 and Œ0; 1� �ˆ.�0/ are T5.

Theorem 12.22. Let deg be any operator which associates to .F;ˆ; ';�/ 2
T0 (see above) a number from Z2 (or Z in the oriented case) with the proper-
ties (ETBF)–(HTBF). Then deg is the restriction of the Benevieri–Furi triple degree
to T0.
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Proof. Let A WD.F;ˆ; ';�/2T0 . We have to show that deg.A/ is the Benevieri–
Furi triple degree of A. Passing to the standard form if necessary (using the weak
equivalence invariance and Theorem 11.23), we can assume that A is in standard
form. For the standard form there is an admissible neighborhood �0 such that
�0 and Œ0; 1� � ˆ.�0/ are T5. Shrinking �0 if necessary, we can assume that
there is a finite-dimensional subspace Y0 � Y which is transversal to F on �0

and which contains '.ˆ.�0//. Recall that X0 WD �0 \ F�1.Y0/ is a finite-
dimensional submanifold by Theorem 8.55. In particular, Proposition 9.1 implies
that there is an open in X0 neighborhood U � X0 of K WD coin	.F;ˆ; '/

whose closure U (in X0) is compact. In particular, also M0 WD @X0
U D U n U

is compact. Since U � �0 and U is open in X0, it follows that the sets U and
B WD .X0 n U / [ @�0 are separated in X and thus separated in the T5 space
�0. Applying Proposition 2.35(c), we find disjoint open in �0 sets �1;W � �0

with U � �1 and B � W . It follows that �1 � �0 is open in X , and its
closure M WD �1 in X is contained in �0 and satisfies �1 \ X0 � U . In
particular, @X�1 \ X0 D M0 and M � �0. Since �0 and Œ0; 1� � ˆ.�0/

are T5, it follows that the spaces M and Œ0; 1� � ˆ.M/ are T4, and so Y0 is an
AE for these spaces by Corollary 2.67. Thus, we can apply Remark 11.39 to
find that there is an .M0; Y0/-admissible simplifier f for A on M . This means
that there is H 2 C.Œ0; 1� � ˆ.M/; Y0/ with coinM0

.F;ˆ;H.t; � // D ¿ for all
t 2 Œ0; 1� and H.0; � / D 'jˆ.M/ such that f is a simplifier for .F;ˆ;H.1; � //.
We put C WD coinŒ0;1��M .F;ˆ;H/ (recall the convention of Remark 12.3).
Since H assumes its values in Y0, we have C � Œ0; 1� � .M \ F�1.Y0//.
Since M \ F�1.Y0/ � X0 and M \ X0 D U , we have even C � Œ0; 1� � U .
Hence, C is compact. Moreover, since coinŒ0;1��M0

.F;ˆ;H/ D ¿, we have
C � Œ0; 1��U � Œ0; 1���1. Thus, using the excision property, applying the ho-
motopy invariance in the last function with h WD H jŒ0;1��	1

, using the weak
equivalence invariance, and the normalization property of the degree, we cal-
culate

deg.F;ˆ; ';�/ D deg.F;ˆ; ';�1/ D deg.F;ˆ; h.1; � /;�1/

D deg.F; id	1
; f;�/ D deg.F; f;�/,

where the last “deg” denotes the Benevieri–Furi coincidence degree. Repeating
the same calculation for the Benevieri–Furi triple degree, we obtain that the given
map deg assumes at A the same value as the Benevieri–Furi triple degree.

Theorem 12.23. The Benevieri–Furi triple degree has the following property:

(JTBF ) (Generalized Homotopy Invariance). Let .G;H; h;W; Y; �/ be a gen-
eralized proper acyclic� homotopy triple for .Gt ;Ht ; ht ;Wt ; Y; �t / .t 2
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Œ0; 1�/ where W � Œ0; 1� � X is open, GWW ! Y a generalized (ori-
ented) Fredholm homotopy of index 0, and h.H.W // � Y0 for some finite-
dimensional subspace Y0 � Y . Then .Gt ;Ht ; ht ;Wt / 2 TBF.X; Y / for
all t 2 Œ0; 1�, and

deg.Gt ;Ht ; ht ;Wt / is independent of t 2 Œ0; 1�.
Proof. Proposition 11.41 implies the assertion .Gt ;Ht ; ht ;Wt / 2 TBF.X; Y /.
Moreover, with eH.t; x/ WD ¹tº � H.t; x/ as in Proposition 11.41, we have that
.G; eH;h/ is a proper acyclic� homotopy triple. We can assume in view of Propo-
sition 11.42 and the (weak) equivalence invariance without loss of generality that
.G; eH;h/ is in standard form. Shrinking W and increasing Y0 if necessary, we
can assume by Proposition 8.70 (and Remark 8.71) without loss of generality that
Y0 is transversal to G on W . It suffices to show by Proposition 2.19 that

d.t/ WD deg.H.t; � /; h.t; � /;Wt /

is locally constant on Œ0; 1�. Thus, let t0 2 Œ0; 1�, and we have to show that d is
constant in some neighborhood of t0.

Putting Xt WD G�1
t .Y0/ and Zt WD ¹tº � Xt , we find by Corollary 8.63 that

Z D S

t2Œ0;1�Zt is a partial C 1 manifold. In particular, Z is a finite-dimensional
C 0 manifold, and so we find by Proposition 9.1 that there is some open neigh-
borhood V � Z of coinW .G;H; h/ whose closure C in Z is compact. By the
reduction property, we have

d.t/ D deg.Xt ;Y0/.Gt ;Ht ; ht ; Xt /,

where the right-hand side denotes the Brouwer triple degree. We apply Theo-
rem 11.36 with the compact sets M0 WD C n V and M WD C and thus find that
there is an .M0; Y0/-admissible simplifier f for .G;H; h/ on M . Hence, there is
OH 2 C.Œ0; 1��H.M/; Y0/ with coinM0

.G;H; h; OH.s; � // D ¿ for all s 2 Œ0; 1�,
OH.0; � / D hjH.M/ such that f is a simplifier for .G;H; OH.1; � //. With the

convention of Remark 12.3, we find by Proposition 11.6 that

Kt WD coinŒ0;1��.Xt \C /.Gt ;Ht ; OH/
is a closed hence compact subset of Œ0; 1��C . From coinM0

.G;H; h; OH.s; � // D
¿, we obtain that Kt � Œ0; 1� � .Xt \ V /. Using the excision property, the
homotopy invariance, the (weak) equivalence invariance and the normalization
property of the Brouwer triple degree, we obtain

d.t/ D deg.Xt ;Y0/.Gt ;Ht ; OH.1; � /; V \Xt /

D deg.Xt ;Y0/.Gt ; idV \Xt
; f .t; � /; V \Xt/

D deg.Xt ;Y0/.G.t; � / � f .t; � /; V \Xt ; 0/.
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Note also that f 2 C.M;Y0/ and that coinM .G; f / is closed and thus compact
and disjoint from M0. Hence, coinV .G; f / is compact.

Now repeating the argument which we had used for the homotopy invariance of
the Benevieri–Furi coincidence degree (Theorem 10.9) (using .G; f / in place of
.H; h/ in that proof), we find that the last expression is independent of t in some
neighborhood of t0.

Under the mild additional assumption that the compact set coinV .G; f / has a
T4 neighborhood N � X , we need not repeat the proof of Theorem 10.9, but
we can use a trick to apply Theorem 10.9 instead: Using Corollary 2.67, we can
extend f to some f 2 C.N; Y0/. Let U0 � X be an open neighborhood of
coinV .G; f / with U0 � N . By definition of the inherited topology there is an
open set U1 � X with V D U1 \Z. Then U WD U0 \U1 is open in X with U \
Z � V . Since f .N / � Y0, we have coinU .G; f / � U \ G�1.Y0/ D U \ Z �
V , and thus actually coinU .G; f / D coinV .G; f / is compact. The (generalized)
homotopy invariance of the Benevieri–Furi coincidence degree implies that

deg.X;Y /.G.t; � /; f .t; � /; U /
is independent of t , and by the reduction property of the Benevieri–Furi coinci-
dence degree, this is just d.t/.

Proposition 12.24. The Benevieri–Furi triple degree has the following properties
for each .F;ˆ; '/ 2 TBF.X; Y /.

(KTBF) (Additivity). If � D �1 [�2 with disjoint open subsets �i � � then

deg.F;ˆ; ';�/ D deg.F;ˆ; ';�1/C deg.F;ˆ; ';�2/.

(LTBF) (Existence). If deg.F;ˆ; ';�/ ¤ 0 then coin	.F;ˆ; '/ ¤ ¿.

(MTBF) (Excision-Additivity). If �i � � .i 2 I / is a family of pairwise dis-
joint open sets with coin	.F;ˆ; '/ �

S

i2I �i , and if coin	i
.F;ˆ; '/ is

compact for all i 2 I , then

deg.F;ˆ; ';�/ D
X

i2I

deg.F;ˆ; ';�i /,

where in the sum at most a finite number of summands is nonzero.

Proof. For the proof of the additivity, let Y0 � Y be a finite-dimensional sub-
space which is transversal to F an admissible open neighborhood �0 � � of
coin	.F;ˆ; '/ (Proposition 8.70 and Remark 8.71). Then Y0 is also transversal



Section 12.2 The Triple Variant of the Benevieri–Furi Degree 389

to F on �i;0 WD �0 \ �i;0 .i D 1; 2/. Putting X0 WD �0 \ F�1.Y0/, and
Xi WD �i;0 \ F�1.Y0/ .i D 1; 2/, we obtain by the reduction property that

deg.F;ˆ; ';�/ D deg.X0;Y0/.F;ˆ; ';X0/;

deg.F;ˆ; ';�i / D deg.Xi ;Y0/.F;ˆ; ';Xi /

D deg.X0;Y0/.F;ˆ; ';Xi / for i D 1; 2;

where we used the restriction property of the Brouwer triple degree for the last
equality. Now the additivity of the Benevieri–Furi triple degree follows from the
additivity of the Brouwer triple degree.

The excision and additivity properties imply the existence and excision-additi-
vity properties by the same arguments that we had already used for the Brouwer
degree.

Proposition 12.25. The Benevieri–Furi triple degree has the following properties
for each .F;ˆ; '/ 2 TBF.X; Y /.

(NTBF) (Diffeomorphic-Isomorphic Invariance). Let J1 be a diffeomorphism
of an open subset of a Banach manifold X0 onto� and J2 an isomorphism
of Y onto a real normed vector space Y0. Then

deg.X;Y /.F;ˆ; ';�/ D deg.X0;Y0/.J2 ıF ı J1; ˆ ı J1; J2 ı '; J�1
1 .�//.

In the oriented case, the orientation of J2 ı F ı J1 is understood in the
sense of Proposition 8.38.

(OTBF) (Restriction). Let X0 � X be open. Then

deg.X0;Y / D deg.X;Y / jTBF.X0;Y /.

Proof. Let Y1 � Y be a finite-dimensional subspace which is transversal to F on
an admissible open neighborhood �0 � � of coin	.F;ˆ; '/ (Proposition 8.70
and Remark 8.71). By the reduction property, we have withX1 WD �0\F�1.Y0/

that
deg.X;Y /.F;ˆ; ';�/ D deg.X1;Y1/.F;ˆ; ';X1/.

By the chain rule, we have also that Y2 WD J2.Y1/ � Y0 is transversal to F1 WD
J2 ı F ı J1 on �1 WD J�1

1 .�0/, and so the reduction property for deg.X0;Y0/

implies similarly with X2 WD �1 \ F �1
1 .Y2/ that

deg.X0;Y0/.F1; ˆ ı J1; J2 ı '; J�1
1 .�// D deg.X2;Y2/.F1; ˆ ı J1; J2 ı ';X2/.
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Now the diffeomorphic-isomorphic invariance of the Brouwer triple degree im-
plies that these degrees are the same. Hence, (NTBF) is established.

The restriction property is the special case J2 D idY and J1 D id	W� !
X .

Proposition 12.26. The Benevieri–Furi triple degree has the following property:

(PTBF) (Cartesian Product). For i D 1; 2, let Xi be a manifold without bound-
ary of class C 1 over the real Banach space EXi

, and let Yi D EYi
be a real

Banach space. For .Fi ; ˆi ; 'i ;�i / 2 TBF.Xi ; Yi /, we put X WD X1�X2,
� WD �1 � �2, Y WD Y1 � Y2, F WD F1 ˝ F2, ˆ WD ˆ1 ˝ ˆ2, and
' WD '1 ˝ '2. Then .F;ˆ; ';�/ 2 TBF.X; Y / and

deg.X;Y /.F;ˆ; ';�/

D deg.X1;Y1/.F1; ˆ1; '1;�1/ deg.X2;Y2/.F2; ˆ2; '2;�2/.

In the oriented case, F is equipped with the product orientation.

Proof. Putting K WD coin	.F;ˆ; '/ and Ki WD coin	i
.Fi ; ˆi ; 'i / .i D 1; 2/,

we have K D K1 � K2, and so K is compact by Theorem 2.63. Hence,
.F;ˆ; ';�/ 2 TBF.X; Y /.

For i D 1; 2, we apply Proposition 8.70 and Remark 8.71: There are finite-
dimensional subspaces Yi;0 � Yi which are transversal to Fi on admissible open
neighborhoods �i;0 � �i of Ki . Then Y0 WD Y1;0 � Y2;0 is a finite-dimensional
subspace of Y which is transversal to F on �0 WD �1;0 ��2;0. Applying the re-
duction property, we thus obtain the assertion from the Cartesian product property
of the Brouwer triple degree.



Chapter 13

The Degree for Compact Fredholm Triples

The aim of this chapter is to extend the Benevieri–Furi triple degree theory to
function triples .F;ˆ; '/ which need not satisfy the artificial requirement that the
range of ' be contained in a finite-dimensional subspace.

For the classical Brouwer degree (in Banach spaces) it is well-known that a
corresponding extension of degree theory exists for maps of the form F D id�'
where ' is continuous and locally compact: This is the famous Leray–Schauder
degree [97]. In our terminology, this is just a degree for the particular function
triples .id	; id	; '/ with locally compact '. We will develop in Section 13.1
even a degree theory for function triples of the form .F;ˆ; '/ where F is (ori-
ented) Fredholm, ˆ is acyclic� , and ' is continuous and locally compact.

We will actually reduce this degree theory analogously to the original approach
of Leray and Schauder to the finite-dimensional situation. This may appear now
rather straightforward, but this is only so simple, because we already solved the
main difficulty related with this approach: Namely, we already established the
existence of the Benevieri–Furi degree for function triples so that, roughly speak-
ing, we have completely settled the finite-dimensional situation, already, even
within an infinite-dimensional framework. In the original approach of Leray
and Schauder this difficulty can be solved much easier by using the reduction
property of the fixed point index in subspaces (recall the remarks after Theo-
rem 10.1). However, such a simple property is not available in our situation, and
we really had to use the Brouwer triple degree on manifolds in order to develop
the Benevieri–Furi triple degree, even if we should only be interested in Banach
spaces.

13.1 The Leray–Schauder Triple Degree

Throughout this section, let X be a C 1 Banach manifold without boundary over
a real Banach space E D EX , and let Y D EY be a real Banach space. We
assume throughout the non-degeneracy hypothesis (10.8), that is, EX ¤ ¹0º and
EY ¤ ¹0º (if we assume AC).
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Definition 13.1. We write .F;ˆ; ';�/ 2 TLS.X; Y / if the following holds.
� � X is open, F W�! Y , and there is a Hausdorff space � with ˆW� ( �

and 'W� ! Y . The set

coin.F;ˆ; '/ D ¹x 2 � W F.x/ 2 '.ˆ.x//º
is compact and has an open neighborhood �0 � � such that the following holds:

(a) F j	0
2 F0.�0; Y /.

(b) ˆj	0
is acyclic�.

(c) 'jˆ.	0/ has a closed graph in ˆ.�0/ � Y .

(d) ' ıˆj	0
is locally compact.

The set �0 � � is called an admissible neighborhood.

For the oriented version of the degree, we assume in addition that F j	0
is

oriented on �0.

Remark 13.2. The requirement that 'jˆ.	0/ has a closed graph is equivalent to
'jˆ.	0/ 2 C.ˆ.�0/; Y / by Corollaries 2.117 and 2.124.

In particular, TLS.X; Y / � Tprop.X; Y /.

Proposition 13.3. Let � � X be open, F 2 F0.�; Y /, � be a Hausdorff space,
ˆW� ( � be acyclic� , and 'W� ! Y have a closed graph in � � Y , and ' ıˆ
be locally compact. Then .F;ˆ; '/ is a closed function triple, and the following
statements are equivalent:

(a) .F;ˆ; ';�/ 2 TLS.X; Y /.

(b) .F;ˆ; ';�/ 2 Tprop.X; Y /.

(c) coin.F;ˆ; '/ is relatively compact in �.

Proof. In view of Remark 13.2 the assertion follows from Proposition 12.17.

Definition 13.4. The Leray-Schauder triple degree is an operator deg D
deg.X;Y / which associates to each .F;ˆ; ';�/ 2 TLS.X; Y / a number from Z2

(or from Z in the oriented case) such that the following properties are satisfied:

(ATLS) (Homotopy Invariance in the Last Function). Let � � X be open,
F 2 F0.�; Y / (oriented on �), � a Hausdorff space, and ˆW� ( �

acyclic�. If h 2 C.Œ0; 1� �ˆ.�/; Y / is compact and such that

coinŒ0;1��	.F;ˆ; h/ D
[

t2Œ0;1�

.¹tº � coin	.F;ˆ; h.t; � ///
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is compact then

deg.F;ˆ; h.0; � /;�/ D deg.F;ˆ; h.1; � /;�/.

(BTLS) (Excision). If �0 � � is open and contains coin.F;ˆ; '/ then

deg.F;ˆ; ';�0/ D deg.F;ˆ; ';�/.

(CTLS) (Reduction). Let �0 � � be an open neighborhood of coin	.F;ˆ; '/

such that F 2 F0.�0; Y / (being oriented on �0 in the oriented case),
ˆj	0

is acyclic� , and 'jˆ.	0/ is continuous and assumes its values in a
finite-dimensional subspace Y0 � Y . If additionally Y0 is transversal to F
on �0 then X0 WD �0 \ F �1.Y0/ is a C 1 submanifold of X of the same
dimension as Y0, and if this dimension is positive, we have with F0 WD
F jX0

2 F0.X0; Y0/ that

deg.X;Y /.F;ˆ; ';�/ D deg.X0;Y0/.F0; ˆ; ';X0/,

where the right-hand side denotes the C 1 Brouwer triple degree (cf. Re-
mark 12.7). In case X0 D ¿, the right-hand side is defined as zero. In the
oriented case, the orientation of F0 is the inherited orientation in the sense
of Definition 8.65.

We will show in a moment:

Theorem 13.5. For each fixed X and Y there is exactly one Leray–Schauder
triple degree. Moreover, in caseˆD id	 the degree deg.F; id	; ';�/ is uniquely
determined by the restriction of the above properties to function triples of the
form .F; id	; ';�/. In addition, the Leray–Schauder degree has the following
properties for each .F;ˆ; ';�/ 2 TLS:

(DTLS) (Generalized Homotopy Invariance). Let .G;H; h;W; Y; �/ be a gen-
eralized proper acyclic� homotopy triple for .Gt ;Ht ; ht ;Wt ; Y; �t / .t 2
Œ0; 1�/ where W � Œ0; 1� �X is open, GWW ! Y a generalized (oriented)
homotopy, and hı eH is locally compact with eH.t; x/ WD .t;H.t; x//. Then
.Gt ;Ht ; ht ;Wt / 2 TLS.X; Y / for all t 2 Œ0; 1�, and

deg.Gt ;Ht ; ht ;Wt / is independent of t 2 Œ0; 1�.

(ETLS) (Compatibility with the Brouwer Triple Degree). Let dimEX D
dimEY > 0 be finite. Then deg is the C 1 Brouwer triple degree (cf. Re-
mark 12.7).
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(FTLS) (Compatibility with the Benevieri–Furi Triple Degree). If there is a
neighborhood �0 � � of coin	.F;ˆ; '/ such that '.ˆ.�0// is con-
tained in a finite-dimensional subspace of Y then deg.F;ˆ; ';�/ is the
Benevieri–Furi triple degree of .F;ˆ; ';�/.

(GTLS) (Compatibility with the Benevieri–Furi Coincidence Degree). If there
is a neighborhood �0 � � of coin	.F;ˆ; '/ such that '.ˆ.�0// is con-
tained in a finite-dimensional subspace of Y and if ' ı ˆ is single-valued
then

deg.F;ˆ; ';�/ D deg.F; ' ıˆ;�/,
where the degree on the right-hand side is the Benevieri–Furi coincidence
degree.

(HTLS) (Compatibility with the Non-Oriented Case). The degrees for the ori-
ented and non-oriented case are the same modulo 2 (if the oriented case
applies).

Later, we will show that the Leray–Schauder triple degree satisfies actually
much more properties like the additivity.

We prepare the proof of Theorem 13.5 by the following observations.

Proposition 13.6. The Leray–Schauder triple degree has automatically the prop-
erties (ETLS)–(GTLS). An analogous assertion holds for the restriction to function
triples of the form .F; id	; ';�/.

Proof. Since the Leray–Schauder triple degree (resp. its restrictions to function
triples of the form .F; id	; ';�/) satisfies the same reduction property as the
Benevieri–Furi triple degree (resp. as the Benevieri–Furi coincidence degree for
.F; ';�/), and since this reduction property characterizes the Benevieri–Furi
triple (resp. coincidence) degree, we obtain the compatibility with the Benevieri–
Furi triple (coincidence) degree. The other compatibilities follow from the com-
patibility of the Benevieri–Furi triple degree with the Benevieri–Furi coincidence
degree and the Brouwer triple degree.

Proposition 13.7. Let .F;ˆ; ';�/ 2 TLS.X; Y /. Then .F;ˆ; '/ is a function
triple, and there is an admissible neighborhood �0 with the additional property
that '.ˆ.�0// is relatively compact in Y .

Proof. By Remark 13.2, the first assertion follows from Proposition 12.18. The
second assertion follows from Proposition 2.125.
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The key property for the Leray–Schauder approach is that continuous maps
with a compact range may be arbitrarily good approximated by continuous maps
with values in a finite-dimensional space. This is usually achieved by means of so-
called Schauder projections. Although it is not hard to construct these projections
directly, we show that they come out as a trivial special case of our generalization
of Dugundji’s extension theorem (Theorem 3.86). By that theorem, we can even
consider a closed "-net instead of just a finite "-net in the following which may be
useful in some occasions.

Proposition 13.8 (Schauder Projection). (AC). Let K � Y , and M � Y be a
closed "-net forK. Then for each ı > " there is � 2 C.K[M; convM/ satisfying
�.x/ D x for each x 2M and

k�.x/� xk < ı for each x 2 K.

Proof. We apply Theorem 3.86 with X WD K [M , A WD M , f WD idA, and
L.x/ WD ı=". Hence, we find some � WD F 2 C.K [ M; convM/ satisfy-
ing F jM D f D idM and (3.30). The latter means for x 2 K in view of
dist.x;M/ < " that

�.x/ 2 conv¹y 2 Y W d.x; y/ � L.x/ dist.x;M/º � convBı.x/ D Bı.x/.

For the last equality, we have used Proposition 3.3.

Remark 13.9. Proposition 13.8 holds also if Y is an arbitrary normed space, not
necessarily a Banach space. Moreover, it is not necessary that M is closed: It
suffices that K \M is closed in K.

In view of Remark 3.89, we do not need AC if K n M is separable: AC! is
sufficient in this case.

Also the following Corollary 13.10 holds if Y is a normed space and not nec-
essarily a Banach space.

Corollary 13.10. For each topological space � , each ' 2 C.�; Y / for which
'.�/ is relatively compact, and each " > 0 there is a finite-dimensional subspace
Y0 � Y and '0 2 C.�; Y0/ such that '0.�/ � conv '.�/ and k'.z/ � '0.z/k <
" for all z 2 � .

Proof. We apply Proposition 13.8 with K WD '.�/ and ı WD ": By Proposi-
tion 3.26 and (3.1), we have �K.K/ D 0 and thus find a finite "=2-net M � K

for K. With � as in Proposition 13.8, we obtain that '0 WD � ı ' has the required
properties.
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Let .F;ˆ; ';�/ 2 TLS.X; Y /. By Proposition 13.7, there is an admissible
neighborhood �0 � � such that C WD '.ˆ.�0// is relatively compact. By
Corollary 3.62, it follows that convC is compact. In view of Corollary 8.74,
there is a neighborhood N � �0 of coin	.F;ˆ; '/ such that F jN is proper.
In particular, K WD N \ F �1.convC/ is compact. Let U � X be open with
coin	.F;ˆ; '/ � U � N . ThenK nU is compact with coinKnU .F;ˆ; '/ D ¿.
Proposition 3.15 implies that

" WD min
x2KnU

dist.F.x/; '.ˆ.x/// > 0.

By Corollary 13.10, there is a finite-dimensional subspace Y0 � Y and a function
'0 2 C.ˆ.N /; Y0 \ convC/ satisfying

sup
z2ˆ.KnU /

k'.z/� '0.z/k < ". (13.1)

Proposition 13.11. In the situation described above, we have .F;ˆ; '0; U / 2
TBF.X; Y / � TLS.X; Y / and

coinN .F;ˆ; '0/ � U: (13.2)

Moreover, the Leray–Schauder triple degree must automatically satisfy

deg.F;ˆ; ';�/ D deg.F;ˆ; '0; U /. (13.3)

Proof. We define h 2 C.Œ0; 1� � ˆ.N /; convC/ by h.t; z/ WD t'0.z/ C .1 �
t/'.z/. The set

Ch WD coinŒ0;1��N .F;ˆ; h/ D ¹.t; x/ 2 Œ0; 1� �N W F.x/ 2 h.t;ˆ.x//º
is by Proposition 11.6 a closed subset of Œ0; 1� � K. Since Œ0; 1� � K is compact
(Theorem 2.63), the set Ch is compact by Proposition 2.29. For each .t; x/ 2
Œ0; 1� � .K n U /, we have by (13.1) that

ı WD sup
z2ˆ.U /

kh.t; z/ � '.z/k < " � dist.F.x/; '.ˆ.x///,

and so dist.F.x/; h.t;ˆ.x/// � " � ı > 0. Hence, Ch � Œ0; 1� � U . This
implies (13.2). Using the homotopy invariance in the last function, we obtain also
that .F;ˆ; h.i; � /; U / 2 TLS.X; Y / for i D 0; 1 and

deg.F;ˆ; h.0; � /; U / D deg.F;ˆ; h.1; � /; U / D deg.F;ˆ; '0; U /.

Since the excision property implies

deg.F;ˆ; ';�/ D deg.F;ˆ; ';U / D deg.F;ˆ; h.0; � /; U /,
we also obtain (13.3).
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Proof of Theorem 13.5. We understand the right-hand side of (13.3) as the
Benevieri–Furi triple degree (or in case ˆ D id	 as the Benevieri–Furi coin-
cidence degree of .F; '0/). In view of Proposition 13.6, the uniqueness assertion
follows.

Concerning the existence, we use (13.3) to define the value deg.F;ˆ; ';�/.
Let us show first that this is well-defined, that is, independent of the particular
choice of �0, U , N and '0.

We show first that this definition is independent of the particular choice of
'0. Thus, let '1 be a possibly different choice. We define h 2 C.Œ0; 1� �
ˆ.N /; convC/ by h.t; z/ WD t'1.z/C .1 � t/'0.z/. The set

Ch WD coinŒ0;1��N .F;ˆ; h/ D ¹.t; x/ 2 Œ0; 1� �N W F.x/ 2 h.t;ˆ.x//º
is by Proposition 11.6 a closed subset of Œ0; 1� �K. Since Œ0; 1� � K is compact
(Theorem 2.63), the set Ch is compact by Proposition 2.29. For each .t; x/ 2
Œ0; 1� � .K n U /, we have by (13.1) that

ı WD sup
z2ˆ.U /

kh.t; z/ � '.z/k < " � dist.F.x/; '.ˆ.x///,

and so dist.F.x/; h.t;ˆ.x/// � " � ı > 0. Hence, Ch � Œ0; 1� � U . Using the
homotopy invariance in the last function of the Benevieri–Furi triple degree, we
obtain that .F;ˆ; h.i; � /; U / 2 TBF.X; Y / for i D 0; 1 and

deg.F;ˆ; h.0; � /; U / D deg.F;ˆ; h.1; � /; U /.
In particular, .F;ˆ; 'i ; U / 2 TBF.X; Y / for i D 0; 1, and

deg.F;ˆ; '0; U / D deg.F;ˆ; '1; U /.

We show now that the definition is also independent of the particular choice
of �0, N , and U as well. Thus, let e�0, eN , and eU be possibly different choices
(with a corresponding set eK). We put C0 WD '.ˆ.�0 [ e�0//, N0 WD N [ eN ,
K0 WD N0\F�1.C0/, and U0 WD U \eU . By what we have shown above, we are
still free to choose the corresponding functions '0 and e'0, since for each choice,
we will obtain the same degree. We note that

"0 WD min
x2K0nU0

dist.F.x/; '.ˆ.x/// > 0.

By Corollary 13.10, there are finite-dimensional subspaces Y0;eY 0 � Y and func-
tions '0 2 C.ˆ.N /; Y0 \ convC/ and e'0 2 C.ˆ.N /;eY 0 \ convC/ satisfying

sup
z2ˆ.KnU0/

k'.z/ � '0.z/k < "0 and sup
z2ˆ.eKnU0/

k'.z/ �e'0.z/k < "0.
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Then (restrictions of) '0;e'0 are admissible for Proposition 13.11, and moreover,
they are also admissible for the definition of the degree (by means of (13.3)) with
the choices �0 [ e�0, N0, and U0. By Proposition 13.11, we have

coinN .F;ˆ; '0/ [ coin
eN .F;ˆ;e'0/ � U0,

and thus by the excision property

deg.F;ˆ; '0; U / D deg.F;ˆ; '0; U0/, (13.4)

deg.F;ˆ;e'0;eU / D deg.F;ˆ;e'0; U0/. (13.5)

Since '0 and e'0 are admissible for the definition of the degree with the choices
�0 [ e�0, N0, and U0, the right-hand sides of (13.4) and (13.5) are the same by
what we have shown above.

Thus, we can indeed use (13.3) to define the degree. We have to show that
this degree has all properties required in Definition 13.4 and Theorem 13.5. The
excision property is clear from the very definition by means of (13.3) (since that
definition is independent of the choice of �0). The compatibility with the non-
oriented case follows also from that definition: The formula (13.3) holds in the
oriented and in the non-oriented case, and so the values of the degree are the same
modulo 2, since this is the case for the Benevieri–Furi triple degree.

Also the reduction property is obvious from that definition: If .F;ˆ; ';�/ is
as in that property, we can choose '0 WD ', and thus have that

deg.F;ˆ; ';�/ D deg.F;ˆ; ';U /

is the Benevieri–Furi triple degree. By the reduction property of the Benevieri–
Furi triple degree (and by the excision and restriction property of the Brouwer
triple degree), we obtain the reduction property of the Leray–Schauder triple de-
gree.

It remains to prove the generalized homotopy invariance, since the homotopy
invariance in the last function is a special case. Thus, let .G;H; h;W; Y; �/ be a
generalized proper acyclic� homotopy triple for the family .Gt ;Ht ; ht ;Wt ; Y; �t /

.t 2 Œ0; 1�/ where W � Œ0; 1� � X is open, GWW ! Y a generalized (oriented)
homotopy, and h ı eH is locally compact with eH.t; x/ WD .t;H.t; x//.

By Proposition 2.125, there is an open neighborhood V � W of the compact
set K0 WD coinW .G; eH;h/ such that C WD h.eH.V // is relatively compact. By
Corollary 3.62, it follows that convC is compact. In view of Theorem 8.73, there
is a neighborhood N � V of K0 such that GjN is proper. Let U � Œ0; 1� � X
be open with K0 � U � N . Putting K WD N \ G�1.C /, we find that K n U is
compact with coinKnU .G; eH;h/ D ¿. Proposition 3.15 implies that

" WD min
.t;x/2KnU

dist.G.t; x/; h.t;H.t; x/// > 0.
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By Corollary 13.10, there is a finite-dimensional subspace Y0 � Y and a function
eh 2 C.�; Y0 \ convC/ satisfying

sup
.t;z/2eH.KnU /

kh.t; z/ �eh.t; z/k < ".

We put now Ut WD ¹x W .t; x/ 2 U º and eht WDeh.t; � /. By the definition (13.3) of
the degree, we have

deg.Gt ;Ht ; ht ;Wt / D deg.Gt ;Ht ;eht ; Ut /. (13.6)

Moreover, (13.2) implies that the compact set coinN .G; eH;eh/ is contained in
U . Hence, coinU .G; eH;eh/ is actually compact, and so .G;H;eh;U; Y; �/ is a
proper acyclic� homotopy triple for .Gt ;Ht ;eht ; Ut / .t 2 Œ0; 1�/. The generalized
homotopy invariance of the Benevieri–Furi triple degree (Theorem 12.23) thus
implies that the right-hand side of (13.6) is independent of t 2 Œ0; 1�.

Definition 13.12. We write .F; ';�/ 2 PLS.X; Y / if� � X is open, F; 'W�!
Y , coin.F; '/ is compact, and if there is an open neighborhood �0 � � of
coin.F; '/ such that

(a) F j	0
2 F0.�0; Y /.

(b) 'j	0
2 C.�0; Y / is locally compact.

In the oriented case, we assume that F j	0
is oriented on �0.

Definition 13.13. The Leray-Schauder coincidence degree deg D deg.X;Y / is
the map which associates to each .F; ';�/ 2 PLS.X; Y / a number from Z2 (or
Z in the oriented case) such that the following properties are satisfied for each
.F; ';�/ 2 PLS.X; Y /.

(APLS) (Homotopy Invariance). If � � X is open, F 2 F0.�; Y / (oriented on
�) and hW Œ0; 1���! Y is continuous and locally compact and such that

coinŒ0;1��	.F; h/ D ¹.t; x/ 2 Œ0; 1� �� W F.x/ D h.t; x/º
is compact, then

deg.F; h.0; � /;�/ D deg.F; h.1; � /;�/.

(BPLS) (Excision). If �0 � � is open and contains coin.F;ˆ; '/ then

deg.F; ';�0/ D deg.F; ';�/.
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(CPLS) (Reduction). Let �0 � � be an open neighborhood of coin.F; '/ with
F j	0

2 F0.�0; Y /, and Y0 ¤ ¹0º a finite-dimensional subspace of Y with
'j	0

2 C.�0; Y0/ and such that Y0 is transversal to F on�0. ThenX0 WD
�0 \ F�1.Y0/ is empty or a submanifold of X of the same dimension as
Y0, and the map G WD .F � '/jX0

2 C.X0; Y0/ satisfies .G;X0; 0/ 2
B0.X0; Y0/ and

deg.X;Y /.F; ';�/ D deg.X0;Y0/.G;X0; 0/,

where the right-hand side denotes the C 0 Brouwer degree; in case X0 D
¿, we define the right-hand side as 0. The orientation of G for the oriented
case is as described after Definition 10.7.

Theorem 13.14. For fixed X and Y there is exactly one Leray–Schauder coin-
cidence degree. Moreover, the Leray–Schauder triple degree has the following
property for each .F;ˆ; ';�/ 2 TLS.X; Y /:

(ITLS) (Normalization). If ˆ D id	 then

deg.F; id	; ';�/ D deg.F; ';�/,

where the right-hand side denotes the Leray–Schauder coincidence degree.

Proof. To see the existence of the Leray–Schauder coincidence degree, we can
simply define it by

deg.F; ';�/ WD deg.F; id	;�/

and observe that all required properties follow from the corresponding properties
of the Leray–Schauder triple degree. The normalization property of the Leray–
Schauder triple degree is clear from that definition.

The additional remark in Theorem 13.5 (claiming that the uniqueness is ob-
tained by restricting the corresponding properties to triples of the form
.F; id	;�/) shows the uniqueness of the Leray–Schauder coincidence degree:
In fact, the properties of Definition 13.13 correspond exactly to the properties of
Definition 13.4 for this restriction.

Remark 13.15. The classical Leray–Schauder degree of a map id	 �' withX D
Y and locally compact ' is a special case of the Leray–Schauder coincidence
degree with F D id	, equipped with the natural orientation as a diffeomorphism.

This follows from Proposition 13.11 applied with F D id	 and ˆ D id	 and
the definition of the classical Leray–Schauder degree (which we will not repeat in
this monograph in detail, since it is in fact just defined as in the mentioned special
case).
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The notion “Leray–Schauder coincidence degree” is somewhat a misnomer: In
fact, this is the degree which was developed in [19] and thus should perhaps be
called Benevieri–Furi coincidence degree. However, we reserved the latter name
already for the special case of maps with values in finite-dimensional subspaces.
Since the only difference to the Benevieri–Furi coincidence degree is the usage
of the Leray–Schauder approximation procedure in the above approach by means
of Proposition 13.11, we have selected the names of Leray and Schauder for the
more general (locally compact) setting.

Theorem 13.16. The Leray–Schauder triple degree has the following properties
for each .F;ˆ; ';�/ 2 TLS.X; Y /:

(JTLS) (Weak Equivalence Invariance). If .F;eˆ;e'/ 2 TLS.X; Y / then

.F;eˆ;e'/ - .F;ˆ; '/ H) deg.F;eˆ;e';�/ D deg.F;ˆ; ';�/.

(KTLS) (Equivalence Invariance). With T D TLS.X; Y /, we have

.F;ˆ; '/ �T .F;eˆ;e'/ H) deg.F;ˆ; ';�/ D deg.F;eˆ;e';�/.

(LTLS) (Single-Valued Normalization). If ' ıˆ is single-valued then

deg.F;ˆ; ';�/ D deg.F; id	; ' ıˆ;�/ D deg.F; ' ıˆ;�/,
where the right-hand side denotes the Leray–Schauder coincidence degree.

Proof. To prove the equivalence invariance, an induction shows that it suffices to
prove that if .F;ˆ; ';�/; .F;eˆ;e';�/ 2 T satisfy .F;eˆ;e'/ v .F;ˆ; '/ then
they have the same Leray–Schauder triple degree. Thus, let J Weˆ.�/! ˆ.�/ be
continuous with

J ı eˆ � ˆ and ' ı J De'.

Let �0 � �, C WD '.ˆ.�0//, N � �0, K WD N \ F�1.convC/, U � N , ",
and '0 be as described before Proposition 13.11, and so (13.3) holds, also when
we understand the right-hand side as the Benevieri–Furi triple degree. We put
eC WDe'.eˆ.�0// and eK WD N \ F�1.conv eC/. Then eC � K, eK � K, and

min
x2eKnU

dist.F.x/;e'.eˆ.x/// � ".

Hence, e'0 WD '0 ı J can be used in Proposition 13.11 with .F;eˆ;e';�/, and so

deg.F;eˆ;e';�/ D deg.F;eˆ;e'0; U /,
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when we understand the right-hand side as the Benevieri–Furi triple degree. Com-
paring this formula with (13.3) and using the equivalence invariance of the
Benevieri–Furi triple degree, we obtain

deg.F;eˆ;e';�/ D deg.F;ˆ; ';�/,

which we had to prove. The weak equivalence invariance is a special case of the
equivalence invariance.

Note that Theorem 11.23 implies that for any .F;ˆ; ';�/ 2 T also the corre-
sponding standard form .F;eˆ;e';�/ belongs to T . Moreover, if ˆ is upper semi-
continuous on�0, ' is continuous onˆ.�0/, and 'ıˆ is single-valued then 'ıˆ
is continuous on �0 in view of Proposition 2.94. Hence, also .F; id	; ' ı ˆ;�/
belongs to T . By Proposition 11.29, we obtain .F;ˆ; '/ �T .F; id	; '/, and so
the equivalence invariance implies the first equality in the single-valued normal-
ization property. The second equality follows from the normalization property.

Theorem 13.17. The Leray–Schauder triple degree satisfies the following prop-
erties for each .F;ˆ; ';�/ 2 TLS.X; Y /:

(MTLS) (Additivity). If � D �1 [ �2 with disjoint open subsets �1;�2 � �

then

deg.F;ˆ; ';�/ D deg.F;ˆ; ';�1/C deg.F;ˆ; ';�2/.

(NTLS) (Existence). If deg.F;ˆ; ';�/ ¤ 0 then coin	.F;ˆ; '/ ¤ ¿.

(OTLS) (Excision-Additivity). If �i � � .i 2 I / is a family of pairwise disjoint
open sets with coin	.F;ˆ; '/ �

S

i2I �i and coin	i
.F;ˆ; '/ is compact

for all i 2 I then

deg.F;ˆ; ';�/ D
X

i2I

deg.F;ˆ; ';�i /,

where in the sum at most a finite number of summands is nonzero.

(PTLS) (Diffeomorphic-Isomorphic Invariance). Let J1 be a diffeomorphism of
an open subset of a Banach manifold X0 onto �, and J2 an isomorphism
of Y onto a real normed vector space Y0. Then

deg.X;Y /.F;ˆ; ';�/ D deg.X0;Y0/.J2 ıF ı J1; ˆ ı J1; J2 ı '; J�1
1 .�//.

In the oriented case, the orientation of J2 ı F ı J1 is understood in the
sense of Proposition 8.38.
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(QTLS) (Restriction). Let X0 � X be open. Then

deg.X0;Y / D deg.X;Y / jTLS.X0;Y /.

Proof. Let �0, C WD '.ˆ.�0//, N � �0, ", K WD N \ F �1.convC/, U , and
'0 be as described for Proposition 13.11. Then we have in particular (13.3), also
when we understand the right-hand side as the Benevieri–Furi triple degree.

For the additivity, we put Ni WD N \ �i .i D 1; 2/ and note that Ki WD
Ni \ F�1.Y0/ D K n�3�i .i D 1; 2/ is a closed and thus compact subset of K
(Proposition 2.29). Hence, using Proposition 13.11, we obtain with Ui WD U \�i

that
deg.F;ˆ; ';�i / D deg.F;ˆ; '0; Ui / for i D 1; 2.

Combining this with (13.3) and the additivity of the Benevieri–Furi triple degree,
we obtain (MTLS).

For (PTLS), we find by Proposition 3.56 numbers 0 < c1 � c2 <1 such that

c1kyk � kJ2yk � c2kyk for all y 2 Y .

In view of Corollary 13.10, we can assume that the function ' even satisfies

sup
z2ˆ.KnU /

k'.z/ � '0.z/k < c�1
2 c1".

Putting e� WD J�1
1 .�/, eF WD J2ıF ıJ1, eˆ WD ˆıJ1, e' WD J2ı', e'0 WD J2ı'0,

eK WD J�1
1 .K/, eU WD J�1

1 .U /, and

e" WD min
x2eKneU

dist.eF .x/;e'.eˆ.x///,

we havee" � c1" and thus

sup
z2eˆ.eKneU /

ke'.z/ �e'0.z/k <e".

By Proposition 13.11, we obtain

deg.X0;Y0/.eF ;eˆ;e';e�/ D deg.X0;Y0/.eF ;eˆ;e'0; eU i/,

where we understand the right-hand side as the Benevieri–Furi triple degree.
Comparing this formula with (13.3) and using the diffeomorphic-isomorphic in-
variance of the Benevieri–Furi triple degree, we obtain (PTLS).

The restriction property (QTLS) is the special case J2D idY and J1D id	W�!
X of the diffeomorphic-isomorphic invariance. The excision and additivity prop-
erties imply the existence and excision-additivity properties by the same argu-
ments that we had already used for the Brouwer degree.
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Proposition 13.18. The Leray–Schauder triple degree satisfies the following
property:

(RTLS) (Cartesian Product). For i D 1; 2, let Xi be a manifold without bound-
ary of class C 1 over the real Banach space EXi

, and let Yi D EYi
be a real

Banach space. For .Fi ; ˆi ; 'i ;�i / 2 TLS.Xi ; Yi /, we put X WD X1 �X2,
� WD �1 � �2, Y WD Y1 � Y2, F WD F1 ˝ F2, ˆ WD ˆ1 ˝ ˆ2, and
' WD '1 ˝ '2. Then .F;ˆ; ';�/ 2 TLS.X; Y / and

deg.X;Y /.F;ˆ; ';�/

D deg.X1;Y1/.F1; ˆ1; '1;�1/ deg.X2;Y2/.F2; ˆ2; '2;�2/.

In the oriented case, F is equipped with the product orientation.

Proof. For i D 1; 2, let �0;i , Ci WD '.ˆ.�0;i //, Ni � �0;i , "i , Ki WD
Ni \ F�1

i .convCi /, Ui , and '0;i be as described in front of Proposition 13.11
corresponding to .Fi ; ˆi ; 'i ;�i /. Then we have in particular

deg.Xi ;Yi /.Fi ; ˆi ; 'i ;�i / D deg.Xi ;Yi /.Fi ; ˆi ; '0;i ; Ui/,

where we understand the degree on the right-hand side as the Benevieri–Furi triple
degree. Putting�0 WD �0;1��0;2,C WD C1�C2,N WD N1�N2,K WD K1�K2,
U WD U1 �U2, '0 WD '0;1˝ '0;2, and " WD "1C "2, we see that all properties as
described in front of Proposition 13.11 are satisfied, and so (13.3) holds, where we
understand the degree on the right-hand side as the Benevieri–Furi triple degree.
The assertion thus follows from the Cartesian product property of the Benevieri–
Furi triple degree.

13.2 The Leray–Schauder Coincidence Degree and
Classical Applications

Recall that we defined the Leray–Schauder coincidence degree already in Defi-
nition 13.13. For many applications this Leray–Schauder coincidence degree is
already sufficient.

Therefore, although it is actually only a special case of the Leray–Schauder
triple degree, we formulate in this section all relevant properties. We emphasize
once more that this special case actually goes back to P. Benevieri and M. Furi [19]
(although not in this general form; for instance, the homotopy invariance was
proved in [19] only for H 2 C 1) so that perhaps the name Benevieri–Furi coinci-
dence degree might be more appropriate (if we wouldn’t have reserved this name
already). Note that in [19] actually not only a coincidence degree for a couple
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.F; '/ but even a degree for the map F � ' is developed (according to personal
communication, this was the reason for the stronger hypothesis H 2 C 1 in [19]).

Theorem 13.19. The Leray–Schauder coincidence degree satisfies besides of the
properties (APLS) – (CPLS) of Definition 13.13 the following properties for each
.F; ';�/ 2 PLS.X; Y /.

(DPLS) (Generalized Homotopy Invariance). Let W � Œ0; 1� � X be open,
and H WW ! Y be an (oriented) generalized Fredholm homotopy of in-
dex 0. Let h 2 C.W; Y / be locally compact and such that coinW .H; h/

is compact. Put Wt WD ¹x W .t; x/ 2 W º. Then .H.t; � /; h.t; � /;Wt / 2
PLS.X; Y /, and

deg.H.t; � /; h.t; � /;Wt / is independent of t 2 Œ0; 1�.

(EPLS) (Compatibility with the Brouwer Degree). If 0<dimEX DdimEY <

1 then
deg.F; ';�/ D deg.F � ';�; 0/,

where the right-hand side denotes that C 0 Brouwer degree. In the oriented
case, the orientation of F � ' is as described after Theorem 10.9.

(FPLS) (Compatibility with the Benevieri–Furi Coincidence Degree). If there
is a neighborhood �0 � � of coin	.F; '/ such that '.�0/ is contained
in a finite-dimensional subspace of Y then deg.F; ';�/ is the Benevieri–
Furi coincidence degree of .F; ';�/.

(GPLS) (Compatibility with the Non-Oriented Case). The degrees for the ori-
ented and non-oriented case are the same modulo 2 (if the oriented case
applies).

(HPLS) (Additivity). If � D �1 [ �2 with disjoint open subsets �1;�2 � �

then
deg.F; ';�/ D deg.F; ';�1/C deg.F; ';�2/.

(IPLS) (Existence). If deg.F; ';�/ ¤ 0 then coin	.F; '/ ¤ ¿.

(JPLS) (Excision-Additivity). If �i � � .i 2 I / is a family of pairwise disjoint
open sets with coin	.F; '/ �

S

i2I �i and coin	i
.F; '/ is compact for

all i 2 I , then

deg.F; ';�/ D
X

i2I

deg.F; ';�i /,

where in the sum at most a finite number of summands is nonzero.
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(KPLS) (Diffeomorphic-Isomorphic Invariance). Let J1 be a diffeomorphism
of an open subset of a Banach manifold X0 onto�, and J2 an isomorphism
of Y onto a real normed vector space Y0. Then

deg.X;Y /.F; ';�/ D deg.X0;Y0/.J2 ı F ı J1; J2 ı ' ı J1; J
�1
1 .�//.

In the oriented case, the orientation of J2 ı F ı J1 is understood in the
sense of Proposition 8.38.

(LPLS) (Restriction). Let X0 � X be open. Then

deg.X0;Y / D deg.X;Y / jPLS.X0;Y /.

(MPLS) (Cartesian Product). For i D 1; 2, let Xi be a manifold without bound-
ary of class C 1 over the real Banach space EXi

, and let Yi D EYi
be a

real Banach space. For .Fi ; 'i ;�i / 2 PLS.Xi ; Yi /, we putX WD X1�X2,
� WD �1 ��2, Y WD Y1 � Y2, F WD F1 ˝ F2, and ' WD '1 ˝ '2. Then
.F;ˆ; ';�/ 2 PLS.X; Y / and

deg.X;Y /.F; ';�/ D deg.X1;Y1/.F1; '1;�1/ deg.X2;Y2/.F2; '2;�2/.

In the oriented case, F is equipped with the product orientation.

Proof. In view of Theorem 13.14, all properties follow from the corresponding
properties of the Leray–Schauder triple degree with ˆ D id	.

Some general remark on our approach is appropriate: We have obtained the
Leray–Schauder coincidence degree now as a trivial special case of the Leray–
Schauder triple degree. Of course, one could prove it also without referring to
any degree for function triples by just arguing analogously to our proofs in case
ˆ D id	.

However, it seems that it is not possible that we could have argued the other
way, that is: If we would have established first the Leray–Schauder coincidence
degree (without using function triples), and then would attempt to use that degree
to define the Leray–Schauder triple degree, we would not have succeeded; at least
no such way is known to the author: All which could have been used is the special
case of the Benevieri–Furi coincidence degree in the way that we have used it
in Section 13.1, that is, a previous extension of the Benevieri–Furi coincidence
degree to a Leray–Schauder coincidence degree would have been in vain.
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13.3 Classical Applications of the Leray–Schauder
Degree

As already remarked after Definition 13.13, the “classical” Leray–Schauder de-
gree is the special case X D Y D E and F D id	 (with the natural orientation).
This special case is of course well-known and was in fact the first degree theory
systematically developed.

In this section, we present some classical famous applications of this special
case. So this section is mainly meant for the reader who is unfamiliar with the clas-
sical Leray–Schauder degree, although perhaps also the advanced reader might
find some slight generalizations of well-known results.

For the rest of this section, we assume that X D Y D E is a real Banach
space, and we work only with the Leray–Schauder coincidence degree of the form
deg.id	; ';�/ with locally compact '. It is convenient to think of this as a degree
for the map F WD id	�', and in fact, this is how the classical Leray–Schauder
degree is usually defined in literature. However, since we consider this degree
only in this section, we will not introduce a special notation for it but just consider
it as a special case of the Leray–Schauder coincidence degree.

We show that essentially all applications of the Brouwer degree which we had
given in Section 9.3 have “infinite-dimensional analogues” in Banach spaces for
(locally) compact maps '. The proofs consist just in applying analogous argu-
ments, using the Leray–Schauder degree instead of the Brouwer degree.

Theorem 13.20 (Schauder Fixed Point). Let M be a nonempty closed convex
subset of a Banach space E, and ' 2 C.M;M/ be compact. Then ' has a fixed
point.

Proof. By Theorem 4.36, M is an CEM for the class of T4 spaces. Since ' is
compact, we can thus extend ' to some compact ' 2 C.E;M/. In particular
C WD '.E/ is a compact subset of M . Note that m.t; x/ WD tx is continuous,
and so m.Œ0; 1� � C/ is compact. It follows that the map h 2 C.Œ0; 1� � E;E/,
h.t; x/ WD t'.x/ D m.t; '.x// is compact. Moreover, coin.idE ; h/ is a closed
subset of the compact set Œ0; 1� �m.Œ0; 1� �C/ and thus compact. The homotopy
invariance of the Leray–Schauder coincidence degree implies that

deg.idE ; h.1; � /;E/ D deg.idE ; h.0; � /;E/ D deg.idE ; E; 0/ D 1,

where the latter follows by the reduction property of the Leray–Schauder coinci-
dence degree and the normalization of the Brouwer degree. The existence prop-
erty implies that coin.idE ; h.1; � // contains some point x. Then x D '.x/ 2 M
implies that x is a fixed point of the original map '.
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The above proof was rather analogous to Theorem 9.76: Essentially, the only
difference is that we had to replace the Brouwer degree by the Leray–Schauder
(coincidence) degree. The same holds for the following result:

Theorem 13.21 (Leray-Schauder Alternative). Let � be an open subset of a Ba-
nach space E. Let ' 2 C.�;E/ be locally compact. Then at least one of the
following holds:

(a) ' has a fixed point.

(b) For each x0 2 � the set

C WD
[

�>1

¹x 2 � W '.x/� x0 D �.x � x0/º

fails to be relatively compact in �.

Proof. Assume by contradiction that both properties fail, that is, ' has no fixed
points, and there is x0 2 � such that the corresponding set C is a compact subset
of �. Since ' has no fixed points, it follows for the locally compact homotopy
h.t; x/ WD x0 C t.'.x/ � x0/ that coin	.id	; h.t; � // � C for each t 2 Œ0; 1�.
Hence,

K WD coinŒ0;1��	.id	; h/ � Œ0; 1� � C .

Since K is closed in Œ0; 1� � � and thus closed in the compact set Œ0; 1� � C , it
follows that K is compact. The (generalized) homotopy invariance of the Leray–
Schauder coincidence degree implies that

deg.id	; h.1; � /;�/ D deg.id	; h.0; � /;�/ D deg.id	; x0;�/ D 1,

where the latter follows by the reduction property of the Leray–Schauder coinci-
dence degree and the normalization of the Brouwer degree. The existence prop-
erty implies that coin.id	; h.1; � // ¤ ¿ which means that ' has fixed point.

It seems that it is not so well-known that Theorem 13.21 holds for locally com-
pact maps: In most text books, one can only find the more restrictive hypothesis
that ' be compact or at least compact on bounded subsets of �. Also, it seems
not to be so well-known that we need not assume for Theorem 13.21 that ' has a
continuous extension to �.

Corollary 13.22 (Rothe’s Fixed Point Theorem). Let� be a nonempty open con-
vex subset of a Banach space E, and ' 2 C.�;E/ be compact. If '.@�/ � �

then ' has a fixed point.
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Proof. The same argument as in Corollary 9.78 shows that the result is a special
case of Theorem 13.21.

Of course, using the full power of the Leray–Schauder coincidence degree, we
could also formulate results similar to Theorem 13.21 for the case F ¤ id	. More
general, using the Leray–Schauder triple degree, we could formulate existence
results for the coincidence inclusion

F.x/ 2 '.ˆ.x//
for the case that ' ı ˆ is locally compact. However, we will do this only later
(Section 14.5), since we first want to discuss how to relax the hypothesis that
' ıˆ be locally compact.

Mainly for completeness, we also discuss a variant of Borsuk’s Theorem 9.84
for the Leray–Schauder degree and some of its consequences.

This theorem cannot be obtained by just imitating the proof of the finite-dimen-
sional case, since an induction on the dimension of the space was involved. In-
stead, we reduce the result to the finite-dimensional setting and apply the finite-
dimensional result.

Theorem 13.23 (Borsuk). Let E be a Banach space, and � � E be open with
�� D �. Let ' 2 C.�;E/ be locally compact and odd, that is '.�x/ D �'.x/
for all x 2 �. If fix' WD ¹x 2 � W '.x/ D xº is compact then

deg.id	; ';�/ is

´

odd if 0 2 �,

even if 0 … �.
(13.7)

Proof. By Proposition 2.125, there is an open neighborhood �0 � � of fix'
such that 'j	0

is compact. Replacing � by �0 \ .��0/ if necessary, we can
assume in view of the excision property without loss of generality that � D �0.
By Corollary 3.62, we may thus assume that C WD conv '.�/ is compact. By
Corollary 2.48, there is an open neighborhood U � E of fix' (or of ¹0º [ fix'
in case 0 2 �) with N WD U � �. Replacing U by U \ .�U / if necessary, we
can assume without loss of generality that �U D U and �N D N . Then also
K WD N \ id�1

	 .C / D � \ C satisfies �K D K. Proposition 3.15 implies that

" WD min
x2KnU

dist.x; '.x// > 0.

By Corollary 13.10, there is a finite-dimensional subspace Y0 � E and a function
'0 2 C.N; Y0 \ convC/ satisfying (13.1). Replacing '0 by O'0.x/ WD 1

2
.'.x/ �
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'0.�x// if necessary, we can assume that '0 is odd. By Proposition 13.11, we
obtain

deg.id	; ';�/ D deg.idU ; '0; U /.

The right-hand side can also be interpreted as the Benevieri–Furi coincidence
degree. By the reduction property of the latter, we obtain if view of U0 WD
id�1

U .Y0/ D Y0 \ U that this degree is the same as the Brouwer degree

deg.U0;Y0/.idU0
�'0; U0; 0/ D deg.Y0;Y0/.idU0

�'0; U0; 0/,

where we used the restriction property of the Brouwer degree. Note that �U0 D
U0 and that idU0

�'0 is an odd function. Since 0 2 U0 if and only if 0 2 �, the
assertion thus follows from Borsuk’s Theorem 9.84 for the Brouwer degree.

In infinite dimensions, it is more convenient to formulate the analogue of Corol-
lary 9.86 in terms of the map ' D id	�F instead of F so that the name “fixed
point theorem” is really justified (recall Remark 9.88).

Similarly as for the Leray–Schauder alternative, we point out that it is per-
haps not so well-known that the following variant of Borsuk’s fixed point theorem
holds also for locally compact maps, unbounded �, and if the map ' does not
necessarily possess a continuous extension to �.

Theorem 13.24 (Borsuk Fixed Point). Let E be a Banach space, and � � E be
open with �� D �. Let ' 2 C.�;E/ be locally compact and such that

C WD ¹x 2 � W kx C '.�x/k.x � '.x// D �kx � '.x/k.x C '.�x//º
is compact; this holds in particular if ' 2 C.�;E/ is compact and satisfies

kx C '.�x/k.x � '.x// ¤ �kx � '.x/k.xC '.�x// for all x 2 @�. (13.8)

Then (13.7) holds, and in case 0 2 �, the map ' has a fixed point in �.

Proof. We put F WD id	 �'. In case (13.8), we have

C D ¹x 2 � W kF.�x/kF.x/ D kF.x/kF.�x/º,
and by the continuity of F and of the norm, the set on the right-hand side is closed
in E. Hence, (13.8) implies that C is closed in E. Moreover, x 2 C implies for
x ¤ '.x/ that

x D kx C '.�x/k'.x/C kx � '.x/k.�'.�x//
kx C '.�x/k C kx � '.x/k 2 conv¹'.x/;�'.�x/º.
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Thus, C is contained in the set conv.'.�/ [ .�'.�/// which is compact if '
is compact (Corollary 3.62). Consequently, in case (13.8), we have that C is a
closed subset of a compact set and thus compact.

To prove the main assertion, we define H W Œ0; 1� ��! E by

H.t; x/ WD F.x/ � tF .�x/.
Then

h.t; x/ WD x � H.t; x/
t C 1 D '.x/� t'.�x/

1C t

is a locally compact homotopy. Moreover, we have x D h.t; x/ if and only
if F.x/ D tF .�x/. In case F.x/ ¤ 0, this implies that F.x/ is a positive
multiple of F.�x/, and so x 2 C . In case F.x/ D 0, we have trivially x 2 C .
Hence, coinŒ0;1��	.id	; h/ is a closed subset of the compact set Œ0; 1��C and thus
compact. The homotopy invariance of the Leray–Schauder coincidence degree
thus implies

deg.id	; ';�/ D deg.id	; h.0; � /;�/ D deg.h.1; � /;�; 0/.
Since h.1; � / is an odd map, Borsuk’s Theorem 13.23 implies that the latter degree
satisfies (13.7). In case 0 2 �, the existence property thus implies that ' has a
fixed point in �.

We have intentionally used the notation of Corollary 9.86 in the proof of Theo-
rem 13.24 to make clear that the proof of the main assertion is practically identi-
cal: One only has to use the Leray–Schauder coincidence degree deg.id	; ';�/

instead of the Brouwer degree deg.F;�; 0/ and apply Theorem 13.23. The only
real difference in the proof is that we could not directly put h.t; x/ D x�H.t; x/
but also had to divide the last term by tC1 to obtain a locally compact homotopy.

In the same manner, one can generalize Theorem 9.94.

Theorem 13.25 (Invariance of Domain). Let E be a finite-dimensional normed
space, and � � E be open. If F 2 C.�;E/ is locally one-to-one and ' WD
id	�F is locally compact then F.�/ is open in E.

Proof. The proof is analogous to the proof of Theorem 9.94, just replacing the
Brouwer degree deg.F;�0; 0/ by the Leray–Schauder degree deg.id	; ';�0/.
The only difference is that we cannot work directly with the homotopy h.t; x/ D
x�H.t; x/, but we have to use instead the homotopy h.t; x/ WD x�H.t; x/=.1C
t/, or alternatively h.t; x/ WD x �H.t; x=.1C t//, to obtain a (locally) compact
map.
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We close this section by noting that it is also possible to prove a more gen-
eral version of the Borsuk and Invariance of Domain Theorems for the Leray–
Schauder coincidence degree when F ¤ id, see e.g. [14], [32], but we restricted
ourselves in this section to the more classical examples.



Chapter 14

The Degree for Noncompact Fredholm Triples

Since Darbo’s celebrated fixed point theorem [36], many attempts have been
made to transfer topological results from the “compact setting” to a “condens-
ing setting”. Condensing variants of the classical Leray-Schauder degree have
been developed by R. D. Nussbaum [116], [118] and B. N. Sadovskiı̆ [129], see
also e.g. [2], [38], [83]. Variants of these results in the multivalued case can be
found in the earlier mentioned papers [53], [55], [56], [58], [59], [144], [148].
The condensing version of the Benevieri–Furi coincidence degree was developed
in [15]. The earlier mentioned papers [121], [146] with a multivalued variant
(similar to our triple degree) contain also corresponding results for the condens-
ing case.

Since it turned out that one can often estimate measures of noncompactness
only on countable subsets (see [76], [109] or [138, §11 and §12]), it appears im-
portant to have also corresponding “countable condensing” variants of the results.
Early corresponding results involving fixed points of single-valued maps can be
found in [35], [80], [108], [133], the corresponding variant for the classical de-
gree and a more general homotopical theory can be found in [136] and [139],
respectively. More general degree theories in the multivalued case can be treated
with [137].

Simultaneously, it has also become clear that condensing maps are usually re-
lated with convexity assumptions. This makes it very hard to employ these meth-
ods on nonconvex sets, for instance for maps on spheres, which occur naturally
if one deals with positively homogeneous operators. Especially R. D. Nussbaum
has considered maps in such cases [117], [119].

It turned out that the concept of a so-called fundamental set can be transferred
also to the nonconvex setting [6] (see also [5]), and that this concept leads at
least in the convex setting to results for countably condensing maps. This led the
author in [141] to an axiomatic approach which describes a general scheme how
to transfer a degree theory for “compact” function triples to a degree theory for
noncompact function triples. We can obtain now even stronger results than by
just applying the results from [141] to the Leray–Schauder triple degree, since the
Leray–Schauder triple degree has stronger properties than those required in [141].
In particular, we can avoid to work with closures of � � X which was one of the
main hypotheses about the given degree in [141]. We point out that in view of
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Remark 2.86, we obtain thus a much more natural theory.
Although the details are somewhat involved, it is rather easy to describe the

rough idea of our approach: The idea is to call a set K � Y fundamental for
a function triple .F;ˆ; '/ if the restriction of ' ı ˆ to F�1.K/ is compact and
maps into K, and if “everything which is important concerning the degree” oc-
curs on F �1.K/. Then one can prove that there is a degree theory for all triples
which possess a fundamental set. Afterwards, one can verify that, for instance,
“countably condensing triples” possess a convex fundamental set and thus one
has a corresponding degree theory for such triples.

The plan of this chapter is as follows.
In Section 14.1, we will develop the corresponding degree theory for triples

which possess a fundamental set. The notion of a fundamental set is introduced
axiomatically by describing the properties which we need for developing the de-
gree. Unfortunately, the notion of a fundamental set is somewhat involved, and so
the axiomatic description may appear hard to verify. However, this is actually not
the case: In Section 14.2, we will give simpler (sufficient) criteria for fundamental
sets. Using these criteria, we will give in Section 14.3 a sufficient criterion for con-
vex fundamental sets. We will see that the corresponding degree theory becomes
even nicer for these triples. In Section 14.4, we show that this degree theory ap-
plies for “countably condensing triples”. In Section 14.5, we transfer some of the
classical applications of the Brouwer and Leray–Schauder degree (of Sections 9.6
and 13.3) to the setting of “countably condensing function triples”. In the final
Section 14.6, we give an example demonstrating how the theory developed in this
monograph can be applied to a wide class of boundary value problems.

The advantage of our approach is not only that we obtain a clearer presentation
by separating the usage of fundamental sets in degree theory and how to verify
that such sets exist. There is also the mathematical advantage that the results in
Section 14.1 and 14.2 are not related to convexity and thus might also be used
in certain “nonconvex” situations, for instance to obtain results for fixed points
of triples on spheres. However, the latter is currently a topic of future research,
although special cases of the so-called “pushing condition” which occurs naturally
in our approach were already considered [60], [61].

14.1 The Degree for Fredholm Triples with
Fundamental Sets

Throughout, we assume that X is a C 1 Banach manifold without boundary over
a real Banach space EX , and that Y D EY is a real Banach space such that the
non-degeneracy hypothesis (10.8) holds, that is EX ¤ ¹0º and EY ¤ ¹0º (if we
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assume AC).
Actually, we will define two slightly different variants of the degree for fun-

damental sets. In order to treat both variants simultaneously, we introduce the
following notation.

Definition 14.1. For a topological space � and K � Z � Y , we denote by
CompZ.�;K/ the set of all ' 2 C.�;K/ which are compact into Z, that is:

(a) 'W� ! Y is continuous.

(b) '.�/ � K, and

(c) '.�/ is contained in a compact subset of Z.

By Comp.�;K/ we mean either CompK.�;K/ or CompY .�;K/, the choice
being made once and for all for the rest of this section.

Depending on how we have chosen Comp.�;K/, we will obtain two degree
theories under slightly different assumptions. If K is closed in Y (which is the
most important case), we have

CompY .�;K/ D CompK.�;K/,

so that in this important case the two degree theories actually coincide.
The idea for the definition of the degree for a function triple .F;ˆ; '/ is to fix

an appropriate set K � Y , and to replace ' by a function '0 2 Comp.�;K/
which coincides with ' on ˆ.F �1.K//. We intend to call K fundamental when
this idea leads to a well-defined degree.

The choice of '0 is reasonable as the following lemma shows:

Lemma 14.2. Let .F;ˆ; ';�; Y; �/ be some function triple, and K � Y be a set
containing fix	.F;ˆ; '/. If �0 � � contains coin	.F;ˆ; '/, and if '0W�0 !
K satisfies '0.z/ D '.z/ for all z 2 ˆ.�0 \ F�1.K//, then

coin	0
.F;ˆ; '0/ D coin	.F;ˆ; '/. (14.1)

Proof. Since '0.�0/ � K, we have

coin	0
.F;ˆ; '0/ D coin	0\F �1.K/.F;ˆ; '0/ D coin	0\F �1.K/.F;ˆ; '/.

Since fix	.F;ˆ; '/ � K, we thus obtain

coin	0
.F;ˆ; '0/ D coin	0

.F;ˆ; '/.

The last set is C WD coin	.F;ˆ; '/, because C � �0.
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Before we can give the definition of fundamental sets, we have to introduce an
auxiliary definition. We denote by deg the Leray–Schauder triple degree.

Definition 14.3. Let .F;ˆ; ';�/ 2 Tprop.X; Y /. We call K � Y a retraction
candidate if there is an open neighborhood �0 � � of coin	.F;ˆ; '/ such that
the following holds.

(i) fix	.F;ˆ; '/ � K.

(ii) There is '0 2 Comp.ˆ.�0/;K/ satisfying '0.z/ D '.z/ for all z 2
ˆ.�0 \ F �1.K//.

(iii) For each open neighborhood �1 � �0 of coin	.F;ˆ; '/ and each '0; '1 2
Comp.ˆ.�1/;K/ satisfying '0.z/ D '1.z/ D '.z/ for all z 2 ˆ.�1 \
F�1.K//, we have

deg.F;ˆ; '0;�1/ D deg.F;ˆ; '1;�1/.

Note that (ii) implies in particular that .' ıˆ/.�1 \F�1.K// is a subset of K
and relatively compact in Y orK (depending on the choice of Comp.�;K/, recall
Definition 14.1).

We will see in Theorem 14.19 that this necessary condition together with (i) is
already sufficient that K is a retraction candidate, provided that K is an CNEY

or CNEK , respectively (if ˆ.�/ satisfies certain separation properties). Recall
in particular that K is an CNEK if it is an ANR (Corollary 4.38) or a neighbor-
hood retract of Y (Theorem 4.36). This connection with neighborhood retracts
motivated our choice of the terminology “retraction candidate”.

Now we come to the definition of fundamental sets. This definition depends on
the choice of a family A of subsets K � Y . In connection with condensing maps,
we will use the family A of all closed convex subsets of Y . This is in a sense the
simplest case and will be discussed later in more detail.

Definition 14.4. Let A denote a fixed family of subsets K � Y , and
.F;ˆ; ';�/ 2 Tprop.X; Y /. We call K A-fundamental for .F;ˆ; ';�/ if K
is a retraction candidate and if either K D ¿ or if K 2 A and for each retrac-
tion candidate K0 2 A with K \ K0 ¤ ¿ and K ¤ K0 at least one of the sets
K1 WD K \K0 or K1 WD K [K0 has the following property.

There is an open neighborhood �0 � � of coin	.F;ˆ; '/ such that the fol-
lowing holds:

(i) There is '1 2 Comp.ˆ.�0/;K1/ satisfying '1.z/ D '.z/ for all z 2
ˆ.�0 \ F �1.K1//.
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(ii) For each open neighborhood �1 � �0 of coin	.F;ˆ; '/, each '0 2
Comp.ˆ.�1/;K/ satisfying '0.z/ D '.z/ for all z 2 ˆ.�1 \ F�1.K//,
and each '1 2 Comp.ˆ.�1/;K1/ satisfying '1.z/ D '.z/ for all z 2
ˆ.�1 \ F�1.K1//, we have

deg.F;ˆ; '0;�1/ D deg.F;ˆ; '1;�1/.

Remark 14.5. The term “fundamental set” is in literature often defined rather
differently: Often, this term is reserved for what we call (almost) convex-funda-
mental in Section 14.3 and which turns out to be a special case of the above
definition if A denotes the family of closed convex subsets of Y .

The above definition is much more general and describes axiomatically the core
property needed to develop a degree theory for function triples which possess a
fundamental set. For this reason, the above definition appears to the author rather
natural for the term “fundamental”. There is no reason to tie this notion with
convexity or closedness. In fact, any not too large family of neighborhood retracts
of Y (which need neither be closed nor convex) is a good choice for A, as we will
see.

There is no monotonicity of Definition 14.4 with respect to the family A: If
the family A becomes larger, the number of retraction candidates in A increases,
but simultaneously the condition (ii) of Definition 14.4 becomes more restrictive
if that number increases. An extreme example for this is the following.

Example 14.6. Let A D ¹Kº contain only one nonempty set K � Y . In that
case, the set K is A-fundamental if and only if it is a retraction candidate.

Definition 14.7. We denote by Tfund.X; Y;A/ the class of all .F;ˆ; ';�/ 2
Tprop.X; Y / which possess an A-fundamental set. The A-fundamental Fred-
holm triple degree is an operator DEG D DEG.X;Y;A/ which associates to each
.F;ˆ; ';�/ 2 Tfund.X; Y;A/ a number from Z2 (or Z in the oriented case) such
that the following property holds for every .F;ˆ; ';�/ 2 Tfund.X; Y;A/:

(ATfund) (Permanence). If K is A-fundamental for .F;ˆ; ';�/, �0 � � is
an open neighborhood of coin	.F;ˆ; '/, and '0 2 Comp.ˆ.�0/;K/

satisfies '0.z/ D '.z/ for all z 2 ˆ.�0 \ F �1.K// then

DEG.F;ˆ; ';�/ D deg.F;ˆ; '0;�0/,

where the right-hand side denotes the Leray–Schauder triple degree.
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We point out that the A-fundamental Fredholm triple degree need not sat-
isfy the strong form of the equivalence invariance as the other triple degrees
which we considered. Nevertheless, the property (DTfund) in the subsequent The-
orem 14.8 shows that we may suppress � in the notation, that is, the degree de-
pends only on the subset ˆ.�/ � � (and its topology) and not on the whole
space � .

We also point out that this is the first time that we use a different symbol DEG
for the degree. We do this to make clear that this degree does not necessarily
possess the strong compatibility properties which we had previously. In particular,
it need not be an extension of the Leray–Schauder degree. These difficulties are
caused by the fact that the degree will depend on the choice of the family A, in
general. In case Y 2 A, we have the compatibility with the previous degrees, as
we will see.

We will see that DEG exists and is unique, and that it has properties which are
rather analogous to the properties which we know from the other degree theories,
although we need some additional hypotheses in some cases.

Before we attack this program, let us give a bit motivation about the meaning of
the degree and a small historical comparison. This is best be done in the particular
case F D id	 (with the natural orientation) and ˆ D id	. In this case, if K
is A-fundamental, we must necessarily have '.K \ �0/ � K for some open
neighborhood �0 � � of the fixed point set of '. Moreover, the degree actually
depends only on the restriction 'jK . The degree is thus a count for the number of
fixed points of ' 2 C.�K ;K/ where �K � K is open in K. Hence, it makes
sense to call the degree in this point the fixed point index on K.

It will follow from the results of Section 14.2 (Theorem 14.19) that K is ¹Kº-
fundamental for .id	; id	; ';�/ (recall Example 14.6) if K is an ANR and ' 2
Comp.�0 \K;K/ (and if we made the choice Comp.�;K/ D CompK.�;K/).

Hence, our degree actually includes the fixed point index for compact maps on
ANR spaces which was originally introduced by A. Granas [75] and generalized
by R. D. Nussbaum for noncompact maps [115], [116].

However, if we consider more maps F and ˆ than only restrictions of given
fixed maps, it is obviously not true that the degree depends only on the restriction
of the function triple .F;ˆ; ';�/ to�0\F�1.K/. Thus, in this more general sit-
uation, it is not possible to speak about a corresponding “coincidence point index”
theory. Therefore, we call DEG a degree, although it is actually a generalization
of what historically is called the fixed point index. (Note that for the case X D Y ,
A D ¹Y º, F D ˆ D id	, the above degree is actually the fixed point index of '
which we discussed after Theorem 10.1.)
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Theorem 14.8. For each .X; Y;A/ there is exactly one A-fundamental Fredholm
triple degree. This degree has automatically the following properties for each
.F;ˆ; ';�/ 2 Tfund.X; Y;A/:

(BTfund) (Excision). If �0 � � is open and contains coin.F;ˆ; '/ then

DEG.F;ˆ; ';�0/ D DEG.F;ˆ; ';�/.

(CTfund) (Existence). If DEG.F;ˆ; ';�/ ¤ 0 then coin	.F;ˆ; '/ ¤ ¿.

(DTfund) (Restriction in the Last Function). We denote the function triple more
verbosely as .F;ˆ; ';�; Y; �/. This function triple has the same A-
fundamental sets as .F;ˆ; 'jˆ.	/;�; Y;ˆ.�//, and

DEG.F;ˆ; 'jˆ.	/;�/ D DEG.F;ˆ; ';�/.

(ETfund) (Compatibility with the Non-Oriented Case). The degrees for the ori-
ented and non-oriented case are the same modulo 2 (if the oriented case
applies).

(FTfund) (Weak Compatibility with the Leray–Schauder Triple Degree). If
.F;ˆ; ';�/ 2 TLS.X; Y / and if there is an A-fundamental set K which
contains '.ˆ.�0// for some neighborhood �0 � � of coin	.F;ˆ; '/

then
DEG.F;ˆ; ';�/ D deg.F;ˆ; ';�/.

Proof. Let K be A-fundamental for .F;ˆ; ';�/, and �0 � � be as in Defi-
nition 14.3. For any open neighborhood �1 � �0 of C WD coin	.F;ˆ; '/ D
coin	0

.F;ˆ; '/, we find some '0 2 Comp.ˆ.�1/;K/ with '0.z/ D '.z/ for
each z 2 ˆ.�0 \ F �1.K//, namely the restriction of the function of Defini-
tion 14.3(ii) to �1. The uniqueness assertion follows now, since the permanence
property implies

DEG.F;ˆ; ';�/ D deg.F;ˆ; '0;�1/. (14.2)

For the existence assertion, we use (14.2) to define the left-hand side. We must
show that this is well-defined, that is, independent of the particular choice of K,
�0, �1, and '0.

We show first the independence of the choice of .�0;�1; '0/. Let . O�0; O�1; '1/

be possibly different choices. We put �2 WD �1 \ O�1. Definition 14.3 implies
(with �2 replacing �1) that

deg.F;ˆ; '0;�2/ D deg.F;ˆ; '1;�2/. (14.3)
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We recall that (14.1) implies

coin	1
.F;ˆ; '0/ D C . (14.4)

Hence, the excision property of the Leray–Schauder triple degree implies

deg.F;ˆ; '0;�1/ D deg.F;ˆ; '0;�2/.

Since an analogous calculation shows

deg.F;ˆ; '1; O�1/ D deg.F;ˆ; '1;�2/,

we obtain in view of (14.3) that

deg.F;ˆ; '0;�1/ D deg.F;ˆ; '1; O�1/.

This shows the independence of (14.2) of the particular choice of .�0;�1; '0/.
As a side result, we note that (14.4) and the existence property of the Leray–

Schauder coincidence degree imply that the right-hand side of (14.2) vanishes in
case C D ¿; in particular, the existence property follows.

Now we show the independence of the choice of K. Thus, let K0 ¤ K be a
different choice. Assume first that K \K0 D ¿. Since F.C/ � K and F.C/ �
K0, we must have C D ¿. In this case, we have already seen that the right-hand
side of (14.2) vanishes; hence, in this case, we obtain certainly the (same!) value 0
by our definition (14.2). Thus, it remains to consider the case K \ K0 ¤ ¿.
Then one of K1 D K \ K0 or K1 D K [ K0 has the properties required in
Definition 14.4. Since we have already seen the independence of our definition
of the particular choice of �0, namely that we can replace it by any smaller open
neighborhood of coin	.F;ˆ; '/, we can assume without loss of generality that
the same set �0 can be used in Definition 14.4 as for K in Definition 14.3 and,
moreover, that the same set �0 can be used for both definitions if the roles of K
and K0 are exchanged (we replace �0 by the intersection of the corresponding
four sets if necessary).

Assume now first that K1 D K \ K0 has the property required in Defini-
tion 14.4. Then there is '1 2 Comp.ˆ.�1/;K1/ with '1.z/ D '.z/ for all
z 2 ˆ.�1 \ F�1.K1//. Then '1.z/ D '.z/ for all z 2 ˆ.�1 \ F�1.K// and
for all z 2 ˆ.�1 \ F�1.K0//, and so we can choose the function '0 WD '1 in
the definition (14.2) of the degree for K and for K0. Hence, we obtain the same
value for the degree when we choose K0 instead of K.

Assume now that K1 D K [ K0 has the property required in Definition 14.4.
Then there is '2 2 Comp.ˆ.�1/;K1/ with '2.z/ D '.z/ for all z 2 ˆ�

�2 \
F �1.K1//. By Definition 14.3, there are '0 2 Comp.ˆ.�1/;K/ with '0.z/ D
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'.z/ for all z 2 ˆ�

�1 \ F�1.K// and '1 2 Comp.ˆ.�1/;K0/ with '1.z/ D
'.z/ for all z 2 ˆ�

�1 \ F�1.K0//. By Definition 14.4, we obtain

deg.F;ˆ; '0;�1/ D deg.F;ˆ; '2;�1/. (14.5)

Now we apply Definition 14.4 with the roles ofK andK0 exchanged: For the case
that OK1 D K0 \ K1 has the property required in this definition, we have already
shown that we obtain the same values for the right-hand side of (14.2). In the
opposite case, K1 D K0 [K1 must have the property required in this definition,
and so we obtain analogously to (14.5) that

deg.F;ˆ; '1;�1/ D deg.F;ˆ; '2;�1/.

Together with (14.5), we conclude that

deg.F;ˆ; '0;�1/ D deg.F;ˆ; '1;�1/,

and so the definition (14.2) is indeed independent of the choice of the A-funda-
mental set K.

The independence of the choice of�0 in our definition implies that the thus de-
fined degree satisfies the excision and permanence properties. Concerning
(DTfund), it suffices to note that neither Definition 14.3 nor Definition 14.4 nor
anything from the above considerations required to consider any point or subset
from �nˆ.�/ or of the restriction of ' to that set. The compatibility of the degree
with the non-oriented case follows immediately from the definition (14.2) and the
corresponding property of the Leray–Schauder triple degree. For the weak com-
patibility with the Leray–Schauder triple degree, we note that, in view of Propo-
sition 13.7, we can assume that 'jˆ.	0/ 2 Comp.ˆ.�0/;K/, and so we can
choose '0 D ' in the definition (14.2).

Corollary 14.9. The A-fundamental Fredholm triple degree has the following
property:

(GTfund) (Compatibility with the Leray–Schauder Triple Degree). Suppose
that Y 2 A. If .F;ˆ; ';�/ 2 TLS.X; Y / then Y is A-fundamental for
.F;ˆ; ';�/, and

DEG.F;ˆ; ';�/ D deg.F;ˆ; ';�/.

Proof. We verify first thatK D Y is a retraction candidate. Indeed, let�0 be as in
Proposition 13.7. Sinceˆ.�0\F�1.K// D ˆ.�0/, we can in Definition 14.3(ii)
choose '0 WD 'jˆ.	0/, and the property (iii) of Definition 14.3 is trivial, since
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'0 D '1. These considerations imply also thatK D Y satisfies the two properties
of Definition 14.4 with K1 D K [ K0 D Y . Hence, Y is A-fundamental. The
assertion now follows from the weak compatibility with the Leray–Schauder triple
degree.

The following example shows that even in simple finite-dimensional situations
it can happen that DEG differs from deg, so that the hypothesis Y 2 A in Corol-
lary 14.9 is really essential.

Example 14.10. Let � D X D Y D R2, F D ˆ D id	, and ' D 2 id	. Then
coin.F;ˆ; '/ D ¹0º, and the normalization property of the Leray–Schauder triple
degree implies

deg.F;ˆ; ';�/Ddeg.F � ';�; 0/Ddeg.� id	;�; 0/Dsgn det.� idR2/D1:
On the other hand, we choose now A WD ¹Kº with K WD R � ¹0º. In order to
show thatK is A-fundamental for .F;ˆ; '/, it suffices in view of Example 14.6 to
show that K is a retraction candidate. We verify the properties of Definition 14.3
even for any bounded open neighborhood �0 � � of 0. The property (ii) fol-
lows with the choice '0.x1; x2/ D .2x1; 0/: We have '0 2 Comp.�0;K/ by
the Heine–Borel theorem (Proposition 3.59), since �0 is bounded. It remains to
verify property (iii). Thus, let �1 � �0 be an open neighborhood of 0. Now let
'0; '1 2 Comp.�1;K/ satisfy 'i .x1; 0/ D '.x1; 0/ D .2x1; 0/ .i D 0; 1/ for all
.x1; x2/ D .x1; 0/ 2 �1 \K. Note that Y0 WD K is a linear subspace of Y which
is transversal to F , and so the reduction and normalization property implies with
X0 WD �1 \ F�1.Y0/ D �1 \K that

deg.F;ˆ; 'i ;�1/ D deg.X0;Y0/.F;ˆ; ';X0/ D deg.X0;Y0/.idX0
; ';X0/

for i D 0; 1, where the last degree denotes the Benevieri–Furi coincidence degree.
Putting e�1 WD ¹x1 W .x1; 0/ 2 �1º, we thus find by the diffeomorphic-isomorphic
invariance and the compatibility with the C 1 Brouwer degree that

deg.F;ˆ; 'i ;�1/Ddeg.R;R/.id
e	1
�2 id

e	1
;e�1/Ddeg.R;R/.� id

e	1
;e�1/D�1

for i D 0; 1. Hence, K is indeed a retraction candidate and thus A-fundamental.
The above calculation shows also in view of the permanence property that

DEG.X;Y;A/.F;ˆ; ';�/ D �1 ¤ 1 D deg.F;ˆ; ';�/.

On the other hand, we have:



Section 14.1 The Degree for Fredholm Triples with Fundamental Sets 423

Example 14.11. If we choose A0 D ¹K;Y º in Example 14.10 then Corol-
lary 14.9 implies that

DEG.X;Y;A0/.F;ˆ; ';�/ D deg.F;ˆ; ';�/ D 1.

As we have seen in Example 14.10, the set K is a retraction candidate. However,
K cannot be A-fundamental, since the calculation in Example 14.10 would imply
that the permanence property is violated for K.

The above example shows in particular also that the permanence property does
not hold for retraction candidates, in general.

This explains why our definition of A-fundamental sets is so cumbersome: We
had indeed to require some additional properties, since the properties of retrac-
tion candidates alone would not be sufficient to define a degree by means of the
permanence property.

The above examples demonstrate also that the value of the degree depends on
the choice of the set A, in general. Fortunately, there is an important situation in
which we know that we obtain the same value.

Proposition 14.12. The A-fundamental Fredholm triple degree has the following
property:

(HTfund) (Weak Compatibility with Respect to A). Let A;A0 be two families
of subsets of Y , and let .F;ˆ; ';�/ 2 Tprop be such that there is a set
K which is A-fundamental and simultaneously A0-fundamental. Then
.F;ˆ; ';�/ 2 Tfund.X; Y;A/ \ Tfund.X; Y;A0/, and

DEG.X0;Y;A/.F;ˆ; ';�/ D DEG.X;Y;A0/.F;ˆ; ';�/.

Proof. Since K is a retraction candidate, there is an open neighborhood �0 � �

of coin	.F;ˆ; '/ and '0 2 Comp.ˆ.�0/;K/ satisfying '0.z/ D '.z/ for all
z 2 ˆ.�0 \ F �1.K//. The permanence property thus implies

DEG.X;Y;A/.F;ˆ; ';�/ D deg.F;ˆ; '0;�0/.

On the other hand, the permanence property of DEG.X;Y;A0/ implies

DEG.X;Y;A0/.F;ˆ; ';�/ D deg.F;ˆ; '0;�0/.

A comparison of these formulas implies the assertion.
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Remark 14.13. Examples 14.10 and 14.11 show that it would not be sufficient to
assume only

.F;ˆ; ';�/ 2 Tfund.X; Y;A/ \ Tfund.X; Y;A0/

in Proposition 14.12: We really need that the same set is A-fundamental and A0-
fundamental.

Now we come to a first formulation of the generalized homotopy invariance
property for the A-fundamental Fredholm triple degree. A formulation which is
easier to apply will be given in Theorem 14.23.

Theorem 14.14. The A-fundamental Fredholm triple degree DEG has the fol-
lowing property:

(ITfund) (Generalized Homotopy Invariance I). Let .G;H; h;W; Y; �/ be a gen-
eralized proper acyclic� homotopy triple for .Gt ;Ht ; ht ;Wt ; Y; �t / .t 2
Œ0; 1�/ where W � Œ0; 1� � X is open, and GWW ! Y is a gener-
alized (oriented) Fredholm homotopy of index 0. We put eH.t; x/ WD
¹tº �H.t; x/. Suppose that there is a set K � Y such that the following
holds:

(a) K is A-fundamental for .Gt ;Ht ; ht ;Wt / for every t 2 Œ0; 1�.
(b) There is an open neighborhood U � W of coin.G; eH;h/ and eh 2

Comp.eH.U /;K/ such that eh.t; z/ D h.t; z/ for all .t; z/ 2 eH.U \
G�1.K//.

Then .Gt ;Ht ; ht ;Wt / 2 Tfund.X; Y;A/ for all t 2 Œ0; 1�, and

DEG.Gt ;Ht ; ht ;Wt / is independent of t 2 Œ0; 1�.

Proof. The assertion .Gt ;Ht ; ht ;Wt / 2 Tfund.X; Y;A/ follows in view of Pro-
position 11.41 and since K is A-fundamental for .Gt ;Ht ; ht ;Wt /.

By hypothesis, there are an open neighborhood U � W of the set C WD
coinW .G; eH;h/ and eh 2 Comp.eH.U /;K/ satisfying eh.t; z/ D h.t; z/ for all
.t; z/ 2 eH.U \G�1.K//. Since K is a retraction candidate for .Gt ;Ht ; ht ;Wt /

for every t 2 Œ0; 1�, we have fixW .G; eH;h/ � K. Hence, Lemma 14.2 implies

coinU .G; eH;eh/ D C .

We obtain with Ut WD ¹x W .t; x/ 2 U º and eht WDeh.t; � / 2 Comp.Ut ;K/ that

coinUt
.Gt ;Ht ;eht/ D coinWt

.Gt ;Ht ; ht /.
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We conclude that .G;H;eh/ is a proper generalized acyclic� homotopy triple for
the family .Gt ;Ht ;eht/. Since K is A-fundamental for every .Gt ;Ht ; ht /, the
permanence property implies

DEG.Gt ;Ht ; ht ;Wt / D deg.Gt ;Ht ;eht ; Ut /.

The generalized homotopy invariance of the Leray–Schauder triple degree shows
that the latter value is independent of t 2 Œ0; 1�.

For the proof of the additivity properties of the A-fundamental Fredholm triple
degree, we have to require also that the same set K is A-fundamental for
.F;ˆ; ';�/ as for the restrictions .F;ˆ; ';�i /:

Theorem 14.15. The A-fundamental Fredholm triple degree DEG has the fol-
lowing properties for every .F;ˆ; ';�/ 2 Tfund.X; Y;A/:

(JTfund) (Weak Additivity). Let � D �1 [ �2 with disjoint open subsets
�1;�2 � �. If there is a set K � Y which is A-fundamental for
.F;ˆ; ';�/ and for .F;ˆ; ';�i / .i D 1; 2/ then

DEG.F;ˆ; ';�/ D DEG.F;ˆ; ';�1/CDEG.F;ˆ; ';�2/.

(KTfund) (Weak Excision-Additivity). Let �i � � .i 2 I / be a family of pair-
wise disjoint open sets with coin	.F;ˆ; '/ �

S

i2I �i and such that
coin	i

.F;ˆ; '/ is compact for all i 2 I . If there is a set K � Y which
is A-fundamental for .F;ˆ; ';�/ and for all .F;ˆ; ';�i / .i 2 I / then

DEG.F;ˆ; ';�/ D
X

i2I

DEG.F;ˆ; ';�i /,

where in the sum at most a finite number of summands is nonzero.

Proof. It suffices to prove (KTfund), since (JTfund) is a special case. There is an
open set �0 � � with coin	.F;ˆ; '/ � � and a function '0 2 Comp.�0;K/

with '0.z/ D '.z/ for all z 2 ˆ.�0 \ F�1.K//. By Lemma 14.2, we have

coin	0
.F;ˆ; '0/ D coin	.F;ˆ; '/.

The latter implies with �0;i WD �0 \�i that

coin	0;i
.F;ˆ; '0/ D coin	i

.F;ˆ; '/ for all i 2 I .

By the permanence property, we have

DEG.F;ˆ; ';�/ D deg.F;ˆ; '0;�0/,
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where the right-hand side denotes the Leray–Schauder triple degree. Since K is
A-fundamental for every .F;ˆ; ';�i /, the permanence property implies also

DEG.F;ˆ; ';�i / D deg.F;ˆ; '0;�0;i /.

A comparison of the above formulas implies the assertion by the excision-additi-
vity property of the Leray–Schauder triple degree.

For the diffeomorphic-isomorphic invariance, we must be somewhat careful
with isomorphisms of Y , since the degree also depends on the family A. However,
we have no problem with isomorphisms which map the corresponding families
onto each other. More precisely, the following holds:

Theorem 14.16. The A-fundamental Fredholm triple degree has the following
property for every .F;ˆ; ';�/ 2 Tfund.X; Y;A/:

(LTfund) (Diffeomorphic-Isomorphic Invariance). Let J1 be a diffeomorphism
of an open subset of a Banach manifoldX0 onto� and J2 an isomorphism
of Y onto a real normed vector space Y0, and let A0 D ¹J2.K/ W K 2 Aº.
Then

DEG.X;Y;A/.F;ˆ; ';�/

D DEG.X0;Y0;A0/.J2 ı F ı J1; ˆ ı J1; J2 ı '; J�1
1 .�//.

In the oriented case, the orientation of J2 ı F ı J1 is understood in the
sense of Proposition 8.38.

(MTfund) (Restriction). Let X0 � X be open. Then

DEG.X0;Y;A/ D DEG.X;Y;A/ jTfund.X0;Y;A/.

Proof. The diffeomorphic-isomorphic invariance of the Leray–Schauder triple
degree implies that K is a retraction candidate for A WD .F;ˆ; ';�/ if and only
if J2.K/ is a retraction candidate for eA WD .J2 ıF ıJ1; ˆıJ1; J2 ı'; J�1

1 .�//.
In view of the choice of A0, it follows similarly that K is A-fundamental for A
if and only if J2.K/ is A0-fundamental for eA. Let K be A-fundamental for A.
There is an open set �0 � � with coin	.F;ˆ; '/ � � and a function '0 2
Comp.�0;K/ with '0.z/ D '.z/. Then �0 and '0 are as in the permanence
property for A, and J�1

1 .�0/ and J2 ı '0 are as in the permanence property for
eA, and so we have

DEG.X;Y;A/.A/ D deg.X;Y /.F;ˆ; J2 ı '0;�0/,

DEG.X0;Y0;A0/.eA/ D deg.X0;Y0/.J2 ı F ı J1; ˆ ı J1; J2 ı '0; J
�1
1 .�0//.
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Hence, the diffeomorphic-isomorphic invariance of the Leray–Schauder triple de-
gree implies (LTfund).

The restriction property is the special case J2 D idY and J1 D id	W� ! X

of (LTfund).

Taking care about the associated family A for each space, we can also formulate
a corresponding Cartesian product property:

Theorem 14.17. The A-fundamental Fredholm triple degree has the following
property:

(NTfund) (Cartesian Product). For i D 1; 2, let Xi be a manifold without bound-
ary of class C 1 over the real Banach space EXi

, and let Yi D EYi
be a

real Banach space. Let Ai be a family of subsets of Yi , and A a family
of subsets of Y WD Y1 � Y2. For .Fi ; ˆi ; 'i ;�i / 2 Tprop.Xi ; Yi /, we
put X WD X1 � X2, � WD �1 � �2, F WD F1 ˝ F2, ˆ WD ˆ1 ˝ ˆ2,
and ' WD '1 ˝ '2. Suppose that, for i D 1; 2, Ki is Ai -fundamen-
tal for .Fi ; ˆi ; 'i ;�i /, and that K WD K1 � K2 is A-fundamental for
.F;ˆ; ';�/. Then

DEG.X;Y;A/.F;ˆ; ';�/

D DEG.X1;Y1;A1/.F1; ˆ1; '1;�1/DEG.X2;Y2;A2/.F2; ˆ2; '2;�2/.

In the oriented case, F is equipped with the product orientation.

Proof. For i D 1; 2, there are an open neighborhood �0;i � �i of the set
coin	i

.Fi ; ˆi ; 'i / and '0;i 2 Comp.ˆi .�0;i /;Ki/ with '0;i .z/ D '.z/ for
all z 2 ˆi .�0;i \ F�1

i .Ki//. We put �0 WD �0;1 � �0;2. Then the function
'0 WD '0;1 ˝ '0;2 belongs to Comp.ˆ.�0/;K/ and satisfies '0.z/ D '.z/ for
all z 2 ˆ.�0 \ F �1.K//. By the permanence property of the three degrees, we
obtain

DEG.X;Y;A/.F;ˆ; ';�/ D deg.F;ˆ; '0;�0/,

DEG.Xi ;Yi ;Ai /.Fi ; ˆi ; 'i ;�i / D deg.Fi ; ˆi ; '0;i ;�0;i /

for i D 1; 2. Hence, the assertion follows from the Cartesian product property of
the Leray–Schauder triple degree.

Also for the equivalence invariance, we have to require that we can choose the
same A-fundamental sets:

Theorem 14.18. The A-fundamental Fredholm triple degree has the following
properties.
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(OTfund) (Very Weak Equivalence Invariance). Suppose that .F;eˆ;e';�/ 
.F;ˆ; ';�/ both belong to Tprop.X; Y /. Then both function triples have
the same retraction candidates and the same A-fundamental sets, and if
they have some A-fundamental set then

DEG.F;eˆ;e';�/ D DEG.F;ˆ; ';�/.

(PTfund) (Mild Equivalence Invariance). ForK � Y , let TK denote the subclass
of triples from Tfund.X; Y;A/ which have K as an A-fundamental set. If
.F;ˆ; '/ �TK

.F;eˆ;e'/ then

DEG.F;ˆ; ';�/ D DEG.F;eˆ;e';�/.

Proof. We show first (PTfund). By induction, we can assume that .F;ˆ; '/ v
.F;eˆ;e'/ where both triples belong to TK . Let�0 � � be an open neighborhood
of coin	.F;eˆ;e'/, and let e'0 2 Comp.eˆ.�0/;K/ satisfy e'0.z/ D e'.z/ for all
z 2 eˆ.�0 \ F�1.K//. The permanence property implies

DEG.F;eˆ;e';�/ D DEG.F;eˆ;e'0;�0/. (14.6)

Let J denote the function of Definition 11.7, that is, J ı ˆ � eˆ and ' D e' ı J .
Then in particular J.ˆ.�0// � eˆ.�0/. Then the function '0 WD e'0 ı J jˆ.	0/

belongs to Comp.ˆ.�0/;K/ and satisfies for all z 2 ˆ.�0\F�1.K// by (11.3)
that J.z/ 2 eˆ.�0 \ F �1.K//. Hence, '0.z/ D e'.J.z// D '.z/ holds in view
of (11.3). Note also that (11.6) implies coin	.F;ˆ; '/ � �0. The permanence
property thus implies

DEG.F;ˆ; ';�/ D DEG.F;ˆ; '0;�0/.

Hence, the assertion follows with (14.6) and the equivalence invariance of the
Leray–Schauder triple degree.

To prove (OTfund), let .F;ˆ; ';�/  .F;eˆ;e';�/ both belong to Tprop.X; Y /.
We show first that both function triples have the same retraction candidates. Since
 is symmetric (recall Proposition 11.10), it suffices to show that each retraction
candidate K � Y for .F;ˆ; ';�/ is also a retraction candidate for .F;eˆ;e';�/.

Let J be a homeomorphism of ˆ.�/ onto eˆ.�/ satisfying J ı ˆ D eˆ and
' De' ı J . By (11.8), we have

C WD coin	.F;ˆ; ';�/ D coin	.F;eˆ;e';�/

and fix	.F;eˆ;e';�/ � K. In particular, property (i) of Definition 14.3 holds for
.F;eˆ;e';�/.
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Let �0 be as in Definition 14.3 for .F;ˆ; ';�/. If �1 � �0 is an open
neighborhood of C and '0 2 Comp.ˆ.�1/;K/ satisfies '0.z/ D '.z/ for all
z 2 ˆ.�1 \ F�1.K//, then e'0 WD ' ı J�1 belongs to Comp.eˆ.�1/;K/ and
satisfies e'0.z/ De'.z/ for all z 2 eˆ.�1 \ F�1.K//. Hence, also property (ii) of
Definition 14.3 holds for .F;eˆ;e';�/.

To see that also property (iii) of Definition 14.3 holds for .F;eˆ;e';�/, let
e'0;e'1 2 Comp.eˆ.�1/;K/ satisfy e'0.z/ D e'1.z/ D e'.z/ for all z 2 eˆ.�1 \
F�1.K//. For i D 0; 1, we put 'i WD e'i ı J jˆ.	1/, and find that 'i 2
Comp.ˆ.�1/;K/ satisfy 'i .z/ De'.J.z// D '.z/ for all z 2 ˆ.�1\F �1.K//.
We obtain that

deg.F;ˆ; '0;�1/ D deg.F;ˆ; '1;�/,

and by the (weak) equivalence invariance of the Leray–Schauder degree, we ob-
tain also that

deg.F;ˆ; 'i ;�1/ D deg.F;eˆ;e'i ;�1/

for i D 0; 1. Combining these equalities, we find

deg.F;eˆ;e'0;�1/ D deg.F;eˆ;e'1;�/.

Hence, K is a retraction candidate for .F;eˆ;e';�/.
Now that we know that .F;ˆ; '/ and .F;eˆ;e'/ have exactly the same retrac-

tion candidates, we obtain by a completely analogous reasoning that they have
also the same A-fundamental sets. In particular, if such a set K exists, we have
.F;ˆ; '/ �TK

.F;eˆ;e'/, and so (PTfund) applies.

14.2 Homotopic Tests for Fundamental Sets

The aim of this section is to provide sufficient conditions for the properties in
Definition 14.3 and 14.4 which are simpler to verify. Moreover, we want to pro-
vide the same for the hypotheses for the generalized homotopy invariance (Theo-
rem 14.14).

Concerning retraction candidates, this is surprisingly simple.
We use throughout the notations of Section 14.1. We recall that we consider two

cases in Definition 14.1: Either Comp.�;K/DCompK.�;K/ or Comp.�;K/D
CompY .�;K/. In the former case, we say that a setK is an CNE if it is a CNEK .
In the latter case, we say that K is an CNE if it is a CNEY . For the case that K is
closed, the two cases become identical (recall Proposition 4.35).

Recall that when we consider the case Comp.�;K/ D CompK.�;K/, then
any ANR (LCNR) K is an CNE by Corollary 4.38 (Theorem 4.36).
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In particular, the following result implies that in this case any neighborhood
retract of Y is a retraction candidate under the necessary hypotheses mentioned
after Definition 14.3.

As already announced after Definition 14.3, this is our motivation for the termi-
nology “retraction candidate”. This result is also the main reason, why the class
CNEZ is so important for us.

Theorem 14.19. Let .F;ˆ; ';�/ 2 Tprop.X; Y /, and K � Y . Suppose that
there is an open neighborhood �0 � � of C WD coin	.F;ˆ; '/ such that the
following holds.

(a) fix	.F;ˆ; '/ � K.

(b) K D ¿, or for every open neighborhood �1 � �0 of C there is a neighbor-
hood Z0 of ˆ.C/ in ˆ.�1/ such that K is an CNE for Œ0; 1� �Z0.

(c) K D ¿, or there is a neighborhood Z of ˆ.C/ in ˆ.�0/ such that K is an
CNE for Z, and the restriction of ' to

�0 WD Z \ˆ.�0 \ F�1.K//

belongs to Comp.�0;K/.

Then K is a retraction candidate.

We postpone the proof for a moment.

Remark 14.20. The reader may wonder why we formulated Theorem 14.19 so
general and not only for the apparently most natural case Z0 WD ˆ.�1/ and
Z WD ˆ.�0/.

The reason is that, typically, K is only a CNE for a class of T4 spaces. Now
the condition that K is an CNE for Œ0; 1��ˆ.�1/ can in view of Proposition 2.35
usually only be satisfied if Œ0; 1� �ˆ.�0/ is T5.

In contrast, by choosing a possibly different set Z0, we are in this case in the
setting of locally Œ0; 1�-normal triples (recall Definition 11.47) and thus can treat
the case that Œ0; 1� �ˆ.�0/ is only T4.

The proof of Theorem 14.19 uses the following two lemmas which we will also
use in a more general context.
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Lemma 14.21. Let .F;ˆ; ';�; Y; �/ be a function triple, K � Y , and �0 � �

(not necessarily open) contain C WD coin	.F;ˆ; '/. Suppose that there is a
neighborhood Z of ˆ.C/ in ˆ.�0/ such that the following holds:

(a) fix	.F;ˆ; '/ � K.

(b) K D ¿, or K is an CNE for Z.

(c) The restriction of ' to

�0 WD Z \ˆ.�0 \ F�1.K//

belongs to Comp.�0;K/.

(d) ˆjU is upper semicontinuous for some neighborhood U � � of C .

Then there is an open in �0 set �1 � �0 with C � �1 and a function '0 2
Comp.ˆ.�1/;K/ with '0.z/ D '.z/ for each z 2 ˆ.�1 \ F �1.K//.

Proof. We first treat the degenerate case K D ¿. In this case, we must have
fix	.F;ˆ; '/ D ¿ and thus also C D ¿. Hence, we can choose �1 D ¿.

Now assume that K ¤ ¿, that is, K is an CNE for Z. Note that Proposi-
tion 2.10 implies that �0 is closed in Z. Hence, there is a neighborhood �1 of �0

in Z and an extension '0 2 Comp.�1;K/ of 'j�0
. We note that fix	.F;ˆ; '/ �

K implies ˆ.C/ � �0.
We can assume that U is open in �. Then the set �2 WD U \ �0 is open in

�0, and Proposition 2.90 implies that ‰ WD ˆj	2
W�2 ( Z0 WD ˆ.�0/ is upper

semicontinuous. Since �1 � Z is a neighborhood of ˆ.C/, and Z � Z0 is a
neighborhood of ˆ.C/, we find that there is an open set O � Z0 with ˆ.C/ �
O � �1. Hence, Proposition 2.92 implies that �1 WD ‰�.O/ D �2 \ˆ�.O/ is
open in �0 with C � �1. It follows that the restriction of '0 to ˆ.�1/ � O �
�1 has the required property.

Lemma 14.22. Let .F;ˆ; ';�; Y; �/ be a function triple, K � Y , and �0 � �

(not necessarily open) contain C WD coin	.F;ˆ; '/.
Let '0; '1 2 Comp.ˆ.�0/;K/ satisfy '0.z/ D '1.z/ D '.z/ for all z 2

ˆ.�0 \ F�1.K//. Suppose also that there is a neighborhood Z of ˆ.C/ in
ˆ.�0/ such that the following holds:

(a) fix	.F;ˆ; '/ � K.

(b) K D ¿, or K is an CNE for Œ0; 1� �Z
(c) ˆjU is upper semicontinuous for some neighborhood U � � of C .
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Then there is an open in �0 set �1 � �0 with C � �1 and a function h 2
Comp.Œ0; 1��ˆ.�1/;K/ with h.i; � / D 'i jˆ.	1/ for i D 0; 1 such that h.t; z/ D
'.z/ for all .t; z/ 2 Œ0; 1� �ˆ.�1 \ F�1.K//.

Proof. In the degenerate case K D ¿, we must have C D ¿ and thus can choose
�1 D ¿. Thus, assume that K ¤ ¿. Then K is an CNE for Œ0; 1� � Z. Let
�0 denote the closure of M WD ˆ.�0 \ F�1.K// in Z. Since Y is Hausdorff
and '0jM D '1jM D 'jM , we obtain by Lemma 2.55 that '0j�0

D '1j�0
D

'j�0
. By the both-sided homotopy extension theorem (Theorem 4.45), there is a

neighborhood �1 of �0 in Z and h 2 Comp.Œ0; 1� � �1;K/ with h.i; � /j�1
D

'i j�1
for i D 0; 1. Since fix	.F;ˆ; '/ � K, we have ˆ.C/ � �0.

We can assume that U � � is open. Then the set �2 WD U \ �0 is open in
�0, and Proposition 2.90 implies that ‰ WD ˆj	2

W�2 ( Z0 WD ˆ.�0/ is upper
semicontinuous. Since �1 � Z is a neighborhood of ˆ.C/, and Z � Z0 is a
neighborhood of ˆ.C/, we find that there is an open set O � Z0 with ˆ.C/ �
O � �1. Hence, Proposition 2.92 implies that �1 WD ‰�.O/ D �2 \ˆ�.O/ is
open in �0 with C � �1. It follows that the restriction of h to Œ0; 1� �ˆ.�1/ �
Œ0; 1� �O � Œ0; 1� � �1 has the required property.

Proof of Theorem 14.19. We can assume K ¤ ¿, since otherwise we have C D
¿ and can choose �0 D ¿. By Lemma 14.21, there is an open neighborhood
e�0 � �0 of C and '0 2 Comp.ˆ.e�0/;K/ with '0.z/ D '.z/ for each
z 2 ˆ.e�0 \ F �1.K//. We show that this is the set required for Definition 14.3.
We just verified the property (ii) of that definition, and property (i) holds by hy-
pothesis. It remains to verify property (iii) of Definition 14.3.

Thus, let �1 � e�0 be an open neighborhood of C , and suppose that '0; '1 2
Comp.ˆ.�1/;K/ satisfy '0.z/ D '1.z/ D '.z/ for all z 2 ˆ.�1 \ F�1.K//.
By Lemma 14.2, we have coin	1

.F;ˆ; 'i / D C for i D 0; 1. Lemma 14.22
implies that there is an open neighborhood �2 � �1 of C and a function h 2
Comp.Œ0; 1��ˆ.�2/;K/with h.i; � / D 'i jˆ.	2/ for i D 0; 1 such that h.t; z/ D
'.z/ for all .t; z/ 2 Œ0; 1��ˆ.�2\F�1.K//. In view of Lemma 14.2, we obtain

coin	2
.F;ˆ; h.t; � // D C D coin	1

.F;ˆ; 'i /

for all t 2 Œ0; 1� and i D 0; 1. In particular, the set coinŒ0;1��	2
.F;ˆ; h/ D

Œ0; 1��C is compact by Theorem 2.63. Hence, the excision and homotopy invari-
ance implies

deg	1
.F;ˆ; '0;�1/ D deg	2

.F;ˆ; h.0; � /;�2/

D deg	2
.F;ˆ; h.1; � /;�2/ D deg	1

.F;ˆ; '1;�1/,

and so Definition 14.3(iii) holds.
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As a side result, Lemma 14.21 implies the announced version of the generalized
homotopy invariance which is easier to apply.

Theorem 14.23. The A-fundamental Fredholm triple degree DEG has the fol-
lowing property:

(QTfund) (Generalized Homotopy Invariance II). Let .G;H; h;W; Y; �/ be a
generalized proper acyclic� homotopy triple for .Gt ;Ht ; ht ;Wt ; Y; �t /

.t 2 Œ0; 1�/ where W � Œ0; 1� � X is open, and GWW ! Y is a gen-
eralized (oriented) Fredholm homotopy of index 0. We put eH.t; x/ WD
¹tº � H.t; x/. Suppose that there is an open neighborhood U � W of
C WD coinW .G; eH;h/, a set K � Y , and a neighborhood Z of the com-
pact set eH.C/ in eH.U / such that the following holds:

(a) K is A-fundamental for .Gt ;Ht ; ht ;Wt / for every t 2 Œ0; 1�.
(b) K D ¿, or K is an CNE for Z.

(c) The restriction of h to

�0 WD Z \ eH.U \G�1.K//

belongs to Comp.�0;K/.

Then .Gt ;Ht ; ht ;Wt / 2 Tfund.X; Y;A/ for all t 2 Œ0; 1�, and

DEG.Gt ;Ht ; ht ;Wt / is independent of t 2 Œ0; 1�.

Note that the compactness of eH.C/ is automatic by Proposition 2.100.

Proof. We apply Lemma 14.21 with the function triple .G; eH;h;U; Y; �/, noting
that eH is upper semicontinuous by Proposition 11.41. With the set eU WD �1

and the function eh WD '0 of Lemma 14.21, we find that the hypotheses of Theo-
rem 14.14 are satisfied.

Lemma 14.21 also implies that the property (i) of Definition 14.3 can be verified
rather easily:

Theorem 14.24. Let A be a family of subsets of Y , .F;ˆ; ';�/ 2 Tprop.X; Y /,
and K;K0 2 A be two retraction candidates such that the following holds with
either K1 D K \K0 or K1 D K [K0.

For each open neighborhood �0 � � of C WD coin	.F;ˆ; '/ there is a
neighborhood Z of ˆ.C/ in ˆ.�0/ such that K1 is a CNE for Z.

Then the property (i) of Definition 14.4 holds with that K1 and some open
neighborhood �0 � � of C .
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Proof. SinceK;K0 are both retraction candidates for .F;ˆ; ';�/, there are open
neighborhoods �1;�2 � � of C and '1 2 Comp.ˆ.�1/;K/, '2 2
Comp.ˆ.�2/;K0/ satisfying '1.z/ D '.z/ for all z 2 ˆ.�1 \ F�1.K// and
'2.z/ D '.z/ for all z 2 ˆ.�2 \ F�1.K0//. We put �0 WD �1 \ �2. Note
that '.z/ D '1.z/ for all z 2 M1 WD ˆ.�0 \F�1.K// and '.z/ D '2.z/ for all
z 2 M2 WD ˆ.�0 \ F�1.K0//. For i D 1; 2, let �i denote the closure of Mi in
Z0 WD ˆ.�0/. By Lemma 2.55, we have 'j�i

D 'i j�i
.

We put now M0 WD ˆ.�0 \ F�1.K1//, and let �0 denote the closure of M0

in Z0. In case K1 D K \K0, we have M0 �M1 \M2 and thus �0 � �1 \ �2.
In case K2 D K [ K0, we have M0 D M1 [ M2 and thus �0 D �1 [ �2.
In both cases, we obtain that 'j�0

2 Comp.�0;K1/. Note that, by hypothesis,
there is a neighborhood Z of ˆ.C/ in Z0 such that K1 is a CNE for Z. By
Proposition 2.10, we have

�0 D Z0 \ˆ.�0 \ F�1.K1//.

Hence, applying Lemma 14.21 with K1 in place of K and with �0 \ Z in place
of �0, we find that there is an open neighborhood e�0 � �0 of C and '2 2
Comp.ˆ.e�0/;K1/ satisfying '2.z/ D '.z/ for all z 2 ˆ.e�0 \ F�1.K1//.

Theorem 14.24 suggests some natural choices for the family A. Indeed, natural
such choices for A are:

(a) the family of all closed convex subsets of Y (recall Theorem 4.36).

(b) the family of all convex subsets of Y in case Comp.�;K/ D CompK.�;K/

(recall Theorem 4.36).

(c) the family of all finite unions of convex compact subsets of Y (recall Propo-
sition 4.39).

(d) the family of all locally finite unions of convex closed subsets of Y .

Of course, several other choices are possible, as well. The last family corresponds
to the degree theory (actually fixed point index theory) developed by R. D. Nuss-
baum [116].

The difference between the family of convex subsets of Y and the family of
closed convex subsets of Y corresponds to the difference of the classes CNEK and
CNEY and is one of the reasons why the choice Comp.�;K/ D CompK.�;K/

might be interesting. In contrast, the choice Comp.�;K/ D CompY .�;K/ has
the advantage that the condition (c) of Theorem 14.19 can be verified easier (for
instance, by using measures of noncompactness). So none of the two cases is
clearly superior over the other, and this is the reason, why we consider both of
them.
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As Example 14.11 shows, the property (ii) of Definition 14.4 must be of a more
restrictive nature: In that example, K, K0 WD Y , K \ K0 D K and K [ K0 D
Y are all CNE for all subsets of � , and even ' 2 Comp.ˆ.�0/; Y / and ' 2
Comp.ˆ.�0/\F�1.K/;K/, but K is not A-fundamental for the family A D
¹K;Y º so that property (ii) of Definition 14.4 must be violated nevertheless for
K1 D K and K1 D Y .

We give now a sufficient homotopic test for that property.

Definition 14.25. Let .F;ˆ; ';�/ 2 Tprop.X; Y /, and K1 � K2 � Y . We call
K1 a local .F;ˆ; ';�/-deformation retract of K2, if there are an open neighbor-
hood �0 � � of coin	.F;ˆ; '/ and H 2 C.Œ0; 1� �K2;K2/ with the following
properties:

(a) H.0; � / D idK2
, H.¹1º �K2/ � K1.

(b) H.t; y/ D y for all y 2 .' ıˆ/.�0 \ F �1.K1// and all t 2 Œ0; 1�.
(c) For every t 2 Œ0; 1�, we have

fix	0\F �1.K2/.F;ˆ;H.t; '. � /// � K1.

In case Comp D CompY , we require in addition that H has an extension to
H 2 C.Œ0; 1� �K2; Y /.

Theorem 14.26. Suppose that K1 is a retraction candidate for .F;ˆ; ';�/ 2
Tprop.X; Y /. Assume in addition that K1 is a local .F;ˆ; ';�/-deformation re-
tract of K2. Let �0 be as in Definition 14.25. Then for each open neighbor-
hood �1 � �0 of coin	.F;ˆ; '/ and each 'i 2 Comp.ˆ.�1/;Ki / satisfying
'i .z/ D '.z/ for all z 2 ˆ.�1 \ F�1.Ki // for i D 1; 2, we have

deg.F;ˆ; '1;�1/ D deg.F;ˆ; '2;�1/. (14.7)

Proof. With H as in Definition 14.25, we define h; h0 2 C.Œ0; 1� � ˆ.�1/;K2/

by h.t; z/ WD H.t; '2.z// and h0.t; z/ WD H.t; '.z//. By Lemma 14.2, we have

coin	1
.F;ˆ; h.t; � // D coin	1

.F;ˆ; h0.t; � //.
Note that by hypothesis fix	1

.F;ˆ; h0.t; � // � K1 and H.t; y/ D y for all
y 2 .' ıˆ/.�0 \ F�1.K1//. This implies

coin	1
.F;ˆ; h0.t; � // D coin	1\F �1.K1/.F;ˆ; h0.t; � //

D coin	1\F �1.K1/.F;ˆ; '/.
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Recall that K1 is a retraction candidate and thus fix	0
.F;ˆ; '/ � K1. Since �1

contains C WD coin	0
.F;ˆ; '/, we obtain

coin	1\F �1.K1/.F;ˆ; '/ D coin	1
.F;ˆ; '/ D C .

Summarizing, we have shown with the convention of Remark 12.3 that

coinŒ0;1��	1
.F;ˆ; h/ D Œ0; 1� � C

is compact in view of Theorem 2.63.
Moreover, the set C0 WD '2.�1/ is compact and contained in K2 or, in case

Comp D CompY , in K2. In both cases, H.Œ0; 1� � C0/ � Y is compact and
contains h0.Œ0; 1� � ˆ.�2//. Hence, h0 is compact into Y , and so the homotopy
invariance of the Leray–Schauder triple degree in the last function implies that

deg.F;ˆ; '2;�1/ D deg.F;ˆ; h.0; � /;�1/ D deg.F;ˆ; h.1; � /;�1/.

The function '0 WD h.1; � / belongs to Comp.ˆ.�1/;K1/ and satisfies '0.z/ D
'2.z/ D '.z/ for all z 2 ˆ.�1 \ F�1.K1//. Since K1 is a retraction candidate,
this implies

deg.F;ˆ; '0;�1/ D deg.F;ˆ; '1;�1/.

Combining the above equations, we obtain (14.7).

Corollary 14.27. Let A denote a fixed family of subsets K � Y . Let K be a
retraction candidate for .F;ˆ; ';�/ 2 Tprop.X; Y /. Assume that either K D ¿
or that K 2 A and for each retraction candidate K0 2 A with K \K0 ¤ ¿ and
K ¤ K0 there is an open neighborhood �0 � � of C WD coin	.F;ˆ; '/ such
that at least one of the following holds:

(a) For each open neighborhood �1 � �0 of C there is a neighborhood Z of
ˆ.C/ in ˆ.�1/ such that K [K0 is an CNE for Z. Moreover, K is a local
.F;ˆ; ';�/-deformation retract of K [K0.

(b) For each open neighborhood �1 � �0 of C there is a neighborhood Z of
ˆ.C/ in ˆ.�1/ such that K \K0 is an CNE for Z. Moreover, K \K0 is a
retraction candidate, andK\K0 is a local .F;ˆ; ';�/-deformation retract
of K.

Then K is A-fundamental for .F;ˆ; ';�/.

Proof. We obtain property (i) of Definition 14.4 by Theorem 14.24, and prop-
erty (ii) by Theorem 14.26 withK1 D K andK2 D K[K0 or withK1 D K\K0

and K2 D K, respectively.
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In particular, we have shown the following result:

Theorem 14.28. Let A denote a family of subsets K � Y . Let .F;ˆ; ';�/ 2
Tprop.X; Y /, and K � Y . Suppose that there is an open neighborhood �0 � �

of C WD coin	.F;ˆ; '/ such that the following holds.

(a) fix	.F;ˆ; '/ � K.

(b) K D ¿ or K 2 A.

(c) For everyK0 2 A withK\K0 ¤ ¿ and every open neighborhood�1 � �0

of C there is a neighborhood Z0 of ˆ.C/ in ˆ.�1/ such that K [K0 is an
CNE for Œ0; 1� �Z0.

(d) For every K0 2 A with K \ K0 ¤ ¿ the set K is a local .F;ˆ; ';�/-
deformation retract of K [K0.

(e) K D ¿, or there is a neighborhood Z of ˆ.C/ in ˆ.�0/ such that K is an
CNE for Z, and the restriction of ' to

�0 WD Z \ˆ.�0 \ F�1.K//

belongs to Comp.�0;K/.

Then K is A-fundamental for .F;ˆ; ';�/.

Proof. Theorem 14.19 implies that K is a retraction candidate, and so the asser-
tion follows from Corollary 14.27(a).

Note that the condition 'j�0
2 Comp.�0;K/ of Theorem 14.28 is satisfied if:

(a) K is compact.

(b) '.ˆ.�0 \ F�1.K/// � K.

In the case F D ˆ D id	, the latter hypothesis is sometimes called pushing
condition in literature [60], [61]. It is sometimes satisfied in situations where the
special case of degree theory for condensing operators (which we develop in the
next sections) does not apply. We refer to [4] and [3] for some applications of this
condition.

14.3 The Degree for Fredholm Triples with
Convex-fundamental Sets

In this section, we consider a particular case of Sections 14.1 and 14.2: Through-
out this section, we let A denote the family of all closed convex subsets K � Y .
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Since any K 2 A is closed in Y , we have CompK.�;K/ D CompY .�;K/,
and K is an CNEK if and only if it is a CNEY (recall Proposition 4.35). In
particular, we need not distinguish these cases as in the previous sections.

However, instead of requiring the existence of a fundamental set, we will re-
quire the existence of a convex-fundamental set in the sense of the following def-
inition.

Definition 14.29. Let .F;ˆ; ';�/ 2 Tgen.X; Y /, and let �0 � � be an open
neighborhood of coin	.F;ˆ; '/.

A set K � Y is almost convex-fundamental for .F;ˆ; ';�/ on �0 if the fol-
lowing holds:

(a) K is convex and closed in Y .

(b) '.ˆ.�0 \ F�1.K/// � K.

(c) For all x 2 �0 we have the implication

F.x/ 2 conv.K [ '.ˆ.x/// H) F.x/ 2 K. (14.8)

If additionally K is compact, we call K convex-fundamental for .F;ˆ; ';�/.

We will see that “countably condensing triples” possess a convex-fundamental
set and that, under minor additional assumptions, each convex-fundamental set is
A-fundamental, and so the degree theory of the previous sections can be used.
Moreover, we will see that for triples with convex-fundamental sets, this theory
has even stronger properties than in the previous sections.

Remark 14.30. Historically, almost convex-fundamental sets were called “fun-
damental” in [88], and they were one of the first approaches to degree theory for
noncompact maps.

Proposition 14.31. Let K be almost convex-fundamental for .F;ˆ; ';�/. Then
fix	.F;ˆ; '/ � K.

Proof. Since coin	.F;ˆ; '/ � �0, we have fix	.F;ˆ; '/ D fix	0
.F;ˆ; '/,

and so the assertion follows from (14.8).

Proposition 14.32. Every closed convex set K � Y containing .' ı ˆ/.�0/ is
almost convex-fundamental for .F;ˆ; ';�/ on �0.

Proof. The assertion follows immediately from Definition 14.29.
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The following criterion gives a convenient test for the existence of convex-
fundamental sets (even for families of triples). This criterion even can decide
whether there exists a convex-fundamental set containing a given prescribed set
M � Y .

We will see in Section 14.4 that this criterion implies in particular that “count-
ably condensing triples” have a convex-fundamental set containing a prescribed
set M � Y .

In view of the subsequent homotopy invariance, we formulate the criterion even
for families of function triples.

Theorem 14.33. We consider a family of function triples .Ft ; ˆt ; 't ;�t / 2
Tgen.X; Y / .t 2 I / and a family �0;t � �t .t 2 I / of open neighborhoods
of coin	t

.Ft ; ˆt ; 't ;�t /. Let A0 denote the family of all subsets K � Y which
are almost convex-fundamental for .Ft ; ˆt ; 't ;�t / on �0;t for every t 2 Œ0; 1�.
Then the following holds:

(a) For each M � Y there is a smallest setK satisfying M � K 2 A0. This set
satisfies

K D conv.M [
[

t2I

't .ˆt .�0;t \ F �1
t .K////. (14.9)

This set is compact if and only if there is a set containing M which is convex-
fundamental for .Ft ; ˆt ; 't ;�t/ on �0;t for every t 2 Œ0; 1�.

(b) Let ‰WA ( Y satisfy

K � K0 H) 't.ˆt .�0;t \ F�1
t .K/// � ‰.K/ � ‰.K0/

for all K;K0 2 A and all t 2 I . Then there is a smallest set K satisfying
‰.K/ � K 2 A0. This set satisfies

K D conv.‰.K//. (14.10)

This set is compact if and only if there is a set K0 satisfying ‰.K0/ � K0

such that K0 is convex-fundamental for .Ft ; ˆt ; 't ;�t / on �0;t for every
t 2 Œ0; 1�.

Proof. To see (b), let K denote the family of all K 2 A0 which satisfy ‰.K/ �
K. We note that Proposition 14.32 implies K ¤ ¿. Hence, K0 WD

T

K exists.
Since intersections of closed convex sets are closed and convex (recall Proposi-
tion 2.51), we have K0 2 A.

Now we put K1 WD conv.‰.K0//. Each K 2 K is closed and convex, and
we have ‰.K0/ � ‰.K/ � K. We obtain that K1 � K for all K 2 K , and so
K1 � K0.
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We claim that K1 2 K . To see this, we note first that K1 � K0 implies
‰.K1/ � ‰.K0/ � K1. It remains to show that K1 2 A0. For each t 2 I , we
have in view of K1 � K0 that

't .ˆt .�0;t \ F�1
t .K1/// � ‰.K1/ � ‰.K0/ � K1,

and if x 2 �0;t satisfies Ft .x/ 2 conv.K1 [ 't.ˆt .x/// then we have for each
K 2 K in view ofK1 � K0 � K that Ft .x/ 2 conv.K['t .ˆt.x///. Hence, we
obtain from (14.8) that Ft .x/ 2 K for each K 2 A which implies Ft .x/ 2 K0.
It follows that x 2 F�1

t .K0/ and thus

Ft .x/ 2 conv.K1 [ 't .ˆt .�0;t \ F�1
t .K0//// � conv.K1 [‰.K0// � K1.

Hence, we have indeed K1 2 A0 and thus K1 2 K .
It follows that K0 � K1 2 K , and since K1 � K0, we have actually K0 D

K1 2 K .
Hence, we have shown K0 2 K and K0 D conv.‰.K0//. This implies the

first assertions of (b). For the last assertion of (b), it suffices to note that, since
K0 D T

K is closed and K0 2 K , Proposition 2.29 implies that K contains a
compact set if and only if K0 is compact.

For the proof of (a), we put for K 2 A

‰0.K/ WD
[

t2I

't.ˆt.�0;t \ F�1
t .K///

and note that K 2 A0 implies ‰0.K/ � K. Hence, for K 2 A0, we have
M � K if and only if ‰0.K/ [M � K. Thus, we obtain (a) by applying (b)
with ‰.K/ WD ‰0.K/ [M .

If additionally .F;ˆ; ';�/ is locally Œ0; 1�-normal (recall Definition 11.47) and
belongs to Tprop.X; Y /, we introduce a new notation:

Definition 14.34. We write .F;ˆ; ';�/ 2 Tconv.X; Y / if .F;ˆ; ';�/ 2
Tprop.X; Y / is locally Œ0; 1�-normal and has a convex-fundamental set.

Theorem 14.35. Every .F;ˆ; ';�/ 2 Tconv.X; Y / belongs to Tfund.X; Y;A/.
If K is convex-fundamental then K is A-fundamental, and we have for every

open set�0�� with compact coin	0
.F;ˆ; '/ that .F;ˆ; ';�0/ 2 Tconv.X; Y /

and that K is convex-fundamental and A-fundamental for .F;ˆ; ';�0/.

Proof. We show first that K is A-fundamental for .F;ˆ; ';�/. To this end, we
apply Theorem 14.28. Let�0 be as in Definition 14.29. Note that we have indeed
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fix	.F;ˆ; '/ � K by Proposition 14.31. If K0 2 A satisfies K \ K0 ¤ ¿
then K1 WD K [ K0 is an CNEK1

(even an CEK1
) for the class of T4 spaces

by Proposition 4.39. Since .F;ˆ; '/ is a locally Œ0; 1�-normal triple and since
ˆ.C/ is compact by Proposition 2.100, we thus find that the only hypothesis of
Theorem 14.28 which remains to be checked is that K is a local .F;ˆ; ';�/-
deformation retract of K [K0.

To see this, we recall that by Corollary 4.26, there is a retraction � 2 C.K [
K0;K/ onto K. We claim that a map H 2 C.Œ0; 1� � .K [ K0/;K [ K0/ with
the properties of Definition 14.25 is given by

H.t; y/ WD .1 � t/y C t�.y/.
Indeed,H.0; � / D idK[K0

andH.¹1º�.K[K0// � �.K[K0/ D K. Moreover,
for all y 2 .'ıˆ/.�0\F�1.K// � K, we have �.y/ D y and thusH.t; y/ D y

.t 2 Œ0; 1�/. It remains to show that

fix	0\F �1.K[K0/.F;ˆ;H.t; '. � /// � K (14.11)

for all t 2 Œ0; 1�. Thus, assume that t 2 Œ0; 1� and x 2 �0\F�1.K [K0/ satisfy

F.x/ 2 H.t; '.ˆ.x/// � conv.K [ '.ˆ.x///.
By (14.8), we have F.x/ 2 K, and so (14.11) is shown. Hence, K is indeed
A-fundamental for .F;ˆ; ';�/.

For the last assertion, we note that if �1 � � is open and such that
coin	1

.F;ˆ; '/ is compact then Definition 14.29 immediately implies that K
is also convex-fundamental for .F;ˆ; ';�1/. Similarly, Definition 11.47 implies
that .F;ˆ; ';�1/ is locally Œ0; 1�-normal. Hence, .F;ˆ; ';�1/ 2 Tconv.X; Y /,
and by what we had shown, it follows that K is A-fundamental for .F;ˆ; ';�1/.

In view of Theorem 14.35 the following definition makes sense:

Definition 14.36. The convex-fundamental Fredholm triple degree Deg D
Deg.X;Y / is the operator which associates to each .F;ˆ; ';�/ 2 Tconv.X; Y /

the number from Z2 (or Z in the oriented case) which is the A-fundamental Fred-
holm degree of that function triple for the class A of closed convex subsets of Y .
More briefly:

Deg.X;Y / WD DEG.X;Y;A/ jTconv.X;Y /.

We use the new symbol Deg to indicate the particular choice of A and that we
require the existence of a convex-fundamental set instead of only the existence
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of an A-fundamental set. Under this slightly more restrictive hypothesis, we ob-
tain more natural properties for the degree, as we will show now: Most of the
additional hypotheses which we had to require for the corresponding properties
in Section 14.1 can be dropped. Moreover, we can now also formulate a single-
valued normalization property under reasonable assumptions.

Theorem 14.37. The convex-fundamental Fredholm degree has the following
properties for every .F;ˆ; ';�/ 2 Tconv.X; Y /:

(ATconv ) (Permanence). If the set K is convex-fundamental or A-fundamental
for .F;ˆ; ';�/, �0 � � is an open neighborhood of coin	.F;ˆ; '/,
and '0 2 Comp.ˆ.�0/;K/ satisfies '0.z/ D '.z/ for all z 2 ˆ.�0 \
F�1.K// then

Deg.F;ˆ; ';�/ D deg.F;ˆ; '0;�0/.

(BTconv ) (Strong Permanence). If the set K is almost convex-fundamental for
.F;ˆ; ';�/ and for .F;ˆ; '0;�/ 2 Tconv.X; Y /, and if there is an open
set �0 � � with

coin	.F;ˆ; '/ [ coin	.F;ˆ; '0/ � �0

with '0.z/ D '.z/ for all z 2 ˆ.�0 \ F�1.K// then

coin	.F;ˆ; '/ D coin	.F;ˆ; '0/ (14.12)

and
Deg.F;ˆ; ';�/ D Deg.F;ˆ; '0;�/.

(CTconv ) (Excision). If �0 � � is open and contains coin.F;ˆ; '/ then

Deg.F;ˆ; ';�0/ D Deg.F;ˆ; ';�/.

(DTconv ) (Generalized Homotopy Invariance). Let .G;H; h;W; Y; �/ be a gen-
eralized proper acyclic� homotopy triple for .Gt ;Ht ; ht ;Wt ; Y; �t / .t 2
Œ0; 1�/ where W � Œ0; 1� � X is open, and GWW ! Y is a general-
ized (oriented) Fredholm homotopy of index 0. Suppose that the following
holds with eH.t; x/ WD ¹tº �H.t; x/ and an open neighborhood U � W

of C WD coinW .G; eH;h/.

(a) There is K � Y which is convex-fundamental for .Gt ;Ht ; ht ;Wt /

on Ut WD ¹x W .t; x/ 2 U º for every t 2 Œ0; 1�.
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(b) The compact set eH.C/ has a T4 neighborhood in eH.U /.

(c) .Gt ;Ht ; ht / is locally Œ0; 1�-normal for every t 2 Œ0; 1�.
Then .Gt ;Ht ; ht ;Wt / 2 Tconv.X; Y / for all t 2 Œ0; 1�, and

Deg.Gt ;Ht ; ht ;Wt / is independent of t 2 Œ0; 1�.

(ETconv) (Existence). If Deg.F;ˆ; ';�/ ¤ 0 then coin	.F;ˆ; '/ ¤ ¿.

(FTconv) (Equivalence Invariance). Let T WD Tconv.X; Y /. If .F;ˆ; '/ �T

.F;eˆ;e'/ then

Deg.F;ˆ; ';�/ D Deg.F;eˆ;e';�/.

Moreover, if
.F;ˆ; ';�/ v .F;eˆ;e';�/ (14.13)

andK is (almost) convex-fundamental for .F;eˆ;e';�/ thenK is (almost)
convex-fundamental for .F;ˆ; ';�/.

(GTconv) (Single-Valued Normalization). If 'ıˆ is single-valued then the triples
.F;ˆ; ';�/ and .F; id	; 'ıˆ;�/ have the same (almost) convex-funda-
mental sets. If .F;ˆ; ';�/ 2 Tconv.X; Y / and if .F; id	; ' ı ˆ;�/ and
the standard form of .F;ˆ; ';�/ are locally Œ0; 1�-normal then we have
.F; id	; ' ıˆ;�/ 2 Tconv.X; Y / and

Deg.F;ˆ; ';�/ D Deg.F; id	; ' ıˆ;�/.

(HTconv) (Compatibility with the Non-Oriented Case). The degrees for the ori-
ented and non-oriented case are the same modulo 2 (if the oriented case
applies).

(ITconv ) (Compatibility with the Leray–Schauder Triple Degree).

If .F;ˆ; ';�/ 2 TLS.X; Y / then .F;ˆ; ';�/ 2 Tfund.X; Y;A/, and

DEG.F;ˆ; ';�/ D deg.F;ˆ; ';�/. (14.14)

If .F;ˆ; ';�/ 2 TLS.X; Y / is locally Œ0; 1�-normal then .F;ˆ; ';�/ 2
Tconv.X; Y / and

Deg.F;ˆ; ';�/ D deg.F;ˆ; ';�/. (14.15)
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(JTconv ) (Additivity). Let � D �1[�2 with disjoint open subsets �1;�2 � �.
Then .F;ˆ; ';�i / 2 Tconv.X; Y / for i D 1; 2, and

Deg.F;ˆ; ';�/ D Deg.F;ˆ; ';�1/CDeg.F;ˆ; ';�2/.

(KTconv ) (Excision-Additivity). Let �i � � .i 2 I / be a family of pair-
wise disjoint open sets with coin	.F;ˆ; '/ �

S

i2I �i and such that
coin	i

.F;ˆ; '/ is compact for all i 2 I . Then .F;ˆ; ';�i / 2
Tconv.X; Y / for all i 2 I , and

Deg.F;ˆ; ';�/ D
X

i2I

Deg.F;ˆ; ';�i /,

where in the sum at most a finite number of summands is nonzero.

(LTconv ) (Diffeomorphic-Isomorphic Invariance). Let J1 be a diffeomorphism
of an open subset of a Banach manifold X0 onto � and J2 an isomor-
phism of Y onto a real normed vector space Y0. Then

Deg.X;Y /.F;ˆ; ';�/ D Deg.X0;Y0/.J2ıF ıJ1; ˆıJ1; J2ı'; J�1
1 .�//.

In the oriented case, the orientation of J2 ı F ı J1 is understood in the
sense of Proposition 8.38.

(MTconv ) (Restriction). Let X0 � X be open. Then

Deg.X0;Y / D Deg.X;Y / jTconv.X0;Y /.

(NTconv ) (Cartesian Product). For i D 1; 2, let Xi be a manifold without bound-
ary of class C 1 over the real Banach space EXi

, and let Yi D EYi
be

a real Banach space. For .Fi ; ˆi ; 'i ;�i / 2 Tconv.Xi ; Yi /, we put X WD
X1�X2,� WD �1��2, F WD F1˝F2,ˆ WD ˆ1˝ˆ2, and ' WD '1˝'2.
If .F;ˆ; ';�/ is locally Œ0; 1�-normal then .F;ˆ; ';�/ 2 Tconv.X; Y /,
and

Deg.X;Y /.F;ˆ; ';�/

D Deg.X1;Y1/.F1; ˆ1; '1;�1/Deg.X2;Y2/.F2; ˆ2; '2;�2/.

In the oriented case, F is equipped with the product orientation.

Remark 14.38. In the generalized homotopy invariance (DTconv) the compact-
ness of eH.C/ is automatic by Proposition 2.100. Moreover, the hypothesis about
the T4 neighborhood is trivially satisfied if .G; eH;h/ is locally normal (recall
Definition 11.47).
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Remark 14.39. In the single-valued normalization property (GTconv ), the hy-
potheses that .F; id	; ' ıˆ;�/ and the standard form of .F;ˆ; ';�/ are locally
Œ0; 1�-normal are satisfied if Œ0; 1� �� �ˆ.�/ is a T5 space.

Proof. The permanence property (ATconv) follows from the definitions and Theo-
rem 14.35. For (BTconv), we note first that (14.8) implies

fix	.F;ˆ; '/ [ fix	.F;ˆ; '0/ � K,

and so (14.12) follows from

coin	.F;ˆ; '/ D coin	0\F �K .F;ˆ; '/

D coin	0\F �K .F;ˆ; '0/ D coin	.F;ˆ; '0/.

Next, we observe that Theorem 14.33 implies thatK contains a setK0 which is si-
multaneously convex-fundamental for .F;ˆ; ';�/ and for .F;ˆ; '0;�/. In par-
ticular,K0 � K is A-fundamental and thus a retraction candidate for .F;ˆ; ';�/
and .F;ˆ; '0;�/. We thus find an open neighborhood �1 � �0 of (14.12)
and '1 2 Comp.ˆ.�1/;K0/ satisfying '1.z/ D '.z/ D '0.z/ for all z 2
ˆ.�1 \ F�1.K0//. The permanence property implies

Deg.F;ˆ; ';�/ D deg.F;ˆ; '1;�1/ D Deg.F;ˆ; '0;�/,

and so the strong permanence property is proved.
The properties (CTconv ), (ETconv), (HTconv), and (MTconv) are special cases of the

corresponding properties of the A-fundamental Fredholm triple degree.
For the proof of the generalized homotopy invariance (DTconv ), we verify all

hypotheses of Theorem 14.23. By Theorem 14.35, we find that K is A-funda-
mental for .Gt ;Ht ; ht ;Wt / for every t 2 Œ0; 1�. Recall that K D ¿ or that K is
a CEK (or equivalently CEY , recall Proposition 4.35) for the class of T4 spaces
by Theorem 4.36. In particular, if Z denotes a T4 neighborhood of eH.C/ in
eH.U /, we obtain that K is a CNEK (and CNEY ) for Z. Moreover, since K is
A-fundamental for .Gt ;Ht ; ht ;Wt / on Ut , we have in particular

ht .¹tº �Ht .Ut \G�1
t .K/// � K

for all t 2 Œ0; 1�. It follows that

h.eH.U \G�1.K/// � K.

Since K is closed, we obtain in view of Proposition 2.85 with

�0 WD Z \ eH.U \G�1.K//
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that
h.�0/ � h.eH.U \G�1.K/// � K D K.

Hence, the restriction of h to �0 belongs to CompY .�0;K/ D CompK.�0;K/.
We thus verified all hypotheses of Theorem 14.23, and so

Deg.Gt ;Ht ; ht ;Wt / D DEG.Gt ;Ht ; ht ;Wt /

is independent of t 2 Œ0; 1�.
Concerning the equivalence invariance, we show first the second assertion of

(FTconv ). Thus, assume that (14.13) holds, and that K is (almost) convex-funda-
mental for the function triple .F;eˆ;e';�/ on an open neighborhood �0 � � of
coin	.F;eˆ;e';�/. Then (11.6) implies that �0 is a neighborhood of
coin	.F;ˆ; ';�/. We claim thatK is (almost) convex-fundamental for the func-
tion triple .F;ˆ; ';�/ on�0. To see this, we note that in view of (11.5), we have

'.ˆ.�0 \ F�1.K/// �e'.eˆ.�0 \ F�1.K/// � K,

and that for each x 2 �0 the relation

F.x/ 2 conv.K [ '.ˆ.x///
implies

F.x/ 2 conv.K [e'.eˆ.x///

and thus F.x/ 2 K. Hence, K is indeed (almost) convex-fundamental for
.F;ˆ; ';�/ on �0.

In particular, if (14.13) holds where both function triples belong to T and
if K is convex-fundamental for .F;eˆ;e';�/ 2 T then K is simultaneously A-
fundamental for .F;eˆ;e';�/ and for .F;ˆ; ';�/ by Theorem 14.35, and so
Theorem 14.18(PTfund ) implies

Deg.F;ˆ; ';�/ D Deg.F;eˆ;e';�/.

This shows the equivalence invariance in the special case (14.13), and the general
case follows by a trivial induction.

For the proof of (GTconv), we note first that

C WD coin	.F;ˆ; '/ D coin	.F; id	; ' ıˆ/.
Moreover, Propositions 2.80 and 2.94 imply that ' ıˆj	0

is continuous for some
open neighborhood �0 � � of C , and so .F; id	; ' ıˆ/ 2 Tprop.X; Y /. Since

.' ıˆ/.id	.�0 \ F �1.K/// D '.ˆ.�0 \ F�1.K///
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and
conv.K [ .' ıˆ/.id	.x/// D conv.K [ '.ˆ.x///,

it follows that K is (almost) convex-fundamental for .F;ˆ; ';�/ on �0 if and
only if K is (almost) convex-fundamental for .F; id	; ' ıˆ;�/.

In particular, if .F;ˆ; ';�/ 2 T WD Tconv.X; Y / and .F; id	; ' ı ˆ;�/ is
locally Œ0; 1�-normal, it follows that .F; id	; ' ı ˆ;�/ 2 T . Let .F;eˆ;e';�/
denote the standard form of .F;ˆ; ';�/, and let K be convex-fundamental for
.F;ˆ; ';�/. Note that Proposition 11.29 implies

.F;ˆ; '/ % .F;eˆ;e'/ - .F; id	; ' ıˆ/.
By the second assertion of the equivalence invariance, we obtain thatK is convex-
fundamental for .F;eˆ;e';�/, and so .F;eˆ;e';�/ belongs to T if it is locally
Œ0; 1�-normal. Hence, the equivalence invariance of Deg implies the assertion.

The first part of (ITconv ) follows from Corollary 14.9 since K D Y is convex
and closed and belongs to Y 2 A. For the second part, we note that Propo-
sition 13.7 implies for every .F;ˆ; ';�/ 2 TLS.X; Y / that there is an open
neighborhood �0 � � of coin	.F;ˆ; '/ such that C WD '.ˆ.�0// is rel-
atively compact in Y . Corollary 3.62 implies that K WD convC is compact,
and so Proposition 14.32 implies that K is convex-fundamental for .F;ˆ; ';�/
on �0. Hence, if additionally .F;ˆ; ';�/ is locally Œ0; 1�-normal, it follows
that .F;ˆ; ';�/ 2 Tconv.X; Y /, and (14.15) follows from the definition of Deg
and (14.14).

For the additivity and excision-additivity, we note that if K is convex-funda-
mental for .F;ˆ; ';�/ then Theorem 14.35 implies that K is simultaneously
convex-fundamental and thus A-fundamental for .F;ˆ; ';�i / for all i D 1; 2

or i 2 I , respectively. Hence, the additivity and excision-additivity follows from
Theorem 14.15.

The diffeomorphic-isomorphic invariance property follows from the corres-
ponding property of the A-fundamental Fredholm triple degree, since any iso-
morphism J2 of Y onto Y0 automatically has the property that K � Y is closed
and convex if and only if J2.K/ is closed and convex.

For the Cartesian product property, we first show that if Ki is convex-funda-
mental for .Fi ; ˆi ; 'i ;�i / on �0;i � �i for i D 1; 2 then K D K1 � K2

is convex-fundamental for .F;ˆ; ';�/ on �0 WD �0;1 � �0;2. Indeed, K is
convex and compact by Theorem 2.63, and

'.ˆ.�0 \ F �1.K/// D '1.ˆ1.�0;1 \ F�1
1 .K/// � '2.ˆ2.�0;2 \ F�1

2 .K///

� K1 �K2 D K.
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Moreover, if x 2 �0, that is x D .x1; x2/ with xi 2 �0;i for i D 1; 2, we have

conv.K [ '.ˆ.x/// � conv..K1 [ '1.ˆ1.x1/// � .K2 [ '2.ˆ2.x2////

D conv.K1 [ '1.ˆ1.x1/// � conv.K2 [ '2.ˆ2.x2///,

and F.x/ D .F1.x1/; F2.x2//, and so (14.8) holds. Since .F;ˆ; ';�/ is locally
Œ0; 1�-normal, it follows that .F;ˆ; ';�/ 2 Tconv.X; Y /. By Theorem 14.35, we
conclude that K is A-fundamental for .F;ˆ; ';�/ where A denotes the family
of all closed convex subsets of Y . Let A0 denote the family of all sets of the form
K1 � K2 where Ki � Yi is closed and convex for i D 1; 2. Then A0 � A.
Since K 2 A0 is A-fundamental and A0 � A, we obtain immediately from
Definition 14.4 that K is A0-fundamental. Using Theorem 14.17, we find that

DEG.X;Y;A0/.F;ˆ; ';�/

D Deg.X1;Y1/.F1; ˆ1; '1;�1/Deg.X2;Y2/.F2; ˆ2; '2;�2/.

Moreover, using Proposition 14.12, we find

DEG.X;Y;A0/.F;ˆ; ';�/DDEG.X;Y;A/.F;ˆ; ';�/DDeg.X;Y /.F;ˆ; ';�/;

and so the Cartesian product property is proved.

14.4 Countably Condensing Triples

In this section, we discuss how to verify that a function triple .F;ˆ; ';�/ be-
longs to Tconv.X; Y / (recall Definition 14.34). More general, in view of the gen-
eralized homotopy invariance of the degree, we discuss how to verify that there
is a set K � Y which is convex-fundamental for a family of function triples
.Ft ; ˆt ; 't ;�t / (recall Definition 14.29).

We use throughout the notations of Section 14.3.
The starting point of our considerations is the criterion formulated in

Theorem 14.33: By that criterion, it suffices in particular to verify that any set
K � Y satisfying the set inequality (14.9) or (14.10) is compact.

Since we want to obtain conditions on countable sets, we use the idea to re-
place K by a certain countable subset OK which “almost” (up to some closures)
satisfies the set inequalities (14.9) or (14.10) and such that the compactness of K
follows from the compactness of certain auxiliary sets associated with OK.

We keep the above description of the idea so rough, because there are two
“dual” approaches to achieve this aim. These approaches lead to rather similar
results which, however, vary in some details. So we will actually develop both
approaches.
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Originally, the author has developed both approaches in [141], basing them on
two “dual” lemmas from [137]. We present now a new lemma which is even
slightly simpler to formulate than the mentioned “dual” lemmas and which con-
tains both of them as special cases.

Thus, both approach can actually be based on this lemma. Roughly speaking,
this lemma states that if we have “almost” the set equality F.M/ D conv‰.M/,
namely (14.16), then there exist “arbitrarily large” countable subsets C � M

which also satisfy “almost and up to closures” an analogous equality (14.17),
(14.18). In some cases, this becomes even really a set equality (14.19) for clo-
sures.

Lemma 14.40. Let Z be a locally convex space, M be a set, and F;‰WM ( Z

be such that F.x/ and ‰.x/ are separable for every x 2 M . Assume also that
conv‰.M/ is metrizable. Let I be an (at most) countable index set, and Vi � Z
.i 2 I / be such that

[

i2I

.Vi \ conv‰.M// � F.M/ � conv‰.M/. (14.16)

Then for each countable C0 �M there is a countable C �M with C0 � C ,

F.C/ � conv‰.C/, (14.17)

Vi \ conv‰.C/ � Vi \ F.C/ � Vi \ conv‰.C/ for all i 2 I . (14.18)

For those i 2 I for which .conv‰.M// n Vi is closed in Z, (14.18) is even
equivalent to

Vi \ F.C/ D Vi \ conv‰.C/. (14.19)

Proof. We show first that for each countable Cn�M there is a countable CnC1�
M satisfying

Cn � CnC1, (14.20)

F.Cn/ � conv‰.CnC1/, (14.21)

Vi \ conv‰.Cn/ � Vi \ F.CnC1/ for all i 2 I . (14.22)

Indeed, the second inclusion of (14.16) implies F.Cn/ � conv‰.M/. Since
F.Cn/ is a countable union of separable sets and thus separable, Proposition 3.55
implies that there is a countable Pn � ‰.M/ with F.Cn/ � convPn. There is a
countable An �M with Pn � ‰.An/. Hence, F.Cn/ � conv‰.An/.

Since ‰.Cn/ is a countable union of separable sets and thus separable, Propo-
sition 3.55 implies that Vn;i WD Vi \ conv‰.Cn/ � conv‰.Cn/ are separable.
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Since I is countable, it follows that there exist countable Qn � S

i2I Vn;i with
Vn;i � Vn;i \Qn for all i 2 I . Note that the first inclusion of (14.16) implies
Qn � F.M/. Consequently, there are countable Bn � M with Qn � F.Bn/.
We thus have

Vi \ conv‰.Cn/ D Vn;i � Vn;i \ F.Bn/ � Vi \ F.Bn/.

It follows that CnC1 WD An [ Bn [ Cn satisfies (14.20)–(14.22).
Hence, for each countable C0 � M , we can define by induction a sequence of

countable sets C1; C2; : : : � M satisfying (14.20)–(14.22) for all n D 0; 1; : : :

We claim that C D S1
nD1 Cn has the required property. Indeed, C is count-

able as a union of countably many countable sets. By (14.20), we have C0 �
C . From (14.21), we obtain F.Cn/ � conv‰.C/ for all n, and so F.C/ �
conv‰.C/ follows. This implies (14.17) and the second inclusion of (14.18).
Finally, (14.22) implies with Kn WD conv‰.Cn/ for each fixed i 2 I that

Vi \Kn � Vi \ F.C/
holds for all n. In particular, K WD S1

nD1Kn satisfies

Vi \K � Vi \ F.C/.
Note that K is convex by Proposition 2.51, because (14.20) implies Kn � KnC1

for all n. In view of ‰.C/ � K, we have conv‰.C/ � K and thus obtain the
first inclusion of (14.18).

For the last assertion, we apply Proposition 2.11 with Y WD Vi , M WD
conv‰.C/, and N WD conv‰.M/. We thus find with Proposition 3.54 that
actually

Vi \ conv‰.C/ D Vi \ conv‰.C/

if N n Vi is closed.

Now one approach consists in a rather straightforward application of the above
Lemma 14.40 with F D idM and M D K where K is as in Theorem 14.33.
For simplicity, we formulate this approach only in the particular situation of
Theorem 14.33(a), although a similar result could also be formulated for Theo-
rem 14.33(b).

Theorem 14.41. We consider a family of function triples .Ft ; ˆt ; 't ;�t / 2
Tgen.X; Y / .t 2 I / and a family �0;t � �t .t 2 I / of open neighborhoods
of coin	t

.Ft ; ˆt ; 't ;�t /. Let M � Y be separable, and let K � Y be the
corresponding set of Theorem 14.33(a). We define ‰WK ( Y by

‰.x/ WD
[

t2I

't .ˆt .�0;t \ F�1
t .x//. (14.23)
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Suppose that ‰.x/ is separable for every x 2 K. Let Vn � Y .n 2 N/ where N
is (at most) countable. Suppose that for any countable C � K the inclusions

C � conv.M [‰.C//, (14.24)

Vn \ conv.M [‰.C// � Vn \ C � Vn \ conv.M [‰.C// for all n 2 N ,
(14.25)

and for those n 2 N for which .conv.M [‰.K/// n Vn is closed in Y also

Vn \ C D Vn \ conv.M [‰.C// (14.26)

imply that C is relatively compact in Y . Then K �M is convex-fundamental for
.Ft ; ˆt ; 't ;�t / on �0;t for every t 2 I .

Proof. We have to show that K is compact. Assume that this is not the case.
Since K is closed and thus complete by Lemma 3.8, Proposition 3.26 implies
that ˇ.K/ > 0. Hence, there is a countable C0 � K with ˇ.C0/ > 0. We
apply Lemma 14.40 with M D K, F D idM , and the multivalued function
e‰.x/ WD M [ ‰.x/. Note that e‰.x/ is separable, since M and ‰.x/ are
assumed to be separable. Moreover, (14.9) means K D conv e‰.K/, that is
idM .M/ D conv e‰.M/. Hence (14.16) is satisfied. Lemma 14.40 thus shows
that there is a countable C � M with C0 � C and satisfying (14.24) and (14.25)
or even (14.26) respectively. Since C0 � C , we have ˇ.C/ � ˇ.C0/ > 0, and
so C is not relatively compact by Proposition 3.26 which contradicts the hypothe-
ses.

Remark 14.42. For .Ft ; ˆt ; 't ;�t / .t 2 I / and �0;t � �t , we put � WD
¹.t; x/ W x 2 �0;t º, F.t; x/ WD Ft .x/, eˆ.t; x/ WD .t;ˆt .x//, and '.t; z/ WD
't .z/. Then the function (14.23) is just a restriction of

‰ WD ' ı eˆ ı F j�1
	0

.

For the particular case that we consider only one function triple .F;ˆ; ';�/ D
.Ft ; ˆt ; 't ;�t / and �0 D �0;t � �, the function (14.23) is just a restriction of

‰ WD ' ıˆ ı F j�1
	0

.

Thus, roughly speaking, ‰ is just the composition ' ı ˆ ı F�1. Hence, ‰ is
actually a function which is very naturally associated with the family of function
triples.

As a special case of Theorem 14.41, we obtain that “countably condensing
triples” and even “countably condensing triple families” (that is, families for
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which the associated map ‰ is countably 1-condensing) possess a (common)
convex-fundamental set. Moreover, it can even be arranged that this set contains
a given prescribed set M . More precisely, the following holds.

Theorem 14.43. We consider a family of function triples .Ft ; ˆt ; 't ;�t / 2
Tgen.X; Y / .t 2 I / and a family �0;t � �t .t 2 I / of open neighborhoods
of coin	t

.Ft ; ˆt ; 't ;�t /. Let M � Y be separable, and let K � Y be the cor-
responding set of Theorem 14.33(a). Assume that (14.23) is seperable for every
x 2 K and at least one of the following holds.

(a) There is a regular monotone measure of noncompactness 	 on Y satisfying
	.M [ C/ D 	.C / for each countable C � K and such that (14.23) is
.1;

�c

�c /-condensing on K.

(b) M is separable and the function (14.23) has the property that for each count-
able C � K and each countable C0 � ‰.C/ � K for which C is not
relatively compact there is a monotone measure of noncompactness 	 on Y
satisfying 	.M [ C0/ < 	.C /.

ThenK � M is convex-fundamental for .Ft ; ˆt ; 't ;�t / on�0;t for every t 2 I .

Proof. We assume first (b) and verify that the hypotheses of Theorem 14.41 are
satisfied. Thus, let C � K be countable and satisfy (14.24). We are to show
that C is relatively compact. Assume by contradiction that this is not the case.
Since C is separable, we obtain from (14.24) by Proposition 3.55 that there is a
countable A � M [ ‰.C/ with C � convA. In particular, there is a countable
C0 � ‰.C/ with C � conv.M [C0/. Note that ‰.C/ � K holds automatically
in view of C � K by (14.9). Now if 	 is chosen corresponding to C and C0 as
in (b), we can calculate

	.C / D 	.C / � 	.conv.M [ C0// D 	.M [ C0/,

which is a contradiction. Now we show that (a) implies (b). Indeed, if 	 is as
in (a) then we have in particular 	.M/ D 	.M [ ¿/ D 	.¿/ D 0, and so M
is relatively compact and thus separable by Corollary 3.27. Moreover, if C � K

is not relatively compact then 	.C / > 0, and so we have for every countable
C0 � ˆ.C/ � K that 	.M [ C0/ D 	.C0/ < 	.C /.

Remark 14.44. In Theorem 14.43, the main difference between the two hypothe-
ses is that in (b) the function 	 may depend on C and C0 while this is not the case
for (a).

Now we discuss the mentioned “dual” approach. This approach is a bit more
subtle than just applying Lemma 14.40 with F D idK . Instead, we apply
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Lemma 14.40 with the function F from the given function triple .F;ˆ; '/ and
with M WD F �1.K/.

We formulate the result immediately for families of function triples. It is more
convenient to formulate the result first for a rather general case with an auxiliary
map ‰:

Theorem 14.45. For a family .Ft ; ˆt ; 't ;�t / 2 Tgen.X; Y / .t 2 I /, let �0;t �
�t .t 2 I / be a family of open neighborhoods of coin	t

.Ft ; ˆt ; 't /. For C �
e� WD S

t2I �0;t , we put

F.C/ WD
[

t2I

Ft .C \�0;t /.

Let ‰We� ( Y be such that

't .ˆt .x// � ‰.x/ and ‰.x/ is separable for all x 2 �0;t

for every t 2 I . Assume that for every countable subset C � e� the inclusions

F.e�/ \ conv‰.C/ � F.C/ � conv‰.C/ (14.27)

and if .conv‰.e�// n F.e�/ is closed in Y together with the equality

F.C/ D F.e�/ \ conv‰.C/ (14.28)

imply that ‰.C/ is relatively compact in Y .
Then there is a set K � Y which is convex-fundamental for .Ft ; ˆt ; 't ;�t /

on �0;t and satisfies ‰.�0;t \ F�1
t .K// � K for all t 2 I .

Proof. For K � Y , we put

MK WD
[

t2I

¹x 2 �0;t W Ft .x/ 2 Kº.

Applying Theorem 14.33 with

O‰.K/ WD
[

t2I

‰.�0;t \ F�1
t .K// D ‰.MK/,

we find that there is a smallest set K � Y which is almost convex-fundamental
for .Ft ; ˆt ; 't ;�t / on �0;t for every t 2 I and which satisfies O‰.K/ � K.
Moreover, this set K satisfies

K D conv O‰.K/ D conv‰.MK/.
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We are to show that K is compact. Putting M WDMK and V0 WD F.e�/, we have

V0 \ conv‰.M/ D F.e�/ \K D F.M/ � K D conv‰.M/.

Suppose that K D conv‰.M/ fails to be compact. Since K is complete (recall
Lemma 3.8), we obtain by Proposition 3.26 that �Y .K/ > 0. Theorem 3.61
implies �Y .‰.M// > 0. In view of (3.1), we have ˇ.‰.M// > 0, and so there
is a countable A � ‰.M/ with ˇ.A/ > 0. Let C0 � M be countable with
A � ‰.C0/. Applying Lemma 14.40, we obtain in view of V0 D F.e�/ � F.C/

a countable set C �M satisfying C0 � C and (14.27). Moreover, if

Y0 WD .conv‰.e�// n F.e�/
is closed in Y then also Y0\K D .conv‰.M//nV0 is closed in Y , and so (14.19)
implies in view of V0 � F.C/ that (14.28) holds. Since C � C0, we have
ˇ.‰.C// � ˇ.‰.C0// � ˇ.A/ > 0. Hence, ‰.C/ is not relatively compact
in Y , contradicting our hypothesis.

For practically all applications, it is sufficient to deal with the following simpler
special case (usually with M D ¿):

Theorem 14.46. For a family .Ft ; ˆt ; 't ;�t / 2 Tgen.X; Y / .t 2 I /, let �0;t �
�t .t 2 I / be a family of open neighborhoods of coin	t

.Ft ; ˆt ; 't /. For C �
e� WD S

t2I �0;t , we put

F.C/ WD
[

t2I

Ft.C \�0;t /,

and we assume that ‰We� ( Y ,

‰.x/ WD
[

t2I
x2	0;t

't .ˆt .x// is separable for all x 2 e�. (14.29)

Let M � Y be separable and such that for every countable subset C � e� the
inclusions

F.e�/ \ conv.M [‰.C// � F.C/ � conv.M [‰.C// (14.30)

and if .conv.M [‰.e�/// n F.e�/ is closed in Y together with the equality

F.C/ D F.e�/ \ conv‰.C/

imply that ‰.C/ is relatively compact in Y .
Then there is a set K � M which is convex-fundamental for .Ft ; ˆt ; 't ;�t /

on �0;t for every t 2 I .
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Proof. The assertion follows by applying Theorem 14.45 with the multivalued
function e‰.x/ WD M [‰.x/.

Before we formulate Theorems 14.45 or 14.46 in terms of measures of noncom-
pactness, we note that the condition (14.29) is in all situations of interest satisfied
automatically:

Proposition 14.47. Let .F;ˆ; ';W; Y; �/ be a generalized homotopy triple for
the family .Ft ; ˆt ; 't ;�0;t ; Y; �t / .t 2 I /. Then (14.29) holds if one of the
following is true:

(a) I is compact and W D I ��0;0.

(b) I is separable and metrizable, and � is metrizable.

Proof. In caseW D I ��0;0, we have�0;t D �0;0 for all t 2 I , and so‰.x/ D
'.ˆ.I �¹xº//. Hence, if I is compact then two applications of Proposition 2.100
imply that ‰.x/ is a compact subset of Y and thus separable by Corollary 3.27.

If I is a separable metric space, then also the subset Ix WD ¹t 2 I W x 2 �0;tº is
separable by Corollary 3.17. With �x WD ˆ.Ix�¹xº/, the mapˆW Ix�¹xº ( �x

is upper semicontinuous by Proposition 2.90 and thus upper semicontinuous in the
uniform sense by Proposition 3.19 if � is a metric space. Sinceˆ.t; x/ is compact
and thus separable by Corollary 3.27, we obtain by Corollary 3.21 that �x is
separable. Applying Corollary 3.21 once more, we obtain that '.�x/ D ‰.x/ is
separable.

Theorem 14.48. Let .F;ˆ; ';W; Y; �/ be a generalized homotopy triple for a
family .Ft ; ˆt ; 't ;�0;t ; Y; �t / .t 2 Œ0; 1�/. Suppose W D Œ0:1� ��0;0 or that �
is metrizable. For C � e� WD S

t2Œ0;1��0;t , we put

F.C/ WD
[

t2Œ0;1�

Ft .C \�0;t /,

and we define ‰We�! Y by

‰.x/ WD
[

t2Œ0;1�
x2	0;t

't .ˆt .x//.

Let M � Y be separable, and suppose that for each countable C � e� with
noncompact ‰.C/ and each countable C0 � ‰.C/ there is a monotone measure
of noncompactness 	 on Y satisfying

	.M [ C0/ < 	.F.C //. (14.31)
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Then there is a set K � M which is convex-fundamental for .Ft ; ˆt ; 't ;�t / on
�0;t for every t 2 Œ0; 1�.
Proof. We apply Theorem 14.46. Since (14.29) holds by Proposition 14.47, it
suffices to verify that for each countable C � e�0;0 with (14.30) the set ‰.C/ is
compact. Assume by contradiction that this is not the case. Since‰.C/ is a count-
able union of separable sets and thus separable, there is a countable dense subset
C0 � ‰.C/. Using the last inclusion of (14.30), we find for every monotone
measure of noncompactness 	 that

	.F.C // D 	.F.C // � 	.conv.M [‰.C///
D 	.M [‰.C// � 	.M [ C0/ D 	.M [ C0/,

contradicting our hypothesis.

Roughly speaking, the condition (14.31) means that “‰ is more compact than F
is proper”.

14.5 Classical Applications in the General Framework

We apply now Theorem 14.46 to use the homotopy invariance in the last function
to obtain generalizations of some of the results of Section 9.6 to a richer class of
operators.

Throughout this section, we use the notations of Section 14.3.

Theorem 14.49 (Continuation Principle). Let � � X be open and F 2
F0.�; Y /, oriented or non-oriented. Let � be a Hausdorff space such that Œ0; 1��
� is T5. Let ˆW� ( � be acyclic�, and ' 2 C.�; Y /. Suppose that there is
y0 2 Y such that the following holds:

(a) The set

A WD
[

0�t�1

¹x 2 � W F.x/� y0 2 t.'.ˆ.x//� y0/º (14.32)

has at least one of the following properties:

(1) A is relatively compact in �.

(2) F.A/ fails to be relatively compact in Y .

(b) There is an open neighborhood �0 � � of A such that for each countable
C � �0 the inclusions

F.�0/ \ conv.¹y0º [ '.ˆ.C/// � F.C/ � conv.¹y0º [ '.ˆ.C///
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and if .conv.¹y0º [ '.ˆ.C//// n F.�0/ is closed in Y together with the
equality

F.C/ D F.�0/ \ conv.¹y0º [ '.ˆ.C/// (14.33)

imply that '.ˆ.C// is relatively compact.

Then A is relatively compact in �, .F;ˆ; ';�/ 2 Tconv.X; Y /, and

Deg.F;ˆ; ';�/ D deg.F;�; y0/,

where the right-hand side denotes the Benevieri–Furi degree. In particular, if that
degree is nonzero, we have coin.F;ˆ; '/ ¤ ¿.

Proof. We apply the generalized homotopy invariance with W WD Œ0; 1� � �,
U WD Œ0; 1���0,G.t; x/ WD F.x/,H.t; x/ WD ˆ.x/, eH.t; x/ WD ¹tº�ˆ.x/, and
h.t; z/ WD t'.z/C .1 � t/y0. Then .G;H; h;W; Y; �/ is an acyclic� generalized
homotopy triple for the family .Gt ;Ht ; ht ;Wt /.

Using Theorem 14.46 with M D ¹y0º, we find that our hypotheses imply
that there is a set K � Y which is convex-fundamental for .Gt ;Ht ; ht ;Wt / D
.F;ˆ; t' C .1� t/y0;�/ on Ut D �0: The hypotheses of Theorem 14.46 corre-
spond to our hypotheses, because

conv‰.C/ D conv.¹y0º [ '.ˆ.C///
for every C � �0 by the definition of h.

Since K contains fixWt
.Gt ;Ht ; ht / for every t 2 Œ0; 1� by Proposition 14.31,

the definition of A implies F.A/ � K. Since K is compact, we obtain that F.A/
is relatively compact, and so the hypothesis implies that A is relatively compact in
�. Note that the definition of A implies coinW .F; eH;h/ � Œ0; 1� � A. Hence, if
K0 � � denotes a compact set containing A then Proposition 11.41 implies that
coinW .F; eH;h/ is a closed and thus compact subset of P WD Œ0; 1� �K0 (Propo-
sition 2.29 and Theorem 2.63). Hence, the homotopy triple .G;H; h;W; Y; �/ is
proper. Finally, since we assume that Œ0; 1� � � is T5, we obtain that
.Gt ;Ht ; ht ; Ut / is locally Œ0; 1�-normal.

The generalized homotopy invariance thus implies with '0.x/ 
 y0 that

Deg.F;ˆ; ';�/ D Deg.F;ˆ; '0;�/.

By the compatibility with the Leray–Schauder triple degree, the last degree can
also be interpreted as the Leray–Schauder triple degree. In view of the single-
valued normalization property of the latter, this is the Benevieri–Furi coincidence
degree deg.F; '0;�/, and by the compatibility with the Benevieri–Furi degree,
the latter is deg.F;�; y0/
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Corollary 14.50 (Continuation Principle). Let � � X be open and F 2
F0.�; Y /, oriented or non-oriented. Let � be a Hausdorff space such that Œ0; 1��
� is T5. Let ˆW� ( � be acyclic�, and ' 2 C.�; Y /. Suppose that there is
y0 2 Y such that the following holds:

(a) The map ˆ has an extension to an upper semicontinuous map ˆW� ( �

with closed values, F has an extension to a map F 2 C.�; Y /, and

F.x/� y0 ¤ t.'.ˆ.x// � y0/ for all .t; x/ 2 Œ0; 1� � @�.

(b) For each countable C � � with noncompact C and each countable C0 �
'.ˆ.C// there is a regular monotone measure of noncompactness 	 on Y
with

	.¹y0º [ C0/ < 	.F.C //.

Then .F;ˆ; ';�/ 2 Tconv.X; Y /, and

Deg.F;ˆ; ';�/ D deg.F;�; y0/,

where the right-hand side denotes the Benevieri–Furi degree. In particular, if that
degree is nonzero, we have coin.F;ˆ; '/ ¤ ¿.

Proof. We verify the hypotheses of Theorem 14.49. Concerning property (a), we
note that the hypothesis implies that the set (14.32) is the same as

A D
[

0�t�1

¹x 2 � W F.x/� y0 2 t.'.ˆ.x//� y0/º.

Since
¹.t; x/ 2 Œ0; 1� �� W F.x/ � y0 2 t.'.ˆ.x// � y0/º

is closed in Œ0; 1� � � by Corollary 2.115 and Œ0; 1� is compact, it follows from
Corollary 2.112 thatA is closed in�. In view ofA � �, it follows thatA is closed
in �. Hence, if A fails to be relatively compact in � then A fails to be compact.
Since A is closed in X , we obtain ˇ.A/ > 0. There is a countable subset C � A

with ˇ.C/ > 0, and so C fails to be compact. By our hypothesis (b), we obtain
	.F.C // > 0 for some regular set function 	 , and so F.C/ � F.A/ fails to be
relatively compact in Y . Hence, hypothesis (a) of Theorem 14.49 holds.

To verify hypothesis (b), we argue analogously to the proof of Theorem 14.48
to show that if C � � is countable and satisfies

F.C/ � conv.¹y0º [ '.ˆ.C///,
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then M WD '.ˆ.C// is relatively compact. Indeed, since M is a countable union
of separable sets and thus separable, there is a countable dense C0 � M . Then
we have for every monotone measure of noncompactness 	 that

	.F.C // D 	.F.C // � 	.conv.¹y0º [M//

D 	.¹y0º [M/ � 	.¹y0º [ C 0/ D 	.¹y0º [ C0/.

By hypothesis, this implies that C � � is compact, and so '.ˆ.C // is compact
by Proposition 2.100. Hence, M is relatively compact in Y .

Theorem 14.49 can be considered as an abstract form of the Leray–Schauder
alternative. In fact, for the particular case F D id	, we obtain as a special case a
non-compact Leray–Schauder alternative:

Theorem 14.51 (Leray–Schauder Alternative). LetX D Y ,� � X be open, and
� be a Hausdorff space such that Œ0; 1� � � is a T5. Let ˆW� ( � be acyclic� ,
and ' 2 C.�;X/. Suppose that there is x0 2 � such that the following holds:

(a) The set
A WD

[

�>1

¹x 2 � W �.x � x0/ 2 '.ˆ.x// � x0º

is either relatively compact in� or fails to be relatively compact inX . Alter-
natively, assume that ˆ has an upper semicontinuous extension ˆW� ( �

with closed values and

�.x � x0/ … '.ˆ.x//� x0 for all � � 1. (14.34)

(b) There is an open neighborhood �0 � � of A with x0 2 A such that for each
countable C � �0 the equality

C D �0 \ conv.¹x0º [ '.ˆ.C/// (14.35)

implies that '.ˆ.C// is relatively compact.

Then ' ıˆ has a fixed point in �.

Proof. We apply Theorem 14.49 with F D id	 and y0 D x0, observing that the
normalization property for the diffeomorphism F of the Benevieri–Furi degree
implies deg.id	;�; y0/ D 1 when we consider either the non-oriented case or
the natural orientation of F .

Assume by contradiction that ' ıˆ has no fixed point in �. Then

A [ ¹x0º D
[

0�t�1

¹x 2 � W F.x/ � y0 2 t.'.ˆ.x// � y0/º,
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is the set (14.32) of Theorem 14.49. Hence, if A [ ¹x0º fails to be relatively
compact in � then also A fails to be relatively compact in �, and so A fails to be
relatively compact in X , by hypothesis. Thus also F.A[ ¹x0º/ D A[ ¹x0º fails
to be relatively compact in X . Under the assumption (14.34), we can show as in
the proof of Corollary 14.50 that A [ ¹x0º is closed in �, and so also in this case
this set fails to be relatively compact in X if it fails to be relatively compact in�.
In both cases, we have proved hypothesis (a) of Theorem 14.49. Moreover, since
A [ ¹x0º � �0, it follows that �0 is a neighborhood of the set (14.32).

Concerning hypothesis (b) of Theorem 14.49, it thus suffices to note that the
equality (14.35) is just (14.33) in our special case. We are allowed to consi-
der (14.33), because the set

.conv.¹x0º [ '.ˆ.C//// n F.�0/

is closed, since F.�0/ D �0 is open. Summarizing, all hypotheses of Theo-
rem 14.49 are satisfied, and so 'ıˆ has a fixed point in�which is a contradiction
to our assumption.

Although Theorem 14.51 can be generalized also for the case that ˆ is acyclic
(and not only acyclic�), see [137], we point out that no such generalization is
known for Theorem 14.49 (unless F is a homeomorphism).

In the author’s opinion, Theorem 14.51 demonstrates the power and beauty of
our approach. In the single-valued case, special cases of Theorem 14.51 and of
the subsequent consequence are due to H. Mönch [108].

Corollary 14.52 (Multivalued Mönch–Rothe Fixed Point Theorem). Let X D Y ,
� � X be open and convex, and � be a Hausdorff space such that Œ0; 1� � � is
T5. Let ˆW� ( � be acyclic� , and ' 2 C.�;X/. Suppose that '.ˆ.@�// � �

and that there is x0 2 � and an open neighborhood �0 � � of
[

�>1

¹x 2 � W �.x � x0/ 2 '.ˆ.x//� x0º

with x0 2 �0 such that for each countable C � �0 the equality (14.35) implies
that '.ˆ.C// is relatively compact.

Then ' ıˆ has a fixed point in �.

Proof. We can assume that there is no fixed point on @�. Then the hypothe-
sis (14.34) holds, since if there were x 2 @�, � � 1, and z 2 ˆ.x/ with
�.x � x0/ 2 '.z/ � x0 then � > 1 by our assumption, and we have with
t WD 1 � ��1 2 .0; 1� in view of '.z/ 2 � that x D .1 � t/'.z/ C tx0 2 �
by Lemma 4.41 which is a contradiction. Thus, the result follows from Theo-
rem 14.51.
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Remark 14.53. The compactness hypothesis in Theorem 14.51 and Corol-
lary 14.52 is in particular satisfied if one of the following holds:

(a) There is a regular monotone measure of noncompactness 	 on X with
	.¹x0º [ C/ D 	.C / for all countable C � X and such that ' ı ˆ is
.1;

�c

�c /-condensing on �0.

(b) For each countable C � �0 and each countable C0 � '.ˆ.C// with non-
compact C 0 there is a monotone measure of noncompactness 	 on X with
	.¹x0º [ C0/ < 	.C /.

Indeed, if C � �0 is countable and such that M WD '.ˆ.C// is not relatively
compact then we observe thatM is a countable union of compact hence separable
sets, and thus we find a countable dense C0 � M , in particular C 0 D M is
noncompact. It follows that (14.35) must fail since otherwise we would have with
the corresponding 	 from the hypothesis that

	.C / � 	.conv.¹x0º [M// D 	.¹x0º [M/

� 	.¹x0º [ C 0/ D 	.¹x0º [ C0/,

contradicting the hypothesis.

Corollary 14.54 (Multivalued Countable Darbo–Rothe Fixed Point Theorem).
Let X D Y , � � X be open and convex, and � be a Hausdorff space such
that Œ0; 1� � � is T5. Let ˆW� ( � be acyclic�, and ' 2 C.�;X/. Suppose that
'.ˆ.@�// � � and that there is x0 2 � and a regular monotone measure of non-
compactness 	 on X satisfying 	.¹x0º[C/ D 	.C / for all countable C � X . If
' ıˆ is .1; �c

�c/-condensing then it has a fixed point in �.

Proof. In view of Remark 14.53, this is a special case of �0 D � of Corol-
lary 14.52

The original theorem of Darbo dealt only with single-valued .q; ˛
˛/-bounded

maps f with q < 1 on bounded sets and used a rather different approach by
iterating sets under the map M 7! conv f .M/. Daher [35] pointed out that the
assertion of Darbo’s fixed point theorem holds also if the hypotheses concerning
measures of noncompactness are satisfied only on countable sets, and this was
sharpened (and applied) by Mönch [108], [109].
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14.6 A Sample Application for Boundary Value
Problems

Without going into much detail, we sketch in this section how degree theory for
function triples can be applied for boundary value problems in Banach spaces.
Let X be a Banach space, A be the generator of a C0 semigroup in X , f W Œ0; T ��
X ( X , and F;GWX ! X . We consider the differential inclusion

x0.t/ 2 Ax.t/C f .t; x.t// .0 � t � T / (14.36)

together with the boundary condition

F.x.0// D G.x.T //. (14.37)

We equip CX WD C.Œ0; T �;X/ with the max-norm

kxkCX
WD max

t2Œ0;T �
kx.t/k.

There are various Aronszajn type results available for (14.36) which state that un-
der some natural conditions on A and f the map ˆWX ( CX , which associates
to every x0 2 X the set of all solutions of (14.36) satisfying the initial condi-
tion x.0/ D x0, is upper semicontinuous and has the property that ˆ.x0/ is a
nonempty Rı for every x0 2 X , see e.g. [83, Corollary 5.2.1 and Theorem 5.3.1].
We will assume this property in the following. Then ˆ is acyclic�.

We assume thatG 2 C.X;X/ and define '; '0 2 C.CX ; X/ by '0.x/ WD x.T /

and ' WD G ı '0. Then ' ı ˆ is the map which associates to every x0 the set of
all values G.x.T // where x 2 CX is a solution of (14.36) satisfying x.0/ D x0.
It follows that (14.36), (14.37) can be rewritten in the form

F.x0/ 2 '.ˆ.x0//.

We point out that the multivaluedness of this problem need not come from the
multivaluedness of f in (14.36). Rather, it comes from the fact that the solution
of the initial value problem corresponding to (14.36) need not be unique: It is
well-known that this can occur for (14.36) also in the single-valued case if f .t; � /
fails to be locally Lipschitz. A simple example for the latter is the differential
equation x 0.t/ D pjx.t/j (in X D R) where the problem corresponding to the
initial value x.0/ D 0 has for each � 2 Œ0; T � the solution

x.t/ D
´

1
4
.t � �/2 if t � � ,

0 if t � � .
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Note that the set ˆ.0/ of all these solutions is an Rı , because it is homeomorphic
to Œ0; T � so that this is not in contradiction with the mentioned Aronszajn type
results.

Theorem 14.55. Under the above hypotheses on ˆ and G, let � � X be open
and F 2 F0.�;X/ such that the following holds:

(a) F has an extension F 2 C.�;X/, and for every � 2 Œ0; 1� the equa-
tion (14.36) has no solution x with x.0/ 2 @� and F.x.0// D �G.x.T //.

(b) For every countable C � � with noncompact C and every countable C0 �
'.ˆ.C// there is a regular monotone measure of noncompactness 	 with

	.C0/ < 	.F.C //.

Then the Benevieri–Furi degree deg.F;�; 0/ exists, and if it is nonzero then the
boundary value problem (14.36), (14.37) has a solution with x.0/ 2 �.

Proof. ˆj	 is acyclic� , by hypothesis. Hence, the assertion follows from the
continuation principle (Corollary 14.50), applied with Y D X and y0 D 0.

Condition (b) of Theorem 14.55 looks technical but is actually satisfied in most
applications if � is bounded: If f satisfies natural compactness hypotheses then
one can prove estimates of the type

	0.C0/ � k	1.C /

(with 	1; 	0 2 ¹�X ; ˛; ˇº) for each countable C � � and each countable C0 �
'0.ˆ.C //, see e.g. [83, Theorem 6.3.1]. Hence, ifG is .k0;

�c
1

�c
0

/-bounded, one can

obtain estimates of the type

	2.C0/ � L	1.C /

for each countable C � � and each countable C0 � '.ˆ.C// (with L D k0k).
In particular, if F satisfies

	2.F.C // > L	1.C /

for every countable C � � with 	1.C / > 0 (recall Proposition 3.44) the hypoth-
esis (b) of Theorem 14.55 is satisfied. Note that if � is bounded, this condition
holds if

	2.F.C // � .LC ".C //	1.C /

for every countable C � � and ".C / > 0.
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Summarizing, if � � X is bounded, the most serious hypothesis of Theo-
rem 14.55 is (a). Note that this condition holds with � D BR.0/ for R > M if
all solutions (14.36) with F.x.0// D �G.x.T // for some � 2 Œ0; 1� satisfy the a
priori bound kx.t/k � M for all t 2 Œ0; T �. Hence, we obtain the well-known
heuristic principle that a priori bounds lead to the existence of solutions. If T
is sufficiently large, one can also attempt other techniques (Ljapunov functions,
guiding functions etc.) to verify a “quantitative” form of dissipativity of (14.36)
which can be used to verify (a) (with� D BR.0/ and sufficiently large R and T ).

Of course, Theorem 14.55 presents only a simple and very straightforward ap-
plication of the degree theory which we had developed. For the case F D id,
that is, if one is interested in periodic solutions of (14.36), results of the type of
Theorem 14.55 had already been considered for quite a while by means of de-
gree theory for multivalued maps; we refer to [120] and its references for more
details. However, for the case that F �1 does not exist or is discontinuous, the
equation does not have a structure for which classical degree theory for multi-
valued maps is applicable: In this case, the degree theory for function triples
seems to be the simplest topological approach to study boundary value problems
of type (14.36), (14.37). Note that in any case all three functions of the function
triple have a very natural meaning given by the form of the problem, and so the
approach by a function triple degree seems to be a very natural one.
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(1961), 73–76.

[79] D. M. Hyman, On Decreasing Sequences of Compact Absolute Retracts, Fund.
Math. 64 (1969), 91–97.

[80] L. Janos and M. Martelli, Sequentially Condensing Maps, Univ. u Novom Sadu
Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 16 (1986), 85–94.

[81] T. J. Jech, The Axiom of Choice, North-Holland Publ. Company, Amsterdam,
1973.
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sequentially 36
sequentially at a point 36

continuously differentiable� 201
counterimage of a multivalued�

large 9
small  9

covering� 129
k-fold  129

differentiable� 198
Fréchet 198
Gateaux 197

domain of a multivalued� 9
finite-dimensional�

Vietoris 141
.F;M0; Y0/-homotopic 357
Fredholm homotopy 203, 206

generalized� 203, 206
generalized orientable� 203
generalized oriented � 203

orientable� 211
orientation of � 203, 211
oriented � 211

Fredholm operator 203, 206, 220
induced orientation on a � 176
linear � 160
orientable� 203, 211
orientable family � 179, 186
orientation of � 203, 211
orientation of linear � 171
orientation of linear bundle� 186
orientation of linear family � 179
oriented � 203, 211
oriented linear� 171
.L;

�c
Y

�c
X

/-bounded� 78

.L;
�c

Y

�c
X

/-condensing� 78

.L;
�Y

�c
X

/-bounded� 78

.L;
�Y

�c
X

/-condensing� 78

.L;
�Y
�X
/-bounded� 75

.L;
�Y
�X
/-condensing� 77

graph of a multivalued� 10
Hölder � 61
homeomorphism 19, 85
identity � 9
image of a multivalued � 9
invertible� 10
linear � 83
Lipschitz � 61
locally constant 21
lower semicontinuous multivalued

� 44
at a point 44

lower semicontinuous real-valued
� 47

 at a point 47
multivalued � 9

selection of a  9
null space of a � 149
partial C r homotopy 206

generalized 206, 228
perfect� 54
positively homogeneous� 82
product of multivalued� 10
proper� 52
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range of a � 149
restriction of a multivalued� 10
single-valued� 9
upper semicontinuous multivalued

� 44
at a point 44
in the uniform sense  66
in the uniform sense  at a

point 66
upper semicontinuous real-valued

� 47
 at a point 47

UV 1 � 143
-Vietoris 141

Vietoris � 140
maximal
� chain 16
� element 16

maximality theorem of Hausdorff 16
maximum of a set 15
Mazur’s lemma 89
mean value theorem 198
measure of noncompactness 87

Hausdorff� 67
Istrǎţescu � 67
Kuratowski� 67
regular � 87

metric 59
metric space 59
metrizable space 60
metrization theorem, Urysohn’s� 98
mild equivalence invariance prop-

erty 428
minimal element 16
minimum of a set 15
modulus of continuity at x0 61
monotone set function 75
Morita’s theorem 96
multivalued map see map, multivalued

N
natural orientation
� of a bundle isomorphism 188
� of a diffeomorphism 215, 251
� of an isomorphism 174

neighborhood
admissible � 381, 392
� of a point 18
� retract 106
� of a set 18

ball- 59
net, "-� 59
Neumann series 150
noncompactness see measure of non-

compactness
norm 60

sum � 85, 148
normal

locally � function triple 365
locally I -� function triple 365
� space 25

completely 25
perfectly 25

normalization property 257, 368, 384,
400

� for diffeomorphisms 262, 321
regular � 262, 319
single-valued� 369, 384, 401, 443
� for vector spaces 258

normed space 60
null space of a map 149

O
open
� ball 59
� cover 22
� set 17

operator
additive� 83
Fredholm� 203, 206, 220

induced orientation on a  176
linear  160
orientable 203, 211
orientable family  179, 186
orientation of  203, 211
orientation of linear  171
orientation of linear bundle 186
orientation of linear family 179
oriented 203, 211
oriented linear  171
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linear� 83
opposite orientation 171
order, partial � 14
orientable
� continuous map 248
� family of Fredholm opera-

tors 179, 186
� Fredholm homotopy 211
� Fredholm operator 203, 211
� generalized Fredholm homo-

topy 203
orientation

composite� 172, 191, 212, 253
� of continuous map 248
� of Fredholm homotopy 203, 211
� of Fredholm operator 203, 211

induced 176
inherited�
 for continuous maps 251
 for Fredholm homotopies 229
 for linear maps 177
 for nonlinear Fredholm

maps 229
� of linear bundle Fredholm opera-

tor 186
� of linear family Fredholm opera-

tor 179
� of linear Fredholm operator 171
� of a manifold 255
natural�
 of a bundle isomorphism 188
 of a diffeomorphism 215, 251
 of an isomorphism 174

opposite� 171
� preserving 176
product�
 in Banach bundles 191
 of continuous maps 253
 of linear maps 171
 of nonlinear Fredholm

maps 214
� of a vector bundle 193
� of a vector space 176

induced 176
oriented

� continuous map 248
� Fredholm homotopy 211
� Fredholm operator 203, 211
� generalized Fredholm homo-

topy 203
� linear Fredholm operator 171

P
paracompact space 23

countably� 23
partial
� Banach manifold 227
� chart 227

submanifold 228
� C r homotopy 206

generalized 206, 228
� derivative 199, 210
� implicit function partial 216
� order 14
� submanifold 228
 chart 228
� tangent bundle 228

partition of unity 99
path 19
� lifting theorem 131

path-component of a space 20
path-connected space 19

locally � 22
perfect map 54
perfectly normal space 25
permanence property 417, 442

strong � 442
positively homogeneous map 82
product
� of Banach spaces 148
� bundle 190
� manifold 213
� of multivalued maps 10
� orientation
 in Banach bundles 191
 of continuous maps 253
 of linear maps 171
 of nonlinear Fredholm

maps 214
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� property, Cartesian � 314, 322,
329, 379, 390, 404, 406, 427,
444

projection 154
bundle� 183
Schauder� theorem 395

proper
� function triple 342
� homotopy triple 361
� map 52

property
additivity � 257, 321, 328, 373,

388, 402, 405, 444
bordism invariance� 282, 375
Cartesian product� 314, 322, 329,

379, 390, 404, 406, 427, 444
C 0 reduction� 311
commutativity� 316
Compatibility � 319, 328, 329, 369,

382, 393, 394, 405, 419, 421,
423, 443

C 1 reduction� 318
diffeomorphic invariance� 277,

321
diffeomorphic-isomorphic invariance

� 329, 377, 389, 402, 406,
426, 444

elimination of y � 292, 322
equivalence invariance� 368, 382,

401, 443
mild  428
very weak  428
weak  368, 384, 401

excision � 257, 319, 328, 368, 383,
393, 399, 419, 442

excision-additivity� 261, 321, 329,
373, 388, 402, 405, 444

existence � 261, 321, 329, 373,
388, 402, 405, 419, 443

homotopy invariance� 256, 399
generalized 291, 321, 328, 374,

386, 393, 405, 424, 433, 442
generalized with constant y 285
 in the last function 367, 384,

392

local constantness in y 271
normalization� 257, 368, 384, 400
 for diffeomorphisms 262, 321
regular 262, 319
single-valued 369, 384, 401,

443
 for vector spaces 258

permanence� 417, 442
reduction� 326, 378, 382, 393, 400
restriction � 277, 322, 329, 377,

389, 403, 406, 426, 444
 in the last function 419

Rouché� 271
stability � 271
strong permanence� 442
topological invariance� 277
topological-isomorphic invariance

� 377
weak additivity � 425
weak excision-additivity� 425

pushing condition 437

R
Rı space 124
range of a map 149
reduction property 326, 378, 382, 393,

400
C 0 � 311
C 1 � 318

refinement of a cover 23
reflexive 14
regular
� measure of noncompactness 87
� normalization property 262, 319
� point 225
� space 25

completely 25
� value 225

relatively compact set 24
restriction
� of a function triple 347
of a multivalued map 10
� property 277, 322, 329, 377, 389,

403, 406, 426, 444
 in the last function 419

retract
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local .F;ˆ; ';�/-deformation
� 435

neighborhood� 106
� of a space 106

retraction 106
retraction candidate 416
Riesz’s lemma 73
Rothe’s fixed point theorem 295, 408
Rouché property 271
Rouché triple 269

S
Schauder
� fixed point theorem 407
Leray-� alternative 408
Leray-� coincidence degree 399
Leray-� triple degree 392
� projection 395

Schnirel’man, Ljusternik-� theo-
rem 301

second countable space 36
selection of a multivalued map 9
separable set 65
separated sets 25
sequence

Cauchy� 62
convergent� 35

sequentially continuous map 36
� at a point 36

set
A-fundamental 416
boundary of a � 18
closed� 17
closure of a � 18
compact� 23
contractible� in a space 121
convex� 31
convex-fundamental� 438
countable� 23
dense� 65
Gı -� 27
infimum of a � 15
interior of a � 18
lower bound of a � 15
maximal element of a � 16

maximum of a � 15
minimal element of a � 16
minimum of a � 15
open � 17
relatively compact� 24
separable � 65
separated sets 25
supremum of a � 15
totally ordered � 15
upper bound of a � 15

set function 75
monotone� 75

simplifier 355
admissible � 356
homotopic� 357
theorem on the unique existence of

� 358
simply connected space 132
single-valued map 9
single-valued normalization prop-

erty 369, 384, 401, 443
small counterimage of a multivalued

map 9
space

acyclic � 126
AE � 105
ANE � 105
ANR � 107
ANRc � 109
AR � 107
ARc � 109
Banach � 83
CEZ � 116
CNE � 429
CNEZ � 116
compact� 23
compactly generated� 53
completely regular� 25
completion of a metric � 70
component of a � 20

path- 20
connected � 19

path- 19
contractible set in a � 121
countably paracompact 23
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direct sum of sub� 154
Dowker� 43
dual � 149
factor � 148
first countable� 36
Hausdorff� 24
LCNR � 107
LCR � 107
Lindelöf� 23
locally compact� 31
locally connected� 22

path 22
locally convex� 84
metric � 59
metric space � 62
metrizable� 60
normal� 25

completely 25
perfectly 25

normed � 60
null � of a map 149
orientation of a vector� 176

induced 176
paracompact� 23
product of Banach � 148
Rı � 124
regular � 25
second countable� 36
separable� 65
simply connected� 132
T3 � 25
T3a � 25
T4 � 25
T5 � 25, 134, 136, 365, 366, 385,

445, 456, 458–461
T6 � 25, 118, 136, 138, 142, 358
tangent� 206
topological vector� 84
topologically complete� 109
UV 1 � 122

weak  122
sphere 59
stability property 271
standard form
� of a function triple 351

function triple in � 348
Stone’s theorem 96
subbasis

Alexander’s� theorem 36
� of the topology 35

submanifold 221
� chart 221

partial 228
partial � 228
� with boundary 221

subspace
complementary� 154
complemented� 155

subspace theorem of dimension the-
ory 138

sum norm 85, 148
sum theorem of dimension theory 136
support of the dual space 158
supremum of a set 15
symmetry 59

T
T3 space 25
T3a space 25
T4 space 25
T5 space 25, 134, 136, 365, 366, 385,

445, 456, 458–461
T6 space 25, 118, 136, 138, 142, 358
tangent
� bundle 208

partial 228
� space 206

theorem
Alexander’s subbasis � 36
Baire’s category� 12
Banach’s fixed point� 63
 on balls 63

Borsuk � 297, 409
Borsuk’s fixed point � 300, 410
 on balls 301, 302

Borsuk-Ulam � 301
� on the both-sided homotopy ex-

tension I 120
� on the both-sided homotopy ex-

tension II 120
� on the bounded inverse 152
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Brouwer’s fixed point� 293
closed graph � 151
continuation principle� 293, 456,

458
inverse 295

dimension invariance� 306
Dugundji’s extension � 102, 105
 for retracts 107

embedding�
Arens-Eells 89
 into open Hilbert cube 95

glueing lemma, multivalued� 49
� of Hausdorff 69
Hausdorff’s maximality� 16
Hedgehog� 297
� on the homotopy extension, Bor-

suk’s 119
homotopy lifting 130
implicit function� 218
 with boundary 220
partial 216
pointwise  201

intermediate value � 45
invariance of domain� 306, 411
inverse function� 216

pointwise  200
Kuratowski’s lemma 16
Leray-Schauder alternative 408
lifting criterion 131
Ljusternik-Schnirel’man� 301
local properness of Fredholm homo-

topies 234
local properness of Fredholm

maps 235
Mazur’s lemma 89
mean value � 198
� of Morita 96
Neumann series 150
path lifting 131
Riesz’s lemma 73
Rothe’s fixed point� 295, 408
Schauder projection 395
Schauder’s fixed point � 407
� of Stone 96

subspace � of dimension the-
ory 138

sum � of dimension theory 136
� transversality 223
� of Tychonoff 38, 41
unique existence of lifting 132
� on the unique existence of simpli-

fiers 358
uniqueness of lifting 129
Urysohn’s lemma 27
 for T3a spaces 27

Urysohn’s metrization� 98
� of Vietoris, homotopic version of

 142
Zorn’s lemma 16

topological invariance property 277
topological vector space 84
topological-isomorphic invariance

property 377
topologically complete space 109
totally ordered set 15
transitive 15
transversal 166, 222, 226
transversality theorem 223
triangle inequality 59

inverse� 60
triple see function triple

Rouché � 269
triple degree

A-fundamental Fredholm� 417
Benevieri-Furi� 382
Brouwer � 367
C 1  373

convex-fundamental Fredholm
� 441

Leray-Schauder� 392
trivialization in a Banach bundle 183
Tychonoff’s theorem 38, 41

U
Ulam, Borsuk-� theorem 301
unique existence of lifting 132
uniqueness of lifting 129
upper bound of a set 15
upper semicontinuous multivalued

map 44
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� at a point 44
� in the uniform sense 66
 at a point 66

upper semicontinuous real-valued
map 47

� at a point 47
Urysohn’s
� lemma 27
 for T3a spaces 27
� metrization theorem 98

UV 1
� map 143
� space 122

weak  122
�-Vietoris map 141

V
vector bundle 184

orientation of a � 193
vector space

orientation of a � 176

induced 176
topological� 84

very weak equivalence invariance prop-
erty 428

Vietoris
homotopic version of theorem of

� 142
� map 140

finite-dimensional 141
UV 1- 141
Vietoris�  141

W
weak additivity property 425
weak equivalence invariance prop-

erty 368, 384, 401
very � 428

weak excision-additivity property 425

Z
Zorn’s lemma 16


