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A B O U T  T H E  A U T H O R S
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Susan Nolan turned to psychology after suffering a career-ending acci-
dent on her second workday as a bicycle messenger. A native of Boston,
she graduated from the College of Holy Cross and earned her PhD in
clinical psychology from Northwestern University. Her research involves
experimental investigations of the role of gender in the interpersonal con-
sequences of depression and studies on gender and mentoring in the fields
of science, technology, engineering, and mathematics; her research has
been funded by the National Science Foundation. Susan is the Chair of
the Department of Psychology as well as Associate Professor of Psychol-
ogy at Seton Hall University in New Jersey. She has served as a statistical
consultant to researchers at universities, medical schools, corporations, and
nongovernmental organizations. Susan is a representative from the Ameri-
can Psychological Association to the United Nations in New York City

and is an active member of Divisions 2 (Teaching) and 52 (International) of the American Psychological
Association. She is on the Board of Directors of the Eastern Psychological Association.

Susan’s academic schedule allows her to pursue one travel adventure per year, a tradition that she rel-
ishes. In recent years she has ridden her bicycle across the United States (despite her earlier crash),
swapped apartments to live in Montreal (her favorite North American city), and explored the Adriatic
coast in an intermittently roadworthy 1985 Volkswagen Scirocco. She writes much of the book on her
annual trip to Bosnia and Herzegovina, where she and her husband, Ivan Bojanic, own a small house on
the Vrbas River in the city of Banja Luka. They currently reside in Jersey City, New Jersey, where Susan
roots feverishly, if quietly, for the Boston Red Sox.

Tom Heinzen was a 29-year-old college freshman, began graduate
school days after the birth of his fourth daughter, and is still amazed that
he and his wife, Donna, somehow managed to stay married. A magna cum
laude graduate of Rockford College, he earned his PhD in social psychol-
ogy at the State University of New York at Albany in just three years.

He published his first book on frustration and creativity in government
two years later, was a research associate in public policy until he was fired
for arguing over the shape of a graph, consulted for the Johns Hopkins
Center for Talented Youth, and then began a teaching career at William
Paterson University of New Jersey. He founded the psychology club, es-
tablished an undergraduate research conference, and has been awarded
various teaching honors while continuing to write journal articles, books,
plays, and two novels that support the teaching of general psychology and

statistics. He is also the editor of Many Things to Tell You, a volume of poetry by elderly writers.
He has recently become enamored with the potential of motion graphs and the peculiar personalities

who shaped the unfolding story of statistics, such as Stella Cunliffe (to whom this text is dedicated). He
belongs to numerous professional societies, including APA, EPA, APS, and the New York Academy of
Science, whose meeting place next to the former Twin Towers offers such a spectacular view of New
York City that they have to cover the windows so the speakers don’t lose their focus during their talks.

His wife, Donna, is a physician’s assistant who has volunteered her time in relief work following Hur-
ricanes Mitch and Katrina, and their daughters work in public health, teaching, and medicine. Tom is an
enthusiastic but mediocre tennis player and, as a Yankees and Cubs fan, sympathizes with Susan’s New
England loyalties.
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When we set out to write the First Edition of Statistics for the Behavioral Sciences, we were
excited to prove that statistics has a story to tell. Students in the behavioral sciences ap-
proach the statistics course with varying degrees of anxiety, and in these pages we are
quick to assure them that many of the core concepts in statistics—the very source of
their apprehension—are easily explained with examples from everyday life. By high-
lighting connections to everyday life and engaging examples from the history of statis-
tics, we make clear that statistics is relevant to everyday life, and we show exactly why:
because many statistical operations arose from very common everyday questions.

Among the many hats we have worn are career counselor and internship coordi-
nator, so we are also eager to show students that statistical skills are highly marketable—
an extra boost of confidence for students anticipating the job market. For all these
reasons, we wrote this book to highlight the many applications and benefits of statistics
for students in the behavioral sciences, not apologize that students have to take it.

What’s New in the Second Edition
In the new edition, we strive to connect students to statistical concepts as efficiently
and memorably as possible. We’ve refocused the book on the core concepts of the
course and introduce each topic with a vivid example. Our pedagogy first emphasizes
mastering concepts, then gives students multiple step-by-step examples of the process
of each statistical method, including the mathematical calculations. The extensive Check
Your Learning exercises at the end of each section of the chapter, along with the end-
of-chapter problems and new StatsPortal Web site, give students lots of opportunities
to practice. Indeed, there are close to twice as many exercises in the second edition as
in the first. We’ve also clarified our approach by adding the following features through-
out the book.

Before You Go On
Each chapter opens with a Before You Go On section that highlights the concepts stu-
dents need to have mastered before moving on to the next chapter.

P R E F A C E

Mastering the Formulas and Mastering the Concepts
Some of the most difficult tasks for students new to statistics are identifying the key
points and connecting this new knowledge to what they have covered in previous
chapters. The unique Mastering the Formula and Mastering the Concept marginal
notes provide students with helpful explanations that highlight each formula when it
is first introduced and each important concept at its point of relevance.

x



PREFACE xi

Illustrative, Step-by-Step Examples
The text is filled with real-world examples from a wide variety of sources in the behavioral
sciences. Outlining statistical techniques in a step-by-step fashion, the authors expertly
guide students through each concept by applying the material creatively and effectively.

Next Steps
The Next Steps feature introduces students to some of the most innovative statistical and
graphical methods used in the behavioral sciences. These features provide an optional chal-
lenge for students and instructors who are curious about advanced statistical methods.



SPSS®

For those instructors who integrate SPSS into their course, each chapter includes out-
lined instructions and screenshots of SPSS outputs to help students master use of this
program with data from the text.

How It Works—Chapter-Specific Worked-Out Exercises
Many students have anxiety as they approach end-of-chapter exercises. To ease that
anxiety, the How It Works section provides students with step-by-step worked-out ex-
ercises representative of those they will see at the end of the chapter. This section ap-
pears just before the end-of-chapter exercises and acts as a model for the more
challenging Applying the Concepts questions.

xii PREFACE



Practice
As teachers, we know how important good practice problems are, so we wrote ones
that test students’ understanding of both concepts and calculations and that meet our
standards of clarity and effectiveness. Throughout each chapter, we have multiple op-
portunities for students to practice with the Check Your Learning exercises, which are
placed at the end of every major section. These lead up to full problem sets at the end
of each chapter, which feature a total of over 1000 questions.

Before we were textbook authors, we were teachers who were frustrated that text-
books didn’t offer questions that specifically tested conceptual knowledge. As a result,
we created three tiers for all the exercises in the book so students could test themselves
on three levels:

■ Clarifying the Concepts questions help students to master the general con-
cept, the statistical terminology, and the conceptual assumptions of each topic.

■ Calculating the Statistics exercises provide practice on the basic calculations
for each formula and statistic.

■ Applying the Concepts exercises apply statistical questions to real-world sit-
uations across the behavioral sciences and require students to bridge their
knowledge of both concepts and calculations.

Media and Supplements

StatsPortal
A comprehensive Web resource for teaching and learning statistics

The StatsPortal Web site combines Worth Publishers’ high-quality media with an in-
novative platform for easy navigation. For students, it is the ultimate online study guide,
with statistical tools, adaptive quizzing, personalized feedback, and the full text in the
eBook. For instructors, StatsPortal is a full course space where class documents can be
posted, quizzes are easily assigned and graded, and students’ progress can be assessed

PREFACE xiii



StatsPortal to Accompany Statistics for the Behavioral Sciences, Second Edition, can be
previewed and purchased at www.yourstatsportal.com.

Statistics for the Behavioral Sciences, Second Edition, and StatsPortal can be ordered
together with ISBN-10: 1-4292-8420-X/ISBN-13: 978-1-429-28420-2. Individual
components of StatsPortal may also be available for separate, standalone purchase.

StatsPortal for Statistics for the Behavioral Sciences, Second Edition, includes all the fol-
lowing resources:

■  An interactive eBook allows students to highlight, bookmark, and make their
own notes, just as they would with a printed textbook. Google-style searching
and in-text glossary definitions make the text ready for the digital age.

■  Statistical Applets allow students to master statistical concepts by manipu-
lating data. They can also be used to solve problems.

■  EESEE Case Studies taken from the Electronic Encyclopedia of Statistical
Exercises and Examples offer students additional applied exercises and examples.

■  A Data Set from the General Social Survey (GSS) gives students access
to data from one of the most trusted sources of sociological information. Since
1972, the GSS has collected data that reflect changing opinions and trends in
America.

■  Learning Objectives give students a framework for self-testing and studying.

■  Focused Quizzing and Personalized Study Plans allow students to focus
their studying where it’s needed the most. The Focused Quizzing engine pro-
duces a series of unique quizzes for students, and based on their performance,
students receive individualized study recommendations in the form of a Per-
sonalized Study Plan. Students then have a rich variety of activities to build
their comprehension of the chapter.

■  The Assignment Center lets instructors easily construct and administer tests
and quizzes from the book’s Test Bank and course materials. The Test Bank in-
cludes a subset of questions from the end-of-chapter exercises with algorith-
mically generated values, so each student can be assigned a unique version of
the question. Assignments can be automatically graded, and the results are
recorded in a customizable Gradebook.

Additional Student Supplements

■  Study Guide and SPSS Manual by Jennifer Coleman and Byron Reisch
of Western New Mexico University includes chapter outlines and learning ob-
jectives, chapter reviews, and multiple-choice study questions and answers.

■  SPSS Student CD for Versions 16, 17, and 18 is available for packaging at
an additional cost. This is a perfect way to build students’ skills with this widely
used statistical software.

xiv PREFACE

and recorded. Whether you are looking for the most effective study tools or a robust
platform for an online course, StatsPortal is a powerful way to enhance a statistics class
for the behavioral sciences.



Instructor Supplements
We understand that one book alone cannot meet the education needs and teaching
expectations of the modern classroom. Therefore, we have engaged colleagues to create
a comprehensive supplements package that brings statistics to life for students and pro-
vides instructors with the resources necessary to effectively supplement their successful
strategies in the classroom.

■  Instructor’s Resources by Robin Freyberg, Stern College for Women,
Yeshiva University. The contents include Teaching Tips and sample course out-
lines. Each chapter includes a brief overview, discussion questions, classroom
activities, handouts, additional reading suggestions, and online resources.

Take advantage of our most popular supplements!
Worth Publishers is pleased to offer cost-saving packages of Statistics for the Behavioral Sci-
ences, Second Edition, with our most popular supplements. Below is a list of some of the
most popular combinations available for order through your local bookstore.

Statistics for the Behavioral Sciences, 2nd Ed. & StatsPortal Access Card
ISBN-10: 1-4292-8420-X / ISBN-13: 978-1-429-28420-2

Statistics for the Behavioral Sciences, 2nd Ed. & Study Guide
ISBN-10: 1-4292-8421-8 / ISBN-13: 978-1-429-28421-9

Statistics for the Behavioral Sciences, 2nd Ed. & SPSS Student CD Version 18
ISBN-10: 1-4292-8422-6 / ISBN-13: 978-1-429-28422-6

Statistics for the Behavioral Sciences, 2nd Ed. & SPSS: A User-Friendly Approach for
Versions 17 and 18 by Jeffrey Aspelmeier and Thomas Pierce
ISBN-10: 1-4292-8418-8 / ISBN-13: 978-1-429-28418-9

Statistics for the Behavioral Sciences, 2nd Ed. & iClicker
ISBN-10: 1-4292-8419-6 / ISBN-13: 978-1-429-28419-6
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■  SPSS: A User-Friendly Approach by Jeffrey Aspelmeier and Thomas Pierce
of Radford University is an accessible introduction to using SPSS. Using a
proven teaching method, statistical procedures are made accessible to students
by building each section of the text around the storyline from a popular car-
toon. Easing anxiety and giving students the necessary support to learn the ma-
terial, SPSS: A User-Friendly Approach provides instructors and students with an
informative guide to the basics of SPSS, available for Versions 16, 17, and 18.

■  The iClicker Classroom Response System is a versatile polling system devel-
oped by educators for educators that makes class time more efficient and in-
teractive. iClicker allows you to ask questions and instantly record your students’
responses, take attendance, and gauge students’ understanding and opinions.
iClicker is available at a 10% discount when packaged with Statistics for the Be-
havioral Sciences, Second Edition.

■  The Book Companion Website at www.worthpublishers.com/
nolanheinzen2e is the home of Worth Publishers’ free study aids and sup-
plemental content. The site includes chapter objectives, online quizzes, inter-
active flashcards, and more.



■  Test Bank by Jennifer Coleman of Western New Mexico University. The Test
Bank includes multiple-choice, true/false, fill-in-the-blank, and critical think-
ing/problem-solving questions for each chapter. It also includes Web Quizzes
featured on the book’s companion Web site.

■  Diploma Computerized Test Bank (available for Windows or Macintosh
on a single CD-ROM). The CD-ROM allows instructors to add an unlimited
number of new questions; edit questions; format a test; scramble questions; and
include figures, graphs, and pictures. Student grades can be reported to an ac-
companying Gradebook.

■  Worth Publishers supports multiple Course Management Systems with
enhanced cartridges that include Test Bank questions and other resources. Car-
tridges are provided free upon adoption of Statistics for the Behavioral Sciences,
Second Edition, and can be requested at www.bfwpub.com/lms.
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During the cholera epidemic of 1854, the first London
victims all lived around Broad Street, very close to the
Frith Street office of Dr. John Snow, who had spent
years trying to determine how cholera was communi-
cated from one person to another (Vinten-Johansen,
Brody, Paneth, Rachman, & Rip, 2003). Nobody knew
where the disease came from and nobody knew why
it left. All they knew was that death was sudden, vi-
cious, and apparently random. In just 10 days, the death
toll in Snow’s neighborhood climbed from 127 to
500, approximately 37 new deaths every day.

As the death toll climbed, Snow had a specific idea
he wanted to test. To do this, he identified each cholera
victim and where that person lived. On a map of Lon-
don, he marked with a dot the location of each cholera
victim’s home and placed X’s to indicate where the
water wells were. Almost all the deaths were near the
Broad Street water well, the X circled in red on the
map. The visual presentation of these data revealed that
the closer a home was to the well, the more likely it
was that a death from cholera had occurred there.

Even after plotting his map, Snow still wanted to
be sure that he was right about the Broad Street well.
He examined a sample of Broad Street well water
under a microscope and discovered white particles
floating in it. He took his findings to the Board of
Guardians, who were startled by the odd theory that
cholera was communicated in the water supply. They

didn’t know how to respond to Snow’s bizarre suggestion that simply removing the
handle to the water pump would stop the spread of the disease. The local government
resisted, but Snow insisted. At last, the local  authorities removed the pump handle and
the rate of deaths from cholera declined dramatically.

However, Snow soon ran into another statistical problem. The rate of deaths from
cholera had started to decline even before the removal of the pump handle! Why would
the number of deaths in the Broad Street neighborhood decline during a full-blown
cholera epidemic? The answer is both disturbing and insightful. There were fewer
deaths because there were fewer people available in the neighborhood to be infected—
many people had either died or fled.

The Two Branches of Statistics
The cholera epidemic of 1854 claimed an estimated 19,000 lives across England
(Creighton, 1894/1965). The number would have been much higher without the sta-
tistical genius of Snow. As we will see, his research anticipated the two main branches
of modern statistics: descriptive statistics and inferential statistics.

Descriptive Statistics
Descriptive statistics organize, summarize, and communicate a group of numerical observations.
Descriptive statistics describe large amounts of data in a single number or in just a few
numbers. Let’s illustrate descriptive statistics by using familiar numbers: body weights.
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John Snow’s Famous Map Dr. Snow mapped cholera deaths in relation to the
Broad Street water well and, in doing so, solved the urgent mystery of how cholera
could infect so many people so suddenly. The X’s are all neighborhood wells. The X
in the red circle is the Broad Street well. Each dot indicates that a person living at
this address died of cholera, and a cluster of cases is clearly seen around the Broad
Street well (but not around the other wells). Snow was careful to include the other
X’s to demonstrate that the deaths were closer to one specific source of water.

■ A descriptive statistic
organizes, summarizes, and
communicates a group of
numerical observations.

■ An inferential statistic uses
sample data to make general
estimates about the larger
population.

■ A sample is a set of
observations drawn from the
population of interest.

■ The population includes all
possible observations about
which we’d like to know
something.
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The Centers for Disease Control and Prevention (CDC, 2004) reported that people
in the United States weigh much more now than they did four decades ago. The av-
erage weight for women increased from 140.2 pounds in 1960 to 164.3 in 2002. For
men, the average weight went from 166.3 to 191.0 pounds in the same time span.
These averages are descriptive statistics because they describe the weights of many people
in just one number. A single number reporting the average is far more useful than a
long list of the weights of every person studied by the CDC.

Inferential Statistics
Inferential statistics use sample data to make general estimates about the
larger population. Inferential statistics infer, or make an intelligent guess
about, the population. For example, the CDC made inferences about
weight even though it did not actually weigh everyone in the United
States. Instead, the CDC studied a smaller, representative group of U.S.
citizens to make an intelligent guess about the entire population.

Distinguishing Between a Sample and a Population
A sample is a set of observations drawn from the population of interest. When the CDC stud-
ied how much Americans weigh, the population of interest was everyone in the United
States. Researchers usually study a sample, but they
are really interested in the population, which includes
all possible observations about which we’d like to know
something. For example, the average weight of the
CDC’s sample of women and men is then used to
estimate the average weight for the population of all
women and men in the United States. We use the
sample to estimate the population.

Samples are used most often because we are rarely
able to study every person (or organization or labo-
ratory rat) in a particular population. For one thing,
it’s far too expensive. In addition, it would take too
long. Snow did not want to interview every family
in the Broad Street neighborhood—people were
dying too fast! Fortunately, what he learned from his
sample also applied to the larger population.
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�   MASTERING THE CONCEPT

1.1: Descriptive statistics summarize

numerical information about a sample.

Inferential statistics draw conclusions about

the broader population based on numerical

information from a sample.
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Descriptive Statistics Summarize Information It is more useful to use a
single number to summarize many people’s weights than to provide a long,
overwhelming list of each person’s weight.

CHECK YOUR LEARNING
Reviewing the Concepts       > Descriptive statistics organize, summarize, and communicate large amounts of numerical

information.

> Inferential statistics use sample data to draw conclusions about larger populations.

> Samples, or selected observations of a population, are intended to be representative of the
larger population.

Clarifying the Concepts        1-1 Are samples or populations used in inferential statistics?

Calculating the Statistics      1-2   a. If your professor calculated the average grade for your statistics class, would that be
considered a descriptive statistic or an inferential statistic?

continued on next page



How to Transform Observations into Variables
Like John Snow, we begin the research process by making observations and transform-
ing them into a useful format. For example, Snow observed the locations of people
who had died from cholera and placed these locations on a map that also showed wells
in the area. Social scientists typically begin the research process by transforming ob-
servations about behavior into numbers. Variables are observations of physical, attitudinal,
and behavioral characteristics that can take on different values. Behavioral scientists often study
abstract variables such as motivation, self-esteem, and attitudes.

Researchers use both discrete and continuous numerical observations to quantify
variables. Discrete observations can take on only specific values (e.g., whole numbers); no other
values can exist between these numbers. For example, if we measure the number of times
study participants get up early in a particular week, the only possible values would be
whole numbers. It is reasonable to assume that each participant could get up early 0
to 7 times in any given week, but not 1.6 or 5.92 times.

Continuous observations can take on a full range of values (e.g., numbers out to several
decimal places); an infinite number of potential values exists. For example, one person might
complete a task in 12.839 seconds. Someone else might complete it in 14.870 seconds.
The possible values are continuous, limited only by the number of decimal places we
choose to use.

Discrete Observations
There are two types of observations that are always discrete: nominal variables and or-
dinal variables. Nominal variables are used for observations that have categories, or names, as
their values. For example, when entering data into a statistics computer program, a re-
searcher might code male participants with the number 1 and female participants with
the number 2. But those numbers merely identify the gender category for each par-
ticipant. The numbers do not imply that men are better than women because they get
the first number, just as they do not suggest that women are twice as good as men be-
cause they happen to be coded as a 2. Nominal variables are always discrete (whole
numbers).

Ordinal variables are observations that have rankings (i.e., 1st, 2nd, 3rd, . . . ) as their
values. In team sports, for example, your team finishes the season in a particular “place,”
or rank. Whether your team goes to the playoffs is determined by its rank at the end
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b. If that same class “average” is being used to predict something about how future
students might do in statistics, would that be considered a descriptive statistic or an
inferential statistic?

Applying the Concepts         1-3 Imagine that the director of the counseling center at your university wants to examine
the stress levels of students. From the student directory, she randomly chooses 100 of
the 12,500 students and assesses their stress levels in a diagnostic interview. She reports
that the average stress level is 18 on a scale of 1–50, a score she knows to be
moderately high for college students. She concludes, and reports to the school
newspaper, that the students at this institution have a moderately high stress level.

a. What is the sample?

b. What is the population?

c. What is the descriptive statistic?

d. What is the inferential statistic?

Solutions to these Check Your
Learning questions can be found in
Appendix D.

■ A variable is any observation
of a physical, attitudinal, or
behavioral characteristic that
can take on different values.

■ A discrete observation can
take on only specific values
(e.g., whole numbers); no
other values can exist between
these numbers.

■ A continuous observation
can take on a full range of
values (e.g., numbers out to
several decimal places); an
infinite number of potential
values exists.

■ A nominal variable is a
variable used for observations
that have categories, or
names, as their values.

■ An ordinal variable is a
variable used for observations
that have rankings (i.e., 1st,
2nd, 3rd, . . .) as their values.

■ An interval variable is a
variable used for observations
that have numbers as their
values; the distance (or
interval) between pairs of
consecutive numbers is
assumed to be equal.

■ A ratio variable is a variable
that meets the criteria for an
interval variable but also has a
meaningful zero point.



of the season. It doesn’t matter if your team won
first place by one game or by many games. Like
nominal observations, ordinal observations are al-
ways discrete. A team could be first or third or
twelfth, but could not be ranked 1.563.

Continuous Observations
The two types of observations that can be contin-
uous are interval variables and ratio variables. In-
terval variables are used for observations that have
numbers as their values; the distance (or interval) be-
tween pairs of consecutive numbers is assumed to be
equal. For example, temperature is an interval vari-
able because the interval from one degree to the
next is always the same. Some interval variables are
also discrete variables, such as the number of times
one has to get up early each week. This is an in-
terval variable because the distance between nu-
merical observations is assumed to be equal. The
difference between 1 and 2 times is the same as
the difference between 5 and 6 times. However,
this observation is also discrete because, as noted earlier, the number of days in a week
cannot be anything but whole numbers. Several social science measures are treated as
interval measures but also are discrete, such as personality and attitude measures.

Studies that measure time and distance are continuous, interval observations. But
they are also identified as ratio observations because zero has meaning for time and
distance—such as time running out in a basketball game or crossing the finish line in
a race. Ratio variables are variables that meet the criteria for interval variables but also have
meaningful zero points. Our example of an interval variable above—temperature—is not
a ratio variable; for temperature, 0 degrees does not indicate that there is no temperature
in the same way that 0 kilometers means there is no distance or 0 minutes means that
there is no time. Sometimes ratio variables are discrete, however, as in the frequency
of an event’s occurrence. For example, the number of times a rat pushes a lever to re-
ceive food would be considered a ratio variable in that it has a true zero point—the
rat might never push the bar (and go hungry).

Many cognitive studies use the ratio variable of reaction time to measure how
quickly we process difficult information. For example, the Stroop test assesses how long
it takes to read a list of color words printed in ink of the wrong color
(see Figure 1-1). For example, the word red might be printed in blue or
the word blue might be printed in green. If it takes you 1.264 seconds to
press a computer key that accurately identifies that the word red printed
in blue actually reads red, then your reaction time is a ratio variable; time
always implies a meaningful zero.

You can experience for yourself how social scientists transform obser-
vations into numbers. Observe your own cognitive processes at work by
taking the Stroop test, the short cognitive test presented in Figure 1-1 and
available on the Web site that supports this textbook (www.worthpublish-
ers.com/nolanheinzen). This version of the Stroop test gives response
times in whole numbers—for example, 12 seconds—although other ver-
sions are more specific and give response times to several decimal places,
such as 12.1304 seconds.
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Nominal Variables Just Categorize If you wanted to compare the enthusiasm
levels of Republicans (not clapping) and Democrats (clapping), political party would be a
nominal variable. Nominal observations merely name categories; the numbers don’t have
any meaning beyond a name.

white green brown red 

white green brown red

brown green red white 

white green brown red 

white green brown red 

white green brown red 

white brown red green 

white green brown red 

FIGURE 1-1
Reaction Time and 
the Stroop Test

The Stroop test assesses how long it
takes to read a list of color words
printed in the wrong color, such as the
word red printed in the color white. 
Try it and see how tricky (and
frustrating) it can be: go to this book’s
Web site (www. worthpublishers.com/
nolanheinzen) and click on 
“Stroop test.”
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Many statistical computer programs refer to both interval numbers
and ratio numbers as scale observations because both interval obser-
vations and ratio observations are analyzed with the same  statistical
tests. Specifically, a scale variable is a variable that meets the criteria for an
interval variable or a ratio variable. Computer programs such as the Sta-
tistical Program for the Social Sciences (SPSS) prompt us to identify
whether the number we are entering into the computer is nominal,
ordinal, or scale. Throughout this text, we use the term scale variable
to refer to variables that are interval or ratio, but it is important to re-
member the distinction between interval variables and ratio variables.
Table 1-1 summarizes the four types of variables.

TABLE 1-1. QUANTIFYING OUR OBSERVATIONS

There are four types of variables that we can use to quantify our observations. Two of them, nominal and ordinal,
are always discrete variables. Interval variables can be discrete or continuous; ratio variables are almost always
continuous.

Discrete Continuous

NOMINAL Always Never

ORDINAL Always Never

INTERVAL Sometimes Sometimes

RATIO Seldom Almost Always

�   MASTERING THE CONCEPT

1.2: The three main types of variables are

nominal (or categorical), ordinal (or ranked),

and scale. The third type (scale) includes

both interval variables and ratio variables;

the distances between numbers on the

measure are meaningful.

CHECK YOUR LEARNING
Reviewing the Concepts       > Variables are quantified with discrete or continuous observations.

> Depending on the study, statisticians select nominal, ordinal, or scale (interval or ratio) 
variables.

Clarifying the Concepts        1-4 What is the difference between discrete observations and continuous observations?

Calculating the Statistics      1-5 Three female students complete a Stroop test. Lorna finishes in 12.67 seconds; Desiree
finishes in 14.87 seconds; and Marianne finishes in 9.88 seconds.

a. Are these data discrete or continuous?

b. Is the variable an interval or ratio observation?

c. On an ordinal scale, what is Lorna’s score?

Applying the Concepts         1-6 Eleanor Stampone (1993) randomly distributed what appeared to be the same piece of
paper to students in a large lecture center. Each paper contained one of three short
paragraphs that described the interests and appearance of a female college student. The
descriptions were identical in every way except for one adjective. The student was
described as having either “short,” “mid-length,” or “very long” hair. At the bottom
of each piece of paper, Stampone asked the participants (both female and male) to fill
out a measure that indicated the probability that the student described in the scenario
would be sexually harassed.
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Variables and Research
John Snow was trying to identify one variable that predicted a second variable, death
from cholera. When he created his famous map, he was testing the hypothesis that the
variable “nearness to a particular water well” predicted the variable “likelihood of
dying from cholera.” But research is not always “neat.” Some people who lived near
the Broad Street well died and others did not. Of those who died, some lived very
close to the well and others lived farther away. A major aim of research is to understand
the relations between variables with many different values. But before we can begin
research, we need to know the three types of variables, and we need to be able to de-
termine whether the ways in which we measure our variables are good ones—that is,
whether they are reliable and valid.

Before we can understand the three types of variables, we have to understand that
variables vary. For example, when studying a discrete, nominal variable such as gender,
we refer to gender as the variable because it can vary—either male or female. The term
level, along with the terms value and condition, all refer to the same idea. Levels are the
discrete values or conditions that variables can take on. For example, male is a level or value
of the variable gender. Female is another level or value of the variable gender. In both
cases, gender is the variable. Similarly, when studying a continuous, scale variable, such
as how fast a runner completes a marathon, we refer to time as the variable. For ex-
ample, 3 hours, 42 minutes, 27 seconds is one of an infinite number of possible times
it would take to complete a marathon. The important thing to remember is this: vari-
ables vary.

Independent, Dependent, and Confounding Variables
The three types of variables that we consider in research are independent, dependent,
and confounding. Two of these variables are necessary for good research: independent
variables and dependent variables. But a confounding variable is the enemy of good
research. We usually conduct research to determine if one or more independent vari-
ables predicts a dependent variable. An independent variable has at least two levels that
we either manipulate or observe to determine its effects on the dependent variable. For example,
if we are studying whether gender predicts one’s attitude about politics, then the in-
dependent variable is gender with two levels: female and male.

The dependent variable is the outcome variable that we hypothesize to be related to, or caused
by, changes in the independent variable. For example, we hypothesize that the dependent
variable (attitudes about politics) depends on the independent variable (gender). If in
doubt as to which is the independent variable and which is the dependent variable,
then ask yourself which one depends on the other; that one is the dependent variable.

By contrast, a confounding variable is any variable that systematically varies with the in-
dependent variable so that we cannot logically determine which variable is at work. For ex -
ample, prior to Hurricanes Katrina and Rita during the tragic summer of 2005, many

a. What is the nominal variable used in Stampone’s hair-length study? Why is this
considered a nominal variable?

b. What is the ordinal variable used in the study? Why is this considered an ordinal
variable?

c. What is the interval or ratio variable used in the study? Why is this considered an
interval or ratio variable?

Solutions to these Check Your
Learning questions can be found in
Appendix D.

■ A scale variable is a variable
that meets the criteria for an
interval variable or a ratio
variable.

■ A level is a discrete value or
condition that a variable can
take on.

■ An independent variable has
at least two levels that we
either manipulate or observe
to determine its effects on the
dependent variable.

■ A dependent variable is the
outcome variable that we
hypothesize to be related to, or
caused by, changes in the
independent variable.

■ A confounding variable is
any variable that
systematically varies with the
independent variable so that
we cannot logically determine
which variable is at work; also
called a confound.
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insurance companies had insured people’s homes against wind
damage but not against flood damage. Hurricane winds bring
water in many different ways: as rain, by causing higher tides and
storm surge, and by creating structural damage that allows water
into the home. Consequently, both wind and water contributed
to the levees’ breaking around New Orleans, as well as causing
billions of dollars of additional damage all along the Gulf Coast.
But logi cally, many insurance companies could argue that it was
often unclear whether damage to a particular home was due to
high winds or high water. Wind and water were confounded be-
cause no one could logically determine which of those two vari-
ables had caused damage to homes.

So how do we decide which is the independent variable and
which might be a confounding variable (also called a confound)?
Well, it all comes down to what you decide to study. Let’s use an
example. Suppose you want to lose weight, so you start using a diet
drug and begin exercising at the same time; the drug and the ex-
ercising are confounded because you cannot logically tell which
one is responsible for any weight loss. If we hypothesize that a par-

ticular diet drug leads to weight loss, then whether someone uses the
diet drug becomes the independent variable and exercise becomes
the potentially confounding variable that we would try to control.
On the other hand, if we hypothesize that exercise leads to weight
loss, then whether someone exercises or not becomes the independent
variable and whether people use diet drugs along with it becomes the
potentially confounding variable that we would try to control. In both
of these cases, the dependent variable would be weight loss. But the

researcher has to make some decisions about which variables to treat as independent
variables, which variables need to be controlled, and which variables to treat as de-
pendent variables. You, the experimenter, are in control of the experiment.

Reliability and Validity
Do you know what breed of dog you are? As you learn to conduct research, you may
think that assessing variables is something new for you, but you probably have lots of
experience with assessment—at least on the receiving end. You’ve taken standardized
tests when applying to university; you’ve taken short surveys to choose the right prod-
uct for you, whether jeans or mascara; and you’ve taken online quizzes, perhaps ones
sent to you through social networking sites like Facebook, such as the Dogster Breed
Quiz (2009, http://www.dogster.com/quizzes/what_dog_breed_are_you/). To deter-
mine what breed of dog you are, the quiz assesses your personality with a 10-item scale.
For example:

Your Monday schedule is full of classes, with no time for lunch. You have 10 minutes
to reenergize. Your snack of choice is:

■ An energy bar.
■ Lightly salted edamame.
■ A cheeseburger.
■ Godiva dark chocolate truffles.
■ A light chicken salad.
■ A hotdog. Okay, two.
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Was the Damage from Wind or Water? During Hurricane
Katrina in 2005, high winds were confounded with high water so
that often it was not possible to determine whether property
damage was due to wind (insured) or to water (not insured).

�   MASTERING THE CONCEPT

1.3: We conduct research to see if an

independent variable predicts a dependent

variable.

■ Reliability refers to the
consistency of a measure.

■ Validity refers to the extent to
which a test actually measures
what it was intended to
measure.
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How good is this quiz? One of the authors took the quiz, choosing the light
chicken salad on this item, and was declared to be a bulldog: “You may look like the
troublemaker of the pack, but it turns out your tough guy mug is worse than its bite.”
To determine whether a measure is a good one, we need to know if it’s reliable and
valid.

A reliable measure is one that is consistent. If you were to weigh yourself on your bath-
room scale now, and then again in an hour, you would expect your weight to be almost
exactly the same. If your weight remains the same when you haven’t done anything
to change it, then your bathroom scale is reliable. As for the Dogster Breed Quiz, the
bulldog author took it twice and was a bulldog the second time as well, one indication
of reliability.

But a reliable measure is not necessarily a valid measure. A valid measure is one that
measures what it was intended to measure. If your bathroom scale is accurate and matches
your weight when you measure it at the doctor’s office and the gym, then it is probably
a valid measure of your weight. However, your bathroom scale could be incorrect—
but be consistently incorrect. In that case, your scale would be reliable but not valid.
A more extreme example is wanting to know your weight but using a ruler to deter-
mine it. You would get a number, and that number might be reliable, but it would not
be a valid measure of your weight.

And the Dogster Breed Quiz? It’s probably not an accurate measure of personality.
The quiz, for example, lists an unlikely mix of celebrities with seemingly different
personalities as bulldogs—Ellen DeGeneres, Whoopi Goldberg, Jack
Black, and George W. Bush! However, we’re guessing that no one
has done the statistical work to determine whether it’s valid or not.
When you take such online quizzes, our advice is to view the results
as entertaining rather than enlightening.

So far we’ve talked about measures, like a bathroom scale and the
Dogster Breed Quiz, that seem to be reliable. However, some measures
are not reliable—for example, a Global Positioning System (GPS) that
indicates you’re in three different locations when you use it three
times in the same location. Any measure with poor reliability cannot
have high validity. It is not possible to measure what we intend to
measure when the test itself produces varying results. If the GPS claims
to measure location and is not reliable, then it cannot be a valid meas-
ure of your location.

The well-known Rorschach inkblot test is one example of a test
whose reliability is questionable, so the validity of the information
it produces is difficult to interpret (Wood, Nezworski, Lilienfeld, &
Garb, 2003). For instance, two clinicians might analyze the identical
set of responses to a Rorschach test and develop quite different interpretations of
those responses—meaning it lacks reliability. Reliability can be increased with scoring
guidelines, but that doesn’t mean validity is increased. Just because two clinicians scor-
ing a Rorschach test designate a person as psychotic, it doesn’t nec-
essarily mean that the person is psychotic. It might not be a valid
measure of who is and isn’t psychotic. Reliability is necessary, but
not sufficient, to create a valid measure. Nevertheless, the idea that
ambiguous images somehow invite revealing information remains at-
tractive to many people; as a result, tests such as the Rorschach are
still used frequently, even though there is much controversy about
them (Wood et al., 2003).

Reliable and Valid. Projective personality tests such as the
Rorshach are more reliable than they used to be because of new
guidelines, but it is still unclear whether they provide a valid
measure. A measure is useful only if it is both reliable (consistent
over time) and valid (assesses what it is intended to assess).

�   MASTERING THE CONCEPT

1.4: A good variable is both reliable

(consistent over time) and valid (assesses

what it is intended to assess).



Introduction to Hypothesis Testing
When John Snow suggested that the pump handle be removed from the Broad
Street well, he was testing his idea that an independent variable (contaminated well
water) led to a dependent variable (deaths from cholera). Social scientists use research
to test their ideas through a specific statistics-based process called hypothesis testing. More
formally, hypothesis testing is the process of drawing conclusions about whether a particular
relation between variables is supported by the evidence. Typically, when we test a hypothesis,
we examine data from a sample to draw conclusions about a population. There are
many ways to conduct research. In this section, we discuss the process of determining
our variables, two different ways to approach research, and two different experimental
designs.

Determining what breed of dog you most resemble might seem silly; however,
adopting a dog is a very important decision. Can an online quiz such as “Which Dog
Is Right for You?” help (2009, http://www.lifescript.com/Quizzes/ Pets/ Which_
Dog_Is_Right_For_You.aspx)? We could conduct a study by having 30 people choose
a type of dog to adopt, whether a specific purebreed or a mutt, and have another 30
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CHECK YOUR LEARNING
Reviewing the Concepts       > Independent variables are manipulated by the experimenter.

> Dependent variables are outcomes in response to changes in the independent variable.

> Confounding variables systematically vary with the independent variable, so we cannot
logically tell which variable may have influenced the dependent variable.

> Researchers control factors that are not of interest in order to explore the relation between
an independent variable and a dependent variable.

> A variable is useful only if it is both reliable (consistent over time) and valid (assesses what
it is intended to assess).

Clarifying the Concepts        1-7 The __________ variable predicts the ___________ variable.

Calculating the Statistics      1-8 A researcher examines the effects of two variables on memory. One variable is beverage
(caffeine or no caffeine) and the other variable is the subject to be remembered
(numbers, word lists, aspects of a story).

a. Identify the independent and dependent variables.

b. How many levels do the variables of “beverage” and “subject to be remembered”
have?

Applying the Concepts         1-9 Let’s say you wanted to study the impact of declaring a major on school-related
anxiety. You recruit 50 first-year university students who have not declared a major and
50 first-year university students who have declared a major. You have all 100 students
complete an anxiety measure.

a. What is the independent variable in this study?

b. What are the levels of the independent variable?

c. What is the dependent variable?

d. What would it mean for the anxiety measure to be reliable?

e. What would it mean for the anxiety measure to be valid?

Solutions to these Check Your
Learning questions can be found in
Appendix D.



people let the quiz dictate their choice. We would then have to decide how to measure
the outcome.

An operational definition specifies the operations or procedures used to measure or manipulate
a variable. We could, for example, operationalize anxiety as a score on a self-report anx-
iety measure that a person completed on his or her own, as a clinician’s rating of that
person’s anxiety following a diagnostic interview, or as a physiological measure such
as heart rate that might be affected by anxiety. We could operationalize a good outcome
with a new dog in several ways. Did you keep the dog for more than a year? On a
rating scale of satisfaction with your pet, did you get a high score? Does a veterinarian
give a high rating to your dog in terms of its health and happiness?

Do you think a quiz would lead you to make a better choice in dogs? You might
hypothesize that the quiz would lead to better choices because it makes you think
about important factors in dog ownership, such as outdoor space, leisure time, and
your tolerance for dog hair. You already carry many hypotheses like this in your head.
You just haven’t bothered to test them yet, at least not formally. For example, perhaps
you believe that North Americans use bank ATMs faster than Europeans or that
smokers simply lack the willpower to stop. Maybe you are convinced that the parking
problem on your campus is part of an uncaring conspiracy by administrators to make
your life more difficult. In each of these cases, as shown in the accompanying table,
we can frame a hypothesis in terms of an independent variable and a dependent vari-
able. The best way to learn about operationalizing a variable is to experience it for
yourself. So propose a way to measure each of the variables identified in Table 1-2.
We’ve given you a start with regard to continent—North America versus Europe (an
easy variable to operationalize)—and how bad the parking problem is (a more difficult
variable to operationalize).
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TABLE 1-2. OPERATIONALIZED VARIABLES

 The Independent Variable . . .                            Predicts . . .                        the Dependent Variable

Continent ————————————————————————— who uses ATMs the fastest

Amount of willpower  ————————————————————— level of cigarette smoking

Level of caring by administrators ————————————————— how bad the parking problem is

 Conceptual Variable                                             Operationalized Variable

Continent                                                                   North America versus Europe

Who uses ATMs the fastest                                        __________________________________________

Amount of willpower                                                   __________________________________________

Level of cigarette smoking                                          __________________________________________

Level of caring by administrators                                __________________________________________

How bad the parking problem is                                   Ask students to rate the parking problem on a scale ranging
from 1 (no problem) to 5 (the worst problem on campus)

■ Hypothesis testing is the
process of drawing
conclusions about whether a
particular relation between
variables is supported by the
evidence.

■ An operational definition
specifies the operations or
procedures used to measure
or manipulate a variable.

■ A correlation is an
association between two or
more variables.

Conducting Experiments to Control 
for Confounding Variables
Once we have decided how to operationalize the variables, we can conduct a study
and collect data. There are several different ways to approach research, including
experiments and correlational research. A correlation is an association between two or
more variables. In Snow’s cholera research, it was the idea of a systematic co-relation
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between two variables (the proximity to the Broad Street well and the number of
deaths) that saved so many lives. Snow understood the life-saving idea of a correlation
many years before the mathematical formula for a correlation had been developed, so
he tested his idea by displaying his data on a map rather than by testing with a formula.
A correlation is one way to test a hypothesis, but it is not the only way. In fact, when
possible, researchers almost always prefer to conduct an experiment rather than a cor-
relational study because it is easier to interpret the results.

The hallmark of experimental research is random assignment. With random assign-
ment, every participant in the study has an equal chance of being assigned to any of the groups,
or experimental conditions, in the study. And an experiment is a study in which participants
are randomly assigned to a condition or level of one or more independent variables. Random
assignment means that neither the participants nor the researchers get to choose the
condition. Experiments are the gold standard of hypothesis testing because they are
the best way to control confounding variables. Controlling confounding variables allows
researchers to infer a cause–effect relation between variables rather than merely a sys-
tematic association between variables. Even when researchers cannot conduct a true
experiment, they include as many of the characteristics of an experiment as possible.
The critical feature that makes a study worthy of the descriptor experiment is random
assignment to groups.

Experiments create equality between groups by randomly assigning participants to
different levels, or conditions, of the independent variable. Random assignment controls
the effects of personality traits, life experiences, personal biases, or other potential con-
founds by distributing them across each condition of the experiment to an equivalent
degree.

It is difficult to control confounding variables, so let’s see how random assignment
helps to do that. You might wonder whether the hours you spend playing Guitar Hero
or Assassin’s Creed are useful. A team of physicians and a psychologist investigated
whether video game playing (the independent variable) leads to superior surgical skills
(the dependent variable). They reported that surgeons with more video game playing
experience were faster and more accurate, on average, when conducting training drills
that mimic laparoscopic surgery than surgeons with no video game playing experience

(Rosser et al., 2007).
In the video game and surgery study, the researchers did not ran-

domly assign surgeons to play video games or not. Rather, they asked
the surgeons to report their video game playing histories and then
measured their laparoscopic surgical skills. Can you spot the con-
founding variable? People may choose to play video games because
they already have the fine motor skills and eye–hand coordination
that the researchers report is necessary for surgery, and they enjoy
using their skills by playing video games. If that is the case, then, of
course, those who play video games will tend to have better surgical
skills—they already did before they took up video games!

It would be much more useful to set up an experiment that randomly assigns sur-
geons to one of the two levels of the independent variable: (1) play video games or
(2) do not play video games. Random assignment assures us that our two groups are
roughly equal, on average, on all the variables that might contribute to excellent surgical
skills, such as fine motor skills, eye–hand coordination, and experience playing other
video games. Random assignment attempts to diminish the effects of potential con-

EXAMPLE 1.1

�   MASTERING THE CONCEPT

1.5: When possible, researchers prefer to

use an experiment rather than a

correlational study. Experiments use

random assignment, which is the only way

to determine if one variable causes another.

■ In random assignment, every
participant in a study has an
equal chance of being
assigned to any of the groups,
or experimental conditions, in
the study.

■ An experiment is a study in
which participants are
randomly assigned to a
condition or level of one or
more independent variables.

■ In a between-groups
research design, participants
experience one, and only one,
level of the independent
variable.

■ In a within-groups research
design, the different levels of
the independent variable are
experienced by all participants
in the study; also called a
repeated-measures design.



founds. Specifically, random assignment to groups in-
creases our confidence that the two groups were sim-
ilar, on average, on aptitude for laparoscopic surgery
prior to this experiment. (Figure 1-2 visually clarifies
the difference between self-selection and random as-
signment. We explore more specifically how random
assignment is implemented in Chapter 5.) If we use
random assignment and the “play video games” group
has better average laparoscopic surgical skills after the
experiment than the “do not play video games group,”
then we can conclude that playing video games caused
the better laparoscopic surgical skills.

Indeed, many researchers have used experimental
designs to explore the causal effects of video game
playing. Thy have found both positive effects such as
improved spatial skills following action games (Feng,
Spence, & Pratt, 2007) and negative effects such as increased hostility after playing vi-
olent games with lots of blood (Bartlett, Harris, & Bruey, 2008). ■

Between-Groups Design Versus Within-Groups Design
Experiments create meaningful comparison groups in several ways. However, most
studies have either a between-groups research design or a within-groups (also called a re-
peated-measures) research design.

A between-groups research design is an experiment in which participants experience one,
and only one, level of the independent variable. In some between-groups studies, the different
levels of the independent variable serve as the only relevant distinction between two
(or more) groups that otherwise have been made equivalent through random assign-
ment. An experiment that compares a control group, such as people randomly assigned
not to play video games, with an experimental group, such as people randomly assigned
to play video games, is an example of a between-groups design.

A within-groups research design is a study in which the different levels of the independent
variable are experienced by all participants in the study. An experiment that compares the
same group of people before and after they experience an independent variable, such
as video game playing, is an example of a within-groups design. The word within em-
phasizes that if you experience one condition of a study, then you remain within the
study until you experience all conditions of the study.

Many applied questions in the behavioral sciences are best studied using a within-
groups design. This is particularly true of long-term (often called longitudinal) studies that
examine how individuals and organizations change over time or studies involving a nat-
urally occurring event that cannot be duplicated in the laboratory. For example, we ob-
viously cannot randomly assign people to either experience or not experience a
hurricane. However, we could use nature’s predictability to anticipate hurricane season,
collect “before” data, and then collect data once again “after” people experienced living
through a hurricane. Such a before/after study is one version of a within-groups design.

Correlational Research
Often, we cannot conduct an experiment because it is unethical or impractical to ran-
domly assign participants to conditions. In these cases, we must conduct another type
of study. Snow’s cholera research, for example, did not use random assignment; he

Self-Selection
to Groups

Independent variable Dependent variable

Independent variable Dependent variable

People who play
video games regularly

People who never
play video games

Laparoscopic
surgery skills

Random Assignment
to Groups

People randomly
assigned to play
video games

People randomly
assigned not to play
video games

Laparoscopic
surgery skills

FIGURE 1-2
Self-Selected into or Randomly
Assigned to One of Two Groups:
Video Game Players versus
Non–Video Game Players.

This figure visually clarifies the
difference between self-selection and
random assignment. The design of the
first study does not answer the question
“Does playing video games improve
laparoscopic surgical skills?”
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could not randomly assign some people to drink water from the Broad Street well. His
research design was correlational, not experimental.

In correlational studies, we do not manipulate either variable. We merely assess the
two variables as they exist. For example, it would be difficult to randomly assign people
to either play or not play video games over several years.. However, we could observe
people over time to see the effects of their actual video game usage. Möller and Krahé
(2009) studied German teenagers over a period of 30 months and found that the
amount of video game playing when the study started was related to aggression 30
months later. Although these researchers found that video game playing and aggression
are related (as is shown in Figure 1-3), they do not have evidence that playing video
games causes aggression.

High

Low
Low High

Aggression

Number of
hours spent

playing video
games each 

year

FIGURE 1-3
Correlation Between Aggression

and Playing Video Games

This graph depicts a relation between
aggression and hours spent playing

video games for a study of 10 fictional
participants. The more one plays video

games, the higher one’s level of
aggression tends to be.

John Snow wanted to understand the cholera outbreak, in part, to prevent another one.
So he paid particular attention to outliers, cases that did not fit the pattern that he had
observed. An outlier is an extreme score that is either very high or very low in comparison with
the rest of the scores in the sample. Some researchers conduct outlier analysis, studies that
examine observations that do not fit the overall pattern of the data, in an effort to understand
the factors that influence the dependent variable.

Snow used outlier analysis when he sought to explain why two Londoners died in
the cholera epidemic even though they lived far away from the Broad Street well that
transmitted that terrible disease. A woman in West End, Hamstead, had died on Sep-
tember 2, 1854; her niece in Islington had died the following day. These two women
had very high scores on the variable “distance from the Broad Street well,” unexpected
among those who died from cholera.

These two cases did not fit the overall pattern, so Snow saddled up his horse and
rode up to Hamstead to interview relatives of the two women who should not have
died from cholera. His interview revealed that the Hamstead woman had once lived
near Broad Street and developed a taste for the wonderful-tasting water that came out
of the Broad Street pump. In fact, she had sent for a large container of the water on
August 31, 1854, three days before her death and the very same day that the cholera
outbreak began. She had shared this wonderful-tasting water with her niece.

The outliers on Dr. Snow’s map allowed him to “see” other clues about the cholera
outbreak, including what may be the only known case in which lives were saved by
drinking large amounts of beer. There were 70 unaffected men working at the nearby

N e x t  S t e p s Outlier Analysis

■ An outlier is an extreme score
that is either very high or very
low in comparison with the rest
of the scores in the sample.

■ In outlier analysis, studies
examine observations that do
not fit the overall pattern of the
data in an effort to understand
the factors that influence the
dependent variable.
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Broad Street brewery. They were given a free allowance of beer each day, so they didn’t
drink the nearby well water. However, at a nearby factory, there were 18 deaths due to
cholera; two large tubs of Broad Street well water were always kept available for the
thirsty workers.

Outlier analysis would prove to be crucial once again in the 1990s when researchers
were desperately trying to track down effective strategies to fight the ongoing
HIV/AIDS epidemic (Kolata, 2001). In this case, the outlier was a hemophiliac, Robert
Massie, who should have died but did not (Belluck, 2005). Like many other hemo-
philiacs, Massie had become infected through repeated exposure to the untested, con-
taminated blood supply. Oddly, though, Massie didn’t show any symptoms of AIDS!
His immune system was working so well that it convinced researchers that the immune
system could fight off the AIDS virus. Identifying him as an outlier helped lead to ef-
fective, innovative treatments for HIV. Researchers can stumble into critical insights
by paying attention to statistical outliers.

continued on next page

CHECK YOUR LEARNING
Reviewing the Concepts       > Hypothesis testing is the process of drawing conclusions about whether a particular relation

between variables (the hypothesis) is supported by the evidence.

> All variables need to be operationalized–that is, we need to specify how they are to be
measured or manipulated.

> Experiments attempt to explain a cause–effect relation between an independent variable
and a dependent variable.

> Random assignment to groups, to control for confounding variables, is the hallmark of an
experiment.

> Most studies have either a between-groups design or a within-groups design.

> Correlational studies can be used when it is not possible to conduct an experiment.

> Outliers are extreme scores that are very different from the rest of the observations.

> Outlier analysis refers to studies that examine outliers, those scores that do not fit the overall
pattern of the rest of the data.

Clarifying the Concepts        1-10 How do the two types of research discussed in this chapter—experimental and
correlational—differ?

    1-11 How does random assignment help to address confounding variables?

Calculating the Statistics      1-12 College admissions offices use several methods to operationalize the academic
performance of high school students applying to college, including SAT scores. Can
you think of other ways to operationalize this variable?

Applying the Concepts         1-13 Expectations matter. Researchers examined how expectations based on stereotypes
influence women’s math performance (Spencer, Steele, & Quinn, 1999). Some women
were told that a gender difference was found on a certain math test and that women
tended to receive lower scores than men did. Other women were told that no gender
differences were evident on the test. Women in the first group performed more poorly
than men did, on average, whereas women in the second group did not.

a. Briefly outline how researchers could conduct this research as a true experiment
using a between-groups design.
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b. Why would researchers want to use random assignment?

c. If researchers did not use random assignment but rather chose people who were
already in those conditions (i.e., who already believed stereotypes or did not believe
them), what might be the possible confounds? Name at least two.

d. How is math performance operationalized here?

e. Briefly outline how researchers could conduct this study using a within-groups
design.

[The solutions to these Check Your
Learning questions can be found in
Appendix D.]

The Two Branches of Statistics
Statistics is divided into two branches: descriptive statistics and inferential statistics. De-
scriptive statistics organize, summarize, and communicate large amounts of numerical
information. Inferential statistics draw conclusions about larger populations based on
smaller samples of that population. Samples are intended to be representative of the
larger population.

How to Transform Observations into Variables
Observations may be described as either discrete or continuous. Discrete observations are
those that can take on only certain numbers (e.g., whole numbers, such as 1), and con-
tinuous observations are those that can take on all possible numbers in a range (e.g.,
1.68792). Two types of variables can only be discrete: nominal and ordinal. Nominal vari-
ables use numbers simply to give names to scores (e.g., 1 to stand for male on the nom-
inal variable of gender). Ordinal variables are rank ordered (e.g., 1st place, 2nd place).
Two types of variables can be continuous: interval and ratio. Interval variables are those
in which the distances between numerical values are assumed to be equal; they include
physical properties such as height as well as more abstract concepts such as personality
traits. Ratio variables are those that meet the criteria for interval variables but also have
a meaningful zero point. Time, for instance, is a variable for which a score of 0 has
meaning. Scale variable is a term used for both interval and ratio variables, particularly
in statistical computer software programs.

Variables and Research
Independent variables can be manipulated by the experimenter, and they have at least
two levels, or conditions. Dependent variables are outcomes in response to changes in the
independent variable. Confounding variables systematically vary with the independent
variable, so we cannot logically determine which variable may have influenced the de-
pendent variable. The independent and dependent variables allow researchers to test
and explore the relations between variables. A variable is only useful if it is both reliable
and valid. A reliable measure is one that is consistent, and a valid measure is one that
assesses what it intends to assess.

Introduction to Hypothesis Testing
Hypothesis testing is the process of drawing conclusions about whether a particular re-
lation between variables is supported by the evidence. Operational definitions of the in-
dependent and dependent variables are necessary to test a hypothesis. Experiments

REVIEW OF CONCEPTS
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attempt to identify a cause–effect relation between an independent variable and a de-
pendent variable. Random assignment to groups, to control for confounding variables,
is the hallmark of an experiment. Most studies have either a between-groups design or
a within-groups design. Correlational studies can be used when it is not  possible to con-
duct an experiment; they allow us to determine whether there is a correlation between
two variables. Outliers are extreme scores that are either very high or very low compared
with the rest of the observed data. Outlier analysis studies outliers to understand how
the independent variable affects the dependent variable.

SPSS®

SPSS is divided into two main screens. The easiest way to
move back and forth between these two screens is by using
the two tabs located at the lower left labeled “Variable View”
and “Data View.”

To name the variables, go to “Variable View” and select:

Name. Type in a short version of the variable name, such as
BDI for the Beck Depression Inventory, a common measure
of depressive symptoms.
Type. For nominal variables, such as gender, change the type
to “string” by clicking the cell in the column labeled “Type”
or by clicking the little gray box, choosing “string,” and click-
ing “OK.”

To tell SPSS what the variable name means, select:

Label. Type in the full name of the variable, such as Beck
Depression Inventory.

To tell SPSS what the numbers assigned to any nominal
variable actually mean, select:

Values. In the column labeled “Values,” click on the cell next
to the appropriate variable, then click on the little gray box

on the right of that cell to access the tool that allows you to
identify the values (or levels) of the variables. For example, if
the nominal variable “gender” is part of the study, tell SPSS
that 1 equals male and 2 equals female. The numbers are the
values and the words are the labels. See the screenshot below
to see what this looks like.

Now tell SPSS what kind of variables these are by  selecting:

Measure. Highlight the type of variable by clicking on the
cell in the column labeled “Measure” next to each variable,
then clicking on the arrow to access the tool that allows you
to identify whether the variable is scale, ordinal, or nominal.
Notice that this is not necessary for nominal variables if the
type is already listed as “string.”

After describing all the variables in the study in “Variable
View,” switch over to “Data View” and notice that the infor-
mation you entered was automatically transferred to that screen,
but now the variables are displayed across the tops of the
columns instead of along the left-hand side of the rows. You can
now enter the data in “Data View” under the appropriate head-
ing; each participant’s data is entered across one row.
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Exercises
Clarifying the Concepts

1.1 What is the difference between descriptive and infer-
ential statistics?

1.2 What is the difference between a sample and a pop -
ulation?

1.3 Identify and define the four types of variables that re-
searchers could use to quantify their observations.

1.4 Describe two ways that statisticians might use the word
scale.

1.5 Distinguish discrete and continuous variables.
1.6 What is the relation between an independent variable

and a dependent variable?
1.7 What are confounding variables (or simply confounds)

and how are they controlled using random assignment?
1.8 What is the difference between reliability and validity,

and how are they related?
1.9 To test a hypothesis, we need operational definitions of

our independent and dependent variables. What is an
operational definition?

1.10 In your own words, define the word experiment—first
as you would use it in everyday conversation, and then
as a researcher would use it.

1.11 What is the difference between experimental research
and correlational research?

1.12 What is the difference between a between-groups re-
search design and a within-groups research design?

1.13 In statistics, it is important to pay very close attention
to language. The following statements are wrong but
can be corrected by substituting one word or phrase.
For example, the sentence “Only correlational studies
can tell us something about causality” could be cor-
rected by changing “correlational studies” to “experi-
ments.” Identify the incorrect word or phrase in each
of the following statements, and supply the correct
word.

a. In a study on exam preparation, every participant
had an equal chance of being told he/she had to
study alone or being told he/she would study with
a group. This was a correlational study.

b. A psychologist was interested in studying the effects
of the dependent variable of caffeine on hours of
sleep, and he used a scale measure for sleep.

c. A university assessed the reliability of a commonly
used scale—a mathematics placement test—to de-
termine if it was truly measuring math ability.

d. In a within-groups experiment on calcium and os-
teoporosis, participants were assigned to one of two
levels of the independent variable: no change in diet
or calcium supplement.

e. A researcher studied a population of 20 rats to de-
termine whether changes in exposure to light
would lead to changes in the dependent variable of
amount of sleep.

1.14 What is an outlier?

1.15 What are potential benefits of outlier analysis?

Calculating the Statistics

1.16 A researcher studies the average distance that 130 people
living in U.S. urban areas walk each week.

a. What is the size of the sample?

b. Identify the population.

1.17 Seventy-three people are stopped as they leave a popular
grocery store, and the number of fruit and vegetable
items they purchased is assessed.

a. What is the size of the sample?

b. Identify the population.

1.18 Is the “average” calculated in Exercise 1.16 a descriptive
statistic or an inferential statistic if it is used to describe
the 130 people studied?

1.19 Is the number of items counted in Exercise 1.17 a de-
scriptive statistic or an inferential statistic if it is used to
estimate the diets of all shoppers?

1.20 Referencing Exercise 1.16, how might you operationalize
the average distance walked in one week as a(n):

a. ordinal measure?

b. scale measure?

1.21 Referencing Exercise 1.17, how might you operational-
ize the amount of fruit and vegetable items purchased
on a trip to the store as a(n):

a. nominal measure?

b. ordinal measure?

c. scale measure?

1.22 In the fall of 2008, the U.S. stock market plummeted
several times, which meant grave consequences for the
world economy. A researcher might assess the economic
effect this situation had by seeing how much money
people saved in 2008. Those amounts could be com-
pared to how much money people saved in more eco-
nomically stable years. How might you calculate (or
operationalize) economic implications at a national
level?

1.23 A researcher might be interested in evaluating how
the physical and emotional “distance” a person had
from Manhattan at the time of the 9/11 terrorist at-



tacks relates to the accuracy of memory for the event.
Identify the independent variables and the dependent
variable.

1.24 Referencing Exercise 1.23, imagine that physical dis-
tance is assessed as within 100 miles, or 100 miles or
farther; also, imagine that emotional distance is assessed
as knowing no one who was affected, knowing people
who were affected but lived, and knowing someone
who died in the events. How many levels do the inde-
pendent variables have?

1.25 How might you operationalize the dependent variable,
accuracy of memory, for the event in Exercise 1.23?

1.26 A study of the effects of skin tone (light, medium, and
dark) on the severity of facial wrinkles in middle age
might be of interest to cosmetic surgeons.

a. What is the independent variable in this study?

b. What is the dependent variable in this study?

c. How many levels does the independent variable
have?

1.27 Since 1980, most of the cyclists who have won the
Tour de France have won it just once. Several cyclists
have won it two or three times. The Spanish cyclist
Miguel Induráin has won it five times, and the U.S. cy-
clist Lance Armstrong has won it seven times. Identify
the outlier or outliers among the  cyclists.

1.28 Referring to Exercise 1.27, what might be the pur-
pose of an outlier analysis in this case? What might it
reveal?

Applying the Concepts

1.29 The CDC reported very large weight increases for U.S.
residents of both genders and of all age groups over the
last four decades. Go to the Web site that reports these
data (www.cdc.gov) and search for the article titled
“Americans Slightly Taller, Much Heavier Than 40
Years Ago.”

a. What were the average weights of 10-year-old girls
in 1963 and in 2002?

b. Do you think the CDC weighed every girl in the
United States to get these averages? Why would this
not be feasible?

c. How does the average weight of 10-year-old girls
in 2002 represent both a descriptive and an infer-
ential statistic?

1.30 The Health Study of Nord-Trøndelag County of Nor-
way surveyed more than 60,000 people in a Norwegian
county and reported that “people who have gastroin-
testinal symptoms, such as nausea, are more likely to
have anxiety disorders or depression than people who
do not have such symptoms.”

a. What is the sample used by these researchers?

b. What is the population to which the researchers
would like to extend their findings?

1.31 At the 2008 Beijing Summer Olympics, 23-year-old
Michael Phelps won eight gold medals, a world
record for the number of gold medals won in a single
Olympic games. One of his winning events was the
200-meter butterfly. For each of the following exam-
ples, identify the type of variable—nominal, ordinal,
or scale.

a. Phelps of the United States came in first, László
Cseh of Hungary came in second, and Takeshi Mat-
suda of Japan came in third.

b. Phelps finished in 1 minute and 52.03 seconds, a
new world record. Cseh finished in 1:52.70, and
Matsuda finished in 1:52.97.

c. One might examine whether swimmers were im-
paired during the race or not. Phelps was blinded
when his goggles filled with water. Neither Cseh
nor Matsuda suffered any impairment.

1.32 The Kentucky Derby is perhaps the premier event in
U.S. horse racing, and it provides many opportunities
for identifying types of variables. For each of the fol-
lowing examples, identify the type of variable—nomi-
nal, ordinal, or scale.

a. As racing fans, we would be very interested in the
variable of finishing position. For example, a stun-
ning upset took place in 2005 when Giacomo, a
horse with 50-1 odds, won, followed by Closing Ar-
gument and then Afleet Alex.

b. We also might be interested in the variable of
finishing time. Giacomo won in 2 minutes, 2.75
seconds.

c. If we were the betting type, we might examine the
variable of payoffs. Giacomo was such a long shot
that a $2.00 bet on him to win paid an incredibly
high $102.60.

d. We might be interested in the history of the Derby
and the demographic variables of jockeys, such as
gender or race. For example, in the first 28 runnings
of the Kentucky Derby, 15 of the winning jockeys
were African American.

e. In the luxury boxes, high fashion reigns; we might
be curious about the variable of hat wearing, ob-
serving how many women wear hats and how many
do not.

1.33 For each of the following examples, state whether the
scale variable is discrete or continuous.

a. The capacity, in terms of songs, of an iPod

b. The playing time of an individual song

c. The cost in cents to download a song legally
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d. The number of posted reviews that a CD has on
Amazon.com

e. The weight of an MP3 player

1.34 The book What’s Wrong with the Rorschach: Science Con-
fronts the Controversial Inkblot Test (Wood et al., 2003)
presents an overview of scientific evidence that suggests
the Rorschach test performs poorly at diagnosing psy-
chopathology, determining personality traits, and pre-
dicting future behavior. For example, the Rorschach
tends to overdiagnose, labeling many people without
psychopathology as sick.

a. Do these findings relate more to reliability or va-
lidity? Explain.

b. Explain how a test such as the Rorschach could be
reliable, even if it were not valid.

1.35 You may have been in a wine store and wondered just
how useful those posted wine ratings are (usually a
scale with 100 as the top score). After all, aren’t ratings
subjective? Corsi and Ashenfelter (2001) studied
whether wine experts are consistent. Knowing that the
weather is the best predictor of price, the researchers
wondered how well weather predicted experts’ ratings.
The variables used for weather included temperature
and rainfall, and the variable used for wine experts’ rat-
ings was based on the numbers they assigned to each
wine.

a. Name one independent variable. What type of vari-
able is it? Is it discrete or continuous?

b. Name the dependent variable. What type of variable
is it? Is it discrete or continuous?

c. How does this study reflect the concept of
reliability?

d. Let’s say that you frequently drink wine that’s been
rated highly by Robert Parker, one of the wine ex-
perts in this study. His ratings were determined to
be reliable, and you find that you usually agree with
Parker. How does this observation reflect the con-
cept of validity?

1.36 Go online and take the personality test found at
www.outofservice.com/starwars. This test assesses your
personality in terms of the characters from the original
Star Wars series. (You may have to scroll down to get to
the questions.)

a. What does it mean for a test to be reliable? Take the
test a second time. Does it seem to be reliable?

b. What does it mean for a test to be valid? Does this
test seem to be valid? Explain.

1.37 The Star Wars personality test from Exercise 1.36 asks
a number of demographic questions at the end. For ex-

ample, it asks “In what country did you spend most of
your youth?”

a. Can you think of a hypothesis that might have led
the developers of this Web site to ask this question?

b. For your hypothesis in part (a), identify the inde-
pendent and dependent variables.

1.38 For each of the following hypotheses, identify the likely
dependent variable and a likely way of operationalizing
that dependent variable. Be specific.

a. Teenagers are better at video games, on average,
than are adults in their 30s.

b. Spanking children tends to lead them to be more 
violent.

c. Weight Watchers leads to more weight loss, on av-
erage, if you go to meetings than if you participate
online.

d. Students do better in statistics, on average, if they
study with other people than if they study alone.

e. Drinking caffeinated beverages with dinner tends
to make it harder to get to sleep at night.

1.39 For each of the following hypotheses, identify the in-
dependent variable and the most likely levels of that in-
dependent variable.

a. Teenagers are better at video games, on average,
than are adults in their 30s.

b. Spanking children tends to lead them to be more
violent.

c. Weight Watchers leads to more weight loss, on average,
if you go to meetings than if you participate online.

d. Students do better in statistics, on average, if they
study with other people than if they study alone.

e. Drinking caffeinated beverages with dinner tends
to makes it harder to get to sleep at night.

1.40 For each of the following variables—both described at
some point in this chapter—state (i) how the researcher
operationalized the variable and (ii) one other way in which
the researcher could have operationalized the variable.

a. The distance between the well and the homes
where people had died (in Dr. Snow’s study)

b. The length of a woman’s hair (in Eleanor Stam-
pone’s study)

1.41 Several studies have documented the susceptibility of
people who are HIV-positive to cholera, likely because of
weakened immune systems. Researchers in Mozambique
(Lucas et al., 2005), a country where an esti mated 20% to
30% of the population is HIV-positive, wondered
whether an oral vaccine for cholera would work among
people who are HIV-positive. Fourteen thousand people
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in Mozambique who tested positive for HIV were im-
munized against cholera. Soon thereafter, an epidemic of
cholera spread through the region,  giving the researchers
an opportunity to test their  hypothesis.

a. Describe a way in which the researchers could have
conducted an experiment to examine the effective-
ness of the cholera vaccine among people who are
HIV-positive.

b. If the researchers did conduct an experiment, would
this have been a between-groups or within-groups
experiment? Explain.

c. The researchers did not randomly assign partici-
pants to vaccine or no-vaccine conditions; rather,
they conducted a general mass immunization.
Why does this limit their ability to draw causal
conclusions? State at least one possible confound-
ing variable.

1.42 Refer to the study on cholera and HIV described in
Exercise 1.41. The researchers did not use random as-
signment when conducting this study.

a. List at least one practical reason that the researchers
might not have used random assignment.

b. List at least one ethical reason that the researchers
might not have used random assignment.

1.43 If we had been conducting the study described in Exercise
1.41 and were unconcerned with practicality and ethics,
describe how we could have used random assignment.

1.44 Noting marked increases in weight across the popula-
tion, many researchers, nutritionists, and physicians have
struggled to find ways to stem the tide of obesity in
many Western countries. A number of exercise pro-
grams have been advocated by these clinicians and re-
searchers, and there has been a flurry of research to
determine their effectiveness. Pretend that you are in
charge of a research program to examine the effects of
an exercise program on weight loss in comparison with
a no-exercise program.

a. Describe how you could study this exercise pro-
gram using a between-groups research design.

b. Describe how you could study this exercise pro-
gram using a within-groups design.

c. What is a potential confound of a within-groups
design?

1.45 For decades, researchers, politicians, and tobacco com-
pany executives debated the relation between smoking
and health problems, such as cancer.

a. Why was this research necessarily correlational in
nature?

b. What confounding variables might make it difficult
to isolate the effects of smoking tobacco on health?

c. How might the nature of this research and these
confounds “buy time” for the tobacco industry in
acknowledging the hazardous effects of smoking?

d. All ethics aside, how could you study the relation
between smoking and health problems using a be-
tween-groups experiment?

1.46 A researcher interested in the cultural values of individ-
ualistic and collectivistic societies collects data on the
rate of relationship conflict experienced by 32 people
who test high for individualism and 37 people who test
high for collectivism.

a. Is this research experimental or correlational?
Explain.

b. What is the sample?

c. Write a possible hypothesis for this researcher.

d. How might we operationalize relationship conflict?

1.47 A researcher wants to know if people’s concerns about
the environment might vary as a function of incentives
provided for recycling. Students living on a university
campus are recruited to participate in a study. Some stu-
dents are randomly assigned to a group in which they
are rewarded financially for all of their recycling efforts
for one month. The other students are randomly as-
signed to a group in which they are assessed a recycling
fee based on the amount of materials designated for
recycling.

a. Is this research experimental or correlational?
Explain.

b. Write a hypothesis for this researcher.

1.48 Imagine that you conducted the study described in Ex-
ercise 1.44 and that one person had gained many, many
pounds while in the exercise program.

a. Why would this individual be considered an  outlier?

b. Explain why outlier analysis might be useful in this
situation.

c. What kinds of things are we looking for in an out-
lier analysis?

1.49 Imagine that a researcher is measuring the time it takes
participants to identify whether a string of letters con-
stitutes a word (e.g., duke) or a nonword (e.g., dake). She
measures the response time of 40 participants. She finds
that most participants took from ½ to 1 second to make
their decision but that one participant took 3 minutes
to make a decision.

a. Why would the participant who took 3 minutes be
considered an outlier?

b. What kinds of things might the researcher look for
in an outlier analysis of this situation?
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Terms
descriptive statistic (p. 2)
inferential statistic (p. 3)
sample (p. 3)
population (p. 3)
variable (p. 4)
discrete observation (p. 4)
continuous observation (p. 4)
nominal variable (p. 4)
ordinal variable (p. 4)

interval variable (p. 5)
ratio variable (p. 5)
scale variable (p. 6
level (p. 7)
independent variable (p. 7)
dependent variable (p. 7)
confounding variable (p. 7)
reliability (p. 9)
validity (p. 9)

hypothesis testing (p. 10)
operational definition (p. 11)
correlation (p. 11)
random assignment (p. 12)
experiment (p. 12)
between-groups research design (p. 13)
within-groups research design (p. 13)
outlier (p. 14)
outlier analysis (p. 14)
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■ You should understand the different types of
variables—nominal, ordinal, scale (Chapter 1).

■ You should understand the difference between
a discrete variable and a continuous variable
(Chapter 1).

BEFORE YOU GO ON

Frequency Distributions
Frequency Tables
Grouped Frequency Tables
Histograms
Frequency Polygons

Shapes of Distributions
Normal Distributions
Skewed Distributions

Next Steps: Stem-and-Leaf Plot
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It has been suggested that children who are exposed to fast-paced television program-
ming—quick camera changes, lots of sound effects, multiple plots—have more difficulty
with learning and tend to be less imaginative (Healy, 1990). More ominously, in 1997,
more than 700 Japanese children were rushed to hospitals after viewing a particular
scene from the cartoon show Pokemon. What the children saw that apparently triggered
some seizures (Smillie, 1997) was a fast-paced scene with a strobe-like effect using red,
white, and blue flashes that were combined with explosions of other colors (McCollum
& Bryant, 2003). In the United States, the popular children’s program Sesame Street has
also been criticized for its fast pacing, which critics believe encourages children to love
television but not to love learning (Postman, 1985).

To understand the effects of pacing, researchers created a list that reported the pacing
scores for 87 popular children’s television programs broadcast in the United States (Mc-
Collum & Bryant, 2003). Table 2-1 depicts an excerpt of these pacing scores; you can
see that Mr. Rogers’ Neighborhood was the slowest-paced show (not surprising to those
who have seen it), with a pacing score of 14.95. The fastest-paced show was Bill Nye the
Science Guy, with a pacing score of 56.90.

Of course, we can only understand the pattern of these numbers when they are
ranked from the fastest-paced to the slowest-paced television show (or from the slowest
to the fastest) and then organized in a way that makes sense. That is the main point of
this chapter: the first thing to do when confronted with a data set is to put the list of
numbers in order so that you can understand their overall pattern.

Do fast-paced programs harm children’s ability to learn? The jury is still out. Even
though Sesame Street is slow-paced relative to other shows, some researchers still regard
it as too fast-paced to achieve its educational goals (Schmidt & Vandewater, 2008).
However, the researchers who developed the pacing index discovered some other in-
teresting information when they averaged the pacing of children’s television shows
across different networks. The rank-ordered list in Table 2-2 shows that commercial
networks produced the fastest-paced shows and that educational television produced
the slowest-paced shows. Perhaps fast pacing helps commercial networks win the com-
petition for viewers’ eyes, while slow pacing wins the competition for viewers’ minds.

In this chapter, we learn how to organize our individual data points in a table. Then
we go one step further and learn how to use two types of graphs—histograms and fre-

■ A raw score is a data point
that has not yet been
transformed or analyzed.

■ A frequency distribution
describes the pattern of a set
of numbers by displaying a
count or proportion for each
possible value of a variable.

■ A frequency table is a visual
depiction of data that shows
how often each value
occurred, that is, how many
scores were at each value.
Values are listed in one
column, and the numbers of
individuals with scores at that
value are listed in the second
column.

TABLE 2-1. The Pacing of Children’s Television Shows

The fast pace of many children’s television programs has been criticized for possibly lowering children’s ability
to concentrate. This table shows a sample of the 87 television programs and a pacing index for each one. A
higher index indicates a faster-paced program, and a lower index indicates a slower-paced program.

                                 Television Show                                                       Pacing Index

                          Bill Nye the Science Guy                                                             56.90

                          Power Rangers                                                                           41.90

                          Tiny Toons                                                                                  40.70

                          Charlie Brown                                                                             33.10

                          Scooby Doo                                                                                30.60

                          The Simpsons                                                                            30.25

                          Batman                                                                                      25.85

                          Sesame Street                                                                            24.80

                          Blue’s Clues                                                                               21.85

                          Mr. Rogers’ Neighborhood                                                           14.95
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The most popular sport in the world is soccer (or football to people living in most of
the world), and a recent book analyzes soccer from the perspectives of several social
sciences—statistics, economics, psychology, geography, and sociology. In Soccernomics,
the authors explore fascinating social science questions such as whether rates of suicide
increase among fans whose teams have lost, why a country’s wealth is correlated with
its sports wins, which countries discriminate against black soccer players, and which
variables predict success at the professional level (Kuper & Szymanski, 2009).

quency polygons—to show the overall pattern of the data. Finally, we learn to use these
graphs to understand the shape of the distribution of the data points. All of these tools
are important steps for using statistics in the behavioral sciences.

Frequency Distributions
Researchers are usually most interested in the relations between two or more vari-
ables, such as the effect of a television show’s pacing (the independent variable) on
children’s learning (the dependent variable). But to understand the relation between
variables, we must first understand each individual variable’s data points. The basic in-
gredients of a data set are called the raw scores, data that have not yet been transformed or
analyzed. In statistics, we organize our raw scores into a frequency distribution, which
describes the pattern of a set of numbers by displaying a count or proportion for each possible
value of a variable. For example, a frequency distribution can display the pattern of the
scores—the pacing indices—from the excerpted list of television
shows in Table 2-1.

There are several different ways to organize the data in terms of a
frequency distribution. The first approach, the frequency table, is also
the starting point for each of the three other ways that we will explore.
A frequency table is a visual depiction of data that shows how often each
value occurred, that is, how many scores were at each value. Once organized
into a frequency table, the data can be displayed as a grouped fre-
quency table, a frequency histogram, or a frequency polygon. These
four methods of visually organizing data represent the basic tools in
a statistician’s toolbox. If one technique doesn’t give us a clear picture
of the data, another one might work better.

�   MASTERING THE CONCEPT

2-1: A frequency table shows the pattern 

of the data by indicating how many

participants had each possible score. A

grouped frequency table expands a

frequency table by indicating the numbers

of participants within particular intervals,

rather than at particular scores.

Frequency Tables

EXAMPLE 2.1

TABLE 2-2. The Pacing of Children’s Shows by Network

When children’s programs were categorized by network and then averaged, it was revealed that the fastest-
paced programs were offered by commercial networks and the slowest-paced programs were offered by ed-
ucational networks.

                                    Network                                                            Average Pacing Index

                   Commercial networks                                                                            34.29

                   Nickelodeon                                                                                          33.03

                   Disney                                                                                                  32.55

                   Public Broadcasting System (PBS)                                                          27.26

                   The Learning Channel                                                                            25.35

                   Average for all shows                                                                            31.86
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The authors also present data on where soccer is most popular. Using data on per-
centages of soccer spectators out of the entire population, they conclude that soccer is
most popular in England, followed by Spain, Germany, Italy, and France (in that order).
But we wondered: Does popularity coincide with success? Do certain teams tend to
dominate over the years, or do many countries have their chance to dominate?

Table 2-3 depicts data from the World Cup Web site (fifa.com) listing the years in
which countries came in first or second in the tournament. The table is in alphabetical
order by country. Of the 77 countries that have participated in at least one men’s or
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World Cup Powerhouses An
examination of men’s and women’s
World Cup data shows that some
countries have far more top finishes than
others. As the frequency table shows,
one country had 10 first- or second-
place finishes and another had 8. If we
look at Table 2-3, we see that these high
numbers represent Germany and Brazil
(shown here playing each other in the
2007 women’s World Cup).

TABLE 2-3. World Cup Success

This table shows the years in which countries finished in first or second place in the history of the men’s and women’s World Cup in soccer through
2007. The men’s tournament has been held every four years since 1930 (except for 1942 and 1946, due to World War II); the women’s tournament has
been held every four years since 1991. 

Country Men First Place Men Second Place Women First Place Women Second Place

Argentina 1978, 1986 1930, 1990

Brazil 1958, 1962, 1970, 1994, 2002 1950, 1998 2007

China 1999

Czechoslovakia 1934, 1962

England 1966

France 1998 2006

Hungary 1938, 1954

Italy 1934, 1938, 1982, 2006 1970, 1994

Norway 1995 1991

Sweden 1958 2003

The Netherlands 1974, 1978

United States 1991, 1999

Uruguay 1930, 1950

West Germany/Germany 1954, 1974, 1990 1966, 1982, 1986, 2002 2003, 2007 1995



women’s World Cup tournament, only 14 countries have placed first or second, an in-
dication that some countries dominate. The remaining 63 countries never finished in
first or second place. We can use these data to create a frequency table to see how many
countries are frequent winners.

At first glance, it is not easy to find a pattern in most lists of numbers. But when
we reorder those numbers, a pattern begins to emerge. A frequency table is the best
way to create an easy-to-understand distribution of the data. In this example, we simply
organize the data into a table with two columns, one for the range of possible responses
(the values) and one for the frequencies of each of the responses (the scores).

There are specific steps to follow when creating a frequency table. First, we deter-
mine exactly what the raw scores are. For each country, we can count how many first-
or second-place finishes these countries have had: 4, 8, 1,
2, 1, 2, 2, 6, 2, 2, 2, 2, 2, and 10. In addition, 63 countries
had 0 first- or second-place finishes. We then examine
our data to determine the range of scores. We know at a
glance that the lowest score is 0. A quick glance also re-
veals that the highest score is 10; one country finished in
first or second place in 10 World Cup tournaments, a
most impressive number. Simply noting that the scores
range from 0 to 10 brings some clarity to the data set.
But we can do even better.

After we identify the lowest and highest scores, we cre-
ate the two columns that we see in Table 2-4 by counting
how many countries fall at each value. This is done by
going through the raw scores and determining how many
fall at each value in the range. The appropriate number for
each value is then recorded in the table. For example, there
is only one country with 10 first- or second-place finishes,
so a 1 is marked there. It is important to note that we in-
clude all numbers in the range; there are no countries with
9, 7, 5, or 3 top finishes, so we put a 0 next to each one.

Here is a recap of the steps to create a frequency table:

1. Determine the highest score and the lowest score.
2. Create two columns: the first is labeled with the variable name, and the second

is labeled “frequency.”
3. List the full range of values that encompasses all the scores in the data set from

highest to lowest. Include all values in the range, even those for which the fre-
quency is 0.

4. Count the number of scores at each value, and write those numbers in the fre-
quency column.

As demonstrated in Table 2-5, we can also describe the number of countries (that
finished in the top two in the Men’s or Women’s World Cup) as percentages. To cal-
culate a percentage, we divide the number of countries at a certain value by the total
number of countries, and then multiply by 100. As we observed earlier, 1 out of 77
countries had 10 top finishes.

So, for the score of 10 top finishes, the percentage for 1 of 77 countries is 1.30%. ■

1

77
100 1 299( ) .�
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TABLE 2-4. Frequency Tables and World Cup Success

This frequency table depicts the numbers of countries that came in first or
second in the history of the men’s and women’s World Cup soccer tourna-
ments. Do there seem to be some stand-out countries? 

First- or 
Second-Place Finishes Frequency

10 1

9 0

8 1 

7 0

6 1

5 0

4 1

3 0

2 8

1 2

0 63



Note that when we calculate statistics, we can come up with slightly different an-
swers depending on how we round off at each step. If there are many steps, we can
even come up with very different answers depending on our rounding decisions. In
this book, we round off to three decimal places throughout our calculations, but we
report our final answers to two decimal places, rounding up or down as appropriate.
If you follow this guideline, then you should get the same answers that we get.

Creating a frequency table for the data gives us more insight into the set of numbers.
We can see that two countries are well above the others, Brazil and West Germany/
Germany. Indeed, the subtitle for Soccernomics included the phrase Why Germany and
Brazil Win. Aside from Italy with six top finishes and Argentina with four, no other team
has more than two, and the vast majority, 63, or 81.82%, have no top finishes. What about
England, the country in which soccer is most popular? It’s been one of the top two fin-
ishers only once, when it won in 1966. It seems clear that some countries indeed domi-
nate World Cup soccer and that it doesn’t necessarily relate to the popularlity of the sport.

Grouped Frequency Tables
In the previous example, we used data that counted the numbers of countries, which
are whole numbers. In addition, the range was fairly limited—0 to 10. But often data
are not so easily understood. Consider these two situations:

1. When data can go to many decimal places, such as reaction times
2. When data cover a huge range, such as countries’ populations

In both of these situations, the frequency table would go on for pages and pages—
and nobody wants to read all those individual data. For example, if someone weighed
only 0.0003 pound more than the next weight, that person would belong to a dis-
tinctive, unique category. Using such specific values, however, would lead to two prob-
lems: not only would we be creating an enormous amount of unnecessary work for
ourselves, but we also wouldn’t be able to see trends in the data. Fortunately, we have
a technique to deal with these situations: a grouped frequency table allows us to depict
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TABLE 2-5. Expansion of a Frequency Table

This frequency table is an expansion of Table 2-4, which depicts the numbers of countries that came in first
or second in the history of the men’s and women’s World Cup soccer tournaments. It now includes percent-
ages, which are often more descriptive than the actual counts.

First- or Second-Place Finishes Frequency Percentage

10 1 1.30

9 0 0.00

8 1 1.30

7 0 0.00

6 1 1.30

5 0 0.00

4 1 1.30

3 0 0.00

2 8 10.39

1 2 2.60

0 63 81.82

■ A grouped frequency table is
a visual depiction of data that
reports the frequencies within
a given interval rather than the
frequencies for a specific
value.



our data visually by reporting the frequencies within a given interval rather than the frequencies
for a specific value. The word interval is used in more than one way by statisticians. Here,
it refers to a range of values (as opposed to an interval variable, the type of variable
that we presume to have equal distances between values).
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The following data exemplify the first of these two situations in which the data aren’t
easily conveyed in a standard frequency table. These are the pacing indices for the 87
television shows, some of which are listed in Table 2-1. The pacing index data are re-
ported to two decimal places:

56.90 50.30 46.70 45.95 45.75 44.65 43.25 42.20 41.95 41.90

41.80 40.80 40.70 40.25 40.25 39.10 37.80 37.55 37.00 36.25

36.00 35.90 35.55 35.55 35.50 35.40 34.30 34.00 33.85 33.75

33.55 33.10 32.85 32.75 32.55 32.50 32.40 32.25 31.85 31.60

31.45 31.10 31.00 31.00 30.70 30.65 30.60 30.40 30.30 30.25

30.20 29.85 29.85 29.30 29.30 29.30 29.20 29.20 28.95 28.70

28.55 28.50 28.45 28.20 28.10 27.95 27.55 27.45 27.05 27.05

26.95 26.95 26.75 26.25 25.85 25.35 25.15 25.15 24.80 23.35

23.10 21.85 20.60 19.90 16.50 15.75 14.95

A quick glance at these data does not really tell us the pacing index of the typical
television show. A frequency table wouldn’t be very helpful either. The lowest score
is 14.95 and the highest is 56.90. The top of a frequency table would look like Table
2-6. Such a table would be absurdly long and would not convey much more infor-
mation that we could interpret than does the list of the original raw data.

EXAMPLE 2.2

TABLE 2-6. Unwieldy Frequency Table

A frequency table that lists every possible value is often not much more useful than a listing of every single
score. Here we see the pacing indices of children’s television shows, although it is only an excerpt of the pos-
sible indices. The full table would be ridiculously long.

Pacing Index Frequency

56.90 1

56.89 0

56.88 0

56.87 0

56.86 0

56.85 0

56.84 0

56.83 0

. .

. .

. .

14.96 0

14.95 1



Instead of reporting every single value in the range, we can report intervals, or ranges
of values. Here are the five steps to generate a standard grouped frequency table:

In our example, these scores are 56.90 and
14.95.

If there are decimal places, round both the
highest and lowest scores down to the near-

est whole numbers. If they already are whole numbers, use these. Subtract the lowest
whole number from the highest whole number and add 1 to get the full range of the
data. (Why do we add 1? Try it yourself. If we subtract 14 from 56, we get 42—but
count the values from 14 through 56, including the numbers at either end. There are
43 numbers, and we want to know the full range of the data.)

In our example, 14.95 and 56.90 round down to 14 and 56, respectively; 56 � 14 �
42, and 42 � 1 � 43. Our scores fall within a range of 43.

There is no consensus about the ideal num-
ber of intervals, but most researchers recom-
mend between 5 and 10 intervals, depending
on the data. If we have an enormous data set

with a huge range, then we might have many more intervals than 10. To find the best
interval range, we divide the range by the number of intervals we want, then round
that answer to the nearest whole number. With wide ranges, it’s a multiple of 10 or
100 or 1000; with smaller ranges, it could be as small as 2, 3, or 5, or even 1 (or less
than 1, if the numbers go to many decimal places). Try several interval sizes to get the
best whole number for the interval size.

In our example, we might choose to have about 9 intervals. If we choose 9, we’ll have an in-
terval size of 5.

We want the bottom of that interval to be
a multiple of our interval size. For example,
if we have 9 intervals of size 5, then we want
the bottom interval to start at a multiple of

5. It could start at 0, 10, 55, or 105, depending on our data. We choose which one by
selecting the multiple of 5 that is below our lowest score.

In our example, we have 9 intervals of size 5, so the bottom of our lowest interval should be
a multiple of 5. Our lowest score is 14.95, so the bottom of our lowest interval would be 10.
(If our lowest score were 7.22, we would choose 5. Note that this process might lead to one more
interval than we planned for; this is perfectly fine. In our case, we have 10, rather than the 9 in-
tervals we had estimated.)

This step is much like creating a frequency
table (without intervals), which we discussed
earlier. If we decide on intervals of size 5 and
the first one begins at 10, then we count the
five numbers that fall in this interval: 10, 11,

12, 13, and 14. The interval in this example runs from 10 to 14. (In reality, it runs from
10 to 14.9999, and the next one begins at 15, five digits higher than the bottom of
the preceding interval.) A good rule of thumb is that the bottom of the intervals should
jump by the chosen interval size, in this case 5.

STEP 1: Find the highest and lowest
scores in your frequency
distribution.

STEP 2: Get the full range of data.

STEP 3: Determine the number of
intervals and the best interval
size.

STEP 4: Figure out the number that
will be the bottom of the
lowest interval.

STEP 5: Finish the table by listing the
intervals from highest to
lowest and then counting the
numbers of scores in each.
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■ A histogram looks like a bar
graph but is typically used to
depict scale data with the
values of the variable on the x-
axis and the frequencies on
the y-axis.



In our example, the lowest interval would be 10 to 14, or 10.00 to 14.99. The next one
would be 15.00 to 19.99, and so on.

The grouped frequency table in Table 2-7 gives us a much better sense of the pacing
indices of the TV shows in this sample than either the list of raw data or a frequency
table without intervals (such as Table 2.6). ■

Histograms
Even more than tables, graphs help us to see our data at a glance. The
two most common methods for graphing scale data for one variable
are the histogram and the frequency polygon. Here we learn to con-
struct and interpret both the histogram (more common) and the fre-
quency polygon (less common).

Histograms look like bar graphs but typically depict scale data with the
values of the variable on the x-axis and the frequencies on the y-axis. Each
bar reflects the frequency for each value or interval. The difference
between histograms and bar graphs is that bar graphs typically provide
scores for nominal data (e.g., frequencies of men and women); his-
tograms typically provide frequencies for scale data (e.g., pacing in-
dices). We can construct histograms from frequency tables or from
grouped frequency tables. Histograms allow for the many intervals
that typically occur with scale data. The bars are stacked one against the next, with the
intervals meaningfully arranged from lower numbers (on the left) to higher numbers
(on the right). With bar graphs, the categories do not need to be arranged in one par-
ticular order.
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TABLE 2-7. Grouped Frequency Table

Grouped frequency tables make sense of data sets in which there are many possible values. This grouped
frequency table depicts the frequencies for the 87 television show pacing indices. The table provides the num-
ber of TV programs with pacing indices within each interval of indices.

Interval Frequency

55.00–59.99 1

50.00–54.99 1

45.00–49.99 3

40.00–44.99 10

35.00–39.99 11

30.00–34.99 25

25.00–29.99 27

20.00–24.99 5

15.00–19.99 3

10.00–14.99 1

�   MASTERING THE CONCEPT

2-2: The data in a frequency table can be

viewed in graph form. In a frequency

histogram, bars are used to depict

frequencies at each score or interval. In a

frequency polygon, a dot is placed above

each score or interval to indicate the

frequency and the dots are connected.

Let’s start by constructing a histogram from a frequency table. Table 2-4 depicted the
data on countries’ numbers of World Cup top finishes. We construct a histogram by
drawing the x-axis (horizontal) and y-axis (vertical) of a graph. We label the x-axis
with the variable of interest—in our case, “first- or second-place finishes”—and we
label the y-axis “frequency.” As with most graphs, the lowest numbers start where the

EXAMPLE 2.3
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axes intersect and the numbers go up—as we go to the right on the x-axis and as we
go up on the y-axis. Ideally, the lowest number on each axis is 0, so that the graphs
are not misleading. However, if the range of numbers on either axis is far from 0, his-
tograms sometimes use a number other than 0 as the lowest number. Further, if there
are negative numbers among the scores (such as air temperature), the x-axis could have
negative numbers.

Once we’ve created our graph, we draw bars for each value. Each bar is centered
on the value for which it provides the frequency. The heights of the bars represent
the numbers of scores that fell at each value—the frequencies. If no country had a
score at a particular value, no bar is drawn. So, for the value of 2 on the x-axis, a bar
centers on 2 with a height of 8 on the y-axis, indicating that eight countries had a
first- or second-place finish twice. See Figure 2-1 for the histogram for the World
Cup data.

Here is a recap of the steps to construct a histogram from a frequency table:

1. Draw the x-axis and label it with the variable of interest and the full range of
values for this variable. (Include 0 unless all of the scores are so far from 0 that
it’s impractical.)

2. Draw the y-axis, label it “Frequency,” and include the full range of frequencies
for this variable. (Include 0 unless it’s impractical.)

3. Draw a bar for each value, centering the bar around that value on the x-axis
and drawing the bar as high as the frequency for that value as represented on
the y-axis.

Grouped frequency tables can also be depicted as histograms. Instead of listing values
on the x-axis, we list the midpoints of intervals. Students commonly make mistakes in
determining the midpoints of intervals. If three intervals range from 0 to 9, 10 to 19,
and 20 to 29, what are the midpoints? If you said 4.5, 14.5, and 24.5, you’re making
a very common mistake. Remember, the intervals really go from 0.000000 to 9.999999,
or as close as you can get to 10 without actually being 10. Given that there are 10
numbers in this range (0, 1, 2, 3, 4, 5, 6, 7, 8, and 9), the midpoint would be 5 from

0

5

10

15

20

65

0 1 3 4 5
First- or second-place finishes

Frequency

25

30

35

40

45

50

55

60

2 6 7 8 9 10 11

FIGURE 2-1
Histogram for the Frequency

Table of World Cup Successes

Histograms are graphic depictions of the
information in frequency tables or

grouped frequency tables. This
histogram shows how many countries

had a certain number of first- or
second-place finishes in the men’s and

women’s World Cup soccer tournaments
through 2007.
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the bottom. So the midpoints for 0 to 9, 10 to 19, and 20 to 29 are 5, 15, and 25. A
good rule: When determining a midpoint, look at the bottom of the interval that you’re
interested in and then the bottom of the next interval. What’s the midpoint between
the two interval minimums? Once you’ve determined your midpoints, check them;
they should jump by the interval size. Here, the interval size is 10. Notice that the mid-
points consistently jump by 10 (5, 15, and 25). ■

Let’s look at the TV pacing index data for which we constructed a grouped
frequency histogram. What are our midpoints? There are 10 intervals: 10 to 14.99,
15.00 to 19.99, 20.00 to 24.99, and so on up to 55.00 to 59.99. Let’s calculate the
midpoint for the lowest interval. We should look at the bottom of this interval,
10.00, and the bottom of the next interval, 15.00. The midpoint of these numbers
is 12.50, so that is the midpoint of this interval. The remaining intervals can be cal-
culated the same way. We can then check to be sure they jump by exactly 5 each
time. To calculate the midpoint of the highest interval, imagine that we had one
more interval. If we did, it would start at 60.00. The midpoint of 55.00 and 60.00
is 57.50. Using these guidelines, we calculate our midpoints as 12.50, 17.50, 22.50,
27.50, 32.50, 37.50, 42.50, 47.50, 52.50, and 57.50. We now can construct our his-
togram by placing these midpoints on the x-axis and then drawing bars that center
on them and are as high as the frequency for each interval. The histogram for these
data is shown in Figure 2-2.

Here is a recap of the steps to construct a histogram from a grouped frequency table:

1. Determine the midpoint for every interval.
2. Draw the x-axis and label it with the variable of interest and the midpoints for

each interval of values on this variable. (Include 0 unless the values are so far
from 0 that it’s impractical.)

3. Draw the y-axis, label it “Frequency,” and include the full range of frequencies
for this variable. (Include 0 unless it’s impractical.)

4. Draw a bar for each midpoint, centering the bar on that midpoint on the x-axis
and drawing the bar as high as the frequency for that interval as represented
on the y-axis. ■

EXAMPLE 2.4

5

10

15

30

25

20

0
2.5 7.5 12.5 17.5 22.5 27.5 32.5 37.5 42.5 47.5 57.552.5

Pacing indices

Frequency

0

FIGURE 2-2
Histogram for the Grouped
Frequency Table of TV Pacing
Index Data

Histograms can also depict the data in a
grouped frequency table. This histogram
depicts the data seen in the grouped
frequency table for TV pacing indices.
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Frequency Polygons
Frequency polygons are constructed in a very similar way to histograms. As the name
might imply, polygons are many-sided shapes. Histograms look like city skylines, but
polygons look more like mountain landscapes. Specifically, a frequency polygon is a line
graph with the x-axis representing values (or midpoints of intervals) and the y-axis representing
frequencies; a dot is placed at the frequency for each value (or midpoint), and the dots are connected.

5

10

15

30

25

20

0
2.5 7.5 12.5 17.5 22.5 27.5 32.5 37.5 42.5 47.5 57.552.5

Pacing indices

Frequency

0 62.5

FIGURE 2-3
Frequency Polygon as Another

Graphing Option for the TV
Pacing Index Data

Frequency polygons are an alternative to
histograms. This frequency polygon

depicts the same data that were
depicted in the histogram in Figure 2-2.

In either case, the graph provides an
easily interpreted “picture” of the

distribution.

For the most part, we make frequency polygons exactly as we make histograms. Instead
of constructing bars above each value or midpoint, however, we draw dots and connect
them. The other difference is that we need to add an appropriate value (or midpoint)
on either end of the graph so that we can draw lines down to 0, grounding our shape.
In the case of the TV pacing data, we calculate one more midpoint on each end by
subtracting the interval size, 5, from the bottom midpoint (12.50 � 5 � 7.5) and adding
the interval size, 5, to the top midpoint (57.5 � 5 � 62.5). We now can construct the
frequency polygon by placing these midpoints on the x-axis, drawing dots at each mid-
point that are as high as the frequency for each interval, and connecting the dots. Figure
2-3 shows the frequency polygon for the grouped frequency distribution of TV pacing
indices that we constructed previously in Figure 2-2.

Here is a recap of the steps to construct a frequency polygon. When basing a fre-
quency polygon on a frequency table, we place the specific values on the x-axis. When
basing it on a grouped frequency table, we place the midpoints of intervals on the x-axis.

1. If based on a grouped frequency table, determine the midpoint for every in-
terval. If based on a frequency table, skip this step.

2. Draw the x-axis and label it with the variable of interest and either the values
or the midpoints. (Include 0 unless the values/midpoints are so far from 0 that
it’s impractical.)

3. Draw the y-axis, label it “frequency,” and include the full range of frequencies
for this variable. (Include 0 unless it’s impractical.)

4. Mark a dot above each value or midpoint depicting the frequency, as represented
on the y-axis, for that value or midpoint, and connect the dots.

5. Add an appropriate hypothetical value or midpoint on both ends of the x-axis,
and mark a dot for a frequency of 0 for each of these values or midpoints. Connect
the existing line to these dots to create a shape rather than a “floating” line. ■

EXAMPLE 2.5



Shapes of Distributions
We learned how to organize data so that we can better understand the concept of a
distribution, a major building block for statistical analysis. We can’t get a sense of the
overall pattern of data by looking at a list of numbers, but we can get a sense of the pat-
tern by looking at a frequency table or grouped frequency table. We can get an even
better sense by creating a graph, either a histogram or a frequency polygon. These two
types of graphs allow us to see the overall pattern, or shape, of the distribution of data.

The shape of a distribution provides distinctive information. For example, when the
U.S.-based General Social Survey (a large data set available to the public via the In-
ternet) asked people about the influence of children’s programming—both network
television and public television—their responses produced very different patterns for
each type of children’s programming (Figure 2-4). For example, the most common
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CHECK YOUR LEARNING
Reviewing the Concepts       > The first step in organizing data for a single variable is to list all the values in order of mag-

nitude and then count how many times each value occurs.

> There are four techniques for organizing information about a single variable: frequency ta-
bles, grouped frequency tables, histograms, and frequency polygons.

Clarifying the Concepts              2-1 Name four different ways to organize raw scores visually.

    2-2 What is the difference between frequencies and grouped frequencies?

Calculating the Statistics              2-3 In 2005, U.S. News & World Report published a list of the best psychology departments
in the United States for doctoral programs. The top 27 departments ranged from
Stanford University at number 1 through a tie among the last six universities, which
included Johns Hopkins and Northwestern Universities. Let’s say you’re interested in
attending one of these schools, specifically one that has ethnic diversity. Seventeen of
these schools reported the number of current students who are members of a racial or
ethnic minority group. Here are those data:

17 17  8 12 3 59 41  3 32

4 10 59 20 1  9  3 27

a. Construct a grouped frequency table of these data.

b. Construct a histogram for this grouped frequency table.

c. Construct a frequency polygon for this grouped frequency table.

Applying the Concepts               2-4 Consider the data from Check Your Learning 2-3, as well as the table and graphs that
you constructed.

a. What can we tell from the graphs and table that we cannot tell from the list of
scores?

b. Why might percentages of students who are members of a minority group be more
useful than these numbers? (Hint: The number of full-time psychology graduate
students at these schools ranged from 19 to 258.)

c. Not all schools provided data. How might the schools that provided data on the
number of minority students be different from schools that did not provide these
data?

Solutions to these Check Your
Learning questions can be found in
Appendix D.

■ A frequency polygon is a 
line graph with the x-axis
representing values (or
midpoints of intervals) and 
the y-axis representing
frequencies; a dot is placed at
the frequency for each value
(or midpoint), and the dots are
connected.
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response for the network television shows was that they have a neutral influence,
whereas the most common response for the public television shows was that they have
a positive influence. In this section, we provide you with language that expresses the
differences between these two patterns. Specifically, you’ll learn to describe different
shapes of distributions, including normal distributions and skewed distributions.

Normal Distributions
Many, but not all, descriptions of individual variables form a bell-shaped, or normal,
curve. Statisticians use the word normal to describe distributions in a very particular
way. A normal distribution is a specific frequency distribution that is a bell-shaped, symmetric,
unimodal curve (Figure 2-5). People’s attitudes toward the network programming of

children’s shows is an example of a distribution that ap-
proaches a normal distribution. There are fewer scores at
values that are farther from the center and even fewer scores
at the most extreme values (as can be seen in the bar graph
in Figure 2-4a). Most scores cluster around the word neutral
in the middle of the distribution, which would be at the
top of the bell.

Skewed Distributions
Reality is not always normally distributed, which means
that the distributions describing those particular observa-
tions are not shaped normally. So we need a new term to
help us describe such distributions—skew. Skewed distribu-
tions are distributions in which one of the tails of the distribution

is pulled away from the center. Although the technical term for such data is skewed, a skewed
distribution may also be described as lopsided, off-center, or simply nonsymmetric.
Skewed data have an ever-thinning tail in one direction or the other. The distribution
of people’s attitudes toward the children’s programming offered by public television
(Figure 2-4b) is an example of a skewed distribution. The scores cluster to the right side
of the distribution around the word positive, and the tail extends to the left.

(a) What is the influence of network television’s
 children’s programming on children?
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20

10

40

60

70

50

30
Percentage

(b) What is the influence of public television’s 
 children’s programming on children? 
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FIGURE 2-4
The Influence of Television
Programming on Children

Mean
100857055 145 130115

IQ 

FIGURE 2-5
The Normal Distribution

The normal distribution, shown here for
IQ scores, is a frequency distribution
that is bell-shaped, symmetric, and

unimodal. It is central to many
calculations in statistics.
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When a distribution is positively skewed, as in Figure 2-6a, the tail of the distribution
extends to the right, in a positive direction. Positive skew sometimes occurs when there is
a floor effect, a situation in which a constraint prevents a variable from taking values below a
certain point. For example, the “World Cup success” data, with scores indicating how
many countries came in first or second in the World Cup a certain number of times,
is an example of a positively skewed distribution with a floor effect. Most countries
never came in first or second, which means that the data were constrained at the lower
end of the distribution, 0 (that is, they can’t go below 0).

The distribution in Figure 2-6b shows negatively skewed data, which
have a distribution with a tail that extends to the left, in a negative direction.
The distribution of people’s attitudes toward public television’s pro-
gramming of children’s shows is favorable because it is clustered
around the word positive, but we describe the shape of that distribution
as negatively skewed because the thin tail is to the left side of the dis-
tribution. Not surprisingly, negative skew is sometimes the result of
a ceiling effect, a situation in which a constraint prevents a variable from tak-
ing on values above a given number. If a professor gives an extremely easy
quiz, a ceiling effect might result. A number of students would cluster
around 100, the highest possible score, with a few stragglers down in
the lower end. Some of the students with very high scores might have
scored above 100 if the quiz had offered extra credit, but they were
limited by the ceiling of 100.

A handy mnemonic you can use to remember the difference between negatively
skewed distributions and positively skewed distributions is “the tail tells the tale.”
Negative scores are to the left, so when the long, thin tail of a distribution is to the

  Positive Skew (a) 

Negative Skew (b)   

FIGURE 2-6
Two Kinds of Skew

The mnemonic “the tail tells the tale” means that the distribution with the long, thin tail to the right is positively
skewed and the distribution with the long, thin tail to the left is negatively skewed.

�   MASTERING THE CONCEPT

2-3: If a histogram indicates that the data

are symmetric and bell-shaped, then the

data are normally distributed. If the data are

not symmetric and the tail extends to the

right, the data are positively skewed; if the

tail extends to the left, the data are

negatively skewed.

■ A normal distribution is a
specific frequency distribution
that is a bell-shaped,
symmetric, unimodal curve.

■ A skewed distribution is a
distribution in which one of the
tails of the distribution is pulled
away from the center.

■ With positively skewed data,
the distribution’s tail extends to
the right, in a positive
direction.

■ A floor effect is a situation in
which a constraint prevents a
variable from taking values
below a certain point.

■ Negatively skewed data have
a distribution with a tail that
extends to the left, in a
negative direction.

■ A ceiling effect is a situation
in which a constraint prevents
a variable from taking on
values above a given number.
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left of the distribution’s center, we say that it is negatively skewed. When that long,
thin tail of the distribution is to the right of the distribution’s center, then we say that
the distribution is positively skewed. We simply keep in mind that “the tail tells the
tale” when we are trying to describe a skewed distribution as either negatively or pos-
itively skewed.

Histograms and frequency polygons do not let us view two groups in a single graph
very easily, but the stem-and-leaf plot does. A stem-and-leaf plot is a graph that displays
all the data points of a variable (or of two levels of a variable) both numerically and visually.
Students in our classes reported numbers of minutes they typically spend in the shower.
Here are the data for 30 women, arranged from lowest to highest:

5  8 10 10 10 10 12 15 15 15

15 15 15 18 20 20 20 20 20 23

25 30 30 30 30 30 35 40 45 60

In this example, the stem will consist of the
first digit for each of these numbers arranged

from highest to lowest:

6
5
4
3
2
1
0

Note three features of this particular stem:

1. We group the digits by 10’s (0–9, 10–19, 20–29, 30–39, 40–49, 50–59, 60–69).
2. The first digit for numbers below 10 is 0.
3. Each category is represented on the stem, even if it has no leaf (e.g., no score

in the category 50–59).

The leaves, the last digit for each score, are
added in ascending order for each part of the

stem, as shown in Table 2-8. In our example, the only scores between 0 and 9 are 5
and 8, so these two leaves will be added next to 0. There are twelve scores between
10 and 19. Some, like 10 and 15, are repeated. In these cases, a 5, to represent 15, is
added as a leaf for every instance of 15. There are six 15’s, so there will be six 5’s next
to the stem of 1. There are no scores between 50 and 59, so the part of the stem that
begins with 5 will have no leaves.

The stem-and-leaf plot displays the same information as a histogram, but in a
slightly different way and with a little more detail. In fact, as seen in Figure 2-7,

STEP 1: Create the stem.

STEP 2: Add the leaves.

N e x t  S t e p s Stem-and-Leaf Plot

■ A stem-and-leaf plot is a
graph that displays all the data
points of a variable (or of two
levels of a variable) both
numerically and visually.
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the stem-and-leaf plot looks like a histogram if turned on its
side.

We can also include a sample of men on the other side of
the stem, and view two groups side by side. Here are the scores
in minutes for 30 men:

5  7  8  8  9 10 10 10 10 10

10 10 10 10 12 15 15 15 15 15

15 15 15 15 20 20 20 20 20 25

We add those scores to the left of the stem for the women,
as shown in Table 2-9. We can now see, for example, that
women’s scores tend to be slightly higher and more varied
than men’s scores. The distribution of women’s scores is some-
what skewed to the right, and the outlier (60 minutes in the
shower!) is evident.
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FIGURE 2-7
A Histogram and a Stem-and-Leaf Plot

The stem-and-leaf plot displays the same information as a histogram, but in a
slightly different way and with a little more detail.

TABLE 2-8. A Stem-and-Leaf Plot

For numbers with two digits, a stem-and-leaf plot includes the first
digits as the stem and the second digits as the leaves. This graph
allows us to see the shape of the data, along with the individual
scores.

Minutes Typically Spent in the Shower—Women:

6  0

5

4  05

3  000005

2  0000035

1  000025555558

0  58

TABLE 2-9. A Side-by-Side Stem-and-Leaf Plot

Stem-and-leaf plots can be expanded to include scores for two sam-
ples on the same measure, a helpful technique for examining shapes
of distributions in research designs that involve two groups.

Minutes typically spent in the shower:

Men Women

6 0

5

4 05

3 000005

500000 2 0000035

5555555552000000000 1 000025555558

98875 0 58

continued on next page

CHECK YOUR LEARNING
Reviewing the Concepts       > A normal distribution is a specific distribution that is unimodal, symmetric, and bell-shaped.

> A skewed distribution “leans” either to the left or to the right. A tail to the left indicates
negative skew; a tail to the right indicates positive skew.

> Stem-and-leaf plots allow us to view the shape of a sample’s distribution while displaying
every single data point in the sample. Stem-and-leaf plots can depict the scores of two
groups side by side to allow for easy comparisons of distributions.

Clarifying the Concepts        2-5 Distinguish a normal distribution from a skewed distribution.



40 CHAPTER 2 ■ Frequency Distributions

    2-6 When the bulk of data cluster together but there is a trailing off of data to the left, you
have _________ skew; when that trailing off of data extends to the right, you have
_________ skew.

Calculating the Statistics       2-7 In Check Your Learning 2-3, you constructed two visual displays of the distribution of
racial and ethnic diversity in doctoral psychology programs. What kind of skew is
evident in your graphs?

    2-8 Alzheimer’s disease is typically diagnosed in adults above the age of 70; however, we
sometimes see cases diagnosed sooner that are labeled “early onset.”

a. Assuming that these early-onset cases represent unique trailing off of data on that
one side, would this represent positive skew or negative skew?

b. Do these data represent a floor effect or ceiling effect?

Applying the Concepts         2-9 Referring to Check Your Learning 2-8, what implication would identifying such skew
have in the screening and treatment process for Alzheimer’s disease?

Solutions to these Check Your Learning questions can be found in Appendix D.

Frequency Distributions
There are several ways in which we can depict a frequency distribution of a set of raw
scores. Frequency tables are comprised of two columns, one with all possible values and
one with a count of how often each value occurs among the scores in the data set.
Grouped frequency tables allow us to work with more complicated data. Instead of con-
taining values, the first column consists of intervals. Histograms display bars of different
heights indicating the frequency of each value (or interval) that the variable can take
on. Frequency polygons show frequencies with dots at different heights depicting the fre-
quency of each value (or interval) that the variable can take on. The dots in a frequency
polygon are connected to form the shape of the data.

Shapes of Distributions
The normal distribution is a specific distribution that is unimodal, symmetric, and bell-
shaped. Data can also display skewness. A distribution that is positively skewed has a tail
in a positive direction (to the right), indicating more extreme scores above the center.
It sometimes results from a floor effect in which scores are constrained and cannot be
below a certain number. A distribution that is negatively skewed has a tail in a negative
direction (to the left), indicating more extreme scores below the center. It sometimes
results from a ceiling effect in which scores are constrained and cannot be above a certain
number. Stem-and-leaf plots allow us to view the shape of a distribution but also display
every single score in a sample. They have an added benefit. With frequency histograms
and polygons, it can be difficult to visually compare two of these graphs side by side.
However, stem-and-leaf plots plots can depict the scores of two levels of one variable
side-by-side to allow for easy comparisons of distributions.

REVIEW OF CONCEPTS
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The left-hand column in “Data View” is prenumbered, be-
ginning with 1. Each column to the right of that number con-
tains information about a particular variable; each row below
that number represents a unique individual. Notice the choices
at the top of the “Data View” screen. Enter the pacing index
data from p. 29, then start following the menu by selecting
Analyze → Descriptive Statistics → Frequencies. Then select
the variables you want SPSS to describe, by highlighting them
and clicking the arrow in the middle.

We also want to visualize each variable, so after selecting
“Frequencies,” select Charts → Histograms (click the box
next to “with normal curve”) → Continue → OK.

With all of the SPSS functions, an output screen automat-
ically appears after clicking on “OK.” The screenshot shown
here depicts the part of the SPSS output that includes the
histogram. We can double-click on the graph to enter the
SPSS Chart Editor, and then double-click on each feature
in order to make the graph look like we want it to. For ex-
ample, we might choose to click on the word “Frequency”
on the y-axis, then choose “Text Layout” and click on the
circle next to “Horizontal” under “Orientation.” After we
click “Apply,” the word “Frequency” will read left to right.
We can make changes to any feature of the graph in this
manner.

SPSS
®

2.1 CREATING A FREQUENCY TABLE
Imagine that we ask everyone in a class of 20 first-year college students how many nights
they went out to socialize in the previous week. In this case, we might specify that to socialize
means to leave your place of residence for at least three hours after 6:00 P.M. for any purpose
unrelated to academic work. This observation allows only a very specific set of possible re-
sponses that range from not going out at all to going out every night: 0, 1, 2, 3, 4, 5, 6, or
7 nights. If we asked each of the 20 students how many nights a week they typically go
out to socialize, we might get a data set of 20 numbers that looks like this:

1 2 7 6 1

2 6 5 4 4

0 3 2 2 3

4 3 5 4 4

How It Works
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How can we use these data to create a frequency table? First, we simply reorder the
“nights socializing” data into a table with two columns, one for the range of possible re-
sponses (the values) and one for the frequencies of each of the responses (the scores). The
frequency table for these data is given below.

Nights Frequency

7 1
6 2
5 2
4 5
3 3
2 4
1 2
0 1

2.2 CREATING A HISTOGRAM
How can we use these same data to create a histogram? First, we put the number of nights
socializing on the x-axis and the frequencies for each number on the y-axis. The bar for
each frequency is centered around the appropriate number of nights out. The figure below
portrays the histogram for these data.

1

2

5

0
0 1 2 3 4 5 6 7

Nights out socializing

Frequency
3

4

Exercises
Clarifying the Concepts

2.1 What are raw scores?
2.2 What are the steps to create a frequency table?
2.3 What is the difference between a frequency table and

a grouped frequency table?
2.4 Describe two ways that statisticians might use the word

interval.
2.5 What is the difference between a histogram and a fre-

quency polygon?
2.6 What is the benefit of creating a visual distribution of

data rather than simply looking at a list of the data?
2.7 In your own words, define the word distribution, first as

you would use it in everyday conversation and then as
a statistician would use it.

2.8 What is a normal distribution?

2.9 How do positively skewed distributions and nega -
tively skewed distributions deviate from a normal
distribution?

2.10 What are floor and ceiling effects?

2.11 In what way are stem-and-leaf plots similar to his-
tograms?

2.12 What are potential benefits of using a stem-and-leaf plot
as opposed to a histogram?

Calculating the Statistics

2.13 Convert the following to percentages: 7 out of 39; 122
out of 300.



2.14 Counts are often converted to percentages. Convert 817
out of 22,140 into a percentage. Now convert 4009 out
of 22,140 into a percentage. What type of variable
(nominal, ordinal, or scale) are these data as counts?
What kind of variable are they as percentages?

2.15 Throughout this book, final answers are reported to two
decimal places. Report the following numbers this way:
0.0391, 198.2219, and 17.886.

2.16 On a test of marital satisfaction, scores could range from
0 to 27. What is the full range of data, according to the
calculation procedure described in this chapter?

2.17 For the range referenced in Exercise 2.16, what would
the interval size be if we wanted six intervals?

2.18 Referring to Exercise 2.17, list the six intervals.

2.19 If you have data that range from 2 to 68 and you want
seven intervals in a grouped frequency table, list your
intervals.

2.20 A grouped frequency table has the following intervals:
30–44, 45–59, 60–74. If converted into a histogram,
what would the midpoint of each interval be?

2.21 Referring to the grouped frequency table in Table 2-7,
how many children’s shows received pacing scores of
35 or higher?

2.22 Using the histogram in Figure 2-1, estimate how many
countries had between two and ten first- or second-
place World Cup finishes.

2.23 If the average person convicted of murder killed only
one person, serial killers would represent what kind of
skew?

2.24 Would the data for number of murders by those con-
victed of the crime be an example of a floor or ceiling
effect?

2.25 A researcher collects data on the ages of college stu-
dents. As you have probably observed, the distribution
of age clusters around 19 to 22 years, but there are
extremes on both the low end (high school prodigies)
and the high end (nontraditional students returning to
school).

a. What type of skew might you expect for such data?

b. Do the skewed data represent a floor or ceiling
effect?

2.26 Refer to Table 2-8 to answer the following:

a. How many women reported spending 20 minutes
in the shower?

b. How many women reported spending 15 minutes
in the shower?

c. How many women reported spending 50 minutes
in the shower?

2.27 Refer to Table 2-9, which is a side-by-side comparison
of the distributions for shower time for men and
women.

a. Which of the distributions has greater variability, or
spread?

b. Which of the distributions is skewed?

c. How is that distribution skewed (negatively or pos-
itively)?

2.28 a. Using the following set of data, construct a single
stem-and-leaf plot:

3.5 2.0 4.0 3.5 2.0 2.5 4.5

4.0 3.0 3.5 3.0 3.0 4.0 4.5

2.5 3.5 3.5 3.0 2.5 3.5 3.5

b. Refer to the stem-and-leaf plot you created for part
(a). Does it depict a symmetric or a skewed distri-
bution?

Applying the Concepts

2.29 The National Survey of Student Engagement (NSSE)
surveys freshmen and seniors about their level of en-
gagement in campus and classroom activities that en-
hance learning. More than 400,000 students at about
730 schools have completed surveys since 1999, the first
year that the NSSE was administered. Among the many
questions on the NSSE, students were asked how often
they were assigned a paper of 20 pages or more during
the academic year. For a sample of 19 institutions clas-
sified as national universities that made their data pub-
licly available through the U.S. News & World Report
Web site, here are the percentages of students who said
they were assigned between 5 and 10 20-page papers:

0 5 3 3 1 10 2

2 3 1 2 4  2 1

1 1 4 3 5

a. Create a frequency table for these data. Include a
third column for percentages.

b. For what percentage of these schools did exactly 4%
of their students report that they wrote between 5
and 10 20-page papers that year?

c. Is this a random sample? Explain your answer.
2.30 The Survey of Earned Doctorates regularly assesses the

numbers and types of doctorates awarded at U.S. uni-
versities. It also provides data on the length of time, in
years, it takes to complete a doctorate. Below is a mod-
ified list of this completion-time data, truncated to
whole numbers (e.g., 8.7 became simply 8) and short-
ened to make your analysis easier. These data have been
collected every five years since 1982.

8 8 8 8 8 7 6 7 7 7 7 7 

6 6 6 6 6 6 7 8 8 8 8 7

6 6 7 7 7 6 11 13 15 15

14 12 9 10 10 9 9 9
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a. Create a frequency table for these data.

b. How many schools have an average completion
time of 8 years or less?

c. Is a grouped frequency table necessary? Why or
why not?

d. Describe how these data are distributed.

2.31 Refer to the data in Exercise 2.29.

a. Create a histogram of grouped data using five
intervals.

b. How many schools had 6% or more of their stu-
dents reporting that they wrote between 5 and 10
20-page papers that year?

c. How are the data distributed?

2.32 Refer to the data in Exercise 2.30.

a. Create a histogram for these data.

b. At how many universities did students take, on aver-
age, 10 or more years to complete their doctorates?

c. How are the data distributed?

2.33 The associate directors for whom a statistician was con-
sulting were interested in alumni donations, as are many
schools, not only because they want the money but also
because it is one of the criteria by which U.S. News &
World Report ranks U.S. institutions of higher learning.
U.S. News includes this criterion because higher rates
of alumni giving are seen as indicative of the satisfaction
of former students with their education. An increase in
a school’s overall ranking by this magazine has been
demonstrated to translate into an increase in applica-
tions—and all schools want that—even though there is
controversy about the validity of these rankings. One
set of rankings is for the best national universities: in-
stitutions that offer undergraduate, master’s, and doc-
toral degrees and have an emphasis on research.
(Harvard tops the list that was published in 2005.) Here
are the alumni giving rates that were reported in 2005;
the rates are the percentages of alumni who donated to
each of the top 70 national universities in the year prior
to publication of these data.

48 61 45 39 46 37 38 34 33 47

29 38 38 34 29 29 36 48 27 25

15 25 14 26 33 16 33 32 25 34

26 32 11 15 25  9 25 40 12 20

32 10 24  9 16 21 12 14 18 20

18 25 18 20 23  9 16 17 19 15

14 18 16 17 20 24 25 11 16 13

a. How was the variable of alumni giving operational-
ized? What is another way that this variable could
be operationalized?

b. Create a grouped frequency table for these data.

c. The data have quite a range, with the lowest scores
belonging to Boston University, the University of
California at Irvine, and the University of California
at San Diego, and the highest belonging to Prince-
ton University. What research hypotheses come to
mind when you examine these data? State at least
one research question that these data suggest to you.

2.34 See the U.S. News & World Report data in Exercise 2.33.

a. Create a grouped histogram for these data. Be careful
when determining the midpoints of your intervals!

b. Create a frequency polygon for these data.

c. Examine these graphs and give a brief description
of the distribution. Are there unusual scores? Are
the data skewed, and if so, in what direction?

2.35 Consider these three variables: finishing times in a
marathon, number of university dining hall meals eaten
in a semester on a three-meal-a-day plan, and scores on
a scale of extroversion.

a. Which of these variables is most likely to have a
normal distribution? Explain your answer.

b. Which of these variables is most likely to have a
positively skewed distribution? Explain your answer,
stating the possible contribution of a floor effect.

c. Which of these variables is most likely to have a
negatively skewed distribution? Explain your an-
swer, stating the possible contribution of a ceiling
effect.

2.36 Here are the numbers of wins for the 30 National
Basketball Association teams for the 2004–2005 NBA
season.

45 43 42 33 33 54 47 44 42 30

59 45 36 18 13 52 49 44 27 26

62 50 37 34 34 59 58 51 45 18

a. Create a grouped frequency table for these data.

b. Create a histogram based on the grouped frequency
table.

c. Write a summary describing the distribution of
these data with respect to shape and direction of any
skew.

d. State one research question that might arise from
this data set.

2.37 The Centers for Disease Control and other organiza-
tions are interested in the health benefits of breast-feed-
ing for infants. The National Immunization Survey
includes questions about breast-feeding practices, in-
cluding the question: “How long was [your child]
breast-fed or fed breast milk?” The data for duration of
breast-feeding, in months, for 20 hypothetical mothers
are presented below.

0  7  0  12  9  3  2  0  6  10

3  0  2   1  3  0  3  1  1   4
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a. Create a frequency table for these data. Include a
third column for percentages.

b. Create a grouped frequency table for these data
with three groups (create groupings around the
midpoints of 2.5 months, 7.5 months, and 12.5
months).

2.38 Refer to the data in Exercise 2.37.

a. Create a histogram of the original data.

b. Create a histogram of the grouped data.

2.39 Refer to the data in Exercise 2.37.

a. Create a frequency polygon of the original data.

b. Create a frequency polygon of the grouped data.

2.40 Refer to the data and your work in Exercises 2.37
through 2.39.

a. Write a summary describing the distribution of
these data with respect to shape and direction of any
skew.

b. If you wanted the data to be normally distributed
around 12 months, how would the data have to shift
to fit that goal? How could you use knowledge
about the current distribution to target certain
women?

2.41 For each of the types of data described below, would
you present individual data values or grouped data when
creating a frequency distribution? Explain your answer
clearly.

a. Eye color observed for 87 people

b. Minutes used on a cell phone by 240 teenagers

c. Time to complete the Boston Marathon for the
nearly 22,000 runners who participate

d. Number of siblings for 64 college students

2.42 For each of the following types of data described below,
what visual displays of data would be most appropriate
to use? Explain your answer clearly.

a. Eye color observed for 87 people

b. Minutes used on a cell phone by 240 teenagers

c. Time to complete the Boston Marathon for the
nearly 22,000 runners who participate

d. Number of siblings for 64 college students

2.43 The director of career services at a large university is
offering training on résumé construction. In an effort
to present up-to-date information, using 23 résumés he
just reviewed for a receptionist position in his office, he
counts the total number of words used. Here are the
data:

226 339 220 295 180 214 257 201

224 237 223 301 267 284 238 251

278 294 266 227 281 312 332

a. Create a grouped frequency table with four
intervals.

b. Is this a random sample? Explain your answer.

c. What does this information tell people who come
to his training on résumé construction?

2.44 A college student is interested in how many friends the
average person has. She decides to count the number
of people who appear in photographs on display in
dorm rooms and offices across her campus. She collects
data on 84 students and 33 faculty members. The data
are presented below.

a. What kind of visual display is this?

b. Estimate how many people have fewer than 6 peo-
ple pictured.

c. Estimate how many people have more than 18 peo-
ple pictured.

2.45 Can you think of additional questions you might ask
after reviewing the data displayed in Exercise 2.44?

2.46 Below is a subset of the data mentioned in Exercise
2.44.

1  5  3 9 13  0 18 15

3  3  5 7  7  7 11  3

12 20 16 4 17 15 16 10

6  8  8 7  3 17

a. Create a grouped frequency table for these data
using seven groupings.

b. Create a histogram of these grouped data.

2.47 Describe how the data in Exercises 2.44 and 2.46 are
distributed.

2.48 Below are two displays of the friends data described in
Exercise 2.44, one for the students and one for the

10

20

30

60

50

40

0
3.00 9.00 15.00 21.00 27.00

Number of people pictured

Frequency



faculty members studied. Describe how these two dis-
plays are different.

2.49 Use the NBA data from Exercise 2.36 to create a stem-
and-leaf plot.

2.50 a. Use the data in Exercise 2.46 to create a stem-and-
leaf plot.

b. Refer to the stem-and-leaf plot you created in part
(a). Do these data reflect a floor effect or a ceiling
effect? Explain your answer.

Faculty Student
Interval Frequency Frequency

0–3 21 0

4–7 11 26

8–11 1 24

12–15 0 2

16–19 0 27

20–23 0 37

24–27 0 2
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Terms
raw score (p. 25)
frequency distribution (p. 25)
frequency table (p. 25)
grouped frequency table (p. 28)
histogram (p. 31)

frequency polygon (p. 34)
normal distribution (p. 36)
skewed distribution (p. 36)
positively skewed (p. 37)
floor effect (p. 37)

negatively skewed (p. 37)
ceiling effect (p. 37)
stem-and-leaf plot (p. 38)
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Visual Displays of Data
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■ You should know how to construct a
histogram (Chapter 2).

■ You should understand the difference between
independent variables and dependent variables
(Chapter 1).

BEFORE YOU GO ON

How to Mislead with Graphs
“The Most Misleading Graph Ever

Published”
Techniques for Misleading with Graphs

Common Types of Graphs
Scatterplots
Line Graphs
Bar Graphs
Pictorial Graphs
Pie Charts

How to Build a Graph
Choosing the Type of Graph Based on

Variables
How to Read a Graph
Guidelines for Creating the Perfect Graph
The Future of Graphs

Next Steps: Multivariable Graphs
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It was so cold the morning of January 28, 1986, that icicles were hanging off the scaf-
folding surrounding the space shuttle Challenger. The night before, Morton Thiokol
engineers and NASA officials had debated the data concerning the effect of cold tem-
peratures on the giant rubber-like O-rings that sealed the separate sections of the rocket
boosters. The engineers had even sent NASA officials 13 tables and graphs that doc-
umented increasing damage to the O-rings in colder weather, trying to make a case
to delay the launch.

Figure 3-1 shows two of the graphs that obscure vital information in different
ways. First, the viewer’s attention is not directed to the critical variables of interest:
temperature and damage to the O-rings (Tufte, 1997/2005). Instead, attention is di-
rected to all those cute little rockets and only tangentially to the indicators of
damage that appear to be randomly scattered among them. Second, the numbers re-
vealing temperature have been turned sideways because the rockets are tall and nar-
row. Third, the second vital variable, indicating type of damage to the O-ring, was
coded with arbitrary symbols—dots, diagonal bars, and vertical stripes—rather than
something intuitive, such as progressively darker marks indicating progressively
more damage.

Tragically, the misleading tables and graphs were not persuasive, and NASA decided
to go ahead with the shuttle launch. During the launch, a tiny gap in one of the Chal-
lenger’s O-rings started leaking. Later, cameras revealed that puffs of black smoke were
visible on the launch pad. That O-ring leak grew into a flame, and then, 73 seconds
after launch, the billion-dollar Challenger exploded as it tried to leave Earth’s atmos-
phere, killing all seven of its astronauts.

In retrospect, the Challenger disaster could have been prevented by a graph, such as
that shown in Figure 3-2, that clearly described the systematic relation between two
variables—temperature and damage to the O-ring material. Unfortunately, the graphs
presented to NASA both before the Challenger exploded and during the investigation
that followed were not created in a way that clearly demonstrated the relation between
temperature and O-ring damage.

In this chapter, we explore the ways in which visual displays of data can both clarify
and complicate data. We demonstrate how to recognize when others are lying with
statistics and visual displays of these statistics. In the process, we introduce the most
common types of graphs, when they should be used, and the guidelines for clear visual
displays of data. We also introduce some graphing innovations and provide insights into
the possible future of graphing.

History of O-Ring Damage in Field Joints

FIGURE 3-1
Obscuring Vital Information

These two graphs contain the
information that could have helped

NASA delay the Challenger launch, but
it was obscured in a few different ways
(Tufte, 1997/2005): (1) the key on the

left contains irrelevant symbols; (2) the
graph on the right is organized by

chronology rather than temperature, 
the key variable; and (3) the rocket

images in both distract the viewer from
vital information.

Reprinted by permission, Edward R. Tufte, Visual
Explanations, Graphics Press, Cheshire, CT, 1997.
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FIGURE 3-2
Emphasizing Vital Information

Years after the Challenger disaster,
Edward Tufte (1997) created a more
conventional graph that succinctly
portrayed the relation between
temperature and damage to O-rings.
Notice how this after-the-fact graph
directs particular attention to
information about the temperature on
the morning of the launch.

How to Mislead with Graphs
The Morton Thiokol engineers who created the graphs depicting the relation between
temperature and O-ring damage didn’t need fancier graphs; they needed clearer graphs.
The purpose of a graph is to reveal and clarify relations between variables. One of the
worst graphs ever created provides an opportunity to learn how to create, read, and
interpret graphic information.

“The Most Misleading Graph Ever Published”
Learning how to lie with graphs allows you to spot those lies for yourself. We are in-
debted to Michael Friendly of York University for collecting and managing a Web site
(http://www.math.yorku.ca/SCS/Gallery/) that humorously demonstrates the power
of graphs both to deceive and to enlighten. He described Figure 3-3 as pos-
sibly “the most misleading graph ever published.”

Before reading any further, look at Figure 3-3. Then write a short sentence
about what the graph seems to communicate about the relation between the
two variables of (1) cost of higher education and (2) quality of higher edu-
cation at Cornell University.

At first glance, this graph appears to convey that 
.

At least four lies can be found in this single graph. Some of them are subtle
white lies that leave a false impression. Try to identify some of these lies
before you read about them.

Lie 1: 
Lie 2: 
Lie 3: 
Lie 4: 

This graph from the Ithaca Times seems to tell a story of increasing cost
and decreasing quality. The line representing tuition goes up and the line
representing Cornell University’s ranking goes down. But let’s examine the variety of
lies in this graph. Notice that the graph superimposes statistical information on a picture
of Cornell University’s campus, so the graph’s underlying message gains credibility by
being associated with this prestigious university.

The graph appears to answer the question in the headline: “Why does college have
to cost so much?” That rising line represents rising tuition costs, as measured by the share

FIGURE 3-3
Graphs That Lie

Michael Friendly describes this graph as
a “spectacular example of more graphic
sins than I have ever seen in one
image” and possibly “the most
misleading graph ever published.”
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of a student’s family’s median income, over 35 years. Now look for the timeline that
cor responds to the plummeting lower line. Can you find it? The apparently falling line
represents the ranking of Cornell University over only 11 years—but the graph does not
clearly convey this critical information. The absence of critical information is a red flag.

Lie 1: The graph treats unequal scales as if they were equal. This lie uses identical
distances (almost the width of the magazine cover) to represent very different time
frames (11 years versus 35 years).

Lie 2: The graph unites incompatible measures. This lie compares an ordinal measure
(university rank) to a scale measure (tuition as a proportion of income). The two ways
of measuring a variable are incompatible, yet they are treated as if they were the same.
This lie also helps to set up and anticipate the next lie.

Lie 3: The graph uses misleading starting points. This lie arbitrarily begins the line
representing quality of education (Cornell’s rank compared to other institutions) lower
than the line representing tuition costs as a proportion of income, suggesting that an
institution already failing to deliver what students are paying for has, over the last 11
or 35 years (!), become dramatically worse. There is no reason, except deception, to
start one line higher or lower than the other. The scales are not comparable and should
not even be placed in the same graph.

Lie 4: The graph reverses the implied meaning of up and down. Cornell University’s
ranking did indeed change over this 11-year period. It improved from 15th place na-
tionally to 6th place! Cornell’s ranking didn’t get worse—it got better! Then why does
the line representing Cornell’s ranking go down? This astonishing graphic lie reversed
the direction of the numbers. In the business of rankings, a low number is good, but
the graphmaker made sure that the positive information about Cornell was portrayed
by a line going down.

If this graph were true to its data, the line representing quality of education would
be rising rather impressively, from 15th place to 6th place. Yet this line portrays Cornell’s
quality of education as falling dramatically! Taken at face value, the graph tells a negative
story that might sell more newspapers, the most likely reason this misleading graph
was created.

Techniques for Misleading with Graphs
A graph has a certain scientific aura, which makes us want to believe it. This makes us
vulnerable to graphs that are actually misleading. Here are some of the most common
ways to mislead viewers with statistical and graphic tricks.

1. The false face validity lie. Face validity refers to whether the method used to collect
data seems (on the face of it) to represent what it says it represents. False face validity
occurs when the method seems to represent what it says, but when we dig a little
deeper, it does not. For example, a variable might be labeled “aggression” even
though what is actually being measured is how many times people shout at each
other. Some fairly happy families shout almost all the time, and many quiet families
exchange polite comments with lethal intentions.

2. The biased scale lie. A biased scale slants information in a particular way. For ex-
ample, New York magazine’s restaurant reviewers use a scale of zero through five
stars (http://nymag.com/restaurants/wheretoeat/2006/15437/). Five stars indicates
a restaurant’s food, service, and ambience are “ethereal; almost perfect”; four means
“exceptional; consistently elite”; three means “generally excellent”; two means
“very good”; and one means “good.” So zero must mean bad, right? Actually, “no
stars on a review doesn’t necessarily mean a restaurant is bad; it means our critics
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FIGURE 3-4
The Perils of Interpolation

Without seeing all of the data, it is easy to
draw false conclusions. Although
Canada’s property crime rate declined
from the late 1970s through 2006, there
was a peak in the middle, around 1991. 
If we saw only the data points for the
1970s and 2006, we might falsely
conclude that there was a gradual decline
during this time.

[Source: http://www.statcan.gc.ca/  daily-
quotidien/070718/dq070718b-eng.htm]1962 1974 1986
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don’t recommend you go out of your way to eat there.” Restaurant critics using
this rating scale are likely to give more positive ratings because there are no negative
choices. The scale is pulling for a certain response.

3. The sneaky sample lie. A sneaky sample occurs when the people who participate
in a study are preselected in such a way that the data turn out in a particular way.
For example, some students like to peek at Web sites that rate professors, but the
students most likely to participate in those rating sites are those who strongly dis-
like or strongly approve of a particular professor. It is not a representative sample
of all students.

4. The interpolation lie. Interpolation occurs when we state that some value
between the data points necessarily lies on a straight line between those data
points. For example, in a 2007 report on national crime levels, Statistics Canada
reported the lowest rate of break-ins (property crime) since the 1970s (see Figure
3-4). Without the full data set, it would be easy to assume a gradual decline over
30 years; however, in between these two time points there was an increase in
property crime, reaching the highest level in 1991. To spot the interpolation lie,
check to be sure that a reasonable number of in-between data points has been
reported.

5. The extrapolation lie. This lie assumes knowledge of information outside the
study. Extrapolation goes beyond the data by assuming that a pattern will con-
tinue indefinitely. For example, CB (citizens band) radios, a
once-popular communication device now used mostly by long-
distance truckers, have long since been replaced by mobile
phones. It’s likely most of today’s students have never seen one.
Yet in 1976, the Complete CB Handbook declared that the popu-
larity of CB radios would continue to increase to the point that
CB instruction would become part of the elementary school
curriculum. What happened? The CB radio book didn’t take
the invention of cell phones into account! Don’t assume a pat-
tern in the data will continue.

6. The inaccurate values lie. The inaccurate values lie can be subtly effective. Some-
times it involves telling the truth in one part of the data but visually distorting
it in another place. Notice in Figure 3-5 how wide the “highway” is when the

�   MASTERING THE CONCEPT

3-1: Graphs are so persuasive that graph

creators sometimes intentionally use them

to mislead. When reading graphs, ask

yourself about the sample, the variables,

and the format of the graph.
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accelerating fuel-economy savings is coming at the viewer. The proportional
change in distance between the beginning and the end of the highway is many
times larger than the proportional change in the size of the data.

7. The outright lie. There are many examples of people making up data to lend an
air of legitimacy to an otherwise weak argument. For example, Levitt and Dubner
(2005) reported that Mitch Snyder, an advocate for the homeless, repeatedly cited
a statistic in the early 1980s that there were 3 million homeless Americans, a num-
ber that would have meant that 1 in 75 Americans were homeless. Snyder even-
tually admitted he had lied because he had been pushed by reporters to provide
a specific number.

This line, representing
27.5 miles per gallon 
in 1985, is 5.3 inches long.
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FIGURE 3-5
The Inaccurate Values Lie

The visual lie told here is the result of a “highway” that spreads much farther apart than the data indicate. Michael
Friendly (2005) asserts that “this graph, from the New York Times, purports to show the mandated fuel-economy

standards set by the U.S. Department of Transportation. The standard required an increase in mileage from 
18 to 27.5, an increase of 53%. The magnitude of increase shown in the graph is 783%, for a whopping lie 

factor � (783/53) � 14.8!”

CHECK YOUR LEARNING
Reviewing the Concepts > Graphing is a critical skill to have in our data-dependent society.

> Graphs can convey important information clearly or can obscure that information. Carefully
examine visual displays of data and ask critical questions to be sure the graph creator wasn’t
exaggerating or misleading.

Clarifying the Concepts 3-1 What is the purpose of a graph?

Calculating the Statistics 3-2 Referring to Figure 3-5, the inaccurate values lie, calculate how much fuel-economy
standards changed from 1981 to 1984 in miles per gallon and as a percentage change.

Applying the Concepts 3-3 Which of the two following graphs is misleading? Which seems to be an accurate
depiction of the data? Explain your answer.
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Common Types of Graphs
A well-constructed graph begins with raw data. As we know from the Challenger ex-
ample, it is the responsibility of the researcher to organize this information in the way
that best clarifies the data. This section discusses graphs that describe the relation be-
tween two or more variables in just one image. We learn how to create scatterplots
and line graphs, graphs that depict relations between two scale variables. We also learn
how to create bar graphs, pictorial graphs, and pie charts—graphs with one or more
nominal variables—along with a scale variable.

Scatterplots
A scatterplot is a graph that depicts the relation between two scale variables. The values of
each variable are marked along the two axes. A mark is made to indicate the intersection of
the two scores for each participant. The mark is above the participant’s score on the x-axis
and across from the score on the y-axis. The improved Challenger graph shown in Fig-
ure 3-2 is an example of a scatterplot with temperature on the x-axis and O-ring
damage on the y-axis. A scatterplot is simple to construct either by hand or by
computer. Consider sketching these graphs by hand first (although it may seem un-
necessary) and then progress to the computer. If you have a solid foundation in
written graphs, your computer-constructed graphs will be more accurate and more
elegant.

Solutions to these Check Your Learning questions can be found in Appendix D.
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In the example in Figure 3-6, a researcher might be interested in the effect that the
amount of studying had on students’ grades on a statistics exam. To study this, the re-
searcher could gather two scores for each participant—the number
of hours studied and the grade on the statistics exam. We must first
decide which variable we believe is the independent variable (the
variable doing the predicting) and which is the dependent variable
(the variable being predicted). In this example, it is more likely that
hours spent studying would predict the grade on the statistics exam.

EXAMPLE 3.1

�   MASTERING THE CONCEPT

3-2: Scatterplots and line graphs are used to

depict relations between two scale variables.

■ A scatterplot is a graph that
depicts the relation between
two scale variables. The values
of each variable are marked
along the two axes, and a
mark is made to indicate the
intersection of the two scores
for each participant. The mark
is above the participant’s
score on the x-axis and across
from the score on the y-axis.
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FIGURE 3-7
A Range-Frame Improves

on a Scatterplot

A range-frame is a traditional
scatterplot that indicates the

minimum and maximum observed
values on the axes by erasing all

ink beyond these points. This
simple alteration increases the ratio

of ink dedicated to actual data to
overall printed ink in this graph.

So the independent variable (x) is the number of hours
spent studying, and the dependent variable (y) is the grade
on the statistics exam.

As seen in Figure 3-6, these data suggest that the more
one studies, the better one performs on exams (please note
that this isn’t necessarily a causal relation). We now have a
sense of our data and how the two variables are related.
Note that the values on both axes go down to 0, reducing
the likelihood of misinterpretation. In a situation in which
the scores are all very high, however, it might be too un-
wieldy to include all the values. In such cases, it wastes space
to have the axes go all the way down to 0. The data near
the top would be compacted and more difficult to read.
However, whenever practical, it’s best to include 0. ■

As computer technology increasingly expands the choices when creating graphs,
there are calls for simplicity in graph design. One leader in this movement is Edward
R. Tufte, a former Princeton and Yale professor who has published a number of classic
books on the visual presentation of data. Tufte (2001/2006b) suggests several ways to
redesign the traditional scatterplot in an effort to improve what he refers to as the
“data–ink ratio.” This refers to the goal of providing the maximum amount of data
while using the minimum amount of ink.

One of Tufte’s suggestions involves using a range-frame rather than a traditional
scatterplot. A range-frame is a scatterplot or related graph that indicates the range of the data
on each axis; the lines extend only from the minimum to the maximum scores. Eliminating
the ends of the axes means that the lines that form the range-frame now also represent
the data. More data, less ink: the data–ink ratio increases. In addition, the minimum
and maximum observations themselves can be labeled with their values so that these
numbers are easily discerned by the viewer. This also means that all data labels below
the minimum and above the maximum can be eliminated. The scatterplot of hours
studied and statistics grades has been redrawn as a range-frame in Figure 3-7. When
constructing your own graphs, consider clever ways to increase the data–ink ratio.

Here is a recap of the steps to create a scatterplot:

1. Organize the data by participant; each participant will have two scores, one on
each scale variable.

2. Label the horizontal x-axis with the name of the independent variable and its
possible values, starting with 0 if practical.
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FIGURE 3-6
Scatterplot of Hours Studied

and Statistics Grades

This scatterplot depicts the relation
between hours spent studying and

grades on a statistics exam. Each dot
represents one student’s score along

the independent variable on the x-axis
and along the dependent variable on the

y-axis.

■ A range-frame is a scatterplot
or related graph that indicates
the range of the data on each
axis; the lines extend only from
the minimum to the maximum
scores.

■ A linear relation between
variables means that the
relation between variables is
best described by a straight
line.

■ A nonlinear relation between
variables means that the
relation between variables is
best described by a line that
breaks or curves in some way.

■ A line graph is used to
illustrate the relation between
two scale variables; sometimes
the line represents the
predicted y scores for each x
value, and sometimes the line
represents change in a
variable over time.



3. Label the vertical y-axis with the name of the dependent variable and its possible
values, starting with 0 if practical.

4. Make a mark on the graph above each study participant’s score on the x-axis
and next to his or her score on the y-axis.

5. To convert to a range-frame, simply erase the axes below the minimum score
and above the maximum score.

We create a scatterplot to understand the relation between two variables. First, we
have to understand the different ways in which the two variables might be related—
either linearly or nonlinearly (or not at all). A linear relation between variables means that
the relation between variables is best described by a straight line. When the linear relation is
positive, the pattern of data points flows upward and to the right. When the linear re-
lation is negative, the pattern of data points flows downward and to the right. In both
cases, the relation is best described by a straight line. For example, the data for hours
studying and statistics grades shown in Figures 3-6 and 3-7 are related in a positive,
linear way: on average, more hours of studying was associated with higher grades; on
average, fewer hours of studying was associated with lower grades.

A nonlinear relation between variables means that the relation between variables is best de-
scribed by a line that breaks or curves in some way. Because a scatterplot depicts every ob-
servation, a visual inspection of a scatterplot shows if there is a linear or nonlinear
relation between variables. (Note that two variables are not necessarily related in a
nonlinear way if they are not related in a linear way. They might not be related at all!)
It’s important to remember that a nonlinear relation is still a relation. Because nonlinear
simply means “not straight,” there are several different kinds of nonlinear relations be-
tween variables.

Let’s consider an example. According to some researchers,
the Yerkes–Dodson law predicts the relation between level of
arousal and test performance. As professors, we don’t want
you so relaxed that you don’t even show up for the test, but
we also don’t want you so stressed out that you can’t take the
test because you’re having a panic attack. We want you some-
where in the happy middle. For most of us, there seems to be
a nonlinear relation (an upside-down U-curve) that describes
the relation between arousal and test performance (Figure
3-8). The best way to understand this relation between two
variables is to see it in the line that summarizes the data from
a scatterplot.

Line Graphs
A line graph is used to illustrate the relation between two scale variables; sometimes the line
represents the predicted y scores for each x value, and sometimes the line represents change in
a variable over time. One type of line graph is constructed using a scatter plot. The line
of best fit is the line that minimizes the distances of the dots from that line. The line
of best fit allows us to use the x value to predict the y value.
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Performance

Anxiety

For example, we could use “time spent studying” scores (the x value) to predict “test
scores” (the y value). If we know the general relation between hours studied and grades
on the statistics exam, then we can predict the exam scores based on hours studied.
The line of best fit allows us to make predictions when we know only one piece of
information. Specifically, we can use the line of best fit in Figure 3-9 to predict that

EXAMPLE 3.2

FIGURE 3-8
Nonlinear Relations

The Yerkes–Dodson law predicts that
stress/anxiety improves test
performance—but only to a point. Too
much anxiety leads to an inability to
perform at one’s best. This inverted
U-curve illustrates the concept, but a
scatterplot would be a better
clarification of the particular relation
between these two variables.
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if a student studies for 2 hours, she will earn a test score of about 62; if she studies for
13 hours, she will earn about 100.

Here is a recap of the steps to create a scatterplot with a line of best fit:

1. Label the x-axis with the name of the independent variable and its possible
values, starting with 0 if practical.

2. Label the y-axis with the name of the dependent variable and its possible values,
starting with 0 if practical.

3. Make a mark above each study participant’s score on the x-axis and next to
his or her score on the y-axis.

4. In Chapter 16, you will learn how to use a regression equation that draws the
line of best fit through the points on the scatterplot.

5. To convert to a range-frame, erase the axes below the minimum score and above
the maximum score. ■

A second situation in which a line graph is more useful than just a scatterplot occurs
with time-related data. A time plot, or time series plot, is a graph that plots a scale variable
on the y-axis as it changes over an increment of time (e.g., second, day, century) labeled on the
x-axis. As with a scatterplot, marks are placed above each value on the x-axis (e.g., at
a given minute) at the value for that particular time on the y-axis (i.e., the score on
the dependent variable). These marks are then connected with a line. With a time plot,
it’s possible to graph several scale variables at the same time so that the viewer can
compare the trends for two or more variables over time.
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FIGURE 3-9
The Line of Best Fit

The line of best fit allows us to
make predictions for a person’s
value on the y variable from his

or her value on the x variable.

Figure 3-10, for example, shows newspaper circulation trends from 1990 through 2010
for the most widely read U.S. newspapers (http://www.theawl.com/2009/10/ a-
graphic-history-of-newspaper-circulation-over-the-last-two-decades). We can clearly
see the increasing success of the Wall Street Journal, the declining performance of most
other national papers, and the particularly abysmal decline of the Los Angeles Times.
The graph helpfully includes notes that explain unexpected departures from overall
trends: the Wall Street Journal, it observes, “began including paid online subscriptions
in their circulation in 2003,” accounting for the sharp increase. This graph might lead
us to even more interesting questions. Why has newspaper readership apparently de-
clined for so many publications? The note (NB) for the Wall Street Journal offers a likely
answer: as more newspapers have an online presence, fewer readers feel the need to

EXAMPLE 3.3

■ A time plot, or time series
plot, is a graph that plots a
scale variable on the y-axis as
it changes over an increment
of time (e.g., second, day,
century) labeled on the x-axis.

■ A bar graph is a visual
depiction of data when the
independent variable is
nominal or ordinal and the
dependent variable is scale.
Each bar typically represents
the average value of the
dependent variable for each
category.
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purchase a physical paper. They simply get their news
online. An effective graph provokes more precise research
questions.

Here is a recap of the steps to create a time plot:

1. Label the x-axis with the name of the independent
variable and its possible values. The independent
variable should be an increment of time (e.g., hour,
month, year).

2. Label the y-axis with the name of the dependent
variable and its possible values, starting with 0 if
practical.

3. Make a mark above each value on the x-axis at the
value for that time on the y-axis.

4. Connect the dots.
5. To convert to a range-frame, erase the y-axis below

the minimum y value and above the maximum y
value. ■

Bar Graphs
Bar graphs are visual depictions of data when the independent
variable is nominal or ordinal and the dependent variable is scale.
Each bar typically represents the average value of the dependent
variable for each category. They are one of the most commonly
used types of graphs. In a bar graph, the x-axis includes at
least one nominal variable, such as sleep deprivation (with
separate bars for people who have not been sleep deprived
and for people who have been sleep deprived), or ordinal
variable, such as Olympic medal winners (with separate
bars for people who have won gold, silver, or bronze
medals); the y-axis describes a second variable, a scale vari-
able, such as scores on a memory task or competitiveness
scores. For example, bar graphs allow us to compare the av-
erage memory scores of those who have been sleep de-
prived to the average memory scores of those who have
not been sleep deprived. As another example, we could
compare average competitiveness scores of those who won
bronze, silver, or gold medals at the Olympics.

Here is a recap of the variables used to create a bar
graph:

1. The x-axis of a bar graph indicates discrete levels of
a nominal or ordinal variable.
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FIGURE 3-10
Weekday Newspaper Circulation

A time plot highlights the fate of U.S. newspapers over a 20-year time span as
Internet usage increased. Most newspapers saw sharp declines in circulation;
however, the Wall Street Journal was an exception, showing increasing numbers. A
note (NB) indicates the likely reason—it started to include paid online subscriptions.
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2. The y-axis of a bar graph may represent counts or percentages. But the y-axis
of a bar graph can also indicate many other variables, such as average scores

on a memory task, reaction time, or any other scale measure of a de-
pendent variable.

Bar graphs are flexible tools for the visual presentation of data. For
example, if there are many categories to be displayed along the horizon-
tal x-axis, researchers sometimes create a Pareto chart, a type of bar graph
in which the categories along the x-axis are ordered from highest bar on the left to
lowest bar on the right. This ordering allows easier comparisons and easier
identification of the most common and least common categories.

�   MASTERING THE CONCEPT

3-3: Bar graphs depict data for two or

more categories. They are considered to

depict data more clearly and accurately

than either pictorial graphs or pie charts.

We can compare a standard bar graph to a Pareto chart for data from the General Social
Survey (GSS). The National Opinion Research Center has interviewed approximately
2000 U.S. adults a year (almost every year) since 1972. Over the years, more than 38,000
people have answered more than 3000 different questions related to their opinions, at-
titudes, and behaviors. Anyone can analyze this data. One question on the GSS asked
respondents to consider an “admitted homosexual [who] wanted to make a speech in
your community” and asked, “Should he be allowed to speak, or not?” Figure 3-11

EXAMPLE 3.4
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FIGURE 3-11
The Flexibility of the Bar Graph

The standard bar graph provides a comparison among nine nominal variables. The dependent variable is the percentage
of respondents who said that an avowed homosexual should be “not allowed” to speak. The Pareto chart, a version of a

bar graph, orders the categories from highest to lowest along the horizontal axis, which allows us to more easily pick out
the highest and lowest bars. We can more easily know that respondents in the East South Central region had the highest
percentage of respondents say that an avowed homosexual should be “not allowed” to speak, and that New England had

the lowest. We have to do more work to draw these conclusions from the original bar graph.



includes two different ways of depicting the percentages of respondents in different
U.S. regions who said the person should be “not allowed” to speak. One graph is a
standard bar graph with categories ordered as the GSS orders the regions, and the other
is a Pareto chart. Which one is easier to read? ■
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Bar graphs are often used in the applied behavioral sciences. Researchers wondered
whether piercings and tattoos, once viewed as indicators of a “deviant” worldview, had
become mainstream (Koch, Roberts, Armstrong, & Owen, 2010). They surveyed 1753
American college students with respect to numbers of piercings and tattoos, as well as
a range of destructive behaviors including academic cheating, binge drinking, illegal
drug use, and number of arrests (aside from traffic arrests). The bar graph in Figure
3-12 depicts one finding: the likelihood of having been arrested was fairly similar among
all groups, except among those with four or more tattoos, 70.6% of whom reported
having been arrested at least once. A magazine article about this research advised par-
ents, “So, that butterfly on your sophomore’s ankle is not a sign she is hanging out
with the wrong crowd. But if she comes home for spring break covered from head to
toe, start worrying” (Jacobs, 2010).

The small differences among the students with no tattoos, one tattoo, and two or
three tattoos could be exaggerated, however, if a reporter wanted to scare parents. Ma-
nipulating the range of the y-axis can change the story that these data seem to be
telling. Compare Figure 3-13 to the first three bars of Figure 3-12. Notice what hap-
pens when the values on the y-axis do not begin at 0, the intervals change from 10
to 2, and the y-axis ends at 20%. The exact same data, presented with a different range
displayed on the y-axis, leave a very different impression. Although small differences
seem apparent when we look at Figure 3-12, the differences appear very large in

EXAMPLE 3.5
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FIGURE 3-12
Bar Graphs Highlight Differences Between Averages or Percentages

This bar graph depicts the percentages who have been arrested at least once (other than
a traffic arrest) for four groups of U.S. university students: those with no tattoos, one
tattoo, two to three tattoos, or four or more tattoos. Viewing a bar graph can more vividly
depict differences between percentages than just seeing the typed numbers themselves:
8.5, 18.7, 12.7, and 70.6.
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FIGURE 3-13
Deceiving with the Scale

To exaggerate a difference between means, graphmakers sometimes
compress the rating scale that they show on their graphs. When
possible, label the axis beginning with 0, and when displaying
percentages, include all values up to 100%.

■ A Pareto chart is a type of bar
graph in which the categories
along the x-axis are ordered
from highest bar on the left to
lowest bar on the right.
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Figure 3-13. The key word here is appears. Regardless of where the y-axis begins, the
data are the same! So pay close attention to the range of the y-axis. (Note: If the data
are very far from zero, and it does not make sense to have the axis go down to zero,
indicate this on the graph by including cut marks, or double slashes, like those shown
in Figure 3-13.)

Here is a recap of the steps to create a bar graph. The critical choice for you, the
graph creator, is in step 2.

1. Label the x-axis with the name and levels (i.e., categories) of the nominal or
ordinal independent variable.

2. Label the y-axis with the name of the scale dependent variable and its possible
values, starting with 0 if practical.

3. For every level of the independent variable, draw a bar with the height of that
level’s value on the dependent variable. ■

Tufte (2001/2006b) would say we can go even further by redesigning bar graphs.
Figure 3-14 is a redesigned bar graph from Tufte’s book. Tufte has eliminated both the
box around the graph and the vertical axis. He has kept the data labels on the y-axis
and has replaced the tick marks that indicate the levels of the dependent variable with
thin white lines through the bars. This reconfiguration leads to an improvement in the
data–ink ratio.

15%

5

10

Pictorial Graphs
When only basic differences are being depicted—the difference between just two or
three levels of an independent variable, for example—a pictorial graph is sometimes
used. A pictorial graph is a visual depiction of data typically used for an independent variable
with very few levels and a scale dependent variable. Each level uses a picture or symbol to represent
its value on the scale dependent variable. Pictorial graphs are far more common in the pop-
ular media than in research journals, primarily because the pictures tend to confuse

rather than clarify. For example, the pictures of little rockets in the Chal-
lenger data obscured a critical relation between variables.

Pictorial graphs use pictures in place of bars. For example, the graph-
maker might use stylistic drawings of people to indicate population size.
If one city has double the population of another, the graphmaker might,
as in Figure 3-15, make the drawing of the person twice as tall—but also
twice as wide so that the taller person doesn’t look stretched out. This
has the misleading effect of making the taller drawing about four times
as big in total area as the shorter one—when it is supposed to convey that
the population is only twice as big. This is a very easy error to make, and
for that reason many researchers avoid pictorial graphs.

FIGURE 3-14
Redesigning the Bar Graph

Elimination of the frame and y-axis and
addition of thin white lines through the

bars, as suggested by Tufte
(2001/2006b), makes this bar graph

easier to read and increases the data–
ink ratio.
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1
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FIGURE 3-15
Distorting the Data with

Pictures

With a pictorial graph, doubling the
height of a picture is often coupled with
doubling the width—you’re multiplying

by 2 twice. Instead of being twice as
big, the picture is four times as big!

■ A pictorial graph is a visual
depiction of data typically used
for an independent variable
with very few levels
(categories) and a scale
dependent variable. Each level
uses a picture or symbol to
represent its value on the
scale dependent variable.

■ A pie chart is a graph in the
shape of a circle with a slice
for every level (category) of the
independent variable. The size
of each slice represents the
proportion (or percentage) of
each level.



Pie Charts
A pie chart is a graph in the shape of a circle with a slice for every level of the independent
variable. The size of each slice represents the proportion (or percentage) of each category. A pie
chart’s slices should always add up to 100% (or 1.00 if using proportions). Figure 3-16
includes a pie chart and a bar graph, both depicting the same data. As suggested by
this comparison, data can almost always be presented more clearly in a table or bar
graph than in a pie chart. Indeed, Tufte (2001/2006b) bluntly advises: “A table is
nearly always better than a dumb pie chart” (p. 178). Because of the profound limi-
tations of pie charts and the ready alternatives, we do not outline the steps for creating
a pie chart here.
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Is Physical Health or Mental Health Treated
with More Importance?
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CHECK YOUR LEARNING
Reviewing the Concepts > Scatterplots and line graphs allow us to see relations between two scale variables.

> When examining the relation between variables, it is important to consider linear and non-
linear relations, as well as the possibility that no relation is present.

> Bar graphs, pictorial graphs, and pie charts depict summary values (such as means or per-
centages) on a scale variable for various levels of a nominal or ordinal variable.

> Bar graphs are preferred; pictorial graphs and pie charts can be misleading.

Clarifying the Concepts 3-4 How are scatterplots and line graphs similar?

3-5 Why should we typically avoid using pictorial graphs or pie charts?

Calculating the Statistics 3-6 What type of visual display of data allows us to calculate or evaluate how a variable is
changing over time?

Applying the Concepts 3-7 What is the best type of common graph to depict each of the following data sets and
research questions? Explain your answers.

a. Depression severity and amount of stress for 150 university students. Is depression
related to stress level?

b. Number of inpatient mental health facilities in Canada as measured every 10 years
between 1890 and 2000. Has the number of facilities declined in recent years?

continued on next page

FIGURE 3-16
Pie Chart or Bar Graph?

A research firm hired by the Suicide
Prevention Action Network (2004) asked
U.S. participants, “Do you think that
mental health and physical health are
treated with equal importance in our
current health care system?” We can
see from the pie chart that most people
(62%) believe that physical health is
treated with more importance than is
mental health; however, the bar graph is
easier to interpret.



How to Build a Graph
Part of the Challenger tragedy is not only that it could have been prevented but that it
came so close to being prevented. A clearly conceived graph created on the evening of
January 27, 1986, could have changed history on the morning of January 28, 1986. A
graph should provide information that an audience could not glean from text alone, or
it should clarify an otherwise difficult-to-understand finding. If we conclude that a
graph is appropriate to our needs, we want to know the factors to consider when choos-
ing which kind of graph to create. In this section, we learn how to choose the most
appropriate type of graph based on our data. A basic checklist is introduced to help you
design a clear and compelling graph. We also discuss innovative graphs that highlight
the exciting future of graphing that social scientists can harness to tell their stories.

Choosing the Type of Graph Based on Variables
When deciding what type of graph to use, first examine the vari-
ables. Decide which is the independent variable and which is the
dependent variable. Also, identify what type of variable—nominal,
ordinal, or scale (interval/ratio)—each of them is. Most of the
time, the independent variable belongs on the horizontal x-axis
and the dependent variable goes on the vertical y-axis.

Once we make a brief assessment of the variables, we can de-
termine the appropriate graph:

1. If there is one scale variable (with frequencies), then we use a histogram or a
frequency polygon (Chapter 2).

2. If there is one scale independent variable and one scale dependent variable,
then we use a scatterplot or a line graph. (Note that we can depict more than
one line on a time plot.)

3. If there is one nominal or ordinal independent variable and one scale dependent
variable, then we use a bar graph or a Pareto chart.

4. If there are two or more nominal or ordinal independent variables and one
scale dependent variable, then we use a bar graph.

How to Read a Graph
Let’s confirm your understanding of independent and dependent variables within the
context of a graph by using the study of tattoos and deviance that we considered earlier.
This time, the graph, shown in Figure 3-17, includes two independent variables: number
of tattoos [0, 1, 2–3, 4�] and arrest status [never arrested, arrested at least once]. Try to
answer the following questions before looking at the answers provided after the questions.

1. What variable are the researchers trying to predict? That is, what is the dependent
variable?

2. Is the dependent variable nominal, ordinal, or scale?
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c. Number of siblings reported by 100 people. What size family is most common?

d. Mean years of education for six regions of the United States. Are education levels
higher in some regions than in others?

e. Calories consumed in a day and hours slept that night for 85 people. Does the
amount of food a person eats predict how long he or she sleeps at night?

Solutions to these Check Your
Learning questions can be found in
Appendix D.

�   MASTERING THE CONCEPT

3-4: The best way to determine the type of graph

to create is to identify the independent variable

and the dependent variable, along with the type of

variable that each is—nominal, ordinal, or scale.

■ Chartjunk is any unnecessary
information or feature in a
graph that detracts from a
viewer’s ability to understand
the data.



3. What are the units of measurement on the de-
pendent variable? For example, if the depend-
ent variable is gender, possible scores are male
and female; if it’s IQ as measured by the
Wechsler Adult Intelligence Scale, then the
possible scores are the IQ scores themselves,
ranging from 0 to 145.

4. What variables did the researchers use to pre-
dict this dependent variable? That is, what are
the independent variables?

5. Are these two independent variables nominal,
ordinal, or scale?

6. What are the levels for each of these inde-
pendent variables?

Now check your answers:

1. The dependent variable is percentage.
2. Percentage is a scale variable.
3. Percentage can range from 0% to 100%. (Note that in this situation, we are not

plotting means of participant scores; we are counting numbers of participants
in each category and calculating percentages.)

4. The first independent variable is arrest status; the second independent variable
is number of tattoos.

5. The two independent variables are both ordinal variables.
6. The levels for arrest status are never arrested and arrested at least once. The

levels for number of tattoos are none, one, two to three, and four or more.

Because there are two independent variables—both of which are ordinal—and one
scale dependent variable, we used a bar graph to depict these data.

Guidelines for Creating the Perfect Graph
To wrap up our discussion of graphing, here is a short checklist of questions to ask
when you’ve created a graph or when you encounter a graph. Some we’ve mentioned
previously, and all are wise to follow.

■ Does the graph have a clear, specific title?
■ Are both axes labeled with the names of the variables? Do all labels read left

to right—even the one on the y-axis?
■ Are all terms on the graph the same terms that are used in the text that the

graph is to accompany? Have all abbreviations been eliminated?
■ Are the units of measurement (e.g., minutes, percentages) included in the  labels?
■ Do the values on the axes either go down to 0 or have cut marks (double

slashes) to indicate that they do not go down to 0?
■ Are colors used in a simple, clear way—ideally, shades of gray instead of other

colors?
■ Has all chartjunk been eliminated?

The last of these guidelines involves a new term, the graph-
corrupting fluff called chartjunk, a term coined by Tufte (2001/
2006b). According to Tufte, chartjunk is any unnecessary information or
feature in a graph that detracts from a viewer’s ability to understand the data.
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FIGURE 3-17
Two Independent Variables

When we are graphing a data set that
has two independent variables, we show
one independent variable on the x-axis
(in this case, number of tattoos) and one
independent variable in a color-coded
key (in this case, arrest status). This
graph clearly demonstrates that
university students with four or more
tattoos have the reverse pattern in
terms of arrest status compared with
those with fewer tattoos.

�   MASTERING THE CONCEPT

3-5: Avoid chartjunk—any unnecessary

aspect of a graph that detracts from its clarity.
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Chartjunk can take the form of any of three unnecessary features, all demonstrated
in the rather frightening graph in Figure 3-18.

1. Moiré vibrations refer to any of the patterns that computers provide as options to fill
in bars. Tufte recommends using shades of gray instead of patterns.

2. Grids refer to a background pattern, almost like graph paper, on which the data represen-
tations, such as bars, are superimposed. Tufte recommends the use of grids only for
hand-drawn drafts of graphs. They should never be in a final version of a graph.

3. Ducks are features of the data that have been dressed up to be something other than
merely data. Think of ducks as data in costume. Named for the Big Duck, a store
in Flanders, New York, that was built in the form of a very large duck, graphic
ducks can be three-dimensional effects, cutesy pictures, fancy fonts, or any other
flawed design features. All other things being equal, simpler graphs are easier
to interpret. Avoid chartjunk!

There are now many excellent computer-generated graphing programs that help
us quickly create graphs. Many of the above guidelines for graph construction are built
into standard graphing software, but don’t rely on the software to make decisions for
you. Computer defaults are the options that the software designer has preselected; these are the

built-in decisions that the software will implement if we do not instruct it otherwise.
Most of the time, the defaults are the options we would select anyway, but
there are two problems with accepting the defaults without consideration.
First, we should always know what options we are selecting, because in
letting the computer select, we are making a choice. Second, we will not
always want the default options. When you create graphs, do not be a pas-
sive user of software. Play with the program to figure out how to change
defaults. Often you can point the cursor at a part of the graph and “click”
to view the available options. If playing with the program doesn’t yield
the result you want, open the “Help” file on the computer and read the
instructions.

Once you learn the “rules” of graph construction—for both written
graphs and computer-generated graphs—you can break them to present
more complex data sets. What some call the best statistical graph ever drawn
tells a horrifying story. The graph shown in Figure 3-19, created by the
French engineer Charles Minard, stirs the imagination by telling the story
of Napoleon’s ill-fated 1812 Russian campaign to Moscow—and back.
The size of Napoleon’s army is represented by the bandwidth as they trav-
eled between June and December of 1812. A commonly used estimate of
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FIGURE 3-18
Chartjunk Run Amok

Moiré vibrations, such as those seen in
the patterns on these bars, might be fun

to use, but they detract from the viewer’s
ability to glean the story of the data.

Moreover, the grid pattern behind the bars
might appear scientific, but it serves only

to distract. Ducks, like the 3-D shadow
effect on the bars and the globe clip-art,

add nothing to our data, and the colors
are absurdly eye-straining. Don’t laugh—

we’ve had students submit carefully
written research papers accompanied by

graphs even more garish than this!
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Edward Tufte’s Big Duck The graphics theorist
Edward Tufte took this photograph of the Big Duck, the
store in the form of a duck for which he named a type
of chartjunk (graphic clutter). In graphs, ducks are any
aspects of the graphed data that are “overdressed,”
obscuring the message of the data. Think of ducks as
data in a ridiculous costume.



Napoleon’s army in June of 1812 is 600,000 men and perhaps 50,000 horses repre-
sented by the left-hand side of the wide beige line. The thin black line at the end of
this journey represents the approximately 10,000 remaining men who returned in the
frigid December of that same year. Napoleon’s army averaged losses of approximately
3000 men every single day for six months! The inclusion of temperature data helps the
viewer understand why the Russian winter all but finished off the depleted army during
their return trip; the band that represents numbers of men gets thinner as the temper-
ature goes down. Note that this graph includes four variables—numbers of soliders,
temperature, location, and date.

The Future of Graphs
Once you learn to create clear graphs, you can create even more powerful graphs using
new ideas and technology. Graphs are being used in many different and unexpected
ways, so we predict an exciting future for visual displays of data.

Interactive Graphing You have probably used interactive graphing tools already. For
class, you may have used a CD-ROM, clicking to read more about Lawrence Kohlberg
while viewing a moral development timeline. Outside of school, you may have used
an interactive Web site to request a comparison of two digital  cameras.

However, few have taken advantage of interactive tools to create truly inspiring
graphs. One informative and haunting example was published online in the New York
Times on September 9, 2004, to commemorate the day on which the 1000th U.S. sol-
dier died in Iraq. Titled “The Roster of the Dead,” this beautifully designed tribute
is formed by photos of each of the dead servicemen and women. One can view these
photographs by month of death, first letter of last name, home state, or age at death.
Because the photos are the same size, the stacking of the photos serves almost as a bar
graph. By clicking on two or more months or on two or more ages, one can visually
compare numbers of deaths among levels of a category.

Yet this interactive graph is even more nuanced than this, because it allows direct
access to a part of the life stories of these soldiers. By holding the cursor over a photo
that catches your eye, you can learn, for example, that Spencer T. Karol, regular duty
in the U.S. Army, from Woodruff, Arizona, died on October 6, 2003, at the age of 20
from hostility-inflicted wounds. A thoughtfully designed interactive graph holds even
more power than a traditional flat graph to educate, evoke emotion, and even make a
political statement.
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FIGURE 3-19
Graphs That Illuminate

Described as “the best statistical graph
ever drawn,” this graph created by
French engineer Charles Minard in
1813 tells a dramatic, complicated story
with horrifying clarity using just a single
picture.

Reprinted by permission Edward R. Tufte, The Visual
Display of Quantitative Information, 2nd Edition,
Graphics Press, Cheshire, CT, 2001.

■ Moiré vibrations are
chartjunk that take the form of
any of the patterns that
computers provide as options
to fill in bars.

■ Grids are chartjunk that take
the form of a background
pattern, almost like graph
paper, on which the data
representations, such as bars,
are superimposed.

■ A duck is a form of chartjunk
in which a feature of the data
has been dressed up to be
something other than merely
data.

■ Computer defaults are the
options that the software
designer has preselected;
these are the built-in decisions
that the software will
implement if we do not instruct
it otherwise.
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Clinical Applications Clinical psychology researchers have developed graphing tech-
niques, illustrated in Figure 3-20, to help therapists predict when the therapy process
appears to be leading to a poor outcome (Howard, Moras, Brill, Mar tino vich, & Lutz,
1996). They have developed a model that predicts an expected rate of recovery for a
specific client. The independent variables include a number of pre therapy client char-
acteristics, such as attitude toward therapy and the severity and pattern of psychopathol-
ogy. The dependent variable is rate of improvement. The predicted rate of improvement
is graphed as a line, somewhat like the line of best fit we discussed earlier, but is typically
curved—perhaps an initial quick im prove ment, followed by steady improvement, and

then a plateau. The therapist then adds points
to the graph showing a client’s actual status.
This allows a therapist to determine how a
client’s actual rate of improvement compares
to what would be ex pected for another client
with similar characteristics. If therapy pro-
gresses more slowly than expected, then both
the client and the therapist may be spurred to
take action by the discrepancy in the graphs.

Computerized Mapping Google, Yahoo,
and others have published software that en-
ables computer programmers to link Internet-
based data to Internet-based maps (Markoff,
2005). For example, software can link house
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The Many Layers of Interactive
Graphs Like “The Roster of the
Dead,” the Murder Ink Map, published
by Baltimore’s City Paper, is an
interactive graphic. At the macrolevel,
this graph allows the viewer to see the
number of people who have been
murdered in the city of Baltimore in a
given year, as well as where each
murder took place. At the microlevel, the
viewer can click on any of the
numbered push-pins to read details
about that particular murder—including
the time, date, means, and whether the
case has been solved.
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FIGURE 3-20
Graph as Therapy Tool

Some graphs allow therapists to compare
the actual rate of a client’s improvement
with the expected rate given that client’s

characteristics. This client (Assessed
Mental Health Index in gray) is doing worse

than expected (expected treatment
response in red) but has improved enough

to be above the failure boundary (in yellow).
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listings to maps so that pro spective home buyers can see all the properties of interest
on one map. The acces sibility of such visual tools, versions of geographical information
systems (GIS), makes it almost certain that social scientists will find creative ways to
apply them to research questions.

Sociologists use GIS more than many other social scientists, but the field of epi-
demiology, a discipline that includes the tracking of demographic patterns of physical
and mental health problems, could benefit from maps that describe the prevalence of
physical and psychological disorders. These maps would be particularly useful when
layered with other predictive data already associated with geographic variables, many
of which are publicly available through what are called TIGER/Line Shapefiles from
the U.S. Census Bureau. Organizational psychologists, public health specialists, and po-
litical scientists also could use GIS to clarify patterns related to marketing, blood do-
nations, or voting behavior relative to placement of voting machines, an issue in the
state of Ohio during the 2004 presidential election. Ironically, this advance in com-
puterized mapping is pretty much what John Snow did without a computer in 1854
when he studied the Broad Street cholera outbreak.

In this chapter, we learned to create graphs with two variables, such as scatterplots
and many bar graphs, and with three variables, such as bar graphs that include two
independent variables and one dependent variable. As graphing technologies become
more  advanced, there are increasingly elegant ways to depict multiple variables on a
single graph. Using the bubble graph option under “Other Charts” on Microsoft
Excel (and even better, downloading Excel templates from sites such as juice analytics.
com/chart chooser), we can create a bubble graph that depicts multiple variables.
Gapminder. org/world uses a more sophisticated version of a bubble graph, shown on
the next page, to display five variables:

1. Country. Each bubble is one country. For example, the large yellow bubble to-
ward the upper-right-hand corner represents the United States; the largest red
bubble toward the middle represents China; and the medium-sized blue bubble
on the far left represents the Democratic Republic of Congo. There’s a key
under “Select” on the right that allows a viewer to find a particular country.

2. Continent. Each continent is represented by a color. For example, yellow rep-
resents the Americas, red represents East Asia and the Pacific, and blue represents
sub-Saharan Africa. There is a key under “Geographic regions” on the right.

3. Income. The x-axis indicates a country’s income per person.
4. Life expectancy. The y-axis indicates life expectancy at birth.
5. Population size. The size of the bubbles indicates the size of the countries’

populations.

From this graph, we can see a strong relation between income and life expectancy.
Population size does not seem to be strongly related to either. We can also see that cer-
tain continents, such as the Americas, tend to be higher in both income and life ex-
pectancy, whereas others, such as sub-Saharan Africa, tend to be lower on both variables.
Amazingly, we can add a sixth variable, year, by clicking “Play” in the lower left-hand
corner; this interactive graph is animated and can show the movement of these coun-
tries with respect to income, life expectancy, and population since 1800!

Multivariable Graphs N e x t  S t e p s
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A Five-Variable Graph Increasingly sophisticated technology allows us to create increasingly sophisticated
graphs. This bubble graph from gapminder.org/world depicts five variables: country (each bubble), continent
(color of bubbles), income (x-axis), life expectancy (y-axis), and population size (size of bubble). On the Web site,
we can view a sixth variable, year. The animated version of this graph shows the progression of these data
points from 1800 through 2005.

CHECK YOUR LEARNING
Reviewing the Concept > Graphs should be used when they add information to written text or help to clarify difficult

material.

> To decide what kind of graph to use, we first determine whether the independent variable
and the dependent variable are nominal, ordinal, or scale variables.

> A brief checklist of guidelines helps us develop a readily understandable graph. In particular,
attention to the labeling of the graph and to the avoidance of chartjunk lead to a clearer
graph.

> In the near future, online interactive graphs, graphs based on sophisticated prediction models
such as those that forecast therapy outcomes, and computerized mapping will become in-
creasingly common.

Clarifying the Concepts 3-8 What is chartjunk?

Calculating the Statistics 3-9 Deciding what kind of graph to use depends largely on how variables are measured.
Imagine a researcher is interested in how “quality of sleep” is related to typing
performance (measured by the number of errors made). For each of the measures of
sleep below, decide what kind of graph to use.

a. Total minutes slept

b. Sleep assessed as sufficient or insufficient
c. Using a scale from 1 (low quality sleep) to 7 (excellent sleep)
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REVIEW OF CONCEPTS

How to Mislead with Graphs
The ability to create and interpret graphs is becoming an essential skill if we wish to
avoid misleading and being misled by others. Because visual displays of data are so easily
manipulated, it is important to pay close attention to the details of graphs to be sure
the graph creator isn’t exaggerating or conveying false information.

Common Types of Graphs
When developing graphing skills, it is important to begin with the basics. Several types
of graphs are commonly used by social scientists. Scatterplots depict the relation between
two scale variables. They are useful when determining whether the relation between
the variables is linear or nonlinear. A range-frame is a variant of a scatterplot; it provides
more information with less ink by eliminating the axes below the minimum values
and above the maximum values. Some line graphs expand on scatterplots by including
a line of best fit. Others, called time plots or time series plots, show the change in a scale
variable over time.

Bar graphs are used to compare two or more categories of a nominal or ordinal in-
dependent variable with respect to a scale dependent variable. A bar graph on which
the levels of the independent variable are organized from the highest bar to the lowest
bar, called a Pareto chart, allows for easy comparison of levels. Bar graphs can also be
used with more than one nominal or ordinal independent variable and one scale de-
pendent variable. Pictorial graphs are like bar graphs except that pictures are used in
place of bars. Pie charts are used to depict proportions or percentages on one nominal
or ordinal variable with just a few levels. Because both pictorial graphs and pie charts
are frequently constructed in a misleading way or are misperceived, bar graphs are al-
most always preferred to pictorial graphs and pie charts.

How to Build a Graph
We first decide what type of graph to create by examining our independent and de-
pendent variables and by identifying each as nominal, ordinal, or scale. We must then
consider a number of guidelines to develop a clear, persuasive graph. It is impor tant that
all graphs be labeled thoroughly and appropriately and given a title that allows the
graph to tell its story without additional text. For an unambiguous graph, it is imperative
that graph creators avoid chartjunk, unnecessary information, such as moiré vibrations,
grids, and ducks, that clutters a graph and makes it difficult to interpret. A checklist for
the creation of clear graphs is included in this section. When using software to create

Applying the Concepts 3-10 Imagine that the graph in Figure 3-18 represents data testing the hypothesis that
exposure to the sun can impair IQ. Further imagine that the researcher has recruited
groups of people and randomly assigned them to different levels of exposure to the
sun: 0, 1, 6, and 12 hours per day (enhanced, in all cases, by artificial sunlight when
natural light is not available). The mean IQ scores are 142, 125, 88, and 80, respectively.
Redesign this chartjunk graph, either by hand or using software, paying careful
attention to the dos and don’ts outlined in this section.

Solutions to these Check Your
Learning questions can be found in
Appendix D.
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graphs, it is important to question the defaults built into the software and to override
them when necessary to adhere to these guidelines.

Finally, keeping an eye to the future of graphing—including interactive graphs, the
use of statistical models to predict therapy outcome, and computer-generated maps—
helps us stay at the forefront of graph-making in the social science fields. New tech-
nologies allow us to make increasingly complex graphs; bubble graphs, for example,
allow us to include as many as five variables on a single graph.

SPSS®

We can request visual displays of data from both the “Data
View” screen and the “Variable View” screen. SPSS allows us
to create visual displays across several different menus; however,
most graphing is done in SPSS using the Chart Builder, a very
flexible graphing tool. This section walks you through the gen-
eral steps to create a graph, using a scatterplot as an example.
Before you start with these steps, enter the data below in the
screenshot for hours studied and exam grades that were used
to create the scatterplot in Figure 3-6.

Select Graphs → Chart Builder → Gallery. Under
“Choose from:” select the type of graph by clicking on it. For
example, to create a scatterplot, click on “Scatter/Dot.” Then
drag a sample graph from the right to the large box above.
Usually, such as in the case of a scatterplot, you’ll want the
simplest graph, which tends to be the upper-left sample graph.

Finally, drag the appropriate variables from the “Variables:”
box to the appropriate places on the sample graph (e.g.,

“x-axis”). For a scatterplot, drag “hours” to the x-axis and
“grade” to the y-axis. Chart Builder then looks like the
screenshot shown here. Click OK and SPSS creates the graph.

Remember: you should not rely on the default choices
of the software; you are the designer of the graph. Once the
graph is created, you can change the graph’s appearance by
double-clicking on the graph to open the Chart Editor,
the tool that allows you to make changes. Then click or
double-click on the particular feature of the graph that you
want to modify. Clicking once on part of the graph allows
you to make some changes. For example, clicking the label
of the y-axis allows you to retype the label; double-clicking
allows you to make other changes, such as making the label
horizontal (after double-clicking, select the orientation
“Horizontal” under “Text Layout”). Play with the Chart
Editor to learn the many aspects of the graph that you can
tailor.
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3.1 CREATING A SCATTERPLOT
Gapminder.org is a wonderful Web site that allows the public to play with a graph and ex-
plore the relations between variables over time. Here are the scores for 10 countries on two
variables.

Children Life expectancy 
per woman at birth 

Country (total fertility) (years)

Afghanistan 7.15 43.00
India 2.87 64.00
China 1.72 73.00
Hong Kong 0.96 82.00
France 1.89 80.00
Bolivia 3.59 65.00
Ethiopia 5.39 53.00
Iraq 4.38 59.00
Mali 6.55 54.00
Honduras 3.39 70.00

How can we create a scatterplot to show the relation between these two variables? To
create a scatterplot, we put total fertility on the x-axis and life expectancy in years on the
y-axis. We then add a dot for each country at the intersection of its fertility rate and life
expectancy. The scatterplot is shown in the figure below.

3.2 CREATING A BAR GRAPH
Here is the 2004 gross domestic product (GDP), in trillions of U.S. dollars, for each of the
world economic powers that make up what is called the Group of Eight, or G8, nations.

Canada: 0.98 Italy: 1.67 United Kingdom: 2.14
France: 2.00 Japan: 4.62 United States: 11.67
Germany: 2.71 Russia: 0.58

How can we create a bar graph for these data? First, we put the countries on the x-
axis. We might choose to put them in alphabetical order (or we might choose to create a
Pareto chart in which the countries are ordered from highest to lowest GDP). Then we
draw a bar for each country with the height of its GDP. The following figure shows a bar
graph with bars arranged in alphabetical order by country.
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3.3 CREATING A PARETO CHART
How can we use the same G8 data as for the bar graph to create a Pareto chart? A Pareto
chart is simply a bar graph in which the bars are arranged from highest value to lowest
value. We would rearrange the countries so that they are ordered from the country with
the highest GDP to the country with the lowest GDP. The Pareto chart is shown in the
figure below.
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Exercises
Clarifying the Concepts

3.1 What are the seven techniques discussed in this chapter
for misleading with graphs?

3.2 What are the steps to create a scatterplot?
3.3 How can we tell whether two variables are linearly or

nonlinearly related?
3.4 What is the difference between a line graph and a time

plot?
3.5 What is the difference between a bar graph and a Pareto

chart?
3.6 Bar graphs and histograms look very similar. In your

own words, what is the difference between the two?
3.7 What are pictorial graphs and pie charts?
3.8 Why are bar graphs preferred over pictorial graphs and

pie charts?
3.9 Why is it important to identify the independent vari-

able and the dependent variable before creating a visual
display?

3.10 Under what circumstances would your x-axis and y-axis
not start at 0?

3.11 Chartjunk comes in many forms. What specifically are
moiré vibrations, grids, and ducks?

3.12 Geographical information systems (GIS), such as those
provided by computerized graphing technologies, are
particularly powerful tools for answering what kinds of
research questions?˚

3.13 How is the bubble graph depicted in Next Steps: Mul-
tivariable Graphs similar to a traditional scatterplot?

3.14 How does the bubble graph depicted in Next Steps:
Multivariable Graphs differ from a traditional scatterplot?

Calculating the Statistics

3.15 Alumni giving rates calculated as the total dollars do-
nated per year from 1999 to 2009 represent what kind
of variable—nominal, ordinal, or scale? What would be
an appropriate graph to depict these data?



3.16 Alumni giving rates calculated as the number of alumni
who donated and the number who did not donate in
a given year represent what kind of variable—nominal,
ordinal, or scale? What would be an appropriate graph
to depict these data?

3.17 You are exploring the relation between gender and
video game performance, as measured by final scores on
a game.

a. In this study, what are the independent and depend-
ent variables?

b. Is gender a nominal, ordinal, or scale variable?

c. Is final score a nominal, ordinal, or scale variable?

d. Which graph or graphs would be appropriate to de-
pict the data? Explain why.

3.18 Would you describe these data as showing a linear, a
nonlinear, or no relation? Explain.

3.19 Would you describe these data as showing a linear, a
nonlinear, or no relation? Explain.

3.20 What elements are missing from the graphs in Exercises
3.18 and 3.19?

3.21 Below is a figure presenting the number of graduate
students enrolled at a university, across six fall terms, as
a percentage of the total student population.

a. What kind of visual display is this?

b. What other type of visual display could have been
used?

3.22 What is missing from the axes in the figure in Exercise
3.21?

3.23 What chartjunk is present in the figure in Exercise 3.21?

3.24 Using the figure in Exercise 3.21, estimate graduate stu-
dent enrollment, as a percentage of the total student
population, in the following fall terms:

a. 2003

b. 2004

c. 2006

3.25 How would the comparisons between bars in Exercise
3.21 change if the y-axis started at 0?

3.26 When creating a graph, we need to make a decision
about the numbering of our axes. If you had the fol-
lowing range of data for one of your variables, how
might you label the relevant axis?

337 280 279 311 294 301 342 273

3.27 If you had the following range of data for one of your
variables, how might you label the relevant axis?

0.10 0.31 0.27 0.04 0.09 0.22 0.36 0.18

3.28 The Murder Ink Map on p. 66 depicts the location of
murders in the city of Baltimore in a given year. Each
pushpin represents a murder.

a. Using the map, approximately how many murders
took place to the east of Interstate 83?

b. Using the map, approximately how many murders
took place to the west of Interstate 83?

c. Was being east or west of Interstate 83 associated
with a difference in the number of murders?
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3.29 Based on the data in the bubble graph in Next Steps:
Multivariable Graphs, what is the relation between in-
come and life expectancy?

3.30 The colors in the bubble graph in Next Steps: Multi-
variable Graphs represent the geographic region
within which the country lies. Using this information,
what is the relation between income and geographic
region?

Applying the Concepts

3.31 A social psychologist studied the effect of height on per-
ceived overall attractiveness. Students were recruited to
come to a research laboratory in pairs. They were left
to sit in the waiting room for several minutes and then
were brought to separate rooms, where their heights
were measured. They also filled out a questionnaire that
asked, among other things, that they rate the attractive-
ness of the person who had been sitting with them in
the waiting room on a scale of 1 to 10.

a. In this study, are the independent and dependent
variables nominal, ordinal, or scale?

b. Which graph or graphs would be most appropriate
to depict the data? Explain why.

c. If height ranged from 58 inches to 71 inches in this
study, would your axis start at 0? Explain.

3.32 A social worker tracked the depression levels of clients
being treated with cognitive-behavioral therapy for de-
pression. For each client, depression was assessed at
weeks 1 to 20 of therapy. She calculated a mean for all
her clients at week 1, week 2, and so on, all the way
through week 20.

a. What are the variables in this study?

b. Are the variables nominal, ordinal, or scale?

c. Which graph or graphs would be most appropriate
to depict the data? Explain why.

3.33 An epidemiologist determined male suicide rates for 20
countries. For example, in 1996, the rate of male suicide
in the United States was approximately 19.3 per
100,000 men, while in China that rate was approxi-
mately 15.9.

a. What are the variables in this study?

b. Are the variables nominal, ordinal, or scale?

c. What graph would be most appropriate to depict
the data? Explain why.

d. If you wanted to track the suicide rates for three of
these countries over 50 years, what type of graph
might you use to show these data?

3.34 Every summer, the touring company America-by-
Bicycle conducts its Cross-Country Challenge, a seven-
week bicycle journey across the United States from San
Francisco to Portsmouth, New Hampshire. At some

point during the trip, the exhausted cyclists usually start
to complain that the organizers are purposely planning
for days with lots of hill and mountain climbing to co-
incide with longer distances. The staff who work on the
tour counter that no relation exists between climbs and
mileage and that the route is organized based on prac-
ticalities, such as the location of towns in which riders
can stay. The organizers who planned the route (and
who also own the company) say that they actually tried
to reduce the mileage on the days with the worst
climbs. Here are the approximate daily mileages and
climbs (in vertical feet) as estimated from one rider’s bi-
cycle computer.

a. Construct a scatterplot of the cycling data, putting
mileage on the x-axis. Be sure to label everything
and include a title.

b. We haven’t yet learned to calculate inferential sta-
tistics on these data, so we can’t really know what’s
going on, but do you think that the amount of ver-
tical climb is related to a day’s mileage? If yes, ex-
plain the relation in your own words. If no, explain
why you think there is no relation.

c. It turns out that inferential statistics do not support
the existence of a relation between these variables
and that the staff seem to be the most accurate in
their appraisal. Why do you think the cyclists and
organizers are wrong in opposite directions? What
does this say about people’s biases and the need for
data?

3.35 The Group of Eight (G8) consists of most of the major
world economic powers. It meets annually to discuss

Mileage Climb Mileage Climb Mileage Climb

83 600 69 2500 102 2600

57 600 63 5100 103 1000

51 2000 66 4200 80 1000

76 8500 96 900 72 900

51 4600 124 600 68 900

91 800 104 600 107 1900

73 1000 52 1300 105 4000

55 2000 85 600 90 1600

72 2500 64 300 87 1100

108 3900 65 300 94 4000

118 300 108 4200 64 1500

65 1800 97 3500 84 1500

76 4100 91 3500 70 1500

66 1200 82 4500 80 5200

97 3200 77 1000 63 5200

92 3900 53 2500
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pressing world problems. In 2005, for example, the
agenda included global warming, poverty in Africa, and
terrorism. Decisions made by G8 nations can have a
global impact; in fact, the eight nations that make up
the membership reportedly account for almost two-
thirds of the world’s economic output. Here are data
for seven of the eight G8 nations for gross domes -
tic product (GDP) in 2004 (according to the World
Bank) and a measure of education. The measure of ed-
ucation is the percentage of the population between
the ages of 25 and 64 that have at least one university
degree (Sherman, Honegger, & McGivern, 2003). Rus-
sia is not included because no data point for education
was available.

a. Create a scatterplot of these data with university de-
gree on the x-axis, being sure to label everything
and to give it a title. Later, we’ll use statistical tools
to determine the equation for the line of best fit.
For now, draw a line of best fit that represents your
best guess as to where it would go.

b. In your own words, describe the relation between
the variables that you see in the scatterplot.

c. Education is on the x-axis, indicating that education
is the independent variable. Explain why it is pos-
sible that education predicts GDP. Now reverse your
explanation of the direction of prediction, explain-
ing why it is possible that GDP predicts education.

3.36 The Canadian Institute for Health Information (CIHI)
is a nonprofit organization that compiles data from a
range of institutions—from governmental organiza -
tions to hospitals to universities. Among the many top-
ics that interest public health specialists is the problem
of low levels of organ donation. Medical advances
have led to ever-increasing rates of transplantation,
but organ donation has not kept up with medicine’s
ability to perform more sophisticated and more com-
plicated surgeries. Data reported by CIHI (2005) pro-
vide Canadian transplantation and donation rates
for 1994–2004. Here are the donor rates per million
deaths.

a. Construct a time series plot from these data. Be sure
to label and title your graph.

b. What story are these data telling?

c. If you worked in public health and were studying the
likelihood that families would agree to donation,
what research question might you ask about the pos-
sible reasons for the trend suggested by these data?

3.37 U.S. Universities are concerned with increasing the per-
centage of alumni who donate to the school because
alumni donation rate is a factor in the U.S. News & World
Report university rankings. What factors might play a role
in alumni donation rates? Although we could test numer-
ous variables, let’s look at one: type of university. U.S. News
& World Report lists the top-10 national universities (all of
which are private), the top-10 public national universities,
and the top-10 liberal arts colleges (also all private).
National universities focus on graduate education and
research, whereas liberal arts colleges focus on undergrad-
uate education. To give you a sense of the type of institu-
tions in each of these categories, the number-one schools
for 2004 in the three categories were Harvard University,
the University of California at Berkeley, and Williams
College, respectively. Here are the 2004 alumni donation
rates for the top-10 schools in each of these categories.

                                                  Percentage 
                                 GDP             with
                             (in trillions    University
Country                    of $US)         Degree

Canada                        0.98               19

France                         2.00               11

Germany                     2.71               13

Italy                            1.67                 9

Japan                           4.62               18

United Kingdom          2.14               17

United States              11.67               27

           Donor Rate                Donor Rate
           per Million                 per Million 
Year         Deaths         Year         Deaths

1994          14.0           2000          15.3

1995          14.9           2001          13.5

1996          14.2           2002          12.9

1997          14.3           2003          13.5

1998          13.8           2004          13.1

1999          13.8

     Top-10                 Top-10              Top-10
Private National     Public National     Liberal Arts 
     Schools                 Schools             Schools

        48%                      15%                 60%

        61                         14                    63

        45                         26                    52

        39                         16                    53

        46                         25                    66

        37                         26                    52

        38                         15                    55

        34                           9                    55

        33                         12                    53

        47                         32                    48



a. What is the independent variable in this example?
Is it nominal or scale? If nominal, what are the lev-
els? If scale, what are the units and what are the
minimum and maximum values?

b. What is the dependent variable in this example? Is
it nominal or scale? If nominal, what are the levels?
If scale, what are the units and what are the mini-
mum and maximum values?

c. Construct a bar graph of these data using the default
options in your computer software.

d. Construct a bar graph of these data, but change the
defaults to satisfy the guidelines for graphs discussed
in this chapter. Aim for simplicity and clarity.

e. What does the pattern of the data suggest?

f. Cite at least one research question that you might
want to explore next if you worked for one of these
universities—your research question should grow
out of these data.

3.38 In How It Works 3.2 and 3.3, we created a bar graph
and a Pareto chart for the 2004 GDP, in trillions of U.S.
dollars, of each of the G8 nations.

a. Explain the difference between a Pareto chart and
a bar graph.

b. What is the benefit of the Pareto chart over the bar
graph?

3.39 Johnson, Koch, Fallow, and Huwe (2000) conducted a
study of mentoring in two types of psychology doctoral
programs: experimental and clinical. Students who grad-
uated from the two types of programs were asked
whether they had a faculty mentor while in graduate
school. In response, 48.00% of clinical psychology stu-
dents who graduated between 1945 and 1950 and
62.31% who graduated between 1996 and 1998 re-
ported having had a mentor; 78.26% of experimental
psychology students who graduated between 1945 and
1950 and 78.79% who graduated between 1996 and
1998 reported having had a mentor.

a. What are the two independent variables in this
study, and what are their levels?

b. What is the dependent variable?

c. Create a bar graph that depicts the percentages for
the two independent variables simultaneously.

d. What story is this graph telling us?

e. Was this a true experiment? Explain your answer.
3.40 Refer to the study described in Exercise 3.39.

a. Why would a time series plot be inappropriate for
these data? What would a time series plot suggest
about the mentoring trend for clinical psychology
graduate students and for experimental psychology
graduate students?

b. For four time points—1945–1950, 1965, 1985, and
1996–1998—the mentoring rates for clinical psy-

chology graduate students were 48.00, 56.63, 47.50,
and 62.31, respectively. For experimental psychol-
ogy graduate students, the rates were 78.26, 57.14,
57.14, and 78.79, respectively. How does the story
we see here conflict with the one that we developed
based on just two time points?

3.41 Consider the data on alumni donations presented in Ex-
ercise 3.37.

a. Explain how these data could be presented as a pic-
torial graph. (Note that you do not have to con-
struct such a graph.) What kind of picture could
you use? What would it look like?

b. What are the potential pitfalls of a pictorial graph?
Why is a bar chart usually a better choice?

3.42 The National Survey on Student Engagement (NSSE)
has surveyed more than 400,000 students—freshmen
and seniors—at 730 U.S. schools since 1999. Among the
many questions on the NSSE, students were asked how
often they “participated in a community-based project
as part of a regular course.” For the students at the 19
institutions classified as national universities that made
their data publicly available through the U.S. News
&World Report Web site, here are the data: never, 56%;
sometimes, 31%; often, 9%; very often, 5%. (The per-
centages add up to 101% because of rounding.) Explain
why a bar graph would be more suitable for these data
than a pie chart.

3.43 The 2000 National Doctoral Program Survey asked
32,000 current and recent PhD students in the United
States, across all  disciplines, to respond to the statement
“I am satisfied with my advisor.” The researchers cal-
culated the percentage of students who responded
“agree” or “strongly agree”: current students, 87%; re-
cent graduates, 86%; former students who left without
completing the PhD, 48%.

a. Use a software program that produces graphs (e.g.,
Excel, SPSS, Minitab) to create a bar graph for these
data.

b. Play with the options available to you. List aspects
of the bar graph that you are able to change to make
your graph meet the guidelines listed in this chapter.
Be specific, and include the revised graph.

3.44 Give an example of a study—real or hypothetical—in
the social sciences that might display its data using the
following types of graphs. State your independent vari-
able(s) and dependent variable, including levels for any
nominal variables.

a. Frequency polygon

b. Line graph (line of best fit)

c. Bar graph (one independent variable)

d. Scatterplot

e. Time series plot
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f. Pie chart

g. Bar graph (two independent variables)
3.45 What advice would you give to the creators of each of

the following graphs? Consider the basic guidelines for
a clear graph, chartjunk, and the seven lies of statistics.
Give three pieces of advice for each graph. Be specific—
don’t just say there’s chartjunk; say exactly what you’d
change.

a. The shrinking doctor:

b. Workforce participation:

3.46 Find an article in the popular media (newspaper, mag-
azine, Web site) that includes a graph in addition to the
text.

a. Briefly summarize the main point of the article and
graph.

b. What are the independent and dependent variables
depicted in the graph? What kind of variables are
they? If nominal, what are the levels?

c. What descriptive statistics are included in the article
or on the graph?

d. In one or two sentences, what story is the graph
(rather than the article) trying to tell?

e. How well do the text and graph match up? Are they
telling the same story? Are they using the same
terms? Explain.

f. Write a paragraph to the graph’s creator with ad-
vice for improving it. Be specific, citing the guide-
lines from this chapter.

g. Redo the graph, either by hand or by computer, in
line with your suggestions.

3.47 The Yerkes–Dodson graph demonstrates that graphs can
be used to describe theoretical relations that can be
tested. In a study that could be applied to the career de-
cisions made during college, Gilovich and Medvec
(1995) identified two types of regrets—regrets of action
and regrets of inaction—and proposed that their inten-
sity changes over time. You can think of these as Type
I regrets—things you have done that you wish you had
not done (regrets of action)—and Type II regrets—
things you have not done that you wish you had done
(regrets of inaction). The researchers suggested a theo-
retical relation between the variables that might look
something like the graph below.

a. Briefly summarize the theoretical relations proposed
by the graph.
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b. What are the independent and dependent variables
depicted in the graph? What kind of variables are
they? If nominal or ordinal, what are the levels?

c. What descriptive statistics are included in the text
or on the graph?

d. In one or two sentences, what story is the graph
trying to tell?

3.48 The American Psychological Association (APA) com-
piles many statistics about training and careers in the
field of psychology. The accompanying graph tracks the
numbers of bachelor’s, master’s, and doctoral degrees
between the years 1970 and 2000.

a. What kind of graph is this? Why did the researchers
choose this type of graph?

b. Briefly summarize the overall story being told by
this graph.

c. What are the independent and dependent variables
depicted in the graph? What kind of variables are
they? If nominal or ordinal, what are the levels?

d. List at least three things that the graph creators did
well (i.e., are in line with the guidelines for graph
construction).

e. List at least one thing that the graph creators should
have done differently (i.e., is not in line with the
guidelines for graph construction).

f. Name at least one variable other than number
that might be used to track the prevalence of psy-
chology bachelor’s, master’s, and doctoral degrees
over time.

g. The increase in bachelor’s degrees over the years is
not matched by an increase in doctoral degrees. List
at least one research question that this finding sug-
gests to you.

3.49 The gray line in Figure 3-20 depicts the Mental Health
Index for a fictional client in relation to several bench-
marks. Use the information supplied in Figure 3-20 to
answer the following questions:

a. Describe the trajectory of the client’s Mental Health
Index over the course of the therapy  sessions.

b. Provide a possible explanation for the trajectory de-
scribed in part (a).

c. Based on the benchmarks depicted in the graph,
would you recommend that the client continue
therapy?

3.50 Go to http://maps.google.com/. On a map of your
country, click on the traffic button.

a. How is the density and flow of traffic represented
on this graph?

b. Describe traffic patterns in different regions of your
country.

c. What are the benefits of this interactive graph?
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Terms
scatterplot (p. 53)
range-frame (p. 54)
linear relation (p. 55)
nonlinear relation (p. 55)
line graph (p. 55)

time plot, or time series plot (p. 56)
bar graph (p. 57)
Pareto chart (p. 58)
pictorial graph (p. 60)
pie chart (p. 61)

chartjunk (p. 63)
moiré vibration (p. 64)
grid (p. 64)
duck (p. 64)
defaults (p. 64)
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■ You should understand what a distribution is
(Chapter 2).

■ You should be able to explain histograms and
frequency polygons (Chapter 2).

BEFORE YOU GO ON

Central Tendency
Mean, the Arithmetic Average
Median, the Middle Score
Mode, the Most Common Score
How Outliers Affect Measures of Central

Tendency
Which Measure of Central Tendency 

Is Best?

Measures of Variability
Range
Variance
Standard Deviation

Next Steps: The Interquartile Range



On August 9, 1945, chance variability in the cloud cover
diverted a B-29 bomber from Kokura, Japan, to its second-
ary target, the city of Nagasaki. When the atomic bomb
exploded a few hundred feet above a tennis court, all of the
buildings and most of the people who lived in the city of
Nagasaki simply disappeared; the people in Kokura sur-
vived. Chance variability matters.

How does any nation recover from such devastation? In
1950, an American statistician named W. Edwards Deming
persuaded Japan’s leading engineers and businesspeople that
a statistical idea could re-create their entire industrial-based
economy: variability. Deming’s core statistical insight was
that people were happy to pay for cars, kitchen appliances,
and electronics with high reliability (low variability).

The Japanese industrial leadership embraced Deming,
as well as his idea that it was management’s job to reduce
anything that contributes to product variability (an unre-
liable product). In manufacturing, variability might be due
to using different suppliers because they submitted the low-
est bid, using worn-out machinery to save money in the
short term, or making working conditions unpleasant for
employees.

Deming provided practical statistical guidelines so that
Japanese businesses could lower product variability. As
Japan’s industrial leaders applied Deming’s statistical insight,
they quickly discovered that controlling variability could
be translated into thousands of different manufacturing so-
lutions. The insight transformed the reputation of Japanese
companies as manufacturers of cheap junk into one of
manufacturers of high-quality products. To this day, the
Japanese are specific about how they transformed their dev-

astated nation from an economic disaster to an industrial leader: W. Edwards Deming.
Deming’s statistical approach to manufacturing centered on the idea of variability.

In fact, variability is one of the basic building blocks of most statistical techniques. In
this chapter, we learn about three common measures of variability in a distribution:
range, variance, and standard deviation. But to fully understand variability, we first have
to know how to identify the middle of a distribution. So before we learn about vari-
ability, we first introduce three measures of the middle of a distribution, or the central
tendency: mean, median, and mode.

Central Tendency
Central tendency refers to the descriptive statistic that best represents the
center of a data set, the particular value that all the other data seem to be gath-
ering around. It’s what we mean when we refer to the “typical” score.
Simply creating a visual representation of the distribution, as we did
in Chapter 2, often reveals its central tendency. The central tendency
is usually at (or near) the highest point in the histogram or the poly-
gon, but the specific way that data cluster around a distribution’s cen-
tral tendency can be measured three different ways: mean, median,
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Nagasaki, Three Days After the Atomic Bomb

�   MASTERING THE CONCEPT

4-1: Central tendency is one of the most

important ways to understand the distribution

of data. We can use the mean, median, or

mode as an indicator of central tendency.



and mode. Figure 4-1 depicts the histogram for the
data on World Cup top finishes, omitting scores for
countries with no top finishes. Our guess is that the
central tendency is just above the tallest bar, that for
the score of 2.

Mean, the Arithmetic Average
The mean is simple to calculate and is the gateway to
understanding statistical formulas. The mean is such
an important concept in statistics that we provide you
with four distinct ways to think about it: verbally,
arithmetically, visually, and symbolically (using statis-
tical notation).

The Mean in Plain English The most commonly
reported measure of central tendency is the mean, the
arithmetic average of a group of scores. The mean, often
called the average, is used to represent the “typical”
score in a distribution. This is different from the way we often use the word average in
everyday conversation. We may refer to a person as average in a somewhat derogatory
way, noting that someone is “just” average in athletic ability or that a movie was “only”
average. The word average connotes so many different shades of meaning that we need
to define the mean arithmetically.

The Mean in Plain Arithmetic The mean is calculated by summing all the scores
in a data set and then dividing this sum by the total number of scores. You likely have
calculated means many times in your life.

1

First- or second-place finishes

0

1

2

3

4

5

6

7

8

9

10

Frequency

0 2 3 4 5 6 7 8 9 10

11

12

Our guess as to the
center of the
distribution

FIGURE 4-1
Estimating Central Tendency
with Histograms

Histograms and frequency polygons
allow us to see the likely center of our
sample’s distribution. The arrow points
to our guess as to the center of the
distribution of World Cup top finishes.

For example, when we explore the numbers of top finishes that countries had in World
Cup soccer tournaments that we considered in Chapter 2, the mean would be calcu-
lated by first adding the number of top finishes for each country, then dividing by the
total number of countries. We’ll do this for the 14 countries that had at least 1 top
finish, omitting the 63 with 0 top finishes.

4 � 8 � 1 � 2 � 1 � 2 � 2 � 6 � 2 � 2 � 2 � 2 � 2 � 10 � 46

In this case, we divide 46, the sum of all
scores, by 14, the number of scores in this
sample:

                                                  46/14 � 3.29 ■

Visual Representations of the Mean Think of the mean as the visual point that
perfectly balances two sides of a distribution. For example, the mean of 3.29 “top fin-
ishes” is represented visually as the point that perfectly balances that distribution, shown
in the histogram in Figure 4-2.

STEP 1: Add all of the scores together.

STEP 2: Divide the sum of all scores
by the total number of scores.

EXAMPLE 4.1

■ Central tendency refers to the
descriptive statistic that best
represents the center of a data
set, the particular value that all
the other data seem to be
gathering around.

■ The mean is the arithmetic
average of a group of scores.
It is calculated by summing all
the scores and dividing by the
total number of scores.
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The Mean Expressed by Symbolic Notation Symbolic notation may sound far
more difficult to understand than it really is. After all, you just calculated a mean without
symbolic notation and without a formula. Fortunately, we need to understand only a
handful of symbols to express the ideas necessary to understand statistics.

Here are the several symbols that represent the mean. For the mean of a sample,
statisticians typically use M or X̄̄. In this text, we use M; many other texts also use M,
but some use X̄̄ (pronounced “X bar”). For a population, statisticians use the Greek
letter l (pronounced “mew”) to symbolize the mean. (Although there are exceptions,
Latin letters such as M tend to refer to numbers based on samples, and Greek letters
such as l tend to refer to numbers based on populations.) The numbers based on samples
are called statistics; M is a statistic. The numbers based on populations are called parameters;
l is a parameter. Table 4-1 summarizes how these terms are used. As shown in Fig-
ure 4-3, you can remember this distinction by the first letters of these words: statistic
and sample both begin with s, and parameter and population both begin with p. These
symbols are part of the language of statistics and help us to communicate with other
statisticians.

A formula to calculate the mean of a sample would use the symbol M on the left
side of the equation. The right side would provide information on the actual calculation
of the mean. A single score is typically symbolized as X. We know that we’re summing
all the scores—all the X’s—so the first step is to use the summation sign, R (pronounced
“sigma”), to indicate that we’re summing a list of scores. As you might guess, the full
expression for summing all the scores would be RX. This symbol combination instructs
us to add up all of the X’s in the sample.

1 3 5 7 92 4 6 8 10

3.29

0

FIGURE 4-2
The Mean as the Fulcrum 

of Our Data

The mean, 3.29, is the balancing point for
all the scores for top finishes for the

countries that competed in World Cup
soccer tournaments. Mathematically, the

scores always balance around the mean for 
any sample.

TABLE 4-1. The Mean in Symbols

The mean of a sample is an example of a statistic, whereas the mean of a population is an example of a pa-
rameter. The symbols we use depend on whether we are referring to the mean of a sample or a population.

             Number                          Used for                         Symbol                          Pronounced

            Statistic                             Sample                               M or X̄̄                           “M” or “X bar”

            Parameter                         Population                           l                                   “mew”

■ A statistic is a number based
on a sample taken from a
population; statistics are
usually symbolized by Latin
letters.

■ A parameter is a number
based on the whole
population; parameters are
usually symbolized by Greek
letters.

■ The median is the middle
score of all the scores in a
sample when the scores are
arranged in ascending order. If
there is no single middle
score, the median is the mean
of the two middle scores.



Here is a step-by-step list for constructing the equations:
Step 1. Add up all of the scores in the sample. In statistical notation, this is RX.
Step 2. Divide the total of all of the scores by the total number of scores. The total

number of scores in a sample is typically represented by N. (Note that the capital letter
N is typically used when we refer to the number of scores in the entire data set; if we
break the sample down into smaller parts, as we’ll see in later chapters, we typically
use the lowercase letter n.) The full equation would be:

M
X

N
�

R
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FIGURE 4-3
Samples and Parameters

Try using a mnemonic trick to remember the distinction
between samples and parameters. The letter s means
that numbers based on (s)amples are called (s)tatistics.
The letter p means that numbers based on (p)opulations
are called (p)arameters.

�                                         

MASTERING THE FORMULA

4-1: The formula for the mean is:

. To calculate the mean,

we add up every score, then divide
by the total number of scores.

M
X

N
�

R

Let’s look at the mean for the World Cup data that we considered earlier in Example 4.1.

The sum of all scores is 46.

In this case, we divide the sum of all scores,
46, by the total number of scores, 14. The
result is 3.29.

Here’s how it would look as a formula:

Statisticians tend to be as specific with their symbols as they are with their words.
For example, almost all symbols are italicized, whether in the formulas to calculate sta-
tistics or in the reporting of statistics. However, the actual numerical values of the sta-
tistics are not italicized. Furthermore, whether or not a symbol is capitalized usually
has meaning. Changing a symbol from uppercase to lowercase often changes what it
means. When you practice calculating means, use this formula, being sure to italicize
the symbols and use capital letters for M, X, and N. ■

Median, the Middle Score
The second most common measure of central tendency is the median. The median is
the middle score of all the scores in a sample when the scores are arranged in ascending order. We
can think of the median as the 50th percentile. The median does not tend to be denoted
by a symbol, although in APA style, the writing style of the American Psychological
Association, it can be abbreviated as mdn. (Note that APA style, despite the word psy-
chological in its name, is used across many of the social sciences; you are likely to use it
in your courses regardless of your social science major.)

M
X

N
� � �

R 46

14
3.29

STEP 1: We add up every score.

STEP 2: We divide the sum of all
scores by the total number of
scores.

EXAMPLE 4.2
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To determine the median, follow these steps:
Step 1. Line up all the scores in ascending order.
Step 2. Then find the middle score. With an odd

number of scores, there will be an actual middle
score. With an even number of scores, there will be
no actual middle score. In this case, take the mean
of the two middle scores.

Here are more specific instructions for finding
the median. Keep in mind that with a distribution of
only a few data points, we won’t want to use the for-
mula—just count how many numbers there are in
the distribution and find the score that has the same
number of scores above it and below it. Even with a
distribution with many scores, the calculation is easy.
All we do is divide the number of scores (N ) by 2
and add 1⁄2—that is, 0.5. That number is the ordinal
position (rank) of the median, or middle score. As il-
lustrated below, simply count that many places over
from the start of your scores and report that number.
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Mean Versus Median The median is the part of the roadway that divides the
directions in which vehicles are permitted to drive. It can be dangerous to confuse the
mean and the median, especially when you are calculating the “middle” of the roadway!

Here is an example with an odd number of scores (representing numbers of top finishes
for 13 of the 14 countries in the World Cup example; we omit one score, a 2):

4, 8, 1, 2, 1, 2, 2, 6, 2, 2, 2, 2, 10

1, 1, 2, 2, 2, 2, 2, 2, 2, 4, 6, 8, 10

To do this, first we count them. There are
13 scores: 13/2 � 6.5. If we add 0.5 to this

result, we get 7. Therefore, the median is the 7th score. We now count across to the
7th score. The median is 2. ■

STEP 1: Arrange the scores in
ascending order:

STEP 2: Find the middle score.

EXAMPLE 4.3

Here is an example with an even number of scores. We now include all 14 countries
from the World Cup data in Example 4.1, including the score of 2 that we omitted in
Example 4.3.

Our data are now:

1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 4, 6, 8, 10

First, we count the scores. There are 14
scores. We then divide the number of scores

by 2: 14/2 � 7. If we add 0.5 to this result, we get 7.5; therefore, the median is the
average of the 7th and 8th scores. The 7th and 8th scores are 2 and 2. The median is
their mean, the mean of 2 and 2 is 2. ■

STEP 1: Arrange the scores in
ascending order.

STEP 2: Find the middle score.

EXAMPLE 4.4



Stable Low 
(depressed) 

Frequency 

Mood 

High 
(manic) 

Mode, the Most Common Score
The mode is perhaps the easiest of the three measures of central tendency to calculate.
The mode is the most common score of all the scores in a sample. It is readily picked out on
a frequency table, histogram, or frequency polygon. Like the median, the mode does
not tend to be represented by a symbol. It does not even have an APA abbreviation.
When reporting modes, we use the word itself (e.g., the mode is . . . ).
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Determine the mode for the World Cup data for the 14 countries. Remember that
each score represents the number of that country’s top finishes in World Cup tourna-
ments. The mode can be found either by searching the list of numbers for the most
common score or by constructing a frequency table:

1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 4, 6, 8, 10    Mode:____

Did you get 2? If you didn’t, you might have made a common mistake. The mode
is the score that occurs most frequently, not the frequency of that score. So, in the data
set above, the score 2 occurs 8 times. The mode is 2, not 8. ■

The mode in this example is particularly easy to determine because there is one
most common score. Sometimes a data set has no specific mode. This is especially true
when the scores are reported to several decimal places (and no number occurs twice).
When there is no specific mode, we sometimes report the most common interval as
the mode. Other data sets have more than one specific mode, where two or more dif-
ferent scores are the most common. When there is more than one mode, we report
both, or all, of the most common scores. When a distribution of scores has one mode, we
refer to it as unimodal. When a distribution has two modes, we call it bimodal. When a dis-
tribution has more than two modes, we call it multimodal. A histogram describing bipolar
disease, for ex ample, might be multimodal, as illustrated in Figure 4-4.

As demonstrated in the example above, the mode can be used with scale data; how-
ever, it is more commonly used with nominal data. For example, Cancer Research UK
(2003) reported that lung cancer was the most common cause of cancer death in the
United Kingdom (22%). No other type of cancer came close. Colorectal cancer ac-
counted for 10% of cancer deaths, breast cancer for 8%, and each of all the other types
for 7% or less. In this data set, the modal type of cancer death is lung cancer.

EXAMPLE 4.5

FIGURE 4-4
Bipolar Disorder and the Modal Mood

Because people with bipolar disorder, especially those who are
not receiving treatment, have three different mood states in
their lives, it might be hard to determine a true center for their
daily mood scores. The distribution might be multimodal, with
one mode for depressive days, one for stable days, and one
for manic days.

■ The mode is the most
common score of all the
scores in a sample.

■ A unimodal distribution has
one mode, or most common
score.

■ A bimodal distribution has two
modes, or most common
scores.

■ A multimodal distribution has
more than two modes, or most
common scores.
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When we look at the stolen base data, we notice that Rickey Henderson’s score is
very different from the others. Four of the scores are between 808 and 938, not a very
wide range. But Rickey Henderson stole 1406 bases. When there is an outlier, like
Rickey Henderson, it is important to consider what his score would do to the mean,
especially if we have a small number of observations. ■

How Outliers Affect Measures of Central Tendency
The mean usually appears in journal articles and media reports. However, we use the
median or mode when the data are skewed (lopsided). One common reason for skewed
data is a statistical outlier, which is, as we learned in Chapter 1, an extreme score that is
either very high or very low in comparison with the rest of the scores in the sample. To
demonstrate the effect of outliers on the mean, as well as the median’s resistance to the
effect of outliers, let’s use the statistical archives of America’s national pastime, baseball.

Some baseball players have made a career out of their ability to steal bases. But one
major league player eclipsed all others in terms of the total number of stolen bases:
Rickey Henderson. Reported below are five top base-stealers in major league history
and the number of bases stolen:

Rickey Henderson     1406

Lou Brock                   938

Billy Hamilton             912

Ty Cobb                      892

Tim Raines                 808

To get a sense of the lifetime achievement of the best base-stealers, we might want to
calculate a measure of central tendency for these five players, using the formula to get
a little more practice with the symbols of statistics.

As often happens, this mean is not the same as any of the scores in the sample. The
mean of 991.2 is not typical for any of these five baseball players. An important feature
of the mean, however, is that it is the point at which all the other scores would balance.
Figure 4-5 demonstrates this using the analogy of a balance beam with the range of stolen
bases from 808 to 1406 indicated on it. Weights are placed to represent each of the scores
in our sample. The seesaw is perfectly balanced if we put its fulcrum at the mean of 991.2.

M
X

N
� �

� � � �
� �

R R( )1406 938 912 892 808

5

4956

5
991.2

EXAMPLE 4.6

800 900 1000 1100 1200 1300 1400 1500 850 950 1050 1150 1250 1350 1450 

991.2

FIGURE 4-5
Outliers and the Mean

When there is an outlier, sometimes the
mean is not representative of any one

actual score. With the base-stealing
data, the mean of 991.2 is above the
lowest four scores and well below the

highest. Rickey Henderson’s score pulls
the mean higher, even among the very

best base-stealers ever.
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When we eliminate Rickey Henderson’s score, the data are now 808, 892, 912, and
938, and the mean is now:

The mean of these scores, 887.5, is a good deal lower than
the mean of the scores that included Rickey Henderson’s very
high number of stolen bases. We see from Figure 4-6 that this
mean, like the previous mean, marks the point at which all other
scores are perfectly balanced around it. However, this mean is a
little more representative of the scores—887.5 does seem to be
a typical score for these four players. ■

Which Measure of Central Tendency Is Best?
Different measures of central tendency can lead to very different conclusions. When
a decision needs to be made about which measure to use, the choice is usually between
the mean and the median. Typically, the mean is the measure of choice. However, when-
ever the distribution is skewed by an outlier (or when the distribution of observa -
tions itself is skewed), the median is used to measure central
tendency.

The mode is generally used in three situations: (1) when one
particular score dominates a distribution; (2) when the distribu-
tion is bimodal or multimodal; and (3) when the data are nom-
inal. When you are uncertain as to which measure is the best
indicator of central tendency, report all three.

Central tendency communicates an enormous amount of
information with a single number, so it is not surprising that
measures of central tendency are among the most widely re-
ported of descriptive statistics. Unfortunately, many people use
them incorrectly. One particular statistical “lie” or trick that is
used on consumers more than any other is reporting the mean
instead of the median. To avoid being tricked when you see a
report of central tendency, first notice whether it is reporting an
average (mean) or a median. Second, if it is reporting a mean,
think about whether that distribution is likely to be skewed by
one extremely high number (as in the base-stealing example).

Here is another example in which the mean and median
would lead to quite different conclusions: In an article on hous-
ing prices in Manhattan, the New York Times provided a model of
responsible journalism by demonstrating that there is a story be-
hind how central tendency is used to communicate real estate
prices. Before the U.S. real estate bubble burst, William Neuman (2005)
reported on record-high Manhattan housing prices of $750,000 (me-
dian) and $1,276,202 (mean). The mean was inflated by a few sales in
the millions, outliers that would not affect the median. For example, the
film star Gwyneth Paltrow and her husband, Chris Martin of the rock
band Coldplay, sold their Manhattan apartment right around that time
for about $7 million. This expensive price certainly would have inflated
the mean, but it would not have affected the median.

M
X

N
� �

� � �
� �

R R( )808 892 912 938

4

3550

4
887.5

EXAMPLE 4.7

800 850 900 950 

887.5

FIGURE 4-6
The Mean Without the Outlier

When the outlier—Rickey Henderson—
is omitted from the base-stealing data,
the mean is now more representative of
the actual scores in the sample.

�   MASTERING THE CONCEPT

4-2: The mean is the most common indicator

of central tendency, but is not always the

best. When there is an outlier, it is usually

better to use the median.

Celebrity Outliers Reports of
the cost of a typical Manhattan
apartment depend on whether
the mean or the median is
reported. Film star Gwyneth
Paltrow and her husband,
Coldplay lead singer Chris
Martin, sold their Manhattan
apartment in the spring of 2005
for around $7 million. Such a
sale would be an outlier and
would boost the mean; however,
it would not affect the median.
Of course, either way, the typical
Manhattan apartment is not
within the budget of the typical
college graduate!M
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Measures of Variability
After World War II, people often poked fun at the poor quality of
Japanese transistor radios and other products. But it took just three
years to transform Japanese manufacturing into an industry that made
high-quality products through low variability. In statistics, variability
is a numerical way of describing how much spread there is in a distribution.
The measures of variability we learn about next provide new ways to
describe the distribution of our data. One way to numerically describe
the variability of a distribution is by comput ing its range. A second
and more common way to describe variability is by computing variance
and its square root, known as standard  deviation.
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�   MASTERING THE CONCEPT

4-3: After central tendency, variability is the

second most common concept used to help

us understand the shape of a distribution.

Common indicators of variability are range,

variance, and standard deviation.

CHECK YOUR LEARNING
Reviewing the Concepts > The central tendency of a distribution is the one number that best describes what is typical

in that distribution (often its high point).

> The three measures of central tendency are the mean (arithmetic average), the median
(middle score), and the mode (most frequently occurring score).

> The mean is the most commonly used measure of central tendency, but the median is pre-
ferred when the distribution is skewed (lopsided). If you are unsure of which measure to
report, then report all three.

> The symbols used in statistics have very specific meanings; changing a symbol even slightly
can change its meaning a great deal.

Clarifying the Concepts 4-1 What is the difference between statistics and parameters?

4-2 Does an outlier have the greatest effect on the mean, median, or mode?

Calculating the Statistics 4-3 Calculate the mean, median, and mode of the following sets of numbers.

a. 10, 8, 22, 5, 6, 1, 19, 8, 13, 12, 8

b. 122.5, 123.8, 121.2, 125.8, 120.2, 123.8, 120.5, 119.8, 126.3, 123.6

c. 0.100, 0.866, 0.781, 0.555, 0.222, 0.245, 0.234

Applying the Concepts 4-4 Let’s examine fictional data for 20 seniors in college. Each score represents the number
of nights a student spends socializing in one week: 1, 0, 1, 2, 5, 3, 2, 3, 1, 3, 1, 7, 2, 3, 2,
2, 2, 0, 4, 6

a. Using the formula, calculate the mean of these scores.

b. If the researcher reported the mean of these scores to the university as an estimate
for the whole university population, what symbol would be used for the mean?
Why?

c. If the researcher was interested only in the scores of these 20 students, what symbol
would be used for the mean? Why?

d. What is the median of these scores?

e. What is the mode of these scores?

f. Are the median and mean similar to or different from each other? What does this
tell you about the distribution of scores?

Solutions to these Check Your
Learning questions can be found in
Appendix D.



Range
The range is the easiest measure of variability to calculate. The range is a measure of vari-
ability calculated by subtracting the lowest score (the minimum) from the highest score (the max-
imum). Maximum and minimum are sometimes substituted in this formula to describe
the highest and lowest scores, and some statistical computer programs abbreviate these
as max and min. The range is represented in formula as:

Here are the scores for countries’ numbers of top finishes in the World Cup that
we discussed earlier in the chapter. As before, we’ll omit countries with scores of 0 top
finishes.

1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 4, 6, 8, 10

range � �X Xhighest lowest
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MASTERING THE FORMULA

4-2: The formula for the range is:
. We simply

subtract the lowest score from the
highest score to calculate the range.

range � �X Xhighest lowest

We can determine the highest and lowest scores either by reading through the data or,
more easily, by glancing at the frequency table for these data.

In this case, the highest score is 10.

In this case, the lowest score is 1.

■

The range can be a useful initial measure of variability, but what we learn from the
range is limited. It is affected by our highest and lowest scores only. It does not take any
other data points into account. The other scores could all be very close to the highest
score or all huddled near the center. They could also be spread out evenly or have some
other unexpected pattern. We can’t know based only on the range.

Variance
Variance is the average of the squared deviations from the mean. It is a concept that we’ll
soon learn to calculate. Basically, however, variance refers to variability. When something
varies, it must vary from (or be different from) some standard. That standard is the
mean. So when we compute variance, the number we arrive at is a number that de-
scribes the degree to which a distribution varies with respect to the mean. A small
number indicates a small amount of spread or deviation around the mean, and a larger
number indicates a great deal of spread or deviation around the mean.

Range 10 1 9.� � � � �X Xhighest lowest

STEP 1: Determine the highest score.

STEP 2: Determine the lowest score.

STEP 3: Calculate the range by
subtracting the lowest score
from the highest score:

EXAMPLE 4.8

Students who seek therapy at university counseling centers often do not attend many
sessions. For example, in one study, the median number of therapy sessions was 3 and
the mean was 4.6 (Hatchett, 2003). Let’s examine the spread of fictional scores for a
sample of five students: 1, 2, 4, 4, and 10 numbers of therapy sessions, with a mean of

EXAMPLE 4.9

■ Variability is a numerical way
of describing how much
spread there is in a
distribution.

■ The range is a measure of
variability calculated by
subtracting the lowest score
(the minimum) from the
highest score (the maximum).

■ Variance is the average of the
squared deviations from the
mean.
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4.2 sessions. Next we find out how far each score deviates from the mean by subtracting
the mean from every score. As you might expect, we label the column that lists our
scores with an X. Here, our second column includes the results we get when we sub-
tract the mean from each score, or X � M. We call each of these a deviation from the
mean (or just a deviation)—the amount that a score in a sample differs from the mean of the
sample.

But we can’t just take the mean of the deviations. If we do (and if you try this, don’t
forget the signs—negative and positive), we get 0. In fact, every time we do this with
any data set, the mean is 0. Are you surprised? Remember, the mean is the point at
which all scores are perfectly balanced. Mathematically, the scores have to balance out.
Yet we know that there is variability among these scores. The number representing the
amount of variability is certainly not 0!

When we ask students for ways to eliminate the negative signs, two suggestions
typically come up: (1) take the absolute value of the deviations, thus making them
all positive, or (2) square all the scores, again making them all positive. It turns
out that the latter, squaring all the deviations, is how statisticians solve this problem.
Once we square our deviations, we can take their average and get a measure of
variability.

Here is a recap of the steps we just described:

We call these deviations from the mean.

We call these squared deviations.

This is often called the sum of squared de-
viations, or the sum of squares for short.

That is, we’re taking the average of the
squared deviations.

This number represents the mathematical definition of variance—the average of the
squared deviations from the mean.

Let’s calculate variance for our therapy session data. We add a third column to con-
tain the squares of each of the deviations, then add all of these numbers up to compute
the sum of squares (symbolized as SS), the sum of each score’s squared deviation from the
mean. In this case, the sum of the squared deviations is 48.80, so the average squared
deviation is 48.80/5 � 9.76. Thus, the variance equals 9.76.

X X � M

  1     �3.2

  2     �2.2

  4     �0.2

  4     �0.2

10         5.8

STEP 1: Subtract the mean from every
score.

STEP 2: Square every deviation from
the mean.

STEP 3: Sum all of the squared
deviations.

STEP 4: Divide the sum of squares by
the total number in the
sample (N).

■ A deviation from the mean is
the amount that a score in a
sample differs from the mean
of the sample; also called
deviation.

■ The sum of squares,
symbolized as SS, is the sum
of each score’s squared
deviation from the mean.

■ The standard deviation is the
square root of the average of
the squared deviations from
the mean; it is the typical
amount that each score varies,
or deviates, from the mean.



Now let’s put this in equation form, which will make it look more complicated
than it is but will continue to acclimate us to symbolic notation. We need a few new
symbols at this point, because variance has several different symbols when it’s calculated
from a sample, including SD2, s2, and MS. SD2 and s2 come from the words standard
deviation squared. MS comes from the words mean square (referring to the average of
the squared deviations). We’ll use SD2 at this point, but we will alert you when we
switch to other symbols for variance later. When variance is calculated from a popu-
lation, it typically has just one symbol, r2 (pronounced “sigma squared”), and is a pa-
rameter. (Remember, Latin letters are used for statistics, which are calculated from
samples, and Greek letters are used with parameters, which are calculated from or hy-
pothesized for populations.)

We already know all the symbols needed to calculate variance: X to indicate the
individual scores, M to indicate the mean, and N to indicate the sample size.

As you can see, variance is really just a mean—the mean of squared deviations. ■

Standard Deviation

SD
X M

N
2

2

�
�R( )

X X � M     (X � M )2

  1      �3.2          10.24

  2      �2.2            4.84

  4      �0.2            0.04

  4      �0.2            0.04

10          5.8          33.64
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�                                         

MASTERING THE FORMULA

4-3: The formula for variance

is: . To calculate

vari ance, subtract the mean (M )
from every score (X ) to calculate de-
viations from the mean; then square
these deviations, sum them, and di-
vide by the sample size (N ). By sum-
ming the squared deviations and
dividing by sample size, we are tak-
ing their mean.

SD
X M

N
2

2

�
�R( )

Variance is useful, but not as useful as standard deviation. Standard deviation is the
square root of the average of the squared deviations from the mean; it is the typical
amount that each score varies, or deviates, from the mean. Standard deviation is perhaps
better known as the square root of variance. The problem with variance—and the rea-
son that we need standard deviation—is that it’s not very easy to understand at a glance.
Remember, the numbers of therapy sessions for the five students were 1, 2, 4, 4, and
10, with a mean of 4.2. The typical score does not vary from the mean by 9.76. The
variance is based on squared deviations, not deviations, so it is too large. When we ask
our students how to solve this problem, they invariably say “unsquare it,” and that’s
just what we do. We take the square root of variance to come up with a much more
useful number, the standard deviation. The square root of 9.76 is 3.12. Now we have
a number that “makes sense” to us. We can now say that the typical number of therapy
sessions for students in this sample is 4.2 and the typical amount a student varies from
that is 3.12.

As you read journal articles, you often will see the mean and standard deviation re-
ported as: (M � 4.2, SD � 3.12). A glance at our original data (1, 2, 4, 4, 10) tells us
that these numbers make sense: 4.2 does seem to be approximately in the center, and
scores do seem to vary from 4.2 by roughly 3.12. The score of 10 is a bit of an out-
lier—but not so much that the mean and standard deviation are not somewhat repre-
sentative of the typical score and typical deviation.

EXAMPLE 4.10
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We didn’t actually need a formula to get the standard deviation. We just took the
square root of the variance. Perhaps you guessed the symbols for standard deviation by
just taking the square root of those for variance. With a sample, standard deviation is
either SD or s. With a population, standard deviation is r. Table 4-2 presents this in-
formation concisely. We can write the formula showing how standard deviation is cal-
culated from variance:

We can also write the formula showing how standard deviation is calculated from
the original X’s, M, and N:

■SD
X M

N
�

�R( )2

SD SD� 2

TABLE 4-2. Variance and Standard Deviation in Symbols

The variance or standard deviation of a sample is an example of a statistic, whereas the variance or standard
deviation of a population is an example of a parameter. The symbols we use depend on whether we are
referring to the spread of a sample or a population.

                                            Standard
                                            Deviation                                Variance
 Number       Used for . . .      Symbol      Pronounced         Symbol                          Pronounced

Statistic         Sample                SD or s          As written       SD2, s2, or MS     Letters as written; if superscript 2,
                                                                                                                    then followed by “squared” 
                                                                                                                    (e.g., “ess squared”)

Parameter     Population           r                   “Sigma”          r2                       “Sigma squared”

                                        �

MASTERING THE FORMULA

4-4: The most basic formula for
standard deviation is: .
We simply take the square root of
variance.

SD SD� 2

                                        �

MASTERING THE FORMULA

4-5: The full formula for standard

deviation is: .

To calculate standard deviation, sub-
tract the mean from every score to
calculate deviations from the mean.
Then square the deviations from
the mean. Sum the squared devia-
tions, then divide by the sample size.
Finally, take the square root of the
mean of the squared deviations.

SD
X M

N
�

�R( )2

As we noted earlier in the chapter, the range has a major limitation: it is completely
dependent on the maximum and minimum scores. For example, the $17 million home
at the high end or the shack at the low end of the distribution skew a distribution of
home prices. Whenever we have outliers, the range will be an exaggerated measure of
the variability. Fortunately, we have an alternative to the range: the interquartile range.

The interquartile range is a measure of the distance between the first and third quartiles.
As we learned earlier, the median marks the 50th percentile of a data set. Similarly, the
first quartile marks the 25th percentile of a data set, and the third quartile marks the 75th
percentile of a data set. Essentially, the first and third quartiles are the medians of the two
halves of the data—the half below the median and the half above the median. We cal-
culate the first quartile and the third quartile in a similar manner to how we calculate
the median.

N e x t  S t e p s The Interquartile Range

■ The interquartile range is a
measure of the distance
between the first and third
quartiles.

■ The first quartile marks the
25th percentile of a data set.

■ The third quartile marks the
75th percentile of a data set.
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Here are the steps for finding the interquartile range:
Step 1. Calculate the median.
Step 2. Look at all of the scores below the median. The median of these scores,

the lower half of the scores, is the first quartile, often called Q1 for short.
Step 3. Look at all of the scores above the median. The median of these scores, the

upper half of the scores, is the third quartile, often called Q3 for short.
Step 4. Subtract Q1 from Q3. The interquartile range, often abbreviated as IQR,

is the difference between the first and third quartiles: IQR � Q3 � Q1.
Because the interquartile range is the distance between the 25th and 75th percentile

of the data, it can be thought of as the range of the middle 50% of
the data.

The interquartile range has an important advantage over the
range. Because it is not based on the minimum and maximum—the
most extreme scores—it is less susceptible to outliers. Let’s look at
an example.

�   MASTERING THE CONCEPT

4-4: The interquartile range is the distance

from the 25th percentile (first quartile) to the

75th percentile (third quartile). It is often a

better measure of variability than the range

because it is not affected by outliers.

�                                         

MASTERING THE FORMULA

4-6: The interquartile range (IQR)
is the difference between the first
quartile (Q1), the median of the
lower half of the scores, and the third
quartile (Q3), the median of the
upper half of the scores. The formula
is: IQR � Q3 � Q1.

Here are countries’ top finishes in the World Cup that we examined earlier in the
chapter; as we did before, we omitted countries with a score of 0.

1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 4, 6, 8, 10

Earlier we calculated the median of these scores as the mean of the 7th and 8th
scores, 2. We now take the first 7 scores: 1, 1, 2, 2, 2, 2, 2. If we divide the number of
scores, 7, by 2 and add 1⁄2, we get 4. The median of these scores—the first quartile—
is the 4th score, 2.

We’ll do the same with the top half of the scores: 2, 2, 2, 4, 6, 8, 10. Again, there are
7 scores, so the median of these scores—the third quartile—is also the 4th score. This
time the 4th score is 4. The range is the maximum minus the minimum: range � Xhighest
� Xlowest � 10 � 1 � 9. However, the interquartile range is the third quartile minus the
first quartile: IQR = Q3 � Q1 = 4 � 2 � 2.

Along with the minimum, median, and maximum, the first and third quartiles pro-
vide us with an overview of the data. These five numbers—scores at the 0, 25th, 50th,
75th, and 100th percentiles—give a good sense of the overall distribution. As seen in
Figure 4-7, the five-number summary includes the minimum (1), first quartile (2), me-
dian (2), third quartile (4), and maximum (10). The longer distance between the third
quartile and the maximum, as compared to the distance between the first quartile and
the minimum, indicates a skewed distribution. Specifically, the whole data set has a
width of 9, but the middle 50% only has a width of 2. The interquartile range is not
influenced by the outlier of 10, so it is a more valid
measure of variability for these data than is the range.
The interquartile range, unlike the range, is resistant
to outliers, even if they are far more extreme than 10.
Imagine that the top country in this data set had 30
top finishes instead of 10. The range would increase
dramatically (30 � 1 � 29), but the interquartile
range would be unaffected; it would still be 2. ■

EXAMPLE 4.11

0 1 2 3 4 5 6 7 8 9 10

Minimum
 value � 1

Median 
value � 2

Q3 value � 4

Q1 value � 2

Maximum 
value � 10

FIGURE 4-7
Five-Number Summary

Just five numbers give a good sense of
the overall distribution: 1, 2, 2, 4, and
10. These five numbers represent the
scores at the 0, 25th, 50th, 75th, and
100th percentiles: the minimum, first
quartile, median, third quartile, and
maximum.
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CHECK YOUR LEARNING
Reviewing the Concepts > The simplest way to measure variability is the range, which is calculated by subtracting the

lowest score from the highest score.

> Variance and standard deviation both measure the degree to which scores in a distribution
vary from the mean. The standard deviation is simply the square root of the variance: it
represents the typical deviation of a score from the mean.

> The interquartile range is calculated by subtracting the score at the 25th percentile from
the score at the 75th percentile. It communicates the width of the middle 50% of the data.

Clarifying the Concepts 4-5 In your own words, what is variability?

4-6 Distinguish the range from the standard deviation. What does each tell us about the
distribution?

Calculating the Statistics 4-7 Calculate the range, variance, and standard deviation for the following data sets (the
same ones from the section on central tendency).

a. 10, 8, 22, 5, 6, 1, 19, 8, 13, 12, 8

b. 122.5, 123.8, 121.2, 125.8, 120.2, 123.8, 120.5, 119.8, 126.3, 123.6

c. 0.100, 0.866, 0.781, 0.555, 0.222, 0.245, 0.234

Applying the Concepts 4-8 Final exam week is approaching and students are not eating as well as usual. Four students
were asked how many calories of junk food they had consumed between noon and 10:00
P.M. on the day before an exam. The estimated numbers of nutritionless calories, calculated
with the help of a nutritional software program, were 450, 670, 1130, and 1460.

a. Using the formula, calculate the range for these scores.

b. What information can’t you glean from the range?

c. Using the formula, calculate variance for these scores.

d. Using the formula, calculate standard deviation for these scores.

e. If a researcher was interested only in these four students, what symbols would she
use for variance and standard deviation, respectively?

f. If another researcher hoped to generalize from these four students to all students at
the university, what symbols would he use for variance and standard deviation?

Solutions to these Check Your
Learning questions can be found in
Appendix D.

Central Tendency
Three measures of central tendency are commonly used in research. (When a numeric
description, such as a measure of central tendency, describes a sample, it is a statistic;
when it describes a population, it is a parameter.) The mean is the arithmetic average of
the data. The median is the midpoint of the data set; 50% of scores fall on either side
of the median. The mode is the most common score in the data set. When there’s one
mode, the distribution is unimodal; when there are two modes, it’s bimodal; and when
there are three or more modes, it’s multimodal. The mean is highly influenced by out-
liers, whereas the median and mode are resistant to outliers. It is important to consider
whether outliers are present in our data set when deciding which measure of central
tendency to use. Usually, however, the mean is the preferred measure.

REVIEW OF CONCEPTS
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Measures of Variability
The range is the simplest measure of variability to calculate. It is often used when the
preferred measure of central tendency is the median. It is calculated by subtracting the
minimum score in our data set from the maximum score. Variance and standard devi-
ation are much more common measures of variability. They are used when the preferred
measure of central tendency is the mean. Variance is the average of the squared devia-
tions. It is calculated by subtracting the mean from every score to get deviations from
the mean, then squaring each of the deviations. (The sum of squares of the deviations is
used in many inferential statistics.) Standard deviation is the square root of variance. It
is the typical amount that a score deviates from the mean. When the median is the
preferred measure of central tendency, the interquartile range (IQR) is a better measure
of variability than is the range. The IQR is the third quartile, or 75th percentile, minus
the first quartile, or 25th percentile. The IQR is the width of the middle 50% of the
data set, and, unlike the range, is resistant to outliers.

The left-hand column in “Data View” is prenumbered, be-
ginning with 1. Each column to the right of that number con-
tains information about a particular variable; each row across
from that number represents a unique individual. Notice the
choices at the top of the “Data View” screen. Enter the data
for countries’ top finishes in the World Cup, omitting coun-
tries with scores of 0: 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 4, 6, 8, and 10,
as shown on the left of the screenshot below.

To get a numerical description of a variable, select:

Analyze → Descriptive Statistics → Frequencies
Then select the variable of interest, “top_finishes,” by

highlighting it and then clicking the arrow to move it from
the left side to the right side. Then select:
Statistics → Mean, Median, Mode, Std. deviation, Range →
Continue → OK.

Your data and output will look like those in the screenshot
shown here.

SPSS®
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How It Works
4.1 CALCULATING THE MEAN
Here are data for the numbers of nights out socializing in a week for 20 students.

1, 2, 7, 6, 1, 2, 6, 5, 4, 4, 0, 3, 2, 2, 3, 4, 3, 5, 4, 4

How can we calculate the mean? First, we add up all of the scores:

1 � 2 � 7 � 6 � 1 � 2 � 6 � 5 � 4 � 4 � 0 � 3 � 2 � 2 � 3 � 4 � 3 � 5 � 4 � 4 � 68

Then we divide by 20, the number of scores:

68/20 � 3.4

With the formula , we calculate:

4.2 CALCULATING THE MEDIAN
Using the data for “nights out socializing,” how can we calculate the median? The median
is simply the middle score, or the average of the two middle scores. For these data, we first
arrange the data from lowest score to highest score:

0 1 1 2 2 2 2 3 3 3 4 4 4 4 4 5 5 6 6 7

With 20 scores (an even number), there are two middle scores, the 9th and 10th scores,
which are 3 and 4.We determine the median by taking the average of 3 and 4. The median
is 3.5.

4.3 CALCULATING THE MODE
How can we calculate the mode for the “nights out socializing” data? The mode is the
most common score. We can determine the mode for these data by looking at the frequency
distribution. Five people have a score of 4. The mode is 4.

4.4 CALCULATING VARIANCE
How can we calculate variance for the “nights out socializing” data? To calculate variance
for these data, we first subtract the mean, 3.4, from every score. We then square these de-
viations. These calculations are shown in the table below.

M
X

N
�

R

M �
� � � � � � � � � � � � � � � � � � �1 2 7 6 1 2 6 5 4 4 0 3 2 2 3 4 3 5 4 4( )

220
3 4� .

X           (X � M ) (X � M )2

  1             �2.4            5.76
  2             �1.4            1.96
  7                 3.6          12.96
  6                 2.6            6.76
  1             �2.4            5.76
  2             �1.4            1.96
  6                 2.6            6.76
  5                 1.6            2.56
  4                 0.6            0.36
  4                 0.6            0.36
  0             �3.4          11.56
  3             �0.4            0.16
  2             �1.4            1.96
  2             �1.4            1.96
  3             �0.4            0.16
  4                 0.6            0.36
  3             �0.4            0.16
  5                 1.6            2.56
  4                 0.6            0.36
  4                 0.6            0.36



We then add all of the scores in the third column to get the sum of squared deviations,
or the sum of squares. This sum is 64.8.

We can use the formula to complete our calculations:

The variance is 3.24.

4.5 CALCULATING STANDARD DEVIATION
How can we calculate standard deviation for the “nights out socializing” data? The standard
deviation is the typical amount that the scores in a sample vary, or deviate, from the mean;
it is the square root of the variance. For these data, we can calculate standard deviation di-
rectly from the variance we calculated above using this formula:

The standard deviation is 1.80.

SD
X M

N
2

2 64 8

20
3 24�

�
� �

R( ) .
.

SD SD� � �2 3 24. 1.80
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Clarifying the Concepts

4.1 Define the three measures of central tendency: mean,
median, and mode.

4.2 The mean can be assessed visually and arithmetically.
Describe each method.

4.3 Explain how the mean mathematically balances the
distribution.

4.4 Explain what is meant by unimodal, bimodal, and mul-
timodal distributions.

4.5 In what situations is the mode typically used?
4.6 What is an outlier?
4.7 Are the mean and median affected by outliers?
4.8 Define the symbols used in the equation for variance:

4.9 Why is the standard deviation typically reported rather
than the variance?

4.10 Find the incorrectly used symbol or symbols in each of
the following statements or formulas. For each state-
ment or formula, (i) state which symbol(s) is/are used
incorrectly, (ii) explain why the symbol(s) in the original
statement is/are incorrect, and (iii) state what symbol(s)
should be used.

a. The mean and standard deviation of the sample of re-
action times were calculated (m � 54.2, SD2 � 9.87).

b. The mean of the sample of high school student
GPAs was l � 3.08.

c. Range � Xhighest � Xlowest

4.11 How does the interquartile range differ from the range?
4.12 Using your knowledge of how to calculate the median,

describe how to calculate the first and third quartiles of
your data.

4.13 At what percentile is the first quartile?
4.14 At what percentile is the third quartile?

Calculating the Statistics

4.15 Calculate the mean, median, and mode for the follow-
ing data: 15, 34, 32, 46, 22, 36, 34, 28, 52, 28.

4.16 Calculate the mean, median, and mode for the follow-
ing salaries: $44,751, $52,000, $41,500, $38,862,
$51,380, $61,774.

4.17 Add another data point, 112, to the data presented in Ex-
ercise 4.15. Calculate the mean, median, and mode again.
How does this new data point affect your calculations?

4.18 Add another salary, $97,582, to the data presented in
Exercise 4.16. Calculate the mean, median, and mode
again. How does this new salary affect your calculations?

4.19 Calculate the range, variance, and standard deviation for
the data in Exercise 4.15.

4.20 Calculate the range, variance, and standard deviation for
the salaries in Exercise 4.16.

4.21 How does the range change when you include the out-
lier salary, $97,582, with the data from Exercise 4.16?

4.22 Here are the U.S. News & World Report data again
on percentage of alumni giving at the top 70 national
universities.

48 61 45 39 46 37 38 34 33 47

29 38 38 34 29 29 36 48 27 25

15 25 14 26 33 16 33 32 25 34

26 32 11 15 25  9 25 40 12 20

32 10 24  9 16 21 12 14 18 20

18 25 18 20 23  9 16 17 19 15

14 18 16 17 20 24 25 11 16 13

a. Calculate the mean of these data, showing that you
know how to use the symbols and formula.

b. Determine the median of these data.
4.23 Describe the variability in the data presented in Exercise

4.22 by computing the range.

SD
X M

N
2

2

�
�R( )

Exercises



4.24 The Mount Washington Observatory (MWO) in New
Hampshire claims to have the world’s worst weather.
Below are some data on the weather extremes recorded
at the MWO. Calculate the mean and median normal
daily minimum temperature across the year.

4.25 Calculate the mean, median, and mode for the record
low temperatures recorded on top of Mount Washing-
ton presented in Exercise 4.24.

4.26 Calculate the mean, median, and mode for the peak
wind gust data presented in Exercise 4.24.

4.27 When no mode appears in the raw data, we can com-
pute a mode by breaking the data into intervals. How
might you do this for the peak wind gust data presented
in Exercise 4.24?

4.28 Calculate the range, variance, and standard deviation for
the normal daily minimum temperature across the year
presented in Exercise 4.24.

4.29 Calculate the range, variance, and standard deviation for
the record low temperatures recorded on top of Mount
Washington presented in Exercise 4.24.

4.30 Calculate the range, variance, and standard deviation for
the peak wind gust data presented in Exercise 4.24.

4.31 Calculate the interquartile range for the following set
of data:

2 5 1 3 3 4 3 6 7 1 4 3 7 2 2 2 8 3
3 12 1

4.32 Using the data presented in Exercise 4.24, calculate the
interquartile range for peak wind gust.

4.33 Why is the interquartile range you calculated for Exer-
cise 4.32 so much smaller than the range you calculated
in Exercise 4.30?

Applying the Concepts

4.34 For the data presented in Exercise 4.24, the “normal”
daily maximum and minimum temperatures recorded
at the Mount Washington Observatory are presented
for each month. These are likely to be measures of cen-
tral tendency for each month over time. Explain why
these “normal” temperatures might be calculated as
means or medians. What would be the reasoning for
using one statistic over the other?

4.35 Back in Exercises 4.17 and 4.18, we saw how the mean
and median changed when an outlier was included in
the computations. If you were reporting the “average”
salary at a company, how might the mean and median
give different impressions to potential applicants?

4.36 The “normal” weather data from the Mount Washing-
ton Observatory are broken down by months. Why
might you not want to average across all months in a
year? How else could you summarize the year?

4.37 There appears to be an outlier in the data for peak wind
gust recorded on top of Mount Washington (see data in
Exercise 4.24). Where do you see an outlier and how
does excluding this data point affect the different cal-
culations of central tendency?

4.38 Here are winning percentages for 11 baseball players for
their best four-year pitching performances:

0.755,  0.721,  0.708,  0.773,  0.782,  0.747,
0.477,  0.817,  0.617,  0.650,  0.651.

a. What is the mean of these scores?

b. What is the median of these scores?

c. Compare the mean and median. Does the difference
between them suggest that the data are skewed very
much?

4.39 Briefly describe a real-life situation in which the median
is preferable to the mean. Give hypothetical numbers
for the mean and median in your explanation. Be orig-
inal! (Don’t use home prices or another example from
the chapter.)

4.40 Find an advertisement for a weight-loss product either
online or in the print media—the more unbelievable
the claims, the better!

a. What does the ad promise that this product will do
for the consumer?

b. What data does it offer for its promised benefits?
Does it offer any descriptive statistics or merely tes-
timonials? If it offers descriptive statistics, what are
the limitations of what they report?

c. If you were considering this product, what measures
of central tendency would you most like to see? Ex-
plain your answer, noting why not all measures of
central tendency would be helpful.

d. If a friend with no statistical background was consid-
ering this product, what would you tell him or her?

Normal     Normal                       Peak Wind 
                   Daily         Daily          Record        Gust in 
                Maximum  Minimum    Low in °F    Miles per 
                    (°F)           (°F)            (Year)      Hour (Year)

January            14.0           �3.7       �47 (1934)    173 (1985)

February          14.8           �1.7       �46 (1943)    166 (1972)

March             21.3              5.9       �38 (1950)    180 (1942)

April               29.4            16.4       �20 (1995)    231 (1934)

May                41.6            29.5         �2 (1966)    164 (1945)

June                50.3            38.5            8 (1945)    136 (1949)

July                 54.1            43.3          24 (2001)    154 (1996)

August             53.0            42.1          20 (1986)    142 (1954)

September        46.1            34.6            9 (1992)    174 (1979)

October           36.4            24.0         �5 (1939)    161 (1943)

November       27.6            13.6       �20 (1958)    163 (1983)

December       18.5              1.7       �46 (1933)    178 (1980)
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4.41 When you see an ad on TV for a body-shaping product
(e.g., an abdominal muscle machine), often a person
with a wonderful success story is featured in the ad. The
statement “individual results may vary” hints at what
kind of data the advertisement may be presenting.

a. What kind of data is being presented in these ads?

b. What statistics could be presented to help inform
the public about how much “individual results
might vary”?

4.42 The National Survey of Student Engagement asked
U.S. students how often they asked questions in class or
participated in classroom discussions. The options were
“never,” “sometimes,” “often,” and “very often.” Here
are the percentages, reported in 2005, of students who
responded “very often” for the 31 institutions classified
as liberal arts colleges that allowed their 2004 data to
become public through the U.S. News & World Report
Web site.

58 45 53 45 65 41 50 46 54

59 52 60 59 62 54 52 53 54

83 60 32 62 50 50 43 32 53

60 52 55 53

a. What is the range of these data?

b. The top college is Marlboro College in Vermont,
and the two tied for lowest are Randolph-Macon
Women’s College in Virginia and Texas A&M Uni-
versity in Galveston. What research questions do
these data suggest to you? State at least one research
question generated by these data.

4.43 Here again are the data from the National Survey of Stu-
dent Engagement for a sample of 19 national universities,
as reported in 2005. These are the percentages of U.S. stu-
dents who said they were assigned between 5 and 10 
20-page papers.

0 5 3 3 1 10 2

2 3 1 2 4  2 1

1 1 4 3 5

a. Calculate the mean of these data using the symbols
and formula.

b. Calculate the variance of these data using the sym-
bols and formula, but also using columns to show
all calculations.

c. Calculate the standard deviation using the symbols
and formula.

d. In your own words, describe what the mean and
standard deviation of these data tell us about these
scores.

4.44 For each of the following situations, state whether the
mean would be a statistic or a parameter. Explain your
answer.

a. According to 1991 Canadian census data, the mean
income (from employment only) of French-

speaking Canadians living in Ontario was $29,527,
higher than the general population mean of $28,838.

b. In the 2004–2005 National Basketball Association
season, the 30 teams won a mean 41.00 games.

c. The General Social Survey (GSS) includes a vocabu-
lary test in which U.S. participants are given a series
of words and asked to choose the appropriate syn-
onym from a multiple-choice list of five words (e.g.,
beast with the choices afraid, words, large, animal, and
separate). The mean vocabulary test score was 5.98.

d. The National Survey of Student Engagement
(NSSE) asked students at participating institutions
how often they discussed ideas or readings with
their professors outside of class. Among the 19 na-
tional universities that made their data public, the
mean percentage of U.S. students who responded
“very often” was 8%.

4.45 Consider the many possible distributions of grades on
a quiz in a statistics class; imagine that the grades could
range from 0 to 100. For each of the following situa-
tions, give a hypothetical mean and median (that is,
make up a mean and a median that might occur with
a distribution that has this shape). Explain your answer.

a. Normal distribution

b. Positively skewed distribution

c. Negatively skewed distribution
4.46 For each of the following distributions, state whether

it’s more likely to be unimodal or bimodal. Explain your
answer.

a. Age of patients in a hospital maternity ward

b. Depression scores on a Beck Depression Inventory

c. GRE scores of applicants to sociology graduate
programs

d. The cost of an AIDS drug that is sold in developed
countries in Europe as well as in developing coun-
tries in Africa

4.47 Here are the numbers of wins for the 30 National Bas-
ketball Association teams in the 2004–2005 season.

45 43 42 33 33 54 47 44 42 30

59 45 36 18 13 52 49 44 27 26

62 50 37 34 34 59 58 51 45 18

a. Create a grouped frequency table for these data.

b. Create a histogram based on the grouped frequency
table.

c. Determine the mean, median, and mode of these
data. Use symbols and the formula when showing
your calculation of the mean.

d. Using software, calculate the range and standard de-
viation of these data.

e. Write a one- to two-paragraph summary describing
the distribution of these data. Mention center, vari-
ability, and shape. Be sure to discuss the number of
modes (i.e., unimodal, bimodal, multimodal), any
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possible outliers, and the presence and direction of
any skew.

f. State one research question that might arise from
this data set.

4.48 The U.S. Census Bureau collects and analyzes data on
numerous aspects of American life by state, including
the percentage of people with high school degrees,
bachelor’s degrees, and advanced degrees. If you
wanted to calculate the “average” percentage of people
with advanced degrees across all states, would you re-
port a mean, median, or mode? Explain your answer
clearly.

4.49 According to a 2007 article on the Economist.com Web
site, Americans are the international leaders in TV view-
ing, averaging 8 hours and 11 minutes a day. Below are
approximate, daily average viewing times for 12 coun-
tries based on this source:

United States 8.2 hours 
Turkey 5 hours 
Italy 4.05 hours
Japan 3.75 hours 
Spain 3.6 hours
Portugal 3.5 hours
Australia 3.2 hours 
South Korea 3.16 hours
Canada 3.1 hours
Britain 3 hours 
Denmark 3 hours
Finland 2.8 hours

a. Compute the mean and median across these 12 data
points.

b. How are these statistics affected by including or ex-
cluding the United States?

4.50 Refer to the data from Exercise 4.49.
a. How do you think these daily “averages” were cal-

culated—using means or medians?
b. Do you think TV viewing habits might vary by

other personal or demographic characteristics?
Could these represent confounds?

c. How might you collect samples to more specifically
describe TV viewing habits as a function of other
personal characteristics?

4.51 When the average height or average weight of children
is plotted to create growth charts, do you think it would
be appropriate to use the mean for these data? There are
often outliers for height, but why might we not have to
be concerned with their effect on these data?

4.52 Guinness World Records relies on what kind of data for
its amazing claims? How does this relate to the calcu-
lation of ranges?

4.53 Use the data from Exercise 4.42 to determine the first
and third quartiles for this set of observations.

4.54 a. Use your computation of the first and third quartiles
in Exercise 4.53 to calculate the interquartile range
(IQR).

b. How does the IQR you calculated in part (a) differ
from the range you calculated in Exercise 4.42, and
why is it different?

Terms
central tendency (p. 80)
mean (p. 81)
statistic (p. 82)
parameter (p. 82)
median (p. 83)
mode (p. 85)

unimodal (p. 85)
bimodal (p. 85)
multimodal (p. 85)
variability (p. 88)
range (p. 89)
variance (p. 89)

deviation from the mean (p. 90)
sum of squares (p. 90)
standard deviation (p. 91)
interquartile range (p. 92)
first quartile (p. 92)
third quartile (p. 92)

Symbols
M           (p. 82)
X̄̄            (p. 82)
l             (p. 82)
X            (p. 82)
N            (p. 83)
mdn         (p. 83)

SS           (p. 90)
SD2         (p. 91)
s2            (p. 91)
MS          (p. 91)
r2           (p. 91)
SD          (p. 91)

s              (p. 92)
r             (p. 92)
IQR        (p. 93)
Q1          (p. 93)
Q3          (p. 93)

Formulas

                        (p. 83)

range � Xhighest � Xlowest    (p. 89)

           (p. 91)

                   (p. 92)

         (p. 92)

IQR � Q3 � Q1            (p. 93)
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Sampling and
Probability
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■ You should understand the difference between
a sample and a population (Chapter 1).

■ You should know what central tendency is,
particularly the mean (Chapter 4).

BEFORE YOU GO ON

Samples and Their Populations
Random Sampling
Convenience Sampling
The Problem with a Biased Sample
Random Assignment

Probability
Coincidence and Probability
Expected Relative-Frequency Probability
Independence and Probability

Inferential Statistics
Developing Hypotheses
Making a Decision About Our Hypothesis

Type I and Type II Errors
Type I Errors
Type II Errors

Next Steps: The Shocking Prevalence of 
Type I Errors



The 2000 U.S. presidential election was the closest election since
1986. As the television news organizations began to estimate
the electoral college votes, it became clear that the election was
extremely close. The winner in the pivotal state of Florida was
destined to become the next president of the United States, and
the networks were in keen competition to be the first to make
the call. Based on sampling, Vice President Al Gore was declared
the winner by ABC, CBS, CNN, Fox News, and NBC, but they
were all forced to retract their reports when additional data chal-
lenged their earlier calls. Later, those same networks declared
George W. Bush the winner in Florida (again, based on sam-
pling). Then they retracted those reports, too. The eventual elec-
tion result depended on a split decision made by the U.S.
Supreme Court that overturned a split decision made by the
Florida Supreme Court (Konner, Risser, & Wattenberg, 2001).
Sampling errors were at the heart of the confusion.

Anytime we use a sample to draw conclusions about a pop-
ulation, we’re relying on probability. We can’t know for sure that
our sample reflects the population. We can only say it is probable
that it does. For example, exit polling samples a small number
of voters to predict the winner of a particular political race. In
2000, the news organizations were eager to reach that larger
conclusion because they all wanted to be first to declare either
Al Gore or George W. Bush the winner in Florida and therefore
the next president of the United States. But just because some-
thing is probable doesn’t mean it is certain. Unfortunately, three

sampling errors led to the networks projecting the election for Gore and then for Bush
when, in fact, the voting in Florida was too close to call for either candidate.

 1. The sample size was too small (both the number of precincts sampled and the size
of the samples within the precincts), which reduces our confidence that the sample
represents the larger population.

 2. The sample was biased, because certain members of the population were less likely
to be included in the sample. This occurred when pollsters decided ahead of time
which Florida precincts were representative. The sample was also biased because
some voters from the Republican-leaning Florida Panhandle, who are in a different
time zone, weren’t included in the early projections.

 3. The samples were not independent. All five networks used the same source of in-
formation, the Voter News Service, even though the networks’ on-air pronounce-
ments were presented as independent research. Thus, it appeared as if five
independent samples agreed on the outcome of the Florida vote, but it was really
one error communicated across all five networks.

In this chapter, we learn more about the building blocks of inferential statistics.
First, we learn ways to sample from populations, then how to assign members of sam-
ples to groups. (In particular, we learn about random assignment, a procedure that was
first introduced in Chapter 1 when we discussed experimental research.) An under-
standing of sampling is then improved with a basic understanding of coincidence and
probability. Finally, we combine these building blocks when we discuss inferential sta-
tistics and the process of developing a hypothesis about a population, which we will
test using a sample.
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Voter Sampling in the 2000 Presidential Election Sampling
errors led to election-night confusion about the winner of the 2000
U.S. presidential election.



Because conclusions drawn from inferential statistics are based on probability, we can
never know for sure whether they are accurate. In the last section of the chapter, we
learn about the two types of errors we can make when conducting inferential statistics.
An understanding of probability, sampling, and inferential statistics will help you to avoid
the mistakes made in the reporting of the 2000 presidential election, mistakes that are
less likely to be repeated given the newfound caution of the once-burned networks.

Samples and Their Populations
Almost everything worth studying requires a sample, whether it is voting trends, a med-
ical test for mononucleosis, or a test of memory following exposure to a chemical spill.
As we know from the 2000 election, however, there are risks when we choose to sample
from a population rather than study everyone in the population.

The goal of most researchers is to collect data from a sample that
represents the population. There are two main types of samples: ran-
dom samples and convenience samples. A random sample is one in
which every member of the population has an equal chance of being selected
into the study. A convenience sample is one that uses participants who are
readily available. Random sampling remains the ideal and is far more
likely to lead to a representative sample, as the Voter News Service
certainly understood, but it is usually expensive and extremely difficult
to achieve. By contrast, convenience sampling is usually both less ex-
pensive and much easier than random sampling; because of this, it is
used most often, even though it might not lead to a representative
sample.

Random Sampling
The safest way to collect a representative sample is by collecting a random sample. Let’s
consider how to generate a random sample by using a specific example.

Imagine that a town has recently experienced a traumatic mass murder and that
there are exactly 80 police officers in the local department. You have been hired to
determine whether peer counseling or professional counseling is the most effective
way to treat officers suffering from post-traumatic stress disorder, whether or not they
were directly involved in the incident. However, budget constraints dictate that the
sample you can recruit must be very small, just 10 people. How do you maximize the
probability that those 10 officers will accurately represent the 80 officers?

Five officers are to be selected from the 80 and assigned to peer counseling, and
another 5 are to be selected and then assigned to counseling with a therapist. To ac-
complish this, each police officer is arbitrarily assigned a two-digit number from 01
to 80. Use the random numbers table that follows to choose a sample of 10 police of-
ficers by arbitrarily selecting a point on the table and deciding to go across, back, up,
or down to read through the numbers. Decide on your starting point and direction of
counting and stick to it! For example, we could begin with the sixth number of the
second row and count across. The first 10 numbers read: 97654 64501. (The spaces
between sets of five numbers exist solely to make it easier to read the table.) The first
pair of digits is 97, but we would ignore this number because we only have 80 people
in our population. The next pair is 65. The 65th police officer in our list would be
chosen for our sample. The next two pairs, 46 and 45, would also be in the sample,
followed by 01. If we come across a number a second time—45, for example—we ig-
nore it, just as we would ignore 00 and anything above 80.

CHAPTER 5 ■ Sampling and Probability   103

�   MASTERING THE CONCEPT

5-1: There are two main types of samples in

social science research. With the ideal type

of sample, a random sample, every member

of the population has an equal chance of

being selected to participate in a study. With

the less ideal but more common type of

sample, a convenience sample, researchers

use participants who are readily available.

■ A random sample is one in
which every member of the
population has an equal
chance of being selected into
the study.

■ A convenience sample is one
that uses participants who are
readily available.
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Were you surprised that random sampling selected both the number 46 and the
number 45? Truly random numbers often have strings of numbers that do not seem to be random.
For example, notice the string of three 3’s in the third row of the table.

In a large study, researchers rely on random numbers generated by a computer. You
can find good random number generators online by Googling “random number gen-
erator.” When we used an online random numbers generator to create a list of 10
unique numbers from the range 1–80, we were provided with the following output:
10, 23, 27, 34, 36, 67, 70, 74, 77, and 78. Of course, the list would be different each
time we generate a random numbers list using these criteria. You might be surprised
that 4 of the 10 numbers were in the 70s. Don’t be. Random numbers are truly random,
and sometimes randomness doesn’t look random.

Random samples are almost never used in the social sciences because we almost
never have access to the whole population from which to select our sample. If we were
interested in studying the eating behavior of voles, we would never be able to list the
whole population of voles from which to select a random sample. If we were interested
in studying the effect of video games on the attention span of teenagers in the United
States, we would not be able to identify all U.S. teenagers from which to choose a ran-
dom sample. If we were interested in studying dyslexia in Canada, we could not test
every Canadian for dyslexia. In the behavioral sciences, we are often unable to identify
the entire population of interest.

Convenience Sampling
When you fill out an online poll asking you to vote for your favorite reality show con-
testant or college basketball team, you’re part of a convenience sample. You’re not being
randomly selected from among all people who watch the reality show or from among

Excerpt from a Random Numbers Table

This is a small section from a random numbers table used to randomly select participants from a population
to be in a sample as well as to randomly assign participants to experimental conditions.

     04493               52494               75246               33824               45862               51025               61962

     00549               97654               64501               88159               96119               63896               54692

     35963               15307               26898               09354               33351               35462               77974

     59808               08391               45427               26842               83609               49700               46058
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The Whole Population of
Voles? If we were interested in
studying eating behaviors in
voles, we would not be able to
access the entire worldwide
population of voles so that we
could select a sample randomly.
We would probably use a
convenience sample from an
animal supply company.

■ Generalizability refers to
researchers’ ability to apply
findings from one sample or in
one context to other samples
or contexts; also called
external validity.

■ Replication refers to the
duplication of scientific results,
ideally in a different context or
with a sample that has
different characteristics.

■ A volunteer sample is a
special kind of convenience
sample in which participants
actively choose to participate
in a study; also called a self-
selected sample.



all college basketball fans. The polling organization is acquiring a sample in the most
convenient way possible, by inviting those who visit its Web site to participate.

Because it is faster, easier, and cheaper, it is far more common to use a convenience
sample than a random sample. We might use voles that we bought from an animal sup-
ply company, teenagers from the local high school, and Canadians with dyslexia iden-
tified through a university counseling center. A convenience sample limits our
generalizability if it results in a sample that is not representative of the population. Gen-
eralizability refers to researchers’ ability to apply findings from one sample or in one context to
other samples or contexts. This principle is also called external validity. If we don’t have
sufficient generalizability, we can never be certain that results from our sample apply
to the larger population of interest. Fortunately, one activity reduces the risks of a con-
venience sample more than any other: replication. Replication refers to the duplication of
scientific results, ideally in a different context or with a sample that has different characteristics.
In other words, do the study again. A study that is well designed and is replicated with
different samples can provide reliable and valid information about a concept, despite
reliance on convenience samples.

We must be even more cautious when we use a volunteer sample, a special kind of
convenience sample in which participants actively choose to participate in a study. Participants
volunteer, or self-select (this is also called a self-selected sample), when they respond to
recruitment flyers or choose to complete an online survey, such as in our examples of
polls that recruit people to vote for a favorite reality show contestant or college bas-
ketball team. We should be very suspicious of volunteer samples, which may be very
different from a randomly selected sample. For example, if money is offered for par-
ticipation in a marketing study, the study may attract people who are unemployed or
anxious about money. An online survey can only attract those with Internet access and
those who visit the particular Web site that hosts the survey. Location, income, per-
sonality, and particular needs may all influence (bias) the outcomes of a study using a
volunteer sample.

The Problem with a Biased Sample
An understanding of the importance of a representative sample can help you reduce
your own biases when you encounter information in your own life. Consider the case
of Lush. Lush Times is a colorful catalog of Lush’s handmade cos-
metics. The newspaper-style catalog clearly aims to entertain, but
its ultimate goal is to sell cosmetics. Skin’s Shangri La is one of
the many face moisturizers that Lush offers, and a long descrip-
tion of its amazing moisturizing and skin-rejuvenating powers
ends with two testimonials, one of which reads in part: “I’m
nearly 60, but no one believes it, which proves Skin’s Shangri
La works!”

Knowing what you’ve now learned about the role of samples,
let’s examine the possible flaws of this “evidence”—a brief tes-
timonial—for the supposed effectiveness of Skin’s Shangri La.

Let’s first consider the population and sample here. The pop-
ulation would be all women approaching age 60. The Lush mar-
keters would like potential customers to think that they, too,
could look years younger if they used this product. The sample
would be the woman who wrote to Lush to share her experi-
ence. There are two major problems with this sample. First, and
most important, one person can never constitute a representative
sample. It would not even make sense to calculate statistics on
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Testimonials as Evidence? Does one middle-aged woman’s
positive experience with Skin’s Shangri La—“I’m nearly 60, but no one
believes it”—provide evidence that this moisturizer causes younger-
looking skin? Testimonials use a volunteer sample of one person,
usually a biased person; moreover, you can bet that the testimonial a
company uses in its advertising is the most flattering one.



data from one person. Second, this is a special kind of convenience sample, a volunteer
sample. The customer who had this experience chose to write to Lush. Was she likely
to write to Lush if she did not feel very strongly about this product? Moreover, would
Lush be likely to publish her statement if it wasn’t positive? So the sample is too small
and is biased, reflecting the first and second errors we noted in the exit polling in the
2000 presidential election.

A related consideration—beyond the fact that this is a sample of one—is the type
of person of her age who would shop at Lush. Lush touts its products as meant for
people of all ages, but its marketing clearly seems targeted at young people. With col-
orful, cartoonlike drawings and catchy product names such as Candy Fluff and Sonic
Death Monkey, it seems likely that teens and 20-somethings are the intended con-
sumers. What might you hypothesize about the type of 60-year-old woman who would
shop at Lush in the first place? Might she have a more youthful mind-set than others
her age?

A better way to approach the question of whether Skin’s Shangri La works would
be to conduct a true experiment, such as was described in Chapter 1. We could ran-
domly assign a certain number of people to use this product and an equal number of
people to use another product (or no product), and then see which group has better
skin a certain number of weeks later. Which is more persuasive? A dubious testimonial
or a well-designed study? If our honest answer is a dubious testimonial, then statistical
reasoning once again leads us to ask a better question, albeit one that is more difficult
to answer: What is it about us that is more responsive to an anecdote than a solid study?
Statistical thinking can challenge us in unexpected ways, inspire introspection, and im-
prove our daily decision making.

Random Assignment
We first introduced the concept of random assignment in Chapter 1 as one of the hall-
marks of an experiment. With random assignment, every participant has an equal chance
of being assigned to any level of the independent variable. Being randomly assigned into
a particular experimental condition is very different from being randomly selected into
a study in the first place. The distinction between random selection and random assign-
ment is important: random selection refers to a method of creating a sample from a
population; random assignment refers to a method we can use once we have a sample,
whether or not the sample is randomly selected. Random selection is almost never used,
but random assignment is frequently used. And random assignment can go a long way

toward addressing the limitations of a convenience sample.
To randomly assign participants to groups, we use procedures

very similar to those used for random selection. If a study has two
levels of the independent variable, as in the study of police officers,
then we would need to assign participants to one of two groups. We
could decide, arbitrarily, to number the groups 0 and 1 for the “peer-
counseling” and “therapist-counseling” groups, respectively. We would
select a place in the random numbers table excerpt to begin and then
choose only the digits that were a 0 or 1, ignoring the others. If we
began at the first number of the last row and read the numbers across,
ignoring any number but 0 or 1, we would find 0010000. Hence, the
first two participants would be in group 0, the third would be in group
1, and the next four would be in group 0. (Again, notice the seemingly
nonrandom pattern and remember that it is random.)

If we used an online random numbers generator, we would instruct
the computer to give us one set of 10 numbers that ranged from 0
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5-2: When possible, researchers use two

main tools to make up for a lack of random

selection. With random assignment, every

participant has an equal chance of being

assigned to any level of the independent

variable. With replication, a study is

repeated, ideally with different participants

or in a different context, to see whether the

results are consistent.



to 1. We would instruct the program that the numbers should not remain unique be-
cause we want multiple 0’s and multiple 1’s. In addition, we would request that the
numbers not be sorted because we want to assign participants in the order in which
the numbers are generated. When we used an online random numbers generator, the
10 numbers were: 1110100001. In an experiment, we usually want equal numbers in
our groups. If the numbers were not exactly half 1’s and half 0’s, as they are in this
case, we could decide in advance to use only the first five 1’s or the first five 0’s.

It should be noted that with random assignment we still run the risk of a biased
sample giving us bad (unrepresentative) information. However, replication can rescue
us from inaccurate conclusions. One study seldom convinces any scientist, but three
or four studies that produce the same finding become pretty persuasive. Twenty studies
producing the same findings give us an extremely high level of confidence.

Random assignment coupled with the replication of research goes a long way toward
making up for our lack of random selection. If we show results from a convenience
sample, and then another independent convenience sample, generalization becomes
more and more appropriate.
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CHECK YOUR LEARNING
Reviewing the Concepts > Data from a sample are used to draw conclusions about the larger population.

> In random sampling, every member of the population has an equal chance of being selected
for the sample.

> Convenience samples are far more common than random samples in the behavioral  sciences.
> In random assignment, every participant has an equal chance of being assigned to one of

the experimental conditions.
> If a study that uses random assignment is replicated in several contexts, we can start to gen-

eralize the findings.
> Random numbers may not always appear to be all that random; there may appear to be

patterns.

Clarifying the Concepts 5-1 What are the risks of sampling?

Calculating the Statistics 5-2 Use the excerpt from the random numbers table on page 104 to select six people out
of a sample of 80. Start by assigning each person a number, from 01 to 80. Then select
six of these people by starting in the fourth row and going across. List the numbers of
the six people who were selected.

5-3 Use the excerpt from the random numbers table on page 104 to randomly assign these
six people to one of two experimental conditions, numbered 0 and 1. This time, start at
the top of the first column (with a 0 on top) and go down. When you get to the bottom
of that column, start at the top of the second column (with a 4 on top). Using the
numbers (0 and 1), list the order in which these people would be assigned to conditions.

Applying the Concepts 5-4 For each of the following scenarios, state whether random selection could have been
used from a practical standpoint; explain your answer, including a description of the
population to which the researcher likely wants to generalize. Then state whether
random assignment could have been used; explain your answer.

a. A health psychologist examined whether postoperative recovery time was less
among patients who received counseling prior to surgery than among those who
did not.

continued on next page



108 CHAPTER 5 ■ Sampling and Probability

Probability
When the results of voting exit polls are reported, we can never know for sure whether
the estimated outcome, which is based on a sample, reflects the actual outcome. This
is because the actual outcome is based on the entire population. The news source usu-
ally tells us how likely—or how probable—it is that their estimate is accurate. That prob-
ability is based on a sample.

In this section, we now turn our attention to this key statistical concept: probability.
Probability is central to inferential statistics because we are basing a conclusion about
a population on data collected from a sample (rather than an anecdote based on just
a few cases). When calculating an inferential statistic, we are determining only that it
is probable that a given conclusion is true, not that it is certain. Next, we’ll explain
how probability helps to distinguish coincidence from a statistical pattern.

Coincidence and Probability
Probability and statistical reasoning can save us from our human tendency to read too
much into bizarre occurrences that results from perceptual biases. Perhaps the most in-
fluential bias in intensifying our beliefs in the eerie nature of coincidence is confir-
mation bias. Confirmation bias is our usually unintentional tendency to pay attention to
evidence that confirms what we already believe and to ignore evidence that would disconfirm our
beliefs. Confirmation biases closely follow illusory correlations. Illusory correlation is
the phenomenon of believing one sees an association between variables when no such association
exists. An illusory correlation can occur when we fail to examine data in an objective

way, when we abandon the intelligent, restraining
logic of statistical reasoning.

The National Public Radio science show Ra-
diolab told a remarkable story of coincidence
(Abumrad & Krulwich, 2009). In 2001, the host
explained, a 10-year-old girl named Laura Buxton
released a red balloon from her hometown in the
north of England. “Almost 10,” Laura corrected
the host, who went on to explain that she had
written her address on the balloon as well as an
entreaty: “Please return to Laura Buxton.” The
balloon traveled 140 miles to the south of Eng-
land and was found by a neighbor of another 10-
year-old girl, also named Laura Buxton! The
second Laura Buxton wrote to the first, and they
arranged to meet. They both showed up to their
meeting wearing jeans and pink sweaters; they
were both the same height, and both had brown
hair; both owned a black Labrador retriever, a gray

b. The head of a school board asked a school psychologist to examine whether
children in this school system would perform better in their history classes if they
used an interactive textbook on CD-ROM as opposed to a traditional printed
textbook.

c. A clinical psychologist studied whether people with diagnosed personality disorders
were more likely to miss therapy appointments than were people without
diagnosed personality disorders.

Solutions to these Check Your
Learning questions can be found in
Appendix D.
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Lucky Charms Many athletes have a
lucky article of clothing that they wear
on game day because they think it helps
them win. Confirmation biases lead us
to notice events that match our beliefs
(the occasions on which the lucky object
was paired with a win) and ignore those
that do not (the occasions on which the
lucky object is paired with a loss).

■ Confirmation bias is our
usually unintentional tendency
to pay attention to evidence
that confirms what we already
believe and to ignore evidence
that would disconfirm our
beliefs. Confirmation biases
closely follow illusory
correlations.

■ Illusory correlation is the
phenomenon of believing one
sees an association between
variables when no such
association exists.
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rabbit, and a brown guinea pig with an orange spot. In fact, each
brought her guinea pig to the meeting. At the time of the radio broad-
cast, they were 18 years old and still friends. “Maybe we were meant
to meet,” one of the Laura Buxtons speculated. “If it was just the
wind, it was a very, very lucky wind,” said the other.

The chances of this particular event happening are unbelievably
slim, but confirmation bias and illusory correlation both play a role
here—and probability can help us understand why such coincidences
occur. The thing is, coincidences are not unlikely. We notice and re-
member strange coincidences but do not notice the uncountable
times in our life in which there are not unlikely occurrences. We re-
member, for example, the story of the woman who won the lottery
twice but forget the many times we bought lottery tickets and lost—
and the millions of people like us.

Let’s go back to our story about the Laura Buxtons to explain.
The radio host spoke with a statistician, who pointed out that the
details were “manipulated” to make for a better story. The host, for example, had re-
membered that they were both 10 years old, yet the first Laura reminded him she was
still 9 at the time. The host also played a recording of questions he had asked the
Lauras that had not yielded similar answers. Among the many differences, one’s
favorite color was pink and one’s was blue, and they had opposite academic inter-
ests—biology, chemistry, and geography for one and English, history, and classical civ-
ilization for the other. Further, it was not the second Laura Buxton who found the
balloon; rather, it was her neighbor who found it and gave it to her. Finally, Laura
Buxton is a very common name (just Google it); the fact that the neighbor would
know someone with that name is not as peculiar as it might seem at first. The simi-
larities make a better story, and because of the confirmation bias and illusory corre-
lation, they’re the details we remember.

The confirmation bias and illusory correlation also play a role in conspiracy theories.
Shortly after the attacks on the United States on September 11, 2001, there was a spate
of anthrax-laden letters sent mainly to prominent media and political figures. Soon
thereafter, a number of microbiologists with links to biological weapons research died
under mysterious circumstances in locations around the world, 11 in four months. One

�   MASTERING THE CONCEPT

5-3: Human biases result from two closely

related concepts. When we notice only

evidence that confirms what we already

believe and ignore evidence that refutes what

we already believe, we’re succumbing to the

confirmation bias. Confirmation biases often

follow illusory correlations—when we believe

we see an association between two

variables, but no association exists.

Conspiracy or Coincidence?
Eleven microbiologists died of
mysterious circumstances over a four-
month period after anthrax-laced letters
were mailed to several U.S. addresses.
A careful examination of the objective
data suggests this was mere
coincidence, not conspiracy.A
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disappeared on a bridge outside of Memphis; one was hit by a car while jogging; one
suffocated in an airtight laboratory in Australia; one died in a private plane crash; and
seven more died under similarly peculiar circumstances in which foul play could not
readily be ruled out. A conspiracy theory was born. A conspiracy theory often begins
with an illusory correlation, the belief that there is an association where none exists,
and maintains itself through the confirmation bias, increased attention to evidence that
confirms what we already believe, combined with a failure to notice evidence that
contradicts our beliefs. Illusory correlation and confirmation bias explain why devel-
oping the habit of statistical reasoning can help save us from ourselves.

Lisa Belkin (2002), a New York Times writer, reported that most of the 11 microbi-
ologists who died were only loosely connected to biological warfare research. Some,
for example, were microbiologists who had other research focuses; they just happened
to work at a facility that also did biological research. Moreover, many of the deaths
were ultimately explained: one who had hypertension appeared to have had a stroke
while being mugged; another with a history of seizures appeared to have tumbled over
a bridge railing after a minor car accident; another was allegedly murdered by his daugh-
ter and her friends for reasons unrelated to his job.

Belkin also noted that the American Society of Microbiology has approximately
41,000 members; given that there are other organizations of microbiologists around the
world, as well as numerous nonaffiliated microbiologists, 41,000 is unquestionably an
underestimate of the total number of researchers in this field worldwide. It is not at all
improbable that 11 microbiologists would die under mysterious circumstances during
any particular four-month time frame. The reason the 11 deaths were noticed at this
point in time, she concluded, was because of the political climate. In an example of both
an illusory correlation and then an ensuing confirmation bias, we were looking for pat-
terns related to terrorism. Although there were almost certainly as many accountants
who died strange deaths during this time—probably many more, given that there are far
more accountants than microbiologists—no pattern was noticed because it would not
have confirmed any preconceived ideas. An understanding of the true likelihood—the
probability—of an occurrence can help us be more rational. Statistics allow us to harness
probability. In the next section, we’ll learn some important features of probability.

Expected Relative-Frequency Probability
When we discuss probability in everyday conversation, we tend to think of what stat-
isticians call personal probability: the likelihood of an event occurring based on an individual’s
opinion or judgment; also called subjective probability. We might say something like “There’s
a 75% chance I’ll finish my paper and go out tonight.” We don’t mean that the chance

we’ll go out is precisely 75%. Rather, this is our rating of our confi-
dence that this event will occur. It’s really just our best guess, a per-
sonal estimate.

Mathematicians and statisticians, however, use the word probability
a bit differently than we do in everyday conversation. Statisti cians are
concerned with a different type of probability, one that is more ob-
jective. In a general sense, probability is the likelihood that a particular
outcome will occur out of all possible outcomes. For example, we might talk
about the likelihood of getting heads (a particular out come) if we flip
a coin 10 times (all possible outcomes). We use prob ability because
we usually have access only to a sample (10 flips of a coin) when we
want to know about an entire population (all possible flips of a coin).

In statistics, we are interested in an even more specific definition
of probability—expected relative-frequency probability, the likelihood
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�   MASTERING THE CONCEPT

5-4: In everyday life, we use the word

probability very loosely—saying how likely a

given outcome is in our subjective

judgment. Statisticians are referring to

something very particular when they refer to

probability. For statisticians, probability is

the actual likelihood of a given outcome in

the long run.

■ Personal probability refers to
the likelihood of an event
occurring based on an
individual’s opinion or
judgment; also called
subjective probability.

■ Probability is the likelihood
that a particular outcome will
occur out of all possible
outcomes.

■ The expected relative-
frequency probability is the
likelihood of an event occurring
based on the actual outcome
of many, many trials.

■ In reference to probability, a
trial refers to each occasion
that a given procedure is
carried out.

■ In reference to probability,
outcome refers to the result of
a trial.

■ In reference to probability,
success refers to the outcome
for which we’re trying to
determine the probability.



of an event occurring based on the actual outcome of
many, many trials. When flipping a coin, the ex-
pected relative-frequency probability of heads, in
the long run, is 0.50. Probability refers to the
likelihood that something occurs, and frequency
refers to how often a given outcome (e.g., heads
or tails) occurs out of a certain number of trials
(e.g., coin flips). Relative indicates that this num-
ber is relative to the overall number of trials, and
expected indicates that it’s what we would antic-
ipate, which might be different from what actu-
ally occurs.

In reference to probability, the term trial refers
to each occasion that a given procedure is carried out.
For example, each time we flip a coin, it is a trial.
Outcome refers to the result of a trial. For coin-flip
trials, the outcome is either heads or tails. Success
refers to the outcome for which we’re trying to determine
the probability. If we are testing for the probability
of heads, then success is heads.
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Determining Probabilities To
determine the probability of heads, we
would have to conduct many trials (coin
flips), record the outcomes (either heads
or tails), and determine the proportion of
successes (in this case, heads).
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The expected relative-frequency probability of getting heads on a coin flip is 0.50. If
we flip that coin many, many times, we expect that half of those flips would be heads.

We can think of probability in terms of a formula. We calculate probability by di-
viding the total number of successes by the total number of trials. So the formula would
look like this:

If we flip a coin 2000 times and get 1000 heads, then

Here is a recap of the steps to calculate probability:

■

People often confuse the terms probability, proportion, and percentage. Probability, the
concept of most interest to us right now, is the proportion that we expect to see in

probability
successes

trials
�

probability � �
1000

2000
0 50.

STEP 1: Determine the total number of trials.

STEP 2: Determine the number of these trials that are
considered successful outcomes.

STEP 3: Divide the number of successful outcomes by the
number of trials.

EXAMPLE 5.1
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the long run. The proportion is the number of successes divided by the number of
trials. In the short run, in just a few trials, the proportion might not reflect the under-
lying probability. A coin flipped six times might have more or fewer than three heads,
leading to a proportion of heads that does not parallel the underlying probability of
heads. Both proportions and probabilities are written as decimals. A coin that comes
up heads half the time in the long run has a 0.50 probability of heads.

Percentage is simply probability or proportion multiplied by 100. A flipped coin
has a 0.50 probability of coming up heads and a 50% chance of coming up heads. The
lowest possible probability or proportion is 0.0, and the lowest possible percentage is
0%. The highest possible probability or proportion is 1.0, and the highest possible per-
centage is 100%. Most people are already familiar with percentages, so simply keep in
mind that probabilities are what we would expect in the long run, whereas proportions
are what we observe.

One of the central characteristics of expected relative-frequency probability is that
it only works in the long run. This is an important aspect of probability, and it is re-
ferred to as the law of large numbers. Think of the earlier discussion of random assign-
ment in which we used a random numbers generator to create a series of 0’s and 1’s
to assign participants to levels of the independent variable. In the short run, over just
a few trials, we can get strings of 0’s and 1’s and often do not end up with half 0’s
and half 1’s, even though that is the underlying probability. With many trials, however,
we’re much more likely to get close to 0.50, or 50%, of each, although many strings
of 0’s or 1’s would be generated along the way. In the long run, the results are quite
predictable. Without many, many trials, we cannot determine expected relative-
frequency probability.

Independence and Probability
A key factor in statistical probability is the fact that the individual trials must be in-
dependent. If they are not, then bias might be introduced in the same way that a
sample can be biased by choosing too many people who are similar to one another.
More specifically, if individual trials are not independent, then expected relative

frequency will not work out in the long run.
This is yet another use of the word independent,
one of the favorite words of statisticians. Here
we use independent to mean that the outcome of
each trial must not depend in any way on the
outcome of previous trials. If we’re flipping a
coin, then each coin flip is independent of every
other coin flip. Similarly, in research, each par-
ticipant must be independent of every other
participant, or our sample might be biased. If
we’re generating a random numbers list to
select participants, each number must be gener-
ated without thought to the previous numbers.
In fact, this is exactly why humans can’t think
randomly. We automatically glance at the previ-
ous numbers we have generated in order to best
make the next one “random.” If our next num-
ber depends on the previous one, it is not in de-
pendent and it is not random. This is one reason
we use a computer to generate a random num-
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Gambling and Misperceptions of Probability Many people falsely believe that a slot
machine that has not paid off in a long time is “due.” A person may continue to feed coins into
it in the expectation of an imminent payout. Of course, the slot machine itself, unless rigged,
has no memory of its previous outcomes. Each trial is independent of the others.
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bers list. A computer does not have a memory for the previous numbers. Chance
has no memory, and randomness is, therefore, the only way to assure that there is
no bias.

Inferential Statistics
In Chapter 1, we introduced the two main branches of statistics, descriptive statistics
and inferential statistics. The link that connects the two branches is probability. De-
scriptive statistics allow us to summarize characteristics of the sample, but we must use
probability with inferential statistics when we apply what we’ve learned from the sample
to the larger population. Inferential statistics, also referred to as hypothesis testing, helps
us to determine how likely a given outcome is. As with exit polls, when we conduct

Clarifying the Concepts 5-5 Distinguish the personal probability assessments we perform on a daily basis from the
objective probability statisticians use.

Calculating the Statistics 5-6 Calculate the probability for each of the following instances.

a. 100 trials, 5 successes

b. 50 trials, 8 successes

c. 1044 trials, 130 successes

Applying the Concepts 5-7 Consider a scenario in which a student wonders whether men or women are more likely
to use the ATM machine in the student center. He decides to observe those who use the
ATM machine. (Assume that the university enrolls roughly equal numbers of women and
men and that neither women nor men are more likely to use ATM machines.)

a. Define success as a woman using the ATM on a given trial. What proportion of
successes might this student expect to observe in the short run?

b. What might this student expect to observe in the long run?

CHECK YOUR LEARNING
Reviewing the Concepts > Probability theory helps us understand that coincidences might not have an underlying

meaning; coincidences are probable when we think of the vast number of occurrences in
the world (billions of interactions between people daily).

> An illusory correlation occurs when we perceive a connection where none exists. It is often
followed by a confirmation bias whereby we notice occurrences that fit with our precon-
ceived ideas and fail to notice those that do not.

> Personal probability refers to the likelihood of an event occurring based on an individual’s
opinion or judgment.

> Expected relative-frequency probability is the the likelihood of an event occurring based
on the actual outcome of many, many trials.

> The probability of an event occurring is the expected number of successes (the number of
times the event occured) out of the total number of trials (or attempts) over the long run.

> Short-run proportions might have many different outcomes, whereas long-run proportions
are more indicative of the underlying probabilities.

Solutions to these Check Your
Learning questions can be found in
Appendix D.
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social science research and use a sample to draw conclusions about a population, we’re
never certain that we know the truth about the population. We can only say that a
certain conclusion is likely—or probable.

Developing Hypotheses
Probability theory can help us find answers for many of our research hypotheses. New
York Times columnist John Tierney writes an interesting blog called “TierneyLab” that
reports on and conducts social science research. In one piece, titled “The Perils of
Healthy Food,” Tierney and his collaborators asked people to estimate the number of
calories in a meal pictured in a photograph (Tierney, 2008a, 2008b). One group was
shown a photo of an Applebee’s Oriental Chicken Salad and a Pepsi. Another group
was shown a photo of the same salad and Pepsi, but it also included a third item—
Fortt’s crackers, with a label that clearly stated “Trans Fat Free.” Tierney and his col-
laborators wondered if the addition of the “healthy” food item would affect people’s
calorie estimates. They tested a sample and used probability to apply their findings from
the sample to the population.

Let’s put this study in the language of research. The first step in hypothesis testing
is to plan the collection of data from a sample, which includes identifying the pop-
ulation, recruiting a sample, and choosing the independent and dependent variables.
The population would include all people living in the United States, a population
chosen because of its increasing levels of obesity despite the increasing availability of
healthy foods in the United States. The sample was comprised of people living in the
Park Slope neighborhood of Brooklyn, an area that Tierney terms “nutritionally cor-
rect” for its abundance of organic food. This is not a representative sample of the
entire United States, but it is an interesting choice. After all, if a healthy neighborhood
is fooled by the inclusion of a healthy food, this would suggest that less healthy neigh-
borhoods would be fooled as well, perhaps even to a greater degree. The independent
variable in this case is the presence or absence of the healthy crackers in the photo
of the meal. The dependent variable is the number of calories estimated. The re-
searchers used the number of calories estimated by the people in this sample to make
probability-based judgments about the mean numbers of calories that would be es-
timated by the people in the mean population.

In this case, we might refer to the group that viewed the photo without the healthy
crackers as the control group. A control group is a level of the independent variable that

■ A control group is a level of
the independent variable that
does not receive the treatment
of interest in a study. It is
designed to match an
experimental group in all ways
but the experimental
manipulation itself.

■ An experimental group is a
level of the independent
variable that receives the
treatment or intervention of
interest in an experiment.

■ The null hypothesis is a
statement that postulates that
there is no difference between
populations or that the
difference is in a direction
opposite from that anticipated
by the researcher.

■ The research hypothesis is a
statement that postulates that
there is a difference between
populations or sometimes,
more specifically, that there is
a difference in a certain
direction, positive or negative;
also called an alternative
hypothesis.
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Using a Sample to Make
Probability-Based Judgments
About the Population Does the
presence of a low-calorie item, such as
a diet soda, make a higher-calorie item,
such as french fries, seem healthier?
Researchers use samples to test
hypotheses such as this about a
population.
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does not receive the treatment of interest in a study. It is designed to match
the experimental group—a level of the independent variable that receives
the treatment or intervention of interest—in all ways but the experimental
manipulation itself. In this example, the experimental group would
be those viewing the photo that included the healthy crackers.

The next step, one that ideally occurs before actually collecting
data from our sample, and one that we’ll see throughout this book, is
the development of the hypotheses to be tested in hypothesis testing.
When we calculate inferential statistics, we’re always comparing two
hypotheses. One is the null hypothesis—a statement that postulates that
there is no difference between populations or that the difference is in a direction
opposite from that anticipated by the researcher. In most circumstances, we
can think of the null hypothesis as the boring hypothesis because it
proposes that nothing will happen. In many hypothesis tests, the dif-
ference being tested is a difference between means. In the healthy food study, the null
hypothesis would be that the mean calorie estimate is the same for both populations—
all people in the United States who view the photo without the healthy crackers and
all people in the United States who view the photo with the healthy crackers. This
hypothesis is boring because it proposes that nothing is going on—that there is no
mean difference between the groups and that the photo a participant sees makes ab-
solutely no difference in calorie estimates.

By contrast, the research hypothesis, also called the alternative hypothesis, is usually
the exciting one. The research hypothesis is a statement that postulates that there is a difference
between populations or sometimes, more specifically, that there is a difference
in a certain direction, positive or negative. This is usually the exciting hy-
pothesis because it proposes a distinctive difference that is worthy of
further investigation. (Again, many hypothesis tests are  exploring a
difference between means.) In the healthy food study, the research hy-
pothesis would be that, on average, the calorie estimate is different for
those viewing the photo with the healthy crackers than for those
viewing the photo without the healthy crackers. It also could specify
a direction—that the mean calorie estimate is higher (or lower) for
those viewing the photo with the healthy crackers than for those
viewing the photo with just the salad and Pepsi. Notice that, for all
hypotheses, we are very careful to state the comparison group. We do
not say merely that the group viewing the photo with the healthy
crackers has a higher (or lower) average calorie estimate. We say that
it has a higher (or lower) average calorie estimate than the group that
views the photo without the healthy crackers.

We formulate our null hypothesis and research hypothesis to set
them up against each other. We use statistics to determine the probability that there is
a large enough difference between the means of our samples that we can conclude
there’s likely a difference between the means of the underlying populations. So, prob-
ability plays into the decision we make about our hypotheses.

Making a Decision About Our Hypothesis
When we make a conclusion at the end of a study, the data lead us to conclude one
of two things:

1. We decide to reject the null hypothesis.
2. We decide to fail to reject the null hypothesis.

�   MASTERING THE CONCEPT

5-5: Many experiments have an

experimental group, whose participants

receive the treatment or intervention of

interest, and a control group, whose

participants do not receive the treatment or

intervention of interest. Aside from the

intervention with the experimental group,

the two groups are treated identically.

�   MASTERING THE CONCEPT

5-6: Hypothesis testing allows us to

examine two competing hypotheses. The

first, the null hypothesis, posits that there is

no difference between populations or that

any difference is in the opposite direction

from what is predicted. The second, the

research hypothesis, posits that there is a

difference between populations (or that the

difference between populations is in a

predicted direction—either higher or lower).
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We always begin our reasoning about the outcome of an experiment by reminding
ourselves that we are testing the (boring) null hypothesis. In terms of the healthy food
study, the null hypothesis is that there is no mean difference between groups. More specif-
ically, the null hypothesis is that the mean calorie estimate for the people who viewed the
photo with just the salad and Pepsi is the same as the mean calorie estimate for the people
who viewed the photo with the salad, Pepsi, and healthy crackers. In hypothesis testing, we
determine the probability that we would see a difference between the means of our sam-
ples given that there is no actual difference between the underlying population means.

After we analyze the data, we are able to do one of two things:

 1. Reject the null hypothesis. “I reject the idea that there is no mean difference between
populations.” Or more specifically, “I reject the idea that the mean calorie estimate
is the same in the population from which we drew the control group that viewed
the photo with the salad and Pepsi as it is in the population from which we drew
the experimental group that viewed the photo with the salad, Pepsi, and healthy
crackers.” When we reject the null hypothesis that there is no difference, we can even
assert what we believe the difference to be based on our actual findings. We can
say that it seems that people who view a photo of a salad, Pepsi, and healthy crackers
estimate a lower (or higher, depending on what we found in our study) number of
calories, on average, than those who view a photo with only the salad and Pepsi.

 2. Fail to reject the null hypothesis. “I do not reject the idea that there is no mean dif-
ference between populations.” Or more specifically, “I do not reject the idea that
the mean calorie estimate is the same in the population from which we drew the
control group that viewed the photo with the salad and Pepsi as it is in the pop-
ulation from which we drew the experimental group that viewed the photo with
the salad, Pepsi, and healthy crackers.”

Let’s take the first possible conclusion, to reject the null hypothesis. If the group
that viewed the photo that included the healthy crackers has a mean calorie estimate
that is a good deal higher (or lower) than the control group’s mean calorie estimate,
then we might be tempted to say that we accept our research hypothesis that there is
such a mean difference in the populations—that the addition of the healthy crackers
makes a difference. Probability plays a central role in determining that the mean dif-
ference is large enough that we’re willing to say it’s real. But rather than accept the re-
search hypothesis in this case, we reject the null hypothesis, the one that suggests there
is nothing going on. We repeat: when the data suggest that there is a mean difference,
we reject the idea that there is no mean difference.

The second possible conclusion is failing to reject the null hypothesis. There’s a
very good reason for thinking about this in terms of failing to reject the null hypothesis
rather than accepting the null hypothesis. Let’s say there’s a small mean difference, and
we conclude that we cannot reject the null hypothesis (remember, rejecting the null
hypothesis is what you want to do!). We determine that it’s just not likely enough—
or probable enough—that the difference between means is real. It could be that a real
difference between means didn’t show up in this particular sample just by chance. There
are many ways in which a real mean difference in the population might not get picked
up by a sample. Again, we repeat: when the data do not suggest a difference, we fail to
reject the null hypothesis, which is that there is no mean difference. The way we decide
whether to reject the null hypothesis is based directly on probability. We calculate the
probability that the data would produce a difference between means this large and in
a sample of this size if there was nothing going on. ■

EXAMPLE 5.2
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We will be giving you many more opportunities to get comfortable with the logic
of formal hypothesis testing before we start applying numbers to it, but here are three
easy rules and a table (Table 5-1) that will help keep you on track.

1. Remember: the null hypothesis is that there is no difference between groups,
and usually our hypotheses explore the possibility of a mean difference.

2. We either reject or fail to reject the null hypothesis. There are no other options.
3. We never use the word accept in reference to formal hypothesis testing.

Hypothesis testing is exciting when you care about the results. You may wonder what
happened in Tierney’s study. Well, people who saw the photo with just the salad and
Pepsi estimated, on average, that the 934-calorie meal contained 1011 calories. When
the 100-calorie crackers were added, the meal actually increased from 934 calories to
1034 calories; however, those who viewed this
photo estimated, on  average, that the meal con-
tained only 835 calories! So, even though the
meal with the crackers contained 100 more calo-
ries, the participants who viewed this photo es-
timated that it contained 176 fewer calories!
Tierney referred to this effect as “a health halo
that magically subtracted calories from the rest
of the meal.” Interestingly, he replicated this
study with mostly foreign tourists in New
York’s Times Square and did not find this effect.
He concluded that health-conscious people
were more susceptible to bias than other people.

TABLE 5-1. Hypothesis Testing: Hypotheses and Decisions

The null hypothesis posits no difference, on average, whereas the research hypothesis
posits a difference of some kind. There are only two decisions we can make. We can fail
to reject the null hypothesis if the research hypothesis is not supported, or we can reject
the null hypothesis if the research hypothesis is supported.

                                                Hypothesis                                Decision

Null hypothesis                    No change or                    Fail to reject the null hypothesis 
                                          difference                          (if research hypothesis is not supported)

Research hypothesis            Change or difference         Reject the null hypothesis (if research 
                                                                                  hypothesis is supported)

CHECK YOUR LEARNING
Reviewing the Concepts > In experiments, we typically compare the average of the responses of those who receive

our treatment or manipulation (the experimental group) with the average of the responses
of similar people who do not receive the manipulation (the control group).

> Researchers develop two hypotheses: a null hypothesis, which theorizes no average differ-
ence between levels of an independent variable in the population, and a research hypothesis,
which theorizes an average difference of some kind in the population.

> Researchers can draw two conclusions: they can reject the null hypothesis and conclude
that they have supported the research hypothesis, or they can fail to reject the null hypothesis
and conclude that they have not supported the research hypothesis.

Clarifying the Concepts 5-8 At the end of a study, what does it mean to reject the null hypothesis?

Calculating the Statistics 5-9 State the difference that might be expected based on the null hypothesis when
studying the average test grades of students who attend review sessions versus those
who do not.

Applying the Concepts 5-10 A university lowers the heat during the winter to save money, and professors wonder
whether students will perform more poorly, on average, under cold conditions. Several
professors join forces to conduct a study in the hope of gathering data to encourage
stingy administrators to restore full heat.

a. Cite the likely null hypothesis for this study.

b. Cite the likely research hypothesis.

continued on next page
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c. If the cold temperature appears to decrease academic performance, on average, what
will the researchers conclude in terms of formal hypothesis-testing language?

d. If the researchers do not gather sufficient evidence to conclude that the cold
temperature leads to decreased academic performance, on average, what will they
conclude in terms of formal hypothesis-testing language?

Solutions to these Check Your
Learning questions can be found in
Appendix D.

Type I and Type II Errors
Exit polling during the 2000 U.S. presidential election taught us that sampling errors can
lead us to make a wrong decision. Even when sampling has been properly conducted,
however, there are still two ways to make a wrong decision. We can reject the null hy-
pothesis when we should not have rejected it, or we can fail to reject the null hypothesis
when we should have rejected it. Similarly, if we examine jury decisions, it is important
to be aware that there are two ways that a jury can come to a wrong decision. The jury
doesn’t want an innocent person to be found guilty, and the jury doesn’t want a guilty
person to be found innocent. Of couse, we want to minimize the probability of making

either kind of error. So let’s consider the two types of error
using statistical language.

Type I Errors
If we reject the null hypothesis, but it was a mistake to do so,
then we have committed a Type I error. Specifically, a Type I
error occurs when we reject the null hypothesis, but the null hypothesis
is correct. A Type I error is like a false-positive in a medical test.
For example, if a woman believes she might be pregnant, then
she might buy a home pregnancy test. In this case, the null hy-
pothesis would be that she is not pregnant, and the research
hypothesis would be that she is pregnant. If the test is positive,
the woman rejects the null hypothesis—the one that theorizes
that she is not pregnant. Based on the test, the woman believes
she is pregnant. Pregnancy tests, however, are not perfect. If the
woman tests positive and rejects the null hypothesis, it is pos-
sible that she is wrong and it is a false-positive. Based on the
test, the woman believes she is pregnant even though she is not
pregnant. A false-positive is equivalent to a Type I error.

A Type I error indicates that we rejected the null hypothesis
falsely. As you might imagine, the rejection of the null hypoth-
esis typically leads to action, at least until we discover that it is
an error. For example, the woman with a false-positive preg-
nancy test might announce the news to her family and start
buying baby clothes. Or a person mistakenly diagnosed with a
severe illness might begin expensive treatments. Many re-
searchers consider the consequences of a Type I error to be
particularly detrimental because people often take action based
on a mistaken finding.

Type II Errors
If we fail to reject the null hypothesis but it was a mistake to
do so, this is a Type II error. Specifically, a Type II error occurs
when we fail to reject the null hypothesis, but the null hypothesis is
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Type I and Type II Errors The results of a home pregnancy test are
either positive (indicating pregnancy) or negative (indicating no
pregnancy). If the test is positive, but the woman is not pregnant, this is
equivalent to a Type I error in statistics. If the test is negative, but the
woman is pregnant, this is equivalent to a Type II error in statistics. With
pregnancy tests, as with hypothesis testing, people are more likely to act
on a Type I error than on a Type II error. Although the line on the left is
lighter than the line on the right, this particular pregnancy test seems to
indicate that she is pregnant. If this is an error, it would be a Type I error.

�   MASTERING THE CONCEPT

5-7: In hypothesis testing, there are two types of

errors that we risk making. Type I errors, when we

reject the null hypothesis when the null hypothesis is

true, are like false-positives on a medical test; we

think someone has a disease, but they really don’t.

Type II errors, when we fail to reject the null

hypothesis when the null hypothesis is not true, are

like false-negatives on a medical test; we think

someone does not have a disease, but they really do.
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false. A Type II error is like a false-negative in medical testing. In the pregnancy example
earlier, the woman might get a negative result on the test and fail to reject the null
hypothesis, the one that says she’s not pregnant. In this case, she would conclude that
she’s not pregnant when she really is. A false-negative is equivalent to a Type II error.

A Type II error indicates that we falsely failed to reject the null hypothesis. A failure
to reject the null hypothesis typically results in a failure to take action because a research
intervention is not supported or, with respect to medical testing, a given diagnosis is not
received. Yet there are cases in which a Type II error can have serious consequences. For
example, the pregnant woman who does not believe she is pregnant because of a Type
II error may drink alcohol in a way that unintentionally harms her fetus. Similarly, a truly
effective Alzheimer’s drug might be kept from the market. The many thousands of peo-
ple (and their families) who suffer from this terrible disease would continue to suffer.
The answer is right under our noses, but we don’t know it because of a Type II error.

In the British Medical Journal, researchers observed that positive outcomes are more
likely to be reported than null results (Sterne & Smith, 2001). Journals tend to publish
“exciting” results, rather than “boring” ones. To translate this into the terms of hy-
pothesis testing, if a researcher rejects the “boring” null hypothesis, thus garnering sup-
port for the “exciting” research hypothesis, the editor of a journal is more likely to
want to publish these results. The mass media compound this problem; only the most
exciting and surprising results are likely to get picked up by the national media and
disseminated to the general public.

Using educated estimations, researchers calculated probabilities for 1000 hypothetical
studies (Sterne & Smith, 2001). First, based on the literature on coronary heart disease,
they assumed that 10% of studies should reject the null hypothesis; that is, 10% of studies
were on medical techniques that actually worked. Second, based on flaws in method-
ology such as small sample sizes, as well as the fact that there will be chance findings,
they estimated that half of the time the null hypothesis would not be rejected when it
should be rejected, a Type II error. That is, half of the time, a helpful treatment would
not receive empirical support. Finally, when the new treatment does not actually work,
researchers would falsely reject the null hypothesis 5% of the time; just by chance, stud-
ies would lead to a false reportable difference between treatments, a Type I error. (In
later chapters, we’ll learn more about this 5% cutoff, but for now, it’s only important
to know that the 5% cutoff is both arbitrary yet well established in statistical analyses.)
Table 5-2 summarizes the researchers’ hypothetical outcomes of 1000 studies.

The Shocking Prevalence of Type I Errors   N e x t  S t e p s

■ A Type I error occurs when
we reject the null hypothesis,
but the null hypothesis is
correct.

■ A Type II error occurs when
we fail to reject the null
hypothesis, but the null
hypothesis is false.

TABLE 5-2. Estimates of Type I Errors

Sterne and Smith (2001) used educated estimates to calculate the likelihood of Type I errors in published re-
ports of medical findings. Their calculations suggest that almost half of published medical studies exhibit Type
I errors!

Null Hypothesis Is True Null Hypothesis is False
Result of Study (Treatment Doesn’t Work) (Treatment Does Work) Total

Fail to reject 855 50 905

Reject 45 50 95

Total 900 100 1000
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Of 1000 studies, the exciting research hypothesis would be accurate in only 100; for
these studies, we should reject the null hypothesis. In the other 900 of these studies, the null
hypothesis would be accurate and we should not reject the null hypothesis. But remember,
we are sometimes incorrect in our conclusions. Given the 5% Type I error rate, we would
falsely reject 5%, or 45, of the 900 null hypotheses that we should not reject. Given the
50% Type II error rate, we would incorrectly fail to reject 50 of the 100 studies in which
we should reject the null hypothesis. (Both of the numbers indicating errors are in bold
in Table 5-2.) The most important numbers are in the reject row—the row for which
we’ll have exciting results. Of the 95 total studies for which we would reject the null hy-
pothesis, we would be wrong in 45 of these cases—almost half of the time! These num-
bers suggest that almost half of published medical studies may be Type I errors.

Let’s consider an example. In recent years, there has been a spate of claims about
the health benefits of natural substances. Natural health-related products are often less
expensive than their manufactured counterparts because they do not have to be in-
vented by large pharmaceutical companies. In addition, they are perceived to be healthy
even though natural substances are not always risk-free. (Remember, rattlesnake venom
and arsenic are natural substances!) Previous research has supported the use of vitamin
E to prevent various maladies, and echinacea has been championed for its alleged ability
to prevent the common cold. Yet recent studies that implemented rigorous research
designs have largely discredited early, highly publicized accounts of the effectiveness
of vitamin E and echinacea.

When the general public reads first of the value of vitamin E or echinacea and then
of the health care establishment’s dismissal of these treatments, they wonder what to
believe and often, sadly, rely even more on their own biased common sense. It would
be far better for scientists to improve their research designs from the outset and reduce
the Type I errors that so frequently make headlines.

CHECK YOUR LEARNING
Reviewing the Concepts > When we draw a conclusion from inferential statistics, there is always a chance we are

wrong.

> When we reject the null hypothesis, but the null hypothesis is true, we have committed a
Type I error.

> When we fail to reject the null hypothesis, but the null hypothesis is not true, we have
committed a Type II error.

> Because of the flaws inherent in research, numerous null hypotheses are rejected falsely, re-
sulting in Type I errors.

> The educated consumer of research is aware of her or his own confirmation biases and
how they might affect her or his tendency to believe research findings without appropriate
questioning.

Clarifying the Concepts 5-11 Explain how Type I and Type II errors both relate to the null hypothesis.

Calculating the Statistics      5-12 If out of every 280 people in prison, 7 people are innocent, what is the rate of Type I
errors?

5-13 If the court system fails to convict 11 out of every 35 guilty people, what is the rate of
Type II errors?
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Applying the Concepts 5-14 Researchers conduct a study on perception by having participants throw a ball at a
target while wearing virtual-reality glasses and while wearing glasses that allow normal
viewing. The null hypothesis is that there is no difference in performance when wearing
the virtual-reality glasses or when wearing the glasses that allow normal viewing.

a. The researchers reject the null hypothesis, concluding that the virtual-reality glasses
lead to a worse performance than the normal glasses. What error might the
researchers have made? Explain.

b. The researchers fail to reject the null hypothesis, concluding that it is possible that
the virtual-reality glasses have no effect on performance. What error might the
researchers have made? Explain.

Solutions to these Check Your
Learning questions can be found in
Appendix D.

REVIEW OF CONCEPTS

Samples and Their Populations
The gold standard of sample selection is random sampling, a procedure in which every
member of the population has an equal chance of being chosen for study  participation.
A random numbers table or computer-based random numbers generator is used to
ensure randomness. For practical reasons, random selection is uncommon in social sci-
ence research. Many behavioral scientists use a convenience sample, a sample that is readily
available to them. One kind of convenience sample is the volunteer sample, in which
participants themselves actively choose to participate in the study. With random as-
signment, every participant in a study has an equal chance of being assigned to any of
the experimental conditions. Replication, the duplication of scientific results, in con-
junction with random assignment, can go a long way toward increasing generalizability,
our ability to generalize our findings beyond our samples.

Probability
Calculating probabilities is essential because human thinking is dangerously biased. Be-
cause of a confirmation bias, or tendency to see patterns that we expect to see, we often
see meaning in mere coincidence. A confirmation bias often results from an illusory
correlation, a relation that appears to be present but does not exist. When we think of
probability, many of us think of personal probability, an individual’s own judgment about
the likelihood that an event will occur. Statisticians, however, are referring to expected
relative-frequency probability, or the long-run expected outcome if an experiment or trial
was repeated many, many times. A trial refers to each occasion that a procedure is carried
out, and an outcome is the result of a trial. A success refers to the outcome for which
we’re trying to determine the probability. Probability is a basic building block of infer-
ential statistics. When we draw a conclusion about a population based on a sample, we
can only say that it is probable that our conclusion is accurate, not that it is certain.

Inferential Statistics
Inferential statistics, based on probability, start with a hypothesis. The null hypothesis is a
statement that usually postulates that there is no average difference between populations.
The alternative or research hypothesis is a statement that postulates that there is an average
difference between populations. After conducting a hypothesis test, we have only two
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possible conclusions. We can either reject or fail to reject the null hypothesis. When we
conduct inferential statistics, we are often comparing an experimental group, the group sub-
jected to an intervention, with a control group, the group that is the same as the experimen-
tal group in every way except the intervention. We use probability to draw conclusions
about a population by estimating the probability that we would find a given difference be-
tween sample means if there is no underlying difference between population means.

Type I and Type II Errors
Statisticians must always be aware that their conclusions may be wrong. If a researcher
rejects the null hypothesis, but the null hypothesis is correct, the researcher is making
a Type I error. If a researcher fails to reject the null hypothesis, but the null hypothesis
is false, the researcher is making a Type II error. Scientific and medical journals tend to
publish, and the media tend to report on, the most exciting and surprising findings.
As such, Type I errors are often overrepresented among reported findings.

SPSS®

There are many ways to look more closely at our independent
and dependent variables.

We can request a variety of case summaries by selecting:

Analyze → Reports → Case Summaries

We then can highlight the variable of interest and click the
arrow to move it under “Variables.”

If we want to break it down by a second variable, we can
highlight a nominal variable and click the bottom arrow to
move it under “Grouping Variable(s).”

After making our choices, we click on “OK” to see the
output screen.

For example, we could use the hours studied and exam
grade data from the SPSS section of Chapter 3. We could se-
lect “grade” under “Variables” and “hours” under “Grouping
Variable(s).” The output, part of which is shown in the screen-
shot here, tells us all the grades for students who studied a
given number of hours. For example, this summary tells us
that the two students who studied for three hours earned
grades of 60 and 72 on the exam.
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5.1 USING RANDOM SELECTION
There are approximately 2000 school psychologists in Australia. A researcher has developed
a new diagnostic tool to identify conduct disorder in children and wants to study ways to
train school psychologists to administer it. How can she recruit a random sample of 30
school psychologists to participate in her study?

She could use an online random numbers generator to randomly select a sample of 30
school psychologists for this study from among the target population of 2000 Australian
school psychologists. Let’s try it. To do so, she would tell an online random number gen-
erator to produce one set of 30 numbers between 0001 and 2000. She would specify that
she wants unique numbers, because no school psychologist can be in the study more than
once. She can ask the program to sort the numbers, if she wishes, to more easily identify
the participants who will comprise her sample.

When we generated a set of 30 random numbers, we got the following:

25, 48, 84, 113, 159, 165, 220, 312, 319, 330,
337, 452, 493, 562, 613, 734, 822, 860, 920, 924,
931, 960, 983, 1290, 1305, 1462, 1502, 1515, 1675, 1994

Of course, each time we generate a list of random numbers, it is different. Notice that
the typical list of randomly generated numbers does not necessarily appear random. For
example, in this list only 7 out of the 30 numbers are over 1000. It’s weighted toward the
lower numbers. There are also several cases in which numbers are close in value (e.g., 920
and 924). Based on these numbers, the 30 people would then be selected from a numbered
list of the 2000 school psychologists.

5.2 USING RANDOM SELECTION
Imagine that the researcher described in How It Works 5.1 has developed two training
modules. One is implemented in a classroom setting and requires that school psychologists
travel to a nearby city for training. The other is a Web-based training module and is far
more practical and cost-effective to use. She will administer a test to participants after train-
ing to determine how much they learned. Her hope is that the Web-based training will
work as well as the classroom training, resulting in savings of both cost and time. How can
she randomly assign half of the participants to classroom training and half to Web-based
training?

In this case, the independent variable is type of training with two levels: classroom train-
ing and Web-based training. The dependent variable is amount of learning as determined
by a test. This study is an experiment because participants are randomly assigned to con-
ditions. To determine the condition to which each participant will be assigned, she could
use a random numbers generator to produce one set of 30 numbers between 0 and 1. She
would not want the numbers to be unique because she wants more than one of each type.
She would not want the numbers to be sorted. The 30 participants would be assigned based
on the number associated with their position on the list of participants.

When we used an online random numbers generator, we got the following set of 30
numbers:

1, 1, 0, 0, 0, 0, 1, 1, 1, 0,
0, 1, 0, 0, 0, 0, 0, 0, 1, 1,
0, 1, 1, 1, 0, 0, 1, 1, 0, 0

This set contains 13 ones and 17 zeros. If we wanted exactly 15 in each group, we could
stop assigning people to the 0 condition when we reached 15 zeros.

5.3 CALCULATING PROBABILITY
Let’s say that a university provides every student with a laptop computer, but students com-
plained that their computers “always” crashed when they were on the Internet and had at
least three other programs open (e.g., word-processing program, music program, statistical
software). One student thought this was an exaggeration and decided to calculate the prob-
ability that the campus computers would crash under these circumstances. How could he
do this?

He could start by randomly selecting 100 different students to participate in his study.
On the 100 students’ computers, he could open three programs and then go online. He
could then record whether each computer crashed under these conditions.

How It Works
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In this case, the trials would be the 100 instances (on 100 different laptops) in which
the student opened three programs and then went online. The outcome would be whether
or not the computer crashed. A success in this case would be a computer that crashed, and
let’s say that happened 55 times. (You might not consider a crashed computer a success,
but in probability theory, a success refers to the outcome for which we want to determine
the probability.) He could then take the number of successes (55) and divide by the number
of trials:

55/100 � 0.55

So the probability of a computer crashing when three programs are open and the student
goes online is 0.55. Of course, to determine the true expected relative-frequency probability,
he’d have to conduct many, many more trials.

Exercises
Clarifying the Concepts

5.1 Why do we study samples rather than populations?

5.2 What is the difference between a random sample and
a convenience sample?

5.3 What is generalizability?

5.4 What is a volunteer sample, and what is the risk asso-
ciated with it?

5.5 What is the difference between random sampling and
random assignment?

5.6 What does it mean to replicate research, and how does
this impact our confidence?

5.7 Ideally, an experiment would use random sampling so
that the data would accurately reflect the larger popu-
lation. For practical reasons, this is difficult to do. How
does random assignment help make up for a lack of ran-
dom selection?

5.8 What is the confirmation bias?

5.9 What is an illusory correlation?

5.10 How does the confirmation bias lead to the perpetua-
tion of an illusory correlation?

5.11 Statisticians use terms like trial, outcome, and success in a
particular way in reference to probability. What do each
of these three terms mean in this context?

5.12 We distinguish between probabilities and pro por tions.
How does each capture the likelihood of an outcome?

5.13 How is the term independent used by statisticians?

5.14 One step in hypothesis testing is to randomly assign
members of the sample into the control group and the
experimental group. What is the difference between
these two groups?

5.15 What is the difference between a null hypothesis and a
research hypothesis?

5.16 What are the two decisions or conclusions we can make
about our hypotheses based on the data?

5.17 What is the difference between a Type I error and a
Type II error?

Calculating the Statistics

5.18 Forty-three tractor-trailers are parked for the night in
a rest stop along a major highway. You assign each truck
a number from 1 to 43. Moving from left to right and
using the second line in the random numbers table
below, select four trucks to weigh as they leave the rest
stop in the morning.

00190 27157 83208 79446 92987 61357 

23798 55425 32454 34611 39605 39981 

85306 57995 68222 39055 43890 36956 
99719 36036 74274 53901 34643 06157 

5.19 Airport security makes random checks of passenger bags
every day. If one in every 10 passengers is checked, use
the random numbers table in Exercise 5.18 to deter-
mine the first six people to be checked. Work from top
to bottom, starting in the 4th column, and allow the
number 0 to represent the 10th person.

5.20 Randomly assign eight people to three conditions of a
study using the random numbers table in Exercise 5.18.
Read from right to left starting in the top row. (Note:
Assign people to conditions without concern for having
an equal number of people in each condition.)

5.21 You are running a study with five conditions. Assign the
first seven participants who arrive at your lab to con-
ditions, not worrying about equal assignment across
conditions. Use the random numbers table in Exercise
5.18, and read from left to right starting in the third row
from the top.

5.22 Explain why, given the general tendency for people to
exhibit the confirmation bias, it is important to collect
objective data.

5.23 Explain why, given the general tendency for people to
perceive illusory correlations, it is important to collect
objective data.

5.24 What is the probability of hitting a target if, in the 
long run, 71 out of every 489 attempts actually hit the
target?



5.25 On a game show, eight people have won the grand prize
and a total of 266 people have competed. Estimate the
probability of winning the grand prize.

5.26 Convert the following proportions to percentages:

a. 0.0173

b. 0.8

c. 0.3719

5.27 Convert the following percentages to proportions:

a. 62.7%

b. 0.3%

c. 4.2%

5.28 Using the random numbers table in Exercise 5.18, 
estimate the probability of the number 6 appearing 
in a random sequence of numbers. Base your answer
on the numbers that appear in the first two rows.

Applying the Concepts

5.29 In France in the fall of 2005, many communities of
immigrants from the Middle East and North Africa
experienced a great deal of violence, particularly car
burnings, committed by their young people. Social
science research can help to diminish or avoid such
violence. Consider the following hypothetical re-
search on the French riots: Of the cities that shared
this demographic, Marseilles was one of the few that
saw relatively little violence. A researcher wants to
compare Marseilles with Lyons, a city that saw a great
deal of violence, to determine which characteristics
may have moderated violence in Marseilles, specifi-
cally among high school students. Can she use ran-
dom selection? Explain. Can she use random
assignment? Explain.

5.30 Approximately 21,000 school psychologists are mem-
bers of the U.S.-based National Association of School
Psychologists. Of these, about 5000 have doctoral de-
grees. A researcher wants to randomly select 100 of the
doctoral-level school psychologists for a survey study
regarding aspects of their jobs, including the types
of tasks in which they engage, settings in which
they work, and attitudes about their careers. Use this
excerpt from a random numbers table to answer the
following questions:

04493 52494 75246 33824 45862 51025 

00549 97654 64051 88159 96119 63896 

35963 15307 26898 09354 33351 35462 

59808 08391 45427 26842 83609 49700 

a. What is the population targeted by this study? How
large is it?

b. What is the sample desired by this researcher? How
large is it?

c. Describe how the researcher would select his sam-
ple. Be sure to explain how the members of the
population would be numbered and what sets of
digits the researcher should ignore when using the
random numbers table.

d. Beginning at the left-hand side of the top line and
continuing with each succeeding line, list the first
10 participants that this researcher would select for
his study.

5.31 Continuing with the study described in Exercise 5.30,
once the researcher had randomly selected his sample of
100 school psychologists, he decided to randomly assign
50 of them to receive, as part of their survey materials,
a newspaper article about the improving job market for
school psychologists. He assigned the other 50 to receive
a newspaper article about the declining job market for
school psychologists. Unbeknownst to the participants
(until the debriefing at the end of the survey), the articles
were fictional. After reading the articles, the participants
responded to questions about their attitudes toward their
careers. The researcher wondered whether attitudes
could be affected by external sources.

a. What is the independent variable in this experi-
ment, and what are its levels?

b. What is the dependent variable in this experiment?

c. Write a null hypothesis and a research hypothesis
for this study.

5.32 Refer to Exercises 5.30 and 5.31 when responding to
the following questions:

a. Describe how the researcher would randomly assign
the participants to the levels of the independent
variable. Be sure to explain how the levels of the in-
dependent variable would be numbered and what
sets of digits the researcher should ignore when
using the random numbers table.

b. Beginning at the left-hand side of the bottom line
of the random numbers table in Exercise 5.30 and
continuing with the left-hand side of the line above
it, list the levels of the independent variable to
which the first 10 participants would be assigned.
Use 0 and 1 to represent the two conditions.

c. Why do these numbers not appear to be random?
Discuss the difference between short-run and long-
run proportions.

5.33 Imagine that you have been hired by the Psychology
Department at your school to administer a survey to psy-
chology majors about their experiences in the depart-
ment. You have been asked to randomly select 60 majors
from the overall pool of 300. You are working on this
project in your dorm room using a random numbers table
because the server is down and you cannot use an on -
line random numbers generator. Your roommate, who is
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patiently waiting for you to finish so you can go out, offers
to write down a list of 60 random numbers between 001
and 300 for you so you can be done quickly. In about
three to four sentences, explain to your roommate why
she is not likely to create a list of random numbers.

5.34 For each of the following studies, state (i) whether ran-
dom selection could have been used, and explain
whether it would have been possible. Explain also to
what population the researcher wanted to and could
generalize and state (ii) whether random assignment
could have been used, and whether it would have been
possible.

a. A researcher recruited 1000 U.S. physicians through
the American Medical Association (AMA) to par-
ticipate in a study of standards of confidentiality
with respect to patient information. He wanted to
compare perceptions of the standard among men
versus women.

b. A developmental psychologist wondered whether
children born preterm (premature) had different so-
cial skills at age five than children born at full term.

c. A counseling center director wanted to compare
the length of therapy in weeks for students who
came in for treatment for depression versus students
who came in for treatment for anxiety. She wanted
to report these data to the university administrators
to help develop the next year’s budget.

d. An industrial/organizational psychologist wondered
whether a new laptop design would affect people’s
response time when using the computer. He wanted
to compare response times when using the new lap-
top with response times when using two standard
versions of laptops, a Mac and a PC.

5.35 A volunteer sample is a kind of convenience sample in
which participants select themselves to participate. On
August 19, 2005, USA Today published an online poll
on its Web site asking this question about U.S. college
football: “Who is your pick to win the ACC conference
this year?” Eight options—seven universities, including
top vote-getters Virginia Tech and Miami, as well as
“other”—were provided.

a. Describe the typical person who might volunteer
to be in this sample. Why might this sample be bi-
ased, even with respect to the population of U.S.
college football fans?

b. What is external validity? Why might external va-
lidity be limited in this sample?

c. What other problem can you identify with this poll?

5.36 Cosmopolitan magazine (Cosmo as it’s known popularly)
publishes many of its well-known quizzes on its Web
site. One quiz, aimed at heterosexual women, is titled
“Are You Way Too Obssessed with Your Ex?” The quiz
poses situations for which participants must choose how
they’d act from among three limited options. A question

about “your rebound guy” offers these three choices:
”any random guy who will take your mind off the
split,” “a doppelgänger of your ex,” and “the polar op-
posite of the last guy you dated.” Consider whether you
want to use the quiz data to determine how obsessed
women are with their exes.

a. Describe the typical person who might respond
to this quiz. How might data from such a sample
be biased, even with respect to the overall Cosmo
readership?

b. What is the danger of relying on volunteer samples
in general?

c. What other problems do you see with this quiz?
Comment on the types of questions and responses.

5.37 On its Web site, Advocates for Self-Government offers
the “World’s Smallest Internet Political Quiz,” focusing
on the U.S. political spectrum. Using just 10 questions,
the quiz identifies a person’s political leanings. As of Jan-
uary 25, 2010, a total of 14,315,608 people had taken
the quiz. The 2007 reported breakdown into the five
possible categories was: centrist, 33.49%; conservative,
8.88%; libertarian, 32.64%; liberal, 17.09%; and statist
(big government), 7.89%.

a. Do you think these numbers are representative of
the U.S. population? Why or why not?

b. Describe the people most likely to volunteer for this
sample. Why might this group be biased in com-
parison to the overall U.S. population?

c. The Web site says, “Libertarians support maxi -
mum liberty in both personal and economic
matters.” Libertarians are not the predominant
political group in the United States. Why, then,
might libertarians form one of the largest cate-
gories of quiz respondents?

d. This is a huge sample—14,315,608. Why is it not
enough to have a large sample to conduct a study
with high external validity? What would we need
to change about this sample to increase external
validity?

5.38 For each of the following hypothetical scenarios, state
whether selection or assignment is being described. Is
the method of selection or assignment random? Explain
your answer.

a. A study of the services offered by counseling centers
at Canadian universities studied 20 universities;
every Canadian university had an equal chance of
being in this study.

b. In a study of phobias, 30 rhesus monkeys were
either exposed to fearful stimuli or not exposed to
fearful stimuli. Every monkey had an equal chance
of being placed in either of the exposure conditions.

c. A study of cell phone usage recruited participants
by including an invitation to participate in their cell
phone bills.
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d. A study of visual perception recruited 120 Intro-
duction to Psychology students to participate.

5.39 Assume that one of your male friends is complaining
about female drivers, stating that men are much better
drivers than women. If objective studies of the driving
performance of men and women revealed no mean dif-
ference between the two groups, what kind of bias has
your friend shown?

5.40 Refering to your friend from Exercise 5.39, assume he
backs up his claim by recounting two events over the
past week in which female drivers have erred (e.g., cut-
ting him off in traffic, not using a turn signal). Explain
how the confirmation bias is at work in your friend’s
statements and how this confirmation bias may be per-
petuating an illusory correlation.

5.41 Explain how the general tendency of a confirmation
bias might make it difficult to change negative thought
patterns that accompany depression.

5.42 Short-run proportions are often quite different from
long-run probabilities.

a. In your own words, explain why we would expect
short-run proportions to fluctuate but why long-
run probabilities are more predictable.

b. What is the expected long-run probability of heads
if you flip a coin many, many times? Why?

c. Flip a coin 10 times in a row. What proportion is
heads? Do this 5 times (and actually do it, don’t just
write down numbers!).

Proportion for first 10 flips:

Proportion for second 10 flips:

Proportion for third 10 flips:

Proportion for fourth 10 flips:

Proportion for fifth 10 flips:

d. Do the proportions in part (c) match the expected
long-run probability in part (b)? Why or why not?

e. Imagine that a friend flipped a coin 10 times, got 9
out of 10 heads, and complained that the coin was
biased. How would you explain to your friend
the difference between short-term and long-term
probability?

5.43 A deck of playing cards has 4 suits and 13 cards in each
suit, for a total of 52 cards. Imagine you draw one card
from the deck, record what the card is, and then put it
back in the deck. Let’s say you repeat this process 15
times, and 5 of the 15 cards are aces. Answer the fol-
lowing questions keeping this example in mind.

a. What does the term probability refer to? What is the
probability of drawing an ace?

b. What does the term proportion refer to? What is the
proportion of aces drawn?

c. What does the term percentage refer to? What is the
percentage of aces drawn?

d. Based on these data (5 out of 15 cards were aces),
do you have enough information to determine
whether the deck is stacked (i.e., biased)? Why or
why not? (Note: Four of the 52 cards should be
aces.)

5.44 Gamblers often falsely predict the outcome of a future
trial based on the outcome of previous trials. When tri-
als are independent, we cannot predict the outcome of
a future trial based on the outcomes of previous trials.
For each of the following examples, (i) state whether
the trials are independent or dependent and (ii) explain
why. In addition, (iii) state whether it is possible that the
quote is accurate or whether it is definitely fallacious,
explaining how the independence or dependence of tri-
als influences this.

a. You are playing Monopoly and have rolled a pair of
sixes in 4 out of 10 of your last rolls of the dice. You
say, “Cool. I’m on a roll. I’m likely to get sixes again
on my next turn.”

b. You are an Ohio State University football fan and
are sad because they have lost two games in a row.
You say, “That is really unusual; the Buckeyes are
doomed this season. That’s what happens with lots
of early-season injuries.”

c. You have a 20-year-old car that often has trouble
starting. It has started every day this week, and now
it’s Friday. You say, “I’m doomed. It’s been reliable
all week, and even though I did get a tune-up last
week, today is bound to be the day it fails me.”

d. It’s your first week of your corporate internship and
you have to wear nylon stockings to the office if
you’re wearing a skirt. On the first and second days,
you get a run in your stockings almost immediately,
an indication of a defect. The third day, you put on
yet another new pair of stockings and say, “OK, this
pair has to be good. There’s no way I’d have three
bad pairs in a row. They’re even from different stores!”

5.45 For each of the following studies, cite the likely null hy-
pothesis and the likely research hypothesis.

a. A forensic cognitive psychologist wondered
whether repetition of false information (versus no
repetition) would increase the tendency to develop
false memories, on average.

b. A clinical psychologist studied whether ongoing
structured assessments of the therapy process (versus
no assessment) would lead to better outcomes, on
average, among outpatient therapy clients with de-
pression.

c. A corporation recruited an industrial/organizational
psychologist to explore the effects of cubicles (ver-
sus enclosed offices) on employee morale.

d. A team of developmental cognitive psycholo -
gists studied whether teaching a second language to
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children from birth affects children’s ability to speak
their native language.

5.46 For each of the following fictional outcomes, state
whether you would reject or fail to reject the null hy-
pothesis (contingent, of course, on inferential statistics
backing up the statement). Explain the rationale for
your decision.

a. When false information is repeated several times,
people seem to be more likely, on average, to de-
velop false memories than when the information is
not repeated.

b. Therapy clients with depression who have ongoing
structured assessments of therapy seem to have
lower depression levels post-therapy, on average,
than do clients who do not have ongoing structured
assessments.

c. Employee morale does not seem to be different, on
average, whether employees work in cubicles or en-
closed offices.

d. A child’s native language does not seem to be dif-
ferent in strength, on average, based on whether the
child is raised to be bilingual or not.

5.47 Examine the statements from Exercise 5.46, repeated
here. If this conclusion is incorrect, what type of error
have you made? Explain your answer.

a. When false information is repeated several times,
people seem to be more likely, on average, to de-
velop false memories than when the information is
not repeated.

b. Therapy clients with depression who have ongoing
structured assessments of therapy seem to have
lower depression levels post-therapy, on average,
than do clients who do not have ongoing structured
assessments.

c. Employee morale does not seem to be different, on
average, whether employees work in cubicles or en-
closed offices.

d. A child’s native language does not seem to be dif-
ferent in strength, on average, based on whether the
child is raised to be bilingual or not.

5.48 Imagine you have made a new acquaintance in your
statistics class with whom you study for tests. One day
after hours of studying, your study partner asks you to
go on a date. This invitation takes you by complete sur-
prise and you have no idea what to say. You are not at-
tracted to the person in a romantic way, but at the same
time you do not want to hurt his or her feelings.

a. Create two possible responses to the person, one in
which you fail to reject the invitation and another in
which you reject the invitation.

b. How is your failure to reject the invitation different
from rejecting or accepting the invitation?

5.49 Borsari and Carey (2005) randomly assigned 64 male
students who had been ordered, after a violation of uni-
versity alcohol rules, to meet with a school counselor
to one of two conditions. Students were assigned to un-
dergo either (1) a brief motivational interview (BMI),
a recently developed intervention in which educational
material is related to the students’ own experiences, or
(2) an alcohol education session (AE), a more established
intervention in which educational material is simply
presented with no link to students’ experiences. Based
on inferential statistics, the researchers concluded that
those in the BMI group had fewer alcohol-related prob-
lems at follow-up than did those in the AE group.

a. What is the population of interest, and what is the
sample in this study?

b. Was random selection used? Why or why not?

c. Was random assignment used? Why or why not?

d. What is the independent variable, and what are its
levels? What is the dependent variable?

e. What is the null hypothesis, and what is the research
hypothesis?

f. What decision did the researchers make? Use the
language of inferential statistics.

g. If the researchers were incorrect in their decision,
what kind of error did they make? Explain your an-
swer. What are the consequences of this type of
error, both in general and in this situation?

Terms
random sample (p. 103)
convenience sample (p. 103)
generalizability (p. 105)
replication (p. 105)
volunteer sample (p. 105)
confirmation bias (p. 108)
illusory correlation (p. 108)

personal probability (p. 110)
probability (p. 110)
expected relative-frequency probability

(p. 110)
trial (p. 111)
outcome (p. 111)
success (p. 111)

control group (p. 114)
experimental group (p. 115)
null hypothesis (p. 115)
research hypothesis (p. 115)
Type I error (p. 118)
Type II error (p. 118)
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■ You should be able to create histograms and
frequency polygons (Chapter 2).

■ You should be able to describe distributions of
scores using measures of central tendency,
variability, and skewness (Chapters 2 and 4).

■ You should understand that we can have
distributions of scores based on samples, as
well as distributions of scores based on entire
populations (Chapter 5).
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Abraham De Moivre was imprisoned in a French monastery for two years because of his
religious beliefs. After his release, he fled France and ended up at Old Slaughter’s Coffee
House in London—the scene of a noisy explosion of intellectual freedom, political
squabbles, and artists hustling for work. From his table there, De Moivre worked on a
mathematical equation that he believed could predict random events, something that in-
terested him and also allowed him to consult for a fee with the local gamblers and insur-
ance brokers who also frequented Old Slaughter’s Coffee House (Stigler, 1999). After all,
they were betting men, and predicting the frequency of success and failure over the long
run could create a financial edge. As we now know, De Moivre’s significant contribution
was expressed as a mathematical formula, but there is no record of him drawing the actual
bell-shaped curve. Nevertheless, De Moivre’s equation described what we now call the
normal curve, a specific bell-shaped curve that is unimodal, symmetric, and defined mathematically.

De Moivre’s powerful mathematical idea is far easier to un-
derstand as a picture, but drawing a sketch of the normal curve
took about 200 years. In 1769, Daniel Bernoulli created a vi-
sual approximation of the normal curve. Then, 80 years later,
in 1849, Augustus De Morgan made an informal sketch of the
normal curve and mailed it to the astronomer George Airy
(Stigler, 1999). (Both curves are shown in Figure 6-1.) The
two men were stumbling toward a picture of the normal curve
as they tried to manage patterns of errors in charting the stars.

Two critical features of the normal curve were apparent
to these early astronomers. First, the pattern of errors was
symmetric: the left side was a mirror image of the right. Sec-
ond, the middle of the normal curve represented their best
estimate of reality because it averaged the errors. The sur-
rounding pattern of errors looked like a bell: Only a few er-
rors were way off by being extremely high or extremely low;
most errors clustered tightly around the middle.

In this chapter, we learn several more building blocks of inferential statistics. First,
we explore the characteristics of the normal curve. In particular, we learn how we can
use the normal curve to standardize any variable using a tool called the z score, which
allows us to make direct comparisons between scores on different measures. Finally, we
learn about the central limit theorem. An understanding of the central limit theorem,
coupled with a grasp of standardization, allows us to make comparisons between means
in addition to scores.

The Normal Curve

(a)

(b)

FIGURE 6-1
The Bell Curve Is Born

Daniel Bernoulli (a) created an
approximation of the bell-shaped curve in

this 1769 sketch “describing the
frequency of errors.” Augustus De

Morgan (b) included this sketch in a letter
to astronomer George Airy in 1849.

In this section, we learn more about the normal curve through a real-life example
using heights. Let’s examine the heights, in inches, of a sample of 5 students taken from
a larger sample that included several of the authors’ statistics classes:

52 77 63 64 64

Figure 6-2 shows a histogram of those heights, with a normal curve superimposed
on the histogram. With so few scores, we can only begin to guess at the emerging
shape of a normal distribution. Notice that three of the observations (63 inches, 64
inches, and 64 inches) are represented by the middle bar. This is why it is three times
higher than the bars representing a single observation of 52 inches and another ob-
servation of 77 inches.

EXAMPLE 6.1

■ A normal curve is a specific
bell-shaped curve that is
unimodal, symmetric, and
defined mathematically.
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Now, here are the heights in inches from a random sample of 30 students:

52 77 63 64 64 62 63 64 67 52

67 66 66 63 63 64 62 62 64 65

67 68 74 74 69 71 61 61 66 66

Figure 6-3 shows the histogram for these data. Notice that the
heights of 30 students resemble a normal curve more so than do the
heights of just 5 students, although certainly not perfectly.

Now, Table 6-1 gives the heights in inches from a random sample
of 140 students. Figure 6-4 shows the histogram for these data.

0.5

2.0

2.5

1.0

1.5

3.0

0.0

Frequency

50.00 55.00 60.00 65.00 70.00 80.0075.00

Height

FIGURE 6-2
Sample of 5

Here is a histogram of the heights in
inches of 5 students. With so few
students, the data are unlikely to closely
resemble the normal curve that we
would see for an entire population of
heights.
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FIGURE 6-3
Sample of 30

Here is a histogram of the heights in inches of
30 students. With a larger sample, the data
begin to resemble the normal curve of an entire
population of heights.

�   MASTERING THE CONCEPT

6-1: The distributions of many variables

approximate a normal curve: a

mathematically defined, bell-shaped curve

that is unimodal and symmetric.
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These three images demonstrate why sample size is so important in relation to the
normal curve. As the sample size increases from 5 to 30 to 140, the distribution more
and more closely resembles a normal curve (as long as the underlying population dis-
tribution is normal). Imagine even larger samples—of 1000 students or of 1 million.
As the size of the sample approaches the size of the population of interest, the shape
of the distribution tends to be normally distributed. ■

TABLE 6-1. A Sample of Heights

These are the heights, in inches, of 140 students.

    52             77             63             64             64             62              63             64             67              52

    67             66             66             63             63             64              62             62             64              65

    67             68             74             74             69             71              61             61             66              66

    68             63             63             62             62             63              65             67             73              62

    63             63             64             60             69             67              67             63             66              61

    65             70             67             57             61             62              63             63             63              64

    64             68             63             70             64             60              63             64             66              67

    68             68             68             72             73             65              61             72             71              65

    60             64             64             66             56             62              65             66             72              69

    60             66             73             59             60             60              61             63             63              65

    66             69             72             65             62             62              62             66             64              63

    65             67             58             60             60             67              68             68             69              63

    63             73             60             67             64             67              64             66             64              72

    65             67             60             70             60             67              65             67             62              66
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FIGURE 6-4
Sample of 140

Here is a histogram of the heights in inches of 140 students. As the sample increases, the shape of the distribution
becomes more and more like the normal curve we would see for an entire population. Imagine the distribution of the

data for a sample of 1000 students or of 1 million.
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CHECK YOUR LEARNING
Reviewing the Concepts       > The normal curve is a specific, mathematically defined curve that is bell-shaped and

 symmetric.

> The normal curve describes the distributions of many characteristics and measures that
vary.

> As the size of a sample approaches the size of the population, the distribution resembles a
normal curve (as long as the population is normally distributed).

Clarifying the Concepts        6-1 What does it mean to say that the normal curve is unimodal and symmetric?

Calculating the Statistics      6-2 In 2005, a sample of 225 students completed the Consideration of Future
Consequences (CFC) scale. The scores are means of responses to the 12 items, with
some responses reversed so that a high score indicates higher consideration of future
consequences. Overall CFC scores, the mean of the item ratings for each participant,
range from 1 to 5.

a. Here are CFC scores for five of those students, rounded to the nearest whole or
half number to facilitate creation of a histogram: 3.5, 3.5, 3.0, 4.0, and 2.0. Create a
histogram for these data, either by hand or using software.

b. Now create a histogram for the scores of 30 students. As before, the scores have
been rounded to the nearest whole or half number.

3.5 3.5 3.0 4.0 2.0 4.0 2.0 4.0 3.5 4.5

4.5 4.0 3.5 2.5 3.5 3.5 4.0 3.0 3.0 2.5

3.0 3.5 4.0 3.5 3.5 2.0 3.5 3.0 3.0 2.5

Applying the Concepts         6-3 The histogram below uses the actual (not rounded) CFC scores for all 225 students.
What do you notice about the shape of this distribution of scores as the size of 
the sample increases from 5 to 30 (in Check Your Learning 6-2 above) and then 
to 225?

Solutions to these Check Your Learning questions can be found in Appendix D.
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Standardization, z Scores, and the Normal Curve
De Moivre’s discovery of the normal curve meant that scientists could now make
meaningful comparisons. When the data are normally distributed, we can compare a
score on a variable to the entire distribution of scores. To do this, we convert a raw
score to a standardized score (for which percentiles are already known). The process of
standardization converts individual scores to standard scores for which we know the percentiles
(if the data are normally distributed). Standardization does this by converting individual scores
from different normal distributions to a shared normal distribution with a known mean, standard
deviation, and percentiles.

In this section, we outline the reasons that statisticians need to be able to standardize
and then introduce the tool that helps us standardize, the z score. We show how we
can convert raw scores to z scores, and z scores to raw scores. We also demonstrate
how our knowledge of the distribution of z scores allows us to know what percentage
of the population falls above or below a given z score.

The Need for Standardization
One of the first problems with making meaningful comparisons is that different vari-
ables are measured on different scales. For example, we measure height in inches but

measure weight in pounds. In order to compare heights and weights,
we need a way to put different variables on the same standardized scale.
Fortunately, we can standardize different variables by using their means
and standard deviations to convert any raw score into a z score. A
z score is the number of standard deviations a particular score is from the mean.
A z score is part of its own distribution, the z distribution, just as a raw
score, such as a person’s height, is part of its own distribution, a distri-
bution of heights. (Note that as with all statistics, the z is italicized.)
Any score on any measure can be converted to the z distribution.

�   MASTERING THE CONCEPT

6-2: z scores give us the ability to convert

any variable to a standard distribution,

allowing us to make comparisons among

variables.

Here is a memorable example of standardization: comparing the weights of cock-
roaches. Different countries use different measures of weight. In the United Kingdom

and the United States, the pound is typically used, with a number of
variants that are either fractions or multiples of the pound. These include
the mite, dram, ounce, stone, and ton. In most countries in the world,
the metric system is used, with the gram as the basic unit of weight. As
with the pound, there are many variants that are fractions or multiples
of the gram, including the milligram and kilogram.

If we were told that three imaginary species of cockroaches had mean
weights of 8.0 drams, 0.25 pound, and 98.0 grams, respectively, which
one should we fear the most (assuming that a larger cockroach generates
more fear)? The easiest way to answer this question is to standardize the
three cockroach weights by comparing them on the same measure—
for example, we could convert all these weights to grams. A dram is
1/256 of a pound, so 8.0 drams is 1/32 � 0.03125 of a pound. One
pound equals 453.5924 grams. Based on these conversions, the weights
could be standardized into grams as follows:

Cockroach 1 weighs 8.0 drams � 0.03125 pound � 14.17 grams
Cockroach 2 weighs 0.25 pound � 113.40 grams
Cockroach 3 weighs 98.0 grams

EXAMPLE 6.2
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Standardizing Cockroach Weights Standardization
creates meaningful comparisons by converting different
scales to a common, or standardized, scale. We can
compare the weights of these cockroaches using different
measures of weights—including drams, pounds, and grams.



Standardizing by grams allows us to make meaningful comparisons. The second
cockroach species tends to weigh the most: 113.40 grams. Fortunately, the biggest cock-
roach in the world weighs only about 35 grams and is about 80 millimeters (3.15
inches) long. Cockroaches 2 and 3 exist only in our imaginations. However, not all
conversions are as easy as standardizing weights from different units into grams. That’s
why statisticians developed the z distribution. ■

Transforming Raw Scores into z Scores
Our desire to make meaningful comparisons forces us to convert raw scores into stan-
dardized scores, and we can always determine any score’s distance from its mean in
terms of standard deviations. For example, let’s say you know that after taking the
midterm examination, you are 1 standard deviation above the mean in your statistics
class. Is this good news? What if you are 2 standard deviations above the mean? Are
you even happier? What if you are 0.5 standard deviation below the mean? Under-
standing a score’s relation to the mean of its distribution gives us important information
about that score. For a statistics test, we know that being well above the mean is a good
thing; for anxiety levels, we know that being well above the mean is usually a bad thing.
z scores create an opportunity to make meaningful comparisons by putting different
variables on a common scale.

The only information we need to convert any raw score to a z score is the mean
and standard deviation of the population of interest. For instance, in the midterm
example above, we are probably interested only in comparing our grade with the
grades of others also taking this particular statistics course. In this case, the statistics
class is the entire population of interest. Let’s say that your particular score on the
midterm is 2 standard deviations above the mean; your z score is 2.0. Imagine that
a friend’s score is 1.6 standard deviations below the mean; your friend’s z score is
�1.6. What would your z score be if you fell exactly at the mean in your statistics
class? If you guessed 0, you’re correct. You would be 0 standard deviations from the
mean.

Figure 6-5 illustrates two important features of the z distribution. First, the z
distribution always has a mean of 0. So, if you are exactly at the mean, then you are
0 standard deviations from the mean. Second, the z distribution always has a
standard deviation of 1. If your raw score is 1 standard deviation above the mean,
you have a z score of 1.0. No matter what the mean and standard deviation of the
original distribution, once we convert to the z distribution, the standard deviation
is 1.0.
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z � 0z � �1 z � 1

Mean(1 standard
deviation
below the

mean)

(1 standard
deviation
above the

mean)

FIGURE 6-5
The z Distribution

The z distribution always has a mean of
0 and a standard deviation of 1.

■ The process of
standardization converts
individual scores from different
normal distributions to a
shared normal distribution with
a known mean, standard
deviation, and percentiles.

■ A z score is the number of
standard deviations a
particular score is from the
mean.
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As you can see, we don’t need a formula to calculate a z score when we’re working
with easy numbers. It is important, however, to learn the notation and language of sta-
tistics. So let’s also convert z scores using a formula for when our numbers are not
easy to work with. To calculate a particular z score, there are just two steps.

The formula, therefore, is

                                                   
■

STEP 1: Determine the distance of a particular person’s score
(X) from the population mean (l) as part of the
calculation: X � l.

STEP 2: Express this distance in terms of standard deviations by
dividing by the standard deviation of the population, r.

z X
�

( )− l
r

Let’s calculate some z scores without a calculator or formula. We’ll use the distribution
of scores on a statistics exam, in which the students who took the exam make up the
entire population of interest. (This example is illustrated in Figure 6-6.) If the mean
on a statistics exam is 70, the standard deviation is 10, and your score is 80, what is
your z score? In this case, you were exactly 10 points, or 1 standard deviation, above
the mean, so your z score is 1.0. Now let’s say your score is 50, which is 20 points, or
2 standard deviations, below the mean, so your z score is �2.0. What if your score was
85? Now you’re 15 points, or 1.5 standard deviations, above the mean, so your z score
is 1.5.

EXAMPLE 6.3

� 0� �1z� �2z z z � 1

z � 1.5

z � 2
706050 80 90

85

FIGURE 6-6
z Scores Intuitively

With a mean of 70 and a standard
deviation of 10, we can calculate many z
scores without a formula. A raw score of

50 has a z score of �2.0. A raw score
of 60 has a z score of �1.0. A raw

score of 70 has a z score of 0. A 
raw score of 80 has a z score of 1.0. 

A raw score of 85 has a z score of 1.5.

                                        �

MASTERING THE FORMULA

6-1: The formula for a z score is

. We calculate the dif-

ference between an individual score
and the population mean, then di-
vide by the population standard
 deviation.

z
X

�
( )− l

r

Let’s take an example that is not so easy to calculate in our heads. Suppose we know
that the mean height for the population of sophomores at your university is 64.886
with a standard deviation of 4.086. If you are 70 inches tall, what is your z score?

In this case, the mean of the population,
64.886, is subtracted from your score, 70.

STEP 1: Subtract the mean of the
population from your score.

EXAMPLE 6.4



The standard deviation of the population is
4.086. Here are those steps in the context of
the formula:

You are 1.25 standard deviations above the mean.
We must be careful when we use a formula because it is easy to make a mistake

when using a formula mindlessly. Always consider whether the answer makes sense. In
this case, 1.25 is a positive z score, indicating that the height expressed as a z score is
just over 1 standard deviation above the mean. This makes sense because the raw score
of 70 is also just over 1 standard deviation above the mean of 64.886. If you do this
quick check as you finish each problem on your homework or on a test, then you can
correct mistakes before they cost you. ■

STEP 2: Divide by the standard
deviation of the population.

z
X

� �
�

�
( ) ( . )

.
.

− l

r

70 64 886

4 086
1 25
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Let’s take another example: What if you are 62 inches tall?

Here, subtract the mean of the population,
64.886, from your score, 62.

The standard deviation of the population is
4.086. Here are those steps in the context of
the formula:

You are 0.71 standard deviation below the mean.
Don’t forget the sign of the z score. Changing a z score from negative 0.71 to positive

0.71 makes a big difference! Fortunately, even if you forgot to include the negative sign,
you could still catch your error if you considered whether the answer made sense. In
this case, the height is lower than the mean, so the z score must be negative. 

STEP 1: Subtract the mean of the
population from your score.

STEP 2: Divide by the standard
deviation of the population.

z
X

� �
�

��
( ) ( . )

.
.

− l

r

62 64 886

4 086
0 71

EXAMPLE 6.5

Estimating z Scores Would you
guess that the person on the left has a
positive or negative z score for height?
What about the person on the right? A
person who is very short has a below-
average height and thus would have a
negative z score. A person who is very tall
has an above-average height and thus
would have a positive z score.M
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Now let’s demonstrate that the mean of the z distribution is always 0 and the standard
deviation of the z distribution is always 1. We will continue to use the mean and stan-
dard deviation of heights from Examples 6.4 and 6.5 for this demonstration. (You can
try it with any distribution for which you know the mean and standard deviation,
though. The results will be the same every time.) The mean here is 64.886. Let’s cal-
culate what the z score would be at the mean.

The mean of the population, 64.886, is
 subtracted from a score right at the mean,
64.886.

We divide the difference by 4.086. Here are
those steps in the context of the formula:

The standard deviation is 4.086 inches. If someone is exactly 4.086 inches above
the mean—that is, 1 standard deviation above the mean—his or her score would be
64.886 � 4.086 � 68.972. Let’s calculate what the z score would be for this person.

The mean of the population, 64.886, is sub-
tracted from a score exactly 1 standard de-
viation (4.086) above the mean, 68.972.

We divide the difference by 4.086. Here are
those steps in the context of the formula:

                                  
■

Transforming z Scores into Raw Scores
It’s important also to realize that we can reverse the formula and convert a z score to
a raw score, a calculation that will be useful in later chapters of this book. If we already
know a z score, then we can reverse our calculations to determine the raw score. The
formula is the same; we just plug in all the numbers instead of the X, then solve al-
gebraically. Let’s try it.

z
X

� �
�

�
( ) ( . . )

.

− l

r

64 886 64 886

4 086
0

STEP 1: Subtract the mean of the
population from a score right
at the mean.

STEP 2: Divide by the standard
deviation of the population.

STEP 1: Subtract the mean of the
population from a score
exactly 1 standard deviation
above the mean.

STEP 2: Divide by the standard
deviation of the population.

z
X

� �
�

�
( ) ( . . )

.

− l

r

68 972 64 886

4 086
1

EXAMPLE 6.6

We’ll use the same mean and standard deviation from our height example. The mean
for the population is 64.886, with a standard deviation of 4.086. So, if you had a z
score of 1.79, what is your height?

z
X X

� � �
�( )

.
( . )

.

− l

r
1 79

64 886

4 086

EXAMPLE 6.7



If we solve for X, we get 72.20. For those of you who prefer to minimize your use
of algebra, we can do the algebra on the equation itself to derive a formula that gets
the raw score directly. The formula is derived by multiplying both sides of the equation
by r, then adding l to both sides of the equation. This isolates the X, as follows:

X � z(r) � l

So there are two steps to converting a z score to a raw score:

Let’s try the same problem using this direct formula.

The z score, 1.79, is multiplied by the stan-
dard deviation of the population, 4.086.

The mean of the population, 64.886, is
added to this product. Here are those steps
in the context of the formula:

X � 1.79(4.086) � 64.886 � 72.20

Regardless of whether we use the original formula or the direct formula, the height
is 72.20 inches. As always, think about whether the answer seems accurate. In this case,
the answer does make sense because the height is above the mean, and the z score is
positive. ■

STEP 1: Multiply the z score by the standard deviation of the
population.

STEP 2: Add the mean of the population to this product.

STEP 1: Multiply the z score by the
standard deviation of the
population.

STEP 2: Add the mean of the
population to this product.
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MASTERING THE FORMULA

6-2: The formula to calculate the
raw score from a z score is X � z(r)
� l. We multiply the z score by the
standard deviation of the population,
then add the mean of the population.

What if your z score is �0.44?

The z score, �0.44, is multiplied by the
standard deviation of the population, 4.086.

The mean of the population, 64.886, is
added to this product. Here are those steps
in the context of the formula:

X � �0.44(4.086) � 64.886 � 63.09

Your height is 63.09 inches. Don’t forget the negative sign when doing this calcu-
lation. In this case, considering whether the answer makes sense would catch this. Here,
we know the height is below the mean because the z score is negative. ■

STEP 1: Multiply the z score by the
standard deviation of the
population.

STEP 2: Add the mean of the
population to this product.

EXAMPLE 6.8
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As long as we know the mean and standard deviation of the population, we can do
two things: (1) calculate the raw score from its z score and (2) calculate the z score
from its raw score.

Now that you understand z scores, another way to express standardization is to dis-
prove the saying that “you can’t compare apples and oranges.” Well, yes we can. We
can take any apple from a normal distribution of apples, find its particular z score using
the mean and standard deviation for the distribution of apples, convert the z score to
a percentile, and discover that a particular apple is, say, larger than 85% of all the other
apples. Similarly, we can take any orange from a normal distribution of oranges, find
its particular z score using the mean and standard deviation for the distribution of or-
anges, convert the z score to a percentile, and discover that this particular orange is,
say, larger than 97% of all the other oranges. The orange (with respect to other oranges)
is bigger than the apple (with respect to other apples), and yes, that is an honest com-
parison of apples and oranges. With standardization, we can compare anything, each
relative to its own group.

The normal curve allows us to convert scores to percentiles because 100% of the
population is represented under the bell-shaped curve. This means that the midpoint
(which is the mean, the median, and the mode in a normal curve) is the 50th per-
centile. If your individual score on some test happens to be located to the right of
the mean, you know that your score lies somewhere above the 50th percentile.
A score to the left of the mean indicates that your score is somewhere below the
50th percentile. To make more specific comparisons, we convert raw scores to z
scores and z scores to percentiles. As we just learned, a z score is the number of stan-
dard deviations a particular score is from the mean. The z score is part of a specific
distribution. The z distribution is a normal distribution of standardized scores—a dis -
tribution of z scores. And the standard normal distribution is a normal distribution of
z scores.

Most people are not content merely with knowing whether their own score is above
or below the average score. After all, there is likely a big difference between scoring
at the 51st and the 99th percentile in height, as shown in Figure 6-7. Both are above
average, but the person whose height is at the 99th percentile is likely to be much,
much taller than the person whose height is at the 51st percentile. The standardized
z distribution allows us to do the following:

1. Transform raw scores into standardized scores called z scores
2. Transform z scores back into raw scores
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Apples and Oranges
Standardization allows us to compare
apples with oranges. If we can
standardize the raw scores on two
different scales, converting both
scores to z scores, we can then
compare the scores directly.

■ The z distribution is a normal
distribution of standardized
scores.

■ The standard normal
distribution is a normal
distribution of z scores.
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3. Compare z scores to each other—even when the z scores represent raw scores
on different scales

4. Transform z scores into percentiles that are more easily understood

Let’s begin with an illustration that demonstrates how standardization makes
meaningful comparisons possible, even when those comparisons belong to different
distributions.

Using z Scores to Make Comparisons
Imagine that a friend is taking a course in statistics at the same time that you are,
but with a different professor. Each professor has a different grading scheme, so each
professor’s class produces a different distribution of test scores that has meaning
only within the context of that particular class. But now, thanks to standardization,
we can convert each raw score to a z score and compare raw scores from different
distributions.

51%50% 99%

FIGURE 6-7
The All-Encompassing 
z Distribution

The z distribution theoretically includes
all possible scores, so, when it’s based
on a normal distribution, we know that
50% of the scores are above the mean
and 50% are below the mean. But the
51st percentile and the 99th percentile
are still far from each other, so two
people making a comparison usually
want more precise information than
whether or not they are above average.

For example, let’s say that you both took a quiz this week. You got a 92 out of a pos-
sible 100; the distribution of your class had a mean of 78.1 and a standard devia -
tion of 12.2. Your friend got an 8.1 out of a possible 10; the distribution of his class
had a mean of 6.8 with a standard deviation of 0.74. Again, we’re only interested in
the classes that took the test, so these are populations rather than samples. Who did
better?

If we standardize the two scores in terms of their respective
distributions, then we can make a direct comparison of the two
z scores:

Your score: 

Your friend’s score: 

First, let’s check our work. Do these answers make sense?
Yes—both you and your friend scored above the mean, so you
both have positive z scores. Second, we compare the z scores,
the standardized versions of the two raw scores. Although you
both scored well above the mean in terms of standard deviations,
your friend did better with respect to his class than you did with
respect to your class. ■

z
X

� �
�

�
( ) ( . )

.
.

− l

r

92 78 1

12 2
1 14

z
X

� �
�

�
( ) ( . . )

.
.

− l

r

8 1 6 8

0 74
1 76

EXAMPLE 6.9
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Making Comparisons z scores create a way to compare students
taking different exams from different courses. If each exam score can be
converted to a z score with respect to the mean and standard deviation
for its particular exam, the two scores can then be compared directly.



Transforming z Scores into Percentiles
So z scores are useful because:

1. z scores give us a sense of where a score falls in relation to the
mean of its population (in terms of the standard deviation of its
population).

2. z scores allow us to compare scores from different distributions.

Yet we can be even more specific about where a score falls. So an ad-
ditional and particularly helpful use of z scores is that they also have
this property:

3. z scores can be transformed into percentiles.

Because the shape of a normal curve is standard (unimodal and sym-
metric), we automatically know something about the percentage of any
particular area under the curve. Think of the normal curve and the hor-
izontal line below it as forming a shape. (In fact, it is a shape; it’s essen-
tially a frequency polygon that shows the frequencies for every score in
the distribution.) Like any shape, the area below the normal curve can
be measured. We quantify the space below a normal curve in terms of
percentages. We can determine what percentage of the normal curve
falls below or above any vertical line drawn through the curve.

Statisticians have determined the specific percentages that fall within each particular
area of the normal curve. Remember that the normal curve is, by definition, symmetric.
This means that exactly 50% of scores fall below the mean and 50% fall above the
mean; that is, one side is a mirror image of the other. Figure 6-8 demonstrates that we
can be even more specific than simply dividing the normal curve into two equal parts.
Approximately 34% of scores fall between the mean and a z score of 1.0; and because
of symmetry, 34% of scores also fall between the mean and a z score of �1.0. We also
know that approximately 14% of scores fall between the z scores of 1.0 and 2.0, and,
by symmetry, 14% of scores fall between the z scores of �1.0 and �2.0. Finally, we
know that approximately 2% of scores fall between the z scores of 2.0 and 3.0, and
2% of scores fall between the z scores of �2.0 and �3.0.

By simple addition, we can determine that approximately 68% (34 � 34 � 68) of
scores fall within 1 standard deviation—or one z score—of the mean; that approxi-
mately 96% (14 � 34 � 34 � 14 � 96) of scores fall within 2 standard deviations of
the mean; and that all or nearly all (2 � 14 � 34 � 34 � 14 � 2 � 100) scores fall
within 3 standard deviations of the mean. These percentages are useful guidelines for
determining the percentage associated with a given z score. For example, if you know
you are about 1 standard deviation above the mean on your statistics quiz, then you
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�   MASTERING THE CONCEPT

6-3: z scores tell us how far a score is from

its population mean in terms of the

population standard deviation. Because of

this characteristic, we can compare z scores

to each other, even if the underlying raw

scores are from different distributions. Yet we

can go a step further by converting z scores

into percentiles, a more readily understood

concept. We can compare two percentiles to

each other in the same way that we can

compare two z scores to each other.

0�1�2�3 1 2 3

34%34%

14% 14%2% 2%

FIGURE 6-8
The Normal Curve and

Percentages

The standard shape of the normal curve
allows us to know the approximate

percentages under different parts of the
curve. For example, about 34% of

scores fall between the mean and a z
score of 1.0.



can add the 50% below the mean to the 34% between the mean and the z score of
1.0 that you earned on your quiz, and know that your score corresponds to approxi-
mately the 84th percentile.

If you know that you are about 1 standard deviation below the mean, you know
that you are in the lower 50% of scores and that 34% of scores fall between your score
and the mean. By subtracting, you can calculate that 50 � 34 � 16% of scores fall
below yours. Your score corresponds to approximately the 16th percentile. Scores on
standardized tests, such as the SAT, are often expressed as percentiles.

For now, it’s important to understand that the z distribution forms a normal curve
with a unimodal, symmetric shape. Because the shape is known and 100% of the popula-
tion falls beneath the normal curve, we can determine the percentage of any area under
the normal curve. This is what we call “standardization.” Through the nor mal curve and
standardization, we can convert raw scores to z scores and z scores to percentiles.
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CHECK YOUR LEARNING
Reviewing the Concepts       > Standardization is a way to create meaningful comparisons between observations from dif-

ferent distributions. It can be accomplished by transforming raw scores from different dis-
tributions into z scores, also known as standardized scores.

> A z score is the distance that a score is from the mean of its distribution in terms of standard
deviations. z scores fall on the z distribution, so when we convert raw scores to z scores,
we can compare them.

> We also can transform z scores to raw scores by reversing the formula.

> z scores correspond to known percentiles that communicate how an individual compares
with the larger distribution.

Clarifying the Concepts        6-4 Describe the process of standardization.

    6-5 What do the numeric value and the sign (negative or positive) of a z score indicate?

Calculating the Statistics      6-6 If the mean of a population is 14 and the standard deviation is 2.5, calculate z scores
for the following observations:

a. 11.5

b. 18

    6-7 Using the same population parameters as in Check Your Learning 6-6, convert these z
scores to raw scores:

a. 2

b. –1.4

Applying the Concepts         6-8 The Consideration of Future Consequences (CFC) scale is often used with students to
determine how future-oriented they are, particularly in terms of careers. Researchers
believe that a high CFC score is a positive indicator of a student’s potential. One study
found a mean CFC score of 3.51, with a standard deviation of 0.61, for the 664
students in the sample (Petrocelli, 2003).

a. If a student has a CFC score of 2.3, what is her z score? Roughly, to what
percentile does this z score correspond?

b. If a student has a CFC score of 4.7, what is his z score? Roughly, to what
percentile does this z score correspond?

c. If a student has a CFC score at the 84th percentile, what is her z score?

continued on next page



The Central Limit Theorem
In the early 1900s, W. S. Gossett discovered how the predictability of the normal curve
could improve quality control in the Guinness ale factory. One of the practical problems
that Gossett faced was related to sampling yeast cultures in order to produce a more
reliable-tasting ale. Too little yeast led to incomplete fermentation, whereas too much
yeast led to bitter-tasting beer. To sample both accurately and economically, Gossett
averaged samples of four observations to see how well they represented a known pop-
ulation of 3000 (Gossett, 1908, 1942; Stigler, 1999). 

This small adjustment (taking the average of four samples rather than one sample)
is possible because of the central limit theorem. The central limit theorem refers to how
a distribution of sample means is a more normal distribution than a distribution of scores, even
when the population distribution is not normal. Indeed, as sample size increases, a distribution
of sample means more closely approximates a normal curve. More specifically, the cen-
tral limit theorem demonstrates two important principles:

1. Repeated sampling approximates a normal curve, even when the
original population is not normally distributed.

2. A distribution of means is less variable than a distribution of in-
dividual scores.

Instead of randomly sampling a single data point, Gossett randomly
sampled four data points from the population of 3000 and computed
the average of those four data points. He did this repeatedly and then
used those many arithmetic averages to create a distribution of means.
A distribution of means is a distribution composed of many means that are
calculated from all possible samples of a given size, all taken from the same
population. Put another way, the numbers that make up the distribution

of means are not individual scores; they are means of samples of individual scores. 
Gossett experimented with using the average of four data points as his sample, but

there is nothing magical about the number four. A larger sample size is better, but Gos-
sett could have used any number greater than one to create averaged samples that could
be expressed as a distribution of means. The important outcome is that a distribution
of means more consistently produces a normal distribution (although with less variance)
even when the population distribution is not normal. The average of a sample is a more pre-
cise estimate of the population mean than an individual score. Repeated sampling of
means produces a normal distribution even when the original distribution of scores is
not normal.
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d. What is the raw score of the student at the 84th percentile? Use symbolic notation
and the formula. Explain why this answer makes sense.

    6-9 Samantha has high blood pressure but exercises; she has a wellness score of 84 on a
scale with a mean of 93 and a standard deviation of 4.5 (a higher score indicates better
health). Nicole is of normal weight but has high cholesterol; she has a wellness score of
332 on a scale with a mean of 312 and a standard deviation of 20.

a. Without using a formula, who would you say is in better health?

b. Using standardization, who is in better health? Provide details using symbolic
notation.

c. Based on their z scores, what percentage of people are in better health than
Samantha and Nicole, respectively?

Solutions to these Check Your
Learning questions can be found in
Appendix D.

�   MASTERING THE CONCEPT

6-4: The central limit theorem demonstrates

that a distribution made up of the means of

many samples (rather than individual

scores) approximates a normal curve, even

if the underlying population is not normally

distributed.



In this section, we learn how to create a distribution of means, as well as to calculate
a z score for a mean (more accurately called a z statistic when calculated for means
rather than scores). We also learn why the central limit theorem indicates that a dis-
tribution of means is more useful than a distribution of scores when conducting hy-
pothesis testing.

Creating a Distribution of Means
The central limit theorem underlies many statistical processes. It is when we have a
distribution of means that the central limit theorem becomes important. The distri-
bution of means is more tightly clustered (has a smaller standard deviation) than a dis-
tribution of scores.
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A Distribution of Means. When we
create a distribution of means, we
eliminate extreme scores. If we choose
just one individual score, there’s a
chance we’ll get an extreme one, such
as the length of the fingernails of the
woman on the left. But if we select
several scores, other more typical
scores will balance out any extreme
score. If the woman on the left was in
the sample with the people on the right,
the mean fingernail length would be
much closer to the population mean.
This helps to explain why a distribution
of means tends to be less variable than
a distribution of scores.
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In an exercise that we conduct in class with our students, we write the numbers in
Table 6-1 on 140 individual index cards that can be mixed together in a hat or bowl.
The numbers represent the heights, in inches, of 140 college students from the authors’
classes. As before, we assume that we are interested in only these 140 students—that
they comprise our entire population.

 1. First, we randomly pull one card at a time and record its score by marking it on
a histogram above the appropriate value. After recording the score, we return the
card to the container representing the population of scores and mix all the cards
before pulling the next card. (Not surprisingly, this is known as sampling with re-
placement.) We continue until we have plotted at least 30 scores, drawing a square
for each one above the appropriate value on the x-axis, so that bars emerge above
each value. This creates the beginning of a distribution of scores. Using this method,
we created the histogram in Figure 6-9.

 2. Now, we randomly pull three cards at a time, compute the mean of these three
scores (rounding to the nearest whole number), and record this mean on a different
histogram. As before, we draw a square for each mean above the appropriate value,
with each stack of squares resembling a bar. Again, we return each set of three cards
to the population and mix before pulling the next set of three. We continue until
we have plotted at least 30 values. This is the beginning of a distribution of means.
Using this method, we created the histogram in Figure 6-10.

EXAMPLE 6.10

■ The central limit theorem
refers to how a distribution of
sample means is a more
normal distribution than a
distribution of scores, even
when the population
distribution is not normal.

■ A distribution of means is a
distribution composed of many
means that are calculated
from all possible samples of a
given size, all taken from the
same population.
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The distribution of scores in Figure 6-9, similar to those we create when we do
this exercise in class, ranges from 52 to 74, with a peak in the middle. If we had a larger
population, and if we pulled many more numbers, our distribution would become
more and more normal. Notice that the distribution is centered roughly around the
actual population mean, 64.89. Also notice that all, or nearly all, scores fall within 3
standard deviations of the mean. The population standard deviation of these scores is
4.09. So nearly all scores should fall within this range:

64.89 � 3(4.09) � 52.62 and 64.89 � 3(4.09) � 77.16

6

5

7

8

2

1

3

4

0
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77

Height in inches

Frequency

6

5

7

8

2

1

3

4

0
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77

Height in inches

Frequency

FIGURE 6-9
Creating a Distribution of Scores

This distribution is one of many that could be created by pulling 30 numbers, one at a time, and replacing the
numbers between pulls, from our population of 140 heights. If you create a distribution of scores yourself from these

data, it should look roughly bell-shaped like this one—that is, unimodal and symmetric.

FIGURE 6-10
Creating a Distribution of Means

This distribution is one of many that could be created by pulling 30 means (the average of three numbers at a time,
replacing the numbers between pulls) from our population of 140 heights. If you created a distribution of means from

these data, it should look roughly bell-shaped—that is, unimodal and symmetric. Notice that it is different from the
distribution of scores in Figure 6-9: although centered around the same mean, it is narrower; the standard deviation

is smaller; and the distribution of means has less spread.



In fact, the range of scores in this population of 140 heights is very close to this,
52 through 77 (even though the highest score we pulled was 74).

Is there anything different about the distribution of means in Figure 6-10? Yes, there
are not as many means at the far tails of the distribution as in the distribution of scores.
In our distribution of means, we have a smaller range; we no longer have any values
in the 50s or 70s. However, there are no changes in the center of the distribution as a
result of shifting from scores to means. The distribution of means is still centered around
the actual mean of 64.89. This makes sense. The means of three scores each come from
the same set of scores, so the mean of the individual sample means should be exactly
the same as the mean of the whole population of scores.

Why does the spread decrease when we create a distribution of means rather than
a distribution of scores? When we plotted individual scores, an extreme score was plot-
ted on the distribution. But when we plotted means, we averaged that extreme score
with two other scores. It is unlikely that all three scores were that extreme in the same
direction. So each time we pulled a score in the 70s, we tended to pull two lower
scores as well, and the mean was lower than the 70s. When we pulled a score in
the 50s, we tended to pull two higher scores as well, and the mean was higher than
the 50s.

What do you think would happen if we created a distribution of means of 10 scores
rather than 3? As you might guess, the distribution would be even narrower, because
there would be more scores to balance the occasional extreme score. The means of 10
scores are likely to be even closer to the actual mean of 64.89. What if we created a
distribution of means of 100 scores or 10,000 scores? The larger the sample size, the
smaller the spread of the distribution of means. ■

All the central limit theorem requires to work its magic is a distribution comprised
of many sample means. In fact, distributions of means computed from samples of at
least 30 usually produce an approximately normal curve. So even when the population
distribution is extremely skewed, repeated sampling of means from that distribution
produces a normal curve.

Characteristics of the Distribution of Means
Because the distribution of means is less variable than the distribution of scores, the
distribution of means needs its own standard deviation—a smaller standard deviation
than the one we used for the distribution of individual scores (re-
member, the distribution of means is more tightly clustered around
the mean). We need to use the standard deviation that is tailored to
the distribution of means so we can calculate an appropriate z score
for the distribution of means.

We can use the data presented in Figure 6-11 to visually verify
that the distribution of means needs its own (smaller) standard devi-
ation (rather than the standard deviation that describes the popula-
tion). Using the population mean of 64.886 and the population
standard deviation of 4.086, the z scores for 60 and 69 are �1.20 and 1.01, respec-
tively—not even close to 3 standard deviations. These z scores are wrong for this dis-
tribution. We need to use a standard deviation of the sample means rather than a standard
deviation of the individual scores.

We use slightly modified language and symbols to distinguish this new standard de-
viation of the sampling distribution of means from the standard deviation of the pop-
ulation distribution of scores. The mean of the distribution of means is the same as
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�   MASTERING THE CONCEPT

6-5: A distribution of means has the same

mean as a distribution of scores from the

same population, but a smaller standard

deviation.
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the mean of the population of scores, but it has a different symbol. To indicate that
this is the mean of a distribution of means, the symbol is lM (pronounced “mew sub
em”). The l indicates that it is the mean of a population, and the subscript M indicates
that the population is composed of sample means—the means of all possible samples of
a given size from a particular population of individual scores.

We also need a new symbol and a new name for the standard deviation of the dis-
tribution of means—the typical amount that a sample mean varies from the population
mean. The symbol is rM (pronounced “sigma sub em”). The subscript M again stands
for mean; this is the standard deviation of the population of means calculated for all
possible samples of a given size. The symbol has its own name to differentiate it from
the standard deviation of a set of individual scores; standard error is the name for the stan-
dard deviation of a distribution of means. Table 6-2 summarizes the alternative names that
describe these related ideas.

Fortunately, there is a simple calculation that lets us know exactly how much smaller
the standard error, rM, is than the standard deviation, r. As we’ve noted, the larger the
sample size, the narrower the distribution of means. This also means that the larger the
sample size, the smaller the standard deviation of the distribution of means—the stan-
dard error. We calculate the standard error by using the size of the sample that was used
to calculate the many means that make up the distribution. The standard error is the
standard deviation of the population divided by the square root of the sample size, N.
The formula is:

r
r

M
N

�

6

5

7

8

2

1

3

4

0
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77

Height in inches

Frequency

Distribution of means

Distribution of
scores

FIGURE 6-11
Using the Appropriate Measure

of Spread

Because the distribution of means is
narrower than the distribution of scores,
it has a smaller standard deviation. This

standard deviation has its own name:
standard error.

TABLE 6-2. Parameters for Distributions of Scores Versus Means

When we determine the parameters of a distribution, we must consider whether the distribution is composed
of scores or means.

                                                   Symbol                        Symbol
           Distribution                     for Mean                    for Spread                        Name for Spread

              Scores                               l r                                   Standard deviation

              Means                               lM rM                                 Standard error

                                        �

MASTERING THE FORMULA

6-3: The formula for standard error

is: . We divide the stan-

dard deviation for the population by
the square root of the sample size.

r
r

M
N
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■ Standard error is the name
for the standard deviation of a
distribution of means.
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Imagine that the standard deviation of the distribution of individual scores is 5 and we
have a sample of just 10 people. The standard error would be:

The spread is smaller when we calculate means for samples of 10 people because
any extreme scores are balanced by less extreme scores. With a larger sample size of
200, the spread is even smaller because there are many more scores close to the mean
to balance out any extreme scores. It would be rare to get a sample mean very far from
the actual mean. The standard error would then be:

As sample size increases, the spread decreases. The means that make up the distri-
bution of means tend to be closer to the actual population mean. ■

A distribution of means faithfully obeys the central limit theorem. Even if the
population of individual scores is not normally distributed, the distribution of means
will approximate the normal curve if the samples are composed of at least 30 scores.
The three graphs in Figure 6-12 depict (a) a distribution of individual scores that is
extremely skewed in the positive direction, (b) the less skewed distribution that
results when we create a distribution of means using samples of 2, and (c) the ap-
proximately normal curve that results when we create a distribution of means using
samples of 25.
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EXAMPLE 6.11

A severely skewed
distribution of scores
in a population

(a)

A less severely skewed
distribution of means using
samples of 2 from
the same population

(b)

A normal distribution of
means using samples of 25
from the same population

(c)

FIGURE 6-12
The Mathematical Magic of
Large Samples

Even with a population of individual
scores that are not normally distributed,
the distribution of means approximates a
normal curve as the sample gets larger.



150 CHAPTER 6 ■ The Normal Curve, Standardization, and z Scores

                                        �

MASTERING THE FORMULA

6-4: The formula for z based on the

mean of a sample is: .

We subtract the mean of the distri-
bution of means from the mean of
our sample, then we divide by the
standard error, the standard deviation
of the distribution of means.

z
M M

M

�
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r

We have learned three important characteristics of the distribution of means:

1. As sample size increases, the mean of a distribution of means remains the same
as the mean of the population of individual scores.

2. The standard deviation of a distribution of means (called the standard error) is
smaller than the standard deviation of a distribution of scores. The standard
error can be calculated by dividing the standard deviation of the population of
individual scores by the square root of the sample size. As sample size increases,
the standard error becomes ever smaller.

3. The shape of the distribution of means approximates the normal curve if the
distribution of the population of individual scores has a normal shape or if the
size of each sample that makes up the distribution is at least 30 (central limit
theorem).

Using the Central Limit Theorem to Make Comparisons 
with z Scores
z scores are a standardized version of raw scores based on the population. But we
seldom have the entire population to work with, so we typically calculate the mean
of a sample and calculate a z score based on a distribution of means. When we calculate
our z score, we simply use a distribution of means instead of a distribution of scores.
The z formula changes only in the symbols it uses:

Note that we now use M instead of X because we are calculating a z score for
a sample mean rather than for an individual score. Because the z score now repre -
sents a mean, not an actual score, it is often referred to as a z statistic. Specifically, the
z statistic tells us how many standard errors a sample mean is from the population
mean.

z
M M

M

�
�( )l

r

Let’s consider a distribution for which we know the population mean and the popu-
lation standard deviation. Several hundred universities in the United States reported
data from their counseling centers (Gallagher, 2009). For this example, we’ll treat this
sample as the entire population of interest. The study found that an average of 8.5 stu-
dents per institution were hospitalized for mental illness in the year leading up to the
survey. For the purposes of this example, we’ll assume a standard deviation of 3.8. Let’s
say we develop a prevention program in which we target students with the goal of re-
ducing the numbers of hospitalizations and we recruit 30 universities to implement
our program. After one year, we determine the number of hospitalizations at the 30
universities and calculate a mean of 7.1 hospitalizations at these institutions. Is this an
extreme sample mean given the population?

To find out, let’s imagine the distribution of universities after the program has been
implemented. The distribution of means for samples of 30 hospitalization scores would
be collected the same way we collected the means of three heights in our earlier
 example—just with far more means. It would have the same mean as the population,
but the spread would be smaller. Any extreme hospitalization scores would likely be
balanced by less extreme scores when each mean is calculated, so the distribution would

EXAMPLE 6.12
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be less variable. Before we calculate the z statistic, let’s use proper symbolic notation
to indicate the mean and the standard error of the sample of universities that imple-
mented the prevention program:

lM � l � 8.5

At this point, we have all the information we need to calculate the z statistic:

From this z statistic, we could determine how extreme the mean number of hos-
pitalizations is in terms of a percentage. Then we could draw a conclusion about
whether we would be likely to find a mean number of hospitalizations of 7.1 in a sam-
ple of 30 universities if the prevention program did not work. The useful combination
of a distribution of means and a z statistic has led us to a point where we’re prepared
for inferential statistics and hypothesis testing. ■
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Those inclined to cheat should be wary of statisticians who can use principles based
on the normal curve to determine when certain patterns are extreme. In their book
Freakonomics, Steven Levitt and Stephen Dubner (2005) described alleged cheating
among teachers in the Chicago Public School system. Certain classrooms had suspi-
ciously strong performances on standardized tests that often mysteriously declined the
following year when a new teacher taught the same students. In about 5% of classrooms
studied, Levitt and other researchers found blocks of correct answers among most stu-
dents for the last few questions, an indication that the teacher had changed responses
to difficult questions for most students. In one classroom, for example, 15 of 22 students
gave identical answers to a string of six questions toward the end of a test, where the
questions were more difficult. It did not take a large inferential leap to believe that
these teachers were filling in the answers in order to artificially inflate their classes’
scores.

In another example, Alan Gerber and Neil Malhotra (2006) looked at all studies
published between 1995 and 2004 in two political science journals, American Political
Science Review and American Journal of Political Science, and recorded the z statistics re-
ported in these studies. Gerber and Malhotra combined positive and negative z statistics,
so any z statistic above 1.96 indicates that it was among the most extreme 5%. (As we
noted in the Chapter 5 Next Steps, a cutoff of 5% is the norm in the social sciences;
findings in the most extreme 5% are most likely to be published.) Then Gerber and
Malhotra constructed a histogram (Figure 6-13) depicting the  frequencies of the z
 statistics in these articles—and documented an apparent publication bias among re-
searchers! What might be the source of this possible bias? There is nothing magical

The Normal Curve and Catching Cheaters N e x t  S t e p s
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about the 0.05 (5%) cutoff; it is simply a reasonable standard that gives us a reasonable
chance of detecting a real finding while minimizing the likelihood of committing a
Type I error. But it is the standard used by journal editors. However, the data don’t
know about the 0.05 standard, so we would not expect any clustering of reported find-
ings that, for example, just barely achieves that standard (anything � 0.05). Let’s look
at the data.

If we think of this histogram as one half of a normal curve, we notice a much lower
frequency than would be expected for z statistics just below 1.96 (the 5% standard),
as seen in the red bar just to the left of the dotted vertical line. And there was a much
higher frequency than would be expected for z statistics just above 1.96, as seen in the
red bar just to the right of the dotted vertical line. Gerber and Malhotra (2006) cite a
“1 in 100 million” probability that the patterns they observed occurred just by chance
(p. 3). What might account for this?

The authors suggest that the strict 5% cutoff is encouraging researchers to “play”
with their data until it beats the cutoff. Some researchers may cheat in this way un-
wittingly, not realizing that they are biased. However, other researchers might cheat
consciously, massaging the data with various analyses until it performs as they hope.
The normal curve thus helped to identify a pattern of apparent cheating in social sci-
ence publishing. Paying attention to the shape of distributions is not a sophisticated
form of analysis. Yet such analysis could have flagged the enormous level of corruption
at companies such as Enron, Global Crossing, and WorldCom—and prevented thou-
sands of workers from losing their retirement monies. The identification of cheating,
and the implementation of reforms that might prevent it, can start with an understand-
ing of the normal, bell-shaped curve.
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FIGURE 6-13
Identifying Cheaters

An understanding of distributions can help us identify cheaters. This histogram of z statistics for one of the journals
studied by Gerber and Malhotra (2006) shows an unexpectedly short bar for findings with z statistics slightly smaller

than 1.96 and an unexpectedly tall bar for findings with z statistics slightly larger than 1.96. This pattern is an
indication that researchers might be manipulating their analyses to push their z statistics beyond the cutoffs and into

the tails so that they can reject the null hypothesis.
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Clarifying the Concepts        6-10 What are the main ideas behind the central limit theorem?

    6-11 Explain what a distribution of means is.

Calculating the Statistics      6-12 The mean of a distribution of scores is 57, with a standard deviation of 11. Calculate
the standard error for a distribution of means based on samples of 35 people.

Applying the Concepts         6-13 Let’s return to the selection of 30 CFC scores that we considered in Check Your
Learning 6-2(b):

3.5 3.5 3.0 4.0 2.0 4.0 2.0 4.0 3.5 4.5

4.5 4.0 3.5 2.5 3.5 3.5 4.0 3.0 3.0 2.5

3.0 3.5 4.0 3.5 3.5 2.0 3.5 3.0 3.0 2.5

a. What is the range of these scores?

b. Take three means of 10 scores each from this sample of scores, one for each row.
What is the range of these means?

c. Why is the range smaller for the means of samples of 10 scores than for the
individual scores themselves?

d. The mean of these 30 scores is 3.32. The standard deviation is 0.69. Using symbolic
notation and formulas (where appropriate), determine the mean and standard error
of the distribution of means computed from samples of 10.

Solutions to these Check Your
Learning questions can be found in
Appendix D.

CHECK YOUR LEARNING
Reviewing the Concepts       > According to the central limit theorem, a distribution of sample means based on 30 or more

scores approximates the normal distribution, even if the original population is not normally
distributed.

> A distribution of scores can have the same mean as a distribution of means. However, a
distribution of scores contains more extreme scores, a larger range, and a larger stan dard de-
viation than a distribution of means; this is another principle of the central limit theorem.

> z scores may be calculated from a distribution of scores or from a distribution of means.
The logic of the two calculations is identical, but they use slightly different symbols. When
we calculate a z score for a mean, we usually call it a z statistic.

> For the measure of spread, the two calculations use different terms: standard deviation for a
distribution of scores and standard error for a distribution of means.

> Just as with z scores, the z statistic tells us about the relative position of a mean within a
distribution, and this can be expressed as a percentile.

> The normal curve can help identify observations caused by cheating that violate what we
would expect by chance.

REVIEW OF CONCEPTS

The Normal Curve
Three ideas about the normal curve help us to understand inferential statistics. First,
the normal curve describes the variability of many physical, psychological, and behavioral
characteristics. Second, the normal curve may be translated into percentages, allowing



us to standardize variables and make direct comparisons of scores on different measures.
Third, a distribution of means, rather than scores, produces a more normal curve. The
last idea is based on the central limit theorem, by which we know that a distribution
of means will be normally distributed as long as the samples from which the means
are computed are of a sufficiently large size, usually at least 30.

Standardization, z Scores, and the Normal Curve
The process of standardization converts raw scores into z scores. Raw scores from any
normal distribution—anything from heights to psychosis scores—can be converted to
the z distribution. And a normal distribution of z scores is called the standard normal
distribution. z scores tell us how far a given raw score falls from its mean in terms of
standard deviation. We can convert raw scores to z scores and can also reverse the for-
mula to convert z scores to raw scores. Standardization using z scores has two important
applications. First, standardized scores—that is, z scores—can be looked up on a z table
to determine the percentile rank of given raw scores. Second, we can directly compare
z scores from different raw-score distributions. z scores work the other way around as
well; if we know someone’s percentile, we can look up the corresponding z score and
then convert it to a raw score.

The Central Limit Theorem
The z distribution can be used with a distribution of means in addition to a distribution
of scores. Distributions of means have three characteristics. First, they have the same
mean as the population of individual scores from which they are calculated. Second,
they have a smaller spread, which means we must adjust for sample size. The standard
deviation of a distribution of means is called the standard error. The decreased variability
is due to the fact that extreme scores are balanced by less extreme scores when means
are calculated. Third, distributions of means are normally distributed in two situations:
(1) the underlying population of scores is normal, or (2) the means are computed from
sufficiently large samples, usually at least 30 individual scores. This second situation is
described by the central limit theorem, the principle that a distribution of sample means
will be normally distributed even if the underlying distribution of scores is not normally
distributed, as long as there are enough scores, usually at least 30, comprising each sam-
ple. The characteristics of the normal curve allow us to make inferences from small
samples using standardized distributions, such as the z distribution. The z distribution
can be used for means, as well as individual scores, if we determine the appropriate
mean and standard deviation. The bell-shaped curve can be used in many ways, in-
cluding identifying observations caused by cheating that violate what we would expect
by chance.

154 CHAPTER 6 ■ The Normal Curve, Standardization, and z Scores

SPSS®

SPSS lets us understand each variable, identify its skewness,
and explore how well it fits with a normal distribution. Enter
the 140 heights from Table 6-1.

We can identify outliers that might skew the normal
curve by selecting Analyze → Descriptive Statistics →
Explore → Statistics → Outliers. Click “Continue.” Choose
the variable of interest, “Heights,” by clicking it on the left
and then using the arrow to move it to the right. Click

“OK.” The screenshot shown here depicts part of the 
output.

We encourage you to play with the data so you can explore
the many features in SPSS. It is always helpful when we work
with our own data. SPSS is probably easiest to learn when we
know the source of every number and why we decided to in-
clude it in our study in the first place. It’s also much more in-
teresting to test our own ideas!
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6.1 CONVERTING RAW SCORES TO z SCORES
Researchers reported that college students had healthier eating habits, on average, than did
those who were neither college students nor college graduates (Georgiou et al., 1997). The
journal article reported means and standard deviations for students and nonstudents on a
number of eating measures. For example, the 412 students in the study ate breakfast a mean
of 4.1 times per week, with a standard deviation of 2.4. Imagine that this is the entire pop-
ulation of interest; thus, these numbers can be treated as parameters.

Using symbolic notation and the formula, how can we calculate the z score for a student
who eats breakfast six times per week? We can calculate the z score as follows:

Now, how can we calculate the z score for a student who eats breakfast twice a week?
We can calculate this z score as follows:

6.2 STANDARDIZATION WITH z SCORES AND PERCENTILES
Who is doing better financially—Maria Sharapova, with respect to the 10 tennis players
with the highest incomes, or Tiger Woods (prior to his scandal-related decline in endorse-
ments), with respect to the 10 golfers with the highest incomes? In 2005, Forbes.com listed
the 10 most powerful tennis players in terms of earnings and media exposure, regardless of
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gender. Sharapova, the first Russian (man or woman) to be ranked number one interna-
tionally in tennis, ranked second in earnings, with an income of $18.2 million, much of it
from endorsements for companies such as Canon and Motorola. In 2005, Golfdigest.com
listed the top-50 earners in golf, regardless of gender. Woods placed first, with $89.4 million
(over one-fourth of it just from Nike endorsements!). But top golfers tend to make more
than top tennis players. In comparison to his top-10 peers, did Woods really do better fi-
nancially than Sharapova did in comparison to her top-10 peers?

For tennis, the mean for the top 10 was $11.58 million, with a standard deviation of
$6.58 million. Based on this, Maria Sharapova’s z score is:

We can also estimate her percentile rank. Fifty percent of scores fall below the mean
and about 34% fall between the mean and a z score of 1.0: 50 � 34 � 84. Sharapova is at
approximately the 84th percentile among the top-10 tennis players with the highest in-
comes.

For golf, the mean for the top 10 was $30.01 million, with a standard deviation of $28.86
million. Based on this, Tiger Woods’s z score is:

We can also estimate his percentile rank. Fifty percent of scores fall below the mean;
about 34% fall between the mean and 1 standard deviation above the mean; and about 14%
fall between 1 and 2 standard deviations above the mean: 50 � 34 � 14 � 98. Woods is
at approximately the 98th percentile among the top-10 golfers with the highest incomes.

In comparison to the top-10 earners in their respective sports, Woods outearned
 Sharapova.
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Exercises
Clarifying the Concepts

  6.1 Explain how the word normal is used in everyday con-
versation; then explain how statisticians use it.

  6.2 What point on the normal curve represents the most
commonly occurring observation?

  6.3 How does the size of a sample of scores affect the dis-
tribution of data?

  6.4 Explain how the word standardize is used in everyday
conversation; then explain how statisticians use it.

  6.5 What is a z score?
  6.6 Give three reasons why z scores are useful.
  6.7 What are the mean and standard deviation of the z dis-

tribution?
  6.8 Why is the central limit theorem such an important idea

for dealing with a population that is not normally dis-
tributed?

  6.9 What does the symbol lM stand for?
  6.10 Why does the standard error become smaller simply by

increasing the sample size?
  6.11 What does a z statistic—a z score based on a distribu-

tion of means—tell us about a sample mean?
  6.12 Each of the following equations has an error. Identify

and fix the error and explain your work.

a.

b. (for a distribution of means)

c. (for a distribution of means)

d. (for a distribution of scores)

Calculating the Statistics

  6.13 Create a histogram for these three sets of scores. Each
set of scores represents a sample taken from the same
population.

a. 6 4 11 7 7

b. 6 4 11 7 7 2 10 7 8 6 6 7 5 8

c. 6 4 11 7 7 2 10 7 8 6 6  7  5 8

7 8  9 7 6 9  3 9 5 6 8 11  8 3

  8 4 10 8 5 5  8 9 9 7 8  7 10 7

d. What do you observe happening across these three
distributions?
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  6.14 If a population has a mean of 250 and standard deviation
of 47, calculate z scores for each of the following ob-
servations:

a. 391

b. 273

c. 199

d. 160

  6.15 A population has a mean of 1179 and a standard devi-
ation of 164. Calculate z scores for each of the following
observations:

a. 1000

b. 721

c. 1531

d. 1184

  6.16 Using the population described in Exercise 6.14, com-
pute the z score for 250. Explain the meaning of the
value you obtain.

  6.17 Using the population described in Exercise 6.14, com-
pute the z score for 203 and 297. Explain the signifi-
cance of these values.

  6.18 For a population with a mean of 250 and a standard de-
viation of 47, return each of the following z scores to
original scores on this variable.

a. 0.54

b. –2.66

c. –1.0

d. 1.79

  6.19 Another population has a mean of 1179 and a standard
deviation of 164. Return each of the following z scores
to original scores.

a. –0.23

b. 1.41

c. 2.06

d. 0.03

  6.20 The verbal subtest of the Graduate Record Examina-
tion (GRE) has a population mean of 500 and a pop-
ulation standard deviation of 100 by design. Convert
the following z scores to raw scores without using a
 formula.

a. 1.5

b. –0.5

c. –2.0

  6.21 Using what we know about the population of GRE
scores from Exercise 6.20, convert the same z scores to
raw scores using symbolic notation and the formula.

a. 1.5

b. –0.5

c. –2.0

  6.22 A study of the Consideration of Future Consequences
(CFC) scale found a mean score of 3.51, with a standard
deviation of 0.61, for the 664 students in the sample
(Petrocelli, 2003). For the sake of this exercise, let’s as-
sume that this particular sample comprises the entire
population of interest.

a. If your CFC score is 4.2, what is your z score? Use
symbolic notation and the formula. Explain why
this answer makes sense.

b. If your CFC score is 3.0, what is your z score? Use
symbolic notation and the formula. Explain why
this answer makes sense.

c. If your z score is 0, what is your CFC score? Ex-
plain.

  6.23 Compare the following “apples and oranges”: a score
of 45 when the population mean is 51 and the standard
deviation is 4 and a score of 732 when the population
mean is 765 and the standard deviation is 23.

a. Convert these scores to standardized scores.

b. Using the standardized scores, what can you say
about how these two scores compare to each other?

  6.24 Compare the following scores:

a. A score of 811 when l � 800 and r � 29 against
a score of 4524 when l � 3127 and r � 951

b. A score of 17 when l � 30 and r � 12 against a
score of 67 when l � 88 and r � 16

  6.25 Evaluate the distribution of scores, expressed in percent-
ages, for each of the following, assuming a normal dis-
tribution:

a. How many scores fall below the mean?

b. How many scores fall between 1 standard deviation
below the mean and 2 standard deviations above the
mean?

c. What percentage of scores lies beyond 2 standard
deviations away from the mean (on both sides)?

d. How many scores are between the mean and 2 stan-
dard deviations above the mean?

e. What percentage of scores falls under the normal
curve?

  6.26 Compute the standard error (rM) for each of the fol-
lowing, assuming the population has a mean of 100 and
standard deviation of 20:

a. Samples of size 45

b. Samples of size 100

c. Samples of size 4500
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  6.27 A parent population has a mean of 55 and a standard
deviation of 8. Compute lM and rM for each of the fol-
lowing samples:

a. N � 30

b. N � 300

c. N � 3000
  6.28 Compute z statistics for each of the following, assuming

the population has a mean of 100 and a standard devi-
ation of 20:

a. A mean of 101 is observed based on a sample of 43
scores.

b. A mean of 96 is observed based on a sample of 60
scores.

c. A mean of 100 is observed based on a sample of 29
scores.

Applying the Concepts

  6.29 We asked 150 students (in our statistics classes) how
long, in minutes, they typically spent getting ready for
a date. The scores range from 1 minute to 120 minutes,
and the mean is 51.52 minutes. Here are the data for
40 of those students:

30 90 60 60  5 90  30 40 45 60

60 30 90 60 25 10  90 20 15 60

60 75 45 60 30 75  15 30 45  1

20 25 45 60 90 10 105 90 30 60

a. Construct a histogram for the 10 scores in the first
row.

b. Construct a histogram for all 40 of these scores.

c. What happened to the shape of the distribution as
you increased the number of scores from 10 to 40?
What do you think would happen if the data for all
150 students were included? What if we included
10,000 scores? Explain this phenomenon.

d. Are these distributions of scores or distributions of
means? Explain.

e. The data here are self-reported. That is, our students
wrote down how many minutes they believe that
they typically take to get ready for a date. This ac-
counts for the fact that the data include many
“pretty” numbers, such as 30, 60, or 90 minutes.
What might have been a better way to operational-
ize this variable?

f. Do these data suggest any hypotheses that you
might like to study? List at least one.

  6.30 The verbal subtest of the GRE has a population mean
of 500 and a population standard deviation of 100 by
design (the quantitative subtest has the same mean and
standard deviation).

a. Use symbolic notation to state the mean and stan-
dard deviation of the GRE verbal test.

b. Convert a GRE score of 700 to a z score without
using a formula.

c. Convert a GRE score of 550 to a z score without
using a formula.

d. Convert a GRE score of 400 to a z score without
using a formula.

  6.31 A sample of 150 statistics students reported the typical
number of hours that they sleep on a weeknight. The
mean number of hours was 6.65, and the standard de-
viation was 1.24. (For this exercise, treat this sample as
the entire population of interest.)

a. What is always the mean of the z distribution?

b. Using the sleep data, demonstrate that your answer
to part (a) is the mean of the z distribution. (Hint:
Calculate the z score for a student who is exactly
at the mean.)

c. What is always the standard deviation of the z
 distribution?

d. Using the sleep data, demonstrate that your answer
to part (c) is the standard deviation of the z distri-
bution. (Hint: Calculate the z score for a student
who is exactly 1 standard deviation above or below
the mean.)

e. How many hours of sleep do you typically get on
a weeknight? What would your z score be com-
pared with this population?

  6.32 A sample of 148 of our statistics students rated their
level of admiration for Hillary Rodham Clinton on a
scale of 1 to 7. The mean rating was 4.06, and the stan-
dard deviation was 1.70. (For this exercise, treat this sam-
ple as the entire population of interest.)

a. Use these data to demonstrate that the mean of the
z distribution is always 0.

b. Use these data to demonstrate that the standard de-
viation of the z distribution is always 1.

c. Calculate the z score for a student who rated his
admiration of Hillary Rodham Clinton as 6.1.

d. A student had a z score of �0.55. What rating did
she give for her admiration of Hillary Rodham
Clinton?

  6.33 We have already discussed summary parameters for
CFC scores for the population of participants in a study
by Petrocelli (2003). The mean CFC score was 3.51,
with a standard deviation of 0.61. (Remember that even
though this was a sample, we treated the sample of 664
participants as the entire population.) Imagine that you
randomly selected 40 people from this population and
had them watch a series of videos on financial planning
after graduation. The mean CFC score after watching
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the video was 3.62. We want to know whether watch-
ing these videos might change CFC scores in the pop-
ulation. But we start by standardizing this mean so that
we can make comparisons.

a. Why would it not make sense to compare the mean
of this sample with the distribution of scores? Be sure
to discuss the spread of distributions in your answer.

b. In your own words, what would the null hypoth-
esis predict? What would the research hypothesis
predict?

c. Using symbolic notation and formulas, what are the
appropriate measures of central tendency and vari-
ability for the distribution from which this sample
comes?

d. Using symbolic notation and the formula, what is
the z statistic for this sample mean?

e. Roughly, to what percentile does that z statistic cor-
respond?

  6.34 A CFC study found a mean CFC score of 3.51, with a
standard deviation of 0.61, for the 664 students in the
sample (Petrocelli, 2003).

a. Imagine that your z score on the CFC score is
�1.2. What is your raw score? Use symbolic nota-
tion and the formula. Explain why this answer
makes sense.

b. Imagine that your z score on the CFC score is 0.66.
What is your raw score? Use symbolic notation and
the formula. Explain why this answer makes sense.

  6.35 For each of the following variables, state whether the
distribution of scores would likely approximate a nor-
mal curve. Explain your answer.

a. Number of movies that a college student watches
in a year

b. Number of full-page advertisements in a magazine

c. Human birth weights in Canada
  6.36 Georgiou and colleagues (1997) reported that college

students had healthier eating habits, on average, than did
those who were neither college students nor college
graduates. The 412 students in the study ate breakfast a
mean of 4.1 times per week, with a standard deviation
of 2.4. For this exercise, imagine that this is the entire
population of interest; thus, these numbers can be
treated as parameters.

a. Roughly, what is the percentile for a student who
eats breakfast four times per week?

b. Roughly, what is the percentile for a student who
eats breakfast six times per week?

c. Roughly, what is the percentile for a student who
eats breakfast twice a week?

  6.37 A common quandary faces sports fans who live in the
same city but avidly follow different sports. How does

one determine whose team did better with respect to
its league division? In 2004, the Boston Red Sox won
the World Series; just months later, their local football
counterparts, the New England Patriots, won the Super
Bowl. In 2005, both teams made the play-offs but lost
early on. Which team was better in 2005? The question,
then, is: Were the Red Sox better, as compared to other
teams in the American League of Major League Base-
ball, than the Patriots, as compared to the other teams
in the American Football Conference of the National
Football League? Some of us could debate it for hours,
but it’s better to examine some statistics. Let’s opera-
tionalize performance over the season as the number of
wins during regular season play.

a. In 2005, the mean number of wins for baseball
teams in the American League was 81.71, with a
standard deviation of 13.07. Because all teams were
included, these are population parameters. The Red
Sox won 95 games. What is their z score?

b. In 2005, the mean number of wins for football
teams in the American Football Conference was
8.13, with a standard deviation of 3.70. The Patriots
won 10 games. What is their z score?

c. Which team did better, according to these data?

d. How many games would the team with the lower
z score have had to win to beat the team with the
higher z score?

e. List at least one other way we could have op -
erationalized the outcome variable (i.e., team
 performance).

  6.38 Our statistics students, as noted in Exercise 6.32, were
asked to rate their admiration of Hillary Rodham Clin-
ton on a scale of 1 to 7. They also were asked to rate
their admiration of Jennifer Lopez and Venus Williams
on a scale of 1 to 7. As noted earlier, the mean rating
of Clinton was 4.06, with a standard deviation of 1.70.
The mean rating of Lopez was 3.72, with a standard de-
viation of 1.90. The mean rating of Williams was 4.58,
with a standard deviation of 1.46. One of our students
rated her admiration of Clinton and Williams at 5 and
her admiration of Lopez at 4.

a. What is her z score for her admiration rating of
Clinton?

b. What is her z score for her admiration rating of
Williams?

c. What is her z score for her admiration rating of
Lopez?

d. Compared to the other statistics students in our
sample, which celebrity does this student most ad-
mire? (We can tell by her raw scores that she prefers
Clinton and Williams to Lopez, but when we take
into account the general perception of these
celebrities, how does this student feel about them?)

CHAPTER 6 ■ The Normal Curve, Standardization, and z Scores   159



e. How do z scores allow us to make comparisons that
we cannot make with raw scores? That is, describe
the benefits of standardization.

  6.39 Let’s look at baseball and football again. We’ll look at
data for all of the teams in Major League Baseball
(MLB) and the National Football League (NFL), 
respectively.

a. In 2005, the mean number of wins for MLB teams
was 81.00, with a standard deviation of 10.83.
The perennial underdogs, the Chicago Cubs, had
a z score of �0.18. How many games did they
win?

b. In 2005, the mean number of wins for all NFL
teams was 8.00, with a standard deviation of 3.39.
The New Orleans Saints had a z score of �1.475.
How many games did they win?

c. The Pittsburgh Steelers were just below the 84th
percentile in terms of NFL wins. How many games
did they win? Explain how you obtained your
 answer.

d. Explain how you can examine your answers in parts
(a), (b), and (c) to determine if the numbers make
sense.

  6.40 Researchers have reported that the projected life ex-
pectancy for people diagnosed with human immuno -
deficiency virus (HIV) and receiving antiretroviral
therapy (ART) is 24.2 years (Schackman et al., 2006).
Imagine that the researchers determined this by follow-
ing 250 people with HIV who were receiving ART and
calculating the mean. (The 24.2 is actually a projected
number rather than a mean for a sample.)

a. What is the variable of interest?

b. What is the population?

c. What is the sample?

d. For the population, describe what the distribution
of scores would be.

e. For the population, describe what the distribution
of means would be.

f. If the distribution of the population was skewed,
would the distribution of scores likely be skewed or
approximately normal? Explain your answer.

g. Would the distribution of means be skewed or ap-
proximately normal? Explain your answer.

  6.41 The revised version of the Minnesota Multiphasic Per-
sonality Inventory (MMPI-2) is the most frequently ad-
ministered self-report personality measure. Test-takers
respond to more than 500 true/false statements, and
their responses are scored, typically by a computer, on
a number of scales (e.g., hypochondriasis, depression,
psychopathic deviation). Respondents receive a T score
on each scale that can be compared to norms. (It is im-

portant to note that T scores are different from the t
statistic we will learn about in a few chapters; you’re
likely to encounter T scores if you take psychology
classes, and it’s good to be aware that they’re different
from the t statistic.) T scores are another way to stan-
dardize scores so that percentiles and cutoffs can be de-
termined. The mean T score is always 50, and the
standard deviation is always 10. Imagine that you ad-
minister the MMPI-2 to 95 respondents who have re-
cently lost a parent; you wonder whether their scores
on the depression scale will be, on average, higher than
the norms. You find a mean score on the depression
scale of 55 in your sample.

a. Using symbolic notation, report the mean and stan-
dard deviation of the population.

b. Using symbolic notation and formulas (where ap-
propriate), report the mean and standard error for
the distribution of means to which your sample will
be compared.

c. In your own words, explain why it makes sense that
the standard error is smaller than the standard
 deviation.

  6.42 You may need to find an apartment to rent upon grad-
uation. The Internet is a valuable source of data to aid
you in your search. From neighborhood safety to avail-
able transportation to housing costs, recent data can
steer you in the right direction. On a Web site, San
Mateo County in California published extensive de-
scriptive statistics from its 1998 Quality of Life Survey.
The county reported that the mean house payment
(mortgage or rent) was $1225.15, with a standard de-
viation of $777.50. It also reported that the mean cost
of an apartment rental, rather than a house rental or a
mortgage, was $868.86. For this exercise, treat the overall
mean housing payment as a parameter, and treat the
mean apartment rental cost as a statistic based on a sam-
ple of 100.

a. Using symbolic notation and formulas (where ap-
propriate), determine the mean and the standard
error for the distribution of means for the overall
housing payment data.

b. Using symbolic notation and the formula, calculate
the z statistic for the cost of an apartment rental.

c. Why is it likely that the z statistic is so large? (Hint:
Is this distribution likely to be normal? Explain.)

d. Why is it permissible to use the normal curve
percentages associated with the z distribution
even though the data are not likely normally
 distributed?

  6.43 The General Social Survey (GSS) is a survey of approx-
imately 2000 adults conducted each year since 1972, for
a total of more than 38,000 people. During several years
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of the GSS, participants were asked how many close
friends they have. The mean for this variable is 7.44
friends, with a standard deviation of 10.98. The median
is 5.00 and the mode is 4.00.

a. Are these data for a distribution of scores or a dis-
tribution of means? Explain.

b. What do the mean and standard deviation suggest
about the shape of the distribution? (Hint: Compare
the sizes of the mean and the standard deviation.)

c. What do the three measures of central tendency
suggest about the shape of the distribution?

d. Let’s say that these data represent the entire popu-
lation. Pretend that you randomly selected a person
from this population and asked how many close
friends she or he had. Would you compare this per-
son to a distribution of scores or a distribution of
means? Explain your answer.

e. Now pretend that you randomly selected a sample
of 80 people from this population. Would you com-
pare this sample to a distribution of scores or a dis-
tribution of means? Explain your answer.

f. Using symbolic notation, calculate the mean and
standard error of the distribution of means.

g. What is the likely shape of the distribution of
means? Explain your answer.

  6.44 Refer to Exercise 6.43. Again, pretend that the GSS
sample is the entire population of interest.

a. Imagine that you randomly selected one person
from this population who reported that he had 18
close friends. Would you compare his score to a dis-
tribution of scores or a distribution of means? Ex-
plain your answer.

b. What is his z score? Based on this z score, what is
his approximate percentile?

c. Does it make sense to calculate a percentile for this
person? Explain your answer. (Hint: Consider the
shape of the distribution.)

  6.45 Refer to Exercise 6.43. Again, pretend that the GSS
sample is the entire population of interest.

a. Imagine that you randomly selected 80 people
from this population who had a mean of 8.7.
Would you compare this sample mean to a distri-
bution of scores or a distribution of means? Ex-
plain your answer.

b. What is the z statistic for this mean? Based on this
z statistic, what is the approximate percentile for this
sample?

c. Does it make sense to calculate a percentile for this
sample? Explain your answer. (Hint: Consider the
shape of the distribution.)

  6.46 Refer to Exercises 6.43 through 6.45. Let’s say that
you decide to use the GSS data to test whether peo -

ple who live in rural areas have a different mean num-
ber of friends than does the overall GSS sample.
Again, treat the overall GSS sample as the entire pop-
ulation of interest. Let’s say that you select 40 people
living in rural areas and find that they have an average
of 3.9 friends.

a. What is the independent variable in this study? Is
this variable nominal, ordinal, or scale?

b. What is the dependent variable in this study? Is this
variable nominal, ordinal, or scale?

c. What is the null hypothesis for this study?

d. What is the research hypothesis for this study?

e. Would we compare our data to a distribution of
scores or a distribution of means? Explain your
 answer.

f. Using symbolic notation and formulas, calculate the
mean and standard error for the distribution of
means.

g. Using symbolic notation and the formula, calculate
the z statistic for this sample.

h. What is the approximate percentile for this sample?

  6.47 The three most common treatments for blocked coro-
nary arteries are medication, bypass surgery, or angio-
plasty, a medical procedure that involves clear ing out
arteries and that leads to higher profits for doctors than
do the other two procedures. The high est rate of an-
gioplasty in the United States is in Elyria, a small city
in Ohio. A newspaper article stated that “the statistics
are so far off the charts—Medicare patients in Elyria
 receive angioplasties at a rate nearly four times the na-
tional average—that Medicare and at least one com-
mercial insurer are starting to ask questions.” The rate,
in fact, is three times as high as that of Cleveland, Ohio,
which is located just 30 miles from Elyria.

a. How did probability play a role in the decision of
Medicare and the commercial insurer to begin in-
vestigations?

b. How might the z distribution help the investigators
to detect fraud in this case?

c. Does Elyria’s extremely high percentile mean
that the doctors in town are committing fraud?
Cite two other possible reasons for Elyria’s status
as an outlier.

  6.48 Credit card companies will often call cardholders if the
pattern of use indicates that the card might have been
stolen. Let’s say that you charge an average of $280 a
month on your credit card, with a standard deviation of
$75. The credit card company will call you anytime
your purchases for the month exceed the 98th per-
centile. What is the dollar amount beyond which you’ll
get a call from your credit card company?
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Terms
normal curve (p. 130)
standardization (p. 134)
z score (p. 134)

z distribution (p. 140)
standard normal distribution (p. 140)
central limit theorem (p. 144)

distribution of means (p. 144)
standard error (p. 148)

Formulas

z � (p. 136)

X � z(r) � l (p. 139)

rM � (p. 148) z � (p. 150)
( )X � l

r

r

N
( )M M

M

� l

r

Symbols
z             (p. 134)
lM          (p. 148)
rM          (p. 148)
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Hypothesis Testing
with z Tests

163

■ You should understand how to calculate a z
statistic for a distribution of scores and for a
distribution of means (Chapter 6).

■ You should understand that the z distribution
allows us to determine the percentage of
scores (or means) that fall below a particular 
z statistic (Chapter 6).

BEFORE YOU GO ON

The z Table
Raw Scores, z Scores, and Percentages
The z Table and Distributions of Means

The Assumptions and the Steps of 
Hypothesis Testing
The Three Assumptions 

for Conducting Analyses
The Six Steps of Hypothesis Testing

An Example of the z Test

Next Steps: Cleaning Data



One of the turning points in the history of statistics occurred in the early
1920s. Statistician R. A. Fisher drew a cup of tea from a large urn and
offered it to Dr. B. Muriel Bristol. She politely declined because she pre-
ferred the taste of tea when the milk had been poured into the cup first.

“Nonsense. Surely it makes no difference,” Fisher replied.
Dr. Bristol insisted that she could tell the difference, and William

Roach (who would later marry Bristol) suggested, “Let’s test her.” This
was one of the first times that experimental design had been so directly
wedded to inferential statistics.

Roach prepared a taste test by pouring cups of tea, some with tea
first and others with milk first. Fisher’s mind was suddenly awhirl with
statistical concerns such as how many cups should be used, their order
of presentation, and how to control chance variations in temperature
or sweetness. The case of the lady drinking tea became the opening ex-
ample for the first textbook linking statistics with experimental design,
Fisher’s 1935 classic The Design of Experiments.

This tea-first versus milk-first experiment demonstrated how prob-
ability could be used to test a hypothesis. For example, we know how
many times Dr. Bristol should have been able to identify the milk-first
cup of tea simply by chance—50%. Given that standard, we can establish
a probability, somewhere above 50%, beyond which we can declare that
Bristol’s tea-tasting abilities were significantly different from what we
would expect by chance—that is, whether she really could tell the dif-
ference between a milk-first cup of tea and a tea-first cup of tea. The

important idea here is that probability can be used to test a hypothesis. The statistical
results of this informal experiment were never recorded, but Roach reportedly said,
“Miss Bristol divined correctly more than enough of those cups into which tea had
been poured first to prove her case” (Box, 1978, p. 134).

This chapter introduces the basic logic and steps to conduct inferential statistics, or
hypothesis testing. Hypothesis testing is a way of thinking that provides evidence either
to support our commonsense observations or to debunk them. Hypothesis testing in
the behavioral sciences tries to ask “yes or no” questions so that we can test our so-
called common sense empirically. To apply hypothesis testing to problems such as the
proper preparation of tea, we focus our discussion on the simplest hypothesis test, the
z test. We learn how the z distribution and the z test make fair comparisons possible
through standardization. Specifically, we learn the following:

1. How to use a z table
2. How to implement the basic steps of hypothesis testing
3. How to conduct a z test to compare a single sample to a known population

The z Table
In Chapter 6, we learned that the z distribution is mathematically defined and that we
can know the specific percentage below any given area of the z distribution. However,
the percentages that accompanied the z score or z statistic were introduced only for
whole numbers. For example, we learned that 34% of the distribution falls between
the mean and 1 standard deviation of the mean (above or below). In this section, we
learn how to use the z table to be more exact and how to calculate percentages for
any z statistic, even if it’s not a whole number. This is yet another tool that will allow
us to conduct hypothesis testing.
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Experimental Design R. A. Fisher was inspired by the
“lady drinking tea” who claimed that she could distinguish
the taste of a cup of tea that had been poured tea first
versus one that had been poured milk first. His book The
Design of Experiments demonstrated how statistics become
meaningful within the context of an experimental design.



Hypothesis testing allows us to draw conclusions about the data we have collected
to test a hypothesis, such as whether or not Dr. Bristol could accurately detect whether
tea or milk was poured into a cup first. Understanding its logic and when it can be
used provides a foundation for the more commonly used hypothesis tests you will learn
about in later chapters. This chapter focuses on the z test, the simplest of the hypothesis
tests. With the z test, as with all the other hypothesis tests, there are three different ways
to identify the exact same point beneath the normal curve: raw score, z score, and per-
centile ranking. The z table is the tool that allows us to transition from one to another
of these ways to identify a point, and it is a fundamental tool of hypothesis testing.

Raw Scores, z Scores, and Percentages
The z table (Chapter 6) is the key to standardization. It allows us to translate the stan-
dardized z distribution into percentages and individual z scores or z statistics into
percentile ranks. The ability to convert individual z scores to percentile ranks is key
to one of the steps of hypothesis testing, and it builds on what we have already learned
about normal distributions. Specifically, we learned that (1) about 68% of scores fall
within one z score of the mean, (2) about 96% of scores fall within two z scores of
the mean, and (3) nearly all scores fall within three z scores of the mean. These guide-
lines are useful, but the table of z scores and percentages is more spe-
cific. The z table is printed in its entirety in Appendix B, but an
excerpt from it is reproduced in Table 7-1 for your convenience.

We can determine the percentage associated with a given z statistic
by following two steps.

Step 1. Convert a raw score into a z score.
Step 2. Look up a given z score on the z table to find the per-

centage of scores between the mean and that z score.
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TABLE 7-1. Excerpt from the z Table

The z table provides the percentage of scores between the mean and a given z value. The full table includes
positive z statistics from 0.00 to 4.50. The negative z statistics are not included because all we have to do
is change the sign from positive to negative. The percentage between the mean and a positive z statistic is
identical to the percentage between the mean and the negative version of that z statistic. Remember, the
normal curve is symmetric: one side always mirrors the other.

z                                                              % Between Mean and z

                              .                                                                                       .

                              .                                                                                       .

                              .                                                                                       .

                            0.97                                                                               33.40

                            0.98                                                                               33.65

                            0.99                                                                               33.89

                            1.00                                                                               34.13

                            1.01                                                                               34.38

                            1.02                                                                               34.61

                              .                                                                                       .

                              .                                                                                       .

                              .                                                                                       .

�   MASTERING THE CONCEPT

7-1: We can use the z table to look up the

percentage of scores between the mean 

of the distribution and a given z score or 

z statistic.
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Note that the z scores in a z table are all positive. Because the normal curve is sym-
metric, calculating the percentage between the mean and a given positive z score is
identical to calculating the percentage between the mean and the negative version of
that z score (see Figure 7-1). So including the negative z scores would be redundant.

Let’s learn how to use the z table. To do so, we’ll consider a study about the effect
of height on peer relations and social adjustment among adolescents in grades 6 through
12 (Sandberg, Bukowski, Fung, & Noll, 2004). Researchers conducted the study to see
whether very short children tended to have poorer psychological adjustment than taller
children and, therefore, should be treated with growth hormone.

To begin, researchers categorized children into one of three groups—short, average,
or tall. Researchers decided to classify children as short if they were in the bottom 5%
of heights, according to published norms for a given age and gender (Sandberg et al.,
2004). They were classified as tall if they were in the top 5%. They were classified as
average height if they were in the middle 90%. Growth charts developed by the Centers
for Disease Control (CDC; National Center for Health Statistics, 2000) indicated that
for 15-year-old boys the mean height was approximately 67.00 inches with a standard
deviation of 3.19. For 15-year-old girls, the mean height was approximately 63.80
inches with a standard deviation of 2.66. Let’s consider two fictional examples related
to the CDC height data, one for a score above the mean and then one for a score
below the mean.

0�1�2�3 1 2 3

34%34%

14% 14%2% 2%

FIGURE 7-1
The Standardized z Distribution

We can use a z table to determine the
percentages below and above a

particular z score. For example, 34% of
scores fall between the mean and a z

score of 1.

Jessica, a 15-year-old girl in one of the recruited classes, is 66.41 inches tall (just over
5 feet, 6 inches).

We use the mean (l � 63.80) and standard
deviation (r � 2.66) for the heights of girls:

Once we know that the associated percent-
age is 33.65%, we can determine a number
of percentages related to her z score. Here
are three.

STEP 1: Convert her raw score to a z
score, as we learned how to
do in Chapter 6.

z
X

�
�

�
�

�
( ) ( . . )

.
.

l

r

66 41 63 80

2 66
0 98

STEP 2: Look up 0.98 on the z table
to find the associated
percentage between the
mean and Jessica’s z score.

EXAMPLE 7.1



1. Jessica’s percentile rank, the percentage of scores below her score: We add the percentage
between the mean and the positive z score to 50%, which is the percentage of
scores below the mean (50% of scores are on each side of the mean).

Jessica’s percentile is 50% � 33.65% � 83.65%

Figure 7-2 shows this visually. As with the calculation of z scores, we can run
a quick mental check of the likely accuracy of our answer. We’re interested in cal-
culating the percentile of a positive z score. Because it is above the mean, we know
that the answer must be higher than 50%. And it is. If it were not, we would know
to work through our calculations again to catch our error.
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FIGURE 7-3
Calculating the Percentage
Above a Positive z Score

For a positive z score, we subtract the
percentage between the mean and that
z score from 50% (the total percentage
above the mean) to get the percentage
above that z score. Here, we subtract
the 33.65% between the mean and the
z score of 0.98 from 50%, which yields
16.35%.

FIGURE 7-2
Calculating the Percentile for a
Positive z Score

Drawing curves helps us to determine
the appropriate percentage. For a
positive z score, we add 50% to the
percentage between the mean and that
z score to get the total percentage
below that z score, the percentile. Here,
we add the 50% below the mean to the
33.65% between the mean and a z
score of 0.98 to calculate the
percentile, 83.65%.

 2. The percentage of scores above Jessica’s score: We subtract the percentage between the
mean and the positive z score from 50%, which is the full percentage of scores
above the mean:

50% � 33.65% � 16.35%

So 16.35% of 15-year-old girls’ heights fall above Jessica’s height. Figure 7-3
shows this visually. Here, it makes sense that the percentage would be smaller than
50%; because the z score is positive, we could not have more than 50% above it.
An alternative approach may strike you as a simpler way to compute the percentage
of scores above Jessica’s score: subtract Jessica’s percentile rank of 83.35% from
100%. This gives you the same 16.35%. Alternatively, you could look under the
column in the z table labeled “in the tail.”
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 3. The scores at least as extreme as Jessica’s z score, in both directions: When we begin hy-
pothesis testing, it will be useful to know the percentage of scores that are at least
as extreme as a given z score. In this case, 16.35% of heights are extreme enough
to have z scores above Jessica’s z score of 0.98. But remember that the curve is
symmetric. This means that another 16.35% of the heights are extreme enough to
be below a z score of �0.98. So we can double 16.35% to find the total percentage
of heights that are as far as or farther from the mean than is Jessica’s height:

16.35% � 16.35% � 32.70%

So 32.7% of heights are at least as extreme as Jessica’s height in either direction.
Figure 7-4 shows this visually.

What group would Jessica fall in? Because 16.35% of 15-year-old girls are taller
than Jessica, she is not in the top 5%. So she would be classified as of average height
according to the researchers’ definition of average. ■

0�1�2�3 1

0.98
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16.35%

�0.98

16.35%

FIGURE 7-4
Calculating the Percentage 
at Least as Extreme as Our 

z Score

For a positive z score, we double the
percentage above that z score to get the
percentage of scores that are at least as

extreme—that is, at least as far from
the mean—as our z score is. Here, we

double 16.35% to calculate the
percentage at least this extreme:

32.70%.

Now let’s repeat this process for a score below the mean. Manuel, a 15-year-old boy
in one of the recruited classes, is 61.20 inches tall (about 5 feet, 1 inch). Keeping in
mind that the height norms for boys are different from the height norms for girls, we
want to know if Manuel can be classified as short (using the researchers’ criteria of
5%, 90%, and 5% ). Remember, for boys the mean height is 67.00 inches, and the stan-
dard deviation for height is 3.19 inches.

We need to use the full table in Appendix B
this time. The z table includes only positive z
scores, so we look up 1.82 and find that the
percentage between the mean and the z score
is 46.56%. Of course, percentages are always
positive, so don’t add a negative sign here!

STEP 1: Convert his raw score to a 
z score:

z
X

�
�

�
�

��
( ) ( . . )

.
.

l

r

61 20 67 00

3 19
1 82

STEP 2: Calculate the percentile, 
the percentage above, 
and the percentage at 
least as extreme for the
negative z score for 
Manuel’s height.

EXAMPLE 7.2



 1. Manuel’s percentile score, the percentage of scores below his score: For a negative z score,
we subtract the percentage between the mean and the z score from 50%, the total
percentage below the mean:

Manuel’s percentile is 50% � 46.56% � 3.44% (see Figure 7-5).
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FIGURE 7-5
Calculating the Percentile for a
Negative z Score

As with positive z scores, drawing curves
helps us to determine the appropriate
percentage for negative z scores. For a
negative z score, we subtract the
percentage between the mean and that z
score from 50% (the percentage below
the mean) to get the percentage below
that negative z score, the percentile. Here
we subtract the 46.56% between the
mean and the z score of �1.82 from
50%, which yields 3.44%.

FIGURE 7-6
Calculating the Percentage
Above a Negative z Score

For a negative z score, we add the
percentage between the mean and that
z score to 50% (the percentage above
the mean) to get the percentage above
that z score. Here we add the 46.56%
between the mean and the z score of
�1.82 to the 50% above the mean,
which yields 96.56%.

 2. The percentage of scores above Manuel’s score: We add the percentage between the
mean and the negative z score to 50%, the percentage above the mean:

50% � 46.56% � 96.56%

So 96.56% of 15-year-old boys’ heights fall above Manuel’s height (see Fig-
ure 7-6).

 3. The scores at least as extreme as Manuel’s z score, in both directions: In this case, 3.44% of
15-year-old boys have heights that are extreme enough to have z scores below
�1.82. And because the curve is symmetric, another 3.44% of heights are extreme
enough to be above a z score of 1.82. So we can double 3.44% to find the total per-
centage of heights that are as far as or farther from the mean than is Manuel’s height:

3.44% � 3.44% � 6.88%

So 6.88% of heights are at least as extreme as Manuel’s in either direction (see
Figure 7-7).

In what group would the researchers classify Manuel? Manuel has a percentile rank
of 3.44%. He is in the lowest 5% of heights for boys of his age, so he would be classified
as short. Now we can get to the question that drives this research. Does Manuel’s short
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stature doom him to a life of few friends and poor social adjustment? Researchers
compared the means of the three groups—short, average, and tall—on several measures
of peer relations and social adjustment, but they did not find evidence of psychological
differences among these three groups (Sandberg et al., 2004). ■

0�1�2�3 1 2 3

3.44%

�1.82 1.82

3.44%

FIGURE 7-7
Calculating the Percentage 
at Least as Extreme as Our 

z Score

With a negative z score, we double the
percentage below that z score to get the
percentage of scores that are at least as

extreme—that is, at least as far from
the mean—as our z score is. Here, we

double 3.44% to calculate the
percentage at least this extreme:

6.88%.

Here is an example demonstrating that we can seamlessly shift among raw scores, z
scores, and percentile ranks. In this example, we’ll demonstrate the importance of using
a drawing of a normal curve to guide our calculations. There is no set list of rules to
calculate percentages. Sometimes we are interested in a score below the mean and
sometimes we are interested in a score above the mean. So, if we first identify the area
visually on a normal curve, then most of us make far fewer mistakes.

Many high school students in North America take the Scholastic Aptitude Test (SAT),
a common university admissions requirement. The parameters for the SAT are meant to
be a mean of 500 and a standard deviation of 100. So let’s imagine that Jo, a high school
student hoping to attend college, took the SAT and scored at the 63rd percentile. What
was her raw score? First, we draw a curve, as in Figure 7-8. We add a line at the point
below which approximately 63% of scores fall. We know that this score is above the mean
because 50% of scores fall below the mean, and 63% is larger than 50%.

Using the drawing as a guideline, we see that we have to calculate the percentage
between the mean and the z score of interest. We calculate this by subtracting the 50%
below the mean from Jo’s score, 63%:

63% � 50% � 13%

We look up the closest percentage to 13% in the z table (which is 12.93%) and find
an associated z score of 0.33. This is above the mean, so we do not label it with a neg-

EXAMPLE 7.3

0�1�2�3 1

0.33

2 3

50.00%

13.00%
FIGURE 7-8

Calculating a Score from 
a Percentile

We can convert a percentile to a raw
score by calculating the percentage

between the mean and the z score, and
looking up that percentage on the z

table to find the associated z score. We
would then convert the z score to a raw
score using the formula. Here, we look
up 13.00% on our z table (12.93% is

the closest percentage) and find a z
score of 0.33, which we can then

convert to a raw score.
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ative sign. We can then convert the z score to a raw score using the formula we learned
in Chapter 6:

X � z(r) � l � 0.33(100) � 500 � 533

Jo, whose SAT score was at the 63rd percentile, had a raw score of 533.
Let’s do our quick mental check of the answer: this score is above the mean, just

as we would expect given a percentage above 50%. ■

The z Table and Distributions of Means
In hypothesis testing, we use means rather than scores, because we would always study
a sample rather than an individual. Fortunately, the z table can also be used to determine
percentages and z statistics for distributions of means calculated from many people.
The process is identical to that described for distributions of scores, but with the ad-
ditional step of first having to calculate the mean and the standard error for the dis-
tribution of means. Then we take that information to the z table.

Many graduate programs select students based, in part, on their Graduate Record Exam
(GRE) scores. For example, about half of the doctoral programs and one-third of the
master’s programs in psychology in the United States require that students take the
GRE psychology test. Most of these subject tests have been used for many years, so
we can know the actual population mean and population standard deviation; for ex-
ample, the mean was 554 and the standard deviation was 99 for the years 1995 to 1998
(Matlin & Kalat, 2001).

Now imagine that we want to figure out statistically how well psychology students
at our institution perform on the GRE psychology test compared to all psychology
students who have taken this test (assume that the mean and standard deviation have
not changed greatly since 1998). We record the psychology test scores of a representative
sample, 90 graduating seniors in our Psychology Department, and find that the mean
score is 568. We want to know how much better (or worse) students in our department
are doing by comparison to the mean score of the population. z statistics make that
comparison possible.

The distribution of means has the same mean as the distribution of scores for the
population (554), but the spread is smaller and must be calculated. Before we calculate
the z statistic, let’s use proper symbolic notation to indicate the mean and the standard
error of this distribution of means:

lM � l � 554

At this point, we have all the information we need to calculate the percentage using
the two steps we learned earlier.

r
r

M
N

� � �
99

90
10 436.

STEP 1: We convert to a z statistic
using the mean and standard
error that we just calculated.

z
M M

M

�
�

�
�

�
( ) ( )

.
.

l

r

568 554

10 436
1 34

EXAMPLE 7.4
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To do this, we draw a curve that includes the
mean of the z distribution, 0, and this z sta-
tistic, 1.34 (see Figure 7-9). We shade the

area in which we are interested, everything below 1.34. Then we look up the percentage
between the mean and the z statistic of 1.34. The z table indicates that this percentage
is 40.99, which we write in the section of the curve between the mean and 1.34. We
write 50% in the half of the curve below the mean. We add 40.99% to the 50% below
the mean to get the percentile rank, 90.99%. (Subtracting from 100%, only 9.01% of
mean scores would be higher than our mean if they come from this population.) Based
on this percentage, the mean GRE psychology test score of our sample is quite high.
But it would take hypothesis testing to actually draw a conclusion about whether stu-
dents at this school are doing better than the national average. ■

In the next section, we learn the assumptions that we must make when we conduct
hypothesis testing. We then learn the six steps of hypothesis testing using the z distri-
bution. We learn the steps to reject, or fail to reject, the null hypothesis (in our previous
example, that the students in this department do not receive different scores on average
than do students in the entire population). Only then can we draw a conclusion about
what the data are saying. In the last section, we use a similar example to demonstrate
a z test.

STEP 2: We determine the percentage
below this z statistic.

0�1�2�3 1

1.34

2 3

50.00%

40.99%
FIGURE 7-9

Percentile for the Mean of 
a Sample

We can use the z table with sample
means, just as we can use it with

sample scores. The only difference is
that we must use the mean and 

the standard error of the distribution of
means rather than of the distribution 

of scores. Here, our z score of 1.34 is
associated with a percentage of

40.99% between the mean and the z
score. Added to the 50% below the

mean, the percentile is 50% � 40.99%
� 90.99%.

CHECK YOUR LEARNING
Reviewing the Concepts > Raw scores, z scores, and percentile rankings are three ways to describe the same score

within a normal distribution.

> If we know the mean and the standard deviation of a population, we can convert a raw
score to a z score and then use the z table to determine percentages below, above, or at
least as extreme as this z score.

> We can use the z table in reverse as well, taking a percentage and converting it into a z
score and then a raw score.

> These same conversions can be conducted on a sample mean instead of a score. The pro-
cedures are identical, but we must use the mean and the standard error of the distribution
of means, instead of the mean and the standard deviation of the distribution of scores.

Clarifying the Concepts 7-1 What information do we need to know about a population of interest in order to use
the z table?



The Assumptions and the Steps of Hypothesis Testing
The story of the lady tasting tea used an informal experiment to test a hypothesis. The
formal process of hypothesis testing is based on particular assumptions about the data,
and statisticians are careful to articulate those assumptions. Statisticians have also dis-
covered when it is relatively safe to violate those assumptions. This next section focuses
first on the assumptions connected with hypothesis testing. Then the six steps of formal
hypothesis testing are introduced.

The Three Assumptions for Conducting Analyses
Before we introduce the steps of hypothesis testing, it is important to explore the ideal
conditions under which hypothesis testing takes place. We call these conditions “as-
sumptions.” We all make assumptions in our everyday lives, and when conducting hy-
pothesis testing, statisticians also make assumptions. In statistics, assumptions are the
characteristics that we ideally require the population from which we are sampling to have so that
we can make accurate inferences. So we want to analyze our data using the appropriate
statistical test, and we would like to violate as few assumptions as possible. The assump-
tions introduced here hold for the hypothesis test that we will learn in this chapter,
the z test.

In fact, these assumptions also hold for several other hypothesis tests that we’ll learn
about in the next few chapters—the hypothesis tests, like the z test, that we call para-
metric tests. Parametric tests are inferential statistical analyses based on a set of assumptions
about the population. By contrast, nonparametric tests are inferential statistical analyses that
are not based on a set of assumptions about the population. If we don’t meet the assumptions,
we have to consider which statistical analyses to use—parametric tests or nonparametric
tests. Our goal is to match the appropriate statistical test with the characteristics of our
data. To do that, we need to learn the three main assumptions for parametric tests, so
we begin with those before outlining the steps of hypothesis testing.
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7-2 How do z scores relate to raw scores and percentile ranks?

Calculating the Statistics 7-3 If the percentage of scores between a z score of 1.37 and the mean is 41.47%, what
percentage of scores lies between �1.37 and the mean?

7-4 If 12.93% of scores fall between the mean and a z score of 0.33, what percentage of
scores falls below this z score?

Applying the Concepts 7-5 Every year, the Educational Testing Service (ETS) administers the Major Field Test in
Psychology (MFTP) to graduating psychology majors. In 2003, Baylor University
wondered how its students compared to the national average. On its Web site, Baylor
reported that the mean and the standard deviation of the 18,073 U.S. students who
took this exam were 156.8 and 14.6, respectively. Thirty-six students in the Psychology
and Neuroscience Department at Baylor took the exam; these students had a mean
score of 164.6.

a. What is the percentile rank for the sample of students at Baylor? Use symbolic
notation and write out your calculations.

b. What percentage of samples of this size scored higher than the students at Baylor?

c. What can you say about how Baylor University psychology students compared to
students across the nation?

Solutions to these Check Your
Learning questions can be found in
Appendix D.

■ An assumption is a
characteristic that we ideally
require the population from
which we are sampling to have
so that we can make accurate
inferences.

■ A parametric test is an
inferential statistical analysis
based on a set of assumptions
about the population.

■ A nonparametric test is an
inferential statistical analysis
that is not based on a set of
assumptions about the
population.
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First, we assume that the dependent variable is assessed using a scale measure. This simply
means that there is an equal distance between numbers. For example, the difference
between 30 and 31 seconds is the same as the difference between 109 and 110 seconds;
time is a scale variable. If it’s clear that the variable is nominal or ordinal, we should
not make this assumption.

Second, we assume that the participants are randomly selected. Ideally, for hypothesis tests
to provide accurate results, the participants in the sample must have been selected ran-
domly. Every member of the population of interest must have had an equal chance of
being chosen for participation in the study, something that rarely occurs in research.
It is more likely that participants are a convenience sample than that participants are
randomly selected.

Third, the distribution of the population of interest must be approximately normal. Many
distributions are approximately normal, but it is important to remember that there
are important exceptions to this guideline (Micceri, 1989). Because hypothesis tests
deal with sample means rather than individual scores, as long as the sample size is at

least 30 (in most cases, based on the central limit theorem), it is likely
that this assumption is met.

Inferential statistics are based on assumptions that aren’t always met.
However, many parametric hypothesis tests can be conducted even if
the assumptions are not met (Table 7-2). Often, parametric inferential
statistics are robust against violations of these assumptions. Robust hy-
pothesis tests are those that produce fairly accurate results even when the data
suggest that the population might not meet some of the assumptions.

Why bother learning about the assumptions when we know that
many hypothesis tests are robust to violations of these assumptions, and
so it is often allowable to violate them? These three statistical assump-
tions represent the ideal conditions of most research. The researcher
who is able to meet all three assumptions tends to produce more valid
research. Meeting the assumptions improves the quality of our research, but not
meeting the assumptions doesn’t necessarily invalidate our research.

The Six Steps of Hypothesis Testing
Hypothesis testing can be broken down into six standard steps. There are variations
within the six steps based on each specific distribution and its appropriate hypothesis
test, but the framework is always the same.

Step 1. Identify the populations, comparison distribution, and assumptions.
The first step of hypothesis testing is to identify the populations to be compared, the comparison

distribution, the appropriate test, and its assumptions. The purpose of the first step is to make

�   MASTERING THE CONCEPT

7-2: When we calculate a parametric

statistic, ideally we have met assumptions

regarding the population distribution. For a

z test, there are three assumptions: the

dependent variable should be on a scale

measure, the sample should be randomly

selected, and the underlying population

should have an approximately normal

distribution.

TABLE 7-2. The Three Assumptions for Hypothesis Testing

We must be aware of the assumptions for the hypothesis test that we choose, and we must be cautious in
choosing to proceed with a hypothesis test even though our data may not meet all of the assumptions. Note
that in addition to these three assumptions, for many hypothesis tests, including the z test, the independent
variable must be nominal.

                     The Three Assumptions                                           Breaking the Assumptions

1. Dependent variable is on a scale measure.                    Usually OK if the data are not clearly nominal or ordinal.

2. Participants are randomly selected.                              OK if we are cautious about generalizing.

3. Population distribution is approximately normal.            OK if the sample includes at least 30 scores.



sure that it is OK to proceed with a particular hypothesis test. When we first approach
hypothesis testing, we consider the characteristics of our data to determine the distri-
bution to which we will compare our sample. First, we state the populations represented
by the two groups to be compared. Then we identify the comparison distribution (e.g.,
distribution of means). Finally, we identify the hypothesis test that we would use for
that distribution and check the assumptions for that hypothesis test.

Step 2. State the null and research hypotheses.
The second step is to state the null and research hypotheses. It is important to note that

both hypotheses are about the populations, rather than the samples. The null hypothesis
is usually the “boring” one, positing no change or no difference. The research hypoth-
esis is the “exciting” one, the one positing that, for example, a given intervention will
lead to a change or a difference. It is best to state the null and research hypotheses in
both words and symbolic notation.

Step 3. Determine the characteristics of the comparison distribution.
The third step is to state the relevant characteristics of the comparison distribution, the dis-

tribution based on the null hypothesis. In all cases, in a later step we will compare the
data from our sample (or samples) to a comparison distribution based on the null hy-
pothesis to determine how extreme our sample data are. For now, for z tests, we will
determine the mean and standard error of the comparison distribution. These numbers
describe the distribution represented by the null hypothesis. The numbers that we de-
termine in this step will be used in the actual calculations of our test statistic.

Step 4. Determine critical values, or cutoffs.
The fourth step is to determine the critical values, or cutoffs, on the comparison distribution in-

dicating how extreme our data must be, in terms of the test statistic (e.g., z), to reject the null hy-
pothesis. Often called simply cutoffs, these numbers are also called critical values, the test
statistic values beyond which we reject the null hypothesis. In most cases, we determine two
cutoffs, one for extreme samples below the mean and one for extreme samples above
the mean. Typically, the critical values, or cutoffs, are based on a standard that statisticians
have somewhat arbitrarily adopted—the most extreme 5% of the comparison distribu-
tion curve: 2.5% on either end. At times, cutoffs are based on a less conservative per-
centage, such as 10%, or a more conservative percentage, such as 1%. Regardless of the
chosen cutoff, the area beyond the cutoff, or critical value, is often referred to as the
critical region. Specifically, the critical region refers to the area in the tails of the comparison
distribution in which we reject the null hypothesis if our test statistic falls there.

These percentages are typically written as probabilities; that is, 5% would be written
as 0.05. The probabilities used to determine the critical values, or cutoffs, in hypothesis testing
are p levels (also often called alphas).

Step 5. Calculate the test statistic.
In the fifth step, we calculate our test statistic. To do this, we have to collect data from

our sample if we haven’t already. Hypothesis testing requires the calculation of a test
statistic to determine whether the data from our sample really add up to a trustworthy
scientific finding—that is, whether we can reject our null hypothesis. At this point, we
use the information from step 3 to calculate our test statistic, such as a z statistic. As
we noted earlier, the critical values, or cutoff values, are determined in terms of the
test statistic. For example, in a z test the critical values are on the z distribution, so the
critical values are z statistics. Because of this, we can directly compare our test statistic
to the critical values to determine if our sample is extreme enough to warrant a re-
jection of the null hypothesis.

Step 6. Make a decision.
In the final step, we decide whether to reject or fail to reject the null hypothesis. Based on

the available evidence, we either reject the null hypothesis if our test statistic is beyond
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■ A robust hypothesis test is
one that produces fairly
accurate results even when
the data suggest that the
population might not meet
some of the assumptions.

■ A critical value is a test
statistic value beyond which
we reject the null hypothesis;
often called a cutoff.

■ The critical region refers to
the area in the tails of the
comparison distribution in
which we reject the null
hypothesis if our test statistic
falls there.

■ The probability used to
determine the critical values,
or cutoffs, in hypothesis testing
is a p level; often called alpha.



our cutoffs, or we fail to reject the null hypothesis if our test statistic is not beyond
our cutoffs.

These six steps of hypothesis testing are summarized in Table 7-3.
When we are able to reject the null hypothesis, we often refer to our results as “sta-

tistically significant.” A finding is statistically significant if the data differ from what we
would expect by chance if there were, in fact, no actual difference. The word significant is another
one of those statistical terms with a very particular meaning. The phrase statistically sig-
nificant does not necessarily mean that the finding is important or meaningful. A small
difference could be statistically significant without indicating anything important from
a practical point of view.
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TABLE 7-3. The Six Steps of Hypothesis Testing

We use the same six basic steps with each type of hypothesis test.

1. Identify the populations, distribution, and assumptions and then choose the appropriate hypothesis test. 

2. State the null and research hypotheses in both words and symbolic notation. 

3. Determine the characteristics of the comparison distribution. 

4. Determine the critical values, or cutoffs, that indicate the points beyond which we will reject the null hypothesis. 

5. Calculate the test statistic. 

6. Decide whether to reject or fail to reject the null hypothesis.

CHECK YOUR LEARNING
Reviewing the Concepts > When we conduct hypothesis testing, we have to consider the assumptions for that particular

test.

> Parametric statistics are those that are based on assumptions about the population distri-
bution; nonparametric statistics have no such assumptions about the population distribution.
However, parametric statistics are often robust to violations of the assumptions.

> The three assumptions for a z test are that the dependent variable is on a scale measure,
the sample is randomly selected, and the underlying population distribution is approximately
normal.

> There are six standard steps for hypothesis testing. First, we identify our population,
comparison distribution, hypothesis test, and assumptions. Second, we state our null and
research hypotheses. Third, we determine the characteristics of the comparison distribution.
Fourth, we determine the critical values, or cutoffs, on the comparison distribution. Fifth,
we calculate our test statistic. Sixth, we decide whether to reject or fail to reject the null
hypothesis.

> The standard practice of statisticians is to consider scores that occur less than 5% of the
time based on the null hypothesis as statistically significant, warranting rejection of the null
hypothesis; observations that occur more often than 5% of the time do not support this
decision, and thus we fail to reject the null hypothesis.

Clarifying the Concepts 7-6 Explain the three assumptions made for most parametric hypothesis tests.

7-7 How do critical values help us to make a decision about the hypothesis?

Calculating the Statistics 7-8 If a researcher always sets the critical region as 8% of the distribution, if the null
hypothesis is true, how often will he reject the null hypothesis?

■ A finding is statistically
significant if the data differ
from what we would expect by
chance if there were, in fact,
no actual difference.



An Example of the z Test
The story of the lady tasting tea is a story about how statisticians use hypothesis testing
to understand human behavior. In this next section, we apply what we’ve learned about
hypothesis testing—including the six steps—to a specific example of a z test. (We
should note that z tests are rarely used in actual social science research. It’s rare that
we have one sample and that we know both the mean and the standard deviation of
the population.)
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7-9 Rewrite each of these percentages as a probability, or p level.

a. 15%

b. 3%

c. 5.5%

Applying the Concepts 7-10 For each of the following scenarios, state whether each of the three basic assumptions
for parametric hypothesis tests is met. Explain your answers and label the three
assumptions (1) through (3).

a. Researchers compared the ability of experienced clinical psychologists versus
clinical psychology graduate students to diagnose a patient based on a one-hour
interview. For two months, either a psychologist or a graduate student interviewed
every outpatient at the local community mental health center who had already
received diagnoses based on a number of criteria. The psychologists and graduate
students were given a score of correct or incorrect for each diagnosis.

b. Behavioral scientists wondered whether animals raised in captivity would be
healthier with diminished human contact. Twenty large cats (e.g., lions, tigers) were
randomly selected from all the wild cats living in zoos in North America. Half were
assigned to the control group—no change in human interaction. Half were assigned
to the experimental group—no humans entered their cages except when the
animals were not in them, one-way mirrors were used so that the animals could not
see zoo visitors, and so on. The animals received a score for health over one year;
points were given for various illnesses; a very few sickly animals had extremely high
scores.

Solutions to these Check Your
Learning questions can be found in
Appendix D.

Under Mayor Michael Bloomberg, New York City has increasingly targeted legislation
at public health issues. For instance, in 2003, the city banned smoking in restaurants
and bars. In 2008, it directed its laws at obesity, becoming the first city to require that
chain restaurants post calorie counts for all items on their menus. Several states have
followed with similar laws of their own, and the U.S. Congress considered a related
bill in 2009 and 2010.

Before the bill’s potential adoption, researchers wanted to determine whether the
law would be effective (Bollinger, Leslie, & Sorenson, 2010). For over a year, researchers
gathered data on every transaction at Starbucks coffee shops in several U.S. cities. They
determined a population mean of 247 calories in products purchased by customers at
stores without calorie postings. Based on the range of 0 to 1208 calories, we estimate
a standard deviation of approximately 201 calories, which we’ll use as the population
standard deviation for this example.

The researchers also recorded calories for a sample in New York City after calories
were posted on Starbucks menus. They reported a mean of 232 calories per purchase,
a decrease of 6%. For the purposes of this example, we’ll assume a sample size of 1000.

EXAMPLE 7.5
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Here’s how to apply hypothesis testing when comparing a sample of customers at Star-
bucks with calories posted on their menus to a population of customers at Starbucks
without calories posted on their menus.

We’ll use the six steps of hypothesis testing to analyze the calorie data. These six
steps will tell us if customers visiting a Starbucks with calories listed on the menu con-
sume fewer calories, on average, than customers visiting a Starbucks without calories
listed on the menu. In fact, we will use the six-step approach so often in this book
that it won’t be long before it becomes an automatic way of thinking for you. Below,
each step is followed by a summary that models how to report hypothesis tests on prac-
tice exercises, on test problems, and in research projects.

First, we identify our populations, com -
parison distribution, hypothesis test, and
assumptions. The populations are (1) all cus-

tomers at Starbucks with calories posted on the menu (whether or not they are in our
sample) and (2) all customers at Starbucks without calories posted on the menu. Because
we are studying a sample rather than an individual, the comparison distribution will be a
distribution of means. We will compare the mean of our sample of 1000 people visiting
Starbucks with calories posted on the menu (selected from the population of all people
visiting Starbucks with calories posted) to a distribution of all possible means of samples
of 1000 people (also selected from the population of all people visiting Starbucks with-
out calories posted on the menu). The hypothesis test will be a z test because we have
only one sample and we know the mean and the standard deviation of the population
from the published norms.

Let’s examine the assumptions for a z test. (1) The data are on a scale measure, calories.
(2) We do not know whether sample participants were selected randomly from among
all people visiting Starbucks with calories posted on the menu. If they were not, this
limits our ability to generalize beyond this sample to other Starbucks customers. (3) The
comparison distribution should be normal. The individual data points are likely to be
positively skewed because the minimum score of 0 is much closer to the mean of 247
than it is to the maximum score of 1208. However, we have a sample size of 1000, which
is greater than 30, so based on the central limit theorem, we know that our comparison
distribution—the distribution of means—will be approximately normal.

STEP 1: Identify the populations,
distribution, and assumptions.
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The z Test and Starbucks
z tests are conducted in the rare
cases in which we have one
sample and we know both the
mean and the standard deviation
of the population. Do people
consume fewer calories when
they know exactly how much is
in their favorite latte and muffin?
The z test allows us to compare
average numbers of calories
consumed by customers at
Starbucks with calorie counts
posted on their menus with
average numbers of calories
consumed by customers at
Starbucks without calorie counts
posted on their menus.



Summary: Population 1: All customers at Starbucks with calories posted on the menu.
Population 2: All customers at Starbucks without calories posted on the menu.
The comparison distribution will be a distribution of means. The hypothesis test

will be a z test because we have only one sample and we know the population mean
and standard deviation. This study meets two of the three assumptions and may meet
the third. The dependent variable is scale. In addition, there are more than 30 partic-
ipants in the sample, indicating that the comparison distribution will be normal. We
do not know whether the data were randomly selected, however, so we must be cau-
tious when generalizing.

Next we state the null and research hy -
potheses both in words and in symbols. Re-
member, the hypotheses are always about

populations, not samples. In most forms of hypothesis testing, there are two possible
sets of hypotheses: directional (predicting either an increase or decrease, but not both)
or nondirectional (predicting a difference in either direction).

The first possible set of hypotheses is directional. The null hypothesis is that cus-
tomers at Starbucks with calories posted on the menu do not consume fewer calories
than customers at Starbucks without calories posted on the menu; in other words, they
could have the same or higher mean weights, but not lower. The research hypothesis
is that customers at Starbucks with calories posted on the menu consume fewer calories
than customers at Starbucks without calories posted on the menu. (Note that the di-
rection could be reversed; the research hypothesis could posit that customers at Star-
bucks with calories posted on the menu consume more calories than customers at
Starbucks without calories posted on the menu.)

The symbol for the null hypothesis is H0. The symbol for the research hypothesis
is H1. Throughout this text, we use l for the mean because hypotheses are about pop-
ulations and their parameters, not about samples and their statistics. So, in symbolic no-
tation, the hypotheses are:

H0: l1 � l2

H1: l1 � l2

These express in symbols what was previously expressed in words. For the null hy-
pothesis, the symbolic notation says that the mean calories consumed by those in pop-
ulation 1, customers at Starbucks with calories posted on the menu, is not lower than
the mean calories consumed by those in population 2, customers at Starbucks without
calories posted on the menu. For the research hypothesis, the symbolic notation says
that the mean calories consumed by those in population 1 is lower than the mean calo-
ries consumed by those in population 2.

This hypothesis test is considered a one-tailed test. A one-tailed test is a hypothesis
test in which the research hypothesis is directional, positing either a mean decrease or a mean in-
crease in the dependent variable, but not both, as a result of the independent variable. One-tailed
tests are rarely seen in the research literature; they are used only when the researcher
is absolutely certain that the effect cannot go in the other direction or would not be
interested in the result if it did.

The second set of hypotheses is nondirectional. The null hypothesis states that cus-
tomers at Starbucks with calories posted on the menu (whether in our sample or not)
consume the same number of calories, on average, as customers at Starbucks without
calories posted on the menu. The research hypothesis is that customers at Starbucks
with calories posted on the menu (whether in our sample or not) consume a different

STEP 2: State the null and research
hypotheses.
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■ A one-tailed test is a
hypothesis test in which the
research hypothesis is
directional, positing either a
mean decrease or a mean
increase in the dependent
variable, but not both, as a
result of the independent
variable.
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average number of calories from customers at Starbucks without calories posted on
the menu. The means of the two populations are posited to be different, but neither
mean is predicted to be lower or higher.

The hypotheses in symbols would be:

H0: l1 � l2

H1: l1 � l2

For the null hypothesis, the symbolic notation says that the mean number of calories
consumed by those in population 1, customers at Starbucks with calories posted on
the menu, is the same as the mean number of calories consumed by those in population
2, customers at Starbucks without calories posted on the menu. For the research hy-
pothesis, the symbolic notation says that the mean number of calories consumed by
those in population 1 is different from the mean number of calories consumed by those
in population 2.

This hypothesis test is considered a two-tailed test. A two-tailed test is a hypothesis
test in which the research hypothesis does not indicate a direction of the mean difference or change
in the dependent variable, but merely indicates that there will be a mean difference. Two-tailed
tests are much more common than are one-tailed tests. We will use two-tailed tests

throughout this book unless we tell you otherwise. If a researcher ex-
pects a difference in a certain direction, he or she might have a one-
tailed hypothesis; however, if the results come out in the opposite
direction, the researcher cannot then switch the direction of the
hypothesis.
Summary: Null hypothesis: Customers at Starbucks with calories
posted on the menu consume the same number of calories, on aver-
age, as customers at Starbucks with out calories posted on the menu—
H0: l1 � l2. Research hypothesis: Customers at Starbucks with
calories posted on the menu consume a different number of calories,
on average, from customers at Starbucks without calories posted on
the menu—H1: l1 � l2.

Now we determine the characteristics that
describe the distribution with which we
will compare our sample. For z tests, we

must know the mean and the standard error of the population of scores; the stan -
dard error for samples of this size is calculated from the standard deviation of the
population of scores. Here, we have been informed that the population mean
number of calories consumed by customers at Starbucks without calories posted on
the menu is 247 and the standard deviation for this population is 201. The sample
size is 1000. Because we usually use a sample mean in hypothesis testing, rather than
a single score, we must use the standard error of the mean instead of the population
standard deviation (of the scores). The characteristics of the comparison distribution
are determined as follows:

lM � l � 247

Summary: lM � 247; rM � 6.356.

STEP 3: Determine the characteristics
of the comparison distribution.
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�   MASTERING THE CONCEPT

7-3: We conduct a one-tailed test if we

have a directional hypothesis, such as that

our sample will have a higher (or lower)

mean than the population. We use a two-

tailed test if we have a nondirectional

hypothesis, such as that our sample will

have a different mean from the population.

■ A two-tailed test is a
hypothesis test in which the
research hypothesis does not
indicate a direction of the
mean difference or change in
the dependent variable, but
merely indicates that there will
be a mean difference.



Next we must determine critical values, or
cutoffs, to which we can compare our test
statistic. As stated previously, the research

convention is to set the cutoffs to a p level of 0.05. For a two-tailed test, this indicates
the most extreme 5%—that is, the 2.5% at the bottom of the comparison distribution
and the 2.5% at the top. Because we will be calculating a test statistic for our sample—
specifically a z statistic—we will report cutoffs in terms of z statistics. We will use the
z table to determine the scores for the top and bottom 2.5%.

We know that 50% of the curve falls above the mean, and we know 2.5% falls above
the relevant z statistic. By subtracting (50% � 2.5% � 47.5%), we determine that 47.5%
of the curve falls between the mean and the relevant z statistic. When we look up this
percentage on the z table, we find a z statistic of 1.96. So the critical values are �1.96
and 1.96 (see Figure 7-10).
Summary: Our cutoff z statistics are �1.96 and 1.96.

In step 5, we calculate our test statistic, in
this case a z statistic, to find out what the

data really say. We use the mean and standard error calculated in step 3:

Summary: .

Finally, we compare the test statistic to the
critical values so that we can make a decision

about this finding. We first add the test statistic to the drawing of the curve that includes
the critical z statistics (see Figure 7-11). If the test statistic is beyond the cutoffs—that
is, if it is in the critical region—we can reject the null hypothesis. In this example, the
test statistic, �2.36, is in the critical region, so we reject the null hypothesis. An ex-
amination of the means tells us that the mean calories consumed by customers at Star-
bucks with calories posted on the menu is lower than the mean calories consumed by
customers at Starbucks with no calories posted. So we report that it appears that fewer
calories are consumed, on average, by customers at Starbucks that post calories on the
menus than by those at Starbucks that do not post calories on the menus.

If the test statistic is not beyond the cutoffs, we fail to reject the null hypothesis.
This means that we can only conclude that there is no evidence from this study to

STEP 4: Determine critical values, or
cutoffs.

STEP 5: Calculate the test statistic.

STEP 6: Make a decision.
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FIGURE 7-10
Determining Critical Values for
a z Distribution

We typically determine critical values in
terms of z statistics so that we can
easily compare a test statistic to
determine whether it is beyond the
critical values. Here the z scores of
�1.96 and 1.96 indicate the most
extreme 5% of the distribution, 2.5% in
each tail.



support the research hypothesis. There might be a real mean difference that is not
extreme enough to be picked up by the hypothesis test. We just can’t know. In the
current example, if the test statistic fell between the critical values of �1.96 and 1.96,
we would fail to reject the null hypothesis and conclude that there is no evidence from
this study to support the research hypothesis.
Summary: We reject the null hypothesis. It appears that fewer calories are consumed,
on average, by customers at Starbucks that post calories on the menus than by customers
at Starbucks that do not post calories on the menu.

The researchers who conducted this study concluded that the posting of calo -
ries by restaurants does indeed seem to be beneficial. The 6% reduction may seem
small, they admit, but they report that the reduction was larger —a 26% decrease in
calories—among those consuming 250 or more calories per visit. Also, noting that the
decrease in calories occurred mostly with food purchases rather than beverage pur-
chases, the researchers theorized that overall decreases might be even larger at chains
like Dunkin Donuts where food, rather than beverages, is emphasized. Finally, the re-
searchers speculate that given data such as these, chains might respond by adding lower-
calorie choices, leading to further reductions in average calories consumed. Regardless,
the researchers observed that consumers have come to rely on nutritional information
listed on packaged food in grocery stores, as mandated by law. They anticipate that
consumers will become used to, and then expect, similar information for restaurant
food. ■
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0�1�2�3 1

1.96�1.96
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�2.36

FIGURE 7-11
Making a Decision

To decide whether to reject the null
hypothesis, we compare the test

statistic to the critical values. In this
instance, our z score of �2.36 is

beyond the critical value of �1.96, so
we reject the null hypothesis. Customers
at Starbucks with calories posted on the

menu consume fewer calories, on
average, than customers at Starbucks
without calories posted on the menu.

In this section, we’ll consider three sources of what are sometimes called “dirty data”—
missing data, misleading data, and outliers—and what we can do about each problem.
A study may be missing data for several different reasons. For instance, some participants
filling out a scale designed to measure depression may get so discouraged by the items
they are reading that they can’t even finish filling out the scale. Most of the time, how-
ever, the problems we confront are from less dramatic causes. For example, in a com-
puterized study, a participant may hit “enter” before he or she selected a response.

Misleading data also occur for many reasons. For instance, maybe all participants
didn’t understand a particular word. Even the cosmetic design of items on the page
can be misleading. With the famous Florida “butterfly ballot” in the 2000 U.S. presi-
dential election, a cosmetic flaw may have changed the outcome of a presidential elec-
tion. This ballot was arranged like a book (note the instructions at the bottom to

N e x t  S t e p s Cleaning Data



“TURN PAGE TO CONTINUE VOTING”). The customary style for reading a
book in English is to read the entire left-hand page, followed by the entire right-hand
page. In the butterfly ballot, the voter was asked to read the top of the left-hand page
first, then to read the slightly lower right-hand page, and finally to match that content
with the next-lower voting opportunity located in the middle of the page. People who
assumed that conventional reading styles were being used could have registered an un-
intended vote.

One type of misleading data is outliers. A single outlier can do significant damage
to an otherwise cleanly collected and extremely useful data set. Outliers can happen
for any number of reasons—mistaken reporting of data by participants, inaccurate data
entry, or an obnoxious response by an angry participant. Regardless of the cause, z scores
translated into percentile rankings give us a way to identify data points that lie far out-
side the normal range of expectations.

Let’s consider some ways we can clean up dirty data. With missing data, the first
question is, “Why is this data point missing?” If the reason is widespread, applies across
most of the participants in a particular condition, or affects most of the data of some
participants, then it might be wise to throw the data out. On the other hand, if we
only have occasional loss of data, then we might be able to save the situation. What
we need to know is how the researcher can best predict what participants would have
answered. Here are three ways that researchers clean dirty data:

1. Assign the mode or the mean for that variable based on the other participants’
results.

2. Assign the mode or the mean from the participant’s own responses if there are
similar items in the database.

3. Assign a random number that is within the range of possible numbers. (If you
are using a 1–7 scale, you wouldn’t assign them the number 8.)

Misleading data present a slightly different problem, but one with similar so -
lutions. For example, if we believe that a participant didn’t take the study seriously
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Misleading Data The famous
butterfly ballot used in Florida during the
2000 presidential election demonstrated
the importance of the cosmetic
arrangement of items on a page. This
ballot construction may have resulted in
one form of dirty data, misleading data;
missing data and outliers are two other
forms.M
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because he left much earlier than anyone else and drew a large circle around all the
number 7’s, then we should probably just ignore those data. But if the possibly mis-
leading data are only occasional and appear to be mistakes, then we have to make a
judgment call. We may decide to use one of the solutions that we discussed for miss-
ing data.

Outliers also may be misleading data. Some problems with outliers are easy to re-
solve. For example, let’s say 120 participants in a sample completed the Stroop test
within a range of 90 seconds to 155 seconds, but one participant completed it in 12
seconds. She might be a visual-processing genius, but the researcher should be sus-
picious of that outlying data point. Fortunately, z scores provide a way to identify
an outlier. z scores correspond to percentile rankings, so they can specify precisely
how different one data point actually is compared to all the other data points in the
study.

The most interesting thing about dirty data is how the researcher addresses the prob-
lem. Judgment calls need to be made, of course, but the best solution is to report every-
thing so that other researchers can assess the trade-offs. Of course, the best way to
address the problem of dirty data is replication.
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CHECK YOUR LEARNING
Reviewing the Concepts > z tests are conducted when we have one sample and we know both the mean and the stan-

dard deviation of the population.

> We must decide whether to use a one-tailed test, in which the hypothesis is directional, or
a two-tailed test, in which the hypothesis is nondirectional.

> One-tailed tests are rare in the research literature.

> The problem of dirty data can show up in three ways: missing data, misleading data, and
outliers. A variety of techniques can be used to address dirty data, and researchers should
report the techniques when they write up their study.

Clarifying the Concepts 7-11 What does it mean to say a test is directional or nondirectional?

Calculating the Statistics 7-12 Calculate the characteristics (lM and rM) of a comparison distribution for a sample
mean based on 53 participants when the population has a mean of 1090 and a standard
deviation of 87.

7-13 Calculate the z statistic for a sample mean of 1094 based on the sample of 53 people
when l � 1090 and r � 87.

Applying the Concepts 7-14 According to the Web site for the Coffee Research Institute, the average coffee 
drinker in the United States consumes 3.1 cups of coffee daily. Let’s assume the
population standard deviation is 0.9 cups. Jillian decides to study coffee consumption
at her local coffee shop, Javalina, which also functions as a cybercafé. She wants to
know if people sitting and working in a coffee shop will drink a different amount 
of coffee from what might be expected in the general U.S. population. Throughout
the course of two weeks, she collects data on 34 people who spend most of the day at
the coffee shop. The average number of cups consumed by this sample is 3.17 cups.
Assess the significance of this sample mean by using the six steps of hypothesis 
testing.

Solutions to these Check Your
Learning questions can be found in
Appendix D.
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REVIEW OF CONCEPTS

The z Table
The z table has several uses when we have normally distributed data. If we know an
individual raw score, we can convert it to a z statistic and then determine percentages
above, below, or at least as extreme as this score. Alternatively, if we know a percentage,
we can look up a z statistic on the table and then convert it to a raw score. The table
can be used in the same way with means instead of scores.

The Assumptions and the Steps of Hypothesis Testing
Assumptions are the criteria that are met, ideally, before conducting a hypothesis test.
Parametric tests are those that require assumptions, whereas nonparametric tests are those
that do not. Three basic assumptions apply to many parametric hypothesis tests. First,
the dependent variable should be on a scale measure. Second, the data should be from
a randomly selected sample. Third, the population distribution should be normal (or
there should be at least 30 scores in the sample). A robust hypothesis test is one that
produces valid results even when all assumptions are not met.

There are six steps that apply to every hypothesis test. First, we determine the pop-
ulations, comparison distribution, appropriate hypothesis test, and assumptions. Second,
we state our null and research hypotheses. Third, we determine the characteristics of
the comparison distribution that we will use to calculate the test statistic. Fourth, we
determine our critical values, or cutoffs, usually based on a p level, or alpha, of 0.05, de-
marcating the most extreme 5% of the comparison distribution. In a two-tailed test,
the area in the most extreme 5% (2.5% in each tail) is called the critical region. Fifth,
we calculate our test statistic. Sixth, we use that test statistic to decide to reject or fail
to reject the null hypothesis. A finding is deemed statistically significant when we have
rejected the null hypothesis.

An Example of the z Test
z tests are conducted in the rare cases in which we have one sample and we know
both the mean and the standard deviation of the population. We must decide whether
to use a one-tailed test, in which the hypotheses are directional, or a two-tailed test, in
which the hypotheses are nondirectional.

The problem of dirty data can show up in three ways: missing data, misleading data,
and outliers. A variety of techniques can be used to address dirty data, and researchers
should report the techniques when they write up their study.

SPSS can transform raw data from different scales into stan-
dardized data on one scale that is based on the z distribution.
SPSS gives us many opportunities to look at standardized
scores instead of raw scores. We can try this using the numbers
of first- or second-place finishes for countries that participated
in the World Cup from Chapter 2. The data are: 4, 8, 1, 2, 1,
2, 2, 6, 2, 2, 2, 2, 2, and 10. In addition, 63 countries had 0
first- or second-place finishes. Enter the 77 data points in one
column in SPSS. We titled the column “top_finishes.”

We can standardize the variable “top_finishes” by selecting:
Analyze → Descriptive Statistics → Descriptives. We select
the relevant variable by clicking it on the left side, then click-
ing the arrow to move it to the right. Check the box identified
as “Save standardized values as variables” and click “OK.” We
can see the new column of standardized variables under the
heading “Z top_finishes” in the sceenshot that follows.

We can also identify outliers that might skew the normal
curve by selecting: Analyze → Descriptive Statistics →

SPSS®
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How It Works

Explore → Statistics → Outliers. Be sure to select the variable
of interest by clicking it on the left side, then clicking the arrow
to move it to the right side. We can see the part of the output
that shows the most extreme scores in the screenshot here. We
can also see the column of z scores next to the raw scores.

Because raw scale data can be reexpressed as standardized
data, SPSS gives us a variety of opportunities within different
menus to listen to the story of our data in the language of
z scores.

7.1 TRANSITIONING FROM RAW SCORES TO z SCORES
AND PERCENTILES
Physician assistants (PAs) are increasingly central to the health care system in many coun-
tries. Students who graduated from U.S. PA programs in 2004 reported their income
(American Academy of Physician Assistants, 2005). Those who chose to work in
emergency medicine had a mean income of $76,553, with a standard deviation of $14,001.
Their median income was $74,044. Those who chose to work in family/general medicine
had a mean income of $63,521, with a standard deviation of $11,554. Their median
income was $62,935. How can we compare the income of one PA, Gabrielle, who earns
$75,500 a year in emergency medicine, with that of another PA, Colin, who earns $64,300
a year in family/general medicine?

The z distribution should only be used with individual scores if the distribution is ap-
proximately normal. For both distributions of incomes, the medians are relatively close to
the means of their own distributions. This suggests that the distributions are not skewed.
Additionally, the standard deviations are not large compared to the size of the respective
means, which suggests that outliers are not inflating the standard deviation, which would
have indicated skew. In essence, these two distributions seem to be relatively normal, so it
is appropriate to use the z distribution to determine  percentiles.

Gabrielle chose to work in emergency medicine and earned $75,500 in her first year
out of her PA program. From the information we have, we can calculate her z score and
her percentile on income—that is, the percentage of PAs working in emergency medicine
who make less than she does. Her z score is:
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The z table tells us that 3.19% of people fall between Gabrielle’s income and the mean.
Because her score is below the mean, we calculate 50% � 3.19% � 46.81%. Gabrielle’s
income is in the 46.81th percentile for PAs working in emergency medicine.

Colin chose to work in family/general medicine and earned $64,300 in his first year
out of his PA program. His z score is:

The z table tells us that 2.79% of people fall between Colin’s income and the mean.
Because his score is above the mean, we calculate 50% � 2.79% � 52.79%. Colin’s income
is in the 52.79th percentile for PAs working in general medicine.

Relative to those in their chosen fields, Colin is doing better financially than Gabrielle.
This is evidenced by both the z scores and the percentiles. Colin’s z score of 0.067, which
is above the mean for general medicine PAs, is greater than Gabrielle’s z score of �0.075,
which is below the mean for emergency medicine PAs. Similarly, Colin’s income is at about
the 53rd percentile, whereas Gabrielle’s income is at about the 47th percentile.

7.2 CONDUCTING A z TEST
Summary data from the Consideration of Future Consequences (CFC) scale found a mean
CFC score of 3.51 with a standard deviation of 0.61 for a large sample (Petrocelli, 2003).
(For the sake of this example, let’s assume that Petrocelli’s sample comprises the entire pop-
ulation of interest.) You wonder whether students who joined a career discussion group
might have improved CFC scores compared with the population. Forty-five students in
your Psychology Department regularly attend these discussion groups and then take the
CFC scale. The mean for this group is 3.7. From this information, how can we conduct
all six steps of a two-tailed z test with a p level of 0.05?

Step 1: Population 1: All students who participated in career discussion groups. Population
2: All students who did not participate in career discussion groups.
The comparison distribution will be a distribution of means. The hypothesis test
will be a z test because we have only one sample, and we know the population
mean and standard deviation. This study meets two of the three assumptions but
does not seem to meet the third. The dependent variable is on a scale measure. In
addition, there are more than 30 participants in the sample, indicating that the com-
parison distribution will be normal. The data were not randomly selected, however,
so we must be cautious when generalizing.

Step 2: Null hypothesis: Students who participated in career discussion groups had the same
CFC scores, on average, as students who did not participate: H0: l1 � l2. Research
hypothesis: Students who participated in career discussion groups had different CFC
scores, on average, from students who did not participate: H1: l1 � l2.

Step 3: lM � l � 3.51;

Step 4: Our critical z statistics are �1.96 and 1.96.

Step 5:

Step 6: Reject the null hypothesis. It appears that students who participate in career discus-
sions have higher CFC scores, on average, than do students who do not participate.
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Clarifying the Concepts

7.1 What is a percentile?

7.2 When we look up a z score on the z table, what infor-
mation can we report?

7.3 How do we calculate the percentage of scores below a
particular positive z score?

7.4 How is calculating a percentile for a mean from a dis-
tribution of means different from doing so for a score
from a distribution of scores?

Exercises



7.5 In statistics, what do we mean by assumptions?
7.6 What sample size is recommended in order to meet the

assumption of a normal distribution, even when the
population of interest is not normal?

7.7 What is the difference between parametric tests and
nonparametric tests?

7.8 What are the six steps of hypothesis testing?
7.9 What are critical values and the critical region?
7.10 What is the standard size of the critical region used by

statisticians?
7.11 What does statistically significant mean to statisticians?
7.12 What do these symbolic expressions mean: H0: l1 � l2

and H1: l1 � l2?
7.13 Using everyday language, rather than statistical language,

explain why the words critical region might have been
chosen to define the area in which we reject the null
hypothesis.

7.14 Using everyday language, rather than statistical language,
explain why the word cutoff might have been chosen
to define the point beyond which we reject the null
hypothesis.

7.15 What is the difference between a one-tailed hypothesis
test and a two-tailed hypothesis test in terms of critical
regions?

7.16 What are three kinds of dirty data and what are their
possible sources?

7.17 What are three ways to deal with missing data?
7.18 How can misleading data result in missing data?

Calculating the Statistic

7.19 Calculate the following percentages for a z score of
0.74, with a tail of 22.96%:

a. What percentage of scores falls below this z score?

b. What percentage of scores falls between the mean
and this z score?

c. What proportion of scores falls below a z score of
�0.74?

7.20 Using the z table in Appendix B, calculate the following
percentages for a z score of �0.08:

a. Above this z score

b. Below this z score

c. At least as extreme as this z score
7.21 Using the z table in Appendix B, calculate the following

for a z score of 1.71:

a. Above this z score

b. Below this z score

c. At least as extreme as this z score

7.22 Rewrite each of the following percentages as probabil-
ities, or p levels:

a. 5%

b. 83%

c. 51%
7.23 Rewrite each of the following probabilities, or p levels,

as percentages:

a. 0.19

b. 0.04

c. 0.92
7.24 If the critical values for a hypothesis test occur where

2.5% of the distribution is in each tail, what are the cut-
offs for z?

7.25 For each of the following p levels, what percentage of
the data will be in each critical region for a two-tailed
test?

a. 0.05

b. 0.10

c. 0.01
7.26 Calculate the percentage of scores in a one-tailed critical

region for each of the following p levels:

a. 0.05

b. 0.10

c. 0.01
7.27 If you are performing a hypothesis test using a z statistic

in which you sampled 50 people and found an average
SAT verbal score of 542 (assume we know the popu-
lation mean to be 500 and the standard deviation to be
100), calculate the mean and spread of the comparison
distribution (lM and rM).

7.28 You are conducting a hypothesis test based on a sample
of 132 people for whom you observed a mean SAT ver-
bal score of 490. Using the information in Exercise
7.27, calculate the mean and spread of the comparison
distribution (lM and rM).

7.29 If the cutoffs for a statistical test are �1.96 and 1.96,
determine whether you would reject or fail to reject
the null hypothesis in each of the following cases:

a. z � 1.06

b. z � �2.06

c. A z score beyond which 7% of the data fall in each
tail

7.30 If the cutoffs for a statistical test are �2.58 and 2.58,
determine whether you would reject or fail to reject
the null hypothesis in each of the following cases:

a. z � �0.94

b. z � 2.12
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c. A z score for which 49.6% of the data fall between
z and the mean

7.31 Use the cutoffs of �1.65 and a p level of approximately
0.10, or 10%. For each of the following values, deter-
mine if you would reject or fail to reject the null hy-
pothesis:

a. z � 0.95

b. z � �1.77

c. A z statistic that 2% of the scores fall above
7.32 Assume that the following set of data represents the re-

sponses of 10 participants to three similar statements.
The participants rated their agreement with each state-
ment on a scale from 1 to 7.

a. There is a piece of dirty data in this data set. Identify
it and explain why it is dirty.

b. Assume that you have decided to throw out the
piece of dirty data you identified in part (a) and re-
place it with the mean for that variable. What is the
new data point?

c. Assume that you have decided to throw out the
piece of dirty data you identified in part (a) and re-
place it with the mean of that participant’s re-
sponses. What is the new data point?

7.33 For each of the following, indicate whether or not the
situation describes misleading data that the researcher
may decide to investigate and potentially discard.

a. A sample of 50 students rate their agreement with
100 statements designed to assess their political at-
titudes. The rating scale goes from 1 (definitely dis-
agree) to 7 (definitiely agree). One participant
provides a response of 1 to all 100 statements.

b. A researcher measures the time it takes participants
to hit a button upon hearing a warning signal. In
her sample of 34 participants, she finds that the

mean response time is 413 milliseconds (ms) with
a standard deviation of 30 ms. One participant has
a response time of 420 ms.

c. A researcher measures the time it takes participants
to hit a button upon hearing a warning signal. In
previous studies, she found that the mean response
time is 413 ms with a standard deviation of 30 ms.
In the current study, one participant had a response
time of 1220 ms, which drives up the overall mean
of the sample.

Applying the Concepts

7.34 Elena, a 15-year-old girl, is 58 inches tall. Based
on what we know, the average height for girls at this
age is 63.80 inches, with a standard deviation of 2.66
inches.

a. Calculate her z score.

b. What percentage of girls are taller than Elena?

c. What percentage of girls are shorter?

d. How much would she have to grow to be perfectly
average?

e. If Sarah is in the 75th percentile for height at age
15, how tall is she? And how does she compare to
Elena?

f. How much would Elena have to grow in order to
be at the 75th percentile with Sarah?

7.35 Kona, a 15-year-old boy, is 72 inches tall. According to
the CDC, the average height at this age is 67.00 inches
with a standard deviation of 3.19 inches.

a. Calculate Kona’s z score.

b. What is Kona’s percentile score for height?

c. What percentage of boys this age are shorter than
Kona?

d. What percentage of heights are at least as extreme
as Kona’s, in either direction?

e. If Ian is in the 30th percentile for height as a
15-year-old boy, how tall is he? How does he
compare to Kona?

7.36 Imagine a class of thirty-three 15-year-old girls with an
average height of 62.6 inches. Remember, l � 63.8
inches and r � 2.66 inches.

a. Calculate the z statistic.

b. How does this sample of girls compare to the dis-
tribution of sample means?

c. What is the percentile rank for this sample?
7.37 Imagine a basketball team comprised of thirteen

15-year-old boys. The average height of the team is
69.5 inches. Remember, l � 67 inches and r � 3.19
inches.

Participant  S1  S2  S3

1 2 3 2

2 6 7 3

3 3 2 5

4 7 6 5

5 2 3 3

6 5 5 6

7 9 5 4

8 2 3 7

9 6 7 7

10 3 6 5
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a. Calculate the z statistic.

b. How does this sample of boys compare to the dis-
tribution of sample means?

c. What is the percentile rank for this sample?

7.38 Imagine your statistics professor lost all records of stu-
dents’ raw scores on a recent test. However, she did
record students’ z scores for the test, as well as the class
average of 41 out of 50 points and the standard devia-
tion of 3 points (treat these as population parameters).
She informs you that your z score was 1.10.

a. What was your percentile score on this test?

b. Using what you know about z scores and per-
centiles, how did you do on this test?

c. What was your original test score?

7.39 Using what we know about the height of 15-year-old
girls (again, l � 63.8 inches and r � 2.66 inches),
imagine that a teacher finds the average height of 14 fe-
male students in one of her classes to be 62.4 inches.

a. Calculate the mean and standard error of the dis-
tribution of mean heights.

b. Calculate the z statistic for this group.

c. What percentage of mean heights, based on samples
of this size, would we expect to be shorter than this
group?

d. How often do mean heights equal to or more ex-
treme than this size occur in this population?

e. If statisticians define sample means that occur less
than 5% of the time as “special” or rare, what would
you say about this result?

7.40 Another teacher decides to average the height of all
male students in all of his classes throughout the day. By
the end of the day, he has measured the heights of 57
boys and calculated an average of 68.1 inches (l � 67
inches and r � 3.19 inches).

a. Calculate the mean and standard error of the dis-
tribution of mean heights.

b. Calculate the z statistic for this group.

c. What percentage of mean heights, based on samples
of this size, would we expect to be taller than this
group?

d. How often do mean heights equal to or more ex-
treme than this size occur in this population?

e. How does this result compare to the statistical sig-
nificance cutoff of 5%?

7.41 For each of the following examples, identify whether
the research has expressed a directional or nondirec-
tional hypothesis:

a. A researcher is interested in studying the use of an-
tibacterial products and the dryness of people’s skin.

He thinks these products might alter the moisture
in skin compared to other products that are not an-
tibacterial.

b. A student wonders if grades in a class are in any way
related to where a student sits in the classroom. In
particular, do students who sit in the front row get
better grades, on average, than the general popula-
tion of students?

c. Cell phones are everywhere and we are now avail-
able by phone almost all of the time. Does this trans-
late into a change in the nature or closeness of our
long-distance relationships?

7.42 For each of the following examples (the same as in Ex-
ercise 7.41), state the null hypothesis and the research
hypothesis, in both words and symbolic notation:

a. A researcher is interested in studying the use of an-
tibacterial products and the dryness of people’s skin.
He thinks these products might alter the moisture
in skin compared to other products that are not
antibacterial.

b. A student wonders if grades in a class are in any way
related to where a student sits in the classroom. In
particular, do students who sit in the front row get
better grades, on average, than the general popula-
tion of students?

c. Cell phones are everywhere and we are now avail-
able by phone almost all of the time. Does this trans-
late into a change in the nature or closeness of our
long-distance relationships?

7.43 Hurricane Katrina hit New Orleans on August 29,
2005. The National Weather Service Forecast Office
maintains online archives of climate data for all U.S.
cities and areas. These archives allow us to find out, for
example, how the rainfall in New Orleans that August
compared to the other months of 2005. The table below
shows the National Weather Service data (rainfall in
inches) for New Orleans in 2005.

January 4.41

February 8.24

March 4.69

April 3.31

May 4.07

June 2.52

July 10.65

August 3.77

September 4.07

October 0.04

November 0.75

December  3.32
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a. Calculate the z score for August. (Note: These are
raw data for the population, rather than summaries,
so you have to calculate the mean and the standard
deviation first.)

b. What is the percentile for the rainfall in August?
Does this surprise you? Explain.

c. When our results surprise us, it is worthwhile to ex-
amine the individual data points more closely or
even to go beyond the data we have. The daily cli-
mate data, as listed by this source, for August 2005
shows the code “M” next to August 29, 30, and 31
for all climate statistics. The code indicates that
“[REMARKS] ALL DATA MISSING AUGUST 29, 30, AND
31 DUE TO HURRICANE KATRINA.” Pretend it was
your consulting job to determine the percentile for
that August. Write a brief paragraph for your report,
explaining why the data you generated are likely to
be inaccurate.

d. What raw scores would mark the cutoff for the top
and bottom 10% for these data? Based on these
scores, what months had extreme data for 2005?
Why should we not trust these data?

7.44 IQ scores are designed to have a mean of 100 and a
standard deviation of 15. IQ testing is one way in which
people are categorized as having different levels of men-
tal disabilities; there are four levels of mental retardation
between the IQ scores of 0 and 70.

a. People with IQ scores of 20–35 are said to have se-
vere mental retardation and can learn only basic
skills (e.g., how to talk, basic self-care). What per-
centage of people fall in this range?

b. People with IQ scores of 50–70 are in the topmost
category of IQ scores that qualify as impairment.
They are said to have mild mental retardation. They
can attain as high as a sixth-grade education and are
often self-sufficient. What percentage of people fall
in this range?

c. A person has an IQ score of 66. What is her per-
centile?

d. A person falls at the 3rd percentile. What is his IQ
score? Would he be classified as having a mental dis-
ability?

7.45 Boone (1992) examined scores on the Wechsler Adult
Intelligence Scale–Revised (WAIS-R) for 150 adult
psychiatric inpatients. He determined the “intrasubtest
scatter” score for each inpatient. Intrasubtest scatter
refers to patterns of responses in which respondents are
almost as likely to get easy questions wrong as hard
ones. High levels of intrasubtest scatter indicate unusual
patterns of responses; because the questions start at low
levels of difficulty and get increasingly more difficult,
we would expect more wrong answers near the end.
Boone wondered if psychiatric patients would have dif-
ferent response patterns than nonpatients. He compared

the intrasubtest scatter for his sample of 150 patients to
population data from the WAIS-R standardization
group. Assume that he had access to both means and
standard deviations for this population. Boone reported
that “the standardization group’s intrasubtest scatter was
significantly greater than those reported for the psy -
chiatric inpatients” and concluded that such scatter is
normal.

a. What are the two populations?

b. What would the comparison distribution be?
Explain.

c. What hypothesis test would you use? Explain.

d. Check the assumptions for this hypothesis test and
label your answer (1) through (3).

e. What does Boone mean when he says significantly?

7.46 Refer to the scenario described in Exercise 7.45.

a. State the null and research hypotheses for a two-
tailed test in both words and symbols.

b. Imagine that, based on these findings, you wanted
to replicate this study. Based on the findings de-
scribed in Exercise 7.45, state the null and research
hypotheses for a one-tailed test in both words and
symbols.

7.47 Let’s consider whether U.S. college football teams are
more likely or less likely to be mismatched in the
upper National Collegiate Athletic Association
(NCAA) divisions. The highest division, Division I
(technically, Division I-A), includes such vaunted
teams as the Ohio State University Buckeyes and the
University of Michigan Wolverines. During week 11
of the fall 2006 college football season, Ohio State beat
Illinois by 7 points and Michigan beat Ball State by 8.
Overall, however, the 53 Division I games had a mean
spread (winning score minus losing score) of 16.189
that week, with a standard deviation of 12.128. We
took a sample of four games that were played that
week in the next-highest league, Division I-AA, to see
if the spread was different; one of the many leagues
within Division I-AA, the Patriot League, played four
games that weekend.

a. List the independent variable and dependent vari-
able in this example.

b. Did we use random selection? Explain.

c. Identify the populations of interest in this example.

d. State the comparison distribution.

e. Check the assumptions for this test.

7.48 Refer to Exercise 7.47.

a. State the null hypothesis and the research hypothesis
for a two-tailed test in both words and symbols.



b. One of our students hypothesized that the spread
would be bigger among the Division I-AA teams
because “some of them are really bad and would
get trounced.” State the one-tailed null hypothesis
and research hypothesis based on our student’s pre-
diction in both words and symbols.

7.49 Refer to Exercise 7.47. The results for the four Division
I-AA Patriot League games are as follows:

Holy Cross , 27/Bucknel l , 10

Lehigh, 23/Colgate, 15

Laf ayette, 31/Fordham, 24

Georgetown, 24/Mar i s t , 21

a. Conduct steps 3 through 6 of hypothesis testing.
[You already conducted steps 1 and 2 in Exercises
7.47(e) and 7.48(a), respectively.]

b. Would you be willing to generalize these findings
beyond our sample? Explain.

7.50 z tests are often used when a researcher wants to com-
pare his or her sample to known population norms.
The Graded Naming Test (GNT) asks respondents
to name objects in a set of 30 black-and-white draw-
ings. The test, often used to detect brain damage, starts
with easy words like kangaroo and gets progressively
more difficult, ending with words like sextant. The
GNT population norm for adults in England is 20.4.
Roberts (2003) wondered whether a sample of Cana-
dian adults had different scores from adults in England.
If they were different, the English norms would not be
valid for use in Canada. The mean for 30 Canadian
adults was 17.5. For the purposes of this exercise, as-
sume that the standard deviation of the adults in Eng-
land is 3.2.

a. Conduct all six steps of a z test. Be sure to label all
six steps.

b. Some words on the GNT are more commonly used
in England. For example, a mitre, the headpiece
worn by bishops, is worn by the Archbishop of
Canterbury in public ceremonies in England. No
Canadian participant correctly responded to this
item, whereas 55% of English adults correctly re-
sponded. Explain why we should be cautious about
applying norms to people different from those on
whom the test was normed.

7.51 When we conduct a one-tailed test instead of a two-
tailed test, there are small changes in steps 2 and 4 of
hypothesis testing. Let’s consider Exercise 7.50 on the
Graded Naming Test. (Note: For this example, assume
that those from populations other than the one on
which it was normed will score lower, on average. That
is, hypothesize that the Canadians will have a lower
mean.)

a. Conduct step 2 of hypothesis testing for a one-tailed
test—stating the null and research hypotheses in
words and in symbols.

b. Conduct step 4 of hypothesis testing for a one-tailed
test—determining the cutoff and drawing the
curve.

c. Conduct step 6 of hypothesis testing for a one-tailed
test—making a decision.

d. Under which circumstance—a one-tailed or a two-
tailed test—is it easier to reject the null hypothesis?
Explain.

e. If it becomes easier to reject the null hypothesis
under one type of test (one-tailed versus two-
tailed), does this mean that there is now a bigger
difference between the groups? Explain.

7.52 When we change the p level that we use as a cutoff,
there is a small change in step 4 of hypothesis testing.
Although 0.05 is the most commonly used p level, other
values, such as 0.01, are often used. Let’s consider Ex-
ercise 7.50 on the Graded Naming Test.

a. Conduct step 4 of hypothesis testing for a two-
tailed test and p level of 0.01—determining the cut-
off and drawing the curve.

b. Conduct step 6 of hypothesis testing for a p level of
0.01—making a decision.

c. With which p level—0.05 or 0.01—is it easiest to
reject the null hypothesis? Explain.

d. If it is easier to reject the null hypothesis with
certain p levels, does this mean that there is now a
bigger difference between the samples? Explain.

7.53 A recent research report (Behenam & Pooya, 2006)
began, “There is probably no other area of health care
that requires a cooperation to the extent that orthodon-
tics does,” and explored factors that affected the number
of hours per day that Iranian patients wore their
orthodontic appliances. The patients in the study re-
ported that they used their appliances, on average, 14.78
hours per day, with a standard deviation of 5.31. We’ll
treat this group as the population for the purposes of
this exam ple. Let’s say a researcher wanted to study
whether a DVD with information about orthodontics
led to an increase in the amount of time patients wore
their appliances but decided to use a two-tailed test to
be conservative. Let’s say he studied the next 15 patients
at his clinic, asked them to watch the DVD, and then
found that they wore their appliances, on average, 17
hours per day.

a. What is the independent variable? What is the de-
pendent variable?

b. Did the researcher use random selection to choose
his sample? Explain your answer.
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c. Conduct all six steps of hypothesis testing. Be sure
to label all six steps.

d. If the researcher’s decision in step 6 was wrong,
what type of error would he have made? Explain
your answer.

7.54 You have just conducted a study testing how well two
independent variables, daily sugar intake (as assessed by
a 25-item eating habits scale) and physical activity (as
assessed by a 20-item daily physical activity scale), pre-
dicted the dependent variable of blood sugar levels.
There were only 17 participants to start with, and 3 of
them dropped out prior to having their blood sugar lev-
els assessed. In addition, 2 participants left one item
blank on the physical activity scale, and 4 other partic-
ipants left most of the data on the eating habits scale
blank. At their debriefing interview, they said they just
couldn’t estimate food intake with any accuracy.

a. What will you do with the 3 participants who
dropped out just prior to having their blood sugar
levels assessed?

b. What are your choices with regard to the 2 partic-
ipants who left one item blank on the physical ac-
tivity scale?

c. What are your choices with regard to the 4 partic-
ipants who did not respond to most of the items on
the eating habits scale?

d. Do you recommend using these data at all? If so,
how?

7.55 You have conducted a study with 120 participants
(60 female, 60 male) about the relation between atti-
tudes toward cohabitation prior to marriage (on a
30-item scale) and self-reported sexual behaviors (on
a 20-item scale). Most respondents filled out both scales
completely. Everyone completed the scale assessing at-
titudes toward cohabitation, but 1 partici pant indicated
the highest possible score on every item on both scales
and finished very quickly. In addition, 13 women and
4 men failed to complete the 20 questions about sexual
behavior. Of these, 9 women and 2 men did not re-
spond at all to the questions about sexual behavior; 3
women and 1 man answered just 10 of these questions;
and 2 women and 1 man failed to answer just 1 item.

a. What are the possible causes of incomplete data on
the sexual behavior scale?

b. What choices do you have regarding the missing
data on the sexual behavior scale?

c. What do you recommend for the participant who
reported the highest possible scores on every item
on both scales?

d. Explain why you would or would not report your
decisions in your write-up of this experiment.

7.56 In Next Steps: Cleaning Data, we noted that the z dis-
tribution is sometimes used to identify potential outliers
in a data set. www.boxofficemojo.com provides data on
U.S. box office receipts for major films. Here are do-
mestic box office grosses for a randomly selected sample
of 15 of the 100 top-grossing films of 2005. Note that
we have rounded figures to the nearest million. The fig-
ures reported below are millions of dollars.

a. Eyeball the data. What score or scores seem like they
might be outliers?

b. Sometimes potential outliers are defined as scores
that are beyond 2 standard deviations from the
mean—that is, scores with z scores less than �2.00
or greater than 2.00. Based on that criterion, are any
of these scores potential outliers? (Hint: You will
have to calculate the mean and standard deviation
of the data from this sample first.)

c. Sometimes potential outliers are defined as scores
that are beyond 3 standard deviations from the
mean—that is, scores with z scores less than �3.00
or greater than 3.00. Based on that criterion, are any
of these scores potential outliers?

d. Why might it make sense to eliminate potential
outliers from any data analyses?

e. Explain why the decision about how to identify po-
tential outliers should be made before collecting
data.

Millions
Movie of Dollars

Walk the Line 120

The Exorcism of Emily Rose 75

Serenity 26

Star Wars: Episode III—Revenge of the Sith 380

Fever Pitch 42

The Constant Gardener 34

The Fog 30

Sky High 64

Tim Burton’s Corpse Bride 53

Wedding Crashers 209

Yours, Mine and Ours 53

Just Like Heaven 48

Capote 29

Kingdom of Heaven 47

Brokeback Mountain 83
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Terms
assumption (p. 173)
parametric test (p. 173)
nonparametric test (p. 173)
robust (p. 174)

critical value (p. 175)
critical region (p. 175)
p level (p. 175)
statistically significant (p. 176)

one-tailed test (p. 179)
two-tailed test (p. 180)

Symbols
H0           (p. 179)
H1           (p. 179)
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■ You should know how to conduct a z test
(Chapter 7).
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statistical significance (Chapter 7).
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“Want to go shopping? OK, meet me at the mall.”
“Math class is tough.”
With these and 268 other phrases, Teen Talk Barbie was introduced to the market

in July 1992. By September, it was being publicly criticized for its negative message
about girls and math. At first, Mattel, the doll’s maker, refused to pull it from store
shelves, citing other more positive phrases in Barbie’s repertoire, such as “I’m studying
to be a doctor.” But the bad press escalated, and by October Mattel had backed down.
The controversy took a while to subside, however, even showing up on a 1994 Simpsons
episode when Lisa Simpson boycotted the fictional Malibu Stacy doll, which said things
like “Thinking too much gives you wrinkles.”

The controversy over gender differences in mathematical reasoning ability began
shortly after publication of a study in the prestigious journal Science. Researchers re-
ported results from a sample of about 10,000 male and female students in grades 7
through 10 who were in the top 2% to 3% on standardized tests of mathematics (Ben-
bow & Stanley, 1980). In this sample, the boys’ average score on the mathematics por-
tion of the SAT test was 32 points higher than the girls’ average score. This result led
the researchers to reject the null hypothesis that there was no mean difference between
boys and girls on SAT math scores.

Based on this gender difference, the study gained an enormous amount of media
attention (Jacob & Eccles, 1982). But the danger of reporting a statistically significant
difference between two group means is that such a difference can falsely imply that
all or most of the members of one group are different from all or most of the members
of the other group. As we can see in Figure 8-1, such an assertion about gender dif-
ferences in mathematical reasoning ability is far from the truth. Part of this misunder-
standing is caused by the language of statistics: “statistically significant” does not mean
“very important.”

The misunderstanding that derived from Benbow and Stanley’s study (1980)
spread from the researchers to the media and then from the media to the general pub-
lic. It was exacerbated when Teen Talk Barbie was introduced. Based only on this neg-
ative publicity, Teen Talk Barbie might have been surprised when she met one of the
GI Joes doctored by the Barbie Liberation Organization, a guerrilla art group. Mem-
bers of the group switched the computer chips in many talking Barbies and GI Joes
in 1993 and then put them back on the shelves of stores. Suddenly, it was GI Joe
telling us, in a voice uncannily like Barbie’s, that “math class is tough.”

It took a meta-analysis, a study of all the studies about a particular topic, to clarify
the research on gender differences in mathematical reasoning ability. Different re-
searchers compiled the results from 259 mean differences representing data from
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“Math Class Is Tough” Teen 
Talk Barbie, with her negative
proclamation about math class, was
a lightning rod for discussions about
gender stereotypes and the evidence
for actual gender differences. Some
of Barbie’s negative press related not
to the fact that girls can do math
well, but rather to the idea that
Barbie’s message might doom them
to even poorer performance. The
media tend to play up gender
differences instead of the less
interesting (and more frequent)
realities of gender similarities.

�4 �3 �1�2 43210z score

FIGURE 8-1
A Gender Difference in

Mathematics Performance

This graph represents the amount of
overlap that would be expected if the

distributions for males and females
differed, on average, by the amount that
Hyde and colleagues (1990) reported in

their meta-analysis of gender
differences in mathematics

performance.



1,968,846 male participants and 2,016,836 female participants (Hyde, Fennema, &
Lamon, 1990). Here’s what they discovered:

1. Gender differences in overall mathematical reasoning ability were very small.
2. When the extreme tails of the distribution were eliminated (such as those from

remedial programs, gifted programs, or the population studied by Benbow and
Stanley), the size of the gender difference was even smaller and reversed direc-
tion, now favoring women and girls rather than men and boys.

3. The superiority of one gender over another depended on the mathematical
task. For example, women and girls tended to perform slightly better than men
and boys on mathematical computation; men and boys tended to perform
slightly better than women and girls on mathematical problem solving.

The authors of this meta-analysis included a graph of two normal distributions that
represent the small difference in favor of male participants that they found in their
overall examination of studies (see Figure 8-1). Are you surprised that a small (but sta-
tistically significant) gender difference is almost completely overlapping? This is a case
in which hypothesis testing alone inadvertently encouraged a profound misunderstand-
ing (Jacob & Eccles, 1986).

Fortunately, statisticians have figured out ways to move beyond the flaws in hypoth-
esis testing. In this chapter, we learn how to compute confidence intervals. Rather than
presenting just the mean difference between samples, we present a range of plausible
mean differences for the population. Then we learn to calculate effect sizes, which
allow us to determine whether differences are small, medium, or large (just as re-
searchers did in the meta-analysis). We also introduce prep, an alternate to a p value. Fi-
nally, with an understanding of statistical power, we can make sure we have a sufficient
sample size to detect any real difference that exists in the population.

Confidence Intervals
The study that determined that the average SAT mathematics score for boys was 32
points higher than the average SAT mathematics score for girls sounded convincing,
but the presentation was misleading. Researchers calculated a mean difference by sub-
tracting the mean score for girls from the mean score for boys. All three summary sta-
tistics—the mean for boys, the mean for girls, and the difference between them—are
point estimates. A point estimate is a summary statistic from a sample that is just one number
used as an estimate of the population parameter. Instead, research should be presented with
interval estimates when possible.

Interval Estimates
An interval estimate is based on a sample statistic and provides a range
of plausible values for the population parameter. Interval estimates are
frequently used by the media, particularly when reporting polit-
ical polls, and are usually constructed by adding and subtracting
a margin of error from a point estimate. For example, a Decem-
ber 2009 Gallup poll of 1025 American adults found that golfer
Tiger Woods had experienced a drop of 52 percentage points in
popularity from a height of 85% (McCarthy, 2009). This is the
largest drop Gallup has recorded between two consecutive polls
about the same person since the organization began keeping track
of this statistic in 1992. Only 33% of  respondents gave Woods a
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■ A point estimate is a
summary statistic from a
sample that is just one number
used as an estimate of the
population parameter.

■ An interval estimate is based
on a sample statistic and
provides a range of plausible
values for the population
parameter.

�   MASTERING THE CONCEPT

8-1: We can use a sample to calculate a point

estimate—one plausible number, such as a

mean—for our population. We also can use a

sample to calculate an interval estimate—a

range of plausible numbers, such as a range of

means—for our population.
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“favorable” rating after his pristine reputation was damaged by a sex scandal. The mar-
gin of error was 4%. So the interval estimate around the point estimate of 33% is 29%
to 37%.

Let’s look at one example more closely. A 2009 Marist poll asked 938 adult respon-
dents in the United States to select the one word or phrase out of five choices
that they found “most annoying in conversation” (http://maristpoll.marist.edu/
107-whatever-takes-top-honors-as-most-annoying/). “Whatever” was chosen by

47% of respondents, ahead of the annoying phrases
“you know” (25%), “it is what it is” (11%), “any-
way” (7%), and “at the end of the day” (2%). The
margin of error was reported to be �3.2%.

Because 47 � 3.2 � 43.8 and 47 � 3.2 � 50.2,
the interval estimate for ”whatever” is 43.8% to
50.2% (see Figure 8-2). Interval estimates provide a
range of plausible values, not just one statistic.

What’s particularly useful about margins of error
is that we can figure out more than one interval es-

timate for the same poll to see if they overlap. “You know” came in second with 25%,
giving an interval estimate of 21.8% to 28.2%. There’s no overlap with the first-place
word, a strong indication that “whatever” really was the most annoying word or
phrase among people in the entire population as well as people in this sample. How-
ever, if “you know” had received 42% of the vote, that would have placed it only
5% behind “whatever,” and it would have had an interval estimate of 38.8% to
45.2%. This range would have overlapped with the one for “whatever,” an in -
dication that both expressions could plausibly have been equally annoying in the gen-
eral population. ■

In research, the idea of a margin of error is expressed as an interval estimate, usually
a confidence interval. A confidence interval is a calculated range of values that surrounds
the point estimate. More specifically, a confidence interval is an interval estimate, based on
the sample statistic, that would include the population mean a certain percentage of the time if
we sampled from the same population repeatedly. (Note: We are not saying that we are con-
fident that the population mean falls in the interval; we are merely saying that we expect
to find the population mean within a certain interval a certain percentage of the time—
usually 95%—when we conduct this same study with the same sample size.)

The confidence interval is centered around the mean of the sample. For a confidence
interval, the 95% confidence level is most commonly used, indicating the 95% that falls
between the two tails (i.e., 100% � 5% � 95%). Note the terms used here: the confi-
dence level is 95%, but the confidence interval is the range between the two values that
surround the sample mean.

In the following section, we establish a 95% confidence interval using the z
distribution.

Calculating Confidence Intervals with z Distributions
The symmetry of the z distribution makes it easy to calculate confidence intervals.
Remember, we use a z distribution when we know the population mean and popu-
lation standard deviation. And we conduct a z test by collecting data from a sample
and then comparing its mean to that of the population.

EXAMPLE 8.1

0% 20%10% 30% 40% 50% 60%

“anyway”

“it is what it is”

“whatever”“you know”“at the end of the day”
0 5.2

3.8 10.2

7.8 14.2

21.8 28.2 43.8 50.2

FIGURE 8-2
Intervals and Overlap

When two intervals, like those for
“whatever” and “you know,” do not

overlap, we can conclude that the
population means are likely different. It

seems that “whatever” really is more
annoying than “you know” in the

population. However, when two intervals
do overlap, like those for “it is what it
is” and “anyway,” then it is plausible

that the two phrases are deemed
equally annoying in the population.

■ A confidence interval is an
interval estimate, based on the
sample statistic, that would
include the population mean a
certain percentage of the time
if we sampled from the same
population repeatedly.
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We already conducted hypothesis testing in Example 7.5 in Chapter 7 for a study on
calories—comparing the average calories consumed by patrons of Starbucks that posted
calories on their menus to the population mean number of calories consumed by pa-
trons of Starbucks that do not post calories on their menus (Bollinger, Leslie, &
Sorensen, 2010). Now we will use the same data to calculate a confidence interval. The
population mean was 247 calories, and we considered 201 to be the population standard
deviation. The 1000 people in the sample consumed a mean of 232 calories. When
we conducted hypothesis testing, we centered the curve around the mean according
to the null hypothesis, the population mean of 247. We determined critical values based
on this mean and compared the sample mean to these cutoffs. The test statistic (�2.36)
was beyond the cutoff z statistic, so we were able to reject the null hypothesis and con-
clude that people at Starbucks that posted calories on their menus consumed fewer
calories, on average, than people at Starbucks that did not post calories on their menus.

There are several steps to calculating a confidence interval.

We draw a normal curve (see Figure 8-3)
that has the sample mean, 232, at its center
instead of the population mean, 247.

We draw a vertical line from the mean to
the top of the curve. For a 95% confidence
interval, we also draw two small vertical lines
to indicate the middle 95% of the normal

curve (2.5% in each tail, for a total of 5%).
We then write the appropriate percentages

under the segments of the curve. The curve is
symmetric, so half of the 95% falls above and half
falls below the mean. Half of 95 is 47.5, so we
write 47.5% in the segments on either side of
the mean. In the tails beyond the two lines that
indicate the end of the middle 95%, we also
write the appropriate percentages. Because 50%
falls on each side of the mean and 47.5% falls
between the mean and each end of the confidence interval, we know that 50% �
47.5% � 2.5% falls beyond each end of the confidence interval.

To do this, we turn back to the versatile z
table in Appendix B. The percentage be-
tween the mean and each of the z scores is
47.5%. When we look up this percentage in

the z table, we find a z statistic of 1.96. (Note that this is identical to the cutoffs for
the z test; this will always be the case because the p level of 0.05 corresponds to a con-
fidence level of 95%.) We can now add the z statistics of �1.96 and 1.96 to the curve,
as seen in Figure 8-4.

We use the formula for this conversion, but
first we must identify the appropriate mean
and standard deviation. There are two im-

portant points to remember. First, we center the interval around the sample mean (not

STEP 1: Draw a picture of a
distribution that will include
the confidence interval.

STEP 2: Indicate the bounds of the
confidence interval on the
drawing.

STEP 3: Determine the z statistics that
fall at each line marking the
middle 95%.

STEP 4: Turn the z statistics back into
raw means.

EXAMPLE 8.2

232

2.5%

47.5% 47.5%

2.5%

FIGURE 8-3
A 95% Confidence Interval, 
Part I

To begin calculating a confidence
interval for a z distribution, we draw a
normal curve, place the sample mean at
its center, and indicate the percentages
within and beyond the confidence
interval.
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2.5%

(232)
0

1.96�1.96

47.5% 47.5%

2.5%

FIGURE 8-4
A 95% Confidence Interval, 

Part II

The next step in calculating a confidence
interval is identifying the z statistics that

indicate each end of the interval.
Because the curve is symmetric, the 

z statistics will have the same
magnitude—one will be negative and

one will be positive (�1.96 and 1.96).

2.5%

232 244.46 219.54

47.5% 47.5%

2.5%

FIGURE 8-5
A 95% Confidence Interval, 

Part III

The final step in calculating a
confidence interval is converting the z
statistics that indicate each end of the

interval into raw means.

                                        �

MASTERING THE FORMULA

8-1: The formula for the lower
bound of a confidence interval using
a z distribution is Mlower � �z(rM)
� Msample, and the formula for the
upper bound is Mupper � z(rM) �

Msample. The first symbol in each for-
mula refers to the mean at that end
of the confidence interval. To calcu-
late each bound, we multiply the z
statistic by the standard error, then
add the sample mean. The z statistic
for the lower bound is negative, and
the z statistic for the upper bound is
positive.

the population mean). So we use the sample mean of 232 in our calculations. Second,
because we have a sample mean (rather than an individual score), we use a distribution
of means. So we have to calculate standard error as the measure of spread:

Notice that this is the same standard error that we calculated in Example 7.5 in Chapter
7 when we conducted a hypothesis test.

Using this mean and standard error, we calculate the raw mean at each end of the
confidence interval, the lower end and the upper end, and add them to our curve as
in Figure 8-5:

Mlower � �z(rM) � Msample � �1.96(6.356) � 232 � 219.54

Mupper � z(rM ) � Msample � 1.96(6.356) � 232 � 244.46

The 95% confidence interval, reported in brackets as is typical, is [219.54, 244.46].

r
r

M
N

� � �
201

1000
6 356.

The sample mean should fall exactly in the
middle of the two ends of the interval.

219.54 � 232 � �12.46 and 244.46 � 232 � 12.46

We have a match. The confidence interval ranges from 12.46 below the sample
mean to 12.46 above the sample mean. We can think of this number, 12.46, as the mar-
gin of error. The confidence interval, then, can be thought of as the range bounded
by the sample mean plus and minus the margin of error [219.54, 244.46].

To recap the steps for the creation of a confidence interval for a z statistic:

1. Draw a normal curve with the sample mean in the center.
2. Indicate the bounds of the confidence interval on either end, and write the per-

centages under each segment of the curve.

STEP 5: Check that the confidence
interval makes sense.



3. Look up the z statistics for the lower and upper ends of the confidence in -
terval in the z table. These are always �1.96 and 1.96 for a 95% confi dence
interval.

4. Convert the z statistics to raw means for the lower and upper ends of the con-
fidence interval.

5. Check your answer; each end of the confidence interval should be exactly the
same distance from the sample mean.

If we were to sample 1000 customers at Starbucks that posted calories on their
menus from the same population over and over, the 95% confidence interval would
include the population mean 95% of the time. Note that the population mean for cus-
tomers at Starbucks that do not post calories on their menus, 247, falls outside of this
interval. This means it is not plausible that the sample of customers at Starbucks that
post calories on their menus comes from the population according to the null hypoth-
esis—customers at Starbucks that do not post calories on their menus. The data allow
us to conclude that the sample comes from a different population; that is, we conclude
that customers at Starbucks that post calories on their menus consumed fewer calories,
on average, than customers at Starbucks that do not post calories on their menus. The
conclusions from both the z test and the confidence interval are the same, but the
confidence interval gives us more information—an interval estimate, not just a point
estimate. ■
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CHECK YOUR LEARNING
Reviewing the Concepts > A point estimate is just a single number, such as a mean, that provides a plausible value for

the population parameter. An interval estimate is based on the sample statistic and provides
a range of plausible values for the population parameter.

> A confidence interval is one kind of interval estimate and can be created around a sample
mean using a z distribution.

> We can also think of the confidence interval as the range formed when we add and subtract
a margin of error from the sample mean.

> The confidence interval confirms the results of the hypothesis test while adding more  detail.

Clarifying the Concepts 8-1 Why are interval estimates better than point estimates?

Calculating the Statistics 8-2 If 21% of voters want to raise taxes, with a margin of error of 4%, what is the interval
estimate? What is the point estimate?

Applying the Concepts 8-3 In How It Works 7.2, we conducted a z test based on the following information
adapted from a study by Petrocelli (2003) that used the Consideration of Future
Consequences (CFC) scale as the dependent variable. The population mean CFC score
was 3.51, with a standard deviation of 0.61. The sample of interest was composed of 45
students who joined a career discussion group, and the study examined whether this
might have changed CFC scores. The mean for this group was 3.7.

a. Calculate a 95% confidence interval for this study.

b. Explain what this confidence interval tells us.

c. Why is this confidence interval superior to the hypothesis test that we conducted
in Chapter 7?

Solutions to these Check Your
Learning questions can be found in
Appendix D.
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Effect Size
Researchers tend to be interested in big effects, but hypothesis testing by itself can
create an illusion of exaggerated importance. As we learned with the research on gender
differences in mathematical reasoning ability, “statistically significant” does not mean
that the findings from a study are important. “Statistically significant” only means that
those findings are unlikely to occur if in fact the null hypothesis is true.

The Effect of Sample Size on Statistical Significance
A very small difference found using a very large sample can be statistically significant
because sample size strongly influences the outcomes of hypothesis testing. Specifically,
increasing the sample size increases the test statistic for every hypothesis test, including
the z test. Let’s look at an example. Researchers reported data for psychology test scores
on the Graduate Record Examination (GRE) over several years in the 1990s: l � 554,
r � 99 (Matlin & Kalat, 2001). In a fictional study, Example 7.4 in Chapter 7, we re-
ported that 90 graduating seniors had a mean of 568. Based on the sample size of 90,
we reported the mean and standard error for the distribution of means as:

The test statistic calculated from these numbers was:

What would happen if we increased the sample size to 200? We’d have to recalculate
standard error to reflect the larger sample, and then recalculate the test statistic to reflect
the smaller standard error.

What if we increased the sample size to 1000?

What if we increased it to 100,000?
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Misinterpreting Statistical
Significance Statistical
significance that is achieved by
merely collecting a very large sample
can make a research finding appear
to be far more important than it really
is, just as a curved mirror can
exaggerate a person’s size.
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Notice that each time we increased the sample size, the standard error decreased
and the test statistic increased. The original test statistic, 1.34, was not beyond the critical
values of 1.96 and �1.96. However, the remaining test statistics (2.00, 4.47, and 44.73)
were all more extreme than the positive critical value, 1.96, with each succeeding test
statistic beating the critical value by a larger and larger amount. When used properly,
a large sample size makes a statistic more powerful. In their study of gender differences
in mathematics performance, researchers studied 10,000 participants, a very large sample
(Benbow & Stanley, 1980). It is not surprising, then, that a small difference would be
a statistically significant difference.

Let’s consider, logically, why it makes sense that a large sample should allow us to
reject the null hypothesis more readily than a small sample. If we randomly selected 5
people among all those who had taken the GRE and they had GRE scores well above
the national average, we might say, “Well, it’s possible that we just happened to choose
5 people with high scores.” But if we selected 1000 people with GRE scores well
above the national average, it seems very unlikely that this would have occurred by
chance—that we just happened to choose 1000 people with high scores. This is the
reason we can be more confident that a difference occurring with a large sample is a
real difference.

But just because a real difference exists does not mean it is a large, or meaningful,
difference. The difference we found with 5 people might be exactly the same as the
difference we found with 1000 people. As we demonstrated with multiple z tests with
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0 313
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Larger Samples Give Us More
Confidence in Our Conclusions
Stephen, a British student studying in
the United States, is told by friends that
he won’t be able to find his favorite
candy bar, Yorkie, in the United States.
He tests this hypothesis in 3 stores and
finds no Yorkie bars. Another British
student, Victoria, also warned by her
friends, looks for her favorite, Curly
Wurly. She tests her hypothesis in 25
stores and finds no Curly Wurly bars.
Both conclude that their friends were
right. Do you feel more confident that
Stephen or Victoria really won’t be able
to find the favorite candy bar?
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different sample sizes, we might fail to reject the null hypothesis with
a small sample but then reject the null hypothesis for the same-size
difference between two means with a large sample. Our conclusions
can be different simply because of a difference in the size of our sam-
ple. Conversely, a finding that is statistically significant might not be
of practical importance.

To demonstrate the difference between statistical significance and
practical importance, Cohen (1990) offered the example of a “defi-
nite” correlation between height and IQ observed in a sample of
14,000 children. This finding was reported by the popular media to
be a statistically significant but small effect. Based on the reported cor-

relation, Cohen calculated that a person would have to grow by 3.5 feet to increase
IQ by 30 points (2 standard deviations). To reverse causality and increase height by 4
inches, a person would have to increase his or her IQ by 233 points! Height may have
been significantly related to IQ, but there was only a very small effect with no practical
real-world application.

We demonstrated how increasing sample size can lead to an increased test statistic
during hypothesis testing. In other words, it becomes progressively easier to declare
statistical significance as we increase sample size, the N. A small difference between a
sample mean and a population mean might not be statistically significant with a small
sample, but it could be statistically significant with a somewhat larger sample, and it
would almost certainly be statistically significant with an extremely large sample. A larger
sample size should influence our level of confidence that the story is true, but it
shouldn’t increase our confidence that the story is important. Statistical significance does
not indicate practical importance.

What Effect Size Is
A statistically significant finding, particularly one from a study using a large sample,
may indicate a genuine difference between groups, but a trivial one. This is where effect
size comes in. Effect size indicates the size of a difference and is unaffected by sample size.
Effect size tells us how much two populations do not overlap. Simply put, the less overlap,
the bigger the effect size. The amount of overlap between two distributions can be de-
creased in two ways:

1. If their means are farther apart
2. If the variation within each population is smaller

Figure 8-6 shows that overlap decreases and effect size increases when means are
further apart. Figure 8-7 shows that overlap decreases and effect size increases when
the variability within each distribution becomes smaller. Effect size takes into account
both ways in which the overlap of two distributions is affected: (1) the mean difference
and (2) the variability of the population distributions based on individual scores (not
the sampling distribution of means).

When we investigated the story of gender differences in mathematical reasoning
ability, you may have noticed that we described the size of the findings as “small”
(Hyde, 2005). Because effect size is a standardized measure based on scores rather
than means, we can compare the effect sizes of different studies with one another.
A study based on large sample sizes that shows statistical significance might have a
smaller effect size than a study based on small sample sizes that is not statistically
significant.

■ Effect size indicates the size
of a difference and is
unaffected by sample size.

�   MASTERING THE CONCEPT

8-2: As sample size increases, so does the

test statistic (if all else stays the same).

Because of this, a small difference might

not be statistically significant with a small

sample but might be statistically significant

with a large sample.
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(a)

(b)

(a)

(b)

FIGURE 8-6
Effect Size and Mean
Differences

When two population means are farther
apart, as in (b), the overlap of the
distributions is less and the effect size 
is bigger.

FIGURE 8-7
Effect Size and Standard
Deviation

When two population distributions
decrease their spread, as in (b), the
overlap of the distributions is less and
the effect size is bigger.

To see why we use the distribution of scores instead of the distribution of means, let’s
examine Figure 8-8. First of all, assume that each of these distributions is based on
the same underlying population. Second, notice that all means represented by the ver-
tical lines are identical. The only differences are those due to the spread of the dis-
tributions. The small degree of overlap in the tall, skinny distributions of means in
Figure 8-8a is the result of a very large sample size. The greater degree of overlap in
the somewhat wider distributions of means in Figure 8-8b is the result of a smaller
sample size. By contrast, the distributions of scores represented in Figures 8-8c and
8-8d are the result of actual scores rather than sample means for these two studies.

EXAMPLE 8.3



Because these flatter, wider distributions include actual scores, sample size is not an
issue in making comparisons.

In this case, the amounts of real overlap in Figures 8-7c and 8-7d are identical. We
can directly compare the amount of overlap and see that they have the same effect size. ■

Cohen’s d
There are many different effect-size statistics, but they all neutralize the influence of
sample size. When we conduct a z test, the effect-size statistic is typically Cohen’s d,
developed by Jacob Cohen (Cohen, 1988). Cohen’s d is a measure of effect size that
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(a)

Study 1
(means)

Study 2
(means)

Study 1
(scores)

Study 2
(scores)

(b)

(c)

(d)

FIGURE 8-8
Making Fair Comparisons

The top two pairs of curves (a and b) depict two studies,
study 1 and study 2. The first study (a) compared two

samples with very large sample sizes, so each curve is
very narrow. The second study (b) compared two samples

with much smaller sample sizes, so each curve is wider.
The first study has less overlap, but that doesn’t mean it
has a bigger effect than study 2; we just can’t compare

the effects. The bottom two pairs (c and d) depict the
same two studies, but using standard deviation for

individual scores. Now they are comparable and we see
that they have the same amount of overlap—the same

effect sizes.

■ Cohen’s d is a measure of
effect size that assesses the
difference between two means
in terms of standard deviation,
not standard error.
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assesses the difference between two means in terms of standard deviation, not standard error. In
other words, Cohen’s d allows us to measure the difference between means using the
number of standard deviations, much like we did when calculating a z statistic. We ac-
complish this by using standard deviation in the denominator (rather than standard
error). Why? Remember that standard error makes an adjustment for sample size, and
effect size aims to disregard the influence of sample size.

�                                         

MASTERING THE FORMULA

8-2: The formula for Cohen’s d for

a z statistic is: Cohen’s .

It is the same formula as for the z sta-
tistic, except we divide by the popu-
lation standard deviation, rather than
standard error.

d
M

�
�( )l

r

TABLE 8-1. Cohen’s Conventions for Effect Sizes: d

Jacob Cohen published guidelines (or conventions), based on the overlap between two distributions, to help
researchers determine whether an effect is small, medium, or large. These numbers are not cutoffs, merely
rough guidelines to aid researchers in their interpretation of results.

                   Effect Size                                       Convention                                       Overlap

                     Small                                                       0.2                                                    85%

                     Medium                                                   0.5                                                    67%

                     Large                                                      0.8                                                    53%

Let’s calculate Cohen’s d for the situation for which we constructed a confidence in-
terval. We simply substitute standard deviation for standard error. When we calculated
the test statistic for the 1000 customers at Starbucks with calories posted on their
menus, we first calculated the standard error:

We calculated the z statistic using the population mean of 247 and the sample mean
of 232:

To calculate Cohen’s d, we simply use the formula for the z statistic, substituting
r for rM (and l for lM, even though these means are always the same). This means
we use 201 instead of 6.356 in the denominator. The Cohen’s d is now based on the
spread of the distribution of individual scores, rather than the distribution of means.

Now that we have the effect size, often written in shorthand as d � �0.07, what
does it mean? First, we know that the two sample means are 0.07 standard deviation
apart, which doesn’t sound like a very big difference, and it isn’t. Jacob Cohen, the
guru of effect sizes, developed guidelines for what constitutes a small effect (0.2), a
medium effect (0.5), or a large effect (0.8). Table 8-1 displays these guidelines, along
with the amount of overlap between two curves that is indicated by an effect of that
size. No sign is provided because it is the magnitude of an effect size that matters; an
effect size of �0.5 is the same size as one of 0.5.
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Based on these numbers, the effect size for the study of Star-
bucks customers—0.07—is not even at the level of a small effect.
As we pointed out in Chapter 7, however, the researchers noted
a much larger reduction among those consuming 250 or more
calories per visit, those perhaps most likely to benefit from eating
fewer calories. Researchers also speculated that chains with less
healthy options—and higher-calorie menu choices—would see
larger effects. Finally, the researchers hypothesized that even a very
small effect might spur eateries to provide more low-calorie
choices. Sometimes a small effect is meaningful. ■

Like Jacob Cohen, Peter Killeen has explored methods to understand the findings of
hypothesis testing in ways that are more accurate and useful. Killeen (2005) developed
prep, the probability of replicating an effect given a particular population and sample size. One
can interpret prep as meaning: “This effect will replicate 100(prep)% of the time” (Killeen,
2005, p. 349). So a prep of 0.99 indicates that, given the same population and sample
size, the effect would replicate 99% of the time.

Killeen and others promote the use of prep because it is easier to understand than p
and, consequently, is less likely to be misinterpreted. The editors of the Association for
Psychological Science prefer prep to p and recommend its use in the journals they pub-
lish. prep is most easily calculated using computer software, but first we have to know
the specific p value, not just whether or not the test statistic is beyond the critical value.
We calculate prep in two steps.

Step 1. We calculate the specific p value associated with the test statistic. To do this,
we look up the test statistic on the table in Appendix B. In the calories example, the
z statistic was �2.36. If we look up this number in the z table, we find a percentage
of 0.91% falling beyond the z statistic. Because we conducted a two-tailed test and the
table only provides the percentage in one tail, we have to double the percentage to
get the total p value in percentage form, 1.82%. We divide by 100 to get the p value
in terms of proportion rather than percentage, 0.0182.

Step 2. Using Microsoft Excel, we input the following into one cell of a spreadsheet:
�NORMSDIST(NORMSINV(1-P)/(SQRT(2))) (Killeen, 2005). We substitute the
actual p value for the letter P, so we enter: �NORMSDIST(NORMSINV(1-.0182)/
(SQRT(2))). When we click “enter,” Excel calculates the prep. In this case, it is 0.9305,
which indicates that we would expect this effect to replicate, given the same population
and sample size, 93.05% of the time.

N e x t  S t e p s prep

CHECK YOUR LEARNING
Reviewing the Concepts > As sample size increases, the test statistic becomes more extreme and it becomes easier to

reject the null hypothesis.

> A statistically significant result is not necessarily one with practical importance.

> Effect sizes are calculated with respect to scores, rather than means, so are not contingent
on sample size.

> The size of an effect is based on the difference between two group means and the amount
of variability within each group.

�   MASTERING THE CONCEPT

8-3: Because a statistically significant effect might

not be an important one, we should calculate

effect size in addition to conducting a hypothesis

test. We can then report whether a statistically

significant effect is small, medium, or large.
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Statistical Power
The effect size statistic tells us that the public controversy over gender differences in
mathematical ability was justified: The observed gender differences had no practi cal
importance. Calculating statistical power (along with effect size and confidence inter-
vals) is another way to limit such controversies from developing in the first place.

Power is a word that statisticians use in a very specific way. Statistical power is a meas-
ure of our ability to reject the null hypothesis given that the null hypothesis is false. In other
words, statistical power is the probability that we will reject the null hypothesis when we

Clarifying the Concepts 8-4 Distinguish statistical significance and practical importance.

8-5 What is effect size?

8-6 What is prep?

Calculating the Statistics 8-7 Using IQ as a variable, where we know the mean is 100 and the standard deviation is
15, calculate Cohen’s d for an observed mean of 105.

8-8 A researcher calculated a p value of 0.22 for her z statistic. Using Microsoft Excel,
determine prep.

Applying the Concepts 8-9 In Check Your Learning 8-3, we calculated a confidence interval based on CFC data.
The population mean CFC score was 3.51, with a standard deviation of 0.61. The
sample was composed of 45 students who joined a career discussion group, and the
study examined whether this might have changed CFC scores. The mean for this
group is 3.7.

a. Calculate the appropriate effect size for this study.

b. Citing Cohen’s conventions, explain what this effect size tells us.

c. Now consider the effect of the effect size. Does this finding have any consequences
or implications for anyone’s life?

Solutions to these Check Your
Learning questions can be found in
Appendix D.

> Effect size for a z test is measured with Cohen’s d, which is calculated much like a z statistic.

> Cohen has published conventions so that a statistician can get a sense of whether an effect
is small, medium, or large.

> We can also calculate prep, the probability of replicating an effect given a particular popu-
lation and sample size.
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Statistical Power Statistical power, like the progressive powers of a microscope used to show the fine
details of a butterfly’s wing, refers to our ability to detect differences that really exist.

■ prep is the probability of
replicating an effect given a
particular population and
sample size.

■ Statistical power is a
measure of our ability to reject
the null hypothesis given that
the null hypothesis is false.



should reject the null hypothesis—the probability that we will not
make a Type II error.

The calculation of statistical power ranges from a probability of 0.00
to a probability of 1.00 (or from 0% to 100%). It indicates the proba-
bility that we will be able to reject the null hypothesis—given a spe-
cific sample size and a specific effect size—if the null hypothesis should
be rejected. Statisticians have historically used a probability of 0.80 as
the minimum for conducting a study. If we have an 80% chance of
correctly rejecting the null hypothesis, then it is appropriate to conduct
the study. Let’s look at statistical power for a one-tailed z test. (We use
a one-taailed test rather than a two-tailed test to simplify calculations.)

The Importance of Statistical Power
To understand statistical power, we need to consider several characteristics of the two
populations of interest: the population to which we’re comparing our sample (popu-
lation 1) and the population that we believe our sample represents (population 2). We
represent these two populations visually as two overlapping curves. Let’s consider a vi-
sual example for a variation on a study we used as an example in Chapter 4—a study
aimed at determining whether an intervention changes the mean number of sessions
attended at university counseling centers (Hatchett, 2003).
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In this example, the population mean num-
ber of sessions attended is 4.6, with a pop-
ulation standard deviation of 3.12. Let’s say
that we plan to have students sign contracts
to attend a certain number of sessions, in the
hope that this will improve attendance.
More specifically, we hypothesize that a sam-
ple of 9 counseling center clients will have
a mean number of sessions of 6.2, a mean

increase of 1.6, and the equivalent of a Cohen’s d of about 0.5, a medium effect. Because
we have a sample of 9, we need to convert the standard deviation to standard error; to
do this, we divide the standard deviation by the square root of the sample size and find
that the standard error is 1.04. The numbers needed to calculate statistical power are
summarized in Table 8-2.

You might wonder how we came up with the hypothesized sample mean, 6.2, above.
We can never know, particularly prior to a study, what the actual effect will be. Pop-
ulation 2, therefore, is hypothetical; that is, we can’t actually see it or know its summary
parameters, so, ultimately, we’re making an educated guess. Researchers typically esti-
mate the mean of population 2 by examining the existing research literature or by de-
ciding how large an effect size would make the study worthwhile (Murphy & Myors,
2004). In this case, we hypothesized a medium effect of a Cohen’s d of 0.5, which
translated to an increase in the mean of 1.6, from 4.6 to 6.2.

For our example, the distribution of means
for population 1, centered around 4.6, and
the distribution of means for population 2,
centered around 6.2, are shown in Figure
8-9. This figure also shows the critical value

STEP 1: Determine the information
needed to calculate statistical
power—the population 
mean, the population
standard deviation, the
hypothesized mean for the
sample, the sample size, and
standard error based on this
sample size.

STEP 2: Determine a critical value in
terms of the z distribution and
in terms of the raw mean so
that statistical power can be
calculated.

EXAMPLE 8.5

�   MASTERING THE CONCEPT

8-4: Statistical power is the likelihood of

rejecting the null hypothesis when we

should reject the null hypothesis.

Researchers consider a probability of

0.80—an 80% chance of rejecting the null

hypothesis if we should reject it—to be the

minimum for conducting a study.



for a one-tailed test with a p level of 0.05. The critical value in terms of the z statistic
is 1.65, which can be converted to a raw mean of 6.306.

M � 1.65(1.04) � 4.6 � 6.306

The p level is shaded in dark purple and marked as 5.0% (a), the percentage version
of a proportion of 0.05. The critical value of 6.306 marks off the upper 5% of the dis-
tribution based on the null hypothesis, that for population 1.

This critical value, 6.306, has the same meaning as it did in hypothesis testing. If
the test statistic for a sample falls above this cutoff, then we can reject the null hypoth-
esis. Notice that the mean we estimated for population 2 does not fall above the cutoff.
If the actual difference between the two populations—counseling center clients who
do not sign a contract and counseling center clients who do sign a contract—is what
we expect, then we can already see that there is a good chance we will not reject the
null hypothesis. This indicates that we might not have enough statistical power.

The proportion of the curve above the crit-
ical value, shaded in light purple in Figure
8-9, is statistical power, which can be calcu-
lated with the use of the z table. Remember,
statistical power is the chance that we will re-
ject the null hypothesis if we should reject the
null hypothesis. If in fact population 2 exists,
then the intervention really helps; it raises the

mean number of sessions from 4.6 to 6.2, and as we know from our earlier calculations,
this is a medium effect.

Statistical power in this case is the percentage of the distribution of means for pop-
ulation 2 (the distribution centered around 6.2) that falls above the critical value of
6.306. We convert this critical value to a z statistic based on the hypothesized mean
of 6.2.

We look up this z statistic on the z table to determine the percentage above a z sta-
tistic of 0.102. That percentage, the area shaded in light purple in Figure 8-9, is 46.02%.

STEP 3: Calculate the statistical
power—the percentage of 
the distribution of means for
population 2 (the distribution
centered around the
hypothesized sample 
mean) that falls above the
critical value.

z �
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�
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TABLE 8-2. The Ingredients for the Calculation of Statistical Power

To calculate statistical power for a z test, we must know the original population means and population standard
deviation. We must calculate the standard error using the planned sample size. We must also have an estimate
of the mean of population 2, our expectation of what the sample mean will be. It is useful to determine all
these numbers before beginning.

                      Ingredients for Calculating Power                                    Counseling Center Study

             Mean of population 1                                                                          

             Standard deviation of the population                                                    r � 3.12

             Standard error (using the planned sample size)                                     

             Planned sample size                                                                           N � 9

             Mean of population 2 (expected sample mean)                                     M � 6.2; lM2
6 2� .

r
r

M
N

� � �
3 12

9
1 04

.
.

l lM1
4 6� � .
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From Figure 8-9, we can see the cutoff, or critical value, as determined in reference
to population 1; in raw score form, it is 6.306. We can see that the percentage of the
distribution of means for population 1 that falls above 6.306 is 0.05, or 5%, the usual
p level, or alpha (sometimes written as a symbol, a), that was introduced in Chapter 7.
The p level, or alpha, is the chance of making a Type I error. When we turn to the
distribution of means for population 2, the percentage above that same cutoff is the
statistical power. Given that population 2 exists, 46.02% of the time that we select a
sample of size 9 from this population, we will be able to reject the null hypothesis. This
is far below the 80% considered adequate when conducting a study. We would be wise
to increase the size of the sample in this particular study. ■

On a practical level, statistical power calculations tell researchers how many partic-
ipants are needed to conduct a study whose findings we can trust. Remember, however,
that statistical power is based, to some degree, on hypothetical information. It is helpful
guidance, but it is an estimate, not an exact number. We turn next to several factors
that affect statistical power.

Five Factors That Affect Statistical Power
We’ve already discussed the effect of increasing sample size on the likelihood of re-
jecting the null hypothesis, but there are multiple ways to increase the power of a sta-
tistical test. Here are five, listed in order from what is usually the easiest to the most
difficult when you first design your study:

(1) Increase alpha. In Figure 8-10, we see how statistical power increases when we
take a p level of 0.05 (Figure 8-10a) and increase it to 0.10 (Figure 8-10b). This has
the side effect of increasing the probability of a Type I error from 5% to 10%, however,
so researchers choose to increase their statistical power in this manner only under par-
ticular circumstances.

(2) Turn a two-tailed hypothesis into a one-tailed hypothesis. We have been using
a simpler one-tailed test, which provides more statistical power. However, researchers
usually begin with the more conservative two-tailed test. In Figure 8-11, we see the
difference between the less powerful two-tailed test (Figure 8-11a) and the more pow-
erful one-tailed test (Figure 8-11b). The curves in part (a), with a two-tailed test, show
less statistical power than do the curves in part (b). If we are interested only in an out-
come in one direction, we may consider a one-tailed test. However, it is usually best
to be conservative and use a two-tailed test.

(3) Increase N. As we demonstrated earlier in this chapter, increasing sample size
leads to an increase in the test statistic, making it easier to reject the null hypothesis
because a larger test statistic is more likely to fall beyond the cutoff. The influence of

46.02%

6.2

6.306

4.6

FIGURE 8-9
Statistical Power: 

The Whole Picture

Now we can visualize statistical power
in the context of two populations.

Statistical power is the percentage of
the distribution of means for population
2 that is above the cutoff. Alpha is the

percentage of the distribution of means
for population 1 that is above the cutoff;

alpha is set by the researcher and is
usually 0.05, or 5%.
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sample size on statistical power is demonstrated in Figure 8-12. The curves in Figure
8-12a represent a small sample size; those in Figure 8-12b represent a larger sample
size. In part (a), the curves are fairly wide because of the small sample size. In part (b),
the curves are narrower because a larger sample size means a smaller standard error.
We have direct control over the size of our samples, so simply increasing N is often an
easy way to increase statistical power.

5%

10%

Power

Power

(a)

(b)

2.5%2.5%

5%

Power

Power

(a)

(b)

FIGURE 8-11
Two-Tailed Versus 
One-Tailed Tests

A two-tailed test divides alpha into two
tails. When we use a one-tailed test,
putting our entire alpha into just one tail,
we increase our chances of rejecting the
null hypothesis, which translates into an
increase in statistical power.

FIGURE 8-10
Increasing Alpha

As we increase alpha from the standard
of 0.05 to a larger level, such as 0.10,
our statistical power increases. Because
this also increases the probability of a
Type I error, this is not usually a good
method for increasing statistical power.
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(4) Exaggerate the levels of the independent variable. We also can affect statistical
power by changing the difference between the means. As seen in Figure 8-13, the mean
of population 2 is farther from the mean of population 1 in part (b) than it is in part
(a). The difference between means is not something easily changed, but it can be done.
For instance, if we were studying the effectiveness of group therapy for social phobia,
we could increase the length of group therapy from twelve weeks to six months. It is
possible that a longer program might lead to a larger change in means than would the
shorter program, as compared to a group that received no treatment. This might result
in a larger effect size when the study used the longer group therapy program.

(5) Decrease the standard deviation. We see the same effect on statistical power if
we find a way to decrease the standard deviation as when we increase sample size.
Look again at Figure 8-12, which reflects an increase in the sample size. The curves

can become narrower not just because the denom-
inator is larger but also because the numerator is
smaller. When the standard de viation is smaller,
standard error is smaller, and the curves are nar-
rower. Narrower curves have less overlap, meaning
there is more statistical power. We can  reduce meas-
urement error and the standard de viation, and thus
have narrower curves, in two ways: (1) using reliable
measures from the beginning of the study, thus re-
ducing error, or (2) sampling from a more homo-
geneous group in which par ticipants’ responses are
more likely to be similar to begin with.

Because statistical power is affected by so many
variables, it is important to consider when reading
journal articles of others’ research, particularly when
they fail to reject the null hypothesis. Always ask
yourself whether there was sufficient statistical power
to detect a real finding. Most importantly, were there

5%

Power

5%

Power

(a)

(b)

5%

5%

Power

Power

(a)

(b)

FIGURE 8-12
Increasing Sample Size or

Decreasing Standard Deviation

As sample size increases, from part (a)
to part (b), the distributions of means

become more narrow and there is less
overlap. Less overlap means more
statistical power. The same effect

occurs when we decrease standard
deviation. As standard deviation

decreases, also reflected from part (a) to
part (b), the curves are narrower and

there is less overlap—and more
statistical power.

FIGURE 8-13
Increasing the Difference

between the Means

As the difference between means
becomes larger, there is less overlap

between curves. Here, the lower pair of
curves has less overlap than the upper

pair. Less overlap means more
statistical power.
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enough participants in the sample? Often journal articles provide enough information
for other researchers to calculate statistical power.

Statistical power is most frequently determined by using published statistical power
tables or a computerized statistical power calculator. One of the best published tables
is by Jacob Cohen in his 1992 article “A Power Primer.” Cohen provides a table of
sample sizes necessary to achieve 0.80 statistical power (the amount considered adequate
by most researchers) with various effect sizes for eight different hypothesis tests. Also,
many statistical power calculators can be found by conducting an online search for
“power calculator.” Or you can download the free software G*Power, available for
Mac or PC (Erdfelder, Faul, & Buchner, 1996; search online for G*Power or find the
link on the Web site for this book).

Statistical power calculators are versatile tools that are usually used in one of two
ways. (1) We can calculate power after conducting a study from several pieces of infor-
mation, including sample size. Or (2) we can use them in reverse, before conducting a
study, by calculating the sample size necessary to achieve a given power. Let’s explore
both of these methods.

(1) For most electronic power calculators, including G*Power, we determine power
by inputting the effect size along with some of the information that we outlined earlier
in Table 8-2. We calculate power after determining effect size and other characteristics
(often after the study has been conducted), so G*Power refers to these calculations as
“post hoc,” which means “after the fact.” (2) In practice, we know that increasing
sample size is often the simplest way to increase statistical power. Knowing this, we can
reverse the logic that we used to calculate statistical power using information, such as
sample size, from a study we’ve already conducted. In this way, we can calculate the
sample size needed to have a certain amount of statistical power. Specifically, we can
use G*Power, or another power calculator, to determine the sample size necessary to
achieve the statistical power that we want before we conduct our study. G*Power refers
to such calculations as “a priori,” which means “prior to.”

The controversy over the 1980 Benbow and Stanley study of gender differences in
mathematical ability demonstrates why it is important to go beyond hypothesis testing.
Confidence intervals informed us that the two distributions of male and female scores
were almost identical—the two distributions overlapped almost completely. However,
the study used 10,000 participants, so it had plenty of statistical power. That means we
can trust that the statistically significant difference they found was real. But the effect
size informed us that this statistically significant difference was trivial—it had no prac-
tical importance. Combining all four ways of analyzing the data (hypothesis testing,
confidence intervals, effect size, and power analysis) provided a more complete, precise
description of the data.

Many researchers consider meta-analysis to be the most important recent advance-
ment in social science research (e.g., Newton & Rudestam, 1999). A meta-analysis
is a study that involves the calculation of a mean effect size from the individual effect sizes of
many studies. Meta-analysis provides added statistical power by considering many
studies simultaneously and helps to resolve debates fueled by contradictory research
findings (Lam & Kennedy, 2005). Essentially, it allows us to think of each individual
study as just one data point in a larger study, the meta-analysis.

Meta-Analysis N e x t  S t e p s

■ A meta-analysis is a study
that involves the calculation of
a mean effect size from the
individual effect sizes of many
studies.
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Meta-Analysis and Electronic
Databases Researchers who do
meta-analysis use many tools and
strategies to gather all of the findings in
a particular research area. Among the
most useful are electronic databases
such as PsycINFO.

The logic of meta-analysis process is surprisingly simple. There are just four steps,
which we’ll outline here:

Here are some of the considerations to keep
in mind:

  1. Make sure the necessary statistical in-
      formation, either effect sizes or the sum-

mary statistics necessary to calculate effect sizes, is available.
2. Consider selecting only studies in which participants meet certain criteria, such

as age, gender, or geographic location.
3. Consider eliminating studies based on the research design, for example, because

they were not experimental in nature.

Some researchers conducted a meta-analysis to examine whether people tend to
better remember facts that conform to their existing attitudes and beliefs, known as
the “congeniality effect on memory” (Eagly, Chen, Chaiken, & Shaw-Barnes, 1999,
p. 64). Before they began their meta-analysis, they developed criteria for the studies
they would include; for example, they decided to include only studies that were true
experiments.

An obvious place to start is PsycINFO and
other electronic databases. For example,
these researchers searched databases using
terms such as “opinion,” “belief,” “con-

STEP 1: Select the topic of interest,
and decide exactly how to
proceed before beginning to
track down studies.

STEP 2: Locate every study that has
been conducted and meets
the criteria.
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gruent,” “consistent,” “memory,” and “recall” (Eagly et al., 1999). A key part of
meta-analysis, however, is finding any studies that have been conducted but have not
been published (Conn, Valentine, Cooper, & Rantz, 2003). Much of this “fugitive
literature” (Rosenthal, 1995, p. 184) or “gray literature” (Lam & Kennedy, 2005) is
unpublished simply because the studies did not find a statistically significant differ-
ence. The effect size seems larger without these studies. We find these studies by
using other sources—for example, by reading the proceedings of relevant
conferences and contacting the primary researchers in the field to obtain any
relevant unpublished  findings.

When the effect size has not been reported,
the researcher must calculate it from sum-
mary statistics that were reported. These re-

searchers were able to calculate 271 effect sizes from the 70 studies they examined
(some studies reported more than one effect) (Eagly et al., 1999).

Most importantly, researchers calculate a
mean effect size for all studies. In fact, we
can apply all of the statistical insights we’ve
learned: Means, medians, standard devia-
tions, confidence intervals and hypothesis
testing, and visual displays such as a box plot
or a stem-and-leaf plot.

In their meta-analysis on the congeniality effect, Eagly and colleagues (1999) cal-
culated a mean and median effect size. The mean d was 0.23. They were able to reject
the null hypothesis that d was 0. Moreover, the confidence interval did not include
zero. The median, however, was 0.10, and only 60% of studies had a positive effect size
(we’d expect 50% just by chance). These findings suggest that an outlier or outliers
contributed to the mean effect. The researchers found that when they omitted outliers,
the mean dropped from 0.23 to 0.08, a smaller effect, but still statistically significant.
The researchers included a stem-and-leaf plot of the effect sizes. Although this seems
to be evidence for the congeniality effect, the effect decreased over the years, perhaps
because of the more sound research designs implemented more recently (e.g., blind
designs).

Much of the fugitive literature of unpublished studies exists because studies with
null results are less likely to appear in press (e.g., Begg, 1994). Twenty-nine percent of
the studies included in the meta-analysis conducted by Eagly and colleagues (1999)
were unpublished, and the inclusion of these studies led to a lower mean effect size
than that calculated just from the published studies. This has been called “the file drawer
problem” and Rosenthal (1991) has proposed a solution to it, aptly known as a file
drawer analysis, a statistical calculation, following a meta-analysis, of the number of studies with
null results that would have to exist so that a mean effect size is no longer statistically significant.
If just a few studies could render a mean effect size nonsignificant—that is, no longer
statistically significantly different from zero—then the effect size should be viewed as
likely to be an inflated estimate. If it would take several hundred studies in researchers’
“file drawers” to render the effect nonsignificant, then it is safe to conclude that there
really is a significant effect. For most research topics, it is not likely that there are hun-
dreds of unpublished studies.

STEP 3: Calculate an effect size, often
Cohen’s d, for every study.

STEP 4: Calculate statistics—ideally,
summary statistics, a
hypothesis test, a confidence
interval, and a visual display
of the effect sizes (Rosenthal,
1995).

■ A file drawer analysis is a
statistical calculation, following
a meta-analysis, of the number
of studies with null results that
would have to exist so that a
mean effect size is no longer
statistically significant.



218 CHAPTER 8 ■ Confidence Intervals, Effect Size, and Statistical Power

Clarifying the Concepts 8-10 What are three ways to increase the power of a statistical test?

Calculating the Statistics 8-11 Check Your Learning 8-3 and 8-9 discussed a study aimed at changing CFC scores
through a career discussion group. Imagine that those in the career discussion group of
45 students have a mean CFC score of 3.7. Let’s say that you know that the population
mean CFC score is 3.51, with a standard deviation of 0.61. Calculate statistical power
for this as a one-tailed test.

Applying the Concepts 8-12 Refer to Check Your Learning 8-11.

a. Explain what the number obtained in your statistical power calculation means.

b. Describe how the researchers might increase statistical power.
Solutions to these Check Your Learning questions can be found in Appendix D.

CHECK YOUR LEARNING
Reviewing the Concepts > Statistical power is the probability that we will reject the null hypothesis if we should re -

ject it.

> Ideally, a study is not conducted unless the researcher has 80% statistical power; that is, at
least 80% of the time we will correctly reject the null hypothesis.

> Statistical power is affected by several factors, but most directly by sample size.

> Before conducting a study, researchers often use a statistical power table or online statistical
power calculator to determine the number of participants they need to ensure a statistical
power of 0.80.

> To get the most complete story about our data, it is best to combine the results of a hy-
pothesis test with the information gained from computing confidence intervals, effect size,
prep, and power.

> A meta-analysis is a study of studies that provides a more objective measure of an effect
size than an individual study does.

> A researcher conducting meta-analysis chooses a topic, decides on guidelines for a study’s
inclusion, tracks down every study on a given topic, and calculates an effect size for each.
A mean effect size is calculated and reported, often along with a standard deviation, median,
significance testing, confidence interval, and appropriate graphs.

Confidence Intervals
A summary statistic, such as a mean, is a point estimate of the population mean. A
more useful estimate is an interval estimate, a range of plausible numbers for the pop-
ulation mean. The most commonly used interval estimate in the social sciences is
the confidence interval, which can be created around a mean using a z distribution.
The confidence interval is created by subtracting and adding a margin of error from
a mean or difference between means. The confidence interval provides the same

REVIEW OF CONCEPTS
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information as a hypothesis test but also gives us a range of values; thus, it is more
useful than a hypothesis test.

Effect Size
Knowing that a difference is statistically significant does not provide information about
the size of the effect, particularly because of the effect of sample size on the size of the
test statistic. A study with a large sample size might find a small effect to be statistically
significant, whereas a study with a small sample might fail to detect a large effect. To
understand the importance of a finding, we must calculate an effect size. Effect sizes are
independent of sample size because they are based on distributions of scores rather
than distributions of means. One common effect-size meas ure is Cohen’s d, which can
be used when a z test has been conducted. We can compare effect sizes with guidelines
developed by Cohen to get a sense of how large they are.

When we conduct hypothesis testing, we can also calculate prep in addition, or as
an alternative, to p. Developed as a more easily interpretable and less easily misunder-
stood indicator of the outcome of a hypothesis testing, prep is the probability of repli-
cating an effect given a particular population and sample size.

Statistical Power
Statistical power is a measure of our ability to correctly reject the null hypothesis; that
is, the chance that we will not commit a Type II error when the research hypothesis
is true. Statistical power is affected most directly by sample size, but it is also affected
by the choice of alpha (cutoff p level) and the decision to use a one-tailed or two-
tailed test. Researchers often use a computerized statistical power calculator to deter-
mine the appropriate sample size to achieve 0.80, or 80%, statistical power, given certain
considerations (e.g., expected effect size, alpha).

A meta-analysis is a study of studies in which the researcher chooses a topic, decides
on guidelines for a study’s inclusion, tracks down every study on a given topic, and
calculates an effect size for each. A mean effect size is calculated and reported, often
along with a standard deviation, median, hypothesis testing, confidence interval, and
appropriate graphs. A file drawer analysis can be performed to determine how many un-
published studies that failed to reject the null hypothesis must exist for the effect size
to be rendered nonsignificantly different from zero.

8.1 CALCULATING CONFIDENCE INTERVALS
The Graded Naming Test (GNT) asks respondents to name objects in a set of 30 black-
and-white drawings in order to detect brain damage. The GNT population norm for adults
in England is 20.4. Researchers wondered whether a sample of Canadian adults had different
scores from adults in England (Roberts, 2003). If the scores were different, the English
norms would not be valid for use in Canada. The mean for 30 Canadian adults was 17.5.
Assume that the standard deviation of the adults in England is 3.2. How can we calculate
a 95% confidence interval for these data?

Given l � 20.4 and r � 3.2, we can start by calculating standard error:

r
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We then find the z values that mark off the most extreme 0.025 in each tail, which are
�1.96 and 1.96. We calculate the lower end of the interval as:

Mlower � �z(rM) � Msample � �1.96(0.584) � 17.5 � 16.36

We calculate the upper end of the interval as:

Mupper � z(rM) � Msample � 1.96(0.584) � 17.5 � 18.64

The 95% confidence interval around the mean of 17.5 is [16.36, 18.64].
How can we calculate the 90% confidence interval for the same data? In this case, we

find the z values that mark off the most extreme 0.05 in each tail, which are �1.645 and
1.645. We calculate the lower end of the interval as:

Mlower � �z(rM) � Msample � �1.645(0.584) � 17.5 � 16.54

We calculate the upper end of the interval as:

Mupper � z(rM) � Msample � 1.645(0.584) � 17.5 � 18.46

The 90% confidence interval around the mean of 17.5 is [16.54, 18.46].
What can we say about these two confidence intervals in comparison to each other?

The range of the 95% confidence interval is larger than that of the 90% confidence interval.
When calculating the 95% confidence interval, we are describing where we think a larger
portion of our sample means will fall if we repeatedly selected samples of this size from
the same population (95% as opposed to 90%), so we have a larger range within which
those means are likely to fall.

8.2 CALCULATING EFFECT SIZE
The Graded Naming Test (GNT) study has a population norm for adults in England of
20.4. Researchers found a mean for 30 Canadian adults of 17.5, and we assumed a standard
deviation of adults in England of 3.2 (Roberts, 2003). How can we calculate effect size for
these data?

The appropriate measure of effect size for a z statistic is Cohen’s d, which is calculated as:

Based on Cohen’s conventions, this is a large effect size.
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Exercises
Clarifying the Concepts

8.1 What specific danger exists when reporting a statistically
significant difference between two group means?

8.2 In your own words, define the word confidence—first as
you would use it in everyday conversation and then as
a statistician would use it in the context of a confidence
interval.

8.3 Why do we calculate confidence intervals?
8.4 What are the five steps to create a confidence interval

for a z distribution?
8.5 In your own words, define the word effect—first as you

would use it in everyday conversation and then as a stat-
istician would use it.

8.6 What effect does increasing the sample size have on the
standard error and the test statistic for every hypothesis
test?

8.7 Relate effect size to the concept of overlap between
comparison distributions.

8.8 What does it mean to say the effect-size statistic,
such as Cohen’s d, neutralizes the influence of sample
size?

8.9 What are Cohen’s guidelines for small, medium, and
large effects?

8.10 Why is it useful to calculate prep in addition to, or instead
of, a p value?

8.11 In your own words, define the word power—first as you
would use it in everyday conversation and then as a stat-
istician would use it.

8.12 How does statistical power relate to Type II errors?

8.13 Traditionally, what minimum percentage chance of cor-
rectly rejecting the null hypothesis do we need in order
to proceed with an experiment?

8.14 Explain how increasing alpha increases statistical power.

8.15 List the five factors that affect statistical power. For each,
indicate how a researcher can leverage that factor to in-
crease power.



8.16 How are statistical power and effect size different but
related?

8.17 What is the goal of a meta-analysis?

8.18 Why is it important for a researcher who is conducting
a meta-analysis to find not only published studies but
also unpublished studies?

Calculating the Statistics

8.19 In statistics, concepts are often expressed in symbols
and equations. For each of the following, (i) identify the
incorrect symbol, (ii) state what the correct symbol
should be, and (iii) explain why the initial symbol was
incorrect.
a. Mlower � �z(r) � Msample

b.

8.20 In 2008, the Gallup poll asked people whether or not
they were suspicious of steroid use among Olympic ath-
letes. Thirty-five percent of respondents indicated sus-
picion when they saw an athlete break a track-and-field
record, with a 4% margin of error. Calculate an interval
estimate.

8.21 In 2008, 22% of Gallup respondents indicated suspicion
of steroid use by athletes who broke world records in
swimming. Calculate an interval estimate using a margin
of error at 3.5%.

8.22 In 2006, approximately 47% of Americans, when sur-
veyed by a Gallup poll, felt that having a gun in the
home made them safer than having no gun. The mar-
gin of error reported was 3%. Construct an interval
estimate.

8.23 For each of the following confidence intervals, indicate
how much of the distribution would be placed in the
cutoff region for a one-tailed test.

a. 80%

b. 85%

c. 99%

8.24 For each of the following confidence intervals, indicate
how much of the distribution would be placed in the
cutoff region for a two-tailed test.

a. 80%

b. 85%

c. 99%

8.25 For each of the following confidence intervals, look up
the critical z value for a one-tailed test.

a. 80%

b. 85%

c. 99%

8.26 For each of the following confidence intervals, look up
the critical z values for a two-tailed test.

a. 80%

b. 85%

c. 99%

8.27 Calculate the 95% confidence interval for the following
fictional data regarding daily TV viewing habits: l �
4.7 hours; r � 1.3 hours; sample of 78 people with a
mean of 4.1 hours.

8.28 Calculate the 80% confidence interval for the same fic-
tional data regarding daily TV viewing habits: l � 4.7
hours; r � 1.3 hours; sample of 78 people with mean
of 4.1 hours.

8.29 Calculate the 99% confidence interval for the same fic-
tional data regarding daily TV viewing habits: l � 4.7
hours; r � 1.3 hours; sample of 78 people with mean
of 4.1 hours.

8.30 Calculate the standard error for each of the following
sample sizes when l � 1014 and r � 136:

a. 12

b. 39

c. 188

8.31 For a given variable, imagine we know that the popu-
lation mean is 1014 and the standard deviation is 136.
A mean of 1057 is obtained based on sampling. Calcu-
late the z test statistic for this mean, assuming it was
found using each of the following sample sizes:

a. 12

b. 39

c. 188

8.32 Calculate the effect size for the mean of 1057 observed
in Exercise 8.31 where l � 1014 and r � 136.

8.33 Calculate the effect size for each of the following aver-
age SAT math scores. Remember, SAT math is stan-
dardized such that l � 500 and r � 100.

a. 61 people sampled have a mean of 480

b. 82 people sampled have a mean of 520

c. 6 people sampled have a mean of 610

8.34 For each of the effect-size calculations in Exercise
8.33, identify the size of the effect using Cohen’s
guidelines. Remember, for SAT math, l � 500 and
r � 100.

a. 61 people sampled have a mean of 480

b. 82 people sampled have a mean of 520

c. 6 people sampled have a mean of 610

8.35 For each of the following d values, identify the size of
the effect using Cohen’s guidelines.
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a. d � 0.79

b. d � �0.43

c. d � 0.22

d. d � �0.04
8.36 The first step in calculating prep is knowing the actual

p value of the test statistic. For each of the follow ing z
statistics, calculate the p value for a one-tailed test.

a. 2.23

b. �1.82

c. 0.33
8.37 For each of the following z statistics, calculate the p

value for a two-tailed test.

a. 2.23

b. �1.82

c. 0.33
8.38 The second step in calculating prep is conducted using

software such as Microsoft Excel. For each of the three
z statistics you considered in Exercise 8.36 as a one-
tailed test, determine prep. Be sure to use the appropriate
p values.

a. 2.23

b. �1.82

c. 0.33
8.39 For each of the three z statistics you considered in Ex-

ercise 8.37 as a two-tailed test, determine prep.

a. 2.23

b. �1.82

c. 0.33
8.40 Using the table of numbers provided below, calculate

statistical power for a one-tailed test (a � 0.05, or 5%)
aimed at determining if those in the sample sleep fewer
hours, on average, than those in the population.

8.41 A meta-analysis reports an average effect size of d �
0.11, with a confidence interval of d � �0.06 to d �

0.28. Would a hypothesis test (assessing the null hypoth-
esis that the average effect size is 0) lead us to reject the
null hypothesis? Explain.

8.42 A meta-analysis reports an average effect size of d �
0.11, with a confidence interval of d � 0.08 to d �
0.14. Would a hypothesis test (assessing the null hypoth-
esis that the average effect size is 0) lead us to reject the
null hypothesis? Explain.

8.43 Use Cohen’s conventions to describe the average effect
size of d � 0.11.

8.44 Assume you are conducting a meta-analysis over a set
of five studies. The effect sizes for each study follows: d
� 0.67; d � 0.03; d � 0.32; d � 0.59; d � 0.22.

a. Calculate the mean effect size for these studies.

b. Use Cohen’s conventions to describe the mean ef-
fect size you calculated in part (a).

Applying the Concepts

8.45 A friend reads in her Introduction to Psychology textbook
about a minority group in Japan, the Burakumin, who
are racially the same as other Japanese people but are
viewed as outcasts because their ancestors were em-
ployed in positions that involved the handling of dead
animals (e.g., butchers). In Japan, the text reported,
mean IQ scores of Burakumin were 10 to 15 points
below mean IQ scores of other Japanese. In the United
States, where Burakumin experienced no discrimina-
tion, there was no mean difference (from Ogbu, 1986,
as reported in Hockenbury & Hockenbury, 2003). Your
friend says to you: “Wow—when I taught English in
Japan last summer, I had a Burakumin student. He
seemed smart; perhaps I was fooled.” What should your
friend consider about the two distributions, the one
for Burakumin people and the one for other Japanese
people?

8.46 Here are summary data from a z test regarding scores
on the Consideration of Future Consequences scale
(Petrocelli, 2003): the population mean (l) is 3.51 and
the population standard deviation (r) is 0.61. Imagine
that a sample of 45 students had a mean of 3.7.

a. Calculate the test statistic for a sample of 5 students.

b. Calculate the test statistic for a sample of 1000
students.

c. Calculate the test statistic for a sample of 1,000,000
students.

d. Explain why the test statistic varies so much even
though the population mean, population standard
deviation, and sample mean do not change.

Mean of 
population 1 16 hours of sleep

Standard deviation 
of the population 1.7 hours of sleep

Standard error

Sample size 37 infants

Mean of 
population 2 14.9 hours of sleep
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e. Why might sample size pose a problem for hy -
pothesis testing and the conclusions we are able to
draw?

8.47 In an exercise in Chapter 7, we asked you to conduct
a z test to ascertain whether the Graded Naming Test
(GNT) scores for Canadian participants differed from
the GNT norms based on adults in England. The mean
for a sample of 30 adults in Canada was 17.5. The nor-
mative mean for adults in England is 20.4, and we as-
sumed a population standard deviation of 3.2. With 30
participants, the z statistic was �4.97 and we were able
to reject the null hypothesis.

a. Calculate the test statistic for 3 participants. How
does the test statistic change compared to when N
of 30 was used? Conduct step 6 of hypothesis test-
ing. Does your conclusion change? If so, does this
mean that the actual difference between groups
changed? Explain.

b. Calculate the test statistic for 100 participants. How
does the test statistic change?

c. Calculate the test statistic for 20,000 participants.
How does the test statistic change?

d. What is the effect of sample size on the test  statistic?

e. As the test statistic changes, has the underlying dif-
ference between groups changed? Why might this
present a problem for hypothesis testing?

8.48 Unsavory researchers know that one can cheat with hy-
pothesis testing. That is, they know that a researcher can
stack the deck in her or his favor, making it easier to
reject the null hypothesis.

a. If you wanted to make it easier to reject the null
hypothesis, what are three specific things you
could do?

b. Would it change the actual difference between your
samples? Why is this a potential problem with hy-
pothesis testing?

8.49 A Midwestern U.S. university reported that its social
science majors tended to outperform its humanities ma-
jors on the LSATs (which gives them an edge at getting
into law school). Sadie, an English major, and Kofi, a so-
ciology major, both just took the LSAT.

a. Can we tell which student will do better on the
LSAT? Explain your answer.

b. Draw a picture that represents what the two distri-
butions, that for social science majors and that for
humanities majors at this institution, might look like
with respect to one another.

8.50 Your roommate is reading Fantasyland: A Season on Base-
ball’s Lunatic Fringe (Walker, 2006) and is intrigued by
the statistical methods used by competitors in fantasy
baseball leagues (in which competitors select their own
team of baseball players from across all major league

teams, winning in the fantasy league if their eclectic ros-
ter of players outperforms the chosen mixes of other
fantasy competitors). Among the many statistics re-
ported in the book is a finding that major league base-
ball players who have a third child show more of a
decline in performance than players who have a first
child or a second child. Your friend remembers that
Johnny Damon had a third child within the last few
years and drops him from consideration for his fantasy
team.

a. Explain to your friend why a difference between
means doesn’t provide information about any spe-
cific individual player. Include a drawing of over-
lapping curves as part of your answer. On the
drawing, mark places on the x-axis that might rep-
resent a player from the distribution of those who
recently had a third child (mark with an X) scor-
ing above a player from the distribution of those
who recently had a first or second child (mark
with a Y ).

b. Explain to your friend that a statistically sig ni-
ficant difference doesn’t necessarily indicate a
large effect size. How might a measure of effect
size, such as Cohen’s d, help us understand the
importance of these findings and compare them
to other predictors of performance that might
have larger effects?

c. Given that the reported association is true, can we
conclude that having a third child causes a decline
in performance? Explain your answer. What con-
founds might lead to the difference observed in this
study?

d. Given the relatively limited numbers of major
league baseball players (and the relatively limited
numbers of those who recently had a child—
whether first, second, or third), what general guess
would you make about the likely statistical power
of this analysis?

8.51 In an exercise in Chapter 7, we asked whether college
football teams tend to be more likely or less likely to be
mismatched in the upper National Collegiate Athletic
Association (NCAA) divisions. During week 11 of the
fall 2006 college football season, the population of 53
Division I-A games had a mean spread (winning score
minus losing score) of 16.189, with a standard deviation
of 12.128. We took a sample of four games that were
played that week in the next-highest league, Division I-
AA, to see if the spread were different; one of the many
leagues within Division I-AA, the Patriot League, played
four games that weekend. Their mean was 8.75.

a. Calculate the 95% confidence interval for this
sample.

b. State in your own words what we learn from this
confidence interval.



c. What information does the confidence interval give
us that we also get from a hypothesis test?

d. What additional information does the confidence
interval give us that we do not get from a hypothesis
test?

8.52 Using the football data presented in Exercise 8.51, prac-
tice evaluating data using confidence intervals.

a. Compute the 80% confidence interval.

b. How do your conclusion and the confidence inter-
val change as you move from 95% confidence to
80% confidence?

c. Why don’t we talk about having 100% confidence?

8.53 In Exercises 8.51 and 8.52, we considered the study of
week 11 of the fall 2006 college football season, during
which the population of 53 Division I-A games had a
mean spread (winning score minus losing score) of
16.189, with a standard deviation of 12.128. The sample
of four games that were played that week in the next
highest league, Division I-AA, had a mean of 8.75.

a. Calculate the appropriate measure of effect size for
this sample.

b. Based on Cohen’s conventions, is this a small,
medium, or large effect size?

c. Why is it useful to have this information in addition
to the results of a hypothesis test?

8.54 In Exercises 8.51 and 8.52, we considered the study of
week 11 of the fall 2006 college football season. In an
exercise in Chapter 7, we conducted a two-tailed hy-
pothesis test and calculated a z statistic of �1.23.

a. Determine prep for this example.

b. Explain in your own words what this means.

8.55 According to the Nielsen Company, Americans spend
$345 million on chocolate during the week of Valen-
tine’s Day. Let’s assume that we know the average mar-
ried person spends $45 with a population standard
deviation of $16. In February 2009, the U.S. economy
was in the throes of a recession. Comparing data for
Valentine’s Day spending in 2009 with what is gener-
ally expected might give us some indication of the at-
titudes of American  citizens.

a. We obtain a sample of 18 married people and find
that they spent $38 on average. Compute the 95%
confidence interval.

b. How does the 95% confidence interval change if
our sample mean was based on 180 people?

c. If you were testing a hypothesis that things had
changed under the financial circumstances of 2009,
what conclusion would you draw in part (a) versus
part (b)?

d. Compute the effect size based on these data and de-
scribe the size of the effect.

8.56 Let’s assume the average speed of a serve in men’s tennis
is around 135 mph with a standard deviation of 6.5
mph. Because these statistics are calculated over many
years and many players, we will treat them as population
parameters. We develop a new training method that will
increase arm strength, the force of the tennis swing, and
the speed of the serve, we hope. We recruit 9 profes-
sional tennis players to use our method. After six
months, we test the speed of their serve and compute
an average of 138 mph.

a. Using a 95% confidence interval, test the hypothesis
that our method makes a difference.

b. Compute the effect size and describe its strength.

8.57 Let’s assume the average speed of a serve in women’s
tennis is around 118 mph, with a standard deviation of
12 mph. We recruit 26 amateur tennis players to use our
method this time, and after six months we calculate a
group mean of 123 mph.

a. Using a 95% confidence interval, test the hypothesis
that our method makes a difference.

b. Compute the effect size and describe its strength.

8.58 In Exercise 8.47, we explored a study of the Graded
Naming Test.

a. In Chapter 7, we calculated a z statistic of �4.97
for 30 participants. Determine prep for this example.
(Note: Excel won’t work with a proportion of
0.0000, so use a proportion of 0.000001, a number
very close to 0, instead.)

b. In one part of the question, you were asked to cal-
culate the z statistic for a sample of just 3 partici-
pants. Based on the z statistic you calculated, what
is prep?

c. Keeping all else the same, what happens to prep as
sample size increases?

8.59 Calculate statistical power for the test performed in Ex-
ercise 8.56 using the following alpha levels in a one-
tailed test:

a. alpha of 0.05, or 5%

b. alpha of 0.10, or 10%

c. Explain how power is affected by alpha in these
calculations.

8.60 We can witness the importance of alpha by recomput-
ing statistical power for the data presented in Exercise
8.40.

a. For this new computation, use alpha of 0.01, or 1%,
for the one-tailed test.

b. Explain why changing alpha affects power.

c. If using a smaller alpha reduces power, why not use
a larger alpha?
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8.61 Use the data presented in Exercise 8.40 to answer these
questions:

a. Without performing any computations, describe
how statistical power is affected by performing a
two-tailed test.

b. Why are two-tailed tests recommended over one-
tailed tests?

8.62 The easiest way to affect the outcome of a hypothesis
test is to increase sample size. Similarly, true results may
sometimes be missed because a sufficient sample was
not used in the research.

a. Perform the hypothesis test on the data in Exercise
8.40 with the sample of 37.

b. Perform the same hypothesis test but assume the
mean was based on only 4 infants.

8.63 The easiest way to increase statistical power is to in-
crease sample size. Similarly, statistical power decreases
with a smaller sample size. Use the data in Exercises 8.40
and 8.62 to answer the following:

a. Compute the statistical power of the one-tailed sta-
tistical test with alpha of 0.05 when N is 4.

b. How does that value compare to when N was 37
in Exercise 8.40?

8.64 In several exercises in this chapter, we considered the
study of week 11 of the fall 2006 college football season,
during which the population of 53 Division I-A games
had a mean spread (winning score minus losing score)
of 16.189, with a standard deviation of 12.128. The
sample of four games that were played that week in
the next-highest league, Division I-AA, had a mean
of 8.75.

a. Calculate statistical power for this study using a one-
tailed test and a p level of 0.05.

b. What does the statistical power suggest about how
we should view the findings of this study?

c. Using G*Power or an online power calculator, cal-
culate statistical power for this study for a one-tailed
test with a p level of 0.05.

8.65 A meta-analysis examined studies that compared two
types of mental health treatments for ethnic and ra -
cial minorities—the standard available treatments and
treatments that were adapted to the clients’ cultures

(Griner & Smith, 2006). An excerpt from the abstract
follows:

Many previous authors have advocated traditional mental
health treatments be modified to better match clients’ cultural
contexts. Numerous studies evaluating culturally adapted in-
terventions have appeared, and the present study used meta-
analytic methodology to summarize these data. Across 76
studies the resulting random effects weighted average effect
size was d � .45, indicating a . . . benefit of culturally
adapted interventions (p. 531).

a. What is the topic chosen by the researchers con-
ducting the meta-analysis?

b. Suggest at least one criterion that the researchers
might have used to select the studies for the meta-
analysis.

c. What effect size did the researcher’s calculate for
each study in the meta-analysis?

d. What was the mean effect size that they found? Ac-
cording to Cohen’s conventions, how large is this
effect?

e. If a study chosen for the meta-analysis did not in-
clude an effect size, what summary statistics could
the researchers use to calculate an effect size?

8.66 The research paper on culturally targeted therapy de-
scribe in Exercise 8.65 reported the following:

Across all 76 studies, the random effects weighted average
effect size was d � .45 (SE � .04, p � .0001), with
a 95% confidence interval of d � .36 to d � .53. The data
consisted of 72 nonzero effect sizes, of which 68 (94%)
were positive and 4 (6%) were negative. Effect sizes ranged
from d � �.48 to d � 2.7 (Griner & Smith, 2006,
p. 535).

a. What is the confidence interval for the effect size?

b. Based on the confidence interval, would a hypoth-
esis test (with the null hypothesis that the effect size
is zero) lead us to reject the null hypothesis?
Explain.

c. Why would a graph, such as a histogram, be useful
when conducuting a meta-anlaysis like this one?
(Hint: Consider the problems when using a mean
as the measure of central tendency.)

point estimate (p. 197)
interval estimate (p. 197)
confidence interval (p. 198)

effect size (p. 204)
Cohen’s d (p. 206)
prep (p. 208)

statistical power (p. 209)
meta-analysis (p. 215)
file drawer analysis (p. 217)

Terms
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Symbols
Cohen’s d (or just d)      (p. 206)
prep                                (p. 208)
a                                  (p. 212)

Formulas

Mlower � �z(rM) � Msample (p. 200)
Mupper � z(rM) � Msample (p. 200)

Cohen’s for a 

z distribution (p. 207)

prep �NORMSDIST(NORMSINV
(1-P)/(SQRT(2))) [used in 
Microsoft Excel] (p. 208)

d
M

�
�( )l

r
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■ You should know the six steps of hypothesis
testing (Chapter 7).

■ You should know how to determine a
confidence interval for a z statistic
(Chapter 8).

■ You should understand the concept of effect
size and know how to calculate Cohen’s d for
a z test (Chapter 8).

BEFORE YOU GO ON

The t Distributions
Estimating Population Standard Deviation

from a Sample
Calculating Standard Error for 

the t Statistic
Using Standard Error to Calculate 

the t Statistic

The Single-Sample t Test
The t Table and Degrees of Freedom
The Six Steps of the Single-Sample t Test
Calculating a Confidence Interval for a

Single-Sample t Test
Calculating Effect Size for a Single-Sample

t Test

Next Steps: Dot Plots
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How do humans decide whether another person is attractive? There are a variety of
reasons, of course, but one of those reasons is the balance of facial features. Researchers
tested this finding by warping human faces on a computer and making them look
more or less typical than the average face (Rhodes et al., 2001). These same researchers
also split the face in half and created a perfectly symmetric mirror image. It turns out
that this symmetric face was rated as more attractive than other face shapes.

Humans are not alone in preferring symmetry. Bumblebees are more attracted to
flowers whose petals are more symmetric. How did the researchers determine which
flowers had more symmetric petals? They subtracted the size of the petals on the
right side of the flower from the size of the petals on the left side (Moller, 1995).
Then they averaged that number and compared it to a population mean to see if the
average size of the petals was significantly different from zero. To do this, they used
the single-sample t test.

The researchers discovered that a sample of 200 flowers had petals that were so close
to symmetric that their average score was not significantly different from zero. After
that, they sat back and observed (for 50 hours) which kinds of flowers bumblebees
went to first (a symmetric flower or an asymmetric flower). From these observations,
they discovered one reason why bumblebees may prefer symmetric flowers: symmetric
flowers yield more nectar.

In this case, the population mean was the ideal flower—perfectly symmetric, like
a mirror image. The comparison in the sample was not perfectly symmetric—you
wouldn’t expect even the most beautiful flowers to be perfectly symmetric. But the
single-sample t test gave the researchers reason to believe that the flowers in their sam-
ple were close enough. Whenever we want to compare the mean of a sample to a
known population mean, we conduct a single-sample t test using the t distributions.

The t Distributions
The t distributions help us specify precisely how confident we can be in our research
findings. We want to know if we can generalize what we have learned about one sample
of bumblebees and flowers to a larger population of bumblebees and flowers. When we
compare any sample to a larger population, we are concerned about whether the sample
is a fair representation of that larger population. The t test, based on the t distributions,
tells us how confident we can be that our sample differs from the larger population.
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Bumblebees, Flowers, and the
Single-Sample t Test When
researchers compared the sample mean
symmetry of flowers to a population
mean (perfectly symmetric flowers with
a mean of 0), they were using the
single-sample t test.
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0

Standard, normal z distribution
t distribution, 30 individuals
t distribution, 8 individuals
t distribution, 2 individuals

FIGURE 9-1
The Wider and Flatter 
t Distributions

For smaller samples, the t distributions
are wider and flatter than the z
distribution. As the sample size
increases, however, the t distributions
approach the shape of the z distribution.
For instance, the t distribution most
similar to the z distribution is that for a
sample of approximately 30 individuals.
This makes sense because a
distribution derived from a larger sample
size would be more likely to be similar
to that of the entire population than one
derived from a smaller sample size.

The t distributions are used when we don’t have enough information to use the z
distribution. Specifically, we have to use a t distribution when we don’t know the pop-
ulation standard deviation or when we compare two samples to each
other. We’ll look at situations comparing two samples, both for a
within-groups design and a between-groups design, in Chapters 10
and 11. As Figure 9-1 demonstrates, there are many t distributions—
one for each possible sample size. As the sample size gets smaller, we
become less certain about what the population distribution really
looks like, and the t distributions become flatter and more spread out.
However, as the sample size gets larger, the t distributions begin to
merge with the z distribution because we gain confidence as more and
more participants are added to our study.

Estimating Population Standard Deviation from a Sample
Before we can conduct a single-sample t test, we have to estimate the standard deviation.
To do this, we use the standard deviation of the sample data to estimate the standard
deviation of the entire population. Estimating the standard deviation is the only practical
difference between conducting a z test with the z distribution and conducting a t test
with a t distribution. Here is the standard deviation formula that we have used up until
now with a sample:

We need to make a correction to this formula to account for the fact that there is
likely to be some level of error when we’re estimating the population standard deviation
from a sample. Specifically, any given sample is likely to have somewhat less spread than
does the entire population. One tiny alteration of this formula leads to the slightly
larger standard deviation of the population that we estimate from the standard deviation
of the sample. Instead of dividing by N, we divide by (N � 1) to get the mean of the
squared deviations. Subtraction is the key. Dividing by a slightly smaller number,
(N � 1), instead of by N increases the value of the standard deviation. For example, if
the numerator was 90 and the denominator (N) was 10, the answer would be 9; if we
divide by (N � 1) � (10 � 1) � 9, the answer would be 10, a slightly larger value.
So the formula for estimating the standard deviation of the population from the standard
deviation of the sample is:

SD
X M

N
�

�R( )2

s
X M

N
�

�

�

R( )

( )

2

1 �                                         

MASTERING THE FORMULA

9-1: The formula for standard devi-
ation when estimating from a sample

is: . We subtract 1

from the sample size in the denom-
inator to correct for the probability
that the sample standard deviation
slightly underestimates the actual
standard deviation in the population.

s
X M

N
�

�

�

R( )

( )

2

1

�   MASTERING THE CONCEPT

9-1: We use a t distribution instead of a z

distribution when sampling requires us to

estimate the population standard deviation

from the sample standard deviation.
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Notice that we call this standard deviation s instead of SD.
It still uses Latin rather than Greek letters because it is a sta-
tistic (from a sample) rather than a parameter (from a popu-
lation). From now on, we will calculate the standard deviation
in this way (because we will be using the sample standard de-
viation to estimate the population standard deviation), and
we will be calling our standard deviation s.

Let’s apply the new formula for standard deviation to an
everyday situation that many of us can relate to: multi -
tasking. This formula marks an important step in conducting
a t test. Researchers conducted a study in which employees
were observed at one of two high-tech companies for over
1000 hours (Mark, Gonzalez, & Harris, 2005). The employ-
ees spent just 11 minutes, on average, on one project before
an interruption. Moreover, after each interruption, they
needed an average of 25 minutes to get back to the original
project! So even though a person who is busy multitasking

appears to be productive, maybe the underlying reality is that multitasking actually
reduces overall productivity. How can we use a t test to determine the effects of mul-
titasking on productivity?

Suppose you were a manager at one of these firms and decided to reserve a period
from 1:00 to 3:00 each afternoon during which employees could not interrupt one
another, but they might still be interrupted by phone calls or e-mails from people out-
side the company. To test your intervention, you observe five employees during these
periods and develop a score for each—the time he or she spent on a selected task
before being interrupted. Here are your fictional data: 8, 12, 16, 12, and 14 minutes.
In this case, we are treating 11 minutes as the population mean, but we do not know
the population standard deviation. As a key step in conducting a t test, we need to es-
timate the standard deviation of the population from the sample.
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Multitasking If multitasking reduces productivity in a sample, we can
statistically determine the probability that multitasking reduces productivity
among a much larger population.

To calculate the estimated standard deviation for the population, there are two steps.

Even though we are given a population
mean (i.e., 11), we use the sample mean to

calculate the corrected standard deviation for the sample. The mean for these 5 sample
scores is:

Remember, the easiest way to calculate the numerator under the square root sign
is by first organizing our data into columns, as shown here:

STEP 1: Calculate the sample mean.

M �
� � � �

�
( )

.
8 12 16 12 14

5
12 4

STEP 2: Use this sample mean in 
the corrected formula for the
standard deviation.

s
X M

N
�

�

�

R( )

( )

2

1

EXAMPLE 9.1
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Calculating Standard Error for the t Statistic
After we make the correction, we have an estimate of the standard deviation of the dis-
tribution of scores, but not an estimate of the spread of a distribution of means, the stan-
dard error. As we did with the z distribution, we need to make our spread smaller to
reflect the fact that a distribution of means is less variable than a distribution of scores.
We do this in exactly the same way that we adjusted for the z distribution. We divide
s by . The formula for the standard error as estimated from a sample, therefore, isN

s
s

N
M �

Thus, the numerator is:

R(X � M)2 � R(19.36 � 0.16 � 12.96 � 0.16 � 2.56) � 35.2

And given a sample size of 5, the corrected standard deviation is:

■

X X � M     (X � M )2

  8      �4.4         19.36

12      �0.4           0.16

16          3.6         12.96

12      �0.4           0.16

14          1.6           2.56
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A Simple Correction: N � 1 When estimating variability, subtracting one person from a sample of four makes
a big difference. Subtracting one person from a sample of thousands makes only a small difference.
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MASTERING THE FORMULA

9-2: The formula for standard error
when we’re estimating from a sam-

ple is: . It only differs from

the formula for standard error we
learned previously in that we’re
using s instead of r because we’re
working from a sample instead of a
population.

s
s

N
M �
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Notice that we have replaced r with s because we are using the corrected stan-
dard deviation from the sample rather than the actual standard deviation from the
population.

Here’s how we would convert our corrected standard deviation of 2.97 (from the data
above on minutes before an interruption) to a standard error. Our sample size was 5,
so we divide by the square root of 5:

So the appropriate standard deviation for the distribution of means—that is, its stan-
dard error—is 1.33. Just as the central limit theorem predicts, the standard error for
the distribution of sample means is smaller than the standard deviation of sample scores
(1.33 � 2.97). ■

(Note: This step leads to one of the most common mistakes that we see among our
students. Because we have implemented a correction when calculating s, students want
to implement an extra correction here by dividing by . Do not do this! We
still divide by in this step. We are making our standard deviation smaller to reflect
the size of the sample; there is no need for a further correction to the standard error.)

Using Standard Error to Calculate the t Statistic
Once we know how to estimate the population standard deviation from the sample
and then use that to calculate standard error, we have all the tools necessary to conduct
a t test. The simplest type of t test is the single-sample t test. We introduce the formula
for that t statistic here, and in the next section we go through all six steps for a single-
sample t test. The formula to calculate the t statistic for a single-sample t test is identical
to that for the z statistic, except that it uses the estimated standard error rather than the
actual standard error of the population of means. So the t statistic indicates the distance
of a sample mean from a population mean in terms of the standard error. That distance is ex-
pressed numerically as the estimated number of standard errors between the two means.
Here is the formula for the t statistic for a distribution of means:

Note that the denominator is the only difference between this formula for the t
statistic and the formula used to compute the z statistic for a sample mean. The cor-
rected denominator makes the t statistic smaller and thereby reduces the probability
of observing an extreme t statistic. That is, a t statistic is not as extreme as a z statistic;
in scientific terms, it’s more conservative.
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MASTERING THE FORMULA

9-3: The formula for the t statistic

is: . It only differs from

the formula for the z statistic in that
we use sM instead of rM because
we’re using the sample to estimate
standard error rather than using the
actual population standard error.

t
M

s
M

M

�
�( )l

The t statistic for our sample of 5 scores representing minutes until interruptions is:

As part of the six steps of hypothesis testing, this t statistic, 1.05, can help us make
an inference about whether the communication ban from 1:00 to 3:00 affected the
average number of minutes until an interruption. ■
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EXAMPLE 9.3



The Single-Sample t Test
Learning about the attraction between bumblebees and flowers is only one of the com-
parisons researchers can make using the single-sample t statistic. The t statistic could also
be used to compare whether symmetry sparks attraction between other insects or any
other kind of organisms, including humans. To answer these kinds of question, we now
demonstrate how to conduct a single-sample t test.

A single-sample t test is a hypothesis test in which we compare data from one sample to
a population for which we know the mean but not the standard deviation. The only thing we
need to know to use a single-sample t test is the population mean. We begin with the
single-sample t test because understanding it will help us when using the more sophis-
ticated t tests that let us compare two samples.
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As with the z distribution, statisticians have developed t tables that include proba-
bilities under specific areas of the t curve. We provide you with a t table for many dif-
ferent sample sizes in Appendix B. The t table includes only the percentages of most
interest to researchers—those indicating the extreme scores that suggest large differences
between groups.

CHECK YOUR LEARNING
Reviewing the Concepts       > The t distributions are used when we do not know the population standard deviation and

are comparing only two groups.

> The two groups may be a sample and a population, or the two groups may be two samples
as part of a within-groups design or a between-groups design.

> Because we do not know the population standard deviation, we must estimate it, and es-
timating invites the possibility of more error.

> The formula for the t statistic for a single-sample t test is the same as the formula for the
z statistic for a distribution of means, except that we use estimated standard error in the
denominator rather than the actual standard error for the population.

Clarifying the Concepts        9-1 What is the t statistic?

Calculating the Statistics      9-2 Calculate the standard deviation for a sample (SD) and as an estimate of the population
(s) using the following data: 6, 3, 7, 6, 4, 5.

    9-3 Calculate the standard error for t for the data given in Check Your Learning 9-2.

Applying the Statistics         9-4 In our discussion of a study on multitasking (Mark et al., 2005), we imagined a follow-
up study in which five employees were observed following a communication ban from
1:00 to 3:00. For each of the five employees, one task was selected. Let’s now examine
the time until work on that task was resumed. The fictional data for the 5 employees
were 20, 19, 27, 24, and 18 minutes until work on the given task was resumed.
Remember that the original research showed it took 25 minutes on average for an
employee to return to a task after being interrupted.

a. What distribution will be used in this situation? Explain your answer.

b. Determine the appropriate mean and standard deviation (or standard error) for this
distribution. Show all your work; use symbolic notation and formulas where
appropriate.

c. Calculate the t statistic.

Solutions to these Check Your
Learning questions can be found in
Appendix D.

■ The t statistic indicates the
distance of a sample mean
from a population mean in
terms of the standard error.

■ A single-sample t test is a
hypothesis test in which we
compare data from one
sample to a population for
which we know the mean but
not the standard deviation.
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The t Table and Degrees of Freedom
When we use the t distributions, we use the t table. There are different t distributions
for every sample size, so we must take sample size into account when using the t table.
However, we do not look up the actual sample size on the table. Rather, we look up
degrees of freedom, the number of scores that are free to vary when estimating a population pa-
rameter from a sample. The phrase free to vary refers to the number of scores that can take
on different values if we know a given parameter.

For example, the manager of a baseball team needs to assign nine players to particular
spots in the batting order but only has to make eight decisions (N � 1). Why? Because
only one option remains after making the first eight decisions. So before the manager
makes any decisions, there are N � 1, or 9 � 1 � 8, degrees of freedom. After the
second decision, there are N � 1, or 8 � 1 � 7, degrees of freedom, and so on.

As in the baseball example, there is always one score that cannot vary once all of
the others have been determined. For example, if we know that the mean of four scores
is 6 and we know that three of the scores are 2, 4, and 8, then the last score must be
10. So the degrees of freedom is the number of scores in the sample minus 1; there is
always one score that cannot vary. Degrees of freedom is written in symbolic notation
as df, which is always italicized. The formula for degrees of freedom for a single-sample
t test, therefore, is:

df � N � 1 ■

This is one key piece of information to keep in mind as we work
with the t table. In the behavioral sciences, the degrees of freedom
usually correspond to how many people are in the study or how many
observations we make.

Table 9-1 is an excerpt from a t table, but an expanded table is in-
cluded in Appendix B. Consider the relation between degrees of freedom
and the cutoff point, or critical value, needed to declare statistical sig-
nificance. In the column corresponding to a one-tailed test at a p level
of 0.05 with only 1 degree of freedom (two observations), the critical t
value is 6.314. With only 1 degree of freedom, the two means have to
be extremely far apart and the standard deviation has to be very small
in order to declare that a statistically significant difference exists. But with
2 degrees of freedom (three observations), the critical t value drops to
2.920. With 2 degrees of freedom, the two means don’t have to be quite
so far apart or the standard deviation so small. That is, it is easier to reach
the critical level of 2.920 needed to declare that there is a statistically

significant difference. We’re more confident with three observations than with just two.
Now notice what happens when we increase the number of observations once again

from three observations to four observations (with df of 3). The critical t value needed
to declare statistical significance once again decreases, from 2.920 to 2.353. Our level of
confidence in our observation increases with each additional observation. At the same
time, the critical value decreases, becoming closer and closer to the related cutoff on the
z distribution.

The t distributions become closer to the z distribution as sample size increases.
When the sample size is large enough, the standard deviation of a sample is more
likely to be equal to the standard deviation of the population. In fact, at large enough

EXAMPLE 9.4

                                        �

MASTERING THE FORMULA

9-4: The formula for degrees of
freedom for a single-sample t test is:
df � N � 1. To calculate degrees of
freedom, we subtract 1 from the
sample size.

�   MASTERING THE CONCEPT

9-2: Degrees of freedom refers to the

number of scores that can take on different

values if we know a given parameter. For

example, if we know that the mean of three

scores is 10, only two scores are free to vary.

Once we know the values of two scores, we

know the value of the third. If we know that

two of the scores are 9 and 10, then we

know that the third must be 11.
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sample sizes, the t distribution is identical to the z distribution. Most t tables include
a sample size of infinity (∞) to indicate a very large sample size (a sample size of
infinity itself is, of course, impossible). The t statistics at extreme percentages for very
large sample sizes are identical to the z statistics at the very same percentages. Check
it out for yourself by comparing the z and t tables in Appendix B. For example, the
z statistic for the 95th percentile—a percentage between the mean and the z statistic
of 45%—is between 1.64 and 1.65. At a sample size of infinity, the t statistic for the
95th percentile is 1.645.

Let’s remind ourselves why the t statistic merges with the z statistic
as sample size increases. The underlying principle is easy to under-
stand: more observations lead to greater confidence. Thus, more par-
ticipants in a study—if they are a representative  sample—correspond
to increased confidence that we are making an accurate observation.
So don’t think of the t distributions as completely separate from the
z distribution. Rather, think of the z statistic as a single-blade Swiss
Army knife and the t statistic as a multiblade Swiss Army knife that
still includes the single blade that is the z statistic.

Let’s determine the cutoffs, or critical t value(s), for two research
studies. For the first study, you may use the excerpt in Table 9-1. The
second study requires the full t table in Appendix B.

TABLE 9-1. Excerpt from the t Table

When conducting hypothesis testing, we use the t table to determine critical values for a given p level, based
on the degrees of freedom and whether the test is one- or two-tailed.

                                       One-Tailed Tests                                                 Two-Tailed Tests

       df               0.10                0.05                0.01                 0.10                 0.05                 0.01

        1               3.078               6.314               31.821               6.314               12.706               63.657

        2               1.886               2.920                 6.965               2.920                 4.303                 9.925

        3               1.638               2.353                 4.541               2.353                 3.182                 5.841

        4               1.533               2.132                 3.747               2.132                 2.776                 4.604

        5               1.476               2.015                 3.365               2.015                 2.571                 4.032

The study: A researcher collects Stroop reaction times for five participants who have
had reduced sleep for three nights. She wants to compare this sample to the known
population mean. Her research hypothesis is that the lack of sleep will slow participants
down, leading to an increased reaction time. She will use a p level of 0.05 to determine
her critical value.

The cutoff(s): This is a one-tailed test because the research hypothesis posits a change
in only one direction—an increase in reaction time. There will be only a positive critical
t value because we are hypothesizing an increase. There are five participants, so the de-
grees of freedom is:

df � N � 1 � 5 � 1 � 4

Her stated p level is 0.05. When we look in the t table under one-tailed tests, in
the column labeled 0.05 and in the row for a df of 4, we see a critical value of 2.132.
This is our cutoff t value.  ■

EXAMPLE 9.5

�   MASTERING THE CONCEPT

9-3: As sample size increases, the t

distributions more and more closely

approximate the z distribution. We can think

of the z statistic as a single-blade Swiss

Army knife and the t statistic as a

multiblade Swiss Army knife that includes

the single blade that is the z statistic.

■ Degrees of freedom is the
number of scores that are free
to vary when estimating a
population parameter from a
sample.
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Chapter 4 presented data that included the mean number of sessions attended by clients
at a university counseling center. We noted that one study reported a mean of 4.6 ses-
sions (Hatchett, 2003). Let’s imagine that the counseling center hoped to increase par-

ticipation rates by having students sign a contract to attend at least 10
sessions. Five students sign the contract and attend 6, 6, 12, 7, and 8 sessions,
respectively. The researchers are interested only in their university, so treat
the mean of 4.6 sessions as a population mean.

Population 1: All clients at this
counseling center who sign a
contract to attend at least 10 ses-
sions. Population 2: All clients at

this counseling center who do not sign a contract to attend at least 10 sessions.
The comparison distribution will be a distribution of means. The hypoth-

esis test will be a single-sample t test because we have only one sample and
we know the population mean but not the population standard deviation.

This study meets one of the three assumptions and may meet the other
two: (1) The dependent variable is scale. (2) We do not know whether the
data were randomly selected, however, so we must be cautious with respect
to generalizing to other clients at this university who might sign the con-
tract. (3) We do not know whether the population is normally distributed,
and there are not at least 30 participants. However, the data from our sample
do not suggest a skewed distribution.

Null hypothesis: Clients at this
university who sign a contract to
attend at least 10 sessions attend

the same number of sessions, on average, as clients who do not sign such
a contract—H0: l1 � l2.

STEP 1: Identify the populations,
distribution, and
assumptions.

STEP 2: State the null and research
hypotheses.

EXAMPLE 9.7

The study: A researcher knows the mean number of calories a rat will consume in half
an hour if unlimited food is available. He wonders whether a new food will lead rats
to consume a different number of calories—either more or fewer. He studies 38 rats
and uses a conservative critical value based on a p level of 0.01.

The cutoff(s): This is a two-tailed test because the research hypothesis allows for
change in either direction. There will be both negative and positive critical t values.
There are 38 rats, so the degrees of freedom is:

df � N � 1 � 38 � 1 � 37

His stated p level is 0.01. We want to look in the t table under two-tailed tests, in
the column for 0.01 and in the row for a df of 37; however, there is no df of 37. In
this case, we err on the side of being more conservative and choose the more extreme
(i.e., larger) of the two possible critical t values, which is always the smaller df. Here,
we look next to 35, where we see a value of 2.724. Because this is a two-tailed test,
we will have critical values of �2.724 and 2.724. Be sure to list both values. ■

The Six Steps of the Single-Sample t Test
Now we have all the tools necessary to conduct a single-sample t test. So let’s consider
a hypothetical study and conduct all six steps of hypothesis testing.

EXAMPLE 9.6
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Nonparticipation in Therapy Clients missing
appointments can be a problem for their therapists. A t
test can compare the consequences between those
who do and those who do not commit themselves to
participating in therapy for a set period.
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2.5% 2.5%

2.776�2.776

FIGURE 9-2
Determining Cutoffs for 
a t Distribution

As with the z distribution, we typically
determine critical values in terms of t
statistics rather than means of raw
scores so that we can easily compare a
test statistic to them to determine
whether the test statistic is beyond the
cutoffs. Here, the cutoffs are �2.776
and 2.776, and they mark off the most
extreme 5%, with 2.5% in each tail.

Research hypothesis: Clients at this university who sign a contract to attend at least
10 sessions attend a different number of sessions, on average, from clients who do not
sign such a contract—H1: l1 � l2.

lM � 4.6; sM � 1.114

Calculations:

lM � l � 4.6

The numerator of the standard deviation formula is the sum of the squares:

R(X � M)2 � R (3.24 � 3.24 � 17.64 � 0.64 � 0.04) � 24.8

df � N � 1 � 5 � 1 � 4

For a two-tailed test with a p level of 0.05 and df of 4, the critical values are �2.776
and 2.776 (as seen in the curve in Figure 9-2).

STEP 3: Determine the characteristics
of the comparison distribution.
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STEP 4: Determine the critical values,
or cutoffs.



After completing the hypothesis test, we want to present the primary statistical in-
formation in a report. There is a standard American Psychological Association (APA)
format for the presentation of statistics across the behavioral sciences so that the results
are easily understood by the reader. You’ll notice this format in almost every journal
article that reports results of a social science study:

1. Write the symbol for the test statistic (e.g., t).
2. Write the degrees of freedom, in parentheses.
3. Write an equal sign and then the value of the test statistic, typically to two dec-

imal places.
4. Write a comma and then indicate the p value by writing “p �” and then the

actual value. (Unless we use software to conduct our hypothesis test, we will
not know the actual p value associated with our test statistic. In this case, we’ll
simply state whether the p value is beyond the critical value by saying p � 0.05
or p � 0.05.)

In our example, the statistics would read:

t(4) � 2.87, p � 0.05

The statistic typically follows a statement about the finding, after a comma or in
parentheses: for example, “It appears that counseling center clients who sign a contract
to attend at least 10 sessions do attend more sessions, on average, than do clients who
do not sign such a contract, t(4) � 2.87, p � 0.05.” The report would also include
the sample mean and the standard deviation (not the standard error) to two decimal
points. The descriptive statistics, typically in parentheses, would read, for our example:
(M � 7.80, SD � 2.49). Notice that, due to convention, we use SD instead of s to
symbolize the standard deviation.  ■
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Reject the null hypothesis. It appears that
counseling center clients who sign a contract

to attend at least 10 sessions do attend more sessions, on average, than do clients who
do not sign such a contract (see Figure 9-3).

STEP 5: Calculate the test statistic.

t
M

s
M

M

�
�

�
�

�
( ) ( . . )

.
.

l 7 8 4 6

1 114
2 873

STEP 6: Make a decision.

2.5% 2.5%

2.776�2.776

2.873

FIGURE 9-3
Making a Decision

To decide whether to reject the null
hypothesis, we compare our test

statistic to our critical t values. In this
figure, the test statistic, 2.873, is

beyond the cutoff of 2.776, so we can
reject the null hypothesis.



Calculating a Confidence Interval for a Single-Sample t Test
As with a z test, the APA recommends that researchers report confidence intervals and
effect sizes, in addition to the results of hypothesis tests, whenever possible.
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We can calculate a confidence interval with the single-sample t test data. The population
mean was 4.6. We used the sample to estimate the population standard deviation to
be 2.490 and the population standard error to be 1.114. The five students in the sample
attended a mean of 7.8 sessions.

When we conducted hypothesis testing, we centered our curve
around the mean according to the null hypothesis—the population
mean of 4.6. We determined critical values based on this mean and
compared our sample mean to these cutoffs. We were able to reject
the null hypothesis that there was no mean difference between the
two groups. The test statistic was beyond the cutoff t statistic. Now
we can use the same information to calculate the 95% confidence in-
terval around the sample mean of 7.8.

We draw a normal curve (see Figure 9-4)
that has the sample mean, 7.8, at its center
(instead of the population mean, 4.6).

We draw a vertical line from the mean to
the top of the curve. For a 95% confidence
interval, we also draw two much smaller
vertical lines indicating the middle 95% of

the t distribution (2.5% in each tail for a total
of 5%).

We then write the appropriate percentages
under the segments of the curve. The curve is
symmetric, so half of the 95% falls above and half
falls below the mean. Thus, 47.5% falls on each
side of the mean between the mean and the cut-
off, and 2.5% falls in each tail.

For a two-tailed test with a p level of 0.05
and a df of 4, the critical values are �2.776
and 2.776. We can now add these t statistics
to the curve, as seen in Figure 9-5.

STEP 1: Draw a picture of a t
distribution that includes 
the confidence interval.

STEP 2: Indicate the bounds of 
the confidence interval on 
the drawing.

STEP 3: Look up the t statistics that
fall at each line marking the
middle 95%.

EXAMPLE 9.8

�   MASTERING THE CONCEPT

9-4: Whenever researchers conduct a

hypothesis test, the APA encourages that, if

possible, they also calculate a confidence

interval and an effect size.

7.8

2.5%

47.5% 47.5%

2.5%

FIGURE 9-4
A 95% Confidence Interval for a
Single-Sample t Test, Part I

To begin calculating a confidence
interval for a single-sample t test, we
place the sample mean, 7.8, at the
center of a curve and indicate the
percentages within and beyond the
confidence interval.

2.5%

(0) 2.776�2.776

47.5% 47.5%

2.5%

FIGURE 9-5
A 95% Confidence Interval for a
Single-Sample t Test, Part II

The next step in calculating a
confidence interval for a single-sample t
test is to identify the t statistics that
indicate each end of the interval.
Because the curve is symmetric, the t
statistics have the same magnitude—
one is negative, �2.776, and one is
positive, 2.776.



As we did with the z test, we can use for-
mulas for this conversion, but first we must
identify the appropriate mean and standard

deviation. There are two important points to remember. First, we center the interval
around the sample mean (not the population mean). So we use the sample mean of 7.8
in our calculations. Second, because we have a sample mean (rather than an individual
score), we use a distribution of means. So we use the standard error of 1.114 as the
measure of spread.

Using this mean and standard error, we can calculate the raw mean at each end of
the confidence interval, the lower end and the upper end, and add them to the curve
as in Figure 9-6. The formulas are exactly the same as for the z test except that z is
replaced by t, and rM is replaced by sM.

Mlower � �t(sM) � Msample � �2.776(1.114) � 7.8 � 4.71

Mupper � t(sM) � Msample � 2.776(1.114) � 7.8 � 10.89

The 95% confidence interval, reported in brackets as is typical, is [4.71, 10.89].

The sample mean should fall exactly in the
middle of the two ends of the interval.

4.71 � 7.8 � �3.09 and 10.89 � 7.8 � 3.09

We have a match. The confidence interval ranges from 3.09 below the sample mean
to 3.09 above the sample mean. If we were to sample five students from the same pop-
ulation over and over, the 95% confidence interval would include the population
mean 95% of the time. Note that the population mean, 4.6, does not fall within this
interval. This means it is not plausible that this sample of students who signed contracts
came from the population according to the null hypothesis—students seeking treatment
at the counseling center who did not sign a contract. We can conclude that the sample
comes from a different population; that is, we can conclude that these students attended
more sessions than did the general population. As with the z test, the conclusions
from both the single-sample t test and the confidence interval are the same, but the
confidence interval gives us more information—an interval estimate, not just a point
estimate. ■

Calculating Effect Size for a Single-Sample t Test
As with a z test, we can calculate the effect size (Cohen’s d) for a single-sample
t test.

STEP 5: Check that the confidence
interval makes sense.

STEP 4: Convert the t statistics back
into raw means.

240 CHAPTER 9 ■ The Single-Sample t Test

2.5%

7.8 10.894.71

47.5% 47.5%

2.5%

FIGURE 9-6
A 95% Confidence Interval for a

Single-Sample t Test, Part III

The final step in calculating a
confidence interval for a single-sample t

test is to convert the t statistics that
indicate each end of the interval into

raw means, 4.71 and 10.89.

                                        �

MASTERING THE FORMULA

9-5: The formula for the lower
bound of a confidence interval for
a single-sample t test is: Mlower �

�t(sM) � Msample. The formula for
the upper bound of a confidence in-
terval for a single-sample t test is
Mupper � t(sM) � Msample. The only
differences from those for a z test are
that in each formula z is replaced by
t, and rM is replaced by sM.
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■ The dot plot is a graph that
displays all the data points in a
sample, with the range of
scores along the x-axis and a
dot for each data point above
the appropriate value.

Let’s calculate the effect size for the counseling center study. Similar to what we did
with the z test, we simply use the formula for the t statistic, substituting s for sM (and
μ for μM, even though these means are always the same). This means we use 2.490 in-
stead of 1.114 in the denominator. Cohen’s d is based on the spread of the distribution
of individual scores, rather than the distribution of means.

The effect size, d � 1.29, tells us that the sample mean and the population mean
are 1.29 standard deviations apart. According to the conventions we learned in Chapter
8 (0.2 is a small effect; 0.5 is a medium effect; 0.8 is a large effect), this is a large effect.
We can add the effect size when we report the statistics as follows: t(4) � 2.87, p �
0.05, d � 1.29. ■

Cohen’s d
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l 7 8 4 6

2 490
1 29

EXAMPLE 9.9

�                                         

MASTERING THE FORMULA

9-6: The formula for Cohen’s d for

a t statistic is: Cohen’s .

It is the same formula as for the t sta-
tistic, except that we divide by
the standard deviation (s) rather than
the standard error (sM).

d
M

s
�

�( )l

When we conduct hypothesis tests such as the single-sample t test, we must be con-
cerned with the shape of the distribution of the underlying populations. When we have
a sample size greater than 30, our comparison distribution can be assumed to be normal
and we can proceed with hypothesis testings. With smaller samples, however, we often
use the shapes of our samples to assess the shapes of the populations from which they
are drawn. In earlier chapters, we learned to construct frequency histograms and fre-
quency polygons to examine the shape of the data in a sample, but these graphs do not
allow us to see every single data point. In Next Steps in Chapter 2, we explored stem-
and-leaf plots. Here, we’ll introduce an alternative, the dot plot.

The dot plot is a graph that displays all the data points in a sample, with
the range of scores along the x-axis and a dot for each data point above the ap-
propriate value. Dot plots serve a similar function to stem-and-leaf plots.
They both allow us to view the overall shape of a sample, and they both
retain all of the individual data points. Moreover, a dot plot makes it easy
on the eyes by placing the dots for one group directly above the other,
allowing us to view two groups simultaneously, a useful feature for when
we compare two groups, something we’ll do in Chapters 10 and 11.

To demonstrate a dot plot, we’ll use the same data we used in Next
Steps in Chapter 2—numbers of minutes students typically spend in
the shower. Here are the data for 30 women in our statistics classes, al-
ready arranged in order from lowest to highest:

5,  8, 10, 10, 10, 10, 12, 15, 15, 15,

15, 15, 15, 18, 20, 20, 20, 20, 20, 23,

25, 30, 30, 30, 30, 30, 35, 40, 45, 60

Here are the scores for 30 men in our statistics classes who also reported how many
minutes they typically spent in the shower:

5,  7,  8,  8,  9, 10, 10, 10, 10, 10,

10, 10, 10, 10, 12, 15, 15, 15, 15, 15

15, 15, 15, 15, 20, 20, 20, 20, 20, 25

Dot Plots N e x t  S t e p s

�   MASTERING THE CONCEPT

9-5: A dot plot includes a dot for every score

along an x-axis, listing the full range of

possible values. It allows us to see the overall

shape of a sample while also viewing every

score. Dot plots also allow us to compare

two samples by placing the dots for one

sample directly above the dots for the other.
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To create a dot plot, there are three basic steps.

Figure 9-7 displays a dot plot for the samples of male and female students’ minutes
spent in the shower. With the dot plot, we can easily observe the slightly higher central
tendency and larger spread for the women than the men, as well as the potential outlier
in the female sample.

STEP 3: We place a dot above the appropriate value for every
score.

STEP 2: We draw an x-axis and label it, including the values
from the lowest through highest scores.

STEP 1: We determine the lowest score and highest score of
the sample.

Female 

Male
10 20 30 40 50 60 

Dot Plot of Minutes in Shower by Gender 

Minutes in shower 

Gender

0

FIGURE 9-7
Dot Plot for Two Groups

A dot plot allows us to view all the data
points in our sample. Moreover, as in
this dot plot, we can simultaneously

view all the data points in more than
one sample.

CHECK YOUR LEARNING
Reviewing the Concepts       > A single-sample t test is a hypothesis test in which we compare data from one sample to a

population for which we know the mean but not the standard deviation.

> We consider degrees of freedom, or the number of scores that are free to vary, instead of
N when we assess estimated test statistics against distributions.

> As sample size increases, our confidence in our estimates improves, degrees of freedom in-
crease, and the critical value for t drops, making it easier to reach statistical significance. In
fact, as sample size grows, the t distributions approach the z distribution.

> As with any hypothesis test, we identify the populations and comparison distribution and
check the assumptions. We then state the null and research hypotheses. We next determine
the characteristics of the comparison distribution, a distribution of means based on the null
hypothesis. We must first estimate the standard deviation from our sample; then we must
calculate the standard error. We then determine critical values, usually for a two-tailed test
with a p level of 0.05. The test statistic is then calculated and compared to these critical
values, or cutoffs, to determine whether to reject or fail to reject the null hypothesis.

> We can calculate a confidence interval and an effect size, Cohen’s d, for a single-sample
t test.
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Clarifying the Concepts        9-5 Explain the term degrees of freedom.

    9-6 Why is a single-sample t test more useful than a z test?

Calculating the Statistics      9-7 Compute degrees of freedom for each of the following:

a. An experimenter times how long it takes 35 rats to run through a maze with 8
pathways

b. Test scores for 14 students are collected and averaged over 4 semesters

    9-8 Identify the critical t value for each of the following tests:

a. A two-tailed test with alpha of 0.05 and 11 degrees of freedom

b. A one-tailed test with alpha of 0.01 and N of 17

Applying the Concepts         9-9 Let’s assume that according to university summary statistics, the average student misses
3.7 classes during a semester. Imagine the data you have been working with (6, 3, 7, 6,
4, 5) are the number of classes missed by a group of students. Conduct all six steps of
hypothesis testing, assuming a two-tailed test with a p level of 0.05. (Note: The work
for step 3 has already been completed in Check Your Learning 9-2 and 9-3.)

Solutions to these Check Your
Learning questions can be found in
Appendix D.

> Dot plots allow us to view the shape of a sample’s distribution as well as every single data
point in that sample. They also easily depict the scores of two samples on top of one another
to allow for comparisons of distributions.

REVIEW OF CONCEPTS

The t Distributions
The t distributions are similar to the z distribution, except that we must estimate the
standard deviation from the sample. When estimating the standard deviation, we must
make a mathematical correction to adjust for the increased likelihood of error. After es-
timating the standard deviation, the t statistic is calculated like the z statistic for a distri-
butions of means. The t distributions can be used to compare the mean of a sample to
a population mean when we don’t know the population standard deviation (single-
sample t test), to compare two samples with a within-groups design (paired-samples t
test), and to compare two samples with a between-groups design (independent- samples
t test). (We learned about the single-sample t test in this chapter; the paired-samples t
test and the independent-samples t test will be described in Chapters 10 and 11,
respectively.)

The Single-Sample t Test
Like z tests, single-sample t tests are conducted in the rare cases in which we have one
sample that we’re comparing to a known population. The difference is that we must
know the mean and the standard deviation of the population to conduct a z test,
whereas we only have to know the mean of the population to conduct a single-sample
t test. There are many t distributions, one for every possible sample size. We look up the
appropriate critical values on the t table based on degrees of freedom, a number  calculated
from the sample size. We can calculate a confidence interval and an effect size (Cohen’s



244 CHAPTER 9 ■ The Single-Sample t Test

d), for a single-sample t test. Dot plots are graphs that depict the shape of a sample’s
distribution while also displaying every single data point in our sample. With dot plots,
we can also include the scores of two or more samples directly above one another,
which allows for comparisons of distributions.

SPSS®

Let’s conduct a single-sample t test using the data on number
of counseling sessions attended that we tested earlier in this
chapter. The five scores were: 6, 6, 12, 7, and 8.

Select Analyze → Compare Means → One-Sample T
Test. Then highlight the dependent variable (sessions) and click
the arrow in the center to choose it. Type the population mean
to which we’re comparing our sample, 4.6, next to “Test
Value” and click “OK.” The screenshot here shows the data

and output. You’ll notice that the t statistic, 2.874, is almost
identical to the one we calculated, 2.873. The difference is due
solely to our rounding decisions. Notice that the confidence
interval is different from the one we calculated. This is an in-
terval around the difference between the two means, rather
than around the mean of our sample. The p value is under “Sig
(2-tailed).” The p value of .045 is less than the chosen p level
of .05, an indication that this is a statistically significant finding.

HOW IT WORKS
9.1 CONDUCTING A SINGLE-SAMPLE t TEST
In How It Works 7.2, we conducted a z test for data from the Consideration of Future Con-
sequences (CFC) scale (Petrocelli, 2003). How can we conduct all six steps for a single-sample
t test for the same data using a p level of 0.05 and a two-tailed test? To start, we’ll use the pop-
ulation mean CFC score of 3.51, but we’ll pretend that we no longer know the population
standard deviation. As before, we wonder whether students who joined a career discussion
group might have improved CFC scores, on average, compared with the population. Forty-
five students in the social sciences regularly attended these discussion groups and then took the
CFC scale. The mean for this group is 3.7. The standard deviation for this sample is 0.52.

Step 1: Population 1: All students in career discussion groups. Population 2: All students
who did not participate in career discussion groups.

The comparison distribution will be a distribution of means. The hypothesis test
will be a single-sample t test because we have only one sample and we know the
population mean, but we do not know the population standard deviation. This study
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meets two of the three assumptions and may meet the third. The dependent variable
is scale. In addition, there are more than 30 participants in the sample, indicating
that the comparison distribution will be normal. The data were not randomly se-
lected, however, so we must be cautious when generalizing.

Step 2: Null hypothesis: Students who participated in career discussion groups had the same
CFC scores, on average, as students who did not participate—H0: l1 � l2. Research
hypothesis: Students who participated in career discussion groups had different CFC
scores, on average, than students who did not participate—H1: l1 � l2.

Step 3: lM � l � 3.51;

Step 4: df � N � 1 � 45 � 1 � 44

The critical values, based on 44 degrees of freedom (because 44 is not in the
table, we look up the more conservative degrees of freedom of 30), a p level of 0.05,
and a two-tailed test, are �2.021 and 2.021.

Step 5:

Step 6: Reject the null hypothesis. It appears that students who participate in career dis-
cussion groups have higher CFC scores, on average, than do students who do not
participate.

The statistics, as presented in a journal article, would read:

t(44) � 2.44, p � 0.05

(Note: If we had used software, we would report our actual p value instead of
just whether the p value is larger or smaller than the critical p value.)
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Clarifying the Concepts

9.1 When should we use a t distribution?
9.2 Why do we modify the formula for calculating standard

deviation when using t tests (and divide by N � 1)?
9.3 How is the calculation of standard error different for a

t test than for a z test?
9.4 Explain why the standard error for the distribution of

sample means is smaller than the standard deviation of
sample scores.

9.5 Define the symbols in the formula for the t statistic:

9.6 When is it appropriate to use a single-sample t test?
9.7 What does the phrase free to vary, referring to a number

of scores in a given sample, mean for statisticians?
9.8 How is the critical t value affected by sample size and

degrees of freedom?
9.9 Why do the t distributions merge with the z distribu-

tion as sample size increases?
9.10 Explain what each part of the following statistic means,

as it would be reported in APA format: t(4) � 2.87, 
p � 0.032.

9.11 What information does a dot plot provide?

Calculating the Statistics

9.12 We use formulas to describe calculations. Find the error
in symbolic notation in each of the following formulas.
Explain why it is incorrect and provide the correct sym-
bolic notation.

a.

b. X � z(r) � lM

c.

d.

9.13 For the data 93, 97, 91, 88, 103, 94, 97, calculate the
standard deviation under both of these conditions:

a. For the sample

b. As an estimate of the population

9.14 For the data 1.01, 0.99, 1.12, 1.27, 0.82, 1.04, calculate
the standard deviation under both of these condi-
tions. (Note: You will have to carry some calculations
out to the third decimal place to see the difference in
calculations.)
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Exercises



a. For the sample

b. As an estimate of the population
9.15 Calculate the standard error for t for the sample used

in Exercise 9.13 using symbolic notation: 93, 97, 91, 88,
103, 94, 97.

9.16 Calculate the standard error for t for the sample used
in Exercise 9.14 using symbolic notation: 1.01, 0.99,
1.12, 1.27, 0.82, 1.04.

9.17 Calculate the t statistic for the data presented in Exercise
9.13, assuming l � 96. Again, the data are 93, 97, 91,
88, 103, 94, 97.

9.18 Calculate the t statistic for the data presented in Exercise
9.14, assuming l � 0.96. Again, the data are 1.01, 0.99,
1.12, 1.27, 0.82, 1.04.

9.19 Identify the critical t value in each of the following cir-
cumstances:

a. A one-tailed test with 73 degrees of freedom at a p
level of 0.10

b. A two-tailed test with 108 degrees of freedom at a
p level of 0.05

c. A one-tailed test with 38 degrees of freedom at a p
level of 0.01

9.20 Calculate degrees of freedom and identify the critical t
value in each of the following circumstances:

a. A two-tailed test based on 8 observations at a p level
of 0.10

b. A one-tailed test based on 42 observations at a p
level of 0.05

c. A two-tailed test based on 89 observations at a p
level of 0.01

9.21 Identify critical t values for each of the following tests:

a. A single-sample t test examining scores for 26 par-
ticipants to see if there is any difference compared
to the population, using a p level of 0.05

b. A one-tailed, single-sample t test performed on
scores on the Marital Satisfaction Inventory for 18
people who went through marriage counseling,
using a p level of 0.01

c. A two-tailed, single-sample t test, using a p level of
0.05, with 34 degrees of freedom

9.22 Assume we know the following for a two-tailed,  single-
sample t test, at a p level of 0.05: l � 44.3, N � 114,
M � 43, s � 5.9.

a. Calculate the t statistic.

b. Calculate a 95% confidence interval.

c. Calculate effect size using Cohen’s d.
9.23 Assume we know the following for a two-tailed,  single-

sample t test: l � 7, N � 41, M � 8.5, s � 2.1.

a. Calculate the t statistic.

b. Calculate a 99% confidence interval.

c. Calculate effect size using Cohen’s d.

9.24 Students in a statistics course reported the number of
hours of sleep they get on a typical weeknight. These
data appear below.

5 6.5 6 8 6 6 6 7 5 7 6 6.5 7 6 7 4 8 6

a. Create a dot plot of these data.

b. Use the dot plot to describe the distribution of the
set of scores.

Applying the Concepts

9.25 For each of the problems described below, which are
the same as those described in Exercise 9.21, identify
what the critical z value would have been if there had
been just one sample and we knew the mean and stan-
dard deviation of the population:

a. A single-sample t test examining scores for 26 par-
ticipants to see if there is any difference compared
to the population, using a p level of 0.05

b. A one-tailed, single-sample t test performed on
scores on the Marital Satisfaction Inventory for 18
people who went through marriage counseling,
using a p level of 0.01

c. A two-tailed, single-sample t test, using a p level of
0.05, with 34 degrees of freedom

d. Comparing the critical t values with the critical z
values, explain how and why these are different.

9.26 On its Web site, the Princeton Review claims that stu-
dents who have taken its course improve their Graduate
Record Examination (GRE) scores, on average, by 210
points. (No other information is provided about this sta-
tistic.) Treating this average gain as a population mean, a
researcher wonders whether the far cheaper technique
of practicing for the GRE on one’s own using books
and CD-ROMs would lead to a different average gain.
She randomly selects five students from the pool of stu-
dents at her university who plan to take the GRE. The
students take a practice test before and after two months
of self-study. They reported (fictional) gains of 160, 240,
340, 70, and 250 points. (Note that many experts suggest
that the results from self-study are similar to those from
a structured course if you have the self-discipline to go
solo. Regardless of the format, preparation has been
convincingly demonstrated to lead to increased scores.)

a. Using symbolic notation and formulas (where
appropriate), determine the appropriate mean and
standard error for the distribution to which we
will compare this sample. Show all steps of your
calculations.

b. Using symbolic notation and the formula, calculate
the t statistic for this sample.

c. As an interested consumer, what critical ques -
tions would you want to ask about the statistic re-
ported by the Princeton Review? List at least three
questions.
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9.27 The Florida Department of Corrections publishes an
online death row fact sheet. It reports the average time
on death row prior to execution as 11.72 years but pro-
vides no standard deviation. This mean is a parameter
because it is calculated from the entire population of
executed prisoners in Florida. Has the time spent on
death row changed in recent years? According to the
execution list linked to the same Web site, the six pris-
oners executed in Florida during the years 2003, 2004,
and 2005 spent 25.62, 13.09, 8.74, 17.63, 2.80, and 4.42
years on death row, respectively. (All were men, although
Aileen Wuornos, the serial killer portrayed by Charlize
Theron in the 2003 film Monster, was among the three
prisoners executed by the state of Florida in 2002;
Wuornos spent 10.69 years on death row.)

a. Using symbolic notation and formulas (where ap-
propriate), determine the appropriate mean and
standard error for the distribution of means. Show
all steps of your calculations.

b. Using symbolic notation and the formula, calculate
the t statistic for time spent on death row for the
sample of recently executed prisoners.

c. The execution list provides data on all prisoners ex-
ecuted since the death penalty was reinstated in
Florida in 1976. Included for each prisoner are the
name, race, gender, date of birth, date of offense,
date sentenced, date arrived on death row, data of
execution, number of warrants, and years on death
row. State at least one hypothesis, other than year of
execution, that could be examined using a t distri-
bution and the comparison mean of 11.72 years on
death row. Be specific about your hypothesis (and if
you are truly interested, you can search for the data
online).

d. What additional information would you need to
calculate a z score for the length of time Aileen
Wuornos spent on death row?

9.28 Refer to the information provided in Exercise 9.27
when answering the following:

a. Write hypotheses to address the question “Has the
time spent on death row changed in recent years?”

b. Using these data as “recent years” and the mean of
11.72 years as the comparison, answer the question
based on your t statistic, using alpha of 0.05.

9.29 Refer to the information provided in Exercise 9.27
when answering the following:

a. Calculate the confidence interval for this statistic
based on the data presented.

b. What conclusion would you make about your
hypotheses based on this confidence interval?
What can you say about the size of this confidence
interval?

9.30 Refer to the information provided in Exercise 9.27 and
the work you have done through Exercise 9.29 when
answering the following:

a. Calculate the effect size using Cohen’s d.

b. Evaluate the size of this effect.
9.31 Bardwell, Ensign, and Mills (2005) assessed the moods

of 60 male U.S. Marines following a month-long train-
ing exercise conducted in cold temperatures and at high
altitudes. Negative moods, including fatigue and anger,
increased substantially during the training and lasted up
to three months after the training ended. Mean mood
scores were compared to population norms for three
groups: college men, adult men, and male psychiatric
outpatients. Let’s examine anger scores for six Marines
at the end of training; these scores are fictional, but their
mean and standard deviation are very close to the actual
descriptive statistics for the sample: 14, 12, 13, 12, 14, 15.

a. The population mean anger score for college men
is 8.90. Conduct all six steps of a single-sample t test.
Be sure to label all six steps. Report the statistics as
you would in a journal article.

b. Now calculate the test statistic to compare this sam-
ple mean to the population mean anger score for
adult men (M � 9.20). You do not have to repeat
all the steps from part (a), but conduct step 6 of hy-
pothesis testing and report the statistics as you
would in a journal article.

c. Now calculate the test statistic to compare this sam-
ple mean to the population mean anger score for
male psychiatric outpatients (M � 13.5). Do not
repeat all the steps from part (a), but conduct step
6 of hypothesis testing and report the statistics as
you would in a journal article.

d. What can we conclude overall about Marines’
moods following high-altitude, cold-weather train-
ing? Remember, if we fail to reject the null hypoth-
esis, we can only conclude that there is no evidence
from this study to support the research hypothesis.
We cannot conclude that we have supported the
null hypothesis.

9.32 The number of paid days off (i.e., vacation, sick leave)
taken by eight employees at a small local business is
compared to the national average. You are hired by the
business owner, who has been in business for just 18
months, to help her determine what to expect for paid
days off. In general, she wants to set some standard for
her employees and for herself. Let’s assume your search
on the Internet for data on paid days off leaves you with
the impression that the national average is 15 days. The
data for the eight local employees during the last fiscal
year are: 10, 11, 8, 14, 13, 12, 12, and 27 days.

a. Write hypotheses for your research.

b. Which type of test would be appropriate to analyze
these data in order to answer your question?

c. Before doing any computations, do you have any
concerns about this research? Are there any ques-
tions you might like to ask about the data you have
been given?
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9.33 Use the data presented in Exercise 9.32 to help this
business owner understand her employees’ experience
with paid days off in greater detail.

a. Calculate the appropriate t statistic. Show all of your
work in detail.

b. Draw a statistical conclusion for this business owner.

c. The p level for the test statistic you calculated in
part (a) is 0.454. Using Excel, determine prep.

d. Calculate the confidence interval.

e. Calculate and interpret the effect size.
9.34 Consider all the results you calculated in Exercise 9.33.

How would you summarize the situation for this busi-
ness owner? Identify the limitations of your analyses,
and discuss the difficulties of making comparisons be-
tween populations and samples. Make reference to the
assumptions of the statistical test in your answer.

9.35 After further investigation, you discover that one of the
data points, 27 days, was actually the owner’s number
of paid days off. Redo some of the work for Exercise
9.33 adapting for this new information by deleting that
value.

a. Calculate the appropriate t statistic. Show all of your
work in detail.

b. Draw a statistical conclusion for this business owner.

c. The p level for the test statistic you calculated in
part (a) is now 0.003. Using Excel, determine prep.

d. Calculate and interpret the effect size.

e. Explain what changed in these analyses.

9.36 The following data are Consideration of Future Con-
sequences (CFC) scores for 20, already arranged in
order from lowest to highest:

2.0,  2.0,  2.5,  2.5,  3.0,  

3.0,  3.0,  3.0,  3.5,  3.5,

3.5,  3.5,  3.5,  3.5,  3.5,  

4.0,  4.0,  4.0,  4.5,  4.5

a. Construct a dot plot for these data.

b. What can you learn about the shape of this distri-
bution from this plot?

9.37 Below are the amounts of credit card debt reported by
27 men and 23 women.

Men

0    0    0    0    0    0    0    0

0    0    0    0    0    0    0    0

0    0    0    0    0    0    700  2000

3000 3000 3000

Women

0    0    0    0    0    0    0    0

0    0    0    0    0    0    200  600

900  1700 2000 3000 4000 4500 10,000

a. Construct stacked dot plots for these data.

b. What can we learn about these two distributions
from this graph?
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Terms
t statistic (p. 232)
single-sample t test (p. 233)

degrees of freedom (p. 234)
dot plot (p. 241)

Formulas

(p. 229)

(p. 231)

(p. 232)

df � N � 1 (p. 234)
Mlower � �t(sM) � Msample (p. 240)

Mupper � t(sM) � Msample (p. 240)
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■ You should know how to conduct a single-
sample t test (Chapter 9).

■ You should know how to determine a
confidence interval for a single-sample t test
(Chapter 9).

■ You should understand the concept of effect
size and know how to calculate Cohen’s d for
a single-sample t test (Chapter 9).

BEFORE YOU GO ON

The Paired-Samples t Test
Distributions of Mean Differences
The Six Steps of the Paired-Samples 

t Test

Beyond Hypothesis Testing
Calculating a Confidence Interval 

for a Paired-Samples t Test
Calculating Effect Size for 

a Paired-Samples t Test

Next Steps: Order Effects and
Counterbalancing



In many parts of the world, the winter holiday
season is a time when family food traditions take
center stage. Usually these holiday foods are
readily available, beautifully presented, and high
in calories. Popular wisdom suggests that many
Americans add 5 to 7 pounds to their body
weight over the holiday season. But before/after
studies suggest a far more modest increase: a
weight gain of just over 1 pound (Hull, Radley,
Dinger, & Fields, 2006; Roberts & Mayer, 2000;
Yanovski et al., 2000).

A 1-pound weight gain over the holidays
might not seem so bad, but weight gained over
the holidays tends to stay (Yanovski et al., 2000).
The data provide other insights about holiday
weight gain. For example, female students at the
University of Oklahoma gained a little less than
1 pound, male students gained a little more than
1 pound, and students who were already over-
weight gained an average of 2.2 pounds (Hull et
al., 2006).

The fact that researchers used two groups in their study—students before the hol-
idays and students after the holidays—is important for this chapter. The versatility of
the t distributions allows us to compare two groups. We can compare one sample

to a population when we don’t know all the details about
the parameters, and we can compare two samples to each
other.

There are two ways to compare two samples: we can use
a within-groups design (as when the same people are weighed
before and after the holidays) or a between-groups design
(as when different people are in the pre-holiday sample and
the post-holiday sample). Whether we use a within-groups
design or a between-groups design to collect the data for two
groups, we use a t test. For a within-groups design, we use a
paired-samples t test. The steps for a paired-samples t test are
similar to those for a single-sample t test, which we learned
about in Chapter 9. (For a between-groups design, we use an
in dependent-samples t test, which we will learn about in
Chapter 11.)

The Paired-Samples t Test
As we’ve just seen, researchers have found that weight gain over the holidays is far less
than once thought. Even the dreaded “freshman 15” also appears to be an exaggerated
myth. Weight gain is really less than 4 pounds, on average, per semester. One study
sampled college students at a university in the northeastern United States and compared
their weights at the beginning of the fall semester with how much they weighed by
November (Holm-Denoma, Joiner, Vohs, & Heatherton, 2008). Male students gained
an average of 3.5 pounds and female students, an average of 4.0 pounds. These types
of before/after comparisons can be tested by using the paired-samples t test.
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�   MASTERING THE CONCEPT

10-1: There are three types of t tests. We use a single-

sample t test when we are comparing a sample mean

to a population mean but do not know the population

standard deviation. We use a paired-samples t test

when we are comparing two samples and every

participant is in both samples—a within-groups

design. We use an independent-samples t test when

we are comparing two samples and every participant

is in only one sample—a between-groups design.
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Holiday Weight Gain and Two-Group Studies Two-group studies indicate that the
average holiday weight gain by college students is less than many people believe, only
about 1 pound.



The paired-samples t test (also called dependent-samples t test) is used to compare two
means for a within-groups design, a situation in which every participant is in both samples.
Until now, the examples we’ve used have been before/after research designs. How-
ever, other kinds of studies might also be analyzed with a paired-samples t test. For
example, if a person in the study participates in both conditions (such as a memory
task after ingesting a caffeinated beverage and again after ingesting a noncaffeinated
bever age), then her score in one depends on her score in the other. That’s when we
use the paired-samples t test. The steps for the paired-samples t test are almost the
same as the steps for the single-sample t test. The major difference in the paired-sam-
ples t test is that we must create difference scores for every participant. Because we’ll
be working with difference scores, we’ll need to learn about a new distribution—
a distribution of the means of these difference scores, or a distribution of mean
 differences.

Distributions of Mean Differences
We already have learned about a distribution of scores and a distribution of means.
Now we need to develop a distribution of mean differences so that we can establish a
distribution that specifies the null hypothesis. Let’s use pre- and post-holiday weight
data to demonstrate how to create a distribution of mean differences, the distribution
that accompanies a within-groups design.

Imagine that many college students’ weights were measured before and after the
winter holidays to determine if they gained or lost weight. You plan to gather data
on a sample of three people from among this population of many college students,
and there are two cards for each person in the population on which weights are
listed—one before the holidays and one after the holidays. So you have many pairs
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Before and After Many companies use before-and-after photos to encourage consumers to purchase their
products. Statistics can help us overcome the persuasive powers of anecdotal evidence. We can use a paired-
samples t test to compare weight before and after participation in an advertised program to determine if the mean
difference is statistically significant.

■ The paired-samples t test is
used to compare two means
for a within-groups design, a
situation in which every
participant is in both samples;
also called a dependent-
samples t test.
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FIGURE 10-1
Creating a Distribution of 

Mean Differences

This distribution is one of many that
could be created by pulling 30 mean

differences, the average of three
differences between pairs of weights,

pulled one at a time from a population
of pairs of weights—one pre-holiday
and one post-holiday. The population

used here is one based on the null
hypothesis—that there is no average
difference in weight from before the

holidays to after the holidays.

of cards, one pair for each student in the population. Let’s walk through the steps to
create a distribution of mean differences from the data on these cards. It is this dis-
tribution of mean differences to which we will compare our sample of three people.

Step 1. Randomly choose three pairs of cards, replacing each pair of cards before
randomly selecting the next.

Step 2. For each pair, subtract the first weight from the second weight to calculate
a difference score.

Step 3. Calculate the mean of the differences in weights for these three people.
Then you complete these three steps again. You randomly choose another three

people from the population of many college students, calculate their difference scores,
and calculate the mean of the three difference scores. And then you complete these
three steps again, and again, and again.

Let’s use the three steps in an example.
Step 1. We randomly select one pair of cards and find that the first student weighed

140 pounds before the holidays and 144 pounds after the holidays. We replace those
cards and randomly select another pair; the second student had before and after scores
of 126 and 124, respectively. We replace those cards and randomly select another pair;
the third student had before and after scores of 168 and 168, respectively.

Step 2. For the first student, the difference between weights, subtracting the before
score from the after score, would be 144 � 140 � 4. For the second student, the
 difference between weights would be 124 � 126 � �2. For the third student, the dif-
ference between weights is 168 � 168 � 0.

Step 3. The mean of these three difference scores—4, �2, and 0—is 0.667.
We would then choose three more students and calculate the mean of their differ-

ence scores. Eventually, we would have many mean differences to plot on a curve of
mean differences—some positive, some negative, and some right at 0.

But this would only be the beginning of what this distribution of mean differ-
ences would look like. If we were to calculate the whole distribution of mean differ-
ences, then we would do this an uncountable number of times. When the authors
calculated 30 mean differences for pairs of weights, we got the distribution in Figure
10-1. If no mean difference is found when comparing weights from before and after
the holidays, as with the data we used to create Figure 10-1, the distribution would
center around 0. According to the null hypothesis, we would expect no mean differ-
ence in weight—or a mean differ ence of 0—from before the holidays to after the
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Let’s try an example from the social sciences. Computer and software companies often
employ social scientists to research ways their products can better benefit users. For ex-
ample, Microsoft researchers studied how 15 volunteers performed on a set of tasks
under two conditions. The researchers compared the volunteers’ performance on the
tasks while using a 15-inch computer monitor and while using a 42-inch monitor
(Czerwinski et al., 2003). The 42-inch monitor, far larger than most of us have ever
used, allows the user to have multiple programs in view at the same time.

Here are five participants’ fictional data, which reflect the actual means reported by
researchers. Note that a smaller number is good—it indicates a faster time. The first
person completed the tasks on the small monitor in 122 seconds and on the large mon-
itor in 111 seconds; the second person in 131 and 116; the third in 127 and 113; the
fourth in 123 and 119; and the fifth in 132 and 121.

The paired-samples t test is like the single-
sample t test in that we analyze a single
 sam ple of scores. For the paired-samples t

test, however, we use difference scores (instead of individual scores). For the paired-
samples t test, one population is reflected by each condition, but the comparison dis-
tribution is a distribution of mean difference scores (rather than a distribution of means).
The comparison distribution is based on the null hypothesis that posits no mean dif-
ference. So the mean of the comparison distribution is 0; this indicates a mean difference

STEP 1: Identify the populations,
distribution, and assumptions.

EXAMPLE 10.1

Large Monitors and
Productivity Microsoft
researchers and cognitive
psychologists (Czerwinski et al.,
2003) reported a 9% increase in
productivity when research
volunteers used an extremely
large 42-inch display versus a
more typical 15-inch display.
Every participant used both
displays and thus was in both
samples. A paired-samples t test
is the appropriate hypothesis test
for this two-group design.
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holidays. According to the research hypothesis, we would expect a mean difference
in weight from before the holidays to after the holidays—a mean difference that is
different from 0.

The Six Steps of the Paired-Samples t Test
In a paired-samples t test, each participant has two scores—one in each condition.
When we conduct a paired-samples t test, we write the pairs of scores in two columns,
side by side next to the same participant. We then subtract each score in one column
from its paired score in the other column to create difference scores. Ideally, a positive
difference score indicates an increase, and a negative difference score indicates a de-
crease. Typically, we subtract the first score from the second so that the difference scores
match this logic. Next we’ll walk through the six steps of the paired-samples t test.
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score of 0. For the paired-samples t test, the three assumptions are the
same as for the  single-sample t test. (1) The dependent variable is scale;
(2) the participants were randomly selected; and (3) the population is
normally distributed.
Summary: Population 1: People performing tasks using a 15-inch mon-
itor. Population 2: People performing tasks using a 42-inch  monitor.

The comparison distribution will be a distribution of mean dif-
ference scores based on the null hypothesis. The hypothesis test will
be a paired-samples t test because we have two samples of scores, and
every participant contributes a score to each sample.

This study meets one of the three assumptions and may meet the
other two: (1) The dependent variable is time, which is scale. (2) The
participants were not randomly selected, however, so we must be cau-
tious with respect to generalizing our findings. (3) We do not know
whether the population is normally distributed, and there are not at
least 30 participants. However, the data from this sample do not suggest
a skewed distribution.

This step is identical to that for the single-
sample t test. We state the null and research
hypotheses. Remember, hypotheses are al-

ways about populations, not about specific samples.
Summary: Null hypothesis: People who use a 15-inch screen will complete a set of
tasks in the same amount of time, on average, as people who use a 42-inch screen—
H0: μ1 � μ2. Research hypothesis: People who use a 15-inch screen will complete a
set of tasks in a different amount of time, on average, than people who use a 42-inch
screen—H1: μ1 � μ2.

This step is similar to that for the single-
 sample t test. We determine the appropriate
mean and the standard error of the compar-

ison distribution—the distribution based on the null hypothesis. With the paired-
samples t test, however, we have a sample of difference scores and a comparison dis-
tribution of mean differences (instead of a sample of individual scores and a comparison
distribution of means). According to the null hypothesis, there is no difference; that is,
the mean difference score is 0. So the mean of the comparison distribution is always
0, as long as the null hypothesis posits no difference.

For the paired-samples t test, the standard error is calculated exactly as it is calculated
for the single-sample t test, only we use the difference scores rather than the scores in
each condition. To get the difference scores in the current example, we want to know
what happens when we go from the control condition (small screen) to the experimental
condition (large screen), so we subtract the first score from the second score. This means
that a negative difference indicates a decrease in time when the screen goes from small
to large and a positive difference indicates an increase in time. (The test statistic will be
the same if we reverse the order in which we subtract, but the sign will change. In some
cases, we can think about it as subtracting the “before” score from the “after” score.)

Another helpful strategy is to cross out the original scores once we’ve created the
difference scores so that we remember to use only the difference scores from that point
on. If we don’t cross out the original scores, it is very easy to use them in our calcu-
lations and end up with an incorrect standard error.
Summary: lM � 0; sM � 1.923

STEP 2: State the null and research
hypotheses.

STEP 3: Determine the characteristics
of the comparison distribution.

�   MASTERING THE CONCEPT

10-2: The steps for the paired-samples t

test are very similar to those for the single-

sample t test. The main difference is that

we are comparing the sample mean

difference between scores to the mean

difference for the population according to

the null hypothesis, rather than comparing

the sample mean of individual scores to the

population mean according to the null

hypothesis.
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Calculations: (Notice that we crossed out the original scores once we created the
column of difference scores. We did this to remind ourselves that all remaining calcu-
lations involve the differences scores, not the original scores.)

The mean of the difference scores is:

Mdifference � �11

The numerator is the sum of square, SS:

0 � 16 � 9 � 49 � 0 � 74

The standard deviation, s, is:

The standard error, sM, is:

This step is the same as that for the single-
sample t test. We use the t table to determine
the critical values for a given p level, based

on the degrees of freedom and whether the test is one- or two-tailed. The degrees of
freedom is the number of participants (not the number of scores) minus 1.
Summary: df � N � 1 � 5 � 1 � 4

The critical values, based on a two-tailed test and a p level of 0.05, are �2.776 and
2.776, as seen in the curve in Figure 10-2.

This step is identical to that for the single-
sample t test, except that we are using means

of difference scores instead of means of individual scores. We subtract the mean

STEP 4: Determine the critical values,
or cutoffs.

                                           Difference �        Squared
X Y       Difference     mean difference     deviation

122     111         �11                       0                         0

131     116         �15                   �4                       16

127     113         �14                   �3                         9

123     119           �4                       7                       49

132     121         �11                       0                         0

s �
�

� �
74

5 1
18 5 4 301

( )
. .

sM � �
4 301

5
1 923

.
.

STEP 5: Calculate the test statistic.

FIGURE 10-2
Determining Cutoffs for a
Paired-Samples t Test

We typically determine critical values in
terms of t statistics rather than means
of raw scores so that we can easily
compare a test statistic to them to
determine whether the test statistic is
beyond the cutoffs.



The statistics, as reported in a journal article, follow the same APA format as for a
single-sample t test. We report the degrees of freedom, the value of the test statistic,
and the p value associated with the test statistic. (Note that unless we use software, we
can only indicate whether the p value is less than or greater than the cutoff p level of
0.05.) In the current example, the statistics would read:

t(4) � �5.72, p � 0.05.

(We also include the means and the standard deviations for the two samples. We
calculated the means in step 6 of hypothesis testing, but we would also have to calculate
the standard deviations for the two samples to report them.)

The researchers note that the faster time with the large display might not seem much
faster but that, in their research, they have had great difficulty identifying any factors
that lead to faster times (Czerwinski et al., 2003). Based on their previous research,
therefore, this is an impressive difference. ■
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 difference score according to the null hypothesis, 0, from the mean difference score
calculated for the sample. We then divide by standard error.

Summary:

This step is identical to that for the single-
sample t test. We reject the null hypothesis

if the t statistic is beyond either of the critical t values. We fail to reject the null hy-
pothesis if the t statistic is not beyond either of the critical t values. If we reject the
null hypothesis, we need to examine the means of the two conditions (in this case, MX
� 127; MY � 116) so that we know the direction of the effect. Remember, even
though the hypotheses are two-tailed, we report the direction of the effect.
Summary: Reject the null hypothesis. It appears that, on average, people perform faster
when using a 42-inch monitor than when using a 15-inch monitor (as shown by the
curve in Figure 10-3).

STEP 6: Make a decision.

t �
� �

��
( )

.
.

11 0

1 923
5 72

2.5% 2.5%

2.776�2.776�5.72

FIGURE 10-3
Making a Decision

To decide whether to reject the null
hypothesis, we compare the test

statistic to the critical values. In this
figure, the test statistic, �5.72, is

beyond the cutoff of �2.776, so we
can reject the null hypothesis.

CHECK YOUR LEARNING
Reviewing the Concepts       > The paired-samples t test is used when we have data for all participants under two condi-

tions—a within-groups design.

> In the paired-samples t test, we calculate a difference score for every individual in the study.
The statistic is calculated on those difference scores.

> We use the same six steps of hypothesis testing that we used with the z test and with the
single-sample t test.



Beyond Hypothesis Testing
When we conduct a paired-samples t test, the APA encourages the
use of confidence intervals and effect sizes (as with the z test and the
single-sample t test). We’ll calculate both the confidence interval and
the effect size for the example of productivity with small versus large
computer monitors.

Calculating a Confidence Interval for 
a Paired-Samples t Test
As with most hypothesis tests, the APA also encourages the use of confidence intervals
and effect sizes when conducting a paired-samples t test.
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Clarifying the Concepts      10-1 How do we conduct a paired-samples t test?

  10-2 Explain what an individual difference score is, as it is used in a paired-samples t test.

Calculating the Statistics    10-3 Below are energy-level data (on a scale of 1 to 7, where 1 � feeling of no energy and
7 � feeling of high energy) for five students before and after lunch. Calculate the mean
difference for these people so that loss of energy is a negative value. Assume you are
testing the hypothesis that students go into what we call “food comas” after eating,
versus lunch giving them added energy.

Before lunch  After lunch

6 3

5 2

4 6

5 4

7 5

Applying the Concepts       10-4 Using the energy-level data presented in Check Your Learning 10-3, let’s test the
hypothesis that students have different energy levels before and after lunch. Perform the
six steps of hypothesis testing for a two-tailed paired-samples t test.

Solutions to these Check Your Learning questions can be found in Appendix D.

�   MASTERING THE CONCEPT

10-3: As with a z test and a single-sample t

test, we can calculate a confidence interval

and an effect size for a paired-samples t test.

Let’s start by determining the confidence interval for the computer monitor example.
First, let’s recap the information we need. The population mean difference according
to the null hypothesis was 0, and we used the sample to estimate the population standard
deviation to be 4.301 and standard error to be 1.923. The five participants in the study
sample had a mean difference of �11. We will calculate the 95% confidence interval
around the sample mean difference of �11.

We draw a normal curve (see Figure 10-4)
that has the sample mean difference, �11,
at its center instead of the population mean
difference, 0.

STEP 1: Draw a picture of a t
distribution that includes the
confidence interval.

EXAMPLE 10.2
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As before, 47.5% fall on each side of the
mean between the mean and the cutoff, and
2.5% fall in each tail.

For a two-tailed test with a p level of 0.05
and 4 df, the critical values are �2.776 and
2.776 as seen in Figure 10-5.

STEP 2: Indicate the bounds of the
confidence interval on the
drawing.

STEP 3: Add the critical t statistics
to the curve.

�11

2.5%

47.5% 47.5%

2.5%

0

2.5%

�2.776

47.5% 47.5%

2.5%

2.776 

2.5%

�16.34 �11

47.5% 47.5%

2.5%

�5.66

FIGURE 10-4
A 95% Confidence Interval for a

Paired-Samples t Test, Part I

We start the confidence interval for a
distribution of mean differences by

drawing a curve with the sample mean
difference, �11, in the center.

FIGURE 10-6
A 95% Confidence Interval for a

Paired-Samples t Test, Part III

The final step in calculating a
confidence interval for mean differences
is converting the t statistics that indicate

each end of the interval to raw mean
differences, �16.34 and �5.66.

FIGURE 10-5
A 95% Confidence Interval for a

Paired-Samples t Test, Part II

The next step in calculating a
confidence interval for mean differences
is identifying the t statistics that indicate

each end of the interval. Because the
curve is symmetric, the t statistics have
the same magnitude—one is negative,

�2.776, and one is positive, 2.776.

                                        �

MASTERING THE FORMULA

10-1: The formula for the lower
bound of a confidence interval for
a paired-samples t test is: Mlower �

�t(sM) � Msample. The formula for
the upper bound of a confidence in-
terval for a paired-samples t test is:
Mupper � t(sM) � Msample. These are
the same as for a single-sample t test,
but remember that the means and
standard errors are calculated from
differences between pairs of scores,
not from individual scores.

As we do with other confidence intervals,
we use the sample mean difference (�11) in
the calculations and the standard error
(1.923) as the measure of spread. We use the

same formulas as for the single-sample t test, recalling that these means and standard
errors are calculated from differences between two scores for each participant in the
study, rather than an individual score for each participant. We have added these raw
mean differences to the curve in Figure 10-6.

Mlower � �t(sM) � Msample � �2.776(1.923) � (�11) � �16.34

Mupper � t(sM) � Msample � 2.776(1.923) � (�11) � �5.66

The 95% confidence interval, reported in brackets as is typical, is [�16.34, �5.66].

STEP 4: Convert the critical t statistics
back into raw mean
differences.



The sample mean difference should fall ex-
actly in the middle of the two ends of the
interval.

�11 � (�16.34) � 5.34 and �11 � (�5.66) � �5.34

We have a match. The confidence interval ranges from 5.34 below the sample
mean difference to 5.34 above the sample mean difference. If we were to sample five
people from the same population over and over, the 95% confidence interval would
include the population mean 95% of the time. Note that the population mean dif-
ference according to the null hypothesis, 0, does not fall within this interval. This
means it is not plausible that the difference between those using the 15-inch
monitor and those using the 42-inch monitor is 0. We can conclude that, on average,
people perform faster when using a 42-inch monitor than when using a 15-inch
monitor. ■

As with other hypothesis tests, the conclusions from both the paired-samples t test
and the confidence interval are the same, but the confidence interval gives us more
information—an interval estimate, not just a point estimate.

Calculating Effect Size for a Paired-Samples t Test
As with a z test, we can calculate the effect size (Cohen’s d) for a paired-samples
t test.

STEP 5: Check that the confidence
interval makes sense.
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Let’s calculate effect size for the computer monitor study. Again, we simply use the
formula for the t statistic, substituting s for sM (and μ for μM, even though these means
are always the same). This means we use 4.301 instead of 1.923 in the denominator.
Cohen’s d is now based on the spread of the distribution of individual differences be-
tween scores, rather than the distribution of mean differences.

The effect size, d � �2.56, tells us that the sample mean difference and the pop-
ulation mean difference are 2.56 standard deviations apart. This is a large effect. Recall
that the sign has no effect on the size of an effect: �2.56 and 2.56 are equivalent effect
sizes. We can add the effect size when we report the statistics as follows: t(4) � �5.72,
p � 0.05, d � �2.56. ■

Cohen’s d
M

s
�

�
�

� �
��

( ) ( )

.
.

l 11 0

4 301
2 56

EXAMPLE 10.3

�                                         

MASTERING THE FORMULA

10-2: The formula for Cohen’s d
for a paired-samples t statistic is:

Cohen’s . It is the same

formula as for the single-sample t
statistic, except that the mean and
standard deviation are for difference
scores rather than individual scores.

d
M

s
�

�( )l

There are particular problems that can occur with a within-groups design such as that
used with a paired-samples t test. Specifically, a within-groups design invites a particular
kind of confounding variable into a study: order effects. Order effects refer to how a par-
ticipant’s behavior changes when the dependent variable is presented for a second time. (They’re
sometimes called practice effects.) Let’s consider the computer monitor study for which
we conducted a paired-samples t test. Remember that the participants completed a

Order Effects and Counterbalancing N e x t  S t e p s

■ Order effects refer to how a
participant’s behavior changes
when the dependent variable
is presented for a second time,
sometimes called practice
effects.
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 series of tasks on a 15-inch computer monitor and also on a 42-inch computer mon-
itor. The time it took them to complete the series of tasks was recorded under each
condition. Can you spot the confound? Participants were likely to get faster the second
time they completed the tasks. Their responses “the second time around” would be
influenced by the practice of already having completed the tasks once.

The main technique to limit the influence of order effects is counterbalancing.
Counterbalancing minimizes order effects by varying the order of presentation of different
levels of the independent variable from one participant to the next. For example, half of the

participants could be randomly assigned to complete the tasks on
the 15-inch monitor first, then again on the 42-inch monitor. The
other half could be randomly assigned to complete the tasks on the
42-inch monitor first, then again on the 15-inch monitor. In this
case, any practice effect would be washed out by varying the order
of the monitors.

Counterbalancing is not always effective or applicable, however, so
many researchers strive to create between-groups designs. In the com-
puter monitor example, we might decide to use a different set of tasks
in each testing condition. The order in which the two different sets
of tasks are given could be counterbalanced along with the order in
which participants are assigned to the two different-sized monitors.
Measures such as this can reduce order effects in within-groups re-
search designs.
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Order Effects You observe that your friends felt exhilarated after riding a roller coaster without loops (which turn
riders upside-down), then felt nauseated after riding a roller coaster with loops. You conclude that loops lead to
nausea. The problem is that there could be an order effect. Perhaps your friends would have felt nauseated after
the second roller coaster ride whether or not it had loops. Counterbalancing would avoid this confound. Half of your
friends would be randomly assigned to ride the one without loops first, then the one with loops; half of them would
be randomly assigned to ride the one with loops first, then the one without loops.

�   MASTERING THE CONCEPT

10-4: Within-groups studies are vulnerable

to order effects, whereby participants

respond differently the second time the

dependent variable is measured.

Researchers using a within-groups design

should use counterbalancing—that is, they

should vary the order in which the levels of

the independent variable are presented.

CHECK YOUR LEARNING
Reviewing the Concepts       > We can calculate a confidence interval for a paired-samples t test. This provides us with an

interval estimate rather than simply a point estimate. If 0 is not in the confidence interval,
then it is not plausible that there is no difference between the sample and population mean
differences.

> We also can calculate an effect size (Cohen’s d) for a paired-samples t test.

■ Counterbalancing minimizes
order effects by varying the
order of presentation of
different levels of the
independent variable from one
participant to the next.
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Clarifying the Concepts      10-5 How does creating a confidence interval for a paired-samples t test give us the same
information as hypothesis testing with a paired-samples t test?

  10-6 How do we calculate Cohen’s d for a paired-samples t test?

Calculating the Statistics    10-7 Assume that researchers asked five participants to rate their mood on a scale from 1 to
7 (1 being lowest, 7 being highest) before and after watching a funny video clip. The
researchers reported that the average difference between the “before” mood score and
the “after” mood score was M � 1.0, s � 1.225. They calculated a paired-samples t
test, t(4) � 1.13, p � 0.05 and failed to reject the null hypothesis using a two-tailed
test with a p level of 0.05.

a. Calculate the 95% confidence interval for this t test and describe how it results in
the same conclusion as the hypothesis test.

b. Calculate and interpret Cohen’s d.

Applying the Concepts       10-8 Using the energy-level data presented in Check Your Learning 10-3 and 10-4, let’s go
beyond hypothesis testing.

a. Calculate the 95% confidence interval and describe how it results in the same
conclusion as the hypothesis test.

b. Calculate and interpret Cohen’s d.

Solutions to these Check Your
Learning questions can be found in
Appendix D.

> Order effects occur when participants’ behavior is affected when a dependent variable is
presented a second time.

> Order effects can be reduced through counterbalancing, a procedure in which the different
levels of the independent variable are presented in different orders from one participant to
the next.

REVIEW OF CONCEPTS

The Paired-Samples t Test
A paired-samples t test is used when we have two samples, and the same participants are
in both samples; to conduct the test, we calculate a difference score for every individual
in the study. The comparison distribution is a distribution of mean difference scores
instead of the distribution of means that we used with a single-sample t test. Aside from
the comparison distribution, the steps of hypothesis testing are similar to those for a
single-sample t test.

Beyond Hypothesis Testing
As with a z test and a single-sample t test, we can calculate a confidence interval for
a paired-samples t test. The confidence interval gives us an interval estimate rather than
a point estimate. Its results match that of the hypothesis test. When we reject the null
hypothesis, we know that the confidence interval will not include 0. We also can cal-
culate an effect size (Cohen’s d) for a paired-samples t test. It provides information
about the size of the observed effect and can let us know if a statistically significant
finding is likely to be practically important.

Paired-samples t tests are used when we compare two groups using a within-groups
design, a situation in which we must be aware of order effects, also called practice effects.
Order effects occur when participants’ behavior changes when a dependent variable,
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such as a test or measure, is presented a second time. Researchers use counterbalancing
to reduce order effects; they vary the order in which the different levels of the inde-
pendent variable are presented from one participant to the next.

SPSS®

For a paired-samples t test, let’s use the data from this chapter
on performance using a small monitor versus a large monitor.
Enter the data in two columns, with each participant having
one score in the first column for his or her performance on
the small monitor and one score in the second column for his
or her performance on the large monitor.

Select Analyze → Compare Means → Paired-Samples T
Test. Choose the dependent variable under the first condition
(small) by clicking it, then clicking the center arrow. Choose
the dependent variable under the second condition (large) by

clicking it, then clicking the center arrow. Then click “OK.”
The data and output are shown in the screenshot. Notice that
the t statistic and confidence interval match ours (5.72 and
[�16.34, �5.66]) except that the signs are different. This oc-
curs because of the order in which one score was subtracted
from the other score—that is, whether the score on the large
monitor was subtracted from the score on the small monitor,
or vice versa. The outcome is the same in either case. The p
value is under “Sig. (2-tailed)” and is .005. We can use this
number in Excel to determine the value for prep, .9657.

HOW IT WORKS
10.1 CONDUCTING A PAIRED-SAMPLES t TEST
Salary Wizard is an online tool that allows you to look up incomes for specific jobs for
cities in the United States. We looked up the 25th percentile for income for six jobs in
two cities: Boise, Idaho, and Los Angeles, California. The data are below.

Boise Los Angeles

Executive chef $53,047.00 $62,490.00
Genetics counselor $49,958.00 $58,850.00
Grants/proposal writer $41,974.00 $49,445.00
Librarian $44,366.00 $52,263.00
Public schoolteacher $40,470.00 $47,674.00
Social worker (with bachelor’s degree) $36,963.00 $43,542.00
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How can we conduct a paired-samples t test to determine whether income in one of
these cities differs, on average, from income in the other? We’ll use a two-tailed test and a
p level of 0.05.

Step 1: Population 1: Job types in Boise, Idaho. Population 2: Job types in Los Angeles,
 California.

The comparison distribution will be a distribution of mean differences. The hy-
pothesis test will be a paired-samples t test because we have two samples, and all
participants are in both samples.

This study meets the first of the three assumptions and may meet the third. The
dependent variable, income, is scale. We do not know whether the population is
normally distributed, there are not at least 30 participants, and there is not much
variability in the data in the samples, so we should proceed with caution. The data
were not randomly selected, so we should be cautious when generalizing beyond
this sample of job types.

Step 2: Null hypothesis: Jobs in Boise pay the same, on average, as jobs in Los Angeles—
H0: l1 � l2. Research hypothesis: Jobs in Boise pay different incomes, on average,
than do jobs in Los Angeles—H1: l1 � l2.

Step 2: lM � l� 0; sM � 438.8     30

Boise Los Angeles Difference (D) (D � Mdifference) (D � Mdifference)
2

$53,047.00 $62,490.00 9443 1528.667 2,336,822.797
$49,958.00 $58,850.00 8892 977.667 955,832.763
$41,974.00 $49,445.00 7471 �443.333 196,544.149
$44,366.00 $52,263.00 7897 �17.333 300.433
$40,470.00 $47,674.00 7204 �710.333 504,570.840
$36,963.00 $43,542.00 6579 �1335.333 1,783,114.221

MDifference � 7914.333

SS � R(D � Mdifference)
2 � 5,777,185.203

Step 4: df � N � 1 � 6 � 1 � 5

The critical values, based on 5 degrees of freedom, a p level of 0.05, and a two-
tailed test, are �2.571 and 2.571.

Step 5:

Step 6: Reject the null hypothesis. It appears that jobs in Los Angeles pay more, on average,
than do jobs in Boise.
The statistics, as they would be presented in a journal article, are:

t(5) � 18.03, p � 0.05
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Clarifying the Concepts

10.1 What do we mean when we say we have a distribution
of mean differences?

10.2 When do we use a paired-samples t test?

10.3 Explain the distinction between the terms independent
samples and paired samples as they relate to t tests.

10.4 How is a paired-samples t test similar to a single-sample
t test?

10.5 How is a paired-samples t test different from a single-
sample t test?

10.6 Why is the population mean almost always equal to 0
for the null hypothesis in the two-tailed, paired-samples
t test?

Exercises



10.7 If we calculate the confidence interval around the sam-
ple mean difference used for a paired-samples t test, and
it includes the value of 0, what can we conclude?

10.8 If we calculate the confidence interval around the sample
mean difference used for a paired-samples t test, and it
does not include the value of 0, what can we  conclude?

10.9 What are order effects?

10.10 Identify and explain the technique for countering order
effects using a within-groups research design.

10.11 Why might order effects lead a researcher to use a 
between-groups design rather than a within-groups
 design?

Calculating the Statistics

10.12 Identify the critical t value for a one-tailed, paired-
 samples t test performed on scores on the Marital Sat-
isfaction Inventory for 18 couples who went through
marriage counseling, using a p level of 0.01.

10.13 Identify the critical t values for a two-tailed, paired-sam-
ples t test performed on scores on the Marital Satisfac-
tion Inventory for 64 couples who went through
marriage counseling, using a p level of 0.05.

10.14 Assume 8 participants completed a mood scale before
and after watching a funny video clip.

a. Identify the critical t value for a one-tailed, paired-
samples t test with a p level of 0.01.

b. Identify the critical t values for a two-tailed, paired-
samples t test with a p level of 0.01.

10.15 The following are scores for 8 students on two different
exams.

a. Calculate the paired-samples t statistic for these
exam scores.

b. Using a two-tailed test and a p level of 0.05, identify
the critical t values and make a decision regarding
the null hypothesis.

10.16 The following are mood scores for 12 participants be-
fore and after watching a funny video clip (higher values
indicate better mood). 

a. Calculate the paired-samples t statistic for these
mood scores.

b. Using a one-tailed hypothesis test that the video
clip improves mood and a p level of 0.05, identify
the critical t values and make a decision regarding
the null hypothesis.

10.17 Using the t statistic you calculated for Exercise 10.16,
perform steps 4 and 6 of a two-tailed hypothesis test
with a p level of 0.05. Identify the critical t values and
make a decision regarding the null hypothesis.

10.18 Calculate the paired-samples t statistic for the following
set of data.

10.19 Calculate the paired-samples t statistic for the following
set of data.

10.20 a. Calculate the 95% confidence interval, assuming a
two-tailed test, for the paired-samples t statistic that
you calculated in Exercise 10.18.

b. Calculate the effect size for the mean difference you
calculated in Exercise 10.18.

10.21 a. Calculate the 95% confidence interval, assuming a
two-tailed test, for the paired-samples t statistic that
you calculated in Exercise 10.19.

b. Calculate the effect size for the mean difference you
calculated in 10.19.

10.22 Assume we know the following for a paired-samples t
test: N � 32, Mdifference � 1.75, s � 4.0.

a. Calculate the t statistic.

  Exam I       Exam II

      92               84

      67               75

      95               97

      82               87

      73               68

      59               63

      90               88

      72               78

Before After Before After

7 2 4 2

5 4 7 3

5 3 4 1

7 5 4 1

6 5 5 3

7 4 4 3

Score 1 Score 2

23 16

30 12

28 25

30 27

14 6

Score 1 Score 2 Score 1 Score 2

45 62 15 26

34 56 51 56

22 40 28 33

45 48
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b. Calculate a 95% confidence interval for a two-tailed
test.

c. Calculate effect size using Cohen’s d.
10.23 Assume we know the following for a paired-samples t

test: N � 13, Mdifference � �0.77, s � 1.42.

a. Calculate the t statistic.
b. Calculate a 95% confidence interval for a two-tailed

test.
c. Calculate effect size using Cohen’s d.

Applying the Concepts

10.24 Many communities worldwide are lamenting the effects
of so-called big box retailers (e.g., Wal-Mart) on their
local economies, particularly on small, independently
owned shops. Do these large stores affect the bottom
lines of locally owned retailers? Imagine that you decide
to test this premise. You assess earnings at 20 local stores
for the month of October, a few months before a big
box store opens. You then assess earnings the following
October, correcting for inflation.

a. What are the two populations?
b. What would the comparison distribution be?  Explain.
c. What hypothesis test would you use? Explain.
d. Check the assumptions for this hypothesis test.
e. What is one flaw in drawing conclusions from this

comparison over time?
10.25 For the scenario described in Exercise 10.24 (big box

stores and their effect on local retailers), state the null
and research hypotheses in both words and symbols.

10.26 Is it harder to get into graduate programs in psychology
or history? We randomly selected five institutions from
among all U.S. institutions with graduate programs. The
first number for each is the minimum grade point average
(GPA) for applicants to the psychology doctoral program,
and the second is for applicants to the history doctoral
program. These GPAs were posted on the Web site of the
well-known college guide company Peterson’s.

Wayne State Univer s i ty :  3.0,  2.75
Univer s i ty of  Iowa: 3.0,  3.0
Univer s i ty of  Nevada–Reno: 3.0,  2.75
George Washington Univer s i ty :  3.0,  3.0
Univer s i ty of  Wyoming:  3.0,  3.0

a. The participants are not people; explain why it is
appropriate to use a paired-samples t test for this
 situation.

b. Conduct all six steps of a paired-samples t test. Be
sure to label all six steps.

c. Report the statistics as you would in a journal  article.
10.27 Using the data provided in Exercise 10.26, calculate the

effect size and explain what this adds to your analysis.
10.28 In Chapter 1, you were given an opportunity to complete

the Stroop test in which color words are printed in the

wrong color; for example, the word red might be printed
in the color blue. The conflict that arises when we try to
name the color of ink the words are printed in but are
distracted when the color word does not match the ink
color increases reaction time and decreases accuracy. Sev-
eral researchers have suggested that the Stroop effect can
be decreased by hypnosis. Raz, Fan, and Posner (2005)
used brain-imaging techniques [i.e., functional magnetic
resonance imaging (fMRI)] to demonstrate that posthyp-
notic suggestion led highly hypnotizable peo ple to see
Stroop words as nonsense words. Imagine that you are
working with Raz and colleagues and your assignment
is to determine if reaction times decrease (remember, a
decrease is a good thing; it indicates that participants are
faster) when highly hypnotizable people receive a
posthypnotic suggestion to view the words as nonsensical.
You conduct the experiment on six participants, once in
each condition, and receive the following data; the first
number is reaction time in seconds without the posthyp-
notic suggestion, and the second number is reaction time
with the posthypnotic suggestion:

Participant 1: 12.6, 8.5
Participant 2: 13.8, 9.6
Participant 3: 11.6, 10.0
Participant 4: 12.2, 9.2
Participant 5: 12.1, 8.9
Participant 6: 13.0, 10.8

a. What is the independent variable and what are its
levels? What is the dependent variable?

b. Conduct all six steps of a paired-samples t test. Be
sure to label all six steps.

c. Report the statistics as you would in a journal  article.
10.29 Let’s consider Exercise 10.28 on the Stroop test and

posthypnotic suggestion. When we conduct a one-tailed
test instead of a two-tailed test, there are small changes
in steps 2 and 4 of hypothesis testing.

a. Conduct step 2 of hypothesis testing—stating
the null and research hypotheses in words and in
symbols—for a one-tailed test.

b. Conduct step 4 of hypothesis testing—determining
the critical value and drawing the curve—for a one-
tailed test.

c. Conduct step 6 of hypothesis testing—making a de-
cision—for a one-tailed test.

d. Under which circumstance—a one-tailed or a two-
tailed test—is it easier to reject the null hypothesis?
Explain.

e. If it becomes easier to reject the null hypothesis
under one type of test (one-tailed versus two-tailed),
does this mean that there is a bigger mean difference
between the samples? Explain.

10.30 When we change the p level that we use as a cutoff,
it causes a small change in step 4 of hypothesis testing.
 Although 0.05 is the most commonly used p level, other
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levels, such as 0.01, are also often used. Let’s consider
Exercise 10.28 on the Stroop test and posthypnotic
 suggestion.

a. Conduct step 4 of hypothesis testing—determining
the critical value and drawing the curve—for a p
level of 0.01 and a two-tailed test.

b. Conduct step 6 of hypothesis testing—making a de-
cision—for a p level of 0.01.

c. With which p level—0.05 or 0.01—is it easiest to
reject the null hypothesis? Explain.

d. If it is easier to reject the null hypothesis with cer-
tain p levels, does this mean that there is a bigger
mean difference between the samples? Explain.

10.31 Changing the sample size can have an effect on the out-
come of a hypothesis test. Consider Exercise 10.28 on
the Stroop test and posthypnotic suggestion.

a. Calculate the test statistic using only participants 1–3
and determine the new critical values.

b. Is this test statistic closer to or farther from the cut-
off? Does reducing the sample size make it easier or
more difficult to reject the null hypothesis? Explain.

10.32 Using the data from Exercise 10.15, assume you col-
lected exam scores from 1000 students whose mean dif-
ference score and standard deviation were exactly the
same as those you calculated as part of the calculations
for the paired-samples t statistic in Exercise 10.15(a).

a. Using a two-tailed test and a p level of 0.05, identify
the critical t values and make a decision regarding
the null hypothesis.

b. How did changing the sample size affect our deci-
sion regarding the null hypothesis?

10.33 Below are the numbers of goals scored by the lead scor-
ers of the New Jersey Devils hockey team in the 2007–
2008 and 2008–2009 seasons. On average, did the Devils
play any differently in 2008–2009 than they did in
2007– 2008?

a. Conduct the six steps of hypothesis testing using a
two-tailed test and a p level of 0.05.

b. Report the test statistic in APA format.
c. Calculate the confidence interval for the paired-

samples t test you conducted in part (a). Compare
the confidence interval to the results of the hypoth-
esis test.

d. Calculate the effect size for the mean difference be-
tween the 2007–2008 and 2008–2009 seasons.

10.34 It seems that 14% of engaged women buy a wedding
dress at least one size smaller than their current size.
Why? Cornell researchers reported an alarming ten-
dency for engaged women to attempt to lose sometimes
unhealthy amounts of weight prior to their wedding
(Neighbors & Sobal, 2008). The researchers found that
engaged women weighed, on average, 152.1 pounds.
The average ideal wedding weight reported by 227
women was 136.0 pounds. The data below represent the
fictional weights of 8 women on the day they bought
their wedding dress and on the day they got married.
Did women lose weight for their wedding day?

a. Conduct the six steps of hypothesis testing using a
one-tailed test and a p level of 0.05.

b. Report the test statistic in APA format.
c. Calculate the confidence interval for the paired-

samples t test that you conducted in part (a). Com-
pare the confidence interval to the results of the
hypothesis test.

10.35 Refer to Exercise 10.28, which describes the results of
a study in which participants completed the Stroop test
before and after receiving a posthypnotic suggestion.

a. How might order effects influence the results of this
study?

b. Could the researchers use a counterbalanced design?
Why or why not? What might they do instead if
they think order effects are a problem?

Player 2007–2008 2008–2009

Elias 20 31
Zajac 14 20
Pandolfo 12 5
Langenbrunner 13 29
Gionta 22 20
Parise 32 45

Dress Purchase Wedding Day

163 158

144 139

151 150

120 118

136 132

158 152

155 150

145 146
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Terms
paired-samples t test (p. 251)
order effects (p. 259)
counterbalancing (p. 260)
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■ You should understand the differences
between a distribution of scores (Chapter 2), 
a distribution of means (Chapter 6), and a
distribution of mean differences (Chapter 10).

■ You should know how to conduct a single-
sample t test (Chapter 9) and a paired-samples
t test (Chapter 10), including the calculations
for the corrected versions of standard
deviation and variance.

■ You should understand the basics of
determining confidence intervals (Chapter 8).

■ You should understand the concept of effect
size and know the basics of calculating
Cohen’s d (Chapter 8).

BEFORE YOU GO ON

Conducting an Independent-Samples t Test
A Distribution of Differences 

Between Means
The Six Steps of an Independent-Samples

t Test
Reporting the Statistics

Beyond Hypothesis Testing
Calculating a Confidence Interval for an

Independent Samples t Test
Calculating Effect Size for an Independent

Samples t Test

Next Steps: Data Transformations



Stella Cunliffe was the first woman elected president of the Royal Sta-
tistical Society. In her inaugural address, Cunliffe described her “exciting
life” as a statistician. She talked about her research at the Guinness Brew-
ing Company and what she had learned by applying statistics to human
behavior: humans are full of “delightful idiosyncrasies” (Cunliffe, 1976;
see Salsburg, 2001).

For example, Cunliffe devised an experiment to pinpoint the tem-
perature at which people preferred to drink Guinness, but she ended up
discovering that people do not like beer labeled with yellow seals, re-
gardless of its temperature (colored seals were used to conceal the beer’s
temperature from the tasting panel). Cunliffe concluded that all obser-
vations of human behavior are contaminated because we “all have prej-
udices about certain numbers, letters, or colours, and all of us are very
superstitious. We all behave irrationally” (Cunliffe, 1976, p. 262; see Sals-
burg, 2001).

Human irrationality is not the only way in which findings can be
contaminated. For example, Cunliffe noticed that the woman who in-
spected the quality of handmade beer barrels had to divide them into
two groups: accept or reject. However, the worker’s decision was con-
taminated by the arrangement of her workstation. To accept a barrel, the
worker just had to kick it downhill—a fairly easy task. To reject a barrel,
however, she had to roll it uphill—a fairly difficult task. The difficulty
of the task biased the worker so that she sometimes failed to reject de-
ficient barrels that should have been rejected.

Fortunately, Cunliffe knew that she could decontaminate the worker’s
judgments by creating two fair comparison groups. Cunliffe redesigned

the woman’s workstation so that it was just as easy to reject a barrel as it was to accept
one—a change that represented a significant advance in quality control for the Guinness
Brewing Company. In the behavioral sciences, the most common way to control human
idiosyncrasies is by using random assignment to create independent groups. In this
chapter, we’ll learn how to conduct the hypothesis test for a study that compares two
independent groups.

In Chapter 9, we learned how to conduct a single-sample t test (used when com-
paring one sample to a population for which we know the mean but not the standard
deviation). In Chapter 10, we learned how to conduct a paired-samples t test for a two-
group study in which every participant was in both conditions of the study. In this
chapter, we learn how to conduct a t test in a third situation: a two-group study in
which each participant is in only one of the two conditions of the study. This hypothesis
test is called an independent-samples t test because the scores for each group of participants
are independent of what happens in the other group. We also demonstrate how to de-
termine a confidence interval and calculate an effect size for situations in which we
have two independent groups.

Conducting an Independent-Samples t Test
When Stella Cunliffe observed the woman making decisions about which barrels to ac-
cept and which to reject, she recognized that the two conditions were not independent
of each other. The difficulty of rolling a barrel uphill made it more likely that the worker
would accept the barrel and kick it downhill. However, when those conditions were
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Stella Cunliffe Stella Cunliffe created a remarkable
career through her statistical reasoning and became the
first female president of the Royal Statistical Society. As a
statistician, she used hypothesis testing to improve quality
control at the Guinness Brewing Company and to shape
public policy in the criminology division at the British 
Home Office.

■ An independent-samples t
test is used to compare two
means for a between-groups
design, a situation in which
each participant is assigned to
only one condition.
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made independent of each other—by redesigning the workstation —
the worker was able to make independent, unbiased, fair judgments
about the quality of beer barrels.

Creating independent groups is a common research strategy be-
cause often we do not—or cannot—have the same participants in
both samples. When we test for differences between two independent
groups, we use an independent-samples t test, which compares two means
for a between-groups design, a situation in which each participant is assigned
to only one condition. This test uses a distribution of differences between
means. This affects the t test in a few minor ways. As we will see, the biggest difference
is that it takes more work to estimate the appropriate standard error. It’s not difficult—
just a bit time-consuming. After we discuss some of the differences, including the
 appropriate distribution, we look at an example from the area of gender differences
and similarities. We introduce the specifics of the independent-samples t test in each
step below.

A Distribution of Differences Between Means
Because we have different people in each condition of the study, we cannot create a
difference score for each person. We’re looking at overall differences between two in-
dependent groups. For this research design, we need to develop a new type of distri-
bution, a distribution of differences between means, so that we can establish a distribution
that specifies the null hypothesis.

Let’s use the Chapter 6 data about heights to demonstrate how to create a distri-
bution of differences between means, the distribution that accompanies a between-
groups design. Let’s say that we were planning to collect data on two groups of three
people each and wanted to determine the comparison distribution for this research
scenario. Remember that in Chapter 6, we used the example of a population of 140
college students from the authors’ classes. We described writing the height of each stu-
dent on a card and putting the 140 cards in a bowl.

�   MASTERING THE CONCEPT

11-1: An independent-samples t test is used

when we have two groups and a between-

groups research design—that is, every

participant is in only one of the two groups.

Let’s use that example to create a distribution of differences between means. We’ll walk
through the steps for this process.

That’s really all there is to it—except we repeat these three steps many more times.
So there are two samples and two sample means, but we’re building just one curve of
differences between means.

STEP 1: We randomly select three cards, replacing each after
selecting it, and calculate the mean of the heights
listed on them. This is the first group.

STEP 2: We randomly select three other cards, replacing each
after selecting it, and calculate their mean. This is the
second group.

STEP 3: We subtract the second mean from the first.

EXAMPLE 11.1



The Six Steps of an Independent-Samples t Test
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Here’s an example using the three steps.

We repeat the three-step process. Let’s say that, this time, we calculate means of 65
and 68 for the two samples. Now the difference between means would be 65 � 68
� �3. We might repeat the three steps a third time and find means of 63 and 63 for
a difference of 0. Eventually, we would have many differences between means—some
positive, some negative, and some right at 0—and could plot them on a curve. But this
would only be the beginning of what this distribution would look like. If we were to
calculate the whole distribution, then we would do this many, many more times. When
creating the beginnings of a distribution of differences between means, the authors cal-
culated 30 differences between means, as shown in Figure 11-1.

STEP 1: We randomly select three cards, replacing each after
selecting it, and find that the heights are 61, 65, and 72.
We calculate a mean of 66 inches. This is the first group.

STEP 2: We randomly select three other cards, replacing each
after selecting it, and find that the heights are 62, 65,
and 65. We calculate a mean of 64 inches. This is the
second group.

STEP 3: We subtract the second mean from the first: 
66 � 64 � 2. (Note that it’s fine to subtract the first
from the second, as long as we’re consistent in our
arithmetic.)

6
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1

3

4

0
�6 �5 �4 �3 �2 �1 0 1 2 3 4 5 6
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■

FIGURE 11-1
Distribution of Differences

Between Means

This curve represents the beginning of
the development of a distribution of

differences between means. It includes
only 30 differences, whereas the actual

distribution would include all possible
differences.

Does the price of a product influence how much you like it? If you’re told that your
sister’s new flat-screen television cost $3000, do you perceive the picture quality to be
sharper than if you’re told it cost $1200? If you think your friend’s new shirt is from
a high-end designer like Dolce and Gabbana, do you covet it more than if he tells you
it’s from a trendy, but low-priced, mass-retailer like H&M?

Economics researchers from northern California, not far from prime wine country,
wondered whether this would be true for wine—cabernet sauvignon in particular

EXAMPLE 11.2



 (Plassmann, O’Doherty, Shiv, & Rangel, 2008). In part of
their study, they randomly assigned some wine drinkers to
taste a cabernet that was said to cost $10 per bottle and oth-
ers to taste the same wine at a supposed price of $90 per bot-
tle. (Note that we’re altering some aspects of the design and
statistical analysis of this study for teaching purposes.) The
researchers asked participants to rate how much they liked
the wine; they also used functional magnetic resonance im-
aging (fMRI), a brain-scanning technique, to determine
whether differences were evident in areas of the brain that
are typically activated when people experience a stimulus as
pleasant (e.g., the medial orbitofrontal cortex). Which wine
do you think participants preferred, the $10 cabernet or the
$90 one?

We will conduct an independent-samples t test on fic-
tional data, the ratings of how much nine people like the
wine they were randomly assigned to taste (four tasting wine
from the “$10” bottle and five tasting wine from the “$90”
bottle). Remember, everyone is actually tasting wine from
the same bottle! These fictional data have approximately the same means as were re-
ported in the original study. Notice that we do not need to have the same number of
participants in each sample, although it is best if the sample sizes are fairly close.

Mean “liking ratings” of the wine:

“$10” wine: 1.5 2.3 2.8 3.4

“$90” wine: 2.9 3.5 3.5 4.9 5.2

In terms of determining the populations, this
step is similar to that for the paired-samples
t test: there are two populations—those told

they are drinking wine from a $10 bottle and those told they are drinking wine from
a $90 bottle. The comparison distribution for an independent-samples t test, however,
will be a distribution of differences between means (rather than a distribution of mean
difference scores). Table 11-1 summarizes the distributions we have encountered with
the hypothesis tests we have learned so far.

As usual, the comparison distribution is based on the null hypothesis. As with the
paired-samples t test, the null hypothesis for the independent-samples t test posits no
mean difference. So the mean of the comparison distribution would be 0; this reflects
a mean difference between means of 0. We compare the difference between the sample

STEP 1: Identify the populations,
distribution, and assumptions.
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Price and Perception: Designer Versus Knockoff Does the
perceived price of a product change how much you like it? The one on the
right is the designer version. Quick—how much do you like it? OK, we lied;
the one on the right is the knockoff. Did your perception of it change? If
researchers ask some people to rate the designer version of Ash shoes 
and other people to rate the Aldo knockoff version, we could conduct an
independent-samples t test to determine if the ratings are statistically
significantly different.

TABLE 11-1. Hypothesis Tests and Their Distributions

We must consider the appropriate comparison distribution when we choose which hypothesis test to use.

         Hypothesis Test                    Number of Samples                        Comparison Distribution

   z test                                           one                                            Distribution of means

   Single-sample t test                     one                                            Distribution of means

   Paired-samples t test                   two (same participants)               Distribution of mean difference scores

   Independent-samples t test           two (different participants)           Distribution of differences between means



means to a difference of 0, which is what would occur if there was no difference be-
tween groups. The assumptions for an independent-samples t test are the same as for
the single-sample t test and the paired-samples t test.
Summary: Population 1: People told they are drinking wine from a $10 bottle. Popu-
lation 2: People told they are drinking wine from a $90 bottle.

The comparison distribution will be a distribution of differences between means
based on the null hypothesis. The hypothesis test will be an independent-samples t
test because we have two samples composed of different groups of participants. This
study meets one of the three assumptions. (1) The dependent variable is a rating on
a liking measure, which can be considered a scale variable. (2) We do not know
whether the population is normally distributed, and there are not at least 30 partic-
ipants. How ever, the sample data do not suggest that the underlying population distri -
bution is skewed. (3) The wine drinkers in this study were not randomly selected
from among all wine drinkers, so we must be cautious with respect to generalizing
these findings.

This step for an independent-samples t test
is identical to that for the previous t tests.
Summary: Null hypothesis: On average, peo-

ple drinking wine they were told was from a $10 bottle give it the same rating as people
drinking wine they were told was from a $90 bottle—H0: l1 � l2. Research hypoth-
esis: On average, people drinking wine they were told was from a $10 bottle give it a
different rating than people drinking wine they were told was from a $90 bottle—H1:
l1 � l2.

This step for an independent-samples t test
is similar to that for previous t tests: we de-
termine the appropriate mean and the ap-

propriate standard error of the comparison distribution—the distribution based on the
null hypothesis. According to the null hypothesis, no mean difference exists between
the populations; that is, the difference between means is 0. So the mean of the com-
parison distribution is always 0, as long as the null hypothesis posits no mean difference.

Because we have two samples for an independent-samples t test, however, it is
more complicated to calculate the appropriate measure of spread. There are five
stages to this process. First, let’s consider them in words; then we’ll learn the calcu-
lations. These instructions are basic, and you’ll understand them better when you do
the calculations, but they’ll help you to keep the overall framework in mind. (These
verbal descriptions are keyed by letter to the calculation stages below.)

a. Calculate the corrected variance for each sample. (Notice that we’re working
with variance, not standard deviation.)

b. Pool the variances. Pooling involves taking an average of the two sample vari-
ances while accounting for any differences in the sizes of the two samples.
Pooled variance is an estimate of the common population variance.

c. Convert the pooled variance from squared standard deviation (i.e., variance) to
squared standard error (another version of variance) by dividing the pooled vari-
ance by the sample size, first for one sample and then again for the second sam-
ple. These are the estimated variances for each sample’s distribution of means.

d. Add the two variances (squared standard errors), one for each distribution of
sample means, to calculate the estimated variance of the distribution of differ-
ences between means.

STEP 2: State the null and research
hypotheses.

STEP 3: Determine the characteristics
of the comparison distribution.
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e. Calculate the square root of this form of variance (squared standard error) to get
the estimated standard error of the distribution of differences between means.

Notice that stages (a) and (b) are an expanded version of the usual first calculation
for a t test. Instead of calculating one corrected estimate of standard deviation, we’re
calculating two for an independent-samples t test—one for each sample. Also, for an
independent-samples t test, we’re using variances instead of standard deviations. Because
there are two calculations of variance, we have to combine them (i.e., the pooled vari-
ance). Stages (c) and (d) are an expanded version of the usual second calculation for a
t test. Once again, we are converting to the standard error (only this time it is squared
because we are working with variances). Once again, we combine the variances from
each sample. In stage (e), we take the square root so that we have the standard error.
Let’s examine the calculations.

(a) We calculate the corrected variance for each sample (the corrected variance is the
one we learned in Chapter 9 that uses N � 1 in the denominator). First, we calculate
variance for X, the sample of people told they are drinking wine from a $10 bottle. Be
sure to use the mean of the ratings of the $10 wine drinkers only, which is 2.5. Notice
that the symbol for this variance uses s2, instead of SD2 (just as the standard deviation
uses s instead of SD in the previous t tests). Also, we have included the subscript X to
indicate that this is the variance for the first sample, whose scores are arbitrarily called
X. (Remember, don’t take the square root. We want variance, not standard deviation.)

Now we do the same for Y, the people told they are drinking wine from a $90 bot-
tle. Remember to use the mean for Y; it’s easy to forget and use the mean we calculated
earlier for X. The mean for Y is 4.0. The subscript Y indicates that this is the variance
for the second sample, whose scores are arbitrarily called Y. (We could call these scores
by any letter, but statisticians tend to call the scores in the first two samples X and Y.)
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(b) We must pool the two estimates of variance. Because there are often different
numbers of people in each sample, we cannot simply take their mean. We mentioned
earlier in this book that estimates of spread taken from smaller samples tend to be less
accurate. So we need to weight the estimate from the smaller sample a bit less and
weight the estimate from the larger sample a bit more. We do this by calculating the
proportion of degrees of freedom represented by each sample. Each sample has degrees
of freedom of N � 1. We also calculate a total degrees of freedom that sums the degrees
of freedom for the two samples. Here are the calculations for degrees of freedom for
this independent-samples t test:

dfX � N � 1 � 4 � 1 � 3

dfY � N � 1 � 5 � 1 � 4

dftotal � dfX � dfY � 3 � 4 � 7

Using these degrees of freedom, we can calculate a sort of average variance called
a pooled variance. Pooled variance is a weighted average of the two estimates of variance—one
from each sample—that are calculated when conducting an independent-samples t test. The es-
timate of variance from the larger sample counts for more in the pooled variance than
does the estimate from the smaller sample because larger samples tend to lead to some-
what more accurate estimates than do smaller samples. Here’s the formula for pooled
variance, and the calculations for this particular example:

(Note: If we had exactly the same number of participants in each sample, this would
be an unweighted average—that is, we could compute the average in the usual way
by summing the two sample variances and dividing by 2. Let’s say we had 5 participants
in each sample, so each sample had 4 degrees of freedom. There would be 8 total de-
grees of freedom. So each sample’s estimate of variance would account for 4/8—which
reduces to 1/2—of the pooled variance. Taking half of each is the same as adding them
together and dividing them by 2.)

(c) Now that we have pooled the two variances, we have an estimate of spread. This
is similar to the estimate of the standard deviation in the previous t tests, but now it’s
based on two samples (and it’s an estimate of the variance rather than the standard de-
viation). The next calculation in the previous t tests was dividing standard deviation
by to get the standard error. In this case, we divide by N instead of . Why?
Because we are dealing with variances, not standard deviations. Variance is the square
of standard deviation, so we divide by the square of , which is simply N. We do
this once for each sample, using the pooled variance as the estimate of spread. We use
the pooled variance because an estimate based on two samples is likely better than an
estimate based on one. The key here is to divide by the appropriate N. That is, when
we do the calculations for the first sample, we divide by its N, 4. And when we do the
calculations for the second sample, we divide by its N, 5.
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MASTERING THE FORMULA

11-1: There are three degrees
of free dom calculations for an
 independent-samples t test. First, we
calculate the degrees of freedom for
the first sample by subtracting 1
from the number of participants in
that sample: dfX � N � 1. Then we
calculate the degrees of freedom for
the second sample by subtracting 1
from the number of participants in
that sample: dfY � N � 1. Finally,
we sum the degrees of freedom
from the two samples to calculate
the total degrees of freedom: dftotal �

dfX � dfY.

                                        �

MASTERING THE FORMULA

11-2: We use all three degrees of
freedom calculations, along with the
variance estimates for each sample,

to calculate pooled variance: 

. This for-

mula takes into account the size of
each sample. A larger sample has a
larger degrees of freedom in the nu-
merator, and that variance therefore
has more weight in the pooled vari-
ance that is calculated.
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MASTERING THE FORMULA

11-3: The next step in calculating
the t statistic for a two-sample, be-
tween-groups design is to calculate
the variance version of standard
error for each sample by dividing
variance by sample size. We use the
pooled version of variance for both
calculations because it’s more likely
to be accurate than the individual
variance estimate for each sample.
For the first sample, the formula is:

. For the second sample,

the formula is: . Note

that because we’re dealing with vari-
ance, the square of standard devia-
tion, we divide by N, the square of

—the denominator for standard
error.
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(d) In stage (c), we calculated the variance versions of standard error for each sample,
but we want only one such measure of spread when we calculate the test statistic. We
must combine the two variances, similar to the way in which we combined the two
estimates of variance in stage (b). This stage is even simpler, however. We merely add
the two variances together. When we sum them, we get the variance of the distribution
of differences between means, symbolized as . Here are the formula and the cal-
culations for this example:

(e) We now have paralleled the two calculations of the previous t tests by doing
two things: (1) we calculated an estimate of spread (we made two calculations using
a formula we learned in Chapter 9, one for each sample, then combined them),
and (2) we then adjusted the estimate for the sample size (again, we made two cal-
culations, one for each sample, then combined them). The main difference is that
we have kept all calculations as variances rather than standard deviations. At this
final stage, we must convert from variance form to standard deviation form. Because
standard deviation is the square root of variance, we do this by simply taking the
square root:

Summary: The mean of the distribution of differences between means is: lX � lY � 0.
The standard deviation of the distribution of differences between means is: sdifference �
0.616.

This step for the independent-samples t test
is similar to those for previous t tests, but we
use the total degrees of freedom, dftotal.

Summary: The critical values, based on a two-tailed test, a p level of 0.05, and a dftotal
of 7, are �2.365 and 2.365 (as seen in the curve in Figure 11-2).

This step for the independent-samples t test
is very similar to those for the previous t

tests. Here we subtract the population difference between means based on the null hy-
pothesis from the difference between means for the samples. The formula is:

s sdifference difference� �2 0 380.

s s sdifference M MX Y

2 2 2� � � � �0.211 0.169 0.380

sdifference
2

STEP 4: Determine critical values, or
cutoffs.

STEP 5: Calculate the test statistic.
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MASTERING THE FORMULA

11-4: To calculate the variance
of the distribution of differences
 between means, we sum the vari-
ance versions of standard error that
we calculated in the previous step:

.s s sdifference M MX Y

2 2 2� �

�                                         

MASTERING THE FORMULA

11-5: To calculate the standard de-
viation of the distribution of differ-
ences between means, we take the
square root of the previous calcula-
tion, the variance of the distribution
of differences between means. The

formula is: .s sdifference difference� 2

■ Pooled variance is a weighted
average of the two estimates
of variance—one from each
sample—that are calculated
when conducting an
independent-samples t test.

2.5% 2.5%

2.365�2.365

FIGURE 11-2
Determining Cutoffs for an
Independent-Samples t Test

To determine the critical values for an
independent-samples t test, we use the
total degrees of freedom, dftotal. This is
the sum of the degrees of freedom for
each sample, which is N � 1 for each
sample.

�                                         

MASTERING THE FORMULA

11-6: We calculate the test statis -
tic for an independent-samples t
test using the following formula:

. We

subtract the difference between
means according to the null hy-
pothesis, usually 0, from the differ-
ence between means in the sample.
We then divide this by the standard
deviation of the differences be-
tween means. Because the differ-
ence between means according to
the null hypothesis is usually 0, the
formula for the test statistic is often

abbreviated as: .t
M M

s
X Y

difference

�
�
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M M
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difference
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This finding documents the fact that people report liking a more expensive wine
better than a less expensive one—even when it’s the same wine! The researchers doc-
umented a similar finding with a narrower gap between prices—$5 and $45. Naysayers
are likely to point out, however, that participants drinking an expensive wine may
report liking it better than participants drinking an inexpensive wine simply because
they are expected to say they like it better because of its price. However, the fMRI
that was conducted, which is a more objective measure, yielded a similar finding. Those
drinking the more expensive wines showed increased activation in brain areas such as
the medial orbitofrontal cortex, essentially an indication in the brain that people are
enjoying an experience. Expectations really do seem to influence us. ■

Reporting the Statistics
To report the statistics as they would appear in a journal article, follow the standard
APA format, including the degrees of freedom, the value of the test statistic, and the
p value associated with the test statistic. (Note that because the t table in Appendix B
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As in previous t tests, the test statistic is calculated by subtracting a number based
on the populations from a number based on the samples, then dividing by a version
of standard error. Because the population difference between means (according to the
null hypothesis) is almost always 0, many statisticians choose to eliminate the latter part
of the formula. So the formula for the test statistic for an independent-samples t test
is often abbreviated as:

You might find it easier to use the first formula, however, as it reminds us that we
are subtracting the population difference between means according to the null hypoth-
esis (0) from the actual difference between the sample means. This format more closely
parallels the formulas of the test statistics we calculated in Chapter 9.

Summary:

This step for the independent-samples t test
is identical to that for the previous t tests. If

we reject the null hypothesis, we need to examine the means of the two conditions
so that we know the direction of the effect.
Summary: Reject the null hypothesis. It appears that those told they are drinking wine
from a $10 bottle give it lower ratings, on average, than those told they are drinking
from a $90 bottle (as shown by the curve in Figure 11-3).

t
M M

s
X Y

difference

�
�

t �
� �

��
( . . )

.

2 5 4 0 0

0 616
2.44

STEP 6: Make a decision.

2.365�2.365 0
�2.44

FIGURE 11-3
Making a Decision

As in previous t tests, in order to 
decide whether or not to reject the null

hypothesis, we compare the test
statistic to the critical values. In this

figure, the test statistic, �2.44, is
beyond the lower cutoff, �2.365. We

reject the null hypothesis. It appears
that those told they are drinking wine

from a $10 bottle give it lower ratings,
on average, than those told they are

drinking wine from a $90 bottle.



only includes the p values of 0.10, 0.05, and 0.01, we cannot use it to determine the
actual p value for the test statistic. Unless we use software, we can only report whether
or not the p value is less than the critical p level.) In the current example, the statistics
would read:

t(7) � �2.44, p � 0.05

The p value is listed as less than the cutoff of 0.05 because we rejected the null hy-
pothesis. The average difference between the ratings of those told they were drinking
wine from a $10 bottle and those told they were drinking wine from a $90 bottle was
large enough that we could conclude that this outcome was unlikely to have happened
by chance.

In addition to the results of hypothesis testing, we would also include the means
and standard deviations for the two samples. We calculated the means in step 3 of hy-
pothesis testing, and we also calculated the variances (0.647 for those told they were
drinking from a $10 bottle and 0.990 for those told they were drinking from a $90
bottle). We can calculate the standard deviations by taking the square roots of the vari-
ances. The descriptive statistics can be reported in parentheses as:

($10 bottle: M � 2.5, SD � 0.80; $90 bottle: M � 4.0, SD � 0.99)

Always include the means and the standard deviations, as these are often the first
statistics a reader turns to after noting the result of the hypothesis test.
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continued on next page

CHECK YOUR LEARNING
Reviewing the Concepts       > In the independent-samples t test, we cannot calculate individual difference scores. That is

why we compare the mean of one sample with the mean of the other sample.

> The comparison distribution is a distribution of differences between means. We are testing
whether the difference we observe between the means of two samples is a common dif-
ference or an unusual difference.

> We use the same six steps of hypothesis testing that we used with the z test and with the
single-sample and paired-samples t tests.

> Conceptually, the t test for independent samples makes the same comparisons as the other
t tests. However, the calculations are different, and critical values are based on degrees of
freedom from two samples.

> The estimate of variability is also based on two samples, which are weighted as a function
of the size of each sample and then combined to create what is called pooled variance.

Clarifying the Concepts      11-1 In what situation do we conduct a paired-samples t test? In what situation do we
conduct an independent-samples t test?

  11-2 What is pooled variance?

Calculating the Statistics    11-3 Imagine you have the following data from two independent groups:

Group 1: 3, 2, 4, 6, 1, 2
Group 2: 5, 4, 6, 2, 6

Compute each of the following calculations needed to complete your final calculation
of the independent-samples t test.

a. Calculate the corrected variance for each group.
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Beyond Hypothesis Testing
After working at Guinness, Stella Cunliffe was hired by the British government’s crim-
inology department. While working with data there, Cunliffe noticed that adult male
prisoners who had short prison sentences returned to prison at a very high rate. The
relation between these two variables seemed to justify longer prison sentences to keep

such habitual criminals off the streets, but Cunliffe looked more closely
at the data. She noticed that the returning prisoners were almost all
older people with mental health problems who had been sent to
prison because the mental hospitals would not take them. Because of
observations like this, researchers need ways to evaluate and interpret
data that go beyond hypothesis testing.

Two ways that researchers can evaluate the findings of a hypothesis
test are by calculating a confidence interval and an effect size. Both
statistics provide detailed information that can help prevent misleading
interpretations of the data.

Calculating a Confidence Interval for an Independent-
Samples t Test
Confidence intervals for the different kinds of t tests are calculated using the same logic
we used for the z test. Here, we focus on the independent-samples t test, for which we’ll
create a confidence interval for the difference between means (rather than for the means
themselves). So we will use the difference between means for the samples and the stan-
dard error for the difference between means, sdifference, which we calculate in an identical

b. Calculate degrees of freedom and pooled variance, .

c. Calculate the variance version of standard error for each group.

d. Calculate the variance of the distribution of differences between means, then
convert this number to standard deviation.

e. Calculate the test statistic.

Applying the Concepts       11-4 In Check Your Learning 11-3, you calculated several statistics; now let’s consider a
context for those numbers. Steele and Pinto (2006) examined whether people’s level of
trust in their direct supervisor was related to their level of agreement with a policy
supported by that leader. They found that the extent to which subordinates agreed
with their supervisor was statistically significantly related to trust and showed no
relation to gender, age, time on the job, or length of time working with the supervisor.
We have presented fictional data to re-create these findings, where Group 1 represents
employees with low trust in their supervisor and Group 2 represents the high-trust
employees. The scores presented are the level of agreement with a decision made by a
leader, from 1 (strongly disagree) to 7 (strongly agree).

Group 1 (low trust in leader): 3, 2, 4, 6, 1, 2
Group 2 (high trust in leader): 5, 4, 6, 2, 6

a. State the null and research hypotheses.

b. Identify the critical values and make a decision.

c. Write your conclusion in a formal sentence that includes presentation of the
statistic in APA format.

d. Explain why your results are different from those in the original research, despite
having a similar mean difference.

spooled
2

Solutions to these Check Your
Learning questions can be found in
Appendix D.

�   MASTERING THE CONCEPT

11-2: As with the z test, the single-sample t

test, and the paired-samples t test, we can

determine a confidence interval and calculate

a measure of effect size—Cohen’s d—when

we conduct an independent-samples t test.
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manner to the one used in hypothesis testing. But we’re still creating an interval around
a number (now a difference between means) based on some measure of variability (now
the standard error for the difference between means).

We must also use the formula for the appropriate t statistic when calculating the
raw differences between means. To do this, we use algebra on the original formula for
an independent-samples t test to isolate the upper and lower mean differences, just as
we used algebra in Chapter 6 to change the z score formula to a raw-score formula.
Here is the original t statistic formula:

We now replace the population mean difference, (lX � lY), with the sample mean
difference, (MX � MY)sample, because this is what the confidence interval is centered
around. We also indicate that the first mean difference in the numerator refers to the
bounds of the confidence intervals, the upper bound in this case:

With algebra, we can isolate the upper bound of the confidence interval to create
the following formula for the upper bound of the confidence interval:

(MX � MY)upper � t(sdifference) � (MX � MY)sample

We create the formula for the lower bound of the confidence interval in exactly
the same way, using the negative version of the t statistic:

(MX � MY)lower � �t(sdifference) � (MX � MY)sample

t
M M M M

s
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MASTERING THE FORMULA

11-7: The formulas for the upper
and lower bounds of the con -
fidence interval are, respectively: 
(MX � MY)upper � t(sdifference) � (MX

� MY)sample and (MX � MY)lower �

�t(sdifference) � (MX � MY)sample. In
each case, we multiply the t statistic
that marks off the tail by the stan-
dard deviation for the differences
between means and add it to the dif-
ference between means in the sam-
ple. Remember that one of the t
statistics is negative.

The steps for the confidence interval for a t statistic are the same as the steps for
the confidence interval for a z statistic. Let’s calculate the confidence interval that
parallels the hypothesis test we conducted earlier comparing ratings of those who
are told they are drinking wine from a $10 bottle and ratings of those told they are
drinking wine from a $90 bottle (Plassmann et al., 2008). Previously, we calculated
the difference between the means of these samples to be 2.5 � 4.0 � �1.5; the
standard error for the differences between means, sdifference, to be 0.616; and the de-
grees of freedom to be 7. (Note that the order of subtraction in calculating the dif-
ference between means is irrelevant; we could just as easily have subtracted 2.5 from
4.0 and gotten a positive result, 1.5.) If we had not already calculated these three
values for the hypothesis test, we would, of course, have to calculate them for the
confidence interval. Here are the five steps for determining a confidence interval
for a difference between means:

(See Figure 11-4.)
STEP 1: Draw a normal curve with the

sample difference between
means in the center.

EXAMPLE 11.3
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Be sure to pay attention to the negative signs
in your calculations. For the lower end, the
formula is:

(MX � MY)lower � �t(sdifference) � (MX � MY)sample
� �2.365(0.616) � (�1.5) � �2.96

For the upper end, the formula is:

(MX � MY)upper � t(sdifference) � (MX � MY)sample
� 2.365(0.616) � (�1.5) � �0.04

STEP 4: Convert the t statistics to raw
differences between means
for the lower and upper ends
of the confidence interval.

(See Figure 11-4.)

Use a two-tailed test and a p level of 0.05
(which corresponds to a 95% confidence in-
terval). Use the degrees of freedom—7—
that we calculated earlier. The table indicates
a t statistic of 2.365. Because the normal

curve is symmetric, the bounds of the confidence interval fall at t statistics of �2.365
and 2.365. (Note that these cutoffs are identical to those used for the independent-
samples t test. This is always the case for a given sample size because the p level of 0.05
corresponds to a confidence level of 95%.) We add those t statistics to the normal curve,
as in Figure 11-5.

STEP 2: Indicate the bounds of the
confidence interval on 
either end, and write the
percentages under each
segment of the curve.

STEP 3: Look up the t statistics for the
lower and upper ends of the
confidence interval in the t
table.

�1.5

2.5%

47.5% 47.5%

2.5%

FIGURE 11-4
A 95% Confidence Interval for

Differences Between Means,
Part I

As with a confidence interval for a
single-sample mean, we start the

confidence interval for a difference
between means by drawing a curve with

the sample difference between means
in the center.

(0)�2.365 2.365 

2.5%

47.5% 47.5%

2.5%

FIGURE 11-5
A 95% Confidence Interval for

Differences Between Means,
Part II

The next step in calculating a
confidence interval is identifying the t

statistics that indicate each end of the
interval. Because the curve is

symmetric, the t statistics have the
same magnitude—one is negative and

one is positive.
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The confidence interval is [�2.96, �0.04], as shown in Figure 11-6.

Each end of the confidence interval should
be exactly the same distance from the sam-

ple mean.

�2.96 � (�1.5) � �1.46

�0.04 � (�1.5) � 1.46

The interval checks out, and we know that the margin of error is 1.46. The bounds
of the confidence interval are calculated as the difference between sample means plus
or minus 1.46.

The confidence interval—[�2.96, �0.04]—does not include 0. If we were to con-
duct this study many times, 95% of the time the population mean would be in the con-
fidence interval. Because 0 is not in the confidence interval, it is not plausible that there
is no difference between means. We can conclude that people told they are drinking
wine from a $10 bottle give different ratings, on average, than those told they are drink-
ing wine from a $90 bottle.

As with previous confidence intervals, we can compare the conclusion drawn from
the confidence interval to that drawn from the hypothesis test. When we conducted
the independent-samples t test earlier, we rejected the null hypothesis and drew the
same conclusion as we did with the confidence interval. Both statistical techniques led
to the same outcome, but the confidence interval provided more information because
it is an interval estimate rather than a point estimate. We can see from the confidence
interval that plausible values for the difference between means range from �2.96 to
�0.04. The fact that confidence intervals give us the same information as a hypothesis
test, along with even more information, is the major reason that their proponents lobby
for using them routinely (e.g., Cohen, 1994) and that some call for an outright boycott
of hypothesis tests altogether (e.g., Schmidt, 1996). ■

Calculating Effect Size for an Independent-Samples t Test

STEP 5: Check your answer.

As with all hypothesis tests, it is recommended that the results be supplemented with
an effect size that provides information about the importance of the results. For an in-
dependent-samples t test, as with other t tests, we can use Cohen’s d as the measure
of effect size. We’ll calculate Cohen’s d using the same wine-tasting data. Our fictional
data provided means of 2.5 for those told they were drinking wine from a $10 bottle
and 4.0 for those told they were drinking wine from a $90 bottle (Plassmann et al.,
2008). Previously, we calculated a standard error for the difference between means,
 sdifference, of 0.616. Here are the calculations we performed:

EXAMPLE 11.4

�1.5�2.96 �0.04

2.5%

47.5% 47.5%

2.5%

FIGURE 11-6
A 95% Confidence Interval for
Differences Between Means,
Part III

The final step in calculating a
confidence interval is converting the t
statistics that indicate each end of the
interval into raw differences between
means.



Stage 1 (variance for each sample):

Stage 2 (combining variances):

Stage 3 (variance form of standard error for each sample):

Stage 4 (combining variance forms of standard error):

Stage 5 (converting the variance form of standard error to the standard deviation
form of standard error):

Because our goal is to disregard the influence of sample size in order to calculate
Cohen’s d, we want to use the standard deviation in the denominator, not the standard
error. So we can ignore the last three stages, all of which contribute to the calculation of
standard error. That leaves stages 1 and 2. It makes more sense to use the one that includes
information from both samples, so we focus our attention on stage 2. Here is where many
students make a mistake. What we have calculated in stage 2 is pooled variance, not pooled
standard deviation. We must take the square root of the pooled variance to get the pooled
standard deviation, the appropriate value for the denominator of Cohen’s d.

The test statistic that we calculated for this study was:

For Cohen’s d, we simply replace the denominator with standard deviation, spooled,
instead of standard error, sdifference.
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                                         �

MASTERING THE FORMULA

11-8: We use pooled standard devi-
ation to calculate Cohen’s d for a
two-sample, between-groups design.
We calculate pooled standard devi-
ation by taking the square root of
the pooled variance that we calcu-
lated as part of the independent-

samples t test: .s spooled pooled� 2

                                        �

MASTERING THE FORMULA

11-9: For a two-sample, between-
groups design, we calculate Cohen’s
d using the following  formula: Co -

hen’s d � .

The formula is similar to that for the
test statistic in an independent-
 samples t test, except that we divide
by pooled standard deviation, rather
than standard error, because we
want a measure of variability not al-
tered by sample size.

( ) ( )M M

s
X Y X Y
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For this study, the effect size can be reported as: d � �1.63. The two sample means
are 1.63 standard deviations apart. The conventions for how large an effect is, shown
again in Table 11-2, are the same as for Cohen’s d for other hypothesis tests. According
to Cohen’s conventions, this is a large effect. ■

TABLE 11-2. Cohen’s Conventions for Effect Sizes: d

Jacob Cohen has published guidelines (or conventions), based on the overlap between two distributions, to
help researchers determine whether an effect is small, medium, or large. These numbers are not cutoffs,
merely rough guidelines to aid researchers in their interpretation of results.

                   Effect Size                                       Convention                                       Overlap

                    Small                                                       0.2                                                   85%

                    Medium                                                   0.5                                                   67%

                    Large                                                       0.8                                                   53%

When we conduct hypothesis tests, such as the independent-samples t test, one of the
assumptions is that the underlying population is normally distributed. As we’ve ob-
served, the normal curve can be found nearly everywhere, but many naturally occurring
phenomena are not normally distributed. For example, so many
children die at birth or shortly afterward that the mortality dis-
tribution is unavoidably skewed. As Figure 11-7 illustrates, the
mortality curve looks very much like a bell-shaped curve, but
only if we ignore childhood mortality.

When the sample data suggest that the underlying population
distribution is not normal (and we have an unavoidably small
sample), we may be able to use a data transformation to transform
skewed data into a more normal distribution before conducting
a hypothesis test such as the independent-samples t test.

If (1) we have a small sample and (2) the sample data suggest that the underlying
population distribution is skewed, we can transform the data so that they are no longer
skewed. When we convert data from scale to ordinal, we are doing just that. For ex-
ample, consider a sample of incomes of $24,000, $27,000, $35,000, $46,000, and
$550,000. Here, the income of $550,000 is far higher than the next-highest income
of $46,000. We converted these data to ordinal:

Scale: $24,000 $27,000 $35,000 $46,000 $550,000

Ordinal: 5 4 3 2 1

Now $550,000 is ranked first and $46,000 is ranked second. However, the large dif-
ference between the two scores disappeared when we transformed the data from a scale
measure to an ordinal measure. The problem with the transformation to an ordinal
scale is that we cannot use the hypothesis tests we’ve learned so far; we must have a
scale dependent variable to use a z test or a t test. There are several transformations

Data Transformations N e x t  S t e p s

0 10 20 30 40 50 60 70 80 90

FIGURE 11-7
A Distribution of Mortality

Mortality data create an unavoidably
nonnormal distribution because of the
many infants who die at or shortly after
birth and the smaller number of people
who die from ages 10 to 50. Mortality
data create a normal distribution only if
we look at the upper ages, as shown in
this reproduction of an early graph by
Lexis (1903, quoted by Stigler, 1986).



that diminish skew while still allowing us to use the parametric tests we’ve learned.
We will introduce one of those transformations here: the square root transformation.

A square root transformation reduces skew by compressing both the negative and positive
sides of a skewed distribution. Let’s take the same five incomes on a scale measure, but
instead of converting them to ranks, we’ll take the square root of each of them. As we
will see, the effect is more dramatic on the higher values.

Scale: $24,000 $27,000 $35,000 $46,000 $550,000

Square Root: $154.92 $164.32 $187.08 $214.48 $741.62

Now the severe outlier of $550,000, much higher than the next-highest score of
$46,000, is only a little more than $500 (instead of a little more than $500,000) above
the next-highest score, and we still have scale data. This is not cheating; a square root
transformation is a legitimate mathematical procedure if we do the same thing to every
score. We cannot transform only the extreme scores.

Here we have discussed two ways to deal with skewed data:

1. Transform a scale variable to an ordinal variable.
2. Use a data transformation such as square root transformation to “squeeze” the

data together to make it more normal.

Remember that we need to apply any kind of data transformation to every obser-
vation in the data set. Furthermore, data transformation should only be used if it isn’t
possible to operationalize the variable of interest in a better way.
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CHECK YOUR LEARNING
Reviewing the Concepts       > A confidence interval can be created with a t distribution around a difference between

means. In fact, the confidence interval alone allows us to test our hypothesis and provides
additional, valuable information.

> An independent-samples t test should be supplemented with a measure of effect size. A
commonly used measure of effect size is Cohen’s d.

> The confidence interval and effect size help us evaluate the finding of the hypothesis test.

> When the sample data suggest that the underlying population distribution is not normal
and the sample size is small, consider using data transformation to transform skewed data
into a more normal distribution.

■ A square root transformation
reduces skew by compressing
both the negative and positive
sides of a skewed distribution.

Clarifying the Concepts      11-5 Why do we calculate confidence intervals?

  11-6 How does considering our conclusions in terms of effect size help to prevent incorrect
interpretations of our findings?

Calculating the Statistics    11-7 Use the hypothetical data on level of agreement with a supervisor, as listed here, to
calculate the following:
Group 1 (low trust in leader): 3, 2, 4, 6, 1, 2
Group 2 (high trust in leader): 5, 4, 6, 2, 6

a. Calculate the 95% confidence interval.

b. Calculate effect size using Cohen’s d.
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We can conduct an independent-samples t test using SPSS for
the data we presented earlier in this chapter on wine tasting.
To do so, we start by creating two columns of data, one for
stated cost of the bottle ($10 versus $90) and one for the liking
rating. For wine cost, we could, for example, give a “1” to
each person told that the wine is from a $10 bottle and give
a “2” to each person told that the wine is from a $90 bottle.
We can use the “Values” function in the Variable View to tell
SPSS that 1 � $10 and 2 � $90. Each participant will have
her or his data in one row—a score for the stated cost of the
wine in the first column and a liking rating in the second col-
umn. We can now conduct the hypothesis test.

Select Analyze → Compare Means → Independent-
 Samples T Test. Choose the dependent variable, “rating,” by
clicking it, then clicking the arrow in the upper center. Choose
the independent variable, “cost,” by clicking it, then clicking
the arrow in the lower center. Click the “Define Groups” but-
ton, then provide the values for each level of the independent
variable. For example, enter “1” for Group 1 and “2” for
Group 2. Then click “OK.”

Part of the output is shown in the screenshot on the next
page. Toward the top, we see means and standard deviations
for participants told they were drinking wine from a $10
bottle and participants told they were drinking wine from a

SPSS®

REVIEW OF CONCEPTS

Conducting an Independent-Samples t Test
We use independent-samples t tests when we have two samples and different participants
are in each sample. Because the samples are comprised of different people, we cannot
calculate difference scores, so the comparison distribution is a distribution of differences
between means. Because we are working with two separate samples of scores (rather
than one set of difference scores) when we conduct an independent-samples t test, we
need additional steps to calculate an estimate of spread. We calculate two variances,
then take a weighted average to calculate pooled variance. We convert the pooled variance
to a version of variance for a distribution of means, one for each sample, then add them
to combine them. Finally, we take the square root to get an estimate of standard error.
We can present the statistics in APA style as we did with other hypothesis tests.

Beyond Hypothesis Testing
As with other forms of hypothesis testing, it is useful to replace or supplement the in-
dependent-samples t test with a confidence interval. A confidence interval can be
 created around a difference between means using a t distribution. It is created by sub-
tracting and adding a margin of error from the difference between means. As with
other confidence intervals, it provides the same information as a hypothesis test but
also gives us a range of values. To understand the importance of a finding, we must
also calculate an effect size. With an independent-samples t test, as with other t tests,
a common effect-size measure is Cohen’s d.

When the sample data suggest that the underlying population distribution is not
normal and the sample size is small, consider using data transformation (such as a square
root transformation) to transform skewed data into a more normal distribution.

Applying the Concepts       11-8 Explain what the confidence interval calculated in Check Your Learning 11-7 tells us.
Why is this confidence interval superior to the hypothesis test that we conducted?

  11-9 Interpret the meaning of the effect size calculated in Check Your Learning 11-7. What
does this add to the confidence interval and hypothesis test?

Solutions to these Check Your
Learning questions can be found in
Appendix D.
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How It Works
11.1 INDEPENDENT-SAMPLES t TEST
Who do you think has a better sense of humor—women or men? Researchers at Stanford
University examined brain activity in women and men during exposure to humorous car-
toons (Azim, Mobbs, Jo, Menon, & Reiss, 2005). Using a brain-scanning technique called func-
tional magnetic resonance imaging, researchers observed many similarities between the genders in
their responses to humor. However, more activity was seen in the reward centers of women’s
brains than men’s, the same reward centers that respond when receiving money or feeling
happy. The researchers suggested that this might be because women have lower expectations
of humor than do men, so they find it more rewarding when something is actually funny.

However, the researchers were aware of other possible explanations for these findings.
For example, they considered whether one gender is more likely to find humorous stimuli
funny to begin with. They asked the 10 men and 10 women in their study to categorize
30 cartoons as either “funny” or “unfunny.” Each participant received a score that repre-
sented her or his percentage of cartoons found to be “funny.” Below are fictional data for
nine people (four women and five men); these fictional data have approximately the same
means as were reported in the original study.

Percentage of cartoons labeled as “funny”
Women: 84, 97, 58, 90

Men: 88, 90, 52, 97, 86

How can we conduct all six steps of hypothesis testing for an independent-samples t
test for this scenario, using a two-tailed test with critical values based on a p level of 0.05?
Here are the steps:

Step 1: Population 1: Women exposed to humorous cartoons. Population 2: Men exposed
to humorous cartoons.

$90 bottle. For example, the output tells us that the mean
for those told they were drinking wine from a $10 bottle is
2.5 with a standard deviation of 0.80416. We can see that

the t statistic is �2.436 with a p value (under “Sig. (2-
tailed)”) of 0.045. The t statistic is the same as the one we
calculated earlier, �2.44.



The comparison distribution will be a distribution of differences between means
based on the null hypothesis. The hypothesis test will be an independent-samples
t test because we have two samples composed of different groups of participants.
This study meets one of the three assumptions. (1) The dependent variable is a per-
centage of cartoons categorized as “funny,” which is a scale variable. (2) We do not
know whether the population is normally distributed, and there are not at least 30
participants. Moreover, the data suggest some negative skew; although this test is
robust with respect to this assumption, we must be cautious. (3) The men and
women in this study were not randomly selected from among all men and women,
so we must be cautious with respect to generalizing these findings.

Step 2: Null hypothesis: On average, women categorize the same percentage of cartoons as
“funny” as men—H0: l1 � l2. Research hypothesis: On average, women categorize
a different percentage of cartoons as “funny” as compared with men—H1: l1 � l2.

Step 3: (l1 � l2) � 0; sdifference � 11.641

Calculations:

Mx � 82.25

X X � M (X � M )2

84 1.75 3.063
97 14.75 217.563
58 �24.25 588.063
90 7.75 60.063

MY � 82.6

Y Y � M (Y � M)2

88 5.4 29.16
90 7.4 54.76
52 �30.6 936.36
97 14.4 207.36
86 3.4 11.56

dfX � N � 1 � 4 � 1 � 3

dfY � N � 1 � 5 � 1 � 4

dftotal � dfX � dfY � 3 � 4 � 7

Step 4: The critical values, based on a two-tailed test, a p level of 0.05, and a dftotal of 7, are
�2.365 and 2.365 (as seen in the curve in Figure 11-2 on page 275).

Step 5:
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Step 6: Fail to reject the null hypothesis. We conclude that there is no evidence from this
study to support the research hypothesis that either men or women are more likely
than the opposite gender, on average, to find cartoons funny.

11.2 REPORTING THE STATISTICS IN A JOURNAL ARTICLE
How would we report the results of the hypothesis test described in How It Works 11.1?
The statistics would appear in a journal article as: t(7) � �0.03, p � 0.05. In addition to the
results of hypothesis testing, we would also include the means and standard deviations for
the two samples. We calculated the means in step 3 of hypothesis testing, and we also cal-
culated the variances (82.25 for women and 82.60 for men). We can calculate the standard
deviations by taking the square roots of the variances. The descriptive statistics can be re-
ported in parentheses as:

(Women: M � 82.25, SD � 17.02; Men: M � 82.60, SD � 17.60

11.3 CONFIDENCE INTERVALS FOR AN INDEPENDENT-SAMPLES t TEST
How would we calculate a 95% confidence interval for the independent-samples t test we
conducted in How It Works 11.1?

Previously, we calculated the difference between the means of these samples to be 82.25
� 82.6 � �0.35; the standard error for the differences between means, sdifference, to be 11.641;
and the degrees of freedom to be 7. (Note that the order of subtraction in calculating the
difference between means is irrelevant; we could just as easily have subtracted 82.25 from
82.6 and gotten a positive result, 0.35.)

1. We draw a normal curve with the sample difference between means in the center.
2. We indicate the bounds of the 95% confidence interval on either end and write

the percentages under each segment of the curve—2.5% in each tail.
3. We look up the t statistics for the lower and upper ends of the confidence interval

in the t table, based on a two-tailed test, a p level of 0.05 (which corresponds to a
95% confidence interval), and the degrees of freedom—7—that we calculated ear-
lier. Because the normal curve is symmetric, the bounds of the confidence
interval fall at t statistics of �2.365 and 2.365. We add those t statistics to the normal
curve.

4. We convert the t statistics to raw differences between means for the lower and upper
ends of the confidence interval.

(MX � MY)lower � �t(sdifference) � (MX � MY)sample � �2.365(11.641) � (�0.35) � �27.88

(MX � MY)upper � t(sdifference) � (MX � MY)sample � 2.365(11.641) � (�0.35) � 27.18

The confidence interval is [�27.88, 27.18].
5. We check the answer; each end of the confidence interval should be exactly the

same distance from the sample mean.

–27.88 � (�0.35) � �27.53

27.18 � (�0.35) � 27.53

The interval checks out, and we know that the margin of error is 27.53.

11.4 EFFECT SIZE FOR AN INDEPENDENT-SAMPLES t TEST
How can we calculate an effect size for the independent-samples t-test we conducted in
How It Works 11.1? In How It Works 11.1, we calculated means of 82.25 for women and
82.6 for men. Previously, we calculated a standard error for the difference between means,
sdifference, of 11.641. This time, we’ll take the square root of the pooled variance to get the
pooled standard deviation, the appropriate value for the denominator of Cohen’s d.

For Cohen’s d, we simply replace the denominator of the formula for the test statistic
with the standard deviation, spooled, instead of the standard error, sdifference.

According to Cohen’s conventions, this is not even near the level of a small effect.

s spooled pooled� � �2 301 136 17 353. .
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Clarifying the Concepts

11.1 When is it appropriate to use the independent-samples
t test?

11.2 Explain random assignment and what it controls.
11.3 What are independent events?
11.4 Explain how the paired-samples t test evaluates individ-

ual differences and the independent-samples t test eval-
uates group differences.

11.5 As they relate to comparison distributions, what is the
difference between mean differences and differences between
means?

11.6 As measures of variability, what is the difference be-
tween standard deviation and variance?

11.7 What is the difference between and ?
11.8 What is pooled variance?
11.9 Why would we want the variability estimate based on

a larger sample to count more (to be more heavily
weighted) than one based on a smaller sample?

11.10 Define the symbols in the following formula:

11.11 How do confidence intervals relate to margin of error?
11.12 What is the difference between pooled variance and

pooled standard deviation?
11.13 How does the size of the confidence interval relate to

the precision of our prediction?
11.14 Why does the effect-size calculation use standard devi-

ation rather than standard error?
11.15 How do we interpret effect size using Cohen’s d?
11.16 Why might we want to transform our data?
11.17 What does the square root transformation do to the dis-

tribution of data?

Calculating the Statistic

11.18 Below are several sample means. Calculate the differ-
ences between the means for students who sit in the
front versus the back of a classroom.

11.19 Calculate s2 for the following data:

Group 1:  97,  83,  105,  102,  92

Group 2:  111,  103,  96,  106

11.20 Calculate s2 for the following data:

Libera l s :  2 ,  1,  3,  2

Conservat ives :  4,  3,  3,  5,  2,  4

11.21 Assuming these data are from two independent groups,
calculate dfX, dfY, and dftotal for the data presented in Ex-
ercise 11.19.

11.22 Assuming these data are from two independent groups,
calculate dfX, dfY, and dftotal for the data presented in Ex-
ercise 11.20.

11.23 Determine the critical values for t based on the df you
calculated in Exercise 11.21, assuming a two-tailed test
with a p level of 0.05.

11.24 Determine the critical values for t based on the df you
calculated in Exercise 11.22, assuming a two-tailed test
with a p level of 0.05.

11.25 Calculate the pooled variance, , for groups 1 and
2 shown in Exercise 11.19.

11.26 Calculate the pooled variance, , for the data from
liberals and conservatives shown in Exercise 11.20.

11.27 Calculate the variance version of standard error for the
data in Exercise 11.19—for group 1 (97, 83, 105, 102,
92) and then again for group 2 (111, 103, 96, 106).

11.28 Calculate the variance version of standard error for the
data in Exercise 11.20—for the liberals (2, 1, 3, 2) and
then for the conservatives (4, 3, 3, 5, 2, 4).

11.29 Using your work in Exercise 11.27, calculate the vari-
ance and the standard deviation of the distribution of
differences between means for the data in groups 1
and 2.

11.30 Using your work in Exercise 11.28, calculate the vari-
ance and the standard deviation of the distribution of
differences between means for the data from liberals and
conservatives.

11.31 Calculate the t statistic for the data presented in Exercise
11.19.

11.32 Calculate the t statistic for the data presented in Exercise
11.20.

11.33 Calculate the 95% confidence interval for the data pre-
sented in Exercise 11.19.

11.34 Calculate the 95% confidence interval for the data pre-
sented in Exercise 11.20.

11.35 Calculate the effect size using Cohen’s d for the data
presented in Exercise 11.19.

11.36 Calculate the effect size using Cohen’s d for the data
presented in Exercise 11.20.

11.37 Find the critical t values for the following data sets:

a. Group 1 has 21 participants and group 2 has 16 par-
ticipants. You are performing a two-tailed test with
a p level of 0.05.

sY
2sX

2

sdifference
2 �

Mean Students Students 
test grades in the front in the back

Class 1 82 78

Class 2 79.5 77.41

Class 3 71.5 76

Class 4 72 71.3

spooled
2

spooled
2

s sM MX Y

2 2�

Exercises



b. You studied 3-year-old children and 6-year-old
children, with samples of 12 and 16, respectively.
You are performing a two-tailed test with a p level
of 0.01.

c. You have a total of 17 degrees of freedom for a two-
tailed test and a p level of 0.10.

11.38 Use the following data set to answer the questions
below:

15 24 35 16 18 22 16 72

a. Calculate the mean and median of the data set.
What do the mean and median suggest about the
distribution of the data?

b. Apply the square root transformation to the data set.

c. Calculate the mean and median for the transformed
data. How has the relation between the mean and
median changed? What does this suggest about the
distribution of the transformed data?

11.39 For each of the following sets of data, indicate whether
you would apply a square root transformation to the
data and explain why or why not.

a. 10 15 18 20 22 25 30 17 23

b. 23 10 67 2 56 34 47 5 26 13

c. 32 88 75 71 89 91 94 75 87 78

Applying the Concepts

11.40 Numeric results for several independent-samples t tests
are presented here. Decide whether each test is statisti-
cally significant, and report each result in the standard
APA format.

a. A total of 73 people were studied, 40 in one group
and 33 in the other group. The test statistic was cal-
culated as 2.13 for a two-tailed test with a p level
of 0.05.

b. One group of 23 people was compared to another
group of 18 people. The t statistic obtained for their
data was 1.77. Assume you were performing a two-
tailed test with a p level of 0.05.

c. One group of 9 mice was compared to another
group of 6 mice, using a two-tailed test at a p level
of 0.01. The test statistic was calculated as 3.02.

11.41 Using data from Exercise 10.28 on the effects of
posthypnotic suggestion on the Stroop effect (Raz, Fan,
& Posner, 2005), let’s conduct an independent-samples
t test. For this test, we will pretend that two sets of peo-
ple participated in the study, whereas previously we
considered fictional data collected from the same par-
ticipants in a within-groups design. The first score for
each participant will be in the first sample—those not
receiving a posthypnotic suggestion. The second score
for each participant will be in the second sample—those
receiving a posthypnotic suggestion. So we have used

the data from Exercise 10.28 to create two separate
groups:

Sample 1: 12.6, 13.8, 11.6, 12.2, 12.1, 13.0

Sample 2: 8.5, 9.6, 10.0, 9.2, 8.9, 10.8

a. Conduct all six steps of an independent-samples t
test. Be sure to label all six steps.

b. Report the statistics as you would in a journal
 article.

c. What happens to the test statistic when you switch
from having all participants in both samples to hav-
ing two separate samples? Given the same numbers,
is it easier to reject the null hypothesis with a
within-groups design or a between-groups design?

d. In your own words, why do you think it is easier
to reject the null hypothesis in one of these situa-
tions than in the other?

11.42 In an example we sometimes use in our statistics classes,
several semesters’ worth of male and female students
were asked how long, in minutes, they spend getting
ready for a date. The data reported below reflect the ac-
tual means and the approximate standard deviations for
the actual data from 142 students.

Men: 28,  35,  52,  14

Women: 30,  82,  53,  61

a. Conduct all six steps of an independent-samples t
test. Be sure to label all six steps.

b. Report the statistics as you would in a journal
 article.

11.43 “Are Women Really More Talkative Than Men?” is
the title of a 2007 article that appeared in the journal
Science. In the article, Mehl and colleagues report the
results of a study of 396 men and women. Each par-
ticipant wore a microphone that recorded every word
he or she uttered. The researchers counted the number
of words uttered by men and women and compared
them. The data below are fictional but they re-create
the pattern that Mehl and colleagues observed:

Men: 16,345 17,222 15,646 14,889 16,701

Women: 17,345 15,593 16,624 16,696
14,200

a. Conduct all six steps of an independent-samples t
test. Be sure to label all six steps.

b. Report the statistics as you would in a journal ar-
ticle.

11.44 At some vacation destinations, “all-inclusive” resorts
allow you to pay a flat rate and then eat and drink as
much as you want. There has been concern about
whether these deals might lead to excessive consump-
tion of alcohol by young adults on spring break trips.
You decide to spend your spring break collecting data
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on this issue. Of course, you need to take all of your
friends on this funded research trip, because you need
a lot of research assistants! You collect data on the num-
ber of drinks consumed in a day by people staying at
all-inclusive resorts and by those staying at noninclusive
resorts. Your data include the following:

Al l- inclus ive resor t  guest s :  10,  8,  13

Noninclus ive resor t  guest s :  3 ,  15,  7

a. Conduct all six steps of an independent-samples t
test. Be sure to label all six steps.

b. Report the statistics as you would in a journal
 article.

c. Is there a shortcut you could or did use to compute
your hypothesis test?

11.45 Some people claim that women can experience
“mother hearing,” an increased sensitivity to and aware-
ness of noises, in particular those of children. This special
ability is often associated with being a mother, rather
than simply being female. Using hypothetical data, let’s
put this idea to the test. Imagine we recruit women to
come to a sleep experiment where they think they are
evaluating the comfort of different mattresses. While
they are asleep, we introduce noises to test the minimum
volume needed for the women to be awakened by the
noise. Here are the data in decibels (dB):

Mother s :  33,  55,  39,  41,  67

Nonmother s :  56,  48,  71

a. Conduct all six steps of an independent-samples t
test. Be sure to label all six steps.

b. Report the statistics as you would in a journal
 article.

11.46 In Exercise 11.41, we considered a study by Raz and
colleagues (2005) that used brain-imaging techniques
(i.e., functional magnetic resonance imaging) to ex-
plore whether posthypnotic suggestion led highly hyp-
notizable people to see Stroop words as nonsense
words. You conducted an independent-samples t test
on two samples—one consisting of participants who
received no posthypnotic suggestion (X) and one
 consisting of participants who received a posthyp -
notic suggestion (Y). Here are some of the calculations
we made while conducting the independent-samples t
test:

dfX � N � 1 � 6 � 1 � 5; dfY � N � 1 � 6 � 1 � 5; 
dftotal � dfX � dfY � 5 � 5 � 10

a. Calculate the 95% confidence interval for these
data.

b. State in your own words what we learn from this
confidence interval.

c. What information does the confidence interval give
us that we also get from the hypothesis test we con-
ducted in Exercise 11.41?

d. What additional information does the confidence
interval give us that we do not get from the hypoth-
esis test we conducted in Exercise 11.41?

11.47 In Exercise 11.42, we reported data from our statistics
classes in which male and female students were asked
how long, in minutes, they typically spend getting ready
for a date. Here are the data:

Men: 28,  35,  52,  14

Women: 30,  82,  53,  61

And here are some of the calculations needed to con-
duct an independent-samples t test:

dfX � N � 1 � 4 � 1 � 3; dfY � N � 1 � 4 � 1 � 3; 
dftotal � dfX � dfY � 3 � 3 � 6

a. Calculate the 95% confidence interval for these
data.

b. Calculate the 90% confidence interval for these
data.

c. How are the confidence intervals different from
each other? Explain why they are different.
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11.48 Using the work you performed in Exercise 11.43, let’s
add a confidence interval to the hypothesis test.

a. Calculate the 95% confidence interval for these
data.

b. Express the confidence interval in writing, accord-
ing to the format discussed in the chapter.

c. State in your own words what we learn from this
confidence interval.

11.49 As a follow-up to your hypothesis test in Exercise 11.44,
add the following:

a. Calculate the 95% confidence interval for these
data.

b. State in your own words what we learn from this
confidence interval.

c. Express the confidence interval, in a sentence, as
margin of error.

11.50 Following up on your work in Exercise 11.45, add the
following:

a. Calculate the 95% confidence interval for these
data.

b. State in your own words what we learn from this
confidence interval.

c. Explain why interval estimates are better than point
estimates.

11.51 In Exercises 11.41and 11.46, we considered a study by
Raz and colleagues (2005) for which we conducted an
independent-samples t test. En route to calculating the
test statistic, we made the following calculations:

dfX � N � 1 � 6 � 1 � 5; dfY � N � 1 � 6 � 1
� 5; dftotal � dfX � dfY � 5 � 5 � 10

a. Calculate the appropriate measure of effect size for
this sample.

b. Based on Cohen’s conventions, is this a small,
medium, or large effect size?

c. Why is it useful to have this information in addition
to the results of a hypothesis test?

11.52 In an example we used in Exercises 11.42 and 11.47,
we reported data from our statistics classes in which
male and female students were asked how long, in min-
utes, they typically spend getting ready for a date. Here

are some of the calculations we needed to conduct the
independent-samples t test:

dfX � N � 1 � 4 � 1 � 3; dfY � N � 1 � 4 � 1
� 3; dftotal � dfX � dfY � 3 � 3 � 6

a. Calculate the appropriate measure of effect size for
this sample.

b. Based on Cohen’s conventions, is this a small,
medium, or large effect size?

c. Why is it useful to have this information in addition
to the results of a hypothesis test?

11.53 Add to your work from Exercises 11.43 and 11.48 by
completing the following:

a. Calculate the appropriate measure of effect size for
this sample.

b. Based on Cohen’s conventions, is this a small,
medium, or large effect size?

c. Why is it useful to have this information in addition
to the results of a hypothesis test?

11.54 Add to your work from Exercises 11.44 and 11.49 by
completing the following:

a. Calculate the appropriate measure of effect size for
this sample.

b. Based on Cohen’s conventions, is this a small,
medium, or large effect size?

c. Why is it useful to have this information in addition
to the results of a hypothesis test?

11.55 Add to your work from Exercises 11.45 and 11.50 by
completing the following:

a. Calculate the appropriate measure of effect size for
this sample.

b. Based on Cohen’s conventions, is this a small,
medium, or large effect size?
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c. Why is it useful to have this information in addition
to the results of a hypothesis test?

11.56 For each of the following three scenarios, state which
hypothesis test you would use from among the four in-
troduced so far: the z test, the single-sample t test, the
paired-samples t test, and the independent-samples t test.
(Note: In the actual studies described, the researchers
did not always use one of these tests, often because the
actual experiment had additional variables.) Explain
your answer.

a. A study of children who had survived a brain tumor
revealed that they were more likely to have behav-
ioral and emotional difficulties than were children
who had not experienced such a trauma (Upton &
Eiser, 2006). Forty families in which a child had sur-
vived a brain tumor participated in the study. Parents
rated children’s difficulties, and the ratings data were
compared with known means from published pop-
ulation norms.

b. Talarico and Rubin (2003) recorded the memories
of 54 students just after the terrorist attacks in the
United States on September 11, 2001—some
memories related to the terrorist attacks on that
day (called flashbulb memories for their vividness and
emotional content) and some everyday memories.
They found that flashbulb memories were no
more consistent over time than everyday memo-
ries, even though they were perceived to be more
accurate.

c. The HOPE VI Panel Study (Popkin & Woodley,
2002) was initiated to test a U.S. program aimed at
improving troubled public housing developments.
Residents of five HOPE VI developments were ex-
amined at the beginning of the study so researchers
could later ascertain whether their quality of life
had improved. Means at the beginning of the study
were compared to known national data sources
(e.g., the U.S. Census, the American Housing Sur-
vey) that had summary statistics, including means
and standard deviations.

11.57 For each of the following three scenarios, state which
hypothesis test you would use from among the four in-
troduced so far: the z test, the single-sample t test, the
paired-samples t test, and the independent-samples t test.
(Note: In the actual studies described, the researchers
did not always use one of these tests, often because the
actual experiment had additional variables.) Explain
your answer.

a. Taylor and Ste-Marie (2001) studied eating disor-
ders in 41 Canadian female figure skaters. They
compared the figure skaters’ data on the Eating Dis-
order Inventory to the means of known popula-
tions, including women with eating disorders. On
average, the figure skaters were more similar to the
population of women with eating disorders than to
those without eating disorders.

b. In an article titled “A Fair and Balanced Look at
the News: What Affects Memory for Controversial
Arguments,” Wiley (2005) found that people with
a high level of previous knowledge about a given
controversial topic (e.g., abortion, military interven-
tion) had better average recall for arguments on
both sides of that issue than did those with lower
levels of knowledge.

c. Engle-Friedman and colleagues (2003) studied the
effects of sleep deprivation. Fifty students were as-
signed to one night of sleep loss (students were re-
quired to call the laboratory every half-hour all
night) and then one night of no sleep loss (normal
sleep). The next day, students were offered a choice
of math problems with differing levels of difficulty.
Following sleep loss, students tended to choose less
challenging problems.

11.58 Using the research studies described here (from Exercise
11.57), create null hypotheses and research hypotheses
appropriate for the chosen statistical test:

a. Taylor and Ste-Marie (2001) studied eating disor-
ders in 41 Canadian female figure skaters. They
compared the figure skaters’ data on the Eating Dis-
order Inventory to the means of known popula-
tions, including women with eating disorders. On
average, the figure skaters were more similar to the
population of women with eating disorders than to
those without eating disorders.

b. In article titled “A Fair and Balanced Look at the
News: What Affects Memory for Controversial Ar-
guments,” Wiley (2005) found that people with a
high level of previous knowledge about a given
controversial topic (e.g., abortion, military interven-
tion) had better average recall for arguments on
both sides of that issue than did those with lower
levels of knowledge.

c. Engle-Friedman and colleagues (2003) studied the
effects of sleep deprivation. Fifty students were as-
signed to one night of sleep loss (students were re-
quired to call the laboratory every half-hour all
night) and then one night of no sleep loss (normal
sleep). The next day, students were offered a choice
of math problems with differing levels of difficulty.
Following sleep loss, students tended to choose less
challenging problems.

11.59 Alice Waters, owner of the Berkeley, California, restau-
rant Chez Panisse, has long been an advocate for the use
of simple, fresh, organic ingredients in both home and
restaurant cooking. More recently, she has turned her
considerable expertise to school cafeterias and their fare.
Waters (2006) praises recent changes in school lunch
menus that have expanded nutritious offerings, but she
hypothesizes that students are likely to circumvent
healthy lunches by avoiding vegetables and smuggling
in banned junk food unless they receive accompanying
nutrition education and hands-on involvement in
their meals. She has spearheaded an Edible Schoolyard
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 program in Berkeley, which involves public school stu-
dents in the cultivation and preparation of fresh foods,
and states that such interactive education is necessary to
combat growing levels of childhood obesity. “Nothing
less,” Waters writes, “will change their behavior.”

a. In your own words, what is Waters predicting? Cit-
ing the confirmation bias, explain why Waters’s pro-
gram, although intuitively appealing, should not be
instituted nationwide without further study.

b. Describe a simple between-groups experiment
with a nominal independent variable with two
levels and a scale dependent variable to test Wa-
ters’s hypothesis. Specifically identify the inde-
pendent variable, its levels, and the dependent
variable. State how you will operationalize the
dependent variable.

c. Which hypothesis test would be used to analyze this
experiment? Explain your answer.

d. Conduct step 1 of hypothesis testing.

e. Conduct step 2 of hypothesis testing.

f. State at least one other way you could operational-
ize the dependent variable.

g. Let’s say, hypothetically, that Waters discounted the
need for the research you propose by citing her own
data that the Berkeley school in which she instituted

the program has lower rates of obesity than other
California schools. Describe the flaw in this argu-
ment by discussing the importance of random se-
lection and random assignment.

11.60 Researchers at the Cornell University Food and Brand
Lab conducted an experiment at a fitness camp for ado-
lescents (Wansink & van Ittersum, 2003). Campers were
given either a 22-ounce glass that was tall and thin or
a 22-ounce glass that was short and wide. Campers with
the short glasses tended to pour more soda, milk, or
juice than campers with the tall glasses.

a. Is it likely that the researchers used random selec-
tion? Explain.

b. Is it likely that the researchers used random assign-
ment? Explain.

c. What is the independent variable, and what are its
levels?

d. What is the dependent variable?

e. What hypothesis test would the researchers use?
 Explain.

f. Conduct step 1 of hypothesis testing.

g. Conduct step 2 of hypothesis testing.

h. How could the researchers redesign this study so
that they could use a paired-samples t test?
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■ You should understand the z distribution and
the t distribution. You should also be able to
differentiate among distributions of scores
(Chapter 6), means (Chapter 6), mean
differences (Chapter 10), and differences
between means (Chapter 11).

■ You should understand what variance is
(Chapter 4).

■ You should be able to differentiate between
between-groups designs and within-groups
designs (Chapter 1).

■ You should understand the concept of effect
size (Chapter 8).
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In 1986, California created a task force to promote self-esteem. The idea was that higher
self-esteem could help to solve social problems such as drug abuse and teenage preg-
nancy. But California is not alone in its enthusiasm for promoting self-esteem. In the
education industry, the self-esteem movement has spread so effectively that a Google
search found the words “elementary school mission statement self-esteem” on 308,000
Web pages (Twenge, 2006). For example, the mission statement of the Stephens Ele-
mentary School in Bartow, Florida (home of the Soaring Eagles), is “to provide edu-
cational opportunities in an environment that promotes learning, self-esteem, and
confidence.”

There are many reasons to believe that self-esteem could be the magic key to solving
social problems. People with high self-esteem are more satisfied with their lives, expe-
rience more positive feelings, and are less likely to be anxious or depressed (Myers &
Diener, 1995; Twenge & Campbell, 2001). The downside to self-esteem, however, only
comes into focus when we conduct experiments.

For example, in one experiment, researchers randomly assigned students who earned
D’s and F’s on a midterm exam to one of three groups. Group 1 (the control group)
received regular e-mails with review questions. Group 2 received review questions plus
self-esteem-bolstering messages. Group 3 received review questions plus encourage-
ment to take responsibility for their learning (Forsyth, Lawrence, Burnette, & Baumeis-
ter, 2007). As with self-esteem, encouraging students to take responsibility also is
associated with academic achievement (Noel, Forsyth, & Kelley, 1987). More important
for our purposes, group 3 adds another comparison group to this experiment that can
help us better understand self-esteem.

These researchers could have conducted three separate experiments to compare
group 1 with group 2, group 1 with group 3, and then group 2 with group 3, but put-
ting all three groups in a single experiment is far more efficient (see Figure 12-1). Scores
on the final exam for group 1 (the control group) and group 3 (the take-responsibility
group) were about the same, on average, as their midterm grades (62% and 57%, re-
spectively). However, the average scores on the final exam for group 2 (the self-esteem
group) sank to a dismal 38%!

Encouraging students to take responsibility and building their self-esteem are both
motivational interventions, but the findings indicated that neither group was motivated
in a positive way. The control group and the take-responsibility group performed at
about the same level, on average, but the self-esteem intervention actually had negative
results. Adding group 3 to the study taught us that trying to motivate students by build-
ing their self-esteem is potentially dangerous.
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FIGURE 12-1
Comparing Three Groups

Researchers compared three groups in
this one study, which allowed them to

discover that a self-esteem intervention
can backfire. To compare three or more

groups in a single study is the main
reason we use ANOVA.



In this chapter, we will be working with three or more groups as we learn about
analysis of variance (ANOVA) and the F statistic. First, we learn about the dis tri -
butions used with ANOVA, the F distributions. Then we learn how to conduct an
ANOVA when we have a between-groups design—a between-groups ANOVA.
A new effect size statistic used with ANOVA is introduced, and we learn how to
conduct a post-hoc test to determine exactly which groups are different from one
another.

Using the F Distributions with Three or More Samples
This critical insight about self-esteem only revealed itself because the researchers used
a three-group design. They were able to compare two different ways of motivating stu-
dents and then to compare both of those approaches to a control group. The particular
comparison between the self-esteem group and the take-responsibility group clarified
that building self-esteem was an intervention that backfired. However, a three-group
comparison is more complicated than a two-group comparison, so it requires a distri-
bution that can accommodate that complexity.

Type I Errors When Making Three or More Comparisons
Before we explain how the F distributions accommodate three or more groups, we’ll
explain analysis of variance. When comparing three or more groups, it is tempting to
conduct a t test on each of the possible comparisons. However, conducting numerous
t tests greatly increases the probability of a Type I error (the chance of rejecting the
null hypothesis when the null hypothesis is true). That’s why we use ANOVA.
ANOVA lets us test differences among three or more groups in just one test, increasing
confidence in our findings.

Let’s use the self-esteem example described above to learn how multiple compar-
isons, such as many t tests, inflate the possibility of making a Type I error. Remember
that there were three groups in that study: group 1 was the control group; group 2,
the self-esteem group; and group 3, the take-responsibility group. If the researchers
conducted three t tests, how many comparisons would they have to make?

group 1 with group 2
group 1 with group 3
group 2 with group 3

That’s three comparisons. If there were four groups, there would be six comparisons.
If there were five groups, that would be ten comparisons, and so on.

Now let’s consider the probability of Type I errors when making three or more
comparisons. We’ll use a p level of 0.05, meaning there is a 0.05 chance of a Type I
error in any given analysis if the null hypothesis is true, and a 0.95 chance of not having
a Type I error when the null hypothesis is true. Those are pretty good odds, and we
would tend to believe the conclusions in that study. The problem begins, however,
when we conduct more studies. There are the chances of not having a Type I error
on the first analysis and not having a Type I error on the second analysis: (0.95)(0.95)
� (0.95)2 � 0.903. Those odds are almost 5% lower. Expressed another way, there is
a (1 � 0.903) � 0.097 chance (almost 10%) of having at least one Type I error if we
run two analyses. With three analyses, the chance is (0.95)(0.95)(0.95) � (0.95)3 �
0.857. This gives us almost a 15% chance of having at least one Type I error if we run
three analyses. And so on. Table 12-1 displays the chances of at least one Type I error,
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if the null hypothesis is true, for the number of comparisons that would be
required as the number of analyses increases. As you can see, the probability
of a Type I error increases quite a bit as the number of comparisons increases.

The F Statistic as an Expansion of the z and
t Statistics
We use F distributions because they allow us to conduct a single hypothesis
test with multiple groups. F distributions are, in fact, more complex variations
of the z distribution or the t distributions. Just as the z distribution is still part
of the t distributions, the t distributions are also part of the F distributions.
The hypothesis tests based on all three types of distributions are based on the
characteristics of the normal bell-shaped curve. In fact, these three distributions
are like progressively more complex versions of the Swiss Army knife. Think
of the F distributions as an elaborate Swiss Army knife that includes the  single-
bladed knife that represents the z distribution, the multi-bladed knife that rep-
resents the t distributions, as well as additional tools to make it much more
versatile.

The hypothesis tests that we have learned so far—the z test and the three
types of t test—are calculated in similar ways. In all cases, the statistics are cal-
culated by dividing a numerator by a denominator. The numerator describes
how far apart comparison groups are from each other by measuring some kind
of difference (between scores, between means, between mean differences, or
between differences between means). The denominator represents some meas-
ure of variability, that is, some variation on a standard deviation. To summa -

rize this pattern, the statistic is calculated simply by dividing a
nu merator that represents the difference between groups by a
denominator that represents the variability within the groups—
between-groups variability divided by within-groups variability.

For example, men are, on average, a little taller than women,
on average. This is between-groups variability. Yet not all men are
the same height and not all women are the same height. This is
within-groups variability. As you have noticed, there is consider-
able overlap between the two distributions. Even though men are,
on average, taller than women, on average, many women are taller
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z, t, and F Distributions The z, t, and F
distributions are three increasingly complex
variations on one great idea: the normal curve.
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TABLE 12-1. The Probability of a Type I Error Increases as the Number of
Statistical Comparisons Increases

As the number of samples increases, the number of t tests necessary to compare every possible pair of means
increases at an even greater rate. And with that, the probability of a Type I error quickly becomes far larger
than 0.05.

Number of Number of Probability of
Means Comparisons a Type I Error

2 1 0.05

3 3 0.143

4 6 0.265

5 10 0.401

6 15 0.537

7 21 0.659

�   MASTERING THE CONCEPT

12-1: The F statistic is used when we’re

comparing means for more than two groups. Like

the z statistic and the t statistic, it’s calculated by

dividing some measure of variability among means

by some measure of variability within groups.



than many men. As you’ll soon learn, the calculation of the F statistic follows this same
pattern.

We need the added versatility of the F statistic if we want to compare three or more
different samples. The F statistic is based on the F distributions and is calculated when
we conduct the hypothesis test called analysis of variance (ANOVA; pronounced “ah-
noe-vah,” with the emphasis on the second syllable). ANOVA is a hypothesis test typically
used with one or more nominal independent variables (with at least three groups overall) and a
scale dependent variable. (Note: The independent variable is sometimes an ordinal variable
with a small number of levels.)

The F Distributions for Analyzing Variability 
to Compare Means
Like other test statistics, the F is a ratio of two measures of variability. Specifically, the
F statistic is a ratio of two measures of variance: (1) between-groups variance, which indicates
differences among sample means, and (2) within-groups variance, which is essentially an average
of the sample variances.

So let’s think through the basic logic of the calculation of an F statistic. For now, the
description of the calculations is simplified to emphasize the logic of the F distributions.

First, let’s consider how we calculate the numerator in the F ratio, the part of the
formula that specifies differences between groups, when we have several means (so we
cannot subtract one mean from another). To calculate the numerator, we determine
the variability (the spread) among the three (or more) means. If there is a great deal
of spread among several means, this suggests that a difference exists among them. But
if there is very little spread among the means, this suggests that no reliable difference
exists among them. So, to determine the numerator, we calculate the variance among
the means of the samples of interest. We call this variance the between-groups variance
because it is an estimate of the population variance based on the differences among the means.

For example, if we wanted to compare how fast people talk in Philadelphia, Mem-
phis, Chicago, and Toronto, then the between-groups variance (in this case, the
between-cities variance) is an estimate of the variability among the average number
of words per minute spoken by the people representing each of those four cities.

To calculate the denominator of the F statistic, we calculate a version of variance. This
variance is called the within-groups variance, an estimate of the population variance based on
the differences within each of the three (or more) sample distributions. For example, not everyone
living in Philadelphia speaks at the same pace. Neither does everyone living in Memphis,
Chicago, or Toronto. There are within-city differences in talking speeds, so within-
groups variance refers to the average of the amounts of variability within each city.
Within-groups variance is essentially an average of the four variances, one for each city.

To calculate the F statistic, we simply divide the between-groups variance by the
within-groups variance. If the between-groups variance (the numerator) is much larger
than the within-groups variance (the denominator), then we can infer that the sample
means are different from one another. However, if the between-groups variance is sim-
ilar to the within-groups variance, then we cannot infer that the sample means are dif-
ferent from one another. We use the F table to determine whether the ratio of the
differences among our groups to the differences within each of our groups is extreme
enough to reject the null hypothesis and conclude that a difference exists. The variability
used to calculate the F statistic is simply a way of measuring whether three or more
groups vary from one another.

F �
between-groups variance

within-groups variancce
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■ ANOVA is a hypothesis test
typically used with one or
more nominal independent
variables (with at least three
groups overall) and a scale
dependent variable.

■ The F statistic is a ratio of
two measures of variance: 
(1) between-groups variance,
which indicates differences
among sample means, and 
(2) within-groups variance,
which is essentially an average
of the sample variances.

■ Between-groups variance is
an estimate of the population
variance based on the
differences among the means.

■ Within-groups variance is an
estimate of the population
variance based on the
differences within each of the
three (or more) sample
distributions.



To summarize, we can think of within-groups variance as reflecting the difference
between means that we’d expect just by chance. Variability exists within any population,
so we would expect some difference among means just by chance. Between-groups
variance reflects the difference between means that we found in our data. If this dif-
ference is much larger than the within-groups variance, what we’d expect by chance,
then we can reject the null hypothesis and conclude that there is some difference be-
tween means.

The F Table
The F table is essentially an expansion of the t table—which is possible because of the
similar structure of the test statistic calculations. In previous chapters, we explained that
there are many t distributions—one for each possible sample size. Similarly, there are
many F distributions, which are represented in the F table. Like the t table, the F table
includes several extreme probabilities and the range of sample sizes, represented by de-
grees of freedom. But the F table also includes a third factor, the number of samples.
(The number of samples is unnecessary for the t table because there cannot be more
than two samples if a t statistic has been used.) There is an F distribution for every pos-
sible combination of sample size (represented by one type of degrees of freedom) and
number of samples (represented by another type of degrees of freedom).

If we look in the F table under two samples, we’ll find the same numbers that we
see in the t table—except that they’re squared. F is based on variance, and t on standard
deviation; this means that if we take the square root of the F statistic for two samples,
it will match the t statistic exactly (just as if we take the square root of variance, it will
match the standard deviation exactly). Moreover, if we look in the F table under two
samples and for a sample size of infinity, we’ll find the square of the same number that
we see in the z table!

For example, if we look under two samples for a sample size of infinity for the
equivalent of the 95th percentile, we see 2.71. If we take the square root of this, we
get 1.646. We can find 1.645 on the z table for the 95th percentile and on the t table
for the 95th percentile with a sample size of infinity. (The slight differences are due
only to rounding decisions.) These connections are summarized in Table 12-2.

The Language and Assumptions for ANOVA
Before we go on, we’ll introduce the language that statisticians use to describe ANOVAs
(Landrum, 2005). The word ANOVA is almost always preceded by two adjectives, one
indicating the number of independent variables and one indicating whether the par-
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TABLE 12-2. Connections Among Distributions

The z distribution is subsumed under the t distributions in certain specific circumstances, and both the z and
t distributions are subsumed under the F distributions in certain specific circumstances.

                        When Used                                            Links Among the Distributions

z       One sample; l and r are known   Subsumed under the t and F distributions

t       (1) One sample; only l is known       Same as z distribution if there is a sample size of ∞ (or just very large)
        (2) Two samples

F  Three or more samples (but can        Square of z distribution if there are only two samples and a sample 
        be used with two samples)                size of ∞ (or just very large); square of t distribution if there are only 
                                                               two samples



ticipants are in one condition (between-groups) or all conditions (within-groups). For
example, let’s say we want to conduct an ANOVA with year in school as the one in-
dependent variable and Consideration of Future Consequences (CFC) scores as the
dependent variable. An ANOVA that analyzes a study with just one independent vari-
able is called a one-way ANOVA, a hypothesis test that includes one nominal independent
variable with more than two levels and a scale dependent variable.

A one-way ANOVA can have one of two research designs, within groups or be-
tween groups. When participants are in all levels, we are using a within-groups design.
A within-groups ANOVA is a hypothesis test in which there are more than two samples, and
each sample is composed of the same participants. (This test is also called a repeated-measures
ANOVA.) We’ll learn how to conduct a within-groups ANOVA in Chapter 13.

When participants are in only one level of the independent variable, we are using a
between-groups design. A between-groups ANOVA is a hypothesis test in which there are
more than two samples, and each sample is composed of different participants. For a comparison
of CFC scores across years in school, participants can be in only one level of the inde-
pendent variable. In this chapter, we focus on the between-groups ANOVA. As men-
tioned earlier, though, ANOVAs are always described by two adjectives. The ANOVA
used to analyze the study that compares CFC scores across years in school would have
two adjectives: one-way and between-groups. It would be a one-way between-groups
ANOVA. It is this type of ANOVA that we’ll learn to perform in this chapter.

Regardless of the type of ANOVA, they all share the same assumptions. The as-
sumptions for ANOVA represent the optimal conditions for a valid analysis of the data.
If the conclusions of a study might be jeopardized by a huge deviation from the as-
sumptions, then researchers either report and justify their decision to violate those as-
sumptions in the write-up of their results or choose to conduct a more conservative
nonparametric test (see Chapter 18). Let’s consider each of the three assumptions.

The first assumption, that our samples are selected randomly, is necessary if we want
to generalize beyond our sample. As with all hypothesis tests, if the study participants
are not selected randomly, then our external validity—our ability to generalize beyond
our sample—is limited. Because it is often impossible from a practical standpoint to use
random selection, most researchers use ANOVA even when this assumption is violated.

The second assumption is that the population distribution is normal. As with the hy-
pothesis tests we learned previously, we can examine the distributions of our samples to
get a sense of what the underlying population distribution might look like. Moreover,
adherence to a normal curve becomes less important as the sizes of our samples increase.

The third assumption is that the samples all come from populations with the same
variances, an assumption called homoscedasticity. Homoscedastic populations are those that
have the same variance. Heteroscedastic populations are those that have different variances. (Note
that homoscedasticity is also often called homogeneity of variance.) We hope that the sam-
ple variances are quite similar (homoscedastic), but in real-life research we often find
that the variances are quite different (heteroscedastic), particularly with smaller samples.
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■ A one-way ANOVA is a
hypothesis test that includes
one nominal independent
variable with more than two
levels and a scale dependent
variable.

■ A within-groups ANOVA is a
hypothesis test in which there
are more than two samples,
and each sample is composed
of the same participants; also
called a repeated-measures
ANOVA.

■ A between-groups ANOVA is
a hypothesis test in which
there are more than two
samples, and each sample is
composed of different
participants.

■ Homoscedastic populations
are those that have the same
variance; homoscedasticity is
also called homogeneity of
variance.

■ Heteroscedastic populations
are those that have different
variances.

continued on next page

CHECK YOUR LEARNING
Reviewing the Concepts > The F statistic, used in an analysis of variance (ANOVA), is essentially an expansion of the

z statistic and the t statistic that can be used to compare more than two samples. With two
large samples, we observe related values on all three tables.

> Like the z statistic and the t statistic, the F statistic is a ratio of a difference between group
means (in this case, using a measure of variability) to a measure of variability within samples.
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One-Way Between-Groups ANOVA
The self-esteem study (Forsyth et al., 2007) provided an interesting finding—that a
self-esteem intervention can backfire—because researchers compared three groups to
one another. In fact, this is the main reason we use ANOVA—to compare three or
more groups in a single study. In this section, we apply the principles of ANOVA to
hypothesis testing with a between-groups design using a new example.

Everything About ANOVA but the Calculations
To introduce the steps of hypothesis testing for a one-way between-groups ANOVA,
we use an international study about whether the economic makeup of a society affects
the degree to which people behave in a fair manner toward others (Henrich et al.,
2010).

Clarifying the Concepts 12-1 The F statistic is a ratio of what two kinds of variance?

12-2 What are the two types of research designs for a one-way ANOVA?

Calculating the Statistics 12-3 Calculate the F statistic, writing the ratio accurately, for each of the following cases:

a. Between-groups variance is 8.6 and within-groups variance is 3.7.

b. Within-groups variance is 123.77 and between-groups variance is 102.4.

c. Between-groups variance is 45.2 and within-groups variance is 32.1.

Applying the Concepts 12-4 Consider the research on multitasking that we explored in Chapter 9 (Mark,
Gonzalez, & Harris, 2005). Let’s say we compared three conditions to see which one
would lead to the quickest resumption of a task following an interruption. In one
condition, the control group, no changes were made to the working environment. In
the second condition, a communication ban was instituted from 1:00 to 3:00 P.M. In
the third condition, a communication ban was instituted from 11:00 A.M. to 3:00
P.M. We recorded the time, in minutes, until work on an interrupted task was
resumed.

a. What type of distribution would be used in this situation? Explain your answer.

b. In your own words, explain how we would calculate between-groups variance.
Focus on the logic rather than the calculations.

c. In your own words, explain how we would calculate within-groups variance. Focus
on the logic rather than the calculations.

> We expect variability to occur within groups naturally. ANOVA tests whether the differ-
ences between groups are unexpectedly large relative to the variability we expect and ob-
serve within groups.

> One-way between-groups ANOVA is an analysis in which there is one independent variable
with at least three levels and in which different participants are in each level of the inde-
pendent variable. A within-groups ANOVA differs in that all participants experience all
levels of the independent variable.

> The assumptions for ANOVA are that participants are randomly selected, the populations
from which the samples are drawn are normally distributed, and those populations have
the same variance (an assumption known as homoscedasticity).

Solutions to these Check Your
Learning questions can be found in
Appendix D.
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The researchers studied people in 15 societies from around the world. For the purposes
of this example, we’ll look at data from four types of these societies—foraging, farming,
natural resources, and industrial.

1. Foraging. Several societies, including ones in Bolivia and Papua New Guinea,
were categorized as foraging in nature. Most food was acquired through hunting
and gathering.

2. Farming. Some societies, including ones in Kenya and Tanzania, primarily prac-
tice farming and tend to grow their own food.

3. Natural resources. Other societies, such as in Colombia, built their economies by
extracting natural resources, such as trees and fish.

4. Industrial. Industrial societies, which include the major city of Accra in Ghana
as well as rural Missouri in the United States, built their economies through
manufacturing. In industrial societies and those that depend on the extraction
of natural resources, most food was purchased rather than grown or foraged.

The researchers wondered which groups would behave more or less fairly toward
others—the first and second groups, which grew their own food, or the third and
fourth groups, which depended on others for food. Would the process of creating or
acquiring one’s own food lead people to be more fair to others, or would the inter-
actions involved in purchasing one’s food lead people to be more fair?

The researchers measured fairness through several games. In one of these games,
called the Dictator Game, two players were given a sum of money equal to approxi-
mately the daily minimum wage for that society. The first player (the dictator) could
keep all of the money or give any portion of it to the other person. The proportion
of money given to the second player constituted the measure of fairness. For example,
it would be considered more fair to give the second player 0.40 (or 40%) of the money
than to give him or her 0.10 (or 10%) of the money.

EXAMPLE 12.1

The Dictator Game Here a
researcher introduces a fairness game
to a woman from Papua New Guinea,
one of the foraging societies. Using
games, researchers were able to
compare fairness behaviors among
different types of societies—those that
depend on foraging, farming, natural
resources, or industry. Because there
are four groups and each participant is
in only one group, the results can be
analyzed with a one-way between-
groups ANOVA.C
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This research design would be analyzed with a one-way between-groups ANOVA
that uses the fairness measure, proportion of money given to the second player, as the
dependent variable. There is one independent variable (type of society) and it has four
levels (foraging, farming, natural resources, and industrial). It is a between-groups design
because each player lived in one and only one of those societies. It is an ANOVA be-
cause it analyzes variance by estimating the variability among the different types of
societies and dividing it by the variability within the types of societies. The fairness
scores below are from 13 fictional people, but they have almost the same mean fair -
ness scores that the researchers observed in their actual (much larger) data set.

Foraging: 28, 36, 38, 31
Farming: 32, 33, 40
Natural resources: 47, 43, 52
Industrial: 40, 47, 45

Let’s consider the six steps of hypothesis testing in the context of this particular
one-way between-groups ANOVA. At this point, we will not calculate the test statistic.
We will go through the framework of the test and then learn the calculations in the
next section.

The first step of hypothesis testing is the identi-
fication of the populations to be compared, the
comparison distribution, the appropriate test, and

its assumptions. Let’s summarize the fairness study with respect to this first step of hy-
pothesis testing.
Summary: Identification of populations to be compared: Population 1: All people living in
foraging societies. Population 2: All people living in farming societies. Population 3:
All people living in societies that extract natural resources. Population 4: All people
living in industrial societies.

The comparison distribution and hypothesis test: The comparison distribution will be
an F distribution. The hypothesis test will be a one-way between-groups ANOVA.

Assumptions: (1) The data are not selected randomly, so we must generalize only
with caution. (2) We do not know if the underlying population distributions are nor-
mal, but the sample data do not indicate severe skew. (3) To see if we meet the ho-
moscedasticity assumption, we will check to see if the variances are similar (typically,
when the largest variance is not more than twice the smallest) when we calculate the
test statistic. (Note: When calculating an ANOVA, be sure to return to this step to in-
dicate whether we meet the assumption of equal variances.)

The second step is to state the null and research
hypotheses. As usual, the hypotheses are about
population means. The null hypothesis, as in

previous hypothesis tests, posits no difference among the population means. The sym-
bols are the same as before, but with more populations. The research hypothesis, how-
ever, is a bit different. We can reject the null hypothesis in an ANOVA even if only
one group is different, on average, from the others. A statistically significant ANOVA
can indicate that one group has a different mean from all other groups, that two groups
have different means from two others, or that all groups have different means from one
another. Any combination of differences between means is possible when we reject
the null hypothesis, so the research hypothesis is that at least one population mean is
different from at least one other population mean. Because there are several populations,
we will not use symbols to express the research hypothesis. Only one group needs to

STEP 1: Identify the populations,
distribution, and assumptions.

STEP 2: State the null and research
hypotheses.
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�                                         MASTERING THE FORMULA

12-1: The formula for the be-
tween-groups degrees of freedom is:
dfbetween � Ngroups � 1. We subtract 1
from the number of groups in the
study.

be different, so l1 � l2 � l3 � l4 does not include all possible outcomes, just that
in which all four population means are not equal to one another.
Summary: Null hypothesis: People living in societies based on foraging, farming, the
extraction of natural resources, and industry all exhibit the same fairness behaviors, on
average—H0: l1 � l2 � l3 � l4. Research hypothesis: People living in societies based
on foraging, farming, the extraction of natural resources, and industry do not exhibit
the same fairness behaviors, on average.

The third step is to explicitly state the relevant
characteristics of the comparison distribution. This
step is an easy one in ANOVA because most

calculations are in step 5. Here we merely state that the comparison distribution is an
F distribution and provide the appropriate degrees of freedom. As we discussed, the F
statistic is a ratio of two independent estimates of the population variance, between-
groups variance and within-groups variance (both of which we calculate in step 5).
Each variance estimate has its own degrees of freedom. The sample between-groups
variance estimates the population variance through the difference among the means
of the samples, four in this case. The degrees of freedom for the between-groups vari-
ance estimate is the number of samples minus 1:

dfbetween � Ngroups � 1 � 4 � 1 � 3

The between-groups degrees of freedom for this example is 3.
The sample within-groups variance estimates the variance of the population by av-

eraging the variances of the samples, without regard to differences among the sample
means. We first must calculate a degrees of freedom for each sample. For the first sample,
we would calculate:

df1 � n1 � 1 � 4 � 1 � 3

n represents the number of participants in the particular sample. We would then do
this for the remaining samples. For this example, there are four samples, so the formula
would be:

dfwithin � df1 � df2 � df3 � df4

For this example, the calculations would be:

df1 � 4 � 1 � 3

df2 � 3 � 1 � 2

df3 � 3 � 1 � 2

df4 � 3 � 1 � 2

dfwithin � 3 � 2 � 2 � 2 � 9

Summary: We would use the F distribution with 3 and 9 degrees of freedom.

The fourth step is to determine a critical value, or
cutoff, indicating how extreme the data must be to
reject the null hypothesis. For ANOVA, we

use an F statistic, which means that the critical value must be on an F distribution.
For an F distribution, there is just one critical value. Moreover, the F statistic is always

STEP 3: Determine the characteristics
of the comparison distribution.

STEP 4: Determine the critical value,
or cutoff.

�                                         MASTERING THE FORMULA

12-2: The formula for the within-
groups degrees of freedom for a
one-way between-groups ANOVA
conducted with group samples is:
dfwithin � df1 � df2 � df3 � df4. We
sum the degrees of freedom for each
of the four groups. We calculate de-
grees of freedom for each group by
subtracting 1 from the number of
people in that sample. For example,
for the first group, the formula is:
df1 � n1 � 1.
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positive. (There is no negative F cutoff because the F is based on estimates of variance
instead of standard deviation or standard error in both the numerator and denominator
and because variances are always positive.)

To determine the critical value, we examine the F table in Appendix B, a portion
of which we have excerpted in Table 12-3. The between-groups degrees of freedom
are found in a row across the top of the table. Notice that, in the full table, this row
only goes up to 6, as it is quite rare to have more than seven conditions, or groups, in
a study. The within-groups degrees of freedom are in a column along the left-hand
side of the table. Because the number of participants in a study can range from few to

many, the column continues for several pages with the same range of
values of between-groups degrees of freedom on the top of each page.

When using the F table, first find the appropriate within-groups de-
grees of freedom along the left-hand side of the page, in this case 9. Then
find the appropriate between-groups degrees of freedom along the top,
in this case 3. The place in the table where this row and this column in-
tersect contains three numbers. Again, if you look to the left-hand side of
the page, you’ll see three possible p levels next to every value of within-
groups degrees of freedom. From top to bottom, the table provides cut-
offs for p levels of 0.01, 0.05, and 0.10. Researchers usually use the middle
one, 0.05. For our test, we will choose the critical value, or cutoff, for a p
level of 0.05: 3.86. We will reject the null hypothesis if the test statistic is
greater than or equal to 3.86, as shown in the curve in Figure 12-2.

TABLE 12-3. Excerpt from the F Table

We use the F table to determine critical values for a given p level, based on the degrees of freedom in the nu-
merator (between-groups degrees of freedom) and the degrees of freedom in the denominator (within-groups
degrees of freedom). Note that critical values are in italics for 0.10, regular type for 0.05, and boldface for 0.01.

       Within-Groups
          Degrees of                                                                           
           Freedom:                         Between-Groups Degrees of Freedom: Numerator
        Denominator                  p level                    1                      2                      3                   4 . . .

                .

                .

                .

                                                 0.01 9.33 6.93 5.95 5.41

               12                              0.05                    4.75                   3.88                   3.49                   3.26

                                                 0.10 3.18 2.81 2.61 2.48

                                                 0.01 9.07 6.70 5.74 5.20

               13                              0.05                    4.67                   3.80                   3.41                   3.18

                                                 0.10 3.14 2.76 2.56 2.43

                                                 0.01 8.86 6.51 5.56 5.03

               14                              0.05                    4.60                   3.74                   3.34                   3.11

                                                 0.10 3.10 2.73 2.52 2.39

                .

                .

                .

5.00%

3.860

FIGURE 12-2
Determining Cutoffs for an F

Distribution

We determine a single critical value on
an F distribution. Because F is a

squared version of a z or t in some
circumstances, we have only one cutoff

for a two-tailed test.



Summary: The cutoff, or critical value, for the F statistic for a p level of 0.05 is 3.86,
as displayed in the curve in Figure 12-2.

In the fifth step, we calculate the test statistic. At
this point, we calculate two estimates of the

population variance. One, between-groups variance, is based on the differences among
the sample means. The other, within-groups variance, is based on the variances of the
samples without regard to how spread out the sample means are. We use the two es-
timates to calculate the F statistic. We directly compare this statistic to the cutoff to
determine whether to reject the null hypothesis. We will learn to do these calculations
in the next section.
Summary: To be calculated in the next section.

In the final step, we decide whether to reject or
fail to reject the null hypothesis. If the F sta-

tistic is beyond the critical value, then we know that it is in the most extreme 5%
of possible test statistics if the null hypothesis is true. We can then reject the null
hypothesis. If we are able to reject the null hypothesis, then we can draw a conclu-
sion, such as “It seems that people exhibit different fairness behaviors, on average,
depending on the type of society in which they live.” Notice that we do not say
which societies are different. ANOVA does not tell us where differences lie.
ANOVA only tells us that at least one mean is significantly
different from  another.

If the test statistic is not beyond the critical value, then we must
fail to reject the null hypothesis. The test statistic would not be very
rare if the null hypothesis was true. In this circumstance, we report
only that there is no evidence from the present study to support the
research hypothesis.
Summary: We will be making an evidence-based decision, so we can-
not make that decision until we complete step 5, in which we calcu-
late the probabilities associated with that evidence. We will complete
step 5 in the Making a Decision section below. ■

The Logic and Calculations of the F Statistic
We now know all the steps of hypothesis testing except how
to calculate the F statistic. In this section, we learn the logic of
ANOVA, the logic of calculating the between-groups variance
and the within-groups variance, and the actual calculations nec-
essary to compute the F statistic. Then we return to the steps
of hypothesis testing to learn how to use data to make a decision
for the specific example we have been considering. Fortunately,
both the concept and the calculation of the F statistic use ideas
that we are already familiar with.

Let’s demonstrate how to use the statistical reasoning asso-
ciated with the F statistic. As we noted before, grown men, on
average, are slightly taller than grown women, on average. The
language of statistics calls that kind of varia bility “between-
groups variability.” We also noted that not all women are
the same height and not all men are the same height. The lan-
guage of statistics calls that kind of variability “within-groups

STEP 6: Make a decision.

STEP 5: Calculate the test statistic.
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�   MASTERING THE CONCEPT

12-2: When conducting an ANOVA, we use

the same six steps of hypothesis testing that

we’ve already learned. One of the differences

from what we’ve learned is that we calculate

an F statistic, the ratio of between-groups

variance to within-groups variance.
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Gender Differences in Height Men, on average, are slightly taller
than women (between-groups variance). However, neither men nor women
are all the same height within their groups (within-groups variance). F is
between-groups variability divided by within-groups variability.
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variability.” The F statistic is simply an estimate of between-groups variability divided
by an estimate of within-groups variability.

Quantifying Overlap with ANOVA The F statistic is a ratio of two estimates of the
population variance: between-groups variance and within-groups variance. The esti-
mate of the between-groups variability appears in the numerator. The estimate of the
within-groups variability appears in the denominator. Because the F statistic is a ratio
of between-groups variability to within-groups variability, its value is large whenever
the numerator is large and the denominator is small, and its value is small whenever
the numerator is small and the denominator is large.

Figure 12-3 demonstrates that the amount of overlap is the result of two influences:
how far apart the means are (between-groups variance) and how spread out each dis-
tribution is (within-groups variance). Each set of three curves represents a different
study. In the top set of three curves (a), there is a great deal of overlap among the sample
distributions. This occurs both because the means are fairly close together and because

F �
between-groups variability

within-groups variiability

a

b

c

FIGURE 12-3
The Logic of ANOVA

Compare the top (a) and middle (b)
sets of sample distributions. As the

variability between means
increases, the F statistic is larger.

Compare the middle (b) and bottom
(c) sets of sample distributions. As

the variability within the samples
themselves decreases, the F

statistic is larger. The F statistic is
larger as the curves overlap less.

Both the increased spread among
the sample means and the

decreased spread within each
sample contribute to this increase

in the F statistic.



there is so much variability within each of the samples. Three overlapping distributions
like these could easily result from the same population just by chance.

In the second set of distributions (b), the three sample means are more widely sep-
arated, but the variability among the scores in each group remains the same. There is
much less overlap, but only because the means are farther apart. This increase in the
difference between means increases the between-groups variance even though the
within-groups variance is unchanged. Said another way, the F statistic is larger because
the numerator is larger; the denominator has not changed. Overall, there is less overlap
than in the top set of three curves. It would be somewhat surprising to draw these
three samples from the same population just by chance.

The third set of distributions (c) represents what would occur if we kept the in-
creased variability between the three means but decreased the variability within each
of the samples. Compared to the top set of three curves (a), we have increased the
between-groups variance (the numerator) and decreased the within-groups variance
(the denominator). Both changes lead to a larger F statistic. But this change also leads
to less overlap. Just from this graph (before calculating any numbers), it would be dif-
ficult to convince someone that these three samples were drawn by chance from the
very same population.

These three sets of curves demonstrate how the F statistic captures the amount of
overlap among samples by including two measures: (1) between-groups variance, a
measure of how variable the means are with respect to one another, and (2) within-
groups variance, a measure of how variable the scores are within each sample.

Two Ways to Estimate Population Variance Between-groups variability and
within-groups variability are both estimates of population variance. Mathematically, if
we calculate two estimates of variance and both are identical, then the F statistic, which
is a ratio of the two estimates, will be 1.0. For example, if the estimate of the between-
groups variance is 32 and the estimate of the within-groups variance is also 32, then
the F statistic is 32/32 � 1.0. Notice that this is a bit different from the z and t tests
in which a z or t of 0 would mean no difference at all. Here, an F of 1 means no dif-
ference at all. As the sample means get farther apart, the between-groups variance (the
numerator) increases, which means that the F statistic also increases.

Calculating the F Statistic with the Source Table Our goal in performing the
calculations of ANOVA is to understand the sources of all the variability in a study. The
measurement of variance is built on the idea of squared deviations from the mean. This
is how we calculate most of the numbers that we use to calculate variance in ANOVA:
squared deviations.

To conduct an ANOVA, we calculate many squared deviations and three sums of
squares. We use a source table to help us to keep track of all the sources of variability
that we discover in our study. A source table presents the important calculations and final re-
sults of an ANOVA in a consistent and easy-to-read format. A source table is shown in Table
12-4; the symbols in this table would be replaced by numbers in an actual source table.

We’re going to explain the source table by discussing the meaning of each of the
five columns in the source table shown in Table 12-4. For teaching purposes, we’re
going to explain column 1 first and then work backward from column 5 to column
4 to column 3 and finally to column 2.

Column 1: The first column, labeled “source,” lists the sources, or origins, of the
two estimates of population variance. One source of variability comes from the spread
between means, and another source of variability comes from the spread among the
scores within each sample. In this chapter, the main function of the row labeled “total”
is to check the sum of squares (SS) and degrees of freedom (df) calculations. Now let’s
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■ A source table presents the
important calculations and
final results of an ANOVA in a
consistent and easy-to-read
format.
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work backward through the source table to learn how it describes the different sources
of variability.

Column 5: The fifth column is labeled “F.” As you may remember, we need only
simple division to calculate the F statistic: we divide the estimate of the between-groups
variance by the estimate of the within-groups variance.

Column 4: The fourth column, labeled “MS,” describes how we arrived at that nu-
merical estimate. MS is the conventional symbol for variance in ANOVA. It stands for
“mean square” because variance is the arithmetic mean of the squared deviations. 
MSbetween and MSwithin, therefore, refer to between-groups variance and within-groups
variance, respectively. As already noted, we divide MSbetween by MSwithin to calculate F.

Column 3: The third column is labeled “df.” This column shows the degrees of free-
dom, and we have already learned to calculate the dfbetween and dfwithin. It’s so easy to
calculate the dftotal that we’ll just do it now. Any guesses on how to calculate the dftotal?
If you said “add up the other two,” you’re right:

dftotal � dfbetween � dfwithin

In our version of the fairness study, dftotal � 3 � 9 � 12. A second way to calculate
dftotal is:

dftotal � Ntotal � 1

Ntotal refers to the total number of people in the entire study. In our abbreviated ver-
sion of the fairness study, there were four groups with 4, 3, 3, and 3 participants in the
groups, and 4 � 3 � 3 � 3 � 13. We calculate total degrees of freedom for this study
as dftotal � 13 � 1 � 12. If we calculate degrees of freedom both ways and the answers
don’t match up, then we know we have to go back and check our calculations.

Column 2: The all-important second column is labeled “SS.” This column includes
the sums of squares, SS. We calculate three sums of squares: one for between-groups
variability (SSbetween), one for within-groups variability (SSwithin), and one for total vari-
ability (SStotal). As with degrees of freedom, the first two sums of squares add up to the
third. We should always calculate all three, however, to be sure they match.

The source table simply collects many of the things we have already learned to do into
one table. More specifically, it describes everything we have learned about the sources of
numerical variability in a particular study. Once we calculate our sums of squares for
between-groups variance and within-groups variance, there are just two steps.

Step 1. Divide each sum of squares by the appropriate degrees of freedom—the
appropriate version of (N � 1). We divide the SSbetween by the dfbetween and the SSwithin
by the dfwithin. We then have the two variance estimates (MSbetween and MSwithin).

TABLE 12-4. The Source Table Organizes Our ANOVA Calculations

A source table helps researchers organize the most important calculations necessary to conduct an ANOVA
as well as the final results. The numbers 1–5 in the first row are used in this particular table only to help you
understand the format of source tables; they would not be included in an actual source table.

                1                                 2                                3                                 4                            5
           Source                            SS df MS F

         Between                        SSbetween dfbetween MSbetween F

         Within                            SSwithin dfwithin MSwithin

         Total                              SStotal dftotal

                                        �

                                        �

MASTERING THE FORMULA

12-3: One formula for the total de-
grees of freedom for a one-way
between-groups ANOVA is: dftotal �

dfbetween � dfwithin. We sum the
between-groups degrees of freedom
and the within-groups degrees of
freedom. An alternate formula is:
dftotal � Ntotal � 1. We subtract 1
from the total number of people in
the study—that is, from the number
of people in all groups.
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Step 2. Calculate the ratio of MSbetween and MSwithin to get the F statistic. Once we
have our sums of squared deviations, the rest of the calculation is simple division.

Sums of Squared Deviations Statistics defines deviance as variations from particular
statistical norms. For ANOVA, there are three different types of statistical deviations
because we are measuring deviations from three different means: (1) to calculate de-
viations between groups, (2) to calculate deviations within groups, and (3) to calculate
total deviations. Calculating the amount of deviance is the first step needed to calculate
each sum of squares: between, within, and total.

Let’s start with the total sum of squares, SStotal. The best way to start is to organize
all the scores, placing them in a single column with a horizontal line dividing each sam-
ple from the next. You can use the data (from our version of the fairness study) in the
column labeled “X” of Table 12-5 as your model, especially when calculating practice
problems that have only a few data points in each group. The symbol X stands for in-
dividual scores, which is why there are 13 individual scores listed under that symbol in
the table. Each set of scores is next to its sample. The means of each sample are included
underneath the names of each sample. (We have included subscripts on each mean in
the first column—e.g., for for foraging, nr for natural resources—to indicate its sample.)

In this case, we want to know the total sum of squares, so we subtract the overall
mean from each score, including everyone in the study, regardless of sample. The mean
of all the scores is called the grand mean, and its symbol is GM. The grand mean is the
mean of every score in a study, regardless of which sample the score came from:

The grand mean of these scores is 39.385. (As we have been doing so far, we will
write each number to three decimal places until we get to the final answer, F. As we

GM
X

Ntotal

�
R( )

�                                         

MASTERING THE FORMULA

12-4: The grand mean is the mean
score of all people in a study, regard-
less of which group they’re in. The

formula is: . We add up

everyone’s score, then divide by the
total number of people in the study.

GM
X

Ntotal

�
R( )

TABLE 12-5. Calculating the Total Sum of Squares

The total sum of squares is calculated by subtracting the overall mean, called the grand mean, from every
score to create deviations, then squaring the deviations and summing the squared deviations.

                   Sample                                 X (X � GM) (X � GM)2

          Foraging                                         28                            �11.385                                129.618

                                                                36                              �3.385                                  11.458

Mfor � 33.25                                  38                              �1.385                                    1.918

                                                                31                              �8.385                                  70.308

          Farming                                          32                              �7.385                                  54.538

                                                                33                              �6.385                                  40.768

Mfarm � 35.0                                  40                                 0.615                                    0.378

          Natural resources                            47                                 7.615                                  57.998

                                                                43                                 3.615                                  13.068

Mnr � 47.333                                 52                               12.615                                159.138

          Industrial                                         40                                 0.615                                    0.378

                                                                47                                 7.615                                  57.988

Mind � 44.0                                    45                                 5.615                                  31.528

GM � 39.385 SStotal � 629.084

■ The grand mean is the mean
of every score in a study,
regardless of which sample
the score came from.
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12-5: The total sum of squares in
a ANOVA is calculated using the
following formula: SStotal � R(X �

GM)2. We subtract the grand mean
from every score, then square these
deviations. We then sum all the
squared deviations.

have done throughout this book, we will report the final answer to two decimal
places.)

The third column in Table 12-5 shows the deviation of each score from the grand
mean. The fourth column shows the squares of these deviations. For example, for the
first score, 28, we subtract the grand mean:

28 � 39.385 � �11.385

Then we square the deviation:

(�11.385)2 � 129.618

Below the fourth column, we have summed the squared deviations: 629.084. This
is the total sum of squares, SStotal. The formula for total sum of squares is:

SStotal � R(X � GM)2

To calculate the total sum of squares, notice that we used the grand mean (GM) as
the standard against which we measured all the deviations. This will change in the next
step, when we calculate within-groups variance.

The model for calculating the within-groups sum of squares is shown in Table 12-6.
This time the deviations are around the mean of each particular group. For the four
scores in the first sample, we subtract their sample mean, 33.25. For example, the cal-
culation for the first score is:

(28 � 33.25)2 � 27.563

For the three scores in the second sample, we subtract their sample mean, 35.0. And
so on for all four samples. (Note: As a practical matter, a horizontal line between samples

TABLE 12-6. Calculating the Within-Groups Sum of Squares

The within-groups sum of squares is calculated by taking each score and subtracting the mean of the sample
from which it comes—not the grand mean—to create deviations, then squaring the deviations and summing
the squared deviations.

                   Sample                                 X (X � M) (X � M)2

           Foraging                                         28                            �5.25                                   27.563

                                                                 36                               2.75                                     7.563

Mfor � 33.25                                 38                               4.75                                   22.563

                                                                 31                            �2.25                                     5.063

           Farming                                          32                            �3.0                                       9.0

                                                                 33                            �2.0                                       4.0

Mfarm � 35.0                                 40                               5.0                                     25.0

           Natural resources                            47                            �0.333                                   0.111

                                                                 43                            �4.333                                 18.775

Mnr � 47.333                                52                               4.667                                 21.781

           Industrial                                        40                            �4.0                                     16.0

                                                                 47                               3.0                                       9.0

Mind � 44.0                                   45                               1.0                                       1.0

                                                        GM � 39.385                                                        SSwithin � 167.419
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serves as a reminder to start using a new mean when calculating these within-groups
deviations. Don’t forget to switch means when you get to each new sample!)

Once we have all the deviations, we square them and sum them to calculate the
within-groups sum of squares, 167.419, the number below the fourth column. Because
we subtract the sample mean, rather than the grand mean, from each score, the formula is:

SSwithin � R(X � M )2

Notice that the weighting for sample size is built into the calculation. The first sam-
ple has four scores and contributes four squared deviations to the total. The other sam-
ples have only three scores, so they only contribute three squared deviations.

Finally, we calculate the between-groups sum of squares. Remember, our goal for
this step is to estimate how much each group deviates from the overall grand mean, not
each individual participant, so we use means rather than individual scores in our calcu-
lations. This step uses the same format as the other two sums of squares and almost
the same calculations. For each of the 13 people in this study, we subtract the grand
mean from the mean of the group to which that individual belongs.

For example, the first person has a score of 28 and belongs to the group labeled “for-
aging,” which has a mean score of 33.25. However, the grand mean is 39.385. We ignore
this person’s individual score and subtract 39.385 (the grand mean) from 33.25 (the group
mean) to get the deviation score, �6.135. The next person, also in the group labeled “for-
aging,” has a score of 36. The group mean of that sample is 33.25, and the grand mean is
39.385. Once again, we ignore that person’s individual score and subtract 39.385 (the
grand mean) from 33.25 (the group mean) to get the deviation score, also �6.135.

In fact, we subtract 39.385 from 33.25 for all four scores. We conduct the same cal -
culation for every score in that group, as you can see in Table 12-7. When we get to the

�                                         
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12-6: The within-groups sum of
squares in a one-way between-
groups ANOVA is calculated using
the following formula: SSwithin �

R(X � M )2. From each score, we
subtract its group mean. We then
square these deviations. We sum all
the squared deviations for everyone
in all groups.

TABLE 12-7. Calculating the Between-Groups Sum of Squares

The between-groups sum of squares is calculated by subtracting the grand mean from the sample mean for
every score to create deviations, then squaring the deviations and summing the squared deviations. The in-
dividual scores themselves are not involved in any calculations.

                   Sample                                 X (M � GM) (M � GM)2

           Foraging                                         28                           �6.135                                 37.638

                                                                 36                           �6.135                                 37.638

Mfor � 33.25                                  38                           �6.135                                 37.638

                                                                 31                           �6.135                                 37.638

           Farming                                          32                           �4.385                                 19.228

                                                                 33                           �4.385                                 19.228

Mfarm � 35.0                                  40                           �4.385                                 19.228

           Natural resources                            47                               7.948                                 63.171

                                                                 43                               7.948                                 63.171

Mnr � 47.333                                52                               7.948                                 63.171

           Industrial                                         40                               4.615                                 21.298

                                                                 47                               4.615                                 21.298

Mind � 44.0                                   45                               4.615                                 21.298

                                                       GM � 39.385                                                       SSbetween � 461.643
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12-7: The between-groups sum of
squares in an ANOVA is calculated
using the following formula: SSbetween

� R(M � GM)2. For each score, we
subtract the grand mean from that
score’s group mean and square this
deviation. Note that we do not use
the scores in any of these calculations.
We sum all the squared deviations.

horizontal line between samples, we look for the next sample mean. For all three scores
in the next sample, we subtract the grand mean, 39.385, from the sample mean, 35.0, and
so on.

To summarize the calculation of the between-groups sum of squares, each deviation
score within each group is computed by subtracting the grand mean from the mean
of that group. To expedite the calculations, this subtraction can be performed just once
for each group, and the squared deviation score can be multiplied by the number of
participants in the group. Notice that the individual scores are never involved in the
calculations, just their sample means and the grand mean. Also notice that the first
group (foraging) will have a little bit more weight in the calculation because it has four
participants while the other three groups have only three. The third column of Table
12-7 includes the deviations and the fourth includes the squared deviations. The
between-groups sum of squares, in bold under the fourth column, is 461.643. The for-
mula for the between-groups sum of squares is:

SSbetween � R(M � GM )2

Now is the moment of arithmetic truth. Were our calculations correct? To find out,
we add the within-groups sum of squares (167.419) to the between-groups sum of
squares (461.643) to see if they equal the total sum of squares (629.084). Here’s the
formula:

SStotal � SSwithin � SSbetween � 629.062 � 167.419 � 461.643

Indeed, the total sum of squares, 629.084, is almost equal to the sum of the other
two sums of squares, 167.419 and 461.643, which is 629.062. The slight difference is
due to the rounding decisions. So the calculations were correct.

To recap (see Table 12-8), for the total sum of squares, we subtract the grand mean
from each individual score to get the deviations. For the within-groups sum of squares,
we subtract the appropriate sample mean from every score to get the devia tions. And
then, for the between-groups sum of squares, we subtract the grand mean from the ap-
propriate sample mean, once for each score, to get the deviations; for the between-
groups sum of squares, the actual scores are never involved in any  calculations.

Now we insert these numbers into the source table to calculate the F statistic. See
Table 12-9 for the source table that lists all the formulas and Table 12-10 for the com-
pleted source table. We divide the between-groups sum of squares and the within-

                                        �MASTERING THE FORMULA

12-8: We can also calculate the to -
tal sum of squares for a one-way
between-groups ANOVA by adding
the within-groups sum of squares
and the between-groups sum of
squares: SStotal � SSwithin � SSbetween.
This is a useful check on our
calculations.

TABLE 12-8. The Three Sums of Squares of ANOVA

The calculations in ANOVA are built on the foundation we learned in Chapter 4, sums of squared deviations.
We calculate three types of sums of squares, one for between-groups variance, one for within-groups variance,
and one for total variance. Once we have the three sums of squares, most of the remaining calculations involve
simple division.

    Sum of Squares             To calculate the deviations, subtract the . . .                         Formula

   Between-groups             Grand mean from the sample mean (for each score)            SSbetween � R(M � GM )2

   Within-groups                Sample mean from each score                                           SSwithin � R(X � M )2

   Total                              Grand mean from each score                                             SStotal � R(X � GM )2
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groups sum of squares by their associated degrees of freedom to get the between-groups
variance and the within-groups variance. The formulas are:

We then divide the between-groups variance by the within-groups variance to cal-
culate the F statistic. The formula, in bold in Table 12-9, is:

Making a Decision
Now we have to come back to the six steps of hypothesis testing for ANOVA to fill
in the gaps in steps 1 and 6. We finished the other steps in the previous section.

Step 1: We have to be sure that our variances were roughly equal in the four groups;
researchers use statistical software such as SPSS to test whether the groups were selected
from populations with equal variances. For now, we can use the within-groups variance

MS
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between

between

� � �
461 643

3
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153.8881
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within
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TABLE 12-9. A Source Table with Formulas

This table summarizes the formulas for calculating an F statistic.

       Source                      SS df MS F

    Between               R(M � GM )2 Ngroups � 1                                               

    Within                  R(X � M )2 df1 � df2 � . . . � dflast

    Total                     R(X � GM )2 Ntotal � 1

    [Expanded formula: dfwithin � (N1 � 1) � (N2 � 1) � . . . � (Nlast � 1)]

MS

MS
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within

SS

df
within

within

SS

df
between

between

TABLE 12-10. A Completed Source Table

Once we’ve calculated the sums of squares and the degrees of freedom, the rest is just simple division. We
use the first two columns of numbers to calculate the variances and the F statistic. We divide the between-
groups sum of squares and within-groups sum of squares by their associated degrees of freedom to get the
between-groups variance and within-groups variance. Then we divide between-groups variance by within-
groups variance to get the F statistic, 8.27

               Source                                SS df MS F

        Between-groups                       461.643                        3                        153.881                      8.27

        Within-groups                          167.419                        9                         18.602

        Total                                        629.084                       12
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12-9: We calculate the mean
squares from their associated sums of
squares and degrees of freedom. For
the between-groups mean square,
we divide the between-groups sum
of squares by the between-groups
degrees of freedom: MSbetween �

. For the within-groups

mean square, we divide the within-
groups sum of squares by the
within-groups degrees of freedom:

.

SS

df
between

between

MS
SS

df
within

within

within

�
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12-10: The formula for the F sta-

tistic is: . We divide

the between-groups mean square by
the within-groups mean square.

F
MS

MS
between

within

�
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column to determine this. Variance is computed by dividing the sum of squares by
the sample size minus 1. We can add the squared deviations for each sample, then di-
vide by the sample size minus 1. Table 12-11 shows the calculations for variance
within each of the four samples. Because the largest variance, 20.917, is not more than
twice the smallest variance, 13.0, we have met the assumption of equal variances.

Step 6. Now that we have the test statistic, we can compare it with the critical value.
Previously, in step 4, we determined that the cutoff F statistic was 3.86. The F statistic
we calculated was 8.27. As seen in Figure 12-4, the F statistic for this study is beyond
the cutoff; therefore, we can reject the null hypothesis. It appears that people living in
some types of societies are fairer, on average, than are people living in other types of so-

cieties. The ANOVA, however, does not allow us to say
more than this. We only know that at least one mean is dif-
ferent from at least one other mean. We do not know ex-
actly where any differences lie. We must conduct a
follow-up analysis (described in the next section).

Summary: We can reject the null hypothesis. It appears
that mean fairness levels differ based on the type of society
in which a person lives. The statistics would be presented in
a journal article in a similar way to the z and t statistics ex-
cept now both between-groups and within-groups degrees
of freedom go in the parentheses: F (3, 9) � 8.27, p � 0.05.
(Note: We would include the actual p value if we conducted
the ANOVA using software.)

TABLE 12-11. Calculating Sample Variances

We calculate the variances of the samples by dividing each sum of squares by the sample size minus 1 to
check one of the assumptions of ANOVA. For unequal sample sizes, as we have here, we want the largest
variance (20.917 in this case) to be no more than twice the smallest (13.0 in this case). Two times 13.0 is
26.0, so we meet this assumption.

                                                                                                              Natural
             Sample                       Foraging                 Farming                 Resources                 Industrial

                                                  27.563                         9.0                           0.111                         16.0

      Squared                                  7.563                         4.0                         18.775                           9.0

      deviations:                             22.563                       25.0                         21.781                           1.0

                                                    5.063

      Sum of Squares:                    62.752                       38.0                         40.667                         26.0

      N � 1:                                   3                                2                              2                                  2

      Variance:                               20.917 19.0 20.334 13.0

3.860 8.27

FIGURE 12-4
Making a Decision with 

an F Distribution

We compare the F statistic that we
calculated for our samples to a single

cutoff, or critical value, on the
appropriate F distribution. We can reject
the null hypothesis if the test statistic is

beyond—more to the right than—the
cutoff. Here, our F statistic of 8.27 is
beyond the cutoff of 3.86, so we can

reject the null hypothesis.

CHECK YOUR LEARNING
Reviewing the Concepts > One-way between-groups ANOVA uses the same six steps of hypothesis testing that we

learned in Chapter 7, but with a few minor changes in steps 3 and 5.

> In step 3, we merely state the comparison distribution and provide two different types
of degrees of freedom, df for the between-groups variance and df for the within-groups
variance.
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Clarifying the Concepts 12-5 If the F statistic is beyond the cutoff, what does that tell us? What doesn’t that tell us?

12-6 What is the primary subtraction that enters into the calculation of SSbetween?

Calculating the Statistics 12-7 Calculate each type of degrees of freedom for the following data, assuming a between-
groups design:

Group 1: 37, 30, 22, 29
Group 2: 49, 52, 41, 39
Group 3: 36, 49, 42

a. dfbetween � Ngroups � 1

b. dfwithin � df1 � df2 � . . . � dflast
c. dftotal � dfbetween � dfwithin, or dftotal � Ntotal � 1

12-8 Using the data in Check Your Learning 12-7, compute the grand mean.

12-9 Using the data in Check Your Learning 12-7, compute each type of sum of squares.

a. Total sum of squares

b. Within-groups sum of squares

c. Between-groups sum of squares

12-10 Using all of your calculations in Check Your Learning 12-7 to 12-9, perform the simple
division to complete an entire between-groups ANOVA source table for these data.

Applying the Concepts 12-11 Let’s create a context for the data provided above. Hollon, Thase, and Markowitz
(2002) reviewed the efficacy of different treatments for depression, including
medications, electroconvulsive therapy, psychotherapy, and placebo treatments. These
data re-create some of the basic findings they present regarding psychotherapy. Each
group is meant to represent people who received a different psychotherapy-based
treatment, including psychodynamic therapy in group 1, interpersonal therapy in group
2, and cognitive-behavioral therapy in group 3. The scores presented here represent the
extent to which someone responded to the treatment, with higher numbers indicating
greater efficacy of treatment.

Group 1 (psychodynamic therapy): 37, 30, 22, 29
Group 2 (interpersonal therapy): 49, 52, 41, 39
Group 3 (cognitive-behavioral therapy): 36, 49, 42

a. Write hypotheses, in words, for this research.

b. Check the assumptions of ANOVA.

c. Determine the critical value for F. Using your calculations from Check Your
Learning 12-10, make a decision about the null hypothesis for these treatment
options.

> In step 5, we complete the calculations, using a source table to organize the results. First,
we estimate population variance by considering the differences among means (between-
groups variance). Second, we estimate population variance by calculating a weighted average
of the variances within each sample (within-groups variance).

> The calculation of variability requires several means, including sample means and the grand
mean, which is the mean of all scores regardless of which sample the scores came from.

> We divide between-groups variance by within-groups variance to calculate the F statistic.
A higher F statistic indicates less overlap among the sample distributions, evidence that the
samples come from different populations.

> Before making a decision based on the F statistic, we check to see that the assumption of
equal sample variances is met. This assumption is met when the largest sample variance is
not more than twice the amount of the smallest variance.

Solutions to these Check Your
Learning questions can be found in
Appendix D.



Beyond Hypothesis Testing
Whether we’re investigating whether self-esteem techniques boost grades or the society
in which one lives affects our sense of fairness, we need to move beyond hypothesis
testing to have a full understanding of our variables. There are two important ways to
explore our data further. The first is a variant of effect size, a concept we’ve used with
z tests and t tests. The second is a pair of new procedures that are used when there are
more than two groups—planned comparisons and post-hoc tests help us to determine
exactly which groups are significantly different from each other.

R2, the Effect Size for ANOVA
In Chapter 8, we learned to calculate one measure of effect size, Cohen’s d. Because this
measure is calculated based on a difference between means, however, we can only use it

in situations in which there are two means—the same situations in
which we use a z test or a t test. When we calculate Cohen’s d, we cal-
culate a difference by subtracting one mean from another. When we
have more than two means, we can’t subtract one from  another to cal-
culate a difference. With ANOVA, we calculate a statistic called R2 in-
stead (pronounced “r squared”). R2 is the proportion of variance in the
dependent variable that is accounted for by the independent variable. Some-
times researchers use a similar measure of effect size, g2 (pronounced
“eta squared”). We can interpret g2 exactly as we interpret R2.

Because R2 is the proportion of variance accounted for by the in-
dependent variable, out of all possible variance, we calculate it by con-

structing a ratio, much as we did when we calculated an F statistic. For R2, we use sums
of squares as indicators of variability. The numerator is a measure of the variability that
takes into account just the differences among means; we use the between-groups sum
of squares, SSbetween, for this because it assesses only the variability among the means,
without regard to the variability within each sample. The denominator is a measure of
the total variability. For this, we use the total sum of squares, SStotal, because it takes both
between-groups variance and within-groups variance into account. The formula is:

R
SS

SS
between

total

2 �
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12-3: As with other hypothesis tests, it is

recommended that we calculate an effect

size in addition to conducting the

hypothesis test. The most commonly

reported effect size for ANOVA is R2.

                                        �
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12-11: The formula for the effect
size we use with one-way between-

groups ANOVA is: .

The calculation is a ratio, similar to
the calculation for the F statistic. For
R2, we divide the between-groups
sum of squares by the total sum of
squares.

R
SS

SS
between

total

2 �

Let’s apply this to the ANOVA we just conducted. We can use the statistics in the
source table we created earlier to calculate R2:

As with Cohen’s d, there are conventions for R2 that
let us know whether our effect size is approximately
small, medium, or large. Table 12-12 displays the conven-
tions for R2. From this table, we can see that our R2 of
0.73 is very large. This is not surprising. With such small
sample sizes, an effect would have to be quite large for the
test statistic to be large enough that we could  reject the

R
SS

SS
between

total

2 � � �
461.643

629.084
0.73

EXAMPLE 12.2

TABLE 12-12. Cohen’s Conventions for Effect Sizes: R2

The following guidelines, called conventions by statisticians, are meant to help
researchers decide how important an effect is. These numbers are not cutoffs,
merely rough guidelines to aid researchers in their interpretation of results.

                    Effect Size                                         Convention

                      Small                                                        0.01

                      Medium                                                    0.06

                      Large                                                        0.14



null hypothesis. We can also turn our  proportion into the more familiar language of per-
centages by multiplying by 100. We can then say that a specific percentage of the vari-
ance in the dependent variable was  accounted for by the independent variable. In this
case, we could say that 73% of the variability in sharing is due to the type of society. ■

Planned Comparisons and Post-Hoc Tests
A statistically significant F statistic calculated when conducting an ANOVA asserts that
some difference exists somewhere in the study, and R2 tells us how large that difference
is, but neither statistic specifies which pairs of means are responsible for a statistically
significant difference between groups. To determine where statistically significant dif-
ferences probably are, we can start by looking at a graph of the data to figure out which
means are farthest apart. We can’t know for sure, however, until we conduct an addi-
tional test.

We have two options when we’re faced with multiple comparisons—analyses
planned before the data are collected and analyses we decide to implement after we have
conducted a one-way ANOVA. Before we collect our data, we might decide, based
on our reading of the research literature, to make only certain specific comparisons. If
so, we do not need to be as strict in our decision of whether to reject the null hypothesis
in comparisons between means. We can use what’s called a planned comparison, a test
that is conducted when there are multiple groups of scores, but specific comparisons have been spec-
ified prior to data collection.

As we noted, specific planned comparisons, also called a priori comparisons, are usually
guided by an existing theory or a previous finding. The researchers studying fairness,
for example, might have predicted, based on previous research, that those living in in-
dustrial societies would have a different mean from the other three groups but that
there would be no differences among the other three groups. In this case, they would
have specified just three comparisons among people in different societies: industrial
versus foraging, industrial versus farming, and industrial versus natural resources. They
would not typically test any other comparisons (e.g., foraging versus farming).

With planned comparisons, the researcher has several choices but always states the
exact comparisons that he or she will make before collecting any data. These choices
usually involve the following:

1. Conducting one or more independent-samples t tests with a p level of 0.05
2. Conducting one or more independent-samples t tests using a more conservative

p level, such as that determined by a Bonferroni test (described in Next Steps).

Because the comparisons are planned (we are not exploring every possible comparison),
we do not have to use a more strict post-hoc test.

When we do not have a smaller set of comparisons that we want
to test, perhaps because there is little prior research, or when we want
to compare every possible pair of means, we must use the more con-
servative post-hoc test. A post-hoc test is a statistical procedure frequently
carried out after we reject the null hypothesis in an analysis of variance; it allows
us to make multiple comparisons among several means. The name of the test,
post-hoc, means “after this” in Latin. This is why post-hoc tests are
often referred to as follow-up tests. (Post-hoc tests are not conducted if
we fail to reject the null hypothesis. In such a case, we would know
that there are no statistically significant differences among means, so it
would not make sense to ask precisely where those differences are.)

For example, the fairness study that we analyzed earlier had a sta-
tistically significant result from the ANOVA. The means of the fairness

CHAPTER 12 ■ Between-Groups ANOVA   319

�   MASTERING THE CONCEPT

12-4: ANOVA only tells us that there is a

difference between at least two of the

means in the study, but it doesn’t tell us

which means are different from one another.

We must conduct planned comparisons or

a post-hoc test to determine exactly which

pairs of means are statistically significantly

different from each other.

■ R2 is the proportion of
variance in the dependent
variable that is accounted for
by the independent variable.

■ A planned comparison is a
test conducted when there are
multiple groups of scores but
specific comparisons have
been specified prior to data
collection; also called an a
priori comparison.

■ A post-hoc test is a statistical
procedure frequently carried
out after we reject the null
hypothesis in an analysis of
variance; it allows us to make
multiple comparisons among
several means; often referred
to as a follow-up test.
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scores—proportions of money given to a second player—of
people in one of four different types of societies (as seen in our
example) are depicted in Figure 12-5. The means are: foraging,
33.25; farming, 35.0; industrial, 44.0; and natural resources,
47.333. Notice that the graph is a Pareto chart because it or-
ganizes the bars from highest to lowest means. We conducted
an ANOVA and were able to reject the null hypothesis. So we
can say that an overall difference exists between the means. But
where?

First, look at the graph and then consider the possibilities.
People in industrial societies and in societies that extract natural

resources might exhibit higher levels of fairness, on average, than people in foraging
or farming societies. Or people in societies that extract natural resources might be
higher, on average, only compared with those in foraging societies. Or all four groups
could be different from one another, on average. There are several possibilities, and we
cannot state our conclusion until we examine each of them statistically using a post-
hoc test.

A number of post-hoc tests are used, and most are named for their founders, almost
exclusively people with fabulous names—for example, Bonferroni, Scheffé (pronounced
“sheff-ay”), and Tukey (pronounced “too-kee”). These tests allow us to determine
which means are statistically significantly different from one another once we determine
that there is a difference somewhere.

Tukey HSD
The Tukey HSD test is a widely used post-hoc test that determines the differences between
means in terms of standard error; the HSD is compared to a critical value. One of the most
commonly used post-hoc tests, the Tukey HSD test, is sometimes called the q test be-
cause of the statistic on which it is based. HSD stands for “honestly significant differ-
ence” and indicates that we adjusted for the fact that we are making multiple
comparisons. We only want to find differences that are “honestly” there.

The Tukey HSD test involves (1) the calculation of differences between each pair
of means and (2) the division of each difference by the standard error. As with the z
and t tests, we compare the HSD for each pair of means to a critical value (a q value,
found in the table for the q statistic in Appendix B) to determine if the means are dif-
ferent enough to reject the null hypothesis. The Tukey HSD test, therefore, is basically
a variant of the z test and t tests; the parallel is easily seen in its formula for any two
sample means:

The formula for the standard error is:

N in this case is the sample size within each group, with the assumption that all samples
have the same number of participants.

HSD
M M
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�

�( )1 2
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FIGURE 12-5
Which Types of Societies Are

Different in Terms of Fairness?

This graph depicts the mean fairness
scores of people living in each of four
different types of societies. When we

conduct an ANOVA and reject the null
hypothesis, we only know that there is a
difference somewhere; we do not know

where the difference lies. We can see
several possible combinations of

differences by examining the means on
this graph. Further testing will let us

know which specific pairs of means are
different from one another.

                                        �

                                        �

MASTERING THE FORMULA

12-12: To conduct a Tukey HSD
test, we first calculate standard error:

. We divide the

MSwithin by the sample size and take
the square root. We can then calcu-
late the HSD for each pair of means:

. For each pair

of means, we subtract one from the
other and divide by the standard
error.

s
MS

N
M

within
�

HSD
M M

sM
�

�( )1 2



The above calculations are easily done if all samples are the same size. However,
when samples are different sizes, as in our example of societies, we have to add one
additional step: we must calculate a weighted sample size, also known as a harmonic
mean. N � (pronounced “N prime”) is weighted sample size, the harmonic mean. Its
formula is:

N
N

N
groups

��
R( / )1
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�                                         

MASTERING THE FORMULA

12-13: When we conduct an
ANOVA with different-size sam-
ples, we have to calculate a harmonic

mean, N �: . To do that,

we divide the number of groups in
the study by the sum of 1 divided by
the sample size for every group.

N
N

N
groups

��
R( / )1

�                                         MASTERING THE FORMULA

12-14: When we conduct an
ANOVA with different-size sam-
ples, we have to calculate standard

error using N �: . To

do that, we divide MSwithin by N �
and take the square root.

s
MS

N
M

within
�

�

We calculate N � by dividing the number of groups (the numerator) by the sum of 1
divided by the sample size for every group (the denominator). For the example in
which there were four participants in foraging societies and three in each of the other
three types of societies, the formula is:

When sample sizes are not equal, we use a formula for sM based on N� instead of N:

Now we calculate HSD for each pair of means. It does not matter in which order
we decide to subtract our means. For example, we could subtract the mean for foraging
societies from the mean for farming societies, or the mean for farming societies from
the mean for foraging societies. Because of this, we ignore the sign of the answer; it is
contingent on the arbitrary decision of which mean to subtract from the other.

Foraging (33.25) versus farming (35.0):

Foraging (33.25) versus natural resources (47.333):

Foraging (33.25) versus industrial (44.0):

Farming (35.0) versus natural resources (47.333):

N��

� � �

� �
4

1

4

1

3

1

3

1

3

4

1 25⎛
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⎞
⎠⎟

.
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s
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18 602

3 20

.

.
2.411

HSD �
�

��
( . . )33 25 35 0

2.411
0.73

HSD �
�

��
( . . )33 25 47 333

2.411
5.84

HSD �
�

��
( . . )33 25 44 0

2.411
4.46

HSD �
�

��
( . . )35 0 47 333

2.411
5.12

EXAMPLE 12.3

■ The Tukey HSD test is a
widely used post-hoc test that
determines the differences
between means in terms of
standard error; the HSD is
compared to a critical value;
sometimes called the q test.
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Farming (35.0) versus industrial (44.0):

Natural resources (47.333) versus industrial (44.0):

Now all we need is a critical value to which we can compare our HSDs. Then we
can determine which pairs of means are significantly different from one another. Ap-
pendix B lists the cutoffs for the HSD in a q table because the HSD cutoffs are values
of the q statistic; we have excerpted a portion of the q table in Table 12-13. The numbers
of means being compared (levels of the independent variable) are in a row along the
top of the q table, and the within-groups degrees of freedom are in a column along
the left-hand side. We first look up the within-groups degrees of freedom for our test,
9, along the left column. We then go across from 9 to the numbers below the number
of means being compared, 4. For a p level of 0.05, the cutoff q is 4.41. Again, the sign
of our HSD does not matter because the order in which we subtract means is arbitrary.
This is a two-tailed test, and any HSD above 4.41 or below �4.41 would be considered
statistically significant.

By comparing the HSDs that we calculated above to the critical values of �4.41
and 4.41, we can see that there are three statistically significant differences between
means in this ANOVA, those with the HSD values of �5.840, �4.459, and �5.115.
It appears that people in foraging societies are less fair, on average, than people in so-

HSD �
�

�
( . . )47 333 44 0

2.411
1.38

HSD �
�

��
( . . )35 0 44 0

2.411
3.73

TABLE 12-13. Excerpt from the q Table

Like the F table, we use the q table to determine critical values for a given p level, based on the number of
means being compared and the within-groups degrees of freedom. Note that critical values are in regular
type for 0.05 and boldface for 0.01.

          Within-Groups
             Degrees of k � Number of Treatments (levels)
              Freedom                   p level                 . . .       3                                4                        5     . . .

                   .

                   .

                   .

                   8                               .05                             4.04                              4.53                         4.89

                                                    .01                             5.64 6.20 6.62

                   9                               .05                             3.95                              4.41                         4.76

                                                    .01                             5.43 5.96 6.35

                  10                              .05                             3.88                              4.33                         4.65

                                                    .01                             5.27 5.77 6.14

                   .

                   .

                   .



cieties that  depend on natural resources and than people in industrial societies. In ad-
dition, people in farming societies are less fair, on average, than are people in societies
that depend on natural resources. Because we have not rejected the null hypothesis for
any other pairs, we can only conclude that there is not enough evidence to determine
that these pairs of means are different.

What are some of the possible explanations for the fairness findings? The researchers
observed that people who purchase food necessarily interact with other people routinely
in an economic market. They conclude that higher levels of market integration are asso-
ciated with higher levels of fairness (Henrich et al., 2010). The researchers theorize that
behavioral norms develop in market societies (such as those based on industry or natural
resources) that allow for cooperative interactions between people who are not related to
each other and perhaps do not even know each other. These norms seem to include a
sense of fairness toward unrelated others.

Of course, the researchers did not randomly assign people to live in a particular so-
ciety. It is possible that a third variable accounts for the relation between market inte-
gration and fairness. A true experiment, in which people are randomly assigned to
spend their lives in a certain type of society, is not feasible. But replication of these
findings in different types of societies would bolster the researchers’ conclusions. ■
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Post-hoc tests are used when we have not planned specific comparisons based on the-
ory. For many researchers, the Tukey HSD test is the default post-hoc test, and in many
cases, it really is the best choice. But the wise researcher thinks about which test to
choose before automatically conducting a Tukey HSD test. One other post-hoc test
that is often used is the Bonferroni test. It is more conservative than the Tukey HSD
test, meaning that the test makes it more difficult to reject the null hypothesis. Also,
the Bonferroni test is easy to implement.

The Bonferroni test is a post-hoc test that provides a more strict critical value for every com-
parison of means. Normally, social scientists use a cutoff level of 0.05. With a Bonferroni
test, sometimes called the Dunn Multiple Comparison test, we use a smaller critical region
to make it more difficult to reject the null hypothesis. To use a Bonferroni test, we de-
termine the number of comparisons we plan to make. Table 12-14 states the number
of comparisons for two through seven means.

The Bonferroni test is straightforward. We merely divide the p level by the number
of comparisons. For a p level of 0.05 and four means, as in the fairness study, we make
six comparisons using a 0.008 p level (0.05/6) for each comparison. We then conduct
a series of independent-samples t tests using the more extreme p level to determine
the cutoffs. That is, the difference between means would have to be in the extremely
narrow tails of a t distribution, at 0.008 (0.8%), before we would be willing to reject
the null hypothesis.

For seven means, we would make 21 comparisons using the (0.05/21) � 0.002 p
level for each comparison. The difference would have to be in the most extreme 0.2%
of a t distribution before we would reject the null hypothesis!

In each case, the p levels for every comparison add up to 0.05, so we are still using a
0.05 p level overall. For example, when we make six comparisons at the 0.008 level, we
have a (0.008 � 0.008 � 0.008 � 0.008 � 0.008 � 0.008) � 6(0.008) � 0.05 p level
overall. Even though the overall p level remains at 0.05, the p levels for the  individual

The Bonferroni Test N e x t  S t e p s

■ The Bonferroni test (also
sometimes called the Dunn
Multiple Comparison test) is a
post-hoc test that provides a
more strict critical value for
every comparison of means.



comparisons rapidly become very extreme (see Table 12-14). The difference between
two means must be quite extreme before we can reject the null hypothesis. Also, we may
fail to detect real differences that are not quite extreme enough, a Type II error.

In the fairness study, we conduct independent-samples t tests but use a critical value
based on 0.008 p level. (In the t table, we could only look up the closest p level to 0.008,
0.01, although software can help us be more specific.) Using software, we conducted an
independent-samples t test to compare the means for people in foraging societies and
people in industrial societies, calculating a t statistic of �3.34. For a test of two groups
with four and three participants, respectively, the total degrees of freedom is 5 (the sum
of the degrees of freedom for each group, 3 and 2). The critical t values for a two-tailed
independent-samples t test with 5 degrees of freedom at a p level of 0.01 (the closest to
0.008) are �4.032 and 4.032. This comparison is not statistically significant.

Unlike the Tukey HSD test, the Bonferroni test does not allow us to conclude that
people in foraging societies are less fair, on average, than people in industrial societies.
The test statistic is no longer beyond the critical value, because the critical value based
on a Bonferroni test is more extreme than the critical value based on a Tukey HSD test.
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TABLE 12-14. The Bonferroni Test: Few Groups, Many Comparisons

Even with a few means, we must make many comparisons to account for every possible difference. Because
we run the risk of incorrectly rejecting the null hypothesis just by chance if we run so many tests, it is a wise
idea to use a more conservative procedure, such as the Bonferroni test, when comparing means. The Bonferroni
test requires that we divide an overall p level, such as 0.05, by the number of comparisons we will make.

             Number of                             Number of                                      Bonferroni p
                Means                              Comparisons                           Level (overall p � 0.05)

                    2                                                1                                                         0.05

                    3                                                3                                                         0.017

                    4                                                6                                                         0.008

                    5                                                10                                                         0.005

                    6                                                15                                                         0.003

                    7                                                21                                                         0.002

CHECK YOUR LEARNING
Reviewing the Concepts > As with other hypothesis tests, it is recommended that we calculate a measure of effect size

when we have conducted an ANOVA. The most commonly reported effect size for
ANOVA is R2.

> If we are able to reject the null hypothesis with ANOVA, we’re not finished. We must con-
duct planned comparisons or a post-hoc test, such as a Tukey HSD test, to determine exactly
which pairs of means are significantly different from one another.

> When computing our post-hoc Tukey HSD test on samples with unequal N’s, we need
to calculate a weighted sample size, called N�.

> The Bonferroni test is a more conservative post-hoc test than the Tukey HSD test. It makes
it more difficult to reject the null hypothesis.
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Clarifying the Concepts 12-12 When do we conduct a post-hoc test, such as a Tukey HSD test, and what does it
tell us?

12-13 How is R2 interpreted?

Calculating the Statistics 12-14 Assume that a researcher is interested in whether reaction time varies as a function of
grade level. After measuring the reaction time of 10 children in fourth grade, 12
children in fifth grade, and 13 children in sixth grade, the researcher conducts an
ANOVA and finds an SSbetween of 336.360 and an SStotal of 522.782.

a. Calculate R2.

b. Write a sentence interpreting this R2. Be sure to do so in terms of the independent
and dependent variable described for this study.

12-15 If the researcher in Check Your Learning 12-14 rejected the null hypothesis after
performing the ANOVA and intended to perform Tukey HSD post-hoc comparisons,
what is the critical value of the q statistic for the comparisons?

12-16 If the researcher were to conduct post-hoc tests using the Bonferroni test, what would
the adjusted p level be?

Applying the Concepts 12-17 Perform Tukey HSD post-hoc comparisons on the data you analyzed in Check Your
Learning 12-10. For which comparisons do you reject the null hypothesis?

12-18 Calculate effect size for the data you analyzed in Check Your Learning 12-10 and
interpret its meaning.

Solutions to these Check Your
Learning questions can be found in
Appendix D.

REVIEW OF CONCEPTS

Using the F Distribution with Three or More Samples
The F statistic is used when we want to compare more than two means. As with the
z and t statistics, the F statistic is calculated by dividing a measure of the differences
among sample means (between-groups variance) by a measure of variability within the
samples (within-groups variance). The hypothesis test based on the F statistic is called
analysis of variance (ANOVA).

ANOVA offers a solution to the problem of having to run multiple t tests because it
allows for multiple comparisons in just one statistical analysis. There are several different
types of ANOVA, and each has two descriptors. One indicates the number of independ-
ent variables, such as one-way ANOVA for one independent variable. The other indicates
whether participants are in only one condition (between-groups ANOVA) or in every
condition (within-groups ANOVA). The major assumptions for ANOVA are random se-
lection of participants, normally distributed underlying populations, and homoscedasticity,
which means that all populations have the same variance (versus heteroscedasticity, which
means that the populations do not all have the same variance). As with previous statistical
tests, most real-life analyses do not meet all of these assumptions.

One-Way Between-Groups ANOVA
The one-way between-groups ANOVA uses the six steps of hypothesis testing that we
have already learned, but with some modifications, particularly to steps 3 and 5. Step
3 is simpler than with t tests; we only have to state that the comparison distribution
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is an F distribution and provide the degrees of freedom. In step 5, we calculate the
F statistic; a source table helps us to keep track of our calculations. The F statistic is a
ratio of two different estimates of population variance, both of distributions of scores
rather than distributions of means. The denominator, within-groups variance, is
similar to the pooled variance of the independent-samples t test; it’s basically a
weighted average of the variance within each sample. The numerator, between-groups
variance, is an estimate based on the difference between the sample means, but it
is then inflated to represent a distribution of scores rather than a distribution of
means. As part of our calculations of between-groups variance and within-groups
variance, we need to calculate a grand mean, the mean score of every participant in
the study.

A large between-groups variance and a small within-groups variance indicate a small
degree of overlap among samples and likely a small degree of overlap among popula-
tions. A large between-groups variance divided by a small within-groups variance pro-
duces a large F statistic. If the F statistic is beyond a prescribed cutoff, or critical value,
then we can reject our null hypothesis.

Beyond Hypothesis Testing
As with other hypothesis tests, it is also recommended that we calculate an effect size—
usually R2—when we conduct an ANOVA. In addition, when we reject the null hy-
pothesis in an ANOVA, we only know that at least one of the means is different from
at least one other mean. But we do not know exactly where the differences lie. We
must conduct one of two types of follow-up analyses to determine where differences
lie. Planned comparisons are determined before collecting data, whereas post-hoc tests are
conducted when we do not have sufficient previous research to conduct planned com-
parisons or when we want to compare every possible pair of means. The Tukey HSD
test is one of the most commonly used post-hoc tests. The Bonferroni test is a more con-
servative post-hoc test and is helpful to researchers who want to explore a data set
while minimizing the probability of making a Type I error.

SPSS®

A one-way ANOVA is used when we want to make a com-
parison between three or more groups that all represent dif-
ferent levels of one nominal independent variable. For
example, in this chapter we compared people in four differ-
ent types of societies in terms of how fairly they behaved in
a game, as assessed by the proportion of money that they
gave to a second player in that game. The type of society
was a nominal independent variable, and the proportion of
money that they gave to the second player was a scale de-
pendent variable. To conduct a one-way between-groups
ANOVA using SPSS, we have to enter the data so that each
participant has one row with all of her or his data. For ex-
ample, a person would have a score in the first column in-
dicating the type of society, perhaps a 1 for foraging or
a 3 for natural resources, and a score in the second column
indicating fairness level, the proportion of money he or
she gave to a second player. The data as they should be
entered are visible behind the output on the screenshot
shown here.

Then we can instruct SPSS to conduct the ANOVA by se-
lecting Analyze → Compare Means → One-Way ANOVA.
Now select the variables. The independent variable, named
“society” here, goes in the box marked “Factor,” and the de-
pendent variable, named “fairness” here, goes in the box la-
beled “Dependent List.” To request a post-hoc test to compare
the means of the four groups, select “Post Hoc,” then
“Tukey,” and then click “Continue.” Click “OK” to run the
ANOVA.

On the screenshot, we can see the source table near the
top. Notice that the sums of squares, degrees of freedom, mean
squares, and F statistic match the ones we calculated earlier.
Any slight differences are due to differences in rounding de-
cisions. The last column, titled “Sig.,” says .006. This number
indicates that the actual p value of this test statistic is just 0.006,
which is less than the 0.05 p level typically used in hypothesis
testing and an indication that we can reject the null hypothesis.
Below the source table, we can see the output for the post-
hoc test. Mean differences with an asterisk are statistically sig-
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nificant at a p level of 0.05. The output here matches the post-
hoc test we conducted earlier. There are three statistically sig-
nificant differences—between people living in foraging societies

and those based on natural resources, between people living in
foraging and industrial societies, and between people living in
farming societies and those based on natural resources.

12.1 CONDUCTING AN ANOVA
Irwin and colleagues (2004) are among a growing body of behavioral health researchers
who are interested in adherence to medical regimens. These researchers studied adherence
to an exercise regimen over one year in post-menopausal women, who are increasingly at
risk for medical problems that may be reduced by exercise. Among the many factors that
the research team examined was attendance at a monthly group education program that
taught tactics to change exercise behavior; the researchers kept attendance and divided par-
ticipants into three categories based on the number of sessions they attended. (Note: The
researchers could have kept the data as numbers of sessions, a scale variable, rather than di-
viding them into categories based on numbers of sessions, an ordinal variable.)

Here is an abbreviated version of this study with fictional data points; the means of these
data points, however, are the actual means of the study.

�5 ses s ions : 155, 120, 130

5–8 ses s ions : 199, 160, 184

9–12 ses s ions : 230, 214, 195, 209

In this study, the independent variable was attendance, with three levels: �5 sessions,
5–8 sessions, and 9–12 sessions. The dependent variable was number of minutes of ex -
ercise per week. So we have one ordinal independent variable with three between-groups
levels and one scale dependent variable. How can we conduct a one-way between-groups
ANOVA?

How It Works



Summary of Step 1
Population 1: Post-menopausal women who attended fewer than 5 sessions of a group ex-
ercise education program. Population 2: Post-menopausal women who attended 5–8 sessions
of a group exercise education program. Population 3: Post-menopausal women who at-
tended 9–12 sessions of a group exercise education program.

The comparison distribution will be an F distribution. The hypothesis test will be a
one-way between-groups ANOVA. The data were not selected randomly, so we must gen-
eralize only with caution. We do not know if the underlying population distributions are
normal, but the sample data do not indicate severe skew. To see if we meet the homoscedas-
ticity assumption, we will check to see if the largest variance is no greater than twice the
smallest variance. From the calculations below, we see that the largest variance, 387, is not
more than twice the smallest, 208.67, so we have met the homoscedasticity assumption.
(The following information is taken from the calculation of SSwithin.)

Sample �5 5–8 9–12

Squared deviations 400 324 324
225 441 4
25 9 289
9

Sum of squares 650 774 626
N � 1 2 2 3

Variance 325 387 208.67

Summary of Step 2
Null hypothesis: Post-menopausal women in different categories of attendance at a group
exercise education program exercise the same average number of minutes per week—H0:
l1 � l2 � l3. Research hypothesis: Post-menopausal women in different categories of at-
tendance at a group exercise education program do not exercise the same average number
of minutes per week.

Summary of Step 3

dfbetween � Ngroups � 1 � 3 � 1 � 2

df1 � 3 � 1 � 2; df2 � 3 � 1 � 2; df3 � 4 � 1 � 3

dfwithin � 2 � 2 � 3 � 7

The comparison distribution will be the F distribution with 2 and 7 degrees of  freedom.

Summary of Step 4
The critical F statistic based on a p level of 0.05 is 4.74.

Summary of Step 5

dftotal � 2 � 7 � 9 or dftotal � 10 � 1 � 9

SStotal � R(X � GM)2 � 12,222.40

Sample X (X � GM) (X � GM)2

�5 155 �24.6 605.16
M�5 � 135 120 �59.6 3552.16

130 �49.6 2460.16

5–8 199 19.4 376.36
M5–8 � 181 160 �19.6 384.16

184 4.4 19.36

9–12 230 50.4 2540.16
M9–12 � 212 214 34.4 1183.36

195 15.4 237.16
209 29.4 864.36

GM � 179.60 SStotal � 12,222.40
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SSwithin � R(X � M)2 � 2050.00

Sample X (X � M) (X � M)2

�5 155 20 400
M�5 � 135 120 �15 225

130 �5 25

5–8 199 18 324
M5–8 � 181 160 �21 441

184 3 9

9–12 230 18 324
M9–12 � 212 214 2 4

195 �17 289
209 �3 9

GM � 179.60 SSwithin � 2050.00

SSbetween � R(M � GM)2 � 10,172.40

Sample X (M � GM) (M � GM)2

�5 155 �44.6 1989.16
M�5 � 135 120 �44.6 1989.16

130 �44.6 1989.16

5–8 199 1.4 1.96
M5–8 � 181 160 1.4 1.96

184 1.4 1.96

9–12 230 32.4 1049.76
M9–12 � 212 214 32.4 1049.76

195 32.4 1049.76
209 32.4 1049.76

GM � 179.60 SSbetween � 10,172.40

SStotal � SSwithin � SSbetween; � 12,222.40 � 2050.00 � 10,172.40

Source SS df MS F

Between 10,172.40 2 5086.200 17.37
Within 2050.00 7 292.857

Total 12,222.40 9

Summary of Step 6
The F statistic, 17.37, is beyond the cutoff of 4.74. We can reject the null hypothesis. It ap-
pears that post-menopausal women in different categories of attendance at a group exercise
education program do exercise a different average number of minutes per week. However,
the results from this ANOVA do not tell us where specific differences lie. The ANOVA
tells us only that there is at least one difference between means. We must calculate a post-
hoc test to determine exactly which pairs of means are different.

MS
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Exercises
Clarifying the Concepts

12.1 What is an ANOVA?
12.2 What do the F distributions allow us to do that the t

distributions do not?
12.3 The F statistic is a ratio of between-groups variance and

within-groups variance. What are these two types of
variance?

12.4 What is the difference between a within-groups
(repeated- measures) ANOVA and a between-groups
ANOVA?

12.5 What are the three assumptions for a between-groups
ANOVA?

12.6 The null hypothesis for ANOVA posits no difference
among population means, as in other hypothesis tests,
but the research hypothesis in this case is a bit different.
Why?

12.7 Why is the F statistic always positive?
12.8 In your own words, define the word source as you would

use it in everyday conversation. Provide at least two dif-
ferent meanings that might be used. Then define the
word as a statistician would use it.

12.9 Explain the concept of sum of squares.
12.10 The total sum of squares for a between-groups ANOVA

is found by adding what two statistics together?
12.11 What is the grand mean?
12.12 How do we calculate the between-groups sum of

squares?
12.13 We typically measure effect size with ________ for a z

test or a t test and with ________ for an ANOVA.
12.14 What are Cohen’s conventions for interpreting effect

size using R2?
12.15 What does post-hoc mean, and when are these tests

needed with ANOVA?

12.16 Define the symbols in the following formula:

12.17 Find the error in the statistics language in each of the
following statements about z, t, or F distributions or
their related tests. Explain why it is incorrect and pro-
vide the correct word.

a. The professor reported the mean and standard error
for the final exam in the statistics class.

b. Before we can calculate a t statistic, we must know
the population mean and the population standard
deviation.

c. The researcher calculated the parameters for her
three samples so that she could calculate an F sta-
tistic and conduct an ANOVA.

d. For her honors project, Evelyn calculated a z sta-
tistic so that she could compare a sample of students
who had ingested caffeine and a sample of students
who had not ingested caffeine on their video game
performance mean scores.

12.18 Find the incorrectly used symbol or symbols in each of
the following statements or formulas. For each state-
ment or formula, (i) state which symbol(s) is/are used
incorrectly, (ii) explain why the symbol(s) in the original
statement is/are incorrect, and (iii) state what symbol(s)
should be used.

a. When calculating an F statistic, the numerator in-
cludes the estimate for the between-groups vari-
ance, s.

b. SSbetween � (X � GM)2

c. SSwithin � (X � M)

d.

12.19 What are the necessary steps for performing a Bonfer-
roni post-hoc comparison?

Calculating the Statistics

12.20 Calculate each type of degrees of freedom for the fol-
lowing data, assuming a between-groups design:

Group 1:  11,  17,  22,  15

Group 2:  21,  15,  16

Group 3:  7,  8,  3,  10,  6,  4

Group 4:  13,  6,  17,  27,  20

a. dfbetween

b. dfwithin

c. dftotal
12.21 Calculate each type of degrees of freedom for the fol-

lowing data, assuming a between-groups design:

1970:  45,  211,  158,  74

1980:  92,  128,  382

1990: 273,  396,  178,  248,  374

a. dfbetween

b. dfwithin

c. dftotal
12.22 Using the F table and a p level of 0.05, determine the

critical value for the degrees of freedom determined in
Exercise 12.20.

12.23 Using the F table and a p level of 0.05, determine the
critical value for the degrees of freedom determined in
Exercise 12.21.

N
N

N
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��
R( / )1
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12.24 Calculate the F statistic, writing the ratio accurately, for
each of the following cases:

a. Between-groups variance is 29.4 and within-groups
variance is 19.1.

b. Within-groups variance is 0.27 and between-groups
variance is 1.56.

c. Between-groups variance is 4595 and within-
groups variance is 3972.

12.25 Calculate the F statistic, writing the ratio accurately, for
each of the following cases:

a. Between-groups variance is 321.83 and within-
groups variance is 177.24.

b. Between-groups variance is 2.79 and within-groups
variance is 2.20.

c. Within-groups variance is 41.60 and between-
groups variance is 34.45.

12.26 An incomplete one-way between-groups ANOVA
source table is shown below. Compute the missing
values.

12.27 An incomplete one-way between-groups ANOVA
source table is shown below. Compute the missing
values.

12.28 Calculate a mean for each group and a grand mean for
these data from Exercise 12.20.

Group 1:  11,  17,  22,  15

Group 2:  21,  15,  16

Group 3:  7,  8,  3,  10,  6,  4

Group 4:  13,  6,  17,  27,  20

12.29 Calculate a mean for each group and a grand mean for
these data from Exercise 12.21.

1970:  45,  211,  158,  74

1980:  92,  128,  382

1990: 273,  396,  178,  248,  374

12.30 Using the data from Exercise 12.20, calculate each of
the following for a between-groups design:

a. Total sum of squares

b. Within-groups sum of squares

c. Between-groups sum of squares

12.31 Using the data from Exercise 12.21, calculate each of
the following for a between-groups design:

a. Total sum of squares

b. Within-groups sum of squares

c. Between-groups sum of squares

12.32 Using all of your calculations from Exercises 12.20 and
12.30, perform the simple division to complete an en-
tire ANOVA source table for these data.

12.33 Using all of your calculations from Exercises 12.21 and
12.31, perform the simple division to complete an en-
tire ANOVA source table for these data.

12.34 Compute effect size for the data provided below (from
Exercise 12.21), assuming a between-groups design.

1970:  45,  211,  158,  74

1980:  92,  128,  382

1990: 273,  396,  178,  248,  374

12.35 Calculate Tukey HSD values for the necessary compar-
isons following the F statistic you calculated in Exercise
12.32. Remember that this F statistic was based on the
data originally presented in Exercise 12.20 and that you
worked with in Exercise 12.30.

12.36 Each of the following is a calculated F statistic with its
degrees of freedom. Using the F table, estimate the level
of significance for each. You can do this by indicating
whether its likelihood of occurring is greater than or
less than a p level shown on the table.

a. F � 4.11, with 3 dfbetween and 30 dfwithin

b. F � 1.12, with 5 dfbetween and 83 dfwithin

c. F � 2.28, with 4 dfbetween and 42 dfwithin

12.37 A researcher designs an experiment in which the single
independent variable has four levels. If the researcher
performed an ANOVA and rejected the null hypothe-
sis, how many post-hoc comparisons would the re-
searcher make (assuming she was making all possible
comparisons)?

12.38 Consider the abbreviated version of the study by Irwin
and colleagues (2004) that we analyzed in How It
Works 12.1. Assume we decide to do Bonferroni post-
hoc comparisons rather than use Tukey’s HSD.

a. With a desired p level of 0.05 overall, what would
the cutoff p value be for each comparison using a
Bonferroni test?

Source SS df MS F

Between 191.45 — 47.86 —

Within 104.72 32 —

Total — 36

Source SS df MS F

Between — 2 — —

Within 89 11 —

Total 132 —
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b. With a desired p level of 0.01 overall, what would
the cutoff p value be for each comparison using a
Bonferroni test?

c. Using statistical software, we performed all of the
possible pairwise independent-samples t tests; the
actual p values (listed in the Sig. column in SPSS)
associated with each of those tests appears below.
Assuming an overall p level of 0.05, decide whether
to reject or fail to reject the null hypothesis for each
comparison.

�5 ver sus  5–8:  p � 0.041
�5 ver sus  9–12:  p � 0.001
5–8 ver sus  9–12:  p � 0.060

Applying the Concepts

12.39 Focusing on coverage of the 2004 U.S. presidential elec-
tion, Julia R. Fox, a telecommunications professor at In-
diana University, wondered whether The Daily Show,
despite its comedy format, was a valid source of news. She
coded a number of half-hour episodes of The Daily Show
as well as a number of half-hour episodes of the network
news (Indiana University Media Relations, 2006). Fox
reported that the average amounts of “video and audio
substance” were not statistically significantly different be-
tween the two types of shows. Her analyses are described
as “second-by-second,” so, for this exercise, assume that
all outcome variables are measures of time.

a. As the study is described, what are the independent
and dependent variables? For nominal variables,
state the levels.

b. As the study is described, what type of hypothesis
test would Fox use?

c. Now imagine that Fox added a third category, a
cable news channel such as CNN. Based on this
new information, state the independent variable or
variables and the levels of any nominal independent
variables. What hypothesis test would she use?

12.40 For each of the following situations, state whether the
distribution of interest is a z distribution, a t distribu-
tion, or an F distribution. Explain your answer.

a. A city employee locates a U.S. Census report that
includes the mean and standard deviation for in-
come in the state of Wyoming and then takes a
random sample of 100 residents of the city of
Cheyenne. He wonders whether residents of
Cheyenne earn more, on average, than Wyoming
residents as a whole.

b. A researcher studies the effect of different contexts
on work interruptions. Using discreet video cam-
eras, she observes employees working in enclosed
offices in the workplace, in open cubicles in the
workplace, and in home offices.

c. An honors student wondered whether an educa-
tion in statistics reduced the tendency to believe

advertising that cited data. He compared social
science majors who had taken statistics and social
science majors who had not taken statistics with
respect to their responses to an interactive adver-
tising assessment.

12.41 For each of the following situations, state whether the
distribution of interest is a z distribution, a t distribu-
tion, or an F distribution. Explain your answer.

a. A student reads in her Introduction to Psychology text-
book that the mean IQ is 100. She asks 10 friends
what their IQ scores are (they attend a university
that assesses everyone’s IQ score) to determine
whether her friends are smarter than average.

b. Is the presence of books in the home a marker of a
stable family? A social worker counted the number
of books on view in the living rooms of all the fam-
ilies he visited over the course of one year. He cate-
gorized families into four groups: no books visible,
only children’s books visible, only adult books visi-
ble, and both children’s and adult books visible. The
department for which he worked had stability rat-
ings for each family based on a number of measures.

c. Which television show leads to more learning? A
researcher assessed the vocabularies of a sample of
children randomly assigned to watch Sesame Street
as much as they wanted for a year but to not watch
The Wiggles. She also assessed the vocabularies of a
sample of children randomly assigned to watch The
Wiggles as much as they wanted for a year but not
to watch Sesame Street. She compared the average
vocabulary scores for the two groups.

12.42 The z, t, and F distributions are closely linked. In fact,
it is possible to use an F distribution in all cases in which
a t or a z could be used.

a. If you calculated an F statistic of 4.22 but you could
have used a t statistic (i.e., the situation met all cri-
teria for using a t statistic), what would the t statistic
have been? Explain your answer.

b. If you calculated an F statistic of 4.22 but you could
have used a z statistic, what would the z statistic
have been? Explain your answer.

c. If you calculated a t statistic of 0.67 but you could
have used a z statistic, what would the z statistic
have been? Explain your answer.

d. Cite two reasons that all three types of distributions
(i.e., z, t, and F) are still in use when we really only
need an F distribution.

12.43 Catherine Ruby (2006), a doctoral student at New York
University, conducted an online survey to ascertain the
reasons that international students chose to attend grad-
uate school in the United States. One of several depend-
ent variables that she considered was reputation;
students were asked to rate the importance in their de-
cision of factors such as the reputation of the institution,
the institution and program’s academic accreditations,
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and the reputation of the faculty. Students rated factors
on a 1–5 scale, and then all reputation ratings were av-
eraged to form a summary score for each respondent.
For each of the following scenarios, state the independ-
ent variable with its levels (the dependent variable is
reputation in all cases). Then state what kind of an
ANOVA she would use.

a. Ruby compared the importance of reputation among
graduate students in different types of  programs: arts
and sciences, education, law, and  business.

b. Imagine that Ruby followed these graduate students
for three years and assessed their rating of reputation
once a year.

c. Ruby compared international students working to-
ward a master’s, a doctorate, or a professional degree
(e.g., MBA) on reputation.

d. Imagine that Ruby followed international students
from their master’s program to their doctoral program
to their post-doctoral fellowship, assessing their ratings
of reputation once at each level of their training.

12.44 Do people remember names better under different cir-
cumstances? In a fictional study, a cognitive psychologist
studied memory for names after a group activity that
lasted 20 minutes. Participants were not told that this
was a study of memory. After the group activity, partic-
ipants were asked to name the other group members.
The researcher randomly assigned 120 participants to
one of three conditions: (1) group members introduced
themselves once (one introduction only), (2) group
members were introduced by the experimenter and by
themselves (two introductions), and (3) group members
were introduced by the experimenter and themselves
and also wore nametags throughout the group activity
(two introductions and nametags).

a. Identify the type of ANOVA that should be used
to analyze the data from this study.

b. State what the researcher could do to redesign this
study so it would be analyzed with a one-way
within-groups ANOVA. Be specific.

12.45 Researchers asked 180 U.S. students to identify their
political viewpoint as most similar to that of the Re-
publicans, most similar to that of the Democrats, or nei-
ther. All three groups then completed a religiosity scale.
The researchers wondered whether political orientation
affected levels of religiosity, a measure that assesses how
religious one is, regardless of the specific religion with
which a person identifies.

a. What is the independent variable, and what are its
levels?

b. What is the dependent variable?

c. What are the populations and what are the samples?

d. Using this example, explain how you would calcu-
late the F statistic.

12.46 Iranian researchers studied factors affecting patients’
likelihood of wearing orthodontic appliances, noting
that orthodontics is perhaps the area of health care with
the highest need for patient cooperation (Behenam &
Pooya, 2006). Among their analyses, they compared stu-
dents in primary school, junior high school, and high
school. The data that follow have almost exactly the
same means as they found in their study, but with far
smaller samples. The score for each student is his or her
daily hours of wearing the orthodontic appliance.

Pr imary school :  16,  13,  18

Junior high school :  8,  13,  14,  12

High school :  20,  15,  16,  18

a. What is the independent variable? What are its
levels?

b. What is the dependent variable?

c. Conduct all six steps of hypothesis testing for a one-
way between-groups ANOVA.

d. How would you report the statistics in a journal
article?

12.47 In Chapter 11, we introduced a study by Steele and Pinto
(2006) that examined whether people’s level of trust in
their direct supervisor was related to their level of agree-
ment with a policy supported by that leader. Steele and
Pinto found that the extent to which subordinates agreed
with their supervisor was related to trust and showed no
relation to gender, age, time on the job, or length of time
working with the supervisor. Let’s assume we used a scale
that sorted employees into three groups: low trust, mod-
erate trust, and high trust in supervisors. We have pre-
sented fictional data regarding level of agreement with a
leader’s decision for these three groups. The scores pre-
sented are the level of agreement with a decision made by
a leader, from 1, the least agreement, to 40, the highest
level of agreement. Note:These fictional data are different
from those presented in Chapter 11.

Employees with low trust  in their  leader :
9,  14,  11,  18

Employees with moderate t rust  in their
leader :  14,  35,  23

Employees with high trust  in their
leader :  27,  33,  21,  34

a. What is the independent variable? What are its
levels?

b. What is the dependent variable?

c. Conduct all six steps of hypothesis testing for a one-
way between-groups ANOVA.

12.48 In Exercise 12.46, you conducted an ANOVA on the
use of orthodontics appliances by three age groups.
Conduct a Tukey HSD test. What did you learn by con-
ducting these analyses?

CHAPTER 12 ■ Between-Groups ANOVA   333



334 CHAPTER 12 ■ Between-Groups ANOVA

12.49 In Exercise 12.47, you conducted an ANOVA on data
regarding employees’ trust in supervisors. Conduct a
Tukey HSD test. What did you learn?

12.50 In How It Works 12.1, we conducted a one-way
between-groups ANOVA on an abbreviated data set from
research by Irwin and colleagues (2004) on adherence to
an exercise regimen. Participants were asked to attend a
monthly group education program to help them change
their exercise behavior. Attendance was taken and partic-
ipants were divided into three categories: those who at-
tended fewer than 5 sessions, those who attended between
5 and 8 sessions, and those who attended between 9 and
12 sessions. The dependent variable was number of min-
utes of exercise per week. Here are the data once again:

�5 ses s ions :  155,  120,  130

5–8 ses s ions :  199,  160,  184

9–12 ses s ions :  230,  214,  195,  209

a. What conclusion did you draw in step 6 of the
ANOVA? Why could you not be more specific
in your conclusion? That is, why is an additional
test necessary when our ANOVA is statistically
significant?

b. Conduct a Tukey HSD test for this example.
State your conclusions based on this test. Show all
calculations.

c. If we did not reject the null hypothesis for every
possible pair of means, then why can’t we conclude
that the two means are the same?

12.51 In Exercise 12.46 we used a one-way between-groups
ANOVA to explore patients’ likelihood of wearing or-
thodontic appliances. The researchers compared stu-
dents in primary school, junior high school, and high
school. The data presented were hours spent wearing
the appliance per day.

Pr imary school :  16,  13,  18

Junior high school :  8,  13,  14,  12

High school :  20,  15,  16,  18

a. Calculate the appropriate measure of effect size for
this sample.

b. Based on Cohen’s conventions, is this a small,
medium, or large effect size?

c. Why is it useful to have this information in addition
to the results of a hypothesis test?

12.52 Two samples of students, one comprised of social sci-
ence majors and one comprised of students with other
majors, completed the CFC. The accompanying tables
include the output from software for an independent-
samples t test and a one-way between-groups ANOVA
on these data.
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a. Demonstrate that the results of the independent-
samples t test and the one-way between-groups
ANOVA are the same. (Hint: Find the t statistic for
the t test and the F statistic for the ANOVA.)

b. In statistical software output, “Sig.” refers to the
actual p level of the statistic. We can compare the
actual p level to a cutoff p level such as 0.05 to de-
cide whether to reject the null hypothesis. What
are the “Sig.” levels for the two tests here—the
independent-samples t test and the one-way
between-groups ANOVA? Are they the same or
different? Explain why this is the case.

b. What is the t statistic? Show your calculations.
[Hint: Use the F statistic that you calculated in
part (a).]

c. In statistical software output, “Sig.” refers to the ac-
tual p level of the statistic. We can compare the ac-
tual p level to a cutoff p level such as 0.05 to decide
whether to reject the null hypothesis. For the t test,
what is the “Sig.”? Explain how you determined
this. (Hint: Would we expect the “Sig.” for the
independent-samples t test to be the same as or dif-
ferent from that for the one-way between-groups
ANOVA?)

c. In the CFC ANOVA, the column titled “Mean
Square” includes the estimates of variance. Show
how the F statistic was calculated from two types of
variance. (Hint: Look at the far left column to de-
termine which estimate of variance is which.)

d. Looking at the table titled “Group Statistics,” how
many participants were in each sample?

e. Looking at the table titled “Group Statistics,” what is
the mean CFC score for the social science majors?

12.53 Based on your knowledge of the relation of the t and
F distributions, complete the accompanying software
output tables. The table for the independent-samples t
test and the table for the one-way between-groups
ANOVA were calculated using the identical fictional
data comparing grade point averages (GPAs).

a. What is the F statistic? Show your calculations.
(Hint: The “Mean Square” column includes the
two estimates of variance used to calculate the F
statistic.)

12.54 Researchers who conducted a study of brain activation
and romantic love divided their analyses into two
groups (Aron et al., 2005). Some analyses—those for
which they had developed specific hypotheses prior to
data collection—used a p level of 0.05. The rest of the
analyses used a p level of 0.001.

a. Explain why the researchers’ plan to have different
p levels for the two groups was a wise one.

b. Suggest one method by which the researchers
could have come up with a p level of 0.001 as
their cutoff.

12.55 The most recent version of the Publication Manual of
the American Psychological Association recommends re-
porting the exact p values for all statistical tests to
three decimal places (previously, it recommended re-
porting p � 0.05 or p � 0.05). Explain how the new
reporting format allows a reader to more critically in-
terpret the results of post-hoc comparisons reported
by an author.
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Terms
ANOVA (p. 299)
F statistic (p. 299)
between-groups variance (p. 299)
within-groups variance (p. 299)
one-way ANOVA (p. 301)
within-groups ANOVA (p. 301)

between-groups ANOVA (p. 301)
homoscedastic (p. 301)
heteroscedastic (p. 301)
source table (p. 309)
grand mean (p. 311)
R2 (p. 318)

planned comparison (p. 319)
post-hoc test  (p. 319)
Tukey HSD test (p. 320)
Bonferroni test (p. 323)

Formulas

dfbetween � Ngroups � 1 (p. 305)
dfwithin � df1 � df2 � . . . � dflast

(in which df1, df2, etc., are the 
degrees of freedom, N � 1, for each
sample) [formula for a one-way
between-groups ANOVA] (p. 305)

dftotal � dfbetween � dfwithin

[formula for a one-way 
between-groups ANOVA] (p. 310)

dftotal � Ntotal � 1 (p. 310)

(p. 311)

SStotal � R(X � GM)2 (p. 312)
SSwithin � R(X � M)2

[formula for a one-way 
between-groups ANOVA] (p. 313)

SSbetween � R(M � GM)2 (p. 314)
SStotal � SSwithin � SSbetween

[alternate formula for a 
one-way between-groups 
ANOVA] (p. 314)

(p. 315)

(p. 315)

(p. 315)

[formula for a 

one-way between-groups 
ANOVA] (p. 318)

, for any two 

sample means (p. 320)

, if equal sample 

sizes (p. 320)

(p. 321)

, if unequal 

sample sizes (p. 321)GM
X

Ntotal

�
R( )
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between

between

�
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within
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Symbols
F             (p. 299)
dfbetween     (p. 305)
dfwithin      (p. 305)
MSbetween   (p. 310)
MSwithin    (p. 310)

dftotal        (p. 310)
SSbetween    (p. 310)
SSwithin     (p. 310)
SStotal       (p. 311)
GM         (p. 311)

R2           (p. 318)
HSD       (p. 320)
N�           (p. 321)
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■ You should be able to differentiate between
between-groups designs and within-groups
designs (Chapter 1).

■ You should be able to conduct the six steps of
hypothesis testing for a one-way between-
groups ANOVA (Chapter 12).

■ You should understand the concept of effect
size (Chapter 8) and know how to calculate
R2 for a one-way between-groups ANOVA
(Chapter 12).

■ You should understand the concept of post-
hoc testing and be able to calculate a Tukey
HSD test for a one-way between-groups
ANOVA (Chapter 12).

BEFORE YOU GO ON

One-Way Within-Groups ANOVA
The Benefits of Within-Groups ANOVA
The Six Steps of Hypothesis Testing

Beyond Hypothesis Testing
R2, the Effect Size for ANOVA
Tukey HSD

Next Steps: Matched Groups
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“What’s in a name?” Juliet asks Romeo. “That
which we call a rose / By any other name would
smell as sweet.” A group of Canadian researchers
decided to test Juliet’s assertion (Djordjevic et al.,
2007). They assigned names associated with pos-
itive, negative, or neutral odors to 15 different
odors and then presented them to participants,
who were asked to rate the pleasantness and the
intensity of the aroma. Positive names for aromas
included “cinnamon stick” and “jasmine tea.”
Negative names for odors included “rotten fish”
and “dry vomit.” Neutral names were two-digit
numbers such as “thirty-six.”

The researchers used a within-groups design,
which means that each participant smelled the
same odor with a positive name, a negative name,
and a neutral name. Having each participant ex-
perience each level of the independent variable is
one of the advantages of using a within-groups
design: researchers require fewer participants. The
research team found that participants generally

rated aromas with positive names as more pleasant and odors with negative names as
more intense.

This odor study also demonstrates why this chapter is divided into two parts. The
first part discusses the one-way within-groups ANOVA, which shows how to deter-
mine the probability that any differences are real (such as the differences between odor
ratings based on a positive, negative, or neutral name). The second part takes us beyond
hypothesis testing and discusses how to calculate the size of those differences.

One-Way Within-Groups ANOVA
In Chapter 12, we learned how to conduct the multiple-group equivalent of an
independent-samples t test, a one-way between-groups ANOVA, as well as its related ef-
fect size. We also learned how to conduct a post-hoc test for a one-way  between-
groups ANOVA. In this chapter, we learn how to conduct the multiple-group
equivalent of a paired-samples t test, a one-way within-groups ANOVA (also called
a repeated-measures ANOVA), as well as its related effect size. As with the one-way
between-groups ANOVA, we learn how to conduct a post-hoc test for the one-way
within-groups ANOVA. We’ll use an example to walk through this process.
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Within-Groups Design Whenever researchers have people provide ratings of several
items—such as here, with different types of coffee—they are using a within-groups design.

Have you ever participated in a taste test? If you did, you were a participant in a within-
groups experiment—a popular technique among marketers and food lovers. Soft drink
companies sometimes set up booths outside grocery stores and ask customers to par-
ticipate in a blind taste test of Coke and Pepsi, and then pick their favorite. College
students have argued about the best local pizza, then ordered one from each restaurant
and conducted a taste challenge. And about a decade ago, when pricier microbrew
beers were becoming popular in North America, the journalist James Fallows found
himself spending increasingly more on a bottle of beer and said to  himself, “I love beer,
but lately I’ve been wondering: Am I getting full value for my beer  dollar?” He re-
cruited 12 colleagues, all self- professed beer snobs, to see whether they really could
tell whether a beer was expensive or cheap (Fallows, 1999).

EXAMPLE 13.1
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Fallows wanted to know whether his re -
cruits could distinguish among widely available
American beers that were categorized into three
groups based on price—“high-end” beers like
Sam Adams, “mid-range” beers like Budweiser,
and “cheap” beers like Busch. All of these beers
are lagers, the type of beer most commonly con-
sumed in North America. Fallows chose lagers
because they can be found at every price level,
something not true of fancier beers such as stouts
or pale ales. Here are data—mean scores on a scale
of 0–100 for each category of beer—for five of
the participants. (Note: The means for these par-
ticipants are a little different from the overall sam-
ple but exhibit the same pattern. In addition, they
have been rounded to the nearest whole number
for the purposes of this example.)

■

The Benefits of Within-Groups ANOVA
Fallows reported his findings but did not conduct hypothesis testing.
If he had, he would have used a one-way within-groups ANOVA
to analyze these data. We use one-way within-groups ANOVA when
there’s just one nominal or ordinal independent variable (type of
beer), the independent variable has more than two levels (cheap,
mid-range, and high-end), the dependent variable is scale (ratings of
beers), and every participant is in every group (each participant tastes
the beers in every category).

In a within-groups design, we reduce error due to differences
between the groups. Because each group includes exactly the same
participants, we know that the groups are identical on all of the rel-
evant variables. In the beer taste test study, we know that each group
is the same in taste preferences, amount of alcohol typically con-
sumed, tendency to be critical or lenient when rating, and so on.
This enables us to reduce within-groups variability due to differences
for the people in our study across groups. (As we’ll soon see, we do
this by calculating a fourth sum of squares to represent the variability
for the individual participants in our study.) The lower within-
groups variability means a smaller denominator for the F statistic, a
smaller denominator means a larger F statistic, and a larger F statistic
means that it is easier to reject the null hypothesis. For this reason,
we want to use a within-groups hypothesis test whenever we can.

Participant     Cheap     Mid-Range     High-End

       1                 40                30                  53

       2                 42                45                  65

       3                 30                38                  64

       4                 37                32                  43

       5                 23                28                  38
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Taste Tests Are Within-Groups Experiments In a taste test, every person tries
every flavor to determine a favorite. So it is an experiment in which every participant is in
every group, or condition. If the order of the flavors is varied for each person, the
researcher is using counterbalancing.

�   MASTERING THE CONCEPT

13-1: One-way within-groups ANOVA is used

when we have one independent variable with at

least three levels, a scale dependent variable,

and participants who are in every group.

�   MASTERING THE CONCEPT

13-2: The calculations for a one-way within-

groups ANOVA are similar to those for a one-

way between-groups ANOVA, but we now

calculate a subjects sum of squares in addition

to the between-groups, within-groups, and

total sums of squares. The subjects sum of

squares reduces the within-groups sum of

squares by removing variability associated with

participants’ differences across groups.
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The Six Steps of Hypothesis Testing

Now that we have an understanding of the benefits of within-groups ANOVA, we’ll
use the data from the beer taste test to walk through the steps of hypothesis testing.
The ways in which one-way within-groups ANOVA differs from one-way between-
groups ANOVA are pointed out as we come to them. 

Most of this step is identical to that for a
one-way between-groups ANOVA; how-
ever, there’s one additional assumption for a

within-groups ANOVA. We must be careful to avoid order effects. This does not seem
to have occurred in this experiment. For all participants, beers were in cups with the
same labels. For example, Budweiser was always in a cup labeled F. In addition, it appears
that all participants tasted the beers in the same order: a mid-range beer, followed by
a high-end beer, followed by a cheap beer, followed by another cheap beer, and so on.
(Ideally, Fallows would have used counterbalancing, so that participants tasted the beers
in different orders, and would have labeled cups on the bottom so that labels were not
visible to participants.)
Summary: Population 1: People who drink cheap beer. Population 2: People who drink
mid-range beer. Population 3: People who drink high-end beer.

The comparison distribution and hypothesis test: The comparison distribution is an F
distribution. The hypothesis test is a one-way within-groups ANOVA.

Assumptions: (1) The participants were not selected randomly, so we must generalize
with caution. (2) We do not know if the underlying population distributions are normal,
but the sample data do not indicate severe skew. (3) To see if we meet the homoscedas-
ticity assumption, we will check to see if the variances are similar (typically, when the
largest variance is not more than twice the smallest) when we calculate the test statistic.
(4) The experimenter did not counterbalance, so order effects might be present.

This step is identical to that for a one-way
between-groups ANOVA.

Summary: Null hypothesis: People who drink cheap, mid-range, and high-end beer
rate their beverages the same, on average—H0: l1 � l2 � l3 � l4. Research hypoth-
esis: People who drink cheap, mid-range, and high-end beer do not rate their beverages
the same, on average.

As we did with a one-way between-groups
ANOVA, we state that the comparison dis-
tribution is an F distribution and provide the

appropriate degrees of freedom. The one difference with a one-way within-groups
ANOVA is that we now calculate four degrees of freedom—between-groups, subjects,
within-groups, and total. We noted earlier that we would have a fourth sum of squares,
one for differences across participants. We call this the subjects sum of squares, or SSsubjects,
which has its own degrees of freedom. When we conduct a one-way within-groups
ANOVA, we calculate between-groups degrees of freedom and subjects degrees of
freedom first because we multiply these two together to calculate the within-groups
degrees of freedom.

So we calculate the between-groups degrees of freedom exactly as before:

dfbetween � Ngroups � 1 � 3 � 1 � 2

STEP 1: Identify the populations,
distribution, and assumptions.

STEP 2: State the null and research
hypotheses.

STEP 3: Determine the characteristics
of the comparison distribution.

EXAMPLE 13.2



We next calculate the degrees of freedom that pairs with SSsubjects. Called dfsubjects, it
is calculated by subtracting 1 from the actual number of subjects, not data points. We
use a lowercase n to indicate that this is the number of participants in a single sample
(even though they’re all in every sample). The formula is:

dfsubjects � n � 1 � 5 � 1 � 4

Once we know the between-groups degrees of freedom and the subjects degrees
of freedom, we can calculate the within-groups degrees of freedom by multiplying the
first two:

dfwithin � (dfbetween)(dfsubjects) � (2)(4) � 8

Note that the within-groups degrees of freedom is smaller than we would have cal-
culated for a one-way between-groups ANOVA. For a one-way between-groups
ANOVA, we would have subtracted 1 from each sample (5 � 1 � 4) and summed
them to get 12. The within-groups degrees of freedom is smaller because we’re ex-
cluding variability related to differences among the participants from the within-groups
sum of squares, and the degrees of freedom must reflect that.

Finally, we calculate total degrees of freedom using either method we learned earlier.
We sum the other degrees of freedom:

dftotal � dfbetween � dfsubjects � dfwithin � 2 � 4 � 8 � 14

Alternatively, we can use the second formula we learned before, treating the total num-
ber of participants as every data point, rather than every person. We know, of course,
that there are just five participants and that they participate in all three levels of the
independent variable, but for this step, we count the 15 total data points:

dftotal � Ntotal � 1 � 15 � 1 � 14

We have calculated the four degrees of freedom that we will include in the source
table. However, we only report the between-groups and within-groups degrees of free-
dom at this step.
Summary: We use the F distribution with 2 and 8 degrees of freedom.

The fourth step is identical to that for a one-
way between-groups ANOVA. We use the
between-groups degrees of freedom and

within-groups degrees of freedom to look up a critical value on the F table in Appendix
B, just as we did previously.
Summary: Our cutoff, or critical value, for the F statistic for a p level of 0.05 and 2
and 8 degrees of freedom is 4.46.

As before, we calculate our test statistic in
the fifth step. To start, we have to calculate

four sums of squares—one each for between-groups, subjects, within-groups, and total.
As before, for each sum of squares, we calculate deviations between two different types
of means or scores, square the deviations, and then sum the squared differences. We
calculate a squared deviation for every score, so for each sum of squares in this example,
we’ll be summing 15 squared deviations.

STEP 4: Determine the critical values,
or cutoffs.

STEP 5: Calculate the test statistic.
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�                                         

MASTERING THE FORMULA

13-1: The formula for the sub -
jects degrees of freedom is: dfsubjects �

n � 1. We subtract 1 from the num-
ber of participants in the study. We
use a lowercase n to indicate that this
is the number of data points in a sin-
gle sample, even though we know
that every participant is in all three
groups.

�                                         MASTERING THE FORMULA

13-2: The formula for the within-
groups degrees of freedom for a
one-way within-groups ANOVA is:
dfwithin � (dfbetween)(dfsubjects). We mul-
tiply the between-groups degrees of
freedom by the subjects degrees of
freedom. This gives a lower number
than we calculated for a one-way
between-groups ANOVA because
we want to exclude individual dif-
ferences from the within-groups
sum of squares, and the degrees of
freedom must reflect that.

�                                         MASTERING THE FORMULA

13-3: We can calculate the total
degrees of freedom for a one-way
within-groups ANOVA in two ways.
We can sum all of the other degrees
of freedom: dftotal � dfbetween � dfsubjects

� dfwithin. Or we can subtract 1 from
the total number of observations in
the study: dftotal � Ntotal � 1.
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As we did with the one-way between-groups ANOVA, let’s start with the total sum
of squares, SStotal. This can be calculated exactly as we calculated it previously:

SStotal � R(X � GM)2 � 2117.732

Next, we calculate the between-groups sum of squares. It, too, is the same as for a
one-way between-groups ANOVA:

SSbetween � R(M � GM)2� 1092.135

Type of Beer        Rating (X )       (X � GM )                (X � GM )2

  Cheap                      40                 �0.533                        0.284

  Cheap                      42                     1.467                        2.152

  Cheap                      30               �10.533                    110.944

  Cheap                      37                 �3.533                      12.482

  Cheap                      23               �17.533                    307.406

  Mid-range                30               �10.533                    110.944

  Mid-range                45                     4.467                      19.954

  Mid-range                38                 �2.533                        6.416

  Mid-range                32                 �8.533                      72.812

  Mid-range                28               �12.533                    157.076

  High-end                  53                   12.467                    155.426

  High-end                  65                   24.467                    598.634

  High-end                  64                   23.467                    550.700

  High-end                  43                     2.467                        6.086

  High-end                  38                 �2.533                        6.416

                         GM � 40.533                           R(X � GM )2 � 2117.732

Type of Beer       Rating (X )       Group Mean     (M � GM )               (M � GM )2

  Cheap                      40                     34.4             �6.133                       37.614

  Cheap                      42                     34.4             �6.133                       37.614

  Cheap                      30                     34.4             �6.133                       37.614

  Cheap                      37                     34.4             �6.133                       37.614

  Cheap                      23                     34.4             �6.133                       37.614

  Mid-range                30                     34.6             �5.933                       35.200

  Mid-range                45                     34.6             �5.933                       35.200

  Mid-range                38                     34.6             �5.933                       35.200

  Mid-range                32                     34.6             �5.933                       35.200

  Mid-range                28                     34.6             �5.933                       35.200

  High-end                  53                     52.6              12.067                     145.613

  High-end                  65                     52.6              12.067                     145.613

  High-end                  64                     52.6              12.067                     145.613

  High-end                  43                     52.6              12.067                     145.613

  High-end                  38                     52.6              12.067                     145.613

GM � 40.533                                                    R(M � GM )2 � 1092.135
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So far, the calculations of the sums of squares for a one-way within-groups ANOVA
have been the same as they were for a one-way between-groups ANOVA. We left the
subjects sum of squares and within-groups sum of squares for last. Here is where we
see some changes. We want to remove the variability due to participant differences
from our estimate of variability across conditions. So we’re going to calculate the sub-
jects sum of squares separately from the within-groups sum of squares. To do that, we
subtract the grand mean from each participant’s mean for all of his scores. We first have
to calculate a mean for each participant across the three conditions. For example, the
first participant had ratings of 40 for cheap beers, 30 for mid-range beers, and 53 for
high-end beers. This participant’s mean is 41.

So the formula for the subjects sum of squares is:

SSsubjects � R(Mparticipant � GM)2 � 729.738

We only have one sum of squares left to go. To calculate the within-groups sum of
squares from which we’ve removed the subjects sum of squares, we take the total sum
of squares and subtract the two others that we’ve calculated so far—the between-groups
sum of squares and the subjects sum of squares. The formula is:

SSwithin � SStotal � SSbetween � SSsubjects � 2117.732 � 1092.135 � 729.738 � 295.859

We now have enough information to fill in the first three columns of the source
table—the source, SS, and df columns. We calculate the rest of the source table as we
did for a one-way between-groups ANOVA. For the three sources—between-groups,
subjects, and within-groups—we divide the sum of squares by the degrees of freedom
to get its variance, MS.

                       Type                              Participant 
Participant      of Beer        Rating (X )          Mean       (Mparticipant � GM )             (Mparticipant � GM )2

       1            Cheap                   40                41                          0.467                                   0.218

       2            Cheap                   42                50.667                 10.134                               102.698

       3            Cheap                   30                44                          3.467                                 12.02

       4            Cheap                   37                37.333               �3.2                                     10.24

       5            Cheap                   23                29.667             �10.866                               118.07

       1            Mid-range             30                41                          0.467                                   0.218

       2            Mid-range             45                50.667                 10.134                               102.698

       3            Mid-range             38                44                          3.467                                 12.02

       4            Mid-range             32                37.333               �3.2                                     10.24

       5            Mid-range             28                29.667             �10.866                               118.07

       1            High-end              53                41                          0.467                                   0.218

       2            High-end              65                50.667                 10.134                               102.698

       3            High-end              64                44                          3.467                                 12.02

       4            High-end              43                37.333               �3.2                                     10.24

       5            High-end              38                29.667             �10.866                               118.07

                                        GM � 40.533                                                         R(Mparticipant � GM )2 � 729.738

MS
SS

df
between

between

between

� � �
1092 135

2
546

.
.0068

�                                         MASTERING THE FORMULA

13-4: The subjects sum of squares in
a one-way within-groups ANOVA
is calculated using the following
formula: SSsubjects � R(Mparticipant �

GM )2. For each score, we subtract
the grand mean from that partici-
pant’s mean for all of his or her
scores and square this deviation.
Note that we do not use the scores
in any of these calculations. We sum
all the squared deviations.

�                                         MASTERING THE FORMULA

13-5: The within-groups sum of
squares for a one-way within-groups
ANOVA is calculated using the fol-
lowing formula: SSwithin � SStotal �

SSbetween � SSsubjects. We subtract the
between-groups sum of squares and
subjects sum of squares from the
total sum of squares.
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                                        �MASTERING THE FORMULA

13-6: We calculate the subjects
mean square by dividing its associ-
ated sum of squares by its associated
degrees of freedom: MSsubjects �

.
SS

df
subjects

subjects

We then calculate two F statistics—one for between-groups and one for subjects.
For the between-groups F statistic, we divide its MS by the within-groups MS. For
the subjects F statistic, we divide its MS by the within-groups MS.

The completed source table is shown here:

Here is a recap of the formulas used to calculate a one-way within-groups ANOVA:

We have calculated two F statistics, but we’re really only interested in one. We want
to know if there’s a statistically significant difference between groups, so we look at
the between-groups F statistic, 14.766.
Summary: The F statistic associated with the between-groups difference is 14.77.

This step is identical to that for the one-way
between-groups ANOVA. If the F statistic

is beyond the critical value, then we can reject the null hypothesis. We cannot, however,
know where the difference lies. We can only know that at least two means are different
from each other.

STEP 6: Make a decision.

      Source                                       SS df MS F

Between-groups            R(M � GM )2 Ngroups � 1

Subjects                        R(Mparticipant � GM )2 n � 1

Within-groups                SStotal � SSbetween � SSsubjects               (dfbetween) (dfsubjects)

Total                              R(X � GM )2 Ntotal � 1

SS

df
between

between

MS

MS
between

within

SS

df
subjects

subjects

SS

df
within

within

MS

MS
subjects

within

MS
SS

df
subjects

subjects

subjects

� � �
729 738

4
18

.
22 435.

MS
SS

df
within

within

within

� � �
295 859

8
36 982

.
.

F
MS

MS
between

between

within

� � �
546 068

36 982
14

.

.
..766

F
MS

MS
subjects

subjects

within

� � �
182 435

36 982

.

.
44 933.

     Source                SS df MS F

Between-groups     1092.135       2     546.068     14.77

Subjects                   729.738       4     182.435       4.93

Within-groups          295.859       8       36.982

Total                      2117.732     14

                                        �MASTERING THE FORMULA

13-7: The formula for the subjects

F statistic is: . We

divide the subjects mean square by
the within-groups mean square.

F
MS

MS
subjects

subjects

within

�



Summary: The F statistic, 14.77, is beyond the critical value, 4.46. We reject the null
hypothesis. It appears that mean ratings of beers differ based on the type of beer in
terms of price category. We report the statistics in a journal article as F (2,8) � 14.77,
p � .05. [Note: If we used software, we would report the exact p value.] ■
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CHECK YOUR LEARNING
Reviewing the Concepts > We use one-way within-groups ANOVA when we have a nominal or ordinal independent

variable with at least three levels, a scale dependent variable, and participants who experience
all levels of the independent variable. It is also called a repeated-measures ANOVA because
multiple measures are taken on the same participants.

> Because all participants experience all levels of the independent variable, we reduce the
within-groups variability by reducing individual differences; each person serves as a control
for him- or herself. A possible concern with this design is order effects.

> One-way within-groups ANOVA uses the same six steps of hypothesis testing that we used
for one-way between-groups ANOVA—with one major exception. We calculate statistics
for four sources, rather than three. In addition to between-groups, within-groups, and total,
the fourth source is typically called “subjects.”

> Although we calculate two F statistics, one for our between-groups variability and one for
our subjects variability, it is usually the between-groups F that we compare to a critical
value and about which we draw a conclusion.

Clarifying the Concepts 13-1 Why is the within-groups variability, or sum of squares, smaller for the within-groups
ANOVA compared to the between-groups ANOVA?

Calculating the Statistics 13-2 Calculate the four degrees of freedom for the following groups, assuming a within-
groups design:

a. dfbetween � Ngroups � 1

b. dfsubjects � n � 1

c. dfwithin � (dfbetween)(dfsubjects)

d. dftotal � dfbetween � dfsubjects � dfwithin; or dftotal � Ntotal � 1

13-3 Calculate the four sums of squares for the data listed in Check Your Learning 13-2:

a. SStotal � R(X � GM)2

b. SSbetween � R(M � GM)2

c. SSsubjects � R(Mparticipant � GM)2

d. SSwithin � SStotal � SSbetween � SSsubjects

13-4 Using all of your calculations in Check Your Learning 13-2 and 13-2, perform the
simple division to complete an ANOVA source table for these data.

Applying the Concepts 13-5 Let’s create a context for the data presented in Check Your Learning 13-2. Suppose a
car dealer wants to sell a car by having people test drive it and two other cars in the

              Participant 1    Participant 2    Participant 3

Group 1              7                        9                        8

Group 2              5                        8                        9

Group 3              6                        4                        6

continued on next page
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Beyond Hypothesis Testing
Hypothesis testing with the one-way within-groups ANOVA can tell us the probability
that different names lead to different ratings of the same odor. But effect sizes help us
figure out whether these differences are large enough to matter. In this section, we’ll
discuss the effect size for ANOVA as well as a post-hoc test, the Tukey HSD.

R2, the Effect Size for ANOVA
The calculations for R2 for a one-way within-groups ANOVA and a one-way between-
groups ANOVA are similar. As before, the numerator is a measure of the variability that
takes into account just the differences among means, SSbetween. The denominator is a bit
different. It takes into account the total variability, SStotal, but removes the variability
due to differences among participants, SSsubjects. This enables us to determine the vari-
ability explained only by between-groups differences. The formula is:

R
SS

SS SS
between

total subjects

2 �
�( )

Let’s apply this to the ANOVA we just conducted. We can use the statistics in the
source table shown on page 344 to calculate R2:

The conventions for R2 are the same as those shown in the previous chapter in
Table 12-12. This effect size of 0.79 is a very large effect indicating that 79% of the
variability in ratings of beer is explained by price. ■

Tukey HSD

R
SS

SS SS
between

total subject

2 1092 135

21
�

�
�

( )

.

( 117 732 729 738. . )−
�0.787

EXAMPLE 13.3

                                        �

MASTERING THE FORMULA

13-8: The formula for effect size for
a one-way within-groups ANOVA

is: . We di-

vide the between-groups sum of
squares by the difference between
the total sum of squares and the sub-
jects sum of squares. We remove the
subjects sum of squares so we can
determine the variability explained
only by between-groups differences.

R
SS

SS SS
between

total subjects

2 �
�( )

We noted earlier that we have to conduct a post-hoc test to determine where differ-
ences lie. We’ll use the same procedure that we used for a one-way between-groups
ANOVA, the Tukey HSD test. We need to calculate an HSD for each pair of means,
but first we have to calculate the standard error:

s
MS

N
M

within
� � �

36 982

5

.
2.720

EXAMPLE 13.4

same class (e.g., midsize sedans). The data from these three groups might represent
driving-experience ratings (from 1, low quality, to 10, high quality) given by drivers
after the test drives. Using the F values you calculated above, complete the following:

a. Write hypotheses, in words, for this research.

b. How might you conduct this research such that you would satisfy the fourth
assumption of the within-groups ANOVA?

c. Determine the critical value for F and make a decision about the outcome of this
research.

Solutions to these Check Your
Learning questions can be found in
Appendix D.
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Now that we have standard error, we can calculate HSD for each pair of means.
Cheap beer (34.4) versus mid-range beer (34.6):

Cheap beer (34.4) versus high-end beer (52.6):

Mid-range beer (34.6) versus high-end beer (52.6):

Now we look up the critical value in the q table in Appendix B. The numbers of
means being compared (levels of the independent variable) are in a row along the top
of the q table, in this case 3; and the within-groups degrees
of freedom are in a column along the left-hand side, in this
case 8. For a p level of 0.05, the cutoff q is 4.04. The sign
of each HSD does not matter because the order in which
we subtract means is arbitrary. This is a two-tailed test, and
any HSD above 4.04 or below �4.04 would be considered
statistically significant.

By comparing the HSDs that we calculated above to the
critical values, we can see two statistically significant differ-
ences between means in this ANOVA, �6.691 and �6.618.
It appears that high-end beers elicit higher average ratings
than cheap beers and also elicit higher average ratings than
mid-range beers. No statistically significant difference is
found between cheap beers and mid-range beers.

It’s not all that surprising that the expensive beers would
come out ahead of the cheap and mid-range beers, but Fal-
lows and his taste-testers were surprised that no observable
average difference was found between the cheap beers and
the mid-range beers. Fallows’s advice to his beer-drinking
colleagues? Buy high-end beer “when they want an indi-
vidual glass of lager to be as good as it can be,” but buy
cheap beer “at all other times, since it gives the maximum
taste and social influence per dollar invested.” The mid-
range beers? Not worth the money. ■

As social scientists, however, we should critically examine the research design and,
regardless of its merits, call for a replication. In this case, did the darker color of Sam
Adams (the beer that received the highest average ratings) give it away as a high-end
beer? Did the fact that beers were labeled with letters lead to differences in ratings?
For example, because of many academic grading systems, A has a positive connotation
and F has a negative one. Did the consistent order have an effect? The total amount
of alcohol consumed was equivalent to more than two beers over about two hours.
Did the later beers suffer in comparison to the earlier ones? Did the testers get more
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Within-Groups Designs in Everyday Life We often use a within-
groups design without even knowing it. A bride might use a within-groups
design when she has all of her bridesmaids (the participants) try on several
different possible dresses (the levels of the study). They would then choose
the dress that is most flattering, on average, on the bridesmaids. We even
have an innate understanding of order effects. A bride, for example, might ask
her bridesmaids to try on the dress that she prefers either first or last (but not
in the middle) so they’ll remember it better and be more likely to prefer it!



lenient? And the panel of tasters was all male and included mostly Microsoft employees.
Would we get different results for female participants or for non–tech employees?
There’s always another study to be done.
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So far, we’ve learned two hypothesis tests that we can use when we have a within-
groups design. In Chapter 10, we introduced the paired-samples t test, and in this
chapter, we introduced the within-groups ANOVA. Previously, we stated that a
within-groups design requires that every participant experience every level of the inde-
pendent variable, but there is one important exception—for both types of within-
groups  hypothesis tests, we can have matched groups instead of the same person in every
sample. Specifically, different people who are similar on all of the variables that we want
to control can participate in the different levels of the independent variable. If we do
this, then we can analyze the data as if the same people are in each group, giving us ad-
ditional statistical power.

This research design is particularly useful if it’s not possible to have participants ex-
perience all groups. For example, a student cannot have both a sole major in psychology
and a sole major in history, and we cannot randomly assign students to these majors. We
may, however, be interested in the effect of being a psychology major versus being a his-
tory major on interest in current events. In this case, we want to be sure to control for
variables that might differ systematically between psychology majors and history majors.
We might match groups of participants on academic achievement or time spent reading
newspapers so that we know it’s their major, not one of these variables, that is causing
any mean difference in interest in current events.

Let’s look at a published example in the social science literature. Researchers in the
state of Indiana in the United States compared depression levels of elderly Mexican
American caregivers with elderly Mexican American noncaregivers  (Hernandez & Bi-
gatti, 2010). Sixty-five people who cared for individuals with Alzheimer’s disease or a
disability were matched with 65 noncaregivers on variables that the researchers knew
to be related to depression—age, gender, socioeconomic status, physical health, and
level of acculturation to the United States. For example, a caregiver who was female,
68 years old, healthy, and well acculturated to the United States would be matched
with a noncaregiver who shared these characteristics. In this way, the researchers could
know that these variables were not responsible for any differences between groups,
making it more likely that caregiver status caused any mean difference in depression
between the two groups. In this study, the researchers found that caregivers were more
likely to be depressed than noncaregivers, on average.

Using matched groups allows researchers to take advantage of the increased statistical
power of a within-groups design compared with a between-groups design. However,
there are two main problems to watch for when using matched groups. First, we might not
be aware of all of the important variables of interest. For example, with respect to the study
described above, social support has been found to be related to depression. It may be that
caregivers, because of the time commitment necessary, are less likely to have a social sup-
port network than are noncaregivers. Because the researchers did not use random assign-
ment, a difference in a variable on which the participants are not matched, such as available
social support, might account for any mean differences in the dependent variable.

Second, if one of the people in a matched pair decides not to complete the study,
then we must discard the data for the match for this person. This makes for less-than-

N e x t  S t e p s Matched Groups



efficient research. In the study comparing caregivers and noncaregivers, data from 8
caregivers had to be discarded because they failed to complete many items on the meas-
ures used. Because of this, the researchers had to discard the data from the 8 noncare-
givers who were matched to these participants, even though they had completed most
of the measures. So only 57 of the 65 matched pairs remained in the final data set. If
these problems can be addressed, however, matched groups can allow researchers to har-
ness the increased statistical power of a within-groups design.
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CHECK YOUR LEARNING
Reviewing the Concepts > As with other hypothesis tests, it is recommended that we calculate a measure of effect size,

R2, for a one-way within-groups ANOVA.

> As with one-way between-groups ANOVA, if we are able to reject the null hypothesis with
a one-way within-groups ANOVA, we’re not finished. We must conduct a post-hoc test,
such as a Tukey HSD test, to determine exactly which pairs of means are significantly dif-
ferent from one another.

> Matched pairs and matched groups allow us to use within-groups designs even if different
participants experience each level of the independent variable. Rather than using the same
participants, we match different participants on possible confounding variables.

Clarifying the Concepts 13-6 How does the calculation of the effect size R2 differ for the one-way within-groups
ANOVA and the one-way between-groups ANOVA?

13-7 How does the calculation of the Tukey HSD differ for the one-way within-groups
ANOVA and the one-way between-groups ANOVA?

Calculating the Statistics 13-8 A researcher measured the reaction time of six participants at three different times and
found the mean reaction time at time 1 (M � 155.833), time 2 (M � 206.833), and
time 3 (M � 251.667). The researcher rejected the null hypothesis after performing a
one-way within-groups ANOVA. For the ANOVA, dfbetween � 2, dfwithin � 10, and
MSwithin � 771.256.

a. Calculate the HSD for each of the three mean comparisons.

b. What is the critical value of q for this Tukey HSD test?

c. For which comparisons do we reject the null hypothesis?

13-9 Use the following source table to calculate the effect size R2 for the one-way within-
groups ANOVA.

Applying the Concepts 13-10 In Check Your Learning 13-4 and 13-5, we conducted an analysis of driver-experience
ratings following test drives.

a. Calculate R2 for this ANOVA.

b. What follow-up tests are needed for this ANOVA, if any?

Source SS df MS F

Between 27,590.486 2 13,795.243 17.887

Subjects 16,812.189 5 3,362.438 4.360

Within 7,712.436 10 771.244

Total 52,115.111 17

Solutions to these Check Your
Learning questions can be found in
Appendix D.
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SPSS®

The one-way within-groups ANOVA is used when we wish
to make a comparison among three or more levels of one
nominal or ordinal independent variable in which each par-
ticipant is in all three levels. For example, in this chapter, we
compared participants’ ratings of three different types of
beer—cheap, mid-range, and high-end. The type of beer was
an ordinal independent variable, and the rating of the beer was
a scale dependent variable.

To conduct a one-way within-groups ANOVA on SPSS,
we have to enter the data so that each participant has one row
with all of her or his data. This results in a different format
from the entered data for a one-way between-groups
ANOVA. In that case, we had a score for each participant’s
level of the independent variable and a score for the dependent
variable. For a within-groups ANOVA, each participant has
multiple scores on the dependent variable, so each participant
will have one row with all of the scores. The levels of the in-
dependent variable are indicated in the titles for each of the
three columns in SPSS. For example, as seen to the left of the
first SPSS screenshot, the first participant has scores of 40 for
the cheap beer, 30 for the mid-range beer, and 53 for the high-
end beer.

After the data are entered, we can instruct SPSS to conduct
the ANOVA by selecting Analyze → General Linear Model
→ Repeated Measures. Remember that repeated measures is
another way to say within groups when describing ANOVA.

Next, under “Within-Subject Factor Name” change the
generic “factor1” to the actual name of the independent vari-
able. We typed “type_of_beer” using underscores between
words because SPSS won’t recognize spaces for a variable
name. Next to “Number of Levels,” type “3” to represent the
number of levels of the independent variable in this study.
Now click “Add” followed by “Define.” We’ll define the lev-
els by clicking each of the three levels followed by the arrow
button, in turn. At this point, the screen should look like that
in the first SPSS screenshot on the facing page.

To see the results of the ANOVA, click “OK.”
The second screenshot shows part of the output for this

one-way within-groups ANOVA.
You’ll notice that there are more tables in the within-

groups ANOVA SPSS output than in the between-groups
ANOVA SPSS output. The one we want to pay attention to
is titled “Tests of Within-Subjects Effects.” This table pro-
vides four F values and four “Sig.” values (the actual p val-
ues). There are several more advanced considerations that
play into deciding which one to use; for the purposes of
this introduction to SPSS, we simply note that the F values
are all the same, and all match the F of 14.77 that we calcu-
lated previously. Moreover, all of the p values are less than
the cutoff of 0.05. As when we conducted this one-way
within-groups ANOVA by hand, we can reject the null
hypothesis.

One-Way Within-Groups ANOVA
We use a one-way within-groups ANOVA (also called a repeated-measures ANOVA)
when we have one nominal or ordinal variable with at least three levels and a scale
dependent variable, and every participant experiences every level of the independent
variable. One-way within-groups ANOVA uses the same six steps of hypothesis testing
that we used for one-way between-groups ANOVA, except that we calculate statistics
for four sources instead of three. We still calculate statistics for the between-groups,
within-groups, and total sources, but we also calculate statistics for a fourth source,
“subjects.” Although we calculate two F statistics, one for our between-groups vari-
ability and one for our subjects variability, we compare the between-groups F statistic
to a critical value and either reject or fail to reject the null hypothesis.

Beyond Hypothesis Testing
As with the one-way between-groups ANOVA, we should calculate a measure of effect
size, usually R2, and we should conduct a post-hoc test, such as the Tukey HSD test,
if we reject the null hypothesis. There is one exception to the requirement that the
same participants experience every level of the independent variable if we want to use
a paired-samples t test or within-groups ANOVA. If we match the participants in each
group on all likely confounding variables, then we can treat our groups—in a statistical
sense—as if they include the same participants.

REVIEW OF CONCEPTS
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13.1 CONDUCTING A ONE-WAY WITHIN-GROUPS ANOVA
Researchers followed the progress of 42 people undergoing inpatient rehabilitation
following spinal cord injury (White, Driver, & Warren, 2010). They assessed the patients
on a variety of measures on three separate occasions—when they were admitted to
the rehabilitation facility, three weeks later, and at discharge. Below are data that reflect
patients’ symptoms of depression on the Patient Health Questionnaire-9 (PHQ-9).
(The data for these three fictional patients have the same means as the actual larger data
set, as well as the same outcome in terms of the decision in step 6 of the ANOVA
below.)

How It Works



Admission Three Weeks Discharge

Patient 1 6.1 5.5 5.3
Patient 2 6.9 5.7 4.2
Patient 3 7.4 6.5 4.9

How can we use one-way within-groups ANOVA to determine if depression levels
changed as patients went through rehabilitation for spinal cord injury? We’ll walk through
all six steps of hypothesis testing for a one-way within-groups ANOVA.

Step 1: Population 1: People just admitted to an inpatient rehabilitation facility following
spinal cord injury.
Population 2: People three weeks after they were admitted to an inpatient rehabil-
itation facility following spinal cord injury.
Population 3: People being discharged from an inpatient rehabilitation facility fol-
lowing spinal cord injury.

The comparison distribution will be an F distribution. The hypothesis test will be
a one-way within-groups ANOVA. Regarding the asumptions: (1) The patients
were not selected randomly (all were from the same hospital), so we must generalize
with caution. (2) We do not know if the underlying population distributions are
normal, but the sample data do not indicate severe skew. (3) To see if we meet the
homoscedasticity assumption, we will check to see if the variances are similar (typ-
ically, when the largest variance is not more than twice the smallest) when we cal-
culate the test statistic. (4) The experimenter could not counterbalance, so order
effects might be present. With different levels of a time-related variable, it is not
possible to assign someone to be measured at, for example, the final time point be-
fore the first time point.

Step 2: Null hypothesis: People in an inpatient rehabilitation hospital for spinal cord injury
have the same levels of depression, on average, at admission, three weeks later, and
at discharge—H0: l1 � l2 � l3.

Research hypothesis: People in an inpatient rehabilitation hospital for spinal cord
injury do not have the same levels of depression, on average, at admission, three
weeks later, and at discharge.

Step 3: We would use the F distribution with 2 and 4 degrees of freedom.

dfbetween � Ngroups � 1 � 3 � 1 � 2

dfsubjects � n � 1 � 3 � 1 � 2

dfwithin � (dfbetween)(dfsubjects) � (2)(2) � 4

dftotal � dfbetween � dfsubjects � dfwithin � 2 � 2 � 4 � 8 (or dftotal � Ntotal � 1 � 9 � 1 � 8)

Step 4: The cutoff, or critical value, for the F statistic for a p level of 0.05 and 2 and 4 de-
grees of freedom is 6.95.

Step 5: SStotal � R(X � GM)2 � 8.059.

Time X X � GM (X � GM)2

Admission 6.1 0.267 0.071
Admission 6.9 1.067 1.138
Admission 7.4 1.567 2.455

Three weeks 5.5 �0.333 0.111
Three weeks 5.7 �0.133 0.018
Three weeks 6.5 0.667 0.445

Discharge 5.3 �0.533 0.284
Discharge 4.2 �1.633 2.667
Discharge 4.9 �0.933 0.87

GM � 5.833 R(X � GM)2� 8.059
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SSbetween � R(M � GM)2 � 6.018

Time X Group Mean M � GM (M � GM)2

Admission 6.1 6.8 0.967 0.935
Admission 6.9 6.8 0.967 0.935
Admission 7.4 6.8 0.967 0.935

Three weeks 5.5 5.9 0.067 0.004
Three weeks 5.7 5.9 0.067 0.004
Three weeks 6.5 5.9 0.067 0.004

Discharge 5.3 4.8 �1.033 1.067
Discharge 4.2 4.8 �1.033 1.067
Discharge 4.9 4.8 �1.033 1.067

GM � 5.833 R(M � GM)2� 6.018

SSsubjects � R(Mparticipant � GM)2 � 0.846

Participant 
Participant Time X Mean Mparticipant � GM (Mparticipant � GM)2

1 Admission 6.1 5.633 �0.2 0.040
2 Admission 6.9 5.6 �0.233 0.054
3 Admission 7.4 6.267 0.434 0.188

1 Three weeks 5.5 5.633 �0.2 0.040
2 Three weeks 5.7 5.6 �0.233 0.054
3 Three weeks 6.5 6.267 0.434 0.188

1 Discharge 5.3 5.633 �0.2 0.040
2 Discharge 4.2 5.6 �0.233 0.054
3 Discharge 4.9 6.267 0.434 0.188

GM � 5.833 R(Mparticipant � GM)2 � 0.846

SSwithin � SStotal � SSbetween � SSsubjects � 8.059 � 6.018 � 0.846 � 1.195

We now have enough information to fill in the first three columns of the source
table—the source, SS, and df columns. For the three sources—between-groups, sub-
jects, and within-groups—we divide the sum of squares by the degrees of freedom
to get variance, MS.

We then calculate two F statistics—one for between-groups and one for subjects.
For the between-groups F statistic, we divide its MS by the within-groups MS. For
the subjects F statistic, we divide its MS by the within-groups MS.

MS
SS

df
between

between

between

� � �
6 018

2

.
3.009

MS
SS

df
subjects

subjects

subjects

� � �
0 846

2

.
0.4233

MS
SS

df
within

within

within

� � �
1 195

4

.
0.299

F
MS

MS
between

between

within

� � �
3 009

0 299

.

.
10.06

F
MS

MS
subjects

subjects

within

� � �
0 423

0 299

.

.
1.411
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The completed source table is:

Source SS df MS F

Between 6.018 2 3.009 10.06
Subjects 0.846 2 0.423 1.41
Within 1.195 4 0.299

Total 8.059 8

We have calculated two F statistics, but we’re really only interested in one. We
want to know if there’s a statistically significant difference between groups, so we’ll
look at the between-groups F statistic, 10.06.

Step 6: The F statistic, 10.06, is beyond the critical value, 6.95. We can reject the null
hypothesis. It appears that depression scores differ based on the time point during
rehabilitation. (Note that although there is a tendency for mean depression to
decrease over time, a post-hoc test is necessary to know exactly which pairs of
means are significantly different. It could be that only the means for admission
and discharge are different, that the mean for discharge is lower than the other
two but the means for admission and three weeks are not significantly different,
and so on.)

EXERCISES
Clarifying the Concepts

13.1 What are the four assumptions for a within-groups
ANOVA?

13.2 What are order effects?

13.3 Explain the source of variability called “subjects.”

13.4 What is the advantage of the design of the within-
groups ANOVA over that of the between-groups
ANOVA?

13.5 What is counterbalancing?

13.6 Why is it appropriate to counterbalance when using a
within-groups design?

13.7 How do we calculate sum of squares for subjects?

13.8 How is the calculation of dfwithin different in a between-
groups ANOVA and a within-groups ANOVA?

13.9 How could we turn a between-groups study into a
within-groups study?

13.10 What are some situations in which it might be impos-
sible—or not make sense—to turn a between-groups
study into a within-groups study?

Calculating the Statistics

13.11 Calculate each type of degrees of freedom for the fol-
lowing data, assuming a within-groups design:

a. dfbetween � Ngroups � 1
b. dfsubjects � n � 1
c. dfwithin � (dfbetween)(dfsubjects)
d. dftotal � dfbetween � dfsubjects � dfwithin, or dftotal �

Ntotal � 1
13.12 Calculate the four sum of squares values for the data

listed in Exercise 13.11.

a. SStotal � R(X � GM)2

b. SSbetween � R(M � GM)2

c. SSsubjects � R(Mparticipant � GM)2

d. SSwithin = SStotal � SSbetween � SSsubjects

13.13 Using all of your calculations in Exercises 13.11 and
13.12, perform the simple division to complete an
ANOVA source table for these data.

13.14 Compute effect size for the data provided in Exercise
13.11.

13.15 Calculate the Tukey HSD statistic for the comparisons
between level 1 and level 3, as presented in Exercise

Person

1 2 3 4

Level 1 of the IV 7 16 3 9

Level 2 of the IV 15 18 18 13

Level 3 of the IV 22 28 26 29



13.11, and based on the F statistic you calculated in Ex-
ercise 13.13.

13.16 Calculate each type of degrees of freedom for the fol-
lowing data, assuming a within-groups design:

a. dfbetween � Ngroups � 1

b. dfsubjects � n � 1

c. dfwithin � (dfbetween)(dfsubjects)

d. dftotal � dfbetween � dfsubjects � dfwithin, or dftotal �
Ntotal � 1

13.17 Calculate the four sum of squares values for the data
listed in Exercise 13.16.

a. SStotal � R(X � GM)2

b. SSbetween � R(M � GM)2

c. SSsubjects = R(Mparticipant � GM)2

d. SSwithin = SStotal � SSbetween � SSsubjects

13.18 Using your calculations in Exercises 13.16 and 13.17,
perform the simple division to complete an ANOVA
source table for these data.

13.19 What is the critical F value for the ANOVA you cal-
culated in Exercise 13.18? Use the critical value to make
a decision regarding the null hypothesis.

13.20 a. If appropriate, use the ANOVA you calculated in
Exercise 13.18 and calculate the Tukey HSD for all
of the possible mean comparisons.

b. Find the critical value of q and make a decision re-
garding the null hypothesis for each of your com-
parisons in part (a).

13.21 Calculate the R2 measure of effect size for the ANOVA
you calculated in Exercise 13.18.

13.22 Complete the source table below. 

13.23 Calculate R2 for the ANOVA source table you com-
pleted in Exercise 13.22.

13.24 Assume that a researcher had 14 individuals par ticipate
in all three conditions of her experiment. Use this in-
formation to complete the source table below.

Applying the Concepts

13.25 Does the black grease beneath football players’ eyes re-
ally reduce glare or just make them look intimidating?
In a variation of a study actually conducted at Yale Uni-
versity, 46 participants placed one of three substances
below their eyes: black grease, black antiglare stickers,
or petroleum jelly. The researchers assessed eye glare
using a contrast chart that gives a value for each partic-
ipant on a scale measure. Every participant was assessed
with each of the three substances, one at a time. Black
grease led to a reduction in glare compared with the
two other conditions, antiglare stickers, or petroleum
jelly (DeBroff & Pahk, 2003).

a. List the independent variable, along with its levels.

b. What is the dependent variable?

c. What kind of ANOVA is this?

13.26 Refer to the study described in Exercise 13.25.

a. What is the first assumption for ANOVA? Is it likely
that the researchers met this assumption? Explain
your answer.

b. What is the second assumption for ANOVA? How
could the researchers check to see if they had met
this assumption? Be specific.

c. What is the third assumption for ANOVA? How
could the researchers check to see if they had met
this assumption? Be specific.

d. What is the fourth assumption specific to the
within-groups ANOVA? What would the re-
searchers need to do to ensure that they meet this
assumption?

13.27 Imagine a researcher wanted to assess people’s fear of
dogs as a function of the size of the dog. He assessed
fear among people who indicated they were afraid of
dogs, using a 30-point scale from 0 (no fear) to 30 (ex-
treme fear). The researcher exposed each participant to
three different dogs, a small dog weighing 20 pounds,
a medium-sized dog weighing 55 pounds, and a large
dog weighing 110 pounds, assessing the fear level after
each exposure. Here are some hypothetical data; note
that these are the data from Exercises 13.11 through

Source SS df MS F

Between 941.102 2

Subjects 3807.322

Within 20

Total 5674.502

Source SS df MS F

Between 60

Subjects

Within 50

Total 136

Person

1 2 3 4 5 6

Level 1 5 6 3 4 2 5

Level 2 6 8 4 7 3 7

Level 3 4 5 2 4 0 4
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13.15, on which you have already calculated several
statistics:

a. State the null and research hypotheses.

b. Consider whether the assumptions of random se-
lection and order effects were met.

c. In Exercise 13.14 you calculated the effect size for
these data. What does this statistic tell us about the
effect of size of dog on fear levels?

d. In Exercise 13.15, you calculated a Tukey HSD test
for these data. What can you conclude about the
effect of size of dog on fear levels based on this
statistic?

13.28 Commercials for chewing gum make claims about how
long the flavor will last. In fact, some commercials claim
that the flavor lasts too long, affecting sales and profit.
Let’s put these claims to a test. Imagine a student decides
to compare four different gums using five participants.
Each randomly selected participant was asked to chew
a different piece of gum each day for four days, such
that at the end of the four days, each participant had
chewed all four types of gum. The order of the gums
was randomly determined for each participant. After
two hours of chewing, participants recorded the inten-
sity of flavor from 1 (not intense) to 9 (very intense).
Here are some hypothetical data:

a. Conduct all six steps of the hypothesis test.

b. Are any additional tests warranted? Explain your
answer.

13.29 Researchers Busseri, Choma, and Sadava (2009) asked
a sample of individuals who scored as pessimists on a
measure of life orientation about past, present, and pro-
jected future satisfaction with their lives. Higher scores
on the life satisfaction measure indicate higher satis -
faction. The data below reproduce the pattern of

means that the researchers observed in self-reported
life satisfaction of the sample of pessimists for the three
time points. Do pessimists predict a gloomy future for
themselves?

a. Perform steps 5 and 6 of hypothesis testing. Be sure
to complete the source table when calculating the
F ratio for step 5.

b. If appropriate, calculate the Tukey HSD for all pos-
sible mean comparisons. Find the critical value of
q and make a decision regarding the null hypothesis
for each of the mean comparisons.

c. Calculate the R2 measure of effect size for this
ANOVA.

13.30 Exercise 13.29 describes a study conducted by Busseri
and colleagues (2009) using a group of pessimists. These
researchers asked the same question of a group of op-
timists: optimists rated their past, present, and projected
future satisfaction with their lives. Higher scores on the
life satisfaction measure indicate higher satisfaction. The
data below reproduce the pattern of means that the re-
searchers observed in self-reported life satisfaction of
the sample of optimists for the three time points. Do
optimists see a rosy future ahead?

a. Perform steps 5 and 6 of hypothesis testing. Be sure
to complete the source table when calculating the
F ratio for step 5.

b. If appropriate, calculate the Tukey HSD for all pos-
sible mean comparisons. Find the critical value of
q and make a decision regarding the null hypothesis
for each of the mean comparisons.

c. Calculate the R2 measure of effect size for this
ANOVA.

13.31 Exercise 13.25 described a study by DeBroff and Pahk
(2003) that assessed the effectiveness of black grease in
reducing glare in the eyes of football players. Here we
provide some fictional data that reproduce the pattern

Person

1 2 3 4 5

Gum 1 4 6 3 4 4

Gum 2 8 6 9 9 8

Gum 3 5 6 7 4 5

Gum 4 2 2 3 2 1

Person

1 2 3 4 5

Past 18 17.5 19 16 20

Present 18.5 19.5 20 17 18

Future 22 24 20 23.5 21

Person

1 2 3 4

Small dog 7 16 3 9

Medium dog 15 18 18 13

Large dog 22 28 26 29

Person

1 2 3 4 5

Past 22 23 25 24 26

Present 25 26 27 28 29

Future 24 27 26 28 29
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of results of that study. Assume that the researchers
measured the visual acuity of four participants in all
three conditions (black eye grease, antiglare stickers, and
petroleum jelly). Higher values on the measure indicate
greater visual acuity. 

a. Perform steps 5 and 6 of hypothesis testing. Be sure
to complete the source table when calculating the
F ratio for step 5.

b. If appropriate, calculate the Tukey HSD for all pos-
sible mean comparisons. Find the critical value of
q and make a decision regarding the null hypothesis
for each of the mean comparisons.

c. Calculate the R2 measure of effect size for this
ANOVA.

13.32 Luo, Hendriks, and Craik (2007) were interested in
whether lists of words might be better remembered if
they were paired with either pictures or sound effects.
They asked participants to memorize lists of words
under three different learning conditions. In the first
condition, participants just saw a list of nouns that
they were to remember (word-alone condition). In
the second condition, the words were also accompa-
nied by a picture of the object (picture condition). In
the third condition, the words were also accompanied
by a sound effect matching the object (sound effect
condition). The researchers measured the proportion
of words participants got correct in a later recogni-
tion test. Fictional data from four participants
produce results similar to those of the original study.
The average proportion of words recognized was M
� 0.54 in the word-alone condition, M � 0.69 in the
picture condition, and M � 0.838 in the sound effect
condition. The source table below depicts the results
of the ANOVA on the data from the four fictional
participants. 

a. Is it appropriate to perform post-hoc comparisons
on the data? Why or why not?

b. Use the information provided in the ANOVA table
to calculate R2. Interpret the effect size using
Cohen’s conventions. State what this R2 means in
terms of the independent and dependent variables
used in this study.

13.33 How does a dog’s tail wag in response to seeing differ-
ent people and other pets? Quaranta, Siniscalchi, and
Vallortigara (2007) investigated the amplitude and di-
rection of a dog’s tail wagging in response to seeing its
owner, an unfamiliar cat, and an unfamiliar dog. The
fictional data below are measures of amplitude. These
data reproduce the pattern of results in the study, aver-
aging left tail wags and right tail wags. Use these data
to construct the source table for a one-way within-
groups ANOVA.

13.34 a. Refer to the source table you constructed for Ex-
ercise 13.33. Find the critical F value and make a
decision regarding the null hypothesis. Based on this
decision, is it appropriate to conduct post-hoc com-
parisons? Why or why not?

b. Use the source table you constructed for Exercise
13.33 to calculate the R2 measure of effect size for
the data.

13.35 Assume that we recruited a different sample of five
dogs and attempted to replicate the Quaranta and col-
leagues (2007) study described in Exercise 13.33. The
source table for our fictional replication appears below.
Find the critical F value and make a decision regard-
ing the null hypothesis. Based on this decision, is it ap-
propriate to conduct post-hoc comparisons? Why or
why not?

Black Antiglare Petroleum
Person Grease Stickers Jelly

1 19.8 17.1 15.9

2 18.2 17.2 16.3

3 19.2 18.0 16.2

4 18.7 17.9 17.0

Source SS df MS F

Between 0.177 2 0.089 8.900

Subjects 0.002 3 0.001 0.100

Within 0.059 6 0.010

Total 0.238 11

Dog 
Participant Owner Cat Other Dog

1 69 28 45

2 72 32 43

3 65 30 47

4 75 29 45

5 70 31 44

Source SS df MS F

Between 58.133 2 29.067 0.066

Subjects 642.267 4 160.567 0.364

Within 3532.533 8 441.567

Total 4232.933 14

CHAPTER 13 ■ Within-Groups ANOVA   357



358 CHAPTER 13 ■ Within-Groups ANOVA

Symbols
dfsubjects      (p. 341)
SSsubjects    (p. 342)
MSsubjects   (p. 344)
Fsubjects      (p. 344)

Formulas

dfsubjects � n � 1 (p. 341)
dfwithin � (dfbetween)(dfsubjects)

[formula for a one-way 
within-groups ANOVA] (p. 341)

dftotal � dfbetween � dfsubjects � dfwithin

[formula for a one-way 
within-groups ANOVA] (p. 341)

SSsubjects � R(Mparticipant � GM)2 (p. 343)
SSwithin � SStotal � SSbetween � SSsubjects �

[formula for a one-way 
within-groups ANOVA] (p. 343)

(p. 344)

(p. 344)

[formula for a one-way 
within-groups ANOVA] (p. 346)

MS
SS

df
subjects

subjects

subjects

�

F
MS

MS
subjects

subjects

within

�

R
SS

SS SS
between

total subjects

2 �
�( )
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Two-Way Between-
Groups ANOVA

359

■ You should be able to conduct and interpret 
a one-way between-groups ANOVA 
(Chapter 12).

■ You should understand the concept of effect
size (Chapter 8) and the measure of effect size
for ANOVA, R2 (Chapter 12).

BEFORE YOU GO ON

Two-Way ANOVA
Why We Use a Two-Way ANOVA
The More Specific Vocabulary of 

Two-Way ANOVA
Two Main Effects and an Interaction

Understanding Interactions in ANOVA
Interactions and Public Policy
Interpreting Interactions

Conducting a Two-Way 
Between-Groups ANOVA
The Six Steps of a Two-Way ANOVA
Identifying Four Sources of Variability 

in a Two-Way ANOVA
Effect Size for a Two-Way ANOVA

Next Steps: Variations on ANOVA



In 1997, worldwide media attention was focused on NASA’s Mars Pathfinder mission.
Because of this event, the Mars candy bar company caught a lucky break and its sales
shot up (White, 1997). Here’s the funny thing: the Mars candy bar is named after the
founder of the company, Forrest Mars, not the planet Mars. But the name association
between the candy bar and the planet demonstrates how priming one mental associ-
ation can unconsciously influence what appears to be an unrelated behavior.

Market researchers wanted to know if priming other types of environmental cues
could also influence how people evaluated a consumer product, so researchers con-
ducted several experiments in which students were led to believe they were partici-
pating in an advertising campaign for a new digital music player named “ePlay” (Berger
& Fitzsimons, 2008).

In one experiment, students were divided into two groups: a dorm with food trays
in the dining hall and a dorm without food trays in the dining hall. This was the first
independent variable. Students also were randomly assigned to learn one of two dif-
ferent advertising slogans, the second independent variable. One slogan was “Luggage
carries your gear, ePlay carries what you want to hear.” The other slogan was “Dinner
is carried by a tray, music is carried by ePlay.” In other words, researchers set up an
experiment with two independent variables. The dependent variable was how highly
students rated the “ePlay.”

With two independent variables and one dependent variable, the experiment con-
tains three comparisons that might influence a consumer’s product evaluation: (1) the
environmental priming cue (dormitory trays versus no dormitory trays); (2) the ad-
vertising slogan the students learned (the luggage-related slogan versus the tray-related
slogan); and (3) the combined effects of the environmental cue and the advertising slo-
gan. In this study, researchers discovered that the combined effects of the two variables
(the environmental cue and the advertising slogan) were the most important influence
on how highly students rated ePlay. Students who learned the tray-related advertising
slogan rated ePlay more highly, on average, if they ate in dining halls that used dormitory
trays, an effect that did not occur among students who learned the luggage-related ad-
vertising slogan. Priming works!

The two independent variables combined to influence the dependent variable in a
unique way. In this chapter, we examine a hypothesis test that tests for the presence of
combined effects, also called interactions. A statistical interaction occurs in a factorial design
when two or more independent variables have an effect in combination that we do not see when we
examine each independent variable on its own. In this chapter, we learn about interactions in
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A Surprising Interaction An
interaction occurs when two
independent variables combine to
produce something completely new. In
this case, the effect of the normal
advertising of Mars candy bars
combined with media coverage of the
Mars Pathfinder to produce an
unexpected increase in candy sales.
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■ A statistical interaction occurs
in a factorial design when two
or more independent variables
have an effect in combination
that we do not see when we
examine each independent
variable on its own.

■ A two-way ANOVA is a
hypothesis test that includes
two nominal independent
variables, regardless of their
numbers of levels, and a scale
dependent variable.

■ A factorial ANOVA is a
statistical analysis used with
one scale dependent variable
and at least two nominal
independent variables (also
called factors); also called a
multifactorial ANOVA.

■ Factor is a term used to
describe an independent
variable in a study with more
than one independent variable.



relation to a research design that has two nominal (or sometimes ordinal) independent
variables, one scale dependent variable, and a between-groups design. We learn about the
different types of effects that can be seen in a two-way analysis of variance (ANOVA),
how the six steps of hypothesis testing apply to this statistical test, and how to calculate an
effect size for each of the effects.

Two-Way ANOVA
Media coverage of NASA’s mission to the planet Mars primed people to buy more
Mars candy bars than usual. Using trays in the dining hall primed students to be more
receptive to an advertising slogan that mentioned dining hall trays. Our buying deci-
sions, and many other behaviors, can be influenced by multiple variables, so we need
a way to measure the interactive effects of multiple variables.

A two-way ANOVA allows us to compare levels from two independent variables
plus the joint effects of those two variables. A two-way ANOVA is a hypothesis test that
includes two nominal independent variables, regardless of their numbers of levels, and a scale de-
pendent variable. We can also have ANOVAs with more than two independent variables.
As the number of independent variables increases, the number increases in the name
of the ANOVA—three-way, four-way, five-way, and so on. Table 14-1 shows a range
of possibilities for naming ANOVAs.

Regardless of the number of independent variables, we can have different research
designs. As with other hypothesis tests, a between-groups design is one in which every
participant is in only one condition, and a within-groups design is one in which every
participant is in all conditions. A mixed design is one in which one of the independent
variables is between-groups and one is within-groups. In this chapter, we focus on the
ANOVA that uses the second adjective from column 1 and the first adjective from col-
umn 2: the two-way between-groups ANOVA.

There is a catch-all phrase for two-way, three-way, and higher-order ANOVAs; any
ANOVA with at least two independent variables can be called a factorial ANOVA, a
statistical analysis used with one scale dependent variable and at least two nominal independent
variables (also called factors). This is also called a multifactorial ANOVA. Factor is another
word used to describe an independent variable in a study with more than one independent variable.

In this section, we learn more about the situations in which we use a two-way
ANOVA, as well as the language that is used in reference to this type of hypothesis
test. Then we talk about the three effects that we are examining when we conduct a
two-way ANOVA.
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TABLE 14-1. How to Name an ANOVA

ANOVAs are typically described by two adjectives, one from the first column and one from the second. We
always have one descriptor from each column. So, we could have a one-way between-groups ANOVA or a
one-way within-groups ANOVA, a two-way between-groups ANOVA or a two-way within-groups ANOVA, and
so on. If at least one independent variable is between-groups and at least one is within-groups, it is a mixed-
design ANOVA.

                                                                            Participants in
           Number of Independent                                One or All                                Always Follows
               Variables: Pick One                             Samples: Pick One                            Descriptors

                      One-way                                            Between-groups                                     ANOVA

                      Two-way                                            Within-groups

                      Three-way                                         Mixed-design
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Why We Use a Two-Way ANOVA
To understand the benefits of a two-way ANOVA, let’s consider a specific example.
Since the mid-1990s, numerous studies (e.g., Bailey & Dresser, 2004; Mitchell, 1999)
have documented the potential for grapefruit juice to increase the blood levels of certain
medications, sometimes to toxic levels, by boosting the absorption of one or more of
the active ingredients. Even scarier, this potentially life-threatening increase cannot be
predicted for a given individual; it is found only by trial and error. For that reason,
many physicians suggest that patients who take a wide range of medications (from
some blood pressure drugs to many antidepressants) avoid grapefruit juice entirely. One
commonly used anticholesterol drug whose effect is moderately boosted, sometimes
dangerously, by the consumption of grapefruit juice is Lipitor (e.g., Bellosta, Paoletti,
& Corsini, 2004). Let’s use this particular interaction to understand how a two-way
ANOVA gives us much more information with far less effort and expense.

Let’s say that an investigator, Dr. Goldstein, wanted to know how to treat cholesterol
but only knew how to analyze hypothesis tests that used one independent variable, the
one-way between-groups ANOVA that we learned about in Chapter 12. She would
have to conduct one study to compare the effect of Lipitor on cholesterol levels with

the effect of another drug or a placebo. Then she
would have to conduct a second study to compare the
effect of grapefruit juice on cholesterol levels with that
of another beverage or with no beverage, a study that
might not even make much sense; after all, no one is
predicting grapefruit juice on its own to be a treat-
ment for high cholesterol. So how could she discover
whether Lipitor works differently when combined
with grapefruit juice?

A single study simultaneously examining medica-
tions like Lipitor and beverages like grapefruit juice is
more efficient than two studies examining each inde-
pendent variable separately. Two-way ANOVAs allow
researchers to examine both hypotheses with the re-
sources, time, and energy of a single study. But a two-
way ANOVA yields even more information than two
separate experiments.

Specifically, a two-way ANOVA allows researchers
to explore exactly what Dr. Goldstein wanted to ex-
plore: interactions. Does the effect of some medica-
tions, but not others, depend on the particular levels
of another independent variable, the beverages that ac-

company them? A two-way ANOVA can examine (1) the effect of Lipitor versus other
medications, (2) the effect of grapefruit juice versus other beverages, and (3) the ways
in which a drug and a juice might combine to create some entirely new, and often
unexpected, effect. ■

The More Specific Vocabulary of Two-Way ANOVA
Every ANOVA, we learned, has two descriptors, one indicating the number of inde-
pendent variables and one indicating the research design. Many researchers expand the
first descriptor to provide even more information about the independent variables.
Let’s consider these expanded descriptors in the context of Dr. Goldstein’s research.

EXAMPLE 14.1

The Perils of Grapefruit Juice Studies have demonstrated that grapefruit
juice (a level of one independent variable) can interact with many common
medications (levels of a second independent variable) to cause higher levels of
active ingredients (the dependent variable) to be absorbed into the bloodstream.
The medical journals that physicians read report the results of such two-way
ANOVAs because interactions have the potential to be toxic. This is why some
physicians recommend that patients who take certain medications avoid
grapefruit juice entirely.
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Were she to conduct just one study that examined both medication and beverage, she’d
assign each participant to one level of medication (perhaps Lipitor, another cholesterol
medication such as Zocor, or a placebo) and to one level of beverage (perhaps grapefruit
juice or water). This research design is shown in Table 14-2.

When we draw the design of a study, such as in Table 14-2, we call each box of the
design a cell, a box that depicts one unique combination of levels of the independent variables
in a factorial design. When cells contain numbers, they are usually means of the scores
of all participants who were assigned to that combination of levels. In Dr. Goldstein’s
study, participants are assigned to one of the six cells. Each participant is randomly as-
signed to one of the three levels of the variable medication: Lipitor, Zocor, or placebo.
Each level of medication is in one column of the table of cells.

Each participant is also assigned to one of the two levels of the variable beverage:
grapefruit juice or water. Each level of beverage is in one row of the table of cells. A
participant might be assigned to Lipitor and grapefruit juice (upper-left cell), placebo
and water (lower-right cell), or any of the other four combinations. In this case, there
are two independent variables, or factors: medication and beverage. Medication, in the
columns of the table, has three levels, and beverage, in the rows of the table, has two
levels.

This leads us to the new ANOVA vocabulary. Instead of the descriptor two-way,
many researchers refer to an ANOVA with this arrangement of cells as a 3 � 2 ANOVA
(pronounced “three by two,” not “three times two”). As with the two-way descriptor,
the ANOVA is described with a second adjective—usually between-groups or within-
groups. Because participants would receive only one medication and only one beverage,
the hypothesis test for this design could be called either a two-way between-groups
ANOVA or a 3 � 2 between-groups ANOVA. (An added benefit to the method of nam-
ing ANOVAs by the numbers of levels in each independent variable is the ease of cal-
culating the total number of cells. Simply multiply the levels of the independent
variables—the number of rows by the number of columns. In this case, the 3 � 2
ANOVA would have (3 � 2) � 6 cells.)

Two Main Effects and an Interaction
Two-way ANOVAs produce three F statistics: one for the first independent variable,
one for the second independent variable, and one for the interaction between the two
independent variables. The F statistics for each of the two independent variables de-
scribe main effects. A main effect occurs in a factorial design when one of the independent vari-
ables has an influence on the dependent variable. We evaluate whether there is a main effect
by disregarding the influence of any other independent variables in the study—we
temporarily pretend that the other variable doesn’t exist.

So, with two independent variables, Dr. Goldstein would have two possibilities
for a main effect. For example, after testing her participants in a two-way ANOVA,
she might find a main effect of “type of medication,” and she would test for that
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TABLE 14-2. Interactions with Grapefruit Juice

A two-way ANOVA allows researchers to examine two independent variables, as well as the ways in which
they might interact, simultaneously.

                                                               Lipitor (L)                      Zocor (Z)                      Placebo (P)

Grapefruit Juice (G)                             L & G                             Z & G                               P & G

Water (W)                                            L & W                            Z & W                              P & W

■ A cell is a box that depicts
one unique combination of
levels of the independent
variables in a factorial design.

■ A main effect occurs in a
factorial design when one of
the independent variables has
an influence on the dependent
variable.



main effect by temporarily pretending that the variable beverage hasn’t even been
included in the study. For example, Lipitor and Zocor might both work better than
placebo at lowering cholesterol. That’s the first F statistic. She also might find a main
effect of “beverage,” and she would test for that main effect by temporarily pretend-
ing that the variable type of medication hasn’t even been included in the study. For
example, drinking grapefruit juice may reduce cholesterol, at least as compared to
water. That’s the second F statistic.

The third F statistic in a two-way ANOVA has the potential to be
the most interesting because it is complicated by multiple, interacting
variables. As we discussed earlier, an interaction occurs when the effect
of one independent variable on the dependent variable depends on
the particular level of the other independent variable. For example,
Dr. Goldstein might find that both Lipitor and Zocor (but not
placebo) have more extreme effects on cholesterol when taken in
combination with grapefruit juice versus water. In other words, the
presence of the grapefruit juice changes the effects of Lipitor and
Zocor, but not placebo.

Each of the three F statistics has its own between-groups sum of squares (SS), de-
grees of freedom (df), mean square (MS), and critical value, but they all share a within-
groups mean square (MSwithin). The source table is shown in Table 14-3. The symbols
in the body of the table are replaced by the specific values of these statistics in an
actual source table.
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14-1: In a two-way ANOVA, we test three

different effects—two main effects, one for

each independent variable, and one

interaction, the joint effect of the two

independent variables.

TABLE 14-3. An Expanded Source Table

This source table is the framework into which we place the calculations for the two-way between-groups
ANOVA with independent variables of medication and beverage. It tells three stories: the two main  effects are
listed first, then the interaction.

             Source                            SS df MS F

Medication                        SSmedication dfmedication MSmedication Fmedication

Beverage                           SSbeverage dfbeverage MSbeverage Fbeverage

Medication � beverage     SSmedication � beverage dfmedication � beverage MSmedication � beverage Fmedication � beverage

Within                               SSwithin dfwithin MSwithin

Total                                 SStotal dftotal

CHECK YOUR LEARNING
Reviewing the Concepts > Factorial ANOVAs are used with multiple independent variables because they allow us to

examine several hypotheses in a single study and explore interactions.

> Factorial ANOVAs are often referred to by the levels of their independent variables (e.g.,
2 � 2) rather than the number of independent variables (e.g., two-way), and sometimes
the independent variables are called factors.

> Each unique combination of levels of the independent variables is represented by a cell in
the visual depiction of factorial ANOVAs.

> A two-way ANOVA can have two main effects (one for each independent variable) and
one interaction (the combined influence of both variables). Each effect and interaction has
its own set of statistics, including its own F statistic, displayed in an expanded source table.



Understanding Interactions in ANOVA
Media attention about NASA’s mission to Mars helped sell more Mars candy bars. Media
attention primed the word Mars, which made Mars candy bars come to mind more easily.
Priming, of course, would not increase sales for everybody—there would be exceptions
to the rule. For example, diabetics who never eat chocolate, people who hate Mars bars,
and people living someplace where they could not purchase Mars bars would all represent
interacting exceptions to the rule that priming increases sales of Mars bars. Another kind
of exception to the rule occurs when sales increase in the absence of priming. Halloween,
for example, temporarily increases sales of Mars bars well above the norm, and sales of
Mars bars just before this holiday would increase whether priming is taking place or not.
In other words, any subgroup that represents a significant exception in any direction to
the general trend in the data might indicate a statistical interaction. An interaction occurs
when the effect of one independent variable depends on the specific level of another in-
dependent variable.

In this section, we explore the concept of an interaction in a two-way ANOVA in
more depth. We look at a real-life example of an interaction, then introduce two
different types of interaction, quantitative and qualitative, that will help us to better in-
terpret interactions when they occur in our own research.
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Clarifying the Concepts 14-1 What is a factorial ANOVA?

14-2 What is an interaction?

Calculating the Statistics 14-3 Determine how many factors are in each of the following designs:

a. Three diet programs and two exercise programs are combined to assess their impact
on weight loss.

b. Three diet programs, two exercise programs, and three different personal
metabolism types are combined to determine their impact on weight loss.

c. The effect of gift certificate value ($15, $25, $50, and $100) on the amount people
spend over that value is investigated.

d. The effect of gift certificate value ($15, $25, $50, and $100) and store quality (low-
end versus high-end) on consumer overspending is investigated.

Applying the Concepts 14-4 Adam Alter, a graduate student at Princeton University, and his advisor, Daniel
Oppenheimer, studied whether names of stocks affected selling prices (Alter &
Oppenheimer, 2006). They found that stocks with pronounceable ticker-code names,
like “BAL,” tended to sell at higher prices than did stocks with unpronounceable
names, like “BDL.” They examined this effect one day, one week, six months, and one
year after the stock was offered for sale. (Note: For the purposes of this exercise, assume
that the two different types of stock were assessed at each time period.) The effect was
strongest one day after the stocks were initially offered.

a. What are the “participants” in this study?

b. What are the independent variables and what are their levels?

c. What is the dependent variable?

d. Using the descriptors from Chapter 12, what would you call the hypothesis test
that would be used for this study?

e. Using the new descriptors from this chapter, what would you call the hypothesis
test (i.e., statistical analysis) that would be used for this study?

f. How many cells are there? Explain how you calculated this answer.

Solutions to these Check Your
Learning questions can be found in
Appendix D.



Interactions and Public Policy
Hurricane Katrina demonstrates the importance of understanding interactions. First,
the hurricane itself was an interaction among several weather variables. The devastating

effects of the hurricane depended on particular levels of
other variables, such as where it made landfall and the
speed of its movement across the Gulf of Mexico. We
can’t understand Hurricane Katrina at a meteorological
level without understanding the concept of interactions.

Interactions were relevant for the people affected by
Hurricane Katrina as well. For example, one would
think that Hurricane Katrina would have been univer-
sally bad for the health of all those displaced people—
a main effect of a hurricane on health care. However,
there were exceptions to that rule, and three researchers
from the Tulane University School of Public Health and
Tropical Diseases in New Orleans proposed a startling
interaction regarding the effects of the hurricane on
health care for pregnant women (Buekens, Xiong, &
Harville, 2006).

Some women gave birth in the squalor of the Su-
perdome or in alleys while waiting for rescuers. When
it comes to pregnant women, the first priority of dis-
aster relief agencies is to provide obstetric and neona-
tal care. Massive relief efforts sometimes mean that
access to care for pregnant women is actually im-
proved in the aftermath of a disaster. Of course, the
quality of health care certainly doesn’t improve for

everybody, which means that an interaction is involved. So we could create a hy-
pothesis for why the quality of health care might improve for pregnant women in
the aftermath of a disaster, while it becomes worse for almost everyone else. In the
language of two-way ANOVA, we could hypothesize that the effect of a disaster
(one independent variable with two levels: disaster versus no disaster) on the quality
of health care (the dependent variable) depends on the type of health care needed
(the second inde pendent variable, also with two levels: obstetric/neonatal versus all
other types of health care).

Why might health care improve for pregnant women but not for others? Pregnant
women are among the most vulnerable people during a natural catastrophe, so perhaps
they are given more attention by rescue workers. Or perhaps the pregnant women are
more assertive in seeking help. Or both. At this point, we don’t know how to explain
the researchers’ findings, so we can only hypothesize. But in our complicated world,
the influence of one variable usually depends on a specific level of another variable.
Because we need to understand the logic of interactions to understand complicated
circumstances, we need to learn how to interpret interactions.

Interpreting Interactions
The two-way between-groups ANOVA allows us to separate the between-groups
variance into three finer categories: the two main effects, one for each independent
variable, and an interaction effect. The interaction effect is a blended effect result -
ing from the interaction between the two independent variables; it is not a separate
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Disaster Relief and Pregnant Women This refugee from Hurricane
Katrina and her newborn baby received care in a Baton Rouge, Louisiana,
shelter that focused on pregnant women and newborn infants and their
parents. When it comes to pregnant women, the first priority of disaster relief
agencies is to provide obstetrical and neonatal care. Massive relief efforts
sometimes mean that access to care for pregnant women is actually
improved in the aftermath of a disaster. Of course, the quality of health 
care certainly doesn’t improve for everybody, which means that an interaction
is involved.

■ A quantitative interaction is
an interaction in which one
independent variable exhibits a
strengthening or weakening of
its effect at one or more levels
of the other independent
variable, but the direction of
the initial effect does not
change.

■ A qualitative interaction is a
particular type of quantitative
interaction of two (or more)
independent variables in which
one independent variable
reverses its effect depending
on the level of the other
independent variable.

■ A marginal mean is the mean
of a row or a column in a table
that shows the cells of a study
with a two-way ANOVA design.



individual variable. The interaction effect is like mixing chocolate
syrup into a glass of milk; the two foods blend into something familiar
yet new.

Quantitative Interactions Two terms often used to describe inter-
actions are quantitative and qualitative (e.g., Newton & Rudestam,
1999). A quantitative interaction is an interaction in which one inde-
pendent variable exhibits a strengthening or weakening of its effect
at one or more levels of the other independent variable, but the di-
rection of the initial effect does not change. More specifically, the ef-
fect of one independent variable is modified in the presence of
another independent variable.

A qualitative interaction is a particular type of quantitative interaction
of two (or more) independent variables in which one independent variable re-
verses its effect depending on the level of the other independent variable. In a
qualitative interaction, the effect of one variable doesn’t just become
stronger or weaker; it actually reverses direction in the presence of
another variable. Let’s first examine the quantitative interaction.
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14-2: Researchers often describe

interactions with one of two terms—

quantitative or qualitative. In a quantitative

interaction, the effect of one independent

variable is strengthened or weakened at

one or more levels of the other independent

variable, but the direction of the initial effect

does not change. In a qualitative

interaction, one independent variable

actually reverses its effect depending on the

level of the other independent variable.

The grapefruit juice example is a helpful illustration of a quantitative interaction. Lipitor
and Zocor lead to elevations of some liver enzymes in combination with water, but
the absorption levels are even higher with grapefruit juice. This effect is not seen with
placebo, which has an equal effect regardless of beverage. The effects of Lipitor and
Zocor, therefore, depend on what type of beverage they are paired with, and the effect
of placebo does not. Let’s invent some numbers to demonstrate this. The numbers in
the cells in Table 14-4 don’t represent actual absorption levels; rather, they are numbers
that are easy for us to work with in our understanding of interactions. For this exercise,
we will consider every difference between numbers to be statistically significant. (Of
course, if we really conducted this study, we would conduct the two-way ANOVA to
determine exactly which effects were statistically significant.)

First, we consider main effects; then we consider the overall pattern that constitutes
the interaction. If there is a significant interaction, then we ignore any significant main
effects. The significant interaction supersedes any significant main effects.

Table 14-4 includes mean absorption levels for the six cells of the study. It also in-
cludes numbers in the margins of the table, to the right of and below the cells. The
numbers in the margins are also means, but for every participant in a given row or in
a given column. As you might expect, each of these is called a marginal mean, the mean
of a row or a column in a table that shows the cells of a study with a two-way ANOVA design.
In Table 14-4, for example, the mean across from the row for grapefruit juice, 41, is

EXAMPLE 14.2

TABLE 14-4. A Table of Means

We use a table to display the cell and marginal means so that we can interpret any main effects.

                                                          Lipitor                      Zocor                      Placebo

Grapefruit Juice                              60                             60                               3                          41

Water                                               30                             30                               3                          21

                                                               45                             45                               3



Let’s now consider the second main effect, that for medication. As before, we con-
struct a table (see Table 14-6) that shows only the means for medication, as if beverage
was not included in the study. We kept the means for beverage in rows and for medica-
tion in columns, just as they were in the original table. You may, however, arrange them
either way, whichever makes sense to you. Table 14-6 demonstrates that the absorption
levels for Lipitor and Zocor were higher, on average, than for placebo, which led to al-
most no absorption. This result would still need to be verified with a hypothesis test, but
we seem to have two main effects: (1) a main effect of beverage (grape fruit juice leads
to higher absorption, on average, than water does) and (2) a main effect of medication
(Lipitor and Zocor lead to higher absorption, on average, than placebo does).

But that’s not the whole story. Grapefruit juice, for example, does not lead to
higher absorption, on average, among placebo users. Here’s where the interaction
comes in. Now we ignore the marginal means and get back to the means in the cells
themselves, seen again in Table 14-7. Here we can see the overall pattern by framing
it in two different ways. We can start by considering beverage. Does grapefruit juice
boost mean absorption levels as compared to water? It depends. It depends on the
level of the other independent variable, medication; specifically, it depends on whether
the patient is taking one of the two medications or a placebo. We can also frame the
question by starting with medication. Do Lipitor and Zocor boost mean absorption
levels as compared to placebo? It depends. They do anyway, even when just drinking
water, but they do so to a far greater degree when drinking grapefruit juice. This is
a quantitative interaction because the strength of the effect varies under certain con-
ditions, but not the direction.

People sometimes perceive an interaction where there is none. If Lipitor, Zocor,
and placebo all had higher mean absorption rates when drinking grapefruit juice (versus
water), there would be no interaction. Lipitor and Zocor would always lead to a par-
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the mean absorption level of every participant who was assigned to drink grapefruit
juice, regardless of the medication level to which he or she was assigned. The mean
below the column for placebo, 3, is the mean absorption level of every participant who
took placebo, regardless of the beverage level to which he or she was assigned. (Al-
though we wouldn’t expect any absorption with placebo, we gave it a small value, 3,
to facilitate our explanation of interactions.)

The easiest way to understand the main effects is to make a smaller table for each,
with only the appropriate marginal means. Separate tables let us focus on one main
effect at a time without being distracted by the means in the cells. For the main effect
of beverage, we construct a table with two cells, as shown in Table 14-5. Notice that
we have only the means for beverage, as if medication was not included in the study.
The table makes it easy to see that the absorption level was higher, on average, for
grapefruit juice than for water. Still, we would have to conduct a two-way ANOVA
and reject the null hypothesis for this effect before drawing this conclusion.

TABLE 14-6. The Main Effect of Medication

This table shows only the marginal means that demonstrate the main effect
of medication. Because we have isolated these marginal means, we cannot
get distracted or confused by the other means in the table.

               Lipitor                             Zocor                            Placebo

                 45                                    45                                      3

TABLE 14-5. The Main Effect of Beverage

This table shows only the marginal means that demonstrate the main
effect of beverage. Because we have isolated these marginal means,
we cannot get distracted or confused by the other means in the table.

Grapefruit juice                                         41

Water                                                         21



ticular increase in average absorption levels versus placebo—this would occur in the
presence of any beverage. And grapefruit juice would always lead to a particular increase
in average absorption levels versus water—this would occur in the presence of any
medication. On the other hand, there is an interaction in the example we have been
considering because grapefruit juice has a special effect with the two medications that
it does not have with placebo. The tendency to see an interaction when there is none
can be diminished by constructing a bar graph, as in Figure 14-1.

The bar graph helps us to see the overall pattern, but one more step is necessary.
Once we have created the bar graph, we connect each set of bars with a line. We have
two choices that match the two ways we framed the interaction in words above. (1) As
in Figure 14-2, we could connect the bars for the first independent variable, medication.
We would connect the three medications for the grapefruit condition, and then we
would connect the three medications for the water condition. (2) Alternatively, as in
Figure 14-3, we could connect the bars for the two beverages. We would connect the
two beverages for Lipitor, then for Zocor, and then for placebo.
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TABLE 14-7. Examining the Overall Pattern of Means

A first step in understanding an interaction is examining the overall pattern of means in the cells.

                                                                  Lipitor                           Zocor                           Placebo

Grapefruit Juice                                    60                                  60                                    3

Water                                                     30                                  30                                    3
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0
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Grapefruit juice

FIGURE 14-1
Bar Graphs and Interactions

Bar graphs help us determine if there
really is an interaction. We can look at
the pattern of the bars to determine
whether there is an interaction. The bars
in this graph help us to see that, among
those taking placebo, absorption is the
same whether the placebo is
accompanied by grapefruit juice or
water, whereas, among those taking
Lipitor or Zocor, absorption is higher
when accompanied by grapefruit juice
than when accompanied by water.

FIGURE 14-2
Are the Lines Parallel? Part I

We add lines to bar graphs to help us to
determine whether there really is an
interaction. We draw a line connecting
the three medications under the
grapefruit juice condition. We then draw
a line connecting the three medications
under the water condition. These two
lines intersect, an indication of an
interaction that can be confirmed by
conducting a hypothesis test.



In Figure 14-3, notice that the lines do not intersect, but they’re not all parallel either.
If the lines were long enough, eventually the lines connecting the two bars for each
medication would intersect the line connecting the bar for placebo. Perfectly parallel
lines indicate the likely absence of an interaction, but we almost never see perfectly par-
allel lines emerging from real-life data sets; real-life data are usually messy. Nonparallel
lines may indicate an interaction, but we have to conduct an ANOVA and compare the
F statistic for the interaction with its critical value to be sure. Only if the lines are sig-
nificantly different from parallel can we reject the null hypothesis that there is no in-
teraction; and we only want to interpret an interaction if we reject the null hypothesis.

Some social scientists refer to an interaction as a significant difference in differences.
In the context of the grapefruit juice study, the mean difference between grapefruit
juice and water is larger when participants are taking one of the medications than when
they are taking placebo. In fact, for those taking placebo, there is no mean difference
between grapefruit juice and water. This is an example of a significant difference be-
tween differences. Whenever the effect of one independent variable on the dependent
variable depends on a particular level of the other independent variable, there is an in-
teraction. This interaction is represented graphically whenever the lines connecting the
bars are significantly different from parallel.

However, if grapefruit juice also led to an increase in mean absorption levels among
those taking placebo, the graph would look like the one in Figure 14-4. In this case,
the mean absorption levels of Lipitor and Zocor do increase with grapefruit juice, but
so does the mean absorption level of placebo, and there is likely no interaction. Grape-
fruit juice has the same effect, regardless of the level of the other independent variable
of medication. When in doubt about whether there is an interaction or just two main
effects that add up to a greater effect, draw a graph and connect the bars with lines. 
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FIGURE 14-3
Are the Lines Parallel? Part II

There are always two ways to examine
the pattern of our bar graphs. Here, we
have drawn three lines, one connecting
the two beverages under each of the
three medication conditions. Were the
three lines to continue, the two
medication lines would eventually
intersect with the horizontal placebo
line, an indication of an interaction that
can be confirmed by conducting a
hypothesis test.
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FIGURE 14-4
Parallel Lines

The three lines are exactly parallel. Were
they to continue indefinitely, they would
never intersect. Were this true among
the population (not just this sample),
there would be no interaction. ■



Qualitative Interactions Let’s recall the definition of a qualitative interaction: a par-
ticular type of quantitative interaction of two (or more) independent variables in which
the effect of one independent variable reverses its effect depending on the level of the
other independent variable.
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Here’s an example about how people integrate information and make decisions. Do
you think that, on average, people make better decisions when they consciously focus
on the decision? Or do they make better decisions when the decision-making process
is unconscious (i.e., making their decision
after being distracted by other tasks)? Which
decision-making method do you think is su-
perior, and why?

Researchers in the Netherlands conducted
a series of studies in which participants were
asked to decide between two options follow-
ing either conscious or unconscious thinking
about the choice. The studies were analyzed
with two-way ANOVAs (Dijksterhuis, Bos,
Nordgren, & van Baaren, 2006).

In one study, participants were asked to
choose one of four cars. One car was objec-
tively the best of the four, and one was objec-
tively the worst. Some participants made a less
complex decision; they were told 4 character-
istics of each car. Some participants made a
more complex decision; they were told 14
characteristics of each car. After learning about
the characteristics of the cars, half the partici-
pants in each group were randomly assigned to think consciously about the cars for
four minutes before making a decision. Half were randomly assigned to distract them-
selves for four minutes by solving anagrams before making a decision. The research
design, with two independent variables, is shown in Table 14-8. The first independent
variable is complexity, with two levels: less complex (4 attributes) and more complex
(14 attributes). The second independent variable is type of decision making, with two
levels: conscious thought and unconscious thought (distraction).

The researchers then evaluated how well people made their decisions; specifi -
cally, they calculated a score for each participant that reflected his or her ability to

EXAMPLE 14.3

Choosing the Best Car When
making decisions, such as which car to
buy, do we make better choices after
conscious or unconscious deliberation?
Research by Dijksterhuis and colleagues
(2006) suggests that less complex
decisions are typically better when
made after conscious deliberation,
whereas more complex decisions are
typically better when made after
unconscious deliberation.
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TABLE 14-8. A Two-Way Between-Groups ANOVA

Dutch researchers designed a study to examine what style of decision making led to the best choices in less
complex and more complex situations. Would you predict an interaction? In other words, would the lines con-
necting bars on a graph be different from parallel? And if they are different from parallel, how are they different?
If they are different just in strength, we are predicting a quantitative interaction. If the direction of effect actually
reverses, we are predicting a qualitative interaction.

                                                                                                                           Unconscious Thought
                                                                                Conscious Thought                     (Distraction)

Less Complex (4 Attributes of Each Car)                less complex; conscious         less complex; unconscious

More Complex (12 Attributes of Each Car)             more complex; conscious        more complex; unconscious



However, if there is also a significant interaction, these main effects don’t tell the
whole story. The overall pattern of cell means renders this knowledge misleading, even
inaccurate, under certain conditions. The interaction offers far more nuanced informa-
tion on the best method for making decisions. It demonstrates that the effect of the de-
cision-making method depends on the complexity of the decision. Conscious decision
making tends to be better than unconscious decision making in less complex situations,
but unconscious decision making tends to be better than conscious decision making in
more complex situations. This reversal of direction is what makes this a qualitative in-
teraction. It’s not just the strength of the effect that changes, but the actual direction!
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differentiate between the objectively best and objectively worst cars in the group.
This score represents the dependent variable, and higher numbers indicate a better
ability to differentiate between the best and worst cars. Let’s look at Table 14-9,
which presents cell means and marginal means for this experiment. Note that the
means are approximate and that the marginal means are created by assuming the
same number of participants in each cell. As we consider these findings, we will as-
sume that all differences are statistically significant. (In a real research situation, we
would conduct an ANOVA to determine whether the main effects and interaction
were statistically significant.)

Because there was an overall pattern—an interaction—the researchers did not pay
attention to the main effects in this study; an interaction trumps any main effects.
However, let’s examine the main effects—to get some practice—first for the inde-
pendent variable of complexity and then for the independent variable of type of de-
cision making, and create tables for each of the two main effects so that we can
examine them independently (Tables 14-10 and 14-11). The marginal means indicate
that when type of decision making is ignored entirely, people make better decisions,
on average, in less complex situations than in more complex situations. Further, the
marginal means also suggest that, when complexity of decision is ignored, people
make better decisions, on average, when the decision-making process is unconscious
than when it is conscious.

TABLE 14-9. Decision-Making Tactics

To understand the main effects and overall pattern of a two-way ANOVA, we start by examining the cell means
and marginal means.

                                                                                                 Unconscious Thought
                                                  Conscious Thought                         (Distraction)

Less Complex                                  5.5                                                 2.3                                  3.9

More Complex                                 0.6                                                 5.0                                  2.8

                                                                3.05                                               3.65

TABLE 14-11. Main Effect of Type of Decision Making

These marginal means suggest that, overall, participants are better at making
decisions when the decision making is unconscious—that is, when they are
distracted.

                   Conscious                                          Unconscious

                       3.05                                                        3.65

TABLE 14-10. Main Effect of Complexity 
of Decision

These marginal means suggest that, overall, participants are better
at making less complex decisions.

               Less complex                                           3.9

More complex                                          2.8



A bar graph, shown in Figure 14-5, makes the
pattern of the data far clearer. We can actually see
the qualitative interaction. The direction of the effect
of type of decision making in less complex situations
is opposite that in more complex situations.

As with a quantitative interaction, we would add
lines to determine whether they are parallel (no
matter how long the lines were drawn) or intersect
(or would do so if extended far enough), as in Fig-
ure 14-6. Here we see that the lines intersect with-
out even having to extend them beyond the graph.
This is likely an interaction. Furthermore, the fact that the direction reverses
indicates that this is a qualitative, not a quantitative, interaction. Type of decision mak-
ing has an effect on differentiation between best and worst cars, but it depends on
the complexity of the decision. Those making a less complex decision tend to make
better choices if they use conscious thought. Those making a more complex decision
tend to make better choices if they use unconscious thought. We would, as usual,
verify this finding by conducting a hypothesis test before rejecting the null hypothesis
that there is no interaction.

The qualitative interaction of decision-making method and complexity of situ -
ation was not likely to have been predicted by common sense. When this occurs, we
should be cautious before generalizing the findings. In this case, the research was care-
fully conducted and the researchers replicated their
findings across several situations. For example, the
researchers found similar effects in a real-life con -
text when the less complex situation was shop -
ping at a department store that sold clothing and
kitchen products, and the more complex situation
was purchasing furniture at IKEA. Such an intrigu-
ing finding would not have been possible without
the inclusion of two independent variables in one
study, which required that researchers use a two-
way ANOVA capable of testing for two main effects
and interactions.

So what do these findings mean for us as we approach the decisions we face every
day? Which sunblock should we buy to best protect against UV rays? Should we go
to graduate school or get a job following graduation? Should we consciously consider
characteristics of sunblocks but “sleep on” graduate school–related factors? Research
would suggest that the answer to the last question is yes (Dijksterhuis et al., 2006). Yet,
if the history of social science research is any indication, there are other factors that
were not included in these studies but likely affect the quality of our decisions. And
so the research process continues.
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FIGURE 14-5
Graphing Decision-Making
Methods

This bar graph displays the interaction
far better than does a table or than do
words. We can see that it is a qualitative
interaction; there is an actual reversal of
direction of the effect of decision-
making method in less complex versus
more complex situations.
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FIGURE 14-6
The Intersecting Lines of a
Qualitative Interaction

When we draw two lines, one for the
two bars that represent less complex
situations and one for the two bars that
represent more complex situations, we
can easily see that they intersect. Lines
that intersect, or would intersect if we
extended them, indicate an interaction.

continued on next page

CHECK YOUR LEARNING
Reviewing the Concepts > A two-way ANOVA is represented by a grid or matrix in which cells represent each unique

combination of independent variables. Means are calculated for cells, called cell means. Means
are also computed for each level of an independent variable, by itself, regardless of the levels
of the other independent variable. These means, found in the margins of the grid, are called
marginal means.
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Clarifying the Concepts 14-5 What is the difference between a quantitative interaction and a qualitative interaction?

14-6 Why are main effects ignored when there is an interaction? (We often say they are
trumped by an interaction.)

Calculating the Statistics 14-7 Data are presented here for two hypothetical independent variables (IVs) and their
combinations.

IV 1, level A; IV 2, level A: 2, 1, 1, 3
IV 1, level B; IV 2, level A: 5, 4, 3, 4
IV 1, level A; IV 2, level B: 2, 3, 3, 3
IV 1, level B; IV 2, level B: 3, 2, 2, 3

a. Figure out how many cells are in this study’s table, and draw a grid to represent
them.

b. Calculate cell means and write them in the cells of the grid.

c. Calculate marginal means and write them in the margins of the grid.

d. Draw a bar graph of these data.

Applying the Concepts 14-8 For each of the following situations involving a real-life interaction, (i) state the
independent variables, (ii) state the likely dependent variable, (iii) construct a table
showing the cells, and (iv) explain whether it describes a qualitative or quantitative
interaction.

a. Caroline and Mira are both really smart and do equally well in their psychology
class, but something happens to Caroline when she goes to their philosophy class.
She just can’t keep up, whereas Mira does even better.

b. Our college baseball team has had a great few years. The team plays especially well
at home versus away if playing teams in its own conference. However, it plays
especially well at away games (versus home games) if playing teams from another
conference.

c. Caffeinated drinks get me wired and make it somewhat difficult to sleep. So does
working out in the evenings. When I do both, I’m so wired that I might as well
stay up all night.

Solutions to these Check Your
Learning questions can be found in
Appendix D.

> When there is a statistically significant interaction, the main effects are considered to be
modified by an interaction. As a result, we ignore the main effects and focus only on the
overall pattern of cell means that reveals the interaction.

> Two categories of interactions describe the overall pattern of cell means—quantitative in-
teractions and qualitative interactions.

> The most common interaction is a quantitative interaction in which the effect of the first
independent variable depends on the levels of the second independent variable, but the dif-
ferences at each level vary only in the strength of the effect.

> Qualitative interactions are those in which the effect of the first independent variable de-
pends on the levels of the second independent variable, but the direction of the effect ac-
tually reverses across the levels of the second independent variable.

> There are three ways to identify a statistically significant interaction: (1) visually, whenever
the lines connecting the means of each group are significantly different from parallel;
(2) conceptually, when you need to use the idea of “it depends” to tell the data’s story;
and (3) statistically, when the p value associated with an interaction in a source table is
� 0.05, as with other hypothesis tests. This last option, the statistical analysis, is the only
objective way to assess the interaction.



Conducting a Two-Way Between-Groups ANOVA
Advertising agencies understand that interactions can help them target their advertising
campaigns. For example, researchers demonstrated that an increased exposure to dogs
(linked in our memories to cats through familiar phrases such as “it’s raining cats and
dogs”) positively influenced people’s evaluations of Puma sneakers (a brand whose
name refers to a cat), but only for people who recognized the Puma logo (Berger &
Fitzsimons, 2008). The interaction between frequency of exposure to dogs (one inde-
pendent variable) and whether or not someone could recognize the Puma logo (a sec-
ond independent variable) combined to create a more positive evaluation of Puma
sneakers (the dependent variable). Once again, both variables were needed to produce
an interaction.

Behavioral scientists explore interactions by using two-way ANOVAs. Fortunately,
hypothesis testing for a two-way between-groups ANOVA uses the same logic as hy-
pothesis testing for a one-way between-groups ANOVA. For example, the null hy-
pothesis is exactly the same: no mean differences exist between groups. Type I and
Type II errors still pose the same threats to decision making: rejecting the null hypoth -
esis when we shouldn’t reject it or not rejecting the null hypothesis when we
should reject it. We compare an F statistic to a critical F value to decide whether to
reject the null hypothesis. The main way that a two-way ANOVA differs from a one-
way ANOVA is that three ideas are being tested and each idea is a separate source of
variability.

The three ideas being tested in a two-way between-groups ANOVA are the main
effect of the first independent variable, the main effect of the second independent
variable, and the interaction effect of the two independent variables. A fourth source
of variability in a two-way ANOVA is within-groups variance. Let’s learn how to
separate and measure these four sources of variance by evaluating a commonly used
educational method to improve public health: myth-busting.

The Six Steps of a Two-Way ANOVA
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Does myth-busting really improve public health? Here are some myths and facts.
From the Web site of the Headquarters Counseling Center (2005) in Lawrence,

Kansas:

Myth: “Suicide happens without warning.”
Fact: “Most suicidal persons talk about and/or give behavioral clues about their
suicidal feelings, thoughts, and intentions.”

From the Web site for the World Health Organization (2007):

Myth: “Disasters bring out the worst in human behavior.”
Fact: “Although isolated cases of antisocial behavior exist, the majority of people
respond spontaneously and generously.”

A group of Canadian researchers examined the effectiveness of myth-busting
(Skurnik, Yoon, Park, & Schwarz, 2005). They wondered whether the effectiveness of
debunking false medical claims depends on the age of the person targeted by the mes-
sage. In one study, they compared two groups of adults: one group of 32 younger adults,
ages 18–25, and a second group of 32 older adults, ages 71–86, for a total of 64 par-
ticipants. Participants were presented with a series of claims and were told that each

EXAMPLE 14.4
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claim was either true or false. (In reality, all claims were true, partly
because researchers did not want to run the risk that participants
would misremember false claims as being true.) In some cases, the
claim was presented once, and in other cases, it was repeated three
times. In either case, the accurate information was presented after
each “false” statement. (Note that we have altered the study’s de-
sign somewhat in our description to make the study simpler for
our purposes, but the results are the same.)

The two independent variables in this study were age, with two
levels (younger and older), and number of repetitions, with two
levels (once and three times). The dependent variable, proportion
of responses that were wrong after a three-day delay, was  calculated
for each participant. This was a two-way between-groups
ANOVA. Alternatively, we could label it a 2 � 2 between-groups
ANOVA. From this name, we know that the table has four cells:
(2 � 2) � 4. There were 64 participants—16 in each cell. But
here, we use an example with 12 participants—3 in each cell. Here
are the data that we’ll use; they have similar means to those in the
actual study, and the F statistics are similar as well.

Let’s consider the steps of hypothesis testing for a two-way between-groups
ANOVA in the context of this example.

The first step of hypothesis testing for a two-
way between-groups ANOVA is very similar
to that for a one-way between-groups

ANOVA. First, we state the populations, but we specify that they are broken down
into more than one category. In the current example, there are four populations, so
there are four cells (see Table 14-12). With 12 participants, there are 3 in each cell. As
we do the calculations, think of the first independent variable, age, as being in the rows

                                              Proportion of Responses
Experimental Conditions               That Were Wrong                Mean

Younger, one repetition                        0.25, 0.21, 0.14                    0.20

Younger, three repetitions                    0.07, 0.13, 0.16                    0.12

Older, one repetition                            0.27, 0.22, 0.17                    0.22

Older, three repetitions                        0.33, 0.31, 0.26                    0.30

STEP 1: Identify the populations,
distribution, and assumptions.
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Do We Remember the Medical Myth or the Fact?
Skurnik and colleagues (2005) studied the factors that influenced
the misremembering of false medical claims as facts. They asked:
When a physician tells a patient a false claim, then debunks it with
the facts, does the patient remember the false claim or the facts? A
source table will examine each factor in our study and tell us how
much of the variability in the dependent variable is explained by
that factor.

TABLE 14-12. Studying the Memory of False Claims Using a Two-Way ANOVA

The study of memory for false claims has two independent variables: age (younger, older) and number of rep-
etitions (one, three).

                                                            One Repetition (1)                             Three Repetitions (3)

Younger (Y)                                           Y; 1                                                        Y; 3

Older (O)                                                O; 1                                                       O; 3



of the table, and think of the second independent variable, number of repetitions, as
being in the columns of the tables.

There are four populations, each with labels representing the levels of the two in-
dependent variables to which they belong.

Population 1 (Y; 1): Younger adults who hear one repetition of a false claim.
Population 2 (Y; 3): Younger adults who hear three repetitions of a false claim.
Population 3 (O; 1): Older adults who hear one repetition of a false claim.
Population 4 (O; 3): Older adults who hear three repetitions of a false claim.

We next consider the characteristics of the data to determine the distributions to
which we will compare the sample. We have more than two groups, so we need to
consider variances to analyze differences among means. Therefore, we will use F dis-
tributions. Finally, we list the hypothesis test that we would use for those distributions
and check the assumptions for that hypothesis test. For F distributions, we will use
ANOVA—in this case, a two-way between-groups ANOVA.

The assumptions are the same for all types of ANOVA. First, the sample should be
selected randomly. Second, the populations should be distributed normally. Third, the
population variances should be equal.

(1) These data were not randomly selected. Younger adults were recruited from a
university setting, and older adults were recruited from the local community. Because
random sampling was not used, we must be cautious when generalizing from these sam-
ples. (2) The researchers did not report whether they investigated the shapes of the dis-
tributions of their samples to assess the shapes of the underlying populations. (3) The
researchers did not provide standard deviations of the samples as an indication of
whether the population spreads might be approximately equal, a condition known as
homoscedasticity. If we were analyzing our own data, we would explore these assumptions
using our sample data.

Summary: Population 1 (Y; 1): Younger adults who hear one repetition of a false claim.
Population 2 (Y; 3): Younger adults who hear three repetitions of a false claim. Popu-
lation 3 (O; 1): Older adults who hear one repetition of a false claim. Population 4
(O; 3): Older adults who hear three repetitions of a false claim.

The comparison distributions will be F distributions. The hypothesis test will be a
two-way between-groups ANOVA. Assumptions: (1) The data are not from random
samples, so we must generalize only with caution. (2) From the published research re-
port, we do not know if the underlying population distributions are  normal. (3) We
do not know if the population variances are approximately equal (homoscedasticity).

The second step, to state the null and re-
search hypotheses, is similar to that for a
one-way between-groups ANOVA, except

that we now have three sets of hypotheses, one for each main effect and one for the
interaction. Those for the two main effects are the same as those for the one effect of
a one-way between-groups ANOVA (see summary section below). If there are only
two levels, then we can simply say that the two levels are not equal; if there are only
two levels and there is a statistically significant difference, then it must be between those
two levels. Note that because there are two independent variables, we clarify which
variable we are referring to by using initial letters or abbreviations for the levels of each
(e.g., Y for younger and O for older). If an independent variable has more than two
levels, the research hypothesis would be that any two levels of the independent variable
are not equal to one another.

STEP 2: State the null and research
hypotheses.
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The hypotheses for the interaction are typically stated in words but not in symbols.
The null hypothesis is that the effect of one independent variable is not dependent on
the levels of the other independent variable. The research hypothesis is that the effect
of one independent variable depends on the levels of the other independent variable.
It does not matter which independent variable we list first (i.e., “the effect of age is
not dependent . . .” or “the effect of number of repetitions is not dependent . . .”).
Write the hypotheses in the way that makes the most sense to you.

Summary: The hypotheses for the main effect of the first independent variable, age,
are as follows. Null hypothesis: On average, younger adults have the same proportion
of responses that are wrong when remembering which claims are myths compared
with older adults—H0:lY � lO. Research hypothesis: On average, younger adults have
a different proportion of responses that are wrong when remembering which claims
are myths compared with older adults—H1: lY � lO.

The hypotheses for the main effect of the second independent variable, number of
repetitions, are as follows. Null hypothesis: On average, those who hear one repetition
have the same proportion of responses that are wrong when remembering which claims
are myths compared with those who hear three repetitions—H0: l1 � l3. Research
hypothesis: On average, those who hear one repetition have a different proportion of
responses that are wrong when remembering which claims are myths compared with
those who hear three repetitions—H1: l1 � l3.

The hypotheses for the interaction of age and number of repetitions are as follows.
Null hypothesis: The effect of number of repetitions is not dependent on the levels
of age. Research hypothesis: The effect of number of repetitions depends on the levels
of age.

The third step is similar to that of a one-way
between-groups ANOVA, except that there
are three comparison distributions, all of

them F distributions. We need to provide the appropriate degrees of freedom for each
of these: two main effects and one interaction. As before, each F statistic is a ratio of
two types of variance, between-groups variance and within-groups variance. Because
there are three effects for a two-way ANOVA, there are three between-groups variance
estimates, each with its own degrees of freedom. There is only one within-groups vari-
ance estimate for all three, so the within-groups variance (and its degrees of freedom)

is the same for all three possible effects.
For each main effect, the between-groups degrees of freedom is calculated as

for a one-way ANOVA: the number of groups minus 1. The first independent vari-
able, age, is in the rows of the table of cells, so the between-groups degrees of free-
dom is:

dfrows(age) � Nrows � 1 � 2 � 1 � 1

The second independent variable, number of repetitions, is in the columns of
the table of cells, so the between-groups degrees of freedom is:

dfcolumns(reps) � Ncolumns � 1 � 2 � 1 � 1

We now need a between-groups degrees of freedom for the interaction,
which is calculated by multiplying the degrees of freedom for the two main
effects:

STEP 3: Determine the characteristics
of the comparison distribution.
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MASTERING THE FORMULA

14-1: The formula for the  between-
groups degrees of freedom for the in-
dependent variable in the rows of the
table of cells is: dfrows � Nrows � 1. We
subtract 1 from the number of rows,
representing levels, for that variable.

MASTERING THE FORMULA

14-2: The formula for the between-
groups degrees of freedom for the inde-
pendent variable in the columns of the
table of cells is: dfcolumns � Ncolumns � 1. We
subtract 1 from the number of columns,
representing levels, for that variable.

                                        �

                                        �
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�                                         MASTERING THE FORMULA

14-3: The formula for the between-
groups degrees of freedom for the
interaction is: dfinteraction � (dfrows)
(dfcolumns). We multiply the degrees of
freedom for each of the independent
variables.

�                                         

MASTERING THE FORMULA

14-4: To calculate the within-
groups degrees of freedom, we first
calculate degrees of freedom for
each cell. That is, we subtract 1 from
the number of participants in each
cell. We then sum the degrees of
freedom for each cell. For a study in
which there are four cells, we use
this formula: dfwithin � dfcell 1 � dfcell 2
� dfcell 3 � dfcell 4.

�                                         MASTERING THE FORMULA

14-5: There are two ways to calcu-
late the total degrees of freedom. We
can subtract 1 from the total number
of participants in the entire study:
dftotal � Ntotal � 1. We can also add
the three between-groups degrees of
freedom and the within-groups de-
grees of freedom. It’s a good idea to
calculate it both ways as a check on
our work.

dfinteraction � (dfrows(age))(dfcolumns(reps)) � (1)(1) � 1

The within-groups degrees of freedom is calculated like that for a one-way
between-groups ANOVA, the sum of the degrees of freedom in each of the cells. In
the current example, there are three participants in each cell, so the within-groups
degrees of freedom is calculated as follows, with N representing the number in
each cell:

dfY,1 � N � 1 � 3 � 1 � 2

dfY,3 � N � 1 � 3 � 1 � 2

dfO,1 � N � 1 � 3 � 1 � 2

dfO,3 � N � 1 � 3 � 1 � 2

dfwithin � dfY,1 � dfY,3 � dfO,1 � dfO,3 � 2 � 2 � 2 � 2 � 8

For a check on our work, we can calculate the total degrees of freedom just as we
did for the one-way between-groups ANOVA. We subtract 1 from the total number
of participants:

dftotal � Ntotal � 1 � 12 � 1 � 11

We can now add up the three between-groups degrees of freedom and the within-
groups degrees of freedom to see if they equal 11. If they do not, we can check the
calculations to find the error. In this case, they match:

11 � 1 � 1 � 1 � 8

Finally, for this step, we list the distributions with their degrees of freedom for the
three effects. Note that, although the between-groups degrees of freedom for the three
effects are the same in this case, they are often different. For example, if one independent
variable had three levels and the other had four, the between-groups degrees of freedom
for the main effects would be 2 and 3, respectively, and the between-groups degrees
of freedom for the interaction would be 6.
Summary: Main effect of age: F distribution with 1 and 8 degrees of freedom.

Main effect of number of repetitions: F distribution with 1 and 8 degrees of  freedom.
Interaction of age and number of repetitions: F distribution with 1 and 8 degrees

of freedom. (Note: It is helpful to include all degrees of freedom calculations in
this step.)

Again, this step for the two-way between-
groups ANOVA is just an expansion of that
for the one-way version. We now need three

cutoffs, or critical values, but they’re determined just as we determined them before.
We use the F table in Appendix B.

For each main effect and for the interaction, we look up the within-groups de-
grees of freedom, which is always the same for each effect, along the left-hand side
and the appropriate between-groups degrees of freedom across the top of the table.
The place on the grid where this row and this column intersect contains three num-
bers. From top to bottom, the table provides cutoffs for p levels of 0.01, 0.05, and
0.10. As usual, we typically use 0.05. In this instance, it happens that the critical value

STEP 4: Determine the critical values,
or cutoffs.
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FIGURE 14-7
Determining Cutoffs for 
an F Distribution

We determine the cutoffs, or critical
values, for an F distribution for a two-
way between-groups ANOVA just as we
did for a one-way between-groups
ANOVA, except that we must calculate
three cutoffs, one for each main effect
and one for the interaction. In this case,
the between-groups degrees of freedom
are the same for all three, and so the
cutoffs are the same.

is the same for both main effects and for the interaction because the
between-groups degrees of freedom is the same for all three. But
when the between-groups degrees of freedom are different, as often
happens, there are different critical values. Here, we look up the
between-groups degrees of freedom of 1, the within-groups degrees
of freedom of 8, and a p level of 0.05. The cutoff for all three is 5.32,
as seen in Figure 14-7.
Summary: There are three critical values (which in this case are all the
same), as seen in the curve in Figure 14-7. The critical F value for the
main effect of age is 5.32. The critical F value for the main effect of
number of repetitions is 5.32. The critical F value for the interaction
of age and number of repetitions is 5.32.

As with the one-way between-groups
ANOVA, the fifth step for the two-way

between-groups ANOVA is the most time-consuming. As you might guess, it’s similar
to what we already learned, but we have to calculate three F statistics instead of one.
We learn the logic and the specific calculations for this step in the next section.

This step is the same as for a one-way
between- groups ANOVA, except that we

compare each of the three F statistics to its appropriate cutoff F statistic. If the F statistic
is beyond the critical value, then we know that it is in the most extreme 5% of possible
test statistics if the null hypothesis is true. After making a decision for each F statistic,
we present the results in one of three ways.

First, if we are able to reject the null hypothesis for the interaction, then we can
draw a specific conclusion with the help of a table and graph. Because we have more
than two groups, we use a post-hoc test, such as the one that we learned in Chapter
12. Because there are three effects, post-hoc tests are typically implemented separately
for each main effect and for the interaction (Hays, 1994). If the interaction is statisti-
cally significant, then it might not matter whether the main effects are also significant;
if they are also significant, then those findings are usually qualified by the interaction,
and they are not described separately. The overall pattern of cell means can tell the
whole story.

Second, if we are not able to reject the null hypothesis for the interaction, then we
focus on any significant main effects, drawing a specific directional conclusion for each.
In this study, each independent variable has only two levels, so there is no need for a
post-hoc test. If there were three or more levels, however, then each significant main
effect would require a post-hoc test to determine exactly where the differences lie.
Third, if we do not reject the null hypothesis for either main effect or the interaction,
then we can only conclude that there is insufficient evidence from this study to support
our research hypotheses. We will complete step 6 of hypothesis testing for this study
in the next section, after we consider the calculations of the source table for a two-
way between-groups ANOVA. ■

Identifying Four Sources of Variability in a Two-Way ANOVA
In this section, we complete step 5 for a two-way  between- groups ANOVA. The cal-
culations for a two-way  between- groups ANOVA are similar to those for a one-way
between- groups ANOVA, except that we calculate three F statistics. We use a source
table with elements like those shown in Table 14-18.

STEP 5: Calculate the test statistic.

STEP 6: Make a decision.

5%

5.320
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14-6: We calculate the total sum of
squares using the following formula:
SStotal � R(X � GM)2. We subtract
the grand mean from every score to
create deviations, then square the de-
viations, and finally sum the squared
deviations.

First, we calculate the total sum of squares (Table 14-13). We calculate this number
in exactly the same way as for a one-way ANOVA. We subtract the grand mean, 0.21,
from every score to create deviations, then square the deviations, and finally sum the
squared deviations:

SStotal � R(X � GM)2 � 0.0672

We now calculate the between-groups sums of squares for the two main effects—
the one in the rows and then the one in the columns of the table. Both are calculated
similarly to the between-groups sum of squares for a one-way between-groups
ANOVA. The table with the cell means, marginal means, and grand mean is shown in
Table 14-14. The between-groups sum of squares for the main effect of the independent
variable age would be the sum, for every score, of the marginal mean minus the grand
mean, squared. We list all 12 scores in Table 14-15, marking the divisions among the
cells. For each of the 6 younger participants, those in the top 6 rows of Table 14-15,
we subtract the grand mean, 0.21, from the marginal mean, 0.16. For the 6 older par-
ticipants, those in the bottom 6 rows, we subtract 0.21 from the marginal mean, 0.26.

TABLE 14-13. Calculating the Total Sum of Squares

The total sum of squares is calculated by subtracting the overall mean, called the grand mean, from every
score to create deviations, then squaring the deviations and summing them: R(X � GM)2 � 0.0672.

                                            X                                     (X � GM)                                    (X � GM)2

           Y, 1                           0.25                          (0.25 � 0.21) � 0.04                                  0.0016

                                           0.21                          (0.21 � 0.21) � 0.00                                  0.0000

                                           0.14                          (0.14 � 0.21) � �0.07                              0.0049

           Y, 3                           0.07                          (0.07 � 0.21) � �0.14                              0.0196

                                           0.13                          (0.13 � 0.21) � �0.08                              0.0064

                                           0.16                          (0.16 � 0.21) � �0.05                              0.0025

           O, 1                          0.27                          (0.27 � 0.21) � 0.06                                  0.0036

                                           0.22                          (0.22 � 0.21) � 0.01                                  0.0001

                                           0.17                          (0.17 � 0.21) � �0.04                              0.0016

           O, 3                          0.33                          (0.33 � 0.21) � 0.12                                  0.0144

                                           0.31                          (0.31 � 0.21) � 0.10                                  0.0100

                                           0.26                          (0.26 � 0.21) � 0.05                                  0.0025

TABLE 14-14. Means for False Medical Claims Study

The study of the misremembering of false medical claims as true had two independent variables, age and
number of repetitions. The cell means and marginal means for error rates are shown in the table. The grand
mean is 0.21.

                                               One Repetition (1)                    Three Repetitions (3)

Younger (Y)                                  0.20                                              0.12                                  0.16

Older (O)                                      0.22                                              0.30                                  0.26

                                                            0.21                                              0.21                                  0.21
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We square all of these deviations and then add them to calculate the sum of squares
for the rows, the independent variable of age:

SSbetween(rows) � R(Mrow(age) � GM)2 � 0.03

We repeat this process for the second possible main effect, that of the independent
variable in the columns of the tables (Table 14-16). So the between-groups sum of

TABLE 14-15. Calculating the Sum of Squares for the First Independent Variable

The sum of squares for the first independent variable is calculated by subtracting the overall mean (the grand
mean) from the mean for each level of that variable—in this case, age—to create deviations, then squaring
the deviations and summing them: R(Mrow(age) � GM)2 � 0.03.

                                            X                                (Mrow(age) � GM)                         (Mrow(age) � GM)2

           Y, 1                           0.25                          (0.16 � 0.21) � �0.05                              0.0025

                                           0.21                          (0.16 � 0.21) � �0.05                              0.0025

                                           0.14                          (0.16 � 0.21) � �0.05                              0.0025

           Y, 3                           0.07                          (0.16 � 0.21) � �0.05                              0.0025

                                           0.13                          (0.16 � 0.21) � �0.05                              0.0025

                                           0.16                          (0.16 � 0.21) � �0.05                              0.0025

           O, 1                          0.27                          (0.26 � 0.21) � 0.05                                  0.0025

                                           0.22                          (0.26 � 0.21) � 0.05                                  0.0025

                                           0.17                          (0.26 � 0.21) � 0.05                                  0.0025

           O, 3                          0.33                          (0.26 � 0.21) � 0.05                                  0.0025

                                           0.31                          (0.26 � 0.21) � 0.05                                  0.0025

                                           0.26                          (0.26 � 0.21) � 0.05                                  0.0025

TABLE 14-16. Calculating the Sum of Squares for the Second Independent Variable

The sum of squares for the second independent variable is calculated by subtracting the overall mean (the grand mean) from the mean for each level of that
variable—in this case, number of repetitions—to create deviations, then squaring the deviations and summing them: R(Mcolumn(reps) � GM )2 � 0.

                                                                  X                                         (Mcolumn(reps) � GM)                                       (Mcolumn(reps) � GM)2

                  Y, 1                                           0.25                                           (0.21 � 0.21) � 0                                                          0

                                                                  0.21                                           (0.21 � 0.21) � 0                                                          0

                                                                  0.14                                           (0.21 � 0.21) � 0                                                          0

                  Y, 3                                           0.07                                           (0.21 � 0.21) � 0                                                          0

                                                                  0.13                                           (0.21 � 0.21) � 0                                                          0

                                                                  0.16                                           (0.21 � 0.21) � 0                                                          0

                  O, 1                                          0.27                                           (0.21 � 0.21) � 0                                                          0

                                                                  0.22                                           (0.21 � 0.21) � 0                                                          0

                                                                  0.17                                           (0.21 � 0.21) � 0                                                          0

                  O, 3                                          0.33                                           (0.21 � 0.21) � 0                                                          0

                                                                  0.31                                           (0.21 � 0.21) � 0                                                          0

                                                                  0.26                                           (0.21 � 0.21) � 0                                                          0

                                        �

MASTERING THE FORMULA

14-7: We calculate the between-
groups sum of squares for the first
independent variable, that in the
rows of the table of cells, using the
following formula: SSbetween(rows) �

R(Mrow � GM)2. For every partici-
pant, we subtract the grand mean
from the marginal mean for the ap-
propriate row for that participant.
We square these deviations, and sum
the squared deviations.
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squares for number of repetitions, then, would be the sum, for every score, of the mar-
ginal mean minus the grand mean, squared. We would again list all 12 scores, marking
the divisions among the cells. For each of the 6 participants who had one repetition,
those in the left-hand column of Table 14-14 and in rows 1–3 and 7–9 of Table 14-16,
we’d subtract the grand mean, 0.21, from the marginal mean, 0.21. For each of the 6
participants who had three repetitions, those in the right-hand column of Table 14-14
and in rows 4–6 and 10–12 of Table 14-16, we’d subtract 0.21 from the marginal mean,
0.21. (Note: It is a coincidence that in this case the marginal means are exactly the
same.) We’d square all of these deviations and add them to calculate the between-
groups sum of squares for the columns, the independent variable of number of repe-
titions. Again, the calculations for the between-groups sum of squares for each main
effect are just like the calculations for the between-groups sum of squares in a one-
way between-groups ANOVA:

SSbetween(columns) � R(Mcolumn(reps) � GM)2 � 0

The within-groups sum of squares is calculated in exactly the same way as for the
one-way between-groups ANOVA (Table 14-17). For each of the 12 scores, the cell
mean is subtracted from the score. The deviations are squared and summed:

SSwithin � R(X � Mcell)
2 � 0.018

All we need now is the between-groups sum of squares for the interaction. We can
calculate this by subtracting the other between-groups sums of squares (those for the
two main effects) and the within-groups sum of squares from the total sum of squares.
The between-groups sum of squares for the interaction is essentially what is left over
when the main effects are accounted for. Mathematically, any variability that is pre-
dicted by these variables, but is not directly predicted by either independent variable

TABLE 14-17. Calculating the Within-Groups Sum of Squares

The within-groups sum of squares is calculated the same way for a two-way ANOVA as for a one-way ANOVA.
We take each score and subtract the mean of the cell from which it comes—not the grand mean—to create
deviations; then we square the deviations and sum them: R(X � Mcell )

2 � 0.018.

                                            X R(X � Mcell )
2 R(X � Mcell )

2

           Y, 1                           0.25                          (0.25 � 0.20) � 0.05                                  0.0025

                                           0.21                          (0.21 � 0.20) � 0.01                                  0.0001

                                           0.14                          (0.14 � 0.20) � �0.06                              0.0036

           Y, 3                           0.07                          (0.07 � 0.12) � �0.05                              0.0025

                                           0.13                          (0.13 � 0.12) � 0.01                                  0.0001

                                           0.16                          (0.16 � 0.12) � 0.04                                  0.0016

           O, 1                          0.27                          (0.27 � 0.22) � 0.05                                  0.0025

                                           0.22                          (0.22 � 0.22) � 0.00                                  0.0000

                                           0.17                          (0.17 � 0.22) � �0.05                              0.0025

           O, 3                          0.33                          (0.33 � 0.30) � 0.03                                  0.0009

                                           0.31                          (0.31 � 0.30) � 0.01                                  0.0001

                                           0.26                          (0.26 � 0.30) � �0.04                              0.0016

�                                         

MASTERING THE FORMULA

14-8: We calculate the between-
groups sum of squares for the second
independent variable, that in the
columns of the table of cells, using
the following formula: SSbetween(columns)

� R(Mcolumn � GM)2. For every par-
ticipant, we subtract the grand mean
from the marginal mean for the ap-
propriate column for that partici-
pant. We square these deviations and
then sum the squared deviations.

�                                         
MASTERING THE FORMULA

14-9: We calculate the within-
groups sum of squares using the fol-
lowing formula: SSwithin � R(X �

Mcell)
2. For every participant, we sub-

tract the appropriate cell mean from
that participant’s score. We square
these deviations and sum the squared
deviations.
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                                        �MASTERING THE FORMULA

14-10: To calculate the between-
groups sum of squares for the in -
teraction, we subtract the two
between-groups sums of squares for
the independent variables and the
within-groups sum of squares from
the total sum of squares. The for-
mula is: SSbetween(interaction) � SStotal �

(SSbetween(rows) � SSbetween(columns) �

SSwithin).

on its own, is attributed to the interaction of the two independent variables. The for-
mula is:

SSbetween(interaction) � SStotal � (SSbetween(rows) � SSbetween(columns) � SSwithin)

And the calculations are:

SSbetween(interaction) � 0.0672 � (0.03 � 0 � 0.018) � 0.0192

Now we can complete step 6 of hypothesis testing by calculating the F statistics
using the formulas in Table 14-18. The results are in the source table (Table 14-19).
The main effect of age is statistically significant because the F statistic, 13.04, is larger
than the critical value of 5.32. The means tell us that older participants tend to make
more mistakes, remembering more medical myths as true, than do younger partici-
pants. The main effect of number of repetitions is not statistically significant, however,
because the F statistic of 0.00 is not larger than the cutoff of 5.32. It is unusual to
have an F statistic of 0.00. Even when there is no statistically significant effect, there
is usually some difference among means due to random sampling. The interaction is
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MASTERING THE FORMULA

14-11: The formulas to calculate the four mean
squares are in the fourth column of Table 14-18.
There are three between-groups mean squares—one
for each main effect and one for the interaction—
and one within-groups mean square. For each mean
square, we divide the appropriate sum of squares by
its related degrees of freedom. The formulas for the
three F statistics, one for each main effect and one
for the interaction, are in the fifth column of Table
14-18. For each of the three effects, we divide the ap-
propriate between-groups mean square by the
within-group mean square. The denominator is the
same in all three cases.

TABLE 14-18. The Expanded Source Table and the Formulas

This source table includes all of the formulas for the calculations necessary to conduct a two-way between-groups ANOVA.

                 Source                                        SS df MS F

Age (between/rows)                     R(Mbetween(rows) � GM)2 Nrows � 1                                                                            

Repetitions (between/columns)     R(Mbetween(columns) � GM)2 Ncolumns � 1                                                                    

Age � Repetitions                      SStotal � (SSbetween(rows) �      (dfrows)(dfcolumns)                                                                         
(between/interaction)                   SSbetween(columns) � SSwithin)

Within                                         R(X � Mcell )
2 dfcell1 � dfcell2 � dfcell3 � dfcell4 (and so on for           

                                                                                               any additonal cells)             

Total                                           R(X � GM)2 Ntotal � 1
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within

within
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TABLE 14-19. The Expanded Source Table and False 
Medical Claims

This expanded source table shows the actual sums of squares, degrees of freedom, mean
squares, and F statistics for the study on false medical claims.

            Source                        SS df MS F

     Age (A)                            0.0300                   1                  0.0300                 13.04

     Repetitions (R)                 0.0000                   1                  0.0000                   0.00

     A � R                            0.0192                   1                  0.0190                   8.26

     Within                             0.0180                   8                  0.0023

     Total                                0.0672                 11



also statistically significant because the F statistic of
8.26 is larger than the cutoff of 5.32. Therefore, we
construct a bar graph of the cell means, as seen in
Figure 14-8, to interpret the interaction.

In Figure 14-8, the lines are not parallel; in fact,
they intersect without even having to extend them
beyond the graph. We can see that among younger
participants, the proportion of responses that were
incorrect was lower, on average, with three repeti-
tions than with one repetition. Among older par -
ticipants, the proportion of responses that were
incorrect was higher, on average, with three repeti-
tions than with one repetition. Does repetition help?
It depends. It helps for younger people but is detri-
mental for older people. Specifically, repetition tends
to help younger people distinguish between myth
and fact. But the mere repetition of a medical myth
tends to lead older people to be more likely to view it as fact. The researchers speculate
that older people remember that they are familiar with a statement but forget the con-
text in which they heard it; they forget that it’s a false claim. Because the direction of
the effect of repetition reverses from one age group to another, this is a qualitative
interaction.

Effect Size for a Two-Way ANOVA
With a two-way ANOVA, as with a one-way ANOVA, we calculate R2 as the meas-
ure of effect size. As we learned in Chapter 12, for R2, we use sums of squares as in-
dicators of variability. For each of the three effects—the two main effects and the
interaction—we divide the appropriate between-groups sum of squares by the total
sum of squares minus the sums of squares for both of the other effects. We subtract
the sums of squares for the other two effects from the total so that we can isolate the
effect size for a single effect at a time. For example, if we want to determine effect
size for the main effect in the rows, we divide the sum of squares for the rows by the
total sum of squares minus the sum of squares for the column and the sum of squares
for the interaction.

For the first main effect, the one in the rows of the table of cells, the formula is:

For the second main effect, the one in the columns of the table of cells, the formula
is:

For the interaction, the formula is:

R
SS

SS SS SS
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FIGURE 14-8
Interpreting the Interaction

The nonparallel lines demonstrate the interaction. The bars tell us that, on average,
repetition increases accuracy for younger people but decreases it for older people.
Because the direction reverses, this is a qualitative interaction.

�                                         

MASTERING THE FORMULA

14-12: To calculate effect size for
two-way ANOVA, we calculate
three R2 values, one for each main
effect and one for the interaction.
In each case, we divide the ap -
propriate between sum of squares
by the total sum of squares minus
the sums of squares for the other
two effects. For example, the effect
size for the interac tion is calcu-

lated using this formula: 

.

Rinteraction
2 �

SS

SS SS
interaction

total rows� �( SSScolumns)
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We’ve already seen the flexibility that ANOVA offers in terms of both independent
variables and research design. Yet ANOVA is even more flexible than we’ve seen so
far in this chapter and the previous two. We described within-groups ANOVAs in
which the participants experience all of the research conditions. Researchers also use
four slightly more complicated designs.

N e x t  S t e p s Variations on ANOVA

TABLE 14-20. Cohen’s Conventions for Effect Sizes: R2

The following guidelines, called conventions by statisticians, are meant to help researchers decide how im-
portant an effect is. These numbers are not cutoffs, merely rough guidelines to aid researchers in their inter-
pretation of results.

                                Effect Size                                                                 Convention

                                   Small                                                                                 0.01

                                   Medium                                                                             0.06

                                   Large                                                                                 0.14

■

Let’s apply this to the ANOVA we just conducted. We can use the statistics in the
source table shown in Table 14-19 to calculate R2 for each main effect and the inter-
action. Here are the calculations for R2 for the main effect for age:

Here are the calculations for R2 for the main effect for repetitions:

Here are the calculations for R2 for the interaction:

The conventions for R2 are the same as those presented in Chapter 12 and are shown
again here in Table 14-20. From this table, we can see that the R2 of 0.63 for the main
effect of age and 0.52 for the interaction are very large. The R2 of 0.00 for the main
effect of repetitions indicates that there is no observable effect in this study. 
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1. A mixed-design ANOVA is used to analyze the data from a study with at least two
independent variables; at least one variable must be within-groups and at least one variable
must be between-groups. In other words, a mixed design includes both a between-
groups variable and a within-groups variable.

2. A multivariate analysis of variance (MANOVA) is a form of ANOVA in which
there is more than one dependent variable. The word multivariate refers to the number
of dependent variables, not the number of independent variables. (Remember,
a plain old ANOVA already can handle multiple independent variables.)

3. Analysis of covariance (ANCOVA) is a type of ANOVA in which a covariate is in-
cluded so that statistical findings reflect effects after a scale variable has been statistically
removed. Specifically, a covariate is a scale variable that we suspect associates, or covaries,
with the independent variable of interest. So ANCOVA statistically subtracts the ef-
fect of a possible confounding variable.

4. We can also combine the features of a MANOVA and an ANCOVA. A mul-
tivariate analysis of covariance (MANCOVA) is an ANOVA with multiple de-
pendent variables and the inclusion of a covariate. MANOVA, ANCOVA, and
MANCOVA can each have a between-groups design, a within-groups design,
or even a mixed design. See Table 14-21 for variations on ANOVA.

Let’s consider an example of a mixed-design ANOVA. In Chapter 12, we discussed
a study about the effects of different types of e-mails on final exam grades for two
groups of students, those with a grade of C on the first exam and those with a grade
of D or F on the first exam (Forsyth, Lawrence, Burnette, & Baumeister, 2007). When
the researchers first presented these data, they conducted a three-way ANOVA; they
used three independent variables. The first was the same as those described in the ex-
ample in Chapter 12: type of e-mail [the control group (no message), the self-esteem
group, and the take-responsibility group]. The second was initial grade (C and D/F).
Both of these independent variables are between-groups.

However, these researchers also included a third independent variable in their analy-
ses. They included not only final exam grades but also grades from the earlier midterm
exam. So they had another independent variable, exam, with two levels: midterm and
final. Because every student took both exams, this independent variable is within-
groups. This means that the research design had two between-groups independent vari-
ables and one within-groups independent variable. This is an example of a mixed-design
ANOVA. Specifically, this ANOVA would be referred to as a 2 (grade: C, D/F) � 3
(type of e-mail: control, self-esteem, take responsibility) � 2 (exam: midterm, final)
mixed-design ANOVA.
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TABLE 14-21. Variations on ANOVA

There are many variations on ANOVA that allow us to analyze a variety of research designs. A MANOVA allows
us to include more than one dependent variable. An ANCOVA allows us to include covariates to correct for
third variables that might influence our study. A MANCOVA allows us to include both more than one dependent
variable and a covariate.

Independent Dependent
Variables Variables Covariate

ANOVA Any number Only one None

MANOVA Any number More than one None

ANCOVA Any number Only one At least one

MANCOVA Any number More than one At least one

■ A mixed-design ANOVA is
used to analyze the data from
a study with at least two
independent variables; at least
one variable must be within-
groups and at least one
variable must be between-
groups.

■ A multivariate analysis of
variance (MANOVA) is a form
of ANOVA in which there is
more than one dependent
variable.

■ Analysis of covariance
(ANCOVA) is a type of ANOVA
in which a covariate is
included so that statistical
findings reflect effects after a
scale variable has been
statistically removed.

■ A covariate is a scale variable
that we suspect associates, or
covaries, with the independent
variable of interest.

■ A multivariate analysis of
covariance (MANCOVA) is an
ANOVA with multiple
dependent variables and the
inclusion of a covariate.
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Let’s consider an example of a MANCOVA, an analysis that includes both (a) mul-
tiple dependent variables and (b) at least one covariate. (a) We sometimes use a mul-
tivariate analysis when we have several similar dependent variables. Aside from the use
of multiple dependent variables, multivariate analyses are not all that different from
those with one dependent variable. Essentially, the calculations treat the group of de-
pendent variables as one dependent variable. Although we can follow up a MANOVA
by considering the different univariate (single dependent variable) ANOVAs embedded
in the MANOVA, we often are most interested in the effect of the independent vari-
ables on the composite of dependent variables.

(b) There are often situations in which we suspect that a third variable might be
affecting the dependent variable. In these cases, we might conduct an ANCOVA or
MANCOVA. We might, for example, have levels of education as one of the independ-
ent variables and worry that age, which is likely related to level of education, is actually
what is influencing the dependent variable, not education. In this case, we could include
age as a covariate.

The inclusion of a covariate means that the analysis will look at the effects of the inde-
pendent variables on the dependent variables after statistically removing the effect of one
or more third variables. At its most basic, conducting an ANCOVA is almost like conduct-
ing an ANOVA at each level of the covariate. If age was the covariate with level of educa-
tion as the independent variable and income as the dependent variable, then we’d
essentially be looking at a regular ANOVA for each age. We want to answer the question:
Given a certain age, does education predict income? Of course, this is a simplified explana-
tion, but that’s the logic behind the procedure. If the calculations find that education has an
effect on income among 33-year-olds, 58-year-olds, and every other age group, then we
know that there is a main effect of education on income, over and above the effect of age.

Researchers conducted a MANCOVA to analyze the results of a study examining
military service and marital status within the context of men’s satisfaction within their
romantic relationships (McLeland & Sutton, 2005). The independent variables were
military service (military, nonmilitary) and marital status (married, unmarried). There
were two dependent variables, both measures of relationship satisfaction: the Kansas
Marital Satisfaction Scale (KMSS) and the ENRICH Marital Satisfaction Scale (EMS).
The researchers also included the covariate of age.

Initial analyses also found that age was significantly associated with relationship sat-
isfaction: older men tended to be more satisfied than younger men. The researchers
wanted to be certain that it was military status and marital status, not age, that affected
relationship satisfaction, so they controlled for age as a covariate. The MANCOVA led
to only one statistically significant finding: military men were less satisfied than non-
military men with respect to their relationships, when controlling for the age of the
men. That is, given a certain age, military men of that age are likely to be less satisfied
with their relationships than are nonmilitary men of that age.

CHECK YOUR LEARNING
Reviewing the Concepts > The six steps of hypothesis testing for a two-way between-groups ANOVA are similar to

those for a one-way between-groups ANOVA.

> Because we have the possibility of two main effects and an interaction, each step is broken
down into three parts; we have three sets of hypotheses, three comparison distributions,
three critical F values, three F statistics, and three conclusions.

> An expanded source table helps us to keep track of the calculations.
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> Significant F statistics require post-hoc tests to determine where differences lie when there
are more than two groups.

> We can calculate a measure of effect size, R2, for each main effect and for the interaction.

> Factorial ANOVAs can have a mixed design in addition to a between-groups design or
within-groups design. In a mixed design, at least one of the independent variables is
between-groups and at least one of the independent variables is within-groups.

> Researchers can also include multiple dependent variables, not just multiple independent
variables, in a single study, analyzed with a MANOVA.

> Researchers can add a covariate to an ANOVA and conduct an ANCOVA, which allows
us to control for the effect of a variable that is related to the independent variable.

> Researchers can include multiple dependent variables and one or more covariates in an
analysis called a MANCOVA.

Clarifying the Concepts 14-9 The six steps of hypothesis testing for a two-way between-groups ANOVA are similar
to those for a one-way between-groups ANOVA, except for what basic difference?

14-10 What are the four sources of variability in a two-way ANOVA?

Calculating the Statistics 14-11 Compute the three between-groups degrees of freedom (both main effects and the
interaction), the within-groups degrees of freedom, and the total degrees of freedom
for the following data:

IV 1, level A; IV 2, level A: 2, 1, 1, 3
IV 1, level B; IV 2, level A: 5, 4, 3, 4
IV 1, level A; IV 2, level B: 2, 3, 3, 3
IV 1, level B; IV 2, level B: 3, 2, 2, 3

14-12 Using the degrees of freedom you calculated in Check Your Learning 14-11,
determine critical values, or cutoffs, using a p level of 0.05, for the F statistics of the
two main effects and the interaction.

Applying the Concepts 14-13 Researchers studied the effect of e-mail messages on students’ final exam grades (Forsyth &
Kerr, 1999; Forsyth et al., 2007). To test for possible interactions, participants included
students whose first exam grade was either (1) a C or (2) a D or F. Participants were
randomly assigned to receive several e-mails in one of three conditions: e-mails intended to
bolster their self-esteem, e-mails intended to enhance their sense of control over their
grades, and e-mails that just included review questions (control group). The accompanying
table shows the cell means for the final exam grades (note that some of these are
approximate, but all represent actual findings). For simplicity, assume there were 84
participants in the study and that they were evenly divided among cells.

a. From step 1 of hypothesis testing, list the populations for this study.

b. Conduct step 2 of hypothesis testing, listing all three sets of hypotheses.

c. Conduct step 3 of hypothesis testing, listing the comparison distributions for this
study, including all degrees of freedom.

d. Conduct step 4 of hypothesis testing, listing all three critical F values.

e. The F statistics are 20.84 for the main effect of the independent variable of initial
grade, 1.69 for the main effect of the independent variable of type of e-mail, and
3.02 for the interaction. Conduct step 6 of hypothesis testing.

          Self-Esteem    Take Responsibility    Control Group 
                (SE)                    (TR)                     (CG)

C                67.31                       69.83                         71.12

D/F            47.83                       60.98                         62.13

Solutions to these Check Your
Learning questions can be found in
Appendix D.
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Two-Way ANOVA
Factorial ANOVAs (also called multifactorial ANOVAs), those with more than one inde-
pendent variable (or factor), permit us to test more than one hypothesis in a single study,
saving time and resources. They also allow us to examine interactions between inde-
pendent variables. Factorial ANOVAs are often named by referring to the levels of
their independent variables (e.g., 2 � 2) rather than the number of independent vari-
ables (e.g., two-way). With a two-way ANOVA, we can examine two main effects, one
for each independent variable, and one interaction, the way in which the two variables
might work together to influence the dependent variable. Because we are examining
three hypotheses (two main effects and one interaction), we calculate three sets of sta-
tistics for a two-way ANOVA.

Understanding Interactions in ANOVA
Researchers typically interpret interactions by examining the overall pattern of cell
means. A cell is one condition in a study. We typically write the mean of a group in its
cell. We write the means for each row to the right of the cells and the means for each
column below the cells; these are called marginal means. If the main effect of one in-
dependent variable is stronger under certain conditions of the second independent
variable, there is a quantitative interaction. If the direction of the main effect actually re-
verses under certain conditions of the second independent variable, there is a qualita-
tive interaction.

Conducting a Two-Way Between-Groups ANOVA
A two-way between-groups ANOVA uses the same six steps of hypothesis testing
that we have used previously, with only minor changes. Because we have to test for
two main effects and one interaction, each step is broken down into three parts, one
for each possible effect. Specifically, we have three sets of hypotheses, three compari-
son distributions, three critical F values, three F statistics, and three conclusions. 
We use an expanded source table to aid in the calculations of the three F statistics. We
also can calculate a measure of effect size, R2, for each of the main effects and for the
interaction.

There are several ways to expand on ANOVA. A mixed-design ANOVA has at least
one between-groups independent variable and at least one within-groups independ-
ent variable. We also can include multiple dependent variables, not just multiple inde-
pendent variables, in a single study, analyzed with a multivariate analysis of variance
(MANOVA). Alternately, we can add a covariate to our ANOVA and conduct an analy-
sis of covariance (ANCOVA), which allows us to control for the effect of a variable that
we believe might be related to our independent variable. Finally, we can include mul-
tiple dependent variables and a covariate in an analysis called a multivariate analysis of
covariance (MANCOVA).

REVIEW OF CONCEPTS

SPSS®

Let’s use SPSS to conduct a two-way ANOVA for the data
on myth-busting that we used earlier in this chapter. We enter
the data in three columns—one for each participant’s scores

on each independent variable (age and number of repetitions)
and one for each participant’s score on the dependent variable
(false memory).
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We can instruct SPSS to analyze the ANOVA by select-
ing: Analyze → General Linear Model → Univariate and
selecting the variables. A two-way ANOVA requires two
fixed factors (independent variables) and a dependent vari-
able. We select the dependent variable, false memory, by high-
lighting it and clicking the arrow next to “Dependent
Variable.” We select the independent variables, age and rep-
etitions, by clicking each of them, then clicking the arrow
next to “Fixed Factor(s).” We can include specific descriptive
statistics, as well as a measure of effect size, by selecting “Op-
tions,” then selecting “Descriptive statistics” and “Estimates
of effect size.”

The screenshot shown here includes the same F statistics
that we calculated earlier. The small differences between the
ones here and the ones we calculated are due only to rounding
decisions. For example, we see that the F statistic for the main
effect of age is 13.333. Its p value is found in the column
headed “Sig.” and is .006. This is well below the typical p level
of 0.05, which tells us that this is a statistically significant effect.
The effect size is found in the final column, headed “Partial
Eta Squared,” which can be interpreted as we learned to in-
terpret R2. The effect size of .625, which matches the effect
size we calculated by hand earlier, indicates that this is a very
large effect.

14.1 CONDUCTING A TWO-WAY BETWEEN-GROUPS ANOVA
The online dating Web site Match.com allows its users to post personal ads to meet others.
Each person is asked to specify a range from the youngest age that would be acceptable in
a dating partner to the oldest age that would be acceptable. The following data were ran-
domly selected from the ads of 25-year-old people living in the New York City area. The
scores represent the youngest acceptable ages listed by those in the sample. So, in the first
line, the first of the five 25-year-old women who are seeking men states that she will not
date a man younger than 26 years old.

25-year-old women seeking men: 26, 24, 25, 24, 25

25-year-old men seeking women: 18, 21, 22, 22, 18

25-year-old women seeking women: 22, 25, 22, 25, 25

25-year-old men seeking men: 23, 25, 24, 22, 20

How It Works



There are two independent variables and one dependent variable. The first independent
variable is gender of the seeker, and its levels are male and female. The second independent
variable is gender of the person being sought, and its levels are men and women. The de-
pendent variable is the youngest acceptable age of the person being sought. Based on these
variables, how can we conduct a two-way between-groups ANOVA on these data? The
cell means are:

Here are the six steps of hypothesis testing for this example.

Step 1: Population 1 (female, men): Women seeking men.
Population 2 (male, women): Men seeking women.
Population 3 (female, women): Women seeking women.
Population 4 (male, men): Men seeking men.

The comparison distributions will be F distributions. The hypothesis test will be a
two-way between-groups ANOVA. Assumptions: The data are not from random
samples, so we must generalize with caution. The homogeneity of variance assump-
tion is violated because the largest variance (3.70) is more than five times as large
as the smallest variance (0.70). For the purposes of demonstration, we will proceed
anyway.

Step 2: The hypotheses for the main effect of the first independent variable, gender of seeker,
is as follows: Null hypothesis: On average, male and female seekers report the same
youngest acceptable ages for their partners. Research hypothesis: On average, male and
female seekers report different youngest acceptable ages for their partners.

The hypotheses for the main effect of the second independent variable, gender
of person sought, is as follows: Null hypothesis: On average, those seeking men and
those seeking women report the same youngest acceptable ages for their partners.
Research hypothesis: On average, those seeking men and those seeking women re-
port different youngest acceptable ages for their partners.

The hypotheses for the interaction of gender of seeker and gender of person
sought are as follows: Null hypothesis: The effect of the gender of the seeker
does not depend on the gender of the person sought. Research hypothesis: The
effect of the gender of the seeker does depend on the gender of the person
sought.

Step 3: dfcolumns(seeker) � 2 � 1 � 1

dfrows(sought) � 2 � 1 � 1

dfinteraction � (1)(1) � 1

�dfwithin � dfW,M � dfM,W � dfW,W � dfM,M � 4 � 4 � 4 � 4 � 16

Main effect of gender of seeker: F distribution with 1 and 16 degrees of freedom
Main effect of gender of sought: F distribution with 1 and 16 degrees of freedom
Interaction of seeker and sought: F distribution with 1 and 16 degrees of freedom

Step 4: Cutoff F for main effect of seeker: 4.49
Cutoff F for main effect of sought: 4.49
Cutoff F for interaction of seeker and sought: 4.49

Step 5: SStotal � R(X � GM)2� 103.800

SScolumn(seeker) � R(Mcolumn(seeker) � GM)2 � 39.200

SSrow(sought) � R(Mrow(sought) � GM)2 � 16.200

                                  Female seekers         Male seekers

Men Sought                           24.8                          22.8

Women Sought                      23.8                          20.2
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SSwithin � R(X � Mcell)
2 � 45.200

SSinteraction � SStotal � (SSrow � SScolumn � SSwithin) � 3.200

Step 6: There is a significant main effect of gender of the seeker and a significant main
effect of gender of the person being sought. We can reject the null hypotheses for
both of these main effects. Male seekers are willing to accept younger partners, on
average, than are female seekers. Those seeking women are willing to accept younger
partners, on average, than are those seeking men. We cannot reject the null hypoth-
esis for the interaction; we can only conclude that there is not sufficient evidence
that the effect of the gender of the seeker on youngest acceptable age depends on
the gender of the person sought.

Source                         SS               df            MS               F

Seeker gender              39.200             1          39.200        13.876

Sought gender              16.200             1          16.200          5.736

Seeker � sought            3.200             1            3.200          1.133

Within                          45.200           16            2.825

Total                           103.800           19
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Clarifying the Concepts

14.1 What is a two-way ANOVA?
14.2 What is a factor?
14.3 In your own words, define the word cell, first as you

would use it in everyday conversation and then as a stat-
istician would use it.

14.4 What is a four-way within-groups ANOVA?
14.5 What is the difference in information provided when

we say two-way ANOVA versus 2 � 3 ANOVA?
14.6 What are the three different F statistics in a two-way

ANOVA?
14.7 What is a marginal mean?
14.8 What are the three ways to identify a statistically signif-

icant interaction?
14.9 How do bar graphs help us identify and interpret in-

teractions? Explain how the addition of lines to the bar
graph can help.

14.10 How do we calculate the between-groups degrees of
freedom for an interaction effect?

14.11 In step 6 of our hypothesis testing for a two-way
between-groups ANOVA, we make a decision for each
F statistic. What are the three possible outcomes with
respect to the overall pattern of results?

14.12 When are post-hoc tests needed for a two-way
between-groups ANOVA?

14.13 Define the terms in the following formula: SSinteraction �
SStotal � (SSrows � SScolumns � SSwithin).

14.14 In your own words, define the word interaction, first as
you would use it in everyday conversation and then as
a statistician would use it.

14.15 How is an ANCOVA different from an ANOVA?
14.16 How is a MANOVA different from an ANOVA?
14.17 When might a researcher decide to use a MANOVA

rather than an ANOVA?
14.18 When might a researcher decide to use an ANCOVA

rather than an ANOVA?

Calculating the Statistics

14.19 Identify the factors and their levels in the following re-
search designs.

a. Men and women’s enjoyment of two different
sporting events are compared using a 20-point en-
joyment scale.

b. The amount of underage drinking, as documented
in formal incident reports, is compared at “dry” col-
lege campuses (no alcohol at all regardless of age)
and “wet” campuses (those that enforce the legal
age for possession of alcohol). Three different types
of colleges are considered: state institutions, private
schools, and schools with a religious affiliation.

EXERCISES



c. The extent of contact with juvenile authorities is
compared for youth across three age groups, consid-
ering both gender and family composition (two par-
ents, single parent, or no identified authority  figure).

14.20 Calculate the number of cells in each of these studies.
Create an empty grid to represent these cells.

a. Men and women’s enjoyment of two different
sporting events, ice hockey and figure skating, are
compared using a 20-point enjoyment scale.

b. The amount of underage drinking, as doc umented
in formal incident reports, is compared at “dry” col-
lege campuses (no alcohol at all regardless of age)
and “wet” campuses (those that enforce the legal
age for possession of alcohol). Three different types
of colleges are considered: state institutions, private
schools, and schools with a religious affiliation.

c. The extent of contact with juvenile authorities is
compared for youth across three age groups, con-
sidering both gender and family composition (two
parents, single parent, or no identified authority
figure).

14.21 For the following “enjoyment” data, calculate cell and
marginal means.

14.22 For the following data, calculate cell and marginal
means and place them in an appropriate table. Notice
the unequal Ns.
“Dry” campus,  s ta te school :  47,  52,  27,
50

“Dry” campus,  pr ivate school :  25,  33,  31

“Wet” campus,  s ta te school :  77,  61,  55,
48

“Wet” campus,  pr ivate school :  52,  68,  60

14.23 Draw a bar graph for the data presented in Exercise
14.21.

14.24 Draw a bar graph for the data presented in Exercise
14.22.

14.25 Calculate the five different degrees of freedom for the
data presented in Exercise 14.21. Also indicate the crit-
ical F value based on each set of degrees of freedom, as-
suming the p level is 0.01.

14.26 Calculate the five different degrees of freedom for the
data presented in Exercise 14.22. Also indicate the crit-
ical F value based on each set of degrees of freedom, as-
suming the p level is 0.05.

14.27 Using the data provided in Exercise 14.21, calculate
each sum of squares:

a. Total sum of squares

b. Between-groups sum of squares for independent
variable gender

c. Between-groups sum of squares for independent
variable sporting event

d. Within-groups sum of squares

e. Sum of squares for the interaction

14.28 Using the data provided in Exercise 14.22, calculate
each sum of squares:

a. Total sum of squares

b. Between-groups sum of squares for independent
variable campus

c. Between-groups sum of squares for independent
variable school

d. Within-groups sum of squares

e. Sum of squares for the interaction

14.29 Using your work in Exercises 14.25 and 14.27, create
a source table.

14.30 Using your work in Exercises 14.26 and 14.28, create
a source table.

14.31 Using what you know about the expanded source table,
fill in the missing values in the table shown here:

14.32 Using the information in the source table provided
here, compute R2 values for each effect. Using
Cohen’s conventions, explain what these values
mean.

14.33 Using the information in the source table provided
here, compute R2 values for each effect. Using Cohen’s
conventions, explain what these values mean.

                        Ice Hockey          Figure Skating

 Men              19, 17, 18, 17           6, 4, 8, 3

 Women          13, 14, 18, 8             11, 7, 4, 14  Source                     SS df MS F

 Gender                 248.25       1

 Parenting style        84.34        3

 Gender � style       33.60         

 Within                  1107.2      36

 Total

   Source             SS df MS F

A (rows)               0.267      1         0.267      0.004

B (columns)    3534.008      2    1767.004    24.432

A � B                 5.371      2         2.686      0.037

Within           1157.167    16       72.323

Total              4696.813    21
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Applying the Concepts

14.34 In Exercise 13.25, we described a study conducted at
Yale University in which researchers randomly assigned
46 participants to place one of three sub stances below
their eyes: black grease, black antiglare stickers, or pe-
troleum jelly. They assessed eye glare using a contrast
chart that gives a value for each  participant, a scale meas-
ure. Black grease led to a reduction in glare compared
with the two other conditions, antiglare stickers or
petroleum jelly (DeBroff & Pahk, 2003). Imagine
that every participant was tested twice, once in broad
daylight and again under the artificial lights used at
night.

a. What are the independent variables and their
levels?

b. What kind of ANOVA would we use?

14.35 A nutritional software program called DietPower of-
fers encouragement to its users when they sign in
each day. In one instance, the program states that peo-
ple at their ideal body weight tend to have higher
salaries than do people who are overweight and then
explicitly states that losing weight might lead to an
increase in pay!

a. Why is this a problematic statement? List at least
two confounding variables that might affect this
finding.

b. Imagine that you were going to conduct a study
that compared the salaries of two groups: people
who were overweight and people who were at their
ideal body weight. Why would it be useful to in-
clude one or more covariates? What scale variables
might you include as covariates?

14.36 Imagine that a college professor is interested in the
effects of a new instructional method on the math
performance of first-year college students. All students
take a math pretest and then are randomly assigned to
a class using the new instructional method or a class
using the old method. At the end of the semester, the
professor gives all students the same final exam and
has all students complete a national standardized test
that assesses math ability.

a. What is the independent variable and what are its
levels?

b. What scale variable could the professor use as a co-
variate in the statistical analysis of this study?

c. What are the dependent variables assessed by the
professor?

d. What type of ANOVA could be used to analyze the
results of this study?

14.37 Consider the study we used as an example for a two-
way between-groups ANOVA. Older and younger peo-
ple were randomly assigned to hear either one
repetition or three repetitions of a health-related myth,
accompanied by the accurate information that “busted”
the myth.

a. Explain why this study would be analyzed with a
between-groups ANOVA.

b. How could this study be redesigned to use a within-
groups ANOVA? (Hint: Think long term.)

14.38 In a fictional study, a cognitive psychologist studied
memory for names after a group activity that lasted 20
minutes. The researcher randomly assigned 120 par-
ticipants to one of three conditions: (1) group mem-
bers introduced themselves once (one introduction
only), (2) group members were introduced by the ex-
perimenter and by themselves (two introductions), and
(3) group members were introduced by the experi-
menter and themselves, and they wore nametags
throughout the group activity (two introductions and
nametags).

a. What could the researcher do to redesign this study
so it would be analyzed with a two-way between-
groups ANOVA? Be specific. (Note: There are sev-
eral possible ways that the researcher could do this.)

b. What could the researcher do to redesign this study
so it would be analyzed with a two-way mixed-
design ANOVA? Be specific. (Note: There are sev-
eral possible ways the researcher could do this.)

14.39 A researcher wondered about the degree to which age
was a factor for those posting personal ads on
Match.com. He randomly selected 200 ads and exam-
ined data about the posters (the people who posted the
ads). Specifically, for each ad, he calculated the difference
between the poster’s age and the oldest age he or she
would be open to in a romantic prospect. So, if someone
was 23 years old and would date someone as old as 30,
his or her score would be 7; if someone was 25 and
would date someone as old as 23, his or her score would
be �2. He calculated these scores for all 200 posters and
categorized them into male versus female and homo-
sexual versus heterosexual.

a. List any independent variables, along with the
levels.

    Source              SS df MS F

A (rows)            30.006       1      30.006     0.511

B (columns)       33.482       1      33.482     0.570

A � B                1.720       1        1.720     0.029

Within            587.083     10      58.708

Total                652.291     13
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b. What is the dependent variable?

c. What kind of ANOVA would he use?

d. Now name the ANOVA using the more specific
language that enumerates the numbers of levels.

e. Use your answer to part (d) to calculate the
number of cells. Explain how you made this cal-
culation.

f. Draw a table that depicts the cells of this ANOVA.

14.40 A study on motivated skepticism examined whether
participants were more likely to be skeptical when it
served their self-interest (Ditto & Lopez, 1992).
Ninety-three participants completed a fictitious med-
ical test that told them they had high levels of a cer-
tain enzyme, TAA. Participants were randomly
assigned to be told either that high levels of TAA had
potentially unhealthy consequences or that high levels
of TAA had potentially healthy consequences. They
were also randomly assigned to complete a dependent
measure before or after the TAA test. The dependent
measure assessed their perception of the accuracy of
the TAA test on a scale of 1 (very inaccurate) to 9
(very accurate).

a. State the independent variables and their levels.

b. State the dependent variable.

c. What kind of ANOVA would be used to analyze
these data? State the name using the original lan-
guage as well as the more specific language.

d. Use the more specific language of ANOVA to
calculate the number of cells in this research
design.

e. Draw a table that depicts the cells of this ANOVA.

14.41 In the study described in Exercise 14.40, Ditto and
Lopez (1992) found the following means for those who
completed the dependent measure prior to taking the
TAA test: unhealthy result, 6.6; healthy result, 6.9. They
found the following means for those who completed
the dependent measure after taking the TAA test: un-
healthy result, 5.6; healthy result, 7.3. From their
ANOVA, they reported statistics for two findings. For
the main effect of test outcome, they reported the fol-
lowing statistic: F(1,73) � 7.74, p � 0.01. For the in-
teraction of test outcome and timing of the dependent
measure, they reported the following statistic: F(1, 73)
� 4.01, p � 0.05.

a. Draw a table of cell means that includes the actual
means for this study. Include the marginal means
and the grand mean. To calculate the marginal
means and grand mean, assume that equal num-
bers of participants were assigned to each cell
(even though this was not the case in the actual
study).

b. Describe the significant main effect in your own
words.

c. Draw a bar graph that depicts the main effect.

d. Why is the main effect misleading on its own?

e. Is the main effect qualified by a statistically signifi-
cant interaction? Explain. Describe the interaction
in your own words.

f. Draw a bar graph that depicts the interaction. In-
clude lines that connect the tops of the bars and
show the pattern of the interaction.

g. Is this a quantitative or qualitative interaction? Ex-
plain.

14.42 Consider again the study discussed in Exercises 14.40
and 14.41.

a. Change the cell mean for the participants who had
a healthy test outcome and who completed the de-
pendent measure prior to the TAA test so that this
is now a qualitative interaction.

b. Draw a bar graph depicting the pattern that includes
the new cell mean.

c. Change the cell mean for the participants who had
a healthy test outcome and who completed the de-
pendent measure prior to the TAA test so that there
is now no interaction.

d. Draw a bar graph that depicts the pattern that in-
cludes the new cell mean.

14.43 In a study of racism, Nail, Harton, and Decker (2003)
had participants read a scenario in which a police of-
ficer assaulted a motorist. Half the participants read
about an African American officer who assaulted a Eu-
ropean American motorist, and half read about a Eu-
ropean American officer who assaulted an African
American motorist. Participants were categorized into
three categories based on political orientation: liberal,
moderate, or conservative. Participants were told that
the officer was acquitted of assault charges in state
court but was found guilty of violating the motorist’s
rights in federal court. Double jeopardy occurs when
an individual is tried twice for the same crime. Par-
ticipants were asked to rate, on a scale of 1–7, the de-
gree to which the officer had been placed in double
jeopardy by the second trial.

The researchers reported the interaction as F(2, 58)
� 10.93, p � 0.0001. The means for the liberal par-
ticipants were 3.18 for those who read about the
African American officer and 1.91 for those who read
about the European American officer. The means for
the moderate participants were 3.50 for those who read
about the African American officer and 3.33 for those
who read about the European American officer. The
means for the conservative participants were 1.25 for
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those who read about the African American officer
and 4.62 for those who read about the European
American officer.

a. Draw a table of cell means that includes the actual
means for this study.

b. Do the reported statistics indicate that there is a sig-
nificant interaction? If yes, describe the interaction
in your own words.

c. Draw a bar graph that depicts the interaction. In-
clude lines that connect the tops of the bars and
show the pattern of the interaction.

d. Is this a quantitative or qualitative interaction? Ex-
plain.

14.44 Consider again the study in Exercise 14.43.

a. Change the cell mean for the conservative partici-
pants who read about an African American officer
so that this is now a quantitative interaction.

b. Draw a bar graph that depicts the pattern that in-
cludes the new cell means.

c. Change the cell means for the moderate and con-
servative participants who read about an African
American officer so that there is now no interac-
tion.

d. Draw a bar graph that depicts the pattern that in-
cludes the new cell means.

14.45 Ratner and Miller (2001) wondered whether people are
uncomfortable when they act in a way that’s not obvi-
ously in their own self-interest. They randomly assigned
33 women and 32 men to read a fictional passage saying
that federal funding would soon be cut for research into
a gastrointestinal illness that mostly affected either (1)
women or (2) men. They were then asked to rate, on a
1–7 scale, how comfortable they would be “attending
a meeting of concerned citizens who share your posi-
tion” on this cause (p. 11). A higher rating indicates a
greater degree of comfort. The journal article reported
the statistics for the interaction as F(1, 58) � 9.83, p �
0.01. Women who read about women had a mean of
4.88, whereas those who read about men had a mean
of 3.56. Men who read about women had a mean of
3.29, whereas those who read about men had a mean
of 4.67.

a. What are the independent variables and their levels?
What is the dependent variable?

b. What kind of ANOVA did the researchers conduct?

c. Do the reported statistics indicate that there is a sig-
nificant interaction? Explain your answer.

d. Draw a table that includes the cells of the study, and
the cell means.

e. Draw a bar graph that depicts these findings.

f. Describe the pattern of the interaction in words. Is
this a qualitative or a quantitative interaction? Ex-
plain your answer.

14.46 Consider the interaction described in Exercise 14.45.

a. Draw a new table of cells, but change the means for
male participants reading about women so that
there is now a quantitative, rather than a qualitative,
interaction.

b. Draw a bar graph of the means in part (a).

c. Draw a new table of cells, but change the means
for male participants reading about women so that
there is no interaction.

d. Draw a bar graph of the means in part (c).

14.47 Hugenberg, Miller, and Claypool (2007) conducted a
study to better understand the cross-race effect, in
which people have a difficult time recognizing mem-
bers of different racial groups—colloquially known as
the “they-all-look-the-same-to-me” effect. In a vari-
ation on this study, white participants viewed either
20 black faces or 20 white faces for three seconds
each. Half the participants were told to pay particu -
lar attention to distinguishing features of the faces.
Later, participants were shown 40 black faces or 40
white faces (the same race as in the prior stage of
the ex periment), 20 of which were new. Each partic-
ipant  received a score that measured their recognition
accuracy.

The researchers reported two effects, one for the
race of the people in the pictures, F(1, 136) � 23.06,
p � 0.001, and one for the interaction of the race of
the people in the pictures and the instructions, F(1,
136) � 5.27, p � 0.05. When given no instructions,
the mean recognition scores were 1.46 for white faces
and 1.04 for black faces. When given instructions to
pay attention to distinguishing features, the mean
recognition scores were 1.38 for white faces and 1.23
for black faces.

a. What are the independent variables and their levels?
What is the dependent variable?

b. What kind of ANOVA did the researchers con-
duct?

c. Do the reported statistics indicate that there is a sig-
nificant main effect? If yes, describe it.

d. Why is the main effect not sufficient in this situation
to understand the findings? Be specific about why
the main effect is misleading on its own.

e. Do the reported statistics indicate that there is a sig-
nificant interaction? Explain your answer.

f. Draw a table that includes the cells of the study and
the cell means.
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g. Draw a bar graph that depicts these findings.

h. Describe the pattern of the interaction in words. Is
this a qualitative or a quantitative interaction? Ex-
plain your answer.

14.48 A sample of students from our statistics classes reported
their GPAs, indicated their genders, and stated whether
they were in the university’s Greek system (i.e., in a fra-
ternity or sorority). Following are the GPAs for the dif-
ferent groups of students:

Men in a f ra ter ni ty:  2.6,  2.4,  2.9,  3.0

Men not in a  f ra ter ni ty:  3.0,  2.9,  3.4,
3.7,  3.0

Women in a soror i ty :  3.1,  3.0,  3.2,  2.9

Women not in a  soror i ty :  3.4,  3.0,  3.1,
3.1

a. What are the independent variables and their levels?
What is the dependent variable?

b. Draw a table that lists the cells of the study design.
Include the cell means.

c. Conduct all six steps of hypothesis testing.

d. Draw a bar graph for all significant effects.

e. Is there a significant interaction? If yes, describe it
in words and indicate whether it is a qualitative or
a quantitative interaction. Explain.

14.49 The data below were from the same 25-year-old par-
ticipants described in How It Works 14.1, but now the
scores represent the oldest age that would be acceptable
in a dating partner.

25-year-old women seeking men: 40,  35,
29,  35,  35

25-year-old men seeking women: 26,  26,
28,  28,  28

25-year-old women seeking women: 35,
35,  30,  35,  45

25-year-old men seeking men: 33,  35,
35,  36,  38

a. What are the independent variables and their levels?
What is the dependent variable?

b. Draw a table that lists the cells of the study design.
Include the cell means.

c. Conduct all six steps of hypothesis testing.

d. Is there a significant interaction? If yes, describe it
in words, indicate whether it is a quantitative or a
qualitative interaction, and draw a bar graph.

14.50 Heyman and Ariely (2004) were interested in whether
effort and willingness to help were affected by the form

and amount of payment offered in return for effort.
They predicted that when money was used as payment,
in what is called a money market, effort would increase
as a function of payment level. On the other hand, if ef-
fort is performed out of altruism, in what is called a
social market, the level of effort would be consistently
high and unaffected by level of payment. In one of their
studies, college students were asked to estimate another
student’s willingness to help load a sofa into a van in
return for a cash payment or no payment (rather than
money, these students received candy of equivalent
value). Willingness to help was assessed using an 11-
point scale ranging from “not at all likely to help” to
“will help for sure.” Data are presented here to re-create
some of their findings.

Cash payment,  low amount of  $0.50:  4,
5,  6,  4

Cash payment,  moderate amount of
$5.00:  7,  8,  8,  7

Candy payment,  low amount valued at
$0.50:  6,  5,  7,  7

Candy payment,  moderate amount valued
at  $5.00:  8,  6,  5,  5

a. What are the independent variables and their 
levels?

b. What is the dependent variable?

c. Draw a table that lists the cells of the study design.
Include the cell and marginal means.

d. Create a bar graph.

e. Using this graph and the table of cell means, de-
scribe what effects you see in the pattern of the
data.

14.51 Using the research and data given in Exercise 14.50,
complete the following:

a. Write the null and research hypotheses.

b. Complete all of the calculations, and construct a full
source table for these data.

c. Determine the critical value for each effect at a p
level of 0.05.

d. Make your conclusions. Is there a significant inter-
action? If yes, describe it in words and indicate
whether it is a qualitative or a quantitative interac-
tion. Explain.

14.52 Expanding on the work of Heyman and Ariely (2004),
let’s assume a higher level of payment was included and
the following data were collected. (Notice that all data
are the same as earlier, with the addition of new data
under a high payment amount.)
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Cash payment,  low amount of  $0.50:  4,
5,  6,  4

Cash payment,  moderate amount of
$5.00:  7,  8,  8,  7

Cash payment,  high amount of  $50.00:
9,  8,  7,  8

Candy payment,  low amount,  va lued at
$0.50:  6,  5,  7,  7

Candy payment,  moderate amount,  va lued
at  $5.00:  8,  6,  5,  5

Candy payment,  high amount,  va lued at
$50.00:  6,  7,  7,  6

a. What are the independent variables and their levels?
What is the dependent variable?

b. Draw a table that lists the cells of the study design.
Include the cell and marginal means.

c. Create a new bar graph of these data.

d. Do you think there is a significant interaction? If
yes, describe it in words.

e. Now that one independent variable has three levels,
what additional analyses are needed? Explain what
you would do and why. Where do you think sig-
nificant differences would exist based on the graph
you created?

14.53 Back in How It Works 14.1, we worked through the
six steps of hypothesis testing. Using that work, compute
the effect size, R2, for each main effect and the inter-
action. Also interpret these effect sizes using Cohen’s
conventions. The source table we constructed is pre-
sented here:

14.54 Using your work from Exercise 14.48, compute the ef-
fect size, R2, for the main effect of gender, membership
in a Greek organization, and the interaction of these
two variables. Using Cohen’s conventions, interpret the
effect-size values.

14.55 Using your work from Exercise 14.49, compute the ef-
fect size, R2, for the main effect of gender of the seeker,
gender being sought, and the interaction of these two
variables. Using Cohen’s conventions, interpret the
effect-size values.

14.56 Let’s follow up on what we learned in Exercise 14.51
about motivating helpful behavior through different
forms and levels of payment. Compute the effect size,
R2, for the main effect of form of payment, level of pay-
ment, and the interaction of these two variables. Using
Cohen’s conventions, interpret the effect-size values.

14.57 Cox, Thomas, Hinton, and Donahue (2006) studied the
effects of exercise on well-being. There were three in-
dependent variables: age (18–20 years old, 35–45 years
old), intensity of exercise (low, moderate, high), and
time point (15, 20, 25, and 30 minutes). The dependent
variable was positive well-being. Every participant was
assessed at all intensity levels and all time points. (Gen-
erally, moderate-intensity exercise and high-intensity
exercise led to higher levels of positive well-being than
low-intensity exercise.)

a. What type of ANOVA would the researchers con-
duct?

b. The researchers included two covariates related to
the physical effects of exercise, measures of hemo-
globin and serum ferritin. What statistical test would
they use? Explain.

c. The researchers conducted separate analyses for
three dependent variables: perceived fatigue, psy-
chological distress, and positive well-being. If they
wanted to include all three dependent variables in
the analysis described in part (a), what statistical test
would they use? Explain.

d. If the researchers wanted to use all three dependent
variables in the analysis described in part (b), the
analysis that included covariates,what statistical test
would they use? Explain.

      Source                SS df MS F

Seeker gender         39.200     1    39.200    13.876

Sought gender        16.200     1    16.200     5.736

Seeker � sought       3.200     1      3.200     1.133

Within                   45.200    16      2.825

Total                    103.800    19
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Terms
interaction (p. 360)
two-way ANOVA (p. 361)
factorial ANOVA (p. 361)
factor (p. 361)
cell (p. 363)
main effect (p. 363)

quantitative interaction (p. 367)
qualitative interaction (p. 367)
marginal mean (p. 367)
mixed-design ANOVA (p. 387)
multivariate analysis of variance

(MANOVA) (p. 387)

analysis of covariance (ANCOVA) 
(p. 387)

covariate (p. 387)
multivariate analysis of covariance

(MANCOVA) (p. 387)
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Formulas

dfrows � Nrows � 1                      (p. 378)
dfcolumns � Ncolumns � 1                (p. 378)
dfinteraction � (dfrows)(dfcolumns)          (p. 379)
SStotal � R(X � GM)2 for each 
score                                      (p. 381)

SSbetween(rows) � R(Mrow � GM)2

for each score                         (p. 382)
SSbetween(columns) � R(Mcolumn � GM)2

for each score                         (p. 383)

SSwithin � R(X � Mcell)
2 for

each score                              (p. 383)
SSbetween(interaction) � SStotal �

(SSbetween(rows) � SSbetween(columns)

� SSwithin)                              (p. 384)

                                               (p. 385)

                                               (p. 385)

                                               (p. 385)
R
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■ You should know the difference between
correlational research and experimental
research (Chapter 1).

■ You should understand how to calculate the
deviations of scores from a mean (Chapter 4).

■ You should understand the concept of sum of
squares (Chapter 4).

■ You should understand the concept of effect
size (Chapter 8).
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Reliability
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In Chapter 1, we learned how John Snow’s map of the London cholera epidemic dis-
played a systematic association called a correlation, the association (or relation) between two
variables. The correlation statistic continues to advance the cause of public health. For ex-
ample, Paul Krugman (2006) used the idea of correlation in a newspaper column when he
asked, “Is being an American bad for your health?” Krugman explained that the United
States has higher per capita spending on health care than any country in the world and yet
is surpassed by many countries in life expectancy (Krugman cited a study published in the
Journal of the American Medical Association; Banks, Marmot, Oldfield, & Smith, 2006).

Lower life expectancy is a surprising effect of higher per capita health care costs.
We would anticipate that spending more on health care would be associated with in-

creased life expectancy, not decreased life expectancy. So why is the corre-
lation in the opposite direction of what we would expect? Why aren’t
people in the United States getting as much benefit from their health
care dollars as people in many other countries?

Krugman mentioned the more obvious possible causes: the lack of
universal health insurance and the varied quality of health care based on
class or race, both of which are problems specific to the United States.
But these aren’t convincing explanations. For example, a comparison of
non-Hispanic white people from America and from England (thus taking
race out of the equation) yielded a surprising finding: the wealthiest third
of Americans have poorer health than do even the least wealthy third of
the English. This correlation is still in the opposite direction of what we
would expect, and it is probable that the wealthiest third of Americans
are the most likely to have health insurance. In other words, this particular
correlation doesn’t seem to be explained by differing levels of health in-
surance, institutionalized racial bias, or economic class.

So Krugman noted the alarming tendency for Americans to be obese,
the difficulty that even insured Americans have in getting preventive
health care, and the long workweeks typical in the United States (a mean
of 46 hours compared to a mean of 41 in the United Kingdom, France,
and Germany). Whatever the cause, Krugman points out, “there’s some-
thing about [the American] way of life that is seriously bad for our
health.” Correlations can’t tell us which explanation is right, but they can
force us to think about the possible explanations.

A correlation is an association (or relation) between two variables. Correlation gives
us new ways to measure behavior and to distinguish among the influences of overlap-
ping variables. In this chapter, we’ll discover how to assess the direction and size of a
correlation. We’ll also identify some of the limitations of correlation. Then we’ll learn
how to calculate the most common form of correlation: r, the Pearson correlation co-
efficient. We’ll use the six steps of hypothesis testing to determine if a correlation is
statistically significant. We’ll introduce interesting ways to use correlation to determine
if a measure, such as an intelligence test, is a good one. Finally, we’ll explore partial
correlation, a useful tool with multiple variables.

Correlation
A correlation is exactly what its name suggests: a co-relation between two variables. Lots
of things are co-related: health care costs and longevity, the amount of junk food con-
sumed and the amount of body fat, how many cars travel on a particular road and how
often the road needs maintenance. We learned in Chapter 1 that correlational studies ex-
amine relations, usually between two scale (interval or ratio) variables. Statisticians cal-
culate a correlation coefficient to better understand these relations between variables.
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A Correlation Between Nationality and Health Do
obstacles in the American health care system contribute to
poorer health and lower life expectancy? Researchers
can’t say whether that is the explanation, but there is a
correlation between being American and lower life
expectancy.

■ A correlation coefficient is a
statistic that quantifies a
relation between two variables.

■ A positive correlation is an
association between two
variables such that participants
with high scores on one
variable tend to have high
scores on the other variable as
well, and those with low scores
on one variable tend to have
low scores on the other
variable.



CHAPTER 15 ■ Correlation   403

The Characteristics of Correlation
The number that we calculate when we quantify a correlation is called a coefficient.
Specifically, a correlation coefficient is a statistic that quantifies a relation between two variables.
In this chapter, we learn how to quantify a relation—that is, we learn to calculate a
correlation coefficient—when the data are linearly related. A linear relation means that
the data form an overall pattern through which it would make sense to draw a straight
line—that is, the dots on a scatterplot are roughly clustered around a line, rather than,
say, a curve.

One of the handy things about the correlation coefficient is that it really can be
understood with just a glance. There are only three main characteristics of the corre-
lation coefficient.

1. The correlation coefficient can be either positive or negative.
2. The correlation coefficient always falls between �1.00 and

1.00.
3. It is the strength (also called the magnitude) of the coefficient,

not its sign, that indicates how large it is.

The first important characteristic of the correlation coefficient is
that it may be either positive or negative. When two variables are re-
lated to each other, they are related in one of two directions: positively or negatively. A
positive correlation has a positive sign (e.g., 0.32), and a negative correlation has a neg-
ative sign (e.g., �0.32). A positive correlation is an association between two variables such
that participants with high scores on one variable tend to have high scores on the other variable as
well, and those with low scores on one variable tend to have low scores on the other variable.

Contrary to what some people think, when participants with low scores on one
variable tend to have low scores on the other, it is not a negative correlation. A positive
correlation describes a situation in which participants tend to have similar scores, with
respect to the mean and spread, on both variables—whether the scores are low, medium,
or high. On a scatterplot, we see data points that are positively correlated as fitting
around a line that is sloping upward to the right.

�  MASTERING THE CONCEPT

15-1: A correlation coefficient always falls

between �1.00 and 1.00. The size of 

the coefficient, not its sign, indicates how

large it is.

The scatterplot in Figure 15-1 shows a positive correlation between Scholastic Aptitude
Test (SAT) score and college grade point average (GPA). For example, the second dot
from the left is for a person with a 980 on the SAT and a 2.2 GPA; this person is lower
than average on both scores. The upper-right dot is for a person with a 1360 on the
SAT and a 3.8 GPA; this person is higher than average on both scores. This makes
sense, because we would expect people with higher SAT scores to get better grades,
on average.

EXAMPLE 15.1
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SAT score

GPA FIGURE 15-1
A Positive Correlation

These data points depict a positive
correlation between SAT score and
college GPA. Those with higher SAT
scores tend to have higher GPAs, and
those with lower SAT scores tend to
have lower GPAs. ■



Note that the correlation between health care spending and
longevity reported by Krugman (2006) is also a negative correlation.
Higher per capita spending on health care was associated with de-
creased longevity, and lower per capita spending on health care was
associated with increased longevity.

A second important characteristic of the correlation coefficient is
that it always falls between �1.00 and 1.00. Both �1.00 and 1.00
are perfect correlations. If we calculate a coefficient that is outside
this range, we have made a mistake in our calculations. A correlation
coefficient of 1.00 indicates a perfect positive correlation because
every point on the scatterplot falls on one line, as seen in the imag-
inary relation between absences and exam grades depicted in Figure
15-3. Higher scores on one variable are associated with higher scores
on the other, and lower scores on one variable are associated with
lower scores on the other. When a correlation coefficient is either
�1.00 or 1.00, knowing somebody’s score on one variable is suffi-

cient to know exactly what that person’s score is on the other variable. They are per-
fectly related.

A correlation coefficient of �1.00 indicates a perfect negative correlation. Every
point on the scatterplot falls on one line, as seen in the imaginary relation between
absences and exam grades depicted in Figure 15-4, but now higher scores on one
variable go with lower scores on the other variable. As with a perfect positive cor -
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A negative correlation is an association between two variables in which participants with
high scores on one variable tend to have low scores on the other variable. On the scatterplot,
we see data points that are negatively correlated as fitting around a line that is sloping
downward to the right.

The scatterplot in Figure 15-2 shows a negative correlation between nights socializing
per week and GPA. For example, the upper-left dot is for a person who goes out one
night per week and has a 3.8 GPA; this person is lower than average on nights social-
izing and higher than average on GPA. The lower-right dot is for a person who goes
out six nights per week and has a 2.2 GPA; this person is higher than average on nights
socializing and lower than average on GPA. This makes sense because we would expect
people who go out more to get lower grades, on average.

EXAMPLE 15.2
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GPAFIGURE 15-2
A Negative Correlation

These data points depict a negative
correlation between nights socializing
per week and GPA. Those who go out

more tend to have lower GPAs, whereas
those who go out less tend to have

higher GPAs. ■

�  MASTERING THE CONCEPT

15-2: The sign indicates the direction of the

correlation, positive or negative. A positive

correlation occurs when people who are

high on one variable tend to be high on the

other as well, and people who are low on

one variable tend to be low on the other. A

negative correlation occurs when people

who are high on one variable tend to be low

on the other.

■ A negative correlation is an
association between two
variables in which participants
with high scores on one
variable tend to have low
scores on the other variable.



relation, knowing somebody’s score on one variable is sufficient to know that per-
son’s exact score on the other variable. A correlation of 0.00 falls right in the middle
of the two extremes and indicates no correlation—no association between the two
variables.

The third useful characteristic of the correlation coefficient is that its sign— positive
or negative—indicates only the direction of the association, not the strength or size of
the association. So a correlation coefficient of �0.35 is the same size as one of 0.35.
A correlation coefficient of �0.67 is larger than one of 0.55. Don’t be fooled by a
negative sign; the sign indicates the direction of the relation, not the strength.

The strength of the correlation is determined by how close
to “perfect” the data points are. The closer the data points are
to the imaginary line that one could draw through them, the
closer the correlation is to being perfect (either �1.00 or 1.00),
and the stronger the relation between the two variables. The
farther the points are from this imaginary line, the farther the
correlation is from being perfect (so closer to 0.00), and the
weaker the relation between the two variables.

The scores in a positive correlation move up and down to-
gether, the same way the mercury rises in a thermometer as the
temperature goes up. The scores in a negative correlation move
up and down in opposition to each other, like a teeter-totter.
This is the key to correlation, and it is why knowing the direc-
tion of a correlation allows us to use a person’s score on one
variable to predict his or her score on another variable. Fortu-
nately, we can be far more specific than merely identifying the
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FIGURE 15-3
A Perfect Positive Correlation

When every pair of scores falls on the same line on a scatterplot, with higher
scores on one variable associated with higher scores on the other (and lower
scores with lower scores), there is a perfect positive correlation of 1.00, a
situation that almost never occurs in real life. Also, we would not predict that
the number of absences would be positively correlated with exam grade!

FIGURE 15-4
A Perfect Negative Correlation

When every pair of scores falls on the same line on a scatterplot and higher
scores on one variable are associated with lower scores on the other variable,
there is a perfect negative correlation of �1.00, a situation that almost never
occurs in real life.

O
le

 G
ra

f/z
ef

a/
C

or
bi

s

The Teeter-Tottering Negative Correlation When two variables
are negatively correlated, a high score on one variable indicates a likely
low score on the other variable—just like children on a teeter-totter.
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direction of the correlation between variables. We can also quantify the strength of the
correlation between those variables.

So what magnitude of a correlation coefficient is large enough to be considered
important, or worth talking about? We can actually think about correlation coefficients
as effect sizes. Cohen (1988) published standards, shown in Table 15-1, for the size of
the correlation coefficient, r. Very few findings in the social sciences have correlation
coefficients of 0.50 or larger, the number that Cohen has suggested indicates a large
correlation. This is usually true because any particular variable is influenced not just
by one other variable but by many variables. A student’s exam grade, for example, is
influenced not only by absences from class but also by attention level in class, hours
of studying, interest in the subject matter, IQ, and many more variables. So correlation
coefficients are often surprising, usually because we expect a stronger (closer to �1.00
or 1.00) correlation than we actually observe.

When we read that two variables are correlated, we know only that they are asso-
ciated with each other in some way. The first step in understanding correlation is to
ascertain the direction of the association. Is it a positive correlation or a negative cor-
relation? But that’s not enough. We also need to know the size of the correlation. Is
it small, medium, or large? And how large does the correlation need to be in a given
context for it to have practical importance? We learn how to answer these questions
later in the chapter, but before we do that, we need to learn a little more about what
correlations can and cannot tell us.

The Limitations of Correlation

Correlation Is Not Causation As a student of the behavioral sciences, you need
to understand what correlations can (and cannot) reveal about the relation between
variables. Any two co-occurring events are, by definition, correlated, but they are
not necessarily causally related. Correlations provide clues to causality, but they do
not demonstrate or test for causality; they only quantify the strength and direction
of the relation between variables. This is why your understanding of what cor re la-
tions can and cannot do determines whether your reasoning is scientific. Let’s think
through the possible causal influences by using an example that we’re already famil -
iar with.

Let’s say that we calculate a correlation coefficient for the relation between
number of absences from statistics class and students’ exam grades and that we find a
strong negative correlation between these two variables. A professor would likely take
this as evidence that students should attend class if they want to earn good grades.
The assumption behind this conclusion is that class attendance causes good grades.

TABLE 15-1. How Strong Is an Association?

Cohen (1988) published guidelines to help researchers determine the strength of a correlation from the cor-
relation coefficient. In social science research, however, it is extremely unusual to have a correlation as high
as 0.50, and many have disputed the utility of Cohen’s conventions for many social science contexts.

                       Size of the Correlation                                               Correlation Coefficient

                                   Small                                                                                 0.10

                                   Medium                                                                             0.30

                                   Large                                                                                 0.50
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As teachers who have observed many students study statistics, we
do believe that class attendance leads to better grades. But, as re-
searchers, we also have to acknowledge that (1) the pattern isn’t
true for every student and (2) there might be other explanations
for this  association.

With any association, we must consider three possible reasons for
the pattern. Let’s call absences from class variable A and exam grade
variable B. We could hypothesize that lower levels of variable A cause higher levels of
variable B. Yet it is possible, although somewhat less plausible, that the reverse is true.
Perhaps those who get good grades get more excited about class and don’t want to
be absent. In this case, higher levels of variable B lead to lower levels of variable A. But
even more important is the possibility of a third variable (or more). We’ll refer to any
third (or fourth or fifth) variable as C. The three possibilities are outlined in Figure
15-5. Because we use the letters A, B, and C to describe the different possibilities, we
refer to this as the A-B-C model.

What third variables might lead to a correlation between number
of absences and exam grade? A high need for achievement might
lead both to better grades and to a realization that skipping class is
a bad thing. Having friends in class also might lead students to avoid
skipping class and then to get better grades by having study partners.
What if it’s a morning class? Students who are “morning people”
might be more likely to wake up alert, not skip class, and therefore
perform better on exam days. The possibilities are limitless. Never
confuse correlation with causation.

Restricted Range In many studies, one or even both of the variables
is restricted in its range. For example, this was the case in the study
that assessed mathematical reasoning ability in a sample of boys and girls who performed
in the top 2% to 3% on standardized tests (see Chapter 8; Benbow & Stanley, 1980).
These mathematically high-achieving participants represent a much smaller range than
the full population from which the researchers could have drawn their sample. We must
consider the effects of a restricted range on correlation coefficients.

For example, Figure 15-6 depicts a scatterplot of data on two variables, age and
hours studied, from a sample of our statistics students. The correlation coefficient for
these data points is 0.56, a strong positive correlation.

BA

AB

A

B
C

FIGURE 15-5
Three Possible Causal
Explanations for a Correlation

Any correlation can be explained in one
of several ways. The first variable (A)
might cause the second variable (B). Or
the reverse could be true—the second
variable (B) could cause the first variable
(A). Finally, a third variable, C, could
cause both A and B. In fact, there could
be many third variables.

�  MASTERING THE CONCEPT

15-3: Just because two variables are

related doesn’t mean one causes the other.

It could be that the first causes the second,

the second causes the first, or a third

variable causes both. Correlation does not

indicate causation.
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FIGURE 15-6
The Full Range of Data

This scatterplot depicts data for the full
range of two variables, age, and hours
studied per week. The Pearson
correlation coefficient for these data 
is 0.56.
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However, if we only look at the older students between the ages of 22 and 25, we
no longer see the pattern of a positive correlation emerging from the data (see Figure
15-7). The strength of this correlation is now far smaller, just 0.05. When we calculate
a correlation coefficient, we should always ask ourselves whether the ranges of the two
variables are sufficient to show us their true association.

The Effect of an Outlier Outliers can have powerful effects on the correlation
coefficient. For example, consider the correlation between monthly cell phone
bill and hours studied per week, calculated from data reported by some of our
statistics students. We calculated a correlation coefficient of 0.39, a medium corre-
lation by Cohen’s standards but quite large in terms of the typical correlation in the
behavioral sciences. Let’s look at the data, depicted in the scatterplot in Figure 15-8.

A single student reported the highest number of hours studied per week and was an
extreme outlier on the variable of monthly cell phone bill, reporting that she typically
spends a whopping $500 a month! Did she misinterpret the question? Does she have a
boyfriend in Peru? Regardless of her story, guidelines regarding outliers suggest when it
might be acceptable to disregard them because they distort the data (Miyamura & Kano,
2006). For example, without this one $500 per month cell phone user, the correlation co-
efficient is �0.14, showing both a decrease in strength and a reversal of direction. A visual
inspection of the scatterplot is often the most effective way to identify outliers. Once we
identify an outlier, we must decide whether it makes sense to include it in the analyses.
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FIGURE 15-7
A Restricted Range for Age

This scatterplot depicts the same data
as in Figure 15-6, but only for those
between the ages of 22 and 25. The

strength of the Pearson correlation
coefficient for these data is now 

only 0.05.
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FIGURE 15-8
The Effects of an Outlier on the

Correlation Coefficient

One student who both studies and uses
her cell phone more than any other

individual in the sample changed the
Pearson correlation coefficient from

�0.14, a negative correlation, to 0.39,
a much stronger and positive

correlation! Always examine the
scatterplot for outliers before calculating

a correlation coefficient.
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Clarifying the Concepts 15-1 There are three main characteristics of the correlation coefficient. What are they?

15-2 Why doesn’t correlation indicate causation?

Calculating the Statistics 15-3 Use Cohen’s guidelines to describe the strength of the following coefficients:

a. �0.60

b. 0.35

c. 0.04

15-4 Draw a hypothetical scatterplot to depict the following correlation coefficients:

a. �0.60

b. 0.35

c. 0.04

Applying the Concepts 15-5 A writer for Runner’s World magazine debated the merits of running while listening 
to music (Seymour, 2006). The writer, an avid iPod user, interviewed a clinical
psychologist, whose response to the debate about whether to listen to music while
running was: “I like to do what the great ones do and try to emulate that. What are
the Kenyans doing?”

Let’s say a researcher conducted a study in which he determined the correlation
between the percentage of a country’s marathon runners who train while using a
portable music device and the average marathon finishing time for that country’s
runners. (Note that in this case the participants are countries, not people.) Let’s say 
the researcher finds a strong positive correlation. That is, the more of a country’s
runners who train with music, the longer the average marathon finishing time.
Remember, in a marathon, a longer time is bad. So this fictional finding is that training
with music is associated with slower marathon finishing times; the United States, for
example, would have a higher percentage of music use and higher (slower) finishing
times than Kenya.

a. Using the A-B-C model, provide three possible explanations for this finding.

b. In what way might a restricted range be involved in this hypothetical study?

c. How might an outlier affect the correlation coefficient of this study?

Solutions to these Check Your
Learning questions can be found in
Appendix D.

CHECK YOUR LEARNING
Reviewing the Concepts > A correlation coefficient is a statistic that quantifies a relation between two variables.

> The correlation coefficient always falls between �1.00 and 1.00.

> When two variables are related such that people with high scores on one tend to have high
scores on the other and people with low scores on one tend to have low scores on the
other, we describe them as positively correlated.

> When two variables are related such that people with high scores on one tend to have low
scores on the other, we describe them as negatively correlated.

> When two variables are not related, there is no correlation and they have a correlation co-
efficient close to 0.

> The strength of the correlation, captured by the number value of the coefficient, is inde-
pendent of its sign. Cohen established standards for evaluating the strength of association.

> Correlation is not equivalent to causation. In fact, a correlation does not help us decide
the merits of different causal explanations.

> When two variables are correlated, this association might occur because the first variable
(A) causes the second (B) or because the second variable (B) causes the first (A). In addition,
a third variable (C) could cause both of the correlated variables (A and B).

> A correlation can be dramatically altered by a restricted range or by an extreme outlier.



The Pearson Correlation Coefficient
When we want to understand more about a relation between two variables, such as the
relation between spending on health care and longevity, we want to calculate the cor-
relation coefficient so we can know the direction and strength of the relation. There are
several kinds of correlation coefficients. The one that we choose to calculate depends on
the specific relation between the variables. The Pearson correlation coefficient is a statistic
that quantifies a linear relation between two scale variables. In other words, a single number is
used to describe the direction and strength of the relation between two variables when
their overall pattern indicates a straight-line relation. The Pearson correlation coefficient
is symbolized by the italic letter r when it is a statistic based on sample data. When we’re
referring to the population parameter for the correlation coefficient, such as when we’re
writing the hypotheses for significance testing, we use the Greek letter q, written as
“rho” and pronounced “row,” even though it looks a bit like the Latin letter p.

Calculation of the Pearson Correlation Coefficient
The correlation coefficient can be used as a descriptive statistic, simply to describe the
direction and strength of an association between two variables. However, it can also
be used as an inferential statistic. We can conduct a hypothesis test to determine if the
correlation coefficient is significantly different from 0 (no correlation). In this section,
we construct a scatterplot from the data and learn how to calculate the correlation co-
efficient. In the next section, we walk through the steps of hypothesis testing.
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TABLE 15-2. Is Skipping Class Related to Statistics Exam Grades?

Here are the scores for 10 students on two scale variables: number of absences from class in one semester
and exam grade.

                   Student                                        Absences                                       Exam Grade

                        1                                                      4                                                         82

                        2                                                      2                                                         98

                        3                                                      2                                                         76

                        4                                                      3                                                         68

                        5                                                      1                                                         84

                        6                                                      0                                                         99

                        7                                                      4                                                         67

                        8                                                      8                                                         58

                        9                                                      7                                                         50

                      10                                                      3                                                         78

Let’s consider an example related to your everyday decision making as a student. Every
couple of semesters, we have a student who avows that she does not have to attend
statistics classes regularly to do well because she can learn it all from the book. What
do you think? What relation would you expect between the variables of attendance
and exam grades? Table 15-2 displays the data for 10 students in one of our recent sta-
tistics classes. The second column shows the number of absences over the semester (out
of 29 classes total) for each student, and the third column shows each student’s final
exam grade for the semester.

EXAMPLE 15.3

■ The Pearson correlation
coefficient is a statistic that
quantifies a linear relation
between two scale variables.



Before we even start the calculations, we want to construct a scat-
terplot for these data, seen in Figure 15-9, to be sure that the relation
is roughly linear. We can see from this scatterplot that the data, overall,
have a pattern through which we could imagine drawing a straight
line. So, from this graph, we can confirm that the data have an ap-
proximately linear relation, and it is safe to proceed with the calcu-
lation of a Pearson correlation coefficient. It’s also helpful to use the
scatterplot to make a guess about what we’d expect the correlation
coefficient to be. If the coefficient that we calculate does not match
our expectations, we can go back to find out where we went wrong.

We learned earlier that a positive correlation results when a high score (above the
mean) on one variable tends to indicate a high score (also above the mean) on the
other variable. On the other hand, a negative correlation results when a high score on
one variable (above the mean) tends to indicate a low score (below the mean) on the
other variable.

One straightforward way to determine whether an individual falls above or below
the mean is to calculate deviations for each score. If participants tend to have two pos-
itive deviations (both scores above the mean) or two negative deviations (both scores
below the mean), then the two variables are likely to be positively correlated. If par-
ticipants tend to have one positive deviation (above the mean) and one negative de-
viation (below the mean), then the two variables are likely to be negatively correlated.
We can harness this aspect of deviations to calculate the correlation coefficient. In fact,
when we calculate the correlation coefficient, part of the process involves multiplying
the deviations for each pair of scores.

Think about why this makes sense. Let’s consider a positive correlation. High scores
are above the mean and so would have positive deviations. The product of a pair of
high scores would be positive. Low scores are below the mean and would have negative
deviations. The product of a pair of low scores would also be positive. When we cal-
culate a correlation coefficient, part of the process involves adding up the products of
the deviations. If most of these are positive, we get a positive correlation coefficient.

Let’s consider a negative correlation. High scores, which are above the mean, would
convert to positive deviations. Low scores, which are below the mean, would convert
to negative deviations. The product of one positive deviation and one negative deviation
would be negative. If most of the products of the deviations are negative, we would
get a negative correlation coefficient.

In fact, the process we just described is the calculation of the numerator of the cor-
relation coefficient. Let’s try it with our data. Table 15-3 shows us the calculations. The
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FIGURE 15-9
Always Start with a Scatterplot

Before calculating a correlation coefficient for the relation between
number of absences from class and exam grade, we construct a
scatterplot. If the relation between the variables appears to be roughly
linear, we can calculate a Pearson correlation coefficient. We can also
use the scatterplot to make a guess about what we expect from the
correlation. Here, the correlation appears to be negative. The pattern of
data goes down and to the right, and high scores on one variable are
associated with low scores on the other. In addition, we would expect a
somewhat large correlation—that is, fairly close to �1.00—because
the data are fairly close to forming a straight line.

�  MASTERING THE CONCEPT

15-4: A scatterplot can indicate whether

two variables are linearly related. It can also

give us a sense of the direction and

strength of the relation between the two

variables.



first column has the number of absences for each student. The second column shows
the deviations from the mean, 3.40. The third column has the exam grade for each
student. The fourth column shows the deviations from the mean for that variable, 76.00.
The fifth column shows the products of the deviations. Below the fifth column, we
see the sum of the products of the deviations, �304.0.

As you can see in Table 15-3, the pairs of scores tend to fall on either side of the
mean—that is, for each student, a negative deviation on one score tends to indicate a
positive deviation on the other score. For example, student 6 was never absent, so he
has a score of 0, which is well below the mean, and he got a 99 on the exam, well
above the mean. On the other hand, student 9 was absent 7 times, well above the mean,
and she only got a 50 on the exam, well below the mean. So most of the products of
the deviations are negative, and when we sum the products, we get a negative total.
This indicates a negative correlation.

You might have noticed that this number, �304.0, is not between �1.00 and 1.00.
The problem is that this number is influenced by two factors—sample size and vari-
ability. First, the more people in the sample, the more deviations there are to contribute
to the sum. Second, if the scores in the study were more variable, the deviations would
be larger and so would the sum of the products. So we have to correct for these two
factors in our denominator.

It makes sense that we would have to correct for variability. In Chapter 6, we learned
that z scores provide an important function in statistics by allowing us to standardize. You

may remember that the formula for the z score that we first learned was .

In the calculations in the numerator, we already subtracted the mean from the scores, but
we didn’t divide by the standard deviation. If we correct for variability in the denomina-
tor, that takes care of one of the two factors for which we have to correct.

But we also have to correct for sample size. You may remember that when we cal-
culate standard deviation, the last two steps are (1) dividing the sum of squared devi-
ations by the sample size, N, to remove the influence of the sample size and to calculate
variance, and (2) taking the square root of the variance to get the standard deviation.
So to factor in sample size along with standard deviation (which we just mentioned
allows us to factor in variability), we can go backward in our calculations. If we mul-
tiply variance by sample size, we get the sum of squared deviations, or sum of squares.

z
X M

SD
�

�( )
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TABLE 15-3. Calculating the Numerator of the Correlation Coefficient

     Absences (X )             (X � MX)            Exam Grade (Y )            (Y � MY)            (X � MX)(Y � MY)

              4                              0.6                           82                               6                                  3.6

              2                           �1.4                           98                             22                            �30.8

              2                           �1.4                           76                               0                                  0.0

              3                           �0.4                           68                            �8                                  3.2

              1                           �2.4                           84                               8                            �19.2

              0                           �3.4                           99                             23                            �78.2

              4                              0.6                           67                            �9                              �5.4

              8                              4.6                           58                          �18                            �82.8

              7                              3.6                           50                          �26                            �93.6

              3                           �0.4                           78                               2                              �0.8

     MX � 3.400                                              MY � 76.000                           R[(X � MX)(Y � MY)] � �304.0



Because of this, the denominator of the correlation coefficient is based on the sums
of squares for both variables. To make the denominator match the numerator, we mul-
tiply the two sums of squares together, and then we take their square root, as we would
with standard deviation. Table 15-4 shows the calculations for the sum of squares for
the two variables, absences and exam grades.

We now have all of the ingredients necessary to calculate the correlation coefficient.
Here’s the formula:

The numerator is the sum of the products of the deviations for each variable.

The denominator is the square root of the product of the two sums of squares.

STEP 2: For each participant, we multiply the deviations for his
or her two scores.

STEP 1: We calculate a sum of squares for each variable.

r
X M Y M

SS SS
X Y

X Y

�
� �R[( )( )]

( )( )

STEP 1: For each score, we calculate the deviation from its
mean.

STEP 3: We sum the products of the deviations.

STEP 2: We multiply the two sums of squares.

STEP 3: We take the square root of the product of the sums of
squares.
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TABLE 15-4. Calculating the Denominator of the Correlation Coefficient

     Absences (X )          (X � MX)          (X � MX)2          Exam Grade (Y )         (Y � MY)          (Y � MY)2

           4                            0.6                      0.36                      82                               6                    36

           2                        �1.4                      1.96                      98                             22                  484

           2                        �1.4                      1.96                      76                               0                      0

           3                        �0.4                      0.16                      68                            �8                    64

           1                        �2.4                      5.76                      84                               8                    64

           0                        �3.4                    11.56                      99                             23                  529

           4                            0.6                      0.36                      67                            �9                    81

           8                            4.6                    21.16                      58                          �18                  324

           7                            3.6                    12.96                      50                          �26                  676

           3                        �0.4                      0.16                      78                               2                      4

                                                      R(X � MX)2 � 56.4                                                  R(Y � MY)2 � 2262

�                                         MASTERING THE FORMULA

15-1: The formula for the
cor relation coefficient is: r �

. We divide

the sum of the products of the de-
viations for each variable by the
square root of the products of the
sums of squares for each variable.
This calculation has a built-in stan-
dardization procedure: it subtracts a
mean from each score and divides by
some kind of variability. By using
sums of squares in the denominator,
it also takes sample size into account.

X M Y M

SS SS
X Y

X Y

� �R[( )( )]

( )( )
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Let’s apply the formula for the correlation coefficient to our data:

So the Pearson correlation coefficient, r, is �0.85. This is a very strong negative
correlation. If we examine the scatterplot in Figure 15-9 carefully, we will notice that
there aren’t any glaring individual exceptions to this rule. The data tell a consistent
story. So what should our students learn from this result? Go to class! ■

Hypothesis Testing with the Pearson Correlation Coefficient
We said earlier that correlation can be used as a descriptive statistic to simply de -
scribe a relation between two variables, and as an inferential statistic.

r
X M Y M
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X Y

X Y
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Here we outline the six steps for hypothesis testing with a correlation coefficient. Usu-
ally, when we conduct hypothesis testing with correlation, we want to test whether a
correlation is statistically significantly different from no correlation—an r of 0.

Population 1: Students like
those whom we studied
in Example 15.3. Popula-

tion 2: Students for whom there is no correlation between number of
absences and exam grade.

The comparison distribution is a distribution of correlations taken
from the population, but with the characteristics of our study, such as
a sample size of 10. In this case, it is a distribution of all possible cor-
relations between the numbers of absences and exam grades when 10

students are considered.
The first two assumptions are like those for other parametric tests. (1) The data must

be randomly selected, or external validity will be limited. In this case, we do not know
how the data were selected, so we should generalize with caution. (2) The underlying
population distributions for the two variables must be approximately normal. In our
study, it’s difficult to tell if the distribution is normal because we have so few data
points.

The third assumption is specific to correlation: each variable should vary equally,
no matter the magnitude of the other variable. That is, number of absences should
show the same amount of variability at each level of exam grade; conversely, exam
grade should show the same amount of variability at each number of absences. You
can get a sense of this by looking at the scatterplot in Figure 15-10. In our study, it’s
hard to determine whether the amount of variability is the same for each variable
across all levels of the other variable because we have so few data points. But it seems
as if there’s variability of between 10 and 20 points on exam grade at each number of
absences. The center of that variability decreases as we increase in number of absences,
but the amount stays roughly the same. It also seems that there’s variability of between
2 and 3 absences at each exam grade. Again, the center of that variability decreases as
exam grade increases, but the amount of stays roughly the same.

STEP 1: Identify the populations,
distribution, and assumptions.

EXAMPLE 15.4

�  MASTERING THE CONCEPT

15-5: As with other statistics, we can

conduct hypothesis testing with the

correlation coefficient. We compare the

correlation coefficient to critical values on

the r distribution.
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Null hypothesis: There is no correlation be-
tween number of absences and exam grade—
H0: q � 0. Research hypothesis: There is a

correlation between number of absences and exam grade—H1: q � 0. (Note: We use the
Greek letter rho because hypotheses are about population parameters.)

The comparison distribution is an r distri-
bution with degrees of freedom calculated
by subtracting 2 from the sample size,

which in Pearson correlation is the number of participants rather than the number
of scores:

dfr � N � 2

In our study, degrees of freedom are calculated as follows:

dfr � N � 2 � 10 � 2 � 8

So the comparison distribution is an r distribution with 8 degrees of freedom.

Now that we know the degrees of freedom,
we can look up the critical values in the r
table in Appendix B. Like the z table and the

t table, the r table includes only positive values. For a two-tailed test, we take the negative
and positive version of the critical test statistic indicated in the table. So the critical
values for an r distribution with 8 degrees of freedom for a two-tailed test with a p
level of 0.05 are �0.632 and 0.632.

We already calculated the test statistic, r, in
the preceding section. It is �0.85.

The test statistic, r � �0.85, is larger in mag-
nitude than the critical value of �0.632. We

can reject the null hypothesis and conclude that number of absences and exam grade
seem to be negatively correlated. ■

STEP 2: State the null and research
hypotheses.

STEP 3: Determine the characteristics
of the comparison distribution.

STEP 4: Determine the critical values,
or cutoffs.

STEP 5: Calculate the test statistic.

STEP 6: Make a decision.
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FIGURE 15-10
Using a Scatterplot to Examine the Assumptions

We can use a scatterplot to see whether one variable varies equally at
each level of the other variable. With only 10 data points, we can’t be
certain. But this scatterplot suggests a variability of between 10 and 20
points on exam grade at each number of absences and a variability of
between 2 and 3 absences at each exam grade.

�                                         MASTERING THE FORMULA

15-2: When conducting hypothesis
testing for the Pearson correlation
coefficient, r, we calculate degrees of
freedom by subtracting 2 from the
sample size. In Pearson correlation,
the sample size is the number of par-
ticipants, not the number of scores.
The formula is: dfr � N � 2.
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CHECK YOUR LEARNING
Reviewing the Concepts > The Pearson correlation coefficient allows us to quantify the relations that we observe.

> Before we calculate a correlation coefficient, we must always construct a scatterplot to be
sure the two variables are linearly related.

> Once we have determined that any association is linear, the Pearson correlation coefficient
is calculated in three basic steps. (1) We calculate the deviation of each score from its mean,
multiply the two deviations for each person, and sum the products of the deviations. (2) We
calculate a sum of squares for each variable, multiply the sums of squares, and take the square
root. (3) We divide the sum from step 1 by the square root in step 2.

> We can use the six steps of hypothesis testing to determine whether the correlation coef-
ficient is statistically significantly different from 0. We compare the correlation coefficient
to critical values on an r distribution.

Clarifying the Concepts 15-6 Define the Pearson correlation coefficient.

15-7 The denominator of the correlation equation corrects for what two issues present in
the calculation of the numerator?

Calculating the Statistics 15-8 Create a scatterplot for the following data:

15-9 Calculate the correlation coefficient for the data provided in Check Your Learning
15-8 by completing the following three steps.

a. Calculate deviation scores and products of the deviations for each individual, and
sum all products. This is the numerator of the correlation coefficient equation.

b. Calculate the sum of squares for each variable. Then compute the square root of
the product of the sums of squares. This is the denominator of the correlation
coefficient equation.

c. Divide the numerator by the denominator to compute the coefficient, r.

Applying the Concepts 15-10 According to social learning theory, children exposed to aggressive behavior, including
family violence, are more likely to engage in aggressive behavior than children who
do not witness such violence. Let’s assume the data you worked with in Check Your
Learning 15-8 and 15-9 represent exposure to violence as the first variable (A) and
aggressive behavior as the second variable (B). For both variables, higher values
indicate higher levels, either of exposure to violence or of incidents of aggressive
behavior. You computed the correlation coefficient, step 5 in hypothesis testing, in
Check Your Learning 15-9. Now, let’s complete the other five steps of hypothesis
testing.

Variable A    Variable B

      8.0                14.0

      7.0                13.0

      6.0                10.0

      5.0                9.5

      4.0                8.0

      5.5                9.0

      6.0                12.0

      8.0                11.0



Correlation and Psychometrics
There is a branch of the social sciences that specializes in the measurement of
many variables, psychometrics. Psychometrics is the branch of statistics used in the de vel op-
ment of tests and measures. Not surprisingly, the statisticians and psychologists who develop
tests and measures are called psychometricians. Psychometrics involves many of the sta-
tistical procedures referred to in this textbook, and correlation forms the mathematical
backbone of many of them. Psychometricians are needed to make sure elections are
fair, to test for cultural biases in standardized tests, to identify high-achieving em -
ployees, and so on.

Despite the importance of psychometricians, we don’t have nearly enough of them.
The New York Times reported (Herszenhorn, 2006) a “critical shortage” of such experts
in statistics, psychology, and education, leading to intense competition for the few who
are available—competition that has resulted in U.S. salaries as high as $200,000 a year!
As the New York Times says, “Psychometrics, one of the most obscure, esoteric, and
cerebral professions in America, is also one of the hottest.” Psychometricians use cor-
relation to examine two important aspects of the development of measures—reliability
and validity.

Reliability
In Chapter 1, we defined a reliable measure as one that is consistent. For example, if
we are measuring shyness, then a reliable measure leads to nearly the same score every
time a person takes the shyness test.

One particular type of reliability is test–retest reliability.
Test–retest reliability refers to whether the scale being used pro-
vides consistent information every time the test is taken. To cal-
culate a measure’s test–retest reliability, the measure is given
twice to the same sample, typically with a delay of a week or
more between tests. The participants’ scores on the first test
of the measure are correlated with their scores on the second
test of the measure. A large correlation indicates that the
measure shows good consistency over time—that is, good
test–retest reliability (Cortina, 1993).

Another way to measure the reliability of a test is by
measuring its internal consistency in order to verify that all
the items were measuring the same idea (DeVellis, 1991).
Initially, researchers measured internal consistency via “split-
half” reliability, correlating the odd-numbered items (1, 3, 5,
etc.) with the even-numbered items (2, 4, 6, etc.). If this cor-
relation coefficient is large, then the test has high internal
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a. Step 1: Identify the populations, distribution, and assumptions.

b. Step 2: State the null and research hypotheses.

c. Step 3: Determine the characteristics of the comparison distribution.

d. Step 4: Determine the critical values, or cutoffs, assuming a two-tailed test with a p
level of 0.05.

e. Step 6: Make a decision, including an evaluation of the size of the correlation using
Cohen’s guidelines.

Solutions to these Check Your
Learning questions can be found in
Appendix D.

A
P

 P
ho

to
/M

ic
ha

el
 M

an
ni

ng

Correlation and Reliability Correlation is used by psychometricians to
help professional sports teams assess the reliability of athletic
performance, such as how fast a pitcher can throw a baseball.

■ Psychometrics is the branch
of statistics used in the
development of tests and
measures.

■ Psychometricians are the
statisticians and psychologists
who develop tests and
measures.

■ Test–retest reliability refers
to whether the scale being
used provides consistent
information every time the test
is taken.
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consistency. The odd–even approach is easy to understand, but computers now allow
researchers to take a more sophisticated approach. The computer can calculate every
possible split-half reliability.

Consider a ten-item measure. The computer can calculate correlations between the
odd-numbered items and even-numbered items, between the first five items and the last

five items, between items 1, 2, 4, 8, 10 and items 3, 5, 6, 7, 9, and so on
for every combination of two groups of five items. The computer can
then calculate what is essentially (although not always exactly) the aver-
age of all possible split-half correlations (Cortina, 1993). The average of
these is called coefficient alpha (or Cronbach’s alpha in honor of the stat-
istician who developed it). Coefficient alpha (symbolized as a) is an esti-
mate of a test or measure’s reliability and is calculated by taking the average of all
possible split-half correlations. Coefficient alpha is commonly used across a
wide range of fields, including psychology, education, sociology, political

science, medicine, economics, criminology, and anthropology (Cortina, 1993). (Note that
this alpha is different from the p level.)

When developing a new scale or measure, how high should its reliability be? It
would not be worth using a scale in our research if its coefficient alpha is less than
0.80. However, if we are using a scale to make decisions about individuals—for example,
the SAT or a diagnostic tool—we should aim for a coefficient alpha of 0.90 or even
of 0.95 (Nunnally & Bernstein, 1994). We want high reliability when using a test that
directly affects people’s lives—but it also needs to be valid.

Validity
In Chapter 1, we defined a valid measure as one that measures what it was designed
or intended to measure. Many researchers consider validity to be the most impor -

tant concept in the field of psychometrics (e.g., Nunnally & Bern-
stein, 1994). It can be a great deal more work to measure validity
than reliability, however, so that work is not always done. In fact, it
is quite possible to have a reliable test, one that measures a variable,
such as shyness, consistently over time and is internally consistent but
is still not valid. Just because the items on a test all measure the same
thing doesn’t mean that they’re measuring what we want them to
measure or what we think they are measuring.

For example, Cosmopolitan magazine often has
quizzes that claim to assess readers’ relationships
with their boyfriends. If you’ve ever taken one of
these quizzes, you might wonder whether some of
the quiz items actually measure what the quiz sug-
gests. One quiz, titled “Is He Devoted to You?,”
asks “Be honest: Do you ever worry that he might
cheat on you?” Does this item assess a man’s de-
votion or a woman’s jealousy? Another item asks:
“When you introduced him to your closest
friends, he said:” and then offers three options—
(1) “I’ve heard so much about all of you! So,
how’d you become friends?” (2) “‘Hi,’ then si-
lence—he looked a bit bored.” (3) “‘Nice to meet
you’ with a big smile.” Does this measure his de-
votion or his social skills? Such a quiz might be
reliable (you’d consistently get the same score),

�  MASTERING THE CONCEPT

15-6: Correlation is used to calculate

reliability either through test–retest reliability

or through a measure of internal

consistency such as coefficient alpha.

�  MASTERING THE CONCEPT

15-7: Correlation is used to calculate validity,

often by correlating a new measure with

existing measures known to assess the

variable of interest.
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Validity and Personality
Quizzes Correlation can also
be used to establish the validity
of a personality test.
Establishing validity is usually
much more difficult than
establishing reliability. Moreover,
most magazines and
newspapers never examine the
psychometric properties of the
quizzes that they publish. Think
of most of them as mere
entertainment.



but it might not be a valid measure of a man’s devotion to his girlfriend. Devotion,
jealousy, and social skills are different concepts. It takes a psychometrician who under-
stands correlation to test the validity of such measures.

Here’s another example concerning validity. In a groundbreaking study on affir-
mative action in higher education, researchers studied the success of over 35,000 black
and white students who attended one of 28 highly selective universities (Bowen &
Bok, 2000). When determining validity, it is important that we consider how we will
operationalize the variable of interest—here, success.

In this study, the researchers first considered the obvious criteria to operationalize
success, these students’ future graduate education and career achievement. Their findings
debunked the myth that black graduates of such institutions did not achieve the suc-
cesses of their white counterparts. The researchers then went a step further and assessed
a success-related criterion very important to the social fabric of a society: graduates’
levels of civic and community participation, including political involvement and com-
munity service. They found that significantly more black graduates than white graduates
of these top institutions were actively involved in their communities. This research
changed the nature of the debate on affirmative action through validity—by widening
the pool of criteria by which we operationalize success.
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The earlier discussion about health care and life expectancy highlighted the fact that
it takes more than just two correlated variables to understand a complicated world.
Fortunately, correlation also provides a helpful way to think about the
relative influence of multiple variables, partial correlation. Partial cor-
relation is a technique that quantifies the degree of association between two
variables after statistically removing the association of a third variable with
both of those two variables.

For example, we considered the correlation between number of
absences and exam grade in a statistics class. In the entire sample of
26 students, we found a correlation of �0.44. Students with more ab-
sences tended to have a lower exam grade; students with fewer ab-
sences tended to have a higher exam grade. We also discussed the many possible third
variables that might influence this association. One that we did not discuss is the com-
pletion of homework assignments. As expected, the correlation between the percentage
of completed homework assignments and exam grade was 0.53. Students who com-
pleted a higher percentage of homework assignments tended to earn better grades; stu-
dents who completed a lower percentage of homework assignments tended to earn
poorer grades.

The introduction of this third variable also lets us ask about the correlation of the
number of absences with the percentage of completed homework assignments. In fact,
the correlation between number of absences and percentage of completed homework
assignments was �0.51. Students who missed class more tended to have completed a
smaller percentage of homework assignments; students who missed class less tended to
have completed a larger percentage of homework assignments.

So how can we begin to tease apart the relation among these three variables? Partial
correlation allows us to examine the association between two variables when we suspect
that there is a third variable at work. We can calculate a correlation coefficient that ex-
presses the association between two variables, over and above the association of either

Partial Correlation N e x t  S t e p s

�  MASTERING THE CONCEPT

15-8: Partial correlation allows us to

quantify the relation between two variables,

controlling for the correlation of each of

these variables with a third related variable.

■ Coefficient alpha, symbolized
as a, is a commonly used
estimate of a test or measure’s
reliability and is calculated by
taking the average of all
possible split-half correlations;
sometimes called Cronbach’s
alpha.

■ Partial correlation is a
technique that quantifies the
degree of association between
two variables after statistically
removing the association of a
third variable with both of
those variables.
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of these variables with a third variable. Essentially, we subtract the in-
fluence of a third variable from the correlation coefficient. We usually
use software to make these calculations.

Figure 15-11 is a drawing of three overlapping circles that represent
the three variables: number of absences, percentage of homework as-
signments completed, and exam grade. The circles overlap to the degree
that the variables are associated. Each pair of variables is correlated to
the degree to which the two circles that represent them overlap in the
diagram. There is a portion of the diagram that represents the association
among all three variables—the section where all three circles overlap.

Partial correlation quantifies the correlation between two variables by
removing (or correcting for) all overlapping variability of each variable
with the third. The idea is that we calculate a correlation of two variables,
over and above each of their correlations with the third variable. That al-
lows us to calculate the partial correlation of number of absences and
grade, correcting for percentage of homework assignments completed.

Let’s describe this same idea visually. In the Venn diagram in Figure 15-11, we cal-
culate the association represented by the letter A—the part left over when B is removed
(because that section accounts for the overlap among all three). The partial correlation
is �0.23, smaller than the initial Pearson correlation, �0.44, but still fairly substantial.

We also can calculate the partial correlation of percentage of homework assignments
and grade, correcting for number of absences. To do this, we calculate the association
represented by C in the Venn diagram—the part left over when B is removed. The
partial correlation is 0.40, smaller than the initial Pearson correlation coefficient, 0.53,
but still substantial. The completion of homework assignments has a strong association
with exam grade, even after we’ve removed the contribution of number of absences.

It appears that the variables of “number of absences” and “percentage of homework
assignments completed” both have substantial correlations, independent of each other,
with the variable of “exam grade.” We can think of it this way: First, for any particular
specific number of absences, there is a correlation between homework and grade. Sec-
ond, for any particular number of completed homework assignments, there is a cor-
relation between absences and grade, although it is not as strong as the first partial
correlation (between homework and grade).

What’s the message for the students in this class? Coming to class is associated with
good exam grades, no matter how many of your homework assignments you complete.
And doing homework is even more strongly associated with good exam grades, no mat-
ter how often you come to class. We can’t know that these behaviors cause good exam
grades (correlation can never tell us about causality), but these data do suggest that stu-
dents who come to class and do their homework tend to get the best exam grades.

A

B

C

Number of
Absences

Percentage
of Homework
Assignments
Completed

Exam
Grade

FIGURE 15-11
A Venn Diagram: Partial
Correlation and Overlapping
Variability

Partial correlation can help us
understand the degree to which two
variables are associated, independent of
a third variable. We can, for example,
assess the correlation between number
of absences and exam grade, over and
above the correlation of percentage of
completed homework assignments with
these variables.

CHECK YOUR LEARNING
Reviewing the Concepts > Correlation is a central part of psychometrics, the statistics of the construction of tests and

measures.

> Psychometricians, the statisticians who practice psychometrics, use correlation to establish
the reliability and the validity of a test.

> Test–retest reliability can be estimated by correlating the same participants’ scores on the
same test at two different time points.
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Clarifying the Concepts 15-11 How does the field of psychometrics make use of correlation?

15-12 What does coefficient alpha measure and how is it calculated?

Calculating the Statistics 15-13 A researcher is assessing a diagnostic tool for determining whether students should be
placed in a remedial reading program. The researcher calculates coefficient alpha and
finds that it is 0.85.

a. Does the test have sufficient reliability to be used as a diagnostic tool? Why or 
why not?

b. Does the test have sufficient validity to be used as a diagnostic tool? Why or why not?

c. What information would we need to appropriately assess the validity of the test?

15-14 Imagine that the correlation between first-semester GPA in college and SAT scores is
0.76. Additionally, imagine that the partial correlation between first-semester GPA and
SAT scores, controlling for high school GPA, is 0.20. What does the change from a
correlation of 0.76 to a partial correlation of 0.20 mean for the relation between
college GPA and SAT scores?

Applying the Concepts 15-15 Remember the Cosmopolitan devotion quiz we referred to when discussing validity?
Imagine that the magazine hired a psychometrician to assess the reliability and validity
of its quizzes, and she administered this ten-item quiz to 100 female readers of that
magazine who had boyfriends.

a. How could the psychometrician establish the reliability of the quiz? That is, which
of the methods introduced above could be used in this case? Be specific, and cite at
least two ways.

b. How could the psychometrician establish the validity of the quiz? Be specific, and
cite at least two ways.

c. Choose one of your criteria from part (b) and explain why it might not actually
measure the underlying variable of interest. That is, explain how your criterion
itself might not be valid.

> Coefficient alpha, now widely used to establish reliability, is essentially calculated by taking
the average of all possible split-half correlations (i.e., not just the odds vs. the evens).

> Partial correlation lets us quantify the association between two variables, over and above
the association of a third variable with either of these variables.

Solutions to these Check Your
Learning Questions can be found in
Appendix D.

REVIEW OF CONCEPTS

Correlation
Correlation is an association between two variables and is quantified by a correlation co-
efficient. A positive correlation indicates that a participant who has a high score on one
variable is likely to have a high score on the other, and someone with a low score on
one variable is likely to have a low score on the other. A negative correlation indicates
that someone with a high score on one variable is likely to have a low score on the
other. All correlation coefficients must fall between �1.00 and 1.00. The strength of
the correlation is independent of its sign.
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Correlation coefficients can be very useful, but they can also be misleading. To ac-
curately interpret a correlation coefficient, we must be certain not to confuse corre-
lation with causation. We cannot know the causal direction in which two variables are
related from a correlation coefficient, nor can we know if there is a hidden third variable
that causes the apparent relation. We must also be aware of the effects of a restricted
range or an extreme outlier. Both of these problems can detract from the accuracy of
the correlation coefficient.

The Pearson Correlation Coefficient
The Pearson correlation coefficient is used when two scale variables are linearly related, as
determined from a scatterplot. Calculating a correlation coefficient involves three steps.
(1) We calculate the deviation of each score from its mean, multiply the deviations on
each variable for each participant, and sum the products of the deviations. (2) We mul-
tiply the sums of squares for each variable, then take the square root of the prod-
uct. (3) We divide the sum of the products of the deviations (from step 1) by the square
root of the product of the sums of squares (from step 2). We can use the six steps of
hypothesis testing to determine whether the correlation coefficient is statistically
significantly different from 0. We compare the coefficient to critical values on the r
distribution.

Correlation and Psychometrics
Psychometrics is the statistics of the development of tests and measures. Psychometricians
assess the reliability and validity of a test. Reliability is sometimes measured by test–
retest reliability, whereby participants’ scores on the same measure at two different
times points are correlated. With coefficient alpha, the computer essentially calculates the
average of all possible split-half correlations (e.g., odd and even items, first and second
halves of items).

In partial correlation, researchers quantify the degree of association between two vari-
ables that remains when the correlations of these two variables with a third variable
are mathematically eliminated. Researchers use partial correlation when a third variable
may be influencing the co-relation of the first two variables.

SPSS®

Instructing SPSS to run a correlation on our variables requires
only a few choices, but those choices remind us what a cor-
relation can and cannot reveal about the relation between two
scale variables. Enter the data for the example used to calculate
the correlation coefficient in this chapter: numbers of absences
and exam grades. Be sure to put each student’s two scores on
the same row.

To view a scatterplot of the relations between two vari-
ables, select: Graphs → Chart Builder → Gallery → Scat-
ter/Dot. Drag the upper-left sample scatterplot to the large
box on top. Then select the variables to be included in the
scatterplot by dragging the independent variable, absences, to
the x-axis and the dependent variable, grade, to the y-axis.
Click “OK.”

If the scatterplot indicates that we meet the assumptions
for a Pearson correlation coefficient, we can analyze the
data. Select: Analyze → Correlate → Bivariate. Then select
the two variables to be analyzed, absences and grade. “Pear-
son” will already be checked as the type of correlation co-
efficient to be calculated. (Note: If more than two variables
are selected, SPSS will build a correlation matrix of all pos-
sible pairs of variables.) After making our choices, we click
“OK” to see the Output screen. The screenshot here shows
the output for the Pearson correlation coefficient. Notice
that the correlation coefficient is �0.851, the same as the
coefficient that we calculated by hand earlier. The two as-
terisks indicate that it is statistically significant at a p level
of 0.01.
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15.1 UNDERSTANDING CORRELATION COEFFICIENTS
A researcher gathered data on psychology students’ ratings of their likelihood of attend -
ing graduate school and the numbers of credits they had completed in their psychology
major (Rajecki, Lauer, & Metzner, 1998). Imagine that each of the following numbers rep-
resents the Pearson correlation coefficient that quantifies the relation between these two
variables. From each coefficient, what do we know about the relation between the two
variables?

1. 1.00: This correlation coefficient reflects a perfect positive relation between students’
ratings of the likelihood of attending graduate school and the number of psychology
credits they completed. This correlation is the strongest correlation of the six options.

2. �0.001: This correlation coefficient reflects a lack of relation between students’
ratings and the number of psychology credits they completed. This is the weakest
correlation of the six options.

3. 0.56: This correlation coefficient reflects a large positive relation between students’
ratings and the number of completed psychology credits.

4. �0.27: This coefficient reflects a medium negative relation between students’ ratings
and the number of completed psychology credits. (Note: This is the actual corre-
lation between these variables found in the study.)

5. �0.98: This coefficient reflects a large (close to perfect) negative relation between
students’ ratings and the number of psychology credits they have completed.

6. 0.09: This coefficient reflects a small positive relation between students’ ratings and
the number of completed psychology credits.

15.2 CALCULATING THE PEARSON CORRELATION COEFFICIENT
Is age associated with how much people study? How can we calculate the Pearson correlation
coefficient for the accompanying data (taken from students in some of our statistics classes)?

How It Works
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We can see from this scatterplot that the data, overall, have a pattern through which
we could imagine drawing a straight line. So we know the data have an approximately
linear relation and it is safe to proceed with the calculation of the Pearson correlation
coefficient.

2. The next step is to calculate the numerator of the Pearson correlation coefficient. The
numerator is the sum of the product of the deviations for each variable. The mean for age
is 21, and the mean for hours studied is 14.2. We use these means to calculate each score’s
deviation from its mean. We then multiply the deviations for each student’s two scores and
sum the products of the deviations. Here are the calculations:

Age (X) (X � MX) Hours Studied (Y) (Y � MY) (X � MX)(Y � MY)

19                 �2                  5                                  �9.2               18.4
20                 �1                20                                     5.8              �5.8
20                 �1                  8                                  �6.2                 6.2
21                    0                12                                  �2.2                 0
21                    0                18                                     3.8                 0
23                    2                25                                   10.8               21.6
22                    1                15                                     0.8                 0.8
20                 �1                10                                  �4.2                 4.2
19                 �2                14                                  �0.2                 0.4
25                    4                15                                     0.8                 3.2

MX � 21                            MY � 14.2                                             R[(Y � MX)(Y � MY)] � 49

The numerator is 49.

Number of Hours 
Student Age Studied Per Week

1               19          5
2               20          20
3               20          8
4               21          12
5               21          18
6               23          25
7               22          15
8               20          10
9               19          14

10               25          15

1. The first step is to construct a scatterplot:
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3. The next step is to calculate the denominator of the Pearson correlation coefficient.
The denominator is the square root of the product of the two sums of squares. We first
calculate a sum of squares for each variable. The calculations are here:

Age (X)  (X � MX)  (X � MX)2 Hours Studied (Y )  (Y � MY)  (Y � MY)2

19                 �2                  4                     5                                  �9.2                84.64
20                 �1                  1                    20                                     5.8                33.64
20                 �1                  1                     8                                  �6.2                38.44
21                    0                   0                    12                                  �2.2                  4.84
21                    0                   0                    18                                     3.8                14.44
23                    2                   4                    25                                   10.8              116.64
22                    1                   1                    15                                     0.8                  0.64
20                 �1                  1                    10                                  �4.2                17.64
19                 �2                  4                    14                                  �0.2                  0.04
25                    4                 16                    15                                     0.8                  0.64

MX � 21       R(X � MX)2 � 32                 MY � 14.2                                       R(Y � MY)2 � 311.6

We now multiply the two sums of squares, then take the square root of the product of
the sums of squares.

4. Finally, we can put the numerator and denominator together to calculate the Pearson
correlation coefficient:

5. Now that we have calculated the Pearson correlation coefficient (0.49), we determine
what the statistic tells us about the direction and the strength of the association between
the two variables (age and number of hours studied). The absence of a sign indicates that
this is a positive correlation. Higher ages tend to be associated with longer hours spent
studying, and lower ages tend to be associated with fewer hours spent studying. This is what
we would expect given that pairs of scores for each student tend to be either both above
the mean or both below the mean.

( )( ) ( )( . )SS SSX Y � �32 311 6 99.856

r
X M Y M

SS SS
X Y
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�
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� �
∑[( )( )]
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CHAPTER 15 ■ Correlation   425

Clarifying the Concepts

15.1 What is a correlation coefficient?
15.2 What is a linear relation?
15.3 Describe a perfect correlation, including its possible

coefficients.
15.4 What is the difference between a positive correlation and

a negative correlation?
15.5 What magnitude of a correlation coefficient is large

enough to be considered important, or worth talking
about?

15.6 When we have a straight-line relation between two
variables, we use a Pearson correlation coefficient. What
does this coefficient describe?

15.7 Explain how the correlation coefficient can be used as
a descriptive or inferential statistic.

15.8 How are deviation scores used in assessing the relation
between variables?

15.9 Explain how the sum of the product of deviations de-
termines the sign of the correlation.

15.10 What are the null and research hypotheses for cor -
relations?

15.11 What are the three basic steps to calculate the Pearson
correlation coefficient?

15.12 Describe the third assumption of hypothesis testing with
correlation.

15.13 What is the difference between test–retest reliability and
coefficient alpha?

15.14 What are the effects of a restricted range on the corre-
lation coefficient?

15.15 How can an outlier affect the correlation coefficient?

Exercises



15.16 How does partial correlation begin to address the third-
variable problem?

Calculating the Statistics

15.17 Determine whether the data in each of the graphs pro-
vided would result in a negative or positive correlation
coefficient.

a.

b.

c.

15.18 Decide which of the three correlation coefficient values
below goes with each of the scatterplots presented in
Exercise 15.17 above.

a. 0.545

b. 0.018

c. �0.20

15.19 Use Cohen’s guidelines to describe the strength of the
following correlation coefficients:

a. �0.28

b. 0.79

c. 1.0

d. �0.015

15.20 For each of the pairs of correlation coefficients pro-
vided, determine which one indicates a stronger relation
between variables:

a. �0.28 and �0.31

b. 0.79 and 0.61

c. 1.0 and �1.0

d. �0.15 and 0.13

15.21 Create a scatterplot for the following data:

15.22 Create a scatterplot for the following data:
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  X Y

394       25

972       75

349       25
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15.23 Create a scatterplot for the following data:

15.24 Calculate the correlation coefficient for the data pro-
vided in Exercise 15.21 by completing these three
steps:

a. Calculate deviation scores and products of the de-
viations for each individual, and then sum all prod-
ucts. This is the numerator of the correlation
coefficient equation.

b. Calculate the sum of squares for each variable. Then
compute the square root of the product of the sums
of squares. This is the denominator of the correla-
tion coefficient equation.

c. Divide the numerator by the denominator to com-
pute the coefficient, r.

15.25 Calculate the correlation coefficient for the data pro-
vided in Exercise 15.22 by completing these three
steps:

a. Calculate deviation scores and products of the de-
viations for each individual, and then sum all prod-
ucts. This is the numerator of the correlation
coefficient equation.

b. Calculate the sum of squares for each variable. Then
compute the square root of the product of the sums
of squares. This is the denominator of the correla-
tion coefficient equation.

c. Divide the numerator by the denominator to com-
pute the coefficient, r.

15.26 Calculate the correlation coefficient for the data pro-
vided in Exercise 15.23 by completing these three
steps:

a. Calculate deviation scores and products of the de-
viations for each individual, and then sum all prod-
ucts. This is the numerator of the correlation
coefficient equation.

b. Calculate the sum of squares for each variable. Then
compute the square root of the product of the sums
of squares. This is the denominator of the correla-
tion coefficient equation.

c. Divide the numerator by the denominator to com-
pute the coefficient, r.

15.27 Calculate degrees of freedom for each of the following
designs:

a. Forty students were recruited for a study about the
relation between knowledge regarding academic in-
tegrity and values held by students, with the idea
that students with less knowledge would care less
about the issue than students with greater amounts
of knowledge.

b. Twenty-seven couples are surveyed regarding their
years together and their relationship satisfaction.

c. Data are collected to examine the relation between
size of dog and rate of bone and joint health issues.
Veterinarians from around the country contributed
data on 3113 dogs.

d. Hours spent studying per week was correlated with
credit hour load for 72 students.

15.28 Calculate degrees of freedom for the data provided in
each of the following:

a. Exercise 15.21

b. Exercise 15.22

c. Exercise 15.23

15.29 Determine the critical values, or cutoffs, assuming a
two-tailed test with a p level of 0.05, for each of the de-
signs described in Exercise 15.27.

15.30 Determine the critical values, or cutoffs, assuming a
two-tailed test with a p level of 0.05, for the data pro-
vided in:

a. Exercise 15.21

b. Exercise 15.22

c. Exercise 15.23

15.31 The following scatterplots depict hypothetical data for
the relation between age and income. For each, (i) in-
dicate whether there appears to be a restriction-of-
range problem and explain your answer; (ii) indicate
whether there appears to be an outlier present and if
one is present, explain how this outlier might affect the
correlation.

a.

  X Y

40       60

45       55

20       30

75       25

15       20

35       40

65       30
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b.

c.

15.32 The following scatterplots depict hypothetical data from
a sample of 30-year-old adults for the relation between
the number of years of education a person has and the
number of health complaints he or she reports in a year.
For each, (i) indicate whether there appears to be a
restriction-of-range problem and explain your answer;
(ii) indicate whether there appears to be an outlier pres-
ent and if one is present, explain how this outlier might
affect the correlation.

a.

b.

c.

15.33 A researcher is deciding among three diagnostic tools.
The first has a coefficient alpha of 0.82, the second one
of 0.95, and the third one of 0.91. Based on this infor-
mation, which tool would you suggest she use and why?

15.34 There is a 0.86 correlation between variables A and B.
The partial correlation between A and B, after control-
ling for a third variable, is 0.67. Does this third variable
completely account for the relation between A and B?
Explain your answer.

15.35 There is a 0.86 correlation between variables A and B.
The partial correlation between A and B, after control-
ling for a third variable, is 0.86. Does this third variable
completely account for the relation between A and B?
Explain your answer.

15.36 There is a 0.86 correlation between variables A and B.
The partial correlation between A and B, after control-
ling for a third variable, is 0.02. Does this third variable
completely account for the relation between A and B?
Explain your answer.

Applying the Concepts

15.37 The New York Times reported that an officer of the
International Society for Astrological Research, Anne
Massey, stated that a certain phase of the planet Mer-
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cury, the retrograde phase, leads to breakdowns in
areas as wide-ranging as communication and travel
(Newman, 2006). The Times reporter, Andy New-
man, documented the likelihood of breakdown on a
number of variables in both phases, retrograde and
nonretrograde. Newman discovered that, contrary to
Massey’s hypothesis, New Jersey Transit commuter
trains were less likely to be late, by 0.4%, during the
retrograde phase. On the other hand, consistent with
Massey’s hypothesis, the rate of baggage complaints at
LaGuardia airport increased from 5.38 during non-
retrograde periods to 5.44 during retrograde periods.
Newman’s findings were contradictory across all ex-
amined variables—rates of theft, computer crashes,
traffic disruptions, delayed plane arrivals—with some
variables backing Massey and others not. Newman
cited a transportation statistics expert, Bruce Schaller,
who said, “If all of this is due to randomness, that’s
the result you’d expect.” Astrologer Massey counters
that the pattern she predicts would only emerge
across thousands of years of data.

a. Do reporter Newman’s data suggest a correlation
between Mercury’s phase and breakdowns?

b. Why might astrologer Massey believe there is a cor-
relation? Discuss the confirmation bias and illusory
correlations in your answer.

c. How do transportation expert Schaller’s statement
and Newman’s contradictory results relate to what
you learned about probability in Chapter 5? Dis-
cuss expected relative-frequency probability in your
answer.

d. If there were indeed a small correlation that one
could observe only across thousands of years of data,
how useful would that knowledge be in terms of
predicting events in your own life?

e. Write a brief response to Massey’s contention of a
correlation between Mercury’s phases and break-
downs in aspects of day-to-day living.

15.38 In the newspaper column discussed at the beginning of
this chapter, Paul Krugman (2006) mentioned obesity
(as measured by body mass index) as a possible correlate
of age at death.

a. Describe the likely correlation between these vari-
ables. Is it likely to be positive or negative? Explain.

b. Draw a scatterplot that depicts the correlation you
described in part (a).

15.39 Does the amount that people exercise correlate with
the number of friends they have? The accompanying
table contains data collected in some of our statistics
classes. The first and third columns show hours exercised
per week and the second and fourth columns show the
number of close friends reported by each participant.

a. Create a scatterplot of these data. Be sure to label
both axes.

b. What does the scatterplot suggest about the relation
between these two variables?

c. Would it be appropriate to calculate a Pearson cor-
relation coefficient? Explain your answer.

15.40 A study on the relation between rejection and depres-
sion in adolescents conducted by one of the authors
(Nolan, Flynn, & Garber, 2003) also collected data on
externalizing behaviors (e.g., acting out in negative
ways, such as causing fights) and anxiety. We wondered
whether externalizing behaviors were related to feelings
of anxiety. Some of the data are presented in the ac-
companying table.

a. Create a scatterplot of these data. Be sure to label
both axes.

b. What does the scatterplot suggest about the relation
between these two variables?

c. Would it be appropriate to calculate a Pearson cor-
relation coefficient? Explain your answer.

d. Construct a second scatterplot, but this time add in
the data for one more participant who scored 1 on
externalizing and 45 on anxiety. Would you expect
the correlation coefficient to be positive or negative
now? Small in magnitude or large in magnitude?

e. The Pearson correlation coefficient for the first set
of data is 0.65; for the second set of data it is 0.12.

Exercise     Friends     Exercise     Friends

    1               4               8               4

   0              3               2               4

    1               2              10              4

    6               6               5               7

    1               3               4               5

    6               5               2               6

    2               4               7               5

    3               5               1               5

    5               6

Externalizing     Anxiety     Externalizing     Anxiety

        9                  37                  6                 33

        7                  23                  2                 26

        7                  26                  6                 35

        3                  21                  6                 23

       11                  42                  9                 28
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Explain why the correlation changed so much with
the addition of just one participant.

15.41 Using the data in Exercise 15.40, perform all six steps
of hypothesis testing to explore the relation between
externalizing and anxiety.

a. Step 1: Identify the populations, distribution, and
assumptions.

b. Step 2: State the null and research hypotheses.

c. Step 3: Determine the characteristics of the com-
parison distribution.

d. Step 4: Determine the critical values, or cutoffs, as-
suming a two-tailed test with a p level of 0.05.

e. Step 5: Calculate the test statistic.

f. Step 6: Make a decision, including an evaluation of
the size of the correlation using Cohen’s guidelines.

15.42 For each of the following pairs of variables, would you
expect a positive correlation or a negative correlation
between the two variables? Explain your answer.

a. How hard the rain is falling and your commuting
time

b. How often you say no to dessert and your body fat

c. The amount of wine you consume with dinner and
your alertness after dinner

15.43 You may be aware of the stereotype about the crazy eld-
erly person who owns a lot of cats. Have you wondered
whether the stereotype is true? As a researcher, you de-
cide to interview 100 senior citizens in a retirement
complex. You assess all senior citizens on two variables:
(1) the number of cats they own and (2) their level of
mental health problems (a higher score indicates more
problems).

a. Imagine that you found a positive relation between
these two variables. What might you expect for
someone who owns a lot of cats? Explain.

b. Imagine that you found a positive relation between
these two variables. What might you expect for
someone who owns no cats or just one cat? Ex-
plain.

c. Imagine that you found a negative relation between
these two variables. What might you expect for
someone who owns a lot of cats? Explain.

d. Imagine that you found a negative relation be-
tween these two variables. What might you
expect for someone who owns no cats or just one
cat? Explain.

15.44 Consider the scenario in Exercise 15.43 again. The two
variables under consideration were (1) number of cats
owned and (2) level of mental health problems (with a
higher score indicating more problems). Each possible
relation between these variables would be represented
by a different scatterplot. Using data for about 10 par-

ticipants, draw a scatterplot that depicts a correlation
between these variables for each of the following:

a. A weak positive correlation

b. A strong positive correlation

c. A perfect positive correlation

d. A weak negative correlation

e. A strong negative correlation

f. A perfect negative correlation

g. No (or almost no) correlation
15.45 Graduate student Angela Holiday (2007) conducted a

study examining perceptions of combat veterans suf-
fering from mental illness. Participants read a descrip-
tion of a person, either a man or a woman, who had
recently returned from combat in Iraq and who was
suffering from depression. Participants rated the situa-
tion (combat in Iraq) with respect to how trau -
matic they believed it was; they also rated the combat
veterans on a range of variables, including scales that
assessed how masculine and how feminine they per-
ceived the person to be. Among other analyses,
Holiday examined the relation between the perception
of the situation as being traumatic and the perception
of the veteran as being masculine or feminine. When
the person was male, the perception of the situation
as traumatic was strongly positively correlated with
the perception of the man as feminine but was only
weakly positively correlated with the perception of the
man as masculine. What would you expect when the
person was female? The accompanying table pre -
sents some of the data for the perception of the situa-
tion as traumatic (on a scale of 1–10, with 10 being the
most traumatic) and the perception of the woman as
feminine (on a scale of 1–10, with 10 being the most
feminine).

a. Draw a scatterplot for these data. Does the scatter-
plot suggest that it is appropriate to calculate a Pear-
son correlation coefficient? Explain.

b. Calculate the Pearson correlation coefficient.

c. State what the Pearson correlation coefficient tells
us about the relation between these two  variables.

Traumatic     Feminine

      5                 6

      6                 5

      4                 6

      5                 6

      7                 4

      8                 5
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d. Explain why the pattern of pairs of deviation scores
enables us to understand the relation between the
two variables. (That is, consider whether pairs of
deviations tend to have the same sign or opposite
signs.)

15.46 Using the data and your work in Exercise 15.45, per-
form the remaining five steps of hypothesis testing to
explore the relation between trauma and femininity.

a. Step 1: Identify the populations, distribution, and
assumptions.

b. Step 2: State the null and research hypotheses.

c. Step 3: Determine the characteristics of the com-
parison distribution.

d. Step 4: Determine the critical values, or cut -
offs, assuming a two-tailed test with a p level of
0.05.

e. Step 6: Make a decision, including an evalua -
tion of the size of the correlation using Cohen’s
guidelines.

15.47 See the description of Holiday’s experiment in Exercise
15.45. We calculated the correlation coefficient for the
relation between the perception of a situation as trau-
matic and the perception of a woman’s femininity. Now
let’s look at data to examine the relation between the
perception of a situation as traumatic and the perception
of a woman’s masculinity.

a. Draw a scatterplot for these data. Does the scatter-
plot suggest that it is appropriate to calculate a Pear-
son correlation coefficient? Explain.

b. Calculate the Pearson correlation coefficient.

c. State what the Pearson correlation coefficient tells
us about the relation between these two variables.

d. Explain why the pattern of pairs of deviation scores
enables us to understand the relation between the
two variables. (That is, consider whether pairs of de-
viation scores tend to share the same sign or to have
opposite signs.)

e. Explain how the relations between the perception
of a situation as traumatic and the perception of a
woman as either masculine or feminine differ from
those same relations with respect to men.

15.48 Using the data and your work in Exercise 15.47, per-
form the remaining five steps of hypothesis testing to
explore the relation between trauma and masculinity.

a. Step 1: Identify the populations, distribution, and
assumptions.

b. Step 2: State the null and research hypotheses.

c. Step 3: Determine the characteristics of the com-
parison distribution.

d. Step 4: Determine the critical values, or cutoffs, as-
suming a two-tailed test with a p level of 0.05.

e. Step 6: Make a decision, including an evaluation of
the size of the correlation using Cohen’s guidelines.

15.49 A friend tells you that there is a correlation between
how late she’s running and the amount of traffic. When-
ever she’s going somewhere and she’s behind schedule,
there’s a lot of traffic. And when she has plenty of time,
the traffic is sparser. She tells you that this happens no
matter what time of day she’s traveling or where she’s
going. She concludes that she’s cursed with respect to
traffic.

a. Explain to your friend how other phenomena, such
as coincidence, superstition, and the confirmation
bias, might explain her conclusion.

b. How could she quantify the relation between these
two variables: the degree to which she is late and
the amount of traffic? In your answer, be sure to ex-
plain how you might operationalize these variables.
Of course, these could be operationalized in many
different ways.

15.50 The trashy tabloid Weekly World News published an
article—“Water from Mountain Falls Can Make You a
Genius”—stating that drinking water from a special wa-
terfall in a secret location in Switzerland “boosts IQ by
14 points—in the blink of an eye!” (exclamation point
in the original). Hans and Inger Thurlemann, two hikers
lost in the woods, drank some of the water, noticed an
improvement in their thinking, and instantly found their
way out of the woods. The more water they drank, the
smarter they seemed to get. They credited the “miracle
water” with enhancing their IQs. They brought some
of the water home to their friends, who also claimed to
notice an improvement in their thinking. Explain how
a reliance on anecdotes led the Thurlemanns to perceive
an illusory correlation.

15.51 Imagine that a sports researcher wanted to quantify the
relation between miles run in training per week and
finish time for a 5-kilometer race.

a. If the researcher studied a representative sample of
North American adults, would you expect to find
a relation between training and time? Would it be
positive or negative? Explain.

b. If the researcher studied only those who run more
than 25 miles per week, would you expect to find

Traumatic     Masculine

      5                  3

      6                  3

      4                  2

      5                  2

      7                  4

      8                  3
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a relation between training and time? Would it be
positive or negative? (Hint: There would likely be
a higher percentage of people who are overtraining
among this sample.)

c. Explain why the researcher might find very different
results in these two scenarios even when using the
same two variables.

15.52 A New York Times editorial (“Public vs. Private
Schools,” 2006) cited a finding by the U.S. Department
of Education that standardized test scores were signifi-
cantly higher among students in private schools than
among students in public schools.

a. What are the researchers suggesting with respect to
causality?

b. How could this correlation be explained by re -
versing the direction of hypothesized causality? Be
specific.

c. How might a third variable account for this corre-
lation? Be specific. Note that there are many possi-
ble third variables.

(Note: In the actual study, the difference between types
of school disappeared when the researchers statistically
controlled for related third variables including race, gen-
der, parents’ education, and family income.)

15.53 How safe are convertibles? USA Today (Healey, 2006)
examined the pros and cons of convertible automobiles.
The Insurance Institute for Highway Safety, the newspa-
per reported, determined that, depending on the model,
52 to 99 drivers of 1 million registered convertibles died
in a car crash. The average rate of deaths for all passenger
cars was 87. “Counter to conventional wisdom,” the re-
porter wrote, “convertibles generally aren’t unsafe.”

a. What does the reporter suggest about the safety of
convertibles?

b. Can you think of another explanation for the fairly
low fatality rates? (Hint: The same article reported
that convertibles “are often second or third cars.”)

c. Given your explanation in part (b), suggest data that
might make for a more appropriate comparison.

15.54 As this chapter is being written, March Madness, the
final championship series in college basketball in the
United States, is in full swing. The national sports media
and news media enjoy covering the games and including
human interest stories about the young men and
women who compete at this elite level. Some of these
athletes also compete at the highest level in academics.
While the stereotype of the dumb jock might be strong
and ever-present, a fair amount of research shows that
athletes maintain decent grades and competitive gradu-
ation rates when compared to nonathletes. Let’s play
with some data to explore the relation between GPA
and participation in athletics. Data are presented here for
a hypothetical team, including the GPA for each athlete
and the average number of minutes played per game.

a. Create a scatterplot of these data and describe your
impression of the relation between these variables
based on the scatterplot.

b. Compute the Pearson correlation coefficient for
these data.

c. Explain why the correlation coefficient you just
computed is a descriptive statistic, not an inferential
statistic. What would you need to do to make this
an inferential statistic?

15.55 Using the data provided in Exercise 15.54, test the hy-
pothesis that grades are related to participation in
athletics.

a. Perform the six steps of hypothesis testing.
b. What limitations are there to the conclusions you

can draw based on this correlation?
c. How else could you have studied this phenomenon

such that you might have been able to draw a more
sound, causal conclusion?

15.56 Did you know that sometimes you eat more just because
the food is in front of you? Geier, Rozin, and Doros
(2006) studied how portion size affected the amount
people consumed. They discovered interesting things,
such as people eat more M&M’s when they are dispensed
using a big spoon compared with when a small spoon is
used. They investigated this phenomenon with two other
food products as well, soft pretzels and Tootsie Roll can-
dies. Not only are their findings informative for individ-
uals who might want to lose weight by reducing their
food intake, they are also valuable for restaurants and
other reception areas where one might want to save
money on the free candies offered by reducing customer
consumption rates. Let’s explore this last phenomenon.
Hypothetical data are presented below for the amount of
candy presented in a bowl for customers to take and the
amount of candy taken by the end of each day:

Minutes  GPA

29.70 3.20

32.14 2.88

32.72 2.78

21.76 3.18

18.56 3.46

16.23 2.12

11.80 2.36

6.88 2.89

6.38 2.24

15.83 3.35

2.50 3.00

4.17 2.18

16.36 3.50
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a. Create a scatterplot of these data.

b. Describe your impression of the relation between
these variables based on the scatterplot.

c. Compute the Pearson correlation coefficient for
these data.

d. Summarize your findings using Cohen’s guidelines.

15.57 Let’s take the analysis based on our candy data in Ex-
ercise 15.56 a little further.

a. Perform the six steps of hypothesis testing.

b. What limitations are there to the conclusions you
can draw based on this correlation?

c. Use the A-B-C model to explain possible causes for
the relation between these variables.

15.58 Aron and colleagues (2005) found a correlation be-
tween intense romantic love [as assessed by the Passion-
ate Love Scale (PLS)] and activation in a specific region
of the brain [as assessed by functional magnetic reso-
nance imaging (fMRI)]. The PLS (Hatfield & Sprecher,
1986) assessed the intensity of romantic love by asking
people in romantic relationships to respond to a series
of questions, such as “I want ______ physically, emo-
tionally, and mentally” and “Sometimes I can’t control
my thoughts; they are obsessively on ______,” replacing
the blanks with the name of their partner.

a. How might we examine the reliability of this meas-
ure using test–retest reliability techniques? Be spe-
cific and explain the role of correlation.

b. Would test–retest reliability be appropriate for this
measure? That is, is there likely to be a practice ef-
fect? Explain.

c. How could we examine the reliability of this meas-
ure using coefficient alpha? Be specific and explain
the role of correlation.

d. Coefficient alpha in this study was 0.81. Based on
coefficient alpha, was the use of this scale in this
study warranted? Explain.

15.59 Refer to the scale described in Exercise 15.58, the PLS.
a. What is the idea that this measure is trying to assess?

b. What would it mean for this measure to be valid?
Be specific.

15.60 The Wall Street Journal reported on a study of holiday
weight gain. Researchers assessed weight gain by asking
people how much weight they typically gain in the fall
and winter (Parker-Pope, 2005). The average answer was
2.3 kilograms. But a study of actual weight gain over
this period found that people gained, on average, 0.48
kilogram.

a. Is the method of asking people about their weight
gain likely to be reliable? Explain.

b. Is this method of asking people about their weight
gain likely to be valid? Explain.

15.61 New York State’s fourth-grade English exam led to an
outcry from parents because of a question that was per-
ceived to be an unfair measure of fourth graders’ per-
formance. Students read a story, “Why the Rooster
Crows at Dawn,” that described an arrogant rooster who
claims to be king, and Brownie, “the kindest of all the
cows,” who eventually acts in a mean way toward the
rooster. In the beginning the rooster does whatever he
wants, but by the end, the cows, led by Brownie, have
convinced him that as self-proclaimed king, he must be
the first to wake up in the morning and the last to go to
sleep. To the cows’ delight, the arrogant rooster complies.
Students were then asked to respond to several questions
about the story, including one that asked: “What causes
Brownie’s behavior to change?” Several parents started a
Web site, http://browniethecow.org, to point out prob-
lems with the test, particularly with this question. Stu-
dents, they argued, were confused because it seemed that
it was the rooster’s behavior, not the cow’s behavior, that
changed. The correct answer, according to a quote on the
Web site from an unnamed state official, was that the cow
started out kind and ended up mean.

a. This test item was supposed to evaluate writing skill.
According to the Web site, test items should lead to
good student writing; be unambiguous; test for writ-
ing, not another skill; and allow for objective, reliable
scoring. If students were marked down for talking
about the rooster rather than the cow, as alleged by
the Web site, would it meet these criteria? Explain.
Does this seem to be a valid question? Explain.

b. The Web site states that New York City schools use
the tests to, among other things, evaluate teachers
and principals. The logic behind this, ostensibly, is
that good teachers and administrators cause higher
test performance. List at least two possible third vari-
ables that might lead to better performance in some
schools than in other schools, other than the pres-
ence of good teachers and administrators.

15.62 A study by Nolan and colleagues (2003) examined the
relation between externalizing behaviors (acting out)
and anxiety in adolescents. Depression has been shown
to relate to both of these variables. What role might de-
pression play in the observed positive relation between
these variables? The correlation matrix below displays
the Pearson correlation coefficients, as calculated by

Number of Number of 
Pieces Presented Pieces Taken

10 3

25 14

50 26

75 44

100 36

125 57

150 41
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computer software, for each pair of the variables of in-
terest: depression, externalizing, and anxiety. The Pear-
son correlation coefficients for each pair of variables are
at the intersection in the chart of the two variables. For
example, the correlation coefficient for the association
between depression (top row) and externalizing (sec-
ond column of correlations) is 0.635, a very strong pos-
itive correlation.

a. What is the correlation coefficient for the associa-
tion between depression and anxiety? Explain what
this correlation coefficient tells us about the relation
between these variables.

b. What is the correlation coefficient for the associa-
tion between anxiety and externalizing? Explain
what this correlation coefficient tells us about the
relation between these variables.

c. The partial correlation of anxiety and externalizing
is 0.17, controlling for the variable of depression.
How is this different from the original Pearson cor-
relation coefficient between these two variables?

d. Why is the partial correlation coefficient different
from the original Pearson correlation coefficient be-
tween these two variables? What did we learn by
calculating a partial correlation?

Correlations

Depression Externalizing Anxiety

Depression

Pearson 1 0.635(**) 0.368(**)
Correlation

Sig. (2-tailed) .000 .000

N 220 219 207

Externalizing

Pearson 0.635(**) 1 0.356(**)
Correlation

Sig. (2-tailed) .000 .000

N 219 220 207

Anxiety

Pearson 0.368(**) 0.356(**) 1
Correlation

Sig. (2-tailed) .000 .000

N 207 207 207

** Correlation is significant at the 0.01 level (2-tailed).

Terms
correlation coefficient (p. 403)
positive correlation (p. 403)
negative correlation (p. 404)

Pearson correlation coefficient (p. 410)
psychometrics (p. 417)
psychometricians (p. 417)

test–retest reliability (p. 417)
coefficient alpha (p. 418)
partial correlation (p. 419)

Formulas

(p. 413)

dfr � N � 2 (p. 415)

r
X M Y M

SS SS
X Y

X Y

�
� �∑[( )( )]

( )( )

Symbols
r              (p. 402)
q             (p. 410)
a             (p. 418)
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■ You should understand the concept of effect
size (Chapter 8).

■ You should understand the concept of
correlation (Chapter 15).

■ You should be able to explain the limitations
of correlation (Chapter 15).
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In 2004, college student Mark Zuckerberg created
the social networking site Facebook, which soon
exploded in popularity across college campuses.
Zuckerberg dropped out of college to manage the
site, and his company quickly became valued at
hundreds of millions of dollars. By 2010, Face-
book.com reported having over 400 million ac-
tive users with over 200 million logging in at least
once daily. As Facebook use ballooned, researchers
at Michigan State University (Ellison et al., 2007)
wanted to understand what college students were
getting out of their Facebook relationships, an
idea known as social capital.

To find out, Ellison and colleagues’ study fo-
cused on the idea of “bridging” social capital, the
loose social connections we think of as acquain-
tances rather than friends. The researchers’ hy-
pothesis was that greater use of Facebook would
predict more of this type of social capital. Re-
searchers measured this by asking students to rate
several items, such as “I feel I am part of the MSU
community” and “At MSU, I come into contact
with new people all the time.”

Obviously, many influences determined how
much students used Facebook and how much social capital they enjoyed. For example,
some students spend many hours online every day and might spend a lot of that time
on Facebook, whereas other students only go online for a few minutes each day to
check their e-mail. In addition, answers to the research question were complicated by
gender, ethnicity, location of residence, and many other factors. In other words, to find
out what students were getting out of their Facebook relationships, researchers had to
account for the influence of many variables.

The Michigan State University researchers controlled for all of these variables in
their study and found that the more students used Facebook, the higher they tended
to score on a measure of social capital. This result suggests that students were indeed
using Facebook to bridge their social capital by expanding their network of personal
connections.

The analytical methods we learn in this chapter build on correlation to help us to
create prediction tools. We learn how to use one scale variable to predict outcome on
a second scale variable. Then we discuss the limitations of this method—limitations
that are similar to those we encountered with correlation. Finally, we expand this an-
alytical method to allow us to use multiple scale variables to predict outcome on an-
other scale variable.

Simple Linear Regression
Correlation is a marvelous tool that allows us to know the direction and strength of
a relation between two variables. We can also use a correlation coefficient to develop
a prediction tool. The procedure that we learn in this chapter lets statisticians develop
an equation to predict a person’s score on a scale dependent variable from his or her
score on a scale independent variable. For instance, the research team at Michigan State
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Facebook and Social Capital The prediction tools introduced in this chapter helped
researchers determine that increased use of Facebook predicts higher levels of social
capital.

■ Simple linear regression is
a statistical tool that lets us
predict a person’s score on the
dependent variable from his or
her score on one independent
variable.



could predict a high score on a measure of social capital for a student who spends a
lot of time on Facebook. Indeed, any time we want to use data on one or more in-
dependent variables to predict scores on a dependent variable, we can use this tool.

The real-life examples of statistical prediction tools are numerous. For example,
many universities use variables such as high school grade point average (GPA) and
Scholastic Aptitude Test (SAT) score to predict the success of prospective students. Sim-
ilarly, insurance companies input demographic data into an equation to predict the
likelihood of a class of people (such as young male drivers) to submit a claim. As more
kinds of data become readily available, the tasks for which statistical prediction is used
have only expanded.

Mark Zuckerberg, the founder of Facebook, is even alleged to have used data from
Facebook users to predict breakups of romantic relationships! He used independent
variables, such as the amount of time looking at others’ Facebook profiles, changes in
postings to others’ Facebook walls, and photo-tagging patterns, to predict the depend-
ent variable of the end of a relationship as evidenced by the user’s Facebook relationship
status. He was right one-third of the time (“Can Facebook Predict Your Breakup?,”
2010).

Prediction Versus Relation
The name for the prediction tool that we’ve been discussing is re-
gression, a statistical technique that can provide specific quantitative
information that predicts relations between variables. More specifi-
cally, simple linear regression is a statistical tool that lets us predict a per-
son’s score on a dependent variable from his or her score on one independent
variable.

Simple linear regression works by calculating the equation for a
straight line. Once we have a line, we can look at any point on the
x-axis and find its corresponding point on the y-axis. That correspon-
ding point is what we predict for y. (Note: We must have data that are
linearly related in order to use simple linear regression; the data
must form an overall pattern through which it would make sense to
draw a straight line. Like the Pearson correlation coefficient, simple
linear regression would not be used if the data do not form the pattern of a straight
line.) Let’s consider an example of research that uses regression techniques, and then
walk through the steps to develop a regression equation.

Christopher Ruhm, an economist, often uses regression in his research. In one study,
he wanted to explore the reasons for his finding (Ruhm, 2000) that the death rate
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Prediction and Car Insurance
When you call an insurance company
for a car insurance estimate, the
salesperson asks a number of
questions about you (e.g., age, gender,
marital status) and about your car
(e.g., make, model, year, color). These
characteristics are input into a type of
statistical equation; the output is your
quote. A flashy, expensive car driven by
a young, unmarried male leads to a
higher quote than a basic sedan driven
by a married 50-year-old woman.Je
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�  MASTERING THE CONCEPT

16-1: Simple linear regression allows us to

determine an equation for a straight line

that predicts a person’s score on a

dependent variable from his or her score 

on the independent variable. We can only

use it when the data are approximately

linearly related.
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decreases when unemployment goes up—a surprising negative relation between the
death rate and an economic indicator. He took this relation a step further, into the
realm of prediction: He found that an increase of 1% in unemployment predicted a
decrease in the death rate of 0.5%, on average. A poorer economy predicted better health!
It is a surprising finding, so Ruhm (2006) set out to explore the reasons for this negative
relation between the economy and health.

Ruhm conducted regression analyses for independent variables related to health
(smoking, obesity, and physical activity) and dependent variables related to the economy
(income, unemployment, and the length of the workweek). He analyzed data from a
sample of nearly 1.5 million participants collected from telephone surveys between
1987 and 2000. Among other things, Ruhm found that a decrease in working hours
predicted decreases in smoking, obesity, and physical inactivity. All of these relations
could have been identified by correlation alone. So why do we bother with regression?
Because regression can take us a step further.

Regression can provide specific quantitative predictions that more precisely explain
relations among variables. For example, Ruhm reported that a decrease in the work-
week of just one hour predicted a 1% decrease in physical inactivity. So, to explain why
the number of working hours predicts one’s level of physical inactivity, Ruhm suggested
that shorter working hours free up time for physical activity—something he might not
have thought of without the more specific quantitative information provided by re-
gression. Let’s now conduct a simple linear regression analysis using information that
we’re already familiar with: z scores.

Regression with z Scores
In Chapter 15 we calculated a Pearson correlation coefficient to quantify the relation
between students’ numbers of absences from statistics class and their statistics final exam
grades; the data for the 10 students in the sample are shown in Table 16-1. Remember,
the mean number of absences was 3.400 and the standard deviation was 2.375; the
mean exam grade was 76.000 and the standard deviation was 15.040. The Pearson cor-
relation coefficient that we calculated in Chapter 15 was �0.85, an indication of a

TABLE 16-1. Is Skipping Class Related to Exam Grades?

Here are the scores for 10 students on two scale variables, number of absences from class in one semester
and the final exam grade for that semester. The correlation between these variables is �0.85, but regression
can take us a step further. We can develop a regression equation to assist with prediction.

                   Student                                        Absences                                       Exam Grade

                      1                                                     4                                                         82

                      2                                                     2                                                         98

                      3                                                     2                                                         76

                      4                                                     3                                                         68

                      5                                                     1                                                         84

                      6                                                     0                                                         99

                      7                                                     4                                                         67

                      8                                                     8                                                         58

                      9                                                     7                                                         50

                      10                                                     3                                                         78



strong negative relation between the two variables. Now simple linear regression can
take us a step further. We can develop an equation to predict students’ final exam grades
from their numbers of absences. In other words, regression allows us to use one piece
of information to make predictions about something else.

Let’s say that a student (let’s call him Skip) announces on the first day of class that
he intends to skip five classes during the semester. We can refer to the size and direction
of the correlation (�0.85) as a benchmark to predict his final exam grade. To predict
his grade, we unite regression with a statistic we are more familiar with: z scores. If we
know Skip’s z score on one variable, we can multiply by the correlation coefficient
to calculate his predicted z score on the second variable. Remember that z scores in-
dicate how far a participant falls from the mean in terms of standard deviations. The
formula, called the standardized regression equation because it uses z scores, is:

The subscripts in the formula indicate that the first z score is for the dependent
variable, Y, and that the second z score is for the independent variable, X. The ˆ symbol
over the subscript Y, called a “hat” by statisticians, refers to the fact that this variable
is predicted. This is the z score for “Y hat”—the z score for the predicted score on the
dependent variable, not the actual score. We cannot, of course, predict the actual score,
and the “hat” reminds us of this. When we refer to this score, we can either say “the
predicted score for Y” (with no hat, because we have specified with words that it is
predicted) or we can use the hat, Ŷ, to indicate that it is predicted. (We would not use
both expressions because that would be redundant.) The subscripts X and Y for the
Pearson correlation coefficient, r, indicate that this is the correlation between variables
X and Y.

z r zY XY Xˆ ( )( )�
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16-1: The standardized regression
equation predicts the z score of a
dependent variable, Y, from the z
score of an independent variable, X.
We simply multiply the independent
variable’s z score by the Pearson
correlation coefficient to get the
predicted z score on the dependent
variable: .z r zY XY Xˆ ( )( )�

Let’s apply the formula to see how it works. If Skip’s projected number of absences
was identical to the mean number of absences for the entire class, then he’d have a z
score of 0. If we multiply that by the correlation coefficient, then he’d have a predicted
z score of 0 for final exam grade:

So if he’s right at the mean on the independent variable, then we’d predict that
he’d be right at the mean on the dependent variable.

If Skip missed more classes than average and had a z score of 1.0 on the independent
variable (1 standard deviation above the mean), then his predicted score on the de-
pendent variable would be �0.85 (0.85 standard deviation below the mean):

If his z score was �2 (2 standard deviations below the mean), his predicted z score
on the dependent variable would be 1.7 (1.7 standard deviations above the mean):

Notice two things. First, because this is a negative correlation, a score above the
mean on absences predicts a score below the mean on grade, and vice versa. Second,

zŶ ( . )( )� � �0 85 0 0

zŶ ( . )( ) .� � ��0 85 1 0 85

zŶ ( . )( ) .� � � �0 85 2 1 7

EXAMPLE 16.1
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TABLE 16-2. Regression to the Mean

One reason that regression equations are so named is because they predict a z score on the dependent variable
that is closer to the mean than is the z score on the independent variable. This phenomenon is often called
regression to the mean. The following predicted z scores for the dependent variable, Y, were  calculated by mul-
tiplying the z score for the independent variable, X, by the Pearson correlation coefficient of �0.85.

                            z Score for the                                                    Predicted z Score for the
                     Independent Variable, X                                               Dependent Variable, Y

                                  �2.0                                                                                  1.70

                                  �1.0                                                                                  0.85

                                       0.0                                                                                  0.00

                                       1.0                                                                               �0.85

                                       2.0                                                                               �1.70

the predicted z score on the dependent variable is closer to its mean than is the z score
on the independent variable. Table 16-2 demonstrates this for several z scores. ■

This regressing of the dependent variable—the fact that it is closer to its mean—
is called regression to the mean, the tendency of scores that are particularly high or low to drift
toward the mean over time.

In the social sciences, many phenomena demonstrate regression to the mean. For
example, parents who are very tall tend to have children who are somewhat shorter
than they are, although probably still above average. And parents who are very short
tend to have children who are somewhat taller than they are, although probably still
below average. We explore this concept in more detail later in this chapter.

When we don’t have a person’s z score on the independent variable, we have to
perform the additional step of converting his or her raw score to a z score. In addition,
when we calculate a predicted z score on the dependent variable, we can use the for-
mula that determines a raw score from a z score. Let’s try it with the skipping class
and exam grade example using Skip as the subject.

We already know that Skip has announced his plans to skip five classes. What would
we predict for his final exam grade?

We first have to calculate Skip’s z score on
number of absences. Using the mean (3.400)

and the standard deviation (2.375) that we calculated in Chapter 15, we calculate:

We multiply this z score by the correlation
coefficient to get his predicted z score on
the dependent variable, final exam grade:

STEP 1: Calculate the z score.

z
X M

SD
X

X

X

�
�

�
�

�
( ) ( . )

.
.

5 3 400

2 375
0 674

STEP 2: Multiply the z score by the
correlation coefficient.

zŶ � � ��( 0.85)(0.674) 0.573

EXAMPLE 16.2

■ Regression to the mean is
the tendency of scores that
are particularly high or low to
drift toward the mean over
time.

■ The intercept is the predicted
value for Y when X is equal to
0, which is the point at which
the line crosses, or intercepts,
the y-axis.

■ The slope is the amount that
Y is predicted to increase for
an increase of 1 in X.



We convert from the z score on Y, �0.573,
to a raw score for Y:

(Note that we use the “hat” symbol, ̂ , to indicate that the raw score, Y, is predicted.)
If Skip skipped five classes, this number would reflect more classes than the typical stu-
dent skipped, so we would expect him to earn a lower-than-average grade. And the
formula makes this very prediction—that Skip’s final exam grade would be 67.38,
which is lower than the mean (76.00). ■

The admissions counselor, the insurance salesperson, and Mark Zuckerburg
of Facebook, however, are unlikely to have the time or interest to do conversions
from raw scores to z scores and back. So the z score regression equation is not use -
ful in a practical sense for situations in which we must make ongoing predic tions
using the same variables. It is very useful, however, as a tool to help us develop a re-
gression equation we can use with raw scores, a procedure we look at in the next
section.

Determining the Regression Equation
You may remember the equation for a line that you learned in geometry class. The
version you likely learned was: y � m(x) � b. (In this equation, b is the intercept and
m is the slope.) In statistics, we use a slightly different version of this formula:

Ŷ � a � b(X )

a is the intercept, the predicted value for Y when X is equal to 0, which is the point at
which the line crosses, or intercepts, the y-axis. In Figure 16-1, the intercept is 5. b is the
slope, the amount that Y is predicted to increase for an increase of 1 in X. In Figure 16-1,
the slope is 2. As X increases from 3 to 4, for
example, we see an increase in what we pre-
dict for a Y of 2: from 11 to 13. The equation,
therefore, is: Ŷ � 5 � 2(X ). If the score on X
is 6, for example, the predicted score for Y is:
Ŷ � 5 � 2(6) � 5 � 12 � 17. We can verify
this on the line in Figure 16-1. Here, we were
given the regression equation and regression
line, but usually we have to determine these
from the data. In this section, we learn the
process of calculating a regression equation
from data.

Once we have the equation for a line, it’s
easy to input any value for X to determine the predicted value for Y. Let’s imagine that
one of Skip’s classmates, Allie, anticipates two absences this semester. If we had a re-
gression equation, then we could input Allie’s score of 2 on X and find her predicted
score on Y. But first we have to develop the regression equation. Using the z score re-
gression equation to find the intercept and slope enables us to “see” where these num-
bers come from in a way that makes sense (Aron & Aron, 2002). For this, we use the z
score regression equation: .

STEP 3: Convert the z score to a raw
score.

ˆ ˆ( )Y z SD MY Y Y� � �� � �0.573(15.040) 76.000 67.38

z r zY XY Xˆ ( )( )�
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16-2: The simple linear regression
equation uses the formula: Ŷ � a �

b(X ). In this formula, X is the raw
score on the independent variable
and Ŷ is the predicted raw score on
the dependent variable. a is the in-
tercept of the line, and b is its slope.
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FIGURE 16-1
The Equation for a Line

The equation for a line includes the
intercept, the point at which the line
crosses the y-axis; here the intercept is
5. It also includes the slope, the amount
that Ŷ increases for an increase of 1 in
X. Here, the slope is 2. The equation,
therefore, is: Ŷ � 5 � 2(X ).
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We start by calculating a, the intercept, a process that takes three steps.

We know that the intercept is the point at
which the line crosses the y-axis when X is

equal to 0. So we start by finding the z score for X using the formula: .

We use the z score regression equation,
, to calculate the predicted

score on Y.

We convert the z score for Ŷ to its raw score
using the formula: Ŷ .

We have the intercept! When X is 0, Ŷ is 94.30. That is, we would predict that
someone who never misses class would earn a final exam grade of 94.30. ■

STEP 1: Find the z score for X.

z
X M

SD
X

X

X

�
�

�
�

��
( ) ( . )

.
.

0 3 400

2 375
1 432

STEP 2: Use the z score regression
equation to calculate the
predicted z score on Y.

z r zY XY Xˆ ( )( ) ( . )( . ) .� � � � �0 85 1 432 1 217

STEP 3: Convert the z score to its raw
score.

ˆ ˆ( ) . ( . ) . .Y z SD MY Y Y� � � � �1 217 15 040 76 000 94 304

z
X M

SD
X

X

X

�
�( )

z r zY XY Xˆ ( )( )�

ˆ( )z SD MY Y Y� �

EXAMPLE 16.3

Next, we calculate b, the slope, a process that is similar to the one for calculating the
intercept, but calculating slope takes four steps. We know that the slope is the amount
that Ŷ increases when X increases by 1. So all we need to do is calculate what we
would predict for an X of 1. We can then compare the Ŷ for an X of 0 to the Ŷ for
an X of 1. The difference between the two is the slope.

We find the z score for an X of 1, using the

formula: .

We use the z score regression equation,
, to calculate the predicted

score on Y.

STEP 1: Find the z score for an X of 1.
z

X M

SD
X

X

X

�
�( )

z
X M

SD
X

X

X

�
�

�
�

��
( ) ( . )

.
.

1 3 400

2 375
1 011

STEP 2: Use the z score regression
equation to calculate the
predicted z score on Y.

z r zY XY Xˆ ( )( )�

z r zY XY Xˆ ( )( ) ( . )( . ) .� � � � �0 85 1 011 0 859

EXAMPLE 16.4



We convert the z score for Ŷ to its raw score,
using the formula: .

The prediction is that a student who misses
one class would achieve a final exam grade

of 88.919. As X, number of absences, increased from 0 to 1, what happened to Ŷ ?
First, ask yourself if it increased or decreased. An increase would mean a positive slope,
and a decrease would mean a negative slope. Here, we see a decrease in exam grade
as the number of absences increased. Next, determine how much it increased or de-
creased. In this case, the decrease is 5.385: 94.304 � 88.919 � 5.385. So the slope here
is �5.39.

We now have the intercept and the slope and can put them into the equation: Ŷ
� a � b(X ), which becomes Ŷ � 94.30 � 5.39(X ). We can use this equation to predict
Allie’s final exam grade based on her number of absences, two.

Ŷ � 94.30 � 5.39(X ) � 94.30 � 5.39(2) � 83.52

Based on the data from our statistics classes, we predict that Allie would earn
a final exam grade of 83.52 if she skips two classes. We could have predicted this
same grade for Allie using the z score regression equation. The difference is that
now we can input any score into the raw-score regression equation, and it does all
the work of converting for us. The admissions counselor, insurance salesperson, or
Facebook employee has an easy formula and doesn’t have to know z scores. He
or she only has to know how to enter the appropriate number into the computer
program.

In addition to plugging in a score on X to find a predicted score on Y, we can also
draw the regression line to get a visual sense of what it looks like. We do this by cal-
culating at least two points on the regression line, usually for one low score on X and
one high score on X. We would always have Ŷ for two scores, 0 and 1 (although in
some cases these numbers won’t make sense, such as for the variable of human body
temperature; you’d never have a temperature that low!). Because these scores are low
on the scale for number of absences, we would choose a high score as well; 8 is the
highest score in the original data set, so we can use that:

Ŷ � 94.30 � 5.39(X ) � Ŷ � 94.30 � 5.39(8) � 51.18

For someone who skipped eight classes, we predict a final exam
grade of 51.18. We now have three points, as shown in Table 16-3. It’s
useful to have three points because the third point serves as a check on
the other two. If the three points do not fall in a straight line, we have
made an error. (Remember that 0 or 1 are not always useful as the low
score, particularly if these numbers are far outside the range of values
for X.)

We can now plot these three points, as seen in Figure 16-2, just as
we would on a scatterplot. We then draw a line through the dots, but
it’s not just any line. This line is the regression line, which has another

STEP 3: Convert the z score to its raw
score.

ˆ ˆ( ) . ( . ) . .Y z SD MY Y Y� � � � �0 859 15 040 76 000 88 919

STEP 4: Determine the slope.

ˆ ˆ( )Y z SD MY Y Y� �
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TABLE 16-3. Drawing a Regression Line

We calculate at least two, and preferably three, pairs of
scores for X and Ŷ. Ideally, at least one is low on the
scale for X and at least one is high.

                   X Ŷ

                  0                                        94.30

                  1                                        88.92

                  8                                        51.18
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name that is wonderfully intuitive: the line of best fit. If you have ever had some clothes
tailored to fit your body, perhaps for a wedding or other special occasion, then you
know that there really is such a thing as a “best fit.” Nothing the tailor could do would
make those clothes fit you any better. ■

The meaning of the line of best fit in regression has the same characteristic as a tai-
lored set of clothes. We couldn’t make the line a little steeper, or raise or lower it, or

manipulate it in any way that would make it represent those
dots any better than it already does. When we look at the
scatterplot around the line in Figure 16-3, we see that the
line goes precisely through the middle of the data. This is
why statisticians also call the regression line the line of best
fit. Statistically, this is the line that leads to the least amount
of error in prediction.

Notice that the line we just drew starts in the upper left
of the graph and ends in the lower right, meaning that it
has a negative slope. The word slope is often used when dis-
cussing, say, ski slopes. A negative slope means that the line
looks like it’s going downhill as we move from left to right.
This makes sense because the calculations for the regression
equation are based on the correlation coefficient, and the
scatterplot associated with a negative correlation coefficient
has dots that also go “downhill.” If the slope was positive,
the line would start in the lower left of the graph and end
in the upper right. A positive slope means that the line looks
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FIGURE 16-2
The Regression Line

To draw a regression line, we plot at least two, and preferably three, pairs of scores
for X and Ŷ . We then draw a line through the dots.
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The Line of Best Fit The line of best fit in regression
has the same characteristics as tailored clothes; there is
nothing we could do to that line that would make it fit the
data any better.
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FIGURE 16-3
The Line of Best Fit

The regression line is the line that best
fits the points on the scatterplot.

Statistically, the regression line is the
line that leads to the least amount of

error in prediction.



like it’s going uphill as we move from left to right. Again, this makes sense, because we
base the calculations on a positive correlation coefficient, and the scatterplot associated
with a positive correlation coefficient has dots that also go “uphill.”

The Standardized Regression Coefficient and Hypothesis
Testing with Regression
The steepness of the slope tells us the amount that the dependent variable changes
as the independent variable increases by 1. So, for the skipping class and exam grades
example, the slope of �5.39 tells us that for each additional class skipped, we can predict
that the exam grade will be 5.39 points lower. Let’s say that another professor uses
skipped classes to predict the class grade on a GPA scale of 0–4. And let’s say that we
found a slope of �0.23 with these data. For each additional skipped class, we would
predict that the grade, in terms of the 0–4 scale, would decrease by 0.23. The problem
here is that we can’t directly compare one professor’s findings with another professor’s
findings. A decrease of 5.39 is larger than a decrease of 0.23, but they’re not comparable
because they’re on different scales.

This problem might remind you of the problems we faced in comparing scores on dif-
ferent scales. To appropriately compare scores, we standardized them using the z statistic.
We can standardize slopes in a similar way by calculating the standardized regression co-
efficient. The standardized regression coefficient, a standardized version of the slope in a regres-
sion equation, is the predicted change in the dependent variable in terms of standard deviations for an
increase of 1 standard deviation in the independent variable. It is symbolized by b and often
called a beta weight because of its symbol (pronounced “beta”). It is calculated using the
formula:

We calculated the slope, �5.39, earlier in this chapter. We calculated the sums of
squares in Chapter 15. Table 16-4 repeats part of the calculations for the denominator
of the correlation coefficient equation. At the bottom of the table, we can
see that the sum of squares for the independent variable of classes skipped
is 56.4 and the sum of squares for the dependent variable of exam grade is
2262. By inputting these numbers into the formula, we calculate:

Notice that this result is the same as the Pearson correlation coefficient
of �0.85. In fact, for simple linear regression, it is always exactly the same.
Any difference would be due to rounding decisions for both calculations.
Both the standardized regression coefficient and the correlation coefficient
indicate the change in standard deviation that we expect when the inde-
pendent variable increases by 1 standard deviation. Note that the correlation
coefficient is not the same as the standardized regression coefficient when
an equation includes more than one independent variable, a situation we’ll
encounter later in the section Multiple Regression.

Because the standardized regression coefficient is the same as the corre-
lation coefficient with simple linear regression, the outcome of hypothesis
testing is also identical. The  hypothesis testing process that we used to test

b �( )b
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Y
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5 39
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47 560
�� ��5.39(0.158) 0 85.
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16-3: The standardized regression
coefficient, b, is calculated by mul-
tiplying the slope of the regression
equation by the quotient of the
square root of the sum of squares
for the independent variable and
the square root of the sum of
squares for the dependent variable:

.b �( )b
SS

SS
X

Y

■ The standardized regression
coefficient, a standardized
version of the slope in a
regression equation, is the
predicted change in the
dependent variable in terms 
of standard deviations for an
increase of 1 standard
deviation in the independent
variable; often called beta
weight.

�  MASTERING THE CONCEPT

16-2: A standardized regression coeffi-

cient is the standardized version of a

slope, much like a z statistic is a stan-

dardized version of a raw score. For

simple linear regression, the standard-

ized regression coefficient is identical to

the correlation coefficient. This means

that when we conduct hypothesis test-

ing and conclude that a correlation co-

efficient is statistically significantly

different from 0, we can draw the same

conclusion about the standardized re-

gression coefficient.



whether the correlation coefficient is statistically significantly different from 0 can also
be used to test whether the standardized regression coefficient is statistically significantly
different from 0. As you’ll remember from Chapter 15, the Pearson correlation coef-
ficient, r � �0.85, was larger in magnitude than the critical value of �0.632 (deter-
mined based on 8 degrees of freedom and a p level of 0.05). We rejected the null
hypothe sis and concluded that number of absences and exam grade seemed to be neg-
atively correlated.
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TABLE 16-4. The Denominator of the Correlation Coefficient: The Calculations
for Sums of Squares

    Absences (X )          (X � MX)          (X � MX)2          Exam Grade (Y )          (Y � MY)          (Y � MY)2

            4                            0.6                   0.36                         82                             6                        36

            2                        �1.4                   1.96                         98                           22                     484

            2                        �1.4                   1.96                         76                             0                          0

            3                        �0.4                   0.16                         68                          �8                       64

            1                        �2.4                   5.76                         84                             8                        64

            0                        �3.4                 11.56                         99                           23                     529

            4                            0.6                   0.36                         67                          �9                       81

            8                            4.6                 21.16                         58                        �18                     324

            7                            3.6                 12.96                         50                        �26                     676

            3                        �0.4                   0.16                         78                             2                          4

R(X � MX)2 � 56.4                                                     R(Y � MY)2 � 2262

CHECK YOUR LEARNING
Reviewing the Concepts > Regression builds on correlation, enabling us not only to quantify the relation between

two variables but also to predict a score on a dependent variable from a score on an inde-
pendent variable.

> With the standardized regression equation, we simply multiply a person’s z score on an
independent variable by the Pearson correlation coefficient to predict that person’s z score
on a dependent variable.

> The raw-score regression equation is easier to use in that the equation itself does the trans-
formations from raw score to z score and back. We can use it to predict Y for any value
of X.

> We use the standardized regression equation to build the regression equation that can predict
a raw score on a dependent variable from a raw score on an independent variable.

> We can graph the regression line, Ŷ � a � b(X ), remembering that it is well named as the
line of best fit. The line is based on values for the y intercept (a), the value on Y when X
is zero; and the slope (b), which is the change in Y expected for a 1-unit increase in X.

> The slope, which captures the nature of the relation between the variables, can be stan-
dardized by calculating the standardized regression coefficient. The standardized regression
coefficient tells us the predicted change in the dependent variable in terms of standard de-
viations for every increase of 1 standard deviation in the independent variable.

> With simple linear regression, the standardized regression coefficient is identical to the Pear-
son correlation coefficient. Because of this fact, hypothesis testing with simple linear re-
gression gives us the same outcome as with correlation.



Interpretation and Prediction
In this section, we explore how the logic of regression is already a part of our everyday
reasoning. Then we discuss why regression doesn’t allow us to designate causation as we
interpret data; for instance, MSU researchers could not say that spending more time on
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Clarifying the Concepts 16-1 What is simple linear regression?

16-2 What purpose does the regression line serve?

Calculating the Statistics 16-3 Let’s assume we know that women’s heights and weights are correlated and the
Pearson coefficient is 0.28. Let’s also assume that we know the following descriptive
statistics: for women’s height, the mean is 5 feet, 4 inches (64 inches), with a standard
deviation of 2 inches; for women’s weight, the mean is 155 pounds, with a standard
deviation of 15 pounds. Sarah is 5 feet, 7 inches tall. How much would you predict she
weighs? To answer this question, complete the following steps:

a. Transform the raw score for the independent variable into a z score.

b. Calculate the predicted z score for the dependent variable.

c. Transform the z score for the dependent variable back into a raw score.

16-4 Given the regression line Ŷ � 12 � 0.67(X ), make predictions for each of the
following:

a. X � 78

b. X � �14

c. X � 52

Applying the Concepts 16-5 In Exercise 15.54, we explored the relation between athletic participation, measured by
average minutes played by players on a basketball team, and academic achievement, as
measured by GPA. We computed a correlation of 0.344 between these variables. The
original, fictional data are presented below. The regression equation for these data is:
Ŷ � 2.586 � 0.016(X ).

a. Interpret both the y intercept and the slope in this regression equation.

b. Compute the standardized regression coefficient.

c. Explain how the strength of the correlation relates to the utility of the regression
line.

d. What conclusion would you make if you performed a hypothesis test for this
regression?

Minutes      GPA      Minutes      GPA

  29.70           3.20           6.88           2.89

  32.14           2.88           6.38           2.24

  32.72           2.78          15.83          3.35

  21.76           3.18           2.50           3.00

  18.56           3.46           4.17           2.18

  16.23           2.12          16.36          3.50

  11.80           2.36

Solutions to these Check Your
Learning questions can be found in
Appendix D.
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Facebook caused students to bridge more social capital with more online connections.
This discussion of causation then leads us to a familiar caution about interpreting the
meaning of regression, this time due to the process called regression to the mean. Finally,
we learn how to calculate effect sizes so we can make interpretations about how well a
regression equation predicts behavior.

Regression and Error
For many different reasons, predictions are full of errors, and that, too, is factored
into the regression analysis. For example, we might predict that a student would get
a certain grade based on how many classes she skipped, but we could be wrong in
our prediction. Other factors, such as her intelligence, the amount of sleep she got
the night before, and the number of related classes she’s taken all are likely to affect
her grade as well. The number of skipped classes is highly unlikely to be a perfect
predictor.

Statistically speaking, errors in prediction lead directly back to variability, which
is often assessed by standard deviation and standard error. This time, however, we are
concerned with variability around the line of best fit rather than variability around
the mean. A graph that includes a line of best fit can give us a sense of how much
error there is in a regression equation. That is, as we can see in Figure 16-4, the
arrangement of the dots around the line of best fit in a graph tells us something about
the error that’s likely to occur when we use the regression equation.

We can make a guess about the amount of error by looking at a graph. However,
we can go a step further by quantifying the amount of error. The number that de-
scribes how far away, on average, the data points are from the line of best fit is called
the standard error of the estimate, a statistic indicating the typical distance between a
regression line and the actual data points. The standard error of the estimate is essentially
the standard deviation of the actual data points around the regression line. We
usually get the standard error of the estimate using software, so its calculation is not
covered here.
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FIGURE 16-4
The Standard Error of the Estimate

Data points clustered closely around the line of best fit, as in graph (a), are described by a small standard error of the
estimate. Data points clustered far away from the line of best fit, as in graph (b), are described by a large standard

error of the estimate. We enjoy a high level of confidence in the predictive ability of the independent variable when the
data points are tightly clustered around the line of best fit, as in (a). That is, there is much less error. And we have a
low level of confidence in the predictive ability of the independent variable when the data points vary widely around

the line of best fit, as in (b). That is, there is much more error.

■ The standard error of the
estimate is a statistic
indicating the typical distance
between a regression line and
the actual data points.



Applying the Lessons of Correlation to Regression
In addition to understanding the ways in which regression can help us, it is important
to understand the limitations associated with using regression. It is extremely rare that
the data analyzed in a regression equation are from a true experiment (one that used
randomization to assign participants to conditions). Typically, we cannot randomly
assign participants to conditions when the independent variable is a scale variable (rather
than a nominal variable), as is usually the case with regression. Said another way, if the
independent variable is number of absences from class (with a range of 0 to more than
20), then we can’t easily randomly assign participants to every possible value. When
the data are not from a true experiment, the results are subject to the same limitations
in interpretation that we discussed with respect to correlation.

In Chapter 15, we introduced the A-B-C model of understanding correlation. We
noted that the correlation between number of absences and exam grade could be ex-
plained if skipping class (A) harmed one’s grade (B), if a bad grade (B) led one to skip
class more often (A) because of frustration, or if a third variable (C)—such as intelli-
gence—might lead both to the awareness that going to class is a good thing (A) and
to good grades (B). When drawing conclusions from regression, we must consider the
same set of possible confounding variables that limited our confidence in our findings
following a correlation.

In fact, regression, like correlation, can be wildly inaccurate in its predictions. As
with the Pearson correlation coefficient, simple linear regression should be used only
if a visual inspection of the scatterplot indicates that it’s sensible to proceed. A good
statistician examines the data points before proceeding (e.g., to check for linearity) and
questions causality after the statistical analysis (to identify potential confounding vari-
ables). A good statistician also considers whether he or she can predict beyond the data.
But one more source of error can affect fair-minded interpretations of regression analy-
ses: regression to the mean.

Regression to the Mean
In the study that we considered earlier in this chapter (Ruhm, 2006),
economic factors predicted several indicators of health. The study also
reported that “the drop in tobacco use disproportionately occurs
among heavy smokers, the fall in body weight among the severely
obese, and the increase in exercise among those who were completely
inactive” (p. 2). What Ruhm describes captures the meaning of the
word regression, as defined by its early proponents. Those who were
most extreme on a given variable regressed (toward the mean). In
other words, they became somewhat less extreme on that variable.

Francis Galton (Darwin’s cousin) was the first to describe the phe-
nomenon of regression to the mean, and he did so in a number of
contexts (Bernstein, 1996). For example, Galton studied sweet peas.
Galton asked nine people—including Darwin—to plant sweet pea
seeds in the widely scattered locations in Britain where they lived.
Galton found that the variability among the seeds he sent out to be planted was larger
than among the seeds that were produced by these plants. The largest seeds produced
seeds smaller than they were. The smallest seeds produced seeds larger than they were.

Similarly, among people, Galton documented that, although tall parents tend to have
taller-than-average children, their children tend to be a little shorter than they are. And
although short parents tend to have shorter-than-average children, their children tend
to be a little taller than they are. Galton noted that if regression to the mean did not
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16-3: Regression to the mean occurs

because extreme scores tend to become

less extreme—that is, they tend to regress

toward the mean. Very tall parents do tend

to have tall children, but usually not as tall

as they are, whereas very short parents do

tend to have short children, but usually not

as short as they are.
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occur, with tall people and large sweet peas pro-
ducing offspring even taller or larger, and short
people and small sweet peas producing offspring
even shorter or smaller, “the world would consist
of nothing but midgets and giants” (quoted in
Bernstein, 1996, p. 167).

Regression to the mean is also why so much
of the world is described by the bell-shaped curve,
another concept often studied by Galton. If re-
gression to the mean did not occur, the size of
sweet peas, the heights of people, the aggressive-
ness of personalities, and everything else would
look bimodal, like a valley (Figure 16-5a), instead
of unimodal, like a hill or what we call the nor-
mal, bell-shaped curve (Figure 16-5b).

An understanding of regression to the mean
can help us make better choices in our daily lives.
For example, regression to the mean is a partic-

ularly important concept to remember when we begin to save for retirement and
have to choose the specific allocations of our savings. Table 16-5 shows data from

TABLE 16-5. Regression to the Mean: Investing

Bernstein (1996) presented these data from Morningstar, an investment publication, demonstrating regression
to the mean in action. Notice that the category that showed the highest performances during the first time pe-
riod (e.g., international stocks) had declined by the second time period, whereas the category with the poorest
performances in the first time period (e.g., aggressive growth) had improved by the second time period.

                      5 Years to                                         5 Years to
                      Objective                                        March 1989                                 March 1994

              International stocks                                        20.6%                                               9.4%

              Income                                                          14.3%                                             11.2%

              Growth and income                                        14.2%                                             11.9%

              Growth                                                           13.3%                                             13.9%

              Small company                                              10.3%                                             15.9%

              Aggressive growth                                            8.9%                                             16.1%

              Average                                                         13.6%                                             13.1%
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Regression to the Mean Tall
parents tend to have children who are
taller than average but not as tall as
they are. Similarly, short parents (like
the older parents in this photograph)
tend to have children who are shorter
than average but not as short as they
are. Francis Galton was the first to
observe this phenomenon, which came
to be called regression to the mean.

FIGURE 16-5
Regression to the Mean

The distribution on the left (a)
demonstrates what most observations of
the world would look like if regression to
the mean did not occur. Trees would be

either enormous or tiny. People would cry
constantly or almost never. There would

be no “middle ground.” Instead, the
distribution on the right (b) demonstrates

the reality that underlies statistical
reasoning: the normal, bell-shaped curve.



Morningstar, an investment publication. The percentages represent the increase in that
investment vehicle over two five-year periods: 1984–1989 and 1989–1994 (Bernstein,
1996). As most descriptions of mutual funds remind potential investors, previous per-
formance is not necessarily indicative of future performance. Perhaps what they really
mean is that previous high performances are unlikely to continue indefinitely.
Consider regression to the mean in your own investment decisions. It might help you
ride out a decrease in a mutual fund rather than panic and sell before the likely drift
back toward the mean. And it might help you avoid buying into the fund that’s been
on top for several years, knowing that it stands a chance of sliding back toward the
mean.

Proportionate Reduction in Error
In the previous section, we developed a regression equation to predict a final exam
score from number of absences. Now we want to know: How good is this regression
equation? Is it worth having students use this equation to predict their own final exam
grades from the numbers of classes they plan to skip? To answer this question, we cal-
culate a form of effect size, the proportionate reduction in error—a statistic that quantifies
how much more accurate predictions are when we use the regression line instead of the mean as
a prediction tool. (Note that the proportionate reduction in error is sometimes called
the coefficient of determination.) More specifically, the proportionate reduction in error
is a statistic that quantifies how much more accurate predictions are when we predict
scores using a specific regression equation rather than just predicting the mean for
everyone.

If the mean is all we have to go by, then it’s a fair predictor. In other words, using
the mean is the most reasonable way to predict a baseball player’s batting average if all
we know is the team average. But if we know that the baseball player has been among
the top five hitters for three years in a row, then we are likely to predict a batting average
higher than the mean. Why? We have more information. The regression line gives us
more information than the mean, and the proportionate reduction in error quantifies
how much better the regression equation predicts a player’s batting average than does
the mean.

Earlier in this chapter, we noted that if we did not have a regression equation, the
best we could do is predict the mean for everyone, regardless of number of absences.
The average final exam grade for students in this sample is 76. With no further infor-
mation, we could only tell our students that our best guess for their statistics grade is
a 76. There would obviously be a great deal of error if we predicted the mean for
everyone. Some would fall at or near the mean, but many would fall either a good deal
lower or a good deal higher than the mean. Using the mean to estimate scores is a
reasonable way to proceed if that’s all the information we have. But the regression line
provides a more precise picture of the relation between variables, so using a regression
equation reduces error. In other words, using the regression equation means that we’re
not as far off in our predictions as we are when we use the mean.

Less error is the same thing as having a smaller standard error of the estimate. And
a smaller standard error of the estimate means that we’d be doing much better in our
predictions than if we had a larger one; visually, this means that the actual scores are
closer to the regression line. And with a larger standard error of the estimate, we’d be
doing much worse in our predictions than if we had a smaller one; visually, the actual
scores are farther away from the regression line. Because the actual scores are closer to
the regression line, there is less error.

But we can do more than just quantify the standard deviation around the regression
line. We can determine how much better the regression equation is compared to the

CHAPTER 16 ■ Regression   451

■ The proportionate reduction
in error is a statistic that
quantifies how much more
accurate predictions are when
we use the regression line
instead of the mean as a
prediction tool; also called the
coefficient of determination.
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mean: we calculate the proportion of error that we can eliminate by using the regression
equation, rather than the mean, to predict. (In this next section, we learn the long way
to calculate this proportion in order to understand exactly what this proportion rep-
resents. Then we learn a shortcut.)

TABLE 16-6. Calculating Error When We Predict the Mean for Everyone

If we do not have a regression equation, the best we can do is predict the mean for Y for every participant.
When we do that, we will, of course, have some error, because not everyone will have exactly the mean value
on Y. This table presents the squared errors for each participant when we predict the mean for each of them.

                                                                                  Mean                    (Y � MY)                 Squared
          Student                       Grade (Y )                       For Y                       Error                       Error

               1                                   82                                76                                6                            36

               2                                   98                                76                              22                          484

               3                                   76                                76                                0                              0

               4                                   68                                76                            �8                           64

               5                                   84                                76                                8                            64

               6                                   99                                76                              23                          529

               7                                   67                                76                            �9                           81

               8                                   58                                76                          �18                         324

               9                                   50                                76                          �26                         676

             10                                   78                                76                                2                              4

Using our sample, we can calculate the amount of error from using the mean as a pre-
dictive tool. We quantify that error by determining how far off a person’s score on the
dependent variable (final exam grade) is from the mean, as seen in the column labeled
“error” in Table 16-6.

For example, for student 1, the error is 82 � 76 � 6. We then square these errors
for all 10 students and sum them. This is another type of sum of squares: the sum of
squared errors. Here, the sum of squared errors is 2262 (the sum of the values in column
5). This is a measure of the error that would result if we predicted the mean for every
person in the sample. We’ll call this particular type of sum of squared errors the sum
of squares total, SStotal, because it represents the worst-case scenario, the total error we
would have if there was no regression equation. We can visualize this error on a graph
that depicts a horizontal line for the mean, as seen in Figure 16-6. We can add the
actual points, as we would in a scatterplot, and draw vertical lines from each point to
the mean. These vertical lines give us a visual sense of the error that results from pre-
dicting the mean for everyone.

The regression equation can’t make the predictions any worse than they would be
if we just predicted the mean for everyone. But it’s not worth the time and effort to
use a regression equation if it doesn’t lead to a substantial improvement over just pre-
dicting the mean. There will still be error with a regression equation, but there will
be less error. As with the mean, we can calculate the amount of error from using the
regression equation with the sample. We can then see how much better we do with
the regression equation than with the mean. So let’s quantify that error by determining
how far each prediction is from the actual score on the dependent variable for each
participant in the sample.

EXAMPLE 16.5



First, we have to calculate what we would predict for each
student if we used the regression equation. We do this by plug-
ging each X into the regression equation. Here are the calcu-
lations using the equation Ŷ � 94.30 � 5.39(X ):

Ŷ � 94.30 � 5.39(4); Ŷ � 72.74

Ŷ � 94.30 � 5.39(2); Ŷ � 83.52

Ŷ � 94.30 � 5.39(2); Ŷ � 83.52

Ŷ � 94.30 � 5.39(3); Ŷ � 78.13

Ŷ � 94.30 � 5.39(1); Ŷ � 88.91

Ŷ � 94.30 � 5.39(0); Ŷ � 94.30

Ŷ � 94.30 � 5.39(4); Ŷ � 72.74

Ŷ � 94.30 � 5.39(8); Ŷ � 51.18

Ŷ � 94.30 � 5.39(7); Ŷ � 56.57

Ŷ � 94.30 � 5.39(3); Ŷ � 78.13

The Ŷ’s, or predicted scores for Y, that we just calculated are presented in Table
16-7, where the errors are calculated based on the predicted scores, rather than the
mean. For example, for student 1, the error is 82 � 72.74 � 9.26. As before, we square
the errors and sum them. The sum of squared errors based on the regression equation
is 623.425. We call this the sum of squared error, SSerror, because it represents the error
that we’d have if we predicted Y using the regression equation.

As before, we can visualize this error on a graph that includes the regression line, as
seen in Figure 16-7. We again add the actual points, as in a scatterplot, and we draw ver-
tical lines from each point to the regression line. These vertical lines give us a visual sense
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FIGURE 16-6
Visualizing Error

A graph with a horizontal line for the
mean, 76, allows us to visualize the
error that would result if we predicted
the mean for everyone. We draw lines
for each person’s point on a scatterplot
to the mean. Those lines are a visual
representation of error.

TABLE 16-7. Calculating Error When We Use the Regression Equation to Predict

When we use a regression equation for prediction, as opposed to the mean, we will have less error. We will, how-
ever, still have some error because not every participant will fall exactly on the regression line. This table presents
the squared errors for each participant when we predict each one’s score on Y using the regression equation.

                                                                                                                   (Y � Ŷ )
    Student          Absences (X )          Grade (Y )           Predicted (Ŷ )              Error            Squared Error

        1                          4                           82                        72.74                        9.26                  85.748

        2                          2                           98                        83.52                      14.48                209.670

        3                          2                           76                        83.52                    �7.52                  56.550

        4                          3                           68                        78.13                  �10.13                102.617

        5                          1                           84                        88.91                    �4.91                  24.108

        6                          0                           99                        94.30                        4.70                  22.090

        7                          4                           67                        72.74                    �5.74                  32.948

        8                          8                           58                        51.18                        6.82                  46.512

        9                          7                           50                        56.57                    �6.57                  43.165

      10                          3                           78                        78.13                    �0.13                  0.017



of the error that results from predicting Y for everyone using the
regression equation. Notice that these vertical lines in Figure 16-
7 tend to be shorter than those connecting each person’s point
with the mean in Figure 16-6.

So how much better did we do? The error we predict by
using the mean for everyone in this sample is 2262. The error
we predict by using the regression equation for everyone in this
sample is 623.425. Remember that the measure of how well
the regression equation predicts is called the proportionate re-
duction in error. What we want to know is how much error we
have gotten rid of—reduced—by using the regression equation
instead of the mean. The amount of error we’ve reduced is 2262
� 623.425 � 1638.575. But the word proportionate indicates
that we want a proportion of the total error that we have re-
duced, so we set up a ratio to determine this. We have reduced
1638.575 of the original 2262, or

We have reduced 0.724, or 72.4%, of the original error by using the regression
equation versus using the mean to predict Y. This ratio can be calculated using an
equation that represents what we just calculated: the proportionate reduction in error,
symbolized as

To recap, the worst-case scenario is predicting the mean for everyone, but if it’s all
the information we have, then it’s much better than having no information at all. The
error using the mean, the total of the sum of squares, or sum of squares total, is 2262.
The regression equation that used the independent variable of number of absences to
predict the dependent variable of final exam grade still led to error, but less error. The
error using the regression equation, the sum of squares error, is 623.425. Knowing these
two numbers enables us to determine the proportion of error that we reduced by using
the regression equation to predict, rather than merely predicting the mean for everyone.
We calculate the reduction in error by determining the amount of error we got rid
of. We then calculate a ratio, the amount of error we reduced over the total amount
of error. In short, we simply have to do the following:

1. Determine the error associated with using the mean as the predictor.
2. Determine the error associated with using the regression equation as the

predictor.
3. Subtract the error associated with the regression equation from the error as-

sociated with the mean.
4. Divide the difference (calculated in step 3) by the error associated with using

the mean.

The proportionate reduction in error tells us how good the regression equation is.
Here is another way to state it: the proportionate reduction in error is a measure of
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FIGURE 16-7
Visualizing Error

A graph that depicts the regression line
allows us to visualize the error that would

result if we predicted Y for everyone
using the regression equation. We draw

lines for each person’s point on a
scatterplot to the regression line. Those

lines are a visual representation of error.

                                        �MASTERING THE FORMULA

16-4: The proportionate reduction
in error is calculated by subtracting
the error generated using the re -
gression equation as a prediction
tool from the total error that would
occur if we used the mean as every-
one’s predicted score. We then
divide this difference by the total

error: . We can

interpret the proportionate reduc-
tion in error as we did the effect-size
estimate for ANOVA. It represents
the same statistic.

r
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the amount of variance in the dependent variable that is explained by the independent
variable. Did you notice the symbol for the proportionate reduction in error? The sym-
bol is r2. Perhaps you see the connection with another number we have calculated. Yes,
we could simply square the correlation coefficient!

The longer calculations are necessary, however, to see the difference
between the error in prediction from using the regression equation
and the error in prediction from simply predicting the mean for every-
one. Once you have calculated the proportionate reduction in error
the long way a few times, you’ll have a good sense of exactly what
you’re calculating. In addition to the relation of the proportionate re-
duction in error to the correlation coefficient, it also is the same as
another number we’ve calculated—the effect size for ANOVA, R2. In
both cases, this number represents the proportion of variance in the
dependent variable that is explained by the independent variable.

Because the proportionate reduction in error can be calculated by
squaring the correlation coefficient, we can have a sense of the amount
of error that would be reduced simply by looking at the correlation
coefficient. A correlation coefficient that is high in magnitude,
whether negative or positive, indicates a strong relation between two
variables. If two variables are highly related, it makes sense that one of them is going
to be a good predictor of the other. And it makes sense that when we use one variable
to predict the other, we’re going to reduce error.

A high correlation coefficient (whether positive or negative) indicates a high pro-
portionate reduction in error, and both indicate a useful regression equation. So, once
the long calculations have given us a sense of what r2 means, we can simply square
the correlation coefficient to assess the regression equation. Better yet, we can let the
computer do it for us. But now we have some sense of where that number comes
from. ■

�  MASTERING THE CONCEPT

16-4: Proportionate reduction in error is the

effect size used with regression. It is the

same number we calculated as the effect-

size estimate for ANOVA. It tells us the

proportion of error that is eliminated when

we predict scores on the dependent

variable using the regression equation

versus simply predicting that everyone is at

the mean on the dependent variable.

continued on next page

CHECK YOUR LEARNING
Reviewing the Concepts > Findings from regression analyses are subject to the same types of limitations as correlation.

Regression, like correlation, does not tell us about causation.

> People with extreme scores at one point in time tend to have less extreme scores (scores
closer to the mean) at a later point in time, a phenomenon called regression to the mean.

> Error based on the mean is referred to as the sum of squares total (SStotal), whereas error
based on the regression equation is referred to as the sum of squared error (SSerror).

> Proportionate reduction in error, r2, determines the amount of error we have eliminated
by using a particular regression equation to predict a person’s score on the dependent vari-
able versus simply predicting the mean on the dependent variable for that person.

Clarifying the Concepts 16-6 Distinguish error of prediction when the mean is used from the standard error of the
estimate.

16-7 Explain how the strength of the correlation is related to the proportionate reduction in
error for regression.

Calculating the Statistics 16-8 Data are provided here with means, standard deviations, a correlation coefficient, and a
regression equation: r � �0.77, Ŷ � 7.846 � 0.431(X ).
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Multiple Regression
In regression analysis, we explain more of the variability in the dependent variable if
we can discover genuine predictors that are separate and distinct. This involves orthog-
onal variables, independent variables that make separate and distinct contributions in the pre-
diction of a dependent variable, as compared with other variables. Orthogonal variables do not
overlap each other. For example, the study we discussed earlier explored whether Face-
book use predicted social capital. It is likely that a person’s personality also predicts
social capital; for example, we would expect extroverted, or outgoing, people to be
more likely to have this kind of social capital than introverted, or shy, people. It would
be useful to separate the effects of Facebook use and extroversion on social capital.

Multiple pieces of evidence are usually better than one. The behavioral sciences
often use multiple pieces of evidence to reach conclusions. So the statistical technique
we consider next is a way of quantifying (1) whether multiple pieces of evidence really
are better than one and (2) precisely how much better each additional piece of evidence
actually is.

a. Using this information, calculate the sum of squared error for the mean, SStotal.

b. Now, using the regression equation provided, calculate the sum of squared error for
the regression equation, SSerror.

c. Using your work from parts (a) and (b), calculate the proportionate reduction in
error for these data.

d. Check that this calculation of r2 equals the square of the correlation coefficient.

Applying the Concepts 16-9 Many athletes and sports fans believe that an appearance on the cover of Sports
Illustrated (SI) is a curse. The tendency for SI cover subjects to face imminent bad
sporting luck is documented in the pages of (what else?) Sports Illustrated and even has a
name, the “SI jinx” (Wolff, 2002). Players or teams, shortly after appearing on the
cover, often have a particularly poor performance, a tendency especially pronounced
among individual athletes rather than teams and among those who were described on
the cover with superlatives, such as best. In fact, of 2456 covers, SI counted 913
“victims.” And their potential victims have noticed: After the New England 
Patriots football team won their league championship in 1996, their coach at the 
time, Bill Parcells, called his daughter, an SI staffer, and ordered: “No cover.” Using
your knowledge about the limitations of regression, what would you tell Coach
Parcells?

X                        Y

         5                         6

         6                         5

         4                         6

         5                         6

         7                         4

         8                         5

MX � 5.833        MY � 5.333

SDX � 1.344       SDY � 0.745

Solutions to these Check Your
Learning questions can be found in
Appendix D.

■ An orthogonal variable is an
independent variable that
makes a separate and distinct
contribution in the prediction of
a dependent variable, as
compared with another
variable.

■ Multiple regression is a
statistical technique that
includes two or more predictor
variables in a prediction
equation.



Understanding the Equation
Just as a regression equation using one independent variable is a better
predictor than the mean, a regression equation using more than one
independent variable is likely to be an even better predictor. This makes
sense in the same way that knowing a baseball player’s historical batting
average plus knowing that the player continues to suffer from a serious
injury is likely to change our prediction yet again. So it is not surprising
that multiple regression is far more common than simple linear regres-
sion. Multiple regression is a statistical technique that includes two or more
predictor variables in a prediction equation. More specifically, multiple re-
gression is a statistical technique that develops an equation that predicts
scores on a single dependent variable by using more than one inde-
pendent variable.

Let’s examine an equation that might be used to predict final exam grade from two
variables, number of absences and score on the mathematics portion of the SAT. Table
16-8 repeats the data from Table 16-1, with the added variable of SAT score. (Note
that although the scores on number of absences and final exam grade are real-life data
from our statistics classes, the SAT scores are fictional.)

The computer gives us the printout seen in Figure 16-8. The column in which we’re
interested is the one labeled “B” under “unstandardized coefficients.” The first number,
across from “(Constant),” is the intercept, so called because the intercept does not
change; it is not multiplied by any value of an independent variable. The intercept here
is 33.422. The second number is the slope for the independent variable, number of ab-
sences. Number of absences is negatively correlated with final exam grade, so the slope,
�3.340, is negative. The third number in this column is the slope for the independent
variable of SAT score. As we might guess, SAT score and final exam grade are positively
correlated; a student with a high SAT score tends to have a higher final exam grade. So
the slope, 0.094, is positive. We can put these numbers into a regression equation:

Ŷ � 33.422 � 3.34(X1) � 0.094(X2)
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16-5: Multiple regression predicts scores

on a single dependent variable from scores

on more than one independent variable.

Because behavior tends to be influenced

by many factors, multiple regression allows

us to better predict a given outcome.

TABLE 16-8. Predicting Exam Grade from Two Variables

Multiple regression allows us to develop a regression equation that predicts a dependent variable from two
or more independent variables. Here, we will use these data to develop a regression equation that predicts
exam grade from number of absences and SAT score.

            Student                          Absences                          SAT                               Exam Grade

                 1                                       4                                  620                                         82

                 2                                       2                                  750                                         98

                 3                                       2                                  500                                         76

                 4                                       3                                  520                                         68

                 5                                       1                                  540                                         84

                 6                                       0                                  690                                         99

                 7                                       4                                  590                                         67

                 8                                       8                                  490                                         58

                 9                                       7                                  450                                         50

               10                                       3                                  560                                         78
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Once we have developed the multiple regression equation, we can input raw scores
on number of absences and mathematics SAT score to determine a student’s predicted
score on Y. Imagine that our student, Allie, scored 600 on the mathematics portion of
the SAT. We already know she planned to miss two classes this semester. What would
we predict for her final exam grade?

Ŷ � 33.422 � 3.34(X1) � 0.094(X2)
� 33.422 � 3.34(2) � 0.094(600)
� 33.422 � 6.68 � 56.4 � 83.142

Based on these two variables, we predict a final exam grade of 83.142 for Allie. How
good is this multiple regression equation? From software, we calculated that the pro-
portionate reduction in error for this equation is a whopping 0.93. We have reduced
93% of the error that would result from predicting the mean of 76 for everyone by
using a multiple regression equation with the independent variables of number of ab-
sences and SAT score. Compared to using averages, the multiple regression equation
represents a significant advance in our ability to predict human behavior.

When we calculate proportionate reduction in error for a multiple regression, the
symbol changes slightly. The symbol is now R2 instead of r2. The capitalization of this
statistic is an indication that the proportionate reduction in error is based on more than
one independent variable.

Stepwise Multiple Regression and Hierarchical 
Multiple Regression
Researchers have a choice of several options when they conduct statistical analyses
using multiple regression. One common approach is stepwise multiple regression, a type
of multiple regression in which computer software determines the order in which independent vari-
ables are included in the equation. Stepwise multiple regression is used frequently by re-
searchers because it is the default in many computer software programs.

When the researcher conducts a stepwise multiple regression, the computer soft-
ware implements a series of steps. In the first step, the computer identifies the in-
dependent variable responsible for the most variance in the dependent
variable—that is, the independent variable with the highest R2. In other words, the
computer examines each independent variable as if it were the only predictor of

FIGURE 16-8
Software Output for Regression

Computer software provides the information necessary for the multiple regression equation. All necessary coefficients
are in column B under “unstandardized coefficients.” The constant, 33.422, is the intercept; the number next to

“number of absences,” �3.340, is the slope for that independent variable; and the number next to “SAT,” .094, is
the slope for that independent variable.



the dependent variable; the one with the highest R2 “wins.” If the winning inde-
pendent variable is not a statistically significant predictor of the dependent variable,
then the process stops. After all, if the independent variable that explains the most
variance in the dependent variable is not significant, then the other independent
variables won’t be significant either.

If the first independent variable is a statistically significant predictor of the dependent
variable, then the computer continues to the next step: choosing the second independ-
ent variable that, in conjunction with the one already chosen, is responsible for the
largest amount of variance in the dependent variable. If the R2 of both independent
variables together represents a statistically significant increase over the R2 of just the
first independent variable alone, then the computer continues to the next step: choosing
the independent variable responsible for the next largest amount of variance, and so
on. So, at each step, the computer assesses whether the change in R2, after adding an-
other independent variable, is statistically significant. If the inclusion of an additional
independent variable does not lead to a statistically significant increase in R2 at any
step, then the computer stops.

The strength of using stepwise regression is its reliance on data, rather than the-
ory— especially when a researcher is not certain of what to expect in a study. The
results can generate hypotheses that the researcher can then test. That strength is also
a weakness when a researcher is working with nonorthogonal, overlapping variables.

For example, imagine that both depression and anxiety are very strong predictors
of the quality of one’s romantic relationship. Also imagine that there is a great deal
of overlap in the predictive ability of depression and anxiety. That is, once depres -
sion is accounted for, anxiety doesn’t add much to the equation; similarly, once anx-
iety is accounted for, depression doesn’t add
much to the equation. It is perhaps the negative
affect (or mood) shared by both clus ters of
symptoms that predicts the quality of one’s re-
lationship.

Now imagine that in one sample, depression
turns out to be a slightly better predictor than
anxiety of relationship quality, but just barely. The
computer would choose depression as the first in-
dependent variable. Because of the over lap be-
tween the two independent variables, the addition
of anxiety would not be statistically significant. A
stepwise regression would pin point depression,
but not anxiety, as a predictor of relationship qual-
ity. That finding would suggest that anxiety is not
a good predictor of the quality of your romantic
relationship even though it could be extremely
important.

Now imagine that in a second sample, anxiety
is a slightly better predictor than depression of re-
lationship quality, but just barely. This time, the
computer would choose anxiety as the first inde-
pendent variable. Now the addition of depression
would not be statistically significant. This time, a
stepwise regression would pinpoint anxiety, but not
depression, as a predictor of relationship quality. So
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■ Stepwise multiple
regression is a type of
multiple regression in which
computer software determines
the order in which independent
variables are included in the
equation.
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Overlapping Independent Variables When two independent variables measure
similar characteristics and are highly predictive of the dependent variable, stepwise
regression is not the best choice. For example, researchers might explore whether hours
spent playing violent video games and hours spent watching violent television shows—
independent variables that are strongly related to each other—predict aggression levels in
children. Stepwise regression will likely show that one of these variables—say, video
game playing—is a strong predictor of aggression; the second variable, watching violent
TV shows, won’t explain any additional variability because it overlaps so much with the
first. The first variable, video game playing, gets credit, so to speak, for all of the variance
it contribures itself as well as all of the variance it shares with watching violent TV shows.
The regression will falsely indicate that only violent video game playing predicts
aggression.



the problem with using stepwise multiple regression is that two samples with very similar
data can, and sometimes do, lead to drastically different conclusions.

That is why another common approach is hierarchical multiple regression, a type of
multiple regression in which the researcher adds independent variables into the equation in an

order determined by theory. A researcher might want to know the degree
to which depression predicts relationship quality but knows that there
are other independent variables that also affect relationship quality.
Based on a reading of the literature, that researcher might decide to
enter other independent variables into the equation before adding
depression.

For example, the researcher might add age, a measure of social skills,
and the number of years the relationship has lasted. After adding these
independent variables, the  researcher would add depression. If the ad-
dition of depression leads to a statistically  significant increase in R2,
then the researcher has evidence that depression predicts relationship
quality over and above those other independent variables. As with
stepwise multiple regression, we’re interested in how much each addi-
tional independent variable adds to the overall variance explained. We
look at the increase in R2 with the inclusion of each new independent
variable or variables and we predetermine the order (or hierarchy) in
which variables are entered into a hierarchical regression equation.

The strength of hierarchical regression is that it is grounded in
theory that we can test. In addition, we’re less likely to identify a sta-

tistically significant predictor just by chance (a Type I error) because a well-established
theory would already have established most of our predictors as statistically significant.
There is a serious weakness associated with hierarchical regression, but it has nothing
to do with the technique, its mathematics, or its concept. The problem is the re-
searcher. Sometimes researchers haven’t really thought through the variables that are
probably at work and why they might be there. However, if a researcher has enough
information to develop a specific hypothesis, then a hierarchical multiple regression
should be used instead of a stepwise multiple regression.

Multiple Regression in Everyday Life
With the development of increasingly more powerful computers and the availability
of ever-larger amounts of computerized data, tools based on multiple regression have
proliferated. Now the general public can access many of them online (Darlin, 2006).
Bing Travel (formerly Farecast.com) predicts the price of an airline ticket for specific
routes, travel dates, and, most important, purchase dates. Using the same data available
to travel agents, along with additional independent variables such as the weather and
even which sports teams’ fans might be traveling to a championship game, Bing Travel
mimics the regression equations used by the airlines. Airlines predict how much money
potential travelers are willing to pay on a given date for a given flight and use these
predictions to adjust their fares so they can earn the most money.

Bing Travel is an attempt at an end run, using mathematical prediction tools, to help
savvy airline consumers either beat or wait out the airlines’ price hikes. In 2007, Bing
Travel’s precursor, Farecast.com, claimed a 74.5% accuracy rate for its predictions. Zil-
low.com does for real estate what Bing Travel does for airline tickets. Using archival
land records, Zillow.com predicts U.S. housing prices and claims to be accurate within
10% of the actual selling price of a given home.

Another company, Inrix, predicts the dependent variable, traffic, using the in -
dependent variables of the weather, traveling speeds of vehicles that have been out -
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16-6: In multiple regression, we determine

whether each added independent variable

increases the amount of variance in the

dependent variable that we can explain. In

stepwise multiple regression, the computer

determines the order in which independent

variables are added, whereas in hierarchical

multiple regression, the researcher chooses

the order. In both cases, however, we report

the increase in R2 with the inclusion of each

new independent variable or variables.

■ Hierarchical multiple
regression is a type of multiple
regression in which the
researcher adds independent
variables into the equation in an
order determined by theory.



fitted with Global Positioning Systems (GPS), and information about events such as
rock concerts. It even suggests, via cell phone or in-car navigation systems, alter native
routes for gridlocked drivers. As of November 2010, Inrix was available in all major
metropolitan areas in the United States, Canada the United Kingdom, and the Neth -
erlands, as well as in 13 other European countries. In addition, it sells its  predictions
to other organizations, such as the news media and navigation device companies. Like
the future of visual displays of data, the future of the regression equation is limited only
by the creativity of the rising generation of behavioral scientists and statisticians.
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■ Structural equation modeling
(SEM) is a statistical technique
that quantifies how well sample
data “fit” a theoretical model that
hypothesizes a set of relations
among multiple variables.

■ A statistical (or theoretical)
model is a hypothesized
network of relations, often
portrayed graphically, among
multiple variables.

■ Path is the term that
statisticians use to describe
the connection between two
variables in a statistical model.

■ Path analysis is a statistical
method that examines a
hypothesized model, usually
by conducting a series of
regression analyses that
quantify the paths at each
succeeding step in the model.

■ Manifest variables are the
variables in a study that we
can observe and that are
measured.

■ Latent variables are the ideas
that we want to research but
cannot directly measure.

We’re going to introduce an approach to data analysis that is infinitely more flexible
and visually more expressive than multiple regression. Structural equation modeling
(SEM) is a statistical technique that quantifies how well sample data “fit” a theoretical model
that hypothesizes a set of relations among multiple variables. Here, we are discussing “fit” in
much the same way you might try on some new clothes and say, “That’s a good fit”
or “That really doesn’t fit!” Statisticians who use SEM refer to the “model” that they
are testing. In this case, a statistical (or theoretical) model is a hypothesized network of re-
lations, often portrayed graphically, among multiple variables.

Instead of thinking of variables as “independent” variables or “dependent” variables,
SEM encourages researchers to think of variables as a series of connections. Consider
an independent variable such as the number of hours spent studying. What predicts
how many hours a person will study? The answer to that is a dependent variable with
its own set of independent variables. An independent variable in one study can become
a dependent variable in another study. SEM quantifies a network of relations, so some
of the variables are independent variables that predict other variables later in the net-
work, as well as dependent variables that are predicted by other variables earlier in the
network. This is why we will refer to variables without the usual adjectives of inde-
pendent or dependent as we discuss SEM.

In the historical development of SEM, the analyses based on this kind of diagram
were called path analyses for the fairly obvious reason that the arrows represented
“paths”—factors that lead to whatever the next variable in the model happened to be.
Path is the term that statisticians use to describe the connection between two variables in a statistical
model. Path analysis is a statistical method that examines a hypothesized model, usually by con-
ducting a series of regression analyses that quantify the paths at each succeeding step in the model.

Path analysis is used rarely these days because the more powerful technique of SEM
can better quantify the relations among variables in a model. But we still find the term
path to be a more intuitive way to describe the flow of behavior through a network of
variables, and the word path continues to be used in structural equation models. SEM
uses a statistic much like the correlation coefficient to indicate the relation between any
two variables. Like a path through a forest, a path could be small and barely discernible
(close to 0) or large and easy to follow (closer to �1.00 or 1.00).

In SEM, we start with measurements called manifest variables, the variables in a study
that we can observe and that are measured. We assess something that we can observe in an
attempt to understand the underlying main idea in which we’re interested. In SEM,
these main idea variables are called latent variables, the ideas that we want to research but
cannot directly measure. For example, we cannot actually see the latent variable we call
“shyness,” but we still try to measure shyness in the manifest variables using self-report
scales, naturalistic observations, and reports by others about shy behavior. We use these

Structural Equation Modeling (SEM) N e x t  S t e p s
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manifest variables and latent variables to create a model that is depicted in a visual di-
agram of variables.

Let’s examine one published SEM study. In a longitudinal study, researchers exam-
ined whether receiving good parenting at age 17 predicted emotional adjustment at
age 26 (Dumas, Lawford, Tieu, & Pratt, 2009). They explored the relations among four
latent variables in a sample of 100 adolescents in Ontario, Canada. The latent variables
were the following:

1. Positive parenting, an estimate of whether an adolescent received good parenting
as assessed by three self-report manifest variables at age 17

2. Story ending (a variable called narrative coherent positive resolution, by the re-
searchers), an estimate based on stories that participants were asked to tell at age
26 about their most difficult life experience and that included the manifest vari-
ables of the positivity of the story’s ending, the negativity of the story’s ending,
whether the ending was coherent, and whether the story had a resolution

3. Identity maturity with respect to religion, politics, and career at age 26, quantified
via the manifest variables of achievement (strong identity in these areas), mora-
torium (still deciding with respect to these areas), and diffusion (weak identity
in these areas)

4. Emotional adjustment, assessed at age 26 by the manifest variables of optimism,
depression, and general well-being

Note that higher scores on all four latent variables indicate a more positive outcome.
Figure 16-9 depicts the researchers’ model.

To understand the story of this model, we need to understand only three compo-
nents—the four circles, the three or four squares attached to each circle, and the arrows

Parent
Interaction

Family Assess
Device

Authoritative
Parenting

ResolutionNegativityPositivity Coherence

MoratoriumAchievement Diffusion

Depressive
Symptoms

Optimism Well-being

0.41

0.31

0.35

0.81

Positive
Parenting

Age 17

Story Ending
(Narrative Coherent
Positive Resolution)

Age 26

Identity
Maturity
Age 26

Emotional
Adjustment

Age 26

FIGURE 16-9
A SEM Diagram

This diagram depicts a structural equation model (SEM). By “reading” the numbers connecting
variables, we can begin to understand the story this graph tells. For example, the path between the

left-hand circle, “Positive Parenting,” and the upper-right-hand circle, “Identity Maturity,” has a
coefficient of 0.41. This indicates a strong, positive predictive relation between the type of

parenting an adolescent received at age 17 and the maturity of her or his identity formation at age
26. As another example, the path between the two circles on the right, “Identity Maturity” and

“Emotional Adjustment,” has a coefficient of 0.81. This indicates a very strong positive relation
between the maturity of one’s identity formation and one’s emotional adjustment at age 26. The

two-headed arrow indicates that these constructs are theorized to predict each other.



linking the circles. The circles represent the underlying ideas of interest, the latent vari-
ables. These are latent variables because positive parenting cannot be directly measured,
nor can emotional adjustment be directly “seen.”

The squares above or below each circle represent the measurement tools used to
operationalize each latent variable. These are the manifest variables, the ones that
can be observed. Let’s look at “Story Ending,” the latent variable related to the
stories that the 26-year-old participants told about their worst life experiences.
There are four boxes above it: “Positivity,” “Negativity,” “Resolution,” and “Co-
herence.” These refer to the four different measures of the story’s ending that we
described above.

Once we understand the latent variables (as measured by the three or more manifest
variables), all that’s left for us to understand is the arrows that represent each path. The
numbers on each path give us a sense of the relation between each pair of variables.
Similar to correlation coefficients, the sign of the number indicates the direction of
the relation, either negative or positive, and the value of the number indicates the
strength of the relation. Although this is a simplification, these basic rules will allow
you to “read” the story in the diagram of the model.

So how does this SEM diagram address the research question about the effects of
good parenting? We’ll start on the left and read across. Notice the two paths that
lead from positive parenting to story ending and to identity maturity. The numbers
are 0.31 and 0.41, respectively. These are fairly large positive numbers. They suggest
that receiving positive parenting at age 17 leads to a healthier interpretation of a
negative life experience and to a well-established identity at age 26. Characteristics
of the narrative that participants told also positively predict identity maturity at a
level of 0.35.

Now notice the two-headed vertical arrow between identity maturity and emotional
adjustment at age 26 with the number 0.81. This shows that identity maturity and
emotional adjustment are strong predictors of each other at age 26. Positive parenting
does indeed seem to predict later emotional adjustment (through the variables of how
participants interpret negative events in their lives and the degree of maturity in their
identity formation). It seems that good parenting helps an adolescent to be more ma-
ture, which leads to good emotional adjustment.

When you encounter a model such as SEM, follow these basic steps: First, figure
out what variables the researcher is studying. Second, look at the numbers to see what
variables are related and look at the signs of the numbers to see the direction of the
relation.
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continued on next page

CHECK YOUR LEARNING
Reviewing the Concepts > Multiple regression is used when we want to predict a dependent variable from more than

one independent variable. Ideally, these variables are distinct from one another in such a
way that they contribute uniquely to our predictions.

> We can develop a multiple regression equation and input specific scores for each independ-
ent variable to determine the predicted score on the dependent variable.

> In stepwise multiple regression, the computer determines the order in which independent
variables are tested; in hierarchical multiple regression, the researcher determines the order.
Multiple regression is the backbone of many online tools that we can use for predicting
everyday variables such as traffic or home prices.
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Clarifying the Concepts 16-10 What is multiple regression, and what are its benefits over simple linear regression?

Calculating the Statistics 16-11 Write the equation for the line of prediction using the following output from a
multiple regression analysis:

16-12 Use the equation for the line you created in Check Your Learning 16-11 to make
predictions for each of the following.

a. X1 � 40, X2 � 14

b. X1 � 101, X2 � 39

c. X1 � 76, X2 � 20

Applying the Concepts 16-13 The accompanying computer printout shows a regression equation that predicts GPA
from three independent variables: hours slept per night, hours studied per week, and
admiration for Pamela Anderson, the B-level actress whom many view as tacky. The
data are from some of our statistics classes. (Note: Hypothesis testing shows that all three
independent variables are statistically significant predictors of GPA!)

a. What is the regression equation based on these data?

b. If someone reports that he typically sleeps six hours a night, studies twenty hours per
week, and has a Pamela Anderson admiration level of 4 (on a scale of 1–7, with 7
indicating the highest level of admiration), what would you predict for his GPA?

c. What does the negative sign in the slope for the independent variable, level of
admiration for Pamela Anderson, tell you about this variable’s predictive association
with grade point average?

Solutions to these Check Your
Learning questions can be found in
Appendix D.

> Structural equation modeling (SEM) allows us to examine the “fit” of a sample’s data to
a hypothesized model of the relations among multiple variables, the latent variables that
we hypothesize to exist but cannot see.
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REVIEW OF CONCEPTS

Simple Linear Regression
Regression is an expansion of correlation in that it allows us not only to quantify a
relation between two variables but also to quantify one variable’s ability to predict an-
other variable. We can predict a dependent variable’s z score from an independent vari-
able’s z score, or we can do a bit more initial work and predict a dependent variable’s
raw score from an independent variable’s raw score. The latter method uses the equation
for a line with an intercept and a slope.

We use simple linear regression when we predict one dependent variable from one
independent variable when the two variables are linearly related. We can graph this
line using the regression equation, plugging in low and high values of X and plotting
those values with their associated predicted values on Y, then connecting the dots to
form the regression line.

Just as we can standardize a raw score by converting it to a z score, we can standardize
a slope by converting it to a standardized regression coefficient. This number indicates the
predicted change on the dependent variable in terms of standard deviation for every
increase of 1 standard deviation in the independent variable. For simple linear regres-
sion, the standardized regression coefficient is the same as the Pearson correlation co-
efficient. Hypothesis testing that determines whether the correlation coefficient is
statistically significantly different from 0 also indicates whether the standardized re-
gression coefficient is statistically significantly different from 0.

When we use regression, we must also be aware of the phenomenon called regression
to the mean, in which extreme values tend to become less extreme over time.

Interpretation and Prediction
A regression equation is rarely a perfect predictor of scores on the dependent variable.
There is always some prediction error, which can be quantified by the standard error of
estimate, the number that describes the typical amount that an observation falls from
the regression line. In addition, regression suffers from the same drawbacks as corre-
lation. For example, we cannot know if the predictive relation is causal; the posited di-
rection could be the reverse (with Y causally predicting X), or there could be a third
variable at work.

When we use regression, we must consider the degree to which an independent
variable predicts a dependent variable. To do this, we can calculate the proportionate re-
duction in error, symbolized as r2. The proportionate reduction in error tells us how much
better our prediction is with the regression equation than with the mean as the only
predictive tool.

Multiple Regression
We use multiple regression when we have more than one independent variable, as is usual
in most research in the behavioral sciences. Multiple regression is particularly useful
when we have orthogonal variables, independent variables that make separate contribu-
tions to the prediction of a dependent variable. Researchers often use one of two types
of multiple regression. Stepwise multiple regression enters the independent variables in a
manner determined by computer software, using the actual data. Hierarchical multiple
regression enters the independent variables in a manner determined by the researcher,
using the existing research literature. Multiple regression has led to the development



of many Web-based prediction tools that allow us to make educated guesses about such
outcomes as airplane ticket prices.

A number of more sophisticated statistical analyses, such as path analysis and its more
complex counterpart, structural equation modeling (SEM), have been developed in recent
years. These techniques allow us to see predictive relations among a number of variables
as predicted by a statistical (or theoretical) model. SEM diagrams can be “read” with a
basic understanding of a few concepts. Latent variables, represented by large circles, rep-
resent the constructs of interest that we cannot directly measure. We operationalize la-
tent variables by measuring several manifest variables, represented by squares, that we
believe represent the latent variable. Finally, we look at the numbers above the paths,
represented by arrows, to determine the strength and direction of relations between
variables.
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SPSS®

The most common form of regression analysis in SPSS uses
at least two scale variables: an independent variable (predictor)
and a dependent variable (the variable being predicted). Let’s
use the number of absences and exam grade data as an exam-
ple. Once again, begin by visualizing the data.

Request the scatterplot of the data by selecting: Graphs
→ Chart Builder → Gallery → Scatter/Dot. Drag the upper-
left sample graph to the large box on top. Then select the vari-
ables to be included in the scatterplot by dragging the
independent variable, number, to the x-axis and the dependent
variable, grade, to the y-axis. Click “OK.” Then click on
the graph to make changes. To add the regression line, click
“Elements,” then “Fit Line at Total.” Choose “Linear,” then
click “Apply.”

To analyze the linear regression, select: Analyze → Re-
gression → Linear. Select “number” as the independent (pre-
dictor) variable and “grade” as the dependent variable being
predicted.

As usual, click on “OK” to see the Output screen. Part of
the output is shown in the screenshot here. In the box titled
“Model Summary,” we can see the correlation coefficient of
.851 under “R” and the proportionate reduction of error,
.724, under “R Square.” In the box titled “Coefficients,” we
can look in the first column under “B” to determine the re-
gression equation. The intercept, 94.326, is across from “(Con-
stant),” and the slope, �5.390, is across from “Number of
Absences.” (Any slight differences from the numbers we cal-
culated earlier are due to rounding decisions.)
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16.1 REGRESSION WITH z SCORES
Shannon Callahan, a former student in the Experimental Psychology master’s program at
Seton Hall University, conducted a study that examined evaluations of faculty members on
Ratemyprofessor.com. She wondered if professors who were rated high on “clarity” were
more likely to be viewed as “easy.” Callahan found a significant correlation of 0.267 be-
tween the average easiness rating a professor garnered and the average rating he or she re-
ceived with respect to clarity of teaching.

If we know that a professor’s z score on clarity is 2.2 (an indication that he is very clear),
how could we predict his z score on easiness?

When there’s a positive correlation, we predict a z score above the mean when his original
z score is above the mean.

And if a professor’s z score on clarity is �1.8 (an indication that she’s not very clear),
how could we predict her z score on easiness?

When there’s a positive correlation, we predict a z score below the mean when her original
z score is below the mean.

16.2 REGRESSION WITH RAW SCORES
Using Shannon Callahan’s data, how can we develop the regression equation so that we
can work directly with raw scores? To do this, we need a little more information. For this
data set, the mean clarity score is 3.673, with a standard deviation of 0.890; the mean easiness
score is 2.843, with a standard deviation of 0.701. As noted before, the correlation between
these variables is 0.267.

To calculate the regression equation, we need to find the intercept and the slope. We
determine the intercept by calculating what we predict for Y (easiness) when X (clarity)
equals 0. Given the means, the standard deviations, and the correlation calculated above,
we first find zx:

We then calculate the predicted z score for easiness:

Finally, we transform the predicted easiness z score into the predicted easiness raw score:

The intercept, therefore, is 2.070.
To determine the slope, we calculate what we would predict for Y (easiness) when X

(clarity) equals 1 and determine how much that differs from what we would predict when
X equals 0. The z score for X corresponding to the raw score of 1 is:

We then calculate the predicted z score for easiness:

Finally, we transform the predicted easiness z score into the predicted easiness raw score:

The difference between the predicted Y when X equals 1 (2.281) and that when X equals
0 (2.070) yields the slope, which is 2.281 � 2.070 � 0.211. So the regression equation is:

Ŷ � 2.07 � 0.21(X )

z r zY XY Xˆ ( )( )� � �(0.267)(2.2) 0.59

z r zY XY Xˆ ( )( )� � � ��(0.267)( 1.8) 0.48
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How It Works
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We can then use this regression equation to calculate a professor’s predicted easiness
score from his or her clarity score. Let’s say a professor has a clarity score of 3.2. We would
use the regression equation to predict her easiness score as follows:

Ŷ � 2.07 � 0.21(X ) � 2.07 � 0.21(3.2) � 2.742

This result makes sense because she is below the mean on clarity, so, given that there is
a positive correlation, we predict her score to fall below the mean on easiness.

Exercises
Clarifying the Concepts

16.1 What does regression add above and beyond what we
learn from correlation?

16.2 How does the regression line relate to the correlation
of the two variables?

16.3 Is there any difference between Ŷ and a predicted score
for Y?

16.4 What do each of the symbols stand for in the formula
for the regression equation: ?

16.5 The equation for a line is Ŷ � a � b(X ). Define the
symbols a and b.

16.6 What are the three steps to calculate the intercept?

16.7 When is the intercept not meaningful or useful?

16.8 What does the slope tell us?

16.9 Why do we also call the regression line the line of
best fit?

16.10 How are the sign of the correlation coefficient and the
sign of the slope related?

16.11 What is the difference between a small standard error
of the estimate and a large one?

16.12 Why are explanations of the causes behind relations ex-
plored with regression limited in the same way they are
with correlation?

16.13 What is the connection between regression to the mean
and the bell-shaped normal curve?

16.14 Explain why the regression equation is a better source
of predictions than the mean.

16.15 What is the SStotal?

16.16 When drawing error lines between data points and the
regression line, why is it important that these lines be
perfectly vertical?

16.17 What are the basic steps to calculate the proportionate
reduction in error?

16.18 What information does the proportionate reduction in
error give us?

16.19 What is an orthogonal variable?

16.20 What is the difference between stepwise multiple re-
gression and hierarchical multiple regression?

16.21 What is the primary weakness of stepwise multiple re-
gression?

16.22 How does structural equation modeling (SEM) differ
from multiple regression?

16.23 What is the difference between a latent variable and a
manifest variable?

Calculating the Statistics

16.24 Using the following information, make a prediction for
Y given an X score of 8:

Var iable X: M � 12, SD � 3

Var iable Y: M � 74, SD � 18

Pear son cor re lat ion of  var iables  X and
Y � 0.46

a. Transform the raw score for the independent vari-
able to a z score.

b. Calculate the predicted z score for the dependent
variable.

c. Transform the z score for the dependent variable
back into a raw score.

16.25 Let’s assume we know that age is related to bone den-
sity, with a Pearson correlation coefficient of �0.19.
(Notice that the correlation is negative, indicating that
bone density tends to be lower at older ages than at
younger ages.) Assume we also know the following de-
scriptive statistics:

Age of  people s tudied:  55 year s  on
average,  with a s tandard deviat ion of  
12 year s

Bone densi ty of  people s tudied:  
1000 mg/cm2 on average,  with a s tandard
deviat ion of  95 mg/cm2

Virginia is 76 years old. What would you predict her
bone density to be? To answer this question, complete
the following steps:

a. Transform the raw score for the independent vari-
able to a z score.

z r zY XY Xˆ ( )( )�
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b. Calculate the predicted z score for the dependent
variable.

c. Transform the z score for the dependent variable
back into a raw score.

16.26 Given the regression line Ŷ � �6 � 0.41(X ), make
predictions for each of the following:

a. X � 25

b. X � 50

c. X � 75

16.27 Given the regression line Ŷ � 49 � 0.18(X ), make pre-
dictions for each of the following:

a. X � �31

b. X � 65

c. X � 14

16.28 Using the following information from Exercise 16.24,
complete the following:

Var iable X: M � 12, SD �3

Var iable Y: M � 74, SD � 18

Pear son cor re lat ion of  var iables  X and
Y � 0.46

a. Calculate the y intercept, a.

b. Calculate the slope, b.

c. Write the equation for the line.

d. Draw the line on an empty scatterplot, basing the
line on predicted Y values for X values of 0, 1,
and 18.

16.29 Using the following information from Exercise 16.25,
complete the following:

Age i s  re la ted to bone dens i ty,  with 
a Pear son coef f ic ient  of  �0.19.

Age of  people s tudied:  55 year s  on
average,  with a s tandard deviat ion of  
12 year s

Bone densi ty of  people s tudied:  
1000 mg/cm2 on average,  with a
s tandard deviat ion of  95 mg/cm2

a. Calculate the y intercept, a.

b. Calculate the slope, b.

c. Write the equation for the line.

d. Draw the line on an empty scatterplot, basing your
line on predicted Y values for X values of 0, 1, and
48 years of age.

16.30 Data are provided here with descriptive statistics, a cor-
relation coefficient, and a regression equation: r �
0.426, Ŷ � 219.974 � 186.595(X ).

Using this information, compute the following esti-
mates of prediction error:

a. Calculate the sum of squared error for the mean,
SStotal.

b. Now, using the regression equation provided, cal-
culate the sum of squared error for the regression
equation, SSerror.

c. Using your work, calculate the proportionate re-
duction in error for these data.

d. Check that this calculation of r2 equals the square
of the correlation coefficient.

16.31 Data are provided here with descriptive statistics, a cor-
relation coefficient, and a regression equation: r � 0.52,
Ŷ � 2.643 � 0.469(X ).

Using this information, compute the following esti-
mates of prediction error:

a. Calculate the sum of squared error for the mean,
SStotal.

b. Now, using the regression equation provided, cal-
culate the sum of squared error for the regression
equation, SSerror.

c. Using your work, calculate the proportionate re-
duction in error for these data.

d. Check that this calculation of r2 equals the square
of the correlation coefficient.

        X Y

      0.13                   200.00

      0.27                   98.00

      0.49                   543.00

      0.57                   385.00

      0.84                   420.00

      1.12                   312.00

 MX � 0.57        MY � 326.333

SDX � 0.333     SDY � 145.752

        X Y

     4.00                   6.00

     6.00                   3.00

     7.00                   7.00

     8.00                   5.00

     9.00                   4.00

     10.00                   12.00

     12.00                   9.00

     14.00                   8.00

 MX � 8.75          MY � 6.75

SDX � 3.031       SDY � 2.727



16.32 Write the equation for the line of prediction using the
following output from a multiple regression analysis:

16.33 Write the equation for the line of prediction using the
following output from a multiple regression analysis:

16.34 Use the equation for the line you created in Exercise
16.32 to make predictions for each of the following:

a. Variable 1 � 6, variable 2 � 60

b. Variable 1 � 9, variable 2 � 54.3

c. Variable 1 � 13, variable 2 � 44.8
16.35 Use the equation for the line you created in Exercise

16.33 to make predictions for each of the following:

a. SAT � 1030, rank � 41

b. SAT � 860, rank � 22

c. SAT � 1060, rank � 8
16.36 Compute the standardized regression coefficient for the

data presented in Exercise 16.30. Remember, r � 0.426,
and the regression equation is Ŷ � 219.974 �
186.595(X ).

        X Y

      0.13                   200.00

      0.27                   98.00

      0.49                   543.00

      0.57                   385.00

      0.84                   420.00

      1.12                   312.00

MX � 0.57          MY �326.333

SDX � 0.333     SDY � 145.752
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16.37 Compute the standard-
ized regression coefficient
for the data presented in
Exercise 16.31. Remem-
ber, r � 0.52, and the re-
gression equation is: Ŷ �
2.643 � 0.469(X ).

        X Y

     4.00               6.00

     6.00               3.00

     7.00               7.00

     8.00               5.00

     9.00               4.00

     10.00               12.00

     12.00                9.00

     14.00                8.00

 MX � 8.75       MY � 6.75

SDX � 3.031   SDY � 2.727

16.38 Assume that a researcher is interested in variables that
might affect infant birth weight. The researcher per-
forms a stepwise multiple regression to predict birth
weight and includes the following independent vari-
ables: (1) number of cigarettes the mother smokes per
day, (2) number of alcoholic drinks the mother has per
day, (3) weight of the mother. If the statistical program
produces a regression that includes only the first two
independent variables, what can we conclude about
the third variable, weight of mother?

16.39 Refer to the structural equation model (SEM) depicted
in Figure 16-9:

a. Which two variables are most strongly related to
each other?

b. Is positive parenting at age 17 directly related to
emotional adjustment at age 26? How do you
know?

c. Is positive parenting at age 17 directly related to
identity maturity at age 26? How do you know?

d. What is the difference between the variables repre-
sented in boxes and those represented in  circles?

Applying the Concepts

16.40 Several studies have found a correlation between weight
and blood pressure.

a. Explain what is meant by a correlation between
these two variables.



b. If you were to examine these two variables with
simple linear regression instead of correlation, how
would you frame the question? (Hint: The research
question for correlation would be: Is weight related
to blood pressure?)

c. What is the difference between simple linear regres-
sion and multiple regression?

d. If you were to conduct a multiple regression instead
of a simple linear regression, what other independ-
ent variables might you include?

16.41 Running a football stadium involves innumerable
predictions. For example, when stocking up on food
and beverages for sale at the game, it helps to have an
idea of how much will be sold. In the football sta -
diums in colder climates, stadium managers use ex-
pected outdoor temperature to predict sales of hot
chocolate.

a. What is the independent variable in this example?

b. What is the dependent variable?

c. As the value of the independent variable increases,
what can we predict would happen to the value of
the dependent variable?

d. What other variables might predict this dependent
variable? Name at least three.

16.42 In How It Works 15.2, we calculated the correlation
coefficient between students’ age and number of hours
they study per week. The correlation between these two
variables is 0.49.

a. Elif’s z score for age is �0.82. What would we pre-
dict for the z score for the number of hours she
studies per week?

b. John’s z score for age is 1.2. What would we predict
for the z score for the number of hours he studies
per week?

c. Eugene’s z score for age is 0. What would we pre-
dict for the z score for the number of hours he stud-
ies per week?

d. For part (c) explain why the concept of regression to
the mean is not relevant (and why you didn’t really
need the formula).

16.43 A study of Consideration of Future Consequences
(CFC) found a mean score of 3.51, with a standard de-
viation of 0.61, for the 664 students in the sample
(Petrocelli, 2003).

a. Imagine that your z score on the CFC score was
�1.2. What would your raw score be? Use symbolic
notation and the formula. Explain why this answer
makes sense.

b. Imagine that your z score on the CFC score was
0.66. What would your raw score be? Use symbolic
notation and the formula. Explain why this answer
makes sense.

16.44 The verbal subtest of the Graduate Record Exami -
nation (GRE) has a population mean of 500 and a
population standard deviation of 100 by design (the
quantitative subtest has the same mean and standard
deviation).

a. Convert the following z scores to raw scores without
using a formula: (i) 1.5, (ii) �0.5, (iii) �2.0.

b. Now convert the same z scores to raw scores using
symbolic notation and the formula: (i) 1.5, (ii) �0.5,
(iii) �2.0.

16.45 In How It Works 15.2, we calculated the correlation
coefficient between students’ age and number of hours
they study per week. The mean for age is 21, and the
standard deviation is 1.789. The mean for hours studied
is 14.2, and the standard deviation is 5.582. The corre-
lation between these two variables is 0.49. Use the z
score formula.

a. João is 24 years old. What would we predict for the
number of hours he studies per week?

b. Kimberly is 19 years old. What would we predict
for the number of hours she studies per week?

c. Seung is 45 years old. Why might it not be a good
idea to predict how many hours per week he
studies?

d. From a mathematical perspective, why is the
word regression used? [Hint: Look at parts (a) and
(b), and discuss the scores on the first variable
with respect to their mean versus the predicted
scores on the second variable with respect to their
mean.]

16.46 A regression analysis of data from some of our statistics
classes yielded the following regression equation for the
independent variable, hours studied, and the dependent
variable, grade point average (GPA): Ŷ � 2.96 �
0.02(X ).

a. If you plan to study 8 hours per week, what would
you predict for your GPA?

b. If you plan to study 10 hours per week, what would
you predict for your GPA?

c. If you plan to study 11 hours per week, what would
you predict for your GPA?

d. Create a graph and draw the regression line based
on these three pairs of scores.

e. Do some algebra, and determine the number of
hours you’d have to study to have a predicted GPA
of the maximum possible, 4.0. Why is it misleading
to make predictions for anyone who plans to study
this many hours (or more)?

16.47 Exercise 16.45 used the example from How It Works
15.2 on the relation between age and how much people
study. Recall that the mean for age is 21, and the stan-
dard deviation is 1.789. The mean for hours studied is
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14.2, and the standard deviation is 5.582. The correla-
tion coefficient is 0.49.

a. Calculate the regression equation.

b. Use the regression equation to predict the number
of hours studied for a 17-year-old student and for
a 22-year-old student.

c. Using the four pairs of scores that you have (age and
predicted hours studied from part (b), and the pre-
dicted scores for a score of 0 and 1 from calculating
the regression equation) create a graph that includes
the regression line.

d. Why is it misleading to include young ages such as
0 and 5 on the graph?

16.48 Researchers studied whether corporate political con-
tributions predicted profits (Cooper, Gulen, & Ovtchin-
nikov, 2007). From archival data, they determined how
many political candidates each company supported with
financial contributions, as well as each company’s profit
in terms of a percentage. The accompanying table shows
data for five companies. (Note: The data points are hy-
pothetical but are based on averages for companies
falling in the 2nd, 4th, 6th, and 8th deciles in terms of
candidates supported. A decile is a range of 10%, so the
2nd decile includes those with percentiles between 10
and 19.9.)

a. Create the scatterplot for these scores.

b. Calculate the mean and standard deviation for the
variable “number of candidates supported.”

c. Calculate the mean and standard deviation for the
variable “profit.”

d. Calculate the correlation between number of can-
didates supported and profit.

e. Calculate the regression equation for the prediction
of profit from number of candidates supported.

f. Create a graph and draw the regression line.

g. What do these data suggest about the political
process?

h. What third variables might be at play here?

16.49 Exercises 16.45 and 16.47 used the example from How
It Works 15.2 on the relation between age and how
much people study.

a. Construct a graph that includes both the scatterplot
for these data and the regression line as determined
in Exercise 16.47. Draw vertical lines to connect
each dot on the scatterplot with the regression line.

b. Construct a second graph that includes both the
scatterplot and a line for the mean for hours stud-
ied, 16.2. The line will be a horizontal line begin-
ning at 16.2 on the y-axis. Draw vertical lines to
connect each dot on the scatterplot with the re-
gression line.

c. Part (a) is a depiction of the error if we use the re-
gression equation to predict hours studied. Part (b)
is a depiction of the error if we use the mean to
predict hours studied (i.e., if we predict that every-
one has the mean of 16.2 on hours studied per
week). Which one appears to have less error? Briefly
explain why the error is less in one situation.

16.50 Exercises 16.45, 16.47, and 16.49 used the example
from How It Works 15.2 on the relation between age
and how much people study. Here are the data once
again.

a. Calculate the proportionate reduction in error the
long way.

b. Explain what the proportionate reduction in error
that you calculated in part (a) tells us. Be specific
about what it tells us about predicting using the re-
gression equation versus predicting using the mean.

c. Demonstrate how the proportionate reduction in
error could be calculated using the short way. Why
does this make sense? That is, why does the corre-
lation coefficient give us a sense of how useful the
regression equation will be?

       Number of 
Candidates Supported    Profit (%)

              6                     12.37

              17                     12.91

              39                     12.59

              62                     13.43

              98                     13.42

                           Number of Hours 
Student     Age     Studied (per week)

     1          19                   5

     2          20                 20

     3          20                   8

     4          21                 12

     5          21                 18

     6          23                 25

     7          22                 15

     8          20                 10

     9          19                 14

   10          25                 15
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16.51 Does one’s cola consumption predict one’s bone min-
eral density? Using regression analyses, nutrition re-
searchers found that older women who drank more cola
(but not more of other carbonated drinks) tended to
have lower bone mineral density, a risk factor for osteo-
porosis (Tucker, Morita, Qiao, Hannan, Cupples, & Kiel,
2006). Cola intake, therefore, does seem to predict bone
mineral density.

a. Explain why we cannot conclude that cola intake
causes a decrease in bone mineral density.

b. The researchers included a number of possible
third variables in their regression analyses. Among
the included variables were physical activity score,
smoking, alcohol use, and calcium intake. They
included the possible third variables first, and
then added the bone density measure. Why would
they have used multiple regression in this case?
Explain.

c. How might physical activity play a role as a third
variable? Discuss its possible relation to both bone
density and cola consumption.

d. How might calcium intake play a role as a third
variable? Discuss its possible relation to both bone-
density and cola consumption.

16.52 Does the level of precipitation predict violence? Dubner
and Levitt (2006b) reported on various studies that
found links between rain and violence. They mentioned
one study by Miguel, Satyanath, and Sergenti that found
that decreased rain was linked with an increased likeli-
hood of civil war across a number of African countries
they examined. Referring to the study’s authors, Dub-
ner and Levitt state, “The causal effect of a drought, they
argue, was frighteningly strong.”

a. What is the independent variable in this study?

b. What is the dependent variable?

c. What possible third variables might play a role in this
connection? That is, is it just the lack of rain that’s
causing violence, or is it
something else? (Hint:
Consider the likely
economic base of many
African countries.)

16.53 Are podcasts a drain on
students’ time, or does the
information they contain
help students do better in
school? You collect data
on the number of pod -
casts each student downloads per month and each stu-
dent’s GPA. When we calculate regression equations
(just as when we calculate cor relation coefficients), it’s
important to construct a scatterplot first. Let’s say that
really poor students don’t download podcasts very

often, maybe because they don’t use their computers
much at all, and really good students don’t download
podcasts very often, maybe because they’re too busy
studying to have time to listen. Explain how this might
present a problem if we calculate a simple linear regres-
sion equation to predict GPA from number of podcasts
downloaded, and explain how a scatterplot might help
us identify the problem.

16.54 A researcher conducted a study in which children with
problems learning mathematics were offered the oppor-
tunity to purchase time with special tutors. The number
of weeks that children met with their tutuors varied
from 1 to 20. He found that the number of weeks of
tutoring predicted mathematics performance in these
children and recommended that parents of such chil-
dren send them for tutoring for as many weeks as pos-
sible—for two years if they could afford it. List three
problems with that interpretation and explain why each
is a problem.

16.55 Consider again the example used in Exercise 16.54.
As before, the researcher is interested in predicting
mathematics ability with the ultimate goal of identi-
fying ways to improve mathematics performance. If
you were to develop a multiple regression equation
instead of a simple linear regression equation, what
additional variables might be good independent vari-
ables? List at least one variable that can be ma -
nipulated (e.g., weeks of tutoring) and at least one
variable that cannot be manipulated (e.g., parents’
years of education).

16.56 We analyzed data from a larger data set that one of the
authors used for previous research (Nolan, Flynn, &
Garber, 2003). In the current analyses, we used re -
gression to look at factors that predict anxiety over a
three-year period. Shown below is the output for the
regression analysis examining whether depression at year
1 predicted anxiety at year 3.

a. From this software output, write the regression
equation.

b. As depression at year 1 increases by 1 point, what
happens to the predicted anxiety level for year 3?
Be specific.



c. If someone has a depression score of 10 at year 1,
what would we predict for her anxiety score at
year 3?

d. If someone has a depression score of 2 at year 1,
what would we predict for his anxiety score at
year 3?

16.57 Using the data about age and number of hours studied,
and your work from Exercise 16.47, answer the follow-
ing questions:

a. Compute the standardized regression coefficient.

b. How does this coefficient relate to other informa-
tion you know?

c. Draw a conclusion about your analysis based on
what you know about hypothesis testing with
regression.

16.58 We conducted a second regression analysis on the
data from Exercise 16.56. In addition to depression at
year 1, we included a second independent variable to
predict anxiety at year 3. We also included anxiety at
year 1. (We might expect that the best predictor of anx-
iety at a later point in time is one’s anxiety at an earlier
point in time.) Here is the output for that  analysis.
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a. From this software output, write the regression
equation.

b. As the first independent variable, depression at year
1, increases by 1 point, what happens to the pre-
dicted score on anxiety at year 3?

c. As the second independent variable, anxiety at year
1, increases by 1 point, what happens to the pre-
dicted score on anxiety at year 3?

d. Compare the predictive utility of depression at
year 1 using the regression equation in Exercise
16.56 and using this regression equation. In
which re gres sion equation is depression at year 1
a better predictor? Given that we’re using the
same sample, is depression at year 1 actually better
at predicting anxiety at year 3 in one situation
versus the other? Why do you think there’s a dif-
ference?

e. The table below is the correlation matrix for
the three variables. As you can see, all three are
highly correlated with one another. If we look at
the intersection of each pair of variables, the num-
ber next to the words “Pearson correlation” is the
correlation coefficient. For example, the correla-
tion between “Anxiety year 1” and “Depression

year 1” is .549. Which two
variables show the strongest
correlation? How might this
explain the fact that depres-
sion at year 1 seems to be a
better predictor when it’s
the only independent vari-
able than when anxiety at
year 1 also is included? What
does this tell us about the
importance of including
third variables in the regres-
sion analy ses when possible?



f. Let’s say you want to add a fourth independent
variable. You have to choose among three possi -
ble independent variables: (1) a variable highly
correlated with both independent variables and
the dependent variable, (2) a variable highly cor-
related with the dependent variable but not cor-
related with either independent variable, and (3) a
vari able not correlated with either of the in -
dependent variables or with the dependent vari-
able. Which of the three variables is likely to make
the multiple regression equation better? That is,
which is likely to increase the proportionate re-
duction in error? Explain.

16.59 Using the data about political contributions and cor-
porate profits, and your work from Exercise 16.48, an-
swer the following questions:

a. Compute the standardized regression coefficient.

b. How does this coefficient relate to other informa-
tion you know?

c. Draw a conclusion about your analysis based on
what you know about hypothesis testing with sim-
ple linear regression.

16.60 Consider again the example used in Exercise 16.54. As
before, the researcher is interested in predicting math-
ematics ability with the ultimate goal of identifying
ways to improve mathematics performance.

a. How would you develop the multiple regression
equation using stepwise multiple regression? (Note:
There is more than one specific answer. In your re-
sponse, demonstrate that you understand the basic
process of stepwise multiple regression.)

b. How would you develop the multiple regression
equation using hierarchical multiple regression?
(Note: There is more than one specific answer. In
your response, demonstrate that you understand the
basic process of hierarchical multiple regression.)

c. Describe a situation in which stepwise multiple re-
gression might be preferred.

d. Describe a situation in which hierarchical multiple
regression might be preferred.

16.61 The attached figure is from a journal article entitled
“Neighborhood Social Disorder as a Determinant of
Drug Injection Behaviors: A Structural Equation Model-
ing Approach” (Latkin, Williams, Wang, & Curry, 2005).
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a. What are the four latent variables examined in this
study?

b. What manifest variables were used to operationalize
social disorder? Based on these manifest variables,
explain in your own words what you think the au-
thors mean by “social disorder.”

c. Looking only at the latent variables, which two
variables seem to be most strongly related to each

other? What is the number on that path? Is it pos-
itive or negative, and what does the sign of the
number indicate about the relation between these
variables?

d. Looking only at the latent variables, what overall
story is this model telling? (Note: Asterisks indicate
relations that inferential statistics indicate are likely
“real,” even if they are fairly small.)
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Symbols

Ŷ         (p. 439)
a          (p. 441)
b          (p. 441)

b         (p. 445)
SStotal   (p. 452)
SSerror   (p. 453)

r2         (p. 455)
R2       (p. 455)

Formulas
(p. 439)

Ŷ � a �b(X ) (p. 441)

(p. 445)

(p. 454)
z r zY XY Xˆ ( )( )�

b �( )b
SS

SS
X

Y

r
SS SS

SS
total error

total

2 �
�( )

Terms
simple linear regression (p. 437)
regression to the mean (p. 440)
intercept (p. 441)
slope (p. 441)
standardized regression coefficient 

(p. 445)
standard error of the estimate (p. 448)

proportionate reduction in error 
(p. 451)

orthogonal variable (p. 456)
multiple regression (p. 457)
stepwise multiple regression (p. 459)
hierarchical multiple regression 

(p. 460)

structural equation modeling (SEM) 
(p. 461)

statistical (or theoretical) model (p. 461)
path (p. 461)
path analysis (p. 461)
manifest variables (p. 461)
latent variables (p. 461)
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■ You should be able to differentiate between a
parametric and a nonparametric hypothesis
test (Chapter 7).

■ You should know the six steps of hypothesis
testing (Chapter 7).

■ You should understand the concept of effect
size (Chapter 8).

BEFORE YOU GO ON

Nonparametric Statistics
An Example of a Nonparametric Test
When to Use Nonparametric Tests

Chi-Square Tests
Chi-Square Test for Goodness-of-Fit
Chi-Square Test for Independence

Beyond Hypothesis Testing
Cramer’s V, the Effect Size for Chi Square
Graphing Chi-Square Percentages
Relative Risk

Next Steps: Adjusted Standardized Residuals



You can’t believe everything you think (Gilovich, 1991; Kida, 2006).
The “hot hand” in basketball, the “hot seat” at the poker table, and
“Big Mo” in football all represent the same false perception—the idea
that somebody can’t miss or lose. People often perceive a predictable
pattern where only chance exists. No matter how strongly we may be
“feeling it,” the evidence from most sports (bowling being a notable
exception) comes to the same conclusion: we falsely believe that the
hot streak will continue (Alter & Oppenheimer, 2006a).

In the study that started hot-hand research, both basketball players
and basketball fans were found to believe that a player’s chance of hit-
ting a shot is greater after a make than a miss (Gilovich, Vallone, & Tver-
sky, 1985). But the shooting records of the Philadelphia 76ers do not
support the hot-hand theory. Neither did a study of free-throw records
of the Boston Celtics. And a controlled study of 14 men and 12 women
from Cornell University’s basketball teams demonstrated that the play-
ers believed the outcome of the previous shot somehow influenced the
next shot but did not perform that way (Gilovich et al., 1985).

We seem to have an attachment to falsely perceiving patterns amid
random events, but it is the fundamental job of statistical inference to
bypass such human perceptual biases. Separating pattern from chance
helps us decide whether what we have observed is actually different
from what we could have expected by chance. Nonparametric hypoth-
esis tests, such as the ones we learn about in this chapter and in Chapter
18, allow us to explore hypotheses about data that do not have a scale
dependent variable.

In this chapter, we learn specific guidelines for when we should use
a nonparametric test, and then we look at two types of nonparametric
tests based on the chi-square distribution that are used with nominal
data. For example, Vergin (2000) used a chi-square test, based on the
chi-square distribution, to compare winning streaks in Major League
Baseball and in the National Basketball Association. Vergin was able to
do this because the chi-square distribution lets us test the hot-hand
theory by comparing what we observe with what we can expect by
chance.

The chi-square statistic allows us to test relations between variables
when they are nominal. As long as we can count the frequency of any

event and assign each frequency to one category, the chi-square statistic lets us test for
the independence of those categories and estimate effect sizes.

Nonparametric Statistics
Most statistical studies of sporting events confirm that the hot hand is a myth. For ex-
ample, researchers analyzed how well players shot a basketball after a commentator
identified them as being “on fire” and found that such comments represented the com-
mentator’s enthusiasm for what had just happened but did not predict players’ future
success (Koehler & Conley, 2003). However, such uncontrolled field studies often vi-
olate assumptions for hypothesis testing (most importantly the assumption that the data
be drawn from a normally distributed population). Fortunately, nonparametric statistics
provide a way to analyze data that violate this important assumption for parametric
hypothesis testing.
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Does LeBron James have a “hot hand”? Studies of
baseball, basketball, and many other sports tell the same
story: you may feel as if you have a “hot hand,” but the
pattern is only a strongly felt illusion. In basketball, success
or failure on a previous shot does not influence the outcome
of the next shot.



As we learned in Chapter 7, a nonparametric test is a statistical analysis that is not
based on a set of assumptions about the population. Nonparametric tests are hy-
pothesis tests, just as parametric tests are. Both use precisely the same logic, but non-
parametric tests are statistical tools that should be reserved for particular statistical
circumstances.

An Example of a Nonparametric Test
Let’s look at an example in which the data require us to use a nonparametric test. A
team of Israeli physician-researchers, led by Dr. Shevach Friedler, a trained mime as
well as a physician (Ryan, 2006), found that live entertainment by clowns—yes,
clowns!—was associated with higher rates of conception (Rockwell, 2006). Friedler
had a professional clown entertain the women during the 15 minutes after embryo
transfer (Brinn, 2006). Out of 93 women receiving in vitro fer-
tilization (IVF) treatment, 33 who were entertained by a clown
(35%) conceived, compared with 19% in a group that did not
experience the entertaining clown.

Let’s consider the variables of interest in the clown study. The
independent variable is type of post-IVF treatment, with two
levels (clown therapy versus no clown therapy). The dependent
variable is outcome, with two levels (becomes pregnant versus
does not become pregnant). The hypothesis is that whether a
woman becomes pregnant depends on whether she receives
clown therapy. We record what level (pregnancy, no pregnancy)
of a category each participant falls in. This means that we have
encountered a new situation: both the independent variable and
the dependent variable are nominal (Table 17-1).

This new situation calls for a new statistic and a new hypoth-
esis test. Specifically, a situation with all nominal variables requires
the chi-square distribution. The chi-square statistic is symbolized
as v2 (pronounced “kai square”—rhymes with sky).

When to Use Nonparametric Tests
The three circumstances in which we commonly use a nonparamet-
ric test are (1) when the dependent variable is nominal (for example,
in the clown study, our dependent variable—whether a woman be-
comes pregnant—is nominal), (2) when the dependent variable is or-
dinal, or (3) when the sample size is small and we suspect that the
underlying population of interest is skewed.

The first circumstance, when a dependent variable is nominal, is
fairly common. Because you can’t be just a little bit pregnant, the de-
pendent variable in the clown study is nominal—whether a woman
becomes pregnant. Each woman in the study is placed in a category
on the dependent variable, rather than receiving a score.

The second circumstance in which we use a nonparametric test
occurs when the dependent variable is ordinal. Recall that an ordinal variable is one
in which the participants are ranked, such as class rank in high school or the finishing
rankings in a marathon.

The third circumstance that calls for a nonparametric statistic is when we have
a small sample size and we suspect that the population of interest is from a skewed
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TABLE 17-1. A Summary of Research Designs

We have encountered several research designs so far, most of
which fall in one of two categories. Some designs—those listed
in category I—include at least one scale independent variable and
a scale dependent variable. Other designs—those listed in cate-
gory II—include a nominal (or sometimes ordinal) independent
variable and a scale dependent variable. Until now, we have not
encountered a research design with a nominal independent vari-
able and a nominal dependent variable, or a research design with
an ordinal dependent variable.

        I. Scale Independent                II. Nominal Independent
          Variable and Scale                      Variable and Scale
         Dependent Variable                    Dependent Variable

                Correlation                               z test

                Regression                              All kinds of t tests

                                                              All kinds of ANOVAs

�  MASTERING THE CONCEPT

17-1: We use nonparametric tests when (1)

the dependent variable is nominal, (2) the

dependent variable is ordinal, or (3) the

sample size is small and we suspect that

the underlying population distribution is not

normal.
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CHECK YOUR LEARNING
Reviewing the Concepts        > We use a nonparametric test when we cannot meet the assumptions of a parametric test,

primarily the assumptions of having a scale dependent variable and a normally distributed
population.

> The most common situations in which we use a nonparametric test are when we have a
nominal or ordinal dependent variable or a small sample in which the data for the dependent
variable suggest that the underlying population distribution might be skewed.

> We use the chi-square statistic when all variables are nominal.

Clarifying the Concepts        17-1 Distinguish parametric tests from nonparametric tests.

   17-2 When do we use nonparametric tests?

Calculating the Statistics     17-3 For each of the following situations, identify the independent and dependent variables
and how they are measured (nominal, ordinal, or scale).

a. Bernstein (1996) reported that Francis Galton created a “beauty map” by recording
the numbers of women he encountered in different cities in England who were
either pretty or not so pretty. London women, he found, were the most likely to be
pretty and Aberdeen women the least likely.

b. Imagine that Galton instead gave every woman a beauty score on a scale of 1–10
and then compared means for the women in each of five cities. Let’s say he found,
again, that London women were the prettiest, on average, and Aberdeen the least
pretty, on average.

c. Galton was famous for discounting the intelligence of most women (Bernstein,
1996). Imagine that he assessed the intelligence of 50 women and then applied the
beauty scale mentioned in part (b). Let’s say he found that women with higher
intelligence were more likely to be pretty, whereas women with lower intelligence
were less likely to be pretty.

d. Imagine that Galton ranked 50 women on a scale of 1–50 on their beauty and on
their intelligence. Let’s say he again found that women with higher intelligence
tended to be more beautiful, whereas women with lower intelligence tended to be
less beautiful.

 distribution. For example, if we wanted to study brain patterns on functional mag netic
resonance imaging (fMRI) tests among people who have won the Nobel Prize in lit-
erature, we would be very unlikely to recruit a sample of at least 30 people (the number
of people needed to transform a skewed distribution into a  normal distribution), no
matter how hard we tried or how much we paid people to participate.

In this chapter, we learn techniques for dealing with these three situations. It’s im-
portant, however, to note that we use a nonparametric test only when we cannot use
a parametric test—when we have no choice. Nonparametric tests greatly expand the
range of variables available for statistical analysis, but they have two main limita -
tions. One limitation is that confidence intervals and effect-size measures are not
 typically available for nominal or ordinal data. A second limitation is that nonparamet -
ric tests tend to have less statistical power than parametric tests. This increases the risk
of a Type II error: we are less likely to reject the null hypothesis when we should
reject it—that is, when there is a real difference between groups. So when we can
use a parametric test, we should. But when we cannot, nonparametric tests are there
for us.



Chi-Square Tests
Hot-hand research has moved beyond individual performance and tested the popular
idea of whether momentum (Big Mo) actually influences team performance. Big Mo
is sometimes believed in so strongly that Super Bowl coach Mike Holmgren wrestled
with the decision over whether to rest key players in the last game of the season when
the game’s outcome would not affect the team’s seeding in the playoffs. Holmgren de-
clared, “I don’t want to lose momentum.” The reality, however, is that Big Mo doesn’t
exist. Researchers have found that many people strongly believed in Big Mo but that
the data are not a good fit with their belief in momentum (Vergin, 2000).

The notion of a “good fit” is a way of expressing the relation between variables in
one of the most commonly used forms of chi-square analysis: the chi-square test for
goodness-of-fit, a nonparametric hypothesis test used with one nominal variable. A second,
related chi-square hypothesis test is the chi-square test for independence, a nonparametric
hypothesis test used with two nominal variables. These two tests are the most commonly
used of all the nonparametric tests, and both involve the same six steps of hypothesis
testing that we use for parametric tests.

Both chi-square tests use the chi-square statistic: v2. The chi-square
statistic is based on the chi-square distribution. As with t and F dis-
tributions, there are also several chi-square distributions, depending
on the degrees of freedom.

Chi-Square Test for Goodness-of-Fit
The chi-square test for goodness-of-fit calculates a statistic based on
just one variable. There is no independent variable or dependent vari-
able, just one categorical variable with two or more categories into
which participants are placed. In fact, the chi-square test for goodness-
of-fit received its name because it measures how good the fit is be-
tween the observed data in the various categories of a single nominal variable and the
data we would expect according to the null hypothesis. If there’s a really good fit with
the null hypothesis, then we cannot reject the null hypothesis. If we’re hoping to receive
empirical support for the research hypothesis, then we’re actually hoping for a bad fit
between the observed data and what we expect according to the null hypothesis. Let’s
look at an example.
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�  MASTERING THE CONCEPT

17-2: When we only have nominal variables,

we use the chi-square statistic. Specifically,

we use a chi-square test for goodness-of-fit

when we have one nominal variable, and we

use a chi-square test for independence

when we have two nominal variables.

Researchers reported that the best soccer players in the world were more likely to have
been born early in the year than later (Dubner & Levitt, 2006a). As one example, they
reported that 52 elite youth players in Germany (those on the national youth teams
and from whom the World Cup players are frequently drawn) were born in January,
February, or March, whereas only 4 players were born in October, November, or De-
cember. (Those born in other months were not included in this study.)

EXAMPLE 17.1

Applying the Concepts         17-4 For each of the situations listed in Check Your Learning 17-3, state the category (I or
II) from Table 17-1 from which you would choose the appropriate hypothesis test. If
you would not choose a test from either category I or II, simply list category III—
other. Explain why you chose I, II, or III.

Solutions to these Check Your Learning questions can be found in Appendix D.

■ The chi-square test for
goodness-of-fit is a
nonparametric hypothesis test
used with one nominal
variable.

■ The chi-square test for
independence is a
nonparametric hypothesis test
used with two nominal
variables.



Based on the null hypothesis, we would expect
that the time of year in which one was born would
not affect one’s likelihood of becoming an elite
soccer player. Based on the research hypothesis,
we would expect that the time of year in which
one was born would affect one’s likelihood of be -
coming an elite soccer player. Given an assumption
that births are evenly distributed across the months
of the year, the null hypothesis would posit equal
numbers, or frequencies, of elite soccer players
born in the first three months and the last three
months of the year. With 56 participants in the
study (52 born in the first three months and 4 in
the last three months), equal frequencies would
lead us to expect 28 players born in the first three
months and 28 in the last three months just by
chance.

We conduct a chi-square test for goodness-
of-fit using the six steps of hypothesis testing. You’ll
notice many similarities with other hypothesis tests.

There are always two populations when
conducting a chi-square test: one population
that matches the frequencies of participants

like those we observed and another population that matches the frequencies of par-
ticipants like those we would expect according to the null hypothesis. In the current
case, we’d have a population of elite German youth soccer players with birth dates like
those we observed and a population of elite German youth soccer players with birth
dates like those in the general population.

The comparison distribution is a chi-square distribution. There’s just one nominal
variable, birth months, so we’ll conduct a chi-square test for goodness-of-fit.

The first assumption is that the variable of interest is nominal. The second assump-
tion is that each observation is independent of all the other observations. This means
that no single participant can be in more than one category. The third assumption is
that participants were randomly selected. If not, we will be limited in our ability to
generalize beyond the sample. Finally, the fourth assumption is that there is a minimum
number of expected participants in every cell in a table of cells. A common guideline
is that the minimum expected frequency in each cell should be no lower than 5 (or,
preferably, 10). However, an alternative guideline (Delucchi, 1983) suggests that there
should be at least five times as many participants as cells. The chi-square tests seem ro-
bust to violations of this last assumption.
Summary: Population 1: Elite German youth soccer players with birth dates like those
we observed. Population 2: Elite German youth soccer players with birth dates like
those in the general population.

The comparison distribution is a chi-square distribution. The hypothesis test will be
a chi-square test for goodness-of-fit because we have one nominal variable only, birth
months. This study meets three of the four assumptions. (1) The one variable is nominal.
(2) Every participant is in only one cell (a soccer player can have a birth date in only
one category). (3) This is not a randomly selected sample of all elite soccer players, how-
ever. The sample includes only German youth soccer players in the elite leagues. We

STEP 1: Identify the populations,
distribution, and assumptions.
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Are Elite Soccer Players Born in the Early Months of the Year?
Researchers reported that elite soccer players are far more likely to be born in the first
three months of the year than in the last three months (Dubner & Levitt, 2006a). Based
on data for elite German youth soccer players, a chi-square test for goodness-of-fit
showed a significant effect: players were significantly more likely to be born in the first
three months than in the last three months of the year.



must be cautious in generalizing beyond young German elite players. (4) There are more
than five times as many participants as cells (the table has two cells, and 2 � 5 � 10).
We have 56 participants, far more than the 10 necessary to meet this guideline.

For chi-square tests, it’s easiest to state the
hypotheses in words only, rather than in both
words and symbols.

Summary: Null hypothesis: Elite German youth soccer players have the same pattern
of birth months as those in the general population. Research hypothesis: Elite German
youth soccer players have a different pattern of birth months than those in the general
population.

Our only task at this step is to determine the
degrees of freedom. In most previous hy-
pothesis tests, the degrees of freedom have

been based on sample size. For the chi-square hypothesis tests, however, the degrees
of freedom are based on the numbers of categories, or cells, in which participants can
be counted. The degrees of freedom for a chi-square test for goodness-of-fit is the
number of categories minus 1:

Here, k is the symbol for the number of categories. The current example has only
two categories: each soccer player in this study was born in either the first three months
of the year or the last three months of the year:

Summary: The comparison distribution is a chi-square distribution, which has 1 degree
of freedom: .

To determine the cutoff, or critical value, for
the chi-square statistic, we use the chi-square
table in Appendix B. v2 is based on squares

and can never be negative, so there is just one critical value. An excerpt from Appendix
B that applies to the soccer study is given in Table 17-2. We look under the p level

STEP 3: Determine the characteristics
of the comparison distribution.

df k
�2 1� �

STEP 2: State the null and research
hypotheses.

df
�2 2 1 1� � �

STEP 4: Determine the critical values,
or cutoffs.

df
�2 2 1 1� � �
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17-1: We calculate the degrees of
freedom for the chi-square test for
goodness-of-fit by subtracting 1
from the number of categories, rep-
resented in the formula by k. The
formula is: .df k�2 1� �

TABLE 17-2. Excerpt from the v2 Table

We use the v2 table to determine critical values for a given p level, based on the degrees of freedom.

                                                                             Proportion in Critical Region
               df                                   0.10                                   0.05                                    0.01

               1                                    2.706                                   3.841                                     6.635

               2                                    4.605                                   5.992                                     9.211

               3                                    6.252                                   7.815                                   11.345

                .

                .

                .
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that we’re using, usually 0.05, and across from the appropriate degrees of freedom, in
this case, 1. For this situation, the critical chi-square statistic is 3.841.
Summary: The critical v2, based on a p level of 0.05 and 1 degree of freedom, is 3.841,
as seen in the curve in Figure 17-1.

To calculate a chi-square statistic, we first de-
termine the observed frequencies and the

expected frequencies, as seen in Table 17-3. The expected frequencies are determined
from the information we have about the general population. In this case, we estimate
that, in the general population, about half of all births (only, of course, among those
born in the first or last three months of the year) occur in the first three months of
the year, a proportion of 0.50.

(0.50)(56) � 28

Of the 56 elite German youth soccer players in the study, we would expect to find
that 28 of them were born in the first three months of the year (versus the last three
months of the year) if these youth soccer players are no different from the general pop-
ulation with respect to birth date. Similarly, we would expect a proportion of 1 � 0.50
� 0.50 of these soccer players to be born in the last three months of the year:

(0.50)(56) � 28

These numbers are identical only because the proportions are 0.50 and 0.50. If the
proportion expected for the first three months of the year, based on the general pop-

STEP 5: Calculate the test statistic.

5%

3.8410

FIGURE 17-1
Determining the Cutoff for

a Chi-Square Statistic

We look up the critical value for a
chi-square statistic, based on a

certain p level and degrees of
freedom, in the chi-square table.
Because the chi-square statistic

is squared, it is never negative, so
there is only one critical value.

TABLE 17-3. Observed Frequencies and Expected Frequencies

The first step in calculating the chi-square statistic is creating two tables, one with cells that display the ob-
served frequencies of birth dates among elite German youth soccer players and one with cells that display
the expected frequencies.

                                                     Observed (when elite players were born)

                 First Three Months of the Year                            Last Three Months of the Year

                                         52                                                                            4

                                                   Expected (based on the general population)

                 First Three Months of the Year                            Last Three Months of the Year

                                         28                                                                           28



ulation, was 0.60, then we would expect a proportion of 1 � 0.60 � 0.40 for the last
three months of the year.

The next step in calculating the chi-square statistic is to calculate a sort of sum of
squared differences. We start by determining the difference between each observed fre-
quency and its matching expected frequency. This is usually done in columns, so we
use this format even though we have only two categories. The first three columns of
Table 17-4 show us the categories, observed frequencies, and expected frequencies, re-
spectively. The fourth column, using O for observed and E for expected, displays the
differences. As in the past, if we sum the differences, we get 0; they cancel out because
some are positive and some are negative. We solve this problem as we have in the past—
by squaring the differences, as shown in the fifth column. Next, however, we have a
step that we haven’t seen before with squared differences. We divide each squared dif-
ference by the expected value for its cell, as seen in the sixth column. The numbers
in the sixth column are the ones we sum.

As an example, here are the calculations for the category “first three months”:

O � E � (52 � 28) � 24

(O � E)2 � (24)2 � 576

Once we complete the table, the last step is easy. We just add up the numbers in the
sixth column. In this case, the chi-square statistic is 20.571 � 20.571 � 41.14. We can
finish the formula by adding a summation sign to the formula in the sixth column. Note
that we don’t have to divide this sum by anything, as we’ve done with other statistics.
We already did our dividing before we summed. This sum is the chi-square statistic.
Here is the formula:

Summary:

This last step is identical to the one used in
every other hypothesis test we’ve encoun-

tered. We reject the null hypothesis if the test statistic is beyond the critical value, and
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(20.571 20.571) 41.14

STEP 6: Make a decision.
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TABLE 17-4. The Chi-Square Calculations

As with many other statistics, we calculate the chi-square statistic using columns to keep track of our work.
We calculate the difference between the observed frequency and the expected frequency, square the differ-
ence, then divide each square by its appropriate expected frequency. Finally, we add up the numbers in the
sixth column to find the chi-square statistic.

       Column 1                         2                            3                       4                     5                     6

        Category                Observed (O)          Expected (E )          O � E           (O � E )2

  First three months                   52                             28                       24                  576                 20.571

  Last three months                     4                             28                    �24                  576                 20.571

( )O E

E

� 2

�                                         

MASTERING THE FORMULA

17-2: The formula for the chi-square

statistic is: . For

each cell, we subtract the expected
count, E, from the observed count,
O. Then we square each difference
and divide the square by the expected
count. Finally, we sum the calcula-
tions for each of the cells.
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we fail to reject the null hypothesis if the test statistic is not beyond the critical value.
In this case, the test statistic, 41.14, is far beyond the cutoff, 3.841, as seen in Figure
17-2. So we reject the null hypothesis. Because there are only two categories, it’s clear
where the difference lies. It appears that elite German youth soccer players are more
likely to have been born in the first three months of the year, and less likely to have
been born in the last three months of the year, than members of the general population.
(If we had failed to reject the null hypothesis, we could only have concluded that these
data did not provide sufficient evidence to show that elite German youth soccer players
have a different likelihood of being born in the first, versus last, three months of the
year than those in the general population.)
Summary: Reject the null hypothesis; it appears that elite German youth soccer players
are more likely to have been born in the first three months of the year, and less
likely to have been born in the last three months of the year, than those in the general
population.

We report these statistics in a journal article in almost the same format that we’ve
seen previously. We report the degrees of freedom, the value of the test statistic, and
whether the p value associated with the test statistic is less than or greater than the
cutoff based on the p level of 0.05. (As usual, we would report the actual p level if
we conducted this hypothesis test using software.) In addition, we report the sample
size in parentheses with the degrees of freedom. In the current example, the statistics
read:

v2(1, N � 56) � 41.14, p � 0.05

The researchers who conducted this study asked why this association might oc -
cur and offered four ideas: “a) certain astrological signs confer superior soccer skills;
 b) winter-  born babies tend to have higher oxygen capacity, which increases soccer
stamina; c) soccer-mad parents are more likely to conceive children in springtime, at
the annual peak of soccer mania; d) none of the above” (Dubner & Levitt, 2006a).
What’s your guess?

The researchers picked (d) and offered one possible alternative (Dubner & Levitt,
2006a): soccer leagues have age limits, and the cutoff date for each of these leagues is
December 31. Those born in January, almost a year before the cutoff, are likely to be
physically larger and psychologically more mature than their counterparts born 11
months later in December, just before the cutoff. The January players are more likely
to be chosen for the best soccer leagues and therefore are more likely to receive the
kind of practice and feedback that leads to superiority. All this from a simple chi-square
test for goodness-of-fit! ■

41.14

5%

3.8410

FIGURE 17-2
Making a Decision

As with other hypothesis tests, we make
a decision with a chi-square test by

comparing the test statistic to the cutoff,
or critical value. We see here that 41.14

would be far to the right of 3.841.



Chi-Square Test for Independence
The chi-square test for goodness-of-fit analyzes
just one nominal variable. The chi-square test for
independence analyzes two nominal variables.

With the chi-square test for independence,
however, we do not have to identify a specific in-
dependent variable and dependent variable. Like
the correlation coefficient, the chi-square statistic
is identical even if we switch the independent
variable and dependent variable. The main reason
we identify a specific independent variable and
dependent variable is to help us articulate the hy-
potheses. The chi-square test for independence is
so named because we are trying to determine
whether the two variables—no matter which one we consider to be the independent
variable—are independent of each other. In the next example, we ask whether preg-
nancy rates are independent of (that is, depend on) whether one is entertained by a
clown after in vitro fertilization (IVF) treatment.
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Clown Therapy Israeli
researchers tested whether
entertainment by a clown led
to higher pregnancy rates
after in vitro fertilization
treatment. Their study had two
nominal variables—
entertainment (clown, no
clown) and pregnancy
(pregnant, not pregnant)—and
could have been analyzed with
a chi-square test for
independence.
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In the clown study, as reported in the mass media (Ryan, 2006), 186 women were ran-
domly assigned to receive IVF treatment only or to receive IVF treatment followed
by 15 minutes of clown entertainment. Eighteen of the 93 who received only the IVF
treatment became pregnant, whereas 33 of the 93 who received both IVF treatment
and clown entertainment became pregnant. The cells for these observed frequencies
are in Table 17-5. The table of cells for a chi-square test for independence is called a
contingency table because we are trying to see if the outcome of one variable (e.g., be-
coming pregnant versus not becoming pregnant) is contingent on the other variable
(clown versus no clown). Let’s implement the six steps of hypothesis testing for a chi-
square test for independence.

Population 1: Women receiving IVF treat-
ment like the women we observed. Popula-
tion 2: Women receiving IVF treatment for

whom the presence of a clown is not associated with eventual pregnancy.
The comparison distribution is a chi-square distribution. The hypothesis test will

be a chi-square test for independence because we have two nominal variables. This
study meets three of the four assumptions. (1) The two variables are nominal. (2) Every

STEP 1: Identify the populations,
distribution, and assumptions.

EXAMPLE 17.2

TABLE 17-5. Observed Pregnancy Rates

This table depicts the cells and their frequencies for the study on whether entertainment by a clown is as-
sociated with pregnancy rates among women undergoing in vitro fertilization.

                                                                                                  Observed
                                                                      Pregnant                                       Not Pregnant

                 Clown                                                    33                                                        60

                 No Clown                                              18                                                        75



                                        �

participant is in only one cell. (3) The participants were not, however, randomly selected
from the population of all women undergoing IVF treatment. We must be cautious in
generalizing beyond the sample of Israeli women at this particular hospital. (4) There
are more than five times as many participants as cells (186 participants and 4 cells—
4 � 5 � 20). We have far more participants, 186, than the 20 necessary to meet this
guideline.

Null hypothesis: Pregnancy rates are inde-
pendent of whether one is entertained by a
clown after IVF treatment. Research hy-

pothesis: Pregnancy rates depend on whether one is entertained by a clown after IVF
treatment.

For a chi-square test for independence, we
calculate degrees of freedom for each vari-
able and then multiply the two to get the

overall degrees of freedom. The degrees of freedom for the variable in the rows of the
contingency table is:

dfrow � krow � 1

The degrees of freedom for the variable in the columns of the contingency table is:

dfcolumn � kcolumn � 1

The overall degrees of freedom is:

To expand this last formula, we write:

The comparison distribution is a chi-square distribution, which has 1 degree of
freedom:

The critical value, or cutoff, for the chi-
square statistic based on a p level of 0.05 and
1 degree of freedom is 3.841 (Figure 17-3).

The next step, the determination of the ap-
propriate expected frequencies, is the most

important in the calculation of the chi-square test for independence. Errors commonly
occur in this step, and if the wrong expected frequencies are used, the chi-square statistic
derived from them will also be wrong. Many students want to divide the total number
of participants (here, 186) by the number of cells (here, 4) and place equivalent fre-
quencies in all cells for the expected data. Here, that would mean that the expected
frequencies would be 46.5.

STEP 3: Determine the characteristics
of the comparison distribution.

STEP 2: State the null and research
hypotheses.

df df dfrow column�2 �( )( )

df k krow column�2 1 1� � �( )( )

df k krow column�2 1 1 2 1 2 1 1� � � � � � �( )( ) ( )( )

STEP 4: Determine the critical values,
or cutoffs.

STEP 5: Calculate the test statistic.
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                                        �MASTERING THE FORMULA

17-3: To calculate the degrees of
freedom for the chi-square test for
independence, we first have to calcu-
late the degrees of freedom for each
variable. For the variable in the rows,
we subtract 1 from the number of
categories in the rows: dfrow � krow �
1. For the variable in the columns,
we subtract 1 from the number of
categories in the columns: dfcolumn �

kcolumn � 1. We multiply these two
numbers to get the overall degrees of
freedom: . To
combine all the calculations, we can
use the following formula instead:

.

df df dfrow column�2 �( )( )

df k krow column�2 1 1� � �( )( )



But this would not make sense. Of the 186 women, only
51 became pregnant; 51/186 � 0.274, or 27.4%, of these
women became pregnant. If pregnancy rates do not depend
on clown entertainment, then we would expect the same
percentage of successful pregnancies, 27.4%, regardless of ex-
posure to clowns. If we have expected frequencies of 46.5 in
all four cells, then we have a 50%, not a 27.4%, pregnancy
rate. We must always consider the specifics of the situation.

In the current study, we already calculated that 27.4% of all
women in the study became pregnant. If pregnancy rates are
independent of whether a woman is entertained by a clown,
then we would expect 27.4% of the women who were enter-
tained by a clown to become pregnant and 27.4% of women who were not entertained
by a clown to become pregnant. Based on this percentage, 100 � 27.4 � 72.6% of
women in the study did not become pregnant. We would therefore expect 72.6%
of women who were entertained by a clown to fail to become pregnant and 72.6% of
women who were not entertained by a clown to fail to become pregnant. Again, we’re
expecting the same pregnancy and nonpregnancy rates in both groups—those who
were and were not entertained by clowns.

Table 17-6 shows the observed data once again, now with totals for each row, each
column, and the whole table.

From Table 17-6, we see that 93 women were entertained by a clown after IVF treat-
ment. As we calculated above, we would expect 27.4% of them to become pregnant:

(0.274)(93) � 25.482

Of the 93 women who were not entertained by a clown, we would expect 27.4%
of them to become pregnant if clown entertainment is independent of pregnancy rates:

(0.274)(93) � 25.482

We now repeat the same procedure for not becoming pregnant. We would expect
72.6% of women in both groups to fail to become pregnant. For the women who were
entertained by a clown, we would expect 72.6% of them to fail to become pregnant:

(0.726)(93) � 67.518

For the women who were not entertained by a clown, we would expect 72.6% of
them to fail to become pregnant:

(0.726)(93) � 67.518
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5%

3.8410

FIGURE 17-3
The Cutoff for a Chi-Square Test
for Independence

The shaded region is beyond the critical
value for a chi-square test for
independence with a p level of 0.05 and
1 degree of freedom. If the test statistic
falls within this shaded area, we will
reject the null hypothesis.

TABLE 17-6. Observed Frequencies with Totals

This table includes the observed frequencies for each of the four cells, along with row totals (93, 93), column
totals (51, 135), and the grand total for the whole table (186).

                                                                            Observed
                                                      Pregnant                            Not Pregnant

            Clown                                        33                                            60                                       93

            No Clown                                   18                                            75                                       93

                                                             51                                          135                                     186



(Note that the two expected frequencies for the first row are the same as the two
expected frequencies for the second row, but only because the same number of people
were in each clown condition, 93. If these two numbers were different, we would not
see the same expected frequencies in the two rows.)

The method of calculating the expected frequencies that we described above is ideal
because it is directly based on our own thinking about the frequencies in the rows and
in the columns. Sometimes, however, our thinking can get muddled, particularly when
the two (or more) row totals do not match and the two (or more) column totals do
not match. For these situations, a simple set of rules leads to accurate expected fre-
quencies. For each cell, we divide its column total (Totalcolumn) by the grand total (N)
and multiply that by the row total (Totalrow):

As an example, the observed frequency of those who became pregnant and were
entertained by a clown is 33. The row total for this cell is 93. The column total is 51.
The grand total, N, is 186. The expected frequency, therefore, is:

Notice that this result is identical to what we calculated without a formula. The
middle step above shows that, even with the formula, we actually did calculate the
pregnancy rate overall, by dividing the column total (51) by the grand total (186). We
then calculated how many in that row of 93 participants we would expect to get preg-
nant using this overall rate:

(0.274)(93) � 25.482

The formula follows our logic, but it also keeps us on track when there are multiple
calculations.

As a final check on the calculations, shown in Table 17-7, we can add up the fre-
quencies to be sure that they still match the row, column, and grand totals. For example,
if we add the two numbers in the first column, 25.482 and 25.482, we get 50.964 (dif-
ferent from 51 only because of rounding decisions). If we had made the mistake of di-
viding the 186 participants into cells by dividing by 4, we would have had 46.5 in each
cell; then the total for the first column would have been 46.5 � 46.5 � 93, not a
match with 51. This final check ensures that we have the appropriate expected fre-
quencies in the cells.

Total

N
Totalcolumn

row( ) ( ) ( . )(� �
51

186
93 0 274 93)) .�25 482

Total

N
Totalcolumn

row( )
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                                        �MASTERING THE FORMULA

17-4: When conducting a chi-square
test for independence, we can calcu-
late the expected frequencies in each
cell by taking the total for the col-
umn that the cell is in, dividing it by
the total in the study, and then mul-
tiplying by the total for the row that

the cell is in: .
Total

N
Totalcolumn

row( )

TABLE 17-7. Expected Frequencies with Totals

This table includes the expected frequencies for each of the four cells. The expected frequencies should still
add up to the row totals (93, 93), column totals (51, 135), and the grand total for the whole table (186).

                                                                            Expected
                                                      Pregnant                            Not Pregnant

            Clown                                     25.482                                      67.518                                   93

            No Clown                               25.482                                      67.518                                   93

                                                         51                                           135                                        186



The remainder of the fifth step is identical to that for a chi-square test for  goodness-
of-fit, as seen in Table 17-8. As before, we calculate the difference between each ob-
served frequency and its matching expected frequency, square these differences, and
divide each squared difference by the appropriate expected frequency. We add up the
numbers in the final column of the table to calculate the chi-square statistic:

Reject the null hypothesis; it appears that
pregnancy rates depend on whether a woman

receives clown entertainment following IVF treatment
(Figure 17-4).

The statistics, as reported in a journal article, would
 follow the format we learned for a chi-square test for
 goodness-of-fit as well as for other hypothesis tests in earlier
chapters. We report the degrees of freedom and sample size,
the value of the test statistic, and whether the p value asso-
ciated with the test statistic is less than or greater than the
critical value based on the p level of 0.05. (We would report
the actual p level if we conducted this hypothesis test using
software.) In the current example, the statistics would read:

                                        v2(1, N � 186) � 6.08, p � 0.05 ■

STEP 6: Make a decision.
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TABLE 17-8. The Chi-Square Calculations

For the calculations for the chi-square test for independence, we use the same format as we did for the chi-
square test for goodness-of-fit. We calculate the difference between each observed frequency and expected
frequency, square the difference, then divide each square by its appropriate expected frequency. Finally, we
add up the numbers in the last column, and that’s the chi-square statistic.

          Category                   Observed (O )         Expected (E )         O � E          (O � E )2

  Clown; pregnant                             33                       25.482                 7.518           56.520              2.218

  Clown; not pregnant                       60                       67.518             �7.518           56.520              0.837

  No clown; pregnant                         18                       25.482             �7.482           55.980              2.197

  No clown; not pregnant                   75                       67.518                 7.482           55.980              0.829

( )O E

E

� 2

6.081

5%

3.8410

FIGURE 17-4
The Decision

Because the chi-square statistic, 6.081,
is beyond the critical value, 3.841, we
can reject the null hypothesis. It is
unlikely that the pregnancy rates for
those who received clown therapy versus
those who did not were this different
from each other just by chance.

continued on next page

CHECK YOUR LEARNING
Reviewing the Concepts        > The chi-square tests are used when all variables are nominal.

> The chi-square test for goodness-of-fit is used with one nominal variable.

> The chi-square test for independence is used with two nominal variables; usually one can
be thought of as the independent variable and one as the dependent variable.

> Both chi-square hypothesis tests use the same six steps of hypothesis testing with which
we are familiar.
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Beyond Hypothesis Testing
If a chi-square analysis had supported the hot-hand theory, we would want to know
more about this particular finding. For example, we might ask how large a difference
the hot hand made to a particular athlete’s performance and we might want to see the
difference in a graph. Most nonparametric hypothesis tests do not have associated  effect-
size measures, but chi square does. We’ll introduce Cramer’s V, the effect size for chi
square, as one method to determine how large a finding is. We’ll then show how to
depict chi-square findings visually in a graph so that we can see how large the effect

Clarifying the Concepts        17-5 When do we use chi-square tests?

   17-6 What are observed frequencies and expected frequencies?

Calculating the Statistics     17-7 Imagine a town that boasts clear blue skies 80% of the time. You get to work in that
town one summer for 78 days and record the following data. (Note: For each day, you
picked just one label.)
Clear blue skies: 59 days
Cloudy/hazy/gray skies: 19 days

a. Calculate degrees of freedom for this chi-square test for goodness-of-fit.

b. Determine the observed and expected frequencies.

c. Calculate the differences and squared differences between frequencies, and calculate
the chi-square statistic. Use the six-column format provided here.

Applying the Concepts         17-8 The Chicago Police Department conducted a study comparing two types of lineups
for suspect identification: simultaneous lineups and sequential lineups (Mecklenburg,
Malpass, & Ebbesen, 2006). In simultaneous lineups, witnesses saw the suspects all at
once, either live or in photographs, and then made their selection. In sequential
lineups, witnesses saw the people in the lineup one at a time, either live or in
photographs, and said yes or no to suspects one at a time. After numerous high-profile
cases in which DNA evidence exonerated people who had been convicted, including
many on death row, many police departments shifted to sequential lineups in the hope
of reducing incorrect identifications. Several previous studies had indicated the
superiority of sequential lineups with respect to accuracy. Over one year, three
jurisdictions in Illinois compared the two types of lineups. Of 319 simultaneous
lineups, 191 led to identification of the suspect, 8 led to identification of another
person in the lineup, and 120 led to no identification. Of 229 sequential lineups, 102
led to identification of the suspect, 20 led to identification of another person in the
lineup, and 107 led to no identification.

a. Who or what are the participants in this study? Identify the independent variable
and its levels as well as the dependent variable and its levels.

b. Conduct all six steps of hypothesis testing.

c. Report the statistics as you would in a journal article.

d. Why is this study an example of the importance of using two-tailed rather than
one-tailed hypothesis tests?

  Category      Observed (O)   Expected (E) O � E   (O � E)2

Clear blue skies                                    

Unclear skies                                        

(O � E)2

E

Solutions to these Check Your
Learning questions can be found in
Appendix D.
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is. We’ll also demonstrate how to calculate relative risk, another way to understand the
size of an effect by quantifying the chances of a given outcome. Finally, we’ll show
how to conduct a type of post-hoc test that can be used to determine exactly where
any differences lie among the cells of a chi-square design.

Cramer’s V, the Effect Size for Chi Square
A hypothesis test tells us only that there is a likely effect—that the observed effect was
unlikely to have occurred merely by chance if the null hypothesis was true. But a hy-
pothesis test, including any based on the chi-square statistic, does not tell us how large
the effect is. We have to calculate an additional statistic, an effect size, before we can
make claims about the importance of a study’s finding.

Cramer’s V is the standard effect size used with the chi-square test for independence. It is
also called Cramer’s phi (pronounced “fie”—rhymes with fly) and symbolized by
u.Once we have calculated the test statistic, it is easy to calculate Cramer’s V by hand.
The formula is:

v2 is the test statistic we just calculated, N is the total number of participants in the
study (the lower-right number in the contingency table), and dfrow/column is the degrees
of freedom for either the category in the rows or the category in the columns,
whichever is smaller.

Cramer’s V
N dfrow column

�
�2

( )( )/
�                                         

MASTERING THE FORMULA

17-5: The formula for Cramer’s V,
the effect size typically used with the
chi-square statistic, is: Cramer’s V �

. The numerator is

the chi-square statistic, v2. The de-
nominator is the product of the
 sample size, N, and either the degrees
of freedom for the rows or the de-
grees of freedom for the columns,
whichever is smaller. We take the
square root of this quotient to get
Cramer’s V.

N dfrow column

�2

( )( )/

For the clown example, we calculated a chi-square statistic of 6.081, there were 186
participants, and the degrees of freedom for both categories were 1. When neither de-
grees of freedom is smaller than the other, of course, it doesn’t matter which one we
choose. The effect size for the clown study, therefore, is:

Now that we have the effect size, what does it mean? As with other effect sizes,
Jacob Cohen (1992) has developed guidelines, shown in Table 17-9, for determining
whether a particular effect is small, medium, or large. The guidelines vary based on the
size of the contingency table. When the smaller of the two degrees of freedom for the
row and column is 1, we use the guidelines in the second column. When the smaller

Cramer’s V
x

N dfrow column

� �
2 6 081

186 1( )( )

.

( )(/ ))
. .� �0 033 0 181

EXAMPLE 17.3

TABLE 17-9. Conventions for Determining Effect Size Based on Cramer’s V

Jacob Cohen (1992) developed guidelines to determine whether particular effect sizes should be considered
small, medium, or large. The effect-size guidelines vary depending on the size of the contingency table. There are
different guidelines based on whether the smaller of the two degrees of freedom (row or column) is 1, 2, or 3.

     Effect Size            When dfrow/column � 1           When dfrow/column � 2            When dfrow/column � 3

      Small                                  0.10                                        0.07                                          0.06

      Medium                              0.30                                        0.21                                          0.17

      Large                                 0.50                                        0.35                                          0.29

■ Cramer’s V is the standard
effect size used with the chi-
square test for independence;
also called Cramer’s phi,
symbolized as u.
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of the two degrees of freedom is 2, we use the guidelines in the third column. And
when it is 3, we use the guidelines in the fourth column. As with the other guidelines
for judging effect sizes, such as those for Cohen’s d, the guidelines are not cutoffs.
Rather, they are rough indicators to help researchers gauge a finding’s importance.

The effect size for the clowning and pregnancy study was 0.18. The smaller of the
two degrees of freedom, that for the row and that for the column, was 1 (in fact, both
were 1). So we use the second column in Table 17-9. This Cramer’s V falls about
halfway between the effect-size guidelines for a small effect (0.10) and a medium effect
(0.30). We would call this a small-to-medium effect. We can build on the report of the
statistics by adding the Cramer’s V to the end:

                        v2(1, N � 186) � 6.08, p � 0.05, Cramer’s V � 0.18 ■

Graphing Chi-Square Percentages
In addition to calculating Cramer’s V, we also can graph the data. A visual depiction
of the pattern of results is an effective way to understand the size of the relation between
two variables assessed using the chi-square statistic. We don’t graph the frequencies,
however. We graph proportions or percentages.

For the women entertained by a clown, we calculate the proportion who became preg-
nant and the proportion who did not. For the women not entertained by a clown, we
again calculate the proportion who became pregnant and the proportion who did not.
The calculations for the proportions are below.

In each case, we’re dividing the number of a given outcome by the total number of
women in that group. The proportions are called conditional proportions because we’re
not calculating the proportions out of all women in the study; we’re calculating propor-
tions for women in a certain condition. We calculate the proportion of women who be-
came pregnant, for example, conditional on their having been entertained by a clown.

Entertained by a clown
Became pregnant: 33/93 � 0.355
Did not become pregnant: 60/93 � 0.645

Not entertained by a clown
Became pregnant: 18/93 � 0.194
Did not become pregnant: 75/93 � 0.806

We can put those proportions into a table (see Table 17-10). For each category of en-
tertainment (clown, no clown), the proportions should add up to 1.00; or if we used
percentages, they should add up to 100%.

EXAMPLE 17.4

TABLE 17-10. Conditional Proportions

To construct a graph depicting the results of a chi-square test for independence, we first calculate conditional
proportions. For example, we calculate the proportions of women who got pregnant, conditional on having
been entertained by a clown post-IVF: 33/93 � 0.355.

Conditional Proportions

Pregnant Not Pregnant

Clown 0.355 0.645 1.00

No Clown 0.194 0.806 1.00

■ Relative risk is a measure
created by making a ratio of
two conditional proportions;
also called relative likelihood
or relative chance.



We can now graph the conditional proportions, as in Figure 17-5. Alternately, we
could have simply graphed the two rates at which women got pregnant—0.355 and
0.194—given that the rates at which they did not become pregnant are based on these
rates. This graph is depicted in Figure 17-6. In both cases, we include the scale of pro-
portions on the y-axis from 0 to 1.0 so that the graph will not mislead the viewer into
thinking that rates are higher than they are. ■

Relative Risk
Another way to think about the size of an effect with chi square is through relative
risk, a measure created by making a ratio of two conditional proportions. It is also called relative
likelihood or relative chance.
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FIGURE 17-5
Graphing and Chi Square

When we graph the data for a chi-square test for
independence, we graph conditional proportions rather than
frequencies. The proportions allow us to compare the rates at
which women became pregnant in the two conditions.

FIGURE 17-6
A Simpler Graph of
Conditional Probabilities

Because the rates at which women
did not become pregnant are based
on the rates at which they did
become pregnant, we can simply
graph one set of rates. Here we
see the rates at which women
became pregnant in each of the
two clown conditions.

As with Figure 17-5, we calculate the chance of getting pregnant with clown enter-
tainment post-IVF by dividing the number of pregnancies in this group by the total
number of women entertained by clowns:

33/93 � 0.355

We then calculate the chance of getting pregnant with no clown entertainment
post-IVF by dividing the number of pregnancies in this group by the total number of
women not entertained by clowns:

18/93 � 0.194

EXAMPLE 17.5
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If we divide the chance of getting pregnant having been entertained by clowns by
the chance of getting pregnant not having been entertained by clowns, then we get the
relative likelihood:

0.355/0.194 � 1.830

Based on the relative risk calculation, the chance of getting pregnant when IVF is
followed by clown entertainment is 1.83 times the chance of getting pregnant when
IVF is not followed by clown entertainment. This matches the impression that we get

from the graph. The bar for the pregnancy rate of women who were
entertained by clowns looks to be almost twice as tall as the bar for
the pregnancy rate of women who were not entertained by clowns.

Alternately, we can reverse the ratio, dividing the chance of be-
coming pregnant without clown entertainment, 0.194, by the chance
of becoming pregnant following clown entertainment, 0.355. This is
the relative likelihood for the reversed ratio:

0.194/0.355 � 0.546

This number gives us the same information in a different way. The
chance of getting pregnant when IVF is followed by no entertainment
is 0.55 (or about half) the chance of getting pregnant when IVF is
followed by clown entertainment. Again, this matches the graph; one
bar is about half that of the other. ■

When this calculation is made with respect to diseases, it’s referred to as relative
risk (rather than relative likelihood). You’ll often see relative risks reported in the news.
For example, Health and Medicine Week reported on a study of an education program
to prevent diabetes in people at high risk for the disease (“Lifestyle Education Re-
duced,” 2006). Compared to those who received no lifestyle education, those in the
program had a relative risk of developing diabetes of 0.50. In other words, the chance
of developing diabetes was 50% lower among those in the lifestyle education program.

We should be careful when relative risks are reported, however. We must always be
aware of base rates. If, for example, a certain disease occurs in just 0.01% of the pop-
ulation (that is, 1 in 10,000) and is twice as likely to occur among people who eat ice
cream, then the rate is 0.02% (2 in 10,000) among those who eat ice cream. Relative
risks can be used to scare the general public unnecessarily. Be sure to be clear when
you report your own statistics; be careful not to mislead your readers—whether inten-
tionally or unintentionally.

�  MASTERING THE CONCEPT

17-3: We can quantify the size of an effect

with chi square through relative risk, also

called relative likelihood. By making a ratio

of two conditional proportions, we can say,

for example, that one group is three times

as likely to show some outcome or,

conversely, that the other group is one-third

as likely to show that outcome.

Chi-square tests present a problem when there are more than two levels of one of the
variables. A significant chi-square hypothesis test means only that at least some of the
cells’ observed frequencies are statistically significantly different from their correspon-
ding expected frequencies. We cannot know how many cells or exactly which ones
are significantly different without an additional step. That next step is the calculation
of a statistic for each cell based on its residual.

A cell’s residual is the difference between the expected frequency and the observed
frequency for that cell, but we take it a step further. We calculate an adjusted standardized
residual, the difference between the observed frequency and the expected frequency for a cell in a

N e x t  S t e p s Adjusted Standardized Residuals
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chi-square research design, divided by the standard error. In other words, an adjusted standard-
ized residual (often called just adjusted residual by software) is a measure of the number of
standard errors that an observed frequency falls from its associated expected frequency.

Does this sound familiar? The adjusted standardized frequency is kind of like a z
statistic for each cell (Agresti & Franklin, 2006). A larger adjusted standardized residual
indicates that an observed frequency is farther from its expected frequency than a
smaller adjusted standardized residual indicates. And like a z statistic, we’re not con-
cerned with the sign. A large positive adjusted standardized residual and a large negative
adjusted standardized residual tell us the same thing. If it’s large enough, then we’re
willing to conclude that the observed frequency really is different from what we would
expect if the null hypothesis was true.

Also like a z statistic, any time a cell has an adjusted standardized residual that is at
least 2 (whether the sign is positive or negative), we are willing to conclude that the
cell’s observed frequency is different from its expected frequency. Some statisticians
prefer a more stringent criterion, drawing this conclusion only if an adjusted standard-
ized residual is larger than 3 (again, whether the sign is positive or negative). Regardless
of the criterion used, the method and logic for determining the probabilities of z sta-
tistics and determining adjusted standardized residuals are the same.

Adjusted standardized residuals are too complicated to calculate without the aid of
a computer, but we’ll show you a software printout of the adjusted standardized residuals
for the clown therapy study. Figure 17-7 shows the printout from the SPSS software
package. The row labeled “Count” includes the observed frequencies. The row labeled
“Expected Count” includes the expected frequencies. The row labeled “Adjusted
Residual” includes the adjusted standardized residuals. So, for example, the upper-left-
hand cell is for women who became pregnant following post-IVF entertainment by
a clown; the observed frequency for this cell was 33, the expected frequency was 25.5,
and the adjusted standardized residual was 2.5. Any adjusted standardized residual greater
than 2 or less than �2 indicates that the observed frequency is farther from the expected
frequency than we would expect if the two variables were independent of each other.
In this case, all four adjusted standardized residuals are either 2.5 or �2.5, so we can
conclude that all four observed frequencies are farther from their corresponding ex-
pected frequencies than would likely occur if the null hypothesis was true.

33Count
25.5Expected Count

2.5Adjusted Residual

Result of IVF
Pregnant Not Pregnant

Total

Type of Entertainment* Result of IVF Crosstabulation

Clown

18Count
25.5Expected Count

�2.5

51

60
67.5

�2.5

75
67.5

2.5

135

93
93.0

93
93.0

186

Adjusted Residual

No Clown

Type of Entertainment

CountTotal

FIGURE 17-7
Adjusted Standardized Residuals

Software calculates an adjusted standardized residual, called “adjusted residual” by most software packages, for each
cell. It is calculated by taking the residual for each cell, the difference between the observed frequency and expected
frequency, and dividing by standard error. When an adjusted standardized residual is greater than 2 or less than �2,
we typically conclude that the observed frequency is greater than the expected frequency.

■ An adjusted standardized
residual is the difference
between the observed
frequency and the expected
frequency for a cell in a chi-
square research design,
divided by the standard error;
also called adjusted residual.
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CHECK YOUR LEARNING
Reviewing the Concepts        > After completing a hypothesis test, it is wise to calculate an effect size as well. The appro-

priate effect-size measure for the chi-square test for independence is Cramer’s V.

> We can depict the effect size visually by calculating and graphing conditional proportions
so that we can compare the rates of a certain outcome in each of two or more groups.

> Another way to consider the size of an effect is through relative risk, a ratio of conditional
proportions for each of two groups.

> A statistically significant chi-square hypothesis test does not tell us exactly which cells are
farther from their expected frequencies than would occur if the two variables were inde-
pendent. We must calculate adjusted standardized residuals to identify these cells.

Clarifying the Concepts        17-9 What is the effect-size measure for chi-square tests and how is it calculated?

Calculating the Statistics     17-10 Assume you are interested in whether students with different majors tend to have
different political affiliations. You ask U.S. psychology majors and business majors to
indicate whether they are Democrats or Republicans. Of 67 psychology majors, 36
indicated that they were Republicans and 31 indicated that they were Democrats. Of
92 business majors, 54 indicated that they were Republicans and 38 indicated that they
were Democrats. Calculate the relative likelihood of being a Republican given that a
person is a business major as opposed to a psychology major.

Applying the Concepts         17-11 In Check Your Learning 17-8, you were asked to conduct a chi-square test on a
Chicago Police Department study comparing two types of lineups for suspect
identification: simultaneous lineups and sequential lineups (Mecklenburg et al., 2006).

a. Calculate the appropriate measure of effect size for this study.

b. Create a graph of the conditional proportions for these data.

c. Calculate the relative likelihood of a suspect being accurately identified in the
simultaneous lineups versus the sequential lineups.

Solutions to these Check Your
Learning questions can be found in
Appendix D.

Nonparametric Statistics
Nonparametric hypothesis tests are used when we do not meet the assumptions of a
parametric test. This often occurs when we have a nominal or ordinal dependent vari-
able, or a small sample in which the data suggest a skewed population distribution.
Given the choice, we should use a parametric test because these tests tend to have more
statistical power and because we can more frequently calculate confidence intervals
and effect sizes for parametric hypothesis tests.

Chi-Square Tests
When we have a nominal dependent variable, we analyze the data using a chi-square
test. We use the chi-square test for goodness-of-fit when we have only one variable and it
is nominal. We use the chi-square test for independence when we have two nominal vari-
ables; typically, for the purposes of articulating hypotheses, one variable is thought of
as the independent variable and the other is thought of as the dependent variable. With
both chi-square tests, we analyze whether the data that we observe match what we

REVIEW OF CONCEPTS
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would expect according to the null hypothesis. Both tests use the same basic six steps
of hypothesis testing that we learned previously.

Beyond Hypothesis Testing
We usually calculate an effect size as well; the most commonly calculated effect size
with chi square is Cramer’s V, also called Cramer’s phi. We can also create a graph that
depicts the conditional proportions of an outcome for each group. Alternately, we can
calculate relative risk (relative likelihood/chance) to more easily compare the rates of certain
outcomes in each of two groups. As with ANOVA, when we reject the null hypothesis
with a chi-square hypothesis test, we do not know which cells have observed frequen-
cies that are farther from their expected frequencies than would occur if the two vari-
ables were independent. We can determine this by calculating adjusted standardized
residuals, the distances of the observed frequencies from their corresponding expected
frequencies in terms of standard errors.

In SPSS, we conduct a chi-square test for independence by first
entering the data. Each participant gets a score on each variable.
For the pregnancy and clown entertainment data, we have two
columns: one for a woman’s status with respect to entertain-
ment by a clown (yes or no) and another for her pregnancy
status (yes or no). We can use the numbers 1 and 2 to represent
the levels of these variables. We then select:  Analyze →
 Descriptive Statistics → Crosstabs (select a nominal variable for
the row and a nominal variable for the column; we selected
entertainment-by-clown status for the rows and pregnancy sta-
tus for the columns, but it doesn’t matter which we choose)
→ Statistics → Chi-Square and Phi & Cramer’s V (for effect
sizes) → Continue. We can also select “Cells” and then click
“Row” under percentages to give us the percentage of women

who got pregnant in each clown condition. Click “Continue,”
and then click “OK” to run the analysis.

Most of the output, along with a view of some of the data,
can be seen in the accompanying screenshot. In the top box
of the output, we can see the percentages of women who did
or did not become pregnant in each condition. For example,
35.5% of women who were entertained by a clown became
pregnant. We can also see that the chi-square statistic (in the
box titled “Chi-Square Tests” in the row labeled “Pearson
Chi-Square”) is 6.078, the same as the one we calculated by
hand earlier. In the box titled “Symmetric Measures,” we can
see the Cramer’s V statistic of .181, also the same as we cal-
culated earlier. (Any slight differences we see in this table ver-
sus what we calculated earlier are due to rounding decisions.)

SPSS®



500 CHAPTER 17 ■ Chi-Square Tests

How It Works
17.1 CONDUCTING A CHI-SQUARE TEST FOR GOODNESS-OF-FIT
Gary Steinman (2006), an obstetrician and gynecologist, studied whether a woman’s diet
could affect the likelihood that she would have twins. Insulin-like growth factor (IGF),
often found in diets that include animal products, is hypothesized to lead to higher rates
of twin births. Rates of twin births have increased, along with rates of IGF in animal
products, a direct result of growth hormones aimed at increasing the production of prod-
ucts like milk and beef. Steinman wondered whether women who were vegans (those
who eat neither meat nor dairy products) would have lower rates of twin births than
would women who were vegetarians and consumed dairy products or women who ate
meat. Steinman reported that, in the general population, 1.9% of births result in twins
(without the aid of reproductive technologies). In Steinman’s study of 1042 vegans who
gave birth (without reproductive technologies), four sets of twins were born. How can
we use Steinman’s data to conduct the six steps of hypothesis testing for a chi-square test
for goodness-of-fit?

Step 1: Population 1: Vegans who recently gave birth like those whom we observed.
Population 2: Vegans who recently gave birth who are like the general population
of mostly nonvegans.

The comparison distribution is a chi-square distribution. The hypothesis test will
be a chi-square test for goodness-of-fit because we have one nominal variable only.
This study meets three of the four assumptions. (1) The one variable is nominal.
(2) Every participant is in only one cell (a vegan woman is not counted as having
twins and as having one child, or singleton). (3) There are far more than five times
as many participants as cells (there are 1042 participants and only two cells). (4) The
participants were not, however, randomly selected. We learn from the published re-
search paper that participants were recruited with the assistance of “various vegan
societies.” This limits our ability to generalize beyond vegan women like those in
the sample.

Step 2: Null hypothesis: Vegan women give birth to twins at the same rate as the general
population.
Research hypothesis: Vegan women give birth to twins at a different rate than the
general population.

Step 3: The comparison distribution is a chi-square distribution that has 1 degree of
 freedom:

Step 4: The critical chi-square statistic, based on a p level of 0.05 and 1 degree of freedom,
is 3.841, as seen in the curve in Figure 17-1.

Step 5: Observed (among vegan mothers)
Singleton        Twins

1038              4

Expected (based on the 1.9% rate in the general population)

Singleton       Twins

1022.202       19.798

Category         Observed (O)        Expected (E)        O � E          (O � E)2        

Singleton         1038                    1022.202                15.798       249.577          0.244
Twins              4                    19.798             �15.798       249.577          12.606

df�2 2 1� � �1

(O � E )2

E



Step 6: Reject the null hypothesis; it appears that vegan mothers are less likely to have twins
than are mothers in the general population.
The statistics, as reported in a journal article, would read:

v2(1, N � 1042) � 12.85, p � 0.05

17.2 CONDUCTING A CHI-SQUARE TEST FOR INDEPENDENCE
Do people who move far from their hometown have a more exciting life? Since 1972, the
General Social Survey (GSS) has asked approximately 40,000 adults in the United States
numerous questions about their lives. During several years of the GSS, participants were
asked, “In general, do you find life exciting, pretty routine, or dull?” (a variable called LIFE)
and “When you were 16 years old, were you living in the same (city/town/country)?” (a
variable called MOBILE16). How can we use these data to conduct the six steps of hy-
pothesis testing for a chi-square test for independence?

In this case, there are two nominal variables. The independent variable is where a person
lives relative to when he or she was 16 years old (same city, same state but different city,
different state). The dependent variable is how the person finds life (exciting, routine, dull).
Here are the data:

                                    Exciting      Routine      Dull

Same City                             4890              6010              637
Same State/Different City      3368              3488              337
Different State                       4604              4139              434

Step 1: Population 1: People like those in this sample.
Population 2: People from a population in which a person’s characterization of life
as exciting, routine, or dull does not depend on where that person is living relative
to when he or she was 16 years old.

The comparison distribution is a chi-square distribution. The hypothesis test will
be a chi-square test for independence because we have two nominal variables. This
study meets all four assumptions. (1) The two variables are nominal. (2) Every par-
ticipant is in only one cell. (3) There are more than five times as many participants
as there are cells (there are 27,907 participants and 9 cells). (4) The GSS sample uses
a form of random selection.

Step 2: Null hypothesis: The proportion of people who find life to be exciting, routine, or
dull does not depend on where they live relative to when they were 16 years old.
Research hypothesis: The proportion of people finding life exciting, routine, or dull
differs depending on where they live relative to when they were 16 years old.

Step 3: The comparison distribution is a chi-square distribution with 4 degrees of freedom:

Step 4: The critical chi-square statistic, based on a p level of 0.05 and 4 degrees of freedom,
is 9.49.

Step 5:
                                                 OBSERVED (EXPECTED IN PARENTHESES)

                                             Exciting             Routine            Dull

Same City                                 4890                 6010               637               11,537
                                              (5317.264)         (5637.656)        (582.080)
Same State/Different City          3368                 3488                337                 7193
                                              (3315.167)         (3514.923)        (362.911)
Different State                           4604                 4139                434                 9178
                                              (4230.030)         (4484.910)        (463.060)
                                            12,862              13,637               1408           27,907

df k krow column�2 1 1 3 1 3 1 2 2� � � � � � � �( )( ) ( )( ) ( )( ) 44

�2
2

�
�

� � �
( )O E

E

⎛

⎝
⎜

⎞

⎠
⎟∑ 0.244 12.606 12.85
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Category                                          (O � E )2           

Same city; exciting                            182,554.530       34.332
Same city; routine                             138,640.050       24.592
Same city; dull                                      3,016.206         5.182
Same state/different city; exciting           2,791.326         0.842
Same state/different city; routine               724.848         0.206
Same state/different city; dull                    671.380         1.850
Different state; exciting                      139,853.560       33.062
Different state; routine                       119,653.730       26.679
Different state; dull                                  844.484         1.824

Step 6: Reject the null hypothesis. The calculated chi-square value exceeds the critical
value. How exciting a person finds life does appear to vary with where the person
lives relative to when he or she was 16 years old.
We’d present these statistics in a journal article as: v2(4, N � 27,907) � 128.56,
p � 0.05.

17.3 CALCULATING CRAMER’S V
What is the effect size, Cramer’s V, for the chi-square test for independence we conducted
in How It Works 17.2?

According to Cohen’s conventions, this is a small effect size. With this piece of infor-
mation, we’d present the statistics in a journal article as:

v2(4, N � 27,907) � 128.56, p � 0.05, Cramer’s V � 0.05
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Clarifying the Concepts

17.1 Distinguish nominal, ordinal, and scale data.

17.2 What are the three main situations in which we use a
nonparametric test?

17.3 What is the difference between the chi-square test for
goodness-of-fit and the chi-square test for independ-
ence?

17.4 What are the four assumptions for the chi-square tests?

17.5 List two ways in which statisticians use the word in-
dependence or independent with respect to concepts in-
troduced earlier in this book. Then describe how
independence is used by statisticians with respect to chi
square.

17.6 What are the hypotheses when conducting the chi-
square test for goodness-of-fit?

17.7 How are the degrees of freedom for the chi-square hy-
pothesis tests different from those of most other hypoth-
esis tests?

17.8 Why is there just one critical value for a chi-square test,
even when the hypothesis is a two-tailed test?

17.9 What information is presented in a contingency table
in the chi-square test for independence?

17.10 What measure of effect size is used with chi square?

17.11 Define the symbols in the following formula: v2 �

.

17.12 What is the formula used for?

17.13 What information does the measure of relative likeli-
hood provide?

17.14 In order to calculate relative likelihood, what must
be calculated first?

17.15 What is the difference between relative likelihood
and relative risk?

17.16 How are adjusted standardized residuals cal -
culated?

17.17 How are adjusted standardized residuals used as a
post-hoc test for chi-square tests?

Calculating the Statistics

17.18 For each of the following, (i) identify the incorrect
symbol, (ii) state what the correct symbol should be,
and (iii) explain why the initial symbol was incorrect.

2�
R

( )O E

E

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Total

N
Totalcolumn

row( )

Exercises

               Observed   Expected                      
Category       (O)            (E )       O � E    (O � E)2             

      1              48             60

      2              46             30

      3              6             10

(O � E)2

E

a. For the chi-square test for goodness-of-fit:

b. For the chi-square test for independence:

c.

d.

e. Expected frequency for each cell �

17.19 For each of the following, identify the independent
variable(s), dependent variable(s), and the level of meas-
urement (nominal, ordinal, scale).

a. The number of loads of laundry washed per month
was tracked for women and men living in college
dorms.

b. A researcher interested in people’s need to maintain
social image collected data on the number of miles
on someone’s car and his or her rank for “need for
approval” out of the 183 people studied.

c. A professor of social science was interested in
whether involvement in campus life is significantly
impacted by whether a student lives on or off cam-
pus. Thirty-seven students living on campus and 37
students living off campus were asked whether they
were an active member of a club.

17.20 Use this calculation table for the chi-square test for
goodness-of-fit to complete this exercise.

df�2 �

N 1�

df�2 �

k krow column1 1� � �( ) ( )

�2
2

�
�

R
( )M E

E

⎡

⎣
⎢
⎢

⎤

⎦
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a. Calculate degrees of freedom for this chi-square test
for goodness-of-fit.

b. Perform all of the calculations to complete this
table.

c. Compute the chi-square statistic.



a. Calculate degrees of freedom for this chi-square test
for goodness-of-fit.

b. Perform all of the calculations to complete this
table.

c. Compute the chi-square statistic.

17.22 Below are some data to use in a chi-square test for inde-
pendence. Calculate the degrees of freedom for this test.

17.23 Using the data presented in Exercise 17.22, complete
this table of expected frequencies.

17.24 Using the data presented in Exercise 17.22 and the work
you did in Exercise 17.23, calculate the test  statistic.

17.25 Calculate the appropriate measure of effect size for the
data presented in Exercise 17.22 and the statistic calcu-
lated in Exercise 17.24.

17.26 Use the data presented in Exercise 17.22 to calcu late the
relative likelihood of accidents given that it is raining.

17.27 The data below are from a study of lung cancer patients
in Turkey (Yilmaz et al., 2000). Use these data to cal-
culate the relative likelihood of being a smoker given
that a person is female rather than male.

                              Observed
                 Accidents      No Accidents

Rain                19                    26              45

No Rain          20                    71              91

                      39                    97             136

                              Expected
                 Accidents      No Accidents

Rain

No Rain

               Nonsmoker     Smoker

Female           186                13

Male              182              723
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                Observed   Expected                      
Category       (O)           (E )       O � E    (O � E)2             

      1             750           625

      2             650           625

      3             600           625

      4             500           625

(O � E)2

E

17.28 The following table (output from SPSS) repre-
sents the observed frequencies for the data pre-
sented in Exercise 17.22 and the adjusted
standardized residuals for each of the cells. Using
this information and the criterion of 2, indicate
for which of these cells there is a significant dif-
ference between the observed frequencies and
expected frequencies.

                                          Observed
                                 Accident    No Accident

Rain Observed       19                26              45

Adjusted          
2.5            �2.5

Residual

No Rain Observed       20                71              91

Adjusted       
�2.5               2.5

Residual

                    39                97            136

Applying the Concepts

17.29 For each of the following research questions, state
whether a parametric or nonparametric hypothesis test
is more appropriate. Explain your answers.

a. Are women more or less likely than men to be eco-
nomics majors?

b. At a small company with 15 staff and 1 top boss, do
those with a college education tend to make a dif-
ferent amount of money than those without one?

c. At your high school, did athletes or nonathletes tend
to have higher grade point averages?

d. At your high school, did athletes or nonathletes tend
to have higher class ranks?

e. Compare car accidents in which the occupants were
wearing seat belts with accidents in which the oc-
cupants were not wearing seat belts. Do seat belts
seem to make a difference in the numbers of acci-
dents that lead to no injuries, nonfatal injuries, and
fatal injuries?

f. Compare car accidents in which the occupants were
wearing seat belts with accidents in which the oc-
cupants were not wearing seat belts. Were those
wearing seat belts driving at slower speeds, on av-
erage, than those not wearing seat belts?

17.30 Weinberg, Fleisher, and Hashimoto (2007) studied al-
most 50,000 students’ evaluations of their professors in
almost 400 economics courses at The Ohio State Uni-
versity over a 10-year period. For each of their findings,
outlined below, state (i) the independent variable or
variables, and their levels where appropriate, (ii) the de-
pendent variable(s), and (iii) what category of research
design is being used:

17.21 Use this calculation table for the chi-square test for
goodness-of-fit to complete this exercise.



I—scale independent var iable( s )  and sca le
dependent var iable

II—nominal  independent var iable( s )  and
sca le dependent var iable

III—only nominal  var iables

Explain your answer to part (iii).

a. The researchers found that students’ ratings of their
professors were predictive of grades in the class for
which the professor was evaluated.

b. The researchers also found that students’ ratings of
their professors were not predictive of grades for
other, related future classes. (The researchers stated
that these first two findings suggest that student rat-
ings of professors are tied to their current grades but
not to learning—which would affect future grades.)

c. The researchers found that male professors received
statistically significantly higher student ratings, on
average, than did female professors.

d. The researchers reported, however, that average lev-
els of students learning (as assessed by grades in re-
lated future classes) were not statistically significantly
different for those who had male and those who
had female professors.

e. The researchers might have been interested in
whether there were proportionally more female
professors teaching upper-level than lower-level
courses and proportionally more male professors
teaching lower-level than upper-level courses (per-
haps a reason for the lower average ratings of female
professors).

f. The researchers found no statistically significant dif-
ferences in average student evaluations among non-
tenure-track lecturers, graduate student teaching
associates, and tenure-track faculty members.

17.31 A New York Times article on grade inflation reported
several findings related to a tendency for average grades
to rise over the years and a tendency for the top-ranked
institutions to give the highest average grades (Archi-
bold, 1998). For each of the findings outlined below,
state (i) the independent variable or variables, and their
levels where appropriate, (ii) the dependent variable(s),
and (iii) what category of research design is being used:

I—scale independent var iable( s )  and sca le
dependent var iable

II—nominal  independent var iable( s )  and
sca le dependent var iable

III—only nominal  var iables

Explain your answer to part (iii).

a. In 1969, 7% of all grades were As; in 1994, 25% of
all grades were As.

b. The average GPA for the graduating students of
elite schools is 3.2, the average GPA for graduating

students at selective schools (the level below elite
schools) is 3.04, and the average GPA for graduating
students at state colleges is 2.95.

c. At Dartmouth College, an elite university, SAT
scores of incoming students have increased along
with their subsequent college GPAs (perhaps an ex-
planation for grade inflation).

17.32 Here are three ways to assess one’s performance in high
school: (1) GPA at graduation, (2) whether one gradu-
ated with honors (as indicated by graduating with a
GPA of at least 3.5), and (3) class rank at graduation.
For example, Abdul had a 3.98 GPA, graduated with
honors, and was ranked 10th in his class.

a. Which of these variables could be considered to be
a nominal variable? Explain.

b. Which of these variables is most clearly an ordinal
variable? Explain.

c. Which of these variables is a scale variable? Explain.

d. Which of these variables gives us the most infor-
mation about Abdul’s performance?

e. If we were to use one of these variables in an analy-
sis, which variable (as the dependent variable) would
lead to the lowest chance of a Type II error? Ex-
plain why.

17.33 “Do Immigrants Make Us Safer?” asked the title of a
New York Times Magazine article (Press, 2006). The article
reported findings from several U.S.-based studies, includ-
ing several conducted by Harvard sociologist Robert
Sampson in Chicago. For each of the following findings,
draw the table of cells that would comprise the research
design. Include the labels for each row and column.

a. Mexicans were more likely to be married (versus
single) than either blacks or whites.

b. People living in immigrant neighborhoods were
15% less likely than were people living in nonim-
migrant neighborhoods to commit crimes. This
finding was true among both those living in house-
holds headed by a married couple and those living
in households not headed by a married couple.

c. The crime rate was higher among second-
 generation than among first-generation immi-
grants;  moreover, the crime rate was higher among
third-generation than among second-generation
immigrants.

17.34 Across all of India, there are only 933 girls for every
1000 boys (Lloyd, 2006), evidence of a bias that leads
many parents to illegally select for boys or to kill their
infant girls. (Note that this translates into a proportion
of girls of 0.483.) In Punjab, a region of India in which
residents tend to be more educated than in other re-
gions, there are only 798 girls for every 1000 boys. As-
sume that you are a researcher interested in whether sex
selection is more or less prevalent in educated regions
of India and that 1798 children from Punjab constitute
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the entire sample. (Hint: You will use the proportions
from the national database for comparison.)

a. How many variables are there in this study? What
are the levels of any variable you identified?

b. What hypothesis test would be used to analyze these
data? Justify your answer.

c. Conduct the six steps of hypothesis testing for this
example. (Note: Be sure to use the correct propor-
tions for the expected values, not the actual num-
bers for the population.)

d. Report the statistics as you would in a journal
 article.

17.35 Richards (2006) reported data from a study by the
American Prospect on the genders of op-ed writers who
addressed the topic of abortion in the New York Times.
Over a two-year period, the American Prospect counted
124 articles that discussed abortion (from a wide range
of political and ideological perspectives). Of these, just
21 were written by women.

a. How many variables are there in this study? What
are the levels of any variable you identified?

b. What hypothesis test would be used to analyze these
data? Justify your answer.

c. Conduct the six steps of hypothesis testing for this
example.

d. Report the statistics as you would in a journal
 article.

17.36 In a classic prisoner’s dilemma game with money for
prizes, players who cooperate with each other both
earn good prizes. If, however, your opposing player
cooperates but you do not (the term used is defect),
you receive an even bigger payout and your opponent
receives nothing. If you cooperate but your opposing
player defects, he or she receives that bigger payout
and you receive nothing. If you both defect, you each
get a small prize. Because of this, most players of such
games choose to defect, knowing that if they coop-
erate but their partners don’t, they won’t win any-
thing. The strategies of U.S. and Chinese students
were compared. The researchers hypothesized that
those from the market economy (United States)
would cooperate less (i.e., would defect more often)
than would those from the nonmarket economy
(China).

a. How many variables are there in this study? What
are the levels of any variables you identified?

b. What hypothesis test would be used to analyze these
data? Justify your answer.

c. Conduct the six steps of hypothesis testing for this
example, using the above data.

d. Calculate the appropriate measure of effect size.
 According to Cohen’s conventions, what size effect
is this?

e. Report the statistics as you would in a journal
 article.

17.37 Grimberg, Kutikov, and Cucchiara (2005) wondered
whether gender biases were evident in referrals of chil-
dren for poor growth. They believed that boys were
more likely to be referred even when there was no prob-
lem—bad for boys because families of short boys might
falsely view their height as a medical problem. They also
believed that girls were less likely to be referred even
when there was a problem—bad for girls because real
problems might not be diagnosed and treated. They
studied all new patients at The Children’s Hospital of
Philadelphia Diagnostic and Research Growth Center
who were referred for potential problems related to
short stature. Of the 182 boys who were referred, 27 had
an underlying medical problem, 86 did not but were
below norms for their age, and 69 were of normal height
according to growth charts. Of the 96 girls who were re-
ferred, 39 had an underlying medical problem, 38 did
not but were below norms for their age, and 19 were of
normal height according to growth charts.

a. How many variables are there in this study? What
are the levels of any variable you identified?

b. What hypothesis test would be used to analyze these
data? Justify your answer.

c. Conduct the six steps of hypothesis testing for this
example.

d. Calculate the appropriate measure of effect size.
 According to Cohen’s conventions, what size effect
is this?

e. Report the statistics as you would in a journal
 article.

17.38 Refer to the prisoner’s dilemma example in Exercise
17.36.

a. Draw a table that includes the conditional propor-
tions for participants from China and from the
United States.

b. Create a graph with bars showing the proportions
for all four conditions.

c. Create a graph with two bars showing just the pro-
portions for the defections for each country.

                        Defect     Cooperate

China                   31             36

United States        41             14
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17.39 Refer to the study of poor growth in children in Ex-
ercise 17.37.

a. Draw a table that includes the conditional propor-
tions for boys and for girls.

b. Create a graph with bars showing the proportions
for all six conditions.

17.40 In Check Your Learning 17-8, we introduced the ex-
ample of the Chicago Police Department’s study of
lineups. Below is a printout from SPSS software that
depicts the data for the six cells.

a. For simultaneous lineups, what is the observed fre-
quency for the identification of suspects?

b. For sequential lineups, what is the expected fre-
quency for the identification of a person other than
the suspect?

c. For simultaneous lineups, what is the adjusted stan-
dardized residual for cases in which there was no
identification? What does this number indicate?

d. If you were to use an adjusted standardized residual
criterion of 2 (regardless of the sign), for which cells
would you conclude that the difference between
observed frequency and expected frequency is
greater than you would expect if the two variables
were independent?

e. Repeat part (d) for an adjusted standardized residual
criterion of 3 (regardless of the sign).
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d. Explain what we learn from this relative risk.

e. Explain how the calculations in parts (a) and (c) are
providing us with the same information in two dif-
ferent ways.

17.42 Refer to the study of poor growth in children from Ex-
ercise 17.37. Consider only those boys and girls who
were below norms for their age groups. That is, ignore
those who turned out to have normal heights according
to growth charts.

a. Among only children who are below height norms,
calculate the relative risk of having an underly -
ing medical condition if one is a boy as opposed to
a girl. Show your calculations.

b. Explain what we learn from this relative risk.

c. Now calculate the relative risk of having an under-
lying medical condition if one is a girl. Show your
calculations.

d. Explain what we learn from this relative risk.

e. Explain how the calculations in parts (a) and (c)
provide us with the same information in two dif-
ferent ways.

17.43 In How It Works 17.2, we walked through a chi-square
test for independence using two items from the General
Social Survey (GSS)—LIFE and MOBILE16. Use these
data to answer the following questions.

17.41 Refer again to the prisoner’s dilemma example from
Exercise 17.36.

a. Calculate the relative risk (or relative likelihood) of
defecting given that one is from China versus the
United States. Show your calculations.

b. Explain what we learn from this relative risk.

c. Now calculate the relative risk of defecting given
that one is from the United States versus China.
Show your calculations.

c. Calculate the relative risk (or relative likelihood) of
finding life exciting if one lives in a different state
compared to if one lives in the same city.

17.44 Refer to the study of poor growth in children from Ex-
ercise 17.37. Below is a printout from SPSS software
that depicts the data for the six cells. For each cell, there
is an observed frequency (count), expected frequency
(expected count), and adjusted standardized residual (ad-
justed residual).

a. Construct a table
that shows only the
appropriate condi-
tional proportions
for this example.
For example, the
percentage of peo-
ple who find life
exciting, given that
they live in the
same city, is 42.4.
The proportion,
therefore, is 0.424.

b. Construct a graph
that displays these
conditional propor-
tions.



a. For boys, what is the observed frequency for having
an underlying medical condition?

b. For boys, what is the expected frequency of those
having an underlying medical condition?

c. For boys, what is the adjusted standardized residual
for those with an underlying medical condition?
What does this number indicate?
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d. If you used an adjusted
standardized residual
criterion of 2 (regard-
less of the sign), for
which cells would you
conclude that the dif-
ference between ob-
served frequency and
expected frequency
is greater than you
would expect if the
two variables were in-
dependent?

e. Repeat part (d) for an
adjusted standardized
residual criterion of 3
(regardless of the sign).

Are the results different from those in part (d)? If
yes, explain how they’re different.
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■ You should be able to differentiate between a
parametric and nonparametric hypothesis test
(Chapter 7).

■ You should know the six steps of hypothesis
testing (Chapter 7).

■ You should understand the concept of
correlation (Chapter 15).

■ You should know when to use a paired-
samples t test (Chapter 10), an independent-
samples t test (Chapter 11), and a one-way
between-groups ANOVA (Chapter 12).
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Ordinal Data and Correlation
When the Data Are Ordinal
Spearman Rank-Order 

Correlation Coefficient

Nonparametric Hypothesis Tests
The Wilcoxon Signed-Rank Test
Mann–Whitney U Test
Kruskal–Wallis H Test

Next Steps: Bootstrapping
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Would you be happy with a 10% raise if you found out that a coworker received a
15% raise? If you answered no, then earning more money than somebody else (an or-
dinal observation) is more important to your happiness than the actual amount of
money you earn (a scale observation). In studying a representative sample of over 7000
U.S. citizens, a researcher found three statistical ideas that were important in gauging
people’s happiness when they were making income comparisons—(1) the sample, (2)
the range, and (3) the shape of the distribution (Hagerty, 2000).

1. When it comes to income and happiness, people are concerned about the sam-
ple (who is in the comparison group). The sample is important because people
find it more meaningful to compare themselves to other people in their own
community than to people outside their community.

2. People also think about the range when they consider income and happiness,
particularly the top income and the bottom income. This is because we can
make two kinds of comparisons. Upward social comparisons can make us feel
like failures compared to very wealthy people. Downward social comparisons
can make us feel like successes compared to very poor people.

3. The shape of the distribution also matters. If you are “average” in a normal
distribution, then there are just as many people above you as below you. But
if you are “average” in a positively skewed distribution—one in which a few
very wealthy people have pulled the average (as measured by the mean) much
farther to the right—then there are many more people below you than above
you. You’re still “average” in one sense, but a positively skewed distribution
places you in a more exclusive club.

The irrational ways in which we think about happiness and money are particularly
important for this chapter (Airely, 2010). They suggest that irrational human thinking
does not always match up with the rational assumptions we make about statistical tests.
In this chapter, we’ll cover nonparametric tests—tests that use data that do not meet
the assumptions for a parametric test.

Ordinal Data and Correlation
The statistical tests we will discuss here allow researchers to draw conclusions from
data that do not meet the assumptions for a parametric test, such as when we have
rank-ordered data. In this chapter, we recap the reasons we need nonparametric tests
and learn how to convert scale data to ordinal data. Then we examine four tests that
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Income, Happiness, and the
Distribution Are you happy about
your income? Research suggests
that the comparison group matters.
You’re happier when you’re making
more than others with similar jobs
and less happy when you’re making
less. The distribution of income
matters.



can be used with ordinal data: nonparametric versions of the Pearson correlation co-
efficient (the Spearman rank-order correlation coefficient), the paired-samples t test
(the Wilcoxon signed-rank test), the independent-samples t test (the Mann–Whitney
U test), and the one-way between-groups ANOVA (the Kruskal–Wallis H test).

When the Data Are Ordinal
The University of Chicago News Office published a press release on March 1, 2006,
titled “Americans and Venezuelans Lead the World in National Pride.” Researchers
from the University of Chicago’s National Opinion Research Center (NORC) sur-
veyed citizens of 33 countries (Smith & Kim, 2006). Then they developed two different
kinds of national pride scores: pride in specific accomplishments of their nations (which
they called domain-specific national pride) and a more general national pride. The
accomplishment-related national pride scale asked respondents to rate their level of
pride in their countries’ accomplishments in specific areas such as international political
influence, science and technology, and sports. The general national
pride scale included questions related to a country’s general supe-
riority over other countries. Each country’s citizens were asked to
rate their degree of agreement or disagreement with items such
as “People should support their country even if the country is in
the wrong.”

Based on citizens’ responses to these items, the researchers de-
veloped two sets of national pride scores—accomplishment-related
and general—for each country. They then converted the scores to
ranks and reported the rankings of the 33 countries in the study.
When results on the two scales were merged, Venezuela and the
United States were tied for first place. These findings suggest many
hypotheses about what creates and inflates national pride. The au-
thors examined several of their own hypotheses. They noted that
countries that were settled as colonies tend to rank higher than
their “mother country,” that ex-socialist countries tend to rank
lower than other countries, and that countries in Asia tend to rank
lower than those from other continents. The researchers also reported that increases
in national pride occurred among countries that had experienced recent terrorist at-
tacks against their citizens.

We wondered about other possible precursors of high levels of national pride. What
traits, like competitiveness, might be associated with national pride?
Because the researchers provided ordinal data, the only way we can
explore these interesting hypotheses is by using nonparametric sta-
tistics. Parametric statistics are appropriate for scale data, but they
are not appropriate for ordinal data. As we noted in Chapter 17,
the very nature of an ordinal variable means that it will not meet
the assumptions of a scale dependent variable and a normally dis-
tributed population. As we can see in Figure 18-1, the shape of a
distribution of ordinal variables is rectangular because every par-
ticipant has a different rank.

Fortunately, the logic of many nonparametric statistics will be fa-
miliar to students. This is because many of the nonparametric statis-
tical tests are specific alternatives to parametric statistical tests. These
nonparametric tests may be used whenever assumptions for a para-
metric test are not met. In this chapter, we’ll consider four such tests
(see Table 18-1): (1) a nonparametric equivalent for the Pearson
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National Pride University of Chicago researchers ranked 33
countries in terms of national pride. Venezuela, along with the
United States, came out on top. Ordinal data such as these are
analyzed using nonparametric statistics.

1

2

0
10 2 3 4 5 6 7 8 9 10

3

FIGURE 18-1
A Histogram of Ordinal Data

When ordinal data are graphed in a histogram, the resulting distribution
is rectangular. These are data for ranks 1–10. For each rank, there is
one individual. Ordinal data are never normally distributed.
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correlation coefficient, the Spearman rank-order correlation coefficient; (2) a nonparametric
equivalent for the paired-samples t test, the Wilcoxon signed-rank test; (3) a nonparametric
equivalent for the independent-samples t test, the Mann–Whitney U test; (4) a nonpara-
metric equivalent for the one-way between-groups ANOVA, the Kruskal–Wallis H test.
There is almost always an established nonparametric alterative to a parametric test. When
researchers can’t meet the assumptions of the parametric test they would like to conduct,
they can choose the nonparametric test that is appropriate for their data.

TABLE 18-1. Parametric and Nonparametric Partners

Most parametric hypothesis tests have at least one equivalent nonparametric alternative. Here, all the para-
metric tests call for scale dependent variables, and their nonparametric counterparts all call for ordinal de-
pendent variables.

Design Parametric Test Nonparametric Test

Association between two variables Pearson correlation coefficient Spearman rank-order 
correlation coefficient

Two groups; within-groups design Paired-samples t test Wilcoxon signed-rank test

Two groups; between-groups design Independent-samples t test Mann–Whitney U test

More than two groups; between- One-way between-groups Kruskal–Wallis H test
groups design ANOVA

FIGURE 18-2
Skewed Data

The sample data for the variable, accomplishment-related
national pride, are skewed. This indicates the possibility that

the underlying population distribution is skewed. It is likely
that the researchers chose to report their data as ranks for

this reason (Smith & Kim, 2006).

Let’s explore an example with ordinal data. Nonparametric tests for ordinal data are typ-
ically used in one of two situations. First and most obviously, we use nonparametric tests
for ordinal data when the sample data are ordinal. Second, we use nonparametric tests

when the dependent variable suggests that the
underlying population distribution is greatly
skewed, a situation that often develops when we
have a small sample size. This second reason is the
likely reason that the national pride researchers
converted their data to ranks (Smith & Kim,
2006). Figure 18-2 shows a histogram of their full
set of data for the variable accomplishment-
related national pride—the variable that we will
use for many examples in this chapter. The data
appear to be positively skewed, most likely be-
cause two countries, Venezuela and the United
States, appear to be outliers. Because of this, we
have to transform the data from scale to ordinal.

Transforming scale data to ordinal data is not
uncommon. For example, when we are calculat-

EXAMPLE 18.1
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Accomplishment-related national pride

Frequency

40
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ing a Spearman correlation coefficient, both of the variables have to be ordinal. If one
or both of the variables were scale, then we’d have to convert the scale scores to ranks.
This conversion can help in situations like that described above: when the data from
a small sample are skewed. Look what happens to the following five data points for
income when we change the data from scale to ordinal. In the first row, the one that
includes the scale data, there is a severe outlier ($550,000) and the sample data suggest
a skewed distribution. In the second row, the severe outlier merely becomes the first
ranking. The ranked data do not have an outlier.

Scale: $24,000 $27,000 $35,000 $46,000 $550,000

Ordinal: 5 4 3 2 1 ■

In the next section, we’ll use this technique to convert scale data to ordinal data so
that we can calculate the Spearman rank-order correlation coefficient.

Spearman Rank-Order Correlation Coefficient
Many daily observations represent rank-ordered data. For example,
a person may prefer Chunky Monkey ice cream to Chubby Hubby
ice cream but would not be able to specify that he liked it precisely
twice as much. When we collect ranked data, we analyze it using
nonparametric statistics. The Spearman rank-order correlation coeffi-
cient is a nonparametric statistic that quantifies the association between two
ordinal variables.

To see how the Spearman rank-order correlation coefficient works,
let’s look at a study that uses two ordinal variables, one taken from
the University of Chicago study on national pride (Smith & Kim, 2006). As so often
happens with descriptive data such as national rankings, we started wondering how
the descriptive data might be related to other variables. Specifically, we wondered
whether accomplishment-related national pride is related to the underlying trait of
competitiveness. So we randomly selected 10 countries from this list and compiled
their scores for accomplishment-related national pride. We also located rankings
of competitiveness compiled by an international business school (IMD Interna-
tional, 2001).

A correlation between these variables, if found, would be evidence that coun tries’
levels of accomplishment-related national pride are tied to levels of com petitive -
ness. This research question involves two variables. The competitiveness variable
we borrowed from the business school rankings was already ordinal.  However, the
accomplishment-related national pride variable was initially a scale variable. When
even one of the variables is ordinal, we use the Spearman rank-order correlation co-
efficient (often called just the Spearman correlation coefficient, or Spearman’s rho).
Its symbol is almost like the one for the Pearson correlation coefficient, but it has a
subscript S to indicate that it is Spearman’s correlation coefficient: rS.

To convert scale data to ordinal data, we simply organize the data from highest to
lowest (or lowest to highest if that makes more sense) and then rank them. Table 18-
2 shows the conversion of accomplishment-related national pride from scale data to
ordinal data. Sometimes, as seen for Austria and Canada, we have a tie. Both of these
countries had an accomplishment-related national pride score of 2.40. When we rank
the data, these countries take the third and fourth positions, but they must have the same
rank because their scores are the same. So we take the average of the two ranks they

�  MASTERING THE CONCEPT

18-1: We calculate a Spearman rank-order

correlation coefficient to quantify the

association between two ordinal variables. It

is the nonparametric equivalent of the

Pearson correlation coefficient.

■ The Spearman rank-order
correlation coefficient is a
nonparametric statistic that
quantifies the association
between two ordinal variables.
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would hold if the scores were different: (3 � 4)/2 � 3.5. Both of these countries
receive the rank of 3.5. We handle tied ranks in this way no matter what nonparametric
test for ordinal data we’re using—not just for the Spearman  correlation.

TABLE 18-2. Converting Pride Scores to Ranks

When we convert scale data to ordinal data, we simply arrange the data from highest to lowest (or lowest to
highest if that makes more sense) and then rank them. These are the original data for accomplishment-related
national pride. In cases of ties, we average the two ranks that these participants—countries, in this case—
would hold.

                     Country                                        Pride Score                                     Pride Rank

                 United States                                              4.0                                                       1

                 South Africa                                               2.7                                                       2

                 Austria                                                       2.4                                                       3.5

                 Canada                                                      2.4                                                       3.5

                 Chile                                                          2.3                                                       5

                 Japan                                                        1.8                                                       6

                 Hungary                                                     1.6                                                       7

                 France                                                       1.5                                                       8

                 Norway                                                      1.3                                                       9

                 Slovenia                                                     1.1                                                     10

Now that we have the ranks, we can compute our Spearman correlation coefficient.
We first need to include both sets of ranks in the same table, as in the second and third
columns in Table 18-3. We then calculate the difference (D) between each pair of ranks,
as in the fourth column. The differences always add up to 0, so we must square the

EXAMPLE 18.2

TABLE 18-3. Calculating a Spearman Correlation Coefficient

The first step in calculating a Spearman correlation coefficient is creating a table that includes the ranks for all
participants—countries, in this case—on both variables of interest (accomplishment-related national pride and
competitiveness). We then calculate differences for each participant (i.e., country) and square each  difference.

             Squared
                                          Pride                Competitiveness                Difference                Difference
           Country                   Rank                         Rank                               (D )                           (D2)

      United States                   1                                   1                                     0                              0

      South Africa                     2                                 10                                 �8                            64

      Austria                            3.5                                2                                     1.5                           2.25

      Canada                           3.5                                3                                     0.5                           0.25

      Chile                               5                                   5                                     0                              0

      Japan                              6                                   7                                 �1                              1

      Hungary                          7                                   8                                 �1                              1

      France                             8                                   6                                     2                              4

      Norway                            9                                   4                                     5                            25

      Slovenia                        10                                   9                                     1                              1



differences, as in the last column. As we have frequently done with squared differences
in the past, we sum them—another variation on the concept of a sum of squares. The
sum of these squared differences is:

RD2 � (0 � 64 � 2.25 � 0.25 � 0 � 1 � 1 � 4 � 25 � 1) � 98.5

The formula for calculating the Spearman correlation coefficient includes the sum
of the squared differences that we just calculated, 98.5. The formula is:

In addition to the sum of squared differences, the only other information we need
is the sample size, N, which is 10 in this example. (The number 6 is a constant; it is
always included in the calculation of the Spearman correlation coefficient.) The Spear-
man correlation coefficient, therefore, is:

The Spearman correlation coefficient is 0.40. ■

The interpretation of the Spearman correlation coefficient is identical to that for
the Pearson correlation coefficient. The coefficient can range from �1, a perfect neg-
ative correlation, to 1, a perfect positive correlation. A correlation coefficient of 0 in-
dicates no relation between the two variables. As with the Pearson correlation
coefficient, it is not the sign of the Spearman correlation coefficient that indicates the
strength of a relation. So, for example, a coefficient of �0.66 indicates a stronger as-
sociation than does a coefficient of 0.23. Finally, as with the Pearson correlation co-
efficient, we can implement the six steps of hypothesis testing to determine whether
the Spearman correlation coefficient is statistically significantly different from 0. If we
do, we can find the critical values in the chi-square table in Appendix B.

The easiest way to get a sense of how the Spearman correlation coefficient works
may surprise you: just eyeball the data. Let’s take a closer look at the individual data
points in Table 18-3.

The country ranked number one in competitiveness (the United States) is also
ranked number one in accomplishment-related national pride. This sounds like the
start of a positive correlation because the nation highest on one variable is also highest
on the other variable. Now look at the lowest-ranked (10th) nation in national pride,
Slovenia. This country is ranked next to lowest (9th) in competitiveness. This looks
like more evidence for a positive correlation because the nation low on one variable
is also low on the other variable. After these two initial observations, the two variables
of competitiveness and accomplishment-related national pride seem to be moving up
and down together: a positive correlation.

But wait! The country ranked 10th in competitiveness (South Africa) is ranked 2nd
in accomplishment-related national pride. This sounds like evidence for a negative cor-
relation because the nation low on one variable ranks high on the other variable. As
we continue to eyeball the data, we notice that the pattern is not quite as clear as we
might hope, which is precisely why we need a mathematical formula—to clarify the
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�                                         MASTERING THE FORMULA

18-1: The formula for the Spear-
man correlation coefficient is: rS �

. The numerator in-

cludes a constant, 6, as well as the
sum of the squared differences be-
tween ranks for each participant.
The denominator is calculated
by multiplying the sample size, N,
by the square of the sample size
minus 1.
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relation between the two variables. In this case (as we already know), the Spearman
rank-order correlation is positive (0.40), in spite of the individual exceptions to the
rule (South Africa and Norway).

As with the Pearson correlation coefficient, the Spearman correlation coefficient
does not tell us about causation. It is possible that there is a causal relation in one of
two directions. The relation between competitiveness (variable A) and accomplishment-
related national pride (variable B) is 0.40, a fairly strong positive correlation. It is possible
that competitiveness (variable A) causes a country to feel prouder (variable B) of its
accomplishments. On the other hand, it is also possible that accomplishment-related
national pride (variable B) causes competitiveness (variable A). Finally, it is also possible
that a third variable, C, causes both of the other two variables (A and B). For example,
a high gross domestic product (variable C) might cause both a sense of competitiveness
with other economic powerhouses (variable A) and a feeling of national pride at this
economic accomplishment (variable B). A strong correlation indicates only a strong
association; we can draw no conclusions about causation.
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CHECK YOUR LEARNING
Clarifying the Concepts > Nonparametric statistics are used when all variables are nominal (see Chapter 17), when

the dependent variable is ordinal, and when the sample suggests that the underlying pop-
ulation distribution is skewed and the sample size is small.

> Nonparametric tests for ordinal data are used when the data are already ordinal or when
it is clear that the assumptions are severely violated. In the latter case, the scale data must
be converted to ordinal data.

> When we want to calculate a correlation between two ordinal variables, we calculate a
Spearman rank-order correlation coefficient, which is interpreted in the same way as the
Pearson correlation coefficient.

> As with the Pearson correlation coefficient, the Spearman correlation coefficient does not
tell us about causation. It simply quantifies the magnitude and direction of association be-
tween two ordinal variables.

Clarifying the Concepts 18-1 Describe a common situation in which we use nonparametric tests other than chi-
square tests.

Calculating the Statistics 18-2 Convert the following scale data to ordinal or ranked data, starting with a rank of 1 for
the smallest data point.

18-3 Compute the Spearman correlation coefficient for the data listed in Check Your
Learning 18-2.

Observation  Variable 1  Variable 2

        1                     1.30             54.39

        2                     1.80             50.11

        3                     1.20             53.39

        4                     1.06             44.89

        5                     1.80             48.50



Nonparametric Hypothesis Tests
We sometimes want to compare groups with respect to a dependent variable that does
not meet the criteria for a parametric test. Fortunately, there are several nonparametric
hypothesis tests that can be used to answer the kinds of important research questions—
often based on nonnormal data—such as those raised about income and happiness
(Hagerty, 2000). In this section, we’ll learn how to conduct three of these hypothesis
tests: the Wilcoxon signed-rank test, which is the nonparametric equivalent of the
paired-samples t test; the Mann–Whitney U test, which is the nonparametric equivalent
of the independent-samples t test; and the Kruskal–Wallis H test, which is the non-
parametric equivalent for the one-way between-groups ANOVA. We will use these
new statistics to test more hypotheses about the ranked data on national pride.

The Wilcoxon Signed-Rank Test
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Applying the Concepts 18-4 Here are IQ scores for ten people: 88, 90, 91, 99, 103, 103, 104, 112, 114, and 139.

a. Why might it be better to use a nonparametric test than a parametric test in
this case?

b. Convert the scores for IQ (a scale variable) to ranks (an ordinal variable).

c. What happens to the outlier when the scores are converted from a scale measure to
an ordinal measure?

Solutiions to these Check Your
Learning questions can be found in
Appendix D.

The national pride researchers provided data for two time periods, 1995–1996 and
2003–2004 (Smith & Kim, 2006). We examined the data from the six countries for
which English is a primary language: the United States, Australia, Ireland, New Zealand,
Canada, and Great Britain. We wondered whether the scores on accomplishment-
related national pride were different in these two time periods. The scores for each
time period are listed in Table 18-4, with the differences between the two time periods
for each country. The differences are calculated by subtracting the first score from the
second. So, for the United States, there was an increase of 4.00 � 3.11 � 0.89. For
Ireland, there was a decrease of 2.90 � 3.36 � �0.46.

The independent variable for this analysis is time period, with two levels: 1995–
1996 and 2003–2004. The dependent variable is accomplishment-related national pride.

EXAMPLE 18.3

TABLE 18-4. Accomplishment-Related National Pride Scores

Smith and Kim (2006) provided scores on accomplishment-related national pride for two periods, 1995–1996
and 2003–2004. Here are the data for the countries for which English is a primary language. For each country,
there are scores for each time period, as well as a difference score.

Country 1995–1996 2003–2004 Difference

United States 3.11 4.00 0.89

Australia 2.10 2.90 0.80

Ireland 3.36 2.90 �0.46

New Zealand 2.62 2.60 �0.02

Canada 2.56 2.40 �0.16

Great Britain 2.09 2.20 0.11



This is a within-groups design because every participant, or country, had a score for
each level of the independent variable. If we used the scale scores on accomplishment-
related national pride, we would use a paired-samples t test. Because these data are
better analyzed as ordinal data than as scale data, we will use a nonparametric equivalent
for the paired-samples t test, the Wilcoxon signed-rank test for matched pairs. The
Wilcoxon signed-rank test for matched pairs is a nonparametric hypothesis test used when
there are two groups, a within-groups design, and an ordinal dependent variable. The test statistic
for this test is symbolized by T. Be sure to capitalize the T so that it is not mistaken
for the test statistic in t tests.

For nonparametric tests, the six steps of hypothesis testing are similar to those for
parametric tests. The good news is that these six steps for nonparametric hypothesis
tests are usually easier to compute, and some of the steps, such as the one for assump-
tions, are shorter. We will outline the six steps for hypothesis testing with the Wilcoxon
signed-rank test for matched pairs using the example about accomplishment-related
national pride rankings.

There are three assumptions. (1) The differ-
ences between pairs must be able to be

ranked. (2) We should use random selection, or our ability to generalize will be limited.
(3) The difference scores should come from a symmetric population distribution. This
third assumption, combined with the fact that the paired-samples t test is robust with
respect to violations of the assumption that the population distribution is normal, means
that the t test is often the preferred choice. Only when the assumption of a normal
population distribution is seriously questioned should researchers use the Wilcoxon
signed-rank test for matched pairs.
Summary: We convert the data from scale to ordinal. The researchers did not indicate
whether they used random selection to choose the countries in the sample, so we must
be cautious when generalizing from these results. It is difficult to know from a small
sample whether the difference scores come from a symmetric population  distribution.

We state the null and research hypotheses
only in words, not in symbols.

Summary: Null hypothesis: English-speaking countries in 1995–1996 did not differ
in accomplishment-related national pride from English-speaking countries in 2003–
2004. Research hypothesis: English-speaking countries in 1995–1996 differed in
accomplishment-related national pride from English-speaking countries in 2003–2004.

The Wilcoxon signed-rank test for matched
pairs compares the T statistic to the T dis-
tribution. The main reason we determine

the characteristics of the comparison distribution is to move on to later steps. In step
4, we determine a cutoff, or critical value. To do so, we need to (1) decide on the cutoff
level (usually 0.05); (2) clarify whether we’re using a one-tailed or a two-tailed test
(usually two-tailed); and (3) determine the sample size. The sample size for this test is
a bit different from the sample size for other tests; it is the number of difference scores
that are not 0. For this example, none of the six observed difference scores is zero, so
the sample size will be 6.
Summary: We use a p level of 0.05 and a two-tailed test. The sample size is 6.

STEP 1: Identify the assumptions.

STEP 2: State the null and research
hypotheses.

STEP 3: Determine the characteristics
of the comparison distribution.
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■ The Wilcoxon signed-rank
test for matched pairs is a
nonparametric hypothesis test
used when there are two
groups, a within-groups
design, and an ordinal
dependent variable.



We use Table B.9 from Appendix B to de-
termine the cutoff, or critical value, for the
Wilcoxon signed-rank test for matched

pairs. In the table, we find the sample size the left and the appropriate number of tails
and p level across the top. There is an important difference between this critical value
and those we considered with parametric tests. We can reject the null hypothesis only
if our test statistic is equal to or smaller than the critical value.
Summary: The cutoff for a Wilcoxon signed-rank test for matched pairs with N � 6
for a p level of 0.05 and a two-tailed test is 0. This critical value suggests that the sample
size is too small to have sufficient statistical power. We must be wary of the validity of
our decision in this case.

We start the calculations by organizing the
difference scores from highest to lowest in

terms of absolute value, as seen in Table 18-5. Because we are organizing by absolute
value, �0.46 is higher than 0.11, for example. We then rank the absolute values of the
differences, as seen in the second column of numbers in Table 18-5. We separate the
ranks into two columns, the fourth and fifth columns in the table. The fourth column
includes only the ranks associated with positive differences, and the fifth column in-
cludes only the ranks associated with negative differences. (Note that we omit any dif-
ference scores of zero from the ranking and any further calculations.)

Table 18-5 also serves as a graph. We can determine by the pattern of the ranks in
the last two columns whether there seems to be a difference. The pattern for these data
suggests that there has been more of an increase than a decrease in  accomplishment-
related national pride among English-speaking countries. We can draw no conclusions,
however, until we have compared the test statistic to the critical value.

The final step in calculating the test statistic is to sum the ranks for the positive
scores and, separately, the ranks for the negative scores.

RR� � (1 � 2 � 5) � 8

RR–� (3 � 4 � 6) � 13

STEP 4: Determine the critical values,
or cutoffs.

STEP 5: Calculate the test statistic.
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TABLE 18-5. Organizing Data for a Wilcoxon Signed-Rank Test 
for Matched Pairs 

To conduct a Wilcoxon signed-rank test for matched pairs, we first organize our data from highest to lowest
in terms of absolute value. We rank the absolute values and then create two separate columns—one for ranks
associated with positive scores and one for ranks associated with negative scores.

Ranks for Ranks for
Positive Negative

Country Difference Ranks Differences Differences

United States 0.89 1 1

Australia 0.80 2 2

Ireland �0.46 3 3

Canada �0.16 4 4

Great Britain 0.11 5 5

New Zealand �0.02 6 6
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The work is done. The smaller of these is the test statistic, T. The formula is:

T � RRsmaller

In this case, T � RR� � 8.
Summary: T � RRsmaller � 8 (Note: Show all calculations in your summary.)

The test statistic, 8, is not smaller than the
critical value, 0, so we fail to reject the null

hypothesis. We expected this from the very small critical value. We likely did not have
sufficient statistical power to detect any real differences that might exist. We cannot
conclude that the two groups are different with respect to accomplishment-related na-
tional pride rankings.

After completing the hypothesis test, we report the primary statistical information
in a format similar to that used for parametric tests. In the write-up, we’ll list the totals
for positive ranks, 8, and negative ranks, 13. There are no degrees of freedom, so the
test statistic is reported like this:

                                                T � 8, p � 0.05                                                 

(Note that if we conduct the Wilcoxon signed-rank test using software, we report the
actual p value associated with the text statistic.) ■

Mann–Whitney U Test
As mentioned earlier, most parametric hypothesis tests have non-
parametric equiv alents. In this section, we learn how to conduct
one of the most common of these tests—the Mann–Whitney U
test, the nonparametric equivalent of the independent-samples t
test. The Mann–Whitney U test is a nonparametric hypothesis test
used when there are two groups, a between-groups design, and an ordinal
dependent variable. The test statistic is symbolized as U. Let’s use
this new sta tistic to test more hypotheses about the ranked data
on national pride.

STEP 6: Make a decision.

                                        �MASTERING THE FORMULA

18-2: The formula for the Wil -
coxon signed-rank test for matched
pairs is: T � RRsmaller. We sum the
ranks for each group and then take
the smaller sum as the T statistic.

�  MASTERING THE CONCEPT

18-2: We conduct a Mann–Whitney U test to

compare two independent groups with respect

to an ordinal dependent variable. It is the

nonparametric equivalent of the independent-

samples t test.

The researchers observed that countries with recent communist pasts tended to have
lower ranks on national pride (Smith & Kim, 2006). Let’s choose 10 European coun-
tries, 5 of which were communist during part of the twentieth century. The independ-
ent variable is type of country, with two levels: formerly communist and not formerly
communist. The dependent variable is rank on accomplishment-related national pride.
As in previous situations, we may start with ordinal data, or we may convert scale data
to ordinal data because we were far from meeting the assumptions of a parametric test.
Table 18-6 shows the scores for the 10 countries.

As noted earlier, nonparametric tests use the same six steps of hypothesis testing as
parametric tests but are usually easier to calculate.

There are three assumptions. (1) The data
must be ordinal. (2) We should use random

selection; otherwise, our ability to generalize will be limited. (3) Ideally, no ranks are
tied. The Mann–Whitney U test is robust with respect to violations of the third as-
sumption; if there are only a few ties, then it is usually safe to proceed.
Summary: (1) We need to convert the data from scale to ordinal. (2) The researchers
did not indicate whether they used random selection to choose the European countries

STEP 1: Identify the assumptions.

EXAMPLE 18.4
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in the sample, so we must be cautious when generalizing from these results. (3) There
are some ties, but we will assume that there are not so many as to render the results
of the test invalid.

We state the null and research hypotheses
only in words, not in symbols.

Summary: Null hypothesis: European countries with recent communist histories and
those without recent communist histories do not tend to differ in accomplishment-
related national pride. Research hypothesis: European countries with recent communist
histories and those without recent communist histories tend to differ in  accomplishment-
related national pride.

The Mann–Whitney U test compares the
two distributions—those represented by the
two samples. There is no comparison distri-

bution in the sense of a parametric test. To complete step 4 and find a cutoff, or critical
value, we need two pieces of information—the sample size for the first group and the
sample size for the second group.
Summary: There are five countries in the communist group and five countries in the
noncommunist group.

There are two Mann–Whitney U tables. We
use Table B.8A (for a one-tailed test) or
Table B.8B (for a two-tailed test) from Ap-

pendix B to determine the cutoff, or critical value, for the Mann–Whitney U test. In
the tables, we find the sample size for the first group across the top row and the sample
size for the second group down the left-hand column. The table includes only critical
values for a hypothesis test with a p level of 0.05. There are two differences between

STEP 2: State the null and research
hypotheses.

STEP 3: Determine the characteristics
of the comparison distribution.

STEP 4: Determine the critical values,
or cutoffs.

TABLE 18-6. Comparing Two Groups

Here are the data for two samples: European countries that were recently communist and European countries
that were not recently communist. The data in this table are scale; because we do not meet the assumptions
for a parametric test, we have to convert the data from scale to ordinal as one step of the calculations.

                                   Country                                                                   Pride Score

Noncommunist

                              Ireland                                                                                     2.9

                              Austria                                                                                     2.4

                              Spain                                                                                       1.6

                              Portugal                                                                                   1.6

                              Sweden                                                                                   1.2

Communist

                              Hungary                                                                                   1.6

                              Czech Republic                                                                        1.3

                              Slovenia                                                                                   1.1

                              Slovakia                                                                                   1.1

                              Poland                                                                                     0.9

■ The Mann–Whitney U test is
a nonparametric hypothesis
test used when there are two
groups, a between-groups
design, and an ordinal
dependent variable.
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this critical value and those we considered with parametric tests. First, we calculate two
test statistics, but we only compare the smaller one with the critical value. Second, we
want our test statistic to be equal to or smaller than the critical value.
Summary: The cutoff, or critical value, for a Mann–Whitney U test with two groups of
five participants (countries), a p level of 0.05, and a two-tailed test is 2. (Note: Remember
that we want the smaller of the test statistics to be equal to or smaller than this critical value.)

As noted above, we calculate two test statis-
tics for a Mann–Whitney U test, one for

each group. We start the calculations by organizing the data by raw score from highest
to lowest in one single column and then by rank in the next column, as shown in Table
18-7. For the two sets of tied scores, we take the average of the ranks they would have
held and applied that rank to the tied scores. For example, Spain, Portugal, and Hungary
all received scores of 1.6; they would have been ranked 3, 4, and 5, but because they’re
tied, they all received the average of these three scores, 4. (We have chosen to give the
highest score a rank of 1, as did the researchers.) We include the group membership of
each participant (country) next to its score and rank: C indicates a formerly communist
country and NC represents a noncommunist country. The final two columns separate
the ranks by group; from these columns we can easily see that the noncommunist coun-
tries tend to hold the higher ranks and the communist countries, the lower ranks.

Before we continue, we sum the ranks (R) for each group and add subscripts to in-
dicate which group is which:

RRnc � 1 � 2 � 4 � 4 � 7 � 18

RRc � 4 � 6 � 8.5 � 8.5 � 10 � 37

The formula for the first group, with the n’s referring to sample size in a particular
group, is:

STEP 5: Calculate the test statistic.
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TABLE 18-7. Organizing Data for a Mann–Whitney U Test

To conduct a Mann–Whitney U test, we first organize the data. We organize the raw scores from highest to lowest
in a single column, then rank them in an adjacent column. Notice that when scores are tied, we average the ranks
of the two or three tied scores. The next column includes the group to which each country belongs—a recently
communist country (C) or a noncommunist (NC) country. The last two columns separate the ranks by group.

                                             Pride                Pride                Type of                   NC                      C
            Country                     Score                Rank                Country                Ranks               Ranks

      Ireland                               2.9                      1                         NC                         1

      Austria                              2.4                      2                         NC                         2

      Spain                                1.6                      4                         NC                         4

      Portugal                            1.6                      4                         NC                         4

      Hungary                            1.6                      4                           C                                                    4

      Czech Republic                  1.3                      6                           C                                                    6

      Sweden                             1.2                      7                         NC                         7

      Slovenia                            1.1                      8.5                        C                                                    8.5

      Slovakia                            1.1                      8.5                        C                                                    8.5

      Poland                               0.9                    10                           C                                                  10
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The formula for the second group is:

Summary: Unc � 22; Uc � 3.

For a Mann–Whitney U test, we compare
only the smaller test statistic, 3, with the crit-

ical value, 2. This test statistic is not smaller than the critical value, so we fail to reject the
null hypothesis. We cannot conclude that the two groups are different with respect to
accomplishment-related national pride rankings. The researchers concluded, however,
that noncommunist countries tend to have more national pride, but remember, they
used more countries in their analyses, so they had more statistical power (Smith & Kim,
2006). We selected just 10 of the European countries on their list. As with parametric
tests, increased sample sizes lead to increased statistical power.
Summary: The test statistic, 3, is not smaller than the critical value, 2. We cannot reject
the null hypothesis. We conclude only that insufficient evidence exists to show that
the two groups are different with respect to accomplishment-related national pride.

After completing the hypothesis test, we want to present the primary statistical in-
formation in a report. In the write-up, we list the two groups and their sample sizes,
but there are no degrees of freedom. In addition, we report the smaller test statistic;
because this is the standard, we do not include a subscript. The statistics read:

U � 3, p � 0.05

(Note that if we conduct the Wilcoxon signed-rank test using software, we report the
actual p value associated with the test statistic.) ■

Kruskal–Wallis H Test
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STEP 6: Make a decision.

�                                         MASTERING THE FORMULA

18-3: The formula for the first
group in a Mann–Whitney U test

is: .

The formula for the second group

is: .

The symbol n refers to the sample
size for a particular group. In these
formulas, the first group is labeled 1.
and the second group is labeled 2.
RR refers to the sum of the ranks for
a particular group.
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Let’s test another hypothesis about the characteristics of countries with high rank ings on
national pride. Do countries from different regions of the world have different levels of
national pride? Specifically, we wondered whether Asian countries would have different
levels of national pride than countries from other parts of the world (due to a tendency
to think in terms of the community rather than the individual). We selected three Asian
countries, three European countries, and three South American countries. Their levels
of accomplishment-related national pride are in Table 18-8. The independent variable
is region of the world, with three levels: Asia, Europe, and South America. The depend-
ent variable is accomplishment-related national pride.

We want to convert the data from scale to ordinal during the calculations. Because
of that, the situation is similar to that when we used a Mann–Whitney U test, except

EXAMPLE 18.5

TABLE 18-8. Does the Region of the World Affect National Pride?

The table here includes accomplishment-related national pride scores for three countries from Asia, three
from Europe, and three from South America.

Asia Pride Europe Pride South America Pride

     Japan                          1.80                Finland                  1.80                     Venezuela                     3.60

     South Korea                 1.00                Portugal                 1.60                     Chile                             2.30

     Taiwan                        0.90                France                   1.50                     Uruguay                        2.00



now we have more than two levels of the independent variable. If we wanted to use
the scale data, we would use a one-way between-groups ANOVA. Because we want
to use ordinal data, we will use its nonparametric equivalent, the Kruskal–Wallis H test.
The Kruskal-Wallis H test is a nonparametric hypothesis test used when there are more than
two groups, a between-groups design, and an ordinal dependent variable. The Kruskal–Wallis
H test statistic is symbolized with the capital letter H.

As with the other nonparametric hypothesis tests, we use the same six steps of hy-
pothesis testing.

There are two assumptions. (1) The data
must be ordinal. (2) We should use random

selection; otherwise, our ability to generalize will be limited.
Summary: We convert the data from scale to ordinal. The researchers did not indicate
whether they used random selection to choose the countries in the sample, so we must
be cautious when generalizing from these results.

We will state the null and research hypothe-
ses only in words, not in symbols.

Summary: Null hypothesis: The population distributions for accomplishment-related
national pride scores for the Asian countries, European countries, and South American
countries are the same. Research hypothesis: The population distributions for
accomplishment-related national pride scores for the Asian countries, European coun-
tries, and South American countries are different.

The Kruskal–Wallis H test compares the
three distributions—those represented by
the three samples. The distribution of the

test statistic, H, is close enough to the chi-square distribution that we can use the chi-
square table. To complete step 4 and find a cutoff, we need to know the p level that
we plan to use and the degrees of freedom. The degrees of freedom is equal to the
number of groups minus 1: 3 � 1 � 2.
Summary: We use the chi-square distribution for a p level of 0.05 and 2 degrees of
freedom.

We use the chi-square table. We look up the
appropriate p level, 0.05, and degrees of free-
dom, 2. The cutoff, or critical value, is 5.992.

Summary: The cutoff for a Kruskal–Wallis H test, based on the chi-square distribution
with a p level of 0.05 and 2 degrees of freedom, is 5.992.

We start the calculations by organizing the
data by raw score from highest to lowest in

one single column, and then by rank in the next column. The scores for Finland and
Japan are both 1.8. We deal with this tie by assigning them the average of the two ranks
they would hold, 4 and 5. They both receive the average of these ranks, 4.5. We include
the group membership of each participant (country) next to its score and rank. A in-
dicates an Asian country; E represents a European country; S represents a South Amer-
ican country. Table 18-9 shows these data.

The final three columns of Table 18-9 separate the ranks by group. From these
columns, we can easily see that the South American countries tend to hold the highest

STEP 1: Identify the assumptions.

STEP 2: State the null and research
hypotheses.

STEP 3: Determine the characteristics
of the comparison distribution.

STEP 4: Determine the critical values,
or cutoffs.

STEP 5: Calculate the test statistic.
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■ The Kruskal–Wallis H test is
a nonparametric hypothesis
test used when there are more
than two groups, a between-
groups design, and an ordinal
dependent variable.
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ranks. Of course, we want to conduct the hypothesis test before drawing any conclu-
sions. Notice that the format of this table is the same as that for the Mann–Whitney
U test. There are just more columns when the ranks are separated—one for each level
of the independent variable.

Before we continue, we take the mean of the ranks for each group, including sub-
scripts to indicate which group is which. Notice that we are taking the mean of the
ranks, not the sum of the ranks as we did with the Mann–Whitney U test. There are
some similarities to ANOVA because the calculation of the test statistic tells us whether
these groups are different; by calculating the mean ranks of the three groups, we’re able
to get a sense of the between-groups variability. We also need the grand mean, the
mean rank for every country in the study.

The formula for the test statistic, H, is:
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TABLE 18-9. Organizing Data for a Kruskal–Wallis H Test

To conduct a Kruskal–Wallis H test, we first organize the data. We organize the raw scores from lowest to
highest in a single column, then rank them in an adjacent column. Notice that when scores are tied, we
average the ranks of the scores. The next column includes the group to which each country belongs. The last
three columns separate the ranks by group.

Pride Pride Type of A E S
Country Score Rank Country Ranks Ranks Ranks

Venezuela 3.6 1 S 1

Chile 2.3 2 S 2

Uruguay 2.0 3 S 3

Finland 1.8 4.5 E 4.5

Japan 1.8 4.5 A 4.5

Portugal 1.6 6 E 6

France 1.5 7 E 7

South Korea 1.0 8 A 8

Taiwan 0.9 9 A 9

�                                         

MASTERING THE FORMULA

18-4: The formula for the mean for
the first group in a Kruskal–Wallis H

test is . We sum the ranks

for every participant in that group,
then divide by the total number of
participants in that group. The for-
mulas for the other groups are the
same.

M
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�                                         MASTERING THE FORMULA

18-5: The formula for the grand
mean in a Kruskal–Wallis H test is

. We sum the ranks for

every participant in the entire study,
then divide by the total number of
participants in the entire study.

GM
R

N
�

R



The 12 is a constant; it is always in the equation. The uppercase N’s in the first part
of the equation refer to the sample size for the whole study, 9. The lowercase n refers
to the sample size for each group. The second part of the equation tells us to make
that calculation for each group using its sample size (n), mean rank (M), and the grand
mean (GM; the mean rank for the whole study). The summation sign, R, tells us that
we have to do this calculation for each group and then add them together.

If there were no differences, each group would have the same mean rank, which
would be the same as the grand mean. If the mean rank for each group was exactly
equal to the grand mean, the second part of the equation would be 0, which, when
multiplied by the first part, would still be 0. So an H of 0 indicates no difference among
mean ranks. Similarly, as the mean ranks for the individual samples get farther from
the grand mean, the second part of the equation becomes larger, and the test statistic
is larger.

Summary: H � 5.74

For a Kruskal–Wallis H test, we compare
the test statistic, 5.74, with the critical

value, 5.992. This test statistic is not larger than the critical value, so we cannot reject
the null hypothesis. Despite the very small sample size, however, the test statistic is
almost as large as the critical value. This appears to be another case in which there
is insufficient statistical power to detect any real differences. If we did find a statis-
tically significant difference, then we would have the same problem we had with
an ANOVA. We know only that there is a difference somewhere, but not specifically
where that difference is. We would have to follow the Kruskal–Wallis H test with
a post-hoc test, often a series of Mann–Whitney U tests or Kruskal–Wallis H tests
on each pair.
Summary: The test statistic, 5.74, is not larger than the critical value, 5.992. We cannot
reject the null hypothesis. We can conclude only that there is insufficient evidence that
there are differences among the countries based on region.

After completing the hypothesis test, we want to present the primary statistical in-
formation in a report. In the write-up, the statistics would read:

H � 5.742, p � 0.05.

(Note that if we conduct the Kruskal–Wallis H test using software, we report the actual
p value associated with the test statistic.) ■
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STEP 6: Make a decision.
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18-6: The formula for the 
Kruskal– Wallis H test is

H � .

The 12 is a constant; it is always in
the equation. The two N’s refer to
the total number of participants
in the study. The lowercase n refers
to the sample size for each group. M
is the mean rank for each group, and
GM is the grand mean.

N N
n M GM
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■ Bootstrapping is a statistical
process in which the original
sample data are used to
represent the entire
population, and we repeatedly
take samples from the original
sample data to form a
confidence interval.



CHAPTER 18 ■ Nonparametric Tests with Ordinal Data   527

We sometimes describe people as “pulling themselves up by their own bootstraps”
when they create success out of minimal resources through hard work and repeated
effort. Statisticians borrowed the word when they had to maximize the information
they could gain from only a few resources. Bootstrapping is a statistical process in which
the original sample data are used to represent the entire population, and we repeatedly take samples
from the original sample data to form a confidence interval.

When bootstrapping data, we use no information other than the sample data. But
we treat the sample data as if it constitutes the entire population. The secret to successful
statistical bootstrapping is one clever technique: sampling with replacement. We first
take the mean of the original sample, and then we continue to sample from the original
sample. Specifically, we repeatedly take the same number of participants’ scores from
the sample (e.g., if there are eight participants in the sample, we keep drawing eight
participants’ scores from that pool), as if we’re drawing from the population, and cal-
culate the mean. In bootstrapping, we do this by replacing each participant, one by
one, immediately after we select his or her score to be part of the sample.

Here’s an example. If the eight scores are 1, 5, 6, 6, 8, 9, 12, and 13 (with a mean
of 7.5), then we would repeatedly pull eight scores, one at a time. But after pulling
each single score, we put it back, making it possible to pull that exact same score again—
or even several times in a row. Based on this, we might draw the following sample: 1,
1, 1, 6, 8, 9, 12, and 13 (with a mean of 6.375). This sample includes the score of 1
several times because it got pulled more than once after being replaced. There also is
one score, 5, that was not pulled at all in this sample, just by chance. Each time we
draw a sample of eight, we calculate the mean. We do this over and over, thousands of
times.

Table 18-10 shows just a few possible samples from the original sample (all samples are
arranged from lowest to highest, although it is unlikely that they would have been drawn
in this order). Of course, doing this by hand would take a very long time, par ticularly with
a sample much larger than eight, so we rely on the computer to do the work for us. So
now we have the mean of the original sample of eight (which was 7.5) and thousands
of means of samples of eight drawn from the original sample—with  replacement.

Once we have these thousands of means from the thousands of samples drawn from
this pool, we can create a 95% confidence in-
terval around the original mean. The middle
95% of the means of the thousands of samples
represents the 95% confidence interval. As the
confidence interval, the middle 95% provides
information about the precision of the mean of
the original sample. A wide confidence interval
indicates that the estimate for the mean is not
very precise. A narrow confidence interval in-
dicates a greater degree of precision.

The important thing to remember is that we
only bootstrap when circumstances have con-
strained our choices and the information is
potentially very important. Under those circum-
stances, bootstrapping is a fair way to gain the
benefits of a larger sample than we actually have.

Bootstrapping N e x t  S t e p s

TABLE 18-10. Bootstrapping

Bootstrapping is a statistical process whereby we have an original sample and then draw
additional samples from that original sample as if the original sample represented the
entire population. Here we have five possible samples, along with their means, drawn
from the original sample of 1, 5, 6, 6, 8, 9, 12, and 13. All samples are drawn with re-
placement, so for each new sample, the same score might show up more than once and
some scores might not be pulled at all.

Sample Mean

5, 6, 6, 6, 8, 12, 13, 13 8.625

1, 5, 5, 6, 9, 9, 12, 13 7.500

1, 1, 6, 6, 8, 8, 12, 13 6.875

1, 5, 5, 6, 6, 6, 9, 12 6.250

1, 5, 6, 8, 8, 9, 12, 13 7.750
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CHECK YOUR LEARNING
Reviewing the Concepts > There are nonparametric hypothesis tests that can be used to replace the various parametric

hypothesis tests when it seems clear that there are severe violations of the assumptions.

> We use the Wilcoxon signed-rank test in place of the paired-samples t test, the Mann–
Whitney U test in place of the independent-samples t test, and the Kruskal–Wallis H test
in place of the one-way between-groups ANOVA. Nonparametric hypothesis tests use the
same six steps of hypothesis testing that are used for parametric tests, but the steps and the
calculations tend to be simpler.

> A recent technique, popularized by the rise of extremely fast computers, is bootstrapping,
which involves sampling with replacement from the original sample. We develop a 95%
confidence interval by taking the middle 95% of the means from many samples.

Clarifying the Concepts 18-5 Why must scale data be transformed into ordinal data before performing any
nonparametric tests on that data?

Calculating the Statistics 18-6 Calculate T, the Wilcoxon signed-rank test, for the following set of data:

Applying the Statistics 18-7 Researchers provided accomplishment-related national pride scores for a number of
countries (Smith & Kim, 2006). We selected seven countries for which English is the
primary language and seven countries for which it is not. We wondered whether
English-speaking countries would be different on the variable of accomplishment-
related national pride from non-English-speaking countries. The data are in the
accompanying table. Conduct a Mann–Whitney U test on these data. Remember to
organize the data in one column before starting.

Person Score 1 Score 2

A 2 5

B 7 2

C 4 5

D 10 3

E 5 1

English-Speaking  Pride  Non-English-Speaking  Pride
     Countries         Score             Countries             Score

    United States           4.00              Chile                            2.30

    Australia                  2.90              Japan                            1.80

    Ireland                    2.90              France                          1.50

    South Africa            2.70              Czech Republic            1.30

    New Zealand          2.60              Norway                        1.30

    Canada                   2.40              Slovenia                        1.10

    Great Britain           2.20              South Korea                  1.00Solutions to these Check Your
Learning questions can be found in
Appendix D.
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REVIEW OF CONCEPTS

Ordinal Data and Correlation
Nonparametric hypothesis tests have been developed as replacements for most para-
metric tests when there are severe violations of assumptions. We use nonparametric
tests primarily (1) when the dependent variable is ordinal and (2) when the data are
skewed and the sample is small, in which case we convert scale data to ordinal data.
The nonparametric parallel to the Pearson correlation coefficient is the Spearman rank-
order correlation coefficient, a statistic that is interpreted just like its parametric cousin with
respect to magnitude and direction.

Nonparametric Hypothesis Tests
The Wilcoxon signed-rank test is the nonparametric parallel of the paired-samples t test.
The Mann–Whitney U test is the nonparametric parallel of the independent-samples t
test. The Kruskal–Wallis H test is the nonparametric parallel of the one-way between-
groups ANOVA. The same six steps of hypothesis testing are used for both parametric
and nonparametric tests, but the steps and the calculations for the nonparametric tests
tend to be simpler. In bootstrapping, we continually sample with replacement from the
original sample. This technique allows us to develop a 95% confidence interval from
the middle 95% of the means of the many samples.

Let’s conduct a Mann–Whitney U test on the country data
we used when comparing communist and noncommunist
countries on accomplishment-related pride. In SPSS, we con-

duct a Mann–Whitney U test by selecting: Analyze → Non-
parametric Tests → 2 Independent-Samples Tests. Select
“Mann-Whitney U” as the test type. Select “Descriptive”

SPSS®
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under “Options” if you want the descriptive data as well.
The dependent variable, rankings on  accomplishment-
related national pride, goes under “Test Variable List,” and
the independent variable, political system (noncommunist ver-
sus communist), goes under “Grouping Variable.” Be sure to
define the groups by clicking “Define Groups” and telling
SPSS what you have called each of the conditions (e.g., 1 and

2 for noncommunist and communist, respectively). The out-
put will give us the same value for the Mann–Whitney U sta-
tistic, 3, that we calculated earlier. (Note: You may enter  either
scale or ordinal data as the dependent variable. SPSS automat-
ically ranks the data. If the data are already ranked, no change
is made to the values. If the data are scale, they are converted
to ranks.)

How It Works
18.1 CALCULATING THE SPEARMAN RANK-ORDER 
CORRELATION COEFFICIENT
The accompanying table includes ranks for accomplishment-related national pride, along
with numbers of medals won at the 2000 Sydney Olympics for ten countries. (Of course,
this might not be the best way to operationalize the variable of Olympic performance; per-
haps we should be ranking Olympic medals per capita.) How can we calculate the Spearman
correlation coefficient for these two variables?

Pride Olympic
Country Rank Medals

United States 1 97
South Africa 2 5
Austria 3 3
Canada 4 14
Chile 5 1
Japan 6 18
Hungary 7 17
France 8 38
Norway 9 10
Slovenia 10 2

First, we have to convert the numbers of Olympic medals to ranks. Then we can calculate
the correlation coefficient.

Squared
Pride Olympic Medals Difference Difference

Country Rank Medals Rank (D) (D2)

United States             1                97                      1                       0                          0
South Africa              2                  5                      7                    �5                        25
Austria                      3                  3                      8                    �5                        25
Canada                     4                14                      5                    �1                          1
Chile                        5                  1                    10                    �5                        25
Japan                        6                18                      3                       3                          9
Hungary                   7                17                      4                       3                          9
France                      8                38                      2                       6                        36
Norway                    9                10                      6                       3                          9
Slovenia                  10                  2                      9                       1                          1

RD2 � (0 � 25 � 25 � 1 � 25 � 9 � 9 � 36 � 9 � 1) � 140

The Spearman correlation coefficient of 0.15 indicates a small, positive association. Even
if we had scale data on both variables, we would not have wanted to use the scale data for
Olympic medals because the United States, with a score of 97, appears to be an outlier. Its
score is likely to inflate the strength of the person correlation coefficient.
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18.2 CONDUCTING THE MANN-WHITNEY U TEST
In what region do political science graduate programs tend to have the best rankings—on
the East Coast (E) or in the Midwest (M)? Here are data from U.S. News & World Report’s
2005 online rankings of graduate schools. These are the top 13 doctoral programs in political
science that are either on the East Coast or in the Midwest. Schools listed at the same rank
are tied.

1 Harvard University (E)
2 University of Michigan, Ann Arbor (M)
3 Princeton University (E)
4 Yale University (E)
5.5 Duke University (E)
5.5 University of Chicago (M)
7.5 Columbia University (E)
7.5 Massachusetts Institute of Technology (E)

10 Ohio State University (M)
10 University of North Carolina, Chapel Hill (E)
10 University of Rochester (E)
12.5 University of Wisconsin, Madison (M)
12.5 Washington University in St. Louis (M)

How can we conduct a Mann–Whitney U test for this example? The independent vari-
able is the region of the country, and its levels are East Coast and Midwest. The dependent
variable is the U.S. News & World Report ranking.

Step 1: This study meets three of the four assumptions. (1) We need to convert the data
from scale to ordinal. (2) The researchers did not use random selection, so our ability
to generalize beyond this sample is limited. (3) There are some ties, but we will as-
sume that there are not so many as to render the results of the test invalid.

Step 2: Null hypothesis: Political science programs on the East Coast and those in the Mid-
west do not differ in national ranking.
Research hypothesis: Political science programs on the East Coast and those in the
Midwest differ in national ranking.

Step 3: There are eight political science programs on the East Coast and five in the  Midwest.

Step 4: The cutoff, or critical value, for a Mann–Whitney U test with one group of eight
programs and one group of five programs, a p level of 0.05, and a two-tailed test is 6.

Step 5:
School                                                Rank       East Coast Rank       Midwest Rank

Harvard                                                1              1
Michigan, Ann Arbor                             2                                             2
Princeton                                             3              3
Yale                                                      4              4
Duke                                                    5.5           5.5
Chicago                                               5.5                                          5.5
Columbia                                             7.5           7.5
MIT                                                    7.5           7.5
Ohio State                                          10                                           10
North Carolina, Chapel Hill                 10            10
Rochester                                           10            10
Wisconsin                                           12.5                                        12.5
Washington University in St. Louis        12.5                                        12.5

Before we continue, we sum the ranks for each group and add subscripts to indicate
which group is which:

RRE � 1 � 3 � 4 � 5.5 � 7.5 � 7.5 � 10 � 10 � 48.5

RRM � 2 � 5.5 � 10 � 12.5 � 12.5 � 42.5
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The formula for the first group is:

The formula for the second group is:

Step 6: For a Mann–Whitney U test, we compare only the smaller test statistic, 12.5, with
the critical value, 6. This test statistic is not smaller than the critical value, so we fail
to reject the null hypothesis. We cannot conclude that the two groups are different
with respect to national rankings.

In a journal article, the statistics would read:

U � 12.5, p � 0.05
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Exercises
Clarifying the Concepts

18.1 When do we convert scale data to ordinal data?

18.2 When the data on at least one variable are ordinal, the
data on any scale variable must be converted from scale
to ordinal. How do we convert a scale variable into an
ordinal one?

18.3 How does the transformation of scale data to ordinal
data solve the problem of outliers?

18.4 What does a histogram of rank-ordered data look like
and why does it look that way?

18.5 Explain how the relation between ranks is the core of
the Spearman rank-order correlation.

18.6 Define the symbols in the following term: rS �

.

18.7 What is the possible range of values for the Spearman
rank-order correlation and how are these values inter-
preted?

18.8 How is N determined for the Wilcoxon signed-rank
test and how does this differ from the way N is typically
determined for most statistical tests?

18.9 When is it appropriate to use the Wilcoxon signed-rank
test?

18.10 When do we use the Mann–Whitney U test?

18.11 What are the assumptions of the Mann–Whitney U
test?

18.12 How are the critical values for the Mann–Whitney U
test and the Wilcoxon signed-rank test used differently
than critical values for parametric tests?
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18.13 When is it appropriate to use the Kruskal–Wallis H test?

18.14 Define and explain the symbols in the following equa-

tion: 

18.15 If your data meet the assumptions of the parametric test,
why is it preferable to use the parametric test rather than
the nonparametric alternative?

18.16 What is bootstrapping?

18.17 How can bootstrapping be used as an alternative to
nonparametric tests when working with small sample
sizes?

Calculating the Statistics

18.18 In order to compute statistics, we need to have working
formulas. For each of the following, (i) identify the in-
correct symbol, (ii) state what the correct symbol should
be, and (iii) explain why the initial symbol was incorrect.

a.

b.

c. T � RRlarger

d.

18.19 Convert the following scale data to ordinal or ranked
data, starting with a rank of 1 for the smallest data point.
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18.20 Convert the following scale data to ordinal or ranked
data, starting with a rank of 1 for the smallest data point.

18.21 Compute the Spearman correlation coefficient for the
data listed in Exercise 18.19.

18.22 Compute the Spearman correlation coefficient for the
data listed in Exercise 18.20.

18.23 The following set of fictional data represent the finish-
ing place for runners of a 5-kilometer race and the
number of hours they trained per week.

Count     Variable X     Variable Y

    1            134.5           64.00

    2            186              60.00

    3            157              61.50

    4            129              66.25

    5            147              65.50

    6            133              62.00

    7            141              62.50

    8            147              62.00

    9            136              63.00

  10            147              65.50

Count     Variable X     Variable Y

   1            $1250             25

   2            $1400             21

   3            $1100             32

   4            $1450             54

   5            $1600             38

   6            $2100             62

   7            $3750             43

   8            $1300             32

Race Hours Race Hours 
Rank Trained Rank Trained

1 25 6 18

2 25 7 12

3 22 8 17

4 18 9 15

5 19 10 16

a. Calculate the Spearman correlation for this set of
data.

b. Make a decision regarding the null hypothesis. Is
there a significant correlation between a runner’s
finishing place and the amount the runner trained?

18.24 Imagine that a researcher measured a group of partici-
pants at two time points. Fictional scores for these two
time points appear below. Are the scores different at
time 1 and time 2?

a. Compute the Wilcoxon signed-rank test statistic.

b. Make a decision regarding the null hypothesis.

18.25 Assume a group of students provides happiness ratings
for how happy they feel during the school year and how
happy they feel during the summer. Do happiness levels
differ depending on the time of year? Fictional data ap-
pear below:

a. Compute the Wilcoxon signed-rank test statistic.

b. Make a decision regarding the null hypothesis.

Person Time 1 Time 2

1 56 83

2 74 116

3 81 96

4 47 56

5 78 120

6 96 100

7 72 71

Student School Year Summer

1 7 4

2 4 6

3 5 5

4 3 4

5 4 8

6 5 7

7 3 2
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18.26 Compute the Wilcoxon signed-rank test statistic for the
following set of data:

18.27 Compute the Mann–Whitney U statistic for the fol-
lowing data. The numbers under the Group 1 and
Group 2 columns are participant numbers.

18.28 Compute the Mann–Whitney U statistic for the fol-
lowing data. The numbers under the Group 1 and
Group 2 columns are participant numbers.

18.29 Are men or women more likely to be at the top of their
class? The following table depicts fictional class standings
for a group of men and women:

                   Ordinal                         Ordinal 
                Dependent                    Dependent 
Group 1       Variable       Group 2       Variable

     1                1                 1              11

     2                2.5              2                9

     3                8                 3                2.5

     4                4                 4                5

     5                6                 5                7

     6               10                 6              12

Person Score 1 Score 2

1 6 6

2 5 3

3 4 2

4 3 5

5 2 1

6 1 4

                    Scale                             Scale 
                Dependent                     Dependent 
Group 1       Variable       Group 2       Variable

     1                 8                 9                3

     2                 5                10                4

     3                 5                11                2

     4                 7                12                1

     5               10                13                1

     6               14                14                5

     7                 9                15                6

     8               11
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a. Compute the Mann–Whitney U test statistic.

b. Make a decision regarding the null hypothesis. Is
there a significant difference in the class ranks of
men and women?

18.30 The following data set represents the scores of three
independent groups of participants on a single ordinal
dependent variable. Calculate the Kruskal–Wallis H sta-
tistic for this data set.

18.31 The following data set represents the scores of three in-
dependent groups of participants on a single scale de-
pendent variable:

a. Calculate the Kruskal–Wallis H statistic for this data
set.

b. Make a decision regarding the null hypothesis. Is
there a significant difference among the groups?

18.32 Assume a researcher compared the performance of four
independent groups of participants on an ordinal vari-
able using the Kruskal–Wallis H test. Each group had
eight participants.

a. What is the df associated with this test?

Class Class 
Student Gender Standing Student Gender Standing

1 Male 98 7 Male 43

2 Female 72 8 Male 33

3 Male 15 9 Female 17

4 Female 3 10 Female 82

5 Female 102 11 Male 63

6 Female 8 12 Male 25

Group 1 Group 2 Group 3

1 1 5

5 3 4

3 3 1

2 4 1

2 2 3

Group 1 Group 2 Group 3

15 38 12

27 22 72

16 56 84

41 33



b. Using a p level of 0.05 and a two-tailed test, what
is the critical value?

c. Assume the researcher calculated H � 9.26. Make
a decision regarding the null hypothesis and explain
that decision.

d. Assume the researcher calculated H � 3.97. Make
a decision regarding the null hypothesis and explain
that decision.

18.33 Assume a researcher compared the performance of two
independent groups of participants on an ordinal variable
using the Mann–Whitney U test. The first group had 8
participants and the second group had 11 participants.

a. Using a p level of 0.05 and a two-tailed test, what
is the critical value?

b. Assume the researcher calculated U1 � 22 and U2
� 17. Make a decision regarding the null hypothesis
and explain that decision.

c. Assume the researcher calculated U1 � 24 and U2
� 30. Make a decision regarding the null hypothesis
and explain that decision.

d. Assume the researcher calculated U1 � 13 and U2
� 9. Make a decision regarding the null hypothesis
and explain that decision.

18.34 Assume a researcher compared the performance of a
group of 10 people at two different time points using
the Wilcoxon signed-rank tests.

a. Using a p level of 0.05 and a two-tailed test, what
is the critical value?

b. If T � 10, would the researcher reject or fail to re-
ject the null hypothesis? Explain.

c. If T � 6, would the researcher reject or fail to reject
the null hypothesis? Explain.

18.35 Bootstrapping involves repeatedly sampling with re-
placement. Below is a set of scores for a small sample
(N � 6):

42,  48,  50,  41,  44,  45

a. Calculate the mean of this sample.

b. The following data set represents the samples that
result after sampling with replacement from the
original data set five times. Calculate the mean for
each of these samples.

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5

44 50 45 45 41

42 50 48 48 50

48 41 45 44 44

44 44 41 45 44

42 48 42 44 48

42 42 41 41 41
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c. What are the minimum and maximum scores for
these samples?

d. What does the variabilility of the multiple samples
tell us about the potential variability of these scores
in the population? (Note: Typically you would eval-
uate the means and variability of thousands of sam-
ples taken from the original data.)

Applying the Concepts

18.36 CNN.com reported on a 2005 study that ranked the
world’s cities in terms of how livable they are using
a range of criteria related to stability, health care,
culture and environment, education, and infra -
structure. Vancouver came out on top. For each of the
following research questions, state which non -
parametric hypothesis test is appropriate. Explain
your answers.

a. Which cities tend to receive higher rankings—those
north or south of the equator?

b. Are the livability rankings related to a city’s eco-
nomic status (assessed by rank)?

18.37 Here are some monthly cell phone bills, in dollars, for
college students:

100 60  35  50  50  50 60 65

0 75 100  55  50  40 80

200 30  50 108 500 100 45

40 45  50  40  40 100 80

a. Convert these data from scale to ordinal. (Don’t for-
get to put them in order first.) What happens to an
outlier when you convert these data to ordinal?

b. Roughly, what shape would the distribution of
these data take? Would they likely be normally dis-
tributed? Explain why the distribution of ordinal
data is never normal.

c. Why does it not matter if the ordinal variable is
normally distributed? (Hint: Think about what kind
of hypothesis test you would conduct.)

18.38 In fantasy baseball, groups of 12 league participants
conduct a draft in which they can “buy” any baseball
players from any teams across one of the leagues (i.e.,
the American League or National League). These
makeshift teams are compared on the basis of the
combined statistics of the individual baseball players.
Statistics such as home runs are awarded points, and
each fantasy team receives a total score of all com-
bined points for its baseball players, regardless of their
real-life team. Many in the fantasy and real-life base-
ball worlds have wondered how success in fantasy
leagues maps onto the real-life success of winning



baseball games. Walker (2006) compared the fantasy
league performances of the players for each American
League team with their actual American League fin-
ishes for the 2004 season, the year the Red Sox broke
the legendary “curse” against them and won the
World Series. The data, sorted from highest to lowest
fantasy league score, are shown in the accompanying
table.

a. What are the two variables of interest? For each
variable, state whether it’s scale or ordinal.

b. Calculate the Spearman correlation coefficient for
these two variables. Remember to convert any scale
variables to ranks.

c. What does the coefficient tell us about the relation
between these two variables?

d. Why couldn’t we calculate a Pearson correlation
coefficient for these data?

18.39 Does speed in completing a test correlate with one’s
grade? Here are test scores for eight students in one of
our statistics classes. They are arranged in order from
the student who turned in the test first to the student
who turned in the test last.

98 74 87 92 88 93 62 67

a. What are the two variables of interest? For each
variable, state whether it’s scale or ordinal.

                         Fantasy         Actual American
    Team        League Points       League Finish

Boston                117.5                     2

New York            109.5                     1

Anaheim             108                       3.5

Minnesota             97                       3.5

Texas                    85                       6

Chicago                80                       7

Cleveland              79                       8

Oakland                77                       5

Baltimore              74.5                     9

Detroit                  68.5                   10

Seattle                   51                      13

Tampa Bay            47.5                   11

Toronto                 35.5                   12

Kansas City           20                      14
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b. Calculate the Spearman correlation coefficient for
these two variables. Remember to convert any scale
variables to ranks.

c. What does the coefficient tell us about the relation
between these two variables?

d. Why couldn’t we calculate a Pearson correlation
coefficient for these data?

18.40 Consider again the two variables described in Exercise
18.39, test grade and speed in taking the test. Imagine
that each of the following numbers represents the
Spearman correlation coefficient that quantifies the re-
lation between these two variables—test grade con-
verted to ranks such that the top grade of 98 is ranked
1, and speed in taking the test with the fastest person
ranked 1. What does each coefficient suggest about the
relation between the variables? Using the guidelines for
the Pearson correlation coefficient, indicate whether
each coefficient is roughly small (0.10), medium (0.30),
or large (0.50). Specify which of these coefficients sug-
gests the strongest relation between the two variables
as well as which coefficient suggests the weakest rela-
tion between the two variables. [You calculated the ac-
tual correlation between these variables in Exercise
18.39(b).]

a. 1.00

b. �0.001

c. 0.52

d. �0.27

e. �0.98

f. 0.09

18.41 Exercise 18.39 presented data to enable you to calculate
the Spearman correlation coefficient that quantifies the
relation between the speed of taking the test and the
test grade.

a. Does this correlation coefficient suggest that stu-
dents should take their tests as quickly as possible?
That is, does it indicate that taking the test quickly
causes a good grade? Explain your answer.

b. What third variables might be responsible for this
correlation? That is, what third variables might
cause both speedy test-taking and a good test
grade?

18.42 Do public or private universities tend to have better so-
ciology graduate programs? U.S. News & World Report
publishes online rankings of graduate schools across a
range of disciplines. Here is its 2005 list of the top 21
doctoral programs in sociology, along with an indication
of whether the schools are public or private institutions.
Schools listed at the same rank are tied.



a. What is the independent variable, and what are its
levels? What is the dependent variable?

b. Is this a between-groups or within-groups design?
Explain.

c. Why do we have to use a nonparametric hypothesis
test for these data?

d. Conduct all six steps of hypothesis testing for a
Mann–Whitney U test.

e. How would you present these statistics in a journal
article?

18.43 Do red states (U.S. states whose residents tend to vote
Republican) have different voter turnouts than blue
states (U.S. states whose residents tend to vote Demo-
cratic)? The accompanying table shows voter turnouts
(in percentages) for the 2004 presidential election for
eight randomly selected red states and eight randomly
selected blue states.

  1        University of Wisconsin, Madison (public)

  2        University of California, Berkeley (public)

  3        University of Michigan, Ann Arbor (public)

  4.5      University of Chicago (private)

  4.5      University of North Carolina (public)

  6.5      Princeton University (private)

  6.5      Stanford University (private)

  8.5      Harvard University (private)

  8.5      University of California, Los Angeles (public)

10        University of Pennsylvania (private)

12        Columbia University (private)

12        Indiana University, Bloomington (public)

12        Northwestern University (private)

15        Cornell University (private)

15        Duke University (private)

15        University of Texas, Austin (public)

18        Pennsylvania State University, University
Park (public)

18        University of Arizona (public)

18        University of Washington (public)

20.5      The Ohio State University (public)

20.5      Yale University  (private)
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a. What is the independent variable, and what are its
levels? What is the dependent variable?

b. Is this a between-groups or within-groups design?
Explain.

c. Conduct all six steps of hypothesis testing for a
Mann–Whitney U test.

d. How would you present these statistics in a journal
article?

18.44 Spanish researchers reported the following: “Using the
Mann-Whitney nonparametrical statistical test on the
gender differences, we found a significant difference be-
tween boys and girls in Group 1 for overall [aggression]
(U � 44.00, p � 0.004) and received aggression (U �
48.00, p � 0.005). So, in their dreams, younger boys
not only had a higher level of general aggression but
also received more severe aggressive acts than girls of the
same age” (emphasis in original) (Oberst, Charles, &
Chamarro, 2005 p. 175).

a. What is the independent variable, and what are its
levels? What is the dependent variable?

b. Is this a between-groups or within-groups design?

c. What hypothesis test did the researchers conduct?
Why might they have chosen a nonparametric test?
Why do you think they chose this particular non-
parametric test?

d. Describe what they found in your own words.

e. Can we conclude that gender caused a difference
in levels of aggression in dreams? Explain. Provide
at least two reasons why gender might not cause
certain levels of aggression in dreams even though
these variables are associated.

18.45 Are Canadian professional hockey teams consistent over
time? Here are the wins per season (out of 82 games) for
the six Canadian teams in the National Hockey League
(NHL). For comparison, in 1995–1996, the top team in

                    Voted                              Voted 
                    in 2004                            in 2004
                    Election                           Election 
Red States     (%)            Blue States       (%)

Georgia         57.38         California        60.01

Idaho            64.89         Illinois             60.73

Indiana          55.69         Maine             73.40

Louisiana       60.78         New Jersey      64.54

Missouri        66.89         Oregon           70.50

Montana        64.36         Vermont          66.19

Texas             53.35         Washington     67.42

Virginia         61.50         Wisconsin       76.73



the Eastern Conference was the Pittsburgh Penguins with
49 wins and the top team in the Western Conference was
the Detroit Red Wings with 62 wins. In 2005–2006, the
top team in the Eastern Conference was the Ottawa Sen-
ators with 52 wins, and the top team in the Western Con-
ference was, once again, Detroit with 58 wins. (The
Winnipeg Jets moved and became the Phoenix Coyotes
in 1996, so we didn’t include them here.)

a. What is the independent variable and what are its
levels? What is the dependent variable?

b. Is this a between-groups or within-groups design?
Explain.

c. Why might it be preferable to use a nonparametric
hypothesis test for these data?

d. Conduct all six steps of hypothesis testing for a
Wilcoxon signed-rank test for matched pairs.

e. How would you present these statistics in a journal
article?

18.46 Which Web site offers better fares—Cheaptickets.com
or Expedia.com? We conducted searches in February
2007, not all that far ahead, for the cheapest fares for
round-trip international flights during peak summer
travel season: leaving on July 7, 2007, and returning on
July 28, 2007. We conducted a search for each itinerary
using both search engines.

1995–1996 2005–2006
Team Season Season

Calgary Flames 34 46

Edmonton Oilers 30 41

Montreal Canadiens 40 42

Ottawa Senators 18 52

Toronto Maple Leafs 34 41

Vancouver Canucks 32 42

Itinerary Cheaptickets.com Expedia.com

Athens, GA, to Johannesburg, $2403 $2580
South Africa

Chicago to Chennai, India 1884 2044

Columbus, OH to Belgrade, Serbia 1259 1436

Denver to Geneva, Switzerland 1392 1412

Montreal to Dublin, Ireland 1097 1152

New York City to Reykjavik, Iceland 935 931

San Antonio to Hong Kong 1407 1400

Toronto to Istanbul, Turkey 1261 1429

Tulsa to Guadalajara, Mexico 565 507

Vancouver to Melbourne, Australia 1621 1613
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a. What is the independent variable and what are its
levels? What is the dependent variable?

b. Is this a between-groups or within-groups design?
Explain.

c. Conduct all six steps of hypothesis testing for a
Wilcoxon signed-rank test for matched pairs.

d. How would you present these statistics in a journal
article?

18.47 The Morgan Quitno Press regularly ranks U.S. states on
how “smart” they are based on 21 criteria including
per-student school expenditures, percent of population
with high school degrees, high school dropout rate, av-
erage class size, and “percent of 4th graders whose par-
ents have strict rules about getting homework done.”
Here are the rankings for all 50 states for 2004.

1. Massachusetts (NE) 26. Missour i (MW)

2. Connecticut (NE) 27. Delaware

3. Vermont (NE) 28. Utah

4. New Jersey (NE) 29. Idaho

5. Wisconsin (MW) 30. Washington

6. New York (NE) 31. Michigan (MW)

7. Minnesota (MW) 32. South Carolina (S)

8. Iowa (MW) 33. Texas

9. Pennsylvania (NE) 34. West Virginia

10. Montana 35. Oregon

11. Maine (NE) 36. Arkansas (S)

12. Virginia (S) 37. Kentucky (S)

13. Nebraska (MW) 38. Georgia (S)

14. New Hampshire (NE) 39. Flor ida (S)

15. Kansas (MW) 40. Oklahoma

16. Wyoming 41. Tennessee (S)

17. Indiana (MW) 42. Hawaii

18. Maryland 43. California

19. North Dakota 44. Alabama (S)

20. Ohio (MW) 45. Alaska

21. Colorado 46. Louisiana (S)

22. South Dakota 47. Mississippi (S)

23. Rhode Island (NE) 48. Ar izona

24. Illinois (MW) 49. Nevada

25. North Carolina (S) 50. New Mexico

We marked states in the Northeast with an NE, in the
Midwest with a MW, and in the South with an S. Do
these regions tend to have different rankings from one
another?



a. What is the independent variable and what are its
levels? What is the dependent variable?

b. Is this a between-groups or within-groups design?
Explain.

c. Why do we have to use a nonparametric hypothesis
test for these data?

d. Conduct all six steps of hypothesis testing for a
Kruskal–Wallis H test. Note that you have to rank
just the states in this study, separate from the original
ranking list.

e. How would you present these statistics in a journal
article?

f. Explain why a statistically significant Kruskal–Wallis
H statistic does not tell us exactly where the specific
differences lie. If there is a statistically significant
finding for this example, determine where the dif-
ference lies by calculating Kruskal–Wallis H statistics
for each pair.

18.48 You’re applying to graduate school and have found a
list of the top 50 PhD programs for your area of study.
For each of the following scenarios, state which non-
parametric hypothesis test is most appropriate: Spear-
man rank-order correlation coefficient, Wilcoxon
signed-rank test, Mann–Whitney U test, or Kruskal–
Wallis H test. Explain your answers.

a. You want to determine which institutions tend to
be higher ranked: those that fund students primarily
by offering fellowships, those that fund students pri-
marily by offering teaching assistantships, or those
that don’t have full funding for most students.

b. You wonder whether rankings are related to the
typical Graduate Record Examination (GRE)
scores of incoming students.

c. You decide to compare the rankings of institutions
within a three-hour drive of your current home and
those beyond a three-hour drive.

18.49 CNN.com reported on a 2005 study that ranked the
world’s cities in terms of how livable they are (http://
www .cnn.com/2005/WORLD/ europe/10/ 04/eui
.survey/) using a range of criteria related
to stability, health care, culture and envi-
ronment, education, and infrastructure.
Vancouver came out on top. For each of
the following research questions, state
which nonparametric hypothesis test is
most appropriate: Spearman rank-order
correlation coefficient, Wilcoxon signed-
rank test, Mann–Whitney U test, or
Kruskal–Wallis H test. Explain your
answers.

a. Which cities tend to receive higher
rankings—those north of the equator
or those south of the equator?
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b. Did the top ten cities tend to change their rankings
since the previous study?

c. Are the livability rankings related to a city’s eco-
nomic status?

18.50 A common situation faced by researchers working
with special populations, such as neurologically im-
paired people or people with less common psychiatric
conditions, is that the studies often have small sample
sizes due to the relatively few numbers of patients. As
a result, these researchers often turn to nonparametric
statistical tests. For each of the following research de-
scriptions, state which nonparametric hypothesis test
is most appropriate: Spearman rank-order correla -
tion coefficient, Wilcoxon signed-rank test, Mann–
Whitney U test, or Kruskal–Wallis H test. Explain your
answers.

a. People who have had a stroke often have whole or
partial paralysis on the side of their body opposite
the side of the brain damage. Leung, Ng, and Fong
(2009) were interested in the effects of a treatment
program for constrained movement on the recovery
from paralysis. They compared the arm-movement
ability of eight stroke patients before and after the
treatment.

b. Leung and colleagues (2009) were also interested in
whether the amount of improvement after the ther-
apy was related to the number of months that had
passed since the patient experienced the stroke.

c. Five of Leung and colleagues’ (2009) patients were
male and three were female. We could ask whether
post-treatment movement performance was differ-
ent between men and women.

18.51 The following figures display data that depict the rela-
tion between students’ monthly cell phone bills and the
number of hours they report that they study per week.

a. What does the accompanying scatterplot suggest
about the shape of the distribution for hours studied
per week? What does it suggest about the shape of
the distribution for monthly cell phone bill?
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wants to develop an estimate of the mean vocabulary
score of the population of children with Angelman syn-
drome. (Although those with Angelman syndrome often
cannot speak, they are usually able to understand at least
some simple language and they may learn to commu-
nicate with sign language.) The General Social Survey
(GSS) asks children the meaning of ten words using a
multiple-choice format; the GSS data have a mean of
6.1, with a standard deviation of 2.1. The fictional data
for the six children with Angelman syndrome are: 0, 1,
1, 2, 3, and 4. Write each of these six numbers on a sep-
arate, small piece of paper.

a. Put the six pieces of paper in a bowl or hat, and
then pull six out, one at a time, replacing each one
and mixing them up before pulling the next. List
the numbers and take the mean. Repeat this pro-
cedure two more times so that you have three lists
and three means.

b. We did this 20 times and got the following 20 means:

1.833 1.167 2.000 2.333 1.333 
1.333 2.000 1.667 1.667 1.667
1.500 1.000 1.500 1.667 1.833 
1.500 1.667 2.333 2.167 2.000
Determine the 90% confidence interval for these
means. (Hint: Arrange them in order and then
choose the middle 90% of scores.) Remember, were
we really to bootstrap our data, we would have a
computer do it because 20 means is far too few.

c. Why is bootstrapping a helpful technique in this
particular situation?

Terms
Spearman rank-order correlation

coefficient (p. 513)
Wilcoxon signed-rank test (p. 518)
Mann–Whitney U test (p. 520)

Kruskal–Wallis H test (p. 524)
bootstrapping (p. 527)

Formulas
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b. What does the accompanying grouped frequency
histogram suggest about the shape of the distribu-
tion for monthly cell phone bill?

c. Is it a good idea to use a parametric hypothesis test
for these data? Explain.

18.52 Angelman syndrome is a rare genetic disease in which
children are delayed developmentally and exhibit un-
usual symptoms such as inappropriate and prolonged
laughter, difficulty in speaking or inability to speak, and
seizures. Imagine that a researcher obtained vocabulary
data for six children with Angelman syndrome and
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A-1

3. (3 � 6) � 2 � 5 � _______________

4. 4 � 6 � 2 � _______________

5. 16/2 � 6(3 � 1) � _______________

6. 22 (12 � 8) � _______________

7. 5 � 3(4 � 1) � _______________

8. 7 � 2 � (9 � 3) � 2 � _______________

9. 15 � 5 � (6 � 2)/2 � _______________

10. 15 � 32 � 5(2) � _______________

SECTION 3 (Proportions: Fractions, Decimals,
and Percentages)

1. Convert 0.42 into a fraction _______________

2. Convert 6/10 into a decimal _______________

3. Convert 4/5 into a percentage _______________

4. 6/13 � 4/13 � _______________

5. 0.8 � 0.42 � _______________

6. 40% of 120 � _______________

7. 2/7 � 2/5 � _______________

8. 2/5 � 80 � _______________

9. 1/4 � 1/3 � _______________

10. 4/7 � 5/9 � _______________

Reference for Basic Mathematics

This diagnostic test is divided into four parts that correspond to the sec-
tions of the basic mathematics review that follows. The purpose of the
diagnostic test is to help you understand which areas you need to re-
view prior to completing work in this book. (Answers to each of the
questions can be found at the end of the review on page A-6.)

SECTION 1 (Symbols and Notation: Arithmetic
Operations)

1. 8 � 2 � 14 � 4 � _______________

2. 4 � (�6) � _______________

3. 22 � (�4) � 3 � _______________

4. 8 � 6 � _______________

5. 36 � (�9) � _______________

6. 13 � (�2) � 8 � _______________

7. 44 � 11 � _______________

8. �6 (�3) � _______________

9. �6 � 8 � _______________

10. �14 /�2 � _______________

SECTION 2 (Order of Operations)
1. 3 � (6 � 4) � 30 � _______________

2. 4 � 6(2 � 1) � 6 � _______________

This appendix serves as a reference for the basic mathematical operations
that are used in the book. We provide quick reference tables to help you
with symbols and notation; instruction on the order of operations for equa-
tions with multiple operations; guidelines for converting fractions, deci-
mals, and percentages; and examples of how to solve basic algebraic
equations. Some of you will need a more extensive review than is pre-
sented in these pages. That review, which involves greater detail and in-
struction, can be found on the book’s companion Web site. Most of you
will be familiar with much of this material. However, the inclusion of this
reference can help you to solve problems throughout this book, particu-
larly when you come across material that appears unfamiliar.

We include a diagnostic quiz for you to assess your current com-
fort level with this material. Following the diagnostic test, we provide

instruction and reference tables for each section so that you can review
the concepts, apply the concepts through worked problems, and review
your skills with a brief self-quiz.

Section A.1 Diagnostic Test: Skills Evaluation

Section A.2 Symbols and Notation: Arithmetic Operations

Section A.3 Order of Operations

Section A.4 Proportions: Fractions, Decimals, and Percentages

Section A.5 Solving Equations with a Single Unknown Variable

Section A.6 Answers to Diagnostic Test and Self-Quizzes

A.1 Diagnostic Test: Skills Evaluation
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SECTION 4 (Solving Equations with a Single
Unknown Variable)

1. 5X � 13 � 7 _______________

2. 3(X � 2) � 9 _______________

3. X/3 � 2 � 10 _______________

4. X(�3) � 2 � �16 _______________

5. X(6 � 4) � 3 � 15 _______________

6. X/4 � 3 � 6 _______________

7. 3X � (�9)/(�3) � 24 _______________

8. 9 � X/4 � 12 _______________

9. 4X � 5 � 19 _______________

10. 5 � (�2) � 3X � 9 _______________

A.2 Symbols And Notation: Arithmetic Operations

SYMBOLS AND NOTATION
The basic mathematical symbols used throughout this book are located
in Table A.1. These include the most common arithmetic operations,
and most of you will find that you are familiar with them. However, it
is worth your time to review the reference table and material that out-
line the operations using positive and negative numbers. For those of
you who have spent little time solving math equations recently, famil-
iarizing yourselves with this material can be quite helpful in avoiding
common mistakes.

ARITHMETIC OPERATIONS: Worked Examples

Adding, Subtracting, Multiplying, and Dividing with
Positive and Negative Numbers

1. Adding with positive numbers: Add the two (or series of ) num-
bers to produce a sum.

a. 4 � 7 � 11

b. 7 � 4 � 9 � 20

c. 4 � 6 � 7 � 2 � 19

2. Adding with negative numbers: Sum the absolute values of each
number and place a negative sign in front of the sum. (Hint:
When a positive sign directly precedes a negative sign, change
both signs to a single negative sign.)

a. �6 � (�4) � �10

�6 � 4 � �10
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b. �3 � (�2) � �5

�3 � 2 � �5

3. Adding two numbers with opposite signs: Find the difference
between the two numbers and assign the sign (positive or neg-
ative) of the larger number.

a. 17 � (�9) � 8

b. �16 � 10 � �6

4. Subtracting one number from another number. (Hint: When
subtracting a negative number from another number, two neg-
ative signs come in sequence, as in part (a). To solve the equa-
tions, change the two sequential negative signs into a single
positive sign.)

a. 5 � (�4) � 9

5 � 4 � 9

b. 5 � 8 � �3

c. �6 � 3 � �9

5. Multiplying two positive numbers produces a positive result.

a. 6 � 9 � 54

b. 6(9) � 54

c. 4 � 3 � 12

d. 4(3) � 12

6. Multiplying two negative numbers produces a positive result.

a. �3 � �9 � 27

b. �3(�9) � 27

c. �4 � (�3) � 12

d. �4(�3) � 12

7. Multiplying one positive and one negative number produces a
negative result.

a. �3 � 9 � �27

b. �3(9) � �27

c. 4 � (�3) � �12

d. 4(�3) � �12

8. Dividing two positive numbers produces a positive result.

a. 12 � 4 � 3

b. 12 / 4 � 3

c. 16 � 8 � 2

d. 16 / 8 � 2

9. Dividing two negative numbers produces a positive result.

a. �12 � �4 � 3

b. �12 / �4 � 3

c. �16 � (�8) � 2

d. �16 / (�8) � 2

10. Dividing a positive number by a negative number (or dividing
a negative number by a positive number) produces a negative
result.

a. �12 � 4 � �3

b. �12 / 4 � �3

c. 16 � (�8) � �2

d. 16 / (�8) � �2

TABLE A.1 Symbols and Notations

� Addition 8 � 3 � 11

� Subtraction 14 � 6 � 8

�, ( ) Multiplication 4 � 3 � 12, 4(3) � 12

�, / Division 12 � 6 � 2, 12/6 � 2

� Greater than 7 � 5

� Less than 4 � 9

	 Greater than or equal to 7 	 5, 4 	 4


 Less than or equal to 5 
 9, 6 
 6

� Not equal to 5 � 3
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SELF-QUIZ #1: Symbols and Notation:
Arithmetic Operations
(Answers to this quiz can be found on page A-7.)

1. 4 � 7 �

2. 6 � 3 � 9 �

3. �6 � 3 �

4. �27 / 3 �

5. 4(9) �

6. 12 � (�5) �

7. 16(�3) �

8. �24 / �3 �

9. 75 � 5 �

10. �7(�4) �

A.3 Order Of Operations
Equations and formulas often include a number of mathematical opera-
tions combining addition, subtraction, multiplication, and division. Some
will also include exponents and square roots. In complex equations with
more than one operation, it is important to perform the operations in a
specific sequence. Deviating from this sequence can produce a wrong an-
swer. Table A.2 lists the order of operations for quick reference.

ORDER OF OPERATIONS: Worked Examples

1. �3 � 6(4) � 7 � Multiplication

�3 � 24 � 7 � Addition

21 � 7 � Subtraction

14 � 14 Answer

2. 2(8) � 6 / 3 � 8 � Multiplication.
16 � 6 / 3 � 8 � Division

16 � 2 � 8 � Multiplication
16 � 16 � Addition

32 � 32 Answer

3. 32 � 6 / 3 � 12(2) � Square (raise 
exponent)

9 � 6 / 3 � 12(2) � Division
9 � 2 � 12(2) � Multiplication

9 � 2 � 24 � Addition
11 � 24 � Subtraction

�13 � �13 Answer

4. (10 � 6) � 62 / 4 � 3(10) � Within
parentheses

16 � 62/ 4 � 3(10) � Square (raise 
exponent)

16 � 36 / 4 � 3(10) � Division
16 � 9 � 3(10) � Multiplication

16 � 9 � 30 � Subtraction
7 � 30 � Addition

37 � 37 Answer

5. 8 � (�4) � 3(12 � 8) � Within
parentheses

8 � (�4) � 3(4) � Multiplication
8 � (�4) � 12 � Addition

4 � 12 � Addition
16 � 16 Answer

SELF-QUIZ #2: Order of Operations
(Answers to this quiz can be found on page A-7.)

1. 3(7) � 12/3 � 2 �

2. 4/2 � 6 � 2(3) �

3. �5(4) � 16 �

4. 8 � (�16)/4 �

5. 6 � 3 � 5 � 3(5) � 10 �

6. 42/8 � 4(3) � (8 � 3) �

7. (14 � 6) � 72/9 � 4 �

8. (54 � 18)/4 � 7 � 3 �

9. 32 � 4(3 � 4) � 8 �

10. 100 � 3 � 87 �

TABLE A.2 Order of Operations

Rule of Operation Example

1. Calculations within 1a. (6 � 2) � 4 � 3 / 22 � 6 �
parentheses are 1b. 8 � 4 � 3 / 22 � 6 �
completed first.

2. Squaring (or raising 2a. 8 � 4 � 3 / 22 � 6 �
to another exponent) 2b. 8 � 4 � 3 / 4 � 6 �
is completed second.

3. From left to right, 3a. 8 � 4 � 3 / 4 � 6 �
complete all 3b. 8 � 12 / 4 � 6 �
multiplication and 3c. 8 � 12 / 4 � 6 �
division operations. 3d. 8 � 3 � 6 �
This may require 
multiple steps.

4. Last, complete all 4a. 8 � 3 � 6 �
the addition and 4b. 5 � 6 �
subtraction 4c. 11 � 11
operations.

A.4 Proportions: Fractions, Decimals, And
Percentages
A proportion is a part in relation to a whole. When we look at frac-
tions, we understand the denominator (the bottom number) to be the
number of equal parts in the whole. The numerator represents the
proportion of parts of that whole that are present. Fractions can be
converted into decimals by dividing the numerator by the denomina-
tor. Decimals can then be converted into percentages by multiplying
by 100 (Table A.3). It is important to use the percentage symbol (%)
when differentiating decimals from percentages. Additionally, decimals
are often rounded to the nearest hundredth before they are converted
into a percentage.
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FRACTIONS

Equivalent Fractions
The same proportion can be expressed in a number of equiva-
lent fractions. Equivalent fractions are found by multiplying both
the numerator and the denominator by the same number.

1/2 � 2/4 � 6/12 � 30/60

In this case, we multiply each side of 1/2 by 2 to reach the equiv-
alent 2/4, then by 3 to reach the equivalent 6/12, then by 5 to
reach the equivalent 30/60. Or we could have multiplied the nu-
merator and denominator of the original 1/2 by 30 to reach our
concluding 30/60.

Now fractions can also be reduced to a simpler form by divid-
ing the numerator and denominator by the same number. Be
sure to divide each by a number that will result in a whole num-
ber for both the numerator and the denominator.

25/75 � 5/15 � 1/3

By dividing each side by 5, the fraction was reduced from 25/75
to 5/15. By further dividing by 5, we reduce the fraction to its
simplest form, 1/3. Or we could have divided the numerator and
denominator of the original 25/75 by 25, resulting in the sim-
plest expression of this fraction, 1/3.

Adding and Subtracting Fractions 
(with the same denominator)
Finding equivalent fractions is essential to adding and subtract-
ing two or more fractions. In order to add or subtract, each frac-
tion must have the same denominator. If the two fractions
already have the same denominator, add or subtract the num-
bers in the numerators only.

2/7 � 1/7 � 3/7
4/5 � 3/5 � 1/5

In each of these instances, we are adding or subtracting from
the same whole (or same pie, as in lines one and two of Table
A.3). In the first equation, we are increasing our proportion of
2 by 1 to equal 3 pieces of the whole. In the second equation,
we are reducing the number of proportions from 4 by 3 to equal
just 1 piece of the whole.

Adding and Subtracting Fractions 
(with different denominators)
When adding or subtracting two proportions with different de-
nominators, it is necessary to find a common denominator be-
fore performing the operation. It is often easiest to multiply each
side (numerator and denominator) by the number equal to the
denominator of the other fraction. This provides an easy route
to finding a common denominator.

2/5 � 1/6 �

Multiply the numerator and denominator of 2/5 by 6, equaling
12/30.

Multiply the numerator and denominator of 1/6 by 5, equaling
5/30.

12/30 � 5/30 � 17/30

Multiplying Fractions
When multiplying fractions, it is not necessary to find common
denominators. Just multiply the two numerators in each frac-
tion and the two denominators in each fraction.

4/7 � 5/8 � (4 � 5)/(7 � 8) � 20/56

(Note: This fraction can be reduced to a simpler equivalent by
dividing both the numerator and denominator by 4. The result
is 5/14.)

Dividing Fractions
When dividing a fraction by another fraction, invert the second
fraction and multiply as above.

1/3 � 2/3 � 1/3 � 3/2 � (1 � 3) / (3 � 2) � 3/6

(Note: This can be reduced to a simpler equivalent by dividing
both the numerator and denominator by 3. The result is one-
half, 1/2.)

SELF-QUIZ #3: Fractions
(Answers to this quiz can be found on page A-7.)

1. 2/5 � 1/5 �

2. 2/7 � 4/5 �

3. 11/15 � 2/5 �

4. 3/5 � 6/8 �

5. 3/8 � 1/4 �

6. 1/8 � 4/5 �

7. 8/9 � 5/9 � 2/9

8. 2/7 � 1/3 �

9. 4/15 � 3/5 �

10. 6/7 � 3/4 �

TABLE A.3 Proportions: Converting Fractions to Decimals to
Percentages

� 2/8 � 0.25 � 25%

� 5/8 � 0.625 � 62.5% or 63%

� 10/20 � 0.50 � 50%
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DECIMALS

Converting Decimals to Fractions
Decimals represent proportions of a whole similar to fractions.
Each decimal place represents a factor of 10. So the first decimal
place represents a number over 10, the second decimal place rep-
resents a number over 100, the third decimal place represents a
number over 1000, the fourth decimal place represents a num-
ber over 10,000, and so on.

To convert a decimal to a fraction, take the number as the nu-
merator and place it over 10, 100, 1000, and so on based on
how many numbers are to the right of the decimal point. For
example,

0.6 � 6/10 0.58 � 58/100

0.926 � 926/1000 0.7841 � 7841/10,000

Adding and Subtracting Decimals
When adding or subtracting decimal points, it is necessary to
keep the decimal points in a vertical line. Then add or subtract
each vertical row as you normally would.

3.83 4.4992
�1.358 �1.738

5.188 2.7612

Multiplying Decimals
Multiplying decimals requires two basic steps. First, multiply the
two decimals just as you would any numbers, paying no con-
cern to where the decimal point is located. Once you have com-
pleted that operation, add the number of places to the right of
the decimal in each number and count off that many decimal
points in the solution line. That is your answer, which you may
round up to three decimal places (two for the final answer).

4.26 (two decimal places) 0.532 (three decimal places)
�0.398 (three decimal places) �0.8 (one decimal place)

3408 0.4256 (four decimal places)
3834

1278

1.69548 (five decimal places)

Dividing Decimals
When dividing decimals, it is easiest to multiply each decimal
by the factor of 10 associated with the number of places to the
right of the decimal point. So, if one of the numbers has two
numbers to the right of the decimal point and the other num-
ber has one, each number should be multiplied by 100. For
example,

0.7 � 1.32 � 0.7/1.32

Then multiply each side by the factor of 10 associated with the
most spaces to the right of the decimal point in either number.
In this case, that is 2, so we multiply each side by 100.

0.7 � 100 � 70
1.32 � 100 � 132

So the new fraction is 70/132.

SELF-QUIZ #4: Decimals
(Answers to this quiz can be found on page A-7.)

1. 1.83 � 0.68 �

2. 2.637 � 4.2 �

3. 1.894 � 0.62 �

4. 0.35 � 0.7 �

5. 3.419 � 0.12 �

6. 0.82/1.74 �

7. 0.125 � 0.625 �

8. 0.44 � 0.163 �

9. 0.8 � 1.239 �

10. 13.288 � 4.46 �

PERCENTAGES

Converting Percentages to Fractions or Decimals
Convert a percentage into a fraction by removing the percent-
age symbol and placing the number over a denominator of 100.

82% � 82/100 or  41/50 or  0.82

20% � 20/100 or  1/5 or  0.2

Multiplying with Percentages
In statistics, it is often necessary to determine the percentage of
a whole number when analyzing data. To multiply with a per-
centage, convert the percentage to a decimal (Table A.3) and
solve the equation. To convert a percentage to a decimal, re-
move the percentage symbol and move the decimal point two
places to the left.

80% of 45 � 80% � 45 � 0.80 � 45 � 36
25% of 94 � 25% � 94 � 0.25 � 94 � 23.5

SELF-QUIZ #5: Percentages
(Answers to this quiz can be found on page A-7.)

1. 45% � 100 �

2. 22% of 80 �

3. 35% of 90 �

4. 80% � 23 �

5. 58% � 60 �

6. 32 � 16% �

7. 125 � 73% �

8. 24 � 75% �

9. 69% of 224 �

10. 51% � 37 �
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A.5 Solving Equations With A Single 
Unknown Variable
When solving equations with an unknown variable, isolate the
unknown variable on one side of the equation. By isolating the
variable, you free up the other side of the equation so you can
solve it to a single number, thus providing you with the value
of the variable.

To isolate the variable, add, subtract, multiply, or divide each
side of the equation to solve operations on the side of the equa-
tion that contains the variable (Table A.4).

SOLVING EQUATIONS WITH A SINGLE 
UNKNOWN VARIABLE: Worked Examples

1. X � 12 � 42
X � 12 � 12 � 42 � 12

X � 30

2. X � 13 � �5
X � 13 � 13 � � 5 � 13

X � 8

3. (X � 3)/6 � 2
(X � 3)/6 � 6 � 2 � 6

X � 3 � 12
X � 3 � 3 � 12 � 3

X � 15

4. (3X � 4)/2 � 8
(3X � 4)/2 � 2 � 8 � 2

3X � 4 � 16
3X � 4 � 4 � 16 � 4

3X � 12
3X/3 � 12/3

X � 4

5. (X � 2)/3 � 7
(X � 2)/3 � 3 � 7 � 3

X � 2 � 21
X � 2 � 2 � 21 � 2

X � 23

SELF-QUIZ #6: Solving Equations with a Single
Unknown Variable
(Answers to this quiz can be found on page A-7.)

1. 7X � 42
X �

2. 87 � X � 16 � 57
X �

3. X � 17 � �6
X �

4. 5X � 4 � 21
X �

5. X � 10 � �4
X �

6. X / 8 � 20
X �

7. (X � 17)/3 � 10
X �

8. 2(X � 4) � 24
X �

9. X(3 � 12) � 20 � 40
X �

10. 34 � X/6 � 27
X �

A.6 Answers To Diagnostic Test 
And Self-Quizzes

Answers to Diagnostic Test

Section 1
1. 28; 2. �24; 3. 29; 4. 48; 5. �4; 6. 19; 7. 4; 8. 18; 9. �14; 10. 7

Section 2
1. 0; 2. 28; 3. �1; 4. 16; 5. 20; 6. 16; 7. �4; 8. 2; 9. 7; 
10. 16

Section 3
1. 42/100 or 21/50; 2. 0.6; 3. 80%; 4. 10/13; 5. 0.336; 6. 48; 
7. 24/35; 8. 32; 9. 3/4; 10. 20/63

Section 4
1. 4; 2. 5; 3. 24; 4. 6; 5. 6; 6. 12; 7. 7; 8. 12; 9. 6; 10. 2

Multiplication

X � 5 � 20
X � 5/5 � 20/5

X � 4

Division

X/5 � 40
X/5 � 5 � 40 � 5

X � 200

Multiple Operations

4X � 6 � 18
4X � 6 � 6 � 18 � 6

4X � 12
4X/4 � 12/4

X � 3

Dividing each side by 5 zeros the
multiplication operation.

Multiplying each side by 5 zeros
the division operation.

When isolating a variable, work
backward through the order of
operations (see Table A.2). Isolate
addition and subtraction
operations first. Then isolate
operations for multiplication and
division.

TABLE A.4 Solving Equations With A Single Variable

Addition

X � 7 � 18
X � 7 � 7 � 18 � 7

X � 11

Subtraction

X � 13 � 27
X � 13 � 13 � 27 � 13

X � 40

Subtracting 7 from each side zeros
the addition operation.

Adding 13 to each side zeros the
subtraction operation.
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Answers for Self-Quiz #1: Symbols 
and Notation
1. 28; 2. 18; 3. �9; 4. �9; 5. 36; 6. 7; 7. �48; 8. 8; 9. 15; 10. 28

Answers for Self-Quiz #2: Order of Operations
1. 19; 2. 2; 3. �4; 4. 4; 5. 3; 6. �5; 7. 20; 8. 30; 9. 12; 
10. 213

Answers for Self-Quiz #3: Fractions
1. 3/5; 2. 8/35; 3. 1/3 or 5/15 or 25/75; 4. 24/30 or 4/5; 5. 5/8; 6. 5/32; 7. 5/9;
8. 13/21; 9. 12/75 or 4/25; 10. 3/28

Answers for Self-Quiz #4: Decimals
1. 1.244; 2. 6.837; 3. 1.274; 4. 35/70 or 1/2 or 0.5; 5. 0.41028; 6. 82/174

or 41/87 or 0.47; 7. 125/625 or 1/5 or 0.2; 8. 0.07172; 9. 2.039; 10. 8.828

Answers for Self-Quiz #5: Percentages
1. 45; 2. 17.6; 3. 31.5; 4. 18.4; 5. 34.8; 6. 5.12; 7. 91.25; 
8. 18; 9. 154.56; 10. 18.87

Answers for Self-Quiz #6: Solving Equations with
a Single Unknown Variable
1. 6; 2. 46; 3. 11; 4. 5; 5. 6; 6. 160; 7. 13; 8. 8; 9. 4; 10. 42
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.00 0.00 50.00

.01 0.40 49.60

.02 0.80 49.20

.03 1.20 48.80

.04 1.60 48.40

.05 1.99 48.01

.06 2.39 47.61

.07 2.79 47.21

.08 3.19 46.81

.09 3.59 46.41

.10 3.98 46.02

.11 4.38 45.62

.12 4.78 45.22

.13 5.17 44.83

.14 5.57 44.43

.15 5.96 44.04

.16 6.36 43.64

.17 6.75 43.25

.18 7.14 42.86

.19 7.53 42.47

.20 7.93 42.07

.21 8.32 41.68

.22 8.71 41.29

.23 9.10 40.90

.24 9.48 40.52

.25 9.87 40.13

.26 10.26 39.74

.27 10.64 39.36

.28 11.03 38.97

.29 11.41 38.59

.30 11.79 38.21

.31 12.17 37.83

.32 12.55 37.45

.33 12.93 37.07

.34 13.31 36.69

.35 13.68 36.32

.36 14.06 35.94

.37 14.43 35.57

.38 14.80 35.20

.39 15.17 34.83

.40 15.54 34.46

.41 15.91 34.09

.42 16.28 33.72

.43 16.64 33.36

.44 17.00 33.00

.45 17.36 32.64

.46 17.72 32.28

.47 18.08 31.92

.48 18.44 31.56

.49 18.79 31.21

.50 19.15 30.85

.51 19.50 30.50

.52 19.85 30.15

.53 20.19 29.81

.54 20.54 29.46

.55 20.88 29.12

.56 21.23 28.77

.57 21.57 28.43

.58 21.90 28.10

.59 22.24 27.76

.60 22.57 27.43

.61 22.91 27.09

.62 23.24 26.76

.63 23.57 26.43

.64 23.89 26.11

.65 24.22 25.78

.66 24.54 25.46

.67 24.86 25.14

mean z mean zmean z

Normal curve columns represent percentages between the mean and the 
z scores and percentages beyond the z scores in the tail.

mean z

Statistical Tables

A P P E N D I X B

TABLE B.1 THE z DISTRIBUTION

% MEAN % MEAN 
z TO z % IN TAIL z TO z % IN TAIL
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.68 25.17 24.83

.69 25.49 24.51

.70 25.80 24.20

.71 26.11 23.89

.72 26.42 23.58

.73 26.73 23.27

.74 27.04 22.96

.75 27.34 22.66

.76 27.64 22.36

.77 27.94 22.06

.78 28.23 21.77

.79 28.52 21.48

.80 28.81 21.19

.81 29.10 20.90

.82 29.39 20.61

.83 29.67 20.33

.84 29.95 20.05

.85 30.23 19.77

.86 30.51 19.49

.87 30.78 19.22

.88 31.06 18.94

.89 31.33 18.67

.90 31.59 18.41

.91 31.86 18.14

.92 32.12 17.88

.93 32.38 17.62

.94 32.64 17.36

.95 32.89 17.11

.96 33.15 16.85

.97 33.40 16.60

.98 33.65 16.35

.99 33.89 16.11
1.00 34.13 15.87
1.01 34.38 15.62
1.02 34.61 15.39
1.03 34.85 15.15
1.04 35.08 14.92
1.05 35.31 14.69
1.06 35.54 14.46
1.07 35.77 14.23
1.08 35.99 14.01
1.09 36.21 13.79
1.10 36.43 13.57
1.11 36.65 13.35
1.12 36.86 13.14
1.13 37.08 12.92
1.14 37.29 12.71
1.15 37.49 12.51
1.16 37.70 12.30
1.17 37.90 12.10
1.18 38.10 11.90
1.19 38.30 11.70
1.20 38.49 11.51
1.21 38.69 11.31
1.22 38.88 11.12
1.23 39.07 10.93
1.24 39.25 10.75
1.25 39.44 10.56
1.26 39.62 10.38
1.27 39.80 10.20

1.28 39.97 10.03
1.29 40.15 9.85
1.30 40.32 9.68
1.31 40.49 9.51
1.32 40.66 9.34
1.33 40.82 9.18
1.34 40.99 9.01
1.35 41.15 8.85
1.36 41.31 8.69
1.37 41.47 8.53
1.38 41.62 8.38
1.39 41.77 8.23
1.40 41.92 8.08
1.41 42.07 7.93
1.42 42.22 7.78
1.43 42.36 7.64
1.44 42.51 7.49
1.45 42.65 7.35
1.46 42.79 7.21
1.47 42.92 7.08
1.48 43.06 6.94
1.49 43.19 6.81
1.50 43.32 6.68
1.51 43.45 6.55
1.52 43.57 6.43
1.53 43.70 6.30
1.54 43.82 6.18
1.55 43.94 6.06
1.56 44.06 5.94
1.57 44.18 5.82
1.58 44.29 5.71
1.59 44.41 5.59
1.60 44.52 5.48
1.61 44.63 5.37
1.62 44.74 5.26
1.63 44.84 5.16
1.64 44.95 5.05
1.65 45.05 4.95
1.66 45.15 4.85
1.67 45.25 4.75
1.68 45.35 4.65
1.69 45.45 4.55
1.70 45.54 4.46
1.71 45.64 4.36
1.72 45.73 4.27
1.73 45.82 4.18
1.74 45.91 4.09
1.75 45.99 4.01
1.76 46.08 3.92
1.77 46.16 3.84
1.78 46.25 3.75
1.79 46.33 3.67
1.80 46.41 3.59
1.81 46.49 3.51
1.82 46.56 3.44
1.83 46.64 3.36
1.84 46.71 3.29
1.85 46.78 3.22
1.86 46.86 3.14
1.87 46.93 3.07

% MEAN % MEAN 
z TO z % IN TAIL z TO z % IN TAIL

TABLE B.1 continued
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1.88 46.99 3.01
1.89 47.06 2.94
1.90 47.13 2.87
1.91 47.19 2.81
1.92 47.26 2.74
1.93 47.32 2.68
1.94 47.38 2.62
1.95 47.44 2.56
1.96 47.50 2.50
1.97 47.56 2.44
1.98 47.61 2.39
1.99 47.67 2.33
2.00 47.72 2.28
2.01 47.78 2.22
2.02 47.83 2.17
2.03 47.88 2.12
2.04 47.93 2.07
2.05 47.98 2.02
2.06 48.03 1.97
2.07 48.08 1.92
2.08 48.12 1.88
2.09 48.17 1.83
2.10 48.21 1.79
2.11 48.26 1.74
2.12 48.30 1.70
2.13 48.34 1.66
2.14 48.38 1.62
2.15 48.42 1.58
2.16 48.46 1.54
2.17 48.50 1.50
2.18 48.54 1.46
2.19 48.57 1.43
2.20 48.61 1.39
2.21 48.64 1.36
2.22 48.68 1.32
2.23 48.71 1.29
2.24 48.75 1.25
2.25 48.78 1.22
2.26 48.81 1.19
2.27 48.84 1.16
2.28 48.87 1.13
2.29 48.90 1.10
2.30 48.93 1.07
2.31 48.96 1.04
2.32 48.98 1.02
2.33 49.01 .99
2.34 49.04 .96
2.35 49.06 .94
2.36 49.09 .91
2.37 49.11 .89
2.38 49.13 .87
2.39 49.16 .84
2.40 49.18 .82
2.41 49.20 .80
2.42 49.22 .78
2.43 49.25 .75
2.44 49.27 .73
2.45 49.29 .71

2.46 49.31 .69
2.47 49.32 .68
2.48 49.34 .66
2.49 49.36 .64
2.50 49.38 .62
2.51 49.40 .60
2.52 49.41 .59
2.53 49.43 .57
2.54 49.45 .55
2.55 49.46 .54
2.56 49.48 .52
2.57 49.49 .51
2.58 49.51 .49
2.59 49.52 .48
2.60 49.53 .47
2.61 49.55 .45
2.62 49.56 .44
2.63 49.57 .43
2.64 49.59 .41
2.65 49.60 .40
2.66 49.61 .39
2.67 49.62 .38
2.68 49.63 .37
2.69 49.64 .36
2.70 49.65 .35
2.71 49.66 .34
2.72 49.67 .33
2.73 49.68 .32
2.74 49.69 .31
2.75 49.70 .30
2.76 49.71 .29
2.77 49.72 .28
2.78 49.73 .27
2.79 49.74 .26
2.80 49.74 .26
2.81 49.75 .25
2.82 49.76 .24
2.83 49.77 .23
2.84 49.77 .23
2.85 49.78 .22
2.86 49.79 .21
2.87 49.79 .21
2.88 49.80 .20
2.89 49.81 .19
2.90 49.81 .19
2.91 49.82 .18
2.92 49.82 .18
2.93 49.83 .17
2.94 49.84 .16
2.95 49.84 .16
2.96 49.85 .15
2.97 49.85 .15
2.98 49.86 .14
2.99 49.86 .14
3.00 49.87 .13
3.50 49.98 .02
4.00 50.00 .00
4.50 50.00 .00

% MEAN % MEAN 
z TO z % IN TAIL z TO z % IN TAIL

TABLE B.1 continued



TABLE B.3 THE F DISTRIBUTIONS

1 .01 4,052 5,000 5,404 5,625 5,764 5,859
.05 162 200 216 225 230 234
.10 39.9 49.5 53.6 55.8 57.2 58.2

2 .01 98.50 99.00 99.17 99.25 99.30 99.33
.05 18.51 19.00 19.17 19.25 19.30 19.33
.10 8.53 9.00 9.16 9.24 9.29 9.33

TABLE B.2 THE t DISTRIBUTIONS

One-Tailed Tests Two-Tailed Tests
p level p level

df .10 .05 .01 .10 .05 .01

1 3.078 6.314 31.821 6.314 12.706 63.657
2 1.886 2.920 6.965 2.920 4.303 9.925
3 1.638 2.353 4.541 2.353 3.182 5.841
4 1.533 2.132 3.747 2.132 2.776 4.604
5 1.476 2.015 3.365 2.015 2.571 4.032
6 1.440 1.943 3.143 1.943 2.447 3.708
7 1.415 1.895 2.998 1.895 2.365 3.500
8 1.397 1.860 2.897 1.860 2.306 3.356
9 1.383 1.833 2.822 1.833 2.262 3.250

10 1.372 1.813 2.764 1.813 2.228 3.170
11 1.364 1.796 2.718 1.796 2.201 3.106
12 1.356 1.783 2.681 1.783 2.179 3.055
13 1.350 1.771 2.651 1.771 2.161 3.013
14 1.345 1.762 2.625 1.762 2.145 2.977
15 1.341 1.753 2.603 1.753 2.132 2.947
16 1.337 1.746 2.584 1.746 2.120 2.921
17 1.334 1.740 2.567 1.740 2.110 2.898
18 1.331 1.734 2.553 1.734 2.101 2.879
19 1.328 1.729 2.540 1.729 2.093 2.861
20 1.326 1.725 2.528 1.725 2.086 2.846
21 1.323 1.721 2.518 1.721 2.080 2.832
22 1.321 1.717 2.509 1.717 2.074 2.819
23 1.320 1.714 2.500 1.714 2.069 2.808
24 1.318 1.711 2.492 1.711 2.064 2.797
25 1.317 1.708 2.485 1.708 2.060 2.788
26 1.315 1.706 2.479 1.706 2.056 2.779
27 1.314 1.704 2.473 1.704 2.052 2.771
28 1.313 1.701 2.467 1.701 2.049 2.764
29 1.312 1.699 2.462 1.699 2.045 2.757
30 1.311 1.698 2.458 1.698 2.043 2.750
35 1.306 1.690 2.438 1.690 2.030 2.724
40 1.303 1.684 2.424 1.684 2.021 2.705
60 1.296 1.671 2.390 1.671 2.001 2.661
80 1.292 1.664 2.374 1.664 1.990 2.639

100 1.290 1.660 2.364 1.660 1.984 2.626
120 1.289 1.658 2.358 1.658 1.980 2.617
� 1.282 1.645 2.327 1.645 1.960 2.576

B-4 APPENDIX B

or

WITHIN- SIGNIF- BETWEEN-GROUPS DEGREES OF FREEDOM
GROUPS ICANCE

df (p) LEVEL 1 2 3 4 5 6
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3 .01 34.12 30.82 29.46 28.71 28.24 27.91
.05 10.13 9.55 9.28 9.12 9.01 8.94
.10 5.54 5.46 5.39 5.34 5.31 5.28

4 .01 21.20 18.00 16.70 15.98 15.52 15.21
.05 7.71 6.95 6.59 6.39 6.26 6.16
.10 4.55 4.33 4.19 4.11 4.05 4.01

5 .01 16.26 13.27 12.06 11.39 10.97 10.67
.05 6.61 5.79 5.41 5.19 5.05 4.95
.10 4.06 3.78 3.62 3.52 3.45 3.41

6 .01 13.75 10.93 9.78 9.15 8.75 8.47
.05 5.99 5.14 4.76 4.53 4.39 4.28
.10 3.78 3.46 3.29 3.18 3.11 3.06

7 .01 12.25 9.55 8.45 7.85 7.46 7.19
.05 5.59 4.74 4.35 4.12 3.97 3.87
.10 3.59 3.26 3.08 2.96 2.88 2.83

8 .01 11.26 8.65 7.59 7.01 6.63 6.37
.05 5.32 4.46 4.07 3.84 3.69 3.58
.10 3.46 3.11 2.92 2.81 2.73 2.67

9 .01 10.56 8.02 6.99 6.42 6.06 5.80
.05 5.12 4.26 3.86 3.63 3.48 3.37
.10 3.36 3.01 2.81 2.69 2.61 2.55

10 .01 10.05 7.56 6.55 6.00 5.64 5.39
.05 4.97 4.10 3.71 3.48 3.33 3.22
.10 3.29 2.93 2.73 2.61 2.52 2.46

11 .01 9.65 7.21 6.22 5.67 5.32 5.07
.05 4.85 3.98 3.59 3.36 3.20 3.10
.10 3.23 2.86 2.66 2.54 2.45 2.39

12 .01 9.33 6.93 5.95 5.41 5.07 4.82
.05 4.75 3.89 3.49 3.26 3.11 3.00
.10 3.18 2.81 2.61 2.48 2.40 2.33

13 .01 9.07 6.70 5.74 5.21 4.86 4.62
.05 4.67 3.81 3.41 3.18 3.03 2.92
.10 3.14 2.76 2.56 2.43 2.35 2.28

14 .01 8.86 6.52 5.56 5.04 4.70 4.46
.05 4.60 3.74 3.34 3.11 2.96 2.85
.10 3.10 2.73 2.52 2.40 2.31 2.24

15 .01 8.68 6.36 5.42 4.89 4.56 4.32
.05 4.54 3.68 3.29 3.06 2.90 2.79
.10 3.07 2.70 2.49 2.36 2.27 2.21

16 .01 8.53 6.23 5.29 4.77 4.44 4.20
.05 4.49 3.63 3.24 3.01 2.85 2.74
.10 3.05 2.67 2.46 2.33 2.24 2.18

17 .01 8.40 6.11 5.19 4.67 4.34 4.10
.05 4.45 3.59 3.20 2.97 2.81 2.70
.10 3.03 2.65 2.44 2.31 2.22 2.15

18 .01 8.29 6.01 5.09 4.58 4.25 4.02
.05 4.41 3.56 3.16 2.93 2.77 2.66
.10 3.01 2.62 2.42 2.29 2.20 2.13

19 .01 8.19 5.93 5.01 4.50 4.17 3.94
.05 4.38 3.52 3.13 2.90 2.74 2.63
.10 2.99 2.61 2.40 2.27 2.18 2.11

WITHIN- SIGNIF- BETWEEN-GROUPS DEGREES OF FREEDOM
GROUPS ICANCE

df (p) LEVEL 1 2 3 4 5 6

TABLE B.3 continued
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20 .01 8.10 5.85 4.94 4.43 4.10 3.87
.05 4.35 3.49 3.10 2.87 2.71 2.60
.10 2.98 2.59 2.38 2.25 2.16 2.09

21 .01 8.02 5.78 4.88 4.37 4.04 3.81
.05 4.33 3.47 3.07 2.84 2.69 2.57
.10 2.96 2.58 2.37 2.23 2.14 2.08

22 .01 7.95 5.72 4.82 4.31 3.99 3.76
.05 4.30 3.44 3.05 2.82 2.66 2.55
.10 2.95 2.56 2.35 2.22 2.13 2.06

23 .01 7.88 5.66 4.77 4.26 3.94 3.71
.05 4.28 3.42 3.03 2.80 2.64 2.53
.10 2.94 2.55 2.34 2.21 2.12 2.05

24 .01 7.82 5.61 4.72 4.22 3.90 3.67
.05 4.26 3.40 3.01 2.78 2.62 2.51
.10 2.93 2.54 2.33 2.20 2.10 2.04

25 .01 7.77 5.57 4.68 4.18 3.86 3.63
.05 4.24 3.39 2.99 2.76 2.60 2.49
.10 2.92 2.53 2.32 2.19 2.09 2.03

26 .01 7.72 5.53 4.64 4.14 3.82 3.59
.05 4.23 3.37 2.98 2.74 2.59 2.48
.10 2.91 2.52 2.31 2.18 2.08 2.01

27 .01 7.68 5.49 4.60 4.11 3.79 3.56
.05 4.21 3.36 2.96 2.73 2.57 2.46
.10 2.90 2.51 2.30 2.17 2.07 2.01

28 .01 7.64 5.45 4.57 4.08 3.75 3.53
.05 4.20 3.34 2.95 2.72 2.56 2.45
.10 2.89 2.50 2.29 2.16 2.07 2.00

29 .01 7.60 5.42 4.54 4.05 3.73 3.50
.05 4.18 3.33 2.94 2.70 2.55 2.43
.10 2.89 2.50 2.28 2.15 2.06 1.99

30 .01 7.56 5.39 4.51 4.02 3.70 3.47
.05 4.17 3.32 2.92 2.69 2.53 2.42
.10 2.88 2.49 2.28 2.14 2.05 1.98

35 .01 7.42 5.27 4.40 3.91 3.59 3.37
.05 4.12 3.27 2.88 2.64 2.49 2.37
.10 2.86 2.46 2.25 2.11 2.02 1.95

40 .01 7.32 5.18 4.31 3.83 3.51 3.29
.05 4.09 3.23 2.84 2.61 2.45 2.34
.10 2.84 2.44 2.23 2.09 2.00 1.93

45 .01 7.23 5.11 4.25 3.77 3.46 3.23
.05 4.06 3.21 2.81 2.58 2.42 2.31
.10 2.82 2.43 2.21 2.08 1.98 1.91

50 .01 7.17 5.06 4.20 3.72 3.41 3.19
.05 4.04 3.18 2.79 2.56 2.40 2.29
.10 2.81 2.41 2.20 2.06 1.97 1.90

55 .01 7.12 5.01 4.16 3.68 3.37 3.15
.05 4.02 3.17 2.77 2.54 2.38 2.27
.10 2.80 2.40 2.19 2.05 1.96 1.89

60 .01 7.08 4.98 4.13 3.65 3.34 3.12
.05 4.00 3.15 2.76 2.53 2.37 2.26
.10 2.79 2.39 2.18 2.04 1.95 1.88

WITHIN- SIGNIF- BETWEEN-GROUPS DEGREES OF FREEDOM
GROUPS ICANCE

df (p) LEVEL 1 2 3 4 5 6

TABLE B.3 continued
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65 .01 7.04 4.95 4.10 3.62 3.31 3.09
.05 3.99 3.14 2.75 2.51 2.36 2.24
.10 2.79 2.39 2.17 2.03 1.94 1.87

70 .01 7.01 4.92 4.08 3.60 3.29 3.07
.05 3.98 3.13 2.74 2.50 2.35 2.23
.10 2.78 2.38 2.16 2.03 1.93 1.86

75 .01 6.99 4.90 4.06 3.58 3.27 3.05
.05 3.97 3.12 2.73 2.49 2.34 2.22
.10 2.77 2.38 2.16 2.02 1.93 1.86

80 .01 6.96 4.88 4.04 3.56 3.26 3.04
.05 3.96 3.11 2.72 2.49 2.33 2.22
.10 2.77 2.37 2.15 2.02 1.92 1.85

85 .01 6.94 4.86 4.02 3.55 3.24 3.02
.05 3.95 3.10 2.71 2.48 2.32 2.21
.10 2.77 2.37 2.15 2.01 1.92 1.85

90 .01 6.93 4.85 4.01 3.54 3.23 3.01
.05 3.95 3.10 2.71 2.47 2.32 2.20
.10 2.76 2.36 2.15 2.01 1.91 1.84

95 .01 6.91 4.84 4.00 3.52 3.22 3.00
.05 3.94 3.09 2.70 2.47 2.31 2.20
.10 2.76 2.36 2.14 2.01 1.91 1.84

100 .01 6.90 4.82 3.98 3.51 3.21 2.99
.05 3.94 3.09 2.70 2.46 2.31 2.19
.10 2.76 2.36 2.14 2.00 1.91 1.83

200 .01 6.76 4.71 3.88 3.41 3.11 2.89
.05 3.89 3.04 2.65 2.42 2.26 2.14
.10 273 2.33 2.11 1.97 1.88 1.80

1000 .01 6.66 4.63 3.80 3.34 3.04 2.82
.05 3.85 3.00 2.61 2.38 2.22 2.11
.10 2.71 2.31 2.09 1.95 1.85 1.78

� .01 6.64 4.61 3.78 3.32 3.02 2.80
.05 3.84 3.00 2.61 2.37 2.22 2.10
.10 2.71 2.30 2.08 1.95 1.85 1.78

WITHIN- SIGNIF- BETWEEN-GROUPS DEGREES OF FREEDOM
GROUPS ICANCE

df (p) LEVEL 1 2 3 4 5 6

TABLE B.3 continued

TABLE B.4 THE CHI-SQUARE DISTRIBUTIONS

SIGNIFICANCE (p) LEVEL
df .10 .05 .01

1 2.706 3.841 6.635
2 4.605 5.992 9.211
3 6.252 7.815 11.345
4 7.780 9.488 13.277
5 9.237 11.071 15.087
6 10.645 12.592 16.812
7 12.017 14.067 18.475
8 13.362 15.507 20.090
9 14.684 16.919 21.666

10 15.987 18.307 23.209
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TABLE B.5 THE q STATISTIC (TUKEY HSD TEST)

k = NUMBER OF TREATMENTS (LEVELS)

2 3 4 5 6 7 8 9 10 11 12

5 .05 3.64 4.60 5.22 5.67 6.03 6.33 6.58 6.80 6.99 7.17 7.32

.01 5.70 6.98 7.80 8.42 8.91 9.32 9.67 9.97 10.24 10.48 10.70

6 .05 3.46 4.34 4.90 5.30 5.63 5.90 6.12 6.32 6.49 6.65 6.79

.01 5.24 6.33 7.03 7.56 7.97 8.32 8.61 8.87 9.10 9.30 9.48

7 .05 3.34 4.16 4.68 5.06 5.36 5.61 5.82 6.00 6.16 6.30 6.43

.01 4.95 5.92 6.54 7.01 7.37 7.68 7.94 8.17 8.37 8.55 8.71

8 .05 3.26 4.04 4.53 4.89 5.17 5.40 5.60 5.77 5.92 6.05 6.18

.01 4.75 5.64 6.20 6.62 6.96 7.24 7.47 7.68 7.86 8.03 8.18

9 .05 3.20 3.95 4.41 4.76 5.02 5.24 5.43 5.59 5.74 5.87 5.98

.01 4.60 5.43 5.96 6.35 6.66 6.91 7.13 7.33 7.49 7.65 7.78

10 .05 3.15 3.88 4.33 4.65 4.91 5.12 5.30 5.46 5.60 5.72 5.83

.01 4.48 5.27 5.77 6.14 6.43 6.67 6.87 7.05 7.21 7.36 7.49

11 .05 3.11 3.82 4.26 4.57 4.82 5.03 5.20 5.35 5.49 5.61 5.71

.01 4.39 5.15 5.62 5.97 6.25 6.48 6.67 6.84 6.99 7.13 7.25

12 .05 3.08 3.77 4.20 4.51 4.75 4.95 5.12 5.27 5.39 5.51 5.61

.01 4.32 5.05 5.50 5.84 6.10 6.32 6.51 6.67 6.81 6.94 7.06

13 .05 3.06 3.73 4.15 4.45 4.69 4.88 5.05 5.19 5.32 5.43 5.53

.01 4.26 4.96 5.40 5.73 5.98 6.19 6.37 6.53 6.67 6.79 6.90

14 .05 3.03 3.70 4.11 4.41 4.64 4.83 4.99 5.13 5.25 5.36 5.46

.01 4.21 4.89 5.32 5.63 5.88 6.08 6.26 6.41 6.54 6.66 6.77

15 .05 3.01 3.67 4.08 4.37 4.59 4.78 4.94 5.08 5.20 5.31 5.40

.01 4.17 4.84 5.25 5.56 5.80 5.99 6.16 6.31 6.44 6.55 6.66

16 .05 3.00 3.65 4.05 4.33 4.56 4.74 4.90 5.03 5.15 5.26 5.35

.01 4.13 4.79 5.19 5.49 5.72 5.92 6.08 6.22 6.35 6.46 6.56

17 .05 2.98 3.63 4.02 4.30 4.52 4.70 4.86 4.99 5.11 5.21 5.31

.01 4.10 4.74 5.14 5.43 5.66 5.85 6.01 6.15 6.27 6.38 6.48

18 .05 2.97 3.61 4.00 4.28 4.49 4.67 4.82 4.96 5.07 5.17 5.27

.01 4.07 4.70 5.09 5.38 5.60 5.79 5.94 6.08 6.20 6.31 6.41

19 .05 2.96 3.59 3.98 4.25 4.47 4.65 4.79 4.92 5.04 5.14 5.23

.01 4.05 4.67 5.05 5.33 5.55 5.73 5.89 6.02 6.14 6.25 634

20 .05 2.95 3.58 3.96 4.23 4.45 4.62 4.77 4.90 5.01 5.11 5.20

.01 4.02 4.64 5.02 5.29 5.51 5.69 5.84 5.97 6.09 6.19 6.28

24 .05 2.92 3.53 3.90 4.17 4.37 4.54 4.68 4.81 4.92 5.01 5.10

.01 3.96 4.55 4.91 5.17 5.37 5.54 5.69 5.81 5.92 6.02 6.11

30 .05 2.89 3.49 3.85 4.10 4.30 4.46 4.60 4.72 4.82 4.92 5.00

.01 3.89 4.45 4.80 5.05 5.24 5.40 5.54 5.65 5.76 5.85 5.93

WITHIN-
GROUPS

df

SIGNIF-
ICANCE

(p) LEVEL
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40 .05 2.86 3.44 3.79 4.04 4.23 4.39 4.52 4.63 4.73 4.82 4.90

.01 3.82 4.37 4.70 4.93 5.11 5.26 5.39 5.50 5.60 5.69 5.76

60 .05 2.83 3.40 3.74 3.98 4.16 4.31 4.44 4.55 4.65 4.73 4.81

.01 3.76 4.28 4.59 4.82 4.99 5.13 5.25 5.36 5.45 5.53 5.60

120 .05 2.80 3.36 3.68 3.92 4.10 4.24 4.36 4.47 4.56 4.64 4.71

.01 3.70 4.20 4.50 4.71 4.87 5.01 5.12 5.21 5.30 5.37 5.44

� .05 2.77 3.31 3.63 3.86 4.03 4.17 4.28 4.39 4.47 4.55 4.62

.01 3.64 4.12 4.40 4.60 4.76 4.88 4.99 5.08 5.16 5.23 5.29

k = NUMBER OF TREATMENTS (LEVELS)

2 3 4 5 6 7 8 9 10 11 12

WITHIN-
GROUPS

df

SIGNIF-
ICANCE
(p) LEVEL

TABLE B.6 THE PEARSON CORRELATION COEFFICIENT

To be significant, the sample correlation coefficient, r, must be greater than or equal to the critical value in the table.

LEVEL OF SIGNIFICANCE FOR LEVEL OF SIGNIFICANCE FOR 
ONE-TAILED TEST TWO-TAILED TEST

p level p level

df = N – 2 .005 .01

1 .988 .9995
2 .900 .980
3 .805 .934
4 .729 .882
5 .669 .833
6 .622 .789
7 .582 .750
8 .549 .716
9 .521 .685

10 .497 .658
11 .476 .634
12 .458 .612
13 .441 .592
14 .426 .574
15 .412 .558
16 .400 .542
17 .389 .528
18 .378 .516
19 .369 .503
20 .360 .492
21 .352 .482
22 .344 .472
23 .337 .462
24 .330 .453
25 .323 .445
26 .317 .437
27 .311 .430
28 .306 .423
29 .301 .416
30 .296 .409
35 .275 .381
40 .257 .358
45 .243 .338
50 .231 .322
60 .211 .295

df = N – 2 .05 .01

1 .997 .9999
2 .950 .990
3 .878 .959
4 .811 .917
5 .754 .874
6 .707 .834
7 .666 .798
8 .632 .765
9 .602 .735

10 .576 .708
11 .553 .684
12 .532 .661
13 .514 .641
14 .497 .623
15 .482 .606
16 .468 .590
17 .456 .575
18 .444 .561
19 .433 .549
20 .423 .537
21 .413 .526
22 .404 .515
23 .396 .505
24 .388 .496
25 .381 .487
26 .374 .479
27 .367 .471
28 .361 .463
29 .355 .456
30 .349 .449
35 .325 .418
40 .304 .393
45 .288 .372
50 .273 .354
60 .250 .325
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TABLE B.7 THE SPEARMAN CORRELATION COEFFICIENT

To be significant, the sample correlation coefficient, rs , must be greater than or equal to the critical value in the table.

LEVEL OF SIGNIFICANCE FOR LEVEL OF SIGNIFICANCE FOR 
ONE-TAILED TEST TWO-TAILED TEST

p level p level

N .05 .01

4 1.000 —
5 0.900 1.000
6 0.829 0.943
7 0.714 0.893
8 0.643 0.833
9 0.600 0.783

10 0.564 0.745
11 0.536 0.709
12 0.503 0.671
13 0.484 0.648
14 0.464 0.622
15 0.443 0.604
16 0.429 0.582
17 0.414 0.566
18 0.401 0.550
19 0.391 0.535
20 0.380 0.520
21 0.370 0.508
22 0.361 0.496
23 0.353 0.486
24 0.344 0.476
25 0.337 0.466
26 0.331 0.457
27 0.324 0.448
28 0.317 0.440
29 0.312 0.433
30 0.306 0.425
35 0.283 0.394
40 0.264 0.368
45 0.248 0.347
50 0.235 0.329
60 0.214 0.300
70 0.190 0.278
80 0.185 0.260
90 0.174 0.245

100 0.165 0.233

N .05 .01

4 — —
5 1.000 —
6 0.886 1.000
7 0.786 0.929
8 0.738 0.881
9 0.700 0.833

10 0.648 0.794
11 0.618 0.755
12 0.587 0.727
13 0.560 0.703
14 0.538 0.675
15 0.521 0.654
16 0.503 0.635
17 0.485 0.615
18 0.472 0.600
19 0.460 0.584
20 0.447 0.570
21 0.435 0.556
22 0.425 0.544
23 0.415 0.532
24 0.406 0.521
25 0.398 0.511
26 0.390 0.501
27 0.382 0.491
28 0.375 0.483
29 0.368 0.475
30 0.362 0.467
35 0.335 0.433
40 0.313 0.405
45 0.294 0.382
50 0.279 0.363
60 0.255 0.331
70 0.235 0.307
80 0.220 0.287
90 0.207 0.271

100 0.197 0.257

LEVEL OF SIGNIFICANCE FOR LEVEL OF SIGNIFICANCE FOR 
ONE-TAILED TEST TWO-TAILED TEST

p level p level

df = N – 2 .05 .01

70 .195 .274
80 .183 .256
90 .173 .242

100 .164 .230

df = N – 2 .05 .01

70 .232 .302
80 .217 .283
90 .205 .267

100 .195 .254

TABLE B.6 continued



A
P

P
E

N
D

IX
 B

B
-1

1

1 — — — — — — — — — — — — — — — — — — 0 0

2 — — — — 0 0 0 1 1 1 1 2 2 2 3 3 3 4 4 4

3 — — 0 0 1 2 2 3 3 4 5 5 6 7 7 8 9 9 10 11

4 — — 0 1 2 3 4 5 6 7 8 9 10 11 12 14 15 16 17 18

5 — 0 1 2 4 5 6 8 9 11 12 13 15 16 18 19 20 22 23 25

6 — 0 2 3 5 7 8 10 12 14 16 17 19 21 23 25 26 28 30 32

7 — 0 2 4 6 8 11 13 15 17 19 21 24 26 28 30 33 35 37 39

8 — 1 3 5 8 10 13 15 18 20 23 26 28 31 33 36 39 41 44 47

9 — 1 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54

10 — 1 4 7 11 14 17 20 24 27 31 34 37 41 44 48 51 55 58 62

11 — 1 5 8 12 16 19 23 27 31 34 38 42 46 50 54 57 61 65 69

12 — 2 5 9 13 17 21 26 30 34 38 42 47 51 55 60 64 68 72 77

13 — 2 6 10 15 19 24 28 33 37 42 47 51 56 61 65 79 75 80 84

14 — 2 7 11 16 21 26 31 36 41 46 51 56 61 66 71 77 82 87 92

15 — 3 7 12 18 23 28 33 39 44 50 55 61 66 72 77 83 88 94 100

16 — 3 8 14 19 25 30 36 42 48 54 60 65 71 77 83 89 95 101 107

17 — 3 9 15 20 26 33 39 45 51 57 64 70 77 83 89 96 102 109 115

18 — 4 9 16 22 28 35 41 48 55 61 68 75 82 88 95 102 109 116 123

19 0 4 10 17 23 30 37 44 51 58 65 72 80 87 94 101 109 116 123 130

20 0 4 11 18 25 32 39 47 54 62 69 77 84 92 100 107 115 123 130 138

TABLE B.8A MANN-WHITNEY U FOR A p LEVEL OF .05 FOR A ONE-TAILED TEST

To be statistically significant, the smaller U must be equal to or less than the value in the table.

NA/NB 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20



B
-1

2
A

P
P

E
N

D
IX

 B

1 — — — — — — — — — — — — — — — — — — — —

2 — — — — — — — 0 0 0 0 1 1 1 1 1 2 2 2 2

3 — — — — 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8

4 — — — 0 1 2 3 4 4 5 6 7 8 9 10 11 11 12 13 13

5 — — 0 1 2 3 5 6 7 8 9 11 12 13 14 15 17 18 19 20

6 — — 1 2 3 5 6 8 10 11 13 14 16 17 19 21 22 24 25 27

7 — — 1 3 5 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

8 — 0 2 4 6 8 10 13 15 17 19 22 24 26 29 31 34 36 38 41

9 — 0 2 4 7 10 12 15 17 20 23 26 28 31 34 37 39 42 45 48

10 — 0 3 5 8 11 14 17 20 23 26 29 33 36 39 42 45 48 52 55

11 — 0 3 6 9 13 16 19 23 26 30 33 37 40 44 47 51 55 58 62

12 — 1 4 7 11 14 18 22 26 29 33 37 41 45 49 53 57 61 65 69

13 — 1 4 8 12 16 20 24 28 33 37 41 45 50 54 59 63 67 72 76

14 — 1 5 9 13 17 22 26 31 36 40 45 50 55 59 64 67 74 78 83

15 — 1 5 10 14 19 24 29 34 39 44 49 54 59 64 70 75 80 85 90

16 — 1 6 11 15 21 26 31 37 42 47 53 59 64 70 75 81 86 92 98

17 — 2 6 11 17 22 28 34 39 45 51 57 63 67 75 81 87 93 99 105

18 — 2 7 12 18 24 30 36 42 48 55 61 67 74 80 86 93 99 106 112

19 — 2 7 13 19 25 32 38 45 52 58 65 72 78 85 92 99 106 113 119

20 — 2 8 13 20 27 34 41 48 55 62 69 76 83 90 98 105 112 119 127

TABLE B.8B MANN-WHITNEY U FOR A p LEVEL OF .05 FOR A TWO-TAILED TEST

To be statistically significant, the smaller U must be equal to or less than the value in the table.

NA/NB 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
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TABLE B.9 WILCOXON SIGNED-RANKS TEST FOR MATCHED PAIRS (T )

LEVEL OF SIGNIFICANCE (p LEVEL) LEVEL OF SIGNIFICANCE  (p LEVEL)
FOR ONE-TAILED TEST FOR TWO-TAILED TEST

N .05 .01

5 0 —
6 2 —
7 3 0
8 5 1
9 8 3

10 10 5
11 13 7
12 17 9
13 21 12
14 25 15
15 30 19
16 35 23
17 41 27
18 47 32
19 53 37
20 60 43
21 67 49
22 75 55
23 83 62
24 91 69
25 100 76
26 110 84
27 119 92
28 130 101
29 140 110
30 151 120
31 163 130
32 175 140
33 187 151
34 200 162
35 213 173
36 227 185
37 241 198
38 256 211
39 271 224
40 286 238
41 302 252
42 319 266
43 336 281
44 353 296
45 371 312
46 389 328
47 407 345
48 426 362
49 446 379
50 466 397

N .05 .01

5 — —
6 0 —
7 2 —
8 3 0
9 5 1

10 8 3
11 10 5
12 13 7
13 17 9
14 21 12
15 25 15
16 29 19
17 34 23
18 40 27
19 46 32
20 52 37
21 58 42
22 65 48
23 73 54
24 81 61
25 89 68
26 98 75
27 107 83
28 116 91
29 126 100
30 137 109
31 147 118
32 159 128
33 170 138
34 182 148
35 195 159
36 208 171
37 221 182
38 235 194
39 249 207
40 264 220
41 279 233
42 294 247
43 310 261
44 327 276
45 343 291
46 361 307
47 378 322
48 396 339
49 415 355
50 434 373
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TABLE B.10 RANDOM DIGITS

19223 95034 05756 28713 96409 12531 42544 82853
73676 47150 99400 01927 27754 42648 82425 36290
45467 71709 77558 00095 32863 29485 82226 90056
52711 38889 93074 60227 40011 85848 48767 52573
95592 94007 69971 91481 60779 53791 17297 59335
68417 35013 15529 72765 85089 57067 50211 47487
82739 57890 20807 47511 81676 55300 94383 14893
60940 72024 17868 24943 61790 90656 87964 18883
36009 19365 15412 39638 85453 46816 83485 41979
38448 48789 18338 24697 39364 42006 76688 08708
81486 69487 60513 09297 00412 71238 27649 39950
59636 88804 04634 71197 19352 73089 84898 45785
62568 70206 40325 03699 71080 22553 11486 11776
45149 32992 75730 66280 03819 56202 02938 70915
61041 77684 94322 24709 73698 14526 31893 32592
14459 26056 31424 80371 65103 62253 50490 61181
38167 98532 62183 70632 23417 26185 41448 75532
73190 32533 04470 29669 84407 90785 65956 86382
95857 07118 87664 92099 58806 66979 98624 84826
35476 55972 39421 65850 04266 35435 43742 11937
71487 09984 29077 14863 61683 47052 62224 51025
13873 81598 95052 90908 73592 75186 87136 95761
54580 81507 27102 56027 55892 33063 41842 81868
71035 09001 43367 49497 72719 96758 27611 91596
96746 12149 37823 71868 18442 35119 62103 39244
96927 19931 36809 74192 77567 88741 48409 41903
43909 99477 25330 64359 40085 16925 85117 36071
15689 14227 06565 14374 13352 49367 81982 87209
36759 58984 68288 22913 18638 54303 00795 08727
69051 64817 87174 09517 84534 06489 87201 97245
05007 16632 81194 14873 04197 85576 45195 96565
68732 55259 84292 08796 43165 93739 31685 97150
45740 41807 65561 33302 07051 93623 18132 09547
27816 78416 18329 21337 35213 37741 04312 68508
66925 55658 39100 78458 11206 19876 87151 31260
08421 44753 77377 28744 75592 08563 79140 92454
53645 66812 61421 47836 12609 15373 98481 14592
66831 68908 40772 21558 47781 33586 79177 06928
55588 99404 70708 41098 43563 56934 48394 51719
12975 13258 13048 45144 72321 81940 00360 02428
96767 35964 23822 96012 94591 65194 50842 53372
72829 50232 97892 63408 77919 44575 24870 04178
88565 42628 17797 49376 61762 16953 88604 12724
62964 88145 83083 69453 46109 59505 69680 00900
19687 12633 57857 95806 09931 02150 43163 58636
37609 59057 66967 83401 60705 02384 90597 93600
54973 86278 88737 74351 47500 84552 19909 67181
00694 05977 19664 65441 20903 62371 22725 53340
71546 05233 53946 68743 72460 27601 45403 88692
07511 88915 41267 16853 84569 79367 32337 03316
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C H A P T E R  1
1.1 Descriptive statistics organize, summarize, and communicate a

group of numerical observations. Inferential statistics use sample
data to make general estimates about the larger population.

1.3 The four types of variables are nominal, ordinal, interval, and
ratio. A nominal variable is used for observations that have
categories, or names, as their values. An ordinal variable is used
for observations that have rankings (i.e., 1st, 2nd, 3rd, . . .) as
their values. An interval variable has numbers as its values; the
distance (or interval) between pairs of consecutive numbers is
assumed to be equal. Finally, a ratio variable meets the criteria
for interval variables but also has a meaningful zero point.
Interval and ratio variables are both often referred to as scale
variables.

1.5 Discrete variables can only be represented by specific numbers,
usually whole numbers; continuous variables can take on any
values, including those with great decimal precision (e.g.,
1.597).

1.7 A confounding variable (also called a confound) is any variable
that systematically varies with the independent variable so that
we cannot logically determine which variable affects the
dependent variable. Researchers attempt to control
confounding variables in experiments by randomly assigning
participants to conditions. The hope with random assignment is
that the confounding variable will be spread equally across the
different conditions of the study, thus neutralizing its effects.

1.9 An operational definition specifies the operations or procedures
used to measure or manipulate an independent or dependent
variable.

1.11 When conducting experiments, the researcher randomly assigns
participants to conditions or levels of the independent variable.
When random assignment is not possible, such as when
studying something like gender or marital status, correlational
research is used. Correlational research allows us to examine
how variables are related to each other; experimental research
allows us to make assertions about how an independent
variable causes an effect in a dependent variable.

1.13 a. “This was an experiment.” (not “This was a correlational
study.”)

b. “. . . the independent variable of caffeine . . .” (not “ . . . the
dependent variable of caffeine . . . ”)

c. “A university assessed the validity . . .” (not “A university
assessed the reliability . . . ”)

d. “In a between-groups experiment . . .” (not “In a within-
groups experiment . . . ”)

e. “A researcher studied a sample of 20 rats . . .” (not “A
researcher studied a population of 20 rats . . . ”)

1.15 When identifying why a particular observation is so different
from the other observations in the study (i.e., outlier analysis),
the researcher may gain insight into other factors that influence
the dependent variable.

1.17 a. 73 people

b. All people who shop in grocery stores similar to the one
where data were collected

1.19 Inferential statistic

1.21 a. Answers may vary, but people could be labeled as having a
“healthy diet” or an “unhealthy diet.”

b. Answers may vary, but there could be groupings such as “no
items,” “minimal items,” “some items,” and “many items.”

c. Answers may vary, but the number of items could be
counted or weighed.

1.23 The independent variables are physical distance and emotional
distance. The dependent variable is accuracy of memory.

1.25 Answers may vary, but accuracy of memory could be
operationalized as the number of facts correctly recalled.

1.27 Both Miguel Induráin and Lance Armstrong could be
considered outliers because their scores (number of wins) are
extreme compared to the typical number of wins experienced
by Tour de France winners.

1.29 a. The average weight for a 10-year-old girl was 77.4 pounds
in 1963 and nearly 88 pounds in 2002.

b. No; the CDC would not be able to weigh every single girl
in the United States because it would be too expensive and
time-consuming.

c. It is a descriptive statistic because it is a numerical summary
of a sample. It is an inferential statistic because the
researchers drew conclusions about the population’s average
weight based on this information from a sample.

1.31 a. Ordinal

b. Scale

c. Nominal

A P P E N D I X C

Solutions to Odd-Numbered End-of-Chapter Problems



C-2 APPENDIX C

1.33 a. Discrete

b. Continuous

c. Discrete

d. Discrete

e. Continuous

1.35 a. The independent variables are temperature and rainfall.
Both are continuous, scale variables.

b. The dependent variable is experts’ ratings. These are
discrete, scale variables.

c. The researchers wanted to know if the wine experts are
consistent in their ratings—that is, if they’re reliable.

d. This observation would suggest that Robert Parker’s
judgments are valid. His ratings seem to be measuring what
they intend to measure—wine quality.

1.37 a. There are several possible answers to this question. 
The developers of this Web site might, for example,
hypothesize that the region of the world in which one
grew up predicts different personality profiles based on
region.

b. The independent variable would be region and the
dependent variable would be personality profile.

1.39 a. Age: teenagers and adults in their 30s

b. Spanking: spanking and not spanking

c. Meetings: go to meetings and participate online

d. Studying: with others and alone

e. Beverage: caffeinated and decaffeinated

1.41 a. Researchers could have randomly assigned some people
who are HIV-positive to take the oral vaccine and other
people who are HIV-positive not to take the oral vaccine.
The second group would likely take a placebo.

b. This would have been a between-groups experiment
because the people who are HIV-positive would have been
in only one group: either vaccine or no vaccine.

c. This limits the researchers’ ability to draw causal conclusions
because the participants who received the vaccine may have
been different in some way from those who did not receive
the vaccine. There may have been a confounding variable
that led to these findings. For example, those who received
the vaccine might have had better access to health care and
better sanitary conditions to begin with, making them less
likely to contract cholera regardless of the vaccine’s
effectiveness.

1.43 We could have recruited a sample of people who were HIV-
positive. Half would have been randomly assigned to take the
oral vaccine; half would have been randomly assigned to take
something that appeared to be an oral vaccine but did not have
the active ingredient. They would have been followed to
determine whether they developed cholera.

1.45 a. An experiment requires random assignment to conditions.
It would not be ethical to randomly assign some people to
smoke and some people not to smoke, so this research had
to be correlational.

b. Other unhealthy behaviors have been associated with
smoking, such as poor diet and infrequent exercise. These
other unhealthy behaviors might be confounded with
smoking.

c. The tobacco industry could claim it was not the smoking
that was harming people, but rather the other activities in
which smokers tend to engage or fail to engage.

d. One could randomly assign people to either a smoking
group or a nonsmoking group. Confounding variables could
be controlled through random assignment and by
attempting to control the diet and lifestyles of those
participating in the research.

1.47 a. This is experimental because students are randomly assigned
to one of the recycling incentive conditions.

b. Answers may vary, but one hypothesis could be “Students
fined for not recycling will report lower concerns for the
environment, on average, than those rewarded for
recycling.”

1.49 a. The person who took 3 minutes would be considered an
outlier because the person’s response time was much more
extreme than any of the response times exhibited by the
other participants

b. In this case, the researcher might look to see if the
participant was slow on other experimental tasks as well or
if there was some other independent evidence that the
participant did not take the experimental task seriously.

C H A P T E R  2

2.1 Raw scores are the original data, to which nothing has been
done.

2.3 A frequency table is a visual depiction of data that shows how
often each value occurred; that is, it shows how many scores
are at each value. Values are listed in one column, and the
numbers of individuals with scores at that value are listed in the
second column. A grouped frequency table is a visual depiction
of data that reports the frequency within each given interval
rather than the frequency for each specific value.

2.5 A histogram looks like a bar graph but is typically used to
depict scale data with the values (or midpoints of intervals) of
the variable on the x-axis and the frequencies on the y-axis. A
frequency polygon is a line graph with the x-axis representing
values (or midpoints of intervals) and the y-axis representing
frequencies; a point is placed at the frequency for each value
(or midpoint), and the points are connected.

2.7 In everyday conversation, we use the word distribution in a
number of different contexts, from the distribution of food to
marketing distribution. In statistics, we use the word distribution
in a very particular way. We are interested in the way that a set
of scores, such as a set of grades, is distributed. That is, we are
interested in the overall pattern of our data—what the shape is,
where the data tend to cluster, and how they trail off.

2.9 With positively skewed data, the distribution’s tail extends to the
right, in a positive direction, and with negatively skewed data, the
distribution’s tail extends to the left, in a negative direction.

2.11 A stem-and-leaf plot is much like a histogram in that it
conveys how often different values in a data set occur. Also,
when a stem-and-leaf plot is turned on its side, it has the same
shape as a histogram of the same data set.

2.13 17.95% and 40.67%
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2.15 0.04, 198.22, and 17.89

2.17 Five

2.19 The full range of data is 68 minus 2, plus 1, or 67. The range
(67) divided by the desired seven intervals gives us an interval
size of 9.57, or 10 with rounding. The seven intervals are: 0–9,
10–19, 20–29, 30–39, 40–49, 50–59, and 60–69.

2.21 25 shows

2.23 Serial killers would create positive skew, adding high numbers
of murders to the data that are clustered around 1.

2.25 a. For the college population, the range of ages extends farther
to the right (with greater years) than to the left, creating
positive skew.

b. The fact that youthful prodigies have limited access to
college creates a sort of floor effect that makes low scores
less possible.

2.27 a. The women’s distribution has greater variability, or spread.

b. The distribution for women is skewed.

c. The women’s distribution has a positive skew.

2.29 a.

b. 10.53% of these schools had exactly 4% of their students
report that they wrote between 5 and 10 20-page papers
that year.

c. This is not a random sample. It includes schools that chose
to participate in this survey and opted to have their results
made public.

2.31 a.

1

2

3

6

8

7

9

5

4

0
0 1 3

Frequency 

Percent of students

5 7 9 11

PERCENTAGE FREQUENCY PERCENTAGE

10 1 5.26

9 0 0.0

8 0 0.0

7 0 0.0

6 0 0.0

5 2 10.53

4 2 10.53

3 4 21.05

2 4 21.05

1 5 26.32

0 1 5.26

b. One
c. The data are clustered around 1% to 4% with a high

outlier, 10%.

2.33 a. The variable of alumni giving was operationalized by the
percentage of alumni who donated to a given school. There
are several other ways it could be operationalized. For
example, the data might consist of the total dollar amount
or the mean dollar amount that each school received.

b.

c. There are many possible answers to this question. For
example, we might ask whether sports team success
predicits alumni giving or whether the prestige of the
institution is a factor (the higher the ranking, the more
alumni who donate).

2.35 a. Extroversion scores are most likely to have a normal distri -
bution. Most people would fall toward the middle, with
some people having higher levels and some having lower
levels.

b. The distribution of finishing times for a marathon is likely
to be positively skewed. The floor is the fastest possible
time, a little over 2 hours; however, some runners take as
long as 6 hours or more. Unfortunately for the very, very
slow but unbelievably dedicated runners, many marathons
shut down the finish line 6 hours after the start of the race.

c. The distribution of numbers of meals eaten in a dining hall
in a semester on a three-meal-a-day plan is likely to be
negatively skewed. The ceiling is three times per day
multiplied by the number of days; most people who chose
to pay for the full plan would eat many of these meals. A
few would hardly ever eat in the dining hall, pulling the tail
in a negative direction.

2.37 a.
MONTHS FREQUENCY PERCENTAGE

12 1 5

11 0 0

10 1 5

9 1 5

8 0 0

7 1 5

6 1 5

5 0 0

4 1 5

3 4 20

2 2 10

1 3 15

0 5 25

INTERVAL FREQUENCY

60–69 1

50–59 0

40–49 6

30–39 15

20–29 21

10–19 24

0–9 3
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b.

2.39 a.

b.

2.41 a. You would present individual data values because the few
categories of eye color would result in a readable list.

b. You would present grouped data because it is possible for
each person to use a different amount of minutes and such
a long list would be unreadable.

c. You would present grouped data because time to complete
carried out to seconds would produce too many unique
numbers to organize meaningfully without groupings.

d. You would present individual data values because number
of siblings tends to take on limited values.

2.43 a.

b. This is not a random sample because only résumés from
those applying for a receptionist position in his office were
included in the sample.

INTERVAL FREQUENCY

300–339 4

260–299 7

220–259 9

180–219 3

2
3
4
5

1

6

8
7

9

11
12
13
14

10

15

0
0 2.5 �2.5 5 7.5 10 12.5 15 17.5 

Months 

Frequency 

2

3

4

5

1

6

0
210 3 �1 4 5 6 7 8 9 10 11 12 13 

Months 

Frequency 

INTERVAL FREQUENCY

10–14 months 2

5–9 months 3

0–4 months 15

c. This information lets the trainees know that most of these
résumés contained between 220 and 299 words. This
analysis tells us nothing about how word count might relate
to quality of résumé.

2.45 Two questions we might ask are (1) how close is the person to
those photographed and (2) what might account for the two
peaks in these data (under 12 and around 21).

2.47 The data have two high points around 3–9 and 15–18. In
Exercise 2.46, we can see that the data are asymmetric to the
right, creating positive skew.

2.49 Here is the stem-and-leaf plot of the NBA data from Exercise
2.36:

6 2
5 0 1 2 4 8 9 9
4 2 2 3 4 4 5 5 5 7 9
3 0 3 3 4 4 6 7
2 6 7
1 3 8 8

C H A P T E R  3

3.1 The false face validity lie, the biased scale lie, the sneaky sample
lie, the interpolation lie, the extrapolation lie, the inaccurate
values lie, and the outright lie.

3.3 With scale data, a scatterplot allows for a helpful visual analysis
of the relation between two variables. If the data points appear
to fall approximately along a straight line, this indicates a linear
relation. If the data form a line that changes direction along its
path, a nonlinear relation may be present. If the data points
show no particular relation, it is possible that the two variables
are not related.

3.5 Bar graphs are visual depictions of data when the independent
variable is nominal or ordinal and the dependent variable is
scale. Each bar typically represents the mean value of the
dependent variable for each category. A Pareto chart is a specific
type of bar graph in which the categories along the x-axis are
ordered from highest bar on the left to lowest bar on the right.

3.7 A pictorial graph is a visual depiction of data typically used for
a nominal independent variable with very few levels (categories)
and a scale dependent variable. Each category uses a picture or
symbol to represent its value on the scale dependent variable. A
pie chart is a graph in the shape of a circle with a slice for every
category. The size of each slice represents the proportion (or
percentage) of each category. In most cases, a bar graph is
preferable to a pictorial graph or a pie chart.

3.9 The independent variable typically goes on the horizontal x-
axis and the dependent variable goes on the vertical y-axis.

3.11 Moiré vibrations are any patterns that computers provide as
options to fill in bars or other elements of a graph. Grids refer
to a background pattern, almost like graph paper, on which the
data representations, such as bars, are superimposed. Ducks are
features of the data that have been dressed up to be something
other than merely data.

3.13 Like a traditional scatterplot, the locations of the points on the
bubble graph simultaneously represent the values that a single
case (or country) has on two scale variables. The graph as a
whole depicts the relation between these two variables.

3.15 Total dollars donated per year is scale data. A time plot would
nicely show how donations varied across years.
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3.17 a. The independent variable is gender and the dependent
variable is video game score.

b. Nominal

c. Scale

d. The best graph for these data would be a bar graph because
there is a nominal independent variable and a scale
dependent variable.

3.19 Linear, because the data could be fit with a line moving from
the upper-left to the lower-right corner of the graph.

3.21 a. Bar graph

b. Line graph; more specifically, a time plot

3.23 The lines in the background are grids, and the three-
dimensional effect is a type of duck.

3.25 If the y-axis started at 0, all of the bars would appear to be
about the same height. The differences would be minimized.

3.27 The minimum value is 0.04 and the maximum is 0.36, so the
axis could be labeled from 0.00 to 0.40. We might choose to
mark every 0.05 value: 0.00, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30,
0.35, and 0.40.

3.29 The points in the graph go from the bottom left to the upper
right, giving the impression that as income increases, so does
life expectancy.

3.31 a. The independent variable is height, and the dependent
variable is attractiveness. Both are scale variables.

b. The best graph for these data would be a scatterplot (which
also might include a line of best fit if the relation is linear)
because there are two scale variables.

c. It would not be practical to start the axis at 0. With the data
clustered from 58 to 71 inches, a 0 start to the axis would
mean that a large portion of the graph would be empty. We
would use cut marks to indicate that the axis did not
include all values from 0 to 71.

3.33 a. The independent variable is country, and the dependent
variable is male suicide rate.

b. Country is a nominal variable and suicide rate is a scale
variable.

c. The best graph for these data would be a Pareto chart.
Because there are 20 categories along the x-axis, it is best to
arrange them in order from highest to lowest.

d. A time series plot could show year on the x-axis and
suicide rate on the y-axis. Each country would be
represented by a different color line.

3.35 a.
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10 3025

Percentage with university degree

GDP

Relation Between Percentage with University Degree
and GDP (in trillions of $US)

b. The percentage of residents with a university degree appears
to be related to GDP. As the percentage with a university
degree increases, so does GDP.

c. It is possible that an educated populace has the skills to
make that country productive and profitable. Conversely, it
is possible that a productive and profitable country has the
money needed for the populace to be educated.

3.37 a. The independent varia ble is type of academic institution. It
is nominal, with levels private national, public national, and
liberal arts.

b. The dependent variable is alumni donation rate. It is a scale
variable, the units are percentages, and the range of values is
from 9 to 66.

c. The defaults will differ depending on the software used.
Here is one example.

d. The redesigns will differ depending on the software used. In
this example, we have added a clear title, labeled the x-axis,
omitted the key, and labeled the y-axis (being sure that it
reads from left to right). We also toned down the
unnecessary color in the background and cut some of the
extra numbers from the y-axis. Finally, we removed the
black box from around the graph.

e. These data suggest that a higher percentage of alumni of
liberal arts colleges than of national private or national
public universities donate to their institutions. Moreover, a
higher percentage of alumni of national private universities
than of national public universities donate.
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f. There are many possible answers to this question. One
might want to identify characteristics of alumni who
donate, methods of soliciting donations that result in the
best outcomes, or characteristics of universities within a
given category (e.g., liberal arts) that have the highest rates.

3.39 a. One independent variable is time frame; it has two levels:
1945–1950 and 1996–1998. The other independent variable
is type of graduate program; it also has two levels: clinical
psychology and experimental psychology.

b. The dependent variable is percentage of graduates who had
a mentor while in graduate school.

c.

d. These data suggest that clinical psychology graduate
students were more likely to have been mentored if they
were in school in the 1996–1998 time frame than if they
were in school during the 1945–1950 time frame. There
does not appear to be such a difference among
experimental psychology students.

e. This was not a true experiment. Students were not
randomly assigned to time period or type of graduate
program.

3.41 a. Pictures could be used instead of bars. For example, dollar
signs might be used to represent the three quantities.

b. If the dollar signs become wider as they get taller, as often
happens with pictorial graphs, the overall size would be
proportionally larger than the increase in donation rate it is
meant to represent. A bar graph is not subject to this
problem, because graphmakers are not likely to make bars
wider as they get taller.

3.43 a. The details will differ, depending on the software used.
Here is one example.

Current Recent Former
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Clinical Experimental

Type of psychology graduate program

Percentage

Percentage of Mentoring by Time Frame and
Type of Psychology Graduate Program

1945–1950

1996–1998

b. The default options that students choose to override will
differ. For the bar graph here, we (1) added a title, (2)
labeled the x-axis, (3) labeled the y-axis, (4) rotated the
y-axis label so that it reads from left to right, (5) eliminated
the box around the whole graph, (6) eliminated the grid
lines, and (7) eliminated the unnecessary key.

3.45 Each student’s advice will differ. The following are examples of
advice.

a. The shrinking doctor: Replace the pictures with bars. Space
the three years out in relation to their actual values (right
now 1964 and 1975 are a good deal farther apart than are
1975 and 1990). Include a more descriptive title as the main
title.

b. Workforce participation: Eliminate all the pictures. A falling
line now indicates an increase in percentage; notice that 40%
is at the top and 80% is at the bottom. Make the y-axis go
from highest to lowest, starting from 0. Eliminate the three-
dimensional effect to make the lines easier to compare.
Make it clear where the data point for each year falls by
including a tick mark for each number on the x-axis.

3.47 a. The graph proposes that Type I regrets of action are initially
intense but decline over the years, while Type II regrets of
inaction are initially mild but become more intense over the
years.

b. There are two independent variables: type of regret (a
nominal variable) and age (a scale variable). There is one
dependent variable: intensity of regrets (also a scale
variable).

c. This is a graph of a theory. No data have been collected, so
there are no statistics of any kind.

d. The story that this theoretical relation suggests is that
regrets over things you have done are intense shortly after
the actual behavior but decline over the years. In contrast,
regrets over things you have not done but wish you had
done are initially low in intensity but become more intense
as the years go by.

3.49 a. When first starting therapy, the client experienced a decline
in the Mental Health Index (MHI). After eight weeks of
therapy, this trajectory reversed and there was a week-to-
week improvement in the client’s MHI.
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b. There are many possible answers. For example, the initial
decline in the client’s MHI may have been due to
difficulties in adapting to therapy that were overcome as the
client and therapist worked together. Alternatively, it may be
that the client initially entered therapy due to difficult life
circumstances that continued through the first weeks of
therapy but resolved after several weeks.

c. Because the client is not beneath the failure boundary, and
because the client experienced improvement over the last
few weeks of therapy, it may be beneficial for the client to
continue in therapy.

C H A P T E R  4
4.1 The mean is the arithmetic average of a group of scores; it is

calculated by summing all the scores and dividing by the total
number of scores. The median is the middle score of all the
scores in a sample where the scores are arranged in ascending
order. If there is no single middle score, the median is the mean
of the two middle scores. The mode is the most common score
of all the scores in a sample.

4.3 The mean takes into account the actual numeric value of each
score. The mean is the mathematic center of the data. It is the
center balance point in the data such that the sum of the
deviations (rather than the number of deviations) below the
mean equals the sum of deviations above the mean.

4.5 The mode is typically used in three situations: (1) when one
score dominates the distribution, (2) to describe bimodal or
multimodal distributions, and (3) when nominal data are
summarized.

4.7 The mean is affected by outliers because the numeric value 
of the outlier is used in the computation of the mean. The
median typically is not affected by outliers because its
computation is based on the data in the middle of the
distribution, and outliers lie at the extremes of the
distribution.

4.9 The standard deviation is a measure of variability in terms of
the values of the measure used to assess the variable, whereas
the variance is squared values. Squared values simply don’t
make sense to us, so we take the square root of the variance
and report this value, the standard deviation.

4.11 The range is the difference between the highest score and the
lowest score in the data set. Thus, the range is completely
driven by the most extreme scores in the data set and is
susceptible to the effects of outliers. The interquartile range is
based on the middle 50% of the data. Unlike the range, it is not
affected by the effects of outliers.

4.13 The first quartile is the 25th percentile.

4.15 The mean is calculated as

� (15 � 34 � 32 � 46 � 22 � 36 � 34 � 28 

� 52 � 28)/10 � 327/10 � 32.7

The median is found by arranging the scores in numeric
order—15, 22, 28, 28, 32, 34, 34, 36, 46, 52—then dividing
the number of scores, 10, by 2 and adding 1⁄2 to get 5.5. 
The mean of the 5th and 6th score in our ordered list of
scores is our median—(32 � 34)/2 � 33—so 33 is the
median.

M
X
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The mode is the most common score. In these data, two
scores appear twice, so we have two modes, 28 and 34. 

4.17 Adding the value of 112 to the data from Exercise 4.15
changes the calculation of the mean in the following way:

(15 � 34 � 32 � 46 � 22 � 36 � 34 � 28 � 52 � 28 �
112)/11 � 439/11 � 39.91

The mean gets larger with this outlier.
There are now 11 data points, so the median is the 6th

value in the ordered list, which is 34.
The modes are unchanged at 28 and 34.
This outlier increases the mean by approximately 7 values; 

it increases the median by 1; and it does not affect the mode
at all.

4.19 The range is: Xhighest � Xlowest � 52 � 15 � 37

The variance is: 

We start by calculating the mean, which is 32.7. We then
calculate the deviation of each score from the mean and the
square of that deviation.

The standard deviation is: or

4.21 The range would change from Xhighest � Xlowest � $61,774 
� $38,862 = $22,912 to Xhighest � Xlowest � $97,582 �
$38,862 = $58,720

4.23 The range is: Xhighest � Xlowest � 61 � 9 = 52

4.25 The mean is calculated as

� [�47 � (�46) � (�38) � (�20) … � �46]/12 

� �163/12 � �13.58°F

The median is found by arranging the temperatures in
numeric order:

–47, �46, �46, �38, �20, �20, �5, �2, 8, 9, 20, 24

There are 12 data points, so the mean of the 6th and 7th
data points gives us the median: [–20 � �5]/2 � �25/2 �
�12.5°F.

M
X

N
�

R

� �. .103 61 10 18

SD SD� 2 SD
X M

N
�

�R( )2

SD
X M

N
2

2 1036 1

10
103 61�

�
� �

R( ) .
.

X X � M (X � M)2

15 �17.7 313.29

34 1.3 1.69

32 �0.7 0.49

46 13.3 176.89

22 �10.7 114.49

36 3.3 10.89

34 1.3 1.69

28 �4.7 22.09

52 19.3 372.49

28 �4.7 22.09

SD
X M

N
2

2

�
�R( )



C-8 APPENDIX C

There are two modes: both �46 and �20 were recorded
twice.

4.27 For the wind gust data, we could create 10-mph intervals and
calculate the mode as the interval that occurs most often.
There are four recorded gusts in the 160–169 mph interval,
three in the 170–179 interval, and only one in the other
intervals. So, the 160–169 mph interval could be presented as
the mode.

4.29 The range � Xhighest � Xlowest� 24 � (�47) � 71°F

The variance is 

We start by calculating the mean, which is �3.58°F. We then
calculate the deviation of each score from the mean and the
square of that deviation.

The variance is: 

The standard deviation is: or

4.31 Calculating the interquartile range requires that we first order
the observations from lowest to highest, find the first and third
quartiles, and then subtract the first from the third. Here are
the data sorted from lowest to highest:

1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 5 6 7 7 8 12

Q1 is the median of the first half of the observations, which is
2. Q3 is the median of the second half of the observations,
which is 5.5. The IQR � Q3 � Q1, or IQR � 5.5 � 2 �
3.5.

4.33 The interquartile range of 18.5 is so much smaller than the
range of 95 because there is an outlier of 231 mph in the wind
gust data. This outlier affects the range but not the interquartile
range.

4.35 The mean for salary is often greater than the median for salary
because the high salaries of top management inflate the mean.
If we are trying to attract people to our company, we may want
to present the typical salary as whichever value is higher, the
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�2 11.583 134.166

8 21.583 465.826

24 37.583 1412.482
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�5 8.583 73.668

�20 �6.417 41.178
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mean in most cases. However, if we are going to offer someone
a low salary, presenting the median might make them feel
better about that amount!

4.37 In April 1934, a wind gust of 231 mph was recorded. This data
point is rather far from the next closest record of 180 mph. If
this extreme score were excluded from analyses of central
tendency, the mean would be lower, the median would change
only slightly, and the mode would be unaffected.

4.39 There are many possible answers to this question. All 
answers will include a distribution that is skewed, perhaps
one that has outliers. A skewed distribution would affect the
mean, but not the median. One example would be the
variable of number of foreign countries visited; the few jet-
setters who have been to many countries would pull the
mean higher. The median is more representative of the
typical score.

4.41 a. These ads are likely presenting outlier data.

b. To capture the experience of the typical individual who
uses the product, the ad could include the mean result 
and the standard deviation. If the distribution of 
outcomes is skewed, it would be best to present a median
result.

4.43 a. � (0 � 5 � 3 � 3 � 1 … � 3 � 5)/19 

� 53/19 � 2.789

b. The formula for variance is 

We start by creating three columns: one for the scores, one
for the deviations of the scores from the mean, and one for
the squares of the deviations.

X X � M (X � M)2

0 �2.789 7.779

5 2.211 4.889

3 0.211 0.045

3 0.211 0.045

1 �1.789 3.201

10 7.211 51.999

2 �0.789 0.623

2 �0.789 0.623

3 0.211 0.045
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4 1.211 1.467
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We can now calculate variance: �

(7.779 � 4.889 � 0.045 � 0.045 … � 0.045 � 4.889)/19
� 91.167/19 � 4.798

c. Standard deviation is calculated just like we calculated
variance, but we then take the square root:

d. The typical score is around 2.79, and the typical deviation
from 2.79 is around 2.19.

4.45 There are many possible answers to these questions. The
following are only examples.

a. 70, 70. There is no skew; the mean is not pulled away from
the median.

b. 80, 70. There is positive skew; the mean is pulled up, but the
median is unaffected.

c. 60, 70. There is negative skew; the mean is pulled down, but
the median is unaffected.

4.47 a.

b.

c. � (45 � 43 � 42 � 33 … � 45 � 18)/30 

� 1230/30 � 41

With 30 scores, the median would be between the 15th and
16th scores: (30/2) � 0.5 � 15.5. The 15th and 16th scores
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�R( ) are 43 and 44, respectively, and so the median is 43.5. The

mode is 45; there are three scores of 45.

d. Software reports that the range is 49 and the standard
deviation is 12.69.

e. The summary will differ for each student but should
include the following information: The data appear to be
roughly symmetric and unimodal, maybe a bit negatively
skewed. There are no glaring outliers.

f. Answers will vary. One example is whether number of wins
is related to the average age of a team’s players.

4.49 a. The mean is calculated as:

� (8.2 + 5 + 4.05 + 3.75 … + 2.8)/12 

� 46.36/12 � 3.86 hours

The median is found by arranging the data in numeric
order:

2.8, 3, 3, 3.1, 3.16, 3.2, 3.5, 3.6, 3.75, 4.05, 5, 8.2

There are 12 data points, so the mean of the 6th and
7th data points gives us the median: (3.2 � 3.5)/2 � 3.35
hours.

b. When the high score from the United States (8.2 hours) is
excluded, the mean falls to 3.47 hours and the median
moves to the 6th data point (3.2 hours). The exclusion of
the extreme U.S. score affects the mean more than the
median.

4.51 It would probably be appropriate because the data are scale, we
would assume we have a large number of data points available
to us, and the mean is the most commonly used measure of
central tendency. Because of the large amount of data available,
the effect of outliers is minimized. All of these factors would
support the use of the mean for presenting information about
the heights or weights of large numbers of people.

4.53 To calculate the first and third quartiles, we must first order the
scores and find the median. Because we have 31 observations,
the median is the 16th observation, or 53. The first quartile
(Q1) is the median of the first half of observations. In order to
find this median of the first 15 observations, we take the
average of the 7th and 8th observation, which is 50. The third
quartile (Q3) is the median of the second half of observations,
which is 59.

C H A P T E R  5
5.1 It is rare to have access to an entire population. That is why we

study samples and use inferential statistics to estimate what is
happening in the population.

5.3 Generalizability refers to the ability of researchers to apply
findings from one sample or in one context to other samples or
contexts.

5.5 Random sampling means that every member of a population
has an equal chance of being selected to participate in a study.
Random assignment means that each selected participant has
an equal chance of being in any of the experimental
conditions.

5.7 Random assignment is a process in which every participant
(regardless of how he or she was selected) has an equal chance
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of being in any of the experimental conditions. This avoids bias
across experimental conditions.

5.9 An illusory correlation is a belief that two events are associated
when in fact they are not.

5.11 In reference to probability, the term trial refers to each occasion
that a given procedure is carried out. For example, each time
we flip a coin, it is a trial. Outcome refers to the result of a trial.
For coin-flip trials, the outcome is either heads or tails. Success
refers to the outcome for which we’re trying to determine the
probability. If we are testing for the probability of heads, then
success is heads.

5.13 The independent variable is the variable the researcher
manipulates. Independent trials or events are those that do not
affect each other; the flip of a coin is independent of another
flip of a coin because the two events do not affect each other.

5.15 A null hypothesis is a statement that postulates that there is no
mean difference between populations or that the mean
difference is in a direction opposite from that anticipated by
the researcher. A research hypothesis, also called an alternative
hypothesis, is a statement that postulates that there is a mean
difference between populations or sometimes, more specifically,
that there is a mean difference in a certain direction, positive or
negative.

5.17 A Type I error occurs when we reject the null hypothesis, but
the null hypothesis is true. A Type II error occurs when we fail
to reject the null hypothesis, but the null hypothesis is false.

5.19 In the six groups of 10 passengers that go through our
checkpoint, we would check the 9th, 9th, 10th, 1st, 10th, and
8th people, respectively.

5.21 Only recording the numbers 1 to 5, the sequence appears as 5,
3, 5, 5, 2, 2, and 2.

5.23 Illusory correlation is particularly dangerous because people
might perceive there to be an association between two
variables that does not in fact exist. Because we often make
decisions based on associations, it is important that those
associations be real and be based on objective evidence. For
example, a parent might have an illusory correlation between
body piercings and trustworthiness, believing that a person
with a large number of body piercings is untrustworthy. This
illusory correlation might lead the parent to unfairly eliminate
anyone with a body piercing from consideration when
choosing babysitters.

5.25 The probability of winning is estimated as the number of
people who have already won out of the total number of
contestants, or 8/266 � 0.03.

5.27 a. 0.627

b. 0.003

c. 0.042

5.29 Given that the population is high school students in Marseille
and Lyon, it is possible that the researcher can compile a list of
all members of the population, allowing her to use random
selection. She could not, however, use random assignment
because she could not assign the students to have lived in
Marseille or Lyon.

5.31 a. The independent variable is type of news information with
two levels: information about an improving job market and
information about a declining job market.

b. The dependent variable is attitudes toward their careers.

c. The null hypothesis would be that, on average, the
psychologists who received the positive article about the job
market have the same attitude toward their career as those
who read a negative article about the job market. The
research hypothesis would be that an average difference
exists between the two groups.

5.33 Although we all believe we can think randomly if we want to,
we do not, in fact, generate numbers independently of the
ones that came before. We tend to glance at the preceding
numbers in order to make the next ones “random.” Yet once
we do this, the numbers are not independent and therefore
are not random. Moreover, even if we can keep ourselves
from looking at the previous numbers, the numbers we
generate are not likely to be random. For example, if we were
born on the 6th of the month, then we may be more likely
to choose 6’s than other digits. Humans just don’t think
randomly.

5.35 a. The typical study volunteer is likely someone who cares
deeply about U.S. college football. Moreover, it is
particularly the fans of the top ACC teams, who themselves
are likely extremely biased, who are most likely to vote.

b. External validity refers to our ability to generalize beyond
our current sample. In this case, it is likely that fans of the
top ACC teams are voting and that results do not reflect the
opinions of U.S. college football fans at large.

c. There are several possible answers to this question. As one
example, only eight options were provided. Even though
one of these options was “other,” this limited the range of
possible answers that respondents would be likely to provide.

5.37 a. These numbers are not likely representative. This is a
volunteer sample.

b. Those most likely to volunteer are those who have
stumbled across, or searched for, this Web site: a site that
advocates for self-government. Those who respond are more
likely to tend toward supporting self-government than are
those who do not respond (or even find this Web site).

c. This description of libertarians suggests they would
advocate for self-government, part of the name of the group
that hosts this quiz, a likely explanation for the
predominance of libertarians who responded to this survey.
Also, the chart has “Libertarian” at the top, and the word
“Libertarian” appears in the icon beside the question, “How
can you support this project?”

d. It doesn’t matter how large our sample is if it’s not
representative. With respect to external validity, it would be
far preferable to have a smaller but representative sample
than a very large but nonrepresentative sample.

5.39 Your friend’s bias is an illusory correlation—he perceives a
relation between gender and driving performance, when in fact
there is none.

5.41 If a depressed person has negative thoughts about himself and
about the world around him, confirmation bias may make it
difficult to change those thoughts because confirmation bias
would lead this person to pay more attention to and better
remember negative events than positive events. For example, he
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might remember the one friend who slighted him at a party
but not the many friends who were excited to see him.

5.43 a. Probability refers to the proportion of aces that we expect to
see in the long run. In the long run, given 4 aces out of 52
cards, we would expect the proportion of aces to be 4/52
� 0.077.

b. Proportion refers to the observed fraction of cards that are
aces—the number of successes divided by the number of
trials. In this case, the proportion of aces is 5/15 � 0.333.

c. Percentage refers to the proportion multiplied by 100:
0.333(100) � 33.3. Thus, 33.3% of the cards drawn were
aces.

d. Although 0.333 is far from 0.077, we would expect a great
deal of fluctuation in the short run. These data are not
sufficient to determine whether the deck is stacked.

5.45 a. The null hypothesis is that the average tendency to develop
false memories is either unchanged or is lowered by the
repetition of false information. The research hypothesis is
that false memories are higher, on average, when false
information is repeated than when it is not.

b. The null hypothesis is that outcome is the same or worse
whether or not structured assessments are used. The research
hypothesis is that average outcome is better when structured
assessments are used than when they are not used.

c. The null hypothesis is that mean employee morale is the
same whether employees work in enclosed offices or
cubicles. The research hypothesis is that mean employee
morale is different when employees work in enclosed offices
versus cubicles.

d. The null hypothesis is that ability to speak one’s native
language is the same, on average, whether or not a second
language is taught from birth. The research hypothesis is
that the ability to speak one’s native language is different, on
average, when a second language is taught from birth than
when no second language is taught.

5.47 a. If this conclusion is incorrect, we have made a Type I error.
We have rejected the null hypothesis when the null
hypothesis is really true. (Of course, we never know
whether we have made an error! We just have to
acknowledge the possibility.)

b. If this conclusion is incorrect, we have made a Type I error.
We have rejected the null hypothesis when the null
hypothesis is really true.

c. If this conclusion is incorrect, we have made a Type II error.
We have failed to reject the null hypothesis when the null
hypothesis is not true.

d. If this conclusion is incorrect, we have made a Type II error.
We have failed to reject the null hypothesis when the null
hypothesis is not true.

5.49 a. The population of interest is male students with alcohol
problems. The sample is the 64 students who were ordered
to meet with a school counselor.

b. Random selection was not used. The sample was comprised
of 64 male students who had been ordered to meet with a
school counselor; they were not chosen out of all male
students with alcohol problems.

c. Random assignment was used. Each participant had an
equal chance of being assigned to each of the two
conditions.

d. The independent variable is type of counseling. It has two
levels: BMI and AE. The dependent variable is number of
alcohol-related problems at follow-up.

e. The null hypothesis is that the mean number of alcohol-
related problems is the same regardless of type of counseling
(BMI or AE). The research hypothesis is that students who
undergo BMI have different mean numbers of alcohol-
related problems at follow-up than do students who
participate in AE.

f. The researchers rejected the null hypothesis.

g. If the researchers were incorrect in their decision, they
made a Type I error. If this is the case, they rejected the null
hypothesis when the null hypothesis was true. The
consequences of this type of error are that a new treatment
that is no better, on average, than the standard treatment
would be implemented. This might lead to unnecessary
costs to train counselors to implement the new treatment.

C H A P T E R  6
6.1 In everyday conversation, the word normal is used to refer to

events or objects that are common or that typically occur.
Statisticians use the word to refer to distributions that conform
to the bell-shaped curve, with a peak in the middle, where
most of the observations lie, and symmetric areas underneath
the curve on either side of the midpoint. This normal curve
represents the pattern of occurrence of many different kinds of
events.

6.3 The distribution of sample scores approaches normal as the
sample size increases, assuming the population is normally
distributed.

6.5 A z score is a way to standardize data; it expresses how far a
data point is from the mean of its distribution in terms of
standard deviations.

6.7 The mean is 0 and the standard deviation is 1.0.

6.9 The l indicates that it is the mean of a population, and the
subscript M indicates that the population is composed of sample
means—the means of all possible samples of a given size from a
particular population of individual scores.

6.11 The z statistic tells us how many standard errors a sample mean
is from the population mean.

6.13 a.
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b.

c.

d. As the sample size is increasing, the distribution is
approaching the shape of the normal curve.

6.15 a.

b.

c.

d.

6.17

Each of these scores is 47 points away from the mean, which is
the value of our standard deviation. The z scores of �1.0 and
1.0 express that the first score, 203, is 1 standard deviation
below the mean, whereas the other score, 297, is 1 standard
deviation above the mean.

6.19 a. X = z(r) + l = �0.23(164) + 1179 = 1141.28

b. X = 1.41(164) + 1179 = 1410.24

c. X = 2.06(164) + 1179 = 1516.84

d. X = 0.03(164) + 1179 = 1183.92

6.21 a. X � z(r) � l � 1.5(100) � 500 � 650

b. X � z(r) � l � �0.5(100) � 500 � 450

c. X � z(r) � l � �2.0(100) � 500 � 300

6.23 a. z �
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��
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1 5.

z �
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�
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1 0.
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��
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b. Both of these scores fall below the mean of their
distribution, resulting in negative z scores. One score (45) is
a little farther below its mean than the other (732).

6.25 a. 50%

b. 82% (34 + 34 + 14)

c. 4% (2 + 2)

d. 48% (34 + 14)

e. 100%

6.27 a. lM = l = 55, and 

b. lM = l = 55, and 

c. lM = l = 55, and 

6.29 a. Histogram for the 10 scores:

b. Histogram for all 40 scores:

0 20 40 60 80 100 120

Minutes to prepare for date

4

2

6

8

10

0

Frequency

z �
�

��
732 765

23
1 43.

0 20 40 60 80 100 120

4

2

6

8

10

0

Frequency

Minutes to prepare for date

rM � �
8

3000
0 15.

rM � �
8

300
0 46.

rM � �
8

30
1 46.



APPENDIX C C-13

c. The shape of the distribution became more normal as the
number of scores increased. If we added more scores, the
distribution would become more and more normal. This
occurs because many physical, psychological, and behavioral
variables are normally distributed. With smaller samples, this
might not be clear. But as the sample size approaches the
size of the population, the shape of the sample distribution
approaches that of the population.

d. This is a distribution of scores because each individual score
is represented in the histogram on its own, not as part of a
mean.

e. There are several possible answers to this question. For
example, instead of using retrospective self-reports, we could
have had students call a number or send an e-mail as they
began to get ready; they would then have called the same
number or sent another e-mail when they were ready. This
would have led to scores that would be closer to the actual
time it took students to get ready.

f. There are several possible answers to this question. For
example, we could examine whether there was a mean
gender difference in time spent getting ready for a date.

6.31 a. The mean of the z distribution is always 0.

b.

c. The standard deviation of the z distribution is always 1.

d. A student 1 standard deviation above the mean would have
a score of 6.65 � 1.24 � 7.89. This person’s z score would

be: 

e. The answer will differ for each student but will involve sub -
stituting one’s own score for X in this equation:

6.33 a. It would not make sense because we would be comparing a
mean to a distribution of scores. Because the distribution of
scores would include some extreme scores, it would have a
larger spread. The distribution of means includes sample
means; within a given sample, the occasional extreme score
is balanced by less extreme scores, and so the overall
distribution has a smaller spread. Means are less likely to be
extreme than are scores. A sample mean, therefore, is
unlikely to appear extreme when compared to the wider
range of scores.

b. The null hypothesis would state that the population from
which our sample was drawn has a mean of 3.51. The
research hypothesis would state that the mean for the
population from which our sample was drawn is not 3.51.

c. lM � l � 3.51

d.

e. This sample mean is about 1 standard deviation above the
mean, and we know that about 34% of a distribution falls
between the mean and 1 standard deviation above the mean
(i.e., a z statistic of 1). We also know that 50% fall below
the mean, because the z distribution is symmetric. The
percentile would be about 50 � 34 � 84%.
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6.35 a. Yes, the distribution of the number of movies college
students watch in a year would likely approximate a normal
curve. You can imagine that a small number of students
watch an enormous number of movies and that a small
number watch very few but that most watch a moderate
number of movies between these two extremes.

b. Yes, the number of full-page advertisements in magazines is
likely to approximate a normal curve. We could find
magazines that have no or just one or two full-page
advertisements and some that are chock full of them, but
most magazines have some intermediate number of full-
page advertisements.

c. Yes, human birth weights in Canada could be expected to
approximate a normal curve. Few infants would weigh in at
the extremes of very light or very heavy, and the weight of
most infants would cluster around some intermediate value.

6.37 a.

b.

c. According to these data, the Red Sox had a better regular
season (they had a higher z score) than did the Patriots.

d. The Patriots would have had to win 12 regular season
games to have a slightly higher z score than the Red Sox:

e. There are several possible answers to this question. For
example, we could have summed the teams’ scores for every
game (as compared to other teams’ scores within their
leagues).

6.39 a. X � z(r) � l � �0.18(10.83) � 81.00 � 79 games
(rounded to a whole number)

b. X � z(r) � l � �1.475(3.39) � 8.0 � 3 games (rounded
to a whole number)

c. Fifty percent of scores fall below the mean, so 34% (84 �
50 � 34) fall between the mean and the Steelers’ score. We
know that 34% of scores fall between the mean and a z
score of 1.0, so the Steelers have a z score of 1.0. X � z(r)
� l � 1(3.39) � 8.0 � 11 games (rounded to a whole
number).

d. We can examine our answers to be sure that negative z
scores match up with answers that are below the mean and
positive z scores match up with answers that are above the
mean.

6.41 a. l � 50; r � 10

b.

c. When we calculate the mean of the scores for 95
individuals, the most extreme MMPI-2 depression scores
will likely be balanced by scores toward the middle. It
would be rare to have an extreme mean of the scores for 95
individuals. Thus, the spread is smaller than is the spread for
all of the individual MMPI-2 depression scores.

6.43 a. These are the data for a distribution of scores rather than
means because they have been obtained by entering each
individual score into the analysis.
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b. Comparing the sizes of the mean and the standard deviation
suggests that there is positive skew. A person can’t have
fewer than zero friends, so the distribution would have to
extend in a positive direction to have a standard deviation 
larger than the mean.

c. Because the mean is larger than either the median or the
mode, it suggests that the distribution is positively skewed.
There are extreme scores in the positive end of the
distribution that are causing the mean to be more 
extreme.

d. You would compare this person to the distribution of
scores. When making a comparison of an individual score,
we must use the distribution of scores.

e. You would compare this sample to the distribution of
means. When making a comparison involving a sample
mean, we must use the distribution of means because it has
a different pattern of variability from the distribution of
scores (it has less variability).

f. lM � l � 7.44. The number of individuals in the sample as
reported in part (e) is 80. Substituting 80 in our standard

error equation yields .

g. The distribution of means is likely to be a normal curve.
Because the sample of 80 is well above the 30
recommended to see the central limit theorem at work, we
expect that the distribution of the sample means will
approximate a normal distribution.

6.45 a. You would compare this sample mean to a distribution of
means. When we are making a comparison involving a
sample mean, we need to use the distribution of means
because it is this distribution that indicates the variability we
are likely to see in sample means.

b.

This z score of 1.03 is approximately 1 standard deviation
above the mean. Because 50% of the sample are below the
mean and 34% are between the mean and 1 standard
deviation above it, this sample would be at approximately
the 84th percentile.

c. It does make sense to calculate a percentile for this sample.
Given the central limit theorem and the size of the sample
used to calculate the mean (80), we would expect the
distribution of the sample means to be approximately normal.

6.47 a. Medicare and the commercial insurer compared the
angioplasty rate in Elyria to that in other towns. Given that
the rate was so far above that of other towns, they decided
that such a high angioplasty rate was unlikely to happen just
by chance. Thus, they used probability to make a decision to
investigate.

b. Medicare and the commercial insurer could look at the z
distribution of angioplasty rates in cities from all over the
country. Locating the rate of Elyria within that distribution
would indicate exactly how extreme or unlikely its
angioplasty rates are.

c. Elyria’s extremely high rates do not necessarily mean the
doctors are committing fraud. One could imagine that an area
with a population composed mostly of retirees (that is, more
elderly people) would have a higher rate of angioplasty.
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Conversely, perhaps Elyria has a skilled set of surgeons who
are renowned for their angioplasty skills and people from all
over the country come there to have angioplasty.

CHAPTER 7
7.1 A percentile tells you the percentage of scores that fall below a

certain point on a distribution.

7.3 We add the percentage between the mean and the positive z
score to 50%, which is the percentage of scores below the
mean (50% of scores are on each side of the mean).

7.5 In statistics, assumptions are the characteristics we ideally
require the population from which we are sampling to have so
that we can make accurate inferences.

7.7 Parametric tests are statistical analyses based on a set of
assumptions about the population. By contrast, nonparametric
tests are statistical analyses that are not based on a set of
assumptions about the population.

7.9 Critical values, often called simply cutoffs, are the test statistic
values beyond which we reject the null hypothesis. The critical
region refers to the area in the tails of the distribution in which
we reject the null hypothesis if our test statistic falls there.

7.11 A statistically significant finding is one in which we have rejected
the null hypothesis because the pattern in the data differed
from what we would expect by chance. The word significant is
another one of those statistical terms with a very particular
meaning. The phrase does not necessarily mean that the finding
is important or meaningful; it means that we are justified in
believing that the pattern in the data is genuine.

7.13 Critical region may have been chosen because values of a test
statistic that are significant appear in a particular area, or region,
on the normal distribution.

7.15 For a one-tailed test, the critical region (usually 5%, or a p level
of 0.05) is placed in only one tail of the distribution; for a two-
tailed test, the critical region must be split in half and shared
between both tails (usually 2.5%, or 0.025, in each tail).

7.17 (1) Replace the missing data point with the mode or mean for
that variable (based on other participants’ responses). (2)
Replace the missing data point with the mode or mean based
on that participant’s responses to other similar questions. (3)
Replace the missing data point with a random number within
the possible range of numbers.

7.19 a. If 22.96% are beyond this z score (in the tail), then 77.04%
are below it (100% � 22.96%).

b. If 22.96% are beyond this z score, then 27.04% are between
it and the mean (50% � 22.96%).

c. Because the curve is symmetric, the area beyond a z score
of �0.74 is the same as that beyond 0.74. Expressed as a
proportion, 22.96% appears as 0.2296.

7.21 a. The percentage above is calculated as the total area above
the mean, 50%, minus the area between this z score and the
mean, 45.64%, to get 4.36%.

b. The percentage below is calculated by adding the area
below the mean, 50%, and the area between the mean and
this z score, 45.64%, to get 95.64%.
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c. The percentage at least as extreme is computed by doubling
the amount beyond the z score, 4.36%, to get 8.72%.

7.23 a. 19%

b. 4%

c. 92%

7.25 a. 2.5% in each tail

b. 5% in each tail

c. 0.5% in each tail

7.27 lM � l � 500

7.29 a. Fail to reject the null hypothesis because 1.06 does not
exceed the cutoff of 1.96.

b. Reject the null hypothesis because �2.06 is more extreme
than �1.96.

c. Fail to reject the null hypothesis because a z statistic with
7% of the data in the tail occurs between �1.48 and �1.47,
which do not exceed �1.96.

7.31 a. Fail to reject the null hypothesis because 0.95 does not
exceed 1.65.

b. Reject the null hypothesis because �1.77 exceeds �1.65.

c. Reject the null hypothesis because the critical value
resulting in 2% in the tail falls within our 5% cutoff region.

7.33 a. The situation describes misleading data. Given that the
participant’s responses did not vary at all, it is likely that he
or she either did not read the statements or did not take the
survey seriously.

b. The situation does not describe misleading data. The
participant’s response time of 420 ms is a likely response
given the sample mean of 413 ms and standard deviation of
30 ms.

c. The situation describes misleading data. Given the mean
and standard deviation she found in previous studies, this
observation of 1220 is unlikely (perhaps the participant
sneezed—or dozed off).

7.35 a.

b. 44.18% of scores are between this z score and the mean. We
need to add this to the area below the mean, 50%, to get
the percentile score of 94.18%.

c. 94.18% of boys are shorter than Kona at this age.

d. If 94.18% of boys are shorter than Kona, that leaves 5.82%
in the tail. To compute how many scores are at least as
extreme, we double this to get 11.64%.

e. We look at the z table to find a critical value that puts 30%
of scores in the tail, or as close as we can get to 30%. A z
score of �0.52 puts 30.15% in the tail. We can use that z
score to compute the raw score for height:

X � �0.52(3.19) � 67 � 65.34 inches

At 72 inches tall, Kona is 6.66 inches taller than Ian.
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7.37 a.

b. The z statistic indicates that this sample mean is 2.82
standard deviations above the expected mean for samples of
size 13. In other words, this sample of boys is, on average,
exceptionally tall.

c. The percentile rank is 99.76%, meaning that 99.76% of
sample means would be of lesser value than the one
obtained for this sample.

7.39 a. lM � l � 63.8

b.

c. 2.44% of sample means would be shorter than this mean.

d. We double 2.44% to account for both tails, so we get 4.88%
of the time.

e. The average height of this group of 15-year-old females is
rare, or statistically significant.

7.41 a. This is a nondirectional hypothesis because no expected
result is expressed.

b. This is a directional hypothesis because better grades are
expected.

c. This hypothesis is nondirectional because any change is of
interest.

7.43 a.

August: X � 3.77
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b. The table tells us that 5.57% of scores fall between the
mean and a z score of �0.138. Thus, (50 � 5.57) �
44.43% of scores fall below that z score. The percentile for
August is 44.43%. This is surprising because it is below the
mean, and it was the month in which a devastating
hurricane hit New Orleans. (Note: It is helpful to draw a
picture of the curve when calculating this answer.)

c. Paragraphs will be different for each student but will
include the fact that a monthly total based on missing data
is inaccurate. The mean and the standard deviation based
on this population, therefore, are inaccurate. Moreover,
even if we had these data points, they would likely be
large and would increase the total precipitation for 
August; August would likely be an outlier, skewing the
overall mean. The median would be a more accurate
measure of central tendency than the mean under these
circumstances.

d. With 10% in each tail, we would look up (50 � 10) � 40%
between the mean and the score of interest. The z scores
that mark the points 40% below and above the mean are
�1.28 and 1.28. (Note: It is helpful to draw a picture of the
curve that includes these z scores.) We can then convert
these z scores to raw scores. X � z(r) � l � �1.28(2.769)
� 4.153 � 0.609; X � z(r) � l � 1.28(2.769) � 4.153
� 7.697. Only October (0.04) is below 0.609. Only
February (8.24) and July (10.65) are above 7.697. These data
are likely inaccurate, however, because the mean and the
standard deviation of the population are based on an
inaccurate mean from August. Moreover, it is quite likely
that August would have been in the most extreme upper
10% if there were complete data for this month.

7.45 a. Population 1 is adult psychiatric inpatients. Population 2 is
normal adults.

b. The comparison distribution would be a distribution of
means. Boone would compare his sample of 150 psychiatric
inpatients to a distribution of all possible samples of 150
individuals.

c. We would use a z test because we have one sample and
we’re comparing it to a population for which we know the
mean and the standard deviation.

d. (1) The dependent variable, intrasubtest scatter, seems to be
a scale variable from the description. (2) The sample
includes 150 adult psychiatric inpatients. It is unlikely that
they were randomly selected from all adult psychiatric
inpatients; thus, we must be cautious about generalizing
from this sample. (3) We do not know if the population
distributions are normal, but we have more than 30
participants (i.e., 150), so the sampling distribution is likely
to be normal.

e. Boone uses the word significantly as an indication that he
rejected the null hypothesis.

7.47 a. The independent variable is the division. Teams were drawn
from either Division I-A or Division I-AA. The dependent
variable is the spread.

b. Random selection was not used. Random selection would
entail having some process for randomly selecting Division
I-AA games for inclusion in the sample. We did not
describe such a process and, in fact, took all their Division
I-AA teams from one league within that division.

c. The populations of interest are football games between
teams in the upper divisions of the NCAA (Division I-A
and Division I-AA).

d. The comparison distribution would be the distribution of
sample means.

e. The first assumption—that the dependent variable is a scale
variable—is met in this example. The dependent variable is
point spread, which is a scale measure. The second
assumption—that participants are randomly selected—is not
met. As described in part (b), the teams for inclusion in the
sample were not randomly selected. The third assumption—
that the distribution of scores in the population of interest
must be normal—is likely to be met. We can imagine that
there is some average point spread around which most point
spreads fall and that on occasion you see extremely high or
extremely low point spreads.

7.49 a. Step 3: lM � l � 16.189; 

Step 4: When we adopt 0.05 as the p level for significance
and have a two-tailed hypothesis, we need to divide the
0.05 by 2 to obtain the z score cutoff for each end of the
distribution (high and low). Dividing 0.05 by 2 yields 0.025.
The z score corresponding to a probability of 0.025 is 1.96.
Therefore, our cutoffs are �1.96 and �1.96.

Step 5: We first must obtain the mean spread in our sample.
The games with their spreads are listed here:

Mean spread � 8.75

Step 6: Given that the z statistic of �1.23 is not beyond our
cutoff of �1.96, we would fail to reject the null hypothesis.
We can conclude only that we do not have sufficient
evidence that the point spread of Division I-AA teams is
different, on average, from that of Division I-A teams.

b. It would be unwise to generalize these findings beyond the
sample. The sample of games was not randomly selected
from all Division I-AA team games that week. It is possible
that this particular league differs from other leagues and
therefore is not representative of Division I-AA as a whole.

7.51 a. Step 2: Null hypothesis: Canadian adults do not have lower
average GNT scores than English adults; H0: l1 � l2.

Research hypothesis: Canadian adults have lower average
GNT scores than English adults; H1: l1 � l2.

b. Step 4: Our cutoff z statistic, based on a p level of 0.05 and
a one-tailed test, is �1.64. (Note: It is helpful to draw a
picture of the normal curve and include this z statistic
on it.)

c. Step 6: Reject the null hypothesis; it appears that Canadian
adults have lower average GNT scores than English adults.
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d. It is easier to reject the null hypothesis with a one-tailed
test. Although we rejected the null hypothesis under both
conditions, the cutoff z value is less extreme with a one-
tailed test because the entire 0.05 (5%) critical region is in
one tail instead of divided between two.

e. The difference between the population mean and sample
mean is identical in both cases, as is the test statistic. The
only aspect that is affected is the critical value.

7.53 a. The independent variable is whether a patient received the
DVD with information about orthodontics. One group
received the DVD. The other group did not. The dependent
variable is the number of hours per day patients wore their
appliances.

b. The researcher did not use random selection when
choosing his sample. He selected the next 15 patients to
come into his clinic.

c. Step 1: Population 1 is patients who did not receive the
DVD. Population 2 is patients who received the DVD. The
comparison distribution will be a distribution of means.
The hypothesis test will be a z test because we have only
one sample and we know the population mean and the
standard deviation. This study meets the assumption that the
dependent variable is a scale measure. We might expect the
distribution of number of hours per day people wear their
appliances to be normally distributed, but from the
information provided it is not possible to tell for sure.
Additionally, the sample includes fewer than 30, so the
central limit theorem may not apply here. The distribution
of sample means may not approach normality. Finally, the
participants were not randomly selected. Therefore, we may
not want to generalize the results beyond this sample.

Step 2: Null hypothesis: Patients who received the DVD do
not wear their appliances a different mean number of hours
per day than patients who did not receive the DVD; 
H0: l1 � l2.

Research hypothesis: Patients who received the DVD wear
their appliances a different mean number of hours per day
than patients who did not receive the DVD; H1: l1 � l2.

Step 3: lM � l � 14.78; 

Step 4: Our cutoff z statistics, based on a p level of 0.05 and
a two-tailed test, are �1.96 and 1.96. (Note: It is helpful to
draw a picture of the normal curve and include these z
statistics on it.)

Step 5:

(Note: It is helpful to add this z statistic to your drawing of
the normal curve that includes the cutoff z statistics.)

Step 6: Fail to reject the null hypothesis. We cannot conclude
that receiving the DVD improves patient compliance.

d. The researcher would have made a Type II error. He would
have failed to reject the null hypothesis when a difference
actually existed between the two populations.

7.55 a. There are several possible causes of the incomplete data on
the sexual behavior scale. One potential cause is that
participants were unwilling to share information about
certain aspects of their life, particularly their sexual behavior.
A second possible cause is that participants became fatigued
or bored partway through working on the scales. A third
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possible cause is that the participants were unmotivated to
complete the scales.

b. There are several options for dealing with the missing data
on the sexual behavior scale if only 1 or 2 answers are
missing. First, you could replace missing values for a
participant with the modal or mean score for all participants
on that variable. Second, you could replace the missing
values for a participant with that participant’s modal or
mean score on similar items on the scale. Finally, you could
replace the missing values for a participant with a random
number within the range of possible responses. We would
exclude from the study people who completed none or
only half the items.

c. You might decide to exclude the participant who had the
highest possible scores on every item on both scales (and
finished very quickly) from your analysis. You would,
however, need to report that you did so when you write up
your results.

d. You should report all of your decisions for handling missing
data and outliers when you write up your results. The
primary test of whether a result is real is whether it can be
replicated. You want other researchers to be able to replicate
your work. To do so, they need to know precisely how you
handled your data. Furthermore, to advance science, you
need to be honest about difficulties you encountered. That
way, future researchers can either expect to have the same
difficulties or can attempt to improve on your methodology
to avoid those difficulties.

CHAPTER 8
8.1 There may be a statistically significant difference between

group means, but the difference might not be meaningful or
have real-life application.

8.3 Confidence intervals add details to our hypothesis test.
Specifically, they tell us a range within which the population
mean will fall 95% of the time if we were to conduct repeated
hypothesis tests using samples of the same size from the same
population.

8.5 In everyday language, we use the word effect to refer to the
outcome of some event. Statisticians use the word in a similar
way when they look at effect sizes. They want to assess a given
outcome. For statisticians, the outcome is any change in a
dependent variable, and the event creating the outcome is an
independent variable. When statisticians calculate an effect size,
they are calculating the size of an outcome.

8.7 In many hypothesis tests, we are comparing whether two
distributions are truly different. If the two distributions overlap
a lot, then we would probably find a small effect size and not
be willing to conclude that the distributions are necessarily
different. If the distributions do not overlap much, this would
be evidence for a larger effect or a real difference between
them.

8.9 According to Cohen’s guidelines for interpreting the d statistic,
a small effect is around 0.2, a medium effect is around 0.5, and
a large effect is around 0.8.

8.11 In everyday language, we use the word power to mean either an
ability to get something done or an ability to make others do
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things. Statisticians use the word power to refer to the ability to
detect an effect, given that one exists.

8.13 80%

8.15 (1) Changing alpha affects statistical power. A researcher could
increase the alpha level. (2) The choice between a two-tailed
and one-tailed test affects statistical power. A researcher could
choose to perform a one-tailed test to improve power. (3)
Sample size affects statistical power. A researcher could increase
the sample size. (4) Statistical power also depends on the
difference between sample means. A researcher could maximize
the difference in the levels of the independent variable (e.g.,
giving a larger dose of a medication) to try to maximize the
difference between means. (5) Finally, statistical power depends
on the variability in the distributions. Anything the researcher
can do to decrease variability in the distributions will increase
power. Using reliable measures and homogeneous samples
decreases variability and will, therefore, increase power.

8.17 The goal of a meta-analysis is to find the mean effect size from
many different studies that all manipulated the same
independent variable and measured the same dependent
variable.

8.19 a. (i) The symbol r is used incorrectly. (ii) The correct symbol
is rM. (iii) Because we are calculating the confidence
interval for a sample mean rather than a sample score, we
need to use the standard error (rM) rather than the standard
deviation (r).

b. (i) rM is incorrect. (ii) The correct symbol is r. (iii) Because
we are calculating Cohen’s d, a measure of effect size, we
divide by the standard deviation, r, not the standard error
of the mean. We use standard deviation rather than standard
error because effect size is independent of sample size.

8.21 18.5% to 25.5% of respondents were suspicious of steroid use
among swimmers.

8.23 a. 20%

b. 15%

c. 1%

8.25 a. A z of 0.85 leaves 19.77% in the tail.

b. A z of 1.04 leaves 14.92% in the tail.

c. A z of 2.33 leaves 0.99% in the tail.

8.27 We know that the cutoffs for the 95% confidence interval are
z � �1.96. The standard error is calculated as:

Now we can calculate the lower and upper bounds of the
confidence interval.

Mlower � �z(rM) � Msample � �1.96(0.147) � 4.1 
� 3.811 hours

Mupper � z(rM) � Msample � 1.96(0.147) � 4.1 � 4.388 hours

The 95% confidence interval can be expressed as [3.81, 4.39].

8.29 z values of �2.58 put 0.49% in each tail, without going over,
so we will use those as the critical values for the 99%
confidence interval. The standard error is calculated as:

r
r

M
N

� � �
1 3

78
0 147

.
.

Now we can calculate the lower and upper bounds of the
confidence interval.

Mlower � �z(rM) � Msample � �2.58(0.147) � 4.1 
� 3.721 hours

Mupper � z(rM) � Msample � 2.58(0.147) � 4.1 � 4.479 hours

The 99% confidence interval can be expressed as [3.72, 4.48].

8.31 a.

b.

c.

8.33 a. Cohen’s 

b. Cohen’s 

c. Cohen’s 

8.35 a. Large

b. Medium

c. Small

d. No effect

8.37 a. The percentage beyond the z statistic of 2.23 is 1.29%.
Doubled to take into account both tails, this is 2.58%.
Converted to a proportion by dividing by 100, we get a p
value of 0.0258.

b. For �1.82, the percentage in the tail is 3.44%. Doubled, it
is 6.88%. As a proportion, it is 0.0688.

c. For 0.33, the percentage in the tail is 37.07%. Doubled, it is
74.14%. As a proportion, it is 0.7414.

8.39 a. Using the formula �NORMSDIST(NORMSINV(1-
.0258)/(SQRT(2))), we get a prep of 0.9156.

b. Using the formula �NORMSDIST(NORMSINV
(1-.0688)/(SQRT(2))), we get a prep of 0.8531.

c. Using the formula �NORMSDIST(NORMSINV
(1-.7414)/(SQRT(2))), we get a prep of 0.3235.

8.41 We would fail to reject the null hypothesis because the
confidence interval around the mean effect size includes zero.

8.43 The effect size of d � 0.11 does not even qualify as a small
effect (d � 0.20) according to Cohen’s conventions.

8.45 Your friend is not considering the fact that the two
distributions, that of IQ scores of Burakumin and that of IQ
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scores of other Japanese, will have a great deal of overlap. The
fact that one mean is higher than another does not imply that
all members of one group have higher IQ scores than all
members of another group. Any individual member of either
group, such as your friend’s former student, might fall well
above the mean for his or her group (and the other group) or
well below the mean for his or her group (and the other
group). Research reports that do not give an indication of the
overlap between two distributions risk misleading their
audience.

8.47 a. Step 3:

Step 4: Our cutoff z statistics are �1.96 and 1.96.

Step 5:

Step 6: Fail to reject the null hypothesis; we can conclude
only that there is not sufficient evidence that Canadian
adults have different average GNT scores from English
adults. The conclusion has changed, but the actual difference
between groups has not. The smaller sample size led to a
larger standard error and a smaller test statistic. This makes
sense because an extreme mean based on just a few
participants is more likely to have occurred by chance than
an extreme mean based on many participants.

b. Step 3:

Step 5:

Step 6: Reject the null hypothesis. It appears that Canadian
adults have lower average GNT scores than English adults.
The test statistic has increased along with the increase in
sample size.

c. Step 3:

Step 5:

The test statistic is now even larger, as the sample size has
grown even larger. Step 6 is the same as in part (b).

d. As sample size increases, the test statistic increases. A mean
difference based on a very small sample could have
occurred just by chance. Based on a very large sample, that
same mean difference is less likely to have occurred just by
chance.

e. The underlying difference between groups has not changed.
This might pose a problem for hypothesis testing because
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the same mean difference is statistically significant under
some circumstances but not others. A very large test statistic
might not indicate a very large difference between means;
therefore, a statistically significant difference might not be
an important difference.

8.49 a. No, we cannot tell which student will do better on the
LSAT. It is likely that the distributions of LSAT scores for
the two groups (humanities majors and social science
majors) have a great deal of overlap. Just because one group,
on average, does better than another group does not mean
that every student in one group does better than every
student in another group.

b. Answers to this will vary, but the two distributions should
overlap and the mean of the distribution for the social
sciences majors should be farther to the right (i.e., higher)
than the mean of the distribution for the humanities
majors.

8.51 a. Given l � 16.189 and r � 12.128, we calculate

. To calculate the 95%

confidence interval, we find the z values that mark off the
most extreme 0.025 in each tail, which are �1.96 and 1.96.
We calculate the lower end of the interval as Mlower �
�z(rM) � Msample � �1.96(6.064) � 8.75 � �3.14 and
the upper end of the interval as Mupper � z(rM) � Msample �
1.96(6.064) � 8.75 � 20.64. The confidence interval
around the mean of 8.75 is [�3.14, 20.64].

b. Because 16.189, the null-hypothesized value of the
population mean, falls within this confidence interval, it is
plausible that the point spreads of Division I-AA schools are
the same, on average, as the point spreads of Division I-A
schools. It is plausible that they come from the same
population of point spreads.

c. Because the confidence interval includes 16.189, we know
that we would fail to reject the null hypothesis if we
conducted a hypothesis test. It is plausible that the sample
came from a population with l � 16.189 by chance. 
We do not have sufficient evidence to conclude that 
the point spreads of Division I-AA schools are from a
different population than the point spreads of Division I-A
schools.

d. In addition to letting us know that it is plausible that the
Division I-AA point spreads are from the same population
as those for the Division I-A schools, the confidence
interval tells us a range of plausible values for the mean
point spread.

8.53 a. The appropriate measure of effect size for a z statistic is
Cohen’s d, which is calculated as

b. Based on Cohen’s conventions, this is a medium-to-large
effect size.

c. The hypothesis test tells us only whether a sample mean is
likely to have been obtained by chance, whereas the effect
size gives us the additional information of how much
overlap there is between the distributions. Cohen’s d, in
particular, tells us how far apart two means are in terms of
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standard deviation. Because it’s based on standard deviation,
not standard error, Cohen’s d is independent of sample size
and therefore has the added benefit of allowing us to
compare across studies. In summary, effect size tells us the
magnitude of the effect, giving us a sense of how important
or practical this finding is, and allows us to standardize the
results of the study. Here, we know that there’s a medium-
to-large effect.

8.55 a. We know that the cutoffs for the 95% confidence interval
are z � �1.96. Standard error is calculated as:

Now we can calculate the lower and upper bounds of the
confidence interval.

Mlower � �z(rM) � Msample � �1.96(3.771) � 38 
� $30.61

Mupper � z(rM) � Msample � 1.96(3.771) � 38 � $45.39

The 95% confidence interval can be expressed as [$30.61,
$45.39].

b. Standard error is now calculated as:

Now we can calculate the lower and upper bounds of the
confidence interval.

Mlower � �z(rM) � Msample � �1.96(1.193) � 38 
� $35.66

Mupper � z(rM) � Msample � 1.96(1.193) � 38 � $40.34

The 95% confidence interval can be expressed as [$35.67,
$40.34].

c. The null-hypothesized mean of $45 falls in the 95%
confidence interval when N is 18. Because of this, we
cannot claim that things are different in 2009 from what we
would normally expect. When N is increased to 180, the
confidence interval becomes narrower because standard
error is reduced. As a result, the mean of $45 no longer falls
within the interval, and we can now conclude that
Valentine’s Day spending is different in 2009 from what was
expected based on previous population data.

d. Cohen’s , just around a

medium effect size.

8.57 a. Standard error is calculated as:

Now we can calculate the lower and upper bounds of the
confidence interval.

Mlower � �z(rM) � Msample � �1.96(2.353) � 123 
� 118.39 mph

Mupper � z(rM) � Msample � 1.96(2.353) � 123 
� 127.61 mph
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The 95% confidence interval can be expressed as [118.39,
127.61].

Because the population mean of 118 mph does not fall
within the confidence interval around the new mean, we
can conclude that the program had an impact. In fact, we
can conclude that the program increased the average speed
of women’s serves.

b. Cohen’s , just below a

medium effect size.

8.59 a. Step 1: We know the following about population 1: l �
135 mph and r � 6.5 mph. We know the following about
population 2: N � 9 and M � 138 mph. Standard error is
calculated as:

Step 2: Because we are testing whether the sample hits a
tennis ball faster, we will conduct a one-tailed test focused
on the high end of the distribution.

We need to find the cutoff that marks where 5% of the
data fall in the tail of population 1. We know that the
critical z value for a one-tailed test is �1.64. Using that z,
we can calculate a raw score.

M � z(rM) � lM � �1.64(2.167) � 135 � 138.553 mph

This mean of 138.553 mph marks the point beyond which
5% of all means based on samples of 9 observations will fall,
assuming that population 1 is true.

Step 3: For the second distribution, centered around 138
mph, we need to calculate how often means of 138.553
(our cutoff) and more occur. We do this by calculating the z
statistic for the raw mean of 138.553 with respect to the
sample mean of 138.

We now look up this z statistic on the table and find that
39.74% falls between this positive z and the tail of interest
(the high end). This is our power for this test.

b. At an alpha of 10%, the critical value moves to �1.28. This
changes the following calculations:

M � z(rM) � lM � �1.28(2.167) � 135 � 137.774 mph

This new mean of 137.774 mph marks the point beyond
which 10% of all means based on samples of 9 observations
will fall, assuming that population 1 is true.

For the second distribution, centered around 138 mph,
we need to calculate how often means of 137.774 (our
cutoff) or larger occur. We do this by calculating the z
statistic for the raw mean of 137.774 with respect to the
sample mean of 138.

We look up this z statistic on the table and find that 3.98%
falls between this negative z and the mean. We add this to
the 50% that falls between the mean and the high tail to get
our power of 53.98%.
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c. Power has moved from 39.74% at alpha of 0.05 to 53.98%
at alpha of 0.10. As alpha increased, so did power.

8.61 a. Power is our ability to reject the null hypothesis when it
should be rejected. If we split alpha in half and place a little
under each tail of the distribution, we also reduce power.
Results occur in one direction or the other—that 
is, we observe an increase in something or decrease in
something; both results don’t occur simultaneously. The half
of alpha that is in the tail related to our observed result is
power. The alpha in the opposite tail is essentially “lost” in
this case.

b. It is better to do a two-tailed test because it leaves us open
to unexpected results. It allows us to explore effects in
either direction.

8.63 a. Step 1: We know the following about population 1: l � 16
hours and r � 1.7 hours. We know the following about
population 2: N � 4 infants and M � 14.9 hours. Standard
error is calculated as:

Step 2: Because we are testing whether the sample sleeps
fewer hours, we will conduct a one-tailed test focused on
the low end of the distribution.

We need to find the cutoff that marks where 5% of the
data fall in the tail of population 1. We know that the z
critical value for a one-tailed test is �1.64. Using that z, we
can calculate a raw score.

M � z(rM) � lM � �1.64(0.85) � 16 � 14.606

This mean of 14.606 hours marks the point beyond which
5% of all means based on samples of 4 observations will fall,
assuming that population 1 is true.

Step 3: For the second distribution, centered around 14.9
hours, we need to calculate how often means of 14.606 and
less occur (our cutoff). We do this by calculating the z
statistic for the raw mean of 14.606 with respect to the
sample mean of 14.9.

We look up this z on the table and find that 13.68% falls
between the mean and this z value. Statistical power is
calculated, in this case, as the proportion of means that
would fall between the z value and the tail of interest. This
would be computed as 50% � 13.68% � 36.32%.

b. Statistical power drops from 98.93% to 36.32% when we
move from a mean based on 37 infants to a mean based on
only 4 infants.

8.65 a. The topic is whether culturally adapted therapies are
effective.

b. They might have decided to include only studies that
included a control-group comparison.

c. The researchers used Cohen’s d as a measure of effect size
for each study in the analysis.

d. The mean effect size they found was 0.45. According to
Cohen’s conventions, this is a medium effect.
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e. The researchers could use the group means and standard
deviations to calculate a measure of effect size.

C H A P T E R  9
9.1 The t distributions are used when we do not know the

population standard deviation or are comparing only two
groups.

9.3 For both tests, standard error is calculated as the standard
deviation divided by the square root of N. For the z test, the
population standard deviation is calculated with N in the
denominator. For the t test, the standard deviation for the
population is estimated by dividing the sum of squared
deviations by N � 1.

9.5 t stands for the t statistic, M is the sample mean, lM is the mean
of the distribution of means, and sM is the standard error as
estimated from a sample.

9.7 Free to vary refers to the number of scores that can take on
different values if we know a given parameter.

9.9 As the sample size increases, we can feel more confident in our
estimate of variability in the population. Remember, this
estimate of variability (s) is calculated with N � 1 in the
denominator in order to inflate the estimate somewhat. As the
sample increases from 10 to 100, and then up to 1000,
subtracting 1 from N has less of an impact on the overall
calculation. As this happens, the t distributions approach the z
distribution, where we in fact knew the population standard
deviation and did not need to estimate it.

9.11 A dot plot depicts the distribution of the sample data and thus
provides information similar to that provided by a histogram.
The dot plot, however, contains a separate dot for each
observation.

9.13 a. First we need to calculate the mean:

We then calculate the deviation of each score from the
mean and the square of that deviation.

The standard deviation is: 

SD
X M

N
�

�
� � �

R( ) .
. .

2 141 430

7
20 204 4 49

X X � M (X � M)2

93 �1.714 2.938

97 2.286 5.226

91 �3.714 13.794

88 �6.714 45.078

103 8.286 68.658

94 �0.714 0.510

97 2.286 5.226
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b. When estimating the population variability, we calculate s:

9.15

9.17

9.19 a. Because 73 df is not on the table, we go to 60 df (we do not
go to the closest value, which would be 80, because we want to
be conservative and go to the next-lowest value for df ) to find
the critical value of 1.296 in the upper tail. If we are looking in
the lower tail, the critical value is �1.296.

b. � 1.984

c. Either �2.438 or �2.438

9.21 a. This is a two-tailed test with df � 25, so the critical t values
are �2.060.

b. df � 17, so the critical t value is either �2.567 or �2.567,
depending on which tail is of interest.

c. �2.043

9.23 a.

b. Mlower � �t(sM) � Msample � �2.705(0.328) � 8.5 � 7.61
Mupper � t(sM) � Msample � 2.705(0.328) � 8.5 � 9.39

c.

9.25 a. �1.96

b. Either �2.33 or �2.33, depending on the tail of interest

c. �1.96

d. The critical z values are lower than the critical t values,
making it easier to reject the null hypothesis when
conducting a z test. Decisions using the t distributions are
more conservative because of the chance we may have
poorly estimated the population standard deviation.

9.27 a. The appropriate mean: lM � l � 11.72

The calculations for the appropriate standard deviation (in
this case, standard error, sM):

Numerator: R(X � M)2 � R(184.145 � 1.082 � 10.956 �
31.136 � 85.563 � 58.217) � 371.099

X X � M (X � M)2

25.62 13.57 184.145

13.09 1.04 1.082

8.74 �3.31 10.956

17.63 5.58 31.136

2.80 �9.25 85.563

4.42 �7.63 58.217
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b.

c. There are several possible answers to this question. Among
the hypotheses that could be examined are whether the
length of stay on death row depends on gender, race, or age.
Specifically, given prior evidence of a racial bias in the
implementation of the death penalty, we might hypothesize
that black and Hispanic prisoners have shorter times to
execution than do prisoners overall.

d. We would need to know the population standard deviation.
If we were really interested in this, we could calculate the
standard deviation from the online execution list.

9.29 a. Mlower � �t(sM) � Msample � �2.571(3.517) � 12.05 �
3.01 years
Mupper � t(sM) � Msample � 2.571(3.517) � 12.05 � 21.09
years

b. Because the population mean of 11.72 years is within the
very large range of the confidence interval, we fail to reject
the null hypothesis. This confidence interval is so large, it is
not useful. The size of the confidence interval is caused by
the large variability in the sample (sM) and the small sample
size (resulting in a large critical t value).

9.31 a. Step 1: Population 1 is male U.S. Marines following a
month-long training exercise. Population 2 is college men.
The comparison distribution will be a distribution of
means.

The hypothesis test will be a single-sample t test because
we have only one sample and we know the population
mean but not the standard deviation. This study meets one
of the three assumptions and may meet another. The
dependent variable, anger, appears to be scale. The data were
not likely randomly selected, so we must be cautious with
respect to generalizing to all Marines who complete this
training. We do not know whether the population is
normally distributed, and there are not at least 30
participants. However, the data from our sample do not
suggest a skewed distribution.

Step 2: Null hypothesis: Male U.S. Marines after a month-
long training exercise have the same average anger levels as
college men—H0: l1 � l2.

Research hypothesis: Male U.S. Marines after a month-long
training exercise have different average anger levels than
college men—H1: μ1 � μ2.

Step 3: lM � l � 8.90; sM � 0.495

M � 13.333

X X � M (X � M)2

14 0.667 0.445

12 �1.333 1.777

13 �0.333 0.111

12 �1.333 1.777

14 0.667 0.445

15 1.667 2.779
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SS � R(X � M)2 � R(0.445 � 1.777 � 0.111 � 1.777 �
0.445 � 2.779) � 7.334

Step 4: df � N � 1 � 6 � 1 � 5; our critical values, based
on 5 degrees of freedom, a p level of 0.05, and a two-tailed
test, are �2.571 and 2.571. (Note: It is helpful to draw a
curve that includes these cutoffs.)

Step 5:

(Note: It is helpful to add this t statistic to the curve that
you drew in step 4.)

Step 6: Reject the null hypothesis. It appears that male U.S.
Marines just after a month-long training exercise have
higher average anger levels than college men; t(5) � 8.96, p
� 0.05.

b. ; reject the null

hypothesis; it appears that male U.S. Marines just after a
month-long training exercise have higher average anger
levels than adult men; t(5) � 8.35, p � 0.05.

c. fail to reject the

null hypothesis; we conclude that there is no evidence from
this study to support the research hypothesis; t(5) � �0.34,
p � 0.05.

d. We can conclude that Marines’ anger scores just after
high-altitude, cold-weather training are, on average,
higher than those of college men and adult men. We
cannot conclude, however, that they are higher, on
average, than those of male psychiatric outpatients. With
respect to the latter difference, we can only conclude that
there is no evidence to support that there is a difference
between Marines’ mean anger scores and those of male
psychiatric outpatients.

9.33 a. We know from the problem that μM � μ � 15 days. Now
we need to calculate the mean of our sample:

� (10 � 11 � 8 � 14 � 13 � 12 � 12 � 27)/8

� 107/8 � 13.375

X X � M (X � M)2

10 �3.375 11.391

11 �2.375 5.641

8 �5.375 28.891

14 0.625 0.391

13 �0.375 0.141

12 �1.375 1.891

12 �1.375 1.891

27 13.625 185.641
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The estimate of the population variability is calculated as:

The standard error is calculated as:

b. df � N � 1 � 8 � 1 � 7

For a two-tailed test with a p level of 0.05 and 7 degrees of
freedom, the cutoffs are �2.365. Because the t statistic fails
to exceed our cutoffs, we fail to reject the null hypothesis.
We cannot conclude that this small business is any different
from the national average when it comes to amount of paid
days off.

c. For a p level of 0.454, prep is 0.5326.

d. The confidence interval is calculated as:

Mlower � �t(sM) � Msample � �2.365(2.052) � 13.375 
� 8.52 paid days off
Mupper � t(sM) � Msample � 2.365(2.052) � 13.375 
� 18.23 paid days off

e.

This is a small effect.

9.35 a. We know from the problem that μM � μ � 15 days.

Now we need to calculate the mean of our sample:

� (10 � 11 � 8 � 14 � 13 � 12 � 12)/7 

� 80/7 � 11.429 days

The estimate of the population variability is calculated as:

The standard error is calculated as:

b. df � N � 1 � 7 � 1 � 6

For a two-tailed test with a p level of 0.05 and 6 degrees of
freedom, the cutoffs are �2.447. Our test statistic far
exceeds these cutoffs, so we can reject the null hypothesis
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and conclude that this group of employees gets fewer paid
days off, on average, compared to the population.

c. For a p level of 0.003, prep is 0.9740.

d.

This is a large effect.

e. Because the owner’s large data point, 27 days, was taken out
of the analyses, the mean number of paid days off went
down a little; this created a larger difference in the
numerator of the t statistic and Cohen’s d. More
significantly, perhaps, the estimate of variability in the
population also went down (from 5.80 to 1.99). This had a
great impact on the calculation of t and d, resulting in a
statistically significant difference being observed, and also
affected prep such that there is now a high probability of
finding an effect in the same direction with the same size
sample from this population.

9.37 a.

b. The distributions are similar in that 0 is the modal amount
of credit card debt for both women and men. The majority
of participants in this study reported no credit card debt.
Both distributions are positively skewed, particularly the
distribution for women. Moreover, the distribution for
women shows a potential outlier.

C H A P T E R  1 0
10.1 A distribution of mean differences is constructed by measuring

the difference scores for a sample of individuals and then
averaging those differences. This process is performed repeatedly,
using the same population and samples of the same size. Once a
collection of mean differences is gathered, they can be displayed
on a graph (in most cases, they form a bell-shaped curve).

10.3 The term paired-samples is used to describe a test that compares
an individual’s scores in both conditions; it is also called a
paired-samples t test. Independent-samples refer to groups that do
not overlap in any way, including membership; the observations
made in one group in no way relate to or depend on the
observations made in another group.

10.5 Unlike a single-sample t test, in the paired-samples t test we
have two scores for every participant; we take the difference
between these scores before calculating the sample mean
difference that will be used in the t test.

10.7 If the confidence interval around the mean difference score
includes the value of 0, then 0 is a plausible mean difference. If
we conduct a hypothesis test for these data, we would fail to
reject the null hypothesis.

Women 

Men

–2000 0 2000 4000 6000 10000 

Credit card debt 
8000 12000
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10.9 Order effects occur when performance on a task changes
because the dependent variable is being presented for a second
time.

10.11 Because order effects result in a change in the dependent
variable that is not directly the result of the independent
variable of interest, the researcher may decide to use a
between-groups design, particularly when counterbalancing is
not possible. For example, if a researcher is interested in how
the amount of practice affects the acquisition of a new
language, it is not possible for the same participants to be in
both a group that has small amounts of practice and a group
that has large amounts of practice.

10.13 t � �2.001

10.15 a.

Mdifference � 1.25

SS � R(X � M )2 � 225.504

b. With df � 7, the critical t values are �2.365. The calculated
t statistic of 0.62 does not exceed the critical value.
Therefore, we fail to reject the null hypothesis.

10.17 With df � 11 and a two-tailed hypothesis test with a p level of
0.05, the critical t values are �2.201. Because the calculated t
statistic of �6.75 exceeds the critical t value, we reject the null
hypothesis.

10.19

Mdifference � 11.571

SCORE 1 SCORE 2 DIFFERENCE X � M (X � M) 2

45 62 17 5.429 29.474

34 56 22 10.429 108.764

22 40 18 6.429 41.332

45 48 3 �8.571 73.462

15 26 11 �0.571 0.326

51 56 5 �6.571 43.178

28 33 5 �6.571 43.178
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SS � R(X � M )2 � 339.714

10.21 a. With N � 7, df � 6, t � �2.447:

Mlower � �t(sM ) � Msample � �2.447(2.844) � 11.571 
� 4.61

Mupper � t(sM ) � Msample � 2.447(2.844) � 11.571 
� 18.53

b.

10.23 a.

b. Mlower � �t(sM) � Msample � �2.179(0.394) � (�0.77) 
� �1.63

Mupper � t(sM) � Msample � 2.179(0.394) � (�0.77) � 0.09

c.

10.25 Null hypothesis: Local retailers have the same earnings, on
average, in the presence of big box stores as in the absence of
big box stores—H0: l1 � l2. 

Research hypothesis: Local retailers have different earnings, on
average, in the presence of big box stores than in the absence of
big box stores—H1: l1 	 l2.

10.27

This is a medium-to-large effect size. This might indicate that,
if we continue to investigate our hypothesis, we might attain
statistical significance. The easiest way to do this is to increase
the sample size. We could use a power calculator to estimate
how large the sample would need to be to find an effect of this
size.

10.29 a. Step 2: Null hypothesis: The average Stroop reaction time of
highly hypnotizable individuals who receive a posthypnotic
suggestion is greater than or equal to that of highly
hypnotizable individuals who receive no posthypnotic
suggestion—H0: l1 � l2. 

Research hypothesis: Highly hypnotizable individuals who
receive a posthypnotic suggestion will have faster (i.e., lower
number) average Stroop reaction times than highly
hypnotizable individuals who receive no posthypnotic
suggestion—H1: l1 � l2.

b. Step 4: df � N � 1 � 6 � 1 � 5; the critical value, based
on 5 degrees of freedom, a p level of 0.05, and a one-tailed
test, is �2.015. (Note: It is helpful to draw a curve that
includes this cutoff.)

c. Step 6: Reject the null hypothesis; it appears that highly
hypnotizable people have faster Stroop reaction times when
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they receive a posthypnotic suggestion than when they do
not.

d. It is easier to reject the null hypothesis with a one-tailed
test. Although we rejected the null hypothesis under both
conditions, the critical t value is less extreme with a one-
tailed test because the entire 0.05 (5%) critical region is in
one tail instead of divided between two.

e. The difference between the means of the samples is
identical, as is the test statistic. The only aspect that is
affected is the critical value.

10.31 a. Step 3: lM � l � 0; sM � 0.850

(Note: Remember to cross out the original scores once you
have created the difference scores so you won’t be tempted
to use them in your calculations.)

Mdifference � �3.3

SS � R(X � M)2 � R(0.64 � 0.81 � 2.89) � 4.34

Step 4: df � N � 1 � 3 � 1 � 2; the critical values, based
on 2 degrees of freedom, a p level of 0.05, and a two-tailed
test, are �4.303 and 4.303. (Note: It is helpful to draw a
curve that includes these cutoffs.)

Step 5:

(Note: It is helpful to add this t statistic to the curve that
you drew in step 4.)

b. This test statistic is no longer beyond the critical value.
Reducing the sample size makes it more difficult to reject
the null hypothesis because it results in a larger standard
error and therefore a smaller test statistic. It also results in
more extreme critical values.

10.33 a. Step 1: Population 1 is the Devils players in the 2007–2008
season. Population 2 is the Devils players in the 2008–2009
season. The comparison distribution is a distribution of
mean differences. We meet one assumption: The dependent
variable, goals, is scale. We do not, however, meet the
assumption that our participants are randomly selected from
the population. We may also not meet the assumption that
the population distribution of scores is normally distributed
(the scores do not appear normally distributed and we do
not have an N of at least 30).

Step 2: Null hypothesis: The team performed no differently,
on average, in the 2007–2008 and 2008–2009 seasons—H0:
l1 � l2.

Research hypothesis: The team scored a different number of
goals, on average, in the 2007–2008 and 2008–2009
seasons—H1: l1 � l2.

Step 3: l � 0 and sM � 3.682
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Mdifference � 6.167

SS � R(X � M)2 � 406.804

Step 4: The critical t values with a two-tailed test, p level of
0.05, and df � 5 are �2.571.

Step 5:

Step 6: Fail to reject the null hypothesis because the calculated
t statistic of 1.67 does not exceed the critical t value.

b. t(5) � 1.67, p � 0.05 (Note: If we had used software, we
would provide the actual p value.)

c. Mlower � �t(sM) � Msample � �2.571(3.682) � 6.167 �
�3.30

Mupper � t(sM) � Msample � 2.571(3.682) � 6.167 � 15.63

Because the confidence interval includes 0, we fail to reject
the null hypothesis. This is consistent with the results of the
hypothesis test conducted in part (a).

d.

10.35 a. Participants might get faster at completing the Stroop test as
a result of practice with it. If so, their reaction times would
be faster the second time they complete the task regardless
of whether they had the posthypnotic suggestion.

b. The researchers could not use counterbalancing because this
was a pre–post design. However, one way to get rid of
possible order effects would be to use a between-groups
design in which some participants are given the
posthypnotic suggestion but others are not, and to compare
the means of these two groups.

CHAPTER 11
11.1 An independent-samples t test is used when we do not know

the population parameters and are comparing two groups that
are composed of nonoverlapping, unrelated participants or
observations.

11.3 Independent events are things that do not affect each other. For
example, the lunch you buy today does not impact the mean
hours of sleep per night the authors of this book get.

11.5 The comparison distribution for the paired-samples t test is
made up of mean differences—the average of many difference
scores. The comparison distribution for the independent-
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samples t test is made up of differences between means, or the
differences we can expect to see between group means if the
null hypothesis is true.

11.7 Both of these represent corrected variance within a group (s2),
but one is for the X variable and the other is for the Y variable.
Because these are corrected measures of variance, N � 1 is in
the denominator.

11.9 We assume that larger samples do a better job of estimating the
population than smaller samples, so we would want the
variability measure based on the larger sample to count more.

11.11 We can take the confidence interval’s upper bound and lower
bound, compare those to the point estimate in our numerator,
and get our margin of error. So, if we predict a score of 7 with
a confidence interval of [4.3, 9.7], we can also express this as a
margin of error of 2.7 points (7 � 2.7). Confidence interval
and margin of error are simply two ways to say the same thing.

11.13 The size of the confidence interval size relates to the range of
scores being predicted. So a 95% confidence interval that spans
a range from 2 to 12 is larger than a 95% confidence interval
from 5 to 6. Although the percentage range has stayed the
same, the width of the distribution has changed. Larger ranges
mean less precision in making predictions; smaller ranges
indicate we are doing a better job of predicting the
phenomenon within the population.

11.15 Guidelines for interpreting the size of an effect based on
Cohen’s d were presented in Chapter 8. Those guidelines state
that 0.2 is a small effect, 0.5 is a medium effect, and 0.8 is a
large effect.

11.17 The square root transformation compresses both the negative
and positive sides of a distribution.

11.19 Group 1 is treated as our X variable; MX � 95.8.

Group 2 is treated as our Y variable; MY � 104.

11.21 Treating group 1 as X and group 2 as Y, dfX � N � 1 � 5 �
1 � 4, dfY � 4 � 1 � 3, and dftotal � dfX � dfY � 4 � 3 � 7.
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105 9.2 84.64
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92 �3.8 14.44

2007–2008 2008–2009 DIFFERENCE X � M (X � M)2

20 31 11 4.833 23.358

14 20 6 �0.167 0.028

12 5 �7 �13.167 173.370

13 29 16 9.833 96.688

22 20 �2 �8.167 66.670

32 45 13 6.833 46.690
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11.23 �2.365

11.25

11.27 For group 1: 

For group 2: 

11.29 The variance of the distribution of differences between
means is:

The standard deviation of the distribution of differences
between means is:

11.31

11.33 The critical t values for the 95% confidence interval for a df of
7 are �2.365 and 2.365.

(MX � MY)lower � �t(sdifference) � (MX � MY)sample

(MX � MY)lower � �2.365(5.201) � (�8.2) � �20.50

(MX � MY)upper � t(sdifference) � (MX � MY)sample

(MX � MY)upper � 2.365(5.201) � (�8.2) � 4.10

The confidence interval is [�20.50, 4.10].

11.35 To calculate Cohen’s d, we need to calculate the pooled
standard deviation for our data:

11.37 a. dftotal is 35, and the cutoffs are �2.030 and 2.030.

b. dftotal is 26, and the cutoffs are �2.779 and 2.779.

c. �1.740 and 1.740

11.39 a. For this set of data, we would not want to apply a
transformation. The mean and the median of the data set
are exactly equal (both are 20), which indicates that the data
are normally distributed. Thus, there is no need to apply a
data transformation.

b. For this set of data, we may consider applying a data
transformation. A comparison of the mean, which is 28.3,
and the median, which is 26, suggests that there is a slight
positive skew to the distribution that may warrant a data
transformation.

c. For this set of data, we would probably apply a data
transformation. Comparing the mean of 78 to the median
of 82.5 reveals a negative skew that may warrant the use of
a data transformation.
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11.41 a. Step 1: Population 1 is highly hypnotizable people who
receive a posthypnotic suggestion. Population 2 is highly
hypnotizable people who do not receive a posthypnotic
suggestion. The comparison distribution will be a
distribution of differences between means. The hypothesis
test will be an independent-samples t test because we have
two samples and every participant is in only one sample.
This study meets one of the three assumptions and may
meet another. The dependent variable, reaction time in
seconds, is scale. The data were not likely randomly selected,
so we should be cautious when generalizing beyond our
sample. We do not know whether the population is
normally distributed, and there are fewer than 30
participants, but our sample data do not suggest skew.

Step 2: Null hypothesis: Highly hypnotizable individuals
who receive a posthypnotic suggestion have the same
average Stroop reaction times as highly hypnotizable
individuals who receive no posthypnotic suggestion—
H0: l1 � l2. 

Research hypothesis: Highly hypnotizable individuals who
receive a posthypnotic suggestion have different average
Stroop reaction times than highly hypnotizable individuals
who receive no posthypnotic suggestion—H1: l1 	 l2.

Step 3: (l1 � l2) � 0; sdifference � 0.463

Calculations:

MX � 12.55

MY � 9.5

dfX � N � 1 � 6 � 1 � 5
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X X � M (X � M)2

12.6 0.05 0.003

13.8 1.25 1.563

11.6 �0.95 0.903

12.2 �0.35 0.123

12.1 �0.45 0.203

13.0 0.45 0.203
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dfY � N � 1 � 6 � 1 � 5

dftotal � dfX � dfY � 5 � 5 � 10

Step 4: The critical values, based on a two-tailed test, a p
level of 0.05, and dftotal of 10, are �2.228 and 2.228. (Note:
It is helpful to draw a curve that includes these cutoffs.)

Step 5: . (Note: It is

helpful to add this t statistic to the curve that you drew in
step 4.)

Step 6: Reject the null hypothesis; it appears that highly
hypnotizable people have faster Stroop reaction times 
when they receive a posthypnotic suggestion than when
they do not.

b. t(10) � 6.59, p � 0.05

c. When there are two separate samples, the t statistic becomes
smaller. Thus, it becomes more difficult to reject the null
hypothesis with a between-groups design than with a
within-groups design.

d. In the within-groups design and the calculation of the
paired-samples t test, we create a set of difference scores and
conduct a t test on that set of difference scores. This means
that any overall differences that participants have on the
dependent variable are “subtracted out” and do not go into
the measure of overall variability that is in the denominator
of the t statistic.

11.43 a. Step 1: Population 1 consists of men. Population 2 consists
of women. The comparison distribution is a distribution of
differences between means. We will use an independent-
samples t test because men and women cannot be in both
conditions, and we have two groups. Of the three
assumptions, we meet one because the dependent variable,
number of words uttered, is a scale variable. We do not
know whether the data were randomly selected and
whether the population is normally distributed, and we
have a small N, so we should be cautious in drawing
conclusions.

Step 2: Null hypothesis: There is no mean difference in the
number of words uttered by men and women—H0: l1 � l2.

Research hypothesis: Men and women utter a different
number of words, on average—H1: l1 	 l2.

Step 3: (l1 � l2) � 0; sdifference � 684.869

Calculations (treating women as X and men as Y):
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MX � 16,091.600

MY � 16091.600

dfX � N � 1 � 5 � 1 � 4

dfY � N � 1 � 5 � 1 � 4

dftotal � dfX � dfY � 8

Step 4: The critical values, based on a two-tailed test, a p
level of 0.05, and a dftotal of 8, are �2.306 and 2.306.

Step 5:

�0.101
Step 6: We fail to reject the null hypothesis. The calculated t
statistic of �0.101 is not more extreme than the critical t
values.

b. t(8) � �0.10, p � 0.05 (Note: If we used software to
conduct the t test, we would report the actual p value
associated with this test statistic.)

11.45 a. Step 1: Population 1 consists of mothers, and population 2
is nonmothers. The comparison distribution will be a
distribution of differences between means. We will use an
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independent-samples t test because someone is either
identified as being a mother or not being a mother; both
conditions, in this case, cannot be true. Of the three
assumptions, we meet one because the dependent variable,
decibel level, is a scale variable. We do not know whether
the data were randomly selected and whether the
population is normally distributed, and we have a small N,
so we will be cautious in drawing conclusions.

Step 2: Null hypothesis: There is no mean difference in
sound sensitivity, as reflected in the minimum level of
detection, between mothers and nonmothers—H0: l1 � l2.

Research hypothesis: There is a mean difference in
sensitivity between the two groups—H1: l1 	 l2.

Step 3: ( l1 � l2) � 0; sdifference � 9.581

Calculations:

MX � 47

MY � 58.333

dfX � N � 1 � 5 � 1 � 4

dfY � N � 1 � 3 � 1 � 2

dftotal � dfX � dfY � 4 � 2 � 6

Step 4: The critical values, based on a two-tailed test, a p
level of 0.05, and a dftotal of 6, are �2.447 and 2.447.

Step 5:

� �1.183
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Step 6: Fail to reject the null hypothesis. We do not have
enough evidence, based on these data, to conclude that
mothers have more sensitive hearing, on average, when
compared to nonmothers.

b. t(6) � �1.183, p � 0.05

11.47 a. To calculate the 95% confidence interval, we find the t
statistics that correspond to a p level of 0.05—that is, the
values that mark off the most extreme 0.025 in each tail—
which are �2.447 and 2.447. We then calculate:

(MX � MY)lower � �t(sdifference) � (MX � MY)sample
� �2.447(13.335) � (32.25 � 56.50) 
� �32.631 � (�24.25) � �56.881

(MX � MY)upper � t(sdifference) � (MX � MY)sample
� 2.447(13.335) � (32.25 � 56.50) 
� 32.631 � (�24.25) � 8.381

The 95% confidence interval around the difference between
means of 24.25 is [�56.88, 8.38].

b. To calculate the 90% confidence interval, we find the t
statistics that correspond to a p level of 0.10—that is, the
values that mark off the most extreme 0.05 in each tail—
which are �1.943 and 1.943. We then calculate:

(MX � MY)lower � �t(sdifference) � (MX � MY)sample
� �1.943(13.335) � (32.25 � 56.50) 
� �25.910 � (�24.25) � �50.160

(MX � MY)Upper � t(sdifference) � (MX � MY)Sample
� 1.943(12.95) � (32.25 � 56.50) 
� 25.910 � (�24.25) � 1.660

The 90% confidence interval around the difference between
means of 24.25 is [�50.16, 1.66].

c. The 90% confidence interval has a narrower range than the
95% confidence interval. When calculating the 95%
confidence interval, we are describing the range in which
the population mean will fall 95% of the time—as opposed
to “only” 90% of the time—so we have a larger range
within which those means are likely to fall.

11.49 a. (MX � MY)lower � �t(sdifference) � (MX � MY)sample

(MX � MY)lower � �2.776(3.815) � (10.333 � 8.333) 
� �8.590

(MX � MY)upper � t(sdifference) � (MX � MY)sample

(MX � MY)upper � 2.776(3.815) � (10.333 � 8.333) 
� 12.590

b. The 95% confidence interval around the difference between
means of 2 drinks is [�8.59, 12.59]. What we learn from
this confidence interval is that there is great variability in
the plausible difference between means for these data,
reflected in the wide range. We also notice that 0 is within
the confidence interval, so we cannot assume a difference
between these groups. In addition, the confidence interval
indicates skew because a person cannot have fewer than 0
drinks.

c. On average, the difference in the amount of drinking
between people who stayed at all-inclusive resorts versus
noninclusive resorts was 2 drinks, with a margin of error of
10.59 drinks.

11.51 a. The appropriate measure of effect size for a t statistic is
Cohen’s d, which is calculated as 
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b. Based on Cohen’s conventions, this is a large effect size.

c. It is useful to have effect-size information because the
hypothesis test tells us only whether we were likely to have
obtained our sample mean by chance. The effect size tells us
the magnitude of the effect, giving us a sense of how
important or practical this finding is, and allows us to
standardize the results of the study so that we can compare
across studies. Here, we know that there’s a large effect.

11.53 a. First, we need the appropriate measure of variability. In this
case, we calculate pooled standard deviation by taking the
square root of the pooled variance that we calculated in
Exercise 11.43:

Now we can calculate Cohen’s d:

b. This is a small effect.

c. Effect size tells us how big the difference we observed
between means was, uninfluenced by sample size. Often, this
measure will help us understand whether we want to
continue along our current research lines; that is, if a strong
effect is indicated but we fail to reject the null hypothesis,
we might want to continue collecting data to increase our
statistical power. In this case, however, the failure to reject
the null hypothesis is accompanied by a small effect.

11.55 a.

b. This is a large effect.

c. Effect size tells us how big the difference we observed
between means was, without the influence of sample size.
Often, this measure helps us decide whether we want to
continue along our current research lines. In this case, the
large effect would encourage us to collect more data to
increase statistical power.

11.57 a. We would use a single-sample t test because we have one
sample of figure skaters and are comparing that sample to a
population (women with eating disorders) for which we
know the mean.

b. We would use an independent-samples t test because we
have two samples, and no participant can be in both
samples. One cannot have both a high level and a low level
of knowledge about a topic.

c. We would use a paired-samples t test because we have two
samples, but every student is assigned to both samples—one
night of sleep loss and one night of no sleep loss.

11.59 a. Waters is predicting lower levels of obesity among children
who are in the Edible Schoolyard program than among
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children who are not in this program. Waters and others
who believe in her program are likely to notice successes
and overlook failures. Solid research is necessary before
instituting such a program nationally, even though it sounds
extremely promising.

b. Students could be randomly assigned to participate in the
Edible Schoolyard program or to continue with their usual
lunch plan. The independent variable is the program, with
two levels (Edible Schoolyard, control), and the dependent
variable could be weight. Weight is easily operationalized by
weighing children, perhaps after one year in the program.

c. We would use an independent-samples t test because there
are two samples and no student is in both samples.

d. Step 1: Population 1 is all students who participated in the
Edible Schoolyard program. Population 2 is all students who
did not participate in the Edible Schoolyard program. The
comparison distribution will be a distribution of differences
between means. The hypothesis test will be an
independent-samples t test. This study meets all three
assumptions. The dependent variable, weight, is scale. The
data would be collected using a form of random selection.
In addition, there would be more than 30 participants in
the sample, indicating that the comparison distribution
would likely be normal.

e. Step 2: Null hypothesis: Students who participate in the
Edible Schoolyard program weigh the same, on average, as
students who do not participate—H0: l1 � l2. 

Research hypothesis: Students who participate in the Edible
Schoolyard program have different weights, on average, than
students who do not participate—H1: l1 	 l2.

f. The dependent variable could be nutrition knowledge, as
assessed by a test, or body mass index (BMI).

g. There are many possible confounds when we do not
conduct a controlled experiment. For example, the Berkeley
school might be different to begin with. After all, the school
allowed Waters to begin the program, and perhaps it had
already emphasized nutrition. Random selection allows us
to have faith in our ability to generalize beyond our sample.
Random assignment allows us to eliminate confounds, other
variables that may explain any differences between groups.

C H A P T E R  1 2
12.1 An ANOVA is a hypothesis test with at least one nominal

independent variable (with at least three total groups) and a
scale dependent variable.

12.3 Between-groups variance is an estimate of the population
variance based on the differences among the means; within-
groups variance is an estimate of the population variance based
on the differences within each of the three (or more) sample
distributions.

12.5 The three assumptions are that the participants were randomly
selected, the underlying populations are normally distributed,
and the underlying variances of the different conditions are
similar, or homoscedastic.

12.7 The F statistic is calculated as the ratio of two variances.
Variability, and the variance measure of it, is always positive—it
always exists. Variance is calculated as the sum of squared
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deviations, and squaring both positive and negative values
makes them positive.

12.9 With sums of squares, we add up all the squared values.
Deviations from the mean always sum to 0. By squaring these
deviations, we can sum them and they will not sum to 0. Sums
of squares are measures of variability of scores from the mean.

12.11 The grand mean is the mean of every score in a study,
regardless of which sample the score came from.

12.13 Cohen’s d; R2

12.15 Post-hoc means “after this.” These tests are needed when our
ANOVA is significant and we want to discover where the
significant differences exist between our groups.

12.17 a. Standard error is wrong. The professor is reporting the spread
for a distribution of scores, the standard deviation.

b. t statistic is wrong. We do not use the population standard
deviation to calculate a t statistic. The sentence should say z
statistic instead.

c. Parameters is wrong. Parameters are numbers that describe
populations, not samples. The researcher calculated the
statistics.

d. z statistic is wrong. Evelyn is comparing two means; thus,
she would have calculated a t statistic.

12.19 When performing Bonferroni post-hoc comparisons, you
adjust the p level by dividing the p level for the experiment by
the number of comparisons you want to make. You then
calculate multiple t tests—one for each two-group comparison
you make—and compare the p value for each test to the new
Bonferroni-adjusted p level.

12.21 a. dfbetween � Ngroups � 1 � 3 � 1 � 2

b. dfwithin � df1 � df2 � . . . � dflast � (4 � 1) � (3 � 1) �
(5 � 1) � 3 � 2 � 4 � 9

c. dftotal � dfbetween � dfwithin � 2 � 9 � 11

12.23 The critical value for a between-groups degrees of freedom of
2 and a within-groups degrees of freedom of 9 at a p level of
0.05 is 4.26.

12.25 a.

b.

c.
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Total 132 13

F � �
34.45

41.60
0.83

F � �
2 79

2 20
1 27

.

.
.

F �
between-groups variance

within groups varian- cce
1.82� �

321 83

177 24

.

.

12.31 (Note: The total sum of squares will not exactly equal the sum
of the between-groups and within-groups sums of squares
because of rounding decisions.)

a. Total sum of squares is calculated here as SStotal � R(X �
GM )2: 

b. Within-groups sum of squares is calculated here as SSwithin
� R(X � M )2:

M
X

N
1990 � �

� � � �
�

R( )
.

273 396 178 248 374

5
293 80

SAMPLE X (X � M) (X � M)2

1970 45 �77 5,929.00

M1970 � 122 211 89 7,921.00

158 36 1,296.00

74 �48 2,304.00

1980 92 �108.667 11,809.517

M1980 � 200.667 128 �72.667 5,280.493

382 181.333 32,881.657

1990 273 �20.8 432.64

M1990 � 293.8 396 102.2 10,444.84

178 �115.8 13,409.64

248 �45.8 2,097.64

374 80.2 6,432.04

GM � 213.25 SSwithin � 100,238.467

SAMPLE X (X � GM) (X � GM)2

1970 45 �168.25 28,308.063

M1970 � 122 211 �2.25 5.063

158 �55.25 3,052.563

74 �139.25 19,390.563

1980 92 �121.25 14,701.563

M1980 � 200.667 128 �85.25 7,267.563

382 168.75 28,476.563

1990 273 59.75 3,570.063

M1990 � 293.8 396 182.75 33,397.563

178 �35.25 1,242.563

248 34.75 1,207.563

374 160.75 25,840.563

GM � 213.25 SStotal � 166,460.286

GM
X

Ntotal

� �

� � � � � �
� �R( )

45 211 158 74 92 128
382 273 3396 178 248 374

12
213 25

� � �

�

⎛
⎝⎜

⎞
⎠⎟

.
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c. Between-groups sum of squares is calculated here as SSbetween
� R(M � GM )2:

12.33

12.35 Because we have unequal sample sizes, we must calculate a
weighted sample size.

Now we can compare our three groups.

Group 1 (M � 16.25) versus group 2 (M � 17.33):

Group 1 (M � 16.25) versus group 3 (M � 6.33):

HSD �
�

�
16 25 6 333

2 478
4 0

. .

.
.

HSD �
�

��
16 25 17 333

2 478
0 44

. .

.
.

s
MS

N
M

within
�



� �

25 859

4 211
2 478

.

.
.

N
N groups

N


� �
� � �

�
� �

R 1 1
4

1
3

1
6

1
5

4

4

0 25 0 333

( ) ( )

. . 00 167 0 20
4

0 95
4 211

. .

.
.

�

� �

SOURCE SS df MS F

Between 66,222.763 2 33,111.382 2.97

Within 100,238.467 9 11,137.607

Total 166,460.286 11

F
MS

MS
between

within

� � �
33,111.382

11,137.607
2.997

MS
SS

df
within

within

within

� � �
100,238.467

9
11,1337.607

MS
SS

df
between

between

between

� � �
66,222.763

2
33,,111.382

SAMPLE X (M � GM) (M � GM)2

1970 45 �91.25 8326.563

M1970 � 122 211 �91.25 8326.563

158 �91.25 8326.563

74 �91.25 8326.563

1980 92 �12.583 158.332

M1980 � 200.667 128 �12.583 158.332

382 �12.583 158.332

1990 273 80.55 6488.303

M1990 � 293.8 396 80.55 6488.303

178 80.55 6488.303

248 80.55 6488.303

374 80.55 6488.303

GM � 213.25 SSbetween � 66,222.763

Group 1 (M � 16.25) versus group 4 (M � 16.6):

Group 2 (M � 17.33) versus group 3 (M � 6.33):

Group 2 (M � 17.33) versus group 4 (M � 16.6):

Group 3 (M � 6.33) versus group 4 (M � 16.6):

12.37 With four groups, there are a total of six different comparisons.

12.39 a. The independent variable is type of program. The levels are
The Daily Show and network news. The dependent variable
is the amount of substantive video and audio reporting per
second.

b. The hypothesis test that Fox would use is an independent-
samples t test.

c. The independent variable is still type of program, but now
the levels are The Daily Show, network news, and cable
news. The hypothesis test would be a one-way between-
groups ANOVA. 

12.41 a. t distribution; we are comparing the mean IQ of a sample of
10 to the population mean of 100; this student knows only
the population mean—not the population standard
deviation.

b. F distribution; we are comparing the mean ratings of four
samples—families with no books visible, with only
children’s books visible, with only adult books visible, and
with both types of books visible.

c. t distribution; we are comparing the average vocabulary of
two groups.

12.43 a. The independent variable in this case is the type of program
in which students were enrolled; the levels were arts and
sciences, education, law, and business. Because every student
is enrolled in only one program, the researcher would use a
one-way between-groups ANOVA.

b. Now the independent variable is year, with levels of first,
second, or third. Because the same participants are
repeatedly measured, the researcher would use a one-way
within-groups ANOVA.

c. The independent variable in this case is type of degree, and
its levels are master’s, doctoral, and professional. Because
every student is in only one type of degree program, the
researcher would use a one-way between-groups ANOVA.

d. The independent variable in this case is stage of training,
and its levels are master’s, doctoral, and post-doctoral.
Because the same students are repeatedly measured, the
researcher would use a one-way within-groups ANOVA.

12.45 a. The independent variable is political viewpoint, with the
levels Republican, Democrat, and neither.

b. The dependent variable is religiosity.

HSD �
�

��
6 333 16 6

2 478
4 14

. .

.
.

HSD �
�

�
17 333 16 6

2 478
0 30

. .

.
.

HSD �
�

�
17 333 6 333

2 478
4 30

. .

.
.

HSD �
�

��
16 25 16 6

2 478
0 14

. .

.
.
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c. The populations are all Republicans, all Democrats, and all
who categorize themselves as neither. The samples are the
Republicans, Democrats, and people who say they are
neither among the 180 students.

d. First, we would calculate the between-groups variance. This
involves calculating a measure of variability among the three
sample means—the religiosity scores of the Republicans,
Democrats, and others. Then we would calculate the
within-groups variance; this is essentially an average of the
variability within each of the three samples. Finally, we
would divide the between-groups variance by the within-
groups variance. If the variability among the means is much
larger than the variability within each sample, this provides
evidence that the means are different from one another.

12.47 a. Level of trust in the leader is the independent variable. It
has three levels: low, moderate, and high.

b. The dependent variable is level of agreement with a policy
supported by the leader or supervisor.

c. Step 1: Population 1 is employees with low trust in their
leader. Population 2 is employees with moderate trust in
their leader. Population 3 is employees with high trust in
their leader.

The comparison distribution will be an F distribution. The
hypothesis test will be a one-way between-groups ANOVA.
We do not know if employees were randomly selected. We
also do not know if the underlying distributions are normal,
and our sample sizes are small so we must proceed with
caution. To check the final assumption, that we have
homoscedastic variances, we will calculate variance for each
group.

Because the largest variance, 111, is much more than twice
as large as the smallest variance, we can conclude we have
heteroscedastic variances. Violation of this third assumption
of homoscedastic samples means we should proceed with
caution. Because these data are intended to give you
practice calculating statistics, proceed with your analyses.
When conducting real research, we would want to have
much larger sample sizes and to more carefully consider
meeting the assumptions.

Step 2: Null hypothesis: There are no mean differences
between these three groups: the mean level of agreement
with a policy does not vary across the three trust levels—
H0: l1 � l2 � l3. 

Research hypothesis: There are mean differences between
some or all of these groups: the mean level of agreement
depends on trust.

LOW MODERATE HIGH
SAMPLE TRUST TRUST TRUST

Squared deviations 16 100 3.063

1 121 18.063

4 1 60.063

25 27.563

Sum of squares 46 222 108.752

N � 1 3 2 3

Variance 15.33 111 36.25

Step 3: dfbetween � Ngroups � 1 � 3 � 1 � 2

dfwithin � df1 � df2 � . . . � dflast
� (4 � 1) � (3 � 1) � (4 � 1) � 3 � 2 � 3 � 8

dftotal � dfbetween � dfwithin � 2 � 8 � 10

The comparison distribution will be an F distribution with
2 and 8 degrees of freedom.

Step 4: The critical value for the F statistic based on a p
level of 0.05 is 4.46.

Step 5: GM � 21.727

Total sum of squares is calculated here as SStotal � R(X �
GM )2:

Within-groups sum of squares is calculated here as SSwithin
� R(X � M )2:

Between-groups sum of squares is calculated here as SSbetween
� R(M � GM )2:

SAMPLE X (X � M) (X � M)2

Low trust 9 �4 16.00

Mlow � 13 14 1 1.00

11 �2 4.00

18 5 25.00

Moderate trust 14 �10 100.00

Mmod � 24 35 11 121.00

23 �1 1.00

High trust 27 �1.75 3.063

Mhigh � 28.75 33 4.25 18.063

21 �7.75 60.063

34 5.25 27.563

GM � 21.727 SSwithin � 376.752

SAMPLE X (X � GM) (X � GM)2

Low trust 9 �12.727 161.977

Mlow � 13 14 �7.727 59.707

11 �10.727 115.069

18 �3.727 13.891

Moderate trust 14 �7.727 59.707

Mmod � 24 35 13.273 176.173

23 1.273 1.621

High trust 27 5.273 27.805

Mhigh � 28.75 33 11.273 127.081

21 �0.727 0.529

34 12.273 150.627

GM � 21.727 SStotal � 894.187
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Step 6: Our F statistic, 5.49, is beyond our cutoff of 4.46, so
we can reject the null hypothesis. The mean level of
agreement with a policy supported by a supervisor varies
across level of trust in that supervisor. Remember, our
research design and data did not meet the three assumptions
of this statistical test, so we should be careful in interpreting
this finding.

12.49 Because we have unequal sample sizes, we must calculate a
weighted sample size.

, then equals 

Now we can compare our three groups.

Low trust (M � 13) versus moderate trust (M � 24):

Low trust (M � 13) versus high trust (M � 28.75):

Moderate trust (M � 24) versus high trust (M � 28.75):

HSD �
�

��
13 28 75

3 616
4 36

.

.
.

HSD �
�

��
13 24

3 616
3 04

.
.

s
MS

N
M

within
�




47 094

3 601
3 616

.

.
.�

N
Ngroups

N


� �
� �

�
� �R 1 1

4
1
3

1
4

3 3
0 25 0 333 0 2( ) ( ) . . . 55

3
0 833

3 601

�

�

.

.

SOURCE SS df MS F

Between 517.437 2 258.719 5.49

Within 376.752 8 47.094

Total 894.187 10

F
MS

MS
between

within

� � �
258 715

47 094
5 49

.

.
.

MS
SS

df
within

within

within

� � �
376 752

8
47 094

.
.

MS
SS

df
between

between

between

� � �
517 437

2
258 7

.
. 119

SAMPLE X (M � GM) (M � GM)2

Low trust 9 �8.727 76.161

Mlow � 13 14 �8.727 76.161

11 �8.727 76.161

18 �8.727 76.161

Moderate trust 14 2.273 5.167

Mmod � 24 35 2.273 5.167

23 2.273 5.167

High trust 27 7.023 49.323

Mhigh � 28.75 33 7.023 49.323

21 7.023 49.323

34 7.023 49.323

GM � 21.727 SSbetween � 517.437

According to the q table, the critical value is 4.04 for a p
level of 0.05 when you are comparing three groups and have
within-groups degrees of freedom of 8. We obtained one q
value (�4.36) that exceeds this cutoff. Based on our
calculations, there is a statistically significant difference between
the mean level of agreement by employees with low trust in
their supervisors compared to those with high trust.

Because the sample sizes here were so small and we did not
meet the three assumptions of ANOVA, we should be careful
in making strong statements about this finding. In fact, these
preliminary findings would encourage additional research.

12.51 a. The appropriate measure of effect size is

.

b. According to Cohen’s conventions, this is a large effect size.

c. It is useful to have this information because hypothesis
testing tells us only whether year in school is a significant
factor affecting how long patients wear their appliances. R2

gives us an indication of how large this effect is—or how
much of the variability in appliance wearing can be
accounted for by year in school. Here, there’s a large effect.

12.53 a.

b.

c. The “Sig.” for t is the same as that for the ANOVA, 0.005,
because the F distribution reduces to the t distribution
when we are dealing with two groups.

12.55 With exact p values, the reader may be able to apply a
Bonferroni post-hoc comparison even if the author failed to
correct for the inflation of Type I error associated with making
multiple comparisons. For example, assume an author reports a
statistically significant ANOVA for an independent variable
with four levels and then goes on to perform all six
comparisons, stating that two of the comparisons are statistically
significant at a p level of 0.05. If the author reports the exact p
values, the reader can divide the p level of 0.05 by 6 (the
number of comparisons being made) to determine whether the
comparisons are still significant under the more conservative
criterion of the Bonferroni post-hoc test.

C H A P T E R  1 3
13.1 The four assumptions are that (1) the data are randomly

selected, (2) the underlying population distributions are normal,
(3) the variability is similar across groups, or homoscedasticity,
and (4) there are no order effects.

13.3 The “subjects” variability is noise in the data caused by each
individual’s personal variability compared with the other
participants. It is calculated by comparing each person’s mean
response across all levels of the independent variable with the
grand mean, the overall mean response across all levels of the
independent variable.

13.5 Counterbalancing involves exposing participants to the
different levels of the independent variable in different orders.

t F� � �8 856 2 98. .

F
MS

MS
between

within

� � �
4 623

0 522
8 856

.

.
.

R
SS

SS
between

total

2 63 475

111 642
0 57� � �

.

.
.

HSD �
�

��
24 28 75

3 616
1 31

.

.
.
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13.7 To calculate sum of squares for subjects, we first calculate an
average of each participant’s scores across the levels of the
independent variable. Then we subtract the grand mean from
each participant’s mean. We repeat this subtraction for each
score the participant has—that is, for as many times as there are
levels of the independent variable. Once we have the deviation
scores, we square each of them and then sum the squared
deviations to get the sum of squares for participants.

13.9 If we have a between-groups study in which different people
are participating in the different conditions, then we can turn it
into a within-groups study by having all the people in the
sample participate in all the conditions.

13.11 a. dfbetween � Ngroups � 1 � 3 � 1 � 2

b. dfsubjects � n � 1 � 4 � 1 � 3

c. dfwithin � (dfbetween)(dfsubjects) � (2)(3) � 6

d. dftotal � dfbetween � dfsubjects � dfwithin � 2 � 3 � 6 � 11, or
we can calculate it as dftotal � Ntotal � 1 � 12 � 1 � 11

13.13

13.15

The Tukey HSD statistic comparing level 1 and level 3
would be:

HSD
M M

S
level level

M

�
�

�
�

��
1 3 8 75 26 25

1 750
10

. .

.

s
MS

N
M

within
� � �

12 249

4
1 750

.
.

SOURCE SS df MS F

Between-groups 618.504 2 309.252 25.25

Subjects 62.001 3 20.667 1.69

Within-groups 73.495 6 12.249

Total 754 11

F
MS

MS
subjects

subjects

within

� � �
20 667

12 249
1

.

.
..687

F
MS

MS
between

between

within

� � �
309 252

12 249
25

.

.
..247

MS
SS

df
within

within

within

� � �
73 495

6
12 249

.
.

MS
SS

df
subjects

subjects

subjects

� � �
62 001

3
20

.
.6667

MS
SS

df
between

between

between

� � �
618 504

2
309 2

.
. 552

13.17 a. SStotal � R(X � GM)2 � 68.278

b. SSbetween � R(M � GM)2 � 21.766

LEVEL GROUP
OF IV X MEAN M � GM (M � GM)2

Level 1 5 4.167 �0.222 0.049

Level 1 6 4.167 �0.222 0.049

Level 1 3 4.167 �0.222 0.049

Level 1 4 4.167 �0.222 0.049

Level 1 2 4.167 �0.222 0.049

Level 1 5 4.167 �0.222 0.049

Level 2 6 5.833 1.444 2.085

Level 2 8 5.833 1.444 2.085

Level 2 4 5.833 1.444 2.085

Level 2 7 5.833 1.444 2.085

Level 2 3 5.833 1.444 2.085

Level 2 7 5.833 1.444 2.085

Level 3 4 3.167 �1.222 1.493

Level 3 5 3.167 �1.222 1.493

Level 3 2 3.167 �1.222 1.493

Level 3 4 3.167 �1.222 1.493

Level 3 0 3.167 �1.222 1.493

Level 3 4 3.167 �1.222 1.493

GM � 4.389 SSbetween � 21.766

LEVEL OF IV X X � GM (X � GM)2

Level 1 5 0.611 0.373

Level 1 6 1.611 2.595

Level 1 3 �1.389 1.929

Level 1 4 �0.389 0.151

Level 1 2 �2.389 5.707

Level 1 5 0.611 0.373

Level 2 6 1.611 2.595

Level 2 8 3.611 13.039

Level 2 4 �0.389 0.151

Level 2 7 2.611 6.817

Level 2 3 �1.389 1.929

Level 2 7 2.611 6.817

Level 3 4 �0.389 0.151

Level 3 5 0.611 0.373

Level 3 2 �2.389 5.707

Level 3 4 �0.389 0.151

Level 3 0 �4.389 19.263

Level 3 4 �0.389 0.151

GM � 4.389 SStotal � 68.278
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c. SSsubjects � R(Mparticipant � GM)2 � 44.278

d. SSwithin � SStotal � SSbetween � SSsubjects � 2.234

13.19 The critical F value at a p level of 0.05 is 4.10. We reject the
null hypothesis because the F statistic, 45.58, is larger than the
critical value.

13.21

13.23

13.25 a. The independent variable is the type of substance placed
beneath the eyes, and its levels are black grease, black
antiglare stickers, and petroleum jelly.

b. The dependent variable is eye glare.

c. This is a one-way within-groups ANOVA.

13.27 a. Null hypothesis: People experience the same mean
amount of fear across all three levels of dog size—H0: l1
� l2 � l3. Research hypothesis: People do not
experience the same mean amount of fear across all three
levels of dog size.

b. We do not know how the participants were selected, so the
first assumption of random selection might not be met. We do
not know how the dogs were presented to the participants, so
we cannot assess whether order effects are present.

c. The effect size was 0.89, which is a large effect. This
indicates that the effect might be important, meaning the
size of a dog might have a large impact on the amount of
fear experienced by people.

d. The Tukey HSD test statistic was �10. According to the q
statistic table, the critical value for the Tukey HSD when there

R
SS

SS SS
between

total subjects

2 �
�

�( )
941.102

56744.502 3807.322�
�( ) 0 51.

R
SS

SS SS
between

total subjects

2 �
�

�( )
21.766

68.2778 44.278�
�( ) 0 91.

LEVEL PARTICIPANT MPARTICIPANT (MPARTICIPANT
PARTICIPANT OF IV X MEAN � GM � GM)2

1 Level 1 5 5.000 0.611 0.373

2 Level 1 6 6.333 1.944 3.780

3 Level 1 3 3.000 �1.389 1.929

4 Level 1 4 5.000 0.611 0.373

5 Level 1 2 1.667 �2.722 7.411

6 Level 1 5 5.333 0.944 0.892

1 Level 2 6 5.000 0.611 0.373

2 Level 2 8 6.333 1.944 3.780

3 Level 2 4 3.000 �1.389 1.929

4 Level 2 7 5.000 0.611 0.373

5 Level 2 3 1.667 �2.722 7.411

6 Level 2 7 5.333 0.944 0.892

1 Level 3 4 5.000 0.611 0.373

2 Level 3 5 6.333 1.944 3.780

3 Level 3 2 3.000 �1.389 1.929

4 Level 3 4 5.000 0.611 0.373

5 Level 3 0 1.667 �2.722 7.411

6 Level 3 4 5.333 0.944 0.892

GM � 4.389 SSsubjects � 44.278

are six within-groups degrees of freedom and three treatment
levels is 4.34. We can conclude that the mean difference in
fear when a small versus large dog is presented is statistically
significant, with the large dog evoking greater fear.

13.29 a. Step 5: We must first calculate df and SS to fill in the
source table.

dfbetween � Ngroups � 1 � 2

dfsubjects � n � 1 �4

dfwithin � (dfbetween)(dfsubjects) � 8

dftotal � Ntotal � 1 � 14

For sums of squares total: SStotal � R(X � GM)2 � 73.6

For sum of squares between: SSbetween � R(M � GM )2 � 47.5

For sum of squares subjects: SSsubjects � R(Mparticipant � GM)2

� 44.278

GROUP
TIME X MEAN M � GM (M � GM)2

Past 18 18.1 �1.5 2.25

Past 17.5 18.1 �1.5 2.25

Past 19 18.1 �1.5 2.25

Past 16 18.1 �1.5 2.25

Past 20 18.1 �1.5 2.25

Present 18.5 18.6 �1 1

Present 19.5 18.6 �1 1

Present 20 18.6 �1 1

Present 17 18.6 �1 1

Present 18 18.6 �1 1

Future 22 22.1 2.5 6.25

Future 24 22.1 2.5 6.25

Future 20 22.1 2.5 6.25

Future 23.5 22.1 2.5 6.25

Future 21 22.1 2.5 6.25

SSbetween � 47.5

TIME X X � GM (X � GM)2

Past 18 �1.6 2.56

Past 17.5 �2.1 4.41

Past 19 �0.6 0.36

Past 16 �3.6 12.96

Past 20 0.4 0.16

Present 18.5 �1.1 1.21

Present 19.5 �0.1 0.01

Present 20 0.4 0.16

Present 17 �2.6 6.76

Present 18 �1.6 2.56

Future 22 2.4 5.76

Future 24 4.4 19.36

Future 20 0.4 0.16

Future 23.5 3.9 15.21

Future 21 1.4 1.96

GM � 19.6 SStotal � 73.6
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SSwithin � SStotal � SSbetween � SSsubjects � 22.667

Step 6: The F statistic, 8.28, is beyond 4.46, the critical F
value at a p level of 0.05. We would reject the null
hypothesis. There is a difference, on average, among the past,
present, and future self-reported life satisfaction of
pessimists.

b. First, we calculate sM:

Next, we calculate HSD for each pair of means.

For past versus present:

For past versus future:

For present versus future:

The critical value of q at a p level of 0.05 is 4.04. Thus, we
reject the null hypothesis for the past versus future
comparison and for the present versus future comparison,
but not for the past versus present comparison. These results
indicate that the mean self-reported life satisfaction of
pessimists is not significantly different for their past and
present, but they expect to have greater life satisfaction in
the future, on average.

HSD �
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��
( . . )

.
.

18 6 22 1

0 753
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HSD �
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.
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18 1 22 1

0 753
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HSD �
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.
.

18 1 18 6

0 753
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s
MS

N
M

within
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2 833

5
0 753

.
.

SOURCE SS df MS F

Between 47.5 2 23.750 8.38

Subjects 3.433 4 0.858 0.30

Within 22.667 8 2.833

Total 73.6 14

c.

13.31 a. Step 5: We must first calculate df and SS to fill in the
source table.

dfbetween � Ngroups � 1 � 2;

dfsubjects � n � 1 �3;

dfwithin � (dfbetween)(dfsubjects) � 6

dftotal � Ntotal � 1 � 11

For sums of squares total: SStotal � R(X � GM)2 � 16.523

For sum of squares between: SSbetween � R(M � GM)2 �
13.815

GROUP
CONDITION X MEAN M � GM (M � GM)2

Black grease 19.8 18.975 1.35 1.823

Black grease 18.2 18.975 1.35 1.823

Black grease 19.2 18.975 1.35 1.823

Black grease 18.7 18.975 1.35 1.823

Antiglare stickers 17.1 17.55 �0.075 0.006

Antiglare stickers 17.2 17.55 �0.075 0.006

Antiglare stickers 18 17.55 �0.075 0.006

Antiglare stickers 17.9 17.55 �0.075 0.006

Petroleum jelly 15.9 16.35 �1.275 1.626

Petroleum jelly 16.3 16.35 �1.275 1.626

Petroleum jelly 16.2 16.35 �1.275 1.626

Petroleum jelly 17 16.35 �1.275 1.626

SSbetween � 13.815

CONDITION X X � GM (X � GM)2

Black grease 19.8 2.175 4.731

Black grease 18.2 0.575 0.331

Black grease 19.2 1.575 2.481

Black grease 18.7 1.075 1.156

Antiglare stickers 17.1 �0.525 0.276

Antiglare stickers 17.2 �0.425 0.181

Antiglare stickers 18 0.375 0.141

Antiglare stickers 17.9 0.275 0.076

Petroleum jelly 15.9 �1.725 2.976

Petroleum jelly 16.3 �1.325 1.756

Petroleum jelly 16.2 �1.425 2.031

Petroleum jelly 17 �0.625 0.391

GM � 17.625 SStotal � 16.523

R
SS

SS SS
between

total subjects

2 �
�

�( ) −
47.5

73.6 3..433( ) �0 68.PARTICIPANT MPARTICIPANT (MPARTICIPANT
PARTICIPANT TIME X MEAN � GM � GM)2

1 Past 18 19.500 �0.100 0.010

2 Past 17.5 20.333 0.733 0.538

3 Past 19 19.667 0.067 0.004

4 Past 16 18.833 �0.767 0.588

5 Past 20 19.667 0.067 0.004

1 Present 18.5 19.500 �0.100 0.010

2 Present 19.5 20.333 0.733 0.538

3 Present 20 19.667 0.067 0.004

4 Present 17 18.833 �0.767 0.588

5 Present 18 19.667 0.067 0.004

1 Future 22 19.500 �0.100 0.010

2 Future 24 20.333 0.733 0.538

3 Future 20 19.667 0.067 0.004

4 Future 23.5 18.833 �0.767 0.588

5 Future 21 19.667 0.067 0.004

SSsubjects � 3.433
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SSwithin � SStotal � SSbetween � SSsubjects � 1.979

Step 6: The F statistic, 20.94, is beyond 5.14, the critical F
value at a p level of 0.05. We would reject the null
hypothesis. There is a difference, on average, in the visual
acuity of participants while wearing different substances
beneath their eyes.

b. First, we calculate sM:

Next, we calculate HSD for each pair of means.

For grease versus stickers:

For grease versus jelly:

For stickers versus jelly:

The critical value of q at a p level of 0.05 is 4.34. Thus, we
reject the null hypothesis for the grease versus stickers
comparison and for the grease versus jelly comparison, but
not for the stickers versus jelly comparison. These results
indicate that black grease beneath the eyes leads to better
visual acuity, on average, than either antiglare stickers or
petroleum jelly.

c. R
SS

SS SS
between

total subjects

2 �
�

�( )
13.815

16.5223 0.729
0.87

−( ) �

SOURCE SS df MS F

Between 13.815 2 6.908 20.94

Subjects 0.729 3 0.243 0.74

Within 1.979 6 0.330

Total 16.523 11

HSD �
�

�
17 55 16 35

0 287
4 18

. .

.
.

( )

HSD �
�

�
18 975 16 35

0 287
9 15

. .

.
.

( )

HSD �
�

�
18 975 17 550

0 287
4 97

. .

.
.

( )

s
MS

N
M

within
� � �

0 330

4
0 287

.
.

13.33 We must first calculate df and SS to fill in the source table.

dfbetween � Ngroups � 1 � 2

dfsubjects � n � 1 �4

dfwithin � (dfbetween)(dfsubjects) � 8

dftotal � Ntotal � 1 � 14

For sums of squares total: SStotal � R(X � GM)2 � 4207.333

STIMULUS X X � GM (X � GM)2

Owner 69 20.667 427.125

Owner 72 23.667 560.127

Owner 65 16.667 277.789

Owner 75 26.667 711.129

Owner 70 21.667 469.459

Cat 28 �20.333 413.431

Cat 32 �16.333 266.767

Cat 30 �18.333 336.099

Cat 29 �19.333 373.765

Cat 31 �17.333 300.433

Dog 45 �3.333 11.109

Dog 43 �5.333 28.441

Dog 47 �1.333 1.777

Dog 45 �3.333 11.109

Dog 44 �4.333 18.775

GM � 48.333 SStotal � 4207.333

PARTICIPANT MPARTICIPANT (MPARTICIPANT
PARTICIPANT CONDITION X MEAN � GM � GM)2

1 Black grease 19.8 17.600 �0.025 0.001

2 Black grease 18.2 17.233 �0.392 0.153

3 Black grease 19.2 17.800 0.175 0.031

4 Black grease 18.7 17.867 0.242 0.058

1 Antiglare stickers 17.1 17.600 �0.025 0.001

2 Antiglare stickers 17.2 17.233 �0.392 0.153

3 Antiglare stickers 18 17.800 0.175 0.031

4 Antiglare stickers 17.9 17.867 0.242 0.058

1 Petroleum jelly 15.9 17.600 �0.025 0.001

2 Petroleum jelly 16.3 17.233 �0.392 0.153

3 Petroleum jelly 16.2 17.800 0.175 0.031

4 Petroleum jelly 17 17.867 0.242 0.058

SSsubjects � 0.729

For sum of squares subjects: SSsubjects � R(Mparticipant � GM)2 � 0.729
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For sum of squares between: SSbetween � R(M � GM)2 �
4133.733

For sum of squares subjects: SSsubjects � R(Mparticipant � GM)2 �
12.667

PARTICIPANT MPARTICIPANT (MPARTICIPANT
STIMULUS X MEAN � GM � GM)2

Owner 69 47.333 �1.000 0.999

Owner 72 49.000 0.667 0.445

Owner 65 47.333 �1.000 0.999

Owner 75 49.667 1.334 1.779

Owner 70 48.333 0.000 0.000

Cat 28 47.333 �1.000 0.999

Cat 32 49.000 0.667 0.445

Cat 30 47.333 �1.000 0.999

Cat 29 49.667 1.334 1.779

Cat 31 48.333 0.000 0.000

Dog 45 47.333 �1.000 0.999

Dog 43 49.000 0.667 0.445

Dog 47 47.333 �1.000 0.999

Dog 45 49.667 1.334 1.779

Dog 44 48.333 0.000 0.000

SSsubjects � 12.667

GROUP
STIMULUS X MEAN M � GM (M � GM)2

Owner 69 70.2 21.867 478.166

Owner 72 70.2 21.867 478.166

Owner 65 70.2 21.867 478.166

Owner 75 70.2 21.867 478.166

Owner 70 70.2 21.867 478.166

Cat 28 30 �18.333 336.099

Cat 32 30 �18.333 336.099

Cat 30 30 �18.333 336.099

Cat 29 30 �18.333 336.099

Cat 31 30 �18.333 336.099

Dog 45 44.8 �3.533 12.482

Dog 43 44.8 �3.533 12.482

Dog 47 44.8 �3.533 12.482

Dog 45 44.8 �3.533 12.482

Dog 44 44.8 �3.533 12.482

SSbetween � 4133.733

SSwithin � SStotal � SSbetween � SSsubjects � 60.933

13.35 At a p level of 0.05, the critical F value is 4.46. Because the
calculated F statistic does not exceed the critical F value, we
would fail to reject the null hypothesis. Because we failed to
reject the null hypothesis, it would not be appropriate to
perform post-hoc comparisons.

C H A P T E R  1 4
14.1 A two-way ANOVA is a hypothesis test that includes two

nominal (or sometimes ordinal) independent variables and a
scale dependent variable.

14.3 In everyday conversation the word cell conjures up images of a
prison or a small room in which someone is forced to stay, or
of one of the building blocks of a plant or animal. In statistics,
the word cell refers to a single condition in a factorial ANOVA
that is characterized by its values on each of the independent
variables.

14.5 A two-way ANOVA has two independent variables. When we
express that as a 2 � 3 ANOVA, we get added detail; the first
number tells us that the first independent variable has two
levels, and the second number tells us that the other
independent variable has three levels.

14.7 A marginal mean is the mean of a row or a column in a table
that shows the cells of a study with a two-way ANOVA design.

14.9 Bar graphs allow us to visually depict the relative changes
across the different levels of each independent variable. By
adding lines that connect the bars within each series, we can
assess whether the lines appear parallel, significantly different
from parallel, or intersecting. Intersecting and significantly
nonparallel lines are indications of interactions.

14.11 First, we may be able to reject the null hypothesis for the
interaction. (If the interaction is statistically significant, then it
might not matter whether the main effects are significant; if
they are also significant, then those findings are usually
qualified by the interaction and they are not described
separately. The overall pattern of cell means can tell the whole
story.) Second, if we are not able to reject the null hypothesis
for the interaction, then we focus on any significant main
effects, drawing a specific directional conclusion for each.
Third, if we do not reject the null hypothesis for either main
effect or the interaction, then we can only conclude that there
is insufficient evidence from this study to support our research
hypotheses.

14.13 This is the formula for the between-groups sum of squares for
the interaction; we can calculate this by subtracting the other
between-groups sums of squares (those for the two main
effects) and the within-groups sum of squares from the total
sum of squares. (The between-groups sum of squares for the
interaction is essentially what is left over when the main effects
are accounted for.)

SOURCE SS df MS F

Between 4133.733 2 2066.867 271.36

Subjects 12.667 4 3.167 0.42

Within 60.933 8 7.617

Total 4207.333 14
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14.15 An ANCOVA and an ANOVA both have one or more
nominal (or sometimes ordinal) independent variables and a
single scale dependent variable, but an ANCOVA uses another
scale variable as a covariate. Any variability in the dependent
variable that is associated with this covariate is removed so that
the effects of the independent variables can be observed
without being contaminated by differences on the covariate.

14.17 If a researcher used multiple scale dependent variables that all
assessed similar constructs, the researcher should use a
MANOVA.

14.19 a. There are two independent variables or factors: gender and
sporting event. Gender has two levels, male and female, and
sporting event has two levels.

b. Type of campus is one factor that has two levels, dry or wet.
The second factor is type of college, which has three levels,
including state, private, and religious.

c. Age group is the first factor, with three levels; gender is a
second factor, with two levels; and family composition is the
last factor, with three levels.

14.23

14.25 dfrows(gender) � Nrows � 1 � 2 � 1 � 1

dfcolumns(sport) � Ncolumns � 1 � 2 � 1 � 1

dfinteraction � (dfrows)(dfcolumns) � (1)(1) � 1

dfwithin � dfM,H � dfM,S � dfW,H � dfW,S � 3 � 3 � 3 � 3 � 12

dftotal � Ntotal � 1 � 16 � 1 � 15
We can also check that this answer is correct by adding all

of the other degrees of freedom together:

1 � 1 � 1 � 12 � 15
The critical value for an F distribution with 1 and 12

degrees of freedom, at a p level of 0.01, is 9.33.

4
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16
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20

Enjoyment

Sporting event

Ice hockey Figure skating

Men

Women

ICE HOCKEY FIGURE SKATING

MEN M � (19 � 17 � 18 � 17)/4 � 17.75 M � (6 � 4 � 8 � 3)/4 � 5.25 (17.75 � 5.25)/2 � 11.50

WOMEN M � (13 � 14 � 18 � 8)/4 � 13.25 M � (11 � 7 � 4 � 14)/4 � 9 (13.25 � 9)/2 � 11.125

(17.75 � 13.25)/2 � 15.5 (5.25 � 9)/2 � 7.125

14.21

14.27 a. GM � 11.313.
SStotal � R(X � GM )2 for each score � 475.438

X (X � GM) (X � GM)2

Men, hockey 19 7.687 59.090

17 5.687 32.342

18 6.687 44.716

17 5.687 32.342

Men, skating 6 �5.313 28.228

4 �7.313 53.480

8 �3.313 10.976

3 �8.313 69.106

Women, hockey 13 1.687 2.846

14 2.687 7.220

18 6.687 44.716

8 �3.313 10.976

Women, skating 11 �0.313 0.098

7 �4.313 18.602

4 �7.313 53.480

14 2.687 7.220

R = 475.438



APPENDIX C C-41

b. Sum of squares for gender: SSbetween(rows) � R(Mrow � GM )2

for each score � 0.560

c. Sum of squares for sporting event: SSbetween(columns) �
R(Mcolumn � GM )2 for each score � 280.560

X (MCOLUMN � GM) (MCOLUMN � GM)2

Men, hockey 19 4.187 17.531

17 4.187 17.531

18 4.187 17.531

17 4.187 17.531

Men, skating 6 �4.188 17.539

4 �4.188 17.539

8 �4.188 17.539

3 �4.188 17.539

Women, hockey 13 4.187 17.531

14 4.187 17.531

18 4.187 17.531

8 4.187 17.531

Women, skating 11 �4.188 17.539

7 �4.188 17.539

4 �4.188 17.539

14 �4.188 17.539

R = 280.560

X (MROW � GM) (MROW � GM)2

Men, hockey 19 0.188 0.035

17 0.188 0.035

18 0.188 0.035

17 0.188 0.035

Men, skating 6 0.188 0.035

4 0.188 0.035

8 0.188 0.035

3 0.188 0.035

Women, hockey 13 �0.188 0.035

14 �0.188 0.035

18 �0.188 0.035

8 �0.188 0.035

Women, skating 11 �0.188 0.035

7 �0.188 0.035

4 �0.188 0.035

14 �0.188 0.035

R = 0.560

d. SSwithin � R(X � Mcell)
2 for each score � 126.256

e. The sum of squares for the interaction is found through
subtraction. We subtract all other sources from the total sum
of squares, and the remaining amount is the sum of squares
for the interaction.

SSgender � sport � SStotal � (SSgender � SSsport � SSwithin)

SSgender � sport � 475.438 � (0.560 � 280.560 � 126.256)
� 68.062

14.29

14.31

14.33 For the main effect A:

R
SS

SS SS SS
rows

rows

total columns interacti

2 �
� �( oon)

.

( . . . )
�

� �
�

30 006

652 291 33 482 1 720
0.049

SOURCE SS df MS F

Gender 248.25 1 248.25 8.072

Parenting style 84.34 3 28.113 0.914

Gender � style 33.60 3 11.20 0.364

Within 1107.2 36 30.756

Total 1473.39 43

SOURCE SS df MS F

Gender 0.560 1 0.560 0.053

Sporting event 280.560 1 280.560 26.667

Gender � sport 68.062 1 68.062 6.469

Within 126.256 12 10.521

Total 475.438 15

X (X � MCELL) (X � MCELL)
2

Men, hockey 19 1.25 1.563

17 �0.75 0.563

18 0.25 0.063

17 �0.75 0.563

Men, skating 6 0.75 0.563

4 �1.25 1.563

8 2.75 7.563

3 �2.25 5.063

Women, hockey 13 �0.25 0.063

14 0.75 0.563

18 4.75 22.563

8 �5.25 27.563

Women, skating 11 2 4.000

7 �2 4.000

4 �5 25.000

14 5 25.000

R = 126.256
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According to Cohen’s conventions, this is approaching a
medium effect size.

For the main effect B:

According to Cohen’s conventions, this is approaching a
medium effect size.

For the interaction:

According to Cohen’s conventions, this is smaller than a small
effect size.

14.35 a. This is problematic because it suggests a causal relation
for correlational data. There are many possible confounds.
It could be that people with high energy are more likely
both to exercise (and lose weight) and to work long
hours (and make more money). It could be that education
level is associated with both weight and income. The act
of losing weight might not cause one’s income to change
at all.

b. If you can include covariates, you can eliminate alternative
explanations. There are several possible scale variables that
could be included as covariates. For example, if you include
education level as a covariate and there is still a link
between weight and income, you can eliminate education
level as a possible confound.

14.37 a. This study would be analyzed with a between-groups
ANOVA because different groups of participants were
assigned to the different treatment conditions.

b. This study could be redesigned to use a within-groups
ANOVA by testing the same group of participants on some
myths repeated once and some repeated three times both
when they are young and then again when they are old.

14.39 a. There are two independent variables. The first is gender,
and its levels are male and female. The second is sexual
orientation, and its levels are homosexual and heterosexual.

b. The dependent variable is the preferred maximum age
difference.

c. He would use a two-way between-groups ANOVA.

d. He would use a 2 � 2 between-groups ANOVA.

R
SS

SS SS
interaction

interaction

total rows

2 �
� �( SSScolumns)

.

( . . . )
�

� �
�

1 720

652 291 30 006 33 482
0.0003

R
SS

SS SS SS
columns

columns

total rows intera

2 �
� �( cction)

.

( . . . )
�

� �
�

33 482

652 291 30 006 1 720
0.054

e. The ANOVA would have four cells. This number is
obtained by multiplying the number of levels of each
independent variable (2 � 2).

f.

14.41 a.

b. There appears to be a main effect of whether participants
were told a high TAA level was associated with healthy or
unhealthy consequences. Overall, those told that it was
associated with healthy consequences perceived the TAA
test to be more accurate, on average, than did those told it
was associated with unhealthy consequences.

c. Bar graph depicting the main effect of test outcome:

d. The main effect is misleading on its own because, based on
the cell means, the effect of test outcome appears to depend
only, or primarily, on whether perception was assessed
before or after the TAA test.

e. Based on the cell means, there does appear to be an
interaction. When perceptions of the TAA test were taken
after the test, those told that high levels were associated
with healthy consequences perceived the test to be more
accurate, on average, than did those told high levels were
associated with unhealthy consequences. Having been told
the outcome of the test, these participants were motivated
to believe in the test’s accuracy to different degrees. But for
those whose perceptions were assessed prior to the TAA
test, there does not appear to be much of an effect of the
outcome of the test on perceptions of the test. Not
knowing the outcome, they had no motivation toward a
certain perception of accuracy.

MALE FEMALE

HOMOSEXUAL homosexual; homosexual;
male female

HETEROSEXUAL heterosexual; heterosexual;
male female

1
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0
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accuracy of

TAA

PERCEPTION PERCEPTION
BEFORE AFTER

TOLD UNHEALTHY 6.60 5.60 6.1

TOLD HEALTHY 6.90 7.30 7.1

6.75 6.45 6.6
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f. Here is the bar graph of the interaction with lines to show
the pattern of the interaction:

g. The interaction is quantitative because the direction of the
effect of when the perception is assessed does not switch
depending on whether participants were told that high
TAA levels were associated with healthy or unhealthy
consequences. The “healthy” group had higher means
regardless of timing.

14.43 a. Table of means:

b. The reported statistics indicate a significant interaction.
Conservative participants gave higher mean double jeopardy
ratings to the European American officer than to the
African American officer, whereas the liberal participants
gave higher mean double jeopardy ratings to the African
American officer than to the European American officer.

c. Bar graph depicting interaction:
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0
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Political orientation
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jeopardy

rating

European Ameriican

African American

1
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8

0
Before After

When perception assessed

Perceived
accuracy of

TAA

Healthy

Unhealthy

LIBERAL MODERATE CONSERVATIVE

AFRICAN 3.18 3.50 1.25
AMERICAN

EUROPEAN 1.91 3.33 4.62
AMERICAN

d. This is a qualitative interaction; the pattern of double
jeopardy ratings switches direction between the liberal
participants and the conservative participants.

14.45 a. The first independent variable is the gender said to be most
affected by the illness, and its levels are men and women.
The second independent variable is the gender of the
participant, and its levels are male and female. The
dependent variable is level of comfort on a scale of 1–7.

b. The researchers conducted a two-way between-groups
ANOVA.

c. The reported statistics do indicate that there is a significant
interaction because the probability associated with the F
statistic for the interaction is less than 0.05.

d.

e. Bar graph for the interaction:

f. This is a qualitative interaction. Female participants
indicated greater average comfort for attending a meeting
regarding an illness that affects women than for attending a
meeting regarding an illness that affects men. Male
participants had the opposite pattern of results; male
participants indicated greater average comfort for attending
a meeting regarding an illness that affects men as opposed to
one that affects women.

14.47 a. The first independent variable is the race of the face, and its
levels are white and black. The second independent variable
is the type of instruction given to the participants, and its
levels are no instruction and instruction to attend to
distinguishing features. The dependent variable is the
measure of recognition accuracy.

b. The researchers conducted a two-way between-groups
ANOVA.

c. The reported statistics indicate that there is a significant
main effect of race. On average, the white participants who

6

5

4

3

2

1

0
Female participants Male participants

Gender of participant

Comfort rating

Illness affects men

Illness affects women

FEMALE MALE
PARTICIPANTS PARTICIPANTS

ILLNESS AFFECTS 4.88 3.29
WOMEN

ILLNESS AFFECTS 3.56 4.67
MEN
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saw white faces had higher recognition scores than did
white participants who saw black faces.

d. The main effect is misleading because those who received
instructions to attend to distinguishing features actually had
lower mean recognition scores for the white faces than did
those who received no instruction, whereas those who
received instructions to attend to distinguishing features had
higher mean recognition scores for the black faces than did
those who received no instruction.

e. The reported statistics do indicate that there is a significant
interaction because the probability associated with the F
statistics for the interaction is less than 0.05.

f.

g. Bar graph of findings:

h. When given instructions to pay attention to distinguishing
features of the faces, participants’ average recognition of the
black faces was higher than when given no instructions,
whereas their average recognition of the white faces was
worse than when given no instruction. This is a qualitative
interaction because the direction of the effect changes
between black and white.

14.49 a. The first independent variable is gender of the seeker, and
its levels are men and women. The second independent
variable is gender of the person being sought, and its levels
are men and women. The dependent variable is the oldest
acceptable age of the person being sought.

b.

c. Step 1: Population 1 (women, men) is women seeking men.
Population 2 (men, women) is men seeking women.
Population 3 (women, women) is women seeking women.
Population 4 (men, men) is men seeking men. The

WOMEN MEN 
SEEKERS SEEKERS

MEN SOUGHT 34.80 35.40

WOMEN SOUGHT 36.00 27.20
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0
Black face White face

Distinguishing
features instruction

Race of face

Recognition
accuracy

No instruction

BLACK WHITE
FACE FACE

NO INSTRUCTION 1.04 1.46

DISTINGUISHING FEATURES 1.23 1.38
INSTRUCTION

comparison distributions will be F distributions. The
hypothesis test will be a two-way between-groups ANOVA.
Assumptions: The data are not from random samples, so we
must generalize with caution. The assumption of
homogeneity of variance is violated because the largest
variance (29.998) is much larger than the smallest variance
(1.188). For the purposes of this exercise, however, we will
conduct this ANOVA.

Step 2: Main effect of first independent variable—gender of
seeker:

Null hypothesis: On average, men and women report the
same oldest acceptable ages for a partner—lM � lW.

Research hypothesis: On average, men and women 
report different oldest acceptable ages for a partner—lM �
lW.

Main effect of second independent variable—gender of
person sought:

Null hypothesis: On average, those seeking men and those
seeking women report the same oldest acceptable ages for a
partner—lM � lW.

Research hypothesis: On average, those seeking men and
those seeking women report different oldest acceptable ages
for a partner—lM � lW.

Interaction: seeker � sought:

Null hypothesis: The effect of the gender of the seeker does
not depend on the gender of the person sought.

Research hypothesis: The effect of the gender of the seeker
does depend on the gender of the person sought.

Step 3: dfcolumns(seeker) � 2 � 1 � 1

dfrows(sought) � 2 � 1 � 1

dfinteraction � (1)(1) � 1

dfwithin � dfW,M � dfM,W � dfW,W � dfM,M � 4 � 4 � 4 �
4 � 16

Main effect of gender of seeker: F distribution with 1 and
16 degrees of freedom

Main effect of gender of sought: F distribution with 1 and
16 degrees of freedom

Interaction of seeker and sought: F distribution with 1 and
16 degrees of freedom

Step 4: Cutoff F for main effect of seeker: 4.49

Cutoff F for main effect of sought: 4.49

Cutoff F for interaction of seeker and sought: 4.49

Step 5: SStotal � R(X � GM )2 � 454.550

SScolumn(seeker) � R(Mcolumn(seeker) � GM )2 � 84.050

SSrow(sought) � R(Mrow(sought) � GM )2 � 61.250

SSwithin � R(X � Mcell)
2 � 198.800

SSinteraction � SStotal � (SSrow � SScolumn � SSwithin) 
� 110.450

SOURCE SS df MS F

Seeker gender 84.050 1 84.050 6.765

Sought gender 61.250 1 61.250 4.930

Seeker � sought 110.450 1 110.450 8.889

Within 198.800 16 12.425

Total 454.550 19
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Step 6: There is a significant main effect of gender of the
seeker; it appears that women are willing to accept older
dating partners, on average, than are men. There is also a
significant main effect of gender of the person being sought;
it appears that those seeking men are willing to accept older
dating partners, on average, than are those seeking women.
Additionally, there is a significant interaction between the
gender of the seeker and the gender of the person being
sought. Because there is a significant interaction, we ignore
the main effects and report only the interaction.

d. There is a significant interaction. There is little difference in
the average oldest acceptable age for women seeking
women versus women seeking men. However, there’s a
larger difference in average oldest acceptable age for men
seeking men versus men seeking women. Men who are
seeking women report a much lower oldest acceptable age,
on average, than do men seeking men.

14.51 a. For the main effect for type of market (money or social) as
tested with cash and candy: Null hypothesis: On average,
willingness to help is the same when cash or candy is used
as compensation, lcash � lcandy. Research hypothesis: On
average, willingness to help is different when cash is used
compared with candy, lcash 	 lcandy.

For the main effect for level of compensation as tested
with low and moderate payments: Null hypothesis: On
average, willingness to help is the same regardless of level of
payment, llow � lmoderate. Research hypothesis: On average,
willingness to help is different when a low payment is
offered compared with when a moderate payment is
offered, llow 	 lmoderate.

For the interaction of type and level of compensation:
Null hypothesis: The effect of level of payment, low or high,
does not depend on type of payment, cash or candy.
Research hypothesis: The effect of level of payment, low or
high, depends on type of payment, cash or candy.

b. To construct the source table, let’s start by computing
degrees of freedom:

dfrows(type) � Nrows � 1 � 2 � 1 � 1

dfcolumns(level) � Ncolumns � 1 � 2 � 1 � 1

dfinteraction � (dfrows)(dfcolumns) � (1)(1) � 1

dfwithin � dfcash,low � dfcash,mod � dfcandy,low � dfcandy,mod
� 3 � 3 � 3 � 3 � 12

dftotal � Ntotal � 1 � 16 � 1 � 15
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We can also check that this is correct by adding all of the
other degrees of freedom together:

1 � 1 � 1 � 12 � 15

We can now place those on the source table:

Now, let’s compute the sum of squares for the various
components:

SStotal � R(X � GM )2 for each score � 27.846

SOURCE SS df MS F

Type of payment 1

Level of payment 1

Type � level 1

Within 12

Total 15

X (X � GM) (X � GM)2

Cash payment, low amount 4 �2.125 4.516

5 �1.125 1.266

6 �0.125 0.016

4 �2.125 4.516

Cash payment, 7 0.875 0.766
moderate amount

8 1.875 3.516

8 1.875 3.516

7 0.875 0.766

Candy payment, low amount 6 �0.125 0.016

5 �1.125 1.266

7 0.875 0.766

7 0.875 0.766

Candy payment, 8 1.875 3.516
moderate amount

6 �0.125 0.016

5 �1.125 1.266

5 �1.125 1.266

GM � 6.125 R = 27.846

(continued on next page)
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Sum of squares for type of payment: 
SSbetween(rows) � R(Mrow � GM )2 for each score � 0.0

Sum of squares for level of payment: 
SSbetween(columns) � R(Mcolumn � GM )2 for each score � 6.256

X (MROW � GM) (MROW � GM)2

Cash payment, 4 6.125 � 6.125 0.000
low amount

5 6.125 � 6.125 0.000

6 6.125 � 6.125 0.000

4 6.125 � 6.125 0.000

Cash payment, 7 6.125 � 6.125 0.000
moderate amount

8 6.125 � 6.125 0.000

8 6.125 � 6.125 0.000

7 6.125 � 6.125 0.000

Candy payment, 6 6.125 � 6.125 0.000
low amount

5 6.125 � 6.125 0.000

7 6.125 � 6.125 0.000

7 6.125 � 6.125 0.000

Candy payment, 8 6.125 � 6.125 0.000
moderate amount

6 6.125 � 6.125 0.000

5 6.125 � 6.125 0.000

5 6.125 � 6.125 0.000

GM � 6.125 R = 0.0

(MCOLUMN (MCOLUMN
X � GM) � GM)2

Cash payment, 
low amount 4 �0.625 0.391

Mcolumn � 5.5 5 �0.625 0.391

6 �0.625 0.391

4 �0.625 0.391

Cash payment, 
moderate amount 7 0.625 0.391

Mcolumn � 6.75 8 0.625 0.391

8 0.625 0.391

7 0.625 0.391

Candy payment, 
low amount 6 �0.625 0.391

Mcolumn � 5.5 5 �0.625 0.391

7 �0.625 0.391

7 �0.625 0.391

Candy payment, 
moderate amount 8 0.625 0.391

Mcolumn � 6.75 6 0.625 0.391

5 0.625 0.391

5 0.625 0.391

GM � 6.125 R = 6.256

SSwithin � R(X � Mcell)
2 for each score � 12.504

The sum of squares for the interaction is found through
subtraction. We subtract all other sources from the total sum
of squares, and the remaining amount is the sum of squares
for the interaction.

SStype � level � SStotal � (SStype � SSlevel � SSwithin)

SStype � level � 27.846 � (0.0 � 6.256 � 12.504) � 9.086

Now we can complete the source table:

c. The critical value for F with 1 and 12 degrees of freedom,
at a p level of 0.05, is 4.75.

d. We have two statistically significant F values: the main effect
for level of payment and the interaction between type of
payment and level of payment. Because there is a significant
interaction, we ignore the main effect. In this case, we have
a qualitative interaction: cash payment for assistance seems
to lead to lower willingness to assist, on average, relative to a
candy payment, when the cash payment is low; cash
payment for assistance seems to lead to higher willingness to
assist, on average, relative to a candy payment, when the
cash payment is moderate.

X (X � MCELL) (X � MCELL)
2

Cash payment, 4 �0.75 0.563
low amount

Mcell � 4.75 5 0.25 0.063

6 1.25 1.563

4 �0.75 0.563

Cash payment, 7 �0.5 0.250
moderate amount

Mcell � 7.5 8 0.5 0.250

8 0.5 0.250

7 �0.5 0.250

Candy payment, 6 �0.25 0.063
low amount

Mcell � 6.25 5 �1.25 1.563

7 0.75 0.563

7 0.75 0.563

Candy payment, 8 2 4.000
moderate amount

Mcell � 6 6 0 0.000

5 �1 1.000

5 �1 1.000

R = 12.504

SOURCE SS df MS F

Type of payment 0.0 1 0.0 0.0

Level of payment 6.256 1 6.256 6.00

Type � level 9.086 1 9.086 8.72

Within 12.504 12 1.042

Total 27.846 15
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14.53 For the main effect of seeker gender:

According to Cohen’s conventions, this is a large effect size.

For the main effect of sought gender:

According to Cohen’s conventions, this is a large effect size.

For the interaction:

According to Cohen’s conventions, this is a medium effect size.

14.55 For the main effect of seeker gender:

According to Cohen’s conventions, this is a large effect size.

For the main effect of sought gender:

According to Cohen’s conventions, this is a large effect size.

For the interaction:

According to Cohen’s conventions, this is a large effect size.

14.57 a. They would conduct a 2 � 3 � 4 mixed-design ANOVA.

b. The researchers would use an ANCOVA because they have
multiple independent variables, as well as covariates, but
only a single dependent variable.

c. If they were to include all three dependent variables in the
analysis, the researchers would use a MANOVA because an
ANOVA is appropriate only when there is a single
dependent variable.

d. If the researchers wanted to use all three dependent
variables and the covariates described in part (b), they
would use a MANCOVA because they have multiple
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dependent variables and they are using covariates in the
analysis.

C H A P T E R  1 5
15.1 A correlation coefficient is a statistic that quantifies the relation

between two variables.

15.3 A perfect relation occurs when the data points fall exactly on
the line we fit through our data. A perfect relation results in a
correlation coefficient of �1.0 or 1.0.

15.5 According to Cohen (1988), a correlation coefficient of 0.50 is
a large correlation, and 0.30 is a medium one. However, it is
unusual in social science research to have a correlation as high
as 0.50. The decision of whether a correlation is worth talking
about is sometimes based on whether it is statistically
significant, as well as what practical effect a correlation of a
certain size indicates.

15.7 When used to capture the relation between two variables, the
correlation coefficient is a descriptive statistic. When used to
draw conclusions about the greater population, such as with
hypothesis testing, the coefficient serves as an inferential
statistic.

15.9 Positive products of deviations, indicating a positive correlation,
occur when both members of a pair of scores tend to result in
a positive deviation or when both members tend to result in a
negative deviation. Negative products of deviations, indicating a
negative correlation, occur when members of a pair of scores
tend to result in opposite-valued deviations (one negative and
the other positive).

15.11 (1) We calculate the deviation of each score from its mean,
multiply the two deviations for each participant, and sum the
products of the deviations. (2) We calculate a sum of squares for
each variable, multiply the two sums of squares, and take the
square root of the product of the sums of squares. (3) We
divide the sum from step 1 by the square root in step 2.

15.13 Test–retest reliability involves giving the same group of people
the exact same test with some amount of time (perhaps a
week) between the two administrations of the test. Test–retest
reliability is then calculated as the correlation between their
scores on the two administrations of the test. Calculation of
coefficient alpha does not require giving the same test two
times. Rather, coefficient alpha is based on correlations
between different halves of the test items from a single
administration of the test.

15.15 An outlier may lead to an observed correlation between two
variables when there is actually no correlation present once the
outlier is excluded. It is always a good idea to examine a
scatterplot of the data to determine whether the correlation
may be driven by an outlier.

15.17 a. These data appear to be negatively correlated.

b. These data appear to be positively correlated.

c. Neither; these data appear to have a very small correlation,
if any.

15.19 a. �0.28 is a medium correlation.

b. 0.79 is a large correlation.

c. 1.0 is a perfect correlation.
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d. �0.015 is almost no correlation.

15.21
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15.25 a.

b.

c.

15.27 a. dfr � N � 2 � 40 � 2 � 38

b. dfr � N � 2 � 27 � 2 � 25

c. dfr � N � 2 � 3113 � 2 � 3111

d. dfr � N � 2 � 72 � 2 � 70

15.29 a. Because df � 38 is not on the table, we look under df � 35,
which has cutoffs of �0.325 and 0.325. When we cannot
look up the exact degrees of freedom, we choose the
degrees of freedom that gives us the more conservative
critical values. These are the critical values that are more
extreme.

b. �0.381 and 0.381

c. The highest degrees of freedom listed on the table is 100,
with cutoffs of �0.195 and 0.195.

d. �0.232 and 0.232

15.31 a. (i) There is a restriction of range in this set of data. The data
only represent the incomes of people who are in their 50s
or older. To have a true sense of the relation between age
and income, we would want to see data from people of all
working ages. (ii) There also appears to be an outlier in the
data set. One person is much older than others in the data
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349 �50 25 �20 1,000

349 �50 65 20 �1,000
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254 �145 45 0 0

156 �243 20 �25 6,075

248 �151 75 30 �4,530

MX � 399 MY � 45 R[(X � MX)(Y � MY)] � 17,510
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set and earns a much larger income. This outlier might
make the correlation stronger than it would be if it were
excluded from the data.

b. (i) There does not appear to be a restriction-of-range
problem with this data set. The data include observations of
people across the spectrum of working ages. (ii) There do
not appear to be any outliers.

c. (i) There does not appear to be a restriction-of-range
problem with this data set. The data include observations of
people across the spectrum of working ages. (ii) There is
one outlier. One person who is very young (about 20)
makes the largest income, but the rest of the data suggest
that income tends to increase with age. In these data the
outlier may make the correlation appear smaller than it
would be were this case excluded.

15.33 When using a measure to diagnose individuals, having a
reliability of at least 0.90 is important—and the more reliable
the test, the better. So, based on reliability information alone,
we would recommend she use the test with 0.95 reliability.

15.35 The third variable does not account for any of the correlation
between A and B. The partial correlation, taking into account
the third variable, is exactly the same as the original correlation
between A and B.

15.37 a. Newman’s data do not suggest a correlation between
Mercury’s phases and breakdowns. There was no
consistency in the report of breakdowns during one of the
phases.

b. Massey may believe there is a correlation because she
already believes that there is a relation between astrological
events and human events. The confirmation bias refers to
the tendency to pay attention to those events that confirm
our prior beliefs. The confirmation bias may lead Massey to
observe an illusory correlation (i.e., she perceives a
correlation that does not actually exist) because she attends
only to those events that confirm her prior belief that the
phase of Mercury is related to breakdowns.

c. Given that there are two phases of Mercury (and assuming
they’re equal in length), half of the breakdowns that occur
would be expected to occur during the retrograde phase
and the other half during the nonretrograde phase, just by
chance. Expected relative-frequency probability refers to the
expected frequency of events. So in this example we would
expect 50% of breakdowns to occur during the retrograde
phase and 50% during the nonretrograde phase. If we base
our conclusions on only a small number of observations of
breakdowns, the observed relative-frequency probability is
more likely to differ from the expected relative-frequency
probability because we are less likely to have a representative
sample of breakdowns.

d. This correlation would not be useful in predicting events in
your own life because no relation would be observed in this
limited time span.

e. Available data do not support the idea that a correlation
exists between Mercury’s phases and breakdowns.

15.39 a. The accompanying scatterplot depicts the relation between
hours of exercise and number of friends. Note that you
could also have chosen to put exercise along the y-axis and
friends along the x-axis.

b. The scatterplot suggests that as the number of hours of
exercise each week increases from 0 to 5, there is an
increase in the number of friends, but as the hours of
exercise continues to increase past 5, there is a decrease in
the number of friends.

c. It would not be appropriate to calculate a Pearson
correlation coefficient with this set of data. The scatterplot
suggests a nonlinear relation between exercise and number
of friends, and the Pearson correlation coefficient measures
only the extent of linear relation between two variables.

15.41 a. Population 1: Adolescents like those we studied. Population
2: Adolescents for whom there is no relation between
externalizing behavior and anxiety. The comparison
distribution is made up of correlation coefficients based on
many, many samples of our size, 10 people, randomly
selected from the population.

We do not know if the data were randomly selected
(first assumption), so we must be cautious when
generalizing our findings. We also do not know if the
underlying population distribution for externalizing
behaviors and anxiety in adolescents is normally distributed
(second assumption). The sample size is too small to make
any conclusions about this assumption, so we should
proceed with caution. The third assumption, unique to
correlation, is that the variability of one variable is equal
across the levels of the other variable. Because we have such
a small data set, it is difficult to evaluate this. However, we
can see from the scatterplot that the data are somewhat
consistently variable.

b. Null hypothesis: There is no correlation between
externalizing behavior and anxiety among adolescents—
H0: q � 0.

Research hypothesis: There is a correlation between
externalizing behavior and anxiety among adolescents—
H1: q � 0.

c. The comparison distribution is a distribution of Pearson
correlations, r, with the following degrees of freedom: 
dfr � N � 2 � 10 � 2 � 8.

d. The critical values for an r distribution with 8 degrees of
freedom for a two-tailed test with a p level of 0.05 are
�0.632 and 0.632.

e. The Pearson correlation coefficient is calculated in three
steps. First, we calculate the numerator:
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Second, we calculate the denominator:

Finally, we compute r:

f. The test statistic, r � 0.65, is larger in magnitude than the
critical value of 0.632. We can reject the null hypothesis and
conclude that there is a strong positive correlation between
the number of externalizing behaviors performed by
adolescents and their level of anxiety.

15.43 a. You would expect a person who owns a lot of cats to tend
to have many mental health problems. Because the two
variables are positively correlated, as cat ownership increases,
the number of mental health problems tends to increase.

b. You would expect a person who owns no cats or just one
cat to tend to have few mental health problems. Because the
variables are positively correlated, people who have a low
score on one variable are also likely to have a low score on
the other variable.

c. You would expect a person who owns a lot of cats to tend
to have few mental health problems. Because the two
variables are negatively related, as one variable increases, the
other variable tends to decrease. This means a person

r
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11 4.40 19.36 42 12.60 158.76

6 �0.60 0.36 33 3.60 12.96

2 �4.60 21.16 26 �3.40 11.56

6 �0.60 0.36 35 5.60 31.36

6 �0.60 0.36 23 �6.40 40.96

9 2.40 5.76 28 �1.40 1.96

Σ(X � MX)2 � Σ(Y � MY)2 �
66.40 438.40

X (X � MX) Y (Y � MY) (X � MX)(Y � MY)

9 2.40 37 7.60 18.24

7 0.40 23 �6.40 �2.56

7 0.40 26 �3.40 �1.36

3 �3.60 21 �8.40 30.24

11 4.40 42 12.60 55.44

6 �0.60 33 3.60 �2.16

2 �4.60 26 �3.40 15.64

6 �0.60 35 5.60 �3.36

6 �0.60 23 �6.40 3.84

9 2.40 28 �1.40 �3.36

MX � 6.60 MY � 29.40 R[(X � MX)(Y � MY)] � 110.60

owning lots of cats would likely have a low score on the
mental health variable.

d. You would expect a person who owns no cats or just one
cat to tend to have many mental health problems. Because
the two variables are negatively related, as one variable
decreases, the other variable tends to increase, which means
that a person with fewer cats would likely have more
mental health problems.

15.45 a. The accompanying scatterplot depicts a negative linear
relation between perceived femininity and perceived trauma.
Because the relation appears linear, it is appropriate to
calculate the Pearson correlation coefficient for these data.
(Note: The number (2) indicates that two participants share
that pair of scores.)

b. The Pearson correlation coefficient is calculated in three
steps. Step 1 is calculating the numerator:

Step 2 is calculating the denominator:

Step 3 is computing r:
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6 0.167 0.028 5 �0.333 0.111

4 �1.833 3.360 6 0.667 0.445

5 �0.833 0.694 6 0.667 0.445

7 1.167 1.362 4 �1.333 1.777

8 2.167 4.696 5 �0.333 0.111

Σ(X � MX)2 � Σ(Y � MY)2 �
10.834 3.334

X (X � MX) Y (Y � MY) (X � MX)(Y � MY)

5 �0.833 6 0.667 �0.556

6 0.167 5 �0.333 �0.056

4 �1.833 6 0.667 �1.223

5 �0.833 6 0.667 �0.556

7 1.167 4 �1.333 �1.556

8 2.167 5 �0.333 �0.722

MX � MY � R[(X � MX)(Y � MY)] �
5.833 5.333 �4.669
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c. The correlation coefficient reveals a strong negative relation
between perceived femininity and perceived trauma; as
trauma increases, perceived femininity tends to decrease.

d. Those participants who had positive deviation scores on
trauma had negative deviation scores on femininity (and
vice versa), meaning that when a person’s score on one
variable was above the mean for that variable (positive
deviation), his or her score on the second variable was
below the mean for that variable (negative deviation). So,
having a high score on one variable was associated with
having a low score on the other, which is a negative
correlation.

15.47 a. The accompanying scatterplot depicts a positive linear
relation between perceived trauma and perceived
masculinity. The data appear to be linearly related; therefore,
it is appropriate to calculate a Pearson correlation
coefficient.

b. The Pearson correlation coefficient is calculated in three
steps. Step 1 is calculating the numerator:

Step 2 is calculating the denominator:

X (X � MX) (X � MX)2 Y (Y � MY) (Y � MY)2

5 �0.833 0.694 3 0.167 0.028

6 0.167 0.028 3 0.167 0.028

4 �1.833 3.360 2 �0.833 0.694

5 �0.833 0.694 2 �0.833 0.694

7 1.167 1.362 4 1.167 1.362

8 2.167 4.696 3 0.167 0.028

Σ(X � MX)2 � Σ(Y � MY)2 �
10.834 2.834

X (X � MX) Y (Y � MY) (X � MX)(Y � MY)

5 �0.833 3 0.167 �0.139

6 0.167 3 0.167 0.028

4 �1.833 2 �0.833 1.527

5 �0.833 2 �0.833 0.694

7 1.167 4 1.167 1.362

8 2.167 3 0.167 0.362

MX � 5.833 MY � 2.833 R[(X � MX)(Y � MY)] � 3.834
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Step 3 is computing r:

c. The correlation indicates that a large positive relation exists
between perceived trauma and perceived masculinity.

d. For most of the participants, the sign of the deviation for
the traumatic variable is the same as that for the masculinity
variable, which indicates that those participants scoring
above the mean on one variable also tended to score above
the mean on the second variable (and likewise with the
lowest scores). Because the scores for each participant tend
to fall on the same side of the mean, this is a positive
relation.

e. When the person was a woman, the perception of the
situation as traumatic was strongly negatively correlated
with the perception of the woman as feminine. This relation
is opposite that observed when the person was a man.
When the person was a man, the perception of the situation
as traumatic was strongly positively correlated with the
perception of the man as feminine. Regardless of whether
the person was a man or a woman, there was a positive
correlation between the perception of the situation as
traumatic and perception of masculinity, but the observed
correlation was stronger for the perceptions of women than
for the perceptions of men.

15.49 a. Because your friend is running late, she is likely more
concerned about traffic than she otherwise would be. Thus,
she may take note of traffic only when she is running late,
leading her to believe that the amount of traffic correlates
with how late she is. Furthermore, having this belief, in the
future she may think only of cases that confirm her belief
that a relation exists between how late she is and traffic
conditions, reflecting a confirmation bias. Alternatively,
traffic conditions might be worse when your friend is
running late, but that could be a coincidence. A more
systematic study of the relation between your friend’s
behavior and traffic conditions would be required before
she could conclude that a relation exists.

b. There are a number of possible answers to this question. For
example, we could operationalize the degree to which she is
late as the number of minutes past her intended departure
time that she gets in the car. We could operationalize the
amount of traffic as the number of minutes the car is being
driven at less than the speed limit (given that your friend
would normally drive right at the speed limit).

15.51 a. You would expect a negative correlation between amount
of training and time. More practice should lead to better
performance, which in this case means a shorter time
required to complete the race.

b. You might not find a correlation between the number of
miles ran and running speed among those running 25 miles
or more a week. These people may be overtraining. Also,
these might be people who are training for distance races
and who are less concerned with the speed required for
shorter races.

c. By restricting the range of the data to only those people
who run 25 or more miles a week, the researcher may be
essentially looking at a different population of people than
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the population of those who run less than 25 miles a week.
Thus, when looking at a subset of the entire range, the
correlation may be very different.

15.53 a. The reporter suggests that convertibles are not geneally less
safe than other cars.

b. Convertibles may be driven less often than other cars, as
they may be considered primarily a recreational vehicle. If
they are driven less, owners have fewer chances to get into
accidents while driving them.

c. A more appropriate comparison may be to determine the
number of fatalities that occur per every 100 hours driven
in various kinds of cars.

15.55 a. Step 1: Population 1: Athletes like those we studied.
Population 2: Athletes for whom there is no relation
between minutes played and GPA. The comparison
distribution is made up of many, many correlation
coefficients based on samples of our size, 13 people,
randomly selected from the population.

We know that these data were not randomly selected
(first assumption), so we must be cautious when
generalizing our findings. We also do not know if the
underlying population distributions are normally distributed
(second assumption). The sample size is too small to make
any conclusions about this assumption, so we should
proceed with caution. The third assumption, unique to
correlation, is that the variability of one variable is equal
across the levels of the other variable. Because we have such
a small data set, it is difficult to evaluate this.

Step 2: Null hypothesis: There is no correlation between
participation in athletics, as measured by minutes played on
average, and GPA—H0: q � 0. 

Research hypothesis: There is a correlation between
participation in athletics and GPA—H1: q � 0.

Step 3: The comparison distribution is a distribution of
Pearson correlation coefficients, r, with the following
degrees of freedom: dfr � N � 2 � 13 � 2 � 11.

Step 4: The critical values for an r distribution with 11
degrees of freedom for a two-tailed test with a p level of
0.05 are �0.553 and 0.553.

Step 5:

Step 6: The test statistic, r � 0.34, is not larger in magnitude
than the critical value of 0.553, so we fail to reject the null
hypothesis. We cannot conclude that a relation exists
between these two variables. Because the sample size is
rather small and we calculated a medium correlation with
this small sample, we would be encouraged to collect more
data to increase statistical power so that we may more fully
explore this relation.

b. Because our results are not statistically significant, we cannot
draw any conclusion, except that we do not have enough
information.

c. We could have collected these data randomly, rather than
looking at just one team. We also could have collected a larger
sample size. In order to say something about causation, we
could manipulate average minutes played to see whether that
manipulation results in a change in GPA. Because very few
coaches would be willing to let us do that, we would have a
difficult time conducting such an experiment.

r
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15.57 a. Step 1: Population 1: The amounts of candy and customers
like those we studied. Population 2: Amounts of candy and
customers for which there is no relation between amount
of candy available and amount of candy taken. The
comparison distribution is made up of many, many
correlation coefficients based on samples of our size, 7,
randomly selected from the population.

Depending on where the candy was on display, such as a
large store where many diverse people shop, we might be
able to feel good about the randomness of our sample of
customers (first assumption). However, we do not know
details about the selection of the sample, so we should be
cautious when generalizing our findings. We also do not
know if the underlying population distribution is normally
distributed (second assumption). The sample size is too
small to make any conclusions about this assumption, so we
should proceed with caution. The third assumption, unique
to correlation, is that the variability of one variable is equal
across the levels of the other variable. Because we have such
a small data set, it is difficult to evaluate this.

Step 2: Null hypothesis: There is no correlation between the
amount of candy presented and the amount of candy
taken—H0: q � 0. 

Research hypothesis: There is a correlation between the
amount of candy presented and the amount of candy
taken—H1: q � 0.

Step 3: The comparison distribution is a distribution of
Pearson correlation coefficients, r, with the following
degrees of freedom: dfr � N � 2 � 7 � 2 � 5.

Step 4: The critical values for an r distribution with 5
degrees of freedom for a two-tailed test with a p level of
0.05 are �0.754 and 0.754.

Step 5:

Step 6: The test statistic, r � 0.86, is larger in magnitude
than the critical value of 0.754, so we reject the null
hypothesis and conclude that a relation exists between these
two variables. When small amounts of candy are presented,
small amounts tend to be taken compared with when large
amounts of candy are presented and large amounts tend to
be taken.

b. Because the sample size is rather small, and we have not
clearly met the assumptions of this hypothesis test, we
should be cautious in drawing conclusions based on these
data. Although these data were supposed to explore the
relation between portion size and consumption, we would
be hesitant to make the leap in drawing conclusions beyond
our sample.

c. It is possible that the amount of candy displayed causes
people to take different amounts, with large displays
encouraging large consumption. It is also possible that,
under natural circumstances, people place large amounts of
candy out for people where they know the customer or
client is more likely to want to take a piece (such as near
the exit of a restaurant). Finally, it is possible that another
variable influences both the amount of candy presented and
the amount taken. For example, people who like to eat
candy might gravitate to places that offer large quantities of
free candy to customers. Also, restaurants that serve salty
food might offer candy as a sweet contrast and customers
might be more likely to want a piece of candy after their
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salty meals. In the natural world, where social scientists
often want to generalize their findings, many factors can
influence an apparent relation.

15.59 a. The idea this measure is trying to assess is passionate love.

b. If the PLS was valid, it would mean that the scale provides
an accurate measure of how much passionate love one
person feels for another.

15.61 a. If students were marked down for talking about the rooster
rather than the cow, the reading test would not meet the
established criteria. The question asked on the test is
ambiguous because the information regarding what caused
the cow’s behavior to change is not explicitly stated in the
story. Furthermore, the correct answer to the question
provided on the Web site is not actually an answer to the
question itself. The question states, “What caused Brownie’s
behavior to change?” The answer that the cow started out
kind and ended up mean is a description of how her
behavior changed, not what caused her behavior to change.
This question does not appear to be a valid question
because it does not appear to provide an accurate assessment
of students’ writing ability.

b. One possible third variable that could lead to better
performance in some schools over others is the average
socioeconomic status of the families whose children attend
the school. Schools in wealthier areas or counties would
have students of higher socioeconomic status, who might be
expected to perform better on a test of writing skill. A
second possible third variable that could lead to better
performance in some schools over others is the type of
reading and writing curriculum implemented in the school.
Different ways of teaching the material may be more
effective than others, regardless of the effectiveness of the
teachers who are actually presenting the material.

C H A P T E R  1 6
16.1 Regression allows us to make predictions based on the relation

established in the correlation. Regression also allows us to
consider the contributions of several variables.

16.3 There is no difference between these two terms. They are two
options for expressing the same thing.

16.5 a is the intercept, the predicted value for Y when X is equal to
0, which is the point at which the line crosses, or intercepts,
the y-axis. b is the slope, the amount that Y is predicted to
increase for an increase of 1 in X.

16.7 The intercept is not meaningful or useful when it is impossible
to observe a value of 0 for X. If height is being used to predict
weight, it would not make sense to talk about the weight of
someone with no height.

16.9 The line of best fit in regression means that we couldn’t make
the line a little steeper, or raise or lower it, in any way that
would allow it to represent those dots any better than it already
does. This is why we can look at the scatterplot around this
line and observe that the line goes precisely through the
middle of the dots. Statistically, this is the line that leads to the
least amount of error in prediction.

16.11 Data points clustered closely around the line of best fit are
described by a small standard error of the estimate, and we enjoy

a high level of confidence in the predictive ability of the
independent variable as a result. Data points clustered far away
from the line of best fit are described by a large standard error of
the estimate, and as a result we have a low level of confidence in
the predictive ability of our independent variable.

16.13 If regression to the mean did not occur, every distribution
would look bimodal, like a valley. Instead, the end result of the
phenomenon of regression to the mean is that things look
unimodal, like a hill or what we call the normal, bell-shaped
curve. Remember that the center of the bell-shaped curve is
the mean, and this is where the bulk of data cluster thanks to
regression to the mean.

16.15 The sum of squares total, SStotal, represents the worst-case
scenario, the total error we would have in our predictions if
there was no regression equation and we had to predict the
mean for everybody.

16.17 (1) Determine the error associated with using the mean as our
predictor. (2) Determine the error associated with using the
regression equation as our predictor. (3) Subtract the error
associated with the regression equation from the error
associated with the mean. (4) Divide the difference (calculated
in step 3) by the error associated with using the mean.

16.19 An orthogonal variable is an independent variable that makes a
separate and distinct contribution in the prediction of a
dependent variable, as compared with another independent
variable.

16.21 Because the computer software determines which independent
variable to enter into the regression equation first and because
that first independent variable “wins” all of the variance that it
shares with the dependent variable, other variables that are
highly correlated with both the first independent variable and
with the dependent variable may not reach significance in the
regression. Therefore, the researcher may not realize the
importance of another potential predictor and may get different
results when doing the same regression in another sample.

16.23 A latent variable is one that cannot be observed or directly
measured but is believed to exist and to influence behavior. A
manifest variable is one that can be observed and directly
measured and that is an indicator of the latent variable.

16.25 a.

b. zŶ � (rXY)(zX) � (�0.19)(1.75) � �0.333

c. Ŷ � zŶ(SDY) � MY � (�0.333)(95) � 1000 � 968.37

16.27 a. Ŷ � 49 � (�0.18)(X ) � 49 � (�0.18)( �31) � 54.58

b. Ŷ � 49 � (�0.18)(65) � 37.3

c. Ŷ � 49 � (�0.18)(14) � 46.48

16.29 a. The y intercept occurs when X is equal to 0. We start by
finding a z score:

This is the z score for an X of 0. Now we need to figure
out the predicted z score on Y for this X value:

zŶ � (rXY)(zX) � (�0.19)(�4.583) � 0.871

The final step is to convert the predicted z score on this
predicted Y to a raw score:
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Ŷ � zŶ(SDY) � MY � (0.871)(95) � 1000 � 1082.745

This is the y-intercept.

b. The slope can be found by comparing the predicted Y
value for an X value of 0 (the intercept) and an X value of
1. Using the same steps as in part (a), we can compute the
predicted Y score for an X value of 1.

This is the z score for an X of 1. Now we need to figure
out the predicted z score on Y for this X value:

zŶ � (rXY)(zX) � (�0.19)( �4.5) � 0.855

The final step is to convert the predicted z score on this
predicted Y to a raw score:

Ŷ � zŶ(SDY) � MY � (0.855)(95) � 1000 � 1081.225

We compute the slope by measuring the change in Y with
this 1-unit increase in X:

1081.225 � 1082.745 � �1.52

This is the slope.

c. Ŷ � 1082.745 �1.52(X )

d. In order to draw the line, we have one more Ŷ value to
compute. This time we can use the regression equation to
make the prediction:

Ŷ � 1082.745 �1.52(48) � 1009.785
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Now we can draw the regression line.

16.31 a. The sum of squared error for the mean, SStotal:

b. The sum of squared error for the regression equation,
SSerror:

X Y MEAN FOR Y ERROR SQUARED ERROR

4 6 6.75 �0.75 0.563

6 3 6.75 �3.75 14.063

7 7 6.75 0.25 0.063

8 5 6.75 �1.75 3.063

9 4 6.75 �2.75 7.563

10 12 6.75 5.25 27.563

12 9 6.75 2.25 5.063

14 8 6.75 1.25 1.563

SStotal � R(Y � MY)2

� 59.504
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ERROR SQUARED
X Y REGRESSION EQUATION Ŷ (Y � Ŷ ) ERROR

4 6 Ŷ � 2.643 � 0.469(4) � 4.519 1.481 2.193

6 3 Ŷ � 2.643 � 0.469(6) � 5.457 �2.457 6.037

7 7 Ŷ � 2.643 � 0.469(7) � 5.926 1.074 1.153

8 5 Ŷ � 2.643 � 0.469(8) � 6.395 �1.395 1.946

9 4 Ŷ � 2.643 � 0.469(9) � 6.864 �2.864 8.202

10 12 Ŷ � 2.643 � 0.469(10) � 7.333 4.667 21.781

12 9 Ŷ � 2.643 � 0.469(12) � 8.271 0.729 0.531

14 8 Ŷ � 2.643 � 0.469(14) � 9.209 �1.209 1.462

SSerror � R(Y � Ŷ )2

� 43.306

c. The proportionate reduction in error for these data:

d. This calculation of r2, 0.272, equals the square of the
correlation coefficient, r2 � (0.52)(0.52) � 0.270. These
numbers are slightly different due to rounding error.

16.33 Ŷ � 1.675 � (0.001)(XSAT) � (�0.008)(Xrank); or Ŷ �
1.675 � 0.001 (XSAT) � 0.008(Xrank)

r
SS SS

SS
total error

total

2 59 504 43 306
�

�
�

�( ) ( . . )

559 504.
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(continued in column 2)
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16.35 a. Ŷ � 1.675 � (0.001)(1030) � 0.008(41) � 1.675 � 1.03
� 0.328 � 2.377

b. Ŷ � 1.675 � (0.001)(860) � 0.008(22) � 1.675 � 0.86 �
0.176 � 2.359

c. Ŷ � 1.675 � (0.001)(1060) � 0.008(8) � 1.675 �
1.06 � 0.064 � 2.671

16.37 The standardized regression coefficient is equal to the
correlation coefficient for simple linear regression, 0.52. We can
also check that this is correct by computing b:

16.39 a. The strongest relation depicted in the model is between
identity maturity at age 26 and emotional adjustment at age
26. The strength of the path between the two is 0.81.

b. Positive parenting at age 17 is not directly related to
emotional adjustment at age 26 because the two variables
are not connected by a link in the model.

c. Positive parenting at age 17 is directly related to identity
maturity at age 26 because the two variables are connected
by a direct link in the model.

d. The variables in boxes are those that were explicitly
measured—the manifest variables.The variables in circles are
latent variables—variables that were not explicitly measured
but are underlying constructs that the manifest variables are
thought to reflect.

16.41 a. Outdoor temperature is the independent variable.

b. Number of hot chocolates sold is the dependent variable.

c. As the outdoor temperature increases, we would expect the
sale of hot chocolate to decrease.

d. There are several possible answers to this question. For
example, the number of fans in attendance may positively
predict the number of hot chocolates sold. The number of
children in attendance may also positively predict the
number of hot chocolates sold. The number of alternative
hot beverage choices may negatively predict the number of
hot chocolates sold.

16.43 a. X � z(r) � l � �1.2(0.61) � 3.51 � 2.778. This answer
makes sense because the raw score of 2.778 is a bit more
than 1 standard deviation below the mean of 3.51.

b. X � z(r) � l � 0.66(0.61) � 3.51 � 3.913. This answer
makes sense because the raw score of 3.913 is slightly more
than 0.5 standard deviation above the mean of 3.51.

b � � �( ) .
.

.
b

SS

SS
X

Y

0 469
73 504

59 504
0.469(8.573/7..714) 0.521�

X (X � MX) (X � MX)2 Y (Y � MY) (Y � MY)2

4 �4.75 22.563 6 �0.75 0.563

6 �2.75 7.563 3 �3.75 14.063

7 �1.75 3.063 7 0.25 0.063

8 �0.75 0.563 5 �1.75 3.063

9 0.25 0.063 4 �2.75 7.563

10 1.25 1.563 12 5.25 27.563

12 3.25 10.563 9 2.25 5.063

14 5.25 27.563 8 1.25 1.563

R(X � MX)2 � R(Y � MY)2 �
73.504 59.504

16.45 a. To predict the number of hours he studies per week, we use
the formula zŶ � (rXY)(zX) to find the predicted z score for
the number of hours he studies; then we can transform the
predicted z score into his predicted raw score. First, translate
his raw score for age into a z score for age:

. Then calculate his

predicted z score for number of hours studied: zŶ �

(rXY)(zX) � (0.49)(1.677) � 0.82. Finally, translate the z
score for hours studied into the raw score for hours studied:
Ŷ � 0.82(5.582) � 14.2 � 18.777.

b. First, translate age raw score into an age z score:

. Then calculate the

predicted z score for hours studied: zŶ � (rXY)(zX) �
(0.49)(�1.118) � �0.548. Finally, translate the z score for
hours studied into the raw score for hours studied: Ŷ �

�0.548(5.582) � 14.2 � 11.141.

c. Seung’s age is well above the mean age of the students
sampled. The relation that exists for traditional-aged
students may not exist for students who are much older.
Extrapolating beyond the range of the observed data may
lead to erroneous conclusions.

d. From a mathematical perspective, the word regression refers
to a tendency for extreme scores to drift toward the mean.
In the calculation of regression, the predicted score is closer
to its mean (i.e., less extreme) than the score used for
prediction. For example, in part (a) the z score used for
predicting was 1.677 and the predicted z score was 0.82, a
less extreme score. Similarly, in part (b) the z score used for
predicting was �1.118 and the predicted z score was
�0.548—again, a less extreme score.

16.47 a. First, we calculate what we would predict for Y when X
equals 0; that number, �17.908, is the intercept.

zŶ � (rXY)(zX) � (0.49)(�11.738) � �5.752

Ŷ � zŶ(SDY) � MY � �5.752(5.582) � 14.2 � �17.908

Note that the reason this prediction is negative (it doesn’t
make sense to have a negative number of hours) is that the
number for age, 0, is not a number that would actually be
used in this situation—it’s another example of the dangers
of extrapolation, but it still is necessary to determine the
regression equation.

Then we calculate what we would predict for Y when
X equals 1: the amount that that number, �16.378, differs
from the prediction when X equals 0 is the slope.

zŶ � (rXY)(zX) � (0.49)(�11.179) � �5.478

Ŷ � zŶ(SDY) � MY � �5.478(5.582) � 14.2 � �16.378

When X equals 0, �17.908 is the prediction for Y. When X
equals 1, �16.378 is the prediction for Y. The latter number
is 1.530 higher [�16.378 � (�17.908) � 1.530]— that is,
more positive—than the former. Remember when you’re
calculating the difference to consider whether the prediction
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for Y was more positive or more negative when X increased
from 0 to 1.

Thus, the regression equation is: Ŷ � �17.91 �
1.53(X ).

b. Substituting 17 for X in the regression equation for part (a)
yields 8.1. Substituting 22 for X in the regression equation
yields 15.75. We would predict that a 17-year-old would
study 8.1 hours and a 22-year-old would study 15.75 hours.

c. The accompanying graph depicts the regression line for
predicting hours studied per week from a person’s age.

d. It is misleading to include young ages such as 0 and 5 on
the graph because people of that age would never be
college students.

16.49 a. The accompanying graph shows the scatterplot and
regression line relating age and number of hours studied.
Vertical lines from each observed data point are drawn to
the regression line to represent the error in prediction from
the regression equation.

b. The accompanying scatterplot relating age and number of
hours studied includes a horizontal line at the mean
number of hours studied. Vertical lines between the
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observed data points and the mean represent the amount of
error in predicting from the mean.

c. There appears to be less error in part (a), where the
regression line is used to predict hours studied. This occurs
because the regression line is the line that minimizes the
distance between the observed scores and the line drawn
through them. That is, the regression line is the one line that
can be drawn through the data that produces the minimum
error.

16.51 a. We cannot conclude that cola consumption causes a
decrease in bone mineral density because there are a
number of different kinds of causal relations that could lead
to the predictive relation observed by Tucker and colleagues
(2006). There may be some characteristic about these older
women that both causes them to drink cola and leads to a
decrease in bone mineral density. For example, perhaps
overall poorer health habits lead to an increased
consumption of cola and a decrease in bone mineral density.

b. Multiple regression allows us to assess the contributions of
more than one independent variable to the outcome, the
dependent variable. Performing this multiple regression
allowed the researchers to explore the unique contributions
of a third variable, such as physical activity, in addition to
bone density.

c. Physical activity might produce an increase in bone mineral
density, as exercise is known to increase bone density.
Conversely, it is possible that physical activity might
produce a decrease in cola consumption because people
who exercise more might drink beverages that are more
likely to keep them hydrated (such as water or sports
drinks).

d. Calcium intake should produce an increase in bone mineral
density, thereby producing a positive relation between
calcium intake and bone density. It is possible that
consumption of cola means lower consumption of beverages
with calcium in them, such as milk, producing a negative
relation between cola consumption and bone density.

16.53 If really poor students and really good students do not
download podcasts very often, then the relation between
number of podcasts downloaded and GPA is nonlinear. In such
a case, it would be inappropriate to calculate a linear regression
to predict GPA from podcasts. Constructing a scatterplot of the
data would enable us to tell if there was a linear relation in our

6
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21

24

19 20 21 22 23 24 25

Student’s age

Number
of hours
studied
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data and allow us to assess whether it would be appropriate to
use regression analysis.

16.55 There are many additional variables the researcher might
include in the regression. One independent variable that could
be manipulated is the cost of the tutoring sessions. A second
independent variable (which could not be manipulated) is the
wealth of the students’ families. The researcher might also
consider using the gender of the student as an independent
variable.

16.57 a. Here are the computations needed to compute b:

b. The standardized regression coefficient is equal to our
correlation coefficient, 0.49, for simple linear regression.

c. The hypothesis test for regression is the same as that for
correlation. The critical values for r with 8 degrees of
freedom at a p level of 0.05 are �0.632 and 0.632. With a
correlation of 0.49, we fail to exceed the cutoff and
therefore fail to reject the null hypothesis. The same is true
then for our regression. We do not have a statistically
significant regression and should be careful not to claim that
our slope is different from 0.

16.59 a. Here are the computations needed to compute b:

b. The standardized regression coefficient is equal to the
correlation coefficient, 0.834, for simple linear regression.

b � � �( ) .
.

b
SS

SS
X

Y

1 53
32

311 6
900.4

X (X � MX) (X � MX)2 Y (Y � MY) (Y � MY)2

19 �2 4 5 �9.2 84.64

20 �1 1 20 5.8 33.64

20 �1 1 8 �6.2 38.44

21 0 0 12 �2.2 4.84

21 0 0 18 3.8 14.44

23 2 4 25 10.8 116.64

22 1 1 15 0.8 0.64

20 �1 1 10 �4.2 17.64

19 �2 4 14 �0.2 0.04

25 4 16 15 0.8 0.64

R(X � MX)2 � 32 R(Y � MY)2 �
311.6

b � � �( ) .
.

.
b

SS

SS
X

Y

0 011
5437 20

0 918
0.011(73.737/00.958)

0.847�

X (X � MX) (X � MX)2 Y (Y � MY) (Y � MY)2

6 �38.4 1475.56 12.37 �0.574 0.329

17 �27.4 750.76 12.91 �0.034 0.001

39 �5.4 29.16 12.59 �0.354 0.125

62 17.6 309.76 13.43 0.486 0.236

98 53.6 2872.96 13.42 0.476 0.227

R(X � MX)2 � R(Y � MY)2 �
5437.20 0.918

The numbers are slightly different due to rounding
decisions.

c. The hypothesis test for simple linear regression is the same
as that for correlation. The critical values for r with 3
degrees of freedom at a p level of 0.05 are �0.878 and
0.878. With a correlation of 0.834, we fail to exceed the
cutoff and therefore fail to reject the null hypothesis. The
same is true then for the regression. We do not have a
statistically significant regression and should be careful not
to claim that our slope is different from 0.

16.61 a. The four latent variables are social disorder, distress,
injection frequency, and sharing behavior.

b. There are seven manifest variables: beat up, sell drugs,
burglary, loitering, litter, vacant houses, and vandalism. By
“social disorder,” it appears that the authors are referring to
physical or crime-related factors that lead a neighborhood
to be chaotic.

c. Among the latent variables, injection frequency and sharing
behavior seem to be most strongly related to each other.
The number on this path, 0.26, is positive, an indication that
as the frequency of injection increases, the frequency of
sharing behaviors also tends to increase.

d. The overall story seems to be that social disorder increases
the level of distress in a community. Distress in turn
increases the frequency of both injection and sharing
behavior. The frequency of injection also leads to an
increase in sharing behavior. Ultimately, social disorder
seems to lead to dangerous drug use behaviors.

C H A P T E R  1 7
17.1 Nominal data are those that are categorical in nature; they

cannot be ordered in any meaningful way, and they are often
thought of as simply named. Ordinal data can be ordered, but
we cannot assume even distances between points of equal
separation. For example, the difference between the second and
third scores may not be the same as the difference between the
seventh and the eighth. Scale data are measured on either the
interval or ratio level; we can assume equal intervals between
points along these measures.

17.3 The chi-square test for goodness-of-fit is a nonparametric
hypothesis test used with one nominal variable. The chi-square
test for independence is a nonparametric test used with two
nominal variables.

17.5 Throughout the book, we have referred to independent
variables, those variables that we hypothesize to have an effect
on the dependent variable. We also described how statisticians
refer to observations that are independent of one another, such
as a between-groups research design requiring that observations
be taken from independent samples. Here, with regard to chi
square, independence takes on a similar meaning. We are testing
whether the effect of one variable is independent of the
other—that the proportion of cases across the levels of one
variable does not depend on the levels of the other variable.

17.7 In most previous hypothesis tests, the degrees of freedom have
been based on sample size. For the chi-square hypothesis tests,
however, the degrees of freedom are based on the numbers of
categories, or cells, in which participants can be counted. For
example, the degrees of freedom for the chi-square test for
goodness-of-fit is the number of categories minus 1:
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. Here, k is the symbol for the number of
categories.

17.9 The contingency table presents the observed frequencies for
each cell in the study.

17.11 This is the formula to calculate the chi-square statistic, which is
the sum, for each cell, of the squared difference between each
observed frequency and its matching expected frequency,
divided by the expected value for its cell.

17.13 Relative likelihood indicates the relative chance of an outcome
(i.e., how many times more likely the outcome is given the
group membership of an observation). For example, we might
determine the relative likelihood that a person would be a
victim of bullying given that the person is a boy versus a girl.

17.15 Relative likelihood and relative risk are exactly the same
measure, but relative likelihood is typically called relative risk
when it comes to health and medical situations because it
describes a person’s risk for a disease or health outcome.

17.17 If a researcher obtains a significant chi-square value but one of
the variables has more than two levels, the researcher can
determine which cells of the table differ from expectations by
comparing the value of the adjusted standardized residual for
that cell to a criterion. The criterion adopted by many
researchers is 2, such that if the adjusted standardized residual is
greater than 2, the observed values for that cell differ
significantly from the expected values.

17.19 a. The independent variable is gender, which is nominal (men
or women). The dependent variable is number of loads of
laundry, which is scale.

b. The independent variable is need for approval, which is
ordinal (rank). The dependent variable is miles on a car,
which is scale.

c. The independent variable is place of residence, which is
nominal (on or off campus). The dependent variable is
whether the student is an active member of a club, which is
also nominal (active or not active).

17.21 a.

b.

df kv2 1� � � � �4 1 3

df kv2 1� �

17.25

17.27 The conditional probability of being a smoker given that a

person is female is , and the conditional

probability of being a smoker given that a person is male is

. The relative likelihood of being a smoker given

that one is female rather than male is . These

Turkish women with lung cancer were less than one-tenth as
likely to be smokers than were the male lung cancer patients.

17.29 a. A nonparametric test would be appropriate because both of
the variables are nominal: gender and major.

b. A nonparametric test is more appropriate for this question
because the sample size is small and the data are unlikely to
be normal; the “top boss” is likely to have a much higher
income than the other employees. This outlier would lead
to a nonnormal distribution.

c. A parametric test would be appropriate because the
independent variable (type of student: athlete versus
nonathlete) is nominal and the dependent variable (grade
point average) is scale.

d. A nonparametric test would be appropriate because the
independent variable (athlete versus nonathlete) is nominal
and the dependent variable (class rank) is ordinal.

e. A nonparametric test would be appropriate because the
research question is about the relation between two
nominal variables: seat-belt wearing and degree of injuries.

f. A parametric test would be appropriate because the
independent variable (seat-belt use: no seat belt versus 

Expected
Accidents No accidents

Rain 12.904 32.096 45

No rain 26.096 64.904 91

39 97 136

0 065

0 799
0 08

.

.
.�

723

905
0 799� .

13

199
0 065� .

Cramer’s
/

V
N dfrow column

� �
v2 6 035

136 1( )( )

.

( )( ))
.�

�

0 044

0.210

OBSERVED EXPECTED
CATEGORY (O) (E ) O � E (O � E)2

1 750 625 750 � 625 � 125 15,625 25

2 650 625 650 � 625 � 25 625 1

3 600 625 600 � 625 � �25 625 1

4 500 625 500 � 625 � �125 15,625 25

(O � E)2

E

c.

17.23

Expected
Accidents No Accidents

Rain 45

No 91Rain

39 97 136

Total

N
Totalcolumn

row( ) ( )�
39

136
91

Total

N
Totalcolumn

row( ) ( )�
97

136
45

Total

N
Totalcolumn

row( ) ( )�
39

136
45

Total

N
Totalcolumn

row( ) ( )�
97

136
91

v2
2( )

25 1 1 25 52�
�

� � � � �R
O E

E

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

seat belt) is nominal and the dependent variable (speed) is
scale.

17.31 a. (i) Year. (ii) Grades received. (iii) This is a category III
research design because the independent variable, year, is
nominal and the dependent variable, grade (A or not), could
also be considered nominal.

b. (i) Type of school. (ii) Average GPA of graduating students.
(iii) This is a category II research design because the
independent variable, type of school, is nominal and the
dependent variable, GPA, is scale.

c. (i) SAT scores of incoming students. (ii) College GPA. (iii)
This is a category I research design because both the
independent variable and the dependent variable are scale.
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17.33 a.

b.

c.

FIRST SECOND THIRD
GENERATION GENERATION GENERATION

COMMITTED
CRIME

NO CRIME

UNMARRIED HEAD OF HOUSEHOLD      

IMMIGRANT NONIMMIGRANT
NEIGHBORHOOD NEIGHBORHOOD

COMMITTED
CRIME

NO CRIME

MARRIED HEAD OF HOUSEHOLD      

IMMIGRANT NONIMMIGRANT
NEIGHBORHOOD NEIGHBORHOOD

COMMITTED
CRIME

NO CRIME

MEXICAN WHITE BLACK

MARRIED

SINGLE

op-ed articles and only 2 cells). (4) This is not, however, a
randomly selected sample of op-eds, so we must generalize
with caution; specifically, we should not generalize beyond
the New York Times.

Step 2: Null hypothesis: The proportions of male and female
op-ed contributors are the same as those in the population
as whole. 

Research hypothesis: The proportions of male and female
op-ed contributors are different from those in the
population as a whole.

Step 3: The comparison distribution is a chi-square
distribution with 1 degree of freedom: dfv2 � 2 � 1 � 1.

Step 4: The critical v2, based on a p level of 0.05 and 1
degree of freedom, is 3.841.

Step 5:

v2 27.113 27.113 54.226�
�

� � �R
(O )2E

E

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

EXPECTED (FROM THE GENERAL POPULATION)
MEN WOMEN

62 62

OBSERVED (PROPORTIONS OF MEN 
AND WOMEN)

MEN WOMEN

103 21

OBSERVED EXPECTED
CATEGORY (O) (E ) O � E (O � E)2

Men 103 62 41 1681 27.113

Women 21 62 �41 1681 27.113

(O � E)2

E

17.35 a. There is one variable, the gender of the op-ed writers. Its
levels are men and women.

b. A chi-square test for goodness-of-fit would be used because
we have data on a single nominal variable from one sample.

c. Step 1: Population 1 is op-ed contributors with gender
proportions like those in our sample. Population 2 is op-ed
contributors with gender proportions like those in the
general population. The comparison distribution is a chi-
square distribution. The hypothesis test will be a chi-square
test for goodness-of-fit because we have only one nominal
variable. This study meets three of the four assumptions. (1)
The variable under study is nominal. (2) Each observation is
independent of all the others. (3) There are more than five
times as many participants as there are cells (there are 124

Step 6: Reject the null hypothesis. The calculated chi-square
value exceeds the critical value. It appears that the proportion
of op-eds written by women versus men is not the same as
the proportion of men and women in the population. Speci -
fically, there are fewer women than in the general population.

d. v2(1, N � 124) � 54.23, p � 0.05

17.37 a. There are two variables in this study. The independent
variable is the referred child’s gender (boy, girl) and the
dependent variable is the diagnosis (problem, no problem
but below norms, no problem and normal height).

b. A chi-square test for independence would be used because
we have data on two nominal variables.

c. Step 1: Population 1 is referred children like those in this
sample. Population 2 is referred children from a population in
which growth problems do not depend on the child’s gender.
The comparison distribution is a chi-square distribution. The
hypothesis test will be a chi-square test for independence
because we have two nominal variables. This study meets three
of the four assumptions. (1) The two variables are nominal. (2)
Every participant is in only one cell. (3) There are more than
five times as many participants as there are cells (there are 278
participants and 6 cells). (4) The sample, however, was not
randomly selected, so we must use caution when generalizing.

Step 2: Null hypothesis: The proportion of boys in each
diagnostic category is the same as the proportion of girls in
each category. 
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Research hypothesis: The proportion of boys in each
diagnostic category is different from the proportion of girls
in each category.

Step 3: The comparison distribution is a chi-square
distribution that has 2 degrees of freedom: 
dfv2 � (krow � 1)(kcolumn � 1) 
� (2 � 1)(3 � 1) � 2.

Step 4: The critical v2, based on a p level of 0.05 and 2
degrees of freedom, is 5.99.

Step 5:

EXPECTED
NO NO

PROBLEM/ PROBLEM/
MEDICAL BELOW NORMAL
PROBLEM NORM HEIGHT

BOYS 43.209 81.180 57.612 182

GIRLS 22.791 42.820 30.388 96

66 124 88 278

Total

N
Totalcolumn

row( ) ( ) .� �
88

278
96 30 388

Total

N
Totalcolumn

row( ) ( ) .� �
88

278
182 57 612

Total

N
Totalcolumn

row( ) ( ) .� �
124

278
96 42 820

Total

N
Totalcolumn

row( ) ( ) .� �
124

278
182 81 180

Total

N
Totalcolumn

row( ) ( ) .� �
66

278
96 22 791

Total

N
Totalcolumn

row( ) ( ) .� �
66

278
182 43 209

OBSERVED
NO NO

PROBLEM/ PROBLEM/
MEDICAL BELOW NORMAL
PROBLEM NORM HEIGHT

BOYS 27 86 69 182

GIRLS 39 38 19 96

66 124 88 278

Step 6: Reject the null hypothesis. The calculated chi-square
value exceeds the critical value. It appears that the
proportion of boys in each diagnostic category is not the
same as the proportion of girls in each category.

d. Cramer’s V �

According to Cohen’s conventions, this is a small-to-
medium effect size.

e. v2(2, N � 278) � 24.96, p � 0.05, Cramer’s V � 0.30

17.39 a. The accompanying table shows the conditional proportions.

b. The accompanying graph shows all six conditions.

17.41 a. The chance of defecting given that one is from China as
opposed to the United States is equal to the conditional
probability of defecting among those from China divided
by the conditional probability of defecting among those

from the United States, or .
0 463

0 745
0 621

.

.
.�

Medical
problem

No problem/
below norm

No problem/
normal height

Diagnostic category

Proportion
of children

Girls

Boys

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0

v2 24 956

278 1( )( )

.

( )( )N dfrow column/

0.300� �

v2 6.08 0.286 2.251 11.528�
�

� � � �R
( )2O E

E

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

�� � �0 543 4 268. . 24.956

NO NO
PROBLEM/ PROBLEM/

MEDICAL BELOW NORMAL 
PROBLEM NORM HEIGHT

BOYS 0.148 0.473 0.379 1.00

GIRLS 0.406 0.396 0.198 1.00

OBSERVED EXPECTED 
CATEGORY (O) (E ) O � E (O � E)2

Boy; med prob 27 43.209 �16.209 262.732 6.080

Boy; no prob/below 86 81.180 4.82 23.232 0.286

Boy; no prob/norm 69 57.612 11.388 129.687 2.251

Girl; med prob 39 22.791 16.209 262.732 11.528

Girl; no prob/below 38 42.820 �4.82 23.232 0.543

Girl; no prob/norm 19 30.388 �11.388 129.687 4.268

(O � E)2

E

b. This indicates that a student from China
is only about 62% as likely to defect as a
student from the United States.

c. The chance of defecting given that one
is from the United States as opposed to
China is equal to the conditional
probability of defecting among those
from the United States divided by the
conditional probability of defecting
among those from China, or

.
0 745

0 463
1 609

.

.
.�
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d. This indicates that a student from the United States is
approximately 1.6 times more likely to defect than a student
from China.

e. The two likelihood ratios give us complementary
information. If students from the United States defect 1.6 as
many times as do students from China, that implies that
students from China defect about 40% less of the time than
do students from the United States.

17.43 a. The accompanying table shows the conditional proportions.

b. The accompanying graph shows these conditional
proportions.

c. The relative likelihood of finding life exciting if one lives in

a different state as opposed to the same city is .

C H A P T E R  1 8
18.1 When we are concerned about meeting the assumptions of a

parametric test, we can convert scale data to ordinal data and
use a nonparametric test.

18.3 When transforming scale data to ordinal data, the scale data are
rank-ordered. This means that even a very extreme scale score
will have a rank that makes it continuous with the rest of the
data when rank-ordered.

18.5 In all correlations, we assess the relative position of a score on
one variable with its position on the other variable. In the case
of the Spearman rank-order correlation, we examine how
ranks on one variable relate to ranks on the other variable. For
example, with a positive correlation, scores that rank low on
one variable tend to rank low on the other, and scores that
rank high on one variable tend to rank high on the other. For
a negative correlation, low ranks on one variable tend to be
associated with high ranks on the other.

0 502

0 424
1 18

.

.
.�

EXCITING ROUTINE DULL

SAME CITY 0.424 0.521 0.055 1.00

SAME STATE/ 0.468 0.485 0.047 1.00
DIFFERENT CITY

DIFFERENT STATE 0.502 0.451 0.047 1.00

18.7 Values for the Spearman rank-order correlation coefficient
range from �1.00 to �1.00, just like its parametric equivalent,
the Pearson correlation coefficient. Similarly, the conventions
for interpreting the magnitude of the Pearson correlation
coefficient can also be applied to the Spearman correlation
coefficient (small is roughly 0.10, medium 0.30, and large
0.50).

18.9 The Wilcoxon signed-rank test is appropriate to use when one
is comparing two sets of dependent observations (scores from
the same participants) and the dependent variable is either
ordinal or does not meet the assumptions required by the
paired-samples t test.

18.11 The assumptions are that (1) the data are ordinal, (2) random
selection was used, and (3) no ranks are tied.

18.13 The Kruskal–Wallis H test is appropriate to use when one is
comparing three or more groups of independent observations
(i.e., the independent variable has three or more levels) and the
dependent variable is ordinal or does not meet the assumptions
of the parametric test.

18.15 If the data meet the assumptions of the parametric test, then
using the parametric test will give us more power to detect a
significant effect than the nonparametric equivalent.
Transforming the scale data required for the parametric test
into the ordinal data required for the nonparametric test results
in a loss of precision of information (i.e., we know one
observation is greater than another, but not how much greater).

18.17 Using the bootstrapping method of repeatedly sampling with
replacement allows for the estimation of confidence intervals
around the original observed sample mean. These confidence
intervals can be used to establish likely ranges for the
population mean. This method allows the researcher to
extrapolate information about population parameters.

18.19
VARIABLE RANK VARIABLE RANK 

COUNT X X Y Y

1 134.5 3 64.00 7

2 186 10 60.00 1

3 157 9 61.50 2

4 129 1 66.25 10

5 147 7 65.50 8.5

6 133 2 62.00 3.5

7 141 5 62.50 5

8 147 7 62.00 3.5

9 136 4 63.00 6

10 147 7 65.50 8.5

Same city Same state/
different city

Different
state

Where one lives relative to age 16

Proportion of
respondents

Routine

Exciting

Dull

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0
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18.21

r
D

N N
S � �

�
� �

�
� �1

6

1
1

6 250

10 100 1
1

15002

2

(

( )

( )

( )

R )

9990
1 1 515 0 515� � ��. .

RANK RANK SQUARED 
COUNT X Y DIFFERENCE DIFFERENCE

1 3 7 �4 16

2 10 1 9 81

3 9 2 7 49

4 1 10 �9 81

5 7 8.5 �1.5 2.25

6 2 3.5 �1.5 2.25

7 5 5 0 0

8 7 3.5 3.5 12.25

9 4 6 �2 4

10 7 8.5 �1.5 2.25

RANKS FOR RANKS FOR 
SCHOOL POSITIVE NEGATIVE 

STUDENT YEAR SUMMER DIFFERENCE RANKS DIFFERENCES DIFFERENCES

1 7 4 �3 2.0 2.0

2 4 6 2 3.5 3.5

3 5 5 0

4 3 4 1 5.5 5.5

5 4 8 4 1.0 1.0

6 5 7 2 3.5 3.5

7 3 2 �1 5.5 5.5

18.23 a. When calculating the Spearman correlation coefficient, we
must first transform the variable “hours trained” into a
rank-ordered variable. We then take the difference between
the two ranks and square those differences:

We calculate the Spearman correlation coefficient as:

b. The critical rS with an N of 10, a p level of 0.05, and a two-
tailed test is 0.648. The calculated rS is 0.89, which exceeds
the critical value. So we reject the null hypothesis. Finishing
place was positively associated with the number of hours
spent training.

18.25 a. To calculate the Wilcoxon signed-rank test, we first
calculate difference scores for each student and then rank
those difference scores. Next, we separately sum the ranks
associated with the positive and negative difference scores.

r
D

N N
S �

�
� �

�
� �1

6

1
1

6 18

10 10 1
1

108

99

2

2 2
−

( )

( )

( )

( )

R

00
1 0 109

0 891

� �

�

.

.

RACE HOURS HOURS SQUARED 
RANK TRAINED RANK DIFFERENCE DIFFERENCE

1 25 1.5 �0.5 0.25

2 25 1.5 0.5 0.25

3 22 3 0 0

4 18 5.5 �1.5 2.25

5 19 4 1 1

6 18 5.5 0.5 0.25

7 12 10 �3 9

8 17 7 1 1

9 15 9 0 0

10 16 8 2 4

RD2 � 18

The sum of the ranks for the positive differences is RR� � 3.5 � 5.5 � 1.0 � 3.5 � 13.5.
The sum of the ranks for the negative differences is RR� � 2.0 � 5.5 � 7.5.
T is equal to the smaller of these two sums: T � RRsmaller � 7.5.

b. For this data set, N � 6. Although there are 7 participants, there are only 6 nonzero
difference scores, and it is the number of nonzero difference scores that determines N for the
Wilcoxon signed-rank test. The critical value for a Wilcoxon signed-rank test with N � 6, a
p level of 0.05, and a two-tailed test is 0. Because the calculated T is not smaller than the
critical value of 0, we fail to reject the null hypothesis. We do not have evidence that there is
a difference between happiness levels during the summer and school year.
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18.27 RRgroup1 � 1 � 2.5 � 8 � 4 � 6 � 10 � 31.5

RRgroup2 � 11 � 9 � 2.5 � 5 � 7 � 12 � 46.5

The formula for the first group is:

The formula for the second group is:

The test statistic is 10.5, because it is the smaller of the two.

18.29 a. To conduct the Mann–Whitney U test, we first obtain the
rank of every person in the data set. We then separately sum
the ranks of the two groups, men and women:

We sum the ranks for the men: RRm � 11 � 3 � 7 � 6 �
8 � 5 � 13.

We sum the ranks for the women: RRw � 9 � 1 � 12 � 2
� 4 � 10 � 14.

We calculate U for the men:

We calculate U for the women:

b. The critical value for the Mann–Whitney U test with two
samples of size 6, a p level of 0.05, and a two-tailed test is 5.
We compare the smaller of the two U values to the critical
value and reject the null hypothesis if it is smaller than the
critical value. Because the smaller U of 43 is not less than 5,
we fail to reject the null hypothesis. There is no evidence
for a difference in the class standing of men and women.
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CLASS MALE FEMALE
STUDENT GENDER STANDING RANK RANKS RANKS

1 Male 98 11 11

2 Female 72 9 9

3 Male 15 3 3

4 Female 3 1 1

5 Female 102 12 12

6 Female 8 2 2

7 Male 43 7 7

8 Male 33 6 6

9 Female 17 4 4

10 Female 82 10 10

11 Male 63 8 8

12 Male 25 5 5
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18.31 a. To conduct the Kruskal–Wallis H test, we first rank each
participant on the dependent variable and then sort the
ranks by group. We then calculate the mean rank for each
group (M) and for the whole data set (GM):

b. The critical value for the Kruskal–Wallis H test is found
using the table for chi square. The df is the number of
groups minus 1, which in this case is 2. For df � 2, a p level
of 0.05, and a two-tailed test, the critical value is 5.992. We
fail to reject the null hypothesis because the calculated H
does not exceed this critical value.

18.33 a. The critical value is 19.

b. Reject the null hypothesis because the smaller U value is
less than the critical value (in the Mann–Whitney U test,
we reject the null hypothesis when the smaller calculated U
is less than the critical value).

c. Fail to reject the null hypothesis because the smaller U
value is not less than the critical value.

d. Reject the null hypothesis because the smaller U value is
less than the critical value.

18.35 a. The mean is 45.

b. The mean for each of the samples is as follows: sample 1:
43.667; sample 2: 45.833; sample 3: 43.667; sample 4: 44.5;
sample 5: 44.667.

c. The smallest mean is 43.667 and the largest mean is 45.833.

d. There is not much variability in the means of these samples,
which suggests that there is low variability in the population
as well.

18.37 a. The accompanying table shows the ordered data and
corresponding ranks. When converted to ordinal data, the
outlier is still at the top of the distribution but is no longer
very different from the rest of the scores in the distribution.
Prior to converting to ordinal data, the outlier, 500, was
well above the next-highest observation, 200. Now the
scores of 500 and 200 are ranked 29 and 28, respectively.
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GROUP GROUP GROUP
ORDINAL 1 2 3

GROUP DV RANK RANKS RANKS RANKS

Group 1 27 7 7

Group 1 16 9 9

Group 1 15 10 10

Group 2 56 3 3

Group 2 41 4 4

Group 2 38 5 5

Group 2 22 8 8

Group 3 84 1 1

Group 3 72 2 2

Group 3 33 6 6

Group 3 12 11 11

Mean Rank 6 8.667 5 5
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b. The distribution is likely to be somewhat rectangular and
not normal. However, the distribution of ordinal data is
never normal because each score is assigned a rank, which
means that each individual raw score usually has a different
rank from the others. In most cases (unless there are ties), all
frequencies would be 1.

c. It does not matter that the ordinal transformation is not
normally distributed because we would be using
nonparametric statistics to analyze the data. Nonparametric
statistics do not require the assumption that the underlying
distribution is normal.

18.39 a. The first variable of interest is test grade, which is a scale
variable. The second variable of interest is the order in
which students completed the test, which is an ordinal
variable.

b. The accompanying table shows test grade converted to
ranks, difference scores, and squared differences.

We calculate the Spearman correlation coefficient as:

c. The coefficient tells us that there is a rather large positive
relation between the two variables. Students who completed
the test more quickly also tended to score higher.
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GRADE GRADE
PERCENTAGE SPEED RANK D D2

98 1 1 0 0

93 6 2 4 16

92 4 3 1 1

88 5 4 1 1

87 3 5 �2 4

74 2 6 �4 16

67 8 7 1 1

62 7 8 �1 1

PHONE PHONE PHONE BILL PHONE RANK
BILL RANK (CONT.) (CONT.)

0 1 55 16

30 2 60 17.5

35 3 60 17.5

40 5.5 65 19

40 5.5 75 20

40 5.5 80 21.5

40 5.5 80 21.5

45 8.5 100 24.5

45 8.5 100 24.5

50 12.5 100 24.5

50 12.5 100 24.5

50 12.5 108 27

50 12.5 200 28

50 12.5 500 29

50 12.5

d. We could not have calculated a Pearson correlation
coefficient because one of our variables, order in which
students turned in the test, is ordinal.

18.41 a. This correlation does not indicate that students should
attempt to take their tests as quickly as possible. Correlation
does not provide evidence for a particular causal relation. A
number of underlying causal relations could produce this
observed correlation.

b. A third variable that might cause both speedy test-taking
and a good test grade is knowledge of the material. Students
with better knowledge of and more practice with the
material would be able to get through the test more quickly
and get a better grade.

18.43 a. The independent variable is type of state, and its levels are
red and blue. The dependent variable is the percentage of
registered voters who voted.

b. This is a between-groups design because each state is either
a red state or a blue state but cannot be both.

c. Step 1: We need to convert the data to an ordinal measure.
The states were randomly selected, so we can assume that
they are representative of their populations. Finally, there are
no tied ranks.

Step 2: Null hypothesis: There is no difference between the
voter turnout in red and blue states. 

Research hypothesis: There is a difference between the
voter turnout in red and blue states.

Step 3: There are eight red and eight blue states.

Step 4: The critical value for a Mann–Whitney U test with
two groups of eight, a p level of 0.05, and a two-tailed test
is 13. The smaller calculated statistic needs to be less than or
equal to this critical value to be considered statistically
significant.

Step 5:

RRred � 5 � 7 � 9 � 10 � 11 � 14 � 15 � 16 � 87

RRblue � 1 � 2 � 3 � 4 � 6 � 8 � 12 � 13 � 49

TURNOUT STATE RED BLUE
STATE TURNOUT RANK TYPE RANK RANK

Wisconsin 76.73 1 Blue 1

Maine 73.4 2 Blue 2

Oregon 70.5 3 Blue 3

Washington 67.42 4 Blue 4

Missouri 66.89 5 Red 5

Vermont 66.19 6 Blue 6

Idaho 64.89 7 Red 7

New Jersey 64.54 8 Blue 8

Montana 64.36 9 Red 9

Virginia 61.5 10 Red 10

Louisiana 60.78 11 Red 11

Illinois 60.73 12 Blue 12

California 60.01 13 Blue 13

Georgia 57.38 14 Red 14

Indiana 55.69 15 Red 15

Texas 53.35 16 Red 16
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Step 6: The smaller calculated U, 13, is equal to the critical
value of 13. In order to reject the null hypothesis for the
Mann–Whitney U tests, the calculated value must be less
than or equal to the critical value. So we reject the null
hypothesis. There is a statistically significant difference
between voter turnout in red and blue states. Voter turnout
tends to be higher in blue states than in red states.

d. U � 13, p � 0.05

18.45 a. The independent variable is the season, and its levels are
1995–1996 and 2005–2006. The dependent variable is the
number of wins per season.

b. This is a within-groups design because the same teams are
being assessed at two different time points.

c. It would be preferable to conduct a nonparametric test
because there is a very small sample size and the dependent
variable, number of wins, is not likely to be normally
distributed in the population.

d. Step 1: We will convert the scale data into ordinal data. It is
difficult to know from this small sample whether the
difference scores come from a symmetric population
distribution. (Note: These are all of the Canadian NHL
teams, so the assumption of random selection is irrelevant.)

Step 2: Null hypothesis: There is no difference between the
teams’ performance rankings in the 1995–1996 season and
those in the 2005–2006 season. 

Research hypothesis: There is a difference between the
teams’ performance rankings in the 1995–1996 season and
those in the 2005–2006 season.

Step 3: The comparison distribution will be a T
distribution. We will use a p level of 0.05 and a two-tailed
test. The sample size is 6.

Step 4: The critical T value is 0. The calculated T value
must be less than or equal to 0 to be statistically significant.

Step 5:

Ublue � � � �
�( )( ) ( )8 8 49 518 8 1
2

Ured � � � �
�( )( ) ( )8 8 87 138 8 1
2

RR� � (2 � 3 � 6 � 1 � 5 � 4) � 21

RR� � 0

T � R Rsmaller � 0

Step 6: The test statistic, 0, is equal to the critical value, so
we reject the null hypothesis. Canadian teams had more
wins in the 2005–2006 season than in the 1995–1996
season.

e. T � 0, p � 0.05

18.47 a. The independent variable is region of the country, and its
levels are Northeast, Midwest, and South. The dependent
variable is “smart” ranking.

b. This is a between-groups design because a state is in only
one region of the country.

c. We need to use a nonparametric test because the dependent
measure is ordinal.

d. Step 1: The data are ordinal. (This list includes all states in
the regions of interest, so the assumption of random
selection is not relevant.)

Step 2: Null hypothesis: The “smart” ranking of a state does
not tend to vary with its geographical region. 

Research hypothesis: The “smart” ranking of a state does
tend to vary with its geographical region.

Step 3: We will use the chi-square distribution as the
comparison distribution with degrees of freedom of 3 � 1
� 2.

Step 4: The critical value with a df of 2 and p level of 0.05
is 5.991. The calculated statistic will need to be larger than
this critical value to be considered statistically significant.

1995– 2005–
1996 2006 D POSITIVE NEGATIVE

TEAM SEASON SEASON D RANK DIFFERENCE DIFFERENCE

Calgary 34 46 12 2 2
Flames

Edmonton 30 41 11 3 3
Oilers

Montreal 40 42 2 6 6
Canadiens

Ottawa 18 52 34 1 1
Senators

Toronto 34 41 7 5 5
Maple Leafs

Vancouver 32 42 10 4 4
Canucks
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Step 5:

GM
R

N
� � �

R 465

30
15 50.

M
R

n
S

S
� � �

R 264

11
24 00.

M
R

n
MW

MW
� � �

R 136

10
13 60.

M
R

n
NE

NE
� � �

R 65

9
7 222.

NE MW S
STATE RANK RANK RANK RANK

Massachusetts 1 1

Connecticut 2 2

Vermont 3 3

New Jersey 4 4

Wisconsin 5 5

New York 6 6

Minnesota 7 7

Iowa 8 8

Pennsylvania 9 9

Maine 10 10

Virginia 11 11

Nebraska 12 12

New Hampshire 13 13

Kansas 14 14

Indiana 15 15

Ohio 16 16

Rhode Island 17 17

Illinois 18 18

North Carolina 19 19

Missouri 20 20

Michigan 21 21

South Carolina 22 22

Arkansas 23 23

Kentucky 24 24

Georgia 25 25

Florida 26 26

Tennessee 27 27

Alabama 28 28

Louisiana 29 29

Mississippi 30 30

Step 6: The calculated statistic, 18.819, exceeds the critical
value of 5.992, so we reject the null hypothesis. The “smart”
ranking for a state does tend to vary with the geographical
location of that state.

e. H � 18.82, p � 0.05

f. Like a one-way between-groups ANOVA, the Kruskal–
Wallis H statistic when used with more than two groups
just indicates that there is a difference among the groups,
but it does not indicate where that difference is. Separate
Kruskal–Wallis H tests for each group comparison in the
current example appear below. For each test the degrees of
freedom is 1 and the critical value, given a p level of 0.05,
is 3.84.

Northeast versus South: H � 13.02, p � 0.05

Northeast versus Midwest: H � 4.86, p � 0.05

Midwest versus South: H � 10.49, p � 0.05

All regions are statistically significantly different from each
other. The states in the Northeast tend to have the highest
rankings, followed by those in the Midwest, and then by
those in the South.

18.49 a. The Mann–Whitney U test would be most appropriate
because it is a nonparametric equivalent to the
independent-samples t test. It is used when we have a
nominal independent variable with two levels (here, they
are north and south of the equator), a between-groups
research design, and an ordinal dependent variable (here, it
is the ranking of the city).

b. The Wilcoxon signed-rank test would be most appropriate
because we have a nominal independent variable with two
levels (the time of the previous study versus 2005), a
within-groups research design, and an ordinal dependent
variable (ranking).

c. The Spearman rank-order correlation would be most
appropriate because we are asking a question about the
relation between two ordinal variables.

18.51 a. Hours studied per week appears to be roughly normal, with
observations across the range of values—from 0 through 20.
Monthly cell phone bill appears to be positively skewed,
with one observation much higher than all the others.

b. The histogram confirms the impression that the monthly
cell phone bill is positively skewed. It appears that there is
an outlier in the distribution.

c. Parametric tests assume that the underlying population data
are normally distributed or that there is a large enough
sample size that the sampling distribution will be normal
anyway. These data seem to indicate that the underlying
distribution is not normally distributed; moreover, there is a
fairly small sample size (N � 29). We would not want to
use a parametric test.
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D-1

C H A P T E R  1
1-1 Data from samples are used in inferential statistics (to make an

inference about the larger population).

1-2 a. The average grade for your statistics class would be a
descriptive statistic because it’s being used only to describe
the tendency of people in your class with respect to a
statistics grade.

b. In this case, the average grade would be an inferential
statistic because it is being used to estimate the results of a
population of students taking statistics.

1-3 a. 100 selected students

b. 12,500 students at the university

c. The 100 students in the sample have an average score of 18,
a moderately high stress level.

d. The entire population of students at this university has a
moderately high stress level, on average. The sample mean,
18, is an estimate of the unknown population mean.

1-4 Discrete observations can take on only specific values, usually
whole numbers; continuous observations can take on a full
range of values.

1-5 a. These data are continuous because they can take on a full
range of values.

b. The variable is a ratio observation because there is a true
zero point.

c. On an ordinal scale, Lorna’s score would be 2 (or 2nd).

1-6 a. The levels of gender, male and female, have no numerical
meaning even if they are arbitrarily labeled 1 and 2.

b. The three levels of hair length (short, mid-length, and very
long) are arranged in order, but we do not know the
magnitude of the differences in length.

c. The distances between probability scores are assumed to be
equal.

1-7 Independent; dependent

1-8 a. There are two independent variables: beverage and subject
to be remembered. The dependent variable is memory.

b. Beverage has two levels: caffeine and no caffeine. The
subject to be remembered has three levels: numbers, word
lists, and aspects of a story.

1-9 a. Whether or not a student declared a major

b. Declared a major; did not declare a major

c. Anxiety score

d. The scores would be consistent over time unless a student’s
anxiety level changed.

e. The anxiety scale was actually measuring anxiety.

1-10 Experimental research involves random assignment to
conditions; correlational research examines associations where
random assignment is not possible and variables are not
manipulated.

1-11 Random assignment helps to distribute confounding variables
evenly across all conditions so that the levels of the independent
variable are what truly vary across groups or conditions.

1-12 Rank in high school class and high school grade point average
(GPA) are good examples.

1-13 a. Researchers could randomly assign a certain number of
women to be told about a gender difference on the test and
randomly assign a certain number of other women to be
told that no gender difference existed on this test.

b. If researchers did not use random assignment, any gender
differences might be due to confounding variables. The
women in the two groups might be different in some way
(e.g., in math ability or belief in stereotypes) to begin with.

c. There are many possible confounds. Women who already
believed the stereotype might do so because they had always
performed poorly in mathematics, whereas those who did
not believe the stereotype might be those who always did
particularly well in math. Women who believed the
stereotype might be those who were discouraged from
studying math because “girls can’t do math,” whereas those
who did not believe the stereotype might be those who
were encouraged to study math because “girls are just as
good as boys in math.”

d. Math performance is operationalized as scores on a math
test.

e. Researchers could have two math tests that are similar in
difficulty. All women would take the first test after being told
that women tend not to do as well as men on this test. After
taking that test, they would be given the second test after
being told that women tend to do as well as men on this test.

C H A P T E R  2
2-1 Frequency tables, grouped frequency tables, histograms, and

frequency polygons

A P P E N D I X D

Solutions to Check Your Learning Problems
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2-2 A frequency is a count of how many times a score appears. A
grouped frequency is a count for a defined interval, or group,
of scores.

2-3 a.

b.

c.

2-4 a. We can now get a sense of the overall pattern of the data.

b. Percentages might be more useful because they allow us to
compare programs. Two programs might have the same
number of minority students, but if one program has far
more students overall, it is less diverse than one with fewer
students overall.

c. It is possible that schools did not provide data if they had
no or few minority students. Thus, this data set might be

1
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Number of students belonging to a

racial or ethnic minority group

Frequency
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0
5 15 25 35 45 55 

Number of students belonging to a
racial or ethnic minority group

Frequency 

INTERVAL FREQUENCY

50–59 2

40–49 1

30–39 1

20–29 2

10–19 4

0–9 7

composed of the schools with more diverse student bodies.
This is a volunteer sample; schools are not obligated to
report these data.

2-5 A normal distribution is a specific distribution that is
symmetric around a center high point: it looks like a bell. A
skewed distribution is asymmetric or lopsided to the left or to
the right, with a long tail of data to one side.

2-6 Negative; positive

2-7 Positive skew

2-8 a. Early-onset Alzheimer’s disease would create negative skew
in the distribution for age of onset.

b. Because all humans eventually die, there is a sort of ceiling
effect.

2-9 Being aware of these exceptional early-onset cases allows
medical practitioners to be open to such surprising diagnoses.
In addition, exceptional cases like these often give us great
insight into the underlying mechanisms of disease.

C H A P T E R  3

3-1 The purpose of a graph is to reveal and clarify relations
between variables.

3-2 Five miles per gallon change (from 22 to 27) and (100) �
22.73% change

3-3 The graph on the left is misleading. It shows a sharp decline in
annual traffic deaths in Connecticut from 1955 to 1956, but we
cannot draw valid conclusions from just two data points. The
graph on the right is a more accurate and complete depiction
of the data. It includes nine, rather than two, data points and
suggests that the sharp one-year decline was the beginning of a
clear downward trend in traffic fatalities that extended through
1959. It also shows that there had been previous one-year
declines of similar magnitude—from 1951 to 1952 and from
1953 to 1954. Also, the y-axis does not go down to zero, which
exaggerates any differences.

3-4 Scatterplots and line graphs both depict the relation between
two scale variables.

3-5 The data can almost always be presented more clearly in a table
or in a bar graph.

3-6 The line graph known as a time plot or time series plot allow
us to do so.

3-7 a. A scatterplot is the best graph choice to depict the relation
between two scale variables such as depression and stress.

b. A time plot, or time series plot, is the best graph choice to
depict the change in a scale variable, such as number of
facilities, over time.

c. For one scale variable, such as number of siblings, the best
graph choice would be either a frequency histogram or
frequency polygon.

d. In this case, there is a nominal variable (region of the
United States) and a scale variable (years of education). The
best choice would be a bar graph, with one bar depicting
the mean years of education for each region. A Pareto chart
would arrange the bars from highest to lowest, allowing for
easier comparisons.

5

22
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e. Calories and hours are both scale variables, and the question
is about prediction rather than relation. In this case, we’d
calculate and graph a line of best fit.

3-8 Chartjunk is any unnecessary information or feature in a graph
that detracts from the viewer’s understanding.

3-9 a. Scatterplot or line graph

b. Bar graph

c. Scatterplot or line graph

3-10

The accompanying graph improves on the chartjunk graph in
several ways. First, it has a clear, specific caption. Second, all
axes are labeled left to right. Third, there are no abbreviations.
The units of measurement, IQ and hours of sunlight per day,
are included. The y-axis has 0 as its minimum, the colors are
simple and muted, and all chartjunk has been eliminated. This
graph wasn’t as much fun to create, but it offers a far clearer
presentation of the data! (Note: We are treating hours as an
ordinal variable.)

C H A P T E R  4
4-1 Statistics are calculated for samples; they are usually symbolized

by Latin letters (e.g., M ). Parameters are calculated for
populations; they are usually symbolized by Greek letters
(e.g., l).

4-2 Mean, because the calculation of the mean takes into account
the numeric value of each data point, including that outlier.

4-3 a. � (10 � 8 � 22 � 5 � 6 � 1 � 19 � 8 � 13 

� 12 � 8)/11 � 112/11 � 10.18
The median is found by arranging the scores in

numeric order—1, 5, 6, 8, 8, 8, 10, 12, 13, 19, 22—then
dividing the total number of scores, 11, by 2 and adding 1⁄2
to get 6. The 6th score in our ordered list of scores is the
median, and in this case the 6th score is the number 8.

The mode is the most common score. In these data, the
score 8 occurs most often (three times), so 8 is our mode.

b. � (122.5 � 123.8 � 121.2 � 125.8 � 120.2 

� 123.8 � 120.5 � 119.8 � 126.3 � 123.6)/10 
� 1227.5/10 � 122.75

The data ordered are: 119.8, 120.2, 120.5, 121.2, 122.5,
123.6, 123.8, 123.8, 125.8, 126.3. Again, we find the median
by ordering the data, and then dividing the number of
scores (here there are 10 scores) by 2 and adding 1⁄2. In this
case, we get 5.5, so the mean of the 5th and 6th data points
is the median. The median is (122.5 � 123.6)/2 � 123.05.
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The Effect of Sunlight on IQ Scores

The mode is 123.8, which occurs twice in these data.

c. � (0.100 � 0.866 � 0.781 � 0.555 � 0.222 

� 0.245 � 0.234)/7 � 3.003/7 � 0.429.
Note that three decimal places are included here (rather
than the standard two places used throughout this book)
because the data are carried out to three decimal places.

The median is found by first ordering the data: 0.100,
0.222, 0.234, 0.245, 0.555, 0.781, 0.866. Then the total
number of scores, 7, is divided by 2 to get 3.5, to which 1⁄2
is added to get 4. So, the 4th score, 0.245, is our median.

There is no mode in these data. All scores occur once.

4-4 a. � (1 � 0 � 1 � 2 � 5 � … 4 � 6)/20

� 50/20 � 2.50
b. In this case, the scores would comprise a sample taken from

the whole population, and this mean would be a statistic.
The symbol, therefore, would be either M or X̄̄.

c. In this case, the scores would constitute the entire
population of interest, and the mean would be a parameter.
Thus, the symbol would be l.

d. To find the median, we would arrange the scores in order:
0, 0, 1,1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 5, 6, 7. We would
then divide the total number of scores, 20, by 2 and add 1⁄2,
which is 10.5. The median, therefore, is the mean of the
10th and 11th scores. Both of these scores are 2; therefore,
the median is 2.

e. The mode is the most common score—in this case, there
are six 2’s, so the mode is 2.

f. The mean is a little higher than the median. This indicates
that there are potential outliers pulling the mean higher;
outliers would not affect the median.

4-5 Variability is the concept of variety in data, often measured as
deviation around some center.

4-6 The range tells us the span of our data, from highest to lowest
score. It is based on just two scores. The standard deviation tells
us how far the typical score falls from the mean. The standard
deviation takes every score into account.

4-7 a. The range is: Xhighest � Xlowest � 22 � 1 � 21

The variance is: 

We start by calculating the mean, which is 10.18. We
then calculate the deviation of each score from the mean
and the square of that deviation.

X X � M (X � M)2

10 �0.182 0.033

8 �2.182 4.761

22 11.818 139.665

5 �5.182 26.853

6 �4.182 17.489

1 �9.182 84.309

19 8.818 77.757

8 �2.182 4.761

13 2.818 7.941

12 1.818 3.305

8 �2.182 4.761

SD
X M

N
2

2

�
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M
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The standard deviation is: or

b. The range is: Xhighest � Xlowest � 126.3 � 119.8 � 6.5

The variance is: 

We start by calculating the mean, which is 122.75. We
then calculate the deviation of each score from the mean
and the square of that deviation.

The standard deviation is: or

c. The range is: Xhighest � Xlowest � 0.866 � 0.100 � 0.766

The variance is: 

We start by calculating the mean, which is 0.429. We
then calculate the deviation of each score from the mean
and the square of that deviation.

The standard deviation is: or
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N
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2

0 079 0.28

SD SD� 2
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X X-M (X-M)2

0.100 �0.329 0.108

0.866 0.437 0.191

0.781 0.352 0.124

0.555 0.126 0.016

0.222 �0.207 0.043

0.245 �0.184 0.034

0.234 �0.195 0.038
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X X � M (X � M )2

122.500 �0.250 0.063

123.800 1.050 1.102

121.200 �1.550 2.402

125.800 3.050 9.302

120.200 �2.550 6.502

123.800 1.050 1.102

120.500 �2.250 5.063

119.800 �2.950 8.703

126.300 3.550 12.603

123.600 0.850 0.722
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X M
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33 785 5.81

SD SD� 2
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X M

N
2

2 371 61

11
�

�
� �

R( ) .
33.785 4-8 a. range � Xhighest � Xlowest � 1460 � 450 � 1010

b. We do not know whether scores cluster at some point in
the distribution—for example, near one end of the
distribution—or whether the scores are more evenly spread
out.

c. The formula for variance is .

The first step is to calculate the mean, which is 927.50. We
then create three columns: one for the scores, one for the
deviations of the scores from the mean, and one for the
squares of the deviations.

We can now calculate variance: �

(228,006.25 � 66,306.25 � 41,006.25 � 283,556.25)/4 
� 618,875/4 � 154,718.75.

d. Standard deviation is calculated just like we calculated
variance, but we then take the square root.

e. If the researcher was interested only in these four students,
these scores would represent the entire population of
interest, and the variance and standard deviation would be
parameters. Therefore, the symbols would be r2 and r,
respectively.

f. If the researcher hoped to generalize from these four
students to all students at the university, these scores would
represent a sample, and the variance and standard deviation
would be statistics. Therefore, the symbols would be SD2, s2,
or MS for variance and SD or s for standard deviation.

C H A P T E R  5
5-1 The risks of sampling are that we might not have a

representative sample, and sometimes this is difficult to know.
In this case, we might draw conclusions about the population
that are inaccurate.

5-2 The numbers in the fourth row, reading across, are 59808
08391 45427 26842 83609 49700 46058. Each person is
assigned a number from 01 to 80. We then read the numbers
from the table as two-digit numbers: 59, 80, 80, 83, 91, 45, 42,
72, 68, and so on. We ignore repeat numbers (e.g., 80) and
numbers that exceed our sample of 80. So, the six people
chosen would have the assigned numbers: 59, 80, 45, 42, 72,
and 68.

5-3 Reading down from the first column, then the second, and so
on, noting only the appearance of 0’s and 1’s, we see the
numbers 0, 0, 0, 0, 1, and 0 (ending in the 6th column). Using
these numbers, we could assign the first through the 4th and
the 6th people to the group designated as 0, and the 5th
person to the group designated as 1. If we want an equal
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number of people in each of the two groups, we would assign
the first three people to the 0 group and the last three to the 1
group, because we pulled three 0’s first.

5-4 a. The likely population is all patients who will undergo
surgery; the researcher would not be able to access this
population, and therefore random selection could not be
used. Random assignment, however, could be used. The
psychologist could randomly assign half of the patients to
counseling and half to a control group.

b. The population is all children in this school system; the
psychologist could identify all of these children and thus
could use random selection. The psychologist could also use
random assignment. She could randomly assign half the
children to the interactive CD-ROM textbook and half to
the printed textbook.

c. The population is patients in therapy; because the whole
population could not be identified, random selection could
not be used. Moreover, random assignment could not be
used. It is not possible to assign people to either have or not
have a diagnosed personality disorder.

5-5 We regularly make personal assessments about how probable
we think an event is, but we base these evaluations on our
opinions about things rather than on systematic data collection.
Statisticians are interested in objective probabilities, based on
unbiased research.

5-6 a. probability � successes/trials � 5/100 � 0.05

b. 8/50 � 0.16

c. 130/1044 � 0.12

5-7 a. In the short run, we might see a wide range of numbers of
successes. It would not be surprising to have several in a
row or none in a row. In the short run, our observations
seem almost like chaos.

b. Given the assumptions listed for this problem, in the long
run, we’d expect 0.50, or 50%, to be women, although there
would likely be strings of men and of women along the
way.

5-8 When we reject the null hypothesis, we are saying we reject
the idea that there is no mean difference in the dependent
variable across the levels of our independent variable. Rejecting
the null hypothesis means we can support our research
hypothesis that there is a mean difference.

5-9 The null hypothesis assumes no mean difference would be
observed, so the mean difference in grades would be zero.

5-10 a. The null hypothesis is that a decrease in temperature does
not affect mean academic performance (or does not
decrease mean academic performance).

b. The research hypothesis is that a decrease in temperature
does affect mean academic performance (or decreases mean
academic performance).

c. The researchers would reject the null hypothesis.

d. The researchers would fail to reject the null hypothesis.

5-11 A Type I error occurs when we reject the null hypothesis, but
the null hypothesis is correct. A Type II error occurs when we
fail to reject the null hypothesis, but the null hypothesis is false.

5-12 In this scenario, a Type I error would be imprisoning a person
who is really innocent, and 7 convictions out of 280 innocent
people calculates to be 0.025, or 2.5%.

5-13 In this scenario, a Type II error would be failing to convict a
guilty person, and 11 acquittals for every 35 guilty people
calculates to be 0.314, or 31.4%.

5-14 a. If the virtual-reality glasses really don’t have any effect, this
is a Type I error, which occurs when the null hypothesis is
rejected but is really true.

b. If the virtual-reality glasses really do have an effect, this is a
Type II error, which occurs when the researchers fail to
reject the null hypothesis, but the null hypothesis is not
true.

C H A P T E R  6
6-1 Unimodal means there is one mode or high point to the curve.

Symmetric means the left and right sides of the curve have the
same shape and are mirror images of each other.

6-2 a.

b.
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6-3 The shape of the distribution becomes more normal as the size
of the sample increases (although the larger sample appears to
be somewhat negatively skewed).

6-4 In standardization, we convert individual scores to standardized
scores for which we know the percentiles.

6-5 The numeric value tells us how many standard deviations a
score is from the mean of the distribution. The sign tells us
whether the score is above or below the mean.

6-6 a.

b.

6-7 a. X � z(r) � l = 2(2.5) + 14 = 19

b. X � z(r) � l = �1.4(2.5) + 14 = 10.5

6-8 a. ; approximately 2% of

students have a CFC score of 2.3 or less.

b. ; this score is at

approximately the 98th percentile.

c. This student has a z score of 1.

d. X � z(r) � l = 1(0.61) + 3.51 = 4.12; this answer makes
sense because 4.12 is above the mean of 3.51, as a z score of
1 would indicate.

6-9 a. Nicole is in better health because her score is above the
mean for her measure, whereas Samantha’s score is below
the mean.

b. Samantha’s z score is 

Nicole’s z score is 

Nicole is in better health, being 1 standard deviation above
the mean, whereas Samantha is 2 standard deviations below
the mean.

c. We can conclude that approximately 98% of the population
is in better health than Samantha, who is 2 standard
devaitions below the mean. We can conclude that
approximately 16% of the population is in better health
than Nicole, who is 1 standard deviation above the mean.

6-10 The central limit theorem asserts that a distribution of sample
means approaches the shape of the normal curve as sample size
increases. It also asserts that the spread of the distribution of
sample means gets smaller as the sample size gets larger.

6-11 A distribution of means is composed of many means that are
calculated from all possible samples of a particular size from the
same population.

6-12

6-13 a. The scores range from 2.0 to 4.5, which gives us a range of
4.5 � 2.0 � 2.5.
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b. The means are 3.4 for the first row, 3.4 for the second row,
and 3.15 for the third row [e.g., for the first row, M � (3.5
� 3.5 � 3.0 � 4.0 � 2.0 � 4.0 � 2.0 � 4.0 � 3.5 �
4.5)/10 � 3.4]. These three means range from 3.15 to 3.40,
which gives us a range of 3.40 � 3.15 � 0.25.

c. The range is smaller for the means of samples of 10 scores
than for the individual scores because the more extreme
scores are balanced by lower scores when samples of 10 are
taken. Individual scores are not attenuated in that way.

d. The mean of the distribution of means will be the same as
the mean of the individual scores: lM � l � 3.32. The
standard error will be smaller than the standard deviation;
we must divide by the square root of the sample size of 10:

C H A P T E R  7
7-1 The mean, l, and standard deviation, r, of the population must

be known.

7-2 Raw scores are used to compute z scores, and z scores are used
to determine what percentage of scores fall below and above
that particular position on the distribution. A z score can also
be used to compute a raw score.

7-3 Because the curve is symmetric, the same percentage of scores
(41.47%) lies between the mean and a z score of �1.37 as
between the mean and a z score of 1.37.

7-4 Fifty percent of scores fall below the mean, and 12.93% fall
between the mean and a z score of 0.33.

50% � 12.93% � 62.93%

7-5 a. lM � l � 156.8

50% below the mean; 49.9% above the mean; 50 � 49.9 �
99.9th percentile

b. 100 � 99.9 � 0.1% of samples of this size scored higher
than the students at Baylor.

c. At the 99.9th percentile, these 36 students from Baylor are
truly outstanding. If these students are representative of their
majors, clearly these results reflect positively on Baylor’s
Psychology and Neuroscience Department.

7-6 For most parametric hypothesis tests, we assume that 

(1) the dependent variable is assessed on a scale measure—that is, equal
changes are reflected by equal distances on the measure; (2) the
participants are randomly selected, meaning everyone has the
same chance of being selected; and (3) the distribution of the
population of interest is approximately normal.

7-7 If a test statistic is more extreme than the critical value, then
the null hypothesis is rejected. If a test statistic is less extreme
than the critical value, then we fail to reject the null
hypothesis.

7-8 If the null hypothesis is true, he will reject it 8% of the time.

r
r

l )

r

M

M

M

N

z
M

� � �

�
�

�
�

14 6

36
2 433

164 6 156 8

2

.
.

( ( . . )

..
.

433
3 21�

r
r

M
N

� � �
0 69

10
0 22

.
.



APPENDIX D D-7

7-9 a. 0.15

b. 0.03

c. 0.055

7-10 a. (1) The dependent variable—diagnosis (correct versus
incorrect)—is nominal, not scale, so this assumption is not
met. Based only on this, we should not proceed with a
hypothesis test based on a z distribution. (2) The samples
include only outpatients seen over two specific months and
only those at one community mental health center. The
sample is not randomly selected, so we must be cautious
about generalizing from it. (3) The populations are not
normally distributed because the dependent variable is
nominal.

b. (1) The dependent variable, health score, is likely scale.
(2) The paticipants were randomly selected; all wild cats in
zoos in North America had an equal chance of being
selected for this study. (3) The data are not normally
distributed; we are told that a few animals had very high
scores, so the data are likely positively skewed. Moreover,
there are fewer than 30 participants in this study. It is
probably not a good idea to proceed with a hypothesis test
based on a z distribution.

7-11 A directional test indicates that either a mean increase or a
mean decrease in the dependent variable is hypothesized, but
not both. A nondirectional test does not indicate a direction of
mean difference for the research hypothesis, just that there is a
mean difference.

7-12 lM � l � 1090

7-13

7-14 Step 1: Population 1 is coffee drinkers who spend the day in
coffee shops/cybercafés. Population 2 is all coffee drinkers in
the United States. The comparison distribution will be a
distribution of means. The hypothesis test will be a z test
because we have only one sample and we know the population
mean and standard deviation. This study meets two of the three
assumptions and may meet the third. The dependent variable,
the number of cups coffee drinkers drank, is scale. In addition,
there are more than 30 participants in the sample, indicating
that the comparison distribution is normal. The data were not
randomly selected, however, so we must be cautious when
generalizing.

Step 2: The null hypothesis is that people who spend the day
working in the coffee shop/cybercafé drink the same amount
of coffee, on average, as those in the general U.S. population
(H0: l1 � l2).

The research hypothesis is that people who spend the day in
coffee shops/cybercafés drink a different amount of coffee, on
average, than those in the general U.S. population (H1: l1 � l2).

Step 3:

lM � l � 3.10

Step 4: Our cutoff z statistics are �1.96 and 1.96.
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Step 5:

Step 6: Because our z statistic does not exceed our cutoffs, we
fail to reject the null hypothesis. We did not find any evidence
that our sample was different from what was normally expected
according to the null hypothesis.

CHAPTER 8
8-1 Interval estimates provide a range of scores in which we have

some confidence the population statistic will fall, whereas point
estimates use just a single value to describe the population.

8-2 The interval estimate is 17% to 25% (21% � 4% � 17% and
21% � 4% � 25%), whereas the point estimate is 21%.

8-3 a. First, we draw a normal curve with the sample mean, 3.7, in
the center. Then we put the bounds of the 95% confidence
interval on either end, writing the appropriate percentages
under the segments of the curve: 2.5% beyond the cutoffs
on either end and 47.5% between the mean and each
cutoff. Now we look up the z statistics for these cutoffs; the
z statistic associated with 47.5%, the percentage between
the mean and the z statistic, is 1.96. Thus, the cutoffs are
�1.96 and 1.96. Next, we calculate standard error so that
we can convert these z statistics to raw means:

Mlower � �z(rM ) � Msample � �1.96(0.091) � 3.7 � 3.52

Mupper � z(rM ) � Msample � 1.96(0.091) � 3.7 � 3.88

Finally, we check to be sure our answer makes sense by
demonstrating that each end of the confidence interval is
the same distance from the mean: 3.52 � 3.7 � �0.18 and
3.88 � 3.7 � 0.18. The confidence interval is [3.52, 3.88].

b. If we were to conduct this study over and over, with the
same sample size, we would expect the population mean to
fall in that interval 95% of the time. Thus, it provides a
range of plausible values for the population mean. Because
the null-hypothesized population mean of 3.51 is not a
plausible value, we can conclude that those who attended
the discussion group have higher CFC scores than those
who did not. This conclusion matches that of the
hypothesis test, in which we rejected the null hypothesis.

c. The confidence interval is superior to the hypothesis test
because not only does it lead to the same conclusion but it
also gives us an interval estimate, rather than a point
estimate, of the population mean.

8-4 Statistical significance means that the observation met our
standard for special events, typically something that occurs less
than 5% of the time. Practical importance means that the
outcome really matters.

8-5 Effect size is a standardized value that indicates the size of a
difference with respect to a measure of spread but is not
affected by sample size.

8-6 prep is the probability of replicating a specific effect given a
particular population and sample size.
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8-7 Cohen’s 

8-8 Using the formula �NORMSDIST(NORMSINV
(1-.22)/(SQRT(2))) in Microsoft Excel, prep is 0.71.

8-9 a. We calculate Cohen’s d, the effect size appropriate for data
analyzed with a z test. We use standard deviation in the
denominator, rather than standard error, because effect sizes
are for distributions of scores rather than distributions of
means.

Cohen’s 

b. Cohen’s conventions indicate that 0.2 is a small effect and
0.5 is a medium effect. This effect size, therefore, would be
considered a small-to-medium effect.

c. If the career discussion group is easily implemented in
terms of time and money, the small-to-medium effect might
be worth the effort. For university students, a higher level of
Consideration of Future Consequences might translate into
a higher level of readiness for life after graduation, a premise
that we could study.

8-10 Three ways to increase power are to increase alpha, to conduct
a one-tailed test rather than a two-tailed test, and to increase
N. All three of these techniques serve to increase the chance of
rejecting the null hypothesis. (We could also increase the
difference between means, or decrease variability, but these are
more difficult.)

8-11 Step 1: We know the following about population 1: l � 3.51,
r � 0.61. We assume the following about population 2 based
on the information from our sample: N � 45, M � 3.7.We
need to calculate standard error based on the standard deviation
for population 1 and the size of our sample: 

Step 2: Because the sample mean is higher than the population
mean, we will conduct this one-tailed test by examining only
the high end of the distribution. We need to find the cutoff
that marks where 5% of the data fall in the tail. We know that
the z cutoff for a one-tailed test is 1.64. Using that z statistic,
we can calculate a raw score.

M � z(rM) � lM � 1.64(0.091) � 3.51 � 3.659

This mean of 3.659 marks the point beyond which 5% of all
means based on samples of 45 observations will fall.

Step 3: For the second distribution, centered around 3.7, we
need to calculate how often means of 3.659 (our cutoff) and
greater occur. We do this by calculating the z statistic for the
raw mean of 3.659 with respect to the sample mean of 3.7.

We now look up this z statistic on the table and find that
32.64% falls toward the tail and 17.36% falls between this z
statistic and the mean. We calculate power as the proportion of
observations between this z statistic and the tail of interest,
which is at the high end. So we would add 17.36% and 50% to
get statistical power of 67.36%.
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0 33 8-12 a. Our statistical power calculation means that, if the second

population really does exist, we have a 67.36% chance of
observing a sample mean, based on 45 observations, that
will allow us to reject the null hypothesis. We fall somewhat
short of the desired 80% statistical power.

b. We can increase statistical power by increasing the sample
size, extending or enhancing our career discussion group
such that we create a bigger effect, or by changing alpha.

C H A P T E R  9
9-1 The t statistic indicates the distance of a sample mean from a

population mean in terms of the estimated standard error.

9-2 First we need to calculate the mean:

� (6 � 3 � 7 � 6 � 4 � 5)/6 � 31/6 � 5.167

We then calculate the deviation of each score from the mean
and the square of that deviation.

The standard deviation is: 

When estimating the population variability, we calculate s:

9-3

9-4 a. We will use a distribution of means, specifically a t
distribution. It is a distribution of means because we have a
sample consisting of more than one individual. It is a t
distribution because we are comparing one sample to a
population, but we know only the population mean, not its
standard deviation.

b. The appropriate mean: lM � l � 25

The calculations for the appropriate standard deviation (in
this case, standard error, sM):

X X � M (X � M)2

20 �1.6 2.56

19 �2.6 6.76

27 5.4 29.16

24 2.4 5.76
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Numerator: R(X � M)2 � (2.56 � 6.76 � 29.16 � 5.76
� 12.96) � 57.2

c.

9-5 Degrees of freedom is the number of scores that are free to vary,
or take on any value, when estimating a population parameter
from a sample.

9-6 A single-sample t test has more uses than a z test because we
only need to know the population mean (not the population
standard deviation).

9-7 a. df � N � 1 � 35 � 1 � 34

b. df � N � 1 � 14 � 1 � 13

9-8 a. �2.201

b. either �2.584 or �2.584, depending on the tail of interest

9-9 Step 1: Population 1 is the sample of six students. Population 2
is all university students.

The distribution will be a distribution of means, and we
will use a single-sample t test. We meet the assumption that the
dependent variable is scale. We do not know if the sample was
randomly selected, and we do not know if the population
variable is normally distributed. Some caution should be
exercised when drawing conclusions from these data.

Step 2: The null hypothesis is H0: l1 � l2; that is, students
we’re working with miss the same number of classes, on
average, as the population.

The research hypothesis is H1: l1 � l2; that is, students we’re
working with miss a different number of classes, on average,
from the population.

Step 3: lM � l � 3.7

� (6 � 3 � 7 � 6 � 4 � 5)/6 � 31/6 � 5.167

Step 4: df � N � 1 � 6 � 1 � 5
For a two-tailed test with a p level of 0.05 and 5 degrees of

freedom, the cutoffs are �2.571.

Step 5:

Step 6: Because our calculated t value falls short of the critical
values, we fail to reject the null hypothesis.

C H A P T E R  1 0
10-1 For a paired-samples t test, we calculate a difference score for

every individual. We then compare the average difference
observed to the average difference we would expect based on
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the null hypothesis. If there is no difference, then all difference
scores should average to 0.

10-2 An individual difference score is a calculation of change or
difference for each participant. For example, we might subtract
weight before the holiday break from weight after the break to
evaluate how many pounds an individual lost or gained.

10-3 We want to subtract the before-lunch energy level from the
after-lunch energy level to get values that reflect loss of energy
as a negative value and an increase of energy with food as a
positive value. The mean of these differences is �1.4.

10-4 a. Step 1: Population 1 is students for whom we’re measuring
energy levels before lunch. Population 2 is students for
whom we’re measuring energy levels after lunch.

The comparison distribution is a distribution of mean
difference scores. We use the paired-samples t test because
each participant contributes a score to each of the two
samples we are comparing.

We meet the assumption that the dependent variable is
a scale measurement. However, we do not know if our
participants were randomly selected or if the population is
normally distributed, and our sample is less than 30.

Step 2: The null hypothesis is that there is no difference in
mean energy levels before and after lunch—H0: l1 � l2.

The research hypothesis is that there is a mean difference in
energy levels—H1: l1 � l2.

Step 3:

Mdifference � �1.4

lM � 0, sM � 0.928

Step 4: The degrees of freedom are 5 � 1 � 4, and the
cutoffs, based on a two-tailed test and a p level of 0.05, are
�2.776.

Step 5: t �
� �

��
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DIFFERENCE DIFFERENCE � SQUARED
SCORES MEAN DIFFERENCE DEVIATION

�3 �1.6 2.56

�3 �1.6 2.56

�2 3.4 11.56

�1 0.4 0.16

�2 �0.6 0.36

BEFORE AFTER 
LUNCH LUNCH AFTER � BEFORE

6 3 3 � 6 � �3

5 2 2 � 5 � �3

4 6 6 � 4 � �2

5 4 4 � 5 � �1

7 5 5 � 7 � �2
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Step 6: Because the test statistic, �1.51, failed to exceed the
critical value of �2.776, we fail to reject the null
hypothesis.

10-5 The null hypothesis for the paired-samples t test is that the
mean difference score is 0—that is, lM � 0. Therefore, if the
confidence interval around the mean difference does not
include 0, we know that the sample mean is unlikely to have
come from a distribution with a mean of 0 and we can reject
the null hypothesis.

10-6 We calculate Cohen’s d by subtracting 0 (the population mean
based on the null hypothesis) from the sample mean and
dividing by the standard deviation of the difference scores.

10-7 a. We first find the t values associated with a two-tailed
hypothesis test and alpha of 0.05. These are �2.776. We
then calculate sM by dividing s by the square root of the
sample size, which results in sM � 0.548.

Mlower � �t(sM ) � Msample � �2.776(0.548) � 1.0 
� �0.52

Mupper � t(sM ) � Msample � 2.776(0.548) � 1.0 � 2.52

Our confidence interval can be written as [�0.52, 2.52].
Because this confidence interval includes 0, we would fail to
reject the null hypothesis. Zero is one of the likely mean
differences we would get when repeatedly sampling from a
population with a mean difference score of 1.

b. We calculate Cohen’s d as:

This is a large effect size.

10-8 a. Mlower � �t(sM ) � Msample � �2.776(0.928) � (�1.4) 
� �3.98

Mupper � t(sM) � Msample � 2.776(0.928) � (�1.4) � 1.18

Notice that the confidence interval spans 0, the null-
hypothesized difference between mean energy levels before
and after lunch. Because the null value is within the
confidence interval, we fail to reject the null hypothesis.

c.

This is a medium-to-large effect size according to Cohen’s
guidelines.

CHAPTER 11
11-1 When the data we are comparing were collected using the

same participants in both conditions, a paired-samples t test is
used; each participant contributes two values to the analysis.
When we are comparing two independent groups and no
participant is in more than one condition, we use an
independent-samples t test.

11-2 Pooled variance is a weighted combination of the variability in
both groups in an independent-samples t test.

11-3 a. Group 1 is treated as our X variable; its mean is 3.0.

d
M

s
�

�
�

� �
��

( ) ( . )

.
.

l 1 4 0

2 074
0 68

d
M

s
�

�
�

�
�

( ) ( )

.
.
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Group 2 is treated as our Y variable; its mean is 4.6.

b. dfX = N � 1 = 6 � 1 = 5

dfY = N � 1 = 5 � 1 = 4

dftotal = dfX + dfY = 5 + 4 = 9

c. The variance version of standard error is calculated for each
sample as:

d. The variance of the distribution of differences between
means is:

This can be converted to standard deviation units by taking
the square root:

e.

11-4 a. The null hypothesis asserts that there are no average
between-group differences; employees with low trust in
their leader show the same mean level of agreement with
decisions as those with high trust in their leader.
Symbolically, this would be written H0: l1 = l2.
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The research hypothesis asserts that mean level of
agreement is different between the two groups—
H1: l1 � l2.

b. Our critical values, based on a two-tailed test, a p level of
0.05, and dftotal of 9, are �2.262 and 2.262.

The t value we calculated, �1.519, does not exceed the
cutoff of �2.262, so we fail to reject the null hypothesis.

c. Based on these results, we did not find evidence that mean
level of agreement with a decision is different across the
two levels of trust, t(9) = �1.519, p > 0.05.

d. Despite having similar means for the two groups, we failed
to reject the null hypothesis, whereas the original
researchers rejected the null hypothesis. Our failure to reject
the null hypothesis is likely due to the low statistical power
from the small samples we used.

11-5 We calculate confidence intervals to determine a range of
plausible values for the population parameter based on our
data.

11-6 Effect size tells us how large or small the difference we
observed is, regardless of sample size. Even when a result is
statistically significant, it might not be important. Effect size
helps us evaluate practical significance.

11-7 a. The upper and lower bounds of the confidence interval are
calculated as:

(MX � MY)lower = �t(sdifference) + (MX � MY)sample

(MX � MY)lower = �2.262(1.053) + (–1.6) = �3.98

(MX � MY)upper = t(sdifference) + (MX � MY)sample

(MX � MY)upper = 2.262(1.053) + (–1.6) = 0.78

The confidence interval is [–3.98, 0.78].

b. To calculate Cohen’s d, we need to calculate the pooled
standard deviation for our data:

11-8 The confidence interval tells us a range of differences between
means in which we could expect the population mean
difference to fall 95% of the time, based on samples of this size.
Whereas the hypothesis test evaluates the point estimate of the
difference between means—(3 � 4.6), or �1.6, in this case—
the confidence interval gives us a range, or interval estimate, of
[–3.98, 0.78].

11-9 The effect size we calculated, Cohen’s d of �0.92, is a large
effect according to Cohen’s guidelines. Beyond the hypothesis
test and confidence interval, which both lead us to fail to reject
the null hypothesis, the size of the effect indicates that we
might be on to a real effect here. We might want to increase
statistical power by collecting more data in an effort to better
test this hypothesis.

CHAPTER 12
12-1 The F statistic is a ratio of between-groups variance and

within-groups variance.
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12-2 The two types of research design are within-groups design and
between-groups design.

12-3 a.

b.

c.

12-4 a. We would use an F distribution because there are more
than two groups.

b. We would determine the variance among the three sample
means—the means for those in the control group, for those
in the two-hour communication ban, and for those in the
four-hour communication ban.

c. We would determine the variance within each of the three
samples, and we would take a weighted average of the three
variances.

12-5 If the F statistic is beyond the cutoff, then we can reject the
null hypothesis—meaning that there is a significant mean
difference (or differences) somewhere in our data, but we do
not know where the difference lies.

12-6 When calculating SSbetween, we subtract the grand mean (GM)
from the mean of each group (M). We do this for every score.

12-7 a. dfbetween = Ngroups � 1 = 3 � 1 = 2

b. dfwithin = df1 + df2 + . . . + dflast = (4 � 1) + (4 � 1) + 
(3 � 1) = 3 + 3 + 2 = 8

c. dftotal = dfbetween + dfwithin = 2 + 8 = 10

12-8

12-9 a. Total sum of squares is calculated here as SStotal = 
R(X � GM)2:

b. Within-groups sum of squares is calculated here as SSwithin =
R(X � M)2:

SAMPLE X (X � GM) (X � GM)2

Group 1 37 �1.727 2.983

M1 = 29.5 30 �8.727 76.161

22 �16.727 279.793

29 �9.727 94.615

Group 2 49 10.273 105.535

M2 = 45.25 52 13.273 176.173

41 2.273 5.167

39 0.273 0.075

Group 3 36 �2.727 7.437

M3 = 42.333 49 10.273 105.535

42 3.273 10.713

GM = 38.73 SStotal = 864.187
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c. Between-groups sum of squares is calculated here as SSbetween

= R(M � GM)2:

12-10

12-11 a. According to the null hypothesis, there are no mean
differences in efficacy among these three treatment
conditions; they would all come from one underlying
distribution. The research hypothesis states that there are
mean differences in efficacy across some or all of these
treatment conditions.

SOURCE SS df MS F

Between 549.761 2 274.881 6.99
Within 314.419 8 39.302

Total 864.187 10
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between

within
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MS
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SS

df
between
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2
274 8
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SAMPLE X (M � GM) (M � GM)2

Group 1 37 �9.227 85.138

M1 = 29.5 30 �9.227 85.138

22 �9.227 85.138

29 �9.227 85.138

Group 2 49 6.523 42.550

M2 = 45.25 52 6.523 42.550

41 6.523 42.550

39 6.523 42.550

Group 3 36 3.606 13.003

M3 = 42.333 49 3.606 13.003

42 3.606 13.003

GM = 38.73 SSbetween = 549.761

SAMPLE X (X � M) (X � M)2

Group 1 37 7.500 56.250

M1 = 29.5 30 0.500 0.250

22 �7.500 56.250

29 �0.500 0.250

Group 2 49 3.750 14.063

M2 = 45.25 52 6.750 45.563

41 �4.250 18.063

39 �6.250 39.063

Group 3 36 �6.333 40.107

M3 = 42.333 49 6.667 44.449

42 �0.333 0.111

GM = 38.73 SSwithin = 314.419

b. There are three assumptions: that the participants were
selected randomly, that the underlying populations are
normally distributed, and that the underlying populations
have similar variances. Although we can’t say much about
the first two assumptions, we can assess the last one using
our sample data.

Because these variances are all close together, with the
biggest being no more than twice as large as the smallest,
we can conclude that we met the third assumption of
homoscedastic samples.

c. The critical value for F with a p value of 0.05, 2 between-
groups degrees of freedom, and 8 within-groups degrees of
freedom, is 4.46. Our F statistic exceeds this cutoff, so we
can reject the null hypothesis. There are mean differences
between these three groups, but we do not know where.

12-12 If we are able to reject the null hypothesis when conducting an
ANOVA, then we must also conduct a post-hoc test, such as a
Tukey HSD test, to determine which pairs of means are
significantly different from one another.

12-13 R2 tells us the proportion of variance in the dependent variable
that is accounted for by the independent variable.

12-14 a.

b. Children’s grade level accounted for 64% of the variability
in reaction time. This is a large effect.

12-15 The number of levels of the independent variable is 3 and
dfwithin is 32. At a p level of 0.05, the critical values of the q
statistic are �3.49 and 3.49.

12-16 The adjusted p level is the p level for the experiment divided
by the number of comparisons being made, which in this case

is .

12-17 Because we have unequal sample sizes, we must calculate a
weighted sample size.

, then equals 

Now we can compare our three treatment groups.

Psychodynamic therapy (M = 29.50) versus interpersonal
therapy (M = 45.25):
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SAMPLE 1 2 3

Squared deviations 56.25 14.063 40.107

of scores from 0.25 45.563 44.449

sample means: 56.25 18.063 0.111
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Sum of squares: 113 116.752 84.667
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Variance: 37.67 38.92 42.33
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Psychodynamic therapy (M = 29.5) versus cognitive-
behavioral therapy (M = 42.333):

Interpersonal therapy (M = 45.25) versus cognitive-
behavioral therapy (M = 42.333):

We look up the critical value for this post-hoc test on
the q table. We look in the row for 8 within-groups degrees
of freedom, and then in the column for 3 treatment groups.
At a p level of 0.05, the value in the q table is 4.04, so the
cutoffs are �4.04 and 4.04.

We have just one significant difference between
psychodynamic therapy and interpersonal therapy: Tukey
HSD = �4.77. Specifically, clients responded at statistically
significantly higher rates to interpersonal therapy than to
psychodynamic therapy, with an average difference of 15.75
points on this scale.

12-18 Effect size is calculated as .

According to Cohen’s conventions for R2, this is a very large
effect.

C H A P T E R  1 3

13-1 For the one-way within-groups ANOVA, we calculate two
types of variability that occur within groups: subjects variability
and within-groups variability. Subjects variability assesses how
much each person’s mean differs from the others’, assessed by
comparing each person’s mean score to the grand mean. We
then compute within-groups variability as the
remainder once between-groups and subjects
variability are subtracted from the total sum of
squares.

13-2 a. dfbetween = Ngroups � 1 = 3 � 1 = 2

b. dfsubjects = n � 1 = 3 � 1 = 2

c. dfwithin = (dfbetween)(dfsubjects) = (2)(2) = 4

d. dftotal = dfbetween + dfsubjects + dfwithin = 2 + 2 + 4
= 8; or we can calculate it as dftotal = Ntotal � 1
= 9 � 1 = 8

R
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29 50 42 333

3 304
3 88
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HSD �
�

��
29 50 45 25

3 304
4 77
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.
. 13-3 a. SStotal = R(X � GM)2 = 24.886

b. SSbetween = R(M � GM)2 = 11.556

c. SSsubject = R(Mparticipant � GM)2 = 4.221

RATING GROUP
GROUP (X) MEAN (M � GM) (M � GM)2

1 7 8 1.111 1.234

1 9 8 1.111 1.234

1 8 8 1.111 1.234

2 5 7.333 0.444 0.197

2 8 7.333 0.444 0.197

2 9 7.333 0.444 0.197

3 6 5.333 �1.556 2.421

3 4 5.333 �1.556 2.421

3 6 5.333 �1.556 2.421

GM = 6.889 R(M � GM)2 = 11.556

GROUP RATING (X) (X � GM) (X � GM)2

1 7 0.111 0.012

1 9 2.111 4.456

1 8 1.111 1.234

2 5 �1.889 3.568

2 8 1.111 1.234

2 9 2.111 4.456

3 6 �0.889 0.790

3 4 �2.889 8.346

3 6 �0.889 0.790

GM = 6.889 R(X � GM)2= 24.886

RATING PARTICIPANT (MPARTICIPANT (MPARTICIPANT
PARTICIPANT GROUP (X) MEAN � GM) � GM)2

1 1 7 6 �0.889 0.790

2 1 9 7 0.111 0.012

3 1 8 7.667 0.778 0.605

1 2 5 6 �0.889 0.790

2 2 8 7 0.111 0.012

3 2 9 7.667 0.778 0.605

1 3 6 6 �0.889 0.790

2 3 4 7 0.111 0.012

3 3 6 7.667 0.778 0.605

GM = 6.889 R(Mparticipant � GM)2 = 4.221

d. SSwithin � SStotal � SSbetween � SSsubjects = 24.886 �
11.556 � 4.221 = 9.109

13-4
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13-5 a. Null hypothesis: People rate the driving experience of these
three cars the same, on average—H0: l1 � l2 � l3.
Research hypothesis: People do not rate the driving
experience of these three cars the same, on average.

b. Order effects are addressed by counterbalancing. We could
create a list of random orders of the three cars to be driven.
Then, as a new customer arrives, we would assign  him or
her the next random order on the list. With a large enough
sample size (much larger than the three participants we used
in this example), we could feel confident that this
assumption would be met with this approach.

c. The critical value for the F statistic for a p level of 0.05 and
2 and 4 degrees of freedom is 6.95. The between-groups F
statistic of 2.538 does not exceed this critical value. We
cannot reject the null hypothesis, so we cannot conclude
that there are differences among mean ratings of cars.

13-6 In both cases, the numerator in the ratio is SSbetween, but the
denominators differ in the two cases. For the between-groups
ANOVA, the denominator of the R2 calculation is SStotal. For
the within-groups ANOVA, the denominator of the R2

calculation is SStotal � SSsubjects, which takes into account the
fact that we are subtracting out variability due to subjects from
the measure of error.

13-7 There are no differences in the way that the Tukey HSD is
calculated. The formula for the calculation of the Tukey HSD
is exactly the same for both the between-groups ANOVA and
the within-groups ANOVA.

13-8 a. First, we calculate sM:

Next, we calculate HSD for each pair of means.

For time 1 versus time 2:

For time 1 versus time 3:

For time 2 versus time 3:
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.
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SOURCE SS df MS F

Between-groups 11.556 2 5.778 2.54

Subjects 4.221 2 2.111 0.93

Within-groups 9.109 4 2.277

Total 24.886 8
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b. We have an independent variable with three levels and
dfwithin � 10, so the q cutoff value at a p level of 0.05 is 3.88.
Because we are performing a two-tailed test, the cutoff
values are 3.88 and �3.88.

c. We reject the null hypothesis for all three of the mean
comparisons because all of the HSD calculations exceed the
critical value of �3.88. This tells us that all three of the
group means are statistically significantly different from one
another.

13-9

13-10 a. . This is

a large effect size.

b. Because the F statistic did not exceed the critical value, we
failed to reject the null hypothesis. As a result, Tukey HSD
tests are not necessary.

CHAPTER 14

14-1 A factorial ANOVA is a statistical analysis used with one scale
dependent variable and at least two nominal (or sometimes
ordinal) independent variables (also called factors).

14-2 A statistical interaction occurs in a factorial design when the
two independent variables have an effect in combination that
we do not see when we examine each independent variable on
its own.

14-3 a. There are two factors: diet programs and exercise programs.

b. There are three factors: diet programs, exercise programs,
and metabolism type.

c. There is one factor: gift certificate value.

d. There are two factors: gift certificate value and store quality.

14-4 a. The participants are the stocks themselves.

b. One independent variable is the type of ticker-code name,
with two levels: pronounceable and unpronounceable. The
second independent variable is time lapsed since the stock
was initially offered, with four levels: one day, one week, six
months, and one year.

c. The dependent variable is the stocks’ selling price.

d. This would be a two-way mixed-design ANOVA.

e. This would be a 2 � 4 mixed-design ANOVA.

f. This study would have eight cells: 2 � 4 � 8. We
multiplied the numbers of levels of each of the two
independent variables.

14-5 A quantitative interaction is an interaction in which one
independent variable exhibits a strengthening or 
weakening of its effect at one or more levels of the other
independent variable, but the direction of the initial effect does
not change. More specifically, the effect of one independent
variable is modified in the presence of another independent
variable. A qualitative interaction is a particular type of
quantitative interaction of two (or more) independent variables
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in which one independent variable reverses its effect depending
on the level of the other independent variable. In a qualitative
interaction, the effect of one variable doesn’t just become
stronger or weaker; it actually reverses direction in the presence
of another variable.

14-6 An interaction indicates that the effect of one independent
variable depends on the level of the other independent
variable(s). The main effect alone cannot be interpreted because
the effect of that one variable depends on another.

14-7 a. There are four cells.

b.

c. Because the sample size is the same for each cell, we can
compute marginal means as simply the average between cell
means.

d.

14-8 a. i. Independent variables: student (Caroline, Mira); class
(philosophy, psychology)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Cell means

IV2

Level A Level B

IV 1, level A

IV 1, level B

IV 2 MARGINAL 
LEVEL A LEVEL B MEANS

IV 1 LEVEL A 1.75 2.75 2.25

LEVEL B 4 2.5 3.25

Marginal Means 2.875 2.625

IV 2
LEVEL A LEVEL B

IV 1 LEVEL A M � (2 � 1 � 1 � 3)/4 M � (2 � 3 � 3 � 3)/4
� 1.75 � 2.75

LEVEL B M � (5 � 4 � 3 � 4)/4 M � (3 � 2 � 2 � 3)/4
� 4 � 2.5

IV 2
LEVEL A LEVEL B

IV 1 LEVEL A

LEVEL B

ii. Dependent variable: performance in class

iii.

iv. This describes a qualitative interaction because the
direction of the effect reverses. Caroline does worse in
philosophy class than in psychology class, whereas Mira
does better.

b. i. Independent variables: game location (home, away); team
(own conference, other conference)

ii. Dependent variable: number of runs

iii.

iv. This describes a qualitative interaction because the
direction of the effect reverses. The team does worse at
home against teams in the other conference but does
well against those teams while away; the team does
better at home against teams in its own conference, but
performs poorly against teams in its own conference
when away.

c. i. Independent variables: amount of caffeine (caffeine,
none); exercise (worked out, did not work out)

ii. Dependent variable: amount of sleep

iii.

iv. This describes a quantitative interaction because the
effect of working out is particularly strong in the
presence of caffeine versus no caffeine (and the presence
of caffeine is particularly strong in the presence of
working out versus not). The direction of the effect of
either independent variable, however, does not change
depending on the level of the other independent
variable.

14-9 Because we have the possibility of two main effects and an
interaction, each step is broken down into three parts; we have
three sets of hypotheses, three comparison distributions, three
critical F values, three F statistics, and three conclusions.

14-10 Variability is associated with the two main effects, the
interaction, and the within-groups component.

14-11 dfIV 1 � dfrows � Nrows � 1 � 2 � 1 � 1

dfIV 2 � dfcolumns � Ncolumns � 1 � 2 � 1 � 1

dfinteraction � (dfrows)(dfcolumns) � (1)(1) � 1

dfwithin � df1A,2A � df1A,2B � df1B,2A � df1B,2B
� 3 � 3 � 3 � 3 � 12

dftotal � Ntotal �1 � 16 � 1 � 15
We can also check that this calculation is correct by adding

all of the other degrees of freedom together: 1 � 1 � 1 �
12 � 15.

CAFFEINE NO CAFFEINE

WORKING OUT

NOT WORKING OUT

HOME AWAY

OWN CONFERENCE

OTHER CONFERENCE

CAROLINE MIRA

PHILOSOPHY CLASS

PSYCHOLOGY CLASS
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14-12 The critical value for the main effect of the first independent
variable, based on a between-groups degrees of freedom of 1
and a within-groups degrees of freedom of 12, is 4.75. The
critical value for the main effect of the second independent
variable, based on 1 and 12 degrees of freedom, is 4.75. The
critical value for the interaction, based on 1 and 12 degrees of
freedom, is 4.75.

14-13 a. Population 1 is students who received an initial grade of C
who received e-mail messages aimed at bolstering self-
esteem. Population 2 is students who received an initial
grade of C who received e-mail messages aimed at
bolstering their sense of control over their grades.
Population 3 is students who received an initial grade of C
who received e-mails just review questions. Population 4 is
students who received an initial grade of D or F who
received e-mail messages aimed at bolstering self-esteem.
Population 5 is students who received an initial grade of D
or F who received e-mail messages aimed at bolstering their
sense of control over their grades. Population 6 is students
who received an initial grade of D or F who received e-
mails with just review questions.

b. Step 2: Main effect of first independent variable—initial
grade:

Null hypothesis: The mean final exam grade of students
with an initial grade of C is the same as that of students
with an initial grade of D or F. H1: lC � lD/F.

Research hypothesis: The mean final exam grade of students
with an initial grade of C is not the same as that of students
with an initial grade of D or F. H0: lC � lD/F.

Main effect of second independent variable—type of e-
mail:

Null hypothesis: On average, the mean exam grades among
those receiving different types of e-mails are the same—
H0: lSE � lCG � lTR. Research hypothesis: On average,
the mean exam grades among those receiving different
types of e-mails are not the same.

Interaction: Initial grade � type of e-mail:

Null hypothesis: The effect of type of e-mail is not
dependent on the levels of initial grade. Research
hypothesis: The effect of type of e-mail depends on the
levels of initial grade.

c. Step 3: dfbetween/grade � Ngroups � 1 � 2 � 1 � 1

dfbetween/e-mail � Ngroups � 1 � 3 � 1 � 2

dfinteraction � (dfbetween/grade)(dfbetween/e-mail) � (1)(2) � 2

dfC,SE � N � 1 � 14 � 1 � 13

dfC,C � N � 1 � 14 � 1 � 13

dfC,TR � N � 1 � 14 � 1 � 13

dfD/F,SE � N � 1 � 14 � 1 � 13

dfD/F,C � N � 1 � 14 � 1 � 13

dfD/F,TR � N � 1 � 14 � 1 � 13

dfwithin � dfC,SE � dfC,C � dfC,TR � dfD/F,SE � dfD/F,C �
dfD/F,TR � 13 � 13 � 13 � 13 � 13 � 13 � 78

Main effect of initial grade: F distribution with 1 and 78
degrees of freedom

Main effect of type of e-mail: F distribution with 2 and 78
degrees of freedom

Main effect of interaction of initial grade and type of e-
mail: F distribution with 2 and 78 degrees of freedom

d. Step 4: Note that when the specific degrees of freedom is
not in the F table, you should choose the more
conservative—that is, larger—cutoff. In this case, go with
the cutoffs for a within-groups degrees of freedom of 75
rather than 80. The three cutoffs are: 

Main effect of initial grade: 3.97

Main effect of type of e-mail: 3.12

Interaction of initial grade and type of e-mail: 3.12

e. Step 6: There is a significant main effect of initial grade
because the F statistic, 20.84, is larger than the critical value
of 3.97. The marginal means, seen in the accompanying
table, tell us that students who earned a C on the initial
exam have higher scores on the final exam, on average, than
do students who earned a D or an F on the initial exam.
There is no statistically significant main effect of type of e-
mail, however. The F statistic of 1.69 is not larger than the
critical value of 3.12. Had this main effect been significant,
we would have conducted a post-hoc test to determine
where the differences were. There also is not a significant
interaction. The F statistic of 3.02 is not larger than the
critical value of 3.12. (Had we used a cutoff based on a p
level of 0.10, we would have rejected the null hypothesis for
the interaction. The cutoff for a p level of 0.10 is 2.77.) If
we had rejected the null hypothesis for the interaction, we
would have examined the cell means in tabular and graph
form.

SELF- TAKE CONTROL MARGINAL
ESTEEM RESPONSIBILITY GROUP MEANS

C 67.31 69.83 71.12 69.42

D/F 47.83 60.98 62.13 56.98

Marginal Means 57.57 65.41 66.63

C H A P T E R  1 5
15-1 (1) The correlation coefficient can be either positive or

negative. (2) The correlation coefficient always falls between 
�1.00 and 1.00. (3) It is the strength, also called the magnitude,
of the coefficient, not its sign, that indicates how large it is.

15-2 When two variables are correlated, there can be multiple
explanations for that association. The first variable can cause
the second variable; the second variable can cause the first
variable; or a third variable can cause both the first and second
variables. In fact, there may be more than one “third” variable
causing both the first and second variables.

15-3 a. According to Cohen, this is a large (strong) correlation.
Note that the sign (negative in this case) is not related to
the assessment of strength.

b. This is just above a medium correlation.

c. This is lower than the guideline for a small correlation,
0.10.
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15-4 Students will draw a variety of different scatterplots. The
important thing to note is the closeness of data points to an
imaginary line drawn through the data.

a. A scatterplot for a correlation coefficient of –0.60 might
look like this:

b. A scatterplot for a correlation coefficient of 0.35 might
look like this:
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c. A scatterplot for a correlation coefficient of 0.04 might
look like this:

15-5 a. It is possible that training while listening to music
(A) causes an increase in a country’s average finishing time
(B), perhaps because music decreases one’s focus on
running. It is also possible that high average finishing times
(B) cause an increase in the percentage of marathon runners
in a country who train while listening to music (A), perhaps
because slow runners tend to get bored and need music to
get through their runs. It also is possible that a third variable,
such as a country’s level of wealth (C), causes a higher
percentage of runners who train while listening to music
(because of the higher presence of technology in wealthy
countries) (A) and also causes higher (slower) finishing
times (perhaps because long-distance running is a less
popular sport in wealthy countries with access to so many
sport and entertainment options) (B). Without a true
experiment, we cannot know the direction of causality.

b. We are looking only at marathoners. The correlation
coefficient might be different from the one we would
calculate if we included all runners, no matter their usual
distance.

c. If there was one country with an extremely high percentage
of training while listening to music, but also really low (fast)
finishing times, this country’s data point might decrease the
positive correlation or even reverse it.

15-6 The Pearson correlation coefficient is a statistic that quantifies a
linear relation between two scale variables. Specifically, it
describes the direction and strength of the relation between the
variables.

15-7 The two issues are variability and sample size.
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15-8

15-9 a.

b.

c. r
X M Y M

SS SS
X Y

X Y

�
� �

� �
R[( )( )]

( )( )

.

.
.

16 782

20 458
0 882

( )( ) ( . )( . ) . .SS SSX Y � � �13 966 29 969 418 547 20 458

VARIABLE VARIABLE
A (X) (X � MX) (X � MX)2 B (Y) (Y � MY) (Y � MY)2

8 1.812 3.283 14 3.187 10.157

7 0.812 0.659 13 2.187 4.783

6 �0.188 0.035 10 �0.813 0.661

5 �1.188 1.411 9.5 �1.313 1.724

4 �2.188 4.787 8 �2.813 7.913

5.5 �0.688 0.473 9 �1.813 3.287

6 �0.188 0.035 12 1.187 1.409

8 1.812 3.283 11 0.187 0.035

R(X � MX)2 � 13.966 R(Y � MY)2 � 29.969

VARIABLE VARIABLE
A (X) (X � MX) B (Y ) (Y � MY) (X � MX)(Y � MY)

8 1.812 14 3.187 5.775

7 0.812 13 2.187 1.776

6 �0.188 10 �0.813 0.152

5 �1.188 9.5 �1.313 1.559

4 �2.188 8 �2.813 6.152

5.5 �0.688 9 �1.813 1.246

6 �0.188 12 1.187 �0.223

8 1.812 11 0.187 0.339

MX � MY � R[(X � MX)
6.118 10.813 (Y � MY)] � 16.782
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15-10 a. Population 1: Children like those we studied. Population 2:
Children for whom there is no relation between observed
and performed acts of aggression. The comparison
distribution is made up of correlations based on samples of
this size, 8 people, selected from the population.

We do not know if the data were randomly selected, the
first assumption, so we must be cautious when generalizing
our findings. We also do not know if the underlying
population distributions for witnessed aggression and
performed acts of aggression by children are normally
distributed. The sample size is too small to make any
conclusions about this assumption, so we should proceed
with caution. The third assumption, unique to correlations,
is that the variability of one variable is equal across the
levels of the other variable. Because we have such a small
data set, it is difficult to evaluate this. However, we can see
from the scatterplot that the data are somewhat consistently
variable.

b. Null hypothesis: There is no correlation between the
levels of witnessed and performed acts of aggression
among children—H0: q � 0. Research hypothesis: 
There is a correlation between the levels of witnessed 
and performed acts of aggression among children—H1: q
� 0.

c. The comparison distribution is a distribution of Pearson
correlations, r, with the following degrees of freedom: dfr �
N � 2 � 8 � 2 � 6.

d. The critical values for an r distribution with 6 degrees of
freedom for a two-tailed test with a p level of 0.05 are
�0.707 and 0.707.

e. The test statistic, r � 0.82, is larger in magnitude than the
critical value of 0.707. We can reject the null hypothesis and
conclude that a strong positive correlation exists between
the number of witnessed acts of aggression and the number
of acts of aggression performed by children.

15-11 Psychometricians calculate correlations when assessing the
reliability and validity of measures and tests.

15-12 Coefficient alpha is a measure of reliability. To calculate
coefficient alpha, we take, in essence, the average of all split-half
correlations. That is, the items on a test are split in half and the
correlation of those two halves is calculated. This process is
done repeatedly for all possible “halves” of the test, and then
the average of those correlations is obtained.

15-13 a. The test does not have sufficient reliability to be used as a
diagnostic tool. As stated in the chapter, when using tests to
diagnose or make statements about the ability of individuals,
a reliability of at least 0.90 is necessary.

b. We do not have enough information to determine whether
the test is valid. The coefficient alpha tells us only about the
reliability of the test.

c. To assess the validity of the test, we would need the
correlation between this measure and other measures of
reading ability or between this measure and students’ grades
in the nonremedial class (i.e., do students who perform very
poorly in the nonremedial reading class also perform poorly
on this measure?).
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15-14 The large change in the correlation between college GPA and
SAT scores means that a large part of the correlation between
the two may actually be due to the relation between high
school GPA and SAT scores. Once you account for that
relation, the correlation between college GPA and SAT scores
is greatly reduced.

15-15 a. The psychometrician could assess test–retest reliability by
administering the quiz to 100 heterosexual female readers
and then one week later readministering the test to the
same 100 female readers. If their scores at the two times are
highly correlated, the test would have high test–retest
reliability. She also could calculate a coefficient alpha using
computer software. The computer would essentially
calculate correlations for every possible two groups of five
items and then calculate the average of all of these split-half
correlations.

b. The psychometrician could assess validity by choosing
criteria that she believed assessed the underlying construct
of interest, a boyfriend’s devotion to his girlfriend. There
are many possible criteria. For example, she could
correlate the amount of money each participant’s
boyfriend spent on her last birthday with the number of
minutes the participant spent on the phone with her
boyfriend today or with the number of months the
relationship ends up lasting.

c. Of course, we assume that these other measures actually
assess the underlying construct of a boyfriend’s devotion,
which may or may not be true! For example, the amount of
money that the boyfriend spent on the participant’s last
birthday might be a measure of his income, not his
devotion.

C H A P T E R  1 6
16-1 Simple linear regression is a statistical tool that lets statisticians

predict the score on a scale dependent variable from the score
on a scale independent variable.

16-2 The regression line allows us to make predictions about one
variable based on what we know about another variable. It
gives us a visual representation of what we believe is the
underlying relation between the variables, based on the data we
have available to us.

16-3 a.

b. zŶ � (rXY)(zX) � (0.28)(1.5) � 0.42

c. Ŷ � zŶ(SDY) � MY � (0.42)(15) � 155 � 161.3 pounds

16-4 a. Ŷ � 12 � 0.67(X ) � 12 � 0.67(78) � 64.26

b. Ŷ � 12 � 0.67(�14) � 2.62

c. Ŷ � 12 � 0.67(52) � 46.84

16-5 a. The y intercept, 2.586, is the GPA we might expect if
someone played no minutes. The slope of 0.016 is the
increase in GPA that we would expect for each one-minute
increase in playing time. Because the correlation is positive,
it makes sense that the slope is also positive.

b. The standardized regression coefficient is equal to the
correlation coefficient for simple linear regression, 0.344.
We can also check that this is correct by computing b:

z
X M

SD
X

X

X

�
�

�
�

�
67 64

2
1 5.

There is some difference due to rounding decisions, but in
both cases, these numbers would be expressed as 0.34.

c. Strong correlations indicate strong linear relations between
variables. Because of this, when we have a strong
correlation, we have a more useful regression line, resulting
in more accurate predictions.

d. According to the hypothesis test for the correlation, this r
value, 0.34, fails to reach statistical significance. The critical
values for r with 11 degrees of freedom at a p level of 0.05
are �0.553 and 0.553. In this chapter, we learned that the
outcome of hypothesis testing is the same for simple linear
regression as it is for correlation, so we know we also do
not have a statistically significant regression.

16-6 The standard error of the estimate is a statistic that indicates
the typical distance between a regression line and the actual
data points. When we do not have enough information to
compute a regression equation, we often use the mean as our
“best guess.” The error of prediction when the mean is used is
typically greater than the standard error of the estimate.

16-7 Strong correlations mean highly accurate predictions with
regression. This translates into a large proportionate reduction
in error.

16-8 a.

(MY) (Y � MY)
X Y MEAN FOR Y ERROR SQUARED ERROR

5 6 5.333 0.667 0.445

6 5 5.333 �0.333 0.111

4 6 5.333 0.667 0.445

5 6 5.333 0.667 0.445

7 4 5.333 �1.333 1.777

8 5 5.333 �0.333 0.111

SStotal � Σ(Y � MY)2

� 3.334

b � � �( ) ( . )
.

.
b

SS

SS
X

Y

0 016
1279 448

2 899
3360.

X (X � MX) (X � MX)2 Y (Y � MY) (Y � MY)2

29.70 13.159 173.159 3.20 0.343 0.118

32.14 15.599 243.329 2.88 0.023 0.001

32.72 16.179 261.760 2.78 �0.077 0.006

21.76 5.219 27.238 3.18 0.323 0.104

18.56 2.019 4.076 3.46 0.603 0.364

16.23 �0.311 0.097 2.12 �0.737 0.543

11.80 �4.741 22.477 2.36 �0.497 0.247

6.88 �9.661 93.335 2.89 0.033 0.001

6.38 �10.161 103.246 2.24 �0.617 0.381

15.83 �0.711 0.506 3.35 0.493 0.243

2.50 �14.041 197.150 3.00 0.143 0.020

4.17 �12.371 153.042 2.18 �0.677 0.458

16.36 �0.181 0.033 3.50 0.643 0.413

Σ(X � MX)2 � Σ(Y � MY)2

1279.448 � 2.899
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c. We have reduced error from 3.334 to 1.322, which is a
reduction of 2.012. Now we calculate this reduction as a
proportion of the total error:

This can also be written as:

We have reduced 0.603, or 60.3%, of error using the
regression equation as an improvement over the use of the
mean as our predictor.

d. r2 � (�0.77)(�0.77) � 0.593, which closely matches our
calculation of r2 above, 0.603. These numbers are slightly
different due to rounding decisions.

16-9 Tell Coach Parcells that prediction suffers from the same
limitations as correlation. First, just because two variables are
associated doesn’t mean one causes the other. This is not a true
experiment, and if we didn’t randomly assign athletes to appear
on a Sports Illustrated cover or not, then we cannot determine if
a cover appearance causes sporting failure. Moreover, we have a
limited range; by definition, those lauded on the cover are the
best in sports. Would the association be different among those
with a wider range of athletic ability? Finally, and most
important, there is the very strong possibility of regression to
the mean. Those chosen for a cover appearance are at the very
top of their game. There is nowhere to go but down, so it is
not surprising that those who merit a cover appearance would
soon thereafter experience a decline. There’s likely no need to
avoid that cover, Coach.

16-10 Multiple regression is a statistical tool that predicts a dependent
variable by using two or more independent variables as
predictors. It is an improvement over simple linear regression,
which only allows one independent variable to inform
predictions.

16-11 Ŷ � 5.251 � 0.06(X1) � 1.105(X2)

16-12 a. Ŷ � 5.251 � 0.06(40) � 1.105(14) � 23.12

b. Ŷ � 5.251 � 0.06(101) � 1.105(39) � 54.41

c. Ŷ � 5.251 � 0.06(76) � 1.105(20) � 31.91

16-13 a. Ŷ � 2.695 � 0.069(X1) � 0.015(X2) � 0.072(X3)

b. Ŷ � 2.695 � 0.069(6) � 0.015(20) � 0.072(4) � 3.12

r
SS SS

SS
total error

total

2 3 334 1 322

3
�

�
�

�( ) ( . . )

.3334
0 603� .

2 012

3 334

.

.
�0.603

c. The negative sign in the slope (�0.072) tells us that those
with higher levels of admiration for Pamela Anderson tend
to have lower GPAs, and those with lower levels of
admiration for Pamela Anderson tend to have higher GPAs.

C H A P T E R  1 7
17-1 A nonparametric test is a statistical analysis that is not based

on a set of assumptions about the population, whereas
parametric tests are based on assumptions about the
population.

17-2 We use nonparametric tests when the data violate the
assumptions about the population that parametric tests
make. The three most common situations that call for
nonparametric tests are (1) having a nominal 
dependent variable, (2) having an ordinal dependent
variable, and (3) having a small sample size with 
possible skew.

17-3 a. The independent variable is city, a nominal variable. The
dependent variable is whether a woman is pretty or not so
pretty, an ordinal variable.

b. The independent variable is city, a nominal variable. The
dependent variable is beauty, assessed on a scale of 1–10.
This is a scale variable.

c. The independent variable is intelligence, likely a scale
variable. The dependent variable is beauty, assessed on a
scale of 1–10. This is a scale variable.

d. The independent variable is ranking on intelligence, an
ordinal variable. The dependent variable is ranking on
beauty, also an ordinal variable.

17-4 a. We’d choose a hypothesis test from category III. We’d use a
nonparametric test because the dependent variable is not
scale and would not meet the primary assumption of a
normally distributed dependent variable, even with a large
sample.

b. We’d choose a test from category II because the
independent variable is nominal and the dependent variable
is scale. (In fact, we’d use a one-way between-groups
ANOVA because there is only one independent variable
and it has more than two levels.)

c. We’d choose a hypothesis test from category I because we
have a scale independent variable and a scale dependent
variable. (If we were assessing the relation between these
variables, we’d use the Pearson correlation coefficient. If we
wondered whether intelligence predicted beauty, we’d use
simple linear regression.)

d. We’d choose a hypothesis from category III because both
the independent and dependent variables are ordinal. We
would not meet the assumption of having a normal
distribution of the dependent variable, even if we had a
large sample.

17-5 We use chi-square tests when all variables are nominal.

17-6 Observed frequencies indicate how often something happens in
a given category with the data we collected. Expected
frequencies indicate how often something happens in a given
category based on what we know about the population or
based on the null hypothesis.

17-7 a. df kv2 1� � � � �2 1 1

b.

ERROR SQUARED
X Y REGRESSION EQUATION Ŷ (Y � Ŷ ) ERROR

5 6 Ŷ � 7.846 � 0.431 (5) � 5.691 0.309 0.095

6 5 Ŷ � 7.846 � 0.431 (6) � 5.260 �0.260 0.068

4 6 Ŷ � 7.846 � 0.431 (4) � 6.122 �0.122 0.015

5 6 Ŷ � 7.846 � 0.431 (5) � 5.691 0.309 0.095

7 4 Ŷ � 7.846 � 0.431 (7) � 4.829 �0.829 0.687

8 5 Ŷ � 7.846 � 0.431 (8) � 4.398 0.602 0.362

SSerror � R(Y � Ŷ )2

� 1.322
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b. Observed:

Expected:

c.

CLEAR BLUE SKIES UNCLEAR SKIES

59 days 19 days

CLEAR BLUE SKIES UNCLEAR SKIES

(78)(0.80) � 62.4 (78)(0.20) � 15.6 days

OBSERVED EXPECTED 
CATEGORY (O) (E ) O � E (O � E)2

Clear blue skies 59 62.4 �3.4 11.56 0.185

Unclear skies 19 15.6 3.4 11.56 0.741

(O � E)2

E

17-8 a. The participants are the lineups. The independent variable is
type of lineup (simultaneous, sequential), and the dependent
variable is outcome of the lineup (suspect identification,
other identification, no identification).

b. Step 1: Population 1 is police lineups like those we
observed. Population 2 is police lineups for which type of
lineup and outcome are independent. The comparison
distribution is a chi-square distribution. The hypothesis test
is a chi-square test for independence because we have two
nominal variables. This study meets three of the four
assumptions. The two variables are nominal; every
participant (lineup) is in only one cell; and there are more
than five times as many participants as cells (8 participants
and 6 cells).

Step 2: Null hypothesis: Lineup outcome is independent of
type of lineup. 

Research hypothesis: Lineup outcome depends on type of
lineup.

Step 3: The comparison distribution is a chi-square
distribution with 2 degrees of freedom:

dfv2 � (krow � 1)(kcolumn � 1) � (2 � 1)(3 � 1) 
� (1)(2) � 2

Step 4: The cutoff chi-square statistic, based on a p level of
0.05 and 2 degrees of freedom, is 5.992. (Note: It is helpful
to include a drawing of the chi-square distribution with the
cutoff.)

Step 5:

OBSERVED
SUSPECT OTHER NO

ID ID ID

SIMULTANEOUS 191 8 120 319

SEQUENTIAL 102 20 107 229

293 28 227 548

v2
2( )

0.185 0.741 0.93�
�

� � �R
O E

E

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

We can calculate the expected frequencies in one of two
ways. First, we can think about it. Out of the total of 548
lineups, 293 led to identification of the suspect, an
identification rate of 293/548 � 0.535, or 53.5%. If
identification was independent of type of lineup, we would
expect the same rate for each type of lineup. For example,
for the 319 simultaneous lineups, we would expect:
(0.535)(319) � 170.665. For the 299 sequential lineups, we
would expect: (0.535)(229) � 122.515. Or we can use the
formula. For these same two cells (the column labeled
“suspect ID”), we calculate:

For the column labeled “other ID”:

For the column labeled “no ID”:

EXPECTED
SUSPECT OTHER NO

ID ID ID

SIMULTANEOUS 170.665 16.269 132.066 319

SEQUENTIAL 122.515 11.679 94.806 229

293 28 227 548

Total

N
Totalcolumn

row( ) ( ) ( . )(� �
293

548
319 0 535 3319 170 665) .�

Total

N
Totalcolumn

row( ) ( ) ( . )(� �
227

548
229 0 414 2229 94 806) .�

Total

N
Totalcolumn

row( ) ( ) ( . )(� �
227

548
319 0 414 3319 132 066) .�

Total

N
Totalcolumn

row( ) ( ) ( . )(� �
28

548
229 0 051 2229 11 679) .�

Total

N
Totalcolumn

row( ) ( ) ( . )(� �
28

548
319 0 051 3119 16 269) .�

Total

N
Totalcolumn

row( ) ( ) ( . )(� �
293

548
229 0 535 2229 122 515) .�
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Step 6: Reject the null hypothesis. It appears that the
outcome of a lineup depends on the type of lineup. In
general, simultaneous lineups tend to lead to a higher rate
than expected of suspect identification, lower rates than
expected of identification of other members of the lineup,
and lower rates than expected of no identification at all.
(Note: It is helpful to add the test statistic to the drawing
that included the cutoff ).

c. v2(1, N � 548) � 18.66, p 	 0.05

d. The findings of this study were opposite to what had been
expected by the investigators; the report of results noted
that, prior to this study, police departments believed that the
sequential lineup led to more accurate identification of
suspects. This situation occurs frequently in behavioral
research, a reminder of the importance of conducting two-
tailed hypothesis tests. (Of course, the fact that this study
produced different results doesn’t end the debate. Future
researchers should explore why there are different findings
in different contexts in an effort to target the best lineup
procedures based on specific situations.)

17-9 The measure of effect size for chi square is Cramer’s V. It is
calculated by first multiplying the total N by the df for either
the rows or columns (whichever is smaller) and then dividing
the calculated chi-square value by this number. Finally, we take
the square root—and that is Cramer’s V.

17-10 To calculate the relative likelihood, we first need to calculate
two conditional probabilities: the conditional probability of
being a Republican given that a person is a business major,

which is , and the conditional probability of being a

Republican given that a person is a psychology major, which is

. Now we divide the conditional probability of

being a Republican given that a person is a business major by
the conditional probability of being a Republican given that a

person is a psychology major: . The relative

likelihood of being a Republican given that a person is a
business major as opposed to a psychology major is 1.09.

17-11 a. Cramer’s V �

. This is a small-to-medium effect.0.1184

v2 18 660

548 1
0 034

( )( )

.

( )( )
.

N dfrow column/

� � �

0 587

0 537
1 09

.

.
.�

36

67
0 537� .

54

92
0 587� .

v2 2.423 4.203�
�

� � � �

�

R
(O )2E

E

⎛

⎝
⎜

⎞

⎠
⎟ ( . .1 102 3 435

55 929 1 568. . )� �18.660

b. To create a graph, we must first calculate the conditional
proportions by dividing the observed frequency in each cell
by the row total. These conditional proportions appear in
the table below and are graphed in the figure.

c. We must first calculate two conditional probabilities: the
conditional probability of obtaining a suspect identification

in the simultaneous lineups, which is , and the

conditional probability of obtaining a suspect identification

in the sequential lineups, which is . We then

divide 0.599 by 0.445 to obtain the relative likelihood of
1.35. Suspects are 1.35 times more likely to be identified in
simultaneous as opposed to sequential lineups.

C H A P T E R  1 8
18-1 We use such tests when we have an ordinal dependent variable.

18-2

VARIABLE 1 VARIABLE 2
OBSERVATION SCORE RANK SCORE RANK

1 1.3 3 54.39 5

2 1.8 4.5 50.11 3

3 1.2 2 53.39 4

4 1.06 1 44.89 1

5 1.8 4.5 48.5 2

102

229
0 445� .

191

319
0 599� .

ID suspect ID other No ID
Lineup result

Proportion
of lineups

Sequential

Simultaneous

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ID ID NO
SUSPECT OTHER ID

SIMULTANEOUS 0.599 0.025 0.376

SEQUENTIAL 0.445 0.087 0.467

OBSERVED EXPECTED
CATEGORY (O) (E ) O � E (O � E)2

Sim; suspect 191 170.665 20.335 413.512 2.423

Sim; other 8 16.269 �8.269 68.376 4.203

Sim; no 120 132.066 �12.066 145.588 1.102

Seq; suspect 102 122.515 �20.515 420.865 3.435

Seq; other 20 11.679 8.321 69.239 5.929

Seq; no 107 94.806 12.194 148.694 1.568

(O � E)2

E
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18-3

VARIABLE 1 VARIABLE 2 SQUARED 
OBSERVATION RANK RANK DIFFERENCE DIFFERENCE

1 3 5 �2 4

2 4.5 3 1.5 2.25

3 2 4 �2 4

4 1 1 0 0

5 4.5 2 2.5 6.25

18-4 a. There is an extreme outlier, 139, suggesting that the
underlying population distribution might be skewed.
Moreover, the sample size is small.

b. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 (we chose to rank this way, but you
could do the reverse, from 10 to 1).

c. The outlier was 25 IQ points (139 � 114 � 25) behind
the next-highest score of 114. It now is ranked 10,
compared to the next-highest score’s rank of 9.

18-5 Nonparametric tests are performed on ordinal data, so any data
that are scale must be converted to ordinal before we compute
the nonparametric test.

18-6 To calculate T, we first take the difference between each
person’s two scores. We then rank these differences and
separately sum the ranks associated with positive and negative
difference scores. The table shows the organized data:

RANKS FOR RANKS FOR 
SCORE SCORE POSITIVE NEGATIVE

PERSON 1 2 DIFFERENCE RANKS DIFFERENCES DIFFERENCES

A 2 5 �3 4 4

B 7 2 5 2 2

C 4 5 �1 5 5

D 10 3 7 1 1

E 5 1 4 3 3

The sum of the ranks for the positive differences is RR� �
(2 � 1 � 3) � 6.

The sum of the ranks for the negative differences is RR� �
(5 � 4) � 9.

T is equal to the smaller of these two sums: T � RRsmaller � 6.

18-7 Step 1: We convert the data from scale to ordinal. The
researchers did not indicate whether they used random
selection to choose the countries in the sample, so we must be
cautious when generalizing from these results. There are some
ties, but we will assume that there are not so many as to render
the results of the test invalid.

Step 2: Null hypothesis: Countries in which English is a
primary language and countries in which English is not a
primary language do not tend to differ in accomplishment-
related national pride. 

Research hypothesis: Countries in which English is a primary
language and countries in which English is not a primary
language tend to differ in accomplishment-related national
pride.

Step 3: There are seven countries in the English-speaking
group and seven countries in the non-English-speaking group.
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Step 4: The cutoff, or critical value, for a Mann–Whitney U
test with two groups of seven participants (countries), a p level
of 0.05, and a two-tailed test is 8.

Step 5: (Note: E stands for English-speaking, and NE stands for
non-English-speaking.)

PRIDE PRIDE ENGLISH OTHER
COUNTRY SCORE RANK LANGUAGE RANKS RANKS

United States 4.0 1 E 1

Australia 2.9 2.5 E 2.5

Ireland 2.9 2.5 E 2.5

South Africa 2.7 4 E 4

New Zealand 2.6 5 E 5

Canada 2.4 6 E 6

Chile 2.3 7 NE 7

Great Britain 2.2 8 E 8

Japan 1.8 9 NE 9

France 1.5 10 NE 10

Czech
Republic 1.3 11.5 NE 11.5

Norway 1.3 11.5 NE 11.5

Slovenia 1.1 13 NE 13

South Korea 1.0 14 NE 14

RRE � 1 � 2.5 � 2.5 � 4 � 5 � 6 � 8 � 29

RRNE � 7 � 9 � 10 � 11.5 � 11.5 � 13 � 14 � 76

UE � 48; UNE � 1

Step 6: The smaller test statistic, 1, is smaller than the critical
value, 8. We can reject the null hypothesis; it appears that
English-speaking countries tend to have higher
accomplishment-related national pride than non-English-
speaking countries.

U n n
n n

RNE E NE
NE NE

NE� �
�

�

� �
�

( )( )
( )

( )( )
(

1

2

7 7
7 7 1

R

))

2
76 49 28 76 1� � � � �

U n n
n n

RE E NE
E E

E� �
�

�

� �
�

�

( )( )
( )

( )( )
( )

1

2

7 7
7 7 1

2
2

R

99 49 28 29 48� � � �
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We have learned four categories of statistical tests:

1. Statistical tests in which all variables are scale

2. Statistical tests in which the independent variable (or variables)
is nominal, but the dependent variable is scale

3. Statistical tests in which all variables are nominal

4. Statistical tests in which any variable is ordinal

Category 1: Two Scale Variables
If we have a research design with only scale variables, we have two choices
about how to analyze the data. The only question we have to ask our-
selves is whether the research question pertains to an association (or re-
lation) between two variables or to the degree to which one variable
predicts the other. If the research question is about association, then we
choose the Pearson correlation coefficient. If it is about prediction, then
we choose regression. The decisions for category 1 are represented in
Table E-1. (Note that the relation must be linear.)

Category 2: Nominal Independent Variable(s) And
Scale Dependent Variable
If the research design includes one or more nominal independent vari-
ables and a scale dependent variable, then we have several choices. The
next question pertains to the number of independent variables.

1. If there is just one independent variable, then we ask ourselves how
many levels it has.

a. If there are two levels, but just one sample—that is, one level
is represented by the sample and one level by the popula-
tion—then we use either a z test or a single-sample t test.
It is unusual to know enough about a population that we
only need to collect data from a single sample. If this is
the case, however, and we know both the population mean
and the population standard deviation, then we can use a
z test. If this is the case and we know only the population
mean (but not the population standard deviation), then we
use the single-sample t test.

b. If there are two levels, each represented by a sample (either a sin-
gle sample in which everyone participates in both levels or
two different samples, one for each level), then we use ei-
ther a paired-samples t test (if all participants are in both
levels of the independent variable) or an independent-
samples t test (if participants are in only one level of the 
independent variable).

c. If there are three or more levels, then we use a form of a
one-way ANOVA. We examine the research design to de-
termine if it is a between-groups ANOVA (participants in
just one level of the independent variable) or a within-
groups ANOVA (participants in all levels of the independ-
ent variable).

2. If there are at least two independent variables, we must use a
form of ANOVA. Remember, we name ANOVAs according
to the number of independent variables (one-way, two-way,
three-way) and the research design (between-groups, within-
groups).

The decisions about data that fall into category 2 and have one in-
dependent variable are summarized in Table E-2. For those with two or
more independent variables, see Table 12-1.

Category 3: One Or Two Nominal Variables
If we have a design with only nominal variables—that is, counts, 
not means, in the cells—then we have two choices; both nonpara-
metric tests. The only question we have to ask ourselves is whether
there are one or two nominal variables. If there is one nominal
variable, then we choose the chi-square test for goodness-of-fit. If
there are two nominal variables, then we choose the chi-square
test for independence. The decision for category 3 is represented in
Table E-3.

A P P E N D I X E

Choosing the Appropriate Statistical Test

TABLE E-1 Category 1 Statistics

When both the independent variable and the dependent variable are
scale, we calculate either a Pearson correlation coefficient or a regres-
sion equation.

Research Question: Research Question:
Association (Relation) Prediction

Pearson correlation coefficient Regression equation



Category 4: At Least One Ordinal Variable
If we have a design with even one ordinal variable or a design in which
it makes sense to convert the data from scale to ordinal, then we have sev-
eral choices, as seen in Table E-4. All these choices have parallel paramet-
ric hypothesis tests, as seen in Table E-5. For situations in which we want
to investigate the relation between two ordinal variables, we use the Spear-

man rank-order correlation coefficient. For situations in which we have
a within-groups research design and two groups, we use the Wilcoxon
signed-rank test. When we have a between-groups design with two groups,
we use a Mann–Whitney U test. And when we have a between-groups
design with more than two groups, we use a Kruskal–Wallis H test.

The decisions we’ve outlined are summarized in Figure E-1.

E-2 APPENDIX E

TABLE E-2 Category 2 Statistics

When there are one or more nominal independent variables and a scale dependent variable, we have several choices. Start by selecting the appropriate
number of independent variables. For one independent variable, use the accompanying chart. To use this chart, look at the first two columns, those that
identify the number of levels of the independent variable and the number of samples. For two levels but one sample, it’s a choice between the z test and
single-sample t test; for two levels and two samples, it’s a choice between the paired-samples t test and the independent-samples t test. For three or
more levels (and the matching number of samples), we use either a one-way within-groups ANOVA or a one-way between-groups ANOVA. For two inde-
pendent variables or three independent variables, we’ll use a form of ANOVA and refer to Table 12-1 on naming ANOVAs. One independent variable:

NUMBER OF LEVELS OF INFORMATION ABOUT
INDEPENDENT VARIABLE NUMBER OF SAMPLES POPULATION HYPOTHESIS TEST

Two One (compared to the population) Mean and standard deviation z test

Two One (compared to the population) Mean only Single-sample t test

NUMBER OF LEVELS OF
INDEPENDENT VARIABLE NUMBER OF SAMPLES RESEARCH DESIGN HYPOTHESIS TEST

Two Two Within-groups Paired-samples t test

Two Two Between-groups Independent-samples t test

Three (or more) Three (or more) Between-groups One-way between-groups ANOVA

Three (or more) Three (or more) Within-groups One-way within-groups ANOVA

TABLE E-3 Category 3 Statistics

When we have only nominal variables, then we choose one of the two chi-square tests.

ONE NOMINAL VARIABLE TWO NOMINAL VARIABLES

Chi-square test for goodness-of-fit Chi-square test for independence

TABLE E-4 Category 4 Statistics

When at least one variable is ordinal, we have several choices. If both variables are ordinal, or can be converted to ordinal, and we are interested in quan-
tifying the relation between them, we use the Spearman rank-order correlation coefficient. If the independent variable is nominal and the dependent vari-
able is ordinal, we choose the correct nonparametric test based on the research design and the number of levels of the independent variable.

TYPE OF INDEPENDENT 
VARIABLE (AND NUMBER RESEARCH QUESTION 
OF LEVELS IF APPLICABLE) DESIGN TO BE ANSWERED HYPOTHESIS TEST

Ordinal Not applicable Are two variables related? Spearman rank-order correlation coefficient

Nominal (two levels) Within-groups Are two groups different? Wilcoxon signed-rank test

Nominal (two levels) Between-groups Are two groups different? Mann–Whitney U test

Nominal (three or more levels) Between-groups Are three or more groups different? Kruskal–Wallis H test
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Four Categories of Hypothesis Tests (IV � independent variable; DV � dependent variable) 

1. Only scale 
variables 

Question 
about 

association 

Question 
about 

prediction 

Pearson 
correlation 
coefficient 

2. Nominal IV; 
scale DV 

3. Only nominal
variables

4. Any ordinal 
variables 

One IV Two or 
more IVs 

Two groups 
(levels) 

Within-groups 
design 

Within- 
groups 
design 

Two 
samples 

One represented by 
a sample, one by 

the population 

Three or 
more groups 

(levels) 

Only � 
known 

� and � 
known One-way 

within- 
groups 
ANOVA 

Between- 
groups 
design 

One-way 
between- 

groups 
ANOVA z test Single- 

sample 
t test 

Regression 

One nominal 
variable 

Two nominal 
variables 

Chi-square 
test for 

goodness- 
of-fit 

Two ordinal 
variables; 
question 

about 
association 

Nominal IV 
and ordinal DV 

Wilcoxon 
signed-rank 

test 

Kruskal– 
Wallis 
H test 

Mann– 
Whitney 
U test 

Chi-square 
test for 

independence 
Spearman 
rank-order 
correlation 
coefficient 

Factorial 
ANOVA 

(e.g., two-way 
between-groups 

ANOVA) 

Paired- 
samples 
t test 

Between-groups 
design 

Independent- 
samples 
t test 

Within-groups 
design; 

two groups 

Between- 
groups 
design 

Two groups Three or 
more groups 

FIGURE E-1.
Choosing the Appropriate Hypothesis Test.

By asking the right questions about our variables and research design, we can
choose the appropriate hypothesis test for our research.

TABLE E-5 Nonparametric Statistics and Their Parametric Counterparts

Every parametric hypothesis test has at least one nonparametric counterpart. If the data are far from meeting the assumptions for a parametric test or
at least one variable is ordinal, we should use the appropriate nonparametric test instead of a parametric test.

DESIGN PARAMETRIC TEST NONPARAMETRIC TEST

Association between two variables Pearson correlation coefficient Spearman rank-order correlation coefficient

Two groups; within-groups design Paired-samples t test Wilcoxon signed-rank test

Two groups; between-groups design Independent-samples t test Mann–Whitney U test

More than two groups; between-groups design One-way between-groups ANOVA Kruskal–Wallis H test
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Reporting Statistics

2. In the Results section, we report the traditional statistics, which
include any relevant descriptive statistics and often the results of
hypothesis testing.

3. In the Results section, we report the newer statistics that are now
required by the APA, including effect sizes and confidence inter-
vals (APA, 2010).

Justify The Study
Researchers should first report the results of the statistical power analy-
ses that were conducted prior to data collection. Then researchers should
report any information related to the reliability and validity of the meas-
ured variables. This information usually goes in the Methods section of
the paper.

To summarize this aspect of the findings, we include:

■ statistical power analyses

■ psychometric data for each scale used (reliability and validity
information)

Report Traditional Statistics
The Results section should include any relevant summary statistics. For
analyses with a scale dependent variable, include means, standard devia-
tions, and sample sizes for each cell in the research design. For analyses
with a nominal dependent variable (chi-square analyses), include the fre-
quencies (counts) for each cell; there won’t be means or standard devia-
tions because there are no scores on a scale measure. Summary statistics
are sometimes presented first in a Results section but are more typically
presented after a description of each hypothesis test. If there are only two
or three cells, then the summary statistics are typically presented in the
text; if there are more cells, then a table or figure should display these
numbers.

Reports of hypothesis tests typically begin by reiterating the hypoth-
esis to be tested and then describing the test that was conducted, includ-
ing the independent and dependent variables. The results of the hypothesis
test are then presented, usually including the symbol for the statistic, the
degrees of freedom, the actual value of the statistic, and, if using software,
the p value associated with that statistic. Alternately, researchers might
choose to report prep instead of p. The format for reporting this informa-
tion has been presented after each hypothesis test in this text and is pre-
sented again in Table F-1.

After the statistics are presented, a brief statement summarizes the re-
sults, indicating the direction of any effects. This brief statement does not
draw conclusions beyond the actual finding. In the Results section,

Overview Of Reporting Statistics
In Chapter 11, How It Works 11.1, we described a study about gender
differences in humor (Azim, Mobbs, Jo, Menon, & Reiss, 2005). Let’s re-
cap the results of the analyses and then use this information to report
statistics in the Methods and Results sections of a paper written in the
style of the American Psychological Association (APA). In the analyses of
the humor data, we used fictional data that had the same means as the
actual study by Azim and colleagues. We used the following raw data:

Percentage of cartoons labeled as “funny.”

Women: 84, 97, 58, 90

Men: 88, 90, 52, 97, 86

We conducted an independent-samples t test on these data and found
a test statistic, t, of �0.03. This test statistic was not beyond the cutoff, so
we failed to reject the null hypothesis. We cannot conclude that men and
women, on average, find different percentages of the cartoons to be funny;
we can only conclude that this study did not provide evidence that
women and men are different on this variable. 

In How It Works 11.2, we noted that the statistics, as reported in a
journal article, would include the symbol for the statistic, the degrees of
freedom, the value of the test statistic, and, for statistics calculated by hand,
whether the p value associated with the test statistic was less than or greater
than the cutoff p level of 0.05. In the humor example, the statistics would
read:

t (7) � �0.03, p � 0.05

(Note that when we conducted this hypothesis test using SPSS, we
got an exact p value of 0.977, so we would say p � 0.98 instead of p �
0.05 if we had used software.) In How It Works 11.2, we also noted that
we would report the means and standard deviations for the two  samples:

Women: M � 82.25, SD � 17.02; Men: M � 82.60, SD � 18.13

In How It Works 11.3, we calculated a confidence interval for these
data. The 95%  confidence interval, centered around the difference be-
tween means of 82.25 � 82.60 � �0.35, is [�27.88, 27.18].

In How It Works 11.4, we calculated the effect size for this study, a
Cohen’s d of �0.02. We now have sufficient information to write up these
findings.

There are three topics to consider when reporting statistics, all cov-
ered in various sections of the Publication Manual of the American Psycho-
logical Association (APA, 2010):

1. In the Methods section, we justify our study by including infor-
mation about the statistical power, reliability, and validity of any
measures we used.

F-1



TABLE F-1. The Format for the Results of a Hypothesis Test

There is a general format for reporting the results of hypothesis tests. The symbol for the statistic is followed by the degrees of freedom in parentheses,
then the value of the test statistic, and finally the exact p value associated with that test statistic. This table presents the way that format would be im-
plemented for several of the test statistics discussed in this text. (Note that you will only have the exact p value if you use software. If you conduct a test
by hand, you may report whether the p value is greater than or less than 0.05.)

Value Information 
Degrees of Test about Effect

Symbol of Freedom Statistic the Cutoff Size Example

z (df ) � XX, p � 0.XX d � XX z (54) � 0.60, p � 0.45, d � 0.08

t (df ) � XX, p � 0.XX d � XX t (146) � 2.29, p � 0.024, d � 0.50

F (dfBetween, dfWithin) � XX, p � 0.XX R2 � XX F(2, 142) � 6.63, p � 0.002, R2 � 0.09

v2 (df, N � XX) � XX, p � 0.XX V � XX v2 (1, N � 147) � 0.58, p � 0.447, V � 0.06

T None � XX, p � 0.XX None T � 7, p � .04

U None � XX, p � 0.XX None U � 19, p � 0.14

F-2 APPENDIX F

researchers do not discuss the finding in terms of the  general theories in
the field or in terms of its potential implications or applications (which
go, appropriately enough, in the Discussion section). Researchers should
present the results of all hypothesis tests that they conducted, even those
in which they failed to reject the null hypothesis.

To summarize this aspect of Results sections:

■ Include summary statistics: means, standard deviations, and sample
sizes for each cell when the dependent variable is scale, and frequen-
cies (counts) for each cell when the dependent variable is nominal.
These are often included after each hypothesis test.

■ For each hypothesis test conducted:

• Include a brief summary of the hypotheses and hypothesis test.

• Report the results of hypothesis testing: the symbol for the statis-
tic used, degrees of freedom, the actual value of the statistic, and
the p value associated with this statistic (if using software) or prep.

• Provide a statement that summarizes the results of hypothesis  testing.

• Use tables and figures to clarify patterns in the findings.

■ Include all results, even for findings that are not statistically signifi-
cant.

The statistics for the study from How It Works in Chapter 10 that
compared the mean percentages of cartoons that women and men found
funny might be reported as follows:

To examine the hypothesis that women and men, on average,
find different percentages of cartoons funny, we conducted an
independent-samples t test. The independent variable was gender,
with two levels: female and male. The dependent variable was the
percentage of cartoons deemed funny. There was not a statistically
significant effect of gender, t(7) � �0.03, p � 0.98; this study
does not provide evidence that women (M � 82.25, SD � 17.02)
and men (M � 82.60, SD � 18.13) deem, on average, different
percentages of cartoons to be funny. The difference between the
mean percentages for women and men is just 0.35%.

Reporting Newer Statistics
It is no longer enough to simply present the descriptive statistics and the
results of the hypothesis test. As of the 2010 edition of its Publication Man-
ual, the APA requires the inclusion of effect sizes and confidence inter-

vals when relevant. The effect-size estimate is often included as part of
the report of the statistics, just after the p value. There is often a statement
that indicates the size of the effect in words, not just in numbers. The con-
fidence interval can be presented after the effect size abbreviated as “95%
CI” with the actual interval in brackets.

Note that nonparametric tests often do not have associated measures
of effect size or confidence intervals. In these cases, researchers should
provide enough descriptive information for readers to interpret the find-
ings.

To summarize this aspect of the Results sections, we include:

■ Effect sizes, along with a statement about the size of the effect

■ Confidence intervals when possible, along with a statement inter-
preting the confidence interval in the context of the study.

For the study on humor, we might report the effect size as part of
the traditional statistics that we described above:

There was not a statistically significant effect of gender, t (7)
� �0.03, p � 0.98, d � �0.02, 95% CI [–28.37, 27.67]; this was
a small, almost nonexistent, effect. In fact, there is only a 0.35%
difference between the mean percentages for women and men.
This study does not provide evidence that men and women, on
average, rate different percentages of cartoons as funny.

For the humor study, we can now pull the parts together. Here is how
the results would be reported:

To examine the hypothesis that women and men, on average,
find different percentages of cartoons funny, we conducted an
independent-samples t test. The independent variable was gender,
with two levels: female and male. The dependent variable was the
percentage of cartoons deemed funny. There was not a statistically
significant effect of gender, t (7) � �0.03, p � 0.98, d � �0.02,
95% CI [–28.37, 27.67]; this was a small, almost nonexistent, ef-
fect. Based on the hypothesis test and the confidence interval, this
study does not provide evidence that women (M � 82.25, SD �
17.02) and men (M � 82.60, SD � 18.13) deem, on average, dif-
ferent percentages of cartoons to be funny. In fact, there is only a
very small difference between the mean percentages for women
and men, just 0.35%.



A
adjusted standardized residual The difference between the ob-
served frequency and the expected frequency for a cell in a chi-
square research design, divided by the standard error.

alpha The chance of making a Type I error and another name for
the p level; symbolized as a.

analysis of covariance (ANCOVA) A type of ANOVA in which a
covariate is included so that statistical findings reflect effects after a
scale variable has been statistically removed.

analysis of variance (ANOVA) A hypothesis test typically used
with one or more nominal independent variables (with at least three
groups overall) and a scale dependent variable.

assumption A requirement that the population from which we are
sampling has specific characteristics that will allow us to make accu-
rate inferences.

B
bar graph A visual depiction of data when the independent variable
is nominal or ordinal and the dependent variable is scale. Each bar
typically represents the average value of the dependent variable for
each category.

between-groups ANOVA A hypothesis test in which there are
more than two samples, and each sample is composed of different
participants.

between-groups research design An experimental design in
which participants experience one, and only one, level of the inde-
pendent variable.

between-groups variance An estimate of the population variance
based on the differences among the means.

bimodal A distribution that has two modes, or most common
scores.

Bonferroni test A post-hoc test that provides a more strict critical
value for every comparison of means; sometimes called the Dunn
Multiple Comparison test.

bootstrapping A statistical process by which the original sample
data are used to represent the entire population, and we repeatedly
take samples from the original sample data to form a confidence
interval.

C
ceiling effect A situation in which a constraint prevents a variable
from taking on values above a given number.

cell A box that depicts one unique combination of levels of the inde-
pendent variables in a factorial design.

central limit theorem The idea that a distribution of sample means
is a more normal distribution than a distribution of scores, even
when the population distribution is not normal.

central tendency A descriptive statistic that best represents the cen-
ter of a data set, the particular value that all the other data seem to be
gathering around.

chartjunk Any unnecessary information or feature in a graph that
distracts from a viewer’s ability to understand the data.

chi-square test for goodness-of-fit A nonparametric hypothesis
test used with one nominal variable.

chi-square test for independence A nonparametric hypothesis test
used with two nominal variables.

coefficient alpha A commonly used estimate of a test’s or measure’s
reliability that is calculated by taking the average of all possible split-
half correlations and symbolized as a; sometimes called Cronbach’s
alpha.

Cohen’s d A measure of effect size that assesses the difference be-
tween two means in terms of standard deviation, not standard error.

confidence interval An interval estimate, based on the sample sta-
tistic, that includes the population mean a certain percentage of the
time, if we sampled from the same population repeatedly.

confirmation bias Our usually unintentional tendency to pay at-
tention to evidence that confirms what we already believe and to ig-
nore evidence that would disconfirm our beliefs.

confounding variable A variable that systematically varies with the
independent variable so that we cannot logically determine which
variable is at work; also called a confound.

continuous observation Observed data point that can take on a
full range of values (e.g., numbers out to many decimal points); an
infinite number of potential values exists.

control group A level of the independent variable that is designed
to match the experimental group in all ways but the experimental
manipulation itself.

convenience sample A subset of a population whose members are
chosen strictly because they are readily available, as opposed to ran-
domly selecting participants from the entire population of interest.

correlation An association between two or more variables.

correlation coefficient A statistic that quantifies a relation between
two variables.

counterbalancing The minimization of order effects by varying the
order of presentation of different levels of the independent variable
from one participant to the next.

covariate A scale variable that we suspect associates, or covaries, with
the independent variable of interest.

Cramer’s V The standard effect size used with the chi-square test
for independence; also called Cramer’s phi, symbolized as U.

critical region The area in the tails of the comparison distribu -
tion in which we reject the null hypothesis if our test statistic falls
there.

critical value Test statistic value beyond which we will reject the
null hypothesis; often called cutoff.
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D
defaults The options that a software designer has preselected. These
are the built-in decisions that the software will implement if we do
not instruct it otherwise.

degrees of freedom The number of scores that are free to vary
when estimating a population parameter from a sample.

dependent variable The outcome variable that we hypothesize to
be related to, or caused by, changes in the independent variable.

descriptive statistic Statistical technique used to organize, summa-
rize, and communicate a group of numerical observations.

deviation from the mean The amount that a score in a sample dif-
fers from the mean of the sample; also called deviation.

discrete observation Observed data point that can take on only
specific values (e.g., whole numbers); no other values can exist be-
tween these numbers.

distribution of means A distribution composed of many means
that are calculated from all possible samples of a given size, all taken
from the same population.

dot plot A graph that displays all the data points in a sample, with
the range of scores along the x-axis and a dot for each data point
above the appropriate value.

duck A form of chartjunk where a feature of the data has been
dressed up in a graph to be something other than merely data.

E
effect size A standardized value that indicates the size of a difference
but is not affected by sample size.

expected relative-frequency probability The likelihood of 
an event occurring based on the actual outcome of many, many
trials.

experiment A study in which participants are randomly assigned to
a condition or level of one or more independent variables.

experimental group A level of the independent variable that re-
ceives the treatment or intervention of interest in an experiment.

F
F statistic A ratio of two measures of variance: (1) between-groups
variance, which indicates differences among sample means, and
(2) within-groups variance, which is essentially an average of the
sample variances.

factor A term used to describe an independent variable in a study
with more than one independent variable.

factorial ANOVA A statistical analysis used with one scale depend-
ent variable and at least two nominal independent variables (also
called factors); also called a multifactorial ANOVA.

file drawer analysis A statistical calculation, following a meta-
analysis, of the number of studies with null results that would 
have to exist so that a mean effect size is no longer statistically
significant.

first quartile The 25th percentile of a data set.

floor effect A situation in which a constraint prevents a variable
from taking values below a certain point.

frequency distribution A distribution that describes the pattern of
a set of numbers by displaying a count or proportion for each possi-
ble value of a variable.

frequency polygon A line graph with the x-axis representing values
(or midpoints of intervals) and the y-axis representing frequencies. A

dot is placed at the frequency for each value (or midpoint), and the
dots are connected.

frequency table A visual depiction of data that shows how often
each value occurred; that is, how many scores were at each value. Val-
ues are listed in one column, and the numbers of individuals with
scores at that value are listed in the second column.

G
generalizability Researchers’ ability to apply findings from one
sample or in one context to other samples or contexts; also called ex-
ternal validity.

grand mean The mean of every score in a study, regardless of which
sample the score came from.

grid A form of chartjunk that takes the form of a background pat-
tern, almost like graph paper, on which the data representations, such
as bars, are superimposed on a graph.

grouped frequency table A visual depiction of data that reports
the frequencies within a given interval rather than the frequencies for
a specific value.

H
heteroscedastic A term given to populations that have different
variances.

hierarchical multiple regression A type of multiple regression in
which the researcher adds independent variables into the equation in
an order determined by theory.

histogram A graph similar to a bar graph typically used to depict
scale data with the values of the variable on the x-axis and the fre-
quencies on the y-axis.

homoscedastic A term given to populations that have the same
variance; also called homogeneity of variance.

hypothesis testing The process of drawing conclusions about
whether a particular relation between variables is supported by the
evidence.

I
illusory correlation The phenomenon of believing that one sees an
association between variables when no such association exists.

independent variable A variable that we either manipulate or ob-
serve to determine its effects on the dependent variable.

independent-samples t test A hypothesis test used to compare two
means for a between-groups design, a situation in which each partici-
pant is assigned to only one condition.

inferential statistic Statistical technique that uses sample data to
make general estimates about the larger population.

interaction The statistical result achieved in a factorial design when
two or more independent variables have an effect in combination
that we do not see when we examine each independent variable on
its own.

intercept The predicted value for Y when X is equal to 0, or the
point at which the line crosses, or intercepts, the y-axis.

interquartile range A measure of the difference between the first
and third quartiles of a data set; often abbreviated as IQR.

interval estimate An estimate based on a sample statistic, providing
a range of plausible values for the population parameter.

interval variable A variable used for observations that have numbers
as their values; the distance (or interval) between pairs of consecutive
numbers is assumed to be equal.
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K
Kruskal–Wallis H test A nonparametric hypothesis test used when
there are more than two groups, a between-groups design, and an or-
dinal dependent variable.

L
latent variables The ideas that we want to research but cannot di-
rectly measure.

level A discrete value or condition that a variable can take on.

line graph A graph used to illustrate the relation between two scale
variables; sometimes the line represents the predicted y scores for
each x value, and sometimes the line represents change in a variable
over time.

linear relation A relation between two variables best described by a
straight line.

M
main effect A result occurring in a factorial design when one of the
independent variables has an influence on the dependent variable.

manifest variables The variables in a study that we can observe and
that are measured.

Mann–Whitney U test A nonparametric hypothesis test used when
there are two groups, a between-groups design, and an ordinal de-
pendent variable.

marginal mean The mean of a row or a column in a table that
shows the cells of a study with a two-way ANOVA design.

mean The arithmetic average of a group of scores. It is calculated by
summing all the scores and dividing by the total number of scores.

median The middle score of all the scores in a sample when the
scores are arranged in ascending order. If there is no single middle
score, the median is the mean of the two middle scores.

meta-analysis A type of statistical analysis that simultaneously exam-
ines as many studies as possible for a given research topic, and in-
volves the calculation of a mean effect size from the individual effect
sizes of these studies.

mixed-design ANOVA A hypothesis test used to analyze the data
from a study with at least two independent variables; at least one
variable must be within-groups and at least one variable must be
between-groups.

mode The most common score of all the scores in a sample.

moiré vibration A type of chartjunk that take the form of any of the
patterns that computers provide as options to fill in bars on a graph.

multimodal A distribution that has more than two modes, or most
common scores.

multiple regression A statistical technique that includes two or
more predictor variables in a prediction equation.

multivariate analysis of covariance (MANCOVA) An ANOVA
with multiple dependent variables and the inclusion of a covariate.

multivariate analysis of variance (MANOVA) A form of
ANOVA in which there is more than one dependent variable.

N
negative correlation An association between two variables in
which participants with high scores on one variable tend to have low
scores on the other variable.

negatively skewed data An asymmetric distribution whose tail ex-
tends to the left, in a negative direction.

nominal variable A variable used for observations that have cate-
gories, or names, as their values.

nonlinear relation A relation between variables best described by a
line that breaks or curves in some way.

nonparametric test Inferential statistical analysis that is not based
on a set of assumptions about the population.

normal curve A specific bell-shaped curve that is unimodal, sym-
metric, and defined mathematically.

normal distribution A specific frequency distribution in the shape
of a bell-shaped, symmetric, unimodal curve.

null hypothesis A statement that postulates that there is no differ-
ence between populations or that the difference is in a direction op-
posite from that anticipated by the researcher.

O
one-tailed test A hypothesis test in which the research hypothesis is
directional, positing either a mean decrease or a mean increase in the
dependent variable, but not both, as a result of the independent
variable.

one-way ANOVA A hypothesis test that includes one nominal in-
dependent variable with more than two levels and a scale dependent
variable.

operational definition The operations or procedures used to meas-
ure or manipulate a variable.

order effect The effect produced when a participant’s behavior
changes when the dependent variable is presented for a second time;
also called practice effect.

ordinal variable A variable used for observations that have rankings
(i.e., 1st, 2nd, 3rd, . . . ) as their values.

orthogonal variable An independent variable that makes a separate
and distinct contribution to the prediction of a dependent variable, as
compared with another variable.

outcome In reference to probability, the result of a trial.

outlier An extreme score that is either very high or very low in
comparison with the rest of the scores in a sample.

outlier analysis Studies that examine observations that do not fit
the overall pattern of the data in an effort to understand the factors
that influence the dependent variable.

P
p level The probability used to determine the critical values, or cut-
offs, in hypothesis testing.

paired-samples t test A test used to compare two means for a
within-groups design, a situation in which every participant is in
both samples; also called a dependent-samples t test.

parameter A number based on the whole population; it is usually
symbolized by a Greek letter.

parametric test Inferential statistical analysis that is based on a set of
assumptions about the population.

Pareto chart A type of bar graph in which the categories along the
x-axis are ordered from highest bar on the left to lowest bar on the
right.

partial correlation A technique that quantifies the degree of associ-
ation between two variables after statistically removing the association
of a third variable with both of those variables.

path The term statisticians use to describe the connection between
two variables in a statistical model.
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path analysis A statistical method that examines a hypothesized
model, usually by conducting a series of regression analyses that
quantify the paths at each succeeding step in the model.

Pearson correlation coefficient A statistic that quantifies a linear
relation between two scale variables.

personal probability The likelihood of an event occurring based
on an individual’s opinion or judgment; also called subjective
probability.

pictorial graph A visual depiction of data typically used for an in-
dependent variable with very few levels (categories) and a scale de-
pendent variable. Each level uses a picture or symbol to represent its
value on the scale dependent variable.

pie chart A graph in the shape of a circle with a slice for every level
(category). The size of each slice represents the proportion (or per-
centage) of each level.

planned comparison A test conducted when there are multiple
groups of scores but specific comparisons have been specified prior to
data collection; also called an a priori comparison.

point estimate A summary statistic from a sample that is just one
number used as an estimate of the population parameter.

pooled variance A weighted average of the two estimates of
variance—one from each sample—that are calculated when conduct-
ing an independent-samples t test.

population All of the possible observations about which we’d like to
know something.

positive correlation An association between two variables such
that participants with high scores on one variable tend to have 
high scores on the other variable as well, and those with low scores
on one variable tend to have low scores on the other variable 
as well.

positively skewed data An asymmetric distribution whose tail ex-
tends to the right, in a positive direction.

post-hoc test A statistical procedure frequently carried out after we
reject the null hypothesis in an analysis of variance; it allows us to
make multiple comparisons among several means; often referred to as
a follow-up test.

prep The probability of replicating an effect given a particular popula-
tion and sample size.

probability The likelihood that a certain outcome will occur out of
all possible outcomes.

proportionate reduction in error A statistic that quantifies how
much more accurate predictions are when we use the regression line
instead of the mean as a prediction tool; also called coefficient of deter-
mination, symbolized as R2.

psychometricians The statisticians and psychologists who develop
tests and measures.

psychometrics The branch of statistics used in the development of
tests and measures.

Q
qualitative interaction A particular type of quantitative interaction
of two (or more) independent variables in which one independent
variable reverses its effect depending on the level of the other inde-
pendent variable.

quantitative interaction An interaction in which one independent
variable exhibits a strengthening or weakening of its effect at one or
more levels of the other independent variable, but the direction of
the initial effect does not change.

R
R2 The proportion of variance in the dependent variable that is ac-
counted for by the independent variable.

random assignment The protocol established for an experiment
whereby every participant in a study has an equal chance of being
assigned to any of the groups, or experimental conditions, in the
study.

random sample A subset of a population selected using a method
that ensures that every member of the population has an equal
chance of being selected into the study.

range A measure of variability calculated by subtracting the lowest
score (the minimum) from the highest score (the maximum).

range-frame A scatterplot or related graph that indicates only the
range of the data on each axis; the lines extend only from the mini-
mum to the maximum scores.

ratio variable A variable that meets the criteria for an interval vari-
able but also has a meaningful zero point.

raw score A data point that has not yet been transformed or ana-
lyzed.

regression to the mean The tendency of scores that are particu-
larly high or low to drift toward the mean over time.

relative risk A measure created by making a ratio of two conditional
proportions; also called relative likelihood or relative chance.

reliability The consistency of a measure.

replication The duplication of scientific results, ideally in a different
context or with a sample that has different characteristics.

research hypothesis A statement that postulates that there is a dif-
ference between populations or sometimes, more specifically, that
there is a difference in a certain direction, positive or negative; also
called the alternative hypothesis.

robust A term given to a hypothesis test that produces fairly accurate
results even when the data suggest that the population might not
meet some of the assumptions.

S
sample A set of observations drawn from the population of interest.

scale variable A variable that meets the criteria for an interval vari-
able or a ratio variable.

scatterplot A graph that depicts the relation between two scale vari-
ables. The values of each variable are marked along the two axes, and
a mark is made to indicate the intersection of the two scores for each
participant.

simple linear regression A statistical tool that lets us predict a per-
son’s score on a dependent variable from his or her score on one in-
dependent variable.

single-sample t test A hypothesis test in which we compare data
from one sample to a population for which we know the mean but
not the standard deviation.

skewed distribution A distribution in which one of the tails of the
distribution is pulled away from the center.

slope The amount that Y is predicted to increase for an increase of 1
in X.

source table A table that presents the important calculations and
final results of an ANOVA in a consistent and easy-to-read format.

Spearman rank-order correlation coefficient A nonparametric
statistic that quantifies the association between two ordinal variables.
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square root transformation A transformation that reduces skew by
compressing both the negative and positive sides of a skewed distri-
bution.

standard deviation The typical amount that each score in a sample
varies, or deviates, from the mean; it is the square root of the average
of the squared deviations from the mean.

standard error The name for the standard deviation of a distribu-
tion of means.

standard error of the estimate A statistic indicating the typical
distance between a regression line and the actual data points.

standard normal distribution A normal distribution of z scores.

standardization A process that converts individual scores from dif-
ferent normal distributions to a shared normal distribution with a
known mean, standard deviation, and percentiles.

standardized regression coefficient A standardized version of the
slope in a regression equation, it is the predicted change in the de-
pendent variable in terms of standard deviations for an increase of 1
standard deviation in the independent variable; often called the beta
weight.

statistic A number based on a sample taken from a population; it is
usually symbolized by a Latin letter.

statistical (or theoretical) model A hypothesized network of rela-
tions, often portrayed graphically, among multiple variables.

statistically significant A name given to a finding in which the
data differ from what we would expect by chance if there were, in
fact, no actual difference.

statistical power A measure of our ability to reject the null hypoth-
esis given that the null hypothesis is false.

stem-and-leaf plot A graph that displays all the data points of a
variable (or of two levels of a variable) both numerically and visually.

stepwise multiple regression A type of multiple regression in
which computer software determines the order in which independ-
ent variables are included in the equation.

structural equation modeling (SEM) A statistical technique that
quantifies how well sample data “fit” a theoretical model that hy-
pothesizes a set of relations among multiple variables.

success In reference to probability, the outcome for which we’re try-
ing to determine the probability.

sum of squares The sum of each score’s squared deviation from the
mean. Symbolized as SS.

T
t statistic A statistic that indicates the distance of a sample mean
from a population mean in terms of the standard error.

test–retest reliability A method that determines whether the scale
being used provides consistent information every time the test is
taken.

third quartile The 75th percentile of a data set.

time plot or time series plot A graph that plots a scale variable on
the y-axis as it changes over an increment of time (e.g., second, day,
century) labeled on the x-axis.

trial In reference to probability, each occasion that a given procedure
is carried out.

Tukey HSD test A widely used post-hoc test that determines the
differences between means in terms of standard error; the HSD is
compared to a critical value; sometimes called the q test.

two-tailed test A hypothesis test in which the research hypothesis
does not indicate a direction of mean difference or change in the de-
pendent variable, but merely indicates that there will be a mean dif-
ference.

two-way ANOVA A hypothesis test that includes two nominal in-
dependent variables, regardless of their numbers of levels, and a scale
dependent variable.

Type I error The result when we reject the null hypothesis, but the
null hypothesis is correct.

Type II error The result when we fail to reject the null hypothesis,
but the null hypothesis is false.

U
unimodal A distribution that has one mode, or most common score.

V
validity The extent to which a test actually measures what it was in-
tended to measure.

variability A numerical way of describing how much spread there is
in a distribution.

variable Any observation of a physical, attitudinal, or behavioral
characteristic that can take on different values.

variance The average of the squared deviations from the mean.

volunteer sample A special kind of convenience sample in which
participants actively choose to participate in a study; also called a self-
selected sample.

W
Wilcoxon signed-rank test A nonparametric hypothesis test used
when there are two groups, a within-groups design, and an ordinal
dependent variable.

within-groups ANOVA A hypothesis test in which there are more
than two samples, and each sample is composed of the same partici-
pants; also called a repeated-measures ANOVA.

within-groups research design An experimental design in which
the different levels of the independent variable are experienced by all
participants in the study; also called a repeated-measures design.

within-groups variance An estimate of the population variance
based on the differences within each of the three (or more) sample
distributions.

Z
z distribution A normal distribution of standardized scores.

z score The number of standard deviations a particular score is from
the mean.
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identify populations, distributions, and

assumptions for, 304
null and research hypotheses for, 304–

305
one-way between-groups ANOVA for,

302–307
post-hoc tests for, 319–320
test statistic for, 307
total sum of squares for, 311–312
Tukey HSD test for, 321–323
within-groups sum of squares for, 312–

313
Fallows, James, 338–339
False face validity lie, 50
Farming society and fairness, one-way

between-groups ANOVA for, 302–
307

File drawer analysis, 217
“The file drawer problem,” 217
First quartile, 92–93
Fisher, R. A., 164
Floor effect, 37
Florida “butterfly ballot,” 182–183
Flower symmetry, single-sample t test of,

228
Foraging society and fairness, one-way

between-groups ANOVA for, 302–
307

Formula
for between-groups degrees of freedom,

305, 378–379
for between-groups sum of squares,

314, 382–384
for chi-square statistic, 485
for Cohen’s d, 207
for Cohen’s d for a paired-samples t

statistic, 259
for Cohen’s d for a single-samples t

statistic, 241
for confidence interval for paired-

samples t test, 258
for correlation coefficient, 413
for Cramer’s V, 493
for degrees of freedom, 234
for degrees of freedom for

independent-samples t test, 274
for degrees of freedom for one-way

between-groups ANOVA, 310
for distribution of differences between

means for independent-samples t
test, 275

for expected frequencies, 490

for grand mean, 311, 525
for harmonic mean, 321
for interquartile range, 93
for Kruskal–Wallis H test, 526
for Mann–Whitney U test, 523
for mean, 83
for mean square, 344
for pooled variance for price and

perception comparison, 274
for proportionate reduction in error,

454
for R2, 318, 346, 385
for range, 89
for simple linear regression, 441
source table with, 315
for Spearman rank-order correlation

coefficient, 515
for standard deviation, 92
for standard deviation estimation, 229
for standard error, 148, 320–321
for standard error for independent-

samples t test, 274
for standard error for t statistic, 231–232
for standardized regression coefficient,

445
for subjects degrees of freedom, 341
for subjects sum of squares, 343
for t statistic calculated with standard

error, 232
for test statistic for independent-samples

t test, 275–276
for total degrees of freedom, 379
for total sum of squares, 312, 381
for total sum of squares for one-way

between-groups ANOVA, 314
for Tukey HSD test, 320
for variance, 91
for Wilcoxon signed-rank test, 520
for within-group sum of squares, 313,

343, 383–384
for within-groups degrees of freedom,

305, 341, 379
for z score transformation to raw scores,

139
for z scores, 136
for z statistic, 150

Fractions, A–4
Freakonomics, 151
Frequency distributions, 23–42

frequency polygons, 34–35
frequency tables, 24–31
grouped frequency tables, 28–31
histograms, 30–33
normal, 36–37
raw scores, 24–25
shapes of, 35–39
skewed, 36–38
SPSS, 41
stem-and-leaf plot, 38–39

Frequency polygons, 34–35
construction of, 34

midpoints for, 34
of pacing of television shows, 34

Frequency tables, 24–31
creation of, 27, 41–42
expansion of, 28
grouped, 28–31
of nights out socializing, 41–42

Friedler, Shevach, 479
Fugitive literature, 217

Galton, Francis, 449–450
Gambling, probability and, 112
Gender differences

in height, 307
in mathematics skills, 196–197, 202

Generalizability, 105
Geographical information systems (GIS),

66–67
Gerber, Alan, 151–152
GIS. See Geographical information systems
Global Positioning System (GPS), 9
GM. See Grand mean
Gossett, W. S., 144
G*Power, 215
GPS. See Global Positioning System
Grade point average (GPA)

nights socializing and, 403
SAT score and, 403, 437

Grades and studying
line graph of, 55–56
scatterplot of, 53–54

Graduate Record Exam (GRE)
effect size and, 202–204
z table and distribution of means, 171–

172
Grand mean (GM), 311–312, 326

formula for, 525
for Kruskal–Wallis H test, 525

Grapefruit juice and drug absorption, 362
marginal means of, 367–368
as quantitative interactions, 366–370
two main effects for, 363–364
two-way ANOVA for, 362

Graphing software, 64–65
Graphs

bar, 57–60
biased scale lie, 50–51
building of, 62–68
of Challenger space shuttle, 48–49
chartjunk, 62–64
chi-square and, 494–495
clinical applications of, 66
common types of, 53–61
computerized mapping, 66–67
extrapolation lie, 51
false face validity lie, 50
frequency polygons, 34–35
future of, 65–67
guidelines for, 63–65
histograms, 30–33
inaccurate values lie, 51–52

INDEX < I-5



Graphs (cont.)
interactive, 65
interpolation lie, 51
line, 55–57
line of best fit, 55–56
linear relation, 54–55
misleading use of, 49–52
“most misleading graph ever

published,” 49–50
multivariable, 67–68
nonlinear relation, 54–55
outright lie, 52
Pareto chart, 58–59
pictorial, 60
pie chart, 60–61
reading of, 62–63
scatterplots, 53–55
sneaky sample lie, 51
SPSS, 70
stem-and-leaf plot, 38–39
time plot, 56–57
variables and selection of, 62

GRE. See Graduate Record Exam
Grids, 64–65
Grouped frequency tables, 28–31

generation of, 30–31
as histograms, 32–33
of television show pacing, 29–31

Guinness Brewing Company, 144
barrel selection at, 268–269

Happiness and income, 510
Harmonic mean (N�), formula for, 321
Height. See also Children’s height; Student

heights
gender differences in, 307
IQ and, 204

Heteroscedastic populations, 301
Hierarchical multiple regression, 460
Histograms, 30–33

bar graph vs., 31
construction of, 31–33, 42
grouped frequency tables as, 32–33
midpoints for, 32–33
of minutes in shower, 39
of nights out socializing, 42
normal curve with, 130–132
stem-and-leaf vs., 38–39
of student heights, 130–132
of television show pacing, 33
for World Cup wins, 31–33
of z statistics, 151–152

HIV/AIDS epidemic, outlier analysis of, 15
Holiday weight gain, 250

distribution of means differences for,
251–253

paired-samples t test for, 250–251
Holmgren, Mike, 481
Homoscedastic populations, 301

with two-way between-groups
ANOVA, 377

“Hot seat,” 478
Hot-hand theory, 478
Human irrationality, 268
Hurricane Katrina

interactions and, 366
variables and, 7–8

Hypothesis testing, 10–15, 165. See also
Analysis of variance; Chi-square test
for goodness-of-fit; One-way
between-groups ANOVA; One-way
within-groups ANOVA; Paired-
samples t test; Single-sample t test;
Two-way ANOVA

assumptions for, 173–174, 185
between-groups design vs. within-

groups design, 13
calculate test statistic, 175
cleaning data, 182–184
correlation and, 11–13
deciding to reject or fail to reject null

hypotheses, 175–176
determine characteristics of comparison

distribution, 175
determine critical values or cutoffs, 175
experiments for, 11–12
with F statistics, 298–299
identify populations, comparison

distribution, and assumptions, 174–
175

with inferential statistics, 114–116
Kruskal–Wallis H test, 523–526
making decision for, 115–116
Mann–Whitney U test, 520–523
nonparametric, 173, 517–527, 529
null hypothesis, 115
operational definition, 11
outlier analysis, 14–15
parametric tests, 173
with Pearson correlation coefficient,

414–415
with regression, 445–446
research hypothesis, 115
robust, 174–175
sample size and, 202–204
selecting appropriate, E–3
stating null and research hypotheses, 175
steps of, 174–176, 185
t statistic for, 232
Type I error, 118–119
Type II error, 118–119
Wilcoxon signed-rank test, 517–520
z table, 164–172
with z tests, 163–187

Illusory correlation, 108
conspiracy theories, 109–110
Laura Buxton coincidence, 108–109

Inaccurate values lie, 51–52
Income and happiness, 510
Incompatible, in graphs, 50
Independence, probability and, 112–113

Independent variables, 7
control group, 114–115
counterbalancing, 260
experimental group, 114–115
graph reading and, 62–63
graph selection and, 62
orthogonal, 456
statistical power and, 214
statistical test selection, E–1–E–3
in two-way ANOVA, 361, 376

Independent-samples t test, 268–277, 286–
288

comparison distribution characteristics,
272–275

conducting, 285
confidence interval for, 278–281, 285,

288
critical values for, 275
data transformations, 283–284
degrees of freedom for, 274
difference between means for, 278–279
distribution of differences between

means for, 269–270, 275
effect size for, 281–283, 285, 288
identify populations, distribution, and

assumptions, 271–272
make decision for, 276
of product price and perception, 270–

276
reporting statistics, 276–277, 288
SPSS, 285–286
standard error for, 274
state null and research hypotheses, 272
steps of, 270–276
test statistic for, 275–276

Industrial society and fairness, one-way
between-groups ANOVA for, 302–
307

Inferential statistics, 2–3, 113–117
conclusions drawn from, 103
control group, 114–115
experimental group in, 114–115
hypothesis decision, 115–116
hypothesis testing vs., 174
null hypothesis, 114–115
research hypothesis, 114–115

Inrix, 460–461
Interactions

bar graphs and, 369–370
interpretation of, 366–373
public policy and, 366
qualitative, 366–367, 371–373
quantitative, 366–370
in two-way ANOVA, 363–373, 390
in two-way between-groups ANOVA,

384–385, 390
Interactive graphing, 65
Intercept

calculation of, 442
in simple linear regression, 441

Internal consistency, reliability, 417–418
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Interpolation lie, 51
Interquartile range, 92–93

calculation of, 93
formula for, 93
of World Cup success, 93

Intersecting lines
in qualitative interaction bar graphs, 373
in quantitative interaction bar graphs,

369–370
with two-way between-groups

ANOVA, 385
Interval, in grouped frequency tables, 30
Interval estimates, 197–198

for restaurant calorie posting z test,
199–201

Interval variables, 5–6
Investments, regression to the mean and,

450–451
IQ, height and, 204
Irrationality of humans, 268, 510

Japan
rebuilding after World War II, 88
variability in, 80

Killeen, Peter, 208
Knockoff, designer vs., 271
Krugman, Paul, 402
Kruskal–Wallis H test, 523–526

comparison distribution for, 524
critical values for, 524
formula for, 526
grand mean for, 525
identify assumptions for, 524
mean for, 525
null and research hypotheses for, 524
test statistic for, 524–526

Large monitors and productivity, 253
comparison distribution characteristics,

254–255
confidence interval for, 257–259
critical values for, 255
identify populations, distribution, and

assumptions for, 253–254
null and research hypotheses, 254
paired-samples t test for, 253–256
test statistic for, 255–256

Latent variables, 461–462
for parenting and emotional

adjustment, 462–463
Laura Buxton coincidence, 108–109
Law of large numbers, 112
Levels, 7
Levitt, Steven, 151
Life expectancy, per capita health care

costs and, 402
Line graphs, 55–57

line of best fit, 55–56
of studying and grades, 55–56
time plot, 56–57

Line of best fit, 55–56
in regression, 443–445
regression equation and, 448
standard error of the estimate, 448

Linear relation, 54–55
Longitudinal studies, within-groups design

for, 13
Lush, biased sample for, 105–106

Main effects, in two-way ANOVA, 363–
364, 390

Malhotra, Neil, 151–152
MANCOVA. See Multivariate analysis of

covariance
Manifest variables, 461–462
Mann–Whitney U test, 520–523, B–11–

B–12
comparison distribution for, 521
conducting, 531
critical values for, 521–522
formula for, 523
identify assumptions for, 520–521
null and research hypotheses for, 521
SPSS, 529–530
test statistic for, 522–523

MANOVA. See Multivariate analysis of
variance

Manufacturing, statistical approach to, 80
Margin of error, 198. See also Interval

estimates
Marginal mean, 366–368

of decision making process, 372
of grapefruit juice and drug absorption,

367–368
Matched groups, for one-way within-

groups ANOVA, 348–349
Mathematics, gender differences in, 196–

197, 202
Mean, 81–83

calculation of, 83, 96
of children’s heights, 166–168
confidence interval, 198
in confidence interval calculation, 199–

200
of congeniality effect on memory, 

217
deviation from, 89–90
of distribution of means, 147–148
effect size and, 204–205
F distributions and, 299–300
formula for, 83
hypothesis testing, 115
for Kruskal–Wallis H test, 525
marginal, 366–368
in plain arithmetic, 81
in plain English, 81
regression line vs., 451–455
statistical power and, 210–211, 214
symbolic notation of, 82–83
symbols for, 82
use of, 87

visual representation of, 81–82
of World Cup success, 81–83
of z distribution, 138
z score and, 135
z statistics and, 171–172

Mean square (MS)
formula for, 344
for one-way between-groups ANOVA,

310
for one-way within-groups ANOVA,

343–344
in source table, 310

Median, 82–84
calculation of, 84, 96
of congeniality effect on memory, 217
use of, 87
of World Cup success, 84

Medical studies, Type I and Type II errors
in, 119–120

Memory, congeniality effect on, 216–217
Mental illness

comparison distribution characteristics,
237

critical values for, 237
null and research hypotheses for, 236–

237
single-sample t test, 236–238
test statistic for, 238
z statistic for, 150–151

Meta-analysis, 215–217
file drawer analysis, 217
steps for, 216–217

Mexican American caregivers vs.
noncaregivers, 348–349

Microbiologist anthrax conspiracy,
coincidence and, 109–110

Midpoints
for frequency polygons, 34
for histograms, 32–33

Minutes in shower
dot plot of, 241
histogram of, 39
stem-and-leaf plot of, 38–39

Misleading data, 182–184
in 2000 presidential election, 182–183
cleaning up, 183–184
outliers, 183
with Stroop test, 184
types of, 182–183

Misleading use of graphs, 49–52
biased scale lie, 50–51
extrapolation lie, 51
false face validity lie, 50
inaccurate values lie, 51–52
interpolation lie, 51
“most misleading graph ever

published,” 49–50
outright lie, 52
sneaky sample lie, 51
techniques for, 50–52

Mixed-design ANOVA, 387–388
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Mode, 85
calculation of, 96
use of, 87
of World Cup success, 85

Moiré vibrations, 64–65
Mood, mode of, in bipolar disorder, 85
“Most misleading graph ever published,”

49–50
MS. See Mean square
Multifactorial ANOVA, 361, 390
Multimodal distributions, 85
Multiple regression, 456–463, 465–466

in everyday life, 460–461
hierarchical, 460
stepwise, 458–460
understanding equation, 457–458

Multitasking, productivity and, 230
Multivariable graphs, 67–68
Multivariate analysis of covariance

(MANCOVA), 387–388
Multivariate analysis of variance

(MANOVA), 387–388
Myth-busting and public health, 375–376

comparison distribution for, 378–379
critical values for, 379–380
identify populations, distribution, and

assumptions for, 376–377
null and research hypotheses, 377–378
test statistic for, 380
two-way between-groups ANOVA for,

375–385

N�. See Harmonic mean
Nagasaki, Japan, 80
Napoleon’s march to Moscow, 64–65
NASA, Challenger space shuttle, 48–49
National pride, 511–513

Spearman rank-order correlation
coefficient and, 513–516

Natural resources society and fairness,
one-way between-groups ANOVA
for, 302–307

Negative correlation, 404–405
Negatively skewed distributions, 37
New York City restaurant calorie posting

calculate test statistic for, 181
deciding to reject or fail to reject null

hypotheses for, 181–182
determine characteristics of comparison

distribution for, 180
determine critical values or cutoffs for,

181
identify populations, comparison

distribution, and assumptions for,
178–179

interval estimates of, 199–201
stating null and research hypotheses for,

179–180
z test for, 177–182

Newspaper circulation trends, time plot of,
56–57

Nights out socializing
frequency table for, 41–42
grade point average and, 403
histogram for, 42

Nominal variables, 4–6
chi-square statistic for, 481
graph reading and, 62–63
graph selection and, 62
mode with, 85
in nonparametric tests, 479
statistical test selection, E–1–E–3
in two-way ANOVA, 361

Nonlinear relation, 54–55
Yerkes-Dodson law, 55

Nonparametric tests, 173, 478–480, 498
example of, 479
hypothesis tests, 173, 517–527, 529
Kruskal–Wallis H test, 523–526
Mann–Whitney U test, 520–523
for ordinal data, 511–513
when to use, 479–480
Wilcoxon signed-rank test, 517–520

Normal curves, 130–132, 153–154
in confidence interval calculation, 199
for confidence interval for

independent-sample t test, 279–280
for confidence interval for paired-

sample t test, 257
for confidence interval for single-

sample t test, 239
detecting cheating and, 151–152
percentiles, 140, 142
raw score transformation to z score,

135–138
repeated sampling and, 144
sample size and, 130–132
standardization and, 134–135
of student heights, 130–132
z score comparisons, 141
z score transformation to percentiles,

142–143, 155–156, 167, 169
z score transformation to raw score,

138–141
z table and, 165–171

Normal distributions, 36–37
in hypothesis testing, 174

Null hypothesis, 114–117
for chi-square test for goodness-of-fit,

483
for chi-square test for independence,

488
of congeniality effect on memory, 217
developing, 114–115
for Kruskal–Wallis H test, 524
making decision about, 115–117
for Mann–Whitney U test, 521
for one-way between-groups ANOVA,

304–305
for one-way within-groups ANOVA,

340
for Pearson correlation coefficient, 415

for price and perception comparison,
272

for productivity with large monitors,
254

for restaurant calorie posting z test,
179–180

sample size and, 203–204
stating, 175
statistical power and, 209–210
for therapy participation single-sample t

test, 236–237
for two-way between-groups ANOVA,

377–378
Type I error, 118
Type II error, 118–119
for Wilcoxon signed-rank test, 518

Odor study, one-way within-groups
ANOVA for, 338

One-tailed test, 179
degrees of freedom, 235
restaurant calorie posting z test, 179
statistical power and, 212–213

One-way ANOVA, 301
One-way between-groups ANOVA, 302–

315, 325–326
between-groups sum of squares for,

313–314
comparison distribution for, 304–305
critical values for, 305–307
degrees of freedom for, 310
for economic fairness study, 302–307
grand mean for, 311–312
identify populations, distributions, and

assumptions for, 304
null and research hypotheses for, 304–

305
R2 for, 318–319
source table for, 309–310
SPSS, 326–327
steps of, 302–307
test statistic for, 307
total sum of squares for, 311–312, 314
Tukey HSD test for, 320–323
within-groups sum of squares for, 312–

313
One-way within-groups ANOVA, 338–

349, 350
for beer taste tests, 338–339
benefits of, 339
between-groups sum of squares for, 342
comparison distribution for, 340–341
conducting, 351–354
critical values for, 341
degrees of freedom for, 340–341
effect size for, 346
F statistic for, 344
identify populations, distribution, and

assumptions for, 340
make decision for, 344–345
matched groups for, 348–349
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null and research hypotheses for, 340
for odor study, 338
R2 for, 346, 350
source table for, 344
SPSS, 350–351
standard error for, 346–347
steps of, 340–345
subjects sum of squares for, 343
test statistic for, 341–344
total sum of squares for, 342
Tukey HSD for, 346–348, 350
within-groups sum of squares for, 343

Operational definition, 11
Order effects, 259–260
Order of operations, A–3
Ordinal data

correlation and, 510–516, 529
nonparametric tests for, 511–513
scale data conversion to, 513–514
Spearman rank-order correlation

coefficient, 513–516
Ordinal variables, 4–6

graph reading and, 62–63
graph selection and, 62
in nonparametric tests, 479
scale transformation to, 283–284
statistical test selection, E–3

O-rings, of Challenger space shuttle, 48–49
Orthogonal variables, 456
Outcome, probability and, 111
Outliers, 14

celebrity, 87
central tendency and, 86–87
of congeniality effect on memory, 217
correlations and, 408
interquartile range and, 92–93
as misleading data, 183
SPSS, 154–155, 186

Outlier analysis, 14–15
cholera epidemic, 14–15
HIV/AIDS epidemic, 15

Outright lie, 52
Overlap

with ANOVA, 308–309
with confidence interval, 198
effect size and, 204–205
in stepwise multiple regression, 459–460

Overlapping variability, partial correlation
and, 420

p levels, 175
in Bonferroni test, 323–324
degrees of freedom and, 235
for one-way within-groups ANOVA,

347
prep, 208–209
in statistical power, 211–212

Pacing of television shows, 24–25
frequency polygons for, 34
grouped frequency table for, 29–31
histogram for, 33

Paired-samples t test, 251, 261
comparison distribution characteristics,

254–255
conducting, 262–263
confidence interval for, 257–259
counterbalancing, 260
critical values for, 255
effect size for, 259
for holiday weight gain, 250–251
identify populations, distribution, and

assumptions for, 253–254
make decision for, 256
null and research hypotheses, 254
order effects, 259–260
for productivity with large monitors,

253–256
single-sample t test vs., 251
SPSS, 262
steps of, 253–256
test statistic for, 255–256

Parallel lines
in qualitative interaction bar graphs, 

373
in quantitative interaction bar graphs,

369–370
Parameter, 82

standard deviation of, 91
Parametric tests, 173
Parenting and emotional adjustment, 462–

463
Pareto chart, 58–59

creation of, 72
Partial correlation, 419–420

Venn diagram for, 420
Path, 461
Path analysis, 461
Patient Health Questionnaire-9 (PHQ-9),

one-way within-group ANOVA for,
351–354

Pearson correlation coefficient, 410–415,
422, B–9–B–10

calculation of, 410–414, 423–425
for class attendance and exam grades,

410–414
comparison distribution for, 415
critical values for, 415
denominator, 412–413
hypothesis testing with, 414–415
identify population, distribution, and

assumptions for, 414–415
make decision for, 415
null and research hypotheses, 415
numerator of, 412
for simple linear regression, 439
test statistic for, 415

Per capita health care costs, life expectancy
and, 402

Percentages, A–5
of children heights, 166–168
in hypothesis testing, 175
of probability and proportion, 112

for z scores, 167, 169
z tables, 165–172

Percentiles
of children heights, 166–168
normal curve and, 140, 142
raw score conversion of, 170–171
SAT and, 170–171
z score transformation of, 170–171,

186–187
z score transformation to, 142–143,

155–156, 167, 169, 186–187
Perception and product price

comparison distribution characteristics,
272–275

confidence intervals for, 279–281
critical values for, 275
designer vs. knockoff, 271
effect size for, 281–283
identify populations, distribution, and

assumptions, 271–272
independent-samples t test of, 270–276
state null and research hypotheses, 272
test statistic for, 275–276

The Perils of Healthy Food, 114–115
Personal probability, 110
Personality quizzes, validity and, 418–419
PHQ-9. See Patient Health

Questionnaire-9
Phrases, most annoying, 198
Pictorial graphs, 60

of Challenger space shuttle, 60
Pie chart, 60–61

bar graph vs., 61
Planned comparisons, for ANOVA, 319–

320, 326
Point estimate, 197
Pooled variance, 274–275

for independent-samples t test, 274, 
282

Population distribution, for ANOVA, 301
Population variance, in F statistic, 309
Populations

for chi-square test for goodness-of-fit,
482–483

for chi-square test for independence,
487–488

defined, 2–3
distribution of scores, 145–147
effect size and, 204
heteroscedastic, 301
homoscedastic, 301
for hypothesis testing, 174–175
for one-way between-groups ANOVA,

304
for one-way within-groups ANOVA,

340
parameter, 82
for Pearson correlation coefficient, 414–

415
for price and perception comparison,

271–272
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Populations (cont.)
for productivity with large monitors,

253–254
for restaurant calorie posting z test,

178–179
samples and, 103–107
statistical power and, 210
for therapy participation single-sample t

test, 236
for two-way between-groups ANOVA,

376–377
Positive correlation, 403–405
Positively skewed distributions, 37
Post-hoc tests

for ANOVA, 319–320
Bonferroni test, 323–324
Tukey HSD test, 320–323

A Power Primer, 215
Practical importance, statistical significance

vs., 203–204
Practice effects. See Order effects
Prediction

car insurance and, 437
with regression, 447–455, 449, 465
regression equation for, 451
relation vs., 437–438

Pregnancy testing
Type I error with, 118
Type II error with, 118–119

Pregnant women, disaster relief and, 366
prep, 208–209
Presidential election

misleading data in, 182–183
sampling errors in, 102

Price and perception
comparison distribution characteristics,

272–275
confidence intervals for, 279–281
critical values for, 275
designer vs. knockoff, 271
effect size for, 281–283
identify populations, distribution, and

assumptions, 271–272
independent-samples t test of, 270–

276
state null and research hypotheses, 272
test statistic for, 275–276

Priming for advertising, 360–361
Probability, 108–113

calculation of, 111, 123–124
coincidence and, 108–110
definition of, 110
expected relative-frequency, 110–112
gambling and, 112
in hypothesis testing, 175
independence and, 112–113
outcome, 111
personal, 110
proportion vs., 111–112
success, 111
trial, 111

Product price and perception
comparison distribution characteristics,

272–275
confidence intervals for, 279–281
critical values for, 275
designer vs. knockoff, 271
effect size for, 281–283
identify populations, distribution, and

assumptions, 271–272
independent-samples t test of, 270–276
state null and research hypotheses, 272
test statistic for, 275–276

Product variability, 80
Productivity, multitasking vs., 230
Productivity and large monitors, 253

comparison distribution characteristics,
254–255

confidence interval for, 257–259
critical values for, 255
identify populations, distribution, and

assumptions for, 253–254
null and research hypotheses, 254
paired-samples t test for, 253–256
test statistic for, 255–256

Proportionate reduction in error, 451–455
correlation coefficient and, 455
formula for, 454

Proportions, A–3–A–5
probability vs., 111–112

Psychological differences, children’s height
and, 166–170

Psychometricians, 417
Psychometrics, 417, 422

correlation and, 417–419
reliability, 417–418
validity, 418–419

PsycINFO, for meta-analysis, 216–217
Public health and myth-busting, 375–376

comparison distribution for, 378–379
critical values for, 379–380
identify populations, distribution, and

assumptions for, 376–377
null and research hypotheses, 377–378
test statistic for, 380
two-way between-groups ANOVA for,

375–385
Public policy, interactions and, 366

q test. See Tukey HSD test
Qualitative interactions, 366–367, 390

bar graphs for, 373
decision making as, 371–373

Quantitative interactions, 366–370, 390
bar graphs for, 369–370
grapefruit juice and drug absorption,

366–370

R2, 326
formula for, 318, 346, 385
for one-way between-groups ANOVA,

318–319

for one-way within-groups ANOVA,
346, 350

in stepwise multiple regression, 458–
460

for two-way between-groups ANOVA,
385–386

Random assignment, 12–13, 106–107
random selection vs., 106
replication with, 107

Random numbers, 104, B–14
generator for, 107

Random sampling, 103–104
for ANOVA, 301
convenience sampling vs., 104–105
in hypothesis testing, 174
random assignment vs., 106
using, 123

Range, 89
formula for, 89
interquartile, 92–93
of World Cup success, 89

Range-frame, 54–55
Rat foot consumption, degrees of freedom

and, 236
Ratio variables, 5–6
Raw scores, 24–25

in confidence interval calculation, 199
percentile conversion to, 170–171
regression with, 467–468
SAT and, 170–171
z score standardization of, 135–138,

155, 186–187
z score transformation to, 138–141,

170–171, 186–187, 440–441
Regression, 435–468

correlation to, 449
drawing regression line, 443–444
error and, 448
hypothesis testing with, 445–446
interpretation with, 447–455, 465
to the mean, 440, 449–451
multiple, 456–463, 465–466
prediction with, 447–455, 449, 465
proportionate reduction in error, 451–

455
with raw scores, 467–468
simple linear, 436–446
SPSS, 466
standard error of the estimate, 448
structural equation modeling, 461–463

Regression equation
for class attendance and exam grades,

441–444
error in, 448, 453
line of best fit and, 448
mean vs., 451
for simple linear regression, 441–445
z scores, 441, 467

Regression line
for class attendance and exam grades,

444
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drawing, 443–444
mean vs., 451–455
standard deviation around, 451–452

Regression to the mean, 440, 449–451
investments and, 450–451

Relation, prediction vs., 437–438
Relationship quality, anxiety and

depression and, 459–460
Relative risk, 494–496
Reliability, 8–9, 417–418

coefficient alpha, 418
internal consistency, 417–418
test-retest, 417

Repeated-measures ANOVA. See One-
way within-groups ANOVA

Replication, 105
random assignment with, 107

Reporting statistics, F–1–F–2
for independent-samples t test, 276–

277, 288
justify study, F–1
newer, F–2
traditional, F–1–F–2

Research design
between-groups, 12–13
correlational, 13–14
within-groups, 12–13

Research hypothesis, 114–117
for chi-square test for goodness-of-fit,

483
for chi-square test for independence,

488
developing, 114–115
for Kruskal–Wallis H test, 524
making decision about, 115–117
for Mann–Whitney U test, 521
for one-way between-groups ANOVA,

304–305
for one-way within-groups ANOVA,

340
for Pearson correlation coefficient, 415
for price and perception comparison,

272
for productivity with large monitors, 254
for restaurant calorie posting z test,

179–180
sample size and, 203–204
stating, 175
for therapy participation single-sample t

test, 236–237
for two-way between-groups ANOVA,

377–378
Type I error, 118
Type II error, 118–119
for Wilcoxon signed-rank test, 518

Responsibility promotion, academic
achievement and, 296

Restaurant calorie posting
calculate test statistic for, 181
deciding to reject or fail to reject null

hypotheses for, 181–182

determine characteristics of comparison
distribution for, 180

determine critical values or cutoffs for,
181

identify populations, comparison
distribution, and assumptions for,
178–179

interval estimates of, 199–201
stating null and research hypotheses for,

179–180
z test for, 177–182

Robust hypothesis tests, 174–175
Rorschach inkblot test, 9
Rounding, 28
Ruhm, Christopher, 437–438, 449

Sample size
Cohen’s d, 206–208
degrees of freedom and, 234–235
effect size and, 202–204
hypothesis testing and, 202–204
in nonparametric tests, 479–480
normal curve and, 130–132
standard error and, 202–203
statistical power and, 212–214
t statistic and, 235
z tests and, 203–204

Samples
biased, 105–106
bootstrapping, 527
in confidence interval calculation, 199–

200
convenience, 103–105
defined, 2–3
estimation of standard deviation of,

229–230
generalizability, 105
hypothesis testing and, 175
normal curve and repeated, 144
point estimate, 197
populations and, 103–107
for probability-based judgments, 114–

115
random, 103–104
random assignment of, 106–107
replication, 105
standard deviation of, 91
statistic, 82
volunteer, 105

Sampling errors, in 2000 presidential
election, 102

Sampling with replacement, 145
SAT. See Scholastic Aptitude Test
Scale data, conversion to ordinal data, 513–

514
Scale variables, 6–7

graph reading and, 62–63
graph selection and, 62
in hypothesis testing, 174
mode with, 85
ordinal transformation of, 283–284

statistical test selection, E–1–E–3
in two-way ANOVA, 361

Scatterplots, 53–55
of Challenger space shuttle, 49, 53
creation of, 54–55, 71
data-ink ratio of, 54
line of best fit, 55–56
linear relation, 54–55
nonlinear relation, 54–55
for Pearson correlation coefficient, 411
range-frame, 54–55
of studying and grades, 53–54

Scholastic Aptitude Test (SAT)
class attendance and exam grades and,

457–458
grade point average and, 403, 437
raw scores, z scores, and percentiles,

170–171
Score distribution

distribution of means vs., 145–147
z statistics and, 171–172

Self-esteem promotion, academic
achievement and, 296

Self-selected assignment, 12–13
Self-selected sample. See Volunteer sample
SEM. See Structural equation modeling
Shower, minutes in

dot plot of, 241
histogram of, 39
stem-and-leaf plot of, 38–39

Simple linear regression, 436–446, 465
for class attendance and exam grades,

438–441
equation for, 441–445
hypothesis testing with, 445–446
prediction vs. relation, 437–438
regression to the mean, 440
for SAT and GPA, 437
standardized regression coefficient, 445–

446
with z scores, 438–441

Single-sample t test, 233–241, 243–244
conducting, 244–245
confidence interval for, 239–240
degrees of freedom for, 234
dot plots, 241–242
effect size for, 240–241
of flower symmetry, 228
paired-samples t test vs., 251
SPSS, 244
steps of, 236–238
t statistic calculated with standard error,

232–233
t table and degrees of freedom, 234–236
of therapy participation, 236–238

Skewed distributions, 36–38
ceiling effect, 37
floor effect, 37
negatively, 37
in nonparametric tests, 479–480
positively, 37
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Skin’s Shangri La, biased sample for, 105–
106

Slope
calculation of, 442–443
of regression line, 444–445
in simple linear regression, 441

Sneaky sample lie, 51
Snow, John, 2, 7, 10–12, 14–15, 402
Soccer. See also World Cup success

frequency tables of, 25–28
histogram for, 31–33

Soccer ability and birth month study
chi-square test for goodness-of-fit for,

481–486
comparison distribution for, 482–483
critical values for, 483–484
identify populations, distribution, and

assumptions, 482–483
null and research hypotheses for, 483
test statistic for, 484–485

Soccernomics, 25, 28
Social capital, 436
Social science, detecting cheating in, 151–

152
Software for graphing, 64–65
Source table

completed, 315
with formulas, 315
for one-way between-groups ANOVA,

309–310
for one-way within-groups ANOVA,

344
for two-way ANOVA, 364
for two-way between-groups ANOVA,

380
Spearman rank-order correlation

coefficient, 513–516, B–10
calculation of, 530
data conversion for, 513–514
formula for, 515

“Split-half” reliability, for internal
consistency, 417–418

SPSS. See Statistical Program for the Social
Sciences

Square root transformations, 284
SS. See Sum of squares
SSerror. See Sum of squared error
Standard deviation, 90–92

calculation of, 90
of children’s heights, 166–168
Cohen’s d, 206–207
of distribution of differences between

means, 275
of distribution of means, 147–149
effect size and, 204–205
estimation of, 229–230
formula for, 92
for independent-samples t test, 282
around regression line, 451–452
in statistical power, 210–214
symbols for, 92

of t distribution and, 229
of z distribution, 135
z score and, 135

Standard error, 148–149
Cohen’s d, 206–207
in confidence interval calculation, 200
formula for, 148, 320–321
for independent-samples t test, 274
for one-way within-groups ANOVA,

346–347
sample size and, 202–203
in statistical power, 210–211
symbolic notation for, 148
for t statistic, 231–232
t statistic calculated with, 232–233
for Tukey HSD, 320–321

Standard error of the estimate, 448
Standard normal distribution, 140
Standardization, 134–135, 154

of cockroach weight, 134–135
need for, 134
normal curves and, 134–135
raw score transformation to z score,

135–138
z score comparisons, 141, 155–156
z score transformation to percentiles,

142–143, 155–156, 167, 169
z score transformation to raw score,

138–141
Standardized regression coefficient, 445–

446
for class attendance and exam grades,

445
correlation coefficient vs., 445–446
formula for, 445

Standardized regression equation, 439
Standardized tests, detecting cheating on,

151
Standardized z distribution, 166
Starbucks calorie posting

calculate test statistic for, 181
deciding to reject or fail to reject null

hypotheses for, 181–182
determine characteristics of comparison

distribution for, 180
determine critical values or cutoffs for,

181
identify populations, comparison

distribution, and assumptions for,
178–179

interval estimates of, 199–201
stating null and research hypotheses for,

179–180
z test for, 177–182

Starting points, in graphs, 50
Statistical interaction, 360
Statistical model, 461
Statistical power, 209–216, 219

calculation of, 210–211
calculators for, 215
factors affecting, 212–215

importance of, 210–212
independent variables and, 214
null hypothesis and, 209–210
p levels in, 211–213
sample size and, 212–214
standard deviation in, 210–214
tables for, 215
two-tailed test vs. one-tailed test in,

212–213
Type II error and, 209–210

Statistical Program for the Social Sciences
(SPSS)

chi-square test, 499
correlation, 422–423
distributions, 154–155
frequency distributions, 41
graphs, 70
independent-samples t test, 285–286
introduction to, 17
Mann–Whitney U test, 529–530
one-way between-groups ANOVA,

326–327
one-way within-groups ANOVA, 350–

351
outliers, 154–155, 186
paired-samples t test, 262
regression, 466
single-sample t test, 244
statistics, 95
two-way ANOVA, 390–391
variables for, 6, 122
z distribution, 185–186

Statistical significance, 176
degrees of freedom and, 234
effect size and, 202–204
gender differences in mathematics, 196–

197, 202
hypothesis testing result, 176
practical importance vs., 203–204

Statistical test, selection of, E–1–E–3
Statistics, 82. See also F statistic; t statistic; z

statistics
inferential, 2–3, 113–117
sample size and, 202–204
SPSS, 95

Stem-and-leaf plot, 38–39
construction of, 38–39
histograms vs., 38–39
of minutes in shower, 38–39

Stepwise multiple regression, 458–460
Stroop test, 5

degrees of freedom and, 235
misleading data with, 184

Structural equation modeling (SEM), 461–
463

Student heights
above mean, 166–168
below mean, 168–170
distribution of means of, 145–147
histograms of, 130–132
normal curves of, 130–132

I-12 > INDEX                                                                                                                          



z distribution of, 138
z score of, 136–137

Studies, for meta-analysis, 216–217
Studying and grades

line graph of, 55–56
scatterplot of, 53–54

Subjective probability. See Personal
probability

Subjects degrees of freedom
formula for, 341
one-way within-groups ANOVA, 341

Subjects sum of squares
formula for, 343
for one-way within-groups ANOVA,

343
Success, probability and, 111
Sum of squared error (SSerror), 453
Sum of squares (SS), 90–91

grand mean, 311–312
for one-way between-groups ANOVA,

313–314
for one-way within-groups ANOVA,

341–344
for Pearson correlation coefficient, 412–

413
for R2, 318
in source table, 310
total, 311–312, 452
of within-groups, 312–313

Symbolic notation
for degrees of freedom, 234
for mean, 82
for mean of distribution of means, 148
for standard deviation, 92
for standard deviation estimation, 229–

230
for standard error, 148
for variance, 92
for z statistic, 150

Symbols and notation, A–2

t distribution, 228–233, 243, B–4
cutoffs for, 237
F distribution vs., 300
standard deviation and, 229
standard deviation from sample

estimation, 229–230
standard error for t statistic, 231–232
t statistic calculated with standard error,

232–233
t table and, 234
t test and, 228–229
z distribution vs., 229, 234–235, 300

t statistic, 233
calculated with standard error, 232–233
Cohen’s d for, 241
confidence interval for, 279–281
for confidence interval for

independent-sample t test, 280–281
for confidence interval for paired-

sample t test, 258

for confidence interval for single-
sample t test, 239–240

F statistic vs., 298–299
sample size and, 235
standard error for, 231–232
z statistic vs., 232, 235

t table, 233
degrees of freedom and, 234–236
F table vs., 300
t distribution and, 234

t test. See also Independent-samples t test;
Paired-samples t test; Single-sample 
t test

for multitasking study, 230
t distribution and, 228–229
Type I errors and, 297

Tables. See also F table; Frequency tables;
Grouped frequency tables; t table; z
table

contingency, 487
for statistical power, 215

Taste tests, 338–339
Tattoos and crime, bar graphs of, 59–60
Television shows

influence of, on children, 35–36
pacing of, 24–25

frequency polygons for, 34
grouped frequency table for, 29–31
histogram for, 33

Test selection, for hypothesis testing, 174–
175

Test statistic
for chi-square test for goodness-of-fit,

484–485
for chi-square test for independence,

488–491
critical values vs., 175
in hypothesis testing, 175
for independent-samples t test, 275–276
for Kruskal–Wallis H test, 524–526
for Mann–Whitney U test, 522–523
for one-way between-groups ANOVA,

307
for one-way within-groups ANOVA,

341–344
for Pearson correlation coefficient, 415
for productivity with large monitors,

255–256
for restaurant calorie posting z test, 181
in statistical power, 210–211
for therapy participation single-sample t

test, 238
for two-way between-groups ANOVA,

380
for Wilcoxon signed-rank test, 519–520

Test-retest reliability, 417
Theoretical model, 461
Therapy participation

comparison distribution characteristics,
237

critical values for, 237

null and research hypotheses for, 236–
237

single-sample t test, 236–238
test statistic for, 238
z statistic for, 150–151

Third quartile, 92–93
TierneyLab, 114
Time plot, 56–57

creation of, 57
of newspaper circulation trends, 56–57

Time series plot. See Time plot
Total degrees of freedom

formula for, 379
for two-way between-groups ANOVA,

379
Total sum of squares

formula for, 381
for one-way between-groups ANOVA,

311–312
for one-way within-groups ANOVA,

342
for two-way between-groups ANOVA,

381
Trial, probability and, 111
Tukey HSD test, 321, 326

for fairness study, 321–323
harmonic mean for, 321
for one-way between-groups ANOVA,

320–323
for one-way within-groups ANOVA,

346–348, 350
Two-tailed test, 180

confidence interval for single-sample 
t test, 239

restaurant calorie posting z test, 179–
180

statistical power and, 212–213
Two-way ANOVA, 361–364, 390

benefits of, 362
between-groups, 375–386
cell in, 363
for decision making process, 371–373
F statistic in, 363–364, 384
for grapefruit juice and drug

absorption, 362
interactions in, 363–364, 390
source table for, 364
specific vocabulary of, 362–363
SPSS, 390–391
steps of, 375–385
study design for, 363
two main effects of, 363–364

Two-way between-groups ANOVA, 375–
386

bar charts of, 385
between-groups sum of squares for,

381–384
comparison distribution for, 378–379
conducting, 390–393
critical values for, 379–380
effect size for, 385–386
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Two-way between-groups ANOVA (cont.)
identify populations, distribution, and

assumptions for, 376–377
interactions in, 384–385, 390
make decision for, 380
null and research hypotheses, 377–

378
R2 for, 385–386
sources of variability in, 380–385
SPSS, 390–391
steps of, 375–385
test statistic for, 380
total degrees of freedom for, 379
total sum of squares for, 381
within-groups degrees of freedom for,

379
within-groups sum of squares for, 383–

384
Type I error, 118–119

prevalence of, 119–120
t test and, 297
with three or more comparisons, 297–

298
z statistics and, 151–152

Type II error, 118–119
prevalence of, 119–120
statistical power and, 209–210

Unemployment and death rate, simple
linear regression for, 437–438

Unequal scales, in graphs, 50
Unimodal distributions, 85, 450
University counseling center

comparison distribution characteristics,
237

critical values for, 237
null and research hypotheses for, 236–

237
single-sample t test, 236–238
test statistic for, 238
z statistic for, 150–151

Validity, 8–9, 418–419
Variability, 88–89

F distributions for, 299–300
in Japan, 80
measures of, 88–93
overlapping, 420
product, 80
range, 89
in two-way between-groups ANOVA,

380–385
variance, 89–91

Variables
confounding, 7–8
continuous observations, 5–6
correlation, 11–13
dependent, 7
discrete observations, 4–6
factor, 361
graph selection and, 62

in hypothesis testing, 174
independent, 7
interval, 5–6
latent, 461–462
levels, 7
linear relation, 54–55
manifest, 461–462
nominal, 4–6
nonlinear relation, 54–55
operational definition, 11
ordinal, 4–6
orthogonal, 456
path, 461
ratio, 5–6
reliability of, 8–9
research and, 7–10
scale, 6–7
SPSS, 122
of statistical power, 214–215
in two-way ANOVA, 361, 376
validity of, 8–9

Variance, 89–91. See also Analysis of
variance; Pooled variance

between-groups, 298–299
calculation of, 90–91, 96
of distribution of differences between

means, 275
formula for, 91
symbols for, 92
within-groups, 298–299

Venn diagram, for partial correlation, 420
Volunteer sample, 105

Weight gain over the holidays, 250
distribution of means differences for,

251–253
paired-samples t test for, 250–251

Wilcoxon signed-rank test, 517–520, B–13
comparison distribution for, 518
critical values for, 519
formula for, 520
identify assumptions for, 518
null and research hypotheses for, 518
test statistic for, 519–520

Wine price and perception
comparison distribution characteristics,

272–275
confidence intervals for, 279–281
critical values for, 275
effect size for, 281–283
identify populations, distribution, and

assumptions, 271–272
independent-samples t test of, 270–

276
state null and research hypotheses, 272
test statistic for, 275–276

Within-groups ANOVA, 301, 338. See also
One-way within-groups ANOVA

benefits of, 339
Within-groups degrees of freedom

formula for, 305, 341, 379

one-way within-groups ANOVA, 
341

for two-way between-groups ANOVA,
379

Within-groups research design, 12–13
Within-groups sum of squares

formula for, 343, 383–384
for one-way between-groups ANOVA,

312–313
for one-way within-groups ANOVA,

343
for two-way between-groups ANOVA,

383–384
Within-groups variance, 298–300

in F statistic, 299, 308–309
for one-way between-groups ANOVA,

305
population variance and, 309
sum of squares for, 312–313

Woods, Tiger, popularity of, 197–198
Words, most annoying, 198
World Cup success, 26–28

frequency tables of, 25–28
histogram of, 31–33
interquartile range for, 93
mean of, 81–83
median of, 84
mode of, 85
range of, 89

Year in school, CFC scores and, 301
Yerkes-Dodson law, 55

z distribution, 135, 140, B–1–B–3
confidence interval calculation with,

198–201
F distribution vs., 300
mean of, 138
SPSS, 185–186
standard deviation of, 135
standardized, 166
of student heights, 138
t distribution vs., 229, 234–235, 300
use of, 140–141

z scores, 134–135, 154
adjusted standardized residuals vs., 497
calculating, 136–137
comparisons with, 141, 155–156
of distribution of means, 150–151
distributions of, 165
estimation of, 137
extreme, 168–170
formula for, 136
mean and, 135
percentage for, 167, 169
percentile transformation of, 142–143,

155–156, 167, 169, 186–187
percentile transformation to, 170–171,

186–187
raw score standardization to, 135–138,

155, 186–187
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raw score transformation of, 138–141,
170–171, 186–187, 440–441

regression equation, 441
regression with, 438–441, 467
SAT and, 170–171
standard deviation and, 135
of student heights, 136–137
tables of, 165–171
z tables and, 165–172

z statistics, 150–151
in confidence interval calculation, 199–

201
distribution comparison with, 171–172
F statistic vs., 298–299
formula for, 150

histograms of, 151–152
for mental illness, 150–151
percentage between mean of

distribution and, 165–171
in statistical power, 211–212
symbolic notation for, 150
t statistic vs., 232, 235
Type I error and, 151–152

z table, 164–172, 185
children’s height and, 166–170
distribution of means and, 171–172
in statistical power, 211–212
use of, 166
from z scores to percentages, 165–

172

z tests, 185
cleaning data, 182–184
conducting, 187
confidence interval calculation with,

198–201
hypothesis testing with, 163–187
for public health, 177–182
sample size and, 203–204
z table, 164–172
z table and distribution of means, 171–

172
Zillow.com, 460
Zuckerberg, Mark, 436–437
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Mean of a Sample

Range
range � Xhighest � Xlowest

Variance

Standard Deviation

Standard Deviation (when we don’t already
have variance)

Interquartile Range
IQR � Q3 � Q1

z Score

Raw Score from a z Score
X � z(�) � �

Standard Error

z Statistic for a Distribution of Means

FORMULAS

Confidence Interval for a z Test
Mlower � �z(�M) � Msample

Mupper � z(�M) � Msample

CHAPTER 4

CHAPTER 6

CHAPTER 8

CHAPTERS 9 and 10

Degrees of Freedom for a Single-Sample 
t Test or a Paired-Samples t Test
df � N � 1

Confidence Interval for a Single-Sample t test
Mlower � �t(sm) � Msample

Mupper � t(sm) � Msample

Effect Size for a Single-Sample t Test or a
Paired-Samples t Test

Cohen’s 

Effect Size for a z Test

Cohen’s 

prep

prep � NORMDIST (NORMSINV (1-P)/
SQRT(2))) [used in Microsoft Excel]

Standard Deviation of a Sample

Standard Error of a Sample

t Statistic for a Single-Sample t Test



Degrees of Freedom for an Independent-
Samples t Test
dftotal � dfX � dfY

Pooled Variance

Variance for a Distribution of Means for an
Independent-Samples t Test

Variance for a Distribution of Differences
Between Means
s2

difference � s2
MX � s2

MY

Standard Deviation of a Distribution 
of Differences Between Means

t Statistic for an Independent-Samples 
t Test

often abbreviated as:

Confidence Interval for an Independent-
Samples t Test
(MX � MY)lower � �t ( sdifference) � (MX � MY )sample

(MX � MY)upper � t ( sdifference) � (MX � MY)sample

Pooled Standard Deviation

Effect Size for an Independent-Samples 
t Test

Cohen’s d �

One-Way Between-Groups ANOVA
dfbetween � Ngroups � 1

dfwithin � df1 � df2 � . . . � dflast

(in which df1 etc. are the degrees of freedom, 
N � 1, for each sample)

dftotal � dfbetween � dfwithin
or dftotal � Ntotal � 1

SStotal � R(X � GM )2 for each score

SSwithin � R(X � M )2 for each score

SSbetween � R(M � GM )2 for each score

SStotal � SSwithin � SSbetween

Effect Size for a One-Way Between-Groups
ANOVA

(Chapter 12 formulas continued on inside back cover.)

CHAPTER 11

CHAPTER 12



Two-Way Between-Groups ANOVA
dfrows � Nrows � 1

dfcolumns � Ncolumns � 1

dfinteraction � (dfrows)(dfcolumns )

SStotal � R(X � GM )2 for each score

SSbetween(rows) � R(Mrow � GM )2 for each score

SSbetween(columns) � R(Mcolumn � GM )2 for each
score

SSwithin � R(X � Mcell)
2 for each score

SSbetween(interaction) � SStotal � (SSbetween(rows) �

SSbetween(columns) � SSwithin)

FORMULAS

Effect Sizes for a Two-Way Between-Groups
ANOVA

Tukey HSD post-hoc test

if equal sample sizes
if unequal sample sizes

for any two sample means

CHAPTER 14

CHAPTER 12 (Chapter 12 formulas continued from inside front cover.)

One-Way Within-Groups ANOVA
dfsubjects � n � 1

dfwithin � (dfbetween)(dfsubjects)

dftotal � dfbetween � dfsubjects � dfwithin

SSsubjects � R(Mparticipant � GM)2 for each score

SSwithin � SStotal � SSbetween � SSsubjects

Effect Size for a One-Way Within-Groups
ANOVA

CHAPTER 13



Standardized Regression Equation
zŶ � (rXY)(zX)

Simple Linear Regression Equation
Ŷ � a � b (X )

Standardized Regression Coefficient

Proportionate Reduction in Error

CHAPTER 16

Spearman Correlation Coefficient

Wilcoxon Signed-Rank Test for
Matched Pairs
T � RRsmaller

Mann-Whitney U Test

, where R is

the ranks for the first sample.

, where R is

the ranks for the second sample.

Kruskal-Wallis H Test

, where the one refers to the first group.

CHAPTER 18

Pearson Correlation Coefficient

dfr � N � 2

CHAPTER 15

Chi-Square Statistic
df�2 � k � 1 (for chi-square test for 

goodness-of-fit)

df�2 � (krow � 1)(kcolumn � 1) (for chi-square test 
for independence)

Expected frequency for each cell �

where we use the overall number of
participants, N, along with the totals for the
rows and columns for each particular cell.

Effect size for the Chi-Square Statistic

Cramer’s V � , 

where we use the smaller of the row and
column degrees of freedom.

CHAPTER 17
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