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INTRODUCTION: TELL ME ALL ABOUT IT

Inasmuch as philosophers only are able to grasp the eternal and unchangeable, and those who

wander in the region of the many and variable are not philosophers, I must ask you which of the

two classes should be the rulers of our State?

—Plato

Looking at Shapes and Talking About It

I’m often asked to explain what I do, so that everyone understands. I used to take this

seriously and try for a definite answer. Then I learned how hard the question is to get

right. It’s nearly impossible to satisfy yourself and others in the same way, especially

when what you do can change. Some people work in recognized professions with

time-honored names. It’s OK to be an accountant, architect, artist, chemist, composer,

doctor, engineer, lawyer, linguist, mathematician, philosopher, physicist, teacher,

etc.—the list is endless, and if that’s not enough, it’s easy to add a few technical details

to personalize the name of what you do. But this doesn’t help—I can’t tell you I’m a

shape grammarist. That’s no better than idly glancing around or just wandering away.

Names don’t always work—especially novel ones—and what a shape grammarist does

may sound pretty confusing when it’s described only in words. I’m really lost. I don’t

know how to answer the question to make you understand. Sooner or later, it’s time

to give up on a set reply. It means more to try whatever you can as you go on. I have

two replies that I’ve used before, and they’re a good start. First I have an answer that

explains what I do using words and shapes—it’s verbal and visual. I enjoy seeing

things in new ways and saying why I think it’s worthwhile, so I usually try this right

away. My other answer is more autobiographical—it’s a story I tell about how I got

interested in looking at shapes and using them to design. There’s no reason my

answers shouldn’t show what I do. Having two is already a lot like seeing shapes in al-

ternative ways—shapes have parts that change as I go along. And it’s the same for my

answers—I can flip back and forth from one to the other whenever I want in a kind of

gestalt switch. In fact, exposition and autobiography mix in my answers as they un-

fold. They’re both personal and subjective—wandering freely from here to there with

no end in sight is a good way to talk about shapes that also shows how they work, and
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it’s probably the same for design. Neither what parts shapes have nor what’s exposition

and what’s autobiography can be settled permanently. Making up your mind is a pro-

cess that’s always open-ended—what counts can be seen in many ways. It all adds up

as I change my point of view and what I say about what I see.

Making sense of shapes concerns me most, and this motivates my answers.

Shapes are things like these

that I can draw on a page with points, lines, and planes. They’re the first three kinds of

basic elements of dimensions zero, one, and two. Shapes made up of basic elements

have parts that can be seen in many ways. That’s what rules are for—to make sense of

shapes and to change what I see. Showing how rules work is something I do a lot—it’s

all about seeing and doing. Then, there are also shapes made up of solids. These are

another kind of basic element of dimension three. They extend beyond this page or

any other surface. Solids go together to make the shapes of everyday experience—the

shapes of things that are easy to hold and bump into—for example, the shape of this

book at different times. And there are other shapes that extend farther than this page—

shapes that include points, lines, and planes that are located in space.

After I introduce shapes in the following section, I use them in the story I tell

about design. Both of my answers converge around similar ideas. If you want, you can

try them in reverse order. I’ve already said this is easy to do. I like to read books by sam-

pling them haphazardly. Usually, I read many at once, shuffling through them in this

random fashion until I’ve finished everything. It’s the same looking at shapes—you do

it one way now and another way later. With shapes, there’s always something new to

see.

Answer Number One—What Do You See Now?

I’m obsessed with shapes. They’re almost everywhere I look, and once they’re in view I

can’t take my eyes off of them. I always wonder what I’m going to see next. Nothing

looks the same for very long, but this needn’t be as strange and confusing as it sounds.

I know what to do with the ambiguity. Shapes change—I can see them in alternative

ways anytime I choose—and I can use the novelty to design. It’s an inexhaustible

source of creative ideas.

The crux of what fascinates me is evident whenever I draw lines with pencil and

paper. Suppose I draw the following shape
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the way an experienced draftsman would, drawing only the longest lines, perhaps in

this counting sequence

without thinking how the shape looks or worrying about what it means, and then see

the equilateral triangle

You probably see the same triangle I do. It’s obvious. And this seems perfectly natural.

Only there’s a big discrepancy between the actual lines I’ve drawn and what’s poten-

tially there to see. I didn’t draw the sides of the triangle on purpose. They’re all defined

as I draw the last line

one side a little before the other two. The three sides of the triangle are shorter than my

lines. They’re formed when my lines intersect. No one intentionally put the triangle

where it is. Yet it’s there anyway, patiently waiting to be seen. I’m sure because I can

trace over its sides—they’re embedded in the lines I’ve drawn. And in the same way,

other shapes are eventually parts of my shape, as well. There are a myriad of them

that I’ve neither drawn nor thought of beforehand, and most of them have lines that

aren’t determined in intersections. There are plenty of other ways to embed lines in my

lines, so that these segments interact meaningfully.

Consider a few examples. I can see abutting bits of hexagons

that change the way my shape looks. And then there are a lot of A’s in three different

orientations
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that appear to shrink

But when I look rapidly again and again, A’s flip back and forth with X’s. They’re also

in three different orientations

and come in many sizes

It’s animation—A’s and X’s move, yet the lines I’ve drawn don’t. Is this a new kind of

paradox? Shapes are supposed to be static, but mine is unstable. What I see holds still

only if I fix it. I’m free to see anything I choose, as long as I stay within the lines. Parts

are everywhere. And most of them—in fact, all of them I can see—are a complete

surprise.

No matter how I draw the shape

it’s going to be ambiguous. Whatever I do, lines fuse. I can’t tell you what I’ve done

simply looking at the result. There isn’t any record either of what I do or of what I

see in my drawing, and try as I might, I can’t see how to use it to store (conserve) the

details of anything that’s happened before. Let me show you what I mean.

If I draw a line

pick up my pencil, and then go on from where I left off

it doesn’t show that I’ve drawn two lines. I see only a single unbroken line

In the same way, if I have two collinear lines
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and fill in the gap between them—connecting either end of one line with either end of

the other—I’m left with a single line again

not three. If I do this every way I can—there are four distinct possibilities that I can

show schematically like this

—and then shuffle the results, I can’t tell them apart by what I’ve done. They’re all ex-

actly the same. And once lines fuse, I can divide them as I please to see whatever there

is. The line I have now may break in half

or anywhere many times, whether the pieces were originally drawn or not.

Fusing lines and dividing them are the flip sides of embedding. The ambiguity

is inevitable, but this isn’t a problem. I’ve learned to go on from what I’ve done with-

out hesitating every time I see something new. I never have any doubts. I trust my

eyes. In fact, changes can be so rapid and smooth that I don’t notice them. Then if I

want to check what’s happening, I have to stop what I’m doing in midcourse. I have

to remember everything that’s transpired. But I may forget, with no one to remind

me. It’s lucky—what’s lost in my head can’t bother me. Memory just gets in the way,

limiting the things I’m able to see here and now. That’s how it is with definition and

circumstance—getting it right or taking a chance on something new. The one fore-

closes the other, offering the same old things in return. Whatever I see is new, even if

I’ve seen it before. I guess shapes aren’t for the constructionist. Adherence to original

intent or prior use is senseless. And it’s easy to see why.

There’s no obvious change when you look at the shape in my original drawing

not knowing what I’ve done. What is there to notice? Nothing keeps you from seeing

anything you want to see or doing as you like independent of anything that’s hap-

pened before. We can both use the drawing profitably without saying what parts

it has. We don’t need to agree on what we see. You never have to ask me how the
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drawing got there, or which of its lines were actually drawn. Remember, it’s possible to

forget. And even if I know, I can be wrong. For example, I may inadvertently rotate the

drawing. Its history is as irrelevant as it is invisible. You’re free to start over, or to

change your mind. It’s completely up to you. Whatever you see is right. There are no

prior results to guide you. And it’s no good trying to cheat. Analysis won’t buy you

anything. There’s nothing to figure out in advance—parts aren’t definite. Shapes are

always ambiguous. It’s no use asking me what I’ve done—I can’t do your seeing for

you. It’s always the same. What you see is what you get.

This is like relaxed conversation with friends. Talking can be aimless—fluid,

funny, full of irony, irreverent, illogical, lacking any definitions, frustrating, enjoyable,

and so much more—and even so, very useful. You don’t know what you’re going

to hear until you’ve heard it, and this goes for what you say. You just go on talking.

And in the same way, you don’t know what you’re going to see until you’ve seen

it, and this goes for what you draw. You just go on looking with your eyes. You’ve

got the knack. But don’t be complacent. It’s never absolutely sure. An automatic

process can be stopped. Then everything can go horribly wrong. It all falls apart. And

when shapes are in pieces, their changes are in the past with nothing new in sight.

Analysis decides what there is before I look. There’s no more to see, only arrange-

ments of pieces combined in alternative ways. These are easy to count, and the results

are always the same. Analysis settles everything before it begins. Nothing is ever really

new.

What can I do to stop you from using your eyes? Are there neat examples of this?

Are they something to worry about? How do you go on seeing anyway? What does

it mean when you’ve got the knack? These are some of the questions I’m going to

answer. But like many good questions, their importance is established only as their

answers unfold. Everything depends on shapes and their properties. I want to take ad-

vantage of these properties to get something new—to use shapes in a continuous pro-

cess that doesn’t check my ability to see in another way as I go on. Look at it like this. I

want to have the ability to act on what I see, whatever it is and whenever I see it. Much

more, I want to try and explain how all of this works. I want to figure out what’s going

on as shapes change.

Another one of my big questions is how to be creative in design. My guess is

that shapes—drawing them and seeing them—have a lot to do with the answer. If

designers use shapes in their work as sketches, drawings, models, and the like, then

they can’t do anything more than shapes allow. This is a lot for both hand and eye.

Still, there are telling implications for creative activity. Understanding shapes is a use-

ful place to start and outline the limits of design. First, there are experiments to run

with pencil and paper, and other devices to get the facts right, so that seeing is never

lost. This is like physics. There are phenomena—shapes and the lines, etc., that go to

make them—and observation. Everyone can see what’s happening and talk about it in

his or her own way, while shapes ground the discussion in concrete experience. Shapes

are there to see and to see again. Then, there’s the mathematics to describe the many

and varied results of these experiments, and to tie them together in a meaningful way
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that enhances rather than diminishes what’s possible in drawing and making things. It

doesn’t work to say you understand design unless this explains what you can see and

do with pencil and paper. These are the flip sides of what I want to show. There’s a lot

to see and a lot to say. And there’s more.

Designers tell me they’re special. It’s evident that what they do when they’re be-

ing creative—that is to say, designing in practice—distinguishes them from everyone

else. When I first heard this, I wasn’t really sure. I wondered how anyone could tell.

Luckily, Donald Schon had a reason why—‘‘reframing’’ and ‘‘back talk’’ make the dif-

ference. This is the ability to interact with your work in the same unstructured way you

argue about something new in vague and shifting terms that haven’t been defined—to

reconfigure what you’re doing before and after you act, to react freely as you see things

in different ways, and to try new ideas in an ongoing process as you like. Designers

work in this way. And in fact, everything about drawing confirms it. Shapes are the

reason why—embedding and the consequent ambiguity make reframing and back

talk inevitable. That’s how they work. But Schon went on to say that designers aren’t

alone in their use of reframing and back talk. Reframing and back talk are hallmarks of

all professional activity. Good doctors, lawyers, and planners use them, too. However,

shapes still make a difference that may make designers right. There are devices for visual

expression—shapes—and devices for verbal expression—symbols—that aren’t the

same. Designers may be special because they use the former before the latter. Only

the difference isn’t categorical, even if shapes and symbols classify professions, the

mainly visual ones and the mainly verbal ones. There are some decisive relationships,

and an unexpected kind of equivalence. Shapes are full of ambiguity—this explains

reframing and back talk in design and may show something about how they work else-

where. It’s still a question of ambiguity and how to use it.

I’m going to develop a unified scheme that includes both visual and verbal

expression with shapes and symbols, respectively. My scheme has two aspects. First,

whenever I use symbols, it’s a special case of using shapes. Embedding is restricted,

so that it’s identity. This may seem like a minor change—it’s merely a question of

whether the things you’re dealing with have dimension zero or more, whether they be-

have like points or not—but the implications are huge. It makes all the difference. Take

the shape

and assume that its three longest lines—the lines that I drew—are individual symbols.

Then the triangle
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is no longer part of the shape—it simply isn’t there to see—because its sides aren’t

embedded in these lines. There’s no identity. (The elements in sets work in this way.)

And for the same reason, A’s and X’s and bits of hexagons aren’t parts of the shape

either. The lines and their combinations are parts of the shape. That’s all there is, and

that’s all there is to see

And second, my scheme implies a kind of inverse relationship. Anything I can do with

shapes visually I can do just as well with given symbols, at least if shapes are described

in certain ways that I’m going to specify. For example, symbols are all I need for shapes

like these

made up of points, lines, and planes that I can draw on paper with a pencil and a ruler.

This is really important—it means that computers can deal with shapes and ambiguity

exactly as I do. A machine can see what I see no matter how it’s drawn. What’s there

for me is there for the machine, and vice versa.

The way different kinds of expressive devices connect up in my scheme—

whether they’re visual and use shapes or verbal and use symbols—puts design with

other kinds of professional practice. Design belongs with business, education, engi-

neering, government, law, medicine, and planning, and with history, literary criticism,

logic, mathematics, philosophy, science, and anything else you care to name.

Designers may be as creative as you like—geniuses, in fact—but their reliance on visual

devices doesn’t exclude them from the ambit of expression fixed by everyone else in

the course of their everyday activities. The scheme I have in mind makes it difficult if

not impossible to believe in two cultures—one visual and the other verbal, separate

and equal—that have nothing in common. Whatever people are doing—within pro-

fessions and across them—they can always communicate. The expressive devices they

use make their activities commensurable. And it’s good to talk. But it’s easy to be lazy

when it’s time to show someone else what you’re up to in a straightforward way, or not

to make the effort to see what the other guy is working on in his or her terms. Design-

ing is a practical way of thinking (reasoning) in which seeing is key—that’s its chief
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difference with many professions—but it’s thinking all the same. Designing is what

some people do. It goes with everything else people try.

Answer Number Two—Three More Ways to Look at It That Tell a Story

Getting Started—What I Wanted to Know That No One Could Tell Me

Let me begin early on. I’ve been interested in shapes for a long time. It all started when

I was a child. Miss H—— was one of my teachers. She was the daughter of a renowned

American painter, so I thought she would know the answer. I asked Miss H—— how

to put lines on a blank sheet of paper. Everyone in my grade was good at drawing

the usual stuff—cats, dogs, flowers, horses, houses, insects, lakes, mountains, people,

rivers, trees, etc.—so my question wasn’t about that. No, my question was about cre-

ative design, and pictorial composition and expression. Miss H—— understood this

perfectly, and her answer was swift and sure.

If you don’t know that, you’ll never be an artist.

This surprised me then—I guess she wanted to be certain I wouldn’t ask again—and it

surprises me today.

Miss H—— was intelligent and educated. She had good ideas about verbal and

symbolic material in basic subjects like reading, writing, and arithmetic, and also in ge-

ography, history, language, and science—in subjects with rigorous standards and tests

to measure your strengths and weaknesses. You could always depend on the results.

There were answers that were right or wrong and true or false. But when it came to

the use of visual and spatial material in design—to seeing and drawing—I was sup-

posed to know already, or not to worry too much that I didn’t. Miss H—— was happy

to let me figure out lines for myself, maybe even a little embarrassed that one of her

pupils was worried about design. There wasn’t anything to teach. Why didn’t I see

that? It was clear to everyone else. The standards were missing—what tests could you

take to tell how well you were doing? There were no answers. It was all up to you.

Even so, Miss H—— wanted to help—that’s what dedicated teachers do. So she

tried again a little later in a desultory sort of way. Almost anything—meaningful or

not—is better than nothing when you’re trying to teach. But in fact, there were prece-

dents for it, and it was much more than it seemed at first sight. Miss H—— asked

everyone in my class to connect dots that were located randomly on a sheet of paper—

we all tapped our pencils with our eyes tightly closed—to make nifty patterns that

could be colored in. Miss H——’s exercise was like the occupations in Frederick Froe-

bel’s famous kindergarten method. And I enjoyed this for a while—what a marvelous

discovery. Miss H—— had something useful to show us about points and lines, and

how they combined to make planes. The progression from one dimension to the next

was kind of neat—these were relationships to remember. But my interest didn’t last.

How did I decide which dots to connect? I could sift through the possibilities counting

them out one by one, but this didn’t answer my question. I was connecting points
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blindly to get them all without looking at what I was doing. Everything seemed to be

the same—it was numbing. Something had to change. Dots weren’t numbered to make

surprise pictures

like the ones in my game books. (I learned later that computers handled shapes in this

way with lists of points, here, segmenting two squares with ten lines—they’re units—

end to end.) And where did the colors go? At least Paul Klee got it right in his Pedagog-

ical Sketchbook: boundary elements—points and ‘‘medial’’ lines

—formed meaningful planes. But I didn’t know this. My results just didn’t add up. Was

this kind of counting a reductio ad absurdum? Miss H—— didn’t say—it seemed to me,

though, that it was what she wanted to show. It was something to discover on your

own. My eyes were closed from the start—seeing and doing weren’t tied. Figuring out

the possibilities one by one in a mechanical process didn’t go anywhere. It wasn’t art

unless you stopped to look, and then everything could change. Miss H——’s answer

was the same, and now I knew why. There was a lesson to teach, and there was a lesson

to learn—counting in this way wasn’t seeing. That’s why there were artists.

I was barely ten years old when I asked Miss H—— about lines, so I didn’t know

that my question was the private kind you kept to yourself. I looked around and asked

again. And every time I did, I got the same kind of brusque answer I’d heard from Miss

H——, or one of its mute derivatives. But I did get lucky. A year or so later, I found

George Birkhoff’s Aesthetic Measure. This was a real surprise! I turned the pages in

awe—Birkhoff had a similar question and an articulate answer. Who was this guy, and

how did it work?

Birkhoff was a famous mathematician at Harvard, and he knew that numbers

could be used to describe how things change. He had great definitions of order—O—

and complexity—C—and the guts to put them together in a wonderful formula

M ¼ O

C
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The measure—M—was perfect. You could use it to calculate with numbers to find the

aesthetic value of polygonal shapes like these

and other things such as ornaments, tilings, vases, music, and poems. So I calculated in

earnest. But there were problems when I tried to see in the way Miss H—— implied I

should. Shapes that looked different to me had the same aesthetic value. And the value

of a shape didn’t change when I saw it in a new way. One description didn’t seem to be

enough. You could just as well try Birkhoff’s measure with your eyes closed. It was me-

chanical and misleading. There wasn’t anything to see.

My question was still there, waiting to be answered. But my time hadn’t been

wasted—now I had Birkhoff’s marvelous idea: that I could calculate to find an answer.

Of course, this didn’t seem to square with what Miss H—— had shown about count-

ing. But I was young and didn’t mind the inconsistency. Calculating was something I

could do. And maybe it was too soon to tell if it worked. Only what could I use to cal-

culate? Birkhoff’s measure didn’t work. Was there another formula that would—a kind

of design equation that captured the right variables? No, that was out, too—it was still

a single description. Seeing was the key. Maybe there was another way to paint by

number that went beyond connecting dots. Suppose I could calculate with shapes.

Was this calculating the way I learned in school? Was it just counting out? What did

it mean to calculate anyway? There was more to find out.

Growing Up—How I Learned to Calculate

There are at least two ways to calculate that furnish practical answers to my original

question about where lines go on a blank sheet of paper. There’s the right mathematics

for design, and the special mathematics of design. It’s easy to see that my prepositions

are opposites. They’re almost mirror images—fo’ and of. And if I concatenate them—

the r is for reflection—they form the palindrome

forof
This is probably not what you expected. But it does use symbols to anticipate what I

want to do with shapes. There are two sides to it. First, it suggests a way of calculating.

I’m combining symbols in a deliberate way according to rules that define palindromes.
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The mechanics of this is sketched a little later. And then, there’s a trick that relies on a

sudden switch in perspective. This is fairly common in puns, sight gags, and other

practical things—for example, the word bed that children make with their hands

to distinguish the small letters b and d. There’s just one way to do this—try a rota-

tion. Well, I guess you can cross your arms to confuse b and d with deb. But maybe

there’s more to put this right. ‘‘Bed’’ is an especially nice mnemonic—the word

bed looks like a bed, so the compound noun ‘‘word bed’’ contains what it means. The

word

bed
is a word bed, and so, it appears, is forof. I’m going to play tricks like this as I calculate

with shapes—in fact, every time I try a rule.

Ambiguity lets me change what I see as I talk about it:

—The shape

is a square and two diagonals. And it also shows triangular planes.

—Are you positive about that? Which planes are they?

—There are only four. They’re easy to see. Sure, it’s perfectly clear. Use your eyes.

—OK, let’s see. You said it’s a square and its diagonals. Sides and diagonals are single lines, aren’t

they? So you must be looking at the planes

with boundaries from these lines. What other choice is there?

—Don’t be silly—use your eyes. What I said isn’t what I see. Diagonals divide in four other trian-

gles. My planes are obviously these

How can I do this with rules? And what does it mean for calculating? Let’s get back to

my distinction between the mathematics for and the mathematics of design, and see

how this works out in the normal way.

(Seeing words for what they mean instead of as strings of letters for sounds is

nothing new. I know a poet / visual artist who designed a wonderful word door
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d r
as a way into or maybe out of her eye. Making things so that you see what they mean is

harder than it looks. A lot of people have tried—the logical empiricist Otto Neurath is a

recent member of this group—but it hasn’t caught on. Nonetheless, the art is evident

in Ezra Pound’s eccentric enthusiasm for Ernest Fenollosa’s The Chinese Written Charac-

ter as a Medium for Poetry:

The Egyptians finally used abbreviated pictures to represent sounds, but the Chinese still use

abbreviated pictures AS pictures, that is to say, Chinese ideogram does not try to be the picture

of a sound, or to be a written sign recalling a sound, but it is still the picture of a thing; of a thing

in a given position or relation, or of a combination of things. It means the thing or the action or

situation, or quality germane to the several things that it pictures.

Fenollosa was telling how and why a language written in this way simply HAD TO STAY POETIC;

simply couldn’t help being and staying poetic in a way that a column of English type might very

well not stay poetic.

As a shape, bed is asymmetric, and as a word, it’s read from left to right. Still, I can’t

distinguish head and foot looking at it from the end or the side. The bed is firm, and

written in this way simply HAS TO STAY FIRM. I like to think that poets know that

nothing has to stay the same and take advantage of this. So a poet’s claim that some-

thing does is pretty fantastic—pictures keep language poetic. I guess this makes poetry

visual. At least pictures and words connect up. But are pictures of things and their rela-

tions shapes? What does

show as lines and planes? And there’s an added dimension, too. Four small triangles

make a pyramid with its apex or vanishing point where the diagonals cross—these

alternatives may distinguish Chinese and Renaissance perspective—and four large tri-

angles make a Necker-cube-like tetrahedron with its apex at either top corner of the

square. Try and resolve the right triangles now. Things (parts) and relations in shapes

aren’t set once and for all. Which way does bed go? Poetry doesn’t change—ambiguity

makes the difference.)

I can calculate in design without saying much about designing. To begin with,

I can analyze designs in a variety of ways. For example, I can look at their physical

performance in mathematical models, or I can ‘‘rationalize’’ them—divide them up

into components that I can manufacture and assemble. But analysis isn’t the only

use for calculating in design. I can be more synthetic. I can try functions or parametric

representations to enhance my creativity. Equations define lines, curves, and surfaces

that are used in pictures, buildings, and many other things that are admired today.
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Computers are so good at this that I don’t have to worry about any of the details. I can

simply rely on experts and use the results. There’s a lot of this in design right now. But

personally, I’m more likely to try things I understand.

Three linear equations in the standard form

y ¼ mxþ b

define the lines that contain the shape

I can say how this works in a parametric model, but it’s really the kind of exercise Miss

H—— assigned. There’s no design. The equations alone don’t tell me what to see in the

lines or what to do about it. They merely give me some stuff that might be valuable, to

see and do with as I please. How do I see the triangle, or this A and that X? Suppose I’ve

got a reason—articulate or not—to change the shape

into the shape

What makes this possible? I’d like to do more than borrow from mathematics. Good

results answer the question ‘‘What kind of mathematics is useful in design?’’ But per-

haps this isn’t all I can do. Isn’t there a mathematics of seeing and doing when it

comes to designing? Shorten the question to ‘‘What kind of mathematics is design?’’

Better yet, ‘‘What kind of mathematics works when I don’t know what I’m going to

see and do next?’’ Can I look at designing as calculating in its own right? What kind

of calculating is it if shapes are made in the ordinary way with pencil and paper—

when thinking is drawing and seeing—with no equations and numbers?

This leads straight to the mathematics of design and to the corollary

design is calculating

that I want to explore. Right now this is no more than a heuristic, or perhaps just a

metaphor to get things started. But by the end of this book, I want to have transformed

it into a rigorous statement of fact with axiomatic certainty. Look at the verbal formula

seeing and doing
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that I’ve already invoked a few times. It gives a pretty good idea of what I hope to ac-

complish. The formula translates easily into a rule of the form

see x fi do y

where the variables x and y can have all sorts of things as values. But for most of my

purposes, it’s enough for x and y to be shapes. For example, the rule

that rotates a triangle turns the shape

into the shape

in a single step with two stages. I see the triangle

and trace it out. It’s part of the shape

because its sides are embedded in the lines of the shape. And then I erase the triangle

and draw another one

I’m going to be saying a lot about how to use rules like this automatically, so that see-

ing parts and replacing them by erasing lines and drawing more go together in a me-

chanical process in which the details are all worked out. And I’m going to show that

being mechanical in this way and being creative aren’t opposed when you calculate

with shapes. It’s mostly a question of getting embedding right, so that you’re reasoning

with your eyes. My rules let you see. But first, I need to say a little more about rules as
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they’re normally defined and used to calculate. This takes me back to what happened

as I grew up.

When I tried Birkhoff’s measure, I knew how to calculate with numbers. That’s

what you learn in grade school and later. I was good at it. Numbers made Birkhoff’s for-

mula easy, yet it wasn’t design. There wasn’t anything to see, only to count. I had to

find something else. I learned what I needed as an undergraduate at MIT. It still wasn’t

design, but it got me started in the right way. Marvin Minsky taught symbol manipu-

lation—he explained Turing machines, Post’s production systems and their nifty way

of defining rules, and sundry equivalent or otherwise related devices. It was amazing

how many different ways there were to calculate. The details varied, but a single idea

tied it all together: one way or another, calculating is combining symbols according to

given rules. An easy example is enough to show how this works.

Suppose I have two symbols, left and right angle brackets h and i, and I want to

combine them in strings, so that left and right brackets are paired in the way left and

right parentheses normally are. I’m after strings that have the following form

h i

hh ii

h i h i

hh i hh iii

I’m using angle brackets instead of parentheses because the brackets look like some-

thing I’m going to do later on. You’re probably getting used to this by now. One way

to define strings of brackets is to calculate. I can use the two rules

(1) h i fi hh ii

(2) h i fi h i h i

Both rules let me replace the string h i whenever it’s contained in another one, that is,

if h i is part of it. When I use rule 1, h i is replaced with the new string hh ii. The idea

is to put a pair of brackets around h i, or equivalently to move the brackets in h i
apart to insert a pair. And when I use rule 2, h i is replaced with h i h i. A pair of

brackets is added either to the left or to the right of h i. (When these rules add brackets

to a string, everything else in the string moves to make room for them. Practical—

concrete—details are ignored. This won’t be the case for shapes. They aren’t abstract

in this way.) I always start to calculate with the same string h i. It’s the shortest string

in which angle brackets are paired correctly. I can use my rules three times like this

h i � hh ii � hh i h ii � hh i hh iii

step 1 step 2 step 3

to generate the string hh i hh iii with four pairs of brackets. The double arrow �
indicates the process of applying a rule. The rule is used to replace the string h i that’s

bold. In step 1, I use rule 1, in step 2, rule 2, and in step 3, it’s rule 1 once more. Every
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time I apply a rule, I define a well-formed string of brackets. And I can continue from

where I’ve left off to get more strings of the same kind. Or I might want to start calcu-

lating from h i again to get other strings. That’s all there is to it. That’s all it takes to

calculate anything that can be calculated. Find rules for palindromes. It isn’t any harder

than angle brackets. Palindromes are a special case in which only rule 1 is tried:

hh. . . h i . . .ii. Mark the centers of strings to insert matched symbols there.

Minsky didn’t stop with symbol manipulation. He had other things to say, too.

There was the bigger idea that rules might describe how we think. Minsky was passion-

ate about this, and when I was a student, he showed it in his very public and uproar-

iously impolite argument with Hubert Dreyfus—it was about what computers can and

can’t do. Dreyfus was one of my instructors in the humanities, and he didn’t see how

computers could think. The Danish philosopher Søren Kierkegaard and others showed

why. It was about ‘‘results’’—units and counting the distinct ways they combine. It

seemed that there were things you could teach and count, and things you couldn’t.

Dreyfus and Miss H—— were saying the same kind of thing, but Dreyfus was explicit

about it and had Kierkegaard to back him up. At the time, though, it didn’t matter. It

was all emotion. Dreyfus saw through what Minsky was trying to do—there was more

to thinking than symbols in the way they’re normally used—but Minsky wasn’t listen-

ing to what Dreyfus was trying to say. It was the perfect academic argument—thinking

was out! The line was drawn—you were either on the right side or on the wrong side of

a new technology. Dreyfus never had a chance at MIT. Yet even today, no one knows

for sure whether computers can think or not. It’s the kind of question that will proba-

bly be resolved with a set definition. But the answer may be beside the point. If com-

puters can’t think, it won’t be for the kind of reasons Dreyfus gives—because his

reasons are included in calculating. Kierkegaard wasn’t enough, even with the instinc-

tive Miss H——. This was evident as soon as I started to play around with shapes and

rules, and to get results—going from symbols to shapes changed everything. The differ-

ence was palpable. Calculating with shapes was an example of Dreyfus’s way of think-

ing, and it let me see in the way artists do. The switch from symbols to shapes was my

big idea—it really worked—but it was still a few years off.

Meanwhile, I heard Noam Chomsky talk about language. I learned that genera-

tive grammars—these are systems of rules something like Post’s—show how words go

together to make sentences. Almost everyone uses language in a creative way—you can

say and understand things that you haven’t said or heard before. But how is this possi-

ble? It’s certain that no one knows every sentence in advance. Generative grammars

provide the answer. With a limited number of rules to combine words, I can generate

an unlimited number of new sentences. It’s the same kind of recursive process I used

to define strings of angle brackets. But what about design? It’s creative, too. You can

always make something different, but how? Chomsky’s grammars got me thinking—

why not shape grammars for languages of designs? With a finite number of rules,

I might be able to generate an indefinite number of things. They might even hang

together in the same style. I could finally say how to put lines on a blank sheet of

paper. I could understand creativity in design.
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When I started thinking about grammar and language in design, I had no idea

that it was a bad mistake. From the start, people missed what I was trying to do. It’s

true that I had the following analogy in mind—

(1) shape grammar : designs< generative grammar : sentences

But sometimes, analogies imply a lot more than they should. My idea was that a gram-

mar had a limited number of rules that could generate an unlimited number of differ-

ent things, and that the resulting language was the set of things the rules produced. I

didn’t think that designs were sentences, but instead that grammars could generate

both sentences and designs—whatever they were. Was this kind of creativity enough

to make a language? It was only half of the formula. There were also words and sen-

tences, and correct syntax and proper usage. Words and usage—was there anything to

say about them in design?

On the one hand, what corresponds to words in design? There was plenty of

loose talk around about the vocabulary of design—I still hear it today—only it was all

pretty vague and never amounted to much. And I’m hardly blameless in this regard.

Early on, I used vocabularies of shapes to define shape grammars, and for spatial rela-

tions to design with play blocks—cubes, oblongs, pillars, etc.—from Froebel’s building

gifts. This was standard practice calculating and designing. It was a mistake, and I said

so both times in a wimpy sort of way. I wasn’t ready to risk anything new. It chal-

lenged what I thought I knew from Turing and Post and from many designers. It was

easier to be conventional and wrong. And it helped when I began to teach design. I

learned that students were trying to define personal vocabularies in the rite of passage

from novice to professional. In the same way, sophomores try to define their terms to

resolve their endless arguments. But neither learning to design nor deciding to agree

seems to have a lot to do with definitions—they’re just a way to postpone thinking,

never mind seeing. Definitions come afterward, when they don’t matter. That’s the

problem I had with vocabularies. It’s plain common sense. There are no words in de-

sign. For the analogy

(2) designs : x< sentences :words

—or in any subsequent refinement involving smaller features in phonetics or

semantics—there’s no rule of three to solve for the unknown x. It’s undefined.

Susanne Langer explained why more than fifty years ago, when she tried to dis-

tinguish two separate kinds of symbolism—discursive forms having to do with lan-

guage and the logic in Ludwig Wittgenstein’s Tractatus, in a word, calculating, and

then presentational forms having to do with drawing and correlative things in the arts.

Clearly, a symbolism with so many elements, such myriad relationships, cannot be broken up

into basic units. It is impossible to find the smallest independent symbol, and recognize its iden-

tity when the same unit is met in other contexts. Photography, therefore, has no vocabulary. The

same is obviously true of painting, drawing, etc. There is, of course, a technique of picturing

objects, but the law governing this technique cannot properly be called a ‘‘syntax,’’ since there

are no items that might be called, metaphorically, the ‘‘words’’ of portraiture.
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No words, no syntax, no sentences. Language is out of the question for design. That’s

OK with me. I’m not interested in language in that way. I can live without analogy

number 2. But not so fast. The implications are broader. With no basic units—symbols

that can be recognized wherever they appear—there isn’t any way to calculate. Re-

member, calculating is using rules to combine symbols. What symbols? Without

words, I can’t calculate. My naive account of grammar and language in analogy num-

ber 1 doesn’t bypass analogy number 2. Grammars need words to generate sentences. If

2 doesn’t work, then neither does 1. Unless I can do something about units, it’s either

calculating or thinking, either counting or seeing, and Kierkegaard, Dreyfus, and Miss

H——. There’s nothing I can say about design. If you’re lucky, you can do it, but this

can’t be taught. There’s nothing to learn—no words, no syntax, no sentences. At least

that’s how it looks right now. Surely, there has to be a way to go on. Otherwise, there’s

only a mystery.

Then on the other hand, what can I say about usage? Are there rules that control

technique? Langer acknowledges technique in drawing and the like, and a law govern-

ing it—as long as the law isn’t syntax. Nearly all of the designers I know reject rules.

It’s easier to pick things out with a test than to generate them directly. Perhaps a test

would work to check for good and bad technique in design. Why not Birkhoff’s aes-

thetic measure? There are a handful of definitions for order and complexity that don’t

depend on words and syntax. And in fact, I can use the definitions in reverse to actu-

ally make things with high scores. If this works, I have an effective assay of tech-

nique—but it isn’t a real option. The results don’t match what I see. It’s probably a

lousy idea anyway. Everyone I ask agrees. Usage is impossible to gauge in design, even

if it doesn’t depend on words and syntax.

Words and usage don’t work. They’re dead ends in design. But let’s look again be-

fore giving up. What can I do about rules and calculating, and numerical measures?

First, I’m not keen on numerical measures of any kind, even if they distinguish good

and bad technique. I’m not going to use them. In the past, I toyed with measures like

Birkhoff’s that did a lot of counting, only with algorithms, complexity, and informa-

tion theory—perfectly modern stuff. They weren’t any better—just one kind of descrip-

tion won’t do. I’m glad I’ve moved on. I was wrong. So maybe there’s another way to

think about rules and calculating. If I can find a way to calculate without units—with

rules that don’t combine symbols—everything should be OK. I can get designs and not

bother about words and syntax. I need to show that analogy number 1 and analogy

number 2 are independent. And if I can, rules may govern technique—they might

characterize usage. I could get back to words and syntax. What if they’re defined

when I stop calculating as a kind of retrospective summary of what I’ve done—perhaps

in topologies that I can update as I go on? Suppose words and syntax aren’t fixed

but change—smoothly or in jumps—with ongoing practice. They’re harmless as an

afterthought, and they might help in teaching to trace a designer’s intentions or to

compare styles. That’s when vocabulary is useful. It’s only if I have to say what words

and syntax are ahead of time that I have a problem. Designing isn’t combining things

anyway. How do I know what I’m going to use until I start? Where’s the creativity?
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I don’t mean in the recursive sense Chomsky has in mind of forming combinations of

elements from a given vocabulary—even if it grows with new words—but in the intu-

itive, open-ended sense, expected in the arts, of making new things where meaningful

elements are never finally resolved. Can I apply rules to calculate without combining

symbols? Can I give up on vocabulary, unless it’s defined retrospectively? Are words

and syntax necessary?

Thinking about these questions and others of the same kind—how to deal with

the unknown x in the analogy

designs : x< sentences :words

while I calculate—is another way to approach this book. But before I get to the

answers, there’s the question of grammar and language. Do I want to talk about them

in design? Should I insist on the analogy

shape grammar : designs< generative grammar : sentences

I don’t care, as long as I can calculate without units or symbols, and so sidestep x. It’s

simply a matter of words. In logic and linguistics, grammar and language refer to rules

and sets. If nothing is implied about vocabulary, then this is harmless. I’m easy about

shapes and what I see, so why not about words and what they mean? And my use of

grammar and language shows the origin of some of my ideas. Still, I’m ready to avoid

both words for the sake of rules and using them to calculate with shapes. I started with

shapes and rules, and Turing and Post. That’s the history—in a word, rules. Yet lan-

guage provides another way out that neither bends meaning nor bans words. Shape

grammar is ironic, if grammar is vocabulary and syntax, and shapes are to see. It’s an

easy relationship—ambiguity in shapes is irony in words. What I say reinforces how I

see. There’s meaning in both.

Going On—How I Stopped Counting and Started to See

The problem is to figure out how to calculate without units or symbols. The solution is

to see how to calculate with shapes. This has been my main interest ever since my stu-

dent days. I’ve been lucky. I made a career out of it. There’s a lot to see in shapes that’s

kept me going. I haven’t seen the last of them yet. And I don’t expect to anytime soon.

But how I learned to calculate with symbols and rules isn’t something to dismiss. It’s

too important for that. Rather, it’s something to extend to shapes, so that the differ-

ences between shapes and symbols can be understood and reconciled. Symbols may

be enough to handle language and most of thought. There are many people who think

so. And I’m happy to think they’ve got it right, unless you want to design. Then think-

ing is seeing, and calculating means using your eyes. From what I’ve seen, learning

how to calculate with your eyes isn’t that easy. This isn’t because it’s hard to do—it’s

not—but because it works in a curious way. At times, calculating with shapes may not

seem like calculating at all. In fact, it’s always tempting to give up on shapes and sim-

ply calculate in the normal way with symbols. It’s comfortable—there’s a lot to do and

you feel good about it. Getting used to something new is hard. You have to see how it

works and really try it, that’s what makes it fun.
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Symbols are OK, but shapes do something different. They don’t always look the

same. Shapes are subtle and devious. They combine to confuse the eye and to excite

the imagination. They fuse and then divide in surprising ways. There are endless possi-

bilities for change. How to deal with this novelty while you calculate—neither limiting

the alternatives nor frustrating the process—is the test. It’s a question of what calculat-

ing would be like if Turing and Post had been painters instead of logicians, although

Turing was a photographer. Painting and calculating together—what an exotic idea.

Only the idea might not be that strange. Herbert Simon proposes as much in his spec-

ulative account of social planning without goals in The Sciences of the Artificial. Painting

and language are creative in the same way. They rely on ‘‘combinatorial play’’ with

simple things to make complex ones. There are symbols, and rules to combine them.

(In fact, there’s more. Chomsky and Simon are both keen on describing things—

sentences and pictures—as parenthesis strings, that is to say, in ‘‘trees’’ or, identically,

in ‘‘hierarchically organized list structures.’’) But my idea is not to show that painting

is like calculating in Turing’s sense—it’s to make Turing’s kind of calculating more like

painting. This means giving up on symbols. And more, it means showing how my cal-

culating as painting and Simon’s painting as calculating are related. This is what my

scheme for visual expression with shapes and verbal expression with symbols is all

about.

The best way to see what’s involved here is to try to use symbols to calculate with

shapes. The trick is to segment shapes into lowest-level constituents—these are the

symbols or units that are necessary for syntax—and to combine these constituents

using rules in the same way that angle brackets are combined to define strings. Anal-

ogy number 2 is

shapes : lowest-level constituents< sentences :words

I’ve given the unknown x a name, but the difficult task remains of defining the constit-

uents to use. Which way of dividing shapes into parts makes the most sense in terms

of what I want to calculate? Which analysis works best? The main difficulty may al-

ready be obvious. In design, it may not be evident what you want to calculate before

you start. You may not know until you’re finished. The constituents may change

dynamically—is this possible?—as long as calculating goes on. That’s one reason why

the unknown x is undefined, why the vocabulary of design is so elusive. But let’s try

to find fixed constituents anyway, just to see how it comes out.

What constituents should I use to describe the shape

if I want to calculate with it? Well, it’s going to depend on the rules I use—both the

rules I apply to the shape itself and the rules I apply to the shapes produced from it in

an indefinitely distant future. Maybe rules are like this
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if there’s a triangle, then rotate it

where a triangle is some combination of constituents. This is a symbolic version of the

rule

that’s defined for shapes. I’ve already shown how I wanted this kind of rule to work, so

that it applies in terms of embedding, and erasing and drawing lines. But right now it

makes sense to distinguish the triangle in the shape

to calculate in the right way with symbols. Three lines

were all I needed to draw the shape, except that a constituent for each line won’t do

for what I want. There’s no triangle. So why not describe the shape as a triangle and

three little angles that look like the angle brackets h and i

That’s good, but a triangle is normally defined to have three sides. So three lines and

three angles might be better yet

And I may as well divide the angles up to make everything lines
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The consistency is nice—the lowest-level constituents are lines of two different

lengths—and I can find the triangle according to its standard definition—it’s a poly-

gon with three sides—and move it around. I’m also lucky. There are A’s

and bits of hexagons

if I want rules to move them around, too. But what happened to the X’s? I can’t make

them out with the lines I’ve got. Should I go back and segment the triangle in another

way, so that it’s cut up into angles? That’s not a bad idea. Now I really have a triangle

(Or should I say trilateral? Words work in funny ways, too.) The whole shape is a

kind of two-dimensional string of angle brackets. This is neatly consistent again—

constituents are all the same angles. And I can find X’s

not as intersecting lines, but as touching angles. That’s a novel result. I hadn’t thought

of X’s that way. Only now the A’s and the bits of hexagons have disappeared. I need to

reconcile the alternative ways I’ve segmented the shape

The divisions in
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must also be divisions in

This gives the new constituents

There’s a triangle

—a rather extraordinary one with six lines, but it’s a triangle nonetheless—and there

are the A’s I want

each with eight lines, X’s

with four lines apiece—they’re sides of angles and also halves of intersecting lines, and

that’s a nice addition—and bits of hexagons

also with four lines. Everything is OK. I’ve got the right constituents, even if the

definitions I need to pick out the things I want—a triangle, A’s, X’s, and bits of

hexagons—are a little strange. That’s just how constituents work. I can always explain
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how natural it is. I can define all of the things that interest me now and lots more that

may interest me later—there’s the chance to be creative—with a single constituent

that occurs in different places. The numbers on a calculator display are a familiar exam-

ple of this. There’s something really seductive about it, and the effort to do it is very

satisfying. I feel smart—well, at least awfully clever.

But let’s suppose I want to find any A or X that I can see. What about these

Suppose calculating is truly visual, so that whatever I see is something a rule can find.

Are any constituents going to work when I have to define them in this way? I might try

to get around this by experimenting to determine what I can discriminate—I could do

the psychophysics—and not try for constituents that go beyond the results. But then

I’ll need multiple rules for A’s and X’s that are segmented differently. And it’s a blind

anyway. I haven’t solved the problem. I’ve simply avoided having to deal with it for

now, until I get better glasses that let me see a bit more. Or maybe I can use rules that

change constituents into new ones as I calculate. That’s a good idea. Only I still have to

figure things out to define these rules. Sometimes, this can get pretty complicated. See-

ing seems much different. Why can’t I calculate like that?

And there’s a bigger problem to solve, too. It also depends on how sharp my

vision is, only not as before. Stronger glasses aren’t going to help, not even a tiny bit.

My prevision is what matters. When I started to segment the shape

I said I had to do so first in terms of the rules I want to apply to it, and then in terms of

the rules I want to apply to the shapes that are generated from it. I may have to use

constituents for the shape—or rules to define constituents—that don’t make sense

now but that make sense later on. I need constituents to calculate, so I can’t calculate

with shapes to see how things are going to turn out—assuming there’s a definite end.

What should I do? Unless I’m a seer, this is a real bind. And in fact, I’ve been cheating

all along to see what my rules do when they apply to shapes—for example, rules for a

triangle, A, and X. It seems my rules work unofficially, but let’s do it right.

Suppose I want to segment the shape
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in terms of the rule

that rotates any of its three squares 45 degrees. This is a lot trickier than it looks. The

sides of the small square cut sides of the large squares in half. Nonetheless, squares

aren’t four lines and eight lines apiece

as you might naturally intuit or guess from the way I segmented the shape

It’s difficult to imagine all that’s needed for everything to work out—the squares are

twenty lines and forty lines instead

because of what happens when my rule is used to rotate both of the large squares, and

how rotating the small square factors into this. Lines diffuse in analysis, as different

parts (squares) interact dynamically. Look at my shape fade away (disintegrate) into

finer and finer constituents. What I can draw with eight lines, and represent as sixteen

equal segments to rotate each of its three squares, takes no less than eighty segments of

two incommensurable lengths to describe completely. Every side of a large square cor-

responds with the palindrome

ababaababa

where b ¼ a
ffiffiffi
2

p
. The segments a and b in the string are related as the side and the diag-

onal of a square—this is too hokey to be wrong. Moreover, substrings are palindromes

at aba and a half. Try these divisions and see how nicely segments align—especially

when both of the large squares are rotated, so that sides match reversed at aba
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New relationships click as squares go around, rotating them in different ways connects

everything to everything else.

These are hard earned results that should last. Yet they don’t repeat in the

shape

in which a small square is added to complete a copy of the shape

The number of segments looks to double in this way. Still, meaningful (exact) divisions

are elusive—at least if I want to go on calculating with the options my rule provides,

and do nothing extra. There’s too much happening to get it to mesh. The five palin-

dromes I need now, that is to say, the divisions I have to make symmetrically, clash.

Specifically, the palindrome

ababaababaababaababa

that reflects my original one has substrings that are palindromes at aba, a quarter, and

a half, but not at ababaa where sides of the largest squares overlap after they’re rotated.

This seems little to fix, only I can’t find a way that doesn’t loop forever. It’s no use

permuting a and b or refining segments in differences—restoring symmetry in one

place breaks it in another. What works for three squares doesn’t work for five squares.

Langer’s negative account of syntax for photography, painting, drawing, etc. is all

the more persuasive as the outcome of a finite example that doesn’t rely on ‘‘myriad

elements and relationships.’’ Words (segments) and sentences (palindromes) aren’t set

all at once and once and for all, as I rotate five conspicuous squares in twelve lines

45 degrees at a time. I can count the possibilities—looking at one, then drawing

another—in an easy enumeration in which parts change. Sensitivity isn’t necessary to
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see what’s what. Yet the process is still ineffable. There’s plenty that can’t be said

precisely in words. (My example takes time and may thereby imply something simi-

lar for music and dance—can it be there are no notes?) I guess I should settle for

approximate results with itsy-bitsy units of equal length. This is the standard solu-

tion—it’s being digital—and it’s OK. Generality and convenience recommend it, but

nonetheless, it’s born of desperate practicality—meaning dissolves when segments

are all the same. (Equal units answer to a single symbol, so strings and substrings are

trivially palindromes. That’s why units line up—approximately—as squares are

rotated.)

Analysis gets off to a great start with the shape

only to fail with the next shape

and more spectacularly with succeeding shapes in the series

They’re formed adding diminishing squares as before, but now nothing scales. New

divisions aren’t defined reflecting palindromes. This can be fixed by alternating seg-

ments that double, yet it doesn’t pan out in other ways. Exact segments can’t be

sequenced from the start, so that I can calculate according to my rule. Meaningless

units of equal length remain the lone choice. They work without helping, no matter

how fine they are. This kind of analysis is blind.

Of course, once you’re used to meaning, the habit is hard to break. Everything

seems so senseless. But problems of the kind I’ve been discussing may not be as bad as

they look, as long as I’m willing to calculate more than I see. After all, generating sen-

tences requires more than speaking. There’s plenty beneath the surface. If I’m sure

about what’s happening and positive the future will be the same—that’s the perennial

rub—I can use rules to replace constituents with others. As I go on, what’s there and

the way it’s arranged may vary—but I know how. For rotating squares, two rules and

their inverses work for constituent lines:
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(1) A line can be divided in half

(1A) Two halves can be combined.

(2) A line can be divided at ð2� ffiffiffi
2

p Þ=2

(2A) The two pieces in rule 2 can be combined.

It’s worth being explicit here about what I’ve been doing from the start, and to empha-

size that arrangements of constituents and rules to define them are given symbolically

(schematically) with words and diagrams. I can’t draw constituents in shapes—lines

fuse whenever they’re combined. With shapes, the four rules I have all look alike. Visu-

ally, they’re the same identity

—a line is a line. And certainly, these aren’t the only rules I need for constituents.

There are rotations of squares, as well, and many details to avoid unwanted results.

These are mostly artifacts—products of abstraction that block my way unless I plan

for them in advance. But the details aren’t automatic—filling them in takes more

than your eyes. Shapes aren’t the same when constituents are defined. Structure

intrudes. Logic becomes a necessary distraction.

The successors of the shape

show that finite limits on what I can see and do needn’t make a difference. Words and

syntax may not work even when I can draw everything. Just turning a handful of

squares defies analysis, at least for exact constituents permanently arranged from the

start. But perhaps it’s worth seeing again how easy it is for analysis to fail when there’s

more to draw. I can use my original rule

to rotate squares 45 degrees with other rules like this one
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to translate squares. Then together, the shapes in this series

show what’s wrong, in the way A’s and X’s do when the free ends of lines are cut. Lines

can be divided internally anywhere at all when one shape is moved over another. And

there are nice surprises

—also indefinitely many—that do the same thing as A’s and X’s. Squares and other

parts combine in myriad relationships, with no meaningful constituents in sight. This

has the feel of design. Certainly, it isn’t classical—there’s no module. But enough is

enough. I don’t want to think about constituents anymore—the whole idea is simply

ridiculous. Is it worth missing all that seeing and drawing allow in order to calculate?

No one can see everything in advance and plan for all of it all the time. And even

when this kind of seeing is possible, there may not be a decent plan. Shapes aren’t use-

fully described with constituents that are defined beforehand in some kind of precalcu-

lating. Seeing and drawing work perfectly without rational (analytic) thought. Lines

fuse and divide. They meld without a trace of the past before I can look again. Then

what you see is what you get. Analysis interferes, giving only approximate results,

sometimes in what they show and always in what they don’t. And if you’re still not

swayed, I have other examples. They’re endless. There are nested polygons—triangles,

squares, etc.—stars, and superstars. The wonderful surprises they contain are high-

lighted throughout this book. There’s nothing more than meets the eye.
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Shapes and symbols don’t mix. Still, I need the latter to calculate. Is there any-

thing I can do? Well, what I’ve been doing is fine, as soon as I give up on meaning

and trying to understand what’s happening. The best way to solve problems with

shapes is to forget about seeing. I can grind things up uniformly into finer and finer

constituents independent of calculating, so that whatever I want to see is a combina-

tion of these tiny bits. At least I can approximate what I want to see. There’s a final

granularity beyond which I’m blind. That’s true. But if the bits are small enough,

it doesn’t matter. There are just a lot of them, and computers are fine with a lot of

things. Anything I want to see—anything I want to calculate with—can be given as

an appropriate collection of bits. I don’t like any of this. In spite of its remarkable suc-

cess in science and engineering—especially now in computer graphics, imaging, and

visualization—the approach is ugly. But why not enjoy the results? Shapes made up

of bits are ugly only underneath. What difference does it make? What I see is spectacu-

lar. Why am I so worked up?

The idea that shapes are bits bothers me because it violates almost every intuition

I’ve ever had about seeing. I want to use these intuitions and develop them as much as

I can. I would like to figure out how they work when I look at shapes, so that I can uti-

lize them effectively when I calculate. In fact, I’m sure that as long as I take them seri-

ously, I’m calculating, only I’m doing it visually in a special way where embedding is

key every time I try a rule. This lets me use my eyes.

Giving up on shapes in a technique that isn’t visual isn’t a sensible option, when

seeing is decisive in creative activity. I don’t think about shapes in terms of the bits

that combine to make them. There’s no difference between what there is—merely

bits—and what I see—lines, etc.—and do. Reality doesn’t lurk behind appearance.

There isn’t a hidden structure under the surface to stop me from doing what I want.

There’s nothing to understand that my eyes can’t tell me. I think about shapes directly

in terms of how they look, and how they change if I look again. What you see is what

you get. And it’s all you ever need if there’s embedding.

I could go on in this vein, but I wouldn’t be any more convincing. Whatever I

may see, simply grinding shapes to bits really and truly works. Whether or not you

like this kind of mince surely depends on your personality as much as anything else.

If you’re even a little bit like me, you’re going to be a curmudgeon. Bits (standard units)

make me grumpy. I’m too attached to meaning to settle for anything less.

Of course, there are other ways to look at shapes in terms of bits—at least in

terms of points that can’t be ground more finely even in principle. Things are better if

I use point sets for shapes, with their nice mathematical properties. I find this easier to

take than finite collections of bits that aren’t there to see. Points are too small to worry

about. But there are the inevitable problems. Points aren’t always like shapes, and nei-

ther are point sets. Most of all, boundary elements and parts get mixed up whenever

points make lines, planes, and solids. Everything has to be ‘‘regularized’’ before it

works the right way. I’m not opposed to the effort. It takes a lot of effort to see how

shapes work, as well. But there’s always something to be fixed when I define shapes in

terms of something else. There’s always a bit that seems to be left out. What makes

shapes so hard to deal with in terms of bits?
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The trouble with bits—including points—is that they’re not the same as the

things they combine to make. This worries me, because it gets in the way when I

want to calculate with shapes. I’m going to say a lot about it in terms of embedding.

But maybe others share my qualms. In fact, I have some pretty extraordinary company.

Leonhard Euler was the first to classify polyhedra according to their vertices, edges,

and faces, and thus to show how basic elements are related in shapes. (Miss H——

knew about this.) Points (vertices) are boundaries of lines. Then lines (edges) are boun-

daries of planes, and planes (faces) are boundaries of solids. These relationships

were surprising at the time—this was a radically new way to describe polyhedra in

terms of geometric entities of finite extent and increasing dimension, and with sensible

properties.

These new elements are tactile, they are differences in texture. If you hold a model polyhedron

you feel its flat faces, the ridges where they meet, and the sharp points at the corners.

But Albrecht Dürer more than two hundred years earlier had described polyhedra in

terms of their ‘‘nets’’

and so distinguished vertices, edges, and faces that are undeniably tactile, too. Just

think of using your hands to fold a net to make a polyhedron. Maybe the hand is

as perceptive as the eye. After all, I can trace parts with my fingers when they’re

embedded. Is this another way to calculate? There are vertices for Braille—it uses

symbols—and also edges, faces, and polyhedra that allow for more. So I can calculate

with shapes via hand or eye—they’re reciprocally related in what I see and in what I

draw and make. Sensory experience is sensory experience, in one modality or another.

But let’s get back to the point, and the higher elements that take up space. Euler wasn’t

keen on bits.

Only admit this proposition, bodies are compounded of simple beings, that is, of parts which have

no extension, and you are entangled. With all your might, then, resist this assertion: every com-

pound being is made up of simple beings; and though you may not be able directly to prove the fal-

lacy, the absurd consequences which immediately result, would be sufficient to overthrow it.
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Points aren’t parts of (embedded in) lines, planes, or solids because points have no

extension—neither length, area, or volume. And in the same way, lines aren’t parts of

planes or solids—there’s no area or volume—nor are planes parts of solids. This idea is

the heart of William Blake’s spirited defense of ‘‘Republican Art.’’

I know too well that a great majority of Englishmen are fond of The Indefinite which they Mea-

sure by Newton’s Doctrine of the Fluxions of an Atom, A Thing that does not Exist. These are Pol-

iticians & think that Republican Art is Inimical to their Atom. For a Line or Lineament is not

formed by Chance: a Line is a Line in its Minutest Subdivisions: Strait or Crooked It is Itself &

Not Intermeasurable with or by any Thing Else.

Newton’s atoms are bits—points or infinitesimals—and they aren’t in Blake’s lines.

Every subdivision of a line contains only lines—and planes and solids are alike in

exactly the same way. Basic elements can only be divided into basic elements of just

the same kind.

It’s Blake versus Newton, art versus science, visual versus verbal, seeing versus

counting—shapes versus bits includes it all. But this isn’t good and evil or the Yankees

and the Red Sox. Shapes and bits provide a way to blend these stark dichotomies.

There’s a nifty kind of equivalence between them that calculating with shapes helps

to reveal. Dealing with shapes as if they were bits is a good practical idea that’s also an

example of calculating with your eyes. Yes, it can be visual, but then sometimes it’s

not. I’m going to tell you when and how. It’s easy once you see how embedding lets

you calculate with shapes without using symbols. Then everything falls into place. If I

can calculate with shapes, then I can say how to put lines on paper in order to see

what’s there. I can design.

Trying to Be Clear

The rubric for the previous subsection—how I stopped counting and started to see—

may need a little more explanation than I’ve given it. The explanation is implicit

in what I’ve been showing you. But sometimes it pays to say exactly what you mean,

at least if you can. Calculating with symbols has a lot to do with counting. You

can always say how many symbols you’ve got. Whenever you add another one you

don’t already have, there’s one more, and whenever you subtract one, there’s one

less. Only shapes don’t work this way. Seeing takes over—shapes fuse and divide as

they’re combined. It’s what happens when embedding isn’t identity. If I have three

squares

and add one more
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I get four squares or five

And if I take one square away, I may be left with none

What kind of adding and subtracting is this? And a lot more follows—combining two

squares gives me four triangles when I look at their sum

So maybe the shape

is really L’s. There are orthogonal pairs of polygons—each has six sides, but no, that

makes a chevron—and ordinary L’s with two arms apiece. Let’s try to count them.

There are at least eight big ones with equal arms in twenty different ways, for example,

like this
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and twenty-four of these L’s altogether. Yet indefinitely many bigger and smaller L’s

with equal and unequal arms remain. This kind of arithmetic is disconcerting. Count-

ing symbols and seeing shapes aren’t the same.

Of course, there are still rules. And they show in another way how counting and

seeing differ just as symbols and shapes do. Rules to calculate with symbols are easy to

classify in terms of how many symbols they contain. There are two symbols in each of

the left sides of the two rules that I described earlier—the rule h i fi hh ii and the rule

h i fi h i h i—and four symbols in each of their right sides. This is the basis for the

so-called Chomsky hierarchy that ranks alternative ways of calculating by their power

and complexity. But the rules I use to calculate with shapes can’t be classified in this

fashion. There’s no way to describe them by counting because there’s no vocabulary.

And even if there were, it might not help. Shapes don’t have definite constituents.

Their parts aren’t numerically distinct. There were different descriptions of the triangle

in the left side of the rule

when I tried to count parts. The triangle was just a single constituent, then three con-

stituents in two ways

or six

And the left side of the rule

had twenty constituents and also forty when I used it to rotate the trio of squares in

the shape
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This is silly. Visually, rules for shapes are all the same. Their left and right sides contain

a single shape apiece. There’s no complexity I can see—no constituents to count—

before calculating; I can see it only retrospectively in the results of what I do.

One of the main reasons Dreyfus gives to show that computers can’t think is

that they’re counting out. This is a consequence of using independent symbols in

combination to represent salient features of the world that aren’t independent them-

selves. Let’s suppose I view symbols as numerals that I can place here and there accord-

ing to a rule to produce numbers. Then I can search through what there is without

looking at anything. The odometer on my car works this way. It simply keeps on turn-

ing. What symbols look like individually or together doesn’t matter. Left and right

angle brackets h and i might just as well be reversed for all the difference it makes. Or

why not use left and right parentheses, standard dots and dashes, or 0 and 1? Any pair

of symbols will work the same. That’s why it’s code. It’s only the arrangements that

count. I can enumerate the distinct possibilities—list them one by one—as if I were in

a trance. There’s no reason ever to use my eyes. Symbols are all I have to combine, and

they don’t change when they’re put in place. Dreyfus doesn’t think this is thought—it

isn’t seeing—and it’s not design. (In fact, this is what Miss H——’s exercise showed in

a reductio ad absurdum—counting without seeing isn’t art.)

The string

hh i hh iii

doesn’t look like

ii h ii hhh

It may look a little like

(( ) (( )))

even though it’s flatter and longer, and not as sensual. But how about

Q Q – Q Q – – –

or

00100111

Symbols stand for features of the world that change as they combine. And as sensible

things in the world, symbols have features of their own. But to make sure that symbols

stay symbols, their features aren’t allowed to interact. This prevents symbols from

standing in for what they stand for. I started out talking about calculating in terms of

prepositions—for and of—and now I’m doing it again. It still has to do with how
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things look. There’s no telling what you might see next that symbols as symbols don’t

show. Going beyond symbols and counting alternative arrangements is exactly what

thinking with your eyes is for. Design isn’t combining symbols and sorting through

the possibilities to find what you want—there’s more to it than search. It’s also seeing

what you do as you calculate.

Still, there are alternative points of view—even ones that limit alternatives. Not

everyone heeds more than how things are arranged. (Pound reads Chinese ideograms

in this way as pictures of things and their relations.) Then meaning is easy to miss if

you aren’t trained to look. But sometimes, checking all variability repays the effort.

C. S. Peirce is clear about this. Listen to what he says:

To believe that any objects are arranged among themselves as in Fig. 1, and to believe that they

are arranged as in Fig. 2, are one and the same belief; yet it is conceivable that a man should assert

one proposition and deny the other. Such false distinctions do as much harm as the confusion of

beliefs really different, and are among the pitfalls of which we ought constantly to beware, espe-

cially when we are upon metaphysical ground.

Figure 1 and figure 2 don’t look the same. That’s why Peirce uses them. Nonethe-

less, he knows more than his eyes do, and wants to credit less than they find. But if my

behavior changes because I see figure 1 like this and figure 2 like that, is it a false dis-

tinction? To be sure, there’s a 45 degree rotation between figure 1 and figure 2. But

who says this identity makes things the same? How about left and right angle brackets?

They’re distinct symbols, even if twin lines are arranged in both, and one rotates into

the other. No one believes h i is hh, i h, or ii. (But there’s always more when the eye is

so easily fooled. The three new pairs one after the other form the meaningful arrange-

ment, hh i h ii. Angle brackets can be regrouped after they’re combined. This is a use-

ful trick in design, and in algebra and mathematics, too. What you see is what you get.)

Or better yet, try the letters b, d, p, and q. My copy of The American Heritage Dictionary

of the English Language shows them like this

b d

p q
They’re equivalent with respect to a group of four transformations—rotations and

reflections. Things that are arranged with respect to b
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also have this spatial relation with respect to d, p, and q

The arrangements are indistinguishable. Peirce would probably agree that my four fig-

ures are just like his two. Still, let’s look at some possible consequences—well, at least

one. What happens to reading? Is everything from beb to qeq in the following table

the same?

beb deb peb qeb

bed ded ped qed

bep dep pep qep

beq deq peq qeq

No one thinks so. We’re not trained to. There’s the word bed to tell b and d apart, and

p and q when bed is upside down. And surely, the alphabet doesn’t bother Peirce. He’s

not worried about single letters, but about multiple objects and distinguishing arrange-

ments that are the same. That makes the difference. But when are single letters not

multiple strokes? What do arrangements of objects look like? Why aren’t they shapes

with parts? Let’s see what I can say about Peirce’s figures when I test them in various

ways.

In figure 1, there are eleven horizontals and eleven verticals, while its twin figure

2 contains fifteen horizontals and fifteen verticals. Four squares arranged in the follow-

ing way

on four adjacent points in figure 1 don’t look the same as four squares—or is it five?—

arranged in like fashion
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on corresponding points in figure 2. Even Birkhoff’s aesthetic measure distinguishes

the figures—without really looking! In particular, Peirce’s figure 1 taken as a square in

this orientation

has a higher value than figure 2 as the rotation

The score is 1.50 to 1.25. Does this miss the mark? What are the objects (parts) in

Peirce’s two figures anyway? Are they so obviously individual points, permanently

fixed before I have a chance to look? Maybe they’re different in each figure and vary

unpredictably. Suppose they’re horizontals or likewise verticals. Things don’t have

to touch to hang together. Stars don’t in constellations. How does this change the

arrangements the figures show? What happens to the identity between them now,

when they aren’t even numerically the same? Is any relationship ever going to be guar-

anteed? What if figure 1 is something else, perhaps the sum of four squares that touch

at their corners

and figure 2 is five squares with common sides

Is this really a false distinction? Perhaps it misses what’s actually there—both of my

figures contain sixteen lines
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that depend on the same twelve points

Or is it four points

and five

Are boundary elements more meaningful than centers? Who’s to say? Do I have to de-

cide once and for all?

I can change my mind about what I see anytime I want. Is this automatically an

error? Where’s the pitfall? Seeing isn’t stuck—it has no roots in metaphysical ground.

Nothing is certain. It’s merely a convenience to assume that the things in the world are

so forever, and keep all of their original parts. It facilitates taking roll. But if I only

count, I’m going to miss a whole lot. Once I begin, I lose my chance to change. There

aren’t any surprises with symbols. Parts don’t fuse as long as I remember what they are.

Everything divides in the same old way with the same old constituents. Combinatorial

play makes perfect sense for games like checkers and chess, or for construction sets like
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Tinkertoy or Lego. It’s exactly what computers do best, and sometimes they’re better at

games than we are. But it’s neither all I do nor all that computers should do. That’s

why I want to calculate with shapes. There are no constituents to stay the same. It’s

seeing, not counting. And what I see changes every time I try another rule. This is

always more than counting out.

There’s no denying that Peirce’s figures are the same. But they may not look it.

What’s neat about calculating with shapes and rules is that they let me have in both

ways. In fact, I can determine whether there’s identity or not for anything I see using

a single rule that doesn’t imply an arrangement of objects. That’s why I’m always free

to go on to something new. Nothing is eternal and unchangeable. What you see is

what you get.

Tables, Teacher’s Desks, and Rooms

I started looking at shapes when I was a child and have been looking at them ever

since. In fact, now that I have children of my own, I look for interest in shapes in

what they do. I like the way William James describes reasoning as the ability to deal

with novelty—to see and use new things in new situations. And I’m keen for my

daughters to catch on to this. I can’t imagine any better way to learn about novelty

than to experiment with ambiguity in shapes. No, I don’t talk to my daughters about

ambiguity, although Catherine asked me once what it really meant. I just want them

to be encouraged to rely on their eyes when they think. So what kind of visual educa-

tion are they receiving? In school, there isn’t much. Grade-school teachers haven’t

changed. Miss H—— would fit right in. The main emphasis is still on counting instead

of seeing—at least seeing isn’t taught. (I’m not alone in thinking so. Mel Levine is an

expert in education and a pediatrician who helps kids whose learning styles don’t fit in

school. They see things differently and are difficult to teach. Dr. Levine distinguishes

counting—‘‘sequential ordering’’—and seeing—‘‘spatial ordering’’—and is clear about

which is the more important in today’s classrooms.

Being great at spatial perception seems not to be a graduation requirement. So we may elect to do

nothing about a shortcoming in this neurodevelopmental function. After all, we don’t need to fix

everything!

Some kids are good at seeing, and some kids aren’t. But it doesn’t matter either

way, because schools don’t know what to do about it. It’s better to fix kids than

schools. This is a strategy of convenience that’s much too common—ignore strengths

in the one to correct weaknesses in the other. After all, there’s proof that schools teach

what kids need to succeed. Is this kind of success worth it? What makes it so hard for

schools to be inclusive? Why not teach to the strengths in all kids—visual, verbal, or

whatever—as they come? It makes sense to assume that everyone sees the world in a

novel way. The trick is to keep this advantage. There’s no telling what’s going to be

useful. Everyone’s point of view counts. There’s a lot to gain, in school and afterward.)

My daughters were given rulers with the ABC’s when they started kindergarten.

Their teacher said it was to remind them that words and sentences could all be made
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with the same alphabet (vocabulary). Letters and inches were alike—only so many fit

on a line. Naturally, counting was next. Both girls used manipulatives in the lower

grades to see what was happening. They started with unit cubes (points) that were

small enough to pick up with their hands and count. The cubes went together in

groups of ten to produce a ten-bar (a line). Then ten ten-bars were placed side by side

in a hundred-square (a plane), and finally ten hundred-squares were stacked in a

thousand-cube (a solid). These materials weren’t very attractive

but the method was clever. There was counting and place value—even geometry

and Cartesian coordinates—all at once. But it was odd, too. Units weren’t independent

in ten-bars, hundred-squares, or thousand-cubes. Lines were etched in their faces in

a grid. You couldn’t take units out. They fused in unusual sums when their number

and arrangement were right. Number and arrangement—that’s why Peirce said his fig-

ures were the same. Yet fusing things together was different. Somehow, shapes were

involved. What was there to see? Did ten-bars, etc., always look the same? And it

went on in this way—at ten thousand, there were alternatives. There might be a tesser-

act and cubes of higher dimension, or bigger bars and squares up to a million-cube.

The recursion was neat either way. Only which one was it; how did you decide? Count-

ing wasn’t ambiguous—it was just the way it looked.

Of course, fathers can be silly when it comes to their daughters. Counting is

something everyone needs to learn. And today, there are standards and tests to make

sure you do. ‘‘A student who’s tested is a student who’s taught.’’ Do your eyes make a

difference? Do children see what I see, or use shapes in the same way? Listen to Alex-

andra when she was seven years old. What she shows is more than I could possibly

make up. ‘‘This’’ (draws a loop)

‘‘is a cursive l. You can use it in an i’’ (draws a small circle)
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‘‘It’s chasing after a smaller fish’’ (draws eyes)

‘‘that swims up to the top.’’ And Alexandra’s younger sister, Catherine, has a nice way

of seeing, and of saying what she sees. Only sometimes she has a little trouble count-

ing. In her class at school, she learned how to use maps and plans. One had a key that

showed a table

her teacher’s desk

and a flag, pencils, a globe, and a wastebasket

When Catherine was asked how many tables were in the room
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she replied, ‘‘three.’’ I liked this—a desk is a table, isn’t it?—but Catherine’s teacher

wasn’t pleased. I thought it might be the room—it was a bigger rectangle. Or was the

small rectangle on her teacher’s desk a table? Maybe the room and the tables were

desks—how many did her teacher have? Somehow, I missed the point. I was looking

at it the wrong way. Flags, pencils, and globes weren’t wastebaskets. And pencils—

long, thin things—couldn’t be globes—round, fat ones. This was right. Only Catherine

didn’t care. She looked at the six (?) drawings in the key and saw shapes. No one told

her not to. She used her eyes to count. Rectangles made tables and desks. I didn’t ask

about things with circles. The room was magic—embedding was involved. It changed

every time she looked. What good were standards now? But counting required identity.

Why was this so important? Who said maps and plans worked that way? Were they

hundred-squares? Why not the other way around, so that grids were to see? What hap-

pened to ambiguity and reasoning? (A math specialist at Catherine’s school tells me

she’s amazed at how many children say her room has changed whenever they visit

again. This may complicate counting or cause problems in metaphysics—it shows

how artificial they are—but it doesn’t worry children. The rooms they see are the

rooms they draw.)

Alexandra and Catherine don’t make definite things. They draw lines to see what

they get—Catherine actually says so—and blithely go on from there to try it again. It’s

like an experiment, or more like painting. The outcome can’t be known beforehand be-

cause there isn’t time to look. Within the lines, Alexandra and Catherine are free to see

as they please. It’s easy to find new things in new situations. They’re dealing with nov-

elty all the time. Is this something to use? Seeing and counting aren’t the same, but

there’s reasoning—yes, calculating—in both. Why not take advantage of it? To insist

on counting may limit children, if they learn with their eyes and on their hands (dig-

its). And it isn’t necessary when you can go on from what they see. Seeing is as useful

as counting. It’s thinking, and there’s a lot to show.

It Always Pays to Look Again

This book is divided into three parts that correspond pretty closely to the three stages

in my autobiography. But the parts are presented in reverse order. I need to show you

more about what it means to calculate with your eyes—how seeing and counting differ

when you use rules—before I can show how to calculate with shapes. Then there are

the formal details to make sure that it works. And you need to know how to calculate

with shapes before you try it out to design. So the three parts are these—

Part I: What Makes It Visual?

Part II: Seeing How It Works

Part III: Using It to Design

‘‘It’’ is in the titles on purpose, and sometimes it and pronouns like it are elsewhere and

have no set antecedent. It can’t be helped with shapes and rules—what you see is what

you get, whatever was there before—and it can happen with words. Ambiguity is part

of everything I do, so I try to use it.
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In all three parts, the presentation is visual, in two senses. First, there are a lot of

drawings. If I had a way of doing it—and I don’t, even though I’ve worked to find

one—I’d just have drawings and no words. Maybe this isn’t so far-fetched. Pound rec-

ommends something similar for poetry, never mind that Chinese ideograms aren’t

shapes. And Klee gets close to what I’d like in his Pedagogical Sketchbook. But it’s often

obscure—it really only works with words. Everything is always ambiguous otherwise.

Drawings punctuated with words are what I’ve got. You do have to look at what I’ve

drawn to understand what I say. My drawings aren’t like the figures in most books

that are placed haphazardly with respect to the words, and that you’re free to look at

if you want or ignore. My drawings are parts of sentences. They’re there with the

words—you have to read them—and the words are sometimes there as drawings—

there’s the word

bed
for and of, and strings of angle brackets, etc.

Not long ago, I saw a figure in a book that was part of a quotation. The words

were fine, but the figure looked odd, so I went to the source. The original was a right

triangle like this

and was possibly a mountain, among a host of other things. But the copy I’d seen first

was the rotation

I suppose the triangle in this orientation looks like a mountain, too, yet it isn’t the

same. For one thing, it’s higher. And it’s impossible to walk on both of its sides. Maybe

it’s Gibraltar. No, it’s turned around, and the description fits the original triangle bet-

ter. Everything has changed. It all feels different. The new triangle seems much better

suited as an illustration of the Pythagorean theorem, when sides are given by symbols

a2 þ b2 ¼ c2

to remind me how to count without having to see. The words were all that mattered

in the quotation—they were perfectly correct—you could ignore a few miscellaneous

lines. Only in this book, lines count as much as words, and most of the time, more.

What you see is what you get. Drawings and words that are this close together make

the point. They strike the right balance between visual and verbal expression, and after

all, both are integrally related in everything that I’m trying to do. You have to see this

book to read it.
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Then, I’ve also tried to make the presentation visual in the way all of the ideas fit

together. I like to think of this book as if it were a shape itself. There’s a lot of redun-

dancy in shapes—pieces recur all over the place—and I’ve tried to do this with what I

show and what I say about it. This doesn’t mean you’ll notice anything twice, but only

that you’ll find the same thing in many different guises. There’s plenty of overlap and

interpenetration of this kind. I’ve found it’s a useful way to describe how things work.

Once you see that shapes and calculating with them aren’t about what you think,

you’ll see what’s going on.

There’s another way in which this book is like a shape. The different parts of a

shape are shapes themselves. And the shape and its parts can stand alone. In the same

way, the three parts of this book can be read separately, and for the most part are self-

contained. Each was written with the others in mind, and tried on different audiences.

My guess is that if the parts work separately, then they’ll also work together. Whenever

shapes combine, they fuse.

Background

The following background notes mostly follow the order of presentation in the preced-

ing text. When coordinates seem necessary, I have indicated earlier page numbers. I

thought of this when I saw ten-bars. You can find them on page 42.

My use of references in these notes and elsewhere in this book deserves brief no-

tice. To start with, my references aren’t comprehensive. Nor are they useful for their

technical content, although it’s largely current. And they aren’t select points in the

locus of a new debate. That visual and verbal expression are different doesn’t surprise

anyone. No, the surprises are found in the relationships between seeing and calcu-

lating, and how they tie visual and verbal expression together. By and large, my refer-

ences are about what it means to calculate—about what calculating is and isn’t

supposed to involve. Some of the things I cite are so well known that they may seem

gratuitous. This is a convenient way to highlight ideas that have become too obvious

to discuss. In particular, nearly everyone I talk to naively assumes that generative pro-

cesses are framed in combinatorial terms, so that calculating and seeing are both

diminished. There’s a given vocabulary of symbols and rules to combine them. And

some apply this to thinking (cognition)—‘‘[humans] have combinatorial minds.’’1 I

try to show how there’s more. I also use references without regard to their original pur-

pose. This is easy—it’s dealing with shapes. And it’s just as easy to trust anecdotal evi-

dence before facts and results. This also has spatial aspects. It’s no good predicting

what people will see and do next unless it shows how they’re free to go on in another

way. Anything that can happen can be useful. In the end, what you get is how things

appeared to me at the time. This is all you can ask for calculating with shapes. And

what this shows is what I really want you to see. I have one thing foremost in mind—

to explain in whatever way I can what it’s like to calculate by seeing and why this is

different than counting. Design and calculating with shapes are much the same. The

trick is to be creative. This is a licentious process in which nothing is fixed. There’s
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always more when you design, and I don’t want to miss any of it just because I’m

calculating.

The lines from Plato at the beginning of this book are in the Jowett translation of

The Republic:

Inasmuch as philosophers only are able to grasp the eternal and unchangeable, and those who

wander in the region of the many and variable are not philosophers, I must ask you which of the

two classes should be the rulers of our State?2

Wandering in the region of the many and variable may lack clarity, but any path that’s

traced can be perfectly coherent in retrospect. It’s the right place for designers, with the

chance to see and do as you like to make something new to talk about. This explains

the personal style I use in which verbal and visual expression combine. It’s a good way

to show in words what it means to wander around freely seeing and doing with shapes.

Only what does this say about the ‘‘eternal and unchangeable’’ when I calculate with

shapes? This is ‘‘metaphysical ground.’’ If shapes are eternal and unchangeable with

permanent parts, then there’s no calculating by seeing. It’s easy to use the philoso-

pher’s voice and talk impersonally and objectively when everything is definite. But

design is lost once analysis is complete. Design isn’t philosophy—what remains to be

created that’s more than a combination of things already there? Luckily, there’s an-

other way to look at it. I can have set rules—call them eternal and unchangeable, or

simply memorable—without implying anything definite about shapes. Their parts de-

pend on how I calculate, and they can change erratically as I go on. Embedding makes

this possible—it allows for what analysis overlooks with its constitutive results. Calcu-

lating with shapes is open-ended. Everything in this process varies freely. Opportuni-

ties abound for creative design.3 With shapes and rules, I can answer Plato’s question

in the way he finds self-evidently wrong. And I like to think that this is as sensible in

politics as it is in design. There’s a kind of gestalt switch, and more. Calculating gives

Plato’s answer sure enough—then, presto, mine. In fact, there’s equivalence in verbal

and visual expression, in the relationships between counting and seeing that I de-

scribe. (The prospect of fixed rules without fixed results is neat. Yet it may be pointless.

There’s no guarantee I can say what these rules finally are. Looking at myself or anyone

else seems scarcely different from looking at a shape. I can calculate in another way as I

‘‘wander in the region of the many and variable.’’)

I started playing around with shapes and shape grammars when I finished my

undergraduate studies, but it was a hobby. I was an economist at the time, developing

models of urban growth. I learned that I could make them do whatever I wanted. I be-

came a full-time shape grammarist—not a grammarian; I’ve never been an authority

on the proper use of shapes—when my first research paper was published, with James

Gips.4 This was the official beginning of the subject. Gips and I were doctoral students

at Stanford and UCLA, respectively, interested in how you could calculate with shapes.

We worked out the idea for shape grammars together, with surprises in mind. That’s

what we called ambiguity. But this was a problem when it came to putting shape gram-

mars on a computer. Gips developed a couple of neat programs, but neither of them
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allowed for ambiguity.5 You could calculate with shapes on a computer only if you

could describe them with symbols. You had to segment shapes into lowest-level con-

stituents to start. Then there was the combinatorial play with simple things to make

complex ones. Meanwhile, I worked out the details of embedding, so that you could

calculate with shapes in the same way you see.6 Symbols were unnecessary for shape

grammars—on a computer or not. I still see Gips today, and he’s happy to admit the

wonders of ambiguity in shapes and everywhere else. He likes to tell me I’m a fake. I

look like a strict formalist interested in rigor and rules. But really, it’s the ambiguity

that counts. Being a fake is high praise for a shape grammarist. One use of shape gram-

mars is to produce new things—fakes—in a known style, for example, villa plans that

look like Palladio’s.7 Take a look at the pair of plans

Which is the fake? No matter how you answer, you won’t be wrong. Making fakes lets

you see how well you understand a style. The idea is to be rigidly formal, and I’m to

blame for it. Only it’s the magic of shapes as they change that really fascinates me.

I’ve never tried to hide it. It’s magic everyone can see. And I want to show that it’s rig-

idly formal without feeling that way. That’s why I’m a fake. But use your own eyes. The

enchantment is always there when you calculate with shapes.

One of the things that I like to say when I talk about shapes is this: ‘‘What you

see is what you get.’’ It pretty much sums up what this book is about. At the very least,

it’s the way I want to calculate. I wish I had been the first to use the phrase—it appears

many times, initially on page 6—but it’s from Geraldine Jones. Flip Wilson created and

played the comic siren on American television.8 Geraldine used the refrain to describe

herself. She wasn’t lacking in curves, and remember, she was Flip Wilson in drag. The

refrain is always fitting when you’re talking about shapes. Geraldine put seeing ahead

of getting, and you can do this with a twist and a flip. I can use three lines to get the

shape

and then see the triangle
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Getting it first and seeing it later needn’t match. Everything fuses and divides in be-

tween. The real secret to calculating with shapes is to see that there’s always something

new. No matter what I do, it’s a surprise. What you see is what you get.

On page 6 and again on page 17, I talk about ‘‘results.’’ The terminology is from

Søren Kierkegaard’s Concluding Unscientific Postscript. His marvelous discussion of this

idea may just as well be about shapes, and what it means to calculate with them. The

American pragmatists and today’s neopragmatists also write in a way that describes

shapes, and sometimes this is explicit. But for now, listen to Kierkegaard.

While objective thought translates everything into results, and helps all mankind to cheat, by

copying these off and reciting them by rote, subjective thought puts everything in process and

omits the result.9

When it comes to shapes, everything is up for grabs. There are no results—fixed

constituents—to guide seeing. You can’t cheat in this way with shapes. Nothing is

given objectively to copy or recite by rote. There aren’t any divisions to remember

and get right. Seeing isn’t a test. No one can do it for you. It’s up to you now and

whenever you look again. You’re free to see whatever you want to see. You’re the one

to decide. And what you decide changes the way you go on in a process that’s always

open-ended. This kind of calculating is subjective and variable—the shape grammar-

ist’s voice is ineluctably personal. And once again, that’s why I talk about shapes in

this way because it’s how seeing and doing work. In fact, whenever I use results, it may

carry Kierkegaard’s meaning to remind you to look again in your own way. (I have a

peculiar habit of reading everything as if it were about shapes. I recommend this highly

to everyone. It’s a useful point of view. As soon as I saw how shapes worked, especially

in calculating, nothing was the same. Things I didn’t understand before were clear.

It was a Kierkegaardian leap.)

Donald Schon’s description of professional activity is in The Reflective Practitio-

ner.10 ‘‘Reframing’’ and ‘‘back talk’’ are at the center of ideal practice in design and else-

where. When I first met Schon, he told me that everything I had ever said about design

was wrong. I thought this was a nice way to start a conversation. And we went on and

on about it in a professional way for a long time. It was the freewheeling, unscrupulous

kind of conversation we both liked. It was the same calculating with shapes. Schon dis-

liked shape grammars because he didn’t trust calculating. It was moving symbols

around with rules—as in a formal system with axioms and proofs—and this was en-

tirely mechanical with routine results. Schon liked John Dewey, and so did I. We both

agreed that his logic—that’s his theory of inquiry—had a lot to do with design.

Inquiry is the controlled or directed transformation of an indeterminate situation into one that is

so determinate in its constituent distinctions and relations as to convert the elements of the orig-

inal situation into a unified whole.11
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Shapes are indeterminate—ambiguous—before I calculate, and have constituent

distinctions—parts—only as a result of using rules in this ongoing process. At least

that’s what I thought, and that’s why I thought calculating with shapes had a lot to

do with design. Schon didn’t say one way or the other. Maybe he enjoyed the ambigu-

ity. It’s always there to use, and there’s no reason to make up your mind when you can

go on talking.

There’s an illustration on page 10 from Paul Klee’s Pedagogical Sketchbook that

shows ‘‘medial’’ lines.12 Points are connected to make lines that form planes in the

way Miss H—— said. I like to think that Klee and Wassily Kandinsky, too—now it’s

explicitly Point and Line to Plane—might enjoy the idea of calculating with shapes.

The first lessons in Klee’s Sketchbook are wonderfully suggestive in this regard. I return

to them in part II. And certainly, Kandinsky was trying something similar, although, at

root, combinatorial.13

George Birkhoff’s Aesthetic Measure is well worth looking at today.14 It’s one

of the few books on aesthetics I know that actually contains pictures and worked

examples. This alone is a major breakthrough. A technical account of Birkhoff’s for-

mula and new examples are in a later book by Gips and myself.15 We also offer

our own measure EZ, with much else of independent interest. Like Birkhoff’s formula

M ¼ O=C, EZ involves generic ideas of unity and variety—richness of ends and econ-

omy of means—that apply to a broad range of things from paintings to music to scien-

tific theories. But the definition of EZ depends on algorithms and information theory.

There’s counting, and a ratio for relative entropy. As I said earlier, I’m not keen on it.

But Gips is still very enthusiastic, and who knows, he may be right.

Elizabeth Goldring did the nifty word door I’m inviting you to enter—it’s on

page 13. This is a standard narrative device to begin stories and tales. Lewis Carroll’s

Alice pops to mind whenever things change like shapes without rhyme or reason. But

there’s also a rabbit-hole to start—or is it

—and then a little door. What’s at stake here is not how good you are at this—

Alexandra’s l’s, i’s, and fish are better—but how to do it not knowing in advance that

you’re going to. (For more with an eye to children and calculating, and in particular,

on counting things like tables and desks, see part I, note 14.) Otto Neurath talks about

visual language in ‘‘Visual Education’’—

Visual statements and verbal statements are different and not translatable element by element. An

example: a boy walks through a door
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and not

These are the only drawings in ninety-five pages, and they’re key.16 The shape a-boy-

walks-through-a-door and the matching sentence are structurally distinct. The one has

two parts, while the other has six, as above, or more at the nodes of a tree, like the

one on the next page. Moreover, how do I divide the shape into the parts boy and

door, and relate them? The boy may be a man, a girl, or a woman, and he or she can

go either way or straddle the threshold. Maybe the boy walks left to right into or out

of a house, so that the shape flips in neat ways. And the door may have an architrave

with top and sides, or be otherwise embellished. Which of the many possibilities

makes the best story? And I’m free to see novel parts, as well. Shapes and sentences

aren’t the same. But there’s congruity, too, when Ezra Pound compares Chinese ideo-

grams and poetry in his marvelous ABC of Reading.17 In poetry, words are charged with

meaning. For shapes, this varies as I calculate.

Marvin Minsky’s book—Computation: Finite and Infinite Machines—is a good place

to learn the ins and outs of calculating with symbols.18 Minsky fell out with Hubert

Dreyfus when he panned research in artificial intelligence (AI).19 It was something

Kierkegaard said. This started out as gossip and soon enough, there was a public

debate—Seymour Papert represented Minsky who kept score, Dreyfus represented him-

self, and Jerome Lettvin was involved somehow. It ended in a free-for-all—ideas were

flying all over the place. And the dust hasn’t settled yet. At the time, everyone knew

Dreyfus was wrong and had another reason why.20 But it was almost twenty years later

before Allen Newell managed to hit the mark.

Dreyfus’s central intellectual objection, as I understand him, is that the analysis of the context of

human action into discrete elements is doomed to failure. This objection is grounded in phenom-

enological philosophy. Unfortunately, this appears to be a nonissue as far as AI is concerned. The

answers, refutations, and analyses that have been forthcoming to Dreyfus’s writings have simply

not engaged this issue—which, indeed, would be a novel issue if it were to come to the fore.21

In the AI community today, it seems that ‘‘discrete elements’’ still hold sway and

continue to be a ‘‘nonissue.’’ (The importance of units is also apparent in many related

areas. For example, look at the wide-ranging use of Lindenmayer systems and cellular

automata to model both biological and physical processes, and in evolutionary algo-

rithms.22 Claims for cellular automata as models of everything are perhaps overblown.

But the automatic reliance on units everywhere is undeniable. In fact, AI and evolu-

tionary algorithms are key in many computer applications in design.) Of course, the

question of units is nothing new. It comes up over and over again without a solution.

Susanne Langer was saying the same thing as Dreyfus twenty-five years earlier, only

about Ludwig Wittgenstein’s logic in the Tractatus, and with the arts—drawing, etc.—

in mind. There’s a lot riding on whether or not it’s practicable to calculate without
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units or symbols. The whole reach of calculating as a creative way of reasoning depends

on the answer. Isn’t it high time for this ‘‘novel’’ issue to come to the fore once and for

all?

I read Noam Chomsky’s book Syntactic Structures when I was an undergraduate,

and have barely glanced at linguistics since.23 I checked some current sources, and the

little I’ve said still holds up—from creativity to how sentences are described.24 (In ad-

dition, there’s the independent Cartesian hypothesis that rules are innate. Evidently,

language and embedding are equally automatic—‘‘Healthy adults [and children, for

that matter] make very few errors on this test.’’25 If our knack for language tells us

about ourselves, then surely our knack for embedding does, too. Both are parts of

what it means to be us.) A generative grammar is a model combinatorial system. Words

and syntactic categories—sentences, noun phrases, verb phrases, nouns, verbs, etc.—

combine in trees like this one

for the sentence ‘‘A rose is a rose.’’26 (The identity is logically necessary, but Gertrude

Stein repeats its predicate to be sure.27 This makes another sound—Eros—so ‘‘a rose’’ is

a shape. And the tree is twin structures in perspective—two sheds back-to-side. Or is

this another trick, a clever facade to hide the truth? No doubt, the tree is a single edi-

fice in elevation. Only ‘‘a house is a house’’ may be a better foundation. There’s sound

evidence indeed—seeing and hearing are calculating. Now it’s eyes for shapes, hands

for the vertices, edges, and faces of polyhedra, and ears for words to apply rules sensi-

bly. The mind ties all of this together with symbols and counting to settle Plato’s ques-

tion in a surprising way. I said this before on page 47. Many things bear repeating—

some never enough.) Chomsky is as well known for his anarchic politics as he is for

his linguistics. And calculating with shapes seems to be as much like the former as the

latter. In fact, deciding when things are alike is a key part of using rules. But it’s more

important now that shapes and rules go with many things they’re not supposed to. I

show this again in part I for Gian-Carlo Rota’s phenomenology and combinatorics.

On the one hand, there’s how things look, for example, trees and hierarchically orga-

nized list structures—strings like hhh i h ii hh i hh i h iiii, ((( ) ( )) (( ) (( ) ( )))), and

000101100100101111 in which symbols are combined in a certain way—and then on

the other hand, there’s counting distinct arrangements—the tree I’ve shown and my

three strings are all identical. This is perfectly clear. But shape grammars let me see
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and count as I please. Moreover, they show how the contrasting things that people do

hang together. Of course, this was evident from the start with Turing, photography,

and machines.

Langer’s book is Philosophy in a New Key. Her discussion of language and drawing,

etc.—some of which I quote on page 18—is used to distinguish presentational and

discursive forms of symbolism.28 The distinction corresponds more or less to the infor-

mal one I make between visual and verbal expression. These are so obviously separate

that it’s easy to miss how they’re related. Certainly, for me, there’s a decisive link, and

elaborating it to equivalence is what a lot of this book is about. I enjoy reading the ini-

tial few pages of Langer’s final chapter, ‘‘The Fabric of Meaning.’’ I like the opening

line—‘‘All thinking begins with seeing . . .’’—and more. First there’s a strand of the

idea that structure is a temporary (evanescent) record of our own activity. Topologies

(vocabulary and syntax) are one way to show the structure of shapes. And I show that

topologies are by-products of using rules—afterthoughts that evolve in fits and starts as

calculating goes on, in the way a designer might explain a developing body of work.

Then there’s an apparent behaviorist twist—seeing is ‘‘sheer’’ response. Chomsky’s

old review of B. F. Skinner’s Verbal Behavior puts this in doubt. But behaviorist ideas

are of some use when it comes to saying what it means to calculate with shapes. One

way to describe rules minimally is as stimulus-response pairs—I see this and do that.

It’s a stark reminder that shapes aren’t represented either in rules or as the result

of what rules do. Everything fuses and divides anew as I go on. Every outcome is a

surprise.

I was pretty clear about the relationship between grammar and syntax in Langer’s

sense and calculating with shapes more than twenty years ago. I framed the contrast in

terms of set grammars on the one hand and shape grammars on the other. Set gram-

mars parody combinatorial systems, exaggerating their use of identity via set member-

ship. Still, the technical details are unassailable—set grammars are equivalent to Turing

machines.

Set grammars treat [shapes] as symbolic objects; they require that [shapes] always be parsed into

the elements of the sets from which they are formed. The integrity of the compositional units in

[shapes] is thus preserved, as these parts cannot be recombined and decomposed in different ways.

In contrast, shape grammars treat [shapes] as spatial objects; they require no special parsing of

[shapes] into fixed [parts]. Spatial ambiguities are thus allowed, as given compositional units in

[shapes] can be recombined and decomposed in different ways.29

There’s creativity in combining shapes and in dividing them. But the one without

the other is just reciting by rote, merely counting out. It’s all memory when shapes

are divided in advance, but otherwise, everything is always new. No one took any no-

tice of this. Maybe the difference between sets and shapes in calculating—between

identity and embedding—is too subtle. Or perhaps rigor and formality don’t work.

I’m less technical now, and as informal as I can be. The message is the same, and I

don’t want it to be missed. It’s all about seeing—there are no units; shapes fuse and di-

vide when I calculate.
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Langer also separates technique and syntax in her discussion of drawing and lan-

guage. This is surely another version of the distinction between schemas and rules that

contrasts a synoptic view of possibilities with mere combination. In architecture, for

example, Gottfried Semper’s Urhutte is an ample summary of buildings in the manner

of Goethe’s famous Urpflanze, while J. N. L. Durand’s system of architectural composi-

tion is combinatorial à la Chomsky or Simon with a vocabulary of building elements,

etc. Only the distinction isn’t that clear-cut—there are usually combinatorial aspects to

a schema when it’s used. Goethe relies on transformations and permutations to vary

the organs of his Urpflanze. Moreover, a system of vocabulary and rules with a starting

‘‘axiom’’ provides a synoptic view of possibilities that unfolds in a recursive process.

The axioms of any formal theory do this, as well. Maybe schemas and rules are alterna-

tive ways of describing the same thing where the emphasis is differently placed. They

may be distinct, yet they both show what’s going on. Perhaps it’s only the way you

look at it, with the chance to switch back and forth. I’m used to conflating schemas

and rules when I calculate with shapes. I can look at shapes as schemas animated by

rules, or as something formed as rules are tried—either way without recourse to units,

so that there’s nothing explicitly combinatorial. And this is really what counts. In both

ways, there’s recursion, but there’s no vocabulary. It’s not words and rules. The shape

and rules to rotate and translate squares are a good example of this. Is the shape a

schema, an axiom, one then another at different times, or something else when it’s

used to produce the nine shapes on page 30 and others like them?30

Herbert Simon’s The Sciences of the Artificial is an old book for computer science,

but it’s still current today in science and design.31 Things never change as quickly as

people like to think, unless of course they’re shapes. Big ideas that are in right now

are in Simon’s book from the beginning in sharp focus, for example, complex adaptive

systems. I’m keen on the metaphor that calculating is painting—it’s new in the second

edition and stays in the third—even if Simon may miss some of its possibilities. I’ll get

back to it in part I, and to his way of describing pictures with hierarchies and his appeal

to drawings to disambiguate sentences. The latter may be a version of Wittgenstein’s

picture theory of meaning. I’m not sure. But I am sure that there’s a lot in Simon that

bumps against shapes in really important ways.

Leonhard Euler’s wonderful letters to the Princess of Anhalt-Dessau, the niece of

Frederick the Great of Prussia, are popular accounts of various topics in physics and

philosophy. The subject of ten letters from 25 April to 30 May 1761 is extension and

the absurdity of dividing things with it into other things without it. The hortatory

quotation on page 32 is from the penultimate letter of the series.32 Euler’s warning—

deny parts that can’t be divided—applies to all sorts of things from shapes to numbers
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and time. The way Euler came to describe polyhedra in terms of their vertices, edges,

and faces—in terms of boundaries, boundaries of boundaries, etc.—is also enlighten-

ing.33 Peter Cromwell goes on to describe the tactile quality of these elements in the

short quotation on page 32.34 And Erwin Panofsky mentions Albrecht Dürer’s

‘‘nets.’’35

Euler and William Blake have the same politics. And Blake is a wonderful letter

writer, too. His displeasure with ‘‘Newton’s Doctrine of Fluxions of an Atom’’ and his

stirring vision of the ‘‘Republican’’ line were conveyed on 12 April 1827 to George

Cumberland.36

The quotation from C. S. Peirce and the twin figures

are from his famous article in Popular Science Monthly. It’s called ‘‘How to Make Our

Ideas Clear.’’37 Ambiguity and clarity are opposites—it’s one or the other. One way to

be clear is to see that figure 1 and figure 2 show the same arrangement of objects. Only

how can I tell I’m looking at an arrangement and not at a shape? Maybe if I divide a

shape into parts, it’s an arrangement of objects. But the shape comes first, and it’s there

to divide anew when I look again. Evidently, arrangements like sets are ideas and can

be clear, whereas shapes are ambiguous. What can be seen can’t be clear (unambigu-

ous), and what’s clear can’t be seen (ambiguous). Shapes aren’t ideas. Was Plato right

that philosophers make better rulers than ‘‘those who wander in the region of the

many and variable’’? Is seeing mindless? Thinking with your eyes and dealing with

ideas aren’t the same. And sure enough, Peirce shows why in his neat discussion of

habit, after the passage I’ve cited. It’s another way to describe rules for calculating.

What the habit is depends on when and how it causes us to act. As for the when, every stimulus to

action is derived from perception; as for the how, every purpose of action is to produce some sen-

sible result.38

The arrangements in Peirce’s figures are identical. But if perception is the test, then

each supports different behavior. Is this a mistake? The philosopher finds ambiguity

embarrassing and shuns it in logic and reasoning, even as the shape grammarist

embraces ambiguity and exploits it in art and design. Rules are used in an open-ended

process to decide when and how to change shapes with all of their ambiguity. It’s ask-

ing too much to ask for less, and this is true when less is more. Doesn’t anything hold

still? One thing is clear. Arrangements like definitions and plans are mistakes—all four

are made to check creative activity.
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I mentioned William James on page 41. He links reasoning and novelty in The

Principles of Psychology.39 This relationship yields yet another telling way to characterize

rules when I calculate with shapes. Rather than seeing and doing, the behaviorist’s

stimulus and response, or Peirce’s when and how, it’s sagacity and learning. These

terms may sound quaint today—sagacity fails when learning ends with standardized

tests—but they’re valuable nonetheless. I’ll return to both in part I. Meanwhile, it’s

the inverse of James’s relationship between reasoning and novelty that explains why

education is worth having. For James, ‘‘An ‘uneducated’ person is one who is non-

plussed by all but the most habitual situations.’’40 Learning how to behave in everyday

situations whether at home or on the job is a vital goal in education. You know what

to see and what to do as habits are fixed—when ‘‘the enormous fly-wheel of society’’ is

put in motion—so that life goes by with relaxed certainty, and it pays to be on time

and work hard. But in parallel, education acts against conservative inertia. This radical

impulse resists final results. Even the humdrum is more than it seems and always

merits another look. Seeing never stops. Blake saw a world in a grain of sand41—so

much for units—and found ‘‘Republican Art’’ in this hackneyed line

James has it going east and west not heeding the inconsistency.42 Ambiguity is intrin-

sic in what there is to see, and has many uses. At its best, education makes it possible to

experiment and learn how ambiguity works. You’re encouraged to play around freely

with whatever you see in an open-ended way. Novelty isn’t routinely dismissed as con-

fusion or noise, or as our Republicans imprudently demand, suppressed as a threat to

high test scores, big business, civic pride, and homeland security. Order, predictable

results, and steady plans aren’t the goals. What’s needed is creativity—the freedom to

see and do. Education isn’t all about standards and authority. It’s to instill habits that

bypass habit, too, to nurture the ability to go on seeing and doing when things are

new. It’s the same using rules to calculate with shapes.

Also on page 41, there’s a quotation from Mel Levine’s book A Mind at a Time.43

The absence of a visual approach to education in schools is something that I hope cal-

culating with shapes will help to address. At least it shows that it’s possible to be formal

with your eyes—as formal as mathematics—without losing anything that’s creative in

the process. With shapes and rules, novelty, seeing things in new ways, and experience

that’s ongoing and variable are emphasized. The social psychologist Ellen Langer calls

this ‘‘sideways learning’’ and ‘‘mindfulness.’’44 Means and methods of teaching make a

difference in education—to learn by counting and more by seeing.

The triangle

on page 45 is in Mary Warnock’s Imagination in a quotation from Wittgenstein’s Inves-

tigations.45 Transformations of shapes are easy to mix up. Sometimes it’s good to keep
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them apart—a triangle this way or that may make a real difference, but sometimes not.

You have to look and you have to decide. Shapes can be alike in many ways and may

stand in for one another, too. The confusion, like ambiguity, is indispensable when I

calculate with shapes. Embedding and transformations together make rules work. This

is a neat relationship that lets me see what I do and change it.

I have given a rather lopsided view of bits. And in fact, it may be quixotic. There

are many others who find bits inevitable, almost to the beginning of history. W. V.

Quine gives a wonderful account of this in his discussion of atoms.46 In his own

mind, he ‘‘dreams of a meaningful perceptual atomism: a repertoire of basic features,

noticed or not, in terms of which every neurologically possible human perception and

perceptual distinction can be specified.’’47 This appears to ask for something more

than mere approximations, and in return, to end phenomenology. With meaningful

constituents—mince won’t do—combinatorics is enough. Even so, it isn’t hard to see

that noticed features have a property that unnoticed ones don’t. And this makes me

uneasy, as I’ve said before. But Quine finds bits undeniable in any subject that’s a

science.

What key trait makes the atomic approach effective in organizing a science? I say it is this: there

may be indefinitely or infinitely many atoms, but they must be partitioned into a manageably

limited number of kinds such that atoms of the same kind play identical roles within the laws of

the theory. This much, significantly, is just what is required in order that a theory lend itself to the

measurement of information.48

Atoms and laws smack of words and syntax. But it’s the need to count—to measure

information—that makes bits important. Is this the hallmark of rationality? Certainly,

counting is included in reasoning at its very best. It’s something to respect. And any

claim to reason that goes without it is something of an embarrassment. In fact, visual

reasoning—using your eyes to decide what to do next—always demands an apology. It

isn’t obviously counting and needs to be explained. It would make all the difference in

the world if I could show it’s a science. Maybe this isn’t a dream. Seeing and counting

are related—and that may just do the trick. (The value of counting is nowhere more

apparent than in the measurement of reasoning itself. Francis Galton—Charles Dar-

win’s cousin—was the first to think about this.49 Galton never tired of saying, ‘‘When-

ever you can, count.’’ Counting was a habit worth having. It was the way to gauge

mental ability by energy and sensitivity—the former as the capacity for labor and the

latter as the response to physical stimuli. This seems ridiculous today given the accu-

racy of standardized tests of intelligence—IQ—cognitive ability, academic achievement,

etc. And no doubt, standardized tests for tenure are around the corner to validate the

rote results of peer review. This is what universities need—accountability and fairness

demand it for faculty and students alike. Yet beyond what any test can show—even a

bent for words and numbers—reasoning takes personal experience and has its own

point of view. Visual analogies and puzzles on an IQ test don’t have much to do with

this. They work only if they’re unambiguous. Is this ever possible? What’s left that’s

visual or useful in new situations? Shapes are full of miscellaneous possibilities. How
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can you measure the ability to see in your own way if it’s known in advance? Answers

on a test are right and wrong without results to check seeing. At least energy and sen-

sitivity are related to hand and eye. Shapes and rules bypass standards, tests, and the

trivial idea that accountability makes a difference. Final answers are out of reach when

there’s more to see and do.)

My own field strives to be a full-fledged science. And there are many who work

tremendously hard to make sure that this happens. Michael Batty is one of the most

energetic. He’s the long-standing editor of Environment and Planning B. This is the lead-

ing scholarly journal in which serious papers on shape grammars appear. Listen to

what he says about shape grammars, urban morphology, and science. There are clear

echoes of Quine.

With the exception of research at the architectural level involving shape grammars which do un-

pack the rule-based dynamics of how form is created, most conventional approaches to urban

morphology such as those based on fractal geometry and space syntax are limited in their explan-

atory power. . . . There is no consensus in urban morphological research as to the fundamental [ba-

sic or atomic] unit of description. . . . What is required is research into what constitutes the most

basic unit, but until there is consensus, little progress can be made. Only when there is agreement

about the nature of the data can science begin. Only then can classifications and comparisons be

made, alternative theories conjectured and falsified, and consistent methods of analysis meeting

basic mathematical standards developed.50

I’m almost positive that shape grammars are mathematics—and not just as a

method of analysis. I’m equally confident that Batty’s fractal geometry (cellular autom-

ata) and Bill Hillier’s space syntax are mathematics, too.51 In fact, they’re calculating

with shapes when embedding is identity—in the special case where shapes behave

like symbols. But shape grammars, cellular automata, and space syntax also differ

according to Batty’s measure of explanatory power. This highlights the split between

shapes and symbols, even if standards and measures are likely to suppress novelty and

exclude a lot that may be useful. The truth is I really don’t like permanent standards

and measures whatever they show, and try to work without them. So why am I sure

that shape grammars are mathematics? I have some circumstantial evidence to support

my claim. First, shape grammars let me calculate in algebras of shapes, and this sounds

like mathematics to nearly everyone. It’s the same whether you like shape grammars or

not, and it may be the reason why. Words make a difference. More notably, though,

math majors—graduate and undergraduate students—take my classes on shape gram-

mars. And they do so voluntarily, without any kind of curricular coercion. Are there

better judges of mathematics than students who want to do it? Our free choices let

standards grow up and change within experience as part of it, whether they’re haphaz-

ard everyday standards, rigorous mathematical ones, or something in between.

Shape grammars let me calculate with shapes—they let me use my eyes to decide

what to do next. In this way, they ‘‘unpack the rule-based dynamics of how form is

created.’’ No one has complained yet that there’s a loss of explanatory power because

there aren’t any units. In fact, shape grammars show it’s possible to go on rigorously
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without ‘‘agreement about the nature of the data.’’ You can call this science or not as

you please. It’s entirely inconsequential. It’s calculating either way. Everyone knows

that shape grammars are quirky, even unconventional as Batty implies. You put up

with them. But there’s surely another reason I haven’t heard any grumbling about

units. Their absence is overlooked. The assumption that there are units is so firmly

rooted—it’s automatic for calculating—that no one bothers to ask what shape gram-

mars do. Or maybe they work so magically without units that no one cares. The results

are spellbinding. Some things are difficult to see if you don’t know how to look, even

when they’re right in front of your eyes. You need the rule and have to apply it. That’s

the reason for this book—to show how embedding makes it practicable to calculate

with shapes that aren’t given using units or symbols, and how calculating in this way

includes creative design.
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I WHAT MAKES IT VISUAL?

To a large extent it has turned out that the usefulness of computer drawings is precisely their

structured nature and that this structured nature is precisely the difficulty in making them. . . . An

ordinary draftsman is unconcerned with the structure of his drawing material. Pen and ink or

pencil and paper have no inherent structure. They only make dirty marks on paper. The drafts-

man is concerned principally with the drawings as a representation of the evolving design. The

behavior of the computer-produced drawing, on the other hand, is critically dependent upon the

topological and geometric structure built up in the computer memory as a result of drawing oper-

ations. The drawing itself has properties quite independent of the properties of the object it is

describing.

—Ivan Sutherland

Use Your Eyes to Decide

Visual reasoning means using your eyes to decide what to do next. This formula looks

just about right—it puts seeing and doing together in the way I like. But there’s more

to say about what makes visual reasoning useful in design. Just what makes reasoning

visual anyway? How does calculating fit into this? And why are seeing and drawing an

effective way of thinking? That’s the nub of what I’m trying to do. In fact, I’m going to

adopt the point of view of someone who thinks about design and how seeing and

drawing help to make it work. This turns into a practical concern for shapes and rules,

and their value in the design process. So there are some parallel questions that also re-

quire answers as I go on. How can I make anything that’s really new when I calculate

with shapes? How creative can I possibly be if I only use rules? Can I find another way

to design? Am I any more creative if I don’t use rules? Does this make sense? What’s at

stake?

A good way to see how all of this lines up is to try my first question,

(1) What makes reasoning visual?

I’m not going to answer question 1 directly. Instead, I’m going to pose two ancillary

questions that seem easier, probably because I have something to say about them.

Here they are:



(2) What makes calculating visual?

(3) Does reasoning include calculating?

I’ll take a meandering route through their answers that digresses now and then to ex-

plore other questions like the unnumbered ones in the previous paragraph. This isn’t

exactly what Plato recommends in the quote that heads the introduction, but wander-

ing around aimlessly to see what’s what—changing your mind freely—is a useful way

to get new results. It’s a nice way to see what calculating with shapes and rules is all

about. It feels right, and there’s some logic to it. If my answer to question 3 is yes,

then I can argue by analogy that visual reasoning includes visual calculating. And if I

can answer question 2, then I can use visual calculating to understand visual reason-

ing. It’s reasoning by inference—from the properties of a part to the properties of the

whole. Of course, this assumes that parts and wholes are alike. I’ve already said so for

shapes and embedding. This makes calculating with shapes and reasoning (inference)

the same in at least one respect. Plus, I’m more confident about the mechanics of cal-

culating than I ever will be about reasoning generally.

I’ve always liked engineering, with its sensible outlook and palpable results. It’s

the same when I calculate. I can point to examples—some of my own invention—

and go through them step by step. But it’s hard to know about reasoning. My own rea-

soning when it goes beyond calculating is as suspect as any. Whenever I think I have a

good argument, someone soon comes along and proves the opposite. And it’s just the

same if I try to follow the reasoning of others. I go from thinking I’m thinking to

thinking I’m not. I’d rather stick with engineering and show how things work out sen-

sibly. It’s easy to do applying rules to calculate with shapes. I can’t be sure until I show

you, but I’m almost positive—you’re going to be surprised at how much more there is

to visual reasoning than you imagine, if it’s anything at all like visual calculating. The

kinds of things I have in mind don’t come from complicated ways of counting or

clever coding tricks that take real brainpower—from what’s customarily valued and

encouraged in calculating. They come straight from seeing. It’s all there whenever you

look.

I’ve framed my questions with respect to the following diagram

that shows how everything is supposed to fit together. This extends counting to calcu-

lating in what I said in the final pages of the introduction about reasoning at its best

and why its visual counterpart is something to explain. Diagrams are meant to see.
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But when I look at mine, I worry about which way the inclusions should go—what’s

embedded in what? What makes me think I have the right setup? There are a couple

dozen ways to permute the names of the areas, with novel consequences that might

be useful. Maybe the names should be reversed like this

so that reasoning and calculating are special cases of visual reasoning and visual calcu-

lating. Is this an example of how visual reasoning is supposed to work? I don’t know.

There’s a nifty change in perspective, with the kind of switch that’s common in design

in the interplay between results and goals. Many things alter freely the way drawings

(shapes) do when I look at them a second time. Ambiguity is something to use. And no

matter which diagram I try, visual reasoning and calculating need to be explained. My

three questions still hold with undiminished force. What’s more, I’m sure that each of

my diagrams is correct on its own, for calculating by counting (this is the standard

method of calculating that’s taught in school) and then by seeing (this is my alterna-

tive that relies on shapes). And there are telling equivalencies, as well. It’s uncanny

how everything converges so quickly, and without any fuss. I’m right back to the

scheme I outlined at the beginning of the introduction to relate verbal and visual ex-

pression. This depends on the contrast between identity and embedding—between

points (symbols) of dimension i ¼ 0 and basic elements of other kinds—lines, planes,

and solids—of dimension i > 0. What this contrast means for reasoning and calculat-

ing, visual and not—why the value of i matters—is mostly what I’m going to explore.

Let’s see how all of this works out in some detail. What about question 3?

Does Reasoning Include Calculating?

I want to show that reasoning includes calculating—or at least that there’s a reason to

think so. Most of the people I’ve asked agree that it does. Some see calculating as what

the best in reasoning is all about, while others see it as a narrow kind of process among

many of greater scope and use. Nonetheless, I only need the inclusion to go on, so that

I can explain visual reasoning in terms of visual calculating. This isn’t new territory.

The relationship between reasoning and calculating has been described many times

before—Thomas Hobbes was apparently the first to try—in a variety of ways from

which I can select. Sifting through the possibilities may take some reasoning—at least

a little judgment if not actual calculating—but the stakes aren’t high. There’s enough

agreement to decide on pragmatic grounds alone. And in fact, this points the way.
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Whenever I read William James, I always find something new about shapes and

rules. What’s more, there’s an account of reasoning in The Principles of Psychology that

works flawlessly for what I want to do. For James, reasoning is a compound process

with interlocking parts. He divides the ‘‘art of the reasoner’’ into moieties:

First, sagacity, or the ability to discover what part, M, lies embedded in the whole S which is before

him;

Second, learning, or the ability to recall promptly M’s consequences, concomitants, or implica-

tions.

This is precisely what happens whenever rules are used to calculate. A rule M fi P

shows the part M to be embedded in the whole S, and specifies the consequences,

etc.—call them P—of finding M in S. Remember how the rule

that I described in the introduction used embedding to rotate triangles. Any part I can

see and trace I can change. In just the same way, the rule M fi P applies to S to pro-

duce something new. Of course, this is only a sketch. It leaves out most of the impor-

tant details. I have to say a lot more about how the rule M fi P works when it’s used.

The trick is first to find a suitable embedding relation, and then to show how M can be

embedded in S, and how together with P, this changes S.

James takes the syllogism (predicate calculus) as his example—this only confirms

the link to calculating—with almost no attention to the underlying details that make

rules work. James isn’t an engineer. Sagacity and learning are taken for granted. He

has something else far more interesting and weighty in mind. He wants to plumb cre-

ative thinking and describe the source of originality. In fact, James’s overarching defi-

nition of reasoning is the ability to deal with novelty. This is why reasoning makes a

difference.

If we glance at the ordinary syllogism—

M is P;

S is M;

8 S is P

—we see that the second or minor premise, the ‘‘subsumption’’ as it is sometimes called, is the

one requiring the sagacity; the first or major the one requiring the fertility, or fulness of learning.

Usually, the learning is more apt to be ready than the sagacity, the ability to seize fresh aspects in

concrete things being rarer than the ability to learn old rules; so that, in most actual cases of rea-

soning, the minor premise, or the way of conceiving the subject, is the one that makes the novel

step in thought. This is, to be sure, not always the case; for the fact that M carries P with it may

also be unfamiliar and now formulated for the first time.

For James, there are twin ways to be creative—using rules (‘‘the way of conceiv-

ing the subject’’) and also defining them (connecting M and P in the first place). And
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he puts greater emphasis on the former. Perhaps this is surprising, but I think he’s right

about ‘‘the novel step in thought.’’ Embedding—‘‘the ability to seize fresh aspects in

concrete things’’—is the key. Of course, James also relies on learning. This isn’t about

the kind of facts that are taught in school where the emphasis is on counting things,

but about finding rules and remembering them independent of things and their parts.

I can decide what to see and do without ‘‘translat[ing] everything into results.’’ There is

no final analysis, only lots of temporary analyses that can change erratically as rules are

tried. This is a dynamic process with plenty of ambiguity. Nothing ever has to stay the

same. Novelty is everywhere. Once you see how this works—and it does depend on

seeing—it’s evident that the standard version of rules in terms of symbols—what

Susanne Langer has in mind when she considers vocabulary and syntax—is neither

James’s nor mine.

So question 3 is easy enough, and the answer I have helps with question 2. First,

I can use embedding to distinguish visual calculating and calculating in the ordinary

way with symbols. And then, James’s double take on creativity works for shapes and

rules. There’s always the chance for something new. Rules are defined when shapes

are combined in pairs—there’s learning what to try—and rules apply via embedding—

there’s sagacity seeing in alternative ways. Is this all that’s needed? What does embed-

ding allow that ‘‘results’’ miss? How does it work?

Reasoning is often surprising when it succeeds—at least for James—and may be

equally so when it fails. I want to begin with an instance of the latter to illustrate a few

details of embedding, and what these mean for shapes and rules. My example deals

with line drawings, but this in itself doesn’t make it visual. If drawings are handled

logically—that is to say, rationally in terms of given parts—shapes aren’t really

defined. Neither reasoning nor calculating is automatically aligned with seeing. Things

can break down. In fact, my example shows how easy it is for calculating and seeing to

disagree. Of course, there’s a way to reconcile them that I’m going to show, too. Visual

calculating and hence visual reasoning are neatly practicable with shapes and rules.

A First Look at Calculating

T. G. Evans applies the rules of a ‘‘grammar’’—it’s syntax in Langer’s sense—to define

shapes in terms of their ‘‘lowest-level constituents’’—or alternatively atoms, bits, cells,

components, features, primitives, simples, symbols, units, etc. This illustrates some

notions that have been used widely in computer applications for a long time. They’re

ideas that are as fresh now as they ever were. (Rules like this were applied early on in

‘‘picture languages’’ to combine picture atoms and larger fragments, and just after-

ward in Christopher Alexander’s better known yet formally derivative ‘‘pattern lan-

guage’’ for building design. The story today in AI, computer graphics, design, etc. is

the one I told on page 51 about units, Lindenmayer systems, and cellular automata.

My set grammars are also alike—but maybe more inclusive, being the same as Turing

machines. Of even greater interest, though, set grammars work the way shape gram-

mars do for points. For lines, things diverge with important consequences for visual
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calculating. The dimension i of basic elements makes a difference—what happens as

rules are tried depends on the value of i, and whether it’s zero or not.)

Evans’s grammar contains rules like this one

Three lines fi Triangle

that defines triangles in the ordinary way as polygons with three sides. In order to

show how the rule works, I first have to give the embedding relation, and then tell

what options there are to satisfy it. For Evans, embedding is identity among constitu-

ents. This is the same for points. The rule applies to a shape when all of its constituents

(points) are also in the shape. Moreover, the constituents in the rule may be trans-

formed as a whole arrangement—they can be moved around, reflected, or scaled—to

determine the right correspondence with constituents in the shape.

Evans uses this shape

as an example. The shape has a finite set of constituents. It’s twenty-four line seg-

ments, each one defined separately by its endpoints—first there are the four sides of

the large square and their halves

then the two diagonals of the square and their halves

and finally the horizontal and the vertical and their halves

And Evans’s rule—the one for three lines—applies without a hitch to pick out the six-

teen triangular parts of the shape. There are eight small triangles, four medium ones,

and four large ones
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This is really pretty neat. In fact, it’s a very clever bit of coding. If there were only

eight long lines in the shape, then there would just be large triangles and no small or

medium ones. And if lines were only halves, then there would be three distinct kinds

of triangles

not all with three sides, that I would have to define in separate rules. In addition to the

rule

Three lines fi Triangle

for small triangles, I’d need a pair of new rules

Four lines fi Triangle

Six lines fi Triangle

for medium triangles and large ones. But how many representations does a triangle

have? I thought there were always three sides. That’s what I was taught in school, and

that’s what I normally say I see. Evans’s grammar cuts through this confusion artfully.

The grammar is seeing what I do, when a solitary rule of no great complexity—it’s

what you expect: three lines—is used to calculate. What else do rules and constituents

imply? How far can I go with this?

I can give rules for squares and rectangles—four lines apiece; bow ties of distinct

shapes—again four lines apiece; and congruent crosses—either two lines or their four

halves
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And my rules find all of these figures wherever they are in the shape. There are five

squares, four rectangles, six bow ties, and two crosses of each type. This is great. But

already there are signs of trouble. I can’t tell the crosses apart just by looking at them,

even if I can by the rule I apply. Calculating and seeing are beginning to look different.

Now suppose I go on to define an additional rule

Line fi

that erases lines—the lowest-level constituents—in Evans’s shape. What do I get if I

apply my new rule to erase the lines in all small triangles, or in all medium or large

ones? Whatever happens, I don’t expect to see the lines I’ve removed in my result. If

I do the erasing by hand to remove the lines I see in small triangles, the shape dis-

appears. And for medium or large triangles—erasing what I see by hand without think-

ing about it—I get a cross that looks like this

But in all three cases when I calculate with the rule, my results look like this

Some parts are hard to delete when I use my eyes, even after I’ve applied the rule.

The shape is visually intact whichever lines I erase. You can check me if you like. I

haven’t made any careless mistakes, yet I don’t get what I expect. I must be seeing

things. And, actually, I am. I always knew it would be this way. Seeing is believing,

but not always. The lines I’ve erased with the rule aren’t there. No two of the resulting

shapes are the same. They’re numerically distinct—what better way to tell things

apart—with eight, sixteen, and eighteen constituents apiece, and they’re all different

from the shape

I started with.

Be careful, though. The problem is not that I can’t trace eight or more distinct

lines in Evans’s shape—that’s easy—but that for Evans there are four numerically dis-

tinct versions either with eight lines, sixteen, eighteen, or twenty-four. And these ver-

sions are hard to keep straight. How can I tell which is which by looking? What
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happens if they get mixed up? How can anyone tell, without consulting a higher au-

thority or some kind of official record? God always has the right answer, but is apt

to conceal it. Revelation comes from faith. But I’m left with experts and others who

don’t know. Whom do I ask to tell them apart? Answering this question is a real

predicament—it just goes on and on. I’m lucky that I don’t have to trust my eyes.

There’s a more effective way. I can calculate to find out. Think of this as an experiment

on a computer to find the hidden (deep) structure of a shape. I can keep track of where

the rule applies to decide what I can’t see. There’s some bookkeeping, to be sure, but

the way seems clear. If I follow Evans and define constituents by their endpoints,

then I can record horizontals (H) followed by verticals (V) and diagonals (D) in three

different lists

(Of course, these descriptions change if I rotate Evans’s shape 45 degrees

The discrepancies between the new lists and the original ones are pretty much the

same as the discrepancies between the original lists themselves, yet the former seem

trivial and inessential. Who decides what’s important?) Telling shapes apart may take
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more than my eyes. It depends on lists. Look again. What difference do you see?

There’s no way to break the monotony.

Let’s look at how the shape

is put together, and what this implies about what I can see. The twenty-four constitu-

ents (line segments) in the shape include the eight long lines

and their sixteen halves

Each long line contains two halves, and each half is contained in a long line. This gives

me the sixteen triangles I want. But if I erase a long line, there are two halves that visu-

ally compensate for the loss. And if I erase any half, there’s a long line that fills in. The

shape is going to look exactly the same, even as its constituents change. Calculating

multiplies differences I simply can’t see. Is this a reasonable way for reasoning to work?

These are the facts I have so far—they go from what I can see to what I can’t. It

seems that

(1) some shapes can look different and be the same,

while

(2) other shapes can look the same and be different.

There are many examples of statement 1 in the introduction, including the three lines

part of Evans’s shape
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with triangles, pyramids, and tetrahedrons, and the pair of figures

from C. S. Peirce. In fact, what I’m trying to show in this book is how the embedding

relation makes statement 1 practicable for shapes like these when rules are used to cal-

culate. Rules let me see in alternative ways. And then Evans’s shape gives four exam-

ples of statement 2. This is solid evidence that’s right to heed. Nonetheless, I’m

uncomfortable with my taxonomy. I’m going to affirm 1 and deny 2—it’s just not the

way shapes work. I can vary how shapes look any time there’s something else to do.

Their parts change freely, so they can be anything they need to be. There’s plenty of

ambiguity to go on. That’s why drawing is useful in design. But constitutive distinc-

tions that are permanent and fixed—‘‘eternal and unchangeable’’—and lost out of

sight get in the way. They have to be remembered and honored to go on. Seeing begins

and ends with my eyes. There’s nothing more than they can find. If shapes look the

same, then they are the same. What you see is what you get. Really, it’s simply a ques-

tion of logic. Deny statement 2 yourself and see if I’m right.

(The best way to explore the occult properties of Evans’s shape is to count the

different kinds of triangles it contains. This is what descriptions—representations like

lists, strings, graphs, networks, trees, schemas, sets, structures, etc.—that are given in

terms of constituents are for. Small triangles all have three lines apiece, but medium

ones can have three to five lines and large ones three to nine. Lines are taken from

these schemes

There are five distinct configurations for each grouping of three collinear lines
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So there are five versions of each medium triangle, and a hundred twenty-five of each

large one. The census is given in table 1. More is happening in Evans’s shape than I can

possibly see. What use are my eyes when nearly everything is hidden? I’ve no doubt

that Evans’s shape contains sixteen triangles that meet his definition and mine. I sim-

ply have to look to find them. I can trace them out. But this is only a half—actually 3

percent—truth.)

Constituents are made to calculate, and they’re supposed to work. Surely, I can

debug what I’ve done. That’s an important part of defining rules and understanding

what they do. If I erase a long line, I can also remove its halves at the same time. This

takes another rule

Three collinear lines fi

but gives some interesting results. I get a cross (two lines) and another one (four

halves)—at least this looks right—erasing the sides of large triangles

three crosses (either two lines or four halves)—for the sides of medium triangles

and Evans’s shape—evidently, the version with eight lines—for the sides of small

triangles

This is a marked improvement, plus it shows what’s left to do. If I add the conjugate

rule for halves

Two collinear lines fi

Table 1

Census of Triangles in Evans’s Shape

Number of lines 3 4 5 6 7 8 9 3–9

Number of triangles 16 48 124 180 120 36 4 528
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so that the long line that contains a half is erased when the half is, then I get the visual

results I’m looking for. I started with a single rule to erase a line, and now I have three

rules that have to be applied judiciously. Who would ever think that triangles could

cause so much trouble? Imagine the difficulties for harder shapes. But so what? Prob-

lems are there to solve any way you can. That’s what reason is for. Evans’s grammar is

fixed—it’s permanent and permanently repaired—even if my two new rules are ad hoc.

Only there’s more to worry about. How does this square with statement 1 above,

and what it implies? Seeing may be confused in other ways as well, when it comes to

calculating in Evans’s grammar. Many parts that are easy for me to see—there are no

tricks; you can see the same parts yourself—are impossible for rules to find. Take the

triaxial motif

with equilateral arms. I can define the Y in the rule

Three lines fi Y

The Y appears indefinitely many times

yet the rule—or any other rule for that matter—can’t find it, not even once. And it’s

easy to check that this is correct. It’s calculating, but it isn’t seeing. What’s gone

wrong? All of a sudden, Evans’s grammar is blind. Is there always something that’s go-

ing to be missed when I calculate? It’s not because I can’t define precisely what I want

to find. I can do that for any shape (part) I like. Maybe I should try the rule

Three lines fi WHY

Why can’t I see Y? (Words that sound alike can be different, just not in Evans’s way.)

It’s part of sensible experience, and it’s almost everywhere I look. What’s going on with

shapes and rules?

In Evans’s shape, there are too many constituents for triangles, and not enough

of them for even a single Y. One or two line segments can be found in a number of

places here and there
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but never three equal segments all at once. I can always add new constituents to com-

plete Y’s

But additional constituents don’t help when I try to erase lines in triangles. (They also

change the census in table 1.) What’s more, there are never going to be enough constit-

uents to find all of the Y’s there are to see. No matter what I do, I can’t specify (antici-

pate) everything I might see before I’ve had a chance to look. What about other letters

from A to Z—say, big K’s and little k’s? What about crosses

Evans’s constituents miss almost all of them, even as they make two of them more

than once. My analysis has got to stop sometime, and when it does, calculating goes

blind. Analysis may be an essential part of reasoning—maybe it’s a prerequisite—but

it seems either to confuse seeing or to limit it.

Neither the surplus of lines nor the lack of Y’s and everything else from A to Z

seems right. What I see and what Evans implies I should when I calculate just aren’t

the same. Must calculating and visual experience be related so haphazardly? There’s a

huge gap between them now that I have to bridge if I’m going to get anywhere with

visual calculating. Visual reasoning seems long out of sight. But hold on. Maybe the

gap results from flawed reasoning about seeing. Maybe it’s artificial.

The problems with Evans’s grammar are unnecessary—if you’re still with me,

you’ve probably decided that calculating is, too—and they needn’t ever arise. Evans

uses a zero-dimensional embedding relation for points—namely, identity—to calculate

with shapes made up of one-dimensional line segments. As a result, lines behave like

points even though they take up space. This appears to be trivial enough—lots of
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things are the same; for example, Lego blocks and Tinkertoys—only the disparity be-

tween identity for points and embedding for lines has some bewildering consequences.

Take two.

First, the shape

has no obvious constituents to serve as points. It’s easy to see that lines come un-

divided. How can I cut these

into meaningful segments without knowing beforehand what rules there are and how

I’m going to use them? Internally, both of the lines are homogeneous. And externally,

their relationship is arbitrary. This is how it is for the lines in any shape. I can never be

sure how many segments there are. Lines aren’t numerically distinct like points. They

fuse and divide freely. I can draw two lines to make a cross

and then see alternating pairs of L’s

or I can turn this around and draw L’s, and see a cross. Nonetheless, I’ve decided to cal-

culate. So I have to define points explicitly in whatever way I can cook up according to

my immediate interests and goals. Right now I’m looking for triangles. There’s a kind

of funny circularity here that’s almost hermeneutic. I’ve got to find triangles in order to

define a rule that lets me find triangles, or something of the sort. Seeing and calculat-

ing are linked. That’s for sure. But perhaps their relationship isn’t what I want. Seeing
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may be finished—completed if not done for—before I calculate at all. Is there any way

to reverse this inequality, so that seeing and calculating are the same? Seeing and cal-

culating might look the same if there weren’t a problem to solve before calculating to

solve the problem.

And second, after I determine these points, I have to keep to them for as long as I

calculate. There’s no way to start over with another analysis. I’m told constantly that

it’s cheating if I do. It’s logically incoherent. Rationality depends first and foremost on

points that are given once and for all—they’re ‘‘eternal and unchangeable’’—and then

on showing how they’re arranged. Otherwise, you can’t tell what’s going on, anything

can happen. Without a vocabulary of units, it seems there’s nothing to explain. (Emer-

son is famous for the reverse view. ‘‘A foolish consistency is the hobgoblin of little

minds, adored by little statesmen and philosophers and divines. With consistency a

great soul has simply nothing to do.’’ So much for Plato and politics, but today the first

phrase of the first sentence is really a cliché. As a student, I used it as a reason to be

silly. But the following sentence is the real clincher. When the analysis I’ve already

used is a special description that controls my ongoing experience, what am I free to

do? There are no surprises left—only Kierkegaard’s rote results. They’re repeatable,

sure enough, but they don’t show anything new. This is neither drawing nor design.

Where’s the ambiguity and the novelty it implies? Why not change my mind? What

stops me from seeing something new? I can’t imagine a consistency that’s not going

to be foolish sooner or later if I calculate with shapes. What I see may alter erratically.)

There’s an underlying description of the shape

that depends on how I’ve defined constituents before I begin to calculate. The descrip-

tion isn’t anywhere to see. It’s hidden out of sight and isn’t supposed to intrude. Only

it limits everything I see and everything I do. There’s no problem, as long as I continue

to experience the same things and my goals are fixed—if nothing really changes.

Otherwise, it’s nearly impossible to try anything new—or merely to erase lines and to

find Y’s—without running into big trouble.

Evans isn’t to blame for the embedding relation he uses. He applies definitions

like ‘‘three lines are a triangle’’ to describe what he sees in the way that’s normally

expected in computer models. This follows what’s become a de facto canon—

Calculate with things that aren’t zero dimensional as if they were.

It’s ‘‘being digital.’’ And there’s a plethora of examples, from computer graphics, imag-

ing, and fractal modeling, to engineering analysis and weather forecasting, to complex

adaptive systems of all sorts. Finite elements—units, big and small and in between—

are combined to describe things that aren’t sensibly divided. It’s a powerful method
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with an ancient history and a superb record of success, and it works like magic. Yes,

it’s simply an illusion. And it’s easy to expose when calculating and sensible experi-

ence are asked to agree. But this is nothing new. James says it squarely—there

are ‘‘many ways in which our conceptual transformation of perceptual experience

makes it less comprehensible than ever.’’ What’s gone wrong? Maybe there’s no

such thing as visual calculating. Do all of these negative examples mean that I should

give up, or are they reason to try another way? What kind of evidence would make a

difference?

I’m going to have to show that analysis—segmenting or dividing shapes into

lowest-level constituents—isn’t something necessary in order to calculate, but rather

something contingent that changes or evolves—even discontinuously—as a by-

product of what I see and do. Analysis is one way to show what happens as I go on

calculating. What I do as I calculate—the rules I have and the way I use them—

determines how constituents are defined. There’s nothing to see or do before I start.

There are still rules to try.

What Makes Calculating Visual?

Sometimes I try an informal rule of thumb to decide when calculating is visual. Both

the dimension (dim) of the elements (el) and the dimension of the embedding relation

(em) I use to calculate are the same. I can state this in a nifty little formula that’s a good

mnemonic—

dimðelÞ ¼ dimðemÞ
I’m pretty sure the rule is sufficient—whenever my formula is satisfied, it’s visual calcu-

lating. I’m just not as sure the rule is necessary. There may be examples of visual calcu-

lating that don’t meet this standard. Perhaps it would be better to try and make sense

of the relationship dimðelÞadimðemÞ. But whatever the answer—and I’m ready to bet

on equality, especially because the formula is so elegant—I want the equivalence

(biconditional)

dimðelÞ ¼ 01dimðemÞ ¼ 0

to be satisfied. I want to ensure that zero-dimensional embedding relations are only

used with zero-dimensional elements, that is to say, with things that behave like

points. This rubs against canonical practice when it comes to calculating. But I want

to try something else.

As formulas go, mine is pretty vague. I don’t say how to evaluate either side ex-

cept in a few ad hoc cases. Still, the formula is enough for the time being. And there’s

no reason to avoid ambiguous or vague ideas when they stimulate calculating. In fact,

they may be indispensable to what I’m trying to show. I can’t imagine anything more

ambiguous and vague than a shape that isn’t divided (analyzed) into meaningful con-

stituents, so that it’s without definite parts and evident purpose. I’m going to use my
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formula to get to the idea that calculating is visual if it can deal with shapes like this. I

want to use rules to determine what parts I see and what I can say about them, and to

allow for what I see and what I say to change freely as I calculate. And I want this to

happen every time I try a rule. I’m told calculating is a good example of what it means

to be discursive—well, sometimes when I calculate it looks logical, but most of the

time it’s only desultory rambling with my eyes. Shapes should be ambiguous and

vague—full of miscellaneous possibilities—and ready to use when I calculate, wander-

ing in the region of the many and variable.

So what can I do to make Evans’s example visual? My formula provides twin

options. I can change the elements in Evans’s shape from lines to points, so that

dimðelÞ ¼ dimðemÞ, or I can use another embedding relation that’s one dimensional.

Each of these alternatives is feasible and amply rewards a closer look.

Suppose that the shape

is the nine points Evans uses to define line segments as constituents

and that the embedding relation is the same—I’ll continue to require identity among

constituents. But with points, I really don’t have much of a choice. Embedding works

only in this way.

I can use the rule

Three points fi Triangle

in place of Evans’s rule to define 45-degree right triangles

Or equivalently, I can give the rule in this identity

in the way I normally do in shape grammars, where two shapes—in this case, they’re

the same—are separated by an arrow. I’ll say more about rules like this a little later
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when I look at embedding for lines. My new rule in whatever form finds twenty-eight

different triangles in the shape

including the sixteen from Evans’s example. But there are forty-eight other triangles in

the shape in five different constellations

These are readily defined in additional rules. (Of course, it’s easy to define all triangles

using a single rule in the way Evans does, or as effortlessly, using a schema for rules in

my way. This is also something I’ll come back to again.) I can’t find any other triangles.

My grammar is seeing what I do.

Now what happens when I erase points or look for Y’s? In the first case, my rule

is just like it was before, but for points

Point fi

Or equivalently, the erasing rule

When I apply the rule to erase the vertices of Evans’s small triangles, the shape dis-

appears the way it should. And if I do the same for medium triangles and for large

ones, then I get the shapes

Everything looks fine, even if the cross appears in alternative ways. In fact, this may be

a boon. I can decide whether I’ve erased the vertices of medium triangles or large ones

simply by looking at the result. There’s nothing to see that I can’t understand. Points

aren’t like lines. They don’t fill in for the loss of others because they don’t combine to

make other points and don’t contain them. The grammar I’ve got for points is doing

far better than Evans’s grammar for lines. Perhaps visual calculating is really a possibil-

ity after all.
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But what about Y’s

with equilateral arms that are defined in this rule

Four points fi Y

or with the identity

They’re not a problem. I can’t see the Y anywhere in my shape. It’s possible there are

other kinds of Y’s—I can define additional rules to find them—but their arms are of

different lengths

and that’s not what I’m looking for right now. Calculating and seeing match again—

this time with uncanny precision.

So here I am with the shape

that’s just what calculating tells me it is. Nothing is ever hidden. Anything a rule can

find, I can see. And what I see depends on the rule I apply. There’s nothing to see that a

rule can’t find. This is just what I had in mind for visual calculating. But there’s usually

more to drawing than points—my example isn’t completely convincing. Everything

works because the shape contains points—lowest-level constituents once again—that

don’t interact. They’re always independent when they’re combined. Embedding means

identity. The whole thing is strictly combinatorial—points are like marbles ready to

count, and seeing is a matter of combining and rearranging them in alternative ways.

Surely, there’s something more to seeing than counting. To see what it is, I have to go

back to lines and change the embedding relation, so that it’s not simply identity. This

isn’t hard, and it makes a big difference.
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Suppose I keep Evans’s shape the same

I can draw it with eight lines—its maximal elements—the way an experienced drafts-

man would. It might go like this—in sequence, the three horizontals

the three verticals

and the two diagonals

Only I’m not obliged to treat these lines as constituents. In particular, the parts of

the shape may be combinations of maximal lines—just four of Evans’s triangles are

defined in this way—or, allowing for everything I can including the other twelve trian-

gles, combinations of maximal lines and any of their segments. Now there are indefi-

nitely many parts, and none trumps another. But segments aren’t given all at once like

points or the members of a set. They’re not set out explicitly one by one; only maximal

lines are. This is something new that looks almost Aristotelian. Parts are potentially

infinite—I’m free to cut Evans’s shape wherever I like—and not actually so. The parts

I see—the limited number I resolve when I divide the shape or draw it—depend on my

rules and how I use them. I need an embedding relation for this that’s one dimensional

and that works for lines. (Linguists like to say that languages are potentially infinite

sets of sentences, and explain this with rules that combine words recursively. This is

calculating by counting. It’s why Chomsky’s grammars are generative and it’s what it

means to be creative. Sets of shapes are the same—my rules are recursive, too. Only my

rules do more when they divide shapes into parts. Seeing isn’t counting, nor does cre-

ativity end with words and recursion, or searching through the myriad alternatives
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they provide trying to find what you want. Combinatorial play goes just so far. But

shapes fuse and divide as rules are tried. Sagacity makes a difference, along with learn-

ing that pairs shapes in rules.)

Let’s agree that a line l is embedded in any other line lA if l and lA are identical

or—allowing more than embedding for points—l is a segment of lA

In general, a shape M is part of any shape S if the maximal lines of M are embedded

in maximal lines of S. (I was drawn to this neat relation by necessity. When I started

using a typewriter—I was eleven or so—I contrived an easy way to check my work

against an original or if I had to retype a page to correct mistakes without making

more. Proofreading was hard. It took too long, and mine was unreliable. So I would

embed one page in another one. I would tape the first to a window and move my

copy over it. This let me see what was on both pages at once. If things that were sup-

posed to be the same lined up, I knew my typing was OK. Creative designers use trac-

ing paper this way. Who would have guessed that it’s just using rules?) Whatever I can

see in S—anything I can trace—is one of its parts. This leads straight to calculating in

the algebras of shapes in part II, and is almost exactly what James has in mind when he

tells how reasoning works. For the rule M fi P and the shape S, if I can see M in S, then

I can replace it with another shape P by subtracting M from S and adding P. I’ll add by

drawing shapes together, so that their maximal lines fuse. And I’ll subtract by adding

shapes and then erasing one, so that segments of maximal lines can be removed. Re-

markably, the embedding relation implies nearly everything I need in order to do all

of this with axiomatic precision. I also need transformations of some kind to complete

the correspondence between M and P and S in the way I did for Evans’s kind of rules.

But I’ll skip the details for now because they’re not too hard to fill in, even if they have

a host of important consequences. It’s enough to know that transformations are there,

so that different shapes can be alike.

With lines and this embedding relation, Evans’s rule to define triangles is simply

the identity

I don’t have to say what a triangle is in terms of constituents that are already given. I

only have to draw it. It makes no sense at all to have the rule

Three lines fi Triangle
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because I don’t know how the sides of triangles are divided—remember, there’s no

telling how many lines there are in a shape—or even if sides are parts. And I don’t

have to divide Evans’s shape into constituents either for the identity to apply in the

way I want, to find every triangle. The shape is OK as a drawing, too

When I use the identity, there are sixteen triangles—this is just what I see and can

trace—even though the small triangles and the medium ones have maximal lines that

aren’t maximal lines in the shape. My erasing rule—the one I added to Evans’s

grammar—is

and it produces the results I get if I erase the lines I see by hand. In practical terms, this

is just tracing again. If I apply the rule to the sides of small triangles, the shape dis-

appears. And when I use it to take away the sides of medium or large triangles, I get

the cross

This is the way it’s supposed to work—seeing and calculating agree perfectly. When I

see a part and change it according to a rule, nothing is hidden to confuse the result.

Whatever distinctions a rule makes, I can see. There may be surprises—there are plenty

to come—but they aren’t conceptual ones caused because I’ve represented shapes with

constituents that I can’t vary after I begin to calculate. There’s no hidden analysis that

determines what I can see and what I can do. Surprises are perceptual. They’re a natural

part of sensible experience. And the rule

—another identity—finds as many Y’s in the shape as you care to see. Seeing is never

disappointed. There’s no part I can see that a rule can’t find. Novelty is always possible.

What you see is what you get.

It may be useful to digress a little to compare Evans’s example for points and for

lines. For points, there are finitely many parts for rules to find, but for lines, there are

indefinitely many parts. This is perfectly clear for Y’s. And it’s fundamentally so for the

rules
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The one can be used only a limited number of times, while the other’s work may never

be done. A point—just like a constituent—can be erased in exactly one way. I can’t re-

move some of it now and some of it later. When it goes, it goes all at once. It’s there or

it’s not. But I can divide a line wherever I like. I can take any piece now and another

piece later. Its segments provide for endless possibilities. Points and lines just aren’t

the same kind of thing with their distinct dimensions and their corresponding embed-

ding relations. If I confuse them in order to calculate, then I’m simply not calculating

visually.

But there’s a lot more. What about the constituents of the shape

How do these change as I calculate, and how are they finally defined? This is Evans’s

problem in reverse. He has to divide the shape before calculating, so that his rule can

find all of the triangles there are to see. This analysis isn’t part of calculating. It’s more

important. It’s what makes calculating possible. I’d like to know how to define constit-

uents, but Evans doesn’t say. He probably doesn’t think about it. It’s just something

you do when you’re going to calculate. Only how do you do it without calculating?

Even if it’s obvious, I’d like to see what’s involved. And it may not be that obvious.

Evans gives twenty-four constituents when twenty-two will do. So I’ll take a different

tack and show how to define constituents as part of calculating. I’m not stuck in the

way Evans is. I’m free to look at everything—including analysis—as the result of apply-

ing rules. This is precisely what I said visual calculating should do. Embedding makes it

possible.

Let’s look at something easy. I want to use the rule

to calculate, so that constituents are defined dynamically again and again in an on-

going process. The rule is an identity: it simply tells me a triangle is a triangle without

referring to its sides—Evans’s definition—or to any other parts. I can’t say anything

about a shape in a rule—identity or not—that goes much further than pointing to

it and announcing that it’s that. I can name it—a triangle is a triangle—but there’s

nothing definite about its parts. I’ll say more about this and what it means for visual

calculating and reasoning itself as soon as I get to schemas for rules. Right now,

though, I only have my identity for triangles. What good is it to know that a triangle

is a triangle?
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Identities are interesting rules. Rules are supposed to change things, but identities

don’t. Whenever they’re used to calculate—let’s apply one or more to a shape S a

number of times—the result is a monotonous series that looks like this

S � S � � � � � S

In each step (S � S), another part of S is resolved—that’s the part I see—and then

nothing else happens. The shape doesn’t change. It stays the same. At least that’s how

it looks. Identities are constructively empty. They’re useless! And it’s standard practice

to discard them. I’ve seen doctoral students do so with relish. There’s something liber-

ating about getting rid of unnecessary stuff. But this may be shortsighted—even rash. It

misses what identities do. There’s more to them than idle repetition. Identities are

observational devices. They’re all I need to divide the shape S with respect to what I

see. If I record the various parts they pick out as they’re tried, I can define topologies

for S. These show its constituents and how they change as I calculate.

Suppose I apply the identity

to the shape

so that large triangles are picked out in a clockwise fashion in this four-step series

If I take the triangles the identity resolves—remember, these are the triangles I see—I

can use them to define constituents. I’m going to calculate some more to explain how

I’ve been calculating. There are a number of ways to do this. For example, I can work

out sums and products, or I can add complements as well. Complements give Boolean

algebras for the shape. They’re a special kind of topology with atoms that provide a

neat inventory of constituents.

The first time I try the identity to calculate, I get a Boolean algebra with two atoms
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I see a triangle and its complement. It may be a little far-fetched to assume that I see

the shape

—I have a hard time making sense of it until I try my identity again—but comple-

ments are sometimes like this. They’re surely worth the added effort, though, because

they simplify things as I go on. There are four atoms when I apply the identity the

second time

Now I see a pair of triangles and their complements that combine in products to de-

fine constituents. And there are seven atoms the third and fourth times I use the

identity

including the six individual sides of the large triangles and the interior cross. This is all

pretty good. The constituents I finally get match my visual expectations. The sides of

the triangles interact, while the cross is a figure on its own.

Of course, there are also medium and small triangles in the shape

And I can apply the identity

86 I What Makes It Visual?



to find these triangles in exactly the same way. Medium triangles—if I resolve all of

them—define nine constituents

and small triangles—again, if I resolve all of them—define sixteen

The atoms I get for the small triangles—the half lines in Evans’s example—are

the most refined constituents I can define, regardless of how I use the identity to pick

out triangles. All of the large triangles in the shape are made up of six constituents

apiece, all of the medium triangles contain four constituents each, and all of the small

triangles have three
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But this doesn’t mean—as it did in Evans’s example—that triangles have to be

described (represented) in three different ways for the identity to work in the way it’s

supposed to. For the identity

the embedding relation is given for lines, so that they can fuse and divide in any way

whatsoever, but for Evans’s rule

Three lines fi Triangle

embedding requires that constituents—they neither fuse nor divide—match in an

exact correspondence, as elements do in sets. Perhaps this is another way of seeing it.

A shape—at least with lines, or basic elements that are planes or solids—is not a set.

For points, shapes and sets coincide. Whether or not embedding is identity is key in

saying how shapes work.

My identity applies to shapes, not to their descriptions. As far as the identity is

concerned, a triangle is whatever I draw. It’s simply this

with no divisions of any kind—no sides, no angles, and no anything else. And it’s

always there to see if it can be embedded. I only have to trace over it. Evans gets into

trouble because of the way he calculates. He confuses a triangle—something sensible—

with a solitary description—an abstract definition—that’s only one of many concep-

tual transformations. This is the kind of thing that can happen whenever my for-

mula dimðelÞ ¼ dimðemÞ isn’t satisfied, and in particular, when the embedding

relation is zero dimensional and elements aren’t. Shapes and descriptions are differ-

ent sorts of things. But more important, I can calculate with shapes without refer-

ring to their descriptions. This idea provides another useful way to think about visual

calculating.

Only before doing so, let’s look at Evans’s approach in a slightly different

way. Let’s ask how to make it work, so that lowest-level constituents—points, lines, or

whatever—correspond with what I see. They’re numerically distinct, and I can pick

them out whenever I look. This shows more of what’s at stake—why lowest-level con-

stituents are just another way of thinking about points.
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There Is No Vocabulary—Well, Almost

Shapes containing points are numerically distinct. But shapes made up of basic ele-

ments of higher dimension don’t have this property. For example, Evans’s shape

has at least eight lines, and any number of lines more. Of course, I can cook up special

ways to divide shapes—always with the concomitant loss of other parts—so that basic

elements are numerically distinct. I can use maximal lines in the way I have or I might

also choose maximal lines and the different segments they define when they intersect.

The total number of segments for a line in that’s divided n times and the line itself is

the sum of the numbers from 1 to nþ 1, as here for n ¼ 2

Counting like this provides a nice way to describe shapes that’s especially useful when

you’re looking for polygons. But it’s already pretty clear that it isn’t visual. It gives the

twenty-four lines Evans uses so effectively to resolve triangles. Each maximal line is

divided once in half to define three segments. But this seems profligate. Maybe the six-

teen halves—the ‘‘minimal’’ elements—are all that I need. They’re the segments I got

when I applied the identity

everywhere I could. But let’s try something else where there may be more than basic

elements—maximal, minimal, or otherwise.

Suppose I look at the lowest-level constituents in Evans’s approach as symbols or

units—basic elements or not—in a given vocabulary, and that I want to arrange them,

so that it’s always the same what’s there. How can I use a vocabulary of shapes if they’re

taken this way when they’re combined? How do the shapes look, and what kinds

of arrangements are possible? Can I be certain that I can distinguish the shapes I give

for symbols visually, with no ambiguity? This isn’t always so. For example, this shape
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contains exactly five squares—no ambiguity. But if I slide the four outside squares in

this quintet clockwise, I get the shape

Now I need only count four squares, yet may also find five. How can I lose a square

that I haven’t erased? Where did it go? I want the shapes in my vocabulary to be just

like points that are independent and add up in one way when they’re combined and

moved around. How does this work if basic elements and embedding aren’t zero

dimensional—if I let

dimðelÞ > 0

and

dimðelÞ ¼ dimðemÞ
What does this tell me about the difference between points and lines, or basic elements

of higher dimension? What does it say about embedding and identity? How should I

see to count?

Maximal elements work already as symbols in a vocabulary. Lines may all look

alike—they’re geometrically similar—but I can use standard lengths to define different

symbols, in fact, everything from A to Z. And this isn’t a problem for planes. There are

triangles and squares

and plenty of other figures that aren’t the same. Nor is it a problem for solids. But

symbols needn’t be maximal elements. They may be defined in the normal way as

shapes of other kinds.

Suppose I stick just to straight lines. Then it’s always possible to combine the

shapes in any vocabulary whatsoever to produce ambiguous results that aren’t numer-

ically distinct. Suppose I start with polygons that by themselves are easy to tell apart—

perhaps a square and two different right triangles
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The sides of a square are the sides of four other squares that combine to make the shape

So there are four squares or five in the arrangement. I can also use squares to make

triangles in the familiar Pythagorean fashion

with three squares or three squares and a triangle. And in the opposite way, I can

combine triangles to make squares

so that nothing adds up. It comes as no surprise that there are four triangles, or four

triangles and a square. But because the sides of triangles fuse, there may only be two

squares. This is a little weird. The triangles are there to start and aren’t to end, while

the squares are there to end and aren’t to start. Combining the shapes from a vocabu-

lary can be dizzyingly confusing, even when these shapes are visually distinct and all

there is to see.

Perhaps the easiest way for shapes to be like symbols is to rely on the normal

conventions for printing and reading. This uses the idea that shapes are connected

when they touch. First, I’ll make sure that the individual shapes in my vocabulary are

connected—their parts touch directly or via other parts—and then that they don’t

touch when I combine them. This is how points work. Every point is connected. And

two are the same if and only if they touch. Of course, there’s more to say for lines. Two

connect—they touch—if the boundary of a line embedded in one and the boundary of

a line embedded in the other touch: schematically for collinear lines, so
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and otherwise, so

And the recursion is good for planes and solids, too, but that’s not important now. (It’s

interesting to see how Turing machines do the same thing to calculate—there’s a tape

divided into cells, and each cell contains a single symbol. Being connected fixes the

cells and the symbols at once.)

These requirements are simple yet awfully limiting when it comes to the shapes

in a vocabulary and combining them in different arrangements. In fact, everything I’ve

done with squares and triangles is barred. This goes for lowercase i’s and j’s, too, and

some punctuation and technical signs. And the loss may be unavoidable. When lesser

constraints of increasing strength are tried, they fail to ensure that shapes act like

symbols. These constraints also highlight the difference between points and lines. Let’s

try them in sequence.

To begin with, suppose the shapes in my vocabulary are unrestricted—they may

be connected or not—and that they’re combined, so that a piece of every one is free—

it’s a tag to find the shape in an arrangement. I can say this precisely in terms of parts

that are defined using embedding—there’s a part of every shape that doesn’t share a

part with any other. This seems just about right, and it isn’t hard to see. Now the

shapes

contain four squares or three with respect to the vocabulary

that I’ve been using. Each outer square has three free sides. But all of the sides of the

inner square or triangle are sides of other squares. Nice, only there are some problems

that aren’t prevented.

Before considering these, it’s worth noting that Nelson Goodman proposes an

even weaker standard in Languages of Art. He endorses it wholeheartedly, without qual-

ification. It’s always enough for the shapes in a vocabulary to be ‘‘relatively discrete’’—

no shape has any other as a part.
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Even inscriptions of different atomic characters may have common parts so long as no such part is

an inscription in the scheme; that is, atomic inscriptions need be discrete relative to the notation

in question only, as the ‘‘a’’ and the ‘‘e’’ [below] are atomic and discrete in a scheme that recog-

nizes no proper part of either as an inscription.

Goodman uses the vocabulary

as an illustration. The two letters are relatively discrete—there’s no E in A, nor A in E—

so the shape

contains an A and an E even though they split an I between them. The I isn’t relatively

discrete with respect to A and E, so it’s not in the vocabulary. But I’m free to augment

the vocabulary with another shape

that meets Goodman’s standard. Only now the shape

is either A and E, or A, þ, and E. The þ shares parts with A and E that are distinct

and aren’t recognized in the vocabulary. So it’s OK. The expression

Aþ E ¼ AE

makes sound visual sense—whatever else it might mean

Is this a mistake? The symbols A, E, and þ may be the problem. It’s no big deal to trace

smaller A’s in A—A is just the same as the Y in Evans’s shape—and in fact, I showed

this earlier in the introduction, dividing the shape
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The letters A and E and the arithmetic symbol þ are all like Y. They aren’t discrete with

respect to themselves

But Goodman uses A and E, so I guess they work. Surely, he knows how his standard

goes. It always helps to check with an authority when seeing is confused. This is a reli-

able way to clear things up. But my square and triangles

are OK, whatever the fine points. They’re relatively discrete, and because they’re

polygons, they don’t have the problem that Y has. Endpoints are shared. Lines don’t

dangle—they can’t be cut little by little at their ends. Still, there are difficulties with

the shapes

They aren’t numerically distinct. Relative discreteness doesn’t go far enough. I guess

that’s it for weaker standards. And in fact with my standard

is just that—A and E.
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Nonetheless, the shapes

are either four triangles or two squares. Each count is fine separately. All of the sides of

the triangles and all of the sides of the squares are free. Only the sum of the triangles

includes the squares, and vice versa. And these aren’t isolated examples that are safely

ignored. It’s also the same for the shape

in four different ways with two polygons, when three concave polygons, a trapezoid,

and a pentagon

are added to my vocabulary

And possibilities grow exponentially for a vocabulary of polygons
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and corresponding triangles in the shapes in this array

It’s also good fun to play around with squares and grids—this reminds me of

ten-bars—

Everyone agrees that the shape

is four squares

But I can also make it with three squares. The two interior squares may be on the left

diagonal

or on the right one
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in checkerboard fashion. Try the shape

again, and notice how these orthogonal alternatives clash. You can’t see four squares at

once—at least while you’re looking at three. What should I try now?

This kind of problem looks hard. I can combine shapes, so that they don’t share

parts—maximal lines are discrete—but this won’t work. Neither the triangles nor the

squares in the shapes

have any parts in common. I’ll just insist that shapes don’t touch. That takes care of

everything I’ve shown so far. Are there any other problems? Well, shapes are still un-

restricted. Suppose I try the vocabulary

in which every shape is a pair of squares just like my angle brackets h and i when they

match up. Now the shape

is two shapes from my vocabulary in three different ways
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(Is hh ii ambiguous, as well? Perhaps—but only in two ways.) What’s more, a string

with n shapes from my vocabulary (2n squares, although I have no way to resolve

them) can be divided in 4n2 � 8nþ 3 different ways. I’m ready to give up. I have Good-

man’s authoritative account—

Note how far astray is the usual idea that the elements of a notation must be discrete. First, char-

acters of a notation, as classes, must rather be disjoint; discreteness is a relation among individuals.

Second, inscriptions of a notation need not be discrete at all. And finally, even atomic inscriptions

of different characters need be discrete relative to that notation only.

—but let’s play it safe. It makes sense to require connected shapes that don’t touch

when they combine. Not even discreteness works all the time—discrete points never

touch, but discrete lines may. How many are in the cross

It’s twice in Evans’s shape each time as two lines or four. But maybe it’s three lines in

two alternative ways, and in fact, it’s three in indefinitely many ways and likewise for

four lines or more when discrete lines are connected.

This way of defining a vocabulary of shapes and using it, so that shapes behave

like symbols when they’re combined, can be applied very broadly and is consistent

with everyday practice. Nonetheless, it has a number of obvious drawbacks that limit

its practicality in drawing and design. In particular, no connected shape can ever be

divided. There are a myriad of possibilities that go unfulfilled—not even a triangle

has three sides. Evans’s exercise is pointless—there’s nothing to say about his shape

and no reason for his rule. Making shapes into symbols doesn’t appear to be a very

good idea. It just makes them look like points—but points are there already—and

it’s unnecessary to calculate with my kind of rules. What’s more, I like the ambiguity

that’s involved. It’s sheer novelty, and there are many ways to use it. Why should I

stop seeing?
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A Second Look at Calculating

I’m going to show a few additional examples of rules that aren’t identities and the way

they work to calculate with shapes. I want you to see how shapes are redescribed as I

apply rules of a general kind that includes identities and more. There’s no set way to

divide shapes that rules can’t alter. The ability to handle all of the ongoing changes in

what I see—there’s always a chance for more, even with a single rule—is what makes

calculating visual. If you first want to check the formal technicalities that are needed

for rules to work—there aren’t many—you can jump to part II. It’s safe to wait,

though, because they aren’t really necessary. It’s always possible to follow along with

your eyes. You simply have to look to understand what I’m doing. Nothing is hidden.

I can draw it all when I calculate by seeing.

The rule

and its inverse

—it’s the rule defined when the left and right sides of a rule are flipped—move trian-

gles back and forth along a fixed axis

keeping their orientation constant. Together they’re like the identity
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and the rule

that are both instances of the schema

x fi tðxÞ
where x is a shape and t is a transformation or an operator of some kind. Only now, x is

a new triangle and t is one translation or another instead of the identity transforma-

tion or a rotation. I want to apply my rules—the one and then the other—to change

the shape

containing a triangle and a chevron into the shape

so that the triangle and the chevron are reflected as a pair through a vertical axis

running through the chevron
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This sounds OK. But if you think about it, it just can’t be right. Perhaps that’s the

point—drawing trumps thinking. There’s no reason to stop with what I can deal with

in my head before I try my rules and see what they do. In my head, the whole idea is

senseless.

The rule

divides the shape

neatly into two distinct parts. It separates the triangle and the chevron, moving the

triangle without changing its orientation, and leaving the chevron in place—it stays

exactly the same. And when the rule

is tried next, the triangle should keep its orientation and move either back to its initial

position or to an orthogonal one
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There’s a choice here because the triangle is bilaterally symmetric—if I reflect it,

nothing changes in what I see. So I can apply the rule both ways. Moreover, the chev-

ron should still be where it was to start—at least according to the rule. That’s the

pickle. What seems to be possible doesn’t include what I want

I have to replace the triangle and the chevron in the shape

with another triangle in a new orientation, and a chevron that’s been reversed.

One after the other, the translations in my two rules don’t add up in the desired

way. No matter what I do with the rules, I can’t reorient the triangle. There’s no

way to reverse its direction. And I can’t apply either of the rules to the chevron.

There’s no way to change it, period. Reflecting these figures together as a pair is impos-

sible with the rules I’ve got. The local changes they make are just too restricted to pro-

duce the global transformation I’m looking for. However, it’s awfully hard to see

everything in your head if you plan too far in advance—even a couple of easy steps

with opposite translations—when there’s visual calculating to do. Then, it’s usually

better to draw.

Let’s stop thinking and see what happens. There’s a way out of my predicament

when I approach it visually, so that a shape can be a shape it’s not. It’s easy to apply

my rules to define the shapes in this series
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The five-pointed star

contains the translation of the original triangle exactly where it should be, right over

the original chevron

But lines fuse and divide. Look at the star again. In addition to the triangle from the

initial shape

I can see four new ones

that are each over different chevrons. It’s hard to see more than one triangle at a time.

Still, all five are parts of the star. And when any one is moved, the other four disappear

along with the corresponding chevrons—just like magic. If I apply the rule
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to the triangle

using a reflection, then I get the result I want. My eyes show me how to do something

I never had in mind. My representation of the initial shape as a pair of independent

polygons—a triangle that moves around and a chevron that stays put—doesn’t tell

me what to see, and in fact it keeps me from seeing what I need. It’s hard to believe,

but there’s actual proof. Calculating is creative. It conjures up a triangle and a chevron

out of thin air. But the alchemy is real—it’s all in the pentacle.

The rule

produces the star

from a triangle and chevron, and I can see both in the star. But when I apply the

rule

to the star, it changes what I see in a surprising way. Lines fuse whenever they com-

bine, so that all prior divisions disappear. Then new divisions are possible—anywhere.

I can find triangles, and chevrons along with them, to reconfigure the star. I don’t have

to foresee anything before I begin or have any idea of what’s going to happen. And I
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don’t have to intervene from outside later on if I see something new. I’m applying

rules to define parts on the fly, not to match permanent constituents that are defined

in advance. So long as lines fuse, there’s no history that privileges some parts and dis-

advantages the rest. I can’t tell parts apart—they’re all the same. What you see is what

you get. It’s visual, and it’s calculating.

The three shapes in the series

each contain a triangle and a chevron. But the star

can be divided in five different ways that are mutually incompatible as I go on. One of

these divisions

is consistent with what I did to start—that’s the constructionist’s reason to keep it—

while the other four

break with the past in a radical way. The process seems discontinuous, but as I show

just below, it really isn’t. It involves a gestalt switch, or maybe a kind of saltation, that I

can describe in a coherent way. The constructionist’s preference is no more rational,

reasonable, or right than any other. Triangles are all alike with respect to my rules.

I’m free to choose. So which of the five triangles in the star is it finally going to be?

There’s no way to tell until I try a rule. And then my decision is only ephemeral. It

needn’t carry over to what I do next. It may be entirely inconsequential—ignored and
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forgotten—as soon as I use a rule again. The parts I see can change at any time depend-

ing on how I calculate. It’s entirely a matter of embedding—of tracing parts according

to rules as I go along.

Descriptions aren’t set when I calculate by seeing, but this doesn’t mean that

they aren’t useful. They are—only in a retrospective account of what I’ve done. I can

describe the shapes in the series

with topologies. These show that the reflection from the initial shape to the final shape

is continuous, albeit triangles and chevrons are woefully tangled up in the star. They

also show how the shapes in the series are divided into constituents as my rules are

applied to calculate. My topologies for the shapes are Boolean algebras with the atoms

in table 2. (The tips of chevrons are aligned to show how atoms compare from shape to

shape.) There are different types of topologies that work just as well. But mine are nice

and easy, and they’re enough to illustrate what’s important right now.

Table 2

Constituents Defined by Calculating

Shape Atoms
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The atoms are defined retrospectively as a by-product of calculating. To quote

Kierkegaard—at least as James does—‘‘We live [calculate] forwards, but we understand

backwards.’’ I start with the final shape and go back to the initial shape. The final

shape has no noticeable structure or complexity. It’s an atom, since it isn’t divided

with a rule. But each preceding shape has the triangle picked out by a rule as an atom,

and the atoms required to form its complement and to ensure continuity going for-

ward. This may sound a little obscure—I know I mentioned Kierkegaard—but really

neither is. Kierkegaard’s ‘‘results’’ show one way to be clear when they’re copied off

and recited by rote. And I’m simply calculating again to explain how I’ve been calculat-

ing. This fabricates results to use until I change my mind. The details are fleshed out in

part II, in another example.

The full value of my topologies as an account of how I calculate is easy to see if I

record the divisions in the triangle in the right side of the rule

with respect to the lowest-level constituents (atoms) of the star. The triangle is divided

into two parts

These combine with the twin constituents

of the chevron in the initial shape to form the triangle and chevron that are the con-

stituents of the star. The pieces

make the triangle in the star that’s picked out when the rule
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is tried, and the remaining pieces

combine in the chevron that’s left after the rule works to produce the final shape.

This requires looking back and forth to get right. But it’s easy to summarize in a

nice-looking lattice. The triangle and chevron that form the star—they’re at the

ends—and the triangle and chevron needed for the final shape are related as shown

here

And notice that this is truly a lattice and not a tree or hierarchy. The shapes at the

nodes—the quartet of pieces at the top and their parts at the bottom—are all tangled

together and interact. Everything works visually when my eyes wander. Neither the

pieces nor their parts are independent.

Looking forward, the constituents of the shapes in the series
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anticipate what the rules are going to do when they’re actually applied. This is what I

tried to do in my head and failed. It seems to be divination, only it’s not. It happens

because constituents are determined as an afterthought. Whenever calculating stops, I

can describe what’s gone on as a continuous process in which shapes are assembled

piece by piece in an orderly way. This makes a good story and a good explanation. It’s

the kind of retrospective narrative I hear all the time from people doing creative work,

especially in design!

Look at it again in another way. Every time the rule

or its inverse is applied, its right side divides in a different way to produce the constit-

uents in the shape that’s defined. The triangle has alternative representations that

change as rules are tried. First, the triangle is divided in two

as I’ve already shown, and then it’s not divided at all

But perhaps this is starry-eyed. It isn’t how I was trained in school—I’m positive every

triangle has three sides. And Evans is, too. It’s simply not a triangle otherwise. There’s a

problem somewhere, and not with my rules. Making up your mind too soon—saying

what it is before calculating—ends seeing. Evans’s shape

shows this brilliantly. The way I describe what I’m doing changes as I calculate, so I

can always go on and calculate some more. It isn’t fixed before I begin, it’s merely an
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artifact of what I’m trying for the time being. Anything else is mere prejudice. Nothing

stops me from seeing things again in a novel way. I’m free to fuse old divisions and

make new ones.

Anticipating what might be is challenging, although embedding makes it un-

necessary. Still, I wonder what Evans would do with the shape

if he were asked to calculate with it in a grammar using his kind of rules. The problem

is straightforward—segment the shape into lowest-level constituents, so that any rule I

try works. If Evans is anything like me, he would probably say that there’s a triangle

and a chevron. Why not treat them as symbols from a given vocabulary? The figures

are individually connected, and they don’t touch. Or, with a little more sophistication

than I’m used to, he might say the triangle has three sides and the chevron four. This

rehearses the standard definition of polygons that everyone relies on. But neither op-

tion does the job. The right divisions are clear-cut in my topologies, and they provide

constituents for the shapes in the series

that are defined so that

This is fine. It works perfectly when the rule
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is represented in the following way

and has an inverse. The only rub is that my topologies are determined after the

fact. I can’t define them until I calculate, and I can’t calculate à la Evans without the

divisions they imply. What a terrible fix. I have to decide in advance—before any

rules are given or applied—how to cut two randomly related, obviously homogeneous

lines

That’s one side of the triangle in the initial shape

and one side of the chevron. These are the same two lines I didn’t know how to divide

on page 75. I still don’t know where to cut them. Anything I try would only be a guess,
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and this won’t do. Science is out—of course, there are experiments, but then divisions

are after the fact—and clairvoyants and seers are best silent with predictions that are

hard to trust. What could possibly prompt a decision until I move the triangle to

make the star

and then pick out another triangle and move it—remember, this isn’t calculating—to

get the final shape

But even preknowledge that’s perfect may not give an exact solution. I failed rotating

squares in the introduction (pages 25–30)—the future was set shape after shape, only

my answer for three squares didn’t scale to five squares, seven squares, etc. And it’s

simply hopeless otherwise, when the future isn’t clear. It’s asking a lot to know what

to expect, so that there’s no reason for ongoing experience. The shape

may begin a longer series in which arbitrarily distant shapes determine what’s neces-

sary to segment it into constituents. This isn’t an inference (induction) I know how to

make. And really, who does? It’s way beyond the reach of reason—visual or not. Think

of all the things I would miss if I got it wrong—but how can you think unless you can

see? That’s the problem—thinking isn’t blind. It’s good that constituents aren’t needed

to calculate. I can draw without having to infer anything about what I’m going to see

and do, as long as there’s embedding. (Alternatively, embedding lets me anticipate

everything without having to say what it is.) That’s the secret that makes shapes

and rules indispensable in design.
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A technical problem of lesser importance is worth noting, as well. Suppose I have

the foresight—or simply the blind luck—to represent the initial shape

in the right way, and I have the rule

and its inverse. Does this settle the matter? As I said earlier, the triangle

is bilaterally symmetric. So this axis of translation

and this one

are equivalent when my rules are applied. But in order to represent the triangle in these

rules, I have to cut its longest side unevenly. This breaks its symmetry. The axis
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and the axis

aren’t the same. They were originally equivalent—so in addition to the reflection

of the initial shape, I could get its rotation

However, this isn’t a possibility if the side of the triangle is divided. Now each of my

rules needs to be represented twice with different axes to include the distinct versions

of the triangle. In particular, the rule
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has twin representations—first

and then in addition

Of course, I can avoid this—but only after the fact—if I make further divisions in the

initial shape

If there’s one way to divide a shape to do what I want, then there are going to be other

ways as well. It’s easy to confirm, even if it isn’t exactly obvious, that I can cut the sides

of the triangle and the chevron in this way

Then the rule
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looks like this

Added complication—above, it’s preserving symmetry with finer and finer divi-

sions—is bound to be a chance to make a lot of silly mistakes. But I guess it’s good to

have more to think about to keep busy. It may feel great to fix things that don’t work.

The effort is pointless, though, if your eyes are always right. Calculating shouldn’t be

this hard. Why not look instead? Dividing shapes into lowest-level constituents isn’t a

prerequisite for rules to work. It’s always enough to draw shapes—in any way you

choose—in order to define rules to calculate by seeing. There’s no reason to do any-

thing more. Embedding lets me trace out parts that aren’t given beforehand and then

replace them. There’s sagacity and learning. That’s all I need for both calculating and

reasoning.

It’s usually wise to have more than one example so you can be confident that

what you’re worried about isn’t a rare phenomenon of no general consequence. It’s

easy to imagine the star

linking other shapes
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and their transformations when triangles like mine

are translated along different axes. And there are still other shapes

that can be transformed when triangles are changed in a more complicated way. Even

so, these possibilities are merely a trivial beginning.

The five-pointed star

initiates twin series of stars and superstars that have the kind of ambiguity that I’ve

been playing with. The stars in this series

have an odd number of points. And I can trace polygons in each one

that work just like triangles and chevrons in the five-pointed star. There are 2n� 1

pairs of polygons—one with n sides and the other with nþ 1 sides—in a star with

2n� 1 points. Each of these pairs provides its own description of the star that’s incom-

patible with the others when I calculate with two rules—and each description leads to

different results. One rule is defined for the polygon with n sides according to the

schema

x fi tðxÞ
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and then there’s its inverse. There’s a transformation of the polygon back and forth.

The process is already familiar for the series

and the rule

The five-pointed star is put together and taken apart in alternative ways. And there

are comparable series for stars with more points. For example, the seven-pointed

star

mediates the rotation from this shape

into this one

when the quadrilateral

118 I What Makes It Visual?



is moved this way and that along the axis

using the rule

and its inverse

And there are other possibilities beyond these. Suppose I move every polygon in

the same direction without inverses. Then the shape

is changed in this way
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when the triangle

in the five-pointed star is translated like this

along its axis. That the triangle in the shape

can be moved to the other side of the chevron

is not unexpected. But that these polygons are apparently rotated together as a pair

once their positions have been reversed is a surprise. Calculating with shapes isn’t for

the faint of heart.

Stars are marvelously ambiguous. It seems that almost anything is possible with

only a couple of polygons. Their sides interact, so that the parts at the start change in

unforeseen ways. It’s a really fascinating process, and one that implies much more for

what my eyes can find to see.
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For example, if I go on drawing and extend the lines in each of the stars in the

series

so that every two lines intersect—no two are parallel and no three share a point—then

I get the corresponding superstars in this series

Only the five-pointed star is both a star and a superstar—five lines intersect in ten

points. But all of the others stars have greater potential as superstars. For 2n� 1 lines,

there are 2n2 � 3nþ 1 intersections. And I can count in additional ways, too. For exam-

ple, every superstar is made up of n� 1 concentric shells—you can think of them as

orbits—and 2n� 1 intersections lie in each. Moreover, anywhere I look, 2n� 2 inter-

sections are on a line. It’s all pretty neat. Still, some things about superstars are far eas-

ier to see than to count. Let’s try—it turns out to be even neater with a host of real

surprises.

Novel behavior is common when polygons interact. With stars, it’s two poly-

gons, and with superstars, it’s two or more. In fact, there can be a cast of thousands

that changes dramatically. It’s a question of what I see as I calculate. Suppose I define

rules according to the schema

x fi tðxÞ
so that x is any chevron and the transformation t keeps shapes similar—or congruent if

you want. Then I have rules like this one

that I can apply recursively to separate chevrons and superstars in the following

manner
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until there are only chevrons and a triangle. Whenever I try a rule, the convex vertices

of the chevron that’s moved are always outside points of the superstar. The number of

chevrons in this process depends on the number of points in the initial superstar. In

my example with a seven-pointed superstar, the number of chevrons is two. But in

general for 2n� 1 points, n� 2 chevrons are going to be pulled apart. In the full pro-

cess, 2n2 � 7nþ 6 intersections are lost. In particular, every time I apply a rule to move

a chevron in a superstar of 2i� 1 points, 4i� 9 intersections disappear. This is readily

confirmed in the equality

X

3aian

4i� 9 ¼ 2n2 � 7nþ 6

It’s a worthwhile relationship, the kind that’s found on tests in school. And today,

knowing how to prove it is the mark of an educated person, a good citizen, and a reli-

able employee. After all, life unfolds with inductive regularity—once a rule is tried

everything plays out according to plan.

Of course, I can always turn everything around and calculate in the opposite

way. I can start with chevrons and a triangle

and then apply other rules from the schema x fi tðxÞ to move the chevrons to make a

superstar
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And when I connect this series and the previous one via the superstar—it ends

the former and begins the latter—I’m left with what amounts to an extraordinary

transformation

that seems unimaginable in any of the counting and corroborative arithmetic I’ve

done. By calculating with rules that simply move chevrons—they keep their

‘‘shape’’—I can change both a chevron and a triangle into dissimilar ones. It isn’t

normal for things to alter in this way. Still, there it is—not complete in a single rule

that doesn’t show much, but chevron by chevron and piece by piece as in the topolo-

gies in table 2. Neat things happen when shapes fuse and divide. Play around with

rules and see what you get. It’s the best way I know to learn how to calculate using

your eyes. You can start over every time you look.

There’s always more to see and do because superstars are ambiguous when

they’re divided into chevrons and a triangle according to the rules defined in my

schema. And it’s worth reinforcing, so that it isn’t lost in more complicated cases

where seeing may seem harder. Actually, the truth is that I enjoy this kind of stuff

and want to do it again. It’s exciting to see how many ways you can switch what you

see looking at the same thing with the same rules. Visual calculating isn’t just an iso-

lated trick. Take a look at the nine-pointed superstar

Three chevrons may be picked out in this sequence
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The first chevron is included in the initial superstar, while the second and third ones

are contained in the superstars

left when the first and second chevrons are resolved. The triangle

is defined at the conclusion of the process. Alternatively, the chevrons in the sequence

will do, with the intermediate superstars

and the final triangle

This kind of ambiguity is overwhelming, exponentially so. And the urge to count

the possibilities is unremitting. I succumbed to the triangles in Evans’s shape, and I’m
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on the verge of doing superstars. Once you start out, you just want to add to the series

until you get them all—it’s the little matter of distinguishing one, two, and three. But

the feeling of completion (exhaustion) that comes with an enumeration of constitu-

ents and their configurations is debilitating. The eye is sated, so that seeing more is

superfluous. Still, there’s always more to see. That’s why visual calculating is so impor-

tant. Seeing—using my kind of rules—trumps counting with its units, names, lists, and

definitions. Shapes aren’t everyday arrangements—their constituents can alter when I

look at them. And taxonomies (topology or syntax) aren’t stable—they change dynam-

ically as calculating goes on. John Dewey applies this relationship that puts seeing

ahead of counting in How We Think. He maps the hazards and drawbacks of ‘‘logical

analysis’’ and ‘‘anatomical and morphological method’’ in education. Evans tries the

former, and I use the latter in my catalogue of triangles in table 1. (In fact, Miss H——’s

exercise—connecting dots in lines to make planes—also shows what Dewey finds.

Sooner or later, counting is meaningless—and then it’s time to see.)

Even when it is definitely stated that intellectual and physical analyses are different sorts of oper-

ations, intellectual analysis is often treated after the analogy of physical; as if it were the breaking

up of a whole into all its constituent parts in the mind instead of in space. As nobody can possibly

tell what breaking a whole into parts in the mind means, this conception leads to the further

notion that logical analysis is a mere enumeration and listing of all conceivable qualities and rela-

tions. The influence upon education of this conception has been very great. Every subject in the

curriculum has passed through—or still remains in—what may be called the phase of anatomical

or morphological method: the stage in which understanding the subject is thought to consist of

multiplying distinctions of quality, form, relation, and so on, and attaching some name to each

distinguished element. In normal growth, specific properties are emphasized and so individualized

only when they serve to clear up a present difficulty. Only as they are involved in judging some

specific situation is there any motive or use for analyses, i.e. for emphasis upon some element or

relation as peculiarly significant.

I’m not so sure there’s a huge difference between intellectual (rational) and physical

analyses. It’s hard to imagine a final test for either. But in ‘‘normal growth,’’ there’s

the logic of inquiry, and this is how parts are defined as rules are applied. In fact, had

Dewey gone on to say that properties aren’t fixed but change even erratically from mo-

ment to moment—that embedding isn’t only identity—he would have said a lot more.

But then, he wasn’t thinking about rules and calculating with shapes. The damage

done when logical analysis is taken too seriously is all too evident in the host of school

subjects Dewey surveys, from reading, writing, and arithmetic to drawing and geogra-

phy. The same kinds of problems are plain today in computer graphics (drawing, mod-

eling, visualization, etc.) and geographical information systems. It’s Evans’s syntactic

approach again, and the scientific approach to urban morphology, too, with atomic

units of description, cellular automata, and fractal geometry. Drawing and geography

are slow to change when there’s only counting. But why is counting naturally assumed

to be reliable and trustworthy—to get it all—when it leaves out so much? Repeatability

isn’t the goal when there’s always creative work to do now. Counting misses every-

thing that’s new—there’s nothing to see.
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What Schemas Show

How descriptions of shapes change while I calculate is highlighted in another way

when I use schemas to define rules. I’ve shown one schema already

x fi tðxÞ
without giving a general definition. That’s because the idea is nearly transparent. But

sometimes, a little formality is useful.

A rule schema

x fi y

is a pair of variables x and y that take shapes as values. These are given in an assign-

ment g that satisfies a predicate. Whenever g is used, a rule

gðxÞ fi gðyÞ
is defined. The rule then applies as usual, as if it were given explicitly from the start.

This works to express a host of intuitive ideas about shapes and how to change them.

Schemas can be very general. In fact, I can give one for all rules. I only have to

say that x and y are shapes. Or schemas can be very restricted. Just a single rule is

defined if x and y are constants—maybe the triangle

and the square

to give the rule

But usually schemas are more in the middle, so that shapes have useful descriptions.

How to decide this and whether or not it makes a difference are hard to say. If you’re

interested in explaining everything of a certain kind once and for all, then it’s nice to

be clear about what schemas do. But if you take a historical view that looks at particular

ways of calculating and how they go on, then there are other ways—topologies, etc.—

to describe what’s happening relative to rules that needn’t be described themselves,

and how these rules are used. Most of what I was told in school seems to support the

first option. It isn’t easy to ignore. And most work on shape grammars—including my
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early stuff, although sometimes there are hints of something new—makes this choice.

Nonetheless, understanding how shapes work may be better served with the second

option. What is it about schemas and how they work that makes me say this? Let’s

take a look at schemas and see what they can do.

Here’s a rule

defined in a schema x fi y that produces the shape

and others of the same kind

formed when polygons are nested or inscribed one in another. An assignment g pro-

vides values for the variables x and y that satisfy this predicate:

x is a polygonwith n sides, and y ¼ xþ z, where z is a polygonwith n sides inscribed in x.

The predicate can be elaborated in much greater detail. For example, I could say some-

thing more about polygons being convex, etc., and then go on to say that the vertices

of z are points on the sides of x, etc. Thus, it’s easy to see that the schema includes as a

special case rules for shapes in the array
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Here, g assigns regular polygons to x and z, so that the sides of the one have midpoints

that are the vertices of the other, for example, like so

Still, this kind of detail isn’t always necessary. I’m apt to take shortcuts whenever I can.

In the schema

x fi xþ tðxÞ
and others like it, I conflate the two variables x and y and the predicate. More techni-

cally, I should have said that x is any shape and y ¼ xþ tðxÞ. And the schema is devel-

oped further in the predicate above, in which x is a polygon and the transformation t is

carefully spelled out. In like fashion,

x fi tðxÞ
provides a summary of the schema x fi y, where x is a shape and y is a transformation

t of x. If t is the identity, then rules are identities themselves. And I can use rotations

and translations as I did above. Or perhaps there’s a boundary operator b to define rules

that change lines to points and back again. If I write

bðxÞ fi x

as the inverse of the schema

x fi bðxÞ
in which x is a shape made up of lines, I get the rule

There’s more about this in part II. But now, I want to show something different

that goes to the heart of what it means to calculate visually. For this, it’s enough

to know what the variables x and y and the assignment g do. The main issue isn’t

technical.

For every predicate, there are indefinitely many others equivalent to it. It’s clear

that shapes made up of lines or higher-dimensional elements can be described in in-

definitely many ways in terms of their different parts. It might go like this

x is the sum of the parts . . . and y is the sum of the parts . . . such that . . .
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For example, I can use maximal lines or their halves, thirds, fourths, etc. The principle

is also true for shapes that contain points, because I can specify finitely many in count-

less ways with alternative expressions in logic. But of special interest right now, I can

redo the predicate I have, so that y is n triangles rather than twin polygons with n sides

apiece. If my rule is originally this

with two quadrilaterals, then it’s also this

with four triangles. There are some wonderful twists and turns when I reason in terms

of these contrasting descriptions.

This series of shapes

is defined using my new schema. It begins with a quadrilateral that’s replaced with four

triangles. And this is repeated in the same way to put four triangles in a quadrilateral.

But this doesn’t add up. The second quadrilateral comes from nowhere. And what’s

up with the four triangles? If I add four more, there are eight. I’ve said it before, and

it bears repeating. The parts I see aren’t fixed. They may alter at any time in number

or by kind. Are there four triangles or two quadrilaterals? How I describe a rule and

the shape to which it’s applied don’t have to agree. I can fool around with descriptions

as long as I like to produce the results I want in a sensible way. Rules apply to shapes,

not to descriptions. Everything follows, at least when I calculate with shapes. There’s

no such thing as a non sequitur or an inconsistency—only the elaboration that

comes from looking again and then going on independent of anything that I may have

seen or done before. Nothing is ever meaningless or contradictory. It’s impossible to be

irrational. I don’t have to look back to look forward. There’s nothing to remember to

go on.

This sounds wrong. How can calculating be so confused? Definite descriptions

define the shapes in a rule gðxÞ fi gðyÞ. But my description of gðxÞ may be incompati-

ble with the description I have for the shape to which I apply the rule. It just isn’t cal-

culating unless both of these descriptions agree. But what law says that shapes must
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be described consistently to calculate? The shape gðxÞ may have indefinitely many

descriptions besides the description that defines it. And none of these is final. Embed-

ding works for parts of shapes—not for their descriptions—when I try the rule. My ac-

count of how I calculate may appeal to as many different descriptions as I like that

jump from here to there haphazardly. It may sound incoherent or contradictory—

even crazy or nuts—while I’m doing it. But whether or not the conclusion is favorable

with useful results doesn’t depend on this. I can always tidy up after I’ve finished cal-

culating to provide a retrospective explanation that’s consistent. Trying to be rational

as I calculate may not be an effective way to go on. Rationality is simply a kind of nos-

talgia. It’s a sentiment to end with, after everything has finished and a pattern can

be established. A process becomes inevitable once it’s completed and final. Then it’s

safe to say what happened in one way or another, and not worry that this could all

change.

So when is calculating visual? I have another answer that may be better than my

formula dimðelÞ ¼ dimðemÞ.
Calculating is visual when descriptions don’t count.

Descriptions aren’t binding. There’s no reason to stick to any of them that’s not mere

prejudice. I’m happy with this, yet I’m not sure everyone will be happy with what it

means for everything from reasoning in its widest sense to narrow technical special-

isms like parametric design that go only as far as schemas with set variables. I use rules

to calculate, but I don’t have to play by them. I can cheat. And I can get away with it

calculating. I’m totally free to change my mind about what there is, and I’m free to act

on it. Children play games in this way, unless we intervene to make them follow the

rules. But these are limiting, grown-up rules, not the kind that children must have

already. Children’s rules are surely more like mine. There are no definitions to conform

to, and there’s no vocabulary to build from. It’s all fluid and in flux. Constituents—

atoms, units, and the rest of it—are merely occasional afterthoughts. Is this going too

far? What makes me think I’m calculating? But then, what’s reasoning all about?

What’s That or How Many?

I confess. I really don’t know what reasoning is, and I’m not totally sure about calculat-

ing. For James, reasoning is sagacity and learning. And surely, this includes what I’ve

been saying, especially about calculating with shapes and rules. Still, others may demur

for one reason or another. Not everyone is as generous as James when he encourages

alternative points of view and welcomes the novelty they bring—reasoning is at stake.

There are standards to keep that decide exactly what’s right and what’s wrong—no

doubt about it. But where does this lead? Wandering around is the best way to see.

I’m going to look at some of the things a number of thinkers say about reasoning, cal-

culating, and their relationships. This lets me explore visual reasoning and calculating

in various ways. I want to reinforce the idea that shapes and rules do many things that

calculating isn’t supposed to do. (Shape grammars aren’t what you think they are.) This
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opens the way to design. Mine isn’t a logical argument that takes a predetermined

route that’s built up step by step. It really is wandering around—no map, no plan,

and no final goal. I shift freely—perhaps even erratically—from here to there. And if I

sometimes trace an idiosyncratic path that may seem discontinuous, it’s to traverse the

extent of this terrain—there’s a lot to see and far more than I’m able to show. From my

point of view, this makes what I say all the more convincing. Shapes and rules exceed

standard expectations for logical analysis and rational thought when they depend on a

given vocabulary of units. The trick is to get around analysis as a prerequisite for calcu-

lating. Shapes and rules let me go anywhere I like and see whatever I want. That’s why

they’re worth the effort, and that’s why it makes sense to talk about them in the open-

ended, promiscuous way I do.

There’s no better place to start than James himself—calculating with shapes and

rules does what he says. It goes like this:

All ways of conceiving a concrete fact, if they are true ways at all, are equally true ways. There is no

property ABSOLUTELY essential to any one thing. The same property which figures as the essence of

a thing on one occasion becomes a very inessential feature upon another.

Meanwhile the reality overflows these purposes at every pore.

. . . the only meaning of essence is teleological, and . . . classification and conception are purely teleological

weapons of the mind.

The properties which are important vary from man to man and from hour to hour.

Reasoning is always for a subjective interest, to attain some particular conclusion, or to gratify

some special curiosity. It not only breaks up the datum placed before it and conceives it abstractly;

it must conceive it rightly too; and conceiving it rightly means conceiving it by that one particular

abstract character which leads to the one sort of conclusion which it is the reasoner’s temporary

interest to attain.

I may change occasions more rapidly than James expects, moving freely among

parts whether they’re details or overall features. I change occasions every time I apply

a rule M fi P to calculate—when I embed M and infer (introduce) P. And I string all

of these occasions together in an ongoing series to produce useful but not necessarily

logical (consistent) results. My temporary interests are in fact evanescent, and arbi-

trarily linked. They’re shown in the rules I use to get the results I want. I think this

is why visual calculating and reasoning can be a lot more effective in design than cal-

culating and reasoning in some other way. Their appeal to seeing—to sensible, con-

crete experience—puts the ability to deal with novelty—‘‘the technical differentia of

reasoning ’’—at the center of creative activity.

Another famous philosopher, however, isn’t sure that my kind of calculating

with shapes—where rules automatically redefine parts as they’re tried—is actually cal-

culating. Ludwig Wittgenstein notices that numbers and shapes don’t add up in the

same way—there’s a distinct difference between calculating and visual calculating—

and he suggests that this shows that ‘‘mathematics is normative.’’
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An addition of shapes together, so that some of the edges fuse, plays a very small part in our life.—

As when

and

yield the figure

But if this were an important operation, our ordinary concept of arithmetical addition would

perhaps be different.

Let us imagine that while we were calculating the figures on paper altered erratically. A 1 would

suddenly become a 6 and then a 5 and then again a 1 and so on. And I want to assume that this

does not make any difference to the calculation because, as soon as I read a figure in order to cal-

culate with it or to apply it, it once more becomes the one that we have in our calculating. At the

same time, however, one can see quite well how the figures change during the calculations; but

we are trained not to worry about this.

Of course, even if we do not make the above assumption, this calculation could lead to

usable results.

Here we calculate strictly according to rules, yet this result does not have to come out.—I

am assuming that we see no sort of regularity in the alteration of figures.

Now you might of course say: ‘‘In this case the manipulation of figures according to rules is not

calculation.’’

Wittgenstein’s curious manipulations in which figures alter erratically of their

own accord have a familiar look and feel. It’s uncanny—it’s as if I were calculating

with shapes and rules. And if the one skirts the comfortable norms of calculating as

Wittgenstein implies, then so too does the other. Of course, norms may be effective or

not. At first, Wittgenstein is tempted to check what can change and go on with busi-

ness as usual.

And I want to assume that this does not make any difference to the calculation because, as soon as

I read a figure in order to calculate with it or to apply it, it once more becomes the one that we

have in our calculating.

Wittgenstein’s first response is conservative—he’s an instinctive constructionist.

He joins with the rest of us to keep to the law that keeps everything the same. I

count on figures to behave themselves when I use them to calculate. Making it that

way is what training is for. (There are the basics—predefined constituents and their

arrangements—rigorous standards, and tests to make sure that schools and students

are held accountable for teaching and learning. But how basic are basics that have to

be taught and tested? The push for standards is to exclude the unexpected. Standards

limit present experience to what seemed to work in the past. Any prospect of novelty is
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gone. There are no surprises—just rote results. Nothing is ever ambiguous or vague.

This is the end of anxiety and uncertainty, and it makes it unnecessary to trust others

and give them a chance to think on their own. But is it a sensible way to educate peo-

ple to recognize and exploit new opportunities? What good are my rules now? Of

course, training needn’t limit experience. It may be open-ended—for example, in

studio instruction and situated learning. In the latter, master and apprentice interact

during actual practice. They work on the same thing without having to see it in

the same way. They go on. There’s no underlying structure to control or guide the

process—‘‘structure is more the variable outcome of action than its invariant precondi-

tion.’’ This is like visual calculating. Nothing guarantees that it’s the same way twice.)

But why not try something new? Is training necessary for a successful conclusion when

I calculate?

Of course, even if we do not make the above assumption, this calculation could lead to usable

results.

Ignoring ‘‘the above assumption’’ is what visual calculating is about. Whether or not

you think it’s real calculating doesn’t actually matter. The ambiguity cuts in opposing

ways: once to explain why greater attention hasn’t been focused on visual calculating

as a useful alternative to calculating with numbers—the one isn’t calculating—and

then again to explain why it’s so easy to think that visual calculating is necessarily

the same as calculating in the ordinary way. I like to calculate by seeing. But whenever

I try, either no one believes it or they think I’m doing something else—that I’m calcu-

lating by counting. Maybe I’m wasting my time when it comes to visual calculating.

Only what can I do? I want to see how far reasoning goes. And there’s always some-

thing new to see that takes me somewhere else to look. My instincts aren’t conser-

vative when it comes to seeing shapes. There’s simply no need to remember what was

there before. I’m free to look again now to decide what to do next.

I guess my approach to shapes and rules isn’t the norm. This much is evident in

the quotation from Ivan Sutherland—one of the pioneers of computer graphics and

computer-aided design—that I started with on page 61. Here it is again—

To a large extent it has turned out that the usefulness of computer drawings is precisely their

structured nature and that this structured nature is precisely the difficulty in making them. . . . An

ordinary draftsman is unconcerned with the structure of his drawing material. Pen and ink or

pencil and paper have no inherent structure. They only make dirty marks on paper. The drafts-

man is concerned principally with the drawings as a representation of the evolving design. The

behavior of the computer-produced drawing, on the other hand, is critically dependent upon the

topological and geometric structure built up in the computer memory as a result of drawing oper-

ations. The drawing itself has properties quite independent of the properties of the object it is

describing.

The preliminary appeal to structure and memory in early efforts to draw with the

computer is unassailable today throughout practice and education. It makes the com-

puter, and pencil and paper appear to be irreconcilably different kinds of media. The

draftsman always has the option to draw it in one way and to see it in another—to
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forget what he’s done, so that he can see and do more—while the computer produced

drawing depends on the ‘‘topological and geometric structure built up in the computer

memory as a result of drawing operations.’’ This is precisely the difference between cal-

culating visually and calculating the way Evans does with predefined constituents. And

it’s what worried Wittgenstein—figures on paper don’t alter when you calculate, and if

they do, you remember what they were. It’s funny how things on paper—dirty marks,

shapes, and figures—bother Sutherland and Wittgenstein for the same reason: they

defy calculating. Of course, there may be an advantage. I can always count on the com-

puter drawing to behave properly according to the way it’s described. When its constit-

uents are fixed in drawing operations, its future possibilities are circumscribed once

and for all. The outcome of this is already clear in Evans’s shape

And whether or not I can calculate to reflect the shape

depends on how the triangle and chevron are drawn. Sutherland is correct. The diffi-

culty in making computer drawings is their structured nature. It’s hard—no, it’s impos-

sible—to tell what constituents to draw without foreknowledge. That’s the trick—not

to need foreknowledge, so that the properties of computer drawings can alter freely to

correspond with the properties of anything they’re used to describe. That’s why

embedding makes a difference in design. It guarantees that shapes do what you want.

There’s no structure to remember. There’s no reason for calculating to get in the way.

Figures on paper and the computer drawing are the same.

Herbert Simon likes the idea that shapes are represented (structured) and well

behaved in computers.

Since much of design, particularly architectural and engineering design, is concerned with objects

or arrangements in real Euclidean two-dimensional or three-dimensional space, the representation

of space and of things in space will necessarily be a central topic in a science of design. From our

previous discussion of visual perception, it should be clear that ‘‘space’’ inside the head of the

designer or the memory of a computer may have very different properties from a picture on paper

or a three-dimensional model.

The representational issues have already attracted the attention of those concerned with

computer-aided design—the cooperation of human and computer in the design process. As a
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single example, I may mention Ivan Sutherland’s SKETCHPAD program, which allows geometric

shapes to be represented and conditions to be placed on these shapes in terms of constraints, to

which they then conform.

Yes, design is drawing objects and their arrangements! And Simon knows the kind of

structure that works best in drawing and elsewhere—hierarchies make the difference.

They’re inherent in memorable experience and the reason it’s comprehensible. Seeing

things and their parts is impossible in any other way.

If there are important [things] in the world that are complex without being hierarchic, they may

to a considerable extent escape our observation and our understanding. Analysis of their behavior

would involve such detailed knowledge and calculation of the interactions of their elementary

parts that it would be beyond our capacities of memory and computation.

How comprehensible are stars and superstars when I calculate with them? Aren’t they

important? Or do they escape observation and understanding, and exceed our capacity

of memory? The structure of the five-pointed star

isn’t close to being hierarchic when it’s divided into elementary parts (lowest-level

constituents) compatible with the shape

and its reflection. These parts combine to form triangles and chevrons in a pair of

interacting ways
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that block any chance of an underlying hierarchy. The practical necessity of hierarchi-

cal structure in calculating seems to be another good reason to deny the existence of

elementary parts. It’s easy to do without them. And once they’re gone, new ways

open up to restructure shapes dynamically. There’s nothing to remember. Understand-

ing changes every time a rule is tried.

I would like to think that the visual examples I’ve shown so far make this obvi-

ous. But Simon provides additional evidence, if there’s still any doubt, in a wonderful

analysis of representational drawing.

If you ask a person to draw a complex object—such as a human face—he will almost always pro-

ceed in a hierarchic fashion. First he will outline the face. Then he will add or insert features: eyes,

nose, mouth, ears, hair. If asked to elaborate, he will begin to develop details for each of the

features—pupils, eyelids, lashes for the eyes, and so on—until he reaches the limits of his anatom-

ical knowledge. His information about the object is arranged hierarchically in memory, like a

topical outline.

When information is put in outline form, it is easy to include information about the

relations among the major parts and information about the internal relations of parts in each

of the suboutlines. Detailed information about the relations of subparts belonging to different

parts has no place in the outline and is likely to be lost. The loss of such information and the

preservation mainly of information about hierarchic order is a salient characteristic that dis-

tinguishes the drawings of a child or someone untrained in representation from the drawing of a

trained artist.

The way my computer works shows something different. Every time I turn it on, I

see Apple Computer’s Macintosh logo

The six maximal lines in this Picasso-Braque–like figure form a quartet of human faces.

There are left and right profiles, and corresponding concave and convex front views

with noses in alternating places

And if I cut the free ends of lines to treat the logo like the Y’s in Evans’s shape, there

are indefinitely many more faces. Some even appear to wink. But this is unnecessarily

indulgent. The four faces alone are already much too entangled for the logo to be

described ‘‘in a hierarchic fashion.’’ The hierarchies that describe the faces singly are

incompatible. Which description is preserved when I draw the logo? Does it keep me

from seeing the logo in another way? What about Wittgenstein’s observation that
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figures on paper may alter erratically? The logo is like the five-pointed star. The parts

of faces interact as copiously as the parts of triangles and chevrons, and don’t fall

neatly into independent groups. Try to draw some of the faces without drawing the

others, or to erase one of the faces and keep the others intact. When it comes to

calculating, there’s no more to art—drawing, poetry, etc.—than to business, logic,

mathematics, and science. Simon thinks so, and so do I. But our intuitions run in

opposite directions. In art, there’s no more than meets the eye. This changes what cal-

culating is.

Of course, this isn’t the whole story. Drawings can be used in myriad ways. In

particular, Simon shows how drawings work ‘‘to resolve syntactic ambiguities’’ in sen-

tences. This one

I saw the man on the hill with the telescope.

is a good example of what he has in mind. His account of the matter is perfectly

straightforward.

This sentence has at least three acceptable interpretations; a linguist could, no doubt, discover

others. Which of the three obvious ones we pick depends on where we think the telescope is: Do

I have it? Does the man on the hill have it? Or is it simply on the hill, not in his hands?

Now suppose that the sentence is accompanied by [the] figure

The issue is no longer in doubt. Clearly it is I who have the telescope.

The figure has the list structure

SAW ((I, WITH (telescope)), (man, ON (hill)))

which does in fact disambiguate the sentence. But this list structure isn’t the only pos-

sible description of the figure. It might also be

SAW (I, (man, ON (hill), WITH (telescope)))

Who has the telescope isn’t all that has to be decided. The location of the hill is in

doubt. The figure flips like a Necker cube, or Otto Neurath’s picture a-boy-walks-

through-a-door on page 50 where the boy goes into or out of a house. How does Simon

know that he’s looking up at a hill from its base and not down at a hill across a valley?
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Why is he the big guy rather than the little fellow? It’s the same watching a sunrise,

with historical significance for astronomy. Is the sun rolling over you—the sun moves

and the earth is fixed—or are you rolling under the sun? Simon’s figure is just as am-

biguous as his sentence, to multiply the confusion. But there’s scant reason to take

shapes seriously when you’ve already read what you’re supposed to see! Nonetheless,

shapes hold their surprises patiently. And it’s a good thing, too. Otherwise, it would

be easy to run out of new things to see. I’d have no reason to calculate with my eyes.

I’ve spent a lot of time quoting Simon. There are three main reasons for this.

First, he doesn’t pull any punches. You know exactly where he stands. So I can try to

be clear, too, especially with the ambiguity and vagueness I’m trying to keep. Second,

his take on computers, calculating, and hierarchical structure is canonical today. What

Simon says is what everyone does—one way or another. I don’t think this is entirely

because of Simon—it may be, yet probably not—but because it’s what we’re taught cal-

culating is from the time we’re taught to count. Calculating by counting doesn’t go

very far in design and creative work. It’s calculating by seeing that’s worth a real try.

And third, Simon makes use of spatial examples and analogies that give me something

to see. I’ve looked at a few of these, and need only remind you of the truly marvelous

idea that calculating and painting are linked. In fact, Simon’s description of this rela-

tionship could be my own.

It is also beside the point to ask whether the later stages of the development were consistent with

the initial one—whether the original designs were realized. Each step of implementation created a

new situation; and the new situation provided a starting point for fresh design activity.

Making complex designs that are implemented over a long period of time and continually

modified in the course of implementation has much in common with painting in oil. In oil paint-

ing every new spot of pigment laid on the canvas creates some kind of pattern that provides a

continuing source of new ideas to the painter. The painting process is a process of cyclical inter-

action between painter and canvas in which current goals lead to new applications of paint, while

the gradually changing pattern suggests new goals.

If situations are shapes, then this is what calculating is about. There’s no need for

consistency or to keep to prior decisions and goals. Nothing is ever finished. Every-

thing is always up for grabs. Change may be sudden rather than gradual as Simon has

it, but either way you look at it, things are different. Yet all Simon can think to do is to

make change combinatorial—spots of pigment really are independent spots that can

be identified. It simply doesn’t work. It just isn’t painting, nor is it visual calculating.

There’s more to seeing than rearranging units—

forms can proliferate in this way because the more complex arise out of a combinatoric play upon

the simpler. The larger and richer the collection of building blocks that is available for construc-

tion, the more elaborate are the structures that can be generated.

Vannevar Bush wrote of science as an ‘‘endless frontier.’’ It can be endless, as can the process of

design and the evolution of human society, because there is no limit on diversity in the world. By

combinatorics on a few primitive elements, unbounded variety can be created.
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Primitives and building blocks—either a few or a lot—spoil the whole thing. It’s easy

to create endless (monotonous) variety and diversity in Chomsky’s sense—you pay for

it with growing complexity—only it isn’t the creative kind you need your eyes to see.

Then there’s no complexity, just looking again—embedding this in that in a process

where things fuse and divide and don’t merely combine—to pick out what’s new. Still,

there’s no reason to be upset. That calculating and painting are tied is in fact a remark-

able idea, and when you turn the relationship around, without primitives and building

blocks in combinatoric play, it’s totally incredible. What’s more, the interaction be-

tween calculating and painting in Simon’s sense and painting and calculating in mine

is another good way to introduce my scheme in which equivalencies for verbal and

visual expression are shown. Simon gets it one way just about right. And he really

takes seeing seriously when he talks about calculating. His visual approach is some-

thing special.

John McCarthy takes the kind of nonvisual approach to reasoning that I want to

extend. (McCarthy and Marvin Minsky started artificial intelligence at MIT, and along

with Simon and Allen Newell made sure AI was an important area of research in com-

puter science.) In fact, McCarthy does pretty much what Simon says—he tries to struc-

ture problems before they’re solved. This structure needn’t be hierarchical, but there

are still antecedent limits and constraints. McCarthy describes reasoning as circum-

scription in a nonmonotonic logic, that is to say, as common sense. His analysis of

the missionaries and cannibals puzzle shows what’s involved. The problem is easy to

state.

Three missionaries and three cannibals come to a river. A rowboat that seats two is available. If the

cannibals ever outnumber the missionaries on either bank of the river, the missionaries will be

eaten. How shall they cross the river [?]

McCarthy counts numerical conservation among the primitive ‘‘facts’’ of ‘‘common-

sense knowledge’’ that ground the puzzle—‘‘rowing across the river doesn’t change

the numbers of missionaries or cannibals,’’ nor, presumably, does it change individ-

uals. In fact, McCarthy proves objects are limited to the ones that are given, in a

circumscriptive inference for three blocks that applies equally to boats, cannibals, and

missionaries. It’s another way to be a constructionist. Still, is any of this sensible with-

out more evidence? Why are missionaries and cannibals combinatorial units? Aren’t

they more like shapes? And what makes the puzzle a puzzle? It may be a parable in-

stead that shows how missionaries convert cannibals as they cross the river. There’s

no reason cannibals can’t be born again—they can change just like shapes. Or the

puzzle may be an aboriginal tale. The magic is palpable. Missionaries needn’t look the

same in the new light on the opposite bank. The savage mind isn’t trained to count.

Cannibals are free to relish strange forms of life and digest what they see in alternative

ways. But McCarthy’s common sense is prudent—what doesn’t have to be is excluded;

keep to what’s given. Ambiguity and novelty are just confusing and block simple logic.

Calculating with shapes is outside the ambit of ordinary thought. Only shapes show

that useful calculating is practicable when McCarthy’s common sense fails. It’s easy to
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see what happens without it. Try stars and especially superstars to mix up as many

chevrons—‘‘missionaries and cannibals’’—as you like. Nothing stays the same for

long. Otherwise, what’s the reason for reason?

Of course, not everyone who thinks about computers has McCarthy’s common

sense. There’s a lot of controversy in AI. Terry Winograd and Fernando Flores think

blindness makes the difference. (Winograd took a starkly atomistic approach to com-

puters and language as one of Minsky’s doctoral students, but he may have changed

his mind.)

We accuse people of lacking common sense precisely when some representation of the situation

has blinded them to a space of potentially relevant actions.

This gets close to what calculating with shapes and rules is all about. If I follow Evans

and describe (represent) the shape

in terms of lowest-level constituents that are always independent when they’re

combined—there’s a triangle with three sides and a chevron with four sides in the

ordinary way—then I simply have no access to 80 percent of the triangles in the five-

pointed star

I can’t see them or move them. Because lines neither fuse nor divide, I miss the chance

to produce the shape

Limiting myself in this way seems a big price to pay in order to calculate, and it gets a

lot worse for stars and superstars as the number of points grows. This is inevitable as
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long as calculating depends on representations. No matter how carefully I describe

things, there are going to be some things that I just can’t see and some relevant actions

that I can’t take.

Whenever we treat a situation as present-at-hand, analyzing it in terms of objects and their

properties, we thereby create a blindness. Our view is limited to what can be expressed in the

terms we have adopted. This is not a flaw to be avoided in thinking—on the contrary, it is

necessary and inescapable. Reflective thought is impossible without the kind of abstraction that

produces blindness.

But Winograd and Flores do offer a glimmering of hope—in fact, a way to open up

reflective thought (reasoning) and to get around the structured nature of computer

drawings. Switching representations (visual reasoning) is how to avoid blindness.

[There’s] the possibility of . . . switching between different representations, or creating new

representations. If this were possible, the blindness inherent in any one representation could

be overcome. But if we look carefully at what is actually proposed, it does not really confront

the issues.

If you think calculating is counting, then there are limits to what you can see. Your

ability to handle novelty is circumscribed. With visual calculating in which rules apply

to shapes in terms of embedding, the problem disappears. Descriptions (representa-

tions) don’t count. I can calculate without them. Lines fuse and divide as rules are

tried. Only this isn’t my point right now. It’s that common sense is outside of reflective

thought. Common sense and calculating with shapes are excluded for the same

reason—they don’t work when you’re blind. It seems that the value of common sense

depends on whose it is. Is it common sense to see what ambiguity brings and to be

open to it? Winograd and Flores think so. Or is it to check what you see with circum-

scription, conservation, constructionist scruples, and the like? McCarthy says so, and

Wittgenstein wants to agree—at least until he thinks about it.

Winograd and Flores look at calculating in earnest Heideggerian terms like

‘‘blindness.’’ Heidegger is hard work—first to ignore his politics and then to figure

out what he’s trying to do. I can approach both tasks spatially, and I guess it’s worth

the effort. A lot of what he says seems to be about shapes and how to calculate

with them. But there are many other ways of talking—alternative terminologies—that

aren’t so inaccessible and that also apply to shapes. Earlier, I mentioned hermeneutics

in a humorous way. Now it’s time to be serious. Listen to what Hans-Georg Gadamer

has to say about interpreting a text.

A person who is trying to understand a text is always performing an act of projecting. He projects

before himself a meaning for the text as a whole as soon as some initial meaning emerges in the

text. Again, the latter emerges only because he is reading the text with particular expectations in

regard to a certain meaning. The working out of this fore-project, which is constantly revised in

terms of what emerges as he penetrates into the meaning, is understanding what is there.

I may be projecting—this kind of writing is paradigmatic in the way it resists final

understanding—but it seems to me that it’s a pretty good description of what it’s like
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to calculate with stars and superstars, or other shapes, in terms of a family of rules

defined according to a schema. The schema bounds my expectations in a vague sort

of way—I may not know exactly what it implies. Then embedding lets me project, so

that meaning emerges and can be constantly revised. There’s a lot of wandering

around. It’s easy to make quick and seamless transitions to other things. There are

connections for all sorts of reasons. For example, I can count when I read in a kind of

numerical exegesis. First there’s hermeneutics that’s spelled with twelve letters and then

phenomenology that’s spelled with thirteen. This may not be a logical progression, but

that doesn’t mean that the next term in my sequence isn’t significant. What about

phenomenology? How does it tie up with shapes and rules?

Shapes look trivial with lines. Their parts depend on the rules I use to calculate,

but they act more like ‘‘pieces’’ than the tangled ‘‘moments’’ central to phenomeno-

logical analysis. Yet additional evidence supports an alternative view. Spatial wholes

are described in terms of their profiles.

A profile of a spatial object is the impression made by the object from a certain point of view. It

does not contain in itself the other views the object provides to other viewpoints. Rather, it points

toward these other looks of the thing; they can be acquired only outside the present point of view.

Each look is exclusive of the others. When one is present the others are absent.

Shapes are like this, too. Whenever I try a rule, I look at a shape from a certain point of

view. The rule resolves one part of the shape, and puts its other parts outside of vision

and use. I see the shape in a single way even though there are others, as when this

triangle

oriented exactly as shown is first seen and then moved in the five-pointed star

Alternative divisions are possible only when rules are used again. And there’s more in

phenomenology that suits, as well. The renowned combinatorialist and phenomenolo-

gist Gian-Carlo Rota gives a number of examples—including reading and bridge—for

Husserl’s notion of Fundierung or founding. Bridge is a good example—what marks

playing cards?

The point is that there is no one ‘‘what’’ that we ‘‘see’’ while watching four people around a table

[an additional ‘‘what’’ with five named parts]—or while watching anything. All whats are functions

in Fundierung relations.
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The way rules handle ambiguity adds to Rota’s examples. The whats of shapes depend

on their parts, and these are resolved anew every time a rule is tried. For parts, ‘‘the

only kind of ‘existence’ that makes any sense—if any—is the evanescent existence of

the trump card.’’ Parts are necessary now, and then go away as I go on calculating. The

changing results contribute to the flow of meaning. Perception trumps logic to guaran-

tee that there’s something new to see that makes a difference. Wandering around is

really wandering around. Is this existential? Maurice Merleau-Ponty suggests as much

in an apt description of rationality.

Rationality is precisely measured by the experiences in which it is disclosed. To say that there

exists rationality is to say that perspectives blend, perceptions confirm each other, a meaning

emerges.

Like views are found elsewhere. James and Dewey both rely on the same kind of dy-

namic rationality in reasoning. Jacques Barzun admires the ‘‘artist mind’’ below. And

my topologies keep a record of what I do as I calculate with shapes. So what’s next? Is

computational phenomenology in the cards? Don’t be silly. This isn’t what calculating

is supposed to do, but there’s no denying it—rules restructure shapes every time

they’re used. (Rota treats phenomenology and combinatorics as separate worlds—

what’s that and how many?—and has a cavalier answer when he’s asked how he

inhabits both—‘‘I am that way.’’ But it seems to me that there’s an important relation-

ship. It’s combinatorics if shapes are made up of points, and phenomenology if they’re

not. The elements of thought either have dimension zero or greater. There’s more than

identity in embedding.)

Calculating and reasoning—visual or not—common sense, missionaries and can-

nibals, and other whats are no better off than shapes. But isn’t this how it should be?

The ambiguity is something to use, even with computers. Minsky is clever about this—

he thinks that calculating and reasoning are the same without excluding my kind of

rules that rely on embedding, the way McCarthy does, or impling that they’re very dif-

ficult if not impossible to define, as Winograd and Flores do. Once you see the ambigu-

ity, it’s easy to make it work for you in many ways. In fact, what Minsky says about

creativity is telling.

What is creativity? How do people get new ideas? Most thinkers would agree that some of the se-

cret lies in finding ‘‘new ways to look at things.’’ We’ve just seen how to use the Body-Support

concept to reformulate descriptions of some spatial forms. . . . let’s look more carefully at how we

made those four different arches seem the same, by making each of them seem to match ‘‘a thing

supported by two legs.’’ In the case of Single-Arch, we did this by imagining some boundaries that

weren’t really there: this served to break a single object into three.

However, we dealt with Tower-Arch by doing quite the opposite: we treated some real boun-

daries as though they did not exist:
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How cavalier a way to treat the world, to see three different things as one and to represent

one thing as three!

Minsky follows James with a neat example. For James, ‘‘Genius, in truth, means

little more than the faculty of perceiving in an unhabitual way.’’ It may be daring

(cavalier), but Minsky welcomes alternative descriptions—at least a few of them. He’s

willing to apply ‘‘radically different kinds of analysis to the same situation’’ and sure

that Thomas Kuhn’s paradigm switches occur again and again in everyday thought.

Only there’s a nagging doubt. Minsky retreats too easily to the security of constituents

and combining them. He splits thinking in two, just not the way James does. There’s

an initial analysis of ‘‘elements’’—how is this done?—and then an independent heu-

ristic search where ‘‘elements are combined in different ways until a configuration is

reached that passes some sort of test.’’ This is precisely the way computer models are

supposed to work, and a far cry from James’s sagacity and learning. How useful is anal-

ysis before search begins? Remember what happens when rules are applied to shapes.

There’s a paradigm (gestalt) switch every time a rule is tried. The elements of analysis

aren’t given beforehand but change as calculating goes on. In fact, Minsky’s arches

support this. They’re the standard that shows what it means to be static, and more.

The statics of arches—Minsky’s Body-Support concept—works consistently in differ-

ent cases because arches aren’t static. Shapes aren’t stable—they fuse when they’re

combined to make new divisions possible. Elements, configurations, and tests aren’t

the way to handle this kind of ambiguity. How well does Evans’s grammar work? Like

Winograd, he was Minsky’s doctoral student, and he does what’s right. An initial anal-

ysis to define constituents is followed by a search with a heuristic—try configurations

with three lines—and a test—is it a polygon? But heuristic search is senseless once see-

ing stops. Yes, seeing—observing—is analysis, but you can always do it again in an-

other way.

Minsky knows that quantitative models of reasoning are inadequate. Visual

calculating—everyone says it’s qualitative—might be the alternative worth searching

for. But his reason to find something new is baffling.

[A number-like magnitude] is too structureless and uninformative to permit further analysis. . . . A

number cannot reflect the considerations that formed it.

This is true for shapes. It’s what lets me divide them freely as I apply rules. In fact,

the idea is a corollary of my principle that descriptions don’t count. When memory

matters more than what I see, it isn’t visual calculating. There’s a conservation law of

some sort to uphold the decisions I’ve made in the past—to recognize (remember)

what I did before and act on it heedless of anything else that might come up. This

looks away from visual calculating to calculating the way we learned in school. Once

more, either visual calculating isn’t calculating or it’s misunderstood.
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The idea that I can change how I describe things with rules is at the heart of vi-

sual calculating, but it seems to be an idea that’s not easy to accept or use. And in fact

it would be easy to dismiss if it only had roots in sensible experience. Art and such are

important, but it’s science that really counts. It’s funny how things turn out. The idea

that things have incompatible descriptions is strongly rooted in science, as well. Hilary

Putnam tells the story.

Since the end of the nineteenth century science itself has begun to take on a ‘‘non-classical’’—

that is, a non-seventeenth-century—appearance. [Earlier] I described the phenomenon of concep-

tual relativity—one which has simple illustrations, like [mine for a few individuals], but which has

become pervasive in contemporary science. That there are ways of describing what are (in some

way) the ‘‘same facts’’ which are (in some way) ‘‘equivalent’’ but also (in some way) ‘‘incompati-

ble’’ is a strikingly non-classical phenomenon. Yet contemporary logicians and meaning theorists

generally philosophize as if it did not exist.

This contains a good description of the shapes in the series

that are produced when I calculate with the rule

and its inverse. The five-pointed star is produced from the initial shape in one way, and

then divided to produce the final shape in another way. This doesn’t vex the eye,

because it embodies my rules. All the same, the triangle and chevron at the start are

incompatible with their reflection at the end. The star is made up of a triangle and a

chevron in alternative ways. The facts are equivalent—‘‘a rose is a rose.’’ But the poly-

gons consistent with the initial shape are inconsistent with the ones consistent with

the final shape—‘‘a rose is a rose.’’ No one expects things to vanish if they’re moved.

Conservation is a solid law of physics. The outcome is never in doubt. The triangle in

the initial shape must be in the star. Only how? Separate things can’t occupy the same

place at the same time. Impenetrability is another solid law of physics that has the ring

of logic. It’s impossible to jam two distinct triangles and their conjugate chevrons
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together all at once in the star—even visually. Try and see both alternatives at the same

time—

But there they are—at least until I move one of the triangles. This is in fact a striking

way to calculate. That it’s left out of logic is no real surprise. But Putnam isn’t worried

about what logicians ignore. He wants to explain this nonclassical phenomenon. And

what he finds meshes with some of the things I’ve been trying to say about visual

calculating.

There are two important points. One works with visual calculating, and the other

does—when it goes against convention—and doesn’t—when it embraces counting.

Counting is a reliable test of how things are, but it doesn’t bother me if numbers

change without rhyme or reason as I calculate. Let’s see how this plays out. The first

point is this—

[The] phenomenon [of conceptual relativity] turns on the fact that the logical primitives themselves,

and in particular the notions of object and existence, have a multitude of different uses rather than one

absolute ‘‘meaning.’’

And second,

Once we make clear how we are using ‘‘object’’ (or ‘‘exist’’), the question ‘‘How many objects

exist?’’ has an answer that is not at all a matter of ‘‘convention.’’

Putnam’s first point is pretty obvious whenever I calculate with shapes. What I

see before me depends on the rules I try. Evans’s shape

isn’t anything in particular until I apply the rule (identity)

to pick out triangles. And if I try the rule
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it’s something different. Then Putnam’s second point—at least my version of it—is

also clear. It’s not up to me how many triangles there are in the shape; the number is

the result of calculating with the rule

to see how triangles are embedded. The only problem is that the rule can be used in

different ways to get different results—‘‘the figures alter erratically.’’ Of course, I can

always insist that the rule be applied everywhere there’s a triangle. And I even have

an algorithm for this—in fact, my algorithm is good for any rule. So maybe there’s a

definite answer after all.

But I have another way to look at counting that gives inconsistent results that

aren’t so easy to bypass. Suppose I start with the rule

that erases equilateral triangles—that’s simple enough—and then apply the rule to

the shape

In the series of shapes

there are clearly four independent triangles. That’s precisely how many I erase in order

to make the shape

disappear. What better test for counting could I ever have? Every time I count a

triangle, I take it away to define a one-to-one correspondence between triangles and

numbers. Each triangle is counted once—that’s how counting works—and all triangles

are accounted for when the shape is gone, or my rule doesn’t apply anymore. But I

count five triangles in each series in this trio
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and six triangles in this series

So what’s it going to be? Does the shape

contain four triangles, five in one of three different ways, or six? The important thing

to see is that giving rules to define parts isn’t going to be enough. I also have to specify

when and where the rules are applied. Being clear about what an object is before

counting begins appears to be what everyone—from Evans to Goodman to Simon,

McCarthy, and Minsky—is trying to do. The goal is to fix (rig) things, so that counting

objects has the same result whenever you look. It’s repeatable in exactly the way Kier-

kegaard dreads. But how much success has anyone actually had? Does Putnam know

any more than Peirce about how to be clear? Can anyone say for sure how to distin-

guish shapes and arrangements of objects just by looking? I’m happy to pick out parts

with rules that apply via embedding. That’s as clear as I know how to be, so that I’m

not tied to tendentious descriptions—even in schemas that define rules. But this can

be messy when it comes to counting, unless I use points and other zero-dimensional

things. What makes counting so decisive? Not everything has to add up. Meaning

comes in other ways, too, when I calculate with shapes.

I’ve said all this before in one way and another. That’s expected when you

wander (walk) randomly with your eyes. But I’m thinking about my students. I show
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them how to calculate with shapes again and again. They nod knowingly and insist

they’ve got it. Yet when it comes to doing it, they do exactly what they’re used

to. They try constituents, and rely on all of the other bad habits I thought I had man-

aged to break. It’s amazing how quickly they count things up and say they’re com-

plex before calculating. Variety is combinatorial with constitutive elements. There

isn’t much to see. James terms this ‘‘old fogyism’’ in Talks to Teachers. And my stu-

dents—at least most of them in the PhD program—are old enough to feel its constrict-

ing grip.

In later life this economical tendency to leave the old undisturbed leads to what we know as ‘‘old

fogyism.’’ A new idea or a fact which would entail extensive rearrangement of the previous system

of beliefs is always ignored or extruded from the mind in case it cannot be sophistically reinter-

preted so as to tally harmoniously with the system. We have all conducted discussions with

middle-aged people, overpowered them with our reasons, forced them to admit our contention,

and a week later found them back as secure and constant in their old opinion as if they had never

conversed with us at all. We call them old fogies; but there are young fogies, too. Old fogyism

begins at a younger age than we think. I am almost afraid to say so, but I believe that in the

majority of human beings it begins at about twenty-five.

James was a late bloomer and expects this in the majority of human beings. The truth

is that there are telltale signs of old fogyism at thirteen. The trick is not to rush head-

long into puberty and the reciprocal quest for rigidity. This may be unavoidable at

twenty-five. But when I calculate with shapes, old fogyism is postponed indefinitely.

Shapes have topologies that are rearranged extensively—in two ways: meaningful

constituents alter both spatially and numerically—as rules are applied. But this is only

calculating. In other things we do, the pull of old fogyism is more difficult to over-

come. Barzun calls it the ‘‘rubber-band effect’’—snapping back to what we thought

before. When I teach, I repeat a handful of examples—like my stars and superstars—

to stretch the rubber band. I do this as hard and as often as I possibly can. And

from time to time, I actually get lucky—the rubber band breaks. Then teaching is its

own reward.

I never tire of saying that the parts of a shape depend on what happens to it as I

calculate. So long as I continue to try rules, parts change. But I like to be consistent

about this whenever I can. If I take the series of shapes

seriously—and I still do—then the various parts of the shapes are the result of using

the rule
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and its inverse in a specified way. Now look at the atoms in table 2. They take care of

any inconsistencies in the way the five-pointed star is described, so that the series is a

continuous process. And I can always do this somehow after I’m done calculating—

with topologies, Boolean algebras, lattices of different kinds, or comparable descriptive

devices. But more than the variability that’s brought in as a result of this, there are al-

ternative ways of going from the initial shape to the final shape that imply different

parts for shapes as I calculate. Just what these parts are isn’t a matter of convention, at

least not in the way Putnam has in mind. I can’t say what the parts are until I try my

rules. There’s real work to do to find out what’s what. I have to interact with shapes in

the same sort of way I interact with other things like letters or numerals when I read or

do arithmetic. I can probably contrive some method to reconcile any differences that

arise from calculating in this way or that afterward, if it’s useful. Yet there may be

no end of it. Differences—numerical discrepancies are only symptomatic—are bound

to arise as I go along, because shapes are ambiguous. And there’s no reason to think

that these differences aren’t real. It isn’t necessary to define objects all at once in a co-

herent way. It’s OK to go on calculating, so that objects (parts) are defined piecemeal

with the possibility of revision every time a rule is tried. Things change with lots of

surprises.

One way to check on experience is to require that parts be numerically distinct—

to ask the question how many and get the same answer with the same parts every time.

An accountant is trained for this, and a schoolteacher expects it when taking roll. My

local selectman is proud of it—‘‘I’m logical, I’m an accountant.’’ I know just what she

means. I count at the market to make certain that I have all of the items on my grocery

list. Counting is an everyday practice that’s useful in business and science. But perhaps

it isn’t that elucidating. Suppose I have a superstar with around fifteen points
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and that my schema is used, so that the dynamics (physics) of chevrons is known in

full. Counting works OK—intersections vary predictably. The content of lines is also

constant—their total length is conserved as rules apply. And it’s not hard to find a

dozen chevrons and a pair of triangles to form the superstar and take it apart—I simply

look to read them off one by one. This is even nonclassical science in Putnam’s sense.

Only there are so many different ways to see—billions, in fact—that no one need ever

agree about the chevrons and triangles to begin and end, or about the sequence of

events in between. Or maybe I can show what’s going on in another way. I have like

problems and lots more when I use the schema

x fi tðxÞ
and let x be a line

or a right triangle

and let t be a Euclidean transformation. See what you get as you replace lines

embedded in lines or triangles in planes. Any shape can be changed into any other.

(And notice that this doesn’t work for points. There’s no way to get more points than

the ones you have to start.) I’m not sure how to count now. Nothing is fixed. Counting

may not be as useful as I thought. It’s one way to understand things among countless

others. It may tell you a lot, but there’s always more to see.

Wittgenstein looks at shapes and how they add up when lines fuse. And James

muses about counting, and whether it distorts sensible experience.

The relation of numbers to experience is just like that of ‘‘kinds’’ in logic. So long as an experience

will keep its kind we can handle it by logic. So long as it will keep its number we can deal with it

by arithmetic. Sensibly, however, things are constantly changing their numbers, just as they are

changing their kinds. They are forever breaking apart and fusing. Compounds and their elements

are never numerically identical, for the elements are sensibly many and the compounds sensibly

one. Unless our arithmetic is to remain without application to life, we must somehow make

more numerical continuity than we spontaneously find. Accordingly Lavoisier discovers his

weight-units which remain the same in compounds and elements, though volume-units and

quality-units all have changed. A great discovery! And modern science outdoes it by denying that

compounds exist at all. There is no such thing as ‘‘water’’ for ‘‘science’’; that is only a handy name

for H2 and O when they have got into the position H-O-H, and then affect our senses in a novel

way. The modern theories of atoms, of heat, and of gases are, in fact, only intensely artificial

devices for gaining that constancy in the numbers of things which sensible experience will not

show. ‘‘Sensible things are not the things for me,’’ says Science, ‘‘because in their changes they

will not keep their numbers the same. Sensible qualities are not the qualities for me, because

they can with difficulty be numbered at all. These hypothetic atoms, however, are the things,
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these hypothetic masses and velocities are the qualities for me; they will stay numbered all the

time.’’

By such elaborate inventions, and at such a cost to the imagination, do men succeed in

making for themselves a world in which real things shall be coerced per fas aut nefas under arith-

metical law.

The cost to the imagination is twofold. First the effort to think up ‘‘elaborate

inventions’’—the devices that make calculating hard, and so important—can be a lot

of fun. There’s evident wit in Evans’s shape. But then the toll these inventions take on

my future experience—limiting its scope and content—is no fun at all. My initial in-

vestment shows negative returns. I can lose much more than I put in. My imagination

is free to work in any way I like when I calculate with shapes. Counting parts isn’t the

only way to check experience. There are many other things to see and do. There’s am-

biguity and all the novelty it brings.

When it comes to novelty, I try to take James as broadly as I possibly can.

There’s seeing new things—for example, visiting Los Angeles for the first time—and

equivalently, seeing things in different ways—going back (looking again) to find out

how the city has changed. Either way, the same question invokes novel experience.

What’s that? And of course, this leads directly to visual calculating, while the reciprocal

question—how many?—continues with calculating in the usual way. In fact, James

presents his own series of visual examples in Pragmatism: A New Name for Some Old

Ways of Thinking:

In many familiar objects everyone will recognize the human element. We conceive a given reality

in this way or in that, to suit our purpose, and the reality passively submits to the conception. . . .

You can take a chessboard as black squares on a white ground, or as white squares on a black

ground, and neither conception is a false one. You can treat [this] figure

as a star, as two big triangles crossing each other, as a hexagon with legs set up on its angles, as six

equal triangles hanging together by their tips, etc. All these treatments are true treatments—the

sensible that upon the paper resists no one of them. You can say of a line that it runs east, or you

can say that it runs west, and the line per se accepts both descriptions without rebelling at the

inconsistency.

Let’s try to define the options in the star once and for all. How would Evans do it? His

method is clear. I count twenty-four constituents—six long lines and their thirds—if

I’m going to look for triangles. Halves don’t work anymore. They were ad hoc from

the start. But will these same constituents do the job if I jiggle the two big triangles a

little to get another six small ones? What happens if I jiggle harder and harder? Or

maybe lines stay put. What about diamonds, trapezoids, and the pentagon in Wittgen-

stein’s addition? And what about the A’s and X’s—big ones and little ones? Only why
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should I try to limit my experience before I have it? There’s always something else to

see every time I use another rule—as long as I calculate by seeing.

James and other pragmatists got it right. At least I think so, whenever I calculate

with shapes. And today ‘‘neopragmatists’’ walk James’s line that runs east and west.

Richard Rorty’s ironist is a perfect example as he and she try to redescribe things to

make sense of them in a kind of literary criticism instead of philosophy. The goal isn’t

coherence but to get around argument—reasoning—‘‘by constantly shifting vocabula-

ries, thereby changing the subject.’’ Rorty’s ironist always has another verbal trick to

see things from a different angle. It’s not a question of truth but of ‘‘making things

new.’’ It’s embedding all over again. This is how Rorty puts it—

I have defined ‘‘dialectic’’ as the attempt to play off vocabularies against one another, rather than

merely to infer propositions from one another, and thus as the partial substitution of redescrip-

tion for inference. I used Hegel’s word because I think of Hegel’s Phenomenology both as the

beginning of the end of the Plato-Kant tradition and as a paradigm of the ironist’s ability to ex-

ploit the possibilities of massive redescription. Hegel’s so-called dialectical method is not an argu-

mentative procedure or a way of unifying subject and object, but simply a literary skill—skill at

producing surprising gestalt switches by making smooth, rapid transitions from one terminology

to another.

The ironist doesn’t calculate—Rorty explicitly says so—yet the ironist does ex-

actly what I do when I calculate with shapes. We both exploit a host of descriptions

in order to do more. It’s just like politics. There aren’t any ends—big goals like truth

or permanent parts—only the means to go on. I use my rules in a mechanical process,

while the ironist relies on literary skill to glide from one terminology to another in a

dialectic. But nothing stops me from changing descriptions as I calculate. I’ve been cal-

culating with shapes for the past thirty years, and this is simply politics as usual. Shape

grammars allow for as much irony as you want, and shape grammar—that is to say, the

term itself—is ironic. Grammar implies units and definite parts that aren’t defined for

shapes. Rules don’t mean words and syntax. Lionel March is good at saying what’s

involved.

Contrary to conventional wisdom, rationality does not flourish in the presence of objective cer-

tainty, but actually thrives around subjective volition. To be rational requires the willingness to

restructure the world on each contingent occasion, or in just two words, TO DESIGN.

And again for me, each contingent occasion is every time I try a rule. Going on means

always starting over. There’s a new analysis that’s independent of any given before.

Parts fuse to erase all prior distinctions, and the resulting shape divides according to

the rule I use now. It’s visual calculating—calculating by seeing. I started out with the

question

What makes reasoning visual?

and said I thought about it in terms of design. It appears that I’ve been dealing with

design all along.
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So how are calculating and reasoning, and visual calculating and visual reasoning

related? When I posed my question, I made two suggestions in the form of diagrams.

Only right now it’s probably a better bet to try a new diagram

that reverses the relationship between reasoning and visual calculating. I didn’t plan

for this switch, but visual calculating seems to hold more than ordinary reasoning

allows. Maybe this isn’t worth the bother of figuring out. Perhaps the only relation-

ships actually worth elaborating are these

that chart equivalencies between calculating by counting that asks how many—the

everyday kind of calculating we’re all used to—and calculating by seeing that asks

what’s that. This is in part II. Still, describing reasoning and calculating is a little like

looking at shapes. The relationships between them—both what there is and how it’s

connected—change as I try rules. I never promised more, and shapes and rules may

be all I can get. Saying what they do is an ideal way to go on talking in an open-ended,

free, and unprincipled way. James recommends this kind of conversation to teachers.

He might just as well have been talking about shapes and rules.

A familiar example of the paralyzing power of scruples is the inhibitive effect of conscientiousness

upon conversation. Nowhere does conversation seem to have flourished as brilliantly as in France

during the last century. But if we read old French memoirs, we see how many brakes of scrupulos-

ity which tie our tongues to-day were then removed. Where mendacity, treachery, obscenity, and

malignity find unhampered expression, talk can be brilliant indeed; but its flame waxes dim where

the mind is stitched all over with conscientious fear of violating the moral and social proprieties.

This is more than I said in the introduction about design and conversation. There

are no proprieties in design—nothing commands respect. When I calculate by seeing,

mendacity, treachery, obscenity, and malignity are unhampered, and in particular,

mendacity holds sway. Conscientiousness doesn’t work for shapes unless their parts

are already decided. Then scruples make a difference—they keep me from looking
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again. My eyes are stitched all over with the certainty that what’s been given before

doesn’t change. There’s simply nothing new to see. It’s just counting out. But then

there’s nothing new to design.

Background

Most of the material from William James is found in a pair of sections, ‘‘In Reasoning,

We Pick Out Essential Qualities’’ and its successor, in chapter 22—‘‘Reasoning’’—in

The Principles of Psychology.1 The quotation on genius is in chapter 19.2 It concludes

an account of how our conceptions of things alter by being used and how old fogyism

inhibits the assimilation of fresh experiences. ‘‘Old-fogyism, in short, is the inevitable

terminus to which life sweeps us on.’’ I like to think that visual calculating is a useful

antidote. The longish quotation on numbers and experience is in chapter 28.3 James

talks about concepts and perceptual experience in Some Problems of Philosophy.4 Kierke-

gaard’s saying is found in James’s Essays in Radical Empiricism, and is followed immedi-

ately with this observation.

Understanding backwards is, it must be confessed, a very frequent weakness of philosophers, both

of the rationalistic and of the ordinary empiricist type. Radical empiricism alone insists on under-

standing forwards also, and refuses to substitute static concepts of understanding for transitions in

our moving life.5

Fixed descriptions don’t work in life or in calculating with shapes. Static concepts and

the structure they imply are no substitute for rules and embedding. James’s descrip-

tions of the six-pointed star are in Pragmatism.6 But also see his discussion of Lotze’s

descriptions of the star in chapter 11—‘‘Attention’’—in The Principles of Psychology.

James’s Talks to Teachers is worth reading from cover to cover, given the misplaced

emphasis in schools today on basics, standards, and tests. It also contains some nice

material on Francis Galton—I mentioned him in the introduction—and his seminal

work on mental imagery and visual imagination. (Again, there are antecedent sections

in The Principles of Psychology.) I have recorded James’s delightful remarks on old fogy-

ism and conversation.7

R. Narasimhan describes Evans’s grammar and how it applies to his shape in the

first chapter, ‘‘Picture Languages,’’ in the book Picture Language Machines.

Recently, Evans has discussed a ‘‘grammar-controlled pattern analyzer’’ which he has imple-

mented in LISP. ‘‘The inputs required by the analysis program consist of: (1) a grammar, and (2)

an input pattern in the form of a list of lowest level constituents, with any desired information

attached for later use in the analysis process. The output will be a list of all of the objects defined

by the grammar which can be built out of the list of constituents forming the input pattern.’’

The following example taken from Evans’ paper should give an idea of how such an ana-

lyzer would function: ‘‘Supposing we have a straight-line drawing as in Fig. 1, and wish to find

all of the triangles (16, in the case shown). Suppose the input is to be the list of vertices (9, in

this case) with, attached to each, a list of the others to which it is connected by a line of the draw-

ing. The grammar rule we need to define a triangle might look like:
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(TRI(XYZ) ((PT X) (PT Y) (PT Z) (ELS XY) (ELS XZ) (ELS YZ) (NONCOLL XYZ)) NIL)

which says a triangle consists of three points XYZ such that the predicate ‘exists a line seg-

ment between’ (ELS) holds, pairwise, between them, and that the 3 points are noncollinear

(NONCOLL). When this grammar was supplied along with the input, the program found the 16

triangles.’’8

But where does the input pattern come from without prior analysis? How is this done

today? To find out, I asked one of the stars in my shape grammar class how he would

represent Evans’s shape, so that it contained everything he could see. ‘‘I’d drag a point

to make a square, insert the diagonals, and then rotate [and trim] them to make the

horizontal and vertical.’’ It works, but triangles may or may not be defined, depending

on how squares are handled. If there are triangles, then there are four. No one ques-

tions the inevitability of this kind of structure when you calculate—well, almost no

one. I do a seminar in design and computation. One of the participants knows exactly

what it’s about—‘‘We only talk about it here.’’ Her peers aren’t so sure. They say, ‘‘It’s

theory—it can’t be used to make things. What can you do without structure?’’ For a

start, you might try and see. Picture languages, etc., encourage Evans’s kind of thought,

and have implications elsewhere. Christopher Alexander’s ‘‘pattern language’’ is worth

looking at, especially with its intended applications in design.9

I start with a quotation from Ivan Sutherland that’s remarkably forthright about

the importance of structure in computer drawing.10 I like it a lot because it describes

the crucial difference between pencil and paper—structureless stuff—and computer

drawings so accurately. Herbert Simon’s The Sciences of the Artificial is a classic. Every

time I pick it up, I find something more of immediate interest in design. The quotes I

use are from the second edition that includes the new chapter ‘‘Social Planning’’ in

which Simon links painting and calculating.11 John McCarthy discusses the mission-

aries and cannibals puzzle in a short paper in Artificial Intelligence.12 The circumscrip-

tive inference in McCarthy’s example 1 shows how objects are limited from the

start.13 The material from Marvin Minsky is from two places. His thoughts on creativity

and the Body-Support concept are found in The Society of Mind.14 And the rest on para-

digms, heuristic search, and structure is in his chapter in Patrick Winston’s book The

Psychology of Computer Vision.15

Terry Winograd and Fernando Flores show the limits of calculating with fixed

representations.16 But their conclusions seem much too pessimistic once embedding

in its robust sense is taken into account. I quote from Hans-Georg Gadamer’s Truth

and Method,17 Robert Sokolowski’s Husserlian Meditations18—the few lines on spatial

profiles—Gian-Carlo Rota’s Indiscrete Thoughts,19 and, finally, Maurice Merleau-Ponty’s

Phenomenology of Perception20 to show that you may really be calculating even when
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you think you’re not. The interesting thing is to figure out what kind of calculating it

is. That’s what I’ve been trying to do with shapes and rules.

There’s no escaping a short list of miscellaneous stuff. Ralph Waldo Emerson

does little minds in ‘‘Self-Reliance,’’21 and Jacques Barzun describes the rubber-band

effect in A Stroll with William James.22 Nelson Goodman’s definition of relative discrete-

ness in Languages of Art is neither consistent nor elastic.23

John Dewey dismisses logical analysis and morphological method in teaching in

How We Think.24 But Barzun finds Dewey’s emphasis on the scientific method, even

with his nascent logic of inquiry, a prime example of ‘‘preposterism.’’ It puts recapitu-

lation ahead of thinking and structure before calculating.

Dewey’s plan is thus another piece of preposterism. When a good mind has done its work, idio-

syncratically, it will no doubt submit the results to others in Dewey form. But this is no warrant

for believing or requiring that the end[s] serve as a prescription of the means.25

‘‘That expectation is pre-post-erous, the cart before the horse.’’ Instead Barzun looks to

James.

James . . . understands the child’s mind (and the adult’s, for that matter) as quite other. It is not an

engine [computer] chugging away in regular five-stroke motion [there are five steps in Dewey’s sci-

entific method]; it is an artist mind; it works by jumps of association and memory, by yielding to

esthetic lures and indulging private tastes—all in irregular beats of attention, in apparent wander-

ings out of which some deep sense of rationality rises to consciousness. There is no formula, for

the trained or the untrained.26

There are no set answers when it comes to education. Training may help to get

started—there’s plenty of it at home and in school—but soon enough reasoning will

follow artistic lines. This is what happens to figures when Ludwig Wittgenstein calcu-

lates. And I’ve tried to show that visual calculating encourages the creative wanderings

of the artist mind. The artist mind is free to see and do in the unstructured flow of ex-

perience, to engage it directly without deciding beforehand what surprises it holds.

That’s why there are shapes and rules. And it’s why embedding makes a real difference.

Wittgenstein adds shapes, so that lines fuse, and worries about what this entails

for mathematics in Remarks on the Foundations of Mathematics.27 I said earlier that going

from combinatorics to phenomenology was something like the shift from identity to

embedding, so that i exceeds 0. It strikes me now that this may be the same for Witt-

genstein when he moves on from the Tractatus to the Investigations—he’s going from

points to lines. The value of the dimension i may explain some aspects of the split.

It certainly helps to explain why calculating with symbols and calculating with shapes

are different. William F. Hanks suggests that structure is an outcome of action, and that

teaching and learning can occur in situations where master and apprentice act accord-

ing to their separate representations of what’s going on in his foreword to Jean Lave

and Etienne Wenger’s book Situated Learning.28 This sounds like calculating according

to rules that apply to shapes in terms of embedding. More accurately, though, repre-

sentations (descriptions) as stand-ins for shapes aren’t necessary to calculate.
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The first quotation from Hilary Putnam is in lecture 2 in The Many Faces of

Realism, and the other two are found in lecture 1.29 Richard Rorty limns the ironist’s

literary skill in Contingency, Irony, and Solidarity.30

Lionel March and I enjoy talking about design at the Moustache Cafe in West Los

Angeles, over a long lunch and a good bottle of wine. Neither of us is keen on scruples

or conscientiousness—there are no proprieties when it comes to conversation and de-

sign. I have transcribed one of his wonderfully Kierkegaardian insights. Rote results

blunt creative experience, too—they’re the stuff of scruples and appeal only to the con-

scientious. It would be nice to have lunch again to see where all of this goes.
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II SEEING HOW IT WORKS

An interesting question for a theory of semantic information is whether there is any equivalent

for the engineer’s concept of noise. For example, if a statement can have more than one interpre-

tation and if one meaning is understood by the hearer and another is intended by the speaker,

then there is a kind of semantic noise in the communication even though the physical signals

might have been transmitted perfectly.

—George A. Miller

Starting Over

In part I, I gave a visual account of visual calculating. Most of what I said could be

checked with your eyes. Still, calculating is traditionally mathematics, and there are

abundant reasons to make visual calculating look more that way. In particular, I can

add the details to the scheme I outlined in the introduction that relates visual and

verbal expression. And the mathematics repays the effort. It shows exactly how visual

calculating includes symbol manipulation, and how symbolic processes by themselves

are enough to calculate visually. What’s more, the mathematics provides a range of

technical devices that can be incorporated in rules, and that are very useful in design.

In lots of ways, this is the heart of this book. Applying rules to design is what I wanted

to do from the beginning, and now I’m going to develop some of the formal machin-

ery that makes this practicable—always with seeing first and foremost. Everything I do

meets the same test—is it confirmed by my eyes? I don’t want to ignore anything

that’s visual. If seeing finally says no, then the mathematics is wrong. For example, tak-

ing lines in shapes as independent entities—treating them as members of sets—doesn’t

pass visual muster. You should use this test, too. Seeing always comes first. If some-

thing looks different than the mathematics implies, then there’s something amiss.

Trust your eyes. Only be sure that it’s a matter of seeing, and not merely a consequence

of remembering what’s there before you look. It’s easy to make the mistake that what

something means now—what parts it has—determines what it looks like later. This is a

semantic fallacy. Memory isn’t necessary when you can always start over.

I once talked to a famous architect / computer scientist who insisted that the

shape



was three squares. He said this was its semantics—everyone agreed—and he went on to

say what this implied. When you erased one square you got two

The squares were obvious, and the arithmetic was the standard stuff everyone learned

in school. The tests I proposed to show how the shape worked without a given seman-

tics went too far. You could do them, only they were meaningless. They weren’t any-

thing anyone of good will and sound mind would try. It was a question of morality

and rationality. This was the simple truth: the shape had its semantics, and you

handled the former—the shape—in terms of the latter—its underlying structure. The

two were tied. But erasing didn’t work no matter how I went about it

Experiment—use pencil and paper—try it yourself and see what you get. And the

identity

x fi x

applied to more than squares when x was a rectangle

and to other parts, as well, when x was other things—maybe a long square bracket

or shorter ones of the same kind

At least the identity seemed to work in this way when I used tracing paper the way

designers do to find what’s there. See for yourself—the shape isn’t a set of parts

whatever they are. And drawing shows why. There’s no semantics—descriptions don’t

count—and there’s no syntax—words (units) fail. The usual distinctions blur and dis-
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appear. In fact, syntax and semantics are pretty much alike without words—neither is

usefully engaged when shapes are involved. To do shapes the way I want to, you have

to open your eyes to everything that seeing implies. It’s the ambiguity that counts. The

shape

is three squares, true enough—its semantics gets it right—and much more of equal

value, too.

My protagonist isn’t the only one to prefer the security of shared (definite) mean-

ing to the open-ended uncertainty of more. In the quotation that opens this part,

George A. Miller—an early cognitive scientist—tries the nifty formula

ambiguity ¼ noise

And Miller and my protagonist may see eye to eye. The message seems clear in the din

of agreement. They want to communicate with the received semantics in the way

they’re supposed to—what’s meant is what’s understood. There’s no reason for ambi-

guity. Still, it’s easy to misunderstand if there’s too much noise. This is a problem in

the shape

that’s two squares

or four triangles

But twin variations seem perfectly manageable—I know how to count the variations in

shapes like this that contain nested squares and concealed triangles. And this may be a

way to measure semantic information with respect to a given vocabulary. What’s more,

the variations are fun to play with and something to explore. Only there’s no end of

K’s. There are uppercase ones
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and lowercase ones

and their rotations and reflections. These are fixed in the symmetry group of the shape.

All of its parts can be flipped and turned in eight ways

And I can go on and divide the shape in myriad myriads of other ways. There’s always

something new to see. Nothing stops me from changing my mind and doing whatever

seems useful. I can always start over and try whatever comes up. These additional parts

scarcely begin to show how easy it is to switch from division to division without

rhyme or reason. No semantics works all of the time. (Myriad myriads is a truly

fantastic number that defies actual counting. It’s one of Coleridge’s many poetic

inventions—changing a noun into an adjective—that look easy yet are hard to do.

And it’s a good example of the uncanny knack of artists and madmen—and some-

times, children who don’t know any better—to see triangles and K’s after they draw

squares, and not to be bothered by it. I do the same trick every time I apply a rule to a
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shape when I calculate. There’s no magic, just mechanics, and I can show exactly how

this works. But perhaps I’m looking too far ahead. I still have Miller’s problem.)

Ambiguity causes misunderstanding, confusion, incoherence, and scandal. Ad-

versaries rarely settle their disputes before they define their terms. And scientific prog-

ress depends on accurate and coherent definitions. But look at this again. It’s futile

to try to remove ambiguity completely with necessary facts, authoritative standards,

or common sense. Ambiguity isn’t something to remove. Ambiguity is something to

use. The novelty it brings makes creative design possible. The opportunities go on and

on. There isn’t any noise, only the steady hum of invention. The irony is hard to miss.

No doubt, the formula

ambiguity ¼ noise

is right, but this may not be what Miller has in mind. Ambiguity works in another way

once a noise is a hum. Shapes and sounds are the same—they change freely.

Ambiguity lets me invent when I use rules to calculate with shapes. This is crucial

in design. I don’t want to postpone calculating until I’ve figured out what parts there

are and what primitives to use. This is what happens, for example, in heuristic search.

But design isn’t search. It’s far more than sifting through combinations of predeter-

mined parts that are the set results of prior analysis, or evaluating schemas in which

divisions are fixed in advance. I don’t have to know what shapes are, or to describe

them with definite units, for them to work for me as I design. Permanent units just

get in the way. They keep me from seeing everything that’s there because I have to

see them. The semantics is fixed soon enough, but erratically. It’s how I calculate that

shows me what parts there are—only not all at once. Parts are evanescent. They alter as

rules are tried. I have to go on to see how it all comes out. And isn’t this the real reason

for drawing—going on to see what happens? Representation isn’t the problem. Seeing

what’s possible is. Ambiguity is a limitless source of novelty. Shapes are always new.

Both the intuitive idea and the mathematical idea that make this practicable are

the same—

what’s embedded is there

—but not always, only when I apply a rule. This is a finite, Aristotelian perspective

that’s well suited to visual calculating. I said this in part I, and there’s more that bears

repeating. First, what I add to a shape needn’t be there when I look at what I’ve done—

parts fuse. And then, I’m free to see as I choose. I can divide any shape wherever I want

without knowing anything about its past. Parts are potential and not a matter of fact.

They’re only there as calculating goes on, and they’re different every time I try a rule.

The parts I use now are the parts that count. They change again and again, and aren’t

given in advance. Otherwise, seeing is pointless—I can adopt the received semantics

and recite the expected results. But embedding always allows for more seeing and do-

ing, and the kind of fusion and division in drawing and looking at shapes. This is as

far as visual expression can go—there’s simply no way to see and do any more. And

rules make all of it happen. I’m going to show you how.
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Back to Basics—Elements and Embedding

At the very least, shapes are made up of basic elements of a single kind—either points,

lines, planes, or solids. Here are some examples of the first three

and these are drawings—just shapes containing lines and planes—of solids

Basic elements are readily described with the linear relationships of coordinate ge-

ometry. It’s easy to extend this repertoire to include other curves and exotic surfaces,

especially when these are also described analytically—for example, when lines are rep-

resented as conics to include segments of circles, ellipses, parabolas, and hyperbolas.

But my results are pretty much the same whether or not I allow further kinds of basic

elements. I’ll stick with the ones that show what I need to. A little later, I’ll say why

straight lines alone are more than enough to see how shapes work—both as mathe-

matics and as the stuff of design. It has nothing to do with approximation—using a

lot of tiny segments to make curves. The real leap is to get over points and what they

imply for shapes and rules.

Some of the key properties of basic elements are summarized in table 3. Points

are undivided units. They’re simple and yield nothing to analysis. But in contrast,

I can cut lines, planes, and solids into discrete pieces—line segments, triangles, and

tetrahedrons—so that any two of these pieces are connected in a finite sequence in

which successive ones have a common boundary element—a point, a line (edge),

or a plane (face). The construction is always possible. Still, it seems worth doing

only for planes and solids that aren’t triangles or tetrahedrons themselves. This is just

Table 3

Properties of Basic Elements

Basic element Dimension Boundary Content Embedding

point 0 none none identity

line 1 two points length partial order

plane 2 three or more lines area partial order

solid 3 four or more planes volume partial order
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geometry—points are congruent and lines are similar, but planes and solids need be

neither. It’s easy to divide a hexagonal plane

in three different ways

But the bow tie (quadrilateral?)

isn’t a basic element. No matter what divisions I try to make, there are going to be tri-

angles that aren’t connected in the right way—they don’t share an edge, or begin and

end a sequence of triangles in which successive ones do.

The way I construct lines, planes, and solids from segments, triangles, and tet-

rahedrons implies that they have finite, nonzero content, that is to say, extension

measured by length, area, or volume. Yet reciprocal relationships aren’t so easy. In

particular, finite content needn’t imply finite boundaries. Lines are no problem—each

is bounded by a pair of distinct points—but what about planes and solids? Does finite

content guarantee a finite number of basic elements in every boundary, or that the

total content of the basic elements in every boundary is finite? The answer is no both

times, and it’s worth seeing why to emphasize that shapes are finite through and

through.

Begin with the four lines

in the boundary of a square
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Divide each line into segments, so that its first half, third fourth, seventh eighth, etc.,

are distinguished

Then replace each distinguished segment with three others

that have total length twice the length of the segment. If this process is carried out

sequentially—replacing four segments of equal length in each step—then the planes

in this series

are defined. Each successive plane has the same area as the beginning square. Its

boundary increases by twelve lines, and approaches twice the length of the boundary

of the square. And, in fact, each successive plane is itself a basic element. But in the

limit, there’s finite area and a boundary of finite length containing infinitely many

lines. What’s more, a boundary of infinite length is defined if segments are replaced

by others with constant amplitude—as shown here

for adjacent segments. When segments in the boundary of the square are elaborated as

before, I get the planes in this series
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Phenomena of this kind are found in fractals. Their approximations—as in my

two series for squares—produce some nice visual effects. But the phenomena them-

selves have nothing to do with basic elements or the shapes they make. Basic elements

aren’t defined in the limit, but rather here and now. Everything about them is finite,

except that I can divide lines, planes, and solids anywhere I want. Still, this is the po-

tential infinite of Aristotle and not the actual infinite of sets where members are given

all at once. I can see just a finite number of divisions at any time—and these may come

and go as rules are used to calculate. Basic elements are the stuff of shapes and practical

design before they’re material for mathematics. Drawing a line in a single stroke with a

pencil on a sheet of paper and tracing segments one by one are the twin examples I

keep in mind.

Embedding is the main relation I use to describe basic elements, and by implica-

tion the shapes they combine to make. The only point that’s embedded in a point is

the point itself. Embedding is identity. But, more generally, every basic element of

dimension greater than zero has another basic element of the same kind embedded in

it—lines are embedded in lines

—schematically, like this

—and planes in planes

etc. Additionally, I can always embed these basic elements in other ones that are bigger.

Content is finite for separate elements, but there are always other elements with more.

The embedding relation is a partial order. Most of the time, I take standard math-

ematical devices like this for granted, and use them without definition. But to start, it

may be worth rehearsing the kind of ideas involved. A partial order satisfies three con-

ditions. In particular, embedding is (1) reflexive, (2) antisymmetric, and (3) transitive.

This isn’t much help, so let’s try it in everyday language. Then the conditions go like

this—(1) every basic element is embedded in itself, (2) two basic elements, each

embedded in the other, are identical, and (3) if three basic elements are such that

each is embedded in the next, then the first basic element is embedded in the last.

Drawing this doesn’t show much. It’s a problem with most abstractions that becomes

more acute as I go on. That’s what I like about shapes and their parts—they’re always

there to see. Even so, transitivity can look like this for lines

at least schematically.
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There are some easy ways to play around with embedding to distinguish basic

elements by kind—pretty much as I did geometrically with congruence and similarity,

and then with content and boundaries. Different relations are defined when I look at

all of the basic elements embedded in a given one. This isn’t really Aristotelian where

what I use is what there is, but the abstraction—agreeing that everything is actually

there all at once—provides some structure. Think of it as one way of describing basic

elements among many others, and remember that descriptions don’t count when I

calculate.

It’s no big surprise that an equivalence relation is defined for a point—there’s

only one

Identity is identity. But, for a line

it’s more interesting. A semilattice is defined with respect to joins—any two lines

embedded in the line have a least upper bound

that’s given by their endpoints (boundary elements). The least upper bound is the

longest line of the four I can define with these points, and the shortest line that has

both lines embedded in it. And, for a plane or a solid, there’s only a partial order. There

are plenty of upper bounds—the plane or solid itself always works—and if there are

smaller upper bounds, then there are indefinitely many others. But least upper bounds

aren’t always defined, as, for example, in these three cases for squares

There are least upper bounds only when elements overlap or their boundaries do. Once

more for squares, it looks like this

The same idea comes up later on for lines in addition to planes and solids when I de-

fine maximal elements in shapes, but in reverse. It’s also worth noting that a lattice
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isn’t defined for lines because meets aren’t always defined. In fact, it’s the same for

lines, planes, and solids—meets are determined only if these elements overlap. There’s

no other way for lines, planes, and solids to share an element and its content—shared

boundaries alone won’t do. For example, meets don’t exist for three lines embedded in

a fourth in this way

I can go on to consider embedding—again in a non-Aristotelian way—in terms

of its properties on all basic elements of a given kind instead of just those basic ele-

ments embedded in a given one. This sort of generalization is especially useful when I

define shapes and their algebras. But, for now, look at what happens with lines. I still

have least upper bounds for lines that are collinear. However, joins in this case may or

may not be defined for infinite sets of lines. The lines embedded in a given line have a

least upper bound—the line itself. And the lines in this geometric series

have a least upper bound

However, the lines in this series of equal segments

don’t, because there’s no longest line. Content—now it’s length—can increase

without limit. Collinearity, however, is just a special case. Joins for lines that aren’t

collinear

aren’t defined.

Even though I can get by with embedding alone, other relations on basic ele-

ments are helpful. In fact, I’ve used two of them a few times already—discrete and

overlap.

Two basic elements overlap if there’s a common basic element embedded in both.

Otherwise, they’re discrete.

Two points overlap only when they’re the same. But, for lines and planes, there are

other possibilities. These lines overlap

and so do these pairs of squares

169 Back to Basics—Elements and Embedding



while these three lines are discrete

and these five squares are, too

Points never touch when they’re discrete, but touching is allowed for discrete lines,

planes, and solids either at points, lines, or planes. It’s worth repeating over and over

again—it was evident for meets earlier—that basic elements of different kinds are

always separate. In particular, no basic element has content with respect to any basic

element of higher dimension. This is why Euler was sure that points don’t add up to

make lines. Points aren’t lines, or planes or solids. And this extends to lines and planes.

Content is never zero.

It’s easy to see that both of these relations—overlap and discrete—include

embedding.

One basic element is embedded in another if every basic element that overlaps the

first also overlaps the second, and conversely, if every basic element discrete from the

second is discrete from the first.

For overlapping lines, it looks like this

and for discrete lines, like this

Whatever relation I use—embedding, overlap, or discrete—it comes to exactly the

same thing. Any one implies the other two. But what about touching? I’ve used it

without a definition. Points touch when they’re identical, and more generally, other

basic elements do when they overlap. Only lines, planes, and solids can also touch if

they’re discrete. Before I can say how this works, I need to say a little something about

boundaries.
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Basic elements that aren’t points—either lines, planes, or solids—have bounda-

ries. The boundary of any such basic element contains a finite number of basic ele-

ments, all of dimension one less than the original basic element itself. The boundary

of every line

is just two points

while the boundary of a plane

contains three or more lines

More precisely, I should say maximal lines. Otherwise, there’s nothing definite to

count. Maximal elements are used to define shapes uniquely. And in fact, the bound-

ary of any basic element that has a boundary is a shape. But before I deal with the

details of this, let’s try touching.

Points touch whenever they’re identical. And basic elements of the same kind—

two lines, planes, or solids—touch if there are basic elements embedded in each

with boundary elements that touch. This is evident for basic elements that overlap.

Any shared element has a boundary element that does the trick. For a pair of lines, I

have

and for two squares

But the recursion is more general than this. It’s clear in a few easy examples. When

lines touch
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there are endpoints that do

and when planes touch—for example, the equal squares

—there are lines with endpoints that do
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I can go on to classify different ways of touching. For example, two basic ele-

ments touch externally when they’re both embedded in a common element and touch

without overlapping, as here for discrete lines

and in these twin cases for pairs of triangles

Of course, twins aren’t always identical. In the first case, another plane is defined—

boundary elements overlap—as this division into four triangles confirms

while in the second case, the bow tie still contains separate basic elements. And like-

wise, one basic element is tangentially embedded in another if the first is embedded

in the second and there’s a basic element that touches both externally. For lines, it’s

and for planes, it’s

(But what happens if two basic elements are said to touch externally without both

being embedded in a third? With three lines, I could have the first embedded in the

second and cut by the third—schematically, like this

—so that embedding and tangential embedding are the same.) Moreover, I can define

embedding, overlap, and discrete in terms of touching. One basic element is embedded

in another whenever every basic element that touches the first also touches the sec-

ond. I used the same idea to get embedding from overlap.
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This has some history—touching externally and being embedded tangentially

are from Alfred North Whitehead. He uses extensive connection to describe physical

experience in Process and Reality. Intuitively, this relationship is having at least a point

in common. It shows how continuous regions—they’re the earlier events of An Enquiry

Concerning the Principles of Natural Knowledge—interact, and touching for planes, but

also for basic elements of other kinds, is alike in many ways. In fact, the discrepancies

appear to be mostly irrelevant bits of formality. From what I can tell, Whitehead’s

regions and my basic elements are about the same. Notably, every region includes

others—there are no units. And no region includes all of the others—there’s no longest

line, etc.—but any two regions are connected by a third. Disconnected regions don’t

combine to make a region, and it seems that connected regions may or may not do

so. Whitehead gives the following evidentiary series of six diagrams à la Venn

in which regions A and B are connected. In diagrams i, ii, and iii, there’s inclusion

(embedding), in i through iv, overlap, in v and vi, external connection, and in ii and

iii, tangential inclusion. Presumably, the regions in diagram vi don’t form a single con-

tinuous region, while the ones in i through v do. And surely, none of this is a surprise.

Physical experience and visual experience coincide in many ways—surely, the latter is

embedded in the former, and perhaps vice versa to establish identity.

The coincidence between basic elements and Whitehead’s regions is a nice diver-

sion. And there are other kinds of coincidence that are easy to see, too. Let a basic ele-

ment of dimension i coincide with a basic element of dimension iþ 1 if the first one is

also a boundary element of a basic element embedded in the second one. Then points

are coincident with lines
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and lines are coincident with planes

But this definition may be too narrow. Lines that extend past the boundaries of

planes

aren’t entirely coincident with them, even though they contain lines that are. Only

how about cases like this

where a line isn’t coincident with a plane but can be divided into segments, so that

each segment is coincident with the plane? (I can also say this for any basic element

in terms of embedding. If I stick with lines, it goes like this: every line embedded

in the line has a line embedded in it that’s coincident with the plane.) Moreover, it

would be useful for every basic element to be coincident with itself, and for the first

term in a series of basic elements, each term coincident with the next, to be coinci-

dent with the last term. Once transitivity—that’s the third amendment—is in place,

points are also coincident with planes in various ways, either inside, on an edge, or at

a corner

And with the final two amendments, I get a partial order. What’s more, coincidence

lets me define touching in another way. Two basic elements touch if there’s a single

basic element coincident with both. There’s more here than in my initial definition,

since basic elements aren’t distinguished by kind—lines and planes can touch. This

line touches three squares, each in a different way
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And notice, too, basic elements and boundary elements touch, as here

for a plane, a line (edge), and an endpoint.

Embedding can be used to define many more things. For example, when do basic

elements intersect, and when do they abut? There are properties like collinearity,

coplanarity, etc. And there’s inside and outside, and convexity. Defining things in

this way to see how far you can go is a lot of fun, but it’s high time for shapes.

Counting Points and Seeing Parts

Shapes are formed when basic elements of a given kind are combined, and their prop-

erties follow once the embedding relation is extended to define their parts.

There are noticeable differences between shapes containing points and shapes

made up of lines, planes, or solids. First, shapes containing points can be made in

just one way if the order in which points are located doesn’t matter, and in finitely

many ways even if it does. Distinct shapes are always defined if different points are

combined. In contrast, there are indefinitely many ways to make shapes of other

kinds. Certainly, distinct shapes contain different basic elements, but different combi-

nations of lines, planes, or solids needn’t define distinct shapes when these elements

fuse.

The shape

can be made with eight lines
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as a pair of squares with four sides apiece, with twelve lines

as four triangles with three sides apiece, or with sixteen lines—eight lines plus twelve

lines with four lines in common—

as two squares and four triangles. But there’s something very odd about how all of this

works, too. If the sixteen lines are independent in combination like units that don’t

fuse or divide—if they’re like points or behave like the members of a set—then the out-

side square

is visually intact when the squares or the triangles are erased, even though the en-

tire shape should disappear. If it’s squares that go, then the outside square has eight

lines

and if it’s the triangles, then the outside square has four lines

And that’s not all. The shape
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looks exactly the same whether or not the outside square as four lines is there, either as

sixteen lines

or twelve

There are just too many lines. Yet they make less than I see. I can find only four upper-

case K’s

but each in five ways

with lines either from squares or triangles or both. Moreover, I can’t find any lower-

case k’s at all. Lines don’t work the way units do. And the same goes for planes and

solids. Points are units, and they’re the only basic elements that are. The shapes they

make are separated from shapes of other kinds—those with lines, etc.—in some telling

ways.

Of course, shapes are ambiguous with points and without—with lines, etc. They

can be seen in different ways depending on the parts I actually find, or, as I show

below, on how I apply rules to calculate. But the potential material for seeing isn’t the

same for shapes with points and for shapes made with other basic elements. Points can
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be grouped to form only a finite number of parts, while shapes of other kinds can be

divided into any number of parts in any number of ways. This shape

with three points has eight possible parts

—one empty part and substantively, seven nonempty ones containing one or more of

the points used to make the shape. I can show all the different ways I’m able to see the

shape—at least as far as parts go—and count them. But the shape

has indefinitely many parts that needn’t combine any of the lines originally used to

make it. How the shape is made now and how it’s divided into parts later are indepen-

dent. What I find in the shape may change freely at any time. I can always see some-

thing new that I haven’t seen before. There’s no end to ambiguity and the novelty it

brings when basic elements aren’t points.

The contrast between points and basic elements of other kinds—lines, planes,

and solids—implies alternative ways of calculating. In both, rules are applied to change

one thing into another. There’s recursion. But the properties of these things, and what

they mean for rules, make a big difference. The first way of calculating is standard and

uncontroversial, yet no less speculative for that. The idea simply put is this—

Calculating is counting.

Points make counting possible. They provide the units to measure the size or complex-

ity of shapes—the number of points they contain—and the ultimate constituents of

meaning. The second way of calculating comes from drawing with lines and looking

at shapes. The main idea is this—

Calculating is seeing.

Now parts of shapes are artifacts of what I do as I calculate—they aren’t given before-

hand. There are neither predefined units of measurement nor final constituents of
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meaning. Before I calculate, all shapes are the same—each is a single, unitary thing, a

simple it. And after I start, units change freely as I go on. They’re different every time I

apply a rule.

This contrast can be traced to embedding. For points, it’s identity, so that each

contains only itself. This is what units require, and it makes counting possible. But for

all of the other basic elements embedding doesn’t end. There are indefinitely many of

the same kind embedded in each one—lines in lines, planes in planes, and solids in

solids. This is the crucial difference between points and lines, etc. It explains the prop-

erties of the algebras I’m going to define for shapes in which basic elements fuse and

divide. And it’s how rules deal with ambiguity as calculating goes on, so that seeing

never stops.

Yet the contrast isn’t categorical. I have reciprocal models of calculating, but each

includes the other in its own way. My algebras of shapes begin with the counting

model. It’s a special case of seeing when embedding and identity coincide. And I can

deal with the seeing model via counting—and approximate it in computer implemen-

tations. These are telling equivalencies that show how complex things containing

units are related to shapes without definite parts.

Whether or not there are units is the question used to distinguish verbal and

visual expression—Susanne Langer’s discursive and presentational forms of symbolism

I mentioned in the introduction. It goes like this—

verbal expression (discursive forms) : units, symbols, or points

< visual expression (presentational forms) : lines, planes, or solids

Verbal and visual expression aren’t incompatible, though, as these relationships are

sometimes thought to imply. Shapes with points and shapes made up of lines,

planes, or solids aren’t incommensurable. People calculate all the time. And art and

design whenever they’re visual are as much a matter of calculating as counting. This

is what algebras of shapes and calculating in them show. The claim is figuratively

embedded if not literally rooted in the following details.

Shapes in Algebras and Algebras in Rows

Three things go together to define algebras of shapes. First, there are the shapes them-

selves that are made up of basic elements. Second, there’s the part relation for shapes

that includes the Boolean operations. And third, there are the Euclidean transfor-

mations. The algebras are enumerated up to three dimensions—of course, there are

more—in this series
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The series is presented as an array to organize the algebras with respect to two nu-

merical indices i and j. In an algebra Ui j, the left index i determines the dimension of

the basic elements, and the right index j is the dimension in which those basic ele-

ments are combined in shapes and in which the transformations are defined. This is

easy to illustrate with points and lines. For i ¼ 0, there are shapes like these

when j ¼ 0, j ¼ 1, and j ¼ 2. And for i ¼ 1, shapes are like this

when j ¼ 1 and j ¼ 2. Evidently, i is greater than or equal to zero, and j is greater than

or equal to i. Shapes can be defined and manipulated in any dimension at least as big

as the dimension of the basic elements that are used to make them.

Every shape in an algebra Ui j is a finite set of basic elements. Only this isn’t

completely straightforward. When basic elements aren’t points—if they’re lines,

planes, or solids—distinct sets needn’t define distinct shapes. The easy way around

this problem—it’s the way ordinals are used to define cardinals as elements in equiva-

lence classes—is to require that the sets given to define shapes have special properties

to work the right way. In particular, I’ll insist that their elements be maximal with

respect to one another. Whenever two basic elements in a set are embedded in a com-

mon element—the common element is always outside the set—they’re discrete and

their boundary elements are, too. Distinct points are maximal

and so are the four lines
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and the four squares (planes)

Maximal elements are discrete, but discrete elements may not be maximal, as these

squares show

Boundary elements can’t overlap.

(The equivalence relation I have in mind for sets of basic elements is this. Let the

set S be included in the set T when every basic element embedded in a basic element

in S has a basic element embedded in it that’s also embedded in a basic element in T.

Then the sets S and T are equivalent if and only if each is included in the other. Inclu-

sion is the same as the part relation below, without maximal elements. That accounts

for all of the complication. The smallest set in the equivalence class determined by S

contains only maximal elements. The set of seven lines

is equivalent to the set of ten lines

And the four lines in the set

are maximal. In all three cases, the same square
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is defined.)

I’ve described maximal elements in terms of embedding and boundaries because

it’s a cinch. But really, embedding is enough. The intuitive idea is this—basic elements

of the same kind are maximal with respect to one another when they’re separated

by gaps. To be exact, every basic element that overlaps any two in a shape has a basic

element embedded in it that overlaps neither. It’s in the gap. This is clear for the lines

Any line that overlaps both has the line

embedded in it that closes the gap between them. In fact, any line embedded in this

line overlaps neither of my original lines. But notice that maximal elements can also

touch. First, when they’re not embedded in a common element, as for these three

lines

but then, even if they are embedded in a common element, as for these squares

when boundary elements are discrete. Lines form boundaries of planes, while points

form boundaries of lines.

Maximal elements stand the customary atomic (analytic) view of things on its

head. Every shape is defined crudely with discrete elements that are numerically dis-

tinct, but with no implied granularity or structure. The list of maximal elements con-

tains the smallest number of biggest things that combine to form the shape, instead of

the biggest number of smallest things that do. Of course, the atomic view is no more

than an approximation for shapes without points. Then every basic element has indef-

initely many others embedded in it. And so, maximal elements don’t behave like con-

stituents. Otherwise, both approaches are the same—as for points. The part relation

shows why.
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Embedding is given for basic elements, and the part relation is defined for the

shapes they make. The generalization looks like this

parts : shapes< embedded elements : basic elements

and the supporting definition is remarkably easy to state—it’s almost automatic—

thanks to maximal elements.

One shape is part of another shape whenever every maximal element of the first is

embedded in a maximal element of the second.

Thus for example, the lowercase k

with three maximal lines is part of the shape

with eight maximal lines, as this trio of embeddings shows

Parts don’t require identity. The maximal lines in the two shapes are completely differ-

ent. And it’s worth making a big deal of this—

parts are there whenever I can trace them out

—so that the formality doesn’t obscure the result. Nothing is lost in this two-tiered

approach. There are basic elements and arrangements of them, allowing the former to

keep all of their properties in the latter. Shapes are combinatorial after all, but not in

the usual way where the properties of sets, list structures, graphs, etc., determine how

elements behave. Formal devices come at the end to tidy things up. They don’t make

shapes the way they are. In a word, that’s preposterous—at least as Jacques Barzun

means it.

It’s easy to see that the part relation is a partial order on shapes. In fact, I can

use it to define lattices for shapes in the way I used embedding to describe basic ele-

ments, only now with far more generality. Meets and joins are defined for all shapes

and for all values of i. This works because shapes can contain multiple elements and

not just single ones, and also because there’s an empty shape with no elements at
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all. Making shapes out of basic elements is a sweet thing to do. Even so, the lattice

properties of shapes are usually framed in terms of Boolean algebras, and this is equally

telling.

The familiar Boolean operations are used to combine shapes in various ways in

the algebras Ui j. Sum (join), product (meet), and difference will do, or equivalently,

symmetric difference and product. The part relation provides for these definitions

regardless of the value of i. Once again, embedding is the key idea that supports my

entire approach to shapes.

A unique sum is formed whenever two shapes are added together. Twin condi-

tions are met—(1) both shapes are parts of the sum, and (2) every part of the sum has

a part that’s part of one shape or the other. (To make this perfect, I should say that

every nonempty part of the sum has a nonempty part that’s part of one shape or the

other, because the empty shape is part of every shape. I’ll avoid this detail again when I

define difference.) With just condition 1, the sum can be too big, with condition 2, too

small, but with both conditions, it’s just right. Consider some examples for different

values of i. The shape

with eight points is formed when the shape

with five points is added to the shape

with six points. The same three points

occur in both shapes to account for the eight-point sum. Every part of the sum—

except, of course, the empty one—is a combination of points from either one or
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both of the shapes. In fact, for shapes with points, sum is set union—it contains

exactly the points in one shape or the other. But, for other shapes without points,

maximal elements can fuse when they’re not identical—always if they overlap, and

sometimes if they’re discrete—and so may not be preserved when they’re combined.

The shape

is produced in the addition of the shape

made up of four triangles, and the shape with the two pieces

Neither of the shapes in the sum has any maximal element in common with the other.

Their maximal elements fuse in combination. And the parts of the sum—for example,

the shape

containing four triangles—needn’t combine the maximal elements in the shapes. Set

union is all there is to addition for shapes with points, but it’s a different story with

lines, planes, and solids when basic elements fuse and divide.

The way I’ve defined sum has a certain charm, but it isn’t constructive. Unless

I’m using points, I can’t always list the maximal elements in a sum in an easy

way. For this, I need an algorithm. I’m not going to give one for basic elements in

general—it’s too cumbersome. Rather, I’ll give an easy algorithm for lines. It shows

everything that’s involved, and how it all depends on embedding. The three reduction

rules in table 4 are used to produce maximal lines. The rules are independent, and they

exhaust the different ways lines fuse. They apply recursively in any order—but with no
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inconsistency—until maximal lines are finally defined. If I begin with the maximal

lines in two shapes, I get the maximal lines in their sum. (It’s worth saying, as well,

that the equivalence relation I defined to catalogue sets of basic elements can be given

in terms of these reduction rules—call the three of them working together R. The sets S

and T define the same shape if and only if RðSÞ ¼ RðTÞ. Be careful, though. The part

relation isn’t the subset relation. The set S can be included in the set T—then RðSÞ is
part of RðTÞ—without RðSÞ being a subset of RðTÞ. The subset relation requires iden-

tity—embedding won’t do.)

The four lines in this scheme

are reduced to a single maximal line after each of the rules in table 4 is applied once,

perhaps in this sequence

Table 4

Reduction Rules for Maximal Lines

Assume that lines are ordered by their endpoints, and let l and lA be any two of these lines. Then,
a set of lines is changed into a set of maximal lines according to three reduction rules. The rules
are used recursively in any order until no rule can be applied.

(1) If l is embedded in lA, either like this

so that there’s a common endpoint, or like this

so that there isn’t, then remove l from the arrangement.

(2) If l and lA overlap but neither is embedded in the other

then replace both lines with the line lB fixed by the leftmost endpoint of l and the rightmost end
point of lA. This is the longest line with an endpoint of l and an endpoint of lA.
(3) If l and lA are collinear and discrete, and share an endpoint

then replace both lines with the line lB fixed by the remaining endpoints of l and lA.
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but in any other sequence, as well.

Shapes are also combined by subtracting. And as it did for sum, the part relation

provides what’s needed for a definition. There’s a unique difference when one shape

has another shape subtracted from it. Every part of the first shape that has no part

that’s part of the second shape is part of the difference—this makes the difference big

enough—and every part of the difference is part of the first shape—this guarantees that

it isn’t too big. Some examples help to make this clear. The shape

made up of four points is produced when the shape

with five points is subtracted from the shape

with eight points. The difference contains the points in the first shape that aren’t

points in the second. This is precisely the way relative complement is defined for sets.

But this doesn’t work for shapes when basic elements aren’t points. The shape
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contains no maximal plane that’s a maximal plane in the shape

Nonetheless, their difference—the second shape subtracted from the first shape—

contains none of the planes in the first. This part

of the first shape is produced instead. It results when the part

that the two shapes have in common is taken away. A nice way to confirm this is to

draw both shapes together—to form their sum

and then to erase the second shape
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It’s easy to disagree about what the results of subtraction should be to satisfy in-

tuition. Are there two squares when I take one away from this shape

Subtraction isn’t an everyday operation for everyone, and it may take a little time

and practice to get used to. A few more examples—for shapes made up of lines and

planes—are helpful

Drawing and erasing to define differences—this is feasible whenever j is one or two—

always provide the correct result. It’s also worth saying explicitly that the difference of

two shapes is the first whenever their basic elements are mutually discrete, even if they

have boundary elements that overlap, as here for lines and squares
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or have coincident elements in common

The maximal elements in a shape formed in a difference are not defined automat-

ically. Some work is needed to get them, just as it is to get the maximal elements in

a sum. An algorithm for lines is framed in terms of embedding in table 5. The rules

are independent, and they exhaust the ways any two lines interact when a segment

Table 5

Rules for Maximal Lines in Differences

Start with any two sets of maximal lines that are ordered by their endpoints. Let l be a line in the
first set and lA be a line in the second. Then, the first set is changed recursively according to three
rules that may be applied in any order until no rule can be applied.

(1) If l is embedded in lA

then remove l from the set.

(2) If lA is properly embedded in l, so that no endpoint is shared

then replace l with the lines lB and lBA fixed by the two leftmost and the two rightmost endpoints
of l and lA. Alternatively, if lA is properly embedded in l, and there is a common endpoint

then replace l with the line lB fixed by the remaining endpoints of l and lA.
(3) If l and lA overlap but neither is embedded in the other

then replace l with the line lB fixed either by the two leftmost or by the two rightmost endpoints
of l and lA, so that lB isn’t embedded in lA.
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of one is taken from the other. They apply in any order with exactly the same final

result. A subtraction is finished when none of the rules applies to remove or replace a

line.

The rules in table 5 may apply several times to produce a single line in a differ-

ence. In this illustration

all three rules are required to obtain the appropriate result in whichever way the sub-

traction is performed. In the sequence of rule applications

the second shape is subtracted from the first. And here

the first shape from the second. And notice also that maximal lines always result when-

ever one of my rules is tried. No matter how I subtract a line from a shape, I get

another shape.

I’ve defined sum and difference for two reasons. First, they work to get the two

other Boolean operations I said I was going to use—product and symmetric difference.

It’s best if I give the results in symbols—

Sum Aþ B

Difference A� B

Product A � B ¼ A� ðA� BÞ
Symmetric difference AlB ¼ ðA� BÞ þ ðB� AÞ

AlB ¼ ðAþ BÞ � ðA � BÞ
When two equal squares
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are combined, the results of these operations compare in the following way

(In the few places I use symbols to denote shapes in part I, they’re the letters S, M, and

P in accordance with William James’s description of the syllogism. But henceforth I

revert to my usual practice of taking letters from the beginning of the alphabet—in

particular, A, B, and C. It’s a habit that’s hard to break. Rules and expressions don’t

look right otherwise.)

Keeping to symbols—I’ll use AaB when the shape A is part of the shape B, and

I’ll use 0 to denote the empty shape—it’s easy to state the standard Boolean relation-

ships. A few of these are in table 6. Evidently, facts 8 and 9 show that product and sym-

metric difference include both sum and difference. So starting with sum and difference

is arbitrary, at least for the purpose of defining Boolean operations. My second reason

for starting with sum and difference, however, isn’t so easy to dismiss. It has to do with

rules and how they work.

Algebras of shapes are perfect examples of Barzun’s preposterism—most formal

devices are. When I started playing around with shapes, I wanted to use rules to gener-

ate them. I tried this in many ways drawing with pencil and paper, until I discovered

Table 6

A Few Boolean Facts

(1) AaB if and only if Aþ B ¼ B AaB if and only if A � B ¼ A

(2) AaB if and only if A� B ¼ 0

(3) A ¼ B if and only if AlB ¼ 0

(4) Aþ ðBþ CÞ ¼ ðAþ BÞ þ C A � ðB � CÞ ¼ ðA � BÞ � C
(5) Aþ B ¼ Bþ A A � B ¼ B � A
(6) Aþ ðB � CÞ ¼ ðAþ BÞ � ðAþ CÞ A � ðBþ CÞ ¼ ðA � BÞ þ ðA � CÞ
(7) C� ðAþ BÞ ¼ ðC� AÞ � ðC� BÞ C� ðA � BÞ ¼ ðC� AÞ þ ðC� BÞ
(8) Aþ B ¼ ðAlBÞl ðA � BÞ
(9) A� B ¼ Al ðA � BÞ
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how it worked finding parts—using tracing paper to see what was there independent

of what I drew—and replacing them in a recursive process. The part relation and a

few transformations—they’re given below—were what I used to find parts. And then

subtracting and adding—that’s erasing and drawing—and the same transformations

let me replace the parts I found. So, what I did with rules told me what I needed to do

with algebras. They’re merely a summary of how things turned out. I didn’t start with

them or anything like them—that’s preposterous. But that they’re so nice in the end

gives added support to my approach. The mathematics is too neat for rules not to

work like this. In some ways, though, my algebras are profligate. In the theory of for-

mal languages and automata—it’s the mathematical basis for linguistics—algebras

(monoids) are defined for strings of symbols using a single associative operation—

concatenation. This explains strings, but it doesn’t explain how rules apply. For that,

you need other operations like sum and difference. The rules in a generative grammar

need more than concatenation to work. To avoid this kind of problem for shapes, I

started with shapes and rules at the same time. The two had to work together—the for-

mer without the latter left seeing a mystery. Without rules it was all magic.

The transformations that make rules work move shapes around, turn them over,

and make them bigger and smaller. They’re operations on shapes that change them

into geometrically similar ones. They distribute over the Boolean operations, and may

include, for example, translation

rotation

reflection

and scale
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These transformations also form a group under composition. The properties of this

group characterize Euclidean geometry. I use this group later to describe the behavior

of rules when they’re used to calculate with shapes.

That does all of it. I have shapes, parts, sums, and differences, and various kinds

of transformations—some Boolean stuff and some Euclidean stuff—along with basic

elements. This is what it takes to make seeing work. It blends a lot of well-known

mathematics to handle shapes and rules. Let’s look at it again all together. A few illus-

trations are enough to fix the algebras Ui j visually. And in fact, this is just the kind of

presentation they’re meant to support. Once the algebras are defined, what you see is

what you get. There’s no need to represent shapes in symbols to calculate with them,

or for any other reason. Look at the shapes in the algebra U02. This one

is an arrangement of eight points in the plane. It’s the boundary of the shape

in the algebra U12 that contains lines in the plane. The eight longest lines of the shape

are the maximal ones. And in turn, the shape is the boundary of the shape

in the algebra U22. The four largest triangles in the shape are maximal planes. They’re

a good example of how this works. The triangles are discrete, and their boundary ele-

ments are, too, even though they touch externally. Points aren’t lines and aren’t in the

boundaries of planes.

The properties of basic elements are extended to shapes in table 7. The index i

is varied to reflect the facts in table 3. The algebras are linked via shapes and their

boundaries—I’ll say more about this in the next section. But for now, notice that an

algebra Ui j contains shapes that are boundaries of shapes in the algebra Uiþ1 j only if i

and j are different. That’s why my examples ended at U22. The algebras Ui i don’t in-

clude shapes that are boundaries of shapes, and they’re the only algebras for which

this is so. How could they?—when i ¼ j, j is one dimension too low. Of course, boun-

daries aren’t the only way to distinguish these algebras. They also have special proper-

ties in terms of embedding and the transformations. And I’ll describe these, as well,

only yet farther on.
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The description of parts in table 7 misses some important details. These require

the index j. The additional relationships are given in table 8.

Boundaries of Shapes Are Shapes

Boundaries of shapes are another way to show how basic elements combine, and how

embedding works. If a shape has a boundary, then its boundary is a shape. The bound-

ary of each maximal element in the shape is a shape, and the sum of these shapes is

the boundary of the shape.

Shapes containing points don’t have boundaries. But the boundary of a shape

made up of lines, planes, or solids is a shape containing points, lines, or planes.

(The empty shape—when it’s used with shapes with boundaries—is the only shape

that has an empty boundary.) Some shapes and their boundaries are shown in these

examples—first for lines

Table 7

Some Properties of Shapes

Algebra

Basic

elements

Boundary

shapes

Number of

parts

U0j points none finite

U1j lines U0j indefinite

U2j planes U1j indefinite

U3j solids U2j indefinite

Table 8

More Properties of the Part Relation

Uij

Every shape has a distinct

nonempty part—there is

no smallest shape

Every shape is a distinct part

of another shape—there is

no largest shape

0 ¼ i ¼ j no no

0 ¼ i < j no yes

0 < ia j yes yes
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and then for planes

Boundary elements are always reduced to maximal ones, so that boundaries are shapes.

The boundary

of the four triangles

contains eight lines

instead of twelve

And the boundaries
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of these shapes

don’t include all of the basic elements that are in the boundaries of their individual

basic elements.

It’s convenient to have a boundary operator b, so that bðxÞ is the boundary of any

shape x in an algebra where i is greater than zero. Moreover, b is a one-to-one mapping

from the algebra Uiþ1 j into Ui j when j ¼ iþ 1, and a many-to-one mapping otherwise.

This is a precise but obscure way of saying that some shapes aren’t boundaries, that

some are the boundaries of exactly one shape, and that others are the boundaries of

many. For example, none of the following shapes is a boundary with points, lines, or

planes

However, these shapes with points and lines

are the boundaries of unique shapes with lines and planes
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and this shape

is the boundary of many shapes—forty-one to be exact—of which these thirteen

are geometrically distinct. And notice that of the thirteen, only two

are boundaries of shapes made up of planes

Right now, I’m going to illustrate the use of the boundary operator b in a few

formulas with sum and difference. And somewhat later, I’ll use b in schemas for rules.

In this way, for example, I can calculate to connect points in lines to define planes. It’s

a nice transition that’s useful in art and design.

The boundary of a shape is the sum of the boundaries of its maximal elements.

But the boundary of a sum of shapes needn’t be the sum of their boundaries, unless the
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maximal elements in the shapes are still so when they’re combined. The rules in table

4 that define maximal lines show why. This is perfectly general—the same goes for

planes and solids—and it’s easy to see. Let’s begin with the second case in the first

rule in table 4 for one line embedded in another

and the second rule for two overlapping lines with a common segment not identical to

either

In both, the boundary of the sum of the lines—that’s the boundary of the maximal

line they define—

and the boundary of their common segment

combine to form the sum of the boundaries of the lines

In symbols, it’s

bðlþ lAÞ þ bðl � lAÞ ¼ bðlÞ þ bðlAÞ
(I’m using l and lA in two ways to denote lines and the shapes they define. I can be

rigorous with added symbols—the shapes are flg and flAg—but it’s too fussy.) The third

rule in table 4 shows another relationship. Two lines are discrete with a boundary ele-

ment in common

The boundary of their sum—again, it’s the boundary of the maximal line containing

both—

and the product of their boundaries—their common endpoint—

come together in the sum of the boundaries of the lines

And in symbols, it’s
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bðlþ lAÞ þ bðlÞ � bðlAÞ ¼ bðlÞ þ bðlAÞ
But my two formulas aren’t really independent—in the one, bðlÞ � bðlAÞ is empty, while

in the other, bðl � lAÞ is. If I add everything up in Boolean fashion, I get the comprehen-

sive formula

bðlþ lAÞ þ bðl � lAÞ þ bðlÞ � bðlAÞ ¼ bðlÞ þ bðlAÞ
that describes how boundaries interact in all circumstances. And the first case in the

first rule

is a nontrivial example of this. Neither bðl � lAÞ nor bðlÞ � bðlAÞ is empty. Both of the lines l

and lA have a segment in common

and a common point in their boundaries

The quartet of relationships in my final formula is exhaustive whatever basic

elements are used—either lines, planes, or solids. But this can be expressed more con-

cisely in another way using symmetric difference. The new formula has the feel of alge-

braic stuff. It’s got the right look

bðel eAÞ ¼ bðeÞl bðeAÞ
and the right sound—the boundary of the symmetric difference of two basic elements

e and eA is the symmetric difference of their boundaries. Try it for the reduction rules for

lines in table 4.

I’ve been talking about basic elements—lines, etc.—but I might as well have

been talking about shapes and their boundaries. In this respect, the formula

bðxþ yÞ þ bðx � yÞ þ bðxÞ � bðyÞ ¼ bðxÞ þ bðyÞ
has a practical advantage over its dashing counterpart

bðxl yÞ ¼ bðxÞl bðyÞ
In the one, x and y can be any two shapes, while in the other shapes are restricted in a

special way. In particular, the second formula is guaranteed to work only if all maximal

elements are embedded in a common one—lines are collinear, planes are coplanar, etc.

Once more, lines are enough to see what’s going on.

Look at this pair of lines
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They’re independent with respect to symmetric difference—their product is the empty

shape. But this isn’t so for the product of their boundaries

It’s a single point. As a result, bðxÞl bðyÞ

is missing a point that’s in bðxl yÞ

More generally, common pieces of boundary elements in the maximal elements in the

symmetric difference of x and y are lost in the symmetric difference of their bounda-

ries. But it’s easy to fix this when shapes are divided into parts according to whether

or not their maximal elements are embedded in common ones.

The following equivalence relation does the trick.

Let two basic elements be coembedded whenever they’re embedded in a common

element.

The effect of this is clear in the shape A

that’s divided into three different parts A1, A2, and A3

(This is a nice way to store maximal elements in a computer. After all, it’s how an

experienced draftsman would normally draw the parts of a shape made up of lines.

But notice that the relation doesn’t organize points, as it does basic elements of higher

dimension—lines and planes and solids—when j is more than i.) Then two other

facts—in addition to the fact that symmetric difference works for coembedded

elements—are used to exploit this kind of division. First, the symmetric difference of
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two shapes is their sum, so long as no maximal element of one is coembedded with

any maximal element of the other. In this case, the shapes have an empty product.

But further, basic elements are maximal if they’re not coembedded. So, second, the

boundary of the symmetric difference of the two shapes is the sum of their boundaries.

I can combine parts in one way if their basic elements are coembedded, and in another

way if they’re not, to get the result I want. Now suppose I take the boundary of the

symmetric difference of the shape A

with three parts, and another shape B

that’s also divided into three parts B1, B2, and B3

according to my equivalence relation. Then, I get

bðAlBÞ ¼ bðA1Þ þ bðB1Þ þ ðbðA2Þl bðB2ÞÞ þ ðbðA3Þl bðB3ÞÞ
instead of

bðAlBÞ ¼ bðAÞl bðBÞ
The symmetric difference of A and B is

and both shapes have the same boundary
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So, bðAÞl bðBÞ is the empty shape, while the sum bðA1Þ þ bðB1Þ þ ðbðA2Þl bðB2ÞÞþ
ðbðA3Þl bðB3ÞÞ is

Use tracing paper to test the results. It’s easy to see that everything goes together ex-

actly the way it should. This visual kind of demonstration always convinces me that

I’ve got it right. It’s so immediate, and it’s something a designer would do. In fact, it’s

the way rules work when I calculate. Watching designers with pencils and tracing

paper is watching visual calculating in progress. I’ll get to it soon, but first let’s see

how algebras of shapes go together.

Boolean Divisions

I can classify the algebras of shapes Ui j in terms of their Boolean properties, and in

terms of their Euclidean ones. This shows how the algebras differ, but more impor-

tantly how visual and verbal expression are related when the latter corresponds to the

algebras of points. The Boolean classification relies on the variation of the indices i and

j in table 8. The algebras Ui j are divided in this way

according to whether or not i and j are zero. There are four regions to examine—the

top row and each of its two embedded segments, and the triangular portion of the

lower-right quadrant.

The atomic algebras of shapes are defined when the index i is zero

Shapes are finite arrangements of points. The atoms—nonempty shapes without dis-

tinct nonempty parts—are the shapes with a single point apiece. They’re the same as

the units I’ve been talking about, but with respect to sets of points and the part relation

instead of separate points and embedding. Any product of distinct atoms is the empty
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shape, and sums of atoms produce all of the other shapes. No two shapes are the same

unless their atoms are. A shape either is empty or has an atom as a part. There are two

kinds of atomic algebras depending on the value of the index j.

The only Boolean algebra of shapes is U00

It contains exactly two shapes—the empty shape and an atom made up of a single

point. In fact, it’s the only finite algebra of shapes, and it’s the only complete one in

the sense that shapes are defined in all possible sums and products. The algebra is the

same as the Boolean algebra for true and false used to evaluate logical expressions.

The other atomic algebras U0 j are defined when j is more than zero

Each of these algebras contains infinitely many shapes that all have a finite number of

points and a finite number of parts. But since there are infinitely many points, there’s

no universal shape that includes all of the others, and so no complements. (It’s easy to

get around this for points and for basic elements of higher dimension if I look at

shapes and their complements in a kind of figure-ground relationship. For example,

here

the shape is either black or white, either the figure containing three points or all of the

other points in the ground. And the same finite representation can be used to distin-

guish both cases by saying what is or isn’t in the shape—the shape is three points or

all points with the exception of three

This works without a hitch for points for any value of j, and for lines, etc., when i

equals j. Otherwise, a little squinting is helpful. Try it for the shape
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made up of three lines. Are the lines that define its complement

pure white or really gray? But this is a concrete problem without serious abstract impli-

cations. It’s interesting, though, that a defining perceptual phenomenon finds its way

so naturally into mathematics. And figure-ground-like relationships come up in other

ways, as well, whenever complements are involved.) Shapes with points form a gener-

alized Boolean algebra. It’s a relatively complemented (table 6, fact 7), distributive

(fact 6) lattice when the operations are sum, product, and difference, or a Boolean ring

with symmetric difference and product. There’s a zero in the algebra—it’s the empty

shape—but no universal element because the universal shape that includes all points

can’t be defined. As a lattice, the algebra isn’t complete—every product is always

defined, while no infinite sum ever is. Distinct points don’t fuse in sums the way basic

elements of other kinds do. The finite subsets of an infinite set, say, the numbers in the

counting sequence 0, 1, 2, 3. . . , define a comparable algebra.

Some of my technical jargon may be hard to take. Still, it’s what the mathematics

is about, and it repays the effort to track down definitions for terms that aren’t familiar.

Both the formalist and the artist need to meet each other halfway, so that they can join

at more than a boundary. There’s much to be gained when each side heeds the other.

After all, I’ve been trying to show what calculating would be like if Turing had been a

painter. I try to use formal terminology only when it’s helpful. Without it here, it

would be difficult if not impossible to make the rigorous contrasts that are implicit in

my series of algebras. At the very least, my appeal to these ideas should make it clear

that there’s no reason to be flaky when you’re talking about art and design. And at

the same time, I hope it’s also clear that a formal presentation doesn’t diminish the

expressive potential of drawings and the like. Shapes are always there to see with all

of their possibilities when rules are tried.

Algebras of shapes made up of points come up again when I consider algebras

of decompositions—they have a lot to do with spatial relations and set grammars. A

decomposition is a finite set of parts (shapes) that add up to make a shape. It gives the

structure of the shape by showing just how it’s divided, and how these divisions inter-

act. The decomposition may have special properties, so that parts are related in some

way. It may be a Boolean algebra on its own, a topology, a hierarchy, or something

else. For example, suppose a singleton part contains a single basic element. These are

atoms in the algebras U0 j but don’t work this way if i isn’t zero. The set of singleton
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parts of a shape with points is a decomposition. In fact, the shape and the decom-

position are pretty much alike. But decompositions aren’t defined for shapes with

basic elements of other kinds. There are too many singleton parts.

An algebra of shapes Ui j shows what happens when shapes are put together using

given operations. But there are other ways to describe the algebra in terms of the

shapes it contains, and to describe these shapes according to their algebras. Looking at

the parts of a shape—whether or not these are finite in number—does the trick. This

relativizes the algebra with respect to the shape, describing it with one of its subalge-

bras. Everything that goes on in the algebra goes on in the shape. A screen full of

pixels, whether they’re points or tiny areas, is a perfect example of this for U02. But

let’s try it in general, and see how it works.

A shape and its parts in an algebra U0 j form a complete Boolean algebra that cor-

responds to the Boolean algebra for a finite set and its subsets. This is represented

neatly in a lattice diagram. The Boolean algebra for the three points

in U02 is shown here

Pictures like this are compelling, and make it tempting to consider all shapes—whether

or not they have points—in terms of a finite number of parts combined in sums and

products. It’s hard to imagine a better way to describe shapes than to resolve their parts

and to show how the parts are related. This is what decompositions are for. But if parts

are fixed permanently, then this is a poor way to understand how shapes work when I

calculate. As I describe this later, parts—with and without Boolean complements—vary

as I go on. Parts are decided anew every time I try a rule. Decompositions—Boolean

algebras, topologies, and the like—change dynamically as a result of calculating. I

don’t know what parts there are until I stop using rules. Only then is there nothing

new to see.

The Boolean algebra for a shape and its parts in an algebra U0 j is also a dis-

crete topology. Every part of the shape is both closed and open, and has an empty
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boundary. Parts are disconnected. (Topological boundaries aren’t the boundaries I’ve

been describing so far that show how shapes in different algebras are related. Now the

boundary of a shape is part of it and not a shape in an algebra of lower dimension.)

This is a formal way of saying what seeing confirms all the time—there’s no preferred

way to divide the shape into parts. Any division is possible. None is better or worse

than any other without ad hoc reasons that depend on how rules are used. This is

where meaning begins, and going on is how it changes and grows. Shapes have mean-

ing because I calculate. There’s no meaning until I do.

Going on, the atomless algebras Ui j are defined when i is more than zero

Each of these algebras contains infinitely many shapes made up of a finite number of

maximal lines, planes, or solids. But every nonempty shape has infinitely many parts.

The empty shape is the zero in the algebra. There’s no universal element and hence

no complements. (A universal shape can’t be formed with lines, planes, or solids, as

this would fill all of an unbounded space. Moreover in a bounded space where i is

less than j, there would be infinitely many basic elements. It doesn’t work either

way.) This gives a generalized Boolean algebra, in the way this was defined for

points. Only this time, the properties of sums and products are symmetric—for both,

infinite ones may or may not be defined. When infinite sums are formed, basic ele-

ments fuse. But this alone isn’t enough—for example, the sum of all singleton shapes

isn’t a shape.

In an algebra Ui j when i isn’t zero, a nonempty shape and its parts form an

infinite Boolean algebra. But the algebra isn’t complete—infinite sums and products

needn’t determine shapes. It’s worth seeing how this works, at least to emphasize

once more that shapes are finite through and through. Every shape is the sum of the

set of its parts. Only there are subsets of this set that don’t have sums. Let’s suppose

that the shape is a single line

Then the series of shapes containing the first quarter of the line, the fifth eighth, the

thirteenth sixteenth, and so on
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doesn’t have a sum. No finite set of maximal lines corresponds to this infinite series

of segments. This is similar to what I did earlier with boundaries of basic elements

that were defined in the limit. And the construction applies equally to planes and

solids if I divide rectangles or rectilinear rods. What’s more, I can use fact 7 in table 6

to get the corresponding result for products. Now the shapes in my infinite set are

these

and their product gives the gaps separating the segments in my sum

This is another kind of figure-ground reversal with formal implications.

Shapes made up of lines, planes, and solids have underlying topologies in the

same way shapes made up of points do. Only instead of finite topologies, they’re

infinite ones. In particular, every shape has a Stone space topology. Parts correspond

to closed and open sets. They have empty boundaries and are disconnected. In this,

all shapes—with points and without—are exactly the same. They’re all ambiguous.

There’s nothing about shapes by themselves, no matter what basic elements they

have, that recommends any division over another. Stone spaces confirm what’s easy

to see, but they violate the Aristotelian scruples I invoked earlier on. Still, everything

is grounded when I calculate. The parts I see—the ones that rules pick out—are the

ones that count, with meaningful interactions and the possibility of substantial bound-

aries. And these parts, too, combine in topologies—finite ones—to describe shapes.

So far, my classification of shapes and their algebras shows that things change

extensively once i is bigger than zero. And the pun isn’t gratuitous. It applies spatially

to basic elements, and then numerically to indicate the many differences between alge-

bras when shapes contain points and when shapes are made up of lines, etc. Whether

or not embedding implies identity makes a world of difference. But my algebras aren’t

the only way to think about shapes. There are two alternatives that deserve brief no-

tice. They locate my account of shapes in a wider landscape of formal possibilities that

includes philosophy and engineering.
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First, there are the famous individuals of logic. Shapes are like them in important

ways. In particular, both shapes and individuals can be divided into parts, now in one

way and again in some other way, independent of any agreed formula. As a result,

shapes, like individuals, aren’t like sets. Henry Leonard and Nelson Goodman clarify

this difference. The following quotation strikes at the heart of the matter.

The concept of an individual and that of a [set] may be regarded as different devices for distin-

guishing one segment of the total universe from all that remains. In both cases, the differentiated

segment is potentially divisible, and may even be physically discontinuous. The difference in the

concepts lies in this: that to conceive a segment as a whole or individual offers no suggestion as to

what these subdivisions, if any, must be, whereas to conceive a segment as a [set] imposes a defi-

nite scheme of subdivision—into [subsets] and members.

Embedding and the part relation are crucial. But the likeness between shapes and indi-

viduals fades as additional details are checked.

The way shapes and individuals are used distinguishes them most of the time.

Rules are applied to change shapes—in fact, I defined shapes and rules in concert to

make sure that this was so—while individuals aren’t handled in this way. There’s no

distinction between individuals and individuals in rules. This is difference enough

when there’s calculating to do, but it may not seem decisive otherwise. And perhaps

the contrast is simply a question of emphasis, with a common purpose. Individuals

distinguish things in the total universe just as rules do in shapes. Only how? In the

latter, it’s calculating with parts that vary as rules are tried. Though here, too, there

are worthwhile shadings. Goodman and W. V. Quine set up the machinery—‘‘shape

predicates’’—to calculate with ink marks (individuals) in a ‘‘nominalistic syntax.’’

Marks and lines, etc., are much the same in terms of embedding and parts, yet nei-

ther relation is exploited. Instead, shape predicates are used to recognize symbols

and texts largely in accordance with the rudimentary conventions of printing and

reading—pretty much as described in part I. Predicates are framed to block ambiguity

and to discourage my way of calculating with shapes. But this is no surprise—symbols

and texts are supposed to stay the same in a syntax.

Differences in definition are easier to compare. Individuals form a complete Boo-

lean algebra that has the zero excised. The algebra may have atoms or not—it seems to,

more often than not—and may be finite or infinite. Yet worries about zero—having

something for nothing—pale against the possibility of taking infinite sums and prod-

ucts. I’m happy with zero (the empty shape) as an unremarkable technical device,

because it makes a nice algebra and sticks to standard mathematical usage. And I’m

unhappy with infinite operations, because I can’t figure out how to do them in a prac-

tical way I can understand, or to see the extent of the results in every case. Still, this

isn’t all that’s different. Unlike shapes, there are no added operators for individuals—

transformations aren’t defined. To be completely honest, though, the nonempty parts

of any nonempty shape in an algebra U0 j are possible individuals. But if j isn’t zero,

then this isn’t so for all of the nonempty shapes in the algebra taken at once. Shapes

only go together finitely. Maybe the real difference is that logicians and philosophers
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don’t have to make things, and artists and designers want to. At least, they can draw

what they see.

This is a pretty tidy comparison, but there are qualifications. Not all individuals

keep to the Boolean norm. Whitehead’s regions and extensive connection are a good

example. The relationships are usefully put like this. On the one hand, there are basic

elements—Whitehead’s regions—and then on the other hand, shapes—Boolean indi-

viduals. The analogy is worth showing explicitly—

basic elements : shapes< regions : individuals

It seems there are twin intuitions that interact in a variety of ways. The one is about

continuity—seeing that everything connects all over or touches throughout. This is

evident for maximal elements, and also for basic elements that are coembedded. Then

they occupy a continuous locus. Whitehead is explicit about this. He defines mediate

connection—two separate regions A and B can be joined by a third C—in the follow-

ing trio of cases

Coembedding is the third, and it’s needed for touching in case i and implied in case

ii. The second intuition is about combination—allowing everything to go with every-

thing else—at least finitely for shapes but possibly otherwise for individuals—even

with discontinuous results. Leonard and Goodman emphasize this. It sounds OK, yet

may take some effort if you’re trained to use a syntax where there’s a difference

between texts and symbols—the latter being connected shapes that don’t touch.

But no matter how it finally goes, it’s nice that basic elements and shapes connect

with so many other things. And this doesn’t end. Engineers have something important

to say, too.

The second alternative to shapes comes from solid modeling in computer graph-

ics, as it was originally done in mechanical engineering. Solid modeling uses point

sets. These are infinite, so there’s a huge discrepancy with shapes. But, ignoring this,

the topology of a shape in an algebra Ui j when i isn’t zero and the topology of the cor-

responding point set are strikingly different. The shape is disconnected in the one
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topology and connected in the other. Among other things, the topology of the point

set confuses the boundary of the shape that’s not part of it—a shape in the algebra

Ui�1 j—and the topological boundary of the shape that is. Points are too small to distin-

guish between boundaries as parts and limits. To get around this, point sets are ‘‘regu-

lar’’ when they’re shapes, and Boolean operations are ‘‘regularized.’’ This seems an

artificial way to handle lines, planes, and solids. Of course, shapes made up of points

are point sets with topologies in which parts are disconnected. This and my gloss on

individuals reinforce what I’ve already said. The switch from identity to embedding

may seem modest—it’s going from zero to one—but it has telling consequences for

shapes and how rules work.

Euclidean Embeddings

The Euclidean transformations augment the Boolean operations in the algebras of

shapes Ui j with additional operators. They’re defined for basic elements and extend

easily to shapes. Any transformation of the empty shape is the empty shape. And

a transformation of a nonempty shape contains the transformation of each of the

basic elements in the shape. This relies on the underlying recursion implicit in tables

3 and 7 in which boundaries of basic elements are transformed until new points are

defined.

The universe of all shapes, no matter what kind of basic elements are involved,

can be described as a set containing certain specific shapes, and other shapes formed

using the sum operation and the transformations. For points and lines, the universe is

defined with the empty shape and a shape that contains a single point or a single line.

Points are geometrically similar, and so are lines. But this relationship doesn’t carry

over to planes and solids. As a result, more shapes are needed at the start. All shapes

with a single triangle or a single tetrahedron do the trick, because triangles and tetrahe-

drons make the other planes and solids. For a point in zero dimensions, the identity is

the only transformation. So there are exactly two shapes—the empty shape and the

point itself. In all other cases, there are indefinitely many distinct shapes that come

with any number of basic elements. Every nonempty shape is geometrically similar to

indefinitely many other shapes. There’s plenty of opportunity to move shapes around

and to increase or decrease their size without changing the relationships between their

basic elements—for example, the angles defined by lines.

The algebras of shapes Ui j also have a Euclidean classification that refines the

Boolean classification I’ve given. Together these classifications form an interlocking

taxonomy. The algebras Ui i on the diagonal provide the main Euclidean division
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The algebras Ui i have an interesting property. A transformation of every shape in

each algebra is part of every nonempty shape. This is trivially so in the algebra U00

for a point in zero dimensions. Both the empty shape and the point are parts of the

point. But when i isn’t zero

the possibilities multiply. In this case, infinitely many transformations of every shape

are parts of every nonempty shape. This is obvious for the empty shape. It’s part of

every shape under every transformation. But for a nonempty shape, there’s a little

more to do. Because i equals j, the basic elements in the shape are coembedded. And

as a result, a single basic element contains them all. But infinitely many transforma-

tions of any basic element can be embedded in any other basic element. I can make

the former smaller and smaller until it fits in the latter and can be moved around. So

there are infinitely many ways to make any shape part of any other shape that has at

least one basic element. The triangle

in the algebra U22 is geometrically similar to parts of a square

and in fact, to parts of itself
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This has important implications for the way rules work when I calculate. A rule

applies under a transformation that makes one shape part of another shape. Every-

thing is fine if the rule is given in the algebra U00. It’s always determinate—if it applies,

it does so under a finite number of transformations. In fact, the identity transforma-

tion is the only one. But in the other algebras Ui i, a rule is always indeterminate—it

applies to every nonempty shape in infinitely many ways, as I’ve already described.

This makes it hard, if not impossible, to control how the rule is used. It can be applied

haphazardly to change shapes anywhere there’s an embedded basic element—and

that’s everywhere. Indeterminate rules are a burden. They appear to be purposeless

when they can be applied so freely. Still, indeterminate rules have some important

uses that I’ll get to later. They let me do things that seem beyond the reach of rules.

I like to think that shapes made up of lines in the plane—a few pencil strokes on

a scrap of paper—are all that’s ever required to study shapes and how to calculate with

them. This is how I started playing around with shapes, and it’s hard to stop because

it’s easy and fun, and it works so well. Nonetheless, there are other reasons for shapes

with lines that aren’t personal. In particular, they make sense historically and practi-

cally. On the one hand, for example, lines are key in Leon Battista Alberti’s famous ac-

count of architecture—

Let us therefore begin thus: the whole matter of building is composed of lineaments and structure.

All the intent and purpose of lineaments lies in finding the correct, infallible way of joining and

fitting together those lines and angles which define and enclose the surfaces of the building. It

is the function and duty of lineaments, then, to prescribe an appropriate place, exact numbers,

a proper scale, and a graceful order for whole buildings and for each of their constituent parts,

so that the whole form and appearance of the building may depend on the lineaments alone.

Nor do lineaments have anything to do with material, but they are of such a nature that we

may recognize the same lineaments in several different buildings that share one and the same

form, that is, when the parts, as well as the siting and order, correspond with one another in their

every line and angle. It is quite possible to project whole forms in the mind without any recourse

to the material, by designating and determining a fixed orientation and conjunction of the vari-

ous lines and angles. Since that is the case, let lineaments be the precise and correct outline, con-

ceived in the mind, made up of lines and angles, and perfected in the learned intellect and

imagination.

And it’s the same today—try to imagine designing without lines. They let you find out

what to do, and record the results of seeing and doing. Moreover, Alberti’s idea of lines

and angles comes up again a little later on: it’s implicit in my use of spatial relations

to define rules for design. Then, on the other hand, the technology of lines is uncom-

plicated and accessible to adults and children alike with minimal training. Pencil and

paper are enough. Yet an algebraic reason supersedes anything I can find either in my

personal experience, in history, or in technology. There are compelling formal argu-

ments for drawing with lines.

Shapes containing lines arranged in the plane suit my interests because their

algebra U12
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is the first algebra of shapes in the series Ui j in which (1) basic elements have bounda-

ries, and the identity relation and embedding are different, and (2) there are rules that

are determinate and rules that aren’t when I apply them to calculate with shapes. For

example, the rules I’ve already used to find and move polygons in stars and superstars

are determinate, and rules in U11 are also indeterminate in U12. The algebra U12 has

extended basic elements and the right Boolean and Euclidean properties. It’s represen-

tative of all of the other algebras where i isn’t zero. This lets me show almost every-

thing I want to about these algebras and the shapes they contain in line drawings.

And that’s mostly what I’ve been using. Pencil lines on paper are a perfect way to ex-

periment with shapes, and to see how they work when I calculate. I rarely use anything

else—perhaps a few points and planes now and again. Then the technology is still easy

in the right way.

‘‘Nor Do Lineaments Have Anything to Do with Material’’

Alberti points out that lines—and likewise points, planes, and solids—don’t have any-

thing to do with material. This is a dogma in geometry, but sometimes the connection

is worth making in design. And in fact, there are a host of things that can be connected

with basic elements and shapes when I calculate. The path is clear when the algebras

Ui j are elaborated and combined in different ways to define new algebras of shapes.

This provides an open-ended repertoire of expressive devices that can be used in what-

ever way you please.

Shapes often come with other things besides basic elements. Labels from a given

vocabulary, for example, a, b, c . . . , may be associated with basic elements to get shapes

like these

The labels may simply classify basic elements and so parts of shapes, or they may have

their own semantics to introduce other kinds of things. In a more ambitious fashion,

basic elements may also have properties associated with them that interact as basic ele-

ments do when they’re combined. I call these weights. Weights go together with basic

elements to get shapes that look like these

215 ‘‘Nor Do Lineaments Have Anything to Do with Material’’



where points have area, lines have thickness, and planes have tones. Among other

things, weights include different graphical properties such as color and surface texture,

but any material property will do, and more abstract things like sets of labels, numeri-

cal values that vary in some way, or combinations of sets and values are fine, too.

Labels and weights let me put shapes together in alternative ways. I can place a

triangle on top of a square to make the shape

in the algebra U12, and then take away the triangle I’ve added. But the result isn’t the

square

that you expect from listening to the words—‘‘take away the triangle after you add it to

a square.’’ The piece that the triangle and square have in common is erased from the

top of the square in the way this happens in drawing to produce the shape

It’s a mistake to assume that the things words pick out are always independent in

combination. The intuition is common yet misguided, just another semantic fallacy.

Language doesn’t structure shapes permanently. You can always be surprised when

descriptions don’t count. But this is familiar territory—I experimented erasing squares

in the shape
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when I started thinking about shapes and drawings. Yet there are other options. I can

label the lines in the triangle in one way and label the lines in the square in another

way, so that the square is still intact after adding and subtracting the triangle. Borrow-

ing a term from computer graphics, the triangle and the square are on separate layers.

The labels distinguish the layers to guarantee that the two shapes are independent.

When I do something to one, it doesn’t change the other. And I can handle this and

more with weights. Either way, my example begins to show how labels and weights

can be used to modify algebras of shapes.

When labels and weights are associated with basic elements, additional algebras

of shapes are defined. Two new series of algebras are formed from the series Ui j. The

algebras Vi j for labeled shapes keep the Boolean properties of the algebras Ui j, and the

algebras Wij for weights may or may not, according to how weights combine. A few

technical details—enough to suggest that everything works—may be welcome.

Labeled shapes have labels associated with their basic elements, so that ones with

the same label are maximal. A labeled shape A is part of a labeled shape B if for each

label a, the shape formed by the basic elements labeled by a in A is part of the corre-

sponding shape in B. This is easy to see in this example

where the shapes A and B determined by lines labeled by a, b, and c correspond in the

following way

But the part relation fails if A is

because lines are classified differently.
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Operations on labeled shapes are defined in the same fashion, when parts are

combined according to their labels. It’s plenty to do sum and difference. Only now,

some simple notation is helpful. Let Aa be the shape formed by the basic elements in

A labeled by a. If A is this labeled shape

then Aa is the shape

(Evidently then, A is part of the labeled shape B whenever Aa is part of Ba, for every

label a.) Conversely, let Aa be the labeled shape defined when the basic elements in A

are labeled by a. If A is the square

then Aa is

So the sum of two labeled shapes A and B is simply the collection of labeled shapes

ðAa þ BaÞa

for all of the labels a, and their difference is the corresponding collection of labeled shapes

ðAa � BaÞa

For example, two labeled squares form a sum in this way

that contains the seven labeled lines
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And this sum and another labeled square show how difference works when they com-

bine in this way

The main thing to keep in mind is that basic elements interact if they have the same

label, and combine independently otherwise. Parts of labeled shapes are considered

separately ‘‘layer by layer’’ and then ‘‘stacked’’ to get the final result. But this isn’t

new—it’s the same for coembedded parts where layers run every which way.

Of course, there are still the transformations. And it may be that they change

labels, as, for example, when b is reflected to make d and then rotated to make p.

Only for most of my purposes, it’s easier not to allow this. After all, the relationships

between b, d, and p aren’t really between labels that are abstract symbols, but between

concrete shapes. For my purposes, labels are invariant under the transformations—

tðaÞ ¼ a

for every transformation t and every label a. And for a labeled shape A, tðAÞ is the sum

of the labeled shapes

ðtðAaÞÞa

for all of the labels.

It’s fun to play around with notation occasionally, as I’ve been doing here with

subscripts and superscripts. There’s a spatial aspect to it that goes beyond formal con-

tent. But this isn’t entirely gratuitous. When notation works, it helps to make formal

content clear and effective, and to make it feel OK with perspicuous results. In fact,

getting the right notation may be as important as getting the right idea—especially

for its ongoing development. If I can transcribe the idea easily, then I can use it easily.

This is another way that seeing counts.

Weights are a little more complicated to do formally, but the underlying idea

isn’t hard to see. Suppose I start with two lines labeled by a and b

and form a single line with weighted segments in this way

where each weight is a set of labels. Then the weighted shape made up of two lines
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is part of

Each of the lines in

is embedded in the line formed by the three segments in

Further, the weight of each of the lines is a subset of the weight of each of the seg-

ments it overlaps

It’s also easy to form sums and differences. If I add

and

the picture looks like this

And if I go on and do the subtraction—the second shape from the first shape—I get

I’ve worked out the persnickety details of the part relation, and of adding and

subtracting for weighted shapes, elsewhere—the references are in the background
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section—and so will only give a brief outline. In fact, I’ll just do adding and subtract-

ing, as each normally implies the part relation (table 6, facts 1 and 2). The idea is to

insert an algebra of weights—with labels, it’s just the Boolean algebra for sets—in an

algebra of shapes. Points are trivial. The problem is with lines, planes, and solids.

The basic elements in a weighted shape are maximal in the sense that ones of

equal weight are. For a weighted shape A, let A� be the shape defined when all of its

weights are stripped away. Let’s suppose A is the weighted shape

Then A� is the shape

And for planes, if A is

then A� is

The sum of two weighted shapes A and B in an algebra Wij is formed by dividing

the basic elements in A and B into separate pieces to assign weights. These new basic

elements are distinguished according to whether they contribute to the differences

A� � B� or B� � A�, or to the product A� � B�. These parts are distinct and separate from

one another, and they totally exhaust the sum A� þ B�

The weights assigned to the basic elements that contribute to the differences are taken

directly from A and B, while the weights assigned to the basic elements that contribute

to the product are defined in unions. This process is easy to illustrate for lines
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In particular, notice how singleton shapes are used to produce new basic elements. Let

e and f be basic elements in A and B. Then for the twin differences A� � B� and

B� � A�, new basic elements are defined by feg � B� and f f g � A�, and for the product

A� � B�, by feg � f f g. And once this is done for all basic elements, resultant ones with

equal weights are added together to make sure that everything is maximal. Basic ele-

ments defined in differences and products with singleton shapes are always discrete,

but they may still have overlapping boundary elements.

In like fashion, the difference of two weighted shapes A and B is formed by divid-

ing their basic elements into pieces that contribute to the shapes A� � B� and A� � B�.
The weights assigned to the basic elements that contribute to A� � B� are defined in rel-

ative complements. However, weights can’t be empty for basic elements to be included

in the difference of the weighted shapes A and B. And once again, the process is easy to

illustrate for lines

The Boolean algebra for sets of labels is nothing special. Nonetheless, it shows

how a familiar abstract device is enough to change any algebra of labeled shapes into

an isomorphic algebra of weighted shapes. Putting independent labels in sets lets me

combine the labels. (I can do the same using individuals, only with atoms—one for

each label—instead of members. But I like sets better. Labels are pretty abstract already,

so there’s no harm in sets and no reason to be like shapes. The contrast is worth keep-

ing to stress the difference between classifying parts and finding them.) This trick

makes labels unnecessary—weights will do. Of greater interest, though, there are more

exotic algebras of weights that aren’t Boolean. One is worth seeing in a little detail, be-

cause of its relationship to drawing and because of what it shows about cooking up
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algebras of weights where physical properties and mathematical ideas interact on equal

footing to get a nice result.

Weights are already familiar in architecture, graphics, and the visual arts, where

lines of different thickness are used in drawing

It’s no big deal to extend this idea in a variety of ways—to points, for example, when

they have area

and to planes and solids when they’re filled with tones

as I’ve already shown. Such properties have a neat algebra with a relation and opera-

tions that correspond to parts and to sum and difference in an algebra of shapes.

Suppose that two lines of different thickness defined by numerical values—pen

size will do—are drawn at the same time, either one overlapping the other

The thicker line appears at full length, while the thinner one is shortened. And if the

two lines have equal thickness, then a single line is formed

In both of these experiments, the weight of the embedded segment common to the

lines is the maximum of the combined weights. So for the weights u and v, it’s just

the case that

uþ v ¼ maxfu; vg
And for parts, it’s easy to see that ua v when

uþ v ¼ v

The way weights combine in differences, however, isn’t as clear as it is for sums, and

there’s little in drawing that offers genuine guidance. But algebraic considerations
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suggest an interesting rule. Weights form a lattice in which the least upper bound of

any two is their sum, and the greatest lower bound is their product or the minimum

of both

u � v ¼ minfu; vg
Clearly, ua v when

u � v ¼ u

But in full Boolean fashion, I should also have the equality

u � v ¼ u� ðu� vÞ
in which the product of u and v is determined in a double difference. If I make this

so, then the rule where the difference of u and v is their arithmetic difference when

v is less than u, and zero otherwise, is a felicitous choice. All of it—parts, sums, and

differences—looks like this

Weights in the way I’ve been describing them have physical properties, so the

transformations might make a difference of another kind. A color here needn’t be

the same when it’s put over there, and area, thickness, and tone can vary as I move

weighted shapes around. Nonetheless, I’ll do what’s easy and simply avoid additional

complication—weights are invariant under the transformations. This makes perfectly

good sense, too, being partly confirmed in everyday experience. My weight doesn’t

change when I go for a walk. No matter how I move, it’s exactly the same.

Of course, it’s always possible to elaborate the algebras Ui j in other ways that go

beyond labels and weights. I can use labels and weights together, and it’s a nice exer-

cise to see how this sets up algebraically. But there’s no reason to be parsimonious—

and no elegance is lost—when new algebras are this easy to define. The idea is to get

the algebra that makes sense for what you’re doing, and not to make what you’re

doing conform to an arbitrary algebra that’s in use. The mathematics is generous—

even profligate—and it’s no sin to be prodigal. It’s worth taking the time to get the

right stuff to express what you want to when you calculate. That’s what I do when I

select appropriate materials—pencils, pens, markers, different kinds of paper, etc.—to

draw without thinking about how it’s calculating. But there’s mathematics for all of it.

And I can even imagine doing it on the fly, so that algebras change dynamically as

shapes do when rules are tried.

The algebras Ui j, Vi j, and Wij can also be combined in a variety of ways, for ex-

ample, in appropriate sums and products (direct products), to obtain new algebras.

These algebras typically contain compound shapes with one or more components in
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which basic elements of various kinds, labels, and weights are mixed, as for example, in

the shape

with points, lines, and planes, etc. In this way, the algebras Ui j, Vi j, and Wij, and their

combinations facilitate the definition of a host of formal devices in a common frame-

work. The properties of these devices correspond closely to the properties of traditional

media in art and design. Nothing is lost—certainly no ambiguity, and that’s the main

thing to check—and much is gained when things can interact in new ways. This lets

me calculate in the kind of milieu that’s expected for creative activity. I’m free to try

any materials that work, and to experiment to find out how they work together.

The algebras I’ve been talking about give me the wherewithal to say what I mean

by a design—not the activity, but its result. Roughly speaking, designs are used to de-

scribe things for making and to show how they work. This may imply a wide range of

expressive devices—shapes and the kinds of things in my algebras—in myriad different

descriptions that are linked and interact in many ways. As descriptions, designs are

complicated and multifaceted. To begin, a design may consist of line drawings, with

all their ambiguity, that I can use singly or multiply to determine form—for example,

to show three-dimensional relationships in plans, sections, and elevations, or to de-

scribe the separate parts and their relationships in an assembly. Drawings, however,

rarely give everything in a design. Sometimes, drawings are augmented with models

and other kinds of geometrical representations. Or they’re combined with labels and

weights—even samples—to describe form further and to provide details of function,

material, construction, etc. Drawings themselves can be described in different ways. I

can decompose them into parts, and then assign parts to categories to clarify intention

from different points of view and to allow for analysis, explication, and evaluation.

These ends are also served when drawings are identified with other kinds of descrip-

tions, including diagrams, graphs, and networks, and with numbers and mathematical

expressions. And the use and scope of the various descriptions in a design may depend

on special instructions and additional documents, or may be elaborated in an ongoing

commentary—it’s never too late to calculate some more, so that the design changes

over time. Many things of many kinds connect to make a design. And all of this is pos-

sible in my algebras when I calculate.

It’s easy to be precise about this—

designs belong to n-ary relations

The way of calculating I have in mind is meant to define these relations. ‘‘Languages’’

of designs defined in shape grammars are one example. And in fact there are more
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intricate examples as well—a few easy ones are given in this part and others in part III.

Right now, though, it’s good to see that my definition is more than bookkeeping. Not

only does it imply that things connect up in designs in alternative ways, it also implies

that specialists and users can communicate across domains—even at cross-purposes—

to contribute to a single end. This is cooperation without coercion. There’s no need

for shared understanding or overarching control. Calculating with ambiguity and

changing connections makes this possible. And it shows the kind of virtuosity that’s

expected in intelligent and creative practice. This goes beyond familiar slogans, like

‘‘form follows function,’’ that are supposed to guide practice, and tiresome theory.

And it shows the inadequacy of presumed generators of designs such as programme,

context, technology, and material, and of studied accounts of how designs are pro-

duced whether formal, functional, rational, or historical. Practice is far more inter-

esting. Designs result from a confluence of activities with multiple perspectives

that ebb and flow. Changing interests and goals interact and influence one another

dynamically. Nothing is set for long in this process. Designs are complicated and

multifaceted—they’re the very stuff of algebras and calculating.

Solids, Fractals, and Other Zero-Dimensional Things

I said earlier that decompositions are finite sets of parts that sum to make shapes. They

show how shapes are divided for different reasons and how these divisions interact. Of

course, decompositions aren’t defined only for shapes in an algebra Ui j. More gener-

ally, they’re defined for whatever there is in any algebra formed from the algebras in

the series Ui j. And decompositions have their own algebras. Together with the empty

set—it’s not a decomposition—they form generalized Boolean algebras with operators.

There’s the subset relation, the standard operations for sets (union, intersection, and

relative complement), and the Euclidean transformations. And, in fact, these are just

the kind of algebras needed for set grammars. They make decompositions zero dimen-

sional like the shapes in the algebras U0 j. The parts in decompositions behave exactly

like points. Whatever else they are, they’re members of sets—units that are indepen-

dent in combination and without finer analysis.

I like to point out that complex things like fractals and computer models of solids

and thought are zero dimensional. Am I obviously mistaken? It’s easy to think so. Sol-

ids are clearly three dimensional—I bump into them. Fractal dimensions are neither

whole numbers nor zero, whatever they are. And no one knows about thought, even

though it’s said to be multidimensional when it’s creative. Only this misses the point.

Fractals and computer models rely on decompositions that are zero dimensional, or

like representations such as lists or graphs in which units are also given from the start.

That’s how computers work—they manipulate complex things with predefined divi-

sions. Units are easy to count—fractal dimensions add up before calculating begins—

and easy to move around to sift through possible configurations for ones of interest.

Nonetheless, computers fail with shapes once they include lines or basic elements of

higher dimension. I can describe what happens to shapes as long as I continue to cal-
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culate, and I can measure their complexity as a result of the rules I use to pick out parts.

In this sense, shapes may be just as complex as anything else. There is, however, a tell-

ing difference. The complexity of shapes is retrospective. It’s an artifact of the rules I try

that depends on how they’re actually applied. Without rules, there’s no complexity.

And with rules, complexity varies—up and down—as I calculate. There aren’t any

units before I start, and I have to finish to get an accurate and final count. I may not

know what’s going to happen until it does.

I’ve already shown that units in combination needn’t correspond with experi-

ence. What a computer knows and what I see may be entirely different. The shape

is sixteen lines that describe two squares with four sides apiece and four triangles with

three sides apiece. This explains how it works. But there are too many lines, and too

few. Some parts are hard to delete—the outside square won’t go away. And some parts

are impossible to find—lowercase k’s aren’t there. But even if I’m willing to accept this

because the definitions of squares and triangles are exactly what they should be—and

for the time being, they’re more important than k’s—there’s still a problem. I may not

know how the shape is described before I start to use it. Does it include only squares, or

some combination of squares and triangles? I can see the shape easily enough—there

it is

—but I can’t see its decomposition. I need to find this hidden structure. Experiments

are useful, only they take time and may fail. I’m stuck without help and the occult

(personal) knowledge of experts. Shapes aren’t anything like this. What you see is

what you get. This is a good reason to use shapes in design. There are times when I

don’t know what I’m doing and I look at shapes to find out. That’s why drawing makes

a difference. It’s a little like listening to what you say to learn what you think. But

there’s nothing to gain if I have to ask somebody else what shapes are. Then I don’t

need to draw because I can see what they say.

Decompositions don’t work. There are many reasons for this as just described,

and maybe a few more to prove my point. First, there’s the problem of the original

analysis. How can I possibly know how to divide a shape into parts that suit my pres-

ent interests and goals and that anticipate whatever I might do next? Nothing keeps

me from seeing triangles and K’s after I draw squares—even if I’m sure that squares

are all I’ll ever need and I’m blind to triangles and K’s right now. It’s much easier to
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see what I want to in an ongoing process than to remember or learn what to do. My

immediate perception takes precedence over anything I’ve decided or know. But

there’s an option. I don’t have to divide the shape into meaningful parts. I can cut it

into anonymous units, small enough to model (approximate) as many new parts as I

want. This is a standard practice, but the parts of the shape and their models are too

far apart. Shapes containing lines, for example, aren’t like shapes that combine points.

This is what the algebras U0 j and U1 j show. Moreover, useful divisions are likely to be

infrequent and not very fine. Getting the right ones at the right time is what matters.

Yet even if units do combine to model the parts I want, they may also multiply unnec-

essary parts, beyond interest and use, to cause unexpected problems. Point sets show

this perfectly. I have to deal with the parts I want, and also with the parts I don’t.

Dividing the shape into units exceeds my intuitive reach. I can no longer engage it

directly in terms of what I see. There’s something definite to know beforehand, so I

have to think twice about how the shape works. It’s an arrangement of arbitrary units

that go together in an arbitrary way that has to be remembered. What happens to

novelty and new experience? Memory blocks it all. Any way you cut it, there’s got to

be a better way to handle the shape. Decompositions are preposterous before I calcu-

late. They provide a record of what I’ve done, not a map of what to do. They keep me

from going on—at least in new ways.

But decompositions are fine if I remember they’re only descriptions, and that

descriptions don’t count. They’re what I get whenever I talk about shapes—to say

what they’re for as I show how they’re used. Without decompositions, I could only

point at shapes in a vague sort of way. Still, words are no substitute for shapes when I

calculate. Parts aren’t permanent but alter freely every time I try a rule. Shapes and

words aren’t the same.

How Rules Work When I Calculate

Most of the things in the algebras I’ve been describing—I’ll call all of these things

shapes from now on unless it makes a serious difference—are useless jumbles. This

should come as no surprise. Most of the numbers in arithmetic are totally meaningless,

too. The shapes that count—like the numbers I get when I balance my checkbook—are

the ones there are when I calculate. I have to see something and do something for

things to have any meaning. And seeing and doing can change things freely, even as

calculating goes on.

Shapes are defined in different algebras. But how I calculate in each of these alge-

bras has a common mechanism. Rules are defined and applied recursively to shapes in

terms of the part relation and Boolean sum and difference—or whatever corresponds to

the part relation and these operations—and the Euclidean transformations. This uses

the full power of the algebras. You can’t get away with anything less.

Rules are given by ostension. Any two shapes whatsoever—empty or not and the

same or not—shown one after the other determine a rule. Suppose that these shapes

are first A and next B. Then the rule they define is
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A fi B

An arrow ( fi ) separates the two shapes. The rule has a left side that contains A and a

right side that contains B. If A and B are drawn, then registration marks are used to fix

the spatial relation between them. The rule

for example, turns a square about its center and shrinks it. The rule is a particular in-

stance of the schema

x fi tðxÞ
I used in part I. The spatial relation between the squares in the rule—more accurately,

their sum—is explicit when the mark

in the left side of the rule and the one in its right side register

This is a convenient device to show how different shapes line up. Likewise, the rule

is one instance among many of the schema

bðxÞ fi x

when bðxÞ is eight points. The shapes in the left and right sides of the rule line up just

so
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to show the spatial relation between the eight points and two squares for which these

points are the boundary. And if I define the supervening rule

in the schema bðxÞ fi x, I show how two squares—eight lines—bound four triangular

planes. But, in this case, this is the only rule with this left side. And no additional rule

goes from planes to solids.

Two rules are the same whenever there’s a single transformation that makes the

corresponding shapes in both identical—left side to left side and right side to right

side. The rule

is the same as the rule

via a 45-degree rotation. But the rule

isn’t, even though the shape

is formed when the registration marks in the left and right sides of the rule are made to

coincide. The rule is the inverse of the rule
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The square gets smaller or the square gets bigger. And this rule

moves a triangle to the right, while its inverse

does so to the left.

But inverses needn’t be distinct when rules are defined in the schema x fi tðxÞ.
An identity A fi A and its inverse are evidently the same, only this is trivial. Of greater

interest, the rule

that rotates a square at a corner, and its inverse

are the same. You can check this in general using the transformation t A � t�1, where

t A is a transformation in the symmetry group of x in x fi tðxÞ, and t Aðt�1ðxÞÞ ¼ tðxÞ.
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It’s also easy to see that t A � t�1 is in the symmetry group of xþ tðxÞ. For the two squares

in the rule

t A � t�1 defines the axis of reflection

Still, in general, there’s more to check to ensure that there are right answers. More

generally, rules with symmetric sums have inverses that aren’t the same—for example,

this one

When the squares are reflected, the left one is the left one and not the right one.

There’s no flip.

The precise details of applying rules and saying how they work are straightfor-

ward. It’s mostly using your eyes and saying what they see. A rule A fi B applies to a

shape C in two easy stages.

(1) Find a transformation t that makes the shape A part of C. This picks out some

part of C that looks like A. In symbols it looks like this

tðAÞaC

(2) Subtract the transformation of A from C, and then add the same transformation

of the shape B. This replaces the part of C that’s like A with another part that looks like

B. And once again, it’s nice to show it in symbols

ðC� tðAÞÞ þ tðBÞ
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In the first stage, the rule A fi B is used to see. It works as an observational de-

vice. If A can be embedded in C in any way at all—no matter what’s gone on before—

then C has a part like A. In the second stage, the rule changes C in accordance with A

and B. Now it’s a constructive device. But once something is added, it fuses with what’s

left of C and may or may not be recognized again. The shapes (parts) in the rule are lost

once it’s applied. There’s no record (memory) of the part identified in stage 1 or of the

part added in stage 2. Calculating always starts over with an undifferentiated shape.

And notice also that the two stages are intentionally linked via the same transforma-

tion t. This completes the visual analogy

tðAÞ fi tðBÞ<A fi B

The rule A fi B is a convenient example of the kind of thing that’s supposed to

happen. The rule tðAÞ fi tðBÞ is the same and works for the given shape C. This is

one way of thinking about context. It’s evident when I transpose the terms in the

analogy—the part of C that’s subtracted is to A as the part that’s added is to B. But the

analogy stops there. It doesn’t go on. It ends with A and B, and the transformation t.

There are neither finer divisions nor additional relationships in A or B. The parts of

shapes are no less indefinite because they’re in rules, and they aren’t differentiated

when rules are tried.

The formal details of rule application shouldn’t obscure the main idea behind

rules. Observation—the ability to divide shapes into definite parts—provides the impe-

tus for meaningful change. This relationship is nothing new, but it’s no less important

for that. As I’ve already said, it’s seeing and doing, the behaviorist’s stimulus and re-

sponse, and Peirce’s habitual when and how. And James has it at the center of reason-

ing. This is worth repeating.

And the art of the reasoner will consist of two stages:

First, sagacity, or the ability to discover what part, M, lies embedded in the whole S which is before

him;

Second, learning, or the ability to recall promptly M’s consequences, concomitants, or implica-

tions.

The twin stages in the reasoner’s art are formalized in the stages given to apply rules. In

fact, it’s the same kind of analogy contained in rules themselves. I can show it in this way

tðAÞ : tðAÞ fi tðBÞ< sagacity : learning

or, alternatively, so

tðAÞaC : ðC� tðAÞÞ þ tðBÞ< sagacity : learning

in terms of what the rule does as it’s used. Every time a rule is tried, sagacity and

learning—redescription and inference—work jointly to create a new outcome. And

it’s sagacity that distinguishes rules the most as useful devices for calculating. Rules di-

vide shapes anew as they change in an unfolding process in which parts are picked out,

combine, and fuse. But learning isn’t remembering how shapes are divided into parts—
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that can change anytime. It’s finding rules and remembering ones as examples of what

to see and do. This makes a huge difference when embedding isn’t identity. I can know

how to go on without knowing anything for sure about the world. It’s using your eyes

to decide what to do next. (The root value of observation in calculating is reinforced

when James quotes John Stuart Mill—‘‘The observer is not he who merely sees the

thing which is before his eyes, but he who sees what parts that thing is composed of.’’

And again, for me this changes every time a rule is tried. But there’s more. For Mill,

observing and inventing are alike. This makes a neat metaphor for rules and a good

heuristic in design.)

Trying It Out

The way rules are used to calculate is clear in an easy example. The rule

produces the shapes in this ongoing series

when I start calculating with the square

In particular, the third shape in the series is produced in two steps in the following way

and in three steps in this way
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The rule finds squares and inscribes smaller ones. In the first series, the rule is applied

under a different transformation each time it’s tried to pick out the initial square, or

the square inscribed most recently. But in the second series, equivalent transforma-

tions with respect to the right side of the rule (the details are given later, in table 10)

are used in the first and second steps. The same square can be distinguished repeatedly

without producing new results.

I can modify the rule

with a point in its left side and a point in its right side

so that the rule has to apply to the most recently added square

Points and labeled points are really good for this, and provide the kind of logic and

control that’s useful in calculating.

Playing around with the rule

lets me introduce and use a telling asymmetry. If I tilt and stretch the smaller square

my rule applies only under rotations as it did before
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But suppose I move the points

Now I have to use reflections to apply the rule, at least if I start with the same shape

Then both rules together let me rotate the inscribed square in any way I like.

This may be easier without points

but in addition there’s the chance of intersecting squares

Two rules are better than one. Still, the single rule
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with a point on a symmetry axis of each of the squares is also enough

Notice, however, that the rule

doesn’t work—the centers of both squares are the same and so don’t distinguish them.

Of course, there are other places for points with different results, depending on the

squares and how they’re related, and the symmetries involved. Try the left side of

the first rule and the right side of the second one to get what I’ve done—at least in a

special case. And all of this can be extended with labels, for example, for rhythmic

patterns of rotations and reflections. Things get interesting fast.

I can also describe the rule

in a nice way, and its successors with points, too. A transformation of the square in the

left side of the rule is part of the shape in its right side. The rule is recursive—I can

apply it again in new places. But more generally for any shape x, I can define rules in

terms of the schema

x fi xþ tðxÞ
This gives parts of symmetrical patterns when the transformations t are the generators

of a symmetry group. I can calculate with scalene right triangles using the rule

to get a shape with cyclic symmetry
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And together with a second rule

there’s the shape with the corresponding dihedral symmetry

But x and tðxÞ may touch—for example, perhaps basic elements in shapes overlap. If I

use the rule

in which a square and a translation of it are added, I get a frieze

The inverse of the rule

takes me back to where I started

when I begin at the right, but it needn’t once I turn the rule upside down
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In fact, my rule for dihedral symmetry gives like results. Symmetry—now of shapes

in rules—can’t be ignored. And again, it’s something to use. But I can also go on and

calculate with my rule for squares to produce other shapes

—this time, so that there’s no way of applying its inverse to get back to the start. If I try

to calculate in reverse, it’s

Every small square contains sides of two others. And when the rule is upside down, it’s

If I don’t like these additional possibilities, I can avoid them. I can incorporate points

in my rule

to get only a frieze

And the inverse of my new rule undoes what I’ve done without a hitch, even if it is

symmetric. Squares keep their semantics.

It isn’t hard to modify the rule
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with points and labels in many other ways. I can use multiple versions of it—perhaps

with additional rules—to produce shapes with myriad kinds of properties that may be

desirable. Try it for shapes like the ones in the series

or in the series

Or simply change the rule—again with points and labels—and see what you get. This

is a good way to find the tricks that make rules do what you want. And it’s always pos-

sible to be surprised—shapes are filled with ambiguities. Using them makes calculating

worthwhile.

A variation of the schema

x fi xþ tðxÞ
shows how shapes and their boundaries go together in spatial relations. In particular,

the rule

and the rule

are both instances of the schema
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bðxÞ fi xþ bðxÞ
A shape is given in the left side of the schema and then added to a shape for which it’s

the boundary in the right side. I can calculate with my rules first to link points with a

square and then with a bow tie—in much the same way Paul Klee describes ‘‘medial’’

lines, but now its points that are medial

Or I can try something more ambitious—maybe the grade-school exercise I described

in the introduction—the one Miss H—— assigned to show that seeing was more than

counting. Suppose I begin with an array of points

The rule

gives it to me, along with every other shape in the algebra U02. Points go anywhere

I want because the rule applies to the empty shape, and it’s the same under every

transformation. (Any rule with the empty shape in its left side is indeterminate.) It’s

the same tapping my pencil on a sheet of paper to get random results. With the empty

shape, there’s no looking to see what to do. And I can go on in the same way I started

and define additional rules using the schema bðxÞ fi xþ bðxÞ—maybe these two with

lines and planes

to fill in areas with tones that add up in an algebra of weights
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It’s fun to see how maximal elements change in this process. There’s plenty of oppor-

tunity to try all sorts of things with algebras, shapes, and rules.

Fractals introduce a different kind of symmetry. They’re also formed when trans-

formations of a shape are added up—now using rules in the schema

x fi
X

tðxÞ

What’s different here is that scale may be conspicuously involved. Try the rule

to get the shapes in the series
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Fractals are zero dimensional, but this is scant reason not to define them using rules in

algebras where embedding isn’t identity. Fatal problems arise in the opposite way, if

I try to describe things that aren’t zero dimensional as if they were. This is the main

point of part I, and it’s a mantra worth repeating. It’s the reason visual calculating

makes a difference.

But there are some problems. The rule

doesn’t always produce the same fractals. I can apply the rule under alternative

transformations—maybe inside out in rotations or reflections—to get the shapes

And because the line in the left side of the rule can be embedded in any line whatso-

ever, I can change scale in a host of surprising ways to get the shapes

in which units and divisions are incommensurable. (Units follow the series 1=2n for

nb0, but I’ve used the rule for divisions at 3
ffiffiffi
3

p
=2nþ2. Other divisions would do, too.)

Lines in fractals are units, but not in shapes when I calculate. Lines fuse, and divide

erratically. You have to make them behave.

Good manners should be encouraged. My problems are easy to fix with a familiar

device. I can change the initial shape in my original series with a handful of well-

placed points

and I can change the rule in the same way
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to limit the possibilities and thus guarantee the results I want. First, this makes lines

behave like units—a point and a line together

determine a perpendicular

and thus a constant scaling factor. And then, the point and the line break the fourfold

symmetry of the line

so that rules apply in definite ways. (Turn this around and ask what a line does for a

point that’s invariant under indefinitely many transformations—rotations, reflections,

and changes in scale. Points and lines interact with one another reciprocally when

rules are tried. There’s nothing to tell them apart that implies that points constrain

lines or vice versa. Geometrically at least, basic elements are the same.) But apply the

rule

and see what happens

or other rules like it. (I count two hundred and fifty-six rules that can each be used for

something different, and in combination to produce more. There are four distinct left

sides and sixty-four distinct right sides, and no transformation matches left to left and

right to right at the same time. But this is profligate—a few rules and other tricks do

similar kinds of things. I can begin to think about this by moving points around with

the pair of rules

to simulate what my other rules do. My new rules are defined in terms of generators for

the symmetry group of the line. And the idea is good for other shapes with different

symmetries.)
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Modifying rules according to the symmetry of the shapes they contain is a use-

ful ploy. More generally, though, I can vary the properties of the shapes in rules with

basic elements, labels, weights, and so on, to get the outcomes I like. It’s a lot like

composing—there’s symmetry, scale, balance, rhythm, color, etc. I’m still surprised at

all the things rules do as they apply—with transformations, parts, and adding and sub-

tracting in two easy formulas. That’s all it takes to see and do—just calculating with

shapes and rules.

Spatial Relations and Rules

There’s more to calculating with shapes than symmetrical patterns and fractals or com-

bining shapes and their boundaries. In fact, there are more generic schemas to define

rules that include the previous ones with transformations and the boundary operator.

And these new schemas are pedagogically effective—they make adding and subtracting

explicit in rules before they’re applied.

For any two shapes A and B, I can define addition rules in terms of the schema

x fi Aþ B

and subtraction rules in terms of its inverse

Aþ B fi x

where the variable x has either A or B as its value. (Evidently, addition rules—and like-

wise subtraction rules—are the same whenever the rules A fi B and B fi A are.) The

shapes A and B define a spatial relation that determines how to combine shapes. They

show how conjugate parts are arranged after I add one, or if I want to take one away

and leave the other. But there’s a caveat. A spatial relation is an equivalence relation

for decompositions—two are the same when one is a transformation of the other.

This is a nice way to describe how shapes go together to define rules in schemas. In

fact, it provides a general model of calculating that includes Turing machines. Still,

the spatial relation isn’t preserved in the rules it defines. Descriptions have no lasting

value, only heuristic appeal. They’re something to use that helps to get started. Then

you’re on your own—you’re free to see anything you choose. There’s a lot more to

shapes once they fuse than there is when they’re kept apart in spatial relations. (That’s

calculating with sets in set grammars, not with shapes in shape grammars.)

Let’s see how my twin schemas work. The shape

gives some good examples when it’s divided into two squares to define a spatial rela-

tion. This keeps to the schema x fi xþ tðxÞ and its inverse, but nothing is lost in the

simplification. There are still four distinct rules—two for addition
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and two for subtraction

From the initial square

the rules apply to produce alternating squares in a series, with no beginning or end,

that’s centered on this segment

and any finite combination of these squares that you want for this reason or that—for

example, the shape
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that contains four squares.

Decomposing shapes to define spatial relations for rules can be very useful. I can

begin with shapes I like, and try to find rules to produce them and new shapes of the

same kind. It’s the beginning of stylistic analysis and a way to handle stylistic change.

Or I can use these rules with whatever I’m doing to follow up an interesting motif or

salient feature (part) in a way that’s copying it and more. And it’s especially nice that

decomposing shapes is really calculating, too—for example, with identities defined in

the schema

x fi x

or with erasing rules from the schema

x fi

But even better, there are telling decompositions no matter how I calculate. That’s one

of the things I showed in part I with rules from the schema

x fi tðxÞ
and stars and superstars.

Right now, though, the inverse schema

Aþ B fi x

is loaded with unexpected possibilities. Certainly, the cross

can be divided neatly into squares—either four of five of them—to define three distinct

spatial relations
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And the first of these in an addition rule

produces the cross in this way

while the third in an addition rule

works so

But suppose the cross without internal divisions is related externally to another square

in the following way

Then I can use the addition rule
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and the subtraction rule

to calculate

And the process continues

because squares are parts of the cross. But the location and size of the square that’s

subtracted—think of it as an armature—is really arbitrary. Any square or any other

shape similar to part of the cross will do to define a productive spatial relation, for

example

Whenever subtraction (erasing) is allowed, there may be a lot more to designs

than meets the eye. Spatial relations are all over the place, just out of sight. Inference
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(induction) is dicey at best given that shapes are ambiguous, and may be even more so

when some parts have disappeared without a trace. But certainly there’s a long tradi-

tion in design of using hidden axes, grids, regulating lines, different kinds of parti, etc.

Spatial relations and rules defined according to my schemas simply generalize this

idea—every shape is a grid

and any shape can be located with respect to it

It’s easy to be conventional and stick to classical lines and angles. Perhaps a pair

is arranged orthogonally in this way

to get the addition and subtraction rules

—they’re both indeterminate—that let me calculate so
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Or I might be adventuresome and try something else that isn’t classical, where lines

are arranged promiscuously

to get different kinds of results

with new addition and subtraction rules. There’s the same generative twist both

ways. Alberti, with his appeal to lines and angles, seems already primed for the

recursion—

All the power of invention, all the skill and experience in the art of building, are called upon

in compartition; compartition alone divides up the whole building into the parts by which

it is articulated, and integrates its every part by composing all the lines and angles into a single,

harmonious work that respects utility, dignity, and delight. If (as the philosophers maintain)

the city is like some large house, and the house is in turn like some small city, cannot the various

parts of the house—atria, xysti, dining rooms, porticoes, and so on—be considered miniature

buildings?

And Klee tries as much in the series of drawings that introduces his Pedagogical

Sketchbook

An active line on a walk, moving freely, without a goal. A walk for a walk’s sake. The mobility

agent is a point, shifting its position forward.

The same line, accompanied by complementary forms.

The same line, circumscribing itself.
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Two secondary lines, moving around an imaginary main line.

What a marvelous way to start—adding complementary forms in spatial relations, and

likewise adding lines and subtracting one that’s then imaginary.

But decomposing shapes isn’t the only way to define spatial relations to use in

my schemas. I can start from scratch. I can begin with shapes—a vocabulary—and

enumerate apt configurations. There’s reason to be combinatorial after all. How things

feel when I pick them up, move them around, and line them up with my hands is a

natural way to approach this. It’s similar to what Frederick Froebel emphasizes in the

kindergarten. His famous building gifts and tablets (play blocks and plane figures),

and categories—forms of beauty (symmetrical patterns), knowledge (arithmetical and

geometrical facts), and life (buildings, furniture, monuments, etc.)—provide some

nice material for experiments. Spatial relations determine rules to augment the catego-

ries, so that I can calculate. The spatial relations are neatly defined in kindergarten

rhymes—

Face to face put. That is right.

Edges now are meeting quite.

Edge to face now we will lay,

Face to edge will end the play.

For pieces in the gifts, it might look like this

It feels right. But let’s try it for geometrically similar polygons as boundaries of plane

figures, instead of using play blocks. It’s still the same idea, with the difference that

everything goes together equal edge to equal edge, and vertex to vertex.

Suppose I begin with right triangles like this one

Then I get twenty-one spatial relations with distinct triangles
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that answer to a group of transformations. In particular, two triangles share different

edges that match left and right, and up and down—it’s the symmetry of the line again.

This is not unlike playing around with a T-square and triangles—even arbitrary ones—

to see what you can do. Everything goes together in a marvelous catalogue of visual

possibilities. And I can use these spatial relations in my schemas to define rules

to calculate in a dynamic way
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Or I can opt for a rule with symmetry

so that things stay the same when I calculate

But this rule and two others

work together to produce tessellations like this

There’s no telling when another rule might be useful—and it’s always possible to add

rules to the ones I’ve got.

When I started talking about the schema

x fi Aþ B

and its inverse, I said that what’s changed needn’t be what’s added. For example, I can

modify this rule
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with points

to calculate in the expected way

or I can forget the points and exploit the ambiguity using both addition and subtrac-

tion rules

Parts change as I apply my rules. But there are other aspects of this, as well—distinct

spatial relations can determine the same rule.

This shape

is the sum of two triangles in three different ways

Just looking at the pair of rules
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I can’t tell which of the two triangles

I’m adding or subtracting. If I want a record of the triangles I’ve actually used, then this

is a bother. Still, there are ways to keep track of things. I can resort to points again to

distinguish the distinct cases—here for addition

to get results like these

Or I can stop worrying about it, and take advantage of the ambiguity—perhaps in this

marvelous series that concludes with triangles and rectangles

One of the reasons the catalogue of spatial relations I started with is so big is that

the shape

is a scalene triangle. For triangles with more symmetry, the size of the catalogue

decreases. In particular, for the isosceles triangle
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there are six spatial relations

and for the equilateral triangle

just one

But there’s no reason for me to stop. I can use my triangles together to get four more

spatial relations

And I can break the symmetry of my triangles to define different rules that apply in

definite ways. Again, points are useful if I put them in the right places—here in the

isosceles triangle

and here in the equilateral one

And, in fact, these triangles with points have spatial relations that correspond to the

ones for my scalene triangle. This is a nice way to show how symmetry works. None-

theless, points are better used in rules. It’s calculating with shapes that makes a real dif-

ference. There are addition rules like these
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—and subtraction rules, as well—in which right sides contain a single point or several

of them to show where rules apply next. New rules are always worth a try. With mine,

I can get shapes like this

Let’s look at something else—maybe rectangles and squares that keep their size

and line up edge to edge and vertex to vertex in these spatial relations

defined in my kindergarten rhyme. Points help to take advantage of the symmetries,

and lined paper makes drawing easy. Try it.

Zero-dimensional devices help to tame rules in higher-dimensional algebras. In

particular, points and lines show how visual ideas can be controlled in a comfortable,
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logical fashion. But rules draw distinctions as they apply, so ambiguities are always

possible. Mistakes are easy to make even with tried and true devices, and may be worth

keeping. Parts interact freely—doing something to distinguish one may unintention-

ally distinguish another with useful results. It depends on what rules there are, and on

when and where they’re applied.

Suppose I want to erase the horizontal line in the shape

in its entirety from end to end—maybe not right now, but sometime later. I can place a

point so

and try the rule

This gives me

exactly as it should. But the rule also applies to each of the oblique lines to produce the

shapes

The point isn’t attached to a definite part. This relationship is determined over

and over again, depending on my rules and how they’re used. I have to think about

the horizontal line and how it relates to the other two lines to place the point

‘‘correctly’’
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Now, no segment of an oblique line is long enough for the rule

to apply. Only the ambiguity needn’t end here if I go on calculating. I may have to

look farther out than I can see. Until I erase the horizontal line, the point can interact

with any line that’s defined—if there’s a rule for it. Still, my answer may not matter.

What if I also have the rule

that adds to lines. Dividing shapes into independent pieces to define rules rarely suc-

ceeds, unless I appeal to labels or comparable devices—for example, compound shapes

in algebras formed in direct products—to keep things separate in an artificial way. But

then what I see may not be what’s there. Calculating with shapes is different when sur-

prises are unavoidable.

There’s a lot to see as I use rules to calculate with shapes. Everything works with

everything else. But I’ve been showing only easy examples, special cases, and clever

tricks. What can I say about rules generally to help me understand what they do? It’s

all in the two formulas for applying rules—either in the transformation t or in the part

relation a.

Classifying Rules with Transformations

Rules can be classified in a variety of important ways. First, it’s possible to decide

whether they apply determinately or indeterminately—that is to say, whether or not

there are a limited number of transformations t that satisfy the formula

tðAÞaC

for the rule A fi B and the shape C. The conditions for determinate rules vary some-

what from algebra to algebra, but can be framed in terms of a recursive taxonomy of

registration marks defined with basic elements. It’s usually a surprise that these marks

aren’t always the basic elements themselves or their boundary elements. Paradigmati-

cally, lines in shapes intersect at points
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to fix transformations. The conditions that make rules determinate in the algebras U1 j

are specified fully in table 9 to show how this works. When j is 1, there are no registra-

tion points—lines are always collinear. Otherwise, when j is 2 or j is 3, there are at

least two such points and a plane. (What happens when i is 0?)

Many examples of determinate rules are evident in the previous section—and

some contain more than lines. Of interest, all the rules made up of points and lines

are determinate. But indeterminate rules are also easy to find, with and without points.

The identity

is indeterminate in the algebra U12. The K has three maximal lines that intersect at a

single point. So the identity applies under indefinitely many changes in scale to find

K’s in the shape

However, bringing in a point

may not help. There’s still just one registration point—the point and the intersection

of the lines in the K are the same. Moreover, notice that different shapes may be equiv-

alent in terms of the registration marks they define. The lines in the uppercase K and

the lines in the lowercase k intersect at the same point, but this isn’t all. Shapes made

Table 9

Determinate Rules in the Algebras U1j

Algebra The rule A fi B is determinate

U11 Never.

U12 Three lines in A do not intersect at a common point. Further, no two of these lines
are collinear, and all three are not parallel.

U13 There are two cases. (1) Two lines in A are skew. (2) Three lines in A do not intersect
at a common point. Further, no two of these lines are collinear, and all three are not
parallel.
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up of segments of two or more unbounded lines intersecting at any common point—

for example

—are likewise related. Of course, with another registration mark, definite transforma-

tions can be defined, as in the identity

This works in the same way for the identity

And both identities are equivalent with respect to their registration marks, but just the

first finds parts in the shape

The part relation is needed, too, to tell whether rules apply or not.

The conditions for determinate rules in table 9 depend on the properties of the

shapes in the left sides of rules, and not on the shapes to which the rules apply. This

keeps the classification the same no matter how I calculate. It’s also important to note

that the conditions in table 9 provide the core of an algorithm that enumerates the

transformations under which any determinate rule A fi B applies to a given shape C.

If C is A, then the algorithm defines the symmetry group of A. But this is only an aside.

More to the point, rules can be tried automatically.

The problem of finding transformations to apply a rule A fi B to a shape C looks

hard because embedding rather than identity may determine how maximal elements

correspond. Nonetheless, maximal elements in the shapes A and C fix registration

marks that coincide whenever a transformation makes A part of C. Certain combina-

tions of these marks are enough to scale A and align it with C. Alignments needn’t sat-

isfy the part relation—distinct shapes may have equivalent registration marks. But the
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alignments that do satisfy it exactly determine all of the transformations there are to

apply the rule. This is clear for shapes in the algebra U12.

A pair of points distinguished in the shape A—they’re intersections of lines—

may be transformed to register with any pair of points in the shape C in four ways.

The ratio of the distance between the points in A and the distance between the points

in C determines how A is scaled, and orientation left to right and top to bottom fixes

alignment. The transformations so defined are distinct and include all of the ones that

make the part relation hold.

Consider the rule

that puts triangles together. It’s an instance of the schema x fi Aþ B—in fact, the spe-

cial case x fi xþ tðxÞ. The rule applies to each of the triangles in the shape

in two ways to produce four shapes

The transformations used for this purpose are readily defined. There are three points

where maximal lines intersect in the triangle

in the left side of the rule

and any pair of these points may be distinguished to define transformations—I guess

I’ll take this one

Further, there are four points where maximal lines intersect in the shape
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These combine in six pairs

The pair of points in the triangle may be transformed to register with each of the six

pairs in four different ways

The part relation is checked for all of these transformations, and is satisfied by the four

indicated by number. They’re easy to see. The shapes

are produced when transformations 1 through 4 are used to apply the rule.
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Of course, not every shape in the left side of a rule contains a pair of points

where maximal lines intersect. The empty shape is one of these shapes, and K is, too.

Moreover, there are shapes with parallel lines and shapes with lines that intersect at a

common point—for example, these

Nonetheless, for parallel lines there are singular cases where rules apply determinately.

Then lines are just the right length and are separated by just the right amount. This

complicates things a little without changing much. Indeterminate rules are easy to

identify and have many uses, even if ad hoc decisions are needed to apply them. Ear-

lier, I tried the rule

to get random shapes containing points. And I’ve used indeterminate rules to calculate

with axes, and to extend lines. I’ll show some other examples, too. Only now, there’s

more to say about rules and transformations. Surprisingly, the right side of a rule affects

the way the rule is applied. How does this work?

The rule

that inscribes a square in a square is determinate. The symmetry of the square in its left

side lets it apply under eight distinct transformations—four rotations and four reflec-

tions. But for each transformation, the results are exactly the same. No matter how I

replace a square

I get the shape
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Why? The reason can be given in terms of Lagrange’s famous theorem for subgroups,

and provides another way to classify rules.

Let two transformations be equivalent with respect to a shape if they change it

identically. In this example

a clockwise rotation of 90 degrees about the point O

and a reflection across the axis I

are equivalent relative to the rectangle. Both the rotation and the reflection do exactly

the same thing—just look. And this gives a general result.

If a rule A fi B has the property that the symmetry group of the shape A is parti-

tioned into q classes with respect to the shape B, then the rule can be used in q distinct

ways. And if the symmetry group of A has n transformations, then q divides n without

remainder. The symmetry group of A has a subgroup containing n=q transformations

with cosets given by the classes defined by B. Conversely, there’s a rule for every sub-

group of the symmetry group of A that behaves as the subgroup describes. The distinct

uses of the rule A fi B show the symmetry properties of A, and these properties classify

every rule with A in its left side.

This is nicely illustrated with a square in the algebra U12 for clockwise rotations

and for reflections named by these axes
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Rules behave in at least six different ways according to the six subgroups of the symme-

try group of the square given in table 10. The symmetry group of the square has other

subgroups that are isomorphic to these. One way to see this is in terms of equivalencies

among the four axes of the square. There may be ten subgroups (the axes are all differ-

ent), possibly eight (the horizontal axis and the vertical one are the same, and so are

the diagonal axes), or the six in table 10 (the axes are all the same).

The rule

has the symmetry properties of the first rule I show in table 10, and therefore it acts

like an identity with only one distinct use. The eight transformations in the symmetry

group of the square in the left side of the rule are equivalent with respect to the shape

in its right side. Try it yourself to make sure. And its also worthwhile to try this for the

rule

Table 10

Classification of Rules in terms of Lagrange’s Theorem

Rule Subgroup Number of cosets

0, 90, 180, 270, I, II, III, IV 1

0, 90, 180, 270 2

0, 180, I, III 2

0, 180 4

0, I 4

0 8
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and its inverse that I used earlier, to show that calculating with shapes needn’t be

reversible. The rule has the symmetry properties of the fifth rule in table 10.

Classifying Rules with Parts

So far, I’ve been using transformations to classify rules. This relies on the Euclidean

properties of shapes, but it’s not the only way to describe rules. I can take a Boolean

approach and think about rules in terms of how many parts there are in the shapes in

their left and right sides. The classification of rules in this way by counting their parts

is the crux of the Chomsky hierarchy for generative grammars. The hierarchy gives

compelling evidence for the idea that calculating is counting.

Generative grammars produce strings of symbols that are words or well-formed

sentences in a language. A rule

AqR fi AAqAL

links a pair of strings—in this case, three symbols A, q, and R, and three others AA, qA,
and L—by an arrow. If the strings were shapes, then the rule would be like one of my

rules. The rule is context free if there’s just one symbol in its left side, context sensitive

if the number of symbols in its left side isn’t more than the number of symbols in its

right side—my rule is context sensitive—and belongs to a general rewriting system

otherwise. Languages vary in complexity according to the kind of rules that are needed

to define them. Moreover, the class of languages generated by context-free rules is

included in the larger class of languages generated by context-sensitive rules, and so

on. How well does this idea work for rules defined in my algebras? What difference

does it make whether or not i is zero?

There’s no problem counting for shapes and other things when they’re zero di-

mensional. Points—or whatever corresponds to them, say, the parts in a decomposi-

tion of a shape—are uniquely distinguished in exactly the same way symbols are. But

what happens in an algebra when i isn’t zero? What can I find in the algebra U12 , for

example, that corresponds to points? Is there anything I can count on?

The rule

looks as if it should be context free, at least with respect to the unremarkable

description
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square fi squareþ inscribed square

that I’ve been using all along. There’s one square in the left side of the rule, and there

are two squares in the right side. And in fact, the rule worked perfectly in this fashion

when I used it to calculate before. I applied the rule twice in this way

and three times so

with a redundant step that repeats the preceding shape. Moreover, the final shape in

both series matches the string ( ) ( ) ( ), where each pair of parentheses indicates

another square, although the palindrome ((( ))) looks to be a better fit. (Parenthesis

strings are paradigmatically context free. To see this, modify the two rules in the

introduction—S fi ðSÞ for h i fi hh ii and S fi SS for h i fi h i h i—add the third

rule S fi ð Þ, and start with the symbol or ‘‘axiom’’ S.)

Other descriptions of my rule for squares, however, may be more appropriate.

What if I want to use it together with a rule that finds triangles? The identity

shouldn’t change anything. An identity

A fi A

in a generative grammar is totally useless, either because it doesn’t do anything or be-

cause A isn’t a symbol I’ve used before. But any rule I add when I calculate with shapes

will automatically work as intended with any rule I’ve already used. The part relation

lets me recognize triangles—or uppercase K’s and lowercase k’s—after I’ve combined

squares. So it might be necessary to look at the rule

under the alternative description
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square fi four triangles

The rule is still context free, but it doesn’t work. It applies once to the square

and then can’t be applied again to the shape

Now there are four triangles and no squares. I can patch this up by dividing triangles

and squares into three sides and four sides apiece. After all, this is the way they’re nor-

mally defined. It’s what Evans did in part I, and it gives me a new way of describing the

rule

square with four sides fi four triangles with three sides apiece

But if this is the case, then the rule must be context sensitive. Four lines are in the left

side of the rule and twelve lines are in the right side. And it’s easy to see that the in-

crease in complexity pays off when I calculate in this way

where the long sides of four triangles become the four sides of a square. This is con-

vincing proof that the rule is context sensitive—or is it? There’s still a lot more to

worry about. The rule doesn’t work in the longer series

It has to apply to the outside square in the second step. Under the description of the

rule I’m using now, each side of the outside square is divided in two. The outside

square is four lines at the start, and then eight lines one step later after adding trian-

gles. I can try another rule that changes how squares are described, maybe one with

the description

eight lines fi four lines
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or a rule that applies recursively to fuse the segments in any division of a line

two lines fi one line

Either way, a general rewriting system is defined. Alternatively, I can represent the rule

in two ways, so that squares have either four sides or sides described by their eight

halves. And notice further that if I have reason to put four triangles in the right side

of the rule, then its different versions are of different kinds—one is context sensitive

(four lines go to four triangles) and then the other isn’t (eight lines go to four trian-

gles). What the rule is depends on how it’s described. Maybe the rule is context free,

maybe it’s context sensitive, and maybe it’s in a general rewriting system.

I can calculate with the rule

to get the shape

but I have no way of deciding how complex this is before I begin. Just looking at the

rule isn’t enough. I have to examine things anew every time I apply it, and determine

how different descriptions of shapes interact. There are simply too many ways of calcu-

lating and too many different descriptions for this to be of any practical value.

In the introduction, I warned that the analogy

shape grammar : designs< generative grammar : sentences

shouldn’t be taken too far. And my discussion of the Chomsky hierarchy shows why

in fairly rigorous terms. It provides a very useful taxonomy for generative gram-

mars, but it doesn’t work for shapes made up of lines, etc. Perhaps this is the fatal

flaw in visual calculating—‘‘Wouldn’t it be wonderful if we could classify shape gram-

mars the way Chomsky classifies generative grammars.’’ Complexity is measured by

counting symbols (units), and this is fine for shapes containing points and other

things that are zero dimensional, for example, sets with members. They have definite

271 Classifying Rules with Parts



descriptions that keep them numerically distinct. Nonetheless, there are no units for

higher-dimensional things. The shapes in rules don’t have parts that I can count before

I calculate. These depend on how the rules are used. The description that makes sense

for a rule now isn’t binding later. What the rule is doing may change freely as it’s

applied. A square is four lines the first time the rule

is tried and eight lines the second time around. Descriptions don’t count. They alter

too erratically for numbers to make sense.

The difference between rules defined for shapes and generative grammars is

evident in other kinds of devices for calculating. They’re described in various ways—

spatially and not—but the method is always combinatorial. And, in fact, they’re all

easy to define in zero-dimensional algebras in which labels or weights are associated

with points.

Turing machines are typical. They’re defined for symbols on tapes—labeled

points evenly spaced on a line—that are modified according to given transitions that

work like my previous rule AqR fi AAqAL. But this is too obscure, and it’s easy to be

clear. The rule

in the algebra V02 corresponds to a machine transition in which the symbol A is read

in the state q and replaced by the symbol AA. The state q is changed to the state qA, and
the tape is moved one unit to the left. I’ve assumed that the rule applies just under

translations. Three points are needed to mimic the transition if all of the transforma-

tions are allowed. This rule

does the trick nicely. It’s also a cinch to do Turing machines when i is more than zero.

Try it with lines using triangles, and with planes using tetrahedrons, so that the parts

that rules pick out behave like units. This series of scalene triangles
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where the apex is at 1/n for n ¼ 3; 4;5 . . . is enough for as many distinct symbols and

states as I wish to have. Then I might define the rule

There are other possibilities, too. Stanislaw Ulam invented a device that’s used

widely to model physical phenomena of all sorts. Cellular automata are points with

labels or weights. They’re located in a grid—it’s usually square—that has one or more

dimensions. (Otherwise, points are solipsistic.) Neighborhood relations are specified in

rules that are applied under translations. The rules work in parallel to change every

point at the same time, with the sum of the individual outcomes as the overall result.

The best-known rules of this kind are the ones for John Conway’s game of life. In

words, it goes like this—

Survival If an occupied cell has two or three neighbors, it survives.

Death If an occupied cell has four or more neighbors, it dies from overcrowding.

If an occupied cell has one or no neighbors, it dies from isolation.

Birth If an unoccupied cell has exactly three neighbors, it becomes occupied.

Stasis If an unoccupied cell has less than three neighbors or four or more, it stays

unoccupied.

—so that all 512 rules are divided into four equivalence classes. And for shapes, the 56

rules for birth are similar to this one

with black and white points—dots—at the centers of white grid cells. Colors are

weights—the part relation ðaÞ is identity, the sum of two is black unless both are

white, and the difference of two is white. Or maybe I have cellular automata defined

on a line of evenly spaced points. I can record their history by stacking strings of cells,

and I can give explicit rules for this purpose. These eight rules
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produce the shape

in fifteen iterations. Only this isn’t necessary. Cellular automata are abstract symbol

systems like Turing machines, and what they do can be presented in many ways. You

can pretty much design the visual effects you want. My two examples, first with the

game of life and then with strings of cells, begin to show this when the graphic devices

used in each are switched. Or change the shape just shown, so that rows of cells are

lined up to the left. There are new rules for this, and they’re easy to define—in fact, I

can use rules that apply to my original rules as shapes to get the new rules I want. Try

it. Then after seven iterations, the result looks like this

Key (abstract) relationships stay the same, but what do you see? To find out when

there’s a fractal or ‘‘self-similar’’ pattern as intended, and not a checkerboard design—

although this is interesting in its own way—apply the rule

that divides plane triangles and their boundaries, and use identities from the schema

x fi x, so that x is one such triangle and its boundary, or any shape determined by

the rule. These identities show exactly what it means to be self-similar, and they root

the idea in seeing. What I’ve done lets me describe what I’m doing now and frame

what I do later—learning and experience really matter. I can also see in novel ways—

for example, let x be a polygon or A, B, C—or go on to something entirely different.

Past experience and new are equally transferable in identities and in the left sides of

other rules. What’s useful here is useful there once it’s transformed and embedded

again—learning and sagacity go hand in hand in creative activity. And for shapes and

rules, all of this works with nary a hitch.

(Cellular automata are intriguing because they can be self-similar and can have

other ‘‘emergent’’ properties; that is to say, they can form global patterns in time that
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go beyond points and local neighborhood relations. Once again, these patterns may

be artifacts of how the cellular automata are shown, and certainly, finding patterns

depends on this. But there’s more to notice. Emergent properties are visible only from

outside, not by calculating—we can see them because we’ve got a god’s-eye view. This

implies a perpetual gap between seeing and calculating. There’s a kind of recursive

ascent when there are emergent properties to see that calculating can’t find, and no-

where to stop—doing this three times, for example, it seems that you see what you

calculate in your model of what you see what you calculate in your model of what

you see what you calculate, or something similar. It’s vertiginous without shapes. Then

the series collapses when rules apply in terms of embedding and transformations—as

with the rule and the identities I just tried. What you see is what rules do. Calculating

or seeing, it looks the same.)

But let’s get back to my enumeration of calculating devices. There are Linden-

mayer systems for plant forms and other living things that are defined in algebras of

labeled points. And there are production rules in expert systems, picture languages

and derivative pattern languages in architecture and software design, and graph gram-

mars in engineering design and solid modeling. There’s no denying it—calculating as

it’s normally conceived is zero dimensional. My set grammars for decompositions give

additional evidence of this. Rules are applied in my algebras in two stages. These are

reinterpreted in set grammars in terms of subsets with members rather than parts, and

in terms of set union and relative complement rather than sum and difference. The

rules in set grammars use identity to check embedding, as rules do in all algebras where

i is zero.

How Computers Do It

I’ve said a number of times already that calculating when i isn’t zero with shapes made

up of lines, etc., can be simulated in algebras when i is zero where shapes con-

tain points. The story is easy to tell, and it goes something like this. Computers are

Turing machines. But Turing machines are zero dimensional—they’re defined in the

algebra V02. So if I can write a computer program that calculates visually with shapes,

then whatever I can do when i isn’t zero, I can also do when i is zero. Points are

enough to calculate with shapes. And, in fact, most of the rudiments of this com-

puter program are already in place, certainly for shapes with lines. And that’s plenty,

because embedding and identity aren’t the same in this case. I just have to put it all

together.

The central idea is to specify everything in terms of analytic expressions and

boundary elements. There are, of course, the usual approximations. This is the same

for points and other basic elements, because coordinates have real values. In one way,

approximations have nothing to do with i being zero or not. Every endpoint of a line

in an algebra U1 j is a point in the algebra U0 j, and vice versa. But in another way, i

being zero does make a difference. In a computer, every shape—whatever its algebra—

is represented with respect to the same shape in U0 j. There are just a finite number of
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points. Still, even with approximations, I can calculate to any degree of accuracy I

wish.

Let’s begin with the line defined in the familiar equation

y ¼ mxþ b

and its segments determined by distinct endpoints. Here the quartet of points on the

line

are such that p < q < r < s. Moreover, the segments pq, pr, ps, qr, qs, and rs are

embedded in the line ps, as the semilattice

shows—a segment xy is embedded in a segment xAy A whenever xAa x and ya y A. But
this kind of ordering isn’t the only way to define embedding. There are metric devices,

as well. For example, a point is coincident with a line whenever the length of the line

is the sum of the two distances from the point to the endpoints of the line. Then, a

line l is embedded in another line lA if the endpoints of l are both coincident with lA.
When the embedding relation is defined, the part relation is, too. I need only maximal

lines. The reduction rules in table 4 are for sum, that is to say, maximal lines for any

set of lines. Similarly, the rules in table 5 produce maximal lines for difference. And

a transformation of a line is determined by the transformation of its endpoints. So

the result

ðC� tðAÞÞ þ tðBÞ
of applying a rule A fi B to a shape C is completely defined. Even better, I can find the

different transformations t that satisfy the formula

tðAÞaC

using registration points and the conditions for determinate rules in table 9. What a

nice way for everything to turn out. There’s an algorithm—a zero-dimensional Turing

machine—for calculating with shapes of dimension greater than zero.

It doesn’t take all that much to get the job done for lines. In practice, however,

there are a host of complications to make sure that everything runs smoothly and effi-

ciently. And extending this to planes and solids, and exotic curves and surfaces, is not

without difficulty and real interest. Nonetheless, on the one hand, whatever I can do

with lines—visually—I can do with points or symbols. And then on the other hand,

calculating with points is a special case of calculating with lines, etc., when embedding
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is identity. Symbolic calculating and visual calculating—counting and seeing—are the

same. There’s inclusion each way, even if intuitions differ. Calculating is calculating no

matter how you decide to do it.

Is this the final word? Probably not. Everyone seems happy with two cultures—

the visual and the verbal—and bent on keeping them so, separate and equal. But it

does go a long way toward showing that this is pointless and ironically reductive—

calculating is just moving symbols around. Yes, it is—and look at what you can see and

what you can do.

I Don’t Like Rules—They’re Too Rigid

The schemas I’ve used so far define rules of very broad, overlapping kinds. There are

the identities

x fi x

and, more inclusively, transformations of shapes

x fi tðxÞ
Then I have schemas to define rules for myriad patterns with symmetry

x fi xþ tðxÞ
for fractals

x fi
X

tðxÞ

and for adding

x fi Aþ B

and subtracting

Aþ B fi x

according to spatial relations. And, finally, there are rules connecting shapes and the

shapes they bound—for example

x fi bðxÞ
to show the boundary of x, and

bðxÞ fi xþ bðxÞ
to show bðxÞ and a shape it bounds.

All of these schemas are worth having. Nonetheless, they’re too loosely drawn to

be decisive in practice to get shapes with specific properties or, more ambitiously,

designs. My schemas give vague hints, not definite solutions. I can be perfectly general

about this with the schema
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x fi y

that says no more than try a rule—only which one? That’s what everyone wants to

know. And it’s right to ask, even if the answer is never once and for all. But there’s

something remarkable about the schema x fi y that goes beyond its practical value

and that shouldn’t be missed—whatever rule I try works. I can calculate with triangles

and K’s after combining squares. There’s more than units and counting out. Still, start-

ing with schemas may not be the way to go to get something useful in design. A better

approach from a practical standpoint is to turn things around and extend rules to de-

fine schemas—to take something that works in practice and copy it in new ways else-

where. And this is always practicable with shapes. The origin and history of the schema

I used to show that descriptions don’t count provides a telling illustration and reasons

why schemas are useful in the first place.

The shape

is produced by applying the rule

Squares are inscribed in squares in accordance with a single spatial relation between

two geometrically similar shapes. But what happens if I want to produce the shape

and others like it by inscribing quadrilaterals in quadrilaterals? This is a natural gener-

alization, and it’s not surprising to find it along with squares
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Easy enough—but the generalization presents a problem if all I have is rules. Squares

work because they’re rigid—hence the title of this section—while relationships be-

tween lines and angles can vary arbitrarily in quadrilaterals. Quadrilaterals inscribed

one in another needn’t repeat the same spatial relation. There’s plenty of room for

things to vary. And this is also true for squares—perhaps in the first black and white

drawing above, but explicitly here

This kind of variation seems to imply that I need an indefinite number of rules to

correspond with different spatial relations for squares. There are too many ways they

can go together. But there’s a neat way out using alternative spatial relations for points

and lines—endpoints and interior points. I can modify my original rule

by replacing the square in its left side and the new square in its right side with their

boundaries to get the rule

And this rule gives me exactly what I want, when I use it together with the indetermi-

nate rule

that moves a point anywhere in the interior of a line, à la Zeno, half a segment at a

time, and the rule

that erases a point. Then the boundaries of squares can be used to inscribe squares in

squares, even as these boundaries are moved from place to place one point at a time.

The details of this process are illustrated in the following way—starting with the top-

most point—to orient squares as desired in a kind of distributed calculating.
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Indeterminate rules are really useful, but this trick alone doesn’t work for quadrilaterals

because they needn’t be geometrically similar. That’s why squares worked. With quad-

rilaterals, I still have to define an indefinite number of rules to get the shapes I want. I

can avoid this embarrassment easily enough if I use indeterminate rules—including

my rule to move a point on a line—in another way. But then the intuitive idea of

inscribing quadrilaterals in quadrilaterals in a recursive process is nearly lost. I have to

do almost everything line by line. I want to be able to define rules as naturally as I can,

so that I can see how they work without having to think about it. Schemas make this

possible—they describe shapes in rules without getting in the way when I calculate.

Let’s rehearse the easy technicalities once more. A schema

x fi y

is a pair of variables x and y that take shapes—or whatever there is in one of my

algebras—as values. These are given in an assignment g that satisfies a given predicate.

Whenever g is used, a rule

gðxÞ fi gðyÞ
is defined. The rule applies in the usual way. In effect, this allows for shapes and their

relations to vary within rules, and extends the transformations under which rules ap-

ply. It provides a nice way to express many intuitive ideas about shapes and how to

change them as calculating goes on. It lets me do what I want with quadrilaterals in a

natural way.

(I’ve shown, in outline, that there’s an algorithm to find the transformations

under which a rule applies to a shape. But is this also the case for assignments and

schemas? What kinds of predicates allow for this, and what kinds of predicates don’t?

These are still open questions. Their answers are crucial to what I hope can be accom-

plished calculating.)

This
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is an example of a rule defined in a schema x fi y that produces the shape

and others like it from a given quadrilateral. An assignment g gives values to the vari-

ables x and y according to this predicate—

x is a quadrilateral, and y ¼ xþ z, where z is a quadrilateral inscribed in x.

The predicate is framed in terms of the schema x fi Aþ B in the special case where the

shapes A and B are quadrilaterals. Further elaboration is possible, but this is already

familiar from part I. Nonetheless, some things are worth reinforcing.

Rules have an advantage over schemas because I don’t have to say anything def-

inite about the shapes they contain—the intuitive idea is to draw them and calculate in

terms of anything I see. But for schemas, I have to constantly remind myself that there

are indefinitely many predicates equivalent to any one I’ve got. Shapes made up of

quadrilaterals may contain triangles, etc. This defines the same rules, and it confirms

the key idea that you can say almost anything you want to about shapes without it mak-

ing the slightest difference when you calculate. And in particular, the description of a

shape in a rule needn’t match the description of the shape to which the rule is applied.

These are things I’ve shown. But there are some details I didn’t cover in part I. It’s

also worth noting that my schema for quadrilaterals produces the shape

and others like it, because the schema can be applied to a quadrilateral more than once

under different assignments. This is easy to avoid in a number of ways. For example, I

can put a notch in the most recent quadrilateral, so that the schema applies only to it,

with rules like this
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Or I can introduce twin points as I’ve done before for squares. Then the schema

includes rules like this

The tricks I have for rules are good in schemas, too. There are a lot of nifty ways to

get what I want that depend on what I see—putting a basic element here or there to

distinguish a part or to make it behave in a particular fashion relative to the other rules

I’m using. The idea is to reason verbally—to say it in words—only after the real work

has been done visually. There are many alternative ways to explain rules without get-

ting into trouble calculating. Remember—descriptions don’t count.

Schemas do many nice things. Another easy example shows how rules define my

algebras. And it’s one that illustrates again what indeterminate rules can do. Because

points are geometrically similar and lines are, too, I can define the universe of shapes

for the algebras U0 j and U1 j using first the rule

and then the rule

The empty shape is in the left side of both rules, and a point is in the right side of

one and a line is in the right side of the other. But because planes and solids needn’t

be geometrically similar, I have to use schemas to obtain the universe of shapes for the

algebras U2 j and U33. These schemas x fi y are defined in the same way. The

empty shape is always given for the variable x, and either a triangle in U2 j or a tetrahe-

dron in U33 is assigned to the variable y. Then a rule in the algebra U22 might look like

this

Schemas are indispensable when I calculate, and there are many more of them to come

in part III.

Parts Are Evanescent—They Change as Rules Are Tried

I keep saying that the parts shapes have depend on how rules are used to calcu-

late. How does this work to determine decompositions? I’m going to sketch three

scenarios—each one included in the next—in which parts are defined and related

282 II Seeing How It Works



according to the twin formulas for applying rules. The scenarios are good for shapes

with points and lines, etc. In fact, for lines, they’re already familiar from part I. But

my scenarios are just examples. There are other ways to talk about rules and what

they do to divide shapes into parts. I’ll show this below in an easy approach with iden-

tities and transformations. It expands a little on my second scenario to define equiva-

lence relations that classify parts. Decompositions and other kinds of taxonomies are

an ideal way for reasoning to conclude. There’s a sense of accomplishment, and a real

chance to understand what happened. Parts are charged with meaning. My scenarios

provide the means to get them, and to change them whenever I go on.

In the first scenario, only rules of a special kind are used to calculate. Every rule

A fi

erases a shape A—or some transformation of A—by replacing it with the empty shape.

So, when I calculate, it looks like this

C � C� tðAÞ � � � � � r

I start with any shape C. Another part of C—in particular, the shape tðAÞ—is sub-

tracted in each step, when a rule A fi is applied under a transformation t. The shape

r—the remainder—is left at the end of this process. Ideally, r is the empty shape. But

whether or not this happens, a Boolean algebra is defined for C. The remainder r when

it isn’t empty and the parts tðAÞ, picked out as rules are tried, are the atoms of the alge-

bra. This is an easy way for me to define a vocabulary, or to see just how well a given

one works in a particular case.

In the next scenario, rules are always identities. Every identity

A fi A

has the same shape A in both its left and right sides. When only identities are applied,

calculating is monotonous

C � C � � � � � C

where, again, C is a given shape. In each step, another part of C is resolved in accor-

dance with an identity A fi A, and nothing else is done. Everything stays exactly the

same because tðAÞ is part of C. Identities are constructively useless. In fact, it’s a com-

mon practice to discard them. But this misses their value as observational devices. The

parts tðAÞ that are resolved as identities are tried, the empty shape, and C can be used

to define a topology for C when they’re all combined in sums and products. The first

scenario is included in this one if the remainder r is empty, or if r is included with the

parts tðAÞ. It’s easy to do—for each application of an erasing rule A fi , simply use

the identity A fi A. But a Boolean algebra isn’t necessary when identities are applied.

Complements aren’t defined automatically. They may have to be specified explicitly.

In the final scenario, rules aren’t restricted. Each rule

A fi B
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applies in the usual way to define a series of shapes

C � ðC� tðAÞÞ þ tðBÞ � � � � � D

that starts with the shape C and finishes with the shape D. When the rule A fi B is

tried, a transformation t of A is taken away and the same transformation t of B is added

back. But this is only the algebraic mechanism for applying the rule. What’s interesting

about the series is what I can say about it as a continuous process, especially when

parts are resolved in surprising ways. For example, I can calculate so

to turn a pair of touching chevrons into a pair of squares and back again, so that the

pair of chevrons is reflected in between. The rule

that translates a chevron, and the rule

that translates a square, are used for this purpose. It looks hard—chevrons and squares

stay the same when they’re moved—but it works. What parts do I need to account for

the change, so that there’s no break or inconsistency? How are the parts the rules pick

out related? When do chevrons become squares, and vice versa? What does it mean for

this process to be continuous?

I’m going to build on a configurational (combinatorial) idea that’s part of normal

experience to answer these questions. It’s the very idea I’ve been against as a way of

handling shapes to calculate. Still, the idea works when it comes to describing what

happens as rules are applied. Keep this foremost in mind—there’s a huge difference be-

tween describing shapes and calculating with them. The latter doesn’t depend on the
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former. In fact, the relationship is the opposite. Embedding isn’t identity, but identity

does play a central part in my approach to continuity. Things are divided into a finite

number of pieces. I can recognize these parts—individually and in combination—and I

can change them when I like for repair or improvement, or to produce something new.

The pieces I leave alone stay the same, and they keep their original relationships.

Changes are continuous, as long as they correspond in this way to how things are sep-

arated. Nothing that’s not already divided is broken up. For example, if a motor goes

bad in an appliance, I don’t try to fix the motor. It’s the smallest piece I can recognize

that contains the problem—the motor is usually sealed—so I replace the whole motor

and leave the other parts of the appliance alone. Everything else works exactly as be-

fore to make the repair a success. Anyone who worries about the motor has a finer de-

composition than I do. Components may be complicated in their own right, but not in

terms of the pieces I can see and manipulate, or the ones I can find in a catalogue.

This idea can be stated in a general way with mappings. They describe what rules

do to shapes, and relate their topologies (decompositions). The details for different

mappings may vary—and it’s important when they do—but the core intuition is pretty

much as in my appliance example. To get things going, I need another analogy that

takes mappings from sets to shapes. It looks like this

mappings between shapes : parts<mappings between sets : subsets

There are matching properties of mappings for sets and shapes, even if x in the analogy

x : shape<member : set

has no meaning when i exceeds zero. What’s evident for sets because they have mem-

bers that are independent in combination needs to be said for shapes when there are

no units. Consider, for example, one of these properties for the mapping h. If A and B

are sets such that AJB, then hðAÞJhðBÞ. And the same goes when A and B are

shapes—AaB implies that hðAÞahðBÞ. What h does to a shape, it does likewise

when it’s part of another shape. This works for mappings defined in the Boolean

expressions I’m going to use.

Now suppose that a mapping from the parts of a shape C to parts of a shape Cþ

describes a rule A fi B as it’s used to change C into Cþ. Then this process is continuous

whenever twin conditions are met.

(1) The part tðAÞ the rule picks out and replaces is closed, that is to say, it’s in the

topology of C. The rule recognizes a piece that can be changed—a motor or some other

meaningful part.

(2) For every part x of C, the mapping of the closure of x in the topology of C is

included in the closure of the mapping of x in the topology of Cþ, where the closure

of a part is the smallest shape in a topology—it’s a piece I can recognize—that contains

the part. The closure of any part of my motor, whether rotator, stator, etc., or any

nameless thingy, is the motor. In essence, the mapping is a homomorphism, and this

in addition to condition 1 is why there’s continuity. Moreover, if two parts are parts of
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the same parts in the topology of C, then their mappings are parts of the same parts in

the topology of Cþ. The rule changes the shape C to make the shape Cþ, so that the

parts of Cþ and their relationships are consistent with the parts of C. There’s no divi-

sion in Cþ that implies a division that’s not already in C.

The trick is to define topologies for shapes, so that whenever I apply a rule

it’s continuous. This is possible for different mappings—each in a host of different

ways—working backward after I finish calculating. (If I’m impatient, I can define to-

pologies after every rule application, or intermittently, but these definitions may

change as I go on.) The mapping

h1ðxÞ ¼ x� tðAÞ
is an obvious choice. It preserves every part x of the shape C� tðAÞ that isn’t erased

when a rule A fi B is used to change a shape C. It’s right there as the leading term in

the formula

ðC� tðAÞÞ þ tðBÞ
that gives the result Cþ in which the supporting term tðBÞ plays its part. Better yet, I

can use the topology of the shape Cþ to get a minimal topology for C that guarantees

continuity. In particular, x is a closed part of C just in case it’s empty or y is a closed

part of Cþ and

x ¼ tðAÞ þ ððC� tðAÞÞ � yÞ
The divisions in the piece C� tðAÞ are fixed in the topology of Cþ. Still, I may want

something more profligate—perhaps a Boolean algebra for each shape. Then, for y in

the Boolean algebra of Cþ, x is as before, or

x ¼ ðC� tðAÞÞ � y
In both cases, distinguished values of x are easy to find. The empty shape is given

explicitly, and C is given for y ¼ Cþ. And notice that tðAÞ is defined when y is

empty—condition 1 is included in condition 2. Then, there are sums and products.

And in the Boolean case, the shape x ¼ tðAÞ þ ððC� tðAÞÞ � yÞ has the complement

xA ¼ ðC� tðAÞÞ � y A, where y and y A are complements. But be careful. Even though it

looks it, the topology of C needn’t be bigger than the topology of Cþ—either by a

single part or twice. Values of y may be equivalent in the sense that they define the

same shapes.

If I try the mapping h1 with identities, I get something rather different from what

I described in my second scenario. This gives equal insight in an alternative way, and

it’s fun to compare. Even so, the mapping

h2ðxÞ ¼ x� ðtðAÞ � tðBÞÞ
works to include the second scenario in this one. Now

h2ðxÞ ¼ x
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and every part of C is left alone. Calculating is continuous if the topology of C is the

same from step to step—from my previous formulas, I get x ¼ C � y ¼ y. But then I

need to update the topology every time an identity A fi A is applied, so that tðAÞ is a
closed part. Conditions 1 and 2 are independent. It’s no surprise, either, that there’s a

comparable account of any rule with a left side that’s part of its right side—in particu-

lar, any rule that answers to the degenerate schema

fi x

with an empty left side, or to the familiar schema for spatial relations

x fi Aþ B

Mappings show how rules with widely different uses are alike.

Examples for both of my mappings show that what I can say about a shape that’s

definite—at least for parts—may have to wait until I stop calculating. Descriptions

are retrospective—they record what I’ve done without limiting what I can do. In

many ways, the past is reconfigured in the present, while the future is always open.

My description of what happened before can change radically as I continue to

calculate. What happens now makes a difference for the past because something else

is going on whenever another rule is tried. History varies as I see and do more in new

ways.

Before I turn to specific examples, it’s worth emphasizing that describing what

rules do is really the same as describing shapes in terms of their parts. There are alter-

native ways to do it—lots of them. I can be a purist and treat all my rules in the same

way, or I can let my descriptions wander all over the place—even describing the same

rule differently at different times. I’ve scarcely touched the surface with what I’ve said

here about mappings and topologies and how they might be used. The foregoing pre-

sentation is pretty impressionistic—it’s still about seeing. But I can fix things up a little

with closure operations and closure algebras. And for those who enjoy mathematical

depth and rigor, there’s M. H. Stone’s theory of representations. Only this means see-

ing in a complementary way that’s abstract rather than concrete. Whatever you like—

I’ll stick with my finite Aristotelian perspective and what I’m able (need) to see—it

seems to me that continuity is a good place to start. It develops the idea that things

that coalesce can change at any time. In retrospect, unbroken community and licen-

tious freedom are compatible. Playing around with descriptions of rules is another

way to inform seeing, even impressionistically. It leads to a host of new insights about

how calculating with shapes works and what it implies. There’s plenty to do, but then

calculating with shapes means going on.

Erasing and Identity

Some easy illustrations show how my three scenarios work. Suppose I want to use the

first scenario to define decompositions for the shape
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in terms of the rule

that erases triangles, and the rule

that erases squares. Five distinct decompositions result when these rules are applied to

produce an empty remainder. They’re illustrated neatly in this fashion

by filling in triangles. In the first decomposition, four squares are the atoms in the

Boolean algebra that describes the shape. In each of the three succeeding decomposi-

tions, four triangles and two squares are picked out as the atoms in Boolean algebras,

and in the last decomposition, eight triangles are resolved for this purpose.

There are two interesting things to notice. First, I can produce these illustrations

in a direct product of algebras as I erase triangles and squares in the shape

This means calculating in parallel—seeing and doing different things at the same time

in a coordinated way. I can recapitulate the use of the erasing rules

in the algebra U12, and build up the corresponding decompositions at the same time in

a combination of the algebras U12 and U22 , so that squares contain lines, and triangles
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are planes. Alternatively, labeled lines or lines with weights fix the twin layers in this

direct product. So a combination of the algebras V12 and U22 or of W12 and U22 will do

the whole job. The graphics is more concise, but perhaps not as clear. I need two rules

whatever I do. These

show my original idea. They’re applied six times to produce the third decomposition.

The rule used each time is indicated by number in the series
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It’s easy to see that the series could be different, so long as the same triangles and

squares are picked out. In this scenario and the next one for identities, decompositions

don’t reflect the order in which rules are applied. The same rule applications in any

order have the same result. But in the third scenario, decompositions are sensitive to

when rules are tried.

Of course, I’m free to modify my rules to represent decompositions in another

way. I can replace the algebra U12 þ U22 for lines and planes with an algebra W22 for

planes and weights. Then triangles and squares are planes that are filled in with tones

that add together to get darker and darker. Now my five decompositions look like this

and my rules are almost the same as before

They apply in this way
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to produce the third decomposition. (Like results follow in the algebra U12 þW22 with

the schema bðxÞ fi x for lines and the shapes they bound. I can do the third decompo-

sition exactly as before in six steps or, alternatively, in two steps. The fewest steps for

each decomposition is the number of gray tones it contains. Boundaries have some

nice uses.) As I’m going to show next—this is the second point of interest—the num-

ber of decompositions for each of the shapes in the series

is fixed in a definite way, but how these decompositions are represented as shapes can

vary freely. Decompositions are abstract in the same way words and sentences are in

generative grammars, and they’re abstract in the same way as Turing machines, cellular

automata, etc. How I show them is independent of what they do—it’s a question of

design. Playing around with algebras and rules is an effective means to explore the

possibilities.

The number f ðnÞ of distinct decompositions for any shape in the series

when the shape is divided into squares and triangles can be given in terms of its

numerical position n. The first shape in the series is described in one way—it’s a

square—and the second shape can be described in two ways—it’s either two squares

or four triangles. Moreover, the number of possible descriptions for each of the suc-

ceeding shapes—so long as I keep the remainder empty—is the corresponding term in

the series of Fibonacci numbers defined by f ðnÞ ¼ f ðn� 1Þ þ f ðn� 2Þ. This works in

the following way
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If a rule resolves the inmost square in the shape f ðnÞ, then there are f ðn� 1Þ ways to

describe the remaining part of the shape—this part is one shape back in the series.

Alternatively, if a rule resolves the four inmost triangles in the shape f ðnÞ, then there

are f ðn� 2Þ descriptions—the remaining part is now two shapes back in the series.

So the total number of descriptions is f ðnÞ ¼ f ðn� 1Þ þ f ðn� 2Þ. I can prove this for

any square and any four triangles that include the square. Still, the visual demonstra-

tion is immediate enough to make the formal proof superfluous. In this case, seeing is

believing.

But that’s enough counting. Let’s try my second scenario. Suppose I recast the

rules

as the identities

and then use them to define decompositions. Consider the shape

once more. If I apply an identity to pick out this triangle
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and an identity to resolve this square

then the following topology (decomposition)

is defined. This time I’ve shown the topology as a lattice. It’s easy to see that the right

angle of the triangle and a corner of the square are distinguished. But other parts of the

triangle and the square go completely unnoticed. If I recognize complements in addi-

tion to the parts I resolve when I use the identities, then a Boolean algebra is defined

that has these four atoms

The first three give me what I want. Now the triangle and the square have two parts

apiece and a common angle

Of course, I can always apply the identities everywhere I can. This determines another

Boolean algebra with the twenty-four atoms
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But then there are a couple more things to heed. Triangles come in three kinds

with three parts or four, and squares come in three kinds

with four parts or eight. Moreover, the different decompositions of the shape may be

regarded as subalgebras of the Boolean algebra, including all five of the decompositions

obtained in the first scenario. Only there’s no guarantee that things will always work

out conveniently. A Boolean algebra needn’t be defined for every shape when identi-

ties apply wherever they can. Other structures are also possible.

Classifying the parts of a shape in a decomposition is a useful practice that

explains how the shape works and what it means. But topologies aren’t the only way

to approach this, and it’s good to see something else to make the point. Let’s try an-

other easy example with identities that emphasizes the transformations instead of

embedding and the part relation. After all, transformations are also needed to apply

rules—they play the key role in deciding when shapes are alike. I won’t show much

detail, just enough to suggest that other ways of understanding are worthwhile, too.

There are topologies to get back to. Still, there’s no reason to stick with one way of

describing things. If calculating with shapes shows anything, it’s that nothing works

all the time. It always makes sense to look again.

Suppose I have the identity

to pick out squares in the shape

In terms of this identity, there are fourteen squares that appear to be the same. But I

can use the transformations under which the identity applies to define an equivalence

relation. If I first pay attention to scale, then there are three classes of squares—nine

small ones
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four medium-sized ones

and one large one

And that’s not all I can do. There are other features that help to distinguish context.

For example, I can refine my identity in this way

to add a detail to the square to break its symmetry, and apply the identity again to

reclassify the nine small squares. First, the new identity applies in four different ways

to corners

then in six different ways to outside squares that aren’t corners

and in eight different ways to the central square
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And, certainly, this isn’t the end of it either. But the idea of using transformations and

identities to classify parts seems well enough established. It gives a nice taxonomy for

parts and their uses. Rules let me generate shapes and tell a lot about them. In fact, I

like to think that whatever I describe—with transformations, with parts and topolo-

gies, or in some other way—is the result of calculating. Otherwise, what is there to

talk about? Without something to see, there’s nothing to say.

Calculating and Continuity

I’m going to try another rule—it’s the very first one I used in the introduction—to

show how the third scenario works. The rule

rotates an equilateral triangle about its center, so that the center point is permanently

fixed. The rule is applied eight times to define the shapes in this series
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This looks natural enough—and, no doubt, it is—unless you start thinking about

what’s going on. The final shape in the series is a rotation of the initial one about its

center—that’s the vertex shared by the three triangles in both shapes. But the transfor-

mation is surprising because the centers of the triangles in the initial shape change

position when it’s rotated

The rule doesn’t move the centers of triangles, but they move just the same. What kind

of paradox is this?

The answer is easier to see than to say. But let’s give it a try. The rule can be

applied to the fourth shape in the series in two ways. In one way, the rule picks out

the three triangles that correspond to the three triangles in the initial shape. Only

none of these triangles is resolved in the other way. Instead, the rule divides the fourth

shape into two triangles—the large outside triangle and the small inside one—that

have sides formed from sides of the three triangles that come from the ones in the

initial shape. The rule rotates the two triangles in turn to get the fifth and sixth

shapes. Now the rule can be applied in alternative ways to the sixth shape in the series.

Either the rule resolves both of the triangles that correspond to the ones in the fourth

shape, or it resolves the three triangles—one at each corner of the sixth shape—that

have sides formed from segments of sides of the triangles in the fourth shape. The

rule rotates the three corner triangles one at a time to complete the series. This isn’t

about thinking in a combinatorial scheme, but about seeing when lines fuse and

divide.

The nine shapes in the series
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are all made up of triangles. Their numbers provide a nice summary of what happens

as the rule is applied from step to step. Consider the following numerical series

The first of the trio shows the maximum number of triangles—these can be picked out

using an identity—in each of the shapes. The next gives the number of triangles in a

shape after the rule has been applied, and the last gives the number of triangles in a

shape as the rule is being applied. In the second and third series, the number of trian-

gles depends on what the rule does, either by rotating an existing triangle or by seeing

a new one to rotate, and then counting in terms of the triangle and its complement.

The resulting inconsistencies in the fourth and sixth shapes tell the story. Counting

goes awry. Three triangles can’t be two, and neither number is five. (It’s blind luck

that two and three make five. Usually, there’s no easy relation to find.) But this way

of calculating is a continuous process when topologies are given for the nine shapes.

The topologies for these shapes are defined as Boolean algebras with the atoms

shown in table 11. This is practicable using the mapping h1ðxÞ ¼ x� tðAÞ and my for-

mulas for closed parts. First a topology is given for the final shape. Any finite Boolean

algebra works. I’ve used the trivial topology—the final shape is an atom—because the

rule doesn’t divide it. There’s nothing to say—the final shape is without finer parts or

definite purpose, ready for calculating to go on in any way at all. Once the topology

of the final shape is decided, the topologies of the preceding shapes are defined in re-

verse order to keep the application of the rule continuous. Each topology contains the

triangle tðAÞ resolved by the rule—the topmost atom in table 11—and its comple-

ment C� tðAÞ to form a Boolean algebra.

Keeping track of how rules work is a good way to see what’s happening. I can

record the divisions in the triangle in the right side of the rule

formed with respect to my topologies. This shows—again in the terminology of my

formulas—what tðBÞ does in Cþ. The triangle is cut in alternative ways
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in the eight steps of the series. The parts defined in the triangle combine sequentially

to build up the different triangles that the rule picks out in its subsequent applications.

The pieces

from the first three triangles combine in this way

and the remaining sides

Table 11

Topologies of Shapes Defined by Calculating

Shapes Atoms
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combine in this way

to define parts (atoms) in the topologies of the second and third shapes in the series,

and ultimately to define the large outside triangle and the small inside one in the to-

pology of the fourth shape. Moreover, the pieces in the fourth and fifth triangles com-

bine in like fashion to make the three triangles in the topology of the sixth shape that

are needed for the production of the final shape. Looking ahead, the topologies of the

shapes in the series appear to anticipate what the rule is going to do the next time it’s

applied. But this is because the topologies are given retrospectively. I can always de-

scribe what I’ve done as a continuous process after I stop calculating. This explains

what I did and shows how everything goes together in a coherent fashion. Expecting

more—so that the future is laid out in advance—is preposterous.

Every time the rule

is tried, its right side is divided with respect to a different topology. This shows in yet

another way that the shapes in a rule have diverse descriptions that vary as it’s used

to calculate. The rule doesn’t apply in terms of any one description that measures its

complexity or anything else. How the rule is described is an artifact of what’s been

going on.

Before I finish up, it’s also worth noting that the series

isn’t isolated. There are many others like it. And in fact, they can be defined around

each of the shapes in this array of nested polygons
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using only a single schema

x fi tðxÞ
where x is a triangle or a regular polygon, and t is an appropriate transformation of

x. Then the number of ways I can apply the schema to a shape in the array without

remainder corresponds to the Fibonacci number of its column. I showed this for the

series of squares inscribed in squares in the second row. The rule

and others defined in the schema work like erasing rules. Shapes are filled with ambi-

guity. And there are always rules to take advantage of it, so that I’m free to look at

things in new ways. Finding the right rule to apply may require time, effort, and a little

luck, but nothing prevents it from being used.

Most of what I’ve been saying about rules and calculating with shapes is anecdo-

tal. I’ve been presenting decompositions as case studies. This is no surprise. The way

ambiguity is used now may have little to do with the way it’s used later. Ambiguity

won’t go away. It’s there whenever I apply rules to calculate, but it’s not handled in

the same way all of the time. That’s why ambiguity is so interesting and valuable. The

trick is to use ambiguity without limiting it by trying to generalize. There’s no chance

of this, as long as rules can vary as widely as shapes can. In this way, ambiguity always

provides the chance to try things that haven’t been tried before. It’s keeping your eyes

open when you calculate.

Design without Thought

What is design? No one ever agrees, but I used to side with Franz Reuleaux—

Invention, in those cases especially where it succeeds, is Thought.
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In fact, he answers the overarching question I’ve been working on throughout this

book when he links invention—creative design—and thought. And he recognizes the

depth of the problem.

The mathematical investigations referred to bring the whole apparatus of a great science to the ex-

amination of the properties of a given mechanism, and have accumulated in this direction rich

material, of enduring and increasing value. What is left unexamined is however the other, im-

mensely deeper part of the problem, the question: How did the mechanism, or the elements of

which it is composed, originate? What laws govern its building up? Is it indeed formed according

to any laws whatever? Or have we simply to accept as data what invention gives us, the [mathe-

matical] analysis of what is thus obtained being the only scientific problem left—as in the case of

natural history?

But after thinking about it, I’ve changed my mind. Reuleaux’s metaphor is dubious

unless thought includes seeing. Then there’s ambiguity to use in the combinatorial

process he takes for granted. ‘‘How did the mechanism, or the elements of which it is

composed, originate? What laws govern its building up?’’ Yet this kind of thinking is

confirmed in cognitive science—‘‘[humans] have combinatorial minds.’’ There’s no

avoiding it—design has to be the way Reuleaux describes. But why, if it’s as much

seeing (observing) as thinking? The creative activity I have in mind tries new ways

of looking at things—not just once or even a few times, but again and again on

the fly. This is how calculating works as rules are applied to shapes. Shapes make a

difference—ambiguity means creative choices all the time. Decompositions, defini-

tions, and the segments and shards of analysis are mere afterthoughts of calculating,

even if they’re prerequisites in combinatorial minds. Combining constituents in in-

creasingly complex arrangements isn’t all there is to creativity. There’s looking at

what you’ve done and reacting to it in your own way. There are plenty of surprises,

and whatever they are, they’re possible with embedding. Anything can happen when

basic elements fuse and divide as rules are tried.

Near the end of the introduction, I said that visual reasoning—using your eyes

to decide what to do next—always seems incomplete. Because it isn’t obviously count-

ing, it needs to be explained. But even if counting gives right answers in the sciences—

meteorology and social science are rife with reliable predictions—it still seems that

there’s room for something else. And the foregoing shows that visual reasoning is

more than wishful thinking. What strikes me most about calculating by seeing is how

easy it is to do, and how accommodating and generous it turns out to be. The rela-

tionship between embedding and identity is key—to show first that calculating by

counting is a special case of calculating by seeing, and then that I can count to see.

I’ve been trying to show that shapes with points aren’t like shapes with lines, planes,

and solids, and equally, too, that this isn’t a categorical divide—in some ways, the

differences don’t matter. It’s like seeing—I can switch back and forth. The leap from

zero-dimensional shapes to higher-dimensional ones—from shapes where there are

permanent units I can count to shapes where parts change freely—alters everything.

Embedding and identity aren’t the same, and counting obscures what I can see. But
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seeing isn’t lost in my algorithms for rules. Still, I like to stress my visual intuitions

more than algorithms. There’s an imbalance today—rote counting passes for thinking

far too often, with preposterous results. Everything is numbers and symbols without

shapes. Seeing doesn’t need to be explained, it needs to be used.

I can always see things in new ways when I calculate with shapes made up of

lines, planes, and solids. I can draw to figure things out, and to see what I can do.

This is my kind of design. But shapes with points—and likewise decompositions or

representations in computer models—limit what I can see and how I can change my

mind. A census of points doesn’t offset the loss. The last thing I want to do while I’m

calculating or thinking is to count. Showing how I calculate to see—that’s what shapes

and rules do—shows that calculating and thinking needn’t be combinatorial. There’s

an alternative—I can always see something new. Counting is a bad habit that’s hard

to break, so count me out.

Background

James Gips and I published the original idea for shapes and rules in 1972.1 That

paper also describes the weights—shaded areas—in the five decompositions for the

shape

on page 290. However, instead of algebras like W22 in which everything takes care of

itself, we had an algorithm for ‘‘levels’’ (overlapping areas) and ad hoc ‘‘painting rules’’

given in Boolean expressions. Many of the formal devices I use go back to my book

Pictorial and Formal Aspects of Shape and Shape Grammars.2 There, I cover embedding—

including parts (‘‘subshapes’’), representing shapes with maximal elements, and reduc-

tion rules—rules and calculating in the algebra U12, calculating in parallel in direct

products of this algebra, algorithms for computer implementations of shapes and rules,

and equivalence with Turing machines. In fact, it’s where I first used the beginning

entries in Paul Klee’s Pedagogical Sketchbook—I show them on pages 251–252—to link

visual reasoning and calculating.3 There’s substantially more, too, that I haven’t

described here on sets (‘‘languages’’) of shapes and how they’re closed with respect to

various operations on shapes and sets.

I introduced spatial relations and the schema

x fi Aþ B

in an early paper—‘‘Two Exercises in Formal Composition.’’4 The problem of defining

styles from scratch (design synthesis in exercise 1) and from known examples (analysis

using identities in exercise 2) is framed and discussed there. The first example of rules

that generate designs in a given style—Chinese ice-ray lattices—was described in my
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next paper.5 Perhaps more important, though, general schemas for rules were used

for the first time. There are twin drawings from the Russian constructivist Jacob

Tchérnikhov to illustrate this on page 278.6 And also, basic elements of different

kinds—points and lines—and labels were considered. This demonstrated the practical

value—reaffirmed many times since—in the unlikely combination of algebras with

atoms and without. I return to Chinese ice-rays in part III. Elaborations of the schema

x fi Aþ B and its inverse using Frederick Froebel’s ‘‘building gifts’’ in design synthesis

are in ‘‘Kindergarten Grammars,’’ along with the rhyme on page 252, additional mate-

rial on children’s play blocks—for example, Abbatt building bricks in H. G. Wells’s

entertaining Floor Games—and a description of studio instruction in terms of both cal-

culating and Froebel’s kindergarten method with its gifts and categories.7 The schema

is instrumental, too, in analysis and design synthesis—including the seminal addition

of stylistic change—in Terry Knight’s book Transformations in Design.8 Knight revisits

these topics later, going on to compare work in design and composition in music.9

The use of symmetry groups to describe rules is also explored in ‘‘Kindergarten Gram-

mars.’’ A little later, the connection to Lagrange is explicit.10

More background material of my own is spread out over a number of years. Froe-

bel’s building gifts are really zero dimensional because individual blocks neither fuse

nor divide. And in fact they’re better described in set grammars than with rules in my

algebras if i is greater than 0.11 Algebras of shapes are introduced in several different

places, but comprehensively in the series Ui j, Vi j, and Wij in ‘‘Weights.’’12 The algebras

Wij subsume a pair of earlier approaches—Gips’s and mine with levels and painting

rules à la Venn, and Knight’s with ‘‘color spots’’ that have a Goodmanesque tinge.13

The idea of calculating in parallel with shapes and their descriptions in a multiplicity

of algebras is considered in another way in ‘‘A Note on the Description of Designs,’’

and the idea that designs are members of relations among descriptions of different

kinds is introduced in ‘‘What Is a Design?’’—although in neither instance with the

algebraic generality and uniformity found in ‘‘Weights.’’14 That calculating with

shapes can be described as a continuous process using mappings and topologies is a re-

cent development that awaits complete elaboration.15

Today, the literature on rules and the way they’re used to calculate with shapes is

much too extensive to cite item by item. Most of the relevant material has appeared in

the journal Environment and Planning B: Planning and Design. Papers date from my first

one in 1976—‘‘Two Exercises in Formal Composition.’’ With respect to the immediate

themes covered in this part only, I recommend the authors in this list—alphabetically,

Scott Chase (properties of basic elements and shapes, and computer implementa-

tions),16 C. F. Earl (descriptive boundaries bðxÞ of shapes x and their Boolean rela-

tionships, spatial relations with shapes and their descriptive boundaries, topologies of

shapes and topological boundaries, computer implementations, and classifying arbi-

trary curves and surfaces in terms of their basic elements and the indices i and j for

my algebras of shapes),17 Knight (the previous work and other formal and historical

papers with vanguard results that question the shape grammarist’s habitual way of see-

ing and doing—Knight wants rules to apply in parallel in new kinds of algebras rooted
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in everyday design practice, and with taxonomic prescience defines types of emer-

gence, anticipated and not, and ambiguity before rules are tried),18 Ramesh Krish-

namurti (the first computer implementation of shapes and rules—around 1980—and

many improvements since in terms of shapes and their boundaries),19 Djordje Krstic

(algebras of shapes and decompositions),20 Lionel March (miracles and what they

mean),21 and Mark Tapia (computer implementations).22 There are other authors,

though, of equal interest. More references are in part III.

George A. Miller’s speculative comments at the beginning of this part are in ‘‘In-

formation Theory in Psychology.’’23 His extension of the engineer’s idea of noise to

define ambiguity in a theory of semantic information is captured in the neat formula

ambiguity ¼ noise

Perhaps Miller is looking for a way to handle ambiguity to help with meaning, so that

semantic errors can be usefully detected and corrected. This seems to be a goal today

for advanced research in computer science. I recently saw the sign

AMBIGUITY

in an office for PhD students in artificial intelligence (AI) who were working on ‘‘design

rationale’’—in particular, on a sketch-recognition language complete with a vocabu-

lary of predefined shapes and a syntax for combining them.24 It seems that ambiguity

is something to stop in AI. But this seldom if ever happens with signs, and can’t be

expected for designs. In fact, it misses what drawing and sketching are for. Meaning is

closed off in advance to anything new. There’s no reason for reason. My retrospective

account of meaning in terms of topologies provides a workable alternative in an open-

ended process.25

I refer to Alfred North Whitehead and extensive connection in several places.26

In particular, there are his diagrams from Process and Reality showing how regions are

related, first on page 174 and then on page 211. Shapes connect both to Whitehead’s

regions and to Henry Leonard and Nelson Goodman’s more comprehensive individu-

als.27 These are also the focus of Stanislaw Lesneiwski’s earlier mereology (the theory of

parts and wholes). Alfred Tarski describes it nicely.28 Peter Simons provides an omni-

bus survey of the whole field—his discussion of extensional mereology is useful to

compare shapes and individuals.29 Goodman and W. V. Quine use ‘‘shape-predicates’’

to calculate with ink marks (individuals) in a ‘‘nominalistic syntax’’—after discussing

this with Tarski and Rudolf Carnap.30 The brainpower is simply staggering. It seems

almost comical, along with the results that suppress what marks can do. It’s amazing

how hard it is to make the world—even a small part of it—behave syntactically, and

then everything is lost. Luckily, syntax isn’t necessary to calculate. Leonard and Good-

man, and Lesneiwski, establish the Boolean standard for individuals, too, all with

qualms about the zero.31 Shapes are like ‘‘regularized’’ point sets, as well.32
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Most of the mathematics I use is pretty elementary. In a few places, however, I

probably exceed the limits of everyday familiarity. There are (1) M. H. Stone’s general-

ized Boolean algebras (Boolean rings), (2) his extension of these systems to standard

Boolean algebras, and (3) his theory of representations.33 Earl presents a nice review

of the techniques in the latter—Stone spaces, etc.—with respect to shapes and their

topologies.34 For example, closure for shapes and Stone’s filters describe parts by the

parts containing them. But, of greater interest, Earl summarizes alternative ways of

describing shapes in terms of sets and parts. These are in table 12, and are familiar

from what I’ve covered, using point sets, parts made up of points as well as lines, etc.,

and closed parts. Still, table 12 is only a snapshot, and there’s more to see and do. It’s

crucial to what I’ve been trying to show that the closure operation c in the rightmost

column is defined as rules are applied—for example, using the mapping h1 on page 286

and either the first or both of the formulas that follow there. This allows for anything

to happen as meaning unfolds in an Aristotelian process that’s finite and continuous.

Nothing is fixed before I begin to calculate, and everything is free to change as I go on.

A Heyting algebra in which the complement of a closed part is the closure of its

Boolean complement is defined via c. This is especially telling for h1 and the first for-

mula alone. (Heyting algebras also suggest a link with logic that I haven’t followed up.)

The Stone space topology in the middle column is really neat once you see how it

works—even as an artifact of mathematical abstraction—and confirms what I’ve been

saying about shapes with all of their concrete properties. And the mathematics for

parts and closed parts—this goes together in closure algebras (þ, �, �, and c)—doesn’t

intrude in what’s going on. It shows how shapes and rules work as if it weren’t there.

With parts and closure, you’re free to think with your eyes—to see and do whatever

you want. That’s the real mathematics. And it doesn’t need to be formalized to be

used, even if that provides an impressive pedigree. Elsewhere, I show how generalized

Boolean algebras and Boolean algebras are related, using figure-ground-like properties

of shapes.35 Monoids (page 194) are used in the theory of formal languages and autom-

ata instead of algebras with more Boolean-like properties.36 Concatenation is the sole

operation on strings of symbols from a given vocabulary. But, in general, monoids

won’t do for rule application.37 Concatenation isn’t enough to recognize and replace

Table 12

Alternative Ways to Describe a Shape A

Points Parts Closed parts

Topology Euclidean space Stone space Closure operation c

Closure of xaA Point setþ boundary Parts are closed and
open

Smallest closed part
containing x

Boundary of x Point set boundary Empty shape cðxÞ � ðA� xÞ
Connectivity Multiply connected Totally disconnected Partially connected

Algebra Boolean Boolean Heyting
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segments of strings. Noam Chomsky counts symbols to classify rules and to measure

the complexity and power of generative grammars.38

Generative grammars aren’t the only way to calculate where complexity is the

measure. Steven Wolfram does cellular automata in remarkable detail—including

John Conway’s game of life—and provides useful background for like devices—for

example, fractals and Lindenmayer systems.39 To his lasting credit, Wolfram prefers

graphic depictions of cellular automata to numerical summaries of data.

Looking through this book, one striking difference with most previous scientific accounts is the

presence of so many explicit pictures that show how every element in a system behaves. In the

past, people have tended to consider it more scientific to give only numerical summaries of such

data. But most of the phenomena I discuss in this book could not have been found without such

explicit pictures.40

Who needs sex when you’ve got ‘‘explicit pictures?’’ They’re better than the real thing.

All of them are zero dimensional—they ‘‘show how every element [point] in a system

behaves.’’ This might as well be Herbert Simon in The Sciences of the Artificial. In fact,

Simon and Wolfram see pictures the same way. Try this one of an array

and ask the following questions—(1) how many cells does it contain? (2) how did

it grow? and (3) how did it start? Individual cells behave as might be guessed.

They’re black if any of their eight adjacent neighbors is black—horizontal, vertical,

and diagonal

But this doesn’t make the picture explicit. Neither question 1 nor question 3 has a def-

inite answer, even if I can answer question 2—at least experts can, the ones who watch

cells do it. The picture is an n� n square, for any n. And there’s no end of initial con-

figurations—maybe these four

Really, though, I’m not being fair. I can’t tell how many cells there are, but I can exper-

iment. Subsequent pictures determine cell size if cells do what they’re supposed to, and

I have an accurate clock that tells me when to look. I just need a couple of mea-

surements. Only what if there are finer and finer divisions in space and time? And the
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initial configuration may still be in doubt. Alternative histories are equivalent. But

even with open questions, Wolfram’s notion of ‘‘picture’’ has an uncanny appeal in

art and science—for C. S. Peirce with arrangements of objects, Ludwig Wittgenstein in

the Tractatus, Ezra Pound with Chinese characters, and Miller and Quine with informa-

tion, and also for Simon, Ivan Sutherland, T. G. Evans, et al. This is an awesome lineup.

Still, don’t be swayed. There’s more to a picture (shape) than any arrangement of pre-

defined units can show. Moreover, formal languages and automata—generative gram-

mars, cellular automata, etc.—are abstract symbol systems. There are many ways to

depict how they work—after all, form follows function—but none is necessary to

what’s going on. Explicit pictures may reveal new phenomena, though the new phe-

nomena could be otherwise in different depictions that don’t change what cellular

automata do. Algebras of shapes are needed for seeing and calculating to be the same;

but then, shapes are ambiguous. Neither what pictures show nor their connection to

cellular automata is definite. Wolfram is right to prefer pictures over numbers—there’s

more to see than to count.

(Do explicit pictures show the eternal and unchangeable, or are they a harmful

vice? It’s nice to be clear about what’s happening unit by unit. There’s plenty to admire

in the precision and insight this implies, and in what it has to teach. Yet there’s the

numbing sameness of pornography when everyone calculates one way—counting out

unit by unit in combinatorial play. There must be an alternative. A meaningful com-

plaint takes an effective remedy, and that’s what shapes and rules provide. Ambiguity

is to use, while explicit pictures indulge an idle fantasy. Plato asked us to choose

between explicit pictures and ambiguous ones, but he fixed the results. There’s scant

reason to vote. Counting yeas and nays matters only when ambiguity is noise without

an inventive hum.)

I enjoy reading Leon Battista Alberti. He has a nice way of saying things and a

nice way with lines, as well. I quote him on lines and architecture on page 214.41

Alberti appears again on page 251, where he talks about compartition (spatial compo-

sition) and about the recursive relationship between cities, houses, and rooms.42

William James says many things that work. I rely on the relationship between sa-

gacity and learning, first on page 64 in part I, and then again in this part on page 233.

It’s a striking way to describe rules. But I also go on parenthetically on page 234 to

James’s reference to John Stuart Mill. I find it as hard not to quote James as James

does Mill. ‘‘To be sagacious’’, says James, ‘‘is to be a good observer. J. S. Mill has a pas-

sage which is so much in the spirit of [this] that I cannot forbear to quote it.’’

The observer is not he who merely sees the thing which is before his eyes, but he who sees what

parts that thing is composed of. To do this well is a rare talent. . . . It would be possible to point out

what qualities of mind, and modes of mental culture, fit a person for being a good observer: that,

however, is a question not of Logic, but of the Theory of Education, in the most enlarged sense of

the term. There is not properly an Art of Observing. There may be rules for observing. But these,

like rules for inventing, are properly instructions for the preparation of one’s own mind; for put-

ting it into the state in which it will be most fitted to observe, or most likely to invent.43
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To be sure, Mill would agree that freedom (liberty) to observe and to say what you see

is key throughout education ‘‘in the most enlarged sense of the term.’’ Education isn’t

about morality and good and bad manners, or testing what you know. Good answers

and right behavior aren’t set in advance—they’re always a surprise. This isn’t a ques-

tion of logic but of unfolding experience. That’s why I’m so keen on shapes and rules.

My rules let me focus on this while going freely to that, without having to represent

anything in between. They let me see ‘‘what parts that thing is composed of’’ in new

ways as I go on. Only my rules aren’t Mill’s. His rules encourage getting in the right

frame of mind. This is important enough—and for me, it involves marshaling an array

of schemas x fi y to define rules. That’s the main job of part III. Then using these rules

to calculate with shapes puts observing and inventing in a working relationship—I do

the one to do the other.

The quotations from Franz Reuleaux that link ‘‘Invention’’ and ‘‘Thought’’ are in

The Kinematics of Machinery.44 In keeping with this, Reuleaux divides design into direct

and indirect synthesis. He prefers the latter to the former, although this seems inevita-

ble when invention is thought—sooner or later, the one is bound to be organized in

the same way as the other.

Diagram of the Synthetic Processes

The importance of this part of the subject is so great that I have thought it worth while to add the

accompanying diagram in the hope that it may make the connection between the different syn-

thetic methods somewhat more clear to the reader.
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Kinematic synthesis as a whole divides itself into direct and indirect, and each of these

classes again subdivides into general and special. The direct synthesis should combine the kine-

matic elements at its command into the required pairs or chains according to the laws of pair- or

chain-formation. In part it strikes upon insoluble difficulties, in part it furnishes results that have

no practical value. The indirect synthesis first (as special synthesis) forms and arranges all the pos-

sible pairs of elements, and then (as general synthesis) finds all the combinations of these pairs

into chains. From this systematized arrangement of pairs and chains the special combinations

best suited to each particular case can then be chosen by an inductive process. When the required

chains have thus been found the remaining processes of forming them into mechanisms and

machines present no difficulties.45

In a way, Reuleaux’s diagram reframes Plato’s question for design to minimize the

chance of wandering anywhere unexpected. There are units to combine in both direct

and indirect synthesis. They’re combinatorial. But direct synthesis crosses the ‘‘Un-

known’’ as luck takes it to what’s fruitful and not, while indirect synthesis uses a

logical (inductive) process to search through all possible pairs and chains that are

‘‘Known’’ in advance. Perhaps this is OK insofar as invention (synthesis) is indepen-

dent of observation when parts fuse and divide. But even then, always knowing the

way to go may miss something useful that’s found only by taking an uncharted route.

It seems that certainty guarantees getting it right by limiting what there is to see. In

most cases, this is probably fine. In most cases, there’s nothing to design.

Steven Pinker considers the kinematics of thought and mental machinery. I used

his apt description of human minds—they’re combinatorial—earlier, in the introduc-

tion, on page 46, and it follows Reuleaux on page 302. Pinker recommends an assort-

ment of generative paraphernalia in cognitive science. His favorite devices are from

linguistics, logic, and computer science—words and rules, individuals and kinds (mem-

bers and sets), compositionality (the meaning of a complex expression depends on its

constituents, what they mean separately, and how they’re combined), and facts in a

mental database.46 This implies that design is thought—indirect synthesis is composi-

tional in a database of known pairs and chains. And there’s evidently more—for exam-

ple, Simon’s hierarchically organized list structures extend words and rules to pictures

and drawings. But is this enough? Without embedding, human minds may seem na-

ively combinatorial. In practice, Pinker’s list leads away from drawing with shapes and

rules to vocabulary and syntax—from design to philosophy and permanent results.

There’s no way to see anything that hasn’t been described (represented) before. This

splits thinking and experience, and explains why design isn’t thought. When given

units combine in novel ways, there’s always more to count and no reason to see. This,

no doubt, is wonderfully creative, but it’s barely half the story—simply being genera-

tive (recursive) à la Pinker, in the way Chomsky and Simon urge, doesn’t include every-

thing that experience holds. There are endless surprises once embedding and recursion

are put together. Shapes and rules—shape grammars—are as creative as words and

rules, and then more so. Parts change freely as rules are tried, even identities in the

schema x fi x that keep shapes the same. There is no final vocabulary—meaning is

renewed whenever I choose to look again. This is calculating by seeing, and it includes

design.47
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III USING IT TO DESIGN

We began utterly wrong in England, and we have gone on wrongly, and the consequence is that it

is only the exceptional person who learns to draw very well. Now in my experiments I have

reversed that process, and I find that not only does every person when he is taught rationally,

and intelligently in the same way that he is taught Latin, and Greek, and mathematics, learn to

draw well, but also to paint well, and to design well. But it is on a wholly different principle from

that on which he is taught here in England. . . . We have developed an intellectual method of

teaching drawing, more industrial, more practical, more artistic, and infinitely more successful. . . .

I propose to show how art education can be as sensibly treated as Latin and mathematics. I have a

great wealth of illustration here, which, if you allow me, I shall be very happy to submit to you.

Probably it would interest you if I showed you some of the actual work of the children in the

public schools of Boston and Massachusetts.

—Walter Smith

Design Is Calculating

Metaphors are good heuristics. In fact, there’s this metaphor for metaphors and heuris-

tics. And there’s also the one I started with

(1) design is calculating

as something to try and to prove. An alternative to it is an equivalence when I use the

mathematics of part II. It’s this

(2) drawing is calculating

where drawing is both seeing and doing. Whenever I put pencil to paper, I’m calculat-

ing with shapes or symbols. But there’s nothing to code in a drawing, so I don’t have

to use symbols in place of shapes to calculate. Shapes are fine by themselves without

underlying descriptions or representations. In the introduction, I said that I wanted to

do this book in a rigorous way with shapes and no words. Now I can, and in a sense,

this part is a first try—at least there are a lot of drawings that are all just as rigorous and

formal as symbols and code. Shapes in rules show how to change shapes in an open-

ended process for drawing and design. This is to see, but it’s also included logically in

statements 1 and 2. They combine in the formula



(3) design is drawing

and I like to think that the corollary

(4) design is calculating when you don’t know what you’re going to see and do

next

follows, as well. This completes the transition from the mostly verbal discussion in the

introduction through the unfolding visual argument in parts I and II to the mostly

visual presentation now. It’s going from calculating by counting to calculating by

seeing with the shifting (subjective) viewpoints this implies.

Statement 4 pretty much sums up how I want to approach design with shapes

and rules. I’ve been trying to show that calculating with shapes and rules is inclusive

enough to deal with anything that might come up in design when it’s done visually.

That’s the reason embedding and transformations are needed to apply rules. First, the

embedding relation—what you see is there if you can trace it out, no matter what has

gone on before. Second, the transformations—what you see is like given examples

of what to look for, maybe things that were noticed in the past and used. And

together—embedding and transformations interact as rules are tried to calculate with

shapes.

The details aren’t too far from drawing when you pay attention to what you’re

seeing and doing. The trick is to slow this process down a little bit to describe what’s

going on in a mechanical way. It’s easy to say and, more important, easy to see. The

beginning isn’t much—start with any shape

C

Intuitively, there are lines on paper, but C can also include points, planes, solids,

labels, weights, etc. Shapes can have any dimension you please, both in terms of basic

elements and how they’re combined. In drawings, lines are one dimensional and

located on planes that are two. It all depends on the algebra in which you calculate.

Then a rule

A fi B

that shows two shapes A and B applies to C whenever

tðAÞaC

that is to say, there’s a transformation t such that the shape tðAÞ is part of (embedded

in) C. The rule A fi B is an example of what I want to see and do, and tðAÞ is some part

of C that catches my eye because it looks like A. The result of this is another shape

ðC� tðAÞÞ þ tðBÞ
The shape tðAÞ is taken away from C, and the shape tðBÞ that looks like B is the new

part that’s added back. This is the same drawing with pencil and paper, although

replacing parts with new ones isn’t set out explicitly. The beauty of the process—with
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rules, or pencil and paper—is that what I do now doesn’t restrict what I see next.

Shapes fuse and divide freely, whether or not they’re drawn according to rules.

For example, I can add a square to a square with the rule

and then rotate a third square

that’s neither one of the two squares I put together originally

Or I can translate a chevron

to make a cross, and move another chevron in the opposite way to rotate squares

But my rule for adding squares
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does more when I apply it in another way

Then what I’m doing can repeat with plenty of surprises—here are four of them

It’s a lot easier to follow this with your eyes than to be consistent about it in

words. Certainly, I haven’t succeeded, fooling around with the squares I add and

the squares I see and moving chevrons that pop up in unexpected ways. It’s all a little

crazy when I can change what I see and do this freely. It’s hard to know what to say

that isn’t misleading or wrong. And really, that’s the whole story. I can use rules to

change shapes without being consistent about what I see. This doesn’t sound like cal-

culating, but it is. And it’s what you need to design, so that you can change your mind

about what you see and do as you go on. What it shows is that statement 4 isn’t that

far-fetched—

design is calculating when you don’t know what you’re going to see and do next

What a shape is depends on what rules are used, and when and how. This can vary for

different rules, and, in actual fact, it changes every time any rule is tried. Yet there are

some other things to consider that open up calculating even more.

As an example of what I want to see and do, the rule A fi B may be too narrow.

This was the problem in part II for squares and quadrilaterals. But there was a straight-

forward solution I could try. Instead of drawing rules or pointing to specific shapes, I

could use schemas. This made calculating easier in some nice ways without compro-

mising the embedding relation.

The new setup is pretty much the same as the one I have for rules, with the addi-

tion of variables, assignments, and predicates. There’s a shape

C

and now a schema

x fi y

where x and y are variables that take shapes as values. These are given in an assign-

ment g that may be restricted in some way by a predicate. The assignment defines the

rule
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gðxÞ fi gðyÞ
according to the predicate. This can go from any rule—then the values for x and y are

simply shapes

—to rules with certain prescribed properties. Maybe y ¼ x to define identities for

polygons

Or perhaps y ¼ tðxÞ for a transformation t of x

or y ¼ xþ tðxÞ

so that once a rule is applied to a part like x it can be applied again to a part like

tðxÞ. This kind of recursion is neat, but it’s not all that can happen in shapes, as the

rule

demonstrates with the surprise square in its right side. And single rules are also

possible—then x and y are given shapes, say, this square and its diagonals
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that I draw or point to in the usual way to show what they are. But no matter what rule

is defined, it applies exactly as my two formulas describe. Still, it may be worthwhile to

say this for schemas directly. The schema x fi y applies to the shape C whenever an

assignment g and a transformation t define a shape tðgðxÞÞ that’s part of C
tðgðxÞÞaC

The result of this is another shape

ðC� tðgðxÞÞÞ þ tðgðyÞÞ
produced by replacing tðgðxÞÞ with the shape tðgðyÞÞ. In most of the examples that

follow, I’ll be using schemas. I’ll usually define them with one or two of the rules they

determine under specific assignments with a short verbal description of the predicate

involved, just as I’ve been doing. This avoids the need for a lot of technical details

and lets me present everything visually. We’ll just agree that predicates can be filled

in as necessary. And I promise not to do anything where the details are mysterious.

A useful way to explain my formulas for schemas is to notice that the composi-

tion t � g in the expressions tðgðxÞÞ and tðgðyÞÞ generalizes the transformations. What it

means for shapes to look alike can range very broadly and be decided in all sorts of dif-

ferent ways. I tend to show examples that depend only on Euclidean transformations—

for example, shapes are alike if they’re copies of the square

either because they’re congruent

or because they’re geometrically similar
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but really anything will do. All rectangles may be alike

or quadrilaterals

or polygons

In fact, I can make the predicate that defines the assignment g as wild as I please.

Maybe x in the schema x fi y is a blob of some special kind

or any simple closed curve—whatever makes sense when you look is OK as long as

there’s a general transformation t � g for it.

It’s also worth repeating that the predicates I use to define rules needn’t be

preserved as I calculate. I can put two quadrilaterals together

not unlike adding polygons and their transformations in the schema x fi xþ tðxÞ, and
then move triangles

according to the schema x fi tðxÞ. Predicates are simply a convenient way of

describing rules—a way that doesn’t carry over to calculating. Then descriptions
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don’t count. There’s no reason for me to be consistent about the things I see. Consis-

tency is at root conservative—insisting that the language I’ve used in the past is kept as

I see and do more makes calculating much too rigid. Certainly, it’s logical—words

make sense, so that things stay the way you say they are, and behave properly in the

way you expect them to—but it isn’t necessary. Why should words trump shapes when

their parts can change freely in an open-ended, creative process? There’s plenty of am-

biguity and the paradigm (gestalt) switches that go along with it—what you see is what

you get, any time you try another rule. And you can go on from whatever it is you see

without ever thinking about it. There’s always more to do. Ambiguity is to use. There’s

no reason to hesitate—

AMBIGUITY

No one ever says ‘‘Stop!’’ Nothing blocks my way. Whatever I see is OK. Neither

descriptions nor representations of shapes are needed to calculate—they don’t intrude

when rules are used to see and do.

So far, so good, but what about design?—that’s what I want to use rules and sche-

mas for. The problem here is to convince you that design is calculating. This is harder

than it looks—not because it’s difficult to produce designs by calculating, but because

whatever I do may not be what you call design. Design varies so widely and unpredict-

ably from person to person and from time to time that any calculating I do isn’t likely

to cover very much of it. Calculating to make designs will just have to do, with the

promise that if you want to do it in another way, then shapes and rules are up to the

task. And this doesn’t mean starting over from scratch every time you have another

idea or want to try something new, but rather adding rules or relaxing the ones you’ve

already got to allow for more, so that designing, like seeing, is an open-ended process.

This seems OK, but maybe I should look for a way to prove my claim that design is cal-

culating. Well, this probably won’t work—it’s more a question of confirming a thesis

in ongoing practice, and, in fact, there’s a strong precedent for this in the argument

that algorithms are Turing machines. I like to think that there’s plenty of solid evi-

dence in my examples. I’ll trace these in a kind of personal history that shows some

of the things I’ve tried to design by calculating. Most of what I say is pretty impression-

istic, although not because I have to be so. The details are given elsewhere, so they

needn’t be a distraction here. It’s more important now to emphasize key ideas that

run through what I try and how they’re expressed in rules and schemas. There’s a lot

to see that shows what rules can do, and most of it is just like drawing—but surely, this

is already evident from statement 3

design is drawing

and what follows in statement 4 for shapes of all kinds.
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Tell Me What Schema to Use

I started out with shapes and rules to generate paintings that were mostly about

seeing—designs like this one

It’s defined in an algebra U12 þW22 for shapes made up of lines, and planes with

weights—here, weights are colors that change from dark to light as they add up to pro-

duce an ambiguous kind of layering. My original rules were a little different from the

rules I use now. They separated shapes and colors in order to generate designs, but in

concert they worked pretty much as the rule

The idea was to connect squares in continuous paths that followed one another and

intertwined. This elaborated the rule

that’s much easier to describe in words without confusing what’s going on. The rule

colors square regions in a recursive process

The lines in the left side of the rule
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fix the boundary of the square plane in the right side, and they’re replaced with lines

for additional squares at the four corners of the plane. This is expressed inclusively to

allow for other shapes besides squares in the schema

bðxÞ fi xþ t0ðbðxÞÞ þ � � � þ tnðbðxÞÞ
It’s a little too complicated for my taste, so breaking it down into a pair of easier

schemas is helpful. First, I have

bðxÞ fi x

to produce areas or regions (maximal planes) from the sum of their boundaries, and

then next comes

bðxÞ fi t0ðbðxÞÞ þ � � � þ tnðbðxÞÞ
to replace a shape with a number of geometrically similar copies. But I’ve already

shown this in summary form

x fi
X

tðxÞ

for fractals. In fact, the design

was inspired by David Hilbert’s famous curve. More generally, though, I was applying

two easy schemas from part II—schemas that did a lot of other things, as well, and that

I still use today. This is something to keep in mind. The same schemas can be used to

produce widely different results in different contexts, although the calculating doesn’t

change. This provides a positive reply to students when they try to calculate with

shapes and rules for the first time—‘‘What schema should I use?’’ It’s a good question

that experience finally answers. But, in the meantime, schemas and the rules they
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define can be shared and used in your own way—it’s copying without repeating the

past. There’s something to learn in the classroom that works in the studio when stu-

dents ask, ‘‘What should I draw?’’ Creative design can be taught like language and

mathematics in school, with examples, rules, and practice and the opportunity to ex-

periment freely. Rules make this possible because they apply to shapes in terms of

embedding and transformations. But I’ll come back to teaching a little later on, after

I’ve presented more evidence to back up my claim that calculating with shapes and

rules is creative.

I’ve been talking about schemas and rules for my designs. I did a lot of them,

but one of the key ideas that worked over and over again in surprising ways

was to add shapes and their transformations. This is minimally expressed in the

schema

x fi xþ tðxÞ
that defines the rule

used for the shapes in the series

And, in fact, this provides for the six designs in figure 1 that keep to what I did with

the schema bðxÞ fi xþ t0ðbðxÞÞ þ � � � þ tnðbðxÞÞ to explore alternative ways of coloring

regions. Whatever I’ve said about counting in the past, permuting colors is sometimes

informative—as long as you know there’s always more to see in another way. And as I

went on, it seemed obvious that with all I could see and do with shapes and rules—my

two examples merely begin to scratch the surface—designing and calculating weren’t

too far apart. But not everyone agreed.

The problem was evident—I was calculating to make designs in my own way. I

could do anything I wanted and call it design. How about producing things that were

designed by others with sensitivity and skill? What about some real examples that had

the stamp of prior approval? Certainly, this wasn’t possible, especially for things that

weren’t as regular and hard-edged as my designs. But, as luck would have it, I didn’t

have to search very far to go on. There were plenty of things to design with shapes

and rules wherever I happened to look. It was surprisingly easy, and there were others

to help who saw this, too. Design was calculating. But in fact I knew that, and I already

had a way to go.
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Figure 1
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What the Thinking Eye Sees

After I tried schemas for my own designs and saw how well they worked to define

rules, I tested them out on examples from Paul Klee’s The Thinking Eye. I’ve already

talked about the opening lessons in Klee’s Pedagogical Sketchbook and the way they sug-

gest a kind of visual calculating with shapes and rules. But there are more examples in

The Thinking Eye of far greater variety. It’s a perfect laboratory for schemas with exciting

experiments ready to try.

There are plenty of designs like these two

that I can get directly with rules. The rule

that’s defined for squares in the schema x fi xþ tðxÞ is already familiar. And two addi-

tional rules introduce the idea of dividing shapes or the regions they bound—here, for

the diagonals of squares

and for horizontal or vertical cuts

This implies division rules in a new schema

x fi divðxÞ
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—divide x—that extends my kind of calculating. In fact, x fi xþ tðxÞ and x fi divðxÞ
overlap in some nice ways. The rule

answers to both—its right side is the sum of two squares, or it’s divided into four

triangles and also a square. Together, the two schemas do a lot of neat things, and in

the next section, I’ll show this in a series of interrelated examples. But first I need a

more typical example from The Thinking Eye where schemas are conspicuously

required. There’s something useful on almost every page—something surprising to

see—but one design is especially right for how it looks and for what it shows. This is

the ‘‘palm-leaf umbrella’’

and it’s within the immediate reach of the schemas I have right now, in particular, the

pair of schemas above: x fi xþ tðxÞ and x fi divðxÞ. Only a couple of small changes

are needed for the job. In many ways, schemas are like shapes—they’re easy to

change.

The palm-leaf umbrella is a playful design, yet Klee presents it under a serious

rubric—

Irregularity means greater freedom without transgressing the law.

But is this the kind of freedom calculating allows? Certainly, calculating is a rigorous

process that means following the letter of the law. The rule
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is defined in the schema x fi xþ tðxÞ, and it evidently produces a pinwheel that’s cycli-

cally symmetric

when calculating goes like this

Not a bad design, easy to get, and a little something like Klee’s palm-leaf umbrella.

Nonetheless, everything seems far too regular in the way you’d expect when recur-

sively applying a single rule that adds two congruent right triangles hypotenuse to

side. But this is readily fixed in the new schema

x fi xþ xA

where x and xA are both triangles, and not always similar ones x and tðxÞ. (The schema

is another version of the schema x fi Aþ B for spatial relations. I showed how to use it

for arbitrary shapes A and B, along with its inverse Aþ B fi x, in several examples in

part II.) The rule

is defined in my new schema, and so is the alternative rule

In fact, I can show how all of the triangles in the palm-leaf umbrella are related—no

surprise. This sort of parametric variation in rules is already allowed in my schema for

quadrilaterals that includes the rule
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Perhaps the schema x fi xþ tðxÞ would be more productive if it were expressed in

some other way that’s a little more relaxed, maybe as

x fi xþ t � gðxÞ
in terms of a general transformation defined in a composition t � g. There’s probably

some abstract algebra here that’s worth pursuing. I’d have to be more explicit about

what I wanted, but really that’s an exercise to try. Right now, it makes more sense to

go on calculating with its concrete results. The various rules in the schema x fi xþ xA
give me the series of shapes in figure 2.

Still, the final shape I show in figure 2 isn’t Klee’s palm-leaf umbrella—there are

also quadrilaterals

and a pentagon
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Figure 2
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I seem to be stuck. But no, this isn’t the end of it—I can do much more with my sche-

mas to get exactly the results I want. Look at it another way and see how it works. The

diagonal of a quadrilateral forms twin triangles

and it’s the same for a pentagon with a concavity, at least in the special case where a

diagonal and an edge are collinear

Shapes are always ambiguous, and the ambiguity is something to use. It seems that I

already know how to go on. If I apply the inverse of my division schema x fi divðxÞ,
that is to say, the schema

divðxÞ fi x

I can erase diagonals in polygons in just the right way. For quadrilaterals in the palm-

leaf umbrella, I need the rule

and this one

and for the pentagon, the rule

is fine. Inverses often come in handy—the schema x fi bðxÞ determines the boundary

of a shape with lines, planes, or solids, while its inverse bðxÞ fi x works to color regions

in my designs. And then there’s the palm-leaf umbrella
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But be careful. Inverses may not do what you expect. For example, the inverse

xþ xA fi x

of the schema x fi xþ xA doesn’t work for quadrilaterals and pentagons. When I use

the rules it defines, I’m left with an ugly gap

Yet beauty is in the eye of the beholder—perhaps this outcome is good for something

else. And I can always go on from anything I have with shapes and rules.

Working through Klee’s drawing in this way isn’t meant to recapitulate what

he did—no one knows for sure, and it’s no good relying on what he says. Rather, I’m

trying to show that schemas are up to Klee’s kind of designs. The rules I need are

included in a handful of schemas that are easy to use. And the rules themselves are

easy to apply to shapes in terms of embedding and transformations. Embedding

ensures there’s no letter of the law—I can calculate with triangles and see quadrilat-

erals and pentagons—and general transformations allow for as much irregularity as I

want—parametric variation of any kind is possible. Rules and freedom go hand in

hand—the one implies the other.

I’m staking the plausibility of the metaphor ‘‘design is calculating’’ as a heuristic

and equivalence squarely on my success with schemas, especially as I’m able to use

them more and more to calculate with shapes and to make designs in different styles

from different places and times. This is another kind of freedom, and it provides a

very practical kind of proof that calculating works. There’s seeing and doing, and that’s

all it takes when rules apply to shapes. I guess ‘‘design is calculating’’ really is more of a

thesis than a theorem. The evidence adds up, but not to logical certainty, just to empir-

ical belief.
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Chinese Lattice Designs—Seeing What You Do

There are myriad ways schemas can be used to produce designs. I especially like

the Chinese lattice designs that fill window frames. Most of these form regular pat-

terns of the kind shown in figure 3. They’re taken from Daniel Sheets Dye’s A Gram-

mar of Chinese Lattice. It’s a wonderful and extensive catalogue that’s hard to put

down. It’s a joy to see. And in fact, like The Thinking Eye, it holds the material for end-

less experiments with your eyes.

Figure 3
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The four lattices I’ve shown are checkerboard designs like this one

in which a given motif

is inscribed in squares in a rectangular array. The ‘‘H’’ alternates this way and that, left

to right from side to side

to correspond to contrasting colors or distinct labels (symbols). This makes it easy

to use my schemas—first, x fi xþ tðxÞ to produce the checkerboard pattern, fol-

lowed by x fi divðxÞ to inscribe the H and divide squares. There are two rules for the

checkerboard

where x is a square and an asymmetrically placed point to orient the H with respect to

left and right diagonals. And going back and forth from rule 1 to rule 2, I get the series

of shapes
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Then there’s a single rule for the H to divide squares

Of course, the H I’ve given isn’t the only motif I can use. Squares are divided in

many different ways in Chinese lattices to make checkerboard patterns. In the designs

in figure 3, the motifs vary in the following way

to define new regions, and in this lattice

there’s a surprising checkerboard pattern, too, when squares in a diagonal grid are

divided into regions so
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This raises an important issue. I began with a corpus of shapes—designs in a given

style—and specified rules in my schemas to define the corpus and to produce other

designs of the same sort, and nothing else. There’s even an easy kind of stylistic change

where I add rules to divide squares with new motifs. In many ways, this is all very con-

vincing. I can recognize what’s in the style—do my rules generate it?—and I can pro-

duce novel instances of the style that haven’t been seen before. I can go from known

to new, and I can say exactly what’s happening in terms of the rules I try. And that’s

the problem. When I look at the lattice just above—or the one with the H motif, for

that matter—I don’t automatically see the checkerboard or how its squares are divided.

In other rule-based systems in which shapes are represented in terms of symbols (vo-

cabulary and syntax), this is just something to get used to—learning the ‘‘right’’ way

to see according to given rules. There’s no ambiguity. Nonetheless, I have a creative

way to handle any discrepancies between the rules I apply to produce designs and

what designs look like. This is what I set out to do at the beginning of this book with

embedding and transformations, and the effort pays off handsomely when I calculate

with shapes and rules. That’s why the mathematics was worth doing and getting right

in the first place. Now calculating seems almost too easy, and it may be something of

an anticlimax. I simply augment my rules with identities defined in the schema

x fi x

to pick out any other parts I see—according to Dye, ‘‘octagons’’

‘‘octagon-squares’’

333 Chinese Lattice Designs—Seeing What You Do



and ‘‘supplemental squares’’

But, really, I can try any identity or rule—I’m free to see and do as I please.

A strictly generative account of style may not be enough. Saying what you see as

you make what you want matters, too. Ambiguity isn’t noise, it’s something to use.

And this is how shapes and rules work. I can always add the identities I need to see

what’s important and describe it independent of the rules I apply to produce designs.

Embedding and transformations make this possible once shapes fuse, so that genera-

tive and descriptive aspects of style are on equal footing and can change with ongoing

experience. Understanding a style is more than connoisseurship and forgery. There are

other things to see and to say, as well, that go beyond recognizing instances and copy-

ing them in a particular way, or branching out to make new ones. And I needn’t miss

any of this when I calculate with shapes and rules.

There’s always more to see and do. Not all of the lattice designs in Dye’s Grammar

are regular patterns. In particular, there are marvelous ‘‘ice-rays’’

To appreciate [these] designs . . . one needs to see ice forming on quiet water on a cold night.

Straight lines meet longer lines, making unique and beautiful patterns. The Chinese term this

ice-line, or lines formed by cracking ice; I have described it as the result of a molecular strain in

shrinking or breaking, but more recent observations and photographs seem to prove that it is a

conventionalization of ice-formation which has become traditional.

And by now, it shouldn’t be a surprise that ice-rays are made by calculating.
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Let’s try the ice-ray lattice

It’s one of my favorites—in this case because what I see looks hard to do, but isn’t. I

need four kinds of rules like these

perhaps from the schema x fi divðxÞ to divide triangles, quadrilaterals in alternative

ways, and pentagons. Then it’s one more case of parametric variation using general

transformations t � g. Dye summarizes the process nicely—

In the case of the ice-ray pattern [the artisan] divides the whole area into large and equal light

spots, and then subdivides until he reaches the size desired; he seldom uses dividers in this

work.

Or I might think of my rules in another way in terms of a fractal-like schema

x fi xAþ xAA

where one polygon x is replaced by the sum of two, xA and xAA. Whatever I do, it’s the

same—visually, there’s the series of shapes in figure 4. Maybe the series is excessive

and even a little indulgent—I like to draw—but it seems to me that it’s worth seeing

once for ice-rays that rules work throughout; and after all, I’m only showing half of
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Figure 4
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the process. In fact, the process isn’t hard to describe. When I first thought about mak-

ing ice-rays, I had Dye and the schema x fi divðxÞ in mind. This is what I said—

One can imagine a Chinese artisan, summoned to a building site, bringing with him tools and

implements and a collection of finely finished sticks. Shown a rectangular window frame, he is

asked to create an ice-ray lattice. He begins his design by selecting a stick of the appropriate length

and carefully attaching it between two edges of the existing rectangular frame, thus forming two

quadrilateral regions. He continues his work by subdividing one of these areas into a triangle and

a pentagon. He further divides the triangle into a triangle and a quadrilateral; he divides the pen-

tagon into a quadrilateral and a pentagon. Each subdivision is made in the same way: attach an

appropriately sized stick between two edges of a previously constructed triangle or quadrilateral

or pentagon, so that it does not cross previously inserted pieces. Each stage of the construction is

stable; each stage follows the same rules.

Ice-rays make it easy to be a ‘‘rationalist’’—to believe that available technologies,

properties of materials, and methods of construction determine designs. And, to some

extent, these constraints do matter as they’re expressed in schemas and rules. Rules al-

low for freedom and constraints—going back and forth from one to the other is always

possible. In a way, though, it’s ironic. Many times, the truly hard problems are to fix

constraints that aren’t immediately spatial, for example, so that rules apply in the right

logical or temporal sequence. But the seemingly effortless switch from constraints to

freedom via identities and other rules is more impressive. That’s where embedding

and transformations really make a difference.

I’ve tacitly assumed all along that rules are nondeterministic, that is to say, they

can be applied in various sequences under alternative transformations. This is the

source of creativity, in Chomsky’s sense, for vocabulary and syntax when different

things are produced combining the same constituents, and there’s a kind of ambiguity,

too, when the same thing results in different ways. But shapes and rules give much

more. Creativity and ambiguity have an Aristotelian origin, as well, that’s evident

when I use the schema x fi x to define identities. Then I can divide shapes to see as I

please.

For lattice designs, there are unlimited opportunities for variety and novelty in a

traditional style. Even so, rules may apply in more specific ways. For example, not

counting the pair of leftmost divisions, the ice-ray

is produced from left to right
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But this may be a fluke—lucky accidents and surprises where there’s something unex-

pected to see are a wonderful part of art. Nonetheless, I can also use some familiar

tricks from part II to make rules work the way I want, to guarantee reliable results. Per-

haps it’s important for the main divisions in ice-rays to be ‘‘orthogonal’’ as my exam-

ple shows—then rules like this one

that incorporates a point will do the job

Or maybe ‘‘parallel’’ divisions that don’t intersect are more desirable—then I can use a

point in the rule

and in other rules like it to calculate so

And I can also give rules for lattice designs with other kinds of symmetry, for example,

where divisions rotate in a nice way

It’s easy to do this for any transformation—simply show how it works in both sides of

a rule in the schema x fi divðxÞ. In particular, the rule
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is good for a half-turn p. Then the compound schema

xþ pðxÞ fi divðxÞ þ pðdivðxÞÞ
gives rules for any polygon x, even if it looks a little complicated. Still, there’s no rea-

son to worry. I can recast what the schema does in a two stage process in which the

schema x fi divðxÞ is applied first to x and next to pðxÞ. This guarantees that divðxÞ
and pðdivðxÞÞ are both in the design as long as divðpðxÞÞ ¼ pðdivðxÞÞ. Or equivalently,

there’s the schema

xþ pðxÞ fi divðxÞ þ divðpðxÞÞ
But in fact, x fi divðxÞ alone may really be enough—simply let

xþ pðxÞ fi divðxþ pðxÞÞ
I can always divide more than polygons. Schemas and the rules they define work with

remarkable ease.

Of course, there are other ways to change ice-rays that are of equal interest. Just

as checkerboard lattice designs contain different motifs, ice-rays can be divided in alter-

native ways. In particular, there are axial motifs with three to six arms

Usually, these devices are used once centrally to start
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but occasionally they repeat in some delightful ways

With shapes and rules, it’s easy to add new motifs and to take advantage of what they

do. It requires nothing more than a drawing to show what I want to see and do. That’s

how rules are defined. And that’s all I need to calculate.

Earlier on, near the beginning of this part, I said that the same schemas worked

in different contexts to produce different results. The schema x fi divðxÞ that I’ve been

using to divide regions in ice-rays is a perfect example of this. I’ve already shown that

the schema is good for other kinds of lattice designs and, as an inverse, for Klee’s palm-

leaf umbrella. But more conspicuously, it works in various algebras for painting and

architecture. The painter Georges Vantongerloo did a large number of designs like this

one

in which he starts with a pinwheel division and then makes orthogonal cuts. No

one would ever call it an ice-ray, but it really is. And then the Portuguese architect

Alvaro Siza relies on the same idea in designs for floor plans in his ongoing housing

project at Malagueira—about twelve hundred units to date that repeat at least thirty-

five plans. Here’s one design that’s produced with a biaxial cut followed by three

more divisions
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Ice-rays can be used widely in many different ways; but, of much greater im-

portance, schemas can, too. This is certainly prima facie evidence that design is calcu-

lating, although showing that calculating pays off in studio teaching and creative

practice is the real test. Professional disciplines are apt to have stubborn customs and

recalcitrant standards—that keeps them exclusive. And art and design are hardly

exceptions to this rule, so it helps to have more to go on before asking artists and

designers to try something new that breaks with traditional methods of teaching and

practice. Whatever they are, teaching and practice simply can’t be calculating with

shapes and rules. No—calculating is never ever creative.

They’re Shapes before They’re Plans

I’m going to do Andrea Palladio’s famous villa plans, with the Villa Foscari as my main

example

They form a style apart, vital and never diminishing in the capacity to entice others into emula-

tion, but evasive of definition.

I’m interested in Palladio, just as I’m interested in Klee and Chinese window

grilles, and my paintings, as well, to show that design is calculating. But of greater

importance for buildings is that functional, social, and aesthetic relationships—things

in the architect’s Vitruvian canon of firmness, commodity, and delight—aren’t beyond

shapes and rules. Many find this surprising, even though these relationships are

expressed in form. They’re all about shapes, so calculating according to rules makes

sense. However, I’m not going to do Palladio’s system of proportions as part of what I

show. Numerical relationships are easy in my schemas and rules, yet calculating with
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numbers doesn’t buy anything new and may give the wrong impression. Rather, it’s

the look of Palladian villa plans—this is more than the usual stuff of calculating—

that’s my central concern. But first, notice a few additional things that this isn’t about.

Architects can be remarkably insecure when it comes to what they do, so it’s worth try-

ing to avoid common misconceptions from the start. Some ambiguity is lost in prefa-

tory disclaimers, although there may be more to gain in other ways. What I’m doing

isn’t a commentary on contemporary architecture and how it’s practiced, or an argu-

ment for classical principles of building or for the plan as a method of designing. Nor

is my interest in Palladio historical. I don’t know what he did to get his villa plans, al-

though he’s pretty good at saying how to design them in The Four Books of Architecture,

and that’s really as far as my scholarship goes. What Palladio draws, not what he

builds, is what I’m interested in—plans are shapes before they’re plans. That’s why I

can calculate with them. But the technical devices I use aren’t necessarily the same as

Palladio’s—showing how to calculate always takes precedence, even if the results I

get and the steps along the way are like his in many ways. My only stake in this is

to show more about calculating with shapes and rules, and that calculating includes

design, at least to the extent that I can make convincing plans without too much

fuss. In fact, the schemas and rules I use are not unlike the ones I’ve used multiple

times before. This buttresses my repertoire of schemas and recommends them again

for teaching and practice—in particular, it extends what I can do in the classroom

and how this works creatively in the studio. My way of calculating with shapes and

rules is always open-ended. Knowing how to design something spatial—Palladian villa

plans—may go farther than you expect.

It seems intuitive enough that there’s more to villa plans than there is to Chinese

lattice designs to make my case that design is calculating. Yet it’s difficult to be sure

about judgments like this when every shape of dimension one or more—even a single

line

—has indefinitely many parts. There’s a lot going on in shapes, all of them, that

encourages wandering around in an aimless way. You never know how it’s going to

turn out. What there is in a line is always a surprise. And in fact I’ve been arguing

from the start that being able to handle whatever comes up—to deal with the ambigu-

ity—is a prerequisite if calculating is going to be of any use in design. It’s calculating by

seeing, yet once you can do it, you can also proceed with a plan in mind. Sometimes, it

helps to calculate in stages—now, so that villa plans are produced in a straightforward

manner that’s easy to follow and explain. Four stages work perfectly for the schemas

and rules I want to use, and they make good architectural sense—there are (1) walls,

(2) rooms, (3) porticoes, and (4) windows and doors. What works for one thing,

though, shouldn’t be taken too far in a different direction. This is a sequence just for

calculating, and it doesn’t imply a hierarchy in plans. Hierarchies and such are always

possible in other ways, for example, retrospectively in my topologies, but they aren’t

something I’m going to pursue seriously here. Defining villa plans is my only practical

concern, and it’s a must before I can try anything else.

342 III Using It to Design



This is the grid of walls

for the Villa Foscari, with an axis running through the middle column of rectangles.

Bilateral symmetry is a characteristic feature of villa plans, and it’s preserved in every-

thing I do.

The rooms ought to be distributed on each side of the entry and hall: and it is to be observed, that

those on the right correspond to those on the left, that so the fabrick may be the same in one

place as in the other.

I can define the grid in terms of the schema

x fi xþ xA

where x and xA are rectangles with dimensions that fit in Palladio’s system of propor-

tions. And the trick I used for symmetric ice-rays works perfectly again, to reflect the

schema in this way

xþ RðxÞ fi xþ xAþ Rðxþ xAÞ
so that both sides of the grid are produced at the same time. Rectangles are added

either vertically or horizontally. This is evident in two separate cases. First consider

what happens when x is on axis, so that xþ RðxÞ ¼ x

Then, either xAþ RðxAÞ ¼ xA, as in the rule

that builds a column of rectangles, or this isn’t so, and I have a rule
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to start rectangles in a row. And second, it’s possible for x to be off axis, so that xþ RðxÞ
is

with the result that

to continue a row of rectangles. And all of this comes together to arrange rectangles in

an inverted T

But I still need rules to fill in open areas, and to add a bounding rectangle. Two sche-

mas do the job, and they make a good exercise—draw what you see and then what you

want to specify the left and right sides of a rule of the kind you need. I’ll say a little

more about defining schemas in this way later for the Villa Barbaro, with a drawn ex-

ample. In the meantime, there’s something else I need to do of more immediate

concern.

The problem is to combine rectangles to get the right room layout. To me, this is

the heart of Palladian design—

A unique feature of Palladio’s sketches or the plates to his Quattro Libri is the uniformity of schema

in plans.

The schema x fi divðxÞ provides for the details that are needed to make this work.

More precisely, I’ll use the reflection of the schema’s inverse—it’s the opposite of

what I did in ice-ray lattices—in this way

divðxÞ þ RðdivðxÞÞ fi xþ RðxÞ
Rules of the following kind are defined in this schema to form larger rectangular spaces

in a recursive process
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and also central crosses, T’s, and I’s on the axis of the plan
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The rules are applied in this four-term series

for the Villa Foscari. Of course, additional room layouts are readily defined as well. And

it would be nice to know how many.

Among the twenty surviving villas and twenty-odd projects known from drawings and the Quattro

Libri, there are few instances of a repeated plan, motive or composition in mass; Palladio would

produce at most two or three versions of a particular scheme before reaching out in an entirely

new direction. The common core within this variety is a particular conception of architectural

harmony and composition.

Questions of proportion aside, this depends on the number of rectangles in the origi-

nal grid of walls. For a three-by-three grid

there are twenty distinct possibilities
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of which two—the fourth one with a central rectangle surrounded by seven squares, so

that there’s an open side, and the last one with a cross—appear in The Four Books of

Architecture in the Villa Angarano and the Villa Barbaro. Then for the Villa Foscari and

a five-by-three grid, there are two hundred ten alternative room layouts. Palladio

includes seven of these in The Four Books, and one twice—it’s remarkable how much

more there is to do. Of course, this is the kind of configurational enumeration that

I’ve been loath to recommend. Nonetheless, it’s not without precedent in design. In

fact, there are pattern books and the like—ones of late vintage and of combinatorial

interest include polyominos, rectangular dissections, and Lionel March’s remarkable

taxonomy of all floor plans in terms of planar maps. It’s useful to know what’s possi-

ble, unless it interferes with seeing. Then the course is clear—stop counting!

Porticoes come next.

Often the porch is the only antique reference in the design; all the rest of the detail is simple

geometry, which is consistent with the concept of a hierarchy of elements.

Porticoes and like devices line up with interior walls, and when there’s more than one

portico or whatever, they line up together, as well. There are various schemas for this

that form a kind of architectural lexicon—I show how to define one entry below for

the Villa Barbaro—but the logic of schemas is pretty straightforward. On one side of

the plan, there’s almost always a portico—either in antis or prostyle, as in the Villa

Foscari. And then on the opposite side of the plan, there’s a portico in antis, a wall in-

flection like this one

at the back of the Villa Foscari, or nothing at all.
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Everything is ready for windows and doors. On axis, there are main entrances—

at least one and usually two—that are obligatory, and interior doors line up with them.

By now, the schemas for this should be evident. But off axis, things are a little more

challenging. There are also enfilades, that is to say, windows and doors are aligned as

the main entrances and interior doors are on axis. Drawing makes this practicable in

rules. Put a line between two external walls and insert windows—vertically to respect

the symmetry of the plan in the obvious way

and horizontally, too

with this result

Then, where lines cut internal walls, put doors
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It’s really kind of neat to see how easy this actually is, just seeing and doing wall by

wall and door by door

so that enfilades are formed automatically.

That’s it. There’s the Villa Foscari, only what else is possible? That’s what sche-

mas are for, to define rules that do more. And the examples in figure 5 show a represen-

tative sample of results—some of them are from Palladio and others are forgeries, and

the two kinds aren’t easy to tell apart. This can be a lot of fun, and it seems to me that

it’s in the spirit of The Four Books of Architecture. I can’t help thinking Palladio meant

his treatise to be used, and not simply as a static record of his designs. Drawings with-

out instructions would have been enough for that. With shapes and rules, I have draw-

ings and, in fact, drawings as instructions. Once again, design is calculating.

But there’s a lot more to Palladio than I’ve shown with my schemas. I can use

them speculatively in various ways, perhaps to track down Palladio’s kin in design or

to explore a host of novelties that bear a family resemblance. Palladio’s most famous

design is the Villa Rotonda
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Figure 5
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But this is probably too easy given the schemas I already have. It’s enough to reflect

them with respect to a second axis of symmetry located in a few distinct ways, and

then to add the little more that’s needed to handle centrally placed domes. The tech-

nique is already established in what I’ve been doing. So let’s try another design that

doesn’t seem as straightforward at first blush and see how it goes. The Villa Barbaro at

Maser—I mentioned it earlier when I set out my catalogue of three-by-three room lay-

outs—is a good example. This is how Palladio draws it in The Four Books of Architecture

To understand how this design works tests schemas and rules in a new way. The

villa was built for Daniele and Marcantonio Barbaro. It includes common public spaces

in the main rectangular block and a row of private living spaces that the brothers

shared equally, one of them to the left and the other to the right. And certainly, the

design is different from the villa plans shown in figure 5. In particular, look at the stairs

that divide the building close to its middle. What kind of entranceways are these, from

the sides, symmetric but off axis? Moreover, the villa is complicated in other interest-

ing ways. I like to describe it as separate buildings, one in front of the other, and there’s

good evidence for this in the actual villa, in photographs, and in other drawings (nota-

bly, the famous drawings of Bertotti Scamozzi). But is there anything to suggest two

distinct buildings in Palladio’s plan as it’s actually drawn in his Four Books? Suppose

this is exclusively an exercise with respect to the schemas I have for villa plans. The

austerity and rigor smack of logic and reason, and this isn’t at all misguided. Schemas

and rules can be applied forensically to explain existing designs, just as they’re used

creatively to produce new ones. And my schemas give a definite answer—the Villa

Barbaro is, in fact, the sum of two buildings.
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Let’s see how this works in terms of specific schemas and rules. First there’s the

main rectangular block

and then, just behind it, a single row of nine spaces

The central space in the row and the twin flanking spaces abut the main block, but the

row and the block must be separate structures. This is the only way to ensure that there

are enfilades—otherwise, windows and doors wouldn’t make any sense. They would

look like this

in a haphazard arrangement where not everything aligns as it should. My schemas

don’t allow for this, and Palladio simply wouldn’t do it.

Now, it’s easy to make plans. The back building is merely a symmetric row of

rectangles—not a typical Palladian room layout, yet one nonetheless with a wall in-

flection and a horizontal enfilade—and the front building is in my catalogue of three-

by-three room layouts, here as a plan with the correct dimensions
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Still, there are the stairs—what should I do about them? They partially fill the two

corner rectangles at the top, according to the rule

and thereby provide an alternative ‘‘portico.’’ The rule is easy enough to define in the

following way: draw what you want to change—that’s the left side of the rule—and

then draw what you want this to be—that’s the right side. This seems almost trivial

given the usual difficulties writing computer code, when I have to divide things into

constituents, define them separately, and specify how they interact now and forever.

But nothing has to be segmented or rationalized in this way to calculate. Drawing the

rule works flawlessly, precisely because I don’t have to say what anything is. Shapes

don’t have definite parts. I just trace what I see and do, with no divisions whatsoever,

and go on—perhaps next to entrances that are put in like windows to define enfilades.

And with a little jiggling, the rule is in a schema that applies generally. Shapes show

how to change shapes as I calculate. This is calculating by drawing, first to define rules

and then to use them. It’s exactly what I want, and it’s perfect for design.

But don’t rules freeze Palladio in an academic style, so that his villas are set

permanently outside of ongoing experience? This is the question I asked earlier for

checkerboard lattice designs, and my answer remains exactly the same—

NO!

Now it’s an emphatic ‘‘no’’ to academicism and the reductive nothing-but-ism it inev-

itably implies. And it’s a rigorous ‘‘no’’ that I can justify on technical grounds, not a

romantic response that simply feels good. The romantic ‘‘no’’ is an answer that’s easy

to give, easy to believe, easy to applaud, and hard to prove. It’s right, but not at the

expense of calculating. When you look at it another way, there’s no reason for a split

between romantic freedom and doing it by the numbers with shapes and rules. Calcu-

lating and freedom aren’t incommensurable. Because rules are defined in terms of

embedding and transformations, I can apply the same rules in different ways to change

myriad parts of shapes, and I can alter rules and add them any way I please without
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ever having to stop what I’m doing and start over. There’s no discrepancy between

what I do and what I see next to go on—the one includes the other as shapes fuse

and divide. It’s calculating, through and through. The identities defined in the schema

x fi x may not do very much, but they let me see lattice designs in novel ways and

show how calculating can be open-ended. In fact, the way identities work guarantees

this kind of freedom and flexibility for all rules. The ease with which I can define sche-

mas and use them to play around—for example, with the plan for the Villa Barbaro—is

added proof. No wonder styles change and evolve freely. It’s the chance to go on to

something else whenever I look again that makes calculating with shapes and rules

worthwhile. Calculating and experience are the same—there are rules for whatever I

see and do. But these aren’t rules for the academy—not with a grammarian’s small

‘‘a’’ to enforce current standards, conventions, and norms, and not with Plato’s capital

‘‘A’’ to grasp the eternal and unchangeable, either. There’s no vocabulary in practice

to distinguish good and bad usage when it comes to design. Shapes are filled with

ambiguity—there’s a lot to see and do wandering around. Calculating and experience

are always new.

Seeing Won’t Do—Design Needs Words

I’m afraid I may be giving a false impression. Design is drawing—true enough, it’s

calculating with shapes and rules. Yet most of the time words are involved, too, to say

what designs are for and to connect them to other things. I’ve already done a lot of

talking to describe rules as they apply to produce Chinese lattice designs and Palladian

villa plans. Take my rules for villa plans—they’re about villas and not just the shapes

that go together to make them. When I combined the spaces in a grid of walls, I was

describing rooms—central ones and the symmetric ones to their left and right. And

when I defined an additional rule to alter the corner spaces in my room layout of the

Villa Barbaro, I wasn’t thinking about rectangles per se but about entrances, stairs, and

porticoes. Villa plans are of functional, social, and aesthetic interest—they involve

more than shapes—and different aspects of these concerns play into design at differ-

ent times. What I say matters as much as drawing and calculating. Seeing won’t

do—design needs words. How can I manage this with rules, and how can I connect

these rules and the rules I use to calculate with shapes in a single process? Filling in

the details is important to make design seamless, so that a confluence of diverse and

changing interests can be handled all at once. Designers and especially architects like

to say that they’re ‘‘generalists,’’ and maybe it’s really true. Design may not be about

anything in particular but about a host of different things at different times. I’m going

to show how this works using rules to calculate with shapes and using rules to calculate

with words when both kinds of rules are used together.

I already said pretty much what’s involved in part II, with topologies and com-

bining algebras in sums and products. On the one hand, I showed how to define top-

ologies for shapes retrospectively in terms of the rules I tried—with particular attention

to erasing rules in the schema
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x fi

that help to count, and identities and other rules in the schema

x fi tðxÞ
Topologies are simply descriptions that show how I’m calculating and how shapes

and their parts change continuously as I go on. But I may want to name parts and

give them meaning in alternative ways. So, on the other hand, I sketched a general

approach in which different algebras are combined in sums and products to define

compound shapes. It includes both what I did in algebras like U12 þW22 with lines,

planes, and colors (weights) to produce paintings and what I did originally when I

handled shapes and colors separately. Now I’m going to give a couple of examples to

illustrate some of the things I proposed, strictly with shapes and words—actually num-

bers, but these are words as well, and are largely equivalent in practice. Using words

and using numbers both require looking at what’s there. Words and numbers divide

shapes, naming their parts, although numbers do it sequentially in order to count

them up. The two work together to describe visual experience. They’re there to give

shapes meaning and they tend to keep it constant. The consistency seems right, yet it

isn’t necessary. Ordinarily, it’s expected, and it lets us anticipate the future and plan for

it without having to worry that everything might change without rhyme or reason.

Perhaps this explains why creative activity, drawing and playing around with shapes

when their parts alter erratically, is apt to seem ineffable. Yes, there are always topolo-

gies, although they aren’t exactly everyday descriptions in words. But words and

descriptions don’t have to be used in design all the time, only if they’re useful. And

they are in my two examples. The second is the more elaborate. It uses schemas and

rules for Palladian villa plans to explain how shapes and words (numbers) work and

what this shows.

The main idea is easy enough—I’m going to associate description rules with the

rules I apply to shapes, and use both kinds of rules to calculate in parallel. Every time I

give a rule for shapes, for example, this one

there are description rules for something else:

(1) If the new shape is not the previous one, then the total number of squares I’ve

inscribed increases by one, where squares are defined in the identity
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(2) Furthermore, if there are more squares, then there are four more triangles, where

triangles are defined in the identity

These description rules apply in conjunction with the rule

to say what happens as I continue to draw lines in a certain way—I get additional

squares and triangles. Symbolically, I might summarize this with the rules

(1A) number of squares fi number of squaresþ 1

(2A) number of triangles fi number of trianglesþ 4

Then, for the series of shapes

there’s the corresponding series of descriptions

from step 0 1 2 3

number of squares 1 2 2 3

number of triangles 0 4 4 8

I’m calculating in parallel to produce shapes and the descriptions that go with them.

And notice that I can even distinguish descriptions that are the same, if I count the

steps in which they’re produced. To start, there’s a zero for bookkeeping, and then,

the description rule

step fi stepþ 1

There’s a lot going on to tell me what I’m doing. The mechanics for all of it is

straightforward enough, and extends neatly to many other things. For example, I can

record the transformations I use to apply rules and define my topologies to show how

rules pick out parts of shapes. Then there’s more than mere mechanics that concludes

with dry numbers. Well, the mechanics still isn’t much—that’s the way I like it when I

356 III Using It to Design



calculate—but it shows that knowing how to count means first knowing how to see.

This is where meaning starts and how it grows, and the process is far from dry. ‘‘To [ob-

serve] well,’’ notes J. S. Mill, ‘‘is a rare talent.’’ Shapes are filled with meaning as rules

are tried. And it seems to me that this is the only kind of meaning that matters for

shapes, whether in words, numbers, or topologies. Perhaps it’s the only kind of mean-

ing, period. It depends on what I see and do, and on what I make of it as I go on to

see and do more. Rules apply to shapes and bring in words and numbers to make

this possible. It’s a process in which everything can interact and connect, and it’s all

calculating.

Let’s try something that appears to be a little harder, although meaning doesn’t

have to be when it’s a question of seeing. Suppose I’m looking at the rooms in a Palla-

dian villa plan, and that I want to count them. Once again, there are numbers, and this

involves distinguishing spaces and naming them in terms of what they’re for. And, in

fact, both naming and counting depend mainly on the rules I apply to pick out parts

and change them as I calculate to produce the plan.

Let L and R be the number of polygons in the left side and the right side of a rule,

and let k be defined as follows

k ¼ L� R

This seems to be OK, but there’s really a lot more to it than I’ve said. Rules are made

with shapes that aren’t divided in advance, and not with distinct symbols that are

ready to count. This isn’t generative grammar or syntax and words, so I have to figure

out a way to count polygons. But remember what I did to define squares and triangles

with identities from the schema x fi x. In much the same way, I can use erasing rules

from another schema

poly fi

to count what I want. These rules pick out polygons—there are rectangles, crosses, T’s,

and I’s—so that I add plus one every time a rule is tried with no chance of double-

counting. There’s an example of this kind in part II for squares and triangles in the

shape

only it gives multiple answers between four and eight, and there’s another example in

part I for triangles in the shape
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that works in the same way with answers from four to six. But now, the erasing rules in

my schema apply to give definite results—polygons are numerically distinct. And now,

these rules apply to shapes in rules. This is important. Shapes are shapes wherever they

are—it doesn’t matter whether they’re in rules or not. Either way, they’re exactly as

they’re given, without finer divisions. Divisions are determined as I calculate.

Once k is defined, it’s easy to say what rules do. First, there’s an m� n grid of

walls that’s described by the coordinate pair ðm;nÞ, where m is the number of rectan-

gles in a row and n is the number of rectangles in a column. (This counts columns be-

fore rows. It’s interesting how things can get switched or turned around in shapes and

words alike.) These values are set in the inverted T used to produce the grid. If I try a

rule like this

to add a rectangle vertically, my description rule is

ðm; nÞ fi ðm; n� kÞ
where k ¼ �1. And in the corresponding way, if I apply a rule to add rectangles

horizontally

then my description rule is

ðm; nÞ fi ðm� k;nÞ
and k ¼ �2. So, in the Villa Foscari with the inverted T
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I have descriptions that look like this

from step 0 1 2 3 4

m 1 1 1 3 5

n 1 2 3 3 3

if the central column of rectangles is produced before the row that forms the base of

the grid. And likewise, I can have the descriptions

from step 0 1 2 3 4

m 1 3 5 5 5

n 1 1 1 2 3

when I do all of the horizontal additions before the vertical ones. Both of these series

begin and end in the same way, although the start is obligatory, and they have differ-

ent terms in between. The variation isn’t always gratuitous. It may be useful to guide

or structure an assembly or manufacturing process—there are different numbers of

rectangles at different times, so supplying and managing components, or resources

generally, may be better in one way than another—or the variation may help to de-

fine and sequence the stages in a construction project. But for my purposes right now,

both series are just the same because they end that way. This can be useful when rules

apply to shapes nondeterministically. Then a successful conclusion may be the only

thing that matters, not the different things that happen along the way. Still, there’s a

little more to do—an inverted T isn’t a grid of walls. The T has to be completed—I

need to fill in spaces and add a bounding rectangle. The description rules for this are

given in the numerical identity

ðm;nÞ fi ðm;nÞ
The grid of walls for the Villa Foscari

is produced in nine more steps after the inverted T is in place. This gives the following

descriptions as the grid is finished off

from step 4 5 . . . 13

m 5 5 . . . 5

n 3 3 . . . 3
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with the same repetition of numbers—5 . . .5 or 3 . . .3—at the end of both series.

Evidently, the order in which rectangles are added continues to be irrelevant, and

there’s no reason to keep a running count.

Given a grid of walls and with its description ðm;nÞ in hand, I know there are N

rooms, that is to say, N is given in the formula

N ¼ mn

This changes according to the description rule

N fi N � k

as I use rules to combine rectangles. In particular, for rules like these

that put rectangles together vertically, k ¼ 1 and k ¼ 2. Then, for rules like these

where spaces change horizontally, k ¼ 2. And for the cross that combines three

rectangles—two small ones and a big one—
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k ¼ 2. As rooms are formed in the Villa Foscari

three descriptions change in this way

from step 13 14 15 16

N 15 13 11 9

My descriptions for grids of walls and room layouts fit together with almost clas-

sical precision to explain what my rules are doing as I apply them to shapes. In fact,

there’s a common parameter k in different description rules that’s a kind of underlying

module—the unity is undeniable. It’s uncanny, but everything has got to be right once

it’s so clearly understood. That’s why words and numbers work for a lot of design—to

make it understood. Nonetheless, there are many aspects of design that seem exclu-

sively visual—for example, mannerist details and more experimental devices are some-

times like this. Then, words and numbers—descriptions of all sorts, for that matter—

may actually intrude. Words can bias the eye and obscure what there is to see and do.

Luckily, there’s plenty of opportunity to use rules and descriptions promiscuously in

the kind of open-ended process I’m talking about. Even so, unbounded freedom may

be burdensome when I have set responsibilities to meet and there are important goals

to achieve. Goals and such are also descriptions, and they can be used to circumscribe

the options I have as I calculate with shapes and rules—but this story is better told a

little later on to add to my picture of design. Meanwhile, descriptions do something

else in design that’s worth a closer look. They help me organize what I’m doing in a

variety of useful ways.

Descriptions determine relations to classify designs and to order them. In fact,

I’ve already used descriptions to classify Palladian villa plans according to the values

of m and n in the coordinate pair ðm;nÞ that gives the number of rectangles in a row

and a column in a grid of walls. In this sense, all of the entries in my catalogue of

three-by-three room layouts are alike—they’re the same ‘‘size.’’ In particular, the plans

for Palladio’s Villa Angarano and Villa Barbaro
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are equivalent. This is a little crude, but descriptions allow for finer distinctions, as

well. I can also group m� n villa plans according to the number N of rooms they con-

tain, where, once again

N ¼ mn

in a grid of walls and varies according to the description rule

N fi N � k

Then my catalogue of three-by-three room layouts is partitioned in this way
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I guess it’s about time that I call room layouts plans or villa plans. This may be overly

optimistic—even reckless—but I’ve been leaning in that direction for a while, and

words can change meaning as I calculate, just as shapes can when rules are tried.

Now, two plans in my catalogue are equivalent when they have the same number of

rooms, so the Villa Angarano and the Villa Barbaro are no longer the same. Nonethe-

less, there are five other plans that are still equivalent to the Villa Barbaro’s, even if it’s

the only plan with a central cross. If I wish, I can augment my description rules to take

care of this and classify central rooms, too. Then four plans are equivalent, with central

rectangles, while one has a T and the other one has the cross. I can also go on to

distinguish the plans with rectangular rooms in terms of description rules—it’s a good

exercise—but it may not be necessary. Descriptions give me a way of focusing on the

kinds of things I want generally, with a free choice among equivalent designs. And this

is how a lot of design seems to work in practice. It’s a common occurrence that there

are many designs that satisfy the same constraints and requirements. There’s plenty of

room to play around. And in fact, that’s one reason why neat formulas like ‘‘form

follows function’’ are always heuristics and only partially explain what happens in de-

sign. It seems that whatever I say about function is never enough to determine a

unique form. And in fact, I may not want this. Otherwise, the myriad ‘‘undefined’’

things—at least there aren’t any words for them—that I contribute as a designer are

likely to be lost. Free choice or not, I’m calculating—it’s just a lot more fun when

things are open-ended. But descriptions work in another way to help with important

decisions. Descriptions classify designs, and they order them—there’s equivalence and

also value. How does this work, and how is it part of the design process?

Once again, my catalogue of three-by-three villa plans is a pretty good place to

start. I can count rooms and order plans up to equivalence according to the distinct

numbers I get. The Villa Angarano

contains more rooms than the Villa Barbaro
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and in fact, more rooms than any other plan in the catalogue except the complete

grid of walls. If I want to move beyond the grid and get something that’s a little

more expressive, and the number of rooms in a plan is the only additional thing I’m

considering—the number should be high—then the Villa Angarano is the best I can

do. But numbers may measure other properties, perhaps to optimize physical perfor-

mance or social interactions. I might even try and apply George Birkhoff’s aesthetic

measure

M ¼ O

C

to get something of delight from the plans in my catalogue, or use the corresponding

measure of my own—EZ—that I described along with Birkhoff’s in the introduction. I

wasn’t keen on any of this then, and in practice I’m still not. Nonetheless, EZ makes an

instructive example without my having to rehearse any technical details. The results

are enough. In terms of EZ, the Villa Barbaro is better than the Villa Angarano, but it’s

only the second best among the plans with five rooms, after this one

And notice that the three remaining plans with only rectangular rooms

are the same. In fact in many ways, they look it—each with twin three-by-one or one-

by-three spaces. But really, the main thing to get from all of this is that equivalence

and value both depend on how descriptions are defined as I calculate with shapes.

And there’s plenty of room for descriptions to vary—they can be given in lots and

lots of ways, and the ones to use are up for grabs. The perfect description now needn’t

be right the next time I look, and it’s easy to forget as I go on. Things change whenever

I try a rule. I’m always free to design some more.

I’ve kept shapes and descriptions together in the way I have so that when I apply

rules to shapes, descriptions are automatically defined in parallel. But it’s time to flip

this around in an inverse way to show something else that’s important in design.

Descriptions can be defined independently to provide design specifications and
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requirements—even architectural programs—that set goals to guide and control the

design process. For example, I can give a number N of rooms and then search through

villa plans to find those with exactly N rooms. My description rules can be applied by

themselves to define N, and this in turn tells me how I should try rules to produce

plans. Suppose that N ¼ 8 in a three-by-three villa plan. Then my description rule is

N fi N � 1

and I have to apply the rule

as I did for the Villa Angarano. But if N ¼ 5, there are six options. In particular, if the

number five is obtained in a three-step series—maybe this one

from step 8 9 10 11

N 9 7 6 5

—then the plan

is the only one I can produce. Two other three-step series are also possible

from step 8 9 10 11

N 9 8 6 5

N 9 8 7 5

The first results in the same plan—remember that rules apply nondeterministically—

while the second is simply a dead end. No plan can be produced according to the

descriptions in the series—there’s no way to go from step 10 with seven rooms to step

11 with five rooms, that is to say, from the plan
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to the plan

Descriptions combine too copiously in too many series. You can ask for something

that’s meaningful according to my description rules—at least it’s ‘‘grammatical’’—that

you can’t get calculating with villa plans. It seems to me that sometimes imagination

works in this way, too, when words promise more than I can do with shapes. Only

perhaps this is just my imagination. And even if it’s not, it doesn’t make up for any-

thing words miss. What I can say never trumps what I can see and do. But let’s go on.

The single two-step series

from step 8 9 10

N 9 7 5

already gives the Villa Barbaro, and also these four plans

But notice that the plan for the Villa Barbaro is the only one that’s defined uniquely—

two rules are applied: first, one to produce a three-by-one rectangle, and then another

to produce the cross. Each of the plans above, however, is defined in two ways—again

rules apply nondeterministically. In three plans, large rectangular rooms come in pairs.

Horizontally, the rectangles can be formed either one before the other, and vertically,

from the top or the bottom. And in the remaining plan, the two symmetrical rectan-

gles can come before or after the large rectangle at the base. Next, suppose N ¼ 9 and

the grid of walls is five by three to start—as in the Villa Foscari. Then, there are forty-

three possibilities, of which these eight are a nice sample
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There are plans with central rectangles, crosses, T’s and I’s. But of far more interest

now, plans fall into two separate and distinct groups. There are fourteen where descrip-

tions are produced in a four-step series, perhaps this one

from step 13 14 15 16 17

N 15 13 11 10 9

of which the plan

and the four in the top row are examples. And there are twenty-nine plans where

descriptions are produced in the familiar three-step series

from step 13 14 15 16

N 15 13 11 9

for the Villa Foscari. The series also works for the four plans in the bottom row. Still, in

practice things may not be as straightforward. Programs like plans can always be

revised, and in fact the real goal may be to optimize both as they influence one another

in various ways. This means changing programs and plans in parallel. Form and func-

tion, etc., interact, so that to some extent each implies and affects the other in a con-

fluence of mixed interests and goals. This is beginning to feel like real design, and it

continues to look like calculating.

The descriptions I’ve been using are fairly rudimentary, and they aren’t anything

to recommend in practice, although sometimes the descriptions that are used in prac-

tice aren’t any more sophisticated. But it’s not really descriptions that are at stake here,

but rather description rules and how they’re defined and used to describe what hap-

pens as I calculate. The idea is to combine shapes with words and numbers in a recur-

sive process. Doing multiple things at once with shapes and words seems natural

enough when you’re in the middle of it—there’s a knack to drawing and talking at

the same time. But giving rules for this can be confusing at first, especially when the
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rules that describe what’s going on interact in parallel and in other ways with the rules

that apply to shapes. To get things off the ground, I’ve tried to avoid unnecessary

details in a few very easy examples. Nonetheless, the key conclusions are pretty evi-

dent, and they’re the same whatever descriptions are used. Design may be about more

than shapes, but this isn’t more than calculating allows. There are a host of different

things involving functional, social, and aesthetic relationships that can be defined in

myriad ways. Using models and mathematics is one way, as in the formulas N ¼ mn

and M ¼ O=C. I guess the formulas are kind of silly, but bringing in mathematics (to-

pology, etc.) is a serious step. Description rules are made for it—they describe designs

and can help to guide the design process. But none of this is what descriptions are

actually about. The trick to descriptions is that they’re never the final word. Things

change as I go on calculating. It’s worth saying over and over—there’s more to see.

This may coincide with what I’ve already said, but it’s independent of the past. I may

not remember what there was before, and in fact I may just as well be looking for the

first time with no one to tell me what to see and do to go on. There’s no reason to be

coherent. Logic (rationality and science), morality, history, the authority of the

ancients, and like imperatives are simply beside the point. Yes, consistency and words

are useful more times than not, and they make a difference when I look again—but

they don’t have to. Otherwise, there’s nothing really new to create. It’s all been said

before. Design goes away. Perhaps that’s why the identities in the schema

x fi x

provide such good examples when it comes to seeing what rules do. Identities show

everything new about shapes and calculating, and they can always be tried once more

in another way.

Getting in the Right Frame of Mind

The picture of design I’ve been painting is all about schemas and rules, and about cal-

culating in parallel with shapes and words, especially when shapes aren’t divided into

units in advance. Seeing is at the heart of it. I made a point of this near the end of part

II, quoting William James, who was quoting John Stuart Mill on the importance of ob-

servation. Observing well—dividing things into useful and meaningful parts—takes a

rare talent.

It would be possible to point out what qualities of mind, and modes of mental culture, fit a person

for being a good observer: that, however, is a question not of Logic, but of the Theory of Educa-

tion, in the most enlarged sense of the term. There is not properly an Art of Observing. There may

be rules for observing. But these, like rules for inventing, are properly instructions for the prepara-

tion of one’s own mind; for putting it into the state in which it will be most fitted to observe, or

most likely to invent.

Mill’s rules for observing and inventing have to do with getting in the right frame of

mind to see and do. From my point of view this is marshaling schemas and rules to
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use. In fact, the schemas and rules I’ve proposed up to now provide a pretty good

course in design—at least they’re something to teach to ‘‘fit a person for being a good

observer’’—but there’s more on education to come. Right now, it’s time to take stock

of the various schemas I have to use in teaching and practice, and to organize them in

a catalogue raisonné.

I can go through schemas x fi y in a more or less systematic way in terms of the

variables x and y in their left and right sides. In the easiest case, both x and y are empty

fi

This seems inane, but it nonetheless defines a rule that’s indispensable when I’m

applying rules in parallel to everything at once and want to leave what’s independent

of my immediate concerns alone. Next, I have the erasing schema

x fi

and, in particular, the restriction

poly fi

for polygons, maybe with additional qualifications that make them convex or regular

or that number their sides. The rules defined in both of these schemas let me count in

another way, and they do in fact change what’s there. The inverse of x fi gives the

schema

fi x

that appears to produce something from nothing. This seems like magic, but fi x

like fi proves its worth calculating with rules in parallel—I can add to one thing

in terms of something else that’s not part of it. There are a couple of nice examples of

this in the product of the algebras U12 and U12 þ U22, and in the algebra U12 þW22 in

part II, and my paintings work in the same way. Furthermore, the rules defined

in fi x help me to get going. When I calculate, I always need someplace definite to

start. Nonetheless, fi x may be unnecessary for this. If I wish, I can use identities in

the schema

x fi x

to start with something interesting I happen to see instead. And then, of course, there’s

the general schema

x fi y

Most of the time, the variables x and y in the schema x fi y are related in some

way. This is already evident for the identities in the schema x fi x. Moreover, I have

the schema

x fi tðxÞ
that includes the identities, and the schema
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x fi bðxÞ
where there’s a Euclidean transformation t or a boundary operator b that changes x. Or

I might define another schema as an extension or counterpart of x fi tðxÞ, maybe

x fi xA

where xA is a parametric variation of x. Then I can relax the relationships between lines

in the rule

for squares with a pair of arbitrary quadrilaterals

And for each of these four schemas, there are the sums formed when I add their left

sides to their right sides. Ignoring the identities that stay the same, I get the trio of

schemas

x fi xþ tðxÞ
x fi xþ bðxÞ
x fi xþ xA

for rules that apply without erasing anything. Again, quadrilaterals are a good example

Inverses are very useful, too. The following ones are different from the schemas from

which they’re defined

bðxÞ fi x

xþ tðxÞ fi x

xþ bðxÞ fi x

xþ xA fi x
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while the schema x fi x and its inverse are equivalent, along with the twin schemas

x fi tðxÞ and x fi xA and their inverses. But notice, too, that in practice bðxÞ fi x works

for xþ bðxÞ fi x—here, for a square and its boundary

I’ve also tried a few general-purpose schemas of another sort. For example, there’s

x fi divðxÞ
to divide shapes in various ways—typically, the shapes are polygons as in ice-ray

window grilles, housing plans, and paintings, although polygons aren’t required for

the schema to work—and then there’s my old standby from ‘‘Kindergarten Grammars’’

x fi Aþ B

for spatial relations that are defined either from a given vocabulary of shapes, maybe a

square and a triangle

combined side to side in the following ten ways, where squares and triangles vary in

size and orientation

or from parts selected using identities in the schema x fi x, perhaps when x is a poly-

gon and identities are applied to the shape
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These were the exercises I tried for shapes and rules in ‘‘Two Exercises in Formal Com-

position.’’ They set everything up for design synthesis and stylistic analysis. Spatial

relations were enumerated in terms of a given vocabulary of shapes, but calculating

with shapes wasn’t restricted in this way. And once more, inverses are defined in the

additional schemas

divðxÞ fi x

Aþ B fi x

I used polygons in divðxÞ fi x for rules like this one

to complete Klee’s palm-leaf umbrella. Of interest, too, I can recast the schema

x fi xþ bðxÞ in terms of the schema x fi Aþ B, so that x in the left side of

x fi xþ bðxÞ is a variable over A and B, and in the right side, x is A and bðxÞ is B.

This isn’t exactly normal mathematics—it’s more like Ludwig Wittgenstein’s kind of

calculating where ‘‘the figures on paper alter erratically’’—but it does let me add the

‘‘usable’’ schema

xþ bðxÞ fi bðxÞ
to my list of inverses for rules like this one

when x fi bðxÞ, that is to say

applies too broadly—perhaps to the shape

to produce
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instead of

I can combine schemas in a variety of ways, too. For symmetrical arrangements

and fractal designs, there’s the easy schema

x fi
X

tðxÞ

when the schema

x fi xþ tðxÞ
is used repeatedly with the generators of a symmetry group, or with transformations

that include a change of a scale. Then, for shapes and fractal-like boundaries as in my

paintings at the beginning of this part, there’s

bðxÞ fi xþ
X

tðbðxÞÞ

And, in special cases, there are rules like this one

for symmetrical ice-rays that suggest schemas for grids

xþ RðxÞ fi xþ xAþ Rðxþ xAÞ
and schemas for villa plans (room layouts)

divðxÞ þ RðdivðxÞÞ fi xþ RðxÞ
in which transformations are used—in the two schemas here, there’s a reflection R—to

ensure symmetry of a certain kind. In particular, villa plans are bilaterally symmetric

with respect to an axis that runs through rooms.

All of this gives me a handle on style and stylistic change, where schemas, assign-

ments, and transformations in given algebras play important if not exclusive parts. It’s
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easy to imagine one or more designers with a core repertoire of schemas that they

combine and then apply in their own fashion to define a style that can change—even

erratically—as different assignments and transformations are tried. This begins a good

story, although designers are merely incidental. The problem, put simply, is to find

rules that explain known examples of some kind that appear to hang together, with

the ability to go on to new things like them, either recognized later somewhere else or

produced from scratch. What designers say about what they do can help to define the

rules, but personal testimony isn’t indispensable and may be misleading or wrong. It’s

the same trying to find a grammar for a natural language like English—the speaker is

only one of many who have a stake in what’s said and how this works. And in literary

criticism, writers are related to their work in the same way. What they say isn’t deci-

sive—others have a say, too. The evidence I need varies in a community enterprise.

There are no necessary facts. Anything can contribute to the definition of a style at

any time, especially when it’s something new to see. Even if there’s a definition that’s

affirmed and widely accepted, it’s never final and conclusive. Everything can change as

I go on. And that’s exactly what new schemas allow when they’re used to define rules

to calculate with shapes. Minimally, of course, I can always add the schema x fi x for

identities. But in fact, keeping schemas the same—adding to them only once in a

while, as I did for the Villa Barbaro—may be enough. Then there are assignments and

transformations to stir things up.

Earlier, when I was first talking about style, I showed how a single schema

x fi divðxÞ
could be used in diverse ways for Chinese lattice designs—checkerboard patterns and

traditional ice-rays—floor plans in a major housing project, and nonrepresentational

paintings. And it’s easy to go on. The schema also works for paintings in the style of

Fritz Glarner—his own, of course, and a host of new designs, maybe this one

Then there are vernacular building plans in medieval Treviso—in two floors, for

example
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and many other things. There’s plenty to see and do in various algebras as the schema

is applied in terms of different assignments and transformations. Perhaps there’s a for-

mal method here—combining schemas from a common pool and trying a range of

assignments and transformations to define styles and to change them. Terry Knight

has shown with remarkable precision and scrupulous attention to detail—her taxon-

omy is uncanny—that the schema

x fi Aþ B

and its larger sums, first off

x fi Aþ Bþ C

where x is a combination of A, B, and C, work to distinguish workshops and periods of

ancient Greek art in the Geometric style. There are battlement meanders

single (running) and multistage meanders
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and spiraling meanders

that vary in terms of the spatial relations given to define rules in her schemas. Assign-

ments allow for shapes to be rearranged in spatial relations and for new shapes to be

introduced. For example, I might start with the spatial relation

between two triangles, flip the large triangle to get the spatial relation

and then replace the large triangle with a square

all in accordance with the enumeration I set out before. And I can continue this in

other ways, perhaps ‘‘dragging’’ points

to turn the square into a quadrilateral with corresponding changes to the triangle. The

repertoire of schemas from the series x fi Aþ B, x fi Aþ Bþ C; . . . is more or less con-

stant, while rules are defined in alternative ways to produce different results. Knight

proves the general paradigm in a special case. It’s marvelous—styles and how they

change depend on schemas, assignments, and transformations in given algebras. But

undoubtedly I’ve missed a lot in my gloss of the essential facts. Knight would probably

see it another way, as well, and there’s no one better to believe than the author. One
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view is as good as another calculating with shapes, and no view lasts forever. This

goes for styles themselves and ways of defining them. It strikes me that my description

of style is simply a generalization of what’s been tried, with more freedom and flexibil-

ity when it comes to schemas, using them, and changing them, and with greater em-

phasis on how assignments and transformations vary to tie things together. In

addition, my approach to style corresponds to what I’m doing now with schemas and

rules in different algebras of shapes, etc. It’s a useful fit that’s temporary if not evanes-

cent, yet no less rigorous for that. It’s being right without being eternal and unchange-

able. It’s just calculating with shapes.

Choosing assignments and transformations is another way to get in the right

frame of mind to design, although I really don’t have anything more specific to recom-

mend than what I’ve already shown by haphazardly dividing shapes, defining spatial

relations, etc. Building up a repertoire of examples and motifs that can be used in

assignments—perhaps this is what designers mean by defining a vocabulary—repays

the effort. In fact, this is as much as I know how to do, in addition to augmenting

my catalogue of schemas. Even so, it seems there are too many options to be system-

atic. In principle, anything will work. However, the idea is clear. Given an assignment

g and a transformation t, the composition t � g determines when parts are alike and

how they change as rules are tried. There’s plenty of room for variation and a myriad

of expressive possibilities. The proof is easy to see in a small way in ice-ray lattice

designs. Starting with a rectangular frame, orthogonal compositions produce

and parallel ones

But then there’s also this
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I said I could augment my catalogue of schemas and rules, and indeed, it’s never

set once and for all. I can add to it as I please, and I have no reason to be parsimonious.

Actually, I enjoy being messy and prodigal. There are many ways to frame schemas

that are useful, even if the new ones I get are included in the ones I already have or

are derived from them in some way. For example, six of the schemas I’ve given are

ordered in terms of inclusion in the lattice

with a new schema at the top—

x fi
X

xA

—that extends the second schema x fi xAþ xAA I gave for ice-rays. And building from

scratch, the schema x fi Aþ Bþ C and larger sums are defined when the schema

x fi Aþ B is applied recursively. But why should I bother with relationships like this?

Trying to decide whether one schema is included in another or whether to reduce

everything to a few ‘‘primitive’’ schemas seldom repays the effort. In general, each is

difficult to do, and either way there’s an inevitable loss of immediacy—all of a sudden,

things are harder than they look. It’s better to define schemas, so that they capture

what I want to see and do now—whatever that is. Schemas should be easy to use.

Some organization may help to remember what I have in my catalogue, although it

doesn’t go much farther than that. There’s little to gain—the descriptions schemas

contain don’t carry over to shapes as I calculate. Seeing more to get new designs is

what’s important, not elegant schemas in a formal catalogue. Nonetheless, my cata-

logue is a database, and I’m told that’s vital for cognition and thought. But more rigor

and formality seems unnecessary, and even what there is may be too much. Adding to

my catalogue, so that there are always schemas to use, is all that counts.

Where do I find schemas to add? Well, I’ve already given some hints. I can com-

bine the sides of the ones I’ve got in sums, or switch sides to define inverses. Or I can

combine schemas in various ways—as above in x fi
P

xA, or by incorporating transfor-
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mations, etc., for grids and villa plans. (Many of the technical devices in my Pictorial

and Formal Aspects of Shape and Shape Grammars are useful in this regard.) Moreover, I

can learn from experience, adding to my catalogue as I try new things and see what

they do. Perhaps I have a list of identities that are useful, and expand it according to

what I produce when I calculate. Then what I see next depends on what I’ve done be-

fore. And, in fact, I did this for fractals in part II to show how they were self-similar. I

defined identities according to the shapes—lines and planes—I produced calculating

with the rule

in the schema

x fi
X

tðxÞ

for a triangle and its boundary. Alternatively, I could use the schema

xþ bðxÞ fi bðxÞ
where xþ bðxÞ is anything I produce with my rule, to play around with triangles made

up of lines

But getting back to my catalogue, I can apply the schema x fi Aþ B a couple of times

and use identities to define rules in the schema x fi Aþ Bþ C. And I can go on in this

way for larger sums. Shapes go together when I calculate, and they go together in rules,

as well.

But there’s still another way to find new schemas—I can borrow them from

others. Whatever I see anyone else do will work in my catalogue—perhaps I use identi-

ties again to get new rules and schemas as I did for the Villa Barbaro. But whatever I do,

the way it works isn’t rote copying. No one confuses ice-rays and Glarner’s paintings or

imagines they’re the same. There are different algebras, assignments, and transforma-

tions for the schemas I have. That’s the beauty of it. Because of the way shapes are

defined in terms of embedding, schemas and the rules they define are readily transfer-

able and can be used in many creative ways. Being original isn’t something you have to

do all on your own. In fact in many ways, creativity implies community—both to

make new things and to recognize their originality—and it’s something that follows

automatically when you calculate with shapes and rules.

I haven’t paid very much attention to descriptions—despite this book, I really

prefer seeing and doing more than saying what this is about. Nonetheless, it’s easy to
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include schemas for descriptions in my catalogue, so that shapes and words interact

usefully in design. I already have a number of schemas for counting and topologies of

different kinds from part II, and surely there are schemas for many other things, as

well. I can always find something else to say.

Latin and Greek, and Mathematics

I started this book with a question and an answer. I wanted to know how to draw lines

on a blank sheet of paper. My question seemed easy enough, yet Miss H——’s response

implied that I should look elsewhere—

If you don’t know that, you’ll never be an artist.

School wasn’t the place for an answer. There wasn’t anything to teach in the class-

room. Explicit instruction didn’t work—in fact, Miss H—— proved it in a neat reductio

ad absurdum when she asked the kids in my class to figure out the possibilities in a

drawing exercise. Drawing wasn’t like the three R’s—arithmetic and spelling were

pointless without definite results. Everyone had a different way to draw—the results

were your own and could vary in many ways. You had to look around to make sense

of what was going on—to understand what you were doing and what others were try-

ing. All of this was a surprise and something to get used to. Learning to draw meant

learning to see and do—but seeing and doing what? It seemed that seeing was never

really finished. Drawings were filled with ambiguity and could change freely at any

time. There was more to see whenever you looked again and another way to go on.

These were problems to solve. Yet everyone looked askance—nothing seemed to

work. What good were problems that no one knew how to handle or wanted to try?

Miss H—— was a conscientious teacher—why couldn’t she help? There had to be

something to learn that was definite and useful. You could start out with the basics in

other subjects—so what about drawing? Education and training were important, but

how? Did anyone know? What did the experts recommend?

Walter Smith pioneered art education in Boston public schools when Massachu-

setts made drawing a required subject. The law for this was passed in 1870 to gain a

competitive edge for the state in world trade markets. And today, there’s evident prog-

ress. Seeing doesn’t matter anymore, but the goal hasn’t changed. Instead of drawing,

kids are required to take rigorous tests in reading, writing, and arithmetic to show

they’re worth hiring. There’s a single standard for everyone that measures what’s

taught and what’s learned. The idea is to ‘‘teach to the test’’ in each subject, so that

everything is clear to teachers and students alike. There’s no guesswork, only certainty

and permanent results. All of this seems right, and it’s easy to join in when everyone is

saying exactly the same thing. No one ever disagrees. Nonetheless, it may be wrong,

and saying why may not be what you want to hear. No one likes to talk about it in

public—the reason is usually an embarrassment that’s better to whisper and hide.

What Søren Kierkegaard said about results also goes for tests—they’re impossible with-

out cheating.

380 III Using It to Design



While objective thought translates everything into results and helps all mankind to cheat, by

copying these off and reciting them by rote, subjective thought puts everything in process and

omits the results.

It’s the same problem for everyone when what’s taught and what’s learned are trans-

lated into objective results that can be recited by rote. What are schools for and why

bother to go if teachers cheat and kids follow their example? Without subjective

thought, everything in process is another arrangement of given units—the only task

is to combine them and count the results. It’s the same both to teach and to learn.

Schooling is senseless—there’s little to say when there’s nothing new to see and do.

But what does Kierkegaard know about education today? He lived in nineteenth-

century Denmark and was mostly ignored. Miss H—— didn’t think drawing (subjective

thought) belonged in the classroom and neither do the citizens of twenty-first-century

Massachusetts. It’s the law—good schools mean hard work and the chance to fail on

objective tests. It’s tough, it’s fair, and it’s a huge success. Everyone is asked the same

questions and trained to give the same answers. There’s no ambiguity. Everyone is

prepared for the same future that’s been decided in advance by someone else, and

everyone is held accountable in the same way. It’s simple enough: everyone is the

same and sees the same things. Of course, 1870 was different—it was another time

and another law. The decision was easy. Massachusetts hired Smith. He had a plan, he

put it in place, and he made it work.

I find that not only does every person when he is taught rationally, and intelligently in the same

way that he is taught Latin, and Greek, and mathematics, learn to draw well, but also to paint

well, and to design well.

Then, as it does now, design mattered. It was drawing, and Smith wanted to

teach drawing in the classroom along with language and mathematics. His teaching

methods relied heavily on copying figures drawn on the blackboard, memorizing forms

of objects and arrangements of them—was this vocabulary and syntax?—and repeti-

tion and practice. It was drill, drill, drill. Smith justified this in two ways: (1) copying

was the only rational way to learn because drawing was essentially copying, and (2) it

was the only practical way to teach to large classes that met just for short periods. This

sounds pretty grim and horrible, and it goes hard against the emphasis on creative

activity and open-ended experiment that’s standard today in most design education.

That’s why there are studios instead of classrooms. And that’s why students want

them. But perhaps there’s something to Smith’s pedagogy. Copying needn’t be as

empty as it seems at first nor always produce rote results—combining predefined units

in the way Kierkegaard scorns. Look again. Copying may hold something creative and

original.

With shapes and rules, things change. That’s been an important lesson through-

out this book, and it’s still the same. So it should come as no surprise that copying is in

many ways at the root of calculating. When I apply a rule A fi B, I find a copy of A and

replace it with a copy of B. An identity in the schema
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x fi x

is a good example. I first erase the shape assigned to x and then draw it again exactly as

it was. This is copying according to the formula

ðx� xÞ þ x

But there’s more to rules than identities that keep shapes the same—even if this

changes the way shapes look. Rules in the schema

x fi tðxÞ
copy a shape or any part of one, erasing it and drawing it someplace else. The schema

shows again why embedding—fusing shapes and then dividing to pick out parts—is so

important. What you copy depends on reciprocal tests—what you can see with your

eyes or trace out with your hands. And there’s nothing rote about the results when

there aren’t any units to keep you from going on in your own way. Copying triangles

with the rule

to turn the shape

upside down

proves it beyond doubt. Copying three triangles gives two new ones to copy, and then

this goes in reverse from two triangles to three. There’s magic in the scribe’s hand

when there’s always something new to see. (This may not be scholarship, but it does

seem to be art.) Or perhaps boundaries are better as copies to delineate regions and

mark endpoints. This is one way drawing works to copy what’s there. Then the rules

in the schema

x fi bðxÞ
are perfect. The schema shows even more how copying changes according to what you

see and what you draw, as boundaries are decided in different ways—here in a collage

of points, lines, and planes
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that’s made first by outlining four triangles that are ‘‘embedded’’ in a square plane and

then by highlighting the vertices in one of the squares that these triangles contain.

Going from one part to the next skips all over the place, but it’s still copying. And in

addition, there’s the more elaborate schema

x fi xþ bðxÞ
that’s much the same, and its counterpart

bðxÞ fi xþ bðxÞ
to connect points and fill in areas in coloring-book exercises. Rules in these schemas

produce copies without erasing as copies alternate between parts and their boundaries.

Copying without erasing is also the case for rules in the schema

x fi xþ tðxÞ
Now, parts can be copied more than once in different ways. This already leads to a host

of creative possibilities. At least there are symmetrical patterns of all sorts—here’s one I

considered earlier

And, of course, there are fractals. But this kind of repetition isn’t very exciting, when

the same thing is copied over and over again in the same way. Klee wanted more free-

dom within the law—to see in different ways and to vary what he copied. With rules in

the schema

x fi xA

and ones in the schema

x fi xþ xA

copies may vary freely with parametric abandon. It’s easy to be surprised—it’s

really almost effortless as long as you’re ready and willing to calculate with shapes and

rules
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It’s going on, seeing and doing in whatever way you like.

And there are other ways to copy shapes, too. In particular, I can combine

algebras in products and copy across their components. This uses rules in the erasing

schema

x fi

rules in its inverse

fi x

and identities x fi x to calculate in parallel. For example, two new schemas can be

defined—something more to put in my catalogue—that look like this

x;� fi �; x

x;� fi x; x

where the dash (�) indicates the empty shape. The first schema has a neat symmetry—

it combines x fi and fi x, so that the component or the part of it that’s copied is

erased. But in the second schema, x fi x and fi x are combined to preserve what’s

copied in its original place without changing anything. A slightly different example is

in part II on pages 287–290. The schema

x;� fi �; y

is used to decompose the shape

into squares and triangles in five distinct ways. Simply put, these polygons in x are

copied with the lines or the plane given in y. And this kind of copying is easy to elab-

orate in lots of ways—with added transformations, the boundary operator, parametric
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variation, etc. I can even use weights to get colors or other properties that interact as I

draw, perhaps as in the example on pages 290–291, or in my design with Hilbert’s

curve and in the similar ones in figure 1. The conclusion is evident—once I can copy,

I can calculate. (In fact this follows the letter of the law when triangles are copied in

rules for Turing machines.) And once I can calculate, there’s drawing and design, and

the many delightful things that shapes and rules imply.

Smith really got it right—copying works, even if shapes, schemas, and rules may

be a little more than he had in mind. It makes sense to go on from what others say and

do. But perhaps there’s more to this than blind luck and empty coincidence—there’s

also Smith’s marvelous idea that drawing can be taught like language and mathematics

in the classroom with worked examples and explicit instruction. And it’s no surprise

that this goes for what I’ve been showing for shapes, schemas, and rules. Does this

mean I’ve changed my mind? I’ve spent a good portion of this book arguing that

drawing isn’t language. What can I possibly teach without vocabulary and syntax?

Something is wrong. Well maybe not, vocabulary and syntax aren’t at stake. Teaching

drawing like language doesn’t prove that

drawing is language

It’s still a metaphor, although many accept it today as a heuristic or assume there’s

equivalence. And that’s where the problem lies—not with teaching but with heuristics

and equivalence. Certainly, all of the schemas I’ve described are things to teach in

the classroom and to explain at the blackboard. There’s a lot of copying to do to write

schemas down and to try them out in exercises. And there’s also showing why drawing

isn’t a language, how mathematics describes shapes and rules, and how shapes and

words are connected when I calculate—it’s Latin and Greek, and mathematics in an-

other way. Many useful lessons are worth teaching in the classroom—there’s every-

thing in this book—before the vital transition into the studio to experiment freely

with schemas. The opportunities for creativity and originality seem to be unlimited

once you’ve learned to copy.

Of course, the idea of open-ended experiment in art and design is key in Ameri-

can art education after Smith—in particular, with Denman Ross at Harvard and Arthur

Dow at Columbia University. Mine Ozkar traces the history of this—learning to draw

wasn’t rote copying, that is to say, blankly following instructions and blindly doing

what you’re told in the normal way you’re trained to calculate. There was seeing, too.

For a great while we have been teaching art through imitation—of nature and the ‘‘historic

styles’’—leaving structure to take care of itself . . . so much modern painting is but picture-writing;

only story-telling, not art; and so much architecture and decoration only dead copies of conven-

tional motives.

For Ross and Dow, ‘‘picture-writing’’—what a felicitous compound given what I’ve

been saying about drawing and why it isn’t language with letters and words—wasn’t

near enough for art. And ‘‘dead copies’’ of familiar devices—correct spelling—didn’t

work in design. Never mind that words are easy to mix up—imitation and copying
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take care of structure automatically; the latter is included in the former. But it’s the in-

tention that counts. Ross and Dow were good guys—you get what they mean in spite

of their words:

Their pedagogies show how to set up temporary frameworks, instead of submitting to any prede-

termined structures. Frameworks develop based on variance in sense perception.

Sense perception lets me calculate my way—this depends on shapes and how

rules are tried to pick out parts. And in keeping with this, work in the studio is trying

what you’ve been taught in the classroom to go on to new things. It’s also defining

new schemas in terms of what you’ve done, and seeing what others are doing. It’s

learning from experience. It’s another valuable way to add to your catalogue of sche-

mas and to the rules you have to use in practice. It’s becoming a creative designer. In

the studio and in practice, designs (intellectual property) are free and only to share.

This is copying to be original in the way schemas allow when they’re used to define

rules and calculate with shapes. Copying, community, and creativity run throughout

design practice and education, and shapes and rules tie the three of them together.

Both practice and teaching are seeing what to do in an open-ended process that

involves us all. There’s lasting community in the things we make—drawings, designs,

etc.—not because we see them in the same way but because we don’t have to. There’s

no common pool of assumptions or knowledge—tacit or not—that everyone has to ac-

cept in order to join in and take part. It’s unnecessary to have shared anything ahead

of time to go on. Otherwise, it would be enough to work alone—what’s gained by

working together is the other guy’s point of view. Each of us is free to see and do in

his or her own way without prior training or outside coercion. That’s why shapes and

rules and calculating with them are so crucially important—they let all of this happen.

Design is never working alone, even if it seems that way. It isn’t a solitary pursuit—

there are just too many things to see.

When I calculate with shapes and rules, I get the easy corollary

design is copying

I really like this a lot because it’s so practical—I know where I can look to see what

to do—and it seems to reassure most people when they wonder where new designs

come from. This is probably because it’s an unremarkable answer, and copying is some-

thing everyone does—it works and it works well. The corollary allows for effective prac-

tice in design and shows how design can be taught without giving up any creativity.

There’s as much creativity in copying as there is in anything else. There are sources

and precedents for just about everything. Almost nothing is aboriginal. But copying is

PLAGIARISM—perhaps it is, but teaching and learning are more important. Plagiarism

doesn’t matter when there are no rote results. Then it isn’t cheating. What you see and

do belongs only to you—it’s always your own work. There’s something new and origi-

nal every time you look, and who knows, the results may be spectacular. It’s hard to

imagine how to teach design without any plagiarism, much less how to design any-

thing novel in practice. (Is it any surprise that design seems incongruous in great uni-

versities with their single-minded focus on academic integrity? The irony is that honor
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codes, student and faculty handbooks, and standards for research overlap from school

to school, so that the ‘‘rules’’ to stop copying seem to be copied. Nonetheless, design

studios are out. They rely on seeing what your classmates are doing and putting it

to use as your own. This condones copying and encourages student work that looks

the same—it’s uncanny how often studio projects are alike and how no one ever seems

to notice. But copying is no way to show what you can do in research—so much for

reverse engineering and repeatable results in science—and in super-tough university

classes where you can earn an F. Copying isn’t allowed. It’s a question of ownership—

everyone has to do ‘‘original’’ work to guarantee that it’s his or hers. That’s how teach-

ing and learning are measured—by the work you do on your own—and it’s what it

means to be creative. There’s just no place for design!) As long as I don’t assume there

are units in a combinatorial process—that’s been the big problem all along: how to cal-

culate without symbols—it’s easy to go on in new ways and to encourage others to do

the same. Design needn’t be a mystery. You can teach it and foster mastery instead. De-

sign and teaching how to do it show meaningful results when there’s copying. It’s best

practice, and it’s always in process so that nothing is ever final. Results aren’t set in ad-

vance and can’t be repeated (recited) by rote. It may be that there are some useful alter-

natives to copying—anything can happen—but I wouldn’t bank on it. I’ll put my

money on shapes and rules. Calculating—yes, copying—provides a competitive advan-

tage that’s hard to beat.

One of the things I’ve been trying to show throughout this book is that it’s al-

ways possible to go on in new ways when you calculate with shapes and rules. It’s

about seeing for the first time again and again without ever having to start over. Going

on, to be sure, is the way to design, but it’s hardly the way to end a book. That calls for

a conclusion. I started out in the introduction talking about seeing and doing in this

way:

[Calculating with shapes and rules] is subjective and variable—the shape grammarist’s

voice is ineluctably personal.

And this seems to be the right ending, too. In many ways, it’s just what this part of my

book has shown. I’ve taken you through many examples of what I do when I use rules

to calculate with shapes. Seeing and saying what I see are always personal. There are no

rote results, whether I copy what I see or call this something else—descriptions don’t

count. My eyes have only their own way of knowing. That’s a good reason to calculate,

and it’s why calculating works in design.

Background

The background to this part is pretty straightforward, especially if I stick to what I’ve

said in the order I’ve said it. The quotation I start off with is from Walter Smith’s testi-

mony to the Royal Commission on Technical Instruction of 1883.1 Smith sets the tone

for what I go on to say. There are three points of interest. First, he equates drawing

with painting and design. Second, he’s sure that drawing can be taught rationally and

intelligently in school like language and mathematics. And third, he turns to ‘‘a great
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wealth of illustration’’ to prove it. That design is drawing is where I begin, and that de-

sign can be taught in the classroom is where I end, but probably not with the kind of

rationality and intelligence—copying—Smith has in mind. Within this locus, there’s

plenty of illustration. And, in fact, that’s what really matters—what I can calculate

with shapes and rules, and what you can see with your eyes.

Painting is how I started with shapes and rules, although this is recast here

in terms of the algebras and rules I use now.2 I first used schemas to produce Chinese

lattice designs.3 My discussion of these traditional window grilles—ice-rays included—

hasn’t changed much, except for the key addition of identities, etc., to handle descrip-

tive aspects of style over and above what it takes to produce designs. This is easy with

schemas as they’re currently defined using twin variables.4 The material on Palladio is

from three early papers, but my discussion of the Villa Barbaro hasn’t been seen be-

fore.5 I tried description rules a little after Palladio, only not for his villa plans.6 Their

use in this way is new. The idea of calculating with rules in parallel, however, is already

clear in Pictorial and Formal Aspects of Shape and Shape Grammars.7 My original discus-

sion of design synthesis and stylistic analysis is in ‘‘Two Exercises in Formal Com-

position,’’ with a lot more in ‘‘Kindergarten Grammars’’ on design synthesis, spatial

relations, and the schema x fi Aþ B and its inverse.8

Of course, I owe much to many others in all of my examples. Paul Klee’s

drawings—in particular, the ‘‘palm-leaf umbrella’’—are in The Thinking Eye, together

with the quote on irregularity and the law.9 Then there’s Daniel Sheets Dye’s A Gram-

mar of Chinese Lattice Designs, which is valuable for both the drawings and the words it

contains.10 The plans for the Villa Foscari, the Villa Rotonda, and the Villa Barbaro

are from Andrea Palladio’s The Four Books of Architecture, and there’s the quotation on

page 343.11 I’ve also relied on James Ackerman’s book Palladio for useful commentary

in four places—pages 341, 344, 346, and 347.12 I don’t discuss Palladio’s system of

building proportions, but Lionel March provides a pathbreaking analysis that the

shape grammarist can’t help but admire.13 Terry Knight gives a comprehensive and

critical account of different approaches to style and stylistic analysis that concludes

with shapes and rules.14 She goes on to investigate stylistic change in an original and

effective way using a generalization of the schema x fi Aþ B and its inverse. This

includes her analysis of Greek meander designs, and a detailed discussion of the paint-

ings of Georges Vantongerloo and Fritz Glarner—I borrow from her examples for all

three. Alvaro Siza’s ground plan at Malagueira is adapted from José Duarte’s discursive

survey of the project.15 Also of interest, Andrew Li provides an elegant application of

description rules to elaborate the building principles in the Yingzao Fashi.16 Perhaps

this isn’t that surprising for a notoriously rigorous building manual. Nonetheless, to

see the rules actually work is pretty impressive. And notice, too, that the relationship

between rules and description rules mimics Gottlob Frege’s principle of compositional-

ity that links syntax and semantics—the meaning of a logical expression or a sentence

in English is a function of the meanings of its parts and how they’re combined. Of

course, this fails for shapes because their parts aren’t set in advance. There are options

in retrospect—perhaps using topologies—but these probably wouldn’t satisfy Frege
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and his current followers. They relish hard problems where things stay the same, yet

sometimes problems are hard only because of the way they’re set up to start. It’s easier

not to worry about this and to let things alter freely, as they do calculating with shapes

or copying Wittgenstein’s ‘‘figures on paper.’’ An account of George Birkhoff’s aesthetic

measure and its information-theoretic counterpart EZ is in Algorithmic Aesthetics.17 For

an incisive discussion of value in design, see March’s classic essay ‘‘The Logic of Design

and the Question of Value.’’18 March goes on to consider C. S. Peirce’s famous trio of

inferential categories in design—these are deduction and induction, as expected, and

then, in addition, abduction. Roughly speaking, going from shapes to their descrip-

tions corresponds to deduction, going from descriptions to shapes to abduction, and

figuring out schemas and rules in the first place to induction. March puts this together

in a cyclic model of design that applies in some telling ways. Peirce is keen on clarity,

albeit each kind of inference holds alternative choices with a combinatorial (syntactic)

uncertainty or ambiguity of its own. The lines I’ve quoted form Søren Kierkegaard

are copied from my introduction. Mine Ozkar chronicles the artistic adventures of

Denman Ross and Arthur Dow, and the incidental interactions of the former with

William James at Harvard and the noteworthy relationship of the latter with John

Dewey at Columbia.19 More important, though, shapes and rules are compatible with

open-ended experiment in the design studio.

All this prevails in the distinctive pedagogical standpoint shared by Ross and Dow. . . . Individuals

are encouraged in their unique ways, which can only be represented in temporary and discardable

conceptual structures.20

Better still, every rule—even an identity—implies a new (original) conceptual structure

every time it’s applied to a shape. The way topologies are redefined on the fly is a good

example of how this works, but there are many other examples throughout this book.

Ordinarily, design and calculating are worlds apart. Sometimes, a brief alliance is

formed when calculating produces things designers want to use and can’t make on

their own. Then it’s one way calculating and another way when design works its mag-

ic—there’s a discrepancy between what the computer does and what the designer sees.

This exposes shortcomings in both calculating and design, and the divide between

them. Yet now, the ‘‘two cultures’’ fuse. My initial metaphor is equality—

design ¼ calculating

—not because design is calculating in the usual way, but because calculating is more

than it’s supposed to be. Design is calculating with shapes and rules. It’s seeing and

doing, and all that follows as I go on.

Today, there are far too many examples of shape grammars in design—including

architecture and engineering—to be cited item by item. Most of this material is in

Environment and Planning B: Planning and Design from 1976. Nonetheless, there are

two pioneers of the subject whose work has been widely influential—Ulrich Flemming

and Terry Knight.21
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Describe Drawing, Display, and Editing in Sketch Recognition,’’ in IJCAI–03: Proceedings of the

Eighteenth International Joint Conference on Artificial Intelligence, Acapulco, Mexico, August 9–15,

2003, ed. G. Gottlob and T. Walsh (San Francisco: Morgan Kaufmann, 2003), 461–467. The

authors mention shape grammars, albeit in their aboriginal form, as ‘‘shape description lan-

guages.’’ Scholarship can have some funny results. The gap between what you think you’re doing

and saying about it, and how others understand and use this, can be huge—and who’s to say

who’s right? It’s easy to be wrong about meaning, whether or not you’re the source. The only

thing to do is to keep on talking, and seeing and drawing, so that meaning can change. Change,

of course, is what CSAIL is about. It’s proud of its accomplishments and sure that it can do more—

‘‘[We] have a history of daring innovation and visionary research which change the way the rest

of the world works. We think this is how it ought to be, and are organizing [the Dangerous Ideas

Seminar Series] to help stimulate people to think big.’’ Gerald Jay Sussman was one of the ‘‘instiga-

tors.’’ He enlarged on this theme in the title of his seminar on March 17, 2005: ‘‘Engineering as an

Intellectual Revolution.’’ And what he proposed was indeed ‘‘intellectual’’—

The key idea is the development of engineering ‘‘languages’’ that allow us to separate concerns in design. Such

languages provide ways of expressing modularity and isolation between modules. They provide means of com-

position that allow the construction of compound systems from independently-specified and implemented

parts. They allow characterization of both structure and function, and how function is determined by and

implemented in terms of structure. They provide black-box abstractions that allow one to specify the behavior

of a composition independently of the implementation.

Computer scientists like to divide things into independent units to make problems combinatorial.

Language is vocabulary and syntax, and an engineering language uses both to fix structure

and function. Compositionality precedes design—what a compound system does depends on

its constituent modules (parts), what they do separately, and how they’re put together. The

shape grammarist agrees that this is a dangerous idea—before you know it, design is impossible.

Sussman, to be sure, has other hazards in mind. Once-novel ideas may be dangerous because

they’re revolutionary when they’re tried in new places. Today, compositionality is key in biologi-

cal engineering—MIT’s ‘‘Registry of Standard Biological Parts’’ holds an amazing future. And

compositionality works elsewhere outside of engineering—for example, there’s ‘‘the timeless way

of building’’ in Christopher Alexander’s pattern language. But what does any of this add to Franz

Reuleaux or Herbert Simon? What is it about how we’re trained to think that makes both design

and calculating combinatorial? Neither has to be. Still, there’s no telling where a big idea might

go, and Sussman’s big idea is no exception. Computers are used everywhere, so perhaps CSAIL

will ‘‘change the way the rest of the world works’’ in art and design—but only if there’s nothing

to see.

25. There are other options in computer science, for example, R. A. Brooks, ‘‘Intelligence without

Representation,’’ Artificial Intelligence 47 (1991): 139–159. Brooks shares the shape grammarist’s

distaste for representation—‘‘explicit representations and models of the world simply get in the

way. It turns out to be better to use the world as its own model.’’ This is true for shapes, and is

the reason for embedding and maximal elements. But the focus is elsewhere in AI—‘‘[To segment
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the world into meaningful units] is the essence of intelligence and the hard part of the problems

being solved. Under the current scheme the abstraction is done by the researchers leaving little for

the AI programs to do but search. A truly intelligent program would study the photograph, per-

form the abstraction and solve the problem.’’ Is it any wonder that Brooks gives up on the current

scheme and search, when parts of shapes—what’s in the photograph—are resolved only in some

sort of precalculating? ‘‘[This abstraction] is the essence of intelligence’’ and of calculating with

shapes and rules, too. (Visual experience—in fact, photography—was also decisive for Susanne

Langer when she abandoned vocabulary and syntax for presentational forms of symbolism.)

Brooks appeals to perception and action (seeing and doing) to make autonomous mobile agents

or ‘‘Creatures.’’ They segment the world and change it. The analogy goes like this

Creatures :world(s)< rules : shape(s)

although the idea was clear to C. S. Peirce (page 55) 125 years ago. He thought Creatures were

creatures of habit. Yet something is amiss. Creatures act like cellular automata in that ‘‘there

emerges, [only] in the eye of an [outside] observer, a coherent pattern of behavior.’’ Embedding

and transformations, and the ensuing ambiguity, aren’t part of perception for Creatures. Intelli-

gence caps a recursive ascent, but what kind of intelligence is unaware of itself and what it does?

It’s pretty much the same drawing the three lines on page 2 and not seeing the triangle, or rotat-

ing three triangles in the series on page 296 and not trying two. Why should perception stop?

Then everything adds up without making anything new. Action is senseless when there’s no way

to see what’s going on. (In fact, this is the same kind of problem I had earlier in note 9 with music

and Bamberger’s units of perception and units of work. The distinction is a hobbling artifact of

representation and another reason to try something new. Units fail for perception whether seeing

or hearing, and when there’s creative work to do. But this is never a problem with shapes and

rules—then one ‘‘size’’ fits all.)

26. A. N. Whitehead, Process and Reality (New York: Free Press, 1978), 294–297.

27. H. Leonard and N. Goodman, ‘‘The Calculus of Individuals and Its Uses,’’ Journal of Symbolic

Logic 5 (1940): 45. See also N. Goodman, The Structure of Appearance, 46–56.

28. A. Tarski, ‘‘Foundations of the Geometry of Solids,’’ in Logic, Semantics, Metamathematics,

trans. J. H. Woodger (Indianapolis: Hackett, 1983), 24–29.

29. P. Simons, Parts: A Study in Ontology (Oxford: Clarendon Press, 1987).

30. N. Goodman and W. V. Quine, ‘‘Steps toward a Constructive Nominalism,’’ in Problems and

Projects, ed. N. Goodman (Indianapolis: Bobbs-Merrill, 1972), 173–198.

31. A. Tarski, ‘‘On the Foundations of Boolean Algebra,’’ in Logic, Semantics, Metamathematics,

333, fn. 1.

32. A. A. G. Requicha, ‘‘Representations of Rigid Solids: Theory, Methods, and Systems,’’ ACM

Computer Surveys 12 (1980): 437–464.

33. M. H. Stone, ‘‘The Theory of Representations for Boolean Algebras,’’ Transactions of the Ameri-

can Mathematical Society 40 (1936): 37–111.

34. Earl, ‘‘Shape Boundaries.’’ For a scattered but more detailed account of the same material, see

H. Rasiowa and R. Sikorski, The Mathematics of Metamathematics, 3rd ed. (Warsaw: Panstwowe

Wydawnictwo Naukowe, 1970).
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35. G. Stiny, ‘‘Boolean Algebras for Shapes and Individuals,’’ Environment and Planning B: Planning

and Design 20 (1993): 359–362.

36. M. Gross and A. Lentin, Introduction to Formal Grammars (New York: Springer-Verlag, 1970).

37. J. Gips and G. Stiny, ‘‘Production Systems and Grammars: A Uniform Characterization,’’ Envi-

ronment and Planning B 7 (1980): 399–408.

38. N. Chomsky, ‘‘Formal Properties of Grammars,’’ in Handbook of Mathematical Psychology,

vol. 2, ed. R. D. Luce, R. R. Bush, and E. Galanter (New York: John Wiley and Sons, 1963), 323–

418.

39. S. Wolfram, A New Kind of Science (Champaign, Ill.: Wolfram Media, 2002). In particular, see

pp. 25–26 for a preliminary discussion of the fractal pattern shown on my page 274.

40. Wolfram, 880.

41. L. B. Alberti, On the Art of Building in Ten Books, trans. J. Rykwert, N. Leach, and R. Tavernor

(Cambridge, Mass.: MIT Press, 1988), 7.

42. Alberti, 23.

43. W. James, The Principles of Psychology (Cambridge, Mass.: Harvard University Press, 1981),

957–958.

44. F. Reuleaux, The Kinematics of Machinery, trans. and ed. A. B. W. Kennedy (New York: Dover,

1963), 3, 20.

45. Reuleaux, 531–532. Spatial relations and rules in my ‘‘Kindergarten Grammars’’ work in much

the same way as pairs and chains do in indirect synthesis.

46. S. Pinker, The Blank Slate (New York: Viking, 2002), 78–83.

47. Anyone—visual or not—can generate new things. Perhaps that’s why artists and designers

avoid ‘‘rules’’—combining units recursively isn’t enough. It takes embedding to be creative. Recur-

sion and embedding—as technical devices—define creativity when they’re used to calculate. Then

rules let you see what you’re doing and use what you see.

Part III

1. ‘‘Seventeenth Day, Friday 27th April 1883, Mr. Bernhard Samuelson, M. P., F. R. S., in the

Chair,’’ in Second Report of the Royal Commissioners on Technical Instruction (London: Royal Com-

mission on Technical Instruction, 1884), 502. For a little more on Walter Smith’s founding role in

American art education and later changes in the subject, see H. Green, ‘‘Walter Smith: The Forgot-

ten Man,’’ Art Education, 19, 1 (1966): 3–9, and C. D. Gaitskell, A. Hurwitz, and M. Day, Children

and Their Art: Methods for the Elementary School, 4th ed. (New York: Harcourt Brace Jovanovich,

1982), 33–44. (Copying was routine in nineteenth-century art education—famously, in Charles

Bargue’s Cours de dessin followed by van Gogh and Picasso. For a fresh take on Bargue’s pedagogy,

see E. J. Langer, On Becoming an Artist [New York: Ballantine Books, 2005], 239. Shapes and rules

may include the twenty-first-century drawing lessons Langer wants, ‘‘based on mastering render-

ing the ineffable through subtle distortions rather than through exact replication.’’ In fact, her

painting on the book jacket shows what shapes and rules do—two figures occlude a third, or are

they another way? Look for yourself. And Langer, 191, puts this in words, too. ‘‘Can you draw a
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reasonably straight line? . . . Can you recognize different colors? If so, all that is left to be able

to draw or paint is to learn how to see.’’ This implies an algebra of shapes—basic elements

and weights, embedding, transformations, etc.—and rules to calculate.) The flip side of Smith’s

kind of copying was tried in twentieth-century art, when copying was copying what’s new and

not what’s really there. Of course, the two are likely the same, so long as ambiguity is something

to use. (What’s what in art tallies with the phenomenal what on pages 142–143.) It’s easy to see

that Richard Mutt’s Fountain of 1917 is copying—‘‘plagiarism, a plain piece of plumbing.’’ But as

soon as Marcel Duchamp saw his urinal, it was a readymade. (This kind of change is universal, yet

it’s easy to miss and thereby creative—perhaps also in Gertrude Stein’s line ‘‘ . . . a rose . . . .’’

Langer, 174–175, may not hear it when she explains how rote knowing makes us blind.) Alfred

Stieglitz’s documentary photograph of Fountain opened the second and final issue of The Blind

Man (New York: May 1917), edited by Duchamp, Beatrice Wood, and Henri-Pierre Roché. (Smith

would have approved of this picture as a frontispiece for one of his instructional-drawing books—

an exact copy of an industrial object!) And the unsigned editorial on the facing page was just

as clear.

Whether Mr. Mutt with his own hands made the fountain or not has no importance. He CHOSE it. He took an

ordinary article of life, placed it so that its useful significance disappeared under the new title and point of

view—created a new thought for that object.

In one way or another, ‘‘CHOOSING’’ has been standard in art, including the avant-garde, and

art education for years. It’s about seeing again, now and as I go on. What’s changed is that this

is what happens with shapes and rules. They show how art is calculating, and offer an effective

pedagogy. (We were too young for Miss H—— to tell us about Mutt, although I read about

Duchamp’s antics on my own and saw Nude Descending a Staircase (No. 2). Duchamp never tired

of making copies. In fact, he authorized a number of different versions of Fountain, and colored in

a full-scale photograph of his painting for the collector Walter Arensberg. A schema bðxÞ fi x or

bðxÞ fi xþ bðxÞ, or something close applies to a photograph to add colors. But better yet, there’s

plenty of copying in Duchamp’s nude(s) using rules in the schema x fi xþ xA. This makes it easy

to explore movement or any series of alternative views in a sum. Paul Klee’s palm-leaf umbrella

suggests as much with less fanfare, and so does Jacob Tchérnikhov’s drawing on page 278 in

which quadrilaterals are copied vertex to edge one either outside or inside another—triangles

optional. There’s always more to see and do, both copying and not.)

2. G. Stiny and J. Gips, ‘‘Shape Grammars and the Generative Specification of Painting and

Sculpture,’’ in Information Processing ’71, ed. C. V. Frieman (Amsterdam: North-Holland, 1972),

1460–1465. G. Stiny, Pictorial and Formal Aspects of Shape and Shape Grammars (Basel: Birkhauser,

1975).

3. G. Stiny, ‘‘Ice Ray: A Note on the Generation of Chinese Lattice Designs,’’ Environment and

Planning B 4 (1977): 89–98. What others say about shapes and rules when they’re used to produce

designs is likely to take the linguistic turn that the term ‘‘shape grammar’’ implies—

Architects and environmental planners, for instance, have used ‘‘[shape] grammars’’ to generate new ‘‘sen-

tences,’’ novel spatial structures that are intuitively acceptable instances of the genre concerned. . . . The decora-

tive arts have received similar attention: traditional Chinese lattice designs have been described by a computer

algorithm, which generates the seemingly irregular patterns called ‘‘ice-rays’’ as well as the more obviously reg-

ular forms.

The ice ray example shows that a rigorous analysis of a conceptual space can uncover hidden regular-

ities, and so increase—not merely codify—our aesthetic understanding of the style. . . . It shows which aspects

are relatively fundamental (like Euclid’s axioms in geometry, or NP and VP in syntax), and how certain features

are constrained by others.
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M. A. Boden, Dimensions of Creativity (Cambridge, Mass.: MIT Press, 1994), 86–87. This can be

harmless, perhaps as above, but usually ends with a closed definition of style that stops what

shapes and rules do.

4. Schemas were first defined in terms of a pair of variables in G. Stiny, ‘‘How to Calculate with

Shapes,’’ in Formal Engineering Design Synthesis, ed. E. K. Antonsson and J. Cagan (Cambridge:

Cambridge University Press, 2001), 48–50.

5. G. Stiny and W. J. Mitchell, ‘‘The Palladian Grammar,’’ Environment and Planning B 5 (1978): 5–

18. G. Stiny and W. J. Mitchell, ‘‘Counting Palladian Plans,’’ Environment and Planning B 5 (1978):

189–198. G. Stiny and J. Gips, ‘‘An Evaluation of Palladian Plans,’’ Environment and Planning B 5

(1978): 199–206.

6. G. Stiny, ‘‘A Note on the Description of Designs,’’ Environment and Planning B 8 (1981): 257–

267.

7. G. Stiny, Pictorial and Formal Aspects of Shape and Shape Grammars.

8. G. Stiny, ‘‘Two Exercises in Formal Composition,’’ Environment and Planning B 3 (1976): 187–

210. G. Stiny, ‘‘Kindergarten Grammars: Designing with Froebel’s Building Gifts,’’ Environment

and Planning B 7 (1980): 409–462.

9. P. Klee, The Thinking Eye, ed. J. Spiller (New York: George Wittenborn, 1961), 71, 98.

10. D. S. Dye, A Grammar of Chinese Lattice (Cambridge, Mass.: Harvard University Press, 1949),

17, 56, 186, 298–300, 303–304, 308, 340, 424.

11. A. Palladio, The Four Books of Architecture (New York: Dover, 1965).

12. J. S. Ackerman, Palladio (New York: Penguin Books, 1966), 36, 65, 160.

13. L. March, Architectonics of Humanism: Essays on Number in Architecture (New York: Academy

Editions, 1998).

14. T. W. Knight, Transformations in Design (Cambridge: Cambridge University Press, 1994).

15. J. P. Duarte, ‘‘Customizing Mass Housing: A Discursive Grammar for Siza’s Malagueira

Houses’’ (PhD dissertation, Massachusetts Institute of Technology, 2001).

16. A. Li, ‘‘A Shape Grammar for Teaching the Architectural Style of the Yingzao Fashi’’ (PhD dis-

sertation, Massachusetts Institute of Technology, 2001).

17. G. Stiny and J. Gips, Algorithmic Aesthetics (Berkeley: University of California Press, 1978).

18. L. March, ‘‘The Logic of Design and the Question of Value,’’ in The Architecture of Form, ed.

L. March (Cambridge: Cambridge University Press, 1976), 1–40.

19. M. Ozkar, ‘‘Uncertainties of Reason: Pragmatist Plurality in Basic Design Education’’ (PhD dis-

sertation, Massachusetts Institute of Technology, 2004), 65.

20. Ozkar, 70. This takes ‘‘mindful learning’’—I mentioned it in the introduction on page 56: E. J.

Langer, The Power of Mindful Learning (Reading, Mass.: Addison-Wesley, 1997), 23, 108, 114. And

flipping Langer does more. In spite of her jaundiced view of calculating—‘‘In a [mindful state], ba-

sic skills and information guide our behavior in the present, rather than run it like a computer

program.’’—her five-point description of mindfulness is another way to talk about shapes and

rules. Ambiguity is the reason why. It implies mindfulness, even when design is copying and the
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artist’s hand is lost in impersonal line drawings on a computer. These are the things Langer con-

siders:

(1) openness to novelty; (2) alertness to distinction; (3) sensitivity to different contexts; (4) implicit, if not

explicit, awareness of multiple perspectives; and (5) orientation in the present.

My twin formulas for rule application guarantee number 5—‘‘orientation in the present.’’ Shapes

divide and fuse every time a rule is tried, so that all past distinctions are lost in the present. What I

see and do is what I see and do now, independent of anything that may have happened before.

Parts vanish without a trace—they’re gone and forgotten. Identities in the schema x fi x are nice

examples of this—try them as often as you like and see. But why stop when Langer’s four preced-

ing points describe shapes and rules, too? And maybe there’s more in my copies of Langer’s copies

of a few lines from the concluding part of William James’s third essay in The Meaning of Truth. Nit-

picking here isn’t idle. Langer first quotes James so—

Owing to the fact that all experience is a process, no point of view can ever be the last one. Every one is insuffi-

cient and off its balance, and responsible to later points of view than itself.

—and then she quotes another passage to start a creative (design) process with rules in schemas

like x fi tðxÞ and x fi xA. There’s James, then Langer’s copy in her book that distorts this in a sub-

tle way, and then my own copy of her copy that changes it

The standard [for what’s right] perpetually grows up endogenously inside the web of experience.

and also a third copy ends my second paragraph on page 58. What James says may seem more

important than how it’s copied, although copying what he says shows how it works. James sets

the original standard with his own words, but this isn’t rigid. Its structure varies as it’s copied.

The standard evolves and shifts—refined and distilled or changed entirely. And the preceding sen-

tence is a new copy of James in the same ongoing process. (It’s funny how copying is used, and

not just to design. In the Turing test for artificial intelligence, calculating machines are supposed

to imitate you and me. But my way of copying with shapes and rules, and a shifting standard may

alter this. At least copying—again in my way—allows for novelty and the reasoning it implies. All

of this turns on the question I asked in the early pages of this book—what would calculating be

like if Turing were a painter?) A permanent structure is an unproductive stricture. That’s because

the letters u and i are side by side—inverse translations on my computer keyboard. Taking orthog-

raphy too seriously only brakes/breaks the free flow of experience. I can derive the palindrome

ababaababa or spell it from memory to rotate the three squares in the shape

but does anyone really believe this happens before I erase and copy the squares, and what about

other parts of the shape and its successors with five squares, seven, etc. if everything is spelled out

ahead of time? Perhaps I can compile and use a dictionary of shapes with variants that are spelled

differently. But then are some parts of shapes missing? How do shapes look? What an awful mess

without embedding and mindful (visual) calculating! It’s lucky spelling is so easy to ignore, at least

for scofflaws like James. (On James’s distaste for ‘‘the authority of prior use’’ and ‘‘obsolete verbal

ritual,’’ namely, spelling—‘‘he didn’t even like the fact that everyone was expected to spell the

same way’’—see L. Menand, The Metaphysical Club [New York: Farrar, Straus, and Giroux, 2001],

88–89.) In fact, James tries copying, and our separate versions of it match exactly where they

should. Langer’s two quotations follow a few pages after this:
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The essence in any case would not be the copying, but the enrichment of the previous world.

James and Mr. Mutt agree—they opt for novelty and what’s new to add to what’s real. There’s

more to copying than correct spelling and rote recitation. Structure isn’t fixed—what you see is

what you get. (Copying may also reinforce Langer’s observation that many of us miss letters and

words when we read. It seems that familiar ways of looking temper the results on embedded fig-

ures given on page 52. Keeping your eyes wide open for surprising possibilities may not be that

easy—novelty takes work and for shapes, this means calculating.) The coincidence with James is

rich indeed, as my topologies show when they’re defined retrospectively. Langer’s first quota-

tion—‘‘Owing to the fact that . . .’’—and mine on copying are perfect in this regard. Rules aren’t

locked in a definite past. They’re tested in a vague and ambiguous future that goes on in a new

way. The past is different in response. A series of topologies is merely what works in the

present—it’s history ready to change. Computer programs are like shapes. They’re worth a second

look. Mindful calculating makes pretty good sense.

21. U. Flemming, ‘‘The Secret of the Casa Guiliani Frigerio,’’ Environment and Planning B 8 (1981):

87–96. U. Flemming, ‘‘More than the Sum of Parts: The Grammar of Queen Anne Houses,’’ Envi-

ronment and Planning B: Planning and Design 14 (1987): 323–350. U. Flemming, ‘‘A Pattern Book

for Shadyside’’ (technical report, Department of Architecture, Carnegie Mellon University, Pitts-

burgh, 1987). T. W. Knight, ‘‘The Generation of Hepplewhite-style Chair Back Designs,’’ Environ-

ment and Planning B 7 (1980): 227–238. T. W. Knight, ‘‘The Forty-one Steps,’’ Environment and

Planning B 8 (1981): 97–114. T. W. Knight, Transformations in Design.
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