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Preface

The authors firmly believe that the biggest blasphemy a stat reader can commit is the
non-reading of texts which are within her/his mathematical limits. The strength of this attitude
is that since mathematical limits are really a perception and consequentially it would be in
a decline with persistence, and the reader would then simply enjoy the subject like a dream.
We made a humble beginning in our careers and proceeded with reading books within our
mathematical limits. Thus, it is without any extra push or pressure that we began the writing
of this book. It is also true that we were perfectly happy with the existing books and the
purpose of this has not arisen as an attempt to improve on other books. The authors have
taken the task of writing this book with a view which is believed to be an empirical way of
learning computational statistics. This is also the reason why others write their books and we
are not an exception.

The primary reason which motivated us to pick up the challenge of writing this book needs
a mention. The Student’s t-test has many beautiful theoretical properties. Apart from being a
small sample test, it is known to be the Uniformly Most Powerful Unbiased, UMPU, test. A
pedagogical way of arriving at this test is a preliminary discussion of hypothesis framework,
Type I and II errors, power function, the Neyman-Pearson fundamental lemma which gives
the Most Powerful test, and the generalization to the Uniformly Most Powerful test. It is after
this flow that we appreciate the t-test as the UMPU test. For a variety of reasons, it is correct
for software-driven stat books to skip over these details and illustrate the applications of the
t-test. The purpose and intent are met and we have to respect such an approach.

We felt the intrinsic need of a computational illustration of the pedagogical approach and
hence our coverage of statistical tests begins from a discussion of hypothesis framework
through to the UMPU tests. Similarly, we have provided a demystification of the Iterative
Reweighted Least Squares, IRLS, which will provide the reader with a clear view of how to
estimate the parameters of the logistic regression. In fact, whenever we have an opportunity for
further clarification of the computational aspects, we have taken it up. Thus, the main approach
of this book has been to provide the R programs which fill the gap between formulas and output.

On a secondary note, the aim of this book is to provide the students in the Indian subcontinent
with a single companion for their Masters Degree in Statistics. We have chosen the topics for
the book in a way that the students will find useful in any Semester during their course. Thus,
there is more flavor of the Indian subcontinent in this work. Furthermore, as scientific thinking
is constant, it can be used by any person on this planet.
We have used R software for this book since it has emerged as one of the powerful statistical
software, and each month at least one book appears which uses it as the primary software.
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1
Why R?

Package(s): UsingR
Dataset(s): +AD1-9

1.1 Why R?

Welcome to the world of Statistical Computing! During the first quartile of the previous century
Statistics started growing at a great speed under the schools led by Sir R.A. Fisher and Karl
Pearson. Statistical computing replicated similar growth during the last quartile of that century.
The first part laid the foundations and the second part made the founders proud of their work.
Interestingly, the beginning of this century is also witnessing a mini revolution of its own. The
R Statistical Software, developed and maintained by the R Core Team, may be considered as a
powerful tool for the statistical community. The software being a Free Open Source Software
is simply icing on the cake.

R is evolving as the preferred companion of the Statistician. The reasons are aplenty. To
begin with, this software has been developed by a team of Statisticians. Ross Ihaka and Robert
Gentleman laid the basic framework for R, and later a group was formed who are responsible
for the current growth and state of it. R is a command-line software and thus powerful with a
lot of options for the user.

The legendary Prasanta Chandra Mahalanobis delivered one of the important essays in the
annals of Statistics, namely, “Why Statistics?” It appears that Indian mathematicians were
skeptical to the thought of including Statistics as a legitimate branch of science in general,
and mathematics in particular. This essay addresses some of those concerns and establishes
the scientific reasoning through the concepts of random samples, importance of random
sampling, etc.

Naturally, we ask ourselves the question “Why R?” Of course, the magnitude of the question
is oriented in a completely different and (probably) insignificant way, and we hope the reader
will excuse us for this idiosyncrasy. The most important reason for the choice of R is that it is
an open source software. This translates to the fact that the functioning of the software can be
understood to the first line of code which steam rolls into powerful utilities. As an example,
we can trace how exactly the important mean function works.

A Course in Statistics with R, First Edition. Prabhanjan Narayanachar Tattar, Suresh Ramaiah and B. G. Manjunath.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/tattar/statistics
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# File src/library/base/R/mean.R
# Part of the R package, http://www.R-project.org
#
# A copy of the GNU General Public License is available at
# http://www.r-project.org/Licenses/
mean <- function(x, ...) UseMethod("mean")
mean.default <- function(x, trim = 0, na.rm = FALSE, ...)
{

if(!is.numeric(x) && !is.complex(x) && !is.logical(x)) {
warning("argument is not numeric or logical: returning NA")
return(NA_real_)

}
if (na.rm)

x <- x[!is.na(x)]
if(!is.numeric(trim) || length(trim) != 1)

stop("’trim’ must be numeric of length one")
n <- length(x)
if(trim > 0 && n > 0) {

if(is.complex(x))
stop("trimmed means are not defined for complex data")

if(trim >= 0.5) return(stats::median(x, na.rm=FALSE))
lo <- floor(n*trim)+1
hi <- n+1-lo
x <- sort.int(x, partial=unique(c(lo, hi)))[lo:hi]

}
.Internal(mean(x))

}
mean.data.frame <- function(x, ...) sapply(x, mean, ...)

Note that there is information about the address of the mean function, src/library/base/R/mean
.R. The user can go to that address and openmean.R in any text editor. Now, if you find that the
mean function does not work according to your requirement, modifications and new functions
can be defined easily. For instance the default setting of the mean function is na.rm=FALSE,
that is, if there are missing observations in a vector, see Section 2.3, the mean function will
return NA as the answer. It is very simple to define a modified function whose default setting
is na.rm=TRUE.

> x <- c(10,11,NA,13,14)
> mean(x)
[1] NA
> mean_new <- function(...,na.rm=TRUE) mean(...,na.rm=TRUE)
> mean_new(x)
[1] 12
> mean(x,na.rm=TRUE)
[1] 12

This is as simple as that. Thus, there are no restrictions imposed by the software on the user. The
authors strongly believe that this freedom is priceless. If the decision to acquire the software
is dictated by economic considerations, it is convenient that R comes freely.

src/library/base/R/mean.R
src/library/base/R/mean.R
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Computation complexity is a reason for the need of software. As the modern statistical
methods are embedded with complexity, it becomes a challenge for the developers of the
methodology to complement the applications with appropriate computer programs. It has been
our observation that many statisticians tend to address this dimension with relevant R pack-
ages. Venables and Ripley (2002) developed a very useful package MASS, an abbreviation for
the title of their book Modern Applied Statistics with S. This package is shipped along with the
software and is “recommended” as a priority package. In Section 1.8 we will see how many
statisticians have adopted R as the language of their statistical computations.

1.2 R Installation

The website http://cran.r-project.org/ consists of all versions of R available for a variety of
Operating Systems. CRAN is an abbreviation for Comprehensive R Archive Network. An
incidental fact is that R had been developed on the Internet only.

The R software can be installed on a variety of platforms such as Linux, Windows, and
Macintosh, among others. There is also an option of choosing 32- or 64-bit versions of the soft-
ware. For a Linuxian, under appropriate privileges, R may be easily installed from the terminal
using the command sudo apt-get install r-base. Ubuntu operating system users
can find more help regarding R installation at the link http://ubuntuforums.org/showthread
.php?t=639710.

After the installation is complete, the user can start the software by simply keying in R at
the terminal. If the user is a beginner and not too familiar with the Linux environments, it is
a possibility that she may be disappointed with its appearance as she cannot find much help
there. Furthermore, the Linux expert may find this too trivial to explain/help a beginner. Some
help for the beginner is available at http://freshmeat.net/articles/view/2237/.

A user of Windows first needs to download the recent versions executable file, currently
R-3.0.2-win32.exe, and then merely double-click her way to completing the installation
process. Similarly, Macintosh users can easily find the related files and methods for instal-
lation. The web links “R MacOS X FAQ” and “R Windows FAQ” should further be useful
to the reader. The authors have developed the R codes used in this book and verified them
for Linux and Windows versions. We are confident that they will compile without errors on
Macintosh too.

1.3 There is Nothing such as PRACTICALS

The reader is absolutely free to differ from our point of view that “There is nothing such as
PRACTICALS” and may skip this section altogether. There are two points of view from the
authors which will be put forward here. First, with the decreasing cost of computers and avail-
ability of Open Source Software, OSS, see Appendix A, there is no need for calculator-based
practicals. Also within the purview of a computer lab, a Statistics student/expertise needs to
be more familiar with software such as R and SAS among others. Our second point of view is
that the integration of theory with applications can be seamlessly achieved using the software
modules.

It is apparently clear with the exponential growth of technology that the days of separate
sessions for practicals of are a bygone era, and it’s not an intelligent proposition to hang onto

http://cran.r-project.org/
http://ubuntuforums.org/showthread.php?t=639710
http://ubuntuforums.org/showthread.php?t=639710
http://freshmeat.net/articles/view/2237/
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a weak rope, and blame it for our fall. It has been observed that in many of the developed
Departments of the subject, calculator-based computations/practicals session have been
done away with altogether. It is also noticed that many Statistical institutes do not teach
C++/Fortran programming languages even at a graduate course, and a reason for this may be
that statisticians need not necessarily be software programmers. There are many additional
reasons for this reluctance. A practical reason is that computers have become very much
cheaper, and if not within the financial reach of the students (especially in the developing
countries), computing machines are easily available in most of their institutes. It is more often
the case that the student has access to at least a couple of hours per week at her institute.

The availability of subject-specific interpretative software has also minimized the need
of writing explicit programs for most of the standard practical methods in that subject. For
example, in our Statistics subject, there are many software packages such as SAS, SYSTAT,
STATISTICA, etc. Each of these contains inbuilt modules/menus which enable the user to
perform most of these standard computations in a jiffy, and as such the user need not develop
the programs for the statistical techniques in the applied area such as Linear Regression
Analysis, Multivariate Statistics, among other topics of the subject.

It is true that one of the driving themes of this book is to convey as many ideas and concepts,
both theoretical and practical, through a mixture of software programs and mathematical
rigor. This aspect will become clear as the reader goes deeper into the book and especially
through the asterisked sections or subsections. In short, this book provides a blend of theory
and applications.

1.4 Datasets in R and Internet

The R software consists of many datasets and more often than not each package, see
Section 2.6 for more details about an R package, contains many datasets. The command
try(data(package= "\,")) enlists all the datasets contained in that package. For
example, if we need to find the datasets in the package, say rpart and methods, execute
the following:

> try(data(package="rpart"))
car.test.frame Automobile Data from ’Consumer
+ Reports’ 1990
car90 Automobile Data from ’Consumer
+ Reports’ 1990
cu.summary Automobile Data from ’Consumer
+ Reports’ 1990
kyphosis Data on Children who have had Corrective
+ Spinal Surgery
solder Soldering of Components on Printed-Circuit
+ Boards
stagec Stage C Prostate Cancer
> try(data(package="methods"))
no data sets found



Trim Size: 170mm x 244mm Tattar c01.tex V3 - 02/10/2016 10:20 A.M. Page 7�

� �

�

Why R? 7

The function for loading these datasets will be given in the next chapter. It has been observed
that authors of many books have created packages containing all the datasets from their book
and released them for the benefit of the programmers. For example, Faraway (2002) and Everitt
and Hothorn (2006) have created packages titled faraway and HSAUR2 respectively, which
may be easily downloaded from http://cran.r-project.org/web/packages/, see Section 2.6.

Another major reason for a student to familiarize herself with a software is that practical
settings rarely have small datasets (n < 100, to be precise). It is a good exposition to deal with
industrial datasets. Thus, we feel that the beginners must try their hand at as many datasets
as they can. With this purpose in mind, we enlist in the next subsection a bunch of websites
which contain large numbers of datasets. This era really requires the statistician to shy away
from ordinary calculators and embrace realistic problems.

1.4.1 List of Web-sites containing DATASETS

Practical datasets are available aplenty on the worldwide web. For example, Professors A.P.
Gore, S.A. Paranjape, and M.B. Kulkarni of the Department of Statistics, Poona University,
India, have painstakingly collected 103 datasets for their book titled “100 Datasets for Statistics
Education”, and have made it available on the web. Most of these datasets are in the realm of
real-life problems in the Indian context. The datasets are available in the gpk package. We
will place much emphasis on the datasets from this package and use them appropriately in the
context of this current book, and also thank them on behalf of the readers too.

Similarly, the website http://lib.stat.cmu.edu/datasets/ contains a large host of datasets.
Especially, datasets that appear in many popular books have been compiled and hosted for
the benefit of the netizens.

It is impossible for anybody to give an exhaustive list of all the websites containing datasets,
and such an effort may not be fruitful. We have listed in the following what may be useful to
a statistician. The list is not in any particular order of priorities.

• http://ces.iisc.ernet.in/hpg/nvjoshi/statspunedatabook/databook.html
• http://lib.stat.cmu.edu/data sets/
• http://onlinelibrary.wiley.com/journal/10.1111/%28ISSN%291467-985X/homepage/

datasets_all_series.htm
• http://www.commondata set.org/
• https://datamarket.com/data/list/?q=provider:tsdl
• http://inforumweb.umd.edu/econdata/econdata.html
• http://www.ucsd.edu/portal/site/Libraries/
• http://www.amstat.org/publications/jse/information.html
• http://www.statsci.org/data sets.html
• http://archive.ics.uci.edu/ml/data sets.html
• http://www.sigkdd.org/kddcup/index.php

We are positive that this list will benefit the user and encourage them to find more such sites
according to their requirements.

http://cran.r-project.org/web/packages/
http://lib.stat.cmu.edu/datasets/
http://ces.iisc.ernet.in/hpg/nvjoshi/statspunedatabook/databook.html
http://lib.stat.cmu.edu/data sets/
http://onlinelibrary.wiley.com/journal/10.1111/%28ISSN%291467-985X/homepage/datasets_all_series.htm
http://onlinelibrary.wiley.com/journal/10.1111/%28ISSN%291467-985X/homepage/datasets_all_series.htm
http://www.commondata set.org/
https://datamarket.com/data/list/?q=provider:tsdl
http://inforumweb.umd.edu/econdata/econdata.html
http://www.ucsd.edu/portal/site/Libraries/
http://www.amstat.org/publications/jse/information.html
http://www.statsci.org/data sets.html
http://archive.ics.uci.edu/ml/data sets.html
http://www.sigkdd.org/kddcup/index.php
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1.4.2 Antique Datasets

Datasets available on the web are without any doubt very valuable and useful for a learner
as well as the expert. Apart from the complexity and dimensionality, the sources are updated
regularly and thus we are almost guaranteed great data sources. In the beginning of statistical
development though, such a luxury was not available and the data collection mechanism
was severely restricted by costs and storage restrictions. In spite of such limitations, the
experimenters really compensated for them by their foresight and innovation. We describe in
the rest of this section a set of very useful and antique datasets. We will abbreviate “Antique
Datasets” as “AD”. All the datasets discussed here are available in the books associated with
the ACSWR package.

Example 1.4.1. AD1. Galileo’s Experiments. The famous scientist Galileo Galilei con-
ducted this experiment four centuries ago. An end of a ramp is elevated to a certain height
with the other end touching the floor. A ball is released from a set height on the ramp and
allowed to roll down a long narrow channel set within the ramp. The release height and the
distance traveled before landing are measured. The goal of the experiment is to understand the
word should be split like this: relationship between the release height and distance traveled.
Dickey and Arnold’s (1995) paper reignited interest in the Galileo dataset in the statistical
community. This paper is available online at http://www.amstat.org/publications/jse/v3n1/data
sets.dickey.html#drake. ◽

Example 1.4.2. AD2. Fisher’s Iris Dataset. Fisher illustrated the multivariate statistical tech-
nique of the linear discriminant analysis method through this dataset. It is important to note
here that though there are only three species with four measurements of each observation, and
150 observations, this dataset is very much relevant today. Rao (1973) used this dataset for the
hypothesis testing problem of equality of two vector means. Despite the availability of large
datasets, the iris dataset is a benchmark example for the machine learning community. This
dataset is available in the datasets package. ◽

Example 1.4.3. AD3. The Militiamen’s Chest Dataset. Militia means an army composed
of ordinary citizens and not of professional soldiers. This dataset is available in an 1846 book
published by the Belgian statistician Adolphe Quetelet, and the data is believed to have been
collected some 30 years before that. It would be interesting to know the distribution of the
chest measurements of a militia which had 5738 militia men. Velleman and Hoaglin (1984),
page 259, has more information about this data. We record here that though the dataset is
not available, the summaries of frequency count is available, which serves our purpose in
this book. ◽

Example 1.4.4. AD4. The Sleep Dataset – 107 Years of Student’s t-Distribution. The sta-
tistical analysis of this dataset first appeared in the 1908 remarkable paper of William Gosset.
The paper titled The Probable Error of Mean had been published in the Biometrika journal
under the pen name Student. The purpose of the investigation had been identification of an
effective soporific drug among two groups for more sleep. The experiment had been conducted
on ten patients from each group and since the large sample Z-test cannot be applied here, Gos-
set solved the problem and provided the small-sample t-test which also led to the well-known
Student’s t-distribution. The default R package datasets contains this dataset. ◽

http://www.amstat.org/publications/jse/v3n1/data sets.dickey.html#drake
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Example 1.4.5. AD5. The Galton’s Dataset. Francis Galton is credited with the invention of
the linear regression model and it is his careful observation of the phenomenon of regression
toward the mean which forms the crux of most of regression analysis. This dataset is available
in the UsingR package of Verzani (2005) as the galton dataset. It is also available in the
companion RSADBE package of Tattar (2013). The dataset contains 928 pairs of height of
parent and child. The average height of the parent is 68.31 inches, while that of the child
is 68.09 inches. Furthermore, the correlation coefficient between the height of parent and child
is 0.46. We will use this dataset in the rest of this book. ◽

Example 1.4.6. AD6. The Michelson-Morley Experiment for Detection of Ether. In the
nineteenth century, a conjectured theory for the propagation of light was the existence of an
ether medium. Michelson conducted a beautiful experiment in the year of 1881 in which the
drift caused by ether on light was expected to be at 4%. What followed later, in collaboration
with Morley, was one of the most famous failed experiments in that the setup ended by proving
the non-existence of ether. We will use this dataset on multiple occasions in this book. In the
datasets package, this data is available under morley, whereas another copy is available
in the MASS package as michelson. ◽

Example 1.4.7. AD7. Boeing 720 Jet Plane Air Conditioning Systems. The time between
failures of air conditioning systems in Boeing jet planes have been recorded. Here, the event
of failure is recurring for a single plane. Additional information is available regarding the air
conditioning undergoing a major overhaul during certain failures. This data has been popu-
larized by Frank Proschan. This dataset is available in the boot package by the data frame
aircondit. ◽

Example 1.4.8. AD8. US Air Passengers Dataset. Box and Jenkins (1976) used this dataset
in their classic book on time series. The monthly totals of international airline passengers has
been recorded for the period 1949–1960. This data consists of interesting patterns such as
seasonal variation, yearly increment, etc. The performance of various time series models is
compared and contrasted with respect to this dataset. The ts object AirPassengers from
the datasets package contains the US air passengers dataset. ◽

Example 1.4.9. AD9. Youden and Beale’s Data on Lesions of Half-Leaves of the Tobacco
Plant. A simple and innovative design is often priceless. Youden and Beale (1934) sought to
find the effect of two preparations of virus on tobacco plants. One half of a tobacco leaf was
rubbed with cheesecloth soaked in one preparation of the virus extract and the second half
was rubbed with the other virus extract. This experiment was replicated on just eight leaves,
and the number of lesions on each half leaf was recorded. We will illustrate later if the small
sample size is enough to deduce some inference. ◽

1.5 http://cran.r-project.org

We mentioned CRAN in Section 2. The worldwide web link of CRAN is the title of this
Section. A lot of information about R and many other related utilities of the software are
available from this web source. The “R FAQ” web page contains a lot of common queries and
helps the beginner to fix many of the initial problems.

http://cran.r-project.org
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“Manuals”, “FAQs”, and “Contributed” links on this website contains a wealth of
information on documentation of the software. A journal called “The R Journal” is available
at http://journal.r-project.org/, with the founders on the editorial board, who will help to keep
track of developments in R.

1.5.1 http:// r-project.org

This is the main website of the R software. The reader can keep track of the continuous stream
of textbooks, monographs, etc., which use R as the computational vehicle and have been pub-
lished in the recent past by checking on the link “Books”. It needs to be mentioned here that
this list is not comprehensive and there are many more books available in print.

1.5.2 http://www.cran.r-project.org/web/views/

The interest of a user may be in a particular area of Statistics. This web-link lists major areas
of the subject and further directions to detailed available methods for such areas. Some of
the major areas include Bayesian Inference, Probability Distributions, Design of Experiments,
Machine Learning, Multivariate Statistics, Robust Statistical Methods, Spatial Analysis, Sur-
vival Analysis, and Time Series Analysis. Under each of the related links, we can find infor-
mation about the problems which have been addressed in the R software. Information is also
available on which additional package contains the related functions, etc.

As an example, we explain the link http://www.cran.r-project.org/web/views/Multivariate
.html, which details the R package’s availability for the broader area of multivariate statistics.
This unit is maintained by Prof Paul Hewson. The main areas and methods in this page have
been classified as (i) Visualizing Multivariate Data, (ii) Hypothesis Testing, (iii) Multivariate
Distributions, (iv) Linear Models, (v) Projection Methods, (vi) Principal Coordinates/Scaling
Methods, (vii) Unsupervised Classification, (viii) Supervised Classification and Discriminant
Analysis, (ix) Correspondence Analysis, (x) Forward Search, (xi) Missing Data, (xii) Latent
Variable Approaches, (xiii) Modeling Non-Gaussian Data, (xiv) Matrix Manipulations, and
(xv) Miscellaneous utilities. Under each of the headings there will be a mention of the associ-
ated packages which will help in related computations and implementations.

In general, all the related web-pages end with a list of related “CRAN Packages” and “Re-
lated Links”. Similarly, the url http://www.cran.r-project.org/web/packages/ lists all add-on
packages available for download. As of April 10, 2015, the total number of packages was
6505.

1.5.3 Is subscribing to R-Mailing List useful?

Samuel Johnson long ago declared that “There are two types of knowledge. One is knowing
a thing. The other is knowing where to find it.” Subscribing to this list is the knowledge of
the second type. We next explain how to join this club. As a first step, copy and paste the
link www.r-project.org/mail.html into your web-browser. Next, find “web interface” and click
on it, following which you will reach https://stat.ethz.ch/mailman/listinfo/r-announce. On this
web-page, go to the section “Subscribing to R-announce”. We believe that once you check the

http://journal.r-project.org/
http://r-project.org
http://www.cran.r-project.org/web/views/
http://www.cran.r-project.org/web/views/Multivariate.html
http://www.cran.r-project.org/web/views/Multivariate.html
http://www.cran.r-project.org/web/packages/
www.r-project.org/mail.html
https://stat.ethz.ch/mailman/listinfo/r-announce


Trim Size: 170mm x 244mm Tattar c01.tex V3 - 02/10/2016 10:20 A.M. Page 11�

� �

�

Why R? 11

URL http://www.r-project.org/contributors.html, you will not have any doubts regarding why
we are pursuing you to join it.

1.6 R and its Interface with other Software

R has many strengths of its own, and is also true about many other software packages, statistics
software or otherwise. However, it does happen that despite the best efforts and the intent to be
as complete as possible, software packages have their limitations. The great Dennis Ritchie,
for instance, had simply forgotten to include the power function when he developed one of
the best languages in C. The reader should appreciate that if a software does not have some
features, it is not necessarily a drawback. The missing features of a software may be available
in some other package or it may not be as important as first perceived by the user. It then
becomes useful if we have bridges across to the culturally different islands, with each of them
rich in its own sense. Such bridges may be called interfaces in the software industry.

The interfaces also help the user in many other ways. A Bayesian who is well versed in the
Bayesian Inference Using Gibbs Samples (BUGS) software may be interested in comparing
some of the Bayesian models with their counterparts in the frequentist school. The BUGS
software may not include many of the frequentist methods. However, if there is a mechanism
to call, and frequentist methods of software such as R, SAS, SYSTAT, etc. are required, a great
convenience is available for the user.

The bridge called interface is also useful in a different way. A statistician may have been
working with BUGS software for many years, and now needs to use R. In such a scenario, if
she requires some functions of BUGS, and if those codes can be called up from R and then fed
into BUGS to get the desired result, it helps in a long way for the user. For example, a BUGS
user can install the R2WinBUGS additional package in R and continue to enjoy the derived
functions of BUGS. We will say more about such additional packages in the next chapter.

1.7 help and/or ?

Help is indispensable! Let us straightaway get started with the help in R. Suppose we need
details of the t.test function. A simple way out is to enter help(t.test) at the R ter-
minal. This will open up a new page in the R Windows version. The same command when
executed in UNIX systems leads to a different screen. The Windows user can simply close the
new screen using either “Alt+F4” or by using the mouse. If such a process is replicated in the
UNIX system, the entire R session is closed without any saving of the current R session. This
is because the screen is opened in the same window. The UNIX user can return to the terminal
by pressing the letter q at any time. The R code ?t.test is another way of obtaining the
help on t.test.

Help on a topic, say t.test, can be obtained using help(t.test) or ?t.test

Programming skills and the ability to solve mathematical problems share a common feature.
If it is not practiced for even a short period of time, as little as two months after years of
experience, it undoes a lot of the razor sharpness and a lot of the program syntax is then for-
gotten. It may be likely that the expert in Survival Analysis has forgotten that the call function

http://www.r-project.org/contributors.html
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of the famous Cox Proportional Hazards model is coxph and not coxprop. A course of
retrieval is certainly referred to in the related R books. Another way is using the help feature
in a different manner ??cox.

??, equivalently “help.search”, helps you when ? fails

A search can also be made according to some keyword function, and we can also restrict it
to a certain package in light of appropriate information.

help.search(keyword = “character”, package = “base”)

In the rest of this book, whenever help files give more information, we provide the related help
at the right-hand end of the section in a box. For instance, the help page for the beta function
is in the main help page Special and inquiring for ?beta actually loads the Special
help file.

1.8 R Books

Thanks to the user-friendliness of the software, many books are available with an “R-specific”
focus. The purpose of this section is to indicate how R has been a useful software in various
facets of the subject, although it will not be comprehensive. The first manual that deserves a
mention is the notes of Venables and Smith (2014), the first version of which probably came
out in 1997. Such is the importance of these notes that it comes with the R software and may be
easily assessed. It is very readable and lucid in flow and covers many core R topics. Dalgaard
(2002–9) is probably the first exclusive book on the software and it helps the reader to gain
a firm footing and confidence in using the software. Crawley’s (2007–13) book on R covers
many topics and will be very useful on the deck of an R programmer. Purohit, et al. (2008)
is a good introductory book and explains the preliminary applications quite well. Zuur, et al.
(2009) is another nice book to start learning about the R software.

Dobrow (2013) and Horgan (2008) provide an exposition of probability with the software.
Iacus (2008) deals with solving a certain class of “Stochastic Differential Equations” through
the R software. Ugarte, et al. (2008) provides a comprehensive treatment of essential math-
ematical statistics and inference. Albert and Rizzo (2012) is another useful book to familiarize
with R and Statistics. A useful reference for Bayesian analysis can be found in Albert (2007–9).
It is important to note here that though Nolan and Speed (2000) have not written in the R-text
book mold, they have developed very many R programs.

R produces some of the excellent graphics and the related development can be seen in Sarkar
(2008), and Murrel (2006).

Freely circulated notes on Regression and ANOVA using R is due to Faraway (2002). Far-
away has promptly followed these sets of notes with two books, Faraway (2006) and Faraway
(2006). Nonlinear statistical model building in R is illustrated in Ritz and Streibig (2008).
Maindonald and Braun (2010) is an early exposition to data analysis methods and graphics.
Multivariate data analysis details can be found in Everitt and Hothorn (2011). Categorical data
analysis in-depth treatment is found in Bilder and Loughin (2015).

The goal of this section is not to introduce all R books, but to give a glimpse into the various
areas in which it can be aptly used. Appropriate references will be found in later chapters.
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1.9 A Road Map

The preliminary R introduction is the content of Chapter 2. In this chapter we ensure that the
user can do many of the basic and essential computations in R. Simple algebra, trigonometry,
reading data in various formats, and other fundamentals are introduced in an incremental phase.
Chapter 3 contains enhanced details on manipulation of data, as the data source may not be in
a ready-to-use format. Its content will also be very useful to practitioners.

Chapter 4 on Exploratory Data Analysis will be the first statistical chapter. This chapter
serves as an early level of analyses on the dataset and provides a rich insight. As the natural
intent is to obtain an initial insight into the dataset, a lot of graphical techniques are introduced
here. It may be noted that most of the graphical methods are suitable for continuous variables
and we have introduced a slew of other graphical methods for discrete data in Chapter 16 on
Categorical Data Analysis. The first four chapters forms Part I of this book.

The purpose of this book is to complement data analysis with a sound footing in the
theoretical aspects of the subject. To proceed in this direction, we begin with Probability
Theory in Chapter 5. A clear discussion of probability theory is attempted, which begins with
set theory and concludes with the important Central Limit Theorem. We have enriched this
chapter with a clear discussion of the challenging problems in probability, combinatorics,
inequalities, and limit theorems. It may be noted that many of the problems and discussions
have been demonstrated with figures and R programs.

Probability models and their corresponding distributions are discussed in Chapter 6.
Sections 2 to 4 deal with univariate and multivariate probability distributions and also
consider discrete and continuous variants. Sampling Distributions forms a bridge between
probability and statistical inference. Bayesian sampling distributions are also dealt with in
this chapter and we are now prepared for inference.

The Estimation, Testing Hypotheses, and Confidence Intervals trilogy is integrated with
computations and programs in Chapter 7. The concept of families of distribution is impor-
tant and the chapter begins with this and explores the role of loss functions as a measure
which can be used to access the accuracy of the proposed estimators. The role of sufficient
statistics and related topics are discussed, followed by the importance of the likelihood func-
tion and construction of the maximum likelihood estimators. The EM algorithm is developed
in a step-by-step manner and we believe that our coverage of the EM algorithm is one of
the pedagogical ones available in the books. Testing statistical hypotheses is comprehensively
developed in Sections 7.9–7.15. The development begins with Type I and II errors of statistical
tests and slowly builds up to multiple comparison tests.

Distribution-free statistical inference is carried out in Chapter 8 on Nonparametric Infer-
ence. The empirical distribution function plays a central role in non-parametrics and is also
useful for estimation of statistical functions. Jackknife and bootstrap methods are essentially
non-parametric techniques which have gained a lot of traction since the 1980s. Smoothing
through the use of kernels is also dealt with, while popular and important non-parametric tests
are used for hypotheses problems to conclude the chapter.

The problems of the frequentist school are parallelly conveyed in Chapter 9 titled Bayesian
Inference. This chapter begins with the idea of Bayesian probabilities and demonstrates how
the choice of an appropriate prior is critically important. The posterior distribution gives a uni-
fied answer in the Bayesian paradigm for all three problems of estimation, confidence intervals
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(known as credible intervals in the Bayesian domain), and hypotheses testing. Examples have
been presented for each set of the problems.

Bayesian theory has seen enormous growth in its applications to various fields. A reason
for this is that the (complex) posterior distributions were difficult to evaluate before the
unprecedented growth in computational power of modern machines. With the advent of
modern computational machines, a phenomenal growth has been witnessed in the Bayesian
paradigm thanks to the Monte Carlo/Markov Chain methods inclusive of two powerful
techniques known as the Metropolis-Hastings algorithm and Gibbs sampler. Part III starts by
developing the required underlying theory of Markov Chains in Chapter 10. The Monte Carlo
aspects are then treated, developed, and applied in Chapter 11.

Part IV titled “Linear Models” is the lengthiest part of the book. Linear Regression Models
begins with a simple linear model. The multiple regression model, diagnostics, and model
selection, among other topics, are detailed with examples, figures, and programs. Experimental
Designs have found many applications in agricultural studies and industry too. Chapter 13
discusses the more popular designs, such as completely randomized design, blocked designs,
and factorial designs.

Multivariate Statistical Analysis is split into two chapters, 14 and 15. The first of these two
chapters forms the core aspects of multivariate analysis. Classification, Canonical Correla-
tions, Principal Component Analysis, and Factor Analysis concludes Chapter 15.

If the regressand is a discrete variable, it requires special handling and we describe graphical
methods and preliminary methods in Chapter 16 titled Categorical Data Analysis. The chapter
begins with exploratory techniques useful for dealing with categorical data, and then takes the
necessary route to chi-square goodness-of-fit tests. The regression problem for discrete data
is handled in Chapter 17. The proceedings of statistical modeling in the final chapter parallels
Chapter 12 and further considers probit and Poisson regression models.
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The R Basics

Package(s): gdata, foreign, MASS, e1071

2.1 Introduction

A better way of becoming familiar with a software is to start with simple and useful programs.
In this chapter, we aim to make the reader feel at home with the R software. The reader often
struggles with the syntax of a software, and it is essentially this shortcoming that the reader
will overcome after going through the later sections. It should always be remembered that it
is not just the beginner, even the experts make mistakes when it comes to the structure of the
syntax, and this is probably the reason why the “Backspace” key on the keyboard is always
there, apart from many other keys round about for correcting previously submitted commands
and/or programs.

Section 2.2 begins with the R preliminaries. The main topics considered here discuss and
illustrate using R for finding absolute values, remainders, rounding numbers to specified
number of digits, basic arithmetic, etc. Trigonometric functions and complex numbers are
considered too, and the computations of factors and combinatorics is dealt with in this section.
Useful R functions are then dealt with in Section 2.3. Summary of R objects, deliberating
on the type of the R class, dealing with missing observations, and basic control options
for writing detailed R programs have been addressed here. The importance of vectors and
matrices are almost all prevalent in data analysis, and forms the major content of Section 2.4.
Importing data from external files is vital for any statistical software. Section 2.5 helps the
user import data from a variety of spreadsheets. As we delve into R programming, we will
have to work with the R packages sooner or later. A brief discussion of installing the packages
is revealed in Section 2.6. Running R codes will leave us with many objects which may be
used again in a later session, and frequently we will stop a working session with the intent of
returning to it at a later point in time. Thus, R session management is crucial and Section 2.7
helps in this aspect of programming.

A Course in Statistics with R, First Edition. Prabhanjan Narayanachar Tattar, Suresh Ramaiah and B. G. Manjunath.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/tattar/statistics
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2.2 Simple Arithmetics and a Little Beyond

Dalgaard (2008), Purohit, et al. (2008), and others, have often introduced R as a out grown
calculator. In this section we will focus on the functionality of R as a calculator.

We will begin with simple addition, multiplication, and power computations. The
codes/programs in R are read from left to right, and executed in that order.

> 57 + 89
[1] 146
> 45 - 87
[1] -42
> 60 * 3
[1] 180
> 7/18
[1] 0.3888889
> 4 ̂ 4
[1] 256

It is implicitly assumed (and implemented too) that any reliable computing software must
have included the brackets, orders, division, multiplication, addition, and subtraction, BOD-
MAS rule. It means that if the user executes 4 × 33, the answer is 108, that is, order is first
executed and then multiplication, and not 1728, multiplication followed by order. We verify
the same next.

> 4*3 ̂ 3
[1] 108

?Arith or ?S4groupGeneric, ?Syntax

2.2.1 Absolute Values, Remainders, etc.

The absolute value of elements or vectors can be found using the abs command. For example:

> abs(-4:3)
[1] 4 3 2 1 0 1 2 3

Here the argument -4:3 creates a sequence of numerical integers { − 4,−3, · · · , 0, 1, 2, 3}
with the help of the colon : operator. Remainders can be computed using the R operator %%.

> (-4:3) %% 2
[1] 0 1 0 1 0 1 0 1
> (-4:3) %% 1
[1] 0 0 0 0 0 0 0 0
> (-4:3) %% 3
[1] 2 0 1 2 0 1 2 0

The integer divisor between two numbers may be calculated using the %/% operation.
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> (-4:3) %/% 3
[1] -2 -1 -1 -1 0 0 0 1

Furthermore, we also verify the following:

> (-4:3) %% 3 + 3*((-4:3)%/%3) # Comment on what is being verified
+ here?
[1] -4 -3 -2 -1 0 1 2 3

A Word of Caution. We would like to bring to the reader’s notice that though the operation %/%
is integer division, %*% is not in any way related to it. In fact, this %*% operation is useful for
obtaining the cross-products of two matrices, which will be introduced later in this chapter.

We conclude this small section with the sign operator, which tells whether an element is
positive, negative, or neither.

> sign(-4:3)
[1] -1 -1 -1 -1 0 1 1 1

?base

2.2.2 round, floor, etc.

The number of digits to which R gives answers is set at seven digits by default. There are
multiple ways to obtain our answers in the number of digits that we actually need. For instance,
if we require only two digits accuracy for 7/18, we can use the following:

> round(7/18,2)
[1] 0.39

The function roundworks on a particular code under execution. If we require that each output
to be fixed at two digits, say, consider this line of code.

> 7/118
[1] 0.059322
> options(digits=2)
> 7/118
[1] 0.059

It is often of interest to obtain the greatest integer less than the given number, or the least
integer greater than the given number. Such tasks can be handled by the functions floor and
ceiling respectively. For instance:

> floor(0.39)
[1] 0
> ceiling(0.39)
[1] 1
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The reader is asked to explore more details about similar functions such as signif and
trunc.

?round

2.2.3 Summary Functions

The Summary functions include all, any, sum, prod, min, max, and range.
The last five of these is straightforward for the user to apply to their problems. This is illustrated
by the following.

> sum(1:3)
[1] 6
> prod(c(3,5,7))
[1] 105
> min(c(1,6,-14,-154,0))
[1] -154
> max(c(1,6,-14,-154,0))
[1] 6
> range(c(1,6,-14,-154,0))
[1] -154 6

We are using the function c for the first time, so it needs an explanation. It is a generic function
and almost omnipresent in any detailed R program. The reason being that it can combine
various types of R objects, such as vector and list, into a single object. This function also
helps us to create vectors more generic than the colon : operator.

Yes, sum, prod, min, max, and range functions when applied on an array respec-
tively perform summation, product, minimum, maximum, and range on that array. Now we
are left to understand the R functions any and all.

The any function checks if it is true that the array under consideration meets certain criteria.
As an example, suppose we need to know if there are some elements of (1, 6,−14,−154, 0)
less than 0.

> any(c(1,6,-14,-154,0)<0)
[1] TRUE
> which(c(1,6,-14,-154,0)<0)
[1] 3 4
> all(c(1,6,-14,-154,0)<0) # all checks if criteria is met by
+ each element
[1] FALSE

In R, the function summary is all too prevalent and it is very distinct from the Summary that
we are discussing here.

?Summary

2.2.4 Trigonometric Functions

Trigonometric functions are very useful tools in statistical analysis of data. It is worth men-
tioning the emerging areas where this is frequently used. Wavelet analysis, functional data
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analysis, and time series spectral analysis are a few examples. Such a discussion is however
beyond the scope of this current book. We will contain ourself with a very elementary session.
The value of 𝜋 is stored as one of the constants in R.

> sin(pi/2)
[1] 1
> tan(pi/4)
[1] 1
> cos(pi)
[1] -1

Arc-cosine, arc-sine, and arc-tangent functions are respectively obtained using acos,
asin, and atan. Also, the hyperbolic trigonometric functions are available in cosh,
sinh, tanh, acosh, asinh, and atanh.

?Trig, ?Hyperbolic

2.2.5 Complex Numbers*1

Complex numbers can be handled easily in R. Its use is straightforward and the details are
obtained by keying in ?complex or ?Complex at the terminal. As the arithmetic related to
complex numbers is a simple task, we will look at an interesting case where the functions of
complex numbers arise naturally.

The characteristic function, abbreviated as cf, of a random variable is defined as 𝜑X(t) =
E(eitX). For the sake of simplicity, let us begin with the uniform random variable, more details
of which are available in Chapters 5 and 6, in the interval [a, b]. It can then be proved that the
characteristic function of the uniform random variable is

𝜑X(t) =
eitb − eita

it(b − a)
. (2.1)

To help the student to become familiarized with the characteristic function, Chung (2001),
Chapter 6, provides a rigorous introduction to the theory of the characteristic function. Let us
obtain a plot of the characteristic function of a uniform distribution over the interval [–1,1].
Here, a = −1, b = 1. An R program is provided in the following, which gives the required plot.

> # Plot of Characteristic Function of a U(-1,1) Random Variable
> a <- -1; b <- 1
> t <- seq(-20,20,.1)
> chu <- (exp(1i*t*b)-exp(1i*t*a))/(1i*t*(b-a))
> plot(t,chu,"l",ylab=(expression(varphi(t))),main="Characteristic
+ Function of Uniform Distribution [-1, 1]")

Any line which begins with# is a comment line, or the code following# in a line, and is ignored
by R when the program is run. A good practice is to write comments in a program wherever
clarity is required. It may refer to a comment, a problem specification, etc. Since the goal is to
obtain the plot of the cf over the interval [–1,1], we have created two objects with a <- -1

1Asterisked sections/subsections may be omitted on first reading
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and b <- 1. The semi-colon ; ensures that the a and b are created on execution of two sep-
arate lines. Next, we create a sequence of points for t through t <- seq(-20,20,0.1).
That is, the seq function creates a vector which ranges from –20 to 20 with increments of 0.1,
and hence t consists of the sequence {−20.0, −19.9, −19.8,… , −0.2, −0.1, 0, 0.1, 0.2,… ,
19.9, 20.0}. Now, the format in the line chu <- ()/() mimics the expression 2.1 in the
program. Note that t is a vector, whereas a and b have a single element. Since we have used
1i in the expression for the chu object, chu is a complex object.

Next, we obtain the necessary plot by plot(t,chu,"l",...), which plots the values
of chu against the sequence t and then joins the consecutive pair of points with a straight line.
The plot function will be dealt with in more detail in Chapter 4. The argument main= is
used to specify the title for the graph. The code snippet expression(varphi(t)) creates
a mathematical expression for ylab. Part A of Figure 2.1 gives the plot of the characteristic
function of the uniform distribution.

The characteristics function of a normal random variable N(𝜇, 𝜎2) and Poisson random vari-
able P(𝜆), see Bhat (2012), are respectively given by

𝜑X(t) = eit𝜇− 1
2
𝜎2t2

, and (2.2)

𝜑X(t) = e𝜆(e
it−1). (2.3)

−20 −10 0 10 20

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

A: Characteristic function of
uniform distribution [−1, 1]

t

ϕ
(t

)

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

B: Characteristic function of
standard normal distribution

t

ϕ
(t

)

Figure 2.1 Characteristic Function of Uniform and Normal Distributions
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We will obtain a plot for the cfs 2.2 and 2.3 in the next program.

> # Plot of Characteristic Function of a N(0,1) Variable
> mu <- 0; sigma <- 1
> t <- seq(-5,5,0.1)
> chsnv <- exp(1i*t*mu-.5*(sigma ̂ 2)*(t ̂ 2))
> plot(t,chsnv,"l",ylab=(expression(varphi(t))),main="Characteristic
+ Function of Standard Normal Distribution")
> # Plot of Characteristic Function of Poisson Random Variable
> lambda <- 6
> t <- seq(0,20,.1)
> chpois <- exp(lambda*(exp(1i*t)-1))
> plot(t,chpois,"l") # Warning omitted and left as exercise
+ # for the reader to interpret

The values of 𝜇 = 0 and 𝜎2 = 1 are specified through mu <- 0 and sigma <- 1. The t
sequence is taken from –5 to 5 in t <- seq(-5,5,0.1). The complex vector chsnv
obtains the value of the cf for the t vector. The plot function works similarly to the cf for
uniform distribution. The cf plot for Poisson distribution obviously has a problem and we leave
it to the reader to figure it out. The plot of the cf of the standard normal distribution is given
in the Part B of Figure 2.1.

?Complex or ?groupGeneric

2.2.6 Special Mathematical Functions

Here, by special functions, we mean certain mathematical entities that are difficult to calculate
as the series/range increases. Factorials do have an in-built function in factorial. A few
examples are in order.

> factorial(3)
[1] 6
> factorial(3000) # any guess?
[1] Inf
Warning message:
In factorial(3000) : value out of range in ’gammafn’
> lfactorial(3000) #lfactorial helps out
[1] 21024.02

The value of 21024.02 needs interpretation. Since the factorial is the product of positive
integers to 1, lfactorial is the sum of log of the integers to 2. log(1) is zero. Thus, we
check lfactorial(3000) as

> sum(log(3000:2))
[1] 21024.02
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Let us verify the accuracy of the function lfactorial using the Stirling’s approximation,
see Feller (1968), page 52. The Stirling’s approximation is useful to calculate the factorials
of large numbers and is given by n! ≃

√
2𝜋nn+1∕2e−n. We write a small function to obtain

the Stirling’s approximation. The function in R provides the base mechanism for defining
new functions. It is a powerful technique and will be used freely throughout the course of this
book.

> stirling <- function(n) {sqrt(2*pi)*n ̂ {n+.5}*exp(-n)}
> stirling(100)
[1] 9.324848e+157
> factorial(100)/stirling(100)
[1] 1.000834

Consider the classical problem of selecting r-out-of-n objects. If we have to select k objects
with replacement, that is the first drawn object is replaced in the pack before the second object
is drawn, the number of ways of accomplishing the task is

(
n
k

)
. If n = 10 and r = 4, the

choose function gives us the desired answer through the arguments n and k. That is,
(

n
k

)
is

calculated in R with choose(n,k).

> choose(10,4)
[1] 210
> choose(10,10) # just verifying
[1] 1
> choose(100,10) # how about large n?
[1] 1.731031e+13

The selection problem without replacement does not have an explicit function though. We can
help ourselves! We can select r out of n objects in nPr number of distinct ways. It is known that
nPr =

n!
(n−r)! . A further simplification gives us nPr = n × (n − 1) · · · × (n − r + 1). Fortunately,

we do not have to write extensive codes. It is fairly simple with the prod function, which
multiplies all the elements specified in its argument ().

> prod(10:(10-4+1)) # permutations of 10 p 4
[1] 5040
> prod(100:(100-10+1)) #permutations of 100 p 10
[1] 6.281565e+19

?Special

2.3 Some Basic R Functions

In this section we introduce important classes of functions, which are essential from a statistical
perspective.
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2.3.1 Summary Statistics

Consider the Youden and Beale dataset, introduced earlier as AD-9. Here, we have two
preparations of virus extracts and the data is available on the number of lesions produced by
each extract on the eight leaves of tobacco plants. We read this data and assigned it to a new
object yb. The summary statistics for the two extracts are as follows:

> data(yb)
> summary(yb)
Preparation_1 Preparation_2
Min. : 7.00 Min. : 5.00
1st Qu.: 8.75 1st Qu.: 6.75
Median :13.50 Median :10.50
Mean :15.00 Mean :11.00
3rd Qu.:18.50 3rd Qu.:14.75
Max. :31.00 Max. :18.00

The summary considers each variable of the yb data frame and appropriately returns the sum-
mary for that type of variable. What does this mean? The two variables Preparation_1
and Preparation_2 are of the integer class. In fact, we need these two variables to be
of the numeric class. For each class of objects, the summary function invokes particular
methods, check methods from the utils package, as defined for an S3 generic function.
We will not delve more into this technical aspect, except that we appreciate that R has one
summary for a numeric object and another for a character object. For an integer object,
the summary function returns the minimum, first quartile, median, mean, third quartile, and
maximum. Minimum, mean, median, and maximum are fairly understood and recalled eas-
ily. Quartiles are a set of (three) numbers, which divide the range of the variables into four
equal parts, in the sense that each part will have 25% of the observations. The range between
minimum and first quartile will contain the smallest 25% of the observations for that vari-
able, the first and second quartile (median) will have the next, and so on. The importance
of these summaries will be realized in Chapter 4. For the yb data frame, it may be seen
from the mean and median summaries that the Preparation_2 has a lesser number of
lesions than Preparation_1. The first and third quantiles can also be obtained by using
the codesquantile(x,.25) andquantile(x,.75) respectively. The percentiles, nine
percentiles which divide the data into ten equal regions, can be obtained using the function
quantile:

> quantile(yb$Preparation_1,seq(0,1,.1)) # here seq gives
+ 0, .1, .2, ...,1
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

7.0 7.7 8.4 9.1 9.8 13.5 17.2 17.9 19.2 23.3 31.0
> quantile(yb$Preparation_2,seq(0,1,.1))
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

5.0 5.7 6.4 7.3 9.4 10.5 11.6 13.7 15.8 17.3 18.0
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The code lapply(yb,summary) also gives us the same values. The lapply will be con-
sidered in detail later in this chapter.

Tukey’s fivenum gives another set of important summaries, which are detailed in
Chapter 4. The fivenum summary, containing minimum, lower hinge, median, upper hinge,
and maximum, see Chapter 4 for more details on hinges, for the two extracts of the virus
preparation are as below:

> fivenum(yb$Preparation_1)
[1] 7.0 8.5 13.5 19.0 31.0
> fivenum(yb$Preparation_2)
[1] 5.0 6.5 10.5 15.5 18.0

We now consider some measures of dispersion. Standard deviation and variance of a sample
are respectively obtained by the functions sd and var. Range is obtained using the range
function.

> sd(yb$Preparation_1); sd(yb$Preparation_2)
[1] 8.176622
[1] 4.956958
> var(yb$Preparation_1); var(yb$Preparation_2)
[1] 66.85714
[1] 24.57143
> range(yb$Preparation_1); range(yb$Preparation_2)
[1] 7 31
[1] 5 18

In general, the median is more robust than the mean. A corresponding measure of dispersion
is the median absolute deviation, abbreviated as MAD. The R function mad returns MAD.
Another robust measure of dispersion is the inter quartile range, abbreviated as IQR, and the
function available for obtaining it in R is IQR. These measures for the variables of the Youden
and Beale data yb are thus computed in the next program.

> mad(yb$Preparation_1); mad(yb$Preparation_2)
[1] 7.413
[1] 5.9304
> IQR(yb$Preparation_1); IQR(yb$Preparation_2)
[1] 9.75
[1] 8
> #Too many functions. Want my own code!
> quantile(yb$Preparation_1,.75)-quantile(yb$Preparation_1,.25)
75%
9.75
> quantile(yb$Preparation_2,.75)-quantile(yb$Preparation_2,.25)
75%
8

The skewness and kurtosis are also very important summaries. Functions for these summaries
are not available in the base package. The functions skewcoeff and kurtcoeff from
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the ACSWR package will be used to obtain these summaries. The functions skewness and
kurtosis from the e1071 package are more generic functions, see Section 2.6, for
installing and using an R package. We obtain the summaries for the Youden and Beale
experiment data below.

> skewcoeff(yb$Preparation_1); kurtcoeff(yb$Preparation_1)
[1] 0.8548652
[1] 2.727591
> skewcoeff(yb$Preparation_2); kurtcoeff(yb$Preparation_2)
[1] 0.2256965
[1] 1.6106

2.3.2 is, as, is.na, etc.

The function is derives its nomenclature from the common usage of that word: Is it raining?
We can use it to find if the class of a given object is numeric, logical, character, vector, matrix,
function, etc., by respectively extending the is function to is.numeric, is.logical,
is.character, is.vector, is.matrix, is.function, etc. The is function may
be used for any kind of well-defined R class.

> is(5); is.numeric(5)
[1] "numeric" "vector"
[1] TRUE
> my_undefined_function <- function(n){}
> is.function(my_undefined_function)
[1] TRUE
> is.logical(T) # T or F can be used as abb of TRUE or FALSE
[1] TRUE
> is(pi)
[1] "numeric" "vector"

If we want to change the class of an R object, say from numeric to character, we can do that
by using the function as. A vector object, say x <- c(1,4,2,6), is to be converted as a
character vector.

> x <- c(1,4,2,6)
> xc <- as.character(x)
> xc; as.numeric(xc)
[1] "1" "4" "2" "6"
[1] 1 4 2 6
> x;xc
[1] 1 4 2 6
[1] "1" "4" "2" "6"

Missing data is very common in the real world. Analyses in which all the observations/
individuals having any missing elements are removed is called complete case analysis and
known to be very inefficient. Of course, it is a far cry from getting involved with the scientific
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analysis of the missing data. We will focus on how it is indicated in R that an element of an
object is missing.

A missing element in an object is denoted by NA as an abbreviation for “Not Available”.
Suppose that the fifth value of a vector of five elements is not available. We can include this
information in an R object as follows:

> (x <- c(1,2,3,4,NA))
[1] 1 2 3 4 NA
> is.na(x) # Are elements of x missing?
[1] FALSE FALSE FALSE FALSE TRUE
> xc <- na.omit(x) #xc for x complete
> xc
[1] 1 2 3 4
attr(,"na.action")
[1] 5
attr(,"class")
[1] "omit"
> which(is.na(x)) # Useful for advanced programming
[1] 5

We would like to know the summary of the x object sans its missing elements. We will see
that there is some difference between operating on x and xc.

> summary(xc)
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.00 1.75 2.50 2.50 3.25 4.00

> summary(x,na.rm=TRUE)
Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s
1.00 1.75 2.50 2.50 3.25 4.00 1.00

?methods, ?as, ?NA, ?remove

2.3.3 factors, levels, etc.

The function gl generates factor levels, and this will be very useful for analysis of Design
of Experiments. The arguments needed in this function include the number of observations
n, and the number of replications, say k. A value-added flexibility of this function includes
labeling the factors by certain names as desired by the user. The following examples show the
usefulness of this function.

> (exp_levels <- gl(3,2)); is.factor(exp_levels)
[1] 1 1 2 2 3 3
Levels: 1 2 3
[1] TRUE
> exp_levels <- factor(exp_levels,labels=
+ c("fail","average","excellent"))
> exp_levels
[1] fail fail average average excellent excellent
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Levels: fail average excellent
> levels(exp_levels)
> # Verifying and Learning about "levels" function
[1] "fail" "average" "excellent"
> levels(exp_levels) <- c("f","a","e") # Changing the labels
> exp_levels; nlevels(exp_levels)
[1] f f a a e e
Levels: f a e
[1] 3

The factors can be arranged as ordinal variables too. The approach to convert nominal factor
variables to ordinal factor variables is given next.

> exp_levels.ord <- ordered(exp_levels,levels=c("f","a","e"))
> exp_levels; exp_levels.ord
[1] f f a a e e
Levels: f a e
[1] f f a a e e
Levels: f < a < e
> is.ordered(exp_levels); is.ordered(exp_levels.ord)
[1] FALSE
[1] TRUE

The ordered factors may sometimes need re-ordering or we may have certain levels which
have no elements corresponding to them. In such cases we need to modify the levels of the
variable which may be accomplished using the relevel and droplevels functions.

?factor, ?relevel,?droplevels

2.3.4 Control Programming

Loops form an integral part of many programming languages. if, ifelse, for, while, etc.
are some of the basic control flow constructs of various languages. The control functions add
a lot of value to the programs. However, and unfortunately, loops are a bane in R as they tend
to be executed very slowly and thus need to be used very judiciously. We will start with a few
examples of this family and later switch, not the control function switch, but to a powerful
alternative of the apply family.

The syntax for the if and if-else control functions is as in the popular software
languages. Here, the syntax for the two controls are respectively if(cond) expr and
if(cond) cons.expr else alt.expr. That is, if the condition or the antecedent
is met, which is a logical criteria, the expression is evaluated for the if control, and if the
criteria is not met, the alternative expression is evaluated for the if-else control. We begin
with simple examples.

> if(5 > 3) "I Win"
[1] "I Win"
> if(5 < 3) "I Win" else "You Lose"
[1] "You Lose"
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Occasionally, we may need a program which needs to be executed in a manner until a certain
criteria is met. Suppose that the value of the variables x and y are 100 and 10 respectively.
Here, x/y = 10, and we are prepared to decrease x values and increase y values by one unit
each time till the ration x/y is greater than 5. The following program helps us reach this goal
with the help of the while control.

> x <- 100; y <- 10
> while(x/y>=5) {x<-x-1; y<-y+1}
> x;y
[1] 91
[1] 19

We can use the while control to find the number in the Fibonacci series which is less than
10 000:

> fs <- c() # The Fibonacci Series
> a <- 0; b <- 1
> while(b<10000){
+ fs <- c(fs,b)
+ temp <- b
+ b <- a+b
+ a <- temp}
> print(fs)
[1] 1 1 2 3 5 8 13 21 34
[10] 55 89 144 233 377 610
[16] 987 1597 2584 4181 6765

Since the test criteria is verified at the top, we may like to put the test criteria at the end of the
program, see Dalgaard (2008), page 45. This can be achieved by using a variation of the while
loop, namely, repeat.

> x <- 100; y <- 10
> repeat{ x<-x-1; y<-y+1;
+ if(x/y<=5) break
+ }
> x;y
[1] 91
[1] 19

Oh! With the above program we have already introduced the important control parameter
break. We will now introduce the usefulfor control function. We again undertake the simple
task of computing the sum of the first 100 positive integers.

> x <- 1:100; sx <- 0
> for(i in 1:100) sx <- sx+x[i]
> sx
[1] 5050
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At the start of this section, we commented that R is very slow in loops. Let us prove it with a
very simple example.

> x <- 1:10000; sx <- 0
> system.time(for(i in 1:10000) sx <- sx+x[i])[3]
elapsed
0.074

> system.time(sum(x))[3]
elapsed

0

We have used the R function system.time to find the CPU time used for executing the pro-
gram. This function may be used to find the CPU time of any R program and all that is required
for finding it is to specify the entire program as an argument to the system.time function.
This function returns an R object of class proc_time, whose third element elapsed is of
interest to us and hence we have used [3] to find it.

Note that using a loop has (unnecessarily) increased the time of the program. We would
advise the reader, as far as possible, to avoid using a loop and instead use other appropriate
functions whenever they are available. Of course, it needs to be mentioned that the sum of the
first 10 000 positive integers is 50 005 000.

?Control, ?apply

2.3.5 Other Useful Functions

In this subsection we introduce the reader to a selection of functions which we believe are
important for statistical computing. This list is by no means exhaustive and as the reader tran-
scends towards higher levels of computation, she may feel the contents here are unnecessary.
sort, rank, order. It happens frequently that we need to arrange a sequence in either increasing
or decreasing order of magnitude. The sort function arranges a sequence of numeric or com-
plex numbers in a monotone fashion. If the position of the numbers in a monotone sequence
is required, we can use the rank function. Another useful function is order.

> sort(c(12,4,-8,54,23,-51))
[1] -51 -8 4 12 23 54
> sort(c(12,4,-8,54,23,-51),decreasing=TRUE)
[1] 54 23 12 4 -8 -51
> rank(c(12,4,-8,54,23,-51))
[1] 4 3 2 6 5 1
> order(c(12,4,-8,54,23,-51))
[1] 6 3 2 1 5 4
> order(c(12,4,-8,54,23,-51),decreasing=TRUE)
[1] 4 5 1 2 3 6

The function order returns the positions of the minimum to maximum in the original list of
variables if arranged in increasing order (decreasing=FALSE, which is default).
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Order can be used for arranging multivariate data in some monotone order. As a practical
problem, consider the case of censored data. Here the lifetimes of certain experimental units
are recorded and it is registered if the units failed or not. The following exhibit demonstrates
the point.

> x <- c(12,8,5,89,23,64,37)
> x_ind <- c(1,1,1,0,1,0,1)
> o <- order(x)
> X <- cbind(x,x_ind)
> X[o,]

x x_ind
[1,] 5 1
[2,] 8 1
[3,] 12 1
[4,] 23 1
[5,] 37 1
[6,] 64 0
[7,] 89 0

Run example(order) at the R terminal for more interesting and complex examples.
subset. Data preparation takes most of the time in industrial settings. For example, we may
have a data file related to some clinical trial which contains all the observations. Suppose, there
are many treatment groups and we are interested only in the set of individuals which received
drug A. In such cases, we would like to prepare an R data frame containing information of
related interested as follows:

> data(iris)
> iris_less <- subset(iris,Species %in% c("setosa","virginica"))
> iris_less[c(1:3,98:100),]

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
148 6.5 3.0 5.2 2.0 virginica
149 6.2 3.4 5.4 2.3 virginica
150 5.9 3.0 5.1 1.8 virginica

Thus, we can use the command subset effectively and get the desired data frame. This func-
tion also applies to vectors and matrices. Equipped with control options in select and drop,
it is a very powerful tool for purposes of data manipulation.
window. The window command applied to an R object extracts elements from the specified
two times, start and end. Suppose we need the three-month moving averages of a time
series of observations, AD8 for instance. We consider the data for the first 24 months only.
The next program achieves the goal.

> ad8_24 <- AirPassengers[1:24]
> ma3 <- c()
> for(i in 1:22) { ma3[i] <- mean(window(ad8_24,i,i+2))}
> ma3
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[1] 120.6667 ... 143.6667
[7] 144.0000 ... 127.3333
[21] 134.0000 ... 129.0

The moving averages can be obtained using the filter function, try filter
(ad8_24,rep(1/3,3),sides=2). For more details, explore filter.
table. A simple use of this function is to obtain frequencies of a given factor. Agresti (2007),
Chapter 2, considers the study of a survey of belief about the Afterlife among 1127 individuals.
The respondents are asked if they believe in an afterlife or not.

> data(afterlife)
> table(afterlife$Males); table(afterlife$Females)
NO YES
104 398
NO YES
116 509

The table function can also be utilized to generate the confusion matrix in the class
prediction problems. We consider a hypothetical example. If the true classes of ten obser-
vations are (A,A,A,A,B,B,B,C,C,C), and the best model has predicted the classes as
(A,B,C,C,B,B,C,C,C,A), we can obtain the confusion matrix using the table function.

> true_classes <- c(rep("A",4),rep("B",3),rep("C",3))
> pred_classes <- c("A","B","C","C","B","B",
+ "C","C","C","A")
> conf_mat <- table(true_classes,pred_classes)
> conf_mat

pred_classes
true_classes A B C

A 1 1 2
B 0 2 1
C 1 0 2

Here the rep function finds more details with ?rep, creates four replicates of “A”, and three
replicates for each of “B” and “C” for true_classes. The table function returns a con-
tingency table for each combination of the vectors true_classes and pred_classes.
This function will be very useful for analysis of categorical data.

?Comparison, ?xtfrm

2.3.6 Calculus*

Differential and integral calculus are well incorporated in R, see Section 7.7 of Crawley
(2013). The examples provided therein are a neat introduction to using the R functions D and
integrate.

We undertake the task of proving that the standard normal density f (x) = (2𝜋)−1∕2e−x2∕2

is a probability density. Theorem 6.6 of Durrett (2009) or Section 7.4 of Chung
and AitSahlia (2002), give the necessary proof. Our goal here is to understand the
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same proof through R as much as possible. At the outset, we assure that the R code
integrate(dnorm,-Inf,Inf) is certainly not an acceptable proof.

To evaluate the integral I = ∫ e−x2∕2dx note that I2 = ∫ ∫ e−(x
2+y2)dxdy. The proof is com-

plete if we can prove that I2 is equal to 2𝜋. The trick here is to use the polar coordinates
transformation: x = r cos(𝜃) and y = r sin(𝜃). We can rewrite 𝜃 and r in terms of x and y as
𝜃 = tan−1(y∕x) and r =

√
(x2 + y2) .

Note that since r is the square root of two positive numbers, it is always positive. Further-
more, the range of 𝜃 is the interval [0, 2𝜋). We need to rewrite the expressions of I2 in terms
of r and 𝜃. Towards this, we need to obtain dxdy in terms of drd𝜃. The following R codes give
us the derivatives which are useful for computing the Jacobian of the transformation.

> expr1 <- expression(r*cos(theta))
> expr2 <- expression(r*sin(theta))
> D(expr1,"r");D(expr2,"r")
cos(theta)
sin(theta)
> D(expr1,"theta");D(expr2,"theta")
-(r * sin(theta))
r * cos(theta)

The mathematical quantities r cos(𝜃) and r sin(𝜃) are first created as the respective variables
expr1 and expr2 using the expression function. The derivatives of these two quantities
with respect to the variables r and 𝜃 are obtained in R using the D function. It will then be
easier to obtain the Jacobian matrix. In terms of the symbols, it translates to the following:

J = det
⎡⎢⎢⎣
𝛿x
𝛿r

𝛿x
𝛿𝜃

𝛿y
𝛿r

𝛿y
𝛿𝜃

⎤⎥⎥⎦ = det

[
cos 𝜃 −r sin 𝜃
sin 𝜃 r cos 𝜃

]

= rcos2𝜃 − (−rsin2𝜃) = r(cos2𝜃 + sin2𝜃) = r

Thus, we can now rewrite I2 in terms of r and 𝜃 as:

I2 = ∫
2𝜋

0 ∫
∞

0
e−r2∕2rdrd𝜃

We evaluate the second integral in the above equation using R. Thus:

> r_fun <- function(x) {x*exp(-x ̂ 2/2)}
> integrate(r_fun,0,Inf)
1 with absolute error < 2.8e-08

and hence, I2 = ∫ 2𝜋
0 d𝜃 = 2𝜋. We have finally proved that I2 is equal to 2𝜋 and thereby that

the normal density is indeed a probability density function.

?integrate, ?deriv
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2.4 Vectors and Matrices in R

The journey from a collection of random samples to summary statistics is a transformation
of a vector to scalar-valued entities. Deriving the mean and standard deviation of a random
sample instantly come to mind. We will learn more in this section about such vector functions.
Gentle (2007) is a modern account of matrix computations using software with more emphasis
on the theory. However in his book, for many of the matrix analyses, Gentle prefers R and
Fortran. The most recent handbook on matrix analysis with more dedication towards statistics
is Seber (2008).

2.4.1 Vectors

We begin with some elementary properties of vectors. Let x = (x1, x2, · · · , xp) and
y = (y1, y2, · · · , yp) be two p-dimensional vectors. The basic operations of scalar addition,
multiplication, etc., are defined in the following:

x + c = (x1 + c, x2 + c, · · · , xp + c) (2.4)

x × c = (x1 × c, x2 × c, · · · , xp × c) (2.5)

x + y = (x1 + y1, x2 + y2, · · · , xp + yp) (2.6)

Let us first understand the vector computations in R.

> x <- c(2,4,1,3)
> x+3 # scalar addition
[1] 5 7 4 6
> x*3 # scalar multiplication
[1] 6 12 3 9
> x+c(1,2,3,4) #adding two equal vectors
[1] 3 6 4 7
> x*c(1,2,3,4) #multiplying two equal vectors
[1] 2 8 3 12
> x+c(1,2) #adding two unequal vectors
[1] 3 6 2 5
> x*c(1,2) #multiplying two unequal vectors
[1] 2 8 1 6
> x+c(1,2,3); x*c(1,2,3) # what happens now?
[1] 3 6 4 4
Warning message:
In x + c(1, 2, 3) :
longer object length is not a multiple of shorter object length
[1] 2 8 3 3
Warning message:
In x * c(1, 2, 3) :
longer object length is not a multiple of shorter object length
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In the example of scalar addition/multiplication, the number 3 is simply added/multiplied to
each element of the vector x. Addition and multiplication of two equal vectors is also performed
element wise. However, when we add or multiply unequal vectors, not allowed from a pure
mathematical point of view, the computations are performed in a certain defined manner. First,
the lengths of both the vectors are determined, and the minimum length vector is added element
wise to the larger vector and the process is repeated for the remaining length of the larger
vector. If the shorter vector length is an exact integer multiple of the lengthier one, R deems it
appropriate. In cases where it is not true, a warning message is released. Let us now consider
the working of the division operator.

> x/4; x/x
[1] 0.50 1.00 0.25 0.75
[1] 1 1 1 1
> x/c(1,2); x/c(1,2,3)
[1] 2.0 2.0 1.0 1.5
[1] 2.0000000 2.0000000 0.3333333 3.0000000
Warning message:
In x/c(1, 2, 3) :
longer object length is not a multiple of shorter object length

Here, element-wise division is carried out and the rest of the operation is similar as in addition
or multiplication. It should be remembered that the software vectors are treated as arrays and
not necessarily as the vectors as in mathematics.

We will now relate vectors with Statistics. Section 2.3 of Gentle (2007) will be our core line
of thinking and conceptual development.

Definition 2.4.1 The One Vector is the vector with all elements equal to 1. It is also called the
summing vector, as 1Tx gives the sum of the elements of the vector x.

Definition 2.4.2 The inner product of two vectors x and y is defined as

⟨x, y⟩ = ∑
i

xiyi. (2.7)

Let us consider two vectors x = [5, 4, 3, 8, 21] and y = [12, 2, 3, 16, 9]. We can easily per-
form the inner product as

> x <- c(5,4,3,8,21); y <- c(12,2,3,16,9)
> sum(x*y) # gives us the inner product
[1] 394

Definition 2.4.3 The norm of a vector x, denoted by ∥ . ∥, is a real-valued function, which
satisfies the following three conditions:

1. if x ≠ 0, ∥ x ∥≥ 0;
2. for a scalar a, ∥ ax ∥= |a| ∥ x ∥;
3. and the triangle inequality, ∥ x + y ∥≤∥ x ∥ + ∥ .y ∥
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For our purposes, we are interested in the norms induced by the inner product of vectors,
which is given by

∥ x ∥=
√⟨x, x⟩ = √∑

i

x2
i . (2.8)

Furthermore, the normalized vector of a given vector x is defined as the vector divided by its
length*:

x̃ = 1
∥ x ∥

x. (2.9)

* Here, length refers to the Euclidean distance of the vector from the origin, and in more
technical language it is the Euclidean norm. This length of the vector can be confused with the
length function, returning the number of elements of a vector, which is freely used as in R.
However, it is often clear from the context and the fonts which is correct. We continue with
the two vectors used earlier to become familiarized with the computations in R.

> normx <- sqrt(sum(x ̂ 2)); normy <- sqrt(sum(y ̂ 2))
+ # norms of vectors x and y
> normx;normy
[1] 23.55844
[1] 22.22611
> normalisedx <- x/normx; normalisedy <- y/normy
+ # vectors x and y normalised
> normalisedx; normalisedy
[1] 0.2122382 0.1697905 0.1273429 0.3395811 0.8914004
[1] 0.53990552 0.08998425 0.13497638 0.71987403 0.40492914
> sqrt(sum(normalisedx ̂ 2)); sqrt(sum(normalisedy ̂ 2)) # check
[1] 1
[1] 1

Definition 2.4.4 Two vectors x and y are said to be orthogonal vectors if

⟨x, y⟩ = 0, (2.10)

and this is denoted as x⊥y.

Definition 2.4.5 The projection of a vector y onto the vector x is defined by

ŷ =
⟨x, y⟩
∥ x∥2

x. (2.11)

A natural important property of the projection is that if the projection is subtracted from the
vector that was projected, the residual is orthogonal to the projection. That is, the residual is
defined as

r = y −
⟨x, y⟩
∥ x∥2

x = y − ŷ, (2.12)

and then the angle between two vectors is defined by

angle(x, y) = cos−1

( ⟨x, y⟩
∥ x ∥∥ y ∥

)
(2.13)
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> angle_xy <- acos(sum(x*y)/(normx*normy))
> angle_xy
[1] 0.7189997
> cos(angle_xy)
[1] 0.7524649

Vectors and Basic Summary Statistics. The arithmetic mean of a vector x can be reformu-
lated as a function of vectors, that is, x̄ = 1n

Tx∕n, where 1n is the one vector of n elements.
The mean can also be thought of as a vector whose elements are equal to x̄, and such a vector
is also denoted by x̄ only. Since n is the (vector) length of the one vector, the mean vector can
be considered as the projection of vector x onto that vector. The square of a norm of the vector
∥ x∥2 is also useful in statistics, and particularly in the relation ∥ x̄∥2 = nx̄2, where the quantity
x̄ on the left-hand side is a vector and that on the right is a scalar.

> one <- rep(1,5)
> normone <- sqrt(sum(one ̂ 2))
> (sum(x*one)/(normone ̂ 2)); mean(x)
[1] 8.2
[1] 8.2

Definition 2.4.6 The centered counterpart of a vector x, denoted xc, is defined as the vector

xc = x − x̄,

where x̄ is the average of the elements of x.

In general, any vector whose elements sum to 0 may be referred to as a centered vector. Since
the mean of a vector is the vector projection of the vector onto one, the centered vector and
the vector are orthogonal and the Pythagorean relationship holds, that is

∥ x∥2 =∥ x̄∥2+ ∥ xc∥2

The centered vector and Pythagorean relationship are now illustrated for the x vector.

> (xc <- x - mean(x))
[1] -3.2 -4.2 -5.2 -0.2 12.8
> normx ̂ 2; 5*mean(x) ̂ 2 + sum(xc ̂ 2)
[1] 555
[1] 555

?vector

2.4.2 Matrices

A matrix will be used here to represent an arrangement of real numbers in a two-dimensional
array through row and column vectors. The dimension of a matrix is defined by the number of
rows and columns, and thus if a matrix has n rows and m columns, the dimension of the matrix
is n × m. The dimension of a matrix is also known as the order of the matrix. The element
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of a matrix A in row i and column j will be denoted by aij, i = 1, · · · , n, j = 1, · · · ,m, and the
matrix is represented by

A =
⎡⎢⎢⎢⎣
a11 a12 · · · a1m
a21 a22 · · · a2m
⋮ ⋮ ⋮

an1 an2 · · · anm

⎤⎥⎥⎥⎦
= (aij)n×m.

Matrices are easily created in R. First, we explain the beginning steps for clear understanding.
The main syntax of thematrix function isfunction(data = NA,nrow = 1, ncol
= 1, byrow = FALSE, dimnames = NULL). The following simple examples clarify
some ways of creating matrices.

> A <- matrix(nrow=5,ncol=6)
> A

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] NA NA NA NA NA NA
[2,] NA NA NA NA NA NA
[3,] NA NA NA NA NA NA
[4,] NA NA NA NA NA NA
[5,] NA NA NA NA NA NA
> B <- matrix(c(1:12),nrow=2)
> B

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1 3 5 7 9 11
[2,] 2 4 6 8 10 12
> C <- matrix(c(1:12),nrow=2,ncol=2)
> C

[,1] [,2]
[1,] 1 3
[2,] 2 4

If data is not assigned/used while creating a matrix, the default values will be NA. The options
of nrow and ncol can be used to fix the dimension of a matrix. It may be seen in the creation
of the C matrix above that excess data is discarded. The reader should verify the result as a
consequence of using the byrow=TRUE option while creating the C matrix.

It is sometimes to the user’s advantage to assign names to the rows and columns of a matrix,
which is accomplished by

> X <- matrix(20:11,nrow=2)
> rownames(X) <- rownames(X,do.NULL=FALSE,"Sl.No.")
> colnames(X) <- colnames(X,do.NULL=TRUE)
> colnames(X) <- c("john","mahesh","ganesh","ross","rupesh")
> X

john mahesh ganesh ross rupesh
Sl.No.1 20 18 16 14 12
Sl.No.2 19 17 15 13 11

The reader may wish to explore more details about case.names and variable.names.
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An important concept in the theory of matrices is the concept of rank. The rank of a matrix
is defined as the maximum number of linearly independent vectors, row or column vectors.
The rank of a matrix will be denoted by rank(A). It may be noted that for any scalar a ≠ 0,
rank(aA) = rank(A), and that rank(A) ≤ min{m, n}. A matrix is said to be of full rank if
rank(A) = min{m, n}.

A matrix is called a square matrix if the number of rows are equal to the number of columns,
that is, n = m. The diagonal elements of a square matrix are aii, i = 1, · · · , n. The sum of diag-
onal elements of a square matrix is called the trace of the matrix and is denoted by tr(A).
Mathematically, tr(A) =

∑
iaii. The transpose of a matrix is denoted by A′ or AT , and is

defined by A′ = (aji)m×n, with aji = aij,∀i, j.
If the off-diagonal elements are all 0, that is, aij = 0, i ≠ j, and aii = 1, the matrix is called

an identity matrix and it is generally denoted by I. The (row-wise) array of a matrix A with ele-
ments aij, i ≥ j, is said to form the lower triangle of the matrix, while the (column-wise) array
of the matrix with elements aij, i ≤ j, forms the upper triangle. Diagonal elements are included
in the triangle matrices according to mathematical requirements. Also, if aij = aji,∀i, j, the
matrix is called a symmetric matrix. The concepts defined here are now illustrated in an R
session.

> A <- matrix(1:9,nrow=3)
> diag(A)
[1] 1 5 9
> sum(diag(A)) # Trace of a matrix
[1] 15
> A[lower.tri(A,diag=TRUE)]
[1] 1 2 3 5 6 9
> A[upper.tri(A,diag=TRUE)]
[1] 1 4 5 7 8 9

The arithmetics of multiple matrices are now considered. Let A = (aij)n×m and B = (bij)n×m
be two matrices of the same dimensions (order). Addition and subtraction is possible with
matrices of the same order, and here A ± B = (aij ± bij)n×m.

Matrix multiplication, also known as the Cayley matrix multiplication or cross-product of
matrices, between two matrices A = (aij)n×m and B = (bjk)m×o is defined if the number of
columns of A is equal to the number of rows of B by the resultant matrix C

C = (cik)n×o, cik =
∑

j

aijbjk.

Matrix computations are straightforward here. We first create two matrices A and B using
the data.entry operator. Cross-products between two matrices, say A and B, may be per-
formed using the %*% operator:

> A <- matrix(nrow=2,ncol=2)
> data.entry(A)
> A

var1 var2
[1,] 4 5
[2,] 8 13
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> B <- matrix(nrow=2,ncol=3)
> data.entry(B)
> B

var1 var2 var3
[1,] 10 15 8
[2,] 4 6 9
> A%*%B

var1 var2 var3
[1,] 60 90 77
[2,] 132 198 181
> B%*%A
Error in B %*% A : non-conformable arguments

Following the data.entry command, the reader should enter appropriate values on the
popped-up window. Matrix operations must be carefully performed, as it can be seen above
that B%*%A is not well defined.

The determinant of a square matrix A = (aij)n×n is defined by

det(A) = |A| = ∑
𝜖j1j2···jn a1j1

a2j2
· · · anjn

,

where 𝜖j1j2···jn is ±1 accordingly as {j1j2 · · · jn} is an even or odd number of permutations of
the integer {1, 2, · · · , n}, and the sum extends over all possible permutations. Fortunately, the
simple R function det helps us to obtain the determinant of the matrix. If |A| = 0, the matrix
is said to be a singular matrix, and if |A| > 0, it is called a non-singular matrix. The matrix
A−1 is said to be inverse of a non-singular matrix A if AA−1 = I. In the case of a singular
matrix or a non-square matrix, generalized inverse(s) are defined. However, we will not go
into its details here but merely note that the software can easily handle them.

The determinant of a matrix is computed using the det function: det(A) to give the
answer as 12. The inverse and generalized inverse of a matrix are obtained using the solve
and ginv, from the MASS package, functions:

> solve(A)
[,1] [,2]

var1 1.0833333 -0.4166667
var2 -0.6666667 0.3333333
> library(MASS)
> ginv(B)

[,1] [,2]
[1,] 0.04774536 -0.04244032
[2,] 0.07161804 -0.06366048
[3,] -0.06896552 0.17241379

Consider a square-matrix A of dimension n × n. Consider the determinant |A − 𝜆I| as a func-
tion of the variable 𝜆. The variable 𝜆 may be a complex-valued variable. The determinant|A − 𝜆I| would be a polynomial of degree n and is called the characteristic polynomial of A,
and the equation |A − 𝜆I| = 0, (2.14)
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is called the characteristic equation of A. The characteristic equation will have n roots, which
are called the eigenvalues of A. The eigenvalues have important applications in statistical appli-
cations, as well as in stochastic processes, see Chapters 10 and 15.

The eigenvalues may be real, complex, or some combination of real and complex. The
eigenvalues are ordered by the modulus values |𝜆1| ≥ |𝜆2| ≥ |𝜆n| ≥ 0. In the case where 𝜆1 is
unique, it is called the dominant eigenvalue. Note that since any 𝜆i is a root of the equation|A − 𝜆I| = 0, we have |A − 𝜆iI| = 0 and hence A − 𝜆iI will be singular. Equivalently, it means
that the null space of A − 𝜆iI has a dimension of at least one, and this space is called the
eigenspace of A corresponding to 𝜆i and any non-zero vector in this eigenspace is called the
eigenvector of A corresponding to 𝜆i.

Now, let A be a matrix of dimension n × m with rank r. The matrix A can then be written as

A = U𝚲V′, (2.15)

where 𝚲 is a r × r diagonal matrix with positive diagonal elements, U is a n × r matrix such
that U′U = I, and V is an m × r matrix with V′V = I. This representation of the matrix A is
the well-known singular value decomposition.

Eigenvalues, eigenvectors, and singular value decomposition for appropriate matrices may
be easily computed using the in-built R commands:

> eigen(A)
$values
[1] 16.2620873 0.7379127
$vectors

[,1] [,2]
[1,] -0.3775776 -0.8375173
[2,] -0.9259779 0.5464109
> eigen(B)
Error in eigen(B) : non-square matrix in ’eigen’
> svd(A)
$d
[1] 16.5370324 0.7256441
$u

[,1] [,2]
[1,] -0.3850756 -0.9228850
[2,] -0.9228850 0.3850756
$v

[,1] [,2]
[1,] -0.5396000 -0.8419215
[2,] -0.8419215 0.5396000

In this section, we have considered how the basic maths related to vectors and matrices are
performed. Apart from the arithmetic, it is the methods related to the cross-product of the
matrices, the determinants, inverses, eigen computations, and the Cholesky decomposition
which are essential armor for a data analyst.

?matrix, ?matmult, ?solve, ?svd
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2.5 Data Entering and Reading from Files

We undertake the task of storing the objects and also study how to read data from external
files. The external data files may come in various formats and we will see how to read data of
important file formats.

2.5.1 Data Entering

In the earlier sections, we used arrays, such as 1:5, c(1,6,-14,-154,0), etc. The second
array mentioned above is one of the R commands. Specifically, the letter c stands for concat-
enation, or coercing, or combining various R objects in a single object. The following simple
examples should help the reader:

> a <- c(1:7)
> a
[1] 1 2 3 4 5 6 7
> a2 <- c(1:6)
> a2
[1] 1 2 3 4 5 6
> c(4:-3) -> b
> b
[1] 4 3 2 1 0 -1 -2 -3
> D <- c(a,b)
> D
[1] 1 2 3 4 5 6 7 4 3 2 1 0 -1 -2 -3
> (x <- c("Nominal", "Ordinal", "Others"))
[1] "Nominal" "Ordinal" "Others"

A few remarks are in order. We see that an array/object can be assigned to a new object as ->
or <-. The elements of an R object may be numeric or character. It should be noted here that
the entire environment on the tail end of <- is assigned to the object on the side facing the
arrow. Of course, there are more ways of creating new objects.

We can also use ≪- or -≫ for creating new objects.

> a «- c(1:7)
> a
[1] 1 2 3 4 5 6 7

There is a difference here though. The assignment operators ->,=, and -≫ work in a different
manner to each other. The first two operators under consideration assign the environment when
evaluated with = allowed at the top level, whereas the operator -≫ causes a search through
the environment for an existing definition of the assignable variable. Of course, a detailed
understanding of environment needs to be there in the first place, which can be obtained
with ?environment. We restrict ourselves here with an illustration, while introducing the
new assignable operator assign.
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> pi «- 23
Error: cannot change value of locked binding for ’pi’
> (pi <- 23)
[1] 23
> assign("b",c(1:3,192:195))
> b
[1] 1 2 3 192 193 194 195

We note that pi is a built-in constant of R, see ?Constants.
Failing to remember the fact that R is case sensitive may lead to errors. For example, C is

itself another R function which sets contrasts for a factor, and if care is not taken we may end
up creating contrasts for an object when we intend to create a new object.

> a <- factor(1:3) #more about factors later
> c(a)
[1] 1 2 3
> C(a)
[1] 1 2 3
attr(,"contrasts")

unordered
contr.treatment
Levels: 1 2 3

R makes a distinction between a row and a column vector, which can be seen by the example:

> letters # another sequence of constants, see also LETTERS
[1] "a" "b" "c" "d" "e" ... "x" "y" "z"
> t(letters) # t for transpose

[,1] [,2] [,3] [,4] [,5] ...[,24] [,25] [,26]
[1,] "a" "b" "c" "d" "e" ... "x" "y" "z"

The objects letters, along with LETTERS, month.abb, and month.name forms
some of the important built-in constants of R.

We can easily find the number of elements in a vector using the length function; consider
x <- c(-3, 8):

> x <- c(-3:8)
> length(x)
[1] 12

We have created (used) some numeric vectors as well as character vectors. In some programs
we may need to find the class of certain objects. We can find this by using either the mode
function or the class function. The reader may verify the following:

> mode(c(0,.5,1)); class(c(0,.5,1))
[1] "numeric"
[1] "numeric"
> mode(a<-c(1:pi)); class(a<-c(1:pi))
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[1] "numeric"
[1] "integer"
> mode(TRUE); class(FALSE); 1-TRUE; as.numeric(FALSE)
[1] "logical"
[1] "logical"
[1] 0
[1] 0

It had been stated previously that either of the mode or class functions can help us, but
we have however ended up with two different answers. Let us understand what is happening.
The function mode returns the type of stored object, whereas class returns a character vector
of the names of the classes from which the object has inherited the class. In the above set of
programs, we also have logical values TRUE and FALSE.

We will conclude this subsection with a presentation of the element-wise entry of a matrix.
The matrix is considered in more detail in Section 2.4.

> X <- matrix(nrow=3,ncol=2)
> X[,1] <- scan()
1: 1
2: 2
3: 3
4:
Read 3 items
> X[,2] <- scan()
1: -3
2: -2
3: -1
4:
Read 3 items
> X

[,1] [,2]
[1,] 1 -3
[2,] 2 -2
[3,] 3 -1

Here we have used an action of the scan function which allows the reader to specify the
values through the console. In fact, this function can be used more elaborately to read data
from external files, as will be seen next.

We next take up the task of reading data from external files.

?assign

2.5.2 Reading Data from External Files

In any R session we are working in a certain directory. The address of the current working
directory may be known using the command getwd(). Suppose that we had a file named
read_me_if_you_can.dat in the current directory. If the file is in a directory other than
the working one, we can still access it. We use the function scan to read this file.



Trim Size: 170mm x 244mm Tattar c02.tex V3 - 02/10/2016 10:04 A.M. Page 44�

� �

�

44 A Course in Statistics with R

> scan("read_me_if_you_can.dat") # if file is in working directory
Read 5 items
[1] 10 20 30 40 50
> scan("/home/user/where_the_file_is/read_me_if_you_can.dat")
Read 5 items
[1] 10 20 30 40 50

The scanned data can be assigned to any new object, say x <- scan(). This example is a
really simple one. It is very plausible that the external data file also contains variable names.
Most often the variable names are indicated in the first line itself. Suppose we want to read the
dataset of the Youden and Beale experiment introduced in Subsection 1.4.2. The first line of
the file contains the names of the variable and each data point begins on a new line with the
values of variables separated by a comma. We can read such a data file using the command
read.table.

> yb <- read.table("/.../youden.csv",header=T,sep=",")
> yb
Preparation_1 Preparation_2

1 31 18
2 20 17

7 10 5
8 7 6

Note: The option header=T is technically header=TRUE. The TRUE and FALSE are logi-
cal entities and may be abbreviated to the first letter itself. The option sep="," indicates that
the values in the file are separated by a comma.

We could also have used read.csv instead of read.table for the above example.

?read.table

Reading data from other software formats will be treated in Section 3.3.

2.6 Working with Packages

We had introduced the reader to the web-link http://www.cran.r-project.org/web/packages.
This page enlists all the packages that have been approved by the R team. Of course, there are
many other developers who maintain their R package and which are available from them or
their websites.

Let us first discuss the packages currently available with the installed R software. The Win-
dows user can see Packages on the menu ribbon. The first option here is Load Package,
which provides a list of all the packages which have already been installed in their current
version. The code library() executed on the R console also does the same task and runs
the same across all platforms. If you select the package MASS, it will be loaded for the session
and you can start using all the functions and datasets from this package. Another alternative is

http://www.cran.r-project.org/web/packages
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to run library(MASS) or require(MASS) at the R console. All of them have the same
results. Though a menu ribbon is not available for the UNIX user, she can use the latter two
options. A nice option when loading an R packages is the quietly option, in that the general
instructions or messages displayed when loading the package can be set off using this option.
To understand this, first try library(survival) and note the message. Next, quit the R
session and then start it again. Finally, try library(survival,quietly=TRUE) and
mark your observation.

Now we consider the task of installing new packages. Suppose that you need to install the R
package gpk. A good practice is to install the package within an R session. To install this pack-
age the user needs to simply run the code install.packages("gpk"). The message
Please select a CRAN mirror for use in this session is first displayed
and then you need to select a CRAN mirror. It is advisable that you select that mirror which is
geographically closest to your place. We have assumed that you have a live Internet connec-
tion. In the case where you do not have a continuous connection, you may first download the
package and then use the option, for Windows user, Install package(s) from local
zip files.... The Windows package ends with an extension zip, that is, they are zipped
files. For the Linux version, the extension is tar.gz, and such files may be installed using
the command R CMD INSTALL *.tar.gz at the terminal. If the user has Internet con-
nection, using the install.packages is advised since the command also downloads the
related packages and installs them too.

A convention adopted in this book is the following. Software, programs, and packages
evolve and mature over a time period. Furthermore, since the intent of this book is to provide
effective coverage of several important domains of the subject, there is a need to refer to many
important packages developed by many people across the globe. Thus, we have used many
packages, and to ensure that the reader does not lose track of the package that will be used
in a particular chapter, we describe the packages used at the beginning of that chapter. Thus,
Package(s): will appear following the title of the chapter, giving a list of the packages used
for that chapter. This book will also be using the companion package ACSWR and the gpk
package too.

?install.packages

2.7 R Session Management

We have seen various essential techniques for use up to this point. Exporting data from foreign
formats of data sources has also been explored. It is equally important to know how to manage
and save your current R session, which may be useful for future use too. Let us discuss the
functions which will help us to achieve this.

The authors preference at the beginning of most R sessions is to run the code
rm(list=ls()). This is a useful trick in the initial stages of learning R, in the
sense that it gives the user a clear session to begin! Here, the part code ls() lists all the
variables in the current session and then is assigned to the list to be marked for deletion
with the rm function.

In Section 2.5 we saw that getwd() accesses the current working directory. This directory
may be changed to any other with, say, setwd("/home/user/rlab"). The reader should
note that we use the forward slash / and not the backward slash \, which is a general practice
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for the Windows user. A small work around is to use the backward slash twice in succession
to get the result for the Windows user, that is, C:\\Users\\rlab. To access the list of all
the files in your current working directory, use list.files().

Suppose that the following objects are present in the current R session: gf, girder,
girdernew, i, mf, ss, ssaov. A specific object may be saved using the save function
with save(mf,file="mf.RData"). Two or more objects may also be saved with
save(mf,gf,girder,file="my3objects.RData"). All the objects of the session
may be saved with save.image(file="current_session.RData"). The saved
objects may be loaded in a later session with load("current_session.RData").

To quit an R session, run the code q().

2.8 Further Reading

Venables, et al. (2013), Version 3.0.2, is the most recent introductory course for a user to
get the R basics correct. All the versions of this document are updated as and when a new
R version is available. On the web, it is available at http://cran.r-project.org/doc/manuals/R-
intro.pdf. According to the authors this document is a must read for any R beginner. A timeless
classic introduction is Venables and Ripley (2002). Dalgaard (2008), Chapters 1 to 3, is a nice
starting point too. The first seven chapters of Crawley (2007) provide a detailed background
of R. Purohit, et al. (2008) which is a very concise and useful course at the beginning of R
learning.

It is our view that any of the above sources give the user a good footing in R. Needless to
say, even a first search on www will give various free introductions to R. A classic example
of this fact is Wikipedia. Our observations have been that many complex statistical programs
which follow a description of the theory are in R and also the codes generating the outputs are
made available. The fact that such programs may have a few errors is not just attributable to
them not being reviewed.

2.9 Complements, Problems, and Programs

Problem 2.1 Write a program to obtain the minimum between two corresponding elements
of two vectors. As an example, for the two vectors A=(1,2,3,4) and
B=(4,3,2,1), your program should return the minimum as (1,2,2,1).
Repeat the exercise to obtain the maximum. After you are done with your
program, use the pmin and pmax functions available in R.

Problem 2.2 Using the options, fix the number of digits of the output during a session
to four digits.

Problem 2.3 Find the details about complex numbers and perform the basic arithmetic
related to complex numbers. What do you expect when you perform mean,
median, and sd on an array of complex numbers? Check the results in R
console.

Problem 2.4 For a gamma integral, it is well known that Γ(n) = (n − 1)!, where n is an
integer. Verify the same for your choice of integers. Note that you are required

http://cran.r-project.org/doc/manuals/R-intro.pdf
http://cran.r-project.org/doc/manuals/R-intro.pdf
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to use gamma for the left-hand side and the factorial function for the
right-hand side.

Problem 2.5 For the sequence theta <- seq(0,pi,0.1), compute sin2(𝜃) +
cos2(𝜃) and comment. Furthermore, for 0 ≤ 𝜃 ≤ 𝜋∕2, check whether you get
sin(𝜃) = cos(𝜋∕2 − 𝜃).

Problem 2.6 For a number x, can you always say that round(floor(x)) == floor
(ro und(x)). Also, test which of these relationships hold true: floor
(ceil ing(x)) == ceiling(floor(x)), floor(sign(x))
== sign(floor(x)).

Problem 2.7 By using the is.na function to substitute the missing observations of a vec-
tor, you may select a numeric vector of your choice with missing values, with
0. Attempt to replace the missing values of a vector with the mean of the vector
having valid elements.

Problem 2.8 Consider the factor vector exp_levels <- gl(3,2), and now change
the third and fourth elements to 1 with exp_levels[3:4]<-1. Now, 2 is
an extra factor level which is not present as a factor for any of its elements.
Drop it! Use droplevels.

Problem 2.9 For a numeric vector, do you expect min(x) == -max(-x)?

Problem 2.10 The Stirling function stirling is given as an approximation of n!. The
R function factorial is also an approximation for the factorial oper-
ation. This means that prod(1:n) will not always be the same as

∏n
j=1 j.

Find out the least n for which factorial does not agree with the result for
prod(1:n). Also, for 1:n, plot the n! values using the prod, stirling
and factorial functions against 1:n and make notes.

Problem 2.11 In Subsection 2.4.1, we computed the norm of a vector x as sqrt
(sum(x ̂ 2)). With some extra effort, it is indeed possible to obtain
the same using the R function norm. Explore the options type and
complete the use of the norm function which gives the same answer as
sqrt(sum(x ̂ 2)).

Problem 2.12 Create the matrix A <- matrix(1:16,nrow=4) in R. Using the func-
tions upper.tri, lower.tri, and diag, obtain the identity matrix.

Problem 2.13 For the matrix A<-matrix(c(1:12),nrow=2), find the determinant
using the det function.

Problem 2.14 Check whether ginv and solve result in the same inverse matrix
for a non-singular square matrix? In the case of a singular matrix, say
matrix(rep(1,4),nrow=2), what will be the generalized inverse?
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Data Preparation and Other Tricks

Package(s): gdata, chron
Dataset(s): 100mrun.xls, Earthwormbiomass.xls, Bacteria.XLS, nerve.
dat, atombombtest.xls, airquality, wine.dat, sat, faithful, 2005-10.
txt.gz

3.1 Introduction

Data comes in various forms and complexities. It is a difficult task to even list the major/minor
complexity levels of data preparation. The different forms of data, as well as complexity levels,
may be known or unknown. Thus, it is difficult to have a standard set of guidelines for teaching
data preparation methods.

Complexities arise on various counts, such as file types, files with missing data values, files
with different kinds of attributes, etc. In some cases, it may be simply improbable for the user
to read the data properly without repeated efforts of writing the codes over and over again. In
Section 3.2, we use the options available in the R function read.table to import data of
external files which pose some difficulties. The options may vary to accommodate data prob-
lems, avoiding certain number of lines of file, and so forth. A good practice during the learning
curve is to validate the imported data into R and check if it is on the expected lines. Thus, it
may help to see the imported data using the functions head, tail, str, View, etc., and such
functions will be illustrated in Section 3.4. The R functions aggregate, with, and assign
are effective in carrying out data manipulation without the need to create new R objects. The
use of these functions will be seen in Section 3.5. Time and date vectors need special consid-
eration and we will aid the reader with the math of it in Section 3.6. The complexity of dealing
with text matter is one of the most detailed ones and the final technical Section 3.7 will con-
sider the preliminary aspect of this new area. Rscript is a very important backend R tool
and helps to run programs without the necessity of even opening the software. Furthermore,
rich text editors are important too, and whenever it is possible to use them, the author would
recommend that such editors be promptly deployed. This forms the topic of Section 3.8.

A Course in Statistics with R, First Edition. Prabhanjan Narayanachar Tattar, Suresh Ramaiah and B. G. Manjunath.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/tattar/statistics
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3.2 Manipulation with Complex Format Files

Section 2.5 introduced us to a method of reading data from external data files using the scan
function. However, it is not the case that data is always well organized. The word organized
here has a very vague meaning. After all, why would anybody write files which are not
organized. It is nice to understand that “organized” is used in a rather internal sense here. The
data that is “internally” stored and managed by R gives consistent results if we read the data
according to the need of the hour. We will illustrate with some examples.

Example 3.2.1. The Hundred Meter Running Race. Consider the dataset 100mrun.xls
from Gore, et al. (2006). To obtain the file of interest, please visit http://ces.iisc.ernet.in/hpg/
nvjoshi/statspunedatabook/databook.html and download datafile sxls.zip and unzip
it and copy the file 100mrun.xls to your working directory. The two columns give us the
year of the Olympics and the winning recorded time. In spite of using the read.xls function
from the package gdata, our problems are not over. The first row does not contain the variable
names and is a descriptor of the file characteristic containing data about the 100 meters running
race. The variable names appear on the second row, and we need to read the data from the
second row onward. Hence, we ask R to skip the first line. We will first load the gdata
package. The data is then properly read as below.

> library(gdata)
> newsome1 <- read.xls("100mrun.xls",sheet=1,skip=1)
> newsome1

Year Time.sec.
1 1896 12.00
2 1900 11.00
3 1904 11.00

24 2000 9.87

The option skip ensures that the data is read from the second line of the file. Since the xls
(xlsx) document may have multiple sheets, it is necessary for R to know from which sheet we
are importing the data. This is met through the sheet option. The argument for the sheet
option may either be the sheet number or the sheet name. ◽

Remark about gdata. This R package needs the perl software too. In general,
Linux and McIntosh OS have this software by default and the read.xls function
works fine. However, Windows OS does not contain the perl software and needs to
be installed before using the gdata package. Thus, the user will need to first down-
load and install the software from http://www.perl.org/get.html. Furthermore, the perl
option needs to explicitly specified in the read.xls code. That is, we need a modifi-
cation with newsome1 <- read.xls("100mrun.xls",perl= "C:/Perl/bin/
perl.exe",sheet=1,skip=1) to ensure that the data is properly imported in R. If the
sheets have names, and not numbers, the code changes slightly to sheet=’sheet name’.

Example 3.2.2. The Earthworm Density. In this example, we have a few more added com-
plexities. Here, we have to skip the first line of the xls file, which is a description of the data,

http://ces.iisc.ernet.in/hpg/nvjoshi/statspunedatabook/databook.html
http://ces.iisc.ernet.in/hpg/nvjoshi/statspunedatabook/databook.html
http://www.perl.org/get.html
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where the option is skip=1. Columns I, II, and IV are numeric vectors, though Column
IV contains years which may be considered both numeric as well as a factor. The variable
names in the xls file will be changed with col.names=c("Density","Biomass",
"Crop","Year","Soil Layer"). The data points are followed by a two-line citation
of the research paper in which the data appears. We should not read this citation into R, and
hence we specify that the number of rows which need to read should be 12 and this is done with
the option nrows=12. The xls file containing this dataset is Earthwormbiomass.xls.
The source of the dataset is the same as discussed in the previous example.

> some <- read.xls("Earthwormbiomass.xls",skip=1,nrows=12,
+ header=TRUE,sep=",", col.names=c("Density","Biomass","Crop",
+ "Year","Soil Layer"))
> some

Density Biomass Crop Year Soil.Layer
1 210 15.1 Maize 1998 0-10
2 251 22.2 Maize 1999 0-10

12 3 0.6 Wheat and Mustard 1999 10-20
> sapply(some,class)

Density Biomass Crop Year Soil.Layer
"integer" "numeric" "factor" "integer" "factor"

The sapply function shows that we have properly read the data into R. ◽

Example 3.2.3. Removing Percentage Symbol from a Dataset. We consider the dataset
Bacteria.XLS from the same source, as in the previous two examples. Here, the data in
the second and third columns are percentage values, and accordingly end with a % symbol.
We know from our experience that the value with the symbol is the percentage number. Unfor-
tunately, R does not know this fact. The rest of the columns are numeric vectors.

We need to power our read.xls command with the colClasses option, which tells R
to read all the columns as character vectors. The vectors can be straightaway made numeric
using the as.numeric vector. For the second and third columns, we tell R that the decimals
of the vector have to start by replacing % as a decimal start point. The program is given below
which carries out the steps detailed here.

> bacteria <- read.xls("Bacteria.XLS",colClasses="character")
> sapply(bacteria,class)

Response salt lipid pH Temp
"character" "character" "character" "character" "character"
> bacteria[,"Response"] <- as.numeric(bacteria[,"Response"])
> bacteria[,"salt"] <- type.convert(bacteria[,"salt"],dec="%")
> bacteria[,"lipid"] <- type.convert(bacteria[,"lipid"],dec="%")
> bacteria[,"pH"] <- as.numeric(bacteria[,"pH"])
> bacteria[,"Temp"] <- as.numeric(bacteria[,"Temp"])
> sapply(bacteria,class)
Response salt lipid pH Temp
"numeric" "numeric" "numeric" "numeric" "numeric"
> bacteria
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Response salt lipid pH Temp
1 -5.55 0 0 3 0
2 -5.15 1 0 3 0
3 -5.05 0 5 3 0

. . .
299 0.25 3 20 0 2
300 1.03 4 20 0 2
> sapply(bacteria,mean)
Response salt lipid pH Temp
0.2693 2.0000 10.0000 1.5000 1.0000

Note that we are extracting the variables from a data.frame using their names for the
first time. The class of the variables shows that all the variables have been imported as
character variables, which is not the data that we really require. Thus, there is a need to
change them. The Response is simply converted using the as.numeric function, that is,
we are reinforcing that we need the Response as a numeric variable. Next, the variables
salt and lipid are converted from character to numeric with the specification that the
decimals for the numeric values are occurring at the % symbol, and we have to use the function
type.convert to achieve the result. The rest of the program can be understood without
any further explanation. Also note that we have used the data.frame names to index the
columns instead of the column numbers, which is again a nice R feature. ◽

Example 3.2.4. Reading from the “nerve.dat” using the “scan” Function. We consider
reading the nerve dataset, which was probably first used by Cox and Lewis (1966). This
data is available on the web at http://www.stat.cmu.edu/larry/all-of-nonpar/=data/nerve.dat.
The data consists of 799 observations of the waiting times between successive pulses along a
nerve fiber. The dataset in the file is displayed as an arrangement of six observations per line,
and we have 133 lines, and one more line containing the last observation. If we use the function
read.csv, this dataset will be read as a data.frame consisting of six variables with 134
observations each. The first variable will contain 134 observations, whereas the 134-th obser-
vation for the remaining five variables will be a missing value NA. Using the scan function
will properly read the dataset in the required format.

> nerve <- read.csv("nerve.dat",sep="\t") # Not the correct way
> dim(nerve)
[1] 133 6
> nerve <- scan("nerve.dat")
Read 799 items

Thus, we have been able to read data using the read.csv function. ◽

Example 3.2.5. Reading the “Wine and Raters” Frequency Dataset using the “ftable”
Function. Example of judges and their ratings are of interest to consumers. Wine tasting is
more of an art than a science. However, this cannot stop us from considering the data arising
out of such experiments! Lindley does a wonderful analysis of such a scenario, see http://
www.liquidasset.com/lindley.htm. The experiment involves two types of Tastings:
Chardonnay and Cabernet. Each tasting has ten wines, labeled A-J. The 11 judges,
labeled 1 to 11 across the file, unfolds as 1 Englishman in Steven Spurrier, 1 American in

http://www.stat.cmu.edu/larry/all-of-nonpar/=data/nerve.dat
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Patricia Gallagher, and the remaining 9 are French. Each of these 11 tasters taste the 10 wines
from both tastings. The rankings are made on a scale of 0 to 20. Thus, we have a total of
11 tasters times 10 wines times 2 tastings as 220 observations. The Chardonnay wines
are also commonly known as white wines and the Cabernet as red wine. White wine is
popular among Americans and red among the French. This is an example of ordinal data and
we require a special function to handle it.

Frequency data, if properly entered in a file and saved as .dat or .txt file, may be con-
veniently read into R using the read.ftable function as follows:1

> wine <- read.ftable("wine.dat")
> wine

Tasters 1 2 10 11
Tastings Wines
Chardonnay A 10.0 18.0 16.5 17.0

B 15.0 15.0 16.0 14.5

J 0.0 8.0 5.0 7.0
Cabernet A 14.0 15.0 16.5 14.0

B 16.0 14.0 16.0 14.0

J 7.0 7.0 6.0 7.0

The function read.ftable is useful to read data from flat contingency tables. What is the
advantage of reading the data as table objects? This framework allows easy handling of
frequency in the sense that we can obtain the average ratings received by the ten wines across
judges and tastings, or average Chardonnay and Cabernet ratings, and so forth. This
needs the use of the xtabs function.

> xtabs(Freq∼Wines,data=wine)/22
Wines

A B C J
14.272727 14.204545 13.636364 7.681818
> xtabs(Freq∼Tastings,data=wine)/110
Tastings
Chardonnay Cabernet
11.35455 11.83636

> xtabs(Freq∼Tasters,data=wine)/20
Tasters

1 2 11
10.700 11.800 12.050

We have used two special features of R programming in ∼ and data. In general ∼ is used in
R formulas, indicating a relationship that the variable on the left-hand side of the expression
depends on the right-hand side. The variables on the right-hand side may be more than one.
The evaluation of the formula depends on the function that is being deployed. Thedata option
is used to specify that the variables used in the expression ∼ are to be found in the data frame
as declared.

1Output and R codes are edited and would differ from the actual one seen on running the R codes.
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The table, ftable, xtabs, etc., are very useful functions for analysis of categorical
data, see Chapter 16. ◽

We will check out one more example for the frequency table, which is predominantly useful
for categorical data analysis.

Example 3.2.6. Preparing a Contingency Table. In this example we will read a dataset from
an xls file, and then convert that data frame into a table or matrix form. Gore, et al. (2006)
consider the frequencies of cancer deaths of Japanese atomic bomb survivors by extent of
exposure, years after exposure, etc. This dataset has appeared in the journal “Statistical Sleuth”.
The data is first read from an Excel file which creates a data.frame object in R. This needs
to be converted into a contingency table format, which is later achieved using the xtabs
function in R. The next R program achieves exactly the same.

> library(gdata)
> atombomb <- read.xls("atombombtest.xls",header=TRUE)
> atombomb-
bxtabs <- xtabs(Frequency∼Radians+Count.Type+Count.Age.Group,
+ data=atombomb)
> atombombxtabs
, , Count.Age.Group = ’0-7’

Count.Type
Radians At Risk Death Count

0 262 10

400 15 0
, , Count.Age.Group = ’12-15’

Count.Type
Radians At Risk Death Count

0 240 19

400 14 5
, , Count.Age.Group = ’16-19’

Count.Type
Radians At Risk Death Count

0 243 12

400 14 2
> class(atombombxtabs)
[1] "xtabs" "table"

This dataset will be used in Chapter 16. ◽

Example 3.2.7. Reading Data from the Clipboard. A common practice is “Copy and
Paste”. This practice is so prevalent that it is tempting to do that in R. Suppose that the data is
to be copied from any external source, say SAS, Gedit, SPSS, EXL, etc., and then pasted into
R. The common practice is merely to copy the matter which your computer then holds on the
clipboard. For example, the matter, in the vertical display in a spreadsheet file, is the following:
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NOP 10 28 ... 0 14 8

which we have copied to the clipboard. Next, do the following at the R console:

> read.table("clipboard",header=TRUE)
+ # Copy-paste methods die hard

NOP
1 10
2 28
...
17 0
18 14
19 8

Thus, the copied matter in the clipboard may be easily imported in R. Note that you might
prefer to copy certain columns/rows from the spreadsheet available in your machine to the
clipboard. ◽

Example 3.2.8. Reading the Row Names. Thus far we have read external files with
column names and we would like to find out if we can read the row names too. Consider
an external file in a csv format. Here, we have taken the dataset from Everitt and Hothorn
(2011) and saved the data in a csv file. This dataset is related to life expectancies for
different countries and we have further information on the age and gender groups. In the
csv file we have the first column which has the name of the countries and four different
age groups for males and females. Particularly, we require the row names to be read by the
country name and the column names to reflect the age group with gender. Using the code
life=read.csv("lifedata.csv",header=TRUE,row.names=1), we can read
the data in the required format ◽

?read.table, ?read.ftable

3.3 Reading Datasets of Foreign Formats

Datasets may be available in formats other than csv or dat. It is also a frequent situation
where we need to read data stored in xls (Microsoft Excel) format, sav (SPSS), ssd (SAS),
dta (STATA), etc. For example, if the Youden-Beale data was saved in the first sheet of an xls
file, we can use the command:

> yb <- read.xls("/.../youden.xls",header=TRUE,sheet=1)
Converting xls file to csv file... Done.
Reading csv file... Done.

Note that R first internally converts the xls file into a csv file, and then imports it into the
session.

Similarly, we can read datasets of other software. Consider the rootstock.dta avail-
able from http://www.stata-press.com/data/r10/rootstock.dta. This is a popular dataset in the
domain of multivariate statistics. The soft copy rootstock.dta has been generated from

http://www.stata-press.com/data/r10/rootstock.dta
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the Stata software. We assume that this dataset has been downloaded from the web and stored
in the current working directory. We can read this dataset in R using the foreign packages
read.dta function.

library(foreign)
rootstock <- read.dta("/.../rootstock.dta")

Section 1.4 listed many sources of data on the web. The laborious way of using them for
analysis is to download them from the sources to the local hard disk and maybe to the current
working directory. The technical way is to ask R to access and download the file and load the
data into the working session. The next two small examples will clarify these ideas.

> rootstock.url <- "http://www.stata-press.com/data/r10/
+ rootstock.dta" # Example 1
> rootstock <- read.dta(rootstock.url)
> crime.url <- "http://www.jrsainfo.org/jabg/state_data2/
+ Tribal_Data00.xls" # Example 2
> crime <- read.xls(crime.url, pattern = "State")

Using the url link as a text string and appropriate importing functions such as read.dta and
read.xls, we can import data in foreign formats to R.

3.4 Displaying R Objects

R objects are of varying nature and we may be interested in having a quick look at the dataset
itself, and not through sophisticated tools such as graphics or statistical summaries. The
utils package shipped along with R contains a host of functionalities for our purpose.

Suppose we want to see the first ten observations of the 100mrun.xls dataset that we
imported earlier. Or we may like to see the last five observations of the same dataset. In R,
head and tail are the two functions which give us this facility:

> head(newsome1,10)
Year Time.sec.

1 1896 12.0
2 1900 11.0

10 1936 10.3
> tail(newsome1,5)

Year Time.sec.
20 1984 9.99

24 2000 9.87

Another compact way of visualizing an object is to horizontally display the dataset. This is
provided by the str function.

> str(newsome1)
’data.frame’: 23 obs. of 2 variables:
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$ X1896: int 1900 1904 1908 1912 1920 1924 1928 1932 1936 1948 ...
$ X12 : num 11 11 10.8 10.8 10.8 10.6 10.8 10.3 10.3 10.3 ...

The fix function is used to display the dataset in a new window, whereas the View function
is used to just view the dataset.

> fix(newsome1)
> View(newsome1)
> View(wine)

Check what exactly the edit function does to an R object.
Note that the window arising due to the fix function contains three tabs Copy, Paste

and Quit, which may be used to change the dataset. The reader may find the edit function
to be useful too. For more such interesting functions, run library(help=utils) at the
R console and experiment.

library(help=utils)

3.5 Manipulation Using R Functions

Consider a dataset where we have one column for measurement values of different individuals
and another column with group indicators for those individuals. Now, we need to obtain some
summaries of these measurements by the group indicator. This task can be achieved with
the aggregate function, and the next example illustrates this. The examples discussed in
Section 2.4.5 are also useful for manipulation of data preparation.

Example 3.5.1. Use of theaggregate function. We have thesat.csv file which contains
data on Student ID Number, Grade, Pass indicator, Sat score, and GPP grade. Now, we wish
to obtain the sum of the Sat scores by the GPP grade. The aggregate function helps us to
achieve the result.

> data(sat)
> aggregate(sat$Sat,by=list(sat$GPP),sum)
Group.1 x

1 A 4055
2 B 5590
3 C 4393
4 D 2164
5 F 574

Here we have used the by option to specify the groups, and sum is the FUN option. Thus, we
have obtained the group sum using the aggregate function. ◽

Consider a situation where you know what the name of the variables should be. However, for
some technical reason you cannot declare them before they are actually assigned some value.
The question is then how can we do such assignments in the flow of a program. As an artificial
example, assume that you feed to R the current top ten Sensex companies of the day. Sensex
refers to a number indicative of the relative prices of shares on the Mumbai Stock Exchange.
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Now, you would like to create objects whose name is the company name and whose value is
its Sensex closing value. We will use the assign function towards this end.

Example 3.5.2. Creating Variables in the Flow of a Program. Suppose that we have col-
lected on our clipboard the top ten companies of Sensex for today. We then want to create ten
new R objects which will have the end-of-day Sensex value. Check the one thing that has gone
wrong with the below R program.

> Sensex <- read.table("clipboard",header=FALSE)
> Sensex

V1 V2
1 Ram1 867.1884
2 Dyan3 866.1884
3 Kaps&Japs 865.1884
4 Rocks&Rolls 864.1884
5 JUSTBEST 863.1884
6 Sin_Gine 862.1884
7 Books1 861.1884
8 BikesMotors 860.1884
9 RCB 859.1884
10 JCF 858.1884
> for(i in 1:10) {
+ nam <- paste(as.character(Sensex[i,1]),"_",days(Sys.time()),sep="")
+ assign(nam,Sensex[i,2])
+ }
> ls()
[1] "BikesMotors_14" "Books1_14" "Dyan3_14" "i"
[5] "JCF_14" "JUSTBEST_14" "Kaps&Japs_14" "nam"
[9] "Ram1_14" "RCB_14" "Rocks&Rolls_14" "Sensex"
[13] "Sin_Gine_14"
> JUSTBEST_14
[1] 863.1884
> Books1_14
[1] 861.1884
> RCB_14
[1] 859.1884

In this program we have used the paste function to create distinct names of the R objects.
The variable names construction uses elements from the first column of the Sensex object.
As we need to create the variables along with the current date, we use the Sys.time func-
tion which returns the current date. Then, we use the days function from the chron package,
which extracts the “day” from the date object. The variable names from the first column is con-
catenated with the day of the month using an underscore symbol “_” and the option sep=""
which says that there should be no gap between the various arguments of the paste function.
The Sys.time function will be dealt with in more detail in Section 3.6. ◽

With large data files it is memory-consuming to create new objects for some modifications
of existing columns (or rows). Thus, there is this economic reason for modifying the objects
without creating new ones. The R functions with and withinmeet the said requirement. For
the faithful dataset, we will use the within function for carrying out necessary changes.
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Example 3.5.3. Modifying faithful Dataset Using within R Function. In the
faithful there are two variables in eruptions and waiting and both are measured in
minutes. Suppose we seek to convert the eruption time into seconds and the waiting time is
to be transferred on the logarithm scale. The within function can be used for this required
manipulation.

> head(faithful)
eruptions waiting

1 3.600 79
2 1.800 54
3 3.333 74
4 2.283 62
5 4.533 85
6 2.883 55
> faithful <- within(faithful,{
+ eruptions <- eruptions*60
+ waiting <- log(waiting)
+ })
> head(faithful)
eruptions waiting

1 216.00 4.369448
2 108.00 3.988984
3 199.98 4.304065
4 136.98 4.127134
5 271.98 4.442651
6 172.98 4.007333

The use of the within function helps in quick data preparation while avoiding creation of
unnecessary new variables. ◽

?aggregate, ?with, ?assign

3.6 Working with Time and Date

Time and dates have always been a complex entity and it does not become any easier in pro-
gramming languages either. A year has 7 months with 31 days, 4 months with 30 days, and
1 month with 28 days for 3 years and 29 days every fourth year. Even if we ignore a leap
year, the number of weekdays, such as Monday, Tuesday, etc., in a year is different, and this is
strangely distributed across the months. The number of days of a month, except for February
in non-leap years, is not an integer multiple of 7, the number of days of a year is not an integer
multiple of the number of months, or the number of weeks of a year. Similarly, time order is
also a complex issue to deal with.

The number of ways in which we can write the date is in a further multiple ways. The
complexity can be understood as the dates are written in different styles: “9-Sep-2010”,
“9-Sep-10”,“09-September-2010”, “09-09-10”,“09/09/10”, etc., all represent the same date.
The month is written in numeric as well as text. The year may either be specified in full four
digits or the last two digits of a century. We need to take into account all such complexities.
Chapter 4 of Spector (2008) is a dedicated and rigorous treatment of handling dates, and we
will deal with it in some detail.
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As used in the previous section, the current time may be obtained using Sys.time().
Internally, for each time stamp, R stores a number. Similarly,Sys.Date() returns the current
system date. This can be easily verified.

> Sys.time()
[1] "2011-06-14 23:28:34 IST"
> as.numeric(Sys.time())
[1] 1308074318
> as.numeric(Sys.time()+1)
[1] 1308074367
> as.numeric(Sys.time()+2)
[1] 1308074370
> Sys.Date()
[1] "2011-06-14"

We see that R is currently reading time up to seconds accuracy. Can the accuracy be increased?
That is, we need to know the time in millisecond units. As is the practice, set the default number
of digits at 3 using the options function.

> op <- options(digits.secs=3)
> Sys.time()
[1] "2011-06-14 23:33:43.964 IST"

Date objects belong to the classes POSIXct and POSIXt, where these two classes are of
the date/times class. For more details, try ?POSIXct. In Example 3.4.2 we had used a small
function: month.abb. What is it really? Let us check it out.

> month.abb
[1] "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug"
[9] "Sep" "Oct" "Nov" "Dec"
> month.name
[1] "January" "February" "June"
[7] "July" "August" "December"

Let us store some date objects. To begin with we will consider the system date itself, and see
the analysis (extraction actually) that may be performed with it.

> curr_date <- Sys.Date()
> curr_date
[1] "2015-04-13"
> years(curr_date); quarters(curr_date); months(curr_date)
[1] 2015
Levels: 2015
[1] "Q2"
[1] "April"
> days(curr_date); weekdays(curr_date); julian(curr_date)
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[1] 13
31 Levels: 1 < 2 < 3 < 4 < 5 < 6 < 7 < 8 < ... < 31
[1] "Monday"
[1] 16538
attr(,"origin")
[1] "1970-01-01"

In the above display, some functions are from the chron package, whereas the rest are from
thebase package. Tables 4.1, 4.2, and 4.3 of Spector (2008) have details about various formats
of dates and time. We will clarify a few of them here. As seen earlier, a single date may be
written in distinct ways: 9-Sep-2010, 9-Sep-10, 09-September-2010, 09-09-10,
09/09/10. The format can be specified through the format option as a string, and the
conversion of text matter to date is achieved through the Date function. Let us now check
how R understands these dates as one and the same.

> x1 <- as.Date(’9-Sep-2010’,format=’%d-%b-%Y’)
> x2 <- as.Date(’9-Sep-10’,format=’%d-%b-%y’)
> x3 <- as.Date(’09-September-2010’,’%d-%B-%Y’)
> x4 <- as.Date(’09-09-10’,’%d-%m-%y’)
> x5 <- as.Date(’09/09/10’,’%d/%m/%y’)
> x1;x2;x3;x4;x5
[1] "2010-09-09"
[1] "2010-09-09"
[1] "2010-09-09"
[1] "2010-09-09"
[1] "2010-09-09"
> x1==x2; x2==x3; x3==x4; x4==x5
[1] TRUE
[1] TRUE
[1] TRUE
[1] TRUE

Some algebra is possible with date objects, for example, difftime, mean, and range.

> x1+1
[1] "2010-09-10"
> difftime(x1,x2)
Time difference of 0 secs
> mean(c(x1,x2))
[1] "2010-09-09"
> range(c(x1,x2))
[1] "2010-09-09" "2010-09-09"

R is efficient in dealing with time and date variables and this section has given a brief expo-
sition of it.

?Dates, ?DateTimeClasses
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3.7 Text Manipulations

Data is not always in a ready-to-analyze format. We have seen that working with character or
factor objects is not as convenient as working with numeric or integer objects. Working with
text matter is a task with much higher complexity and inevitable inconvenience too. In fact,
there is a specialized school working with such problems, known as Text miners. Here, we
will illustrate the important text tools working our way through a complex text matter. The
complexity of text functions is such that we feel that it is better to work with some examples
instead of looking at their definitions. This approach forms the remainder of this section.

In Section 1.5, we indicated the importance and relevance of subscribing to the R mailing
list. The mail exchanged among the subscribers is uploaded at the end of the day. Furthermore,
all the mail in a month is consolidated in a tar compressed text file. As an example, the mail
exchanged during the month of October in 2005 is available in the file 2005-10.txt.gz,
which can be downloaded from the R website. The first few lines of this text file are displayed
below:

From lisawang at uhnres.utoronto.ca Sat Oct 1 00:14:23 2005
From: lisawang at uhnres.utoronto.ca (Lisa Wang)
Date: Fri, 30 Sep 2005 17:14:23 -0500
Subject: [R] How to get to the varable in a list
Message-ID: <433DB8BF.3E0E22C7@uhnres.utoronto.ca>
Hello,
I have a list "lis" as the following:

We will first learn how to read such text files in R using the readLines function, which
reads the different lines of a txt file as a character class.

> Imine <- readLines("2005-10.txt.gz")
> Imine[1:10]
[1] "From lisawang at uhnres.utoronto.ca Sat Oct 1 00:14:23 2005"
[2] "From: lisawang at uhnres.utoronto.ca (Lisa Wang)"
[3] "Date: Fri, 30 Sep 2005 17:14:23 -0500"
[4] "Subject: [R] How to get to the varable in a list"
[5] "Message-ID: <433DB8BF.3E0E22C7@uhnres.utoronto.ca>"
[6] ""
[7] "Hello,"
[8] ""
[9] "I have a list \"lis\" as the following:"
[10] ""

Verify for yourself the difference in actual text file 2005-10.txt.gz and the R object
Imine. The rest of the section will help you to extract information from such files. As an
example, we will first extract Date, Subject, and Message-ID for the first mail of
October 2005. We see that Date is in the third line of the object. We will ask R to return this
line number with the use of functions grep and grepl.

> grep("Date",Imine[1:10])
[1] 3
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> grepl("Date",Imine[1:10])
[1] FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

Thus, we see that the grep function finds in which line (row number) the text, commonly
referred as a string, of interest occurs. The grepl is a logical function. The number of char-
acters in a line can be found by the next line of codes through the R function nchar.

> unlist(lapply(Imine[1:10],nchar))
[1] 61 48 37 48 50 0 6 0 37 0

The fourth line of the text file contains the subject of the mail. We want to obtain the subject
sans the content header Subject: [R]. Note that we have included the space after [R].
We will first find the position where the subject begins and next extract the exact matter using
the R function.

> nchar("Subject: [R] ")
[1] 13
> substring(Imine[4],14)
[1] "How to get to the varable in a list"

Thus, the function substring deletes the first 13 characters of the string and returns the
rest of the string. Let us now extract the Message Id of this particular mail. As with the
subject id, we have Message-ID: < as an indicator of the line of the object which contains
the message ID. An added complexity is that we need to remove the sign > at the end of the
message. We can see once more the utility of the nchar function.

> grep("Message-ID: <",Imine[1:10])
[1] 5
> nchar(Imine[5])
[1] 50
> nchar("Message-ID: <")
[1] 13
> substr(Imine[5],14,49)
[1] "433DB8BF.3E0E22C7@uhnres.utoronto.ca"

We will conclude this section with the extraction of the time and date of this message. The line
containing the date and time is indicated by Date:. After doing extended manipulations we
can obtain the date and time of the message. Recall from the previous section that the format
of 30 Sep 2005 17:14:23 is \%d %\B %\Y \%H:\%M:\%S. Thus, we can extract
the exact Date and Time of this email.

> grep("Date: ",Imine[1:10])
[1] 3
> temp <- strsplit(Imine[3],"Date: ")[[1]][2]
> temp
[1] "Fri, 30 Sep 2005 17:14:23 -0500"
> tempdate <- substring(temp,6,nchar(temp)-6)
> tempdate
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[1] "30 Sep 2005 17:14:23"
> strptime(tempdate,"%d %B %Y %H:%M:%S")
[1] "2005-09-30 17:14:23"

Though this book does not deal with the emerging area of text mining, data also exists in rich
and hidden forms in text format and files. The functions used here form the base and it will be
useful for many text manipulations.

?grep, ?substring, ?substr, ?strptime

3.8 Scripts and Text Editors for R

In earlier sections we saw the need of using objects against just plain computing at the terminal.
As the need and experience grows, the user finds it difficult to get the task accomplished, even
within this framework. Consider the hypothetical scenario where the program runs into a few
hundred lines. A mistake made at the 21st line is observed after 89 lines of code have been
executed. There is thus this intrinsic need to write the R codes in a separate file and execute
them. Consider the set of following codes:

yb <- read.table("/.../youden.csv",header=TRUE,sep=",")
quantile(yb$Preparation_1,seq(0,1,.1))
# here seq give 0, .1, .2, ...,1
quantile(yb$Preparation_2,seq(0,1,.1))
fivenum(yb$Preparation_1)
fivenum(yb$Preparation_2)
sd(yb$Preparation_1); sd(yb$Preparation_2)
var(yb$Preparation_1); var(yb$Preparation_2)
range(yb$Preparation_1); range(yb$Preparation_2)

Copy and paste these codes in any text editor, such as Notepad, vi, kate, gedit, etc., and save
the file as yb.R or yb.txt. In the File option of the menu ribbon, a Windows user will
find New Script and Open Script options. Using the Open Script option, load the
yb.R file. Choose Run line or selection from the Edit option. We will then get
the results the same as those obtained in Section 2.4.1. If there are any errors, we can modify
the codes from the yb.R file, and thus the task of fixing the bugs is simplified. The Windows
user may also explore the package Rcmdr explained in the next subsection.

3.8.1 Text Editors for Linuxians

Linuxians unfortunately do not have any Menu ribbon option available to them. Interestingly,
we have a host of other options. As an example, just open the terminal and set the address to
the working directory. At the terminal, run the following one-line code:

Rscript yb.R
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We demonstrate two more options for Linuxians. Prof John Fox, McMaster University, and
his team have developed a special package Rcmdr. Installing packages and loading libraries
exercises will be explained in the next subsection. Enter the code below in the R session:

> library(Rcmdr)

and what you will see next is a user-friendly version of R. Yes, we have a new set of very
useful tools. The options on the menu ribbon now includes File, Edit, Data, Statistics, Graphics,
Models, Distributions, Tools, and Help. From the File menu, choose Open script file
and open the fileyb.R and then click on theSubmit button. We get the same results as earlier.

The third option for a Linuxian is also better. You can go to the web http://rkward.
sourceforge.net/ and download the RKWard 0.5.3 binaries. Of course knowing that Linuxians
prefer the terminal, simply key in sudo apt-get install rkward \verb. Having
installed RKWard, start it. This software is as user-friendly as many enterprise editions. The
options on the ribbon are File, Edit, View, Workspace, Run, Analysis, Plots, Distributions,
Windows, Settings, and Help options. If the reader is wondering why we are trivializing here,
we justify it as we have seen a lot of users struggling in using R in the Linux environment.
We will compromise here though by not repeating how to run yb.R in RKWard.

RStudio is quickly emerging as a popular variant and may be obtained from www.rstudio.
com.

?Rscript

3.9 Further Reading

Spector (2008) is a comprehensive book dedicated to data preparation. Chapter 2 of Venables
and Ripley (2002) contains data manipulation for R and S. We also recommend that the reader
go through Chapter 9 of Zuur, et al. (2009) for common R mistakes.

3.10 Complements, Problems, and Programs

Problem 3.1 For the data.frame some in Example 3.2.2, what will be your expec-
tation of the R code summary(some)? Validate the expectation by running
the code too.

Problem 3.2 By considering the dataset rootstock imported in Section 3.3, export the
data back to the working directory using the write.dta function from the
foreign package.

Problem 3.3 Run edit(newsome1) as required in Section 3.4, and comment on how this
function is different from the View function.

Problem 3.4 For any directory in your computer, use the function list.files to obtain
the contents, inclusive of files and maybe other directories. Recollect that the
default list.files() function returns the contents in the working direc-
tory, and hence you need to experiment with a directory other than getwd().
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Problem 3.5 Theattach function, when applied on adata.frame object, loads the vari-
ables in the R session. How do you undo this operation? If theattach function
is repeated more than once, what will be the result?

Problem 3.6 Suppose that the option header=FALSE is an error when an object
is imported. Write appropriate codes which bring up the right vari-
able names and deletes the wrong observations too. For example,
suppose that the chest data is inappropriately imported with chest
<-read.csv("Chest_VH.csv",header=FALSE). A simple use of
names(chest) <- chest[1,] and chest <- chest[-1,] will
not fix the problem.

Problem 3.7 Using the aggregate function, as in Example 3.5.1, obtain the frequency
instead of sum. Also, extend the list variables in the example to include both
GPP and Grade, and hence obtain the sum of Sat for possible combinations
of these two variables.

Problem 3.8 Using the ifelse conditional function, create a new as.Date type of func-
tion, which can read date objects available in a vector in two different forms.

Problem 3.9 Find the time difference between two time objects in units of hours,
days, etc.
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Exploratory Data Analysis

Package(s): LearnEDA, e1071, sfsmisc, qcc, aplpack, RSADBE
Dataset(s): memory, morley, InsectSprays, yb, sample, galton, chest, sleep,
cloud, octane, AirPassengers, insurance, somesamples, girder

4.1 Introduction: The Tukey’s School of Statistics

Exploratory Data Analysis, abbreviated and also simply referred to as EDA, combines very
powerful and naturally intuitive graphical methods as well as insightful quantitative techniques
for analysis of data arising from random experiments. The direction for EDA was probably laid
down in the expository article of Tukey (1962), “The Future of Data Analysis”. The dictionary
meaning of the word “explore” means to search or travel with the intent of some kind of useful
discovery, and in similar spirit EDA carries a search in the data to provide useful insights. EDA
has been developed to a very large extent by the Tukey school of statisticians.

We can probably refer to EDA as a no-assumptions paradigm. To understand this we
recall how the model-based statistical approaches work. We include both the classical and
Bayesian schools in the model-based framework, see Chapters 7 to 9. Here, we assume that
the data is plausibly generated by a certain probability distribution, and that a few parameters
of such a distribution are unknown. In a different fashion, EDA places no assumptions on
data-generating mechanism. This approach also gives an advantage to the analyst of making
an appropriate guess of the underlying true hypothesis rather than speculating on it. The
classical methods are referred by Tukey as “Confirmatory Data Analysis”. EDA is more about
attitude and not simply a bundle of techniques. No, these are not our words. More precisely,
Tukey (1980) explains “Exploratory data analysis is an attitude, a flexibility, and a reliance
on display, NOT a bundle of techniques, and should be so taught.”

The major work of EDA has been compiled in the beautiful book of Tukey (1977). The
enthusiastic reader must read the thought-provoking sections “How far have we come?”
which is there in almost all the chapters. Mosteller and Tukey (1977) have further developed
regression methods in this domain. Most of the concepts of EDA detailed in this chapter
have been drawn from Velleman and Hoaglin (1984). Hoaglin, et al. (1991) extend further

A Course in Statistics with R, First Edition. Prabhanjan Narayanachar Tattar, Suresh Ramaiah and B. G. Manjunath.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/tattar/statistics



Trim Size: 170mm x 244mm Tattar c04.tex V3 - 02/10/2016 10:13 A.M. Page 68�

� �

�

68 A Course in Statistics with R

the Analysis of Variance method in this school of thought. Albert’s R package LearnEDA is
useful for the beginner. Further details about this package can be found at http://bayes.bgsu
.edu/EDA/R/Reda.html. From a regression modeling perspective, Part IV, Rousseeuw and
Leroy (1987) offer very useful extensions.

In this chapter, we focus on two approaches of EDA. The preliminary aspects are cov-
ered in Section 4.2. The first approach is the graphical methods. We address several types
of graphical methods here of visualizing the data. Those graphical methods omitted are pri-
marily due to space restrictions and the author’s limitations. These visualization techniques
are addressed in Section 4.3. The quantitative methods of EDA are taken up in Section 4.4.
Finally, exploratory regression models are considered in Section 4.5. Sections 4.3 and 4.4 form
the second approach.

4.2 Essential Summaries of EDA

A reason for writing this section is that the summary statistics of EDA are often different from
basic statistics. The emphasis is, more often than not, on summaries such as median, quartiles,
percentiles, etc. Also, we define here a few summaries which we believe useful to gain insight
into exploratory analyses. The concept of median, quartiles, and Tukey’s five numbers, have
already been illustrated in Section 2.3. A useful concept associated with each datum is depth,
which is defined next.

Definition 4.2.1 Depth. Suppose that the observations are arranged in ascending order. For
each datum, depth is the minimum of the position from either end of the batch.

Depth for a datum x is denoted by d(x). We will denote the median by M. By definition,
depth of median is d(M) = (n + 1)∕2. We note that though in general the letter d stands for
derivative, and we use the same for depth, there is not really any room for confusion. The ideas
are illustrated using a simple program:

> x <- c(13,17,11,115,12,7,24)
> tab <- cbind(order(x),x[order(x)],c(1:7),c(7:1),pmin(c(1:7),
+ c(7:1)))
> colnames(tab) <- c("x_label","x_order","Position_from_min",
+ "Position_from_max","depth")
> tab

x_label x_order Position_from_min Position_from_max depth
[1,] 6 7 1 7 1
[2,] 3 11 2 6 2
[3,] 5 12 3 5 3
[4,] 1 13 4 4 4
[5,] 2 17 5 3 3
[6,] 7 24 6 2 2
[7,] 4 115 7 1 1

In the above output, the second line of R code arranges the sample in increasing order, with the
first column returning to their positions in the original sample using the order function. The

http://bayes.bgsu.edu/EDA/R/Reda.html
http://bayes.bgsu.edu/EDA/R/Reda.html
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third and fourth columns give their positions from minimum and maximum respectively. The
fifth and last columns obtain the minimum of the positions from the minimum and maximum
values using the pmin function, and thus return the depth of the sample values.

We begin with an explanation of hinges. The hinges are what everyone sees as the connec-
tors between the door and its frame. In the past there would be three hinges to fix the door.
The center one is at the middle of the length of the frame, and the other two hinges at the
positions of one- and three-quarters of the height of the frame. Thus, if we assume the data
as arranged in increasing (or decreasing) order along the height of the frame, the median is
then the middle hinge, whereas 25% of the observations are below the lower hinge and 25%
above the upper hinge. We naturally ask for the difference between the quartiles and hinges.
Hinges are technically calculated from the depth of the median, whereas quartiles are not.
Throughout this chapter, the lower-, middle-, and upper- hinges will be respectively denoted
by LH, M, and UH. From the output of the previous table, it is clear that the lower and upper
hinges are the averages of 11 and 12, equal to 11.5, and average of 17 and 24, equal to 20.5,
respectively.

The Tukey’s five numbers form one of the most important summaries in EDA. These five
numbers are the minimum, lower hinge, median, upper hinge, and maximum. The five numbers
are computed using the fivenum function, as seen earlier in Section 2.3.
Five number inter-difference, abbreviated as fnid, is defined as the consecutive differences
of the five numbers, viz., {lower hinge – minimum}, {median – lower hinge}, {upper
hinge – median}, and {maximum – upper hinge}. The five number inter-difference gives a
fair insight into how the sample is spread out. It is easy to define a new function, which gives
us the fnid using the diff operator: fnid <- function(x) diff(fivenum(x)).

As a quantitative measure of skewness, we introduce Bowley’s relative measure of skewness
based on Tukey’s five numbers, to be called Bowley-Tukey measure of skewness, as follows:

SBT = (UH − M) − (M − LH)
(UH − M) + (M − LH)

,

= UH − 2M + LH
UH − LH

. (4.1)

These concepts are illustrated in the next example of Memory Recall Times.

Example 4.2.1. Memory Recall Times. A test had been conducted with the purpose of
investigating if people recollect pleasant memories associated with a word earlier than some
unpleasant memory related with the same word. The word is flashed on the screen and
the time an individual takes to respond via the keyboard is recorded for both types of the
memories. This study was conducted by Dunn and Master (1982) and a useful URL is http://
openlearn.open.ac.uk/mod/resource/view.php?id=165509. This dataset is available in the
ACSWR package as the memory dataset.

We begin the exploratory analysis with the Tukey’s five numbers fivenum, median abso-
lute deviation mad, and inter-quartile range IQR.

> data(memory)
> lapply(memory,fivenum)
$Pleasant.memory

http://openlearn.open.ac.uk/mod/resource/view.php?id=165509
http://openlearn.open.ac.uk/mod/resource/view.php?id=165509
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[1] 1.070 1.805 2.815 3.320 6.170
$Unpleasant.memory
[1] 1.450 2.335 3.600 6.690 10.930
> lapply(memory,mad)
$Pleasant.memory
[1] 1.134189
$Unpleasant.memory
[1] 2.557485
> lapply(memory,IQR)
$Pleasant.memory
[1] 1.3775
$Unpleasant.memory
[1] 4.2425

We can see from the above summaries that pleasant memories are recollected faster than
unpleasant ones, since all the five number summaries for the time to recollect Pleasant.
memory are less than the corresponding entries for Unpleasant. memory. The vari-
ation in the times to recollect Pleasant.memory is also less than those for Unpleas-
ant.memory, as may be seen in the mad and IQR summaries.

The five-number inter-difference gives a fair insight into how the sample is spread out. For
the memory dataset, we first define a new function in R named fnid, an abbreviation for
five-number inter-difference.

> fnid <- function(x) diff(fivenum(x)) # difference of fivenum
> lapply(memory,fnid)
$Pleasant.memory
[1] 0.735 1.010 0.505 2.850
$Unpleasant.memory
[1] 0.885 1.265 3.090 4.240

It is interesting to note that each of the five number inter-differences for unpleasant memories
is larger than the corresponding measure for pleasant memories.

For the memory data, we next compute the Bowley-Tukey measure of skewness.

> fnid_pleasant <- fnid(memory$Pleasant.memory)
> fnid_unpleasant <- fnid(memory$Unpleasant.memory)
> btskew_pleasant <- (fnid_pleasant[3]-fnid_pleasant[2])
+ /(fnid_pleasant[3]+fnid_pleasant[2])
> btskew_unpleasant <- (fnid_unpleasant[3]-fnid_unpleasant[2])/
+ (fnid_unpleasant[3]+fnid_unpleasant[2])
> btskew_pleasant; btskew_unpleasant
[1] -0.3333333
[1] 0.4190586

We have thus far seen how the data summaries are useful. ◽

?mad, IQR, fivenum
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4.3 Graphical Techniques in EDA

4.3.1 Boxplot

The boxplot is essentially a one-dimensional plot, sometimes known as the box-and-whisker
plot. The boxplot may be displayed vertically or horizontally, without any value changes in the
information conveyed. Box and whiskers are two important parts here. The boxplot is always
based on three quantities. The top and bottom of the box are determined by the upper and
lower quartiles, and the band inside the box is the median. The whiskers are created according
to the purpose of the analyses and defined according to the convenience of the experimenter
and in line with the goals of the experiment. If complete representation of the data is required,
then the whiskers are produced by connecting the end points of the box with the minimum
and maximum value of the data. The rational of box and whiskers is that the quartiles divide
the dataset into four parts, with each part containing one-quarter of the sample. The middle
line of the box, the box, and the whiskers hence give an appropriate visual representation of
the data.

If the goal is to find the outliers, also known as extreme values, below 𝛼L and above 𝛼U
percentiles, the ends of the whiskers may be defined as data points which respectively gives us
these percentile points. All observations below the lower whisker and those above the upper
whisker may be treated as outliers. Some of the common choices of the cut-off percentiles are
𝛼L= 0.02 and 0.09, and 𝛼U = 0.98 and 0.91 respectively. Sometimes such percentiles may be
based on the inter-quartile range IQR.
The role of NOTCHES. Inference for significant difference between medians can be made
based on a boxplot which exhibit notches. The top and bottom notches for a dataset is
defined by

Median ± 1.57 × IQR√
n
. (4.2)

A useful interpretation for notched boxplots is the following. If the notches of two boxplots
do not overlap, we can interpret this as strong evidence that the medians of the two samples
are significantly different. For more details about notches, we refer the reader to Section 3.4
of Chambers, et al. (1983).

Example 4.3.1. AD8. The Youden-Beale Experiment. We have used this dataset in
Chapter 2, Section 4, and in a few other places too. We need to compare here if the two virus
extracts have a varying effect on the tobacco leaf or not. We have already read this dataset
into R on more than one occasion.

First, the boxplot is generated without the notches for yb data.frame using the
boxplot function. The median for Preparation_1 certainly appears higher than for
Preparation_2, see Part A of Figure 4.1. Thus, we are tempted to check whether the
medians for the two preparations are significantly different with the notched boxplot. Now,
the boxplot is generated to produce the notches with the option notch=TRUE. Appropriate
headers for a figure are specified with the title function. Most importantly, we have
used a powerful graphical technique of R through par, which is useful in setting graphical
parameters. Here, mfrow indicates that we need a multi-row figure with one row and two
columns. For more details, check ?par.
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Figure 4.1 Boxplot for the Youden-Beale Experiment

> par(mfrow=c(1,2))
> boxplot(yb)
> title("A: Boxplot for Youden-Beale Data")
> boxplot(yb,notch=TRUE)
Warning message:
In bxp(list(stats = c(7, 8.5, 13.5, 19, 31, 5, 6.5, 10.5, 15.5, :
some notches went outside hinges (’box’): maybe set notch=FALSE

> title("B: Notched Boxplots Now")

We can see that the notches overlapping indicate that the medians are not significantly dif-
ferent, see Part B of Figure 4.1. This result may not be acceptable to Youden and Beale!
However, the Warning message suggests that the notched boxplot may not be appropri-
ate. Moreover, the data points are eight only and more data may be required for the notched
boxplots. ◽

Example 4.3.2. The Michelson-Morley Experiment. In the late nineteenth century, a theory
floated for the dispersion of light waves was that light also requires a medium of travel like any
other waves, such as water waves or sound waves. The medium for light waves to propagate
was conjectured to be luminiferous ether. Since it was well known at that time that light can
travel through a vacuum too, it was believed that a vacuum must consist of luminiferous ether.
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Figure 4.2 Michelson-Morley Experiment

Michelson devised an ingenious experiment for establishing the presence of ether. The
device designed in this experiment is referred as an interferometer, in which a single source
of light is sent through a half-silvered mirror, splitting the single light beam into two beams
which travel at right angles to each other, see Figure 4.2. Each beam travels to the end of a long
arm, and from this end they are reflected back to the middle of small mirrors. Both the beams
are combined at this middle point of the small mirrors. If the ether medium exists, the beam
which travels to and from parallel to the flow of ether should take more time than the beam
which reflects perpendicularly, as the time gained from traveling downwards is less than the
one traveling upwards. This phenomenon should result in a delay for one of the light beams. It
is proved that such a shift would be approximately 4%. This is the famous Michelson-Morley
experiment. Some related R programs for graphical plots of this experiment can be found at
http://en.wikipedia.org/wiki/File:Michelsonmorley-boxplot.svg. In the dataset morley, the
output Speed contains the kilometers per second information recorded as the speed of light
minus the speed registered at the experimental unit. Twenty runs of the experiment is carried
out at five different centers. If there is the presence of ether, we would expect this speed to
be less than the speed of light in a free medium. The boxplot Figure 4.3 gives us a complete
understanding of this data. We obtain it as follows.

> par(mfrow=c(1,2))
> boxplot(Speed ∼ Expt, data=morley,xlab = "Experiment No.",
+ ylab="Speed of light (km/s minus 299,000)")
> abline(h=792.458, lty=3)
> boxplot(Speed ∼ Expt, data=morley,xlab = "Experiment No.",
+ ylab="Speed of light (km/s minus 299,000)",notch=TRUE)
Warning message:
In bxp(list(stats = c(740, 850, 940, 980, 1070, 760, 800, 845, 890, :
some notches went outside hinges (’box’): maybe set notch=FALSE

> abline(h=792.458, lty=3)

http://en.wikipedia.org/wiki/File:Michelsonmorley-boxplot.svg
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Figure 4.3 Boxplots for Michelson-Morley Experiment

Since the speed is almost in excess of the model value at 2.99 × 108 meters per second and
we expected the speed to become less than this value in the presence of ether, we conclude
that ether does not exist. Furthermore, most of the boxplots have overlapping notches, refer
to Part B of Figure 4.3, and hence this indicates that medians of the observations across the
different centers are identical. This experiment is one of the most important experiments in
Physical Science. ◽

Example 4.3.3. Memory Recall Times. Contd. We now graphically examine the memory
data using, of course, the R code boxplot(memory).

> par(mfrow=c(1,2))
> boxplot(memory)
> title("A: Boxplot for Memory Recall")

Part A of Figure 4.4 clearly shows and confirms the results of the data summaries. ◽

Example 4.3.4. The Effect of Insecticides. McNeil (1977). Six insecticides, labeled
A to F, were used in an agricultural experiment and the number of insects found
dead after using them were counted. The dataset is available as InsectSprays in
the package datasets. We first count the number of insect deaths due to each of the
insecticides using the aggregate function with the by=list provided by the spray
column. The notched boxplots are then obtained for each insect spray using the formula
boxplot(count∼spray,data=InsectSprays, notch=TRUE).
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Figure 4.4 Boxplot for the Memory Data

> data(InsectSprays)
> aggregate(InsectSprays$count,by=list(InsectSprays$spray),sum)
Group.1 x

1 A 174
2 B 184
3 C 25
4 D 59
5 E 42
6 F 200
> boxplot(count∼spray,data=InsectSprays,notch=TRUE)
Warning message:
In bxp(list(stats = c(7, 11, 14, 18.5, 23, 7, 12, 16.5, 18, 21, :
some notches went outside hinges (’box’): maybe set notch=FALSE

The notches for sprays A, B, and F are overlapping, Part B of Figure 4.4, and thus indicate that
their medians are not significantly different. Similar exploratory inference holds for sprays C
to E. However, the notches for the latter group and the former group are non-overlapping
with the medians less in magnitude. This leads us to conclude that if we were to select one of
the insect sprays, we could choose any from A, B, and F (without looking any further?). We
should be careful of two things here. First, some notches were outside the hinges of the box,
and there was the presence of outliers for sprays C and D. ◽

?bxp
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4.3.2 Histogram

The histogram was invented by the eminent statistician Karl Pearson and is one of the earliest
types of graphical display. It goes without saying that its origin is earlier than EDA, at least the
EDA envisioned by Tukey, and yet it is considered by many EDA experts to be a very useful
graphical technique, and makes it to the list of one of the very useful practices of EDA. The
basic idea is to plot a bar over an interval proportional to the frequency of the observations
that lie in that interval. If the sample size is moderately good in some sense and the sample
is a true representation of a population, the histogram reveals the shape of the true underly-
ing uncertainty curve. Though histograms are plotted as two-dimensional, they are essentially
one-dimensional plots in the sense that the shape of the uncertainty curve is revealed without
even looking at the range of the x-axis. Furthermore, the Pareto chart, stem-and-leaf plot, and a
few others may be shown as special cases of the histogram. We begin with a “cooked” dataset
for understanding a range of uncertainty curves.

Example 4.3.5. Understanding Histogram of Various Uncertainty Curves. In the dataset
sample, we have data from five different probability distributions. Towards understanding
the plausible distribution of the samples, we plot the histogram and see how useful it is.

> data(sample)
> layout(matrix(c(1,1,2,2,3,3,0,4,4,5,5,0), nrow=2, ncol=6,
+ byrow=TRUE),respect=FALSE)
> matrix(c(1,1,2,2,3,3,0,4,4,5,5,0), nrow=2, ncol=6, byrow=TRUE)

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1 1 2 2 3 3
[2,] 0 4 4 5 5 0
> hist(sample[,1],main="Histogram of Sample 1",xlab="sample1",
+ ylab="frequency")
> hist(sample[,2],main="Histogram of Sample 2",xlab="sample2",
+ ylab="frequency")
> hist(sample[,3],main="Histogram of Sample 3",xlab="sample3",
+ ylab="frequency")
> hist(sample[,4],main="Histogram of Sample 4",xlab="sample4",
+ ylab="frequency")
> hist(sample[,5],main="Histogram of Sample 5",xlab="sample5",
+ ylab="frequency")

In the present case, we need five plots on a single graphical framework, and using par with
either mfrow=c(2,3) or mfrow=c(3,2) leaves an empty plot. The layout graphics
function helps to specify a complex plot. In the above R code, the graphical device is divided
into 12 parts across 2 rows and 6 columns. The first plot of the device is plotted on first two
parts of the first row, the second third and fourth part of first row, and so forth. The option of
0 says that such parts should not be used for plots.

The hist function works on a numeric vector. The option main helps in specifying a title
for the histogram, and xlab and ylab can be used to specify labels for the axes.

Figure 4.5 is the output of the previous R program. The histogram of sample 1 is bell-shaped,
and its peak (mode) is near 0. The mean and median are respectively-0.1845 and -0.1450,
again closer to 0. The standard deviation and variance are respectively 0.9714806 and
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Figure 4.5 Different Types of Histograms

0.9437745. Verify these numbers! The shape indicated by the histogram and the summaries
indicate that the distribution of the sample may be a normal distribution.

The histogram of Sample 2 is tailing off very fast after the value of 50. The distribution
indicates positive skewness, and also the variance 2933.388 is approximately the square of
the mean 53.27. Furthermore, all the values are non-negative, which leads us to believe that
the sampling distribution may be an exponential distribution. An important feature of Samples
3 and 4 is that all the values are non-negative integers. This makes us believe that the sampling
distribution may be a discrete distribution. The mean and variance of Sample 3 is 4.98
and 5.2117, whereas these numbers for Sample 4 are 2.83 and 1.7384. The mean and
variance of Sample 3 are almost equal, which is a characteristic of Poisson distribution and the
variance being larger rules out the possibility of the sample being from a binomial distribution.
Similarly, the variance of Sample 4 being less than its mean is a reflection that this sample may
be from a binomial distribution. The interpretation of the fifth sample is left to the reader. ◽
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A few fundamental questions related to the creation of histograms need to be asked at
this moment. The central idea is to plot a bar over an interval. All the intervals together
need to cover the range of the variables. For example, the number of intervals for the five
histograms above are respectively 11, 6, 11, 6, and 10. How did R decide the number of
intervals? The width of each interval for these histograms are respectively 0.5, 50, 1, 1, and
0.1. What is the basis for the width of the intervals? The reader may check them out with
length(hist$counts) and diff(hist$breaks). The intervals are also known as
bins. Let us denote the number of intervals by k and the width of the bin by h. Now, if we
know either the number of the interval or the bin width, the other quantity may be easily
obtained with the formula:

k =
[

maxixi − minixi

h

]
, or (4.3)

h =
[

maxixi − minixi

k

]
, (4.4)

where the argument [ ] denotes the ceiling of the number. However, in practice we do not
know either the number of bins or their width. The hist function offers three options for the
bin width/number based on the formulas given by Sturges, Scott, and Freedman-Diaconis:

k = [log2n + 1], Sturges formula, (4.5)

h = 3.5�̂�
3
√

n
, Scott’s formula, (4.6)

h = 2IQR
3
√

n
, Freedman-Diaconis formula, (4.7)

where n is the number of observations and �̂� is the sample standard deviation. The formulas
4.5–4.7 are respectively specified to the hist function with breaks="Sturges",
breaks="Scott", and breaks="FD". The other options include directly speci-
fying the number of breaks with a numeric, say breaks=10, or through a vector
breaks=seq(-10,10,0.5).

Example 4.3.6. AD5. The Galton Data. The histogram gives a nice display of the variables.
Here the goal would be to obtain a histogram for the height of parent and child on the same plot.
However, we would clearly like to see all the frequency bars for parent as well as child. That
is, if the frequency of the height for the parent is larger than for the child for a certain interval,
it should be reflected the same as well as for the height of the variable of lesser frequency. The
histograms should cover the range of both variables. With these technicalities in mind, the next
program gives the required figure. The reader can first go through the program and follow it
up with the description and the resulting figure.

> hist(galton$parent,freq=FALSE,col="green",density=10,xlim=c(60,75),
+ xlab="height",main="Histograms for AD5")
> hist(galton$child,freq=F,col="red",add=TRUE,density=10,angle=-45)
> legend(x=c(71,73),y=c(0.2,0.17),c("parent","child"),col=c("green",
+ "red"),pch="-")
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Figure 4.6 Histograms for the Galton Dataset

In the event of two variables having an unequal number of observations, the option
freq=FALSE will ensure that the heights of two variables over an interval remain the
same if their overall percentage of the bin remains equal. The limits for the height values is
contained with xlim=c(60,75). The histogram of the parent’s height is identified with
col="green",density=10, and add=TRUE,density=10,angle=-45 ensures
that the embossed histogram is identifiable from that of the preceding one. The legend
had been added to suitably complement the program. The reader should further interpret the
results from Figure 4.6. ◽

4.3.3 Histogram Extensions and the Rootogram

The histogram displays the frequencies over the intervals and for moderately large number
of observations, it reflects the underlying probability distribution. The boxplot shows how
evenly the data is distributed across the five important measures, although it cannot reveal
the probability distribution in a better way than a boxplot. The boxplot helps in identifying
the outliers in a more apparent way than the histogram. Hence, it would be very useful if
we could bring together both these ideas in a closer way than look at them differently for
outliers and probability distributions. An effective way of obtaining such a display is to place
the boxplot along the x-axis of the histogram. This helps in clearly identifying outliers and
also the appropriate probability distribution.
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The R package sfsmisc contains a function histBxp, which nicely places the boxplot
along the x-axis of the histogram.

Example 4.3.7. Understanding Histogram of Various Uncertainty Curves. The short pro-
gram for this problem is given below.

> par(mfrow=c(1,3))
> histBxp(sample$Sample_1,col="blue",boxcol="blue",xlab="x")
> histBxp(sample$Sample_2,col="grey",boxcol="grey",xlab="x")
> histBxp(sample$Sample_3,col="brown",boxcol="brown",xlab="x")
> title("Boxplot and Histogram Complementing",outer=TRUE,line=-1)

The combination of histogram and boxplot gives a very nice display of both the concepts, as
seen in Figure 4.7. ◽

Generally, in histograms, bar height varies more in bins with long bars than in bins with
short bars. In frequency terms, the variability of the counts increases as their typical size
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increases. Hence, a re-expression can approximately remove the tendency for the variability
of a count to increase with its typical size. The rootogram arises on taking the re-expression
as the square root of the frequencies. This observation is important towards an understanding
of the transformations.

Example 4.3.8. AD3. The “Militiamen Chests” Dataset. This dataset was introduced in
AD3. In what follows, first the histogram is obtained, and then the rootogram.

> data(chest)
> attach(chest)
> names(chest)
[1] "Chest" "Count"
> militiamen <- rep(Chest,Count)
> length(militiamen)
[1] 5738
> bins <- seq(33,48)
> bins
[1] 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
> bin.mids <- (bins[-1]+bins[-length(bins)])/2
> par(mfrow=c(1,2))
> h <- hist(militiamen, breaks = bins, xlab= "Chest Measurements
+ (Inches)", main= "A: Histogram for the Militiamen")
> h$counts <- sqrt(h$counts)
> plot(h,xlab= "Chest Measurements (Inches)",ylab= "ROOT FREQUENCY",
+ main= "B: Rootogram for the Militiamen")

Note that we do not have the real dataset for the chest width of the militiamen in terms of
each datum. The data provides summary, actually frequencies, of the number of people hav-
ing width 33 inches, 34 inches, and so forth. The program first recreates the data using the
rep function, where each distinct chest width, Chest, is replicated the number of times as
specified in Count. Next, the bin points are specified as integers varying from 33 to 48. A his-
togram for the militiamen’s chest width data is first created and also assigned to a new object
h, see Part A of Figure 4.8. Then, the frequency of the histogram is modified by taking the
square-root transformation, that is, h$counts <- sqrt(h$counts) and the histogram
is then regenerated, which is actually a rootogram. It may be seen from the plot that the
rootogram appears smoother than the histogram, see Part B of Figure 4.8. ◽

4.3.4 Pareto Chart

The Pareto chart has been designed to address the implicit questions answered by the Pareto
law. The common understanding of the Pareto law is that “majority resources” is consumed by
a “minority user”. The most common of the percentages is the 80–20 rule, implying that 80%
of the effects come from 20% of the causes. The Pareto law is also known as the law of vital
few, or the 80–20 rule. The Pareto chart gives very smart answers by completely answering
how much is owned by how many. Montgomery (2005), page 148, has listed the Pareto chart
as one of the seven major tools of Statistical Process Control.
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A: Histogram for the Militiamen
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B: Rootogram for the Militiamen
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Figure 4.8 A Rootogram Transformation for Militiamen Data

R did not have any function for this plot and neither was there any add-on package which
would have helped the user until 2004. However, one R user posed this question to the “list”
in 2001 and an expert on the software promptly prepared exhaustive codes over a period
of about two weeks. The codes are available at https://stat.ethz.ch/pipermail/r-help/2002-
January/018406.html. The Pareto chart can be plotted using pareto.chart from the R
package qcc. We will use Wingate’s program and assume here that the reader has copied the
codes from the web mentioned above and compiled it in the R session.

The Pareto chart contains three axes on a two-dimensional plot only. Generally, causes/users
are arranged along the horizontal axis and the frequencies of such categories are conveyed
through a bar for each of them. The bars are arranged in a decreasing order of the frequency.
The left-hand side of the vertical axis denotes the frequencies. The cumulative frequency curve
along the causes are then simultaneously plotted with the right-hand side of the vertical axis
giving the cumulative counts. Thus, at each cause we know precisely its frequency and also
the total issues up to that point of time.

Example 4.3.9. Cause and Frequencies. For a chart whose codes have been obtained
from the Internet, we resort to the Internet again for a dataset. Click on the web-link http://
www.otago.ac.nz/sas/qc/chap26/sect4.htm. From this page, copy and paste the Table 4.1.

https://stat.ethz.ch/pipermail/r-help/2002-January/018406.html
https://stat.ethz.ch/pipermail/r-help/2002-January/018406.html
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Table 4.1 Frequency Table of Contamination and Oxide Effect

Obs Cause COUNT PERCENT

1 Contamination 14 45.1613
2 Corrosion 2 6.4516
3 Doping 1 3.2258
4 Metalization 2 6.4516
5 Miscellaneous 3 9.6774
6 Oxide Defect 8 25.8065
7 Silicon Defect 1 3.2258
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Figure 4.9 A Pareto Chart for Understanding The Cause-Effect Nature

> freq <- c(14,2,1,2,3,8,1)
> names(freq) <- c("Contamination","Corrosion","Doping",
+ "Metallization", "Miscellaneous", "Oxide Effect","Silicon Effect")
> pareto(freq)

It can be clearly seen from the Pareto chart in Figure 4.9 that Contamination and Oxide
Effect account for more than 80% of the causes in this experiment. ◽
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4.3.5 Stem-and-Leaf Plot

Velleman and Hoaglin (1984) describe the basic idea of stem-and-leaf display by allowing the
digits of the data values to do the sorting into numerical order and then display the same. The
steps for constructing stem-and-leaf are given in the following:

1. Select an appropriate pair of adjacent digits positioned in the data and split each observation
between the adjacent digits. The digits selected on the left-hand side of the data are called
leading digits.

2. Sort all possible leading digits in ascending order. All possible leading digits are called
stems.

3. Write the first digit of each data value beside its stem value. The first digit is referred to as
the leaf.

In Step 2, all possible stems are listed irrespective of whether they occur in the given dataset
or not. The stem function from the base package will be useful for obtaining stem-and-leaf
plots.

Example 4.3.10. AD4. The Sleep Data. The purpose of this famous dataset is to investi-
gate if the drug group==2 results in extra hours of sleep compared with the control group
group==1. First, the extra sleep hours are sorted by the groups and then the stem function
is applied over the groups to enable us to decide whether the drug leads to extra sleep hours.

> sort(sleep$extra[sleep$group==1])
[1] -1.6 -1.2 -0.2 -0.1 0.0 0.7 0.8 2.0 3.4 3.7
> sort(sleep$extra[sleep$group==2])
[1] -0.1 0.1 0.8 1.1 1.6 1.9 3.4 4.4 4.6 5.5
> stem(sleep$extra[sleep$group==1],scale=2)
The decimal point is at the |
-1 | 62
-0 | 21
0 | 078
1 |
2 | 0
3 | 47

> stem(sleep$extra[sleep$group==2],scale=2)
The decimal point is at the |
-0 | 1
0 | 18
1 | 169
2 |
3 | 4
4 | 46
5 | 5

For the control group, the sleep hours vary from -1.6 to 3.7, whereas for the drug it varies
from -0.1 to 5.5 hours. In the former case, with scale=2, the leading digits would be
-1, -0, 0, 1, 2, 3, and for the latter they are -0, 0, 1, ...,5. The stem plot
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for control group suggests the median value at about0.35 and for the drug group at1.75, and
thus the stem-and-leaf plot suggests an increase of about 1.4 sleep hours for the drug group.◽

Example 4.3.11. The Cloud Seeding Data. Chambers, et al. (1983), page 381, contains the
cloud seeding dataset. Rainfall in acre-feet for 52 clouds is measured, 50% of which have natu-
ral rain (control group), whereas the others are seeded. We need to visually compare whether
seeding the clouds leads to an increase in rainfall in acre-feet. The stem-and-leaf plot will be
used to analyze this cloud seed data. The stem function will again be used here.

The small codesummary(cloud) shows that the rain in acre-feet for theControl group
varies from 1.00 to 1202.60 and for the Seeded group from 4.10 to 2745.60. The
number of leading digits for this data will be too enormous and meaningless too. Hence, we
resort to a logarithmic transformation of the data.

> data(cloud)
> summary(cloud)

Control Seeded
Min. : 1.00 Min. : 4.10
1st Qu.: 24.82 1st Qu.: 98.12
Median : 44.20 Median : 221.60
Mean : 164.59 Mean : 441.98
3rd Qu.: 159.20 3rd Qu.: 406.02
Max. :1202.60 Max. :2745.60
> stem(log(cloud$Seeded),scale=1)
The decimal point is at the |
1 | 4
2 | 09
3 | 457
4 | 57889
5 | 33556678
6 | 1269
7 | 449

> stem(log(cloud$Control),scale=1)
The decimal point is at the |
0 | 0
1 | 66
2 | 49
3 | 123344679
4 | 2456
5 | 015889
6 | 7
7 | 1

From the stem-and-leaf plot, the median acre-feet rain for the seeded clouds appears around
5.4 and for the control clouds around 3.8. The difference is certainly significant and the
stem-and-leaf plot suggests that the rainfall is larger for the seeded clouds. ◽

Multiple histograms and boxplots were obtained on the same graphical device. Thus, to
compare two stem-and-leaf plots, there is a need for a similar display arrangement. The
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infrastructure will now be discussed. Tukey has indeed enriched the EDA in ways beyond
the discussion thus far. An important technique invented by Prof Tukey is the modification
of the stem-and-leaf plot and this technique is available from the aplpack package in
the stem.leaf.backback function. This technique will be illustrated through the two
examples discussed previously.

If the trailing digits for stems are few, the interpretation of the stem-and-leaf plot becomes
simpler. However, if there are a large number of trailing digits for a stem, it is inconvenient to
interpret the display. Suppose that the stem is the integer 1 and there are nearly 15 observations
among the trailing digits. This means that the stem part will have 15 numbers besides it, which
will obscure the display. In an informal way, Prof Tukey suggests that such stems be further
divided into sub-stems. The question is then how do we identify those sub-stems, which are
part of neither the leading digits nor the trailing digits. Typically, the digits would be one of
the ten integers 0 to 9. The notation for the sub-stems suggested by Prof Tukey is to identify
the digits by the first letters of their spellings. Thus 2 (two) and 3 (three) will be denoted by
t, 4 (four) and 5 (five) by f, 6 (six) and 7 (seven) by s. A convention for the digits 0, 1, 8, and
9 is the denote 0 (zero) and 1 (one) by the star symbol *, and 8 (eight) and 9 (nine) by the
period “.”.

Example 4.3.12. Tukey’s Extension of the Stem-and-Leaf Plot. The aplpack package’s
stem.leaf.backback function will be used to arrange two stem-and-leaf plots in parallel,
which help in direct comparisons. The cumulative frequencies from both the extremes are also
provided for the stem-and-leaf plots and the point at which there is an overlap will help to
identify the median. An awesome trick here!

We also consider one more dataset octane from the RSADBE package. In this problem,
there are two methods of obtaining the octane rating of gasoline blends, and we need to check
which method leads to higher ratings. The next batch of R codes gives the action on all the
three datasets.

> stem.leaf.backback(sleep$extra[sleep$group==1],sleep$extra
+ [sleep$group==2], back.to.back=FALSE)
__________________________
1 | 2: represents 1.2, leaf unit: 0.1

sleep$extra[sleep$group == 1]
sleep$extra[sleep$group == 2]

__________________________
-2 | |
-1 |62 2 |
-0 |21 4 |1 1
0 |078 (3) |18 3
1 | |169 (3)
2 |0 3 |
3 |47 2 |4 4
4 | |46 3
5 | |5 1
6 | |

__________________________
n: 10 10
__________________________
> stem.leaf.backback(log(cloud$Seeded),log(cloud$Control),
+ back.to.back=FALSE)
________________________________
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1 | 2: represents 1.2, leaf unit: 0.1
log(cloud$Seeded)

log(cloud$Control)
________________________________
0* | |0 1
0. | |
1* |4 1 |
1. | |55 3
2* |0 2 |4 4
2. |8 3 |8 5
3* |44 5 |012233 11
3. |7 6 |678 (3)
4* | |234 12
4. |57778 11 |59 9
5* |234 (3) |04 7
5. |56678 12 |789 5
6* |01 7 |
6. |58 5 |7 2
7* |44 3 |0 1
7. |9 1 |
8* | |

________________________________
n: 26 26
________________________________
> library(RSADBE)
> data(octane)
> stem.leaf.backback(octane$Method_1,octane$Method_2,
+ back.to.back=TRUE)
_____________________________________
1 | 2: represents 12, leaf unit: 1

octane$Method_1
octane$Method_2

_____________________________________
2 10| 8* |
4 33| t |3 1
9 55544| f |5 2

16 7777666| s |
(2) 98| 8. |89 4
14 11110000| 9* |
6 32| t |22333 9
4 4| f |4455 13

| s |667777 (6)
3 8| 9. |8899999 13

| 10* |011 6
| t |3 3

2 55| f |
| s |66 2
| 10. |
| 11* |

_____________________________________
n: 32 32
_____________________________________
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The reader should verify if the medians as argued in the earlier examples are indeed correct.
In light of the discussion in the paragraph preceding the example, interpret the symbols *, t,
f, s, and “.”. The number of bracket (2) for Method_1 and (6) for Method_2 indicates
the median, that is, approximately 88 and 97. ◽

4.3.6 Run Chart

The run chart is also known as the run-sequence plot. In the run chart, the data value is simply
plotted against its index number. For example, if x1, x2, … , xt is the data, plot x1, x2, … , xt
against their index 1, 2, … , t. The run charts can be plotted in R using the function plot.ts,
which is very commonly used in time-series analysis.

Example 4.3.13. AD9. The Air Passengers Dataset. Consider the dataset of “Airline Pass-
engers” in the US for the period 1949–1960. Plot the number of passengers against the month
of the year label to obtain the run chart.

> par(mfrow=c(1,2))
> AirPassengers

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1949 112 118 132 129 121 135 148 148 136 119 104 118
1950 115 126 141 135 125 149 170 170 158 133 114 140

1960 417 391 419 461 472 535 622 606 508 461 390 432
> plot.ts(AirPassengers)
> title("A: Run Chart for AD9")

The run chart in Part A of Figure 4.10 clearly shows that there is an increasing trend in the
number of users. It may be seen that there is a seasonal variation whose size is roughly equal
to the local mean. ◽

Example 4.3.14. Insurance Claims Data. Montgomery (2005), page 42, describes this
dataset in which the number of days taken by the company to process and settle the claims
of employee health insurance customers. The data is recorded for the number of days for
settlement from the first to fortieth claim. Here, it is the claim number which plays the role of
“time index” and not the number of days taken to settle the claim. Thus, to execute the run
chart for this dataset, we have an insight into how the company has evolved from the first to
the fortieth claim.

> data(insurance)
> plot(insurance$Claim,insurance$Days,"l",xlab="Claim Sequence",
+ ylab="Time to Settle the Claim")
> title("B: Run Chart for Insurance Claim Settlement")

We can see in Part B of Figure 4.10 that though there is a lot of upward and downward move-
ments across the claims, it is gradually decreasing and thus shows that as the experience of the
company increases in handling the claims, it is able to settle the claims in less time. ◽



Trim Size: 170mm x 244mm Tattar c04.tex V3 - 02/10/2016 10:13 A.M. Page 89�

� �

�

Exploratory Data Analysis 89

Time

A
ir 

pa
ss

en
ge

rs

1950 1952 1954 1956 1958 1960

10
0

20
0

30
0

40
0

50
0

60
0

A: Run chart for AD9

0 10 20 30 40

20
30

40
50

Claim sequence

T
im

e 
to

 s
et

tle
 th

e 
cl

ai
m

B: Run chart for insurance claim settlement

Figure 4.10 A Time Series Plot for Air Passengers Dataset

In certain ways, the graphical methods are useful for univariate data. The next technique is
more useful for dealing with paired/multivariate data.

4.3.7 Scatter Plot

The reader is most certainly familiar with this very basic format of plots. Whenever we have
paired data and there is a belief that the variables are related, its only natural to plot them
against one other. Such a display is, of course, known as the scatter plot or the x-y plot. There
is a subtle difference between them, see Velleman and Hoaglin (1984). We will straightaway
start with examples.

Example 4.3.15. AD5. The Galton Data. As has been described in Section 4 of Chapter 1,
we attempt an initial understanding of the relationship between the height of the child and the
parent.

> library(UsingR)
> data(galton)
> plot(galton[,2],galton[,1],xlim=range(galton[,2]),ylim=
+ range(galton[,1]),xlab="Parent’s Height",ylab="Child’s Height")
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Figure 4.11 A Scatter Plot for Galton Dataset

The display, Figure 4.11, does not suggest a strong correlation between the two variables
here. ◽

Example 4.3.16. Scatter Plots for Understanding Correlations. We consider a cooked data
tailor-made for the use of scatter plots towards understanding correlations. This dataset is
available in the file some6samples.csv.

> data(somesamples)
> attach(somesamples)
> par(mfrow=c(2,3))
> plot(x1,y1,main="Sample I",xlim=c(-4,4),ylim=c(-4,4))
> plot(x2,y2,main="Sample II",xlim=c(-4,4),ylim=c(-4,4))
> plot(x3,y3,main="Sample III",xlim=c(-4,4),ylim=c(-4,4))
> plot(x4,y4,main="Sample IV",xlim=c(-4,4),ylim=c(-4,4))
> plot(x5,y5,main="Sample V",xlim=c(-4,4),ylim=c(-4,4))
> plot(x6,y6,main="Sample VI",xlim=c(-4,4),ylim=c(-4,4))

The plots, Figure 4.12, titled Sample I and Sample II, resemble two clouds, and also
appear to be mirror images of each other. If the first plot increases in the x value, this suggests
an increase in y by a certain value, and the second plot suggests that increasing x should
lead to a decrease in y by that certain value. That certain value is surely not 0 but does not
look to be a high value either. The scenario in Sample III and Sample IV mirrors the
relationship between the first two, except that we are sure that the “certain value” is high. The
reader can further see that Sample V looks more or less like Sample I, with the cloud
now denser than Sample I but sparser than Sample III. The exercise for the reader is
to interpret Sample VI. ◽
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Figure 4.12 Understanding Correlations through Different Scatter Plots

The scatter plot will be later extended to multivariate data with more than two variables
through an idea known as matrix of scatter plots. See Sections 12.4 and 14.2.

?plot

4.4 Quantitative Techniques in EDA

We discuss here two important methods of quantitative techniques in EDA. For advance con-
cepts of quantitative techniques, refer to Hoaglin, et al. (1991). The methods described and
demonstrated will lay a firm foundation towards the methods described in that book. The first
method here is fairly simple, and the second one is more detailed.

4.4.1 Trimean

Trimean is a measure of location and is the weighted average of the median and two other
quartiles. Since median is a measure of location, we may intuitively expect the trimean to be
more robust than the median as well as the mean. If Q1,Q2,Q3 are the lower, middle (median),
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and upper quartiles, the trimean is defined by

TM =
Q1 + 2Q2 + Q3

4
= 1

2

(
Q2 +

Q1 + Q3

2

)
. (4.8)

The last part of the above equation suggests that the trimean can be viewed as the average of
median and average of the lower and upper quartiles. Weisberg (1992) summarized trimean as
“a measure of the center (of a distribution) in that it combines the median’s center values with
the mid-hinge’s attention to the extremes.” In fact, we can even replace the lower and upper
quartiles in the above expression by the corresponding hinges and then derive the trimean as
a weighted average of the median and the hinges. That is,

TMH =
HL + 2Q2 + HU

4
= 1

2

(
Q2 +

HL + HU

2

)
.

As the hinges, the three of them, are obtained using the Tukeys’ five numbers function
fivenum, it is straightforward to obtain the trimean using either the quartiles (consider
using the quantile function) or the hinges. The next small R session defines the required
function in TM and TMH, and we also show that hinges and quartiles need not be equal.

> TM <- function(x) {
+ qs <- quantile(x,c(0.25,0.5,0.75))
+ return(as.numeric((qs[2]+(qs[1]+qs[3])/2)/2))
+ }
> TMH <- function(x) {
+ qh <- fivenum(x,c(0.25,0.5,0.75))
+ return((qh[2]+(qh[1]+qh[3])/2)/2)
+ }
> TM(iris[,2]); TMH(iris[,2])
[1] 3.02
[1] 2.65
> ji4 <- jitter(iris[,4])
> quantile(ji4,c(0.25,0.75))
25
0.29 1.80
> fivenum(ji4)[c(2,4)]
[1] 0.289 1.797

The functions are simple to follow and hence it is left to the reader to figure it out.

4.4.2 Letter Values

We have mentioned how EDA is about attitude, data driven stories, etc. Since the emphasis in
EDA is on data, it makes a whole lot of sense to understand each “datum” as much as possible.
Some natural examples of useful datum are minimum, maximum, etc. Median is also a useful
datum when the size of data is odd. Recall that by definition, see Section 4.2, depth of a datum
is the minimum of the position of the datum from either end of the batch. We can see from
the outputs of Section 4.2 that the minimum and maximum values, also called extremes, have
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a depth of 1, the second largest and second smallest have a depth of 2, and so on. Thus, two
observations, namely, the ith and (n + 1 − i)th ordered observations in ascending order have
depth i.

The median splits the data into two equal halves. The upper and lower hinges do that to the
upper and lower halves dataset what median does to the entire collection, that is, the hinges
give us quarters of the dataset. We have seen earlier that the depth of the median, for a sample
of size n is (n + 1)∕2. It is fairly easy to see that the depth of the hinges is therefore

d(H) = [d(M)] + 1
2

, (4.9)

where [d(M)] indicates the integer part of d(M).
The next step is to define the half dividers of quarters, which results in eight equal divisions

of the dataset. They are referred to as eights for simplicity, and we denote the eights by E.
Furthermore, the depth of eights is given by

d(E) = [d(M)] + 1
2

. (4.10)

The concept will now be illustrated from Velleman and Hoaglin.

Example 4.4.1. Area of New Jersey Counties. Velleman and Hoaglin (1984). Data is avail-
able on the area of New Jersey counties and we want to find which cities fall in the halves,
quarters, and eights of the dataset. See page 44 of Velleman and Hoaglin.

> areanj <- c(569, 234, 819, 221, 267, 500, 130, 329, 47, 423, 228,
+ 312, 476, 468, 642, 192, 365, 307, 527, 103, 362)
> counties <- c("Atlantic", "Bergen", "Burlington", "Camden",
+ "Cape", + "Cumberland", "Essex", "Gloucester", "Hudson",
+ "Hunterdon", "Mercer", + "Middlesex", "Monmouth", "Morris",
+ "Ocean", "Passaic", "Salem", "Somerset", "Sussex",
+ "Union", "Warren")
> njc <- data.frame(counties,areanj)
> njc <- njc[order(njc[,2]),]
> d_median <- (nrow(njc)+1)/2
> d_hinge <- (floor(d_median)+1)/2
> d_eights <- (floor(d_hinge)+1)/2
> d_median;d_hinge;d_eights
[1] 11
[1] 6
[1] 3.5

Though floor is not needed in this example, we have factored it into the program so that if
this program is executed on other datasets, we get the right output. We modify the data frame
njc for facilitating the computations of the hinges and the eights.

> indices <- c(1:d_median,(d_median-1):1)
> cbind(njc,indices)

counties areanj indices
9 Hudson 47 1
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20 Union 103 2

5 Cape 267 8
18 Somerset 307 9
12 Middlesex 312 10
8 Gloucester 329 11
21 Warren 362 10
17 Salem 365 9
10 Hunterdon 423 8

15 Ocean 642 2
3 Burlington 819 1

We can clearly see from the above display of R outputs that the median of area of New Jersey
counties is 329 square miles, and that the lower and upper hinges are 228 and 476 square miles
respectively. The depth of the eights is 3.5, and thus we need to take the average of the third
and fourth observations from either end to calculate the eights. The lower and upper eights are
thus (130+192)/2 = 161 and (527+569)/2 = 548 square miles respectively. ◽

Note that the measures such as hinges and eights are not the depth values, but are the values
of the variable associated with the corresponding depth. Median, hinges, eights! Where to stop
exactly will be a very legitimate question for any practitioner. Furthermore, depending on the
size of the dataset, the eights may be 3.5 or even 3000. This question is what is precisely
answered by letter values.

Letter values continue the division process further into sixteens, thirty-seconds, and so on
until we reach the depth of a datum which will be equal to 1. Thus, we would have arrived
at some of the most meaningful data division process. Velleman and Hoaglin (1984) suggest
denoting the further letters, beyond eights, as D,C,B,A,Z,Y ,X,W, and so on. Yes, we clarify
here what to do with these eights, sixteens, etc. Recall that in Section 2 and in Subsection
4.3.1 we suggested extending measures of central tendency, dispersion, and skewness based
on hinges. Similarly, we can generalize measures based on each of the letter values generated.
Thus, we have further concepts such as midhinges, mideights, etc. These measures are referred
to as midsummaries. Similarly, we can define measures of dispersion based on the ranges
between the measures which lead to H-spread, E-spread, D-spread, etc.

We close this subsection with the use of function lval from the LearnEDA package devel-
oped by Prof Jim Albert.

Example 4.4.2. Area of New Jersey Counties. Contd. The lval function from Prof Jim
Albert’s R package LearnEDA will be used to obtain the letter values.

> library(LearnEDA)
> lval(areanj)
depth lo hi mids spreads

1 11.0 329 329 329.0 0
2 6.0 228 476 352.0 248
3 3.5 161 548 354.5 387
4 2.0 103 642 372.5 539
5 1.0 47 819 433.0 772
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The letter values in this example end at thirty-two(th?), or equivalently at letter D. Note that
there only 21 observations in the study. Thus, this should sound as a warning for the user that
the letter values need not stop at the maximum number of observations, and that the process
is terminated when the depth of one is reached. ◽

Now, we are prepared for exploratory regression models!

4.5 Exploratory Regression Models

The scatter plot helps to identify the relationship between two variables. If the scatter plot
indicates a linear relationship between two variables, we would like to quantify the relationship
between them. A rich class of the related confirmatory models will be taken in Part IV. In this
section we will develop the exploratory approach for quantifying the relationship and hence we
call these models Exploratory Regression Models. For the case of single input variables, also
known as covariates, the output can be modeled through a resistant line and this development
will be carried out in the next subsection 4.5.1, and the extension for two variables will be
taken in subsection 4.5.2.

4.5.1 Resistant Line

We have so far seen EDA techniques handle reliable summaries in the form of median,
mid-summaries, etc., and very powerful graphical displays such as histogram, Pareto chart,
etc. We also saw how the x-y plots help in understanding the relationship between two
variables. The reader would appreciate some EDA technique which models the relationship
between two variables. Particularly, regression models of the form

y = 𝛽0 + 𝛽1x + 𝜖, (4.11)

are of great interest. Equation 4.11 is our first regression model. The answer to problems of
this kind are provided by the resistant line. Here, the term 𝛽0 is referred to as the intercept
term, 𝛽1 as the slope term, while 𝜖 is the error or noise.

The motivation and development of the resistant line is very intuitive and extends in a natural
way to employ the use of median, quartiles, hinges, etc. From a mathematical point of view,
the slope term 𝛽1 measures the changes in the output y for unit change in the input x, whereas
𝛽0 is the intercept term. This rate of change is obtained by dividing the data into three regions.

We describe the resistant line mechanism by the following steps. The reader should follow
the steps in Figure 4.13 too. A useful figure explaining the steps of resistant line modeling
may be found in Figure 6 titled “Understanding the resistant line” of Tattar (2013). The initial
estimate of the parameters are obtained through the following steps.

• The x-y plot is divided into three regions, containing an equal number of data points, accord-
ing to the x-values only.

• In the right-hand region find the median of x values and also that of y, denote them as xR
and yR, and obtain the pair (xR, yR).

• Repeat the exercises for the middle and left regions to obtain the points (xM , yM) and (xL, yL).
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Figure 4.13 Understanding The Construction of Resistant Line

We note from the construction in Figure 4.13 that (xR, yR), (xM , yM) and (xL, yL) need not cor-
respond to any of the paired data (x, y). Refer to Chapter 5 of Velleman and Hoaglin for more
details.

The purpose of obtaining the triplets of the ordered pair (xL, yL), (xM , yM), (xR, yR) is to
put ourselves in the position where we can estimate the slope and intercept of the model
given by Equation 4.11. We first estimate the slope, denoted by 𝛽RL

1 , using the pair of points
(xL, yL), (xR, yR). Define

𝛽
RL,0
1 =

yR − yL

xR − xL
. (4.12)

We then use the estimated value of 𝛽RL
1 in the model and average over the three possible vital

data points to obtain an estimate of the a value, denoted by 𝛽RL
0 . Thus,

𝛽
RL,0
0 =

(yL + yM + yR) − 𝛽RL
1 (xL + xM + xR)

3
. (4.13)

The initial estimate of 𝛽
RL,0
0 and 𝛽

RL,0
1 need improvization. Using the initial estimates, the

residuals are obtained for the fitted model:

r0
i = yi − 𝛽

RL,0
0 − 𝛽

RL,0
1 xi, i = 1, … , n.

The slope and intercept terms are now obtained for the paired data (xi, ri), i = 1, … , n and
denoted by 𝛽

RL,1
0 , 𝛽

RL,1
1 . The residuals for the jth iteration of the slope and intercept will be
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denoted by rj
i, j = 1, 2, … , and for j ≥ 2, the slope and intercept terms are updated with 𝛽

RL,j
0 =

𝛽
RL,j
0 + 𝛽

RL,j−1
0 and 𝛽

RL,j
1 = 𝛽

RL,j
1 + 𝛽

RL,j−1
1 .

Let us put the theory of the resistant line behind us and see it in action during the following
examples.

Example 4.5.1. AD4. The Galton Dataset. This dataset was used earlier as an example of an
x-y plot. The scatter plot of the parents and the child reflected weak correlation in Figure 4.11,
and now we examine and estimate the effect by using the resistant line model. The function
resistant_line from the companion package will be used to build the model 4.11.

> library(UsingR)
> data(galton)
> rgalton <- resistant_line(galton$parent,galton$child,iterations=5)
> plot(galton$parent,galton$child,xlab="Parent’s Height",
+ ylab="Child’s Height")
> curve(rgalton$coeffs[1]+rgalton$coeffs[2]*(x-rgalton$xCenter),
+ add=TRUE)
> rgalton$coeffs
[1] 68.5 1.0

The fitted resistant line, see Figure 4.14, tells us that if the parents were taller by an inch, the
child’s height would be more than an inch taller too. ◽

For two factors, or covariates, an extension of the resistant line model 4.11, will be next
considered.
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Figure 4.14 Fitting of Resistant Line for the Galton Dataset
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4.5.2 Median Polish

For the AD5 dataset, we had height of the parent as an input variable and the height of the
child as the output. Under the hypothetical case that we have groups for the height of father
and mother as two different treatment variables, the resistant line model 4.11, in a very different
technical sense, needs to be extended as follows:

y = 𝜇 + 𝛽i + 𝛾j + 𝜖, i = 1, … ,m, j = 1, … , n, (4.14)

where 𝛽i and 𝛾j represent the two groups of height for the father and mother. The groups here
may be something along the lines of Low, Medium, and High. In the study of Experimental
Designs, Chapter 13, this model is occasionally known as the two-way model. In EDA, the solu-
tion for obtaining the parameters 𝜇, 𝛽i, 1, … ,m, and 𝛾j, j = 1, … , n are given by the Median
Polish algorithm. A slight technical difference needs to be pointed out for the use of median
polish and resistant line models. Here, the input variables are categorical in nature and not
continuous. This means that if we still need to understand the height of the child as a variable
dependent on the height of the mother and of the father, the latter two variables need to be cat-
egorized into bins, say short (less than 5 feet), average (5–6 feet), and tall (greater than 6 feet).

To explain the median polish algorithm, we need to examine the dataset first.

Example 4.5.2. Strength Dataset of a Girder Experiment. In this experiment, the shear
strength of steel plate girders needs to be modeled as a function of the four methods and nine
girders, refer to Table 3.4 of Wu and Hamada (2000–9). The data will be displayed first and
the analysis will be followed after the description of the median polish algorithm.

> data(girder)
> girder

Aarau Karisruhe Lehigh Cardiff
S1.1 0.772 1.186 1.061 1.025
S2.1 0.744 1.151 0.992 0.905
S3.1 0.767 1.322 1.063 0.930
S4.1 0.745 1.339 1.062 0.899
S5.1 0.725 1.200 1.065 0.871
S1.2 0.844 1.402 1.178 1.004
S2.2 0.831 1.365 1.037 0.853
S3.2 0.867 1.537 1.086 0.858
S4.2 0.859 1.559 1.052 0.805

The array elements starting with 0.772 and finishing at 0.805 represent the shear strength
of the steel plate girders. The row names, varying from S1.1 to S4.2, represent the nine
types of girders, and the column names, Aarau, Karisruhe, Lehigh, and Cardiff are
the four methods of preparation of the steel plates. The goal is to understand the impact of the
methods of preparation as well as girder on the shear strength of the steel plates. ◽

Now that we know the data structure, called the two-way table, the median polish algorithm
is given next, which will help in estimating the row and column effects.

1. Compute the row medians of a two-way table and augment it to the right-hand side of the
table. Subtract the row median in the respective rows of the table.
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2. Take the median of the row medians as the initial total effect value of the row effect. Similar
to the original elements of the table, subtract the initial total effect value from the row
medians.

3. Compute the column medians of the original columns for the matrix in the previous step and
append it to the bottom. Subtract from the data matrix the corresponding column medians.

4. Similar to Step 2, obtain the median of the column medians and add to the initial total effect
value. Remove the current total effect median from each element of the column medians.

5. Repeat the four steps above until convergence of either the row or the column medians.

The medpolish function from the MASS package can be used to fit the median polish
model. This will be illustrated in a continuation of the girder experiment.

Example 4.5.3. Strength Dataset of a Girder Experiment. Contd. The medpolish func-
tion can be readily applied over the girder data frame.

> medpolish(girder)
1: 1.96
2: 1.701
Final: 1.686

Median Polish Results (Dataset: "girder2")
Overall: 0.989
Row Effects:

S1.1 S2.1 S3.2 S4.2
-0.005375 -0.053875 0.054625 0.033625
Column Effects:

Aarau Karisruhe Lehigh Cardiff
-0.2116 0.3330 0.0740 -0.0695

Residuals:
Aarau Karisruhe Lehigh Cardiff

S1.1 0.0000 -0.1306 0.0034 0.1109
S2.1 0.0205 -0.1171 -0.0171 0.0394
S3.1 -0.0104 0.0000 0.0000 0.0105
S4.1 -0.0239 0.0255 0.0075 -0.0120
S5.1 -0.0025 -0.0721 0.0519 0.0014
S1.2 -0.0179 -0.0045 0.0305 0.0000
S2.2 0.0451 0.0345 -0.0345 -0.0750
S3.2 0.0350 0.1604 -0.0316 -0.1161
S4.2 0.0480 0.2034 -0.0446 -0.1481

The median polish solution shows that the Karisruhe method of preparation helps in cre-
ating higher shear strength of the steel plates. ◽

4.6 Further Reading

We had mentioned Tukey’s (1962) article “The Future of Data Analysis” as one of the start-
ing points which may have led to the beginning of EDA. Tukey had the strong belief that
data analysis must not be overwhelmed by model assumptions and they should have an effect
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on how you describe them. This belief and further work at the Bell Telephone Laboratories
culminated in Tukey (1977). There is a lot of simplicity in Tukeys work, such that for small
datasets we do not even need a calculator. A paper and pencil will help us to a great enough
extent and depth. An advanced course to Tukey (1977) is available in Mosteller and Tukey
(1977). In this book, EDA techniques for regression problems are discussed.

In the year 1991, Hoaglin, et al. produced a volume with EDA methods for Analysis of Vari-
ance (ANOVA). Hoaglin, et al. (1985) is another edited volume which is useful for exploring
tables, shapes, and trends. In fact, many such ideas are described in Rousseeuw and Leroy
(1987) for robust regression. We also make good use of Velleman and Hoaglin (1984), which
has many Fortran programs for EDA techniques. The main reason for restating this is the fact
that a user can import Fortran programs in R and use them easily again.

EDA is about any method which is exploratory in nature. Thus, many of the multivariate
statistical analysis techniques are considered as EDA techniques. As an example, many experts
consider Principal Component Analysis, Factor Analysis, etc. as EDA techniques. Martinez
and Martinez (2005) and Myatt (2007) are two recent books which accept this point of view.
We will see the multivariate techniques in Chapters 14 and 15.

We need to mention that Frieden and Gatenby (2007) have developed EDA methods using
Fisher information. This is an important facet, as the Fisher information is very important and
we introduce this concept in Chapter 7.

4.7 Complements, Problems, and Programs

Problem 4.1 Let x be a numeric vector. Create a new function, say depth, which will
have a serial number as an argument, between 1:length(x), and its output
should return the depth of the datum.

Problem 4.2 Obtain the EDA summaries as in fivenum, IQR, fnid, and mad for the
datasets considered in Section 4.3. Note your observations based on the sum-
maries and then investigate whether or not these notes are visible in the cor-
responding figures.

Problem 4.3 The part B of Figure 4.4, see Example 4.5, clearly shows the presence of
outliers for the number of dead insects for insecticides C and D. Identify the
outlying data points. Remove the outlying points, and then check if any more
potential outliers are present.

Problem 4.4 Provide summary and descriptive statistics for the cooked dataset in Example
4.6, and interpret the results as provided by the histograms.

Problem 4.5 The number of intervals for the five histograms in Figure 4.5 can be seen as
11, 6, 11, 6, and 10. How do you obtain these numbers through R?

Problem 4.6 Create a function which generates a histogram with the intervals according to
the percentiles of the data vector.
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Problem 4.7 The histograms seen in Section 4.3 give a horizontal display. At times, a ver-
tical display is preferable. Using the tips from the web http://stackoverflow.
com/questions/11022675/rotate-histogram-in-r-or-overlay-a-density-in-a-
barplot, obtain the vertical display of a histogram.

Problem 4.8 Imposing histograms on each other helps in comparison of similar datasets, as
seen in Example 4.7. Repeating the technique for the Youden-Beale experi-
ment, what will be the conclusion for the two virus extracts?

Problem 4.9 Explore the different choices of breaks given in Formulas 4.5 – 4.7 for the
different histogram examples.

Problem 4.10 Using the R function pareto.chart from the qcc package, obtain the
Pareto chart for the causes and frequencies, as in Example 4.10, and compare
the results with Figure 4.9.

Problem 4.11 Using the stem.leaf.backback function, compare the averages of the
two virus extracts for the Youden-Beale experiment, as discussed in Example
4.2. Similarly, compare the stem-and-leaf displays for the recall of pleasant
and unpleasant memories of Example 4.4.

Problem 4.12 Create an R function, say trimean, for computing trimean, as given in
Equation 4.8. Apply the new function for datasets of your choices considered
in the chapter.

Problem 4.13 Obtain the letter values for three datasets in Example 4.13 using lval and
check if the median comparisons can be extended through them.

Problem 4.14 Fit resistant line models for the six pairs of data discussed in Example 4.17.
Validate the correlations as implied by the scatter plots in Figure 4.12.

Problem 4.15 For the datasets available in the files rocket_propellant.csv and
toluca_company.dat, build the resistant line models. In the former
file, the input variable is Age_of_Propellant, while in the latter
file it is Lot_Size. The output variables in these respective files are
Shear_Strength and Labour_Hours.
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Probability Theory

Package(s): prob, scatterplot3d, ConvergenceConcepts

5.1 Introduction

Probability is that arm of science which deals with the understanding of uncertainty from a
mathematical perspective. The foundations of probability are about three centuries old and can
be traced back to the works of Laplace, Bernoulli, et al. However, the formal acceptance of
probability as a legitimate science stream is just a century old. Kolmogorov (1933) firmly laid
the foundations of probability in a pure mathematical framework.

An experiment, deterministic as well as random, results in some kind of outcome. The col-
lection of all possible outcomes is generally called the sample space or the universal space.
An example of the universal space of a deterministic experiment is the distance traveled as
a consequence of the application of some force is [0,∞) . On the other hand, for a random
experiment of tossing a coin, the sample space consists of the set {Head, Tail}. The difference
between these two types of experiments is the result of the final outcome. For a stationary
object, if the application of a force results in an acceleration of 10m∕s2, the distance traveled
after 60 seconds is known by the formula s = at2∕2 = 18000m. That is, given the acceleration
and time, the distance is uniquely determined. For a random experiment of coin tossing, the
outcome is sometimes a Head, and at the other times it is Tail.

In this chapter, we will mainly focus on the essential topics of probability which will be
required during rest of the book. We begin with the essential elements of probability and dis-
cuss the interesting problems using mathematical thinking embedded with in R programs.
Thus, we begin with the sets and elementary counting methods and compute probabilities
using the software in Section 5.2. Combinatorial aspects with useful examples will be treated
in Section 5.3. The subject of measure theory is rightly required and we then discuss the core
concepts required for the developments unfolding in Section 5.4. Conditional probability, inde-
pendence, and Bayes formula are dealt with in Sections 5.5 and 5.6. Random variables and their
important properties are detailed in Section 5.7. Convergence of random variables and other
important sequences of functions of random variables are discussed through Sections 5.9–5.12.

A Course in Statistics with R, First Edition. Prabhanjan Narayanachar Tattar, Suresh Ramaiah and B. G. Manjunath.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/tattar/statistics
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We emphasize here that you may sometimes come across phrases such as “graphical proof ”,
or “it follows from the diagram that … ”. In most of these cases, the general statement holds
true and admits an analytical proof, which actually means that it is the more mathematical proof
that is admitting a cleaner visual display. The reader is cautioned here though that such visual
displays do not necessarily imply that the mathematical proof is valid and hence we must resist
the temptation to generalize statements based on the displays. The spirit adopted in this chapter
in particular is to emphasize that probability concepts can be integrated well with a software
and that programming may sometimes be viewed as the e-version of problem solving skills.

5.2 Sample Space, Set Algebra, and Elementary Probability

The sample space, denoted by Ω, is the collection of all possible outcomes associated with
a specific experiment or phenomenon. A single coin tossing experiment results in either a
head or a tail. The difference between the opening and closing prices of a company’s share
may be a negative number, zero, or a positive number. A (anti-)virus scan on your computer
returns a non-negative integer, whereas a file may either be completely recovered or deleted on
a corrupted disk of a file storage system such as hard-drive, pen-drive, etc. It is indeed possible
for us to consider experiments with finite possible outcomes in R, and we will begin with a
few familiar random experiments and the associated set algebra.

It is important to note that the sample space is uniquely determined, though in some cases
we may not know it completely. For example, if the sequence {Head, Tail, Head, Head} is
observed, the sample space is uniquely determined under binomial and negative binomial
probability models. However, it may not be known whether the governing model is binomial
or negative binomial. Prof G. Jay Kerns developed the prob package, which has many useful
functions, including set operators, sample spaces, etc. We will deploy a few of them now.

Example 5.2.1. Tossing Coins: One, Two, … . If we toss a single coin, we have Ω = {H,T},
where H denotes the head and T a tail. For the experiment of tossing a coin twice, the sample
space is Ω = {HH,HT ,TH,TT}. The R function tosscoin with the option times gives us
the required sample spaces when we toss one, two, or four coins simultaneously.

> tosscoin(times=1); tosscoin(times=2); tosscoin(times=4)
toss1

1 H
2 T
toss1 toss2

1 H H
2 T H
3 H T
4 T T

toss1 toss2 toss3 toss4
1 H H H H
2 T H H H
3 H T H H

. . .
15 H T T T
16 T T T T
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Thus, we can easily obtain the sample space for coin tossing experiments. A further option
available in makespace for the tosscoin returns the probabilities of each element of the
sample space which will be taken at a later stage. ◽

Example 5.2.2. Rolling Die: One, Two, … . Die rolling is a very popular experiment for the
Probabilists. If the die has six sides, rolling one die has the sample space Ω = {1, 2, … , 6},
whereas rolling two die has the sample space of paired outcomes varying from one to six, that
is, Ω = {(i, j)|i, j = 1, 2, … , 6}. In R, we can readily see the sample spaces of the die rolling
experiments.

> rolldie(times=1); rolldie(times=2); rolldie(times=3)
X1

1 1
2 2
3 3
4 4
5 5
6 6

X1 X2
1 1 1
2 2 1
3 3 1

. . .
35 5 6
36 6 6

X1 X2 X3
1 1 1 1
2 2 1 1

. . .
215 5 6 6
216 6 6 6
> rolldie(times=1,nsides=7) # My die has seven sides!
X1

1 1
2 2
3 3
4 4
5 5
6 6
7 7

The function rolldie can roll dice as many times as is required with the option times
and furthermore it may also deal with die of different numbers of sides, as seen in the option
nsides in the last part of the previous program. We have of course curtailed the output in the
above session. ◽

Mahmoud (2009) is a recent introduction to the importance of urn models in probability.
Johnson and Kotz (1977) is a classic account of urn problems. These discrete experiments are
of profound interest and are still an active area of research and applications.
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Example 5.2.3. Urn Sample Space. Consider an urn which has five balls of red color,
three balls of green color, and eight balls of blue color. Suppose we randomly pick
one ball from the urn. Note that by definition of the sample space, which is a col-
lection of all possible outcomes, the sample space associated with the experiment is
Ω = {Red, … ,Red

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

5 times

,Green, … ,Green
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

3 times

,Blue, … ,Blue
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

8 times

}.

Now consider further variants of the problem. First, we draw a ball, note its color, and place
it back in the urn. Then we shake up the urn well enough to ensure that the next ball drawn is
truly random. Yet another variant of the problem would be to not put the ball back in the draw
and draw another one. What will the sample space be now?

The function urnsampleswill help us to do these tasks. First, we need to carefully define
the urn from which we wish to draw the samples. This is achieved using the rep function with
the option times. Next, we use the urnsamples to find the sample space from the defined
urn and required size, along with the information of whether or not we had placed the ball
back in the urn.

> Urn <- rep(c("Red","Green","Blue"),times=c(5,3,8))
> urnsamples(x=Urn,size=1)

out
1 Red

5 Red
6 Green

8 Green
9 Blue

16 Blue
> urnsamples(x=Urn,size=2,replace=TRUE)

X1 X2
1 Red Red
2 Red Red

135 Blue Blue
136 Blue Blue
> urnsamples(x=Urn,size=2,replace=FALSE)

X1 X2
1 Red Red
2 Red Red

119 Blue Blue
120 Blue Blue

Thus, the function urnsamples helps us to obtain the sample space of drawing balls from
the urns. ◽

Example 5.2.4. Card Experiments. A pack of cards contains a set of 13 cards of the 4 suites
club, spade, heart, and diamond. Each suit contains cards labeled Ace, 2, 3, ..., 10, Jack, Queen,
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and King. Depending on the version of the card game being played, the pack may or may
not contain two more cards labeled as Joker. Thus, the sample space Ω for the card game is
specified as

> cbind(cards()[1:13,],cards()[14:26,],cards()[27:39,],
+ cards()[40:52,])

rank suit rank suit rank suit rank suit
1 2 Club 2 Diamond 2 Heart 2 Spade
2 3 Club 3 Diamond 3 Heart 3 Spade
3 4 Club 4 Diamond 4 Heart 4 Spade
4 5 Club 5 Diamond 5 Heart 5 Spade
5 6 Club 6 Diamond 6 Heart 6 Spade
6 7 Club 7 Diamond 7 Heart 7 Spade
7 8 Club 8 Diamond 8 Heart 8 Spade
8 9 Club 9 Diamond 9 Heart 9 Spade
9 10 Club 10 Diamond 10 Heart 10 Spade
10 J Club J Diamond J Heart J Spade
11 Q Club Q Diamond Q Heart Q Spade
12 K Club K Diamond K Heart K Spade
13 A Club A Diamond A Heart A Spade
> cards(jokers=T)[53:54,] # Jokers Rule, Sorry Mr.Super Man

rank suit
53 Joker <NA>
54 Joker <NA>

The cards function along with the cbind function helped us to view the pack of 52 cards.◽

Note that the sample space may be treated as a super set. It has to be exhaustive, covering
all possible outcomes. Loosely speaking we may say that any subset of the sample space is an
event. Thus, we next consider some set operations, which in the language of probability are
events.

Let A,B be two subsets of the sample space Ω. The union, intersection, and complement
operations for sets is defined as follows:

• The union of two sets A and B is defined as:

A ∪ B = {x|x ∈ A or x ∈ B}.

• The intersection of two sets A and B is defined as:

A ∩ B = {x|x ∈ A and x ∈ B}.

• The complement of a set A is defined as:

Ac = {x|x ∉ A}.

• The set difference, or relative complement, of set B and A is defined by

B\A = B − A = {x|x ∈ B and x ∉ A}.
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Software, and hence R, despite their strengths, will be used to illustrate the above using
simple examples.

Example 5.2.5. Basic Set Operations For the Card Sample Space. The basic set operations
are illustrated using the sample space for the card pack. The operations union, intersect,
and setdiff of R gives us the relevant results. Some of these functions are available in both
packages base and prob. The difference of their functioning across the packages, if any,
may be found by the reader.

> S <- cards()
> A <- S[8:28,]; B <- S[22:35,]
> union(A,B)

rank suit
8 9 Club
9 10 Club

34 9 Heart
35 10 Heart
> intersect(A,B)

rank suit
22 10 Diamond
23 J Diamond
24 Q Diamond
25 K Diamond
26 A Diamond
27 2 Heart
28 3 Heart
> setdiff(S,A) # Result is complement of A

rank suit
1 2 Club
2 3 Club

51 K Spade
52 A Spade

The reader is advised to run the program and investigate the output, since the output has been
curtailed here for brevity’s sake. ◽

We will now consider a few introductory problems for computation of probabilities of
events, which are also sometimes called elementary events. If an experiment has finite
possible outcomes and each of the outcomes is as likely as the other, the natural and intuitive
way of defining the probability for an event is as follows:

P(E) =
number of points in E

number of points in Ω
= n(E)

n(Ω)
,

where n(.) denotes the number of elements in the set. The number of elements in a set is also
called the cardinality of the set.
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Example 5.2.6. Tossing Coins. Contd. By applying the above definition, we can compute the
probabilities for the events in a coin tossing experiment. Notably, it is fairly straightforward
that when we toss a fair coin, the probability of obtaining a head is 1/2, and that at least one
head showing up when two coins are tossed is 3/4:

P({H}) = 1
2
= 0.5,

P({HH,HT ,TH}) = 3
4
= 0.75.

However, we would like to use the function tosscoin and verify the same. First, the R
program will be given followed by its logic.

> Omega <- tosscoin(times=1)
> sum(Omega=="H")/nrow(Omega)
[1] 0.5
> Omega2 <- tosscoin(times=2)
> sum(rowSums(Omega2=="H")>0)/nrow(Omega2)
[1] 0.75

For the object Omega, we first obtained the sample space using tosscoin. Now we checked
how many of the events favor H, that is “Head”, using sum. Recollect, or verify if needed, that
the function tosscoin returns a data.frame object, and hence nrow returns the total
number of events of the sample space. Similarly, we need rowSums, and not the simple sum,
to obtain our second answer. In the most likely case of the reader wondering if this tedious
programmatic approach is feasible, let us ask the probability of obtaining heads in the range
4 to 7 when 10 coins are tossed. Now, using the arguments used so far, it would be really
difficult. However, we can now write two lines of R code and get the answer.

> Omega10 <- tosscoin(times=10)
> sum((rowSums(Omega10==“H”)>=4) & (rowSums(Omega10==“H”)<=7))/
+ nrow(Omega10)
[1] 0.7734375 ◽

Example 5.2.7. Rolling Die. Contd. For the rolling of die experiment, the probability of
obtaining an odd number is

P({1, 3, 5}) = 3
6
= 0.5.

Now, how do we get the answer from the rolldie function? An integer x is odd if x %% 2
returns 1, and this logic will be exploited to get the answer for the probability of a die to return
an odd number. Thus, the next small R program returns the required answer.

> Omega_{R}oll1 <- rolldie(times=1)
> sum(Omega_Roll1%%2 ==1)/nrow(Omega_Roll1)
[1] 0.5

Frequently, we may be interested in some variations or transformations of the sample space.
For example, consider the sample space arising as a consequence of rolling two dice. Here,
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the sample space is the collection of the couplets Ω = {(i, j)|i, j = 1, 2, … , 6}, and it has 36
points. Now, if we were to consider the sum of the numbers on both dice, the relevant sample
space is Ω′ = {2, 3, … , 11, 12}. The number of elements in the modified sample space is now
11. How do we obtain such a sample space for the rolldie function? Let us work out how
to answer the probability of the events in the modified sample space.

> S_Die <- rolldie(times=2)
> table(rowSums(S_Die))/nrow(S_Die)

2 3 10 11
0.02778 0.05556 0.08333 0.05556

12
0.02778

For a clearer understanding of the program here, note that the table function gives
the frequency of the repeated values of a vector or a data.frame. Thus, if you first run
names(table(rowSums(S_Die))) and table(rowSums(S_Die)), all doubts
should be addressed. Now solve the problem related to rolldie in the exercise section to
complete your understanding of the roll die experiment. ◽

It is also the case that even for elementary events, all the outcomes are not necessarily equally
likely. The next example is a point in case.

Example 5.2.8. Thirteenth of a Month. We have been asked a question: What is the proba-
bility that the 13th of a month is a Friday? Assuming that the month is an arbitrary month, we
would like to believe that there is no effect on the frequency of weekdays in a month. If sim-
plicity is required, we will treat each month as February, which has exactly four frequencies of
each weekday. A consequence of this simplicity is that our answer will be that the probability
of the 13th of the month being a Friday is 1∕7. It turns out that a perfect cycle of the human
calender is 400 years. Thus, for each month of these 400 years, we need to find the frequency
of the weekdays on the 13th of that month. This is a daunting task! However, there is a calender
in every laptop, and also in any good software such as R. Thus, the next module returns us the
desired frequency of the weekdays for the 13th of the month.

> fullyears <- 1601:2000
> months <- 1:12
> testthirteenth <- NULL
> for(i in 1:length(fullyears)) {
+ for(j in 1:12){
+ testthirteenth <- c(testthirteenth,weekdays(as.Date(paste(
+ fullyears[i],"/", months[j],"/13",sep=""),"%Y/%m/%d")))
+ }
+ }
> table(testthirteenth)
testthirteenth
Friday Monday Saturday Sunday Thursday Tuesday Wednesday

688 685 684 687 684 685 687
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This detailed R program requires some discussion. The cycle of 400 years is declared
in the variable fullyears, and the 12 months are entered in months. The two
loops are coded in such a way that for each year the 12 months are checked for the
weekday of the 13th. That is, for each month, we prepare the 13th day with the code
as.Date(paste(fullyears[i],"/",months[j],"/13",sep=""),"%Y/%m/
%d"). Next, its weekday is extracted with the function weekdays from the base
package. This output is then stored in the character vector testthirteenth.
Finally, for 400 × 12 = 4800 months, we obtain the frequency of the weekdays with
table(testthirteenth).

The above output shows that Friday has the maximum frequency, and hence it is safe to
conclude that the probability of the 13th of a month being a Friday is more likely than any other
weekday. More details of this problem may be obtained on Pages 26–27 of Parzen (1960), and
we note that this problem was first solved in 1933! ◽

Example 5.2.9. Laplace Probability of Sunrise. Sometimes we find it useful to define the
probability of events using empirical evidence. As an example, if we observed 568 heads out
of 1014 throws of a coin, the empirical probability of a head is defined by 568∕1014 = 0.5602.
Now, suppose that we have recorded the number of times the sun rises on N days, and we wish
to predict the probability of sun rise for the day (N + 1). The empirical definition of proba-
bility gives the answer as N∕N = 1. Laplace suggested that for events which have occurred
M-out-of-N times, the probability of that event occurring on the (N + 1)-th occasion is defined
as (M + 1)∕(N + 2). Thus, if we have observed the sun to rise on 6 out of 6 days, the probability
that the sun will rise on the 7th day will be (6 + 1)∕(6 + 2) = 7∕8 = 0.875.

At the outset, this answer may appear stupid! Nevertheless, this answer has far-reaching
consequences, and we will arrive at it in at least one important context. Its importance is high-
lighted by the fact that this solution is sometimes known as Laplace smoothing. ◽

?match, library(help=“prob”)

5.3 Counting Methods

The events of interest may unfold in a number of different ways. We need mechanisms to find
in how many different ways an event can occur. As an example, if we throw two die and count
the sum of the numbers that appear on the two faces, the sum of 8 can occur in six different
ways, viz., (6,2), (2,6), (5,3), (3,5), (4,4), (4,4). In this section, we will discuss some results
which will be useful for a large class of problems and theorems.

The seasoned probabilist Kai Lai Chung has registered the importance of the role of per-
mutations and combinations in a probability course. Over a period of years, he has obtained
different answers for the number of ways a man can dress differently from a combination of
three shirts and two ties. The answers vary from 3 + 2 and 3 × 2 to 32 and 23. See page 46,
Chung and AitSahlia (2003).

Theorem 5.3.1 If an experiment consists of two parts, and if part I can occur in m ways, and
part II in n ways, the experiment can be performed in m × n different ways. ◽
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Example 5.3.1. Basic Set Operations For the Card Sample Space. Contd. Consider a pack
of 54 cards which contains the jokers. If two cards are picked, and we are interested in the
event that there is one joker and one spade, the above theorem helps us to find the total number
of ways we can have this arrangement. A joker can be picked in 2 ways and a spade in 13
different ways. Thus, 13 × 2 = 26 is the number of different ways of selecting a joker and a
spade. We do not have to use R for every computation! ◽

A natural extension of the above experiment is shown by the next result.

Theorem 5.3.2 Fundamental Theorem of Counting. Suppose that an experiment consists
of k parts. Let the ith part occur in mi, i = 1, 2, … , k, number of ways. Then the experiment
can be performed in

∏k
i=1 mi different ways. ◽

Example 5.3.2. Basic Set Operations for the Card Sample Space. Contd. In a continuation
of this example, suppose that now we are drawing four cards instead of two. We need to find
the number of ways that the event consisting of exactly one spade, one joker, one diamond, and
one heart occurs. In light of the above result, this event can occur in 2 × 13 × 13 × 13 = 4394
different ways. ◽

At the outset, the fundamental theorem of counting may appear very simple. Its strength
will be used to derive the total number of ways a task can be done in the next subsection.

5.3.1 Sampling: The Diverse Ways

Sampling from a population can be carried out in many different ways. Suppose that we have
m balls in an urn, and each ball carries a unique label along with it. Without loss of generality,
we can label the balls 1 to m. In this case we say that the balls are ordered. If the label of
the balls carry no meaning, or are not available, that is, indistinguishable, we are dealing with
sampling problems with unordered units.

5.3.1.1 Sampling with Replacement and with Ordering

Consider the situation where we draw n units sequentially from m units. Before each draw,
the balls in the urn are shaken well so that any ordered ball has the same chance of being
selected. At each stage after the draw, the label of the drawn unit is noted and the order of
labeled units is duly recorded before placing it back in the urn. Thus, if aj denotes the label of
the unit drawn on the jth occasion, we have an ordered n- tuple (a1, a2, … , an), with aj taking
a value between 1, 2, … ,m, ∀j = 1, 2, … , n. The fundamental counting theorem then gives
the answer of doing this task in

m × m × … × m = mn, (5.1)

distinct ways.
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5.3.1.2 Sampling without Replacement and with Ordering

Suppose that the experiment remains the same as above, with a variation being that the drawn
ball is not put back in the urn. That is, at the first draw we have m units to choose from. At
the second draw, we have m − 1 units to choose from, at the third draw m − 2 units, and so
on. Thus, at the nth draw, we have m − n + 1 units for drawing the unit. Thus, sampling with
replacement from ordered units can be performed in m × (m − 1) × … × (m − n + 1) distinct
ways. Since we cannot draw more than m units among m, we have the constraint of n ≤ m. We
have again applied the fundamental theorem of counting. Let us introduce a notation here of
continued product: (m)n to denote m × (m − 1) × … × (m − n + 1). That is

(m)n = m × (m − 1) × … × (m − n + 1), 0 ≤ n ≤ m. (5.2)

In popular terms, this is the permutation of n units sampled from a pool of m units. An inter-
esting case is the permutation of obtaining all the m units. This experiment is about drawing
all the units without replacement from the urn and is given by

m! = (m)m = m × (m − 1) × … × 2 × 1.

To see the behavior of the number of ways we can possibly draw, let us look at the permutation
of drawing 1 to 12 units.

> sapply(1:12,factorial)
[1] 1 2 6 24 120 720 5040 40320 362880
[10] 3628800 39916800 479001600

The sapply function ensures that the factorial function is applied on each integer 1 to12.

5.3.1.3 Sampling without Replacement and without Ordering

We now consider a sampling variation of the previous experiment. In this experiment we do
not record the order of the occurrence of the sampling unit. Alternatively, we can think of
this experiment as seeing the final result of sampling the desired number of n units. We have
seen that a sample of n units can be obtained in n! different ways. Furthermore, the number
of distinct ways of obtaining a sample of n units from m is given by the continued product
(m)n. Thus, the number of ways of obtaining an unordered sample of n units by sampling
without replacement from m units is (m)n∕n!. By multiplying the numerator and denominator
by (m − n)!, we get the desired result(m

n

)
=

(m)n(m − n)!
n!(m − n)!

= m(m − 1) … (m − n + 1)(m − n) … 2.1
n!(m − n)!

= m!
n!(m − n)!

. (5.3)
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Table 5.1 Diverse Sampling Techniques

ordered = True ordered = False

replace = True mn (m − 1 − n)!
(m − 1)!n!

replace = False
m!

(m − n)!

(
m

n

)

5.3.1.4 Sampling with Replacement and without Ordering

In this setup, we draw n balls one after another, replacing the drawn ball in the urn before the
next draw. During this process, we register the frequencies of the labels drawn with possible
repetitions without storing the order of occurrence. Note that in this case m may be less than n.

We summarize all the results in the table above.

Example 5.3.3. Random Sampling Numbers. Feller (1968), pages 31–2. Consider the
population of 10 digits, 0, 1, … , 9. Suppose that we draw five digits, with replacement,
randomly from it and wish to compute the probability of all the five digits being different. By
earlier discussion, this probability is easily seen to be p = (10)5∕105, which on evaluation
gives the answer, in R, as

> prod(10:6)/10 ̂ {5}
[1] 0.3024

Feller argues this probability through the use of mathematical tables. Let us begin with his
discussion on the use of digits of the irrational number e. Consider the first 800 digits of e. The
reader may obtain the first 2 million digits of e at http://apod.nasa.gov/htmltest/gifcity/e.2mil,
and we too have obtained the values from it. The 800 digits can be grouped into 160 units,
each unit consisting of a succession of 5 digits. Group the 160 units into 16 batches, with each
batch containing 10 groups of 5 digits of the irrational number e. Finally, find the frequency of
numbers in which the block has all distinct digits. We will first discuss the program for Fellers
arguments.

> data(e800)
> dis_count <- NULL
> for(i in 1:16){
+ temp <- e800[(10*(i-1)+1):(10*i),]
+ dis_count[i] <- 0
+ for(j in 1:nrow(temp)){
+ if(length(unique(as.numeric(temp[j,])))==5) dis_count[i]
+ <- dis_count[i]+1
+ }
+ }
> dis_count # Matches exactly the numbers on Page 32 of
+ Feller (1968)

http://apod.nasa.gov/htmltest/gifcity/e.2mil


Trim Size: 170mm x 244mm Tattar c05.tex V3 - 02/10/2016 10:18 A.M. Page 117�

� �

�

Probability Theory 117

[1] 3 1 3 4 4 1 4 4 4 2 3 1 5 4 6 3
> mean(dis_count)/10
[1] 0.325

Let us understand this program. The dataset e800 consists of the first 800 digits of the
irrational number e. The object dis_count represents the number of times we have unique
digits among the five digits in a batch of ten such collections, and this is obtained through
the loop for(j in 1:nrow(temp)). The search is carried out for all the 16 blocks in
the loop for(i in 1:16). Thus, the average of dis_count returns the probability of
0.325, which is closer to the theoretical probability of 0.3024. ◽

Example 5.3.4. Probability of n Balls Occupying n Cells. Consider an experiment where
n balls are randomly placed among n cells and the problem is computation of the probability
that each cell contains one ball. We can place n balls in n cells in n! ways and the total number
of ways in which the n balls can be placed among the n cells is nn. Hence, the probability of
the event of n randomly placed balls occupying the n cells is

P(n balls occupying n cells) = n!
nn

.

Consider n = 10. The small R program is then as follows.

> n <- 1:10
> prob_n_out_of_n <- factorial(n)/n ̂ {n}
> plot(n,prob_n_out_of_n,type="h")
> title("Probability of All Cells Being Occupied")

The plot is given in Part A of Figure 5.1. ◽

Example 5.3.5. Probability of n Passengers Leaving at Different Floors. A building has
n = 10 floors, excluding the ground floor, so let us suppose that the lift capacity is 10 people.
We begin at the ground floor. The event of interest is that no two people leave at any given
floor. Let us assume that we have 1 to 10 people at the beginning of the lift. The probability,
starting with r ≤ n people, of the event is then given by

P(all r people leave at different floors) =
(n)r
nr

The R program below gives an interesting plot, Part B of Fiqure 5.1.

> n <- 10 # Floors
> r <- 1:10 # Number of Passengers
> prob_distinct_fn <- function(n,r) prod(n:(n-r+1))/n ̂ {r}
> prob_all_distinct <- sapply(r,prob_distinct_fn,n=n)
> plot(r,prob_all_distinct,"h")
> title("B: Probability of Passengers Leaving at Distinct Floors")

Compare and contrast the two diagrams given in Figure 5.1. ◽
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Figure 5.1 A Graph of Two Combinatorial Problems

5.3.2 The Binomial Coefficients and the Pascals Triangle

The Pascal’s triangle is a simplistic and useful triangle for obtaining the binomial coefficients.
To begin with, consider the following relationship:(m

n

)
=
(m − 1

n − 1

)
+
(m − 1

n

)
, 0 ≤ n ≤ m.

This relationship says that to obtain
(

m
n

)
, we can obtain it as the sum of ways of selecting n

and n − 1 objects from m − 1. Thus, we can move to higher levels using the quantities at one
level below it. This leads to the famous Pascal’s triangle. A short program is given below to
obtain the triangle.

> pascal <- function(n){
+ if(n<=1) pasc=1
+ if(n==2) pasc=c(1,1)
+ if(n>2){
+ pasc <- c(1,1)
+ j <- 2
+ while(j<n){
+ j <- j+1
+ pasc=c(1,as.numeric(na.omit(filter(pasc,rep(1,2)))),1)
+ }
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+ }
+ return(pasc)
+ }
> sapply(1:7, pascal)
[[1]]
[1] 1
[[2]]
[1] 1 1
[[3]]
[1] 1 2 1
[[4]]
[1] 1 3 3 1
[[5]]
[1] 1 4 6 4 1
[[6]]
[1] 1 5 10 10 5 1
[[7]]
[1] 1 6 15 20 15 6 1

With the basics of combinatorics with us, we are now equipped to develop R solutions for
some interesting problems in probability.

5.3.3 Some Problems Based on Combinatorics

Feller (1968) has a very deep influence on almost all the Probabilists. Diaconis and Holmes
(2002) considered some problems from Feller’s Volume 1 in the Bayesian paradigm.
Particularly, we consider two of those three problems here: (i) The Birthday Problem, and (ii)
The Banach Match Box Problem. The problems selected here serve the point that probability
on some occasions can be very counter-intuitive. A survey of some of these problems may
also be found in Mosteller (1962).

Example 5.3.6. The Birthday Problem. Suppose we have a group of k people. In the birthday
problem, we have n = 365 cells. Thus, the total number of ways of arranging the k birthdays is
365k different ways. The number of ways in which all the k birthdays are different is then the
same as k-out-of-n permutations, that is, 365Pk. Hence, the probability of k different birthdays
is 365Pk∕365k, the complement of which gives the probability of at least two birthdays being
the same is 1−365Pk∕365k.

Williams (2001) has put forth his own experience of the birthday problem in the
classroom:

True Story. I learnt the value of statistics early. In a lecture to students, I had mentioned
the result in Subsection 13O that if you have 23 people in a room then there is a prob-
ability of more than 1

2
that two of them have the same birthday. One student came to

see me that evening to argue that 23 wasn’t anywhere near enough. We went through

(Continued)
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the proof several times; but he kept insisting that there must be flaw in the basic theory.
After some considerable time, I said. “Look, there must be 23 people still awake in Col-
lege. Let’s ask them their birthdays. To start with, when’s yours?” “April 9th”, he said.
I replied (truthfully!) “So’s mine”.

The next R program gives us the birthday probabilities where we compute the probability
of obtaining the same birthday if there are 2, 5, 10, 20, … , 50, people in a classroom.

> k <- c(2,5,10,20,30,40,50)
> probdiff <- c(); probat2same <- c()
> for(i in 1:length(k)) {
+ kk <- k[i]
+ probdiff[i] <- prod(365:(365-kk+1))/(365 ̂ {k}k)
+ probat2same[i] <- 1- prod(365:(365-kk+1))/(365 ̂ {k}k)
+ }
> plot(k,probat2same,xlab="Number of Students in Classroom",
+ ylab="Birthday Probability",col="green","l")
> lines(k,probdiff,col="red","l")
> legend(10,1,"Birthdays are not same",box.lty=NULL)
> legend(30,.7,"Birthdays are same",,box.lty=NULL)
> title("A: The Birthday Problem")

The R numeric vectors probdiff and probat2same respectively compute 365Pk and
1−365Pk. The code prod(365:(365-kk + 1))/(365 ̂ kk) gives 365Pk, and by using
it we easily obtain probat2same. The plot functions, lines, legend, and title are
simple to follow.

The birthday probabilities are summarized in Table 5.2. It can be seen from the table that
we need to have just 50 people in a classroom to be almost sure of finding a pair of birthday
mates. Part A of Figure 5.2 gives the visual display of the table probabilities. The meeting
point of the complementary curves at 0.5 gives k=23 as claimed in Williams (2001). ◽

Table 5.2 Birthday Match Probabilities

Size k Probability of
Different Birthdays

Probability of at least
Two Same Birthdays

2 0.9973 0.0027
5 0.9729 0.0271
10 0.8831 0.1169
20 0.5886 0.4114
30 0.2937 0.7063
40 0.1088 0.8912
50 0.0296 0.9704
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Figure 5.2 Birthday Match and Banach Match Box Probabilities

Example 5.3.7. The Banach Match Box Problem. This problem is credited to the famous
mathematician Stephan Banach. Suppose that the mathematician keeps two match boxes, one
each in the right and left pockets. For simplicity, we assume that both the match boxes have
an equal number of sticks in the beginning. Whenever required, a match box is randomly
selected from the pockets and used and then put back in its place. We are interested in finding
the number of sticks remaining in the other box on the occasion of finding one of the boxes
empty.

Suppose that each match box has 50 sticks at the beginning. Since each match box is selected
with equal probability, we intuitively believe that when one of the match boxes is found empty,
the other match box must also be nearly empty. The intuition further says that the probability
of the other match box being nearly empty must be very high. If we are hard pressed to put our
belief in numbers, we may say that the probability of the non-empty match box containing 5
or less sticks is very high, say 0.7, and that the probability of it having more than 5 sticks is
less than 0.3.

Mathematically, the theory unfolds as follows. A probabilist has two match boxes in each
of his two pockets, each containing N sticks. A stick is randomly selected from either the right
or the left match box and is then used. We are interested in knowing the number of sticks left
in the other match box when one of the two boxes is found to be empty. Let E denote the
number of k sticks in a box when the other box is found empty. The well-known result about
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the probability of E is that

P(E) =
(2N − k

N

)(1
2

)2N−k
. (5.4)

The combinatorial probabilities can be obtained by the following R program:

> match_prob <- function(x) choose(2*N-x,N)*2 ̂ {-(2*N-x)}
> #Verifing Fellers Match Box Probabilities on Page 166
> N <- 50
> round(sapply(0:30,match_prob),6)
[1] 0.079589 0.079589 0.067902 0.063568
[9] 0.058783 0.053672 0.027677 0.023171
[17] 0.019082 0.015447 0.004041 0.002901
[25] 0.002034 0.001392
> plot(0:50,cumsum(sapply(0:50,match_prob)),xlab="Number of Sticks
+ Remaining", ylab="Cumulative Probability","l")
> title("The Match Box Problem")

The function match_prob computes the probability given by Equation 5.4. The plot func-
tion attempts to give the cumulative probability as discussed earlier, the code cumsum and
its arguments. The cumulative probability plot of the number of sticks against the number of
sticks is given in Figure 5.2. It is thus again a surprise to the reader that the plot is almost the
exact reverse of what their intuition said. ◽

We will now digress a little here and have a close look at the failure of the definition of
probability discussed thus far. It seems to our intuition that if P(Ω) = 1, the probability for any
subset A ⊂ Ω must exist. That is, any subset A must have a well defined measure. Ross and
Pekoz (2007) consider a very elegant example of a subset A for which the measure cannot be
defined in any rational way. Suppose that we begin at the top of a unit circle and take a step of
one unit radian in a counter-clockwise direction. If required, we may perform more than one
loop. The task is then computation of the probability of returning to the point from which we
started our journey. Suppose that it takes a steps and b loops to return to the top of the circle.
This implies that a = 2b𝜋. As 𝜋 is an irrational number, it cannot be expressed as the ratio of
two integers a∕2b. Thus, the probability of returning to the start point cannot be measured.

This and some other limitations of the definition of probability considered up to now are
overcome using the Kolmogorov’s definition of probability, which is based on Measure Theory.
We will leave out the details of these important discussions!

?prod, ?choose, ?factorial, ?sample

5.4 Probability: A Definition

We will begin with a few definitions and lemmas.

5.4.1 The Prerequisites

Let us consider a class of sets of Ω, say {An}∞n=0. The sequence {An}∞n=0 is said to be monotone
increasing if An ⊆ An+1 for each n. The sequence is said to be monotone decreasing if
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An ⊇ An+1 for each n. We introduce two sequences infimum inf and supremum sup as below:

inf
k≥n

Ak ∶=
∞⋂

k=n

Ak,

sup
k≥n

Ak ∶=
∞⋃

k=n

Ak. (5.5)

The symbol ∶= is used to convey that the quantity on the left-hand side is by definition equal
to that on the right-hand side. It is easier to see that the inf sequence is monotone increasing
sequence, whereas the sup sequence is a monotone decreasing sequence. We further define
sequences lim inf and lim sup as follows:

lim inf
k≥n

Ak ∶=
∞⋃

n=1

∞⋂
k=n

Ak,

lim sup
k≥n

Ak ∶=
∞⋂

n=1

∞⋃
k=n

Ak. (5.6)

Definition 5.4.1 Limit of a Sequence. Consider a sequence of sets {An}∞n=1, with An ∈ Ω,∀n.
We say that the limit of the sequence {An}∞n=1 exists if

lim
n→∞

inf
k≥n

Ak = lim
n→∞

sup
k≥n

Ak = A, (say). (5.7)

Example 5.4.1. Basic Set Operations. Let A,B ∈ Ω be any two arbitrary sets. Define

An =
{

A, if n = 1, 3, 5, … ,

B, if n = 2, 4, 6, … .

By definition, it is easier to see that for k ≥ 1, inf
k≥n

Ak = A ∩ B, whereas sup
k≥n

Ak = A ∪ B.

Furthermore, the lim inf and lim sup are respectively lim inf
k≥n

Ak = A ∩ B, and

lim sup
k≥n

Ak = A ∪ B. This implies for the sequence {An} to have a limit, we must have

A ∩ B = A ∪ B, which is possible if A = B. We attempt to write a small R program to illustrate
the concepts here.

> # Illustrating limsup and liminf using R
> Omega <- letters
> A <- letters[1:5]; B <- letters[3:10]
> #n= 1, 2, ...
> n <- 1000 #We can’t have infinity, so lets do with large n
> liminfsequence <- NULL; limsupsequence <- NULL
> An <- list() # Obtaining the An’s
> for(i in 1:n){
+ if(i%%2 == 1) An[[i]] <- A else An[[i]] <- B
+ }
> # Obtaining the Bn’s and Cn’s
> Bn <- list()
> Cn <- list()
> for(i in 1:n){
+ Bn[[i]] <- An[[i]]
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+ Cn[[i]] <- An[[i]]
+ for(j in (i+1):n){
+ Bn[[i]] <- intersect(Bn[[i]],An[[j]])
+ Cn[[i]] <- union(Cn[[i]],An[[j]])
+ }
+ }
Error in An[[j]] : subscript out of bounds
> #Purely from programming point of view ignore Bn[[n]] and Cn[[n]]
> for(i in 1:(n-1)){
+ liminfsequence <- Bn[[i]]
+ limsupsequence <- Cn[[i]]
+ for(j in (i+1):n){
+ liminfsequence <- union(liminfsequence,Bn[[i]])
+ limsupsequence <- intersect(limsupsequence,Cn[[j]])
+ }
+ }
> liminfsequence
[1] "c" "d" "e"
> limsupsequence
[1] "c" "d" "e" "f" "g" "h" "i" "j"

A purist may criticize the above program for incorrectly carrying out the first step of obtain-
ing inf

k≥n
Ak in an erroneous way. The way we look at this criticism is that the steps carried out

here are in the spirit of a simulation study for asymptotic results. In neither case, we never
really reach ∞. On the other hand, this simple program (if the reader agrees!) illustrates some
nice points, such as the fact that lim inf

k≥n
Ak ⊆ lim sup

k≥n
Ak. To see this point, experiment

with different As and Bs. Of course, we have restricted ourselves to the case where the Aks are
a finite discrete set. ◽

Example 5.4.2. Limsum and Liminf for a Sequence of Sets. Consider a sequence of sets
{An}∞n=1 defined as follows:

An =
{
(−1∕n, 1], n = 1, 3, 5, … ,

(−1, 1∕n], n = 2, 4, 6, … .

Here we need to consider two cases for computing the limsup and liminf. Consider first the
case when n begins with an even number. Here ∩∞

k=nAk

∩∞
k=nAk =

(
−1,

1
n

]
∩
( −1

n + 1
, 1
]
∩
(
−1,

1
n + 2

]
+ … = {0},

whereas ∪∞
k=nAk is

∪∞
k=nAk =

(
−1,

1
n

]
∪
( −1

n + 1
, 1
]
∪
(
−1,

1
n + 2

]
+ … = (−1, 1].

This leads to the liminf and limsup as ∪∞
n=1 ∩

∞
k=n Ak = 0, whereas ∩∞

n=1 ∪
∞
k=n Ak = (−1, 1]. If n

begins with an odd number, the conclusion does not change, and this exercise is for the reader
to verify. Hence, the limit does not exist for this sequence of sets. ◽
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Definition 5.4.2 Field. Let Ω be the sample space and consider a non-empty class of subsets
of Ω, denoted by  . We say that  is a field if it is closed under complementation and finite
intersection, that is,

1. Ω ∈  .
2. A ∈  ⇒ Ac ∈  .
3. A,B ∈  ⇒ A ∩ B ∈  .

It is also common to refer to the couplet (Ω, ) as a field. It may be easily proved that a field
is also closed under finite union.

Example 5.4.3. A List of Fields. We need to verify that a class of sets  satisfies the three
criteria of field in Definition 5.4.2 if it is to be a field. It is easy to see that the examples below
are indeed fields.

1. Let Ω be any set. Then (𝜙,Ω) is a field which is also called the trivial field, where 𝜙 is the
null set.

2. For an arbitrary set Ω, the collection of all subsets of Ω is a field. This field is referred to
as the power set.

3. For the set Ω, the collection A ∶= {𝜙,Ω,A,Ac}, for any subset A ⊂ Ω, is an example of a
field.

4. Let 1 and 2 be any two fields of Ω. Then  = 1 ∩ 2, the intersection of two fields also
results in a field. It is to be noted that an arbitrary intersections of field is also a field.

5. For a set Ω, the collections A ∶= {A,Ac, 𝜙,Ω} and B ∶= {B,Bc, 𝜙,Ω} are fields. How-
ever, the union A ∪ B = {A,Ac,B,Bc, 𝜙,Ω} is not a field since A ∪ B is not in the class
of unions.

A useful general class of field is developed next. ◽

Definition 5.4.3 Minimal Field. Let  be any arbitrary collection of sets Ω. Let 𝛼 be a
collection of fields, each of which contains  . Then we define the minimal field by

 () = ∩𝛼𝛼.

In plain words, the minimal field is the least collection of sets containing  , which is a field.

Example 5.4.4. The Minimal Field of a Partition. A collection of sets is called a partition
of Ω if the collection is mutually exclusive and exhaustive. That is, we say that the collec-
tion {Ai}n

i=1 is a partition of Ω if Ai ∩ Ai′ = 𝜙 and
∑n

i=1 Ai = Ω. A common practice in the
case of mutually exclusive sets is to denote the union with a sum, that is,

∑n
i=1 Ai = ∪n

i=1Ai.
It is a straightforward exercise to verify that the collection {𝜙,A1,A2, … ,An,A1 + A2,A1 +
A3, … ,An−1 + An,A1 + A2 + A3, … ,An−2 + An−1 + An, … ,Ω} is a field. ◽

Fields need a generalization and especially in the case of countably infinite or continuous
set Ω.
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Definition 5.4.4 𝝈-field. LetΩ be the sample space and consider a non-empty class of subsets
of Ω, denoted by  . We say that  is a 𝜎-field if it is closed under complementation and
countable union, that is,

1. Ω ∈  .
2. A ∈  ⇒ Ac ∈  .
3. A1,A2, … ∈  ⇒ ∪∞

i=1Ai ∈  .

The couplet (Ω, ) is sometimes called the 𝜎-field.

Example 5.4.5. A List of 𝝈-fields. The reader may easily verify that each of the following
collection of sets is an example of a 𝜎-field.

1. If a collection  contains finite number of sets, and is also a field, then the collection is a
𝜎-field too.

2. The intersection of an arbitrary number of 𝜎-fields results in a 𝜎-field.
3. If a collection  is a 𝜎-field, it is possible to show that the lim sup and lim inf of any

sequence is also contained in the 𝜎-field.

A useful class of 𝜎-fields will be taken up next. ◽

As earlier, we can define the minimal 𝜎-field as an extension of the minimal field. There is an
important class of 𝜎-field, which will be defined now.

Definition 5.4.5 Borel 𝝈-field. Let Ω = ℝ, ℝ being the real line, and consider the class of
sets  = (−∞, x], x ∈ ℝ. Define 𝜎() ≡ (ℝ) as the minimal 𝜎-field of . Then (ℝ) is called
the Borel of subsets of ℝ.

It may be verified that the Borel 𝜎-field consists of the intervals, for all a, b ∈ ℝ, of the
following types:

• (−∞, a]
• (a,∞)
• (a, b)

• (a, b]
• [a, b)
• [a,∞)

The definition of (ℝ) may be extended to ℝn and the reader may refer to Chung (2001).
Starting with the sample space Ω, a general class of sets  has been defined. Next a formal
definition of a measure is required.

Definition 5.4.6 Measure. Let (Ω, ) be a 𝜎-field. A function 𝜇 from  to the extended real
line, including the positive and negative infinite numbers, is said to be a measure if it satisfies
the following properties:

1. For any A ∈  , 𝜇(A) ≥ 0.
2. For a collection of countable sets {An}∞n=1 of pairwise disjoint sets in  , the following is

satisfied:

𝜇(∪∞
n=1An) =

∞∑
n=1

𝜇(An).

3. For an empty set 𝜙 ∈  , 𝜇(𝜙) = 0.
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Let us now look at two important types of measures.

Example 5.4.6. The Counting Measure. Consider a countable set Ω and let  be the col-
lection of all possible subsets of Ω, and hence  is a 𝜎-field. Define the counting measure
𝜇 as

𝜇(A) = n(A),A ∈  .

The reader may verify that the counting measure satisfies the properties required of a
measure. ◽

Example 5.4.7. The Lebesgue Measure. Consider the Borel 𝜎-field over the real line ℝ, that
is, (ℝ,(ℝ)). For a Borel set A = [a, b) ∈ (ℝ), A may be of any form, such as open interval,
closed interval, etc., consider the measure defined by the length:

𝜇(A) = b − a, a ≤ b ∈ ℝ.

It may be verified that the length measure, called the Lebesgue measure, meets the requirement
of a measure. Similarly, the Lebesgue measure may be defined as area, volume, etc., in higher
dimensions. ◽

We are now equipped with the necessary tools for a proper construction of a probability
measure.

5.4.2 The Kolmogorov Definition

Definition 5.4.7 The Finitely Additive Probability Measure. Consider a field (Ω, ),
where Ω is the sample space and  is a field. A function P ∶  → [0, 1] is said to be a finitely
additive probability measure if

• P(Ω) = 1.
• If the events A1,A2, … ,An ∈  are a sequence of disjoint sets, then

P(∪n
i=1Ai) =

n∑
i=1

P(Ai).

The triplet (Ω, ,P) is called the finitely additive probability space or simply a probability
space.

Here, the finiteness refers to the collection of sets in  and additiveness refers to disjoint
collection of events. Any set A ∈  is called an event or (more precisely) a measurable event.
Next, we list some properties of the finitely additive probability measure:

• P(Ac) = 1 − P(A).
• P(𝜙) = 0.
• If A ⊆ B, then P(A) ≤ P(B).
• 0 ≤ P(A) ≤ 1.
• The General Additive Rule: P(A ∪ B) = P(A) + P(B) − P(A ∩ B), and hence P(A ∪ B) ≤

P(A) + P(B).
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• For an arbitrary set A and a collection of mutually exclusive and exhaustive sets
B1,B2, … ,Bn:

P(A) =
n∑

i=1

P(A ∩ Bi).

Example 5.4.8. Validation of a Measure to be a Finitely Additive Probability
Measure. Consider Ω = {1, 2, 3, 4} and let  = {𝜙,Ω, {1}, {4}, {2, 3}, {1, 4}, {1, 2, 3},
{2, 3, 4}}. Define the probabilities with P(𝜙) = 0, P(Ω) = 1, P({1}) = 1∕8,P({4}) = 3∕8,
P({2, 3}) = 1∕2,P({1, 4}) = 1∕2, P({1, 2, 3}) = 5∕8, P({2, 3, 4}) = 7∕8. First, we easily
check that the class of sets  is indeed a field as it is closed under complementation and finite
intersection (union).

Next, we see that all the defined probabilities are non-negative with P(Ω) = 1. Consider an
arbitrary collection of disjoint sets, say, {2, 3}, {1}, {4}. Since{2, 3} ∪ {1} ∪ {4} = Ω, and
P({2, 3}) + P({1}) + P({4}) = 1∕2 + 1∕8 + 3∕8 = (4 + 1 + 3)∕8 = 1, the second condition
of probability measure is satisfied. Similarly, it can be verified with this example that for any
arbitrary disjoint collection of events, the probability of union of the sets is equal to the sum
of the probability of the events. Thus, the measure P is a finite additive probability measure.
See Chapter 4 of Capiński and Zastawniak (2001). ◽

Example 5.4.9. Probability of a Symmetric Difference Event. The symmetric difference set
operator for two events A and B is defined by

A △ B = {A ∩ Bc} ∪ {B ∩ Ac}.

Note that by its definition, A △ B = B △ A. Further note that {A ∩ Bc} and {B ∩ Ac} are dis-
joint sets. We claim that for any sets A,B,C ∈ 

P(A △ B) = P(A) + P(B) − 2P(A ∩ B),

and the inequality P(A △ C) ≤ P(A △ B) + P(B △ C).

It is left to the reader as an exercise to prove that probability axioms are preserved under the
symmetric difference. ◽

We now extend the finitely additive probability measure to the countably infinite case.

Definition 5.4.8 The Countably Additive Probability Measure. Consider a 𝜎-field (Ω, ),
where Ω is the sample space and  is a 𝜎-field. A function P ∶  → [0, 1] is said to be a
countably additive probability measure if

• P(Ω) = 1.
• If the events A1,A2, … ,∈  are disjoint, then

P(∪∞
i=1Ai) =

∞∑
i=1

P(Ai).

The triplet (Ω, ,P) is called the countably additive probability space or simply a probability
space.
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Example 5.4.10. A Power Series Probability Measure. Let Ω = ℕ, the set of natural
integers, and let  be the power set of Ω. Define a measure as

P({i}) = 1
2i
, i = 1, 2, … .

Then

P(Ω) =
∞∑

i=1

1
2i

=
∞∑

i=0

(1∕2)j − 1 = 1
1 − 1∕2

− 1 = 2 − 1 = 1.

It is further easy to see that the countably additiveness holds true for P. Thus, the measure P
is a countably additive probability measure. ◽

Example 5.4.11. The Cantor Set. Consider the unit interval Ω = [0, 1]. First, remove
the open interval (1∕3, 2∕3) from Ω so that we are now left with Ω′ = [0, 1∕3] ∪ [2∕3, 1].
From each remaining interval remove the mid-thirds to obtain Ω′′ = [0, 1∕9] ∪ [2∕9, 1∕3] ∪
[2∕3, 7∕9] ∪ [8∕9, 1]. This process is continued ad infinitum. The remaining Ω ad infinitum is
well-known in real analysis as the Cantor set. It may be shown that the Cantor set is a Borel
set, see Royden (1987). Define

Ec
n = ∪3n−1

k=1

(3k − 2
3n

,
3k − 1

3n

)
.

Note that for each n, En is the union of 2n sets. The Cantor set is defined by

C = ∩∞
n=1En.

At each step we can see that En is an uncountable set. Since the intersection of uncountable
sets is again an uncountable set, the Lebesgue measure of the Cantor set is expected to be a
positive number. The Lebesgue measure of the Cantor set is obtained from those of Ec

n as

𝜇(C) = 𝜇([0, 1]) − 𝜇

(
∪∞

n=1 ∪
3n−1

k=1

(3k − 2
3n

,
3k − 1

3n

))
.

For each n, the Lebesgue measure of Ec
n can be seen as 2n∕3n+1. Thus, we have

𝜇(C) = 1 −
∞∑

n=1

2n

3n+1
= 1 − 1

3

∞∑
n=1

2n

3n
= 1 − 1

3

(
1 − 1

1 − 2
3

)
= 1 − 1 = 0.

Hence, it is a surprise that the Lebesgue measure of an uncountable set can be zero. A plot of
the En’s can be obtained from the following R program, see its output in Figure 5.3.

> n <- 0:6
> plot(c(0,1), c(0,6), type="n", xlab="The Unit Interval",ylab="n")
> title("The Cantor Set: A Visual Treat")
> points(c(0,1),c(0,0),"l",lwd=5)
> for(i in 2:7){
+ nn <- n[i]
+ points(c(0,1),c(nn,nn),"l",lwd=5)
+ for(j in 1:{3 ̂ {nn-1}}) points(c((3*j-2)/3 ̂ {nn},
+ (3*j-1)/3 ̂ {nn}),c(nn,nn),"l",lwd=5,col="white")
+ }
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Figure 5.3 The Cantor Set

The code points(c((3*j-2)/3 ̂ {nn},(3*j-1)/3 ̂ {nn}),c(nn,nn),...)
easily imitates the expression for Ec

n. Thus, R is useful to obtain a visual display of events
leading to the Cantor set. ◽

5.5 Conditional Probability and Independence

An important difference measure theory and probability theory is in the notion of indepen-
dence of events. The concept of independence is brought through conditional probability and
its definition is first considered.

Definition 5.5.1 Consider the probability space (Ω, ,P). The conditional probability of an
event B, given the event A, with P(A) > 0, denoted by P(B|A), A,B ∈  , is defined by

P(B|A) = P(B ∩ A)
P(A)

. (5.8)

The next examples deal with the notion of conditional probability.

Example 5.5.1. The Dice Rolling Experiment. Suppose that we roll a die twice and note the
sum of the outcomes as 9. The question of interest is then what is the probability of observing
1 to 6 on Die 1? Using the rolldie and prob functions from the prob package, we can
obtain the answers.

> S <- rolldie(2,makespace=TRUE)
> prob(S,X1==1,given=(X1+X2==9))
[1] 0
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> prob(S,X1==2,given=(X1+X2==9))
[1] 0
> prob(S,X1==3,given=(X1+X2==9))
[1] 0.25
> prob(S,X1==4,given=(X1+X2==9))
[1] 0.25
> prob(S,X1==5,given=(X1+X2==9))
[1] 0.25
> prob(S,X1==6,given=(X1+X2==9))
[1] 0.25

◽Conditional probabilities help in defining independence of events.

Definition 5.5.2 Consider the probability space (Ω, ,P) and an event B ∈  , such that
P(B) ≠ 0. An event A ∈  is said to be independent of B if

P(A|B) = P(A). (5.9)

Some properties of the independence, if events A and B are independent, are listed as:

• A and Bc are independent.
• Ac and B are independent.
• Ac and Bc are independent.

Example 5.5.2. The Intel Fiasco. This example is drawn from Horgan (2008). In the
year 1994, Intel manufactured a chip which carried out 1 incorrect division in 9 billion
opportunities. Intel transformed this story as an error occurring once in 27 000 years. A
statistician will be typically performing millions of division every week. Let us see how this
chip will be affecting him. By the data here:

P(Error) = 1
9000000000

,

P(No Error) =
(

1 − 1
9000000000

)
,

P(no errors in two divides) = P(no error in first divide) × P(no error in second divide)

=
(

1 − 1
9000000000

)2
.

For a probabilist, if he performs a billion divisions, the probability of him making no error is
then given by:

> proberror= 1 - 1/9000000000
> (noerrorbill=proberror ̂ {1}000000000)
[1] 0.8948393

Suddenly, this probability looks very high. This is not a surprise for a Statistician, and naturally
this fact forced Intel to withdraw the chip from the market. ◽
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Figure 5.4 Venn Diagram to Understand Bayes Formula

5.6 Bayes Formula

An excellent exposition of the the Bayes formula is provided in Chapter 4 of Bolstad (2007).
Consider a partition of the sample space Ω in a collection of m events Bj, j = 1, 2, … ,m,
also defined earlier in Section 5.4, from the probability space (Ω, ,P). That is, Bj ∈  , j =
1, … ,m. Consider an arbitrary event A ∈  . Then A = ∪m

j=1(A ∩ Bj). Since Bj’s form a par-
tition of Ω, it can be visualized from the Venn diagram, Figure 5.4, that A ∩ Bj’s are also a
disjoint set of events. Hence,

P(A) = P(∪m
j=1(A ∩ Bj)) =

m∑
j=1

P(A ∩ Bj) =
m∑

j=1

P(A|Bj)P(Bj).

The last step of the above expression is obtained by the multiple rule of probability. The
beauty of Bayes formula is that we can obtain inverse probabilities, that is, the probability of
the cause given the effect. This famous Bayes formula is given by:

P(Bj|A) = P(A ∩ Bj)
P(A)

=
P(A|Bj)P(Bj)∑m

j=1 P(A|Bj)P(Bj)
.

Example 5.6.1. Classical Problem from Hoel, Port, and Stone (1971). Suppose there are
three tables with two drawers each. The first table has a gold coin in each of the drawers, the
second table has a gold coin in one drawer and a silver coin in the other drawer, while the
third table has silver coins in both of the drawers. A table is selected at random and a drawer is
opened which shows a gold coin. The problem is to compute the probability of the other drawer
also showing a gold coin. The Bayes formula can be easily implemented in an R program.

> prob_GC <- c(1,1/2,0)
> prior <- c(1/3,1/3,1/3)
> post_GC <- prob_GC*prior
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> post_GC/sum(post_GC)
[1] 0.6666667 0.3333333 0.0000000

Thus, the probability of the other drawer containing a gold coin is 0.6666667. ◽

5.7 Random Variables, Expectations, and Moments

5.7.1 The Definition

Sample events on their own are not always of interest, as we may only be interested in general
events. For instance, if 100 coins are thrown, we may not be interested in the probabilities of
the event itself, but we may question the number of heads in the range of 10 to 40, or > 80.
Thus, we need to consider functions of the events which help to answer generic questions. This
will lead us to the concept of random variable.

Definition 5.7.1 Consider a probability space (Ω, ,P). A random variable X is any
 -measurable function from Ω to ℝ, that is, X ∶ Ω → ℝ.

In plain words, it is required that for any Borel set A ∈ ℝ, the inverse image X−1(A) must
belong to  :

X−1(A) = {𝜔 ∶ X(𝜔) ∈ A} ∈  ,∀A ∈ ℝ.

A random variable will be simply abbreviated as RV. A commonly accepted convention is
to denote the random variables by capital letters X, Y , Z, etc., and the observed values by
small letters x, y, z, etc. respectively. Random variables are identified to be of three types: (i)
simple random variable, (ii) elementary random variable, and (iii) extended random variable.
A random variable X is said to be simple if there exists a finite partition of Ω in A1, … ,An, n
finite, implying Ai ∩ Aj = 𝜙, i ≠ j,∪n

i=1Ai = Ω, such that

X =
n∑

i=1

xiI{Ai}, (5.10)

where I{Ai} = 1 if xi ∈ Ai, i = 1, … , n and 0 otherwise. The random variable X is said to be
elementary if for a countably infinite partition of Ω in {Ai}∞i=1

X =
∞∑

i=1

xiI{Ai}. (5.11)

Finally, the random variable X is said to be an extended random variable if X ∶ Ω → [−∞,∞].
An extended RV is often split into a positive part and a negative part defined by

X+ =
{

X, if X ≥ 0,
0, if X < 0,

;X− =
{

0, if X ≥ 0,
−X, if X < 0.

(5.12)

It can be easily seen that X = X+ − X−.
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Example 5.7.1. Tossing Coins. Contd. Let X denote the number of heads in the experiment
of tossing k coins. For example, if we throw three coins, then

X{(HHH)} = 3, X{(HHT)} = 2,

X{(HTH)} = 2, X{(HTT)} = 2,

X{(THH)} = 2, X{(THT)} = 2,

X{(TTH)} = 1, X{(TTT)} = 2.

Note that though the outcome of throwing three coins is one of the elements 𝜔 such as HHH,
HHT , … , TTT , we are more interested in knowing whether the number of heads is 1, 2, 3. Is
X an example of a simple random variable? ◽

Example 5.7.2. Rolling Dies. Contd. Suppose that we throw two die. Let X be the sum of
outcomes of the two die. Then

X{(i, j)} = i + j, i, j = 1, 2, … , 6.

Here, the sample events are (𝜔1, 𝜔2) = (i, j), i, j = 1, … , n, whereas we are interested in know-
ing whether the sum is 2, 3, … , 12. It is possible to define random variables in R for some
random experiments. We will illustrate this in the example here. The necessary R codes are
given next.

> S <- rolldie(2,makespace=TRUE)
> S <- addrv(S, U = X1+X2)
> for(i in 2:12) print(prob(S,U==i))
[1] 0.02777778
[1] 0.05555556

...
[1] 0.02777778
> aggregate(S$probs,by=list(S$U),sum) # gives same result

Using therolldie andaddrv from theprob package, we can understand random variables
for the die rolling experiments. It may be seen that X is a simple random variable. ◽

Example 5.7.3. Jiang’s Example 2.2. Let Ω = [0, 1] and  be the Borel 𝜎- field. The prob-
ability measure is the Lebesgue measure. Define a sequence of random variables {Xn}∞n=1 as
follows:

X1(x) =
{

1, x ∈ [0, 1∕2),
0, x ∈ [1∕2, 1], X4(x) =

{
1, x ∈ [1∕4, 1∕2),
0, x ∈ Ω\[1∕4, 1∕2),

X2(x) =
{

0, x ∈ [0, 1∕2),
1, x ∈ [1∕2, 1], X5(x) =

{
1, x ∈ [1∕2, 3∕4),
0, x ∈ Ω\[1∕2, 3∕4),

X3(x) =
{

1, x ∈ [0, 1∕4),
0, x ∈ Ω\[0, 1∕4), X6(x) =

{
1, x ∈ [3∕4, 1],
0, x ∈ Ω\[3∕4, 1].

⋮ ⋮
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We need to first define the sequence properly. That is, we need an expression which will
describe the probability distribution of Xn.

The first task towards this is to understand that the serial number list can be generated as a
function of two series. The serial numbers 1, 2, 3, 4, … can be obtained from the two series
m = 0, 1, 2, … , and i = 0, 1, 2, … , 2m–1. This can be seen below:

> m <- 0:4
> index <- 0
> serial_number <- c()
> for(k in 2:length(m)){
+ i <- 0:(2 ̂ {m[k]}-1)
+ for(j in 1:length(i)){
+ index <- index+1
+ serial_number <- c(serial_number,index)
+ }
+ }
> serial_number[1:10]
[1] 1 2 3 4 5 6 7 8 9 10

We will use an R program to find the intervals over which X takes the value of 1.

> # myintervals[1,]=c(0,1)
> m <- 0:4
> myintervals <- matrix(nrow=1000,ncol=2)
> index <- 0
> for(k in 2:length(m)){
+ i=0:(2 ̂ {m[k]}-1)
+ for(j in 1:length(i)){
+ index=index+1
+ myintervals[index,1]=i[j]/{2 ̂ {m}[k]}
+ myintervals[index,2]=(i[j]+1)/{2 ̂ {m}[k]}
+ }
+ }
> myintervals[1:10,]

[,1] [,2]
[1,] 0.000 0.500
[2,] 0.500 1.000
[3,] 0.000 0.250
[4,] 0.250 0.500
[5,] 0.500 0.750
[6,] 0.750 1.000
[7,] 0.000 0.125
[8,] 0.125 0.250
[9,] 0.250 0.375
[10,] 0.375 0.500

Is this all? The authors do not think so. Let us ask what will the plot of the random variables
look like. Again, let us use a programming angle and plot the first eight random variables, see
Figure 5.5.



Trim Size: 170mm x 244mm Tattar c05.tex V3 - 02/10/2016 10:18 A.M. Page 136�

� �

�

136 A Course in Statistics with R

> x <- seq(-0.1,1.1,0.01)
> rx <- function(x,a,b) ifelse({x>=a}&{x<=b},1,0)
> par(mfrow=c(2,4))
> for(i in 1:8){
+ plot(x,y=x*0+1,"n",xlab=expression(omega),
+ ylab=expression(X(omega)),ylim=c(0,1.1),
+ main=paste("Plot of X",i,sep=""))
+ lines(x,sapply(x,rx,a=myintervals[i,1],
+ b <- myintervals[i,2]),"l",cex=10)
+ }

Figure 5.5 displays the first eight random variables and should also further help the reader to
visualize the random variables further in the sequence. This example will also be continued
further. ◽

We next consider some important properties of random variables.

Properties of Random Variables

• Borel function f of a random variable X is also a random variable.
• If X is an RV, then aX + b is also a RV for a, b ∈ ℝ.
• Let X1 and X2 be two RVs in a probability space (Ω, ,P). Then min{X1,X2} and

max{X1,X2} are also RVs.
• Consider an independent sequence of RVs Xn, n ≥ 1. Define, for all 𝜔 ∈ Ω,

sup
n

Xn = sup
n

Xn(𝜔), inf
n

Xn = inf
n

Xn(𝜔),

lim supnXn = lim supnXn(𝜔), lim infnXn = lim infnXn(𝜔).

Then sup
n

Xn, inf
n

Xn, lim supnXn, and lim infnXn are all RVs.

• If Xn(𝜔) converges as n → ∞ for every 𝜔 ∈ Ω, then lim
n→∞

Xn is also an RV.

An RV is better understood through important summaries such as mean and variance. We
next define expectation of RV, which further helps in obtaining these summaries.

5.7.2 Expectation of Random Variables

As an introductory, the expectation of a discrete RV is defined by EX =
∑

xxp(x), and for
a continuous RV, by EX = ∫RX

xf (x)dx. In light of the three types of RV discussed earlier, we
need to now define the expectation of an RV for simple, elementary, and extended RVs defined
in a probability space (Ω, ,P). For the moment, we will assume that the extended RVs are
non-negative RVs.

The expectations of simple RV and elementary RV as defined respectively in Equations 5.10
and 5.11 are given by

EX =
n∑

i=1

xiP(Ai), (5.13)
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Plot of X1
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Figure 5.5 Plot of Random Variables for Jiang’s example



Trim Size: 170mm x 244mm Tattar c05.tex V3 - 02/10/2016 10:18 A.M. Page 138�

� �

�

138 A Course in Statistics with R

EX =
∞∑

i=1

xiP(Ai). (5.14)

The expectation of a non-negative random variable is defined by

EX = lim
n→∞

n2n∑
i=1

k − 1
2n

P
(k − 1

2n
≤ X <

k
2n

)
. (5.15)

It may be noted that the limit can be ∞ too. The expectation of an arbitrary (extended) RV, as
given in Equation 5.12, is defined by

EX = EX+ − EX−, (5.16)

provided that at least one of EX+ and EX− is finite. If both EX+ and EX− are infinite, the
expectation of the RV is not defined.

Example 5.7.4. Expectation of RVs Through a Program.∗1 Mathematically, the expec-
tations of the different types of RVs is defined in Equations 5.13–5.16. Binomial, Poisson,
exponential, normal, and Cauchy RVs are some of the very important probability RVs in the
subject, for more details refer to Chapter 6. The choice of these random variables is partly due
to their importance and also that it is likely that the reader will be familiar with earlier exposure
to the subject. The binomial RV is an example of a simple RV, Poisson of an elementary RV,
or exponential RV of a non-negative RV, while normal Cauchy RVs are examples of arbitrary
RVs. The functionssum andintegrate can be used to obtain the mean of RVs. However, we
need to caution the reader that numerical computations, as performed here, are not an alterna-
tive to analytical and mathematical thinking and as such the results here need to be taken with
a lot of care. We will begin with the binomial and Poisson RVs. Let n = 10 and p = 0.3 be the
parameters for a binomial RV and 𝜆 = 5 be the parameter for a Poisson RV. The expectation, or
mean, of these two RVs are respectively known to be E(X) = np and E(X) = 𝜆. The probability
mass function of these two RVs are respectively given in R by dbinom and dpois.

> sum(0:10*dbinom(0:10,size=10,p=0.3)) # Simple RV
[1] 3
> sum(0:1e7*dpois(0:1e7,lambda=5)) # Elementary RV
[1] 5
> sum(0:25*dpois(0:25,lambda=5))
[1] 5
> sum(0:30*dpois(0:30,lambda=5))
[1] 5
> sum(0:25*dpois(0:25,lambda=5))==sum(0:30*dpois(0:30,lambda=5))
[1] FALSE

Since the binomial RV is an example of a simple RV, and in the present case n = 10, the
different integer values are 0, 1, … , 10. The parameter values of n and p are respectively
declared with the options size=10 and p=0.3. Thus, sum(0:10*dbinom()) computes

1This example assumes familiarity with the probability models considered herein.
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∑10
i=0 xip(xi) as the required expectation E(X) for the binomial RV. The R answer of 3 is

acceptable, since it equals the theoretical value of np.
The non-negative integer values of the Poisson RV is the set 0, 1, 2, … , and as such we

cannot create an R object consisting of infinite elements for any elementary RV. However,
from a programming perspective, the values of X for which p(xi) will be close to zero
will make an insignificant contribution towards this expectation and thus to begin with we
will ignore values of X greater than 1e7 for 𝜆 = 5. Though the computed value of 5 for
sum(0:1e7*dpois(0:1e7,lambda=5)) meets the theoretical expected value, there
is a small price to pay for ignoring the remaining range of the RV. This may be seen by
restricting the sum over two sets 0:25 and 30, which return the same value. However, they
are not equal in the sense that the actual numbers differ in the decimal values which are not
displayed on the screen.

Next, consider the computation of expectation of an extended RV. Basically, we will focus
on continuous RVs and the use of the Formulas 5.15 and 5.16. To begin with, we will try to
obtain the expectation of a uniform RV, see Section 6.3. The parameter 𝜃 determines the range
of the uniform RV. The formula 5.15 requires us to partition the interval [0, n] into n2n—1
intervals. Thus, our computations of the expectations will not be accurate if P(X > n) is sig-
nificantly large, since the choice of n is limited accordingly as R can create large data objects
depending on the available computer configurations. The computer configurations issue will
not be discussed any further here. The intention of the program is to stress that as n increases,
the computed expectation will be closer to the actual mean.

> partitions <- function(n) n*2 ̂ {n}
> Expectation_NNRV_Unif <- function(n,min,max){
+ k = 1:partitions(n)
+ EX = sum(((k-1)/(2 ̂ {n}))*(punif(k/2 ̂ {n},min,max)-
+ punif((k-1)/2 ̂ {n},min,max)))
+ return(EX)
+ }
> sapply(1:20,Expectation_NNRV_Unif,min=0,max=10)
[1] 0.0250 0.1750 0.4312 5.0000 5.0000 5.0000
> sapply(1:20,Expectation_NNRV_Unif,min=0,max=0.5)
[1] 0.0000 0.1250 0.1875 0.2500 0.2500 0.2500
> sapply(1:20,Expectation_NNRV_Unif,min=0,max=20)
[1] 0.0125 0.0875 0.2156 8.1000 9.0250 10.0000
> sapply(1:20,Expectation_NNRV_Unif,min=0,max=30) # FAILS #
[1] 0.008333 0.058333 0.143750 5.399999 6.016666 6.666666
> sapply(1:20,Expectation_NNRV_Unif,min=0,max=1.3467)
[1] 0.1856 0.5539 0.6119 0.6733 0.6733 0.6733

The parameters of a uniform distribution can be specified through the min and max
options of the function punif, which returns the cumulative probability. The number of
partitions is created with the defined function partitions. The R function Expec-
tation_NNRV_Unif is programmed in such a way as to mimic the expression on the

right-hand side of Equation 5.15. The probability P
(

k−1
2n ≤ X <

k
2n

)
is captured with

(punif(k/2 ̂ n,min,max)-punif((k-1)/2 ̂ n,min,max)), while the term k−1
2n

is obtained with (k-1)/(2 ̂ n). Note that if the 𝜃 value is less than 20, the function



Trim Size: 170mm x 244mm Tattar c05.tex V3 - 02/10/2016 10:18 A.M. Page 140�

� �

�

140 A Course in Statistics with R

Expectation_NNRV_Unif works fine. Recall that the expected value of a uniform
distribution is the average of min and max, and if the range is [0, 𝜃], the expected value is
𝜃∕2. The output given is curtailed and the running of the program at your own console clearly
shows that as n → ∞, the output becomes closer to EX, as given by the limit on the right-hand
side of Equation 5.15. A similar exercise is repeated for the exponential distribution with the
function Expectation_NNRV_Exp and will not be explained any further here.

> Expectation_NNRV_Exp <- function(n,rate){
+ k = 1:partitions(n)
+ EX = sum(((k-1)/(2 ̂ {n}))*(pexp(k/2 ̂ {n},rate)-
+ pexp((k-1)/2 ̂ {n},rate)))
+ return(EX)
+ }
> sapply(1:20,Expectation_NNRV_Exp,rate=10); 1/10
[1] 0.0033 0.0224 0.0502 0.1000 0.1000 0.1000
[1] 0.1
> sapply(1:20,Expectation_NNRV_Exp,rate=0.9); 1/0.9
[1] 0.12 0.50 0.78 1.11 1.11 1.11
[1] 1.1
> sapply(1:20,Expectation_NNRV_Exp,rate=0.5); 1/0.5
[1] 0.086 0.451 0.836 1.998 1.998 1.999
[1] 2
> sapply(1:20,Expectation_NNRV_Exp,rate=0.1); 1/0.1
[1] 0.023 0.153 0.353 5.372 5.663 5.940
[1] 10

Let us now look at an arbitrary RV, as defined in Equation 5.12. The focus will be on standard
normal and Cauchy RVs, which are both extended RVs. For such RVs we define the positive
and negative parts. The integrate(function,lower,upper) can be used to evaluate
integrals of the form ∫ b

a f (x)dx. It is important to note that R allows the options Inf and
-Inf for ∞ and −∞. Thus, using dnorm, dcauchy, and integrate with the appropriate
options, we obtain EX+ and EX−, equivalently ∫RX

|x|f (x)dx. If both expectations are well
defined, we can compute the expected value of the normal and Cauchy RVs.

> integrate(function(x) {x*dnorm(x)},lower=0,upper=Inf)
0.4 with absolute error < 1.1e-08
> integrate(function(x) {x*dnorm(x)},lower=-Inf,upper=0)
-0.4 with absolute error < 1.1e-08
> integrate(function(x) {abs(x)*dnorm(x)},lower=-Inf,upper=Inf)
0.8 with absolute error < 2.3e-08
> integrate(function(x) {x*dnorm(x)},lower=-Inf,upper=Inf)
0 with absolute error < 0
> integrate(function(x) {x*dcauchy(x)},lower=0,upper=Inf)
Error in integrate(function(x) { : maximum number of subdivisions
+ reached
> integrate(function(x) {x*dcauchy(x)},lower=-Inf,upper=0)
Error in integrate(function(x) { : maximum number of subdivisions
+ reached
> integrate(function(x) {abs(x)*dcauchy(x)},lower=-Inf,upper=Inf)
Error in integrate(function(x) { : maximum number of subdivisions
+ reached
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> integrate(function(x) {x*dcauchy(x)},lower=-Inf,upper=Inf)
0 with absolute error < 0

It may be thus seen that the expectation exists for a normal RV, while it does not exist for the
Cauchy RV. ◽

Let us now consider some properties of expectations of RVs.

Properties of Expectation of Random Variables

• If {Ai}n
i=1 and {Bk}m

k=1 are two partitions of a simple RV X such that

X =
n∑

i=1

xiI(Ai) and X =
m∑

k=1

xkI(Bi),

then

EX =
n∑

i=1

xip(Ai) =
m∑

k=1

xkp(Bk).

• If X is a non-negative and simple RV, then EX ≥ 0. This property continues to hold for
non-negative RVs too.

• If X and Y are two non-negative (simple or otherwise) RVs, and a, b ∈ ℝ, then E(aX + bY) =
aEX + bEY . This property is also known as the linearity of expectations.

The third counter-intuitive problem from Diaconis and Holmes (2002) will be dis-
cussed next.

Example 5.7.5. The Coupon Collectors Problem. Suppose that there are n coupons or
stamps on the market, and the goal is to collect each of the coupons. The coupon collectors
problem is to find the expected number of samples required to achieve that goal. At the outset,
we may feel that a maximum of 2n or 3n is sufficient to meet the goal, as we believe that the
probability of obtaining any coupon is the same as with any other coupon. Let us now look at
the mathematical argument.

Let T denote the random time to collect all the n coupons, and let Ti be the time to collect
the ith coupon after i − 1 coupons have already been collected. Viewing T and the Ti’s as RVs,
we can see that the probability of collecting a new coupon, given the previously collected ones,
is pi = (n − i + 1)∕n, and that the RVs Ti has a geometric distribution2with expectation 1∕pi.

The Linearity of Expectations gives us

E(T) = E(T1) + E(T2) + … + E(Tn)

= 1
p1

+ 1
p2

+ … + 1
pn

= n
n
+ n

n − 1
+ … + n

1

= n
(1

1
+ 1

2
+ … + 1

n

)
= nHn

2See section 6.2 for more details on Geometric Distribution
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In the last line of the above equation, Hn is the harmonic mean. It can be shown that as n → ∞,
E(T) can be approximated by n ln (n) + 0.5772n + 1∕2. For different n values, we compute
E(T) in an R program.

> # The theoretical expectations for the coupon collectors problem
> # is given in this segment
> TEn <- function(n) n*log(n) # The Theoretical Expectations
> coupons_matrix <- matrix(nrow=100,ncol=3)
> colnames(coupons_matrix) <- c("Number_of_Coupons","TEn","BPEn")
> coupons_matrix[,1] <- 1:100
> coupons_matrix[,2] <- sapply(1:100,TEn)
> plot(1:1000,sapply(1:1000,TEn),"l",xlab="Number of Coupons",
+ ylab="Theoretical Expected Number",pch=10,col="orange")
> title("The Coupon Collectors Problem")
> abline(0,2,col="red",pch=1)
> abline(0,3,col="green",pch=2)
> abline(0,4,col="blue",pch=3)
> legend(0,6000, c("TEn","2n","3n","4n"),col=c("orange","red",
+ "green","blue"),pch=1:3)
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Figure 5.6 Expected Number of Coupons

Thus, we see from Figure 5.6 that there is a large difference between our perceived intuition
and the theoretical values given by the mathematical solutions. ◽

Higher-order expectations are of interest for many RVs.
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Definition 5.7.2 Moments of RV. The n-th moment of an RV X is defined by EXn,
n = 1, 2, … . The central moments of an RV X is given by E(X − EX)n, n = 1, 2, … , while
the absolute moments are defined by E|X|n, and finally the absolute central moments are
E|X − EX|n.

The forthcoming section will consider three important functions related to an RV.

?addrv

5.8 Distribution Function, Characteristic Function, and Moment
Generation Function

Let X be an  -measurable random variable in the probability space (Ω, ,P).

Definition 5.8.1 For a random variable X, define

FX(x) = P({𝜔 ∶ X(𝜔) ≤ x}),

for x ∈ R. Then FX(x) is called the cumulative distribution function of the random variable X,
abbreviated as cdf. We now consider some properties of the cdf.

Properties of the cdf

(a) The cdf F is a non-decreasing function, that is,

x < x′ → F(x) ≤ F(x′).

(b) The cdf F is right-continuous:

lim
h↓0

F(x + h) = F(x).

(c) F(–∞) = 0 as we approach the null set.
(d) F(∞) = 1 as we approach Ω.
(e) The set of discontinuity points of F is at most countable.

A related function is now defined.

Definition 5.8.2 The moment generating function, abbreviated as mgf, of the random variable
X is defined by

MX(t) = E(etX),

if the expectation on the right-hand side is finite for |t| < a with some a > 0.

We list below some properties of the mgf, and the reader can refer to Gut (2007) for details.
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Properties of the mgf

(a) If the mgf MX(t) is finite (in the above sense), the rth moment of X is the rth derivative
(w.r.t. t) of the mgf MX(t) evaluated at t = 0.

(b) Define Y = aX + b, a, b ∈ ℝ, where the mgf of X is finite. Then

MY (t) = etbMX(ta).

(c) A finite mgf determines the distribution of the RV uniquely.

The mgf does not exist for many important RVs, and thus we look at a function which will
always exist.

Definition 5.8.3 The characteristic function, abbreviated as cf, of the RV X is defined by

𝜑X(t) = E(eitX).

The cf always exists for any random variable.

Properties of the cf

(a) 𝜑(0) = 1, |𝜑(t)| ≤ 1, 𝜑(−t) = ̄𝜑(t).
(b) 𝜑(t) is uniformly continuous on the real line.
(c) 𝜑(aX + b) = 𝜑(at)eitb.

Example 5.8.1. Characteristic Function of a Power Series Distribution. Consider a dis-
crete RV X with a probability function defined as

P({X = j}) = 1
2j
, j = 1, 2, … .

By definition, the characteristic function is obtained in the following steps:

𝜑X(t) =
∞∑

k=1

eitk

2k
=

∞∑
k=0

(
eit

2

)k

− 1

=
∞∑

k=0

ak − 1, where a = eit

2
.

The above expression can be easily evaluated if we can show that |a| < 1. Note that |a| =|eit|∕2, and since |eit| = √
cos2t + sin2t = 1, we have |a| = 1∕2 < 1. Thus, using the result that

for |a| < 1, the infinite series
∑∞

k=0 ak = 1∕(1 − a), the characteristic function of the random
variable X is

𝜑X(t) =
1

1 − eit

2

− 1 = eit

2 − eit
.

A three-dimensional plot of the characteristic function is given by the following R codes.

> t <- seq(-10,10,0.1)
> cf_X <- function(t) {exp(1i*t)/(2-exp(1i*t))}
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> scatterplot3d(t,Re(cf_X(t)),Im(cf_X(t)),
+ xlim=c(-11,11),ylim=c(-1,1),zlim=c(-1,1),
+ xlab="t",ylab="Real Part of CF", zlab="Complex Part of CF",
+ highlight.3d=TRUE, col.axis="blue",
+ col.grid="lightblue", pch=20,type="l")
> # Output Suppressed

In most cases, the cf plot does not have an interpretation! ◽

The concepts of cdf, mgf, and cf will be illustrated in more detail in Sections 6.2–6.4.

?scatterplot3d

5.9 Inequalities

The first inequality which comes to mind is the triangle inequality. It is claimed that this
inequality has more than 200 different proofs! In probability theory, inequalities are useful
when we do not have enough information about the distribution of the random variables. We
will have practical scenarios where me may not know about the experiments any more than the
fact that the random variables are independent, their mean, and probably standard deviation.
We will now see the role of probabilistic inequalities.

5.9.1 The Markov Inequality
Theorem 5.9.1 Let X be an  - measurable non-negative RV defined in (Ω, ,P) with E(X) =
𝜇. Then, for every k > 0, the Markov inequality says that

P(X ≥ k) ≤ 𝜇

k
.

◽
Example 5.9.1. A Simple Illustration. Suppose that the average number of customers,
denoted by X, arriving at a bank is 20 per hour. Then the probability of 50 or more customers
arriving per hour is P(X ≥ 50) ≤ 20∕50 = 0.4. ◽

Example 5.9.2. Horgan’s Example 20.4. The mean diameter of a product is known to be 10,
and the manufacturer wants an estimate of the proportion of products that will exceed 20. If X
denotes the diameter of the product, the Markov’s inequality helps the manufacturer to obtain
the estimate as

P(X ≥ 20) ≤ 10
20

= 0.5.
◽

5.9.2 The Jensen’s Inequality

Definition 5.9.1 Consider a finite mean RV X in a probability space (Ω, ,P). Let f ∶ ℝ → 
be a convex function. The Jensen’s inequality states that

E[f (x)] ≥ f (E[X]). (5.17)
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Example 5.9.3. A Proof for Variance being Non-negative. Consider a probability space
(Ω, ,P) with a  measurable RV X. Clearly, f (X) = X2 is a convex function and this implies
that

E(X2) ≥ {E(X)}2,

and thus further implies that Var(X) = EX2 − {EX}2 ≥ 0. ◽

The Jensen’s inequality is a very useful technique, especially when we deal with the theory
of the subject.

5.9.3 The Chebyshev Inequality

Consider a random variable X with mean 𝜇 and variance 𝜎2. The Chebyshev’s inequality states
that

P(|X − 𝜇| ≥ k𝜎) ≤ 1
k2
. (5.18)

This inequality has a very useful interpretation: “Not more than 1∕k2 of the distribution’s
values can be more than k standard deviations away from the mean.” Note that the inequality
does not make any assumptions about the probability distribution of X.

A one-tailed version of the Chebyshev’s inequality is

P(X − 𝜇 ≥ k𝜎) ≤ 1
1 + k2

.

Example 5.9.4. Example 5.12.1. Contd. Suppose we also know that the variance of the cus-
tomers arriving at the bank is 10. Then, the probability of 50 or more customers arriving per
hour is obtained as below:

P(X > 50) = P(X − 20 > 30) = P(X − 20 > 3(10)) ≤ 1
1 + 32

= 0.1.
◽

The forthcoming section will deal with various convergence concepts of RVs.

5.10 Convergence of Random Variables

The concept of convergence is very strongly built in the 𝜖 − 𝛿 argument. As Jiang (2010)
emphasizes, the convergence concept embeds in itself the 𝜖 − 𝛿 argument. Jiang refers to this
tool as the A-B-C of large sample theory, and we will first discuss this in Example 1.1.

Example 5.10.1. Jiang’s Example 1.1. Suppose that we have been asked to prove that as
n → ∞

ln (n + 1) − ln (n) → 0.

Here, 𝛿 = ln (n + 1) − ln (n). By the 𝜖 − 𝛿 argument, we need to show that there exists some n,
however large, such that the 𝛿 will be less than 𝜖, where 𝜖 is a very small non-negative number,
that is,

ln
(

1 + 1
n

)
< 𝜖.
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Of course, as a measurement of closeness, we need 𝜖 to be as close to 0 as possible. Let us
consider a sequence of 𝜖 as 10−j, j = 1, 2, … , 8. We will write a rudimentary R program for
this task!

> # The jist of epsilon-delta argument
> epsilon <- 10 ̂ {-(1:8)}
> N <- NULL
> for(i in 1:length(epsilon)){
+ n <- 1
+ delta=10 ̂ {1}0
+ while(delta>epsilon[i]) {
+ n <- n+1
+ delta <- log(1+1/n)
+ }
+ N <- c(N,n)
+ }
> N
[1] 1e+01 1e+02 1e+03 1e+04 1e+05 1e+06 1e+07 1e+08

The sequence epsilon <- 10 ̂ -(1:8) examines the convergence for very small values
of 𝜖, which approach 0. The while loop increments the value of N by 1 until the delta
becomes less than epsilon. The for loop runs the program for different epsilon values.

This program took approximately 30 minutes on a modern laptop. This shows that for a
given 𝜖, we can find an N which will ensure that after that number, 𝛿 = ln (n + 1) − ln (n) will
be smaller than the 𝜖. Note that it is indeed possible to directly obtain the values of N, though
such a program will not reflect the central idea of increasing n. The above program is, of course,
not a proof! Now, ln

(
1 + 1

n

)
< 𝜖 implies 1 + 1∕n < e𝜖 and hence that n > (1 + e𝜖)−1. Thus,

if we take N = [(1 + e𝜖)−1] + 1, where [.] denotes the integer part of a number, then for every
n ≥ N, we have satisfied the requirement ln

(
1 + 1

n

)
< 𝜖. ◽

In the rest of this section, we attempt to gain an insight into using R programs and to establish
the results analytically.

5.10.1 Convergence in Distributions

Consider a sequence of probability spaces {(Ωn,n,Pn)}∞n=1, and let the random variable
sequence {Xn}∞n=1 be such that for each n, Xn is n- measurable and Xn ∼ Pn. Furthermore, let
Fn be the cumulative distribution function associated with Pn. Also, let (Ω, ,P) be another
probability space and we consider an  -measurable random variable X, whose P associated
cumulative probability distribution function is F. Then we say that the sequence {Xn}∞n=1
converges in distribution to X if as n → ∞

Fn(x) → F(x) , for each continuity point x of F. (5.19)

The standard notation for convergence in distribution is Fn D
→

F or Fn L
→

F. Sometimes the con-
vergence in the distribution is also denoted by XnL

→
X.
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Example 5.10.2. Convergence in Distribution for a Sequence of Uniform Random
Variables. Let Ωn = (0, 1∕n), n a Borel 𝜎-field on Ωn, and let Pn be the uniform distribution
over the interval (0, 1∕n), that is, we consider a sequence of (decreasing, in support) uniform
distributions. We can then see that

lim
n→∞

Fn(x) = lim
n→∞

⎧⎪⎨⎪⎩
0, if x < 0,
x
n
, if 0 < x <

1
n
,

1, if x ≥ 1,

=
{

0, if x < 0,
1, if x ≥ 0.

However, the cdf of a degenerate RV X is also given by

FX(x) =
{

0, if x < 0,
1, if x ≥ 0.

and hence we conclude that Xn L
→

X.
We illustrate this convergence in R.

> # Convergence of Uniform Random Variables
> supportud <- seq(-1,1,0.01)
> plot(supportud,punif(supportud,0,1),"l",xlab="x",
+ ylab=expression(paste("F","_","(n)",sep="")),col=1)
> n <- c(1,2,5,10,100,1000,10000)
> for(i in 2:length(n)) {
+ lines(supportud,punif(supportud,0,1/n[i]),col=i)
+ }
> pdegen <- c(rep(0,100),rep(1,101))
> lines(supportud,pdegen,"p")

How does the program work? The x values range is specified as seq(-1,1,0.01) and
stored in the object supportud. Though Xn does not assume any negative value, the range is
selected from –1, which gives a better plot. This aspect of generating elegant graphical plots
is not a scientific matter, it is more of a personal preference. The uniform distribution function
Fn(x) is obtained with punif(supportud,0,1), and it is then visualized with the plot
graphical function. Since we need to examine the behavior of Fn(x) for increasing n values, the
n values are changed with n <- c(1,2,5,10,100,1000,10 000). Using the lines
option, the Fn(x) are embossed on the existing plot. Thus, Part A of Figure 5.7 shows that as
n increases, Fn approaches F. ◽

We next state an important result, see page 259 of Rohatgi and Saleh (2000).

Theorem 5.10.1 Consider a sequence of probability spaces {(Ωn,n,Pn)}∞n=1, and the earlier
setup of random variables with (Ω, ,P) too. Let fn and f be the probability density functions
associated with the sequence of Fn and F respectively. If, as n → ∞

fn(x) → f (x) , for almost all x continuity points of F, (5.20)

then Xn L
→

X. ◽
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Figure 5.7 Illustration of Convergence in Distribution

The above theorem is now illustrated through an example.

Example 5.10.3. Convergence in Distribution to a Nondegenerate Random Variable.
Consider a sequence of probability spaces {(Ωn,n,Pn)}∞n=1 with the probability measure Pn
identified by normal probability measures N(𝜇 + 1∕n, 1). An R program next shows the con-
vergence of the sequence Xn to a normal random variable with N(𝜇, 1).

> # Example of Convergence to a Continuous RV
> theta <- sample(1:10 ̂ {6},1)
> supportnor <- seq(theta-3,theta+3,0.01)
> n <- c(1,2,5,10,100,1000,10000)
> plot(supportnor,dnorm(supportnor,theta+1,1),xlab="x",
+ ylab=expression(paste(Phi,"n","(x)",sep="")),"l",col=1)
> for(i in 2:length(n)){
+ lines(supportnor,dnorm(supportnor,theta+1/n[i],1),col=i)
+ }
> lines(supportnor,dnorm(supportnor,theta,1),"p")

Since we require the probability density function of the normal RV, we are using the dnorm
function. The purpose of the sample function is to generate a random integer in the range
1 to 10 ̂ 6. Details of this function are obtainable in Chapter 11. Note that different runs of
the program will result in different outputs, since we are arbitrarily selecting the mean of the
normal distribution from 1:10 ̂ 6. The rest of the program is easier to follow. What does Part
B of Figure 5.7 say? ◽
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5.10.2 Convergence in Probability

Consider a probability space (Ω, ,P) and let {Xn} be a sequence of random variables defined
in this space. We say that the sequence {Xn} converges in probability to a random variable X
if for each 𝜖 > 0

lim
n→∞

P(|Xn − X| ≥ 𝜖) = 0, (5.21)

or, equivalently

lim
n→∞

P(|Xn − X| < 𝜖) = 1. (5.22)

Symbolically, we denote this as Xn P
→

X.

Example 5.10.4. Continuation of Example 5.7.3. Recall that the RVs Xi take the value 1 in
the interval [i∕2m, (i + 1)∕2m], and 0 in the rest of Ω. Note that the length of the interval over
which it takes the value 1 is 1∕2m. Thus, for all 𝜖 ∈ (0, 1], we have

P(|Xn − 0| ≥ 𝜖) = P(Xn = 1),

= 1
2m

→ 0, as n → ∞.

Thus the sequence of RVs converges to 0 in probability, that is, Xn P
→

0. ◽

Convergence in probability implies convergence in distribution. However, the converse is
not true.

5.10.3 Convergence in rth Mean

We begin with a probability space (Ω, ,P) and let {Xn} be a sequence of random variables
defined in it. We say that the sequence {Xn} converges in rth mean to an RV X if E|X|r < ∞
and as n → ∞

E|Xn − X|r → 0. (5.23)

Example 5.10.5. A Sequence Converging in the Second Mean. Let {Xn}∞n=1 be a sequence
of random variables for whom the probability measure is defined by

P{Xn = 1} = 1 − 1
n
,P{Xn = 0} = 1

n
, n = 1, 2, … .

Let us understand the behavior of Xn probabilities graphically.

> # Convergence in r-th Mean
> pr_xn_1 <- 1/{1:50}
> pr_xn_0 <- 1- 1/{1:50}
> par(mfrow=c(1,2))
> plot(1:50,pr_xn_1,xlab="X_n ’s",
+ main="Probability of Xn Taking Value 1", type="h")
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Figure 5.8 Graphical Aid for Understanding Convergence in rth Mean

> plot(1:50,pr_xn_0,xlab="X_n ’s",
+ main="Probability of Xn Taking Value 0", type="h")

Figure 5.8 shows that as n increases, the probability of Xn taking the value 0 is very close to 1.
This is not the same as saying that the convergence in mean, for any r, is guaranteed. However,
we can probably investigate if the sequence Xn converges in some order of mean to 0. Let us
check for the convergence to 0 in the second mean.

E|Xn − 0|2 = E|Xn|2 = 02(1 − 1∕n) + 12(1∕n) = 1
n
.

Thus, as n → ∞, E|Xn − 0|2 → 0 and we can say that Xn converges in the second mean
to zero. ◽

5.10.4 Almost Sure Convergence

Let {Xn}∞n=1 be a sequence of random variables on the probability space (Ω, ,P). The
sequence {Xn} is said to converge almost surely to a RV X if

P{𝜔 ∶ Xn(𝜔) → X(𝜔) as n → ∞} = 1.

The next result is very useful in establishing almost sure convergence. Almost sure conver-
gence is denoted by a.s.

−→
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Theorem 5.10.2 A Limsup Criteria for Almost Sure Convergence. Suppose that for every
𝜖 > 0, the following holds:

∞∑
n=1

P(|Xn − X| ≥ 𝜖) < ∞.

Then
Xn a.s.

−→
X, as n → ∞.

◽
Example 5.10.6. Almost Sure Convergence of Uniform Maxima. Let X1,X2, … ,Xn be a
random sample from U(0, 𝜃), see Section 6.3, and define Mn = max(X1, … ,Xn), n = 1, 2, … .
Then, for any 𝜖 > 0, we have

P(|Mn − 𝜃| ≥ 𝜖) = P(Mn ≤ 𝜃 − 𝜖) = [FU(𝜃 − 𝜖)]n =
(
𝜃 − 𝜖

𝜃

)n
=
(

1 − 𝜖

𝜃

)n
.

Thus,
∞∑

n=1

P({|Mn − 𝜃| ≥ 𝜖}) =
∞∑

n=1

(
1 − 𝜖

𝜃

)n
= 𝜃

𝜖
< ∞.

We have assumed in the above that 𝜖 < 𝜃. Thus, we have proved that the uniform maxima
converges to 𝜃. ◽

?expression, ?ifelse, library(help=“ConvergenceConcepts”)

5.11 The Law of Large Numbers

The “large” in the Law of Large Numbers, abbreviated as LLN, is a pointer that the number of
observations are very large. This clarification is issued in interest of the student community,
as we felt that quite a few of them have confused the “large” with the magnitude of X.

The LLN has two very important variants: (i) the Weak Law of Large Numbers, abbreviated
as WLLN, and (ii) the Strong Law of Large Numbers, SLLN. The former is a convergence
in probability criteria and the latter is almost sure convergence. Formal statements are given
here. We discuss the concepts with a few analytical illustrations. For an understanding of these
concepts through simulation, we refer the reader to Section 6 of Chapter 12.

5.11.1 The Weak Law of Large Numbers

Let {Xn}∞n=1 be a sequence of random variables and define Sn ∶=
∑n

i=1 Xi, n = 1, 2, … . The
sequence {Xn}∞n=1 is said to obey the weak law of large numbers, WLLN, with respect to a
sequence of constants {Bn}, n = 1, 2, … , Bn > 0,Bn ↑ ∞, if there exists a sequence of con-
stants {An}, n = 1, 2, … which satisfies

Sn − An

Bn
P
→

0, as n → ∞
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The sequence {An} is called centering sequence and the sequence {Bn} is called norming
sequence. We state below a result which helps to determine whether the WLLN holds true for
the sequence under consideration.

Theorem 5.11.1 A Criteria for WLLN to Hold True. Let Xn be a sequence of pairwise
uncorrelated RVs. Let EXi = 𝜇i and Var(Xi) = 𝜎2

i , i = 1, 2, … . Define An =
∑n

i=1 𝜇i and Bn =∑n
i=1 𝜎

2
i , i = 1, 2, … . If Bn → ∞ as n → ∞, the WLLN holds true, that is,

n∑
i=1

Xi − 𝜇i∑n
i=1 𝜎

2
i

→ 0, as n → ∞.

◽

Example 5.11.1. WLLN for Sum of Bernoulli Trials. Let Xi ∼ b(1, p), i = 1, 2, … . Here
An = np and Bn = np(1—p). Thus, by application of the previous theorem, since Bn ↑ ∞, we
have

Sn

n
→ p, as n → ∞,

which helps us to conclude that the WLLN holds for the sequence Sn. ◽

Theorem 5.11.2 A Necessary and Sufficient Condition for WLLN. Let Xn be a sequence
of iid RVs. Define Bn = n and Sn =

∑n
i=1 Xi. Then Sn∕Bn P

−→
0 if

nP(|X1| > n) → 0, and

E{X1I|Xn|≤n} → 0, as n → ∞.

◽

Example 5.11.2. Non-universality of WLLNs: The Cauchy Sequence. Consider a random
sample from a standard Cauchy distribution. That is, Xi ∼ Cauchy(0, 1). Then

nP(|Xn| > n) = n∫|x|>n

dx
𝜋(1 + x2)

>
n
𝜋 ∫

∞

n

dx
x2

= 1
𝜋
.

As the last term is independent of n, nP(|Xn| > n) will not converge to 0. Hence, the WLLN
does not hold for a Cauchy sequence. ◽

5.12 The Central Limit Theorem

5.12.1 The de Moivre-Laplace Central Limit Theorem

A complete de-mystification of the de Moivre-Laplace CLT appears in Ramasubramaniam
(1997). Suppose that Xi ∼ Bernoulli(p), i = 1, 2, … . Let Sn =

∑n
i=1 Xi, n = 1, 2, … . Define

Zn =
Sn − np√
np(1 − p)

. (5.24)

We will begin with a statement of this result.
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Theorem 5.12.1 The de Moivre-Laplace CLT. As n → ∞

P(a < Zn ≤ b) = ∫
b

a

1√
2𝜋

e−x2∕2dx. (5.25)

◽

Typically, CLT is demonstrated using a simulation study. Though that approach is not wrong,
we would like to make a few pointers here. In a simulation study we actually use the realized
values of the RVs as in x1, x2, … , xn. However, the CLT is truly about the convergence of RVs
as in X1,X2, … ,Xn. The principal point is that we cannot pretend that

√
n(X̄n − 𝜇)D

→
N(0, 𝜎2)

is the same as
√

n (x̄n − 𝜇) D
→

N (0, 𝜎2). Thus, our illustration, at least in this section, will not
resort to a simulation study.

We give an animated version of the convergence in the following program.

> n <- 10:1000
> p <- 0.4
> for(i in 1:length(n)){
+ plot(0:n[i],dbinom(0:n[i],p=0.4,n[i]),
+ "h",xaxt="n",yaxt="n",xlab="x",ylab="PDF")
+ title("The de Moivre’s Laplace Central Limit Theorem")
+ curve(dnorm(x,mean=n[i]*0.4,sd=sqrt(n[i]*0.4*0.6)),
+ from=0,to=n[i],add=TRUE)
+ }

Change the values of p for different levels and enjoy the convergence. Consider the general iid
case next.

5.12.2 CLT for iid Case

Let X1,X2, … be iid random variables with finite first and second moments, that is, E(Xj
i) <

∞, j = 1, 2. Define Sn =
∑n

i=1 Xi, n = 1, 2, … . Let 𝜇 and 𝜎2 denote the mean and variance for
Xi. The general CLT for the iid case is stated below.

Theorem 5.12.2 CLT for iid Random Sample. As n → ∞

Sn − n𝜇

𝜎
√

n
D
→

N(0, 1). (5.26)

◽

Two equivalent forms of the CLT statement are that as n → ∞√
n(X̄n − 𝜇) D

→
N(0, 𝜎2),

Sn =
n∑

i=1

Xi D
→

N(n𝜇, n𝜎2).

This statement appears very generic and we consider an illustration with varied distributions.
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Example 5.12.1. CLT for Gamma Distribution. This illustration is an extension of a
beautiful construct by Geyer, see http://www.stat.umn.edu/geyer/5101/examp/clt.html.
Suppose X ∼ Gamma(𝛼, 1). We have an iid sample of size n. It is easier to see that
Sn =

∑n
i=1 Xi ∼ Gamma(𝛼, n). For large n, the CLT says that Sn may be approximated by

N(n𝛼, n𝛼2). We know that a Gamma distribution is skewed, and hence we first plot the density
function of the gamma distribution and insert the approximate normal curve. In the long run,
we expect the two curves to be identical. Thus, for different n values, we obtain Figure 5.9,
which shows that the normal approximation indeed works fine.

> # 5.15.2 CLT for iid Case
> alpha <- 0.5
> n <- c(1,5,20,100,500,1000)
> cutoff <- 1e-3
> par(mfrow=c(2,3))
> for(i in 1:6){
+ from <- qgamma(cutoff/2, n[i]*alpha)
+ to <- qgamma(cutoff/2, n[i]*alpha,lower.tail=FALSE)
+ if(i==1) from <- 0
+ if(i==1) to <- 6
+ curve(dgamma(x,n[i]*alpha),from=from,to=to,ylab="f(x)",
+ xlab="x",main=paste("n = ",n[i],sep=""))
+ curve(dnorm(x,mean=n[i]*alpha,sd=sqrt(n[i]*alpha)),col="red",
+ add=TRUE)
+ }
> title("CLT for a Gamma Sum",outer=TRUE,line=-1)

Note that we are genuinely looking at the probability distribution function of Sn. ◽

Example 5.12.2. An iid Sample from Triangular Distribution. Let X be a random variable
whose probability distribution is specified by a triangular distribution on the points a, b, c with
a ≤ c ≤ b ∈ ℝ:

f (x, a, b, c) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0, x < a,

2(x−a)
(b−a)(c−a) , a ≤ x < c,

2
b−a

, x = c,

2(b−x)
(b−a)(b−c) , c < x ≤ b,

0, x > b.

The parameters allow us to specify any three points on the real line. Let X1,X2, … , be repli-
cates of X. The reader can verify this for a triangular distribution:

E(X) = 𝜇 = a + b + c
3

,

Var(X) = 𝜎2 = a2 + b2 + c2 − ab − ac − bc
18

.

http://www.stat.umn.edu/geyer/5101/examp/clt.html
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Thus, the mean and variance are seen to be finite. Define Sn =
∑n

i=1 Xi. The iid CLT clearly
says that in this case (Sn—n𝜇)∕(𝜎

√
n) converges to a standard normal distribution. A nice

thing about the theory is that we now know how to approximate the average of the sample
observations of a triangular distribution. It is important to note that the convolution sum of tri-
angular random variables is not known for a general n. The CLT holding good for this example
is shown through a simulation study in Chapter 11. ◽

The more general case of a sequence of independent RVs is considered next.

5.12.3 The Lindeberg-Feller CLT

The previous theorem along with Equation 5.26 handles a sequence of iid RVs. An extension
of this result for the more generic case of a sequence of independent RVs is then required.
The Lindeberg-Feller theorem gives a set of necessary and sufficient conditions which help
establish CLT for a sequence of independent RVs. A few notations are in order towards this end.

Let {Xn}∞n=1 be a sequence of RVs, and let their respective probability spaces be defined
by the sequence (Ωn,n,Pn). In the case of the iid sequence, we have Pn = P. Assume that

EXn = 𝜇n, and VarXn = 𝜎2
n < ∞. Define Sn =

∑n
k=1(Xk–𝜇k), s2

n =
∑n

k=1 𝜎
2
k , and sn =

√
s2

n. It
may be noted by the reader here that sn does not correspond to the realized value of the sum
Sn. The next theorem is the famous result sought in this section.

Theorem 5.12.3 The Lindeberg-Feller CLT. Consider a sequence of independent RVs
{Xn}∞n=1 defined on the respective probability spaces (Ωn,n,Pn). Suppose

Sn

sn
D
→

N(0, 1) and max
1≤k≤n

𝜎k

sn
→ 0 as n → ∞. (5.27)

A necessary and sufficient condition for 5.27 to hold is given by the Lindeberg condition, if for
every 𝜖 > 0

gn(𝜖) =
1

s2
n

n∑
k=1

(
∫|x|>𝜖sn

x2dPk(x)
)

→ 0, as n → ∞. (5.28)

◽

From a programming perspective, it is better to first consider the simpler case of a sequence
of iid RVs for verifying the Feller condition 5.27 and also the Lindeberg condition 5.28. It will
become more clear why the simpler case has been considered first.

Example 5.12.3. Sequence of Normal RVs. Let Xn’s be iid RVs and each following the stan-
dard normal distribution. It is then known by the theorem in the previous subsection that the
sum of these RVs follows a normal distribution. However, this example will be used here to
give a clear understanding of the Lindeberg and Feller conditions. First, Feller conditions will
be verified.

The R program unfolds as follows. The numeric vector mean_k declares all the means as
0, while sigma_2_k is used to define the sequence of 𝜎k’s. Next, the important term of the
sum of variances of the RVs s2

n is obtained using the cumsum function and stored as sn_2,
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and the small sn is obtained with sn <- sqrt(sn_2). The Feller condition requires us to
obtain max

1≤k≤n

𝜎k

sn
. This is easily obtained with the max function in a loop.

> mean_k <- rep(0,1000)
> sigma_2_k <- rep(1,1000)
> n <- length(sigma_2_k)
> sigma_k <- sqrt(sigma_2_k)
> sn_2 <- cumsum(sigma_2_k)
> sn <- sqrt(sn_2)
> Sn_by_sn <- sigma_k/sn
> Max_Sn_by_sn <- NULL
> for(i in 1:length(sigma_k)){
+ Max_Sn_by_sn[i] <- max(sigma_k[1:i]/sn[i])
+ }
> plot.ts(Max_Sn_by_sn,main=expression(paste("A: Feller
+ Condition for ", X[n],"∼",N(0,1))),
+ xlab=expression(paste("as ",n %->% infinity)))

The resultant Max_Sn_by_sn is visualized to check if it really approaches 0 for large values
of n. The numeric object Max_Sn_by_sn is simply plotted against the indices, and the
expression and paste options are used meticulously to obtain the right labels for the
x- and y- axes. It may be seen from Part A of Figure 5.11 that the Feller condition 5.27 is
satisfied for the sequence of iid RVs from the standard normal distribution. Hence, a program
is developed to verify if the Lindeberg conditions are also met.

> # Lindeberg Condition
> epsilon <- c(0.3,0.2,0.1,0.05)
> windows(height=20,width=20)
> par(mfrow=c(2,2))
> for(z in 1:4){
+ gn_epsilon <- NULL
+ curr_epsilon <- epsilon[z]
+ for(i in 1:n){
+ integral_term <- 0
+ sigma_2_temp <- sn_2[i]
+ sigma_temp <- sn[i]
+ for(j in 1:i){
+ integral_term <- integral_term + 2*integrate(function(x)
+ x ̂ {2}*dnorm(x,mean=mean_k[j],
+ sd=sigma_k[j]),lower=curr_epsilon*sigma_temp,upper=Inf)$value
+ }
+ gn_epsilon[i] <- integral_term/sigma_2_temp
+ }
+ plot.ts(gn_epsilon,main=expression(paste("Lindberg Condition
+ for ", X[n],"∼",N(0,1))),
+ xlab=expression(paste("as ",n %->% infinity)),
+ ylab=expression(g[n](epsilon)))
+ text(800,.8,bquote(epsilon == .(curr_epsilon)))
+ }
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Figure 5.10 Lindeberg Conditions for Standard Normal Distribution

The Lindeberg condition 5.28 needs to be verified for every 𝜖 > 0, but such a daunting task
is not a necessity here and four values of epsilon <- c(0.3,0.2,0.1,0.05) are
experimented with here. The Lindeberg expression needs to be handled carefully,
and if it is not, the program may end up as a dampener. First, the integral needs
to be evaluated over the range |x| > 𝜖sn. Using the symmetric property of the nor-
mal distribution, the search is restricted over the range x > 𝜖sn, and thus the options
lower=curr_epsilon*sigma_temp and upper=Inf and the evaluated integral
value is multiplied by 2. The integrand x2 is handled with function(x) x ̂ 2*dnorm.
The for(j in 1:i) obtains gn(𝜖), and the higher loop for(i in 1:n) obtains gn(𝜖)
for different n’s. The plot of gn(𝜖) is obtained when the 𝜖 value is displayed using the text
function with the bquote option to reflect the choice of 𝜖. For each choice of 𝜖, the gn(𝜖) is
seen to approach 0 in Figure 5.10. Thus, the CLT holds for this sequence of RVs. ◽

Example 5.12.4. Sequence of Normal RVs–N(n,n2). Now, consider the sequence of inde-
pendent RVs {Xn}∞n=1, where Xn ∼ N(n, n2). This is an example of where the Lindeberg-Feller
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Figure 5.11 Verifying Feller Conditions for Four Problems

Theorem will be used to check if the CLT really holds or not. It is the Feller condition which
will be first checked and if the condition 5.27 is satisfied, the Lindeberg condition will be
detailed.

Clearly, the Feller part of the R program does not change much, except for the declaration
of mean_k and sigma_2_k, and hence further description of the module is skipped. Part
B of Figure 5.11 clearly shows that the Feller condition is satisfied for the sequence {Xn}∞n=1.
Similarly, the R program for the Lindeberg’s condition does not require further explanation.

> ### Xn∼N(n,n ̂ {2}) ### CLT HOLDS GOOD
> # Feller Condition
> mean_k <- 1:1000
> sigma_2_k <- mea{n_k ̂ {2}}
> n <- length(sigma_2_k)
> sigma_k <- sqrt(sigma_2_k)
> sn_2 <- cumsum(sigma_2_k)
> sn <- sqrt(sn_2)
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> Sn_by_sn <- sigma_k/sn
> Max_Sn_by_sn <- NULL
> for(i in 1:length(sigma_k)){
+ Max_Sn_by_sn[i] <- max(sigma_k[1:i]/sn[i])
+ }
> plot.ts(Max_Sn_by_sn,main=expression(paste("B: Feller
+ Condition for ", X[n],"∼","N(n,",n ̂ {2},")")),
+ xlab=expression(paste("as ",n %->% infinity)))
> # Lindeberg Condition
> epsilon <- c(0.3,0.2,0.1,0.05)
> windows(height=20,width=20)
> par(mfrow=c(2,2))
> for(z in 1:length(epsilon)){
+ gn_epsilon <- 0
+ curr_epsilon <- epsilon[z]
+ for(i in 1:n){
+ integral_term <- 0
+ sigma_2_temp <- sn_2[i]
+ sigma_temp <- sn[i]
+ for(j in 1:i){
+ integral_term <- integral_term + 2*integrate(function(x)
+ x ̂ {2}*dnorm(x,mean=mean_k[j],
+ sd=sigma_k[j]),lower=curr_epsilon*sigma_temp,upper=Inf)$value
+ }
+ gn_epsilon[i] <- integral_term/sigma_2_temp
+ }
+ plot.ts(gn_epsilon,main=expression(paste("Lindberg Condition
+ for ", X[n],"∼",N(n,n ̂ {2}))),
+ xlab=expression(paste("as ",n %->% infinity)),
+ ylab=expression(g[n](epsilon)))
+ text(800,3,bquote(epsilon == .(curr_epsilon)))
+ }

Note the change of gn(𝜖) as 𝜖 decreases. This implies that for smaller 𝜖, we need to draw large
n to visualize the convergence of gn(𝜖) to 0, see the right-hand bottom part of Figure 5.12.
However, it is clearly seen that the Lindeberg condition is also satisfied for this sequence of
RVs and hence the CLT will hold true. ◽

Example 5.12.5. Sequence of Normal RVs - N(0, 2−n). Now, consider the sequence of inde-
pendent RVs {Xn}∞n=1 where Xn ∼ N(0, 2−n). The now familiar R program for the Feller con-
dition results in part C of Figure 5.11. It is clearly seen that the Feller condition is not satisfied
and that max

1≤k≤n

𝜎k

sn
stops at a value slightly above 0.7. Hence, the CLT does not hold for this

sequence of independent RVs.

> ### Xn∼N(0,2 ̂ {-n}) ## CLT DOES NOT HOLD GOOD
> # Feller Condition
> mean_k <- rep(0,1000)
> sigma_2_k <- 2 ̂ {-c(1:1000)}
> n <- length(sigma_2_k)
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> sigma_k <- sqrt(sigma_2_k)
> sn_2 <- cumsum(sigma_2_k)
> sn <- sqrt(sn_2)
> Sn_by_sn <- sigma_k/sn
> Max_Sn_by_sn <- NULL
> for(i in 1:length(sigma_k)){
+ Max_Sn_by_sn[i] <- max(sigma_k[1:i]/sn[i])
+ }
> plot(Max_Sn_by_sn)
> plot.ts(Max_Sn_by_sn,main=expression(paste("C: Feller Condition
+ for ", X[n],"∼","N(0,",2 ̂ {-n},")")),xlab=expression(paste("as "
+ ,n %->%infinity)))

◽

A stronger, but more restrictive, condition can be imposed, which can be used for examining
the CLT for a sequence of independent RVs.

5.12.4 The Liapounov CLT

The Liapounov’s CLT is given in the next theorem.

Theorem 5.12.4 The Liapounov CLT. Consider a sequence of independent RVs {Xn}∞n=1
defined in the respective probability spaces (Ωn,n,Pn). Let E(Xn) = 𝜇n, Var(Xn) = 𝜎2

n < ∞,

and 𝜈n = E|Xn − 𝜇n|2+𝛿, 0 < 𝛿 ≤ 1. Define Sn =
∑n

k=1 (Xk − 𝜇k)2, s2
n =

∑n
k=1 𝜎

2
n , sn =

√
s2

n,
and Bn =

∑n
k=1 𝜈k. If the Liapounov’s condition

Bn

s2+𝛿
n

→ 0 as n → ∞, 0 < 𝛿 ≤ 1, (5.29)

is satisfied for the sequence {Xn}∞n=1, then the CLT holds, that is,

Sn

sn
→ N(0, 1) as n → ∞.

◽
Since the Liapounov’s condition 5.29 requires a higher-order moment condition, it is more

difficult in general to establish whether it holds for a given sequence of RVs. However, it is
sometimes very useful for a sequence of discrete RVs.

Example 5.12.6. A Sequence of Poisson RVs with Xn ∼ Pois(n𝝀). For a sequence of Pois-
son RVs {Xn}∞n=1 with Xn ∼ Pois(n𝜆), for 𝛿 = 1, we have

E(Xn) = n𝜆 = Var(Xn) = 𝜈n,

s2
n =

n∑
k=1

k𝜆 = n(n + 1)
2

𝜆, and
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Figure 5.12 Lindeberg Conditions for Curved Normal Distribution

Bn =
n∑

k=1

k𝜆 = n(n + 1)
2

𝜆.

It may be noted that the first three central moments for a Poisson RV are equal. Thus, we are
checking whether the conditions required for the Liapounov’s theorem is satisfied for 𝛿 = 1.
Since the Feller’s condition is fairly easy to prove (at least in R), this aspect will be evalu-
ated first.

> # # # Xn∼Pois(n*lambda)
> # Feller Condition
> lambda <- 5 # A very arbitrary choice
> mean_k <- 1:100*lambda
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> sigma_2_k <- mean_k
> n <- length(sigma_2_k)
> sigma_k <- sqrt(sigma_2_k)
> sn_2 <- cumsum(sigma_2_k)
> sn <- sqrt(sn_2)
> # Sn_by_sn <- sigma_k/sn # Not required
> Max_Sn_by_sn <- NULL
> for(i in 1:length(sigma_k)){
+ Max_Sn_by_sn[i] <- max(sigma_k[1:i]/sn[i])
+ }
> plot.ts(Max_Sn_by_sn,main=expression(paste("D: Feller Condition
+ for ", X, "∼", "Pois(n", lambda,")")),
xlab=expression(paste("as ",n %->% infinity)))
> # Verify Liapounov’s condition instead
> thirdCentral <- mean_k
> sn <- sqrt(cumsum(mean_k))
> Bn <- cumsum(thirdCentral)
> plot.ts(Bn/sn ̂ {3},ylab="Liapounou’s Condition",
+ xlab=expression(paste("as ", n %->% infinity)))
> text(80,0.4,expression(paste(frac(sum(E*"|"*X*"|"[k] ̂ {2+delta},
+ k==1,n)),)) , col="purple", cex=0.8)
> text(80,0.365,expression(s[n] ̂ {2+delta}),col="purple",cex=0.8)

Part D of Figure 5.11 shows that the Feller condition is satisfied for this sequence of Pois-
son RVs. Now, to evaluate the Liapounov’s condition 5.29, first the quantities sn and Bn are
computed in sn and Bn respectively. The R quantity Bn/sn ̂ 3 gives us the Liapounov con-
dition for various n. It is seen from the resulting diagram, the output of which is not produced
here, that the required condition satisfies the Xn sequence, and hence the CLT holds good
here. ◽

Example 5.12.7. A Sequence of Discrete RVs. Let {Xn}∞n=2 be a sequence of RVs with PMF
given by

P

(
Xn = n

ln (n)

)
= P

(
Xn = − n

ln (n)

)
= ln (n)

2n
, and

P(Xn = 0) = 1 − ln (n)
n

. (5.30)

It can be then seen that

𝜇n = E(Xn) =
n

ln (n)
ln (n)

2n
+ −n

ln (n)
ln (n)

2n
+ 0 = 0,

𝜎2
k = Var(Xn) =

(
n

ln (n)

)2 ln (n)
2n

+
(

−n
ln (n)

)2 ln (n)
2n

+ 0 = n
ln (n)

, and

𝜈n = E|X − 𝜇n|3 =
|||| n
ln (n)

||||
3 ln (n)

2n
+
|||| −n
ln (n)

||||
3 ln (n)

2n
= n2

2(ln (n))2
.



Trim Size: 170mm x 244mm Tattar c05.tex V3 - 02/10/2016 10:18 A.M. Page 165�

� �

�

Probability Theory 165

The theoretical quantities 𝜇n, 𝜎2
k , and 𝜈n clearly help in setting up the R pro-

gram. Using the same arguments as in the previous example, the R program is easily
set up.

> # P(Xn=n/log(n))=log(n)/(2n) = P(Xn = -n/log(n));
# P(Xn=0) = 1-log(n)/n
> # E(Xn) = 0
> # Var(Xn) = n/log(n)
> # Feller Condition
> n <- 2:50
> sigma2 <- n/log(n)
> sigma <- sqrt(sigma2)
> sn2 <- cumsum(sigma2)
> sn <- sqrt(sn2)
> thirdCentral <- n ̂ {2}/(2*(log(n) ̂ {2}))
> Bn <- cumsum(thirdCentral)
> Max_Sn_by_sn <- sigma/sn
> par(mfrow=c(1,2))
> plot.ts(Max_Sn_by_sn,main=expression(paste("Feller Condition
+ for ", X[n])), xlab=expression(paste("as ",n %->% infinity)))
> # Verify Liapounov’s condition instead
> plot.ts(Bn/sn ̂ {3},ylab="Liapounov’s Condition",
+ xlab=expression(paste("as ", n %->% infinity)),main=
+ expression(paste("Liapounov Condition for ", X[n])))
> text(40,0.8,expression(paste(frac(sum (E*"|"*X*"|"[k] ̂ {2+delta},
+ k==1,n)),)), col="purple", cex=0.8)
> text(40,0.77,expression(s[n] ̂ {2+delta}),col="purple",cex=0.8)

Figure 5.13 clearly shows that the Feller condition 5.27, as well as the Liapounov condition
5.29, are satisfied for the sequence of RVs considered here. Hence, the CLT holds for this
sequence of RVs. ◽

?dgamma, ?qgamma

5.13 Further Reading

A futile exercise is being undertaken now as we promise the reader a complete bibliography
on the sources of probability! With the possibility, that is positive probabilities, of some abuse,
we have further classified the sources into different subsections.

5.13.1 Intuitive, Elementary, and First Course Source

Chung and AitSahlia (2004) is an appealing beginner’s starting point. Chung and AitSahlia
(2004) is a fourth edition enhancement of Chung (1979), which has been an excellent
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Figure 5.13 Liapounov Condition Verification

introduction since its first print. A higher secondary school introduction to probability has
been written by two eminent Russian probabilists Gnedenko and Khinchin (1964). Ash
(1969), Chandra and Chatterjee (2001), Gnedenko (1978), Durrett (2009), and Ross (2010)
are some of the competitive first course texts on probability theory.

As far as intuition is concerned, one of the unrivalled works in the literature ever is the
two volumes of Feller (1968 and 1971). A testimony and tribute to this fact is that almost any
decent work on probability theory will cite Feller.

5.13.2 The Classics and Second Course Source

Feller’s (1968 and 1971) two volumes are intuitive, classic, advanced courses, and also almost
everything else too. The measure theoretic approach was first detailed in Kolmogorov (1933).
This short book served as a cornerstone for the way probability would be written from that
point onward. It is generally agreed that Loéve (1955) has been the first comprehensive take
on the measure theoretic approach to probability and the last edition of his work appeared in
two volumes, Loeve (1977). Chung (2000) has been another famous probabilitist researcher
who has also written some of the best probability books.

Ash and Doléans-Dade (2000), Shiryaev (1995), Chow and Teicher (1995), Athreya and
Lahiri (2005), Durrett (2010), and Breiman (1962, 1992), among others, are some of the excel-
lent measure theoretic approaches to probability. Parthasarathy (1978) and Billingsley (1995)
have also stood the test of time and are still a favorite of many probability readers. In most
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of the books mentioned in this paragraph, the first editions have appeared a couple of decades
earlier than their most recent editions that we have listed here.

Rosenthall (2006) and Kallenberg (2002) are two of the modern texts on measure theoretic
probability. In the Indian subcontinent, students and teachers have benefited from Bhat (2012)
and Basu (1998) and both the books make a great read.

5.13.3 The Problem Books

If the intimidated people could have their way, we are sure that most of the authors mentioned
in this subsection would be facing capital punishment! After all, the offense of these authors
is not any less. Mosteller (1962), Grimmet and Stirzaker (2001), Cacoullus (1989), Schwarz
(2007), Capiński and Zastawniak (2001), Nahin (2008), Sveshnikov (1968), and Chaumont
and Yor (2003) all are guilty of the same offense. They batter the readers with a never-ending
sequence of problems and thereby give a proof that is the way to understand infinity! To be
fair to these authors, some of them have been really nice! They clearly mention that their book
has only 40, 50, or 100 problems in contrast to some of them, who blatantly emphasize that
the reader must solve 1000 problems!

5.13.4 Other Useful Sources

Johnson and Kotz (1969–73) have written a four-volume book on the distributions that arise in
probability and statistics. An update to this work has appeared in the late 1990s by Johnson and
Kotz and co-workers. DasGupta (2011) and DasGupta (2010) cover a lot of topics and mod-
ern advancements. Dworsky (2008) offers a different view and makes a smart read. Stoyanov
(1997) is an entirely different type of book, with its focus mainly on counter examples.

5.13.5 R for Probability

Prof Jay Kerns’ open source book, Kerns (2010), has been an influence on the first few sections
of this chapter. Horgan (2008) and Baclawski (2008) are two introductory books who demon-
strate a lot of probability aspect that can be understood through R.

5.14 Complements, Problems, and Programs

Problem 5.1 Consider the three sets from Ω = LETTERS: A = {“U”, “X”, “M”, “J”, “B”,
“D”}, B = {“N”, “J”, “H”, “C”, “G”, “X”}, and C = {“H”, “V”, “N”, “K”,
“D”, “F”}. Using the operators intersect and union, for the sets A, B,
and C, verify the following:

1. (A ∩ B)′ = A′ ∪ B′ and (A ∪ B)′ = A′ ∩ B′.
2. (A ∩ B) ∪ C = (A ∪ C) ∩ (B ∪ C) and (A ∪ B) ∩ C = (A ∩ C) ∪ (B ∩ C).
3. Using thesample function, verify (i) and (ii) for arbitrary sets A, B, and C.



Trim Size: 170mm x 244mm Tattar c05.tex V3 - 02/10/2016 10:18 A.M. Page 168�

� �

�

168 A Course in Statistics with R

Problem 5.2 The R code tosscoin(times=3) returns an object of the data.frame
class. However, a probabilist is familiar if the sample space is neatly written
out as Ω = {H,T} or Ω = {HH,HT ,TH,TT}. Use the paste function to
convert the data.frame object into 𝜔 elements such as H,HT ,HHH, and
so on, for any number of coin tosses.

Problem 5.3 The sample space of a die rolling becomes very large, depending on num-
ber of times we roll the die, and also on the number of sides of the die.
Write a R program using the rolldie function from the prob package,
single line preferred, which returns the total number of possible outcomes for
(i) a die being rolled 1 to 6 times, (ii) the number of sides of the die vary
from 3 to 10. An indicative syntax-based solution is along the lines sap-
ply(sapply(option2,rolldie,option1),nrow). Justify the use
of sapply and the options.

Problem 5.4 Find out more details about the Roulette game and make a preliminary finding
about it in the function roulette.

Problem 5.5 Run the codes names(table(rowSums(S_Die))) and table
(rowSums(S_Die)) from Example 5.2.7 and verify that you have
completely understood the examples code. Now, roll four die and answer the
probability of obtaining an odd number greater than ten.

Problem 5.6 For the thirteenth of a month problem, start with an arbitrary year, say 1857,
and then run the program up to year 2256. Do you expect that the 13th will
more likely be a Friday than any other day? Confirm your intuition with the
R program.

Problem 5.7 In Example 5.3.3, the digits are drawn to solve a replacement problem. Obtain
the probability of obtaining at least two even numbers in a draw of five using
the leading digits of e.

Problem 5.8 What is the number of people whose birthday you need to ask so that the
probability of finding a birthday mate is at least half? Write a brief R program
to obtain the size as the probability varies from 0 to 1.

Problem 5.9 Construct a program which can conclude if the collection of sets over a finite
probability space is a field.

Problem 5.10 Extend the program in the previous problem to verify if probabilities defined
over an arbitrary collection of finite sets satisfies the requirement of being a
probability measure.

Problem 5.11 Explore if the addrv function from the prob package can be used to handle
more than two variables.
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Problem 5.12 * For small 𝜎 values and 𝜇 around 0, write a program to obtain the expectation
of a normal RV, which incorporates the expectation of an RV for an arbitrary
RV, as given in Equation 5.16.

Problem 5.13 Extend the R function Expectation_NNRV_Unif for computing the
expectation of a uniform RV over the interval [−a, a], a ∈ .

Problem 5.14 Evaluate the R program of de Moivre-Laplace CLT for different values of p.

Problem 5.15 Using the normal approximation, CLT result, for the triangular distribution for
various values of a, b, and c, create an R program for evaluating P(−c∕2 <

X̄ < c∕2).

Problem 5.16 * Using the theoretical moments of the normal distribution, verify if the
Liapounovs condition holds for the sequence of RVs developed in Example
5.12.4.

Problem 5.17 Let Xn follow a Poisson distribution Pois(𝜆∕n). Verify if the Feller condition
holds for this sequence. If the Feller condition is satisfied, verify for the Lia-
pounov’s condition.

Problem 5.18 For an exponential RV with rate 𝜆, the mean and variance are respectively
known to be 1∕𝜆 and 1∕𝜆2. Suppose Xn follows an exponential distribution
with rate 2n. Does the R program indicate that the Lindeberg condition will
be satisfied for the defined sequence?

Problem 5.19 If the rate of exponential distribution for Xn is n𝜆, verify the Lindeberg and
Feller condition for the sequence under consideration.
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6
Probability and Sampling
Distributions

Package(s): scatterplot3d, mvtnorm, VGAM

6.1 Introduction

In this chapter the focus will be two-fold. First, we will introduce and discuss common
probability models in detail. This will cover probability models for univariate random
variables, first including both discrete and continuous random variables. Apart from the
associated probability measures, we will consider the cumulative probability distribution
function, characteristics functions, and moment generating functions (when they exist).
Sections 6.2 and 6.3 will cover some of the frequently arising probability models. Section 6.4
will deal with multivariate probability distributions of both discrete as well as continuous
random vectors. A comprehensive listing source for probability distributions using R may be
found at http://cran.r-project.org/web/views/Distributions.html.

The second purpose of this chapter is to show a different side of the probability models.
The probability models which govern the uncertain phenomena discussed thus far implicitly
assume that the parameters are known, or another way of their use is to obtain probabilities
and not to be too concerned about the unknown parameters. In the real world, the parameters
of probability models are not completely known and we infer their values which render the
usefulness of these models. The statistical inference aspect of this problem is covered through
Chapters 7 to 9. The bridge between probability models and statistical inference is provided
by sampling distributions. The tool required towards this end is known as a statistic. The
properties of the statistics are best understood using the law-of-large-numbers and the central
limit theorem. Some results of these limit theorems were seen in the previous chapter. We will
now begin with discrete random variables.

A Course in Statistics with R, First Edition. Prabhanjan Narayanachar Tattar, Suresh Ramaiah and B. G. Manjunath.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/tattar/statistics
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6.2 Discrete Univariate Distributions

We begin with discrete distributions. Many standard probability densities can be studied using
built-in R commands. The three common and useful functions start with the letters p, d, and
q, followed by a standard abbreviation of that distribution. Here, p, d, and q stand for the
distribution function, density, and quantile function respectively. Of course, there is a fourth
one too, which will be considered in Chapter 11.

6.2.1 The Discrete Uniform Distribution

Let X be an  -measurable random variable oi the probability space (Ω, ,P), where Ω is a
finite set with N elements, say Ω = {a, a + 1, … , b − 1, b}, where b ≥ a, a, b ∈ , ℤ is the
set of integers, and let  be the power set of Ω. Here, N = b − a + 1. Define the probability
measure P as follows. For any measurable set A ∈  , let

p(x) = P(X = x) =

{
1
N
, x ∈ Ω,

0, otherwise.
(6.1)

The cdf, mgf, and cf, recall their definitions from Section 5.8, of discrete uniform distribution
are respectively:

FU(x) =
⎧⎪⎨⎪⎩

0, x < a,
x−a+1

N
, a ≤ x ≤ b,

1, otherwise,

(6.2)

MU(t) =
eat − e(b+1)t

N(1 − et)
, and (6.3)

𝜑U(t) =
eiat − ei(b+1)t

N(1 − eit)
. (6.4)

The mean and variance of the discrete uniform distribution are given by

E(X) = a + b
2

, (6.5)

Var(X) = (b − a + 1)2 − 1
12

= N2 − 1
12

. (6.6)

On the surface the discrete uniform distribution may appear to be restricted and that it may
not have practical applications. We next consider some real-life applications of the discrete
uniform distribution.

Example 6.2.1. The Professor’s Key Problem. Suppose a professor randomly selects a key
from his key chain to open the door. If the key is not the correct one, the professor again
randomly selects one of the other keys. The sampling continues until the lock is opened. The
probability distribution of the right key being selected follows the discrete uniform distribution.

That is, if there are ten keys on the key chain, the average number of attempts it would take
to open the door would be 5.5. ◽
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Example 6.2.2. The German Tank Problem. A major task for the Western Allies during
World War II was estimation of the number of tanks that Germany had manufactured. The sci-
entists used data on the serial numbers on tanks (most significantly gearbox numbers), chassis
and engine numbers, etc. The underlying distribution of the number of tanks was assumed to be
discrete uniform. Check http://en.wikipedia.org/wiki/German_tank_problem for more details
on this problem. ◽

6.2.2 The Binomial Distribution

Consider the probability space (Ω, ,P), where Ω = {0, 1, 2, … , n}, and let  be the power
set of Ω. Define the RV X = j, j = 0, 1, 2, … , n. Clearly, the random variable X is  - measur-
able. The binomial probability measure P is then defined by

p(x; n, p) = P(X = x) =

{(
n
x

)
px(1 − p)n−x, x = 0, 1, … , n, 0 ≤ p ≤ 1

0, otherwise.
(6.7)

The cdf, mgf, and cf of the binomial distribution are:

F(x) =
⎧⎪⎨⎪⎩

0, x < 0∑x
j=0

(
n
j

)
pj(1 − p)n−j, x = 0, 1, … , n,

1, x > 1,

(6.8)

M(t) = (1 − p + pet)n, (6.9)

𝜑(t) = (1 − p + peit)n. (6.10)

The mean and variance of a binomial random variable are given by

E(X) = np, (6.11)

Var(X) = np(1 − p). (6.12)

The binomial distribution arises in a lot of applications, especially when the outcome of the
experiment can be labeled as Success/Failure, Yes/No, Present/Absent, etc. It is also useful
in quality inspections in the industrial environment. We use dbinom to find the probabilities
P(X = x), pbinom for P(X ≤ x), and qbinom for the quantiles.

Example 6.2.3. A Simple Illustration. Suppose that n = 20 and p = 0.35. The next program
demonstrates the use of the R trio d, p, and q, which lead to a plot of the binomial density,
cumulative probability function, and the quantiles of the distribution.

> n <- 20; p <- 0.35
> par(mfrow=c(1,3))
> plot(0:20,dbinom(0:n,n,p),xlab="x",ylab="P(X=x)",
+ main="A Binomial Distribution")
> plot(0:20,pbinom(0:n,n,p),xlab="x",ylab=expression(P(X<=x)),
+ main="Binomial Cumulative Distribution Function")



Trim Size: 170mm x 244mm Tattar c06.tex V3 - 02/10/2016 10:26 A.M. Page 174�

� �

�

174 A Course in Statistics with R

> plot(seq(0,1,.1),qbinom(seq(0,1,.1),n,p),xlab="Quantiles",ylab="X",
+ main="Quantiles of Binomial RV")
> # Output Suppressed

Note the use of expression(P(X<=x)) and the resulting label on the y-axis. ◽

Example 6.2.4. Understanding Binomial Distributions. For n = 10, p = 0.35, we obtain the
cdf, mgf, and cf plots, as given respectively in Equations 6.8–6.10. The necessary R program
is given below:

> par(mfrow=c(1,3))
> n <- 10;p <- 0.35 # Plotting the CDF
> plot(0:10,pbinom(0:10,n,p),xlab="x-values",
+ ylab=expression(P(X<=x)),
+ main="Binomial Cumulative Distribution Function")
> t <- seq(-1,1,0.1) # The MGF
> mgf_binomial <- function(t,n,p) {(1-p+p*exp(t)) ̂ {n}}
> plot(t,mgf_binomial(t,n,p),xlab="t",ylab=expression(M(t)),
+ main="The Binomial MGF")
> t <- seq(-10,10,0.01) # The Characteristic Function
> cf_binomial <- function(t,n,p) {(1-p+p*exp(1i*t)) ̂ {n}}
> scatterplot3d(t,Re(cf_binomial(t,n,p)),Im(cf_binomial(t,n,p)),
+ xlim=c(-11,11),ylim=c(-1,1), zlim=c(-1,1), xlab="t",ylab=
+ expression(paste("Real Part of ",phi(t))), zlab=
+ expression(paste("Complex Part of ",phi(t))),highlight.3d=TRUE,
+ col.axis="blue",col.grid="lightblue", pch=20,type="l",
+ main=expression(phi(t)))

The resulting plot is given in Figure 6.1. Note the use of the expression option which
has been exploited to ensure that we obtain the formulas for the labels. The CDF for
binomial distribution is readily available in pbinom and the functions mgf_binomial and
cf_binomial are defined respectively to obtain the formulas 6.9 and 6.10. The plot of
mgfs’ or cfs’ do not offer much insight and will not be considered any further. ◽

Example 6.2.5. Understanding the Central Term of a Binomial Distribution. Let b(n, p)
denote the probability measure of a binomial RV with parameters n and p. The well-known
recursive formula of binomial distribution is:

b(k, n, p)
b(k − 1, n, p)

=
(

n
k

)
pk(1−p)n−k(

n
k−1

)
pk−1(1−p)n−k+1

= 1 + (n+1)p−k
k(1−p) . (6.13)

Thus, we can see from Equation 6.13 that the binomial probabilities are increasing if k <

(n + 1)p and decreasing if k > (n + 1)p. If (n + 1)p = m is an integer, we have b(m, n, p) =
b(m − 1, n, p). Finally, there exists only one integer m, such that

(n + 1)p − 1 < m ≤ (n + 1)p.

This integer m is the central term of a binomial distribution. See Section 6.3 of Feller (1968)
for more such interesting results. We will now write a small R program for understanding this
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Figure 6.1 Understanding the Binomial Distribution

central term. Suppose that we vary n from 5 to 20 and set p = 0.2. For each of these binomial
distributions, the program should return us the central term which makes use of the above
stated inequality. Since our distributions are skewed to the left side, we expect the central term
to occur in the beginning itself. The following R program reconfirms our belief.

> Understanding the Central Term of a Binomial Distribution
> n <- 20; p <- 0.2
> m <- NULL # Lets find the Central Terms
> for(k in 5:n){
+ mid_term <- 0
+ while((((k+1)*p-1)>mid_term) & ((k+1)*p>=mid_term) ) {
+ mid_term <- mid_term+1}
+ m[k-4] <- mid_term
+ }
> m
[1] 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4

The mid-term criteria (n + 1)p − 1 < m ≤ (n + 1)p is programmed with while((((k+1)*
p-1)>mid_term) & ((k+1)*p>=mid_term) ) and the while loop stops once the
criteria is satisfied, then it returns to the mid-terms. ◽
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6.2.3 The Geometric Distribution

Suppose we toss a coin until a head turns up. Let p denote the probability of a head on the toss
of a coin. The probability of a head turning up for the first time on the nth toss of the coin is
then given by

q · · · q
⏟⏟⏟

n−1 times

p, q = 1 − p.

Let us define the related random variable in a more formal way. Define Ω = {0, 1, 2, … },
and let  be the power set of Ω. We say that an  - measurable RV is a geometric or Pascal
RV if its probability mass function is given by the counting measure:

P(X = x) = px =
{

p(1 − p)x, x = 0, 1, 2, … , 0 < p ≤ 1,
0, otherwise.

(6.14)

The cdf, mgf, and cf of the geometric distribution are listed below:

F(x) =
{

0, x < 0
1 − (1 − p)x+1, x = 0, 1, 2, … ,

(6.15)

M(t) =
pet

[1 − (1 − p)et]
, t < − ln (1 − p), (6.16)

𝜑(t) =
p

1 − qeit
. (6.17)

The mean and variance of a geometric distribution are given by

E(X) =
q

p
, (6.18)

Var(X) =
q

p2
. (6.19)

Note that the mean of a geometric RV is always less than its variance. This is because
the mean is multiplied by 1∕p, which is always greater than 1. It is easier to verify by first
declaring the p sequence as p <- seq(0.01,1,.01) and then by running (1-p)/p <=
(1-p)/p ̂ 2. The geometric distribution has found applications in problems of estimating
animal abundance, ticket control, vigilance systems, etc.

Example 6.2.6. Understanding the Mean and Variance. If the probability of arrival of a city
bus at a station over a fixed time duration is high, we know from our experience of waiting for
it that it will be less than in the cases where the probability of the bus arrival is less. This experi-
ence is captured by the above equations of mean and variance for a geometric distribution. The
following R program and its result in Parts A and B of Figure 6.2 reflects the experience of
these waiting times.

> p <- seq(0,1,0.02)
> mu <- (1-p)/p
> var <- (1-p)/p ̂ (2)
> #par(mfrow=c(1,2))
> plot(p,mu,xlab="Probability of Success",ylab="Mean","l",
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+ main="A: Mean of Geometric Distribution")
> plot(p,var,xlab="Probability of Success",ylab="Variance","l",
+ main="B: Variance of Geometric Distribution")

The program is straightforward to understand. ◽

Example 6.2.7. The Tail Probabilities of a Geometric Random Variables. For a geometric
random variable, the tail probability P(X ≥ n) is

P(X ≥ n) =
∞∑

j=n

p(1 − p)j = pn, n = 0, 1, 2, … .

The following R program gives a plot of the tail probabilities for various values of p, check
Part C of Figure 6.2.

> # The Tail Probabilities
> n <- 0:50
> p <- seq(0.05,1,0.05)
> plot(n,p[1] ̂ {n},xlab="x",ylab="Tail Probabilities","l", col=1,
+ xlim=c(0,20),main="C: Tail Probabilities of Geometric RV")
> for(i in 2:20) lines(n,p[i] ̂ {n},"l",col=i)

The tail probabilities simply involve computing pn! ◽
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6.2.4 The Negative Binomial Distribution

Let (Ω, ,P) be a probability space, with Ω = {0, 1, … }, and  the power set of Ω. Let X be
a random variable which counts the number of failures before observing exactly r successes.
That is, we toss a coin repeatedly and wait until r heads turn up, and here X will be the number
of tails observed before r heads. Such a random variable is called a negative binomial RV and
the associated probability distribution is a negative binomial distribution. In this experiment, as
X = x failures are to be observed before r failures, the negative binomial probability measure
is given by the counting measure:

P(X = x) =

{(
x+r−1

x

)
pr(1 − p)x, x = 0, 1, 2, … ,

0, otherwise.
(6.20)

The mgf and cf of a negative binomial RV are given below:

MX(t) =
(

p

1 − qet

)r

, for t < − ln p, (6.21)

𝜑X(t) =
(

p

1 − qeit

)r

, for t ∈ . (6.22)

The mean and variance of a negative binomial RV are given below:

E(X) = r
q

p
, (6.23)

Var(X) = r
q

p2
. (6.24)

The mean and variance relationship extends as with the geometric case. The distribution
is found in many diverse areas such as birth-death-and-immigration process, queueing sys-
tems, etc.

Example 6.2.8. The Tail Probabilities of Negative Binomial Distribution. For the tail prob-
abilities of a negative binomial distribution, we state the final expression from equation (7.23)
of Balakrishnan and Nevzorov (2003):

P(X ≥ m) = (m + r − 1)!
(m − 1)!(r − 1)! ∫

p

0
xm−1(1 − x)r−1dx.

We recognize that the integral term is a cumulative probability distribution of a beta random
variable with parameters m and r, see sub-section 6.3.2. For the moment the reader can assume
that the R function pbetawill return the cumulative probability of the beta distribution. Thus,
using this the pbeta, the tail probabilities plot can be obtained.

> # Understanding the Tail Probabilities
> m <- 1:50
> r <- 5
> p <- seq(0.05,1,0.05)
> plot(m,pbeta(p[1],m,r),xlab="x",ylab="Tail Probabilities",
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+ "l",col=1,xlim=c(0,50),ylim=c(0,1),main="D: Tail Probabilities
+ of Negative Binomial RV")
> for(i in 2:20) lines(m,pbeta(p[i],m,r),col=i)

The proportionality constant (m + r − 1)!∕((m − 1)!(r − 1)!) has been ignored without loss of
generality. The plot for the tail probabilities of the negative binomial distribution is given in
Part D of Figure 6.2. ◽

6.2.5 Poisson Distribution

Consider the probability space (Ω, ,P), where Ω = {0, 1, 2, … }, and let  be the power set
of Ω. Define a RV X with the Poisson probability measure given by

p(x; 𝜆) = P(X = x) =

{
e−𝜆𝜆x

x!
, x = 0, 1, 2, … , 𝜆 > 0,

0, otherwise.
(6.25)

Here, 𝜆 is the parameter of the RV X and is often known as rate of the RV. It may be shown
that the mgf, cf, mean, and variance of a Poisson RV are given by

MP(t) = e𝜆(e
t−1), (6.26)

𝜑P(t) = e𝜆(e
it−1), (6.27)

E(X) = 𝜆, (6.28)

Var(X) = 𝜆. (6.29)

Note that the mean and variance of the Poisson distribution are equal. In fact, the first four
central moments of the Poisson distribution are the same! The distribution is sometimes known
as the law of rare events. It has found applications in problems such as the number of mistakes
on a printed page, the number of accidents on a stretch of a highway, the number of arrivals at
a queueing system, etc.

Example 6.2.9. The Percentiles and Quantiles of a Poisson Distribution. Suppose
that X follows a Poisson distribution with 𝜆 = 10. Then, its percentiles are given by
qpois(seq(0,1,.1),10). Furthermore, the probability that X is greater than 15 is
1-ppois(15,10).

> qpois(seq(0,1,.1),10)
[1] 0 6 7 8 9 10 11 12 13 14 Inf
> 1-ppois(15,10)
[1] 0.0487404

As mentioned earlier in this section, q and p are used to obtain the quantiles and cumulative
probability distribution for the Poisson RV. ◽

Example 6.2.10. Obtaining probabilities of a Poisson random variable when P(X = 0)
is known. Suppose that it is known that for a Poisson random variate P(X = 0) = 0.2.
Then P(X = 6) is obtained by first obtaining the rate 𝜆 and using it to calculate the required
probability.
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> lam <- -log(.2) # finds the parameter of the Poisson distribution
> dpois(6,lam)
[1] 0.004827729

Recall that P(X = 0) = e−𝜆, and hence − ln (P(X = 0)) gives the value of 𝜆. ◽

Example 6.2.11. The probability distribution of Poisson random variables for different
𝝀. In the previous example we saw the Poisson approximation for binomial distribution. We
will simply look to see what happens to the Poisson distribution for large values of 𝜆.

> par(mfrow=c(2,2))
> plot(0:20,dpois(0:20,lambda=2),xlab="x",
+ ylab="Probability",type="h")
> plot(0:50,dpois(0:50,lambda=5),xlab="x",
+ ylab="Probability",type="h")
> plot(0:100,dpois(0:100,lambda=20),xlab="x",
+ ylab="Probability",type="h")
> plot(0:150,dpois(0:150,lambda=110),xlab="x",
+ ylab="Probability",type="h")

For small values of 𝜆, the discrete nature of Poisson RV is apparent. However, we note that for
large values of 𝜆, the pdf appears bell-shaped, see Figure 6.3. ◽

Example 6.2.12. The Poisson Approximation for Binomial Distribution. If the number of
Bernoulli trials is more than 20, i.e. n ≥ 20, and the probability of success is less than 0.05, the
probability of x successes may be well approximated by a Poisson RV instead of the natural
binomial distribution. The rule of thumb for this approximation is that np ≈ 1. This is such a
useful approximation that it is bound to be found in almost every book in the first course in
statistics or probability. To see how this approximation works, we first look at the probability
mass functions of both binomial distribution and the approximating Poisson distribution.

> n <- seq(20,41,3)
> p <- 1/n
> approxdiff <- n*0
> par(mfrow=c(2,4))
> for(i in 1:length(n)){
+ binomprob <- dbinom(c(0:n[i]),n[i],p[i])
+ poisprob <- dpois(c(0:n[i]),n[i]*p[i])
+ plot(c(0:n[i]),binomprob,xlab="x",
+ ylab = "Binomial and Poisson Probability",
+ ylim=c(0,.5),"l")
+ lines(c(0:n[i]),poisprob,ylim=c(0,.5),"l",col="red")
+ approxdiff[i] <- sum(binomprob-poisprob)
+ }
> title(main = "Poisson Approximation of Binomial RV",
+ outer=TRUE,line=-2)
> approxdiff
> # gives the cumulative sum of difference in approximation
[1] -7.765552e-18 -3.851576e-17 1.453942e-17
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Figure 6.3 Various Poisson Distribution
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The fact that the "red" curve of Poisson probabilities completely overshadows the black
curve of binomial probabilities shows that the Poisson approximation is a very good approxi-
mation one. Figure 6.4 reveals that there is hardly any difference in the probability curves of
the binomial distribution and its approximating Poisson distribution. The scenario when np is
approximately equal to 1 is clear. ◽

6.2.6 The Hypergeometric Distribution

A hypergeometric RV describes the number of successes in a sequence of n draws from a finite
population without replacement. Suppose that an urn contains N balls, m of which represent
non-defective items (hence success!), and the remaining N − m are defective items. We draw
n items without replacement from the urn and note the number of non-defective items. Let
X be the random variable denoting the number of non-defective items. Then the probability
distribution of the number of non-defective items is given by

P(X = x) =
⎧⎪⎨⎪⎩

(
m
x

)(
N−m
n−x

)
(

N
n

) , x = 0, 1, … ,min{n,m},

0, otherwise.

(6.30)

The mean and variance of the hypergeometric distribution are

E(X) = nm
N

, (6.31)

Var(X) = nm(N − n)(N − m)
N2(N − 1)

. (6.32)

The mgf and cf of hypergeometric distribution exist in a way too complex in appearance for us
to make good use of them. Further details may be obtained in Johnson and Kotz (1969). This
distribution is found to be very useful in capture-recapture experiments.

Example 6.2.13. Probability of x successes!. Suppose that a folder on a drive of a hard disk
contains N = 30 files. Of the 30 books, 12 are statistical text and the remaining are science
texts. Assume that five files are selected at random from the folder. The task is to compute the
probability of obtaining 0, 1, … , and 5 statistical texts. To obtain the probabilities, we can use
the inbuilt R function dhyper. The arguments for the parameters of the dhyper function
are m, n, and k, which respectively correspond to N, N − m, and n in the above pmf for the
hypergeometric RV. The answer is then given by a single-line program.

> dhyper(0:5,30,12,5)
[1] 0.000931 0.017457 0.112500 0.3145000 0.386590 0.167522

◽

?Distributions
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6.3 Continuous Univariate Distributions

Useful continuous distributions will be discussed here.

6.3.1 The Uniform Distribution

Consider a probability space (Ω, ,P), where Ω = [𝜃1, 𝜃2], 𝜃2 > 𝜃1, 𝜃1, 𝜃2 ∈ ℝ,  is the Borel
𝜎-field over Ω. An RV X is said to be a uniform RV if its probability density function (pdf) is
given by

f (x) =

{
1

𝜃2−𝜃1
, 𝜃1 < x < 𝜃2, 𝜃1, 𝜃2 ∈ ℝ,

0, otherwise,
(6.33)

and its cumulative distribution function is then

F(x) = P(X ≤ x) =
⎧⎪⎨⎪⎩

0, x ≤ 𝜃1
x−𝜃1
𝜃2−𝜃1

, if 𝜃1 < x ≤ 𝜃2,

1, x > 𝜃2.

(6.34)

The mgf, cf, mean, and variance of uniform RV are listed in the following:

MX(t) =
et𝜃2 − et𝜃1

t(𝜃2 − 𝜃1)
, (6.35)

𝜑X(t) =
eit𝜃2 − eit𝜃1

it(𝜃2 − 𝜃1)
, (6.36)

E(X) =
𝜃1 + 𝜃2

2
, (6.37)

Var(X) =
(𝜃2 − 𝜃1)2

12
. (6.38)

The uniform distribution over an interval [𝜃1, 𝜃2] is denoted by U[𝜃1, 𝜃2]. The standard uniform
distribution is over the interval [0, 1]. This distribution has many applications and serves as a
very important tool in simulation studies, as will be seen in Part III.

Example 6.3.1. A Simple Illustration. Suppose X ∼ U(10, 20), and we want to compute the
probabilities P(10 < X < 15),P(12 < X < 18). We can easily do this in the following program:

> punif(15,min=10,max=20)
[1] 0.5
> punif(18,min=10,max=20)-punif(12,min=10,max=20)
[1] 0.6

The cdf FU(x) is obtained in R with the punif function. The options min and max respec-
tively correspond to a and b. ◽
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Example 6.3.2. Convolutions of Two Uniform Random Variables. Let X1,X2 be two inde-
pendent standard uniform random variables. Define Y = X1 + X2. The pdf of Y is given by

p(y) =
⎧⎪⎨⎪⎩

y, if 0 ≤ y ≤ 1,

2 − y, if 1 ≤ y ≤ 2,

0, otherwise.

We will obtain a plot of the pdf of Y .

> # Convolution of Two Standard Uniform Random Variables
> pdfy <- function(y){
+ pdfy=ifelse(y<=1,y, 2-y)
+ return(pdfy)
+ }
> y <- seq(0,2,0.05)
> pdf_y <- sapply(y,pdfy)
> plot(y,pdf_y,"l",ylab="Convolution Density")

The pdf of Y , as given in Equation 6.39, is captured in R with the function pdfy. It is clear
from Part A of Figure 6.5 why the resulting distribution is popularly known as the triangular
distribution. ◽
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Example 6.3.3. Mean and Variance of Uniform RV. Recall from Example 5.7.4 the
definition of the R function Expectation_NNRV_Unif. This function made use of the
definition of expectation function, as given in Equation 5.15. The integrate function can
be used to quickly verify the mean and variance of a uniform RV over the interval [𝜃1, 𝜃2].

> EX <- integrate(function(x) {x*dunif(x,min=5,max=10)},
+ lower=5,upper=10)$value
> EX2 <- integrate(function(x) {x ̂ {2}*dunif(x,min=5,max=10)},
+ lower=5,upper=10)$value
> EX2-EX ̂ {2}
[1] 2.083333

Note that in the above program min corresponds to 𝜃1 and max to 𝜃2. The program can be
easily used for any values of the pair (𝜃1, 𝜃2). ◽

6.3.2 The Beta Distribution

Consider the probability space (Ω, ,P), with Ω = [0, 1], and  the Borel 𝜎-field over Ω. We
say that an RV is beta RV if its pdf is

f (x) =

{
1

B(𝛼,𝛽)x
𝛼−1(1 − x)𝛽−1, 0 ≤ x ≤ 1, 𝛼, 𝛽 > 0,

0, otherwise.
(6.39)

In the above expression, the parameters 𝛼 and 𝛽 are non-negative values, and the function
B(𝛼, 𝛽) is given by

B(𝛼, 𝛽) = Γ(𝛼)Γ(𝛽)
Γ(𝛼 + 𝛽)

,

and Γ(.) denotes the gamma integral, Γ(t) = ∫ I
0 nf xt−1e−xdx. The mean and variance of beta

distribution is given by

E(X) = 𝛼

𝛼 + 𝛽
, (6.40)

Var(X) = 𝛼𝛽

(𝛼 + 𝛽)2(𝛼 + 𝛽 + 1)
. (6.41)

The cf and mgf of beta RV is a bit more complex and hence it is not given here. The beta dis-
tribution is useful as a prior distribution in Bayesian analysis and this aspect will be illustrated
in Chapter 9.

Example 6.3.4. A Simple Illustration. Suppose we want to compute probabilities P(X < xi),
where xi = .1,.2,.3,.4,.5, and 𝛼 = 𝛽 = 6. Then

> p <- c(.1,.2,.3,.4,.5)
> pbeta(p,6,6)
[1] 0.0002957061 0.0116542054 0.0782247910 0.2465018675 0.5000000000

gives us the desired probabilities. ◽
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Example 6.3.5. Different Density Shapes of Beta Distribution. In an attempt to understand
the density, we give a small program for obtaining the density plots related to various beta
densities using the dbeta function.

> # Various Beta Densities
> x <- seq(0,1,0.05)
> plot(x,dbeta(x,0.05,0.05),"l",
+ ylab="Beta Density Plot",xlab="x",ylim=c(0,1))
> lines(x,dbeta(x,0.05,0.5),"l"); lines(x,dbeta(x,0.05,1),"l")
> lines(x,dbeta(x,0.05,5),"l"); lines(x,dbeta(x,0.5,0.05),"l")
> lines(x,dbeta(x,1,0.05),"l"); lines(x,dbeta(x,5,0.05),"l")

The output is displayed in Part B of Figure 6.5. It may be seen that depending on the parameter
values of 𝛼 and 𝛽, the beta distribution can take a variety of shapes which in turn are useful
for modeling a variety of practical scenarios. ◽

6.3.3 The Exponential Distribution

Consider the probability space (Ω, ,P). Define Ω = ℝ+, and  as the the Borel 𝜎-field over
Ω. We say that the RV X follows an exponential distribution with mean 𝜃 if its pdf is

f (x; 𝜃) =

{
1
𝜃
e−

x
𝜃 , x ≥ 0, 𝜃 > 0,

0, otherwise.
(6.42)

The mgf, cf, mean, and variance of exponential RV are given in the following set of
equations:

MX(t) = (1 − 𝜃t)−1, (6.43)

𝜑X(t) = (1 − 𝜃it)−1, (6.44)

E(X) = 𝜃, (6.45)

Var(X) = 𝜃2. (6.46)

The exponential RV is also usefully stated in a reparametrized form of the rate which is a
reciprocal of the mean. This distribution has application in many areas of the subject such as
reliability theory, survival analysis, queueing theory, etc.

Example 6.3.6. A Simple Illustration. If the mean of the exponential distribution is 30,
and we desire to compute the percentiles at the points 13, 18, 27, and 45, we obtain the
required percentiles using the pexp function. Suppose, we want to know the quantiles of
an exponential distribution with mean time of 30 units. We can obtain them by the small code
qexp(seq(0,1,.25),1/30). The next program gives us the results.

> t <- c(13,18,27,45)
> pexp(t,1/30)
[1] 0.3516557 0.4511884 0.5934303 0.7768698
> qexp(seq(0,1,.25),1/30)
[1] 0.000000 8.630462 20.794415 41.588831 Inf
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The pexp and qexp R functions have been used to compute the cdf and quantiles of
exponential distribution. ◽

Example 6.3.7. Conditional Probabilities in Exponential Distribution. Suppose that X is
an exponential RV with mean 10. Assume that we have already noted that X > 10. In light of
this information we would like to know the probability of X being greater than 16. That is, we
wish to find P(X ≥ (6 + 10)|X ≥ 10). Note that, for any s, t > 0

P(T ≥ s + t|T > t) = P({t < T} ∩ {T ≥ s + t)}
P(T > t)

.

Hence, we will first calculate P(10 < T ≤ 16)∕P(T > 10) and also P(X ≤ 6), that is P(X ≤ s).

> (pexp(16,1/10)-pexp(10,1/10))/(1-pexp(10,1/10))
[1] 0.4511884
> pexp(6,1/10)
[1] 0.4511884

Is this a coincidence for the case of s = 6, t = 10? Let us check this out for a range of s and t.

> theta <- 10
> s <- 1:5
> t <- 1:10
> checkequal <- function(a,b,theta){
+ temp <- round(((pexp(a+b,1/theta)-pexp(b,1/theta))/
+ (1-pexp(b,1/theta))),2)==round(pexp(a,1/theta),2)
+ return(temp)
+ }
> outer(s,t,checkequal,theta)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[2,] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[3,] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[4,] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[5,] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

The checkequal function tests whether the probabilities P(t < T ≤ s + t)∕P(T > t) and
P(X ≤ s) are equal or not. The outer function carries out the checkequal function over
a range of s and t values. In each case the probability has been found to be the same. This is
not a surprise result and is in fact the most famous property of exponential distribution: the
memoryless property. ◽

6.3.4 The Gamma Distribution

Consider the probability space (Ω, ,P). Define Ω = ℝ+, and  as the the Borel 𝜎-field over
Ω. We say that an RV is a gamma RV with scale parameter 𝜃 and shape parameter k if its
probability density function is

f (x, 𝜃, k) =

{
xk−1 e−x∕𝜃

Γ(k)𝜃k , x ≥ 0, k, 𝜃 > 0,

0, otherwise.
(6.47)
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The mgf, cf, mean, and variance are contained in the list:

MX(t) = (1 − 𝜃t)−k, (6.48)

𝜑X(t) = (1 − 𝜃it)−k, (6.49)

E(X) = k𝜃, (6.50)

Var(X) = k𝜃2. (6.51)

It can be easily seen that the gamma distribution is an extension of the exponential distri-
bution. It has also applications in Bayesian analysis as a natural conjugate prior for the standard
deviation of a normal distribution, and also as a useful distribution for frailty models in survival
analysis.

Example 6.3.8. The Gamma Density Plots. We will help the reader to reproduce the Gamma
density plots, which appear on pages 213–4 of Rohatgi and Saleh (2000).

> # The Gamma Density Plots
> par(mfrow=c(2,2))
> x <- seq(0,2,0.1)
> plot(x,dgamma(x,shape=0.5,scale=0.5),
+ xlab="x",ylab="Gamma Density Plot","l")
> x <- seq(0,8,0.1)
> plot(x,dgamma(x,shape=2,scale=0.5),
+ xlab="x",ylab="Gamma Density Plot","l")
> lines(x,dgamma(x,shape=2,scale=1),"l")
> lines(x,dgamma(x,shape=2,scale=2),"l")
> x <- seq(0,20,0.1)
> plot(x,dgamma(x,shape=4,scale=2),xlab="x",
+ ylab="Gamma Density Plot","l")
> lines(x,dgamma(x,shape=4,scale=4),"l")
> x <- seq(0,35,0.1)
> plot(x,dgamma(x,shape=8,scale=2),
+ xlab="x",ylab="Gamma Density Plot","l")

The output of the this R program is Figure 6.6. ◽

6.3.5 The Normal Distribution

Consider the probability space (Ω, ,P). Define Ω = ℝ, and  as the Borel 𝜎-field over Ω.
An RV X is said to possess a normal distribution with mean 𝜇 and a variance 𝜎2 if its pdf is
given by

f (x;𝜇, 𝜎2) = 1√
2𝜋𝜎

exp

(
−(x − 𝜇)2

2𝜎2

)
, x ∈ ℝ, 𝜇 ∈ ℝ, 𝜎 > 0. (6.52)

The mean and variance have already been defined. Thus, we will look at mgf and cf:

MX(t) = e𝜇t+ 1
2
𝜎2t2

, (6.53)

𝜑X(t) = ei𝜇t− 1
2
𝜎2t2

. (6.54)
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Figure 6.6 Gamma Density Plots
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The normal distribution is almost omnipresent in the subject. It is very useful in error analysis,
as will be seen in Chapters 12 and 13. Apart from direct applications, it also turns out to be
the asymptotic distribution in many applications.

Example 6.3.9. A Simple Illustration. It is well-known that for a standard normal vari-
able with 𝜇 = 0, 𝜎2 = 1, P(−1.68 < X < 1.68) = 0.90,P(−1.96 < X < 1.96) = 0.95, and
P(−2.58 < X < 2.58) = 0.99. Let us verify these statements using the dnorm function:

> integrate(dnorm,-1.68,1.68)$value
[1] 0.9070427
> integrate(dnorm,-1.96,1.96)$value
[1] 0.9500042
> integrate(dnorm,-2.58,2.58)$value
[1] 0.99012

Thus, the well-known results have been reaffirmed. ◽

Example 6.3.10. Some Shady Normal Curves. We will again consider a standard normal
random variable, which is more popularly denoted in Statistics by Z. Some of the much needed
probabilities are P(Z > 0), P(−1.96 < Z < 1.96), etc.

> par(mfrow=c(1,3))
> # Probability Z Greater than 0
> curve(dnorm(x,0,1),-4,4,xlab="z",ylab="f(z)")
> z <- seq(0,4,0.02)
> lines(z,dnorm(z),type="h",col="grey")
> # 95% Coverage
> curve(dnorm(x,0,1),-4,4,xlab="z",ylab="f(z)")
> z <- seq(-1.96,1.96,0.001)
> lines(z,dnorm(z),type="h",col="grey")
> # 95% Coverage
> curve(dnorm(x,0,1),-4,4,xlab="z",ylab="f(z)")
> z <- seq(-2.58,2.58,0.001)
> lines(z,dnorm(z),type="h",col="grey")

These probabilities are now shaded, see Figure 6.7. ◽

6.3.6 The Cauchy Distribution

Consider the probability space (Ω, ,P). Define Ω = ℝ, and  as the Borel 𝜎-field over Ω.
An RV X is said to a Cauchy RV if its pdf is of the form:

f (x;𝜇, 𝜎2) = 1
𝜋𝜎

[
1 +

(x − 𝜇

𝜎

)2
]−1

, x ∈ ℝ, 𝜇 ∈ ℝ, 𝜎 > 0. (6.55)

The mean, variance, and mgf of the Cauchy RV do not exist. However, its cf is given by

𝜑X(t) = ei𝜇t−𝜎|t|. (6.56)



Trim Size: 170mm x 244mm Tattar c06.tex V3 - 02/10/2016 10:26 A.M. Page 192�

� �

�

192 A Course in Statistics with R

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

z

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

z

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

z

f(
z
)

f(
z
)

f(
z
)

Figure 6.7 Shaded Normal Curves
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Figure 6.8 Whose Tails are Heavier?

Example 6.3.11. Whose tail is heavy? Normal or Cauchy? A plot of standard normal and
Cauchy distribution is obtained to examine which of them is heavier.

> x <- seq(-4,4,0.1)
> plot(x,dnorm(x),"l",col="green")
> lines(x,dcauchy(x),"l",col="red")

The answer is obvious from the Figure 6.8. Can you prove it analytically? ◽
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6.3.7 The t-Distribution

Consider the probability space (Ω, ,P). Define Ω = ℝ, and  as the the Borel 𝜎-field over
Ω. An RV X is said to follow a t-distribution if its pdf is given by

f (t, 𝜈) =
Γ
(
𝜈+1

2

)
√
𝜋𝜈Γ

(
𝜈

2

)(1 + t2

2

)−(𝜈+1)∕2

,−∞ < t < ∞, 𝜈 > 0. (6.57)

The mean and variance of a t-RV are given below:

E(T) =

{
0, if 𝜈 > 1,

undefined, otherwise.
(6.58)

Var(T) =
⎧⎪⎨⎪⎩

𝑣

𝜈−2
, for 𝜈 > 2,

∞, 1 < 𝜈 ≤ 2,

undefined, otherwise.

(6.59)

The cf exists in a complex form and it is not required for our purposes. This distribution is
useful in construction of statistical tests and setting up confidence intervals.

Example 6.3.12. Cauchy Distribution as a Particular Case. In the above formula for expec-
tation E(T), we stated that the mean of a t-distribution exists only if 𝜈 > 1. Let us consider the
particular case of 𝜈 = 1. In the density plot of the example “Whose tail is heavy? Normal or
Cauchy?”, if we add lines(x,dt(x,df=1),"l",col="orange")", we will see that
the red color curve is overwritten by the orange color. Thus, we have a graphical proof that
the Cauchy distribution is a particular case of the t-distribution. ◽

We close this section with statement of properties of the chi-square and F distributions.

6.3.8 The Chi-square Distribution

Consider the probability space (Ω, ,P). Define Ω = ℝ+, and  as the the Borel 𝜎-field over
Ω. An RV is said to be a chi-square 𝜒2- RV if its pdf is given by

f (x, k) =

{
1

2k∕2Γ(k∕2)x
k∕2−1e−x∕2, x ≥ 0, k ∈ N+,

0, otherwise.
(6.60)

The list of mean, variance, mgf, and cf for a chi-square RV are listed below:

E(X) = k, (6.61)

Var(X) = 2k, (6.62)

MX(t) = (1 − 2t)−k∕2, if t < 1∕2, (6.63)

𝜑X(t) = (1 − 2it)−k∕2. (6.64)

For the use and applications of 𝜒2 RV, see Section 6.6.
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6.3.9 The F-Distribution

Consider the probability space (Ω, ,P). Define Ω = ℝ+, and  as the the Borel 𝜎-field over
Ω. An RV is said to be a F- RV if its pdf is given by

f (x,m, n) =
⎧⎪⎨⎪⎩

1

B
(

m
2
,

n
2

)(m
n

)m∕2
x

m
2
−1
(

1 + m
n

x
)−m+n

2
, x ≥ 0,m, n ∈ N+,

0, otherwise.

(6.65)

The mean and variance of an F- random variable are respectively given by

E(X) = n
n − 2

, if n > 2, (6.66)

Var(X) = 2n2(m + n − 2)
m(n − 2)2(n − 4)

, if n > 4. (6.67)

Similar to the 𝜒2- RV, applications and R programs for F-RV will be developed in Section 6.6.

?Distributions, ?curve

6.4 Multivariate Probability Distributions

The previous two sections considered some important aspects of univariate (discrete and con-
tinuous) RVs. Random vectors are an extension of this concept, with each of its components
itself being an RV. Of course, more often than not, the components of such random vectors are
further correlated with each other. In this section we will consider four important random vec-
tors. The purpose of this section is to emphasize the importance of these random vectors and
towards this purpose the definitions are formally given. The role of software is not elaborated
on here, except for giving pointers to the main functions. However, these distributions play a
central role in inference of multivariate data.

6.4.1 The Multinomial Distribution

The binomial distribution encountered in the previous section is useful for binary sample
outcomes. A natural extension is the probability distribution for the multi-cell distribution
of a stochastic experiment. We say that a k-dimensional random vector X = (X1, … ,Xk),∑k

i=1 Xi = n, with probability vector p = (p1, … , pk),
∑k

i=1 pi = 1, is a multinomial random
vector if its probability mass function is defined by

p(x1, … , xk|n, p) =
⎧⎪⎨⎪⎩

n!
x1!···xk!

px1
1 · · · pxk

k ,
k∑

i=1
xi = n, xi = 0, 1, … , n,

0, otherwise.
(6.68)

Some elementary properties of multinomial distribution are in order:

E(Xi) = npi, i = 1, … , k, (6.69)
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Var(Xi) = npi(1 − pi), i = 1, … , k, (6.70)

Cov(Xi,Xj) = −npipj, i ≠ j = 1, … , k. (6.71)

Marginal distribution of the multinomial distribution will follow a binomial distribution. In
particular, when a classification problem involves more than two categories, the multinomial
distribution will be very useful to study. The R function dmultinom will return the prob-
abilities for a multinomial distribution. The multinomial probability model will be studied in
more detail in Chapter 18.

The birthday problem may be handled using this distribution and we will see it in action in
Chapter 9.

6.4.2 Dirichlet Distribution

The Dirichlet distribution arises from the Dirichlet integral and is found to be very useful
in Bayesian statistics. In fact, it arises as a conjugate prior to the multinomial distribution
discussed in the previous subsection, see Chapter 9.

A random vector X = (X1, … ,XK) is said to have a Dirichlet distribution with parameters
(a1, a2, … , aK) if the multivariate probability density function is given by

f (x1, … , xK−1|a1, a2, … , aK) =

⎧⎪⎪⎨⎪⎪⎩

Γ(
∑K

i=1 ai)∏K
i=1 Γ(ai)

∏K
i=1 xai−1

i , xi > 0, ai > 0, i = 1, … ,K,

and
∑K−1

i=1 xi < 1,

0, otherwise.

(6.72)
The Dirichlet distribution is the multivariate extension of the beta distribution. It especially
serves as a very important prior distribution, see Chapter 9, in the context of Bayesian analysis.
Some R functions which are useful for computations may be found in the R packages gtools,
LearnBayes, and VGAM.

6.4.3 The Multivariate Normal Distribution

We will begin with a well-defined probability space. Consider the probability space (Ω, ,P).
Let Ω = ℝp be a p-dimensional euclidean space, and  be the Borel 𝜎-field over the
p-dimensional sets of ℝp. A random vector X is said to have multivariate normal distribution
with mean vector 𝝁 and a positive definite variance-covariance matrix 𝚺 if its density function
is given by

f (x) = 1
(2𝜋)p∕2|𝚺|1∕2

e−
1
2
(x−𝝁)′𝚺−1(x−𝝁)

, if xi ∈ ℝ,

i = 1, 2, … , p,𝝁 ∈ ℝp, |𝚺| > 0. (6.73)

The mgf and cf of a multivariate normal random vector are given below:

MX(t) = exp
(
𝝁′t + 1

2
t′𝚺t

)
, (6.74)

𝜑X(t) = exp
(

i𝝁′t − 1
2

t′𝚺t
)
. (6.75)
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Refer to Chapter 14 for a more elaborate use of the multivariate normal distribution. The R
package mvtnorm consists of functions dmvnorm, pmvnorm, and qmvnorm, which respec-
tively deal with the pdf, percentiles, and quantiles of multivariate normal distribution.

6.4.4 The Multivariate t Distribution

Consider a random vector X. We say that the random vector X is a p-variate t-distribution
with degrees of freedom 𝑣, mean vector 𝝁, and correlation matrix R, if its probability density
function is given by

f (x, 𝜈,𝝁,R) =
Γ
(
𝜈+1

2

)
(𝜋𝜈)p∕2Γ(𝜈∕2)|R|1∕2

[
1 + 1

𝜈
(x − 𝝁)′R−1(x − 𝝁)

]−(𝜈+p)∕2
. (6.76)

For a comprehensive treatment of the multivariate t distribution, see Kotz and Nadarajah
(2004). Applications of this distribution may be found in Chapters 14 and 15. The pdf of this
random vector for use in R is available in the mvtnorm package through the dmvt function.
Similarly, pmvt and qmvt functions handle the percentile and quantile of the multivariate
normal vector.

?ddirichlet, ?dmvnorm

6.5 Populations and Samples

The complete list of students in a classroom may be available in the attendance roll monitored
by a class teacher. In the future, the denumeration of all Indians is expected to be available
by the “Unique Identification” project initiated by the Government of India, see http://uidai.
gov.in/. These two examples give us clarity on the population. Thus, we may say that the popu-
lation is the collection of all possible existing units which have that trait under consideration.

Understandably, if observations of all the population units are available, the unknown values
of the models can be perfectly known. However, this is generally not the case and we have to
be content with a representative part of the population, which we refer to as the sample. The
representative part here refers to the requirement that the units selected in the sample have
as much information about the population as the units which have not been selected. For the
purpose of this chapter, it would suffice to safely say that we have a random sample from the
population. The random sample is mathematically defined as follows.

Definition 6.5.1 Random Sample Let X1,X2, … ,Xn be RVs having joint density function
fX1,X2,… ,Xn

(x1, x2, … , xn). Let us denote the density function by f . If the joint density function
can be expressed as

fX1,X2,… ,Xn
(x1, x2, … , xn) =

n∏
i=1

fXi
(xi), (6.77)

then X1,X2, … ,Xn is said to be a random sample of size n from a population with density f (.).

The information in the random sample needs to be summarized in as compact a manner as
possible. This consolidation is elaborated through the next concept.

http://uidai.gov.in/
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Definition 6.5.2 Statistic Any function of the random variables, resulting in an observable
random variable, which does not contain the parameter values, is called a statistic.

Example 6.5.1. Statistics: Simple Examples. Let X1,X2, … ,Xn be a random sample of size
n from a population with density function f (.|𝜃). Define the following quantities:

T1 ≡
n∑

i=1

Xi, T2 ≡
n∑

i=1

X3∕2
i ,

T3 ≡
n∏

i=1

Xi, T4 ≡ 𝜃
n∑

i=1
Xi

.

In the above bag, the first three qualify as statistics, whereas the last one does not. ◽

Example 6.5.2. Statistics: Sample Moments. As in the previous example, we let
X1,X2, … ,Xn be a random sample of size n from a population with density function f (.|𝜃).
Define the rth sample moment about 0, denoted by M′

r, as

M′
r =

1
n

n∑
i=1

Xr
i , r = 1, 2, … .

Note that the sample moments do not involve any of the parameters of the density function f ,
and thus they are examples of a statistic. Similarly, the rth sample moment about the mean X̄n,
denoted by Mr, are also examples of a statistic, and they are given by

Mr =
1
n

n∑
i=1

(Xi − X̄n)r, r = 1, 2, … .

The sample moments about the mean are sometimes called the central moments. ◽

In the next section, we will focus on useful statistics when the random sample is drawn from
a normal population.

6.6 Sampling from the Normal Distributions

Some of the important results regarding sampling from the normal distributions are listed in
the forthcoming theorems.

Theorem 6.6.1 Let X̄n denote the sample mean for a random sample from a normal distri-
bution N(𝜇, 𝜎2) of size n. Then the probability distribution of X̄n is N(𝜇, 𝜎2∕n), that is,

X̄n ∼ N(𝜇, 𝜎2∕n). (6.78)

Note that the variance of the average reduces by a factor of order n. ◽
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We can visualize this result for some sample sizes.

> # Understanding the behavior of Normal Sample Mean
> n <- c(2,5,10,20)
> sd_normal_mean <- sqrt(n)
> x <- seq(-3,3,0.1)
> plot(x,dnorm(x),"l",xlim=c(-3,3),ylim=c(0,2),
+ main="A: Understanding the Sample Normal Mean")
> for(i in 1:length(n)) {
+ points(x,dnorm(x,sd=1/sqrt(n[i])),"l")
+ }

We are plotting the density function based on the appropriate formula with standard deviation
equal to the square-root of the sample size, see Part A of Figure 6.9. The plot function along
with the dnorm function play the central role in obtaining the plot, while the options of xlim,
ylim, and main present the output in an appropriate display.
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Figure 6.9 Some Important Sampling Densities
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Theorem 6.6.2 Suppose that Xi ∼ N(𝜇i, 𝜎
2
i ), i = 1, 2, … , n. Assume that the n random vari-

ables are independent. Define

U ≡
n∑

i=1

(
Xi − 𝜇i

𝜎i

)2

. (6.79)

Then, U is distributed as a 𝜒2 RV with n degrees of freedom. ◽

The above theorem says that the sum of the squares of independent standard normal RVs
has a 𝜒2-distribution with degrees of freedom equal to the number of terms in the sum. In the
following, we will see the shape of chi-square densities for various degrees of freedom.

> # Understanding the shape of chi-square densities for various d.f.
> n <- c(1:5,10)
> x <- seq(0,25,0.1)
> plot(x,dchisq(x,df=n[1]),ylim=c(0,0.8),"l",
+ main="B: Chi-square Densities")
> for(i in 2:length(n)){
+ points(x,dchisq(x,df=n[i]),"l")
+ }

The dchisq function provides the density function of a 𝜒2 RV. See Part B of Figure 6.9.
Some properties of a sample of standard normal RVs are collected in the next theorem.

Theorem 6.6.3 Consider a random sample of size n from a standard normal population. Then
the following results hold:

1. X̄ is distributed as N(0, 1∕n).
2. X̄ and

∑n
i=1 (Xi − X̄)2 are independent.

3.
∑n

i=1 (Xi − X̄)2 has a 𝜒2 distribution with n − 1 degrees of freedom.
◽

The F-distribution also arises as the ratio of two 𝜒2 RVs. A formal statement of this result is
given next.

Theorem 6.6.4 Let U be a 𝜒2 RV with m degrees of freedom, and let V be a 𝜒2 RV with n
degrees of freedom. Assume that U and V are independent. Define

X ≡ U∕m

V∕n
. (6.80)

Then the random variable X has an F distribution with m and n degrees of freedom. ◽

The R program for visualizing different F distributions appears in the following.

> # Understanding the F-Density Plots
> n <- c(1:5,10)
> x <- seq(0,5,0.1)
> plot(x,df(x,df1=1,df2=1),xlim=c(0,5),ylim=c(0,2),"l",
+ main="C: The F- Densities",col="green")
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> points(x,df(x,df1=2,df2=1),"l",col="red")
> points(x,df(x,df1=5,df2=2),"l",col="blue")
> points(x,df(x,df1=100,df2=1),"l",col="yellow")
> points(x,df(x,df1=100,df2=100),"l",col="orange")

A plot related to different F-distributions is given in the “The F-Densities” Part C of Figure 6.9.
The F-distribution plays an important role in comparing variances which will have important
implications in analysis of linear models. The F-densities are obtained with the use of the df
function. A related important sampling distribution for comparison of means is given by the
t-distribution and we state this in the next theorem.

Theorem 6.6.5 Let Z denote a standard normal variate. Consider an RV U which has a𝜒2 dis-
tribution with k degrees of freedom. Assume that Z and U are independent random variables.
Define

t = Z√
U∕k

. (6.81)

Then t has a Students t-distribution with k degrees of freedom. ◽

The t-distributions can also be easily visualized.

> # Understanding the t-densities
> n <- c(1:5,10)
> x <- seq(-5,5,0.1)
> plot(x,dt(x,df=1),xlim=c(-5,5),ylim=c(0,0.45),"l",
+ main="D: The t-Densities",col="green")
> points(x,dt(x,df=2),"l",col="red")
> points(x,dt(x,df=5),"l",col="blue")
> points(x,dt(x,df=30),"l",col="yellow")
> points(x,dt(x,df=Inf),"l",col="orange")

Different plots of the t-densities are displayed using the dt function in Part D of Figure 6.9.
We would now like to know what happens to the distribution of the sample mean and the

sample sum in the general case. Especially if we are not sure if the underlying distribution is
normal, we are curious about the sampling distribution properties. If the first two moments of
the RVs are known to be finite and the observations are independent, the central limit theorem
gives the answer, as also discussed earlier in Section 5.12.

Theorem 6.6.6 Let X1,X2, … ,Xn be a sequence of n iid RVs with mean 𝜇 and finite variance
𝜎2. The central limit theorem states that as the sample size n increases, the distribution of the
sample average X̄n approaches the normal distribution with mean 𝜇 and variance 𝜎2∕n. ◽

An illustration of the theorem has already been seen in Section 5.12.

?dnorm, ?curve, ?dchisq
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6.7 Some Finer Aspects of Sampling Distributions

6.7.1 Sampling Distribution of Median

In this subsection, we will continue with the assumption of sampling from a normal distri-
bution. In general, the focus is on the sampling distribution of the mean. We will now consider
a few aspects of sampling distribution of a median.

Computation of a median is a fairly easy task. Let us state the requirements in a more formal
way. Let X(1),X(2), … ,X(n) denote the ordered sample, that is, X(1) ≤ X(2) ≤ · · · ≤ X(n). If n is
odd, the median is the middlemost X((n+1)∕2) order statistic. We need to estimate the standard
error of the median. Towards this, compute k as the integer part of the number obtained by

[k] = n + 1
2

− 2.58
√

n∕4.

McKean-Schrader estimate of the variance of the median as given by

s2
M =

(
X(n−k+1) − X(k)

5.1517

)2

. (6.82)

A good coverage on these aspects appears in Section 5.4 of Wilcox (2009), which has been
our source too. For other theoretical aspects of the sampling distribution of median, refer to
Geyer (2001) . The concepts will be demonstrated using Student’s sleep dataset.

> sleepgr1 <- sleep$extra[sleep$group==1]
> sleepgr1Median <- median(sleepgr1)
> n <- length(sleepgr1)
> sleepgr1Ascend <- sort(sleepgr1)
> k <- floor((n+1)/2 - 2.58*sqrt(n/4))
> sleepgr1MedianSE <- sqrt(((sleepgr1Ascend[n-k+1]-
+ sleepgr1Ascend[k])/5.1517) ̂ {2})
> sleepgr1MedianSE
[1] 1.028787

6.7.2 Sampling Distribution of Mean of Standard Distributions

We will now consider three probability distributions, Poisson, Uniform, and Cauchy, and have
a brief look at the sampling distribution of mean of a random sample from them.

Example 6.7.1. Poisson Distribution. Consider an random sample X1, … ,Xn from a Poisson
distribution with parameter 𝜆. We know that

∑n
i=1 Xi follows a Poisson distribution with mean

n𝜆. Using this fact we can obtain the sampling distribution of the mean of a Poisson random
sample:

P
(

X̄ = k
n

)
= P

(
n∑

i=1

Xi = k

)
= e−n𝜆(n𝜆)k

k!
, k = 0, 1, 2, … (6.83)



Trim Size: 170mm x 244mm Tattar c06.tex V3 - 02/10/2016 10:26 A.M. Page 202�

� �

�

202 A Course in Statistics with R

0 5 10 15 20

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

P
(X

)

X

Figure 6.10 Poisson Sampling Distribution

The next R program helps to understand the distribution function of X̄.

> n <- c(2,5,10,20,30,50)
> lambda <- 10
> i <- 6
> plot(seq(0,30*n[i],1)/n[i],dpois(seq(0,30*n[i],1),n[i]*lambda),
+ xlab=expression(bar(X)),ylab=expression(P(bar(X))),
+ type="h",col=i,xlim=c(0,20),ylim=c(0,0.1))
> for(i in 1:5) lines(seq(0,30*n[i],1)/n[i],dpois(seq(0,30*n[i],1),
+ n[i]*lambda),type="h",col=i)

Again, the R program is fairly easy to follow. Figure 6.10 shows that the sampling distribution
may be approximated by a normal distribution. ◽

Example 6.7.2. Uniform Distributions. Consider a sample of size n from U(0, 1). The exact
density of X̄n, see page 238 of Mood, et al. (1974), is given by

fX̄n
(x) =

n−1∑
k=0

[
(nx)n−1 −

(n
1

)
(nx − 1)n−1 +

(n
2

)
(nx − 2)n−1 − · · ·

+ (−1)k
(n

k

)
(nx − k)n−1

]
I(k∕n,(k+1)∕n)(x). (6.84)

We have not even considered the general case of 𝜃. An exercise for the reader is to obtain the
sample distributions of the mean for the first three n and sketch their densities. ◽
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Example 6.7.3. Cauchy Distribution. Consider a random sample of size n from a Cauchy
density:

f (x|𝜇, 𝜎2) = 1
𝜋𝜎{1 + [(x − 𝜇)∕𝜎]2}

.

A remarkable fact about the Cauchy distribution is that the mean of the random sample has a
Cauchy density with the same parameters 𝜇 and 𝜎. Since this does not involve n, we cannot
perform inference based on it! ◽

?dpois

6.8 Multivariate Sampling Distributions

We will now consider some aspects of multivariate sampling distributions. Chapter 6 of Giri
(2004) gives a detailed account of multivariate sampling distributions.

6.8.1 Noncentral Univariate Chi-square, t, and F Distributions

Theorems 6.1 to 6.6 were related to the distribution of statistics, which were centered towards
a guarantee that the mean would be zero. In varied applications we do not have the luxury of
centering the statistics, and there will be the requirement of understanding such distributions.
Thus, we are now looking at noncentral distributions.

Let X1, … ,Xn be independently distributed normal RVs with Xi ∼ N(𝜇i, 𝜎
2
i ), i = 1, … , n.

Define

Z =
n∑

i=1

X2
i

𝜎2
i

.

We also need to define a new quantity 𝛿2 =
∑n

i=1 𝜇
2
i ∕𝜎

2
i . The probability density function of

Z is then given by

f (z|𝛿2) =
⎧⎪⎨⎪⎩

exp
{
− 1

2
(𝛿2+z)

}
z

n
2 −1√

𝜋2n∕2

∑∞
j=0

(𝛿2)jzjΓ(j+1∕2)
(2j!)Γ(n∕2+j) , z ≥ 0,

0, otherwise.
(6.85)

The parameter 𝛿2 is called the non-centrality parameter. The second parameter of a noncentral
𝜒2 distribution is the n degrees of freedom. For the 𝜒2 density plots, we will add curves with
noncentrality parameters. The program is:

> n <- c(1:5,10)
> ncp <- n
> x <- seq(0,25,0.1)
> plot(x,dchisq(x,df=n[1]),ylim=c(0,0.3),
+ ylab="Non-central chi-square densities",
+ type="l",main="A: Chi-square Densities",col=1)
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> points(x,dchisq(x,df=n[1],ncp=ncp[1]),"b",col=1)
> for(i in 2:length(n)){
+ points(x,dchisq(x,df=n[i]),"l",col=i)
+ points(x,dchisq(x,df=n[i],ncp=ncp[i]),"b",col=i)
+ }

All the density plots obtained here may be seen in Part A of Figure 6.11.
Consider a noncentral chi-square random variable X ∼ 𝜒2

m(𝛿2), and another chi-square ran-
dom variable Y ∼ 𝜒2

n. Assume that X and Y are independent random variables and define

F =
𝜒2

m(𝛿2)∕m

𝜒2
n∕n

.

The density function of F is given by a non-central F density function:

fF(x) =
⎧⎪⎨⎪⎩

m
n

exp
(
−1

2
𝛿2
) ∞∑

j=0

(𝛿2∕2)Γ((m + n)∕2 + j)((m∕n)x)m∕2+j−1

Γ(m∕2 + j)Γ(n∕2)(1 + (m∕n)x)(m+n)∕2+j
, x ≥ 0,

0, otherwise.

(6.86)

We will compare a few non-central F densities with their standard counterparts.
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Figure 6.11 Non-central Densities
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> x <- seq(0,5,0.1)
> plot(x,df(x,df1=1,df2=1),xlim=c(0,5),ylim=c(0,2),
+ ylab="Non-central F densities",
+ "l",main="B: The F- Densities",col="green")
> points(x,df(x,df1=2,df2=1),"l",col="red")
> points(x,df(x,df1=2,df2=1,ncp=2),"l",col="red")
> points(x,df(x,df1=5,df2=2),"l",col="blue")
> points(x,df(x,df1=5,df2=2,ncp=10),"l",col="blue")
> points(x,df(x,df1=100,df2=1),"l",col="yellow")
> points(x,df(x,df1=100,df2=1,ncp=15),"l",col="yellow")
> points(x,df(x,df1=100,df2=100),"l",col="orange")
> points(x,df(x,df1=100,df2=100,ncp=20),"l",col="orange")

The result of the above program is Part B of Figure 6.11. We will close this subsection with an
introduction of the non-central t-distribution. Let X ∼ N(𝜇, 𝜎2) and Y∕𝜎2 ∼ 𝜒2

n be two inde-
pendent random variables. Define

t =
√

nX√
Y

.

Also define 𝜆 = 𝜇∕𝜎. The probability density function of t is then given by

f (t) =
nn∕2 exp {−𝜆2∕2}
(n + t2)(n+1)∕2

∞∑
j=0

Γ((n + j + 1)∕2)𝜆j

j!

(
2t2

n + t2

)j∕2

,−∞ < t < ∞. (6.87)

The non-centrality parameter is 𝜆 and the degrees of freedom is n. We will, as with the 𝜒2 and
F distribution, sketch a few non-central t-densities and their standard counterparts.

> x <- seq(-5,5,0.1)
> plot(x,dt(x,df=1),xlim=c(-5,5),ylim=c(0,0.45),
+ ylab="Non-central t densities",
+ "l",main="C: The t-Densities",col="green")
> points(x,dt(x,df=1,ncp=1),"l",col="green")
> points(x,dt(x,df=2),"l",col="red")
> points(x,dt(x,df=2,ncp=2),"l",col="red")
> points(x,dt(x,df=5),"l",col="blue")
> points(x,dt(x,df=5,ncp=3),"l",col="blue")
> points(x,dt(x,df=30),"l",col="yellow")
> points(x,dt(x,df=30,ncp=4),"l",col="yellow")
> points(x,dt(x,df=Inf),"l",col="orange")
> points(x,dt(x,df=Inf,ncp=5),"l",col="orange")

6.8.2 Wishart Distribution

Let X1, … ,Xn be a k-dimensional random sample from N(𝝁,𝚺). Define

A =
n∑

𝛼=1

(X𝛼 − X̄)(X𝛼 − X̄)T . (6.88)
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The probability density function of A, provided A is a positive definite matrix, is then given
by

f (A) = |A| n−p−1
2

2np∕2𝜋p(p−1)∕4|𝚺|n∕2
p∏

i=1
Γ((n − i + 1)∕2)

exp

(
−tr𝚺−𝟏A

2

)
. (6.89)

The random variable A may be called the Wishart RV and its distribution as the Wishart distri-
bution. The Wisharts distribution will be abbreviated symbolically as W(n,𝚺). We will require
the Wishart distribution in Chapters 14 and 15, that is, in the context of multivariate statisti-
cal analysis. For more details about the Wishart distribution, refer to Chapter 7 of Anderson
(2003) and Chapter 6 of Giri (2004).

6.8.3 Hotellings T2 Distribution

We will give Timm’s (2002) definition for Hotelling’s T2 distribution. Let Y ∼ N(𝝁,𝚺) and
Q ∼ W(n,𝚺). Define Hotelling’s T2 statistic as

T2 = nYTQ−1Y (6.90)

Then, the sampling distribution of the Hotelling’s T2 statistic is proportional to a non-central
F distribution

n − p + 1
p

T2

n
∼ F(p, n − p + 1, 𝛾) (6.91)

where 𝛾 = 𝝁T𝚺−1𝝁.

?dchisq, ?df, ?dt

6.9 Bayesian Sampling Distributions

In Section 5.6 we introduced the Bayes formula. That is, if X ∼ f𝜃 and the prior information
about 𝜃 is specified by 𝜋(𝜃), the posterior distribution is then given by

𝜋(𝜃|x) = f (x|𝜃)𝜋(𝜃)
∫R𝜃

f (x|𝜃)𝜋(𝜃)d𝜃 . (6.92)

The expression in the denominator is referred to as the marginal distribution of X, and a stan-
dard notation for it is m(x), that is, m(x) = ∫R𝜃

f (x|𝜃)𝜋(𝜃)d𝜃.
Consider a random sample of size n from f𝜃 . The joint density function of x is then f (x|𝜃) =∏n
i=1 f (xi|𝜃). The posterior distribution of 𝜃, given the data x, will be referred as the Bayesian

sampling distribution. In this case, the Bayesian sampling distribution is obtained as

𝜋(𝜃|x) = f (x|𝜃)𝜋(𝜃)
∫R𝜃

f (x|𝜃)𝜋(𝜃)d𝜃 . (6.93)
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Table 6.1 Bayesian Sampling Distributions

Probability Model Parameters Prior Bayesian Sampling Distribution

Bernoulli b(1, p) Be(a, b) Be(a +
∑n

i=1 xi, b + n −
∑n

i=1 xi)
Poisson P(𝜆) Gamma(𝛼, 𝜃) Gamma(𝛼 +

∑n
i=1 xi, 𝜃 + n)

Uniform U(0, 𝜃) Pareto(a, b)

Normal N(𝜇, 𝜎2), 𝜎 known N(𝜏, 𝜂2) N

(
𝜎2𝜏 + 𝜂2x̄
𝜎2 + 𝜂2

,
𝜎2𝜂2

𝜎2 + 𝜂2

)
Exponential Exp (𝜃) Gamma(a, b) Gamma(𝛼 +

∑n
i=1 xi, 𝜃 + n)

To the best of our knowledge, the term Bayesian sampling distribution is not used in the
Bayesian literature. We make this distinction to reflect that the posterior distribution is
now based on a random sample. The Bayesian sampling distributions are illustrated for
one well-known probability model. For a reasoning of the choice of prior distributions, the
reader may hop to Chapter 9 and return again. Alternatively, this section may be read in
conjunction with that chapter. Table 6.1 spells out some of the very important Bayesian
sampling distribution.

Example 6.9.1. The Poisson Model. Let X1, … ,Xn be a random sample from a population
where the uncertainty is explained by the Poisson distribution with rate 𝜆. We will assume
that 𝜆 follows a Gamma distribution with parameters (𝛼, 𝜃). Define T =

∑n
i=1 Xi. We will first

obtain the marginal distribution of T . Here,

𝜋(t) = ∫
∞

0
f (x|𝜆)𝜋(𝜆)d𝜆

= ∫
∞

0

e−n𝜆(n𝜆)t

t!
𝜆𝛼−1e−𝜆∕𝜃

𝜃𝛼Γ(𝛼)
d𝜆

= nt

t!𝜃𝛼Γ(𝛼) ∫
∞

0
e−n(𝜆𝜃+1)∕𝜃𝜆t+𝛼−1d𝜆

= nt𝜃tΓ(𝛼 + t)
t!(n𝜃 + 1)𝛼+tΓ(𝛼)

.

Then, the posterior distribution of 𝜆, after straightforward manipulation, is given by the
Gamma(𝛼 +

∑n
i=1 xi, 𝜃 + n) distribution. ◽

6.10 Further Reading

As we noted that sampling distribution is a bridge between probability and statistical inference,
most of the references related to them are to be found either in the probability texts or inference
ones. The references mentioned in the flow of this chapter are useful connections for obtaining
more details about sampling distribution.
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6.11 Complements, Problems, and Programs

Problem 6.1 Classify the RVs in Section 6.2 as simple or elementary RVs. Obtain the
expectation and variances of these RVs using Formula 5.13 or 5.11.

Problem 6.2 For the uniform and beta distribution, write R programs to obtain mean and
variance using Equation 5.16.

Problem 6.3 Use barplot, if required get more details with ?barplot, to understand
the probability measure of discrete uniform distribution for various N values.

Problem 6.4 The central term of binomial RV had been discussed in Example 6.2.5. Sup-
pose that the tail probabilities P(X > x) are of interest. Fix the value of n and
varying the p values from 0 to 1, obtain a plot of P(X > x) against p.

Problem 6.5 Let X follow a geometric distribution. Set up an R program to evaluate P(X >

m + n|X > m) and P(X ≥ n), for non-negative integers m and n. Does the
memoryless property of exponential RV, as seen in Example 6.3.5, hold for
the geometric distribution? Test the condition for a Poisson RV too.

Problem 6.6 For a fixed p value in a negative binomial RV, see Equation 6.20, obtain a plot
of the mean and variance for different r values and comment.

Problem 6.7 Using the dpois function, find the minimum value of 𝜆, such that P(X >

10) ≥ 0.2.

Problem 6.8 Using the choose function, create a new function for the pmf of hypergeo-
metric distribution.

Problem 6.9 Graphically prove that U(0, 1) and beta RV with 𝛼 = 𝛽 = 1 have the same pdf.

Problem 6.10 Using the integrate and dt (for density of t-distribution), verify the mean
and variance of the t RV.

Problem 6.11 Develop cantour plots for bivariate normal RV and comment. The reader may
refer to the examples in Chapter 13, Section 4 for some help and hints on
cantour, or Chapter 15.

Problem 6.12 Reconstruct Part A of Figure 6.9 using the curve function instead of the
plot function. What are the apparent advantages of using the curve func-
tion, if any?

Problem 6.13 Under the assumption of normal distribution for some of the examples of
Chapter 4, obtain an estimate of the standard error of the median.



Trim Size: 170mm x 244mm Tattar c07.tex V3 - 02/12/2016 8:30 A.M. Page 209�

� �

�

7
Parametric Inference

Package(s): UsingR
Dataset(s): ns, ps, bs, cs, galton, sleep, airquality

7.1 Introduction

In Chapter 4 we came across one form of analyzing data, viz., the exploratory data analysis.
That approach mainly made no assumptions about the probability mechanism for the data
generation. In later chapters we witnessed certain models which plausibly explain the nature
of the random phenomenon. In reality, we seldom have information about the parameters of the
probability distributions. Historically, or intuitively, we may have enough information about
the probability distributions, sparing a few parameters. In this chapter we consider various
methods for inferring about such parameters, using the data generated under the assumptions
of these probability models.

Parametric statistical inference arises when we have information for the model describing
an uncertain experiment sans a few values, called parameters, of the model. If the parameter
values are known, we have problems more of the probabilistic kind than statistical ones. The
parameter values need to be obtained based on some data. The data may be a pure random
sample in the sense of all the observations being drawn with the same probability. However, it
is also the practical case that obtaining a random sample may not be possible in many stochastic
experiments. For example, the temperature in the morning and afternoon are certainly not iden-
tical observations. We undertake statistical inference of uncertain experiments in this chapter.

In Chapter 6, we came across a pool of diverse experiments which have certain underlying
probability models, say P𝜃, 𝜃 ∈ Θ. Under the assumption that P𝜃 is the truth, we now develop
methods for inference about 𝜃. We will begin with some important families of distribution
in Section 7.2. This section and the next few sections rely heavily on Lehmann and Casella
(1998). The form of loss functions plays a vital role on the usefulness of an estimator/statistic.
For an observation from binomial distribution, we discuss some choice of loss functions in
Section 7.3. Data reduction through the concepts of sufficiency and completeness are the-
oretically examined in Section 7.4. Section 7.5 empathizes the importance of the likelihood

A Course in Statistics with R, First Edition. Prabhanjan Narayanachar Tattar, Suresh Ramaiah and B. G. Manjunath.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/tattar/statistics
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principle through visualization and examples. The role of information function for obtaining
the parameter values is also detailed in this section. The discussion thus far focuses on the
preliminaries of point estimation.

Using the foundations from Sections 7.2–7.5, we next focus on the specific techniques of
obtaining the estimates of parameters using maximum likelihood estimator and moment esti-
mator in Section 7.6. Estimators are further compared for their unbiasedness and variance in
Section 7.7. The techniques discussed up to this point of the chapter return us a single value of
the parameter, which is seldom useful in appropriating inference for the parameters. Thus, we
seek a range, actually interval, of plausible values of the parameters in Section 7.8. In the case
of missing values, or a data structure which may be simplified through missing variables, the
EM algorithm is becoming very popular and the reader will find it illustrated in Section 7.16.

Sections 7.9–7.15 offers a transparent approach to the problem of Testing Statistical
Hypotheses. It is common for statistical software texts to focus on the testing framework
using straightforward useful R functions available in prop.test, t.test, etc. However,
here we take a pedagogical approach and begin with preliminary concepts of Type I and
Type II errors. The celebrated Neyman-Pearson lemma is stated and then demonstrated for
various examples with R programs in Section 7.10. The Neyman-Pearson lemma returns
us to a unique powerful test which cannot be extended for testing problems of composite
hypotheses, and thus we need slightly relaxed conditions leading to uniformly most powerful
tests and also uniformly most powerful unbiased tests, as seen in Sections 7.11 and 7.12.
A more generic class of useful tests is available in the family of likelihood ratio tests. Its
examples are detailed with R programs in Section 7.13. A very interesting problem, which
is still unsolved, arises in the comparison of normal means from two populations whose
variances are completely unknown. This famous Behrens-Fisher problem is discussed with
appropriate solutions in Section 7.14. The last technical section of the chapter deals with the
problem of testing multiple hypotheses, Section 7.15.

7.2 Families of Distribution

We will begin with a definition of a group family, page 17 of Lehmann and Casella (1998).

Definition 7.2.1 Group. A set G of elements is called a group if it satisfies the following four
conditions:

1. The group multiplication operator on any two elements a, b ∈ G results in an element
c ∈ G. The element c is called the product of a and b and is denoted by c = ab.

2. The group multiplication operator satisfies the associative rule:

(ab)c = a(bc).

3. There exists an identity element e ∈ G, such that

ea = ae = a,∀a ∈ G.

4. Each element a ∈ G admits an inverse a−1 ∈ G, such that

aa−1 = a−1a = e.

The identity element of a group and the inverses of any element are unique. The two important
properties of a group are (i) closure under composition, and (ii) closure under inversion.
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Basically, for various reasons, we change the characteristics of random variables by either
adding them, or addition or multiplication of some constants, etc. We need some assurance
that such changes do not render the probability model from which we started useless. The
changes which we subject the random variable to is loosely referred to as a transformation.
Let us discuss these two properties in more detail.

Closure under composition. A 1:1 transformation may be addition or multiplication.
We say that a class  of transformation is closed under composition if g1, g2 ∈  implies
g2.g1 ∈  .

Closure under inversion. For any 1:1 transformation g, the inverse of g, denoted by g−1,
undoes the transformation g, that is, g−1{g(x)} = x. A class of transformations  is said to be
closed under inversion if for any g ∈  , the inverse g−1 is also in  .

Definition 7.2.2 Transformation Group. A class G of transformations is called a transfor-
mation group if it is closed under composition and inversion.

Definition 7.2.3 A group family of distributions is a family of distributions obtained by sub-
jecting a random variable with a fixed distribution to a suitable family of transformations.

In plain words, if a random variable under a group family is subject to a transformation, the
resulting distribution also belongs to the same class of distribution. The transformation may
include addition, multiplication, sine, etc.

Example 7.2.1. The Location Family. Let (Ω, ,P) be a probability space and consider an
 - measurable random variable X. Let F denote the fixed cumulative distribution function of
X. Define Y ∶= X + a, where −∞ < a < ∞ is a constant. Then the probability distribution of
Y is given by

P(Y ≤ y) = FX(y − a). (7.1)

The collection of distributions, for fixed F and {a ∶ −∞ < a < ∞}, satisfying 7.1 is said to
constitute a location family.

Suppose X ∼ N(0, 𝜎2
0 ), with known variance 𝜎2

0 and we define Y = X + a. It is then clear
that

P(Y ≤ y) = P(X + a ≤ y) = FX(y − a) = ΦX

(
y − a

𝜎0

)
.

Thus, the collection of normal distributions with known variance forms the class of location
family. ◽

Example 7.2.2. The Scale Family. As in the setting of the previous example, we have a new
transformation as Y ∶= bX, where b > 0. Then the probability distribution of Y is given by

P(Y ≤ y) = FX(y∕b). (7.2)

The collection of distributions, satisfying 7.2, is said to constitute a scale family. If
X ∼ N(𝜇0, 𝜎

2), with known mean 𝜇0 and Y ∶= bX, we have

P(Y ≤ y) = P(bX ≤ y) = FX(y∕b) = ΦX

( y

b

)
.

Thus, the collection of normal distributions with known mean forms the class of scale
family. ◽
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Example 7.2.3. The Location-Scale Family. We have the same setting as earlier, and now
we consider the transformation Y ∶= a + bX, where−∞ < a < ∞, b > 0. Then the probability
distribution of Y is given by

P(Y ≤ y) = FX

(y − a

b

)
. (7.3)

The collection of distributions, satisfying 7.3, is said to constitute a location-scale family. The
family of normal distributions, for fixed but unknown mean and variance, is an example of a
location-scale family. ◽

Table 4.1 of Lehmann and Casella (1998) gives an important list of location-scale families.

7.2.1 The Exponential Family

Definition 7.2.4 Exponential Family. A family {P𝜃, 𝜃 ∈ Θ} of distributions is said to form
an s-dimensional exponential family if the density function associated with the distributions
P𝜃 can be written in the form:

p𝜃(x) = exp

[
s∑

i=1

𝜂i(𝜃)Ti(x) − B(𝜃)

]
h(x), (7.4)

with respect to some measure function 𝜇. Here, the functions of 𝜃, 𝜂i, i = 1, · · · , s, and B(.),
are real valued function of the parameters, and Ti, i = 1, · · · , s, are real-valued statistics. The
density function of an exponential family may be written in the canonical form as

p(x|𝜂) = exp

[
s∑

i=1

𝜂iTi(x) − A(𝜂)

]
h(x). (7.5)

The canonical form is not necessarily unique.
Note that we speak of a family of probability distributions belonging to an exponential

family, and as such we are not focusing on a single density, say N(0, 1).

Example 7.2.4. The Binomial Exponential Family. Suppose X ∼ binomial(n, p), with 0 <

p < 1. The probability density function (with respect to the counting measure 𝜇) of X is then
given by

f (x|p) = (n
x

)
px(1 − p)n−x =

(n
x

)
(1 − p)n

(
p

1 − p

)x

=
(n

x

)
exp

(
ln

(
p

1 − p

)
x − ln(1 − p)n

)
.

Define h(x) =
(

n
x

)
, B( p) = ln(1 − p)n, T(x) = x, and 𝜂( p) = ln

(
p

1−p

)
. It is then clear that the

binomial random variable belongs to the exponential family. ◽

Example 7.2.5. The Normal Family. Let X ∼ N(𝜇, 𝜎2). We will now rewrite the pdf of X,
which will show that it belongs to the exponential family.
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f (x|𝜇, 𝜎2) = 1√
2𝜋𝜎

exp

{
−(x − 𝜇)2

2𝜎2

}
= 1√

2𝜋𝜎
exp

{
𝜇

𝜎2
x − 1

2𝜎2
x2 − 𝜇2

2𝜎2

}
.

Define B(𝜎2) = 1∕(
√

2𝜋𝜎), 𝜂1 = 𝜇∕(𝜎2), and 𝜂2 = 1∕(2𝜎2). Hence the family of normal dis-
tributions is seen as a two-dimensional exponential family. ◽

Example 7.2.6. The Curved Normal Family. Consider the particular case of 𝜇 = 𝜎 for a
family of normal distributions. Then the density function of X is given by

f (x|𝜇, 𝜇2) = 1√
2𝜋𝜇

exp

{
x
𝜇
− x2

2𝜇2
− 1

2

}
, 𝜇 > 0.

Note that though this is a two-parameter exponential family with natural parameters(
1
𝜇
,− 1

2𝜇2

)
, they are governed by a single parameter 𝜇. Thus, the two-dimensional parameters(

1
𝜇
,− 1

2𝜇2

)
lie on a curve in R2, and hence attract the name of curved exponential family. ◽

7.2.2 Pitman Family

The exponential family meets the regularity condition since the range of random variable is
not a function of the parameter 𝜃. In many interesting cases, the range of the random variable
depends on a function of its parameters. In such cases the regularity condition is not satisfied.
A nice discussion about such non-regular random variables appears on Page 19 of Srivastava
and Srivastava (2009).

The mathematical argument is as follows. Let u(x) be a positive function of x and let Q1(𝜃)
and Q2(𝜃), Q1(𝜃) < Q2(𝜃) be the extended real-valued functions of parameter 𝜃. We can then
define a density by

fX(x|𝜃) = c(𝜃)u(x),Q1(𝜃) < x < Q2(𝜃), (7.6)

where

[c(𝜃)]−1 = ∫
Q2(𝜃)

Q1(𝜃)
u(x)dx < ∞.

Thus, we can see that the range of X depends on 𝜃, and hence the density is a non-regular. The
family of such densities is referred to as the Pitman family. In Table 7.1, a list of some members
of the Pitman family is provided, refer to Table 1.3 of Srivastava and Srivastava (2009).

We will next consider the role of loss functions.

Table 7.1 Pitman Family of Distributions

Name Density Parameter
Space

Range

Uniform (continuous) f (x|𝜃) = 1∕𝜃 𝜃 > 0 0 < x < 𝜃

Shifted Exponential f (x|𝜃) = e−(x−𝜃) 𝜃 > 0 x > 𝜃

Shifted Geometric f (x|𝜃) = (1 − p)px−𝜃 0 < p < 1 x = 𝜃, 𝜃 + 1,
· · · , 0 < p < 1
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7.3 Loss Functions

A statistic, or an estimator, T is employed for estimation of a parameter, say 𝜃, 𝜃 ∈ Θ. The
loss incurred as a consequence of using T is captured using a loss function. In convention with
the standard notation, the loss function of a parameter inferred by using T will be denoted by
L(𝜃,T). Some useful loss functions are now given.

The Squared Error Loss Function ∶ L(𝜃,T) = (𝜃 − T)2,

The Absolute Error Loss Function ∶ L(𝜃,T) = |𝜃 − T|.
In this section we will consider the squared error loss function only. To evaluate the perform-

ance of an estimator T under a loss function L(𝜃,T), we require the notion of risk function
defined as

R(𝜃,T) = E𝜃L(𝜃,T). (7.7)

For a fixed 𝜃, R(𝜃,T) calculates the risk of using the statistic T . The risk function is the average
loss due to T . The risk function under the squared error loss functions is also popularly known
as the mean squared error of the estimator. The next example illustrates the risk function
for four different statistics T . Since T also leads more often to making some decisions, we
sometimes also denote the statistic by d. In fact, the loss functions have a more prominent role
in decision theory.

Example 7.3.1. Risk Functions for the Binomial Family. Suppose X ∼ b(100, p), and we
have four statistics/estimators, see Table 7.2, for estimation of p. To verify that the risk func-
tions are correctly given in the table, let us check them out:

E(𝛿0 − p)2 = ( p − 0.25)2,

E(𝛿1 − p)2 = E
(X

n
− p

)2
= 1

n2
E(X − np)2 =

p(1 − p)
n

,

E(𝛿2 − p)2 = E
(X + 3

n
− p

)2
= 1

n2
E((X − np)2 + 2 × 3 × (X − np) + 32)

=
9 + np(1 − p)

n2
.

Verify that the risk function for 𝛿4 is indeed as given by R( p, 𝛿4) in Table 7.2.

Table 7.2 Risk Functions for Four Statistics

Statistic T Risk Function R(L(p,T))

𝛿0 = 0.25 R(p, 𝛿0) = E(𝛿0 − p)2 = (p − 0.25)2

𝛿1 =
X

n
R(p, 𝛿1) = E(𝛿1 − p)2 = p(1−p)

n

𝛿2 =
X+3

n
R(p, 𝛿2) = E(𝛿2 − p)2 = 9+np(1−p)

n2

𝛿3 =
X+3

(n+6)
R(p, 𝛿3) = E(𝛿3 − p)2 = (9−8p)(1+8p)

(n+6)2
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Figure 7.1 Loss Functions for Binomial Distribution

This example is adapted from Chapter 3 of Keener (2010). We now see how to plot the
above tabled risk functions. First, we initialize the values of the parameter p in the R object
p <- seq(0,1,0.002) and then calculate the risk functions for the four statistics in the
respective R objects Rdelta0, Rdelta1, Rdelta2, Rdelta3. Next, the risk func-
tion for 𝛿1, that is R( p, 𝛿1), is plotted against the parameter values. Using the lines function,
the remaining risk functions are obtained in the same plot. To obtain suitable legends for the
risk functions, we first create an expression object in exp_legends and then use it in the
legend function. The final output is given in Figure 7.1.

> # Risk Plots for 4 Loss Functions of Binomial Distribution
> p <- seq(0,1,0.002)
> Rdelta1 <- p*(1-p)/100
> Rdelta2 <- (9+100*p*(1-p))/100 ̂ {2}
> Rdelta3 <- (9-8*p)*(1+8*p)/106 ̂ {2}
> Rdelta0 <- (p-0.25) ̂ {2}
> plot(p,Rdelta1,"l",xlim=c(0,1),ylim=c(0,0.004),xlab="p",
+ ylab=expression(R(L(p,T))),col="green")
> lines(p,Rdelta2,"l",col="blue")
> lines(p,Rdelta3,"l",col="black")
> lines(p,Rdelta0,"l",col="red")
> exp_legends <- expression(paste("R(p,",delta[1],")"),
+ paste("R(p,",delta[2],")"),
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+ paste("R(p,",delta[3],")"),paste("R(p,",delta[0],")"))
> legend(x=c(0.8,1.0),y=c(0.004,0.003),exp_legends,
+ col=c("green","blue","black","red"),pch="-")

Referring to Part A of Figure 7.1, observe that the degenerate estimator, the red-colored curve,
is a very bad example of an estimator and it may be considered as an analogy of the stopped
watch showing the right time twice a day. Among the non-trivial estimators, 𝛿2, blue-colored
curve, has more risk than the other two for each p. A clear winner cannot be picked from 𝛿1
and 𝛿3. ◽

The role of loss functions will become more prominent in Section 7.7. The section will be
closed with an interesting example where the degenerate estimator is to be preferred over a
reasonable estimator.

Example 7.3.2. Romano and Siegel’s Example 9.21. Let X be a Bernoulli random variable
with p being the probability of success. However, we now restrict the range of p to the interval
[1∕3, 2∕3]. In light of a single observation, an estimator, say 𝛿1, is meaningful if we conclude
that p = 1∕3 if X = 0 and p = 2∕3 if X = 1. Consider the degenerate estimator 𝛿0 = 1∕2. Now,
the mean squared errors for these two estimators are

R(𝛿1, p) = p
(2

3
− p

)2
+ (1 − p)

(1
3
− p

)2
=

3p2 − 3p + 1
9

,

R(𝛿0, p) =
4p2 − 4p + 1

4
.

The R program gives the plot of the risk functions.

> p <- seq(0.33,.67,0.02)
> Rdelta1 <- (3*p ̂ 2-3*p+1)/9
> Rdelta0 <- (4*p ̂ 2-4*p+1)/4
> plot(p,Rdelta1,"l",xlim=c(0.33,0.67),ylim=c(0,0.04),xlab="p",
+ ylab=expression(R(L(p,T))),col="green")
> lines(p,Rdelta0,"l",col="red")
> exp_legends <- expression(paste("R(p,",delta[1],")"),
+ paste("R(p,",delta[0],")"))
> legend(x=c(0.45,0.5),y=c(0.04,0.035),exp_legends,
+ col=c("green","red"),pch="-")

It appears from Part B of Figure 7.1 that the degenerate estimator is better than the reasonable
estimator, which will be dealt with in Section 7.6. The important question here now is whether
we can accept the degenerate estimator? ◽

7.4 Data Reduction

Statistical inference has two very important pillars: (i) The Sufficiency Principle, and (ii) The
Likelihood Principle. Berger and Woolpert (1988) is a treatise for understanding these prin-
ciples. In this section we will consider the sufficiency principle in depth.
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7.4.1 Sufficiency

It is seen in Section 7.3 that many possible statistics exist for a given parameter. Some statistics
have an advantage over others and a meaningful criteria needs to be arrived at to help in these
type of decisions.

Definition 7.4.1 Sufficient Statistic. A real valued statistic T is called sufficient for
the parameter 𝜃 if and only if the conditional distribution of the random sample
X = (X1,X2, · · · ,Xn), given T = t does not involve 𝜃, for all t ∈ ST , where ST is the
support (range) of the statistic T.

Example 7.4.1. The Exponential Distribution. Let X1,X2, · · · ,Xn be a random sample from
an exponential distribution with mean 𝜃, that is,

f (x) =
{ 1

𝜃
exp(− x

𝜃
), x ≥ 0, 𝜃 > 0,

0, otherwise.
(7.8)

Consider the estimator T =
∑n

i=1 Xi. Then, it can be proved that

P(X1 = x1, · · · ,Xn = xn|T = t) = Γ(n)
tn−1

,

which is independent of 𝜃. Hence, the information in T is sufficient for 𝜃. ◽

Example 7.4.2. The Poisson Distribution. Let X1,X2, · · · ,Xn be a random sample from a
Poisson distribution with mean 𝜆. Consider the statistic T =

∑n
i=1 Xi. It can be shown that

P(X1 = x1, · · · ,Xn = xn|T = t) = t!∏n
i=1 xi!

n−t,

which is independent of 𝜆, and hence we conclude that the statistic T is sufficient for the
parameter 𝜆. ◽

Example 7.4.3. Sufficient Statistics for Exponential Family. Corollary 6.16 of Lehmann
and Casella (1998) gives a general result for obtaining sufficient statistics for the exponential
family. Recollect the definition of an exponential family in its canonical form, equation 7.5:

p(x|𝜂) = exp

[
s∑

i=1

𝜂iTi(x) − A(𝜂)

]
h(x).

Then (T1, · · · ,Ts) is sufficient if it is of full rank. In fact a more general result is true, which
will be seen in the later part of this section. ◽

Thus far we began with statistics and verified whether it satisfied the sufficiency condition.
It is not always possible to guess what may turn out to be sufficient statistics. The Neyman
Factorization theorem gives a result which helps to obtain the sufficient statistics from the joint
probability function of the random sample. A measure theoretic framework of this theorem is
due to Halmos and Savage (1949), see page 289 of Mukhopadhyay (2000) for more details.
The following theorem may be found in Casella and Berger (2002).
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Theorem 7.4.1 Neyman Factorization Theorem. Consider a random sample X =
(X1, · · · ,Xn) from f (x|𝜃). Let f (x|𝜃) denote the joint pmf (pdf) of the random sample X.
A statistic T(X) is sufficient for 𝜃 if there exist functions g(t|𝜃) and h(x), such that for all
possible x values and 𝜃 ∈ Θ, we can write the joint pmf (pdf) as

f (x|𝜃) = g(T(X)|𝜃)h(x). (7.9)

◽

We will now use this result to obtain the sufficient statistics in some important cases.

Example 7.4.4. The Discrete Uniform Distribution. Let (X1, · · · ,Xn) be an iid sample from
a discrete uniform distribution whose support is 1, · · · , 𝜃. The pmf is given by

f (x|𝜃) = { 1
𝜃
, x = 1, 2, · · · , 𝜃,

0, otherwise.

Define T(x) = max
i

{xi} and consider the two functions:

g(t|𝜃) ={
𝜃−n, t ≤ 𝜃,

0, otherwise,

h(x) =
{

1, xi ∈ {1, 2, · · · , 𝜃}, i = 1, 2, · · · , n,
0, otherwise.

The joint pmf is then given by

f (x|𝜃) ={ 1
𝜃n , xi ∈ {1, 2, · · · , 𝜃},
0, otherwise,

=
{

g(t|𝜃)h(x), t ≤ 𝜃,

0, otherwise.

Thus, by the application of the Neyman factorization theorem, the maximum of the random
sample is seen to be the sufficient statistic. ◽

Example 7.4.5. The Normal Distribution. Consider a random sample (X1, · · · ,Xn) from
N(𝜇, 𝜎2). Here 𝜽 = (𝜇, 𝜎2). We have two parameters and both are assumed to be unknown.
The joint pdf is then given by:

f𝜇,𝜎2(x) = 1

(𝜎
√

2𝜋)n
exp

[
−
∑

i(xi − 𝜇)2

2𝜎2

]
= 1

(𝜎
√

2𝜋)n
exp

[
−
∑

ix
2
i

2𝜎2
+

𝜇
∑

ixi

𝜎2
− n𝜇2

2𝜎2

]
.

Define T(X1, · · · ,Xn) =
(∑

iXi,
∑

iX
2
i

)
. Applying the Neyman factorization theorem, we can

see that T is jointly sufficient for (𝜇, 𝜎2). ◽

If 𝜎 in the previous example is known, it can be seen that T1 = (X1, · · · ,Xn), T2 =
∑n

i=1 Xi,
T3 = (X1 + X2,X3 + X4, · · · ,Xn−1 + Xn), and other permutations are all sufficient for 𝜇. Thus,
we need a more general framework to identify the sufficient statistics. Furthermore, there may
be more than one sufficient statistic and in such cases we need to pick one among them.
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7.4.2 Minimal Sufficiency

Dynkin (1951) gave the criteria for a statistic to be necessary.

Definition 7.4.2 Necessary Statistics. A statistic is said to be necessary if it is a function of
every sufficient statistic.

In the discussion before this subsection, it can be seen that the statistics T2 can be mathemat-
ically written as a function of T1 and T3. Thus, if T1, T2, and T3 are the only three sufficient
statistics, though there are many more sufficient statistics in the scenario, then T2 turns out to
be a necessary statistic. This definition further guides towards the concept of minimal sufficient
statistics.

Definition 7.4.3 Minimal Sufficient Statistics. A statistic T(X) is said to be a minimal suf-
ficient statistic if it is a necessary and sufficient statistic.

It is not practical to obtain a minimal sufficient statistic from its definition. Lehmann and
Scheffé (1950) provide a result which is useful in obtaining a minimal sufficient statistic. We
first describe this important result.

Theorem 7.4.2 Let f (x|𝜃) be the pmf (pdf) of a sample X. A statistic T(X) is said to be minimal
sufficient for 𝜃 if for two data points x and y for the ratio f (x|𝜃)∕f (y|𝜃) is a constant. ◽

Example 7.4.6. The Binomial Distribution. Suppose Xi, i = 1, · · · , n, is a sequence of inde-
pendent Bernoulli trials with probability of success being p, 0 < p < 1. For two data points x
and y, the ratio of joint pmf is given below:

f (x|p)
f (y|p) =

(
n∑n

i=1 xi

)(
n∑n

i=1 yi

)−1

p
∑n

i=1 xi−
∑n

i=1 yi (1 − p)
∑n

i=1 yi−
∑n

i=1 xi .

We can see that the ratio f (x|p)∕f (y|p) will be a constant function for p if
∑n

i=1 xi =
∑n

i=1 yi.
Thus, T(X) =

∑n
i=1 Xi is a minimal sufficient statistic for p. ◽

Example 7.4.7. The Gamma Distribution. Consider a random sample Xi, i = 1, · · · , n from
a gamma distribution. That is, the pdf of X is given by

f (x, 𝜃, k) =

{
xk−1 e−x∕𝜃

Γ(k)𝜃k , x ≥ 0, k, 𝜃 > 0,

0, otherwise.

The joint pdf of X is given by

f (x|𝜃, k) = (∏n
i=1 xi

)k−1
e−

∑n
i=1 xi∕𝜃

(Γ(k))n𝜃kn
.

Then, for two different data points x and y, consider the ratio

f (x|𝜃, k)
f (y|𝜃, k) =

(∏n
i=1 xi∏n
i=1 yi

)k−1

e−(
∑n

i=1 xi−
∑n

i=1 yi)∕𝜃.
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Clearly, the ratio f (x|𝜃, k)∕f (y|𝜃, k) will be a constant function of (𝜃, k) if
∏n

i=1 xi =
∏n

i=1 yi
and

∑n
i=1 xi =

∑n
i=1 yi. Thus, it may be then seen that T(X) = (

∑n
i=1 xi,

∏n
i=1 xi) is minimal

sufficient for (𝜃, k). ◽

Definition 7.4.4 Complete Statistics. A statistic T is said to be complete for P𝜃, 𝜃 ∈ Θ if,
for any Borel function f , E[f (T)] = 0,∀𝜃 ∈ Θ implies f (T) = 0, a.s.P𝜃 . Furthermore, T is said
to be boundedly complete if the condition holds for any bounded Borel function f .

Example 7.4.8. Complete Statistic for Poisson Sample. Consider a sample X1, · · · ,Xn of
size n from a Poisson distribution with rate 𝜆. Define T =

∑n
i=1 Xi. It can be seen that if

E{g(T)} = 0, then

E{g(T)} =
∞∑

t=1

g(t)e−n𝜆(n𝜆)t

t!
= 0,∀𝜆 > 0,

↔

∞∑
t=1

(n𝜆)t

t!
g(t) = 0,∀𝜆 > 0,

which can be seen to hold good if g(t) = 0,∀t. Thus, T is seen to be a complete statistic. ◽

A useful result states that a complete sufficient statistic will be minimal and hence if the
completeness of the sufficient statistic can be established, it will be minimal sufficient too. In
the case of the exponential families of full rank, the statistic (T1, · · · ,Ts) will be a complete
statistic. We had already seen that (T1, · · · ,Ts) is also sufficient, and hence for exponential
families of full rank, it will be minimal sufficient. Since the examples of gamma, Poisson,
etc., are members of an exponential family with full rank, the sufficient estimators/statistics
seen earlier will be complete, and hence minimal sufficient too. The likelihood principle is
developed in the next section.

7.5 Likelihood and Information

As mentioned at the beginning of the previous section, we will now consider the second impor-
tant principle in the theory of statistical inference: the likelihood principle. The likelihood
function is first defined.

7.5.1 The Likelihood Principle

Definition 7.5.1 Let f (x|𝜃) be the joint pmf (pdf) based on a random sample X1, · · · ,Xn. For
a observed value of the random vector X= x, the likelihood function is defined by

L(𝜃|x) = f (x|𝜃). (7.10)

A major difference between the likelihood function and (joint) pdf needs to be emphasized.
In a pdf (or pmf), we know the parameters and try to make certain probability statements
about the random variable. In the likelihood function the parameters are unknown and hence
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we use the data to infer certain aspects of the parameters. In simple and practical terms, we
generally plot the pdf f (x) against x values to understand it, whereas for the likelihood function
plots, we plot L(𝜃|x) against the parameter 𝜃. Obviously there is more to it than what we have
simply said here, though what is detailed here suffices to understand the likelihood principle.
Furthermore, it has been observed that many books lay far more emphasis on the maximum
likelihood estimator, to be introduced in the Section 7.6, and the primary likelihood function
is given a formal introduction. Barnard, et al. (1962) have been emphatic about the importance
of the likelihood function. Pawitan (2001) is another excellent source for understanding the
importance of likelihood. Moreover, Pawitan also provides R codes and functions towards
understanding this principle. Naturally, this section is influenced by his book.

Example 7.5.1. The Binomial Distribution. Consider a sequence of Bernoulli trials,
X1, · · · ,Xn where the probability of success is p, 0 < p < 1. Let X =

∑n
i=1 Xi denote the

number of success in the n trials. Then X ∼ b(n, p). The likelihood function for an observed
value of X = x is given by

L( p|x) = Pp(X = x) =
(n

x

)
px(1 − p)n−x. (7.11)

Before carrying out the inference, we can enrich our understanding by plotting the likelihood
function as a function of p. At the end of n = 10 trials, suppose that X takes one of the values
0, 2, 5, 8, or 10. The next R program plots the likelihood for the various data.

> n <- 10; x <- 0
> likefn <- function(n,x,p){
+ choose(n,x)*p ̂ {x}*(1-p) ̂ {n-x}
+ }
> pseq <- seq(0,1,by=0.02)
> likefnbinom <- sapply(pseq,n=10,x=0,likefn)
> likefnbinom <- likefnbinom/max(likefnbinom)
> plot(pseq,likefnbinom,"l",xlab="p",ylab="Likelihood",col="red")
> legend(x=0,y=0.95,legend="L(p|x=0)",col="red",
+ box.col="white",box.lwd=0)
> likefnbinom <- sapply(pseq,n=10,x=2,likefn)
> likefnbinom <- likefnbinom/max(likefnbinom)
> lines(pseq,likefnbinom,col="green")
> legend(x=0.15,y=0.8,legend="L(p|x=2)",col="green",
+ box.col="white",box.lwd=0)
> likefnbinom <- sapply(pseq,n=10,x=5,likefn)
> likefnbinom <- likefnbinom/max(likefnbinom)
> lines(pseq,likefnbinom,col="brown")
> legend(x=0.42,y=0.8,legend="L(p|x=5)",col="brown",
+ box.col="white",box.lwd=0)
> likefnbinom <- sapply(pseq,n=10,x=8,likefn)
> likefnbinom <- likefnbinom/max(likefnbinom)
> lines(pseq,likefnbinom,col="grey")
> legend(x=0.6,y=0.95,legend="L(p|x=8)",col="grey",
+ box.col="white",box.lwd=0)
> likefnbinom <- sapply(pseq,n=10,x=10,likefn)
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> likefnbinom <- likefnbinom/max(likefnbinom)
> lines(pseq,likefnbinom,col="blue")
> legend(x=0.8,y=0.95,legend="L(p|x=10)",col="blue",
+ box.col="white",box.lwd=0)

To define the function likefn, we first initialize the variables n and x with n <- 10; x
<- 0. Though we use choose(n,x)*p ̂ {x}*(1-p) ̂ {n-x}, it is important to under-
stand that the choose function may be omitted without loss of generality since it does not
involve p. The sapply functionality helps obtain the likelihood values over the sequence
pseq. The plot, lines, and legend functions do not need more explanation at this stage.
Figure 7.2 shows that the likelihood functions attain the maximum values at 0, 0.2, 0.5, 0.8,
and 1 respectively for the number of successes at 0, 2, 5, 8, and 10. ◽

Example 7.5.2. The Normal Likelihood Function. Suppose we have a single observation
from the normal distribution N(𝜇, 1) and the value of the observation is noted as 2.45. The
likelihood function is given by

L(𝜇|x) = 1√
2𝜋

e−(x−𝜇)
2∕2. (7.12)

The R codes return the desired likelihood plot. Here, we begin by declaring the x and 𝜎 values
and then initialize a plausible range of the mean parameter in museg. The likenorm func-
tion computes the likelihood value over the specified range museq and we then normalize it to
obtain values between 0 and 1. The plot function along with the options of xlab and ylab
returns us a diagram as displayed in Part A of Figure 7.3. Since we had a single datum with
value 2.45, the likelihood function plot reflects that the most likely value of 𝜇 is approximately
2.45 only, and this result is not too surprising!
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Figure 7.2 A Binomial Likelihood
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D: Combining likelihoods

Figure 7.3 Various Likelihood Functions

> # Normalized Likelihood Function for a Datum
> # from Normal Distribution
> x <- 2.45; sigma <- 1
> museq <- seq(x-3*sigma,x+3*sigma,0.02)
> likenorm <- function(mu,x,sigma) dnorm(x,mu,sigma)
> likefnnorm <- sapply(museq,x=x,sigma=sigma,likenorm)
> likefnnorm <- likefnnorm/max(likefnnorm)
> plot(museq,likefnnorm,"l",xlab=expression(mu),
+ ylab=expression(L(mu|x)))

Consider the scenario when we have been told that there are n = 5 observations and the maxi-
mum of the observed sample is 3.5. The variance is assumed to be known at 𝜎 = 1. The
likelihood function of the maximum of the sample is given by

L(𝜇) = n{Φ(x(n) − 𝜇)}n−1𝜙(x(n) − 𝜇), (7.13)

where x(n) denotes the maximum value of the n data points x1, · · · , xn, andΦ(.) is the cumulative
distribution function of the standard normal RV. We next develop the necessary R codes for
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obtaining the likelihood plot as listed above. Note that the likelihood function likenorm
needs to be defined carefully, as given in Equation 7.13. The rest of the R program is fairly
easy to follow, so is not explained any further.

> # Normalized Likelihood Function for the
> # Maximum of the Random Sample
> n <- 5; xmax <- 3.5; sigma <- 1
> museq <- seq(-6,6,0.02)
> likenorm <- function(mu,x,sigma) (n*(pnorm(xmax-mu) ̂ {n-1})
+ *dnorm(xmax-mu))
> likefnnorm <- sapply(museq,x=xmax,sigma=sigma,likenorm)
> likefnnorm <- likefnnorm/max(likefnnorm)
> plot(museq,likefnnorm,"l",xlab=expression(mu),
+ ylab=expression(L(mu|x)))

The result of the current R code is given in Part B of Figure 7.3. Note that the likelihood
function is interpreted along the same lines as in Part A of the same figure, despite the data
being specified in an entirely different way. This is a reason for us to emphasize the importance
of likelihood plots. ◽

The likelihood function contains more information about the data and the parameters than
some summary measures of the data. Plots of the likelihood, whenever possible, throw more
light on random phenomenon and should be employed in as many cases as they permit. We
will now formally state the likelihood principle.

Definition 7.5.2 The Likelihood Principle. If the likelihood functions, say L(𝜃|x) and
L(𝜃|y), corresponding to two sample points x and y are proportional to each other, that is,

L(𝜃|y) = C(x , y)L(𝜃|x),∀𝜃 ∈ Θ, (7.14)

then the conclusions drawn from x and y should be identical.

Example 7.5.3. Berger and Woolpert’s Example 9. Let E1 be an experiment where
X1, · · · ,X12 are Bernoulli random variables with probability of success being p. Suppose we

have observed that
∑12

i=1 xi = 9. The likelihood function is then L1( p) =
(

12
9

)
p9(1 − p)3.

In an experiment E2 we proceed with Bernoulli trials until three failures are observed. The
observed random variables here are Yi’s. Suppose that in the experiment E2 we have observed∑

Yi = 9. The likelihood function for E2 is L2( p) =
(

11
9

)
p9(1 − p)3. We will obtain the

likelihood plots. As with the earlier examples, we begin with initializing p values and define
the the two likelihood functions in l1 and l2 and then plot them using plot and lines
functions. The legend part is simple to follow.

> # Illustration of the Likelihood Principle
> p <- seq(0,1,0.01)
> l1 <- function(p) {choose(12,9)*p ̂ {9}*(1-p) ̂ {3} }
> l2 <- function(p) {choose(11,9)*p ̂ {9}*(1-p) ̂ {3} }
> plot(p,sapply(p,l1),"l",xlab="p",ylab="L(p|x)",col="green")
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> lines(p,sapply(p,l2),"l",col="red")
> legend(x=0,y=0.25,legend=c("l1","l2"),col=c("green","red"),pch="-")

The graph, Part C of Figure 7.3, shows that the two likelihood functions are proportional to
each other. It can also be seen that the maximum of the two likelihood functions occur at the
same p value. Hence, any conclusions drawn from the two likelihood functions should result
in the same answer. ◽

Example 7.5.4. Combining Likelihoods. Let X1, · · · ,Xn be a random sample from an expo-
nential distribution with rate 𝜃. From the definition, we know that the likelihood of Xi is

L(𝜃|xi) =
1
𝜃

exp
{
−

xi

𝜃

}
, i = 1, · · · , n.

The likelihood function for 𝜃, given the complete random sample x1, · · · , xn is

L(𝜃|x) = n∏
i=1

f (xi|𝜃) = n∏
i=1

L(𝜃|xi).

Consequently, the log-likelihood for a sample will be the sum of the log-likelihoods. This is
one method of combining likelihood functions for a random sample of size n.

Next, consider two samples from exponential distribution where the data for the first sample

is n1 = 10 and x(1) = 0.754, and for the second sample n2 = 10 and ȳ =
∑n2

i=1
yi

n2
= 10.86. The

likelihoods for the two samples are then given by

L1(𝜃|x(1)) = 10

{
exp

(
−

x(1)
𝜃

)}9
1
𝜃

exp

(
−

x(1)
𝜃

)
,

L2(𝜃|y1, · · · , y10) =
1
𝜃10

exp

{
−1
𝜃

10∑
i=1

yi

}
.

The next R program is used to plot the combined likelihood, which gives us Part D of
Figure 7.3. Note that the entire program is simply an extension of the earlier R codes, which
have been explained in detail. Thus, Part D of Figure 7.3 shows that combining likelihood
functions give a single curve to draw conclusions about the parameter.

> n1 <- 10; xmin <- 0.754
> thetaseq <- seq(0.1,20,0.1)
> likeexp1 <- function(theta,x)
+ (n1*(exp(-x/theta)) ̂ {n1-1}*exp(-x/theta)/theta)
> likefnexp1 <- sapply(thetaseq,x=xmin,likeexp1)
> n2 <- 10; ybar <- 10.86
> likeexp2 <- function(theta,x)
+ (exp(-10*ybar/theta)/theta ̂ 10)
> likefnexp2 <- sapply(thetaseq,x=ybar,likeexp2)
> likefnCombined <- likefnexp1*likefnexp2
> likefnexp1 <- likefnexp1/max(likefnexp1)
> likefnexp2 <- likefnexp2/max(likefnexp2)
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> likefnCombined <- likefnCombined/max(likefnCombined)
> plot(thetaseq,likefnCombined,"l",
+ xlab=expression(theta),ylab=expression(L(theta)))
> lines(thetaseq,likefnexp1,"l",col="red")
> lines(thetaseq,likefnexp2,"l",col="green")
> exp_legends <- expression(paste("L(",theta,"|",x[min],",",
+ n[1],")"),paste("L(",theta,"|",bar(y),",",n[2],",)"),
+ paste("L(",theta,"|",x[min],",",bar(y),",",n[1],",",n[2],",)"))
> legend(x=c(-1,1),y=c(1,0.6),legend=exp_legends,col=c("red",
+ "green","black"), pch="-",box.col="white")
> title("D: Combining Likelihoods")

If you do not normalize the likelihood functions, do you expect similar curves? The reader is
advised to actually do away with the normalization part and then verify if the final plots justify
the intuitive answer. ◽

Remark. For independent/random samples, it will be natural that the likelihood function will
be a product of the likelihood function of each of the random variables. In general, it will
be difficult to deal with products of functions and hence, without loss of generality, it is com-
mon practice to deal with the logarithm of likelihood function, that is, we will use more often
ln L(𝜃|x) than L(𝜃|x).

More formal use of the likelihood function will be explained in the forthcoming subsection.

7.5.2 The Fisher Information

The likelihood function will now be more formally used towards the inference of the
parameters. We will first define the score function.

Definition 7.5.3 Fisher Score Function. Let L(𝜃|x) be the likelihood function based on a
random sample x. The Fisher score function for the parameter 𝜃 is defined by

S(𝜃) = 𝛿

𝛿𝜃
ln L(𝜃|x). (7.15)

The natural question is how do we make use of the score function as given in Equation 7.15.
We will first begin with an illustration of the sampling variance of score functions.

Example 7.5.5. Understanding the Sampling Variance of Score Function. This example
illustrates the concepts detailed in chapter 8 of Pawitan (2001). We consider samples from
normal, Poisson, binomial, and Cauchy distributions. For each of the distributions, we have
20 independent samples, each of size n = 10. The score function is plotted for each sample
set and the behavior of the score function is then visualized. The scale parameter for a normal
and a Cauchy distribution is known to be 1, whereas the mean, or location, for all the four
distributions is approximately 4. The 20 sample datasets, for each distribution, is simulated.
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The simulation technique is discussed in more detail in Chapter 11. However, for our purpose,
we can treat them as real datasets.

To obtain the score function, we first need to obtain the log-likelihood functions. We state
the log-likelihood functions as

ln L(𝜇) = −n
2

ln 𝜎2 − 1
2𝜎2

n∑
i=1

(xi − 𝜇)2, normal distribution,

ln L(𝜆) = −n𝜆 +
n∑

i=1

xi ln(𝜆), Poisson distribution,

ln L( p) =
n∑

i=1

{xi ln( p) + (n − xi) ln(1 − p)}, binomial distribution,

ln L(𝜇) = −
n∑

i=1

ln{(1 + (xi − 𝜇)2)}, Cauchy distribution.

Differentiating the log-likelihoods with respect to the parameters gives us the score function:

S(𝜇) = 𝛿

𝛿𝜇
ln L(𝜇) = n

𝜎2
(x̄ − 𝜇), normal distribution, (7.16)

S(𝜆) = 𝛿

𝛿𝜆
ln L(𝜆) = n

𝜆
(x̄ − 𝜆), Poisson distribution, (7.17)

S( p) = 𝛿

𝛿p
ln L( p) =

n(x̄ − np)
p(1 − p)

, Binomial distribution, (7.18)

S(𝜇) = 𝛿

𝛿𝜇
ln L(𝜇) =

n∑
i=1

2(xi − 𝜇)
1 + (xi − 𝜇)2

, Cauchy distribution. (7.19)

The R program for the score function of normal distribution is first explained. The simu-
lated dataset is first loaded with the data(ns) file. We have 20 batches, each of size
10. The function colMeans returns the means for the 20 batches, while the function
normal_score_fn defines the score function for the normal distribution. A sequence
of plausible values for 𝜇 is specified through seq(from=2,to=8,by=0.2). In
practice, we may use the summary statistics to decide this range. The sub-code sap-
ply(mu,normal_score_fn,xbar=sample_means[1]), and later with the index i,
returns the score function values as required in Equation 7.16, and the plot(...) generates
the plot of the score function for the first sample. The loop for(i in 2:20), along with
the lines function, completes the visualization for score function for the normal sample
dataset. An important part of this code is given in abline(v=4) and abline(h=0),
which respectively produce a vertical line at the x-coordinate 𝜇 = 4 and a horizontal line at the
y-coordinate 0. What can you infer from Part A of Figure 7.4? In particular, the question is can
you deduce the parameter value of 𝜇 for unknown scenarios using such a score function plot?

The detailed R program for Poisson, binomial, and Cauchy distributions are straightforward
to follow through, and their outputs respectively form Parts C to D of Figure 7.4. The reader is
especially advised to interpret the score function definitions in light of Equations 7.17–7.19.
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C: Score function plot of Binomial Model
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D: Score function plot of Cauchy Model

Figure 7.4 Understanding Sampling Variation of Score Function

> # Understanding the Sampling Variation of the Score Function
> # The Normal Model
> data(ns)
> n <- 10
> sample_means <- colMeans(ns)
> normal_score_fn <- function(mu,xbar) n*(xbar-mu)
> mu <- seq(from=2,to=8,by=0.2)
> plot(mu,sapply(mu,normal_score_fn,xbar=sample_means[1]),
+ "l",xlab=expression(mu),ylab=expression(S(mu)))
> title(main="A: Score Function Plot of the Normal Model")
> for(i in 2:20) lines(mu,sapply(mu,normal_score_fn,
+ xbar <- sample_means[i]),"l")
> abline(v=4)
> abline(h=0)
> # The Poisson Model
> data(ps)
> n <- 10
> sample_means <- colMeans(ps)
> poisson_score_fn <- function(theta,xbar) n*(xbar-theta)/theta
> theta <- seq(from=2,to=8,by=0.2)
> plot(theta,sapply(theta,poisson_score_fn,xbar=sample_means[1]),
+ "l",xlab=expression(lambda),ylab=expression(S(lambda)),
+ ylim=c(-5,15))
> title(main="B: Score Function Plot of the Poisson Model")
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> for(i in 2:20)
+ lines(theta,sapply(theta,poisson_score_fn,xbar=
+ sample_means[i]),"l")
> abline(v=4)
> abline(h=0)
> # The Binomial Model
> data(bs)
> n <- 10
> sample_means <- colMeans(bs)
> binomial_score_fn <- function(p,xbar)
+ n*(xbar-10*p)/(p*(1-p))
> p <- seq(from=0,to=1,by=0.02)
> plot(p,sapply(p,binomial_score_fn,xbar=sample_means[1]),
+ "l",xlab=expression(p),ylab=expression(S(p)))
> title(main="C: Score Function Plot of Binomial Model")
> for(i in 2:20) lines(p,sapply(p,
+ binomial_score_fn,xbar=sample_means[i]),"l")
> abline(v=4)
> abline(h=0)
> # The Cauchy Model
> data(cs)
> n <- 10
> cauchy_score_fn <- function(mu,x)
+ sum(2*(x-mu)/(1+(x-mu) ̂ {2}))
> mu <- seq(from=-15,to=20,by=0.5)
> plot(mu,sapply(mu,cauchy_score_fn,x=cs[,1]),
+ "l",xlab=expression(mu),ylab=expression(S(mu)),
+ ylim=c(-10,10))
> title(main="D: Score Function Plot of Cauchy Model")
> for(i in 2:20) lines(mu,sapply(mu,
+ cauchy_score_fn,x=cs[,i]),"l")
> abline(v=4)
> abline(h=0)

This current example thus provides a nice insight into the behavior of the sampling vari-
ance of the score functions. It may thus also be noted that the expected value of a score
function is 0. ◽

An important exercise is to prove that the expectation of the score function equals zero, that
is, E𝜃S(𝜃) = 0, which we leave to the reader.

Definition 7.5.4 Fisher Information. Let X be an RV with probability measure p𝜃, 𝜃 ∈ Θ.
Assume that the following conditions hold:

1. Θ is an open set of R.
2. The partial derivative 𝛿

𝛿𝜃
f (x|𝜃) is finite for all x ∈ Ω, 𝜃 ∈ Θ.

3. The derivative with respect to 𝜃 can be interchanged with integral with respect to x.
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The Fisher Information about 𝜃 contained in x is given by

X(𝜃) = E𝜃

[{
𝛿

𝛿𝜃
ln f (X|𝜃)}2

]
. (7.20)

The expected Fisher information is defined by

(𝜃) ∶= E𝜃S(𝜃). (7.21)

In the above definition, the term partial derivative has been used in the sense that the parameter
𝜃 may be a vector and in which case we consider the derivative of the likelihood function with
respect to each component of the vector.

A useful result regarding the expected Fisher information, under the assumptions of the
regularity conditions of course, is

var𝜃S(𝜃) = (𝜃).
We will next find the Fisher information for a few well-known probability distributions.

Example 7.5.6. Poisson Distribution. Let X be a Poisson random variable with parameter 𝜆.
The log of the probability function is then given by

ln f (x|𝜆) = −𝜆 + x ln(𝜆) − ln(x!).

Differentiating the above wrt 𝜆 gives us

𝛿

𝛿𝜆
ln f (X|𝜆) = −1 + x𝜆−1.

Note that E(X2) = 𝜆(1 + 𝜆). Thus, we can obtain the Fisher information as follows:

E𝜆

[{
𝛿

𝛿𝜆
ln f (X|𝜆)}2

]
= E

(
x2

𝜆2
− 2x

𝜆
+ 1

)
= 𝜆(1 + 𝜆)

𝜆2
− 2 + 1 = 1 + 𝜆 − 𝜆

𝜆
= 1

𝜆
.

◽

The next result is an important one when we have to calculate the Fisher information for a
random sample.

Theorem 7.5.1 Fisher Information for a Random Sample. Consider a random sample
X1, · · · ,Xn from p𝜃 . Let X1

(𝜃) denote the information contained in a single observation. Then,
the Fisher information contained in the random sample for 𝜃 is given by

X(𝜃) = nX(𝜃). (7.22)

◽

Example 7.5.7. Poisson Distribution. Contd. If we have a random sample of size n, the Fisher
information about 𝜆 in the random sample is then given by

X(𝜆) =
n
𝜆
.

◽
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In the next section we will use the observed Fisher information in a random sample.

?choose, ?dnorm, ?pnorm, ?expression

7.6 Point Estimation

“Point Estimation” or “Estimation Theory” are some of the common names for dealing with
the problem of estimation of parameters. Lehmann and Casella (1998) is one of the best
sources for classical inference. Modern accounts of this domain are Casella and Berger (2002),
Shao (2003), and Mukhopadhyay (2000). For details about the maximum likelihood technique
implementation, refer to Millar (2011).

7.6.1 Maximum Likelihood Estimation

In the previous section we introduced the likelihood function. It will now be used to find
estimators.

Let X1, · · · ,Xn be a random sample with common pdf or pmf f (x, 𝜃), x ∈ R, 𝜃 ∈ Θ. The
random variable X and/or 𝜃 may be scalar or vector. Recall the definition of likelihood function:

L(𝜃, x) =
n∏

i=1

f (xi, 𝜃).

Definition 7.6.1 The maximum likelihood estimate, abbreviated as MLE, of 𝜃 is the value
�̂� =∶ �̂�(x), for which L(𝜃, x) is a maximum, that is,

L(�̂�) = sup
𝜃∈Θ

L(𝜃|x).
It is important to note that the MLE definition simply requires that the likelihood function be
optimized. There is no specific method outlined on how to obtain the MLE. We will begin with
a few graphical methods, which will be a continuation of some of our earlier examples.

Example 7.6.1. The Normal Likelihood Function. Example 7.5.1 Contd. Let us
revisit the problem when we have a datum with value 2.45. The variance is known
as 1 and we had obtained a plot of the likelihood function, over the grid of points
seq(x-3*sigma,x+3*sigma,0.02). We need to obtain the value of 𝜇 at which the
likelihood function is a maximum value. Thus, using the which function we can obtain the
maximum:

> thetaseq[which(likefnnorm==1)]
[1] 2.45

Note that we already know that the maximum of the likelihood function is 1 as we had nor-
malized it. It may appear that what we have really done here is a trivial matter. After all, we
started with 2.45 and closed the argument with 2.45. However, that is the best estimate of 𝜇
when we have only one observation.
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Now, consider the next example where we have observed the maximum of five observations
as 3.5. Here

> thetaseq[which(likefnnorm==1)]
[1] 2.44

Clearly, we have now done much better. Increasing the search of the grid area to
thetaseq<-seq(-6,6,0.001) and thetaseq<-seq(-6,6,0.001) returns
the MLE values as 2.438 and 2.4385 respectively. When performing such grid searches, it is
recommended to vary the settings as much as it permits before accepting the final solution. ◽

Example 7.6.2. MLEs as Bird Eye of Examples of Section 7.5. For Example 7.5.1, we can
easily deduce from the likelihood plots, Figure 7.3, that when we observe x = 0, 2, 5, 8, or 10
out of n = 10 trials, the MLE for p, say p̂, must be 0, 0.2, 0.5, 0.8, or 1 respectively.

Similarly, in the case of Example 7.5.3, irrespective of whether the sampling is from a bino-
mial distribution or a negative binomial distribution, see Part C of Figure 7.3, the maximum
value of p appears at 0.75.

The MLEs for 𝜇 based on the two samples, for Example 7.19, appear to be 2.5 (when x(5) =
3.5, n1 = 5) and 4 (ȳ = 4, n2 = 3) respectively. However, for the combined likelihood, the MLE
of 𝜇 is approximately 3.5, as seen in Part D of Figure 7.3. ◽

We will now attempt to obtain the MLEs when the parameters are continuous. A standard
technique in calculus for obtaining the optimum value of a continuous function is by differen-
tiating the function with respect to the continuous variable and setting the resultant expression
to zero. In our case, such an expression turns out to be the score function which we saw in the
previous Section 7.5. The MLE is then a root (solution) of the score function, that is, a solution
of the equation:

S(𝜃) = 0.

Note that in each of the four score function plots in Figure 7.4, the parameter values which
correspond to the score function S(𝜃) at 0 is 4. This is not surprising since we had simulated
the datasets to have the average (mean) of 4 only. Let us verify again with a plot of the score
function for the normal sample and check if the plot helps to find the MLE in the spirit of
Pawitan (2001).

Example 7.6.3. Example 7.19 Continued. Here, restating the facts, n = 3, ȳ = 4. In this case,
the log-likelihood function is

ln L(𝜇) = −3
2

ln 𝜎2 − 1
2𝜎2

∑
i=1

3(xi − 𝜇)2,

and the score function is
S(𝜇) = 3(4 − 𝜇).

A simple R program gives the score plot and suggests the MLE when the score function is
equal to 0.
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Figure 7.5 Score Function of Normal Distribution

> scorefunction <- function(mu) {3*(mu-4)}
> curve(scorefunction,from=0, to=10,xlab=expression(mu),
+ ylab=expression(S(mu)))
> abline(h=0)

In this case, the MLE is observed to be 4, as verified in Figure 7.5. ◽

In the case of an iid sample, R can be used efficiently to define the likelihood function and
then solve the score function for obtaining the MLE. Two excellent introductions which illus-
trate this point may be found in Geyer (2003), see www.stat.umn.edu/geyer/5931/mle/mle.
pdf, and Steenbergen (2006), see www.unc.edu/ monogan/computing/r/MLE_in_R.pdf.
Also check Monahan (2011) for numerical methods in statistics, which also includes many
interesting examples on MLE, see http://www4.stat.ncsu.edu/monahan/jul10/toc9r.html.

Setting the score functions equal to zero, and then obtaining an appropriate expression for
the parameters, will give us estimators of the likelihood function, that is, the MLE. For the
score-functions given in Equations 7.16–7.18, we obtain the MLEs by solving them as follows:

�̂�ML = X̄ =
∑n

i=1 Xi

n
, Normal distribution, (7.23)

�̂�ML = X̄ =
∑n

i=1 Xi

n
, Poisson distribution, (7.24)

p̂ML = X̄ =
∑n

i=1 Xi

n
, Binomial distribution. (7.25)

To be assured that �̂�ML, �̂�ML, and p̂ML as given above, are indeed the MLEs, we need to look
at the derivatives of the score function and verify that they are negative. The derivatives of the
score functions for the distributions are stated next:

www.stat.umn.edu/geyer/5931/mle/mle.pdf
www.unc.edu/ monogan/computing/r/MLE&uscore;in&uscore;R.pdf
http://www4.stat.ncsu.edu/ monahan/jul10/toc9r.html
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d
d𝜇

S(𝜇) = d2

d𝜇2
ln L(𝜇|x) = − n

𝜎2
(7.26)

d
d𝜆

S(𝜆) = d2

d𝜆2
ln L(𝜆|x) = − n

𝜆2
x̄, (7.27)

d
dp

S( p) = d2

dp2
ln L( p|x) = −

n(np2 + x̄(2p − 1))
(p(1 − p))2

, (7.28)

d
d𝜇

S(𝜇) = d2

d𝜇2
ln L(𝜇|x) = 2

n∑
i=1

1 − (xi − 𝜇)2

(1 + (xi − 𝜇)2)2
. (7.29)

The derivatives of the log-likelihood function for normal and Poisson distribution, Equations
7.26 and 7.27, may easily be understood as negative, whereas it is not straightforward to obtain
the answer for binomial and Cauchy distributions. In the binomial case, the reader may refer
to a slightly different case at http://www.montana.edu/rotella/502/binom_like.pdf.

Note that the MLE for the Cauchy distribution has not been derived here and it requires a
different way of solving the score function to obtain the MLE. We will be using three functions
available in R, optimize, mle and nlm for obtaining the MLEs. Since we have emphasized
the likelihood function, it is always good practice to report the values of the likelihood function,
or its variants such as the log-likelihood function, or negative of the log-likelihood function.

Example 7.6.4. The Poisson Distribution. Death by Horse Kick. A classic example of the
Poisson random variable is the death of army corps due to a kick by a horse. von Bortkiewicz
reported this data of 122 deaths by horse kicks when a group of 10 Prussian army corps were
under observation for a period of 20 years. Thus, we have n = 200 observations. Table 7.3
gives the data collected by von Bortkiewicz.

Let us try to find the MLE under the assumption that the number of deaths follows a Poisson
random variable. Let 𝜆 be the average number of deaths due to horse kicks. The log-likelihood
function is then specified by

ln L(𝜆|x) = 200∑
i=1

xi ln(𝜆) − n𝜆 −
200∑
i=1

ln(xi!).

We will ignore the last term since it does not involve the parameter of interest. The R program
which gives the MLE is given next.

Table 7.3 Death by Horse Kick Data

Number of Deaths
in a Corp

Frequency

0 109
1 65
2 22
3 3
4 1

http://www.montana.edu/rotella/502/binom&uscore;like.pdf
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> n <- 200
> x <- rep(c(0,1,2,3,4),c(109,65,22,3,1))
> logl <- function(lambda){log(lambda)*sum(x) - n*lambda -
+ sum(log(factorial(x)))}
> optimize(logl,c(0,10),maximum=TRUE)
$maximum
[1] 0.6100066
$objective
[1] -206.1067

In this R program, the log-likelihood function is defined by logl. Using the optimize
function, we optimize logl over the 𝜆 values. The components of the optimize function,
maximum and objective respectively return the MLE and log-likelihood function value.
Thus, the ML estimate is 0.6100066. Note here that logl(0.6100066) returns exactly
-206.1067. Now, to really test that you have obtained a maximum value of ln(𝜆|x), try the
codes logl(0.5) and logl(0.8) and comment. A useful insight will also be to visualize
plot(seq(0.01,5,0.01),sapply(seq(0.01,5,0.01),logl),"l").

Another R technique to obtain the MLE is to use the mle function from the stats4 pack-
age. To use this function, we need to first define the negative log-likelihood function and
specify initial parameter values to the mle function.

> pois_nll <- function(lambda) -sum(dpois(x,lambda,log=TRUE))
> pois_mle <- mle(pois_nll,start=list(lambda=mean(x)),nobs=length(x))
> summary(pois_mle)
Maximum likelihood estimation
Call:
mle(minuslogl = pois_nll, start = list(lambda = mean(x)),
+ nobs = length(x))
Coefficients:

Estimate Std. Error
lambda 0.61 0.05522666
-2 log L: 412.2134

The results of mle and optimize are equivalent, since -2*logl(0.6100066) gives
412.2134. Thus, using both the optimize and mle functions, we are able to obtain the
MLE. ◽

Example 7.6.5. Estimation of the Shape Parameter from a Gamma Sample. Consider a
random sample of size n = 20, which is believed to arise from a Gamma distribution, that is,

f (x, 𝜃, k) =

{
xk−1 e−x∕𝜃

Γ(k)𝜃k , x ≥ 0, k, 𝜃 > 0,

0, otherwise.
(7.30)

From historical data, it is known that 𝜃 = 30 and we have to obtain the MLE for k. The
log-likelihood function is given by

ln L(k|x) = −
∑n

i=1 xi

𝜃
+ (k − 1)

n∑
i=1

ln(xi) − nk ln(𝜃) − n ln(Γ(k)).
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It is found for the sample dataset that
∑30

i=1 xi = 221.59 and
∑20

i−1 ln(xi) = 9.03. Substituting
this information along with 𝜃 = 30 and n = 20, we obtain the observed log-likelihood function
as

ln L(k|x) = −7.39 + 9.03(k − 1) − 60.02k − 20 ln(Γ(k)).

In R, we obtain the MLE with the next program:

> # MLE of Gamma shape parameter
> log_lik <- function(k) {-7.39 +9.03 * (k-1) -60.02*k
+ -20*(log(gamma(k))) }
> optimise(log_lik,c(0,10),maximum=TRUE)
$maximum
[1] 0.4016414
$objective
[1] -52.74936

Note here that optimize and optimise are the same functions only. The log_lik
R function mimicks the expression in the previous equation. The MLE, given the data, is
0.3041274 and value of the log-likelihood function ln L(k|x) is -40.9889. ◽

The Cauchy distribution is slightly more complex and its MLE does not exist in a simple
form. We resort to the numerical optimization technique, essentially the Newton-Raphson
technique, through its score function as given in Equation 7.19.

Example 7.6.6. The Cauchy Distribution. In Example 7.5.5 we obtained the score function
for the location parameter of a Cauchy distribution, which is recollected as follows:

S(𝜇) =
n∑

i=1

2(xi − 𝜇)
1 + (xi − 𝜇)2

.

As noted in Example 5.21 of Knight (2000), the score function S(𝜇) is not monotone in 𝜇, and
hence it may have multiple solutions, technically roots of the equation. The Newton-Raphson
technique can be used here to obtain �̂�. Starting with an initial estimate �̂�(0), the updated
estimates are given by the equation

�̂�(k+1) = �̂�(k) + S(�̂�(k))
H(�̂�(k))

, (7.31)

where the Hessian, see Equation 7.29, is given by

H(�̂�) = 2
n∑

i=1

1 − (xi − 𝜇)2

(1 + (xi − 𝜇)2)2
. (7.32)

In general, the hessian is a matrix of second-order partial derivatives. We will illustrate this
estimation technique for the first sample of Example 7.5.5.

> data(cs)
> mysample <- cs[,1]
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> n <- 10
> loglik <- muhat=NULL
> muhat[1] <- median(mysample)
> loglik[1] <- -sum(log(1+(mysample-muhat[1]) ̂ {2}))-n*log(pi)
> cauchy_score_fn <- function(mu,x){
+ sum(2*(x-mu)/(1+(x-mu) ̂ {2}))
+ }
> cauchy_hessian_fn <- function(mu,x){
+ 2*(sum((1-(x-mu) ̂ {2})/(1+(x-mu) ̂ {2}) ̂ {2}))
+ }
> mutest <- -10000000
> i <- 1
> while(abs(mutest-muhat[i])>0.0001){
+ mutest <- muhat[i]
+ i <- i+1
+ muhat[i] <- muhat[i-1]+cauchy_score_fn(muhat[i-1],mysample)
+ /cauchy_hessian_fn(muhat[i-1],mysample)
+ loglik[i] <- -sum(log(1+(mysample-muhat[i]) ̂ {2}))-n*log(pi)
+ }
> loglik
[1] -28.84483 -28.53130 -28.50123 -28.50120 -28.50120
> muhat
[1] 3.666913 4.081575 3.994956 3.992124 3.992121

The Cauchy score function in Equation 7.29 is computed with the function cauchy_score_
fn. The initial estimate for 𝜇 is the sample median median(mysample). The Hessian
function given by Equation 7.32 is computed with the R function cauchy_hessian_fn.
The improvements required by Equation 7.31 are updated with muhat[i] <-
muhat[i-1]+cauchy_score_fn(muhat[i-1],mysample), and the iterations
are carried out until the difference between consecutive muhat values will be less than
0.0001, see the R code while(abs(mutest-muhat[i])>0.0001). The numerical
convergence is obtained at the 5th iteration and the MLE estimate �̂� is 3.992121.

The R function mle can also be used to obtain the answer and we leave it to the reader to
complete this part. ◽

The MLE problems, and likelihood functions as well, thus far has been discussed in the con-
text of a single unknown parameter only. In many applied contexts, it is a common theme that
multiple parameters would be unknown. The approach remains the same, though the details
will be obviously more. Let us consider a random sample from the normal distribution, where
both the parameters 𝜇 and 𝜎 are unknown. Recollect that in Example 7.5.5 we had assumed
𝜎 = 1.

Example 7.6.7. MLE for a Normal Sample. Consider a random sample, of size n, from a
normal distribution N(𝜇, 𝜎2), where both the parameters are unknown. The likelihood function
is then given below by

L(𝜇, 𝜎2|x) = 1

{
√

2𝜋𝜎}n
exp

{
− 1

2𝜎2

n∑
i=1

(xi − 𝜇)2
}

.
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We will simply use the mle function to obtain MLEs of 𝜇 and 𝜎.

> data(ns)
> x <- ns[,1]
> nlogl <- function(mean,sd) {-sum(dnorm(x,mean=mean,sd=sd,
+ log=TRUE)) }
> norm_mle <- mle(nlogl,start=list(mean=median(x),sd=IQR(x)),
+ nobs=length(x))
> summary(norm_mle)
Maximum likelihood estimation
Call:
mle(minuslogl = nlogl, start = list(mean = median(x), sd = IQR(x)),

nobs = length(x))
Coefficients:

Estimate Std. Error
mean 3.4290740 0.1908120
sd 0.6034005 0.1349205
-2 log L: 18.27551

Here, a simple option of the mle function in properly defining the log-likelihood function for
two unknown parameters and a suitable value for the initial values help in obtaining the MLEs
for 𝜇 and 𝜎. ◽

We will close this sub-section with a very interesting example.

Example 7.6.8. Estimating the “Size” of Binomial Distribution. Assume that the number
of trials for a binomial experiment, that is size, is unknown, and the probability of success p is
known. In this example, the size will be denoted by k and probability of success by p. Examples
7.2.9 and 7.2.13 of Casella and Berger (2002) are the driving motivation behind the current
example. Five data points are available (16, 18, 22, 25, 27), that is, X1 = 16, … , X5 = 27. A
quick temptation is to use the mle function. Let us do that and get the answer for k̂ and p̂.

> x <- c(16, 18, 22, 25, 27)
> nlog_binom <- function(size) {-sum(dbinom(x,size,
+ prob=0.5,log=TRUE)) }
> mle_x <- mle(nlog_binom,start=list(size=2*max(x)))
Error in optim(start, f, method = method, hessian = TRUE, ...) :
non-finite finite-difference value [1]

In addition: Warning messages:
1: In dbinom(x, size, prob = 0.5, log = TRUE) : NaNs produced
2: In dbinom(x, size, prob = 0.5, log = TRUE) : NaNs produced

Unfortunately, on this occasion, R gave us errors and not answers. The reason being differ-
entiating the likelihood function, or ln L(k, p|x) too, is not feasible. The MLE of k is not a
straightforward routine and needs to be dealt with care. An important argument is that the
likelihood function must be 0 for any k value less than maxxi. We need to find k for which
L(k|x)∕L(k − 1|x) ≥ 1 and L(k + 1|x)∕L(k|x) < 1. We can use a while loop to find us the
answer. ◽
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We will close this discussion with some properties of the MLE.

1. If T is a sufficient statistic for the family of distributions P𝜃 and a unique MLE of 𝜃 exists,
then the MLE is a function of the sufficient statistic T .

2. If T is an MLE for 𝜃 and g(𝜃) is a one-to-one function of 𝜃, then g(T) will be an MLE for
g(𝜃).

3. Under certain regularity conditions, see Section 7.7, the MLE is a consistent estimator, and
further √

n

{
E𝜃

(
𝛿 ln f𝜃(x)

𝛿𝜃

)2
}−1∕2

(T − 𝜃)→DN(0, 1). (7.33)

7.6.2 Method of Moments Estimator

Karl Pearson invented the method of moments estimator. Suppose that f (x;𝜽) is the pmf (pdf),
and that the parameters are k in number, 𝜽 = (𝜃1, · · · , 𝜃k). The method of moments estimator
means that we need to first find the k theoretical moments of f (x;𝜽) and assume that they are
equal to the corresponding sample moments. We assume that we have a sample of size n. Thus,
we have k equations for k unknown quantities. A solution for this set of equations leads to the
method of moments estimator. Symbolically, we have the following setup:

𝜂1 = ∫ xf (x,𝜽)dx ≡
∑n

i=1 xi

n
,

𝜂2 = ∫ x2f (x,𝜽)dx ≡
∑n

i=1 x2
i

n
,

⋮

𝜂k = ∫ xkf (x,𝜽)dx ≡
∑n

i=1 xk
i

n
.

We will demonstrate the applications of the moment estimators through some examples
of Mukhopadhyay (2000) and Casella and Berger (2002). An important point to note here
is that the moment estimators can be computed. even if the complete density function is
not known.

Example 7.6.9. Moment Estimator for Normal Distribution. Consider a sample X1, · · · ,Xn
from N(𝜇, 𝜎2), where both the parameters are unknown. For a normal distribution it is known
that E(X) = 𝜇 and E(X2) = 𝜇2 + 𝜎2. Thus, the moment estimators is a solution for the follow-
ing set of two equations:

𝜇 =
∑n

i=1 Xi

n
,

𝜇2 + 𝜎2 =
∑n

i=1 X2
i

n
.
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For a given sample, we first find the mean estimator and then insert it into the next equation to
obtain an estimate of the variance. A little rearrangement gives the moment estimators as

�̂� = X̄,

�̂�2 =
∑2

i=1 (Xi − X̄)2

n
.

Suppose that we have observed the 10 values for an experiment as 7.96, 6.01, 9.30, 6.92, 7.70,
0.15, 5.24, 12.53, 8.69, and 6.94. We can then compute the moment estimators for mean and
variance.

> x <- c(7.96, 6.01, 9.30, 6.92, 7.70, 0.15, 5.24, 12.53, 8.69, 6.94)
> mum <- mean(x)
> sigmam <- mean(x ̂ {2})-mum ̂ {2}
> mum;sigmam
[1] 7.144
[1] 9.094144

A simple program is all that is rquired in this example. ◽

Example 7.6.10. Moment Estimators for Binomial Distribution. Consider a random
sample X1, · · · ,Xn from a binomial distribution (k, p), where both the parameters k and p are
unknown. That is, the probability mass function of X is

p(Xi = x) =
(

k
p

)
px(1 − p)k−x, x = 0, 1, · · · , k.

The first two sample moments equated to the population moments, see Example 7.2.2 of
Casella and Berger (2002), leads to the system of two equations:

kp =
∑n

i=1 Xi

n
,

kp(1 − p) + k2p2 =
∑n

i=1 X2
i

n
,

which give the moment estimators:

k̂ = X̄2

X̄ −
∑n

i=1 (Xi − X̄)2∕n
,

p̂ = X̄

k̂
.

Suppose that the number of crimes in 20 different localities is reported as 3, 0, 3, 2, 2, 2, 4,
1, 1, 4, 0, 2, 3, 1, 1, 2, 1, 2, 2, and 3. We need to find k and p, since the number of criminals
across the localities is assumed to be unknown but equal. The next program is easier to follow
and hence the explanation is omitted.

> x <- c(3, 0, 3, 2, 2, 2, 4, 1, 1, 4, 0, 2, 3, 1, 1, 2, 1, 2, 2, 3)
> khat <- (length(x)-1)*var(x)/length(x)
> khat <- mean(x)-khat
> khat <- mean(x) ̂ {2}/khat



Trim Size: 170mm x 244mm Tattar c07.tex V3 - 02/12/2016 8:30 A.M. Page 241�

� �

�

Parametric Inference 241

> phat <- mean(x)/khat
> khat;phat
[1] 5.412811
[1] 0.3602564

Notice the order of computation for k̂! A small correction is in order here. The number of trials
cannot be a fraction and hence k̂ = 5.412811 is not acceptable. The floor of this number is
not acceptable, since the empirical evidence suggests that k is at least 5.412811, and hence
the ceiling should be accepted for the number of trials. Using this corrected k estimate, the
reader should re-estimate p̂. ◽

However, it is to be noted that the moment estimator is an ad hoc solution for obtaining
estimators and it is severely restricted. Please refer to Mukhopadhyay (2000) and Casella and
Berger (2002) for more pointers in this regard.

?which, ?optim, ?nlm, ?constrOptim

7.7 Comparison of Estimators

In the previous sections we considered two main methods of estimation. It is possible to pro-
pose several estimators for the same parameter and we would have to then justify the use of
one estimator over other. That is, we need criteria for comparison of estimators. We will begin
with unbiased estimator as a criterion for comparison purposes.

7.7.1 Unbiased Estimators

Definition 7.7.1 Unbiased Estimator. A real valued statistic T(X) ≡ T(X1, · · · ,Xn) is said
to be an unbiased estimator for g(𝜃) if

E𝜃(T) = g(𝜃),∀𝜃 ∈ Θ. (7.34)

Furthermore, a statistic T(X) is said to be a biased estimator of g(𝜃) if it is not an unbiased
estimator. The bias of an estimator is defined by

b𝜃(T) = E𝜃(T) − g(𝜃), 𝜃 ∈ Θ. (7.35)

It needs to be recorded that the lack of bias is a property of an estimator and not of a sample.
An unbiased estimator reaches the target g(𝜃) on average and its bias will be 0 for all values
of 𝜃. An important measure of the performance of a statistic is provided by its Mean Squared
Error.

Definition 7.7.2 Mean Squared Error. Consider an estimator T(X) for g(𝜃). Then, the mean
squared error, abbreviated as MSE, of T is given by

MSET = E(T − g(𝜃))2,∀𝜃 ∈ Θ. (7.36)

If T is unbiased, its MSE is just its variance.

A result which connects variance, bias, and MSE is given next.
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Theorem 7.7.1 Bias, Variance, and MSE Relationship. Let T(X) be an estimator of g(𝜃).
The bias, variance, and MSE are related by

MSET = E𝜃(T − g(𝜃))2 = V𝜃(T) + b2
𝜃
(T). (7.37)

Thus, for an unbiased estimator, the MSE will coincide with the variance of the estimator. ◽

Example 7.7.1. MSE’s for Estimators from Poisson Distribution. Consider a random
sample of size n = 5 from a Poisson distribution with unknown parameter 𝜆. Following
estimators are proposed for 𝜆:

T1 = X1 + X2 + X3, T2 =
X1 + X2 + X3

3
,

T3 = X̄, T4 =
∑5

i=1 iXi

15
.

Using the linearity of expectations and independence, we can easily see that

E(T1) = 3𝜆,E(T2) = 𝜆,

E(T3) = 𝜆,E(T4) = 𝜆.

Thus, we can see that T2,T3, and T4 are unbiased estimators, whereas T1 is a biased estimator.
For the unbiased estimators, the MSEs are the variance of the estimators. Again, using the
linearity property, we can obtain the variances of these unbiased estimators as below:

MSET2
= V𝜆(T2) =

𝜆 + 𝜆 + 𝜆

32
= 𝜆

3
,

MSET3
= V𝜆(T3) =

5𝜆
52

= 𝜆

5
,

MSET4
= V𝜆(T4) =

𝜆
∑5

i=1 i2

152
= 55

225
𝜆.

From the above expressions, it is seen that the MSE is minimum for T3.
We will now obtain the MSEs of the biased estimator T1. Here

MSET1
= V𝜇(T1) + b𝜇(T1) = 3𝜆 + (3𝜆 − 𝜆)2 = 3𝜆 + 4𝜆2. ◽

Example 7.7.2. Non-existence of Unbiased Estimator. Suppose that X ∼ b(n, p) and we are
investigating if an unbiased estimator exists for g( p) = 1∕p. Here T = X is sufficient for p.
Suppose that there is a function k(t) which is an unbiased estimator of g( p), that is,

n∑
j=0

k(j)
(

n
j

)
pj(1 − p)n−j = 1∕p, 0 < p < 1.

We can rewrite this expression as

n∑
j=0

k(j)
(

n
j

)
pj+1(1 − p)n−j − 1 = 0.
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Note that the first term on the life-hand side above is a polynomial of degree n + 1 and the
sum must equal 0 if an unbiased estimator exists for g( p). This leaves us with −1 = 0, which
is a contradiction. Thus, an unbiased estimator cannot exist for g( p). This example has been
adapted from Example 1.2 of Lehmann and Casella (1998). ◽

In the previous Example 7.7.1, we had four unbiased estimators T2,T3, and T4. Among
these we will prefer the estimator with the least variance. This leads to the following definition.

Definition 7.7.3 Uniformly Minimum Variance Unbiased Estimator. Let C denote the
class of all unbiased estimators for g(𝜃). Assume that C is non-empty. We say that an esti-
mator T ∈ C is uniformly minimum variance unbiased estimator, UMVUE, if for any member
T ′ ∈ C, we have

V𝜃(T) ≤ V𝜃(T ′),∀𝜃 ∈ Θ. (7.38)

In the following, we will first consider improving the unbiased estimators using sufficient
statistics via the Rao-Blackwellization process. Next we will state what will be the lower bound
for variance of unbiased estimators using Cramér-Rao inequality. Finally, we will briefly dis-
cuss how to obtain UMVU estimators.

7.7.2 Improving Unbiased Estimators

If we have an unbiased estimator, and we seek an improvement of it in terms of reduction in
variance, we have an affirmative answer in the Rao-Blackwell theorem.

Theorem 7.7.2 Rao-Blackwell Theorem. Let T be an unbiased estimator of real-valued
parametric function g(𝜃), 𝜃 ∈ Θ. Suppose that U is a jointly sufficient statistic for 𝜃. Define
W = E𝜃(T|U = u). Then the following results hold:

1. W is an unbiased estimator for g(𝜃).
2. V𝜃(W) ≤ V𝜃(T),∀𝜃 ∈ Θ. ◽

An illustration of how the Rao-Blackwell theorem works is required here.

Example 7.7.3. Improving an Unbiased Estimator of Bernoulli Sample. Consider n trials
from a Bernoulli experiment and let Xi ∼ b(1, p), 0 < p < 1. Consider T = X1 as an estimator
of p. Clearly Ep(T) = Ep(X1) = p and we can see that it is an unbiased estimator. However,
as X1 takes values 0 or 1, it is not a meaningful estimator of p. We have seen earlier that
U =

∑n
i=1 Xi is a sufficient statistic. Define W = Ep(T|U = u). The Rao-Blackwellization can

be now seen in action:

W = Ep(T|U = u) = 1 × P(X1 = 1|U = u) + 0 × P(X1 = 0|U = 0)

=
P(X1 = 1 ∩ U = u)

P(U = u)

=
P(X1 = 1 ∩

∑n
i=2 Xi = u − 1)

P(U = u)
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=
P(X1 = 1)P(

∑n
i=2 Xi = u − 1)

P(U = u)
,X1 and

n∑
i=2

Xi are independent

=
p
(

n−1
u−1

)
pu−1(1 − p)n−u(

n
u

)
pu(1 − p)n−u

=

(
n−1
u−1

)
(

n
u

)
= u

n
= x̄.

Let us compare the variances of W and T . By the definitions, we see that the variance of T is
p(1 − p), whereas the variance of W is p(1 − p)∕n, which is a reduction unless n = 1. ◽

The reader may consult Mukhopadhyay (2000) for more interesting examples of
Rao-Blackwellization. We have taken one important step towards reducing the variance via
sufficiency and we should now ask what is the best we can do further. Under some mild
regularity conditions, the answer is provided by Cramér-Rao’s lower bound. We need the
following assumptions.

(a) The support of X is independent of 𝜃.

(b) 𝜕

𝜕𝜃
L(𝜃, x) exists ∀𝜃, x.

(c) 𝜕

𝜕𝜃
∫ L(𝜃, x)dx = ∫ 𝜕

𝜕𝜃
L(𝜃, x)dx.

(d) 𝜕

𝜕𝜃
∫ t(x)L(𝜃, x)dx = ∫ t(x) 𝜕

𝜕𝜃
L(𝜃, x)dx.

(e) X(𝜃) < ∞,∀𝜃 ∈ Θ.

Theorem 7.7.3 Cramér-Rao Inequality. Suppose that T(X) is an unbiased estimator of a
real-valued parametric function g(𝜃). Under the assumption d

d𝜃
g(𝜃) exists, and together with

the assumptions listed above, we have

V𝜃(T) ≥ g′(𝜃)2

nX(𝜃)
. (7.39)

◽

As the above inequality involves the Fisher information, Lehmann and Casella (1998) refer to
the Cramér-Rao inequality as the information inequality. The Cramér-Rao inequality can be
derived using the characteristic function, see Kay and Xu (2008).

Example 7.7.4. The Poisson Distribution. Consider a random sample of size n from
Pois(𝜆), and let the parameter of interest be g(𝜆) = 𝜆. Then g′ = 1 and X(𝜆) = n∕𝜆. Thus,
the Cramér-Rao lower bound for an unbiased estimator is 𝜆∕n. Recall that V𝜆(X̄) = 𝜆∕n. As
the sample mean attains the Cramér-Rao lower bound for variance of unbiased estimator, we
can claim the X̄ is the UMVUE. ◽
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We will close this section with an important result which leads towards deriving UMVUE
for some special family of probability distributions.

Theorem 7.7.4 Lehmann-Scheffé Theorem. Suppose that T is an unbiased estimator for a
real-valued parametric function g(𝜃). Suppose that U is a complete sufficient statistic for 𝜃.
Define W = E𝜃(T|U= u). Then, the statistic W is the unique UMVUE of g(𝜃). ◽

Example 7.7.5. UMVU Estimator for e−𝝀 of Poisson Distribution. For a Poisson random
sample, suppose we are interested in finding the UMVUE of probability of zero, that is g(𝜆) =
e−𝜆. An initial estimator of g(𝜆) based on a single observation is T = I(X1 = 0) as E𝜆(T) =
P(X1 = 0) = e−𝜆. Rao-Blackwellization of this unbiased estimator, of the sufficient statistic∑n

i=1 Xi gives us the following:

E(T|U = u) = P(X1 = 0|U = u)

=
P
(
X1 = 0 ∩

∑n
i=2 Xi = u

)
P(

∑n
i=1 Xi = u)

=
e−𝜆 e−(n−1)𝜆((n−1)𝜆)u

u!
e−n𝜆(n𝜆)u

u!

, by independence

=
(n − 1

n

)u
.

Rao-Blackwellization suggests the estimator as W = ((n − 1)∕n)
∑n

i=1 Xi . By the expression
(7.5.14) of Mukhopadhyay (2000), we have V𝜆(W) = e−2𝜆(e𝜆∕n − 1).

The Cramér-Rao lower bound for g(𝜆) turns out to be 𝜆e−2𝜆∕n. Thus, the variance of the
Rao-Blackwellized estimator turns out to be greater than the Cramér-Rao lower bound. How-
ever, as W is a function of the complete sufficient statistic

∑n
i=1 Xi, the Lehmann-Scheffé

theorem guarantees that W is the UMVUE. ◽

7.8 Confidence Intervals

Point estimates of the parameters are useful as already seen. However, there is often a need to
complement them with other techniques, and a very brief discussion on the technique of con-
fidence intervals will be discussed here. It is admitted that this topic requires more depth, and
is restricted only in part by the important problem of hypotheses testing, which is covered in a
more rigorous and R way. Another reason for skipping over the details on confidence intervals
in part is that most of the R statistical functions, the confidence intervals, are also provided
as part of the output when we use the well-known tests. In fact, the R function confint is
also available, which extracts the confidence intervals with desired confidence widths for the
regression models.

Definition 7.8.1 Confidence Interval. A confidence interval for a parameter 𝜃 ∈ Θ is a ran-
dom set A ∈ Θ, which is predicted to contain the parameter with a defined probability, that is,
a 100(1 − 𝛼), 𝛼 ∈ [0, 1], confidence interval is such that

P(𝜃 ∈ A) = 1 − 𝛼. (7.40)
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The reader may refer Chapter 5 of Tattar (2013) for confidence interval functions
binom_CI, normal_CI_ksd, and normal_CI_uksd. Chapter 8 of Ugarte, et al. (2008)
is a comprehensive account of the confidence intervals construction in R. A reason for not
developing this section in more detail is that most of the statistical tests in R such as t.test,
var.test, binom.test give the confidence intervals as side products in the output.
Furthermore, the function confint is applicable to many statistical models fitted in R.

7.9 Testing Statistical Hypotheses–The Preliminaries

In earlier sections we explored various techniques of estimating the unknown parameters. The
next task is validation of these parameters. Especially, we would like to deduce if the estimated
parameters are in agreement with certain conjectures. We will now introduce some important
terminology.

Consider a random sample whose underlying probability law is a pmf or a pdf f (x, 𝜃), 𝜃 ∈ Θ.

Definition 7.9.1 Hypothesis. A hypothesis is an assertion about the unknown parameter 𝜃. If
the assertion specifies that the parameter takes a single value overΘ, we refer to the hypothesis
as simple, or else we say that it is composite.

Example 7.9.1. Various types of hypothesis. Let us consider the standard distributions and
see what may form the hypothesis:

1. The Poisson Distribution: H ∶ 𝜆 = 1.
2. The Binomial Distribution: H ∶ p = 0.7.
3. The Normal Distribution N(𝜇, 𝜎2), 𝜎 known: H ∶ 𝜇 = 0.
4. The Exponential Distribution: H ∶ 𝜆 > 50.
5. The Uniform Distribution: H ∶ 𝜃 ≤ 10.
6. The Normal Distribution N(𝜇, 𝜎2): H ∶ (𝜇, 𝜎) = (0, 1).

The first three hypotheses are simple, whereas the remaining are composite. ◽

Testing the hypotheses problem is the statistical criteria of choosing between two plausible
hypotheses, that is, we find a mechanism to choose between hypotheses H and K. Formally,
the testing hypotheses problem is

H ∶ 𝜃 ∈ Θ0versus K ∶ 𝜃 ∈ Θ1, (7.41)

where Θ0 and 𝜃1 are two subsets of Θ and mutually exclusive, that is, Θ0 ⊂ Θ,Θ1 ⊂ Θ and
Θ0 ∩ Θ1 is empty. The choice among Θ0 and Θ1 is to be based on a random sample X1, · · · ,Xn
of size n. The values in the sample space which lead to rejection of the hypothesis H has a
special name.

Definition 7.9.2 The subset of Ω which lead to rejection of H is referred as the critical region
or the rejection region. The critical region will be denoted by .

We need an instrument which will decide between H or K. A formal definition is as follows.
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Table 7.4 Type I and II Error

Hypothesis Test H True K True

Accept H No Error Type II Error
Accept K Type I Error No Error

Definition 7.9.3 A hypothesis test is a rule which specifies the following:

• The sample values for which the decision is to accept H.
• The sample values for which we accept K and reject H.

A standard notation for a hypothesis test is 𝜙. In terms of the rejection region, we can define
the test as

𝜙 =
{

1, if x ∈ ,

0, otherwise.

The tests can also be defined in terms of decision rules. Let d0 and d1 denote the decisions of
accepting or rejecting the hypothesis H. Note that if d0 = 1, then d1 = 0.

The hypothesis test may lead to two types of error, which is brought out in Table 7.4.
It is customary to denote the probabilities of Type I and II errors by 𝛼 and 𝛽 respectively,

that is,

𝛼 = P(Type I Error) = P{X ∈  when H is true}, (7.42)

𝛽 = P(Type II Error) = P{X ∈ c when K is true}. (7.43)

Ideally, we would like to construct a hypothesis test that will keep both types of errors to
a minimum. Unfortunately, it is not possible to do this, and hence we seek hypothesis tests
which assign an upper bound on the probability of Type I errors and attempt to minimize Type
II errors subject to this bound. A formal definition captures the requirement.

Definition 7.9.4 Level of Significance. A test𝜙 for the testing problem of H ∶ 𝜃 ∈ Θ0 against
K ∶ 𝜃 ∈ Θ1 is said to have a level of significance 𝛼, 0 ≤ 𝛼 ≤ 1, if

E𝜃𝜙(X) ≤ 𝛼. (7.44)

The concept of Type I and Type II errors will be demonstrated in the next example with a
small R program.

Example 7.9.2. Computing Probabilities of Type I and Type II Errors. Consider a random
sample of size n = 25, that is X1, · · · ,X25, from an exponential distribution with parameter 𝜃,
and denote the sample mean by X̄ =

∑25
i=1 Xi∕n. We are interested in testing H ∶ 𝜃 = 10 against

the hypothesis K ∶ 𝜃 = 20. Consider four tests defined below:

𝜙1 = Reject H iff

∑5
i=1 Xi

5
> 15,
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𝜙2 = Reject H iff

∑15
i=1 Xi

15
> 15,

𝜙3 = Reject H iff

∑25
i=1 Xi

25
> 13,

𝜙4 = Reject H iff

∑25
i=1 Xi

25
> 18.

We wish to compute the probability of Type I and Type II errors for the above four tests.
Towards this, we need to re-formalize the tests in terms of the gamma distribution with the
important result that for a sample of size n from an exponential distribution with parameter
𝜃, the sample mean distribution is a gamma distribution with parameters (n, n∕𝜃). A simple
tweak will give us the necessary probabilities.

> theta_h <- 10; theta_k <- 20;
> x <- 15; n <- 5
> 1-pgamma(x,n,n/theta_h) # Type I Error of Test 1
[1] 0.1321
> pgamma(x,n,n/theta_k) # Type II Error of Test 1
[1] 0.3225
> x <- 15; n <- 15
> 1-pgamma(x,n,n/theta_h) # Type I Error of Test 2
[1] 0.0386
> pgamma(x,n,n/theta_k) # Type II Error of Test 2
[1] 0.1648
> x <- 13; n <- 25
> 1-pgamma(x,n,n/theta_h) # Type I Error of Test 3
[1] 0.07536
> pgamma(x,n,n/theta_k) # Type II Error of Test 3
[1] 0.02614
> x <- 18; n <- 25
> 1-pgamma(x,n,n/theta_h) # Type I Error of Test 4
[1] 0.0004492
> pgamma(x,n,n/theta_k) # Type II Error of Test 4
[1] 0.3262

The R program shows that the test 𝜙1 has large Type I and II error probabilities. Though the
test 𝜙4 has a very less Type I probability, its Type II error probability is very high. The choice
between tests 𝜙2 and 𝜙3 depends on which error needs to be given more emphasis. ◽

Example 7.9.3. Uniform Distribution. Consider a random sample of size n from U(0, 𝜃). We
wish to test the hypothesis H ∶ 𝜃 ≤ 1∕2 against K ∶ 𝜃 = 1. A test function is given by

𝜙(X) = I(max(X) > 1∕2).

The density function of M = max(X) is given by

f (m) =

{
nmn−1

𝜃n , 0 < m < 𝜃,

0, otherwise.
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Suppose n = 8 and we want to compute the size of the test and its power. Under the null
hypothesis

EH𝜙(x) = ∫
1∕2

0

8m7

𝜃8
dm = 0.444,

as seen from the minor program:

> myfun <- function(n,theta,x) n*x ̂ {n}/theta ̂ {n}
> integrate(myfun, lower=0, upper=1/2,theta=1/2,n=8)
0.4444444 with absolute error < 4.9e-15

The function myfun is an R replica of EH𝜙(x) and with the integrate function and the
options theta=1/2 and n=8, computes the Type I error. The Type II error value is left to
the reader as an exercise. ◽

The level of significance places an upper bound on the probability of Type I error. However,
sometimes we need to find from the data the probability of rejecting the hypothesis H.

Definition 7.9.5 p-value. The p-value is the smallest level 𝛼0, such that we would reject the
hypothesis H at level 𝛼0 with the observed data.

The concept of the p-value will be especially useful in a lot of the hypotheses testing prob-
lems to be seen in Part IV. We will need one more concept here.

Definition 7.9.6 The power of a test is the probability of rejecting the hypotheses H when
𝜃 ∈ Θ is the true parameter value.

The power of a test, also called the power function, will be denoted by Q(𝜃). If H and K are
simple hypotheses, we have Q(𝜃H) = 𝛼 and Q(𝜃K) = 1 − 𝛽, where 𝜃H and 𝜃K are the hypothe-
sized values of the parameter. This notation of the power function should not be confused with
the similarly used notation in Section 7.16 of the EM algorithm.

Example 7.9.4. Continuation of Example 7.9.2. The power function for the four tests are
given by:

Q𝜙1
(𝜃) = 1 − 1

Γ(5)𝜃5 ∫
15

0
x5−1e−x∕𝜃dx,

Q𝜙2
(𝜃) = 1 − 1

Γ(15)𝜃15 ∫
15

0
x15−1e−x∕𝜃dx,

Q𝜙3
(𝜃) = 1 − 1

Γ(25)𝜃25 ∫
13

0
x25−1e−x∕𝜃dx,

Q𝜙4
(𝜃) = 1 − 1

Γ(25)𝜃25 ∫
18

0
x25−1e−x∕𝜃dx.

Plotting of the power function of tests gives an indication of the behavior of the test functions.
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> Q1 <- function(x) {1-pgamma(15,shape=5,rate=5/x)}
> Q2 <- function(x) {1-pgamma(15,shape=15,rate=15/x)}
> Q3 <- function(x) {1-pgamma(13,shape=25,rate=25/x)}
> Q4 <- function(x) {1-pgamma(18,shape=25,rate=25/x)}
> curve(Q1,from=0.1,to=40,n=400,xlab=expression(theta),
+ ylab=expression(Q(theta)),
+ "l",col=’red’,add=FALSE,ylim=c(0,1))
> curve(Q2,from=0.1,to=40,n=400,"l",col=’green’,add=TRUE)
> curve(Q3,from=0.1,to=40,n=400,"l",col=’blue’,add=TRUE)
> curve(Q4,from=0.1,to=40,n=400,"l",col=’yellow’,add=TRUE)
> title(main="Various Power Functions")
> exp_legends <- expression(paste(Q[phi[1]],"(",theta,")"),
+ paste(Q[phi[2]], "(",theta,")"),paste(Q[phi[3]],
+ "(",theta,")"),paste(Q[phi[4]],"(",theta,")"))
> legend(x=c(30,40),y=c(0.7,0.5),exp_legends,col=
+ c("red","green","blue", "yellow"),lwd=rep(1.5,4))
> abline(v=c(10,20))

The R functions Q1, Q2, Q3, and Q4 are the corresponding implementation of the power func-
tions stated before them. The curve function plots the power function curves. Discuss which
test you will prefer, based on the power function plots in Figure 7.6. ◽
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Figure 7.6 Power Function Plot for Normal Distribution
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The next section will present a nice technique to obtain meaningful tests.

?pnorm, ?integrate

7.10 The Neyman-Pearson Lemma

The Neyman-Pearson lemma is one of the ground-breaking results in statistics. It begins with
the problem of testing a simple hypothesis H ∶ 𝜃 = 𝜃0 against the simple hypothesis K ∶ 𝜃 =
𝜃1. The requirement of a size 𝛼 test with maximum power leads to the definition of a most
powerful test.

Definition 7.10.1 Most Powerful Test. A test 𝜙 is said to be the most powerful test of H
against K if

EH(𝜙(x)) = 𝛼, and , (7.45)

Q𝜙(𝜃1) ≥ Q𝜙′ (𝜃1). (7.46)

for any other level 𝛼 test 𝜙′.

The most powerful test is abbreviated as the MP test. We now state the lemma.

Theorem 7.10.1 The Neyman-Pearson Lemma. Let P0 and P1 be probability distributions
with respective densities p𝜃0

and p𝜃1
with respect to a measure 𝜇. The Neyman-Pearson lemma

for testing H ∶ p𝜃0
versus K ∶ p𝜃1

then states the following:

• Existence. There exists a test 𝜙 and constants k and 𝛾 such that

E𝜃0
(𝜙(x)) = 𝛼, (7.47)

𝜙(x) =
⎧⎪⎨⎪⎩

1, if p𝜃1
> kp𝜃0

,

𝛾, if p𝜃1
= kp𝜃0

,

0, if p𝜃1
< kp𝜃0

.

(7.48)

• Sufficient Condition for MP Test. If a test satisfies (7.47) and (7.48) for some k, then it is
MP for H against K.

• Necessary Condition for MP Test. If 𝜙 is an MP test at level 𝛼 for H against K, then for
some k it satisfies (7.48) almost everywhere 𝜇. Furthermore, it satisfies (7.47) unless there
exists a test of size less that 𝛼 with power 1. ◽

The test 𝜙(x) may be rewritten in the form of likelihood functions as

𝜙(x) =
⎧⎪⎨⎪⎩

1, if L(𝜃1, x) > kL(𝜃0, x),
𝛾, if L(𝜃1, x) = kL(𝜃0, x),
0, if L(𝜃1, x) < kL(𝜃0, x),

=
⎧⎪⎨⎪⎩

1, if L(𝜃1,x)
L(𝜃0,x)

> k,

𝛾, if L(𝜃1,x)
L(𝜃0,x)

= k,

0, if L(𝜃1,x)
L(𝜃0,x)

< k.

(7.49)
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We will discuss some aspects of the Neyman-Pearson lemma before its applications. Some
key points in this lemma are emphasized in the following:

(a) Points are increased in the critical region until the size of the test reaches 𝛼. To understand
this, note that we consider the likelihood ratio L(𝜃1|x)∕L(𝜃0|x) and then rate the points of
X on the basis of the ratio of the explanation of x under K to the explanation under H.
Thus, the points with higher values of the likelihood ratio enjoy a better explanation under
K in comparison with H.

(b) The power of MP tests increases for corresponding increases in the test sizes.
(c) The risk set for H against K is defined by

R = {(𝛼,Q) ∶ 𝛼 = E𝜃0
𝜙(X),Q = E𝜃1

(1 − 𝜙(X))}. (7.50)

(d) The risk set R defined in Equation 7.50 is a convex and compact set.

The Neyman-Pearson lemma will be illustrated through various examples now.

Example 7.10.1. MP Test for Normal Distribution. We consider a random sample of size
n from N(𝜇, 𝜎2), 𝜎2 known in X1, · · · ,Xn. The problem is to test the hypothesis H ∶ 𝜇 = 𝜇0
against the alternative K ∶ 𝜇 = 𝜇1, 𝜇1 > 𝜇0. As the comparison problem involves two simple
hypotheses, we can use the Neyman-Pearson lemma. In terms of the likelihood function, the
MP test function takes the form

𝜙(x) =

{
1, if L(𝜇1|x)

L(𝜇0|x) > k,

0, otherwise.

Since the likelihood function is of the form L(𝜇|x) ∝ exp
{
(−2𝜎2)−1 ∑n

i=1 (xi − 𝜇)2
}

, the MP
test is to reject the hypothesis H if

exp

{
𝜎−2(𝜇1 − 𝜇0)

n∑
i=1

xi

}
> k.

Alternatively, we can state that the test procedure is to reject H if x̄ > k. We need the size of
the test to be 𝛼, and to achieve this, standardize the test procedure and thus it is required that

𝜙(x) =

{
1, if

√
n
(

x̄−𝜇0
𝜎

)
> z𝛼,

0, otherwise,

=

{
1, if x̄ >

𝜎z𝛼√
n
+ 𝜇0,

0, otherwise,

where z𝛼 is the upper 100𝛼% of the standard normal distribution. It is easy to verify that
E(𝜙(x)) = 𝛼. Some examples are demonstrated in R.

> MPNormal <- function(mu0, mu1, sigma, n,alpha) {
+ if(mu0<mu1) k <- qnorm(alpha,lower.tail = FALSE)*
+ sigma/sqrt(n) + mu0
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+ if(mu0>mu1) k <- mu0 - qnorm(alpha,lower.tail = FALSE)*
+ sigma/sqrt(n)
+ return(k)
+ }
> MPNormal(mu0=0, mu1=0.5,sigma=1,n=10,alpha=0.05)
[1] 0.5201
> MPNormal(mu0=0, mu1=-0.5,sigma=1,n=10,alpha=0.05)
[1] -0.5201
> MPNormal(mu0=0, mu1=0.5,sigma=1,n=10,alpha=0.1)
[1] 0.4053
> MPNormal(mu0=0, mu1=-0.5,sigma=1,n=10,alpha=0.1)
[1] -0.4053
> MPNormal(mu0=10, mu1=15,sigma=2,n=10,alpha=0.05)
[1] 11.04
> MPNormal(mu0=10, mu1=5,sigma=2,n=10,alpha=0.05)
[1] 8.96
> MPNormal(mu0=10, mu1=15,sigma=2,n=10,alpha=0.1)
[1] 10.81
> MPNormal(mu0=10, mu1=5,sigma=2,n=10,alpha=0.1)
[1] 9.189

The R function MPNormal is created to take care of both scenarios (i) 𝜇1 > 𝜇0, and (ii) 𝜇1 <

𝜇0. Basically, the function returns the value of k, which leads to rejecting the hypothesis H if
x̄ > k. The function MPNormal is available in the ACSWR package. ◽

Example 7.10.2. MP Test for Binomial Distribution. Consider a binomial distribution
b(n, p), where n = 3. We want to test H ∶ p = 0.95 against K ∶ p = 0.10. The target is
construction of the MP test of size 𝛼 = 0.001. Since the value of the parameter p is greater
under H than K, the MP test criteria will reject H for some k, such that X < k. Next, by the
significance value, we require

P0.95{X < k} + 𝛾P0.95{X = k} = 0.001.

Since the second term in the above equation 𝛾P0.95{X = k} is a positive number, it is clear
that we need to find k, such that P0.95{X < k} < 0.001. Let us use the pbinom function to
identify k:

> pbinom(0:3,prob=0.95,size=3)
[1] 0.000125 0.007250 0.142625 1.000000

It is clear from the above that the value of k should be 1. Plugging in this value of k, we can
easily find 𝛾 as

> dbinom(1,prob=0.95,size=3)
[1] 0.007125
> (0.001-0.0001)/0.0071
[1] 0.1267606
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Thus the MP level 𝛼(= 0.001) for H against K is given by

𝜙(x) =
⎧⎪⎨⎪⎩

1, if x < 1,
0.1267, if x = 1,

0, otherwise. ◽

In the previous example, the value of p under K was less than under H. Let us consider the
same problem with roles reversed.

Example 7.10.3. MP Test for Binomial Distribution. Contd. Consider a random sample of
size n from Bernoulli, where the probability of success is p, 0 < p < 1. We are now interested
in testing H ∶ p = p0 against K ∶ p = p1, where p1 > p0. The 𝛼- level MP test, after sacrificing
a few vital steps, is defined by

Reject H if
n∑

i=1

Xi is large.

The form of the MP test is then

𝜙(X) =
⎧⎪⎨⎪⎩

1, if
∑n

i=1 Xi > k,
𝛾, if

∑n
i=1 Xi = k,

0, otherwise.

We need to obtain the values of 𝛾 and k to complete the hypothesis frame. First we find the
smallest integer k such that Pp0

(
∑n

i=1 Xi > k) < 𝛼. Then, we find 𝛾 by

𝛾 =
𝛼 − Pp0

(
∑n

i=1 Xi > k)

Pp0
(
∑n

i=1 Xi = k)
.

An interesting program MPbinomial has been developed, which will readily return us the
values of 𝛾 and k. For different values of p0, p1, n, and 𝛼, the values of 𝛾 and k are returned,
which will be the 𝛼-level MP test. The function MPbinomial will be applied for different p
values under the hypotheses H and K. It is available in the companion ACSWR package.

> MPbinomial <- function(Hp, Kp, alpha,n){
+ k <- min(which((1-pbinom(0:n,size=n,prob=Hp))<alpha))-1
+ gamma <- (alpha-1+pbinom(k,size=n,prob=Hp))/dbinom
+ (k,size=n,prob=Hp)
+ return(list=c(k,gamma))
+ }
> MPbinomial(Hp=0.25,Kp=0.9,alpha=0.1,n=10)
[1] 4.0000 0.1498
> MPbinomial(Hp=0.5,Kp=0.9,alpha=0.1,n=10)
[1] 7.0000 0.3867
> MPbinomial(Hp=0.5,Kp=0.9,alpha=0.2,n=10)
[1] 6.0000 0.1371
> MPbinomial(Hp=0.75,Kp=0.9,alpha=0.2,n=10)
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[1] 9.0000 0.7655
> MPbinomial(Hp=0.3,Kp=0.9,alpha=0.1,n=50)
[1] 19.0000 0.2726
> MPbinomial(Hp=0.3,Kp=0.9,alpha=0.2,n=50)
[1] 18.0000 0.7695
> MPbinomial(Hp=0.6,Kp=0.9,alpha=0.1,n=100)
[1] 66.0000 0.2238
> MPbinomial(Hp=0.6,Kp=0.9,alpha=0.2,n=100)
[1] 64.0000 0.3471

The Neyman-Pearson test for the hypotheses testing problem MPbinomial has not been
explained in detail, although it should not be difficult to follow. Note that unlike the MPNor-
mal function, we need two values of k and 𝛾 to be returned here. ◽

The reader may not be too comfortable with writing different programs, for the reason that
p0 may be lesser or greater than p1. Recall that the MPNormal function takes care of both
scenarios. The next function takes care of this.

MPbinomial <- function(Hp, Kp, alpha,n) {
if(Hp<Kp){

k <- min(which((1-pbinom(0:n,size=n,prob=Hp))<alpha))-1
gamma <- (alpha-1+pbinom(k,size=n,prob=Hp))/dbinom(k,size=n,

+ prob=Hp)
return(list=c(k,gamma))

}
else {

k <- max(which((pbinom(0:n,size=n,prob=Hp))<alpha))
gamma <- (alpha-pbinom(k-1,size=n,prob=Hp))/dbinom(k,size=n,

+ prob=Hp)
return(list=c(k,gamma))

}
}

Example 7.10.4. MP Test for Poisson Distribution. Let X ∼ Pois(𝜆) and assume that n repli-
cates of it are available. The testing problem is hypothesis H ∶ 𝜆 = 𝜆0 against the hypothesis
K ∶ 𝜆 = 𝜆1. We now allow 𝜆0 to be either greater or less than 𝜆1. The MPPoisson function
returns the desired values of 𝛾 and k at a specified level 𝛼.

> MPPoisson <- function(Hlambda, Klambda, alpha,n) {
+ Hlambda <- n*Hlambda
+ Klambda <- n*Klambda
+ nn <- n*Hlambda
+ if(Hlambda<Klambda) }
+ k <- min(which((1-ppois(0:nn,lambda=Hlambda))<alpha))-1
+ gamma <- (alpha-1+ppois(k,lambda=Hlambda))/dpois
+ (k,lambda=Hlambda)
+ return(list=c(k,gamma))
+ {
+ else {
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+ k <- max(which((ppois(0:nn,lambda=Hlambda))<alpha))
+ gamma <- (alpha-ppois(k-1,lambda=Hlambda))/dpois
+ (k,lambda=Hlambda)
+ return(list=c(k,gamma))
+ }
+ }
> MPPoisson(Hlambda=5,Klambda=10,alpha=0.2,n=10)
[1] 56.0000 0.5875
> MPPoisson(Hlambda=5,Klambda=10,alpha=0.15,n=10)
[1] 57.0000 0.1557
> MPPoisson(Hlambda=5,Klambda=10,alpha=0.1,n=10)
[1] 59.0000 0.3206
> MPPoisson(Hlambda=5,Klambda=10,alpha=0.05,n=10)
[1] 62.0000 0.5725
> MPPoisson(Hlambda=15,Klambda=10,alpha=0.2,n=50)
[1] 727.0000 0.4001
> MPPoisson(Hlambda=15,Klambda=10,alpha=0.15,n=50)
[1] 722.000 0.128
> MPPoisson(Hlambda=15,Klambda=10,alpha=0.1,n=50)
[1] 715.0000 0.5068
> MPPoisson(Hlambda=15,Klambda=10,alpha=0.05,n=50)
[1] 705.0000 0.7362

The MPPoisson is tailored to Poisson distribution on the same lines as MPNormal and
MPbinomial functions. ◽

We will now move to the next type of hypotheses testing problem.

?qnorm, ?pbinom, ?ppois,

7.11 Uniformly Most Powerful Tests

The general one-sided hypothesis testing problem for a single real valued parameter 𝜃 ∈ Θ is
stated as:

H ∶ 𝜃 ≤ 𝜃0 against K ∶ 𝜃 > 𝜃0, 𝜃0 ∈ Θ.

Note that the hypotheses H and K are composite hypotheses. A definition of the size of a test
for composite hypothesis is required.

Definition 7.11.1 Size of a Test. A test 𝜙 for testing H ∶ 𝜃 ∈ Θ0 against K ∶ 𝜃 ∈ Θ1 is said
to be of size 𝛼 if

sup
𝜃∈Θ0

E𝜃𝜙(X) = 𝛼. (7.51)

Definition 7.11.2 Class of Size 𝜶 Tests. The collection of all size 𝛼 tests forms the class of
level 𝛼 tests:

𝛼 =

{
𝜙| sup

𝜃∈Θ0

E𝜃𝜙(X) ≤ 𝛼

}
. (7.52)

We can now define the Uniformly Most Powerful Tests.



Trim Size: 170mm x 244mm Tattar c07.tex V3 - 02/12/2016 8:30 A.M. Page 257�

� �

�

Parametric Inference 257

Definition 7.11.3 Uniformly Most Powerful Tests. A test 𝜙 ∈ 𝛼 for testing H ∶ 𝜃 ∈ Θ0
against K ∶ 𝜃 ∈ Θ1 is said to be the Uniformly Most Powerful, UMP, test of size 𝛼 if it satisfies
the following conditions:

sup
𝜃∈Θ0

E𝜃𝜙(X) = 𝛼, (7.53)

E𝜃𝜙0(X) ≥ E𝜃𝜙(X), ∀ 𝜃 ∈ Θ1, and ∀ 𝜙0 ∈ 𝛼. (7.54)

Let us first consider the problem of testing H ∶ 𝜃 = 𝜃0 against K ∶ 𝜃 > 𝜃0. In this case the UMP
test may be easily obtained. Towards this, fix a value 𝜃1 > 𝜃0 and set up the Neyman-Pearson
MP test for H ∶ 𝜃 = 𝜃0 against K ∶ 𝜃 = 𝜃1. Then the MP test continues to be a UMP test if the
test remains unaffected by the specific choice of 𝜃1.

Example 7.11.1. UMP Test for Binomial Distribution. In continuation of Example 7.10.3,
suppose the interest is in testing the hypothesis H ∶ p = p0 against K ∶ p > p0. Then the val-
ues of k and 𝛾 continue to be the same as returned by the MPbinomial function, since the
function does not use the p1 argument in the rest of the program. Thus we can claim that the
MP tests obtained in Example 7.10.3 are the UMP test against the appropriate hypothesis that
K ∶ p > p0. ◽

We note that the UMP tests do not exist in general for one-sided testing problems. However,
the UMP tests exist for a family of distribution satisfying a particular property. The mathemat-
ical property which is necessary for the existence of UMP tests is defined next.

Definition 7.11.4 Monotone Likelihood Ratio. Areal parameter family of distributions is
said to have a monotone likelihood ratio, MLR, in a statistic T(x) if the ratio of density func-
tions

f (x|𝜃2)
f (x|𝜃1)

,

is a non-decreasing function of T(x) for 𝜃1 < 𝜃2.

A result due to Karlin and Rubin states that whenever there exists a statistic T(x) for which
f (x|𝜃) admits the MLR property, a UMP test can be constructed for the one-sided hypothesis.

Theorem 7.11.1 Karlin and Rubin Theorem for UMP Tests. Assume that the family of
distributions {f𝜃, 𝜃 ∈ Θ} of X admits the MLR property in a statistic T(x). Consider the testing
problem H ∶ 𝜃 ≤ 𝜃0 against K ∶ 𝜃 > 𝜃0. Then the UMP size 𝛼 test exists and its form is given
by

𝜙(x) =
⎧⎪⎨⎪⎩

1, if T(x) > t0,
𝛾, if T(x) = t0,
0, otherwise.

(7.55)

◽
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Example 7.11.2. UMP Test for Exponential Distribution. In an experiment involving elec-
tronic tubes, an experimenter collects data on the failure times from a random sample of 20
units. Assume that the failure time follows an exponential distribution with mean time 𝜃. The
aim of the experiment is to test H ∶ 𝜃 ≤ 350 against K ∶ 𝜃 > 350. The observed data contains
the 20 failure times as 9.9, 35.6, 57.9, 94.6, 141.4, 154.4, 163.3, 226.7, 244.3, 337.2, 391.8,
417.2, 444.6, 461.2, 497.1, 582.6, 606.8, 616.0, 784.7, and 794.7.

Define T(X) =
∑n

i=1 Xi. Clearly, T(X) is sufficient for 𝜃 and the density function of expo-
nential distribution is monotone in T(X). Thus, the size 𝜃 UMP test is given by

𝜙(X) =
{

1, if T(x) > k,
0, otherwise.

Note that T ∼ Gamma(n, 𝜃) and hence we can determine k in the following steps. To obtain a
size 𝛼 UMP test we require

E𝜃𝜙(T) = 𝛼,

which translates to

∫
∞

t
Gamma(n, 𝜃)dy = 𝛼, or

∫
t

0
Gamma(n, 𝜃)dy = 1 − 𝛼.

This integral can be easily evaluated to obtain t using the qgamma function. The R program
below gives us the required results.

> UMPExponential <- function(theta0, n, alpha){
+ t <- qgamma(1-alpha, shape=n,scale=theta0)
+ return(t)
+ }
> UMPExponential(theta0=350,n=20,alpha=0.05)
[1] 9757.734
> x <- c(9.9, 35.6, 57.9, 94.6, 141.4, 154.4, 163.3, 226.7,
+ 244.3, 337.2, 391.8, 417.2, 444.6, 461.2, 497.1, 582.6,
+ 606.8, 616.0, 784.7, 794.7)
> (t <- sum(x))
[1] 7062

Since the observed t value 7062 is less than 9757.734, we fail to reject the hypothesis
H ∶ 𝜃 ≤ 350. ◽

Example 7.11.3. UMP Test for Uniform Distribution. Consider a random sample
X1, · · · ,Xn from U(0, 𝜃). The problem of interest is H ∶ 𝜃 ≤ 𝜃0 against K ∶ 𝜃 > 𝜃0. It is then
known that M = max{Xi} is a sufficient statistic for 𝜃. Recall the distribution of M:

f (m|𝜃) =
{

nmn−1

𝜃n , 0 < m < 𝜃,

0, otherwise.
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Clearly, f (m|𝜃) is monotone decreasing in 𝜃. Thus, by the application of the Karlin-Rubin
theorem, the UMP test is given by

𝜙(X) =
{

1, if M(x) > k,
0, otherwise.

To obtain a size 𝛼 test, we need to evaluate

𝛼 = P𝜃0
{M > k} = 1 −

{
k
𝜃0

}n

.

For a dummy dataset, we have

> UMPUniform <- function(theta0,n,alpha)
+ return(theta0*(1-alpha) ̂ {1/n})
> UMPUniform(0.6,10,0.05)
[1] 0.5969303

Thus, if the M value is greater than 0.5969303, we reject the hypothesis H. ◽

Example 7.11.4. UMP Test for Normal Distribution. The one-sided hypothesis testing
problem is H ∶ 𝜇 ≤ 𝜇0 against K ∶ 𝜇 > 𝜇0 for a random sample of n observations from
N(𝜇, 𝜎2). Here, we assume that the variance 𝜎2 is known. It can be easily proved that the
UMP test function is of the form:

𝜙(X) =
{

1, if
√

n(X̄ − 𝜇0)∕𝜎 > z𝛼,
0, if

√
n(X̄ − 𝜇0)∕𝜎 ≤ z𝛼.

Note that if the problem is of testing H ∶ 𝜇 > 𝜇0 against K ∶ 𝜇 ≤ 𝜇0, the above test function
with the inequalities sign reversed on the right-hand side of the equation will continue to be
an UMP test. The power function for the previous hypotheses is given by

P(Rejecting H|𝜇) = P(X̄ ≥ 𝜇0 + z𝛼𝜎∕
√

n|𝜇).
In the next program, we create R functions which will enable us to test the hypotheses and also
obtain the power function.

> # UMP Test for Normal Distribution
> # H:mu <= mu_0 vs K: mu > mu_0
> UMPNormal <- function(mu0, sigma, n,alpha){
+ qnorm(alpha)*sigma/sqrt(n)+mu0
+ }
> UMPNormal(mu0=0, sigma=1,n=1,alpha=0.5)
[1] 0
> powertestplot <- function(mu0,sigma,n,alpha){
+ mu0seq <- seq(mu0-3*sigma, mu0+3*sigma,(6*sigma/100))
+ betamu <- pnorm(sqrt(n)*(mu0seq-mu0)/sigma-qnorm(1-alpha))
+ plot(mu0seq,betamu,"l",xlab=expression(mu),ylab="Power of
+ UMP Test",
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+ main = expression(paste("H:",mu <= mu[0]," vs K:",
+ mu>mu[0])))
+ abline(h=alpha)
+ abline(v=mu0)
+ }
> powertestplot(mu0=0,sigma=1,n=10,alpha=0.05)
> # H:mu > mu_0 vs K: mu <= mu_0
> UMPNormal <- function(mu0, sigma, n,alpha){
+ mu0-qnorm(alpha)*sigma/sqrt(n)
+ }
> UMPNormal(mu0=0, sigma=1,n=1,alpha=0.5)
[1] 0
> powertestplot <- function(mu0,sigma,n,alpha){
+ mu0seq=seq(mu0-3*sigma, mu0+3*sigma,(6*sigma/100))
+ betamu = pnorm(sqrt(n)*(mu0-mu0seq)/sigma-qnorm(1-alpha))
+ plot(mu0seq,betamu,"l",xlab=expression(mu),ylab="Power of
+ UMP Test",
+ main = expression(paste("H:",mu >= mu[0]," vs K:",
+ mu<mu[0])))
+ abline(h=alpha)
+ abline(v=mu0)
+ }
> powertestplot(mu0=0,sigma=1,n=10,alpha=0.05)

It may be noted from Figure 7.7 that the power function reaches value 𝛼 exactly at 𝜇0. We
conclude this example with a small discussion of the sample size determination so that
the UMP test attains a specified power. Thankfully, in R, we have an inbuilt function for
determining the sample size for normal samples in power.t.test.

> power.t.test(delta=0.5,sd=1,sig.level=0.025,type="one.sample",
+ alternative="one.sided",power=0.9)

One-sample t test power calculation
n = 43.99552

delta = 0.5
sd = 1

sig.level = 0.025
power = 0.9

alternative = one.sided

Since the sample size cannot be a fraction, we need to have a minimum sample of size n = 44,
so that the power of the test is 0.9. ◽

?power.t.test

7.12 Uniformly Most Powerful Unbiased Tests

The general hypotheses of interest is of the form: H ∶ 𝜃 = 𝜃0 against K ∶ 𝜃 ≠ 𝜃0. We will
begin with an example.
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Figure 7.7 UMP Tests for One-Sided Hypotheses

Example 7.12.1. Non-existence of UMP Test for Testing Simple Hypothesis Against
Two-sided Hypothesis for Normal Distribution. For the problem of testing H ∶ 𝜇 = 𝜇0
against K ∶ 𝜇 ≠ 𝜇0 based on a sample of size n from N(𝜇, 𝜎2), where 𝜎 is known, let us first
consider two UMP size 𝛼 tests for two testing problems: (a) H1 ∶ 𝜇 = 𝜇0 against K1 ∶ 𝜇 > 𝜇0,
and (b) H2 ∶ 𝜇 = 𝜇0 against K2 ∶ 𝜇 < 𝜇0. Consider the following two tests:

𝜙1(X) =
{

1, if
√

n(X̄ − 𝜇0)∕𝜎 > z𝛼,
0, if

√
n(X̄ − 𝜇0)∕𝜎 ≤ z𝛼,

𝜙2(X) =
{

1, if
√

n(X̄ − 𝜇0)∕𝜎 ≤ z𝛼,
0, if

√
n(X̄ − 𝜇0)∕𝜎 > z𝛼.

From the examples in previous sections, it is clear that the tests 𝜙1 and 𝜙2 are two UMP tests of
size 𝛼 for testing problems (a) and (b) respectively. Let us obtain a plot of the power functions
for these two tests.

> pdf("Non_Existence_UMP_Normal.pdf")
> powertestplot <- function(mu0,sigma,n,alpha){
+ mu0seq <- seq(mu0-3*sigma, mu0+3*sigma,(6*sigma/100))
+ betamu <- pnorm(sqrt(n)*(mu0-mu0seq)/sigma-qnorm(1-alpha))
+ betamu2 <- pnorm(sqrt(n)*(mu0seq-mu0)/sigma-qnorm(1-alpha))
+ plot(mu0seq,betamu,"l",xlab=expression(mu[0]),
+ ylab="Power of UMP Test",main = expression(paste("H:",mu
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+ = mu[0]," vs K:",mu != mu[0])),col="red",xaxt="n")
+ points(mu0seq,betamu2,"l",col="blue")
+ legend(2,0.6,c(expression(phi[1]),expression(phi[2])),
+ col=c("red","blue"),lty=c(1,1))
+ abline(h=alpha)
+ abline(v=mu0)
+ }
> powertestplot(mu0=0,sigma=1,n=10,alpha=0.05)
> dev.off()
1

We can then see from Figure 7.8 that for 𝜇 > 𝜇0, the power of the UMP test 𝜙1 is less than 𝜙2,
whereas for 𝜇 < 𝜇0, the power of 𝜙2 is less than 𝜙1. Hence, there does not exist a UMP size 𝛼
for testing H ∶ 𝜇 = 𝜇0 against K ∶ 𝜇 ≠ 𝜇0. ◽

It needs to be noted though that a UMP test for a simple hypothesis against the two-sided
alternative exists for the uniform distribution, see Mukhopadhyay (2000). We will return to
the problem of such hypotheses for the normal distribution. A condition needs to be relaxed
for identifying meaningful tests and hence we consider the next definition.

Definition 7.12.1 Unbiased Tests. A size 𝛼 test 𝜙 for testing H ∶ 𝜃 ∈ Θ0 against K ∶ 𝜃 ∈ Θ1
is said to be unbiased if

E𝜃𝜙(X) ≥ 𝛼,∀𝜃 ∈ Θ1. (7.56)

Let 𝛼 denote the collection of all size 𝛼 unbiased tests. The next definition follows
naturally.
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Figure 7.8 Non-Existence of UMP Test for Normal Distribution
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Definition 7.12.2 Uniformly Most Powerful Unbiased, UMPU, size 𝜶 Test. An unbiased
size 𝛼 test 𝜙0 ∈ 𝛼 is said to be a UMPU test if it has maximum power at each 𝜃 ∈ Θ1,
that is:

E𝜃𝜙0(X) ≤ 𝛼,∀𝜃 ∈ Θ0, (7.57)

E𝜃𝜙0(X) ≥ E𝜃𝜙1(X), for any 𝜙1 ∈ 𝛼. (7.58)

The main reason for discussing the results in this fashion thus far is the integration of
statistical concepts with R. It is believed that the reader is now convinced that the details of
statistical theory can be understood using a software package. We now skip rest of the details,
though illustrations are given, and simply leave it as an exercise for the reader to verify that
the Student’s t-test is indeed a UMPU test. In fact, we need a host of other related and interest-
ing concepts, such as similarity, to prove that the Student’s t-test is indeed a UMPU test. The
details may be found in Lehmann and Romano (2005) and Srivastava and Srivastava (2009).

7.12.1 Tests for the Means: One- and Two-Sample t-Test

Assume that x1, x2, · · · , xn is a random sample from N(𝜇, 𝜎2) with both the parameters being
unknown. Suppose we are interested in testing H ∶ 𝜇 = 𝜇0. The parameters 𝜇 and 𝜎2 are
respectively estimated using the sample mean and the sample standard deviation. The t-test
is then given by

t =
x̄ − 𝜇0

s∕
√

n
, (7.59)

which has a t-distribution with n − 1 degrees of freedom. The t-test in R software may be found
in the stats package whose constitution is given as

t.test(x, y = NULL,
alternative = c("two.sided", "less", "greater"),
mu = 0, paired = FALSE, var.equal = FALSE,
conf.level = 0.95, ...)

The following is clear from the above display:

1. The default function is a one-sample test with a two-sided alternative being tested for 𝜇 = 0
and 95% confidence interval as an output.

2. The user has the options of specifying the nature of alternatives, 𝜇, and the confidence
interval level.

Example 7.12.2. A t-test for the Galton Data. For the famous Galton dataset, suppose that
we want to test if the height of the child equals the height of the parent. Using the t-test, we
get the following answer.

> library(UsingR)
> summary(galton)

child parent
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Min. :61.70 Min. :64.00
1st Qu.:66.20 1st Qu.:67.50
Median :68.20 Median :68.50
Mean :68.09 Mean :68.31
3rd Qu.:70.20 3rd Qu.:69.50
Max. :73.70 Max. :73.00
> t.test(galton$child,mu=mean(galton$parent))
One Sample t-test
data: galton$child
t = -2.6583, df = 927, p-value = 0.00799
alternative hypothesis: true mean is not equal to 68.30819
95 percent confidence interval:
67.92626 68.25068
sample estimates:
mean of x
68.08847

Thus, we can see from the p-value, and the confidence interval too, that we need to reject the
hypotheses that the height of the child is equal to the height of the parent. ◽

In the above example we specified that 𝜇0 is the mean of the parent height. However, a more
appropriate test will be a direct comparison as to whether the height of the child is the same
as the height of the parent.

Let X1,X2, · · · ,Xn1
be a random sample from N(𝜇x, 𝜎

2
x ), and Y1,Y2, · · · ,Yn2

a random
sample from N(𝜇y, 𝜎

2
y ), with 𝜎 unknown. Here, we assume that the variances are equal,

though unknown. Suppose that we are interested to test the hypothesis H ∶ 𝜇x = 𝜇y against
the hypothesis K ∶ 𝜇x ≠ 𝜇y. The two-sample t-test is then given by

t = X̄ − Ȳ
sxy

, (7.60)

which has a t-distribution with n1 + n2 − 1 degrees of freedom, with sxy being the pooled stan-
dard deviation.

Example 7.12.3. Illustration through sleep dataset in R, or the AD4. The dataset is not
large and this is compensated for by its antiquity. The t.test can be applied on the sleep
data site straightaway.

> plot(extra ∼ group, data = sleep) # output suppressed
> t.test(extra ∼ group, data = sleep)
Welch Two Sample t-test
data: extra by group
t = -1.8608, df = 17.776, p-value = 0.07939
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-3.3654832 0.2054832
sample estimates:
mean in group 1 mean in group 2

0.75 2.33
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At size 𝛼 = 0.1, the hypothesis that the heights are equal needs to be rejected, whereas at
𝛼 = 0.05 level, it may be seen from the p-value and 95% confidence interval that there is not
enough evidence in the dataset to reject the hypothesis of equal heights of parent and child. ◽

?qgamma, ?qnorm, ?expression, ?pnorm, ?power.t.test

7.13 Likelihood Ratio Tests

Consider the generic testing problem H ∶ 𝜃 ∈ Θ0 vs K ∶ 𝜃 ∈ Θ1. As earlier, it is assumed that
a random sample X1, · · · ,Xn of size n is available.

Definition 7.13.1 The Likelihood Ratio Test. For the problem of testing H ∶ 𝜃 ∈ Θ0 vs K ∶
𝜃 ∈ Θ1, the likelihood ratio test is to reject H iff 𝜆(x) < c, for some constant c, where

𝜆(x) =
sup𝜃∈Θ0

L(𝜃|x)
sup𝜃∈ΘL(𝜃|x) . (7.61)

The constant c is to be determined from the size restriction:

sup
𝜃∈Θ0

P(L(𝜃|x) < c) = 𝛼.

The following examples deal with the construction of likelihood ratio tests.

Example 7.13.1. The Binomial Distribution. Suppose that X ∼ b(n, p) and the problem of
testing involves H ∶ p ≤ p0 against K ∶ p > p0. The likelihood ratio test requires the determi-
nation of 𝜆(x) such that

𝜆(x) =
supp≤p0

(
n
x

)
px(1 − p)n−x

sup0≤p≤1

(
n
x

)
px(1 − p)n−x

.

In Example 5.9.6. we saw that the pmf of random variable X initially increases, and then
reaches the maximum at p = x∕n, and then decreases. Thus

sup
p≤p0

px(1 − p)n−x =

{
px

0(1 − p0)n−x, if p0 < x∕n,(
x
n

)x(
1 − x

n

)n−x
, if x∕n < p0.

Thus, the likelihood ratio test becomes

𝜆(x) =

{
px

0
(1−p0)n−x

(x∕n)x(1−(x∕n)n−x) , if p0 < x∕n,

1, if x∕n < p0.

The completion of the R program to obtain the likelihood ratio test is left as an exercise for
the reader. ◽

The likelihood ratio tests are obtained for the normal distribution in the following
subsections.
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7.13.1 Normal Distribution: One-Sample Problems

In Section 7.11 we saw that UMP tests do not exist for many crucial types of hypothesis
problems. As an example, for a random sample of size n from N(𝜇, 𝜎2), 𝜎 known, the UMP
test does not exist for testing H ∶ 𝜇 = 𝜇0 against K ∶ 𝜇 ≠ 𝜇0. We will consider these types of
problems in this subsection.

Example 7.13.2. Testing H ∶ 𝝁 = 𝝁0 against K ∶ 𝝁 ≠ 𝝁0 when 𝝈 is known. In this prob-
lem, Θ0 = 𝜇0, and Θ1 = ℝ. The likelihood function is given by

L(𝜇|x, 𝜎2) = {𝜎
√

2𝜋}−n exp

{
− 1

2𝜎2

n∑
i=1

(xi − 𝜇)2
}

.

It is straightforward to see that the maximum of L(𝜇|x, 𝜎2) over Θ0 is simply given by the
likelihood function at 𝜇 = 𝜇0, that is,

sup
Θ0

L(𝜇|x, 𝜎2) = {𝜎
√

2𝜋}−n exp

{
− 1

2𝜎2

n∑
i=1

(xi − 𝜇0)2
}

.

For the denominator term of 𝜆(x), note that maximum over Θ occurs at the MLE x̄, that is:

sup
Θ

L(𝜇|x, 𝜎2) = {𝜎
√

2𝜋}−n exp

{
− 1

2𝜎2

n∑
i=1

(xi − x̄)2
}

.

Thus, the likelihood ratio becomes

𝜆(x) = exp

{
− 1

2𝜎2

(
n∑

i=1

(xi − 𝜇0)2 −
n∑

i=1

(xi − x̄)2
)}

,

= exp
{
− 1

2𝜎2

(
n(x̄ − 𝜇0)2

)}
.

The LR test procedure will be to reject H if n(X̄ − 𝜇0)2∕𝜎2 > k, that is, if the value of |X̄ − 𝜇0|
is too large or too small. The value of k is determined by the size of the required test. The final
form of the LR test is given by

𝜙LR(X) =
{

1, if |√n(X̄ − 𝜇0)∕𝜎| > z𝛼∕2,

0, otherwise.

A small R function LRNormalMean_KV is given below:

> LRNormalMean_KV = function(x,mu0,alpha,sigma){
+ ifelse(abs(sqrt(length(x))*(mean(x)-mu0)/sigma)>qnorm(1-alpha/2),
+ "Reject Hypothesis H","Fail to Reject Hypothesis H")
+ }

The user may use this function to test for sample datasets of his choice. ◽
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Example 7.13.3. Testing H ∶ 𝝁 = 𝝁0 against K ∶ 𝝁 ≠ 𝝁0 when 𝝈 is unknown. Unlike the
previous problem, here the the hypothesis H is composite, as 𝜎 is unknown. We will first begin
with two quantities:

�̂�2 =
∑n

i=1 (xi − 𝜇0)2

n
, (7.62)

�̂�∗2 =
∑n

i=1 (xi − x̄)2

n
. (7.63)

It can then be shown that

sup
Θ0

L(𝜇|x, 𝜎) = 1

(�̂�
√

2𝜋)n
exp(−n∕2), (7.64)

sup
Θ

L(𝜇|x, 𝜎) = 1

(�̂�∗
√

2𝜋)n
exp(−n∕2). (7.65)

The likelihood ratio then becomes

𝜆(x) =
{

�̂�∗2

�̂�2

}n∕2

=

⎡⎢⎢⎢⎢⎣
1 +

n(x̄ − 𝜇0)2
n∑

i=1
(xi − x̄)2

⎤⎥⎥⎥⎥⎦

−n∕2

.

The test procedure is given by

𝜙LR(x) =

{
1, if n(X̄−𝜇0)2∑n

i=1 (Xi−X̄)2 > k,

0, otherwise,

=
{

1, if |√n(X̄ − 𝜇0)∕S| > tn−1,𝛼∕2,

0, otherwise,

where S is the sampling variance. We close this example with the R function LRNor-
malMean_UV.

> LRNormalMean_UV <- function(x,mu0,alpha){
+ S <- sd(x); n <- length(x)
+ ifelse(abs(sqrt(length(x))*(mean(x)-mu0)/S)>qt(n-1,1-alpha/2),
+ "Reject Hypothesis H","Fail to Reject Hypothesis H")
+ }

Test the working of the likelihood ratio function LRNormalMean_UV on any dataset of your
choice. ◽

Example 7.13.4. Testing H ∶ 𝝈 = 𝝈0 against K ∶ 𝝈 ≠ 𝝈0 when both 𝝁 and 𝝈 are
unknown. As in the previous example, the hypothesis H is composite here. Define the
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sample mean and variance by

X̄ =
∑n

i=1 Xi

n
,

S2 =
∑n

i=1 (Xi − X̄)2

n − 1
, n ≥ 2.

Since the MLE of 𝜇 is X̄, we have

sup
Θ0

L(𝜇, 𝜎2) = 1

(𝜎0

√
2𝜋)n

exp

{
−
∑n

i=1 (xi − x̄)2

2𝜎2
0

}
.

Define �̂�∗2, as in Equation 7.63. However, for Θ, we have

sup
Θ

L(𝜇, 𝜎2) = 1

(�̂�∗
√

2𝜋)n
exp(−n∕2).

Thus, the likelihood ratio is given by

𝜆(x) =

[
�̂�∗2

𝜎2
0

exp

{
− �̂�∗2

𝜎2
0

+ 1

}]n∕2

.

The likelihood ratio test is finally given by

𝜙LR(x) =
⎧⎪⎨⎪⎩

1, if �̂�∗2

𝜎2
0

exp

{
1 − �̂�∗2

𝜎2
0

}
> k,

0, otherwise,

=

⎧⎪⎪⎨⎪⎪⎩

1, if (n−1)S2

𝜎2
0

< 𝜒2
n−1,𝛼∕2

,

or (n−1)S2

𝜎2
0

> 𝜒2
n−1,1−𝛼∕2

,

0, otherwise.

(7.66)

The R function LRNormalVariance_UM closes the example.

> LRNormalVariance_UM <- function(x,sigma0,alpha){
+ S <- var(x); n <- length(x)
+ chidata <- ((n-1)*S)/(sigma0 ̂ 2)
+ ifelse((chidata<qchisq(df=n-1,p=alpha/2)||
+ (chidata>qchisq(df=n-1,p=1-alpha/2))),
+ "Reject Hypothesis H","Fail to Reject Hypothesis H")
+ }

Thus, using the LRNormalVariance_UM function, the likelihood ratio test in the case of
the unknown variance can be carried out. ◽
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7.13.2 Normal Distribution: Two-Sample Problem for the Mean

As in the previous subsection, we will only consider the testing problem related to means. A
very brief summary is given here.

The general problem is described as follows. Let X11, · · · ,X1n1
be a random sample from

N(𝜇1, 𝜎
2), and X21, · · · ,X2n2

a random sample from N(𝜇2, 𝜎
2). Assume that all the three par-

ameters 𝜇1, 𝜇2, and 𝜎2 are unknown. For a specified level 𝛼, the aim is to obtain the likelihood
ratio test for testing H ∶ 𝜇1 = 𝜇2 against K ∶ 𝜇1 ≠ 𝜇2. Define the following quantities:

X̄i =

∑ni
j=1 Xij

ni
, i = 1, 2, (7.67)

S2
i =

∑ni
j=1 (Xij − X̄i)2

ni − 1
, i = 1, 2, (7.68)

S2
p =

(n1 − 1)S2
1 + (n2 − 1)S2

2

n1 + n2 − 2
. (7.69)

The size 𝛼 likelihood ratio test for H against K is given by

𝜙LR(x) =

{
1, if |X̄1−X̄2|√

1∕n1+1∕n2Sp
> tn1+n2−2,𝛼∕2,

0, otherwise.
(7.70)

The next R function, LRNormal2Mean, with an illustration, gives the likelihood ratio test.

> LRNormal2Mean <- function(x,y,alpha){
+ xbar <- mean(x); ybar <- mean(y)
+ nx <- length(x); ny <- length(y)
+ Sx <- var(x); Sy <- var(y)
+ Sp <- ((nx-1)*Sx+(ny-1)*Sy)/(nx+ny-2)
+ tcalc <- abs(xbar-ybar)/sqrt(Sp*(1/nx+1/ny))
+ conclusion=ifelse(tcalc>qt(df=nx+ny-2,p=alpha/2),
+ "Reject Hypothesis H","Fail to Reject Hypothesis H")
+ return(c(tcalc,conclusion,Sp))
+ }
> lisa <- c(234.26, 237.18, 238.16, 259.53, 242.76, 237.81,
+ 250.95, 277.83)
> mike <- c(187.73, 206.08, 176.71, 213.69, 224.34, 235.24)
> LRNormal2Mean(mike,lisa,0.05)
[1] "4.06112227911276" "Reject Hypothesis H"
+ "332.808456944444"

To the best of our knowledge, R does not have an implementation for the likelihood ratio test.

?qnorm, ?qchisq, ?ifelse
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7.14 Behrens-Fisher Problem

In the two-sample problems for normal distributions considered earlier, the problem of testing
H ∶ 𝜇1 = 𝜇2 against K ∶ 𝜇1 ≠ 𝜇2, when 𝜎1 and 𝜎2 are unknown and distinct, has not been
considered. There has been a special reason for this. It has been proved by Linnik (1968) in
this case that the UMPU test does not exist and there has been a lot of controversy surrounding
the solutions proposed to date and it is even today an open problem.

The problem was first attempted by Behrens in 1929 and by Fisher in 1935. Kim and Cohen
(1995) provide an excellent review of the solutions proposed by various statisticians. Schéffe
(1943), Aspin (1948), Lindley (1965), Robinson (1976), and Welch (1938, 1947) are some of
the important works in this direction.

Suppose that we have n1 observations from N(𝜇1, 𝜎
2
1 ) and n2 observations from N(𝜇2, 𝜎

2
2 ).

As earlier, let X̄1, X̄2, S
2
1, S

2
2, S

2
p denote the sample means, variances, and pooled variance. The

Student’s t-test pivotal statistic with n1 + n2 − 2 degrees of freedom is given by

t =
X̄1 − X̄2√

1∕n1 + 1∕n2Sp

.

However, the Student’s t-test procedure makes the assumption of the variances being equal.
Thus, the use of the t-test is inappropriate here. An ad-hoc solution is the following. Compute
t∗ by

t∗ =
X̄1 − X̄2√

S2
1∕n1 + S2

2∕n2

,

and compare it with the critical value obtained from a t variable with min(n1 − 1, n2 − 1)
degrees of freedom. For a dataset from Kim and Cohen’s review paper, an R program is given
next.

> adhocBF <- function(x,y,delta,alpha){
+ tstar <- (delta-mean(y)+mean(x))/sqrt(var(x)/length(x)+var(y)/
+ length(y))
+ v <- min(length(x)-1,length(y)-1)
+ pval <- 2*(1-pt(tstar,v))
+ confint <- c(mean(y)-mean(x)-qt(1-alpha/2,v)
+ *sqrt(var(x)/length(x)+
+ var(y)/length(y)),mean(y)-mean(x)+qt(1-alpha/2,v)*
+ sqrt(var(x)/length(x)+var(y)/length(y)))
+ return(list=c(tstar,pval,confint))
+ }
> x <- c(8,10,12,15)
> y <- c(1,7,11)
> adhocBF(x,y,delta=0,alpha=0.05)
[1] 1.5049258 0.2712717 -18.9736452 9.1403119

A more satisfactory solution for the Behrens-Fisher problem is given by Welch and we will
discuss his solution with an R program.
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Compute the value of test statistic t as the same given by t∗. Define gi = S2
i ∕ni, i = 1, 2.

Define

�̂� =
(g1 + g2)2

g2
1∕(n1 − 1) + g2

2∕(n2 − 1)
(7.71)

The Welch solution is to carry out the test by using the value t∗ and comparing it with a t
random variate with �̂� degrees of freedom. As may be expected, in general �̂� is not an integer.
In such a case we round off the value to the nearest integer.

> WelchBF <- function(x,y,alpha){
+ gx <- var(x); gy <- var(y)
+ t <- (mean(x)-mean(y))/sqrt(gx/length(x)+gy/length(y))
+ vhat <- (gx+gy) ̂ 2/(gx ̂ 2/(length(x)-1) + gy ̂ 2/(length(y)-1))
+ pval <- 2*(1-pt(t,round(vhat)))
+ ci <- qt(c(alpha/2,1-alpha/2),round(vhat))
+ return(list=c(t,pval,ci))
+ }
> WelchBF(x,y,alpha=0.05)
[1] 1.5049258 0.2294048 -3.1824463 3.1824463

For more details related to the Behrens-Fisher problem, refer to the review article of Kim
and Cohen.

?qt

7.15 Multiple Comparison Tests

Consider the following hypothesis:

H ∶ 𝜃1 = 𝜃2 = · · · = 𝜃s = 0. (7.72)

Here, we have a set of hypotheses to be tested and this framework is popularly known as the
multiple comparision test. Such hypotheses are very common in Experimental Designs, see
Chapter 15. Suppose that 𝜃i, i = 1, 2, · · · , s, denotes the mean yield due to the i-th treatment.
In its general setup, the hypothesis says that none of the treatment means are significant. In case
we fail to reject H, the conclusion is indeed that none of the treatment means are significant
and the analysis stops. However, if we reject the hypothesis H, a host of questions then arise.
In this case, the conclusion says that at least one treatment is significant and the interest is then
to identify such a treatment. A slight variant of the problem is testing to some pre-specified
level, which is generally known as the mean of the control treatment.

Let us begin with a naive approach. That is, we consider s hypotheses instead of a single
hypothesis and consider the problem of testing Hi ∶ 𝜃i = 0, i = 1, · · · , s. Suppose each
hypothesis is tested at level 𝛼. A simple exploration shows the dire consequence of this naive
approach. The forthcoming program will show that the probability of one or more false
rejections increases drastically with s.

> n <- c(1,2,5,10,50)
> alpha <- 0.05
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> prob_rejection <- function(n,alpha) (1-(1-alpha) ̂ {n})
> round(sapply(n,prob_rejection,alpha),2)
[1] 0.05 0.10 0.23 0.40 0.92

That is, the Type I error grows very fast and with s = 50, we are almost certain of having
committed the error. This motivates the next definition.

Definition 7.15.1 Family-wise Error Rate. Consider a family of hypotheses Hi ∶ 𝜃i ∈ Θi.
Then, the Family-wise Error Rate, abbreviated as FWER, is defined as the probability of one
or more false rejections of the hypotheses. In symbols, if V is the number of false rejections
among the s hypotheses, then

FWER = P(V ≥ 1). (7.73)

The goal of the multiple testing problem is to restrict the FWER to a pre-specified level 𝛼:

FWER ≤ 𝛼. (7.74)

In the next section we will focus on two simple, yet useful, procedures for the multiple
testing problem.

7.15.1 Bonferroni’s Method

The Bonferroni’s method is a simple consequence of using the Bonferroni inequality. Let p̂i be
the p-value associated with hypothesis Hi, i = 1, · · · , s. Then reject the family of hypotheses
Hi, i = 1, · · · , s if p̂i ≤ 𝛼∕s, for any i = 1, · · · , s. It may be easily verified is this case that

FWER ≤ 𝛼.

An illustration will be provided for the example provided in R.

Example 7.15.1. Bonferroni’s Method for Testing if Ozone depends on the Month.
Consider the airquality dataset from the datasets package. The data is available on
the ozone levels measured in parts per billion from 1300 to 1500 hours at Roosevelt Island, and
Month variable denotes the month number. The problem is to test if the ozone level depends
on the month number.

> data(airquality)
> boxplot(airquality$Ozone ∼ airquality$Month) # Output suppressed
> airquality$Month <- factor(airquality$Month)
> pairwise.t.test(airquality$Ozone,airquality$Month, p.adj = "bonf")
Pairwise comparisons using t tests with pooled SD
data: airquality$Ozone and airquality$Month
5 6 7 8

6 1.00000 - - -
7 0.00029 0.10225 - -
8 0.00019 0.08312 1.00000 -
9 1.00000 1.00000 0.00697 0.00485
> pairwise.t.test(airquality$Ozone, airquality$Month,
+ p.adj = "bonf")$p. value<=0.05/10
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5 6 7 8
6 FALSE NA NA NA
7 TRUE FALSE NA NA
8 TRUE FALSE FALSE NA
9 FALSE FALSE FALSE TRUE

Using the pairwise.t.test function with the option p.adj="bonf", the multiple
hypotheses can be tested using the Bonferroni solution in R. Since some p-values are less
than 𝛼∕s, we reject the family of hypotheses. ◽

7.15.2 Holm’s Method

Consider the ordered p-values p̂(1) ≤ · · · ≤ p̂(s) and let the associated hypotheses be
H(1), · · · ,H(s). The Holm procedure is a stepdown procedure and is described below, adapted
from page 351 of Lehmann and Romano (2005).

Step 1. If p̂(1) ≥ 𝛼∕s, accept H1, · · · ,Hs and stop. If p̂(1) < 𝛼∕s, reject H(1) and test the remain-
ing s − 1 hypotheses at level 𝛼∕(s − 1).

Step 2. If p̂(2) ≥ 𝛼∕(s − 1) with p̂(1) < 𝛼∕s, accept H(2), · · · ,H(s) and stop. If p̂(1) < 𝛼∕s and
p̂(2) < 𝛼∕(s − 1), reject H(1) and H(2) and test the remaining s − 2 hypotheses at level
𝛼∕(s − 2).

Step 3. Continue the steps until H(s).

For proof that the Holm’s method meets the requirement FWER ≤ 𝛼, see Theorem 9.1.2 of
Lehmann and Romano (2005). We will close the discussion with an example.

Example 7.15.2. Bonferroni’s Method for Testing if Ozone depends on the Month. Contd.
In continuation of the previous example, we now investigate similar hypotheses for the Holm’s
method. The reader should pay more attention to the R program.

> pairwise.t.test(airquality$Ozone, airquality$Month, p.adj = "holm")
+ $p. value

5 6 7 8
6 1.0000000000 NA NA NA
7 0.0002638036 0.05112741 NA NA
8 0.0001949061 0.04987333 1.000000000 NA
9 1.0000000000 1.00000000 0.004878798 0.003878108
> holmmat <- pairwise.t.test(airquality$Ozone,
+ airquality$Month, p.adj = "holm")$p. value
> holmmat[lower.tri(holmmat,diag=TRUE)]<(0.05/(1:10))
[1] FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE

Using the pairwise.t.test function with the option p.adj="bonf", the multiple
hypotheses is tested with the Holm solution in R. The same conclusion is reached as in the
previous example. ◽

?pairwise.t.test
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7.16 The EM Algorithm*

7.16.1 Introduction

The Expectation-Maximization Algorithm, more popularly known as the EM algorithm, is a
very popular tool, not only among the statisticians, but also among the data miners. Wu and
Kumar (2009) have selected the EM algorithm as one among the top ten useful algorithms for
data miners. McLachlan and Krishnan (1998, 2008) give a rigorous mathematical introduction
with a large number of illustrations of the EM algorithm. Little and Rubin (1987, 2002) is also
one of the earliest books to give a detailed account of the algorithm. Dempster, Laird, and
Rubin (1977) introduced the breakthrough EM algorithm and enhanced statistical methods
which can accommodate missing data. This paper is also popularly referred to as the DLR
paper. The introductory literature has so far been in reversed chronological order.

It is important to understand that the EM algorithm is not really an algorithm in the tra-
ditional usage of the technical word “algorithm”. It is a generic tool which gives rise to different
statistical methods depending on the context of the application. Ripley in a reply to an R
user has rightly explained this de facto as “The EM algorithm is not an algorithm for solving
problems, rather an algorithm for creating statistical methods.”

In the context of handling missing data, Schafer (2000) has rightly said that “The key ideas
behind EM and data augmentation are the same: to solve a difficult incomplete-data problem
by repeatedly solving tractable complete-data problems.” Terry Speed (2008) has also said this
about the EM algorithm: “I know many statisticians are deeply in love with the EM algorithm.”

“EMMIX” is probably one of the few softwares which implements the EM algorithm for
the mixture of multivariate normal or t- distribution.

7.16.2 The Algorithm

In general, the EM algorithm is stated in two steps: the E-step and the M-step. We will begin
with a description as given in McLachlan and Krishnan (2008). Let Y be a random vector and
y be its observed value. The sample space of Y is denoted by ΩY. We will denote the pdf of Y
by g(y, 𝜃), where 𝜃 = (𝜃1, · · · , 𝜃d)T ∈ ΘY is the vector of unknown parameters.

To make use of the EM algorithm, we will always pretend that y is incomplete in the sense
that the experiment consists of some values which we treat as missing data. That is, we will
assume that we have missing data in z, and if this is augmented with y, we will have the
complete data in x = {y, z}. Let ΩX denote the sample space of X.

The pdf of the complete observation x will be denoted by gc(x, 𝜃). Thus, under the assump-
tion that x is completely observed, the log-likelihood of x is given by

ln Lc(𝜃|x) = ln gc(x, 𝜃). (7.75)

Clearly, as the sample space of the x’s is larger than the y’s, we have a many-to-one mapping
from  to  . Thus, the observed data can be written as the function y = y(x). Hence, we have
the relationship

g(y, 𝜃) = ∫ΩX (y)
gc(x, 𝜃).dx

Assume that we have an initial value as an estimate of 𝜃 in 𝜃(0). Using the observed data
y and 𝜃(0), we next specify the conditional probability distribution of gc(x|y, 𝜃(0)). Since the
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complete data log-likelihood ln gc(x, 𝜃) is not observable, we will replace it by its conditional
expectation given y and 𝜃(0). This conditional expectation is the famous Q-function defined by

Q(𝜃|𝜃(0)) = ∫(y)
ln Lc(𝜃|x)gc(x|y, 𝜃(0))dx. (7.76)

This is the famous E-step of the EM algorithm. In the M-step, we maximize Q(𝜃|𝜃(0)) to obtain
𝜃(1) such that

Q(𝜃(1)|𝜃(0)) ≥ Q(𝜃|𝜃(0)). (7.77)

Thus, the EM algorithm can be summarized as below:

• E-Stem: Calculate Q(𝜃|𝜃(k)), where

Q(𝜃|𝜃(k)) = E𝜃(k){ ln gc(𝜃)|y}. (7.78)

• M-Step: Select any value 𝜃(k+1) of 𝜃 ∈ ΘY , such that

Q(𝜃(k+1)|𝜃(k)) ≥ Q(𝜃|𝜃(k)),∀𝜃 ∈ ΘY . (7.79)

The convergence criteria for the EM algorithm is that the difference L(𝜃(k+1) − 𝜃(k)) should
be approximately 0. This explanation of the EM algorithm in two steps can be found almost
everywhere. However, we have found the five steps detail of the EM algorithm by Gupta and
Chen (2011) to be more friendly and despite a repetition of the above content, we will state
it here.

1. Set k = 0 and obtain an initial estimate for 𝜃 as 𝜃(0).
2. Assume that 𝜃(k) as the truth and using the observed data y, completely specify the con-

ditional probability distribution gc(x|y, 𝜃(k)) for the complete data x.
3. Obtain the conditional expected log-likelihood Q-function:

Q(𝜃|𝜃(k)) = E𝜃(k){ln gc(𝜃)|y}.
4. Find 𝜃(k+1), which maximizes Q(𝜃|𝜃(k)).
5. Set k ∶= k + 1 and go to the first step.

We understand that the EM algorithm is best illustrated through applications.

7.16.3 Introductory Applications

We will consider problems which have been widely used illustrating the EM algorithm.

Example 7.16.1. The Multinomial Distribution. Consider an observation from a multi-
nomial distribution, say y, that is, we have

y = (y1, y2, y3, y4).

Suppose that the probability vector associated with the multinomial distribution is specified
by

p =
(1

2
+

p

4
,

1
4
(1 − p), 1

4
(1 − p),

p

4

)
, 0 ≤ p ≤ 1.
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A popular dataset in the context of a multinomial distribution is y = (125, 18, 20, 34). This
example has been used in Rao (1973), DLR, and McLachlan and Krishnan (1998, 2008),
among many other researchers. The goal of the problem is estimation of p based on the
observed data y. The probability mass function, g(y, p), is then given by

g(y, p) = n!
y1!y2!y3!y4!

(1
2
+

p

4

)y1(1
4
(1 − p)

)y2(1
4
(1 − p)

)y3(p

4

)y4
.

Thus, the log-likelihood function, sans the constant terms, may be written as

ln L( p) = y1 ln(2 + p) + (y2 + y3) ln(1 − p) + y4 ln( p).

It is important to note that the score function for the above log-likelihood function can be solved
explicitly for obtaining the MLE �̂�. Let us use the MLE technique seen in the Section 7.6.

> y <- c(125, 18, 20, 34)
> logl <- function(p) {
+ y[1]*log(2+p)+(y[2]+y[3])*log(1-p)+y[4]*log(p)
+ }
> optimize(logl,c(0,1),maximum=TRUE)
$maximum
[1] 0.6268298
$objective
[1] 67.3841

However, we will treat this problem as a missing data problem. In the original formulation
we have four cells. The first cell with probability 1

2
+ p

4
can be split into two sub-cells with

probabilities 1
2

and p
4
, and we will denote the frequencies of these two cells by y11 and y12,

which will meet the requirement y1 = y11 + y12. Define the complete data vector as

x = (y11, y12, y2, y3, y4).

The multinomial cell probabilities for x are then specified by

p′ =
(1

2
,

p

4
,

1
4
(1 − p), 1

4
(1 − p), 𝜃

4

)
, 0 ≤ p ≤ 1.

and the log-likelihood function for the complete data vector is

ln Lc( p) ∝ (y12 + y4) ln p + (y2 + y3) ln(1 − p).

Using the score function of the above log-likelihood, we can obtain the MLE as

p̂c =
y12 + y4

y12 + y2 + y3 + y4
.

We have used p̂c to represent the ML estimator based on the complete data. However, we cannot
straightaway compute it, as y12 is not observed. This sets up room for the EM algorithm. The
E-step will help in obtaining an estimate of the missing data (y11, y12), and the M-step will
update the estimate of the parameters.
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In the E-step, we recognize that as the probability distribution of the complete data vector X
is a multinomial distribution, conditional on y, y12 has a binomial distribution with probability

1∕2(
1
2
+ p(k)

4

) ,
where p(k) is the estimate at the iteration k. Thus, the k-th iteration estimate of y12 is given by

y(k)12 =
y1∕2(

1
2
+ p(k)

4

) =
2y1

2 + p(k)
, (7.80)

and for y11 it is simply
y(k)11 = y1 − y(k)12 .

It is further easier to see that an estimate of p, for the M-step, is given by

p(k+1) =
y(k)12 + y4

n − y(k)11

=
2y1

2+p(k)
+ y4

2y1
2+p(k)

+ y2 + y3 + y4

. (7.81)

An R program which implements the E- and M-step detailed above is given next.

> p0 <- 0.5
> estep <- function(y,p0){
+ temp <- c(2*y[1]/(2+p0),p0*y[1]/(2+p0),y[2],y[3],y[4])
+ return(temp)
+ }
> emconvergence <- function(y,p0){
+ pold <- p0
+ pnew <- p0+0.5
+ while(abs(pnew-pold)>0.0000000001){
+ pold <- p0
+ x <- estep(y,p0) # E-Step
+ pnew <- (p0*y[1]/(2+p0)+y[4])/(p0*y[1]/(2+p0)+y[2]+y[3]+y[4])
+ # M-Step
+ p0 <- pnew
+ }
+ return(pnew)
+ }
> pmle <- emconvergence(y,p0)
> pmle
[1] 0.6268215

Note that in the estep function, the small piece of code 2*y[1]/(2+p0) implements the
E-step as required in Equation 7.80. Similarly, the code on the right-hand side of the line pnew
clearly captures the M-step given in Equation 7.81. The while loop ensures convergence up
to the required accuracy. The ML estimate 0.6268215 in the EM algorithm is closer to the
one obtained using the optimize function, as seen earlier. ◽
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Example 7.16.2. Application of Multinomial Distribution in Genetics. A very interesting
application of the multinomial distribution occurs in genetics. Rao (1973), DLR, and McLach-
lan and Krishnan (1998, 2008), Monahan (2011), and many other texts discuss this application
at great length. The problem is estimation of gene frequencies of blood antigens A and B by
observing four main blood groups AB, A, B, O. Let p and q respectively denote gene frequencies
A and B. Let 𝝅 = (𝜋1, 𝜋2, 𝜋3, 𝜋4) be the probabilities of the group AB, A, B, O. As the sampling
mechanism here is with replacement, the cell probabilities are obtained in the following way:

𝜋1 = P(AB) = (pq) + (qp) = 2pq,

𝜋2 = P(A) = p(2 − p − 2q),

𝜋3 = P(B) = q(2 − q − 2p),

𝜋4 = P(O) = (1 − p − q)(1 − q − p) = (1 − p − q)2.

Symbolically, we have conveyed how we get 𝜋1 and 𝜋4. It is an exercise for the reader to
similarly derive the other two probabilities. Of course, if you get 𝜋3, 𝜋2 follows by symmetry.
The parameters of interest in this problem is of course 𝜽 = ( p, q). Also, define r = 1 − p − q.
The observed data is y = (nAB, nA, nB, nO) = (17, 182, 60, 176). The log-likelihood function is
then given by

ln L(𝜽) = 2nO ln(1 − p − q) + nA ln p(2 − p − 2q) + nB ln q(2 − q − 2p) + nAB ln 2pq.

Equivalently, the log-likelihood can be written in terms of 𝝅 as

ln L(𝜽) = nO ln𝜋4 + nA ln𝜋2 + nB ln𝜋3 + nAB ln𝜋1.

In terms of 𝜽, the log-likelihood does not admit closed-form expression and we will
introduce a new framework which will help in deployment of the EM algorithm. Define the
complete-data vector by

x = (nO, z
′)′

where z = (nAA, nAO, nBB, nBO)′ represents the missing data corresponding to the frequencies
nAA, nAO, nBB, and nBO. In Table 7.5, we present cells and their corresponding frequencies.

Table 7.5 Multinomial Distribution in Genetics

Original Problem Modified for EM Algorithm

Category Cell
Probability

Observed
Frequency

Category Cell
Probability

Observed
Frequency

O r2 nO O r2 nO

A p2 + 2pr nA AA p2 nAA

B q2 + 2qr nB AO 2pr nAO

AB 2pq nAB B q2 nBB

BO 2qr nBO

AB 2pq nAB
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The complete data log-likelihood function is then given by

ln Lc( p, q) = 2nO ln r + 2nAA ln p + nAO ln p + nAO ln r

+ 2nBB ln q + nBO ln q + nBO ln r + nAB ln p + nAB ln q

= 2
(

nAA +
nAO

2
+

nAB

2

)
ln p + 2

(
nBB +

nBO

2
+

nAB

2

)
ln q

+ 2
(

nO +
nAO

2
+

nBO

2

)
ln r

= 2n+A ln p + 2n+B ln q + 2n+O ln r,

where n+A = nAA + nAO

2
+ nAB

2
, n+B = nBB + nBO

2
+ nAB

2
, and n+O = nO + nAO

2
+ nBO

2
.

The E- and M-step unfold as follows. In the E step, we find the missing data by using
the current conditional expectation of the sufficient statistic of 𝜽, which is essentially n+A and
n+B . To obtain them, assume that the current estimate of 𝜽 = ( p, q) is available in the form of
𝜽k = (pk, qk). Note that the computation of n+A and n+B requires values on the unobserved data
nAA, nAO, nBB, and, nBO. Consider the first element nAA. Now, conditional on the observed data
y, nAA has a binomial distribution with sample size nA and probability given by

p(k)
2

p(k)2 + 2p(k)r(k)
,

where (k) denotes the current iteration. That is, current conditional expectation of nAA given y
is

E
𝜽(k){nAA} = nk

AA = nA
p(k)

2

p(k)2 + 2p(k)r(k)
. (7.82)

Similarly, the following may be verified:

E
𝜽(k){nAO} = nk

AO =
2nAp(k)r(k)

p(k)2 + 2p(k)r(k)
, (7.83)

E
𝜽(k){nBB} = nk

BB = nB
q(k)

2

q(k)2 + 2q(k)r(k)
, (7.84)

E
𝜽(k){nBO} = nk

BO =
2nBq(k)r(k)

q(k)2 + 2q(k)r(k)
. (7.85)

Then, the M step consists of the following:

p(k+1) =
n(k)AA + n(k)AO∕2 + nAB∕2

n
, (7.86)

q(k+1) =
n(k)BB + n(k)BO∕2 + nAB∕2

n
, (7.87)

r(k+1) = 1 − p(k+1) − q(k+1). (7.88)

The following R program for the first five iterations of the EM algorithm gives the solution for
the problem on hand.
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> y <- c(176,182,60,17)
> n <- sum(y)
> p0 <- 0.26399
> q0 <- 0.09299
> r0 <- 1-p0-q0
> log_lik=n_aa=n_ao=n_bb=n_bo=p_new=q_new=r_new=NULL
> for(i in 1:5){
+ log_lik[i] <- 2*y[1]*log(r0)+y[2]*log(p0 ̂ {2}+2*p0*r0)+y[3]
+ *log(q0 ̂ {2}+2*q0*r0)+y[4]*log(2*p0*q0)
+ n_aa[i] <- y[2]*p0 ̂ {2}/(p0 ̂ {2}+2*p0*r0)
+ n_ao[i] <- (2*y[2]*p0*r0)/(p0 ̂ {2}+2*p0*r0)
+ n_bb[i] <- y[3]*q0 ̂ {2}/(q0 ̂ {2}+2*q0*r0)
+ n_bo[i] <- (2*y[3]*q0*r0)/(q0 ̂ {2}+2*q0*r0)
+ p_new[i] <- (n_aa[i]+n_ao[i]/2+y[4]/2)/n
+ q_new[i] <- (n_bb[i]+n_bo[i]/2+y[4]/2)/n
+ r_new[i] <- 1-p_new[i]-q_new[i]
+ p0 <- p_new[i];q0 <- q_new[i];r0 <- 1-p0-q0
+ }
> p_new;q_new;r_new;log_lik
[1] 0.2643643 0.2644311 0.2644422 0.2644440 0.2644443
[1] 0.09315619 0.09316760 0.09316866 0.09316879 0.09316881
[1] 0.6424795 0.6424013 0.6423892 0.6423872 0.6423869
[1] -492.5360 -492.5353 -492.5353 -492.5353 -492.5353

The vector objects n_aa, n_ao, n_bb, and n_bo are related with the computations for the
E-step, as given in the system of Equations 7.82–7.85, while p_new, q_new, and r_new deal
with the M-steps given in Equations 7.86–7.88. The rest of the program is simpler to follow.
The results may be verified with Table 2.8 of McLachlan and Krishnan (1998, 2008). ◽

?optimize

7.17 Further Reading

7.17.1 Early Classics

Fisher! In the 1920s, Sir R.A. Fisher wrote a series of ground-breaking papers on inference.
Fisher (1925-1954) has given a first account on what should form the fundamentals of infer-
ence. Kendall and Stuart (1945–79) is one of the earliest and rigorous development of infer-
ence. Cramér’s (1946) book is one of the landmarks for inference. Lehmann (1958) gave a
detailed account related to testing of hypotheses. Rao (1965–73) is one of the all-time classics
and goes beyond the “linear” indicated in its title. Wilks (1962), Zacks (1971), and Cox and
Hinkley (1973) are some of the other rigorous books on statistical inference.

Let us now look at some of the earlier books which introduce the subject at an elementary
level. Snedecor and Cochran (1937–89) may have been the first book on “Statistical Methods”.
Mood, et al. (1950–74) is one of the earliest, elegant and elementary introduction to statistics.
Hoel, et al. (1971), Hogg and Craig (1978), Hogg and Tanis (1977), and DeGroot and Schervish
(2012), are also some of the best books written at their level.

In the Indian subcontinent, Das (1996) and Goon, et al. (1963) have written very useful
texts.
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7.17.2 Texts from the Last 30 Years

We do not intend to retain the chronological year of publication and jot down the texts which
readily come to mind. As seen, chapter, Mukhopadhyay (2000), Rohatgi and Saleh (2000), and
Casella and Berger (2000) have influenced this chapter a lot. Pawitan (2001) has been freely
used for illustration of many concepts. Geisser and Johnson (2006) is a very compact work and
will be useful to brush up on the details for an expert. Sen, et al. (2009) is a very concise course
on the recent topics in inference. Wasserman (2004) is an advanced text which the reader will
find useful for the modern development of the subject. Keener (2010), Dekking, et al. (2005),
Liese and Miescke (2008), Knight (2000), Schervish (1995), and Shao (2003) are some of the
finest written texts.

McLachlan and Krishnan (2008) is the first book to detail the EM algorithm. Huber and
Ronchetti (2009) deals with the robustness of inference tools. As with the bibliography section
of Chapter 5, we have again repeated a futile exercise.

7.18 Complements, Problems, and Programs

Problem 7.1 For different values of 𝜇, obtain a plot of the curved normal family.

Problem 7.2 Italicize the y-axis label in the expression part in Example 7.3.1.

Problem 7.3 Find a sufficient statistic for 𝜆 when X ∼ Pois(𝜆).

Problem 7.4 Suppose X follows a negative binomial distribution with parameters as defined
in Equation 6.20. Assume that for obtaining r = 6 failures, x is noted as 10.
Obtain the likelihood function plot and then graphically infer about the ML
estimate of p.

Problem 7.5 In a directory on a particular folder of a hard disk drive, there are N = 50
files. Suppose that in a random selection of n = 12 files, 9 are observed to be
e-books. Under the assumption of a hypergeometric distribution, and by using
the likelihood function approach, give the ML estimate of m. Check Equation
6.30 if required to complete the R program.

Problem 7.6 For the two likelihood functions of the multinomial distribution in Examples
7.9.1 and 7.9.2, plot the likelihood function for obtaining the ML estimates.

Problem 7.7 Section 7.6 makes use of the function optimize and mle to obtain the ML
estimate. Will these techniques, return the ML estimate for the parameters in
the previous two examples? If the technique fails, test across values of the
parameters and data, what may be the reason behind it?

Problem 7.8 Using the Fishers score function technique, obtain the ML estimate in the
previous three examples.

Problem 7.9 For the galton dataset from UsingR package, what will be the conclusion
of the MP test that the height of the child is H ∶ 𝜇 = 68 against K ∶ 𝜇 = 75,
given that variance is known to be 1.7873.
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Problem 7.10 If the variance is unknown in the previous example, carry out the
likelihood-ratio test, see LRNormalMean_UV, and draw the conclusion at
the 𝛼 = 0.05 level of significance.

Problem 7.11 In Section 7.12, it was mentioned that for a sample from a uniform distribution
an UMP test exists for the hypothesis test problem of H ∶ 𝜃 = 𝜃0 against K ∶
𝜃 ≠ 𝜃0. Obtain the UMP test and, if possible, an appropriate R program.

Problem 7.12 Assume that the variances for the two treatments of the Youden-Beale prob-
lem are unknown and there is no reasonable way they can be assumed to be
equal. Use the two tests (R programs) developed in Section 7.14 in adhocBF
and WelchBF to draw the right conclusions.

Problem 7.13 Carry out the multiple hypothesis testing problem, see glht function from
the multcomp package, for the median polish regression model fitted in
Section 4.5.2.

Problem 7.14 Interpret the R program in Example 7.10.2.

Problem 7.15 The t-test used on the galton dataset is t.test(galton$child,mu=
mean(galton$parent)). However, there is a “pairing” between the
height of the child and the parent. Is the test t.test(galton$child,
galton$parent,paired=TRUE) more appropriate?
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Package(s): boot, UsingR, ISwR
Dataset(s): nerve, swiss, depression, galton, Mucociliary, x_bimodal

8.1 Introduction

The statistical methods discussed in the previous chapter are restricted by many assump-
tions. As an example, the inference is valid only if the assumed distribution is also the
underlying truth distribution. Non-parametric methods are versatile and not restricted by
many assumptions.

In this chapter we first consider estimation problems and then the testing problems. We will
begin with the importance of the empirical distribution function (edf) and state the fundamental
theorem of statistics in Section 8.2. The edf is further explored for estimation of statistical func-
tionals. The jackknife and bootstrap methods are considered in the next Section 8.3. Smoothing
techniques for estimation problems are covered in Section 8.4. Finally, we conclude the chapter
with some of the very important non-parametric tests in Section 8.5.

8.2 Empirical Distribution Function and Its Applications

Let X1,X2, … ,Xn be a random sample from an unknown distribution function F on the real
line. The empirical distribution function, abbreviated as edf, is then defined by

F̂n(x) =
1
n

n∑
i=1

I(Xi ≤ x), (8.1)

where I{} is an indicator function. The edf is very intuitive and plays a highly useful
tool in non-parametric inference. The asymptotic properties of edf are best explained by
the Glivenko-Cantelli theorem, sometimes called the fundamental theorem of statistics.
The asymptotic and other useful properties of edf are stated next, see Chapter 2 of
Wasserman (2006).

A Course in Statistics with R, First Edition. Prabhanjan Narayanachar Tattar, Suresh Ramaiah and B. G. Manjunath.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/tattar/statistics
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Theorem 8.2.1 Let F̂n(x) be the empirical distribution function of F. Then

• For any fixed x

EF̂n(x) = F(x), and Var(F̂n(x)) =
F(x)(1 − F(x))

n
. (8.2)

• The Glivenko-Cantelli Fundamental Theorem of Statistics states that

sup
x

|F̂n(x) − F(x)| a.s.
−→

0. (8.3)

◽

We will require the help of the Dvoretzky-Kiefer-Wolfowitz (DKW) inequality for construc-
tion of confidence sets.

Theorem 8.2.2 The Dvoretzky-Kiefer-Wolfowitz (DKW) inequality says that for any 𝜖 > 0

P

(
sup

x
|F̂n(x) − F(x)|) ≤ 2e−2n𝜖2

.

Now, define the lower and upper confidence limit for F̂n by

L(x) = max{F̂n(x) − 𝜖n, 0},

U(x) = min{F̂n(x) + 𝜖n, 1},

where 𝜖n =
√

ln (2∕𝛼)∕(2n). Then, for all F and all n

P(L(x) ≤ F(x) ≤ U(x),∀x) ≥ 1 − 𝛼. (8.4)
◽

These ideas will be followed up with an application to the nerve.dat dataset using the
useful ecdf.

Example 8.2.1. The Nerve Data. We consider the Nerve dataset popularized by Cox and
Lewis (1946). In this experiment, 799 waiting times are recorded for successive pulses along
a nerve fiber. This problem was introduced in Section 2 of Chapter 3. Let X be a random
variable denoting the time between successive pulses. The empirical (cumulative) distribution
functions, with the help of the ecdf function, and the 95% confidence intervals are obtained
for this dataset by the following R program.

> date(nerve)
> nerve_ecdf <- ecdf(nerve)
> knots(nerve_ecdf) # Returns the jump points of the edf
[1] 0.01 0.02 ... 0.29 0.30
[31] 0.31 0.32 ... 0.61 0.62
[61] 0.63 0.64 ... 1.35 1.38
> summary(nerve_ecdf) # the usual R summaries
Empirical CDF: 88 unique values with summary
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Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0100 0.2275 0.4450 0.4789 0.6825 1.3800
> nerve_ecdf(nerve) # returns the percentiles at the data points
[1] 0.63204005 0.11389237 ... 0.59449312 0.08260325

[14] 0.48310388 0.34292866 ... 0.51939925 0.34292866

[781] 0.96745932 0.34292866 ... 0.11389237 0.31163955
[794] 0.51939925 0.20025031 ... 0.38297872 0.91239049
> plot(nerve_ecdf,verticals=TRUE,do.points=FALSE,main="95%
+ CI for Empirical DF of Nerve Waiting Times", xlab="
+ Waiting Times in Seconds",ylab="Empirical DF",col="green")
> alpha <- 0.05 # the level of significance
> en <- sqrt(log(2/alpha)/(2*length(nerve)))
+ #en stands for the epsilon n term
> L_DKW <- pmax(nerve_ecdf(nerve)-en,0) #The lower DKW limit
> U_DKW <- pmin(nerve_ecdf(nerve)+en,1) #The lower DKW limit
> points(sort(nerve),L_DKW[order(nerve)],"l",col="red")
> points(sort(nerve),U_DKW[order(nerve)],"l",col="red")
> legend(x=c(1,1.5),y=c(0.8,0.6),legend=c("Empirical CDF",
+ "Lower Limit","Upper Limit"),col=c("green", "red","red"),pch="-")

The non-parametric empirical distribution function is fitted with the ecdf function
and for the nerve dataset, the fitted edf is created in nerve_ecdf. There are 88
unique values of the nerve object, verified with length(unique(nerve)), which
is not included in the program, and it is at these unique points that the edf F̂(x) will
have the jump points. The corresponding jump point values in the nerve variable are
obtained with knots(nerve_ecdf), and as a confirmation of the program, the reader
may try knots(nerve_ecdf)==sort(unique(nerve)). Invoking the fitted
empirical distribution function on the dataset returns the percentiles at the data values,
nerve_ecdf(nerve). The plot function on the nerve_ecdf object invokes the
settings of plot.ecdf and thus we obtain the curve colored green in Figure 8.1. The upper
and lower values for F(x) are derived with L_DKW and U_DKW, and are then added to the
figure with the points function with suitable labels as given in legend. ◽

The empirical cdf is useful in estimating many other parameters and the technique to do the
same is dealt with in the next subsection.

8.2.1 Statistical Functionals

The empirical cdf F̂ as an estimator of F is seen to have useful statistical properties. Though the
cdf F may be completely unknown, we are also interested in estimation of the mean, variance,
etc. Similar to the “plug-in” estimator in Section 7.6, we can use the empirical cdf to obtain
the quantities of interest. Let us begin with an important definition.

Definition 8.2.1 A statistical functional is any function of the probability distribution
function F.

A list of the examples of statistical functionals, including mean and variance, are given in
Table 8.1.
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Figure 8.1 A Plot of Empirical Distribution Function for the Nerve Dataset

Table 8.1 Statistical Functionals

Statistical Functionals
(Parameters)

Mathematical Expression
for the Functionals

Mean (𝜇) ∫ xdF(x)

Variance (𝜎2) ∫ (x − 𝜇)2dF(x)

Median (m) F−1(1∕2)

Correlation (𝜌)
E (X − 𝜇X)(Y − 𝜇Y )

𝜎X𝜎Y

Skewness (𝜅)
E(X − 𝜇)3

𝜎3

Statistical functionals of complex forms pose difficulties when there is the requirement of
statistical inference about them. The “plug-in” estimators may be used for inference of com-
plex statistical functions. A formal statement about this is the next definition.

Definition 8.2.2 The plug-in estimator of 𝜃 = T(F) is defined as

𝜃n = T(F̂n). (8.5)

◽
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Note that empirical distribution function F̂ is discrete, which puts a mass of 1∕n on each
variable Xi. This translates into a useful relationship that if the integral T(F) = ∫ g(x)dF(x) is
a linear functional, the plug-in estimator T(F̂n) can be estimated as

T(F̂n) =
1
n

n∑
i=1

g(Xi). (8.6)

Assume that an estimate of the standard error of the functional T(F̂n) is available, which we
will denote by ŝeT(F̂n). In such a case, we have the result that the asymptotic distribution of the

plug-in estimator is the normal distribution N(T(F̂n), ŝeT(F̂n)). Then, a 100(1 − 𝛼)% confidence
interval for T(F) can be constructed with

T(F̂n) ± z𝛼∕2ŝeT(F̂). (8.7)

Example 8.2.2. Estimating some Functionals and Illustration Using the Nerve
Dataset. We can see from the previous table that the mean 𝜇 = ∫ xdF(x) is a linear
functional, and thus its estimator can be derived as

�̂� = ∫ xdF̂(x) = 1
n

n∑
i=1

Xi = X̄n.

The second equivalence in the above equation follows here as g(x) = Xi. There is not a compu-
tational issue here and using the simple R function mean does the required work. Furthermore,
the standard error of X̄n is equal to

√
V(X̄) = 𝜎∕

√
n. Let �̂� be an estimator of 𝜎. The confi-

dence interval for 𝜇 is then given by X̄n ± z𝛼∕2�̂�∕
√

n, where z𝛼∕2 is the 𝛼∕2 quantile of the
standard normal distribution.

By definition, we have

𝜎2 = ∫ x2dF(x) −
(
∫ xdF(x)

)2

.

The plug-in estimator for the variance is then given by

�̂�2 = ∫ x2dF̂(x) −
(
∫ xdF̂(x)

)2

= 1
n

n∑
i=1

X2
i −

(
1
n

n∑
i=1

Xi

)2

= 1
n

n∑
i=1

(Xi − X̄n)2.

As earlier, we have used here the fact that g(x) = Xi. This above expression for the estimate of
the variance may be used in the formulas for the confidence intervals of the mean parameter.

Next, we look at the task of a non-parametric estimation of the skewness parameter using
the plug-in estimator of the parameter. By definition and further plug-in, we can estimate the
skewness as below:

�̂� =
∫ (x − 𝜇)3dF̂n(x)(∫ (x − 𝜇)2dF̂n(x)

)3∕2
=

∫ (
x − ∫ xdF(x)

)3
dF̂n(x)(∫ (x − ∫ xdF(x))2dF̂n(x)

)3∕2

=
∫ (

x − ∫ xdF̂(x)
)3

dF̂n(x)(∫ (x − ∫ xdF̂(x))2dF̂n(x)
)3∕2

=
∫ (x − �̂�)3dF̂n(x)(∫ (x − �̂�)2dF̂n(x)

)3∕2
=

1
n

∑n
i=1 (Xi − �̂�)3

�̂�3
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> # Mean, Variance, and Skewness in Statistical Functionals
> mean_nerve <- mean(nerve)
> mean_nerve
[1] 0.2185732
> var_nerve <- sum((nerve-mean_nerve) ̂ 2)/length(nerve)
+ # the "var" R function has scaling by (n-1)
> var_nerve
[1] 0.0437051
> skew_nerve <- mean((nerve-mean_nerve) ̂ 3)/(var_nerve ̂ (3/2))
> skew_nerve
[1] 1.761249

Computations were not really difficult for the problem on hand here. An alternative way of
obtaining the variance will be through the R function var and we leave it to the reader to
carry out that minor, yet subtle, change. ◽

?ecdf, ?knots, ?stepfun

8.3 The Jackknife and Bootstrap Methods

In a breakthrough paper, Quenouille (1949) invented a technique for bias reduction of statistics
and this technique has been later renamed by the eminent scientist J.W. Tukey as the jackknife
method. Tukey observed that the jackknife technique can be extended to obtain the variance
of complex statistics. The jackknife method has probably laid the foundation work for the
leave-one-out resampling statistical technique. Efron (1979) invented the bootstrap method,
which gives a general solution for the computation of standard errors and confidence intervals.
A detailed discussion of these two powerful techniques is beyond the scope of this book and
the enthusiastic reader may consult Shao and Tu (1995) for more in-depth details. We will be
content with a couple of important topics and illustrate them through the software.

8.3.1 The Jackknife

Consider a random sample X1,X2, … ,Xn from a probability distribution function F. Let
T = T(X1,X2, … ,Xn) be an estimator for a parameter 𝜃, and let the bias be represented by
bias(Tn) = E(Tn) − 𝜃. Define T(−i) as the statistic, which does not consider the ith observation.
The jackknife bias estimate is then defined by

bjack = (n − 1)(T̄n − Tn),

where T̄n =
∑n

i=1 T(−i)∕n. The bias-corrected jackknife estimator is

Tjack = Tn − bjack. (8.8)

The jackknife estimator can be equivalently written as

Tjack =
1
n

n∑
i=1

T̃i, (8.9)
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with T̃i = nTn − (n − 1)T(−i). The elements T̃i can be viewed as the contribution of the ith obser-
vation towards Tn. These elements are called pseudo-values. The variance of the jackknife
estimator is then given by

𝑣jack =
s̃2

n
, (8.10)

where

s̃2 =

∑n
i=1

(
T̃i −

1
n

∑n
i=1 T̃i

)2

n − 1
.

This idea will be illustrated for the estimation of the skewness parameter.

Example 8.3.1. Confidence Intervals for the Skewness Estimator. Recall that the nonpara-
metric estimator of the skewness is given by

�̂� =
1
n

∑n
i=1 (Xi − �̂�)3

�̂�3
.

We want to construct a 95% confidence interval for �̂�. The estimated value of �̂� is 1.76. The
forthcoming program gives us the required confidence interval.

> # Jackknife Estimator for Skewness of the Nerve Data set
> delete_mean_nerve=delete_var_nerve=delete_skew_nerve=nerve*0
> for(i in 1:length(nerve)){
+ delete_mean_nerve[i] <- mean(nerve[-i])
+ delete_var_nerve[i] <- sum((nerve[-i]-delete_mean_nerve[i]) ̂ 2)
+ /(length(nerve)-1)
+ delete_skew_nerve[i] <- mean((nerve[-i]-delete_mean_nerve[i]) ̂ 3)
+ /(delete_var_nerve[i] ̂ (3/2))
+ }
> se_skew_nerve <- sqrt(((length(nerve)-1)/length(nerve))*
+ (sum((delete_skew_nerve-skew_nerve) ̂ 2)))
> se_skew_nerve
[1] 0.1719727

The first line delete_mean_nerve= =nerve*0 sets up the task of initialization of the
required vectors. To compute T̃i = nTn − (n − 1)T(−i) for each i, the for loop at each stage
removes the i-th datum and obtains the skewness value for the remaining data. That is, the for
loop is the step towards the leave-one-out computations. The remaining program completes
other steps of the jackknife technique for the skewness parameter. The 95% confidence interval
is then given by 1.76 ± 2(0.17) = (1.42, 2.10). ◽

An alternative to the jackknife, which in some cases is also a generalization, is the bootstrap
technique, which will be discussed in the next sub-section.

8.3.2 The Bootstrap

Efron (1979) proposed the bootstrap methods and it is now one of the very important and
widely used techniques. With this method the observations are redrawn among themselves
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towards arriving at some statistical inference of related parameters. In fact, a motivation for
doing this is a strong inspiration from the well-known urn problems of the combinatorial prob-
ability theory. The basic idea is to consider the data as balls in an urn, and obtain a first lot
of k balls with replacement and do the inference about the unknown population parameters.
We then repeat this process a large number of times for obtaining reliable statistical inference.
This forms the basis of the bootstrap method proposed by Efron.

The bootstrap method is useful for estimating the variance of a statistic Tn. As earlier, let
X1,X2, … ,Xn be a random sample of size n with a probability distribution F. If the sam-
pling distribution of Tn is a complex one, we can approximate its variance using the bootstrap
method. The steps involved are listed in the following.

1. Draw a random sample of size n with replacement among X1,X2, … ,Xn. Denote this ran-
dom sample by X∗

1 ,X
∗
2 , … ,X∗

n .
2. Compute Tn from X∗

1 ,X
∗
2 , … ,X∗

n . Denote this by T∗
n .

3. Repeat the above two steps a large number of times, say B. Denote these quantities by
T∗

n,1,T
∗
n,2, … ,T∗

n,B.
4. The bootstrap approximation of the variance of Tn is then given by

𝑣boot(Tn) =
1
B

B∑
j=1

(
T∗

n,j −
1
B

B∑
r=1

T∗
n,r

)2

. (8.11)

The General Bootstrap Principle. We obtain a random sample of size n, with replacement,
from the n observations. Let the observations be denoted by X = (X1,X2, … ,Xn). We now
treat this random sample as a population. Next, draw a random sample of size n from X with
replacement. The ideas can be clearly absorbed by this hypothetical example. Let there be four
observations in a sample, say (5, 14, 17, 12). One possible realization of the redrawn sample by
treating (5, 14, 17, 12) as a population can be (5, 17, 5, 12). The redrawn sample is referred as
the bootstrap sample. We denote the bootstrap sample by X∗1. The estimator T(X) is computed
for the bootstrap sample X∗1. We repeat this process of redrawing and obtaining the bootstrap
sample a large number of times, say B. For each of the bootstrap samples, we compute the
estimator, denoted by X∗1,X∗2, … ,X∗B. The sampling distribution of bootstrap estimators
helps us to carry out the related inference about the parameter 𝜃. In the next example, we
understand the working of the bootstrap through the famous aspirin example.

Example 8.3.2. The Aspirin Study. The New York Times conducted a double-blind experi-
ment to investigate if consuming small doses of aspirin reduced the risk of heart attack among
healthy middle-aged men. The data is given in Table 8.2.

The odds ratio, abbreviated as OR, of heart attack rate for the aspirin/placebo group
is computed as OR = (104∕11037)∕(189∕11034) = 0.55. The same study also has
information on the people who had heart attack strokes and the odds ratio here is
OR = (119∕11037)∕(98∕11034) = 1.21. This translates to an unusual situation. The
study reports that taking small doses of aspirin reduces heart attack by about 50% in
comparison with the placebo group, whereas the same treatment increases the risk of a heart
attack stroke by about 20% more. We would like to construct bootstrap confidence intervals
based on the data reported in the above two tables. The program below achieves this goal.
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Table 8.2 The Aspirin Data: Heart Attacks and Strokes

Treatment Group Attacks Strokes

Heart Attacks Subjects Strokes Subjects

Aspirin 104 11037 119 11037
Placebo 189 11034 98 11034

> aspirin_overall <- c(rep(1,104),rep(0,11037-104))
> placebo_overall <- c(rep(1,189),rep(0,11034-189))
> aspirin_strokes <- c(rep(1,119),rep(0,11037-119))
> placebo_strokes <- c(rep(1,98),rep(0,11034-98))
> or_overall=or_strokes=c()
> for(i in 1:1000){
+ bao <- sample(aspirin_overall,11037,replace=TRUE)
+ bpo <- sample(placebo_overall,11034,replace=TRUE)
+ bas <- sample(aspirin_strokes,11037,replace=TRUE)
+ bps <- sample(placebo_strokes,11034,replace=TRUE)
+ or_overall[i] <- (sum(bao)/11037)/(sum(bpo)/11034)
+ or_strokes[i] <- (sum(bas)/11037)/(sum(bps)/11034)
+ }
> quantile(or_overall,c(0.025,0.975))

2.5% 97.5%
0.4319186 0.6852233
> quantile(or_strokes,c(0.025,0.975))

2.5% 97.5%
0.9330137 1.6018372

Using the rep function, we are attempting to recreate the aspirin data in Table 8.2 with
the variables aspirin_overall, placebo_overall, aspirin_strokes, and
placebo_strokes. The number of bootstrap replicates is chosen as B = 1000, see
the for loop. Using the sample function with the option of replace=TRUE, we are
generating the bootstrap samples, and for each such bootstrap sample, the odds ratio for
heart attacks and strokes is calculated. The quantile function gives us the 95% confidence
intervals for the odds ratio of heart attacks and strokes. The bootstrap confidence intervals
confirm the result obtained earlier. ◽

The R core package boot contains the boot function, which can be readily used for the
bootstrap technique.

Example 8.3.3. Bootstrapping Non-parametric Skewness for Nerve Dataset. Contd.
The boot function needs to be given a function as an argument and the data on which
the function needs to be operated upon for the related statistic. Thus, first define the
skew_nonparametric function which computes the skewness for a vector object. The
boot function also needs to be told the number of required bootstrap samples through
the option R = 1000, say,
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> # Bootstrap Estimator for Skewness of the Nerve Data Set
> library(boot)
> skew_nonparametric=function(x,i){
+ mx <- mean(x[i])
+ vx <- sum((x[i]-mx) ̂ 2)/length(x[i])
+ sx <- mean((x[i]-mx) ̂ 3)/(vx ̂ (3/2))
+ return(sx)
+ }
> boot(nerve,skew_nonparametric,1000)
ORDINARY NONPARAMETRIC BOOTSTRAP
Call:
boot(data = nerve, statistic = skew_nonparametric, R = 1000)
Bootstrap Statistics :

original bias std. error
t1* 1.761249 -0.01118149 0.1621611

Now the reader can contrast the results here with the jackknife technique for the nerve
data. ◽

8.3.3 Bootstrapping Simple Linear Model*

Consider the simple linear regression model, to be dealt with in more detail in Chapter 12, for
n pairs of data (Xi,Yi), i = 1, … , n:

Yi = 𝛽0 + 𝛽1Xi + 𝜖i, i = 1, … , n.

Suppose, using the least squares method, we obtain the fitted model as

Ŷi = 𝛽0 + 𝛽1Xi.

We have two methods for bootstrapping the simple linear regression model. First, we can boot-
strap the residuals and then predict the regressands for such resampled residuals, and based
on the estimated regression coefficients for each bootstrap sample, we obtain a large number
of such bootstrap regression coefficients. Inference can be carried out from the sampling dis-
tribution of the bootstrap regression coefficients. The second method is of course to resample
the values of paired regressand and regressor variables, and obtain bootstrap regression coef-
ficients from the resampled design matrix. Details for both the methods may be found in
Chapter 26 of Draper and Smith (1998).

Bootstrapping the Residuals. We will denote the estimated residual, for the above fitted
model, by �̂�. As earlier, we will denote the design matrix by X, and the first column will be 1’s
for the intercept term. The bootstrap method can be described in three steps:

1. Draw a sample of size n with replacement from �̂� and denote it by 𝛜∗.
2. For the resampled 𝛜∗, obtain the new regressands using Y = X′�̂� + �̂�.
3. Finally, calculate 𝛜∗ for the model Y∗ = X′𝜷 + �̂�∗.

We repeat this process a large number of times, B. Inference about the vector of regression
coefficients can be carried out on the basis of the sampling distribution of B estimates of
bootstrapped regression coefficients 𝛜∗. This bootstrap method is demonstrated for the simple
linear regression model.
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Example 8.3.4. The Galton Dataset. We fit a model for the height of the child as a linear
function of the the height of the parent.

> library(UsingR)
> cplm <- lm(child∼parent,galton)
> # Boostrapping the Residuals
> resid <- lm(child∼parent,galton)$residuals
> bcoef <- matrix(nrow=100,ncol=2)
> for(i in 1:100){
+ newy <- cbind(rep(1,nrow(galton)),galton$parent)
+ %*%cplm$coefficients
+ +sample(resid,nrow(galton),replace=TRUE)
+ bcoef[i,] <- lm(newy∼galton$parent)$coefficients
+ }
> quantile(bcoef[,2],c(0.025,0.975))

2.5% 97.5%
0.5726571 0.7123394

Since 0 is not in the above bootstrap confidence interval, we conclude that the height of the
parent has significant effect on the height of the child. ◽

Bootstrapping the Observations. This method is a straightforward application of the gen-
eral bootstrap method explained earlier. For the paired data (Xi,Yi), i = 1, … , n, we list the
procedure in the following steps:

1. Obtain a sample of size n with replacement from the above n points (X∗
i ,Y

∗
i ), i = 1, … , n.

2. Obtain the regression coefficients of the above bootstrap sample.
3. Repeat the above two steps a large number of times, say B.

Example 8.3.5. The Galton Dataset. Contd. Example 8.3.4 will be continued for bootstrap-
ping the observations.

> # Bootstrapping the Observations
> bcoef <- matrix(nrow=100,ncol=2)
> for(i in 1:100) {
+ tempgalton <- galton[sample(1:nrow(galton),nrow(galton),
+ replace=TRUE),]
+ bcoef[i,] <- lm(child∼parent,tempgalton)$coefficients
+ }
> quantile(bcoef[,2],c(0.025,0.975))

2.5% 97.5%
0.5688382 0.7232253
> lm(child∼parent)$coefficients
(Intercept) parent
23.9415302 0.6462906

Since the value 0 does not lie in the 95% bootstrap confidence interval, we conclude that the
height of the parent has significant effect on the height of the child. ◽

?boot, library(help=boot)
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8.4 Non-parametric Smoothing

In Section 8.2, we saw the applications of the empirical distribution function (edf). It is seen
then that the edf is an estimator of the cumulative distribution function F with useful statistical
properties. Consider a random sample X1, … ,Xn with pdf f . The density function is defined as

f (x) = lim
h↓0

F(x + h) − F(x)
h

. (8.12)

The estimation of f is a complex problem and we will use kernels to deal with it. We will
use Silverman (1985) and Simonoff (1996) as the main references for developments in this
section. An intuitive approach of histogram smoothing is first considered.

8.4.1 Histogram Smoothing

Consider a random sample X1, … ,Xn of size n from f . Divide the line into a set of K bins
of equal width h. Let us denote points of the division of the line by b0 < b1 < · · · < bK . An
intuitive estimator of the distribution function F(x) is

F̂(x) =
#{xi ≤ x}

n
.

Thus, for a bin (bj, bj+1], j = 0, 1, … ,K − 1, an estimator of the density is given by

f̂ (x) =
#{xi ≤ bj+1} − #{xi ≤ bj}

nh
, x ∈ (bj, bj+1]. (8.13)

We will consider a simple illustration of this technique using an R program.

Example 8.4.1. Histogram Smoothing for Forged Swiss Bank Notes. The swiss dataset
from the ACSWR package consists of measurements on the width of bottom margin and image
diagonal length for forged and real notes. The histogram smoothing method is applied to
understand the width of bottom margins for the forged notes. In the next program, histogram
smoothing is put into action with K = 6, 14, and 28 number of bins.

> par(mfrow=c(1,3))
> data(swiss)
> hist(swiss$Bottforg,breaks=28,probability=TRUE,col=0,
+ ylim=c(0,.5),xlab="Margin width (mm)",ylab="Density")
> hist(swiss$Bottforg,breaks=12,probability=TRUE,col=0,
+ ylim=c(0,.5),xlab="Margin width (mm)",ylab="Density")
> hist(swiss$Bottforg,breaks=6,probability=TRUE,col=0,
+ ylim=c(0,.5),xlab="Margin width (mm)",ylab="Density")

Now, to obtain the histogram smoothing for estimating the density function with K = 6, 14
and 28 number of bins, the histogram is obtained with the hist function and option of
breaks=6, 14 and 28 respectively.
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Figure 8.2 Histogram Smoothing for Forged Swiss Notes

It may be seen from Figure 8.2 that for K = 28 bins there are 3 modes at approximately
8 mm, 10 mm, and 11.5 mm. Similarly, for K = 12 bins there are 2 modes at 10 mm and
11.5 mm, whereas for K = 6 bins there is just 1 mode at 10.5 mm, roughly. Thus, we see
that the choice of the number of bins is critical. ◽

Statistical techniques are then required to evaluate the estimator f̂ (x) for f (x). At a given
point x the squared error is SE(x) = {f̂ (x) − f (x)}2, and the expected squared error MSE(x) =
Ef {f̂ (x) − f (x)}2. However, for estimation of f , the performance needs to be evaluated for the
range of x values. Thus, the user should be looking at the integrated square error:

ISE = ∫
∞

−∞
{f̂ (x) − f (x)}2dx. (8.14)

The bias and variance, see Chapter 4 of Simonoff (1996), of the estimator f̂ (x) are given by

Bias{f̂ (x)} =
f ′(x)

2
{h − 2(x − bj)} + O(h2), x ∈ (bj, bj+1], (8.15)

Var{f̂ (x)} =
f (x)
nh

+ O(1∕n), (8.16)
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where O(u) → 0 as u → 0, and f ′(x) is the derivative of f (x). At a given point x, the mean
squared error is then given by

MSE{f̂ (x)} = Var{f̂ (x)} + Bias2{f̂ (x)}

=
f (x)
nh

+
f ′(x)2

4
{h − 2(x − bj)}2 + O(h3) + O(1∕n). (8.17)

The mean integrated square error, abbreviated as MISE, is then given by

MISE = 1
nh

+
h2R( f ′)

12
+ O(h3) + O(1∕n), (8.18)

where R( f ′) = ∫ { f ′(x)}2dx. The value of h, which minimizes the asymptotic mean integrated
square error, AMISE, is given by

h∗ =
{

6
nR( f ′)

}1∕3

. (8.19)

However, the true f is not known. Under the assumption that the f is a normal density, the
rule-of-thumb for optimum h∗, since ∫ {f ′(x)}2dx = 1∕{4

√
𝜋𝜎3}, is given by

h∗ ≈ 𝜎

{
24
√
𝜋

n

}1∕3

≈ 3.491𝜎n−1∕3. (8.20)

Finally, since the value of 𝜎 is not known, we replace it by its estimated sample standard
deviation s:

h∗ ≈ 3.491sn−1∕3. (8.21)

In practice, the sample standard deviance is not robust, and highly sensitive to outliers, and a
sensible estimate is obtained by replacing s by the inter-quantile range, IQR. The concept is
illustrated through the continued example of Swiss bank notes.

Example 8.4.2. Histogram Smoothing for Forged Swiss Bank Notes. Contd. The optimum
bin width is obtained and histogram smoothing is then applied.

> n <- length(swiss$Bottforg)
> s <- sd(swiss$Bottforg)
> iqr <- IQR(swiss$Bottforg)
> hstars <- 3.491*s*n ̂ {-1/3}
> nobreaks <- (max(swiss$Bottforg)-min(swiss$Bottforg))/hstars
> hstariqr <- 2.6*iqr*n ̂ {-1/3}
> nobreaks2 <- (max(swiss$Bottforg)-min(swiss$Bottforg))/hstariqr
> hist(swiss$Bottforg,breaks=round(nobreaks),probability=TRUE,col=0,
+ ylim=c(0,.5),xlab="Margin width (mm)",ylab="Density")

To compute the optimum number of bins h∗, as required in Equation 8.20, an estimate of the
standard deviation s is given by IQR and obtained in the program with the IQR function. It
may now be seen from Figure 8.3 that we have a negatively skewed distribution with the mode
occurring at 10.5 mm approximately. ◽
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Figure 8.3 Histogram Smoothing using Optimum Bin Width

The histogram smoothing technique has vital drawbacks. First, it is a discontinuous
approximation of the density function f . Furthermore, it is affected by the choice of origin,
bin width, besides not being convenient to generalize for higher dimensional problems. These
drawbacks are overcome by using kernels, which will be considered in subsection 8.4.2
below.

8.4.2 Kernel Smoothing

Rewrite the expression for the pdf f (x) in a slightly different (and equivalent) form:

f (x) = lim
h→0

F(x + h) − F(x − h)
2h

. (8.22)

Now, as the estimator f̂ in Equation 8.13 is for the f (x) given in Equation 8.12, an intuitive
estimator of f (x) based on the above expression is

f̂ (x) =
#{xi ∈ [x − h, x + h)}

2nh
, x ∈ (x − h, x + h]. (8.23)

The discontinuity in the histogram smoothing technique arises on account of the formula given
in expression 8.13. Thus, the alternative is then to replace the expression on the right-hand
side by a continuous function, here kernels, which ensures continuity. This motivates the next
definition.



Trim Size: 170mm x 244mm Tattar c08.tex V3 - 02/10/2016 10:32 A.M. Page 298�

� �

�

298 A Course in Statistics with R

Definition 8.4.1 Kernel Function A real, integrable, non-negative function K on , which is
symmetrical about 0, is said to be a kernel. That is, a kernel satisfies the following properties:

∫
K(x)dx = 1,

∫
xK(x)dx = 0,

𝜎2
K = ∫

x2K(x)dx < ∞. (8.24)

A list of kernels, see http://robjhyndman.com/etc5410/density.pdf, is given in Table 8.3. For
all the kernels, u = x−xi

n
, i = 1, … , n. The uniform kernel is the simplest of the kernels. It takes

the value 1/2 if the absolute value of u is less than 1. A drawback of the uniform kernel is that
the estimated density function is not smooth and may have some jumps. The Epanechnikov
kernel provides smooth density functions. These two kernels along with triangle, biweight, and
triweight kernels have a finite support, and hence points beyond u units will not add any con-
tribution to the density at such points. The Gaussian kernel does not have support restrictions
and hence it takes into consideration all the data values.

To understand the nature of these kernels, let us use R to obtain the plot of these functions,
see Part A of Figure 8.4. The density function from R gives a tool for the kernel technique
and we simply use it to understand the shape of the various kernels. The kernel option in
the density function helps to specify the choice of required kernels. The graphical functions
plot, main, lines, etc., have often been seen earlier.

> plot(density(0,bw=1,kernel="rectangular"),main="Kernel Shapes",
+ ylim=c(0,0.4),xlab="x")
> lines(density(0,bw=1,kernel="triangular"),col="red")
> lines(density(0,bw=1,kernel="epanechnikov"),col="green")
> lines(density(0,bw=1,kernel="biweight"),col="blue")
> lines(density(0,bw=1,kernel="gaussian"),col="orange")
> legend(-3,.4,legend=c("rectangular","triangular","epanechnikov",
+ "biweight","gaussian"),col=c("black","red","green",
+ "blue","orange"),lty=1,cex=0.7)

Table 8.3 Kernel Functions

Kernel Name Kernel Form

Uniform 1

2
, |u| ≤ 1

Triangle (1 − |u|), |u| ≤ 1
Epanechnikov 3

4
(1 − u2), |u| ≤ 1

Biweight 15

16
(1 − u2)2, |u| ≤ 1

Triweight 35

32
(1 − u2)3, |u| ≤ 1

Gaussian e−u2∕2√
2𝜋

, |u| < ∞

http://robjhyndman.com/etc5410/density.pdf
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Figure 8.4 A Plot of Various Kernels

Now, using an appropriate kernel, an estimator of the pdf f̂ (x) is given by

f̂ (x) = 1
nh

n∑
i=1

K
(x − xi

h

)
. (8.25)

The use of density function is obviously an efficient way of deploying kernel smoothing.
However, the formulas of the various kernels is explained in the next example through a pro-
gram building from raw codes.

Example 8.4.3. Understanding the Use of Kernel Smoothing. A simulated dataset is avail-
able in the x_bimodal data frame of the companion package. As the name of the data frame
indicates, there are two modes at –2, and 2 and we have 400 observations. A bin of width h
<- 0.5 is considered for the kernel smoothing. The computations related to all the kernels
given in Table 8.3 are initiated in the objects dens_kernel_name, that is, dens_unif is
initiated for the uniform kernel. The kernel values are computed at all the values of the data
points of x_bimodal. The first important step is to calculate the value of the argument u
through u <- (x_bimodal[i]-x_bimodal)/h. The object xlogical ensures that
the support restrictions for all the kernels, except the Gaussian kernel, are obtained while the
final values are stored in the object dens_kernel_name.

> data(x_bimodal)
> h <- 0.5; n <- length(x_bimodal)
> dens_unif <- NULL; dens_triangle <- NULL; dens_epanechnikov <- NULL
> dens_biweight <- NULL; dens_triweight <- NULL
> dens_gaussian <- NULL
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> for(i in 1:n) {
+ u <- (x_bimodal[i]-x_bimodal)/h
+ xlogical <- (u>-1 & u <= 1)
+ dens_unif[i] <- (1/(n*h))*(sum(xlogical)/2)
+ dens_triangle[i] <- (1/(n*h))*(sum(xlogical*(1-abs(u))))
+ dens_epanechnikov[i] <- (1/(n*h))*(sum(3*xlogical*(1-u ̂ 2)/4))
+ dens_biweight[i] <- (1/(n*h))*(15*sum(xlogical*(1-u ̂ 2) ̂ 2/16))
+ dens_triweight[i] <- (1/(n*h))*(35*sum(xlogical*(1-u ̂ 2) ̂ 3/32))
+ dens_gaussian[i] <- (1/(n*h))*(sum(exp(-u ̂ 2/2)/sqrt(2*pi)))
+ }
> plot(x_bimodal,dens_unif,"l",ylim=c(0,.25),xlim=c(-5,7),xlab="x",
+ ylab="Density",main="B: Applying Kernel Smoothing")
> points(x_bimodal,dens_triangle,"l",col="red")
> points(x_bimodal,dens_epanechnikov,"l",col="green")
> points(x_bimodal,dens_biweight,"l",col="blue")
> points(x_bimodal,dens_triweight,"l",col="yellow")
> points(x_bimodal,dens_gaussian,"l",col="orange")
> legend(4,.23,legend=c("rectangular","triangular","epanechnikov",
+ "biweight","gaussian"),col=c("black","red","green",
+ "blue","orange"),lty=1)

Using the plot function along with points, the fitted densities are plotted in Part B of
Figure 8.4. The Gaussian kernel appears the most smooth of all the kernels, and there is a lot
closeness between the remaining densities. ◽

Example 8.4.4. Kernel Smoothing for Forged Swiss Bank Notes. Example 8.4.2 Contd. A
rectangular/uniform kernel is first applied on the bottom margin variable with a bandwidth of
0.08 with bw=0.08. The bw is a smoothing bandwidth value, and the kernel is accordingly
scaled such that it is the standard deviation of the smoothing kernel. The plot function can
be directly applied on an object of class density.

> par(mfrow=c(1,3))
> plot(density(swiss$Bottforg,kernel="rectangular",bw=0.08),
+ main="A: Uniform Kernel with h=0.08")
> plot(density(swiss$Bottforg,kernel="gaussian",bw=0.04),
+ main="B: Gaussian Kernel with h=0.04")
> plot(density(swiss$Bottforg,kernel="gaussian",bw=0.16),
+ main="C: Gaussian Kernel with h=0.12")

It may be seen from Part A of Figure 8.5 that the density fitted by the rectangular kernel is
very poor, while Part C shows that fitting a Gaussian kernel with bw=0.16 is a much better
fit, as the three modes can be clearly seen. ◽

8.4.3 Nonparametric Regression Models*

The simple linear regression model was introduced earlier in Section 4.5; recall Equation
4.11 for the linear form as Y = 𝛽0 + 𝛽1X + 𝜖. Suppose that we have n independent pairs of
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Figure 8.5 Understanding “Kernel” Choice for Swiss Notes

observations (Xi,Yi), i = 1, 2, … , n. The non-parametric regression model is given by

Yi = m(Xi) + 𝜖i, (8.26)

where the term m(x) is the regression curve, and is defined as the conditional expectation
m(x) = E(Y|x). The assumption about the error term is that it has mean zero E(𝜖) = 0 and
variance Var(𝜖|x) = 𝜎2(x), that is, the variance term is not necessarily constant.

The Nadaraya-Watson Regression Technique

The Nadaraya-Watson kernel estimator of the regression curve m(x) is given by

m̂NW (x) =

∑n
i=1 K

(
x−xi

h

)
yi∑n

i=1 K
(

x−xi

h

) . (8.27)

The Nadaraya-Watson kernel estimator can be rewritten as a function of yi’s m̂NW (x) =∑n
i=1 𝑤iyi with

𝑤i =
1
nh

K
(

x−xi

h

)
f̂ (x)

, (8.28)
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where

f̂ (x) = 1
nh

n∑
i=1

K
(x − xi

h

)
.

The derivation of the Nadaraya-Watson estimator is not considered here, since it would require
definition and details of the product kernel estimate of f (x, y). The details may be sought in
Simonoff (1996) or Wasserman (2006). It may be noted however that m̂NW (x) is the solution
of the weighted least squares problem:

n∑
i=1

(yi − 𝛽0)2K
(x − xi

h

)
. (8.29)

For the rectangular and Gaussian kernels, we will illustrate this concept with an application of
the faithful dataset.

Example 8.4.5. Nadaraya-Watson Kernel Regression for the faithful Dataset. The main
problem with this data is to understand how the eruption time of the volcano influences the
waiting time. First, a scatter plot is obtained for the waiting variable against eruptions.
It is apparent that there are two clusters in the visual display, conveying that the short duration
of the eruption leads to a less waiting time for the eruption.

First, we obtain the Nadaraya-Watson kernel estimator with the choice of kernel being a
rectangular one, the option is kernel="box", and bandwidth of 0.25. The bandwidth is
then increased to 0.5 and 0.75. The exercise is then repeated with the Gaussian kernel and
the option is accordingly changed to kernel="normal".

> plot(faithful$eruptions,faithful$waiting,xlab="Duration of the
+ Eruptions",ylab="Waiting Time for the Eruption")
> lines(ksmooth(faithful$eruptions,faithful$waiting,kernel="box",
+ bandwidth=0.25),col="green",lwd=1)
> lines(ksmooth(faithful$eruptions,faithful$waiting,kernel="box",
+ bandwidth=0.5),col="green",lwd=2)
> lines(ksmooth(faithful$eruptions,faithful$waiting,kernel="box",
+ bandwidth=0.75),col="green",lwd=3)
> legend(x=c(1.5,3.15),y=c(90,75),c("Box, Width=0.25","Box,
+ Width=0.50","Box, Width=0.75"),col="green",lwd=1:3)
> lines(ksmooth(faithful$eruptions,faithful$waiting,kernel="normal",
+ bandwidth=0.25),col="red",lwd=1)
> lines(ksmooth(faithful$eruptions,faithful$waiting,kernel="normal",
+ bandwidth=0.5),col="red",lwd=2)
> lines(ksmooth(faithful$eruptions,faithful$waiting,kernel="normal",
+ bandwidth=0.75),col="red",lwd=3)
> legend(x=c(3.25,5.2),y=c(48,60),c("Normal, Width=0.25","Normal,
+ Width=0.50","Normal, Width=0.75"),col="red",lwd=1:3)

It may be seen from Figure 8.6 that the rectangular kernel does not provide a smooth curve
for the regression model. The Gaussian kernel leads to smooth curve fitting. However, with
bandwidths 0.5 and 0.75, the curve overfits the data and hence the choice of 0.25 seems
more apt as it captures the local variation quite well. ◽
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Figure 8.6 Nadaraya-Watson Kernel Regression for Faithful Dataset

The LOESS Technique

The local polynomial regression generalizes the weighted least squares criteria given in
Equation 8.29 to a pth order polynomial:

n∑
i=1

(yi − 𝛽0 − 𝛽1(x − xi) − 𝛽2(x − xi)2 − · · · − 𝛽p(x − xi)p)2K
(x − xi

h

)
. (8.30)

The loess technique is a particular (and modified) case of the local polynomial regression
model with the degree of the polynomial up to 2. The bandwidth of loess is specified by the
nearest neighbors and such an option is provided in the R loess function in span. We will
quickly run through the previous Example 8.4.5 with different scan coverage and the family
option of gaussian and symmetric.

Example 8.4.6. The faithful Dataset. Contd. The loess function will be first used with the
options of scan at 0.25, 0.5, 0.75 for the gaussian family and the exercise will be
repeated for the symmetric family.

> par(mfrow=c(1,2))
> plot(faithful$eruptions,faithful$waiting,xlab="Duration of the
+ Eruptions", ylab="Waiting Time for the Eruption")
> tt1 <- loess(waiting∼eruptions,data=faithful,span=0.25,
+ family="gaussian")
> points(tt1$x,fitted(tt1),col="red")
> tt2 <- loess(waiting∼eruptions,data=faithful,span=0.5,
+ family="gaussian")
> points(tt2$x,fitted(tt2),col="green")
> tt3 <- loess(waiting∼eruptions,data=faithful,span=0.75,
+ family="gaussian")
> points(tt3$x,fitted(tt3),col="blue")
> title("Gaussian Kernel")
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> legend(x=c(1.75,3),y=c(90,78),c("span=0.25","span=0.50",
+ "span=0.75"),col=c("red","green","blue"),pch="o")
> plot(faithful$eruptions,faithful$waiting,xlab="Duration of the
+ Eruptions",ylab="Waiting Time for the Eruption")
> tt4 <- loess(waiting∼eruptions,data=faithful,span=0.25,
+ family="symmetric")
> points(tt4$x,fitted(tt4),col="red")
> tt5 <- loess(waiting∼eruptions,data=faithful,span=0.5,
+ family="symmetric")
> points(tt5$x,fitted(tt5),col="green")
> tt6 <- loess(waiting∼eruptions,data=faithful,span=0.75,
+ family="symmetric")
> points(tt6$x,fitted(tt6),col="blue")
> legend(x=c(1.75,3),y=c(90,78),c("span=0.25","span=0.50",
+ "span=0.75"),col=c("red","green","blue"),pch="o")
> title("Symmetric Kernel")

It may be seen from Figure 8.7 that there is not much to choose between the family being
Gaussian or symmetric. On the other hand, the span of span=0.75, which means 75% of
the neighborhood points are taken into consideration for smoothing purposes, is too smooth
and misses out on the local variation. Though span=0.25 captures a lot of local variation,
the average 0.5 seems to be smoother. ◽

?hist, ?IQR, ?eval, ?density

8.5 Non-parametric Tests

The above sections so far have focused on the problem of non-parametric estimation. The goal
of this section is to consider non-parametric tests for hypotheses relating to the parameters of
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Figure 8.7 Loess Smoothing for the Faithful
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location and scale, as well as the distribution function among the one- and k-sample problems.
In this section we consider some of the most popular non-parametric tests:

• The Wilcoxon Signed-Ranks Test
• Mann-Whitney test
• Wald-Wolfowitz run test

• Kolmogorov-Smirnov test
• Kruskal test
• Siegel-Tukey test

Non-parametric tests are also known as distribution-free tests. These are not to be confused
with assumption free tests.

8.5.1 The Wilcoxon Signed-Ranks Test

The Wilcoxon signed-rank test was first proposed in Wilcoxon (1945). As the name indicates,
the test procedures consider the ranks of the observations and their signs, which will be elab-
orated on in more detail in the following subsections. The Wilcoxon signed-rank test can be
used in both one- and two-sample cases. We will begin with the one-sample problem.

The One-Sample Case

Let X1,X2, … ,Xn be iid RVs with the common absolutely continuous distribution function
F, which is assumed to be symmetric about its median 𝜃. Suppose that we are interested in
testing H ∶ 𝜃 = 0 against the hypothesis that H ∶ 𝜃 ≠ 0, where 𝜃 = EF(X). This test can also
be extended to one-sided tests. The two main and very important assumptions for this test are
that the n observations are independent and that the underlying probability distribution F is
absolutely continuous. The Wilcoxon signed-rank test is constructed in the following steps.
First, obtain |Xi|, i = 1, … , n and note the ranking of |Xi| as Ri, i = 1, … , n. Note that if
we are interested in testing the hypothesis H ∶ 𝜃 = 𝜃0, we need the ranking of |Xi − 𝜃0|, i =
1, … , n. Define the indicator variables:

𝜓i =
{

1, if Xi > 0,
0, if Xi ≤ 0.

The Wilcoxon signed-rank test is then given by the sum of positive signed ranks:

T+ =
n∑

i=1

𝜓iRi. (8.31)

The statistic T+ is known as the Wilcoxon statistic. The one-sided upper-tail test of H ∶ 𝜃 = 0
against the alternative K ∶ 𝜃 > 0 is to reject the hypothesis H if T+ > t𝛼 , where t𝛼 is the
upper-tail probability of the distribution of the Wilcoxon signed-rank T+ statistic under H.
Here, 𝛼 is the level of significance. Similarly, the one-sided lower-tail test of H ∶ 𝜃 = 0
against the alternative K ∶ 𝜃 < 0 is to reject the hypothesis H if T+ ≤ n(n+1)

2
− t𝛼 , whereas the

two-sided test against the alternative K ∶ 𝜃 ≠ 0 is to reject the hypothesis H if T+ ≥ t𝛼∕2 or if
T+ ≤ n(n+1)

2
− t𝛼∕2.

Hollander and Wolfe (1999) also suggest the use of a large-sample approximation for
the Wilcoxon statistic by noting that under the hypothesis H, the mean and variance of the
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Wilcoxon statistic T+ are respectively given by:

EH(T+) = n(n + 1)
4

,

VarH(T+) = n(n + 1)(2n + 1)
24

.

The standardized version of T+ is thus

T∗ =
T+ − EH(T+)√

VarH(T+)
=

T+ − n(n+1)
4√

n(n+1)(2n+1)
24

.

Under the hypothesis H, as n → ∞, T∗D
→

N(0, 1). The inference is carried out in the usual way.
In the next example, both the techniques will be illustrated.

Example 8.5.1. Freund and Wilson (2003). Suppose that the mean weight of peanuts put in
jars is required to be 8 oz. The observed weights for 16 jars are 8.08, 7.71, 7.89, 7.72, 8.00,
7.90, 7.77, 7.81, 8.33, 7.67, 7.79, 7.79, 7.94, 7.84, 8.17, and 7.87. Here, we are interested in
testing H ∶ 𝜇 = 8.0. This hypothesis can be testing with the aid of wilcox.test.

> peanuts <- c(8.08,7.71,7.89,7.72,8.00,7.90,7.77,7.81,8.33,7.67,
+ 7.79,7.79,7.94,7.84,8.17,7.87)
> wilcox.test(peanuts,mu=8)
Wilcoxon signed rank test with continuity correction
data: peanuts
V = 23.5, p-value = 0.04081
alternative hypothesis: true location is not equal to 8
Warning messages:
1: In wilcox.test.default(peanuts, mu = 8) :
cannot compute exact p-value with ties

2: In wilcox.test.default(peanuts, mu = 8) :
cannot compute exact p-value with zeroes

> wilcox.test(peanuts,mu=8,exact=FALSE,correct=FALSE)
Wilcoxon signed rank test
data: peanuts
V = 23.5, p-value = 0.03809
alternative hypothesis: true location is not equal to 8

Since the p-value is very small, for the exact Wilcoxon test as well as for the large-sample
approximation non-parametric test, we reject the hypothesis H. ◽

The Two-Sample Case

If we have bivariate random samples (X1,Y1), (X2,Y2), … , (Xn,Yn), we can proceed as in the
one-sample case by ranking the differences Z1 = Y1 − X1,Z2 = Y2 − X2, … ,Zn = Yn − Xn.
Here, the Xi’s form one group and the Yi’s the other one. We assume that the 2n observations
are independent of each other. In general, the (paired) two-sample Wilcoxon test is based
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on replacing the data pair (Xi,Yi) with their differences Zi, ignoring their group, and then
calculating the sum of ranks in one group. The computation process is elaborated on as:

• Remove the observations if Zi = 0, and let m denote the reduced number of pairs.
• Arrange the absolute values |Zi| in ascending order and let Ri denote the rank of |Zi|.
• Define the indicator variables:

𝜓i =
{

1, if Zi > 0,
0, if Zi ≤ 0.

• Finally, compute the Wilcoxon rank-sign tests T+ and T−, as earlier, by

T+ =
n∑

i=1

𝜓iRi, (8.32)

T− =
n∑

i=1

(1 − 𝜓i)Ri. (8.33)

• Define S = min(T+,T−), and compare S with critical values.

Test 6 of Sheshkin (2004) gives a comprehensive coverage of the Wilcoxon signed-rank test.

Example 8.5.2. The Hamilton Depression Scale Factor. The Hamilton depression scale fac-
tor IV is a measurement of mixed anxiety and depression and is named after its inventor. In a
double-blind experiment, this scale factor is obtained for nine patients on their entry in a study,
denoted by X. Post a tranquilizer T , the scale factor IV is again obtained for the same set of
patients, which is denoted by Y . Here, an improvement due to tranquilizer T corresponds to a
reduction in factor IV values. We use wilcox.test from R for testing if the tranquilizer T
has been effective or not.

> data(depression)
> attach(depression)
> names(depression)
[1] "Patient_No" "X" "Y"
> wilcox.test(Y-X, alternative = "less")
Wilcoxon signed rank test
data: Y - X
V = 5, p-value = 0.01953
alternative hypothesis: true location is less than 0
> wilcox.test(Y-X, alternative = "less",exact=FALSE,correct=FALSE)
> #Hollander-Wolfe Large Sample Approximation Test
Wilcoxon signed rank test
data: Y - X
V = 5, p-value = 0.01908
alternative hypothesis: true location is less than 0

The hypothesis H ∶ 𝜃 = 0 is rejected in favor of the alternative K ∶ 𝜃 < 0, since the p-values
for the two-sample Wilcoxon test and its large sample approximation test, respectively at
0.01953 and 0.01908, are small, and hence it is concluded that there has been an improve-
ment due to the tranquilizer. ◽
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Example 8.5.3. Energy Spend of Lean and Obese Men. The objective of this study is to
examine if the energy spent by obese men and lean men is the same. The related data energy
is available in the ISwR package. The Wilcoxon test for the energy spent by lean and obese
persons in R is given below:

> wilcox.test(expend∼stature,data=energy)
Wilcoxon rank sum test with continuity correction
data: expend by stature
W = 12, p-value = 0.002122
alternative hypothesis: true location shift is not equal to 0
Warning message:
In wilcox.test.default(x = c(7.53, 7.48, 8.08, 8.09, 10.15, 8.4, :
cannot compute exact p-value with ties

With the p-value being very close to zero, the hypothesis H that the energy spent by obese and
lean men is the same will be rejected. ◽

8.5.2 The Mann-Whitney test

The Wilcoxon sign-rank test is useful for paired data. However, in the general two-sample
problems, we may not have the paired data setup. The Mann-Whitney test is an extension
of the Wilcoxon test, and is also known as the Wilcoxon-Mann-Whitney test or the Wilcoxon
rank-sum test.

Let X1, … ,Xm be m observations from a population with distribution F, and Y1, … ,Yn be
n observations from a second population with distribution G. To set up the Wilcoxon rank-sum
test, we assume that (a) the m observations are independent under F and the n under G, (b)
the two populations are independent of each other, and (c) both the distributions F and G are
absolutely continuous distributions.

Let Δ = E(Y) − E(X), and the hypothesis of interest be H ∶ Δ = 0. The Mann-Whitney test
is set up as follows. Combine the X’s and Y’s and arrange them in ascending order. Let Sj
denote the rank of Yj, j = 1, … , n. The Mann-Whitney statistic is then defined as

W =
n∑

j=1

Sj. (8.34)

The one-sided upper-tail test of the hypothesis H ∶ Δ = 0 against the hypothesis K ∶ Δ > 0
is to reject the hypothesis H if W ≥ 𝑤𝛼 , where 𝑤𝛼 is the quantile corresponding to the
upper-tail probability of the Wilcoxon rank-sum W statistic. As earlier with the one-sample
case, the one-sided lower-tail test of the hypothesis H ∶ Δ = 0 against the hypothesis
K ∶ Δ < 0 is to reject the null hypothesis if W ≤ n(n + m + 1) −𝑤𝛼 , whereas the two-sided
test against the hypothesis K ∶ Δ ≠ 0 is to reject the hypothesis H if W ≥ 𝑤𝛼∕2 or if
W ≤ n(n + m + 1) −𝑤𝛼∕2.

The large-sample approximation test statistic of Hollander and Wolfe (1999) also proceeds
in the following way. The mean and variance of W, under the hypothesis H, are given by

EH(W) = n(n + m + 1)
2

,

VarH(W) = nm(n + m + 1)
12

.
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Thus, the standardized version of W is given by

W =
W − EH(W)√

VarH(W)
=

W − n(n+m+1)
2√

nm(n+m+1)
12

, (8.35)

which for a large sample size converges to the standard normal distribution. Refer to Test 12
of Sheskin (2004) for more details.

Example 8.5.4. Some Urban-Rural Comparisons. Problem 6.9 of Gibbons and Chakraborti
(2004) consider a random sample of 9 rural counties and 7 urban non-counties among a group
of 67 Alabama counties for the population percent change. The data has been obtained from
the 2000 census statistics. We need to compare if the population percent change among the
rural and non-rural counties are the same or not. The R program is executed below.

> # The Mann-Whitney Test
> x <- c(1.1,-21.7,-16.3,-11.3,-10.4,-7,-2,1.9,6.2)
> # Percent Change in the Rural Counties
> y <- c(-2.4,9.9,14.2,18.4,20.1,23.1,70.4)
> # Percent Change in the Nonrural Counties
> wilcox.test(y,x)
Wilcoxon rank sum test
data: y and x
W = 59, p-value = 0.002098
alternative hypothesis: true location shift is not equal to 0
> wilcox.test(y,x,exact=FALSE)
Wilcoxon rank sum test with continuity correction
data: y and x
W = 59, p-value = 0.004263
alternative hypothesis: true location shift is not equal to 0

The p-value being closer to zero leads to rejection of the hypothesis H that the population
percent change in the rural and non-rural counties are equal. ◽

The wilcox.test is very useful in setting up non-parametric tests, as seen in the different
examples here. The option of exact is also seen to give useful large sample approximation
when required.

8.5.3 The Siegel-Tukey Test

Siegel and Tukey (1960) proposed a non-parametric test for comparison of the spread among
two populations. The Siegel-Tukey test is a non-parametric test for testing the equality of
spread among two populations. This test can handle an unequal number of observations
in the two populations. Consider, as earlier, a population A with m units and another
population B with n units. The total number of observations is N = m + n. The observations
are pooled together and arranged in ascending order. The hypothesis testing problem is
H ∶ 𝜎2

A = 𝜎2
B, 𝜇med,A = 𝜇med,B against is K ∶ 𝜎2

A > 𝜎2
B. Here 𝜇med,A, 𝜇med,B denote the median

of group A and B respectively.
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Under the hypothesis H, it is expected that the ranks of the units from the two populations
will be well mixed. That is, under the pooled sample, the sum of ranks for each sample will be
approximately N(N + 1)∕4. If this is indeed the case, we believe the hypothesis H to be true,
or else it is not so. Under the hypothesis K, we expect one of the group’s rank sums to be far
more than in the other sample.

The main assumptions of the Siegel-Tukey test are that (a) the units are random samples from
their respective populations, (b) the two samples are respectively drawn from their populations
independent of each other, (c) the data from each population is ordinal data, and (d) the medians
of both the population are assumed to be equal.

Let X1, … ,Xm denote a random sample from the first population and Y1, … ,Yn a sample
from the second population. Let the pooled ordered sample be denoted by W1 ≤ W2 ≤ · · · ≤
WN and define the variables:

Zi =
{

1, W is a x value,
0, W is a y value.

The Siegel-Tukey test is given by the expression:

SN =
N∑

i=1

aiZi, (8.36)

where the ai’s are some weights decided as follows. Assume that N is even. Then on the
left-hand side we assign a1 = 1, and move to the right-hand side with aN = 2, aN−1 = 3. Next,
we return to the left-hand side and assign a2 = 4, a3 = 5, and continue moving in either direc-
tion until N. We will illustrate these ais in a dummy dataset, see Table 8.4.

If N is odd, the middle observation is thrown out and the weights for reduced N are used.
Hence, a general formula for obtaining ai’s is given by:

ai =
⎧⎪⎨⎪⎩

2i, i even, 1 ≤ i ≤ N∕2,
2i − 1, i odd, 1 ≤ i ≤ N∕2,

2(N − i) + 2, i even, N∕2 < i ≤ N,

2(N − i) + 1, i odd, N∕2 < i ≤ N.

The probability distribution of SN is the same as that for the Wilcoxon test statistic. Hence, the
same tables may be used. For a comprehensive coverage of the Siegel-Tukey test, the reader

Table 8.4 Determining
Weights of the Siegel-Tukey Test

i 1 2 3 4 5 6

x 1 2 3
y 4 5 6
W 1 2 3 4 5 6
Z 1 1 1 0 0 0
a 1 4 5 6 3 2
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may refer to Test 14 in Sheskin (2004). Here, we will use a large-sample approximation using
the following facts:

E(SN) =
m(N + 1)

2
,

Var(SN) =
mn(N + 1)

12
.

The next program illustrates the Siegel-Tukey procedure for a dataset from Gibbons and
Chakraborti (2003).

> x <- c(0.028, 0.029, 0.011, -0.030, 0.017, -0.012, -0.027,-0.018,
+ 0.022, -0.023)
> y <- c(-0.002, 0.016, 0.005, -0.001, 0.000, 0.008, -0.005,-0.009,
+ 0.001, -0.019)
> siegel.tukey(x,y)
[1] -3.4016802571 0.0003348647

The reader should note that the function siegel.tukey from the ACSWR package follows
the formulas detailed earlier. For the dataset under consideration, the conclusion is to reject
the hypothesis that the spread of the two distributions is equal.

8.5.4 The Wald-Wolfowitz Run Test

The Wald-Wolfowitz run test is yet another non-parametric test of the hypothesis H ∶ F = G,
where F and G are the probability distribution functions of two samples. The distributions F
and G are assumed to be absolutely continuous. As earlier, let X1, … ,Xm be a random sample
of size m from F, and let Y1, … ,Yn be a random sample of size n from G.

A run is defined as a succession of one or more identical symbols, which are preceded and
followed by a different symbol, or no symbol. The length of a run is the number of identical
symbols in that run. Finally, we define an RV R as the total number of runs in the pooled sample
of X’s and Y’s, arranged in ascending order. If the hypothesis H holds true, we expect the X’s
and Y’s to be well mixed, and thus a large value for R.

It may be shown that for a large value of N(= m + n), an approximation for the mean and
variance of R are respectively given by

𝜇R = 1 + 2mn
m + n

,

𝜎2
R = 2mn(2mn − m − n)

(m + n − 1)(m + n)2
.

Thus, it can be seen that as n → ∞

R ∼ N

(
1 + 2mn

m + n
,

2mn(2mn − m − n)
(m + n − 1)(m + n)2

)
. (8.37)

Using the above result, it is possible to carry out appropriate inference for the related
hypotheses.



Trim Size: 170mm x 244mm Tattar c08.tex V3 - 02/10/2016 10:32 A.M. Page 312�

� �

�

312 A Course in Statistics with R

Example 8.5.5. Incidence and Degree of Aggression Scores for Boys and Girls. Rohatgi
and Saleh (2000), Problem 7 of Section 13.6, lists a dataset for incidence and degree of
aggression scores for 15 3-year-old boys and 15 3-year-old girls. We need to investigate
if there is gender differences for these scores. R base does not have a function for carrying
out the Wald-Wolfowitz run test, and the authors are not aware of any package to help us out
in this context. It may be possible that some user may have developed it. However, we will
write an explicit program for this as the code development is also a bit of fun here. The next
R program solves this problem.

> # The Wald-Wolfowitz Run Test
> boys <- c(96,65,74,78,82,121,68,79,111,48,53,92,81,31,40)
> girls <- c(12,47,32,59,83,14,32,15,17,82,21,34,9,15,51)
> ww.test(boys,girls)
[1] 0.002950069

The function ww.test in the ACSWR package is set up as follows. First, the indices for X
and Y are generated in xind and yind. The vector data of x and y are then combined
in xy, using the concatenate and generic function c, and this is then repeated for xind
and yind in xyind. Then a matrix is set up using cbind for the combined data in the
grand object. This new object is then ranked using the values in xy. The function run-
function within the ww.test function obtains the number of runs in the two samples.
The number of runs is determined in a logical way, and the reader needs to figure this out, in
the linenum_of_runs <- sum(diff(grand[,2])!=0)+1. The computation ofmu0
and var0 does not require further explanation, and neither do the rest of the arguments. Now,
using the function ww.test, we obtain the p-value for comparison of the gender difference.

Since the p-value is very small, we reject the hypothesis H that the gender difference is
insignificant. ◽

8.5.5 The Kolmogorov-Smirnov Test

The One-Sample Problem

Let X1,X2, … ,Xn be a random sample from a probability distribution F. The empirical dis-
tribution function, as given in Section 8.2 of this chapter, is F̂n(x) =

∑n
i=1 I(Xi ≤ x)∕n. Sup-

pose we wish to test the hypothesis H ∶ F(x) = F0(x),∀x against the alternative K ∶ F(x) ≠
F0(x), for some x. The Kolmogorov-Smirnov test for the hypothesis H is given by

Dn = sup
x

|Fn(x) − F0(x)|, (8.38)

= max
1≤i≤n

{
max

[
F0(Xi∶n) −

( i − 1
n

)
,

1
n
− F0(Xi∶n)

]}
, (8.39)

where X1∶n ≤ · · · ≤ Xn∶n are the ordered RVs. For more details, see Section 8.3 of Govindara-
julu (2007).

Example 8.5.6. Distribution of the Height of Children in the Galton Dataset. Suppose that
historically it is known that the distribution of height of parents follows a normal distribution
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with a mean of 68 and a standard deviation of 1.78. For the Galton dataset, we wish to investi-
gate if the height of children is also the same. The Kolmogorov-Smirnov test is then performed
in R as detailed here.

> # The One-Sample Kolmogorov-Smirnov Test
> library(UsingR)
> data(galton)
> ks.test(galton$child,"pnorm",mean=68,sd=1.78)
One-sample Kolmogorov-Smirnov test
data: galton$child
D = 0.1831, p-value < 2.2e-16
alternative hypothesis: two-sided
Warning message:
In ks.test(galton$child, "pnorm", mean = 68, sd = 1.78) :
cannot compute correct p-values with ties

The function ks.test is fairly straightforward to use in the case of a two-sample problem.
In the case of a one-sample problem, the hypothesized distribution F0 needs to be specified in
a careful way. In this example, we wanted to test if F0 ∼ N(68, 1.782). Now, this distribution
needs to be specified in the ks.test function with the options pnorm, and mean=68 and
sd=1.78.

Typically, the results from a software program needs to be interpreted properly. Here, the R
program is saying that it has not handled the ties properly. Thus, we need to adjust for the ties
in an adequate way. Having said this, it is not within the scope of the current chapter to address
this issue, and we conservatively conclude that the distribution of the height of the children is
not distributed as normal with mean 68 and standard deviation 1.78. ◽

The Two-Sample Problem

Suppose that X1,X2, … ,Xm is a random sample from a probability distribution F, and
Y1,Y2, … ,Yn is a random sample from a probability distribution G. Assume that we are
interested in determining if the two samples originate from the same population, that is, we
would like to verify our intuition by testing the hypothesis H ∶ F = G = F′, say. Notice that
we are not making any assumptions for the distribution of F and G, or F′. In this case we
need to resort to non-parametric methods. Let Fm(x) and Gn(x) be the empirical distribution
functions related to F and G respectively. The two-sample Kolmogorov-Smirnov test is then
given by

Dm,n = sup
x

|Fm(x) − Gn(x)|. (8.40)

The test procedure is to reject H if Dm,n ≥ c𝛼 , where c𝛼 is determined such that

P(Dm,n ≥ c𝛼|H0) ≤ 𝛼.

Exact computation of the probabilities for small m and n values may be seen in Table I of
Gibbons and Chakraborti (2004). Refer to Test 7 of Sheskin (2004) for more details related to
the KS-test. We will next illustrate the two-sample test for the Galton dataset.
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Example 8.5.7. Are the Distributions of Height of Children and Parents Equal? In con-
tinuation of the previous example, we now do not specify the distribution of the height of
parents. The R implementation is straightforward:

> ks.test(galton$child,galton$parent)
Two-sample Kolmogorov-Smirnov test
data: galton$child and galton$parent
D = 0.2425, p-value < 2.2e-16
alternative hypothesis: two-sided
Warning message:
In ks.test(galton$child, galton$parent) :
cannot compute correct p-values with ties

The conclusion of the above program is left to the reader! ◽

8.5.6 Kruskal-Wallis Test*

We have earlier used the Wilcoxon test for testing the hypothesis of equality of two location
parameters (median). A generalization of the testing for equality of k location parameters is
provided by the Kruskal-Wallis test statistic. In the general setting we have k treatments and
we are interested in testing if their effects are equal or otherwise. The Kruskal-Wallis test a
non-parametric ANOVA technique. The parametric ANOVA methods are detailed in Chapters
13 to 15.

Let nj denote the number of observations under treatment j, j = 1, 2, … , k. The total number
of observations in the study is N =

∑k
j=1 nj. For a one-way layout we can display the data, as

in Table 8.5.
The assumptions for the use of the test method are the following: (a) all the N observations

are independent, (b) the cumulative distribution function Fj, j = 1, … , k is assumed to be con-
tinuous, and (c) the distribution functions Fj are characterized by 𝜏j, j = 1, … , k, where 𝜏j is
the unknown treatment effect.

The hypothesis of interest is H ∶ 𝜏1 = · · · = 𝜏k, which is tested against the hypothesis that
K ∶ 𝜏i ≠ 𝜏j, for some i ≠ j. The test procedure includes the following steps.

• Arrange all the N observations from smallest to largest value.
• Let rij denote the rank of Xij in the above pooled data.

Table 8.5 Data Arrangement for the
Kruskal-Wallis Test

Treatment 1 Treatment 2 … Treatment k

X11 X12 … X1k

X21 X22 … X2k

⋮ ⋮ ⋮
Xn11 Xn22 … Xnkk
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• Obtain the rank sum and rank average for each of the k samples:

Rj =
nj∑

i=1

rij, j = 1, … , k,

R.j =
Rj

nj
, j = 1, … , k.

The Kruskal-Wallis test statistic, denoted by H, is given by

TKW =

(
12

N(N + 1)

k∑
j=1

R2
j

nj

)
− 3(N + 1) (8.41)

The test procedure is to reject H if TKW ≥ h𝛼 , where h𝛼 is found by a special statistical table.

Example 8.5.8. Mucociliary Clearance. Table 6.1 of Hollander and Wolfe (1999) lists the
data for Half-Time of Mucociliary Clearance. We need to test if the time across various treat-
ments is equal or not.

> data(Mucociliary)
> Mucociliary$Rank <- rank(Mucociliary$Time)
> aggregate(Mucociliary$Rank,by=list(Mucociliary$Treatment),sum)

Group.1 x
1 Asbestosis 33
2 Normal Subjects 36
3 Obstructive Airways Disease 36
> kruskal.test(Time∼Treatment,data=Mucociliary)
Kruskal-Wallis rank sum test
data: Time by Treatment
Kruskal-Wallis chi-squared = 0.7714, df = 2, p-value = 0.68

The kruskal.test readily gives the required answer. The large p-value indicates that there
is no evidence to reject the hypothesis H for equality of the location parameters. ◽

?wilcox.test, ?rank, ?ks.test, ?kruskal.test

8.6 Further Reading

An interesting remark about non-parametrics is that due to computational limitations, the
early history of the subject was more dedicated to testing problems and less on estimation.
The computational advantage during the last three decades is changing this facet and we can
increasingly see more estimation methods developed in the domain of non-parametrics. Thus,
we can see many early non-parametric texts focusing more on testing problems.

Siegel (1956) appears to us as the first non-parametrics text and it was also especially writ-
ten for the behavioral sciences. Conover (1999), Gibbons and Chakraborti (2003), Desu and
Raghavarao (2004), Govindarajulu (2007), and Sprent and Smeeton (2001) deal with many
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non-parametric testing procedures. Lehmann (1975) is a rigorous treatment of this subject.
The previous section has been influenced by Hollander and Wolfe (1999). The authorative
handbook on testing by Sheshkin (2004) will be very handy for practitioners. Though we do
not consider an approach, Hajék, et al. (1999) is essential reading for any person who wants
to study the subject in a detailed framework.

Efron and Tibshirani (1993) is a detailed monograph on bootstrap methods. Further details
about the bootstrap can be obtained in Shao and Tu (1996) and Chernick (2008).

Smoothing techniques have been detailed in Silverman (1985) and Simonoff (1996).
Wasserman (2006) is yet another comprehensive treatise on the modern aspects of
non-parametrics.

8.7 Complements, Problems, and Programs

Problem 8.1 For the swiss$Bottforg data vector, obtain the empirical cdf and estimate
the statistical functionals of skewness and kurtosis.

Problem 8.2 Find the 90% bootstrap confidence intervals for skewness and kurtosis esti-
mates of the previous problem.

Problem 8.3 For the parent height in the galton set, obtain the histogram smoothing
and the kernel smoothing estimates and draw the right inference.

Problem 8.4 Compare the Behrens-Fisher test results with the Mann-Whitney non-
parametric test for the Youden-Beale data.

Problem 8.5 The nerve dataset, as discussed in Section 8.2, deals with the cumulative
distribution function. Estimate the density function of the nerve data using
histogram smoothing, and uniform, Epanechnikov, biweight, and Gaussian
kernels.

Problem 8.6 For the parameters estimated in Section 7.6 under the assumption of certain
distributions, use the Kolmogorov-Smirnov tests for one-sample to test the
hypothesis that the fitted models are the true model.

Problem 8.7 The t.test is used to compare the sleep data, Youden-Beale data, etc. In
each case, test the Kolmogorov-Smirnov two-sample test and conclude whether
or not both the tests agree.
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Package(s): LearnBayes, VGAM

9.1 Introduction

We encountered the Bayes formula in Section 5.6 and some important Bayesian sampling
distributions in Section 6.9. Bayesian probabilities are of interest in themselves and such
probabilities also highlight the requirement for appropriate choice of prior distributions for
unknown parameters. The Bayesian probabilities will be discussed in depth in Section 9.2.
Useful theoretical aspects of the Bayesian paradigm are then discussed in Section 9.3. Bayesian
inference for standard probability distributions will be taken up in Sections 9.4.1–9.4.5. An
advantage of the Bayes paradigm is that a single approach helps to answer the three inferential
problems of estimation, intervals, and testing hypotheses, and we will consider credible
intervals in Section 9.5. Finally, hypotheses testing problem will be dealt with in Section 9.6
using Bayes factors.

9.2 Bayesian Probabilities

In general, almost all Bayesian texts assume that the reader learned probability theory in a
separate course and so there is almost no discussion of Bayesian probabilities. As a matter
of factual non-coincidence, an observation has been that either the word “Bayes” does not
appear in many classical probability texts, or merely gets a simple honorable mention. This
is not a surprise as most Bayesian texts define “posterior distribution” only in the context of
data and not as a probability model. There are a lot of surprises when we consider Bayesian
probabilities themselves and so there is no strong requirement to have data as a starting point
when learning Bayesian statistics. A simple example of Bayesian probability has already
been seen in Example 5.6.1 of Section 5.6. This section will follow the paper of Diaconis and
Holmes (2002). The philosophy of Bayesian approach can be found in the classic book of
Jeffreys (1961).

A Course in Statistics with R, First Edition. Prabhanjan Narayanachar Tattar, Suresh Ramaiah and B. G. Manjunath.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/tattar/statistics
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Example 9.2.1. Bayesian Probability of Success and Revisiting Example 5.2.9 of Laplace
Probability of Sunrise. Consider an observation X which follows binomial distribution
b(n, p). Here, X can take any integer value between 0 and n. An indifferent approach for
specifying a prior distribution is that p can assume any value equally between 0 and 1, that is,
we use a uniform prior for p:

𝜋(p) = 1, 0 ≤ p ≤ 1. (9.1)

The posterior distribution is given by

𝜋(p|x) =
(

n
x

)
px(1 − p)n−x

∫ 1
0

(
n
x

)
px(1 − p)n−xdp

=
px(1 − p)n−x

∫ 1
0 p(x+1)−1(1 − p)(n−x+1)−1dp

= 1
Beta (x + 1, n − x + 1)

p(x+1)−1(1 − p)(n−x+1)−1.

Application to an interesting problem is in order. Recollect that we had defined the probability
that the sun will rise on the 7th day, if we have observed the sun to rise on 6 out of 6 days, will
be (6 + 1)/(6 + 2) = 7/8 = 0.875. The posterior mean of p is then

p̂ = x + 1
x + 1 + n − x + 1

= x + 1
n + 2

.

Thus, if we had observed the sun to rise on 6 out of 6 days, the Bayesian estimate for the
probability of sunrise on the next day, under a non-informative prior, is (6 + 1)/(6 + 2) =
7/8 = 0.875. ◽

Thus, all the inference for p may be based only on the posterior distribution.

Example 9.2.2. Uniform Prior for the Birthday Problem. The birthday problem will be
considered under different setups for different priors. As a beginning, a multinomial distri-
bution with n = 365 cells may be used, where each cell has the same probability of getting a
new ball. Under a uniform prior, equivalently non-informative prior, the probability of a match
when k balls are dropped into the n cells is given by

P(match) = 1 −
k−1∏
i=1

1 − i∕n

1 + i∕n
. (9.2)

The next R program gives the Bayesian probabilities of a match when k balls are dropped into
the n cells.

> # Prob(a match) = 1- prod_{i=1} ̂ {k-1} {(1-i/n)/(1+i/n)}
> n <- 365
> k <- c(2,5,10,20,30,40,50)
> prob_match_fun <- function(n,k) 1-prod((1-1:k/n)/(1+1:k/n))
> prob_match <- sapply(k,prob_match_fun,n=n)
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> prob_no_match <- 1-prob_match
> cbind(k,prob_match,prob_no_match)

k prob_match prob_no_match
[1,] 2 0.01630411 0.9836958949
[2,] 5 0.07890755 0.9210924518
[3,] 10 0.26022659 0.7397734053
[4,] 20 0.68377152 0.3162284780
[5,] 30 0.92198997 0.0780100274
[6,] 40 0.98891780 0.0110822028
[7,] 50 0.99909607 0.0009039281

The R code 1-prod((1-1:k/n)/(1+1:k/n)) calculates the probability on the
right-hand side of Equation 9.2 . Of course, it is of interest to contrast these probabilities
with classical ones, refer to Table 9.1. We can thus see that even the use of the uniform prior
changes the probabilities significantly. ◽

Table 9.1 Birthday Probabilities: Bayesian and Classical

Size k Classical Birthday
Probabilities

Bayesian Birthday
Probabilities

2 0.00273973 0.01630411
5 0.02713557 0.07890755
10 0.11694818 0.26022659
20 0.41143838 0.68377152
30 0.70631624 0.92198997
40 0.89123181 0.98891780
50 0.97037358 0.99909607

Example 9.2.3. The Coupon Collector’s Problem Under the Bayesian Paradigm. In
Example 5.7.5, the coupon collectors were discussed in detail and the answer was obtained
for the expected number of coupons to be purchased to complete the collection. The problem
will be looked at in a different framework now. As earlier, let T continue to denote the number
of coupons n to be purchased for the complete collection. It helps to imagine a coupon as an
urn and that if the ith coupon is chosen, the ith urn is non-empty. Equivalently, all the coupons
are collected if all the urns are non-empty. Then, the probability P(T ≤ t), see Section 2.2 of
Mahmoud (2008) for details, is given by

P(T ≤ t) =
n∑

j=0

(−1)j
(

n
j

)(
1 −

j

n

)t

, t = n, n + 1, … . (9.3)

It may be noted here that though some components of the sum in Equation 9.3 may be negative,
the overall probability is always positive. A small program will illustrate this next for the
number of urns at n = 5 and t = 5, 6, … , 10.

> n <- 5; t <- 5:10
> ProbAllUrns <- NULL
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> for(i in 1:length(t)) {
+ tt <- 0:n*0
+ for(j in 0:n) {
+ tt[j+1] <- ((-1) ̂ {j})*choose(n,j)*((1-j/n) ̂ {t}[i])
+ }
+ ProbAllUrns[i] <- sum(tt)
+ }
> ProbAllUrns
[1] 0.0384 0.1152 0.2150 0.3226 0.4271 0.5225
> tt
[1] 1.000e+00 -5.369e-01 6.047e-02 -1.049e-03 5.120e-07 0.000e+00

The terms tt show that the terms of the sum for P(T ≤ 10) are negative, though the probability
itself is not. If a village celebrates the birthday of its occupants, we can then answer how many
people are required in its population so that the probability of every day being celebrated as
a birthday is at least 1/2 by computing n = 365 and allowing t ≥ 365. It may be verified for
t = 2287, the probability will be 0.5004.

The Bayesian probability PBayes(T ≤ t), under a uniform prior that any coupon is as likely
to be picked as any other coupon, see Equation 3.3 of Diaconis and Holmes (2002), is given by

PBayes(T ≤ t) =

(
t−1
n−1

)
(

t+k−1
n−1

) , t = n, n + 1, … . (9.4)

The expression PBayes(T ≤ t) is very computationally demanding. For example, if we try to
obtain the numerator term with t = 2287, which in the expression 9.3 refers to the probability
1/2, with choose(2286,364), we run into the Inf problem. Thus, we customize
a function logChoose and then compute the probabilities PBayes(T ≤ t). The function
logChoose simply executes the combinations on a logarithmic scale.

> logChoose <- function(n,r) {
+ lcr <- sum(log(1:n)) - sum(log(1:(n-r))) - sum(log(1:r))
+ return(lcr)
+ }
> n <- 365
> t <- 2287
> exp(logChoose(t-1,n-1)-logChoose(t+n-1,n-1))
[1] 4.595884e-26
> exp(logChoose(2*t-1,n-1)-logChoose(2*t+n-1,n-1))
[1] 2.353723e-13
> exp(logChoose(5*t-1,n-1)-logChoose(5*t+n-1,n-1))
[1] 8.978454e-06
> exp(logChoose(10*t-1,n-1)-logChoose(10*t+n-1,n-1))
[1] 0.00299862
> exp(logChoose(100*t-1,n-1)-logChoose(100*t+n-1,n-1))
[1] 0.5593746
> exp(logChoose(191844-1,n-1)-logChoose(191844+n-1,n-1))
[1] 0.5003025
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For the classical counterpart sample size of n = 2287, the Bayesian probability is
4.596e-26, to almost zero. In fact, even if the size is increased by 10 times to n = 22870,
the Bayesian answer is 0.002999, again close to zero. To match the probability of 1/2, the
Bayesian answer of the sample size is as high as 191844. Thus, the answer becomes here
even more intriguing. However, it is not too much of a surprise, and the enthusiastic reader
should refer to the Diaconis and Holmes paper. ◽

Diaconis and Holmes also deal with these problems using the Dirichlet prior. Jeffreys
(1939–61) is a treatise on the philosophy of Bayes paradigm.

9.3 The Bayesian Paradigm for Statistical Inference

In the classical approach, we have seen that estimation and testing problems have different
approaches. In the Bayesian school, we have a unified framework for addressing all of the
inferential aspects. The posterior distribution of the parameters suffice for estimation, testing,
and confidence interval problems. In Sections 7.4 and 7.5 of Chapter 7, we noted the impor-
tance of the sufficiency and likelihood principles. The Bayesian paradigm serves as a duality
principle which considers both of these perspectives, see Section 1.2 of Robert (2007). To
understand the Bayesian paradigm, consider a probability function f (x|𝜃), and let the prior
distribution about 𝜃 be specified as 𝜋(𝜃). The Bayesian paradigm then bases the inference
about 𝜃 on the posterior distribution, denoted by 𝜋(𝜃|x), given by:

𝜋(𝜃|x) = f (x|𝜃)𝜋(𝜃)
∫ f (x|𝜃)𝜋(𝜃)d𝜃 . (9.5)

Recall by the definition of sufficient statistic and the Neyman factorization theorem that a
statistic T(x) is sufficient if

f (x|𝜃) = g(T(x)|𝜃)h(x).
Since the Bayesian inference depends on f (x|𝜃), it will always take into consideration the suf-
ficient statistic, and hence it can be said that the Bayesian paradigm will satisfy the sufficiency
principle. In the next subsection, we will briefly state Bayesian sufficiency and later check for
the likelihood principle.

9.3.1 Bayesian Sufficiency and the Principle

Ghosh, et al. (2006) discuss the Bayesian sufficiency in their Appendix E. The concept of
sufficiency here remains the same as seen in Section 7.4.

Definition 9.3.1 Bayesian Sufficiency. A statistic T is said to be sufficient in a Bayesian
sense if for all priors 𝜋(𝜃) the posterior distribution can be written as

𝜋(𝜃|x) = 𝜋(𝜃|T(x)) (9.6)

By their definitions, a sufficient statistic is always Bayesian sufficient. However, Blackwell
and Ramamoorthi (1982) give a counter example that the Bayesian sufficient statistic need not
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be a sufficient statistic in the context of a hypothesis testing problem. See also Section 7.9 of
Geisser and Johnson (2006). The sufficiency principle is given next.

Definition 9.3.2 Sufficiency Principle. Let x and y be two observations factorizing through
the same value of a sufficient statistic T, implying T(x) = T(y). Then the inference based on
the two observations x and y must be the same for the parameter 𝜃.

The Examples 7.4.1 to 7.4.7 all provide sufficient statistics and the inference for the par-
ameters to be carried out using them. For instance, in Example 7.4.1, T =

∑n
i=1 Xi is sufficient

for 𝜃 in the case of exponential distribution, while T = (
∑n

i=1 Xi,
∑n

i=1 X2
i ) is jointly sufficient

for (𝜃, 𝜎2) for a sample from a normal distribution when both parameters are unknown.

9.3.2 Bayesian Analysis and Likelihood Principle

The likelihood principle was introduced in Section 7.5. Recollect from Example 7.5.3 where
the inference for p had to be based on p9(1 − p)3. However, we had two proportionality con-
stants which would lead to different conclusions in the classical inference. The Likelihood
principle though requires that the inference should be the same as long as the two sample points
are proportional to each other. Since the Bayesian inference about p would depend completely
on the posterior distribution, the Likelihood principle is automatically satisfied. This point will
be clearly demonstrated in examples that follow in the remainder of this chapter.

The choice of prior distributions will be discussed in the following.

9.3.3 Informative and Conjugate Prior

Consider a prior distribution 𝜋(𝜃) for a random sample from f (x|𝜃).
Definition 9.3.3 Suppose that 𝜐 is a parameter of interest. Let  be the family of distribution
of 𝜋(𝜃). We say that the prior 𝜋(𝜃) is a conjugate prior for 𝜃 if the posterior density function
𝜋(𝜃|x) also belongs to  .

Table 6.1 gives some examples of the conjugate prior and the related posterior distribution
in what has been referred to as the Bayesian sampling distribution. Specifically recall that
if the prior distribution for p in the binomial distribution is a beta distribution, the posterior
distribution is also a beta distribution, see also the discussion following Example 9.2.1. In the
case of multinomial distribution, which is an extension of binomial, the Dirichlet prior is an
example of a conjugate prior, since the posterior distribution is also a Dirichlet distribution.

It should be noted that the parameters of the prior distribution need to be completely
specified. The important question is how are the parameters specified? A very partial answer
is provided here and precise answers can be obtained in the literature given in the Further
Reading section at the end of this chapter. Suppose that it is intended to estimate the average
life of an electronic device at a certain facility, and exponential distribution is assumed to
govern the age of the device. It may be possible that the expert engineering team has a good
scientific reason for specifying the range of the average age device with certain probabilities,
say they expect the average life of the device to be between 10 months to 36 months, with a
probability 0.95. It is also possible that data may be available for a sample of 20 units each
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over the past 24 months and the sampling distribution of the averages of the months may be
used to specify the prior parameters of a gamma distribution.

9.3.4 Non-informative Prior

The prior information may not always be strong or reliable enough to form a prior distri-
bution 𝜋(𝜃). It is also possible that expert information is not available or that the experiment
is being performed for the first time and hence there would be no data to form a prior dis-
tribution. In such scenarios, the role of the non-informative priors comes into prominence.
The non-informative prior has already been used in Section 9.2. For instance, in the coupon
collector’s problem, any coupon is as likely to be selected as any other coupon.

We will briefly discuss two types of non-informative priors: (i) Laplace prior, and (ii) Jef-
frey’s prior. Recall the uniform prior for probability of success p in Example 9.2.1, that is,
𝜋(p) = 1, 0 ≤ p ≤ 1. It means, of course, that any value of p is as likely as any other, that is,
there is no information about p being really conveyed. Similarly, the Laplace prior in other
examples are also non-informative.

The Jeffrey’s prior is related to the Fisher information given in Equation 7.20. The Jeffrey’s
prior distribution is defined as proportional to the square-root Fisher information, that is,

𝜋(𝜃) ∝ I1∕2(𝜃). (9.7)

Recall that in Example 7.5.6, it was proved that 𝜆 = 1∕𝜆, and thus the Jeffreys non-
informative prior is 1∕

√
𝜆.

9.4 Bayesian Estimation

In many cases, the posterior distribution does not admit a closed form expression. In general,
it may be a difficult expression to evaluate. For the moment assume that we do not have the
time (and the skills) for learning advanced techniques. That is, the probability model and the
posterior distribution which have closed form expressions are considered.

9.4.1 Inference for Binomial Distribution

Consider a random sample of size n from Bernoulli trials. Let the probability of success be
denoted by p. As seen earlier, for a specified prior distribution 𝜋(p), and the data x = (x1,

… , xn), the posterior distribution is obtained by

𝜋(p|x) = 𝜋(p)
(

n
x

)
px(1 − p)n−x

∫ 𝜋(p)
(

n
x

)
px(1 − p)n−xdp

.

So far we have not specified the form of the prior distributions. The prior distribution may be
discrete or continuous. First consider the discrete prior and then follow it up with a continuous
prior. As in the general scenario, the marginal distribution ∫ 𝜋(p)f (x|p)dp is not of interest and

is ignored and we continue to focus on 𝜋(p)
(

n
x

)
px(1 − p)n−x.
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9.4.1.1 Inference Using a Discrete Prior

For a discrete prior 𝜋(p) = (p1, … , pk), the integral in the denominator of the posterior dis-
tribution reduces to a sum over the k points and the Bayes formula can be used to obtain the
posterior probabilities. The Bayesian inference for the Bernoulli distribution with a discrete
prior is considered next.

Example 9.4.1. A Discrete Prior for the Proportion of Heavy Sleepers. Consider an
example from Albert (2009). A small survey has been conducted to find out if the students
receive the recommended sleep of eight hours. Let p denote the proportion of students who
have at least eight hours of sleep. Suppose that the experimenter believes the proportion p
belongs to the intervals (0,0.1),(0.1,0.2), ..., (0.9,1) with the weights 1, 5.2, 8, 7.2, 4.6, 2.1,
0.7, 0.1, 0, and 0. That is, the probability p of belonging in the interval is now specified by a
histogram. Bayesian inference using the histogram prior will be taken in Section 11.6. Thus,
the prior over intervals is tweaked to specific points, namely the center of the intervals. That
is, suppose that the experimenter believes that the weights of p taking the values 0.05, 0.15,
..., 0.95 are respectively 1, 5.2, 8, 7.2, 4.6, 2.1, 0.7, 0.1, 0, and 0. A normalization can be used
to translate the weights into prior probabilities. In terms of symbols, 𝜋i, i = 1, … , 10 takes
the values 0.05, ..., 0.95 with respective probabilities 0.03, … , 0. Given that 11 out of 27
students had a minimum sleep of eight hours the previous night, here n = 27 and x = 11, the
posterior probabilities can be obtained with the use of Bayes formula 5.10:

p(𝜋i|x = 11) =
𝜋i × p11(1 − p)16∑10

i=1 𝜋i × p11(1 − p)16
.

The posterior probabilities are easily obtained by first multiplying the prior probabilities with
the likelihood function and then following it with a normalization.

> p <- seq(0.05, 0.95, by = 0.1) # plausible values of the parameter
> prior <- c(1, 5.2, 8, 7.2, 4.6, 2.1, 0.7, 0.1, 0, 0)
> # belief in plausible values
> prior <- prior/sum(prior)
> # translating the belief into probability
> x <- 11; n <- 27
> lik_prior <- prior*p ̂ {11}*(1-p) ̂ {16}
> posterior_prob <- lik_prior/sum(lik_prior)
> round(posterior_prob,2)
[1] 0.00 0.00 0.13 0.48 0.33 0.06 0.00 0.00 0.00 0.00

Thus, the prior probabilities are transformed into posterior ones using a simple expression. ◽

Example 9.4.2. Bolstad’s Example 6.9. Bolstad (2007) constructs Bayesian inference for
binomial distribution given a discrete prior. Suppose that it is known a priori that the probability
of success is one of the three values 0.4, 0.5, or 0.6, and each is as likely to occur as the
others. The coin is tossed n = 4 times and x = 3 successes are observed. The problem is then
to obtain the posterior probabilities. The lucid manner in which Bolstad transcends from the
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Bayes formula to inference is remarkable and in Chapter 6 of his book, all the steps are cleanly
outlined through the use of neat tables, Tables I to IV, which are as follows:

• In Table I, specify the discrete prior values, say p1, … , pk, in column 1 and the discrete
prior probabilities, 𝜋1, … , 𝜋k, in column 2. The rest of the columns are labeled as 0, 1,
… , n.

• For the ith row, obtain the probabilities P(X = i|p = pj), i = 0, 1, … , n, j = 1, … , k. This
will complete Table I.

• For Table II, retain the number of columns. The first three rows are unchanged and we need
to append the table with one more row. From the third column onwards, obtain the column
sums and enter the result as the fourth row. This will be given as the marginal distribution
of X.

• We need to obtain the posterior probabilities P(𝜋j|X = 3)! This can be obtained by dividing
the column corresponding to X = 3 by its column sum, as obtained in the previous step.
This is Table III.

• Refer to page 110 of Bolstad (2007) and interpret Table IV.

However, we will simply use the Bayes formula and R codes as in the previous example to
obtain the posterior probabilities.

> n <- 4; x <- 3
> prior <- rep(1/3,3)
> p <- c(0.4,0.5,0.6)
> likelihood <- p ̂ {x}*(1-p) ̂ (n-x)*choose(n,x)
> posterior <- prior*likelihood
> posterior <- posterior/(sum(posterior))
> round(posterior,2)
[1] 0.21 0.33 0.46

We have now seen a systematic translation from prior to posterior probabilities through a
pedagogical program. ◽

9.4.1.2 Inference using a Continuous Prior

If the prior distribution for probability of success p follows the standard uniform distri-
bution U(0, 1), we saw in Example 9.2.1 the technique of obtaining the posterior distribution.
However, a uniform prior is a non-informative prior, or a flat prior. If the user has information
about the skewness of the parameter, such information may be conveyed through a prior
which follows a beta distribution. This may be easily seen by reverting to the diagram in
Part B of Figure 6.5. The beta distribution will be a natural conjugate prior for p, in that
the posterior distribution will also be a beta distribution. Thus, if the prior distribution for p
is taken to be Beta (𝛼, 𝛽), it may show mathematically, refer to Table 6.1, that the posterior
distribution for p follows the beta distribution Beta (𝛼 + x, 𝛽 + n − x):

𝜋(p|x) = 1
Beta (x + 𝛼, n − x + 𝛽)

px+𝛼−1(1 − p)n−x+𝛽−1.
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Based on the data, the estimate of p will be the mean of the posterior beta distribution (𝛼 +
x)∕(𝛼 + x + 𝛽 + n − x) = (𝛼 + x)∕(𝛼 + 𝛽 + n).

Example 9.4.3. Again Revisiting Laplace Probability of Sunrise. For near certain events,
it is natural to specify that the probability curve be very high at 1 and very low at 0, say for
example, plot plot(x,dbeta(x,5,0.05)) for x <- seq(0,1,0.05). It is obvious
that for n days, we would observe x = n number of sunrises. In the present case, the estimate of
p will be (𝛼 + n)∕(𝛼 + 𝛽 + n). Now, suppose we have a friend who plays the devils advocate
and says the prior should be dbeta(x,0.05,5). The next small program will give the
Bayes estimate of p.

> alpha <- 5; beta <- 0.05
> n <- seq(1e2,1e3,1e2)
> (alpha+n)/(alpha+n+beta)
[1] 1 1 1 1 1 1 1 1 1 1
> alpha <- 0.05; beta <- 5
> (alpha+n)/(alpha+n+beta)
[1] 0.952 0.976 0.984 0.988 0.990 0.992 0.993 0.994 0.994 0.995

It may be that when we have a large number of observations, the prior influence has little impact
on the concluding estimate. This observation is known as data washing away the prior. ◽

9.4.2 Inference for the Poisson Distribution

9.4.2.1 Inference using a Discrete Prior

Let us begin with a discrete prior and obtain the posterior probabilities using the Bayes formula.
As with the binomial distribution, we will demonstrate the details with an example.

Example 9.4.4. A Discrete Prior for Poisson Distribution. Let X ∼ Pois(𝜆), and assume
that the mean 𝜆 can take values 1, 2, 3, or 4 with respective probabilities 1/8, 1/4, 1/2, and
1/8. Suppose that we have observed X = 3 and then have been asked to return the posterior
probabilities. A simple application of the Bayes theorem will then return us the required prob-
abilities. As the method of application follows the binomial distribution, we will skip the details
and ask the reader to furnish them. The R program below gives the posterior probabilities.

> lambda <- c(1,2,3,4)
> prior <- c(1/8,1/4,1/2,1/8)
> x <- 3
> likeli <- dpois(x=3,lambda=lambda)
> priorlikeli <- likeli*prior
> posterior <- priorlikeli/sum(priorlikeli)
> posterior
[1] 0.0405 0.2384 0.5920 0.1291

The computations are fairly easy to understand. ◽
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9.4.2.2 Inference using a Continuous Prior

It has been seen in Section 6.9 that if we have a random sample of size n from Pois(𝜆), and
the conjugate prior is specified by Gamma(𝛼, 𝜃), then the Bayesian sampling distribution is
given by

p(𝜆|x1, … , xn, 𝛼, 𝜃) =
⎧⎪⎨⎪⎩
𝜆𝜃+n−1 e

−𝜆
/(

𝛼+
∑n

i=1
x
)

Γ(𝜃+n)(𝜃+n)𝛼+
∑n

i=1
xi
, 𝜆 > 0, 𝛼, 𝜃 > 0,

0, otherwise.

Let us consider the birth rates example of Hoff (2010).

Example 9.4.5. Birth Rates Example. Hoff (2010) considers the birth rates for two
populations: (i) women with less than a Bachelors degree, and (ii) women educated at Bach-
elors degree level or higher. Here X1,1, … ,X1,n1

denotes the number of children for n1 = 111
women who did not have a Bachelors degree, and X2,1, … ,X2,n2

denotes n2 = 44 women in
the other group. The sufficient statistics resulted in the data

∑n1
i=1 x1,i = 217 and

∑n2
i=1 x2,i = 66.

Assuming the same gamma prior for the two groups with parameters 𝛼 = 2, 𝜃 = 1, the posterior
distribution for the two groups, each group has parameter 𝜆i, i = 1, 2, can be summarized as

𝜆1 ∼ Gamma(2 + 217, 1 + 111)

𝜆2 ∼ Gamma(2 + 66, 1 + 44)

Let us obtain the posterior means for 𝜆1 and 𝜆2.

> (2+217)/(1+111) # Posterior mean of group 1
[1] 1.955357
> (2+66)/(1+44) # Posterior mean of group 2
[1] 1.511111

This shows that women without the Bachelors degree on average have 2 children, whereas
the other group has about 1.5. ◽

9.4.3 Inference for Uniform Distribution

Consider a random sample X1, … ,Xn of size n from a uniform distribution U(0, 𝜃), that is,

p(x) =
{ 1

𝜃
, 0 ≤ x ≤ 𝜃, 𝜃 > 0,

0, otherwise.

Minka (2001) considers the Bayesian inference for uniform distribution. The conjugate prior
for uniform distribution is the Pareto distribution:

p(𝜃) =

{
KbK

𝜃K+1 , if 𝜃 ≥ b,
0, otherwise.

(9.8)
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Minka represents the Pareto distribution by Pa(b,K). The Pareto density asserts that 𝜃 must
be greater than b, though not much greater. It may be observed that as K → 0 and b → 0,
the Pareto prior reduces to a non-informative prior. An exercise for the reader is to plot a few
Pareto densities. Let x = {x1, … , xn} denote the dataset. The joint distribution of x and 𝜃 is
given by

p(x, 𝜃) = KbK

𝜃K+n+1
,max{x} ≤ 𝜃.

The posterior density for 𝜃 is given by

p(𝜃|x) = p(x, 𝜃)
p(x)

∼ Pa(c, n + K), (9.9)

where c = max(m, b) and m = max{x}. We will clarify the concepts with a dummy example.

Example 9.4.6. The Taxicab Problem. Minka had mainly developed the methods here for
estimation of the number of taxis in a city. We are illustrating with a dummy data example
and refer the reader to Minka’s paper for more details and depth. Suppose that the maximum
number observed in 103 (distinct) taxis is 9184 and our prior parameters are specified by
b = 10000 and K = 10. We need to estimate 𝜃 from this information. The posterior distribution
of 𝜃 given m = 9184, b = 10000,K = 10 is

p(𝜃|m, b,K) = 10×1000010

𝜃11 , 𝜃 ≥ 10000

The next R program gives a plot of the posterior distribution of 𝜃, see Figure 9.1.

> m <- 9184
> n <- 103
> b <- 10000
> K <- 10
> theta <- seq(1000,20000,500)
> plot(theta,as.numeric(sapply(theta,pareto_density,scale=b, shape=
+ K)),"l",xlab=expression(theta),ylab="The Posterior Density")
> (n+1)*m/n
[1] 9273

The function pareto_density from the companion package is used to obtain values of the
Pareto density. A more complete function for the Pareto density is the dpareto function from
the VGAM package. An estimator of 𝜃 is provided by the posterior mean, which is n+1

n
m and

thus our estimate of the number of taxis in the town is 9273.165. Recollect that the estimate
from a classical inference perspective is the sample maximum for 𝜃, which will be 9184. ◽

9.4.4 Inference for Exponential Distribution

Consider the exponential distribution with rate 𝜆:

f (x|𝜆) = {
𝜆e−𝜆x, x ≥ 0, 𝜆 > 0,

0, otherwise.
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Figure 9.1 Bayesian Inference for Uniform Distribution

From Section 6.9, the conjugate prior for 𝜆 is given by the gamma distribution:

𝜋(𝜆|𝛼, 𝛽) =
{

𝛽𝛼

Γ(𝛼)𝜆
𝛼−1 exp(−𝜆𝛽), 𝛼, 𝛽, 𝜆 > 0,

0, otherwise.

Suppose we have an iid sample of size n in X1, … ,Xn. Define X̄ =
∑n

i=1 Xi∕n. The posterior
distribution is then given by

𝜋(𝜆|x̄, 𝛼, 𝛽) = (𝛽 + nx̄)𝛼+n

Γ(𝛼 + n)
𝜆𝛼+n−1 exp(−𝜆{𝛽 + nx̄}). (9.10)

Example 9.4.7. Proschan’s Air Conditioner Failure Times. We will begin with the
assumption that the time between failures of the air-conditioning equipment in ten Boeing
720 aircraft follows an exponential distribution. Assume that the prior distribution for the
failure rate is specified by Gamma(0.1,0.05). The posterior distribution is then given by
Gamma(12.1,1297.05). The Bayes estimator for 𝜆 is given by the mode of the posterior
distribution, which is 1297.05/12.1 = 107 hours. ◽

9.4.5 Inference for Normal Distributions

In Section 6.9 we had stated the Bayesian sampling distributions for a normal model. In this
section, it will be put into action.
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Using a Discrete Prior

The Bayes formula will again continue to be a useful tool for updating the prior probabilities
into posterior probabilities given the data. Suppose the prior values that the mean 𝜇 can
possibly take are –3, –2, –1, 0, 1, 2, 3 with equal probability. The standard deviation 𝜎 is
known as 1 and an observation is noted at 1.13. The Bayes formula can be computed in the
routine way to obtain the posterior probabilities.

> mu <- -3:3
> prior <- rep(1/7,7)
> x <- 1.13
> lik_norm <- dnorm(x,mu,1)
> posterior <- lik_norm*prior
> posterior <- posterior/sum(posterior)
> posterior
[1] 0.000 0.003 0.042 0.212 0.398 0.275 0.070

Inference for 𝝁 when 𝝈 is known, Continuous Prior

A non-informative prior for 𝜇 is specified by

𝜋(𝜇|x) = 1,−∞ < 𝜇 < ∞. (9.11)

That is, this prior assumes that all the possible values of 𝜇 are equally possible. Of course,
this is an example of improper prior since ∫ 𝜋(𝜇)d𝜇 = ∞. However, the Jeffrey’s prior is this
flat prior only. It can be easily seen that the posterior distribution is the normal distribution
N(x̄, 𝜎2). This distribution can then be used for inference on 𝜇.

Example 9.4.8. Estimation of Average Height of Child in the Galton Dataset. We will
assume that the height of the child follows a normal distribution. Here n = 928, and we
assume that the variance of the height is known as 𝜎2 = 6. Using the non-informative prior, the
posterior distribution of 𝜇 follows the normal distribution N(x, 6). Thus, the Bayes estimate for
the average height of the child, the posterior mode, is given by �̂� = 68.08847. ◽

Now consider the case of informative prior. Assume that the prior for 𝜇 is specified by
N(𝜏, 𝜂2), where both 𝜏 and 𝜂2 are known. The posterior distribution is then specified by
N
(
𝜎2𝜏+𝜂2 x̄
𝜎2+𝜂2 ,

𝜎2𝜂2

𝜎2+𝜂2

)
.

Example 9.4.9. Estimation of Average Height of Child in the Galton Dataset. Contd. Let
us continue with the assumption that the variance of the height of children is known as 𝜎2 = 6.
Assume that the prior for 𝜇 is specified by N(68, 3.2). The simpler computations are given next.

> data(galton)
> xmean <- mean(galton$child)
> variance <- 6
> priormean <- 68
> priorvar <- 3.2
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> postmean <- (variance*priormean + priorvar*xmean)/
+ (variance+priorvar)
> postvariance <- (variance*priorvar)/(variance+priorvar)
> postmean
[1] 68.03077

The galton dataset is used from the UsingR package. The Bayes estimate for the average
height of the child, the posterior mode, is given by �̂� = 68.03077. ◽

For an enriched example of inference from a normal distribution when 𝜇 is known, but 𝜎 is
not known, see Section 3.2 of Albert (2009).

Inference when 𝝁 and 𝝈 are both Unknown

As earlier, and so many times over, consider a sample X1, … ,Xn of size n for N(𝜇, 𝜎2). We
will begin with the case of non-informative priors. That is, 𝜋(𝜇, 𝜎2) ∝ 1∕𝜎2. The posterior
density is then given by

𝜋(𝜇, 𝜎2|x) ∝ 1
(𝜎2)n∕2+1

exp

(
− 1

2𝜎2

{
n∑

i=1

(xi − x̄)2 + n(𝜇 − x̄)2
})

= 𝜋(𝜇|𝜎2, x)𝜋(𝜎2|x) (9.12)

where
𝜋(𝜇|𝜎2, x) ∝ exp

{
− 1

2𝜎2
n(x̄ − 𝜇)2

}
(9.13)

is a normal distribution N(x̄, 𝜎2∕n), and

𝜋(𝜎2|x) ∝ (𝜎2)n∕2+1 exp−
{

(n − 1)s2

2𝜎2

}
(9.14)

where s2 =
∑n

i=1 (xi − x̄)2. Thus, we see that 𝜋(𝜇|𝜎2, x) is a normal distribution with mean x̄
and variance 𝜎2∕n, and 𝜋(𝜎2|x) is a scaled inverse chi-square distribution with n − 1 degrees
of freedom.

Informative Priors. When both the parameters are not known, the use of the conjugate
prior simplifies the analysis. For the normal distribution, the conjugate prior is specified by
normal-inverse gamma distribution NIG(𝜇0, c, a, b), where −∞ < 𝜇0, c < ∞ and a, b > 0. See
Ntzoufras (2009) for details. The posterior distribution is specified by NIG(�̃�, c̃,∩, b̃), where

�̃� = nc
1 + nc

x̄ + 1
1 + nc

𝜇0

c̃ = nc
n(1 + nc)

ã = a + n
2

b̃ = b + SS
2
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where

SS =
n∑

i=1

x2
i +

𝜇2
0

c
−

(ncx̄ + 𝜇0)2

c(nc + 1)

Illustration of Bayesian inference for normal distribution, for many reasons, is better done
in Chapter 11.

9.5 The Credible Intervals

For many technical reasons, Bayesians typically do not use the term “confidence interval” and
prefer to call such an interval in their domain as credible intervals.

Definition 9.5.1 Credible Sets. Given the dataset x and the prior distribution 𝜋, let 𝜋(𝜃|x)
be the posterior distribution. Then, for any given set A ⊂ Θ, the credible probability of A is
given by

P(𝜃 ∈ A|x) = ∫A
𝜋(𝜃|x)d𝜃. (9.15)

The set A is called a credible set (interval) for 𝜃.
Furthermore, if P(𝜃 ∈ A|x) ≥ 1 − 𝛼, the set A is called 𝛼-credible set for 𝜃.

It is clear from the definition of a credible set that we may have many sets which may
meet the requirement. However, we need that credible set which has minimum length. This
motivates the next definition.

Definition 9.5.2 Highest Posterior Density Credible Set. Let Ax denote a credible set and
let k𝛼 be the largest bound such that

P𝜋(𝜃 ∈ A𝛼
x |x) ≥ 1 − 𝛼.

We say that Ax is the highest posterior density, HPD, 𝛼-credible set if

{𝜃 ∶ 𝜋(𝜃|x) > k𝛼} ⊂ A𝜋
x ⊂ {𝜃 ∶ 𝜋(𝜃|x) ≥ k𝛼}. (9.16)

In the rest of this section we will reconsider some of the examples developed earlier in this
chapter and obtain the credible intervals for them.

Example 9.5.1. Example 9.4.5 Contd. For the birth rates example, we obtained the posterior
distribution, under the assumption of gamma prior, for the two groups of women less than
Bachelors degree and above Bachelors degree as 𝜆1 ∼ Gamma(2 + 217, 1 + 111) and 𝜆2 ∼
Gamma(2 + 66, 1 + 44) respectively. Then, credible intervals for 𝜆1 and 𝜆2 can be simply
obtained as shown below.

> qgamma(c(0.025,0.975),(2+217),(1+111)) # posterior 95% CI
[1] 1.704943 2.222679
> qgamma(c(0.025,0.975),(2+66),(1+44)) # posterior 95% CI
[1] 1.173437 1.890836
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Theqgamma function is easily used to obtain the credible intervals. Since the credible intervals
for the two groups overlap, it cannot be concluded that the birth rates are significantly different
for the two groups. ◽

Example 9.5.2. Example 9.4.6. The Taxicab Problem. Contd. For the hypothetical example
of the taxicab problem, we obtained the posterior distribution of 𝜃 as a Pareto distribution with
parameters b = 10000,K = 10. Using thepareto_quantile function from the companion
library, we can obtain the credible intervals as below.

> pareto_quantile(c(0.05,0.95),scale=10000,shape=10)
[1] 10051 13493

Thus, the 95% credible interval for the number of taxis in the city is (10051,13493). ◽

9.6 Bayes Factors for Testing Problems

Consider the problem of testing hypotheses H ∶ 𝜃 ∈ Θ0 versus K ∶ 𝜃 ∈ Θ1, where
Θ0 ∩ Θ1 = 𝜙 and Θi ⊂ Θ, i = 1, 2. We dealt with such problems in the classical framework in
Sections 7.10–7.14. A few problems will now be handled in the Bayesian framework.

We begin with a proper prior specified by g(𝜃). Let X = (X1, … ,Xn) be a random sample
from f𝜃 . The likelihood function is then given by L(𝜃|x). Under the hypotheses, define the prior
probabilities by 𝜋i = ∫Θi

g(𝜃)d𝜃, i = 0, 1, and the posterior probabilities by pi = ∫Θi
g(𝜃|x)d𝜃 =

∫Θi
L(𝜃|x)g(𝜃)d𝜃, i = 0, 1.
The a priori odds ratio and posterior odds ratio of two hypotheses are respectively given by:

𝜋0

𝜋0
=

∫Θ0
g(𝜃)d𝜃

∫Θ1
g(𝜃)d𝜃

, (9.17)

p0

pi
=

∫Θ0
L(𝜃|x)g(𝜃)d𝜃

∫Θ1
L(𝜃|x)g(𝜃)d𝜃 . (9.18)

The Bayes factor for testing H against K is then given by

BF =
p0∕p1

𝜋0∕𝜋1
. (9.19)

Though there are no hard and fast rules for using the BF, we list below some rules of thumb:

• If BF ≥ 1, then the hypothesis H is supported.
• If 0.316 ≤ BF < 1, we have minimal evidence against H.
• If 0.1 ≤ BF < 0.316, we have substantial evidence against H.
• If 0.01 ≤ BF < 0.1, we have strong evidence against H.
• If BF < 0.1, we have decisive evidence against H.

Example 9.6.1. Normal Distribution. Consider a random sample of n = 10 from N(𝜇, 32).
The prior for 𝜇 is specified by the conjugate prior N(5, 1). The value of sufficient statistic
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T =
∑10

i=1 Xi is t = 25. We are interested in testing H ∶ 𝜃 < 5 against the alternative hypoth-

esis given in K ∶ 𝜃 > 5. The posterior distribution is then given by N
(
𝜎2𝜏+𝜂2 x̄
𝜎2+𝜂2 ,

𝜎2𝜂2

𝜎2+𝜂2

)
=

N
(

32×5+12×2.5
32+12 ,

32×12

32+12

)
= N(4.75, 0.9) . Let us compute the Bayes factor.

> pi_H <- pnorm(5,mean=5,sd=1) # prior prob under H
> pi_K <- 1-pnorm(5,mean=5,sd=1) # prior prob under K
> p_H <- pnorm(5,mean=4.75,sd=sqrt(0.9)) # posterior prob under H
> p_K <- 1-pnorm(5,mean=4.75,sd=sqrt(0.9)) # posterior prob under K
> BF <- p_H*pi_K/(p_K*pi_H)
> BF
[1] 1.52

The computations are again not too complicated and hence the explanation is left to the reader.
Thus, the BF test supports the hypothesis H. ◽

Example 9.6.2. Binomial Distribution. Suppose we observe n Bernoulli trials with prob-
ability of success being p. The prior distribution for p is specified through the beta distribution
with parameters (𝛼, 𝛽), say (2,2), and hence the posterior distribution is given by the beta
distribution (𝛼 + x, 𝛽 + n − x). Consider the hypothesis testing problem of H ∶ p = 0.2 against
hypothesis K ∶ p = 0.9. Assume that out of n = 10 trials, we have observed x = 6.

> pi_H <- dbeta(0.2,2,2) # prior prob under H
> pi_K <- dbeta(0.9,2,2) # prior prob under K
> p_H <- dbeta(0.2,6+2,4+2) # posterior prob under H
> p_K <- dbeta(0.9,6+2,4+2)# posterior prob under K
> BF <- p_H*pi_K/(p_K*pi_H)
> BF
[1] 0.493

Thus, the BF test says that there is mild evidence against the hypothesis H. ◽

9.7 Further Reading

Jeffreys (1939–61) may have been the first treatise on Bayesian statistics. de Finetti’s (1974–5)
two volumes made a nice prediction that every Statistician will be a Bayesian by 2020. Savage
(1954) has firmly laid the foundation for Bayesian analysis. Box and Tiao (1973) is an early
book which has complete focus on Bayesian inference. It also discusses Bayesian methods
for regression analysis. Berger (1985) develops the Bayesian methodology from a decision
perspective. Bernardo and Smith (1994), Robert (2007), Press (2003), Ghosh, et al. (2006),
and Carlin and Louis (2000) are some of the best books for Bayesian analysis.

Berger and Woolpert’s (1985) monograph gives a distinct clarity on how the Bayesian school
meets the sufficiency and likelihood principle. Samaniego (2010) offers a course which does
a lot of comparison between the frequentist and Bayesian school.

For this chapter, we have relied on Bolstad (2007), Albert (2009), and Hoff (2010).
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9.8 Complements, Problems, and Programs

Problem 9.1 Verify that the probability of sunrise is a proper probability measure. Extend
the result in Example 9.2.1 to more than two possible events of an experiment.

Problem 9.2 For a beta prior Be(a, b) on the probability of success in a Bernoulli trial, find
the probability of sunrise. For a large n, obtain the plot of the probability for
various a and b values.

Problem 9.3 Under a symmetric Dirichlet prior, with symmetric parameter c, the probability
of a birthday match, see Diaconis and Holmes (2002) is given by

Pc(match) = 1 −
k−1∏
i=1

(n − i)c
nc + i

.

Write an R program to compute the probability of a match when c is 0.5, 1, 2,
5, 20, 200.

Problem 9.4 Varying the value of m in the taxicab problem, explore the difference between
the classical estimator and the Bayes estimate for N.

Problem 9.5 Find 95% credible intervals for the examples discussed in Section 9.4.
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and Monte Carlo
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Stochastic Processes

Package(s): sna
Dataset(s): testtpm, testtpm2, testtpm3

10.1 Introduction

Stochastic processes commonly refer to a collection of random variables. Such a collection
may vary over time, sample number, geographical location, etc. It is to be noted that a stochastic
process may consist of finite, countably infinite, or uncountably infinite collections of random
variables. An important characteristic of the stochastic process is that it allows us to relax the
assumption of independence for a sequence of random variables.

Definition 10.1.1 A Stochastic Process is a collection of random variables

𝕏 = {Xt, t ∈ A}, (10.1)

where A may be a finite set, or countable set, or an interval.

A few examples are in order.

Example 10.1.1. Examples of Stochastic Processes. We will consider situations where a
stochastic process may be discrete or continuous.

• The maximum temperature of the day. Let Xn denote the maximum temperature recorded
on the nth day. Then, the collection {Xn ∶ n = 1, 2, … } forms an example of a stochastic
process.

Since a very hot day is unlikely to be immediately followed by a chilly day, it may be
easily seen that the Xn does not form an independent sequence of random variables.

• The Closure Points of the SENSEX. Consider the points of closure at the end of the day
of BSE-SENSEX. This collection is also an example of a stochastic process.

A Course in Statistics with R, First Edition. Prabhanjan Narayanachar Tattar, Suresh Ramaiah and B. G. Manjunath.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/tattar/statistics
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• Sum of Heads in n successive throws of a coin. Define

Xi =
{

1, head appears on the i-th toss of the coin,
0, tail appears.

For i = 1, 2, … , n, … , define the sum of heads as

Sn =
n∑

i=1

Xi, n = 1, 2, … . (10.2)

Then, Sn, n = 1, 2, … , is a collection of random variables which forms a stochastic pro-
cess. Again, it may be easily seen that P(Sn+1 ≤ Sn) = 0, and hence Sn forms a sequence of
dependent RVs.

• Number of Customers arriving at a Ticket Counter. Let {N(t), t ∈ [0,∞)} denote the
number of customers arriving at a ticket counter up to time t. Then {N(t), t ∈ [0,∞)} is
again a stochastic process. ◽

Section 10.2 will ensure that the probability space for the stochastic process is properly
defined. A very important class of stochastic process is the Markov Chains, and this will be
detailed in Section 10.3. The chapter will close with a brief discussion of how Markov Chains
are useful in the practical area of computational statistics in Section 10.4.

10.2 Kolmogorov’s Consistency Theorem

As seen in the introductory section, a stochastic process is a collection of infinite random
variables. It needs to be ensured that the probability measures are well defined for such a col-
lection of RVs. An affirmative answer in this direction is provided by Prof Kolmogorov. The
related definitions and theorems (without proof) have been adapted from Adke and Manju-
nath (1984) and Athreya and Lahiri (2005). We consider the probability space (Ω, ,P) and
follow it up with a sequence of RVs {X𝛼, 𝛼 ∈ A}. Here A is any non-empty set. Then for any
(𝛼1, 𝛼2, … , 𝛼k) ∈ A, the random vector (X𝛼1

,X𝛼2
, … ,X𝛼k

) has a joint probability distribution
𝜇(𝛼1,𝛼2,… ,𝛼k) over (Rk,(Rk)), and here (Rk) is the Borel 𝜎-field over Rk.

Definition 10.2.1 Finite Dimensional Distributions. The family {𝜇(𝛼1,𝛼2,… ,𝛼k)(.) ≡
P((X𝛼1

,X𝛼2
, … ,X𝛼k

) ∈ ⋅) ∶ (𝛼1, 𝛼2, … , 𝛼k) ∈ Ak, 1 ≤ k < ∞} of probability distributions is
called the family of finite dimensional distributions, abbreviated as fdd, associated with the
stochastic process {X𝛼 ∶ 𝛼 ∈ A}.

For any (𝛼1, 𝛼2, … , 𝛼k) ∈ Ak, 2 ≤ k < ∞, and any B1,B2, … ,Bk ∈ (R), the family of
fdds satisfies the following two conditions:

[C1].

𝜇(𝛼1,𝛼2,… ,𝛼k)(B1 × … × Bk−1 × R) = 𝜇(𝛼1,𝛼2,… ,𝛼k−1)(B1 × … × Bk−1). (10.3)

[C2]. For any permutation i1, i2, … , ik of 1, 2, … , k:

𝜇(𝛼i1
,𝛼i2

,… ,𝛼ik
)(Bi1

× Bi2
× … × Bik

) = 𝜇(𝛼1,𝛼2,… ,𝛼k)(B1 × B2 × … × Bk). (10.4)
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Kolmogorov’s consistency theorem addresses the issue that if there exists a family of
distributions QA ≡ {𝑣𝛼1,… ,𝛼k

∶ (𝛼1, … , 𝛼k) ∈ Ak, 1 ≤ k < ∞} in finite dimensional Euclidean
spaces, then there exists a real valued stochastic process {X𝛼, 𝛼 ∈ A} whose fdds coincides
with Q𝛼 .

Theorem 10.2.1 [Kolmogorov’s Consistency Theorem] Let A be a non-empty set, and let
QA ≡ {𝑣(𝛼1,… ,𝛼k) ∶ (𝛼1, … , 𝛼k) ∈ Ak, 1 ≤ k < ∞} be a family of probability distributions
such that for each (𝛼1, … , 𝛼k) ∈ Ak, 1 ≤ k < ∞}:

• 𝑣(𝛼1,… ,𝛼k) is a probability measure on Rk,(Rk).
• The conditions C1 and C2 hold, that is, ∀B1, … ,Bk ∈ (), 2 ≤ k < ∞, we have

𝜐(𝛼1,𝛼2,… ,𝛼k)(B1 × B2 × … × Bk−1 ×) = 𝜐(𝛼1,𝛼2,… ,𝛼k−1)(B1 × B2 × … × Bk−1),

and for any permutation i1, i2, … , ik of 1, 2, … , k we have

𝜇(𝛼i1
,𝛼i2

,… ,𝛼ik
)(Bi1

× Bi2
× … × Bik

) = 𝜇(𝛼1,𝛼2,… ,𝛼k)(B1 × B2 × … × Bk).

Then there exists a probability space (Ω, ,P) and a stochastic process XA ≡ {X𝛼 ∶ 𝛼 ∈
A} in (Ω, ,P) such that QA is the family of finite dimensional distributions associated
with XA. ◽

Having being assured of the existence of probability measures for the stochastic processes,
let us now look at the important family of stochastic processes: Markov Chains.

10.3 Markov Chains

In earlier chapters, we assumed the observations were independent. In many random phe-
nomenon, the observations are not independent. As seen in the examples in Section 10.1, the
maximum temperature of the current day may depend on the maximum temperature of the
previous day. The sum of heads in n trials depends on the corresponding sum in the first n − 1
trials. Markov Chains are useful for tackling such dependent observations. In this section, we
will be considering only discrete phenomenon.

To begin with, we need to define the state space associated with the sequence of random
variables. The state space is the set of possible values taken by the stochastic process. In
Example 10.1.1 of Section 10.1, the state space for the sum of heads in n throws of a coin is S =
{0, 1, 2, … }. The state space considered in this section is at most countably infinite. At time
n, the stochastic process X will take one of the values in S, that is, Xn = j, j ∈ S, n = 1, 2, … .

Definition 10.3.1 Markov Chain. The stochastic process X = {Xn, n = 0, 1, … } with state
space S is said to be a Markov Chain if for each j ∈ S and n = 0, 1, … , the following statement
holds good:

P{Xn+1 = j|Xn = i,Xn−1 = in−1, … ,X1 = i1,X0 = i0} = P{Xn+1 = j|Xn = i} = pij, (10.5)

for any set of states i0, i1, … , in−1, i.
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This definition says that the probability of Xn+1 being observed in a state j, given the entire
history Xn = i,Xn−1 = in−1, … ,X1 = i1,X0 = i0, depends only on the recent past state of Xn,
and not on the history. The matrix array P = {pij} is called the Transition Probability Matrix,
abbreviated as TPM, of the Markov Chain.

Example 10.3.1. The Ehrenfest Model Consider a system of two urns. Among the two urns,
we have 2n balls. At each instance, a ball is selected from one of the urns and placed in the
other. Assume that there are i balls in Urn I, and the remaining 2n − i balls in Urn II. Then
at any instance, the probability of selecting a ball from Urn I and placing it in Urn II is i∕2n,
and the other way of placing a ball from Urn II to Urn I is (2n − i)∕2n. At each instant we
let the number i of balls in the Urn I to be the state of the system. Thus, the state space is
S = {0, 1, 2, … , 2n}. Then we can pass from state i only to either of the states i − 1 or i + 1,
and the transition probabilities are given by

pij =
⎧⎪⎨⎪⎩

i
2n
, if j = i − 1,

1 − i
2n
, if j = i + 1,

0, otherwise.

(10.6)

Here, S = {0, 1, … , 2n}. Suppose that n = 2. Then the TPM of such an Ehrenfest model is
given by

P =

⎛⎜⎜⎜⎜⎜⎜⎝

0 1 2 3 4

0 0 1 0 0 0
1 1∕4 0 3∕4 0 0
2 0 1∕2 0 1∕2 0
3 0 0 3∕4 0 1∕4
4 0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎠
It can be shown that the above TPM P = {pij} forms a Markov Chain, that is, the definition 10.5
is satisfied for all i. The Ehrenfest function is first defined here and obtained for the cases
of n = 2, 3. The program will be described following the brief R session.

> Ehrenfest <- function(n) {
+ States <- c(0, seq(1,2*n))
+ TPM <- matrix(0,nrow=length(States),ncol=length(States),dimnames=
+ list(seq(0,2*n),seq(0,2*n)))
+ tran_prob <- function(i,n) {
+ tranRow <- rep(0,2*n+1)
+ if(i==0) tranRow[2] <- 1
+ if(i==2*n) tranRow[(2*n+1)-1] <- 1
+ if(i!=0 & i!=2*n) {
+ j=i+1
+ tranRow[j-1] <- i/(2*n)
+ tranRow[j+1] <- 1-i/(2*n)
+ }
+ return(tranRow)
+ }
+ for(j in 0:(2*n))TPM[j+1,] <- tran_prob(j,n)
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+ return(TPM)
+ }
> Ehrenfest(2)

0 1 2 3 4
0 0.00 1.0 0.00 0.0 0.00
1 0.25 0.0 0.75 0.0 0.00
2 0.00 0.5 0.00 0.5 0.00
3 0.00 0.0 0.75 0.0 0.25
4 0.00 0.0 0.00 1.0 0.00
> Ehrenfest(3)

0 1 2 3 4 5 6
0 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1 0.1667 0.0000 0.8333 0.0000 0.0000 0.0000 0.0000
2 0.0000 0.3333 0.0000 0.6667 0.0000 0.0000 0.0000
3 0.0000 0.0000 0.5000 0.0000 0.5000 0.0000 0.0000
4 0.0000 0.0000 0.0000 0.6667 0.0000 0.3333 0.0000
5 0.0000 0.0000 0.0000 0.0000 0.8333 0.0000 0.1667
6 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000

The Ehrenfest function accepts n as an input and returns the TPM for the Ehrenfest model
associated with 2n. The two objects are defined in this function; States and TPM. The object
States generates the related state space S. Essentially, the number of balls in Urn I varies
from 0, 1, … , 2 ∗ n − 1, 2n, and for each of the possible states, we need to obtain the transition
probabilities to the other states according to Equation 10.6 . The R function tran_prob
within the Ehrenfest function gives us this row probabilities. The transition probability
row for the cases i = 0 and i = 2n is obtained in a routine manner. The if condition i!=0
& i!=2*n is coded to ensure that the computations on the right-hand side of Equation 10.6
are completely met. The indexing is defined in a slightly vague way with j=i+1. However, it
should not be intriguing to reason out why it is required in this way, and especially a similar
trick is used in the loop for(j in 0:(2*n)) TPM[j+1,]. The function Ehrenfest
is defined in a way which will return the TPM for the Ehrenfest model, and Ehrenfest(2)
and Ehrenfest(3) give us the required TPMs. ◽

Example 10.3.2. The Gambler’s Walk. Suppose that a gambler starts at 0 and throws a coin.
If heads turn up, he takes a step to the right and moves to 1. Otherwise, he moves to the left at
–1. Assume that the probability of getting a head is p, 0 < p < 1. The state space S is the set
of natural integers, that is, S = {0,±1,±2,±3, … }. The transition probability matrix TPM of
the Gamblers walk is then defined by

P =

⎛⎜⎜⎜⎜⎜⎜⎝

… −2 −1 0 1 2 …
−2 … 0 p 0 0 0 …
−1 … (1 − p) 0 p 0 0 …

0 … 0 (1 − p) 0 p 0 …
1 … 0 0 (1 − p) 0 p …
2 … 0 0 0 (1 − p) 0 …

⎞⎟⎟⎟⎟⎟⎟⎠
How do you verify that P satisfies Equation 10.5 ?
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In the next subsection, we will consider how the states of a Markov Chain can be classified
into a meaningful set of various characteristics.

10.3.1 The m-Step TPM

The TPM P = {pij} is a one-step transition probability array, namely, its elements give the
probability of moving from state i to state j in the next step. The m-step transition probability
of a movement from state i to state j is defined by

P{Xm+n = j|Xn = i} = p(m)
ij , i, j ∈ S. (10.7)

Let P(m) = {p(m)
ij } denote the m-step transition probability matrix. It can be shown that

P(m) = P P … P
⏟⏞⏞⏞⏟⏞⏞⏞⏟

m times

. (10.8)

Equation 10.8 is based on the well-known Chapman-Kolmogorov equation. The Chapman-
Kolmogorov lemma says that for any n ≥ 0,m ≥ 0, i, j ∈ S

Pn+m
ij =

∑
k∈S

Pn
ikPm

kj.

We can easily use the Chapman-Kolmogorov relationship to obtain the m-step TPM of a
Markov Chain. The R program for obtaining the m-step TPM through msteptpm is given
in the next illustration.

Example 10.3.3. The Ehrenfest Model. Consider the Ehrenfest model for 2n = 4 balls. The
4-step TPM for the Ehrenfest Markov model can be easily obtained using R. This is done as
follows:

> msteptpm <- function(TPM,m){
+ if(m==1) return(TPM) else {
+ temp <- TPM
+ for(i in 1:(m-1)) temp=temp
+ return(temp)
+ }
+ }
> EF2 <- Ehrenfest(2)
> msteptpm(as.matrix(EF2),4)

0 1 2 3 4
0 0.15625 0.0000 0.75 0.0000 0.09375
1 0.00000 0.5312 0.00 0.4688 0.00000
2 0.12500 0.0000 0.75 0.0000 0.12500
3 0.00000 0.4688 0.00 0.5312 0.00000
4 0.09375 0.0000 0.75 0.0000 0.15625
> EF2

The for loop in the msteptmp function simply carries out the required computation
required in Equation 10.8. The interpretations are as follows. If we begin in Urn I with 0 balls,
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the probability of Urn I containing 1 to 4 balls after four steps is 0.0000, 0.75, 0.0000,
and 0.09375 respectively. Similarly, the probabilities in the rest of the matrix P4 may be
interpreted. ◽

10.3.2 Classification of States

In the Ehrenfest example we see that it is possible to move from a particlar state to one of its
adjacent states only. However, it is possible for us to move from state 1 to states 3 and 4 in 2
and 3 steps. The question that then arises is how to identify the accessible states? Towards this
discussion, a few definitions are required.

Definition 10.3.2 Accessible State. A state j ∈ S is said to be accessible from state i ∈ S if
for some n ≥ 0, we have pn

ij > 0.

Accessibility is denoted by i → j.

Definition 10.3.3 Communicative States. If state j is accessible from state i, and vice versa,
we say that the states communicate with each other.

Communication between two states is denoted by i ↔ j. The collection of the states where
each communicates with the other is said to belong to the same class. Some properties of
communication, without proof, are listed below:

• i ↔ i, i ∈ S.
• If i ↔ j, then j ↔ i, i, j ∈ S.
• If i ↔ j and j ↔ k, then i ↔ k, i, j, k ∈ S.

Definition 10.3.4 Absorbing State. A state i ∈ S is said to be an absorbing state if pn
ij = 0,

∀n,∀j ≠ i.

Definition 10.3.5 Recurrent/Transient State. A state i ∈ S is said to be a recurrent (tran-
sient) state if

P(Xn = i for infinitely many n ≥ 1) = 1(0).

Definition 10.3.6 Irreducible Markov Chains. A Markov Chain is said to be irreducible
if there is only one class of states. Alternatively, if each of the states of the Markov Chain
communicates with every other state, we have an irreducible Markov Chain.

Irreducible Markov Chains are also called ergodic Markov Chains. A stronger requirement
than irreducibility is given next.

Definition 10.3.7 Regular Markov Chain. A Markov Chain is said to be a regular Markov
Chain if there exists some n such that pn

ij > 0,∀i, j ∈ S.

It can be easily seen that the presence of an absorbing state implies that the Markov Chain
is neither regular nor irreducible.
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A state i is said to have period d if pn
ii = 0 whenever n is not divisible by d and d is the

greatest integer with this property. The period of a state is denoted by d(i). If it is not possible
to return to state i and be retained in i (starting from state i of course), the period of the state i
is infinite. On the other hand, if a state has period 1, we call that state aperiodic.

Digraph is a powerful visualizing tool for understanding the accessible and communicat-
ing states of a Markov Chain. Here, we use the package sna for achieving this. Note that
this package is developed for the purpose of an emerging field Social Network Analysis. The
gplot function from this package is useful for our purpose though.

Example 10.3.4. Digraph Plots for Markov Chains. Contd. The TPM of Markov Chains
may be visualized using digraphs. In R, we use the gplot graph function of the sna package
to achieve this. We plot the digraphs of the Ehrenfest Markov model, and some three artificial
TPMs. The R program next gives the necessary codes.

> library(sna,quietly=TRUE)
> ehrenfest <- Ehrenfest(2)
> rownames(ehrenfest) <- colnames(ehrenfest)=0:4
> ehrenfest

0 1 2 3 4
0 0.00 1.0 0.00 0.0 0.00
1 0.25 0.0 0.75 0.0 0.00
2 0.00 0.5 0.00 0.5 0.00
3 0.00 0.0 0.75 0.0 0.25
4 0.00 0.0 0.00 1.0 0.00
> data(testtpm)
> rownames(testtpm) <- colnames(testtpm)
> testtpm

A B C D E F
A 1.0000 0.00 0.000 0.00 0.00 0.0000
B 0.2500 0.50 0.000 0.25 0.00 0.0000
C 0.0000 0.00 0.000 1.00 0.00 0.0000
D 0.0625 0.25 0.125 0.25 0.25 0.0625
E 0.0000 0.00 0.000 0.25 0.50 0.2500
F 0.0000 0.00 0.000 0.00 0.00 1.0000
> data(testtpm2)
> rownames(testtpm2) <- colnames(testtpm2)
> testtpm2
A B C D E F

A 0 1 0.00 0.00 0.0 0.00
B 1 0 0.00 0.00 0.0 0.00
C 0 0 0.25 0.45 0.0 0.30
D 0 0 0.00 0.50 0.5 0.00
E 0 0 0.25 0.00 0.5 0.25
F 0 0 0.00 0.00 0.3 0.70
> data(testtpm3)
> rownames(testtpm3) <- colnames(testtpm3)
> testtpm3

A B C D E F G
A 0.3 0.1 0.2 0.2 0.1 0.1 0.0
B 0.0 0.5 0.0 0.0 0.0 0.0 0.5
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C 0.0 0.0 0.4 0.6 0.0 0.0 0.0
D 0.0 0.0 0.3 0.2 0.0 0.5 0.0
E 0.0 0.0 0.2 0.3 0.4 0.1 0.0
F 0.0 0.0 1.0 0.0 0.0 0.0 0.0
G 0.0 0.8 0.0 0.0 0.0 0.0 0.2
> par(mfrow=c(2,2))
> gplot(ehrenfest,diag=TRUE,vertex.cex=6,vertex.sides=4,
+ vertex.col=1:5,vertex.border=2:6,vertex.rot=(0:4)*100,
+ displaylabels=TRUE, main="A: Digraph for Ehrenfest Model")
> gplot(testtpm,diag=TRUE,vertex.cex=6,vertex.sides=4,vertex.col=1:6,
+ vertex.border=2:7,vertex.rot=(0:5)* 100,displaylabels=TRUE,
+ main="B: Digraph for testtpm")
> gplot(testtpm2,diag=TRUE,vertex.cex=6,vertex.sides=4,
+ vertex.col=1:6,vertex.border=2:7,vertex.rot=(0:5)*100,
+ displaylabels=TRUE, main="C: Digraph for testtpm2")
> gplot(testtpm3,diag=TRUE,vertex.cex=6,vertex.sides=4,
+ vertex.col=1:7, vertex.border=2:8,vertex.rot=(0:6)*100,
+ displaylabels=TRUE, main="D: Digraph for testtpm3")

The digraphs helps us to understand the nature of states, Figure 10.1. We can classify the states
into transition states and recurrent states. Let us discuss the digraph in detail.

In the Ehrenfest model we see that 0 ↔ 1, 1 ↔ 2, 2 ↔ 3, and 3 ↔ 4. Hence, we can see by
the commutative property of accessible states that all the states communicate with each other.
Thus, we have an irreducible Markov Chain. In an irreducible Markov Chain, all the states are
recurrent states (a proof is not in the scope of this text).

For the example where the TPM is given by testtpm, we make the following observations.
The pair of communicative states are the following: B ↔ D, D ↔ E, D ↔ C, and consequently
these states are accessible from each other. However, it is clear from the diagraph that states A
and F are absorbing states as no other state is accessible from them. Thus testtpm is not a
regular or irreducible Markov Chain.

In the case of testtpm2, it is easily seen to be decomposible into two Markov Chains.
One Markov Chain consists of states A and B, and the other C,D,E,F. In light of the fact that
pAB = pBA = 1, we can easily conclude the periodicity of the two states is 2. Interpretation for
testtpm3 is left as an exercise. ◽

10.3.3 Canonical Decomposition of an Absorbing Markov Chain

In the previous discussion we have seen different types of TPM characteristics for the
Markov Chains. In an irreducibile Markov Chain, all the states are recurrent states. However,
if there is an absorbing state, as in testtpm, we may be interested in the following
issues:

1. The probability of the process ending up in an absorbing state.
2. The average time for the Markov Chain to get absorbed.
3. The average time spent in each of the transient states.

The canonical decomposition helps with the answer to the above questions.
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A: Digraph for ehrenfest model
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D: Digraph for testtpm3
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Figure 10.1 Digraphs for Classification of States of a Markov Chain

Arrange the states of an absorbing Markov Chain in the form of (TRANSIENT, ABSORB-
ING). For example, reorder the states of testtpm2 as S = (B,C,D,E

⏟⏞⏞⏟⏞⏞⏟

TRANSIENT

, A,F
⏟⏟⏟

ABSORBING

). Let r be

the number of absorbing states and t the number of transient states. The total number of states
is p = r + t. Arrange the TPM as below:

P =
⎛⎜⎜⎝

TRANSIENT ABSORBING

TRANSIENT Q R
ABSORBING 𝟎 I

⎞⎟⎟⎠ (10.9)

Here I is an r × r identity matrix, 𝟎 an r × t zero matrix, Q a t × t matrix, and R a non-zero
t × r matrix. Let us closely look at the matrix Q and calculate Qn for some large n. Note that
it is very easy to rearrange the matrix in the required form in R.

> testtpm <- as.matrix(testtpm)
> testtpm <- testtpm[c(2,3,4,5,1,6),c(2,3,4,5,1,6)]
> Q <- testtpm[c(1:4),c(1:4)]
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> R <- testtpm[c(1:4),c(5,6)]
> Q

B C D E
B 0.50 0.000 0.25 0.00
C 0.00 0.000 1.00 0.00
D 0.25 0.125 0.25 0.25
E 0.00 0.000 0.25 0.50
> R

A F
B 0.2500 0.0000
C 0.0000 0.0000
D 0.0625 0.0625
E 0.0000 0.2500
> testtpm

B C D E A F
B 0.50 0.000 0.25 0.00 0.2500 0.0000
C 0.00 0.000 1.00 0.00 0.0000 0.0000
D 0.25 0.125 0.25 0.25 0.0625 0.0625
E 0.00 0.000 0.25 0.50 0.0000 0.2500
A 0.00 0.000 0.00 0.00 1.0000 0.0000
F 0.00 0.000 0.00 0.00 0.0000 1.0000
> msteptpm(testtpm,n=100)[c(1:4),c(1:4)]

B C D E
B 1.635836e-10 3.124169e-11 2.022004e-10 1.635836e-10
C 2.499335e-10 4.773305e-11 3.089348e-10 2.499335e-10
D 2.022004e-10 3.861685e-11 2.499335e-10 2.022004e-10
E 1.635836e-10 3.124169e-11 2.022004e-10 1.635836e-10

We can easily then see that
As n → ∞ ⇒ Qn → 𝟎. (10.10)

The Fundamental Matrix for an absorbing Markov chain is given by

N = (I − Q)−1. (10.11)

The elements nij of N gives the expected number of times the process will be in transient state
j if the process started in state j. For the testtpm example, we have the answers in the output
given below:

> N <- solve(diag(rep(1,nrow(Q)))-Q)
> N

B C D E
B 2.6666667 0.1666667 1.333333 0.6666667
C 1.3333333 1.3333333 2.666667 1.3333333
D 1.3333333 0.3333333 2.666667 1.3333333
E 0.6666667 0.1666667 1.333333 2.6666667

Starting from a transient state i, the expected number of steps before the Markov Chain
is absorbed and the probabilities of it being absorbed into one of the absorbing states are
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respectively given by

t = Nc (10.12)

B = NR (10.13)

where c is an t column of 1 and t and B are respectively the expected number of steps and
probabilities of the absorption matrix. For our dummy example, the computation concludes
with the program below.

> t <- N
> t

[,1]
B 4.833333
C 6.666667
D 5.666667
E 4.833333
> B <- N %*% R
> B

A F
B 0.75 0.25
C 0.50 0.50
D 0.50 0.50
E 0.25 0.75

The three questions asked about an absorbing Markov Chain are also applicable to an
Ergodic Markov Chain in a slightly different sense. This topic will be taken up next.

10.3.4 Stationary Distribution and Mean First Passage Time of an Ergodic
Markov Chain

If we have an ergodic Markov Chain, we know that each state will be visited infinitely often.
However, this implies that over the long run, the number of times it will be in a given state
may be obtained.

Definition 10.3.8 Stationary Distribution. A vector 𝝅 is called the stationary distribution of
an ergodic Markov Chain if

𝜋j ≥ 0,
p∑

j=1

𝜋j = 1, (10.14)

𝝅P = 𝝅. (10.15)

A stationary distribution 𝝅 is a (left) eigenvector of the TPM whose associated eigenvalue
is equal to one. For an ergodic Markov Chain, the next program gives us the stationary
distribution.

> stationdistTPM <- function(M){
+ eigenprob <- eigen(t(M))
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+ temp <- which(round(eigenprob$values,1)==1)
+ stationdist <- eigenprob$vectors[,temp]
+ stationdist <- stationdist/sum(stationdist)
+ return(stationdist)
+ }
> P <- matrix(nrow=3,ncol=3) # An example
> P[1,] <- c(1/3,1/3,1/3)
> P[2,] <- c(1/4,1/2,1/4)
> P[3,] <- c(1/6,1/3,1/2)
> stationdistTPM(P)
[1] 0.24 0.40 0.36

The function uses the eigen function to obtain the eigenvalues and eigenvectors.
The mean recurrence time of an ergodic Markov Chain is given by

𝝉 = 1∕𝝅. (10.16)

For the previous example:

> 1/stationdistTPM(P)
[1] 4.166667 2.500000 2.777778

We will next consider the concept of passage time.

Definition 10.3.9 First Passage Time The first passage time from state i to state j is the
number of transitions made by the stochastic process to move from state i to state j.

Definition 10.3.10 Mean First Passage Time For an ergodic Markov Chain in state i, the
expected number of steps to reach state j for the first time is called the mean first passage time
from i to j .

The matrix of mean first passage time is denoted by M = {mij}. We will next briefly state the
formulas to obtain M. Let W be a matrix where each row consists of the stationary probability
vector. Define Z = (I − P + W)−1, where I is an identity matrix, and W is a matrix where each
row is the stationary probability vector 𝝅. The elements of M are then given by

mij =
zjj − zij

𝜋j
.

For the Ehrenfest model, the mean recurrence times are given below:

> ehrenfest <- as.matrix(ehrenfest)
> w <- stationdistTPM(ehrenfest)
> W <- matrix(rep(w,each=nrow(ehrenfest)),nrow=nrow(ehrenfest))
> Z <- solve(diag(rep(1,nrow(ehrenfest)))-ehrenfest+W)
> M <- ehrenfest*0
> for(i in 1:nrow(ehrenfest)){
+ for(j in 1:nrow(ehrenfest)){
+ M[i,j] <- (Z[j,j]-Z[i,j])/W[j,j]
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+ }
+ }
> M

0 1 2 3 4
0 0.00000 1.000000 2.666667 6.333333 21.33333
1 15.00000 0.000000 1.666667 5.333333 20.33333
2 18.66667 3.666667 0.000000 3.666667 18.66667
3 20.33333 5.333333 1.666667 0.000000 15.00000
4 21.33333 6.333333 2.666667 1.000000 0.00000

For details, refer to Chapter 11 of Grinstead and Snell (2002).

10.3.5 Time Reversible Markov Chain

Consider a stationary and ergodic Markov Chain with stationary distribution 𝝅.

Definition 10.3.11 An ergodic Markov Chain with a stationary distribution 𝜋j is said to be
a time reversible Markov Chain if the conditional distribution of Xn+1 given Xn+2 = x is the
same as the conditional distribution of Xn+1 given Xn = x.

In simple words, for a stationary ergodic Markov Chain with … ,Xn−2,Xn−1,Xn,Xn+1,Xn+2,

… , the backward chain … ,Xn+2,Xn+1,Xn,Xn−1,Xn−2, … is also a Markov Chain. An intu-
itive explanation of the phenomenon is that given the present state, the past and future states
are independent events. The TPM of the reversed Markov Chain is given by Q = {Qji}:

Qji = P(Xn = j|Xn+1 = i) =
P(Xn = j,Xn+1 = i)

P(Xn+1 = i

=
P(Xn = j)P(Xn+1 = i|Xn = j)

P(Xn+1 = i)

=
𝜋jPij

𝜋i
. (10.17)

The Gamblers random walk in a finite state space is an example of time reversible Markov
Chain.

?’%*%’, ?gplot, ?solve, ?diag, ?eigen

10.4 Application of Markov Chains in Computational Statistics

Modern computations are driven by hi-speed computers and without the latter some of the algo-
rithms cannot be put to good use. In this section two of the famous Monte Carlo techniques will
be discussed whose premise is in the usage of Markov Chains, viz., the Metropolis-Hastings
algorithm and the Gibbs sampler. The current section relies on Chapter 10 of Ross (2006).1

Robert and Casella (1999–2004) is also an excellent exposition for the two algorithms to be
discussed here.

1This section may be read in conjunction with Chapter 11
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10.4.1 The Metropolis-Hastings Algorithm

Consider a finite sequence of positive numbers {bj}k
j=1, for some large integer k. The positive

numbers may be interpreted as the weights of an RV W taking the values j, j = 1, … , k.
Define B =

∑k
j=1 bj, and suppose that B is a difficult number to compute. The PMF of X is

then given by

P(X = j) = 𝜋j =
bj∑k

i=1 bi

. (10.18)

It will be seen in Chapter 11 that for large k values, simulation from the probability distribution
𝜋j becomes a daunting task. The Metropolis-Hastings algorithm builds a time-reversible
Markov Chain argument for simulation from 𝜋j. The requirement is then to find a Markov
Chain with TPM P = {pij}k

i,j=1, which is easier to simulate and its stationary distribution

must be the same as 𝜋j. Let Q = {qij}k
i,j=1 represent the TPM of an irreducible time-reversible

Markov Chain. A Markov Chain {Xn}∞n=1, useful for simulation from 𝜋j, is set up as follows.
Suppose that the current state is i, that is, Xn = i, i = 1, … , k. Generate an RV X with
PMF qij, j = 1, … , k, P(Xn+1 = j) = qij, j = 1, … , k. Then Xn+1 is assigned the state j with
probability 𝛼ij, or the state i with probability 1 − 𝛼ij. The simulation problem is solved if we
can determine these {𝛼ij} probabilities. The TPM P of the Markov Chain should thus satisfy
the following condition:

pij = qij𝛼ij, when i ≠ j, (10.19)

pii = qii +
∑
j≠i

qij(1 − 𝛼ij). (10.20)

The Markov Chain with TPM P is a time reversible Markov Chain if

𝜋iqij𝛼ij = 𝜋jqji𝛼ji.

This relationship is satisfied for the choice of 𝛼ij given by

𝛼ij = min

(
𝜋jqji

𝜋iqij
, 1

)
= min

(bjqji

biqij
, 1

)
. (10.21)

The reader should verify the need of 1 in Equation 10.21! The Metropolis-Hastings algorithm
for generation of a Markov Chain {Xn}∞n=1 can be summarized as follows:

1. Select a time-reversible irreducible Markov Chain ℚ = {qij}k
i,j=1.

2. Choose an integer j, 1 ≤ j ≤ k.
3. Set n ∶= 0,X0 = j, and generate an RV X such that P(X = j) = qXn,j

.
4. Generate a random number U between 0 and 1, see Section 11.2, and set Xn+1 = X if

U < 𝛼XXn
= min

(
bX qX,Xn

bXn
qXn,X

, 1

)
, (10.22)

else, Xn+1 = Xn.
5. Set n ∶= n + 1 and return to Step 2.

The quantity 𝛼 is called the Metropolis-Hastings acceptance probability.
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Alternately, the Metropolis-Hastings algorithm can be stated for the continuous RVs case
too, see Chapter 7 of Robert and Casella (1999–2004) for more details. Assume that f repre-
sents the pdf of interest and that a conditional density q(y|x) is available, which is a dominating
measure with respect to f . The Metropolis-Hastings algorithm can be implemented in practice
if the two conditions hold: (i) the density f is known to the extent that the ratio f (y)∕q(y|x) is
known up to a constant which is independent of x, and (ii) the density q(y|x) is either explicitly
available or symmetric in the sense of q(y|x) = q(x|y). The density f is known as the target den-
sity, while q is called the instrumental or proposal density. The Metropolis-Hastings algorithm
starting with xt is then given by

1. Simulate Yt ∼ q(y|xt).
2. Simulate Xt+1 as follows:

Xt+1 =
{

Yt, with probability 𝛼xtYt
,

xt, with probability 1 − 𝛼xtYt
,

(10.23)

where

𝛼xtYt
= min

{
f (Yt)
f (xt)

q(xt|Yt)
q(Yt|xt)

, 1

}
.

The Metropolis-Hastings algorithm will be illustrated following a discussion of the Gibbs
sampler.

10.4.2 Gibbs Sampler

The Gibbs sampler is a particular case of the Metropolis-Hastings algorithm. However, its
intuitive and appealing steps have made it more popular and thus wide applications are carried
using it. The algorithm description is as follows.

Suppose X = (X1, … ,Xp) is a (discrete) random vector with probability measure p(x).
Assume that the measure p(x) is specified up to a constant, that is, p(x) = cg(x), where c is
a multiplicative constant. The Gibbs sampler deals with the problem of generating an obser-
vation from p(x). The Gibbs sampler essentially uses the Metropolis-Hastings algorithm with
the state space S as x = (x1, … , xp). The transition probabilities in this state space are set up
as follows. Assume that the present state is x. A coordinate of the state space x is selected at
random, that is, an observation from the index 1, 2,… , p, is selected as a sample from a dis-
crete uniform distribution with p number of points. The main assumption of the Gibbs sampler
is that for any state i and values xj, j ≠ i, a random variable X can be simulated with pmf

P(X = x) = P{Xi = x|Xj = xj, j ≠ i}. (10.24)

Now, the coordinate i is selected at random and using the elements of x an observation with
value x is simulated which will replace the previous xi value. Thus, the new state is y = {x1,

… , xi−1, x, xi+1, … , xp}. In other words, the Gibbs sampler uses the Metropolis-Hastings
algorithm where

q(x, y) = 1
p

P{Xi = x|Xj = xj, j ≠ i} =
p(y)

pP{Xj = xj, j ≠ i}
. (10.25)
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The necessity of the stationary distribution to be p() requires that the new vector y be accepted
as the new state with probability

𝛼(x, y) = min

(
p(y)q(y, x)
p(x)q(x, y)

, 1

)
. (10.26)

Applications of the Metropolis-Hastings algorithm and Gibbs sampler will be described in
the next subsection.

10.4.3 Illustrative Examples

Three examples for each of the algorithms will be discussed briefly. As a fitting tribute to the
inventor of the algorithm, the next example of a random walk generation will be discussed,
which was originally illustrated by Hastings (1970) in his breakthrough paper. The first two
examples are from Robert and Casella (2004).

Example 10.4.1. Random Walk Generation. Random walk/Gamblers walk is seen in
Section 10.3 as an important example of a Markov Chain. Consider the continuous version of
random walk where the sequence of RVs {Xt}∞t=1 is given by

Xt+1 = Xt + 𝜖t, t = 1, 2, … .

Here, 𝜖’s are generated independently of the X’s and 𝜖t ∼ N(0, 1). In the original work, Hast-
ings considers a uniform distribution on [−𝛿, 𝛿] as the proposal density, see Robert and Casella
(2004). Then, the probability of acceptance is

𝛼xtYt
= min

{
exp

(
x2

t − y2
t

2

)
, 1

}
.

The R program is thus set up in the following.

> yMH <- 0
> Trials <- 15000
> delta <- .1
> for(i in 2:Trials){
+ z <- runif(1,-delta,delta)
+ alpha <- min(1,exp((yMH[i-1] ̂ 2-z ̂ 2)/2))
+ wp <- runif(1)
+ ifelse(wp<alpha,yMH[i]<-z,yMH[i]<-yMH[i-1])
+ }
> plot.ts(yMH,main="A: Gamblers Walk")

The random walk begins at 0, yMH <- 0, and the proposal density is initiated as the uniform
distribution with [−0.1, 0.1], runif(1,-delta,delta).2 Now, at each (next) iteration of

2Simulation from discrete and continuous distributions are formally introduced in the next chapter. At this stage, runif
may be assumed to generate observations from uniform distribution.
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Figure 10.2 Metropolis-Hastings Algorithm in Action

the random walk, a point z is generated in this interval and the Metropolis-Hastings acceptance
probability alpha is calculated. A random observation is then generated in the unit interval
and if the acceptance probability is higher than this number wp<alpha, the random walk is
updated to that of yMH[i]<-z, or else the previous iteration yMH[i-1] is retained. The
result of the program is given in Part A of Figure 10.2.

Example 10.4.2. Simulation from Gamma Distribution. Simulation from gamma dis-
tribution is always a complex task, that is, until we resort to built-in modules. To simulate
observations from Gamma(𝜃, k), the Metropolis-Hastings algorithm is set up as follows.
Assume that k = ⌊𝜃⌋∕𝜃, where ⌊.⌋ denotes the integer part of the argument. Next, generate
Y ∼ Gamma(⌊𝜃⌋, ⌊𝜃⌋∕𝜃). The Metropolis-Hastings algorithm for simulation from gamma
distribution is given by the following:

1. Simulate an observation Yt ∼ Gamma(⌊𝜃⌋, ⌊𝜃⌋∕𝜃).
2. Set the next value of observation as follows:

Xt+1 =
{

Yt, with probability 𝛼,

xt, with probability 1 − 𝛼,

where

𝛼 = min

[(
Yt

xt
exp

{
xt − Yt

𝜃

})𝜃−⌊𝜃⌋
, 1

]
.

The R program which implements this Metropolis-Hastings algorithm is given next.
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> theta <- 2.3; k <- 1
> b <- floor(theta)/theta
> yMH <- 1/theta
> Trials <- 1e5
> for(i in 2:Trials){
+ z <- rgamma(1,shape=b,rate=k)
+ alpha <- min(1,((yMH[i-1]/z)*exp((z-yMH[i-1])/theta)) ̂ (theta-floor
+(theta)))
+ wp <- runif(1)
+ ifelse(wp<alpha,yMH[i]<-z,yMH[i]<-yMH[i-1])
+ }
> hist(yMH,prob=TRUE,main="B: Gamma RV Simulation")
> curve(dgamma(x,shape=b,rate=theta),add=TRUE)

The algorithm is implemented as follows. First, the values of 𝜃 and k are arbitrarily chosen as
theta <- 2.3 and k <- 1. An initial value of yMH is selected as 1∕𝜃. The values of z and
yMH[i] are easily seen to follow the steps of the Metropolis-Hastings algorithm. The actual
gamma curve is imposed to check if the simulated values of the y in the Metropolis-Hastings
algorithm is a good sample or not. The final result is shown in Part B of Figure 10.2. ◽

Next, the use of Gibbs sampler will be illustrated.

Example 10.4.3. Generating n Random Points at d Distance in a Circle. Some of the prob-
ability problems are indeed interesting! Suppose that we are asked to find the probability that
if a sample of n points are randomly selected from a circle with unit radius, what is the prob-
ability that each of the points is at least at a d distance from the other points? Though this
problem can be completely solved using the Gibbs sampler, the problem of obtaining such a
sample is discussed here. The answer may be obtained easily though and it is an exercise for
the reader.

Now, without loss of generality, the circle may be assumed to have 0 as its origin. The
Gibbs sample for obtaining the required sample distribution is implemented in the following
algorithm:

1. Initialize n points such that no two points are within a distance of d.
2. Select one of the points from 1–n at random, say I.
3. Simulate a point at random in the circle.
4. If the simulated point is within a distance of d with respect to any of the n − 1 points except

the Ith one, reject the simulated observation.
5. If the simulated point is not within d distance of any of the n − 1 points, replace the Ith

point with the simulated point.
6. Repeat the above process a large number of times, say N.

The final collection of n points has the desired probability. The next program codes the
above algorithm. First, a circle is drawn with the n initial points and all the points are given at
the end of the algorithm.

> radius <- 1
> ddist <- 0.1
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> n <- floor(2*pi/ddist)
> GetRandomPoint <- function(radius){
+ rr <- runif(1,0,radius)
+ theta <- runif(1,0,2*pi)
+ return(c(rr*sin(theta),rr*cos(theta)))
+ }
> # Testing the working of GetRandomPoint
> windows(width=10,height=10)
> theta <- seq(0,2*pi,length.out=200)
> plot(radius*sin(theta),radius*cos(theta),"l",xlab="x",ylab="y")
> abline(h=c(-1,1),v=c(-1,1))
> InitialPoints <- cbind(radius*sin(seq(1:n)*(1/(2*pi))),radius*
+cos(seq(1:n)
+ *(1/(2*pi))))
> points(InitialPoints,col="red")
> # Gibbs sampling
> Trials <- 1000
> testCounter <- 0
> for(i in 1:Trials){
+ CurrPoints <- InitialPoints
+ testPoint <- GetRandomPoint(radius)
+ testIndex <- sample(1:n,1)
+ CurrPoints <- CurrPoints[-testIndex,]
+ CurrPoints <- rbind(testPoint,CurrPoints)
+ if(min(as.matrix(dist(CurrPoints,upper=TRUE))[1,-1])>=ddist){
+ InitialPoints[testIndex,] <- testPoint
+ testCounter <- testCounter+1
+ }
+ }
> points(InitialPoints,col="green")
> min(dist(CurrPoints))
[1] 0.1002729

If the distance d is given, we can generate at most n <- floor(2*pi/ddist)
points on the circumference of the circle. The function GetRandomPoint generates a
random point within the unit circle around the origin. This is easily seen since rr <-
runif(1,0,radius) has a random distance of less than or equal to the radius, while a
random angle is generated with theta <- runif(1,0,2*pi). It is easy to see that the
polar transformation leads to a random point in the unit circle. A circle is first generated on the
graphics window, and its explanation may be followed by the reader. The InitialPoints
are then plotted on the circumference of the circle and each point is colored as red.

The Gibbs sampler implementation is now explained. It is a difficult proposition to simulate
the n initial points and hence a deterministic choice is made here. Thus, the points are in-
itialized with InitialPoints, where radius*sin(seq(1:n)*(1/(2*pi))) gives
the x-coordinate and radius*cos(seq(1:n)*(1/(2*pi))) returns the y-coordinate.
The Gibbs sampler implementation is indeed easier to follow here. The result is shown in
Figure 10.3. ◽
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Figure 10.3 Gibbs Sampler in Action

Example 10.4.4. Exponential RVs with Sum Greater than some c. Suppose Xi ∼
Exp(1∕𝜆i). Define S ≡ ∑n

i=1 Xi. The problem is to generate the random vector X =
(X1, … ,Xn) given that the event S > c has been observed, where c is a large positive number.
The Gibbs sampling algorithm to solve this problem is given in the following:

1. Initialize a vector x = (x1, … , xn) such that each xi ≥ 0 and
∑n

i=1 xi > c.
2. Select an observation at random, that is, choose an integer from 1, 2, … , n. Suppose that

the integer chosen is I(= i).
3. Simulate an observation from exponential distribution with rate 𝜆i, say Y , and set, see page

254 of Ross (2006), the value of xi as

X = Y +

(
c −

∑
j≠i

xj

)+

,

where (a)+ takes the value a if a > 0 and 0 otherwise.
4. Repeat the previous steps a large number of times.

The expression for X needs an explanation. When I = i, we need to simulate an exponential
observation X with rate 1∕𝜆i conditional on the event X +

∑
j≠ixj > c. Equivalently, we need

to simulate an observation of X which is conditional on the event c −
∑

j≠ixj. A useful result
here is that if an exponential RV is greater than a positive constant, then it is distributed as an
exponential distribution (with rate 𝜆i) plus that constant. Hence, the value of X is chosen as
that given in the above equation.

The implementation of the program is given in the following:

> # Exponential Sum S = sum_i= ̂ n X_i > c
> n <- 15
> constant <- 200
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> rate <- 1/(1:n)
> x0 <- sort((constant*rate)/sum(rate))
> Trials <- 1e5
> xGS <- x0
> for(i in 1:Trials){
+ currIndex <- sample(1:n,1)
+ Sum <- sum(xGS[-currIndex])
+ xGS[currIndex] <- max(constant-Sum,0)-log(runif(1))/rate[currIndex]
+ }
> xGS
[1] 1.33068757 0.07708722 13.07502344 9.00714096
[12] 1.50248658 21.37157461 21.83680094 104.26333132
> 1/rate
[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

In the above program the average of the i-th exponential RV is i. The program is again simple
to follow and hence it is left to the reader to interpret it. ◽

The next problem is a continuation of the exponential RVs sum.

Example 10.4.5. Probability of Product of Exponential RVs. Suppose that n = 5, and that
𝜆i = 1∕i. Assume that the sum is observed to be 15 and the problem is to find the probability
that the product exceeds 120, that is, we need to compute

P

{
5∏

i=1

Xi > 120 ∣
5∑

i=1

= 15

}
.

This example is again adapted from Ross (2006), page 260. To obtain this probability, the Gibbs
sampler will randomly select two observations from n = 5. Let us denote the two selected
observations as U and V , which are independent with rates 1∕𝜆U and 1∕𝜆V . Without loss of
generality, assume that 𝜆U < 𝜆V . Then, the conditional distribution of U given U + V = a is

fU∣U+V=a ∝ exp { − (𝜆V − 𝜆U)u}, 0 < u < a.

Thus, the conditional distribution of U is again an exponential distribution with rate 𝜆V − 𝜆U ,
which is conditioned to be less than a. Hence, the conditional distribution of U and V , given
the other values is the conditional distribution of two exponential distributions with rate 𝜆V
and 𝜆V given that their sum is 15 −

∑
(X−U,−V ), where

∑
(X−U,−V ) indicates that the elements

U and V are removed from X. Now, the values of U and V can be simulated by first simulating
an observation from fU∣U+V=a, which is conditional on 15 −

∑
(X−U,−V ) and setting the value

of V to meet the constraint
∑5

i=1 xi = 15. This process is then repeated a large number of times,
so that the proportion of times the product exceeds 120 is accepted as the required probability.
The next R program implements this Gibbs sampling technique.

> itexp <- function(u, m, t) { -log(1-u*(1-exp(-t*m)))/m }
> rtexp <- function(n, m, t) { itexp(runif(n), m, t) }
> # http://www.r-bloggers.com/r-help-follow-up-truncated-exponential/
> rate <- 1/(1:5)
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> x0 <- c(1.08,2.38,2.84,3.84,4.86)
> Sx0 <- sum(x0); Px0 <- 120
> Trials <- 1000; prodYes <- 0
> for(i in 1:Trials){
+ twoIndex <- sort(sample(1:5,2))
+ a <- sum(x0)-sum(x0[-twoIndex])
+ x0[twoIndex[1]] <- rtexp(1,rate[twoIndex[2]-rate[twoIndex[1]]],a)
+ x0[twoIndex[1]] <- Sx0-x0[twoIndex[1]]-sum(x0[-twoIndex])
+ if(prod(x0)>Px0) prodYes <- prodYes+1
+ }
> prob_beta <- prodYes/Trials
> prob_beta
[1] 0.317

Two functions are required to simulate observations from the truncated exponential distri-
bution and these programs have been adapted from the link given in the program. The initial
vector x0 is quite arbitrary. The twoIndex randomly draws two observations, and a per-
forms the computation as described earlier. The reader can now complete the remainder of the
description, and based on the 1000 trials, the estimated probability is 0.317.

The purpose of this section has been to introduce the two algorithms discussed here. How-
ever, it must be said that there is much more detail to the use and applications of these algo-
rithms than even indicated here. However, it is the stochastic process part of these algorithms
which is of interest here. The applications of these techniques to Bayesian inference will be
considered in the next chapter.

?qpois

10.5 Further Reading

Feller’s two volumes are again useful for a host of theories and applications of stochastic
processes. Doob (1953) is the first book on stochastic processes. Karlin and Taylor’s (1975,
1981) two volumes have been a treatise on this subject. Taylor and Karlin (1998) is another
variant of the two volumes by Karlin and Taylor. Bhattacharya and Waymire (1990–2009)
has been found to be very useful by the students. Ross (1996) and Medhi (1992) are nice
introductory texts.

Feldman and Valdez-Flores (2010) considers the modern applications of stochastic pro-
cesses. Adke and Manjunath (1984) consider statistical inference related to the finite Markov
process.

10.6 Complements, Problems, and Programs

Problem 10.1 The TPM of a gamblers walk consists of infinite states. Restricting the
matrix over [−n, n] states, that is considering only the corresponding rows
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and columns and not the restricted gamblers walk, obtain the digraph using
the sna package.

Problem 10.2 Using the msteptpm function, obtain P10 for testtpm, testtpm2, and
testtpm3 TPM’s.

Problem 10.3 Carry out the canonical decomposition for testtpm3.

Problem 10.4 Find the stationary distribution for the Ehrenfest Markov Chain.
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Package(s): plotrix, LearnBayes, ConvergenceConcepts

11.1 Introduction

Simulation of observations from random experiments has always been of profound interest.
Generation of random numbers has always been crucial for statisticians, both for theory and
applications. The emergence of the computer and its speed has greatly benefited from the
endurance of random numbers. The truth is that machines cannot really produce random num-
bers in the sense that the generated sequence will eventually repeat itself identically, which is
more formally called the cycle of the generator. However, this does not restrict their usage for
most practical situations if the required random numbers are less than the cycle of the generator.
See also the important page: http://www.cran.r-project.org/web/views/Distributions.html

The current chapter unfolds along the following lines. Section 11.2 discusses how random
numbers may be simulated using random generators. Three different techniques are developed
here and a pressing case is made for the use of the linear congruential generator. A different
way of dealing with these random numbers will be that such numbers may be treated to fol-
low the uniform distribution U(0, 1). The standard uniform distribution forms the base of most
simulation techniques. Using the techniques described here, some very interesting probability
problems are dealt with in Sub-section 11.2.2. Simulation from discrete and continuous dis-
tributions are dealt with in Section 11.3. Also, the role of simulation towards understanding,
along with a relook, towards limit theorems and CLT as seen in Chapter 5, is dealt with in
the same section. The core concept of this chapter on the Monte Carlo technique is devel-
oped in Section 11.4. Direct sampling from a distribution is not feasible in all cases and we
need to resort to sampling from other distributions. This approach is called the accept-reject
technique and will be developed in Section 11.5. The Gibbs sampler and Metropolis-Hastings
algorithm have already been investigated in Section 10.4. Their application to Bayesian infer-
ence is developed in Section 11.6.

A Course in Statistics with R, First Edition. Prabhanjan Narayanachar Tattar, Suresh Ramaiah and B. G. Manjunath.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/tattar/statistics
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Trim Size: 170mm x 244mm Tattar c11.tex V3 - 02/10/2016 10:42 A.M. Page 364�

� �

�

364 A Course in Statistics with R

11.2 Generating the (Pseudo-) Random Numbers

Generation of random numbers has a lot of applications in real life. The 14-digit number
that is written on your mobile recharge voucher, numbers on be-lucky-to-win scratch cards,
match your mobile numbers on those given in a series of draws of newspapers, etc., are
all some scenarios which require generation of random numbers. Thus, there is that need
of a random number generator (RNG,) which ensures that the numbers in the draw look
random. This is purely in the sense that there is no systematic pattern in the sequence of
generated numbers.

It used to be a difficult task to generate random numbers three decades ago. Computers have
eased this job for us, just as they have aided with solving a billion other problems.

11.2.1 Useful Random Generators

The eminent mathematician von Neumann proposed one of the earliest techniques for gen-
erating random numbers with the middle-square method. In this simple setup, a number is
squared and its head and tail are chopped off to obtain the middlemost number. This is better
understood through a simple illustration. Consider the four-digit number 4253 as the initial
seed. The square of this number is 18088009, a eight-digit number. Now, remove the first
two leading digits 1 and 8, and then the trailing digits 0 and 9. We are then left with 0880.
Set the middle-square number for generating the next random number, and continue the pro-
cess until you get the desired numbers. An R program created in the vonNeumann function
implementing this task is given for seeds 11, 675248, and 8653.

> vonNeumann <- function(x,n){
+ rx <- NULL
+ d <- max(2,length(unlist(strsplit(as.character(x),""))));
+ getNext <- function(x,d){
+ temp <- x ̂ 2
+ tbs <- as.numeric(unlist(strsplit(as.character(temp),"")))
+ # to be split
+ tbs_n <- length(tbs);
+ diff_n <- 2*d - tbs_n;
+ dn <- ceiling(d/2)
+ ifelse(diff_n == 0, tbs <- tbs, tbs <- c(rep(0,diff_n),tbs))
+ tbs_n <- length(tbs)
+ NEXT <- tbs[-c(1:dn,((tbs_n-dn+1):tbs_n))]
+ return(as.numeric(paste(NEXT,collapse="")))
+ }
+ rx[1] <- x
+ for(i in 2:(n+1)) rx[i] <- getNext(rx[i-1],d)
+ return(rx)
+ }
> vonNeumann(x=11,n=10)
[1] 11 12 14 19 36 29 84 5 2 0 0
> vonNeumann(x=675248,n=10)
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[1] 675248 959861 333139 341914
> vonNeumann(x=8653,n=100)
[1] 8653 8744 4575 1354 8333 4388

[30] 2545 4770 7529 8100 6100 2100
[59] 4100 8100 6100 6100 2100 4100
[88] 8100 6100 2100 4100 8100 6100

The two arguments of the vonNeumann function are the initial seed x and the required num-
ber of observationsn. Thenlength(unlist(strsplit(as.character(x),"")))
first characterizes the numeric, splits it, and obtains the number of digits in it. The getNext
function obtains the next random number in the sequence. Though this function is slightly
complex, the reader must attempt to demystify it. The getNext function is then repeated n
times to obtain the random sequence of required numbers.

The limitations of this approach are easily seen as follows. In the first example (of x=11),
we end up with a sequence of 0’s, and in the third case, we have a recurring pattern of the
numbers of 6100 2100 4100 8100. Thus, the middle-squared method is not really useful
for generating a large sequence of random numbers.

Let us consider generation of random numbers in the unit interval [0, 1]. If we begin with
two random seeds, say xi−1 and xi−2 for some i, and generate further (pseudo) random numbers
using xi = (xi−1 + xi−2)mod1, an apparent random sequence may seem appropriate, see page
15 of Ripley (1987). Let us write a small program through the function Ripley2.2 for this
method and understand its mathematical logic and generate observations for the seeds 0.563
and 0.624.

> Ripley2.2 <- function(x,n){
+ rx <- NULL
+ rx <- x
+ for(i in (length(x)+1):(length(x)+n)) {
+ rx[i] <- (rx[i-1]+rx[i-2]) %% 1 }
+ return(rx)
+ }
> Ripley2.2(c(0.563,0.624),50)
[1] 0.56300000 0.62400000 0.18700000 0.81100000 0.99800000

[49] 0.12299945 0.06399912 0.18699857 0.25099769

An obvious drawback of this method is that xi can never be a random number between xi−1
and xi−2.

A powerful algorithm for generating pseudo-random numbers is the linear congruential
generator, abbreviated to LCG. In this algorithm, we start with an initial number x0 , a multi-
plier a, an incremental value c, and a modulo m. Using these terms, we can obtain a sequence
of pseudo-random numbers xn , using the form of LCG:

xn = (axn−1 + c) mod m, 0 ≤ xn ≤ m. (11.1)

For large values of m, the sequence {xn} generated by the LCG behaves like a sample from the
uniform distribution U(0,m). Furthermore, the sequence {xn∕m} resembles a random sample
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from the standard uniform distribution U(0, 1). We can see this from the simple program
below.

> m <- 2 ̂ 20; a <- 123.89; c <- 39.75
> x <- c()
> x[1] <- 4567
> for(i in 2:10001) x[i] <- (a*x[i-1]+c) %% m
> jpeg("LCG_Hist.jpeg")
> par(mfrow=c(2,1))
> hist(x,xlab="x values", ylab="Frequency")
> hist(x/m,xlab="normalised x values", ylab="Frequency")
> dev.off()
null device
1

A large value of m is initiated with m <- 2 ̂ 20, a multiplier a in a <- 123.89, and a
constant c with c <- 39.75. The choice of a and c has been simply arbitrary. An initial
value for the series is specified with x[1] <- 4567. The next values in the sequence of xn’s
as required by Equation 11.1 is computed in the for(i in 2:10001) with x[i] <-
(a*x[i-1]+c) %% m. The resulting histogram is seen in Figure 11.1, and shows that we
have a near uniform set of values ranging from 0 to m. For more details about the LCG, refer
to and read pages 11–27, Chapter 1 of Gentle (2003). Now, some of the interesting problems
in probability will be dealt with by a simulation approach.

11.2.2 Probability Through Simulation

In this section we will solve some probability problems using a simulation approach, and we
start with the birthday problem.
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Let S be our discrete sample space and A be the event of interest. The main steps in the
simulation approach are as follows:

• Simulate an event Ei, i = 1, 2, … ,B, where B is a large positive integer.
• Check if Ei implies the occurrence of event A, and note Ii to be 1 if the implication is true,

and Ii if 0 is otherwise.

•
∑B

i=1 Ii

B
gives us the simulated probability of the event A.

Example 11.2.1. The Birthday Problem. Here the number of cells is n = 365. Alternatively
imagine them as 365 balls of different colors in an urn. For a fixed k, draw a ball at random
and note its color before replacing it in the urn. The urn is shaken well to ensure that the balls
are again in random order. This exercise is repeated k times, and then record if two balls of the
same color are repeated. If yes, note 1, if no, note 0. The exercise up to this point is repeated a
large number of times, say B. The average of B can then be taken as the probability of having at
least two of the same birthdays in a group of k people. This approach will give us the simulated
birthday probabilities.

The probabilities for the birthday probability problem can be summarized as follows:

• For a fixed k and a large B, draw B samples with replacement from an urn consisting 365
color balls, each of size k.

• For each simulated sample, note the number of occasions on which the number of different
color balls is less than k.

• Sum the number of 1’s in the previous step and divide it by B to obtain the simulated birthday
probabilities.

An R program has been written to obtain the birthday probabilities, which can be compared
with Table 5.2.

> # This R program for Simulated Birthday Probabilities
> diy <- 1:365
> B <- 1000
> bins <- c(2,5,10,20,30,40,50)
> simprob <- 1:length(bins)*0
> for(j in 1:length(bins)) {
+ y <- 1:B*0
+ for(i in 1:B) {
+ x <- sample(diy,bins[j],replace=TRUE)
+ if(dim(table(x))<bins[j]) y[i] <- 1
+ }
+ simprob[j] <- mean(y)
+ }
> simprob
[1] 0.002 0.032 0.126 0.399 0.728 0.902 0.970

Using the sample function, a draw of k, R variable bins, balls is carried out from diy,
days in year, with replacement (option replace=TRUE). To check if any birthday is selected
more than once, we check if dim(table(x))<bins[j] holds true. If the condition is
satisfied, then y[i] is assigned a value of 1, which is otherwise zero. The simulated birthday
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Table 11.1 Theoretical and Simulated Birthday Match Probabilities

Size k Theoretical Probability Simulated Birthday Probability

2 0.0027 0.003
5 0.0271 0.029
10 0.1169 0.094
20 0.4114 0.417
30 0.7063 0.699
40 0.8912 0.885
50 0.9704 0.954

probability is obtained with simprob[j] <- mean(y). The simulated birthday prob-
ability and theoretical probability are compared in Table 11.1. The values are close enough
to each other. The reader may perform a t-test on them! ◽

Example 11.2.2. The Match Box Problem. The simulation thought process is the following.
Begin with 50 sticks in each of the match boxes. Each match box is randomly selected and
used, and this is continued until the point of finding one empty match box. At this time, we
will note the number of remaining sticks in the non-empty match box. This process is repeated
a large number of times and we then note the frequencies of the number of sticks remaining.
This algorithm, which computes the simulated probabilities, for the match box problem is
summarized below.

• Set the number of sticks in the match box as N = 50, and B = 10000.
• Simulate 2 × N Bernoulli pseudo random observations.
• Calculate the first time either the number of heads or the number of tails exceeds 50, and

note 50 minus the sum of the other events.
• Note the frequencies of 0 to 50 in the B bootstrap samples.
• Divide the values in the above step by B and we are left with the simulated probabilities.

The simulated probabilities for the other box containing exactly k matches is given by this R
program segment:

> # Banach Match Box Problem
> match_prob <- function(x) choose(2*N-x,N)*2 ̂ {-(2*N-x)}
> # Verifing Fellers Match Box Probabilities on Page 166
> N <- 50; B <- 10000
> simfreq <- rep(0,51)
> for(i in 1:B) {
+ maxht = minht <- 0
+ hcount = tcount <- 0
+ while(maxht<51){
+ tt <- rbinom(1,1,0.5)
+ if(tt==1) {
+ hcount <- hcount + 1
+ hremain <- 50-1
+ }
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+ else {
+ tcount <- tcount + 1
+ #tremain <- 50 - tcount
+ }
+ maxht <- max(hcount,tcount)
+ minht <- min(hcount,tcount)
+ tremain <- 50-minht
+ #return(c(maxht,minht))
+ }
+ simfreq[tremain+1] <- simfreq[tremain+1]+1
+ }
> simfreq
[1] 808 772 767 738 0 0 0
[41] 0 0 0 0 0 0 0
> simfreq <- simfreq/B
> plot(0:50,cumsum(sapply(0:50,match_prob)),ylim=c(0,1),
+ xlab="Number of Sticks Remaining", +ylab="Cumulative Probability",
+ type="o",col="green")
> title("B: The Match Box Problem")
> lines(0:50,cumsum(simfreq),"o",col="red")
> legend(x=c(35,52),y=c(-0.1,0.3),c("Theoretical","Simulated"),
+ col=c("green","red"),pch="o")

The pcount function counts the number of heads and tails in a matrix of two columns. Using
the rbinom function, see Section 11.3 for simulation from discrete distributions, the numbers
0 or 1 for the match boxes are simulated. Now, using the pcount function, the number of
0’s and 1’s are counted. Depending on which of the match boxes becomes empty, the if
loops if(Nmax1>50) or if(Nmax0>50), the number of sticks in the other match box is
determined and entered in the simfreq object. This module is repeated a large number of
times B, here B<-10000. The theoretical and simulated probabilities match well. ◽

Example 11.2.3. The Coupon Collectors Problem. As with the two earlier problems, we
repeat the experiment a large number of times. The algorithm for the simulated probabilities
of the coupon collectors problem is given below:

• Set the number of coupons to be collected as the vector n = 1, 2, … , 100.
• Set B = 1000.
• For each simulated sample, simulate the coupons drawn from an urn (with replacement)

until the number of different coupons drawn equals n labels, and note down the number of
trials required.

• For each n, the expected number of coupons to be collected is the average of the B numbers
obtained in the previous step.

The next R program compares the theoretical expectations with the expectations based on
simulated probabilities.

> TEn <- function(n) n*log(n) # The Theoretical Expectations
> coupons_matrix <- matrix(nrow=100,ncol=3)
> colnames(coupons_matrix) <- c("Number_of_Coupons","TEn","SPEn")
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> coupons_matrix[,1] <- 1:100
> coupons_matrix[,2] <- sapply(1:100,TEn)
> coupons_matrix # Output suppressed
> coupons <- function(n){
+ cells <- 1:n
+ target <- 0
+ counts <- 0
+ collect <- NULL
+ while(length(collect)<length(cells)){
+ temp <- sample(cells,1)
+ counts <- counts+1
+ if(counts==1) collect <- temp
+ if(temp %in% setdiff(cells,collect)){
+ target <- target+1
+ collect <- c(collect,temp)
+ }
+ }
+ return(counts)
+ }
> B <- 1000
> SEn <- function(n){
+ x <- 1:B*0
+ for(i in 1:B) {
+ x[i] <- coupons(n)
+ }
+ return(mean(x))
+ }
> coupons_matrix[,3] <- sapply(1:100,SEn)
> coupons_matrix

Number_of_Coupons TEn SEn
[1,] 1 0.000000 1.000
[2,] 2 1.386294 2.974

[99,] 99 454.916865 521.858
[100,] 100 460.517019 529.590

This program, though a lengthier one, is fairly simple to follow. The simulated expected num-
ber of coupons and the theoretical ones are given in Table 11.2. ◽

Figure 11.2 gives a plot of the simulated and theoretical probabilities/expectations of the
birthday, match box, and coupon collectors problems. It may be seen from the figure that the
simulated and theoretical probabilities match well.

Example 11.2.4. The Buffon’s Needle Problem. Georges-Louis Leclerc, Comte de Buffon
posed a problem in the 18th century, in what is now popularly referred to as Buffon’s needle
problem. Consider equally spaced strips of parallel lines and drop a needle onto the surface.
The lines are at a distance D apart from each other. Shonkwiler and Mendivil (2010) have
explained the Buffon’s needle problem as the first experiment where simulation has been used
to estimate the 𝜋 value. Assume that the length of the needle L is less than D. Let X denote
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Table 11.2 Theoretical and Simulated Expected Number of Coupons

Number of Coupons TEn SEn Number of Coupons TEn SEn

1 1.08 1 51 230.46 230.19
2 3.04 3 52 235.98 230.73
3 5.53 5.53 53 241.52 240.62
4 8.35 8.34 54 247.07 246.24
· · · · · · · · · · · · · · · · · ·
47 208.59 208.9 97 500.24 499.69
48 214.02 212.66 98 506.39 504.48
49 219.48 220.06 99 512.56 511.59
50 224.96 224.28 100 518.74 517.54

the distance from the center of the line to the next nearest line. Let 𝜃 be the acute angle that
the needle makes with respect to the parallel lines. Then 0 ≤ X ≤ D∕2 and 0 ≤ 𝜃 ≤ 𝜋∕2. The
probability of the needle crossing a line, see page 2 of Shonkwiler and Mendivil (2010), is
given by

P(needle crossing a line) = 2L
𝜋D

.

In the next simulation study we will examine the number of times the needle crosses a line and
use the empirical probability for the estimation of 𝜋 in the above expression. The required R
program now follows.

> # L: Needle Length; d: Distance between two lines;
> # Hn: of hits in n throws
> # Simulating if needle crosses the line
> # We needed simulated values of sin(theta).
> # Simulate values in the interval 0-1 and use it as sin(theta)
> L <- 10; d <- 25
> n <- 1e5
> theta <- runif(n,0,22/14)
> sinTheta <- sin(theta)
> x <- runif(n,0,d/2)
> SimHits <- ifelse((x<=(L/2)*sinTheta),1,0)
> # We can now estimate the value of pi
> piEstimate <- 2*L/(mean(SimHits)*d)
> piEstimate;pi
[1] 3.144407
[1] 3.141593

The runif function will be discussed in more detail in the next section. It suffices to assume
at the moment that we obtain n random (and uniform) observations in the interval (0, 22∕14).
The ifelse condition helps to obtain the empirical probability. The estimated value of 𝜋
given by piEstimate in the simulation study at 3.145025 is closer to the actual value up
to the first two digits. ◽

We next move to simulation from standard discrete distributions.
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11.3 Simulation from Probability Distributions and Some Limit
Theorems

Generation of random observations for some of the probability models discussed in Sections
6.2 and 6.3 will be considered now.

11.3.1 Simulation from Discrete Distributions

As mentioned earlier in Chapter 6, the wait for the fourth of the quartet (p, d, q, r) for
a probability distribution ends here. The letter r prefixed with the abbreviation of a prob-
ability distribution enlisted in R helps us in the generation of pseudo-random observations
from the target distribution. However, we will also consider the raw way of obtaining the
pseudo numbers in a direct approach.

Discrete Uniform Distribution

If a random variable X can take one of the N possible distinct outcomes with equal probability,
we say that X has a discrete uniform distribution, recollect the distribution discussed in detail in
Section 6.2. A simple example of such a variate is if we randomly select a key from a bunch,
then the probability of getting the right key to unlock the door follows a discrete uniform
distribution, which is the professors key problem. Mathematically,

P(X = xi) =
1
N
, i = 1, 2, … ,N.

Example 11.3.1. A Simple Illustration. Suppose we want to generate 100 numbers randomly
from the sequence 1, 2, ..., 10. Then, the random numbers are generated by using the sample
function.

> dud <- sample(c(1:10),100,replace=TRUE)
> table(dud)
dud
1 2 3 4 5 6 7 8 9 10
8 8 12 12 14 5 11 8 9 13

The R object name dud stands for discrete uniform distribution, of course. The sample
function helps to generate random numbers from a given array and such an array need not be
a numeric vector, as it may be a character vector as well. ◽

Discrete Arbitrary Distribution

The method of generating random numbers from an arbitrary discrete distribution needs the use
of the inverse transform method. Now let the probability mass function of an arbitrary discrete
RV X, which can take the values x1, x2, … , be represented by P(X = xj) = pj, j = 1, … . Here,
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∑
j=1pj = 1. To generate a random number with pmf pj, first simulate a number from U(0, 1),

the LCG discussed earlier may be used here, and denote it by U. The inverse transform method
then generates xj as a pseudo random number if

∑j−1
i=1 pj ≤ U <

∑j
i=1 pj. That is, the value x1

is accepted if U < p1, the value x2 if p1 ≤ U < p1 + p2, and so on. If N random numbers are
required, the task is repeated N times.

Example 11.3.2. An Arbitrary Discrete Distribution. Suppose we want to generate 100
numbers randomly from the sequence 1, 2, ..., 10, where P(X = i) = pi are arbitrary. Assume
that the probability vector for the 10 numbers is given by 0.05, 0.17, 0.02, 0.14, 0.11, 0.06,
0.05, 0.04, 0.17, 0.19.

To obtain the random numbers, the program is built as follows. The x and p(x) are first
defined in x and p_x. The cumulative distribution function of the discrete RV is obtained in
F_x using the cumulative sum cumsum function. For the required number of observations N,
the for loop checks which xj value is obtained for the simulated value from U(0, 1).

> x <- 1:10
> p_x <- c( 0.05, 0.17, 0.02, 0.14, 0.11, 0.06, 0.05,
+ 0.04, 0.17, 0.19)
> F_x <- cumsum(p_x)
> N <- 2000
> disc_sim <- numeric(length=N)
> for(i in 1:N) {
+ temp <- runif(1)
+ disc_sim[i] <- x[min(which(F_x>temp))]
+ }
> table(disc_sim)
disc_sim
1 2 3 4 5 6 7 8 9 10

109 327 47 274 189 108 104 82 337 423

The reader may check if table(disc_sim) proportions are similar to p_x. ◽

Though the above technique is really useful, it is meaningful to check if improvements
can be made to simulate the random numbers. A slight modification of investigating where xj
value should correspond to the simulated uniform random number offers better performance
in terms of the computation time. Precisely, if the vector p_x is arranged in decreasing values
of the probabilities, a significant improvment is achieved in terms of the computational time.
However, it should be noted, in light of the repeated guidelines in Robert and Casella (2010),
that if there is already a method of simulation using R available functions, it is more often
preferable to use them. For instance, the sample function can be used to simulate from an
arbitrary discrete distribution and as such it also uses lower computational time. These aspects
are detailed as a continuation of the previous example.

Example 11.3.3. An Arbitrary Discrete Distribution. Contd. Ordered and Unordered
Speed Times. Two functions ST_Unordered and ST_Ordered are defined, which simu-
late values from an arbitrary discrete distribution using unordered and ordered probabilities.
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The sample function too is used and the computational times are also given. The programs
explanation is not given here and is left to the reader.

> ST_Unordered <- function() {
+ N <- 1e7
+ x <- 1:10
+ p_x <- c(0.05,0.17,0.02,0.14,0.11,0.06,0.05,0.04,0.17,0.19)
+ F_x <- cumsum(p_x)
+ disc_sim <- numeric(length=N)
+ for(i in 1:N) {
+ temp <- runif(1)
+ disc_sim[i] <- x[min(which(F_x>temp))]
+ }
+ }
> ST_Ordered <- function() {
+ N <- 1e7
+ x <- 1:10
+ p_x <- c(0.05,0.17,0.02,0.14,0.11,0.06,0.05,0.04,0.17,0.19)
+ x <- x[order(p_x,decreasing=TRUE)]
+ F_x <- cumsum(sort(p_x,decreasing=TRUE))
+ disc_sim <- numeric(length=N)
+ for(i in 1:N) {
+ temp <- runif(1)
+ disc_sim[i] <- x[min(which(F_x>temp))]
+ }
+ }
> system.time(ST_Unordered());system.time(ST_Ordered())

user system elapsed
55.38 0.03 55.66
user system elapsed

54.93 0.04 55.19
> system.time(sample(1:10,size=1e7,replace=TRUE,prob=p_x))

user system elapsed
0.36 0.03 0.39

Unsurprisingly, the use of the sample function is the minimum time to simulate the required
number of random observations. However, it is also instructive to follow the algorithms. The
reader may also note that the time depends on the computer configuration. ◽

The more generic form of the functions ST_Unordered and ST_Ordered are available
in the ACSWR package.

Finally, we consider the problem of simulating a random permutation of n items.

Example 11.3.4. Simulating a Random Permutation. In the previous problems, the task of
simulating random observations from a finite set was addressed. In those examples, if N > x,
some elements would be selected more than once. Now consider the problem of simulating
a random permutation where N = x and any item can be selected once only. For the sake of
simplicity, assume a random permutation of the integers 1:n. The sample function can again
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be used to obtain a random permutation with sample(1:n,n,replace=FALSE), which
will obviously be more optimal than the Random_Permutation function, which will be
developed here. The algorithm for simulating a random permutation is the following:

1. Initialize k = n.
2. Simulate a random number from U(0, 1), say U, and obtain I = round(k*U)+1.
3. Interchange the values of I and k.
4. Set k = k − 1 and if k > 1, go to Step 1.
5. If k = 1, the current arrangement of the integers is a random permutation.

The function Random_Permutation constructed in the forthcoming R program gives us a
random permutation, which implements the above algorithm.

> Random_Permutation <- function(n){
+ k = n; permute = 1:n
+ while(k>1){
+ t = runif(1)
+ I = round(k*t) + 1
+ a = permute[I]; b = permute[k]
+ permute[I] = b; permute[k] = a
+ k=k-1
+ print(c(k+1,I,permute))
+ }
+ return(permute)
+ }
> Random_Permutation(10)
[1] 10 10 1 2 3 4 5 6 7 8 9 10
[1] 9 9 1 2 3 4 5 6 7 8 9 10
[1] 8 7 1 2 3 4 5 6 8 7 9 10
[1] 7 7 1 2 3 4 5 6 8 7 9 10
[1] 6 1 6 2 3 4 5 1 8 7 9 10
[1] 5 4 6 2 3 5 4 1 8 7 9 10
[1] 4 2 6 5 3 2 4 1 8 7 9 10
[1] 3 4 6 5 2 3 4 1 8 7 9 10
[1] 2 1 5 6 2 3 4 1 8 7 9 10
[1] 5 6 2 3 4 1 8 7 9 10
> sample(1:10,10,replace=FALSE)
[1] 2 4 5 8 1 3 10 9 7 6

The reader should verify that the Random_Permutation function indeed implements the
described algorithm! ◽

In the rest of this subsection, simulations from popular discrete distributions are considered.

Binomial Distribution

Suppose X denotes a binomial RV with parameters (n, p). We can then generate random obser-
vations from it using the function rbinom. However, it is pertinent to consider the simulation
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technique from first principles and a useful algorithm. Can the two functionsST_Unordered
and ST_Ordered be used for simulation from binomial distribution? The answer is an obvi-
ous “Yes”. For example, suppose 100 observations are required from b(12, 0.7). Using the
options N, x, and p_x in conjunction with the dbinom function, it is a simpler task to obtain
random observations from binomial distribution, as seen next.

> table(ST_Unordered(N=100,x=0:12,p_x=dbinom(x=0:12,size=12,
+ prob=0.7)))
5 6 7 8 9 10 11 12
2 7 13 26 25 19 6 2
> table(ST_Unordered(N=100,x=0:12,p_x=dbinom(x=0:12,size=12,
+ prob=0.7)))
5 6 7 8 9 10 11 12
4 4 15 25 19 23 8 2
> table(ST_Unordered(N=100,x=0:12,p_x=dbinom(x=0:12,size=12,
+ prob=0.7)))
6 7 8 9 10 11 12
7 16 25 21 20 9 2
> table(ST_Ordered(N=100,x=0:12,p_x=dbinom(x=0:12,size=12,prob=0.7)))
5 6 7 8 9 10 11 12
7 2 13 22 29 16 9 2
> table(ST_Ordered(N=100,x=0:12,p_x=dbinom(x=0:12,size=12,prob=0.7)))
3 4 5 6 7 8 9 10 11 12
1 1 2 12 15 22 26 13 5 3
> table(ST_Ordered(N=100,x=0:12,p_x=dbinom(x=0:12,size=12,prob=0.7)))
5 6 7 8 9 10 11 12
4 10 14 24 26 18 3 1

In fact, these two functions may be used for any discrete RV with a finite possible integer range,
or the technically known simple RV. It is to be noted that simulation from first principles for
the binomial distribution is inbuilt here too. The more efficient rbinom function too may be
used for simulation from the binomial distribution.

> rbinom(10,1,.5)
[1] 0 1 0 1 1 1 1 0 1 0

Example 11.3.5. Estimating a Binomial Probability. Suppose that X ∼ B(20, 0.3), and we
want to estimate P(X > 13) based on 100 simulated observations. The desired probability is
computed in the following:

> set.seed(123)
> sum(rbinom(100,20,.3)>13)/100
[1] 0
> 1-pbinom(13,20,0.3)
[1] 0.000261047

The reader should increase the number of random simulations and check the difference with
sum(dbinom(x=14:20,size=20,prob=0.3)). ◽
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The recurrence relationship of binomial distribution can be exploited to simulate random
numbers for binomial distribution. The recurrence relationship is

P(X = i + 1) = n − i
i + 1

p

1 − p
P(X = i).

Using the recurrence relationship and the inverse transform algorithm, simulation from the
binomial distribution can be carried out and the brief steps of this technique is now given.

1. Simulate a random number U from U(0,1).
2. Set i = 0 and compute c = p∕(1 − p), prob = (1 − p)n, and F = prob.
3. If U < F, set X = 0 and stop.
4. If U ≥ F, compute prob = c(n − i)prob∕(i + 1), F = F + prob, and i = i + 1 and return to

Step 3.

The R function is given which follows the above algorithm:

Binom_Sim <- function(size,p,N) {
q <- 1-p
x <- numeric(N)
for(i in 1:N) {
temp <- runif(1)
j <- 0; cc <- p/(1-p); prob <- (1-p) ̂ size; F <- prob
while(temp >= F) {
prob <- cc*(size-j)*prob/(j+1); F <- F+prob; j <- j+1

}
x[i] <- j

}
return(x)

}
Binom_Sim(size=10,p=0.5,N=100)

The next natural question is how to simulate observations for an elementary RV, that is, an RV
with a countable range.

Geometric Distribution

The range of a geometric RV is the set of non-negative integers ℤ+. A question that then arises
is how do we carry out simulations for the examples of an elementary RV? Consider a variant
of the geometric distribution than the one specified in Equation 6.14 as

P(X = x) = p(1 − p)x−1, x = 1, 2, … .

To generate a random number from a geometric RV, note the following relation:

j−1∑
x=1

P(X = x) = 1 − (1 − p)j−1,

and hence using an observation U from U(0, 1), select that value of X = j which satisfies

1 − (1 − p)j−1 ≤ U < 1 − (1 − p)j.
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Thus, if we need n observations from a geometric RV, the Geom_Sim function as constructed
next can be used for simulation:

Geom_Sim <- function(p,n) {
q <- 1-p
x <- numeric(n)
for(i in 1:n) {
temp <- runif(1)
temp <- 1-temp
j <- 0
while(((temp>q ̂ j) & (temp <= q ̂ {j-1}))==FALSE) j <- j+1
x[i] <- j

}
return(x)

}

Example 11.3.6. Geometric Random Variables. Using the function Geom_Sim, the mean
of a geometric RV across simulated samples of various sizes are computed. It may be seen that
as the number of simulations increase, the accuracy increases.

> 0.99/0.01 # Geometric Mean
[1] 99
> mean(Geom_Sim(0.01,10))
[1] 120.7
> mean(Geom_Sim(0.01,10))
[1] 107.2
> mean(Geom_Sim(0.01,100))
[1] 106.07
> mean(Geom_Sim(0.01,1000))
[1] 104.449
> mean(Geom_Sim(0.01,10000))
[1] 101.3128
> mean(Geom_Sim(0.01,10000))
[1] 102.1636
> mean(Geom_Sim(0.01,50000))
[1] 99.76944

Thus, increasing the number of simulated observations leads to an increase in the accuracy. ◽

The reader can now use the pgeom inbuilt R function for simulation of observations from
the geometric distribution. This section will close with the simulation problem of generating
observations from the Poisson distribution.

Poisson Distribution

The recurrence relation for the Poisson distribution, as in the binomial distribution, will guide
the simulation problem here:

P(X = x + 1) = 𝜆

x + 1
P(X = x).
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The algorithm for simulating observations from the Poisson distribution is the following:

1. Simulate an observation U from U(0, 1).
2. Set x = 0, prob = e−𝜆, and F = prob.
3. If U < F, select X = x and terminate.
4. If U ≥ F, obtain x = x + 1, prob = 𝜆

x+1
prob, F = F + prob, and return to the previous step.

The R function Poisson_Sim simulates random observations using this algorithm:

Poisson_Sim <- function(lambda,n) {
x <- numeric(n)
for(i in 1:n) {
j <- 0; p <- exp(-lambda); F <- p
temp <- runif(1)
while((F>temp)==FALSE) {
p <- lambda*p/(j+1); F <- F+p; j <- j+1

}
x[i] <- j

}
return(x)

}

The reader should test the function Poisson_Sim for various n and 𝜆 values. We now use the
command rpois for simulation of observations from a Poisson random variable with mean
rate 𝜆 and use it to estimate a probability too.

Example 11.3.7. Estimating a Poisson Probability. Suppose X ∼ P(10), and Y ∼ P(20). We
can then estimate P(X > Y) based on 1000 observations as follows:

> x <- rpois(1000,10); y <- rpois(1000,20)
> sum(x>y)/1000
[1] 0.036

Thus, probabilities of interest may be computed using the random observations. ◽

11.3.2 Simulation from Continuous Distributions

We begin with simulation from the uniform distribution, which also forms the basis for gen-
erating samples from all continuous distributions.

Uniform Distribution

The probability density function of a uniform random variable over the interval (a, b) is

f (x) = 1
b − a

, a ≤ x ≤ b.
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Simulation from this distribution was detailed in Section 11.2. However, look at the syntax of
the function runif:

runif (n,min = 0,max = 1)

By default, for generating n observations from the unit interval, use runif(n, min=0,
max=1). The runif has already been used in the earlier sections.

We saw in Section 11.2 that the LCG returns us a sample from the uniform distribution. It is
left as an exercise for the reader to figure out the exact algorithm used in runif. Remember,
R is an open source software and you can see every line of code in it.

As an illustration, we give a simple program.

> runif(10,1/20,1/10)
[1] 0.0927 0.0760 0.0767 0.0706 0.0818 0.0957 0.0756 0.0886
+ 0.0692 0.0854
> mean(runif(1e4)); var(runif(1e4))
[1] 0.493
[1] 0.0834

Exponential Distribution

Simulation of samples from continuous distributions easily follows from the simulated values
from the standard uniform distribution, thanks to the following result.

Theorem 11.3.1 The Inverse Cumulative Distribution Function (CDF) Method. If X is a
random variable with continuous CDF FX and U =∶ FX(x), then

U ∼ U(0, 1).

Consequently, if we need samples from the distribution FX , we can use the inverse relation

X = F−1
X (U).

for generating the samples from the required distribution.

Example 11.3.8. Exponential Distribution. A random variable X follows exponential dis-
tribution with mean 𝜃 if its probability density is

f (x; 𝜃) = 1
𝜃

e−
x
𝜃 , x ≥ 0, 𝜃 > 0.

The CDF of exponential distribution is then

F(x, 𝜃) = 1 − e−
x
𝜃 , x ≥ 0.

If U is an observation from U(0, 1), we have by the discussion following the previous lemma
that F−1

X (U) is a observation from FX(x, 𝜃). That is, a pseudo-observation from FX(x) may be
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Figure 11.3 Simulation for the Exponential Distribution

generated using the relationship x = −𝜃 ln (1 − U). We can examine the correctness of the
above steps in the following program:

> n <- 100; theta <- 50
> pseu_unif <- runif(n)
> x <- -theta*log(1-pseu_unif)
> hist(x,freq=FALSE,ylim=c(0,.012))
> curve(dexp(x,rate=1/theta),add=T)
> (rexp(10,1/theta)) # Using "rexp"
[1] 37.58 115.12 17.93 52.63 116.99 2.39 48.44 28.71
[9] 11.54 126.63

Thus, using the runif function and the transformation, observations can be simulated for
the exponential distribution. The histogram, see Figure 11.3, obtained by the hist function
gives the shape of the simulated observations and that it is a good technique is confirmed by
the curve imposed on the histogram. ◽

Alternatively, using the rexp function, we can easily generate observations from the expo-
nential distribution in R.

In Section 10.4 we saw the use of the Metropolis-Hastings algorithm to generate random
observations from a gamma distribution. Simulation for continuous distributions, beta,
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and normal will be taken up again in Section 11.5. In the rest of this section we will see
application and use of random observations in understanding certain limit theorems and the
central limit theorem.

11.3.3 Understanding Limit Theorems through Simulation

Sections 5.10–5.12 of Chapter 5 dealt with various modes and forms of limit theorems. Wher-
ever it was possible in the discussions therein, R programs were constructed to understand the
meaning of limit theorems. The central idea in Chapter 5 made use of either the associated
CDF F or expectation and variance of the random sample X1,X2, … . In this section we will
revisit some of the limit theorems. A simulation approach will be taken in this section to gen-
erate the data, that is, instead of looking at the quantities related with the random sample, we
will use the pseudo random observations x1, x2, … and estimated sample means and variance,
or the empirical CDF F̂.

Example 11.3.9. Convergence of Uniform Minima. Let X1,X2, … ,Xn be a random sample
from a uniform distribution U(0, 𝜃). Suppose the interest is in the asymptotic behavior of
nX(1), where X(1) = min(X1,X2, … ,Xn) is a function of n. Theoretically, the survival function
(complement of the cumulative distribution function) is given by

P(nX(1) > x) = P(X(1) > x∕n) =
n∏

i=1

P
(

Xi >
x

n𝜃

)

=
(

1 −
x∕𝜃
n

)n

.

Taking limits on both sides, the asymptotic distribution of the survival function of nX(1) is thus
the following:

lim
n→∞

P(nX(1) > x) = lim
n→∞

(
1 −

x∕𝜃
n

)n

= exp
(−x

𝜃

)
.

The expression on the last term is the survival function of exponential distribution with mean
𝜃. We conduct a simulation study to understand the same using the following algorithm:

1. Consider sample sizes n = 100, 200, … , 800.
2. For a given sample size, generate n observations from U(0, 𝜃) and note the minimum of

this sample and calculate nX1.
3. Repeat Step 2 a large number of times, say 20.
4. Plot the empirical cumulative distribution function for each sample of size n, and also plot

the CDF of an exponential random variable with mean 𝜃.

The R program for studying the convergence of uniform minima may be easily set up using
vector arrays for ss (sample size), xpoints, etc., along with the min and ecdf functions.

> Convergence_Uniform_Minima <- function (theta,nsimul){
+ ss <- c(10,20,50,100,200,400,600,800)
+ xpoints <- seq(0,100,5)
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+ par(mfrow=c(2,4))
+ for(i in 1:length(ss)){
+ y <- c()
+ for(j in 1:nsimul){
+ y[j] <- ss[i]*min(runif(ss[i],0,theta))
+ }
+ plot(ecdf(y),verticals=TRUE,do.points=FALSE,xlim=c(0,150))
+ y <- y[order(y)]
+ z <- seq(0,150,5)
+ lines(z,pexp(z,1/theta),type="l",col="red")
+ }
+ }
> Convergence_Uniform_Minima(theta=30,nsimul=20)

The function Convergence_Uniform_Minima has two arguments, theta and
nsimul. The former argument is for any parameter of the user’s choice, while the latter is for
the number in Step 3 explained earlier. The codess[i]*min(runif(ss[i],0,theta))
obtains n times the minimum in a sample of size n, and the ecdf function obtains the empiri-
cal distribution of nX(1). The exponential curve (through the lines function) is then imposed
on the plot of ecdf(y).

The graphs generated give us a clear understanding of the asymptotic distribution. It may
be seen from Figure 11.4 that as the sample size n increases, the convergence of the minima
of uniform distribution is closer to the exponential distribution. ◽

Example 11.3.10. Understanding the Weak Law of Large Numbers (WLLN). To under-
stand the WLLN through simulation, consider three distributions, viz., normal, exponential,
and gamma, for which the variance is theoretically known to be finite. Then generate 10 000
values from each of these distributions with means respectively at 5, 6.5, and 8. The next
program along with the graph gives a clear understanding of how true the WLLN holds in
reality.

> n <- 10000
> xnorm <- rnorm(n,5,1); xexp <- rexp(n,1/6.5)
> xgamma <- rgamma(n,4,1/2)
> plot(1:n,cumsum(xnorm[1:n])/1:n, type="l",xlab="n",
+ ylab=expression(hat(mu)),
+ main=expression(paste("A: Convergence of sample mean to ", mu)),
+ col = "red",ylim=c(4,9))
> lines(1:n,cumsum(xexp[1:n])/1:n,type="l",col="blue")
> lines(1:n,cumsum(xgamma[1:n])/1:n,type="l",col="green")
> abline(h=c(5,6.5,8),lty=2)

Random numbers from the normal, exponential, and gamma distribution are generated using
rnorm, rexp, and rgamma. The remaining program is easier to follow. See Part A of
Figure 11.5. ◽
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Figure 11.5 Understanding WLLN and CLT through Simulation

11.3.4 Understanding The Central Limit Theorem

The CLT is a very powerful technique. Theoretically, in Section 5.12, the conditions were
stated when iid and independent sample averages converged to the standard normal distri-
bution. In this section, different distributions are considered which are significantly different
from the normal distribution, and then observations are simulated from it. Then averages of the
simulated observations are computed and the module is repeated, the (simulation) experiment,
a large number of times, and finally a histogram is plotted of the standardized values and the
standard normal curve is fitted to inspect if the convergence is true or not!

Example 11.3.11. Discrete Uniform Distribution. If we throw a fair dice with N sides, it
is known that the probability distribution will be a discrete uniform distribution. Here, we
have a flat probability mass function. That is, we assume Xi is from a discrete uniform distri-
bution (1, … ,N), i = 1, 2, … , n. Define X̄ =

∑n
i=1 Xi∕n. As n increases, the CLT for the iid

case tells us that the asymptotic distribution of X̄ − E(X̄)∕sd(X̄) is N(0, 1). Fix N = 100 and
consider simulating a batch of 20 observations first and note the average. This step will then
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be repeated a large number of times, B = 1000. The 1000 averages will then be standardized
and a histogram will be obtained to examine the appropriateness of the CLT. The program is
given next.

> xmean <- NULL
> B <- 1000
> for(i in 1:B){
+ xmean[i]=mean(sample.int(100,size=200,replace=TRUE))
+ }
> xstan <- (xmean-mean(xmean))/sd(xmean)
> hist(xstan,prob=TRUE,main="B: Histogram of Average of Discrete
+ Uniform RVs",xlab="x",xlim=c(-5,5),ylim=c(0,0.5))
> curve(dnorm(x,mean=0,sd=1),add=TRUE,col="red")

Since the program is routine by now, it is self-explanatory to the reader. Part B of Figure 11.5
clearly shows that the CLT holds good for the average of random sample from a discrete uni-
form RV. ◽

Example 11.3.12. Triangular Distribution. Recollect from Example 5.12.2 of Section 5.12,
the definition of a triangular distribution:

f (x, a, b, c) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0, x < a,
2(x−a)

(b−a)(c−a) , a ≤ x < c,

2
b−a

, x = c,

2(b−x)
(b−a)(b−c) , c < x ≤ b,

0, x > b.

We do not have a standard function R to simulate an observation from the triangular distri-
bution. However, a simple algorithm which returns simulated observations from it is given
next.

• Simulate an observation from U(0, 1).
• If u ≤ (c − a)∕(b − a), then take x = a +

√
(b − a)(c − a)u. Or else, go to the next step.

• Set x = b −
√
(b − a)(b − c)(1 − u).

Thus, we will first define this simulation step using the function rtrian and the rest of the
details will be the usual flow.

> a <- 10; b <- 30; c <- 14
> rtrian <- function(a,b,c){
+ u <- runif(1)
+ ifelse(u <= (c-a)/(b-a), a+sqrt((b-a)*(c-a)*u),
+ b-sqrt((b-a)*(b-c)*(1-u)))
+ }
> ntrian <- function(n,a,b,c){
+ y=NULL
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+ for(i in 1:n) y[i]=rtrian(a,b,c)
+ return(y)
+ }
> x <- NULL
> B <- 1000
> for(i in 1:B) x[i] <- mean(ntrian(5,a,b,c))
> xstan <- (x-mean(x))/sd(x)
> hist(xstan,prob=TRUE,main="C: Histogram of Average of
+ Triangular RVs",xlab="x",xlim=c(-5,5),ylim=c(0,0.5))
> curve(dnorm(x,mean=0,sd=1),add=TRUE,col="red")

Note that we started with a highly asymmetric distribution. However, the reader can (and
should) experiment with various values for a, b, and c and verify that the CLT does hold
true. Part C of Figure 11.5 indicates that the CLT indeed holds for a particular choice of a,
b, and c. ◽

The R package ConvergenceConcepts is useful for understanding the concept of
almost sure convergence. The important concept of Monte Carlo simulation will be considered
and developed in the next section.

11.4 Monte Carlo Integration

Random numbers have been used since early days for evaluation of integrals. In a certain way,
the Buffon’s needle problem is such an example. Its simplicity also helps lay the foundation
for complex algorithms. Let us begin with the algorithm and some interesting applications.

Consider the integral:

𝜃 = ∫
1

0
g(x)dx.

If this equation is rewritten as 𝜃 = ∫ 1
0 g(x)fU(x)dx, where fU(x) is the probability density func-

tion of the uniform distribution on the unit interval (0, 1), it is easy to see that 𝜃 is simply the
expectation

𝜃 = E[g(U)].

Thus, if U1, … ,Uk is a random sample of size k from U(0, 1), we have g(U1), … , g(Uk) as
an iid sample with expectation 𝜃, and it follows by the SLLN that

k∑
j=1

g(Ui)
k

→ E[g(U)] = 𝜃, as k → ∞.

Approximation of integrals in this fashion is referred as the Monte Carlo integration.

Example 11.4.1. Illustration of the Monte Carlo for Computation of some Inte-
grals. Suppose that we want to evaluate the integrals I1 = ∫ 1

0 exp {ex}dx and I2 =
∫ 1

0 (1 − x2)3∕2dx. The integrals can be conveniently obtained using the Monte Carlo approach:

> u <- runif(1000) #random sample from the U(0,1)
> int1 <- mean(exp(exp(u)))
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> int1; integrate(function(x) exp(exp(x)),0,1)
[1] 6.271236
6.316564 with absolute error < 7e-14
> int2 <- mean((1-u ̂ 2) ̂ (3/2))
> int2; integrate(function(x) {(1-x ̂ 2) ̂ (3/2)},0,1)
[1] 0.5945052
0.5890486 with absolute error < 1.3e-05

Here, the function runif is used for simulation of observations from the standard uniform
distribution. The Monte Carlo integration is easily obtained with the averaging part of the often
used mean function. The integrate function has been used to verify the approximation
provided by the Monte Carlo approach. ◽

Example 11.4.2. Can I always use this approach? Is it not obvious that if we need to evalu-
ate, say, I3 = ∫ 2

−2 ex+x2
dx, we simply simulate a sample from U(−2, 2), and approximate I3 as

the mean of g(Ui) with Ui ∼ U(−2, 2). Let us write an R program for the same.

> u2 <- runif(1000,-2,2)
> int3 <- mean(exp(u2+u2 ̂ 2))
> int3; integrate(function(x) exp(x+x ̂ 2),-2,2)
[1] 22.63478
93.16275 with absolute error < 0.00062

Is this correct? ◽

Suppose that integrals of the type 𝜃 = ∫ b
a g(x)dx are of interest. By making use of the trans-

formation y = (x − a)∕(b − a), with the aid of the differential increment dy = dx∕(b − a), we
obtain

𝜃 = ∫
1

0
g(a + [b − a]y)(b − a)dy = ∫

1

0
h(y)dy,

where h(y) = (b − a)g(a + [b − a]y). Using this modified approach, the general integrals need
to resolved.

Example 11.4.3. Some Examples of Monte Carlo Integration. Let us reconsider the integral
I3 = ∫ 2

−2 ex+x2
dx. Clearly, we need to use the substitution y = (x + 2)∕4. After the obvious

calculus steps, we need to evaluate the integral I3 = 1
4
∫ 1

0 e16y2−12y+2dy. As earlier, the Monte
Carlo solution is now the following:

> int3 <- 4* mean(exp(16*u ̂ 2-12*u+2))
> int3; integrate(function(x) exp(x+x ̂ 2),-2,2)
[1] 90.75416
93.16275 with absolute error < 0.00062
> u <- runif(10 ̂ 5) # Increasing the sample points
> int3 <- 4* mean(exp(16*u ̂ 2-12*u+2))
> int3
[1] 92.87321

Thus, increasing the number of simulation points, increases the accuracy of the integral. ◽
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The next set of questions would be the use of the Monte Carlo approach to evaluate integrals
of the type ∫ ∞

0 f (x)dx, ∫ ∞
−∞ f (x)dx, and multiple integrals ∫ · · · ∫ f (x1. … , xn) dx1 … , dxn

too. For example, the transformation y = 1∕(x + 1) will transform the range of the variable
from [0,∞) to the unit interval [0, 1]. For evaluation of a multiple integral with m variables,
we repeat k generations of a set of m pseudo uniform observations to be used in Monte Carlo
computation.

In Section 11.3 we simulated only from two continuous distributions. The technique in the
next section will help in simulating observations from other important continuous distributions.

11.5 The Accept-Reject Technique

Direct simulation from probability distribution F will turn out to be an inefficient technique
in many cases, and in a handful of cases it is simply not possible to do so. This forces us to
simulate observations from a different distribution and then find a technique to transfer those
observations to the distribution of interest through an appropriate way. First, simulation from
discrete distributions will be considered.

Suppose that X is an RV of interest with pmf {pj, j ≥ 0}, and as such simulation from {pj} is
a difficult task. Assume that an efficient technique is available to simulate observations of an
RV Y with pmf {qj, j ≥ 0}. It is important that X and Y have the same range. The accept-reject
technique then accepts the simulated values of Y for X with a probability proportional to pX∕qY .
That is, the simulated values of Y are accepted with certain probabilities. Let c be a constant
such that pj

qj
≤ c,∀j with pj > 0. (11.2)

The accept-reject algorithm for discrete RVs is then given in the following steps:

1. Simulate an observation Y with pmf {qj, j ≥ 0}.
2. Generate an observation from U(0, 1), say U.
3. Set X = Y if U < pY∕cqY , otherwise return to the first step:

Note that Y in the algorithm corresponds to one of the potential index numbers in the range of
the RV Y with pmf {qj}. The RV X is called the target RV and Y the proposal RV.

Example 11.5.1. Simulation from an Arbitrary Distribution using Accept-Reject Algo-
rithm. Suppose that X is a discrete RV which assumes values 1 to 10 with respective prob-
abilities 0.05, 0.17, 0.02, 0.14, 0.11, 0.06, 0.05, 0.04, 0.17, and 0.19. Naturally, simulation
from a discrete uniform distribution with N = 10 can serve here as the proposal density. It is
immediately clear in this problem that c = 0.19∕0.1 = 1.9. Thus, an accept-reject sampling
technique here first requires us to generate a random number between 1 and 10, say i. Next, a
number in the unit interval is generated and if this number is less than pi∕(0.1 × 1.2), i will be
selected as a random observation for X. A small program is given next, which implements the
accept-reject technique for the problem in hand.

> p_prob <- c(0.05,0.17,0.02,0.14,0.11,0.06,0.05,0.04,0.17,0.19)
> q_prob <- rep(0.1,10)
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> AR_Demo <- function(p_prob,q_prob,n) {
+ X <- numeric(n)
+ m <- length(q_prob)
+ Cmax <- max(p_prob/q_prob)
+ ar_demo <- function(p_prob,q_prob) {
+ Condition <- FALSE
+ while(Condition==FALSE) {
+ temp1 <- runif(1); temp2 <- runif(1)
+ Y <- floor(m*temp1)+1
+ if(temp2<p_prob[Y]/(Cmax*q_prob[Y])) Condition <- TRUE
+ }
+ return(Y)
+ }
+ X <- replicate(n,ar_demo(p_prob,q_prob))
+ return(X)
+ }
> AR_Demo(p_prob,q_prob,100)
[1] 10 9 3 10 10 6 5

[27] 1 5 4 9 9 10 2
[53] 4 9 10 9 8 9 4
[79] 10 10 10 5 7 2 1
> round(table(AR_Demo(p_prob,q_prob,10000))/10000,2)

1 2 3 4 5 6 7 8 9 10
0.05 0.18 0.02 0.14 0.11 0.06 0.05 0.04 0.16 0.19
> barplot(rbind(p_prob,q_prob),horiz=TRUE,col=1:2,beside=TRUE,
+ main="A: Accept-Reject Algorithm (Discrete)")

The function AR_Demo has been named for the program of the accept-reject technique. The
steps of the technique can be easily seen as integrated in the AR_Demo function. Note that the
proportions of the simulated observations for X are closer to the required probability, see Part
A of Figure 11.6. ◽

The accept-reject technique is now extended to the case of continuous RVs. As with the
discrete case, let Y be the proposal RV with pdf g(x) and X denote the target RV with pdf f (x).
Assume that the following condition holds true:

f (y)
g(y)

≤ c,∀y.

The accept-reject algorithm for continuous RVs is then given in the following steps:

1. Simulate an observation Y with pdf g.
2. Generate an observation from U(0, 1), say U.
3. Set X = Y if U < f (x)∕cg(y), otherwise return to the first step.

The next example illustrates the use of the algorithm for the continuous case. The example is
adapted from Example 5d of Ross (2006).
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Example 11.5.2. Simulation for Beta Distribution. Let X ∼ beta(2, 4), that is, f (x) =
20x(1 − x)3 be the target density and the proposal density be the standard uniform density
function. Now, by using curve(dbeta(x,2,4),xlab="x",ylab="f(x)",col=
"red") and curve(dunif(x,0,1),col="green",add=TRUE), it can be
easily seen that the maximum value of f (x)∕g(x) occurs at x = 0.25 = 1∕4. Thus,
c = max{f (x)∕g(x)} = 20(1∕4)(1 − 1∕4)3 = 135∕64. Now, it is easier to use the accept-reject
technique. The next program implements the accept-reject algorithm for simulation from the
beta distribution using the uniform density as the proposal density.

> curve(dbeta(x,2,4),xlab="x",ylab="f(x)",col="red",main="B:
+ Accept-Reject Algorithm (Continuous)")
> curve(dunif(x,0,1),col="green",add=TRUE)
> Rejection_Demo1 <- function(n){
+ rd1 <- function(){
+ condition <- FALSE
+ while(condition==FALSE){
+ t1 <- runif(1); t2 <- runif(1)
+ Y <- 256*t1*(1-t1) ̂ 3/27
+ if(t2 <= Y) condition <- TRUE
+ }
+ return(t1)
+ }
+ X <- replicate(n,rd1())
+ return(X)
+ }
> Rejection_Demo1(10)
[1] 0.30468184 0.10752535 0.07933414 0.32041217 0.42372032
> hist(Rejection_Demo1(1000),freq=FALSE,add=TRUE)

The explanation of the R program is left as an exercise for the reader. The result of the program
is shown in Part B of Figure 11.6. ◽

Example 11.5.3. Simulation from Normal Distribution. Suppose random numbers are
required from a normal distribution and that a virus has affected the rnorm function! Random
observations from a standard normal distribution can be easily transformed to any other
normal distribution. Using the symmetric property of normal distribution, the focus is shifted
to the positive side of the normal density. The proposal density is the standard exponential
distribution g and the target here is the (positive) normal density f . Now,

f (x)
g(x)

=
√

2
𝜋

exp

{
−x2

2
+ x

}
.

Now, plot the function f (x)
g(x) to determine the value of c required for the accept-reject tech-

nique. The plot, see the graphical output in the following R program which is not given in the
text, shows that maximum value occurs at 1 and that it translates into the fbyg(1) value of
1.315489, which theoretically corresponds to the value of

√
2e∕𝜋. The accept-reject criteria
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A: Accept−reject algorithm (discrete)
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B: Accept−reject algorithm (continuous)
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Figure 11.6 Accept-Reject Algorithm

will when turn out to be
f (x)

cg(x)
= exp

{
−(x − 1)2

2

}
.

Hence, the accept-reject algorithm is the following:

1. Simulate an observation Y from a standard exponential distribution, and another obser-
vation U from a standard uniform distribution.

2. If U ≤ exp
{
−(x−1)2

2

}
, set X = Y . Otherwise go to step 1 until an X is generated.

3. Randomly assign a positive or negative sign to X.
4. Repeat the three steps a large number of times.

The next R program implements the accept-reject algorithm for the normal distribution.

> fbyg <- function(x) sqrt(2/pi)*exp(-x ̂ 2/2 + x)
> curve(fbyg,from=0,to=10,xlab="x",ylab="y")
> text(8,1,expression(frac(f(x),g(x))))
> seq(0,2,0.1)[which(fbyg(seq(0,2,0.1))==max(fbyg(seq(0,2,0.1))))]
[1] 1
> constant <- fbyg(seq(0,2,0.1)[which(fbyg(seq(0,2,0.1))
+ ==max(fbyg(seq(0,2,0.1))))])
> constant
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[1] 1.315489
> AR_Normal <- function(n){
+ getNormal <- function(){
+ condition=FALSE
+ while(condition==FALSE){
+ y <- rexp(1); u <- runif(1)
+ if(u <= exp(-(y-1) ̂ 2/2)){
+ condition<-TRUE
+ return(y*sample(c(-1,1),1))
+ }
+ }
+ }
+ X <- replicate(n,getNormal())
+ return(X)
+ }
> AR_Normal(10)
[1] -1.11689738 -1.38885617 0.05999845 -0.78275043

The fbyg function handles the ratio of the two functions f (x) and g(x). The plot gener-
ated by the curve function is easily seen to indicate the maximum of the two functions.
Next, the seq()[which(.==max(.)] returns the maximum value as discussed above.
The AR_Normal function contains a sub-function getNormal, which actually simulates an
observation from the standard normal distribution. The sub-function is easily seen to integrate
the accept-reject technique. ◽

The Metropolis-Hastings acceptance probability, as seen in the previous chapter, also incor-
porates the accept-reject technique in some sense. In fact, the accept-reject method along with
the Metropolis-Hastings algorithm and the Gibbs sampler are very useful in the context of
Bayesian inference, and this chapter will close with a few applications of these methods in the
latter context.

11.6 Application to Bayesian Inference

Bayesian inference has been greatly enhanced during the previous two to three decades, and
especially the use of Monte Carlo techniques has boosted its use and applications. In the pre-
vious section we saw that the target pdf f need not be completely specified, and it is this aspect
which becomes very useful for Bayesian inference.

The histogram prior offers a brute-force solution for the present circumstance. For the sake
of simplicity, assume that the unknown parameter is a scalar and the probability model and
prior are respectively denoted by p(x|𝜃) and 𝜋(𝜃). The general algorithm which helps imple-
ment the histogram prior approach is then given by:

• Consider a grid of legitimate points for 𝜃 from the posterior distribution.
• For the data x compute the likelihood L(𝜃|x).
• Obtain the product L(𝜃|x)𝜋(𝜃) for all the points specified in the first step.
• A random sample of L(𝜃|x)𝜋(𝜃) from the previous step will be a good approximation of the

posterior distribution.
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In the case of a binomial distribution, the parameter 𝜃 = p. The use of the histogram prior
is better explained by Albert’s example.

Example 11.6.1. A Histogram Prior for the Proportion of Heavy Sleepers. The problem
has already been discussed in Example 9.4.1. The prior probability prior_weights is
extended over a prior grid as required in this approach. A very elementary function getc
helps in this task along with the sapply function. The likelihood function is computed in the
usual way. The posterior_grid as given in the program accomplishes the third step of
the approach, while the sample function in the final step is obtained.

> p <- seq(0,1,length=100)
> x <- 11; n <- 27
> lower_limit <- seq(0,0.9,0.1); upper_limit <- seq(0.1,1,0.1)
> prior_intervals <- cbind(lower_limit,upper_limit)
> prior_weights <- c(1, 5.2, 8, 7.2, 4.6, 2.1, 0.7, 0.1, 0, 0)
> names(prior_weights) <- paste(prior_intervals[,1],"-",
+ prior_intervals[,2],sep="")
> prior_interval_weights <- prior_weights/sum(prior_weights)
> getc <- function(a,b,c) c[a>= b[,1] & a<=b[,2]]
> p_prior <- unlist(sapply(p,getc,b=prior_intervals,
+ c=prior_interval_weights))
> likelihood <- p ̂ x*(1-p) ̂ (n-x)
> posterior_grid <- p_prior*likelihood
> posterior_grid <- posterior_grid/sum(posterior_grid)
> posterior_sample <- sample(p,size=500,replace=TRUE,
+ prob=posterior_grid)
> par(mfrow=c(1,2))
> barplot(prior_weights,main="Histogram Prior",xlab="p")
> hist(posterior_sample,main="Posterior Distribution",xlab="p")

The histogram prior and the approximate posterior distribution are plotted in Figure 11.7. ◽

Example 11.6.2. Binomial Proportion Inference with a Non-conjugate Prior. Suppose
Xi, i = 1, … , n, is a Bernoulli trial with p being the probability of success which is unknown.
The classicial estimator is then the sample average. Assume that the prior on p is given by

𝜋(p) = 2cos2(4𝜋p), 0 ≤ p ≤ 1.

The posterior distribution is then given by

𝜋(p ∣ x) ∝ 2p
∑n

i=1 xi (1 − p)n−
∑n

i=1 xi cos2(4𝜋p).

It is indeed clear from 𝜋(p ∣ x) that the inference is quite complex here. Now, using
the Metropolis-Hastings algorithm with a normal distribution N(p′, 𝜎2) as the proposal
distribution, the Metropolis-Hastings acceptance probability is given by

𝛼 = min

{
𝜋(p′ ∣

∑n
i=1 xi)q(p ∣ p′)

𝜋(p ∣
∑n

i=1 xi)q(p′ ∣ p)
, 1

}
= min

{
p′

∑n
i=1 xi (1 − p′)n−

∑n
i=1 xi cos2(4𝜋p′)

p
∑n

i=1 xi (1 − p)n−
∑n

i=1 xicos2(4𝜋p)
, 1

}
.
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Figure 11.7 Histogram Prior in Action

The R program for the algorithm is given below.

> p <- seq(0,1,1e-2)
> plot(p,2*cos(4*pi*p) ̂ 2, ylab=expression(pi(p)))
> n <- 10; x <- rbinom(n=n,size=1,prob=0.65)
> Y <- sum(x)
> posterior <- choose(n,Y)*2*p ̂ Y*(1-p) ̂ (n-Y)*cos(4*pi*p) ̂ 2
> points(p,posterior,"l",col="red")
> Trials <- 1e4
> initialPt <- mean(x)
> # Proposal Distribution Parameters
> pprime <- 0.5
> psigma <- 0.1
> pMH <- pprime
> for(i in 2:Trials){
+ z <- rnorm(1,mean=pprime,sd=psigma)
+ alpha <- min(1,(pprime ̂ Y*(1-pprime) ̂ (n-Y)*cos(4*pi*pprime) ̂ 2)/
+ (z ̂ Y*(1-z) ̂ (n-Y)*cos(4*pi*z) ̂ 2))
+ wp <- runif(1)
+ ifelse(wp<alpha,pMH[i] <- z,pMH[i] <- pMH[i-1])
+ }
> hist(pMH,main="A Posterior Distribution Approximation")
+ #output suppressed

The histogram or summary of pMH may be used to carry out the inference from the posterior
distribution. ◽
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Example 11.6.3. Monte Carlo Methods for Inference from Normal Distri-
bution. Recollect from Section 9.4.5 that the Bayesian inference from parameters from
normal distributions, when both the parameters are unknown, had been deferred. The R
function normchi2post from the LearnBayes package can be then used to infer. ◽

The interested reader may refer to the recent texts of Albert (2009), Robert and Casella
(2010), and Hoff (2010).

11.7 Further Reading

Devroye (1986), Ripley (1987), Thompson (2000), and Ross (2006) are some of the authorative
books on simulation. For the Monte Carlo approach, see Hammersley and Handscomb (1964),
Sobol (1994), Dagpunar (2007), Dimov (2008), Liu (2001), Shonkwiler and Mendivil (2009),
and, of course, Robert and Casella (2004). Robert and Casella (2010) is an R follow-up for
Robert and Casella (2004). Suess and Trumbo (2010) is also a friendly guide to MCMC with R.

11.8 Complements, Problems, and Programs

Problem 11.1 Using the p.as.plot function from ConvergenceConcepts, study the
convergence in probability and almost sure convergence limit theorems.

Problem 11.2 Elaborate on the details of the R program in Example 11.6.1.

Problem 11.3 Simulate 1000 observations from the standard normal distribution using
AR_Normal function and then obtain the histogram with the option
freq=FALSE (why?). Add the normal curve, try curve with add=TRUE
option, and check if the simulated observations are satisfactory?

Problem 11.4 Using the accept-reject algorithm, generate observations from the binomial
distribution as target distribution and the uniform distribution as proposal
distribution. Reverse the roles and carry out the simulation and note the dif-
ferences, if any.
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12
Linear Regression Models

Package(s): faraway, MASS, car
Dataset(s): Euphorbiaceae, anscombe, tc, usc, shelf_stocking,
abrasion_index, Frog_survival, flight, viscos, prostate,

12.1 Introduction

Faraway (2002) is probably the first detailed account of the use of R for linear models. Inter-
estingly, this book is allowed to be freely circulated and we may also print it and sell it at a
cost covering the cost of print. This book makes an elegant read for the current R versions,
although it was written when the R version was in the early 1.x versions. Faraway (2006) is
an extended version which considers the generalized linear models, which we deal with in
Chapter 17. Fox (2002) deals with regression problems in both R and S-plus. Sheather (2009)
is also a very recent account of the use of R for analysis of linear models, and SAS users will
also find it easier to use this book as it also gives parallel programs. Ritz and Streibig (2008)
is dedicated to the applications of nonlinear regression models using R.

The covariates are also sometimes called explanatory variables, or regressors, or predictors.
In general the covariate is an independent variable. The output Y is called a regressand.

A rather long route is adapted in this chapter. The reasons are two-fold. First, understanding
of the statistical concepts using the simple linear regression model is of prime importance,
even today. It is important to go via this route and be familiarized with the nuances of the
linear regression model, whose extension to the multiple-regression model is rather straight-
forward. The second point of view is that using the lm function right away may hide some of
the conceptual developments of the subject. This is not the same as saying that the developers
of the function should not have given the user those many options. Thus, we take the rather
lengthier route of explaining the nitty-gritty of regression using lengthier R codes than nec-
essary. This discussion forms the matter of Section 12.2. Linear regression models, similar to
most statistical techniques, need to be developed with a lot of care. It is not uncommon for any
technology to be abused and it is to guard against such follies that the reader is cautioned to
an extent in Section 12.3. In most of the scenarios which use the linear regression model, we

A Course in Statistics with R, First Edition. Prabhanjan Narayanachar Tattar, Suresh Ramaiah and B. G. Manjunath.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/tattar/statistics
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will be dealing with more than a single covariate. Thus, Section 12.4 extends the simple linear
regression model to a multiple linear regression model whenever we have to deal with two
or more covariates. The use of residuals for the multiple linear regression model is detailed
in Section 12.5. The dependencies among the covariates have a dire impact on the estimated
values of the regression coefficients and it is important to identify such relationships. Multi-
collinearity addresses this problem and the R techniques are put into action in Section 12.6.
Sometimes, the covariates and/or the regressand may reflect that the assumptions for the lin-
ear regression model are not appropriate. In specific situations, certain transformations on the
variables ensure that the use of the linear regression model continues to yield good results, see
Section 12.7. With a multiple linear regression model, we need to arrive at a more reasonable
model, in the sense that we have less variables than the one in the model, with all variables cov-
ering as much variability in the regressands as possible. There are multiple ways of achieving
it and we will go though these techniques in Section 12.8.

12.2 Simple Linear Regression Model

In Section 4.4.3 we described the general linear regression model in equation 4.11 and used the
resistant line to obtain the unknown slope and intercept terms. The form of the simple linear
regression model, which will be of interest in this section, is given by

Y = 𝛽0 + 𝛽1X + 𝜖. (12.1)

In comparison with equation 4.11, we have 𝛽0 = a and 𝛽1 = b, although the error term has
not been stated there. The interpretation of 𝛽1 is similar to b, in that it reflects the change in
the regressand Y for a unit change in X. We refer to 𝛽0 as the intercept term. However, we
have an additional term in 𝜖, which is the unobservable error term. Similar to the case of
the resistant line model, we need to carry out the inference for 𝛽0 and 𝛽1 based on n pairs of
observations: (X1,Y1), (X2,Y2), … , (Xn,Yn). We state the important assumptions of the simple
linear regression models:

1. The regressand and regressor have a linear relationship.
2. The observations are (X1,Y1), (X2,Y2), … , (Xn,Yn) are independent observations.
3. The errors e1, e2, … , en are iid normal RVs with mean 0 and variance 𝜎2.

Using the data, and the above stated assumptions, the goal is the estimation of the parameters
𝛽0, 𝛽1, and 𝜎2. The purpose of estimating the parameters is again to understand the model 12.1.
We will next consider an example and first visualize the data to ascertain whether a linear model
is appropriate.

Example 12.2.1. The Height of Euphorbiaceae Tree. Botanists are interested in estimating
the volume of a tree, which is often a daunting task. Under the assumption that the tree has a
conical shape, the measurements of tree height and radius of the base is sufficient to estimate
the volume. Since the height measurement is also cumbersome, being as much as 60 meters, the
relationship between height and girth (at about 1 meter) is useful to measure the overall volume.
The girth is measured in centimetres. The Euphorbiaceae dataset from the gpk package
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Figure 12.1 Scatter Plot for Height vs Girth of Euphorbiaceae Trees

will be used to illustrate this concept. The dataset has six different species and the ideas will
be illustrated for the Haevea brazeliensis species. The simple linear regression model
under consideration is the following:

Height of Tree = Baseline + (Effect of Girth at breast height) * (Girth at breast height)

+ Error.

Data is first loaded from the gpk package and a scatter plot is produced to inspect if a linear
relationship exists between the height of the tree and its girth measurement of 1 meter.

> library(gpk)
> data(Euphorbiaceae)
> Hb <- subset(Euphorbiaceae, Species_Name=="Haevea brazeliensis")
> plot(Hb$GBH,Hb$Height,xlab="Girth",ylab="Height")

It is apparent from the scatter plot, see Figure 12.1, that as the girth increases, the height of
the tree increases too. Furthermore, the plot depicts a linear relationship too. ◽

12.2.1 Fitting a Linear Model

The main problem with a simple linear regression model is the estimation of unknown vector
of regression coefficients 𝜷 = (𝛽0, 𝛽1) and the variance of the error term 𝜎2 . If we have
estimates of the parameters, we can use the regression model for prediction purposes. For an
intuitive discussion about the choice of the regression coefficients, the reader may refer to
Chapter 6 of Tattar (2013).

For many statistical reasons, the parameters are estimated using the least squares method.
The least-squares criterion is to find those values of 𝛽0 and 𝛽1 which will ensure that the sum of
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the squares for the difference between the actual values yi and 𝛽0 + 𝛽1x over all the observations
is minimized:

S(𝛽0, 𝛽1) =
n∑

i=1

(yi − 𝛽0 − 𝛽1xi)2. (12.2)

Differentiating the above equation with respect to 𝜷 = (𝛽0, 𝛽1) and equating them to zero gives
us the least-squares normal equations, and solving them further gives us the estimators for
𝜷 = (𝛽0, 𝛽1):

𝛽1 =
Sxy

Sxx
, (12.3)

𝛽0 = y − 𝛽1x̄, (12.4)

where

Sxx =
n∑

i=1

(xi − x)2, (12.5)

Sxy =
n∑

i=1

yi(xi − x). (12.6)

Of course, the term Sxx is known as the sum-of-squares term and Sxy as sum-of-cross-products
term. Towards finding an estimate of the variance 𝜎2, we proceed along the following lines.
We first define the model fitted values as the regressand value predicted by the fitted model
ŷi = 𝛽0 + 𝛽1x1. Next, we define residuals as the difference between the observed value yi and
the corresponding model fitted value ŷi, that is, for i = 1, 2, … , n:

ei = yi − ŷi = yi − 𝛽0 − 𝛽1xi. (12.7)

Define the residual or error sum of squares, denoted by SSRes, by:

SSRes =
n∑

i=1

e2
i =

n∑
i=1

(yi − ŷi)2. (12.8)

Since the residuals are based on n observations, and the parameters 𝛽0 and 𝛽1 are estimated
from it, the degrees of freedom associated with SSRes is n − 2. An unbiased estimator of 𝜎2 is
given by

�̂�2 =
SSRes

n − 2
= MSRes. (12.9)

It is thus meaningful that an estimator of the variance is the residual mean square. Using the
estimator of variance, we can carry out statistical tests for the parameters of the regression
line. Mathematically, the expressions for the variance of 𝛽0 and 𝛽1 are respectively:

Var(𝛽0) = 𝜎2

(
1
n
+ x2

Sxx

)
,

Var(𝛽1) =
𝜎2

Sxx
.
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Using the above expressions and the estimator of the variance of the error term, we estimate
the standard error of 𝛽0 and 𝛽1 using:

se(𝛽0) =

√
MSRes

(
1
n
+ x2

Sxx

)
, (12.10)

se(𝛽1) =

√
MSRes

Sxx
. (12.11)

Thus, if we are interested in investigating that the covariate has an effect of magnitude, say
𝛽10, we need to test the hypothesis H1 ∶ 𝛽1 = 𝛽10 against the hypothesis that it does not have
an impact of magnitude K1 ∶ 𝛽1 ≠ 𝛽10, a useful test statistic is

t1 =
𝛽1 − 𝛽10√

MSRes

Sxx

, (12.12)

which is distributed as a t-distribution with n − 2 degrees of freedom. Here we have used
the notation H1 to indicate that the hypothesis testing problem is related to the regression
coefficient 𝛽1. In general, when we wish to test the hypothesis that the covariate has no effect
on the regressand, the hypothesis testing problem becomes H1 ∶ 𝛽1 = 0 against the hypothesis
K1 ∶ 𝛽1 ≠ 0. Thus, an 𝛼-level test would be to reject the hypothesis H1 if

|t1| > t𝛼∕2,n−2,

where t𝛼∕2,n−2 is the upper 𝛼∕2 percentile point of the tn−2 distribution.
Similarly, for the test statistic for the regression coefficient 𝛽0, or the intercept term, the

hypotheses problem is H0 ∶ 𝛽0 = 𝛽00 against the hypothesis K0 ∶ 𝛽0 ≠ 𝛽00 is

t0 =
𝛽0 − 𝛽00√

MSRes

(
1
n
+ x2

Sxx

) , (12.13)

which is again distributed as an RV with a t-distribution with n − 2 degrees of freedom, and
the test procedure parallels the testing of 𝛽1.

12.2.2 Confidence Intervals

Using the null distributions of 𝛽0 and 𝛽1, equivalently 𝛽01 = 0 and 𝛽00 = 0, the 100(1 − 𝛼)%
confidence intervals of the slope and intercept are given by

𝛽1 − t𝛼∕2,n−2se(𝛽1) ≤ 𝛽1 ≤ 𝛽1 + t𝛼∕2,n−2se(𝛽1), (12.14)

and
𝛽0 − t𝛼∕2,n−2se(𝛽0) ≤ 𝛽0 ≤ 𝛽0 + t𝛼∕2,n−2se(𝛽0). (12.15)
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Finally, we state that a 100(1 − 𝛼) percent confidence interval for 𝜎2 is

(n − 2)MSRes

𝜒2
𝛼∕2,n−2

≤ 𝜎2 ≤ (n − 2)MSRes

𝜒2
1−𝛼∕2,n−2

. (12.16)

We will illustrate all the above concepts for the Euphorbiaceae data.

Example 12.2.2. The Height of Euphorbiaceae Tree. Contd. The translation from formulas
to programs is a vital step. We will illustrate the computations for the related formulas from
Equations 12.3 to 12.16 in the following R program. The purpose is again to ensure that the
formulas are well understood in terms of a program. We will begin with codes for obtaining
Sxx, Sxy in R. The variables in the data.frame Hb will be first attached for the sake of
simplicity, although we warn the reader that it is not good practice to attach variables of a data
frame object.

> attach(Hb)
> sxx <- sum((GBH-mean(GBH)) ̂ 2)
> sxx
[1] 6094.118
> sxy <- sum(Height*(GBH-mean(GBH)))
> sxy
[1] 3600.647
> beta1 <- sxy/sxx
> beta1
[1] 0.5908398
> beta0 <- mean(Height)-beta1*mean(GBH)
> beta0
[1] 2.848716
> n <- length(Height)
> sst <- sum(Height ̂ 2)-n*(mean(Height) ̂ 2)
> sst
[1] 3011.559
> ssres <- sst-beta1*sxy
> ssres
[1] 884.1533
> (sigma2 <- ssres/(n-2))
[1] 27.62979
> msres <- ssres/(n-2)
> (sebeta1 <- sqrt(msres/sxx))
[1] 0.06733384
> sebeta0 <- sqrt(msres*(1/n + (mean(GBH) ̂ 2)/sxx))
> sebeta0
[1] 3.796107
> (testbeta1 <- beta1/sebeta1)
[1] 8.774782
> (abs(qt(0.025,32)))
[1] 2.036933
> # returns the value of t-dist with 32 d.f at alpha=.05
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The program reveals the results that for a centimeter increase in value of the girth GBH,
the Height of tree will increase by beta1=0.5908398 meters. The intercept term
beta0=2.848716 corresponds to the minimum tree height of the species. Similarly, the
R objects sebeta1 and sebeta0 return the standard error for the slope and intercept
quantities. The R code here mimics the formulas on an as-is basis and it will provide a guide
towards an understanding of the theory of the linear models.

Since the absolute value of the test statistics for the slope term 8.774782 is larger than
the value specified for the t-distribution 2.036933, we reject the hypothesis H1 ∶ 𝛽1 = 0
that the covariate is insignificant and conclude that there is a linear relationship between
the height of the tree and girth. The computations related to the confidence intervals,
Equations 12.14–12.16, are as follows:

> (lclbeta1 <- (beta1 - abs(qt(.025,32))*sebeta1))
[1] 0.4536852
> #gives lower confidence limit for beta1
> (uclbeta1 <- (beta1 + abs(qt(.025,32))*sebeta1))
[1] 0.7279943
> #gives upper confidence limit for beta1
> (lclbeta0 <- (beta0 - abs(qt(.025,32))*sebeta0))
[1] -4.883701
> #gives lower confidence limit for beta0
> (uclbeta0 <- (beta0 + abs(qt(.025,32))*sebeta0))
[1] 10.58113
> #gives upper confidence limit for beta0
> (lclsigma2 <- (n-2)*msres/qchisq(1-.025,32))
[1] 17.86875
> #gives lower confidence limit for sigma2
> (uclsigma2 <- (n-2)*msres/qchisq(1-.975,32))
[1] 48.33878
> #gives upper confidence limit for sigma2

Yes, we know that the reader is asking us to put the above calculations in a more formal way.
So here we report them. The 95% confidence intervals for the parameters are as follows:

0.4536852 ≤ 𝛽1 ≤ 0.7279943

−4.883701 ≤ 𝛽0 ≤ 10.58113

17.86875 ≤ 𝜎2 ≤ 48.33878

Since the 95% confidence interval for 𝛽1 does not include 0, we conclude that the variable GBH
has significant influence on Height. ◽

12.2.3 The Analysis of Variance (ANOVA)

In the previous sub-section, we investigated whether the covariate has an explanatory power
for the regressand. However, we would like to query whether the simple linear regression
model 12.1 overall explains the variation in the actual data. An answer to this question is pro-
vided by the statistical technique Analysis of Variance, ANOVA. This tool is nearly a century
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old and Gelman (2005) provides a comprehensive review of the same and explains why it is
still relevant and a very useful tool today. Here, ANOVA is used to test the significance of the
regression model.

We will first define two quantities, total sum of squares, denoted by SST , and regression sum
of squares, SSR, similar to the residual sum of squares 12.8, next:

SST =
n∑

i=1

(yi − y)2, (12.17)

SSR =
n∑

i=1

(ŷi − y)2. (12.18)

A straightforward algebraic manipulation step will give us the result that the total sum of
squares SST is equal to the sum of regression sum of squares SSR and residual sum of squares
SSRes:

SST = SSR + SSRes,

that is,
n∑

i=1

(yi − y)2 =
n∑

i=1

(ŷi − y)2 +
n∑

i=1

(yi − ŷ)2. (12.19)

The degrees of freedom (df) for the three quantities are related as

dfT = dfR + dfRes.

The explicit values of df are obtained as

dfT = dfR + dfRes,

n − 1 = 1 + (n − 2),

that is, dfT = n − 1, dfR = 1, dfRes = n − 2.
Under the hypothesis H1 ∶ 𝛽1 = 0, SSR has a 𝜒2

1 distribution. Since the distributions of SSRes

is a 𝜒2
n−2 distribution, and SSR is independent of SSRes, we can use the F-test for testing sig-

nificance of the covariate. That is

F0 =
SSR∕dfR

SSRes∕dfRes
=

SSR∕1

SSRes∕(n − 2)
=

MSR

MSRes
, (12.20)

is distributed as an F-distribution with 1 and n − 2 degrees of freedom. The test procedure is to
reject the hypothesis H1 if F0 > F𝛼,1,n−2, where F𝛼,1,n−2 is the 𝛼 percentile of an F-distribution
with 1 and n − 2 degrees of freedom. We summarize the ANOVA procedure in the form of an
ANOVA Table 12.1.

The computations and illustration of ANOVA will continue with the euphorbiaceae
example.

Example 12.2.3. The Height of Euphorbiaceae Tree. (contd.) The ANOVA table calcu-
lations for the problem, which should be straightforward by now, are given below:

> (srs <- beta1*sxy)
[1] 2127.405
> ssres
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[1] 884.1533
> sst
[1] 3011.559
> (msrs <- srs/1)
[1] 2127.405
> msres
[1] 27.62979
> (f0 <- msrs/msres)
[1] 76.9968

The above values can be put in the form of Table 12.2. ◽

12.2.4 The Coefficient of Determination

We have thus seen two methods of investigating the significance of the covariate in the
regression model. An important question, in the case of the covariate being significant, is how
useful the covariate is towards explaining the variation of the regressand. Recall that the total
sum of squares is given by SST and that the regression sum of squares is given in SSR. Thus,
the ratio SSR∕SST gives an explanation of the total variation explained by the fitted regression
model. This important measure is called the coefficient of determination, or the R2, and is
defined as

R2 =
SSR

SST
= 1 −

SSRes

SST
. (12.21)

A natural extension of the R2 is quickly seen by choosing MSR and MST in place of SSR and
SST , and this measure is more popularly known as Adjusted-R2:

AdjR2 =
SSR∕df R

SST∕df T
=

MSR

MST
. (12.22)

Table 12.1 ANOVA Table for Simple Linear Regression Model

Source of
Variation

Sum of
Squares

Degrees of
Freedom

Mean
Square

F-Statistic

Regression SSR 1 MSR MSR∕MSRes

Residual SSRes n − 2 MSRes

Total SST n − 1

Table 12.2 ANOVA Table for Euphorbiaceae Height

Source of
Variation

Sum of
Squares

Degrees of
Freedom

Mean
Square

F-Statistic

Regression 2127.405 1 2127.41 76.997
Residual 884.15 32 27.63
Total 3011.559 33



Trim Size: 170mm x 244mm Tattar c12.tex V3 - 02/10/2016 10:47 A.M. Page 410�

� �

�

410 A Course in Statistics with R

There are some disadvantages of the measure R2, and this will be seen later in Section 12.4.
We will first obtain these two measures for the euphorbiaceae tree.

Example 12.2.4. The Height of Euphorbiaceae Tree. (contd.) The coefficient of determi-
nation value for this dataset is 0.7064. This is to say that approximately 71% of the variation
in the tree’s height is explained by the girth. Thus, it seems the linear model is a very good fit
for the data. Furthermore, the adjusted R2 value is 0.6972. ◽

12.2.5 The “lm” Function from R

The linear regression model discussed thus far has been put through a lot of rudimentary codes.
The lm function helps to create the linear regression model in R through the powerful object of
classformula. The tilde operator∼ in theformula object helps to set up a linear regression
model by allowing the user to specify the regressand on the left-hand side of the tilde ∼ and the
covariates on its right-hand side. This operator has also been used earlier for various graphical
methods, statistical methods, etc. In conjunction with the lm function, we will now set up
many useful linear regression models.

The main idea of working with the rudimentary codes exercise is to give a programming
guide through R, and also in parallel an understanding of the underlying theory with compu-
tations. We now see how the lm command can be used for regression analysis.

Example 12.2.5. The Height of Euphorbiaceae Tree. (contd.) The lm function is now used
for fitting a linear regression model for the uphborbiaceae tree data. After fitting a linear model
and assigning the result to a new object, the class of the new object becomes lm, and a lot of
useful summaries are stored in this lm object. We will explore the lm object in some detail
now. The goal is to build a simple linear regression model for Height as a function of the
covariate GBH. Hence, the formula for the lm function through the tilde operator becomes
Height ∼ GBH. The small program in the following builds the linear model.

> gbhlm <- lm(Height ∼ GBH)
> class(gbhlm)
[1] "lm"
> summary(gbhlm)
Call:
lm(formula = Height ∼ GBH)
Residuals:

Min 1Q Median 3Q Max
-15.3892 -2.0273 0.4269 3.4509 10.1116
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.84872 3.79611 0.750 0.458
GBH 0.59084 0.06733 8.775 5.01e-10 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 5.256 on 32 degrees of freedom
Multiple R-squared: 0.7064, Adjusted R-squared: 0.6972
F-statistic: 77 on 1 and 32 DF, p-value: 5.013e-10
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The fitted linear model using the lm function is stored in the R object gbhlm and the class
shows that we have indeed an lm object only. Next, the summary function reveals the details
of the fitted linear regression model gbhlm. The regression coefficients, the values of the
t-statistics, etc., may be compared with earlier results and verify that the computations earlier
were correct, and as such there is no surprise here. Note that the values of multiple and adjusted
R2 given here are synchronous with earlier reported values.

The part of the output following the p-values needs an explanation. For this fitted regression
model, the intercept term and the covariate GBH both have three stars, that is ***. These
symbols are called Signif. codes and it is a quick way to draw attention to some of the
highly significant covariates in the model. In order of their importance, this idea will become
clearer in Section 12.4, a *** will be more significant than a ** variable, and so forth. To
change and customize the Signif. codes, see Exercise 12.4.

Next, the ANOVA table is obtained using the anova function in R.

> gbhaov <- anova(gbhlm)
> gbhaov
Analysis of Variance Table
Response: Height

Df Sum Sq Mean Sq F value Pr(>F)
GBH 1 2127.41 2127.41 76.997 5.013e-10 ***
Residuals 32 884.15 27.63
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
> summary(gbhlm$residuals)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-15.3900 -2.0270 0.4269 0.0000 3.4510 10.1100
> summary(gbhlm$fitted.values)

Min. 1st Qu. Median Mean 3rd Qu. Max.
20.57 29.44 35.34 35.21 38.30 53.66

Here, we used the anova function and created the rpaov object. This output must be com-
pared with the values reported in Table 12.2. We had defined residuals earlier, and by require-
ment, the model fitted values of the output. These values are also summarized in the lm object
and here we extracted them through $residuals and $fitted.values.

Some details of the lm object are considered later in this chapter. In fact, there are many
more advantages to using the lm function, besides obtaining the summary of the linear fit
model and the ANOVA table. The 100(1 − 𝛼)% confidence intervals may be obtained using
the confint function:

> confint(gbhlm,parm="(Intercept)",level=.99)
0.5 % 99.5 %

(Intercept) -7.546853 13.24429
> confint(gbhlm,parm="GBH",level=.90)

5 % 95 %
GBH 0.4767837 0.7048958

By default, confint returns 95% confidence intervals. ◽
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12.2.6 Residuals for Validation of the Model Assumptions

We have earlier defined residuals, which is the difference between the original values and the
model fitted values. In the beginning of the section, we considered the model Y = 𝛽0 + 𝛽1x + 𝜖,
and we also defined the residual for the fitted model as ei = yi − 𝛽0 − 𝛽1xi. We will have a
preliminary look at some properties of the residuals.

Properties of the Residuals. The mean of the residuals is 0, that is,

ē =
∑n

i=1 ei

n
= 0.

The variance of the n residuals is the mean residual sum of squares MSRes, or as seen earlier:

s2
e =

∑n
i=1 (ei − ē)2

n − 2
=
∑n

i=1 (ei)2

n − 2
= MSRes.

It can be proved that MSRes is an unbiased estimator for the variance of the linear regression
model 𝜎2. Finally, we need to record that the residuals are not independent. These are some of
the important properties of the residuals.

Semi-Studentized Residuals. We know that the residuals are zero-mean, non-independent
random variables. It has been noted by researchers and practitioners that non-independence is
not a major problem and we can continue to treat them as independent variables. Thus, the Stu-
dentization method is known here as the semi-Studentization method. The semi-Studentized
residuals are then defined as

e∗i =
ei − ē√
MSRes

=
ei√

MSRes

. (12.23)

The residuals, including the semi-Studentized residuals, can be used to study departures in the
simple linear regression models, adapted from Kutner, et al. (2005), on the following lines:

1. The regression function E(Y|x, 𝜷) is not linear.
2. The error terms do not have constant variance, that is, Var(𝜖i) ≠ 𝜎2 for some i, i = 1, … , n.
3. The error terms are not independent.
4. The model fits all but one or a few outlier observations.
5. The error terms are not normally distributed, 𝜖i ≁ N(0, 𝜎2).
6. One or several important predictor variables have been omitted from the model.

As further stated in Kutner, et al. (2005), the diagnostics for the above problems may be visu-
alized in the plots of residuals (or semi-Studentized residuals):

1. Plot of residuals against predictor variable. If the linear regression model is appropriate,
the residuals are expected to fall in a horizontal band around 0. The plot should be fairly
random in the positive and negative residual range across the predictor variable X.

2. Plot of absolute or squared residuals against predictor variable. If the residuals vary in a
systematic manner in the positive and negative residual values, such curvilinear behavior
will be captured in the absolute or squared residuals plot against the predictor variable.

3. Plot of residuals against fitted values. The purpose of residuals against fitted values is sim-
ilar to the previous two plots. These plots also help to determine whether the model error
has constant variance against the range of predictor variables.
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4. Plot of residuals against time. The plot of residuals against time, observation numbers in
most cases, is useful to check for randomness of the errors. That is, this plot should resemble
a random walk and not exhibit any kind of systematic pattern.

5. Plots of residuals against omitted predictor variables. This plot will be more appropriate
for the multiple linear regression model, Section 12.4.

6. Box plot of residuals. In the presence of outliers, the box plot of residuals will reflect such
observations beyond the whiskers.

7. Normal probability plot of residuals. The assumption of normality for the errors is appro-
priately validated with the normal probability plot of the residuals.

From the graphical methods developed earlier in this book, we are equipped to handle the first
six plots mentioned here. For the example of labor hours required for the lot size of a Toluca
Company, we will illustrate these six plots.

Example 12.2.6. The Toluca Company Labour Hours against Lot Size. The Toluca Com-
pany manufactures equipment related to refrigerators. The company, in respect of a particular
component of a refrigerator, has data on the labor hours required for the component in various
lot sizes. Using this data, the officials wanted to find the optimum lot size for producing this
part. This dataset has been downloaded from https://netfiles.umn.edu/users/nacht001/www/
nachtsheim/5th/KutnerData/Chapter%20%201%20Data%20Sets/CH01TA01.txt. Of course,
we are using this well-illustrated example from Kutner, et al. (2005).

A simple understanding of the predictor variable Lot_Size is necessary to begin the
analyses.

> tc <- read.table("toluca_company.dat",sep="\t",header=TRUE)
> tclm <- lm(Labour_Hours∼Lot_Size,data=tc)
> tclm$coefficients
(Intercept) Lot_Size
62.365859 3.570202

> par(mfrow=c(2,2))
> dotchart(tc$Lot_Size,main="Dot Chart for the Lot Size")
> plot.ts(tc$Lot_Size,main="Sequence Plot for the Lot Size",type="b")
> boxplot(tc$Lot_Size,horizontal=TRUE, main="A Box Plot for the
+ Lot Size")
> hist(tc$Lot_Size,main="Histogram of the Lot Size")

The diagram arising as a result of the above R codes is suppressed. The reader can generate
them and interpret them as an exercise. The residual plots, which give us an insight into the
overall fit of the simple linear regression model, are now generated in the following R program.
The focus is on diagnostic plots using the residuals only, and we leave it to the reader to
replicate the details with semi-Studentized residuals.

> tc_resid <- resid(tclm) # Note the use of the new function "resid"
> par(mfrow=c(2,3))
> plot(tc$Lot_Size,tc_resid, main="A: Plot of Residuals Vs Predictor
+ Variable", + xlab="Predictor Variable",ylab="Residuals")
> abline(h=0)

https://netfiles.umn.edu/users/nacht001/www/nachtsheim/5th/KutnerData/Chapter%20%201%20Data%20Sets/CH01TA01.txt
https://netfiles.umn.edu/users/nacht001/www/nachtsheim/5th/KutnerData/Chapter%20%201%20Data%20Sets/CH01TA01.txt
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> plot(tc$Lot_Size,abs(tc_resid),main="B: Plot of Absolute Residual
+ Values Vs \n Predictor Variable", xlab="Predictor Variable",
+ ylab="Absolute Residuals")
> # Equivalently
> plot(tc$Lot_Size,tc_resid ̂ 2,main="C: Plot of Squared Residual
+ Values Vs \n Predictor Variable", xlab="Predictor Variable",
+ ylab="Squared Residuals")
> plot(tclm$fitted.values,tc_resid, main="D: Plot of Residuals Vs
+ Fitted Values", xlab="Fitted Values",ylab="Residuals")
> abline(h=0)
> plot.ts(tc_resid, main="E: Sequence Plot of the Residuals")
> boxplot(tc_resid,main="F: Box Plot of the Residuals")

The resid function is used to extract residuals from the tclm linear model object. The
graphics window is invoked with the code par(mfrow=c(2,3)). The residual plot for
residuals against predictor variable is drawn withplot(tc$Lot_Size,tc_resid,...)
and then shows that the linear regression model is appropriate since the residuals
vary considerably across the horizontal band about 0 (abline(h=0) and along the
range of predictor variable Lot_Size, see Part A of Figure 12.2. The plots plot
(tc$Lot_Size,abs(tc_resid),...) andplot(tc$Lot_Size,tc_resid ̂ 2,
...), Parts B and C of Figure 12.2, reflect that there is no systematic behavior of residuals
and hence the absence of curvilinear patterns for the regression model. The validity of the
model assumption of variance of the error being constant across the predictor variable is
visualized through the two earlier plots, and the plot of residuals against the fitted values in
Part D of the same figure.

The time sequence plot of residuals, plot.ts(tc_resid,...), in Part E of the figure,
shows a random walk plot and hence we conclude that there is no systematic error in the
dataset. Finally, Part F displays the box plot for the residuals and since all the observations
(actually residuals) lie within the whiskers, it is apt to conclude that the outliers are absent. ◽

The Normal Probability Plot. We need to explain the normal probability plot of residuals. In
the normal probability plot, the ranked residual values are plotted against their expected value
under the normality assumption. The normal probability plot is obtained in the following steps:

• Find the rank of each residual.
• The expected value of the kth smallest residual is given by

E(ek∶n) =
√

MSRes

[
Φ−1

(k − 0.375
n + 0.25

)]
, (12.24)

where Φ denotes the cumulative distribution of a standard normal variate. The subscript
k ∶ n is a standard notation in the subject of Order Statistics and denotes the kth smallest
observation of n.

• Plot the residuals ek∶n against E(ek∶n).

If the plot of ranked residuals against the expected rank residuals is a straight line, the theor-
etical assumption of normal distribution for the error term is a valid assumption. In the event
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Figure 12.2 Residual Plot for a Regression Model

of this plot not reflecting a straight line, we conclude that the normality assumption is not a
tenable assumption. The normal probability plot will be illustrated for the Toluca company
dataset.

Example 12.2.7. The Toluca Company Labour Hours against Lot Size. Contd. The
required R program is set up and executed at the R console.

> tcanova <- anova(tclm)
> tc_resid_rank <- rank(tc_resid)
> tc_mse <- tcanova$Mean[2]
> tc_resid_expected <- sqrt(tc_mse)*qnorm((tc_resid_rank-0.375)
+ /(length(tc$Labour_Hours)+0.25))
> plot(tc_resid_expected,tc_resid,xlab="Expected",
+ ylab="Residuals",main="The Normal Probability Plot")
> abline(0,1) # to check if the points are along a straight line
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Figure 12.3 Normal Probability Plot

The first line is straightforward to understand. The mean residual square MSRes is extracted
with tcanova$Mean[2] and stored in tc_mse. The reader should verify that the exprected
residual rank computed for tc_resid_expected indeed follows Equation 12.24. The plot
command plot(tc_resid,tc_resid_expected,...) is a simple technique seen
many times over.

The normal probability plot Figure 12.3 reveals that there is little difference between the
residual values and the expected values. Thus, the simple linear regression model seems appro-
priate for the data under consideration. ◽

12.2.7 Prediction for the Simple Regression Model

Most often the purpose of fitting regression models is prediction. That is, given some values
of the predictor variables, we need to predict the output values. This problem is known as the
prediction problem.

Suppose that x0 is the value of the predictor variable of interest. A natural estimator of the
true response y0 using the least-squares fitted model is

ŷ0 = 𝛽0 + 𝛽1x0.

To develop a prediction interval for the observation y0, we define

𝜓 = y0 − ŷ0.

Using the linearity property of expectations and distribution theory, we can easily see that the
random variable 𝜓 is normally distributed with mean 0 and variance

Var(𝜓) = Var(y0 − ŷ0) = 𝜎2

[
1 + 1

n
+

(x0 − x)2

Sxx

]
.



Trim Size: 170mm x 244mm Tattar c12.tex V3 - 02/10/2016 10:47 A.M. Page 417�

� �

�

Linear Regression Models 417

To develop the prediction confidence interval, we will again use MSRes as an estimator of the
variance 𝜎2. Thus, the 100(1 − 𝛼)% prediction interval is given by

ŷ0 − t𝛼∕2,n−2

√
MSRes

(
1 + 1

n
+

(x0 − x)2

Sxx

)
≤ y0 ≤

ŷ0 + t𝛼∕2,n−2

√
MSRes

(
1 + 1

n
+

(x0 − x)2

Sxx

)
. (12.25)

Fine, we will simply use the predict inbuilt function of R for computations related to the
prediction interval. For example, if we want to predict the number of labor hours required
based on a lot size 85, we need to use the predict function which returns the fitted values
and the 95% prediction interval:

> predict(tclm,newdata=data.frame(Lot_Size=85),interval
+ ="prediction")

fit lwr upr
1 365.833 262.2730 469.3931

12.2.8 Regression through the Origin

Practical considerations may require that the regression line passes through the origin, that
is, we may have information that the intercept term is 𝛽0 = 0. In such cases, the regression
model is

y = 𝛽1x + 𝜖. (12.26)

In this case, the least-squares criteria becomes S(𝛽1) =
∑n

i=1 (yi − 𝛽1xi)2 and the normal
equation leads to the estimator:

𝛽1 =
∑n

i=1 yixi∑n
i=1 x2

i

, (12.27)

which in return gives us the fitted model ŷ = 𝛽1x. An unbiased estimator of the variance 𝜎2

would be the following:

�̂�2 = MSRes =
∑n

i=1 (yi − ŷi)2

n − 1
. (12.28)

It is left as an exercise for the reader to obtain the necessary expressions related to the
confidence interval, prediction interval, etc. In the next example, we will illustrate this
concept through a dataset.

Example 12.2.8. The Shelf-Stocking Data. A merchandiser stocks soft drinks on a shelf as
a multiple number of the number of cases. The time required to put the cases on the shelves is
recorded as a response. Clearly, if there are no cases to be stocked, it is natural that the time to
put them on the shelf will be 0. Thus, the regression line through the origin makes sense here.
A no-intercept model can be easily developed in R.

> shelf_stock <- read.table("shelf_stocking.dat",header=TRUE)
> names(shelf_stock)
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[1] "Time" "Cases_Stocked"
> sslm <- lm(Time ∼ Cases_Stocked -1, data=shelf_stock)
> summary(sslm); anova(sslm)
Call:
lm(formula = Time ∼ Cases_Stocked - 1)
Residuals:

Min 1Q Median 3Q Max
-0.5252 -0.2198 -0.1202 0.1070 0.5443
Coefficients:

Estimate Std. Error t value Pr(>|t|)
Cases_Stocked 0.402619 0.004418 91.13 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.2988 on 14 degrees of freedom
Multiple R-squared: 0.9983, Adjusted R-squared: 0.9982
F-statistic: 8305 on 1 and 14 DF, p-value: < 2.2e-16
Analysis of Variance Table
Response: Time

Df Sum Sq Mean Sq F value Pr(>F)
Cases_Stocked 1 741.62 741.62 8305.2 < 2.2e-16 ***
Residuals 14 1.25 0.09
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
> confint(sslm)

2.5 % 97.5 %
Cases_Stocked 0.3931431 0.4120941
> predict(sslm,data.frame(Cases_Stocked=10),interval="prediction")

fit lwr upr
1 4.026186 3.378308 4.674063

To build an intercept-free model, the necessary modification is specified in lm(Time ∼
Cases_Stocked -1, data=shelf_stock). Including -1 removes the intercept
term, which otherwise is included in the default lm settings. The p-value for the F-statistic
is highly significant at 2.2e-16, and hence shows that the fitted linear regression model
is indeed a significant model. The values of R2 and Adj − R2 at respectively 0.9983 and
0.9982 show that the regression model is a good fit. The covariate Cases_Stocked
is found to be significant under both the t- and F- statistics. Finally, the confidence and
prediction intervals are obtained in continuation of the earlier example details. ◽

The residual plots play a central role in validating the assumptions of the linear regression
model. We have explored the relevant R functions for obtaining them.

?plot, ?qt, ?lm, ?anova, ?residuals, ?fitted, ?predict.lm

12.3 The Anscombe Warnings and Regression Abuse

Applied statistics regress in most cases towards the linear regression model. Anscombe
(1973) presented four datasets which have the same values in the mean, variance, correlation,
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regression line, R2 value, p-values, etc. This dataset is available in R as anscombe, and the
data may be inspected following the next R session with View(anscombe).

We reproduce here select summaries:

> summary(anscombe)
x1 x2 x3 x4 y1 y2 y3 y4
Median : 9.0 9.0 9.0 8 7.580 8.140 7.11 7.040
Mean : 9.0 9.0 9.0 9 7.501 7.501 7.50 7.501

Furthermore, the ANOVA table shows that the four datasets are identical:

> anova(lm(y1∼x1,data=anscombe))
Analysis of Variance Table
Response: y1
Df Sum Sq Mean Sq F value Pr(>F)
x1 1 27.510 27.5100 17.99 0.002170 **
Residuals 9 13.763 1.5292
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
> anova(lm(y2∼x2,data=anscombe))
Analysis of Variance Table
Response: y2
Df Sum Sq Mean Sq F value Pr(>F)
x2 1 27.500 27.5000 17.966 0.002179 **
Residuals 9 13.776 1.5307
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
> anova(lm(y3∼x3,data=anscombe))
Analysis of Variance Table
Response: y3
Df Sum Sq Mean Sq F value Pr(>F)
x3 1 27.470 27.4700 17.972 0.002176 **
Residuals 9 13.756 1.5285
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
> anova(lm(y4∼x4,data=anscombe))
Analysis of Variance Table
Response: y4
Df Sum Sq Mean Sq F value Pr(>F)
x4 1 27.490 27.4900 18.003 0.002165 **
Residuals 9 13.742 1.5269
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

In the data summary, we observe that there is a lot of similarity among the median and mean of
the predictor variable and the output. If we proceed with fitting regression lines, there is striking
similarity between the estimated regression coefficients, MSS, p-values, etc. These summaries
and the fitted regression lines leave us with the impression that the four different datasets are
almost alike. However, the scatter plot in Figure 12.4 reveals an entirely different story. For
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Figure 12.4 Regression and Resistant Lines for the Anscombe Quartet

the first quartet, a linear regression model seems appropriate. A non-linear association seems
appropriate for the second quartet, and there appears an outlier in the third quartet. On the
other hand, there does not appear to be a correlation for the fourth and final quartet. Thus, we
need to exhibit real caution when carrying out data analysis.

We now fit and plot the resistant lines for the four quartets of this dataset. The regression
lines are given in red and the resistant lines in green.

> attach(anscombe)
> rl1 <- resistant_line(x1,y1,iter=4); rl2 <- resistant_line(x2,y2,
+ iter=4)
> rl3 <- resistant_line(x3,y3,iter=4); rl4 <- resistant_line(x4,y4,
+ iter=4)
> par(mfrow=c(2,2))
> plot(x1,y1,main="Plot of I Quartet")
> abline(lm(y1∼x1,data=anscombe),col="red")
> curve(rl1$coeffs[1]+rl1$coeffs[2]*(x-rl1$xCenter),add=TRUE,
+ col="green")
> plot(x2,y2,main="Plot of II Quartet")
> abline(lm(y2∼x2,data=anscombe),col="red")
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> curve(rl2$coeffs[1]+rl2$coeffs[2]*(x-rl2$xCenter),add=TRUE,
+ col="green")
> plot(x3,y3,main="Plot of III Quartet")
> abline(lm(y3∼x3,data=anscombe),col="red")
> curve(rl3$coeffs[1]+rl3$coeffs[2]*(x-rl3$xCenter),add=TRUE,
+ col="green")
> plot(x4,y4,main="Plot of IV Quartet")
> abline(lm(y4∼x4,data=anscombe),col="red")
> curve(rl4$coeffs[1]+rl4$coeffs[2]*(x-rl4$xCenter),add=TRUE,
+ col="green")
> rl1$coeffs
[1] 7.5447098 0.4617412
> rl2$coeffs
[1] 7.8525641 0.4315385
> rl3$coeffs
[1] 7.1143590 0.3461538
> rl4$coeffs
[1] NA NA

A very interesting thing happens in the fourth quartet. The slope has been computed as NA
and the intercept is not available as a consequence of this. The reason is that 10 out of the 11
observations for the x values are the same, and due to all the thirds of the x’s being the same, the
slope is given as NA. Figure 12.4 shows that resistant lines fit for each quartet of the Anscombe
data. Also note that the slope and intercept values are estimated differently for each data set.

For more critical abuses of the linear regression model, especially in the context of multiple
covariates, the reader should consult Box (1964).

?anscombe

12.4 Multiple Linear Regression Model

In Section 12.2 we considered the case of one predictor variable. If there is more than one pre-
dictor variable, say k, we extend the simple regression model to the multiple linear regression
model. Suppose that Y is the variable of interest and that it is dependent on some covariates
X = (X1, … ,Xk). The general linear regression model is given by

Y = 𝛽0 + 𝛽1X1 + … + 𝛽kXk + 𝜖. (12.29)

That is, the regressors are assumed to have a linear effect on the regressand. The vec-
tor 𝜷 = (𝛽0, 𝛽1, … , 𝛽k) is the vector of regression coefficients. The values of the 𝛽j,

j = 0, 1, … , k, are completely unspecified and take values on the real line. In a simple
regression model, the regression coefficients have this interpretation: If the regressor
Xj, j = 1, … , k, is changed by one unit while holding all other regressors at the same value,
the change in the regressand Y will be 𝛽j.

For the ith individual in the study, the model is given by

Yi = 𝛽0 + 𝛽1Xi1 + … + 𝛽kXik + 𝜖i.

The errors 𝜖i are assumed to be independent and identically distributed as the normal distri-
bution N(0, 𝜎2) with unknown variance 𝜎2. We assume that we have a sample of size n. We
will begin with the example of US crime data.
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Example 12.4.1. US Crime Data. Data is available on the crime rates across 47 states in the
USA, and we have additional information on 13 more explanatory variables. This dataset has
been used and illustrated in Der and Everitt (2002) on the use of SAS software. The data is
given in the file US_Crime.csv. We explain the variables, as detailed in Der and Everitt,
as below.

• R: Crime rate – the number of offenses known to the police per 1 000 000 population.
• Age: Age distribution – the number of males aged 14 to 24 years per 1000 of total state

population.
• S: Binary variable distinguishing southern states (S = 1) from the rest.
• Ed: Educational level – mean number of years of schooling × 10 of the population 25 years

old and over.
• Ex0: Police expenditure – per capita expenditure on police protection by state and local

governments in 1960.
• Ex1: Police expenditure – as Ex0, but for 1959
• LF Labor force participation rate per 1000 civilian urban males in the age group 14 to 24

years.
• M: Number of males per 1000 females.
• N: State population size in hundred thousands.
• NW: Number of non-whites per 1000.
• U1: Unemployment rate of urban males per 1000 in the age group 14 to 24 years.
• U2: Unemployment rate of urban males per 1000 in the age group 35 to 39 years.
• W: Wealth, as measured by the median value of transferable goods and assets or family

income (unit 10 dollars).
• X: Income inequality: the number of families per 1000 earning below one half of the median

income.

The main problem here is to build a multiple linear regression model for the crime rate R as
a function of the rest of the demographic covariates.

In Section 12.3 we saw the effectiveness of scatter plots for the Anscombe’s quartet data.
If we have more than one pair of relationships to understand, we require a matrix of scatter
plots. This technique is explored in the forthcoming subsection. ◽

12.4.1 Scatter Plots: A First Look

For the multiple regression data, let us use the R graphics method called pairs. The reader
is recommended to try out the strength of this graphical utility with example(pairs). In a
matrix of the scatter plot, a scatter plot is provided for each variable against the other variables.
Thus, the output will be a symmetric matrix of scatter plots.

Example 12.4.2. US Crime Data. Contd. For the US crime data, obtain the matrix of the
scatter plot with the pairs function. The matrix of the scatter plot will be complemented
with the correlation matrix, which is obtained using the cor function.
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> data(usc)
> pairs(usc)
> round(cor(usc),2)

R Age W X
R 1.00 -0.09 0.44 -0.18
Age -0.09 1.00 -0.67 0.64
S -0.09 0.58 -0.64 0.74
Ed 0.32 -0.53 0.74 -0.77
Ex0 0.69 -0.51 0.79 -0.63
Ex1 0.67 -0.51 0.79 -0.65
LF 0.19 -0.16 0.29 -0.27
M 0.21 -0.03 0.18 -0.17
N 0.34 -0.28 0.31 -0.13
NW 0.03 0.59 -0.59 0.68
U1 -0.05 -0.22 0.04 -0.06
U2 0.18 -0.24 0.09 0.02
W 0.44 -0.67 1.00 -0.88
X -0.18 0.64 -0.88 1.00

From the first row of the matrix of scatter plots in Figure 12.5, we see that the crime rate R is
weakly related to most of the explanatory variables. A careful examination of the first row also
shows that if there is an increase in values of the variables Ex0, Ex1, and W, the crime rate R
also increases. The scatter plot among the explanatory variables reveals a strong relationship
between the variables Ex0 and Ex1, indicating multicollinearity which is discussed in detail
in Section 12.6, and a negative relationship between the variables W and X, that shows a high
correlationship. ◽

12.4.2 Other Useful Graphical Methods

The matrix of a scatter plot is a two-dimensional plot. However, we can also visualize scatter
plots in three dimensions. Particularly, if we have two covariates and a regressand, the
three-dimensional scatter plot comes in very handy for visualization purposes. The R package
scatterplot3d may be used to visualize three-dimensional plots. We will consider
the three-dimensional visualization of scatter plots in the next example. The discussion
here is slightly varied in the sense that we do not consider a real dataset for obtaining the
three-dimensional plots.

Example 12.4.3. Visualization of Some Regression Models. Three-dimensional scatter
plots of linear regression functions will be constructed now for the following models:

E(y) = 83 + 9x1 + 6x2, (12.30)

E(y) = 83 + 9x1 + 6x2 + 3x1x2, (12.31)

E(y) = 83 + 9x1 + 6x2 + 2x4
1 + 3x3

2 + 3x1x2, (12.32)

E(y) = 83 + 9x1 + 6x2 − 2x4
1 − 3x3

2 + 3x1x2. (12.33)
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Figure 12.5 Matrix of Scatter Plot for US Crime Data



Trim Size: 170mm x 244mm Tattar c12.tex V3 - 02/10/2016 10:47 A.M. Page 425�

� �

�

Linear Regression Models 425

The following R codes generate the required three-dimensional plots.

> x1 <- rep(seq(0,10,0.5),100)
> x2 <- rep(seq(0,10,0.5),each=100)
> par(mfrow=c(2,2))
> Ey1 <- 83 + 9*x1 + 6*x2
> scatterplot3d(x1,x2,Ey1,highlight.3d=TRUE,xlim=c(0,10),
+ ylim=c(0,10),zlim=c(0,240),
+ xlab=expression(x[1]),ylab=expression(x[2]),zlab="E(y)",main =
+ expression(paste("A 3-d plot for ", E(Y*"|"*x,beta) == 83 + 9*x[1]
+ + 6*x[2])),z.ticklabs="")
> Ey2 <- 83 + 9*x1 + 6*x2 + 3*x1*x2
> scatterplot3d(x1,x2,Ey2,highlight.3d=TRUE,xlim=c(0,10),
+ ylim=c(0,10),zlim=c(0,600),
+ xlab=expression(x[1]),ylab=expression(x[2]),zlab="E(y)",main =
+ expression(paste("A 3-d plot for ",E(Y*"|"*x,beta)== 83 + 9*x[1]
+ + 6*x[2] + 3*x[1]*x[2])),z.ticklabs="")
> Ey3 <- 83 + 9*x1 + 6*x2 + 2*x1 ̂ 4 + 3*x2 ̂ 3 + 3*x1*x2
> scatterplot3d(x1,x2,Ey3,highlight.3d=TRUE,xlim=c(0,10),
+ ylim=c(0,10),zlim=c(0,25000),
+ xlab=expression(x[1]),ylab=expression(x[2]),zlab="E(y)",main =
+ expression(paste("A 3-d plot for ",E(Y*"|"*x,beta)== 83 + 9*x[1]
+ + 6*x[2] + 2*x[1] ̂ 4 + 3*x[2] ̂ 3 + 3*x[1]*x[2])),z.ticklabs="")
> Ey4 <- 83 + 9*x1 + 6*x2 - 2*x1 ̂ 4 - 3*x2 ̂ 3 + 3*x1*x2
> scatterplot3d(x1,x2,Ey4,highlight.3d=TRUE,xlim=c(0,10),
+ ylim=c(0,10),zlim=c(-23000,100),
+ xlab=expression(x[1]),ylab=expression(x[2]),zlab="E(y)",main =
+ expression(paste("A 3-d plot for ",E(Y*"|"*x,beta)==83 + 9*x[1]
+ + 6*x[2] - 2*x[1] ̂ 4 - 3*x[2] ̂ 3 + 3*x[1]*x[2])),z.ticklabs="")

Two vector variables x1 and x2 are created using the rep function, but with a slight dif-
ference. The expected value for the three linear models are then computed with Ey on three
occasions. Using the scatterplot3d function from the same named package, we obtain
the three-dimensional plots. In an easier extension of the plot function, we use three argu-
ments for the scatterplot3d function. The main title for the three-dimensional plot is
specified with great focus on generating the exact equation and it needs to be emphasized here
that this is a non-trivial code and the reader should pay a considerable amount of attention to
the R code.

In the first two three-dimensional plots of Figure 12.6, the linearity of E(Y) in terms of x1
and x2 is apparent. Thus, a linear regression model seems appropriate. It is to be cautioned
that with real datasets, some disturbance from the linearity is expected due to the error term.
In the third three-dimensional plot, it appears that there may be quadratic terms for the linear
regression models. ◽

Contour plots are again useful techniques for understanding multivariate data through slices
of the dataset. In continuation of the previous regression equations, from Example 13.4.3, let
us view them in terms of a contour plot.
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Figure 12.6 Three-Dimensional Plots

Example 12.4.4. Continuation of Example 13.4.3. To obtain the contour plot, we need to
specify the output value y for each possible combination of x1 and x2 values. That is, if we
allow 10 different values for the predictor variables x1 and x2, the y values must be obtained
for the 100 combinations of them. This task is easily carried out using the outer function.
This is demonstrated in the next R program.

> par(mfrow=c(2,2))
> x1=x2=seq(from=0,to=10,by=0.2)
> ey1 <- function(a,b) 83 + 9*a + 6*b
> Ey1 <- outer(x1,x2,ey1)
> contour(x1,x2,Ey1,main = expression(paste("Cantour plot for ",
+ E(Y*"|"*x,beta) ==83 + 9*x[1]+ 6*x[2])))
> ey2 <- function(a,b) 83 + 9*a + 6*b + 3*a*b
> Ey2 <- outer(x1,x2,ey2)
> contour(x1,x2,Ey2,main = expression(paste("Cantour plot for ",
+ E(Y*"|"*x,beta)==83 + 9*x[1]+ 6*x[2] + 3*x[1]*x[2])))
> ey3 <- function(a,b) 83 + 9*a + 6*b + 2*a ̂ 4 + 3*b ̂ 3 + 3*a*b
> Ey3 <- outer(x1,x2,ey3)
> contour(x1,x2,Ey3,main = expression(paste("Cantour plot for ",
+ E(Y*"|"*x,beta)==83 + 9*x[1] + 6*x[2] + 2*x[1] ̂ 4 + 3*x[2] ̂ 3 +
+ 3*x[1]*x[2])))
> ey4 <- function(a,b) 83 + 9*a + 6*b - 2*a ̂ 4 - 3*b ̂ 3 + 3*a*b
> Ey4 <- outer(x1,x2,ey4)
> contour(x1,x2,Ey4,main = expression(paste("Cantour plot for ",
+ E(Y*"|"*x,beta)==83 + 9*x[1] + 6*x[2] - 2*x[1] ̂ 4 - 3*x[2] ̂ 3 +
+ 3*x[1]*x[2])))

Here the vector variables x1 and x2 are created as in the previous example. However, for
each combination of these variables, we need to compute the associated E(Y|x1, x2). Thus, the
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Figure 12.7 The Contour Plots for Three Models

outer function finds all such combinations using the function ey. Note that the R object Ey
is a matrix and not a vector, and its dimension is the number of elements of x1 and x2. This
is a major difference from the scatterplot3d function. The contour plot function is
then invoked with the R objects x1, x2, and Ey. The contour plots are generated for the three
regression models.

As with the three-dimensional plot, the linearity is apparent for the first two contour plots
of Figure 12.7, and the quadratic terms for the third example. ◽

Remark. In simpler examples too, the three-dimensional plots and contour plots need good
expertise to generate useful plots. Figures 12.6 and 12.7 may actually be enhanced and the
reader will be asked to do the same in Exercise 7.

12.4.3 Fitting a Multiple Linear Regression Model

Given n observations, the multiple linear regression model can be written in a matrix form as

Y = X𝜷 + 𝝐, (12.34)

where Y′ = (Y1,Y2, … ,Yn), 𝜷′ = (𝛽0, 𝛽1, … , 𝛽k), and 𝝐′ = (𝜖1, 𝜖2, … , 𝜖n), and the covariate
matrix X1 is

X =
⎡⎢⎢⎢⎣
1 x11 x12 … x1k
1 x21 x22 … x2k
⋮ ⋮ ⋮ … ⋮
1 xn1 xn2 … xnk

⎤⎥⎥⎥⎦
.

1The matrix X is referred as the covariate matrix. In Chapter 13, a useful variant will be introduced as Design Matrix.
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The least-squares normal equations for the multiple linear regression model is given by

X′X𝜷 = X′Y,

which leads to the least-squares estimator

�̂� = (X′X)−1X′Y. (12.35)

The model fitted values ŷ are obtained as

ŷ = X�̂� = X(X′X)−1X′y = Hy, (12.36)

where we define
H = X(X′X)−1X′. (12.37)

The matrix H is called the hat matrix, which has many useful properties.
Properties of the Hat Matrix. The hat matrix is symmetric and idempotent, that is,

1. H = H′, symmetric property.
2. HH = H, idempotent property.
3. Furthermore, I − H is also symmetric and idempotent.

The hat matrix plays a vital role in determining the residual values, which in turn is very useful
in model adequacy, as will be seen in the Section 12.5. Chatterjee and Hadi (1988) refer to the
hat matrix as the prediction matrix. The importance of the hat matrix is that it serves as a bridge
between the observed values and the fitted values. By definition

e = y − ŷ = y − X�̂� = y − Hy = (I − H)y. (12.38)

We had seen earlier, in Section 12.2, the role of the residuals in estimation of the variance 𝜎2.
The results further extend here in the following manner:

SSRes =
n∑

i=1

e2
i = e′e = (y − X�̂�)′(y − X�̂�)

= y′y − �̂�
′
X′y. (12.39)

Thus, the residual mean square is

MSRes = �̂�2 =
SSRes

n − k
. (12.40)

As in Section 12.2, MSRes is an unbiased estimator of 𝜎2, that is,

E
(
�̂�2) = 𝜎2. (12.41)
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12.4.4 Testing Hypotheses and Confidence Intervals

12.4.4.1 Testing for Significance of the Regression Model

We need to first assert if the linear relationship between the regressand and the predictor
variables is significant or not. In the terms of this hypothesis, this translates into testing for
H ∶ 𝛽1 = 𝛽2 = … = 𝛽k = 0 against the hypothesis K ∶ 𝛽j ≠ 0 for at least one j. Towards the
problem of testing the hypotheses H against K, we define the following:

total sum of squares ∶ SST = y′y −
(y1)2

n
, (12.42)

residual sum of squares ∶ SSRes = y′y − �̂�
′
X′y, (12.43)

regression sum of squares ∶ SSR = �̂�
′
X′y −

(y1)2

n
. (12.44)

In Equation 12.42, we have y1 =
∑n

i=1 yi. Computationally, we recognize that the regression
sum of squares is obtained by exploiting the constraint SST = SSR + SSRes, that is by SSR =
SST − SSRes. Under the hypothesis H, SSR∕𝜎2 follows a 𝜒2

k distribution, and SSRes∕𝜎2 follows
a 𝜒2

n−k−1 distribution. Furthermore, it is noted that SSR and SSRes are independent. Thus, the
test statistic for the hypothesis H is the ratio of the mean of regression sum of squares to the
mean of residual sum of squares, which is an F-statistic. In summary, the test statistic is

F0 =
SSR∕k

SSRes∕(n − k − 1)
=

MSR

MSRes
, (12.45)

which is an Fk,n−k−1 distribution. Now, to test H, compute the test statistic F0 and reject it if

F0 > F𝛼,k,n−k−1.

The ANOVA table is hence consolidated in Table 12.3.

12.4.4.2 The Role of C Matrix for Testing the Regression Coefficients

The hypothesis H tested above is a global test of model adequacy. If we reject the previous
hypothesis, we may be interested in the specific predictors which are significant. Thus, there
is a need to find such predictors.

Table 12.3 ANOVA Table for Multiple Linear Regression Model

Source of
Variation

Sum of
Squares

Degrees of
Freedom

Mean
Square

F-Statistic

Regression SSR k MSR MSR∕MSRes

Residual SSRes n − k − 1 MSRes

Total SST n − 1
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The least-squares estimator �̂� is an unbiased estimator of 𝜷, and further

Cov(𝛽) = 𝜎2(X′X)−1. (12.46)

Define C = (X′X)−1. Then the variance of the estimator of the jth regression coefficient 𝛽j is
𝜎2Cjj, where Cjj is the jth diagonal element of the matrix C, and the covariance between 𝛽j and
𝛽j′ is 𝜎2Cjj′ .

We are now specifically interested in testing the hypothesis H(j) ∶ 𝛽j = 0 against the hypoth-
esis K(j) ∶ 𝛽j ≠ 0, j = 0, 1, … , k. The test statistic for the hypothesis H(j) is

t(j)0 =
𝛽j√
�̂�2Cjj

=
𝛽j

se(𝛽j)
, j = 0, 1, … , k. (12.47)

Under the hypothesis H(j), the test statistic t(j)0 follows a t-distribution with n − k − 1 degrees

of freedom. Thus the test procedure is to reject the hypothesis H(j) if |t(j)0 | > t𝛼∕2,n−k−1.

Confidence Intervals

An important result, see Montgomery, et al. (2003), is the following:

(�̂� − 𝜷)′X′X(�̂� − 𝜷)
kMSRes

∼ Fk,n−k. (12.48)

This property allows us to construct the joint confidence region for the vector of regression
coefficients 𝜷 as follows:

The 100(1 − 𝛼)% confidence intervals, region actually, for the regression coefficients is
given by

P

{
(�̂� − 𝜷)′X′X(�̂� − 𝜷)

kMSRes
≤ F𝛼,k,n−k

}
= 1 − 𝛼.

In the k-dimensional space, the above inequality is a region of elliptical shape. As the next
natural step, if we are interested in some specific predictor variable, the 100(1 − 𝛼)% confi-
dence interval for its regression coefficient 𝛽j is given by

𝛽j − t𝛼∕2,n−k

√
𝜎2Cjj ≤ 𝛽j ≤ 𝛽j + t𝛼∕2,n−k

√
𝜎2Cjj. (12.49)

Finally, consider a new observation point x′0. A natural estimate of the future observation y0 is
ŷ0 = x′0�̂�. A 100(1 − 𝛼)% prediction interval is given as

ŷ0 − t𝛼∕2,n−k

√
�̂�2(1 + x′0(X′X)−1x0) ≤ y0 ≤ ŷ0 + t𝛼∕2,n−k

√
�̂�2(1 + x′0(X′X)−1x0). (12.50)

The theoretical developments for multiple linear regression model will now be taken to an R
session.

Example 12.4.5. US Crime Data. Continuation of Example 13.4.1. The lm function is
deployed to fit a multiple linear regression model for the US Crime Data. The problem is to
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fit a linear regression model for the crime rate R as a function of the covariates, from Age to
X. The covariates which give significant explanation of the crime rate are identified by the
p-values. Using the lm function we build the multiple linear regression model, and then use
the functions summary, confint, and anova to gather details of the fitted model.

> crime_rate_lm <- lm(R∼Age+S+Ed+Ex0+Ex1+LF+M+N+NW+U1+U2+W+X,
+ data=usc)
> # Equivalently, crime_rate_lm <- lm(R∼.,data=usc)
> summary(crime_rate_lm)
Call:
lm(formula = R ∼ Age + S + Ed + Ex0 + Ex1 + LF + M + N + NW +

U1 + U2 + W + X, data = usc)
Residuals:

Min 1Q Median 3Q Max
-34.884 -11.923 -1.135 13.495 50.560
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -6.918e+02 1.559e+02 -4.438 9.56e-05 ***
Age 1.040e+00 4.227e-01 2.460 0.01931 *
S -8.308e+00 1.491e+01 -0.557 0.58117
Ed 1.802e+00 6.496e-01 2.773 0.00906 **
Ex0 1.608e+00 1.059e+00 1.519 0.13836

U1 -6.017e-01 4.372e-01 -1.376 0.17798
U2 1.792e+00 8.561e-01 2.093 0.04407 *
W 1.374e-01 1.058e-01 1.298 0.20332
X 7.929e-01 2.351e-01 3.373 0.00191 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 21.94 on 33 degrees of freedom
Multiple R-squared: 0.7692, Adjusted R-squared: 0.6783
F-statistic: 8.462 on 13 and 33 DF, p-value: 3.686e-07
> confint(crime_rate_lm)

2.5 % 97.5 %
(Intercept) -1.008994e+03 -374.6812339
Age 1.798032e-01 1.8998161
S -3.864617e+01 22.0295401
Ed 4.798774e-01 3.1233247
Ex0 -5.460558e-01 3.7616925

U1 -1.491073e+00 0.2877222
U2 5.049109e-02 3.5340347
W -7.795484e-02 0.3526718
X 3.146483e-01 1.2712173
> anova(crime_rate_lm)
Analysis of Variance Table
Response: R

Df Sum Sq Mean Sq F value Pr(>F)
Age 1 550.8 550.8 1.1448 0.2924072
S 1 153.7 153.7 0.3194 0.5757727
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Ed 1 9056.7 9056.7 18.8221 0.0001275 ***
Ex0 1 30760.3 30760.3 63.9278 3.182e-09 ***
Ex1 1 1530.2 1530.2 3.1802 0.0837349 .
LF 1 611.3 611.3 1.2705 0.2677989

U1 1 70.7 70.7 0.1468 0.7040339
U2 1 2696.6 2696.6 5.6043 0.0239336 *
W 1 347.5 347.5 0.7221 0.4015652
X 1 5474.2 5474.2 11.3768 0.0019126 **
Residuals 33 15878.7 481.2
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

It can be seen from the output that the intercept terms, Age, ED, U2, and X are significant vari-
ables to explain the crime rate. The 95% confidence intervals also confirm it. The model is also
significant, as may be seen from p-value: 3.686e-07, and the adjusted R2 value is also
satisfactory. The interpretation of anova is left to the reader. Please note that the information
of some of the insignificant variables has been left out.

It becomes a bit tedious to write the variable names for a large dataset. If the model needs
to consider all the variables from the data.frame, a simple trick is to use lm(y∼.,
data=data) to include all those covariates.

A multiple linear regression model is not a trivial extension of the simple linear regression
model. For instance, the R2 and Adj-R2 for this dataset are respectively 0.7692 and 0.6783,
and the difference is seen to be nearly 10%. In the case of the simple linear regression model
for the fitted models gbhlm and tclm, it was not more than 2%. Let us undertake a simple
task. We will add the covariates one after another and see how the R2 and Adj-R2 behave.

> R2Various <- AdjR2Various <- 1:13
> for(i in 2:14){
+ R2Various[i-1] <- summary(lm(usc$R∼as.matrix(usc[,2:i])))$r.
+ squared
+ AdjR2Various[i-1]<- summary(lm(usc$R∼as.matrix(usc[,2:i])))$adj.r.
+ squared
+ }
> round(R2Various,2)
[1] 0.01 0.01 0.14 0.59 0.61 0.62 0.64 0.64 0.64 0.65 0.68 0.69 0.77
> round(AdjR2Various,2)
[1] -0.01 -0.03 0.08 0.55 0.56 0.56 0.57 0.57 0.56 0.55
+ 0.59 0.58 0.68
> round(R2Various-AdjR2Various,2)
[1] 0.02 0.04 0.06 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.10 0.11 0.09

Note that R2 keeps on increasing as we add more variables to the model, and that the Adj-R2

can be negative too. These and other related issues will be addressed in Section 12.8. ◽
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The model validation task for the multiple linear regression model will be undertaken next.

?pairs, ?scatterplot3d, ?contour, ?outer, ?lm

12.5 Model Diagnostics for the Multiple Regression Model

In Sub-section 13.2.6 we saw the role of residuals for model validation. We have those and
a few more options for obtaining residuals in the context of multiple regression. Cook and
Weisberg (1982) is a detailed account of the role of residuals for the regression models.

Residuals may be developed in one of four ways:

1. Standardized residuals
2. Semi-Studentized residuals
3. Predicted Residuals, known by its famous abbreviation as PRESS
4. R-Student Residuals.

12.5.1 Residuals

Standardized Residuals. Scaling the residuals by dividing them by their estimated standard
deviation, which is the square root of the mean residual sum of squares, we obtain the stan-
dardized residuals as

di =
ei√

MSRes

, i = 1, 2, … , n. (12.51)

Note that the mean of the residuals is zero and in that sense it is present in the above expression.
The standardized residuals di are approximately standard normal variates, and any of their
absolute values greater than 3 is an indicator of the presence of an outlier.

Semi-Studentized Residuals. Recollect the definition of the hat matrix from Sub-section
13.4.3 and its usage to define the residuals as

e = (I − H)y. (12.52)

Substituting y = X𝜷 + 𝝐, and on further evaluation, we arrive at

e = (I − H)𝝐. (12.53)

Thus, the covariance matrix of the residuals is

Var(e) = Var((I − H)𝝐)

= (I − H)Var(𝝐)(I − H)′

= 𝜎2(I − H). (12.54)
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The last step follows, since (I − H) is an idempotent matrix. As the matrix (I − H) is not
necessarily a diagonal matrix, the residuals have different variances and are also correlated.
Particularly, it can be shown that the variance of the residual ei is

Var(ei) = 𝜎2(1 − hii), (12.55)

where hii is the ith diagonal element of the hat matrix H. Furthermore, the covariance between
the residuals ei and ej is

Cov(ei, ej) = −𝜎2hij, (12.56)

where hij is the (i, j)th diagonal element of the hat matrix. The semi-Studentized residuals are
then defined as

ri =
ei√

MSRes(1 − hii)
, i = 1, 2, … , n. (12.57)

PRESS Residuals. The PRESS residual, also called the predicted residual, denoted by e(i), is
based on a fit to data which does not include the ith observation. Define �̂�(i) as the least-squares
estimate of the regression coefficients obtained by excluding the ith observation from the
dataset. Then, the ith predicted residual e(i) is defined by

e(i) = yi − xi�̂�(i), i = 1, 2, … , n.

The picture looks a bit scary so that we may need to fit n models to obtain the n predicted
residuals. Even if we were willing to do this, for large n values, it may not be feasible to run the
computer for so many hours, particularly if we can avoid it. There is an interesting relationship
between the predicted residuals and the residuals, which circumvents the troublesome route
of fitting n models. Equation 2.2.23 of Cook and Weisberg (1982) shows that the predicted
residuals and the residuals are related by

e(i) =
ei

1 − hii
. (12.58)

The variance of the ith predicted residual is

Var(e(i)) = Var

[
ei

1 − hii

]
= 1

(1 − hii)2
[
𝜎2(1 − hii)

]
= 𝜎2

1 − hii
. (12.59)

The standardized prediction residual, denoted by ez
(i), is obtained by

ez
(i) =

e(i)√
Var(e(i))

=
ei∕(1 − hii)√
𝜎2∕(1 − hii)

=
ei√

𝜎2∕(1 − hii)
. (12.60)

R-Student Residuals. Montgomery, et al. (2003) mention that the Studentized residuals are
useful for outlier diagnostics and that the MSRes estimate of 𝜎2 is an internal scaling of the
residual, since it is an internally generated estimate of 𝜎2. Similar to the approach of prediction
residual, we can construct an estimator of 𝜎2 by removing the ith observation from the dataset.
The estimator of 𝜎2 by removing the ith observation, denoted by S2

(i), is computed by

S2
(i) =

(n − p)MSRes − e2
i ∕(1 − hii)

n − p − 1
.
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Using S2
(i) for scaling purposes, the R-Student residual is defined by

ti =
ei

S2
(i)(1 − hii)

, i = 1, 2, … , n. (12.61)

The utility of these residuals is studied through the next example.

Example 12.5.1. A Regression Model of the Abrasion Index for the Tire Tread. To under-
stand the relationship between the abrasion index for the tire tread, the output y, as a linear
function of the hydrated silica level x1, silane coupling agent level x2, and the sulfur level x3,
Derringer and Suich (1980) collected data on 14 observation points.

The appropriateness of a linear regression model through graphics for the current dataset is
left as an exercise for the reader. A linear regression model for this dataset is considered and
then an attempt is made to understand the four types of residuals discussed so far.

> abrasion_index <- read.table("abrasion_index.dat",header=TRUE)
> ailm <- lm(y∼x1+x2+x3,data=abrasion_index)
> pairs(abrasion_index) # graphical output suppressed
> aianova <- anova(ailm)
> ai_fitted <- ailm$fitted.values
> ailm_mse <- aianova$Mean[length(aianova$Mean)]
> stan_resid_ai <- resid(ailm)/sqrt(ailm_mse)
> # Standardizing the residuals
> studentized_resid_ai <- resid(ailm)/(sqrt(ailm_mse*
+ (1-hatvalues(ailm))))
> #Studentizing the residuals
> # Do not wonder about writing complex codes for
+ Prediction Residuals or R Student Residuals
> # R helps! It has good function for this purpose
> pred_resid_ai <- rstandard(ailm)
> # returns the prediction residuals in a standardized form
> pred_student_resid_ai <- rstudent(ailm)
> # returns the R-Student Predicttion Residuals
> par(mfrow=c(2,2))
> plot(ai_fitted,stan_resid_ai,xlab="Fitted",ylab="Standardized
+ Residuals",
+ main="A: Plotting Standardized Residuals against Fitted Values")
> plot(ai_fitted,studentized_resid_ai,xlab="Fitted",ylab="Studentized
+ Residuals",
+ main="B: Plotting Studentized Residuals against Fitted Values")
> plot(ai_fitted,pred_resid_ai,xlab="Fitted",ylab="Prediction
+ Residuals",
+ main="C: Plotting PRESS against Fitted Values")
> plot(ai_fitted,pred_student_resid_ai,xlab="Fitted",ylab="R-Student
+ Residuals",
+ main="D: Plotting R-Student Residuals against Fitted Values")
> range(stan_resid_ai)
[1] -1.645103 1.267604
> range(studentized_resid_ai)
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[1] -2.025635 1.821972
> range(pred_resid_ai)
[1] -2.025635 1.821972
> range(pred_student_resid_ai)
[1] -2.502501 2.114761
> sum(studentized_resid_ai==pred_resid_ai)
[1] 5
> length(studentized_resid_ai)
[1] 14

The multiple linear regression model is fitted for the abrasion index using the standard
lm function. The anova is again used to facilitate the computation of mean squared
error. The model fit values are stored in the ai_fitted vector object. The standardized
residuals given in Equation 12.51 are calculated with the R code stan_resid_ai <-
resid(ailm)/sqrt(ailm_mse). The formula for the semi-Studentized residuals given
by Equation 12.57 is implemented in the right-hand side of the assignment operator for
studentized_resid_ai. Note that the elements hii are extracted from the fitted object
ailm using the R function hatvalues. The PRESS residuals and R-Student residuals are
obtained using R functions rstandard and rstudent respectively, and in our program
they are stored in R objects pred_resid_ai and pred_student_resid_ai. Using
the now familiar par and plot functions, we plot these four sets of residuals against the
fitted values.

At the outset, the four plots A to D in Figure 12.8 look identical and hence the range func-
tion has been used for a small inspection that shows that we are indeed dealing with different
arrays. The residual plot gives a clear answer to the presence of an outlier. The residual plot,
sans the outlier, shows that the linear model is appropriate. It is to be noted that in a case such
as this one, we need to first remove the outlier and then redo the entire analysis. ◽

12.5.2 Influence and Leverage Diagnostics

In the previous subsection, we saw the power of leave-one-out residuals. The residual plots
help in understanding the model adequacy. We will now take measures to explain the effect of
each covariate on the model fit and also of each output value on the same.

A large value of residual may arise on account of either a large value of the covariate or
a large value of the output. If some observations are disparagingly distinct from the overall
dataset and if the reason for this is the covariate value, then such points are called the leverage
points. The leverage points do not affect the estimates of the regression coefficients, although
they are known to drastically change the R2 values. For the fourth quartet of the Anscombe
dataset, refer to the scatter plot in Figure 12.8, any value of the regressand should correspond
to the covariate value of 8. Hence, we may say that the eighth observation is a levarage point.

Another source of disparaging observations, for reasonable levels of the covariate values,
may be from the output values. Such data points are called influence points. The influence
points have a significant affect on the estimated values of the regression coefficients, and in
particular tilt the model relationship towards them. For the third quarter of the Anscombe
dataset, refer to the scatter plot in Figure 12.8, the outliers are clearly influential.
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Figure 12.8 Residual Plot for the Abrasion Index Data
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Leverage Points

We will recollect the definition of the hat matrix:

H = X(X′X)−1X′.

The elements hij of the hat matrix may be interpreted as the amount of leverage exerted by
the ith observation yi on the ith fitted value ŷi. Note that the diagonal elements may be easily
obtained as

hii = x′i(X
′X)−1xi. (12.62)

This hat matrix diagonal is a standardized measure of the distance of the ith observation from
the center of the x-space. The average size of a hat diagonal is ĥ = k∕n. Any observation for
which the hii value exceeds twice the expected leverage of k∕n is considered as a leverage point.

Cook’s Distance for the Influence Points

The Cook’s distance for identifying the influence points is based on the leave-one-out approach
as seen earlier. Let ŷi denote the ith fitted value, and ŷj,(i) denote the jth predicted value when
the ith observation is removed from the model building, that is,

yj,(i) = xi�̂�(i), j = 1, 2, … , n. (12.63)

Then the Cook’s distance for the ith observation is given by

Di =
∑n

j=1 (ŷj − yj,(i))2

kMSRes
. (12.64)

The distance Di can be interpreted as the squared Euclidean distance that the vector of fitted
values moves when the ith observation is deleted. The magnitude of the distance Di is assessed
by comparing with F𝛼,k,n−k. As a rule of thumb, any value of the distance Di > 1 may be called
an influential observation.

DFFITS and DFBETAS Measures for the Influence Points

To understand the influence of the ith observation on the regression coefficient 𝛽j, the DFBETAS
measure proposed by Belsley, Kuh and Welsh (1980) is given as

DFBETASj,i =
𝛽j − 𝛽j,(i)√

S2
(i)Cjj

, (12.65)

where Cjj is the jth diagonal element of the C matrix, and 𝛽j,(i) is the estimate of the jth regression
coefficient with the deletion of the ith observation. Belsley, Kuh, and Welsh suggest a cut-off
value as |DFBETASj,i| > 2∕

√
n.
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Similarly, a measure for understanding the affect of an observation on the fitted value is
given by DFFITS. This measure is defined as

DFFITSi =
ŷi − ŷ(i)√

S2
(i)hii

. (12.66)

The relevant rule of thumb is a cut-off value of |DFFITSi| > 2∕
√

k∕n.

Example 12.5.2. A Regression Model of the Abrasion Index for the Tire Tread. Contd.
Useful functions such as hatvalues, cookd, dffits, dfbetas, and covratio make
it easy to compute all related values discussed so far. It is such an easy thing to do them in R,
that it takes just one line of code to put them together.

> round(cbind(hatvalues(ailm),cookd(ailm),dffits(ailm),dfbetas(ailm),
+ covratio(ailm)),4)

(Intercept) x1 x2 x3
1 0.3404 0.5294 -1.7978 -0.7207 0.4247 0.9392 -0.9392 0.2794
2 0.5160 0.3231 -1.1504 -0.5619 -0.7064 0.7322 0.3603 1.8778
3 0.5957 0.0679 0.4989 0.1008 -0.3385 0.3096 -0.3096 3.5001
4 0.5160 0.8846 2.1834 1.0665 1.3406 0.6838 1.3897 0.6271
5 0.4309 0.3290 1.1974 0.3556 -0.6034 -0.4633 -0.7811 1.2474
6 0.3404 0.1397 0.7510 0.3011 -0.1774 -0.3923 0.3923 1.4611
7 0.4309 0.3589 -1.2627 -0.3750 0.6363 -0.8236 -0.4886 1.1549
8 0.3830 0.2895 -1.1319 -0.5704 -0.4538 -0.5044 0.5044 1.0815
9 0.0745 0.0022 -0.0904 -0.0904 -0.0183 0.0048 -0.0048 1.5745
10 0.0745 0.0022 -0.0904 -0.0904 -0.0183 0.0048 -0.0048 1.5745
11 0.0745 0.0015 0.0729 0.0729 0.0147 -0.0039 0.0039 1.5993
12 0.0745 0.0039 0.1202 0.1202 0.0243 -0.0064 0.0064 1.5216
13 0.0745 0.0099 0.1935 0.1935 0.0391 -0.0103 0.0103 1.3460
14 0.0745 0.0039 0.1202 0.1202 0.0243 -0.0064 0.0064 1.5216

Some rules of thumb were stated earlier. Also, the plot.lm function gives a ready plot of
Cook’s distances versus row labels, residuals against leverages, and Cook’s distances against
leverage/(1-leverage). Finally, we give a plot of the dffits and dfbetas to find the influ-
ence points, see Figure 12.9.

> pdf("Cooks_Distance_ailm.pdf")
> par(mfrow=c(1,3));plot(ailm,which=c(4:6))
> dev.off()
X11cairo

1
> which(abs(as.vector(dfbetas(ailm)[,1]))>2/sqrt(14))
[1] 1 2 4 8
> which(abs(as.vector(dfbetas(ailm)[,2]))>2/sqrt(14))
[1] 2 4 5 7
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> which(abs(as.vector(dfbetas(ailm)[,3]))>2/sqrt(14))
[1] 1 2 4 7
> which(abs(as.vector(dfbetas(ailm)[,4]))>2/sqrt(14))
[1] 1 4 5
> which(abs(as.vector(dffits(ailm)))>2/sqrt(14))
[1] 1 2 4 5 6 7 8

Since, by rule of thumb, none of the observations have Cook’s distance greater than 1, there is
no influential observation in the dataset. The above program gives a platform to interpret the
utility of dffits and dfbetas and is left as an exercise. ◽

For a detailed list of R functions in the context of regression analysis, refer to the pdf
file at http://cran.r-project.org/doc/contrib/Ricci-refcard-regression.pdf. The leverage points
answer the problem of an outlier with respect to the covariate value. There may be at times
linear dependencies among the covariates themselves, which lead to unstable estimates of the
regression coefficients and this problem is known as the multicollinearity problem, which will
be dealt with in the next section.

?influence.measures, ?resid, ?rstandard, ?rstudent, ?dffits, ?dfbetas,
?hatvalues, ?cookd, ?covratio
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Figure 12.9 Cook’s Distance for the Abrasion Index Data

http://cran.r-project.org/doc/contrib/Ricci-refcard-regression.pdf
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12.6 Multicollinearity

Multicollinearity is best understood by splitting its spelling as “multi-col-linearity”, implying
a linear relationship among the multiple columns of the covariate matrix. In another sense, the
columns of the covariate matrix are linearly dependent, and further it implies that the covariate
matrix may not be of full rank. This linear dependence means that the covariates are strongly
correlated. Highly correlated explanatory variables can cause several problems when applying
the multiple regression model.

Example 12.6.1. Understanding the Problem of Multicollinearity. We fitted a multiple lin-
ear regression model for this dataset in earlier sections. The variablesEx0 andEx1 are strongly
correlated, as can be seen by the following:

> cor(usc$Ex0,usc$Ex1)
[1] 0.9935865
> cor(usc) # output suppressed

Let us have another look at the problem. For the rocket propellant data, Section 12.2, add small
noise to the regressor GBH using the jitter function and rebuild the model with these two
near identical regressors.

> data(Euphorbiaceae)
> gbhlmjit <- lm(Height ∼ GBH+jitter(GBH),data=Euphorbiaceae)
> summary(gbhlmjit)
Call:
lm(formula = Height ∼ GBH + jitter(GBH), data = Euphorbiaceae)
Residuals:

Min 1Q Median 3Q Max
-29.242 -5.575 -1.455 5.732 27.959
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 8.742 2.166 4.036 0.000105 ***
GBH -1.761 8.210 -0.214 0.830596
jitter(GBH) 2.065 8.213 0.251 0.802011
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 9.46 on 103 degrees of freedom
Multiple R-squared: 0.404, Adjusted R-squared: 0.3925
F-statistic: 34.91 on 2 and 103 DF, p-value: 2.654e-12

Now, though the linear model is significant since the p-value is 2.654e-12, the regressor
GBH is now an insignificant regressor, and its impact through the regression coefficient on
Height changes from a positive value of 0.59084 in gbhlm to a negative -1.761 in
gbhlmjit. Thus, the multicollinearity problem needs to be identified in the multiple linear
regression model. ◽
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In general, we see that multicollinearity leads to the following problems:

1. Imprecise estimates of 𝛽, that is, which also mislead the signs of the regression coefficients
2. The t-tests may fail to reveal significant factors
3. Missing importance of predictors.

Spotting multicollinearity amongst a set of explanatory variables is a daunting task. The obvi-
ous course of action is to simply examine the correlations between these variables, and while
this is often helpful, it is by no means foolproof, and more subtle forms of multicollinearity
may be missed. An alternative and generally far more useful approach is to examine what are
known as the variance inflation factors of the explanatory variables.

12.6.1 Variance Inflation Factor

The variance inflation factor VIFj for the jth variable is given by

VIFj =
1

1 − R2
j

, (12.67)

where R2
j is the square of the multiple correlation coefficient from the regression of the jth

explanatory variable on the remaining explanatory variables. The variance inflation factor of
an explanatory variable indicates the strength of the linear relationship between the variable
and the remaining explanatory variables. A rough rule of thumb is that variance inflation factors
greater than ten give cause for concern.

Example 12.6.2. US Crime Data. Contd. In the previous sub-section, we fitted a full model
for the US crime data. We now compute Variance Inflation Factors (VIF) of the 13 explanatory
variables using the codes below. We require the R function vif for this purpose, which is in
the library faraway, hence we include it in the present R session by the following codes.
Also, in the spirit of understanding the concepts, we will show how the VIF for the Age is
computed without using the vif function.

> library(faraway)
> uscrimewor <- usc[,-1] # without response variable
> vif(uscrimewor)

Age S W X
2.698 4.877 9.969 8.409
> 1/(1-summary(lm(Age∼.,data=uscrimewor))$r.square)
[1] 2.698

Concentrating for now on the variance inflation factors in the above output, we see that those
for Ex0 and Ex1 are well above the value 10. As a consequence, we simply drop the variable
with highest VIF in Ex1 from consideration and now regress crime rates on the remaining 12
explanatory variables using the following code:

> crime_rate_lm2 <- lm(R∼Age+S+Ed+Ex0-Ex1+LF+M+N+NW+U1+U2+W+X,usc)
> # Note how the variable Ex1 is removed from the model1#
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> summary(crime_rate_lm2)
Call:
lm(formula = R ∼ Age + S + Ed + Ex0 - Ex1 + LF + M + N + NW +

U1 + U2 + W + X, data = usc)
Residuals:

Min 1Q Median 3Q Max
-38.76 -13.59 1.09 13.25 48.93
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -7.04e+02 1.53e+02 -4.60 5.6e-05 ***
Age 1.06e+00 4.16e-01 2.56 0.01523 *
S -7.87e+00 1.47e+01 -0.53 0.59682
Ed 1.72e+00 6.29e-01 2.74 0.00975 **
Ex0 1.01e+00 2.44e-01 4.15 0.00021 ***
LF -1.72e-02 1.46e-01 -0.12 0.90730
M 1.63e-01 2.08e-01 0.78 0.43842
N -3.89e-02 1.28e-01 -0.30 0.76360
NW -1.30e-04 6.20e-02 0.00 0.99834
U1 -5.85e-01 4.32e-01 -1.35 0.18467
U2 1.82e+00 8.46e-01 2.15 0.03883 *
W 1.35e-01 1.05e-01 1.29 0.20571
X 8.04e-01 2.32e-01 3.47 0.00145 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 21.7 on 34 degrees of freedom
Multiple R-squared: 0.767, Adjusted R-squared: 0.685
F-statistic: 9.32 on 12 and 34 DF, p-value: 1.35e-07
> vif(uscrimewor[,-5])
Age S W X

2.671 4.865 9.956 8.354

The square of the multiple correlation coefficient for crime_rate_lm2 is 0.767, indicat-
ing that the 12 explanatory variables account for 75% of the variability in the crime rates of the
47 states. Also, recollect that crime_rate_lm did not have Ex0 as a significant variable,
whereas crime_rate_lm2 shows the same variable as significant. Thus, the multicollinear-
ity problem, if not addressed, has the potential to hide some significant variables too. The last
step vif(uscrimewor[,-5]) shows that the VIF are now all less than ten, and hence we
stop further investigation of the multicollinearity problem. ◽

The eigen system analysis provides another approach to identify the presence of multi-
collinearity and will be considered in the next subsection.

12.6.2 Eigen System Analysis

Eigenvalues were introduced in Section 2.4. The eigenvalues of the matrix X′X help to identify
the multicollinearity effect in the data. Here, we need to standardize the matrix X in the sense
that each column has a mean zero and standard deviation at 1. Suppose 𝜆1, … , 𝜆k are eigen-
values of the matrix X′X. Let 𝜆max = maxj{𝜆j} and 𝜆min = minj{𝜆j}. Define the condition
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number and condition indices of X′X respectively by

𝜅 =
𝜆max

𝜆min
, and (12.68)

𝜅j =
𝜆max

𝜆j
, j = 1, … , k. (12.69)

The multicollinearity problem is not an issue for the condition number less than 100, and mod-
erate multicollinearity exists for the values of condition numbers in the range of 100 to 1000.
If the condition number exceeds the large number of 1000, the problem of linear dependence
among the covariates severely exists. Similarly, any condition index 𝜅j in excess of 1000 is
an indicator of the almost linear-dependence of the covariates, and in general if the k′ < k
condition indices are greater than 1000, we have k′ number of linear dependencies.

The decomposition of the matrix X′X through the eigenvalues gives us the eigen system
analysis in the sense that the matrix is decomposed with

X′X = T𝚲T′, (12.70)

where𝚲 is a p × p diagonal matrix with diagonal elements consisting of the eigenvalues of X′X
and T is a p × p orthogonal matrix whose columns consists of the eigenvectors of X′X. If any
of the eigenvalues is closer to zero, the corresponding eigenvector gives away the associated
linear dependency. We will now continue to use these techniques on the US crime dataset.

Example 12.6.3. US Crime Data. Contd. The data.frame uscrimewor is first con-
verted into a matrix, and then is standardized using the scale function, and X′X
is obtained with t(usc_stan)%*%usc_stan. Using the eigen function, the
eigenvalues and matrix of eigenvectors are first obtained. The condition number is
obtained with max(usc_eigen)/min(usc_eigen) and the condition indices with
max(usc_eigen)/usc_eigen.

> uscrimewor <- as.matrix(uscrimewor)
> usc_stan <- scale(uscrimewor)
> x1x_stan <- t(usc_stan)%*%usc_stan
> usc_eigen <- eigen(x1x_stan)
> max(usc_eigen$values)/min(usc_eigen$values) # Condition number
[1] 1081
> max(usc_eigen$values)/usc_eigen$values # Condition indices
[1] 1.000 2.243 42.387 80.262 91.630 1080.942
> which(max(usc_eigen$values)/usc_eigen$values>1000)
[1] 13
> usc_eigen$values
[1] 259.9811 115.9304 2.8373 0.2405
> usc_eigen$vectors

[,1] [,2] [,12] [,13]
[1,] -0.31718 0.124021 -0.01952 -0.010618
[2,] -0.34001 -0.179417 0.24040 -0.005195
[3,] 0.35610 0.214396 -0.04259 0.032819
[4,] 0.31698 -0.299853 0.07939 0.698089
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[5,] 0.31952 -0.297130 0.07611 -0.713642
[6,] 0.18310 0.400916 0.14887 -0.033483
[7,] 0.12649 0.358458 0.05198 -0.003217
[8,] 0.10731 -0.453749 0.09264 -0.008582
[9,] -0.30357 -0.222782 -0.13307 0.022698
[10,] 0.04431 -0.118836 -0.04364 -0.004347
[11,] 0.01665 -0.400497 0.10366 -0.013567
[12,] 0.39207 -0.094476 -0.70169 -0.003024
[13,] -0.38113 -0.008553 -0.60971 -0.015409

The condition number 𝜅 is very high and clearly points out the presence of the multi-
collinearity problem. The condition indices greater than 1000 are found with which(max
(usc_eigen)/usc_eigen>1000), and show a linear dependency based on the con-
dition index 13. Thus, using the 13th eigenvector, in terms of the covariates, the dependency
can be written as

− 0.0106xAge − 0.0052xS + 0.0328xED + 0.6981xEx0 − 0.7136xEx1 − 0.0335xLF − 0.0032xM

− 0.0086xN + 0.0227xNW − 0.0043xU1 − 0.0136xU2 − 0.0030xW − 0.0154xX = 0.

Thus, the eigensystem analysis for identifying multicollinearity is clearly illustrated here. ◽

?vif

12.7 Data Transformations

In Chapter 4 we came across our first transformation technique through the concept of the
rootogram. In regression analysis we need transformations for a host of reasons. A partial list
of reasons is as follows:

1. The linearity assumption is violated, that is, E(y|x) = 𝜷x may not be linear.
2. For the variation in the x’s, the error variance may not be constant. This means that the

variance of the y’s may be a function of the mean. In fact, the assumption of constant
variance is also known as the assumption of homoscedasticity.

3. Model errors do not follow a normal distribution.
4. In some experiments, we may have information about the need of transformations. For the

model y = 𝛽0 + 𝛽1 sin x + 𝜖, the transformation x1 = sin x provides us with a linear model.
Such information may not be available a priori, and is reflected by residual plots only.

12.7.1 Linearization

As seen in the introduction, linearity is one of our basic assumptions. In many cases, it is
possible to achieve linearity by an application of transformation. Many models which have
non-linear terms may be transformed to a linear model by a suitable choice of transformation.
See Table 6.1 of Chatterjee and Hadi (2006), or Table 5.1 of Montgomery, et al. (2003).
For example, if we have the model Y = 𝛼X𝛽 , by using a log transformation, we obtain
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Figure 12.10 Illustration of Linear Transformation

log Y = log 𝛼 + 𝛽 log x. The transformed model is linear in terms of its parameters.
Figure 12.10 displays the behavior of y for various choices of 𝛼 and 𝛽 (before the
transformation).

> x <- seq(0,5,0.1)
> alpha <- 1
> par(mfrow=c(1,2))
> plot(x,y=alpha*x ̂ {beta=1},xlab="x",ylab="y","l",lwd=1)
> points(x,y=alpha*x ̂ {beta=0.5},"l",lwd=2)
> points(x,y=alpha*x ̂ {beta=1.5},"l",lwd=3)
> points(x,y=alpha*x ̂ {beta= -0.5},"b",lwd=2)
> points(x,y=alpha*x ̂ {beta= -1},"b",lwd=3)
> points(x,y=alpha*x ̂ {beta= -2},"b",lwd=2)

We will next consider an example where a transformation achieves linearization.

Example 12.7.1. Frog Survival as a Function of Age. A well-known natural phenomenon
is that the number of survivors decreases with age. In the Frog_survival dataset from
the gpk package, we have the number of survivors at the age of 1, 2,… , 8 years. Now, a
straightforward use of the simple linear regression model gives a poor fit. Fitting a linear model
for the number of Individuals as a function the Age gives an Adjusted R2 of 0.2264,
which is quite poor. Moreover, the variable Age is also an insignificant variable.

Thus, there is a need to carry out a transformation to improve the model, and we attempt to
model the logarithm of Individuals as a function of Age. Mathematically speaking, we
are building the model ln (Y) = 𝛽0 + 𝛽1x + 𝜖.
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> data(Frog_survival)
> plot(Frog_survival$Individuals,Frog_survival$Age)
+ # Output suppressed
> summary(FS1 <- lm(Individuals∼Age,data=Frog_survival))
Call:
lm(formula = Individuals ∼ Age, data = Frog_survival)
Residuals:

Min 1Q Median 3Q Max
-3017.5 -1693.4 -381.3 943.6 5280.2
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4573.2 2199.2 2.079 0.0828 .
Age -760.3 435.5 -1.746 0.1314
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 2822 on 6 degrees of freedom
Multiple R-squared: 0.3369, Adjusted R-squared: 0.2264
F-statistic: 3.048 on 1 and 6 DF, p-value: 0.1314
> summary(FS2 <- lm(log(Individuals)∼Age,data=Frog_survival))
Call:
lm(formula = log(Individuals) ∼ Age, data = Frog_survival)
Residuals:

Min 1Q Median 3Q Max
-1.9159 -0.5906 -0.1267 0.4820 2.7690
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.2212 1.1708 6.168 0.000834 ***
Age -0.8750 0.2318 -3.774 0.009247 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 1.503 on 6 degrees of freedom
Multiple R-squared: 0.7036, Adjusted R-squared: 0.6542
F-statistic: 14.24 on 1 and 6 DF, p-value: 0.009247

The transformation leads to an increase in the adjusted R2 to 0.6542 and the variable Age is
also seen to be significant. Thus, the logarithmic transformation helped in achieving linearity
for this dataset. ◽

12.7.2 Variance Stabilization

In general, the transformation stabilizes the variance of the error term. If the error variance
is not constant for different x values, we say that the error is heteroscedastic. The problem of
heteroscedasticity is usually detected by the residual plots.

Example 12.7.2. Injuries in Airflights. Injuries in airflights, road accidents, etc., are
instances of rare occurrences, which are appropriately modeled by a Poisson distribution.
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This data is adapted from Table 6.6 of Chatterjee and Hadi. Two models, before and
after transformation, are fitted and checked if the transformation led to a reduction in the
variance.

> data(flight)
> attach(flight)
> names(flight)
[1] "Injury_Incidents" "Total_Flights"
> injurylm <- lm(Injury_Incidents∼Total_Flights)
> injurysqrtlm <- lm(sqrt(Injury_Incidents)∼Total_Flights)
> summary(injurylm)
Call:
lm(formula = Injury_Incidents ∼ Total_Flights)
Residuals:

Min 1Q Median 3Q Max
-5.3351 -2.1281 0.1605 2.2670 5.6382
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.1402 3.1412 -0.045 0.9657
Total_Flights 64.9755 25.1959 2.579 0.0365 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 4.201 on 7 degrees of freedom
Multiple R-squared: 0.4872, Adjusted R-squared: 0.4139
F-statistic: 6.65 on 1 and 7 DF, p-value: 0.03654
> summary(injurysqrtlm)
Call:
lm(formula = sqrt(Injury_Incidents) ∼ Total_Flights)
Residuals:

Min 1Q Median 3Q Max
-0.9690 -0.7655 0.1906 0.5874 1.0211
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.1692 0.5783 2.022 0.0829 .
Total_Flights 11.8564 4.6382 2.556 0.0378 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.7733 on 7 degrees of freedom
Multiple R-squared: 0.4828, Adjusted R-squared: 0.4089
F-statistic: 6.535 on 1 and 7 DF, p-value: 0.03776
> par(mfrow=c(1,2))
> plot(flight$Total_Flights, residuals(injurylm),
+ xlab="Total Flights",ylab="Residuals")
> plot(flight$Total_Flights, residuals(injurysqrtlm),
+ xlab="Total Flights",ylab="Residuals
+ Under Square Root Transformation")

It may be seen from the ANOVA tables that we had estimated a variance of 4.201 for the orig-
inal data, that is, the simple linear regression model. The square-root transformation reduced
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the variance to 0.7733, which is significant. Note that the R2 value remains almost the same.
The residual plots are not produced here. The residual plot injurylm shows that the variance
of residuals increases with an increase in the x-value. However, the same residual plot for the
injurysqrlm model shows that the variability of the error term remains constant across the
x-values. ◽

Technically, we had built the model Y1∕2 = 𝛽0 + 𝛽1x + 𝜖. The choice of transformation is
not obvious. Moreover, it is difficult to say whether the power of 1∕2 is appropriate or some
other positive number. Also, it is not always easy to choose between the power transforma-
tion and logarithmic transformation. A more generic approach will be considered in the next
subsection.

12.7.3 Power Transformation

In the previous two subsections, we were helped by the logarithmic and square-root
transformations. Box and Cox (1962) proposed a general transformation, called the power
transformation. This method is useful when we do not have theoretical or empirical guidelines
for an appropriate transformation. The Box-Cox transformation is given by

Y𝜆 =
⎧⎪⎨⎪⎩

Y𝜆−1
𝜆Ÿ𝜆−1 , 𝜆 ≠ 0,

Y log Y , 𝜆 = 0.
(12.71)

where Y = log−1 [1∕n
∑n

i=1 log Yi

]
. For details, refer to Section 5.4.1 of Montgomery, et al.

(2003). The linear regression model that will be built is the following:

Y𝜆 = 𝛽0 + 𝛽1x + 𝜖. (12.72)

For the choice of 𝜆 away from 0, we achieve variance stabilization, whereas for a value closer
to 0, we obtain an approximate logarithmic transformation. The exact inference procedure for
the choice of 𝜆 cannot be taken up here, and we simply note that the MLE technique is used
for this purpose.

Example 12.7.3. The Box-Cox Transformation for Viscosity Dataset. The goal of this
study is to find the impact of temperature on the viscosity of toluence-tetralin blends. This
dataset is available in Problem 1, Chapter 5, of Montgomery, et al. (2003). First, the viscocity
is modeled using simple linear regression. By using the boxcox function from the MASS
package, we can find the MLE of 𝜆 and then use it to obtain y𝜆, ybc in the R program. Using
the estimated y𝜆, a new linear model is built for ybc and Temperature.

> library(MASS)
> data(viscos)
> names(viscos)
[1] "Temperature" "Viscosity"
> viscoslm <- lm(Viscosity∼Temperature,data=viscos)
> par(mfrow=c(1,3))
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> plot(viscoslm$fitted.values,viscoslm$residuals,
+ xlab="Fitted Values",ylab="Residuals",col="red")
> bclist <- boxcox(viscoslm)
> mlelambda <- bclist$x[which(bclist$y==max(bclist$y))]
> mlelambda
[1] -0.7474747
> ygeom <- prod(viscos$Viscosity) ̂ {1/length(viscos$Viscosity)}
> ybc <- (viscos$Viscosity ̂ {mlelambda}-1)/(mlelambda*ygeom ̂

+ {mlelambda-1})
> viscosbclm <- lm(ybc∼viscos$Temperature)
> plot(viscosbclm$fitted.values,viscosbclm$residuals,
+ xlab="Fitted Values", ylab="Residuals",col="red")
> summary(viscoslm)
Call:
lm(formula = Viscosity ∼ Temperature, data = viscos)
Residuals:

Min 1Q Median 3Q Max
-0.043955 -0.035863 -0.009305 0.019900 0.069559
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.2815107 0.0468683 27.34 1.58e-07 ***
Temperature -0.0087578 0.0007284 -12.02 2.01e-05 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.04743 on 6 degrees of freedom
Multiple R-squared: 0.9602, Adjusted R-squared: 0.9535
F-statistic: 144.6 on 1 and 6 DF, p-value: 2.007e-05
> summary(viscosbclm)
Call:
lm(formula = ybc ∼ viscos$Temperature)
Residuals:

Min 1Q Median 3Q Max
-0.011929 -0.001858 0.000970 0.001953 0.010282
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.2781401 0.0067156 41.42 1.33e-08 ***
viscos$Temperature -0.0083670 0.0001044 -80.17 2.54e-10 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.006797 on 6 degrees of freedom
Multiple R-squared: 0.9991, Adjusted R-squared: 0.9989
F-statistic: 6428 on 1 and 6 DF, p-value: 2.536e-10

The boxcox function from the MASS package helps to obtain the value of 𝜆 as
required in the analysis of the Box-Cox transformation. Since the value of estimated 𝜆

is mlelambda=-0.7474747, we have a reciprocal transformation. The which function is
used to determine the optimum value of 𝜆, and since the value is not closer to zero, we use the
power transformation Y𝜆−1

𝜆Y𝜆−1 through the R objects ygeom and ybc to finally set up the linear



Trim Size: 170mm x 244mm Tattar c12.tex V3 - 02/10/2016 10:47 A.M. Page 451�

� �

�

Linear Regression Models 451

regression model viscosbclm. Note the reduction in variance and also the distribution of
the residuals against the fitted values in Figure 12.11. ◽

?log, ?sqrt, ?boxcox

12.8 Model Selection

Consider a linear regression model with ten covariates. The total number of possible models
is then

∑10
j=1

(
10
j

)
= 1023. The number of possible models is too enormous to investigate

each one in depth. We also have further complications. Reconsider Example 12.4.5. It is seen
from the output of the code summary(crime_rate_lm), that the variables S, Ex0, Ex1,
LF, M, N, NW, U1, and W are all insignificant variables by their corresponding p-value, as given
in column Pr(>|t|). What do we do with such variables? If we have to discard them, what
should be the procedure? For instance, it may be recalled from Example 12.6.1 that if the
variable jitter(GBH) is dropped, the variable GBH will be significant. Hence, there is a
possibility that if we drop one of the variables from crime_rate_lm, some other variable
may turn out to be significant.

The need of model selection is thus more of a necessity than a fancy. Any text on regression
models will invariably discuss this important technique. We will see the rationale behind it
with an example.
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Figure 12.11 Box-Cox Transformation for the Viscosity Data
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Example 12.8.1. The Prostate Cancer Example. In the prostate cancer study, we are inter-
ested in understanding the relationship between the logarithm of prostate specific antigen
and the predictors including logarithms of cancer volume, prostate weight, benign prostatic
hyperplasia amount, capsular penetration, and also the age, seminal vesicle invasion, Glea-
son score, and percentage Gleason scores 4 or 5. In this dataset, we have n = 97 observations
and p = 8 number of covariates. Clearly, the total number of possible regression models is∑p

j=1

(
p
j

)
= 255. We will now obtain a plot of the residual sum of squares for each of these

models. This plot is actually a beautiful programming exercise and the reader should look at
Figure 12.12 first, and follow it up with a serious attempt towards obtaining it on his own. The
codes have been provided here in the hope that the reader will only use it as a last resort.

> # The Need of Model Selection
> library(faraway)
> data(prostate)
> lspa <- prostate[,9]
> covariates <- prostate[,-9]
> covnames <- names(covariates)
> p <- length(covnames); n <- length(lspa)
> RSSmatrix <- matrix(nrow=sum(choose(8,8:1)), ncol=11)
> currrow <- 0
> for(i in 1:p) {
+ temp <- choose(p,i)
+ tempmat <- t(combn(1:8,i))
+ for(j in 1:temp) {
+ currrow <- currrow+1
+ RSSmatrix[currrow,1] <- currrow
+ RSSmatrix[currrow,tempmat[j,]+1] <- covnames[tempmat[j,]]
+ templm <- lm(lspa∼.,subset(covariates,select = tempmat[j,]))
+ RSSmatrix[currrow,10] <- sum(templm$residuals ̂ 2)
+ RSSmatrix[currrow,11] <- i
+ }
+ }
> plot(RSSmatrix[,11],RSSmatrix[,10],xlab="Number of Predictors",
+ ylab="Residual Sum of Squares")

We confirm that the R program should be referred to as a last resort only, and hence its details
are not given here. Figure 12.12 clearly shows that as the number of components of the model
increases, the RSS decreases. However, the reader can verify that the model, which has least
variance for a fixed p, need not have the p − 1 subset variables of them, as in the previous
p − 1 case. ◽

A number of methods for model selection are available, including:

• Backward elimination
• Forward selection
• Stepwise regression.
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Figure 12.12 An RSS Plot for all Possible Regression Models

12.8.1 Backward Elimination

The backward elimination method is the simplest of all variable selection procedures and
can be easily implemented without a special function/package. In situations where there is
a complex hierarchy, backward elimination can be run manually while taking account of what
variables are eligible for removal. This method starts with a model containing all the explana-
tory variables and eliminates the variables one at a time, at each stage choosing the variable
for exclusion as the one leading to the smallest decrease in the regression sum of squares.
An F-type statistic is used to judge when further exclusions would represent a significant
deterioration in the model. The algorithm of backward selection is as follows:

1. Start with all the predictors in the model.
2. Remove the predictor with highest p-value greater than 𝛼 critical.
3. Refit the model and go to 2.
4. Stop when all p-values are less than alpha critical.

The alpha critical is sometimes called the p-to-remove and does not have to be 5%. If prediction
performance is the goal, then a 15 to 20% cut-off may work best, although methods designed
more directly for optimal prediction should be preferred.

Example 12.8.2. The US Crime Data. Example 12.6.2. Contd. The backward elimination
method is illustrated for the fitted model crime_rate_lm2. Here at each stage we remove
the predictor with the largest p-value greater than 0.05. Since the p-value of regressor NM in
the summary output of summary(crime_rate_lm2) is largest, we shall eliminate it first.
The R function update will be used to re-fit a model with suitable modification.
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> crime_rate_lm3 <- update(crime_rate_lm2,.∼.-NW)
> summary(crime_rate_lm3)
Call:
lm(formula = R ∼ Age + S + Ed + Ex0 + LF + M + N + U1 + U2 +

W + X, data = usc)
Residuals:

Min 1Q Median 3Q Max
-38.755 -13.587 1.089 13.242 48.921
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -704.12001 149.69012 -4.704 3.91e-05 ***
Age 1.06420 0.38919 2.734 0.00974 **
S -7.88954 12.76942 -0.618 0.54068
Ed 1.72173 0.61413 2.804 0.00819 **
Ex0 1.00952 0.21793 4.632 4.85e-05 ***
LF -0.01727 0.13814 -0.125 0.90123
M 0.16308 0.19819 0.823 0.41615
N -0.03886 0.12634 -0.308 0.76021
U1 -0.58496 0.42003 -1.393 0.17251
U2 1.81921 0.83415 2.181 0.03600 *
W 0.13516 0.10070 1.342 0.18819
X 0.80399 0.22856 3.518 0.00123 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 21.41 on 35 degrees of freedom
Multiple R-squared: 0.7669, Adjusted R-squared: 0.6936
F-statistic: 10.47 on 11 and 35 DF, p-value: 4.008e-08

Since we have to remove theNM variable from thecrime_rate_lm2 fitted model, the option
of .∼.-NW achieves the required modification in the update function. Now the p-value of
LF is the highest in the current model and hence is eliminated using the update function
once again.

> crime_rate_lm4 <- update(crime_rate_lm3,.∼.-LF)
> summary(crime_rate_lm4)
Call:
lm(formula = R ∼ Age + S + Ed + Ex0 + M + N + U1 + U2 + W + X,

data = usc)
Residuals:

Min 1Q Median 3Q Max
-38.595 -13.628 0.876 12.927 48.991
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -700.19857 144.35146 -4.851 2.37e-05 ***
Age 1.06640 0.38344 2.781 0.008565 **
S -7.18568 11.30331 -0.636 0.528984
Ed 1.70184 0.58499 2.909 0.006176 **
Ex0 1.01444 0.21139 4.799 2.77e-05 ***



Trim Size: 170mm x 244mm Tattar c12.tex V3 - 02/10/2016 10:47 A.M. Page 455�

� �

�

Linear Regression Models 455

M 0.15059 0.16878 0.892 0.378199
N -0.04146 0.12290 -0.337 0.737825
U1 -0.56349 0.37804 -1.491 0.144793
U2 1.81277 0.82110 2.208 0.033720 *
W 0.13417 0.09901 1.355 0.183821
X 0.79674 0.21804 3.654 0.000816 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 21.11 on 36 degrees of freedom
Multiple R-squared: 0.7668, Adjusted R-squared: 0.702
F-statistic: 11.84 on 10 and 36 DF, p-value: 1.125e-08

Now, the variables which will leave the model one after the other are N, S, S, M, U1, and W.
The output for all summaries are not provided, except the final one.

> crime_rate_lm5 <- update(crime_rate_lm4,.∼.-N)
> summary(crime_rate_lm5)
> crime_rate_lm6 <- update(crime_rate_lm5,.∼.-S)
> summary(crime_rate_lm6)
> crime_rate_lm7 <- update(crime_rate_lm6,.∼.-M)
> summary(crime_rate_lm7)
> crime_rate_lm8 <- update(crime_rate_lm7,.∼.-U1)
> summary(crime_rate_lm8)
> crime_rate_lm9 <- update(crime_rate_lm8,.∼.-W)
> summary(crime_rate_lm9)
Call:
lm(formula = R ∼ Age + Ed + Ex0 + U2 + X, data = usc)
Residuals:

Min 1Q Median 3Q Max
-45.344 -9.859 -1.807 10.603 62.964
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -524.3743 95.1156 -5.513 2.13e-06 ***
Age 1.0198 0.3532 2.887 0.006175 **
Ed 2.0308 0.4742 4.283 0.000109 ***
Ex0 1.2331 0.1416 8.706 7.26e-11 ***
U2 0.9136 0.4341 2.105 0.041496 *
X 0.6349 0.1468 4.324 9.56e-05 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 21.3 on 41 degrees of freedom
Multiple R-squared: 0.7296, Adjusted R-squared: 0.6967
F-statistic: 22.13 on 5 and 41 DF, p-value: 1.105e-10

Since none of the p-values associated with the covariates in crime_rate_lm9 are greater
than 0.05, we now stop the backward selection process. Notice that the R2 for the full model
of 0.7692 is reduced only slightly to 0.7296 in the final model. Thus, the removal of eight
predictors causes only a minor reduction in fit. ◽
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The above example is really taxing and there is a need to refine this before obtaining the final
result. A customized R function which will achieve the same result is given next.

# The Backward Selection Methodology
pvalueslm <- function(lm) {summary(lm)$coefficients[,4]}
backwardlm <- function(lm,criticalalpha) {
lm2 <- lm
while(max(pvalueslm(lm2))>criticalalpha) {
lm2 <- update(lm2,paste(".∼.-",attr(lm2$terms,"term.labels")
+ [(which(pvalueslm(lm2)

==max(pvalueslm(lm2))))-1],sep=""))
}
return(lm2)
}

12.8.2 Forward and Stepwise Selection

The forward selection method reverses the backward method. This method starts with a model
containing none of the explanatory variables and then considers variables one by one for inclu-
sion. At each step, the variable added is the one that results in the biggest increase in the
regression sum of squares. An F-type statistic is used to judge when further additions would
not represent a significant improvement in the model.

1. Start with no variables in the model.
2. For all predictors not in the model, check their p-value if they are added to the model.

Choose the one with lowest p-value less than alpha critical.
3. Continue until no new predictors can be added.

For a function similar to backwardlm, refer to Chapter 6 of Tattar (2013) for an implemen-
tation of the forward selection algorithm. Stepwise regression is a combination of forward
selection and backward elimination. This addresses the situation where variables are added or
removed early in the process and we want to change our mind about them later. Starting with no
variables in the model, variables are added as with the forward selection method. Here, how-
ever, with each addition of a variable, a backward elimination process is considered to assess
whether variables entered earlier might now be removed, because they no longer contribute
significantly to the model.

We will now look at another criteria for model selection: Akaike Information Criteria, abbre-
viated as AIC. Let the log-likelihood function for a fitted regression model with p covariates be
denoted by log

(
L(𝛽0, 𝛽1, … , 𝛽p, �̂�

2|y)). The total number of estimated parameters is denoted
by K. The AIC for the regression model is then given by

AIC = 2
[
− log

(
L(𝛽0, 𝛽1, … , 𝛽p, �̂�

2|y)) + K
]
, (12.73)

where K = p + 2. The term K is referred to as the penalty term. The model which has the least
AIC value is considered the best model. For more details, refer to Sheather (2009). The use of
AIC for forward and stepwise selection will be illustrated in the following.

Example 12.8.3. The US Crime Data. Let us continue the use of the US crime dataset. The
reader is assured that the steps, or R program, is actually very simple.
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> step(crime_rate_lm,direction="both")
Start: AIC=301.66
R ∼ Age + S + Ed + Ex0 + Ex1 + LF + M + N + NW + U1 + U2 + W +

X
Df Sum of Sq RSS AIC

- NW 1 6.1 15885 299.68
- LF 1 34.4 15913 299.76
- N 1 48.9 15928 299.81
- S 1 149.4 16028 300.10
- Ex1 1 162.3 16041 300.14
- M 1 296.5 16175 300.53
<none> 15879 301.66
- W 1 810.6 16689 302.00
- U1 1 911.5 16790 302.29
- Ex0 1 1109.8 16988 302.84
- U2 1 2108.8 17988 305.52
- Age 1 2911.6 18790 307.57
- Ed 1 3700.5 19579 309.51
- X 1 5474.2 21353 313.58
Step: AIC=299.68

Step: AIC=291.83
R ∼ Age + Ed + Ex0 + U2 + W + X

Df Sum of Sq RSS AIC
<none> 17351 291.83
+ U1 1 408.6 16942 292.71
- W 1 1252.6 18604 293.11
+ Ex1 1 251.2 17100 293.14
+ LF 1 230.7 17120 293.20
+ N 1 189.6 17162 293.31
+ M 1 177.8 17173 293.35
+ S 1 71.0 17280 293.64
+ NW 1 59.2 17292 293.67
- U2 1 1628.7 18980 294.05
- Age 1 4461.0 21812 300.58
- Ed 1 6214.7 23566 304.22
- X 1 8932.3 26283 309.35
- Ex0 1 15596.5 32948 319.97
Call:
lm(formula = R ∼ Age + Ed + Ex0 + U2 + W + X, data = usc)
Coefficients:
(Intercept) Age W X
-618.5028 1.1252 0.1596 0.8236

The step function is a very generic function such as summary, plot, predict, etc., and
it may be applied to many fitted regression models. This shows that the model selected by the
stepwise regression includes the variables Age, Ed, Ex0, U2, W, and X in the best model. ◽

?choose, ?combn, ?update, ?attr, ?step
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12.9 Further Reading

In this section we consider some of the regression books which have been loosely classified
into different sections.

12.9.1 Early Classics

Draper and Smith (1966–98) is a treatise on applied regression analysis. Chatterjee and Hadi
(1977–2006) and Chatterjee and Hadi (1988) are two excellent companions for regression
analysis. Bapat (2000) builds linear models using linear algebra and the book gives the reader
an indepth knowledge of the necessary theory. Christensen (2011) develops a projective
approach for linear models. For firm foundations in linear models, the reader may also use
Rao, et al. (2008). Searle (1971) is a classic book, which is still preferred by some readers.

12.9.2 Industrial Applications

Montgomery, et al. (2003) and Kutner, et al. (2005) provide comprehensive coverages of
linear models with dedicated emphasis on industrial applications.

12.9.3 Regression Details

Belsley, Kuh and Welsh (1980), Fox (1991), Cook (1998), Cook and Weisberg (1982), Cook
and Weisberg (1994), and Cook and Weisberg (1999) are the monographs which have details
about regression diagnostics. For a robust regression model, the reader will find a very useful
source in Rousseeuw and Leroy (1987).

12.9.4 Modern Regression Texts

Andersen and Skovgaard (2010) consider many variants of regression models which have
linear predictors. Gelman and Hill (2007) develop hierarchical regression models. Freedman
(2009) is an instant classic which lays more emphasis on matrix algebra. Sengupta and Rao
(2003), Clarke (2008), Seber and Lee (2003), and Rencher and Schaalje (2008) are also useful
accounts of the linear models.

12.9.5 R for Regression

Fox (2002) is an early text on the use of R software for regression analysis. Faraway (2002) is
an open source book which has detailed R programs for linear models.

12.10 Complements, Problems, and Programs

Problem 12.1 Fit a simple linear regression model for the Galton dataset as seen in
Example 4.5.1. Compare the values of the regression coefficients of the
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linear regression model for this dataset with the previously obtained
resistant line coefficients.

Problem 12.2 Verify that Equation 12.19 is satisfied for Example 13.2.3. Fit the resistant
lines model for this dataset, and verify whether the ANOVA decomposition
holds for the fitted values obtained using the resistant line model.

Problem 12.3 Extend the concept of R2 and AdjR2 for the resistant line model. Create an
R function which will extract these two measures for a fitter resistant line
model and obtain these values for the Galton dataset, rp, and tc.

Problem 12.4 The Signif. codes as obtained by summary(lm) may be easily
customized in R to use your own cut-off points, and symbols too. There are
two elements to this, first the cut-off points for the p-values and the default
settings are cutpoints = c(0, 0.001, 0.01, 0.05, 0.1,
1), and the second part has the symbols in symbols = c("***",
"**", "*", ".", " "). Change these default settings to, say,
symbols = c("$$$", "$$", "$", ".", " ") by first running
fix(printCoefmat). Edit the printCoefmat and save it. The
changes in this object are then applied in an R session by running the code
assignInNamespace("printCoefmat", printCoefmat,
"stats") at the console. Customize your Signif. codes and
complete the program!

Problem 12.5 The model validation in Example 13.2.6 for the Toluca Company dataset has
been carried out using the residuals. The semi-Studentized residuals also
play a critical role in determining departures from the assumptions of the
linear regression model. Obtain the six plots as in that example with the
semi-Studentized residuals.

Problem 12.6 The model validation aspects need to be checked for the Rocket propellant
problem, Example 13.2.1. Complete the program for the fitted simple linear
regression model and draw the appropriate conclusions.

Problem 12.7 In Example 13.4.3, change the range of the variables x1 and x2 to x1 <-
rep(seq(-10,10,0.5),100) and x2 <- rep(seq(-10,10,
0.5),each=100) and redo the three-dimensional plot, especially for
the third linear regression model. Similarly, for the contour plot of the same
model, change the variable ranges to x1=x2=seq(from=-5,to=5,
by=0.2) and redraw the contour plot. What are your typical observations?

Problem 12.8 For the fitted linear model crime_rate_lm, using the usc dataset, obtain
the plot of residuals against the fitted values.

Problem 12.9 Verify the properties of the hat matrix H given in Equation 12.37 for the fit-
ted object crime_rate_lm, or any other fitted multiple linear regression
model of your choice.



Trim Size: 170mm x 244mm Tattar c12.tex V3 - 02/10/2016 10:47 A.M. Page 460�

� �

�

460 A Course in Statistics with R

Problem 12.10 Using self-defined functions for DFFITS and DFBETAS, as given in
Equations 12.66 and 12.65, say my_dffits and my_dfbetas, compute
the values for an ailm fitted object and compare the results with the R
functions dffits and dfbetas.

Problem 12.11 The VIF given in Equation 12.67 for a covariate requires computation
of R2, as obtained in the regression model when the covariate is an
output and other covariates are input variables for it. Thus, using
1/(1-summary(lm(xi∼x1+...+xi-1+xi+1+...+xp))$r.
squared), the VIF of the covariate xi may be obtained. Verify the VIFs
obtained in Example 13.6.2.

Problem 12.12 Identify if the multicollinearity problems exist for the fitted ailm object
using (i) VIF method, and (ii) eigen system analysis.

Problem 12.13 Carry out the Box-Cox transformation method for the bacteria_study
and compare it with the result in Example 13.7.1 of the log transformation
technique, bacterialoglm.

Problem 12.14 For the prostate cancer problem discussed in Example 13.8.1, find the best
possible linear regression model using (i) step-wise, (ii) forward, and (iii)
backward selection technique.
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Package(s): BHH2, AlgDesign, granova, multcomp, car, agricolae, phia
Dataset(s): olson, tensile, girder, Hardness, reaction, rocket, rocket_
Graeco, battery, bottling, SP, intensity

13.1 Introduction

Experimental Designs, also known as Design of Experiments (DOE), is one of the most impor-
tant pillars of statistics.

Section 13.2 will introduce the important principles of experimental design, beginning with
an interesting real experiment. The first model of the experimental design will be deliberated in
Section 13.3, and its extensions to the block design will be detailed in Section 13.4. An effective
extension and important class of models of factorial design will be taken up in Section 13.5.

13.2 Principles of Experimental Design

Salsburg (2001) has written a very interesting and historical account in his book titled “The
Lady Tasting Tea”. The first chapter, with the same title as the book, has this amazing story of a
lady who declared in a cafeteria that she can clearly distinguish between two variants of tea: (i)
tea poured into milk, and (ii) milk poured into tea. As Salsburg puts it “A thin, short man, with
thick glasses and a Vandyke beard beginning to turn gray, pounced on the problem”, and a live
experiment rolled on. The lady was then sent a sequence of different patterns of tea poured into
milk cups and milk poured into tea cups. For each cup, the lady would have one sip following
which she would declare the process she felt was the underlying preparation, and the results
would be noted down. The lady would not be told whether her observation was correct or not
at the end of each experiment. This experiment performed by the Vandyke bearded scientist
became very famous and laid the foundations of DOE. The reader may be curious to know the
answer to two points: (i) Who is this Vandyke bearded scientist? and (ii) What was the result
of the experiment? Of course, it was Sir Ronald Fisher who had this Vandyke-styled beard and

A Course in Statistics with R, First Edition. Prabhanjan Narayanachar Tattar, Suresh Ramaiah and B. G. Manjunath.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/tattar/statistics
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he put the importance of randomization in action for the tea tasting expert lady. It is important
to note here that the goal of the experiment was to test if that lady’s claim was correct or not!
The randomization prevents the effect of false guesses on the results. If the results of the “The
Lady Tasting Tea” experiment were declared, then it was a possibility that people would have
failed the concept of “randomization” and not distinguished the fact that this experiment was
about the claim of the lady. The lady was correct with all her ten guesses and this was thanks
to the fact that she was indeed an expert in making the distinction between the two methods
of tea preparation. Salsburg (2001) has built this story in a more fascinating writing and the
reader should read the same for more details.

The three important concepts of DOE are (i) Randomization, (ii) Replication, and
(iii) Blocking.

Randomization. An experimenter may or may not have biases while conducting an experi-
ment. This influence needs to be done away with before we run the experiment. For example, if
Fisher had sent first five times tea poured with milk, and then next five times milk poured with
tea to the lady, we are actually having just two observations and not ten observations. Simi-
larly, sending the two types of tea alternatively also sets in predictability. Thus, it is necessary
to mix things up and what can be better than sending the tea in a random order for removing
the experimenter’s bias.

Replication. In “The Lady Tasting Tea” example, randomization alone does not help us if
we were sending just two cups of tea to the lady. We need to ensure that the number of cups of
“tea poured into milk” and “milk poured into tea” is large enough to support our randomization
technique mentioned earlier.

Blocking. Consider an artificial example where we have to decide if the students learn better
in classrooms with or without air conditioning (AC). For students from Classes I to IV, we
have been careful enough to allocate enough numbers of students to the classrooms with and
without AC. Despite our caution, suppose that we have accidentally put all the boys in the
classrooms with AC and all the girls in the classrooms without AC. Assume that the result
shows that boys perform better than girls. Is the result acceptable? Or assume that the results
show that AC students get higher marks than non-AC students. Are the results still acceptable?
As we know that the results are not acceptable, we must understand that there are some natural
obstacles/restrictions in the nature of the experimental units. This variation in the experimental
units cannot be allowed to ruin the results of the experiments. Thus, we need to form blocks
which remove this kind of bias/error from the experiment.

We will now consider the simple experimental design, where the importance of randomiz-
ation will play the central role, in the next section.

13.3 Completely Randomized Designs

Completely Randomized Designs (CRD) is one of the first steps in DOE, and it is a simple
setup which involves replication and randomization. If the source of variation in the output is
only due to the treatments, CRD is appropriate to deduce the more effective treatments.

13.3.1 The CRD Model

Let Yij denote the jth experimental unit for the ith treatment, with j = 1, 2, · · · , r, and
i = 1, 2, · · · , 𝑣. We assume that the number of observations for each treatment is the same as
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for any other treatment. Suppose that the experimenter believes that the average yield due to
treatment i is 𝜇i. The CRD model is then expressed by

Yij = 𝜇i + 𝜖ij, j = 1, 2, · · · , r, i = 1, 2, · · · , 𝑣, (13.1)

where 𝜖ij ∼ N(0, 𝜎2),∀i, j. This model 13.1 is known as the means model. The more general
and useful mathematical model for the CRD is

Yij = 𝜇 + 𝜏i + 𝜖ij, j = 1, 2, · · · , r, i = 1, 2, · · · , 𝑣. (13.2)

The CRD model 13.2 in this form is known as the effects model. The effects model is more
feasible from a practical point of view. In this form the mean 𝜇 is thought of as some guaranteed
yield in the absence of any kind of treatment. This parameter is also known as the baseline or
control treatment. The parameter values 𝜏i are a reflection of the effect due to the treatment i.
We will consider the second format of the model throughout the rest of this section. The error
component, or the noise factor, 𝜖ij are noise factors associated with the (i, j) experimental unit.
We will assume that the errors are iid as N(0, 𝜎2), where the variance of the normal distribution
is not known. Thus, the CRD model says that the probability distribution of the experimental
units Yij is N(𝜇 + 𝜏i, 𝜎

2). The means and effects model are also related in the sense of defining
𝜇i = 𝜇 + 𝜏i, i = 1, 2, · · · , 𝑣.

In both models 13.1 and 13.2, each treatment receives an equal number of experimental
units, that is, each treatment i receives r number of units. These kinds of models are called
balanced designs. In practical setups, it may not be feasible to allocate equal numbers of units,
and we allow the i-th treatment of ri, i = 1, 2, · · · , 𝑣, number of units. In this case, the model is
called the unbalanced design. The inferential aspects of balanced or unbalanced models do not
vary drastically from each other, at least for the CRD model, and the coverage for the balanced
model is provided in the rest of this section.

The movement to Design Matrix from Covariate Matrix. The covariates x’s are missing
in the effects model 13.2! In fact, the x’s will not appear in the rest of this chapter either.
Recollect that the median polish model 4.14 also did not have the covariates x’s. However, the
covariates are very much present in these models and they have a well-defined format. Indeed,
the covariates are designed to appear in a specific way and this is the reason why we call the
covariate matrix the Design Matrix. The models in this broad area completely determine the
exact structure of the covariate matrix. In R, the function model.matrix will generate the
exact design matrix, and we will come to this function later.

Consider the effects in model 13.2. Suppose we have 𝑣 = 3 treatments and r = 4 obser-
vations for each of the treatments. Let the treatment effect be denoted by 𝜏i, i = 1, 2, 3, and let
Xi take the value of 1 if treatment i is assigned to the observation, and 0 otherwise, i = 1, 2, 3.
The design matrix X is then defined as in Table 13.1. Note that it is important to drop one of
the X1,X2,X3!

The next small sub-section will help in random allocation of the treatments to the experi-
mental units.

13.3.2 Randomization in CRD

Suppose that we have 𝑣 number of treatments and that the ith treatment, i = 1, 2, · · · , 𝑣, is
allocated r number of experimental units. Let N = 𝑣 × r be the total number of available
experimental units.
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Table 13.1 Design Matrix of a CRD with 𝑣 = 3 Treatments and
r = 4 Observations

Observation Intercept X1 X2

1 1 1 0
2 1 1 0
3 1 1 0
4 1 1 0
5 1 0 1
6 1 0 1
7 1 0 1
8 1 0 1
9 1 0 0
10 1 0 0
11 1 0 0
12 1 0 0

Example 13.3.1. Allocation of Experimental Units to Treatments. Randomization for CRD
is really simple in R. Here, we have 𝑣 = 3 and r = 4 and thus N = 12 units. Let the 12 units
be labeled from 1 to 12. Now, these 12 units need to be randomly assigned to one of the three
treatments, LETTERS[1:3]. We use the sample function to randomly assign the units to
treatments.

> treatments <- LETTERS[1:3] # 3 treatments in action
> replicates <- c(4,4,4) # number of replicates
> total_units <- 1:sum(replicates)
> unsort_tr <- rep(treatments,replicates)
> unsort_numbers <- sample(total_units,length(total_units))
> cbind(unsort_tr,unsort_numbers)

unsort_tr unsort_numbers
[1,] "A" "9"
[2,] "A" "6"
[3,] "A" "11"
[4,] "A" "8"
[5,] "B" "4"
[6,] "B" "10"
[7,] "B" "2"
[8,] "B" "12"
[9,] "C" "3"
[10,] "C" "7"
[11,] "C" "5"
[12,] "C" "1"

The above allocation is to be interpreted as follows. Treatment A is assigned the experimental
units 9, 6, 11, and 8, treatment B is assigned 4, 10, 2, and 12, whereas treatment C is allocated
with units 3, 7, 5, and 1. Note that this allocation is done before conducting the experiment.
The reader may get a different allocation based on running the code at the R terminal. ◽

The statistical inference for the CRD model will now be discussed.
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13.3.3 Inference for the CRD Models

A few standard notations are in order. The ith treatment sample sum (mean), denoted by yi. (ȳi.)
and total sample sum (mean), y.. (ȳ..), are defined by

yi. =
r∑

j=1

yij and ȳi. =
yi.

𝑣
, (13.3)

y.. =
a∑

i=1

yi. and ȳ.. =
y..
N
. (13.4)

Define the total (corrected) sum of squares, denoted by SST , as

SST =
𝑣∑

i=1

r∑
j=1

(yij − ȳ..)2. (13.5)

The ANOVA technique partitions the SST as the sum of two components: (i) the sum of squares
due to treatments SSTr, and (ii) the sum of squares due to error SSE. Here, SSTr and SSE are
defined by

SSTr = r
𝑣∑

i=1

(ȳi. − ȳ..)2, (13.6)

SSE =
𝑣∑

i=1

r∑
j=1

(yij − ȳi.)2. (13.7)

Note that SSTr accounts for the between treatments effect, and SSE accounts for the within
treatments difference. Here, SST has N − 1 degrees of freedom, whereas SSTr and SSE have
respectively 𝑣 − 1 and r − 1 degrees of freedom. It is easy to verify that

SST = SSTr + SSE.

Define

S2
i =

∑r
j=1 (yij − ȳi.)2

r − 1
, i = 1, · · · , 𝑣.

That is, S2
i is the sampling variance of the i-th treatment. We can pool these 𝑣 sampling vari-

ances and obtain the following:

(r − 1)S2
1 + · · · + (r − 1)S2

𝑣

(r − 1) + · · · + (r − 1)
=

∑𝑣
i=1

∑r
j=1 (yij − ȳi.)2∑𝑣

i=1(r − 1)
=

SSE

N − 𝑣
= MSE,

where MSE denotes the mean error sum of squares. Note that S2
i is an estimator of the variance

𝜎2 for the i-th treatment, and it may be seen that SSE∕(N − 𝑣) is an estimator of the common
variance within each of the treatments. Similarly, we can also use the variation of the treatment
averages from the grand average, under the assumption that there is no difference among the
treatment means, for estimation of 𝜎2. That is, the mean treatment sum of squares is given by

SSTr

𝑣 − 1
=

r
∑r

i=1(ȳi. − ȳ..)
𝑣 − 1

= MSTr
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Table 13.2 ANOVA for the CRD Model

Source of Variation Sum of Squares Degrees of Freedom Mean Square F-Statistic

Between Treatments SSTr 𝑣 − 1 MSTr MSTr∕MSE

Error within Treatments SSE N − 𝑣 MSE

Total SST N − 1

An interesting hypothesis testing problem is about the equality of effect of the treatment
means: H ∶ 𝜏1 = · · · = 𝜏𝑣 = 𝜏, say, against the alternative K ∶ 𝜏i ≠ 𝜏j, for some i ≠ j. The
details can then be presented in the ANOVA Table 13.2.

In light of Theorem 6.6.2, the sampling distribution of MSE and MSTr may be seen as an
𝜒2-distribution with N − 𝑣 and 𝑣 − 1 degrees of freedom respectively. Finally, the sampling
distribution of MSTr∕MSE is seen to be an F-distribution, see Theorem 6.3.4, with (N − 𝑣, 𝑣 −
1) degrees of freedom.

Before a formal illustration of the CRD model, let us take an EDA route for understanding
ANOVA. The package granova has a very interesting graphical tool granova.1w, where
1w stands for “one-way layout”. The illustration through example(granova.1w) is first
considered. The granova may be useful for outlier identification, skewness, etc.

Example 13.3.2. granova Tool for Weight Gain Problem. The weight change for 72
young female anorexia patients is available in the MASS package. Understand more about
the dataset with ?anorexia. The patients were randomly allocated to three different
treatments: CBT, Cont, and FT. The aim is to find if the weight gain is the same across the
three treatments. First, the weight gain is defined by anorexia[,3]-anorexia[,2]
and stored in w.gain. The ANOVA technique with aov clearly shows that the weight gain
across the three treatments is significantly: aov(w.gain ∼ anorexia[,1]).

> library(MASS)
> data(anorexia)
> w.gain <- anorexia[,3]-anorexia[,2]
> summary(aov(w.gain ∼ anorexia[,1]))

Df Sum Sq Mean Sq F value Pr(>F)
anorexia[, 1] 2 614.6 307.322 5.4223 0.006499 **
Residuals 69 3910.7 56.677
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
> pdf("Anorexia_granova.pdf")
> granova.1w(w.gain,group=anorexia[,1])
$grandsum

Grandmean df.bet df.with MS.bet MS.with
2.76 2.00 69.00 307.32 56.68

F.stat F.prob SS.bet/SS.tot
5.42 0.01 0.14

$stats
Size Contrast Coef Wt’d Mean Mean Trim’d Mean Var. St. Dev.

Cont 26 -3.21 -0.49 -0.45 -1.16 63.82 7.99
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CBT 29 0.24 3.63 3.01 1.80 53.41 7.31
FT 17 4.50 5.15 7.26 7.91 51.23 7.16
> dev.off()
null device

1

At the center of the plot in Figure 13.1, we see the total sample mean of the observations as
given in Equation 13.3. The blue box represents within sum of squares given in Equation 13.6,
and the red box between sum of squares in Equation 13.6. Since we reject the hypothesis that
the weight gain by different treatments are equal, it may be seen from Figure 13.1 that the
weight gain is at a maximum for FT treatment at 7.2647. ◽

In the next example, we will find out how R handles the covariates for the CRD model!

Example 13.3.3. The Tensile Strength Experiment. Page 70 of Montgomery (2005). An
engineer wants to find out if the cotton weight percentage in a synthetic fiber effects the ten-
sile strength. Towards this, the cotton weight percentage is fixed at 5 different levels of 15, 20,
25, 30, and 35. Each level of the percentage is assigned five experimental units and the tensile
strength is measured for each of them. The randomization is specified in the Run_Number
column. The goal of the engineer is to investigate if H ∶ 𝜏15 = 𝜏20 = · · · = 𝜏35, where the

One−way ANOVA displaying 3 groups
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subscript denotes the percentage level. Towards this goal, a CRD model is fitted and the
ANOVA table is obtained following the next program.

> data(tensile)
> tensile$CWP <- as.factor(tensile$CWP)
> tensile_aov <- aov(Tensile_Strength∼CWP, data=tensile)
> summary(tensile_aov)

Df Sum Sq Mean Sq F value Pr(>F)
CWP 4 475.8 118.94 14.76 9.13e-06 ***
Residuals 20 161.2 8.06
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
> model.matrix(tensile_aov)

(Intercept) CWP20 CWP25 CWP30 CWP35
1 1 1 0 0 0
2 1 0 0 1 0
3 1 1 0 0 0
4 1 0 0 0 1

12 1 0 0 0 0
13 1 0 1 0 0
14 1 1 0 0 0

24 1 0 0 1 0
25 1 0 0 0 0
attr(,"assign")
[1] 0 1 1 1 1
attr(,"contrasts")
attr(,"contrasts")$CWP
[1] "contr.treatment"

Note that since the cotton weight percentage is specified in numeric, R reads it as a numeric
vector. However, it is vital that the variable be read as a factor, otherwise the output will
be drastically different and technically wrong. The p-value clearly specifies that the weight
percentage is significant for determining the tensile strength of the fabric. The R function
model.matrix shows that the design matrix for the CRD model is appropriately prepared
as required along the lines in Table 13.1. ◽

We will consider one more example for the CRD model 13.2 from Dean and Voss (1999).

Example 13.3.4. The Olson Heart Lung Dataset. We need to determine the effect of the
number of revolutions per minute (rpm) of the rotary pump head of an Olson heart–lung pump
on the fluid flow rate Liters_minute. The rpm’s are replicated at 50, 75, 100, 125, and
150 levels with respective frequencies 5, 3, 5, 2, and 5. The fluid flow rate is measured in liters
per minute.

> data(olson)
> par(mfrow=c(2,2))



Trim Size: 170mm x 244mm Tattar c13.tex V3 - 02/10/2016 10:49 A.M. Page 469�

� �

�

Experimental Designs 469

> plot(olson$rpm,olson$Liters_minute,xlim=c(25,175),xlab="RPM",
+ ylab="Flow Rate",main="Scatter Plot")
> boxplot(Liters_minute∼rpm,data=olson,main="Box Plots")
> aggregate(olson$Liters_minute,by=list(olson$rpm),mean)
Group.1 x

1 50 1.1352
2 75 1.7220
3 100 2.3268
4 125 2.9250
5 150 3.5292
> olson_crd <- aov(Liters_minute ∼ as.factor(rpm), data=olson)
> olson_crd
Call:

aov(formula = Liters_minute ∼ as.factor(rpm), data = olson)
Terms:

as.factor(rpm) Residuals
Sum of Squares 16.12551 0.02084
Deg. of Freedom 4 15
Residual standard error: 0.03727412
Estimated effects may be unbalanced
> summary(olson_crd)

Df Sum Sq Mean Sq F value Pr(>F)
as.factor(rpm) 4 16.126 4.031 2902 <2e-16 ***
Residuals 15 0.021 0.001
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
> confint(olson_crd)

2.5 % 97.5 %
(Intercept) 1.0996698 1.1707302
as.factor(rpm)75 0.5287795 0.6448205
as.factor(rpm)100 1.1413527 1.2418473
as.factor(rpm)125 1.7233291 1.8562709
as.factor(rpm)150 2.3437527 2.4442473
> anovaPlot(olson_crd,main="Box-Hunter-Hunter ANOVA Plot")
> granova.1w(olson$Liters_minute,group=olson$rpm,
+ main="Graphical ANOVA")
$grandsum

Grandmean df.bet df.with MS.bet MS.with
F.stat F.prob SS.bet/SS.tot

2.30 4.00 15.00 4.03 0.00
2901.61 0.00 1.00

$stats
Size Contrast Coef Wt’d Mean Mean Trim’d Mean Var. St. Dev.

50 5 -1.16 1.42 1.14 1.13 0.00 0.01
75 3 -0.58 1.29 1.72 1.72 0.00 0.03
100 5 0.03 2.91 2.33 2.33 0.00 0.02
125 2 0.63 1.46 2.92 2.92 0.01 0.08
150 5 1.23 4.41 3.53 3.52 0.00 0.05
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The scatter plot clearly indicates, Figure 13.2, that as the RPM is increasing, there is an
increase in the flow rate too. This is further confirmed by the box plot which shows that the
average, actually median, levels are different, and since there is no overlap of the quantiles, the
difference is also significant. The ANOVA table may be visualized as displayed by the output of
granova.1w, and the Box-Hunter-Hunter ANOVA plot is left to the reader for interpretation.

Since the p-value, in Pr(>F), is significantly zero, we reject the hypothesis that the treat-
ment effects are equal. The 95% confidence intervals for the four treatments do not contain 0
and hence we can conclude that each of the treatments has a non-zero rpm because of it. ◽

Validation of the model assumptions is considered next.

13.3.4 Validation of Model Assumptions

The CRD model is a linear regression model, as in 12.1. The assumptions for the model are
the same as detailed in Section 12.2, that is, linearity, independent, and normality assumptions.
For the model under consideration, the plots, as in Section 12.2.6, give us all that is required.
The demonstration is carried out for Example 13.3.3.

Example 13.3.5. The Tensile Strength Experiment. Contd. The following plots are obtained
for testing the model adequacy of the CRD model for the tensile strength experiment:

• Plot of Residuals vs Predictor Variable
• Plot of Absolute Residual Values vs

Predictor Variable
• Normal Q-Q Plot

• Plot of Residuals vs Fitted Values
• Sequence Plot of the Residuals
• Box Plot of the Residuals

The next program gives the required plots.

> tensile_resid <- residuals(tensile_aov)
> pdf("Tensile_Model_Assumptions.pdf")
> par(mfrow=c(2,3))
> plot(tensile$CWP,tensile_resid,main="Plot of
+ Residuals Vs Predictor Variable",ylab="Residuals",
+ xlab="Predictor Variable")
> plot(tensile$CWP,abs(tensile_resid),main="Plot of
+ Absolute Residual Values \n Vs Predictor Variable",
+ ylab="Absolute Residuals", xlab="Predictor Variable")
> qqnorm(residuals(tensile_aov))
> qqline(residuals(tensile_aov))
> plot(tensile_aov$fitted.values,tensile_resid, main="Plot of
+ Residuals Vs Fitted Values",ylab="Residuals", xlab="Fitted
+ Values")
> plot.ts(tensile_resid, main="Sequence Plot of the Residuals")
> boxplot(tensile_resid,main="Box Plot of the Residuals")
> dev.off()
null device

1
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The randomness in the plots, see Figure 13.3, “Plot of Residuals vs Predictor Variable”, “Plot
of Absolute Residual Values vs Predictor Variable”, “Plot of Residuals vs Fitted Values”, and
“Sequence Plot of the Residuals” clearly indicate that the assumptions of linearity and indepen-
dence are appropriate for the tensile dataset. The box plot “Box Plot of the Residuals” shows
that there are no outliers, and finally the “Normal Q-Q Plot” justifies the normality assumption
for the error term. ◽

13.3.5 Contrasts and Multiple Testing for the CRD Model

Let us begin with a definition.

Definition 13.3.1 Contrast. Let 𝜏i, i = 1, · · · , 𝑣, denote the effects of 𝑣 treatments. A linear
combination of treatment effects, say Γ, is said to be a contrast if

Γ =
𝑣∑

i=1

ci𝜏i, where
𝑣∑

i=1

ci = 0. (13.8)

Example 13.3.6. Contrasts. Suppose that we have 𝑣 treatments whose effects are denoted by
𝜏i, i = 1, · · · , 𝑣. The following are then examples of contrasts:

𝜏1 − 𝜏2, c1 = 1, c2 = −1, c3 = · · · = c𝑣 = 0,

In general, 𝜏i − 𝜏j, ci = 1, cj = −1, ck = 0, k ≠ i, j.

◽

The statistical interest is in the problem of testing the hypothesis H ∶ Γ = 0 against the alterna-
tive K ∶ Γ ≠ 0. An estimate of the contrast Γ is given by

Γ̂ =
𝑣∑

i=1

ciyi..

The test procedure is to reject H if F0 > F𝛼,1,N−𝑣, where

F0 =
(∑𝑣

i=1 ciyi.

)2

vMSE
∑𝑣

i=1 c2
i

.

The test statistic F0 is rewritten as

F0 =
MSC

MSE
,

where MSC = SSC∕1 and SSC is defined by

SSC =
(∑r

i=1 ciyi.

)2

𝑣
∑r

i=1 c2
i

.

Some contrasts are considered in the next example.
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Example 13.3.7. Contrast for the Tensile Strength Experiment. The four contrasts consid-
ered are given in the following:

H(1) ∶ 𝜏4 = 𝜏5

H(2) ∶ 𝜏1 + 𝜏3 = 𝜏4 + 𝜏5

H(3) ∶ 𝜏1 = 𝜏3

H(4) ∶ 4𝜏2 = 𝜏1 + 𝜏3 + 𝜏4 + 𝜏5

The next program gives the necessary computations.

> tensileisum <- aggregate(tensile$Tensile_Strength,by=
+ list(tensile$CWP),FUN=sum)$x
> mse <- summary(tensile_aov)[[1]][2,3]
> # H : t4 = t5
> ssc <- ((tensileisum[4]-tensileisum[5]) ̂ 2)/(5*2)
> (f0 <- ssc/mse)
[1] 36.17866
> 1-pf(f0,df1=1,df2=20)
[1] 7.011202e-06
> # H : t1 + t3 = t4 + t5
> ssc <- ((tensileisum[1]+tensileisum[3]-tensileisum[4]-
+ tensileisum[5]) ̂ 2)/(5*4)
> (f0 <- ssc/mse)
[1] 3.877171
> 1-pf(f0,df1=1,df2=20)
[1] 0.06295952
> # H : t1 = t3
> ssc <- ((tensileisum[1]-tensileisum[3]) ̂ 2)/(5*2)
> (f0 <- ssc/mse)
[1] 18.87097
> 1-pf(f0,df1=1,df2=20)
[1] 0.0003147387
> # H : 4t2 = t1 + t3 + t4 + t5
> ssc <- ((4*tensileisum[2]-tensileisum[1]-tensileisum[3]-
+ tensileisum[4]-tensileisum[5]) ̂ 2)/(5*20)
> (f0 <- ssc/mse)
[1] 0.1004963
> 1-pf(f0,df1=1,df2=20)
[1] 0.7545203

It may thus be noted that at the 5% significance level, only two contrasts 𝜏4 − 𝜏5 and 𝜏1 − 𝜏3
are significant. ◽

The problem of multiple testing was dealt with in Section 7.15. Here, the results are
specialized to the CRD model.

If the hypothesis H is rejected, we know that at least two treatment levels have signifi-
cantly different effects. This calls for techniques which will help the reader to identify which
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treatments are significantly different. The details of the multiple comparison problem may be
found in Miller (1981), Hsu (1996), and Bretz, et al. (2011).

For the multiple testing problem we are familiar with the Bonferroni’s method and the
Holm’s method. Tukey’s honest significant differences, HSD, and Dunnett’s procedures are
detailed next.

In a CRD model with r treatment levels, the interest is in comparison of the equality for
each possible combination of the levels, that is, there are

(
r
2

)
possible hypotheses. Tukey’s

procedure uses the distribution of the Studentized range statistic:

q =
ȳmax − ȳmin√

MSE∕𝑣
, (13.9)

where ȳmax and ȳmin are the largest and smallest sample means out of the 𝑣 possible means.
Tukey’s HSD procedure declares two means to be significantly different if the absolute value
of their differences exceeds

T𝛼 = q𝛼(𝑣, f )
√

MSE∕n,

where q𝛼(𝑣, f ) is the upper 𝛼 percentage point of q and f is the number of degrees of freedom
associated with the MSE. Thus, a 100(1 − 𝛼) % confidence interval for all possible pairs of
means is given by

ȳi. − ȳj. − q𝛼(𝑣, f )
√

MSE∕r ≤ 𝜏i − 𝜏j ≤ ȳi. − ȳj. + q𝛼(𝑣, f )
√

MSE∕r, i ≠ j.

Suppose that one of the 𝑣 treatment levels is a control level and comparisons are required
with respect to this control level. The Dunnett’s procedure offers a solution in this case.
The hypotheses are then Hi ∶ 𝜏i = 𝜏𝑣, i = 1, · · · , 𝑣 − 1, which then need to be tested against
the set of hypotheses Ki ∶ 𝜏i ≠ 𝜏𝑣, i = 1, · · · , 𝑣 − 1. The Dunnett’s procedure begins with
computation of the differences:

|ȳi. − ȳa.|, i = 1, · · · , 𝑣 − 1.

The test procedure is to reject the hypothesis Hi at size 𝛼 if

|ȳi. − ȳa.| > d𝛼(𝑣 − 1, f )
√

MSE∕r,

where d𝛼(𝑣 − 1, f ) corresponds to Dunnett’s distribution.
The four methods of multiple testing are next illustrated for the tensile strength experiment.

Example 13.3.8. Multiple Testing for the Tensile Strength Experiment. The R package
multcomp is useful for multiple testing. For more details about the package, refer to Bretz,
et al. (2011). R codes are in action now.

> library(multcomp)
> tensile.mc <- glht(tensile_aov, linfct = mcp(CWP="Dunnett"),
+ alternative="two.sided")
> summary(tensile.mc)
Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Dunnett Contrasts
Fit: aov(formula = Tensile_Strength ∼ CWP, data = tensile)
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Linear Hypotheses:
Estimate Std. Error t value Pr(>|t|)

20 - 15 == 0 5.600 1.796 3.119 0.01867 *
25 - 15 == 0 7.800 1.796 4.344 0.00115 **
30 - 15 == 0 11.800 1.796 6.572 < 0.001 ***
35 - 15 == 0 1.000 1.796 0.557 0.94693
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
(Adjusted p values reported -- single-step method)
> summary(tensile.mc,test=adjusted(type="bonferroni"))
Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Dunnett Contrasts
Fit: aov(formula = Tensile_Strength ∼ CWP, data = tensile)
Linear Hypotheses:

Estimate Std. Error t value Pr(>|t|)
20 - 15 == 0 5.600 1.796 3.119 0.02164 *
25 - 15 == 0 7.800 1.796 4.344 0.00126 **
30 - 15 == 0 11.800 1.796 6.572 8.43e-06 ***
35 - 15 == 0 1.000 1.796 0.557 1.00000
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
(Adjusted p values reported -- bonferroni method)
> summary(tensile.mc,test=adjusted(type="holm"))
Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Dunnett Contrasts
Fit: aov(formula = Tensile_Strength ∼ CWP, data = tensile)
Linear Hypotheses:

Estimate Std. Error t value Pr(>|t|)
20 - 15 == 0 5.600 1.796 3.119 0.010818 *
25 - 15 == 0 7.800 1.796 4.344 0.000944 ***
30 - 15 == 0 11.800 1.796 6.572 8.43e-06 ***
35 - 15 == 0 1.000 1.796 0.557 0.583753
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
(Adjusted p values reported -- holm method)
> TukeyHSD(tensile_aov)
Tukey multiple comparisons of means

95% family-wise confidence level
Fit: aov(formula = Tensile_Strength ∼ CWP, data = tensile)
$Cotton_Weight_Percentage

diff lwr upr p adj
20-15 5.6 0.2270417 10.9729583 0.0385024
25-15 7.8 2.4270417 13.1729583 0.0025948
30-15 11.8 6.4270417 17.1729583 0.0000190
35-15 1.0 -4.3729583 6.3729583 0.9797709
25-20 2.2 -3.1729583 7.5729583 0.7372438
30-20 6.2 0.8270417 11.5729583 0.0188936
35-20 -4.6 -9.9729583 0.7729583 0.1162970
30-25 4.0 -1.3729583 9.3729583 0.2101089
35-25 -6.8 -12.1729583 -1.4270417 0.0090646
35-30 -10.8 -16.1729583 -5.4270417 0.0000624
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The glht function represents the General Linear Hypotheses according to the description in
the multcomp package. In Dunnett, Bonferroni, and Holm’s multiple testing procedures, the
treatment level 15 is taken as a base for the purposes of comparison. The difference between
treatment levels is shown through the p-values. The interpretation of the results is along similar
lines as earlier and obvious too. ◽

The tensile strength experiment is an example of a balanced design. Fortunately, there is
a slight change of ri, instead of the r, but all the results continue to hold. In R there are no
changes in the structure of the commands and functionality. Thus, the user can easily solve the
multiple testing problem for the Olson dataset, which is an example of an unbalanced design.

Example 13.3.9. The Olson Heart Lung Dataset. Contd. For the sake of brevity, only the R
codes are given here.

olson.mc <- glht(olson_crd, linfct = mcp(rpmf="Dunnett"),
alternative="two.sided")
summary(olson.mc)
summary(olson.mc,test=adjusted(type="bonferroni"))
summary(olson.mc,test=adjusted(type="holm"))
TukeyHSD(olson_crd)

The reader should complete the exercise of running the program and analyze the results. ◽

?sample, ?aov, ?granova.1w, ?aggregate, ?residuals, ?qqnorm, ?qqline, ?glht

13.4 Block Designs

In the CRD model, the source of variation arises due to the different treatment levels. It is also
assumed that the nuisance factor is completely unknown and uncontrollable. In the case of the
nuisance factor being known and controllable, the experiment can be designed to account for
such a source of error through blocking.

13.4.1 Randomization and Analysis of Balanced Block Designs

In a block model, a comparison needs to be carried out for the different treatment levels and
blocks. In a balanced block design, each block will have one observation per treatment level.
It is to be noted that randomization is only carried out on the treatments within a block. The
effects model for a balanced block design model is specified by

Yij = 𝜇 + 𝜏i + 𝛽j + 𝜖ij, i = 1, · · · , 𝑣, j = 1, · · · , b, (13.10)

where 𝜇 is the overall mean, 𝜏i is the effect of the i-th treatment, and 𝛽j is the effect of the
j-th block. Also, define N = 𝑣 × b. As previously we assume that the error term 𝜖ij follows a
Gaussian distribution N(0, 𝜎2).

The randomization for the above design 13.10 is illustrated next.
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Example 13.4.1. Randomization for a Balanced Block Design. Suppose that we have b = 4
blocks and 𝑣 = 5 treatment levels. Thus, we need b × 𝑣 = 20 experimental units. The problem
is that of allocating the units in such a way that meets the requirements of the model. The next
R program achieves the randomization.

> b <- 4; v <- 5
> eunits <- 1:b*v
> b_alloc <- rep(1:b,each=v)
> tlevel_alloc <- NULL
> for(i in 1:b) tlevel_alloc[((i-1)*v+1):(i*v)] <-
+ sample(1:v,rep=FALSE)
> cbind(sample(1:(b*v),rep=FALSE),b_alloc,tlevel_alloc)

b_alloc tlevel_alloc
[1,] 13 1 2
[2,] 18 1 4
[3,] 9 1 3
[4,] 5 1 1
[5,] 15 1 5
[6,] 3 2 2

[19,] 7 4 4
[20,] 12 4 2

Note the slight programming difference in randomization for block designs with that in a CRD
model. ◽

Towards inference for the randomized block design, define the following quantities:

yi. =
b∑

j=1

yij, ȳi. =
yi.

b
, i = 1, · · · , 𝑣,

y.j =
𝑣∑

i=1

yij, ȳ.j =
y.j
𝑣
, j = 1, · · · , b,

y.. =
𝑣∑

i=1

b∑
j=1

yij, ȳ.. =
y..

bv
.

The decomposition of the total sum of squares SST is given below:

SST = SSTr + SSblocks + SSE, (13.11)

where

SST =
𝑣∑

i=1

b∑
j=1

(yij − ȳ..)2,

SSTr = b
𝑣∑

i=1

(ȳi. − ȳ..)2,
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Table 13.3 ANOVA for the Randomized Balanced Block Model

Source of Variation Sum of Squares Degrees of Freedom Mean Square F-Statistic

Between Treatments SSTr 𝑣 − 1 MSTr MSTr∕MSE

Between Blocks SSblocks b − 1 MSblocks MSblocks∕MSE

Error SSE (𝑣 − 1)(b − 1) MSE

Total SST N − 1

SSblocks = 𝑣

b∑
j=1

(ȳ.j − ȳ..)2,

SSE =
𝑣∑

i=1

b∑
j=1

(yij − ȳi. − ȳ.j + ȳ..)2.

Observe that SST has N − 1 degrees of freedom, SSTr has 𝑣 − 1 df, SSblocks has b − 1 df, and
finally, SSE has (𝑣 − 1)(b − 1) df. Thus, the ANOVA table is then set up as given in Table 13.3.
The balanced block design will be illustrated now.

Example 13.4.2. Strength Dataset of a Girder Experiment. Consider the girder experi-
ment, which has 9 blocks and 4 treatments. The aim of the experiment is to find if the shear
strength depends on the blocks, varying from S1.1 to S4.2, or on the method of preparation:
Aarau, Karisruhe, Lehigh, and Cardiff. A bit of data preparation is needed from the
csv file, and post the preparation, the ANOVA table is obtained using the aov function in R.
Recollect the analysis of this dataset in Example 4.5.3 of Section 4.5 through the median polish
algorithm. The data arrangement is slightly different in the block design model.

> data(girder)
> names(girder)[2:5] <- c("Aar","Kar","Leh","Car")
> gf <- as.character(rep(girder$Girder,each=4))
> mf <- as.character(rep(colnames(girder)[2:5],9))
> ss <- NULL # Shear Strength
> for(i in 1:nrow(girder)) ss <- c(ss, as.numeric(girder[i,2:5]))
> girdernew <- data.frame(mf, gf, ss)
> ssaov <- aov(ss∼gf + mf, data=girdernew)
> summary(ssaov)

Df Sum Sq Mean Sq F value Pr(>F)
gf 8 0.0895 0.0112 1.619 0.172
mf 3 1.5138 0.5046 73.027 3.3e-12 ***
Residuals 24 0.1658 0.0069
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
> model.matrix(ssaov)

(Intercept) gfS1.2 mfCar mfKar mfLeh
1 1 0 0 0 0
2 1 0 0 1 0
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3 1 0 0 0 1
4 1 0 1 0 0
5 1 0 0 0 0
6 1 0 0 1 0
7 1 0 0 0 1
8 1 0 1 0 0

33 1 0 0 0 0
34 1 0 0 1 0
35 1 0 0 0 1
36 1 0 1 0 0

After reading the data, the names of the variables have been curtailed to ensure
the output of model.matrix displays all the variables in a single line. The codes
rep(girder$Girder,each=4) and rep(colnames(girder)[2:5],9) with
as.character ensures that the block design is clearly told that these two inputs are
factors. The vector ss now contains the shear strength for each combination of the method
of preparation and the girder. Finally, aov(ss gf + mf, data=girdernew) sets
up the required block design in R. The interpretation is as follows. The large p-value of
0.172 with girderf suggests that the blocks have insignificant effect on the output.
However, the method of preparation is found to have significant effects on the strength
of the material. ◽

As seen in Models 13.2, 13.10, etc., these linear models need to be investigated for model
assumptions and other regression diagnostics too. Can it be said without loss of generality
that leverages are not a concern in DOE since all the covariate values are fixed? Now, we
consider an example from Montgomery (2005), wherein we will investigate issues related to
model adequacy.

Example 13.4.3. Hardness Example. Four types of tip are used which form the blocks in this
experiment. The variable of interest is the hardness which further depends on the type of metal
coupon. For each type of tip, the hardness is observed for four different types of metal coupon.
In the next R segment, an ANOVA is first obtained to check if the tip type and coupon type
effect the hardness of the coupon. The assumption of normality for the model error is validated
through the “Q-Q” plot. Diagnostic measures, leverage points, etc., are obtained using the
functions as seen earlier for the linear regression model and the CRD model, Sections 12.5
and 13.3.

> data(hardness)
> hardness$Tip_Type <- as.factor(hardness$Tip_Type)
> hardness$Test_Coupon <- as.factor(hardness$Test_Coupon)
> hardness_aov <- aov(Hardness∼Tip_Type+Test_Coupon,data=hardness)
> summary(hardness_aov)

Df Sum Sq Mean Sq F value Pr(>F)
Tip_Type 3 0.385 0.12833 14.44 0.000871 ***
Test_Coupon 3 0.825 0.27500 30.94 4.52e-05 ***
Residuals 9 0.080 0.00889
---
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Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
> p <- 7
> diagnostics_matrix <- matrix(nrow=nrow(hardness),ncol=8)
> colnames(diagnostics_matrix) <- c("Obs No.","y","Pred y",
+ "Residual","Leverage","S.Residual","Cooks.Dist","Outlier")
> diagnostics_matrix[,1] <- 1:nrow(hardness)
> diagnostics_matrix[,2] <- hardness$Hardness
> diagnostics_matrix[,3] <- hardness_aov$fitted.values
> diagnostics_matrix[,4] <- round(hardness_aov$residuals,3)
> diagnostics_matrix[,5] <- influence(hardness_aov)$hat
> diagnostics_matrix[,6] <- round(rstandard(hardness_aov),3)
> diagnostics_matrix[,7] <- round(cooks.distance(hardness_aov),3)
> diagnostics_matrix[,8] <- diagnostics_matrix[,6]*sqrt((16-p-1)/
+ (16-p-diagnostics_matrix[,6] ̂ 2))
> diagnostics_matrix

Obs No. y Cooks.Dist Outlier
[1,] 1 9.3 0.056 -0.686
[2,] 2 9.4 0.014 0.336
[3,] 3 9.6 0.125 -1.069
[4,] 4 10.0 0.222 1.512

[15,] 15 10.0 0.014 0.336
[16,] 16 10.2 0.000 0.000
> par(mfrow=c(2,3)); plot(hardness_aov,which=1:6)
+ # Output suppressed

The R lm complementary functions influence, rstandard, and cooks.distance
have again been used for the diagnostics of the fitted hardness_aov object. The “Q-Q”
plot, see Figure 13.4, shows that the normality assumption is appropriate for the current dataset.
Since the Cooks distance does not exceed 1 for any of the observations, we do not have any
influential observation. ◽

13.4.2 Incomplete Block Designs

The constraints of the real world may not allow each block to have an experimental unit for
every treatment level. The restriction may force allocation of only k < 𝑣 units within each
block. Such models are called incomplete block designs. If in an incomplete block design, any
two treatments pair appearing together, across the blocks, occurring an equal number of times,
the designs are then called balanced incomplete block designs, abbreviated as BIBD. It may
be seen that a BIBD may be constructed in

(
𝑣

k

)
different ways.

The setup is now recollected again. We have 𝑣 treatments, b distinct blocks, k is the number
of units appearing in a block, and N = k × b = r × 𝑣 is the total number of observations, where
r is the number of times a treatment appears in the design. Then, the number of times each
pair of treatments appears in the same block is given by

𝜆 = r(k − 1)
𝑣 − 1

. (13.12)
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Figure 13.4 A qq-Plot for the Hardness Data

The statistical model for BIBD is given by

Yij = 𝜇 + 𝜏i + 𝛽j + 𝜖ij, i = 1, 2, · · · , 𝑣, j = 1, 2, · · · , b, (13.13)

where Yij is the ith observation in the jth block, 𝜇 is the overall mean, 𝜏i is the effect of the ith

treatment, and 𝛽j is the effect of the jth block. The error term 𝜖ij is assumed to follow N(0, 𝜎2).
The total variability needs to be handled in a slightly different manner. Define

Qi = yi. −
1
k

b∑
j=1

nijy.j, i = 1, · · · , 𝑣, (13.14)

where

nij =
{

1, if treatment i appears in block j,
0, otherwise.

Using the Qi’s, the adjusted treatment sum of squares is defined by

SS(adj)Tr =
k
∑𝑣

i=1 Q2
i

𝜆𝑣
.

Thus, the total variability is partitioned by

SST = SS(adj)Tr + SSblocks + SSE, (13.15)

where

SSblocks =
1
k

b∑
j=1

y2
.j −

y2
..

N
,
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Table 13.4 ANOVA for the BIBD Model

Source of Variation Sum of Squares Degrees of Freedom Mean Square F-Statistic

Between Treatments SS(adj)Tr 𝑣 − 1 MSTr
MSTr

MSE

Between Blocks SSblocks b − 1 MSblocks
MSblocks

MSE

Error SSE N − 𝑣 − b + 1 MSE

Total SST N − 1

SST =
b∑

j=1

nij∑
i=1

y2
ij −

y2
..

N
,

SSE = SST − SS(adj)Tr − SSblocks.

The ANOVA table for BIBD model is given in Table 13.4.
The function BIB.test from the agricolae package is useful to fit a BIBD model.

Example 13.4.4. Chemical Reaction Experiment. For a chemical reaction experiment, the
blocks arise due to the Batch number, Catalyst of different types from the treatments, and
the reaction time is the output. Due to a restriction, all the catalysts cannot be analysed within
each batch and hence we need to look at the BIBD model. Using the BIB.test function
from the agricolae package, a summary of the ANOVA model related to the BIBD model
is obtained.

> library(agricolae)
> data(reaction)
> attach(reaction)
> BIB.test(block=Batch,trt=Catalyst,y=Reaction)
ANALYSIS BIB: Reaction
Class level information
Block: 1 2 3 4
Trt : 1 2 3 4
Number of observations: 16
Analysis of Variance Table
Response: Reaction

Df Sum Sq Mean Sq F value Pr(>F)
block.unadj 3 55.00 18.3333 28.205 0.001468 **
trt.adj 3 22.75 7.5833 11.667 0.010739 *
Residuals 5 3.25 0.6500
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
coefficient of variation: 1.1 %
Reaction Means: 72.5

The computed ANOVA table shows that both the catalyst and the batch have a significant effect
on the reaction of the units. ◽

Two very important variations of the BIBD will be considered in the rest of the section.
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13.4.3 Latin Square Design

In each of the Examples 13.4.1 to 13.4.4, and the blocking models 13.2 and 13.10, we had a
single source of known and controllable source of variation and we use the blocking principle
to overcome this. Suppose now that there are two ways or sources of the variation which may
be controlled through blocking! Consider the following example from Montgomery (2001),
page 144.

Example 13.4.5. Rocket Propellant Example. Five different formulations of a rocket pro-
pellant x1 may be used in an aircrew escape system at the observed burning rate Y . Here, each
of the formulations is prepared by mixing from a batch of raw materials x2, which can support
only five formulations required for the purpose of testing. However, each of the formulations is
prepared by different operators x3, who in turn may have substantial differences in their skills
and experience. Thus, the source of variation for this experiment arises from the type of raw
material and skill and experience of the operators. Model 13.10 thus needs to be extended so
that the burning rate can be modeled for the different formulations at each level of raw material
and operator. ◽

In the above example, we need to ensure that each type of formulation occurs exactly once
for the type of raw material and also that each formulation is prepared exactly once by each of
the five operators. This type of problem is handled by the Latin Square Design, abbreviated as
LSD, and we use the Latin letters to represent the type of formulations. A simple technique is
to set up an LSD for say p formulations, set up in the first row of the design as 1, 2, … , p, the
second row as 2, 3, … , k,1, the third row as 3, 4, … , p, 2, 1, and so forth until the last row
as p, p − 1, … , 3, 2, 1. There are many other techniques available for creating an LSD, such
as Wichmann-Hill, Marsaglia-Multicarry, Mersenne-Twister, Super-Duper, etc. A couple of
illustrations are given next using the design.lsd function from the agricolae package.

Example 13.4.6. Setting up LSDs. A simple 3-treatment LSD is first set up, and then a
5-treatment LSD is produced. First, we show how the entire LSD setup looks for two examples,
and then follow it up with the simple rectangular displays of LSD.

> design.lsd(letters[1:3],kinds="super-duper")
plots row col letters[1:3]

1 1 1 1 a
2 2 1 2 b
3 3 1 3 c
4 4 2 1 c
5 5 2 2 a
6 6 2 3 b
7 7 3 1 b
8 8 3 2 c
9 9 3 3 a
> design.lsd(letters[1:3],kinds="super-duper")
plots row col letters[1:3]

1 1 1 1 a
2 2 1 2 b
3 3 1 3 c
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4 4 2 1 b
5 5 2 2 c
6 6 2 3 a
7 7 3 1 c
8 8 3 2 a
9 9 3 3 b
> matrix(design.lsd(LETTERS[1:3])[,4],nrow=3)

[,1] [,2] [,3]
[1,] "A" "C" "B"
[2,] "B" "A" "C"
[3,] "C" "B" "A"
> Formulations <- paste("F",1:5,sep="")
> matrix(design.lsd(Formulations,kinds="Marsaglia-Multicarry")
+ [,4],nrow=5)

[,1] [,2] [,3] [,4] [,5]
[1,] "F1" "F5" "F2" "F3" "F4"
[2,] "F2" "F1" "F3" "F4" "F5"
[3,] "F3" "F2" "F4" "F5" "F1"
[4,] "F4" "F3" "F5" "F1" "F2"
[5,] "F5" "F4" "F1" "F2" "F3"

Thus, we have used the design.lsd function to set up LSDs. ◽

The LSD model and its statistical analyses is now detailed. The LSD statistical model is
specified by

Yijk = 𝜇 + 𝜏i + 𝛽j + 𝛾k + 𝜖ijk, i, j, k = 1, · · · , p. (13.16)

Here, 𝜏i will continue to represent the effect of the i-th treatment (or formulation), 𝛽j for the
row (block) effect (raw material), and 𝛾k for the column (block) effect (operator). The errors
are assumed to follow normal distribution N(0, 𝜎2. The ANOVA decomposition of the sum of
squares for the LSD model 13.16 will be as follows:

SST = SSRow + SSColumn + SSTr + SSE, (13.17)

where

SST =
p∑

i=1

p∑
j=1

p∑
k=1

y2
ijk −

y2
...

p2
,

SSRow = 1
p

p∑
j=1

y2
.j. −

y2
...

p2
,

SSColumn = 1
p

p∑
k=1

y2
..k −

y2
...

p2
,

SSTr =
1
p

p∑
i=1

y2
i.. −

y2
...

p2
, and

SSE = SST − SSTreatment − SSRow − SSColumn.
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Table 13.5 ANOVA for the LSD Model

Source of Variation Sum of Squares Degrees of Freedom Mean Square F-Statistic

Between Treatments SSTr p − 1 MSTr
MSTr

MSE

Between Rows SSRow p − 1 MSRow
MSRow

MSE

Between Columns SSColumn p − 1 MSColumn
MSColumn

MSE

Error SSE (p − 1)(p − 2) MSE

Total SST p2 − 1

The ANOVA table for the LSD is given in Table 13.5. For Example 13.4.5, the R method is
illustrated next.

Example 13.4.7. Rocket Propellant Example. The data from Table 4.9 of Montgomery
(2002) is available on the rocket. After reading the data in R, we check for the LSD
arrangement with matrix(rocket$treat,nrow=5). Since each of the formulations,
raw materials, and operators is supposed to be a factor variable, the plot of the burning rate
(y in the data frame) against these variables will give us a box plot. The graphical output
(the figure is suppressed here) clearly indicates that the burning rate y depends on each of
the three factors. The aov function is again used for analyzing the model here.

> data(rocket)
> matrix(rocket$treat,nrow=5)

[,1] [,2] [,3] [,4] [,5]
[1,] "A" "B" "C" "D" "E"
[2,] "B" "C" "D" "E" "A"
[3,] "C" "D" "E" "A" "B"
[4,] "D" "E" "A" "B" "C"
[5,] "E" "A" "B" "C" "D"
> par(mfrow=c(1,3)) # Graphical output suppressed again
> plot(y∼op+batch+treat,rocket)
> rocket.lm <- lm(y∼factor(op)+factor(batch)+treat,rocket)
> anova(rocket.lm)
Analysis of Variance Table
Response: y

Df Sum Sq Mean Sq F value Pr(>F)
factor(op) 4 150 37.500 3.5156 0.040373 *
factor(batch) 4 68 17.000 1.5937 0.239059
treat 4 330 82.500 7.7344 0.002537 **
Residuals 12 128 10.667
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

The analysis output clearly shows that the formulation level (treat) and the type of operator
(op) clearly influence the burning rate (y). ◽
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Table 13.6 The GLSD Model

LSD GSD GLSD

A B C 𝛼 𝛽 𝛾 A𝛼 B𝛽 C𝛾
B C A 𝛽 𝛾 𝛼 B𝛽 C𝛾 A𝛼

C A B 𝛾 𝛼 𝛽 C𝛾 A𝛼 B𝛽

There are many other useful variants of LSD and the reader may refer to Chapter 10 of
Hinkelmann and Kempthorne (2008) for the same. An extension of the LSD is considered in
the next topic.

13.4.4 Graeco Latin Square Design

Suppose that there is an extra source of randomness for the Rocket Propellant problem in
Example 13.4.5 in test assemblies, which forms an additional type of treatment. Now, it is
obvious that this is a second treatment which may be again addressed by another LSD. Let us
denote the second treatment by Greek letters, say 𝛼, 𝛽, 𝛾 , 𝛿, and 𝜖. There is symbolic confusion
in the sense that the Greek letters of 𝛽, 𝛾 , and 𝜖 may be confused with the notations used in
Model 13.16. However, we will use the notations as elements of the LSD matrix. It should
be clear from the context whether the notations are as in the Greek letters required or in the
statistical model. Now, the LSD matrices for the two treatments are superimposed on each
other to obtain the Graeco-Latin Square Design model. Table 13.6 shows how superimposing
is done for two simple LSDs to obtain the GLSD.

In more formal terms, the Graeco-Latin square design model, abbreviated as GLSD, is
specified by

Yijk = 𝜇 + 𝜏i + 𝜓l + 𝛽j + 𝛾k + 𝜖iljk, i, l, j, k = 1, · · · , p, (13.18)

where 𝜓l now denotes the effect of the additional treatment. A couple of GLSDs will be first
set up.

Example 13.4.8. Setting up the GLSDs. The function design.graeco from the agri-
colae package helps in setting up a GLSD. In general, LSDs and GLSDs are also nice to
visualize and this example will visualize the latter through the R program. Essentially, we
would like to produce a GLSD of any order, which can be displayed as in the form of Table 13.6.
If we were to skip the Greek letters and obtain the GLSD as two LSDs superimposed on each
other, the task is fairly simple. First, we create two LSDs using design.lsd and use the
paste function to get the desired result. However, the Greek letters can be displayed in a plot
and hence the GLSD can be visualized.

> LSD1 <- matrix(design.lsd(LETTERS[1:3])[,4],nrow=3)
> LSD2 <- matrix(design.lsd(LETTERS[4:6])[,4],nrow=3)
> GLSD <- matrix(paste(LSD1,LSD2,sep=""),nrow=3)
> LSD1; LSD2; GLSD
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[,1] [,2] [,3]
[1,] "A" "C" "B"
[2,] "B" "A" "C"
[3,] "C" "B" "A"

[,1] [,2] [,3]
[1,] "D" "F" "E"
[2,] "E" "D" "F"
[3,] "F" "E" "D"

[,1] [,2] [,3]
[1,] "AD" "CF" "BE"
[2,] "BE" "AD" "CF"
[3,] "CF" "BE" "AD"
> GLSD_Length <- function(n){
+ Greek <- c("alpha","beta","gamma","delta","epsilon","zeta","eta",
+ "theta","iota","kappa","lambda","mu","nu","xi","omicron","pi",
+ "rho","sigma","tau","upsilon","phi","chi","psi","ometa")
+ Latin <- LETTERS[1:n]
+ greek <- 1:n; latin <- 1:n
+ My_Graeco <- design.graeco(latin,greek)
+ My_Graeco
+ Latin_Matrix <- matrix(as.numeric(My_Graeco[,4]),nrow=n) # Latin
+ Greek_Matrix <- matrix(as.numeric(My_Graeco[,5]),nrow=n) # Greek
+ plotSquareMatrix <- function(X,Y){
+ n <- nrow(X)
+ reverseIndex <- n:1
+ plot(0:(n+1),0:(n+1),type="n",axes=FALSE,xlab="",ylab="")
+ title("A Graeco-Latin Square Design")
+ for(i in 1:n){
+ for(j in 1:n){
+ text(j,reverseIndex[i], as.expression(substitute(A (B),
+ list(A = as.name(Latin[X[i,j]]),B = as.name(Greek[Y[i,j]])))))
+ }
+ }
+ }
+ plotSquareMatrix(Latin_Matrix,Greek_Matrix)
+ }
> GLSD_Length(10)

The first three lines of the above program simply superimpose two LSDs and give a GLSD
as an output. Next, we define the function GLSD_Length, which will help generate a
GLSD of order n. The design.graeco function can create a GLSD of order 14, although
we have considered more Greek letters. Thus, the objects Greek and Latin store the
Greek and Latin letters. A GLSD is obtained using the design.graeco function. The
matrices Latin_Matrix and Greek_Matrix constitutes two LSDs, which need to
be superimposed upon each other. The function plotSquareMatrix is defined within the
GLSD_Length function, which helps to visualize a square matrix, as seen at the console
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A Graeco–Latin Square Design

H(𝜄) B(𝜃) I(𝛾) G(𝜂) F(𝜁 ) A(𝛽) C(𝛼) D(𝛿) J(𝜖) E(𝜅)
E(𝛼) D(𝜖) B(𝜄) I(𝜃) A(𝜂) F(𝛿) H(𝛽) J(𝛾) C(𝜅) G(𝜁 )
D(𝛽) G(𝛼) J(𝜅) B(𝜖) I(𝜄) H(𝜂) F(𝛾) C(𝜃) E(𝜁 ) A(𝛿)
F(𝜃) J(𝛽) A(𝛼) C(𝜁 ) B(𝜅) I(𝜖) D(𝜂) E(𝜄) G(𝛿) H(𝛾)
J(𝜂) F(𝜄) C(𝛽) H(𝛼) E(𝛿) B(𝜁 ) I(𝜅) G(𝜖) A(𝛾) D(𝜃)
I(𝜁 ) C(𝜂) F(𝜖) E(𝛽) D(𝛼) G(𝛾) B(𝛿) A(𝜅) H(𝜃) J(𝜄)
B(𝛾) I(𝛿) E(𝜂) F(𝜅) G(𝛽) J(𝛼) A(𝜃) H(𝜁 ) D(𝜄) C(𝜖)
C(𝛿) E(𝛾) G(𝜃) A(𝜄) H(𝜖) D(𝜅) J(𝜁 ) F(𝛼) B(𝜂) I(𝛽)
A(𝜖) H(𝜅) D(𝜁 ) J(𝛿) C(𝛾) E(𝜃) G(𝜄) B(𝛽) I(𝛼) F(𝜂)
G(𝜅) A(𝜁 ) H(𝛿) D(𝛾) J(𝜃) C(𝜄) E(𝜖) I(𝜂) F(𝛽) B(𝛼)

Figure 13.5 Graeco-Latin Square Design

on a graphical device. The R code in the loop for(j in 1:n) is motivated from http://
stackoverflow.com/questions/13169318/r-creating-vectors-of-latin-greek-expression-for-
plot-titles-axis-labels-or-l. The resulting display is given in Figure 13.5. ◽

The ANOVA decomposition of the sum of squares for the GLSD model 13.18 will be as
follows:

SST = SSRow + SSColumn + SSLatin + SSGreek + SSE, (13.19)

where

SSRow = 1
p

p∑
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y2
..j. −

y2
....

p2
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p
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....

p2 ,
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p
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i... −
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....

p2
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1
p
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.i.. −
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....

p2

SST =
p∑

i=1

p∑
j=1

p∑
k=1

y2
iljk −

y2
....

p2
, SSE = SST − SSLatin − SSGreek − SSRow − SSColumn.

The ANOVA table for the GLSD is given in Table 13.7. For Example 13.4.5, the R method is
illustrated next.

Example 13.4.9. Extending the Rocket Example. In continuation of Example 13.4.7 of
the Rocket Propellant data, we now have the added blocking factor in test assemblies. This
dataset is available in the rocket_Graeco data frame from the companion package. Using

http://stackoverflow.com/questions/13169318/r-creating-vectors-of-latin-greek-expression-for-plot-titles-axis-labels-or-l
http://stackoverflow.com/questions/13169318/r-creating-vectors-of-latin-greek-expression-for-plot-titles-axis-labels-or-l
http://stackoverflow.com/questions/13169318/r-creating-vectors-of-latin-greek-expression-for-plot-titles-axis-labels-or-l
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Table 13.7 ANOVA for the GLSD Model

Source of Variation Sum of Squares Degrees of Freedom Mean Square F-Statistic

Between Latin Treatments SSLatin p − 1 MSLatin
MSLatin

MSE

Between Greek Treatments SSGreek p − 1 MSGreek
MSGreek

MSE

Between Rows SSRow p − 1 MSRow
MSRow

MSE

Between Columns SSColumn p − 1 MSColumn
MSColumn

MSE

Error SSE (p − 1)(p − 3) MSE

Total SST p2 − 1

assembly as the additional blocking variable, we continue to use the lm function and then
the anova function to obtain the results.

> data(rocket_Graeco)
> par(mfrow=c(2,2))
> plot(y∼op+batch+treat+assembly,rocket_Graeco) # output suppressed
> rocket.glsd.lm <- lm(y∼factor(op)+factor(batch)+treat+assembly,
+ rocket_Graeco)
> anova(rocket.glsd.lm)
Analysis of Variance Table
Response: y

Df Sum Sq Mean Sq F value Pr(>F)
factor(op) 4 150 37.50 4.5455 0.032930 *
factor(batch) 4 68 17.00 2.0606 0.178311
treat 4 330 82.50 10.0000 0.003344 **
assembly 4 62 15.50 1.8788 0.207641
Residuals 8 66 8.25
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

The result, in comparison with the ANOVA table in Example 13.4.7, shows that using the
assembly as an additional variable reduces the experimental errors from 128 to 66,
although we now have reduced degrees of freedom. ◽

We now move to more important and complex experimental designs.

13.5 Factorial Designs

Factorial designs1 are useful in experiments involving two or more factor variables. Suppose
that there are two factor variables, with variable 1 having a levels and variable 2 having b
levels. A factorial design investigates all possible combinations of the levels of the factors.

1The term factorial here refers as in factors and not the mathematical formula as n! = n × (n − 1) × · · · × 2 × 1.
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In simple words, if factor A is at a levels, factor B at b levels, and factor C at c levels, a
factorial design will investigate all possible levels a × b × c. It is then common practice to
say that factors are crossed, implying that each factor variable level also has a corresponding
observation among the levels of other factors. In factorial designs, the interest is more often to
determine if there is an interaction between some combination of the factor levels. What does
interaction really mean? In general, the main effects of a factor are observed to be the changes in
the regressand due to the changes of the factor levels. However, if the changes in such expected
values of the regressand also depend on the levels of other factor variables, we believe that there
is an interaction effect between the factor variables. In the previously discussed designs in
Sections 13.3 and 13.4, the factors were implicitly assumed to not have any kind of interaction
among their different levels. Recollect from the three-dimensional scatter plot in Figure 12.6
and the cantor plot in Figure 12.7, the model 12.31 consisted of straight lines or planes only.
However, for the models 12.31 and Figure 13.6, the three-dimensional plots and cantor plots
had curvi-linear shapes in them, which is then an indication of the presence of interaction
among the variables.

Sir R.A. Fisher advocated the use of a complex design like factorial designs with “No
aphorism is more frequently repeated in connection with field trials, than that we must ask
Nature a few questions, or, ideally, one question, at a time. The writer is convinced that this
view is wholly mistaken.” To understand this advantage, consider two factorial variables at
two levels each. Suppose that two factor variables, A and B, are both available at levels high H
and low L. Then the four possible combinations of the two treatments are AHBH , AHBL, ALBH ,
and ALBL. If low refers to the absence of factor levels, it is also a common practice to denote
these respective combination levels with ab, a, b, and (1). Suppose we are interested in find-
ing the effect of changing the factors A and B. A rule of thumb is to take two observations at
each combination level of the factors in the presence of the experimental error. Now, the effect
of treatment factor A is found by the difference in the combination level of AHBL − ALBL,
while that of B is with ALBH − ALBL. Thus, we require data on the three combination levels
AHBL, ALBL, and ALBH , or equivalently six observations only. In a full factorial experiment,
we would also have two more data points at the combination level AHBH . Now, we can obtain
two main effects for A with AHBH − ALBH and AHBL − ALBL, and two main effects for B too
with AHBH − ALBH and AHBL − ALBL.

In the remainder of this section, we will consider some useful factorial designs. The focus
will be only on fixed effects models.

13.5.1 Two Factorial Experiment

Consider the case of two factor variables. Suppose that factor A is at a levels, and B at b levels.
The two factorial design model is given by

Yijk = 𝜇 + 𝜏i + 𝛽j + (𝜏𝛽)ij + 𝜖ijk, i = 1, · · · , a, j = 1, · · · , b, k = 1, · · · , n. (13.20)

Here, 𝜇 is the overall mean effect, 𝜏i is the effect of the i-th factor level of A, 𝛽j is the j-th
effect of the factor B, and (𝜏𝛽)ij is the interaction effect between the variables. The ANOVA
decomposition of the sum of squares for the two factorial experiments is given by

SST = SSA + SSB + SSAB + SSE, (13.21)
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where

SST =
a∑

i=1

b∑
j=1

n∑
k=1

(yijk − ȳ...)2,

SSA = bn
a∑

i=1

(ȳi.. − ȳ...)2,

SSB = an
b∑

j=1

(ȳ.j. − ȳ...)2,

SSAB = n
a∑

i=1

b∑
j=1

(ȳij. − ȳi.. − ȳ.j. + ȳ...)2,

SSE =
a∑

i=1

b∑
j=1

n∑
k=1

(yijk − ȳij.)2.

The computation of SSAB involves two stages. Since such issues do not exist when we use R,
we skip this detail. The ANOVA table for the two-factorial model is given in Table 13.8. The
hypotheses problems of interest here are the following:

1. Testing for Factor A:

HA ∶ 𝜏1 = · · · = 𝜏a = 0 against KA ∶ 𝜏i ≠ 0, for some i.

2. Testing for Factor B:

HB ∶ 𝛽1 = · · · = 𝛽b = 0 against KB ∶ 𝛽j ≠ 0, for some j.

3. Testing for the Interaction of factors:

HAB ∶ (𝜏𝛽)ij = 0,∀i, j, against KAB ∶ (𝜏𝛽)ij ≠ 0, for some i, j.

The two-factorial experiment is now illustrated with an example from Montgomery (2005).

Table 13.8 ANOVA for the Two Factorial Model

Source of Variation Sum of Squares Degrees of Freedom Mean Square F-Statistic

Treatment A SSA a − 1 MSA
MSA

MSE

Treatment B SSB b − 1 MSB
MSB

MSE

Interaction SSAB (a − 1)(b − 1) MSAB
MSAB

MSE

Error SSE ab(n − 1) MSE

Total SST abn − 1
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Example 13.5.1. Two Factorial Experiment for Battery Data. An engineer designs a bat-
tery to be used in a device, which will be subject to extreme variations in temperature, and as
a blocking variable he has some control on the type of plate material among three different
choices. The engineer has no control on the temperature variations once the device leaves the
factory. Thus, the task of the engineer is to investigate two major problems: (i) The effect of
material type and temperature on the life of the device, and (ii) Finding the type of material
which has least variation among the varying temperature levels. The temperature in the study is
at three levels of 15, 70, and 1250 Fahrenheit, while there are three different types of material.
For each combination of the temperature and material, four replications of the life of the bat-
tery are tested. This dataset is available in the battery.txt file. Thus, the two-factorial
experiment for this problem is given by

YLife,ijk = 𝜇 + 𝜏Temperature,i + 𝛽Material,j + (𝜏𝛽)ij + 𝜖ijk, i, j = 1, 2, 3, k = 1, 2, 3, 4.

The reader may refer to Example 5.3.1 of Montgomery (2005) for more details of this
experiment.

> data(battery)
> names(battery) <- c("L","M","T")
> battery$M <- as.factor(battery$M)
> battery$T <- as.factor(battery$T)
> battery.aov <- aov(L∼M*T,data=battery)
> model.matrix(battery.aov)

(Intercept) M2 M3 T70 T125 M2:T70 M3:T70 M2:T125 M3:T125
1 1 0 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0 0
3 1 0 0 0 0 0 0 0 0
4 1 0 0 0 0 0 0 0 0
5 1 1 0 0 0 0 0 0 0

32 1 1 0 0 1 0 0 1 0
33 1 0 1 0 1 0 0 0 1
34 1 0 1 0 1 0 0 0 1
35 1 0 1 0 1 0 0 0 1
36 1 0 1 0 1 0 0 0 1
attr(,"assign")
[1] 0 1 1 2 2 3 3 3 3
attr(,"contrasts")
attr(,"contrasts")$M
[1] "contr.treatment"
attr(,"contrasts")$T
[1] "contr.treatment"
> summary(battery.aov)

Df Sum Sq Mean Sq F value Pr(>F)
M 2 10684 5342 7.911 0.00198 **
T 2 39119 19559 28.968 1.91e-07 ***
M:T 4 9614 2403 3.560 0.01861 *
Residuals 27 18231 675
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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The reader is advised to interpret the working design matrix as given by model.matrix
(battery.aov). The factor variables have been renamed for simplicity’s sake only. Using
the aov function, the linear model for this factorial experiment is set up. The code sum-
mary(battery.aov) shows that both material and temperature and their interaction are
significant variables for explaining the life of the device. Now that it is known that the inter-
action effect is significant, a question that arises is what does it look like? Using the two
functions plot.design and interaction.plot, the average life at the different factor
levels are visualized. The multiple comparisons are obtained using the glht function from
the multcomp package.

> par(mfrow=c(1,2))
> plot.design(L∼M+T,data=battery)
> interaction.plot(battery$T,battery$M,battery$L,type="b",pch=19,
+ fixed=TRUE,xlab="Temperature",ylab="Average life")
> glht(battery.aov,linfct=mcp(M="Dunnett"),alternative="two.sided",
+ interaction=TRUE)

General Linear Hypotheses
Multiple Comparisons of Means: Dunnett Contrasts
Linear Hypotheses:

Estimate
2 - 1 == 0 21.00
3 - 1 == 0 9.25
Warning message:
In mcp2matrix(model, linfct = linfct) :
covariate interactions found -- default contrast might be

+ inappropriate
> glht(battery.aov,linfct=mcp(M="Tukey"),alternative="two.sided",
+ interaction=TRUE)

General Linear Hypotheses
Multiple Comparisons of Means: Tukey Contrasts
Linear Hypotheses:

Estimate
2 - 1 == 0 21.00
3 - 1 == 0 9.25
3 - 2 == 0 -11.75
Warning message:
In mcp2matrix(model, linfct = linfct) :
covariate interactions found -- default contrast might be

+ inappropriate
> glht(battery.aov,linfct=mcp(T="Tukey"),alternative="two.sided",
+ interaction=TRUE)

General Linear Hypotheses
Multiple Comparisons of Means: Tukey Contrasts
Linear Hypotheses:

Estimate
70 - 15 == 0 -77.50
125 - 15 == 0 -77.25
125 - 70 == 0 0.25
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Warning message:
In mcp2matrix(model, linfct = linfct) :
covariate interactions found -- default contrast might be

+ inappropriate

The use of the “simpler” plot.design function in Part A of Figure 13.6 shows that the aver-
age life increases across the material type (from 1 to 3), whereas it decreases as the temperature
of the region increases. However, the interaction plot, as given in Part B of Figure 13.6, clearly
shows that at Temperature T 700 Fahrenheit, the average life for Material M 2 is longer than
that for M at 3, a clear interaction effect between the temperature and material type. To verify
whether this interaction is statistically significant, we may use testInteractions from
the package phia.

> testInteractions(battery.aov,fixed="T",across="M")
F Test:
P-value adjustment method: holm

M1 M2 Df Sum of Sq F Pr(>F)
15 -9.25 11.75 2 886.2 0.6562 0.5268904
70 -88.50 -26.00 2 16552.7 12.2574 0.0004892 ***
125 -28.00 -36.00 2 2858.7 2.1169 0.2799107
Residuals 27 18230.8
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

The interaction effect at Temperature=70 is clearly seen to be significant in the above
output. With the main and interaction effects as understood by us, it is not important to focus
on the model assumptions. Since the two-factorial experiment is again an example of a linear
regression model, the techniques of model assumption from Chapter 12 carry over and are
used for the battery.aov lm object.

> p <- 9
> diagnostics_matrix <- matrix(nrow=nrow(battery),ncol=8)
> colnames(diagnostics_matrix) <- c("Obs No.","y","Pred
+ y","Residual","Levarage","S.Residual","Cooks.Dist","Outlier")
> diagnostics_matrix[,1] <- 1:nrow(battery)
> diagnostics_matrix[,2] <- battery$L
> diagnostics_matrix[,3] <- battery.aov$fitted.values
> diagnostics_matrix[,4] <- round(battery.aov$residuals,3)
> diagnostics_matrix[,5] <- influence(battery.aov)$hat
> diagnostics_matrix[,6] <- round(rstudent(battery.aov),3)
> diagnostics_matrix[,7] <- round(cooks.distance(battery.aov),3)
> diagnostics_matrix[,8] <- diagnostics_matrix[,6]*sqrt((16-p-1)/
+ (16-p-diagnostics_matrix[,6] ̂ 2))
Warning message:
In sqrt((16 - p - 1)/(16 - p - diagnostics_matrix[, 6] ̂ { :
+ NaNs produced
> round(diagnostics_matrix,3)
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B: Interaction effect of the battery factorial experiment
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Figure 13.6 Design and Interaction Plots for 2-Factorial Design

Obs No. y Pred y Residual Levarage S.Residual Cooks.Dist
[1,] 1 130 134.75 -4.75 0.25 -0.207 0.002
[2,] 2 74 134.75 -60.75 0.25 -3.100 0.270
[3,] 3 155 134.75 20.25 0.25 0.897 0.030
[4,] 4 180 134.75 45.25 0.25 2.140 0.150
[5,] 5 150 155.75 -5.75 0.25 -0.251 0.002

[32,] 32 45 49.50 -4.50 0.25 -0.196 0.001
[33,] 33 96 85.50 10.50 0.25 0.460 0.008
[34,] 34 82 85.50 -3.50 0.25 -0.153 0.001
[35,] 35 104 85.50 18.50 0.25 0.817 0.025
[36,] 36 60 85.50 -25.50 0.25 -1.139 0.048

The interpretation and the R program is left as an exercise for the reader. ◽

The extension of the two-factorial experiment is discussed in the next subsection.

13.5.2 Three-Factorial Experiment

A natural extension of the two-factorial experiment will be the three-factorial experiment. Let
the three factors be denoted by A, B, and C, each respectively at a, b, and c factor levels.
Consequently, there are now three more interaction terms to be modeled for in (𝜏𝛾), (𝛽𝛾), and
(𝜏𝛽𝛾). Towards a complete crossed model, we need each replicate (of index l) to cover all
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possible factor combinations. Thus, the three-way factorial model is then modeled by

Yijkl = 𝜇 + 𝜏i + 𝛽j + 𝛾k + (𝜏𝛽)ij + (𝜏𝛾)ik + (𝛽𝛾)jk + (𝜏𝛽𝛾)ijk + 𝜖ijkl,

i = 1, · · · , a, j = 1, · · · , b, k = 1, · · · , c, l = 1, · · · , n. (13.22)

The total sum of squares decomposition equation is then

SST = SSA + SSB + SSC + SSAB + SSAC + SSBC + SSABC + SSE, (13.23)

where
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abcn
− SSA − SSB − SSC − SSAB − SSAC − SSBC,

SSE = SST − SSA − SSB − SSC − SSAB − SSAC − SSBC − SSABC.

The ANOVA table for the three-factorial design model is given in Table 13.9.
Since the details of the two-factorial experiment extend in a fairly straightforward manner to

the current model, the model will be illustrated with two examples from Montgomery (2005).

Example 13.5.2. A Three-Factorial Experiment for Bottling Data. The Example 5.3 from
Montgomery (2005) is discussed here through the R program, and the current example also
benefits from Lalanne (2006), the R companion of Montgomery’s book. The height of the
filling of a soft drinks bottle is required to be as consistent as possible and is controlled through
three factors: (i) the percent carbonation of the drink, (ii) the operating pressure in the filler, and
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Table 13.9 ANOVA for the Three-Factorial Model

Source of Variation Sum of Squares Degrees of Freedom Mean Square F-Statistic

Treatment A SSA a − 1 MSA
MSA

MSE

Treatment B SSB b − 1 MSB
MSB

MSE

Treatment C SSC c − 1 MSc
MSc

MSE

Interaction (AB) SSAB (a − 1)(b − 1) MSAB
MSAB

MSE

Interaction (AC) SSAC (a − 1)(c − 1) MSAC
MSAC

MSE

Interaction (BC) SSBC (b − 1)(c − 1) MSBC
MSBC

MSE

Interaction (ABC) SSABC (a − 1)(b − 1)(c − 1) MSABC
MSABC

MSE

Error SSE abc(n − 1) MSE

Total SST abcn − 1

(iii) the line speed which is the number of bottles filled per minute. The first factor variable of
the percent of carbonation is available at three levels of 10, 12, and 14, the operating pressure
is at 25 and 30 psi units, while the line speeds are at 200 and 250 bottles per minute. Two
complete replicates are available for each combination of the three factor levels, that is, 24
total number of observations. In this experiment, the deviation from the required height level
is measured.

The R formula for a three-factorial experiment may be set up using aov(y∼a+b+c+
(a*b)+(a*c)+(b*c)+(a*b*c),data), or simply with aov(y∼. ̂ 3,data). It is
nice to know both the options! In the case of the two-factorial experiment, the investigation
requires us only to find out whether there is an interaction effect between two factor variables
in the model, and the interaction.plot function has been useful for that purpose. How-
ever, in the three-factorial experiment, there are overall four interaction variables. A simple
extension of the interaction.plot function is to obtain such plots while holding the
other factorial variable at a specified level. Thus, an extension of the interaction.plot
function is first defined and then the various plots are obtained.

> data(bottling)
> # # Preliminary investigation for interaction effect
> windows(height=15,width=20)
> par(mfrow=c(2,2))
> plot.design(Deviation∼. ̂ 3,data=bottling)
> IP_subset <- function(ab,colIndex,ss_char)}
+ abcd <- ab[,colIndex]
+ abcd <- abcd[abcd[,3]==ss_char,]
+ vnames <- names(abcd)
+ interaction.plot(x.factor=abcd[,1],trace.factor=abcd[,2],
+ response=abcd[,4],
+ type="b",xlab=vnames[1],ylab=vnames[4],trace.label=vnames[2]){
> IP_subset(bottling,c(3,4,2,1),"10")
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> IP_subset(bottling,c(3,4,2,1),"12")
> IP_subset(bottling,c(3,4,2,1),"14")
> title("Understanding Height of Bottling -
+ Interaction Plots",outer=TRUE,line=-1)
> par(mfrow=c(1,2))
> IP_subset(bottling,c(2,3,4,1),"200")
> IP_subset(bottling,c(2,3,4,1),"250")
> par(mfrow=c(1,2))
> IP_subset(bottling,c(2,4,3,1),"25")
> IP_subset(bottling,c(2,4,3,1),"30")

The newly-defined function IP_subset needs an explanation. There are three arguments
for this function. Recollect that the plot function interaction.plot is essentially
a “Two-way Interaction Plot”. Thus, there is a need of a function which checks for the
interaction between two factor variables when the third variable is held constant. Thus,
given the data.frame, the newly-defined function IP_subset finds the required
data.frame, the colIndex, which has four integers required for the first two entries,
which have the two-factor variable to be investigated for the interaction effect when the
third-factor variable is held at a constant ss_char. The fourth entry of colIndex contains
the output values. Note that the data frame is generic and any control over the two-factor
variables, the variables to be held constant, and the output needs to be clearly specified in
colIndex. The plot.design, as in the north-east block of Figure 13.7, clearly indicates
linearity across each of the input (factor) variables. The investigation of the interaction effect
between Pressure and Speed is ruled out in the remaining three plots of Figure 13.7. The
interpretation for the remaining two combinations of the factor variables program, as included
in the above R module, is left to the reader. Now that the interaction effect is understood, it is
time to analyze the data.

> summary(bottling.aov <- aov(Deviation∼. ̂ 3,bottling))
Df Sum Sq Mean Sq F value Pr(>F)

Carbonation 2 252.75 126.38 178.412 1.19e-09 ***
Pressure 1 45.37 45.37 64.059 3.74e-06 ***
Speed 1 22.04 22.04 31.118 0.00012 ***
Carbonation:Pressure 2 5.25 2.63 3.706 0.05581 .
Carbonation:Speed 2 0.58 0.29 0.412 0.67149
Pressure:Speed 1 1.04 1.04 1.471 0.24859
Carbonation:Pressure:Speed 2 1.08 0.54 0.765 0.48687
Residuals 12 8.50 0.71
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
> summary(aov(Deviation∼ Carbonation + Pressure + Speed+
+ (Carbonation*Pressure)
+ +(Carbonation*Speed)+(Pressure*Speed)+
+ (Carbonation*Speed*Pressure),data=bottling))
+ # Equivalent way and hence output is not provided

The use of aov and summary above gives us the desired output. Cleary, the ANOVA
Table 13.9 for the height of the bottling variable shows that while the main effects are
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Figure 13.7 Understanding Interactions for the Bottling Experiment

significant, p-values for the interaction effects are all large enough and hence, it is appropriate
to conclude that the interaction effects are insignificant. ◽

Example 13.5.3. Understanding Strength of Paper with a Three-Factorial Experi-
ment. The strength of a paper depends on three variables: (i) the percentage of hardwood
concentration in the raw pulp, (ii) the vat pressure, and (iii) the cooking time of the pulp. The
hardwood concentration is tested at three levels of 2, 4, and 8 percentage, the vat pressure at
400, 500, and 650, while the cooking time is at 3 and 4 hours. For each combination of the
these three factor variables, 2 observations are available, and thus a total of 3 × 3 × 2 × 2 = 36
observations. The goal of the study is investigation of the impact of the three factor vari-
ables on the strength of the paper, and the presence of the interaction effect, if any. The
dataset is available in the Strength_Paper.csv file and the source is Problem 5.16 of
Montgomery (2005).

> data(SP)
> plot.design(Strength∼. ̂ 3,data=SP)
> windows(width=10,height=5)
> par(mfrow=c(1,3))
> IP_subset(SP,c(2,3,1,4),"2")
> IP_subset(SP,c(2,3,1,4),"4")
> IP_subset(SP,c(2,3,1,4),"8")
> par(mfrow=c(1,2))
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> IP_subset(SP,c(1,2,3,4),"3")
> IP_subset(SP,c(1,2,3,4),"4")
> par(mfrow=c(1,3))
> IP_subset(SP,c(1,3,2,4),"400")
> IP_subset(SP,c(1,3,2,4),"500")
> IP_subset(SP,c(1,3,2,4),"650")
> summary(SP.aov <- aov(Strength∼. ̂ 3,SP))

Df Sum Sq Mean Sq F value Pr(>F)
Hardwood 2 3.764 1.882 2.458 0.113792
Pressure 2 24.041 12.020 15.701 0.000113 ***
Cooking_Time 1 14.694 14.694 19.194 0.000360 ***
Hardwood:Pressure 4 14.224 3.556 4.645 0.009422 **
Hardwood:Cooking_Time 2 0.304 0.152 0.198 0.821750
Pressure:Cooking_Time 2 4.951 2.475 3.233 0.063137 .
Hardwood:Pressure:Cooking_Time 4 1.751 0.438 0.572 0.686497
Residuals 18 13.780 0.766
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

The presence of the interaction effects is clearly brought out by the IP_subset plots. The
validation of the same is obtained from the summary of the fitted aov object. The question
now is whether the interaction effects are statistically significant? The answer is again provided
by the testInteractions function from the phia package.

> testInteractions(SP.aov,fixed="Hardwood",across="Pressure")
F Test:
P-value adjustment method: holm

Pressure1 Pressure2 Df Sum of Sq F Pr(>F)
2 -3.775 -1.75 2 28.5517 18.6477 0.0001231 ***
4 -0.825 -1.25 2 3.2317 2.1107 0.1501486
8 -0.925 -1.80 2 6.4817 4.2333 0.0622582 .
Residuals 18 13.7800
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
> testInteractions(SP.aov,fixed="Cooking_Time",across="Pressure")
F Test:
P-value adjustment method: holm

Pressure1 Pressure2 Df Sum of Sq F Pr(>F)
3 -1.3833 -2.05 2 13.121 8.5697 0.002428 **
4 -2.3000 -1.15 2 15.870 10.3650 0.002023 **
Residuals 18 13.780
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Thus, the significance of the interaction effects has also been established here. ◽

The principle of blocking in the context of factorial experiments is taken up in the next
subsection.
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13.5.3 Blocking in Factorial Experiments

The two- and three-factorial experiments discussed above are extensions of the basic CRD
model. In Section 13.4, we saw that replication does not alone eliminate the source of error
and that the principle of blocking helps improve the efficiency of the experiment. Similarly,
in the case of factorial experiments, practical considerations sometimes dictate that the repli-
cation principle cannot be implemented uniformly and that the factorial experiments may be
improved through the introduction of a blocking route. The blocking model for a two-factorial
experiment is stated next:

Yijk = 𝜇 + 𝜏i + 𝛽j + (𝜏𝛽)ij + 𝛿k + 𝜖ijk, i = 1, · · · , a, j = 1, · · · , b, k = 1, · · · , n. (13.24)

The total sum of squares decomposition equation for the model 13.24 is then

SST = SSBlocks + SSA + SSB + SSAB + SSE, (13.25)

where

SST =
a∑
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− SSA − SSB,

SSE = SST − SSA − SSB − SSC − SSAB − SSAC − SSBC − SSABC.

The corresponding ANOVA table for the blocking factorial experiment 13.24 is given in
Table 13.10.

Example 13.5.4. Blocking for Intensity Dataset. The intent of this experiment is to help
the engineer to improve the ability of detecting targets on a radar system. The two variables
chosen, which are believed to have the most impact on detecting the abilities of the radar
system, are marked as the amount of background noise and type of filter on the screen. The
background noiseGround is classified into one of three levels:low,medium, andhigh. The
two types of filter are available. However, there are different operators who use the radar system
and this information forms the blocks. The dataset is available in the intensity.txt file.
The formula for the aov object needs to be specialized for the factorial experiment with
blocking. The R program next delivers the required computation.
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Table 13.10 ANOVA for Factorial Models with Blocking

Source of Variation Sum of Squares Degrees of Freedom Mean Square F-Statistic

Blocks SSBlocks n − 1 MSBlocks
MSBlocks

MSE

Treatment A SSA a − 1 MSA
MSA

MSE

Treatment B SSB b − 1 MSB
MSB

MSE

Interaction (AB) SSAB (a − 1)(b − 1) MSAB
MSAB

MSE

Error SSE (ab − 1)(n − 1) MSE

Total SST abn − 1

> data(intensity)
> intensity.aov <- aov(Intensity∼
+ Ground*Filter+Error(Operator),intensity)
> summary(intensity.aov)
Error: Operator

Df Sum Sq Mean Sq F value Pr(>F)
Residuals 3 402.17 134.06
Error: Within

Df Sum Sq Mean Sq F value Pr(>F)
Ground 2 335.58 167.79 15.1315 0.0002527 ***
Filter 1 1066.67 1066.67 96.1924 6.447e-08 ***
Ground:Filter 2 77.08 38.54 3.4757 0.0575066 .
Residuals 15 166.33 11.09
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
> intensity.aov
Call:
aov(formula = Intensity ∼ Ground * Filter + Error(Operator),

data = intensity)
Grand Mean: 94.91667
Stratum 1: Operator
Terms:

Residuals
Sum of Squares 402.1667
Deg. of Freedom 3
Residual standard error: 11.57824
Stratum 2: Within
Terms:

Ground Filter Ground:Filter Residuals
Sum of Squares 335.5833 1066.6667 77.0833 166.3333
Deg. of Freedom 2 1 2 15

Residual standard error: 3.329998
Estimated effects may be unbalanced
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The reader is asked to compare the results with Montgomery (2005) and Lalanne (2006); for
more details post an attempt of interpretation of results here. ◽

The theory and applications of Experimental Designs extend far beyond the models dis-
cussed here and thankfully the purpose of the current chapter has been to consider some of the
important models among them.

13.6 Further Reading

Kempthorne (1952), Cochran and Cox (1958), Box, Hunter, and Hunter (2005), Federer
(1955), and of course, Fisher (1971) are some of the earliest treatises in this area.

Montgomery (2005), Wu and Hamada (2000–9), and Dean and Voss (1999) are some of
the modern accounts in DOE. Casella (2008) is a very useful source with emphasis on compu-
tations using R. The web link http://cran.r-project.org/web/views/ExperimentalDesign.html is
very useful for the reader interested in almost exhaustive options for DOE analysis using R.

13.7 Complements, Problems, and Programs

Problem 13.1 Identify which of the design models studied in this chapter are appropriate
for the datasets available in the BHH2 package. The list of datasets available
in the package may be found with try(data(package="BHH2")).
The exercise may also be repeated for design-related packages such as
agricolae, AlgDesign, and granova.

Problem 13.2 Carry out the diagnostic tests for the olson_crd fitted model in Example
13.3.4. Repeat a similar exercise for the ANOVA model fitted in Example
13.3.2.

Problem 13.3 Multiple comparison tests of Dunnett, Tukey, Holm, and Bonferroni have
been explored in Example 13.3.8. The confidence intervals are reported only
for TukeyHSD. The reader should obtain the confidence intervals for the
rest of the multiple comparison tests contrasts.

Problem 13.4 Explore the use of the functions design.crd and design.rcbd from
the agricolae package for setting up CRD and block designs.

Problem 13.5 The function granova.2w may be applied on the girdernew dataset
with a slight modification. Create a new data frame girdernew2 <-
girdernew[,c(3,1,2)]. Note that an additional R package rgl
will be required though. Test the code granova.2w( girdernew2,
ss gf + mf) and make an attempt to interpret the output.

Problem 13.6 In the fitted models ssaov, hardness_aov, rocket_aov,
rocket.aov, and rocket.glsd.aov discussed in Section 13.4,
investigate the presence of an interaction effect through the use of the
interaction.plot graphical function.

http://cran.r-project.org/web/views/ExperimentalDesign.html
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Problem 13.7 Perform the diagnostic tests on the BIBD model in Example 13.4.4.

Problem 13.8 Investigate the presence of outliers and influential measures for the fitted
models rocket.lm and rocket.glsd.lm in the respective Examples
13.4.7 and 13.4.9.

Problem 13.9 Obtain the confidence intervals for the contrasts of the fitted model bat-
tery.aov in Example 13.5.1.

Problem 13.10 Carry out the diagnostic tests for the fitted models bottling.aov,
SP.aov, and intensity.aov.
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Multivariate Statistical Analysis - I

Package(s): ICSNP, scatterplot3d, aplpack, mvtnorm, foreign
Dataset(s): cardata, stiff, iris, hw, calcium, mfp, rootstock,
waterquality, pw, sheishu

14.1 Introduction

In many real-world problems, data is seldom univariate. We have more than one variable,
which needs a good understanding of the underlying uncertain phenomenons. Thus, we need a
set of tools to handle this type of data, and this is provided by Multivariate Statistical Analysis
(MSA), a branch of the subject. We saw in the previous chapters on regression, that multiple
regressors explain the regressand. Sometimes experiments may need a deeper study of the
covariates themselve. In particular, we are now concerned with a random vector, the charac-
teristics of which form the crux of this and the next chapter.

In Section 14.2 we look at graphical plots, which give a deeper insight into the structure
of the dataset. The core concepts of MSA are introduced in Section 14.3. Sections 14.4 and
14.5 deal with the inference problem related to the mean vectors of multivariate data, whereas
inference related with the variance-covariance matrix are performed in Sections 14.7 and 14.8.
Multivariate Analysis of Variance, abbreviated as MANOVA, tools are introduced and illus-
trated in Section 14.6 and some tests for independence of sub-vectors are addressed in Section
14.9. Advanced topics of multivariate statistical analysis are carried over to the next chapter.

14.2 Graphical Plots for Multivariate Data

In Chapter 12 we saw the use of scatter plots and pairs (matrix of scatter plots). A slight
modification of the matrix of a scatter plot is considered here, which gives more insight into
the multivariate aspect of the dataset. Multi-dimensional data can be still visualized in two
dimensions and a particularly effective technique provided by Chernoff faces is detailed. We
will begin with a multivariate dataset.

A Course in Statistics with R, First Edition. Prabhanjan Narayanachar Tattar, Suresh Ramaiah and B. G. Manjunath.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/tattar/statistics
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Example 14.2.1. Car Data. We consider the car dataset consisting of 13 variables and 74 car
variables. This example is drawn from Hárdle and Simar (2007), Appendix B.3, which has
been earlier analyzed by Chambers, et al. (1983). The variable description, variables names as
in the dataset in verbatim font, and the notation of random variable in italics, are given in the
following:

• Price: P, X1
• Mileage (in miles per gallon): M, X2
• Repair record 1978 (rated on a 5-point scale; 5 best, 1 worst): R78, X3
• Repair record 1977 (scale as before): R77, X4
• Headroom (in inches): H, X5
• Rear seat clearance (distance from front seat back to rear seat, in inches): R, X6
• Trunk space (in cubic feet): Tr, X7
• Weight (in pound): W, X8
• Length (in inches): L, X9
• Turning diameter (clearance required to make a U-turn, in feet): T, X10
• Displacement (in cubic inches): D, X11
• Gear ratio for high gear: G, X12
• Company headquarter (1 for U.S., 2 for Japan, 3 for Europe): C, X13

Let us now plot the matrix of scatter plots and examine the correlation among the 13 variables.
The matrix of scatter plots can be customized to extract a lot of information. For instance, we
use the functions panel.hist and panel.cor, which have been defined in the R example
of pairs function, seen by running example(pairs) at the R terminal. The dataset is first
imported into R and then the pairs function is applied to it with the options of panel.hist
and panel.cor.

> panel.hist <- function(x, ...)
+ {
+ usr <- par("usr"); on.exit(par(usr))
+ par(usr = c(usr[1:2], 0, 1.5) )
+ h <- hist(x, plot = FALSE)
+ breaks <- h$breaks; nB <- length(breaks)
+ y <- h$counts; y <- y/max(y)
+ rect(breaks[-nB], 0, breaks[-1], y, col="cyan", ...)
+ }
> panel.cor <- function(x, y, digits=2, prefix="", cex.cor, ...) {
+ usr <- par("usr"); on.exit(par(usr))
+ par(usr = c(0, 1, 0, 1))
+ r <- abs(cor(x, y))
+ txt <- format(c(r, 0.123456789), digits=digits)[1]
+ txt <- paste(prefix, txt, sep="")
+ if(missing(cex.cor)) cex.cor <- 0.8/strwidth(txt)
+ text(0.5, 0.5, txt, cex = cex.cor * r)
+ }
> data(cardata)
> pairs(cardata[,2:14],diag.panel=panel.hist,
+ lower.panel=panel.smooth,
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+ upper.panel=panel.cor)
+ # as some data is missing, we remove them and replot below
> pairs(na.omit(cardata[,2:14]),diag.panel=panel.hist,
+ lower.panel=panel.smooth, upper.panel=panel.cor)

Figure 14.1 is the output of the previous R program. The price P appears to be weakly corre-
lated with the other components of the random vector. Strong associations appear among the
variables M, W, L, T, D, and G. In this figure, as we look at the upper panel for the correlation
coefficients, the lower panel also needs to be checked for the scatter plot. Of course, the
diagonal elements indicate the spread of the variables themselves. Thus, using the options in
diag.panel, lower.panel, and upper.panel, the pairs becomes a very effective
tool for visualization of multivariate data. ◽

Chernoff (1973) gave a very innovative technique to visualize multivariate data, which con-
siders each variate as some dimension of the human face, say nose, ears, smile, cheeks, etc.
Interpretation of three-dimensional plots itself is difficult, even if we were to deploy features
such as rotation of the plots. Certainly, visualization in more than three dimensions is not
possible. Thus, the Chernoff technique of visualizing the multivariate data through faces is
very helpful and such a plot is of course well known as the Chernoff faces. We deploy this
method here using the graphical function faces from the R package aplpack.

Example 14.2.2. Car Data. Contd. The first 25 data points are considered here for purposes
of brevity.

> library(aplpack)
> faces(cardata[1:25,2:14])
[1] "Warning: NA elements have been exchanged by mean values!!"
effect of variables:
modified item Var
"height of face " "P"
"width of face " "M"

"height of ear " "M"

Note that the missing values have been replaced by the average values of that variate. The
diagram is given in Figure 14.2.

A car freak reader will not be surprised by the Chernoff faces, as the cars labeled 14 to 16 are
Cadillac luxury car models Deville, Eldorado, and Seville, whereas the ones labeled 2, 3, 21,
and 25 (yes, the ones with grim faces), are low-end hatchback cars, respectively AMC-Pacer,
AMC-Spirit, Chevrolet Monza, and Datsun-510. ◽

Chernoff faces gives one facet of data visualization of multivariate data. There are many
other similar techniques, though we will not dwell more on them. In the next Section 14.3 we
consider more basic aspects of the multivariate and define the multivariate normal distribution
in more detail.

?pairs, ?faces
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Figure 14.1 A Correlation Matrix Scatter Plot for the Car Data
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Figure 14.2 Chernoff Faces for a Sample of 25 Data Points of Car Data

14.3 Definitions, Notations, and Summary Statistics
for Multivariate Data

14.3.1 Definitions and Data Visualization

We will denote a p-random vector by X = (X1,X2, … ,Xp), and its n replicates by
X𝟏,X𝟐, … ,Xn. The random vector of the ith replicate is denoted as Xi = (Xi1,Xi2, … ,Xip),
i = 1, 2, … , n. The mean vector and variance-covariance matrix of X are respectively denoted
as

E(X) = 𝝁 = (E(X1),E(X2), … ,E(Xp)), (14.1)

Var(X) = 𝚺 = E(X − 𝝁)′(X − 𝝁) (14.2)

=
⎡⎢⎢⎢⎣
𝜎11 𝜎12 … 𝜎1p
𝜎21 𝜎22 … 𝜎2p
⋮ ⋮ … ⋮
𝜎p1 𝜎p2 … 𝜎pp

⎤⎥⎥⎥⎦
. (14.3)

Note that the matrix Var(X) = 𝚺 is a symmetric matrix, that is, 𝜎ij = 𝜎ji, i, j = 1, 2,...,p.
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Sometimes, we may also be interested in the correlation matrix defined by

𝝆 =
⎡⎢⎢⎢⎣
𝜌11 𝜌12 · · · 𝜌1p
𝜌21 𝜌22 · · · 𝜌2p
⋮ ⋮ · · · ⋮
𝜌p1 𝜌p2 · · · 𝜌pp

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣

𝜎11√
𝜎11

√
𝜎11

𝜎12√
𝜎11

√
𝜎22

· · · 𝜎1p√
𝜎11

√
𝜎pp

𝜎12√
𝜎11

√
𝜎22

𝜎22√
𝜎22

√
𝜎22

· · · 𝜎2p√
𝜎22

√
𝜎pp

⋮ ⋮ · · · ⋮
𝜎1p√

𝜎11
√
𝜎pp

𝜎2p√
𝜎22

√
𝜎pp

· · · 𝜎pp√
𝜎pp

√
𝜎pp

⎤⎥⎥⎥⎥⎥⎦
.

Each correlation coefficient will be a number between –1 and +1, that is, −1 ≤ 𝜌ij ≤ +1, i, j =
1, · · · , p.

Definition 14.3.1 The Multivariate Normal Random Vector. A random vector X is
said to be distributed as a multivariate normal random vector with mean vector 𝝁 and
variance-covariance matrix 𝚺, if its density function is given by

f (x) = 1
(2𝜋)p∕2|𝚺|1∕2

e−(x−𝝁)
′𝚺−1(x−𝝁)∕2, if −∞ < xi < ∞, i = 1, 2, · · · , p. (14.4)

The p-dimensional normal density will be denoted by Np(𝝁,𝚺). The case of p = 2 refers to the
bivariate normal random distribution. For bivariate normal random variables with a zero-mean
vector and a couple of positive and negative correlations, we obtain the probability density
plots.

Example 14.3.1. Plot of a few Bivariate Normal Densities. Assume X = (X1,X2) ∼
N2(𝝁,𝚺), with 𝜇1 = 𝜇2 = 0, 𝜌11 = 𝜌22 = 1, 𝜌12 = 𝜌21 = ±0.5 or ±0.9. That is, we consider
four types of bivariate normal distribution. Using the dmvnorm function from the mvt-
norm package and scatterplot3d from the same named package, we generate the
three-dimensional plots of bivariate normal densities.

> x <- rep(seq(-4,4,.2),each=41)
> y <- rep(seq(-4,4,.2),41)
> sigma5 <- matrix(c(1,.5,.5,1),nrow=2)
> sigma_5 <- matrix(c(1,-.5,-.5,1),nrow=2)
> sigma9 <- matrix(c(1,.9,.9,1),nrow=2)
> sigma_9 <- matrix(c(1,-.9,-.9,1),nrow=2)
> dxy5 <- dmvnorm(cbind(x,y),sigma=sigma5)
> dxy_5 <- dmvnorm(cbind(x,y),sigma=sigma_5)
> dxy9 <- dmvnorm(cbind(x,y),sigma=sigma9)
> dxy_9 <- dmvnorm(cbind(x,y),sigma=sigma_9)
> scatterplot3d(x, y, dxy5, highlight.3d=TRUE,type="l",xlab="x",
+ ylab="y",zlab="Bivariate Density Function",main="Bivariate Normal
+ Density with Correlation 0.5")
> scatterplot3d(x, y, dxy_5, highlight.3d=TRUE,type="l",xlab="x",
+ ylab="y",zlab="Bivariate Density Function",main="Bivariate Normal
+ Density with Correlation -0.5")
> scatterplot3d(x, y, dxy9, highlight.3d=TRUE,type="l",xlab="x",
+ ylab="y",zlab="Bivariate Density Function",main="Bivariate Normal
+ Density with Correlation 0.9")
> scatterplot3d(x, y, dxy_9, highlight.3d=TRUE,type="l",xlab="x",
+ ylab="y",zlab="Bivariate Density Function",main="Bivariate Normal
+ Density with Correlation -0.9")
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The resulting three-dimensional plots for the bivariate normal densities are displayed in
Figure 14.3. The user must experiment with different values in the mean vector and the
variance-covariance matrix to get a firm grip over the bivariate normal densities. ◽

Example 14.3.2. Normally Distributed and Uncorrelated Random Variables do not imply
that the Random Variables are Independent. Melnick and Tenenbein (1982) have demys-
tified the popular notion that normally distributed and uncorrelated random variable are inde-
pendent random variables. To see this, consider the following counter example. Let X be a
standard normal variable, and define

Y =
{
−X if |x| < c,
X if |x| > c.

For small values of c, the correlation between X and Y is nearly equal to 1, and for large c
values, it is –1. Thus it tells us that there must be some intermediate value of c, which should
make the correlation value close to 0, and this value is in the vicinity of 1.54. However, as the
X values completely determine the corresponding Y value, they are certainly not independent.
In the following R program and Figure 14.4, we see the above-mentioned theory.

> x <- rnorm(300)
> constant <- c(.005,1.54,5)
> y1 <- ifelse(abs(x)>constant[1],x,-x)
> y2 <- ifelse(abs(x)>constant[2],x,-x)
> y3 <- ifelse(abs(x)>constant[3],x,-x)
> layout(matrix(c(1,2,3,3),2,byrow=TRUE))
> plot(x,y1,col="blue",ylab="y-values",xlab="x-values","p",
+ main="c = 0.005")
> plot(x,y3,col="green",pch=21,ylab="y-values",xlab="x-values",
+ "p",main="c = 5")
> plot(x,y2,col="red",ylab="y-values",xlab="x-values","p",
+ main="c = 1.54")

First, standard normal deviates are obtained using the rnorm simulator and stored in the
object x. Three constant values are stored with c(0.005,1.54,5) and the associated
y1-y3 objects are generated with the ifelse control loop. We have not considered the
layout options earlier. The layout function divides the device into rows and columns as
specified by the matrix. It is a very effective method of obtaining multiple plots in a single
frame. The resulting Figure 14.4 confirms the earlier discussion. ◽

We now describe some standard methods of estimation of the mean vector and the
variance-covariance matrix. Define

�̂� = X =
∑n

i=1 Xi

n
, (14.5)

�̂� = 1
n

n∑
i=1

(Xi − X)(Xi − X)′ = n − 1
n

S. (14.6)
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Figure 14.3 Understanding Bivariate Normal Densities
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Figure 14.4 A Counter Example of the Myth that Uncorrelated and Normal Distribution imply
Independence

Result 4.11 of Johnson and Wichern (2006) shows that the estimators �̂� and �̂� are respectively
MLE’s of their parameters.

Example 14.3.3. The Board Stiffness Dataset. Four measures of stiffness of 30 boards are
available. The first measure of stiffness is obtained by sending a shock wave down the board,
the second measure is obtained by vibrating the board, and the remaining are obtained from
static tests. We see that the mean, variance-covariance matrix, as well as the correlation matrix
are very easy to compute.

> data(stiff)
> mean(stiff)

x1 x2 x3 x4
1906.100 1749.533 1509.133 1724.967
> var(stiff)

x1 x2 x3 x4
x1 105616.30 94613.53 87289.71 94230.73
x2 94613.53 101510.12 76137.10 81064.36
x3 87289.71 76137.10 91917.09 90352.38
x4 94230.73 81064.36 90352.38 104227.96
> cor(stiff)
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x1 x2 x3 x4
x1 1.0000000 0.9137620 0.8859301 0.8981212
x2 0.9137620 1.0000000 0.7882129 0.7881034
x3 0.8859301 0.7882129 1.0000000 0.9231013
x4 0.8981212 0.7881034 0.9231013 1.0000000
> pairs(stiff)

The matrix of scatter plots indicate that there might be an outlier among the observations. We
will say more about this in the coming subsection. ◽

Example 14.3.4. Conversion of a Variance-Covariance Matrix into a Correlation
Matrix. The variance-covariance matrix for the four parameters of the iris dataset is the
following:

�̂�iris =
⎡⎢⎢⎢⎣

0.6857 −0.0424 1.2743 0.5163
−0.0424 0.1900 −0.3297 −0.1216
1.2743 −0.3297 3.1163 1.2956
0.5163 −0.1216 1.2956 0.5810

⎤⎥⎥⎥⎦
.

The task is to obtain �̂� from the given estimated variance-covariance matrix �̂�. First, define
the following diagonal matrix:

V1∕2 =
⎡⎢⎢⎣
√
𝜎11 0 · · · 0
0

√
𝜎22 · · · 0

0 0 · · · √𝜎pp

⎤⎥⎥⎦ .
It can then be shown that V1∕2𝝆V1∕2 = 𝚺. Thus, the sample correlation matrix can be obtained
by the relation

�̂� = (V𝟏 ∕ 𝟐)−1�̂�(V𝟏 ∕ 𝟐)−1.

The variance-covariance matrix �̂� is now converted into a correlation matrix in R. An R func-
tion cov2cor is also available for the same purpose, which will be used to confirm our
understanding.

> covmat <- round(var(iris[,1:4]),4)
> v1_2 <- covmat*0; diag(v1_2)=sqrt(diag(covmat))
> cormat <- solve(v1_2)%*%covmat%*%solve(v1_2)
> cormat

Sepal.Length Sepal.Width Petal.Length Petal.Width
Sepal.Length 1.0000000 -0.1174687 0.8717360 0.8179881
Sepal.Width -0.1174687 1.0000000 -0.4284721 -0.3659896
Petal.Length 0.8717360 -0.4284721 1.0000000 0.9628602
Petal.Width 0.8179881 -0.3659896 0.9628602 1.0000000
> cov2cor(cormat)

Sepal.Length Sepal.Width Petal.Length Petal.Width
Sepal.Length 1.0000000 -0.1174687 0.8717360 0.8179881
Sepal.Width -0.1174687 1.0000000 -0.4284721 -0.3659896
Petal.Length 0.8717360 -0.4284721 1.0000000 0.9628602
Petal.Width 0.8179881 -0.3659896 0.9628602 1.0000000
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Note that any arbitrary square matrix cannot be a variance-covariance matrix. For such inap-
propriate matrices, you will find that the correlation matrix, if converted, will contain elements
which will be less than –1 or greater than 1. ◽

14.3.2 Early Outlier Detection

An important concept for analysis of multivariate data is given by the Mahalanobis distance.

Definition 14.3.2 The Mahalanobis distance of a vector x from a group of vectors with mean
𝝁 and covariance matrix 𝕊 is given by

D2 = (x − 𝝁)𝕊−1(x − 𝝁). (14.7)

Thus, for each vector i, i = 1, … , n, the Mahalanobis distance D2 may be computed and any
unusually large value may then be marked as an outlier. The Mahalanobis distance is also
called the generalized squared distance.

It is a familiar story that outliers, as in univariate cases, need to be addressed as early as
possible. Graphical methods become a bit difficult if the number of variables is more than
three. Johnson and Wichern (2006) suggest we should obtain the standardized values of the
observations with respect to each variable, and they also recommend looking at the matrix of
scatter plots. The four steps listed by them are:

• Obtain the dot plot for each variable.
• Obtain the matrix of scatter plots.
• Obtain the standardized scores for each variable, zik = (xik − xk)∕

√
skk, for i = 1, 2, · · · , n,

and k = 1, 2, · · · , p. Check for large and small values of these scores.
• Obtain the generalized squared distances (xi − x)′S−1(xi − x). Check for large distances.

A dot plot is also known as a Cleveland dot plot and it is set up using the dotchart function,
which in turn is a substitute to the bar plot. In this plot, a dot is used to represent the magnitude
of the observation along the x-axis with the observation number on the y-axis.

Example 14.3.5. The Board Stiffness Dataset. Contd. The matrix of scatter plots from
Figure 14.5 already indicates the presence of an outlier. Next, look at the dot plots of each of
the variables.

> par(mfrow=c(4,1),cex=.5)
> dotchart(stiff[,1],main="Dotchart of X1")
> dotchart(stiff[,2],main="Dotchart of X2")
> dotchart(stiff[,3],main="Dotchart of X3")
> dotchart(stiff[,4],main="Dotchart of X4")

The dot chart in Figure 14.6 clearly shows that, for each variable, there is one observation at
the right-hand side of the diagram whose value is very large compared with the rest of the
observations. This is a clean case of the presence of an outlier. If all the four points on the
dot chart belong to one observation, we have one outlier, else there may be more outliers. The
standardized values are obtained using the scale function.
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Figure 14.5 A Matrix Scatter Plot for the Board Stiffness Dataset
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Figure 14.6 Early Outlier Detection through Dot Charts

> cbind(stiff,round(scale(stiff),1))
x1 x2 x3 x4 x1 x2 x3 x4

1 1889 1651 1561 1778 -0.1 -0.3 0.2 0.2
2 2403 2048 2087 2197 1.5 0.9 1.9 1.5
3 2119 1700 1815 2222 0.7 -0.2 1.0 1.5
4 1645 1627 1110 1533 -0.8 -0.4 -1.3 -0.6
5 1976 1916 1614 1883 0.2 0.5 0.3 0.5

9 2983 2794 2412 2581 3.3 3.3 3.0 2.7

30 1490 1382 1214 1284 -1.3 -1.2 -1.0 -1.4

Note that the last four columns are standardized values. From our knowledge of the univariate
normal cases, we guess that the observation labeled 9 must be an outlier, since three of the
four components are in excess of the 3 sigma distance of the mean 0. Multivariate data have
a lot of surprises as we see from the outliers given by the generalized squared distances. We
now calculate the generalized squared distances for each of the observations.

> mahalanobis(stiff,colMeans(stiff),cov(stiff))
[1] 0.6000129 5.4770196 7.6166439 5.2076098 1.3980776

[29] 6.2837628 2.5838186

As we mentioned earlier, we have a surprise outlier in the observation labeled 16 in addition to
that labeled 9. Though each of its components is within the control level sense of the univariate
data, the generalized squared distance for observation 16 is unusually high. ◽
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We have seen some interesting graphical plots for the multivariate data. The multivariate
normal distribution has also been introduced here, along with a few of its properties. We will
next consider some testing problems for multivariate normal distribution.

?dmvnorm, ?scatterplot3d, ?solve, ?cov2cor

14.4 Testing for Mean Vectors : One Sample

Suppose that we have random vector samples from a multivariate normal distribution, say
Np(𝝁,𝚺). In Chapter 7, we saw testing problems for the univariate normal distribution. If the
variance-covariance matrix 𝚺 is known to be a diagonal matrix, that is components are uncor-
related random variables, we can revert back to the methods discussed there. However, this
is not generally the case for multivariate distributions and they need specialized methods for
testing hypothesis problems.

For the problem of testing H ∶ 𝝁 = 𝝁0 against K ∶ 𝝁 ≠ 𝝁0, we consider two cases here:
(i) 𝚺 is known, and (ii) 𝚺 is unknown. Suppose that we have n samples of random vectors
from Np(𝝁,𝚺), which we will denote as {X1,X2, · · · ,Xn}. The sample of random vectors is
the same as saying that we have iid random vectors.

14.4.1 Testing for Mean Vector with Known Variance-Covariance Matrix

If the variance-covariance matrix is known, the test statistic is a multivariate extension of the
Z-statistic, and is given by

Z2 = n(x − 𝝁0)′𝚺−1(x − 𝝁0). (14.8)

Under the hypothesis H ∶ 𝝁 = 𝝁0, the test statistic Z2 is distributed as a chi-square variate with
p degrees of freedom, and a 𝜒2

p random variable. The computations are fairly easy and we do
that in the next example.

Example 14.4.1. The Importance of Handling the Covariances. Rencher (2002). Con-
sider the height and weight of 20 college-age males. This dataset is available in the csv
file Height_Weight.csv. Assume that the variance-covariance matrix is known as
𝚺 = [20, 100; 100, 1000], and that the hypothesis of interest is H ∶ 𝝁 = 𝝁0 = [70, 170], where
the height is measured in inches and the weight in pounds.

> data(hw)
> mu0 <- c(70,170)
> n <- nrow(hw)
> sigma <- matrix(c(20, 100, 100,1000),nrow=2)
> meanx <- mean(hw)
> z2 <- n*t(meanx-mu0)%*%solve(sigma)%*%(meanx-mu0)
> z2 # the test statistic value
[1] 8.4026
> qchisq(1-.05,2) # 95% confidence level and 2 d.f.
[1] 5.991465
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Since the calculated 𝜒2 value is greater than the tabulated value, we reject the hypothesis that
the average height and weight are at 70 and 170 units respectively. If we were to ignore the
correlation between the height and weight, we have the following conclusions:

> htest <- (meanx[1]-70)/(sqrt(sigma[1,1]/n)) # testing for height
> wtest <- (meanx[2]-170)/(sqrt(sigma[2,2]/n)) # testing for weight
> as.numeric(htest);as.numeric(wtest)
[1] 1.45
[1] -0.7495332

The absolute value of each of these tests is less than 1.96, and hence we would have failed to
reject the hypothesis H, which is not the case when the correlations are adjusted for. Thus, we
learn an important story that whenever the correlations are known, it is always better to adjust
the statistical procedure for them. ◽

Example 14.4.2. The Board Stiffness Data. Contd. Suppose that the variance-covariance
matrix for this data is known as

Σ0 = 104 ×
⎡⎢⎢⎢⎣
11 9 9 9
9 10 8 8
9 8 9 9
9 8 9 10

⎤⎥⎥⎥⎦
The hypothesis testing problem is H ∶ 𝜇 = 103 × [2 1.5 1.5 2] against the hypothesis

K ∶ 𝜇 ≠ 103 × [2 1.5 1.5 2]. Repeating the above program with small changes, we get
the value of the test statistics, and also the critical value.

> n <- nrow(stiff)
> sigma <- matrix(10 ̂ 4*c(11,9,9,9,9,10,8,8,9,8,9,9,9,8,9,10),nrow=4)
> mu0 <- 10 ̂ 3*c(2,1.5,1.5,2)
> meanx <- mean(stiff)
> z2 <- n*t(meanx-mu0)%*%solve(sigma)%*%(meanx-mu0)
> z2 # the test statistic value

[,1]
[1,] 365.9636
> qchisq(1-.05,4) #95% confidence level and 4 d.f.
[1] 9.487729

The test procedure thus rejects the hypothesis H, since the value of the test statistic is larger
than the critical value. ◽

14.4.2 Testing for Mean Vectors with Unknown Variance-Covariance
Matrix

It turns out that in many practical settings, the variance-covariance matrix is unknown. There-
fore, we need to extend the test procedure for this important case. The Hotelling’s T2-statistic
is given by

T2 = n(x − 𝝁0)′S−1(x − 𝝁0), (14.9)
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where S is the sampling covariance matrix. Under the hypothesis H, the test statistic T2 is
distributed as Hotellings’ T2 distribution with p and 𝑣 = n − 1 degrees of freedom.

Example 14.4.3. The Calcium in Soil and Turnip Greens Data of Rencher (2002). Kramer
and Jensen (1969) collected data on three variables at ten different locations. The variables of
interest are (i) x1: available calcium in the soil, (ii) x2: exchangeable soil calcium, and (iii) x3:
turnip green calcium. Suppose the hypothesis of interest is H ∶ 𝝁 = [15.0 6.0 2.85].

> data(calcium)
> n <- nrow(calcium)
> meanx <- mean(calcium[,-1])
> varx <- var(calcium[,-1])
> mu0 <- c(15,6,2.85)
> t2 <- n*t(meanx-mu0)%*%solve(varx)%*%(meanx-mu0)
> t2
[1] 24.55891

If we compare the test statistic value with a Hotelling’s distribution with three degrees of
freedom and non-centrality parameter 9 at 95% significance level, the critical value is 16.766,
and thus we will have to reject the null-hypothesis. ◽

The Hotellings’ T2 can be converted to an F-statistics using the transformation:

𝑣 − p + 1
vp

T2
p,𝑣 = Fp,𝑣−p+1. (14.10)

An R function for calculating the test statistic is available in the ICSNP package. The test
function HotellingsT2 implements the F-test by comparing if the mean of a normal vector
equals some specified null vector. We can easily carry out the F-test for the above example.

Example 14.4.4. The Calcium in Soil and Turnip Greens Data of Rencher (2002). Contd.
First call up the ICSNP library and then use the function HotellingsT2 for the calcium
problem.

> library(ICSNP)
> HotellingsT2(calcium[,-1],mu=mu0,test="f")

Hotelling’s one sample T2-test

data: calcium[, -1]
T.2 = 6.3671, df1 = 3, df2 = 7, p-value = 0.02068
alternative hypothesis: true location is not equal to c(15,6,2.85)

The conclusion on using any of the methods does not vary and we are led to reject the hypoth-
esis H. ◽



Trim Size: 170mm x 244mm Tattar c14.tex V3 - 02/10/2016 10:57 A.M. Page 523�

� �

�

Multivariate Statistical Analysis - I 523

It is known that the likelihood-ratio tests are very generic methods for testing hypothesis
problems. The likelihood-ratio test of H ∶ 𝝁 = 𝝁0 against K ∶ 𝝁 ≠ 𝝁0 is given by

𝚲 =

( |�̂�||𝚺0|
)n∕2

=
( |∑n

i=1(xi − x)(xi − x)′||∑n
i=1(xi − 𝝁0)(xi − 𝝁0)′|

)n∕2

. (14.11)

It is further known from the general theory of the likelihood ratios that the above-mentioned
test statistics follow a chi-square random variate. Yes, the computations are not trivial for the
𝜒2-test based on the likelihood-ratio test, and hence the ICSNP package will be used to bail
us out of this scenario. The illustration is continued with the previous data-set.

Example 14.4.5. The Calcium in Soil and Turnip Greens Data of Rencher (2002). Contd.
The option of test="f" needs to be replaced with test="chi" in the previous R line to
carry out the 𝜒2-test for testing the hypothesis H.

> HotellingsT2(calcium[,-1],mu=mu0,test="chi")
Hotelling’s one sample T2-test

data: calcium[, -1]
T.2 = 24.5589, df = 3, p-value = 1.909e-05
alternative hypothesis: true location is not equal to c(15,6,2.85)

The conclusion does not change and, as earlier, the hypotheses H is rejected in confirmation
with earlier methods. ◽

The problem of testing H ∶ 𝝁 = 𝝁0 against K ∶ 𝝁 ≠ 𝝁0 will be considered for the
two-sample problem in Section 14.5.

?qchisq, ?var, ?solve, ?HotellingsT2

14.5 Testing for Mean Vectors : Two-Samples

Consider the case of random vector samples from two plausible populations, N(𝝁1,𝚺1) and
N(𝝁2,𝚺2). Such scenarios are very likely if new machinery and a population labeled 1 refers
to samples obtained under the new machinery and that labeled 2 refers to the samples under
older machinery. As the comparison of the mean vectors become sensible only if the covariance
matrices are equal, we assume that the covariance matrices are equal, but not known. That is,
𝚺1 = 𝚺2 = 𝚺, with 𝚺 unknown.

Suppose that we have samples from the two populations as X11,X12, · · · ,X1n1
,

X1i ∼ Np(𝝁1,𝚺), and X21,X22, · · · ,X2n2
, X2i ∼ Np(𝝁2,𝚺). The hypothesis of interest is

to test H ∶ 𝝁1 = 𝝁2 against K ∶ 𝝁1 ≠ 𝝁2. The estimates of the mean vectors from each of the
populations is given by xj =

∑nj

i=1 xji∕nj, j = 1, 2.
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We will first define the matrices of sum squares and cross-products as below:

W1 =
n1∑
i=1

(x1i − x1)(x1i − x1)′ = (n1 − 1)S1, (14.12)

W2 =
n2∑
i=1

(x2i − x2)(x2i − x2)′ = (n2 − 1)S2. (14.13)

Further define the pooled covariance matrix:

Spl =
1

n1 + n2 − 2

[
(n1 − 1)S1 + (n2 − 1)S2

]
= 1

n1 + n2 − 2

[
W1 + W2

]
. (14.14)

The Hotelling’s T2 test statistic is then given by

T2 =
n1n2

n1 + n2
(x1 − x2)′S−1

pl (x1 − x2). (14.15)

The test statistic T2, under the hypothesis H, is distributed as Hotelling’s T2 distribution with
parameters p and n1 + n2 − 2. We list below some important properties of the Hotelling’s T2

statistic:

1. Hotelling’s T2 distribution is skewed.
2. For a two-sided alternative hypothesis, the critical-region is one-tailed.
3. A necessary condition for the inverse of the pooled covariance matrix to exist is that the

n1 + n2 − 2 > p.
4. A straightforward, not necessarily simple, transformation of the Hotelling’s statistic gives

us an F-statistic.

As in the previous section, we may also use the likelihood-ratio tests, which lead to an appro-
priate 𝜒2-test, for large n of course, see Rencher (2002) or Johnson and Wichern (2006). In
the next illustrative example, we obtain the Hotelling’s test statistics, the associated F-statistic,
and the likelihood-ratio test.

Example 14.5.1. Psychological Tests for Males and Females. A psychological study con-
sisting of four tests was conducted on male and female groups and the results were noted. Since
the four tests are correlated and each one is noted for all the individuals, we are interested in
knowing if the mean vector of the test scores is the same across the gender group. The four
tests here are as follows:

• x1: pictorial inconsistencies
• x2: paper form board

• x3: tool recognition
• x4: vocabulary.

Assume that the covariance matrix is the same for both the groups, and that it is unknown.
We will write a small program for calculating the Hotelling’s T2 statistic, and use the function
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from the ICSNP package for the F- test and the chi-square tests.

> data(mfp)
> males <- mfp[,1:4]; females <- mfp[,5:8]
> nm <- nrow(males); nf <- nrow(females)
> meanm <- colMeans(males); meanf <- colMeans(females)
> sigmam <- var(males); sigmaf <- var(females)
> sigmapl <- (1/(nm+nf-2))*((nm-1)*sigmam+(nf-1)*sigmaf)
> t2 <- ((nm*nf)/(nm+nf))*(t(meanm-meanf)%*%solve(sigmapl)%*%
+ (meanm-meanf))
> nm;nf;meanm;meanf;sigmapl;t2
[1] 32
[1] 32

M_y1 M_y2 M_y3 M_y4
15.96875 15.90625 27.18750 22.75000

F_y1 F_y2 F_y3 F_y4
12.34375 13.90625 16.65625 21.93750

M_y1 M_y2 M_y3 M_y4
M_y1 7.164315 6.047379 5.693044 4.700605
M_y2 6.047379 15.894153 8.492440 5.855847
M_y3 5.693044 8.492440 29.356351 13.980847
M_y4 4.700605 5.855847 13.980847 22.320565

[,1]
[1,] 97.6015
> HotellingsT2(males,females,test="f")

Hotelling’s two sample T2-test
data: males and females
T.2 = 23.2197, df1 = 4, df2 = 59, p-value = 1.464e-11
alternative hypothesis: true location difference is not
+ equal to c(0,0,0,0)
> HotellingsT2(males,females,test="chi")

Hotelling’s two sample T2-test
data: males and females
T.2 = 97.6015, df = 4, p-value < 2.2e-16
alternative hypothesis: true location difference is not
+ equal to c(0,0,0,0)

After importing the dataset, the first few lines of the code obtain the quantities n1, n2, x1, x2,
S1, and 𝑣S2. The pooled variance as specified in Equation 14.14 is computed by the R code line
beginning with t2. The computations are illustrated to clarify the formulas. The R function
HotellingsT2 is then used to obtain the results in the routine way.

Comparing the value of the test statistic T2 with critical value T2
0.01,4,62 = 15.373, we are led

to reject the hypothesis of equal mean vectors for the gender groups. ◽

?HotellingsT2
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14.6 Multivariate Analysis of Variance

The ANOVA deals with testing of k-means being equal in the univariate case. A host of
ANOVA techniques was seen in Chapter 13. For the multivariate case, we have the gener-
alization multivariate analysis of variance, more commonly simply known as MANOVA. The
data structure can be easily displayed in tabular form, and we adapt the notation from Rencher
(2002).

Suppose we want to test for equality of mean of k-vector samples. Let yij denote obser-
vation j from population i, i = 1, 2, · · · , k, j = 1, 2, · · · , n. We assume that yij ∼ N(𝛍i ,𝚺). The
observation model is specified by

yij = 𝝁 + 𝜶i + 𝝐ij

= 𝝁i + 𝝐ij, i = 1, 2, · · · , k, j = 1, 2, · · · , n. (14.16)

Here 𝝐 ∼ N(𝝁 ,𝚺), and 𝜶i is the mean effect in the ith population. The hypothesis of interest is
given by H ∶ 𝝁1 = 𝝁2 = · · · = 𝝁k. To test the hypothesis H, we need to define, as usual, the
“between” and “within” sum of squares matrices, denoted by H and E respectively:

H = n
k∑

i=1

(yi. − y..)(yi. − y..)T

= 1
n

k∑
i=1

yi.y
T
i. −

1
kn

y..y
T
.. , (14.17)

E =
k∑

i=1

n∑
j=1

(yij − yi.)(yij − yi.)T

=
∑

ij

yijy
T
ij −

1
n

∑
i

yi.y
T
i. . (14.18)

Let 𝜐H and 𝜐E respectively denote the rank of H and E. There are four different statistics to
test for H and they are now explained in some detail.

14.6.1 Wilks Test Statistic

The Wilks test statistic for H is given by

Λ = |E||E + H| . (14.19)

In the above expression, |.| denotes the determinant of the matrix. The multivariate litera-
ture refers to Λ as Wilks’ Λ. The test statistic can be equivalently expressed in terms of the
eigenvalues 𝜆i, i = 1, · · · , s of E−1H, where s is the rank of E−1H, and is given by

Λ =
s∏

i=1

1
1 + 𝜆i

. (14.20)
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The Wilks’ Λ takes values in the interval [0, 1]. Thus, the test procedure is to reject H if
Λ ≤ Λ𝛼,p,𝜐E ,𝜐H

. These ideas and concepts are next illustrated using the well-known root-stack
dataset.

Example 14.6.1. Apple of Different Rootstock. The variables description is listed:

• y1 = trunk girth at 4 years (mm × 100)
• y2 = extension growth at 4 years (m)

• y3 = trunk girth at 15 years (mm × 100)
• y4 = weight of tree above ground at

15 years (lb × 1000)

The goal is to test if the mean vector of the four variables is the same across six stratas of the
experiment, that is, H ∶ 𝝁1 = 𝝁2 = · · · = 𝝁6. We will first use a laborious approach to obtain
the Wilks’ Λ and test the hypothesis. The R function will follow these tedious codes later.

> # rootstock.dta is available at
> # http://www.stata-press.com/data/r10/rootstock.dta
> library(foreign)
> rootstock <- read.dta("rootstock.dta")
> rootstock1 <- rootstock[rootstock[,1]==1,2:5]
> rootstock2 <- rootstock[rootstock[,1]==2,2:5]
> rootstock3 <- rootstock[rootstock[,1]==3,2:5]
> rootstock4 <- rootstock[rootstock[,1]==4,2:5]
> rootstock5 <- rootstock[rootstock[,1]==5,2:5]
> rootstock6 <- rootstock[rootstock[,1]==6,2:5]
> n <- 8; p <- 4; vh <- 5; ve <- 6*(8-1); k <- 6
> ymm<- colSums(rootstock[,2:5])
> y1m <- colSums(rootstock1)
> y2m <- colSums(rootstock2)
> y3m <- colSums(rootstock3)
> y4m <- colSums(rootstock4)
> y5m <- colSums(rootstock5)
> y6m <- colSums(rootstock6)
> H <- ((y1m%*%t(y1m))/n) + ((y2m%*%t(y2m))/n)+((y3m%*%t(y3m))/n)
+ +((y4m%*%t(y4m))/n) + ((y5m%*%t(y5m))/n)+((y6m%*%t(y6m))/n)
+ - (ymm%*%t(ymm))/(k*n)
> E <- matrix(0,nrow=4, ncol=4);
> for(i in 1:nrow(rootstock)) {
+ a <- as.numeric(rootstock[i,2:5])
+ E <- E + a%*%t(a)
+ }
> E <- E - (((y1m%*%t(y1m))/n) + ((y2m%*%t(y2m))/n)
+ +((y3m%*%t(y3m))/n)+((y4m%*%t(y4m))/n) + ((y5m%*%t(y5m))/n)
+ +((y6m%*%t(y6m))/n))
> E_H <- E+H
> wlambda <- det(E)/(det(E_H))
> options(digits=3)
> E;H;E_H;wlambda

y1 y2 y3 y4
[1,] 0.320 1.70 0.554 0.217
[2,] 1.697 12.14 4.364 2.110
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[3,] 0.554 4.36 4.291 2.482
[4,] 0.217 2.11 2.482 1.723

y1 y2 y3 y4
[1,] 0.0736 0.537 0.332 0.208
[2,] 0.5374 4.200 2.355 1.637
[3,] 0.3323 2.355 6.114 3.781
[4,] 0.2085 1.637 3.781 2.493

y1 y2 y3 y4
[1,] 0.394 2.23 0.886 0.426
[2,] 2.234 16.34 6.719 3.747
[3,] 0.886 6.72 10.405 6.263
[4,] 0.426 3.75 6.263 4.216
[1] 0.154

From the data object rootstock, the data for each stratum is extracted with the code root-
stock1 <- rootstock[rootstock[,1]==1,2:5]. We have exactly eight observa-
tions from each stratum and hencen <- 8, and similarly the other scalar numbers are created.
The R function colSums is essentially used to capture terms such as yi. and y... To obtain
the matrix H, the R code ((y1m%*%t(y1m))/n)+ ... +((y6m%*%t(y6m))/n) -
(ymm%*%t(ymm))/(k*n) imitates Formula 14.17. To obtain the matrix E, the R program
takes it into two steps. In the first step, it simply captures the first part of Formula 14.18,
that is the

∑
ijyijy

T
ij part with the for loop for(i in 1:nrow(rootstock)). The rest

of Equation 14.18 is computed with E <- E - (((y1m%*%t(y1m))/n) + ... +
((y6m%*%t(y6m))/n)). The rest of the R program is trivial to follow.

The calculated values of Wilks lambda 0.154 is less than the theoretical value of 0.455
(corresponding to p = 4, 𝑣H = 5, 𝑣E = 42). Thus, we reject the hypothesis that the mean vector
is the same for the six strata. The R function manova shows the same result:

> attach(rootstock)
> rs <- rootstock[,1]
> rs <- factor(rs,ordered=is.ordered(rs)) # Too important a step
> root.manova <- manova(cbind(y1,y2,y3,y4)∼rs)
> summary(root.manova, test = "Wilks")

Df Wilks approx F num Df den Df Pr(>F)
rs 5 0.154 4.94 20 130 7.7e-09 ***
Residuals 42
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Complex computational statistics, at least from a vector and matrix point of view, is com-
pletely followed through a rudimentary approach and then verified through the R function
manova. ◽

14.6.2 Roy’s Test

It is beyond the scope of the current work to clearly underpin the statistical motivation of Roy’s
test. An elegant description of the Roy’s test can be found in Section 6.1.4 of Rencher (2002).
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We now give a watered-down version of Roy’s test. Let 𝜆1 denote the largest eigenvalue of the
matrix E−1H. The Roy’s largest root test is given by

𝜃 =
𝜆1

1 + 𝜆1
. (14.21)

The test procedure is then to reject the hypothesis H if 𝜃 ≥ 𝜃𝛼,s,m,N , where s = min{𝜐H , p},m =
1
2
(|𝜐H − p| − 1),N = 1

2
(𝜐E − p − 1).

For the rootstock dataset, the one-line R code below gives the result based on the Roy’s test.

> summary(root.manova, test = "Roy")
Df Roy approx F num Df den Df Pr(>F)

rs 5 1.88 15.8 5 42 1e-08 ***
Residuals 42
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

The Roy’s test also rejects the hypothesis H that the mean vector for the six strata are equal.

14.6.3 Pillai’s Test Statistic

Let 𝜆1, · · · , 𝜆s denote the s eigenvalues of the matrix E−1H. The Pillai test statistic is then
given by

V (s) = tr[(E + H−1)H] =
s∑

i=1

𝜆i

1 + 𝜆i
. (14.22)

The test procedure is to reject H if V (s) ≥ V (s)
𝛼 . In R, we carry out the Pillai’s method as below.

> summary(root.manova, test = "Pillai")
Df Pillai approx F num Df den Df Pr(>F)

rs 5 1.30 4.07 20 168 2e-07 ***
Residuals 42
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

The Pillai’s test statistic confirms the findings of the Wilks’s and Roy’s test that the mean vector
for the six strata are significantly different. Finally, we look at the fourth test for testing the
hypothesis H, that the strata mean vectors are equal to the Lawley-Hotelling test statistic.

14.6.4 The Lawley-Hotelling Test Statistic

The Lawley-Hotelling statistic is defined by:

U(s) = tr(E−1H). (14.23)

The test procedure is to reject the hypothesis H for large values of U(s). This is illustrated in R.
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> summary(root.manova, test = "Hotelling")
Df Hotelling-Lawley approx F num Df den Df Pr(>F)

rs 5 2.92 5.48 20 150 2.6e-10 ***
Residuals 42
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Thus, it is concluded that all the four statistical tests lead to the same conclusion, that the mean
vector for the six strata are different. From a theoretical point of view, there is no reason to
prefer one of the four methods over the others. A general advice is to use all the four methods.
Consider one more example before closing the MANOVA section.

Example 14.6.2. Testing for Physico-chemical Properties of Water in Four Cities. Water
samples from four cities are collected and their physico-chemical properties for ten variables,
such as pH, Conductivity, Total_Dissolved_Solid, etc., are measured. We would
then like to test if the properties are the same across the four cities and in which case a same
water treatment approach can be adopted for all cities. The MANOVA test is used for statistical
analysis of the problem. This example is drawn from Gore, et al. (2006). This dataset is also
available in the R package gpk and the dataset name is Waterquality.

> data(Waterquality)
> attach(Waterquality)
> City <- factor(City,ordered=is.ordered(City))
> WQ.manova <- manova(cbind(pH,Conductivity,Total_Dissolved_Solid,
+ Alkalinity,Hardness,
+ Calcium_Hardness,Magnesium_Hardness,Chlorides,Sulphates)∼City)
> summary(WQ.manova, test = "Wilks")

Df Wilks approx F num Df den Df Pr(>F)
City 3 0.030522 12.758 27 149.59 < 2.2e-16 ***
Residuals 59
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
> summary(WQ.manova, test = "Roy")

Df Roy approx F num Df den Df Pr(>F)
City 3 6.3098 37.158 9 53 < 2.2e-16 ***
Residuals 59
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
> summary(WQ.manova, test = "Pillai")

Df Pillai approx F num Df den Df Pr(>F)
City 3 1.909 10.305 27 159 < 2.2e-16 ***
Residuals 59
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
> summary(WQ.manova, test = "Hotelling")

Df Hotelling-Lawley approx F num Df den Df Pr(>F)
City 3 8.5864 15.795 27 149 < 2.2e-16 ***
Residuals 59
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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Since each of the four statistical tests indicates that the mean vector of the ten variates across
the four cities are significantly different from each other, the water treatment program across
the cities has to be different. ◽

?det, ?manova, ?summary.manova

We will next look at testing hypotheses problems related to the variance-covariance
matrices.

14.7 Testing for Variance-Covariance Matrix: One Sample

In MSA, the covariance matrix plays the role of the scale parameter. We thus naturally
encounter the problem of testing H ∶ 𝚺 = 𝚺0. Let us begin with the testing problems of
covariance matrix in the one sample case.

Let S denote the sample covariance matrix of 𝚺. Define 𝑣 = n − 1. The likelihood ratio test
statistic for the hypothesis H ∶ 𝚺 = 𝚺0 is given by

u = 𝑣[ln |𝚺0| − ln |S| + tr(S𝚺−1
0 ) − p], (14.24)

where 𝑣 is the degrees of freedom of S, ln is the natural logarithm (base e), and tr is the trace,
sum of diagonal matrix, of a matrix. For large 𝑣 values, u is approximately distributed as a 𝜒2-
random variable with p(p + 1)∕2 degrees of freedom. For moderate-sized samples, Rencher
(2002) recommends the use of the following modification:

u′ = u

[
1 − 1

6𝑣 − 1

(
2p + 1 − 2

p + 1

)]
. (14.25)

The test procedure is to reject the hypothesis H if the values of u or u′ are greater than
𝜒2
[𝛼,p(p+1)∕2]. Both the test statistics u and u′ are computed in the next example.

Example 14.7.1. Understanding the Height-Weight Relationship. This is a continuation of
Example 14.4.1, where we have the height and weight of 20 college-age males. Here, test if
the covariance matrix is indeed 𝚺0 = [20, 100; 100, 1000].

> data(hw)
> sigma0 <- matrix(c(20, 100, 100, 1000),nrow=2)
> sigma <- var(hw)
> v <- nrow(hw)-1
> p <- ncol(hw)
> u <- v*(log(det(sigma0))-log(det(sigma)) + sum(diag(sigma%*%solve
+ (sigma0)))-p)
> u1 <- (1- (1/(6*v-1))*(2*p+1 - 2/(p+1)))*u
> u;u1;qchisq(1-0.05,p*(p+1)/2)
[1] 11.09374
[1] 10.66832
[1] 7.814728
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The R code u <- v*(log(det(sigma0))... does the computation as required
in Equation 14.24, while u1 <- (1- (1/(6*v-1))... does the computation for
Equation 14.25. Comparing with the critical values of 𝜒2

[𝛼,p(p+1)∕2], with p <- ncol(hw),
since the values of u and u′ are greater than the critical value, we reject the hypothesis
H ∶ 𝚺 = 𝚺0 and conclude that 𝚺 ≠ 𝚺0. ◽

14.7.1 Testing for Sphericity

The problem of testing if the components of a random vector are independent is equivalent to
the problem of testing H ∶ 𝚺 = 𝜎2I, where I is the identity matrix. We would like to caution the
reader to always keep in mind the counter-example of Section 14.3. The hypothesis is that we
are testing equivalent tests if all the correlations among the component are equal to zero, that
is, it examines if the components are independent.

Note that if the hypothesis H holds true, the ellipsoid (x − 𝝁)′𝚺−1(x − 𝝁) = c2 becomes
(x − 𝝁)′(x − 𝝁) = 𝜎2c2, which is the equation of a sphere. Here, c is some non-negative con-
stant, that is, c > 0. Hence, the problem of a test for independence of the components is also
known as tests of sphericity.

The log-likelihood ratio test for H ∶ 𝚺 = 𝜎2I is given by

LR =
[ |S|
(tr (S) ∕p)p

]n∕2

,

which on further evaluation leads to

−2 ln(LR) = −n(ln(|S|) − p ln(tr(S)∕p)) = −n ln(u),

where u = (LR)2∕n. The test statistic u can be restated in terms of the eigenvalues as

u =
pp ∏p

i=1 𝜆i

(
∑p

i=1 𝜆i)p
, (14.26)

where 𝜆1, 𝜆2, · · · , 𝜆p are the eigenvalues of the sample covariance matrix S. An improvement
of u by u′ is further given by

u′ = −
(
𝑣 −

2p2 + p + 2
6p

)
ln(u), (14.27)

where 𝑣 is the degrees of freedom of S. The statistic u′, under the hypothesis H, has a 𝜒2 distri-
bution with p(p + 1)∕2 − 1 degrees of freedom. The test procedure is to reject the hypothesis
H if u′ > 𝜒2

[𝛼,p(p+1)∕2−1].

Example 14.7.2. The Linguistic Probe Word Analysis. Probe words are used to test the
recall ability of words in various linguistic contexts. In this experiment the response time to
5 different probe words are recorded for 11 individuals. The interest in the experiment is to
examine if the response times to the different words are independent or not. The failure to reject
the hypothesis of sphericity implies that the response times can be compared using ANOVA.
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> data(pw)
> sigma <- var(pw[2:6])
> p <- ncol(pw)-1; v <- nrow(pw)-1
> u <- p ̂ p*(det(sigma))/(sum(diag(sigma)) ̂ p)
> u1 <- -(v-(2*p ̂ 2+p+2)/(6*p))*log(u)
> u;u1
[1] 0.03948874
[1] 26.17709

Note here that the R program code u <- p ̂ p*(det(sigma))/(sum(diag
(sigma)) ̂ p) does not imitate the expression given in Equation 14.26, though the
code for u1 follows Equation 14.27. However, we will leave it to the reader to obtain the
relationship between determinants and eigenvalues, which will assure that the program is
correct.

Since the calculated 𝜒2 value is greater than the critical value of 23.68479, we reject the
sphericity hypothesis. ◽

?qchisq

14.8 Testing for Variance-Covariance Matrix: k-Samples

Consider the case when we have samples from k-populations, that is, Xj ∼ N(𝝁j,𝚺j), for j =
1, 2, · · · , k. For the jth sample, we have a sample of size nj. The hypothesis of interest here is
H ∶ 𝚺1 = 𝚺2 = · · · = 𝚺k. Also, define the following:

• Sj: the sample covariance matrix of the jth population;
• 𝑣j = nj − 1: the degrees of freedom associated with the estimated covariance matrix Sj.

Technically, we need to have 𝑣i > p, j = 1, 2, · · · , k for ensuring that the estimated covariance
matrices are non-singular. Define the pooled sample covariance matrix by

Spl =
∑k

j=1 𝑣jSj∑k
j=1 𝑣j

.

The test statistic for the hypothesis H ∶ 𝚺1 = 𝚺2 = · · · = 𝚺k is then given by the following:

M =
|S1|𝑣1∕2|S2|𝑣2∕2 · · · |Sk|𝑣k∕2

|Spl|∑k
j=1 𝑣j∕2

. (14.28)

The range of values for M is between 0 and 1, with values closer to 1 favoring the hypothesis
H, and values closer to 0 leading to its rejection. This can be easily seen by rewriting the
expression of M as

M =
( |S1||Spl|

)𝑣1∕2( |S2||Spl|
)𝑣2∕2

· · ·
( |Sk||Spl|

)𝑣k∕2

. (14.29)

An expression for ln(M) is given by

ln(M) = 1
2

k∑
j=1

𝑣i ln(|Sj|) − 1
2

(
k∑

j=1

𝑣j

)
ln(|Spl|). (14.30)
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The hypothesis H ∶ 𝚺1 = 𝚺2 = · · · = 𝚺k may be tested using the exact M-test with −2 ln M,
see page 258 of Rencher (2002).

To test the hypothesis H ∶ 𝚺1 = 𝚺2 = · · · = 𝚺k, we may also use the Box’s 𝜒2 and F-
approximations for the probability distribution of M. Towards this, we will first define c1 as
follows:

c1 =

[
k∑

j=1

1
𝑣j

− 1∑k
j=1 𝑣j

][
2p2 + 3p − 1

6(p + 1)(k − 1)

]
. (14.31)

It can then be proved that
u = −2(1 − c1) ln(M), (14.32)

is distributed as a 𝜒2 random variable with (k − 1)p(p + 1)∕2 degrees of freedom.
The steps for obtaining the F-approximation may appear cumbersome, but its benefits are

also equally rewarding. As with the 𝜒2 approximation, we will first define the required quan-
tities. Define c2 as a function of c1 by

c2 =
(p − 1)(p + 2)

6(k − 1)

[
k∑

j=1

1

𝑣2
j

− 1

(
∑k

j=1 𝑣j)2

]
, (14.33)

and also define the quantities a1, a2, b1, b2 in the following:

a1 =
1
2
(k − 1)p(p + 1), a2 =

a1 + 2|c2 − c2
1| ,

b1 =
1 − c1 − a1∕a2

a1
, b2 =

1 − c1 + 2∕a2

a2
.

We have two scenarios here: (i) c2 > c2
1, and (ii) c2 < c2

1. In case (i), the appropriate F-statistic
is

F = −2b1 ln(M), (14.34)

and in case (ii), it is

F = −
2a2b2 ln(M)

a1(1 + 2b2 ln(M))
. (14.35)

In both cases, the approximation follows the Fa1,a2
distribution, and the test procedure is to

reject the hypothesis H if F > F𝛼 .

Example 14.8.1. Psychological Tests for Males and Females. Contd. We have considered
the problem of testing hypothesis of equality of mean vectors in Section 14.5. We will now
test if the covariance matrices for the male and female groups are equal or not, that is, H ∶
𝚺M = 𝚺F. We first compute the exact M test statistic value, and then calculate the Box’s 𝜒2

and F test statistic values.
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> # Testing for Equality of Covariance Matrices
> data(mfp)
> males <- mfp[,1:4]; females <- mfp[,5:8]
> nm <- nrow(males);nf <- nrow(females)
> p <- 4; k <- 2
> vm <- nm-1; vf <- nf-1
> meanm <- mean(males); meanf <- mean(females)
> sigmam <- var(males); sigmaf <- var(females)
> sigmapl <- (1/(nm+nf-2))*((nm-1)*sigmam+(nf-1)*sigmaf)
> ln_M <- .5*(vm*log(det(sigmam))+vf*log(det(sigmaf)))
+ -.5*(vm+vf)*log(det(sigmapl))
> exact_test <- -2*ln_M # the Exact Test
> exact_test
[1] 14.5606
> # The Box’s chi-square approximation
> c1 <- (sum(c(1/vm,1/vf))- (1/sum(c(vm,vf))))*((2*p ̂ 2+3*p-1)
+ /(6*(p+1)*(k-1)))
> u <- -2*(1-c1)*ln_M
> qchisq(1-0.05,(k-1)*p*(p+1)/2)
[1] 18.30704
> u; qchisq(1-0.05,(k-1)*p*(p+1)/2)
[1] 13.55075
[1] 18.30704
> c2 <- ((p-1)*(p+2)/(6*(k-1)))*(sum(c(1/vm,1/vf) ̂ 2)-
+ (1/(sum(c(vm,vf)) ̂ 2)))
> a1 <- (k-1)*p*(p+1)/2; a2 <- (a1+2)/(abs(c2-c1 ̂ 2))
> b1 <- (1-c1-a1/a2)/a1; b2 <- (1-c1+2/a2)/a2
> if(c2>c1 ̂ 2) {Ftest = -2*b1*ln_M} else {Ftest = (2*a2*b2*ln_M)/
+ (a1*(1+2*b2*ln_M))}
> Ftest; qf(1-.05,10,Inf)
[1] 1.354283
[1] 1.830704

The R code ln_M <- .5*(vm*log(det(sigmam))... delivers the computation for
Equation 14.30 and exact_test <- -2*ln_M obtains the required exact M test statistic
of 14.5606. Compared with the critical value, Appendix Table A.14 of Rencher (2002), of
19.74, we will be rejecting the hypothesis that the covariance matrices for males and females
are equal.

To obtain the Box’s 𝜒2, and F-statistics, we need to obtain the c1 and c2 values. The R
codes c1 <- ... and c2 <- ... clearly implement the required formulas, as given in
Equations 14.31 and 14.33 . The program for Box’s 𝜒2 statistic in Equation 14.32 is carried
out with u <- -2*(1-c1)*ln_M and the resultant value is 13.55075, and a compari-
son with the critical value for qchisq(1-0.05,(k-1)*p*(p1)/2)+ in 18.30704 again
leads to rejecting the hypothesis.

For our problem, we have that c2 > c2
1, although the R program takes care of both scenarios.

The details of obtaining a1, a2, b1, and b2 is left to the reader. The computation of the F-statistic
is handled by the if-else control loop for both the cases, as given in Equations 14.34 and
14.35. All the three procedures lead to rejection of the hypothesis. ◽
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14.9 Testing for Independence of Sub-vectors

The test of sphericity addresses the problem of testing if all the covariates are independent or
not. A very likely practical problem could be that we may know beforehand that certainly not
all the components are independent. However, we may also have knowledge that though the
first three components and the next four components are related, it may be the case that the
set of the first three components are independent of the set of the next four components. We
would thus like to have some statistical tests to help us prove if our hypothesis is true or not.
In fact, we need methods to help us test any combination of vectors as independent or not, and
the methods in this section exactly help us to accomplish this.

Consider the p-dimensional random vector x = (x1, x2, · · · , xp). Suppose that we are inter-
ested to find if the sub-vectors x𝟏 , x𝟐 , · · · , xk are a k mutually independent sets of sub-vectors.
The notation needs a bit of explanation. If k = p, we are testing if all the components are inde-
pendent. We denote pj for the number of elements in the jth sub-vector xj, and we require that∑k

j=1 pj = p. Note that (x1, x2, · · · , xk) denotes a partitioning of x and not a random sample of
size k of x.

Let 𝚺jj′ denote the covariance matrix between the sub-vectors xj and xj′ , j ≠ j′. The hypoth-
esis for independence of the sub-vectors can then be stated symbolically as H ∶ 𝚺jj′ = 𝟎, j ≠ j′,
and in matrix notation as below:

H ∶ 𝚺 =
⎛⎜⎜⎜⎝
𝚺11 𝟎 · · · 𝟎
𝟎 𝚺22 · · · 𝟎
⋮ ⋮ ⋮
𝟎 𝟎 · · · 𝚺kk

⎞⎟⎟⎟⎠
. (14.36)

Let us denote the partition of estimated covariance matrix by the following:

S =
⎛⎜⎜⎜⎝
S11 S12 · · · S1k
S12 S22 · · · S2k
⋮ ⋮ ⋮

S1k S2k · · · Skk

⎞⎟⎟⎟⎠
. (14.37)

The likelihood ratio test statistic for the hypothesis H is given by

u = |S||S11‖S22| · · · |Skk| . (14.38)

A 𝜒2 approximation of the distribution of u is given by

u′ = −𝑣 c ln(u), (14.39)

where 𝑣 and c are determined by the following:

c = 1 − 1
12fv

(2a3 + 3a2), f =
a2

2
,

a2 = p2 −
k∑

j=1

p2
j , a3 = p3 −

k∑
j=1

p3
j , 𝑣 = n − 1. (14.40)

We reject the hypothesis H if u′ > 𝜒2
𝛼,f .
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Example 14.9.1. The Seishu Wine Study. The odor and taste of wines are recorded in a study.
It is believed that the variables such as the pH concentration, alcohol content, total sugar, etc.,
explain the odor and taste of the wine. The variables are enumerated below.

1. y1 : Taste
2. y2 : Odor
3. x1 : pH
4. x2 : Acidity 1
5. x3 : Acidity 2

6. x4 : Sake meter
7. x5 : Direct reducing sugar
8. x6 : Total sugar
9. x7 : Alcohol

10. x8 : Formyl nitrogen

Note that the variables y1 and y2 are in some sense outputs, or regressands, and appear to be a
function of the other regressors. The (input) variables x1, x2, x3 are the acidic content, whereas
x4, x5, x6 are the sugar content of the wine, and the remaining variables describe the alcohol
and nitrogen content. It is thus natural to believe that we have here four types of sub-vectors,
which may be mutually exclusive. Mathematically speaking, we are interested in testing if the
sub-vectors (y1, y2), (x1, x2, x3), (x4, x5, x6), (x7, x8) are a mutually exclusive subsets of vector.
The following R program deals with the related computations.

> data(sheishu)
> noc <- c(2,3,3,2)
> nov <- 10
> v <- nrow(sheishu)-1
> varsheishu <- var(sheishu)
> s11 <- varsheishu[1:2,1:2]
> s22 <- varsheishu[3:5,3:5]
> s33 <- varsheishu[6:8,6:8]
> s44 <- varsheishu[9:10,9:10]
> u <- det(varsheishu)/(det(s11)*det(s22)*det(s33)*det(s44))
> a2 <- nov ̂ 2 - sum(noc ̂ 2)
> a3 <- nov ̂ 3 - sum(noc ̂ 3)
> f <- a2/2
> cc <- 1 - (2*a3 + 3*a2)/(12*f*v)
> u1 <- -v*cc*log(u)
> u; a2; a3; f; cc; u1
[1] 0.01627025
[1] 74
[1] 930
[1] 37
[1] 0.8383038
[1] 100.1221
> qchisq(1-0.001,37)
[1] 69.34645

Using the var function, we first obtain S as required in Equation 14.37, and the partitions with
s11, s22, s33, and s44. The test statistic u as required by Equation 14.38 is computed by
u <- det(varsheishu)/(det(s11)*...*det(s44)). The constants required in
Equation 14.40 are easily obtained in the variables a2, a3, f, v, and cc, which further help
to obtain u′ given by Equation 14.39, calculated with u1 <- -v*cc*log(u). Since the
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u1 value exceeds qchisq(1-0.001,37) equal to 69.34645, we reject the hypothesis of
independence of sub-vectors. ◽

?chisq, ?det

In the next chapter on MSA, we will consider some of the more advanced topics, which are
more useful in an applied context.

14.10 Further Reading

Anderson (1953, 1984, and 2003) is the first comprehensive and benchmark book in this area
of statistics. Rencher (2002), Johnson and Wichern (2007), Hair, et al. (2010), Hardle and
Simar (2007), and Izenman (2008) are some of the modern accounts of multivariate statistical
analysis. Everitt (2005) has handled the associated computations through R and S-Plus. How-
ever, as Everitt (2005) and Everitt and Hothorn (2011) are dwelling more in advanced methods
of MSA, we believe that the reader can benefit from the coverage given in this and the next
chapter.

14.11 Complements, Problems, and Programs

Problem 14.1 The iris data has been introduced in AD2. Obtain the matrix of scatter
plots for (i) the overall dataset (removing the Species), and (ii) three
subsets according to the Species. Obtain the average of the four char-
acteristics by the Species group and using the faces function from the
aplpack package, plot the Chernoff faces. Do the Chernoff faces offer
enough insight to identify the group?

Problem 14.2 For the board stiffness data discussed in Example 14.3.3, obtain the covari-
ance matrix and then using the cov2cor function, obtain the correlation
matrix.

Problem 14.3 The Mahalanobis distance D2 given in Equation 14.7 is easily obtained in R
using the mahalanobis function. Using this function, obtain the distance
of the observations from the entire dataset for the board stiffness dataset and
investigate for presence of outliers. Repeat the exercise for the presence of
outliers in the iris dataset too.

Problem 14.4 Using the HotellingsT2 function from the ICSNP package, test whether
average sepal and petal length and width for setosa species equals [5.936
2.770 4.260 1.326] in the iris dataset.

Problem 14.5 Using the HotellingsT2 function from the ICSNP package, test whether
average sepal and petal length and width for setosa species equals that of
versicolor in the iris dataset.
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Problem 14.6 Run the example code of the function HotellingsT2, that is run
example(HotellingsT2), and explore the options available with this
function.

Problem 14.7 Carry out the MANOVA analysis for the iris datasets, where the hypoth-
esis problem is that the mean of the multivariate vector of the four variables
are equal across the three types of species.

Problem 14.8 Using base matrix tools of R, create a function which returns the value of
Roy’s test statistic given in Equation 14.21.

Problem 14.9 Repeat the above exercise for the Pillai and Lawley-Hotelling tests respec-
tively given in Equations 14.22 and 14.23.

Problem 14.10 For the iris dataset, test the hypothesis 𝚺setosa = 𝚺versicolor = 𝚺virginica.
Repeat the exercise for the stack loss problem too.

Problem 14.11 Test whether the Sepal and Petal characteristics are independent of each
other in the iris dataset.
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Multivariate Statistical Analysis - II

Package(s): DAAG, HSAUR2, qcc
Dataset(s): iris, socsupport, chemicaldata, USairpollution, hearing,
cork, adjectives, life

15.1 Introduction

In the previous chapter we built on some of the essential multivariate techniques. The results
there helped set up a platform to stage more practical applications. The classification and dis-
criminant analysis techniques work well for classifying observations into distinct groups. This
topic forms the content of Section 15.2. Canonical correlations help to identify if there are
groups of variables present in a multivariate vector, which will be dealt with in Section 15.3.
Principal Component Analysis (PCA) helps in obtaining a new set of fewer variables, which
have the overall variation of the original set of variables. This multivariate technique will be
developed in Section 15.4, whereas specific areas of application of the technique will be dealt
in Section 15.5. Multivariate data may also be used to find a new set of variables using Factor
Analysis, check Section 15.6.

15.2 Classification and Discriminant Analysis

The application of MSA is to classify the data into distinct groups. This task is achieved
through two steps: (i) Discriminant Analysis, and (ii) Classification. In the first step we iden-
tify linear functions, which describe the similarities and differences among the groups. This
is achieved through the relative contribution of variables towards the separation of groups and
finds an optimal plane which separates the groups. The second task is allocation of the obser-
vations to the groups identified in the first step. This is broadly called Classification. We will
begin with the first task in the forthcoming subsection.

A Course in Statistics with R, First Edition. Prabhanjan Narayanachar Tattar, Suresh Ramaiah and B. G. Manjunath.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/tattar/statistics
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15.2.1 Discrimination Analysis

Suppose that there are two groups characterized by two multivariate normal distributions:
Np(𝝁1,𝚺) and Np(𝝁2,𝚺). It is assumed that the variance-covariance matrix 𝚺 is the same for
both the groups. Assume that we have n1 observations X11,X12, … ,X1n1

from Np(𝛍1,𝚺) and
n2 observations X21,X22, … ,X2n2

from Np(𝛍2,𝚺). The discriminant function is a linear com-
bination of the p variables, which will maximize the distance between the two group’s mean
vectors. Thus, we are seeking a vector a, which achieves the required objective.

As a first step, the n1 + n2 vectors are transformed to n1 + n2 scalars through a as below:

z1i = a′X1i, i = 1, … , n1,

z2i = a′X2i, i = 1, … , n2. (15.1)

Define the means of the transformed scalars and the pooled variance as below:

z̄1 ≡
∑n1

i=1 a′x1i

n1
= a′x̄1,

z̄2 ≡
∑n2

i=1 a′x2i

n2
= a′x̄2,

Spl =
(n1 − 1)S1 + (n2 − 1)S2

n1 + n2 − 2
, exists iff n1 + n2 − 2 > p. (15.2)

Since the goal is to find that a which maximizes the distance between the group means, the
problem is to maximize the squared distance:

{a′(x̄1 − x̄2)}2

a′Spla
. (15.3)

The maximum of the squared distance occurs at a given by

a = S−1
pl (x̄1 − x̄2). (15.4)

An illustration of the discriminant analysis steps is done through the next example.

Example 15.2.1. Discriminant Function for the “setosa” species in Iris Data. Suppose that
based on the four variables of sepal length and width, and petal length and width, we need to
find a which will maximize the distance between the two groups: “setosa” and “not a setosa”
species. The formulas are clearly illustrated in the following R program.

> data(iris)
> x1bar <- colMeans(iris[iris$Species=="setosa",1:4])
> x2bar <- colMeans(iris[iris$Species!="setosa",1:4])
> table(iris$Species)

setosa versicolor virginica
50 50 50

> S_pl <- ((49*var(iris[iris$Species=="setosa",1:4])+
+ 99*var(iris[iris$Species!="setosa",1:4]))/148)
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> x1bar;x2bar; S_pl
Sepal.Length Sepal.Width Petal.Length Petal.Width

5.006 3.428 1.462 0.246
Sepal.Length Sepal.Width Petal.Length Petal.Width

6.262 2.872 4.906 1.676
Sepal.Length Sepal.Width Petal.Length Petal.Width

Sepal.Length 0.3350257 0.11456216 0.30867703 0.11523649
Sepal.Width 0.1145622 0.12163784 0.09939189 0.05661081
Petal.Length 0.3086770 0.09939189 0.46590676 0.19514730
Petal.Width 0.1152365 0.05661081 0.19514730 0.12436892
> solve(S_pl)

[,1]
Sepal.Length 3.186486
Sepal.Width 11.719430
Petal.Length -10.841575
Petal.Width -2.773537

Thus, the discriminant function is given by z = −3.186486x1 + 11.719430x2 − 10.841575x3 −
2.773537x4. ◽

The use of the discriminant function for classification is considered next.

15.2.2 Classification

Let xnew be a new vector of observation. The goal is to classify it into one of the groups by
using the discriminant function. The simple, and fairly obvious, technique is to first obtain the
discriminant score by

znew = a′xnew = (x̄1 − x̄2)′S−1
pl xnew.

Next, classify xnew to group 1 or 2 accordingly, as znew is closer to z̄1 or z̄2. A simple illustration
is done next.

Example 15.2.2. Classification for Iris Data. The above description is captured in the next
R program. We simply verify if the original observations are correctly identified by the dis-
criminant function or not.

> a <- solve(S_pl)%*%(x1bar-x2bar)
> z1bar <- t(a)%*%x1bar
> z2bar <- t(a)%*% x2bar
> pred_gr <- NULL
> for(i in 1:150) {
+ mynew <- t(a)%*%t(as.matrix(iris[i,1:4]))
+ pred_gr[i] <- ifelse(abs(mynew-z1bar)>abs(mynew-z2bar),
+ "not setosa","setosa")
+ }
> pred_gr
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[1] "setosa" "setosa" "setosa" "setosa"

[43] "setosa" "setosa" "setosa" "setosa"
[49] "setosa" "not setosa" "not setosa" "not setosa"
[55] "not setosa" "not setosa" "not setosa" "not setosa"

[145] "not setosa" "not setosa" "not setosa" "not setosa"

For the original observations, the discriminant function has properly identified their groups. ◽

The function lda from the MASS package handles the Linear Discriminant Analysis very
well. The particular reason for not using the function here is that our focus has been elucidation
of the formulas in the scheme of flow of the theory. The results arising as a consequence of
using the lda function by the command lda(GROUP̃X1+X2, data=rencher) is a bit
different and the reader is asked to figure out the same. It goes without an explicit mention that
the reader has a host of other options using the lda function.

?colMeans, ?solve, ?lda

15.3 Canonical Correlations

In multivariate data, we may have the case that there are two distinct subsets of vectors, with
each subset characterizing certain traits of the unit of measurement. As an example, the marks
obtained by a student in the examination for different subjects is one subset of measurements,
whereas the performance in different sports may form another subset of measurements. Canon-
ical correlations help us to understand the relationship between such sets of vector data.

Let y′ = (y1, y2, · · · , yp) and x′ = (x1, x2, · · · , xq) be two set of vectors measured on the same
experimental unit. The goal of a canonical correlation study is to obtain vectors a and b such
that correlation between y and x is a maximum, that is, Cor(a′y,b′x) is a maximum.

The sample covariance matrix for the vector (y1, · · · , yp, x1, · · · , xq) is

S =
(

Syy Syx
Sxy Sxx

)
, (15.5)

where Syy is the sample covariance matrix of Y, Sxy is the sample covariance matrix between
X and Y, and Sxx of X. A measure of association between the y′s and the x′s is given by

R2
M = |S−1

yy SyxS−1
xx Sxy| = s∏

i=1

r2
i , (15.6)

where s = min(p, q), and r2
1, r

2
2, · · · , r

2
s are the eigenvalues of S−1

yy SyxS−1
xx Sxy. Note that the asso-

ciation measure R2
M will be a poor measure, since each of the r2

i values is between 0 and 1,
and hence the product of such numbers approach 0 faster. However, the eigenvalues provide a
useful measure of association between the vectors. Particularly, the square root of the eigen-
values leads to useful interpretations of the measures of the association. The collection of the
square root of the eigenvalues {r1, r2, … , rs} has been named the canonical correlations in
the multivariate literature. Without loss of generality we assume that r2

1 ≥ r2
2 ≥ … ≥ r2

s .
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As mentioned in Rencher (2002), the best overall measure of association between the
x′s and y′s is the largest squared canonical correlation r2

1. However, the other eigenvalues
{r2, … , rs} leading to the squared canonical correlations {r2

2, … , r2
s } also provide measures

of supplemental dimensions of linear relationships between the x′s and y′s.
The two important properties of canonical correlations as listed by Rencher are the

following:

• Canonical correlations are scale invariant, scales of the x′s as well as the y′s.
• The first canonical correlation r1 is the maximum correlation among all linear combinations

between the x′s and the y′s.

See Chapter 11 of Rencher for a comprehensive coverage of canonical correlations. We can test
the independence of the x′s and the y′s using any of the four tests discussed in Section 14.6. The
concepts are illustrated for the Chemical Dataset of Box and Youle (1955) and are illustrated
in Rencher.

Example 15.3.1. Chemical Reaction Experiment. In this experiment temperature (x1), con-
centration (x2), and time (x3) have influence on three yield variables, namely outputs, the
percentage of unchanged starting material (y1), the percentage converted to the desired product
(y2), and the percentage of unwanted by-product (y3). The cross-products and squares of the
input variables are also believed to influence the three outputs, and hence we need to take this
information into account when we construct the canonical correlations between these two sets
of variables. That is, we now have nine input variables and three output variables. An R pro-
gram, using the inbuilt cancor function, is put into action for canonical correlation analysis.

> data(chemicaldata)
> names(chemicaldata)
[1] "y1" "y2" "y3" "x1" "x2" "x3"
> chemicaldata$x12 <- chemicaldata$x1*chemicaldata$x2;
> chemicaldata$x13 <- chemicaldata$x1*chemicaldata$x3;
> chemicaldata$x23 <- chemicaldata$x2*chemicaldata$x3
> chemicaldata$x1sq <- chemicaldata$x1 ̂ {2}
> chemicaldata$x2sq <- chemicaldata$x2 ̂ {2}
> chemicaldata$x3sq <- chemicaldata$x3 ̂ {2}
> S_Total <- cov(chemicaldata)
> cancor_xy <- sqrt(eigen(solve(S_Total[1:3,1:3])%*%S_Total
+ [1:3,4:12]
+ %*%solve(S_Total[4:12,4:12])%*%S_Total[4:12,1:3])$values)
> cancor_xy
[1] 0.9899 0.9528 0.4625
> cancor(chemicaldata[,1:3],chemicaldata[,4:12])
$cor
[1] 0.9899 0.9528 0.4625
$xcoef

[,1] [,2] [,3]
y1 0.03633 0.1057 0.1371
y2 0.01054 0.1414 0.1113
y3 0.01638 0.1097 0.1802
$ycoef
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[,1] [,2] [,9]
x1 -0.189983 1.451850 -0.9081431
x2 -0.325733 0.986862 0.0363422

x3sq -0.006645 -0.010175 0.0972184
$xcenter

y1 y2 y3
20.18 56.34 20.78
$ycenter

x1 x3 x12 x13 x23 x1sq x2sq x3sq
167.32 6.50 4536.82 1087.34 177.86 28031.21 755.99 44.78

In this case, we have s = min{3, 9} = 3, that is, we can have three canonical correlations
between y′s and x′s. The cross-product and squares term are integrated into the original
data frame chemicaldata, itself with the first three columns for y′s and the rest for x′s.
Before using the R canonical correlation function cancor, we attempt to obtain them using
formulas 15.5 and 15.6. Thus, the covariance matrix S_Total is first obtained. Next, the
code solve(S_Total[1:3,1:3])%*% ... %*%S_Total[4:12,1:3]) does the
computation for S−1

yy SyxS−1
xx Sxy. Using eigen(matrix)$values for the eigenvalues and

followed by sqrt, we get the three canonical correlations, as specified in Equation 15.6,
between the y′s and x′s as 0.9899 0.9528 0.4625.

By using the cancor function on the data frame chemicaldata, the previous result is
confirmed in the $cor values.

Finally, we would like to test the hypothesis H ∶ 𝚺xy = 𝟎. The four tests seen in Section 14.6
may be used to confirm if y is independent of x or not.

> y <- as.matrix(chemicaldata[,1:3])
> x <- as.matrix(chemicaldata[,4:12])
> chemical_manova <- manova(ỹx)
> summary(chemical_manova,test="Wilks")

Df Wilks approx F num Df den Df Pr(>F)
x 9 0.00145 6.54 27 21.1 2.1e-05 ***
Residuals 9
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
> summary(chemical_manova,test="Roy")

Df Roy approx F num Df den Df Pr(>F)
x 9 48.9 48.9 9 9 1.4e-06 ***
Residuals 9
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
> summary(chemical_manova,test="Pillai")

Df Pillai approx F num Df den Df Pr(>F)
x 9 2.1 2.34 27 27 0.016 *
Residuals 9
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
> summary(chemical_manova,test="Hotelling")

Df Hotelling-Lawley approx F num Df den Df Pr(>F)
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x 9 59 12.4 27 17 9.5e-07 ***
Residuals 9
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

All the four type tests reject the hypothesis H that the two sets of vectors are independent, and
hence the canonical correlations among them may be accepted. ◽

The next section is a very important concept in multivariate analysis.

?cancor, ?summary.manova

15.4 Principal Component Analysis – Theory and Illustration

Principal Component Analysis (PCA) is a powerful data reduction tool. In the earlier
multivariate studies we had p components for a random vector. PCA considers the problem of
identifying a new set of variables which explain more variance in the dataset. Jolliffe (2002)
explains the importance of PCA as “The central idea of principal component analysis (PCA) is
to reduce the dimensionality of a dataset consisting of a large number of interrelated variables,
while retaining as much as possible of the variation present in the dataset.” In general, most
of the ideas in multivariate statistics are extensions of the concepts from univariate statistics.
PCA is an exception!

Jolliffe (2002) considers the PCA theory and applications in a monumental way. Jackson
(1991) is a very elegant exposition of PCA applications. For useful applications of PCA in
chemometrics, refer to Varmuza and Filzmoser (2009). The development of this section is
owed in a large extent to Jolliffe (2002) and Rencher (2002).

PCA may be useful in the following two cases: (i) too many explanatory variables relative
to the number of observations; and (ii) the explanatory variables are highly correlated. Let us
begin with a brief discussion of the math behind PCA.

15.4.1 The Theory

We begin with a discussion of population principal components. Consider a p-variate normal
random vector x = (x1, … , xp) with mean 𝝁 and variance-covariance matrix 𝚺. We assume
that we have a random sample of n observations. The goal of PCA is to return a new set of
variables y = (y1, … , yp), where each yi, i = 1, 2, … , p is some linear combination of the
xis. Furthermore, and importantly, the yi’s are in decreasing order of importance in the sense
that yi has more information about x’s than yj, whenever i < j. The yi’s are constructed in
such a way that they are uncorrelated. Information here is used to convey the fact that the
Var(yi) ≥ Var(yj) whenever i < j.

From its definition, the PCAs are linear combinations of the x’s. The ith principal component
is defined by

yi = ai1x1 + ai2x2 + · · · + aipxp, i = 1, 2, … , p. (15.7)

We know from the linearity of variance that we can specify the ai = (ai1, ai2, … , aip) in such
a way that variance of yi can be infinite. Thus we may end up with components such that
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variance is infinite for each of them, which is of course meaningless. We will thus impose a
restriction:

aT
i ai = 1, i = 1, 2, … , p.

We need to find a1 such that Var(y1) is a maximum. Next, we need to obtain a2 such that

aT
2 a1 = 0,

and in general
aT

i aj = 0, i ≠ j.

For the first component, mathematically, we need to solve the maximization problem

max aT
1𝚺a1 − 𝜆(aT

1 a1 − 1), (15.8)

where 𝜆 is a Lagrangian multiplier. As with an optimization problem, we will differentiate the
above expression and equate the result to 0 for obtaining the optimal value of a:

𝚺a1 − 𝜆a1 = 0,

(𝚺 − 𝜆I)a1 = 0.

Thus, we see that 𝜆 is an eigenvalue of 𝚺 and a1 is the corresponding eigenvector. Since we
need to maximize aT

1𝚺a1 = aT
1𝜆a1 = 𝜆aT

1 a1 = 𝜆, we select the maximum of the eigenvalue and
its corresponding eigenvector for a1.

Let 𝜆1, … , 𝜆p denote the p eigenvalues of 𝚺. We assume that the eigenvalues are distinct.
Without loss of generality, we further assume that 𝜆1 > 𝜆2 … > 𝜆p. For the first PC we select
the eigenvector corresponding to 𝜆1, that is, a1 is the eigenvector related to 𝜆1.

The second PC a1 needs to maximize aT
2𝚺a2 and with the restriction thatCov(aT

1 x, aT
2 x) = 0.

Note that, post a few matrix computational steps,

Cov
(
aT

1 x, aT
2 x

)
= aT

1𝚺a2 = 𝜆aT
1 a2.

Thus, the constraint that the first two PCs are uncorrelated may be specified by aT
1 a2 = 0. The

maximization problem for the second PC is specified in the equation below:

max aT
2𝚺a2 − 𝜆(aT

2 a2 − 1) − 𝜙aT
1 a2. (15.9)

where 𝜆, 𝜙 are the Lagrangian multipliers. We need to optimize the above equation and obtain
the second PC. As we generally do with optimization problems, we will differentiate the
maximization statement with respect to a2 and obtain:

𝚺a2 − 𝜆a2 − 𝜙a1 = 0,

which by multiplication of the left-hand side by aT
1 gives us

aT
1𝚺a2 − 𝜆aT

1 a2 − 𝜙aT
1 a1 = 0. (15.10)

Since aT
1 a2 = 0, the first two terms of the above equation equal zero and since aT

1 a1 = 1, we
get 𝜙 = 0. Substituting this into the two displayed expressions above, we get 𝚺a2 − 𝜆a2 = 0.
On readjustment, we get (𝚺 − 𝜆I)a2 = 0, and we again see 𝜆 as the eigenvalue of 𝚺. Under
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the assumption of distinct eigenvalues for 𝚺, we choose the second largest eigenvalue and its
corresponding eigenvector for a2. We proceed in a similar way for the rest of the (p − 1) PCs.
As with the first PC, aj is chosen as the eigenvector corresponding to 𝜆j for j = 2, … , p.

The variance of the jth principal component yj is

Var{yj} = 𝜆j, j = 1, 2, … , p. (15.11)

The amount of variation explained by the jth PC is

Pj =
𝜆j∑m
j=1 𝜆j

.

Since the PCs are uncorrelated, the variation explained by the first m PCs is

P(m) =
∑m

j=1 𝜆j∑p
j=1 𝜆j

,m ≤ p. (15.12)

The variance explained by the PCs are best understood through a screeplot. A screeplot looks
like the profile of a mountain where after a steep slope a flatter region appears that is built by
fallen and deposited stones (called scree). Therefore, this plot is often named as the SCREE
PLOT. It is investigated from the top until the debris is reached. This explanation is from
Varmura and Filzmoser (2009).

The development thus far focuses on population principal components, which involve
unknown parameters 𝝁 and 𝚺. Since these parameters are seldom known, the sample principal
components are obtained by replacing the unknown parameters with their respective MLEs. If
the observations are on different scales of measurements, a practical rule is to use the sample
correlation matrix instead of the covariance matrix.

The covariance between observation i and PC j is given by

Cov(xi, yj) = 𝜆jaji, i = 1, 2, … , n, j = 1, 2, … , p,

and the correlation is

rxi,yj
=

𝜆jaji√
Var(xi)Var(yj)

=
aji

√
𝜆j

si
.

However, if the PCs are extracted from the correlation matrix, then

𝜌xi,yj
= aji

√
𝜆j.

The concepts will be demonstrated in the next subsection.

15.4.2 Illustration Through a Dataset

We will use two datasets for the usage of PCA.
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Example 15.4.1. US Air Pollution Data. The datasetUsairpollution from theHSAUR2
package will be used to demonstrate PCA. A brief description of the variables in this dataset
is given below:

• S02: Sulphur dioxide content of air in micrograms per cubic meter.
• Temp: Average annual temperature in OF.
• Manu: Number of manufacturing enterprises employing 20 or more workers.
• Pop: Population size (1970 census) in thousands.
• Wind: Average annual wind speed in miles per hour.
• Precip: Average annual precipitation in inches.
• Days: Average number of days with precipitation per year.

The problem of interest here is to understand the dependency of SO2 on the other variables.
Since the units of measurements are not the same across the variables, we will need to form the
PCs based on the correlation matrix. The pairs function is used to understand the relationship
among the variables here. Recollect the definition of panel.cor and panel.hist from
Chapter 14 and use them to visualize USairpollution. The graphical output is suppressed
and the reader should make preliminary investigations into the dataset.

The PCs are obtained in R with the princomp function and the correlation matrix require-
ment is made explicit with the option cor=TRUE. The summary.princomp returns
the eigenvalues, proportion of the variance Pj, and the cumulative variance percentages.
The pairs function is applied over the principal component variables y’s to check if the
orthogonality condition of Cor(yi, yj, i ≠ j, is satisfied or not. The R function screeplot
helps to determine the number of principal components to be chosen. Finally, the part of an
princomp object in $loadings gives the relationship between the variables and PCs.

> library(HSAUR2)
> data(USairpollution)
> pairs(USairpollution[,-1],upper.panel=panel.cor)
> usair.pc <- princomp(USairpollution[,-1],cor=TRUE)
> summary(usair.pc)
Importance of components:

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6
Standard deviation 1.482 1.225 1.1810 0.8719 0.3385 0.185600
Proportion of Variance 0.366 0.250 0.2324 0.1267 0.0191 0.005741
Cumulative Proportion 0.366 0.616 0.8485 0.9752 0.9943 1.000000
> pairs(usair.pc$scores)
> screeplot(usair.pc)
> usair.pc$loadings
Loadings:

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6
temp 0.330 -0.128 0.672 -0.306 -0.558 -0.136
manu -0.612 -0.168 0.273 0.137 0.102 -0.703
popul -0.578 -0.222 0.350 0.695
wind -0.354 0.131 -0.297 -0.869 -0.113
precip 0.623 0.505 -0.171 0.568
predays -0.238 0.708 0.311 -0.580
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Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6
SS loadings 1.000 1.000 1.000 1.000 1.000 1.000
Proportion Var 0.167 0.167 0.167 0.167 0.167 0.167
Cumulative Var 0.167 0.333 0.500 0.667 0.833 1.000

The summary shows that if we need 80% of the variation is to be explained by the PCs,
we can choose the first three PCs, and if 90% coverage is required, the first four PCs will
provide us with the coverage. The output of pairs(usair.pc$scores) in Figure 15.1
shows that the orthogonality requirement of PCs is satisfied here. The debris in the screeplot of
usair.pc, Part A of Figure 15.2, clearly shows that the first four PCs are required to explain
the variation of the original dataset. The covariance between the variables and the PCs may be
investigated by the reader. ◽

Example 15.4.2. The Hearing Loss Data. Jackson (1991) describes in detail the “Hearing
Loss” data. A study was carried out by the Eastman Kodak Company, which involved the
measurement of hearing loss. Such studies are called audiometric studies. This dataset contains
100 males, each aged 39, who had no history of noise exposure or hearing disorders. A method
of measuring the hearing capabilities is the use of an instrument called an audiometer. Here,
the individual is exposed to a signal of a given frequency with an increasing intensity until the
signal is perceived. Observations are obtained for intensities: 500 Hz, 1000 Hz, 2000 Hz, and
4000 Hz. This signal perception is carried out for both ears.

We will first read the data, and look at the covariance and correlation matrix.

> data(hearing)
> round(cor(hearing[,-1]),2)

L500 L1000 L2000 L4000 R500 R1000 R2000 R4000
L500 1.00 0.78 0.40 0.26 0.70 0.64 0.24 0.20
L1000 0.78 1.00 0.54 0.27 0.55 0.71 0.36 0.22

R4000 0.20 0.22 0.33 0.71 0.13 0.22 0.37 1.00
> round(cov(hearing[,-1]),2)

L500 L1000 L2000 L4000 R500 R1000 R2000 R4000
L500 41.07 37.73 28.13 32.10 31.79 26.30 14.12 25.28
L1000 37.73 57.32 44.44 40.83 29.75 34.24 25.30 31.74

R4000 25.28 31.74 68.99 269.12 18.19 27.22 67.26 373.66

The above results can be matched with Tables 5.2 and 5.3 of Jackson (1991). All the variables
have the same unit of measurement and hence the covariance matrix can be used here to obtain
the PCs. We look at the screeplot and decide on the number of PCs.

> hearing.pc <- princomp(hearing[,-1])
> screeplot(hearing.pc)

The screeplot in Part B of Figure 15.2 suggests that four PCs suffice for explaining the variation
contained among the eight variables. ◽
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Figure 15.1 Uncorrelatedness of Principal Components
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A: Scree plot for US air pollution dataset
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B: Scree plot for hearing loss data
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Figure 15.2 Scree Plots for Identifying the Number of Important Principal Components

In the next subsection, we focus on the applications of PCA.

?pairs, ?princomp, ?prcomp, ?summary.princomp, ?screeplot

15.5 Applications of Principal Component Analysis

Jolliffe (2002) and Jackson (1991) are two detailed treatises which discuss variants of PCA
and their applications. PCA can be applied and/or augmented by statistical techniques such as
ANOVA, linear regression, Multidimensional scaling, factor analysis, microarray modeling,
time series, etc.

15.5.1 PCA for Linear Regression

Section 12.6 indicated the problem of multicollinearity in linear models. If the covariates are
replaced with the PCs, the problem of multicollinearity will cease, since the PCs are uncorre-
lated with each other. It is thus the right time to fuse the multicollinearity problems of linear
models with PCA. We are familiar with all the relevant concepts and hence will take the
example of Maindonald and Braun (2009) for throwing light on this technique. Maindonald
and Braun (2009) have made the required dataset available in their package DAAG. See Streiner
and Norman (2003) for more details of this study.
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Example 15.5.1. The socsupport Dataset. The dataset socsupport is available in the
DAAG package. This dataset contains 19 predictor variables as follows. The first eight variables
describe the characteristics of the observation such as age, gender, country, marital sta-
tus in \verbmarital, live with status in variable livewith, employment, firstyr,
and enrollment. Variable pairs, (9,10), (11,12), (13,14), and (15,16) are nested pairs of
information in the sense that the answer of the first component may determine the answer of
the second component. Here, variables 9, 11, 13, and 15 are respective indicators of availabil-
ity of emotional satisfaction, tangible support existence, affectionate support existence
in affect, and availability of positive social interaction in the variable psisat. The respec-
tive other half of these pairs (emotionalsat, tangiblesat, affectsat, psisat) of
information are based on some sets of questions.

The output, Beck depression index (BDI), is a score of the standard psychological measure
of depression. The aim of the study is to understand the effect of the support measures (9–19)
on the BDI. We will first perform a PCA analysis on the variables (9–19) and obtain the
important PCs.

The PCs for the variables 9 to 19 are created using the princomp function and then
ss.pr1 is generated. Since the variables do not have the same unit of measurement, the
option of cor=TRUE is exercised. In this example, we will use the pareto.chart func-
tion from the qcc package as an alternative to the screeplot. The Pareto chart details may
be referred to in Chapter 4.3. Note the advantage of the Pareto chart over the screeplots. If we
decide to use the PCs, which offer us 90% of the variation in the original data, the first six
PCs provide the necessary coverage, see summary(ss.pa1) and the Pareto chart output in
Figure 15.3.

> library(DAAG)
> data(socsupport)
> names(socsupport)
[1] "gender" "age" "country" "marital" "livewith"

[16] "psisat" "esupport" "psupport" "supsources" "BDI"
> sum(is.na(socsupport[,9:19]))
[1] 10
> # Since observations are missing, we will remove them to
+ obtain the PCs
> ss.pr1 <- princomp(as.matrix(na.omit(socsupport[,9:19])),cor=TRUE)
> # screeplot(ss.pr1)
> library(qcc)
> pareto.chart(summary(ss.pr1)[[1]])
> summary(ss.pr1)
Importance of components:

Comp.1 Comp.2 Comp.4 Comp.5
Standard deviation 2.4967051 1.1620727 0.79328034 0.71977169
Proportion of Variance 0.5666851 0.1227648 0.05720852 0.04709739
Cumulative Proportion 0.5666851 0.6894500 0.85223245 0.89932984

Comp.6 Comp.7 Comp.9 Comp.10
Standard deviation 0.66590642 0.47892850 0.33771822 0.28154276
Proportion of Variance 0.04031194 0.02085205 0.01036851 0.00720603
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Cumulative Proportion 0.93964178 0.96049383 0.98830796 0.99551399
Comp.11

Standard deviation 0.222139794
Proportion of Variance 0.004486008
Cumulative Proportion 1.000000000

Next, obtain the pairs diagram for the first six PC scores. The pairs diagram in Figure 15.3
indicates the presence of an outlier, which needs to be removed from further analyses. The
outlier can be identified from the console using the simple sort function.

> pcscores <- ss.pr1$scores[,1:6]
> pairs(pcscores)
> sort(ss.pr1$scores[,1],decreasing=TRUE)[1:10]

36 30 81 73
9.898667 5.614594 3.902259 3.703742

2 75
3.497409 3.297526

As in Maindonald and Braun, we will use the first six PC scores to build a regression model
for the BDI. Furthermore, we remove missing observations using complete.cases and
the outlier through a simple trick, which may be easily figured out by the reader. Following
this, we obtain the PCs for the refined predictors and then build a linear model for this setup.
The next block of R codes is aimed at these steps.

> pcscores <- ss.pr1$scores[,1:6]
> soccases <- complete.cases(socsupport[,9:19])
> soccases[36] <- FALSE
> ss.pr <- princomp(as.matrix(socsupport[soccases,9:19]),cor=TRUE)
> ss.lm <- lm(socsupport$BDI[soccases]∼ss.pr$scores[,1:6])
> summary(ss.lm)
Call:
lm(formula = socsupport$BDI[soccases] ∼ ss.pr$scores[, 1:6])
Residuals:

Min 1Q Median 3Q Max
-13.8017 -4.9450 -0.2718 3.1257 36.1143
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 10.4607 0.8934 11.709 < 2e-16 ***
ss.pr$scores[, 1:6]Comp.1 1.3113 0.3732 3.513 0.000723 ***
ss.pr$scores[, 1:6]Comp.2 -0.3959 0.7329 -0.540 0.590526
ss.pr$scores[, 1:6]Comp.3 0.6036 0.7860 0.768 0.444744
ss.pr$scores[, 1:6]Comp.4 1.4248 1.0576 1.347 0.181610
ss.pr$scores[, 1:6]Comp.5 2.1459 1.1841 1.812 0.073622 .
ss.pr$scores[, 1:6]Comp.6 1.2882 1.2848 1.003 0.318967
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1



Trim Size: 170mm x 244mm Tattar c15.tex V3 - 02/10/2016 11:00 A.M. Page 556�

� �

�

556 A Course in Statistics with R

Residual standard error: 8.428 on 82 degrees of freedom
Multiple R-squared: 0.1908, Adjusted R-squared: 0.1315
F-statistic: 3.222 on 6 and 82 DF, p-value: 0.006837

Note that except for the first PC, the remaining PCs do not have a significant power in the
explanation of BDI. For interesting further details, see Section 13.1 of Maindonald and Braun
(2009). ◽

It is thus seen how the PCA helps to reduce the number of variables in the linear regression
model. Note that even if we replace the original variables with equivalent PCs, the problem of
multicollinearity is fixed.

15.5.2 Biplots

Gower and Hand (1996) have written a monograph on the use of biplots for multivariate data.
Gower, et al. (2011) is a recent book on biplots complemented with the R package UBbipl,
and is also an extension of Gower and Hand (1996). Greenacre (2010) has implemented all
the biplot techniques in his book. This book has R codes for doing all the data analysis, and
he has also been very generous to gift it to the world at http://www.multivariatestatistics.org/
biplots.html. For theoretical aspects of biplots, the reader may also refer to Rencher (2002),
Johnson and Wichern (2007), and Jolliffe (2002) among others. For a simpler and effective
understanding of the biplots, see the Appendix of Desmukh and Purohit (2007).

The biplot is a visualization technique of the data matrix X through two coordinate systems
representing the observations (row) and variables (columns) of the dataset. In this method,
the variance-covariance between the variable and the distance between the observations, are
plotted in a single figure, and to reflect this facet the prefix “bi” is used here. In this plot,
the distance between the points, which are observations, represents the Mahalanobis distance
between them. The length of a vector, displayed on the plot, from the origin to the coordinates,
represents the variance of the variable with the angle between the variables (represented by
the vectors) denoting the correlation. If the angle between the vectors is small, it will indicate
that the vectors are strongly correlated.

For the sake of simplicity, we will assume that the data matrix X, consisting of n observations
of a p-dimensional vector, is a centered matrix in the sense that each column has a zero mean.
By the singular value decomposition, SVD, result, we can write the matrix X as

X = U𝚲V′, (15.13)

where U is an n × r matrix, 𝚲 is an diagonal r × r matrix, and V is an p × r matrix. By the
properties of SVD, we have U′U = Ir and V′V = Ir. Furthermore, 𝚲 has diagonal elements
in 𝜆1 ≥ 𝜆2 ≥ … ≥ 𝜆r > 0. We will consider a simple illustration of the SVD for the famous
“Cork” dataset of Rao (1973).

Example 15.5.2. Understanding SVD for the Cork Dataset. Thickness of cork borings in
four directions of North, South, East, and West are measured for 28 trees. The problem here
is to examine if the bark deposit is the same in all directions.

http://www.multivariatestatistics.org/biplots.html
http://www.multivariatestatistics.org/biplots.html
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> data(cork)
> corkcent <- cork*0
> corkcent[,1] <- cork[,1]-mean(cork[,1])
> corkcent[,2] <- cork[,2]-mean(cork[,2])
> corkcent[,3] <- cork[,3]-mean(cork[,3])
> corkcent[,4] <- cork[,4]-mean(cork[,4])
> corkcentsvd <- svd(corkcent)
> t(corkcentsvd$u)%*%corkcentsvd$u

[,1] [,2] [,3] [,4]
[1,] 1.000000e+00 1.778092e-17 4.857226e-17 6.711211e-17
[2,] 1.778092e-17 1.000000e+00 -1.387779e-16 -8.023096e-17
[3,] 4.857226e-17 -1.387779e-16 1.000000e+00 -1.309716e-16
[4,] 6.711211e-17 -8.023096e-17 -1.309716e-16 1.000000e+00
> t(corkcentsvd$v)%*%corkcentsvd$v

[,1] [,2] [,3] [,4]
[1,] 1.000000e+00 1.110223e-16 -8.326673e-17 -1.110223e-16
[2,] 1.110223e-16 1.000000e+00 -1.665335e-16 1.665335e-16
[3,] -8.326673e-17 -1.665335e-16 1.000000e+00 3.330669e-16
[4,] -1.110223e-16 1.665335e-16 3.330669e-16 1.000000e+00
> round(corkcentsvd$u %*% diag(corkcentsvd$d) %*% t(corkcentsvd$v),2)

[,1] [,2] [,3] [,4]
[1,] 21.46 19.82 26.32 31.82
[2,] 9.46 6.82 16.32 17.82
[3,] 5.46 10.82 14.32 12.82

[26,] -0.54 -12.18 -12.68 -5.18
[27,] -7.54 -9.18 -10.68 4.82
[28,] -2.54 7.82 7.32 -2.18
> round(corkcent,2)

North East South West
1 21.46 19.82 26.32 31.82
2 9.46 6.82 16.32 17.82
3 5.46 10.82 14.32 12.82

26 -0.54 -12.18 -12.68 -5.18
27 -7.54 -9.18 -10.68 4.82
28 -2.54 7.82 7.32 -2.18
> corkcentsvd$d
[1] 163.03355 40.17752 25.40940 22.16929

We have thus seen the use of SVD for the cork dataset. This example will be carried forward
to the rest of the discussion in this section. ◽

Notice the decline of the singular values, 𝜆 values, for the cork dataset. In the spirit of PCA,
we tend to believe that if such a decline is steep, we can probably have a good understanding
of the dataset if we resort to some plots which use two variables. In fact, such a result is
validated by a theorem of Eckart and Young (1936). We need to connect the SVD result with the
well-known quadratic decomposition, QR, result, which is now stated. The QR decomposition
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says that any n × p matrix can be expressed as

X = GH′, (15.14)

where G is an n × r matrix and H is an p × r matrix, and r is the rank of matrix X. In a certain
sense, the goal is to understand the variance among the n observations through the matrix G
and the variance among the p variables through H. The matrices G and H may be obtained as a
combination of the SVD elements as G = UΛ𝛼 and H = Λ1−𝛼V. For different choices of 𝛼, we
have different representations for X. The three most common choices of 𝛼 are 0, 1/2, and 1, see
Gabriel (1971). We mention some consequences of these choices, see Khatree and Naik (1999).

• 𝛼 = 1∕2. In the this case, the QR matrices may be expressed in terms of the SVD matrices as

g′i = (
√
𝜆1u1i,

√
𝜆2u2i, … ,

√
𝜆pupi), i = 1, 2, … , n,

h′
j = (

√
𝜆1𝑣1j,

√
𝜆2𝑣2j, … ,

√
𝜆p𝑣pj), j = 1, 2, … , p. (15.15)

For the choice 𝛼 = 1∕2, we place an equal emphasis on the variables and the observations.
• 𝛼 = 0. Here

g′i = (u1i, u2i, … , upi), i = 1, 2, … , n,

h′
j = (𝜆1𝑣1j, 𝜆2𝑣2j, … , 𝜆p𝑣pj), j = 1, 2, … , p. (15.16)

The distance between the vectors gi approximates the squared Mahalanobis distance
between the observation vectors. Furthermore, the inner product between the vectors hj
approximates the covariances between them and length of a vector hj gives its variance.

• 𝛼 = 1. Here,

g′i = (𝜆1u1i, 𝜆2u2i, … , 𝜆pupi), i = 1, 2, … , n,

h′
j = (𝑣1j, 𝑣2j, … , 𝑣pj), j = 1, 2, … , p. (15.17)

For this case, the distance between gi’s is the usual Euclidean distance between them and the
values of gi equals the principal component score for the observations, whereas the values
of hj refer to the principal component loadings.

For the cork dataset, we will obtain the biplot for the choice 𝛼 = 1∕2.

Example 15.5.3. Understanding SVD for the Cork Dataset. Contd. The biplot function
R can be readily used for the analysis.

> corkcentpca <- princomp(corkcent,cor=TRUE)
> summary(corkcentpca)
Importance of components:

Comp.1 Comp.2 Comp.3 Comp.4
Standard deviation 1.8965419 0.50362240 0.28303246 0.26341193
Proportion of Variance 0.8992178 0.06340888 0.02002684 0.01734646
Cumulative Proportion 0.8992178 0.96262670 0.98265354 1.00000000
> biplot(corkcentpca,scale=1/2)
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Figure 15.4 Biplot of the Cork Dataset

The first two PCs explain 96.26% of the variation in the four variables. The principal
component can be interpreted as the weighted average of the original variables. The original
variables are all positively correlated with respect to the first component. It can be seen from
Figure 15.4 that North and East are positively correlated with the second component
and South and West are negatively correlated. Hence, we have a contrast in North +
East - South - West. Furthermore, observations numbered 12 and 18 have maximum
difference with respect to PC 1, while 6, 10, and 11 observations have maximum difference
with observation 15 with respect to PC 2.

?pareto.chart, ?complete.cases, ?svd, ?biplot

15.6 Factor Analysis

We will have a look at another important facet of multivariate statistical analysis: Factor Analy-
sis. The data observations xi, i = 1, … , n, are assumed to arise from an N(𝝁,𝚺) distribution.
Consider a hypothetical example where the correlation matrix is given by

Cor(X) =

⎛⎜⎜⎜⎜⎝

1 0.89 0.01 0.04 0.023
1 0.02 0.042 −0.03

1 0.93 0.98
1 0.94

1

⎞⎟⎟⎟⎟⎠
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Here, we can see that the first two components are strongly correlated with each other and also
appear to be independent of the rest of the components. Similarly, the last three components are
strongly correlated among themselves and independent of the first two components. A natural
intuition is to think of the first two components arising due to one factor and the remaining
three due to a second factor. The factors are also sometimes called latent variables.

The development in the rest of the section is only related to orthogonal factor model and
it is the same whenever we talk about the factor analysis model. For other variants, refer to
Basilevsky (1994), Reyment and J’oreskog (1996), and Brown (2006).

15.6.1 The Orthogonal Factor Analysis Model

Let x = (x1, x2, … , xp) be a p-vector. To begin with, we will assume that there are m factors
with m < p and that each of the xi’s is a function of the m factors. The factor analysis model
is given by

x1 − 𝜇1 = 𝜆11f1 + 𝜆12f2 + … + 𝜆1mfm + u1,

x2 − 𝜇2 = 𝜆21f1 + 𝜆22f2 + … + 𝜆2mfk + u2,

⋮

xp − 𝜇p = 𝜆p1f1 + 𝜆p2f2 + … + 𝜆pmfk + up, (15.18)

where ui, i = 1, … , p, are normally distributed errors associated with the variable
xi, i = 1, … , p. In the factor analysis model, the 𝜆ij, i = 1, … , p, j = 1, … , k, are the
regression coefficients between the observed variables and the factors. Two points need to
be observed. In the factor analysis literature, the regression coefficients are called loadings,
which indicate how the weights of the x’s depend on the factors f ’s. The loadings are denoted
by 𝜆’s, which we thus far used for eigenvalues and eigenvectors. However, the notation of 𝜆’s
for the loadings is standard in the factor analysis literature and in the rest of this section they
will denote the loadings and not quantities related to eigenvalues.

We will now use the matrix notation and then state the essential assumptions. The (orthog-
onal) factor model may be stated in matrix form as

x − 𝝁 = 𝚲f + u, (15.19)

where

x = (x1, … , xp)T ,

𝝁 = (𝜇1, … , 𝜇p)T ,

f = (f1, … , fm)T ,

u = (u1, … , up)T ,

𝚲 =

⎛⎜⎜⎜⎜⎜⎜⎝

𝜆11 𝜆12 … 𝜆1m

𝜆11 𝜆12 … 𝜆1m

⋮ ⋮ ⋮

𝜆[1 𝜆p2 … 𝜆pm

⎞⎟⎟⎟⎟⎟⎟⎠
.
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The essential assumptions related to the factors are as follows:

E(f) = 0, (15.20)

cov(f) = I, (15.21)

E(u) = 𝟎, (15.22)

cov(u) =𝚿 = diag(𝜓1, 𝜓2, … , 𝜓p), and (15.23)

cov(f,u) = 𝟎. (15.24)

Under the above assumptions, we can see that the variance of component xi can be expressed
in terms of the loadings as

var(xi) = 𝜆2
i1 + 𝜆2

i2 + · · · + 𝜆2
im

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

communality

+ 𝜓i
⏟⏟⏟

specific variance

. (15.25)

Define h2
i = 𝜆2

i1 + 𝜆2
i2 + · · · + 𝜆2

im, i = 1, … , p. Thus, the variance of a component can be writ-
ten as the sum of a common variance component and a specific variance component. It is
common practice in the factor analysis literature to refer to h2

i as the common variance and the
specific variance 𝜓i as specificity, unique variance, or residual variance.

The covariance matrix 𝚺 can be written in terms of 𝚲 and 𝚿 as

𝚺 = 𝚲T𝚲 +𝚿. (15.26)

Using the above relationship, we can arrive at the next expression:

cov(x, f) = 𝚲.

We will consider three methods for estimation of the loadings and communalities: (i) The
Principal Component Method, (ii) The Principal Factor Method, and (iii) Maximum Like-
lihood Function. We omit a fourth important technique of estimation of factors in “Iterated
Principal Factor Method”.

15.6.2 Estimation of Loadings and Communalities

We will first consider the principal component method. Let S denote the sample covariance
matrix. The problem is then to find an estimator �̂�, which will approximate S such that

S ≅ �̂��̂�T + �̂�. (15.27)

In this approach, the last component �̂� is ignored and we approximate the sampling covariance
matrix by a spectral decomposition:

S = CDCT , (15.28)

where C is an orthogonal matrix constructed with normalized eigenvectors, cici
T = 𝟏, of S and

D is a diagonal matrix with eigenvalues of S. That is, if 𝜃1, … , 𝜃p are the eigenvalues of S,
then D = diag{𝜃1, … , 𝜃p}. Since the eigenvalues 𝜃i of the positive semi-definite matrix S are
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all positive or zero, we can factor D as

D = D1∕2D1∕2,

and substituting this in (15.28), we get

S = CD1∕2D1∕2CT

= (CD1∕2)(CD1∕2)T . (15.29)

This suggests that we can use �̂� = CD1∕2. However, we seek a �̂� whose order is less than p,
and hence we consider the first m largest 𝜃 eigenvalues and take D = diag(𝜃1, … , 𝜃m) and C
with their corresponding eigenvectors. Thus, an useful estimator of 𝚲 is given by

�̂� =
(√

𝜃1c1,
√
𝜃2c2, … ,

√
𝜃mcm

)
. (15.30)

Note that the ith diagonal element of �̂��̂�T is the sum of squares of �̂�. We can then use this to
estimate the diagonal elements of �̂� by

�̂�i = sii −
m∑

j=1

�̂�2
ij, (15.31)

and using this relationship approximate S by

S ≅ �̂��̂�T + �̂�. (15.32)

Since, here, the sums of squares of the rows and columns of �̂� equal the communalities and
eigenvalues respectively, an estimate of the ith communality is given by

ĥ2
i =

m∑
j=1

�̂�2
ij. (15.33)

Similarly, we have
p∑

i=1

�̂�2
ij =

p∑
i=1

(
√

𝜃jcij)2 = 𝜃j

p∑
i=1

(cij)2 = 𝜃j, (15.34)

where the last equality follows from the fact that cic
T
i = 1. Using the estimates of �̂�i and ĥ2

i in
(15.29), we obtain a partition of the variance of the ith variable as

sii = �̂�2
i1 + … + �̂�2

im + �̂�i. (15.35)

The contribution of the jth factor to the total sample variance is therefore

�̂�2
1j + … + �̂�2

pj. (15.36)

We will now illustrate the concepts with a solved example from Rencher (2002).

Example 15.6.1. Renchers Example 13.3.2. A girl rates seven of her acquaintances on a
grade of 1 to 9 based on the five adjectives kind, intelligent, happy, likable, and just.
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> data(adjectives)
> adjectivescor <- cor(adjectives[,-1])
> round(adjectivescor,3)

Kind Intelligent Happy Likeable Just
Kind 1.000 0.296 0.881 0.995 0.545
Intelligent 0.296 1.000 -0.022 0.326 0.837
Happy 0.881 -0.022 1.000 0.867 0.130
Likeable 0.995 0.326 0.867 1.000 0.544
Just 0.545 0.837 0.130 0.544 1.000
> adj_eig <- eigen(adjectivescor)
> cumsum(adj_eig$values)/sum(adj_eig$values)
[1] 0.6526490 0.9603115 0.9938815 1.0000000 1.0000000
> adj_eig$vectors[,1:2]

[,1] [,2]
[1,] -0.5366646 -0.1863665
[2,] -0.2875272 0.6506116
[3,] -0.4342879 -0.4734720
[4,] -0.5374480 -0.1692745
[5,] -0.3896959 0.5377197
> loadings1 <- adj_eig$vectors[,1]*sqrt(adj_eig$values[1])
> loadings2 <- adj_eig$vectors[,2]*sqrt(adj_eig$values[2])
> cbind(loadings1,loadings2)

loadings1 loadings2
[1,] -0.9694553 -0.2311480
[2,] -0.5194021 0.8069453
[3,] -0.7845174 -0.5872412
[4,] -0.9708704 -0.2099491
[5,] -0.7039644 0.6669269
> communalities <- (adj_eig$vectors[,1]*sqrt(adj_eig$values[1])) ̂ 2
+ + (adj_eig$vectors[,2]*sqrt(adj_eig$values[2])) ̂ 2
> round(communalities,3)
[1] 0.993 0.921 0.960 0.987 0.940
> specific_variances <- 1-communalities
> round(specific_variances,3)
[1] 0.007 0.079 0.040 0.013 0.060
> var_acc_factors <- adj_eig$values
> round(var_acc_factors,3)
[1] 3.263 1.538 0.168 0.031 0.000
> prop_var <- adj_eig$values/sum(adj_eig$values)
> round(prop_var,3)
[1] 0.653 0.308 0.034 0.006 0.000
> cum_prop <- cumsum(adj_eig$values)/sum(adj_eig$values)
> round(cum_prop,3)
[1] 0.653 0.960 0.994 1.000 1.000

Note that for this example, we may need further adjustments if we wish to use the factanal
function of R. ◽
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We will next consider the principal factor method. In the previous method we have omitted
𝚿. In the principal factor method we use an initial estimate of 𝚿, say �̂�, and factor for R − �̂�,
or S − �̂�, whichever is appropriate:

R − �̂� ≅ �̂��̂�T , (15.37)

S − �̂� ≅ �̂��̂�T , (15.38)

where �̂� is as specified in (15.30) with the eigenvalues and eigenvectors of S − Ψ̂ or R − Ψ̂.
Since the ith diagonal element of S − �̂� is the ith communality, we have ĥ2

i = sii − �̂�i. In the
case of S − Ψ̂, we have ĥ2

i = 1 − �̂�i. For more details, refer to Section 13.2 of Rencher (2002).
We will illustrate these computations as a continuation of the previous example.

Example 15.6.2. Example 15.6.1. Contd. To the best of our knowledge, the Principal Factor
Method of estimation of factors does not have a ready-to-use function in R. We have developed
an ad-hoc function for the same.

> RPsi <- adjectivescor
> for(i in 1:nrow(RPsi)){
+ RPsi[i,i] <- max(abs(RPsi[i,-i]))
+ }
> RPsi_eig <- eigen(RPsi)
> cumsum(RPsi_eig$values)/sum(RPsi_eig$values)
[1] 0.7043136 1.0110721 1.0175840 1.0175356 1.0000000
> RPsi_eig$vectors[,1:2]

[,1] [,2]
[1,] -0.5479823 -0.1775575
[2,] -0.2721324 0.6556565
[3,] -0.4310945 -0.4604984
[4,] -0.5486491 -0.1587823
[5,] -0.3725601 0.5489237
> loadings1 <- RPsi_eig$vectors[,1]*sqrt(RPsi_eig$values[1])
> loadings2 <- RPsi_eig$vectors[,2]*sqrt(RPsi_eig$values[2])
> communalities <- (RPsi_eig$vectors[,1]*sqrt(RPsi_eig$values[1])) ̂ 2
+ + (RPsi_eig$vectors[,2]*sqrt(RPsi_eig$values[2])) ̂ 2
> specific_variances <- 1-communalities
> var_acc_factors <- RPsi_eig$values
> prop_var <- RPsi_eig$values/sum(RPsi_eig$values)
> round(prop_var,3)
[1] 0.704 0.307 0.007 0.000 -0.018
> cum_prop <- cumsum(RPsi_eig$values)/sum(RPsi_eig$values)
> round(cum_prop,3)
[1] 0.704 1.011 1.018 1.018 1.000
> lambda <- cbind(loadings1,loadings2)
> lambda

[,1] [,2] [,3] [,4] [,5]
[1,] 1.0000000 0.31512040 0.87039495 1.0019415 0.5177525
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[2,] 0.3151204 1.00000000 -0.04542739 0.3328682 0.8265158
[3,] 0.8703950 -0.04542739 1.00000000 0.8592584 0.1617328
[4,] 1.0019415 0.33286820 0.85925837 1.0000000 0.5329202
[5,] 0.5177525 0.82651577 0.16173275 0.5329202 1.0000000

The computations may be cross-checked with page 423 of Rencher. The proportion of variance
for the first principal factor is .704. ◽

Finally, we conclude this section with a discussion of the Maximum Likelihood Estimation
method. Under the assumption that the observations x1, … , xn are a random sample from
N(𝝁,𝚺), it may be shown that the estimates �̂� and �̂� satisfy the following set of equations:

S�̂��̂� = �̂�
(

I + �̂�T�̂�−1�̂�
)
, (15.39)

�̂� = diag
(

S − �̂��̂�T
)
, (15.40)

�̂�T�̂�−1�̂� is diagonal. (15.41)

The equations need to be solved iteratively, and happily for us R does that. The MLE technique
is illustrated in the next example. We need to address a few important questions before then.

The important question is regarding the choice of the number of factors to be determined.
Some rules given in Rencher are stated in the following.

• Select m as equal to the number of factors necessary, which account for a pre-specified
percentage of the variance accounted by the factors, say 80%.

• Select m as the number of eigenvalues that are greater than the average eigenvalue.
• Use a screeplot to determine m.
• Test the hypothesis that m is the correct number of factors, that is, H ∶ 𝚺 = 𝚲ΛT +𝚿.

We leave it to the reader to find out more about the concept of Rotation and give a summary
of them, adapted from Hair, et al. (2010).

• Varimax Rotation is the most popular orthogonal factor rotation method, which focuses
on simplifying the columns of a factor matrix. It is generally superior to other orthogonal
factor rotation methods. Here, we seek to rotate the loadings, which maximize the variance
of the squared loadings in each column of �̂�∗.

• Quartimax Rotation is a less powerful technique than varimax rotation, which focuses on
simplifying the columns of the factor matrix.

• Oblique Rotation obtains the factors such that the extracted factors are correlated, and
hence it identifies the extent to which the factors are correlated.

Example 15.6.3. Life Expectancies. We have read about this dataset in Example 3.2.8. This
example is borrowed from Section 5.9 of Everitt and Hothorn (2011). We need to determine
the factor model at which the number of factors are such that the statistic U is insignificant.
For this dataset, the number of factors k is three and hence a three-factor is adequate.

> data(life)
> factanal(life,factors=1)$PVAL

objective
1.879555e-24
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> factanal(life,factors=2)$PVAL
objective

1.911514e-05
> factanal(life,factors=3)
Call:
factanal(x = life, factors = 3)
Uniquenesses:

m0 m25 m50 m75 w0 w25 w50 w75
0.005 0.362 0.066 0.288 0.005 0.011 0.020 0.146
Loadings:

Factor1 Factor2 Factor3
m0 0.964 0.122 0.226
m25 0.646 0.169 0.438
m50 0.430 0.354 0.790
m75 0.525 0.656
w0 0.970 0.217
w25 0.764 0.556 0.310
w50 0.536 0.729 0.401
w75 0.156 0.867 0.280

Factor1 Factor2 Factor3
SS loadings 3.375 2.082 1.640
Proportion Var 0.422 0.260 0.205
Cumulative Var 0.422 0.682 0.887
Test of the hypothesis that 3 factors are sufficient.
The chi square statistic is 6.73 on 7 degrees of freedom.
The p-value is 0.458
> factanal(life,factors=4)$PVAL
Error in factanal(life, factors = 4) :
unable to optimize from this starting value

> round(factanal(life,factors=3,scores="reg")$scores,3)
Factor1 Factor2 Factor3

Algeria -0.258 1.901 1.916
Cameroon -2.782 -0.723 -1.848
Madagascar -2.806 -0.812 -0.012

Colombia -0.241 -0.295 0.429
Ecuador -0.723 0.442 1.592

The loadings for Factor 1 are strongly associated with the variables m0 and w0, which rep-
resent the life force at birth. Similarly, Factor 2 is associated with older women, and Factor 3
is associated with older men. ◽

We have thus learnt about fairly complex and powerful techniques in multivariate statistics.
The techniques vary from classifying observations to specific class, identifying group of
independent (sub) vectors, reducing the number of variables, and determining hidden variables
which possibly explain the observed variables. More details can be found in the references
concluding this chapter.

?eigen, ?cumsum, ?factanal
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15.7 Further Reading

We will begin with a disclaimer that the classification of the texts in different sections is not
perfect.

15.7.1 The Classics and Applied Perspectives

Anderson (1958, 1984, and 2003) are the first primers on MSA. Currently, Anderson’s book
is in its third edition and it is worth noting that the second and third editions are probably
the only ones which discuss the Stein effect in depth. Chapter 8 of Rao (1973) provides the
necessary theoretical background for multivariate analysis and also contains some of Rao’s
remarkable research in multivariate statistics. In a certain way, one chapter may have more
results than we can possibly cover in a complete book. A vector space approach for multivariate
statistics is to be found in Eaton (1983, 2007). Mardia, Kent, and Bibby (1979) is an excellent
treatise on multivariate analysis and considers many geometrical aspects. The geometrical
approach is also considered in Gnanadesikan (1977, 1997), and further robustness aspects are
also developed within it. Muirhead (1982), Giri (2004), Bilodeau and Brenner (1999), Rencher
(2002), and Rencher (1998) are among some of the important texts on multivariate analysis.
We note here that our coverage is mainly based on Rencher (2002).

Jolliffe (2002) is a detailed monograph on Principal Component Analysis. Jackson (1991) is
a remarkable account on the applications on PCA. It is needless to say that if you read through
these two books, you may become an authority on PCA.

Missing data, EM algorithms, and multivariate analysis have been aptly handled in Schafer
(1997) and in fact many useful programs have been provided in S, which can be easily adapted
in R. In this sense, this is a stand-alone reference book which deals with missing data. Of
course, McLachlan and Krishnan (2008) may also be used!

Johnson and Wichern (2007) is a popular course, which does apt justice between theory and
applications. Hair, et al. (2010) may be commonly found on a practitioner’s desk. Izenman
(2008) is a modern flavor of multivariate statistics with converage of the fashionable area of
machine learning. Sharma (1996) and Timm (2002) also provide a firm footing in multivariate
statistics.

Gower, et al. (2011) discuss many variants of biplots, which is an extension of Gower and
Hand (1996). Greenacre (2010) is an open source book with in-depth coverage of biplots.

15.7.2 Multivariate Analysis and Software

The two companion volumes of Khatree and Naik (1999) and Khatree and Naik (2000) provide
excellent coverage of multivariate analysis and computations through SAS software. It may
be noted, one more time, that the programs and logical thinking are of paramount importance
rather than a particular software. It is worth recording here that these two companions provide
a fine balance between the theoretical aspects and computations. H’ardle and Simar (2007)
have used “XploRe” software for computations. Last, and not least, the most recent book of
Everitt and Hothorn (2011) is a good source for multivariate analysis through R. Varmuza and
Filzmoser (2009) have used R software with a special emphasis on the applications to Chemo-
metrics. Husson, et al. (2011) is also a recent arrival, which integrates R with multivariate
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analysis. Desmukh and Purohit (2007) also present PCA, biplot, and other multivariate aspects
in R, though their emphasis is more on microarray data.

15.8 Complements, Problems, and Programs

Problem 15.1 Explore the R examples for linear discriminant analysis and canonical corre-
lation with example(lda) and example(cancor).

Problem 15.2 In the “Seishu Wine Study” of Example 16.9.1, the tests for independence
of four sub-vectors lead to rejection of the hypothesis of their independence.
Combine the subvectors s11 with s22 and s33 with s44. Find the canon-
ical correlations between these combined subvectors. Furthermore, find the
canonical correlations for each subvector while pooling the others together.

Problem 15.3 Principal components offer effective reduction in data dimensionality. In
Examples 15.4.1 and 15.4.2, it is observed that the first few PCs explain most
of the variation in the original data. Do you expect further reduction if you
perform PCA on these PCs? Validate your answer by running princomp
on the PCs.

Problem 15.4 Find the PCs for the stack loss dataset, which explain 85% of the variation in
the original dataset.

Problem 15.5 Perform the PCA on the iris dataset along the two lines: (i) the entire
dataset, (ii) three subsets according to the three species. Check whether the PC
scores are significantly different across the three species using an appropriate
multivariate testing problem.

Problem 15.6 For the US crime data of Example 13.4.2, carry out the PCA for the covariates
and then perform the regression analysis on the PC scores. Investigate if the
multicollinearity problem persists in the fitted regression model based on the
PC scores.

Problem 15.7 How do outliers effect PC scores? Perform PCA on the board stiffness dataset
of Example 16.3.5 with and without the detected outliers therein.

Problem 15.8 Check out for the example of the factanal function. Are factors present in
the iris dataset? Develop the complete analysis for the problem.
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Categorical Data Analysis

Package(s): gdata
Dataset(s): UCBAdmissions, Titanic, HairEyeColor, VADeaths, faithful,
atombomb, Filariasistype

16.1 Introduction

Discrete data may be classified into two forms: (i) nominal data, and (ii) ordinal data. Nominal
data consists of variables which have labels. For example, the variable gender consists of two
labels, male and female. As such, though we may denote males by 0 and females by 1, it
is not the case here that 1 is greater than 0, and thus the name for the variable is a nominal
variable. On the other hand, if we consider the rank of a student on the basis of marks, the first
rank signifies more value than the second rank. Such variables are called ordinal variables.
Categorical data analysis is concerned about analysis of these kind of variables.

Categorical Data Analysis, abbreviated as CDA, requires data to be entered in a specific
format, viz., the contingency tables. In particular, in R, the data has to be read in a table
format. Some of the standard datasets, for CDA, shipped along with R software include
UCBAdmissions, Titanic, HairEyeColor, and VADeaths. Note that earlier
datasets, such as iris, are of the class data.frame. The above-mentioned datasets are of
the class table or matrix, as can be verified in the next (small) program.

> class(UCBAdmissions);class(Titanic);class(HairEyeColor)
> class(VADeaths)
[1] "table"
[1] "table"
[1] "table"
[1] "matrix"

We will begin with graphical methods for the categorical data in Section 16.2. In Section 16.3,
we will discuss the all-important odds ratio. Simpson’s paradox poses genuine problems in the

A Course in Statistics with R, First Edition. Prabhanjan Narayanachar Tattar, Suresh Ramaiah and B. G. Manjunath.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/tattar/statistics
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analysis of categorical data. An illustration of the paradox will be seen in Section 16.4. The role
of binomial, multinomial, and Poisson distributions as statistical models for categorical data
will be dealt with in Section 16.5. A brief discussion of the problem of overdispersion is
the matter of Section 16.6. Statistical tests for independence of attributes will be taken up in
Section 16.7. The final section will contain measures of agreement for ordinal data. Regression
methods for categorical data will be considered in the final chapter of the book.

16.2 Graphical Methods for CDA

The use of graphics for data analysis has perhaps been most elegantly explained by Friendly
(2000):

VISUALIZATION = GRAPHING + FITTING + GRAPHING + . . .

Friendly adds in clarification that the visualization approach for data analysis is encompassed
in this way: (i) expose information and structure of the data, (ii) complement the graphs with
numerical summaries, and (iii) explore more suitable models. In this section we will focus
more on the graphical method, and follow up the friendly approach in later sections.

The important graphical techniques for understanding the structure of categorical data is
enlisted as follows:

• Bar and Stacked Bar Charts
• Spine and Stacked Spine Charts
• Pie Chart

• Four Fold Plots
• Mosaic Plots

16.2.1 Bar and Stacked Bar Plots

In a bar plot the values (or frequencies) of the categories are plotted against the names of the
categories. The plotted values are drawn proportional to values of the variables. Bar diagrams
are essentially one-dimensional diagrams in the sense that the scale on one axis is sufficient to
reveal the complete information. An important advantage of bar diagrams is that they can give
insight into nominal variables too. More complexity in the data can be handled using what is
known as the stacked bar plot. Bar plots are introduced first and their variations of stacked bar
are handled later.

Example 16.2.1. The Virginia Deaths Dataset. For the year 1940, data related to death rates
per 1000 persons has been recorded in Virginia City. The age groups have been partitioned into
five groups: 50-54, 55-59, 60-64, 65-69, 70-74. Furthermore, we have information
about the urban/rural status along with gender information. The death rates for the rural male
across the different age groups is visualized through a bar plot with the R function barplot,
see Figure 16.1.

The bar plots are displayed in decreasing order of the death rates sort(VADeaths[,1],
dec=TRUE). The range on the y-axis is set the same for both genders, to ensure that com-
parison of the bar plots becomes reasonable. Colors with col, title with main, and legend
give more character to the bar plots. Note that the bar plots may be simply generated with
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Figure 16.1 Death Rates among the Rural Population

barplot(VADeaths[,1]) and bar plot(VADeaths[,2]). However, it does not
just suffice to generate the plots, it is also important to provide the details.

> VADeaths[,1]
50-54 55-59 60-64 65-69 70-74
11.7 18.1 26.9 41.0 66.0
> VADeaths[,2]
50-54 55-59 60-64 65-69 70-74
8.7 11.7 20.3 30.9 54.3

> barplot(sort(VADeaths[,1],dec=TRUE),ylim=c(0,70),
+ main="A: Death Rates for the Rural Male",
+ col=c("blue","beige","grey","yellow", "brown"),
+ legend=names(sort(VADeaths[,1],dec=TRUE)))
> barplot(sort(VADeaths[,2],dec=TRUE),ylim=c(0,70),
+ main="B: Death Rates for the Rural Female",
+ col=c("blue","beige","grey","yellow", "brown"),
+ legend=names(sort(VADeaths[,2],dec=TRUE)))
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The distribution of death rates across the age groups for rural males and females appears
similar, although there are some differences, as seen in parts A and B of Figure 16.1. However,
we would not like to have different bar plots for the urban data. Especially, if we can visualize
the data in a single diagram, this would be preferred. ◽

Stacked Bar Plots. Suppose we have more variables in the data and need to obtain a bar
plot. For example, the data on the urban population in VADeaths also needs to be visual-
ized. Thus, the plot should reveal information across the age groups and the urban/rural and
gender information without creating additional plots. This is achievable through stacked bar
plots. In a stacked plot, we first plot the bar plot according to one criteria, say urban/rural and
gender information pooled together, and then each of the bars is further partitioned to reflect
the information contained in the other variable.

Example 16.2.2. The Virginia Deaths Dataset. Contd. The stacked bar plots are now gener-
ated for the VADeaths data in a continuation of the previous example. For four combinations
of rural-urban and male-female traits, and first bars are determined according to col-
Sums(VADeaths). Now each bar is further divided (or stacked) according to the age group
within each of these combinations. This will result in the stacked bar plot for VADeaths.
An alternative arrangement of the bar plot for the multi-variable dataset is to arrange the
bars (stacks) for each combination near one another. This is achieved with the option
beside=TRUE. The complete R program is given now and the output file in Figure 16.1.

> barplot(VADeaths,col=colors()[1:5],legend = row.names(VADeaths),
+ main="C: Stacked Bar Plots")
> barplot(VADeaths,col=colors()[1:5],legend = row.names(VADeaths),
+ beside=TRUE,ylim=c(0,75),main="D: Side-by-side Bar Plots")
> title("Barplots Arrangement for VADeaths",outer=TRUE,line=-1)

Figure 16.1, Parts C and D, shows that the death rate is highest in the age group 70-74
and decreases along the age group. It may also be seen that the death rate is highest among
the urban males. Even though the death rate appears very high among males, there is no
significant difference between the death rates of females among urban or rural populations. ◽

Example 16.2.3. The Old Faithful Geyser Data. Volcanic eruptions at the Yellowstone
National Park, Wyoming, USA, are so frequent that data collection of eruptions and time
between consecutive eruptions collection is very easy to obtain. Data is collected on two
variables, the time length of an eruption, and the time between two eruptions. The summary
statistics shows that the time between any two eruptions is for a minimum of 1.6 minutes
and maximum of 5.1. Similarly, the waiting time between two eruptions ranges from
41-96 minutes. The eruptions are divided into 9 intervals and waiting time into 13
intervals. A bar plot will be used to gain more insight into the faithful variables.

> summary(faithful)
eruptions waiting

Min. :1.600 Min. :43.0
1st Qu.:2.163 1st Qu.:58.0
Median :4.000 Median :76.0
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Mean :3.488 Mean :70.9
3rd Qu.:4.454 3rd Qu.:82.0
Max. :5.100 Max. :96.0
> eruptions_int <- cut(faithful$eruptions,seq(1.5,5.5,0.5))
> waiting_int <- cut(faithful$waiting,seq(40,100,5))
> layout(matrix(c(1,2,3,3),2,byrow=TRUE))
> barplot(table(eruptions_int),main="A Bar Diagram for Eruption
+ Frequencies",col=colors()[88:96])
> barplot(table(waiting_int), main="A Bar Diagram for Waiting Times
+ \n Between Two Eruptions",col=colors()[181:193])
> barplot(table(eruptions_int,waiting_int),main="A Stacked Bar
+ Diagram Explaining Frequency Distribution \n of Eruptions for the
+ Waiting Times",col=colors()[88:96])

Note how low eruption times are more likely to occur if the time between the two eruptions is
shorter. Similarly, it can be deduced that if the time between two eruptions is larger, that the
duration of the eruption will also likely be larger. Can you try to deduce/refute the claims from
Figure 16.2. ◽

16.2.2 Spine Plots

In the bar plot we obtain a plot of the variable frequencies against the variable label. Notice
that the bar’s height varies and the width is constant. A spine plot does the task the other way
round and varies the width of the bar and keeps the height at a constant. That is, the height
of the variable labels is kept the same and the width of the spine cord will be used to display
the frequencies of the variable labels. At the outset it may appear that there might not be a
great advantage in interchanging the fixed width with fixed height. The examples will clarify
whether we can extract additional information or not. We will illustrate this concept using the
Virginia Death rates data.

Example 16.2.4. Spine Plots for Virginia Death Rates. We will first obtain the spine chart
for the rural area and then for the complete dataset. The size of graphics is invoked to be of
width 20 inches width=20 with a height of 10 inches height=10. The par function with
the option of mfrow=c(1,2) divides the graphic device into 1 row and 2 columns. The
options of cex.lab=0.8 and cex.axis=0.8 are specified to ensure that the font size
scale of labels and axis is reduced by a factor of 0.8, which in turn is useful to print out all the
labels and axis on the graphical device. The program will be followed by more explanation.

> windows(width=20, height=10)
> par(mfrow=c(1,2),cex.lab=0.8,cex.axis=0.8)
> spineplot(VADeaths[,1:2],main="A: Death Rates for Rural Area",
+ col=c("lawngreen","lightgreen"))
> abline(h=0.5,lwd=2,col="red")
> abline(v=c(0.2,0.4,0.6,0.8),lwd=2,col="red")
> spineplot(VADeaths,main="B: Death Rates for Complete Data",
+ col=c("lawngreen","lightgreen"))
> abline(h=c(0.25,0.5,0.75),lwd=2,col="red")
> abline(v=c(0.2,0.4,0.6,0.8),lwd=2,col="red4")
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Figure 16.2 Bar Diagrams for the Faithful Data
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Figure 16.3 Spine Plots for the Virginia Death Rates

The data for rural areas is selected with VADeaths[,1:2]. The function spineplot on
the selected data, with the options ofmain andcol, gives Part A of Figure 16.3. In general, we
would be interested to test the hypothesis that the death rates are equal for males and females
across the age group. In visualization terms, the hypothesis means that if we divide the graph
into the number of groups as the required gender and age group, we should have near equal
regions for each pair of the age-gender combination. Hence, we add horizontal (h) and vertical
(v) lines using the abline at the appropriate points of 0.5 and c(0.2,0.4,0.6,0.8)
respectively. Clearly, in Part A, the figure hardly reflects equal regions. Thus, we are inclined
to believe that the death rates indeed depend on the gender and age group. A similar conclusion
also holds for the complete dataset VADeaths. ◽

Spine plots are very effective for two-way variables. However, it cannot be extended for
additional variables. This shortcoming is removed in the next graphical method that we discuss.

16.2.3 Mosaic Plots

Multivariate categorical data can be visualized using mosaic plots. In a mosaic display, the
frequencies of the contingency table are represented by a collection of rectangles (or tiles)
whose area is proportional to the cell frequency. The working of a mosaic plot is best illustrated
using an example, and we use the HairEyeColor data available in the datasets package.
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Figure 16.4 A Diagrammatic Representation of the Hair Eye Color Data

Example 16.2.5. Understanding the Mosaic Plots using the Hair Eye Color Dataset. In
this dataset, it is observed that students have different combinations of hair and eye colors.
Eyes are colored brown, blue, hazel and green, whereas the hair colors are black, brown, red,
and blond. The gender of the student can further be male or female. Figure 16.4 describes the
data flow.

Visualizing contingency table frequencies becomes more complex. However, mosaic plots
take one variable at a time and help to create a meaningful and catchy display. For this dataset,
the basic summaries are as below:

> HairEyeColor # Data in an array format
, , Sex = Male

Eye
Hair Brown Blue Hazel Green
Black 32 11 10 3
Brown 53 50 25 15
Red 10 10 7 7
Blond 3 30 5 8

, , Sex = Female
Eye

Hair Brown Blue Hazel Green
Black 36 9 5 2
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Brown 66 34 29 14
Red 16 7 7 7
Blond 4 64 5 8

> rowSums(HairEyeColor[,,1])+rowSums(HairEyeColor[,,2])
> # Frequencies by Hair Color
Black Brown Red Blond
108 286 71 127
> colSums(HairEyeColor[,,1])+colSums(HairEyeColor[,,2])
> # Frequencies by Eye Color
Brown Blue Hazel Green
220 215 93 64
> sum(HairEyeColor[,,1]);sum(HairEyeColor[,,2])
> # Frequencies by Gender
[1] 279
[1] 313
> (rowSums(HairEyeColor[,,1])+rowSums(HairEyeColor[,,2]))/
+ sum(HairEyeColor)
Black Brown Red Blond
0.1824324 0.4831081 0.1199324 0.2145270

Suppose we decide to obtain a plot which will reveal a pattern according to the following order:
(i) Hair Color distribution, (ii) Eye Color distribution, and finally (iii) Gender (Sex) distri-
bution. To obtain the mosaic plot here, let us first look at the Hair color distribution. Note that
the normalized frequencies by the hair color are 0.1824324, 0.4831081, 0.1199324,
and 0.2145270. Thus, the proportion of width of the bars for the hair color representation
is approximately 0.2, 0.5, 0.1, and 0.2 respectively for the colors Black to Blond. Having
fixed the approximate areas for the hair criteria, we now undertake the criteria for further
classification by the Eye color criteria. We will first obtain the frequency by eye criteria across
the genders, while retaining the split by the hair color criteria. After obtaining this matrix, we
will divide each row by its cumulative sum, which will give us the distribution of the eye color
across the hair color criteria. This is computed below as:

> eyecol <- HairEyeColor[,,1]+HairEyeColor[,,2]
> eyecol/rowSums(eyecol)

Eye
Hair Brown Blue Hazel Green
Black 0.62963 0.1852 0.13889 0.0463
Brown 0.41608 0.2937 0.18881 0.1014
Red 0.36620 0.2394 0.19718 0.1972
Blond 0.05512 0.7402 0.07874 0.1260

Now, each bar will be appropriately divided according to the normalized frequencies in the
above output. That is, the Black will be divided into regions proportional to 0.62963,
0.1852, 0.13889, and 0.0463 respectively for the Eye colors Brown, Blue, Hazel,
and Green. Now, we will have achieved 16 regions. Finally, we will require the distribution
of the gender for the above matrix, which displays the frequency for the eye and hair color
criteria. Though things look too complex, it is not very difficult to manage the computations.
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Note that we need to have 32 summaries to completely handle the mosaic plot for this dataset.
After understanding this fact, it is easy to know what should come in the next R codes:

> HairEyeColor[,,1]/eyecol
Eye

Hair Brown Blue Hazel Green
Black 0.4705882 0.5500000 0.6666667 0.6000000
Brown 0.4453782 0.5952381 0.4629630 0.5172414
Red 0.3846154 0.5882353 0.5000000 0.5000000
Blond 0.4285714 0.3191489 0.5000000 0.5000000

> HairEyeColor[,,2]/eyecol
Eye

Hair Brown Blue Hazel Green
Black 0.5294118 0.4500000 0.3333333 0.4000000
Brown 0.5546218 0.4047619 0.5370370 0.4827586
Red 0.6153846 0.4117647 0.5000000 0.5000000
Blond 0.5714286 0.6808511 0.5000000 0.5000000

> mosaicplot(HairEyeColor)

In light of all the above codes, we finally obtain the mosaic plot using the mosaicplot
function, which is now a lot easier to interpret, see Figure 16.5. Particularly, what can you
conclude about the distribution pattern in the HairEyeColor dataset? ◽

?barplot, ?spineplot, ?pie, ?fourfoldplot, ?mosaicplot

16.2.4 Pie Charts and Dot Charts

A pie chart is a circular plot with sectors whose areas are proportional to the frequency of the
classes. It is a very popular technique among many people who tend to visualize data and is
commonly seen in newspapers, television channels, etc. For the Old Faithful geyser, the pie
charts for the eruption time frequencies, and the time between two eruptions are shown below.
The dot chart was already introduced in Chapter 14.

Example 16.2.6. The Old Faithful Geyser Data. Pie Charts. Contd. The bar plot has been
used earlier for the variables eruptions_int and waiting_int. Pie charts are obtained
in R using the pie function. The optional arguments used here have been used and explained
for earlier plots and will not be detailed here, though there are some semantic differences.

> par(mfrow=c(1,2),cex=0.8)
> pie(table(eruptions_int),main="Pie Chart for the Eruption Time
+ Frequencies",radius=2,init.angle=180,clockwise=TRUE)
> pie(table(waiting_int),main="Pie Chart for the Waiting Time
+ Between Two Eruptions",radius=2,init.angle=180,clockwise=TRUE)

The additional options here include radius, init.angle, and clockwise. The reader
may simply run pie(table(eruptions_int)) and pie(table(waiting_int))
and reason out the requirement of these options coded here. Parts A and B of Figure 16.6 give
the pie chart for both the variables of interest. ◽
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Figure 16.6 Pie Charts for the Old Faithful Data
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R has a very important warning about pie charts and this warning must always be remem-
bered. Following Cleveland and McGill’s investigation, R displays the following warning for
pie charts: Pie charts are a very bad way of displaying information. The eye is good at judging
linear measures and bad at judging relative areas. A bar chart or dot chart is a preferable
way of displaying this type of data. Cleveland (1985), page 264: “Data that can be shown by
pie charts always can be shown by a dot chart. This means that judgements of position along
a common scale can be made instead of the less accurate angle judgements.” Hence, we will
also obtain dot charts for the two variables here.

Example 16.2.7. The Old Faithful Geyser Data. Dot Chart. Contd. The dot chart was used
earlier in Section 14.2. A slight improvement over the plotting techniques will be considered
for the variables eruptions_int and waiting_int.

> ei_freq <- as.numeric(table(eruptions_int))
> ei_names <- names(table(eruptions_int))
> dotchart(ei_freq,labels=ei_names,main="C: Dot Chart for the
+ Eruption Time Frequencies")
> wi_freq <- as.numeric(table(waiting_int))
> wi_names <- names(table(waiting_int))
> dotchart(wi_freq,labels=wi_names,main="D: Dot Chart for the
+ Waiting Time Between Two Eruptions")

Is the advantage of the dot chart, Parts C and D, over the pie chart apparent to you? ◽

16.2.5 Four-Fold Plots

The four-fold plot is a specialized way of visualizing cell frequency of 2 × 2 tables. In this plot,
the cell frequency nij in each cell of a four-fold table is shown by a quarter circle whose radius
is proportional to

√
(nij). The area is thus proportional to the cell count. Note that in a pie chart,

the angles of the segments are varied and the radius is kept the same, whereas in a four-fold
plot, the angles of the segments are kept constant and the radius is varied. These aspects are
clarified in the next popular example of University of California, Berkeley admissions data.

Example 16.2.8. Understanding the Four-Fold Plot using UCB Admissions Data. The
UCBAdmissions dataset available in the datasets package is one of the popular datasets
for the analysis of categorical data analysis. In the year 1975, it was observed that for six
departments, 1198 male applicants were admitted to the courses and 1493 male applications
were rejected. For females, the accepted and rejected numbers were 557 and 1278 respectively.
A further split of this information across six departments is also available and this information
will be taken up later as required. For this dataset, the forthcoming R program gives us the
four-fold plot and the pie chart. The plot function fourfoldplot will be useful to obtain
the four-fold plots.

> UCBoverall <- aperm(UCBAdmissions, c(2, 1, 3))
> par(mfrow=c(1,2))
> fourfoldplot(margin.table(UCBoverall, c(1, 2)),std="ind.max",
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+ main="Four Fold Plot for UCB Admissions")
> pie(margin.table(UCBoverall, c(1, 2)),
+ labels=c("Male Admitted","Female Admitted",
+ "Male Rejected","Female Rejected"),radius=2,
+ main="Pie Chart for UCB Admissions")

The aperm(UCBAdmissions, c(2, 1, 3)) code aggregates the frequencies for the
Gender-Admit across the six departments. Marginal tables can be obtained using the mar-
gin.table function, while the radius option is used here to produce aesthetic graphs. The
ratio of male to female acceptance is (1198/1493)/(557/1278) = 1.84108, which
apparently favors the males. If the ratio is nearly equal to 1, see Section 16.3, we expect a near
circle. ◽

In general, the four-fold plot can be used to visualize 2 × 2 × k contingency tables too. As
an example, it is known from the above that the UCBAdmissions data is available across six
departments. Thus, we would like to see how the patterns are revealed for the six departments.

Example 16.2.9. Understanding the Four-Fold Plot using UCB Admissions Data. Contd.
The R code fourfoldplot(UCBAdmissions,...) gives us the required four-fold plot
for the UCBAdmissions data.

> fourfoldplot(UCBAdmissions,mfrow=c(2,3),space=0.4,
+ col=c("lightgreen","lawngreen"),
+ main="Four Fold Plots for the 6 Departments of UCB")

The output of the preceding program is provided in Figure 16.7. The interpretation and more
details of the four-fold plot, see Figure 16.8, will be taken up in Section 16.3. The space
option must be experimented on by the reader for different values. ◽
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16.3 The Odds Ratio

The odds ratio is a very important measure of association in a 2 × 2 contingency table. Suppose
that an experiment results in a binary outcome, where we denote 1 for success and 0 for failure.
Let the probability of success be defined by 𝜋. Though earlier we have used the symbol 𝜋 for
the irrational number, it is not a confusion here. The odds of success is then defined by

odds = 𝜋

1 − 𝜋
. (16.1)

Alternatively, we can define the probability of success 𝜋 in terms of the odds as

𝜋 = odds
1 + odds

. (16.2)

The subtle difference between the probability of success and the odds of success is that prob-
ability is the number of times success occurs compared with the total number of trials, while
odds of success is the number of times success occurs against the number of failures. This
means that the odds value can also be greater than 1 when the number of times success can
occur exceeds the number of times failure can occur.

Example 16.3.1. Probability of Success and the Odds Ratio. If the probability of success is
𝜋 = 0.2 = 1∕5, then odds = 0.2∕(1 − 0.2) = 0.25 = 1∕4. Here the odds is better understood
as 1/4 rather 0.25. In this sense, we understand that the odds of success is in the ratio 1:4,
whereas the probability of success is 1/5. The odds value is non-negative. If the probability
of success is less than 0.5, the odds ratio takes a value of less than 1, and if the probability of
success is more than 0.5, it takes the value greater than 1, indicating that success is more likely
than failure. On the other hand, suppose that we know that the odds of success is in the ratio
10:1. The probability of success is then 𝜋 = 10∕(10 + 1) = 0.9091. A plot of the odds against
the probability of success can be easily obtained, and is given next.

> pi <- seq(0,1,0.05)
> odds <- pi / (1- pi)
> plot(pi,odds,xlab="Probability of Success", ylab="The Odds Ratio",
+ main="Understanding the Odds Ratio","l")

Note from Figure 16.9 that as 𝜋 → 1, the odds approach infinity, since the quantity in the
denominator of the odds = 𝜋

1−𝜋 approaches 0. ◽

We now undertake the task of understanding the odds ratio for a 2 × 2 contingency table.
Consider two categorical variables X and Y , with X and Y having 2 categories each. Let nij
denote the number of counts when the i category of X occurs with the j category of Y , and
i, j = 1, 2. Let 𝜋ij denote the joint probability of (X,Y) falling in the i-row and j column of
the rectangular table. An estimate of 𝜋ij is then given by �̂�ij = pij = nij∕n, i, j = 1, 2, where
n = n11 + n12 + n21 + n22. The odds ratio for a 2 × 2 contingency table is then defined by

odds = 𝜃 =
𝜋11∕𝜋12

𝜋21∕𝜋22
=

𝜋11𝜋22

𝜋12𝜋21
. (16.3)

Note that the odds ratio does not change for the transpose of the 2 × 2 contingency table. Hence,
the odds ratio is sometimes called the cross-product ratio. For more details, see Chapter 2 of
Agresti (2007).
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Figure 16.9 Understanding the Odds Ratio

Example 16.3.2. The Odds Ratio for Afterlife Believers. A survey was conducted to see
if the afterlife believers depend on the gender of the person, see page 22 or Agresti (2007).
The survey had a total of n = 1127 respondents, with 625 females, the rest being males. The
number of believers in the afterlife for the two genders are respectively 509 and 398. The odds
ratio of believers in the afterlife for males against females is then

> Afterlife <- matrix(c(509,116,398,104),byrow=TRUE,dimnames=list(c(
+ "Females","Males"),c("Yes","No")),nrow=2)
> Afterlife

Yes No
Females 509 116
Males 398 104
> pi1 <- Afterlife[1,1]/(Afterlife[1,1]+Afterlife[1,2])
> pi2 <- Afterlife[2,1]/(Afterlife[2,1]+Afterlife[2,2])
> (pi1/(1-pi1))/(pi2/(1-pi2))
[1] 1.146595

which means that there are more believers of afterlife among Females than Males. ◽

Example 16.3.3. The UCBAdmissions. This example will be repeated more often in this
chapter. The accept-reject data of candidates by gender, and across departments, is available
in the UCBAdmissions dataset. The nij values for the problem is obtained as

> margin.table(UCBAdmissions, c(1, 2))
Gender

Admit Male Female
Admitted 1198 557
Rejected 1493 1278

The function margin.table returns the overall count across the A-F departments. The
odds ratio for a male admittance to a female admittance is then (1198 * 1278)/(557 *
1493), with the answer being 1.84108. ◽
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Example 16.3.4. Did more Children Survive in the Titanic? The Titanic, and movies based
on it, is a very popular as well as tragic story and data is available on its survivors. It remains
for us to analyze if efforts were made to save the children. Let us have a quick look here. The
data for the survivors is available in the datasets as Titanic. A small change and we will
obtain the fourfoldplot for the child survivors.

> childTitanic <- apply(Titanic, c(3, 4), sum)
> childTitanic

Survived
Age No Yes
Child 52 57
Adult 1438 654

> fourfoldplot(childTitanic,std="ind.max") # output suppressed
> (57/52)/(654/1438)
[1] 2.410198

The odds ratio for the child survivors against adult survivors is (57/52)/(654/1438) is
2.410198, which shows that children were given more priority in the rescue operations. Note
that a naive approach may have suggested that more adults were saved than the children. ◽

?margin.table, ?prop.table

16.4 The Simpson’s Paradox

The Simpson’s paradox presents an intriguing fact about independence of the attributes. We
consider the hypothetical example of Simonoff (2003). The marketing head of a company
carries out a survey in two cities for two weeks to investigate the recall rates of a certain
product. The observation is that the recall rate has improved in both of the cities at the end of
two weeks, as reflected in the Table 16.1.

The first four rows of the table show that there has been an increase in the percentage recall
of the product in both the cities. However, the last two rows show that the recall percent-
ages pooled together have decreased. Thus, we see that across two weeks, there has been a
decrease in the recall percentage from 70% to 50%. This is the famous Simpson’s paradox.
From a probabilistic point of view, the results are not surprising at all. The anxious reader may

Table 16.1 Simpson’s Data and the Paradox

City Week Recall Don’t recall Total

New York 1 60 140 60/200 (37%)
2 320 480 320/800 (40%)

Los Angeles 1 640 160 640/800 (80%)
2 180 20 180/200 (90%)

Combined 1 700 300 700/1000 (70%)
2 500 500 500/1000 (50%)
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refer to Chapter 3 of Leonard (2000) for detailed coverage of the paradox. To put the paradox
in probabilistic terms, consider two events A and B with P(A|B) > P(A|Bc). It is then possible
to find another event C such that P(A|B,C) < P(A|Bc,C). A famous example of the Simp-
son’s paradox is about the gender bias in admission to six departments to graduate schools at
Berkeley, check with ?UCBAdmissions.

16.5 The Binomial, Multinomial, and Poisson Models

Under the assumption that categorical data are generated by certain probability models, we
will now consider the inference part of this.

16.5.1 The Binomial Model

Suppose that in a survey we ask people if they agree with the issues raised by the “United
Against Corruption” civil society. In such a survey, the respondents are requested to answer
the “Yes” or “No” options. If n responses are obtained, the number of “Yes” answers may
be modeled by a binomial distribution. A checklist for analysis of such data is provided by
Simonoff (2003), page 55:

• The number of trials n is fixed.
• Each trial results in a binary outcome.
• The probability of obtaining a success p remains the same in each trial.
• The trials are independent.

Let X denote the number of success in the n trials. Then, the pmf of X is given by

p(x, n, p) =
(n

x

)
px(1 − p)x, x = 0, 1, · · · , n, 0 ≤ p ≤ 1.

The binomial model has already been introduced in Section 6.2. We have seen in Chapter 7
that a natural estimator of p is the p̂ = x∕n. A 100(1 − 𝛼)% confidence interval, also called the
Wald interval, given by

p̂ ± z𝛼∕2

√
p̂(1 − p̂)

n
, (16.4)

whereas the Wilson confidence interval, actually the score interval, is given by

p̂
n

n + z2
𝛼∕2

+ 1
2

z2
𝛼∕2

n + z2
𝛼∕2

±

√√√√√ p̂(1 − p̂)
n

n2z2
𝛼∕2

(n + z2
𝛼∕2

)2
+ 1

4

z4
𝛼∕2

(n + z2
𝛼∕2

)2
. (16.5)

For details of the Wilson score interval, refer to page 57 of Simonoff (2003). The Wald and
Wilson confidence intervals will be illustrated now. The option of method="wilson" in the
binconf function from the Hmisc package gives a ready implementation of obtaining the
Wilson’s confidence interval. However, we will use the function WilsonCI from the ACSWR
package.
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Example 16.5.1. United Against Corruption Society. Suppose that 10 658 out of 15 000
respondents support the issues raised by the “United Against Corruption” civil society. We
would like to construct the Wald and Wilson confidence intervals for p. Here n = 15000 and
p̂ = 0.7105333.

Note that the Wald confidence interval is fairly easy to compute. The reader can check the
implementation of the WilsonCI function with the Formula 16.5.

> x <- 10658; n <- 15000
> phat <- x/n
> # Wald Confidence Interval
> c(phat-1.96*sqrt(phat*(1-phat)/n),phat+1.96*sqrt(phat*(1-phat)/n))
[1] 0.7032756 0.7177911
> WilsonCI(x,n,alpha=0.05)
[1] 0.7031598 0.7176736
> prop.test(x=10658,n=15000)$conf.int
[1] 0.7031890 0.7177694
attr(,"conf.level")
[1] 0.95
> prop.test(x=10658,n=15000,correct=FALSE)$conf.int
[1] 0.7032225 0.7177363
attr(,"conf.level")
[1] 0.95

Thus, any appropriate hypothesis testing problem of H ∶ p = p0 can be carried out through the
confidence intervals or the prop.test function and the Wilson confidence interval can be
obtained with the use of the WilsonCI function from ACSWR package. ◽

16.5.2 The Multinomial Model

If the respondents have more than two response options, we need to extend the binomial dis-
tribution to the multinomial distribution, as seen earlier in Section 6.4. Particularly, if there are
k possible response options, the probability mass function of the multinomial distribution is
given by

p(x, n,p) =
⎧⎪⎨⎪⎩

n!∏
ini!

k∏
i=1

pxi
i , xi = 0, 1, · · · , n, i = 1, · · · , k, pi ≥ 0,

0, otherwise,

where, x = (x1, · · · , xk), and xi, i = 1, · · · , k is the number of favorable responses for the ith

option, and p = (p1, · · · , pk). Quesenberry and Hurst (1964) have obtained the simultaneous
confidence intervals for p, where the 100(1 − 𝛼)% for pi is given by:

1

2(n + 𝜒2
k−1,1−𝛼)

⎡⎢⎢⎣𝜒
2
k−1,1−𝛼 + 2xi ±

√
𝜒2

k−1,1−𝛼

{
𝜒2

k−1,1−𝛼 +
4xi(n − xi)

n

}⎤⎥⎥⎦ , (16.6)
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where 𝜒2
k−1,1−𝛼 refers to the (1 − 𝛼) quantile of a 𝜒2 distribution with K − 1 degrees of free-

dom. To obtain the set of simultaneous confidence intervals to ensure that the overall confi-
dence level is at level 𝛼, substitute 𝛼 with 𝛼∕k in Equation 16.6.

Example 16.5.2. The Louisiana Lottery. Simonoff (2003) discusses this example where the
winning four-digit for a game is chosen using four machines. Basically, one of the balls num-
bered 0 to 9 is to be selected at random. The digits appearing in the winning spin frequencies
are tabled. We need to test if the game is fair or not. Thus, we need to test the hypothesis
H ∶ pi = 0.1, i = 1, · · · , 10. The following R program constructs the Quesenberry-Hurst
100(1 − 𝛼)% simultaneous confidence intervals, and the binomial confidence interval too
from Equation 16.4 , for p.

> x <- c(206,200,206,223,176,215,202,223,213,204)
> binom_CI <- matrix(nrow=10,ncol=2,
+ dimnames=list(NULL,c("binomLCL","binomUCL")))
> for(i in 1:10) binom_CI[i,] <- as.numeric(prop.test(x[i],2068,
+ p=0.1,correct=FALSE,conf.level=1-alpha/k)$conf.int)
> data.frame(x,x/sum(x),binom_CI,QH_CI(x,alpha=0.05))

x x.sum.x. binomLCL binomUCL QH_lcl QH_ucl
1 206 0.09961315 0.08261944 0.1196464 0.07200503 0.1362526
2 200 0.09671180 0.07996878 0.1165164 0.06954368 0.1329766
3 206 0.09961315 0.08261944 0.1196464 0.07200503 0.1362526
4 223 0.10783366 0.09015493 0.1284895 0.07902125 0.1454919
5 176 0.08510638 0.06941775 0.1039446 0.05978476 0.1197865
6 215 0.10396518 0.08660431 0.1243325 0.07571193 0.1411516
7 202 0.09767892 0.08085179 0.1175602 0.07036322 0.1340695
8 223 0.10783366 0.09015493 0.1284895 0.07902125 0.1454919
9 213 0.10299807 0.08571789 0.1232921 0.07488667 0.1400644
10 204 0.09864603 0.08173535 0.1186036 0.07118368 0.1351615

The Quesenbery-Hurst simultaneous confidence intervals are set up using the QH_CI func-
tion. The program is a simple implementation of the formulas and does not require additional
explanation. Since 0.1 lies within each of the ten confidence intervals, Quesenberry and Hurst,
as well as the binomial, we do not have evidence to reject the hypothesis H. The results,
binomLCL and binomUCL, may be compared with the table on page 67 of Simonoff (2003).

◽

16.5.3 The Poisson Model

The Poisson model is also useful in CDA. Let X denote a Poisson random variable with par-
ameter 𝜆. The Poisson model is given by

P(X = x) =
⎧⎪⎨⎪⎩

e𝜆𝜆x

x!
, x = 0, 1, 2, · · · , 𝜆 > 0,

0, otherwise.
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Then 100(1 − 𝛼)% large sample confidence interval for 𝜆, based on a random sample of size
n, is given by

X̄ ± z𝛼∕2

√
X̄
n

, (16.7)

where X̄ =
∑n

i=1 Xi∕n. A 100(1 − 𝛼)% score interval, based on the score function, is given by

X̄ +
z2
𝛼∕2

2n
±

z𝛼∕2√
n

√
X̄ +

z2
𝛼∕2

4n
. (16.8)

Example 16.5.3. Goal Scoring Example of Simonoff (2003). We will illustrate the results
on page 72 of Simonoff (2003). The goal scoring data of the hockey team “New Jersey Devils”
and the goals scored against the team are first stated and then we will construct the large-sample
and score confidence intervals for them.

> # The Poisson Models
> goals <- 0:9
> NJDGS <- c(3,9,24,18,14,7,3,2,1,1)
> NJDGA <- c(6,21,17,16,12,9,1)
> alpha <- 0.05
> NJDGSmean <- sum(goals*NJDGS)/sum(NJDGS)
> NJDGAmean <- sum(0:6*NJDGA)/sum(NJDGA)
> # Large Sample Confidence Interval
> c(NJDGSmean-qnorm(1-alpha/2)*sqrt(NJDGSmean/sum(NJDGS)),
+ NJDGSmean+qnorm(1-alpha/2)*sqrt(NJDGSmean/sum(NJDGS)))
[1] 2.682297 3.439655
> c(NJDGAmean-qnorm(1-alpha/2)*sqrt(NJDGAmean/sum(NJDGA)),
+ NJDGAmean+qnorm(1-alpha/2)*sqrt(NJDGAmean/sum(NJDGA)))
[1] 2.123703 2.803126
> # Score Intervals
> c(NJDGSmean+(qnorm(1-alpha/2) ̂ 2/(2*sum(NJDGS)))-(qnorm(1-
+ alpha/2)/sqrt(sum(NJDGS)))*sqrt(NJDGSmean+
+ (qnorm(1-alpha/2) ̂ 2)/(4*sum(NJDGS))),
+ NJDGSmean+(qnorm(1-alpha/2) ̂ 2/(2*sum(NJDGS)))+(qnorm(1-
+ alpha/2)/sqrt(sum(NJDGS)))*sqrt(NJDGSmean+
+ (qnorm(1-alpha/2) ̂ 2)/(4*sum(NJDGS))))
[1] 2.704996 3.463802
> c(NJDGAmean+(qnorm(1-alpha/2) ̂ 2/(2*sum(NJDGA)))-(qnorm(1-
+ alpha/2)/sqrt(sum(NJDGA)))*sqrt(NJDGAmean+
+ (qnorm(1-alpha/2) ̂ 2)/(4*sum(NJDGA))),
+ NJDGAmean+(qnorm(1-alpha/2) ̂ 2/(2*sum(NJDGA)))+(qnorm(1-
+ alpha/2)/sqrt(sum(NJDGA)))*sqrt(NJDGAmean+
+ (qnorm(1-alpha/2) ̂ 2)/(4*sum(NJDGA))))
[1] 2.146320 2.827356

The program unfolds as follows. The second term of the large sample confidence interval in
Equation 16.7 of z𝛼∕2

√
X̄∕n is calculated withqnorm(1-alpha/2)*sqrt(NJDGSmean/
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sum(NJDGS)). The first two terms for the score intervals given by Equation 16.8 are easy to
obtain and are implemented in the R computation with (qnorm(1-alpha/2)/sqrt(sum
(NJDGS)))*sqrt(NJDGSmean+(qnorm(1-alpha/2) ̂ 2)/(4*sum(NJDGS))).
The rest of the code is simpler to understand.

The confidence intervals, large samples, for the goals scored and those against them are
respectively (2.682297, 3.439655) and (2.123703, 2.803126). The respective
score intervals are (2.704996, 3.463802) and (2.146320, 2.827356). ◽

?prop.test, ?qchisq, ?qnorm

16.6 The Problem of Overdispersion

Overdispersion and underdispersion are common problems in the application of binomial and
Poisson models. A main reason for this is the fact that these models are completely determined
by a single parameter. Especially, when the data is heterogeneous, these models are not able
to account the variability in the data.

Example 16.6.1. The Zero-Inflated Poisson Model. Suppose that we have a dataset where
there are a large number of 0’s. A simulated data illustrates the overdispersion phenomenon.

> sampleset <- c(rpois(n=100,lambda=2), rep(0,30))
> est_lambda <- mean(sampleset)
> est_lambda; var(sampleset)
[1] 1.6
[1] 2.52

Thus, we see the shortcomings of the Poisson model in this example. We refer the reader to
Section 4.5 of Simonoff (2003). ◽

The overdispersion problem may be overcome with the use of the EM algorithm.

16.7 The 𝝌2- Tests of Independence

Chapter 4 of Faraway (2006) has an in-depth survey of the 𝜒2-tests of independence. Here,
we will consider the core 𝜒2- tests of independence of attributes. We consider the hypothesis
H that the cell probabilities equal certain fixed values 𝜋ij. The expected frequencies are then
given by 𝜇ij = n𝜋ij. The Pearson 𝜒2-statistic for H is

𝜒2 =
I∑

i=1

K∑
j=1

(nij − 𝜇ij)2

𝜇ij

If there is departure in the hypothesis H, it is expected that some values of (nij − 𝜇ij)2 will be
large, and thereby the value of 𝜒2, and thus the associated p-value will be very close to 0. We
next examine the independence of the attributes for the Japanese atomic bomb survivors.
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Example 16.7.1. Cancer Death Rates for the Japanese Atomic Bomb Survivors. In the
second section, we successfully read the relevant data in a contingency table format. It is time
for action, and we will use the chi-square test for independence of the attributes.

> chisq.test(atombombxtabs)
Chi-squared test for given probabilities
data: atombombxtabs
X-squared = 12337.16, df = 83, p-value < 2.2e-16
> summary(atombombxtabs)
Call: xtabs(formula = Frequency ∼ Radians + Count.Type +
+ Count.Age.Group)
Number of cases in table: 4861
Number of factors: 3
Test for independence of all factors:
Chisq = 992.9, df = 71, p-value = 1.557e-162
Chi-squared approximation may be incorrect

The small p-value indicates that the attributes are not independent. ◽

Example 16.7.2. Filariasis and Different Parasites Analysis. Filariasis is a common infec-
tion which occurs in many tropical and subtropical countries. Filariasis is caused by different
types of parasites. Gore, et al. (2007) reports a study in Nigeria, which was conducted to
observe the prevalence of filariasis due to various parasite types. The study included 13 com-
munities. In each of the communities, a record is made of the number of individuals exam-
ined for filariasis, the total number infected by it, the total number of infected cases due to
Onchocerca volvulus, and other infections. The purpose is to investigate if the proportion of
infected cases due to O. volvulus across the different communities is equal or not to the total
number of individuals examined. Furthermore, it is also desired to find out if the proportion
of infected cases due to O. volvulus across the communities is the same as that given for the
number of infected cases. The R program below gives the answers.

> data(Filariasistype)
> prop.test(x=Filariasistype[,4],n=Filariasistype[,2])
13-sample test for equality of proportions without continuity
correction
data: Filariasistype[, 4] out of Filariasistype[, 2]
X-squared = 52.76, df = 12, p-value = 4.539e-07
alternative hypothesis: two.sided
sample estimates:
prop 1 prop 2 prop 12 prop 13
0.10277 0.15306 0.33333 0.22222
Warning message:
In prop.test(x = Filariasistype[, 4], n = Filariasistype[, 2]) :
Chi-squared approximation may be incorrect

> prop.test(x=Filariasistype[,4],n=Filariasistype[,3])
13-sample test for equality of proportions without continuity
correction
data: Filariasistype[, 4] out of Filariasistype[, 3]
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X-squared = 16.88, df = 12, p-value = 0.1541
alternative hypothesis: two.sided
sample estimates:
prop 1 prop 2 prop 12 prop 13
0.7429 0.8333 0.8966 0.4444
Warning message:
In prop.test(x = Filariasistype[, 4], n = Filariasistype[, 3]) :
Chi-squared approximation may be incorrect

The analysis clearly shows that though the number of cases due to O. volvulus depends upon
the communities, if we consider the number of individuals examined, this count is indepen-
dent of the community if the important factor of the number of infected persons is taken into
consideration. ◽

?chisq.test

16.8 Further Reading

Refer to the same title section of the next chapter.

16.9 Complements, Problems, and Programs

Problem 16.1 Obtain stacked bar plots for UCBAdmissions, HairEyeColor, and
Titanic datasets.

Problem 16.2 Plot the mosaic plots for the datasets in the previous problem and record your
observations.

Problem 16.3 From the Titanic dataset, obtain the odds ratio of survivors for the follow-
ing: (i) Adult vs Child, (ii) Male vs Female, (iii) for each of the Class
as in 1st, 2nd, 3rd, and Crew. For the UCBAdmissions, compute the
overall odds ratio of Admit for Male vs Female and across each of the
department A-F.

Problem 16.4 Find the Wilson confidence interval for the probability of admission of a
female candidate in the UCBAdmissions data.

Problem 16.5 Perform the 𝜒2 tests for the datasets in the first problem here.
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Generalized Linear Models

Package(s): gdata, RSADBE
Dataset(s): chdage, lowbwt, sat, Disease, BS, caesareans

17.1 Introduction

In Chapter 16 we discussed many useful statistical methods for analysis of categorical data,
which may be nominal or ordinal data. The related regression problems were deliberately not
touched upon there, the reason for omission being that the topic is more appropriate here. We
will see in the next section that the linear regression methods of Chapter 12 are not appropriate
for explaining the relationship between the regressors and discrete regressands. The statistical
models, which are more suitable for addressing this problem, are known as the generalized
linear models, which we abbreviate to GLM.

In this chapter, we will consider the three families of the GLM: logistic, probit, and log-linear
models. The logistic regression model will be covered in more detail, and the applications of
the others will be clearly brought out in the rest of this chapter.

We first begin with the problem of using the linear regression model for count/discrete data
in Section 17.2. The exponential family continues to provide excellent theoretical properties
for GLMs and the relationship will be brought out in Section 17.3. The important logistic
regression model will be introduced in Section 17.4. The statistical inference aspects of the
logistic regression model is developed and illustrated in Section 17.5. Similar to the linear
regression model, we will consider the similar problem of model selection in Section 17.6.
Probit and Poisson regression models are developed in Sections 17.7 and 17.8.

17.2 Regression Problems in Count/Discrete Data

By count/discrete data, we refer to the case where the regressand/output is discrete. That is, the
output y takes values in the set {0, 1}, or {0, 1, 2, … }. As in the case of the linear regression
model, we have some explanatory variables which effect the output y. We will immediately
see the shortcomings of the approach of the linear regression model.

A Course in Statistics with R, First Edition. Prabhanjan Narayanachar Tattar, Suresh Ramaiah and B. G. Manjunath.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/tattar/statistics
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Example 17.2.1. Linear Model for Binary Outcome – Pass/Fail Indicator as Linear Func-
tion of the SAT Score. Johnson and Albert (1999) give a simple example of the drawbacks
of the linear regression model approach for count data. The Scholastic Assessment Test (SAT)
scores for the Mathematics subject, denoted by the variable Sat in the dataset sat, of stu-
dents at the time of admission to a course is available, and it is known whether or not in a later
examination the student completed the course, denoted by Pass. The variable Sat is the input
variable x, while the output variable Pass is the regressand y. The course completion status
Pass takes only two possible values 0 (fail) or 1 (pass). The task is to predict y based on the
covariate x. The scatter plot looks as in Figure 17.1.
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Figure 17.1 A Conditional Density Plot for the SAT Data

Though the scatter plot does not suggest that a linear model is appropriate, we will model for
y, Pass here, in terms of the covariate x in Sat. Let us check how well the linear regression
model of earlier chapters works here.

> library(RSADBE)
> data(sat)
> par(mfrow=c(1,2))
> plot(sat$Sat,sat$Pass,xlab="SAT-M Score",ylab="Pass/Fail",
+ main="Scatterplot of SAT-PASS Data")
> satlm <- lm(Pass∼Sat,data=sat)
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> abline(reg=satlm)
> predict(satlm)

1 2 24 25 29 30
0.44667 0.50593 0.88370 -0.01260 0.65407 0.62444
> predict(satlm,newdata=list(Sat=c(300,750)))

1 2
-1.220 2.113
> plot(predict(satlm),satlm$residuals,xlab="Predicted Values",ylab=
+ "Residuals",main="Residuals vs Predicted Plot")

First, the scatter plot is obtained using the plot function, and then the linear model is
fitted using the lm function, which is the diagram on the left-hand side of Figure 17.1.
The regression line is drawn on the scatter plot using the option of reg with the abline
graphical function. The shortcomings of the linear regression model are seemingly apparent.
For instance, the predicted values, predict(...), for a few students have values in excess
of 1 and also a few have less than 0. In simple words, we see that for discrete and bounded
random variables, the predicted values from the simple linear regression model can overshoot
the boundaries. Finally, the residuals-vs-predicted plot, the right-hand panel of Figure 17.1,
indicates two parallel lines, which is very unlikely if a linear model is appropriate. Thus we
need a model which overcomes such limitations. ◽

Example 17.2.2. Understanding the Relationship between Coronary Heart Disease and
the Age of the Patient. A well-known explanation of heart disease is that as age increases,
the risk of coronary heart disease also increases. The current dataset and the example may be
found in Chapter 1 of Hosmer and Lemeshow (1990–2013). We will first plot the indicator
value of coronary heart disease (CHD) against the age of the patient with the usual plot
command.

It is fairly clear from the plot, Figure 17.2, that there is not a strong association between
the CHD indicator and the age of the patient. However, a different way of re-plotting the same
data gives a useful insight. Let us group the patients into certain age intervals, and calculate
the percentage of the patients who have CHD. The patients are grouped in the interval groups
19–29, 29–34, 34–39,… , 54–59, and 59–69 using the cut function. The number of patients
falling in these age groups are obtained with table(agegrp,chdage$CHD). The code
prop.table(mytable,1) gives row-wise percentages, and with option of2 in place of1,
the column-wise percentages. The second column of this proportions table gives the percentage
of CHD patients in these age groups. We will then plot this percentage against the center of
the intervals with the points(...) option.

> data(chdage)
> plot(chdage$AGE,chdage$CHD,xlab="AGE",ylab="CHD Indicator",
+ main="Scatter plot for CHD Data")
> agegrp <- cut(chdage$AGE,c(19,29,34,39,44,49,54,59,69),include.
+ lowest=TRUE, labels=c(25,seq(31.5,56.5,5),64.5))
> mp <- c(25,seq(31.5,56.5,5),64.5) # mid-points
> chd_percent <- prop.table(table(agegrp,chdage$CHD),1)[,2]
> points(mp,chd_percent,"l",col="red")
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Figure 17.2 Understanding the Coronary Heart Disease Data in Terms of Percentage

The red curve in Figure 17.2 shows us that the percentage of people having CHD is increasing
as age increases. Furthermore, the shape of the curve is “S” shaped. In particular, it looks like
a sigmoid function. It is this fact that forms the basis of the logistic regression model. ◽

We will now digress a bit from applications and attempt to understand the general underlying
theory of GLMs. A brief look at the important members of the GLM family will be discussed
here.

?quantile, ?aggregate, ?cdplot, ?cut

17.3 Exponential Family and the GLM

The exponential family of distribution was introduced in Chapter 7. Chapter 3 of Dobson
(2002) highlights the role of the exponential family for the GLM’s considered in this chapter.
Recall the definition of the exponential family from Chapter 7 as

f (y|𝜃) = s(y)t(𝜃) exp[a(y)b(𝜃)],

where a, b, s, t are some known functions. This form of exponential family may be rewritten
as

f (y|𝜃) = exp[a(y)b(𝜃) + c(𝜃) + d(y)],



Trim Size: 170mm x 244mm Tattar c17.tex V3 - 02/10/2016 11:04 A.M. Page 601�

� �

�

Generalized Linear Models 601

Table 17.1 GLM and the Exponential Family

Probability Model Name of Link
Function

Link Function Mean Function

Normal Identity X𝜷 = 𝜇 𝜇 = X𝜷

Exponential/Gamma Inverse X𝜷 = 𝜇−1 𝜇 = (X𝜷)−1

Inverse Gaussian Inverse Squared X𝜷 = 𝜇−2 𝜇 = (X𝜷)−1∕2

Poisson Log X𝜷 = log(𝜇) 𝜇 = exp(X𝜷)

Binomial Logit X𝜷 = log

{
𝜇

1 − 𝜇

}
𝜇 =

exp {X𝜷}
1 + exp {X𝜷}

where c(𝜃) = exp(t(𝜃)) and d(y) = exp(s(y)). If a(y) = y, the distribution is said to be in canon-
ical form and in this case b(𝜃) is called the natural parameter of the distribution. We had seen
some members of the exponential family in Section 7.2.1. The dependency of GLM on the
exponential family is now discussed.

Consider an independent sample Y1,Y2, … ,Yn, with the following characteristics:

• Each observation Yi, i = 1, 2, … , n, is a distribution from the exponential family.
• The distributions of Yi are of the same form, that is, all are either normal, or all binomial,

etc.
• The canonical form Yi is specified by

f (yi|𝜃i) = exp[a(yi)b(𝜃i) + c(𝜃i) + d(yi)] (17.1)

This translates into the form that the joint probability density function of the random sample
Y1,Y2, … ,Yn, is given by

f (y1, … , yn|𝜃1, … , 𝜃n) = exp

[
n∑

i=1

a(yi)b(𝜃i) +
n∑

i=1

c(𝜃i) +
n∑

i=1

d(yi)

]
. (17.2)

In a GLM, we are interested in estimation of the n parameters 𝜃i. The trick is to consider some
function of 𝜃i, say 𝜇i, such that E(Yi) = 𝜇i, and then allow the n 𝜇i’s to vary as a function of
p, p < n, regression coefficients. That is, we define 𝜇i by

g(𝜇i) = xi𝜷, i = 1, 2, … , n, (17.3)

where xi is the covariate vector associated with yi, i = 1, … , n. The function g(.) is called the
link function of the GLM. Some essential requirements of the function g is that it should be
monotonic and differentiable. Table 17.1 gives a summary of important members of the GLM.
There will be more focus on logistic regression in this chapter.

17.4 The Logistic Regression Model

We saw in the previous section how the probability curve is a sigmoid curve. Now we will
introduce the concepts in a more formal and mathematical way. We have found the paper of
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Czepiel, http://czep.net/stat/mlelr.pdf, to be in the most appropriate pedagogical manner and
this section is a liberal adaptation of the same. Let the binary outcomes be represented by
Yi, i = 1, 2, … , n, and the covariates associated with them be respectively xi, i = 1, 2, … , n.
The covariate is assumed to be a vector of the k elements, that is, x = (x1, x2, … , xk). Without
loss of generality, we can write the covariate vector as x = (x0, x1, x2, … , xk), with x0 ≡ 1.
The probability of success is specified by 𝜋i = P(Yi = 1). The logistic regression model is
then given by

𝜋(x) = P(Y = 1) = ex𝜷

1 + ex𝜷
= e

∑k
i=0 𝛽ixi

1 + e
∑k

i=0 𝛽ixi

, (17.4)

where 𝜷 = (𝛽0, 𝛽1, … , 𝛽p) is the vector of regression coefficients. The probability of a failure
has the simple form:

P(Y = 0) = 1 − 𝜋(x) = 1 − ex𝜷

1 + ex𝜷
= 1

1 + ex𝜷
.

An important identity in the context of logistic regression is the form of the odds ratio,
abbreviated and denoted as OR:

OR = 𝜋(x)
1 − 𝜋(x)

= ex𝜷

1 + ex𝜷

{
1

1 + ex𝜷

}−1

= ex𝜷 . (17.5)

Taking the logarithm on both sides of the above equation, we get the form of logistic regression
model:

ln(OR) = ln

(
𝜋(x)

1 − 𝜋(x)

)
= x𝜷 =

k∑
i=0

𝛽ixi.

The expression ln(𝜋(x)∕(1 − 𝜋(x))) is known as the logit function and since it is linear in the
covariates, the logistic regression model, based on the logit function, is a particular class of
the well-known generalized linear models. The logistic regression model is given by

y = 𝜋(x) + 𝜖, (17.6)

where 𝜖 is the error term. Thus, if y = 1, the error is 1 − 𝜋(x) with probability 𝜋(x). Otherwise,
the error is −𝜋(x) with probability 1 − 𝜋(x). That is

𝜖 =
{

1 − 𝜋(x), with probability 𝜋(x) if y = 1,
−𝜋(x), with probability 1 − 𝜋(x) if y = 0.

(17.7)

Hence, the error 𝜖 has a binomial distribution with mean E(𝜖) = 0 and variance Var(𝜖) =
𝜋(x)(1 − 𝜋(x)). The next section will deal with the inferential aspect of 𝜷.

17.5 Inference for the Logistic Regression Model

17.5.1 Estimation of the Regression Coefficients and Related Parameters

The likelihood function based on n observations is given by

L(𝜷, y) =
n∏

i=1

𝜋(xi)yi[1 − 𝜋(xi)]1−yi . (17.8)

http://czep.net/stat/mlelr.pdf
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As in the most cases, it is easier to work with the log-likelihood function:

ln[L(𝜷, y)] ∝
n∑

i−1

{yi ln(𝜋(xi)) + (1 − yi) ln(1 − 𝜋(xi))}

=
n∑

i=1

yi ln

{
𝜋(xi)

1 − 𝜋(xi)

}
+

n∑
i=1

ln(1 − 𝜋(xi))

=
n∑

i=1

yixi𝜷 −
n∑

i=1

ln(1 + exi𝜷 ). (17.9)

Differentiating the above log-likelihood function with respect to 𝛽j, j = 0, 1, 2, … , k, we
obtain the score function:

𝜕 ln[L(𝜷, y)]
𝜕𝛽j

=
n∑

i=1

yixi −
n∑

i=1

[
1

1 + exi𝜷

]
exi𝜷xi

=
n∑

i=1

yixi −
n∑

i=1

𝜋(xi)xi

=
n∑

i=1

(yi − 𝜋(xi))xi. (17.10)

Let us denote the covariate matrix, as in earlier chapters, by X, the probability of success
vector by 𝛑 = {𝜋1, 𝜋2, … , 𝜋n}, and the outcome vector by y = (y1, y2, … , yn). The normal
equation, obtained by equating the above equation to zero, for the logistic regression model is
then given by

X′(y − 𝝅) = 0. (17.11)

The above equation looks similar to the normal equation of the linear models. However,
Equation 17.11 cannot be solved immediately as the vector 𝝅 contains the vector of regression
coefficients. We need the help of a different algorithm to obtain the estimates of the regression
coefficients. This algorithm is generally known as the iterated reweighted least squares,
abbreviated as IRLS, algorithm. In the context of the logistic regression model, the IRLS
algorithm is given below, see Fox http://socserv.mcmaster.ca/jfox/Courses/UCLA/logistic-
regression-notes.pdf.

• Initialize the vector of regression coefficients b0 = 𝟎.
• The tth improvement of the regression coefficients is given by

bt = bt−1 + (X′Vt−1X)−1X′(y − 𝝅t−1), (17.12)

where Vt−1 is a diagonal matrix with the ith diagonal element given by 𝜋i,t−1(1 − 𝜋i,t−1), and
𝜋i,t−1 = 1∕(1 + exp(−x′ibt−1)).

• Repeat the above step until bt is close to bt−1.
• The asymptotic covariance matrix of the regression coefficients is given by (X′VX), see

next sub-section.

http://socserv.mcmaster.ca/jfox/Courses/UCLA/logistic-regression-notes.pdf
http://socserv.mcmaster.ca/jfox/Courses/UCLA/logistic-regression-notes.pdf
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In the next example, we will develop an example which will clearly bring out the steps of
the IRLS algorithm. The use of the R function glm directly returns us the estimates of the
regression coefficients. However, the working of the IRLS algorithm does not become clear,
and the first time the reader may feel that IRLS is some kind of black box. It is to be understood
that software does not hide anything, R or any other statistical software. The onus of clear
understanding of software functionality is with the reader, and sometimes the authors. For the
sake of simplicity, we will focus on the simple GLM case of a single covariate only. The IRLS
function is first given and discussed.

irls <- function(output, input) {
input <- cbind(rep(1,length(output)),input)
bt <- 1:ncol(input)*0 # Initializing the regression coefficients
probs <- as.vector(1/(1+exp(-input%*%bt)))
temp <- rep(1,nrow(input))
while(sum((bt-temp) ̂ 2)>0.0001) {
temp <- bt
bt <- bt+as.vector(solve(t(input)%*%diag(probs*(1-probs))
%*%input)%*%(t(input)%*%(output-probs)))
probs <- as.vector(1/(1+exp(-input%*%bt)))
}
return(bt)
}

The irls R function defined here should return us the estimates as required by the
IRLS algorithm and in particular Equation 17.12 computations are to be handled here.
Given the covariate values for the n observations from a dataset, the first step is to
take care of the intercept term, and thus we first begin by inserting a column of 1’s
with input <- cbind(rep(1,length(output)),input). The initial esti-
mate of regression coefficients is set equal to 0, and hence the initial probabilities 𝜋i’s
will be zero too, see bt and probs in the irls program. The regression coefficient
vector for the previous iteration will be denoted by temp and so long as the improve-
ment of the current iteration, vector distance, and the previous iteration is greater than
1e-4, the iterations will be carried out in the while loop. The iteration as required
by Equation 17.12 is provided by the R code solve(t(input)%*%diag(probs*
(1-probs))%*%input)%*%(t(input) %*%(output-probs)). When the con-
vergence criteria is met, the vector of regression coefficients is returned by return(bt) as
the output. The irls function will be tested for the coronary heart disease problem and the
results will be further verified with the R glm function.

Example 17.5.1. Understanding the Relationship between Coronary Heart Disease and
the Age of the Patient. Contd. We will now see how the above irls function compares with
the R modules. The R function glm will be useful to build GLM, and it works on similar lines
as the linear model function lm. The formula ∼ as used in lm continues to hold for glm and
does not need further elaboration.

> data(chdage)
> chdglm <- glm(chdage$CHD∼chdage$AGE,family=’binomial’)
> irls(chdage$CHD,chdage$AGE)
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[1] -5.3094530 0.1109211
> chdglm$coefficients
(Intercept) chdage$AGE
-5.3094534 0.1109211
> summary(chdglm)
Call:
glm(formula = chdage$CHD ∼ chdage$AGE, family = "binomial")
Deviance Residuals:

Min 1Q Median 3Q Max
-1.9718 -0.8456 -0.4576 0.8253 2.2859
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -5.30945 1.13365 -4.683 2.82e-06 ***
chdage$AGE 0.11092 0.02406 4.610 4.02e-06 ***
- - -
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 136.66 on 99 degrees of freedom
Residual deviance: 107.35 on 98 degrees of freedom
AIC: 111.35
Number of Fisher Scoring iterations: 4

Thus, the irls function returns the precise answer as the R function glm as seen by the output
for irls(chdage$CHD,chdage$AGE) and chdglm$coefficients. It is now hoped
that the reader is really comfortable with the IRLS algorithm.

The summary function shows that AGE is a significant variable for explaining CHD. Further
description will follow in the rest of this section. ◽

Estimates of the link function and odds ratio is straightforwardly obtained by plugging in
the values of the estimated regression coefficients, that is,

�̂�(x) = x�̂�,

ÔR = ex�̂� .

We will next consider an example of the multiple logistic regression, that is when we have
more than one covariates.

Example 17.5.2. The Low Birth-Weight Problem. Low birth weight of new-born infants
is a serious concern. If the weight of the new-born is less than 2500 grams, we consider that
instance as a low-birth weight case. A study was carried out at Baystate Medical Center in
Springfield, Massachusetts. Table 17.2 gives a description of the variables in the study.

The multiple logistic regression model will be built for the low birth weight category LOW
as a function of the covariates AGE, LWT, RACE, and FTV.

> data(lowbwt)
> lowglm <- glm(LOW∼AGE+LWT+RACE+FTV,data=lowbwt,family=’binomial’)
> lowglm$coefficients
(Intercept) AGE RACE3 FTV
1.29536575 -0.02382297 0.43310843 -0.04930832
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Table 17.2 The Low Birth-Weight Variables

Serial
Number

Description Abbreviation

1 Identification Code ID
2 Low Birth Weight LOW
3 Age of Mother AGE
4 Weight of Mother at Last Menstrual

Period
LWT

5 Race RACE
6 Smoking Status During Pregnancy SMOKE
7 History of Premature Labor PTL
8 History of Hypertension HT
9 Presence of Uterine Irritability UI
10 Number of Physician Visits During

the First Trimester
FTV

11 Birth Weight BWT

Note that converting RACE as a factor has multiplied itself by two variables, since we have
modeled it as a factor variable and not as a continuous variable. The reasoning is similar as in
the linear models. ◽

The estimated vector of regression coefficients �̂� needs to be tested for significance. The
first step towards this would be to obtain an estimate of the variance-covariance matrix of �̂�.

17.5.2 Estimation of the Variance-Covariance Matrix of 𝛽

We have seen earlier in Chapter 7 that the variance of the score function gives the Fisher infor-
mation. Thus, to obtain the variance-covariance matrix of �̂�, we look at the second-order partial
derivatives of the log-likelihood function. The technique of estimating the variance-covariance
matrix of �̂� follows from the theory of the maximum likelihood estimation, see Rao (1973).
Differentiating the partial differential equations of the log-likelihood function of sub-section
8.4.1, we get

𝜕2 ln[L(𝛽, y)]
𝜕𝛽2

j

= −
n∑

i=1

x2
ij𝜋i(1 − 𝜋i),

𝜕2 ln[L(𝛽, y)]
𝜕𝛽j𝜕𝛽j′

= −
n∑

i=1

xijxij′𝜋i(1 − 𝜋i),

for j, j′ = 0, 1, … , k. The Fisher information for 𝜷, denoted by I(𝜷), consists of elements as
specified in the above two equations. Adapting the results from Chapter 7, the inverse matrix
of the information matrix gives us the variance-covariance matrix of �̂�, that is,

𝑣ar(�̂�) = I−1(�̂�) = (X′VX)−1. (17.13)
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Thus, we specifically have that the variance of the estimator of regression coefficient 𝛽j,
denoted by ̂var(𝛽j) as the jth diagonal element of var(�̂�). Similarly, the covariance between
the estimators of two regression coefficients, denoted by ̂cov(𝛽j, 𝛽j′ ), as the (j, j′) element of
var(�̂�).

In R, it is easier to obtain the variance-covariance matrix for a fitted logistic regression
model. For the Low Birth-Weight example, we can obtain this using the listed object
cov.unscaled.

> lowglm_summary <- summary(lowglm)
> lowglm_summary$cov.unscaled

(Intercept) AGE LWT RACE2 RACE3 FTV
(Intercept) 1.1480 -0.0220 -0.0045 -0.0373 -0.1339 0.0054
AGE -0.0220 0.0011 0.0000 0.0031 0.0013 -0.0010
LWT -0.0045 0.0000 0.0000 -0.0008 0.0003 -0.0001
RACE2 -0.0373 0.0031 -0.0008 0.2479 0.0571 -0.0003
RACE3 -0.1339 0.0013 0.0003 0.0571 0.1312 0.0058
FTV 0.0054 -0.0010 -0.0001 -0.0003 0.0058 0.0280

17.5.3 Confidence Intervals and Hypotheses Testing for the Regression
Coefficients

The natural hypotheses testing problem is inspection for the significance of the regressors, that
is, H(j) ∶ 𝛽j = 0, j = 1, 2, … , k. The Wald test statistics for H(j) is given by

Wj =
𝛽j

ŜE(𝛽j)
, j = 0, 1, … , k. (17.14)

Under the hypotheses H(j), the Wald statistics Wj (asymptotically) follow a standard normal
distribution. Furthermore, the 100(1 − 𝛼)% confidence interval for 𝛽j is given by

𝛽j ± z𝛼∕2ŜE(𝛽j), j = 0, 1, … , k. (17.15)

We will illustrate these concepts for the low birth-weight study problem.

Example 17.5.3. The Low Birth-Weight Problem. Contd. The Wald statistics values and the
corresponding p-values are given in the third and fourth columns of the “Coefficients” table
of the summary function, that is:

> lowglm_summary$coefficients[,3:4]
z value Pr(>|z|)

(Intercept) 1.2090 0.2267
AGE -0.7063 0.4800
LWT -2.1778 0.0294
RACE2 2.0164 0.0438
RACE3 1.1956 0.2318
FTV -0.2948 0.7681
> confint(lowglm)
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Waiting for profiling to be done...
2.5 % 97.5 %

(Intercept) -0.7603 3.4594
AGE -0.0917 0.0413
LWT -0.0278 -0.0020
RACE2 0.0230 1.9910
RACE3 -0.2787 1.1462
FTV -0.3899 0.2707

Note that at 𝛼 = 0.05 level of significance, LWT and RACE would be two significant variables
in explaining the low birth weight LOW. The 95% confidence intervals for the regression coef-
ficients confirm the hypotheses test results, since 0 does not lie in the intervals for LWT and
RACE. For details about profiling, refer to Dalgaard (2008). ◽

An overall model level significance test needs to be in place. Towards this test, we need to
first define the notion of deviance, and this topic will be taken up in sub-section 17.5.5. First,
we need to define the various types of residuals on the lines of linear models for the logistic
regression model.

?diag, ?glm, ?family, ?coefficients, ?summary.glm, ?deviance, ?confint

17.5.4 Residuals for the Logistic Regression Model

Recollect from the definition of residuals for the linear regression model as defined in Section
12.5 that the residual is the difference between actual and predicted y values. Similarly, the
residuals for the logistic regression model is defined by

ri = yi − �̂�i(xi), i = 1, … , n. (17.16)

The residuals ri are sometimes called the response residual. The different variants of the resid-
uals which will be useful are defined next, see Chapter 7 of Tattar (2013). The hat matrix
H played an important role in defining the residuals for the linear regression model, recall
Equation 12.37. A similar matrix will be required for the logistic regression model, and we
have the problem here that the observation y is not a straightforward linear in terms of the
regression coefficient. A linear approximation for the fitted values �̂�, which gives a similar hat
matrix for the logistic regression model, has been proposed by Pregibon (1981), see Section
5.3 of Hosmer and Lemeshow (1990–2013). The hat matrix for the logistic regression matrix
will be denoted by HLR, the subscript LR denotes logistic regression and not linear regression,
and is defined by

HLR = V1∕2X(X′VX)−1X′V1∕2, (17.17)

where V is a diagonal matrix with

𝑣i = �̂�(xi)(1 − �̂�(xi)), i = 1, … , n.

The diagonal elements, hat values, hii, or simply hi, are given by

hi = �̂�(xi)(1 − �̂�(xi))x′i(X
′VX)−1xi = 𝜈ibi, i = 1, … , n, (17.18)
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with 𝜈i ≡ �̂�(xi)(1 − �̂�(xi)) capturing the model-based estimator of the variance of yi and bi ≡
x′i(X

′VX)−1xi computing the weighted distance of xi from the average of the covariate design
matrix x̄. Similar to the linear regression model case, the diagonal element hi is useful for
obtaining the variance of the residual:

Var(ei) = �̂�(xi)(1 − �̂�(xi))(1 − hi), i = 1, … , n. (17.19)

The Pearson residual for the logistic regression model is then defined by

rP
i =

yi − �̂�i(xi)√
�̂�(xi)(1 − �̂�(xi))

, i = 1, … , n. (17.20)

The standardized Pearson residual is defined by

rP_Stan
i =

rP
i√

1 − hi

, i = 1, … , n. (17.21)

The deviance residual for the logistic regression model is defined as signed square root of the
contribution of the observation to the sum of the model deviance and is given by

rdev
i = sign {ri}

√
−2[yi log(�̂�i(xi)) + (1 − yi) log(1 − �̂�i(xi))]. (17.22)

The residuals are obtained for a disease outbreak dataset, which is adapted from Kutner, et al.
(2005).

Example 17.5.4. Disease Outbreak Problem. The purpose of this health study is inves-
tigation of an epidemic outbreak due to mosquitoes. A random sample, from two sectors
of a city, among the individuals has been tested to determine if they had contracted the
disease forming the binary outcome Y . The variables of age x1, socioeconomic status (of
three categories lower, middle, and upper) through data variables x2 and x3, and sector
of the city x4, are used to determine if the disease has been contracted by the individual.
This dataset is available in the file Disease_Outbreak.csv and imported into the R
session as Disease data.frame object. First, a logistic regression model will be fitted
with glm(y .,data=Disease) and the fitted model DO_LR will be used to obtain the
residuals: response, deviance, Pearson, standardized Pearson, and the important hat values.
The R functions glm, residuals with the options of response, deviance, and
pearson, hatvalues, and fitted will help us to obtain the quantities defined in
Equations 17.16–17.22.

> data(Disease)
> DO_LR <- glm(y∼.,data=Disease,family=’binomial’)
> LR_Residuals <- data.frame(Y = Disease$y,Fitted = fitted(DO_LR),
+ Hatvalues = hatvalues(DO_LR),Response = residuals(DO_LR,
+ "response"), Deviance = residuals(DO_LR,"deviance"),
+ Pearson = residuals(DO_LR,"pearson"),
+ Pearson_Standardized = residuals(DO_LR,"pearson")/
+ sqrt(1-LR_Residuals$Hatvalues))
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> LR_Residuals
Y Fitted Hatvalues Response Deviance Pearson Pearson_Standardized

1 0 0.2090 0.0387 -0.2090 -0.685 -0.514 -0.524
2 0 0.2190 0.0404 -0.2190 -0.703 -0.529 -0.541
3 0 0.1058 0.0332 -0.1058 -0.473 -0.344 -0.350
4 0 0.3710 0.0895 -0.3710 -0.963 -0.768 -0.805
5 1 0.1108 0.0252 0.8892 2.098 2.833 2.869

94 0 0.1630 0.0460 -0.1630 -0.596 -0.441 -0.452
95 1 0.1589 0.0326 0.8411 1.918 2.300 2.339
96 0 0.1138 0.0254 -0.1138 -0.491 -0.358 -0.363
97 0 0.0919 0.0241 -0.0919 -0.439 -0.318 -0.322
98 0 0.1712 0.0356 -0.1712 -0.613 -0.455 -0.463

The plots of residuals against the fitted values of the type plot(fitted,residuals),
unlike the linear regression model, are not very useful. A deviation from the tested path is
required to obtain meaningful residual plots and will be developed now. ◽

Recollect from Equation 17.7 that the mean and variance of the error term are respec-
tively E(𝜖) = 0 and Var(𝜖) = 𝜋(x)(1 − 𝜋(x)). Thus, the LOESS plot, refer to Section 8.4, of
errors against the fitted values should reflect a line around 0 if the assumption of the logistic
regression is appropriate. This perspective will be explored as a continuation of the previous
example.

Example 17.5.5. Disease Outbreak Problem. Contd. The residuals against the fitted
values plot are easily obtained. We need to complement the residual plots with the LOESS
approximation. Thus, the loess function is used in the usual way loess(y∼x). The
fitted LOESS curve will then be added to the residual plot and investigated if the line is
approximately at 0.

> par(mfrow=c(2,2))
> plot(LR_Residuals$Fitted,LR_Residuals$Response,
+ xlab="Fitted Values",ylab="Response Residual")
> response_loess <- loess(Response∼Fitted,data=LR_Residuals)
> points(response_loess$x,predict(response_loess))
> plot(LR_Residuals$Fitted,LR_Residuals$Deviance,
+ xlab="Fitted Values", ylab="Deviance Residual")
> deviance_loess <- loess(Deviance∼Fitted,data=LR_Residuals)
> points(deviance_loess$x,predict(deviance_loess))
> plot(LR_Residuals$Fitted,LR_Residuals$Pearson,
+ xlab="Fitted Values", ylab="Pearson Residual")
> pearson_loess <- loess(Pearson∼Fitted,data=LR_Residuals)
> points(pearson_loess$x,predict(pearson_loess))
> plot(LR_Residuals$Fitted,LR_Residuals$Pearson_Standardized,
+ xlab="Fitted Values", ylab="Standardized Pearson Residual")
> pearson_standardized_loess <- loess(Pearson∼Fitted,
+ data=LR_Residuals)
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> points(pearson_standardized_loess$x,predict(pearson_
+ standardized_loess))
> title(main="The Loess Approach for Residual Validation of Logistic
+ Regression Model",outer=TRUE,line=-2)

Figure 17.3 shows that the logistic regression model is appropriate for the disease outbreak
data problem. ◽
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The LOESS approach for residual validation of logistic regression model

Figure 17.3 Residual Plots using LOESS

The residuals have more importance than validation of the model assumptions. The overall
fit of the model will be investigated next.

17.5.5 Deviance Test and Hosmer-Lemeshow Goodness-of-Fit Test

Testing for the significance of the GLM model is carried out using Deviance Statistic, denoted
by D, by comparing the likelihood function for the fitted model, which includes the covari-
ates, with the likelihood of the saturated model. A saturated model is that model which takes
into consideration all possible parameters and thus results in a perfect fit in the sense that all
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successful outcomes are predicted as success and failures predicted as failed. The deviance
statistic D is then defined by

D = −2 ln

[
(likelihood of the fitted model)

(likelihood of the saturated model)

]
.

Since the saturated model, by definition, leads to a perfect fit, we have �̂�i = yi, and thus

likelihood of the saturated model =
n∏

i=1

yyi
i × (1 − yi)1−yi = 1.

Thus, the deviance statistic becomes

D = −2 ln(likelihood of the fitted model) − 0

= −2
n∑

i=1

[
yi ln

(
�̂�i

yi

)
+ (1 − yi) log

(
1 − �̂�i

1 − yi

)]
.

To know the significance of the set of the independent variables, we need to compare the value
of D with and without the set of independent variables/covariates. That is

G = D(model without the variables) − D(model with the variables). (17.23)

We further see that

G = −2 ln

[
(likelihood without the variables)

(likelihood with the variables)

]

= −2 ln

⎡⎢⎢⎢⎣
(

n1
n

)n1
(

n0
n

)n0

∏n
i=1 �̂�

yi
i [1 − �̂�i]1−yi

⎤⎥⎥⎥⎦
(17.24)

where n0 =
∑n

i=1 yi and n1 =
∑n

i=1(1 − yi). Basically, we are substituting the MLEs of 𝜋 and
1 − 𝜋 for the model without the set of independent variables. Under the hypothesis that all the
regression coefficients are not significant, the test statistic G follows a 𝜒2- distribution with k
degrees of freedom. With the appropriate significance level, it is possible to infer the model
significance using the G statistic. This G statistic may be seen as the parallel of the F statistic
in the linear model case. For more details, refer to Hosmer and Lemeshow (2000).

Example 17.5.6. The Low Birth-Weight Problem. Contd. Recall that the R object
lowglm_summary had been used to store summary values of the glm object in lowglm.
To calculate the G-statistic, which is not directly given in R, we note that the summarized
object gives us the deviance and null.deviance of the model. Thus,

> gstat_lowbwt <- lowglm_summary$null.deviance - lowglm_summary
+ $deviance
> gstat_lowbwt
[1] 12.09909
> 1-pchisq(gstat_lowbwt,5)
[1] 0.03345496
> with(lowglm, pchisq(null.deviance - deviance,df.null - df.residual,
+ lower.tail = FALSE)) # Equivalently
[1] 0.0335
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The p-value is significant at the 0.05 level, which leads us to reject the hypothesis H and
conclude that at least one or even all of k variable effects are significantly different from
zero. ◽

17.6 Model Selection in Logistic Regression Models

We consider “Stepwise Logistic Regression” for the best variable selection in a logistic
regression model. The most important variable is the one that produces maximum change in
the log-likelihood relative to a model containing no variables. That is, maximum change in
the value of the G-statistic is considered as the most important variable. The complete process
of step-wise logistic regression is given in S number of steps.

Step 0

• Consider all plausible variables, say k.
• Fit “intercept only model”, and evaluate the log-likelihood L0.
• Fit each of the possible k univariate logistic regression models and note the log-likelihood

values L(0)
j . Furthermore, calculate the G-statistic for each of the k-models, G(0)

j =
−2(L0 − L(0)

j ).
• Obtain the p-value for each model.
• The most important variable is then the one with least p-value, p(0)el

= min(p(0)j )
• Denote the most important variable by xe1

.
• Define the entry criteria p-value as pE, which will at any time throughout this procedure

decide if the variable is to be included or not. That is, the variable with the least p-value
must be less than pE to be selected in the final model.

• If none of the variables have the p-value less than pE, we stop.

Step 1. The Forward Selection Step

• Replace L0 of the previous step with L(1)
e1

.
• Fit k − 1 models with variables xe1

and the remaining variables xj, j = 1, 2, … , k, and j
distinct from e1.

• For each of the k − 1 models, calculate the log-likelihood L(1)
e1,j

and the G-statistics

G(1)
j = −2(L(1)

e1
− L(1)

e1,j
), and the corresponding p-values, denoted p(1)j .

• Define p(1)e2
= min(

(1)
p
j
)

• If p(1)e2
= pE, stop.

Step 2A. The Backward Elimination Step

• Adding xe2
may leave xe1

statistically insignificant.

• Let L(2)
−ej

denote the log-likelihood of the model with variable ej removed.
• Calculate the likelihood-ratio test of these reduced models with respect to the full model at

the beginning of this step G(2)
−ej

= −2(L(2)
ej

− L(2)
e1e2

), and calculate the p-values p(2)−ej
.

• Deleted variables must result in a maximum p-value of the modified model.
• Denote xr2

as the variable which is to be removed, and define p(2)r2
= max(p(2)−e1

, p(2)−e2
).

• To remove variables, we need to have a value pR with respect to which we compare p(2)r2
.
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• We need to have pR > pE. (Why?)
• Variables are removed if p(2)r2

> pR.

Step 2B. The Forward Selection Phase

• Continue the forward selection method with k − 2 remaining variables and find p(2)e3
.

• Let xe3
be the variable associated with p(2)e3

.

• If the p(2)e3
is less than pE, proceed to Step 3, otherwise stop.

Step 3

• Fit the model including the variable selected in the previous step and perform backward
elimination and then forward selection phase.

• Repeat until the last Step S.

Step S

• Stopping happens if all the variables have been selected in the model.
• It also happens if all the p-values in the model are less than pR, and the remaining variables

have p-values exceeding pE.

The step function in R may be used to build a model. The criteria used there is the Akaike
Information Criteria, AIC. To the best of our knowledge, there is no package/function which
will implement stepwise logistic regression using the G-statistic generated p-values. The Hos-
mer and Lemeshow (2000) approach of model selection will be used here.

Example 17.6.1. Stepwise Regression for Low Birth-Weight Study. Let us begin by reading
the dataset into R and with some essential data manipulations.

> data(lowbwt)
> attach(lowbwt)
> RACE_2=RACE_3=c()
> for(i in 1:nrow(lowbwt)){
+ if(lowbwt$RACE[i]==1) {RACE_2[i] <- 0;RACE_3[i] <- 0}
+ if(lowbwt$RACE[i]==2) {RACE_2[i] <- 1;RACE_3[i] <- 0}
+ if(lowbwt$RACE[i]==3) {RACE_2[i] <- 0;RACE_3[i] <- 1}
+ }
> design <- cbind(rep(1,nrow(lowbwt)),lowbwt[,3],
+ lowbwt[,4],RACE_2,RACE_3,lowbwt[,10])
> colnames(design)=c("intercept", "AGE","LWT",
+ "RACE_2","RACE_3","FTV")
> n <- nrow(design)
> n1 <- sum(lowbwt$LOW); n0 <- n-n1
> nullloglik <- n1*log(n1/n) + n0*log(n0/n)

We have thus obtained the null-log-likelihood value. We will first define two functions which
will calculate the log-likelihood value glmllv and given two log-likelihood values, and will
return the p-values for the fitted GLM pvalue.
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> # Functions which calculate the log-likelihood
> # values and the p-value
> glmllv <- function(glm, x) {
+ glm <- glm; y <- glm$y
+ x1 <- cbind(rep(1,length(y)),x)
+ coeff <- glm$coefficients
+ logitx <- x1%*%coeff;
+ pix <- exp(logitx)/(1+exp(logitx))
+ llvalue <- sum(y*log(pix))+sum((1-y)*log(1-pix))
+ return(llvalue)
+ }
> pvalue <- function(lik1,lik0,df){
+ gstat <- -2*(lik0-lik1)
+ pval <- 1-pchisq(gstat,df)
+ return(pval)
+ }

We will now set the entry and exit criteria and decide which variable will first enter the model.

> #The p-values for entry and exit criteria
> pe <- 0.25; pr <- 0.4
> # Selecting the first variable to be included in the model
> glm_AGE <- glm(LOW∼AGE,family=’binomial’)
> ll_AGE <- glmllv(glm_AGE,AGE)
> (pvalue_AGE <- pvalue(ll_AGE,nullloglik,1))
[1] 0.09664596
> glm_LWT <- glm(LOW∼LWT,family=’binomial’)
> ll_LWT <- glmllv(glm_LWT,LWT)
> (pvalue_LWT <- pvalue(ll_LWT,nullloglik,1))
[1] 0.01445812
> glm_RACE_2 <- glm(LOW∼RACE_2,family=’binomial’)
> ll_RACE_2 <- glmllv(glm_RACE_2,RACE_2)
> (pvalue_RACE_2 <- pvalue(ll_RACE_2,nullloglik,1))
[1] 0.1985105
> glm_RACE_3 <- glm(LOW∼RACE_3,family=’binomial’)
> ll_RACE_3 <- glmllv(glm_RACE_3,RACE_3)
> (pvalue_RACE_3 <- pvalue(ll_RACE_3,nullloglik,1))
[1] 0.1829021
> glm_FTV <- glm(LOW∼FTV,family=’binomial’)
> ll_FTV <- glmllv(glm_FTV,FTV)
> (pvalue_FTV <- pvalue(ll_FTV,nullloglik,1))
[1] 0.3792461

We see that the minimum p-value of 0.0145 is associated with the LWT variable, and is also
less than pE. We include this variable in the model now and move to Step 1.

> #Selecting the variables for the Step 1
> glm_LWT <- glm(LOW∼LWT,family=’binomial’)
> ll_LWT <- glmllv(glm_LWT,LWT)
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> glm_LWT_AGE <- glm(LOW∼LWT+AGE,family=’binomial’)
> ll_LWT_AGE <- glmllv(glm_LWT_AGE,cbind(LWT,AGE))
> (pvalue_LWT_AGE <- pvalue(ll_LWT_AGE,ll_LWT,1))
[1] 0.2106024
> glm_LWT_RACE_2 <- glm(LOW∼LWT+RACE_2,family=’binomial’)
> ll_LWT_RACE_2 <- glmllv(glm_LWT_RACE_2,cbind(LWT,RACE_2))
> (pvalue_LWT_RACE_2 <- pvalue(ll_LWT_RACE_2,ll_LWT,1))
[1] 0.05723459
> glm_LWT_RACE_3 <- glm(LOW∼LWT+RACE_3,family=’binomial’)
> ll_LWT_RACE_3 <- glmllv(glm_LWT_RACE_3,cbind(LWT,RACE_3))
> (pvalue_LWT_RACE_3 <- pvalue(ll_LWT_RACE_3,ll_LWT,1))
[1] 0.442516
> glm_LWT_FTV <- glm(LOW∼LWT+FTV,family=’binomial’)
> ll_LWT_FTV <- glmllv(glm_LWT_FTV,cbind(LWT,FTV))
> (pvalue_LWT_FTV <- pvalue(ll_LWT_FTV,ll_LWT,1))
[1] 0.5457832

Since the p-value associated with RACE_2 is the least and is less than pE, it can be selected in
our model. We will now check if some variable needs to leave the model.

> #Backward Elimination Method of Step 2
> # Since Race is consists of both RACE_2 and RACE_3,
> # we include both in Step 2
> glm_LWT_RACE <- glm(LOW∼LWT+RACE_2+RACE_3,family=’binomial’)
> ll_LWT_RACE <- glmllv(glm_LWT_RACE, cbind(LWT,RACE_2,RACE_3))
> glm_RACE <- glm(LOW∼RACE_2+RACE_3)
> ll_RACE <- glmllv(glm_RACE,cbind(RACE_2,RACE_3))
> pvalue(ll_LWT_RACE,ll_LWT,2)
[1] 0.06615272
> pvalue(ll_LWT_RACE,ll_RACE,1)
[1] 1.554312e-15

Since the maximum of these two p-values is less than pR, we retain the variable RACE in the
model. That is, the backward elimination step has not removed any variable. We need to redo
Step 2 until we reach Step S described earlier.

> #Step 3 continues the Step 2 untill stopping criteria
> glm_LWT_RACE_AGE <- glm(LOW∼LWT+RACE_2+RACE_3+AGE)
> ll_LWT_RACE_AGE <- glmllv(glm_LWT_RACE_AGE,cbind(LWT,RACE_2,
+ RACE_3,AGE))
> (pvalue_LWT_RACE_AGE <- pvalue(ll_LWT_RACE_AGE,ll_LWT_RACE,1))
[1] 1
> glm_LWT_RACE_FTV <- glm(LOW∼LWT+RACE_2+RACE_3+FTV)
> ll_LWT_RACE_FTV <- glmllv(glm_LWT_RACE_FTV,cbind(LWT,RACE_2,
+ RACE_3,FTV))
> (pvalue_LWT_RACE_FTV <- pvalue(ll_LWT_RACE_FTV,ll_LWT_RACE,1))
[1] 1

Since none of the p-values associated variables AGE and FTV is less than pE, we cannot enter
the variables into the model. Thus, our best model includes the variables LTW and RACE. ◽
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We will next illustrate the concept of the backward regression selection method using the
AIC criteria.

Example 17.6.2. Backward Selection Method for Low Birth-Weight Study. We will again
use the step function with the backward option for the direction to get the desired result.

> lowbwt <- read.xls("lowbwt.xls",sheet=1,header=TRUE)
> lowbwt <- lowbwt[,-1]
> lowglm <- glm(LOW∼.,data=lowbwt,family=’binomial’)
> lowbackglm <- step(lowglm,direction="backward")
> step(lowglm,direction="backward")
Start: AIC=20
LOW ∼ AGE + LWT + RACE + SMOKE + PTL + HT + UI + FTV + BWT

Df Deviance AIC
- SMOKE 1 0.00 18.00
- AGE 1 0.00 18.00
- RACE 1 0.00 18.00
- UI 1 0.00 18.00
- PTL 1 0.00 18.00
- FTV 1 0.00 18.00
- LWT 1 0.00 18.00
- HT 1 0.00 18.00
<none> 0.00 20.00
- BWT 1 204.19 222.19
Step: AIC=18
LOW ∼ AGE + LWT + RACE + PTL + HT + UI + FTV + BWT

Df Deviance AIC
- AGE 1 0.00 16.00
- PTL 1 0.00 16.00
- LWT 1 0.00 16.00
- FTV 1 0.00 16.00
- HT 1 0.00 16.00
- RACE 1 0.00 16.00
- UI 1 0.00 16.00
<none> 0.00 18.00
- BWT 1 209.89 225.89

Step: AIC=4
LOW ∼ BWT

Df Deviance AIC
<none> 0.00 4.00
- BWT 1 234.67 236.67
Call: glm(formula = LOW ∼ BWT, family = "binomial", data = lowbwt)
Coefficients:
(Intercept) BWT

2976.010 -1.186
Degrees of Freedom: 188 Total (i.e. Null); 187 Residual
Null Deviance: 234.7
Residual Deviance: 4.931e-07 AIC: 4
> summary(lowbackglm)
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Call:
glm(formula = LOW ∼ BWT, family = "binomial", data = lowbwt)
Deviance Residuals:

Min 1Q Median 3Q Max
-4.986e-04 -2.107e-08 -2.107e-08 2.107e-08 2.472e-04
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 2976.010 218927.077 0.014 0.99
BWT -1.186 87.251 -0.014 0.99
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 2.3467e+02 on 188 degrees of freedom
Residual deviance: 4.9313e-07 on 187 degrees of freedom
AIC: 4
Number of Fisher Scoring iterations: 25

Thus, only the BWT variable has been selected for the best explanation of the LOW birth
indicator. ◽

An alternative to the binary regression problem, as discussed here with the logistic
regression model, is given by the probit model and we will discuss this in the next section.

?step

17.7 Probit Regression

Bliss (1935) proposed the use of the probit regression model for problems where the response
variable is a binary variable. Recall that in the logistic regression model we used the logit trans-
formation of the link function to ensure that the predicted probabilities were always in the unit
interval. Bliss suggested modeling the link function using the normal cumulative distribution.

Let Y denote the binary outcome as earlier and the covariates be represented by
x = (1, x1, … , xk). The probit regression model is constructed through the use of an auxiliary
RV denoted by Y∗, see Chapter 7 of Tattar (2013). The auxiliary RV Y∗ is then modeled as the
multiple linear regression model:

Y∗ = 𝛽0 + 𝛽1x1 + … + 𝛽kxk + 𝜖 = X𝜷 + 𝜖,

where the error 𝜖 follows the normal distribution N(0, 𝜎2). Without loss of generality we
assume 𝜎 = 1. The vectors X and 𝜷 have their usual meanings. The probit regression model is
then developed as a latent variable model through the use of the auxiliary RV:

Y =
{

1, if Y∗ > 0, or X𝜷 > −𝜖,
0, otherwise.

(17.25)

The probit model is then given by

P(Y = 1|X) = P(Y∗ > 0) = P(𝜖 < X𝜷) = Φ(X𝜷), (17.26)

where Φ denotes the cumulative distribution of a standard normal variable. If we have n pairs
of observations (Y1,X1), (Y2,X2), … , (Yn,Xn), the statistical inference for 𝜷 may be carried
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out through the likelihood function given by

ln L(𝜷|data) =
n∑

i=1

(yi lnΦ(Xi𝜷) + (1 − yi) ln(1 − Φ(Xi𝜷))).

It is obvious that this likelihood function will be difficult to evaluate. A probit regression model
is set up in R, again using the glm function with the option binomial(probit). Since the
fitted probit model is again a member of the glm class, the techniques available and discussed
for the logistic regression model are also available for the fitted probit model. For the sake of
paucity, the mathematical details of the probit model will be skipped. First, we consider the
simple probit model, followed with an example of multiple probit model.

Example 17.7.1. Probit Model for the CHD Data. We need to use binomial(probit)
as the family option in the glm function to fit a probit model.

> # The Probit Regression Model
> data(chdage)
> chdprobit <- glm(CHD∼AGE,data=chdage,family=binomial(probit))
> summary(chdprobit)
Call:
glm(formula = CHD ∼ AGE, family = binomial(probit), data = chdage)
Deviance Residuals:

Min 1Q Median 3Q Max
-1.9713 -0.8608 -0.4499 0.8359 2.3269
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -3.14573 0.62460 -5.036 4.74e-07 ***
AGE 0.06580 0.01335 4.930 8.20e-07 ***
- - -
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
(Dispersion parameter for binomial family taken to be 1

Null deviance: 136.66 on 99 degrees of freedom
Residual deviance: 107.50 on 98 degrees of freedom
AIC: 111.50
Number of Fisher Scoring iterations: 4
> summary(glm(CHD∼AGE,data=chdage,family=’binomial’))$coefficients

Estimate Std. Error z value Pr(>|z|)
(Intercept) -5.3094534 1.13365365 -4.683488 2.820338e-06
AGE 0.1109211 0.02405982 4.610224 4.022356e-06

A comparison with the logistic regression model, see Example 17.5.1, shows that the coef-
ficients are similar, though not the same. The AGE is found to be a significant variable, as in
the case of the logistic regression model.

The confidence intervals and model significance may be obtained in R for this model, as
seen next.

> confint(chdprobit)
Waiting for profiling to be done...
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2.5 % 97.5 %
(Intercept) -4.41109357 -1.97605229
AGE 0.04070297 0.09278964
> with(chdprobit, pchisq(null.deviance - deviance,df.null
+ - df.residual,lower.tail = FALSE))
[1] 6.649872e-08

Since 0 does not lie in the 95% confidence intervals for either of the intercept terms or AGE, we
again conclude that the variable is significant. Finally, since the overall p-value for the fitted
model is very close to 0, 6.649872e-08, the fitted model is a significant model. ◽

A lot of similarity exists between the logistic regression and the probit regression regarding
the model building in R, since both are generated using the glm function. Especially, the
computational and inference methods remain almost the same. We will close this section with
an illustration of the step-wise regression method for the probit regression model.

Example 17.7.2. Stepwise Regression for the Probit Regression Model with an Appli-
cation to the Low Birth Weight Study. We are now familiar with this dataset. Hence, we
will directly show how to perform the stepwise regression for the probit regression model.

> lowprobit <- glm(LOW∼.,data=lowbwt,binomial(probit))
> step(lowprobit,direction="both")
Start: AIC=20
LOW ∼ AGE + LWT + RACE + SMOKE + PTL + HT + UI + FTV + BWT

Df Deviance AIC
- RACE 1 0.00 18.00
- UI 1 0.00 18.00
- AGE 1 0.00 18.00
- SMOKE 1 0.00 18.00
- PTL 1 0.00 18.00
- FTV 1 0.00 18.00
- LWT 1 0.00 18.00
- HT 1 0.00 18.00
<none> 0.00 20.00
- BWT 1 203.74 221.74
Step: AIC=18
LOW ∼ AGE + LWT + SMOKE + PTL + HT + UI + FTV + BWT

Df Deviance AIC
- PTL 1 0.00 16.00
- AGE 1 0.00 16.00
- LWT 1 0.00 16.00
- FTV 1 0.00 16.00
- SMOKE 1 0.00 16.00
- UI 1 0.00 16.00
- HT 1 0.00 16.00
<none> 0.00 18.00
+ RACE 1 0.00 20.00
- BWT 1 208.46 224.46
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Step: AIC=4
LOW ∼ BWT

Df Deviance AIC
<none> 0.00 4.00
+ UI 1 0.00 6.00
+ LWT 1 0.00 6.00
+ AGE 1 0.00 6.00
+ PTL 1 0.00 6.00
+ RACE 1 0.00 6.00
+ HT 1 0.00 6.00
+ FTV 1 0.00 6.00
+ SMOKE 1 0.00 6.00
- BWT 1 234.67 236.67
Call: glm(formula = LOW ∼ BWT,
family = binomial(probit), data = lowbwt)
Coefficients:
(Intercept) BWT

928.57 -0.37
Degrees of Freedom: 188 Total (i.e. Null); 187 Residual
Null Deviance: 234.7
Residual Deviance: 8.798e-07 AIC: 4

Note that the probit regression model has also identified BWT as the single most important
regressor of the low birth-weight indicator, as in the logistic regression model in the previous
section. ◽

The next section will deal with a different type of discrete variable.

?glm, ?step

17.8 Poisson Regression Model

The logistic and probit regression models are useful when the discrete output is a binary
variable. By an extension, we can incorporate multi-nominal variables too. However, these
variables are class indicators, or nominal variables. In Section 16.5, the role of the Poisson RV
was briefly indicated in the context of discrete data. If the discrete output is of a quantitative
type and there are covariates related to it, we need to use the Poisson regression model.

The Poisson regression models are useful in two slightly different contexts: (i) the events
arising as a percentage of the exposures, along with covariates which may be continuous or
categorical, and (ii) the exposure effect is constant with the covariates being categorical vari-
ables only. In the first type of modeling, the parameter (rate 𝜆) of the Poisson RV is specified in
terms of the units of exposure. As an example, the quantitative variable may refer to the num-
ber of accidents per thousand vehicles arriving at a traffic signal, or the number of successful
sales per thousand visitors on a web page. In the second case, the regressand Y may refer to the
count in each cell of a contingency table. The Poisson model in this case is popularly referred
to as the log-linear model. For a detailed treatment of this model, refer to Chapter 9 of Dobson
(2002).
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Let Yi denote the number of responses from ni events for the ith exposure, i = 1, … , n, and
let xi represent the vector of explanatory variables. The Poisson regression model is stated as

E(Yi|xi, 𝜷) = 𝜇i = nie
𝜷T xi , i = 1, … , n. (17.27)

Here, the natural link function is the logarithmic function

ln 𝜇i = ln ni + 𝜷Txi.

The extra term ln ni that appears in the link function is referred to as the offset term. It is
important to clearly specify here the form of the pmf of Y:

f (yi|xi, 𝜷) =
𝜇

yi
i e−𝜇i

yi!
, i = 1, … , n.

The likelihood function is then given by

L(𝜷|data) =
n∏

i=1

f (yi|xi,𝜷) =
∏n

i=1 𝜇
yi
i e−

∑n
i=1 𝜇i∏n

i=1 yi!
. (17.28)

The (ML) technique of obtaining 𝜷 is again based on the IRLS algorithm. However, this
aspect will not be dealt with here. It is assumed that the ML estimate is available for �̂�, as
returned by say R software, and by using it we will then look at other aspects of the model.
The fitted values from the Poisson regression model are given by

ŷi = �̂�i = nie
̂
𝜷T xi , i = 1, … , n, (17.29)

and hence the residuals are
ei = yi − ŷi, i = 1, … , n. (17.30)

Note that the mean and variance of the Poisson model are equal, and hence an estimate of the
variance of the residual is

√
ei, which leads to the Pearson residuals:

ri =
ei√
ŷi

, i = 1, … , n. (17.31)

A 𝜒2 goodness-of-fit test statistic is then given by

𝜒2 =
n∑

i=1

r2
i =

2∑
i=1

e2
i

ŷi
. (17.32)

These concepts will be demonstrated through the next example.

Example 17.8.1. British Doctors Smoking and Coronary Heart Disease. The data
for this example is taken from Table 9.1 of Dobson (2002) and available in the file
British_Smokers.csv. The problem is to investigate the impact of smoking tobacco
among British doctors, refer to Example 9.2.1 of Dobson. In the year 1951, a survey was sent
out to all British doctors asking them whether or not they smoked tobacco and their age group
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Age_Group. The data also collected the person-years Person_Years of the doctors in
the respective age group. A follow-up after ten years reveals the number of deaths Deaths,
the smoking group indicator Smoker_Cat. The data is slightly re-coded to extract variables
with Age_Cat taking values 1 to 5 respectively for the age groups 35-44, 45-54, 55-64,
65-74, and 75-84. To check the presence of the non-linear impact of the variable age, the
square of the Age_Cat is created in Age_Square. The variable Smoke_Age is created,
which takes the Age_Cat values for the smokers’ group and 0 for the non-smokers. The
number of deaths is standardized to 100 000 Person_Years.

The glm model can be built using the link function family=‘poisson’ with the
offset option.

> data(BS)
> BS_Pois <- glm(Deaths∼Age_Cat+Age_Square+Smoke_Ind+Smoke_Age,
+ offset=log(Person_Years), data=BS,family=‘poisson’)
> logLik(BS_Pois)
’log Lik.’ -28 (df=5)
> summary(BS_Pois)
Call:
glm(formula = Deaths ∼ Age_Cat + Age_Square + Smoke_Ind + Smoke_Age,

family = "poisson", data = BS, offset = log(Person_Years))
Deviance Residuals:

1 2 9 10
0.4382 -0.2733 -0.4106 -0.0127
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -10.7918 0.4501 -23.98 < 2e-16 ***
Age_Cat 2.3765 0.2079 11.43 < 2e-16 ***
Age_Square -0.1977 0.0274 -7.22 5.1e-13 ***
Smoke_Ind 1.4410 0.3722 3.87 0.00011 ***
Smoke_Age -0.3075 0.0970 -3.17 0.00153 **
- - -
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
(Dispersion parameter for poisson family taken to be 1)

Null deviance: 935.0673 on 9 degrees of freedom
Residual deviance: 1.6354 on 5 degrees of freedom
AIC: 66.7
Number of Fisher Scoring iterations: 4
> with(BS_Pois, pchisq(null.deviance - deviance,
+ df.null - df.residual,lower.tail = FALSE))
[1] 1e-200
> confint(BS_Pois)
Waiting for profiling to be done...

2.5 % 97.5 %
(Intercept) -11.7 -9.9
Age_Cat 2.0 2.8
Age_Square -0.3 -0.1
Smoke_Ind 0.7 2.2
Smoke_Age -0.5 -0.1
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The R output clearly shows that each of the variables included is significant for the number
of deaths. However, we are not really interested in this aspect of the model! We would like to
know if the death rates for smokers is higher than that for non-smokers, and if it is higher, then
by how much? This will be answered through the next discussion. ◽

For a binary regressand, we can obtain a precise answer for the influence of the variable on
the rate of the Poisson model through the concept of the rate ratio. The rate ratio, denoted by
RR, gives the impact of the variable on the rate, by looking at the ratio of the expected value
of Y , when the variable is present to the expected value when it is absent:

RR = E(Y|x = 1)
E(Y|x = 0)

= e𝛽 .

If the RR value is closer to unity, it implies that the indicator variable has no influence on Y .
The confidence intervals, based on the invariance principle of MLE, is obtained with a simple
exponentiation of the confidence intervals for the estimated regression coefficient 𝛽.

Example 17.8.2. British Doctors Smoking and Coronary Heart Disease. Contd. Apart
from the computation of RR, we will quickly look at the residuals (Pearson) and the 𝜒2

goodness-of-fit test statistics.

> exp(BS_Pois$coefficients)
(Intercept) Age_Cat Age_Square Smoke_Ind Smoke_Age

0.00 10.77 0.82 4.22 0.74
> exp(confint(BS_Pois))
Waiting for profiling to be done...

2.5 % 97.5 %
(Intercept) 0.00 0.00
Age_Cat 7.23 16.34
Age_Square 0.78 0.87
Smoke_Ind 2.09 9.01
Smoke_Age 0.61 0.89
> residuals(BS_Pois,’pearson’)

1 2 3 4 5 6 7 8 9 10
0.444 -0.272 -0.152 0.235 -0.057 -0.766 0.135 0.655 -0.405 -0.013
> sum(residuals(BS_Pois,’pearson’) ̂ 2)
[1] 1.550
> 1-pchisq(1.55,5)
[1] 0.907229

The confidence intervals for RR do not include 1 in any of them. Furthermore, the RR value
for Smoke_Ind is 4.22, which indicates that the death rate for smokers is four times higher
than that for the non-smokers. The Pearson residuals are all small enough, which rule out the
presence of any outlier. The 𝜒2 goodness-of-fit test statistic indicates that the fitted model is
good enough! ◽

Example 17.8.3. The Caesarean Cases. An increasing concern has been the number of
Caesarean deliveries, especially in private hospitals. We have obtained the small dataset
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from http://www.oxfordjournals.org/our_journals/tropej/online/ma_chap13.
pdf. Here, we know the number of births, the type of hospital (private or public), and
the number of Caesareans. We would like to model the number of Caesareans as a function
of the number of births and the type of hospital. A Poisson regression model is fitted for this
dataset.

> data(caesareans)
> names(caesareans)
[1] "Births" "Hospital_Type" "Caesareans"
> cae_pois <- glm(Caesareans∼Hospital_Type+Births,data=caesareans,
+ family=’poisson’)
> summary(cae_pois)
Call:
glm(formula = Caesareans ∼ Hospital_Type + Births,
+ family = "poisson",

data = caesareans)
Deviance Residuals:

Min 1Q Median 3Q Max
-2.3270 -0.6121 -0.0899 0.5398 1.6626
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.351e+00 2.501e-01 5.402 6.58e-08 ***
Hospital_Type 1.045e+00 2.729e-01 3.830 0.000128 ***
Births 3.261e-04 6.032e-05 5.406 6.45e-08 ***
- - -
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
(Dispersion parameter for poisson family taken to be 1)

Null deviance: 99.990 on 19 degrees of freedom
Residual deviance: 18.039 on 17 degrees of freedom
AIC: 110.80
Number of Fisher Scoring iterations: 4

The analysis shows that Caesarean sections are about twice as common in public hospitals as
in private ones. ◽

?glm, ?step

17.9 Further Reading

Agresti (2007) is a very nice introduction for a first course in CDA. Simonoff (2003) has a
different approach to CDA and is addressed to a more advanced audience. Johnson and Albert
(1999) is a dedicated text for analysis of ordinal data from a Bayesian perspective. Congdon
(2005) is a more exclusive account of Bayesian methods for CDA. Graphics of CDA are differ-
ent in nature, as the scale properties are not necessarily preserved here. Specialized graphical
methods have been developed in Friendly (2000). Though Friendly’s book uses SAS as the
sole software for statistical analysis and graphics, it is a very good account of the ideas and
thought processes for CDA. Blascius and Greenacre (1998), Chen, et al. (2008), and Unwin,
et al. (2005) are advanced level edited collections of research papers with dedicated emphasis
on the graphical and visualization methods for data.

http://www.oxfordjournals.org/our&uscore;journals/tropej/online/ma&uscore;chap13.pdf
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McCullagh and Nelder (1983–9) is among the first set of classics which deals with GLM.
Kleinbaum and Klein (2002–10), Dobson (1990–2002), Christensen (1997), and Lindsey
(1997) are a handful of very good introductory books in this field. Hosmer and Lemeshow
(1990–2013) forms the spirit of this chapter for details on logistic regression. GLMs have
evolved in more depth than we can possibly address here. Though we cannot deal with all of
them, we will see here the other directional dimensions of this field. Bayesian methods are
the natural alternative school for considering the inference methods in GLMs. Dey, Ghosh,
and Mallick (2000) is a very good collection of peer reviewed articles for Bayesian methods
in the domain of GLM. Agresti (2002, 2007) and Congdon (2005) also deal with Bayesian
analysis of GLMs.

Chapter 13 of Dalgaard (2008), Chapter 7 of Everitt and Hothorn (2010), Chapter 6 of
Faraway (2006), Chapter 8 of Maindonald and Braun (2006), and Chapter 13 of Crawley
(2007) are some good introductions to GLM with R.

17.10 Complements, Problems, and Programs

Problem 17.1 The irls function given in Section 17.5 needs to be modified for incor-
porating more than one covariate. Extend the program which can then be used
for any logistic regression model.

Problem 17.2 Obtain the 90% confidence intervals for the logistic regression model
chdglm, as discussed in Example 17.5.1. Also, carry out the deviance test
to find if the overall fitted model chdglm is a significant model? Validate
the assumptions of the logistic regression model.

Problem 17.3 Suppose that you have a new observation xnew. Find details with ?pre-
dict.glm and use them for prediction purposes for any xnew of your choice
with chdglm.

Problem 17.4 The likelihood function for the logistic regression model is given in Equation
17.8 . It may be tempting to write a function, say lik_Logistic, which is
proportional to the likelihood function. However, optimize does not return
the MLE! Write a program and check if you can obtain the MLE.

Problem 17.5 The residual plot technique extends to the probit regression and the reader
should verify the same for the fitted probit regression models in Section 17.7.

Problem 17.6 Obtain the 99% confidence intervals for the lowprobit model in
Example 17.8.2.
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Appendix A

Open Source Software–An
Epilogue

Shakun Gupta

Open source software is computer software that is available in source code form. The source
code is provided under a software license which permits the users to use, study, change,
improve, and distribute the software. An example of the source code is as seen for the mean
function in Section 1.1.

Open source software is made available for anyone to use or modify, as its source code
is made available. The software use is subject only on the stipulation that any enhancements
or changes are freely available to the public. With open source software, users, scientists,
engineers, and everyone else, are granted the right to both of the program’s functionality and
methodology. The users only have the rights to functionality of a proprietary software program.

Definition from the Open Source Initiative (OSI) Foundation
Introduction

Open source does not just mean access to the source code. The distribution terms of open
source software must comply with the following criteria:

1. Free Redistribution. The license shall not restrict any party from selling or giving away
the software as a component of an aggregate software distribution containing programs
from several different sources. The license shall not require a royalty or other fee for such
a sale.

2. Source Code. The program must include the source code, and must allow distribution in
source code as well as compiled form. Where some form of a product is not distributed
with the source code, there must be a well-publicized means of obtaining the source code
for no more than a reasonable reproduction cost, preferably downloading via the Internet

A Course in Statistics with R, First Edition. Prabhanjan Narayanachar Tattar, Suresh Ramaiah and B. G. Manjunath.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/tattar/statistics
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without charge. The source code must be the preferred form in which a programmer can
modify the program. A deliberately obfuscated source code is not allowed. Intermediate
forms such as the output of a preprocessor or translator are not allowed.

3. Derived Works. The license must allow modifications and derived works, and must allow
them to be distributed under the same terms as the license of the original software.

4. Integrity of the Author’s Source Code. The license may restrict the source code from being
distributed in modified form, only if the license allows the distribution of “patch files” with
the source code for the purpose of modifying the program at build time. The license must
explicitly permit distribution of the software built from the modified source code. The
license may require derived works to carry a different name or version number from the
original software.

5. No Discrimination Against Persons or Groups. The license must not discriminate against
any person or group of persons.

6. No Discrimination against Fields of Endeavor. The license must not restrict anyone from
making use of the program in a specific field of endeavor. For example, it may not restrict
the program from being used in a business, or from being used for genetic research.

7. Distribution of License. The rights attached to the program must apply to all to whom the
program is redistributed without the need for execution of an additional license by those
parties.

8. License must not be Specific to a Product. The rights attached to the program must not
depend on the program being part of a particular software distribution. If the program is
extracted from that distribution and used or distributed within the terms of the program’s
license, all parties to whom the program is redistributed should have the same rights as
those that are granted in conjunction with the original software distribution.

9. License must not Restrict other Software. The license must not place restrictions on other
software that is distributed along with the licensed software. For example, the license must
not insist that all other programs distributed on the same medium must be open source
software.

10. License must be Technology-Neutral. No provision of the license may be predicated on
any individual technology or style of interface.

Merits and Demerits of Open Source Software

There are a number of merits inherent in the use of open source software.

1. Low Cost. The source code of the open source software is freely available. Also the com-
mercial versions and the support associated with the software is typically cheaper.

2. Ease of Customization. The user has full access to the source code. So, the code can be
customized according to their requirements.

3. Open Platforms. The open source software solutions are typically developed using open
tools, which reduces ‘lock-in’ with specific vendors or software platforms.

4. Ease of Integration. Typically, all the open source software packages are developed by
keeping integration in mind.

5. Community Support. The most popular open source solutions are supported by an active
community of many developers. So, it becomes easy to reach to the core of any issue.

6. Rapid Problem Resolution. When a bug is reported in the open source software, the solution
is released as a patch in a very short period of time. Also, as the full source code is available,
the problem can be resolved by the user also.
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There are some demerits too.

1. Not Enterprise-Level. The open source software solutions can lack some of the features
provided by enterprise scales solutions.

2. Lack of Commercial Support. Open source solutions lack commercial support, and
service-level guarantees.

3. Lack of Documentation. Open source solutions typically provide only a small amount of
documentation.

4. Poor usability. In general, open source solutions have remained focused primarily on the
technical architecture and feature set.

Motivation for Programmers and Students

Although there is a lack of financial incentive to program software, motivation can be seen as
a form of personal satisfaction for programmers.

• Sense of “intellectual gratification” as a result of writing software. This intellectual gratifi-
cation is similar to the feeling of a scientific discovery.

• Personal satisfaction comes from the act of writing software as an equivalent to creative self
expression.

• Rediscovery of creativity, which has been lost through the mass production of commercial
software products.

• Creating a tool better suited to the programmer’s or community use.
• Economic motivations like rewards, possible future career endeavors.

Examples of Usage

• Government Agencies. Government Agencies are utilizing open source infrastructure soft-
ware, such as the Linux operating system and the Apache Web-server into software, to
manage information

• Education. Colleges and organizations use software to educate their students. Open source
technology is being adopted by many institutions, because it can save these institutions from
paying companies to provide them with these administrative software systems.

• Enterprises. Enterprises are the biggest consumers of open source software. As open source
software is commercially free, it significantly reduces the expenditure on the IT division.

Some Famous Open Source Software

We use open source software in our day-to day lives. Here are some of the famous ones:
.
• Linux Kernel
• GNU utilities and compilers
• Ubuntu
• Apache
• Google Android Google Chrome
• VLC, Wordpress

• Mysql
• Mozilla
• GNU Plot
• LATEX, and of course
• R
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Appendix B

The Statistical Tables

Statistical tables have played a very prominent role in the development of the subject,
especially before the advent of the computer era. Through powerful software evolution, it
may appear to be a very trivial matter. However, the contribution of pioneering Statisticians,
such as Sir R.A. Fisher, Karl Pearson, and many eminent others cannot be undermined simply
because those tasks can be easily carried out in a software with the user not even being aware
of them being in action. The importance of statistical tables may be understood with Horgan
(2008), Appendix C, giving the standard normal tables as a useful reference point to her table.
In this very brief appendix, we attempt to help the reader to generate some of such tables.

Let us first undertake the task of generating Table A.2 of Snedecor and Cochran
(1980) on page 464. The standard density function for z-values varying from 0 to 2.99
with a delta of 0.01 is required to generate this table. To set up this, first declare z
<- seq(0,2.9,0.1); zpart <- seq(0,0.09,0.01). The half-line simple
R code dnorm(outer(z,zpart,"+")) accomplishes the task, and to obtain the
four decimal accuracy, as required on their page 464, simply round off the result with
round(dnorm(outer(z,zpart,"+")),4).

Next, consider setting up Table A.3 from the same reference, page 465. The z needs
to be slightly changed to z <- seq(0,3.9,0.1) and the next line to round
(0.5-pnorm(outer(z,zpart,"+"),lower.tail=FALSE),4). Obviously, the
row and column names need to be changed according to the user’s taste. However, the very
brief section here is a modest attempt as a tribute to our eminent scientists from previous
centuries who have made things very simple for us.

A Course in Statistics with R, First Edition. Prabhanjan Narayanachar Tattar, Suresh Ramaiah and B. G. Manjunath.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/tattar/statistics
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Capiński, M. and Zastawniak, T. (2001). Probability Through Problems. Springer.
Carlin, B. and Louis, T. (1996–2000). Bayes and Empirical Bayes Methods for Data Analysis, 2e.

Chapman & Hall, New York.
Casella, G. (2008). Statistical Design. Springer.
Casella, G. and Berger, R.L. (2002). Statistical Inference, 2e. Duxbury.
Chambers, J.M., Cleveland, W.S., Kleiner, B., and Tukey, P.A. (1983). Graphical Methods for Data

Analysis. Wadsworth & Brooks/Cole.
Chandra, T K. and Chatterjee, D. (2001). A First Course in Probability. Narosa Publishing House, India.
Chatterjee, S. and Hadi, A.S. (1977–2006). Regression Analysis by Examples, 4e. J. Wiley.
Chatterjee, S. and Hadi, A.S. (1988). Sensitivity Analysis in Linear Regression. J. Wiley.
Chaumont, I. and Yor, M. (2003). Excercises in Probability. Cambridge University Press.
Chen, C., Härdle, W., and Unwin, A. (2008). Handbook of Data Visualization. Springer.
Chernick, M.R. (1999–2008). Bootstrap Methods: A Guide for Practitioners and Researchers, 2e.

J. Wiley.
Chernoff, H. (1973). Using Faces to Represent Points in K-Dimensional Space Graphically. Journal of

the American Statistical Association, 68, no. 342, 361–368.
Christensen, R. (1990–7). Log-Linear Models and Logistic Regression, 2e. Springer.
Christensen, R. (1987–2011). Plane Answers to Complex Questions: The Theory of Linear Models, 4e.

Springer.
Chow, Y.S. and Teicher, H. (1978–95). Probability Theory: Independence, Interchangeability, Martin-

gales, 3e. Springer-Verlag, New York.
Chung, K.L. (1968–2001). A Course in Probability Theory, 3e. Academic Press, New York.
Chung, K.L. and AitSahlia, F. (1979–2003). Elementary Probability Theory, 4e. Springer.
Clarke, B.R. (2008). Linear Models. J. Wiley.
Cleveland, W.S. (1985). The Elements of Graphing Data. Wadsworth: Monterey, CA.
Cochran, W.G. and Cox, G. (1950–8). Experimental Design, 2e. J. Wiley.
Congdon, P. (2005). Bayesian Models for Categorical Data. J. Wiley.
Conover, W.J. (1971–99). Practical Nonparametric Statistics, 3e. J. Wiley.
Cook, R.D. (1998). Regression Graphics. J. Wiley.
Cook, R.D. and Weisberg, S. (1982). Residuals and Influence in Regression. Chapman & Hall.
Cook, R.D. and Weisberg, S. (1994). An Introduction to Regression Graphics. J. Wiley.



Trim Size: 170mm x 244mm Tattar bref.tex V3 - 02/10/2016 11:22 A.M. Page 635�

� �

�

Bibliography 635

Cook, R.D. and Weisberg, S. (1999). Applied Regression Including Computing and Graphics. J. Wiley.
Cox, D.R. and Hinkley, D.V. (1974). Theoretical Statistics. Chapman & Hall.
Cox, D. and Lewis, P. (1966). The Statistical Analysis of Series of Events. Chapman & Hall.
Cramér, H. (1946). Mathematical Methods of Statistics. Princeton Press.
Crawley, M. (2007–13). The R Book, 2e. J. Wiley.
Dagpunar, J.S. (2007). Simulation and Monte Carlo. J. Wiley.
Dalgaard, P. (2002–8). Introductory Statistics with R, 2e, Springer-Verlag, New York.
Das, M.N. (1989). Statistical Methods and Concepts. Wiley, Eastern India.
DasGupta, A. (2008). Asymptotic Theory of Statistics and Probability. Springer.
DasGupta, A. (2010). Fundamentals of Probability: A First Course. Springer.
DasGupta, A. (2011). Probability for Statistics and Machine Learning. Springer.
Dasu, J. and Johnson, T. (2003). Exploratory Data Mining and Data Cleaning. J. Wiley.
de Finetti, B. (1974–5). Theory of Probability – A Critical Introductory Treatment, Vols 1 and 2. J. Wiley.
DeGroot, M.H. and Schervish, M.J. (1975–2012). Probability and Statistics, 4e. Addison-Wesley,

Reading, MA.
Dean, A. and Voss, D. (1999). Design and Analysis of Experiments. Springer.
Dekking, F.M., Kraaikamp, C., Lopuhaa, H.P., and Meester, L.E. (2005). A Modern Introduction to Prob-

ability and Statistics. Springer.
Dempster, A.P., Laird, N.M., and Rubin, D.B. (1977). Maximum Likelihood from Incomplete Data via

the EM Algorithm (with discussion). Journal of the Royal Statistical Society B, 39, 1–38.
Der, G. and Everitt, B.S. (2002). A Handbook of Statistical Analysis using SAS, 2e. CRC Press.
Derringer, G. and Suich, R. (1980). Simultaneous Optimization of Several Response Variables. Journal

of Quality Technology, 12, 214–219.
Deshmukh, S.R. and Purohit, S.G. (2007). Microarray Data – Statistical Analysis Using R. Narosa

Publishing House, India.
Desu, M.M. and Raghavarao, D. (2004). Nonparametric Statistical Methods for Complete and Censored

Data. CRC Press.
Devroye, L. (1986). Non-Uniform Random Variate Generation. Springer.
Dey, D.K., Ghosh, S.K., and Mallick, B.K. (2000). Generalized Linear Models – A Bayesian Perspective.

Marcel Dekker.
Diaconis, P. and Holmes, S. (2002). A Bayesian Peek into Feller Volume I. Sankhya. 64, Series A, 820–41.
Dickey, D.A. and Arnold, J.T. (1995). Teaching Statistics with Data of Historic Significance: Galileo’s

Gravity and Motion Experiments. Journal of Statistics Education, 3(1). Dimov, I.T. (2008). Monte
Carlo Methods for Applied Scientists. World Scientific.

Diggle, P.J., Heagerty, P., Liang, K-Y., and Zeger, S. L. (1994–2002). Analysis of Longitudinal Data, 2e.
Oxford University Press.

Dobrow, R.P. (2013). Probability With Applications and R. J. Wiley.
Dobson, A.J. (1990–2002). An Introduction to Generalized Linear Models, 2e. Chapman & Hall/CRC

Press, New York.
Doob, J.L. (1953). Stochastic Processes. J. Wiley.
Draper, N.R. and Smith, H. (1966–98). Applied Regression Analysis, 3e. J. Wiley.
Dunn and Master (1982). Obtained from http://openlearn.open.ac.uk/mod/resource/view.php?

id=165509.
Durrett, R. (2009). Elementary Probability for Applications. Cambridge University Press.
Durrett, R. (1991–2010). Probability: Theory and Examples, 4e. Cambridge University Press.
Dworsky, L.D. (2008). Probably Not: Future Prediction Using Probability and Statistical Inference.

J. Wiley.
Dynkin, E.B. (1951). Necessary and Sufficient Statistics for a Family of Probability Distributions.

English translation in Select. Transl. Math. Statist. Prob. I (1961) 23–41.
Eaton, M.L. (1983–2007). Multivariate Statistics: A Vector Space Approach. IMS.

http://openlearn.open.ac.uk/mod/resource/view.php?id=165509
http://openlearn.open.ac.uk/mod/resource/view.php?id=165509


Trim Size: 170mm x 244mm Tattar bref.tex V3 - 02/10/2016 11:22 A.M. Page 636�

� �

�

636 Bibliography

Eckart, C. and Young, G. (1936). The Approximation of One Matrix by Another of Lower Rank.
Psychometrika, 1, 211–218.

Efron, B. (1979). Bootstrap Methods: Another Look at the Jackknife. Ann. Statist., 7, 1–26.
Efron, B. and Tibshirani, R. (1993). An Introduction to the Bootstrap. Chapman & Hall.
Everitt, B.S. (2005). An Rand S-PLUS® Companion to Multivariate Analysis. Springer.
Everitt, B.S. and Hothorn, T. (2006–10). A Handbook of Statistical Analyses Using R, 2e. CRC Press.
Everitt, B.S. and Hothorn, T. (2011). An Introduction to Applied Multivariate Analysis with R. Springer.
Faraway, J.J. (2002). Practical Regression and Anova using R. Freely distributed notes.
Faraway, J.J. (2006). Extending the Linear Model with R. CRC Press.
Federer, W.T. (1955). Experimental Design: Theory and Applications. Oxford and IBH Publishing Co.,

Calcutta.
Feldman, R.M. and Valdez-Flores, C. (2010). Applied Probability and Stochastic Processes, 2e. Springer.
Feller, W. (1950–68). An Introduction to Probability Theory and Its Applications, Volume I, 3e. J. Wiley.
Feller, W. (1965–71). An Introduction to Probability Theory and Its Applications, Volume II, 2e. J. Wiley.
Fisher, R.A. (1925–71). The Design of Experiments, 8e. Reprinted by Hafner Publishing Company, New

York. Also contained in Statistical Methods, Experimental Design, and Scientific Inference. Oxford
University Press, London 1990.

Fox, J. (1991). Regression Diagnostics. Sage.
Fox, J. (2002). An R and S-Plus Companion to Applied Regression. Sage.
Freedman, D.A. (2009). Statistical Models: Theory and Practice. Cambridge University Press.
Freedman, D., Pisani, R., and Purves, R. (1978–2007). Statistics, 4e. Norton.
Freund, R.J. and Wilson, W.J. (2003). Statistical Methods, 2e. Academic Press, New York.
Frieden, B.R. and Gatenby, R.A. (2007). Exploratory Data Analysis Using Fisher Information. Springer.
Friendly, M. (2000). Visualizing Categorical Data. SAS.
Gabriel, K.R. (1971). The Biplot Graphical Display of Matrices with Application to Principal Component

Analysis. Biometrika, 58, 453–467.
Geisser, S. and Johnson, W. (2006). Modes of Parametric Statistical Inference. J. Wiley.
Gelman, A. (2005). Analysis of Variance–Why it is More Important Than Ever. Ann. Statist. 33, 1–33.
Gelman, A., Carlin, J., Stern, H., and Rubin, D. (1995–2004). Bayesian Data Analysis, 2e. Chapman &

Hall, New York.
Gelman, A. and Hill, J. (2007). Data Analysis Using Regression and Multilevel/Hierarchical Models.

Cambridge University Press.
Gentle, J.E. (2009). Computational Statistics. Springer-Verlag, New York.
Gentle, J.E. (2003). Random Number Generation and Monte Carlo Methods, 2e. Springer-Verlag, New

York.
Gentle, J.E. (2007). Matrix Algebra, Theory, Computations, and Applications in Statistics. Springer.
Geyer, C.J. (2001). Stat 8153 Lecture Notes.
Geyer, C.J. (2001). Stat 5101 Probability and Statistics.
Geyer, C.J. (2003). Maximum Likelihood in R. Available at www.stat.umn.edu/geyer/5931/mle/mle.pdf.
Ghosh, J.K., Delampady, M., and Samanta, T. (2006). Introduction to Bayesian Analysis. Springer.
Gibbons, J.D. and Chakraborti, S. (1971–2003). Nonparametric Statistical Inference, 4e. Marcel Dekker.
Giri, N.C. (1996–2004). Multivariate Statistical Analysis, 2e. Marcel Dekker.
Gnanadesikan, R. (1977–97). Methods for Statistical Data Analysis of Multivariate Observations, 2e.

John Wiley, New York.
Gnedenko, B.V. (1978). The Theory of Probability. Mir Publishers.
Gnedenko, B.V. and Khinchin, A.Ya. (1964). An Elementary Introduction to Probability Theory, 6e,

Nauka. (Also, republished by Dover).
Goon, A.M., Gupta, M.K., and Dasgupta, B. (1973). An Outline of Statistical Theory. World Press Private.
Gore, A.P., Paranjape, S.A., and Kulkarni, M.B. (2006). 100 Data Sets for Statistics Education. Depart-

ment of Statistics, University of Pune.

www.stat.umn.edu/geyer/5931/mle/mle.pdf


Trim Size: 170mm x 244mm Tattar bref.tex V3 - 02/10/2016 11:22 A.M. Page 637�

� �

�

Bibliography 637

Govindrajalu, Z. (2007). Nonparametric Inference, World Scientific.
Gower, J.C. and Hand, D.J. (1996) Biplots. Chapman & Hall, London.
Gower, J.C., Gardner-Lubbe, S., and le Roux, N. (2011). Understanding Biplots. J. Wiley.
Greenacre, M. (2010). Biplots in Practice. Available at http://www.multivariatestatistics.org.
Grimmet, G. and Stirzaker, D. (2001). One Thousand Excercises in Probability. Oxford University Press.
Gupta, M.R. and Chen, Y. (2011). Theory and Use of the EM Algorithm. Now Publishers Inc.
Gut, A. (2007). An Intermediate Course in Probability, 2e. Springer.
Hair, J.F., Black, W.C., Babin, B.J., and Anderson, R.E. (2009). Multivariate Data Analysis, 7e. Pearson

Education.
Hajék, J., Sidak, Z., and Sen, P.K. (1967–99). Theory of Rank Tests, 2e. Academic Press, New York.
Halmos, P.R. and Savage, L.J. (1949). Application of the Radon-Nikodym Theorem to the Theory of

Sufficient Statistics. Ann. Math. Statist. 20, 225–241.
Hammersley, J.M., and Handscomb, D.C. (1964). Monte Carlo Methods. J. Wiley.
Hampel, F.R. (1975). Beyond Location Parameters: Robust Concepts and Methods. Proceedings of the

40th Session of the ISI, 46, 375–391.
Härdle, W. and Simar, L. (2007). Applied Multivariate Statistical Analysis. Springer.
Hastie, T., Tibshirani, R., and Freidman. J. (2001–10). The Elements of Statistical Inference, 2e. Springer
Hastings, W. (1970). Monte Carlo Sampling Methods Using Markov Chains and Their Application.

Biometrika, 57, 97–109.
Hedeker, D., and Gibbons, R.D. (2006). Longitudinal Data Analysis. J. Wiley.
Hinkelmann, K. and Kempthorne, O. (2008). Design and Analysis of Experiments. Volume 1: Introduc-

tion to Experimental Design. J. Wiley.
Hoaglin, D.C., Mosteller, F., and Tukey, J.W. (1985). Exploring Data Tables, Trends, and Shapes.

J. Wiley.
Hoaglin, D.C., Mosteller, F., and Tukey, J.W. (1991). Fundamentals of Exploratory Analysis of Variance.

J. Wiley.
Hoel, P.G., Port, S.C., and Stone, C.J. (1971). Introduction to Probability Theory. Houghton Mifflin.
Hoff, P.D. (2010). A First Course in Bayesian Statistical Methods. Springer.
Hogg, R.V. and Craig, A.T. (1978). Introduction to Mathematical Statistics, 4e. Macmillan.
Hogg, R.V., Tanis, E.A., and Zimmerman, D. (1977–2015). Probability and statistical inference, 9e.

Macmillan.
Hollander, M. and Wolfe, D.A. (1973–99). Nonparametric Statistical Methods, 2e. J. Wiley.
Horgan, J. (2008). Introduction to Probability With R. J. Wiley.
Hosmer, D.W. and Lemeshow, S. (1989–2000). Applied Logistic Regression, 2e. J. Wiley.
Hsu, J.C. (1996). Multiple Comparisons: Theory and methods. Chapman & Hall.
Husson, F., Lé, S., and Pagés, J. (2011). Exploratory Multivariate Analysis by Example Using R.

Chapman & Hall/CRC Press.
Iacus, S.M. (2009). Simulation and Inference for Stochastic Differential Equations: With R Examples.

Springer.
Izenman, A.J. (2008). Modern Multivariate Statistical Techniques. Springer.
Jackson, J.E. (1991). A User’s Guide to Principal Components. John Wiley, New York.
Jeffreys, H. (1939–61). Theory of Probability. Clarendon Press.
Jiang, J. (2010). Large Sample Techniques for Statistics. Springer.
Johnson, N.L. and Kotz, S. (1969–1972). Distributions in Statistics, (4 vols.). John Wiley, New York.
Johnson, N.L. and Kotz, S. (1977). Urn Models and Their Application. J. Wiley.
Johnson, R.A. and Wichern, D.W. (1982–2007). Applied Multivariate Statistical Analysis, 6e. Pearson

Education.
Johnson, V.E. and Albert, J. (1999). Ordinal Data Modeling. Springer.
Jolliffe, I.T. (1986–2002). Principal Component Analysis, 2e. Springer.
Kallenberg, O. (1997–2002). Foundations of Modern Probability, 2e. Springer.

http://www.multivariatestatistics.org


Trim Size: 170mm x 244mm Tattar bref.tex V3 - 02/10/2016 11:22 A.M. Page 638�

� �

�

638 Bibliography

Karlin, S. and Taylor, H.M. (1966–75). A First Course in Stochastic Processes, 2e. Academic Press,
New York.

Karlin, S. and Taylor, H. (1981). A Second Course in Stochastic Processes. Academic Press, New York.
Kay, S. and Xu, C. (2008). Cramer-Rao Lower Bound Computation Via the Characteristic Function.

Available at http://www.ele.uri.edu/faculty/kay/New%20web/downloadable%20files/CRLB_via_CF.
pdf

Keener, R.W. (2010). Theoretical Statistics. Springer.
Kempthorne, O. (1952). Design and Analysis of Experiments. John Wiley, New York.
Kendall, M. and Stuart, A. (1945–79). The Advanced Theory of Statistics, 4e. Griffin.
Kerns, G.J. (2010). Introduction to Probability and Statistics Using R. Open Source.
Khattree, R. and Naik, D.N. (1999). Applied Multivariate Statistics with SAS Software, 2e. John Wiley,

New York.
Khattree, R. and Naik, D.N. (2000). Multivariate Data Reduction and Discrimination with SAS Software,

John Wiley, New York.
Kim, S.H. and Cohen, A.S. (1998). On the Behrens-Fisher Problem: A review. Journal of Educational

and Behavioral Statistics, 23(4), 356–377.
Kleinbaum, D.G. and Klein, M. (1994–2010). Logistic Regression: A Self-Learning Text, 3e. Springer.
Knight, K. (2000). Mathematical Statistics. Chapman & Hall/CRC Press, New York.
Kotz, S. and Nadarajah, S. (2004). Multivariate t Distributions and Their Applications. Cambridge

University Press.
Kolmogorov, A.N. (1933). Grundbegriffe der Wahrscheinlichkeitsrechnung. English translation: Foun-

dations of the Theory of Probability. Chelsea, New York (1956).
Kramer, C.Y. and Jensen, D.R. (1969). Fundamentals of Multivariate Analysis, Part I. Inference about

Means. Journal of Quality Technology, 1 (2), 120–133.
Kutner, M.H., Nachtsheim, C.J., Neter, J., and Li, W. (1974–2005). Applied Linear Statistical Models,

5e. McGraw-Hill.
Lehmann, E.L. (1975). Nonparametrics: Statistical Methods Based on Ranks. Holden-Day. Also repub-

lished by Prentice Hall in 1998 and Springer in 2006.
Lehmann, E.L. and Casella, G. (1983–98). Theory of Point Estimation, 2e. Springer.
Lehmann, E.L. and Romano, J.P. (1958–2005). Testing Statistical Hypotheses, 3e. Springer.
Lehmann, E.L. and Scheffé, H. (1950, 1955, 1956). Completeness, Similar Regions and Unbiased Esti-

mation. Sankhya, 10, 305–340; 15, 219–236. (Corr: 17, 250.)
Leonard, T. (2000). A Course in Categorical Data Analysis. CRC Press.
Liang, K.-Y. and Zeger, S.L. (1986). Longitudinal Data Analysis Using Generalized Linear Models.

Biometrika, 73, 13–22.
Liese, F. and Miescke, K.J. (2008). Statistical Decision Theory: Estimation, Testing, and Selection.

Springer.
Lindley, D.V. (1965). Introduction to Probability and Statistics from Bayesian Viewpoint. Parts 1 and 2.

Cambridge University Press.
Linnik, J.V. (1968). Statistical Problems with Nuisance Parameters (Scripta Technica, Trans.). Provi-

dence, RI: American Mathematical Society. (Original work published 1966.)
Lindsey, J.K. (1997). Applying Generalized Linear Models. Springer.
Little, R.J. and Rubin, D.B. (1987–2002). Statistical Analysis with Missing Data, 2e. J. Wiley.
Liu, J.S. (2002). Monte Carlo Strategies in Scientific Computing. Springer-Verlag, New York.
Loéve, M. (1955-78). Probability Theory, Vols. 1–2, 4e. Springer-Verlag, New York.
Mahalanobis, P.C. (1999). Why Statistics? Resonance.
Mahmoud, H.M. (2009). Pólya Urn Models. CRC Press.
Maindonald, J. and Braun, W.J. (2003–10). Data Analysis and Graphics Using R – an Example-Based

Approach, 3e. Cambridge University Press.
Mardia, K.V., Kent, J.T., and Bibby, J.M. (1979). Multivariate Analysis. Academic Press, New York.

http://www.ele.uri.edu/faculty/kay/New%20web/downloadable%20files/CRLB_via_CF.pdf


Trim Size: 170mm x 244mm Tattar bref.tex V3 - 02/10/2016 11:22 A.M. Page 639�

� �

�

Bibliography 639

Marian, J-M. and Robert, C.P. (2007). Bayesian Core: A Practical Approach to Computational Bayesian
Statistics. Springer.

Martinez, W.L. and Martinez, A.R. (2005). Exploratory Data Analysis with MATLAB. Chapman &
Hall/CRC, New York.

McCullagh, P. and Nelder, J.A. (1983–89). Generalized Linear Models. Chapman & Hall/CRC,
New York.

McCulloch, C.E. and Searle, S.R. (2001). Generalized, Linear, and Mixed Models. J. Wiley.
McLachlan, G. and Krishnan, T. (1998–2008). The EM Algorithm and Extensions. J. Wiley.
McNeil, D. (1977). Interactive Data Analysis. John Wiley, New York.
Medhi, J. (1992). Stochastic Processes, 2e. New Age Publishers.
Millar, R.B. (2011). Maximum Likelihood Estimation and Inference. J. Wiley.
Miller, R.G. Jr. (1966–81). Simultaneous Statistical Inference, 2e. Springer.
Minka, T.P. (2001). Bayesian Inference of a Uniform Distribution. Obtained from research.microsoft.

com/en-us/um/people/minka/papers/uniform.html.
Monahan, J.F. (2011). Numerical Methods of Statistics, 2e. Cambridge University Press.
Montgomery, D.C. (1976–2012). Design and Analysis of Experiments, 8e. J. Wiley.
Montgomery, D.C. (1985–2012). Introduction to Statistical Quality Control, 7e. J. Wiley.
Montgomery, D.C., Peck, E.A., and Vining, G.G. (1983–2012). Introduction to Linear Regression

Analysis, 5e. J. Wiley.
Mood, A.M., Graybill, F.A., and Boes, D.C. (1950–74). Introduction to the Theory of Statistics. McGraw,

Tokyo.
Mosteller, F. (1965). Fifty-challenging Problems in Probability with Solutions. Dover Publications.
Mosteller, F. and Tukey, J.W. (1977). Data Analysis and Regression. Addison-Wesley, Reading, MA.
Muirhead, R.J. (1982). Aspects of Multivariate Statistical Theory. J. Wiley.
Mukhopadhyay, N. (2000). Probability and Statistical Inference. Marcel Dekker.
Murrell, P. (2005). R Graphics, Boca Raton, Florida, USA: Chapman & Hall/CRC, New York.
Myatt, G.J. (2007). Making Sense of Data. J. Wiley.
Nahin, P.J. (2008). Digital Dice – Computational Solutions to Practical Probability Problems. Princeton

University Press.
Nolan, D. and Speed, T. (2000). Stat Labs – Mathematical Statistics Through Applications. Springer.
Ntzoufras, I. (2009). Bayesian Modeling Using Winbugs. J. Wiley.
Oja, H. (2010). Multivariate Nonparametric Methods with R. Springer.
Ott, E.R. (1967). Analysis of Means – A Graphical Procedure. Industrial Quality Control, 24(2),

101–109.
Parthasarathy, K.R. (1978–2005). Introduction to Probability and Measure. Macmillan India Limited.

Republished by Hindustan Book Agency.
Parzen, E. (1960). Modern Probability Theory and Its Applications. J. Wiley.
Pawitan, Y. (2001). In All Likelihood. Oxford Science Publications.
Press, S.J. (1988–2003). Subjective and Objective Bayesian Statistics, 2e. J. Wiley.
Pregibon, D. (1981). Logistic Regression Diagnostics. The Annals of Statistics, 705–724.
Purohit, S.G., Gore, S.D., and Deshmukh, S.R. (2008). Statistics Using R. Narosa Publishing House,

India.
Quenouille, M.H. (1949). Approximate Tests of Correlation in Time-Series. J. Roy. Statist. Soc. B, 11,

68–84.
Quesenberry, C.P. and Hurst, D.C. (1964). Large Sample Simultaneous Confidence Intervals for Multi-

nomial Proportions. Technometrics, 6(2), 191–195.
R Development Core Team (2009a), An Introduction to R, R Foundation for Statistical Computing,

Vienna, Austria, URL http://www.R-project.org, ISBN 3-900051-12-7.
Ramasubramaniam, S. (1997). The Normal Distribution I, II. Resonance 2 (1997), no.6, pp. 15–24; no.7,

pp. 27–37.

research.microsoft.com/en-us/um/people/minka/papers/uniform.html
http://www.R-project.org


Trim Size: 170mm x 244mm Tattar bref.tex V3 - 02/10/2016 11:22 A.M. Page 640�

� �

�

640 Bibliography

Ramsay, J.O., Hooker, G., and Graves, S. (2009). Functional Data Analysis with R and MATLAB.
Springer.

Rao, C.R. (1973). Linear Statistical Inference and Its Applications, 2e. J. Wiley.
Rao, C.R., Toutenburg, H., Shalabh, H.C., and Schomaker, M. (1995–2008). Linear Models and Gener-

alizations: Least Squares and Alternatives, 3e. Springer.
Rencher, A.C. (1998). Multivariate Statistical Inference and Applications. John Wiley, New York.
Rencher, A.C. (2002). Methods of Multivariate Analysis, 2e. J. Wiley.
Rencher, A.C. and Schaalje, G.B. (2000–8). Linear Models in Statistics, 2e. J. Wiley.
Reyment, R.A. and J’oreskog, K.G. (1996). Applied Factor Analysis in the Natural Sciences. Cambridge

University Press.
Ripley, B.D. (1987). Stochastic Simulation. J. Wiley.
Ritz, C. and Streibig, J.C. (2008). Nonlinear Regression with R. Springer-Verlag, New York.
Robert, C.P. (2001). The Bayesian Choice. 2e. Springer-Verlag, New York.
Robert, C.P. and Casella, G. (1999–2004). Monte Carlo Statistical Methods, 2e. Springer.
Robert, C. and Casella, G. (2010). Introducing Monte Carlo Methods with R. Springer.
Robinson, G.K. (1976). Properties of Students t and of the Behrens-Fisher Solution to the Two Means

Problem. The Annals of Statistics, 4(5), 963–971.
Rohatgi, V.K. and Saleh, A.K.Md. (1975–2000). An Introduction to Probability and Statistics, 2e.

J. Wiley.
Romano, J.P. and Siegel, A.F. (1986). Counterexamples in Probability and Statistics. CRC Press.
Rosenthall, J.S. A First Look at Rigorous Probability Theory, 2e. World Scientific.
Ross, S.M. (1996). Stochastic Processes, 2e. J. Wiley.
Ross, S.M. (2006). Simulation, 4e. Elsevier.
Ross, S.M. (1985–2014). An Introduction to Probability Models, 11e. Elsevier.
Ross, S.M. and Pek’oz, E.A. (2007). A Second Course in Probability. AMC. www.ProbabilityBookstore.

com.
Rousseeuw, P.J. and Leroy, A.M. (1987). Robust Regression and Outlier Detection. J. Wiley.
Royden, H.L. (1963–87). Real Analysis, 3e. Prentice Hall of India.
Ryan, T.P. (2007). Modern Experimental Design. J. Wiley.
Salsburg, D. (2001). The Lady Tasting Tea. W. H. Freeman & Company.
Samaniego, F.J. (2010). A Comparison of the Bayesian and Frequentist Approaches to Estimation.

Springer.
Sarkar, D. (2008). Lattice: Multivariate Data Visualization with R. Springer-Verlag, New York.
Savage, L.J. (1954–72). The Foundations of Statistics. Wiley, New York. Second revised edition pub-

lished by Dover Publications.
Schafer, J.L. (2000). Analysis of Incomplete Multivariate Data. Chapman & Hall/CRC Press, New York.
Scheffe, H. (1943). On Solutions of the Behrens-Fisher Problem, Based on the t-Distribution. The Annals

of Mathematical Statistics, 14(1), 35–44.
Schervish, M.J. (1995). Theory of Statistics. Springer.
Schwarz, W. (2007). 40 Puzzles and Problems in Probability and Mathematical Statistics. Springer.
Searle, S.R. (1971). Linear Models. J. Wiley.
Seber, G.A.F. (2008). A Matrix Handbook for Statisticians. J. Wiley.
Seber, G.A.F. and Lee, A.J. (1977–2003). Linear Regression Analysis, 2e. J. Wiley.
Sen, P.K., Singer, J M., and de Lima, A.C.P. (2009). From Finite Sample to Asymptotic Methods in

Statistics. Cambridge University Press.
Sengupta, D. and Rao, S.J. (2003). Linear Models: An Integrated Approach. World Scientific.
Shao, J. (2003). Mathematical Statistics, 2e. Springer.
Shao, J., and Tu, D. (1996). The Jackknife and Bootstrap. Springer.
Sharma, S. (1996). Applied Multivariate Techniques. J. Wiley.
Sheather, S.J. (2009). A Modern Approach to Regression with R. Springer.

www.ProbabilityBookstore.com


Trim Size: 170mm x 244mm Tattar bref.tex V3 - 02/10/2016 11:22 A.M. Page 641�

� �

�

Bibliography 641

Sheshkin, D.J. (1997–2011). Handbook of Parametric and Nonparametric Statistical Procedures, 5e.
Chapman & Hall/CRC Press, New York.

Shiryaev, A.N. (1979–95). Probability, 2e. Springer-Verlag, New York.
Shonkwiler, R.W. and Mendivil, F. (2010). Explorations in Monte Carlo Methods. Springer.
Shoukri, M.M. (2003). Measures of Interobserver Agreement. Chapman & Hall/CRC Press, New York.
Siegel, S. (1956). Nonparametric Statistics for the Behavioral Sciences. McGraw Hill.
Siegel, S. and J.W. Tukey (1960). A Nonparametric Sum of Ranks Procedure for Relative Spread in

Unpaired Samples. Journal of the American Statistical Association, 55, 429–445; correction, ibid.,
56, 1005 (1961).

Silverman, B.W. (1985). Density Estimation for Statistics and Data Analysis. Chapman & Hall/CRC
Press, New York.

Simonoff, J.S. (1996). Smoothing Methods in Statistics. Springer.
Simonoff, J.S. (2003). Analyzing Categorical Data. Springer.
Sivia, D.S. with J. Skilling. (2006). Data Analysis – A Bayesian Tutorial. Oxford.
Snedecor, G.W. and Cochran, W.G. (1980). Statistical Methods, 7e. Iowa State University, Ames, IA.

Press.
Sobol, I.M. (1994). A Primer for the Monte Carlo Method. CRC Press.
Spector, P. (2008). Data Manipulation With R. Springer.
Sprent, P. and Smeeton, N.C. (2000). Applied Nonparametric Statistical Methods, 3e, Chapman & Hall,

New York.
Srivastava, M.K. and Srivastava, N. (2009). Statistical Inference – Testing of Hypothesis. Prentice Hall

of India.
Steenbergen, M.R. (2006). Maximum Likelihood Programming in R. Available at www.unc.edu/

monogan/computing/r/MLE_in_R.pdf.
Stoyanov, J. (1997). Counterexamples in Probability, 2e. J. Wiley.
Streiner, D.L. and Norman, G.R. (2003). Health Measurement Scales. A Practical Guide to their Devel-

opment and Use, 3e. Oxford University Press.
Suess, E.A. and Trumbo, B.E. (2010). Introduction to Probability Simulation and Gibbs Sampling with

R. Springer.
Sveshnikov, A.A. (1968). Problems in Probability Theory. Saunders, Philadelphia, PA.
Tattar, P.N. (2013). R Statistical Application Development by Example Beginner’s Guide. Packt Publish-

ing Ltd.
Taylor, H.M. and Karlin, S. (1984–98). An Introduction to Stochastic Modeling, 3e. Academic Press.

(4th Edition in 2011 has been co-authored by Pinsky.)
Thompson, J.R. (2000). Simulation. J. Wiley.
Timm, N.H. (2002). Applied Multivariate Analysis. Springer.
Tukey, J.W. (1962). The Future of Data Analysis. Ann. Statist. 1–67.
Tukey, J.W. (1977). Exploratory Data Analysis. Addison-Wesley, Reading, MA.
Tukey, J.W. (1980). We Need Both Exploratory and Confirmatory. The American Statistician, 34(1),

23–25.
Ugarte, M.D., Militino, A.F., and Arnholt, A.T. (2008). Probability and Statistics with R. CRC Press.
Unwin, A., Theus, M., and Hoffman, H. (2005). Graphics of Large Datasets Visualizing a Million.

Springer.
Varmuza, K. and Filzmoser, P. (2009). Introduction to Multivariate Statistical Analysis in Chemometrics.

Springer.
Venables, W.N. and Ripley, B.D. (2002). Modern Applied Statistics with S-PLUS, 4e. Springer-Verlag,

New York.
Venables, W.N., Smith, D.M., and the R Core Team. (2015). An Introduction to R. (Comes with the R

Software.)

www.unc.edu/monogan/computing/r/MLE_in_R.pdf


Trim Size: 170mm x 244mm Tattar bref.tex V3 - 02/10/2016 11:22 A.M. Page 642�

� �

�

642 Bibliography

Velleman, P.F. and Hoaglin, D.C. (2004). ABC of Exploratory Data Analysis. Duxbury Press, Boston.
Republished in 2004 by The Internet-First University Press.

Verzani, J. (2005). Using R for Introductory Statistics. Chapman & Hall.
Wasserman, L. (2004). All of Statistics. Springer.
Wasserman, L. (2006). All of Nonparametric Statistics. Springer-Verlag, New York.
Weisberg, H.F. (1992). Central Tendency and Variability. Sage University Papers Series.
Welch, B.L. (1938). The Significance of the Difference Between Two Means When the Population Vari-

ances are Unequal. Biometrika, 29(3–4), 350–362.
Welch, B.L. (1947). The Generalization of Student’s Problem When Several Different Population Vari-

ances are Involved. Biometrika, 28–35.
Wilcox, R.R. (2009). Basic Statistics. Oxford University Press.
Wilcoxon, F. (1945). Individual Comparisons by Ranking Methods. Biometrics, 1, 80–83.
Wilks, S.S. (1962). Mathematical Statistics. J. Wiley.
Williams, D. (2001). Weighing the Odds: A Course in Probability and Statistics. Cambridge University

Press.
Wu, C.F.J. and Hamada, M. (2000–9). Experiments: Planning, Analysis, and Parameter Design Opti-

mization, 2e. J. Wiley.
Wu, X. and Kumar, V. (2009). The Top Ten Algorithms in Data Mining. Taylor & Francis Group.
Youden, W.J. and Beale, H.P. (1934). A Statistical Study of the Local Lesion Method for Estimating

Tobacco Mosaic Virus. Contrib. Boyce Thompson Inst, 6, 437–454.
Zacks, S. (1971). The Theory of Statistical Inference. J. Wiley.
Zuur, A.F., Ieno, E.N., and Meesters, E.H.W.G. (2009). A Beginner’s Guide to R. Springer.



Trim Size: 170mm x 244mm Tattar samind1.tex V3 - 02/10/2016 11:23 A.M. Page 643�

� �

�

Author Index

Adke, S.R., 340, 361
Agresti, A., 31, 587, 625, 626
AitSahlia, F., 31, 113, 165
Albert, J., 12, 324, 331, 334, 397, 598,

625
Andersen, P.K., 458
Anderson, R.E., 538, 566, 568
Anderson, T.W., 206, 538, 568
Anscombe, F.J., 418
Arnholt, A.T., 12, 246
Ash, R.B., 166
Aspin, A.A., 270
Athreya, K.B., 166, 340

Babin, B.J., 538, 566, 568
Baclawski, K., 167
Banach, S., 121
Bapat, R.B., 458
Basilevsky, A., 561
Basu, A.K., 167
Belsley, D.A., 438, 458
Berger, J.O., 216, 334
Berger, R.L., 217, 231, 238–241, 281
Bernardo, J., 334
Bhat, B.R., 20, 167
Bhattacharya, R., 361
Bibby, J.M., 568
Bilder, C.R., 12
Billingsley, P., 166
Bilodeau, M., 568

A Course in Statistics with R, First Edition. Prabhanjan Narayanachar Tattar, Suresh Ramaiah and B. G. Manjunath.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/tattar/statistics

Black,W.C., 538, 566, 568
Blackwell, D., 321
Bliss, C.I., 618
Boes, D.C., 280
Bolstad, W.M., 132, 324, 325, 334
Box, G.E.P., 9, 334, 449, 504
Braun, W.J., 12, 553, 626
Breiman, L., 166
Brenner, D., 568
Bretz, F., 475
Brown, T.A., 561

Cacoullos, T., 167
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Birthday problem, 318
Coupon collector, 319
Laplace Probability of Sunrise, 318

Behrens-Fisher Problem, 270
beta function

definition, 186
beta RV

definition, 186
mean, 186
variance, 186
various parameters, 187

BIBD
ANOVA, 483
decomposition, 482
model, 482

binomial RV
MPbinomial, 254
Bayesian estimation, 323
CDA, 589
central term, 174
definition, 173
expectation, 173
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binomial RV (continued)
exponential family, 212
hessian function, 233
likelihood function, 221
LR test, 265
minimal sufficient statistic, 219
MLE, 233
MP test, 253
Poisson approximation, 180
prior

continuous, 325
discrete, 324

risk functions, 214
simulation, 376
variance, 173
Wilson confidence interval, 589

biplot, 556
quadratic decomposition, 558
singular value decomposition, 556

Birthday Problem, 119
block design, 477

ANOVA, 479
decomposition, 478
effects model, 477
incomplete see also BIBD, 481
model validation, 480
randomization, 478

bootstrap, 289
bootstrap algorithm, 290
Borel 𝜎-Field, 126
boxplot, 71

notches, 71

calculus preliminaries, 31
canonical correlation, 544

association measure, 544
canonical correlations

properties, 545
categorical data, 26
categorical data analysis see also CDA, 571
Cauchy RV

definition, 191
hessian function, 233

CDA
graphical methods, 572
overdispersion, 593

Central Limit Theorem
de Moivre-Laplace, 153
Liapounov, 162
Lindeberg-Feller, 157
normal sample, 200

Chapman-Kolmogorov equation, 344
characteristic function, 144

binomial, 173
chi-square, 193
discrete uniform, 172
exponential, 187
gamma, 189
geometric, 176
multivariate normal, 196
negative binomial RV, 178
normal, 191
Poisson, 179
power series distribution, 144
uniform, 184

Chernoff faces, 509
chi-square RV

F-relationship, 199
definition, 193
expectation, 193
variance, 193

classification, 541
complete statistic

definition, 220
completely randomized design see also

CRD, 462
complex numbers, 19
condition indices, 444
control programming, 27
condition number, 444
Convergence

rth mean, 150
almost sure, 151
distribution, 147
probability, 150

correlation matrix, 512
countably additive probability measure, 128
Coupon Collectors Problem, 141
Cramér-Rao Inequality, 244
CRD

ANOVA, 465
contrasts, 472
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Dunnett’s multiple testing, 475
graphical analysis, 466
model, 463

effects, 463
means, 463

model validation, 470
multiple testing, 475
randomization, 463
sum of squares, 465

credible interval, 332
highest posterior, 332

cumulative distribution function, 143
binomial, 173
discrete uniform, 172
geometric, 176
uniform RV, 184

data
basics, 41
clipboard, 54
complete, 274
complex formats, 50
display, 56
foreign/external, 55
handling, 41
import, 43
incomplete, 274
manipulation, 57
missing, 274
names, 55
text, 62

data sets, 6
antique, 8
on www, 7

datasets
R package, 6

date, 59
depth, 68
design matrix, 463
deviance statistic

LR Model, 612
DFBETAS, 438
DFFITS, 439
digraph

Ehrenfest, 347
Dirichlet RV

definition, 195
discrete uniform

definition, 172
expectation, 172
sufficient statistic, 218
variance, 172

discriminant analysis, 541
discriminant (linear) function, 542

DOE
blocking, 462
randomization, 462
replication, 462

dot chart, 583
Dvoretzky-Kiefer-Wolfowitz inequality, 284

EDA
regression models, 95
summaries, 68

Ehrenfest model, 342
elementary RV, 133
EM Algorithm

2-steps, 275
5-steps, 275
E-step, 275
i.e, Expectation-Maximization

Algorithm, 274
M-step, 275
multinomial RV, 275

application in genetics, 278
Q-function, 275

expectation, 136
Experimental Designs see also Design of

Experiments, DOE, 461
exponential family

binomial, 212
definition, 212
GLM, 600
normal, 212
sufficient statistic, 217

exponential RV
UMPExponential, 258
Bayesian estimation, 328
definition, 187
expectation, 187
memoryless property, 188
prior
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exponential RV (continued)
gamma, 329

sufficient statistic, 217
UMP test, 258
variance, 187

extended RV, 133

factor analysis, 561
communality, 562
loadings, 561
MLE method, 566
oblique rotation, 566
orthogonal, 561
principal component method, 562
principal factor method, 565
quartimax rotation, 566
spectral decomposition, 562
varimax rotation, 566

factorial design, 491
blocking, 502

ANOVA, 502
decomposition, 502
two-factorial model, 502

three factorial
ANOVA, 497
decomposition, 497
model, 497

two factorial
ANOVA, 492
decomposition, 491
hypotheses testing, 492
model, 491
model validation, 495

field, 125
finite dimensional distributions, 340
finitely additive probability measure, 127
Fisher information, 229

Poisson, 230
random sample, 230

Fisher score function, 226
five numbers, 69
four-fold plot, 583
FWER, family-wise error rate, 272

Gamblers walk, 343
gamma RV

definition, 188
expectation, 189
Metropolis-Hastings algorithm, 356
minimal sufficient statistic, 219
MLE, 235
variance, 189
various density plots, 189

generalized linear model see also GLM, 597
geometric RV, 176

expectation, 176
tail probabilities, 177
variance, 176

Gibbs sampler, 354
exponential product given sum, 360
exponential sum, 359
random points in circle, 357

Glivenko-Cantelli theorem, 283
GLSD

ANOVA, 489
decomposition, 489
model, 487

graeco latin square design see also GLSD,
487

group
definition, 210
family, 211
transformation, 211

handling trigonometry, 18
hat matrix

MLRM, 428
hinges, 69
histogram, 76

bins, 78
embossing, 79
Freedman-Diaconis formula, 78
Scotts formula, 78
Sturges formula, 78
with boxplot, 80

Hotelling’s T2, 522
definition, 206
properties, 524
testing one sample, 521
testing two samples, 524

hypergeometric RV
definition, 182
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expectation, 182
variance, 182

hypothesis
composite, 246
simple, 246
Type I error, 247
Type II error, 247

independence of sub-vectors, 536
𝜒2 approximate test, 536
likelihood ratio test, 536

independent events, 131
inequality

Chebyshev, 146
Jensen, 145
Markov, 145

infimum, 123
influence point

MLRM, 436
influence points

Cook’s distance, 438
inter quartile range, 24
IRLS

algorithm, 603
iterated reweighted least squares, 603

jackknife
bias corrected estimator, 288
pseudo values, 289
variance, 289

kernel, 298
biweight, 298
Epanechnikov, 298
Gaussian, 298
triangle, 298
triweight, 298
uniform, 298

Kolmogorov’s consistency theorem, 340
Kolmogorov-Smirnov test, 312

one-sample, 312
two-sample, 313

Kruskal-Wallis test, 314
kurtosis, 24

Laplace Probability of Sunrise, 113
latin square design see also LSD, 484

Lehmann-Scheffé Theorem, 245
Leonard, T., 589
letter values, 92
leverage

definition, 438
leverage point

MLRM, 436
likelihood function

binomial sample, 221
definition, 220
normal sample, 222

likelihood principle, 224
Bayesian, 322

limit infimum, 123
limit supremum, 123
Linear Regression Model

simple, 402
location family

definition, 211
location-scale family

definition, 212
logistic regression model see also LR

Model, 601
loss function

absolute error loss, 214
definition, 214
squared error loss, 214

LR Model, 602
confidence intervals, 607
error, 602
Fisher information, 606
likelihood function, 602
model selection, 613
normal equation, 603
odds ratio, 602
score function, 603
variance-covariance matrix estimation,

606
LR residuals, 608

deviance, 609
Pearson, 609
standardized Pearson, 609

LR test
binomial, 265
likelihood ratio test, 265
normal
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LR test (continued)
one-sample, 266
two-sample, 269

LSD
ANOVA, 486
decomposition, 485
model, 485
randomization, 484

Mahalanobis distance, 517
biplot, 559

Mann-Whitney test, 308
MANOVA, 526

between and within sum of squares, 526
Lawley-Hotelling, 529
Pillai, 529
Roy, 528
Wilks, 526

Markov Chain
canonical decomposition, 347
fundamental matrix, 349
regular, 345

Markov chain, 341
computational statistics, 352
definition, 341
digraph, 346
ergodic, 345
irrreducible, 345
mean recurrence time, 351
stationary distribution, 350

matrices, 33
matrix

arithmetic, 38
determinant, 39
inverses, 39

mean vector, 511
measure, 126
median absolute deviation, 24
median polish, 98

algorithm, 98
Metropolis-Hastings

algorithm, 353
Metropolis-Hastings acceptance probability,

395
Metropolis-Hastings algorithm, 353

binomial proportion, 395

gamma distribution, 356
random walk, 355

Michelson-Morley experiment, 72
minimal field, 125
minimal sufficient statistic

binomial sample, 219
definition, 219
gamma sample, 219

missing data, 25
MLE, 231

as a bird eye, 232
Cauchy, 236
normal, 231
size of binomial, 238
solution of score function, 232

MLRM, 421
3-d plots, 423
AIC, 456
ANOVA, 429
confidence intervals, 430
contour plot, 425
hat matrix, 428
influence point, 436
least-squares estimator, 428
leverage point, 436
matrix of scatter plots, 422
model diagnostics, 433
prediction interval, 430

model selection, 451
backward elimination, 453

algorithm, 453
forward selection

algorithm, 456
problem, 452

moment generating function, 143
binomial, 173
chi-square, 193
discrete uniform, 172
exponential, 187
gamma, 189
geometric, 176
multivariate normal, 196
negative binomial RV, 178
normal, 191
Poisson, 179
uniform, 184
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monte carlo integration, 388
mosaic plot, 577
MP test, 251

binomial, 253
normal, 252

multicollinearity, 441
eigen system analysis, 443
variance inflation factor (VIF), 442

multinomial random vector
CDA, 590
covariance, 195
definition, 194
expectation, 195
variance, 195

multiple comparison, 271
Bonferroni, 272

CRD, 477
Dunnett

CRD, 475, 477
Holm

CRD, 477
Tukeys HSD

CRD, 475
multiple linear regression model, see also

MLRM 421
multivariate t

definition, 196
multivariate data

graphical methods, 507
multivariate normal

bivariate densities, 512
definition, 195
definition, again, 512

Multivariate Statistics, 507

negative binomial RV
definition, 178
expectation, 178
tail probability, 178
variance, 178

Neyman Factorization Theorem, 218
Neyman-Pearson lemma, 251
nominal data, 571
non-parametric technique, 283

non-parametric test
Siegel-Tukey, 309

noncentral distributions, 203
F, 204
t, 205
chi-square, 203

nonparametric test, 304
Kolmogorov-Smirnov, 312
Kruskal-Wallis, 314
Mann-Whitney, 308
Wald-Wolfowitz, 311
Wilcoxon signed-rank, 305

one-sample, 305
two-sample, 306

normal RV
t -RV relationship, 200
MPNormal, 253
UMPNormal, 259
Bayesian estimation, 329
chi-square relationship, 199
curved, 213
definition, 189
exponential family, 212
hessian function, 233
likelihood function, 222
MLE, 233
MP test, 252
prior

discrete, 330
informative, 331

sample mean, 197
sampling, 197
sampling median, 201
sufficient statistic, 218

odds ratio see also OR, 586
OR

cross-product ratio, 586
ordinal data, 27, 571

Pareto chart, 81
cumulative frequency, 82
frequency, 82
PCA, 554



Trim Size: 170mm x 244mm Tattar samind.tex V3 - 02/10/2016 11:24 A.M. Page 656�

� �

�

656 Subject Index

Pareto prior, 327
Pascal’s triangle, 118
PCA

linear regression, 553
principal component, 547

uncorrelated, 551
sample correlation matrix, 549

permutation, 115
pie chart, 580
Pitman family

definition, 213
Poisson regression, 621

𝜒2 goodness-of-fit, 622
likelihood function, 622
model, 622
Pearson residuals, 622
rate ratio, 624

Poisson RV
MPPoisson, 255
Bayesian estimation, 326
Bayesian sampling distribution,

207
CDA, 591
death by horse kick, 234
definition, 179
expectation, 179
hessian function, 233
MLE, 233
prior

continuous, 327
discrete, 326

sampling mean, 201
sufficient statistic, 217
UMVUE, 244
variance, 179
various 𝜆, 180

pooled covariance matrix, 524
prediction matrix, 428
principal component analysis see also PCA,

547
prior

conjugate, 322
probit regression, 618

likelihood function, 619
model, 618
model selection, 620

Quesenberry-Hurst simultaneous
confidence interval, 591

R
Why?, 3
books, 12
help system, 11
install, 5
mailing list, 10
open source, 627
packages, 44
scripts, 64
session, 45
website, 9

R interface, 11
random number generator see also RNG,

364
random numbers

pseudo, 364
random sample, 196
random variable, 133
Rao-Blackwell theorem, 243
residuals

for identifying violations, 412
normal probability plot, 414
PRESS, 434
properties, 412
R-Student, 434
semi-Studentized, 412, 433
standardized, 433
useful plots, 412

resistant line, 95
algorithm, 95

RNG
LCG algorithm, 365
linear congruential generator (LCG),

365
middle-square method, 364

rootogram, 81
rounding numbers, 17
run chart, 88

sample space, 106
scale family

definition, 211
scatter plot, 89
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matrix of scatter plots, 422
score function

binomial, 227
Cauchy, 227
normal, 227
Poisson, 227
sampling variance, 226

screeplot, 550
sequence, limit, 123
set algebra, 109
Siegel-Tukey test
siegel.tukey, 311

simple linear regression model, see also
SLRM 402

simple RV, 133
Simpson’s paradox, 588
simulation

binomial RV algorithm, 378
continuous distributions, 380

exponential, 381
uniform, 380

discrete distributions, 373
arbitrary, 373, 374
binomial, 376
geometric, 378
Poisson, 379
uniform, 373

inverse CDF method, 381
limit theorems, 383

CLT, 386
uniform minima, 383
WLLN, 384

Poisson RV algorithm, 380
probability problems

birthday match, 367
birthday match algorithm, 367
Buffons needle, 370
coupon collector, 369
coupon collector algorithm, 369
match box algorithm, 368
match box problem, 368

random permutation, 375
algorithm, 376

skewness, 24
Bowley measure, 69

SLRM

ANOVA, 407
assumptions, 402
coefficient of determination

R2, 409
Adjusted R2, 409

confidence intervals, 405
fitting, 403
least-squares estimate, 404
model, 402
model validation, 412
origin regression, 417
prediction, 416
residuals, 404

sorting data, 29
special functions, 21
spine plot, 575
state

absorbing, 345
accessible, 345
aperiodic, 346
communicate, 345
first passage time, 351

mean, 351
period, 346
transient, 345

statistic
definition, 197
examples, 197
sample moments, 197

statistical functional, 285
statistical hypothesis, 246
stem-and-leaf, 84

algorithm, 84
back to back, 86
trailing digits, 86

Stochastic Process, 339
sufficient statistic

definition, 217
discrete uniform, 218
exponential RV, 217
normal sample, 218
Poisson RV, 217

summary functions, 18
summary statistics, 23
supremum, 123
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test
critical region, 246
hypothesis, 247
level of significance, 247
likelihood ratio test, 265
most powerful see also MP test, 251
multiple comparison, 271
power, 249

example, 249
size, 256
unbiased, 262

testing mean vector
cross-products, 524
Hotelling’s T2, 524
one sample, 520

known 𝚺, 520
unknown 𝚺, 521

sum squares, 524
two sample, 523

testing variance-covariance matrix
F, 534
k-sample, 533

𝜒2, 534
one sample, 531
sphericity, 532

Thirteenth of a Month, Probability, 112
time, 59
TPM, 342

m-step, 344
Ehrenfest, 342
gambler’s walk, 343

transformation, 445
linearization, 445
power transformation, 449

Box-Cox, 449
variance stabilization, 447

transition probability matrix see also TPM,
342

trimean, 91
Tukey’s EDA, 67
Tukey’s honestly significant differences

(HSD), 475

UMP test, 257
Karlin and Rubin theorem, 257
non-existence, 261
normal, 258, 259

unbiased estimator
definition, 241
UMVUE, 243

uniform prior
binomial distribution, 318
birthday problem, 318

uniform RV
Bayesian estimation, 327
convolution, 185
definition, 184
expectation, 184
variance, 184

variance-covariance matrix, 511
to correlation matrix, 516

vector
arithmetic, 34
inner product, 34
introduction, 33
norm, 34
orthogonal, 35
projection, 35
sum, 34

vectors, 33

Wald-Wolfowitz test, 311
ww.test, 312
example, 312
run, 311

weak law of large numbers, 152
simulation, 384

Wilcoxon signed-rank test
one-sample, 305

large sample approximation, 305
statistic, 305
two-sample, 306

Wilson confidence interval, 589
Wishart RV, 206
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%*%, 528, 546
->, 41
->>, 41
<-, 41
<<-, 41
*, 38
=, 41
++, 450, 567
?, 11
ACSWR, 25
pareto_quantile, 333

Arith, 16
BHH2
anovaPlot, 470

Binom_Sim, 378
Complex, 21
Control, 29
ConvergenceConcepts, 388
DAAG
socsupport, 555

Ehrenfest, 343
Expectation_NNRV_Unif, 139
Geom_Sim, 379
HSAUR2, 7
USairpollution, 550

ICSNP
HotellingsT2, 522, 525

IQR, 24, 69
for h∗, 296
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ISwR
energy, 308

LETTERS, 464, 488
LRNormal2Mean, 269
LRNormalMean_KV, 266
LRNormalVariance_UM, 268
LearnBayes, 397
LearnEDA

lval, 94
MASS, 5

anorexia, 466
medpolish, 99
michelson, 9

MPNormal, 253
MPPoisson, 255
MPbinomial, 254
NA, 26
POSIXct, 60
Poisson_Sim, 380
R2WinBUGS, 11
RSADBE, 9

octane, 86
Random_Permutation, 376
Rcmdr, 65
Ripley2.2, 365
Rscript, 64
ST_Ordered, 374
ST_Unordered, 374
Special, 23
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Sys.time, 58
Trig, 19
TukeyHSD, 477
UMPExponential, 258
UMPNormal, 259
UsingR, 9
galton, 89, 331

VGAM
dpareto, 328

View, 57
WelchBF, 271
abline, 577
abs, 407, 472, 513, 544, 566
addrv

roll die, 134
adhocBF, 270
aggregate, 57, 74, 470, 474
agricolae
BIB.test, 483
design.graeco, 488
design.lsd, 485, 488
granova.1w, 470

anova, 411, 416, 432, 486, 490
aov, 468, 470, 481, 494, 504
aperm, 584
aplpack
faces, 509
stem.leaf.backback, 86

apply, 29, 588
as, 26
as.Date, 61

13th of a month, probability, 113
as.character, 480
as.expression, 488
as.factor, 481, 494
as.matrix, 445
as.name, 488
as.numeric, 51, 528, 583
assign, 58
backwardlm, 456
barplot, 572, 574, 575
beside=TRUE, 574

base, 17, 84, 110
biplot, 560
boot
aircondit, 9

boot function, 291
nerve, 291

boot, 291
boxcox, 450
boxplot, 71, 414, 470, 472

notch, 71
bquote, 159
cancor, 546
cards, 109
case.names, 38
cbind, 68, 564
chisq.test, 594
choose, 452

binomial likelihood function, 222
chron

days, 58
class, 42, 571
colClasses, 51
colMeans, 525, 543
colnames, 37
colSums, 528, 579
combn, 452
complete.cases, 556
confint, 432, 470, 608, 620, 624
contour, 426
cookd, 439
cooks.distance, 481, 496
cor, 441, 516, 551, 564
cov, 551
cov2cor, 517
covratio, 439
cumsum, 564, 566

birthday probability, 122
Feller condition

normal IID, 157
curve, 420

shady normal curves, 191
cut, 575, 600
data.entry, 38
data.frame, 52, 480, 610

coin tossing, 111
datasets, 8

AirPassengers, 9, 88
HairEyeColor, 571, 577
InsectSprays, 74
Titanic, 571, 588
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UCBAdmissions, 571, 583, 587
VADeaths, 571
anscombe, 419, 420
faithful, 574, 575
galton, 9
iris, 8
morley, 9
sleep, 84

dbinom, 173
discrete prior analysis, 325
expectation, 138

dcauchy
expectation of extended R, 140

density, 298
deriv, 32
det, 532, 533, 535, 537
dfbetas, 439
dffits, 439
diag, 532, 533, 558
diff, 69
difftime, 61
dimnames, 591
dnorm, 140, 191

combining likelihoods, 226
convergence concept, 149
Lindeber condition

normal iid, 159
dotchart, 517, 583
dpois

expectation of elementary RV, 139
droplevels, 27
e1071, 25
ecdf, 284

uniform minima simulation, 384
eigen, 40, 445, 546, 564, 566
expression, 174, 425, 426

combining likelihoods, 226
loss functions, 216

factanal, 567
factor, 27, 490
factorial, 115
faraway, 7
vif, 442

filter, 31
fivenum, 24, 69
fix, 57

floor, 93
fnid, 69
for, 27

bootstrap, 291
convergence concept, 147
jackknife, 289
Lindeber condition

normal iid, 159
probability using e, 117

foreign
read.dta , 56, 528

fourfoldplot, 584, 588
galton

t.test, 263
gdata

read.xls, 50, 600, 605, 606,
614, 619

getwd, 43
ginv, 39
glht

Dunnett, 477
bonferroni, 477
holm, 477
mcp, 477

glm, 605, 606, 610, 619
family=‘poisson’, 624, 625
family=binomial(probit), 621
null.deviance, 613
offset, 624

gpk, 7, 45
Filariasistype, 594

grep, 62
grepl, 62
hatvalues, 439, 610
help, 11
hist$counts, 81
hist, 76

Swiss.dat, 294
breaks, 78
main, 76
xlab, 76
LCG, 366

if, 27
ifelse, 27, 513, 544
influence, 481, 496
install.packages, 45
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integrate 32
dnorm, 191
check monte carlo integration, 389
expectation of extended R, 140

interaction.plot, 495, 499
intersect, 110
irls, 604
is.ordered, 528, 531
jitter, 441
kruskal.test, 315
ks.test, 313, 314
kurtcoeff, 24
lapply, 24, 70
layout, 513, 575
legend

binomial likelihood function, 222
birthday probability, 120

length, 42
letters, 42
likefn

binomial, 222
lines, 148

binomial likelihood function, 222
birthday probability, 120
Cauchy, 192
loss functions, 216
shady normal curves, 191

list, 45, 488
list.files, 45
lm, 410, 432, 486, 490, 556, 599
adj.r.squared, 432
coefficients, 413
confint, 411
fitted.values, 411, 436
hatvalues, 436
level, 411
parm, 411
r.squared, 432
resid, 414, 436
residuals, 411, 452
rstandard, 436
rstudent, 436

load, 46
loess, 611
log, 532, 535
logLik, 624

logical, 43
mad, 24, 69
mahalanobis, 520
manova, 528, 531, 547
margin.table, 584, 587
match_prob, 122
matrix, 37, 587, 591

dimnames, 587
max, 566

expectation of extended R, 139
Feller condition

normal iid, 158
mean, 31
methods, 6
mfrow, 71, 426, 499, 517,

577, 599
min

expectation of extended RV, 139
mle

Cauchy, 237
MLE, 234
Poisson, 235
size of binomial, 238

mode, 42
model.matrix, 468, 494
month.abb, 42, 60
mosaicplot, 580
msteptpm, 344
multcomp

glht, 477, 495
mvtnorm

dmvnorm, 513
na.omit, 509
names, 583
nchar, 63
ncol, 533
nerve.dat, 284
nerve_ecdf, 285
nlm

MLE, 234
normchi2post, 397
nrow, 525, 533, 614

coin tossing, 111
optimize

gamma RV, 236
MLE, 234
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multinomial RV, 276
Poisson, 235

options, 60
order, 29, 68
outer, 426
pairs, 423, 509, 555
pairwise.t.test
p.adj=“bonf”, 273
p.adj=“holm”, 273
multiple comparison, 273

panel.cor, 509
panel.hist, 509
panel.smooth, 509
par, 71, 426, 499, 517, 577, 599
cex, 580
shady normal curves, 191

pareto_density, 328
paste, 58, 425, 426, 488

loss functions, 216
pbinom, 173
pchisq, 613, 615, 620, 624
pf, 474
phia
testInteractions, 495

pie, 580, 584
plot, 148, 420, 472, 490, 586
plot.ecdf, 285
binomial likelihood function, 222
birthday probability, 120, 122
combining likelihoods, 226
likelihood principle, 224
loss functions, 216
normal likelihood, 222
sampling variance of score function, 227

plot.design, 495, 499, 501
plot.lm, 440
plot.ts, 88, 472
plotSquareMatrix, 488
pmin, 68
pnorm

in ks.test, 313
power.t.test, 260
powertestplot, 259, 261
ppois, 179
predict.glm, 611
predict.lm, 417, 599

princomp$scores, 555
princomp, 550, 556, 560
prob, 106, 110, 134
prob_rejection multiple

comparison –Type I error, 272
prod, 116

Bayesian birthday probability, 319
birthday probability, 120

prop.table, 600
prop.test, 591, 595
punif, 148

expectation of extended R, 139
qbinom, 173
qcc

pareto.chart, 82, 554
qchisq, 521, 532, 535, 537, 591
qf, 535
qgamma

UMPExponential, 258
qnorm, 416, 592
qpois, 179
qqline, 472
qqnorm, 472
qt, 407
quantile, 23

bootstrap, 291
quietly, 45
range, 61
rank, 29
rbinom

Banach match box, 369
simulation, 377

read.csv, 44
read.ftable, 53
read.table, 44, 486, 494, 504
readLines, 62
relevel, 27
rep, 31, 464, 478, 480, 513
repeat, 28
residuals, 472, 610
rexp

WLLN simulation, 384
rgamma

WLLN simulation, 384
rkward, 65
rm, 45



Trim Size: 170mm x 244mm Tattar both01.tex V3 - 02/10/2016 11:21 A.M. Page 664�

� �

�

664 R Codes

rnorm, 513
WLLN simulation, 384

rolldie, 107, 111, 112, 134
round, 18, 558, 564
rowSums, 579

coin tossing, 111
rownames, 37
rpart, 6
rpois, 593
rstandard, 481
rstudent, 496
runif

Buffon’s needle, 371
monte carlo integration, 389
simulation, 374

sample, 464, 478
birthday probability, 367
bootstrap, 291

sapply, 115
binomial likelihood function, 222
coupon collector, 370

save, 46
scan, 43
scatterplot3d, 513
scatterplot3d, 425

screeplot, 551
sd, 24
seq, 78, 148, 586

risk functions, 215
setdiff, 110
setwd, 45
sfsmisc
histBxp, 80

siegel.tukey
the function, 311

skew_nonparametric, 291
skewcoeff, 24
skewness, 25
sleep
t.test, 264
sampling median, 201

sna, 346
gplot, 346

solve, 39, 349, 517, 522, 532, 543,
544, 546

sort, 29
spineplot, 577
sqrt, 36, 407, 546, 564, 566, 590–592

Feller condition
normal iid, 158

stan, 519
stationdistTPM, 351
stats, 263
stem, 84
step, 457

direction=backward, 617
str, 56
strsplit, 63
subset, 30
substitute, 488
substr, 63
substring, 63
sum, 18, 111, 407, 592

expectation, 139
expectation of simple RV, 138

summary, 18, 23, 575, 594
summary.aov, 494, 499,

501, 504
summary.glht, 477
summary.glm, 605, 607, 619,

624
summary.lm, 411, 556
summary.manova, 528, 547
summary.princomp, 550
svd, 40, 558
system.time, 29
t.test, 263
table, 580, 583, 600

13th of a month, probability, 113
rolling die, 112

test=Hotelling, 530, 531
test=Pillai, 529, 531
test=Roy, 529, 531
test=Wilks, 528, 531
testInteractions, 501
text, 159, 488
title, 499

birthday probability, 120
tosscoin, 106, 111
type.convert, 52
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union, 110
update, 454
urnsamples, 108
utils,
head, 56
methods, 23
tail, 56

var, 24, 516, 525, 535
variable.names, 38
vector, 34
vonNeumann, 364
getNext, 365

which, 440, 445

normal MLE, 231
while, 27, 175

Cauchy MLE, 237
convergence concept, 147

wilcox.test, 306
two-sample, 307

windows, 31, 499, 501, 574
with, 620, 624
ww.test, 312

runfunction , using, 312
xlab

ylab, 76
xtabs, 54



WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Cover
	Title Page
	Copyright
	Dedication
	Contents
	List of Figures
	List of Tables
	Preface
	Acknowledgments
	Part I The Preliminaries
	Chapter 1 Why R?
	1.1 Why R?
	1.2 R Installation
	1.3 There is Nothing such as PRACTICALS
	1.4 Datasets in R and Internet
	1.4.1 List of Web-sites containing DATASETS
	1.4.2 Antique Datasets

	1.5 http://cran.r-project.org
	1.5.1 http://r-project.org
	1.5.2 http://www.cran.r-project.org/web/views/
	1.5.3 Is subscribing to R-Mailing List useful?

	1.6 R and its Interface with other Software
	1.7 help and/or?
	1.8 R Books
	1.9 A Road Map

	Chapter 2 The R Basics
	2.1 Introduction
	2.2 Simple Arithmetics and a Little Beyond
	2.2.1 Absolute Values, Remainders, etc.
	2.2.2 round, floor, etc.
	2.2.3 Summary Functions
	2.2.4 Trigonometric Functions
	2.2.5 Complex Numbers
	2.2.6 Special Mathematical Functions

	2.3 Some Basic R Functions
	2.3.1 Summary Statistics
	2.3.2 is, as, is.na, etc.
	2.3.3 factors, levels, etc.
	2.3.4 Control Programming
	2.3.5 Other Useful Functions
	2.3.6 Calculus*

	2.4 Vectors and Matrices in R
	2.4.1 Vectors
	2.4.2 Matrices

	2.5 Data Entering and Reading from Files
	2.5.1 Data Entering
	2.5.2 Reading Data from External Files

	2.6 Working with Packages
	2.7 R Session Management
	2.8 Further Reading
	2.9 Complements, Problems, and Programs

	Chapter 3 Data Preparation and Other Tricks
	3.1 Introduction
	3.2 Manipulation with Complex Format Files
	3.3 Reading Datasets of Foreign Formats
	3.4 Displaying R Objects
	3.5 Manipulation Using R Functions
	3.6 Working with Time and Date
	3.7 Text Manipulations
	3.8 Scripts and Text Editors for R
	3.8.1 Text Editors for Linuxians

	3.9 Further Reading
	3.10 Complements, Problems, and Programs

	Chapter 4 Exploratory Data Analysis
	4.1 Introduction: The Tukey's School of Statistics
	4.2 Essential Summaries of EDA
	4.3 Graphical Techniques in EDA
	4.3.1 Boxplot
	4.3.2 Histogram
	4.3.3 Histogram Extensions and the Rootogram
	4.3.4 Pareto Chart
	4.3.5 Stem-and-Leaf Plot
	4.3.6 Run Chart
	4.3.7 Scatter Plot

	4.4 Quantitative Techniques in EDA
	4.4.1 Trimean
	4.4.2 Letter Values

	4.5 Exploratory Regression Models
	4.5.1 Resistant Line
	4.5.2 Median Polish

	4.6 Further Reading
	4.7 Complements, Problems, and Programs


	Part II Probability and Inference
	Chapter 5 Probability Theory
	5.1 Introduction
	5.2 Sample Space, Set Algebra, and Elementary Probability
	5.3 Counting Methods
	5.3.1 Sampling: The Diverse Ways
	5.3.2 The Binomial Coefficients and the Pascals Triangle
	5.3.3 Some Problems Based on Combinatorics

	5.4 Probability: A Definition
	5.4.1 The Prerequisites
	5.4.2 The Kolmogorov Definition

	5.5 Conditional Probability and Independence
	5.6 Bayes Formula
	5.7 Random Variables, Expectations, and Moments
	5.7.1 The Definition
	5.7.2 Expectation of Random Variables

	5.8 Distribution Function, Characteristic Function, and Moment Generation Function
	5.9 Inequalities
	5.9.1 The Markov Inequality
	5.9.2 The Jensen's Inequality
	5.9.3 The Chebyshev Inequality

	5.10 Convergence of Random Variables
	5.10.1 Convergence in Distributions
	5.10.2 Convergence in Probability
	5.10.3 Convergence in rth Mean
	5.10.4 Almost Sure Convergence

	5.11 The Law of Large Numbers
	5.11.1 The Weak Law of Large Numbers

	5.12 The Central Limit Theorem
	5.12.1 The de Moivre-Laplace Central Limit Theorem
	5.12.2 CLT for iid Case
	5.12.3 The Lindeberg-Feller CLT
	5.12.4 The Liapounov CLT

	5.13 Further Reading
	5.13.1 Intuitive, Elementary, and First Course Source
	5.13.2 The Classics and Second Course Source
	5.13.3 The Problem Books
	5.13.4 Other Useful Sources
	5.13.5 R for Probability

	5.14 Complements, Problems, and Programs

	Chapter 6 Probability and Sampling Distributions
	6.1 Introduction
	6.2 Discrete Univariate Distributions
	6.2.1 The Discrete Uniform Distribution
	6.2.2 The Binomial Distribution
	6.2.3 The Geometric Distribution
	6.2.4 The Negative Binomial Distribution
	6.2.5 Poisson Distribution
	6.2.6 The Hypergeometric Distribution

	6.3 Continuous Univariate Distributions
	6.3.1 The Uniform Distribution
	6.3.2 The Beta Distribution
	6.3.3 The Exponential Distribution
	6.3.4 The Gamma Distribution
	6.3.5 The Normal Distribution
	6.3.6 The Cauchy Distribution
	6.3.7 The t-Distribution
	6.3.8 The Chi-square Distribution
	6.3.9 The F-Distribution

	6.4 Multivariate Probability Distributions
	6.4.1 The Multinomial Distribution
	6.4.2 Dirichlet Distribution
	6.4.3 The Multivariate Normal Distribution
	6.4.4 The Multivariate t Distribution

	6.5 Populations and Samples
	6.6 Sampling from the Normal Distributions
	6.7 Some Finer Aspects of Sampling Distributions
	6.7.1 Sampling Distribution of Median
	6.7.2 Sampling Distribution of Mean of Standard Distributions

	6.8 Multivariate Sampling Distributions
	6.8.1 Noncentral Univariate Chi-square, t, and F Distributions
	6.8.2 Wishart Distribution
	6.8.3 Hotellings T2 Distribution

	6.9 Bayesian Sampling Distributions
	6.10 Further Reading
	6.11 Complements, Problems, and Programs

	Chapter 7 Parametric Inference
	7.1 Introduction
	7.2 Families of Distribution
	7.2.1 The Exponential Family
	7.2.2 Pitman Family

	7.3 Loss Functions
	7.4 Data Reduction
	7.4.1 Sufficiency
	7.4.2 Minimal Sufficiency

	7.5 Likelihood and Information
	7.5.1 The Likelihood Principle
	7.5.2 The Fisher Information

	7.6 Point Estimation
	7.6.1 Maximum Likelihood Estimation
	7.6.2 Method of Moments Estimator

	7.7 Comparison of Estimators
	7.7.1 Unbiased Estimators
	7.7.2 Improving Unbiased Estimators

	7.8 Confidence Intervals
	7.9 Testing Statistical Hypotheses-The Preliminaries
	7.10 The Neyman-Pearson Lemma
	7.11 Uniformly Most Powerful Tests
	7.12 Uniformly Most Powerful Unbiased Tests
	7.12.1 Tests for the Means: One- and Two-Sample t-Test

	7.13 Likelihood Ratio Tests
	7.13.1 Normal Distribution: One-Sample Problems
	7.13.2 Normal Distribution: Two-Sample Problem for the Mean

	7.14 Behrens-Fisher Problem
	7.15 Multiple Comparison Tests
	7.15.1 Bonferroni's Method
	7.15.2 Holm's Method

	7.16 The EM Algorithm*
	7.16.1 Introduction
	7.16.2 The Algorithm
	7.16.3 Introductory Applications

	7.17 Further Reading
	7.17.1 Early Classics
	7.17.2 Texts from the Last 30 Years

	7.18 Complements, Problems, and Programs

	Chapter 8 Nonparametric Inference
	8.1 Introduction
	8.2 Empirical Distribution Function and Its Applications
	8.2.1 Statistical Functionals

	8.3 The Jackknife and Bootstrap Methods
	8.3.1 The Jackknife
	8.3.2 The Bootstrap
	8.3.3 Bootstrapping Simple Linear Model*

	8.4 Non-parametric Smoothing
	8.4.1 Histogram Smoothing
	8.4.2 Kernel Smoothing
	8.4.3 Nonparametric Regression Models*

	8.5 Non-parametric Tests
	8.5.1 The Wilcoxon Signed-Ranks Test
	8.5.2 The Mann-Whitney test
	8.5.3 The Siegel-Tukey Test
	8.5.4 The Wald-Wolfowitz Run Test
	8.5.5 The Kolmogorov-Smirnov Test
	8.5.6 Kruskal-Wallis Test*

	8.6 Further Reading
	8.7 Complements, Problems, and Programs

	Chapter 9 Bayesian Inference
	9.1 Introduction
	9.2 Bayesian Probabilities
	9.3 The Bayesian Paradigm for Statistical Inference
	9.3.1 Bayesian Sufficiency and the Principle
	9.3.2 Bayesian Analysis and Likelihood Principle
	9.3.3 Informative and Conjugate Prior
	9.3.4 Non-informative Prior

	9.4 Bayesian Estimation
	9.4.1 Inference for Binomial Distribution
	9.4.2 Inference for the Poisson Distribution
	9.4.3 Inference for Uniform Distribution
	9.4.4 Inference for Exponential Distribution
	9.4.5 Inference for Normal Distributions

	9.5 The Credible Intervals
	9.6 Bayes Factors for Testing Problems
	9.7 Further Reading
	9.8 Complements, Problems, and Programs


	Part III Stochastic Processes and Monte Carlo
	Chapter 10 Stochastic Processes
	10.1 Introduction
	10.2 Kolmogorov's Consistency Theorem
	10.3 Markov Chains
	10.3.1 The m-Step TPM
	10.3.2 Classification of States
	10.3.3 Canonical Decomposition of an Absorbing Markov Chain
	10.3.4 Stationary Distribution and Mean First Passage Time of an Ergodic Markov Chain
	10.3.5 Time Reversible Markov Chain

	10.4 Application of Markov Chains in Computational Statistics
	10.4.1 The Metropolis-Hastings Algorithm
	10.4.2 Gibbs Sampler
	10.4.3 Illustrative Examples

	10.5 Further Reading
	10.6 Complements, Problems, and Programs

	Chapter 11 Monte Carlo Computations
	11.1 Introduction
	11.2 Generating the (Pseudo-) Random Numbers
	11.2.1 Useful Random Generators
	11.2.2 Probability Through Simulation

	11.3 Simulation from Probability Distributions and Some Limit Theorems
	11.3.1 Simulation from Discrete Distributions
	11.3.2 Simulation from Continuous Distributions
	11.3.3 Understanding Limit Theorems through Simulation
	11.3.4 Understanding The Central Limit Theorem

	11.4 Monte Carlo Integration
	11.5 The Accept-Reject Technique
	11.6 Application to Bayesian Inference
	11.7 Further Reading
	11.8 Complements, Problems, and Programs


	Part IV Linear Models
	Chapter 12 Linear Regression Models
	12.1 Introduction
	12.2 Simple Linear Regression Model
	12.2.1 Fitting a Linear Model
	12.2.2 Confidence Intervals
	12.2.3 The Analysis of Variance (ANOVA)
	12.2.4 The Coefficient of Determination
	12.2.5 The "lm" Function from R
	12.2.6 Residuals for Validation of the Model Assumptions
	12.2.7 Prediction for the Simple Regression Model
	12.2.8 Regression through the Origin

	12.3 The Anscombe Warnings and Regression Abuse
	12.4 Multiple Linear Regression Model
	12.4.1 Scatter Plots: A First Look
	12.4.2 Other Useful Graphical Methods
	12.4.3 Fitting a Multiple Linear Regression Model
	12.4.4 Testing Hypotheses and Confidence Intervals

	12.5 Model Diagnostics for the Multiple Regression Model
	12.5.1 Residuals
	12.5.2 Influence and Leverage Diagnostics

	12.6 Multicollinearity
	12.6.1 Variance Inflation Factor
	12.6.2 Eigen System Analysis

	12.7 Data Transformations
	12.7.1 Linearization
	12.7.2 Variance Stabilization
	12.7.3 Power Transformation

	12.8 Model Selection
	12.8.1 Backward Elimination
	12.8.2 Forward and Stepwise Selection

	12.9 Further Reading
	12.9.1 Early Classics
	12.9.2 Industrial Applications
	12.9.3 Regression Details
	12.9.4 Modern Regression Texts
	12.9.5 R for Regression

	12.10 Complements, Problems, and Programs

	Chapter 13 Experimental Designs
	13.1 Introduction
	13.2 Principles of Experimental Design
	13.3 Completely Randomized Designs
	13.3.1 The CRD Model
	13.3.2 Randomization in CRD
	13.3.3 Inference for the CRD Models
	13.3.4 Validation of Model Assumptions
	13.3.5 Contrasts and Multiple Testing for the CRD Model

	13.4 Block Designs
	13.4.1 Randomization and Analysis of Balanced Block Designs
	13.4.2 Incomplete Block Designs
	13.4.3 Latin Square Design
	13.4.4 Graeco Latin Square Design

	13.5 Factorial Designs
	13.5.1 Two Factorial Experiment
	13.5.2 Three-Factorial Experiment
	13.5.3 Blocking in Factorial Experiments

	13.6 Further Reading
	13.7 Complements, Problems, and Programs

	Chapter 14 Multivariate Statistical Analysis - I
	14.1 Introduction
	14.2 Graphical Plots for Multivariate Data
	14.3 Definitions, Notations, and Summary Statistics for Multivariate Data
	14.3.1 Definitions and Data Visualization
	14.3.2 Early Outlier Detection

	14.4 Testing for Mean Vectors : One Sample
	14.4.1 Testing for Mean Vector with Known Variance-Covariance Matrix
	14.4.2 Testing for Mean Vectors with Unknown Variance-Covariance Matrix

	14.5 Testing for Mean Vectors : Two-Samples
	14.6 Multivariate Analysis of Variance
	14.6.1 Wilks Test Statistic
	14.6.2 Roy's Test
	14.6.3 Pillai's Test Statistic
	14.6.4 The Lawley-Hotelling Test Statistic

	14.7 Testing for Variance-Covariance Matrix: One Sample
	14.7.1 Testing for Sphericity

	14.8 Testing for Variance-Covariance Matrix: k-Samples
	14.9 Testing for Independence of Sub-vectors
	14.10 Further Reading
	14.11 Complements, Problems, and Programs

	Chapter 15 Multivariate Statistical Analysis - II
	15.1 Introduction
	15.2 Classification and Discriminant Analysis
	15.2.1 Discrimination Analysis
	15.2.2 Classification

	15.3 Canonical Correlations
	15.4 Principal Component Analysis-Theory and Illustration
	15.4.1 The Theory
	15.4.2 Illustration Through a Dataset

	15.5 Applications of Principal Component Analysis
	15.5.1 PCA for Linear Regression
	15.5.2 Biplots

	15.6 Factor Analysis
	15.6.1 The Orthogonal Factor Analysis Model
	15.6.2 Estimation of Loadings and Communalities

	15.7 Further Reading
	15.7.1 The Classics and Applied Perspectives
	15.7.2 Multivariate Analysis and Software

	15.8 Complements, Problems, and Programs

	Chapter 16 Categorical Data Analysis
	16.1 Introduction
	16.2 Graphical Methods for CDA
	16.2.1 Bar and Stacked Bar Plots
	16.2.2 Spine Plots
	16.2.3 Mosaic Plots
	16.2.4 Pie Charts and Dot Charts
	16.2.5 Four-Fold Plots

	16.3 The Odds Ratio
	16.4 The Simpson's Paradox
	16.5 The Binomial, Multinomial, and Poisson Models
	16.5.1 The Binomial Model
	16.5.2 The Multinomial Model
	16.5.3 The Poisson Model

	16.6 The Problem of Overdispersion
	16.7 The x2- Tests of Independence
	16.8 Further Reading
	16.9 Complements, Problems, and Programs

	Chapter 17 Generalized Linear Models
	17.1 Introduction
	17.2 Regression Problems in Count/Discrete Data
	17.3 Exponential Family and the GLM
	17.4 The Logistic Regression Model
	17.5 Inference for the Logistic Regression Model
	17.5.1 Estimation of the Regression Coefficients and Related Parameters
	17.5.2 Estimation of the Variance-Covariance Matrix of B
	17.5.3 Confidence Intervals and Hypotheses Testing for the Regression Coefficients
	17.5.4 Residuals for the Logistic Regression Model
	17.5.5 Deviance Test and Hosmer-Lemeshow Goodness-of-Fit Test

	17.6 Model Selection in Logistic Regression Models
	17.7 Probit Regression
	17.8 Poisson Regression Model
	17.9 Further Reading
	17.10 Complements, Problems, and Programs


	Bibliography
	Author Index
	Subject Index
	R Codes
	EULA



