
R. L. Eubank
Department of Mathematics and Statistics
Arizona State University
Tempe, AZ, USA

A Kalman Filter Primer

Boca Raton London New York

© 2006 by Taylor & Francis Group, LLC

Published in 2006 by
CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2006 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group

No claim to original U.S. Government works
Printed in the United States of America on acid-free paper
10 9 8 7 6 5 4 3 2 1

International Standard Book Number-10: 0-8247-2365-1 (Hardcover)
International Standard Book Number-13: 978-0-8247-2365-1 (Hardcover)

This book contains information obtained from authentic and highly regarded sources. Reprinted
material is quoted with permission, and sources are indicated. A wide variety of references are
listed. Reasonable efforts have been made to publish reliable data and information, but the author
and the publisher cannot assume responsibility for the validity of all materials or for the conse-
quences of their use.

No part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any
electronic, mechanical, or other means, now known or hereafter invented, including photocopying,
microfilming, and recording, or in any information storage or retrieval system, without written
permission from the publishers.

For permission to photocopy or use material electronically from this work, please access
www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc.
(CCC) 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit orga-
nization that provides licenses and registration for a variety of users. For organizations that have
been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks,
and are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Catalog record is available from the Library of Congress

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

Taylor & Francis Group
is the Academic Division of Informa plc.

DK2410_Discl.fm Page 1 Tuesday, October 18, 2005 4:26 PM

© 2006 by Taylor & Francis Group, LLC

In loving memory of Boomer and Tiny

© 2006 by Taylor & Francis Group, LLC

Preface

My first exposure to the Kalman filter was through a
project for a graduate course taught by Jim Matis at
Texas A&M University in 1978. Most of the literature on
Kalman filtering was written by engineers at that time
and I can remember puzzling about the attempts at mo-
tivation through circuit diagrams, etc., that I would find
in this work. The intent of such artwork was unfortu-
nately lost on an Agricultural Economist with statisti-
cal ambitions like myself. Perhaps most perplexing was
the initializing state vector and the absence of details
concerning its choice left me baffled.

After (more or less) completing the project, I put the
Kalman filter on the back burner for over 20 years. I fi-
nally returned to it in the summer of 1999 when I made
a serious attempt at understanding Craig Ansley’s and
Robert Kohn’s method of using the Kalman filter to com-
pute a smoothing spline.

The Kohn/Ansley work on filtering is very much from
a Bayesian and, more to the point, normal theory per-
spective. As someone with essentially a frequentist back-
ground I wanted to see things my own way which, in this
setting, meant in terms of regression (or Fourier) anal-
ysis and the Cholesky decomposition. Not surprisingly,
this is the viewpoint that I have used throughout the
book (with the exception of Chapter 7).

© 2006 by Taylor & Francis Group, LLC

A Kalman Filter Primer

My goal in writing this book was to produce the type
of text I wished had been available to me in the sum-
mer of 1999. What I wanted was a self-contained, “no
frills,” mathematically rigorous derivation of all the ba-
sic Kalman filter recursions from first principles. While
there were many books that had some of these charac-
teristics, I found none that had them all.

The “no frills” part of my “wish book” criterion man-
ifests in several aspects of my approach to writing the
present text. First, I consider very few examples. In addi-
tion, the state-space model I have focused on throughout
most of the book is a pared down version of more general
models (see, e.g., Chapter 8) that one often finds in the
literature. In my opinion, this simplification produces
substantial notational savings with very little concep-
tual downside. There is no doubt that complex notation
can create a learning barrier and the notation involved in
the Kalman filter can be quite formidable. Consequent-
ly, I have focused on a simpler model with the hopes
that this will make the reader’s initial contact with the
Kalman filter a bit less overwhelming.

To produce a self-contained treatment I have treated
only one topic: namely, the Kalman filter. In addition,
the writing style is intended to be genre generic and all
but a few of the tools I use are developed directly in the
text. Exceptions to the latter point include results from
standard mathematical statistics, regression and multi-
variate analysis. This is not a book on time series analy-
sis or even state-space models, for that matter. Readers
who are seeking that type of material should explore oth-
er avenues such as Durbin and Koopman (2001).

Finally, the “mathematically rigorous” aspect of the
book is aimed at giving the reader a fundamental un-
derstanding of how the Kalman filter works. For that
reason essentially every major result is proved in detail.
The techniques employed in the proofs are fundamental
to the area and hence can be adapted to solve other relat-
ed problems of interest. My goal in studying the Kalman

© 2006 by Taylor & Francis Group, LLC

Preface

filter was to understand its inner workings at a deep e-
nough level that I would be comfortable using it in my
own research and, perhaps the real acid test, become ca-
pable of writing code to implement it in practice. I have
written this text for those who desire a similar level of
immersion in the topic.

Both the nondiffuse and diffuse Kalman filters readi-
ly lend themselves to code development and I have tried
to emphasize this by including pseudo-code algorithmic
summaries at various points throughout the text. Imple-
mentations of these algorithms in Java can be download-
ed from math.asu.edu/˜eubank.

The book is organized as follows. First, in Chapter 1,
I lay out the basic prediction problem for signal-plus-
noise models, which include state-space models as a spe-
cial case. The Gramm-Schmidt algorithm and Cholesky
decomposition are derived in this setting and then spe-
cialized to state-space models, which have the addition-
al problem of state vector estimation, at the end of the
chapter.

Chapter 2 gives a complete, inherently recursive, char-
acterization of the covariance between the state and in-
novation vectors. This is the basic tool employed for de-
riving the forward and backward (or smoothing) Kalman
recursions in Chapters 4 and 5 as well as the algorithms
for computing Cholesky factorizations and inverse matri-
ces in Chapter 3. The key point is that the Kalman fil-
ter is basically a modified Cholesky algorithm that uses
the extra structure obtained from state-space models to
compute predictions orders of magnitude more efficient-
ly than is generally possible for their signal-plus-noise
parent.

Chapter 6 deals with the choice of the initial state vec-
tor. It turns out that I had reason to worry about this
point in 1978. The issue was not resolved satisfactorily
until the mid 1980’s.

Chapter 7 examines the special case of normal state-
space models. In that setting, the primary focus is on

© 2006 by Taylor & Francis Group, LLC

http://math.asu.edu/%7Eeubank/

A Kalman Filter Primer

evaluating the likelihood under both nondiffuse and d-
iffuse prior distributions for the initial state. The study
of state-space models concludes in Chapter 8 where the
results from Chapters 4–7 are extended to a model for-
mulation that is sufficiently general to account for most
situations that might arise in practice.

There are few books that are truly solo efforts and this
particular one is no exception. Most of my initial study
of Kalman filtering was conducted jointly with my friend
and erstwhile co-author Suojin Wang. This book would
not have been possible without the insights and skills I
have gained through collaboration with Suojin.

There are many fewer errors in this text as a result of
the careful proofreading conducted by my friends (and
graduate students) Yolanda Muñoz and Hyejin Shin. Help
with various formatting and LATEX issues provided by
Jessika Vakili and Nishith Arora is also gratefully ac-
knowledged. Kevin Sequeira resurrected this project from
near death and has provided both encouragement and
guidance on creating the type of end product I original-
ly had in mind when I wrote the first partial draft. The
hand written version of this initial draft was skillfully
converted to LATEX by Elaine Washington. A helpful dis-
cussion with Andrew Bremner about continued fractions
substantially improved my treatment of the case where
H, F, W and Q are not time dependent.

Finally, I have been fortunate to have my best friend-
s Lisa, Daisy and Shadow to keep me company and in
“good” spirits throughout yet another protracted writ-
ing effort. Their love and understanding humbles me and
allows me to assign a personal meaning to the word “b-
lessing.”

RANDALL L. EUBANK

© 2006 by Taylor & Francis Group, LLC

Contents

1 Signal-Plus-Noise Models 1

1.1 Introduction 1
1.2 The prediction problem 2

1.2.1 Best linear unbiased prediction . 4
1.2.2 Gramm-Schmidt and innovations 7
1.2.3 Gramm-Schmidt and Cholesky . 10

1.3 State-space models 12
1.4 What lies ahead 21

2 The Fundamental Covariance Structure 23

2.1 Introduction 23
2.2 Some tools of the trade 23
2.3 State and innovation covariances 29
2.4 An example 46

3 Recursions for L and L−1 53

3.1 Introduction 53
3.2 Recursions for L 54
3.3 Recursions for L−1 58
3.4 An example 64

4 Forward Recursions 67

4.1 Introduction 67
4.2 Computing the innovations 68
4.3 State and signal prediction 72
4.4 Other options 76

© 2006 by Taylor & Francis Group, LLC

Contents

4.5 Examples 82

5 Smoothing 89

5.1 Introduction 89
5.2 Fixed interval smoothing 90
5.3 Examples 100

6 Initialization 107

6.1 Introduction 107
6.2 Diffuseness 108

6.2.1 Prediction when S(0|0) = 0 . . . 112
6.2.2 Prediction when S(0|0) is “large” 118

6.3 Diffuseness and least-squares estimation 126
6.4 An example 131

7 Normal Priors 137

7.1 Introduction 137
7.2 Likelihood evaluation 138
7.3 Diffuseness 142
7.4 Parameter estimation 147
7.5 An example 150

8 A General State-Space Model 153

8.1 Introduction 153
8.2 KF recursions 156
8.3 Estimation of β 163
8.4 Likelihood evaluation 167

A The Cholesky Decomposition 169

B Notation Guide 177

References 183

Index 185

© 2006 by Taylor & Francis Group, LLC

1

Signal-Plus-Noise Models

1.1 Introduction

Both the theory and practice of statistics frequently in-
volves consideration of stochastic models evolving with
respect to a discrete, time-like, index variable. This book
is concerned with an important special class of such sto-
chastic processes that can be described using state-space

models. In this and subsequent chapters we will develop
a mathematical framework that can be used to under-
stand the computational algorithms that are widely used
in conducting statistical inference about these processes.

State-space models are examples of signal-plus-noise
models and, accordingly, we will begin the development
in Section 1.2 in the more general signal-plus-noise en-
vironment. This provides us with a broader view of pre-
diction problems while also allowing us to appreciate the
benefits that can be realized when a state-space frame-
work is appropriate. In particular, we will see that for
state-space models it is possible to develop algorithm-
s for computing predictions, parameter estimators, etc.,
that are orders of magnitude faster than for the gener-
al signal-plus-noise setting. These algorithms are usually
referred to under the titular umbrella of the Kalman filter

as a result of the pioneering work in Kalman (1960) and
Kalman and Bucy (1961).

1© 2006 by Taylor & Francis Group, LLC

2 A Kalman Filter Primer

1.2 The prediction problem

The standard statistical prediction problem involves us-
ing the observed values of one set of random variables (i.e.,
the predictors) to estimate or, more correctly, predict
the unobserved values of another set of random variables
(i.e., the predictands). The predictors and predictand-
s must be dependent (in a probabilistic sense) in order
for there to be any hope of accomplishing such a task.
The amount of knowledge one has about this dependence
then determines the specifics of how the predictors are
utilized in constructing a prediction formula or prescrip-
tion that translate predictors into actual predictions for
the predictands. Given a complete specification of the
joint distribution of the predictors and predictands, it
may be possible to obtain predictions that are optimal in
the sense of some performance criterion. However, there
is no universally acknowledged “best” performance cri-
terion and cases where one has complete knowledge of
joint probability distributions are virtually nonexistent
in practice.

There are various paradigms for carrying out predic-
tions when one possesses only partial knowledge about
dependence structure. Least-squares is one such meth-
od that requires only second order (i.e., covariance) in-
formation and provides “optimal” predictions in various
respects when the random variables in question are joint-
ly normally distributed. There are other reasons to em-
ploy least-squares; not the least of these is the property
that least-squares prediction prescriptions are typically
mathematically and computationally tractable. This is
particularly true when the prescription is taken to be
linear in the predictors. Accordingly, we will restrict our
attention to linear least-squares prediction in all that
follows.

To formulate the prediction problem we will think of

© 2006 by Taylor & Francis Group, LLC

Signal-Plus-Noise Models 3

the random variables in question as forming a time se-

ries or stochastic process. By stochastic process we mean a
collection of random variables that are indexed by a set
T . More precisely, suppose that for each t ∈ T there is
an associated random variable y(t). Then, this gives us
the stochastic process (or merely process if the contex-
t is clear) {y(t) : t ∈ T}. When discussing a process
{y(t) : t ∈ T} we will, on occasion, refer to the entire
collection of random variables as being the y process or
simply as y(·). When T corresponds to some subset of
the integers or the real line y(·), is sometimes called a
time series.

On occasion we will use the phrase “normal” to de-
scribe a stochastic process or time series {y(t) : t ∈
T}. This indicates, among other things, that the random
variables y(t) are normally distributed for each t in T .
But, there is actually much more to being “normal” than
this. In fact, for a process to be normal it must be true
that the collection of random variables y(t1), . . ., y(tk)
have a joint normal distribution for any set of indices
t1, . . ., tk in T and any finite integer k. An explanation
and discussion of the consequences of this definition for
“normality” can be found in, e.g., Doob (1953, Section
II.3).

Our development will focus entirely on time series with
the discrete time index T = {1, . . ., n} although simi-
lar treatments are also possible in the continuous time
case. (See, e.g., Chapter 4 of Gelb 1974.) In addition,
we will deal with the somewhat more general case where
the y process is vector valued. That is, for each t ∈ T

we observe p random variables y1(t), . . ., yp(t) that are
concatenated to form the random column vector y(t) =
(y1(t), . . ., yp(t))T . By working with vector, rather than
scalar, processes we gain considerable generality while
incurring only a minimal level of additional notational
overhead.

Suppose now that we observe a stochastic process that
produces p×1 vector responses or measurements y(t) for

© 2006 by Taylor & Francis Group, LLC

4 A Kalman Filter Primer

t = 1, . . ., n. A signal-plus-noise model assumes that the
observed process is the sum of a signal process {f(t) :
t = 1, . . ., n} having zero mean (i.e., E[f(t)] = 0 for
t = 1, . . ., n) and a zero mean noise process {e(t) : t =
1, . . ., n}. Thus, we have

y(t) = f(t) + e(t), t = 1, . . ., n, (1.1)

where

Cov(f(s), e(t)) = 0 for all t, s = 1, . . ., n, (1.2)

with 0 denoting a p × p matrix of all zeros, and

W = {Cov(e(s), e(t))}s,t=1:n

= diag(W (1), . . ., W (n)) (1.3)

for p × p, positive definite, covariance matrices W (1),
. . ., W (n). Given various subsets of {y(1), . . ., y(n)},
the goal is both point and interval prediction of the un-
known random signal vectors f(1), . . ., f(n).

1.2.1 Best linear unbiased prediction

For prediction purposes we will focus on linear predictors
that are unbiased and optimal in a least-squares sense.
To formulate this idea suppose that z is a r × 1 random
vector with mean µz that we wish to predict using an
observable m × 1 random vector v that has zero-mean.
We will consider linear predictors of form

ẑ(A, b) = Av + b

for an r × m matrix A and r × 1 vector b. The best linear

unbiased predictor (BLUP) of z is then defined to be the
minimizer of

E[z − ẑ(A, b)]T [z − ẑ(A, b)] (1.4)

© 2006 by Taylor & Francis Group, LLC

Signal-Plus-Noise Models 5

over all r × m matrices A and r × 1 vectors b, subject to
the side condition that E[ẑ(A, b)] = E[z]. The following
result characterizes some of the properties of the optimal
predictor.

Theorem 1.1 If Var(v) is nonsingular, criterion (1.4) is min-

imized by taking b = µz := bopt and

A = Cov(z, v)Var−1(v) := Aopt. (1.5)

The corresponding BLUP ẑ = ẑ(Aopt, bopt) has prediction

error variance-covariance matrix

E(z − ẑ)(z − ẑ)T = Var(z) − AoptVar(v)AT
opt

:= Vopt. (1.6)

The BLUP is invariant with respect to location and scale changes

in the sense that for any fixed k × r matrix B and k × 1 vec-

tor c, the BLUP of Bz + c is Bẑ + c with prediction error

variance-covariance matrix BVoptBT . Moreover, if c is ran-

dom with mean µc and is uncorrelated with z and v, the BLUP

of Bz + c is Bẑ + µc.

Proof. To establish (1.5) first observe that the unbiased-
ness condition entails that b = µz . So, it suffices to
restrict attention to the case where both z and v have
zero means and find the matrix A that is optimal in that
instance. Now note that if ẑ = Aoptv and z̃ = Av is any
other linear predictor, we have

E(z − z̃)T (z − z̃)

= E(z − ẑ − [z̃ − ẑ])T (z − ẑ − [z̃ − ẑ])

= E(z − ẑ)T (z − ẑ) − 2E(z − ẑ)T (z̃ − ẑ)

+E(z̃ − ẑ)T (z̃ − ẑ).

Now let tr denote the trace functional that sums the
diagonal elements of a matrix. This functional has the

© 2006 by Taylor & Francis Group, LLC

6 A Kalman Filter Primer

cyclic property that for two matrices C, D, tr[CD] =
tr[DC] assuming the products CD and DC are defined.
Using this cyclic property we have

E(z − ẑ)T (z̃ − ẑ)

= tr
{

(A − Aopt)Ev(z − ẑ)T
}

= tr
{

(A − Aopt)[Cov(v, z) − Var(v)AT
opt]

}

= 0,

which proves the first part of the theorem.
To establish location and scale invariance apply the

BLUP formula to prediction of Bz + c by Av + b for
a k × m matrix A and k × 1 vector b. The optimal b is
Bµz + c and the optimal choice of A is

Ãopt = Cov(Bz + c, v)Var−1(v)

= BCov(z, v)Var−1(v) = BAopt,

with Aopt as in (1.5). The form of the variance-covariance
matrix follows from the fact that Var(Bz +c−Bẑ−c) =
Var(B[z − ẑ]).

Finally, if c is random we have

E(Bz + c − (Aẑ + b))T (Bz + c − (Aẑ + b))

= E(Bz + µc − Aẑ − b)T (Bz + µc − Aẑ − b)

+2E(Bz + µc − Aẑ − b)T (c − µc)

+(c − µc)T (c − µc).

The middle term in the right hand side of this expression
vanishes and the result then follows from the location
and scale invariance property. �

Theorem 1.1 provides a cornerstone for subsequent de-
velopments and we will use it, often without explicit ref-
erence, throughout the rest of the book. Some specific
applications of (1.5)–(1.6) in the context of model (1.1)–
(1.3) include the case where z = f(t) for some fixed t

© 2006 by Taylor & Francis Group, LLC

Signal-Plus-Noise Models 7

and v represents a subset of the y(·) process. For ex-
ample, if the process has been observed up to time t,
then v = (yT (1), . . . , yT (t))T is a natural choice. The
result concerning location/scale invariance proves useful
when we subsequently consider multi-step ahead predic-
tions and in Chapter 8 where we examine a more general
model where there are nonzero means.

1.2.2 Gramm-Schmidt and innovations

In regression analysis it is often useful for interpretive
and/or computational reasons to orthogonalize the pre-
dictor variables. In our setting the predictors will gener-
ally be the y(·) response vectors for which our particu-
lar orthogonalization scheme, detailed below, will result
in the so-called innovation process ε(t), t = 1, . . ., n. To
produce the innovations we simply apply the Gramm-
Schmidt process (see, e.g., Davis 1975) to y(1), . . ., y(n).
To accomplish this we use the fact that the y(·) are vec-
tor valued functions on the probability space that is im-
plicit in the definition of model (1.1)–(1.3). In that re-
spect it would be more complete to use notation such as
y(t, ω) rather than y(t) with ω being an element of the
sample space Ω corresponding to the “experiment” that
generated the y(·) process. While we have adopted a no-
tation that suppresses the role of the probability space,
it is important to remember that the orthogonality we
refer to subsequently derives from thinking of the y(t)
as corresponding to an indexed (by t) collection of func-
tions on Ω rather than a single functions of the “time”
index t.

To initialize the Gramm-Schmidt recursion we use

ε(1) = y(1) (1.7)

R(1) = Var(ε(1)) = Var(y(1)). (1.8)

© 2006 by Taylor & Francis Group, LLC

8 A Kalman Filter Primer

Then,

ε(t) = y(t) −
t−1
∑

j=1
Cov(y(t), ε(j))R−1(j)ε(j) (1.9)

with

R(t) = Var(ε(t)) (1.10)

for t = 2, . . ., n.
The vectors {ε(t) : t = 1, . . ., n} are referred to as the

innovations or innovation process. One may quickly check
that they are block-wise orthogonal (or merely uncorre-
lated in this context) in the sense that

E ε(s)εT (t) = 0 for s �= t. (1.11)

In addition the Gramm-Schmidt construction method in-
sures that for each t = 1, . . ., n, {y(1), . . ., y(t)} and
{ε(1), . . ., ε(t)} span the same linear subspace. That
is, when considered as functions on the sample space Ω,
every linear combination of y(1), . . ., y(t) admits an e-
quivalent representation as a linear combination of ε(1),
. . ., ε(t) and conversely. Putting this together with (1.11)
has the consequence that ε(1), . . ., ε(t) provide an or-
thogonal basis for the linear subspace of functions on
the sample space Ω that can be written as linear combi-
nations of the random vectors y(1), . . ., y(t).

A direct application of formulas (1.5)–(1.6) along with
(1.11) reveals that the BLUP of f(t) obtained from the
random vectors {ε(1), . . ., ε(j)} has the representation

f(t|j) =
j
∑

k=1
Cov (f(t), ε(k))R−1(k)ε(k) (1.12)

with associated prediction error variance-covariance ma-

© 2006 by Taylor & Francis Group, LLC

Signal-Plus-Noise Models 9

trix

V (t|j) = E[f(t) − f(t|j)][f(t) − f(t|j)]T

= Var (f(t))

−
j
∑

k=1
Cov (f(t), ε(k))R−1(k)Cov (ε(k), f(t)).

(1.13)

Since the random vectors {ε(1), . . ., ε(j)} and {y(1),. . .,

y(j)} span the same linear space it follows that f(t|n)
and V (t|n) agree identically with the prediction and pre-
diction error variances and covariances that would have
been obtained by applying (1.5)–(1.6) directly to {y(1),
. . ., y(j)}. We will eventually see that there are some
computational advantages that arise in the state-space
setting from using the innovations in lieu of the respons-
es to formulate the prediction problem.

At this point a word or two is due on notation. While
there appears to be no universal standard on this score,
we will employ one of many variants on a common theme
that appears in the literature. (See, e.g., Kohn and Ans-
ley, 1989.) In this respect we will use a notation con-
taining three parts: statistical object, time point of es-
timation interest and an index that represents the part
of the observed y(·) data to be used in constructing the
object. Thus, f(t|r) indicates a predictor (i.e., a statis-
tic) of f(t) based on the response vectors y(1), . . . , y(r).
Similarly, V (t|r) is used to denote its prediction error
variance-covariance matrix. There is no question that no-
tation can provide a formidable barrier to entry into the
world of Kalman filtering. To help with this a table of
the key notational objects and their definitions is pro-
vided in Appendix B.

© 2006 by Taylor & Francis Group, LLC

10 A Kalman Filter Primer

1.2.3 Gramm-Schmidt and Cholesky

Another reason for focusing on the innovations concerns
their relationship to the Cholesky matrix factorization
algorithm that is described in detail in Appendix A. To
appreciate the connection between the Gramm-Schmidt
construction of the innovations and the Cholesky method
let

y = (yT (1), . . ., y
T (n))T

and write the variance-covariance matrix for y in its C-
holesky form as

Var(y) = LRL
T (1.14)

with L a block lower triangular matrix having identity
matrices on the diagonal and R a block diagonal matrix.
Then, we claim that

R = diag(R(1), . . ., R(n)) (1.15)

and L = {L(t, j)}t,j=1:n with

L(t, j) =






Cov (y(t), ε(j))R−1(j) , j = 1, . . ., t − 1,

I , j = t,

0 , j > t,

(1.16)

where R(j) and ε(j) are defined in (1.7)–(1.10). Thus,
computation of the innovations is equivalent to comput-
ing the Cholesky factorization of Var(y) and conversely.

To verify our claim observe from (1.9)–(1.10) that the
vector of innovations

ε = (εT (1), . . . , ε
T (n))T

can be expressed as

ε = y + Aε

© 2006 by Taylor & Francis Group, LLC

Signal-Plus-Noise Models 11

with A = I − L for L defined in (1.16). Thus, Lε =
y and, since the ε(j) are block-wise uncorrelated with
Var(ε) = R, the identity Var(y) = LRLT is established.
The uniqueness of the Cholesky decomposition completes
the proof.

The connection between the Cholesky factorization and
the Gramm-Schmidt orthogonalization method has im-
portant computational implications. To see this let

f = (fT (1), . . ., f
T (n))T

e = (eT (1), . . ., e
T (n))T ,

and observe that

f̂ = Cov(f, y)Var(y)−1
y

= Cov(y − e, y)Var(y)−1
y

= y − WVar(y)−1
y

= y − W (LT)−1
R

−1
L
−1

y

= y − W (LT)−1
R

−1
ε. (1.17)

In establishing this we employed the identity f = y −
e and the fact that Cov(e, y) = W since f and e are
uncorrelated. A similar calculation produces

V = Var(f − f̂)

= Var(f) − Cov(f, y)Var(y)−1Cov(y, f)

= W − W (LT)−1R−1L−1W (1.18)

with V (t|n), t = 1, . . ., n, being the diagonal blocks of
this matrix. Consequently, an efficient implementation of
the Cholesky/Gramm-Schmidt recursion is one path that
can be taken toward developing computational methods
for prediction in model (1.1).

© 2006 by Taylor & Francis Group, LLC

12 A Kalman Filter Primer

1.3 State-space models

Let us now specialize the previous development to the
case where the measurement vectors y(t) in (1.1) follow
a state-space model. By this we mean that the signal vectors
may be represented as

f(t) = H(t)x(t),

for q × 1 unobserved state vectors x(t), t = 1, . . . ,n, and
known matrices H(t), t = 1, . . . ,n. The state vectors are
assumed to propagate via the state equations

x(t + 1) = F (t)x(t) + u(t)

with F (t), t = 0, . . ., n − 1, known q × q matrices and
u(0), . . ., u(n − 1) unobservable, zero mean random per-
turbations. There is also an initial state vector x(0) that
initializes the process.

By combining all the above specifications we can for-
mally set out the state-space model as:

y(t) = H(t)x(t) + e(t), t = 1, . . . ,n, (1.19)

and

x(t + 1) = F (t)x(t) + u(t), t = 0, . . . ,n − 1, (1.20)

where the e(t), u(t − 1), t = 1, . . ., n, and x(0) all have
zero means and the model’s covariance structure is de-
termined by the conditions

Cov(e(t), e(s)) = 0, s �= t, (1.21)

Var(e(t)) = W (t), t = 1, . . ., n, (1.22)

© 2006 by Taylor & Francis Group, LLC

Signal-Plus-Noise Models 13

for positive-definite matrices W (t), t = 1, . . ., n,

Cov(u(s), u(t)) = 0, s �= t, (1.23)

Var(u(t)) = Q(t), t = 0, . . ., n − 1, (1.24)

for positive semi-definite matrices Q(t), t = 0, . . ., n−1,

Var(x(0)) = S(0|0), (1.25)

and, for t = 1, . . . ,n and s = 0, . . ., n − 1,

Cov(e(t), u(s)) = 0, (1.26)

Cov(e(t), x(0)) = 0, (1.27)

Cov(u(s), x(0)) = 0. (1.28)

The presence of the initial state vector x(0) is actually
somewhat problematic. While there are situations where
S(0|0) is known, there are many instances where this is
not the case which causes practical difficulties in initial-
izing the model. The problem can be resolved in ways
that are discussed in Chapter 6. For now we will ignore
this aspect of the state-space formulation and proceed
as if S(0|0) in (1.25) is known.

In the state-space model least-squares estimation of the
signal f(t) becomes equivalent to estimation of the state
vector x(t). In this regard the BLUP of x(t) based on
ε(1), . . ., ε(j) is

x(t|j) =
j
∑

k=1
Cov (x(t), ε(k))R−1(k)ε(k) (1.29)

with associated prediction error variance-covariance ma-

© 2006 by Taylor & Francis Group, LLC

14 A Kalman Filter Primer

trix

S(t|j) = E[x(t) − x(t|j)][x(t) − x(t|j)]T

= Var (x(t))

−
j
∑

k=1
Cov (x(t), ε(k))R−1(k)Cov (ε(k), x(t)).

(1.30)

Then, either directly or by using the linear transforma-
tion invariance of BLUPs, we see that

f(t|j) = H(t)x(t|j)

and

V (t|j) = H(t)S(t|j)HT (t)

are the BLUP and prediction error variance-covariance
matrix for estimation of f(t) from ε(1), . . ., ε(j).

Consider now the problem of predicting x(t + k) (or
f(t + k)) given data up to time index t.

Proposition 1.1 For k ≥ 1, the BLUP of x(t + k) from

ε(1), . . ., ε(t) is x(t + k|t) = F (t + k − 1) · · · F (t)x(t|t).

Proof. Let us begin with k = 1 and write x(t + 1) =
F (t)x(t) + u(t) with u(t) being uncorrelated with x(t)
and ε(1), . . ., ε(t). The invariance of the BLUP for x(t)
under a scale change and random (zero mean) location
shift detailed in Theorem 1.1 can then be applied to see
that the BLUP of x(t + 1) is F (t)x(t|t). One may now
proceed by induction to verify the general conclusion of
the theorem. �

Proposition 1.1 has the consequence that a BLUP x(t|t)
at any given time index t can be easily modified for use
in the prediction of a state vector at some future index

© 2006 by Taylor & Francis Group, LLC

Signal-Plus-Noise Models 15

values. A similar conclusion applies to estimation of the
signal since

f(t + k|t) = H(t + k)x(t + k|t)

= H(t + k)F (t + k − 1) · · · F (t)x(t|t).

There are many time series models that admit state-
space representations. However, for our purposes it will
suffice to concentrate primarily on the following two ex-
amples.

Example: AR and MA Processes. A time series y(·) is said to be
a mth order moving average (MA) process if there are
known p × p matrices A(1), . . . , A(m) such that

y(t) =
m∑

j=1
A(j)e(t − j) + e(t), t = 1, . . . , n, (1.31)

for block-wise uncorrelated, zero mean, random p-vectors
e(1), . . . , e(n) with common p × p covariance matrix

W0 = W (1) = · · · = W (n)

and initializing vector

x(0) =











e(−1)
e(−2)

.

.

.
e(−m)











= 0.

To write (1.31) in state-space form define mp× 1 state
vectors by

x(t) =









e(t − 1)

.

.

.
e(t − m)









.

© 2006 by Taylor & Francis Group, LLC

16 A Kalman Filter Primer

Then, for t = 0, . . ., n − 1,

x(t + 1) = FMAx(t) + u(t)

with FMA the mp × mp matrix

FMA :=













0 0 · · · 0 0
I 0 · · · 0 0
0 I · · · 0 0

.

.

.

.

.

.
0 0 · · · I 0













(1.32)

and u(t) = T (m)e(t) for T (m) the mp × p matrix

T(m) :=











I

0

.

.

.
0











. (1.33)

Thus, the state-space representation holds with

H(t) = [A(1), A(2), . . ., A(m)] := HMA,

for t = 1, . . ., n and

F (t) = FMA,

Q(t) = T (m)W0T
T (m)

=











W0 0 · · · 0
0 0 · · · 0

.

.

.

.

.

.
. . .

.

.

.
0 0 · · · 0











:= QMA

© 2006 by Taylor & Francis Group, LLC

Signal-Plus-Noise Models 17

for t = 0, . . ., n − 1.

An rth order autoregressive (AR) process has the form

y(t) =
r∑

j=1
B(j)y(t − j) + e(t)

with B(1), . . . , B(r) known coefficient matrices, the e(·)
zero mean, block wise uncorrelated random vectors and

y(−1) = · · · = y(−r) = 0.

In this case we can take

x(t) =









y(t − 1)

.

.

.
y(t − r)









giving x(0) = 0 and

x(t + 1) = FARx(t) + T(r)e(t)

for

FAR :=













B(1) B(2) · · · B(r − 1) B(r)
I 0 · · · 0 0
0 I · · · 0 0

.

.

.
0 0 · · · I 0













,

H(t) = [B(1), . . . , B(r)] := HAR,

T (r) defined as in (1.33) for the MA case and

Q(t) = T (r)W0T
T (r) := QAR.

© 2006 by Taylor & Francis Group, LLC

18 A Kalman Filter Primer

By combining the MA and AR models we obtain an
ARMA or autoregressive moving average process with

y(t) =
r∑

j=1
B(j)y(t − j) +

m∑

j=1
A(j)e(t − j) + e(t).

This has a state-space representation with state vector

x(t) =


















y(t − 1)

.

.

.
y(t − m)
e(t − 1)

.

.

.
e(t − m)


















,

satisfying x(0) = 0 and

FARMA := [FAR, FMA]

u(t) =

[

T(r)
T(m)

]

e(t),

Q(t) =

[

T(r)
T(m)

]

W0
[

T T (r) TT (m)
]

:= QARMA,

H(t) = [HAR, HMA] := HARMA.

A key feature of the MA, AR and ARMA models is that
their associated F (t), Q(t), H(t) and W (t) matrices are
constant as a function of t. Thus, when we subsequently
treat examples where H(t), F (t), Q(t) and W (t) are time
independent, this will have direct applications to AR,
MA and ARMA model settings.

© 2006 by Taylor & Francis Group, LLC

Signal-Plus-Noise Models 21

would be to “filter out” the white noise from the respons-
es in an attempt to recover the actual values from the
Brownian motion sample path that occurred at the sam-
pling point.

1.4 What lies ahead

In the chapters that follow we study computational meth-
ods for obtaining the quantities f(t|j), V (t|j), x(t|j)
and S(t|j) in (1.12)–(1.13) and (1.29)–(1.30) in the state-
space setting. As a result of our expansions for f(t|j) and
x(t|j) using the orthogonal innovation basis vectors, this
is tantamount to efficiently computing the covariance
matrices Cov(f(t), ε(k)), Cov(x(t), ε(k)), R(k), k = 1,
. . . , j as well as the innovations ε(1), . . . , ε(k). The com-
mon component in all these factors is the innovation
vectors whose computation is linked directly to the C-
holesky factorization of Var(y). Consequently, the Chol-
esky decomposition is the unifying theme for all that fol-
lows and is the perspective we will adopt for viewing de-
velopments throughout the text.

In the next chapter we lay the groundwork for Chap-
ters 3–5 by establishing the essential recurrence struc-
ture for the covariances Cov(x(t), ε(k)) that arise in the
state vector BLUPs (1.29) and their associated predic-
tion error variance-covariance matrices (1.30). Then, in
Chapter 3, we show how this structure can be exploited
to obtain a computationally efficient, modified Cholesky
factorization of Var(y) as well as Var−1(y).

Chapters 4-5 use the results in Chapters 2–3 to de-
rive the forward and backward (i.e., the smoothing step)
Kalman filter recursions. In the case of signal estima-
tion, we will see that these are basically straightforward
consequences of the efficient Cholesky factorization for
Var(y) that becomes possible under a state-space formu-
lation.

© 2006 by Taylor & Francis Group, LLC

20 A Kalman Filter Primer

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

τ

y(t)
x(t)

FIGURE 1.1

Sampling from Brownian motion

actual values of the unobserved Brownian motion sam-
ple path at the τj (indicated by “+” symbols) recorded
without the white noise perturbations. The actual sam-
pled responses/measurements which include the white
noise disturbances are represented by circles. The sam-
ples were taken at n = 100 equally spaced points τt =
t/100, t = 1, . . ., 100 with the added noise variables hav-
ing variances W0 = .025. The goal in this particular case

© 2006 by Taylor & Francis Group, LLC

Signal-Plus-Noise Models 21

would be to “filter out” the white noise from the respons-
es in an attempt to recover the actual values from the
Brownian motion sample path that occurred at the sam-
pling point.

1.4 What lies ahead

In the chapters that follow we study computational meth-
ods for obtaining the quantities f(t|j), V (t|j), x(t|j)
and S(t|j) in (1.12)–(1.13) and (1.29)–(1.30) in the state-
space setting. As a result of our expansions for f(t|j) and
x(t|j) using the orthogonal innovation basis vectors, this
is tantamount to efficiently computing the covariance
matrices Cov(f(t), ε(k)), Cov(x(t), ε(k)), R(k), k = 1,
. . . , j as well as the innovations ε(1), . . . , ε(k). The com-
mon component in all these factors is the innovation
vectors whose computation is linked directly to the C-
holesky factorization of Var(y). Consequently, the Chol-
esky decomposition is the unifying theme for all that fol-
lows and is the perspective we will adopt for viewing de-
velopments throughout the text.

In the next chapter we lay the groundwork for Chap-
ters 3–5 by establishing the essential recurrence struc-
ture for the covariances Cov(x(t), ε(k)) that arise in the
state vector BLUPs (1.29) and their associated predic-
tion error variance-covariance matrices (1.30). Then, in
Chapter 3, we show how this structure can be exploited
to obtain a computationally efficient, modified Cholesky
factorization of Var(y) as well as Var−1(y).

Chapters 4-5 use the results in Chapters 2–3 to de-
rive the forward and backward (i.e., the smoothing step)
Kalman filter recursions. In the case of signal estima-
tion, we will see that these are basically straightforward
consequences of the efficient Cholesky factorization for
Var(y) that becomes possible under a state-space formu-
lation.

© 2006 by Taylor & Francis Group, LLC

22 A Kalman Filter Primer

Chapter 6 deals with the problem of specifying the dis-
tribution (or value) for the initial state vector x(0). One
way to circumvent this problem is to employ a diffuse
specification which leads to the diffuse Kalman filter
that we study in some detail.

In the case where y(·) and x(·) are normal process-
es, the observed responses can be used to obtain a sam-
ple likelihood that can be useful for inference about un-
known model parameters. We show how the Kalman fil-
ter can be used to efficiently evaluate the likelihood for
standard as well as diffuse specifications for the distri-
bution of x(0) in Chapter 7. Finally, to complete our
treatment of the Kalman filter, a more general state–
space model is introduced in Chapter 8 and we describe
how the results from the previous chapters extend to this
case.

© 2006 by Taylor & Francis Group, LLC

2

The Fundamental Covariance
Structure

2.1 Introduction

In this chapter we will lay the foundation for Chapters
3–5. In that regard, our goal is to obtain a complete char-
acterization of the covariance relationship between the
innovations and the state vectors. Providing a detailed
exposition of this structure is the focus of Section 2.3.
First, however, we develop several tools that are need-
ed to prove Lemma 2.4 in Section 2.3 as well as other
results in subsequent chapters.

2.2 Some tools of the trade

To begin let us recall some of the basic formulations from
Chapter 1. First, the assumption is that we have respons-
es given by

y(t) = H(t)x(t) + e(t) (2.1)

with the state vectors developing from the recursion

x(t + 1) = F (t)x(t) + u(t). (2.2)

23
© 2006 by Taylor & Francis Group, LLC

24 A Kalman Filter Primer

Here e(1), . . ., e(n), u(0), . . ., u(n − 1), x(0) are all zero
mean, uncorrelated random vectors having Var(e(j)) =
W (j), j = 1, . . ., n, Var (u(j)) = Q(j), j = 0, . . ., n − 1
and Var(x(0)) = S(0|0). The responses are then trans-
formed into the innovations via the Gramm-Schmidt re-
cursion:

ε(1) = y(1),

R(1) = Var(ε(1)) = Var(y(1))

and

ε(t) = y(t) −
t−1
∑

j=1
Cov(y(t), ε(j))R−1(j)ε(j) (2.3)

with

R(t) = Var(ε(t)) (2.4)

for t = 2, . . ., n.
From the innovations we obtain the BLUP of x(t) from

y(1), . . ., y(j) as

x(t|j) =
j
∑

i=1
Cov(x(t), ε(i))R−1(i)ε(i) (2.5)

with associated prediction error variance-covariance ma-
trix

S(t|j) = Var[x(t) − x(t|j)]

= Var(x(t))

−
j
∑

i=1
Cov(x(t), ε(i))R−1(i)Cov(ε(i), x(t))

= Var(x(t)) − Var(x(t|j)). (2.6)

© 2006 by Taylor & Francis Group, LLC

The Fundamental Covariance Structure 25

Note that

Cov(x(t), x(t|j))

=
j
∑

i=1
Cov(x(t), ε(i))R−1(i)Cov(ε(i), x(t))

= Var(x(t|j)).

Thus, x(t|j) has the orthogonality property

Cov(x(t) − x(t|j), x(t|j)) = 0 (2.7)

or, equivalently,

S(t|j) = Cov(x(t) − x(t|j), x(t)). (2.8)

We will now begin our study of the relationships be-
tween the innovations, least squares predictors and state
vectors. For this purpose it will be worthwhile to first
set out a few important facts that will arise again and
again in our study of state-space models. Specifically, we
can see that the following properties are immediate con-
sequences of the state-space model assumptions and the
definition of the innovations:

(F1) ε(t) is uncorrelated with ε(s), s �= t and e(s)
for s > t.

(F2) e(t) is uncorrelated with x(s) for all s.

(F3) u(t) is uncorrelated with x(s), y(s), ε(s) for
s ≤ t.

As an illustration of the use of (F1), note that by com-

© 2006 by Taylor & Francis Group, LLC

26 A Kalman Filter Primer

bining (F1), (2.1)–(2.2) and (2.3) we obtain

ε(t) = y(t) −
t−1
∑

j=1
Cov(y(t), ε(j))R−1(j)ε(j)

= H(t)x(t) + e(t)

−
t−1
∑

j=1
Cov(H(t)x(t) + e(t), ε(j))R−1(j)ε(j)

= H(t)[x(t) −
t−1
∑

j=1
Cov(x(t), ε(j))R−1(j)ε(j)]

+e(t)

= H(t)[x(t) − x(t|t − 1)] + e(t). (2.9)

Many of the developments that follow depend on our
being able to efficiently compute the quantities S(t|t −
1), S(t|t) in (2.6) and R(t) in (2.4). We conclude this sec-
tion by establishing recursive formulae for each of these
three quantities.

Lemma 2.1 Let

S(1|0) := Var(x(1)). (2.10)

Then,

S(t|t) = S(t|t − 1)

−S(t|t − 1)HT (t)R−1(t)H(t)S(t|t − 1)

(2.11)

for t = 1, . . ., n.

© 2006 by Taylor & Francis Group, LLC

The Fundamental Covariance Structure 27

Proof. From (2.6)

S(t|t) = S(t|t − 1)

−Cov(x(t), ε(t))R−1(t)Cov(ε(t), x(t)).

We can now use (2.8)–(2.9) along with (F2) to complete
the proof. �

Lemma 2.2 Define S(1|0) as in (2.10). Then, for t = 1,

. . ., n,

S(t|t − 1) = F (t − 1)S(t − 1|t − 1)F T (t − 1)

+Q(t − 1). (2.12)

Proof. Proposition 1.1 has the consequence that for t =
2, . . ., n

x(t) − x(t|t − 1)

= F (t − 1)x(t − 1) + u(t − 1)

−F (t − 1)x(t − 1|t − 1)

= F (t − 1)[x(t − 1) − x(t − 1|t − 1)]

+u(t − 1). (2.13)

The result now follows from the definition of S(t−1|t−1)
in (2.6) and (F3). �

Lemma 2.3 Let S(1|0) be defined as in (2.10). Then,

R(t) = H(t)S(t|t − 1)HT (t) + W (t) (2.14)

for t = 1, . . ., n.

© 2006 by Taylor & Francis Group, LLC

28 A Kalman Filter Primer

Proof. First note that

R(1) = Var(ε(1)) = Var(y(1)) = Var[H(1)x(1) + e(1)]

= H(1)Var(x(1))HT (1) + W (1)

due to (F2). The result for t = 2, . . ., n is immediate
from (2.9) and (F2). �

As a consequence of Lemmas 2.1-2.3 we can recursive-
ly update S(t|t − 1), S(t|t) and R(t) via the following
algorithm.

Algorithm 2.1 This algorithm computes S(t|t−1), R(t)
and S(t|t) for t = 1, . . .n.

/*Initialization*/
S(1|0) = F (0)S(0|0)F T (0) + Q(0)
R(1) = H(1)S(1|0)HT (1) + W (1)
S(1|1) = S(1|0) − S(1|0)HT (1)R−1(1)H(1)S(1|0)
for t = 2 to n

S(t|t − 1) = F (t − 1)S(t − 1|t − 1)F T (t − 1)
+Q(t − 1)

R(t) = H(t)S(t|t − 1)HT (t) + W (t)
S(t|t) = S(t|t − 1)

−S(t|t − 1)HT (t)R−1(t)H(t)S(t|t − 1)
end for

Note from Algorithm 2.1 that for each t the amount of
work involved in evaluating S(t|t − 1), S(t|t) and R(t)
depends only on the dimensions of the matrices and not
on n. Thus, assuming n to be the dominant computa-
tional factor, the above recursion returns the entire col-
lection of matrices S(1|0), R(1), S(1|1), . . ., S(n|n − 1),
R(n), S(n|n) in a total of order n floating point opera-
tions or flops.

© 2006 by Taylor & Francis Group, LLC

The Fundamental Covariance Structure 29

2.3 State and innovation covariances

The stage has now been set to accomplish the goals of
this chapter. Specifically, we are ready to derive a recur-
sive characterization for the quantities Cov(x(t), ε(j))
that appear, for example, in the BLUP for x(t) in (2.5)
and its associated prediction error covariance matrix in
(2.6). We state the result formally in Lemma 2.4 below.

Lemma 2.4 Let

S(1|0) := Var(x(1)) = F (0)S(0|0)F T (0) + Q(0).

Then, for t = 1, . . ., n,

Cov(x(t), ε(t)) = S(t|t − 1)HT (t) (2.15)

and, for j ≤ t − 1,

Cov(x(t), ε(j)) = F (t − 1) · · · F (j)S(j|j − 1)HT (j).

(2.16)

Let

M(t) = F (t)−F (t)S(t|t−1)HT (t)R−1(t)H(t). (2.17)

Then, for t = n − 1, . . ., 1 and j ≥ t + 1,

Cov(x(t), ε(j))

= S(t|t − 1)MT (t)MT (t + 1) · · · M
T (j − 1)HT (j).

(2.18)

This lemma provides a key for developing recursive
computational schemes for evaluating the nq × np co-

© 2006 by Taylor & Francis Group, LLC

30 A Kalman Filter Primer

variance matrix

ΣXε = {σXε(t, j)}t,j=1:n

= {Cov(x(t), ε(j))}t,j=1:n (2.19)

as well as the BLUPs of the signal and state vectors. For
the moment we will concentrate on efficiently computing
ΣXε. By efficient we mean a small number of flops and
in this respect the very best we could generally hope for
would be to evaluate all of ΣXε in order n2 operations
in cases where p and q are “small” relative to n. Clear-
ly, such a recursion is only possible if the calculation of
each element of ΣXε can be accomplished in an amoun-
t of computational effort that is independent of n. We
will see that this is, in fact, the case for the state-space
setting.

To begin exploring the implications of Lemma 2.4 let
us consider how to efficiently calculate the diagonal and
below diagonal entries of ΣXε. Using Lemma 2.4 we see
that the first two columns of ΣXε can be written as

S(1|0)HT (1)
F (1)S(1|0)HT (1)

F (2)F (1)S(1|0)HT (1)

.

.

.
F (n − 2) · · · F (1)S(1|0)HT (1)
F (n − 1) · · · F (1)S(1|0)HT (1)

and

S(1|0)MT (1)HT (2)
S(2|1)HT (2)

F (2)S(2|1)HT (2)

.

.

.
F (n − 2) · · · F (2)S(2|1)HT (2)
F (n − 1) · · · F (2)S(2|1)HT (2)

© 2006 by Taylor & Francis Group, LLC

The Fundamental Covariance Structure 31

By next considering the third column, then the fourth,
etc., we can detect several patterns in the elements of
ΣXε. In particular, we see that the diagonal and below
diagonal blocks for the first two columns of ΣXε have a
progressive nature that appears like

S(1|0)HT (1)

×F (1)

��
F (1)S(1|0)HT (1)

×F (2)

��
F (2)F (1)S(1|0)HT (1)

×F (3)

��
.
.
.

×F (n−2)

��
F (n − 2) · · · F (1)S(1|0)HT (1)

×F (n−1)

��
F (n − 1) · · · F (1)S(1|0)HT (1)

© 2006 by Taylor & Francis Group, LLC

32 A Kalman Filter Primer

and

S(2|1)HT (2)

×F (2)

��
F (2)S(2|1)HT (2)

×F (3)

��
.
.
.

×F (n−2)

��
F (n − 2) · · · F (2)S(2|1)HT (2)

×F (n−1)

��
F (n − 1) · · · F (2)S(2|1)HT (2)

By extrapolating from what we have observed in these
special cases we can determine that the diagonal and
below diagonal blocks of ΣXε can be computed on a
row-by-row basis by simply “updating” entries from pre-
vious rows through pre-multiplication by an appropriate
F (·) matrix. That is, we can use the elements of the tth
block row of ΣXε to evaluate all the (strictly) below
diagonal blocks of the (t + 1)st row block through pre-
multiplication by F (t). The (t +1)st or diagonal column
block is then obtained from Lemma 2.4 as Cov(x(t +

© 2006 by Taylor & Francis Group, LLC

The Fundamental Covariance Structure 33

1), ε(t + 1)) = S(t + 1|t)HT (t + 1). The following pro-
vides an algorithmic implementation of these ideas.

Algorithm 2.2 This algorithm computes the diagonal
and below diagonal blocks of ΣXε.

σXε(1, 1) = S(1|0)HT (1)
for t = 2 to n

for j = 1 to t − 1
σXε(t, j) = F (t − 1)σXε(t − 1, j)

end for

σXε(t, t) = S(t|t − 1)HT (t)
end for

Algorithm 2.2 is an example of a forward recursion in the
sense that it works its way from the upper left hand cor-
ner of ΣXε down to the lower right hand block of the
matrix. We should also note that there is nothing special
about evaluation of ΣXε on a row-by-row basis. The en-
tire first column block could have been evaluated, then
the diagonal and below diagonal blocks of the second col-
umn block, etc. Our row-by-row approach is motivated
by developments in later chapters where the elements of
ΣXε must be evaluated in a manner that is dictated by
the temporal sequence of the data’s collection.

Upon examining Algorithm 2.2 we see that the tth step
of the recursion involves multiplications of only q × q

and q × p matrices. Consequently, the overall computing
effort that is needed to evaluate the diagonal and below
diagonal blocks of ΣXε is O(n2) flops provided that p, q

are small relative to n.
Now let us consider how one might compute the above

diagonal entries for ΣXε. Similar to what we did for the
below diagonal entries let us start by using Lemma 2.4 to
write out the last two columns for ΣXε. Column (n− 1)

© 2006 by Taylor & Francis Group, LLC

34 A Kalman Filter Primer

is seen to have the form

S(1|0)MT (1) · · · MT (n − 2)HT (n − 1)
S(2|1)MT (2) · · · MT (n − 2)HT (n − 1)

.

.

.
S(n − 3|n − 4)MT (n − 3)MT (n − 2)HT (n − 1)

S(n − 2|n − 3)MT (n − 2)HT (n − 1)
S(n − 1|n − 2)HT (n − 1)

F (n − 1)S(n − 1|n − 2)HT (n − 1)

while the blocks in column n are

S(1|0)MT (1) · · · MT (n − 1)HT (n)
S(2|1)MT (2) · · · MT (n − 1)HT (n)

.

.

.
S(n − 3|n − 4)MT (n − 3) · · · MT (n − 1)HT (n)

S(n − 2|n − 3)MT (n − 2)MT (n − 1)HT (n)
S(n − 1|n − 2)MT (n − 1)HT (n)

S(n|n − 1)HT (n)

The pattern that appears here is similar to what we
saw in working out the forward recursion for the diag-
onal and below diagonal elements of ΣXε in the sense
that each row can be updated (or “downdated”) as we
move (backward) to the row above through the use of a
common pre-multiplier. If we set A(t, t) = HT (t), then
we need to update and retain the matrices

A(t, j) = M
T (t) · · · M

T (j − 1)HT (j), j = t +1, . . ., n,

that appear in the above diagonal column blocks for the
tth row. These matrices can then be used to compute the
new row blocks on each backward step with the updat-
ing accomplished via the relation A(t − 1, j) = MT (t −
1)A(t, j). The resulting matrices are then pre-multiplied
by S(t − 1|t − 2) to obtain the blocks in the (t − 1)th

© 2006 by Taylor & Francis Group, LLC

The Fundamental Covariance Structure 35

row of ΣXε. In particular, for our two special cases this
updating process can be depicted as

S(1|0)A(1, n − 1)

S(2|1)A(2, n − 1)

MT (1)A(2,n−1)

��

.

.

.

MT (2)A(3,n−1)

��

S(n − 3|n − 4)A(n − 3, n − 1)

MT (n−4)A(n−3,n−1)

��

S(n − 2|n − 3)A(n − 2, n − 1)

MT (n−3)A(n−2,n−1)

��

S(n − 1|n − 2)A(n − 1, n − 1)

MT (n−2)A(n−1,n−1)

��

F (n − 1)S(n − 1|n − 2)HT (n − 1)

© 2006 by Taylor & Francis Group, LLC

36 A Kalman Filter Primer

for the blocks in column n − 1 and

S(1|0)A(1, n)

S(2|1)A(2, n)

MT (1)A(2,n)

��

.

.

.

MT (2)A(3,n)

��

S(n − 3|n − 4)A(n − 3, n)

MT (n−4)A(n−3,n)

��

S(n − 2|n − 3)A(n − 2, n)

MT (n−3)A(n−2,n)

��

S(n − 1|n − 2)A(n − 1, n)

MT (n−2)A(n−1,n)

��

S(n|n − 1)A(n, n)

MT (n−1)A(n,n)

��

© 2006 by Taylor & Francis Group, LLC

The Fundamental Covariance Structure 37

for the blocks in column n. An algorithmic description
of the above considerations is as follows.

Algorithm 2.3 This algorithm computes the above di-
agonal blocks of ΣXε.

A(n) = MT (n − 1)HT (n)
σXε(n − 1, n) = S(n − 1|n − 2)A(n)
for t = n − 2 to 1

A(t + 1) = MT (t)HT (t + 1)
σXε(t, t + 1) = S(t|t − 1)A(t + 1)
for k = (t + 2) to n

A(k) := MT (t)A(k)
σXε(t, k) = S(t|t − 1)A(k)

end for

end for

In contrast to Algorithm 2.2, Algorithm 2.3 is an ex-
ample of a backward recursion. In this case computations
proceed in “reverse” starting with a block matrix in the
lower right hand corner of ΣXε (i.e., the (n − 1)st row
and nth column block) and ending with an upper right
hand block (i.e., the first row and second column block)
of the matrix.

Arguing as we did for Algorithm 2.2, we see that O(n2)
flops will also be needed to evaluate the upper diagonal
blocks of ΣXε. Accordingly, the entire matrix can be
obtained in order n2 operations.

Proof of Lemma 2.4. First, note that (2.15) follows immedi-
ately from (2.8)–(2.9) and (F2). For (2.16) with j ≤ t−1
we then use (2.2) to see that

x(t) = F (t − 1) · · · F (j)x(j) + Z(t)

with Z(t) depending only on u(t − 1), . . ., u(j). In light
of (F3), Z must be uncorrelated with ε(j) and the result
then follows from (2.15).

© 2006 by Taylor & Francis Group, LLC

38 A Kalman Filter Primer

The backward recursion (2.18) is somewhat more dif-
ficult to establish. First use (2.9) and (F2) followed by
(2.13), (F3) and, finally, (2.8) and (2.11) to see that

Cov (x(t), ε(t + 1))

= Cov (x(t), x(t + 1) − x(t + 1|t))HT (t + 1)

= Cov (x(t), x(t) − x(t|t))F T (t)HT (t + 1)

= S(t|t)F T (t)HT (t + 1)

= S(t|t − 1)MT (t)HT (t + 1)

which proves (2.18) for j = t + 1.
By exactly the same process we used for j = t + 1 we

find that Cov(x(t), ε(t + 2)) has the form

Cov(x(t), x(t + 1) − x(t + 1|t + 1))F T (t + 1)HT (t + 2).

Now, by definition, (F3) and (2.15) we can express x(t+
1) − x(t + 1|t + 1) as

x(t + 1) −
t∑

j=1
Cov(x(t + 1), ε(j))R−1(j)ε(j)

−Cov(x(t + 1), ε(t + 1))R−1(t + 1)ε(t + 1)

= F (t)[x(t) − x(t|t)]

−S(t + 1|t)HT (t + 1)R−1(t + 1)ε(t + 1) + u(t).

Thus, using (F3), (2.8), the definition of M(t) and our
previous result for j = t + 1 we see that the covariance

© 2006 by Taylor & Francis Group, LLC

The Fundamental Covariance Structure 39

between x(t) and x(t + 1) − x(t + 1|t + 1) is

Cov(x(t), x(t) − x(t|t))F T (t)

−Cov(x(t), ε(t + 1))R−1(t + 1)H(t + 1)S(t + 1|t)

= S(t|t − 1)MT (t)[I

−H
T (t + 1)R−1(t + 1)H(t + 1)S(t + 1|t)].

The conclusion then follows from post-multiplication by
F T (t + 1)HT (t + 2) and the definition of MT (t + 1).

To establish the general case we proceed by induction
and assume that for k = t + j

Cov(x(t), ε(k − 1))

= S(t|t − 1)MT (t) · · · M
T (k − 2)HT (k − 1).

(2.20)

As a result of (2.9) and (F2), this is equivalent to saying
that the covariance between x(t) and x(k − 1) − x(k −
1|k − 2) is

S(t|t − 1)MT (t) · · · M
T (k − 2). (2.21)

Then, using the same approach we employed for j =
t + 1, t + 2, we apply (2.9), (F2), (2.13) and (F3) to
establish that Cov(x(t), ε(k)) is

Cov(x(t), x(k − 1) − x(k − 1|k − 1))F T (k − 1)HT (k)

and thereby allow access to the induction hypothesis. For
this purpose we again break x(k − 1|k − 1) into compo-
nents corresponding to the history prior to time index
k − 1 and the contribution from ε(k − 1). This strate-
gy reveals that Cov(x(t), x(k − 1) − x(k − 1|k − 1)) is
Cov(x(t), x(k − 1) − x(k − 1|k − 2)) minus

Cov(x(t), ε(k − 1))R−1(k − 1)Cov(ε(k − 1), x(k − 1))

© 2006 by Taylor & Francis Group, LLC

40 A Kalman Filter Primer

and the conclusion follows from (2.21)–(2.20) and (2.15).
�

Returning now to Algorithms 2.2–2.3 it should be not-
ed that we are only able to evaluate ΣXε in order n2

flops because of Algorithm 2.1 that returns S(t|t − 1),
R(t), t = 1, . . ., n, in O(n) operations. In fact, Algorith-
m 2.3 is only feasible when all the S(t|t − 1) (and hence
the M(t) = F (t) − F (t)S(t|t − 1)HT (t)R−1(t)H(t))
have already been computed. That is, we can only use
Algorithm 2.3 after a forward pass that incorporates the
computations in Algorithm 2.1. One conclusion that can
be drawn from this is that it makes more sense to com-
bine Algorithms 2.1 and 2.2 into one unified recursion
that also computes the M(t) matrices for use in the back-
ward covariance recursion.

Algorithm 2.4 This algorithm computes S(t|t), R(t),
S(t|t−1), M(t), t = 1, . . ., n and σXε(t, j),t = 1, . . ., n,

j = 1, . . ., t.

/*Initialization*/
S(1|0) = F (0)S(0|0)F T (0) + Q(0)
R(1) = H(1)S(1|0)HT (1) + W (1)
S(1|1) = S(1|0) − S(1|0)HT (1)R−1(1)H(1)S(1|0)
M(1) = F (1) − F (1)S(1|0)HT (1)R−1(1)H(1)
σXε(1, 1) = S(1|0)HT (1)
for t = 2 to n

for j = 1 to (t − 1)
σXε(t, j) = F (t − 1)σXε(t − 1, j)

end for

S(t|t − 1) = F (t − 1)S(t − 1|t − 1)F T (t − 1)
+Q(t − 1)

R(t) = H(t)S(t|t − 1)HT (t) + W (t)
S(t|t) = S(t|t − 1)

−S(t|t − 1)HT (t)R−1(t)H(t)S(t|t − 1)
M(t) = F (t) − F (t)S(t|t − 1)HT (t)R−1(t)H(t)
σXε(t, t) = S(t|t − 1)HT (t)

end for

© 2006 by Taylor & Francis Group, LLC

The Fundamental Covariance Structure 41

Algorithm 2.4 returns everything that is needed to run
the backward covariance recursion of Algorithm 2.3. This
two-stage approach can be perfectly satisfactory and we
will see this reflected in some of the forward and back-
ward recursions for computing signal and state vector
estimators in Chapters 4 and 5. However, there are al-
so cases where it would be more convenient to have the
entire matrix ΣXε in hand after a single forward pass.

One way to evaluate the entirety of ΣXε in a single
recursion is to work forward from the upper left hand
corner of the matrix in an L-shaped pattern. Compu-
tations proceed along the diagonal and below diagonal
blocks for the tth row block using Algorithm 2.2. Then
the above diagonal blocks for the (t + 1)st column block
are evaluated. To see how this can be accomplished let us
explicitly consider a few initial cases using Lemma 2.4.

The above diagonal blocks for row block 1 consist of
the matrices σXε(1, 2) = S(1|0)MT (1)HT (2) and

σXε(1, j) = S(1|0)MT (1) · · · M
T (j − 1)HT (j)

for j = 2, . . ., n. So, we could conceivably compute all
the blocks in the first row block by recursively updat-
ing from S(1|0)MT (1) to S(1|0)MT (1)MT (2), etc., fol-
lowed by post-multiplication by the relevant HT (j) ma-
trices to obtain the actual block element of ΣXε. The
problem with this is that

M(t) = F (t) − F (t)S(t|t − 1)HT (t)R−1(t)H(t)

so that all the M(t), t = 2, . . ., n, will not be available
unless we have already evaluated S(t|t−1), t = 1, . . ., n.
Consequently, if we want to compute the S(t|t − 1) and
R(t) in tandem with evaluation of ΣXε we need a slight-
ly more subtle strategy.

Now, in general, for the tth row block the above diag-
onal blocks appear like

σXε(t, j) = S(t|t − 1)MT (t) · · · M
T (j − 1)HT (j)

© 2006 by Taylor & Francis Group, LLC

42 A Kalman Filter Primer

for j = t+1, . . ., n. So, computations above the diagonal
can be carried out by storing and updating matrices of
the form

A(t, j) = S(t|t − 1)MT (t) · · · M
T (j − 1).

If S(t|t − 1) is computed in conjunction with the di-
agonal and below diagonal blocks of the tth row block,
then this allows for computation of M(t) which, in turn,
allows for computation of

σXε(t, t + 1) = S(t|t − 1)MT (t)HT (t + 1)

= A(t, t + 1)HT (t + 1).

In addition, it is now also possible to evaluate the other
elements in the (t + 1)st column block since

σXε(i, t + 1) = S(i|i − 1)MT (i) · · · M
T (t)HT (t + 1)

= A(i, t + 1)HT (t + 1)

for i = t, . . ., 1 and

A(i, t + 1) = A(i, t)MT (t)

provided that we take A(t, t) := S(t|t − 1).
From a recursive standpoint the idea is to compute

S(t|t − 1) and M(t) on the tth forward step which al-
lows us (by updating) to obtain the matrices A(k, t + 1)
for k = 1, . . ., t that are needed to evaluate the above
diagonal blocks for the (t + 1)st column block. For ex-
ample, we can compute A(1, 2) = A(1, 1)MT (1) once
we have S(1|0) (and, hence, M(1)) and can evaluate
A(1, 3) = A(1, 2)MT (2) and A(2, 3) = A(2, 2)MT (2)
once we have S(2|1) (and, hence, M(2)). Using these
ideas we can develop a road map of sorts for moving
forward across the above diagonal entries of ΣXε that
progresses from

© 2006 by Taylor & Francis Group, LLC

The Fundamental Covariance Structure 43

to

© 2006 by Taylor & Francis Group, LLC

44 A Kalman Filter Primer

and then to

etc. The upshot of all this is that we can combine the
below diagonal recursion from Algorithm 2.4 with a new
recursion that computes above diagonal entries to eval-
uate the entire matrix ΣXε.

© 2006 by Taylor & Francis Group, LLC

The Fundamental Covariance Structure 45

Algorithm 2.5 This algorithm computes R(t), S(t|t),
S(t|t − 1), t = 1, . . ., n and σXε(t, j), t, j = 1, . . ., n.

/*Initialization for forward recursion*/
S(1|0) = F (0)S(0|0)F T (0) + Q(0)
R(1) = H(1)S(1|0)HT (1) + W (1)
S(1|1) = S(1|0) − S(1|0)HT (1)R−1(1)H(1)S(1|0)
σXε(1, 1) = S(1|0)HT (1)
M(1) = F (1) − F (1)S(1|0)HT (1)R−1(1)H(1)
A(1) = S(1|0)MT (1)
σXε(1, 2) = A(1)HT (2)
for t = 2 to n

/*Computation of below diagonal blocks*/
for j = 1 to (t − 1)

σXε(t, j) = F (t − 1)σXε(t − 1, j)
end for

S(t|t − 1) = F (t − 1)S(t − 1|t − 1)F T (t − 1)
+Q(t − 1)

R(t) = H(t)S(t|t − 1)HT (t) + W (t)
S(t|t) = S(t|t − 1)

−S(t|t − 1)HT (t)R−1(t)H(t)S(t|t − 1)
σXε(t, t) = S(t|t − 1)HT (t)
/*Computation of above diagonal blocks*/
If t ≤ n − 1

M(t) = F (t)
−F (t)S(t|t − 1)HT (t)R−1(t)H(t)

A(t) = S(t|t − 1)MT (t)
σXε(t, t + 1) = A(t)HT (t + 1)
for i = t − 1 to 1

A(i) = A(i)MT (t)
σXε(i, t + 1) = A(i)HT (t + 1)

end for

end if

end for

© 2006 by Taylor & Francis Group, LLC

46 A Kalman Filter Primer

2.4 An example

To illustrate the results of the previous section consider
the state-space model where H(t), F (t), Q(t) and W (t)
are time independent. In this case

y(t) = Hx(t) + e(t)

and

x(t + 1) = F x(t) + u(t)

for known matrices H and F . In keeping with, e.g., the
ARMA example of Section 1.3 we also have Var(e(t)) =
W0, Var(u(t − 1)) = Q0 for t = 1, . . ., n and S(0|0) = 0
so that x(0) = 0. This formulation is also applicable to
the other example from Chapter 1 that involved sampling
from Brownian motion with white noise if the samples
are acquired at equidistant points. In this latter case we
have p = q = 1, F = H = 1 and Q0 is the common dis-
tance τi − τi−1 between the points τ1, . . ., τn at which
observations are taken.

Applying Lemma 2.4 we see that the below diagonal
blocks of ΣXε have a relatively simple representation as

σXε(t, j) = F t−j S(j|j − 1)HT , j ≤ t − 1.

Expressions for the above diagonal entries are more com-
plicated except in the case of univariate state and re-
sponse variables.

To proceed further let us now specialize to the instance
where p = q = 1 so that H, F, W0 and Q0 are all scalar

© 2006 by Taylor & Francis Group, LLC

The Fundamental Covariance Structure 47

valued. Then, from Lemmas 2.1–2.3 we obtain

S(t|t − 1) = F
2

S(t − 1|t − 1) + Q0, (2.22)

R(t) = H
2

S(t|t − 1) + W0, (2.23)

M(t) = F



1 −
S(t|t − 1)H2

R(t)



 , (2.24)

S(t|t) = S(t|t − 1)



1 −
S(t|t − 1)H2

R(t)





(2.25)

with initializing values provided by

S(0|0) = 0,

S(1|0) = F
2

S(0|0) + Q0 = Q0,

R(1) = H
2

Q0 + W0,

M(1) = F



1 −
Q0H2

R(1)





and

S(1|1) = Q0 −
Q2

0H2

R(1)
.

The above diagonal entries are now somewhat more tractable
and can be expressed as

σXε(t, j) = F
j−t

S(t|t − 1)H
j−1
∏

i=t



1 −
S(i|i − 1)H2

R(i)





= σXε(j, t)
j−1
∏

i=t



1 −
S(i|i − 1)H2

R(i)



 ,

© 2006 by Taylor & Francis Group, LLC

48 A Kalman Filter Primer

for j ≥ t + 1 which reveals a type of quasi-symmetry for
the covariances.

Some further simplifications occur if we focus on large
values of t. To see this, first use (2.23) to obtain

S(t|t − 1) =
R(t) − W0

H2
(2.26)

which, in conjunction with (2.25), produces

S(t|t) =
W0

H2

(

1 −
W0

R(t)

)

. (2.27)

Consequently,

R(t) = H
2
[

F
2 W0

H2

(

1 −
W0

R(t − 1)

)

+ Q0

]

+ W0

= F
2

W0 + H
2

Q0 + W0 −
F2W2

0
R(t − 1)

.

If we now let C1 = F2W0 + H2Q0 + W0 and C2 =
F2W2

0 , it then follows that

R(t) = C1 −
C2

R(t − 1)

= C1 −
C2

C1 −
C2

R(t − 2)

= C1 −
C2

C1 −
C2

C1 −
C2

C1 −
C2

R(t − 3)

which reveals a continued fraction representation for R(t)
as described, for example, in Khinchin (1997).

© 2006 by Taylor & Francis Group, LLC

The Fundamental Covariance Structure 49

General results for convergence of continued fractions
can be found in Chapter 3 of Wall (1948). In particular,
one sufficient condition (Wall 1948, Theorem 10.1) for
our setting is that C2/C2

1 ≤ 1/4. This is true for our

case because C2/C2
1 ≤ F2/(1 + F2)2.

Denoting the limit of the R(t) by R(∞), we can now
approximate R(t) by this limit in (2.26)–(2.27) and (2.24)
to see that for large t

S(t|t − 1) ≈
R(∞) − W0

H2
(2.28)

S(t|t) ≈
W0

H2

(

1 −
W0

R(∞)

)

(2.29)

M(t) ≈
F W0

R(∞)
(2.30)

and, hence,

Cov(x(t), ε(t)) ≈
R(∞) − W0

H
,

Cov(x(t), ε(j)) ≈ F
t−j R(∞) − W0

H
,

for j ≤ t − 1 and

Cov(x(t), ε(j)) ≈ F
j−t R(∞) − W0

H

(
W0

R(∞)

)j−t

for j ≥ t + 1.
Recall from Chapter 1 that the R(t) have interpreta-

tions as the elements of the diagonal matrix R in the C-
holesky decomposition Var(y) = LRLT for the response
variance-covariance matrix. Consequently, characteriza-
tion of R(∞) provides us with information about how
the elements of R (and, hence, the variances of the ε(t))
will behave for large t. To address this issue note from

© 2006 by Taylor & Francis Group, LLC

50 A Kalman Filter Primer

5 10 15 20

−0
.0

08
−0

.0
06

−0
.0

04
−0

.0
02

0.
00

0

t

R(
t)−

R(
∞)

FIGURE 2.1

R(t) − R(∞) when H = F = 1, W0 = .05, Q0 = .01

the above analysis that S(t|t − 1) can be approximated
by both (R(∞) − W0)/H2 and

W0F2

H2

(

1 −
W0

R(∞)

)

+ Q0.

By equating these two expressions one finds that R(∞)
must satisfy the quadratic equation r2 − rC1 + C2 = 0.
The condition C2

1 ≥ 4C2 is always satisfied in this case
so that the two real roots of the equation are obtained
from the quadratic formula as

C1 ±
√

C2
1 − 4C2

2
.

© 2006 by Taylor & Francis Group, LLC

The Fundamental Covariance Structure 51

The smaller root is strictly smaller than W0 except when
one of H, W0 or Q0 is zero. Thus, except for these ex-
ceptional cases, R(∞) is

F2W0 + H2Q0 + W0

2

+

√

(F2W0 + H2Q0 + W0)2 − 4F2W2
0

2
. (2.31)

An illustration of the use of this approximation is provid-
ed by Figure 2.1 where the actual values of R(t)−R(∞)
are shown for the case of sampling from Brownian Mo-
tion with white noise where H = F = 1 and we took
W0 = .05 and Q0 = .01 to obtain R(∞) = .0779.

© 2006 by Taylor & Francis Group, LLC

3

Recursions for L and L−1

3.1 Introduction

In this chapter we will develop algorithms for computing
the matrices L and L−1 that arise in the Cholesky fac-
torization of Var(y), where y is the vector of responses
from a state-space model. There are several reasons for
considering this particular problem.

Our approach to the signal-plus-noise prediction prob-
lem revolves around the innovation vectors that are com-
puted by applying the Gramm-Schmidt orthogonaliza-
tion method to the response vectors. In Section 1.2.3 we
defined innovations recursively by starting with ε(1) =
y(1) and then successively computing

ε(t) = y(t) −
t−1
∑

j=1
L(t, j)ε(j), (3.1)

for t = 2, . . ., n, with L(t, j) being the matrix in the jth
block column of the tth block row of the lower triangular
matrix L in the Cholesky decomposition

Var(y) = LRL
T

. (3.2)

Thus, computation of the innovations is intimately linked
to the evaluation of L.

53
© 2006 by Taylor & Francis Group, LLC

54 A Kalman Filter Primer

From another perspective, we saw in Chapter 1 that
(3.1) arises from the forward substitution step for solving
the lower triangular, linear equation system Lε = y: that
is,

ε = L
−1

y.

This, in turn, was seen to have the consequence that the
BLUP of f based on y had the form

f̂ = y − W (LT)−1
R

−1
ε

with prediction error variance-covariance matrix

V = W − W (LT)−1
R

−1
L
−1

W.

Thus, at least implicitly, the matrix L−1 plays a role in
both the prediction of the signal as well as assessment
of the accuracy of the predictor.

In the next section we study efficient methods for com-
puting L. In this regard, we develop a forward recursion
that produces the matrix row by row starting from its
upper left block entry. Section 3.3 then provides a par-
allel result pertaining to L−1.

3.2 Recursions for L

For the developments in this and subsequent sections it
will be convenient to introduce a final piece of notation
for the so-called Kalman gain matrices. These matrices arise
naturally in formulae for both L and L−1 and, not sur-
prisingly, appear in various signal and state vector pre-
diction formulae that we will encounter in the next chap-
ter. They are defined by

K(t) = F (t)S(t|t − 1)HT (t)R−1(t), t = 1, . . ., n.

(3.3)

© 2006 by Taylor & Francis Group, LLC

Recursions for L and L−1 55

The Kalman gain matrices involve a number of factors
that we have already experienced in Chapter 2 and, in
particular, are intimately related to the ubiquitous ma-
trices (2.17) via the relation M(t) = F (t) − K(t)H(t).
With this notational preliminary, we can now give a de-
tailed description of the form of L.

Theorem 3.1 Let L(t, j), t, j = 1, . . ., n, be p × p matri-

ces with L = {L(t, j)}t,j=1:n for L in (3.2). Then, L(t, t) =
I, L(t, j) = 0 for j > t,

L(t, t − 1)

= H(t)F (t − 1)S(t − 1|t − 2)HT (t − 1)R−1(t − 1)

= H(t)K(t − 1) (3.4)

for t = 2, . . ., n, and

L(t, j) = H(t)F (t − 1) · · · F (j)S(j|j − 1)HT (j)R−1(j)

= H(t)F (t − 1) · · · F (j + 1)K(j) (3.5)

for t = 3, . . ., n and j = 1, . . ., t − 2.

Proof. From (1.16) we have for t > j that

L(t, j) = Cov(y(t), ε(j))R−1(j).

But, y(t) = H(t)x(t)+e(t) and e(t) is uncorrelated with
ε(1), . . ., ε(t − 1). Thus,

L(t, j) = H(t) Cov(x(t), ε(j))R−1(j)

and the result is a consequence of (2.16) in Lemma 2.4.
�

Efficient order n2 (for p, q small relative to n) recur-
sions for L can now be obtained in several ways. One

© 2006 by Taylor & Francis Group, LLC

56 A Kalman Filter Primer

approach is to build L row by row. To see how this can
be accomplished, use Theorem 3.1 to see that the first
column for L is

I

H(2)F (1)S(1|0)HT (1)R−1(1)
H(3)F (2)F (1)S(1|0)HT (1)R−1(1)

H(4)F (3)F (2)F (1)S(1|0)HT (1)R−1(1)
H(5)F (4) · · · F (1)S(1|0)HT (1)R−1(1)

.

.

.
H(n − 1)F (n − 2) · · · F (1)S(1|0)HT (1)R−1(1)

H(n)F (n − 1) · · · F (1)S(1|0)HT (1)R−1(1)

while the second has the form

0
I

H(3)F (2)S(2|1)HT (2)R−1(2)
H(4)F (3)F (2)S(2|1)HT (2)R−1(2)

H(5)F (4)F (3)F (2)S(2|1)HT (2)R−1(2)

.

.

.
H(n − 1)F (n − 2) · · · F (2)S(2|1)HT (2)R−1(2)

H(n)F (n − 1) · · · F (2)S(2|1)HT (2)R−1(2)

and the third is

0
0
I

H(4)F (3)S(3|2)HT (3)R−1(3)
H(5)F (4)F (3)S(3|2)HT (3)R−1(3)

.

.

.
H(n − 1)F (n − 2) · · · F (3)S(3|2)HT (3)R−1(3)

H(n)F (n − 1) · · · F (3)S(3|2)HT (3)R−1(3)

© 2006 by Taylor & Francis Group, LLC

Recursions for L and L−1 57

Some of the structures in L becomes apparent from ex-
amining these special cases: namely, the rows for each
column can be built up through successive evaluation of
the matrices

A(t, j) = F (t − 1) · · · F (j)S(j|j − 1)HT (j)R−1(j)

(3.6)

for t = j + 1, . . ., n since L(t, j) = H(t)A(t, j).
Formula (3.6) suggests several ways to approach the

recursive evaluation of L. For example, we could start
in the upper left hand corner of L, compute S(1|0) and
R(1) and then fill out the below diagonal elements for
the first block column. Then S(1|0), R(1) can be updat-
ed to S(2|1), R(2) using Algorithm 2.1 and the elements
of the second block column could be obtained, etc. An
alternative approach is to fill out L on a row (block) by
row (block) basis.

To be a bit more specific let us consider how to obtain
the (t + 1)st block row after we have computed the tth
block row. With this in mind, observe that the first t−1
column blocks in the (t + 1)st row are

H(t + 1)
[

A(t + 1, 1) A(t + 1, 2) . . . A(t + 1, t − 1)
]

= H(t + 1)F (t)
[

A(t, 1) A(t, 2) . . . A(t, t − 1)
]

as a result of the update formula

A(t + 1, j) = F (t)A(t, j), j = 1, . . ., t − 1.

This idea produces the following algorithm.

Algorithm 3.1 This algorithm evaluates L row by row
beginning with the upper left hand row block.

L(1, 1) = I

A(2, 1) = F (1)S(1|0)HT (1)R−1(1)

© 2006 by Taylor & Francis Group, LLC

58 A Kalman Filter Primer

L(2, 1) = H(2)A(2, 1)
for t = 3 to n

L(t, t) = I

A(t, t − 1) =
F (t − 1)S(t − 1|t − 2)HT (t − 1)R−1(t − 1)

L(t, t − 1) = H(t)A(t, t − 1)
for j = 1 to t − 2

A(t, j) = F (t − 1)A(t − 1, j)
L(t, j) = H(t)A(t, j)

end for

end for

There is nothing special about the forward approach
to computing L. In fact, it is also possible to compute
the block matrices that comprise L in reverse order by
working backward from the lower right hand block of L

to its upper left corner. Identical comments apply to the
algorithm developed for L−1 in the next section. Our
primary reason for concentrating on forward recursions
here is because the resulting algorithms are more closely
related to the classical filtering recursions for computing
the innovations and signal and state vector predictors
that we will study in the next chapter.

3.3 Recursions for L−1

In this section we develop a parallel of Algorithm 3.1 for
use in the evaluation of L−1 rather than L. We begin
by establishing an analog of Theorem 3.1 for the inverse
matrix.

Theorem 3.2 The matrix L−1 = {L−1(t, j)}t,j=1:n is

lower triangular with identity matrix diagonal blocks. For t =

© 2006 by Taylor & Francis Group, LLC

Recursions for L and L−1 59

2, . . ., n,

L
−1(t, t − 1) = −H(t)K(t − 1) (3.7)

and

L
−1(t, j) = −H(t)M(t − 1) · · · M(j + 1)K(j)

(3.8)

for j = 1, . . ., t − 2 and t = 3, . . ., n.

Proof. To prove this result we will employ Theorem A.1
from the Appendix which gives the result that L−1(t, t−
1) = −L(t, t − 1) as well as the relation

L
−1(t, j) = −L(t, j) −

t−1∑

i=j+1
L(t, i)L−1(i, j) (3.9)

for j = 1, . . ., t − 2. Thus, (3.7) is immediate from (3.4).
Now, for j = t − 2 and t = 3, . . ., n, (3.9) reveals that

L
−1(t, t − 2) = −H(t)F (t − 1)K(t − 2)

−L(t, t − 1)L−1(t − 1, t − 2)

= −H(t)F (t − 1)K(t − 2)

+H(t)K(t − 1)H(t − 1)K(t − 2)

= −H(t)M(t − 1)K(t − 2) (3.10)

due to (3.4), (3.5) and (3.7). Next, for t = 4, . . ., n, the

© 2006 by Taylor & Francis Group, LLC

60 A Kalman Filter Primer

application of (3.9) produces

L−1(t, t − 3) = −H(t)F (t − 1)F (t − 2)K(t − 3)

−L(t, t − 2)L−1(t − 2, t − 3)

−L(t, t − 1)L−1(t − 1, t − 3)

= −H(t)F (t − 1)F (t − 2)K(t − 3)

+H(t)F (t − 1)K(t − 2)H(t − 2)K(t − 3)

+H(t)K(t − 1)H(t − 1)M(t − 2)K(t − 3)

= −H(t)F (t − 1)
[

F (t − 2)

−K(t − 2)H(t − 2)
]

K(t − 3)

+H(t)K(t − 1)H(t − 1)M(t − 2)K(t − 3)

= −H(t)M(t − 1)M(t − 2)K(t − 3) (3.11)

using (3.4), (3.5), (3.7) and (3.10).
At this point we have established that Theorem 3.2 is

valid for the sub-diagonal blocks, sub-sub-diagonal block-
s and the sub-sub-sub diagonal blocks of L−1 as a result
of showing (3.7), (3.10) and (3.11), respectively. We will
continue in this manner by proving that (3.8) holds along
the kth sub-diagonal of L−1. This means we want to ver-
ify (3.8) for the matrices L−1(k +1, 1), . . ., L−1(n, n−
k). The proof will be completed once we show this is true
for the as yet untreated cases of k = 4, . . ., n − 1 which
correspond to all the remaining blocks of L−1.

We now wish to prove that

L
−1(t, t − k)

= −H(t)M(t − 1) · · · M(t − k + 1)K(t − k)

for t = k + 1, . . ., n and any 4 ≤ k ≤ n − 1. To simplify
matters slightly, observe that for such cases we have

L
−1(t, t − k) = H(t)A(t, t − k)

© 2006 by Taylor & Francis Group, LLC

Recursions for L and L−1 61

with

A(t, t − k)

= −F (t − 1) · · · F (t − k + 1)K(t − k)

−
t−2
∑

i=t−k+1
F (t − 1) · · · F (i + 1)K(i)L−1(i, t − k)

−K(t − 1)L−1(t − 1, t − k) (3.12)

as a result of (3.9) and (3.4)–(3.5). Thus, it suffices to
show that

A(t, t−k) = −M(t−1) · · · M(t−k+1)K(t−k) (3.13)

for t = k + 1, . . ., n.

Proceeding now by induction, suppose that (3.13) holds
for some integer k ≥ 4. Then,

A(t, t − k − 1)

= −F (t − 1) · · · F (t − k)K(t − k − 1)

−
t−2
∑

i=t−k

F (t − 1) · · · F (i + 1)K(i)L−1(i, t − k − 1)

−K(t − 1)L−1(t − 1, t − k − 1)

= F (t − 1)
[

−F (t − 2) · · · F (t − k)K(t − k − 1)

−
t−3
∑

i=t−k

F (t − 2) · · · F (i + 1)K(i)L−1(i, t − k − 1)

−K(t − 2)L−1(t − 2, t − k − 1)
]

−K(t − 1)L−1(t − 1, t − k − 1)

= F (t − 1)A(t − 1, t − k − 1)

−K(t − 1)H(t − 1)A(t − 1, t − k − 1).

© 2006 by Taylor & Francis Group, LLC

62 A Kalman Filter Primer

But, this last expression is just M(t−1)A(t−1, t−k−1)
which proves the theorem. �

Let us now use Theorem 3.2 to construct an efficient
scheme for computing L−1. From (3.7)–(3.8) we see that
the first column for L−1 is

I

−H(2)K(1)
−H(3)M(2)K(1)

−H(4)M(3)M(2)K(1)
−H(5)M(4)M(3)M(2)K(1)

.

.

.
−H(n − 1)M(n − 2) · · · M(2)K(1)

−H(n)M(n − 1) · · · M(2)K(1)

while the second has the form

0
I

−H(3)K(2)
−H(4)M(3)K(2)

−H(5)M(4)M(3)K(2)

.

.

.
−H(n − 1)M(n − 2) · · · M(3)K(2)

−H(n)M(n − 1) · · · M(3)K(2)

and the third is

0
0
I

−H(4)K(3)
−H(5)M(4)K(3)

.

.

.
−H(n − 1)M(n − 2) · · · M(4)K(3)

−H(n)M(n − 1) · · · M(4)K(3)

© 2006 by Taylor & Francis Group, LLC

Recursions for L and L−1 63

Thus, it appears that an almost identical strategy to the
one we employed for computing L can be used for evalu-
ating L−1 provided we replace the matrices (3.6) in the
recursion by

A(t, j) = M(t − 1) · · · M(j + 1)K(j). (3.14)

Algorithm 3.2 provides the resulting row by row forward
recursion.

Algorithm 3.2 This algorithm evaluates L−1 row by
row beginning with the upper left hand row block.

L−1(1, 1) = I

A(2, 1) = K(1)
L−1(2, 1) = −H(2)A(2, 1)
for t = 3 to n

L−1(t, t) = I

A(t, t − 1) = K(t − 1)
L−1(t, t − 1) = −H(t)A(t, t − 1)
for j = 1 to t − 2

A(t, j) = M(t − 1)A(t − 1, j)
L−1(t, j) = −H(t)A(t, j)

end for

end for

When evaluating the tth row block of L−1 using Algo-
rithm 3.2 we need access to the matrices K(j), M(j), j =
1, . . ., t−1. These matrices are, in turn, simple function-
s of the matrices R(j), S(j|j − 1), j = 1, . . ., t − 1, and
Algorithm 2.1 evaluates these quantities in a way that
is ideally suited for use in the forward computation of
L−1. By combining these two recursions one can there-
by obtain an order n2 algorithm that computes all the
nonzero element of L−1 in one forward pass.

© 2006 by Taylor & Francis Group, LLC

64 A Kalman Filter Primer

3.4 An example

To illustrate some of the ideas developed in this chapter
let us again consider the special case of the state-space
model discussed in Section 2.4. In this instance we have

y(t) = Hx(t) + e(t) (3.15)

and

x(t + 1) = F x(t) + u(t) (3.16)

for known matrices H and F that do not depend on t.
The variance-covariance matrices for the e and u pro-
cesses are also time invariant in that there are positive
definite matrices Q0 and W0 such that Q(t − 1) = Q0
and W (t) = W0 for t = 1, . . ., n.

An application of Theorem 3.1 reveals that when (3.15)–
(3.16) hold we will have

L =













I 0 · · · 0 0
HK(1) I · · · 0 0

HF K(1) HK(2) · · · 0 0

.

.

.

.

.

.
. . .

.

.

.

.

.

.
HF n−2K(1) HF n−3K(2) · · · HK(n − 1) I













.

This particular example makes it easy to see that in some
respects the matrix L is composed of only the n − 1 u-
nique factors K(1), . . ., K(n − 1). Of course, this truly
is the case when H = I and F = I. A similar develop-
ment for L−1 using Theorem 3.2 shows that the below
diagonal blocks in the jth column of L−1 have the form

L
−1(j + 1, j) = −HK(j)

and

L
−1(t, j) = −HM(t − 1) · · · M(j + 1)K(j)

© 2006 by Taylor & Francis Group, LLC

Recursions for L and L−1 65

for t = j + 2, . . ., n.
To simplify matters a bit take p = q = 1 and consid-

er the case where t is large so that the approximations
(2.28)–(2.30) from Section 2.4 can be utilized. In this
instance, (2.28) has the consequence that

K(t) = F S(t|t − 1)HR
−1(t)

≈
F

H

(

1 −
W0

R(∞)

)

.

Combining this result with our formulas for the elements
of L gives

L(t, t − 1) ≈ F

(

1 −
W0

R(∞)

)

,

when t is large, and

L(t, j) ≈ F t−j
(

1 −
W0

R(∞)

)

.

Since M(t) = F − K(t)H ≈ F W0/R(∞), parallel for-
mulae for the elements of L−1 include

L−1(t, t − 1) ≈ −F

(

1 −
W0

R(∞)

)

which applies to cases where t is large. If we assume
that j is sufficiently large that (2.28) can be applied to
M(j + 1) and K(j), then we also have

L
−1(t, j) ≈

(
F W0

R(∞)

)t−j (

1 −
R(∞)

W0

)

.

In the special case that |F | ≤ 1, our approximation-
s suggest that L−1 is diagonally dominant in the sense
that L−1(t, j) decays to zero as j decreases. This is be-
cause W0/R(∞) < 1 if H, W0 and Q0 are nonzero.

© 2006 by Taylor & Francis Group, LLC

4

Forward Recursions

4.1 Introduction

In this chapter we develop the standard Kalman filter
(abbreviated as KF hereafter) forward recursions for pre-
diction of the signal and state vectors. The basic filtering

premise is that we are observing our data or response
vectors in a sequence corresponding to the “time” in-
dex t. So, we first see y(1), then y(2), etc. At any given
point in time t we have observed y(1), . . ., y(t) from
the state-space model (1.19)–(1.28) and want to use this
data to predict the values of the state vector x(t) and
corresponding signal vector f(t) = H(t)x(t).

To accomplish the prediction we follow the plan laid
out in Chapter 1. First we translate the response vectors
y(1), . . ., y(t) to the innovation vectors ε(1), . . ., ε(t)
using the Gramm-Schmidt method. Then, the BLUP of
x(t) based on y(1), . . ., y(t) is

x(t|t) =
t∑

j=1
Cov(x(t), ε(j))R−1(j)ε(j) (4.1)

and from Theorem 1.1 the BLUP of f(t) is H(t)x(t|t)
or, equivalently,

f(t|t) =
t∑

j=1
Cov(f(t), ε(j))R−1(j)ε(j). (4.2)

67
© 2006 by Taylor & Francis Group, LLC

68 A Kalman Filter Primer

In the next section we show how to efficiently compute
the innovation vectors using the results of the previous
chapter on the form of L and L−1. Then, in Section 4.4
we employ Lemma 2.4 to derive algorithms for prediction
of x(t) and f(t). Section 4.3 discusses another forward
recursive scheme that updates previous predictions to ac-
count for the presence of new responses. Finally, Section
4.5 considers two examples: namely, the case of state-
space processes where the matrices H(t), F (t), W (t) and
Q(t) are all time invariant and the case of sampling from
Brownian motion with white noise.

4.2 Computing the innovations

Once again write the Cholesky factorization of Var(y) as

Var(y) = LRL
T

,

where L = {L(t, j)}t,j=1:n is an np × np block lower
triangular matrix having identity matrix diagonal blocks
and R is a block diagonal matrix with diagonal block-
s R(1), . . ., R(n). Then, from our developments in Sec-
tions 1.2.2–1.2.3 we know a number of things about the
innovation process and its relationship to the Cholesky
factorization. Most pertinent at this point is the fact
that by combining (1.7)–(1.10) we can obtain

ε(1) = y(1), (4.3)

R(1) = Var(ε(1)) = Var(y(1)) (4.4)

© 2006 by Taylor & Francis Group, LLC

Forward Recursions 69

and, for t = 2, . . ., n,

ε(t) = y(t) −
t−1
∑

j=1
Cov(y(t), ε(j))R−1(j)ε(j)

= y(t) −
t−1
∑

j=1
L(t, j)ε(j), (4.5)

with

R(t) = Var(ε(t)). (4.6)

We have also previously noted that formulae (4.3)–(4.6)
are the result of forward solution of the system Lε = y

which means that ε = L−1y.
Given all the information we have collected about the

form of L and L−1 in the previous chapter, it now seems
natural to attempt to apply this knowledge to the devel-
opment of computational methodology that can be used
to obtain the innovation vectors. The next theorem is
what results from this approach.

Theorem 4.1 The innovation vectors satisfy

ε(1) = y(1), (4.7)

ε(2) = y(2) − H(2)K(1)ε(1) (4.8)

= y(2) − H(2)K(1)y(1) (4.9)

© 2006 by Taylor & Francis Group, LLC

70 A Kalman Filter Primer

and, for t = 3, . . ., n,

ε(t) = y(t) − H(t)K(t − 1)ε(t − 1)

−H(t)
t−2
∑

j=1
F (t − 1) · · · F (j + 1)K(j)ε(j)

(4.10)

= y(t) − H(t)K(t − 1)y(t − 1)

−H(t)
t−2
∑

j=1
M(t − 1) · · · M(j + 1)K(j)y(j).

(4.11)

Proof. Formulas (4.7)–(4.11) are all obtained by straight-
forward applications of Theorems 3.1 and 3.2. Relations
(4.7), (4.8) and (4.10) derive from using (4.3)–(4.6) in
conjunction with (3.4) and (3.5). In contrast, (4.9) and
(4.11) are a consequence of the fact that ε = L−1y and
(3.7)–(3.8). �

Theorem 4.1 provides us with two ways to iteratively
compute the innovation vectors. The first is a result of
(4.7)–(4.8) and (4.10) that works only with the innova-
tion vectors. The idea is that one can accumulate the
sum

A(t − 1) = K(t − 1)ε(t − 1)

+
t−2
∑

j=1
F (t − 1) · · · F (j + 1)K(j)ε(j)

(4.12)

using the simple update relation

A(t) = K(t)ε(t) + F (t)A(t − 1). (4.13)

© 2006 by Taylor & Francis Group, LLC

Forward Recursions 71

Then, ε(t + 1) = y(t + 1) − H(t + 1)A(t) produces the
next innovation vector in the sequence. We spell this out
in Algorithm 4.1.

Algorithm 4.1 This algorithm evaluates ε(1), . . ., ε(n)
in sequence using only the innovation vectors computed
on previous steps.

ε(1) = y(1)
A(1) = K(1)ε(1)
for t = 2 to n − 1

ε(t) = y(t) − H(t)A(t − 1)
A(t) = K(t)ε(t) + F (t)A(t − 1)

end for

ε(n) = y(n) − H(n)A(n − 1)

Perhaps the most startling feature of this algorithm is
how little computational labor it involves. A brute force
application of formula (4.10) to the computation of ε(t)
that involved repeated re-computation and re-summing
of the elements in this expression would necessarily re-
quire an overall effort of order n3. However, because we
only need the sum, rather than each individual term in
the sum, the updating formula (4.13) allows us to reduce
the number of calculations on each step to two (matrix)
multiplications and an addition. Consequently, the en-
tire vector ε is obtained in O(n) operations. Since the
combined innovation vector ε = (εT (1), . . ., εT (n))T

consists of n blocks in its own right, this is the best pos-
sible result in terms of the total order of calculations. We
should also note that there is no trickery involved here
because the Kalman gain matrices that are required at
each step of the algorithm can be computed concurrent-
ly, also in order n operations, using Algorithm 2.1.

Whereas Algorithm 4.1 computes the innovations using
the innovations themselves, it is also possible to compute
the innovations directly from the response vectors. The
key to this result is (4.11) which has the implication that

© 2006 by Taylor & Francis Group, LLC

72 A Kalman Filter Primer

we can proceed as we did for Algorithm 4.1 except that
now we accumulate on

A(t − 1) = K(t − 1)y(t − 1)

+
t−2
∑

j=1
M(t − 1) · · · M(j + 1)K(j)y(j)

which can be updated via the relation

A(t) = K(t)y(t) + M(t)A(t − 1)

with ε(t + 1) = y(t + 1) − H(t + 1)A(t) as before. Algo-
rithm 4.2 that results from this also returns ε in a total
of order n operations.

Algorithm 4.2 This algorithm evaluates ε(1), . . ., ε(n)
in sequence by direct use of the response vectors.

ε(1) = y(1)
A(1) = K(1)ε(1)
for t = 2 to n − 1

ε(t) = y(t) − H(t)A(t − 1)
A(t) = K(t)y(t) + M(t)A(t − 1)

end for

ε(n) = y(n) − H(n)A(n − 1)

4.3 State and signal prediction

In this section we derive expressions for the BLUPs of the
state and signal vectors. We have actually already en-
countered one such BLUP in the previous section where
we computed the innovations, although we did not ex-
plicitly identify it as such at that time. We will now
clarify this connection and then proceed to develop ef-
ficient recursions for computing signal and state vector
predictors using the innovations.

© 2006 by Taylor & Francis Group, LLC

Forward Recursions 73

The component blocks of the innovation vector are re-
lated to the one step ahead BLUPs x(2|1), . . ., x(n|n −
1). To see this recall that under the state-space modeling
framework

y(t) = H(t)x(t) + e(t)

with e(t) being uncorrelated with ε(1), . . ., ε(t−1). Thus,

ε(t) = y(t) −
t−1
∑

j=1
Cov(y(t), ε(j))R−1(j)ε(j)

= y(t) −
t−1
∑

j=1
H(t)Cov(x(t), ε(j))R−1(j)ε(j)

= y(t) − H(t)x(t|t − 1). (4.14)

Consequently, Theorem 4.1 has the consequence that

x(t|t − 1) = K(t − 1)ε(t − 1)

+
t−2∑

j=1
F (t − 1) · · · F (j + 1)K(j)ε(j)

(4.15)

and we realize that x(t|t − 1) is identical to the vector
A(t− 1) in (4.12) that was used in Algorithm 4.1. Alter-
natively, expression (4.15) can be obtained directly from
(2.16) in Lemma 2.4. In any case, (4.14) has the practi-
cal implication that we can compute x(t|t−1) in tandem
with ε(t) or conversely.

Now note that

x(t|t) =
t∑

j=1
Cov(x(t), ε(j))R−1(j)ε(j)

= Cov(x(t), ε(t))R−1(t)ε(t) + x(t|t − 1)

(4.16)

© 2006 by Taylor & Francis Group, LLC

74 A Kalman Filter Primer

and that Lemma 2.4 gives

Cov(x(t), ε(t)) = S(t|t − 1)HT (t). (4.17)

Equations (4.15)–(4.17) produce useful expressions for
the BLUPs x(t|t −1) and x(t|t) that we now collect and
summarize in Theorem 4.2.

Theorem 4.2 The BLUP of x(1) based on y(1) is

x(1|1) = S(1|0)HT (1)R−1(1)ε(1). (4.18)

For t = 2, . . ., n the BLUP of x(t) based on y(1), . . ., y(t−1)
is

x(t|t − 1) = F (t − 1)x(t − 1|t − 1) (4.19)

and the BLUP of x(t) based on y(1), . . ., y(t) is

x(t|t) = S(t|t−1)HT (t)R−1(t)ε(t)+x(t|t−1). (4.20)

Proof. Result (4.20) is immediate from (4.16)–(4.17). Ver-
ification of (4.19) can be accomplished through an ap-
plication of Proposition 1.1. Alternatively, for a purely
algebraic approach, use (4.15)–(4.17) and the definition
of the Kalman gain matrices in (3.3) to see that

x(2|1) = F (1)S(1|0)HT (1)R−1(1)ε(1)

= F (1)x(1|1),

x(3|2) = F (2)S(2|1)HT (2)R−1(2)ε(2)

+F (2)K(1)ε(1)

= F (2)x(2|2)

© 2006 by Taylor & Francis Group, LLC

Forward Recursions 75

and, for t > 3, x(t|t − 1) has the general form

F (t − 1)S(t − 1|t − 2)HT (t − 1)R−1(t − 1)ε(t − 1)

+F (t − 1)K(t − 2)ε(t − 2)

+F (t − 1)
t−3
∑

j=1
F (t − 2) · · · F (j + 1)K(j)ε(j)

= F (t − 1)x(t − 1|t − 1).

�
The intimate connection between x(t|t − 1) and ε(t)

revealed in (4.14) means that we can compute the inno-
vations and state and signal vector predictors all in one
combined forward recursion. We give a complete treat-
ment of the resulting classic, order n, KF algorithm be-
low that includes the recursive evaluation of all the quan-
tities that are required to produce the predictors. Note
that in carrying out the recursions we are using the re-
sult from Theorem 1.1 that f(t|t − 1) = H(t)x(t|t − 1),
f(t|t) = H(t)x(t|t), V (t|t − 1) = H(t)S(t|t − 1)HT (t)
and V (t|t) = H(t)S(t|t)HT (t) to return signal estima-
tors and their prediction error variance-covariance ma-
trices along with the parallel quantities for state vector
prediction.

Algorithm 4.3 This algorithm returns the predictors
x(t|t − 1), x(t|t), f(t|t − 1), f(t|t), t = 1, . . ., n, along
with their associated prediction error variance-covariance
matrices S(t|t−1), S(t|t), V (t|t−1), V (t|t), t = 1, . . ., n.

/*Initialization*/
S(1|0) = F (0)S(0|0)F T (0) + Q(0)
R(1) = H(1)S(1|0)HT (1) + W (1)
S(1|1) = S(1|0) − S(1|0)HT (1)R−1(1)H(1)S(1|0)
ε(1) = y(1)
x(1|1) = S(1|0)HT (1)R−1(1)ε(1)

© 2006 by Taylor & Francis Group, LLC

76 A Kalman Filter Primer

for t = 2 to n

S(t|t − 1) = F (t − 1)S(t − 1|t − 1)F T (t − 1)
+ Q(t − 1)

V (t|t − 1) = H(t)S(t|t − 1)HT (t)
R(t) = H(t)S(t|t − 1)HT (t) + W (t)
S(t|t) = S(t|t − 1)

−S(t|t − 1)HT (t)R−1(t)H(t)S(t|t − 1)
V (t|t) = H(t)S(t|t)HT (t)
x(t|t − 1) = F (t − 1)x(t − 1|t − 1)
f(t|t − 1) = H(t)x(t|t − 1)
ε(t) = y(t) − H(t)x(t|t − 1)
x(t|t) = S(t|t − 1)HT (t)R−1(t)ε(t)

+ x(t|t − 1)
f(t|t) = H(t)x(t|t)

end for

The term filter that is used to describe this algorith-
m has at least two connotations. The first corresponds
to the idea of predicting or “recovering” the signal f by
“filtering out” the inherent noise (i.e., e(1), . . ., e(n))
from the data. The phrase filter is also used to desig-
nate a particular type of data processing for when da-
ta arrives in sequence with respect to the “time” vari-
able t. In this instance filtering also indicates that one
is attempting to predict the signal f(t) using only the
responses y(1), . . ., y(t) that have become available at
that point in time.

4.4 Other options

The KF Algorithm 4.3 returns the state vector predictors
x(1|1), x(2|2), x(3|3), etc. However, when we compute
x(2|2), the information is available to compute an updat-
ed predictor of x(1) in the form of x(1|2) that predicts

© 2006 by Taylor & Francis Group, LLC

Forward Recursions 77

the value of x(1) using both y(1), y(2) rather than just
y(1) alone. Similarly, when x(3|3) has been evaluated
this necessarily means that the information is available
to compute x(1|3) and x(2|3) that provide predictions of
x(1) and x(2) using all the currently available respons-
es y(1), y(2), y(3). This particular process of updating
predictors of previous state vectors for newly acquired
responses is generally referred to as smoothing.

We will delve into the smoothing issue in more detail
in the next chapter. However, the methods we will devel-
op for smoothing there are backward recursions that are
implemented after a forward pass through the data us-
ing Algorithm 4.3. Using the forward pass output x(1|1),
S(1|1), x(2|2), S(2|2), . . ., x(n|n), S(n|n), they further
process it to obtain, e.g., x(1|n), S(1|n), x(2|n), S(2|n),
. . ., x(n|n), S(n|n). While this may be perfectly satis-
factory in many cases, there are instances where more
immediate updating may be useful.

In contrast to the algorithms developed in Chapter 5,
the recursive method we will consider here provides “real
time” updating of the signal and state vector predictors.
That is, at any point in time t we will have a completely
updated set of predictors x(1|t), . . ., x(t|t). While our
treatment of smoothing here is perhaps a bit premature,
the algorithm we will develop is a forward recursion that
can be carried out as an augmented version of the stan-
dard KF. Thus, it seems natural to discuss it at this
stage of the overall presentation.

The computational scheme we will employ is really just
an application of Algorithm 2.5 with a few additional
details to transform the covariances computed there in-
to the requisite vectors and matrices that are needed for
constructing the state vector BLUPs and their predic-
tion error variance-covariance matrices. To see the basic
idea, let us begin with the second step in the forward
KF Algorithm 4.3: i.e., after the completion of the t = 2
step in the for loop. At this point we have x(1|1), S(1|0),
S(1|1) that we obtained in the first step (i.e., after the

© 2006 by Taylor & Francis Group, LLC

78 A Kalman Filter Primer

initialization step of the algorithm) and x(2|2), S(2|1),
S(2|2). From S(1|0) and S(2|1) we can compute M(1)
and M(2), respectively. Using Lemma 2.4 and the un-
correlated nature of the innovation vectors we then see
that

x(1|2) = x(1|1)

+S(1|0)MT (1)HT (2)R−1(2)ε(2)

= x(1|1)

+A(1)HT (2)R−1(2)ε(2)

for

A(1) = S(1|0)MT (1)

and

S(1|2) = S(1|1)

−S(1|0)MT (1)HT (2)R−1(2)H(2)M(1)S(1|0)

= S(1|1)

−A(1)HT (2)R−1(2)H(2)AT (1).

At the next or t = 3 step the KF gives us x(3|3),
S(3|2), S(3|3) and we can use S(3|2) to compute M(3).
Thus, let us now take A(1) to be

A(1) = S(1|0)MT (1)MT (2),

which represents an “update” of our previous definition,
and define the new matrix

A(2) = S(2|1)MT (2).

© 2006 by Taylor & Francis Group, LLC

Forward Recursions 79

Then,

x(1|3) = x(1|2)

+A(1)HT (3)R−1(3)ε(3),

S(1|3) = S(1|2)

−A(1)HT (3)R−1(3)H(3)AT (1),

x(2|3) = x(2|2)

+A(2)HT (3)R−1(3)ε(3),

S(2|3) = S(2|2)

−A(2)HT (3)R−1(3)H(3)AT (2).

On the t = 4 step the KF returns x(4|4), S(4|4), M(4)
and we update A(1), A(2) to

A(1) = S(1|0)MT (1)MT (2)MT (3),

A(2) = S(2|1)MT (2)MT (3),

with the definition of the new matrix

A(3) = S(3|2)MT (3).

Then, the updated predictors and prediction error variance-

© 2006 by Taylor & Francis Group, LLC

80 A Kalman Filter Primer

covariance matrices are

x(1|4) = x(1|3)

+A(1)HT (4)R−1(4)ε(4),

S(1|4) = S(1|3)

−A(1)HT (4)R−1(4)H(4)AT (1),

x(2|4) = x(2|3)

+A(2)HT (4)R−1(4)ε(4),

S(2|3) = S(2|3)

−A(2)HT (4)R−1(4)H(4)AT (2),

x(3|4) = x(3|3)

+A(3)HT (4)R−1(4)ε(4),

S(3|4) = S(3|3)

−A(3)HT (4)R−1(4)H(4)AT (3).

The special cases we have considered are enough to re-
veal patterns that we can exploit to carry out recursive
computations. The algorithm below spells out some of
the details for a particular implementation that can be
developed from such considerations.

Algorithm 4.4 This algorithm computes x(j|t), S(j|t)
for t = 1, . . ., n and j = 1, . . ., t.

/*Initialization*/
S(1|0) = F (0)S(0|0)F T (0) + Q(0)
R(1) = H(1)S(1|0)HT (1) + W (1)
S(1|1) = S(1|0) − S(1|0)HT (1)R−1(1)H(1)S(1|0)
M(1) = F (1)

−F (1)S(1|0)HT (1)R−1(1)H(1)
ε(1) = y(1)

© 2006 by Taylor & Francis Group, LLC

Forward Recursions 81

x(1|1) = S(1|0)HT (1)R−1(1)ε(1)
for t = 2 to n

S(t|t − 1) = F (t − 1)S(t − 1|t − 1)F T (t − 1)
+ Q(t − 1)

R(t) = H(t)S(t|t − 1)HT (t) + W (t)
S(t|t) = S(t|t − 1)

− S(t|t − 1)HT (t)R−1(t)H(t)S(t|t − 1)
M(t) = F (t)

−F (t)S(t|t − 1)HT (t)R−1(t)H(t)
x(t|t − 1) = F (t − 1)x(t − 1|t − 1)
ε(t) = y(t) − H(t)x(t|t − 1)
x(t|t) = S(t|t − 1)HT (t)R−1(t)ε(t)

+ x(t|t − 1)
/*Initialization of A(t − 1)*/
A(t − 1) = S(t − 1|t − 2)
/*C and b are temporary storage*/
C = HT (t)R−1(t)H(t)
b = HT (t)R−1(t)ε(t)
for j = 1 to t − 1

A(j) := A(j)MT (t − 1)
x(j|t) := x(j|t − 1) + A(j)b
S(j|t) = S(j|t − 1) − A(j)CAT (j)

end for

end for

Algorithm 2.5 requires an overall computational effort
of order n2 flops. This is not surprising because the out-
put of the algorithm consists of all the n(n + 1)/2 state
vector predictors that would be of interest from sequen-
tially observed data: i.e., x(1|1), . . ., x(1|n), x(2|2), . . .,

x(2|n), . . ., x(n − 1|n − 1), x(n − 1|n), and x(n|n). In
contrast, the smoothing algorithms in the next chapter
are order n because they return only a subset of this
predictor collection such as x(1|n), x(2|n), . . ., x(n|n).

© 2006 by Taylor & Francis Group, LLC

82 A Kalman Filter Primer

4.5 Examples

In this section we will consider two examples that illus-
trate some of the work in the previous sections. First we
will look at the form of the KF recursions in the simple
state-space framework discussed in Sections 2.4 and 3.4.
Then we will implement Algorithm 4.3 to compute sig-
nal predictors for data with a Brownian motion signal as
discussed in Section 1.3.

Example: Time Invariant F, Q, H and W Matrices. Once again let
us restrict attention to the special case of a state-space
model with

y(t) = Hx(t) + e(t)

and

x(t + 1) = F x(t) + u(t)

for known matrices H and F that do not depend on t

and e and u processes having time invariant variance-
covariance matrices Q0 and W0. Then, for example, (4.15)
and (4.20) simplify to

x(t|t − 1) = K(t − 1)ε(t − 1)

+
t−2∑

j=1
F

t−1−j
K(j)ε(j)

(4.21)

and

x(t|t) = S(t|t − 1)HT
R

−1(t)ε(t) + x(t|t − 1). (4.22)

Let us focus on (4.21)–(4.22) in the case where p = q =
1 and use the work from Section 2.4 to analyze the form

© 2006 by Taylor & Francis Group, LLC

Forward Recursions 83

of the coefficients or weights that are applied to the in-
novations when computing the predictor of x(t). Now, in
this context we can think of the ε(j) as component vari-
ables that represent the information about the state x(t)
that is unique to the observation y(j). This is intuitively
clear from the way the innovations are constructed. But,
we also have

x(t|t) = [x(t|t) − x(t|t − 1)] + [x(t|t − 1) − x(t|t − 2)]

· · · + [x(t|2) − x(t|1)] + x(t|1)

with

x(t|j) − x(t|j − 1) = Cov(x(t), ε(j))R−1(j)ε(j).

This breaks the prediction of x(t) into orthogonal pieces
with ε(j) providing the information about x(t) that ac-
crued from the realization of y(j) beyond that which was
already present at time index j − 1.

Now, using our large t approximations we have seen
that

S(t|t − 1) ≈
R(∞) − W0

H2

and

K(t) ≈
F

H

(

1 −
W0

R(∞)

)

.

Applying these relations to (4.21)–(4.22) (while ignoring

© 2006 by Taylor & Francis Group, LLC

84 A Kalman Filter Primer

the consequences of using them for small t) we obtain

x(t|t) ≈
1

H

(

1 −
W0

R(∞)

)

ε(t)

+
F

H

(

1 −
W0

R(∞)

)

ε(t − 1)

+
t−2
∑

j=1
F t−j 1

H

(

1 −
W0

R(∞)

)

ε(j)

=
1

H

(

1 −
W0

R(∞)

) 

ε(t) +
t−1
∑

j=1
F

t−j
ε(j)



 .

(4.23)

In the case where |F | < 1, (4.23) suggests that when pre-
dicting x(t) the information from a particular innovation
is damped or down weighted as its time index becomes
further below t. Put another way, in this case the inno-
vations whose time indices are closest to t play more of
a role in predicting x(t).

Note that the factor F characterizes the memory prop-
erties of the state process since

x(t) = F x(t − 1) + u(t − 1)

= F
2

x(t − 2) + F u(t − 2) + u(t − 1)

= F
3

x(t − 3) + F
2

u(t − 3)

+F u(t − 2) + u(t − 1),

etc., from which we can infer that when |F | < 1 the more
recent states will have the most influence on the current
state vector. From this perspective the KF’s treatment
of the innovations appears quite reasonable.

© 2006 by Taylor & Francis Group, LLC

Forward Recursions 85

Example: Brownian Motion with White Noise. Now consider the case
of sampling from Brownian motion with white noise that
was introduced in Section 1.3. In this setting we sample
at ordinates 0 ≤ τ1 < · · · < τn ≤ 1, from the continu-
ous time process

z(τ) = B(τ) + v(τ), τ ∈ [0, 1],

where v(·) is a zero mean process with covariances

Cov(v(τ), v(ν)) =

{

W0, s = t,

0, s �= t

and B(·) is a zero mean process with covariance kernel

Cov(B(τ), B(ν)) = min(τ, ν).

We have already seen in Section 1.3 that this produces
a state-space model with

y(t) = z(τt)

= H(t)x(t) + e(t)

and

x(t + 1) = B(τt+1)

= F (t)x(t) + u(t),

for

e(t) = v(τt),

W (t) ≡ W0,

H(t) ≡ 1,

u(t) = B(τt+1) − B(τt),

Q(t) = τt+1 − τt,

F (t) ≡ 1

© 2006 by Taylor & Francis Group, LLC

86 A Kalman Filter Primer

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

τ

+

++
+
+

++

+
+
+++

++

++
+
+
++

+
+
++

+
+

+
+
+

+
+
+
++

+

+
++

+
+
+++

+++
+
+++

+
++

++
++++

+++
+

++
+++

+

++
++

+
+
+

+
++

+++++++
+
+++

+
++

++
+
+

+

++

+

x(t|t)
Upper PI
Lower PI
x(t)

FIGURE 4.1

Predictions for Brownian motion with white noise data

with the convention that τ0 := 0.
Note that if we drop the restriction that the τt have to

fall in the interval [0, 1] and instead assume that τt+1 −
τt = ∆ for some fixed constant ∆, then we are back in
the framework of the previous example. In contrast to
that case, here we are dealing with situations where the
τt can be allowed to grow dense in [0, 1].

Figure 4.1 shows the results returned from the KF in

© 2006 by Taylor & Francis Group, LLC

Forward Recursions 87

the case of the sampled Brownian motion with white
noise data from Figure 1.1. For ease of visual percep-
tion the values of x(t|t) have been linearly connected as
have the upper and lower bounds of the 95% prediction
intervals (PI’s)

x(t|t) ± 2
√

S(t|t).

The plus-signs in the plot are the true values of the sig-
nal: i.e., f(t) = B(τt).

© 2006 by Taylor & Francis Group, LLC

5

Smoothing

5.1 Introduction

The KF Algorithm 4.3 produces the BLUP of x(t) from
y(1), . . ., y(t). Thus, at the end of the recursion we have
calculated the vector of predictors











x(1|1)
x(2|2)

.

.

.
x(n|n)











.

There are cases where this is exactly what is desired. For
example, if only the current state vector at time t is of
interest, then x(t|t) gives the pertinent answer and the
values of random vectors x(1), . . ., x(t−1) are no longer
of relevance.

However, if previous values of the state vector are al-
so objects of importance then it makes sense to include
the information from new response data into their pre-
dictions as well. We discussed this briefly at the end of
Chapter 4. Now we will develop the idea in more detail.

Because of the state-space structure, y(t +1), y(t +2),
. . ., y(n) all contain information about the state vec-
tor x(t). Consequently, by including new response in-
formation we can obtain better predictors of past states

89
© 2006 by Taylor & Francis Group, LLC

90 A Kalman Filter Primer

than would be obtained from using the filtering algo-
rithm alone. This process of modifying the BLUP x(t|t)
based on y(1), . . ., y(t) to obtain a BLUP based on y(1),
. . ., y(t), y(t + 1), . . ., y(r) for some r ≥ t is referred to
as smoothing.

The question then is how much smoothing to do or how
much new information to incorporate into the estimator
x(t|t). One obvious answer would be to use the most
information possible and predict the entire state vector
via











x(1|n)
x(2|n)

.

.

.
x(n|n)











.

This approach corresponds to a special case of what is
called fixed interval smoothing that we will study in the next
section.

5.2 Fixed interval smoothing

Suppose now that we have completed the forward pass
through the data using the KF Algorithm 4.3. If that
is the case, we now have at our disposal the quanti-
ties x(t|t), S(t|t) (as well as S(t|t − 1), M(t), etc.) for
t = 1, . . ., n. The goal is to see how these predictors
and prediction error variance-covariance matrices can be
updated to incorporate information from responses that
were not included in the forward pass or filtering run
through the data.

The key result we will use to address smoothing ques-
tions is provided by the following.

© 2006 by Taylor & Francis Group, LLC

Smoothing 91

Theorem 5.1 For t < r ≤ n the BLUP of x(t) based on

y(1), . . ., y(r) is

x(t|r) = x(t|t)

+S(t|t − 1)
r∑

j=t+1
A(t, j)ε(j)

(5.1)

with

A(t, j) = M
T (t) · · · M

T (j − 1)HT (j)R−1(j). (5.2)

The prediction error variance-covariance matrix for x(t|r) is

S(t|r) = S(t|t)

−S(t|t − 1)
r∑

j=t+1
A(t, j)R(j)AT (t, j)S(t|t − 1).

(5.3)

The BLUP of f(t) based on y(1), . . ., y(r) is

f(t|r) = H(t)x(t|r) (5.4)

with prediction error variance-covariance matrix

V (t|r) = H(t)S(t|r)HT (t). (5.5)

Proof. The proof of this result is relatively straightfor-
ward given all our previous labor. First, observe from
(1.29) that for t < r ≤ n

x(t|r) = x(t|t)

+
r∑

j=t+1
Cov(x(t), ε(j))R−1(j)ε(j).

© 2006 by Taylor & Francis Group, LLC

92 A Kalman Filter Primer

Since the innovations are all uncorrelated, it follows from
(1.30) that

S(t|r) = Var(x(t))

−
r∑

j=1
Cov(x(t), ε(j))R−1(j)Cov(ε(j), x(t))

= S(t|t)

−
r∑

j=t+1
Cov(x(t), ε(j))R−1(j)Cov(ε(j), x(t)).

An application of (2.18) from Lemma 2.4 now shows that

Cov(x(t), ε(j))R−1(j)

= S(t|t − 1)MT (t) · · · M
T (j − 1)HT (j)R−1(j)

= S(t|t − 1)A(t, j)

which completes the argument. �
Theorem 5.1 is stated in a way that is conducive to

algorithmic development as a result of the “backdating”
identity

A(t − 1, j) = M
T (t − 1)A(t, j). (5.6)

© 2006 by Taylor & Francis Group, LLC

Smoothing 93

Using (5.6) we see that

x(t − 1|r) = x(t − 1|t − 1)

+S(t − 1|t − 2)
r∑

j=t

A(t − 1, j)ε(j)

= x(t − 1|t − 1) + S(t − 1|t − 2)A(t − 1, t)ε(t)

+S(t − 1|t − 2)
r∑

j=t+1
A(t − 1, j)ε(j)

= x(t − 1|t − 1)

+S(t − 1|t − 2)MT (t − 1)HT (t)R−1(t)ε(t)

+S(t − 1|t − 2)MT (t − 1)
r∑

j=t+1
A(t, j)ε(j).

Consequently, we can accumulate the vector sums

r∑

j=t+1
A(t, j)ε(j) (5.7)

and use them to obtain a one step update of x(t|t) to
x(t|r). A similar “backdating” result is true for the pre-
diction error variance-covariance matrices since

A(t − 1, j)R(j)AT (t − 1, j)

= M
T (t − 1)A(t, j)R(j)AT (t, j)M(t − 1).

(5.8)

The updating is then accomplished by accumulation of
the matrix sums

r∑

j=t+1
A(t, j)R(j)AT (t, j).

The details involved in the recursive evaluation of x(t|r),

© 2006 by Taylor & Francis Group, LLC

94 A Kalman Filter Primer

f(t|r), etc., are summarized in the algorithm below. Note
that x(r|r) is already returned from Algorithm 4.3.

Algorithm 5.1 This algorithm returns x(t|r), S(t|r),
f(t|r), V (t|r), t = 1, . . ., r − 1.

/*Initialization*/

a = MT (r − 1)HT (r)R−1(r)ε(r)
A = MT (r − 1)HT (r)R−1(r)H(r)M(r − 1)
for t = r − 1 to 1

x(t|r) = x(t|t) + S(t|t − 1)a
S(t|r) = S(t|t) − S(t|t − 1)AS(t|t − 1)
f(t|r) = H(t)x(t|r)
V (t|r) = H(t)S(t|r)HT (t)
a = MT (t − 1)HT (t)R−1(t)ε(t) + MT (t − 1)a
A = MT (t − 1)HT (t)R−1(t)H(t)M(t − 1)

+MT (t − 1)AM(t − 1)
end for

Much like the Kalman filtering algorithm, the most
salient feature of this recursion is its speed. The over-
all effort is O(r) since the backdating steps require only
one or two matrix multiplications and a vector or ma-
trix addition. In particular, if we take r = n, the end re-
sult is x(t|n), S(t|n), f(t|n), V (t|n), t = 1, . . . , n − 1,

and the entire collection of these vectors and matrices
can be evaluated in a total order n effort assuming that
x(t|t), S(t|t), M(t), ε(t), t = 1, . . ., n − 1, have already
been computed. Since these latter quantities can also be
obtained in order n operations using Algorithm 4.3, fixed
interval smoothing with r = n can be accomplished in
O(n) flops for state-space models.

Now, in general we know that for a nq-vector x and a
np-vector y the BLUP of x based on y is provided by
Cov(x, y)Var−1(y)y. The computation of this predictor
will require O((np)3) flops due to the need to “invert”
the matrix Var(y). Thus, the computation of the BLUP

© 2006 by Taylor & Francis Group, LLC

Smoothing 95

for the state vector based on y can be accomplished two
orders of magnitude faster for state-space models than
would be the case for stochastic processes of a general
nature.

When r = n, Algorithm 5.1 is the same as the effi-
cient smoothing algorithm in Kohn and Ansley (1989).
Prior to the development of this recursion fixed inter-
val smoothing was accomplished using the relation (e.g.,
equation 4.5 on page 189 of Anderson and Moore 1979)

x(t|r) = x(t|t)

+S(t|t − 1)MT (t)S−1(t + 1|t)[x(t + 1|r)

−x(t + 1|t)]. (5.9)

By initializing with t = r − 1, this identity can also be
used for fixed interval smoothing.

At first glance there is no reason to believe that (5.9)
is even true much less that by using it we would obtain
equivalent results to our other approach to fixed interval
smoothing. Perhaps of more importance, fixed interval s-
moothing methods derived from (5.9) appear to be slower
than Algorithm 5.1 (Kohn and Ansley 1989). Nonethe-
less, it is worthwhile to at least discuss this approach
and connect it to the developments in this section.

First note from (5.1)–(5.2) that (5.9) will be verified if
we can show that MT (t)S−1(t + 1|t)[x(t + 1|r) − x(t +
1|t)] is equal to the vector

r∑

j=t+1
M

T (t) · · · M
T (j − 1)HT (j)R−1(j)ε(j).

© 2006 by Taylor & Francis Group, LLC

96 A Kalman Filter Primer

But, from (5.1)–(5.2) and (4.20) we see that

x(t + 1|r) − x(t + 1|t)

= S(t + 1|t)
r∑

j=t+2
A(t + 1, j)ε(j)

+x(t + 1|t + 1) − x(t + 1|t)

= S(t + 1|t)
r∑

j=t+2
A(t + 1, j)ε(j)

+S(t + 1|t)HT (t + 1)R−1(t + 1)ε(t + 1)

and (5.9) has been shown. At least one of the drawbacks
from using a recursion based on (5.9) becomes apparent
from this proof: namely, the inversion of S(t+1|t) is un-
necessary in the sense that the desired quantities can be
computed directly using the accumulation of the vectors
(5.7) as in Algorithm 5.1.

Algorithm 5.1 is not the only way to approach the prob-
lem of signal prediction in the case of fixed interval s-
moothing with r = n. Instead, we could bypass the state
vector prediction step and use the previously derived i-
dentity

f̂ = y − W (LT)−1
R

−1
ε

to develop an algorithm for computing the BLUP for the
signal directly. Under this formulation efficient compu-
tation of the BLUP of f based on y is tantamount to
efficiently solving the system

L
T

b = R
−1

ε (5.10)

for the vector b. To accomplish this one could, for exam-
ple, use the structure in (L−1)T detailed in Theorem
3.2. Alternatively, one can merely finish the Cholesky so-
lution of the linear system Var(y)b = y by back-solving
the upper triangular system (5.10) with the help of The-

© 2006 by Taylor & Francis Group, LLC

Smoothing 97

orem 3.1. We will briefly discuss both of these computa-
tional strategies.

As a result of Theorems 3.1 and 3.2 we have explicit ex-
pressions for the blocks of the upper triangular matrices
LT and (LT)−1. Using Theorem 3.1 we see that

b(n) = R
−1(n)ε(n),

b(n − 1) = R
−1(n − 1)ε(n − 1) − L

T (n, n − 1)b(n)

= R
−1(n − 1)ε(n − 1)

−K
T (n − 1)HT (n)b(n),

b(n − 2) = R−1(n − 2)ε(n − 2)

−L
T (n − 1, n − 2)b(n − 1)

−L
T (n, n − 2)b(n)

= R
−1(n − 1)ε(n − 1)

−KT (n − 2)HT (n − 1)b(n − 1)

−K
T (n − 2)F T (n − 1)HT (n)b(n)

and, in general,

b(t) = R
−1(t)ε(t) − K

T (t)[HT (t + 1)b(t + 1)

+
n∑

j=t+2
F

T (t + 1) · · · F
T (j − 1)HT (j)b(j)].

© 2006 by Taylor & Francis Group, LLC

98 A Kalman Filter Primer

Similarly, using Theorem 3.2 we have

b(n) = R
−1(n)ε(n),

b(n − 1) = R
−1(n − 1)ε(n − 1)

+(L−1)T (n, n − 1)R−1(n)ε(n)

= R
−1(n − 1)ε(n − 1)

−K
T (n − 1)HT (n)R−1(n)ε(n),

b(n − 2) = R
−1(n − 2)ε(n − 2)

+(L−1)T (n − 1, n − 2)R−1(n − 1)ε(n − 1)

+(L−1)T (n, n − 2)R−1(n)ε(n)

= R
−1(n − 2)ε(n − 2)

−K
T (n − 2)HT (n − 1)R−1(n − 1)ε(n − 1)

−KT (n − 2)MT (n − 1)HT (n)R−1(n)ε(n)

and, in general,

b(t) = R
−1(t)ε(t)

− K
T (t)[HT (t + 1)R−1(t + 1)ε(t + 1)

+
n∑

j=t+2
M

T (t + 1) · · · M
T (j − 1)HT (j)R−1(j)ε(j)].

Consequently, the elements of b = (LT)−1R−1Ly can
be computed efficiently in O(n) operations by accumu-
lating either of the vector sums

a1(t) = H
T (t + 1)b(t + 1)

+
n∑

j=t+2
F

T (t + 1) · · · F
T (j − 1)HT (j)b(j)

© 2006 by Taylor & Francis Group, LLC

Smoothing 99

or

a2(t) = H
T (t + 1)R−1(t + 1)ε(t + 1)

+
n∑

j=t+2
M

T (t + 1) · · · M
T (j − 1)HT (j)R−1(j)ε(j).

These sums are initialized with a1(n) = a2(n) = 0 and
then updated using

a1(t − 1) = H
T (t)b(t) + F

T (t)a1(t)

and

a2(t − 1) = H
T (t)R−1(t)ε(t) + M

T (t)a2(t).

Since the algorithms we have just described for com-
puting the smoothed signal BLUP will produce exactly
the same answer as the ones we would obtain from Al-
gorithm 4.1 with r = n, we will not explore them in
further detail here. Instead, we refer the reader to Eu-
bank and Wang (2002) for a more complete development
of the state-space model smoothing recursions from this
perspective. The reason for introducing these alternative
smoothing algorithms has been to shed light on the inner
workings of the Kalman recursions. Specifically, we now
see that, at least as far as signal estimation is concerned,
the KF Algorithm 4.3 and smoothing Algorithm 5.1 when
used in combination are equivalent to a smart Cholesky
algorithm for solving Var(y)b = y. The resulting recur-
sions use the structure of Var(y) to return a solution
two orders of magnitude faster than would be possible
from a naive application of the Cholesky method. What
makes this even more remarkable is that the linear sys-
tem (5.10) is generally full with no banding or sparsity
that can be exploited to lighten the computational bur-
den.

There are other types of smoothing that can also be of
interest in certain settings. For example, fixed lag smooth-
ing concerns the computation of x(t|t + k) for a fixed

© 2006 by Taylor & Francis Group, LLC

100 A Kalman Filter Primer

integer k. The idea in this case is that both t and n are
growing and we wish to predict x(t) using observations
only up to k time index points into the “future.” We will
not discuss this or other smoothing concepts here apart
from noting that Theorem 5.1 also provides a tool for de-
veloping recursive computational methods for these oth-
er smoothing scenarios. An overview of the various types
of smoothing and associated KF algorithms can be found
in de Jong (1989).

5.3 Examples

This section is essentially the smoothing parallel of Sec-
tion 4.4. So, we will again examine the state-space model
from Sections 2.4 and 3.4 and will also look at the effects
of smoothing on the Brownian motion with white noise
data from Section 1.3. For this latter example we will im-
plement Algorithm 5.1 and compare the results to those
obtained from Algorithm 4.3 thereby giving us a chance
to visually examine the change in predictors that results
from the updating process.

Example: Time Invariant F, Q, H and W matrices. Let us again
examine the state-space model

y(t) = Hx(t) + e(t)

and

x(t + 1) = F x(t) + u(t).

Due to the somewhat more complex formulas that arise
in smoothing, it will be more useful to deal only with
the situation where p = q = 1 so that H, F and the e

and u process variances W0, Q0 are all scalars.
Using our large t approximations from Section 3.4 a-

long with identity (5.1) the coefficient being applied to

© 2006 by Taylor & Francis Group, LLC

Smoothing 101

ε(j) in the smoothing step for prediction of x(t) is

S(t|t − 1)M(t) · · · M(j − 1)H

R(j)

≈
1

H

[

1 −
W0

R(∞)

] (
F W0

R(∞)

)j−t

.

If we combine this approximation with the one in (4.23)
of Section 4.5 for x(t|t) this produces, e.g.,

x(t|n) ≈
1

H

(

1 −
W0

R(∞)

) 

ε(t) +
t−1∑

j=1
F

t−j
ε(j)





+
1

H

(

1 −
W0

R(∞)

) n∑

j=t+1

[
F W0

R(∞)

]j−t

ε(j).

Now W0/R(∞) ≤ 1. So, in the “short memory”case
for the state process where |F | < 1, we see that x(t|n)
represents a smoothing of data in the traditional sense of
being (approximately) a weighted sum of the innovations
with weights that are concentrated on innovations whose
time indices are close to t.

Example: Brownian Motion with White Noise. Now consider again
the case of sampling from Brownian motion with white
noise that was introduced in Section 1.3. In this case we
have p = q = 1, H(t) = F (t) ≡ 1, W (t) ≡ W0 for some
fixed constant W0, S(0|0) = 0 and Q(t) = τt − τt−1
with τ0 := 0.

Data from this particular state space model were shown
originally in Figure 1.1 that corresponded to the case
where W0 = .025. We applied the KF to that data in the
second example of Section 4.5 with both the prediction-
s and corresponding prediction intervals being shown in
Figure 4.1. The parallel pointwise prediction results ob-

© 2006 by Taylor & Francis Group, LLC

102 A Kalman Filter Primer

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

τ

f

x(t|t)
x(t|n)
x(t)

FIGURE 5.1

Predictor comparison for Brownian motion with white
noise data

tained from fixed interval smoothing with r = n = 100
are compared to those from the KF in Figure 5.1. One
can visually see the effect of smoothing from the plot
and, as one would expect, the resulting “smoothed” pre-
dictions are better in that

∑100
t=1(x(t) − x(t|100))2 =

.714 compared to
∑100

t=1(x(t) − x(t|t))2 = 1.2877.

Figure 5.2 shows the 95% prediction intervals for the

© 2006 by Taylor & Francis Group, LLC

Smoothing 103

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

5
0.

0
0.

5
1.

0
1.

5
2.

0

τ

f

x(t|n)
Upper PI
Lower PI
x(t)

FIGURE 5.2

Smoothing Predictions for Brownian motion with white
noise data

true signals x(t) obtained via the formula

x(t|n) ± 2
√

S(t|n).

The coverage level for these particular prediction inter-
vals was 96% compared to 92% for those obtained from
the KF that are shown in Figure 4.1. More striking than

© 2006 by Taylor & Francis Group, LLC

104 A Kalman Filter Primer

0.0 0.2 0.4 0.6 0.8 1.0

0
.1

5
0
.1

6
0
.1

7
0
.1

8
0
.1

9
0
.2

0
0
.2

1

τ

h
a
lf

le
n
g
th

s

Smoothing
Filtering

FIGURE 5.3

Prediction interval half lengths for filtering and smooth-
ing

the difference in the coverage level is the difference in
the width of the prediction intervals. This can be ap-
preciated by examination of Figure 5.3 which shows the
prediction interval half lengths for the two methods. The
conclusion in this particular case is that the introduc-
tion of additional information in the backward smooth-
ing recursion has substantially improved the precision of

© 2006 by Taylor & Francis Group, LLC

Smoothing 105

the predictions that were obtained in the initial filtering
step.

© 2006 by Taylor & Francis Group, LLC

6

Initialization

6.1 Introduction

In this chapter we discuss the initializing state vector
x(0) in more detail. We have assumed that x(0) is a ran-
dom vector with mean zero and variance-covariance ma-
trix S(0|0). As might be expected, the specific choice for
S(0|0) can have a profound effect on predictions since it
affects all the subsequent variances and covariances as
they are built up from the values of

Var(x(1)) = F (0)S(0|0)F T (0) + Q(0),

Cov(x(1), ε(1)) = Var(x(1))HT (1)

and

R(1) = Var(ε(1)) = H(1)Var(x(1))HT (1) + W (1).

In the case where E[x(0)] �= 0 there is also a location
effect produced by the initial specification of the mean
vector for x(0). However, we will postpone treatment of
this latter issue until Chapter 8.

There are some state-space models where there is a
natural choice for S(0|0). For instance, in the case of
the Brownian motion example from Section 1.3 the x(·)
process is staked at 0 which entails that S(0|0) = 0.
However, in general, there may be no obvious choice for

107
© 2006 by Taylor & Francis Group, LLC

108 A Kalman Filter Primer

S(0|0) and, when that is the case, inference using state-
space models would appear to be problematic. Ways to
circumvent such difficulties include the use of diffuse (or
improper prior) specifications for x(0) and the treatment
of x(0) as an unknown, fixed quantity that must be es-
timated from the response data. It turns out that the
two approaches lead to basically the same final answer.
Thus, we will first deal with diffuse specifications and
derivation of the so-called diffuse Kalman filter.

6.2 Diffuseness

One way to avoid the issue of specifying a distribution
for x(0) is to let its distribution be diffuse in a second
order sense. That is, one takes S(0|0) to be very (i.e.,
infinitely) large in a manner to be clarified shortly. The
premise is that if we let the variances of the components
of x(0), i.e., the diagonal elements of S(0|0), be large,
then we have said virtually nothing about the sort of
values x(0) might actually take on.

To be somewhat more precise we will now take x(0) to
have mean 0 and variance-covariance matrix S(0|0) =
νI. The corresponding (prior) probability distribution
for x(0) will then be allowed to become diffuse by letting
ν → ∞. We will show that this produces prediction-
s (and associated prediction error variance-covariances
matrices) that do not involve S(0|0) and, hence, can be
computed directly without specifying anything about the
variances or covariances for the initial state vector.

Obtaining freedom from the need for specification of
initial conditions is not without its cost. One finds that
our previous computational methodology can no longer
be used to obtain predictions. Instead, it is necessary to
modify the KF recursions to deal with changes in the
predictors and their prediction error variance-covariance
matrices that arise from using a diffuse prior for x(0).

© 2006 by Taylor & Francis Group, LLC

Initialization 109

Although there are various ways to carry out the neces-
sary algorithmic alterations, the resulting computational
schemes are all generally referred to as diffuse Kalman fil-

ters.
To derive a diffuse KF let us first reformulate model

(1.19)–(1.28) back into its signal-plus-noise parent model
(1.1). To accomplish this we begin by observing that

x(1) = F (0)x(0) + u(0),

y(1) = H(1)F (0)x(0) + H(1)u(0) + e(1)

which progresses to

x(2) = F (1)x(1) + u(1)

= F (1)F (0)x(0) + F (1)u(0) + u(1),

y(2) = H(2)F (1)F (0)x(0) + H(2)F (1)u(0)

+H(2)u(1) + e(2)

and then to

x(3) = F (2)x(2) + u(2)

= F (2)F (1)F (0)x(0) + F (2)F (1)u(0)

+F (2)u(1) + u(2),

y(3) = H(3)F (2)F (1)F (0)x(0) + H(3)F (2)F (1)u(0)

+H(3)F (2)u(1) + H(3)u(2) + e(3)

© 2006 by Taylor & Francis Group, LLC

110 A Kalman Filter Primer

with the general case appearing as

x(t) = F (t − 1) · · · F (0)x(0)

+
t−2
∑

j=0
F (t − 1) · · · F (j + 1)u(j)

+ u(t − 1),

y(t) = H(t)F (t − 1) · · · F (0)x(0)

+
t−2
∑

j=0
H(t)F (t − 1) · · · F (j + 1)u(j)

+ H(t)u(t − 1) + e(t).

As a result of these calculations we can now express the
response vector y and the state vector

x = (xT (1), . . ., x
T (n))T

as

y = HT x(0) + Hx0 + e

= HT x(0) + f0 + e (6.1)

x = T x(0) + x0 (6.2)

with T the nq × q matrix

T =











F (0)
F (1)F (0)

.

.

.
F (n − 1) · · · F (0)











, (6.3)

© 2006 by Taylor & Francis Group, LLC

Initialization 111

x0 the nq vector

x0 =











u(0)
F (1)u(0) + u(1)

.

.

.
∑n−2

j=0 F (n − 1) · · · F (j + 1)u(j) + u(n − 1)












,

(6.4)

H the np × nq matrix

H =











H(1) 0 · · · 0
0 H(2) · · · 0

.

.

.

.

.

.
. . .

0 0 · · · H(n)











, (6.5)

f0 = Hx0 and e = (eT (1), . . . , eT (n))T defined as
before.

Note that x0 and f0 are precisely the state and sig-
nal vectors we would have obtained from our state-space
model if x(0) could have been taken as zero in the sense
of having E[x(0)] = 0 and S(0|0) = 0. Among other
things this means that there is a sub-model here where
the ordinary KF Algorithms 4.3 and 5.1 for the case of
S(0|0) = 0 could be applied directly. We need to figure
out how this fact can be put to use in terms of allowing
us to compute predictions for the model that actually
generated the data.

The plan of attack is now as follows. First we will ex-
amine the form of predictors under the simple sub-model
corresponding to x0 in (6.4) that has S(0|0) = 0. Then,
we will develop similar expressions for prediction in a
more general case where we take S(0|0) = νI for some
ν > 0. The next step in the process is to allow ν to grow
large and thereby obtain a diffuse specification for x(0).

© 2006 by Taylor & Francis Group, LLC

112 A Kalman Filter Primer

In the limit as ν → ∞ we will have freed ourselves of the
need to specify S(0|0), provided that the limits exist for
the BLUPs of x, f and their associated prediction error
variance-covariance matrices. We will see that the lim-
its are, in fact, well defined and, in addition, that they
can be computed through an appropriate application of
the ordinary fixed interval smoothing algorithm for the
simple model having S(0|0) = 0. The resulting recursion
provides one implementation of a diffuse KF.

6.2.1 Prediction when S(0|0) = 0

Let us now expand on our discussion of the state-space
model with S(0|0) = 0. Thus, take

y0 = Hx0 + e0

with x0 structured along the lines of (6.4). To be precise,
we are assuming that

1. e0 is a random vector with components e0(t),
t = 1, . . ., n, having E[e0] = 0 and

Var(e0) = diag(W (1), . . . , W (n))

:= W, (6.6)

2. the components of y0 = (yT
0 (1), . . . , yT

0 (n))T

and x0 = (xT
0 (1), . . . , xT

0 (n))T follow the
state-space model

y0(t) = H(t)x0(t) + e0(t) (6.7)

x0(t + 1) = F (t)x0(t) + u0(t) (6.8)

with u0 = (uT
0 (0), . . ., uT

0 (n − 1))T a zero
mean random vector that is uncorrelated with

© 2006 by Taylor & Francis Group, LLC

Initialization 113

e0 while having

Var(u0) = diag(Q(0), . . ., Q(n − 1))

:= Q (6.9)

and

3. the model is initialized by taking E[x0(0)] = 0
and S(0|0) = 0.

Now we want to work out the form of the BLUPs of x0
and f0 = Hx0 based on y0. For this purpose we need
the variance-covariance matrices for x0 and y0 as well
as their cross-covariance matrix Cov(x0, y0).

In view of (6.4) we can write

x0 = F u0

with F = {F(t, j)}t,j=1:n an nq × nq lower triangular
matrix having F (t, t) = I and

F (t, j) = F (t − 1) · · · F (j) (6.10)

for j < t. Thus,

Var(x0) = F QF
T

:= Σx0 (6.11)

and, hence,

Var(y0) = HΣx0 H
T + W

:= Σy0 . (6.12)

Finally, the x0, y0 cross-covariance matrix is

Cov(x0, y0) = Σx0H
T

. (6.13)

Combining (6.11)–(6.13) with Theorem 1.1 we see that
the least–squares predictors of x0 and f0 = Hx0 based

© 2006 by Taylor & Francis Group, LLC

114 A Kalman Filter Primer

on y0 are

x̂0(y0) = Σx0H
T (HΣx0 H

T + W)−1
y0

= Σx0H
T Σ−1

y0
y0 (6.14)

and

f̂0(y0) = HΣx0H
T (HΣx0 H

T + W)−1
y0

= y0 − WΣ−1
y0

y0

(6.15)

with the associated prediction error variance-covariance
matrices for x̂0(y0) and f̂0(y0) given by

S0 = Σx0 − Σx0 H
T Σ−1

y0
HΣx0 (6.16)

and

V0 = HΣx0 H
T

−HΣx0 H
T Σ−1

y0
HΣx0H

T

= W − WΣ−1
y0

W, (6.17)

respectively. In deriving expressions concerning the sig-
nal BLUP we have used the fact that HΣx0 HT = Σy0 −
W . Thus, for example,

V0 = (Σy0 − W) − (Σy0 − W)Σ−1
y0

(Σy0 − W)

= (Σy0 − W)[I − Σ−1
y0

(Σy0 − W)]

= W − WΣ−1
y0

W.

The notation x̂0(y0) and f̂0(y0) undoubtedly seems a
bit overly complicated. However, there is method to this
notational madness in that we wish to think of relations

© 2006 by Taylor & Francis Group, LLC

Initialization 115

(6.14)–(6.15) as being prescriptions that tell us how to
treat a particular input vector. Whether it makes sense
to do so or not, we can certainly obtain vectors of “out-
put” corresponding to any given np × 1 “input” vector
v through rote calculations using (6.14)–(6.15) with y0
replaced by v. If v is not from our simple state-space
model, then x̂0(v) and f̂0(v) would have no obvious in-
terpretation. Nonetheless, they could be computed along
with the diagonal blocks of S0 and V0 in order n oper-
ations using the fixed interval smoothing Algorithm 5.1
with r = n.

Of course, the efficient computation of x̂0(y0), f̂0(y0),
etc., would seem to be of somewhat limited utility since
it applies only to situations with S(0|0) = 0. As demon-
strated by the examples in Section 1.3, cases where this
is true are not uncommon. However, cases with S(0|0) �=
0 can also arise as illustrated by the following example.

Example: Mean Shifted Brownian Motion with White Noise. Returning
to our example of sampling from Brownian motion with
white noise, the responses in that case had the form

y(t) = x(t) + e(t),

where x(t) = B(τt), t = 1, . . ., n, are random variables
obtained from a Brownian motion process at the sam-
pling points 0 ≤ τ1 < · · · < τn ≤ 1 and e(1), . . ., e(n)
are uncorrelated random variables with some common
variance W0 that are uncorrelated with x(1), . . ., x(n).
For this model we necessarily have x(0) = 0 because the
Brownian motion process vanishes with probability one
at τ = 0.

A generalization of the previous formulation would al-
low for x(0) = µ with µ a zero mean random variable
having variance S(0|0) = ν that is uncorrelated with
the Brownian motion signal and the random error terms
e(1), . . ., e(n). The resulting state-space model would
initialize with x(1) = µ + u(0) and Var(u(0)) = τ1.

© 2006 by Taylor & Francis Group, LLC

116 A Kalman Filter Primer

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

τ

y(t)
x(t)

FIGURE 6.1

Mean shifted Brownian motion with white noise data

Then, in general, we would have

x(t + 1) = x(t) + u(t)

= µ +
t∑

j=0
u(j),

© 2006 by Taylor & Francis Group, LLC

Initialization 117

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

τ

x0(t|n)
x(t)

FIGURE 6.2

Naive predictions for mean shifted Brownian motion with
white noise data

where the u(t), t = 0, . . ., n−1, are uncorrelated random
variables having

Var(u(t)) = τt+1 − τt

for t = 1, . . ., n−1. This produces a version of Brownian
motion that no longer has to be staked to 0 at “time”
τ = 0. An example of data obtained from this type of

© 2006 by Taylor & Francis Group, LLC

118 A Kalman Filter Primer

model is shown in Figure 6.1. This is the same data we
saw in Figure 1.1 apart from the addition of a location
shift by the amount of µ = −.6364.

Figure 6.2 shows the result of a naive application of Al-
gorithm 5.1 with r = n to the data in Figure 6.1 without
taking account of the mean shift. The overall result is
basically satisfactory apart from the performance of the
predictor near zero. Since prediction is being performed
as if the signal process was Brownian motion, the corre-
sponding predictor is also staked to zero at “time” zero
which is what has produced the large prediction errors
near the origin.

6.2.2 Prediction when S(0|0) is “large”

The goal of this subsection is to study the behavior of the
BLUPs of the state and signal vectors under the ordinary
state space model (1.19)–(1.28) when S(0|0) is allowed
to grow large in some sense. Since S(0|0) is in general
a matrix, there are numerous ways to mathematically
model the process of this matrix becoming large. For our
purposes there is no loss in choosing

S(0|0) = νI

and then letting ν → ∞. More general approaches such
as the one in de Jong (1991) actually lead to the same
formulae we will derive below.

The response and state vectors can now be written as
in (6.1)–(6.2) so that the BLUP of x based on y is

x̂ν (y) = (νT G
T +Σx0H

T)(νGG
T +Σy0)−1

y (6.18)

with associated prediction error variance-covariance ma-

© 2006 by Taylor & Francis Group, LLC

Initialization 119

trix

Sν = νTT
T + Σx0

−(νT G
T + Σx0 H

T)(νGG
T + Σy0)−1(νTG

T

+Σx0H
T)T ,

(6.19)

where

G = HT (6.20)

and T, H, Σx0 , Σy0 are defined in (6.3), (6.5), (6.11)
and (6.12). Concerning these quantities we are able to
establish the following.

Theorem 6.1 The BLUP of x when S(0|0) = νI satisfies

lim
ν→∞ x̂ν(y)

= [Σx0H
T Σ−1

y0

−(Σx0 H
T Σ−1

y0
G − T)(GT Σ−1

y0
G)−1

G
T Σ−1

y0
]y

= x̂0(y)

−(Σx0 H
T Σ−1

y0
G − T)(GT Σ−1

y0
G)−1

G
T Σ−1

y0
y

:= x̂∞ (6.21)

© 2006 by Taylor & Francis Group, LLC

120 A Kalman Filter Primer

and

lim
ν→∞Sν

= Σx0 − Σx0H
T Σ−1

y0
HΣx0

+[Σx0H
T Σ−1

y0
G

−T](GT Σ−1
y0

G)−1[Σx0H
T Σ−1

y0
G − T]T

= S0 + [Σx0H
T Σ−1

y0
G

−T](GT Σ−1
y0

G)−1[Σx0HT Σ−1
y0

G − T]T

:= S∞. (6.22)

Let us first discuss the implications of this result before
giving its proof. Formula (6.21) states that in the lim-
it, as ν → ∞, the predictor x̂ν(y) can be obtained by
a two step process. First one applies the formula (6.14)
for prediction under the simple model having S(0|0) = 0
to the vector y that was obtained under the usual state-
space model formulation (1.19)–(1.28) with S(0|0) �= 0.
This “predictor” is then corrected to work under the true
model (i.e., when S(0|0) �= 0 and “large”) via subtrac-
tion of the term

(Σx0 HT Σ−1
y0

G − T)(GT Σ−1
y0

G)−1GT Σ−1
y0

y.

The limiting prediction error variance-covariance matrix
has a similar structure with a lead term S0 = Σx0 −
Σx0HT Σ−1

y0
HΣx0 from (6.16) corresponding to the sim-

ple model in Section 6.2.1 along with an adjustment term
to make the ultimate answer conform to the actual dif-
fuse specification of S(0|0). The key here is that both
x̂0(y) and the diagonal blocks of S0 can be obtained by
a direct application of Algorithm 5.1 with r = n to y

by initializing with S(0|0) = 0. The corrections that are

© 2006 by Taylor & Francis Group, LLC

Initialization 121

required for x̂0(y) and S0 can also be evaluated by fixed
interval smoothing as we now demonstrate.

Suppose that we apply the standard forward KF Algo-
rithm 4.3 having S(0|0) = 0 to y(1), . . . , y(n) and q ad-
ditional “input variables” corresponding to the columns
of the matrices

G(j) = H(j)F (j − 1) · · · F (0), j = 1, . . ., n.

That is, at the tth step we carry out all of the steps to
compute signal predictions, etc., for q+1 “response” vec-
tors consisting of y(t) and the q columns of the matrix
G(t). Then, at the end of the forward recursions we will
have at our disposal R0, the “innovation” vector for y,

ε0 = L
−1
0 y,

and another set of “innovation” vectors that comprise
the columns of

E0 = L
−1
0 G, (6.23)

where L0, R0 are from the Cholesky decomposition

Σy0 = L0R0L
T
0 .

This is because Σy0 = Var(y0) is viewed as the re-
sponse variance-covariance matrix when Algorithm 4.3 is
applied with S(0|0) = 0 which entails that the forward
KF recursion will return “innovation” vectors computed
under this premise from any input vector including y and
the columns of G. Thus, after the initial KF recursion we
can efficiently compute (in order n operations) the ma-

trix GT Σ−1
y0

G = (GL
−1
0)T R

−1
0 L

−1
0 G = ET

0 R
−1
0 E0 as

© 2006 by Taylor & Francis Group, LLC

122 A Kalman Filter Primer

well as the q × 1 vector

g0 = GT Σ−1
y0

y

= G
T (LT

0)−1
R

−1
0 L

−1
0 y

= E
T
0 R

−1
0 ε0. (6.24)

One cautionary note is needed, however. To carry out
the computations efficiently, the row blocks of G (i.e, the
matrices G(j) = H(j)F (j − 1) · · · F (0), j = 1, . . ., n)
must be evaluated recursively rather than by brute force.
That is, we begin with A(1) = F (0), G(1) = H(1)A(1)
and on the jth step for j > 1 we use the update A(j) =
F (j − 1)A(j − 1) to obtain G(j) = H(j)A(j − 1).

At the conclusion of the backward smoothing recur-
sions (via Algorithm 5.1 with S(0|0) = 0 and r = n) for
the response vector and the columns of G, we will have
obtained x̂0(y) = Σx0HT Σ−1

y0
y,

Ĝ0 := Σx0 H
T Σ−1

y0
G − T (6.25)

and the diagonal blocks of S0 all in order n operations.
Then, by solving the q × nq linear system

G
T Σ−1

y0
GB = G

T Σ−1
y0

HΣx0 − T
T

= Ĝ
T
0 (6.26)

for the q×nq matrix B one obtains the remainder of the
pieces that are necessary to compute the diffuse estima-
tors in (6.21): i.e., from this step we obtain

B = (GT Σ−1
y0

G)−1[GT Σ−1
y0

HΣx0 − T
T]

= (ET
0 R

−1
0 E0)−1

Ĝ
T
0 . (6.27)

While there are many (i.e., nq) right-hand side columns
in (6.26), the order of effort for each column is only q3

© 2006 by Taylor & Francis Group, LLC

Initialization 123

so that the entire effort for obtaining B remains an order
n calculation.

We can now express x̂∞ as

x̂∞ = x̂0(y) − B
T

g0 (6.28)

while the tth diagonal block of S∞ is

S∞(t, t) = S0(t, t) − Ĝ0(t, 1:q)B(1 :q, t), (6.29)

where Ĝ0(t, 1 : q), B(1 : q, t) are, respectively, the tth
row block and tth column block of Ĝ0 in (6.25) and B

in (6.27). Now all the calculations leading to expression
(6.28) can be carried out in a total of order n flops. So,
x̂∞ is also clearly returned in O(n) flops and the same
is true for the diagonal blocks of S∞ or S∞(t, t), t =
1, . . ., n. This is because S0(t, t), t = 1, . . ., n, are all
returned from the fixed interval smoothing Algorithm 5.1
with r = n in a total O(n) effort and because evaluation
of Ĝ0(t, 1 : q)B(1 : q, t) is only an order q2 calculation
for each t.

Proof of Theorem 6.1. The arguments for proving this theo-
rem are algebraically tedious but conceptually straight-
forward. The first step involves an application of the
the Sherman-Morrison-Woodbury formula (Householder
1964, pages 123–124) which states that

(A + BD
−1

C)−1 = A
−1

−A
−1

B(D − CA
−1

B)−1
CA

−1

for matrices A, B, C and D. Applying this with A =

© 2006 by Taylor & Francis Group, LLC

124 A Kalman Filter Primer

Σy0 , B = G, C = GT and D−1 = νI gives

(νGG
T + Σy0)−1

= Σ−1
y0

− Σ−1
y0

G[ν−1
I + G

T Σ−1
y0

G]−1
G

T Σ−1
y0

= Σ−1
y0

− Σ−1
y0

G(GT Σ−1
y0

G)−1[I

+(νG
T Σ−1

y0
G)−1]−1

G
T Σ−1

y0
.

Next we use a matrix power series expansion for (I +
(νGT Σ−1

y0
G)−1)−1 to obtain

(νGG
T + Σy0)−1

= Σ−1
y0

− Σ−1
y0

G(GT Σ−1
y0

G)−1
G

T Σ−1
y0

+ν
−1Σ−1

y0
G(GT Σ−1

y0
G)−2

G
T Σ−1

y0

−ν
−2Σ−1

y0
G(GT Σ−1

y0
G)−3

G
T Σ−1

y0
+ O(ν−3).

The proof is concluded by direct multiplication of this
expression by

(νT T
T + Σx0)HT = νTG

T + Σx0H
T

and by

H(νT T
T + Σx0) = νGT

T + HΣx0 .

Note that the columns of G are orthogonal to

Σ−1
y0

− Σ−1
y0

G(GT Σ−1
y0

G)−1
G

T Σ−1
y0

which directly eliminates certain terms of order ν and
ν2 from x̂ν (y) and Sν . �

Since f̂ν (y) = Hx̂ν (y) and Vν = Var(f − f̂ν (y)) =
HSνHT we also have an immediate corollary concerning

© 2006 by Taylor & Francis Group, LLC

Initialization 125

the limiting properties of the signal predictor and its
associated prediction error variance-covariance matrix.

Corollary 6.1 Define x̂∞ and S∞ as in (6.21) and (6.22).

Then, the BLUP of f = Hx when S(0|0) = νI satisfies

lim
ν→∞ f̂ν (y) = Hx̂∞ := f̂∞ (6.30)

and

lim
ν→∞Vν = HS∞H

T := V∞. (6.31)

We summarize the developments of this section by the
following formulation of a diffuse Kalman filter algorith-
m.

Algorithm 6.1 This algorithm returns x̂∞, f̂∞ and
S∞(t, t), V∞(t, t), t = 1, . . ., n.

/*Inputs*/
R0 = diag(R0(0), . . ., R0(n))

E0 = L
−1
0 G

ε0 = L
−1
0 y

x̂0(y) = Σx0 HT Σ−1
y0

y

Ĝ0 = Σx0HT Σ−1
y0

G − T

S0(t, t), t = 1:n

/*Computation of x̂∞*/

g0 = ET
0 R

−1
0 ε0

A0 = ET
0 R

−1
0 E0

B = A
−1
0 ĜT

0
x̂∞ = x̂0(y) − (gT

0 B)T

/*Computation of f∞ and diagonal blocks

of S∞, V∞*/
for t = 1 to n

S∞(t, t) = S0(t, t) − Ĝ0(t, 1:q)B(1 :q, t)
f̂∞(t) = H(t)x̂∞(t)
V∞(t, t) = H(t)S∞(t, t)HT (t)

end for

© 2006 by Taylor & Francis Group, LLC

126 A Kalman Filter Primer

6.3 Diffuseness and least-squares estima-

tion

There is an intimate connection between the predictors
we have derived under a diffuse specification of x(0) and
those that would be obtained from least-squares “estima-
tion” of x(0). The two approaches really derive from fun-
damentally different assumptions about the initial state
vector. But, they produce the same answer which means
that the diffuse KF can be used to efficiently compute
predictions in the case where x(0) is “estimated” and,
conversely, we could have discovered the form of the d-
iffuse predictors directly from an “estimation” perspec-
tive.

Let us now be more precise about the “estimation”
viewpoint. The idea in this case is that x(0) is a fixed,
unknown vector of parameters. If we disallow degener-
ate random vectors whose probability distributions are
concentrated on a single point in Rq, then this is com-
pletely different from the treatment of x(0) in previous
sections.

The model now has the form

y = Hx + e

= Gβ + HF u + e, (6.32)

x = T β + F u (6.33)

with

u = (uT (0), . . ., u
T (n − 1))T ,

e as before and H and F as defined in (6.5) and (6.10).
Note that we have replaced the x(0) notation by β in
(6.32)–(6.33) to signify that we are now viewing it as a
fixed, albeit unknown, parameter rather than an element
of the x(·) process.

© 2006 by Taylor & Francis Group, LLC

Initialization 127

Under model (6.32)–(6.33) the response vector follows
a (generalized) linear model in that we can write

y = Gβ + ẽ

with the random “error” vector ẽ = HF u + e having
a variance-covariance matrix that is not proportional to
the identity. The Gauss-Markov Theorem tells us how to
deal with such situations and provides us with the best

linear unbiased estimator (BLUE) of β: namely,

(GT Var−1(ẽ)G)−1
G

T Var−1(ẽ)y.

But, Var(ẽ) is just our old friend Σy0 and, hence, the
BLUE of β is

β̂ = (GT Σ−1
y0

G)−1
G

T Σ−1
y0

y. (6.34)

This expression certainly looks familiar and we can read-
ily detect its presence in the formulae for x̂∞ and f̂∞
that appear in Theorem 6.1 and Corollary 6.1.

To take this one step further, note that if β were known,
then Theorem 1.1 would have the consequence that the
BLUP of x would be

T β + Σx0H
T Σ−1

y0
(y − Gβ).

Since β is unknown one way to deal with the situation
would be to use this BLUP formula with β replaced by
the BLUE in (6.34). This results in the predictor

T β̂ + Σx0H
T Σ−1

y0
(y − Gβ̂)

= T(GT Σ−1
y0

G)−1
G

T Σ−1
y0

y

+Σx0H
T Σ−1

y0
[I − G(GT Σ−1

y0
G)−1

G
T Σ−1

y0
]y

which is now recognized as being identical to the diffuse
BLUP x̂∞ of x provided by (6.21) in Theorem 6.1.

© 2006 by Taylor & Francis Group, LLC

128 A Kalman Filter Primer

Unlike the development that led to our derivation of
x̂∞ from the standard state-space model setting, our re-
discovery of x̂∞ as a predictor for model (6.32)–(6.33)
is basically ad hoc. While we know that x̂∞ is at least
the limit of optimal (i.e., BLUP) predictors under state-
space model (1.19)–(1.28), no such qualities can be im-
mediately attributed to the predictor when it is used un-
der model (6.32)–(6.33). The remainder of this section
will be devoted to filling in this void. Specifically we
will show that x∞ is a BLUP predictor of x under mod-
el (6.32)–(6.33) as well, in the sense that it minimizes

E(x − Ay)T (x − Ay) (6.35)

over all predictors of the form Ay that satisfy the unbi-
asedness condition

E[Ay] = T β (6.36)

for all β ∈ Rq.
Our main result about x̂∞ is given in Theorem 6.2 be-

low. Results on BLUPs in this type of mixed model set-
ting are far from new. A classical reference on the sub-
ject is provided by Goldberger (1962) while more mod-
ern treatments can be found in the discussion article by
Robinson (1991) and references therein.

Theorem 6.2 The BLUP of x in model (6.33) based on y

in model (6.32) is x̂∞ in (6.21). Its prediction error variance-

covariance matrix under model (6.32)–(6.33) is S∞ in (6.22).

Proof. To begin let us write x̂∞ in its linear estimator
form with x̂∞ = A∞y for

A∞ = Σx0H
T Σ−1

y0

+T(GT Σ−1
y0

G)−1
G

T Σ−1
y0

−Σx0H
T Σ−1

y0
G(GT Σ−1

y0
G)−1

G
T Σ−1

y0
.

© 2006 by Taylor & Francis Group, LLC

Initialization 129

Note that A∞G = T which has the implication that x̂∞
is unbiased as a predictor of x. More generally, the con-
dition that (6.36) must hold for all β ∈ Rq entails that
we must have AG = T for any unbiased linear predictor
of the form x̂ = Ay.

Now we must show that the choice of A = A∞ mini-
mizes (6.35). For this purpose, note that as in the proof
of Theorem 1.1 we have the identity

E(x − Ay)T (x − Ay) = E(x − A∞y)T (x − A∞y)

+2E(x − A∞y)T (A∞y − Ay)

E(A∞y − Ay)T (A∞y − Ay).

Thus, the first part of the Theorem will be proved if we
can demonstrate that

E(x − A∞y)T (A∞ − A)y = 0.

Since both A∞ and A satisfy (6.36) it follows that
(A∞ − A)y = (A∞ − A)(HF u + e). Consequently,

E(x − A∞y)T (A∞ − A)y

= Ex
T (A∞ − A)(HF u + e)

−E(HF u + e)T A
T
∞(A∞ − A)(HF u + e)

= tr[HΣx0 (A∞ − A)]

−tr[Σy0 A
T
∞(A∞ − A)]

= tr[(HΣx0 − Σy0 A
T
∞)(A∞ − A)]

with tr again representing the trace functional for matri-
ces. In obtaining the last expression we used the cyclic
property of the trace and the facts that Cov(HF u +
e, x) = HΣx0 and Σy0 = Var (HF u + e).

© 2006 by Taylor & Francis Group, LLC

130 A Kalman Filter Primer

A direct calculation gives

HΣx0 − Σy0A
T
∞

= G(GT Σ−1
y0

G)−1
G

T Σ−1
y0

HΣx0

−G(GT Σ−1
y0

G)−1
T.

Thus, from the cyclic property of the trace

tr[(HΣx0 − Σy0A
T
∞)(A∞ − A)]

= tr[(A∞ − A)(HΣx0 − Σy0 A
T
∞)]

= 0

because (A∞ − A)G = 0.
It remains to show that

E(x − x̂∞)(x − x̂∞)T = S∞

under model (6.32)–(6.33). This result follows after some
relatively straightforward algebraic manipulations once
one realizes that

x − x̂∞ = F u − A∞[HF u + e].

�
There is nothing special about estimation of x and sim-

ilar results to those in Theorem 6.1 hold for estimation
of f. We state this formally in the following corollary to
conclude the section.

Corollary 6.2 The BLUP of f = Hx for model (6.32)–

(6.33) is f̂∞ in (6.30). Its prediction error variance-covariance

matrix under model (6.32)–(6.33) is V∞ in (6.31).

© 2006 by Taylor & Francis Group, LLC

Initialization 131

6.4 An example

Let us now return to the mean shifted Brownian mo-
tion example from the end of Section 6.2.1 for which the
responses are shown along with the true signals (or, e-
quivalently, states in this case) in Figure 6.1. The data
were generated from a model of the form

y(t) = x(t) + e(t),

where the e(t) are uncorrelated random errors with com-
mon variance W0 and the state process is determined by

x(1) = µ + u(0),

and

x(t + 1) = µ + x0(t) + u(t)

with x0(t) =
∑t−1

j=0 u(j) for uncorrelated random vari-

ables u(t), t = 0, . . ., n − 1, having common variance
Q0. The data in Figure 6.1 correspond to the choices
W0 = .025, Q0 = 1/100 and µ = −.6364.

For this example p = q = 1 and H(t) = F (t − 1) =
1, t = 1, . . ., n. This means that H = I in (6.5) while F

in (6.10) is a lower triangular matrix of all unit elements.
The matrices (6.11) and (6.12) are then found to be

Σx0 = F QF
T = {Q0 min(i, j)}i,j=1:n

and

Σy0 = {Q0 min(i, j) + W0}i,j=1:n.

In this instance G = T = 1, where 1 is a n × 1 vector of
all unit elements.

Using formula (6.34) from Section 6.3 with µ now play-
ing the role of β we obtain an “estimator” of the mean

© 2006 by Taylor & Francis Group, LLC

132 A Kalman Filter Primer

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

τ

x∞(t|n)
x(t)

FIGURE 6.3

Predictions for mean shifted Brownian motion with
white noise data

shift as µ̂ = 1T Σ−1
y0

y/1T Σ−1
y0

1. Using this result in for-

mula (6.21) then gives

x̂∞ = x̂0(y) − µ̂(Σx0Σ−1
y0

1 − 1).

For the data in Figure 6.1 we find that µ̂ = −.5766.

The resulting vector of predictions x̂∞ is shown in Fig-

© 2006 by Taylor & Francis Group, LLC

Initialization 133

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

τ

FIGURE 6.4

Correction to naive estimator

ure 6.3 along with the true shifted Brownian motion sig-
nal. By comparing with the naive estimator x̂0(y) in Fig-
ure 6.2 we see that primary differences between the two
sets of predictions occurs in the area around τ = 0 where
the nonmean corrected estimator attempts to mimic the
Brownian motion signal and vanish at the origin. Figure
6.4 plots the correction factor µ̂(Σx0Σ−1

y0
1 − 1) that is

subtracted from x̂0(y). From this we can see that the

© 2006 by Taylor & Francis Group, LLC

134 A Kalman Filter Primer

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

τ

x

x∞(t|n)
Upper PI
Lower PI
x(t)

FIGURE 6.5

Prediction intervals with x∞

adjustments being made to x̂0 have a local nature in
that the correction term essentially vanishes at sampling
points τj = j/n that are very far removed from zero.

Finally, Figure 6.5 shows the 95% prediction interval-
s obtained using x∞ in conjunction with the diagonal
elements of S∞ in (6.22). The actual coverage level in
this case was 96%. A comparison of the half lengths of
the S∞ based intervals with those one would have ob-

© 2006 by Taylor & Francis Group, LLC

Initialization 135

0.0 0.2 0.4 0.6 0.8 1.0

0.
15

0.
16

0.
17

0.
18

0.
19

0.
20

0.
21

τ

S0

S∞

FIGURE 6.6

Prediction interval half lengths using S0 and S∞

tained by incorrectly using intervals obtained from S0
is provided by Figure 6.6. Again, the effect of the mean
correction is local with larger intervals arising from the
mean corrected approach only around the lower bound-
ary region where τ = 0.

© 2006 by Taylor & Francis Group, LLC

7

Normal Priors

7.1 Introduction

State-space models clearly have a Bayesian connection
since one can view x(t), t = 0, . . . , n, as parameter-
s whose prior distributions are determined from the s-
tate equation (1.20). When the u(·) and x(0) vectors are
specified to be normal, as is often the case in Bayesian
settings, the responses are also normal provided that the
e(·) are normally distributed. In any case, whether one
views state-space models from a Bayesian or frequentist
perspective, there will be a closed form expression for the
sample likelihood when both the x(·) and e(·) processes
are normal.

The KF Algorithm 4.3 has some additional utility for
normal state-space models. In that instance it can be
used to efficiently evaluate the likelihood function which,
in turn, can be employed for estimation of any unknown
parameters. In this chapter we explore how the KF can
be used for this purpose.

137
© 2006 by Taylor & Francis Group, LLC

138 A Kalman Filter Primer

7.2 Likelihood evaluation

We now want to obtain an expression for the sample like-
lihood under a normal state-space model. To accomplish
this we will proceed as in Chapter 6 and rewrite the re-
sponse and state equations in vector-matrix form: i.e.,
we have

y = Gx(0) + HF u + e,

x = Tx(0) + F u,

where

T =











F (0)
F (1)F (0)

.

.

.
F (n − 1) · · · F (0)











,

H =











H(1) 0 · · · 0
0 H(2) · · · 0

.

.

.

.

.

.
. . .

0 0 · · · H(n)











,

G = HT,

F is a block lower triangular matrix with identity diag-
onal blocks and below diagonal blocks given by

F (t, j) = F (t − 1) · · · F (j), j < t,

e = (eT (1), . . . , eT (n))T and u = (uT (0), . . . , uT (n−
1))T .

© 2006 by Taylor & Francis Group, LLC

Normal Priors 139

The zero mean, random vectors u, e and x(0) are now
all taken to be mutually independent and normally dis-
tributed with Var(x(0)) := S(0|0),

Var(u) = diag(Q(0), . . . , Q(n − 1))

:= Q,

Var(e) = diag(W (1), . . . , W (n))

:= W.

Consequently, the state vector is normally distributed
with mean zero and variance-covariance matrix

Var(x) = T S(0|0)T T + F QF
T

and, similarly, the response vector y has a normal proba-
bility distribution with zero mean and variance-covariance
matrix

Var(y) = HVar(x)HT + W.

The density for y is therefore seen to be

f(y) =
1

(2π)pn/2|Var(y)|1/2
exp





−

yT Var−1(y)y

2





.

(7.1)

As a result of (7.1), two times the negative of the log-
arithm of the sample likelihood is seen to be

� = pn ln 2π + ln |Var(y)| + y
T Var−1(y)y.

We will refer to this quantity subsequently as simply
the log-likelihood. Our aim at this point is to devise a
computationally efficient method for evaluating the log-
likelihood.

© 2006 by Taylor & Francis Group, LLC

140 A Kalman Filter Primer

If we again write the y variance-covariance matrix in
its Cholesky factorized form

Var(y) = LRL
T

,

then we know that the vector of innovations is ε = L−1y.
Also, |Var(y)| = |L||R||LT | = |R| since both LT and
L are triangular with identity matrix diagonal blocks.
Thus,

� − pn ln 2π = ln |R| + ε
T

R
−1

ε

=
n∑

t=1
ln |R(t)|

+
n∑

t=1
ε

T (t)R−1(t)ε(t) (7.2)

and we conclude that the entire likelihood can be eval-
uated directly in order n operations at the end of the
forward pass of the KF. In fact, we need not actually
employ the full-blown KF Algorithm 4.3 since all the in-
formation we need to compute � is returned in Algorithm
4.1, for example.

It also follows that by using Algorithm 4.1 we will be
able to adaptively update the log-likelihood function in
cases where response vectors are actually being observed
as a time ordered sequence. More precisely, if

�t − tp ln 2π =
t∑

k=1
[ln |R(k)| + ε

T (k)R−1(k)ε(k)]

is the log-likelihood after seeing observations y(1), . . .,

y(t) then

�t+1 = �t + p ln 2π

+ ln |R(t + 1)| + ε
T (t + 1)R−1(t + 1)ε(t + 1)

is the log-likelihood for y(1), . . . , y(t + 1).

© 2006 by Taylor & Francis Group, LLC

Normal Priors 141

The following modified version of Algorithms 2.1 and
4.1 evaluates the sample likelihood in order n flops.

Algorithm 7.1 This algorithm evaluates the likelihood
less a factor of pn ln 2π.

/*Initialization*/
S(1|0) = F (0)S(0|0)F T (0) + Q(0)
R(1) = H(1)S(1|0)HT (1) + W (1)
S(1|1) = S(1|0) − S(1|0)HT (1)R−1(1)H(1)S(1|0)
K(1) = F (1)S(1|0)HT (1)R−1(1)
ε(1) = y(1)
A(1) = K(1)ε(1)
� = ln |R(1)| + ε(1)T R−1(1)ε(1)
for t = 2 to n − 1

S(t|t − 1) = F (t − 1)S(t − 1|t − 1)F T (t − 1)
+Q(t − 1)

R(t) = H(t)S(t|t − 1)HT (t) + W (t)
S(t|t) = S(t|t − 1)

−S(t|t − 1)HT (t)R−1(t)H(t)S(t|t − 1)
K(t) = F (t)S(t|t − 1)HT (t)R−1(t)
ε(t) = y(t) − H(t)A(t − 1)
A(t) = K(t)ε(t) + F (t)A(t − 1)
� = � + ln |R(t)| + ε(t)T R−1(t)ε(t)

end for

S(n|n − 1) = F (n − 1)S(n − 1|n − 1)F T (n − 1)
+Q(n − 1)

R(n) = H(n)S(n|n − 1)HT (n) + W (n)
ε(n) = y(n) − H(n)A(n − 1)
� = � + ln |R(n)| + ε(n)T R−1(n)ε(n)

All of the developments in this section assume that
S(0|0) has been specified. We can relax this assumption
by allowing for diffuse specifications for x(0) as in the
next section.

© 2006 by Taylor & Francis Group, LLC

142 A Kalman Filter Primer

7.3 Diffuseness

Let us now adapt the results from the previous section
to deal with situations where the distribution of x(0) is
unknown and allowed to become diffuse. To accomplish
this we will proceed along the same lines as we did in
Section 6.2.2.

When S(0|0) = νI we have

Var(y) = νHTT
T

H
T + HF QF

T
H

T + W

= νGG
T + Σy0

with

Σy0 := HF QF
T

H
T + W.

From arguments in Section 6.3 we know that

(νGG
T + Σy0)−1 = Σ−1

y0

−Σ−1
y0

G(GT Σ−1
y0

G)−1
G

T Σ−1
y0

+O(ν−1).

Consequently, we can apply the KF innovation Algorith-
m 4.1 for S(0|0) = 0 to y(1), . . ., y(n) to obtain the
vector of “innovations”

ε0 = L
−1
0 y

with L0 deriving from the Cholesky decomposition

Σy0 = L0R0L
T
0

and R0 = (R0(1), . . . , R0(n)) the Cholesky matrix fac-
tors that represent the variance-covariance matrices for

© 2006 by Taylor & Francis Group, LLC

Normal Priors 143

ε0(1), . . . , ε0(n) when ν = 0. Then,

lim
ν→∞y

T Var(y)−1
y

= y
T (Σ−1

y0

−Σ−1
y0

G(GT Σ−1
y0

G)−1
G

T Σ−1
y0

)y

= ε
T
0 (R−1

0

−R
−1
0 E0(ET

0 R
−1
0 E0)−1

E
T
0 R

−1
0)ε0

with

E0 = L
−1
0 G.

This shows that the innovation part of the likelihood in
the diffuse case can be computed in order n operations
by applying Algorithm 4.1 to both y and the q columns
of the np × q matrix G = HT .

It remains to consider |νGGT + Σy0 |. Again, using

|L0| = |LT
0 | = 1 we have

|νGG
T + Σy0 | = |R0||νE0E

T
0 R

−1
0 + I|

= |R0||νE
T
0 R

−1
0 E0 + I|

using the identity |I + CD| = |I + DC| which is valid
provided the products CD and DC are defined. But,

|νE
T
0 R

−1
0 E0 + I|

= |νI||ET
0 R

−1
0 E0 + ν

−1
I|

= |νI||ET
0 R

−1
0 E0||I + ν−1(ET

0 R
−1
0 E0)−1|

= ν
q|ET

0 R
−1
0 E0|(1 + o(1))

as ν → ∞.

© 2006 by Taylor & Francis Group, LLC

144 A Kalman Filter Primer

Upon combining all our approximations we see that

lim
ν→∞[� − pn ln 2π − q ln ν]

= ln |ET
0 R

−1
0 E0|

+
n∑

t=1

[

ln |R0(t)| + ε
T
0 (t)R−1

0 (t)ε0(t)
]

−ε
T
0 R

−1
0 E0(ET

0 R
−1
0 E0)−1

E
T
0 R

−1
0 ε0

:= �∞. (7.3)

This entire quantity can be computed in order n opera-
tions using a modified version of Algorithm 7.1. To be a
bit more specific, the diffuse log-likelihood can be eval-
uated efficiently as follow:

1. Obtain ε0 = L
−1
0 y, E0 = L

−1
0 G, R0 by ap-

plying Algorithm 4.1 with S(0|0) = 0 to both
y and the columns of G.

2. Follow the computational scheme in Algorith-
m 7.1 (also with S(0|0) = 0) to calculate

�0 =
n∑

t=1
[ln |R0(t)| + ε

T
0 (t)R−1

0 (t)ε0(t)].

3. Compute the vector

g0 = E
T
0 R

−1
0 ε0,

solve the linear system

(ET
0 R

−1
0 E0)b0 = E

T
0 R

−1
0 ε0

for the q × 1 vector b0 and evaluate the de-
terminant

d0 = |GT Σ−1
y0

G| = |ET
0 R

−1
0 E0|.

© 2006 by Taylor & Francis Group, LLC

Normal Priors 145

4. The diffuse likelihood is then obtained from

�∞ = �0 + ln d0 − b
T
0 g0.

One additional conclusion that can be drawn from this is
that smoothing considerations do not arise in the context
of likelihood evaluation even in the diffuse case.

There is a bit of subterfuge involved in using (7.3) that
arises from our removal of the term q ln ν = ln |νI| from
the log-likelihood before taking the limit. Certainly the
limit would not be defined if we did not make such an
adjustment. However, there is a question as to whether
this tactic can be placed on a more solid theoretical foun-
dation. The remainder of this section is devoted to pro-
viding some rigorous justification for this approach.

Let J be a np × (np − q) matrix satisfying JT G = 0
and JT J = I. Then, following Ansley and Kohn (1985),
consider the transformation from y to a new vector of
variables

ω =

[

ω1
ω2

]

=

[

JT y

GT y

]

.

This transformed vector variate is normal with mean ze-
ro and variance-covariance matrix

[

JT Σy0 J JT Σy0G

GT Σy0 J νB2 + GT Σy0G

]

with B = GT G. From this we see that the conditional
density of ω1 given ω2, f(ω1|ω2), is that of a normal
random vector with mean

J
T Σy0 G(νB

2 + G
T Σy0 G)−1

ω2

= ν
−1

J
T Σy0GB

−1(I

+ν
−1

B
−1

G
T Σy0 GB

−1)B−1
ω2

© 2006 by Taylor & Francis Group, LLC

146 A Kalman Filter Primer

and variance-covariance matrix

J
T Σy0 J − ν

−1
J

T Σy0GB
−1(I

+ν
−1

B
−1

G
T Σy0 GB

−1)−1
B

−1
G

T Σy0 J.

Since (I +ν−1B−1GT Σy0 GB−1)−1 = I +O(ν−1) we
can conclude that

lim
ν→∞ f(ω1|ω2) = f(ω1), (7.4)

where f(ω1) is the unconditional density of the vector
ω1 which has a normal distribution with mean 0 and
variance-covariance matrix JT Σy0J.

Similarly, by observing that νB2 +GT Σy0 G = νB2 +
O(1) we have that

ν
q/2

f(ω2)

=

νq/2 exp






−

ωT
2 (νB2 + GT Σy0G)−1ω2

2







(2π)q/2 |νB2 + GT Σy0G|1/2

→
1

(2π)q/2 |B|2

as ν → ∞. Combining all these results reveals that the
y density f(y) = f(ω1|ω2)f(ω2) satisfies

lim
ν→∞ ν

q/2
f(y) =

f(ω1)

(2π)q/2 |B|2
. (7.5)

Note that this result is invariant with respect to J mean-
ing that the specific choice of transformation is immate-
rial provided only that JT G = 0.

Tracing back through all our arguments we see that we
began by transforming to two new vector random vari-
ables: namely, ω1 = JT y = JT [HF u + e] which is inde-
pendent of x(0) and a second random vector ω2 = GT y

© 2006 by Taylor & Francis Group, LLC

Normal Priors 147

whose covariance with x(0) is νGT G. Consequently, we
partitioned out everything from the responses that de-
pended on x(0) and placed it in ω2 while the part of y

that contained no information about x(0) was segregated
into ω1. By using only the new random variable ω1 (and
ignoring w2) we can conduct inference about the pro-
cess without having to concern ourselves with the initial
state vector. Although discarding the information from
w2 will entail some loss of estimation efficiency, this par-
ticular strategy is by no means unprecedented. For ex-
ample the same basic tactic shows up in the context of
variance components estimation where Gx(0) plays the
role of a fixed effect. See, e.g., Hocking (2003).

Our final result was the observation that in the limit
the sample likelihood when scaled by a factor of ν−q/2

is proportional to the unconditional density of f(ω1).
But, this is equivalent to saying that

lim
ν→∞[− ln(f(y)) −

q

2
ln ν] = − ln(f(ω1)) + c

with c a factor that does not involve ω2. Consequently,
if we use the the diffuse likelihood for inference about
parameters, etc., this will provide us with exactly the
same answer that we would have obtained by working
with the transformed variable ω1 that is independent of
the initial state vector.

7.4 Parameter estimation

In general a state-space model may involve unknown pa-
rameters that appear in transition matrices, variance-
covariance matrices or arise from other sources. For nor-
mal state-space models these parameters can be estimat-
ed by maximization of the likelihood function. In the
case of a specified variance-covariance matrix for the ini-
tial state vector one would use the parameter values that

© 2006 by Taylor & Francis Group, LLC

148 A Kalman Filter Primer

minimize

n∑

t=1
[ln |R(t)| + εT (t)R−1(t)ε(t)].

For the diffuse setting we would similarly minimize

n∑

t=1
[ln |R0(t)| + ε

T
0 (t)R−1

0 (t)ε0(t)]

+ ln
∣
∣
∣E

T
0 R

−1
0 E0

∣
∣
∣

−ε
T
0 R

−1
0 E0(ET

0 R
−1
0 E0)−1

E
T
0 R

−1
0 ε0.

There is one situation of interest where minimization
of the sample log-likelihood function can be carried out
explicitly: namely, when there is a common scale param-
eter σ2 that appears in the e, u and x(0) variances and
covariances. In such a case we will have

Var(x(0)) = σ
2

S(0|0),

Var(u) = σ
2

Q,

Var(e) = σ
2

W,

so that

Var(y) = σ
2 (

GS(0|0)GT + HF QF
T

H
T + W

)

= σ
2 (

GS(0|0)GT + Σy0

)

and

� − pn ln 2π = pn ln σ
2 + ln

∣
∣
∣GS(0|0)GT + Σy0

∣
∣
∣

+
yT

(

GS(0|0)GT + Σy0

)−1
y

σ2
.

It follows from this that the maximum likelihood estimator

© 2006 by Taylor & Francis Group, LLC

Normal Priors 149

(mle) of σ2 is

σ̂
2 =

yT
(

GS(0|0)GT + Σy0

)−1
y

np
.

By replacing σ2 with σ̂2 in the log-likelihood we obtain
(apart from an additive constant) the concentrated log-
likelihood function

ln |GS(0|0)GT + Σy0 | + pn ln σ̂
2

that can be further optimized to effect estimation of oth-
er parameters. A similar analysis for the diffuse setting
produces

σ̂
2 =

yT
(

Σ−1
y0

− Σ−1
y0

G(GT Σ−1
y0

G)−1GT Σ−1
y0

)

y

np

(7.6)

as the mle of σ2 with

ln
∣
∣
∣G

T Σ−1
y0

G
∣
∣
∣ + ln

∣
∣
∣Σy0

∣
∣
∣ + pn ln σ̂

2 (7.7)

representing the concentrated log-likelihood.
As a final development let us return to the setting of

Section 6.3 where x(0) was taken to be a vector of fixed
parameters rather than a random vector. In that case we
had

y = Gβ + HF u + e

with β a q × 1 vector of unknown parameters that oc-
cupies the place of the initializing state vector in this
formulation.

When u and e are normal, y is normal with mean Gβ

and variance-covariance matrix Σy0 . Thus, two times
the negative log-likelihood is (apart from additive con-

© 2006 by Taylor & Francis Group, LLC

150 A Kalman Filter Primer

stants)

ln |Σy0 | + (y − Gβ)T Σ−1
y0

(y − Gβ).

From this we obtain the mle of β as

β̂ = (GT Σ−1
y0

G)−1
G

T Σ−1
y0

y

which is identical to the BLUE of β obtained in Section
6.3. By replacing β with β̂ in the log-likelihood function
we arrive at the “concentrated” log-likelihood (sans con-
stants)

ln
∣
∣
∣Σy0

∣
∣
∣ + (yT − Gβ̂)T Σ−1

y0
(y − Gβ̂)

= ln
∣
∣
∣Σy0

∣
∣
∣ + y

T Σ−1
y0

y

−y
T Σ−1

y0
G(GT Σ−1

y0
G)−1

G
T Σ−1

y0
y

which agrees with the diffuse log-likelihood apart from
the absence of the factor ln |GT Σ−1

y0
G|. One conclusion

to be drawn from this is that Algorithm 4.1 can also
be employed to efficiently evaluate the concentrated log-
likelihood that arises when the initial state vector is
viewed as a vector of parameters that is estimated via
the method of maximum likelihood.

7.5 An example

Let us return to our mean shifted Brownian motion ex-
ample from Section 6.4 and consider the problem of like-
lihood based parameter estimation in that context. The
response and state vector in this instance are

y = x + e, (7.8)

x = µ1 + F u (7.9)

© 2006 by Taylor & Francis Group, LLC

Normal Priors 151

with F a n × n lower triangular matrix of all unit ele-
ments and 1 a n × 1 vector of all unit elements. We will
now assume that the u and e vectors are composed of
independent normal random variables with variances Q0
and σ2 (rather than W0 as we have used previously) and
define

Σy0 = {λ0 min(i, j) + 1}i,j=1:n

with λ0 = Q0/σ2.
The mle of σ2 for data from (7.8)–(7.9) is now seen to

be

σ̂
2 = y

T Σ−1
y0

y −
(1T Σ−1

y0
y)2

1T Σ−1
y0 1

.

The concentrated (with respect to σ2) log-likelihood is
then a function of λ alone that may be minimized to
obtain an estimator for the value of λ0. This can be ac-
complished as follows. Define

Σ(λ) = {λ min(i, j) + 1}i,j=1:n

and

σ
2(λ) = y

T Σ−1(λ)y −
(1T Σ−1(λ)y)2

1T Σ−1(λ)1
.

Then, our estimator of λ0 is provided by the value λ̂

that minimizes, with respect to λ, the function

�(λ) = ln 1T Σ−1(λ)1 + ln |Σ(λ)| + n ln σ
2(λ)

assuming that λ̂ is unique.
Applying the above results to the data in Figure 6.1

produces the estimator σ̂2 = .02618 which is to be com-
pared to the actual parameter value of σ2 = .025 = W0
in this case. For this data we also had Q0 = .01 so that

© 2006 by Taylor & Francis Group, LLC

152 A Kalman Filter Primer

0.20 0.25 0.30 0.35 0.40 0.45 0.50

−
30

2.
4

−
30

2.
2

−
30

2.
0

−
30

1.
8

−
30

1.
6

λ

l(λ
)

FIGURE 7.1

Concentrated log likelihood for mean shifted Brownian
motion data

λ0 = .4. Figure 7.1 shows a plot of the concentrated log-
likelihood �(λ) as a function λ that was evaluated using
the KF innovation recursion applied to y and the vector
1 (along the lines of discussions in Section 7.3) for each
value of λ in a grid of points distributed over [.2, .5].
From the plot we can see that the mle of λ0 is λ̂ ≈ .33.

© 2006 by Taylor & Francis Group, LLC

8

A General State-Space Model

8.1 Introduction

Our discussions up to now have focused on the model
having p × 1 response vectors

y(t) = H(t)x(t) + e(t)

corresponding to q × 1 state vectors

x(t + 1) = F (t)x(t) + u(t),

where H(t), F (t), t = 1, . . ., n, are known matrices, u(0),
. . ., u(n − 1) are zero mean, random q-vectors that are
uncorrelated with each other and with the uncorrelated,
zero mean, random p-vector e(1), . . ., e(n). The covari-
ance structure of the model is then determined from the
specifications

Var (u(t)) = Q(t), t = 0, . . ., n − 1,

Var (e(t)) = W (t), t = 1, . . ., n,

for known matrices Q(t−1), W (t), t = 1, . . ., n, and the
condition that the initial state vector has zero mean and

Var (x(0)) = S(0|0)

153
© 2006 by Taylor & Francis Group, LLC

154 A Kalman Filter Primer

for a known matrix S(0|0). To conclude our treatment of
the KF we want to expand this model somewhat to allow
for more general applications.

Perhaps the first thing to realize is that our previous
restriction that the y(·) and x(·) vectors all have fixed
dimensions p and q, respectively, has never been neces-
sary. Indeed, all the recursions we have developed up to
now will still work perfectly well with dimensions that
change with the t index. Thus, from this point on we
can proceed as if y(t) and x(t) are, respectively, pt × 1
and qt × 1 with H(t), F (t), W (t), Q(t) now represent-
ing pt × qt, q(t+1) × qt, pt × pt and qt × qt matrices,
respectively.

The next step is to broaden our original model formu-
lation by allowing for nonzero means. To accomplish this
we will use a response equation of the form

y(t) = AY (t)β + H(t)x(t) + e(t) (8.1)

for t = 1, . . ., n, coupled with the state equation

x(t + 1) = AX (t)β + F (t)x(t) + u(t), (8.2)

for t = 0, . . ., n−1, where AY (t), AX (t−1), t = 1, . . .,

n, are, respectively, pt ×r and qt ×r known matrices, β

is a r-vector of parameters, the e(·) and u(·) processes
are as before and x(0) = 0 in the sense that

x(1) = AX (0)β + u(0). (8.3)

As a result of (8.3) the mean vector for x(1) is E[x(1)] =
AX (0)β which has the consequence that

E[y(1)] = AY (1)β + H(1)AX (0)β.

Similarly, the mean for x(2) is E[x(2)] = AX (1)β +
F (1)AX (0)β so that

E[y(2)] = AY (2)β + H(2)AX (1)β + H(2)F (1)AX (0)β.

© 2006 by Taylor & Francis Group, LLC

A General State-Space Model 155

In general, the mean for x(t) is

E[x(t)] = AX (t − 1)β

+
t−1
∑

j=1
F (t − 1) · · · F (j)AX (j − 1)β

(8.4)

and the mean for y(t) is

E[y(t)] = AY (t)β + H(t)AX (t − 1)β

+H(t)
t−1∑

j=1
F (t − 1) · · · F (j)AX (j − 1)β

= AY (t)β + H(t)E[x(t)]. (8.5)

Model (8.1)–(8.3) reverts back to (1.19)–(1.28) with
S(0|0) = 0 when β = 0. To recover (1.19)–(1.28) with
S(0|0) �= 0 we would need to allow for β to be random.
This approach will generally lead to questions concerning
parameters in the prior distribution for β that ultimately
lead to a diffuse specification as in Section 6.2.2. Such
an approach can be carried out for the present setting
as well with de Jong (1991) providing a thorough treat-
ment of this type of development. Here we will begin by
assuming that β is fixed and known, initially. Then, in
the next section, we derive its BLUE and thereby ob-
tain the BLUPs of state and signal vectors for the case
that β is unknown. As we showed in Section 7.4 for a
somewhat simpler model, it follows from de Jong (1988,
1991) that the resulting predictors and their prediction
error variance-covariance matrices are identical to the
ones obtained via use of a diffuse prior.

Another common state-space model has response equa-
tions of the form

y(t) = AY (t)β + H(t)x(t) + GY (t)v(t)

© 2006 by Taylor & Francis Group, LLC

156 A Kalman Filter Primer

and state equations

x(t + 1) = AX (t)β + F (t)x(t) + GX (t)z(t),

where v(·), z(·) are zero mean processes with identity
variance-covariance matrices. Situations such as this can
be converted to our original formulation involving the
e(·) and u(·) processes by taking W (t) = GY (t)GT

Y (t)

and Q(t) = GX (t)GT
X (t). Consequently, we will forego

the notational overhead of treating this case and instead
focus our attention on (8.1)–(8.3).

8.2 KF recursions

The first step in extending our work from Chapters 4–5
to model (8.1)–(8.3) is to define an innovation process
in this more general setting. To accomplish this we will
proceed much as we did before except for the use of a
mean correction. That is, we begin with

ε(1) = y(1) − E[y(1)], (8.6)

R(1) = Var(ε(1)) (8.7)

and then take

ε(t) = y(t) − E[y(t)]

−
t−1
∑

j=1
Cov(y(t), ε(j))R−1(j)ε(j), (8.8)

R(t) = Var(ε(t)), (8.9)

for t = 2, . . ., n. Note that it is necessarily the case that
E[ε(t)] = 0, t = 1, . . ., n.

Now that we have the innovations, we can obtain the
BLUPs of x(t) and the signal vector f(t) = H(t)x(t)

© 2006 by Taylor & Francis Group, LLC

A General State-Space Model 157

through the use of Theorem 1.1. Specifically, because the
innovations in (8.6) and (8.8) have zero means and are
uncorrelated, we obtain

x(t|j) = E[x(t)]

+
j
∑

i=1
Cov(x(t), ε(i))R−1(i)ε(i) (8.10)

f(t|j) = E[f(t)]

+
j
∑

i=1
Cov(f(t), ε(i))R−1(i)ε(i)

= H(t)x(t|j). (8.11)

Because variances and covariances are mean invariant,
it is necessarily the case that the variances and covari-
ances for the innovations as well as their covariance with
the state vectors under model (8.1)–(8.3) can be com-
puted exactly as before under model (1.19)–(1.28) for the
case where S(0|0) = 0. In particular, this means that

S(1|0) = Var(x(1)) = Q(0),

R(1) = Var(ε(1)) = HT (1)Q(0)H(1) + W (1),

S(1|1) = Q(0) − Q(0)HT (1)R−1(1)H(1)Q(0)

© 2006 by Taylor & Francis Group, LLC

158 A Kalman Filter Primer

and, for t > 1,

S(t|t) = S(t|t − 1)

−S(t|t − 1)HT (t)R−1(t)H(t)S(t|t − 1),

S(t|t − 1) = F (t − 1)S(t − 1|t − 1)F T (t − 1)

+Q(t − 1),

R(t) = H(t)S(t|t − 1)HT (t) + W (t),

Cov(x(t), ε(t)) = S(t|t − 1)HT (t).

Also, from Lemma 2.4 we will have

Cov(x(t), ε(j)) = F (t − 1) · · · F (j)S(j|j − 1)HT (j),

for j ≤ t − 1 and

Cov(x(t), ε(j))

= S(t|t − 1)MT (t)MT (t + 1) · · · M
T (j − 1)HT (j)

for j ≥ t + 1.
Let us delve a bit further into the issue of why our

previous covariance formulae remain valid under model
(8.1)–(8.3). We may write

x(1) = AX (0)β + u(0),

y(1) = AY (1)β + H(1)AX (0)β + H(1)u(0) + e(1),

x(2) = AX (1)β + F (1)AX (0)β + F (1)u(0) + u(1),

y(2) = AY (2)β + H(2)AX (1)β

+H(2)F (1)AX (0)β + H(2)F (1)u(0) + H(2)u(1)

+e(2)

© 2006 by Taylor & Francis Group, LLC

A General State-Space Model 159

and, in general,

x(t) = AX (t − 1)β (8.12)

+
t−1
∑

j=1
F (t − 1) · · · F (j)AX (j − 1)β

+
t−1
∑

j=1
F (t − 1) · · · F (j)u(j − 1) + u(t − 1)

= E[x(t)] +
t−1∑

j=1
F (t − 1) · · · F (j)u(j − 1) + u(t − 1)

(8.13)

with

y(t) = AY (t)β + H(t)AX (t − 1)β

+H(t)
t−1
∑

j=1
F (t − 1) · · · F (j)AX (j − 1)β

+H(t)
t−1∑

j=1
F (t − 1) · · · F (j)u(j − 1)

+H(t)u(t − 1) + e(t)

= E[y(t)]

+H(t)
t−1∑

j=1
F (t − 1) · · · F (j)u(j − 1)

+H(t)u(t − 1) + e(t). (8.14)

We may separate the right hand sides in each of expres-
sions (8.12) and (8.14) into two parts: one correspond-
ing to the mean of the left hand side and another term
that is identical to the parallel expression in our origi-
nal, zero mean, state-space model (1.19)–(1.28) having

© 2006 by Taylor & Francis Group, LLC

160 A Kalman Filter Primer

S(0|0) = 0. For example, in (8.12) we see that once the
mean is removed from x(t) we are left with

x0(t) =
t−1
∑

j=1
F (t − 1) · · · F (j)u(j − 1) + u(t − 1)

which is recognized, for example, from Section 6.2.1 as
the state vector that arises from the zero mean state-
space model (6.7)–(6.8) where S(0|0) = 0.

The most immediate implication of the above develop-
ments is that, modulo the incorporation of suitable mean
adjustments, all of our previous algorithms can be used
almost without change to compute BLUPs of the state
and signal vectors and their prediction error variance-
covariance matrices. To see how this can be accomplished
let us first consider how to conduct the forward or fil-
tering part of the computations.

From Theorem 1.1 we have

x(t|t − 1) = E[x(t)] +
t−1
∑

j=1
Cov(x(t), ε(j))R−1(j)ε(j).

But, from (8.5) and (8.14) we see that

ε(t) = y(t) − E[y(t)]

−H(t)
t−1∑

j=1
Cov(x(t), ε(j))R−1(j)ε(j)

= y(t) − AY (t)β − H(t)
[

E[x(t)]

+
t−1
∑

j=1
Cov(x(t), ε(j))R−1(j)ε(j)

]

= y(t) − AY (t)β − H(t)x(t|t − 1)

© 2006 by Taylor & Francis Group, LLC

A General State-Space Model 161

and, from (8.4) and (8.12),

x(t|t − 1) = AX (t − 1)β + F (t − 1)
[

E[x(t − 1)]

+
t−1
∑

j=1
Cov(x(t − 1), ε(j))R−1(j)ε(j)

]

= AX (t − 1)β + F (t − 1)x(t − 1|t − 1).

Thus, we obtain a slight twist on our previous recursive
filtering formulae by taking

ε(1) = y(1) − AY (1)β − H(1)AX (0)β,

x(1|1) = AX (0)β + S(1|0)HT (1)R−1(1)ε(1)

and, for t = 2, . . ., n,

x(t|t − 1) = AX (t − 1)β + F (t − 1)x(t − 1|t − 1),

ε(t) = y(t) − AY (t)β − H(t)x(t|t − 1)

with

x(t|t) = E[x(t)] +
t∑

j=1
Cov(x(t), ε(j))R−1(j)ε(j)

= AX (t − 1)β + Cov(x(t), ε(t))R−1(t)ε(t)

+F (t − 1)
[

E[x(t − 1)]

+
t−1
∑

j=1
Cov(x(t − 1), ε(j))R−1(j)ε(j)

]

= AX (t − 1)β

+S(t|t − 1)HT (t)R−1(t)ε(t)

+F (t − 1)x(t − 1|t − 1)

= S(t|t − 1)HT (t)R−1(t)ε(t) + x(t|t − 1).

© 2006 by Taylor & Francis Group, LLC

162 A Kalman Filter Primer

The smoothing step is actually somewhat simpler to
derive in this context because when r > t

x(t|r) = E[x(t)] +
t∑

j=1
Cov(x(t), ε(j))R−1(j)ε(j)

+
r∑

j=t+1
Cov(x(t), ε(j))R−1(j)ε(j)

= x(t|t) +
r∑

j=t+1
Cov(x(t), ε(j))R−1(j)ε(j).

The second term in this last expression is exactly the
same as what is computed by the fixed interval smooth-
ing Algorithm 5.1 and, accordingly, needs no special treat-
ment beyond what we have done before.

The following algorithm illustrates how the ideas in
this section can be developed to produce a combined ver-
sion of Algorithms 4.3 and 5.1 that is applicable to data
from model (8.1)–(8.3).

Algorithm 8.1 This algorithm returns x(t|t), S(t|t),
f(t|t), V (t|t), t = 1, . . ., n, and, for specified r, eval-
uates x(t|r), S(t|r), f(t|r), V (t|r), t = 1, . . ., r.

/*Initialization of forward recursion*/

R(1) = H(1)Q(0)HT (1) + W (1)
S(1|1) = Q(0) − Q(0)HT (1)R−1(1)H(1)Q(0)
ε(1) = y(1) − [AY (1) + H(1)AX (0)]β
x(1|1) = AX (0)β + Q(0)HT (1)R−1(1)ε(1)
for t = 2 to n

S(t|t − 1) = F (t − 1)S(t − 1|t − 1)F T (t − 1)
+Q(t − 1)

R(t) = H(t)S(t|t − 1)HT (t) + W (t)
S(t|t) = S(t|t − 1)

−S(t|t − 1)HT (t)R−1(t)H(t)S(t|t − 1)
V (t|t) = H(t)S(t|t)HT (t)

© 2006 by Taylor & Francis Group, LLC

A General State-Space Model 163

x(t|t − 1) = AX (t − 1)β
+F (t − 1)x(t − 1|t − 1)

ε(t) = y(t) − AY (t)β − H(t)x(t|t − 1)
x(t|t) = S(t|t − 1)HT (t)R−1(t)ε(t)

+x(t|t − 1)
f(t|t) = H(t)x(t|t)

end for

/*Initialization of smoothing recursion*/

a = MT (r − 1)HT (r)R−1(r)ε(r)
A = MT (r − 1)HT (r)R−1(r)H(r)M(r − 1)
for t = r − 1 to 1

x(t|r) = x(t|t) + S(t|t − 1)a
S(t|r) = S(t|t) + S(t|t − 1)AS(t|t − 1)
f(t|r) = H(t)x(t|r)
V (t|r) = H(t)S(t|r)HT (t)
a = MT (t − 1)HT (t)R−1(t)ε(t)

+MT (t − 1)a
A = MT (t − 1)HT (t)R−1(t)H(t)M(t − 1)

+MT (t − 1)AM(t − 1)
end for

8.3 Estimation of β

In this section we address the issue of estimating the
vector β in the case where it is unknown. We will ac-
complish this using a least-squares approach much as we
did in Section 6.3. Accordingly, we first need to derive
expressions for the mean and variance-covariance matrix
of the response vector y = (yT (1), . . ., yT (n))T and the
state vector x = (xT (1), . . ., xT (n))T .

We will once again need the matrices H and F defined
in (6.5) and (6.10) of Section 6.2.1. Using these two ma-

© 2006 by Taylor & Francis Group, LLC

164 A Kalman Filter Primer

trices we can write model (8.1)–(8.2) as

y = Gβ + HF u + e,

x = T β + F u,

where u = (uT (0), . . ., uT (n − 1))T ,

T = F AX, (8.15)

G = AY + HT, (8.16)

AX =











AX (0)
AX (1)

.

.

.
AX (n − 1)











, (8.17)

and

AY =











AY (1)
AY (2)

.

.

.
AY (n)











. (8.18)

Consequently, the mean of x is T β, the mean of y is Gβ

and the x and y variance-covariance matrices are

Var(x) = F QF
T = Σx0 ,

Var(y) = HΣx0HT + W = Σy0

with Q and W defined as in (6.9) and (6.6), respective-
ly. Notice that the matrices Σx0 and Σy0 are identical
to the ones in (6.11) and (6.12) that we encountered in
Section 6.2.1 where we dealt with prediction under mod-
el (1.19)–(1.28) with S(0|0) = 0. We will see that tech-
niques for carrying out prediction in this special case
also play a fundamental role in computing predictions,
etc., for the model (8.1)–(8.3).

© 2006 by Taylor & Francis Group, LLC

A General State-Space Model 165

Since y − Gβ has mean zero we can use Theorem 1.1
to obtain a vector-matrix form for the BLUP of x based
on y. Specifically, we have

x̂(β) = E[x] + Σx0H
T Σ−1

y0
(y − Gβ)

= T β + Σx0H
T Σ−1

y0
(y − Gβ) (8.19)

because

Cov(x, y − Gβ) = Cov(x − Tβ, y − Gβ) = Σx0H
T

.

We have used the notation x̂(β) here to explicitly indi-
cate that this estimator cannot be computed without the
specification of some value for β.

Expression (8.19) reveals an alternative, equivalent way
to produce the BLUP of x based on y. First, one applies
the fixed interval smoothing Algorithm 5.1 with r = n

and S(0|0) = 0 to y and each column of the matrix G to
produce

x̂0 = Σx0H
T Σ−1

y0
y

and

Ĝ0 = Σx0H
T Σ−1

y0
G.

Then, x̂(β) can be obtained from

x̂(β) = x̂0 + (T − Ĝ0)β. (8.20)

The algorithm that results from this will require only
order n flops provided that G and T are evaluated effi-
ciently. This can be accomplished via the relations

T (t) = AX (t − 1)

+
t−1
∑

j=1
F (t − 1) · · · F (j)AX (j − 1)

= AX (t − 1) + F (t − 1)T (t − 1) (8.21)

© 2006 by Taylor & Francis Group, LLC

166 A Kalman Filter Primer

and

G(t) = AY (t) + H(t)T (t) (8.22)

with initialization via T (1) = AX (0).
Now consider the problems of predicting x in the case

where β is unknown. Following the strategy we employed
in Section 6.3, the BLUE of β is

β̂ = (GT Var−1(y)G)−1
G

T Var−1(y)y

= (GT Σ−1
y0

G)−1
G

T Σ−1
y0

y (8.23)

with G now defined in (8.16). In combination with (8.20)
this suggests predicting x with

x̂ = x̂(β̂)

= x̂0 + (T − Ĝ0)β̂

= T (GT Σ−1
y0

G)−1
G

T Σ−1
y0

y

+Σx0H
T Σ−1

y0

[

I

−G(GT Σ−1
y0

G)−1
G

T Σ−1
y0

]

y (8.24)

which is exactly the same as the formula we obtained
for the diffuse predictor x∞ in (6.21) of Section 6.2.2
apart from the fact that the T and G matrices are now
defined differently. As a result of this, one may conclude
that Theorem 6.2 is equally applicable to this setting
with the implication that x̂(β̂) is the BLUP of x with
prediction error variance-covariance matrix S having the
same form as S∞ in (6.22) but with T and G defined as
in (8.15) and (8.16), respectively. The related predictor
of the signal f = Hx is then f̂(β̂) = Hx̂(β̂) with pre-
diction error variance-covariance matrix V = HSHT .
To compute x̂(β̂), f̂(β̂) and the diagonal blocks of S, V

we can apply Algorithm 6.1 to the y vector from model
(8.1)–(8.3) and the columns of G with G being computed
recursively from (8.21) and (8.22).

© 2006 by Taylor & Francis Group, LLC

A General State-Space Model 167

8.4 Likelihood evaluation

To conclude, let us discuss evaluation of the sample like-
lihood for the case where (8.1)–(8.3) corresponds to nor-
mal response and state processes. From our work in the
previous section we already know that y has mean vec-
tor Gβ, for G in (8.16) and variance-covariance Σy0 . As
a result, two times the negative log-likelihood is seen to
be

� = pn ln 2π + ln |Σy0 |

+(y − Gβ)T Σ−1
y0

(y − Gβ). (8.25)

The sample log-likelihood can be minimized to obtain
an mle for the parameter vector β with the result being
precisely the BLUE given by β̂ in (8.23). Upon replacing
β by β̂ in (8.25) we obtain a concentrated log-likelihood
function of the form

� = pn ln 2π + ln |Σy0 |

+(y − Gβ̂)T Σ−1
y0

(y − Gβ̂)

= pn ln 2π + ln |Σy0 | + y
T Σ−1

y0
y

−y
T Σ−1

y0
G(GT Σ−1

y0
G)−1

G
T Σ−1

y0
y

= pn ln 2π

+
n∑

t=1

[

ln |R0(t)| + ε
T
0 (t)R−1

0 (t)ε0(t)
]

−ε
T
0 R

−1
0 E0(ET

0 R
−1
0 E0)−1

E
T
0 R

−1
0 ε0

(8.26)

with ε0 = L
−1
0 y and E0 = L

−1
0 G for R0, L0 from the

© 2006 by Taylor & Francis Group, LLC

168 A Kalman Filter Primer

Cholesky factorization Σy0 = L0R0LT
0 . Apart from the

difference in the definition of the matrix G, this is ex-
actly the same as the likelihood function we dealt with
at the end of Section 7.3. Thus, it can be evaluated effi-
ciently by following the steps laid out in Section 7.2 sub-
sequent to (7.3). Further concentration of the likelihood
with respect to estimation of a scale parameter result-
s in an estimator of the same form as (7.6) in Section
7.4. Finally, as we demonstrated in the simpler setting
of Chapter 7, it is also the case for model (8.1)–(8.3)
that a diffuse specification for β produces a sample like-
lihood that agrees with (8.26) apart from the addition of

the factor ln |GT Σ−1
y0

G| = ln |ET
0 R

−1
0 E0|. A detailed

proof of this can be found in de Jong (1988).

© 2006 by Taylor & Francis Group, LLC

A

The Cholesky Decomposition

Given the central role that Cholesky factorization plays
in Kalman filtering, this book would not be complete
without a detailed discussion of the Cholesky method.
This is provided by the material that follows.

To begin, let Σ = {σ(i, j)} be a np×np, positive defi-
nite matrix with p×p sub-blocks σ(i, j), i, j = 1, . . ., n.

Then, we want to obtain recursive formulae for evaluat-
ing the matrices L and R in the decomposition

Σ = LRL
T

with R = diag(R(1), . . ., R(n)) and L = {L(i, j)} a
block lower triangular matrix having L(i, i) = I, i =
1, . . ., n, for I the p × p identity matrix.

We also want to use the factorization algorithm to solve
linear systems such as Σb = z, where z = (zT (1), . . .,

zT (n))T is a specified pn-vector and the vector b =
(bT (1), . . ., bT (n))T represents the unknown solution.
Note, however, that given L and R we have

Lc = z (A.1)

with c = RLT b. Thus, c = (cT (1), . . ., cT (n))T may be
obtained via forward solution of a block lower triangular
system. More precisely, since the diagonal blocks of L

are identity matrices, it follows that c(1) = z(1) and,

169
© 2006 by Taylor & Francis Group, LLC

170 A Kalman Filter Primer

for t = 2, . . ., n,

c(t) = [z(t) −
t−1
∑

i=1
L(t, i)c(i)]. (A.2)

Upon obtaining c by recursion (A.2) we can back-solve
the block upper triangular system LT b = R−1c to ob-
tain b. This produces b(n) = R−1(n)c(n) and

b(t) = R
−1(t)c(t) −

n∑

i=t+1
L

T (i, t)b(i) (A.3)

for t = n − 1, . . ., 1.
To use (A.2)–(A.3) we must first evaluate L and R. For

this purpose it suffices to equate the elements of LRLT

and Σ. If we now let L(1, 1 : n) = [I, 0, . . ., 0] be the
first row block of L and, similarly, define

L(t, 1 :n) = [L(t, 1), . . ., L(t, t − 1), I, 0, . . ., 0],

the problem becomes tantamount to finding choices for
L(1, 1 : n), . . ., L(n, 1 : n) and R that satisfy

L(t, 1 :n)RL
T (j, 1:n) = σ(t, j), (A.4)

for j = 1, . . ., n and t ≥ j since Σ is symmetric.
Starting with the upper left hand corner of Σ and work-

ing downwards (i.e., with j = 1 and t ≥ 1 in (A.4)) we
obtain

R(1) = σ(1, 1), (A.5)

L(t, 1) = σ(t, 1)R−1(1), (A.6)

for t = 2, . . ., n and, in general, have

R(j) = σ(j, j) −
j−1
∑

i=1
L(j, i)R(i)LT (j, i) (A.7)

© 2006 by Taylor & Francis Group, LLC

The Cholesky Decomposition 171

with

L(t, j) = [σ(t, j) −
j−1
∑

i=1
L(t, i)R(i)LT (j, i)]R−1(j)

(A.8)
for t = j + 1, . . ., n. Since all the solutions provided by
(A.5)–(A.8) are determined uniquely it follows that the
Cholesky decomposition is itself unique.

Observe that each step in (A.5)–(A.8) involves only
those sub-matrices that were computed on the previous
iteration. Also, note the similarity between (A.2) and
(A.7) which has the practical implication that the for-
ward solution step can be done in tandem with the com-
putation of L and R.

If we now think a bit more about (A.1)–(A.2) we can
see that the forward solution step actually produces c =
L−1z for any “input” vector z. In this respect there is
nothing special about having a single vector for the right
hand side and more generally we can take Z = [ZT (1, 1:
r), . . ., ZT (n, 1 : r)]T for p × r matrices Z(t, 1 : r), t =
1, . . ., n. Then, to solve LC = Z for the np×r matrix C

we can use C(1, 1 :r) = Z(1, 1:r) and, for t = 2, . . ., n,

C(t, 1 :r) =



Z(t, 1:r) −
t−1∑

i=1
L(t, i)C(i, 1:r)



 . (A.9)

The back substitution step proceeds in a similar manner
with B(n, 1 : r) = R−1(n)C(n, 1 : r) and

B(t, 1 :r) = R
−1(t)C(t, 1:r)−

n∑

i=t+1
L

T (i, t)B(i, 1:r).

(A.10)
A complete description of the Cholesky method that al-
lows for multiple right hands sides is given below.

Algorithm A.1 This algorithm computes the diagonal
blocks of R and the below diagonal blocks of L in the

© 2006 by Taylor & Francis Group, LLC

172 A Kalman Filter Primer

Cholesky factorization Σ = LRLT and also returns the
solution to the linear system ΣB = Z.

/*Initialization*/

R(1) = σ(1, 1)
C(1, 1 :r) = Z(1, 1:r)
/*Computation of first column*/

for t = 2 to n

L(t, 1) = σ(t, 1)R−1(1)
end for

/*Computation of remaining columns*/

for j = 2 to n

/*Compute R(j) first*/

R(j) = σ(j, j)
C(j, 1 :r) = Z(j, 1:r)
for i = 1 to j − 1

R(j) := R(j) − L(j, i)R(i)LT (j, i)
C(j, 1 :r) := C(j, 1:r) − L(j, i)C(i, 1:r)

end for

/*Now compute the rest of the column*/

for t = j + 1 to n

L(t, j) = σ(t, j)
for i = 1 to j − 1

L(t, j) := L(t, j)
−L(t, i)R(i)LT (j, i)

end for

L(t, j) := L(t, j)R−1(j)
end for

end for

/*Initialization for back substitution*/

B(n, 1 : r) = R−1(n)C(n, 1 : r)
/*Back Substitution*/

for t = n − 1 to 1
B(t, 1 :r) = R−1(t)C(t, 1:r)
for j = t + 1 to n

B(t, 1 :r) := B(t, 1:r) − LT (j, t)B(j, 1:r)
end for

end for

© 2006 by Taylor & Francis Group, LLC

The Cholesky Decomposition 173

In this book we are most interested in situations where
n is much larger than p which makes it the dominant fac-
tor for determining computation times. In this respect,
if we notationally suppress the influence of p, the num-
ber of flops (floating point operations) required in the
jth step of the Cholesky recursion (A.5)–(A.8) is seen
to be on the order of j(n − j). Since

∑n
j=1 j(n − j) =

n(n2 − 1)/6, the total number of flops is O(n3). The
same remains true for solving linear systems using the
Cholesky method.

As a special case of (A.9) we can choose Z to be an
np × p matrix of all zeros except for Z(i) which we take
to be the p-dimensional identity. Our matrix forward re-
cursion, omitting multiplication by R−1, will then pro-
duce the p × p block matrices that correspond to the ith
(block) column of L−1 = {L−1(t, j)}t,j=1:n . A rote
application of this idea produces the formulae

L−1(t, j) = −
t−1
∑

i=1
L(t, i)L−1(i, j)

for j �= t and

L
−1(j, j) = I −

j−1
∑

i=1
L(j, i)L−1(i, j).

However, there are simplification here because L−1 must
also be lower triangular with identity matrix diagonal
blocks. Through use of these properties we can establish
the following result.

Theorem A.1 Let L−1 = {L−1(t, j)}t,j=1:n for p×p

block matrices L−1(t, j),t, j = 1, . . ., n. Then, L−1(t, t) =
I for t = 1, . . ., n, L−1(t, j) = 0 for j > t,

L
−1(t, t − 1) = −L(t, t − 1), (A.11)

© 2006 by Taylor & Francis Group, LLC

174 A Kalman Filter Primer

for t = 2, . . ., n and

L
−1(t, j) = −L(t, j) −

t−1
∑

i=j+1
L(t, i)L−1(i, j) (A.12)

for t = 3, . . ., n, j = 1, . . ., t − 2.

Proof. It is worthwhile to go through a bit more detail on
establishing this result beyond just a reference to (A.9).
The idea is that we are solving the system LB = I for
the matrix B to obtain the solution B = L−1. Since L

is lower triangular with identity matrix diagonal blocks,
this immediately fixes L−1(1, 1) as the identity and all
the remaining row blocks as zero matrices. One may now
proceed by induction to see that the diagonal blocks of
L−1 must all be identities and that its above diagonal
blocks are all zero matrices.

At this point a more enlightened application of (A.9)
(using L−1(t, j) = 0 for j > t) reveals that for t > j

L
−1(t, j) = −

t−1
∑

i=j

L(t, i)L−1(j, i)

because L(t, t) = I. Using L−1(j, j) = I completes the
proof. �

As a result of Theorem A.1 we see that the the eval-
uation of the below diagonal row blocks for L−1 can
proceed by first computing L−1(2, 1) = −L(2, 1) and
then L−1(3, 2) = −L(3, 2) which allows for evaluation
of

L
−1(3, 1) = −L(3, 1) − L(3, 2)L−1(2, 1).

Next we compute L−1(4, 3) = −L(4, 3) which leads to

L
−1(4, 2) = −L(4, 2) − L(4, 3)L−1(3, 2)

© 2006 by Taylor & Francis Group, LLC

The Cholesky Decomposition 175

and

L
−1(4, 1)

= −L(4, 1) − L(4, 2)L−1(2, 1) − L(4, 3)L−1(3, 1).

By proceeding in this fashion we can formulate the fol-
lowing computational scheme.

Algorithm A.2 This algorithm computes the below di-
agonal blocks of L−1.

for t = 2 to n

for j = 1 to t − 1
L−1(t, j) = −L(t, j)
if j < t − 1

for i = j + 1 to t − 1
L−1(t, j) := L−1(t, j)

−L(t, i)L−1(i, j)
end for

end if

end for

end for

© 2006 by Taylor & Francis Group, LLC

B

Notation Guide

0 a matrix of all zero entries

I the identity matrix

A(i, j) the block of the matrix A cor-
responding to its ith block row
and jth block column

E mathematical expectation

Var(z) variance-covariance matrix for z

Cov(z, v) covariance matrix for z and v

n the number of response vectors

t an integer valued “time” index

p the dimension of each response
vector

y(t) observed response vector at the
time index t: pg. 3

y the stacked vector of all the re-
sponses: pg. 3

f(t) unobserved p×1 signal vector at
time t

f the stacked vector of all the sig-
nals: pg. 11

e(t) unobserved noise vector at time
t

177
© 2006 by Taylor & Francis Group, LLC

178 A Kalman Filter Primer

W (t) e(t)’s variance-covariance matrix

e the stacked vector of all the noise
variables: pg. 11

W variance-covariance matrix for e:
pg. 4

q dimension of the state vectors

x(0) initial state vector

S(0|0) x(0)’s variance-covariance matrix

x(t) the state-vector at time index t

x the stacked vector of all the s-
tate variables: pg. 110

u(t) a q × 1 vector of random distur-
bances

Q(t) u(t)’s variance-covariance matrix

u the stacked vector of all the dis-
turbances: pg. 126

Q variance-covariance matrix for u:
pg. 113

ε(t) innovation vector at time index
t: pg. 8

R(t) ε(t)’s variance-covariance matrix

ε the stacked vector of all the in-
novations: pg. 10

R variance-covariance matrix for ε:
pg. 10

F (t) state transition matrix

H(t) state transformation matrix

x(t|j) least-squares linear predictor of
x(t) from ε(1), . . ., ε(j): pg. 13

© 2006 by Taylor & Francis Group, LLC

Notation Guide 179

S(t|j) prediction error variance-covar-
iance matrix for x(t|j): pg. 14

f(t|j) the least-squares linear predic-
tor of f(t) from ε(1), . . ., ε(j):
pg. 14

V (t|j) prediction error variance-covar-
iance matrix for f(t|j): pg. 14

K(t) the Kalman gain matrix: pg. 54

M(t) matrix defined in (2.17) on pg.
113

σXε(t, j) the q × p covariance matrix for
x(t) and ε(j): pg. 30

ΣXε the nq×np of the σXε(t, j): pg.
30

L np × np lower triangular matrix
in the Cholesky decomposition
of Var(y): pg. 10

L(t, j) p×p matrix in the tth block row
and jth block column of L: pg.
10

L−1 np×np lower triangular inverse
matrix corresponding to the ma-
trix L in the Cholesky decompo-
sition for Var(y): pg. 58

L−1(t, j) p×p matrix in the tth block row
and jth block column of L−1:
pg. 58

H the np × nq block diagonal ma-
trix containing all the H(t): pg.
111

F the nq×nq block lower triangu-
lar matrix in (6.10) on pg. 113

T nq×q matrix in (6.3) on pg. 110

© 2006 by Taylor & Francis Group, LLC

180 A Kalman Filter Primer

G the matrix HT : pg. 119

Σx0 variance-covariance matrix for x

when S(0|0) = 0: pg. 113

Σy0 variance-covariance matrix for y

when S(0|0) = 0: pg. 113

L0 block lower triangular matrix in
the Cholesky factorization of the
matrix Σy0 : pg. 121

R0 block diagonal matrix from the
Cholesky factorization of Σy0 :
pg. 121

ε0 the vector ε0 = L
−1
0 y: pg. 121

E0 the np × q matrix E0 = L
−1
0 G:

pg. 121

x̂0(v) state vector prediction formula
for when S(0|0) = 0 applied to
a given vector v: pg. 115

f̂0(v) the signal vector prediction for-
mula for when S(0|0) = 0 ap-
plied to a given vector v: pg. 115

S0 prediction error covariance ma-
trix for the BLUP of the state
vector when S(0|0) = 0: pg. 114

V0 prediction error covariance ma-
trix for the BLUP of the signal
when S(0|0) = 0: pg. 114

x̂∞ diffuse state vector predictor: pg.
119

f̂∞ diffuse signal predictor: pg. 125

© 2006 by Taylor & Francis Group, LLC

Notation Guide 181

S∞ prediction error covariance ma-
trix for x̂∞: pg. 119

V∞ prediction error covariance ma-
trix for f̂∞: pg. 125

� twice the negative log-likelihood:
pg. 139

© 2006 by Taylor & Francis Group, LLC

References

Anderson, B. D. O. and Moore, J. B. (1979). Op-

timal Filtering. New Jersey: Prentice-Hall.

Ansley, C. F. and Kohn, R. (1985). Estimation,
filtering and smoothing in state space model-
s with incompletely specified initial conditions.
The Annals of Statistics 13, 1286–1316.

Davis, P. (1975). Interpolation and Approximation.

New York: Dover.

Doob, J. (1953). Stochastic Processes. New York:
Wiley.

Eubank, R. and Wang, S. (2002). The equiva-
lence between the Cholesky decomposition and
the Kalman filter. American Statistician 56, 39–
43.

Gelb, A. (1974). Applied Optimal Estimation.
Boston: MIT Press.

Goldberger, A. (1962). Best linear unbiased pre-
diction in the generalized linear regression mod-
el. Journal of the American Statistical Association 57,
369–375.

Hocking, R. (2003). Methods and Applications of

Linear Models: Regression and the Analysis of Variance.
New York: Wiley.

Householder, A. (1964). The Theory of Matrices in

183
© 2006 by Taylor & Francis Group, LLC

184 A Kalman Filter Primer

Numerical Analysis. New York: Dover.

de Jong, P. (1988). The likelihood for a state
space model. Biometrika 75, 165–169.

de Jong, P. (1989). Smoothing and interpolation
with the state-space model. Journal of the Ameri-

can Statistical Association 84, 1085–1088.

de Jong, P. (1991). The diffuse Kalman filter.
The Annals of Statistics 19, 1073–1083.

Kalman, R. (1960). A new approach to linear fil-
tering and prediciton problems. Journal of Basic

Engineering 82, 34–45.

Kalman, R. and Bucy, R. (1961). New results in
linear filtering and prediction theory. Journal of

Basic Engineering 85, 95–108.

Khinchin, A. (1997). Continued Fractions. New
York: Dover.

Kohn, R. and Ansley, C. (1989). A fast algo-
rithm for signal extraction, influence and cross-
validation in state space models. Biometrika 76,
65–79.

Koopman, S. and Durbin, J. (2001). Time Series

Analysis by State Space Methods. New York: Oxford
University Press.

Robinson, G. (1991). The BLUP is a good thing:
the estimation of random effects. Statist. Science

6, 15–51.

Wall, H. (1948). Analytic Theory of Continued Frac-

tions. New York: van Nostrand.

© 2006 by Taylor & Francis Group, LLC

	A Kalman Filter Primer
	Preface
	Contents
	Chapter 1: Signal-Plus-Noise Models
	1.1 Introduction
	1.2 The prediction problem
	1.2.1 Best linear unbiased prediction
	1.2.2 Gramm-Schmidt and innovations
	1.2.3 Gramm-Schmidt and Cholesky

	1.3 State-space models
	1.4 What lies ahead
	References

	Chapter 2: The Fundamental Covariance Structure
	2.1 Introduction
	2.2 Some tools of the trade
	2.3 State and innovation covariances
	2.4 An example
	References

	Chapter 3: Recursions for L and L−1
	3.1 Introduction
	3.2 Recursions for L
	3.3 Recursions for L−1
	3.4 An example
	References

	Chapter 4: Forward Recursions
	4.1 Introduction
	4.2 Computing the innovations
	4.3 State and signal prediction
	4.4 Other options
	4.5 Examples
	References

	Chapter 5: Smoothing
	5.1 Introduction
	5.2 Fixed interval smoothing
	5.3 Examples
	References

	Chapter 6: Initialization
	6.1 Introduction
	6.2 Diffuseness
	6.2.1 Prediction when S(0|0) = 0
	6.2.2 Prediction when S(0|0) is “large”

	6.3 Diffuseness and least-squares estimation
	6.4 An example
	References

	Chapter 7: Normal Priors
	7.1 Introduction
	7.2 Likelihood evaluation
	7.3 Diffuseness
	7.4 Parameter estimation
	7.5 An example
	References

	Chapter 8: A General State-Space Model
	8.1 Introduction
	8.2 KF recursions
	8.3 Estimation of β
	8.4 Likelihood evaluation
	References

	Appendix A: The Cholesky Decomposition
	Appendix B: Notation Guide
	References

